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ABSTRACT

We study the dynamics and directed transport in a class aftichdamiltonian sys-
tems. The system we consider ig-akicked particle in the presence @f) double-
barrier potential andi:) periodic lattice of square-well potentials. In contrast to
the well studied kicked rotor, the kicked system, in the pneg of two variants of
square-well potentials, studied in this thesis does noy tieKolmogorov-Arnold-
Moser (KAM) theorem. Due to this, invariant curves are abserd instead the
phase space displays intricate chains of islands and folyected chaotic layer
even for very small kick strength. However, a special featfrthe system reported
in this thesis is that, inspite of being a non-KAM system, a@iyics is KAM-like in
some regions of phase space. We study the effect of intelpglayeen of non-KAM
and KAM-like phase space dynamics on dynamical propertieeeosystem. We
report a number of novel and interesting dynamical featlikeq«) the classically
induced suppression of energy grow(h), non-equilibrium steady state afe mo-
mentum filtering effect. We also report results for the quanainalogues of these
dynamical features.

To study the directed transport properties of the systemstwdy evolution
of a set of initial states. We study the effect of spatio-terap symmetries on
net current of a set of states. We observe that the systemsstaiehet effect,
i.e., directed current in absence of net bias, upon breakingioespatio-temporal
symmetries. We explain how the non-KAM nature of the systerparts some
useful characteristics to it as ratchet model. Throughwstwork, we also analyse
the quantum dynamics of the system, mainly in the semidaksgime, and study
the consequences of quantum effects. We also show that siensyan act as a

guantum ratchet.
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CHAPTER 1

Introduction

Controlled transport of matter or energy is at the heart afiyrzhysics problems.
Search for different ways of controlling and manipulatingtion of particles like

electrons, atoms, molecules, etc. encompasses manyrajiatigporoblems of this
class. Many of these problems are inspired by societale&ésimew technologies
and has always boosted the innate thirst for knowledge. Veereducing size of
electronic devices has come to mark the cutting edge in tdogy today. These
devices rely on controlling directed but typically disdiga transport of electrons
in different materials. Apart from electronic devices,edied transport occurs in
natural systems as well. Transfer of water from roots of a teeits leaves is the
simplest example of such systems. However, this thesisvistele to the physics
of directed transport in a set of theoretical models relewarsome microscopic
systems that can be tailor made.

In most devices, directed transport is driven by an energycgoand a drain.

This system of source and drain is deliberately designedddyte a net biased
force for directed motion. However, humans have alwaysédfgr machines that

would work perpetually without any interference. Unforabely, a real perpetual
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machiné is forbidden by the second law of thermodynamics, as will learcin
later sections, and indeed no such machine exists that descework out of a
system in equilibrium situation. Nevertheless, this agon provoked the study of
the systems which are capable of extracting work from randation of particles
in absence of any net bias though in a non-equilibrium sdoatTypically, it is
possible to actually implement this in systems of microscalimensions. They
are termed ratchets and the phenomenon of extracting wahksimanner is called
ratchet effect.

This thesis is pivoted around the study of ratchet phenomensome theoret-
ical models relevant in the study of chaotic quantum systefie models them-
selves are experimentally realizable in the laboratorggiaitest bed of cold atoms
and optical lattices. Along with the ratchet effect, we stsdme associated trans-
port properties like particle pumping, momentum filtering@ssical suppression of
energy and dynamical localization. It is appropriate toibvegth an introduction

to ratchets and their brief history.

1.1 The Ratchets and Their History

In a general sense, ratchets are devices used to restricimtotone particular
direction. For instance, a turnstile can be turned only ia dinection on applica-
tion of force. This is one of the commonly occurring exampleaichet device
encountered in daily life. However, the notion of ratchetd eatchet effect that sci-
entists deal with is not uniquely defined. Neverthelessgthee few points common
among various types of ratchets in science. For examplg giteesystems that work
outside of equilibrium in a random environment and provideated transport in

periodic media in absence of any net bias. Symmetry breakjagial and/or tem-

!Perpetual machines of physicist’s interest are of two kinElsrpetual machines of first kind
would function without any energy input and are triviallyed out by first law of thermodynamics.
Perpetual machines of second kind would extract work fromssesn in an equilibrium state vio-
lating the second law of thermodynamics. Perpetual maslohsecond kind gained much interest.
None of these machines are realizable in practice.
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poral, is also a central concept in the study of ratchet pimema. The best way to
reveal the flavor of the field will be through a discussion efwork already done in
the field. An expedition through major contributions in theddi therefore, follows.
As already mentioned, the study of ratchets was provoketéytest for per-
petual machines which can put to work the energy absorbedtieir surrounding
without any deliberate human interference. A self windingstwvatch, also called
as perpetual watch, is a macroscopic example of somethisg tb a real perpetual
machine. It is designed to use the random motion of wearers &s a source of
energy which is stored and used to turn its hands unidinealipeven when it is not
worn. This self winding mechanism, however, has to be indgleriodically which,
of course, needs wearer’s intervention. Such novel desugne hardly thought to
be possible in microscopic systems until the fabricatiehméques evolved to man-
ufacture devices that are of sub-micron dimensions. Ma@goricroscopic can not
escape from the effect of ambient thermal noise. Then theaajuestion arises -
is it possible to extract useful work from a system withoueélmased force in the
presence of thermal noise? First comprehensive thedretm& addressing this
question was done by Smoluchowski through his thought éxeert in 1912, later
on popularized and extended by Feynman in 1952 [Fe63]. Srholski gave
the first qualitative explanation of why a device would fadsextract work from
random motion of particles in an equilibrium situation. Rman in his extension
to Smoluchowski’s thought experiment showed that it is fmdego extract work
from random motion of particles but only after breaking thertmal equilibrium.
Before we voyage further into history of ratchets, it wortemtioning about Peter
Reimann’s review [Re02] that gives a more detailed accotihtstory and funda-
mental concepts of ratchets. This discussion will move glmpath that will lead

to the subject of the thesis.
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1.2 Deterministic Ratchets

As mentioned in Ref. [Re02], another motivation for the warork on ratch-
ets is rooted in intracellular transport research in bimalgsystems, said to
be stemming from A. Huxley’s ground-breakimsjding filament modebf mus-
cle contraction in 1957. Since late 1980s, there have bemswed interest in
transport phenomena in biological systems, probably dusdt@ncement in mi-
croscopy and micro scale control. The study of biophysicatimmes relying on
ratchet phenomena for their functioning, popularly knovennaolecular motors,
offered physicists more realistic situations to analyzepge physics of ratchet
effect. Therefore, most of the early physics of ratchetdtde#h the models
inspired from biological system [Ma93, Ma94, As94]. In dilese bio-inspired
ratchets, the source of non-equilibrium fluctuations hagenbthe thermal noise
that manifests itself as Brownian motion of molecules. €Ehae these ratchet
systems are known as thermal ratchets, Brownian ratcheBrawnian motors.
This ground breaking work that explained basic principlégaichet phenom-
ena inspired the study of diverse models for Brownian ragck&ploring the ef-
fect of properties of noise and potential, interaction, dang, quantum effects
etc. [Do94,Ba94, Ce96,Re97, Ku98, Ka98, BI98, Sc97].

Simultaneously, the need for a better understanding of lea@mena encour-
aged the study of minimalist ratchet models including nevemaisms not based
on thermal noise. This initiated the study of determinisditchets in which chaos
played the role of noise in providing random environmen®gli$a99, Ma00, Tr00,
Ba00]. In this direction, ratchet effect in a deterministicstem free from both
noise and dissipation was considered [Sc01,Gr02]. Thase aad dissipation free
ratchets are based on Hamiltonian systems. The desire livereatificial nano-
structured ratchets have been the motivation for for ina@fon of quantum effects
in these Hamiltonian ratchets [Ko03]. Kicked rotor systems Berved as paradig-
matic model for the study of Hamiltonian chaos both in cleaslsand quantum ver-

sion [1z90, Za07]. It can be thought of as a pendulum thativeseperiodic kicks
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by a sinusoidal potential. With the advent of laser cooling aptical lattices, the
kicked rotor model has been experimentally realized in dt@tatory [M095]. As
a result, much of the work on the chaotic Hamiltonian ratshebased on kicked

rotor system. First, we describe the kicked rotor model meaadetail.

1.3 Kicked Particle System

The Hamiltonian of the kicked rotor system is given by,

P’
H=— + e cos ( Z 5t —mn) n € integer (1.1)

This represents a system in which a particle is subjectedspagally periodic po-
tential fieldcos (), modulated by a periodic sequence of delta functions in.time
The term kick stands for effect of potential that acts forniésimally small du-
ration due to modulation by the delta function. The potérftedd is generally
referred to as kicking field and its amplitudas kick strength. Between any two
kicks, particle act like a free particle. Notice that the siaad kicking period, ie.
time duration between twékicks is set to be 1, and periodicity or wave length of
the kicking field is set to b&x for simplicity. In fact, for any arbitrary values of
these parameters, Hamiltonian can be reduced to the aboweticough appropri-
ate coordinate transformation.

The Hamilton’s equations of motion corresponding to theesysin Eq. (1.1)
are

T =Dp, (1.2a)
= esin ( Z ot —mn) (1.2b)

Clearly, fore = 0, corresponding to the free evolution of the particle, Eq24)

can also be trivially integrated and we obtain the solutmiisqg. (1.2) as

xr = o+ pt, ; P = Do- (1.3)
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Here, zy andp, represent the initial position and momentum of the partidy
applying the periodic boundary condition and restrictimg position variable to €
[—7, 7], we can transform to action-angle coordinatés’). The kicked particle
system with periodic boundaries is equivalent to the kickedr. In phase space
(0, J), this trajectory will be represented by straight line exiieg from —r to =
intersecting/-axis atJy (= po, in this case).

For e # 0, this system is non-integrable. However, the evolutionlwatreated
period-wise. Le{x,, p,) be the position and momentum of particle just before the
n'* kick. One notices that motion over one kicking period can baldd into two
parts:

() Kicking part - This takes place for infinitesimal duratiover which no change in
position occurs, but momentum will change according to BRK) due to energy
absorbed from the kick. The evolved momentum; after the kick can be obtained

by integrating Eq. (1.2b) over duration of delta kick, in the limit ofot — 0, as

n+% o0
Prtl = / esin () Z 0(t — n)dt = p, + sin(z,). (1.4)
0t

2 n=—o00

(i) Free evolution part - This takes place in between th&kduring which particle
moves with constant the momentum, ;, according to Eq. (1.2a). Adding distance

traveled by particle during this period g, one gets,

Tpil = Tp + Pny1- (1.5)

Thus, we obtain the Chirikov map [chirikov], popularly knovas standard map,

defined on an infinite planeco < z,,, p, < oo,

Pns1 = Do+ esin(z,), (1.6a)

Tnt1 = Tn+ Ppyr- (1.6b)

Notice that the map can be made periodic both @mndp. By applying periodic
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boundary conditions over one peri@2ir) from —7 to 7 in bothx andp space, we

get,

Jpy1 = Jn +esin(b,), (1.7a)

en—i—l = 0n+<]n+1- (17b)

Figure 1.1 shows phase space of standard map for differ&mtsafe. Note that
each of the trajectorie®,,, J,,) actually represents only a stroboscopic section, at
times just before the kicks, of continuous trajectt#yt), J(t),t). However, since
the motion between the kicks is trivial free motion, all tHeape space features can
be studied on this section. Fox < 1, we see there exist many continuous curves.
Each curves represents a torus which is deformed due torpation ¢ # 0).
These curves are called invariant curves because of atsbci@anserved quantity
w known as winding number number. This is defineduas= %) 5

oo and determines the long time average velocity. Heregpresents length of
spatial period which set to br. The rational values ofv would correspond to
periodic orbits. A periodic orbit would appear as set of @mumber of points in
the stroboscopic section. Irrational valuesuofire associated with quasiperiodic
orbits. These are the orbits in which trajectory never repiself, however, after
long enough time it comes infinitely close to its startingmioiBoth the periodic
and the quasiperiodic orbits represent regular motionseisee that for << 1,

the phase space is mostly populated with regular orbits.

Invariant curves generally tend to be barriers to globalheativity in phase
space. This is a consequence of the fact that two trajestariphase space can
not intersect each other. Asincreases, the invariant curves get more and more
deformed and ultimately begin to break down. This leads tormected and mixed
phase space comprising chaotic as well as regular regiersatitalled islands. For
e >> 1, all these invariant curves break down and the phase splrgeady chaotic

in which some islands, which represent regular orbits, arbeglded. In this situ-
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Figure 1.1:Phase space of standard map for different values of kichgtinee. The kick
strengths are (a) 0.15, (b) 1.0, (c) 4.5, and (d) 10. Gradamasition from regular to chaotic
dynamics occur with increasing
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ation, the unbounded spread in momentum and energy spasmbes@ossible (to
observe them one has to remove periodic boundaries apptad ). However,
the rate of energy growth can be hampered by the presendelof stgions around
stable islands where a chaotic trajectory might spend nime ¢compared to other
regions of phase space [Za07]. For large kick strengthsytstem displays approx-
imately normal diffusion with diffusion constam = % being a function only of
the kick strength. Deviations from normal diffusion havebstudied by Rechester
and White [Re80].

Notice that the transition of the standard map from reguahiaotic dynamics
is gradual with the increasing perturbation strengtiSuch gradual transition in
systems like the standard map is guaranteed by the celdiitabmogorov-Arnold-
Moser (KAM) theorem [Ta89, Ot93]. According to KAM theorermder certain
conditions, if a small perturbation is applied to an intéjgasystem, then corre-
sponding to each invariant curve of the integrable systheretexist another invari-
ant curve (also called KAM torus) which is close to originako In other words,
in presence of small perturbation, the invariant curvesoatg slightly deformed.
One of the conditions of the KAM theorem is that the unpemtdreystem should
be analytic. Much of this thesis is concerned with of nonkgi@apotential and
hence KAM theorem does not apply. In such a scenario, as Wessglean the next
chapters, all the invariant curves are destroyed even fgrsmaall perturbation.

In case of quantum kicked particle [1z90], the evolution banstudied through
one time-period evolution operator, known as Floquet dperthat evolves an ini-
tial state over one kicking period. This is expressed as,

~ i€ N i p?

U =exp (_h_s COSZE) exp (_ﬁ_sg) . (1.8)
Here, the first term represent the effect of kicking and tlvesd the effect of free
evolution between the kicks. The eigen states of the Flogpetator{/, known as
Floquet state, will represent the asymptotic dynamics efdyistem. These states

are the equivalent of the stationary states for the timegaddent quantum system.
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One major feature observed in quantum version of the systéheidynamical
localization [Re04, St93]. Far >> 1, as discussed earlier, the classical dynamics
is nearly diffusive. However, in the corresponding quansystem, the diffusive
growth of energy is arrested by dynamical localization [€&7a84] arising due to
destructive quantum interferences. We will see that dynahhocalization plays an

important role in Hamiltonian ratchets based on kickedigarsystem.

1.4 Quantum Ratchets

The work of Schanz et. al. [Sc01, HuO4] appears to be the ficgigsal to study
chaotic Hamiltonian ratchets. In this work, it was arguedt th a regime of mixed
phase space with islands of regularity embedded in a chiayke, directed trans-
port is possible if appropriate spatio-temporal symmestaie broken. The directed
transport in this proposal arises from the imbalance batwleetransport due to the
island structures and the chaotic layer in phase spaceinibadance is induced by
breaking the spatio-temporal symmetries in the system. gUia@mtum ratchet ap-
pears in the corresponding semiclassical regime in whielckassical mechanism
largely carries over to the quantum regime.

Is it possible to obtain directed transport in chaotic regiaf the system ?
Monteiro et. al. [Mo02] show, using kicked rotor model, thiats indeed possi-
ble. Classical kicked rotor, for large kick strengths, isgwminantly chaotic. It
leads to unbounded growth in energy as a function of tille~ Dn, whereD
is the diffusion coefficient. Upon breaking spatio-tempssanmetries appropri-
ately, the particles with positive and negative momentaelhdiffusion coefficients
D, and D_ respectively. Thus, the rate of energy growth continuesetdirear
but is different for particles travelling in different dotons. Thus, it leads to net
mean momentgp) # 0, i.e., directed motion becomes possible. However, there is
a catch. The unbounded growth in energy dilutes the mean m@noentinually

and hence it will not work as a meaningful ratchet. Howeusainks to dynamical
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localization in the corresponding quantum system, theggrgnowth is arrested and
we obtain a quantum ratchet in which the net mean momgnthaas converged to
a non-zero value. Thus, the system works as a quantum ratThet effect was
claimed to be a true quantum ratchet mechanism. Typicallgystems based on
kicked rotor, spatial symmetry is broken by manipulating gfhase and temporal
symmetry is broken by additional kicks in every cycle. Hoegin one possible ex-
perimental realization of the quantum ratchet [JoO7altisbgymmetry is broken
by a rocking potential and temporal symmetry by placing &odal kicks. This
represents one of the first experimental results on quanétichets. Another ex-
perimental effort based on kicked rotor was performed byasn al.,[Da08] in
which Bose-Einstein condensate in standing waves weretosealize quantum-
resonance ratchets leading ratchet acceleration. Ditécaasport in a driven (as
opposed to a kicked) classical system was experimentallizesl using atomic ru-
bidium Bose-Einstein condensates in time modulated dpétieces [Sa09]. In this
case, the ratchet effect arises due to desymmetrizatidmedFloquet states in the
quantum regime. With these developments, there were eportontrol of ratchet
effect in cold atoms [Ke08], ratchets in driven quantum eyt [De07], ratchet ac-
celerators [Wa08,Dal1], quantum ratchets at resonan@[BR009] and proposals
for ratchets in other models of quantum chaos [Wa08a, ErDB¢ bulk of ratchet
work in the context of chaos and quantum chaos is based on ganaat of the
kicked rotor, which as we pointed out earlier, is an examptehbw KAM theory
works out in practice. However, there is the other class stfesy that does not obey
the KAM theory. The central idea in the thesis is to study tineadled transport in

non-KAM systems and exploit their dynamical features foedied motion.

1.5 Motivation

The kicked rotor is a popular model of chaos and for the samsoreturns out to

be popular in the context of chaotic ratchet as well. Muck lsknown about the
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systems that do not obey KAM theorem. In the last two decaatdsast a couple
of non-KAM systems have been studied in some detail; theekidkarmonic os-
cillator [Ch87, Ch88] and kicked patrticle in infinite well481]. In the first case,
the classical system is degenerate which leads to non-KAMer. The the sec-
ond case, the classical system is non-analytic, the reasdyeing non-KAM. We
now know from earlier studies that in either of these cades,system displays
abrupt transition to chaos (as opposed to smooth transitiarKAM system such
as kicked rotor) and the phase space can be mixed but witlnguheariant tori.
Kicked harmonic oscillator was shown to be experimentadblizable using an ion
trap [Ga97]. However, infinite wells are only an idealizatiand cannot be ex-
actly replicated in experiments. A suitable modificationubebbe to consider finite
potential wells. This might look like a simple modificationgsibly retaining the
non-KAM nature of the system but it leads to significant chesnigp the dynamics.
Firstly, this allows for transport in the spatial and momantcoordinates. In the
infinite well, there can be no true transport along coordiraatis. For instance, in
a recent experiment, Henderson et al [He06] constructedhai-que-dimensional
finite box using a combination of optical and magnetic traphthe Bose-Einstein
condensates BECs in the box receiving periodic kicks. Tétiggswas used to study
the effect of atomic interactions on the transport of BE@splhace of the dynam-
ical localization they observed a classical saturatiomeédnergy of BECs due to
a balance between the energy gained from kicks and the elestgpy leakage
of BECs over the finite barrier. Then, one of the questionslavtwe the role of
non-KAM dynamics in such results. Going beyond finite wele wan construct
potentials with double barrier or a lattice of finite wellsich stationary potentials
have relevance in applications. Much of electronic devaresbased on quantum
wells such as double barrier structures constructed framcsmducting materials.
Hence the transport and ratchet effect in a prototype suttedite well can lead
to better understanding of the non-KAM dynamics with anchaitt the ratchet cur-

rents. Due to its potential applications in electronic desi this could ultimately
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lead to better control over ratchet type currents in suckesys. For instance, the
effect of non-KAM chaos on transport properties of semiagntdr superlattices has
already been addressed by Fromhold et. al. [FrO1, BaO8ptihaot in the context
of ratchets. However, it must be pointed out that electraiesices do not rely on
ratchet effect for the conduction of electrons but on themsl bias provided by the
power source. All this points to a potential experimentaligation of kicked sys-
tem placed in finite well potential. Motivated by these cdesations, we choose
to study dynamics and directed transport properties of akkl Hamiltonian
system described briefly below.

We study dynamics and directed transport properties oesystthat can be

defined by a general Hamiltonian of the form

H= =4 Vi(2) +ef (x) g (). (1.9)

In this, V; is the stationary potential that could represent a squallenea 1D lattice
of wells. Both these stationary potential are non-analydige to presence of these
non-analytic potentials, the system is non-KAiM, it does not KAM theorem. The
system is driven by a periodic series of kicks obtained usmgoth potential field
varying spatially asf (z) and temporally modulated by series of delta functions
given by g(t¢). € is the strength of kicking field. In order to study the system i
different situations, we use different specific forms ¥qr f () andg (¢). In the
next chapters, the work in this thesis covers the followirmppems. We basically
study the effect of non-KAM potential on the dynamics of tlygstem. We study
the effect of spatial and time symmetry on the dynamicaliest of these systems
along with the consequences of breaking these symmetriesl3 study the effect
of these symmetries on net directed transport of the systéfa.also study the
quantum version of the system through wave packet evolata~loquet analyses.
We address the effect of quantum dynamics on various dyrsumioperties of the

system.



CHAPTER 2

Kicked Particle in a Double-barrier Structure:
The Phase Space Dynamics

The dynamics of a particle in a one dimensional lattice ofdimiells (Fig. 2.1) is a
fundamental model of significant interest in condensedenattysics [Bu92,As76].
For instance, Konig-Penney model [Li80] forms the basisolar understanding of
crystalline structure in solids. A kicked patrticle in suchatential is the candidate
for the study of ratchet effect in this thesis. Before we adesa lattice of finite
wells, firstly we begin with a study of a kicked patrticle in derbarrier structure
(DBS). This would be a segment extending from the mid-paitihe left barrier to
mid-point of the right barrier. This system turns out be agaicbuilding block for
analyzing the dynamical aspects of kicked particle in adatof finite wells. The
transport of electron through a double-barrier structarparhaps one of the most
important idea that finds application in resonant tunngliimdes and in many other
electronic devices [Le03] though without the applied kicks

From the point of view of classically chaotic Hamiltoniarssyms, kicked par-
ticle in a DBS is one possible generalization of the widelydgtd kicked rotor sys-

tem [Ch79,Re04]. Then, it is not entirely surprising that ttynamics of a particle

14
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Figure 2.1:Grey line shows the periodic lattice of identical equallyspd finite wells.
Dotted lines superimposed on it show two kinds of perioditsurSolid black line shows
the double barrier structure.
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in DBS, in the region between the two barriers, can be anglysterms of kicked
rotor dynamics. In this chapter, we derive a classical maptialying the evolution
of a kicked particle in the presence of a double-barriercstme. This map can be
thought of as a standard map [Re04] in which the effect ofdihdrriers has been
incorporated. The role of kick strength, symmetries andtlerscales involved in
determining phase space features are discussed. The assigal regime in which

guantum dynamics mimics the classical one is also higtéin this chapter.

2.1 The System

We consider the system described by the Hamiltonian

2

H= Qp_m + Viq(x) + € cos (%Tx + ¢) i d(t —nT), (2.1)

n=—oo

where the stationary potential is given by,
V() =g [O(x+b+a) —O(x+a)+O(x —a) —O(x —a—0)]. (2.2)

In this, ©(.) represents a unit step function. The double-barrier siradt,,(z) is

shown as part of a series of wells in Fig. 2.1, and again segwia Fig. 2.2. This
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Figure 2.2:Schematic of the stationary part of the potential: The dedtarrier structure

potential can be written in piece-wise form as,

V() = 0, —oo<az<—a—b, (2.3a)
= W, —a—-b<x<—q, (2.3b)
= 0, —a<z<aq, (2.3c)
= Vo, a<z<b, (2.3d)
= 0, b<z<oo (2.3e)

The two barriers are taken to be identical in this work andhezddhem has width
b and heightly,. The barriers, separated by a distaBagare positioned symmet-
rically the origin, atta, for convenience. Along with this stationary potentiak th
particle is subjected to extremely short impulses actinggaial intervals of time.
These impulses are collectively represented as a seriedtaffdnctions shown in
the last term and, therefore, called as delta kicks. Thengtineof the impulsive
force applied by these kicks varies as a sinusoidal funatiowavelength\ and
amplitudee. Application of these kicks is equivalent to a periodic fiaghof the
cosinusoidal potential field of given wavelength and amgit modulated tempo-
rally through a series of delta functions. The amplitadggenerally referred to as
kick strength. The symba} represents the phase of the kicking field with respect

to the origin.
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The set of canonical transformations given by

a7 (ZE - (Z) WEC
) z o p A
HE, eB. T Vo FE. A~
o2’ T Top2 07 or27 2 (2.4)

with £, = mA? /277 leads to a new dimensionless Hamiltonian

[e o]

H= 7; +Vig(@) +Ecos (3) > d(E—n). (2.5)

All the discussions in this chapter will henceforth refethe scaled parameters and
variables though for convenience we suppress the tilde sigalnd the Hamiltonian

can be written as,

H= % + Viy(2) + €cos (z) Z_ o(t —mn). (2.6)
Here,
V() = Vo[®(x—¢p+b+ Rn)—O(x—¢+ Rr)+0O(x—¢— Rr)—O(x

—¢ — Rm —b)] with R = 2a/\ being the ratio of the width of the well to the
wave length of the kicking field. Following the canonicalnséormation, note
that R is a ratio of two length scales in the system and is a dimetessmuan-
tity. Further, the kicking period and the mass in the trarmmefd coordinates be-
comes unity. Consequently, the set of parameters detargiihe classical dynam-
ics of the system are, nameky, R, b, V, and ¢. Of these,R,b and ¢ determine
the positions of discontinuities in the potential (positiaf the wall boundaries) at
B={-2—-b,—x,z,, 2+ b} wherex; = —Rm + ¢ andz,, = Rm + ¢. Note that
if =0, thenz; = z,.. In that situation, we take, = x,, andz; = —z,,. Thus, the
qualitative nature of the classical dynamics depends okittkestrengthe and the

potential height/, and positions of the wall boundaries collectively denotedb
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2.2 The Classical Map

The Hamiltonian in Eqg. (2.6) is integrable fer= 0. The situation corresponds to
a particle moving freely in presence of barriers with momemnthat has a constant
magnitude and its sign changing on every reflection from treidrs. Fore = 0,

it is possible to transform to a new set of action-angle e In the well region,
which supports periodic motion, for a particle with enegy< V4, the action-
angle transformation results iH = % whereJ is the action variable. In the
case whenr > 0 andV,,(z) = V; (a constant), the dynamics is non-trivial leading
to the well studied standard map [Re04] as shown in chaptdoivever, fore > 0

in the presence of DBS potential shown in Eq. (2.2),in the presence of both the
kicking field and the non-analytic potential, the systemdmees non-integrable. In
this case, the dynamics is even more rich and complex thackadirotor system.
To best of our knowledge, such a system has not been studidchaw in the
context of Hamiltonian chaotic systems.

To simplify the task of dealing with non-analytic potentiale separate out the
effects of the kicking and the stationary potential by réwg the Hamiltonian in
Eq. (2.6) as,

H = Hy + V(). (2.7)

where,H, = % +ecos (x) >

n=—oo

d(t — n) is the time-dependent part afg,(z)
separately accounts for the effect of stationary part. New,evolve the system
as being entirely governed b¥, that leads to the difference equations in Eq.
(2.8a) and then incorporate the effect of discontinuitie¥j,(x) through appro-
priate boundary conditions and this leads to Eq. (2.8b)s Tads to the following

map:

Pn = DPn_1+esin(z, 1),

Tpn = Tp_1+ Pn, (2.8a)



2 Kicked Particle in a Double-barrier Structure: The Phagsm&e Dynamics 19

~R . (2.8b)

Equation (2.8a), that represents the effectigf is identical to the standard map
except that the periodic boundary conditions have not bppheal here because the
potentialV,(x) is explicitly non-periodic. We can WItR, = ﬁk .. .7@2751, i.e., as
time ordered product of operatdf&l, 7@2, e ,ﬁk that separately represent effects
due to encounters of the particle, in between two kicks, Withdiscontinuities of
Vs, at positions represented W, Bs, . .. By, respectively. Herek represent to-
tal number of boundaries encountered by particle in betveegrtwo consecutive
kicks. Depending on the energy, each of thesmcounters could either be a reflec-
tion (sign of momentum changes) or refraction (magnitud@oimentum changes)
atB; €B,i=1,2,..k.

To keep track of the potential discontinuities encountdygdhe particle be-
tween successive kicks, the following procedure is implaiee. Between two
kicks acting at integer times, sayandn + 1, we denote the state of the parti-
cle after incorporating effect ath encounter with the discontinuity that happens at

B; by (;:) We defingz’, z¢ [ with s = 0,1...% as the path, starting from, a
particle would traverse between the two kicks after encenimg :** discontinuity

if there were no discontinuities to be faced till the nextki€ori = 0, 2, would
simply bex,,_; andB; fori > 0. 22 andp® would bez, andp, obtained directly
from Eq. (2.8a). Nowp; . ; would be the position of the discontinuity that lies with

in the interval]z’, 2 [ and is closest tal. For the discontinuity in the potential

it al,
(piﬁl) = fn <p%) (29)

Now, B; » can be determined fromi** = B, ;, 2! and the corresponding; . »

Vsq(z) at B;11, we have,

is applied to(i”:) In this manner, boundary conditions are apphetimes until
}xk xk [ NB = .

s$rn
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The map in Eq. 2.8 would be complete if the transformationtl’rrfaoperato@
effects on the staté;%:) to incorporate the effect af” discontinuity is explicitly
written down. LetFE, denote the energy of the particle just after ttia kick (at
timen). If £, <V, particle will suffer reflection at the discontinuity &. This
implies that the momentum of particle after incorporatibeféect of this encounter
should bep!, = —pi~!. In the case foi, > V;, particle will suffer a change in
the magnitude of its momentum (due to change in its kinettt @otential energy
with its total energy conserved) while it crosses the paaedtscontinuity. We call
this process refraction. The momentum after a refraction b obtained using

conservation of energy and we get,

i = sigrpi )/ (pi )7 = (sign(Vg ) 2V, Fu>V  (210)

where, sigii.) denotes the sign anid;;; = V(B;) — V(2"). The positionz?, of
the particle after it encounters discontinuity/at can be obtained by evolving it
with the new momentum, starting fromB; for remaining time of evolution (until

the next kick). This time will be equal tai~* — B;)/pi—!. This gives,

rt = 2B; —a'  for reflection (2.11)
i (zy ' — Bi) i, -
x, = Bi+-———-" forrefraction (2.12)
Pn

Using these transformation that rele(gé:) to (;) we can defin&?; through Eq
(2.13). ForE,, < V; (reflective boundary condition), we have
Xt i1 2B; — :Eﬁl_l

=R T ] = ‘ : (2.13a)
v, 8 —p, !
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For E,, >V, (refractive boundary condition), we have

(zi ' — Bi) vl

x [ 2! B + ———
=R, = Pn
7 i—1 . ; : ;
2 P SIgn(pf;l)\/ (pi)? = (sign(Vaig )2V

(2.13b)

Thus, the dynamics of system in Eq. (2.6) can be describeldagtandard map
defined on an infinite plane, i.eq00 < xz,,p, < oo (EQ. (2.8a)) and subjected to
potential barriers (Eq. (2.8b)). Notice that by puttivig= 0 in Eq. (2.13b), we
obtainR,; = I for all i, wherel is the identity matrix of order 2. TheR = I and,
as expected, Eq. (2.8) reduces to standard mai,fer 0. Thus, the transformation
in Eq. (2.13) can be viewed as deviation from standard mapmiycs induced after
each encounter of the particle with a discontinuity of theeptial V,,(z). Note that
the map we have obtained can be thought of as a generaliz#ttbe generalized
standard map [Sa01].

Note that the map derived above relates the positions andemi@must be-
fore two consecutive kicks. In other words, it gives onlybtyscopic view of the
three dimensional phase spdaep, t), and the stroboscopic section is taken at the
"phase” of kicking period that corresponds to times jusblethe kicks. Unlike in
case of standard map, in which the motion between the kickeeésmotion with
constant momentum, momentum may change between the kieks deflection or
refraction at a potential discontinuity in system in Eq.. 2dbwever, this change in
momentum between the kicks does not affect the major phasee gpatures, like
regions of chaos, regularity etc, which are main objectswtdrest in this chapter.
Thus, it will be sufficient to analyze a stroboscopic sectibiphase space in this

chapter.
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Figure 2.3:Stroboscopic Poincare section (black) foe= 0.95,¢ = 0.15,Vy = 0.5,¢ = 0
andb = 0.5. All the continuous curves (in color) markéy to Cg are for the corresponding
standard map with kick strength 0.15. The black box at pwsiti = +z,, indicates the
width b of the barrier. The solid circles (in red) show a trajectaigrting from A; until

it exits the potential well atlg. The time ordered sequence of the trajectoryiisto A,,
reflection at-z,,, A3 to A4, reflection atz,,,, A5 to Ag, cross the boundary at,, A7 to Ag,
cross the boundary at, + b, exit the potential atlyg. See text for details. Open red circles
show trajectory of a particle with initial state Bt evolving toBs

2.3 Phase Space Dynamics

Figure 2.3 shows a stroboscopic section obtained by evplvia map in Eq. (2.8)
for uniformly distributed initial conditions i € (—zy,, 24),p € (—pe, pc), Where

Pe = /2mVj is the minimum momentum required for barrier crossing. is fa-
per, we have chosen kick strengtk:< 1 such that the corresponding standard map
displays only KAM curves. Throughout this thesis, we usepthase "correspond-
ing standard map" to mean Eq. (2.8) with,(z) = 0. As pointed out earlier, the
limit V;,(z) = 0 reduces Eq. (2.6) to kicked rotor system. Firstly, a stgkeature

Is the absence of invariant curves and the appearance ofeliphase space. This
is in stark contrast with the standard map which displaystiygsiasi-periodic or-
bits for kick strengths of this order as shown in Fig. 1.1.Uf&@2.3 also shows snap

shots (solid circles in red) of a trajectory in between sasne encounters with the
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discontinuities a3. Clearly, the evolution between two successive encoumntiins
the boundaries is confined to a trajectory that is identigtd wne of the quasiperi-
odic orbits of the corresponding standard map shown asraamis lines in the
figure. In this chapter, we analyze the dynamics of our systdag. (2.5) in terms
of the quasi-periodic orbits of the corresponding standaag. Due td/;,(x), par-
ticle breaks away from one quasiperiodic orbit and joinstlagioat each encounter
with the boundaries. This leads to the absence of quasgieriwbits and the de-
velopment of mixed phase space comprising intricate chafilmdands embedded
in chaotic sea. Another model of non-KAM chaos, namely, tiogdd harmonic
oscillator also displays such intricate chain of islands§Z, Ch88, Be91, Za05].

We illustrate the effects of discontinuities in Fig. 2.3 lidwing a typical
initial condition markedA, in the chaotic layer. This evolves tb, on the invariant
curve (s of the corresponding standard map. After a long time, thiatm@ppears
on the curveC; and goes fromd; to A,. After a reflection at-z,,, it goes from
As to Ag on C5. Then it shifts to the barrier regiox,,, =, + b) and moves o’y
from A; to As. Depending on the winding number of the orbit(in,, x,, + b), the
particle could have gone back in to region between the lrardeescape from the
finite well. In the present example, it makes its escape otwotarrier structures
and its state meets the curgg at Ay. Once the particle has escaped it does not
encounter the potential discontinuity, responsible ferbiteaking from one orbit
and jumping to another. As a result, its state evolves on same= asn — oo
thereatfter.

From a theoretical perspective, the absence of quasiperodits can be at-
tributed to the non-analyticity of,(z) which violates the assumptions of KAM
theorem. KAM theorem requires that the unperturbed sygfgime analytic [Ar68]
though later proofs have required just about few derivatteeexist. Thus, the non-
KAM nature of the system leads to onset of chaos even farl. However, once
the particle escapes from DBS, this non-KAM potential doatsaffect it anymore
and, thus, the system displays KAM behavior for > =, + b. Figure 2.3 also
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shows the trajectory of a particle that escapes from DBSowituffering a single
reflection. As seen in Fig. 2.3, the discontinuitiescgtandz,, + b relocate the
incoming particle fromC5 (u5) to another orbitCs (1), whereus and g are their
winding numbers, respectively. Figure 2.4 schematicdltyns how the difference
between the trajectories followed by particle before andraf refraction depends
uponb. When a state reaches a barrier region, the loss of kinetiggrio poten-
tial energy makes it travel lesser distance than what it ditnalvel in the absence
of boundaries. As a result it breaks away from the invariameC (15) and joins
with a new invariant curv€’(us). The departure from the phase point at which state
should reach in absence of barriers is proportionaldoce the fraction of evolu-
tion time between the kicks spent with decreased kineticggnie proportional to

b. Appendix A shows that the difference between the two orbitg.;) andC'(u)

for example, on which a state evolves before reaching aed @ssing the barrier,
measured a§us — 15) — 0 whenb — 0. In other words, refraction becomes iden-
tity operation a$ — 0. This leads to appearance of invariant curves identicdleo t
standard map implying KAM-like behavior, even fai| < z,, + b as shown in Fig.
2.5.

The initial conditions starting from a region defined |py < p. will spread in
momentum space as the system evolves. Here, we will discmss sonstraints
applicable to phase space region these states can explood, will actually repre-
sent the limits on the extent of mixed phase space. Let usdmmfgst the simpler
case oh — 0. In the Fig. 2.5, we identify quasiperiodic orbits or invart curves
C+(p,) andCy(uy) of corresponding standard map, andy, being their winding
numbers. The invariant curvés, (u,,) are defined in such a way that that minimum
value of|p| on each of them is equal 9. Any state evolving on a standard map
orbit C'(u) with u >, will surely approach barrier witlp| > p. for which re-
fractive boundary conditions apply. Since for— 0 refractive boundary condition
becomes identity operation, any of these state must credstiier evolving unin-

terruptedly on its original standard map orbit. Thus, thagehspace beyord, (1)
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Figure 2.4:Figure shows schematically the effect of refraction at theibr. Grey boxes
represent the barrier region in phase space. The three pbagea, b andc represent the
states of particle evolving o6'(us5) starting froma in absence of barriers. Red arrows
connects the phase pointthe evolving state would reach in absence of barrier, with t
pointd or e it actually reaches in presence of barrier after evolvingvben the kicks.

should be regular. At the same time, any state initiallyCtm) with o < 1, can
not crossCy (). This is because foF — 0, only transformation that can make
a state jump from one quasiperiodic orbit to other, changfregwinding number
associated with it, is reflection. Now, a state encountenéfigctive boundary must
have|p| < p. and therefore must appear on an orbit wijth < p. after reflection
takes place. Since none of the orbits with> 1, overlap with region defined by
Ip| < p., the state must appear on an orbit with< p,. This means that initial
conditions lying betwee@', (1) andC_(u,) can not diffuse beyond phase space
region enclosed between these orbits.

The invariant curve$’. (1, ) are defined in such a way that maximum value of
|p| on each of them is.. Now, any state evolving on an invariant curve witkc 1,

approaching barrier must haye < p. and will surely get reflected. However, if
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Figure 2.5:Stroboscopic plot fob = 1075, R = 0.7,¢ = 0,¢ = 0.15, V5 = 0.5. Dashed
line (in red) represents the boundary of regibh The scatter of points between, (u.)
andC (i) on right and betweet_ (1) andC_ (uq,) on left side of the DBS represent
the particles escaping out of the well (whose initial statege inM).
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Figure 2.6:Stroboscopic plot foRR = 0.5. All the other parameters are same as in Fig. 2.5.
Dashed line (in red) represents the boundary of regién The scatter of points between
C1(pe) andCy(pep,) on right and betwee'_ (1) andC_ (uy,) on left side of the DBS
represent the particles escaping out of the well (whosmliisitates were io\1).
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a particle’s state lies on an invariant curve with < p < ,, it might escape or
not. This implies that a chaotic state must first reach theodutlye invariant curves
C'(p) with ., < u < p, before it can escape the barriers. Thus, the quasiperiodic
orbits followed by escaped particles must correspond,ter i1 < .

Based on the above constrain€s, (y;,) should represent the border between
the regular and mixed phase space. However, the real limith® mixed phase
space are represented by some< ;. This happens because asncreases in
the rangeu, < p < u, the overlap of an invariant curve with regign> p.
increases. This increases the probability that a stateviegpbn C' (1) approaches
barrier with |p| > p. and hence its escape probability increases. Usually there
exists some value of = u. < u, for which any state evolving on it will definitely
escape. The@'y (u.) will act like an actual border between mixed and regular phas
space. Alsoy. will act like upper limit on winding numbers of invariant a@s on
which escaped particles evolve. Moreover, the lower limif:dor invariant curves
followed by escaped particles can take a value larger tharsay ;,;, depending
on the details of dynamics around = p.. Figure 2.5 shows that the escaped
particles evolve on a band of invariant cuné@g:) with p,, < < p.. In this case,
W = [q, hOwever, in Fig. 2.6 we see that the highest poin€o¢f.,;,) is clearly
abovep, which is actually top point of’(1,) (not shown here) too. Figure 2.5 also
highlights the mixed phase space region enclosed in receddste.

The existence of above discussed limits on the mixed phass=gegion and
on winding numbers of escaped particles are easier to expiatase ofv — 0.
However, they do exist in case 6f>> 0 also. For the case with >> 0, any
state approaching barrier witlp| > p. may or may not escape from the DBS.
As soon as it crosses the potential discontinuity at therimdge of the barrier
(|x| = =), it jumps to a quasiperiodic orbit of much smaller windingmher due
loss of kinetic energy to potential energy. If this new oftéippens to be close
to be located across the= 0 line, it may turn the evolving state back towards the

well. This is apparent from small elliptic orbits in barrregion observed on section
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shown in Fig. 2.3. Thus, invariant curves may get broken &@eyond the region
enclosed betweet’, (b) for b >> 0. However, there must exist some invariant
curveC' () in corresponding standard map with sufficiently laggeuch that if any
state evolving over it approaches batrrier, it will jump t@#rer invariant curve for
which direction of momentum never changes. In that caseubkiag state will
not get turned back into well during its evolution throughriza region and will
escape from the DBS. Beyond such invariant curves, on bd#ssifp = 0, no
state should get reflected or turn back into well region. Timesregion beyond
these curves will be regular due to absence of repeated steramith the barriers,
although trajectory of the particle is discontinuous atieaedges. The finite spread
of chaotic layer shown in Fig. 2.3 along the momentum axisuis i existence of
these regular regions on both sides of mixed phase spa@nrégiis is in contrast
to general behavior of non-KAM systems in which such breakrdof invariant
curves leads to a mixed phase space. Hence, we call thisslicdM-like behavior.
Again, the real border between the regions of mixed and aeglylhamics as well as
limits on they for quasiperiodic orbits followed by escaped particlesatedmined
by detailed dynamics of the system for a given set of parammete

The above discussion can be be summarized as follows ; weetere G phase
space regionM (|z| < x,, + b; |p (z) | < p(x; 1e)), such that system has mixed
phase space insidet in general and regular dynamics outside it. Herex; 1) is
momentum of any state on the cur@e (u.) at positionz. In Figs. 2.5 and 2.6,
a close numerical approximation of the regid is highlighted by the red dashed
line.

We remark that fob — 0, the phase space structures insideare identical
to those of well map that describes the dynamics-kicked particle in an infinite
well [Sa01]. This is to be expected since the well map has i&ilgctive boundaries
for |p| < oo. Further, the well map is hyperbolic fdt < 0.5 for anye > 0. The
Hamiltonian in Eq. (2.1) also displays complete chaosRox: 0.5 inside M.

This is seen in Fig. 2.6 as no regular structures are visiblfis region to the
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accuracy of our calculations. In fact, it can be shown thafthase space between

the barriers will always be fully chaotic if force betweer tharriers is monotonic

d?V (z)

and increasing,e., — =

> 0 throughout the region between the barriers for any
arbitrary kicking potential/(x). The region defined byM is determined by the
positions of potential discontinuitidd andC'(u.). It can be shown that', (u..)

will remain close totp.(= 4+/2mVj,) whenb — 0 for anye for which standard
map has mostly regular phase space. Thus, the extent oichegibn will depend
grossly on the positionB and height/f, of the barriers only. This implies that it is

possible to engineer chaos in a desired region by varyirgetharameters.

2.4 KAM-like Behavior: Role of Symmetries

In this section, we explore the conditions under which KAMhon-KAM type of
dynamics can be realized in the system. In Eq. (2.1), theamatyticity of V,
violates the assumptions of the KAM theorem. Hence, geallyieve expect this
system to display the signatures of non-KAM system such esthchastic webs
instead of quasi-periodic orbits and an abrupt transitmohaos. These features
are shown in Fig. 2.7(a,c,d,f). However, we show that evaherpresence of non-
analyticity inV;,(z), quasi-periodic orbits similar to that in a KAM system can be
realized, as shown in Fig. 2.7(b,e) if certain symmetry doowk are satisfied.

As argued before, until interrupted by the barriers, theadyics is confined
to a particular invariant curve of the corresponding stamaaap. We recall that
corresponding to every trajecto€y, of standard map with,, > 0, there exists one
and only one trajectorg’_ with p, < 0, such that a particle will evolve on these
trajectories in exactly the same way but in opposite dicectiConsider théR, ¢)

pairs for which the condition
tRr+¢=12n, leZ (2.14)

is satisfied. When Eq. (2.14) is satisfied, as shown in AppeBdapplication ofR;
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takes a particle front’, to C'_ and application oﬁm brings it back taC', . This
leads to quasiperiodic behavior in which the particle isficmd to a pair of tori.
This quasiperiodic orbit undergoes smooth deformaticst,ljike in a KAM system,
until it breaks for large kick strengths. Hence we call thsNe-like behavior for its
striking resemblance to the qualitative behavior of a KAMtsyn. In general, there
exist infinite (R,¢) pairs for which KAM-like dynamical behavior can be recaser
in this system. In Fig. 2.7(b,e), we show the sectionsRor= 1,¢ = 0 and
R = 0.5, ¢ = /2 for which KAM-like behavior is obtained. In Fig. 2.7(a,d)dwe
also show cases where Eq. (2.14) is not satisfied and hengg farp. stochastic
webs and chaotic regions are seen.

Symmetry related invariant curves like, andC'"_ are due to the symmetry of
the kicking field about any = mx+ ¢ wherem is an integer. It turns out that when
Eq. (2.14) is satisfied, kicking field is symmetric abaytandz_,,. The existence
of KAM-like behavior in presence of non-analytic potenti@n be attributed to

existence of centers of symmetry of kicking field-at,, andz,,.

2.5 Quantum Dynamics

In this section we discuss the simulations of the wave pagkatution in the sys-
tem to study its quantum dynamics. We start by writing dowenttme-dependent

Schroedinger equation corresponding to the scaled Hamattan Eq. (2.6),

ihs

32 92
({;—@f — [ 53%4—%(14—6@053:25@—%)] Y. (2.15)

The scaled Planck’s constant/is = %E’f—? This being a kicked system, we can
obtain the one-period Floquet operator that evolve amainitave packet over one

time period?” and is defined as,

N 7 t+T R
=exXp | —=¢ . .
U . A (2.16)
t
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Figure 2.7:Stroboscopic Poincare section for the Hamiltonian in Eq1)(8howing the
regionz € (—zy,x,),p € (—pe,pe) for b = 0,e = 0.15,V, = 0.5. The other parameters
are (@Q)R =0.95,¢ =0 (D) R=1.0,6 =0, (C) R = 1.05,¢ = 0, (d) R = 0.45, ¢ = 7/2,
(e)R=0.5,¢0 =7/2and (R = 0.55,¢ = 7/2.
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PuttingT” = 1 and replacind: with i, and making initial time coincide with origin

of time axis, Floquet operator for scaled system defined in(E45) becomes,

A~ 1 1 /\2 A~
U = exp (—his/(] <%+Vsq+ecos/x\zn:5(t—n)> dt) . (2.17)

Just like in case of standard map, one can divide the evolitio free evolution,
but subjected to stationary potential in this case, andittierlg part. The evolution
operator evolving a wave packet from a time just before a kicjust before the

next kick comes out to be

A~ ) ) A2 A~
U = exp <—;—6 cos/x\) exp <—i {p_ + Vsq]) , (2.18)

such that)(z, n) = U™p(z, 0).
Sincep and XA/Sq in Eq. (2.18) do not commute, we first divide the duration

between successive kicks infé,; small time steps and the second term of Eq.

NAt ~9
(2.18) become§ [ exp (_h ]ZVA {% + Vsq} ) . Then, we apply the split-operator
i=1 stiat

method [Ta07] to evolve the system according to which

: -9
1 p ~
o (i |7 7))

. /\2 .
_ ot b _t > 2
= exp ( N { 5 }) exp ( N [Vsq]) + O(At)*.

We use Fast Fourier transform [FrO5] to obtﬁmp) from ¢ (x) and vice-verse.

(2.19)

In our calculations, we have takevi,;, ~ 2500, the typical temporal step size is
O(1073) and spatial step size 8(10~*) to ensure that the evolved wavepackets
converged to at least 6 decimal places.

From evolved wave packet, we calculate the Husimi distidouHu40, Ta89a]
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Q(xg, po, n) defined by

Q(wo, po,n) = |<¢($>”)|$o,po>|2 (2.20)

corresponding to evolved stdte, po) at timen to study the phase space dynamics.
In this, (z|zo, po) the minimum uncertainty wavepacket centeredzat py). In

terms of wavefunction, Husimi distribution can be expredsas

2

Q(xo,po,n) = ’/OO m exp <;—ixox) exp <%) U(z,n)dx| .
- (2.21)

Here, Az is the width in position space of the minimum uncertainty e@acket

centered atxg, po)-

In the semiclassical regime, the dynamics in the Husimiaggntation mimics
the classical dynamics of the system in phase space [TaBBRig. 2.8, we show
the Husimi function distribution at = 250 from which one can clearly see that the
density of Husimi distribution shows pattern similar tosdecal structures shown in
Fig. 2.3.The initial wavepacket at= 0 is located in between the two barriers. We
choose parametebsandh, for which the Husimi distribution closely resembles the
classical phase space and shows that the probability gerssibciated with the ini-
tial wavepacket will ultimately leave the barrier regiongmgdominantly following
the classical path rather than by tunnelling. Thus, theesysttays in the semiclas-
sical regime and tunnelling is largely suppressed. Quéarty, for such a choice of
parameters in the semiclassical regime, the classicalndiga features would be

reflected in the quantum dynamics as well.
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Figure 2.8:(Top) Husimi distribution for evolved wave packet. Initishve function corre-
sponds taQ(x, po, n) sharply localized inside chaotic region arouidd0). In Grey scale
version, grossly the darker areas represent the regionlavger value of Husimi distribu-
tion function (for figure at the bottom as well). It shows tifa¢ Husimi function decays
very steeply outsidér_,,, x,,] and acquires negligible values compared to those for region
inside [z _,,, z,,]. We have takeri, = 0.0025, R = 0.85, b = 0.2, ¢ = 0.15, Vj = 0.5,

¢ = 0. (Bottom) Enlarged and better resolved view of inset fromriégon the top shows
path followed by probability density outside the barrieggioa.



CHAPTER 3

Kicked Particle in a Double-barrier Structure:
Dynamical Features

In this chapter, we present the dynamical features in amsysteicked particle in
the double barrier structure arising due to intricate plr between non-KAM and
KAM-like dynamics. These classical features also leavé theorint in the semi-
classical regime of the corresponding quantum system. riicpéar, we study the
temporal evolution of an initial distribution located ideithe well region at time
n = 0 as the periodic kicks act on the system. We take the ensemzblg.s., the
number of initial states, large enough that we can study ssiatestical properties
of the evolving phase space distributions. We report resuitthe following in-
teresting dynamical features; (i) classically inducedpsapsion of energy growth,
(i) non-equilibrium steady states, (iii) momentum squegzand (iv) momentum
pumps. All these features are important in the context oiSpart properties of this

system.

35
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3.1 Classically Induced Suppression of Energy

Growth

In the kicked rotor model, one of the significant results ssdiuantum suppression
of classical diffusion. For large kick strengths, the kidketor displays classical
diffusion in energy [Re04]. In this regime, the particlesde¢o absorb unbounded
energy. However, in the corresponding quantum system, tiheunded energy
growth is arrested by quantum localization [Ch89, 1z90],effiect arising due to
destructive quantum interferences and this is shown to bgaus to Anderson
localization [An58, Fi82, Gr84]. This is purely a quantumeplbmena. In contrast
to this, in this chapter we discuss the suppression of ergngyth, in the system
represented by Eq. (2.1), arising due to the influence of Kiid-classical struc-

tures in phase space.

3.1.1 Mechanism of Escape from DBS

Based on the discussions in section (2.3), we have showthibig exists a region
M (Jz| < xp + by |p(x) | < p(z;p.)) such that the system exhibits mixed phase
space insideM and exhibits regular dynamics outsidd. Any state initially lo-
cated insideM, during the course of further evolution, is bounded by thaimmnt
curvesC' (i) andC_(u.). When it escapes from regioi, it will evolve over
an invariant curve”'(u) with py, < p < p.. For typical values of kick strengths
e << 1 used in this work, we obtain a subdiffusive (mixed phase apacdiffu-
sive (in case of full chaos between the barriers; see Fig.r8dion immersed in a
regular region. Then, evolving particles can leak from ghéjdiffusive region into
the regular one through the small window betweégar{y..) andCy (pu).

If we start at timen = 0 with a localized distribution of points in phase space
all located in the (sub)diffusive region, they will beginddfuse as kicks begin to
act on them. This leads to fast growth of total energy of al plarticles initially.

However, this initial diffusion will get arrested becauke tnvariant curves’, (u.)
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andC_(u.) act as dynamical barriers to diffusion in momentum spacenesof
them will absorb sufficient energy and escape from the DB®. 83tape of ener-
getic particles from the DBS region will continue, howevegding to more and
more absorption of energy by the particles from kicking fighdil all of them leave
the DBS. Figure 3.1 shows stroboscopic section for a sdanati which the phase
space corresponding to the well region is fully chaotic amtdaunded by the in-
variant KAM-like curves. The values,.;, andp,,.. shows the momentum range of
the particles escaping out of the well region. Momentunrithgtion corresponding
to same set of parameters as Fig. 3.1 at times 0, 50 and 100 is shown in Fig.
3.2(a,b,c). Clearly, the momentum distribution falls wnitlthe limits imposed by
C+(u.) as shown in Fig. 3.1. All the particles escaping out of weljioa, lie in

momentum bands corresponding to the band invariant cuyires hetween
C—l—(:uth) and C—l-(:uc)v if p > Oac—(:uth) and C-(:“C)a if p < 0. (31)

As the system evolves, more and more particles enter thesis ba

3.1.2 Saturation of Energy Growth

Once a particle has escaped, it gets locked on to an invesiame C'(1) with

wy < i < p.. Hence its momentum and energy will fluctuate about the geera
momentum and energy of all the states lying®fu:) and, thus, no net increase in
the energy of escaped particles. Hence, any net absorgtieneogy should take
place only through particles which are not yet escaped.\Land N,, be the total
number of particles and number of particles left in the wegjion at timen, re-
spectively. Let(£) denote the mean energy of all the particles in the system. As
the system evolves with time, more and more particles eswaipaf the well region

and consequently,, /N decreases. This leads to decrease in energy absorption rate
with time. As timen — oo, N,,/N — 0 which results in% — 0. This implies

the existence of an asymptotsteady staten which momentum and, hence, en-
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Figure 3.1:Stroboscopic section faR = 0.5,¢ = 0.3,b = 0.2,V = 0.5 and¢ = 0.
Lower and upper limits on momenta of escaped patrticles aresented by, .., andp, 2,
respectively. The width of momentum band in which escapetigies lie is given denoted
with Ap. The momentum span of trajectories followed by escapedcfestat a fixed value
of z is represented b¥Ap,.. Grey strip aroung = 0 is the region in which all the initial
states were distributed uniformly.

ergy distribution converge to a stationary distributionresponding to the situation
in which all the particles have escaped out of the well. Inghantum domain, a
similar steady state is obtained if the parameters, inolydhe effective Planck’s
constant:,, are chosen to be in the semiclassical regime.

In Fig. 3.3, the classical and quantum momentum distrilmgtiere plotted for
timesn = 250,275 and 300. The steady state behavior is seen in the nearly in-
variant momentum distributions for > 250. As a result of this{F) saturates to
(E)s, where the(.), represents the mean taken over an ensemble of particles when

N,/N — 0. Formally, this could be written as,

= [ o) 5 o 32)

Pmin
whereg(p) is the momentum distribution over the invariant curves with< u <

te. In generalg(p) does not seem to have any universal form. It depends on the

detailed phase space structure in the vicinity of the baregion. Leto(p,n) be
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Figure 3.2:Distribution of states in momentum space at{a} 0, (b)n = 50, (c)n = 100
corresponding to parameters and initial set of states usE)i 3.1.
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the momentum distribution of escaped particles at timeo that mean energy of

escaped particles can be defined as

2

Eloc= [ oto.m) % o (3.3)

Pmin

Obviously, asn — oo, N,,/N — 0 ando(p,n) — ¢g(p). For smalln, much be-
fore the steady state is reached, momentum distributipnn) should also follow

g(p) determined by details of phase space dynamics for givenfgerameters.
However, it will exhibit large fluctuations due to small nuentof escaped parti-
cles. This means that before steady state is reagligd,, (not shown here) will
fluctuate aboutE);. These fluctuations can be canceled by taking time average of
(E),, after some time of evolution when steady state is still vary The broken
horizontal line in Fig. 3.4 show&FE), estimated in this manner. The dashed line
in the Fig. 3.4 is the mean energ¥) for the corresponding quantum system. The

guantum mean energy can be calculated as,

Ela=5 [ T 3o do (3.4)

For our choice of effective Planck’s constant, the systenm ithe semiclassical
regime and the quantum dynamics mimics the classical beh#éaugh pronounced
deviations are noticeable. Note thatras— oo, the quantum mean energy is sat-
urated. Note that the quantum mean energy departs from dissichlly estimated
values for(FE),. This departure from classical distributions is also seeFRig.
3.3(a,b,c). This discrepancy between the classical andtgoamean as well as
classical and quantum steady state distributions can tiewaétd to finiteness of ef-
fective Planck’s constant. In contrast to the quantum seggon of energy growth
in the kicked rotor, which arises from quantum interfereaffects, in our system
given by Eq. (2.1), the energy growth is arrested due to idalssffects.

The difference between mean enerdy) at a given time and saturated mean

energy(F), being purely due to the fraction of particle remaining imstde well
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Figure 3.3:Classical (black) and quantum (red) momentum distribugibdifferent times
corresponding to parameters and initial states used in Eify. For quantum simulation
hs = 0.0025. These nearly identical distributions indicate that thehesd distribution has
very well converged to a steady state.
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Figure 3.4:Classical (solid line) and quantum (dashed liKg) as function of timen.
Numerically estimated value @F); for classical system is shown through horizontal line.
Parameters are same as those for Fig. 3.3. The triangles:nakis are the times for which
momentum distribution is drawn if Fig. 3.3
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Figure 3.5:(Top) (E) vs timen for (a) full chaos between the barrier® (= 0.5) and
(b) mixed phase spacd?(= 0.8). (Bottom) Number of particles remained inside the well
regionN,, vs timen for (a) full chaos and (b) mixed phase space between theebarther
parameters arez= 0.2,b = 0.2,V = 0.5 and¢ = 0.

region, we can write a gross relatif), — (E) o« 2z. So, faster the rate at which
Lu — 0, faster will be the rate at which&), — (E) — 0. For a given value of
¢, as we move from full chaos regime to mixed phase space bygaia®, rate
at which particle leave well region decreases. This leadketwease in the rate at
which steady state is reached as shown in Fig. 3.5. The lovegshgn Fig. 3.5
shows the fraction of particles that are left inside the vaslla function of time.
Clearly, faster escape rate leads to faster convergenteadysstate. Since the rate
of loss of particles from the DBS should increase with inseea ¢ keeping all
other parameters constant, the rate at which steady ste#dadBed also increases
with increase irk. This is shown in Fig. 3.6.

We emphasize that the classical phase space featuresyingéhis classically
induced suppression of energy growth, and other featusesuissed in this chap-
ter, appear only for small kick strength<< 1 for which corresponding standard
map shows regular dynamics. In the context of experimentg]lkick strengths
is a useful feature since it would not substantially heathg dold atoms which

constitute the test bed for kicked rotor type systems. Nudthe quantum local-
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Figure 3.6: (FE) vsn for (brown)e = 0.1, (red)e = 0.2 and (greeny = 0.3. Other
parameters areR = 0.5,b = 0.2, V5 = 0.5 and¢ = 0.

ization in kicked rotor was achieved in the laboratory tlgiogold atoms in optical
lattices more than a decade back [M094, M095]. However, enldist few years,

there were a series of experiments with BECs evolving indibibx and optical

speckle type potentials which displayed suppression aiggrgrowth due to clas-
sical mechanism [He06, CI05, Fo05, Sc05a, Sa08]. In thgserements, in contrast
to the expected localization due to quantum effects, themis suppression of
energy growth could be explained by purely classical meisham which energy

exchange between the particles played vital role. The systadied in this thesis
essentially provides a non-trivial classical localizatfeature in a non-interacting
system. We believe this could be a useful model to underskanidterplay between

interactions, localization and disorder.

3.1.3 Behavior for Large Kick Strengths

In section 5, we showed evidence for suppression of enemyytgieading to steady
states for low kick strengthg, < 1. In this section, we show that the classical
dynamics of our system in Eq. (2.6) displays nearly nornfélisiion corresponding

to an unbounded growth of enerdyr large kick strengths.e., ¢ >> 1. This
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Figure 3.7: (Black line) Theoretical E) vs n for standard map for = 5. (Red circles)
Numerically calculated E') vs n for system defined in Eq.(2.6) for same valle Other
parameters for second case (red circ)= 0.9,b = 0.2,V = 0.5 and¢ = 0.

behavior is similar to the classical dynamics of the stathdacked rotor. This
normal diffusion fore >> 1 can be explained as follows. Note thakik 1 we
had emphasized the role played by non-KAM and KAM-like dleedlsstructures in
bringing about energy saturation effect. However, if theklstrengthe >> 1, then
most of the invariant curves in the region of KAM-like behavare also destroyed
and the chaos dominates throughout the phase space. In saehaio, the energy
growth is not arrested and, instead, we obtain the diffusivergy growth regime
similar to the one that would be seen in the case of kickedr ratsame value
kick strengths. This is shown in Fig. 3.7 with= 5.0. At this value of kick
strength, classical kicked rotor is largely chaotic. Far thassical kicked rotor,
energy growth iSF) = %t [Re04]. This estimate is also consistent with the energy
growth in the case of the system in Eq. (2.6) for-> 1. Hence, for large kick
strengths, our model in Eq. (2.6) behaves like a kicked nottir identical value of
kick strengths. Then, the role of finite barriers becomegmBcant and classical

suppression of diffusion is not observed.
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Figure 3.8:Classical (solid black line) and quantum (dashed line) muome distributions
atn = 700 for R = 0.5,b = 0.2,¢ = 0.1,V = 0.5 and¢ = 0. For quantum simulation
hs = 0.0025. Initial momentum distribution is uniform as shown by regalar blue curve.

3.2 Momentum Squeezing

In this section we report results for what we call momentuoegging. At the out-
set, we state that this phenomena is unrelated to quantueesigg which is due to
saturation of uncertainty inequality [Lo00]. As demonstthin Fig. 3.3, the clas-
sical momenta of particles escaping from the DBS lie in fi(ged narrow) width
momentum bands approximately centereg at p. andp = —p.. One possible
manifestation of this confinement in momentum space is maumesqueezing that
can be achieved by tuning system parameters. It is possildlbdose parameters
such that momentum distribution of escaped particles beawenrow. Figure 3.8,
shows an initial broad momentum distribution in region kesgw the barriers. This
also shows evolved momentum distribution after 700 kicles, for n = 700. By
this time, a large fraction of particles have escaped fraamwtéll and the distribution
has become nearly bimodal with peaks ngaand —p.. We call this phenomena
momentum squeezing.

If the phase space in regiomt is fully chaotic, all the particles having initial

states inside it ab = 0 will escape from the DBS, making region between the
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Figure 3.9:Evolved momentum distribution at = 5000 for parameters and initial state
same as used in Fig. 3.8. Zero density between two peakateditat all the particles have
escaped from DBS.

barriers empty after sufficient number of kicks, and theimmeatum distribution
will evolve into a pair of distinctly narrow bands as showirig. (3.9). The chaotic
layer between the barriers also ensures that the final niggibie independent of the
details of initial distribution. In case of mixed phase dymes insideM, particles
having their initial states on some stable island will reman them even as — oc.
However, all the particles with initial states lying in thieaotic sea will escape the
DBS and reach the thin momentum band. In this case, only #uéidn of particles
remaining inside the DBS, in asymptotic regime of evolutwil depend upon the
details of initial distribution of the states. The momenthand width for escaped
particles will remain unaffected, however. Figure 3.1@ves two regions of phase
space in which initial states were distributed. It also shole stable islands for
which states never escape even after long time of evolutitrese were initially
lying on them. It also shows the evolved momentum distrdoufor two sets of
initial states. In the case for which all the initial statesih the chaotic sea, the
fraction of particles that have escaped after a given timevolution is much larger
than in the case in which many initial states lie on stabbnids.

The properties of the system as a momentum squeezer candskusimg sys-
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Figure 3.10:(Left) Stroboscopic section fakR = 0.95,6 = 0.2,¢ = 0.1,V, = 0.5 and

¢ = 0. The phase space between the barriers is mixed phase spawevét, the chaotic
region is empty because after long evolution all the chau#iticles have escaped. Two sets
of initial states (i) uniformly distributed in brown box Yiuniformly distributed on purple
line, are used to get evolved momentum distribution at 50000. The section corresponds
to second set. (Right) Evolved momentum distributiom at 50000 for first set of initial
states is shown in green and for second set it is shown in red.

tem parameters. We have already seen that as we go from niveese gpace to
fully chaotic regime between the barriers the evolved ilistion becomes inde-
pendent of the details of the initial distribution. Now, telth of the the momen-
tum bandAp is, in general, very large comparedAp,,, the width of momentum
space spanned by the bundle of invariant curves on whiokssthescaped particles
evolve, for a giverr as shown in Figs. 3.1 and 3.9. In case of Fig. 3.9, itis negligi
ble compared to the overall width of the momentum band. Hetheewidth of the
momentum band\p of escaped particledp, in most cases, is grossly determined
by the two extremal values of momenta on any individual irargrcurves followed
by escaped patrticles (see Fig. 3.10). As> 0, these invariant curves flatten and
tend to become horizontal, representing constant momefgace, the difference
between two extreme momenta on a given trajectory decreasetecreases. As a
result, band width\p decreases as— 0, keeping all other parameters constant, as
shown in Fig. 3.11.

The effect of changing/ will manifest through corresponding changezin
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Figure 3.11: Evolved momentum distribution far = 0.05 (blue),e = 0.1 (green) and
e = 0.2 (red). Other parameters ar®:.= 0.5,b = 0.2,V = 0.5 and¢ = 0.

which increases with increase 3. Since the momentum of escaped patrticles is
narrowly distributed around threshold momentgmfor b — 0 or around some
momentum above,. for b >> 0, the peaks in momentum distribution will shift
towards higher momentum on increasing This is shown in Fig. 3.12. How-
ever, fluctuations in this behavior for very small changegs.inan not be ruled out
because the exact momentum distribution depend uponsletdiiie dynamics. An-
other interesting property that has very clear dependenge and, hence, ol is
squeezing power of the system. Consider two cases in whichiatue ofp,. differ
by one period of corresponding standard map, say;: 1 andp. = 1 + 2x. The
momentum span of the invariant curves corresponding topescparticles turns
out to be nearly same for both these cases due to periodiaityreesponding stan-
dard map. However, the chaotic layers in between the barhas broader range
in momentum space. This implies that a set of initial statéh much broader
initial momentum distribution can lead to bimodal disttibm with same width of
peaks. If the momentum values are scaled by dividing wittthe width of peaks in
bimodal distribution is smaller as shown in Fig. 3.13. Thhs,factor by which ini-

tial broad momentum distribution can be squeezed is lagyesdcond case. Hence,
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Figure 3.12: Evolved momentum distribution at= 1000 for V = 0.5 (red), Vo = 1.25
(green). Other parameters ar& = 0.5,b = 0.2,¢ = 0.1 and¢ = 0. The threshold
momenta corresponding i¢ = 0.5 andV} = 1.25 are marked ag.; andp.», respectively.

larger squeezing power.

Recalling the canonical transformation in section 2.1 ngag scaleg,. need
not necessarily imply changing the barrier height. Acaogdo the transformation
p = pT'E./ A in equation array (2.4), the threshold momentum in scaleddtinate
system can be expressed in terms of unscaled parametgys'ds /22 = p. 2L
So scalegh. can be increased by decreasing particle mass or wavelehkjttking
field or by increasing the periodicity of the kicks withoutaetying original barrier
height. However, one needs to tune other original parameiemell to keep the
scaled parameters other thanconstant. Thus, squeezing power of the system can
be well controlled.

As already noted that the width of the bundles of invarianves Ap,, i.e.
difference between maximum and minimum value at a givenr across the com-
plete set of curves, on which states of escaped particldgesk@mains quite small
throughout the position space.

The width of a momentum bantip arises due to undulating nature of the invari-

ant curves. If the system is evolved for sufficiently long eglo time, the particles
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Figure 3.13:Evolved momentum distribution at timescaled withp,. for two values ofi/
corresponding te. = 1 (red) andp. = 1 + 4« (green). Since the time taken for sufficient
number of particles to escape from the DBS, so that theirilbligion can analyzed, is longer
for largerp,., we taken = 5000 for p, = 1+ 47 andn = 1000 for p. = 1. Other parameters
are:R=0.5,b=0.2,e =0.1and¢ = 0.

evolving over the invariant curves would have ergodicaktplered all the phase
points on this curve. Then, long time average momentum ofsaaped particle is

denoted by,
(P)an = An sz (3.5)

The distribution of(p)A,, for an ensemble of particles will have a width much
smaller than the width of momentum distribution. Figure$48a and b) show
distribution of (p) o, for the same sets of parameters used in Figs. 3.3 and 3.10,
respectively. Momentum distribution is also shown for camgon. Initial momen-

tum distribution is identical to the one shown in Fig. 3.8e&ly, distribution of
(p) an is much narrower than the momentum distribution. This ondccanticipate
from Poincare sections. We see in Figs. 3.1 and 3.1hatis much smaller than

Ap. The difference is quite large in Fig. 3.10. The effect of ulating nature of
invariant curves, which is mainly responsible for width thementum band, gets

evened out on taking average over. Then, the width ofp) is mainly determined
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Figure 3.14:Green curves shows evolved distribution(pf,, (refer to text for its def-
inition) at n = 5000 for parameters corresponding to Fig. 3.3 (left) andvat 50000
for parameters corresponding to Fig. 3.10 (right). Redesishow corresponding evolved
momentum distributions.

by Ap, which is usually small. The narrowly distribution g#) indicates that es-

caped particles, in long term, move much more coherently Hrdicipated from

their momentum distribution.

3.3 Pumping Action

In this chapter, until this point, we have considered anly- 0. For¢ = 0, the
system is spatially symmetric and the effect of this symynistseen in symmetric
momentum distributions shown in Fig. 3.15. However, whegtighsymmetry of

the system is broken by taking+# 0, the phase space structures between the barri-
ers become asymmetric. Figure 3.16 shows stroboscopioséat an asymmetric

case ¢ # 0). The invariant curves’'(x) with p,, < p < pu., on which the states
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of escaping particles evolve are no longer bound to be synoraioutp = 0. If

¢ = 0, uy and p,. was identical forp > 0 andp,0. As a result ofp # 0, the
momentum distribution becomes asymmetric. As the kicksrbepact, the clas-
sical particles evolve in to asymmetric momentum distitmg even if the initial
distribution at» = 0 was symmetric aboyt = 0. This scenario, in general, leads to
(p)y # 0 for all the particlesi.e., net directed motion, in the absence net bias. Please
note thatkR = 1.0 in Fig. 3.15. This means that the region between the barriers
contains one full wave length of cosinusoidal potentialisTimplies the net bias in
the well region is zera,e., f; —d‘g—f)dx = 0, whereV (z) is the kicking potential
atz. In this case, the net transport occurs in absence of nethishus, the sys-
tem acts like a ratchet of finite dimension, generally knowapump The chaotic
layer in the well region ensures that the pumping actiondependent of the ini-

tial conditions. This is one of the few examples of pumpinghamism based on
Hamiltonian chaotic dynamics. In general, the field of quampumps is an active
area of research in condensed matter physics [Br98], alnmattention had been
paid to pumping action using chaotic dynamics with the ekoapof the work in

Ref. [Di03]. In this work, they consider square well type gratials whose walls

or the depth are driven by an external field. After breakinguant symmetries,
directed currents emerge in this finite system. However,ystem is known that

can act simultaneously like a pump as well as momentum sgqueez

3.4 Non-equilibrium Steady State

In this section, we show that the system can support norlequim steady state
for fully chaotic dynamics between the barrierstaandz,.. We start with initial
conditions uniformly distributed on a thin rectangular 8aroundp = 0, as dis-
played in Fig. 3.17(a). As the kicking field begins to imparergy to the system,
the initial distribution begins to diffuse in phase spacd aome of them leave the

DBS region upon absorbing sufficient energy. Figures 3-tiJ(shows phase space
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Figure 3.15:nitial (brown) and evolved (black) momentum distributifom R = 1.0,b =
0.2,¢ = 0.1,V = 0.5 and¢ = 0.5. Asymmetric momentum distribution indicates net
transport.

Figure 3.16:Stroboscopic section faR = 1.0,6 = 0.2,¢ = 0.1,V = 0.5 and¢ = 0.5.
For non-zerap the phase space is also asymmetric.
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Figure 3.17:Phase space distribution of unescaped particles at £a)), (b) n = 20, (c)
n = 80, (d)n = 150 for R = 0.5,b = 107°,¢ = 0.15,Vp = 0.5 and¢ = 0.0. Nearly
identical distributions in (c) and (d) indicate the non-#igtium steady state.

distribution at different times of evolution. At any distedimen, the mean energy
< E, > of the particles lying inside the well is p*/2 >, where< . > represents
average at time over the classical states (evolved from initial states avdcking

cycles) for which< x; < x < z,.. In the corresponding quantum regime, we have

=2

By = [ w*(an) %w(x,n) dx (3.6)

The effect of the operatgi on«(x,n) can be calculated using fast Fourier trans-
form and is equal to inverse Fourier transforrrpbzﬁ(p, n). Figure 3.18 shows that
initially (F);, increases and after a time scglg(F);, saturates to a constant. Dur-
ing this time scale, the behavior is similar to the classtitilisive regime of the
standard map.

The existence of steady state can be understood as follawshé& parameters
used in Fig. 3.17 the phase space in reghdnis fully chaotic. As kicks begin to
act, any localized classical distributipg(z, p) is quickly dispersed throughout this
region. The total energy,, of the particles in the well region increases. Simulta-

neously, the particles wittp| > p,. leave the finite well leading to loss of energy.
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As the momentum distribution broadens, the loss processnies more and more
significant leading to decreasei’rﬁ%, I.e. the rate at which< E >, is increas-
ing. Eventually the loss of energy due to loss of particles @amsorption of energy
from kicks leads tcfl% = (0. This must happen at a tintg, when there is a net
loss of energy but the corresponding decrease in numbertitlpa keeps< E >;,
constant. Now, constart £ >,,, ensures that the normalized momentum as well as
phase space distribution does not change as system evaleg the time interval
[t., T + V], wherev << t,. Invariant normalized phase space distribution leads to
same statistical behavior (fraction of particles lostcfi@n of energy lost etc.) at
t, + Vv as at that, and, thus, in turn ensures th&tZ== = 0 att, + v as well.
This means that oncé% = 0, it freezes at this value. Hence, £ >,, and
the normalized momentum distribution will remain invatidor n > ¢.. Figures
3.17(c and d) show nearly identical phase space distrib@txaept that the density
of particles between the barriers is smaller in later caggurE 3.19 shows nearly
identical normalized momentum distribution at two veryfeliént times after the
NESS is reached.

From a physical perspective, the invariant normalizedritistion in the DBS
region even after continual loss of particles from eneayetgion can be attributed
to chaotic mixing inside the well region. If the region beemehe barriers displays
mixed phase space, the reorganization of states withindimplex structures inside
M modifies the phase space distribution. When this happe#s:= is no longer
bound to remain zero. Hence, full chaosht region is essential to support NESS.

One of the factors that determingis the rate at which any initial distribution
of states diffuses in the chaotic region and steady statgldison shown in Fig.
3.19 is achieved. This rate increases witim general. For the present case with
complete chaos, one expects this rate to be proportionaldq just like in the
diffusive regime of standard map and hence one expects 1/¢. Numerical
results shown in Fig. 3.18 show a good agreement with thissgestimate fot,..

Figure 3.18 shows that the quantum mean engfgy,, follows the classical
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Figure 3.18Nonequilibrium steady state in the system in Hamiltonigh Zhe solid lines
are the classical results and the symbols correspond tduquanesults. The mean energy
for the particles held in between the double-barrier stmectE);, saturates to different
constants for different values ef The other parameters afe= 0.5,b = 1075,V = 0.5
and¢ = 0.0 and for quantum simulations, = 0.0025. The solid symbol (triangle up)
marks the time scale tr at which the system relaxes to thestate.

o
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Figure 3.19:Classical steady-state momentum distributionefer 0.25 atn = 100 solid
andn = 200 (dashed red). The other parameters Are- 0.5,b = 107°,1; = 0.5 and
¢ = 0.0.
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curve quite closely. These results correspond.to= 0.0025 and reflect the be-
havior in the semiclassical regime. Larger values obrrespond to moving away
from semiclassical regime towards purely quantum reginmeisTwe should expect
guantum averages to deviate from classical averages imapnced manner. This
is borne out by the numerical results in Figs. 3.18(a,b,tleré is current interest
in quantum non-equilibrium steady states about which natmhas been explored
until now [Zn10]. Fore >> 1.0, the quasiperiodic orbits of the standard map are
sufficiently destroyed to allow global transport in phasacgp Then, particles do
not have to rely on discontinuities i, to diffuse in phase space. This leads to
unlimited energy absorption by the particles between thadya and NESS is not
supported. Then, the system essentially works like theekiaktor in the strongly
chaotic regime.

Note that all the features involving energy and momenturniigions are stud-
ied on a stroboscopic section of three dimensional phases$pap, t), despite the
fact that the momentum and, hence, energy distribution éetwthe kicks is not
invariant in this system. This can be justified as follows.tHa case of momen-
tum squeezing and pumping it is the momentum or energy bligian of particles
escaped from the DBS that is significant. Since the momen¢ésadped particles
do not change between the kicks, as they move in constaitrsiat potential, it is
sufficient to consider their distribution on stroboscoggcton. In the case of clas-
sically induced suppression of energy and non-equilibsteady state, the change
of sign of momentum due to reflection or change in kinetic gyef a particle due
to refraction do not change the total mechanical energy afragbe. So the energy

distributions will essentially remain invariant betweée kicks.



cHAPTER 4

Kicked Particle in a Lattice of Finite Wells: The
Classical Ratchet

From a theoretical point of view, generally ratchets ar¢esys with infinite spatial
extension and it is often achieved through use of periodundary conditions. To-
wards this goal, in this chapter, we analyze the dynamicscEkl particle in a one
dimensional lattice of finite square potential wells (1DL}W single double bar-
rier structure introduced in chapter 2 was useful to undadsthe phenomenology
of non-KAM chaos and in this chapter we extend the systemgtadise of a periodic
lattice. The primary motivation is to study the ratchet efffim non-KAM systems
and also to make the connection with condensed matter systemhich trans-
port in a periodic lattice is a problem of significant reséarterest (for instance,
see [Fe08, Du05, Sc07]). The recipe to analyze the clagdiese space of a lattice
of finite square wells and study its consequent dynamic#lifea are adopted from
chapters 2 and 3. This is not entirely surprising since therg@l to be studied in
this chapter is built up using double barrier structure ([PBS the basic unit. In
fact, the map derived in section 1.2 can be used here alomgadgditional periodic

boundary conditions imposed due to the periodic nature@ptitential. We study

58
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b

V(x)

Figure 4.1:Schematic of one dimensional lattice of finite square wells.

the phase space feature of the system and its directed traqspperties. Based
on these results, we report on the conditions for the systenotk as an effective

ratchet system.

4.1 The System

The system can be described by the Hamiltonian given by

2

_ P 2mz " s
H—2m+Vsq+ecos( 3 +¢) Z o(t —nT). (4.1)

n=—oo

This is similar to the Hamiltonian in Eq. (2.1) except thathis case the stationary
potential becomes

Vg = Vo Y [O(w+sd+b+a)—O(x+sd+a)
Pt (4.2)

+ O(x+sd—a)—O(x+sd—a—0>b).

Figure 4.1 shows the schematics of the stationary poterdialprising a series of
identical blocks of the basic DBS potential. In this formisisimilar to the Konig-

Penney potential [Li80]. We consider a situation in whicis geries is long enough
that it can practically be treated like an infinite latticevedlls as represented by

summation from-oo to oo in Eq. (4.2).
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Performing the canonical transformations as in Eq. (2.4) separating the
stationary potential from kicking and kinetic energy p#re Hamiltonian in scaled

coordinate system, just as in section (2.2), can be written a
H=Hy+ Vi (4.3)

In this case, the potential becomes

S§=00

V,, = VO_Z [O(x + s2m — ¢ + b+ Rm) — O(x + s27 — ¢ + Rr) 4.4)

+ O(x+s2mr— ¢ — Rp) — O(x + s2mr — ¢ — b — Rm)]

andH, = % +ecos (z) Y 02 0(t—n). Inthis case too, the mass and the kicking
period in scaled coordinate system is unity. The spatiabdamity of the stationary
potential in scaled coordinates is equakto The absolute values of these parame-
ters does not affect the qualitative dynamics of the systémiike the case of DBS,

it must be noted thak = 2a/\ andb are not independent parameters, but are re-
stricted by the constraitkRr + b = 27 in scaled coordinate system. This expresses
the relation that periodicity of the potential is equal te sum of the widths of the
barrier and well region. For the purpose of simplicity andghparison with DBS,

we use bothk andb in V;,. After canonical transformations, the dynamics of the

system will be determined by the set of paramelgrs, ¢ and one of thek or b.

4.2 The Phase Space Unit Cell

In the case of kicked particle in DBS, the phase space dyrsawas studied on a
stroboscopic section of three dimensional phase spacejsagadne for the kicked
rotor. The aim is to study the dynamical features in phaseesgaoth qualitatively
and quantitatively. As discussed in chapters 2 and 3, iggdhe dynamics between
the kicks would not affect these features. In the contextarfdport properties, the

change in the momentum of a particle which has not yet esadyr@ay its evolution
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between the kicks would be insignificant as the transpogignttes of the system are
finally determined by momenta of escaped particles whicls doechange between
the kick. However, in the periodic lattice of DBS potent&len the particles having

initial states in chaotic region will never be able to esctyerepeated encounter
with the potential boundaries. Thus, all the contributior{zt) comes from these

"unescaped" particles and, hence, can not be neglectece, 3ive momenta of the

particles that frequently encounter boundaries can chhetyeeen the kicks if an

encounter occurs between the kicks) should in general be different at different
times between the kicks. Therefore, in case of 1DLFW the @lpace dynamics

of the system on a stroboscopic section corresponding &stjost before the kicks

is not sufficient and one has to consider the three dimenisspaae(z, p, t).

Utilizing the spatial and temporal periodicity, we redube tz, p, t)—space to

aunit cell (¢, p, 7) with

g=modztm,2r)+(—7) and 7=modt=£0.5,1)+(-0.5). (4.5)

In these expressions, + ” represents‘ + ” for positive values of; andt and

“ — 7 for negative values of andt. Notice that the kicking sequence defined in
Hamiltonian (4.4) is such that perioidic kicks act at intetgmes and the origin of
t-axis coincides with mean position ofdakick. In case of DBS, it choice have
been convenient. However, for now onwards we shift the oraji t-axis such
that it lies in the middle of twaj-kick. With this choice, time at the mid-point
between two kicks will always correspond#to= 0, time just before any kick will
correspond to- = 0.5_ and time just after any kick will correspondto= —0.5, ..
The major phase space features can be studied on some stiplmosection of
(¢,p, 7)—space. We need to consider three dimensional pictute,in 7) space
only while studying the ratchet current. The current wilpdad on the instant of

time 7 within the kicking period as discussed above.
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4.3 The Classical Map

All the dynamical features can be studied on some strobascegction of
(¢, p, T)—space as in the case of DBS and standard map. To study thetraffgct,
the three-dimensional phase space can be divided in to aemohlsuch strobo-
scopic sections. As we show later in section (4.7), comguiifh at a finite number
of stroboscopic sections corresponding to different \&lofer will be sufficient.
We identify each of the stroboscopic section by the valueibtorresponds to and
denote itS(7). Further, we denote particle’s staterirth kicking cycle on the sec-
tion S(7), that is the point ort(7) at which trajectory of the particle intersects it
in n-th period of time, by(q,, p., 7). Now, to study the dynamics on a particular
stroboscopic sectiof(7), we derive a map that will relate a staig, 1, p,_1,7)
with (g, pn, 7).

To begin with, we consider = 0.5, , corresponding to the time just before a
kick. We recall that in case of DBS we derived the map in Eg8)(for studying
stroboscopic section (just before a kick) by separatinglwieffect ofH, andV,.

In that caser did not play a significant role because we were concernedweitity
one of the many possible sections. In the same spirit, thardies of the system

governed by Hamiltonian (4.3) can be studied using foll@map:

Pn = Pn_1+esin(z, 1),

Tn = Tp_+ Pn, (46a)
S - (4.6)
Tn Tn

L I P . (4.6¢)

Tp, modz,,, 27)

The system is evolved under the actionff using Eq. (4.6a) and the effect

of potential discontinuities is incorporated through Edt.6b). However, there
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is an additional transformation given in Eq. (4.6c) that lempents the periodic
boundary conditions. The operatéris identical to that defined in section (2.2).
We recall that the first of two difference equations in 4.6sctlies the evolution of
a state from the time just before the kick to time just afteifite delta kicks have
infinitesimal width along time axis and so there is no chamgghé position of the
particle during a kick. The momentum of particle changestduenergy absorbed
from kicking field. During the rest of the evolution until thext kick happens, the
momentum of a state evolving unddyp remains constant and its position changes.
The second difference equation, which largely governs viokugons between the
kicks, is the one in which the effect of boundary conditiam®tgh Eq. (4.6b) is to
be incorporated.

Now, we consider the case of = 0.0. This corresponds to time instants at
the mid-point between two consecutive kicks. In this calse kicking cycle does
not begin with a change in momentum followed by the free euartusubjected to
boundaries. Instead, there are two parts for free evolsitione before and one
after the kick. Consequently, the corresponding map thihewolve (x,,, p,,) over
one time period on the stroboscopic secti®ff)) should contain two difference
equations similar to the second one in the pair of Egs. (4&€m0h followed by

boundary conditions. Thus, we obtain the map as,

Tp = Tp—1 + prn—h (47a)
oy om0 ), (4.7b)
T T
LA Pn , (4.70)
Ty, modz,,, 27)

Pn = Pn—1 + €sin(x,), (4.7d)
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Figure 4.2: Periodic series of-kicks. Positions of vertical line represent the times at
which kicks act.v®(0) andv4(0) represent the durations of free evolutions before and after
the kick forr = 0. v®(r;) andv®(7;) represent the durations of free evolutions before and
after the kick forr = 7.

Tp = Ty + vapn7 (476)
Peym P 4.7
Tn, Tn,
L bn . (4.79)
Ty, modz,,, 27)

In this map, Eqgs. (4.7a) and (4.7e) correspond to free evolparts, one before
the kick and one after the kick. The effect of kick is incored through Eq. (4.7d).
In this v® and v represent the durations of free evolution before and afekick

for evolution. Forr = 0.0, v* = v* = 0.5. In general, we have
7= |V’ —|v9|. (4.8)

The map in Egs. (4.7) can be used for any value by making appropriate choices
for v®(r) and v¢(7), where(r) is used to generalize the notations for arbitrary

values ofr. Figure 4.2 shows free evolution parts about a kick for twioes of 7.
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In fact, the above recipe can be generalized to evolve ategy@tar one period of
kicking cycle for any periodic series of delta kicks. Comsid kicking cycle shown
in Fig. 4.3. The figure shows a kicking cycle that contains twequally spaced
kicks in each period. Different heights of vertical line icate that the strengths
of two kicks lying in same cycle are unequal. We use this kihklicking cycle in
section (4.5) to break the temporal symmetry of the systerthia series of kicking
cycle does not have any center of symmetry. However, we Keeggatial variation
of kicking field same as in Hamiltonian in Eq. (4.1). Matheivaty, this new

kicking field can be written as

V(z,t) = cos (%Tx+gb) (61 i 0t —nT —tl) + e i 5(t—nT)> :
n=—o00 n=—o00 (49)

and in scaled coordinate system the kicking field becomes

V(z,t) = cos (x) <61 Z 0(t—n—tl)+eycos (z Z 5t—n>, (4.10)

n=-—o00 n=-—00

wheret, (scaled)2(2r19inal)

and all other scaled coordinates are related with the
original according to canonical transformations in Eq4)2.

Now, for above two kick cycle, different values ofwould mean different se-
guence of kicks and free evolutions as shown in Fig. 4.3. Wmela kicking
sequence in terms af(7), vV%(r) andv}(r). Heree;(7) denotes the strength of
j-th kick in sequence corresponding to a givervj.(f) andv$(r) denote the free
evolution times before and after thieh kick. A state(x,,, p,, 7) can be evolved for
such a sequence of kicks and free evolutions in a mannergmasdo one in which
a state is evolved through a sequence of free evolution éefdick, kick and free

evolution after the kick in Eq. (4.7) for single kick cycle.
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Figure 4.3:Periodic cycle off-kicks. Each cycle contains two kicks of unequal strength.
Positions of vertical line represent the times at which &iekt and their heights represent
their strengths. The sequences of the kicking and free gwnlparts are shown for = 0
andr = 7.

4.4 Phase Space Features

For the Hamiltonian in Eq. (4.1), the choiee= 0 is the integrable limit. The mo-
mentum|p| and hence the energy /2 are the constants of motion. It is possible to
transform the system to action-angle variables:fer(0. Fore > 0, the phase space
typically displays mixed dynamics, a direct consequenaetdumultiple reflections
and refractions of the particle with the non-analytic ptisdrbooundaries. It must
be emphasized that the mixed phase space region in betwedaitters does not
display invariant curves as would be expected for a non-KAMem. This is borne
out by the section shown in Fig. 4.4.

As shown for the case of DBS in Fig. 2.3, in the periodic lattico, a kicked
particle evolves over the invariant cur¢&y) representing a quasiperiodic orbit
of the corresponding standard map (with, = 0) until it encounters potential
discontinuity. In thisy is the winding number of the invariant curve. Moreover, the
periodic boundary conditions applied at the potential lszuy does not break away
a state fromC'(u) as the underlying standard map itself is periodic. Howeter,

repeated reflections and refractions at the potential disoaty leads to a particle
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q

Figure 4.4:Stroboscopic section correspondingrte= 0, i.e. S(0.0), for b = 0.2,¢ =
0.15,¢ = 0 andV, = 0.5. System exhibits mixed dynamics in all parts of phase space.
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being kicked from one invariant curve to another. This rissal mixed phase space
region as shown in Fig. 4.4. Due to an array of potential besrithe particle can
never escape from the whirl of reflection and refractionsessbd — 0 for which
refraction becomes an identity operation as discusseddpteh2. This is in strong
contrast with the case of DBS. In DBS, a particle that has @nessed a barrier
executes regular motion on an invariant curve leading to KW region in phase
space. This region encloses a mixed phase space or chaaticrigphase space.

In contrast to this, in the case of lattice of square wellsrehs no region in
which the system can exhibit KAM-like behavior. Thus, thexed dynamics inside
the well region comprising both chaos and quasiperiodid®drevails throughout
the phase space as the bounding KAM-like curves do not elkiaggacoordinate
or momentum axis. As a result of this, a distribution of psiat timen = 0
starting from the chaotic sea will diffuse in phase spacaératbsence of dynamical
bounds. However, the rate of diffusion may vary with the oegdf phase space and
the choice of parameters and, in some case, can get sigtifisappressed. Figure
4.5 shows stroboscopic sectiéhi0.0) at four different times. Clearly, the spread
of phase points continues even in regions well beyghe- p.. As a result of this
spreading, the energy of the system grows continuouslytimté as shown in Fig.
4.6.

In the limitb — 0, the refraction does not practically affect the invariamve
on which state of a particle is evolves. Thus the trajectdry particle whose state
evolves on any of the invariant curve for which reflection & possible should
remain unaffected in the presence of potential barriergabe of DBS, innermost
of such curves were identified &5 (u.) for spatially symmetric case. We denote
them byC"_(u.) andC'y (i) for current system too. Obviously, the phase space
region beyond” (1) will be similar to that of the corresponding standard map.
This region is mostly populated by quasiperiodic orbitsahhibreak only for very
high kick strengths. Thus the current system also displad®iKike dynamics in

regions beyond’.(u.). In contrast to DBS casd? andb are not independent in



4 Kicked Particle in a Lattice of Finite Wells: The Classi&tchet 69

Figure 4.5: Evolving set of initial states shown on Stroboscopic sesti§(0.0) for pa-
rameters same as for Fig. 4.4 at%a¥ 0, (b) n = 50000, (c)n = 100000, (d) . = 200000.
For this all the initial states were taken on a small regi@uad (0,0) as shown in (a).
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Figure 4.6: Due to continual spread in phase space as shown in Fig. 4.5 dlan energy
(E) of all the particles keeps increasing. Parameters are saind~éigs. 4.4 and 4.5.
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Figure 4.7:Stroboscopic sectiof(0.0), for b = 107>, ¢ = 0.15,¢ = 0.0 andV; = 0.5.
It shows that the phase space is regular-i 0, as well asp = 0.

case of 1DLFW. Since€Rw + b = 27, asb — 0, R — 1. For spatially symmetric
case,i.e, if ¢ = 0 andR = 1, Eq. (2.14) is satisfied for which the dynamics
between the barriers is regular even in the region enclosedeenC (u.). This

is shown in Fig. 4.7. However, for spatially asymmetric ¢case for ¢ # 0, the
condition given by Eq. (2.14) is not satisfied and phase sp&mays a region
of mixed dynamics trapped between regular regions as showigi 4.8. Thus,
for b — 0, it becomes possible to have a diffusive phase space regiaiwsched
between two non-diffusive regions.

Now, if we start at time: = 0 with an initial distribution of points in the region
defined bylp| < p. between the barriers, they will start spreading in phaseespa
the kicks begin to act. However, the spread in the momentwanesgets arrested
at the invariant curves that separate the regular and chesglions. As a result,
the energy growth in the system gets arrested and systetmae®acsteady state as

shown in Fig. 4.9.
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Figure 4.8:Stroboscopic sectiof(0.0), forb = 1072, ¢ = 0.15,¢ = 0.5 andV; = 0.5. It
shows that the phase space comprises mixed dynamics regppet between two regular
regions forb — 0.
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Figure 4.9:Due to trapping of mixed phase space region between theareggions (see
Fig. 4.7), the growth of energy gets arrested after somefiimte of evolution. Parameters
for this figure are same those for Fig. 4.7



4 Kicked Particle in a Lattice of Finite Wells: The Classi&tchet 72

4.5 The Classical Ratchet Effect

In this section, we study the directed transport in the atrserf net biasi.e., the
ratchet effect in the system of kicked particles in 1DLFWeOGmdicator of ratchet
mechanism is that the ratchet currépt # 0 for an ensemble of initial conditions.
We take a large set of initial conditions and calculgte as a function of time
for different choices of parameters. Then we study the efféspatio-temporal
symmetries on the ratchet current. We start with- 0 and later show the effect of
finite b.

Forb — 0, the system has “ideal” phase space feature for the typaanp-
eter regime we deal with. In chapter 2, we discussed thab fer 0, the mixed
phase structures are identical to those of well map [SaOidt @pplies to case of
periodic lattice also, as the additional periodic boureagas such can not change
the phase space features as long as 0. In case of lattice of finite wells, like
in the case of DBS, refraction takes place for > p.. This refraction is a sig-
nificant distinction between well map and system defined in @gl). However,
refraction is equivalent to identity operationias- 0. Hence, the only reflections
taking place at boundaries are responsible for breakingfdfiKori. So these bro-
ken KAM-tori should generate same structures in phase spaide case of well
map. Please note that in case of well map all the KAM-tori aokén (provided
R is not an integer), but in case of our lattice of well or DBShwit — 0 only
a subset is affected. With — 0, we takeR < 1, for which the broken KAM
tori (due to effect of barriers) in the well region shoulddeda chaotic orbit except
around the principal resonance regibe,, around stable fixed points gt 7, 0) and
(m,0), as shown by Sankaranarayarenal.[Sa01, Sa01la], for the kicked particle
in infinite potential well. A hierarchical structure comgirig chain islands is gener-
ated aroundz;, 0) and(x,., 0), wherez;, z,. are the left and right boundaries of the
potential well. Now, we choosE, such that these chains of islands never overlap
with the transporting regiofip| > p.) and, hence, can not directly contribute to net

transport. This translates to mean that the phase spacsséieeto initial states,
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corresponding to energies below the threshigjdconsists of a chaotic layer and
possibly stable islands arourid;, 0) and(x,., 0) lying completely insidé—p., p|-
The section shown in Fig. 4.7 corresponds to such a scenalgioAny initial state
lying on any of those stable islands will remain confined &t #nd, hence, can not
contribute to net directed motion. So the ratchet currefithei determined by the
(p) of the chaotic layer which will be independent of initial citons. When the
appropriate spatio-temporal symmetries are broken, werggily expectp) # 0.
At the same time, the steady state ensures that the ratamehtdoes not get di-
luted due to continual broadening of energy distributioratide that steady state
that arrests the diffusion associated with classical cimagesult of the interplay
between the non-KAM chaos within the well region and KAMelikegion above

the barriers.

4.5.1 The Lattice of Double Square Wells

Whenb — 0, ¢ = 0 andR = 1, the condition in Eq. (2.14) is satisfied and hence,
for ¢ << 1, the phase space is filled with invariant curves. This is wiald

be obtained for a kicked rotor with an identical value of kitkength. Hence, to
obtain mixed phase space we get 0 in which case the system becomes spatially
asymmetric. While this gives the required mixed phase sfzg@z for¢ +# 0, one
disadvantage is that the spatial symmetry is already brokéence the effect of
spatial asymmetry on ratchet current cannot be studied.

To overcome this problem, we modify the system given by theittanian in
Eq. (4.1). In order to study the effect of spatial symmetry fo— 0, we use
the stationary potential schematically shown in Fig. 4T0e periodic unit of this
stationary potentidl,, contains two potential wells of unequal width with its oMera
length, in scaled coordinate system, being equéirta.e.,equal to two wavelengths
of the kicking field. This ensures that the periodicitylQf is commensurate with
that of kicking field so that the overall spatial periodidgymaintained. The overall

spatial period of the system in scaled coordinates withrtbig stationary potential
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Vix)

Figure 4.10:Schematic of lattice of double square wells. Barrier witltls taken to be
negligible. Two consecutive finite square wells define oméogée unit. The lengthi of a
periodic unit of this new stationary potential is twice thawslength) of kicking field.

Figure 4.11:Stroboscopic sectiof(0.0), for b = 1075, ¢ = 0.15,¢ = 0 andV; = 0.5.
The corresponding stationary potential is shown in Fig04.1

will be 47. The unequal width of two wells will ensure that for= 0, Eq. (2.14) is
not satisfied for the wells and the system can have mixed ghasefory = 0. The

stroboscopic sectiofi(0.0) for this new stationary potential is shown in Fig. 4.11.

4.5.2 The Effect of Spatio Temporal Symmetries

The spatial symmetry of the system can be controlled thratgfihe temporal
symmetry of the system can be controlled through controt tdve sequence and

magnitudes of kicks. For the series of delta kicks showngn &i2, the system will
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Figure 4.12: (p) vs n for ensemble of initial states all lying in chaotic layer fepa-
tially symmetric (red) and spatially asymmetric (green¥teyn. Temporal symmetry is
maintained in both the casegp) is calculated or5(0.5), ie. corresponding to = 0.5.
Parameters afe= 107>,V = 0.5,¢ = 0.2, ¢ = 0.5.

be T'—symmetric about = 0. This kicking sequence corresponds to kicking term
(third term) in HamiltonianH,. However, for series of kicks defined in Eq. (4.9)
and shown schematically in Fig. 4.3, there does not existcanyer of symmetry
and this kind of temporal variation in kicking field can be dise break the temporal
symmetry of the system. Figure 4.12 shofw$ calculated or5(0.5) as a function

of discrete timen for the completely symmetric case as well as for the case iatwh
spatial symmetry is broken by makigg# 0 but temporal symmetry is maintained.
It shows that the mean current of the system is zero when nbthe @ymmetries

is broken, whereas it settles to a constant non-zero valea wspatial symmetry of
the system is broken.

The saturation of mean current shown in Fig. 4.12 is due tetemce of steady
state demonstrated in section (4.4). Once the chaoticstaficiently diffuse in the
bounded chaotic layer, their net momentum attains a nearigtant value, except
that there are fluctuations due to continuously changing@lspace distribution
around small islands embedded in the chaotic sea. In sudbadisns, the initial
change inp) can be treated as a transient and net transport in systerteisrieed
saturated value of the current. However, in presencB-edymmetry, phase space
can be decomposed into pairs of stroboscopic sections iohwthe saturated cur-

rent carried by diffusive layers in each of the sections @y@akand opposite, as
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shown in Fig. 4.13. It also shows that these pairs of sectwrespond to equal
and opposite values of The existence of such pairs imply that the net ratchet cur-
rent averaged over (equivalent to average over all the stroboscopic sectiatik)
always be zero. This result is consistent with the thecakggpectation revealed
by S. Flachi.e. [FI0O0], according to which, in the presence of temporal sygtry

the net current of a bound chaotic layer should be zero. Mmik shows that if
system has a center of symmetrytinspace, then corresponding to every trajec-
tory (z,p,t), there exist another trajectoty;, —p, 2t, — t), to being the center of
symmetry. In the case of time periodic system that we ardardgalith, the center

of symmetry, if it exists, lies at = 0. Also we are dealing with trajectories in
discrete timen at different sections corresponding to different values.ol this
framework, the above theoretical result derived in [FI@0plies that corresponding

to every trajectoryq,, p,, 7) there must exist another trajectdgy,, —p,, —7). No-

tice that the meafyp) for these two trajectories will be equal and opposite as they
pass through equal and opposite momenta. This means thesponding to every
trajectoryA on sectionS(7), there exists a trajectory on sectionS(—7), such that
currents carried by them are equal and opposite. This exgptae distribution of
current overr values for time symmetric case as seen in Fig. 4.13.

When both spatial and temporal symmetries are broken, s can not be
decomposed into such pairs as shown in Fig. 4.14. To breaknimgoral symmetry
we use kicking cycle defined in Eq. (4.9). Now the net currersraged over
will be non-zero. Figure 4.15 shows saturated val(zesfor larger number ofr
values for both T-symmetric and T-asymmetric case. To daheefluctuations in
(p) values, seen in Figs. 4.13 and 4.14, we average over timethéisteady state
has reached.

Note that the saturated value @f) is determined by steady state distribution
of states in chaotic layer, which is independent of the &etdiinitial set of states.
Hence, the saturated current value will be independentitidliconditions. This is

shownin Fig. 4.17a. One class models for chaotic (quantatahet rely on chaotic
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Figure 4.13:(p) vs n for ensemble of initial states all lying in chaotic layer &patially
asymmetric but T-symmetric case corresponding to diffevatues ofr. Saturated values
of (p) are equal and opposite for equal and opposite values oParameters arg =

107%,Vp = 0.5, = 0.15, ¢ = 0.5.

0.005- =T
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0.02 2000 4000 6000 8000 100
Figure 4.14:(p) vs n for ensemble of initial states all lying in chaotic layer tomoken
spatial and temporal symmetry corresponding to differeities ofr. Saturated values

of (p) are not equal and opposite for equal and opposite values Barameters aree =
107°,Vp = 0.5,€1 = 0.08,¢5 = 0.16, ¢ = 0.5.
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Figure 4.15:(p) vs 7 for time-symmetric (left) and time-asymmetric (right) easSpatial
symmetry is broken in both the cases. Clearly, for time-sytnim case(p) values are
symmetrically distributed about zero leading to net curmgro. This symmetry inp)
distribution alongr does not hold when temporal symmetry is broken. Parameietfd
two cases are same as those for Figs. 4.13 and 4.14, reshectiv

regime in order to generate current independent of initetes [Mo00, HuO5] with
limited experimental realization [JoO7a]. However, fullaps is also associated
with unbounded spread in energy which is not in favor of arcieffit ratchet effect.
Hence the proposals in Refs. [Mo00], provide for a quantuichiet butnota clas-
sical ratchet. In our model, there is a bounded mixed phaseespxtent of which is
very well controlled, such that the islands in it do not cdmite to transport, lead-
ing to net current independent of initial state. Thus, weseng a ratchet model in
which one can obtain a ratchet current Independent of isitéde at the same time
energy spread is well controlled. Thus, in our system, nmedul classical ratchet

currents can be obtained.

4.5.3 Effect of barrier width

In this section, we will discuss the behavior @ as a function ob for b >> 0.

We have seen that fdr — 0, the (p) saturates to a constant value when steady
state is reached. As discussed in section 4.4, the steaidyestists because the
mixed phase space is trapped between two regular regionse\tdo, forb >> 0,
mixed phase dynamics prevails throughout the phase spasi®oas in Fig. 4.4.

In such a situation, any set of initial state lying in chadeiger will keep spreading
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Figure 4.16:(p) vsn at~ = 0.5 for different values ob. Other parameters afg =
0.5,¢ = 0.15, ¢ = 0.5.

in phase space. As the phase space distribution of of an éhseistates evolve,
the associated currente., (p) will keep changing and will never converge to any
particular value. This is shown in Fig. 4.16. It shows thathaecreases, the
fluctuations in(p) increase. This also leads to large fluctuations in the neheat
current averaged ovet

Another consequence of takibg>> 0 is the dependence upon initial states.
Clearly, in the presence of mixed phase space dynamics thetien of a state is
highly dependent on the region of phase space it is evolving\é a resultp) at
given value ofn will depend upon the initial state. Figure 4.17 shojws for two
different sets of initial states. One set is of uniformlytdsuted points in a square
of area 0.01 and its center coincides with the phase poifi}.(0he other set of
initial states is obtained by shifting the first set algngxis by 0.1 units. A$ — 0,
the saturatedp) is almost indistinguishable for two different set of init&ates,
both lying completely in chaotic layer. However, in casebof> 0, (p) at any
givenr is different for two different initial states. This impli¢sat ash increases,

the current becomes more and more dependent upon initiassta
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Figure 4.17:(p) vsn atT = 0.5 for two different sets initial states (discussed in text) in
two different colors. The graph at the top corresponds 40 10~° and the one at bottom
corresponds té = 0.4. Other parameters ail§) = 0.5,¢ = 0.15,¢ = 0.5. The value of
(p) at a givemn is independent of the set of initial states usedifer 10~5, but is different
for different sets of initial states fdr= 0.4.



CHAPTER D

Kicked Particle in a Lattice of Finite Wells: The
Quantum Ratchet

In this chapter we analyze the quantum dynamics of kicketigkarin a lattice

of finite wells. We first solve the Schroedinger equation foperturbed system,
i.e., free particle in the presence of stationary potential withacks. Then, we

incorporate the effect of kicking. In order to see the signeg of classical phase
space features, we generally remain confined to small vdlB&aack’s constant so
that there is sufficiently large number of energy levels inaa@ned energy region
which roughly extend from ground state to energy twice ab laigthe well depth
or, other words, twice as high as height of the barriers betwehich these well are

constructed.

5.1 The Unperturbed System

In this section, we begin with the solution for the unperagsystemi.e., fore = 0.

The Schroedinger equation for the system is described bid#meiltonian in Eq.

81
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(4.3) as

ihsg—f(x) =

- _h56—+Vsq(x)+ecos(x+¢)z5(t—”) (). (5.1)

2 Ox?

In this, ¢ appears in the kicking field term. Also, the poteniig)(x) we use in this
chapter is given by Eq. (4.4). In Eq. (4.4)is set to be zero. This is equivalent to
shifting the origin ofz-axis in such a way that the barriers are always symmetyicall
placed about the origin and the spatial asymmetry is intwediy shifting center of
symmetry of kicking field with respect to origin. Quantumtgyas are convenient
to analyze ifl/;, does not shift on changing so that the wave functions remain un-
affected. The Schroedinger equation (5.1) is similar toathe given in Eq. (2.15)
for a kicked particle in double barrier structure. The maifedence between the
two being that in the present case the stationary potevitjat) represents a series
of identical finite square wells (See Fig. 4.1). Thus,(z) is a periodic function
of z. In this form, the potential is similar to the Kronig-Pennagtential widely
discussed in condensed matter physics [KiO3] and is a nelésasic model that
explains conduction and insulation properties of solidsstlidy the classical evo-
lution, it was convenient to split the Hamiltonian as sunwvad parts; one, in which
kicks changed the momentum and kinetic energy and the othieg Ithe effect of
stationary potentiaV,(z). However, to study the quantum dynamics, we rewrite
the corresponding Hamiltonian (obtained after applyirng dbove described shift

of z-origin in Eq. (4.3)) as,

H:H0+ecos(x+¢)25(t—n). (5.2)

Here,Hy = %2 + Vi, () is the autonomous unperturbed system. The Schroedinger

equation corresponding td is

ths

o0 {—hg 5?

E == 5 @ -+ Vsq<$)} 1/1 (53)
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| II 111

Periodic unit

Figure 5.1:Figure shows the three regions (I, Il and IIl) of periodictufi Vs, (z).

Since the potential is spatially periodic with peridd we haveV,(z) =
Vsq(z + d). This periodicity implies that the Bloch theorem [As76] id@pply.
This theorem tells us that the wavefunction in periodic ptéds can be chosen to
be periodic with the same periodicity as that of the potémtiel modulated by a
phase factor. For convenience, we have coincided the cehthe potential well
with the origin of coordinate axis. Now one periodic unit ¢é&tsonary potential
can be divided into three regions as shown in Fig. 5.1. Themérsolution of

Schroedinger equation (5.3) in these three regions is

_ _ —d _
@Z)(l‘) = Rlelklx + Lle_lklx, 7 S Xz S TM, (54a)
= Ryettr® 4 [yemiher _—2"‘“ <z< % (5.4b)
4 4 d
= Rse™T 4 Lye h1 % <z< 3" (5.4c)
To get the particular solutions, we

will determine the sets o, Ly, Ry, Lo, Rs, L3, ky and ko for which ¢ (z) satis-
fies the applicable boundary conditions. Hergeandk, are the wave numbers of
eigenfunction in the barrier and well region, respectivétythe scaled coordinate

system, since the mass of the particle becomes unity andldnek® constant is



5 Kicked Particle in a Lattice of Finite Wells: The Quantunmtéeet 84

replaced with scaled Planck’s constantwe have

20E-Vy) w d
= Y - — < - F .
k1 . 5 < |z < 5 > Vo, (5.5a)
2Vo—E) w d
i 5 < |z| < X E <V, (5.5b)
V2E
b= 2| < % (5.6)

Now, we proceed to determine the eigenenergies, and heacgavenumbers;
andk,, and the eigenfunctiog(z). We considerN units of finite well potential
with periodic boundary condition appliede., arranged on a ring lattice. Using the

Bloch theorem, we can write the wavefunction as

Y(z) = P(r +d)e™d, K= ?\"’;—2 (s=0,£1,£2,...). (5.7)
In this, the producf(d is the propagation constant. This form for the wave function
implies that it can change by a phase factdr for spatial positions separated by
distanced, i.e.,one period of the stationary potential. The allowed valdes @re
restricted by the relation’s? = ¢/(5K+2m)4  Thys the phase factor, and hence the
wave function itself, repeats aftér units of the stationary finite well potential.

For an arbitrary position lying within the barrier region, we get,
RyeM® 4 Lyem™® = ¢4 (Rge™* 4 Lye™™17) . (5.8)
This leads to

Ry = RyedE—F), (5.9)

Ly = Lyt =h), (5.10)
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Substituting this in the general solution in Eq. (5.4), wéaai

I
&

b(z) = RieM® 4 Lo — <v< _7“’ (5.11a)
= Rye'™® 4 [ye iker, —Tw <z< %, (5.11b)
id(K —k1) ikiz id(K —k1)  —ikiz w d
= Re e + Lie e Y <z< 7 (5.11¢)
Now we apply the continuity conditions
Ol(zs) = dla), (5.12a)
Y (ay) = ¥ (ao). (5.12b)

Herey’ represents the position derivativewwfz, andx_ are two points arbitrarily

close tox on its right and left hand side, respectively. Using Eq. Zpforz = 7

andx = =* leads to a set of linear equationsify, R», L, and L,. Denoting the

coefficient vector as

Ry

Lo
R = : (5.13)
Ry

Ly

the linear system to be solved becomes

MR =0, (5.14)
where the matriXM is given by,
eik2 g e~ th2 g —pld(K—k1) giki g  _ pid(K+ki) o—ik1 g
M koeik2 Y — Ky k2 Y —ky et —k1) giky Y foy eid(E +k1) g—ika w
€_ik2% €ik2% _e—ikl% _eikl%
k’ge_ikz% —krge“”% —k:le_““% k:le““%

(5.15)
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The homogeneous system of linear equations (5.14) will imawetrivial solution
only if
detM) = 0. (5.16)

The condition in Eq. (5.16) leads to dispersion relations:

For £ >V,
cos (k: E) cos (k1[d — w]) — M sin (k E) sin (k1 [d — w]) = cos (Kd)
) ' 2k ko ) ! a '
(5.17)
ForE < Vg,
cos (k: E) cosh (E [d— w])—M sin (k E) sinh (75 [d — w]) = cos (Kd)
235 1 ks 25 1 ;
(5.18)
Vo= )

where%l =ik = .

The dispersion relations obtained above are transcerid&ntations in the un-
known variables:; andk,. Hence, we obtain numerical solutions to fifid, k)
pairs that satisfy either Eq. (5.17) or (5.18) for allowetlea of propagation con-
stantK. The triplets(K, ki, k2) which solve Eq. (5.17) or (5.18) are substituted
back in (5.14). This linear system is then solved to obtaeéctorR, i.e., the
constantsR,, Ly, R, and L,. This is substituted in (5.11) along with the triplet
(K, k1, ko) to obtain the eigenstates of the unperturbed system reyessby the
HamiltonianH, in Eqg. (5.2). For any particular state, its energy can beutated
as

ko B2

E=-r (5.19)

Notice that the Eqs. (5.11) and (5.14) are periodidsid. Hence, it is suf-
ficient to consider only one period dfd, say, from—x to © which corresponds
to % < s < % in Eq. (5.7). This range is referred to as the first Brillouin
zone [As76]. Figure 5.2 shows energy levels calculatedviortypical situations.
Graph on the right corresponds to a situation in which enkxgsls are distributed

among broad, well separated, bands. These are the condbetils. Within each
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_—

Figure 5.2:(Left) Energy levels of eigen states of unperturbed systaiculated forh =
0.1w, Vo = 0.5, i, = 0.0067 andN = 1. It shows that energy levels are densely distributed
for iy << 1. (Right) Energy levels of eigen states of unperturbed systalculated for
b= 0.6r, Vj = 0.5, hy = 1.1 and N = 64. For large values ofi,, the energies of basis
states are distributed in broad well separated bands.

band there are densely distributdddiscrete levels. This scenario exists for large
valuesh, and N. As h, — 0, the behavior of the system goes closer to that of the
corresponding classical system. In this situation, theggnbands come close to
each other and shrink in energy space. The levels withinengiand become prac-
tically indistinguishable. The left graph shows energyelevior a very small value

of h,. Since the energy levels within a band become practicallistinguishable in
such a situation, we consider only = 1 to save computation time. Fat << 1,

for which we get dense energy levels as shown in left graphgn3-2, the system

Is in the semiclassical regime. For most part, we remain gedfto this regime in

this thesis

5.2 The Kicked System

In this section, we solve the full system in Eq. (5.2) aftezarporating the ef-

fect of kicks in the unperturbed systeHy. As done in case of DBS, we use the
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time-periodic nature of the kicking and write down one pédriloquet operator.
We use the eigenstates of unperturbed system as basistetgetthe matrix form
of Floquet operator and calculate its eigen vectors, knassviRlaquet states, in the
chosen basis. These eigenvectors in Husimi representailtattively contain the
information on the dynamics at discrete time steps in a wajogous to the stro-
boscopic section in classical phase spagce, 7). The results in chapter 4 show
that the ratchet current depends upon the phasé the kicking period and we
have to consider the complete three dimensional piciune 7). To get a complete
guantum mechanical picture, we calculatéor different values of-. Any periodic
cycle of kicks can be divided into alternating regimes oéfexolutions and kicks
as discussed in section (4.3). In this chapter we use twastgpé&icking cycles
comprising(:) one kick followed by evolution under the action bf, (see Fig. 4.2)
(77) two kicks of unequal strength and two unequal periods ofwgiat under the
action of H, (see Fig. 4.3). The time evolution operator correspondiegé types

of kicking cycle can be written in following form;

(7) One-kick cycle
F(r) = (ki (n) (), (5.20)

(71) Two-kick cycle

~ ~ ~ ~

F(r) = f3(r)ka(r) fi (T (1) f (7). (5.21)

Here, fo(7), f*(7) represent the evolution under the effect/af before and after
the i-th kick respectively. The operat@g(f) incorporates the effect afth kick.
The arrangement of free evolution and kicks within a cyclanges withr, hence
fo(7), fo(7), ki(7) are different for different values of, as discussed section (4.3)
also (see Fig. 4.3). We are using index representing kickaauraven for one-kick
case just to make the generalization to higher number oklgpek cycle easy.

Writing F'(7) explicitly as time ordered product of the operators for fegelu-
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tion and kicking part for one-kick cycle, we get

i€ (T)

COS(/ZE\)) exp <—hiﬁ1v1{(r)) .
(5.22)

ﬁ(T) = exp <—hisﬁlv‘f(7)) exp <— -
Here, e (7) represents the strength of kick. In case of two kick cycleyitehave
kick strengths:; (7) andey(7). We use this kind of kicking cycle for breaking the
temporal symmetry. Note that in the earlier works on quantatthets only kick-
ing cycles composed of kicks of equal strength is considdsterwood [Is04] has
shown that with identical kick strengths, minimum numbekizks required in a
cycle, in order to get ratchet current, is three. The germatabn to non-identical
kick strengths in a cycle used for breaking temporal symynetithe system and
obtaining ratchet current with just two kicks is particlyanseful in saving com-
putational time. The time duration of evolution before aftérahe kick are being
represented by?(r) and v¢(r), respectively. We obtain matrix form dAT(T) in
the basis of the corresponding unperturbed system. In theechbasis, the matrix

elements can be written as
Frun(7) = (m|F(7)|n), (5.23)

where,|m) stands forn-th eigenstate off,. Substituting in Eq. (5.22), we get

Foun(7) = (5.24)
(m| exp (—éﬁlv‘f(T)) exp <—“}iﬂ cos(fE)) exp (—é?[ﬁ’{(ﬂ) In). .
Since|m) and|n) are eigenstates df,, we have
T = 1
(m| exp (—h—Hlv‘f(T)) = exp (—h—EmV‘f(T)) (m|, (5.25a)
In) exp (—hiﬁlv%(r)) — exp (—hiEnv;l(T)) In), (5.25b)

where E,, and E,, are eigenenergies df, corresponding to statds:) and |n),
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respectively. Substituting back in Eg. (5.24), we get

l 1

Fon(T) = exp ( P Emv‘f(T)) exp (- P Envli(T))

(m | exp (—ZE%(T) COS(/ZE\)) | ) (5.26)
The last term on the R.H.S. of Eq. (5.26) can be evaluateckipdisition represen-
tation as
i€ (T) R 2 . i€ (7)
(m|exp | — cos(Z) | [n) = r (x)n () exp | — . cos(z) | dx.
S _TNd S

(5.27)
Using this, we finally get the matrix elements of Floquet aperfor one-kick cycle
as
) = e (-t (_£5510)

(5.28)

Nd

y N O ()b () exp <—“1h(:) cos(x)) da.

Now for the case of two-kick cycle, the evolution during eveycle can be
splitinto two parts{:) before the second kick, (1), (ii) after the second kick. The

Floquet operator in Eg. (5.21) can now be written as

F(7) = By (r)Fy (1), (5.29)

where,
R(r) = F@kr) i) (5.30a)
By(r) = fo(r)ks(7) (5.30D)

Now, F} (7) andFy(7) can separately be treated at par witfr) for one-kick cycle.
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Using the expression derived for matrix element in Eqg. (5.2@ can write
Fion(T) = exp (—hiEmV‘f(T)) exp (—hiEnVI{(T))
(5.31a)

iEl( )

/; U ()1 () exp <— h: cos(:z:)) dr,

X

?

FZmn(T> = €exXp <_h_Emv61L(T)>
(5.31b)

X

@ e (9D o))
/Td ( D )

Notice that Eq. (1.31b) contains only one term for evolutisrder the action of
}AIO, because the evolution before the second kick has alreadydszounted i .
The matrix representin@(r) for two-kick cycle will be a product of matrices for

]31 and]%, and hence its matrix element will be
Fon(7) =Y Foi(7) Fii (7). (5.32)
l

The eigenvalues and eigenvectors of the Floquet matrieasusmnerically computed
using LAPACK and BLAS routines [Lib] Using the computed eigectors of Flo-

guet operators, the Floquet states in chosen basis candrendetd as
[5) = Vi) D). (5.33)
l

Here, |¥;) is the j-th Floquet state}] = (I|¥;) is thel-th element of the corre-
sponding eigenvector of matrik(7) and represents the overlap of a Floquet state
with thel-th unperturbed state.

In the classical system, we mostly dealt with the initialtigigition of points
lying in the well region with their energy being < V4. Equivalently, in the
guantum system, we consider initial state will never have-pexo overlap with

unperturbed states defined By > V4. For such a case, we need to consider only
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those Floquet states which have non-zero overlap with dunerd states witlly <

Vo. We write an initial state as a superposition of Floqueestat

) = ¢ W5). (5.34)

J

Inthisc; = (a|V;) = > ,(a|l){l]¥;), and defines the overlap of initial state with
Floquet stateW ;). Now, if |«) is evolved using Floquet operator fortime steps,

we get
F(7) oy =) e™Picy| W), (5.35)
J

where®; are eigenphases or quasienergies of the Floquet statesovEhap of
this evolved of this state with a Floquet stafe) will be (a|¥;) = ¢;e™*i. Note
that the initial state and evolved state has same magnituoleedap with a given
Floquet state.

In the unperturbed basis, overlap of the initial state wikiaquet state will be

(alW;) = > {alD)(iw;) (5.36)
l

Let there bd. unperturbed states for whidh < Vj,. Since initial state is assumed
to lie completely belowi.e., («|l) = 0 for [ > [. (we allot indices to basis states
in increasing order of their energy, so largamplies larger energy). Using this,
the overlap with Floquet state becomes¥;) = S (a|l)(I|¥;). If the Floquet
stateW; has no overlap with basis state whose energk isc 1y, i.e., (I|\;) for
[ <., then(a|¥;) = 5;1<a|l><l|\lfj> = 0. This implies that if initial state lies
completely in energy region®{ < 1), the evolved state will be superposition of
only those Floguet states which have non-zero overlap végisbstates for which
E < V4. This provides a criteria to truncate the basis states foFtbquet states of
our interest. We consider only those Floquet states whigh haleast one percent
probability in region £ < 14). All the basis states with energies in the range

0 < E < E, were found to be sufficient to achieve desired convergendken
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15 2

Figure 5.3:The probability densitijF for some Floquet states vs energy of the basis
states. The parameters dre= 0.0067,¢ = 0.5,V = 0.5,¢ = 0.15, R = 1.9.

Floquet states of our interest. Hence, we truncate the basisergyF = F,.

Figure 5.3 shows the overlap probability densit§f|> of few Floquet states
plotted against energies of the unperturbed states. Fa@ame set of parameters
classical phase space shows mixed dynamies,phase space is spanned by a fully
connected chaotic layer in which stable islands are emlakdd®wever, almost
all the Floquet states shown in Fig. 5.3 are localized in gghespace. In Fig.
5.4, we show the spread (over the basis states) for all thguBtostates which
have at least one percent probability in regidn < V;). The spread is shown
in terms of minimum and maximum energies, denoted:hy, andF,,,..., at which
Floquet state has finite (non-negligible) probability dgnd he probability density
of a Floquet stateV;) at eigen energy, qualifies to be considered as finite if
\Vj\? > (0.0005. Even though this is a arbitrary choice, nearly all such &é&iq
states are localized within the truncated basis, the lifnitach is shown through
a horizontal line. Thus, for the given choice of parametalisthe Floquet states
which have significant overlap with energy regian< V1, have converged within

the truncated basis set.
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|

Figure 5.4:The horizontal axis shows the index (state number) assignEtbquet states.
The bottom and top points connected with a given vertica liepresent the minimum
energy E,,,;, and maximum energy, ... at which the corresponding Floguet staie )

has probability above the cut-off val@ed005. Only those states which have minimum one
percent probability with? < V; are shown.E; represents the energy at which the basis is
truncated.

5.3 The Quantum ‘Phase Space’

In this section, we study the features of the Floquet statesrder to make corre-
spondence with the classical phase space structures, waizesthe Floquet states
| W) in the Husimi representation and observe the signaturesreiiAM classical
dynamics in them. Floquet states corresponding to any orteylar value ofr
are sufficient to grossly visualize the phase space stegtas in a single strobo-
scopic section from classical phase space. Throughousdgison we use = 0.
The position wave functiof| ;) of a Floquet stat@l ;) can be substituted in Eq.
(2.21) to get the corresponding Husimi function. Figure $héws Husimi distri-
bution corresponding to some Floquet states to highlightestypical features of
‘guantum phase space’.

The Husimi distributions shown in Figs. 5.5(a,b), lBr= 1,¢ = 0.15,b =
0.17, Vo = 0.5 with 2, = 0.0067 reveal the signature of classical chaotic dynamics
around the hyperbolic fixed poirit: = ¢,p = 0) where¢ = 0.5. Figure 5.5(c-
h) shows the Floquet states, in Husimi representation, wtiec not overlap with

the strongly chaotic region around this hyperbolic fixednpoiln Fig. 5.5(c) the
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Figure 5.5: Husimi distribution for some of the Floquet states. Paramset = 0.15,

b= 0.1, Vo = 0.5, h = 0.0067 and¢ = 0.5
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Husimi density is high fop > 1, which corresponds to phase space region beyond
the barrier height. Hence, the structure closely resenthéemvariant curves corre-
sponding to quasi periodic orbits of the kicked rotor ex¢bpt discontinuity in the
barrier region is visible. This is a consequence of discmttus classical trajectory
at the discontinuities in the potential. We remind the redbat for these states
barrier widthb >> 0. For this value ofb, classical phase space displays mixed
dynamics. The states shown in Fig. 5.5(d-f) appear to be omigity with the
higher order resonances of the kicked rotor. The state shoWwig. 5.59g displays
enhanced density near the right barrier but much diministesity near the left
barrier. The state shown in Fig. 5.5h shows almost closeitiandund elliptic fixed
point at(m — ¢,0). In general, bulk of the Floquet states appear to have lexli
structures when seen in Husimi representation.

In Fig. 5.6, another panel of Floquet states is shown as Hysdwots. In this
figure, the parameters are so chosen such that they diffgrstightly from the
parameter set used in Fig. 5.5. Increasing the valuésaofp, even by a small
amount, will lead to more chaos in the system since we will bging farther away
from the situation in which Eq. (2.14) is satisfied. This effef larger chaotic layer
in phase space is seen in more complex Floquet states in.big-&r the purpose of
comparison, in Fig. 5.6(e,f), we show Floquet stategfer 0 and other parameters
are same as in Fig. (5.5). This shows strongly localizeditieimsthe region which
would be spanned by chaotic layer in classical phase sp&tecduld be attributed
to the influence of the individual orbits.

Husimi distributions in Fig. 5.7 show a selection of Flogstdtes for small
barrier widths compared to the width of the potentiad,, b << w. In Fig. 5.7,
we have choseh = 0.00017 for which R = 0.99995. The spatial symmetry of
the system is broken by taking = 0.5. The classical phase space for nearly the
same set of parameterg, = 1.0,¢ = 0.5, is shown in Fig. 4.8 and it displays
mixed dynamics. However, in contrast, the Husimi distiidmg shown in Fig. (5.7)

resemble quasi periodic orbits of the kicked rotor. Thisue tb the fact that for very



5 Kicked Particle in a Lattice of Finite Wells: The Quantunmtéeet 97

) 0.6 ) 0.9
0.5 08
i : { 0.7
0.4 0.6
0.5
a0 0.3 a0 0.4
. 0.2 | 0.3
i - 0.2
0.1 o1
-2 0 2 0
3 2 -1 0 1 2 3 3 2 -1 0 1 2 3
q q
(a) (b)
2 0.6 2 8.35
| 0.5 | 035
0.4 0.3
a0 03 a0 023
. 0.2 | 0.15
i - 0.1
0.1 005
2 0 -2 0
3 2 -1 0 1 2 3 3 2 -1 0 1 2 3
q q
(© (d)
1.2 0.9
2 1 2 08
1 1 0.7
0.8 0.6
0.5
a0 0.6 0 0.4
1 0.4 1 8%
0.2 :
0.1
) -2
0 0
3 2 -1 0 1 2 3 3 2 -1 0 1 2 3
q q
(e) ®

Figure 5.6: Husimi distribution for some of the Floquet states. The peters are =
0.15, Vo = 0.5, h = 0.0067, (a,b)b = 0.37,¢ = 0.5, (c,d)b = 0.17,¢ = 1.0, (d,e)
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small value of barrier widtlh the transmission coefficient is high and the reflection
from the barrier becomes small. Note that classically ihesmultiple reflection at
the barriers that is responsible for breaking the quasbgdeariorbits and this leads
to chaotic dynamics. Thus, for this choice of parameterslevdtassical dynamics
iIs mixed, quantum behavior is different primarily due tonehing effect. In the
quantum kicked rotor, localization appears as a purely guareffect in contrast
with the classical diffusive dynamics [Re04]. In this systenstead of localization
due to interference effects, we see tunnelling as a quariffect.e

It has been verified that for above value Bfbeing so close to unity, the dy-
namics in the well region is KAM-like unti$ £ 0 (for R € integer, onlyy # 0
can violate the condition for KAM-like behavior ; see Eq. 12)). So non-KAM
chaos for such a value @t can be fully attributed to non-zera Figure 5.8 shows
the quantum phase space far.601x, R = 0.995. The rest of the parameters are
same as those for Fig. 5.7). The classical dynamics is KAdfor ¢ = 0 even for
R = 0.995. This means that for the purpose of classical dynamics fifereince in
R can neglected, both can be treated as unity. However, tfezehice in two values
of b leads to significant change in tunneling coefficients (witthie WKB approxi-
mation, tunneling coefficient is 0.62 fér= 0.00017 and 0.44 forb = 0.0017 and
we have used an approximate value of endiggstimated from Fig. 5.7b and 5.7e).
The Husimi distribution in Fig. 5.8 show trajectories whigbproximately overlap
with 5.7b and 5.7e but are more dispersed in phase space.inthéssed spread
in phase space is a manifestation of non-KAM classical dyesmhich shows its
signature more prominently if tunneling is better suppeesd he difference ihfor
above two cases does not affect the classical dynamics gnédisant way but the
associated change in tunneling affects the quantum dysasigaificantly. Thus,
this example shows how quantum effects such as tunnellingfesas itself in a

system whose classical analog is essentially chaotic.
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Figure 5.7: Husimi distribution for some of the Floguet states. Paranset = 0.15,

b = 0.000017, Vo = 0.5, h = 0.0067
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Figure 5.8: Husimi distribution for some of the Floguet states. Paramset = 0.15,
b =0.00017, Vi = 0.5, A = 0.0067

5.4 Quantum Ratchet Current

In this section, we analyze the probability current deasiissociated with the Flo-
quet states. We take= 0.0067 and for this choice quantum dynamics follows clas-
sical dynamics closely. We study the effect of breaking sytni@s for the ratchet
effect in the system. In case of classical systerh - 0, chaotic layer trapped be-
tween the KAM-curves is the only transporting layer foriglistates starting from
the well region. The current carried by this layer, when txghtial and temporal
symmetries are broken, has a saturated value independaeittaifstates. However,
we show that fob >> 0, current does not settle to constant value due to continual
spread of initial states in phase space. However, we sawewiqus sections that
nearly all the Floquet states of interest are confined wihiall energy range even
for b >> 0. Even the spread of chaotic states, as seen in Figs. 5.5fz]f.6(a-
d), lie approximately within—p., p.|, with corresponding energy range being from
ground energy threshold energy, evenifor> 0 and the current values should sat-
urate after long evolution. Since the Floquet states reptesssymptotic behavior in
time, we directly deal with currents associated with Fldciates.

The probability current associated witlth Floquet statél;) can be calculated
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Figure 5.9:(j) separately for Floquet states carrying positive curredtstates carrying
negative current for time symmetric system. (Right) Mearrant of all chosen (see text)
Floguet states at different times. Parameters:0.15,b = 0.1x, Vp = 0.5, A = 0.0067

in position representation as

(5.37)

In quantum system, although states are localized in enaxgig leven fob >> 0,
the saturated current is not uniquely determined by one dahaotic layer as in
the case of classical system with— 0. However, different Floquet states can, in
principle, have different currents associated with themw$ take the average over
the current values for different Floquet states. However,need not to consider
all the Floquet states. We consider only those Floquetsstatbich have at least
five percent probability in regiofE < V4/2). This energy range approximately
represents the minimum width, if width is measured at déif¢ipositions, of chaotic
layer around hyperbolic fixed poiit-¢, 0). This is done to exclude all the Floguet
state which do not have significant overlap with chaoticargiear hyperbolic point
(=9,0).

Figure 5.9 shows collective behavior of all positive andateg current car-
rying Floguet states for different values offor time-symmetric casd,e., when
H(x,—t) = H(x,t). This symmetry holds for the case of one kick cycle. The
mean current;) for all the Floquet states carrying positive current at any

is equal in magnitude to mean current for all the negativeetuircarrying Floquet
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Figure 5.10:(Left) (j) separately for Floquet states carrying positive current states
carrying negative current for time asymmetric system. (Rid/lean current of all chosen
(see text) Floquet states at different times. Parametgrs: 0.8,¢; = 0.16,b = 0.1,
Vo = 0.5, h = 0.0067

states at = —7;. As a result the mean positive current of all the Floqueestat
T = 11 IS equal and opposite to mean current at —7. It was also observed that
for ¢ = 0, for which the system is spatially symmetrie., H(—x,t) = H(x,t)
holds, the(.J) = 0 at any given value of.

When temporal as well as spatial symmetry is broken, when H (—z,t) #
H(z,t)andH(z, —t) # H(z,t), the balance between positive and negative values
of (J) breaks leading to net non-zero ratchet current, as showiging=10. This
is achieved whew # 0 as well the one kick cycle is replaced by type (ii) periodic
kicking cycle discussed in section (5.2). Thus, the behafig.J) of all the Floquet
states having significant overlap with chaotic region fedhe current observed in
the classical system with bounded chaotic layebfes 0.

Let us now define a generalized eigenstéig; ) of H(z,7) such that
(x|V;; 1) = W,(x, 7) be the solution of Schroedinger equation (5.1). Algg 7)
will represent theé-th Floquet state of'(7) for arbitraryr. The probability current

density associated with such an eigenstate, after intagraverr, will be

I = / = L (5.38)

=—0.5

Figure 5.11 shows the distribution ofintegrated currents associated with dif-

ferent eigenstates which have minimum five percent proibabilthe energy range
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Figure 5.11:7 integrated current of eigen states for which at least fiveqgrerdensity lies
below V. Parameterse = 0.1, b = 0.1w, V; = 0.5, A = 0.0067. The vertical red line
mark the meard of the distribution. The green curve shows the distributibd values for
time symmetric case. The distibution in green is not norseali It is scaled down by factor
of 20.

E < 0.5V5. We see that for time symmetric case thentegrated current,e., I;,
has a sharp peak at= 0. When temporal symmetry is broken, we get asymmet-
ric distribution of currents with finite width. The non-zeneean current for time
asymmetric system is also shown in Fig. 5.11. However, r@tthe spread about
mean is moderate. Moreover, for any arbitrary initial stgileg completely in re-
gion (E < V,/2), evolved state will be a superposition of all these Floqtetes.
Due to a chaotic layer in phase space near0, in the semiclassical limit, the time
evolution will mix the Floquet states sufficiently. Thusetturrent in system can be
expected to be robust against changes in initial statesgthoot fully independent
of them.

We note that the net force averaged over all space and timerc ize.,

1) —mgg(f) dzdt = 0. Thus, we have shown that the system can be used to obtain

net directed current in absence of net bias. In semicldssgane, the quantum
current behavior, with respect to symmetries of the systemmics the scenario for
classical system. We have also done some preliminary asapsthe system in
its quantum regimei,e., for large values ofi,. For this choice of Planck’s con-
stant, the unperturbed levels display band structure. Taknpnary results we

have obtained suggest that if inter-band transitions aralimwved, the net directed
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transport is not possible. This is also suppoted by somedkieal prediction by Pe-

ter Hanggi [G098]. Analysis of ratchet effect in band staetwill form the future

extension of this thesis.



CHAPTER O

Summary and Future Directions

6.1 Summary

In this thesis, we have studied the dynamics and transpopigpties of non-KAM
systems, namely, (i) the kicked particle in a potential vdtiuble barrier structure
and (ii) kicked particle in a periodic lattice of finite potext wells. These time
dependent systems are significant for several reasons. fh®moint of view of
deterministic Hamiltonian chaos, they belong to a classdysely explored, non-
KAM systems. As an instance of kicked system in a periodiepidl, it provides a
connection with extensively studied condensed matteesyst Thirdly, this system
exploits the KAM and non-KAM type dynamics for directed nosti The double
barrier structures and quantum wells are widely used irtreleic devices and the
models studied in this thesis has potential experimenadizagion and applications.
We summarize the main results here. The classical kickent syistem leads
to well studied Chirikov map which is popularly known as stard map. We have
derived maps to describe the phase space dynamics of a kekecle in the pres-

ence of discontinuous and, hence, non-analytic poterdiall as (i) and (ii) listed

105
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above. These maps, in a sense, are generalizations of tikasdamap after in-
corporating effects of non-analytic potentials. The kitketor is a KAM system,
where as, the system we have studied in this thesis is non-gAdto the presence
of non-analytic potentials. We have studied how the non-Kédiure of the system
modifies the phase space characteristics and leads to ngwinical features. In
general, this system can show both non-KAM and KAM-like hebiin different
regions of phase space.

We have reported interesting dynamical properties, nanfa)yclassically in-
duced suppression of energy growth, (b) momentum squee@hgnomentum
pumping and (d) non-equilibrium steady state in the caseoabkk-barrier struc-
ture. We have explained these dynamical properties on this b phase space
features of the system. We have pointed out the role of noMKKnamics be-
hind them. Classically, all these dynamical features atiseto a subtle interplay
between the KAM and non-KAM type of dynamical features in $iggtem. Typi-
cally, these features exist only for small values of kickesgths for which the usual
kicked rotor has mostly regular phase space. At high valtikgk strengths, since
all the invariant curves are broken irrespective of whe#mgrdiscontinuous poten-
tial is present or not, the non-KAM nature of the system sddn thesis does not
lead to a qualitatively different dynamics. We have alsastd the quantum dy-
namics of this system in semiclassical regime by evolvingritrary initial wave
packet. We show that in the semiclassical regime, the clalsgynamical features
carry over to quantum dynamics quite well.

The dynamical features in our model such as the non-equilbsteady state
and classically induced energy growth suppression are wéruinterest in the
general context of transport and localization especialtyriteracting systems such
as the Bose-Einstein condensates. Recently there havesbgeral experimen-
tal results that point to classical features suppressirgggngrowth of conden-
sates [He06, CIO5]. Typically, in such experiments, cosdéss are released from

a confining potential and their expansion in a disorderedm@l is studied. When
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chemical potentiali < Vy, wherelj is the strength of disorder, condensates are
classically reflected from the fluctuations of the disordeyetential effectively lo-
calizing the condensates. In our model, particles are eeititeracting nor there is
any disordered potential. However, the non-KAM chaoticaiyits and KAM like
invariant curves provide the essential ingredient for tygpsession of diffusion.
Even as the particles are transported in the position spatesnergy absorption is
restricted by KAM like structures. Such studies form an img@ot background to
understand and clearly distinguish similar quantum phearike the Anderson
localization from the classically induced ones and alsoxf@age the connections
between interactions, localization and disorder.

In the case of periodic lattice of finite potential wells, webyzed the effect of
periodic boundary conditions and the width of the barrieggasating finite well
on the dynamical features of the system. We show that foriiefimally thin
barriers, classical phase space displays a mixed layepedapetween invariant
curves which act as dynamical barriers to transport. Inghisation, the system
approaches a steady state in which mean momentum and meay satirate to
a constant value soon after the kicking begins to act, peavall the initial states
lie in trapped region. We have shown that directed transiggobssible even in
absence of any net bias if both the spatial and temporal synaseare broken.
Thus, the system acts like a ratchet. We have also shown gidimed that the
current carried by bound mixed phase space, given by mearemam of all the
states evolving in it, is independent of initial states dede fact that this region is
not fully chaotic. We have pointed out that for-> 0 all the invariant curves break
down leading to mixed dynamics throughout the phase spadkid situation, the
system experiences unbounded, though not normal, difiusionomentum space
even for initial states lying much below the threshold motunen We show that
this results in fluctuations in current values and depergl@ncinitial state which
increase gradually as the barrier width increases.

We have also studied the quantum dynamics of kicked pairiticke periodic
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lattice of finite wells. To study the quantum version of thetsyn, we have done
the Floquet analysis. We have derived the matrix form of &&igpperator in the

unperturbed basis and computed its Floquet states. Theiéliatates are mostly
localized in energy space even for barrier wititlh> 0, for which classical system
shows mixed dynamics throughout the phase space. We havedized the phase
space features of Floquet states through Husimi distobstand showed that in
semiclassical regime, signatures of classical phase shex@emics can be seen for
guantum system too. We have shown that the quantum systemmacdislike a ratchet

and displays directed transport when both the spatial angdeal symmetries are

broken.

6.2 Future Directions

Several aspects of the result presented in this thesis cstuthed further. A perti-
nent question on the phenomenology of non-KAM chaos is toyidiscontinu-
ous potentials truly lead to abrupt transition from regtyao chaos. The numerical
results seem to suggest that if the paramétes infinitesimally away from integer
value, transition is not abrupt. This will add to undersiagdof KAM vis-a-vis
non-KAM systems. The dynamical features presented in Hasis have been ar-
gued on the basis of phase space structures. It is desi@labtain analytical
estimates for them to understand the phenomenon betterqdd@®um dynamics
of double barrier potential has only been partially expdorEor instance, we have
not studied how quantum tunelling might affect the non-klguum steady state or
the classically induced localization effects. What candid about the competition
between above the barrier escape of the particle and tumgedites ? In the lattice
of finite potential wells, what would be the dynamics of catsein the presence of
band structure ? One of the more general questions would &eptore the quan-
tum manifestations of non-KAM system. This has not beeresyatically explored

yet and there could be many new results in this context.
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In order to be of wider interest, this model should also besexpentally real-
izable. Even a detailed theoretical proposal for a suitakfeeriments and predic-
tions to be verified is worth attempting. This can potengialben up more areas
for research. One of the likely experimental test bed woald@dld atoms in opti-
cal lattices in some combination with either quantum wellseterostructures. This
might lead to considering interactions among the partiddsinteresting extension
of this work would be to incorporate the interparticle iateron. In light of recent
experiments on kicked BEC [He06, CI05, Fo05, Sc05a, Sa@8pretical analysis
of interacting kicked particles can be useful in explainihg features observed in
these experiments. Use of delta kicks is convenient forretaal analysis. Also,
delta kicks can be realized using pulsed optical latticesold atom experiments.
However, in most systems of practical interest like eleutr@ircuits, waveguides
etc., one deals with potential field which are continuousfioms of time. So, the
use of continuous driving in place of delta kicks might befulm the context of
experiments. Finally, the new frontier of quantum chaofiesgtudy of open sys-
tems. We believe that the model studied in this thesis carsbgilin the context

of quantum open systems.



APPENDIX A

Effect of Barrier-width on Refraction

Consider a particle that evolves on an invariant curve ostaedard mag’s(us),
approaches right barrier at, = R with p > p. during its motion aften'" —kick,
crosses it and exits on to another invariant curve of stahoepCs (). In this
appendix, we show that as the width of the barbies 0, C;5(us) — Co(16)-

After the particle crosses the interfacergt and if At denotes the time it will
take to cross the barrier region of widththen At — 0 if b — 0. Hence, the
probability that a particle will experience the next kick ghcrossing the barrier
will also tend to zero. Hence we can assume that the partags dot experience
a kick while crossing the barrier. In such a situation, thdiple will face only
two discontinuities betweenth and(n + 1)th kick. Thus,k = 2, B; = z,, and

20 x?

By = x,, +b. From our assumption< " | lieonCs(us),and| " | willlie
0 2
Pn Dn

0 __ 1
AN LT
=Ri| | = 7 (B1)
P V)P - 2%

110

on C6 (MG)
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Similarly,

1 _ —? 2
xw_'_b_'_(xn Ly )pn

= DPa . (B2

Pk =2V,

Substituting forz; andp; from Eq. B1 in Eq. B2, we get,

:7/?\,2

SV S
S 3

bO
b— Ln

T prall
22 20
Usingb — 0, we get,| " | — "

. This impliesCj(u;) — Cgs(ug) Or
P P
1e — is — 0. Hence, refraction (see text) becomes identity operatsdn-a 0.



APPENDIX B

KAM-like Behavior: Effect of (R, ¢)

We show that for certain special choices (@, ¢), reflection from the walls of
potentiall;, takes a state from invariant cur¢é. to its symmetric counterpa¢t_,

whereC, andC_ are related through reflection symmetry ab@uo). Let

{ Rr+¢=In

, l,m € integer (A1)
—Rm+¢=mn

i—1

X
Then,z, = lr and—z; = mm. Let ” ) ) lie on C,. Reflection from the right
Pr

boundary at:, will take it to

T ~ [ xit 2 — it
=R ] F | (A2)
Ph P -y

on the invariant curvé€’'. The spatial periodicity o7 in the standard map implies

(2lm — xﬁle) mod(27) _ —x;_l (A3)
-p, ! -p, !

112

that
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i—1

xz
isonC. Since " ) isonC_ andC_ is unique, we have’ = C_. Thus, the
—Phn
effect of reflection from the right boundary at is to take a state fror@', to C_ if
Eq. Al is satisfied. Similarly, the effect of reflection froeftlboundary at-z; is
to take a state from'_ to C',. Hence, a state undergoing repeated reflections will
remain confined to a pair of invariant curves, thus, exmbitiegular motion even

in presence of non-KAM potential. We call this KAM-like behar.
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