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Abstract

The Large Hadron Collider continues to search for signatures of new physics

and scrutinise the properties of the Higgs boson. It has accumulated enormous

amounts of highly complex high energy collision event data (and will collect

even more data in the upcoming high luminosity phase) to pinpoint different

parameters with extraordinary precision and constrain classes of new physics

models.

The simultaneous development of very powerful deep-learning algorithms presents

a genuine opportunity for their application, leveraging their unprecedented power

to enhance experimental sensitivities in pursuit of new physics. Unlike many in-

dustrial applications, which can be almost entirely data-driven, the application of

such deep-learning algorithms to fundamental physics provides unique challenges.

The aim is not solely to utilise their superior performance, for instance, in segre-

gating different signals from the background, but also to understand the features

they extract, resulting in such an increase. Moreover, rigorous first principle

motivation from the underlying physics provides useful priors whose knowledge

can be built into architectural design. This thesis investigates some of the ap-

plications of deep-learning algorithms to phenomenological searches at the Large

Hadron Collider, concentrating mainly on the challenging but abundant hadronic

final states.

The Higgs invisible branching ratio, which is pivotal in ruling out many dark-

matter-motivated BSM models, is still poorly constrained. The best available

limit comes from the vector boson fusion (VBF) channel, which is experimentally

challenging. We address the problem of finding the signal as a classification of

images as inputs to Convolutional Neural Networks (CNNs) by using the analogy

of the detectors to a camera. The energy’s spatial distribution essentially forms

a picture with the energy deposits as the pixels’ values. Using these so-called’

Tower Images,’ we trained CNNs to identify signal type events from background

ones. We improved the upper bounds on the invisible-branching ratio of the Higgs

by a factor of three compared to existing methods using the same amount of data.

The differing nature of the QCD radiation pattern is exploited in traditional

VBF searches and deep machine learning. Therefore, it is natural to ask: How

accurate are the parton-shower models which simulate the predominant radiation

patterns? This issue is, in fact, more pronounced in deep learning methods, which

look into minute differences in the radiation pattern. The global parton-shower

recoil scheme inherently assumes an Initial-Initial colour dipole structure. It

fails to correctly produce the wide-angle radiation patterns in a VBF topology

with an Initial-Final/Final-Initial dipole structure. Moreover, the next-to-leading

order corrections to the tree level VBF process are important in determining the

kinematics of the third hardest jet, which would be the dominant information

beyond the two-jet system. Therefore, we extend the analysis to explore the

robustness of the CNN in identifying VBF Higgs signals to these essential factors
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in the signal simulation process. We find that the CNN’s performance is more

dependent on the recoil scheme when comparing models trained and tested with

the same signal simulation. However, the higher perturbative accuracy of a next-

to-leading-order matrix element simulation has better stability when tested on

models trained on different signal simulations.

The findings of the previous investigation demonstrate that the training of

CNNs is dependent on the nature of the data simulation. Infrared and collinear

(IRC) safety guarantees the predictability of observables based on hadrons from

quantum chromodynamics. It ensures that long-distance non-perturbative hadronic

dynamics do not significantly modify observables. In the subsequent study, we

devise an IRC safe framework for Graph Neural Networks, a different class of

deep-learning algorithms that generalise the favourable properties of CNNs and

generalise it to possibly non-Euclidean domains while forgoing the strictly ordered

and sparse representation of the tower image. We also found that it performs as

well as state-of-the-art IRC unsafe algorithms in identifying boosted hadronic

decays of the top quark against QCD jets while being robust to soft and collinear

emissions.

With the null results of various well-motivated new physics models, it is impor-

tant to look at the background-only hypothesis in a model-independent approach.

The subsequent studies explore such model-independent anomaly detection tech-

niques.

Although various convolutional autoencoders have been proposed for model-

independent anomaly detection methods, it is challenging to design graph au-

toencoders for inductive graph-based purposes. To utilise the more favourable

properties of graph neural networks for unsupervised anomaly detection, we de-

vise a graph autoencoder with the ability to learn inductive graph representations

with the help of edge-reconstruction networks. We train the model to efficiently

reconstruct the constituent four vectors of large-radius QCD jets in such anomaly

detection methods. When trained to reconstruct QCD jets, such models have a

high reconstruction error on jets with higher n-prong multiplicities.

In the final study, we explore the power of quantum autoencoders based on

variational quantum circuits to detect anomalous signals in a model-independent

set-up. Available noisy-intermediate-scale-quantum devices have potential ap-

plications in quantum machine learning, where a variational quantum circuit is

trained by classical means but utilises the quantum aspects within the circuit

implementations. We find that compared to similar bit-based autoencoders with

the same inputs, quantum autoencoders have a very efficient training, saturat-

ing the test loss reconstruction with as low as ten training samples. Moreover,

they perform better than their classical counterparts in a few benchmark signal

scenarios.
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Chapter 1

Introduction

Modern scientific endeavour often involves a huge collaborative effort, bringing

experts from various fields together to push the frontier of knowledge and unlock

the secrets of the universe. One such enterprise is the Large Hadron Collider

(LHC), the world’s largest and most powerful particle accelerator, which collides

bunches of protons at multi-TeV energies. It studies the structure of matter at

the subnuclear length scales. At such length scales, nature is governed by quan-

tum field theoretical predictions based on the Standard Model [1–11] of particle

physics.

The Standard Model (SM) is a gauge theory that explains three of the four

fundamental interactions and can explain diverse phenomena over a wide length

scale. Despite its success, it can still account for only about five per cent [12,13] of

the total energy budget of the universe, as it does not predict the existence of dark

matter or dark energy. Moreover, there is irrefutable experimental evidence [14,

15] of the neutrinos’ non-zero masses, which are exactly massless in the SM. These

shortcomings suggest the existence of a larger theory that contains the SM in the

correct limit but can explain the experimental observations. After discovering

the Higgs boson [16, 17], the last missing piece of the SM, the LHC continues to

investigate its various properties and look for signatures of physics beyond the

Standard Model (BSM).

With the huge amount of data that the LHC produces, there is a tremen-

dous effort within the experimental and phenomenological communities alike to

search for novel ways of looking at the data to maximise the physics output and

improve our understanding of the fundamental particles. The analyses are even

more complicated because partons, the entities that have a colour charge and un-

dergo the interaction, are not directly observed due to the confinement effects of

Quantum Chromodynamics (QCD). Due to the non-abelian nature of the SU(3)

group describing the QCD Lagrangian, any coloured parton produced at very high

energies (∼ 102 GeV at LHC) emits even more partons that share the energy of

the initial parton. These partons hadronise to form colourless hadrons, which

are recorded at the various components of the detectors. Sophisticated recon-

struction techniques are then used to map the multitude of hadrons recorded to

1



2 Chapter 1. Introduction

a lower-dimensional final state consisting of small classes of reconstructed objects

like jets, leptons, and photons to achieve theoretical control from the parton-level

kinematics. Therefore, studying various processes at the LHC relies on exten-

sive simulation of the multitude of scales like generation of the hard parton level

matrix-element, parton showering, hadronisation, and detector response, which

are extensively validated with experimental data.

The particle physics community has long been leading proponents of machine-

learning techniques utilising powerful techniques like Boosted Decision Trees [18]

(BDTs) and (shallow) Artificial Neural Networks [19,20] (ANNs) to analyse multi

dimensional data, leveraging their power to enhance experimental sensitivities.

However, most of these analyses used a relatively small number of highly specific

variables based on the reconstructed objects and guided by our physics knowl-

edge. With the advent of modern deep-learning algorithms propelled by the wide

availability of high-end GPU acceleration capable of processing large datasets,

the game has changed completely. Deep-learning algorithms that take very high-

dimensional raw information registered at the detectors have been shown to per-

form exceptionally well (or at least as good as) compared to those based on

human-engineered variables. Consequently, there is a considerable increase in

using such algorithms at various stages of the analysis.

In this thesis, we will study some phenomenological aspects of applying deep-

learning algorithms at the Large Hadron Collider. We concentrate on three facets:

the relative power of deep-learning algorithms over physics-specific variables,

their relative robustness to elements of theoretical relevance like perturbative

accuracy and robustness to soft and collinear emissions, and exploring model-

independent methods of learning background-only hypotheses with powerful un-

supervised learning methods.

Before we get into the details of the different studies involved, we briefly de-

scribe the phenomenological aspects of signal searches in the energy frontier at

the LHC in this chapter. In Section 1.1, we give a brief overview of the Stan-

dard Model and motivate beyond Standard Model physics. We briefly introduce

Quantum Chromodynamics in Section 1.2 and explain its scope at the LHC for

accurate prediction and simulation of events. The various components of a de-

tector at the LHC and an outline of event reconstruction are given in Section 1.3.

Finally, the summary of the thesis and the subsequent chapters is presented in

Section 1.4.

1.1 The Standard Model and beyond

The Standard Model describes three (strong, weak, and electromagnetic interac-

tions) of the four known fundamental forces of nature in a common framework

based on the gauge group SU(3)C ⊗SU(2)L⊗U(1)Y . The massive gauge bosons

W± and Z are given mass via spontaneous symmetry breaking of a scalar Higgs
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doublet field. Due to the chiral nature of the SU(2)L group, the fermions are taken

to be massless, and Yukawa couplings with the Higgs field generate their masses.

The fermions are divided into quarks and leptons based on their charge under the

colour group SU(3)C–quarks are charged under the colour group, while leptons

do not carry such a charge. While the SU(3)C sector, which describes the strong

interactions, has a non-perturbative nature at lower energies, the SU(2)L⊗U(1)Y ,

manifests as the electromagnetic interaction and weak interaction at lower ener-

gies.

The Standard Model has been tested in multiple experiments in different en-

ergies and, to date, has stood up to the experimental scrutiny of its known con-

stituents. The manifestation of the SM’s interaction as weak interactions and the

long-range electromagnetic in the low energy regime offers significant opportuni-

ties to test the prediction of various observables. Many properties of leptons like

the anomalous magnetic moment of the electron and the muon and the muon de-

cay lifetime have been measured precisely and show excellent agreement with the

predictions of SM originating from higher-order loop corrections. Although the

recently updated anomalous muon magnetic moment [21], has a 4.2σ deviation

from the SM’s expected value, generating a high expectation and euphoria among

the HEP community, this deviation has been found after a precision of more than

six significant digits, up to which the SM’s prediction agrees completely with the

experimentally measured value. Other than the precise prediction of various ob-

servables, the Standard Model also foreshadowed the existence and properties of

undiscovered particles. One such instance is the prediction of the existence of a

third family of quarks [22] for the SM to be anomaly free [23,24] after the discovery

of the tau lepton [25]. Another instance is the prediction of the top quark’s mass

range [26] before its discovery from the measurements of the W± and Z boson’s

mass, the forward-backward asymmetry of the Z boson’s decay, and low energy

observables like the Fermi constant GF , and the fine structure constant α. This

predictability arises since the calculation of parameters in the Lagrangian like the

Weinberg-angle sin θw through these various observables, although the same at

tree-level, have different radiative contributions to the underlying process.

Even with this long list of success stories, the consensus among the particle

physics community is that the SM is a low energy effective theory. Its shortcom-

ings show up on different fronts, such as the aesthetics of the theory, the inability

to accommodate other experimental observations etc. One such inability is the

failure to account for observed evidence of dark matter. If dark matter is some

fundamental particle that does not interact electromagnetically (and hence dark)

but has mass and interacts gravitationally. The Standard Model does not accom-

modate any such candidate. Although these observations are of astrophysical or

cosmological origins, there are many well-motivated extensions of the Standard

Model, which could account for the observed abundance of dark matter. The

recently discovered Higgs boson could have a sizable amount of interaction with

such dark matter particles. These models, known as Higgs-portal [27–31] dark
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matter scenarios, could show up at the LHC as a large invisible-branching ratio

of the Higgs boson. In chapter 3, we will explore the power of deep-learning

methods in constraining the invisible branching ratio of the Higgs, finding them

to outperform multivariate and univariate methods by a significant margin.

The matter-antimatter asymmetry of the universe is another empirical evi-

dence that the SM can not explain. In the SM, there is a small amount of CP

violation in the quark sector via the CKM matrix, which cannot account for the

observed asymmetry. One of the SM’s straightforward extensions is expanding

the scalar sector–there is no underlying reason why there should only be a sin-

gle Higgs doublet. A minimal extension is the two-Higgs Doublet Model [32, 33]

(2HDM), which could allow for spontaneous CP violation, increasing the amount

of CP violation found in the SM. A special case with a natural dark matter

candidate is the inert doublet model [34]. However, the minimal model cannot

simultaneously explain [35] the observed dark matter abundance and the matter-

antimatter asymmetry.

Any new physics model must be able to explain the SM’s experimental results,

which have been tested at various low-energy and high energy collisions. There-

fore, there is already a significant amount of experimental results to constrain

various BSM models. Some observables which are highly sensitive to the nature

of BSM interactions are the pole masses of the weak bosons. Many BSM mod-

els can be constrained by studying the model’s contribution to the gauge boson

propagators, encapsulated in terms of the S, T , and U parameters [36, 37]. An-

other important quantity is the ρ-parameter (related to the T -parameter) which

is a consequence of the custodial SU(2) global symmetry [38] of the Higgs sector

under which the three gauge bosons of the SU(2)L group transform as a triplet.

It is defined as

ρ =
m2
W

m2
Z cos2 θw

, (1.1)

where mW and mZ are the pole masses of the W and Z boson, respectively,

and θw is the Weinberg angle. In the SM, ρ = 1 at the tree level, which gets

quantum corrections mainly from the top quark due to its high mass. Note

that the equality of ρ = 1 is not a consequence of the specific nature of the

Higgs field but rather a consequence of the existence of three Goldstone bosons

which give mass to the massive gauge bosons. The recent announcement by

the CDF collaboration of the precise mass of the W -boson [39], which shows a

7σ deviation from the SM expectations, has considerable implications for these

precision observables [40–42].

Many of the proposed models in the literature can show various signatures

at the Large Hadron Collider. On the other hand, the absence of such signa-

tures will put tight constraints on the allowed parameter space of these models.

Therefore, the LHC, on top of verifying the SM’s scalar sector, will also constrain

the allowed parameters for the different theoretically motivated extensions of the

SM, or hopefully, discover new particles. Doing so requires one to tackle the



1.2. A brief overview of Quantum Chromodynamics 5

huge background that arises from the strong interactions, which present unique

situations and require ingenuity to extract significant physics from the observed

collision events. The rest of the chapter is dedicated to explaining Quantum Chro-

modynamics which describes the strong interactions and the essential elements

of the Large Hadron Collider’s detectors and event reconstruction procedure.

1.2 A brief overview of Quantum Chromody-

namics

The Large Hadron Collider collides protons moving at centre-of-mass energies of

several TeVs. At such high energies, the degrees of freedom relevant for describing

the collisions are in terms of the partons: quarks and gluons that make up the

proton and undergo strong interaction. Therefore, we give a brief overview of

Quantum Chromodynamics which describes the interaction of the quarks and

gluons.

1.2.1 The QCD Lagrangian

Quantum Chromodynamics is a gauge theory based on the group SU(3)C , and

the Lagrangian is given as

LQCD =
∑
f

q̄af

(
i /D

ab −mab
f

)
qbf −

1

4
F I
µν F

µν
I . (1.2)

The indices a and b are the colour indices of the fundamental representation of

SU(3)C , the sum over the index f denotes the sum over all active flavours at the

energy scale, qaf denoting the quark field of flavour f and colour a, /D
ab

= γµDab
µ

where we have suppressed the spinor indices. The covariant derivative is given in

terms of the gluon fields AIµ as

Dab
µ = δab∂µ + i gs t

I
ab A

I
µ , (1.3)

where the summation over the gluon field index I which runs from one to eight

in the adjoint representation of the SU(3)C group, is assumed implicitly. The

generators tI satisfy the commutation relation

[tI , tJ ] = i f IJK tK , (1.4)

with f IJK the structure constants of the SU(3) group. In the fundamental rep-

resentation, they can be written in terms of the Gell-Mann matrices. The field

strength tensor F I
µν is given as

F I
µν = ∂µ A

I
ν − ∂ν AIµ − gs f IJK AJµ A

K
ν . (1.5)
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Although the strong interactions are non-perturbative in the low energy scale,

the phenomena of asymptotic freedom [43,44] allow the application of perturba-

tive quantum field theory techniques in the high-energy regime.* The evolution

of the coupling constant with the scale is described by the renormalisation group

equation

β(αS) = µR
dαS(µR)

dµR
, (1.6)

where αS(µR) = g2
s(µR)/4π and µR is the renormalisation scale within the MS

subtraction scheme and is of the same order as the scale of the interaction, and

β(αs) is the QCD β-function which has a perturbative expansion. At 1-loop, the

solution is [45]

αS(µR) =
6π

33− 2 nf

1

log µR
ΛQCD

, (1.7)

nf is the number of quark flavours, and ΛQCD is the Landau pole of QCD. Note

that the equation is valid for µR > ΛQCD, as the Landau pole denotes the en-

ergy scale below which the theory becomes non-perturbative.� Since we have

six quark flavours in nature, αS(µR) decreases with increasing energy, and hence

calculations with perturbative techniques can be relied upon for high enough

energies. The β-function is known for up to five loops [46] in literature, and

the Landau pole is of the order of the inverse of the classical proton radius

1/ΛQCD ∼ 10−15 m ∼ 1/200 MeV.

1.2.2 Hard scattering cross sections

In a proton-proton collision at the LHC, the cross-section of a final state F con-

taining a fixed number of partonic species is given by,

σ(PP→ F) =

∫
dx1 dx2

∑
i,j

fi(x1, µF ) fj(x2, µF ) σ̂(ij → F|µF , µR) , (1.8)

where i and j are the flavour of the partons, fi and fj are the parton distri-

bution functions (PDFs) of the parton species i and j, whose momentum are

given in terms of the proton momentum fractions x1 and x2 as pi = xi P1 and

pj = x2 P2, with P1 and P2 being the momenta of the protons undergoing the

hard interaction. The sum is over all possible combinations of parton species,

which can give the final state F. The PDFs are universal, process independent,

and encode the non-perturbative physics inside the proton. However, their evo-

lution with the energy scale can be described with perturbative methods and is

encapsulated in the DGLAP equations [47–50], allowing for their extensive vali-

*In fact, the discovery of asymptotic freedom in non-abelian gauge theories instigated the
adoption and verification of quantum chromodynamics [10, 11] as the fundamental theory de-
scribing strong interactions.

�It does not mean that QCD is not valid at and below the Landau pole, but simply that
perturbative techniques fail to capture the phenomena accurately.
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dation from experiments at different energy scales. The parton level cross-section

σ̂ is process-specific and depends on the specific nature of the interaction of the

final state partons to the proton’s constituents, and has well-defined perturbative

expansions in αS. There is an implicit assumption of collinear factorisation in

eq 1.8, emissions with transverse momenta below µF are encoded in the PDFs

while those above are evaluated perturbatively in σ̂. Although generally assumed

to be true for inclusive observables, factorisation has been proved for a very small

subset of processes [51].

1.2.3 Soft and collinear divergences

The presence of disparate energy scales in any hard scattering process at the

LHC prohibits the reliability of perturbative calculations for any finite order.

This unreliability is closely connected to the zero-mass of the gluons, as any

coloured parton can emit an infinite number of soft or collinear gluons without

taking any noticeable momentum fraction, which manifests as divergences in the

differential cross-section in these regions of phase space. However, since any

detector has finite energy and angular resolution, any additional emissions beyond

the resolving power will be distinguishable from those without such an emission.

Therefore, we must include the sum of all these degenerate states when calculating

physically observable quantities. At the same time, one would like the predictions

to be not dependent on the particular resolution of the detector installations.

The requirement of infra-red and collinear (IRC) safety on observables provides

a handle to control these unphysical divergences by making them calculable with

perturbative methods enabling their prediction from theory. It constrains the

observable’s nature when a particle emits additional particles in the soft and

collinear regions. If a particle q from a final state of n partons undergoes a

splitting q → r + s, with pq = pr + ps, an IRC safe observable On satisfies

On+1(pa, ..., pb, pr, ps, pc, ...)→ On(pa, ..., pb, pq, pc, ...) as zr → 0 ,

On+1(pa, ..., pb, pr, ps, pc, ...)→ On(pa, ..., pb, pq, pc, ...) as ∆rs → 0 ,
(1.9)

where zr is the relative hardness of pr, and ∆rs is the angle between ~pr and ~ps.

For hadron colliders, the relative hardness is defined as zr = prT/(
∑n

i=1 p
i
T ), with

piT denoting the transverse (perpendicular plane to the collision axis) momentum

of particle i. The divergences of these real emissions cancel exactly with virtual

correction for inclusive observables, under the KLN theorem [52, 53], provided

they are infra-red and collinear safe (IRC safe). However, most observables of

interest in hadronic environments are of the exclusive type, and there are poten-

tially large logarithmic terms arising from the unbalanced cancellation of the real

and virtual corrections at any finite order in perturbation theory. Consequently,

an all-order resummation is needed for a useful prediction of exclusive observ-

ables. These calculations are highly non-trivial, and only a restricted set of such
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observables (for instance, see [54–57]) have been calculated for hadronic collisions.

Moreover, there are inherently IRC unsafe but useful observables like track-based

observables [58, 59] or the ratio of angularities [60]. Therefore, a major portion

of the phenomenological program relies on numerical procedures to approximate

the leading behaviours of the evolution of partons from the hard interaction scale

down to a scale closer to ΛQCD.

1.2.4 Simulating QCD at different scales

For the extensive phenomenological program at the LHC, decades of research have

resulted in comprehensive open-source simulation programs, extensively validated

on experimental data. Here, we present a brief overview of the available packages

used extensively in the studies conducted in this thesis. The procedure of pre-

dicting hadronic final states originating from initial protons requires a detailed

examination of QCD at different length scales. These may be divided into:

� the initial process-dependent hard-scattering partonic cross-section

� the evolution of the hard partons via emission of new partons sharing the

total energy, encapsulated in parton shower generators and

� the hadronisation of the showered partons to form colourless hadrons. This

also includes simulating the interaction between spectator partons between

the two colliding protons, commonly referred to as multi-parton interactions

(MPI), and is of a non-perturbative origin.

While the first two situations can be solved using perturbative methods based

on an underlying Lagrangian, the simulation of the hadronisation effects and the

multi-parton interactions is based on parametrised models tuned with data. The

contribution of multi-parton interactions to the underlying event, which addition-

ally consists of beam-beam interactions, presents irreducible smearing of various

perturbative calculations and is a high source of systematic uncertainties when

studying hadronic final state objects.

We will mainly rely on MadGraph5 aMC@NLO [61] for the generation of parton

level differential cross-section, with POWHEG-BOX [62–65] used to generate next-to-

leading order events for the fourth chapter. The former is a meta-code capable of

generating HELAS subroutines [66] to evaluate tree-level matrix elements of any

2 → n processes. It can take any model file implemented within the Universal

FeynRules Output (UFO) [67] format. The model output is obtained using the

FeynRules [68,69] Mathematica package, which outputs the UFO model for any

generic theory based on their Lagrangian. For the parton showering of the hard

partons down to a scale near ΛQCD, and the hadronisation of the showered partons

to form colourless hadrons and the multi-parton interactions, we will use Pythia8

[70]. These tools facilitate the widespread phenomenology of various BSM models

at the LHC.
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1.3 The Large Hadron Collider

The idea of a hadron collider at CERN was conceived during project discussions

for the Large Electron-Positron Collider (LEP), where it was proposed that the

tunnel for the LEP be made large to accommodate a future superconducting

proton collider, whose purpose would be to look for the Higgs boson and other

heavier particles predicted by BSM theories. Higher energies are achievable for

protons since the maximum feasible centre-of-mass (CM) energy for a circular

collider is determined by the power lost via synchrotron radiation–the radiation

emitted due to the circular acceleration of charged particles. In the relativistic

regime, electromagnetic power radiated by a charged particle of charge e, moving

in a circular orbit of radius R, is given by Schwinger’s formula [71],

P ∝ 1

R2

[
E

m

]4

,

where E andm represent the energy and the rest mass of the particle, respectively.

For the same radius, a heavier particle emits much less energy–the proton, which

weighs 103 times more than the electron, will radiate approximately 10−12 times

less power. Hence, protons can generally be accelerated to higher CM energies in

circular colliders. This higher energy coupled with the relatively large strong cou-

pling constant makes hadronic colliders highly suitable for discovering previously

undiscovered particles. However, the hadronic environment, unlike lepton collid-

ers, reduces the maximum achievable precision. In summary, hadronic colliders

are discovery machines, while lepton colliders are precision machines.

The Large Hadron Collider is a 27 km long synchrotron capable of accelerating

protons to multi-TeV energies. It consists of two circular tunnels where protons

and heavy ions can be accelerated in opposite directions to very high energies.

Six experiments are installed at the LHC, specialising in exotic physics scenarios,

with more additions planned for the future. At the energy frontier, the two

detectors of interest are:

� ATLAS: A Toroidal LHC ApparatuS, a general-purpose detector designed to

study Higgs boson and physics beyond the standard model.

� CMS: Compact Muon Solenoid, also a general-purpose detector with the same

goals as ATLAS

The two detectors are designed with important technical dissimilarities, reflected

in different systematics to facilitate the independent verification of physics discov-

ered at the LHC. Describing these differences is beyond the scope of phenomeno-

logical studies. However, we will depict the important parts of the detectors

and their uses in this section and briefly describe the event reconstruction and

coordinates systems used to study hard-scattering events.
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Figure 1.1: The signature of different particles in the components of a hermetic
detector are shown in the figure.

1.3.1 Parts of a Detector

The general-purpose detectors consist of several parts designed to measure some

properties of particles produced in a collision. They are hermetic detectors ca-

pable of measuring all particles (except neutrinos) in the full range of the solid

angle from the collision point. It has many subcomponents arranged in a stan-

dard order to facilitate this coverage. These parts, in order of proximity to the

collision point, are:

1. Tracker: The tracker lies in the innermost chambers of the detectors. Its

purpose is to distinguish charged particles like the electron, which interacts

with the medium and leaves noticeable signatures from neutral particles

like photons. A solenoidal magnetic field is applied to the tracking cham-

ber, which, via the Lorentz force generated, gives the ability to measure

the momentum and distinguish positive and negatively charged particles.

A precise determination of the momenta of the highly-energetic particles

produced at the LHC requires very high magnetic fields to facilitate notice-

able changes in their trajectory. Consequently, the CMS utilises a magnetic

field of around 4 Tesla, while it is around 2 Tesla for the ATLAS detector.

2. Electromagnetic Calorimeter (ECal): The electromagnetic calorimeter

encloses the tracking chamber, which measures the energy of particles that

loses their energy primarily via electromagnetic interactions. Such particles

produce electromagnetic showerings in the calorimeters, generally of a lower

depth that finishes before reaching the hadronic calorimeter.

3. Hadronic Calorimeter (HCal): The hadronic calorimeters measure the

energy of all strongly interacting particles that pass through the electro-

magnetic calorimeter. Such particles interact primarily with the nucleus

and produce a nuclear showering profile. These showering shapes are much
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LHC Tunnel

Figure 1.2: The figure shows the coordinate system used for measuring the mo-
menta of particles registered at the general purpose detectors at LHC.

longer and have more shape fluctuations, resulting in larger hadronic calorime-

ters to allow for complete showerings and a lower resolution than the elec-

tromagnetic calorimeters.

4. Muon chambers: Muons can pass through all the previous layers unaf-

fected as it is much heavier than the electron and interacts weakly with

nuclear matter. The hadronic calorimeters are enclosed by muon chambers

which measure them by a tracking system. Only muons can register in the

muon chambers out of all the particles currently known in the Standard

Model.

A depiction of the signatures of different particles at the general-purpose de-

tectors is shown in figure 1.1. All charged particles show tracks in the tracker

through which we can measure their momentum precisely. Light particles like

electrons, positrons, and photons deposit most of their energy in the electromag-

netic calorimeter and seldom reach the hadronic calorimeter. Neutral pions π0,

which predominantly decays to two photons, also deposit their energy at the elec-

tromagnetic calorimeter. Although some light mesons like charged-Kaons, and

pions will lose some energy via electromagnetic showering in the electromagnetic

calorimeter, most of their energy is deposited at the hadronic calorimeters.

1.3.2 Hadron Collider Coordinates

The inability to determine the longitudinal boosts of the collision frame resulting

from our inability to ascertain the partonic centre-of-mass
√
ŝ motivates the use

of longitudinal boost invariant quantities in describing the kinematics of particles

at hadron colliders. A schematic representation of the coordinate system used to
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describe the observed particles at the detectors is shown in figure 1.2. The three

quantities used to describe the momentum vector ~p : the transverse momentum

pT , the azimuthal angle φ, and the pseudorapidity η are shown within grey boxes.

Out of these, the first two are invariant under longitudinal boosts. However, the

pseudorapidity defined in terms of the polar angle θ between the direction of ~p

and the z-axis as

η = − ln tan
θ

2
, (1.10)

depends on the pz component of the momentum. For massless particles, it is

equal to the rapidity y defined as

y = −1

2
ln
E − pz
E + pz

. (1.11)

Since, for massless particles |~p| = E, we cos θ = pZ/E, which gives,

E − pz
E + pz

=
1− cos θ

1 + cos θ
= tan

θ

2
.

The difference between rapidities is longitudinal boost invariant and useful for

analysis of final state particles at hadron colliders. Except for jets, the very high

energy of the LHC makes most reconstructed objects like electrons and muons;

and raw detected particles practically massless. Hence, pseudorapidity makes it

practical to compare theoretical calculations (based primarily on rapidity) and

experimental measurements. Another important quantity is the angular separa-

tion of two objects in the η − φ plane,

∆R =
√

(∆η)2 + (∆φ)2 (1.12)

1.3.3 Event Reconstruction

As we have seen in Section 1.2, there is a multitude of particles produced in

any hard-scattering event. The objects of theoretical interest are the partons

and their kinematics. Complex event reconstruction techniques facilitate such

a map from the very high dimensional final state measured at the detectors to

a lower-dimensional final state. Here, we present the essential aspects of event

reconstruction. Although experimental analyses require complex simulation of

the interaction of the hadronised particles with matter, we will only present the

qualitative aspects of the reconstruction taken care of in parametrised detector

simulation software like Delphes3 [72].

Any hard parton produced that does not interact strongly but electromagnet-

ically will generally recoil against other partonic species and be highly segregated

and radiate much lesser than a coloured parton. Therefore, various isolation cri-

teria are imposed on the neighbourhood of detected particles to identify electrons,

photons and muons. A straightforward definition used in Delphes3 for a particle
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P is,

I(P ) =

∑
i∈S pT (i)

pT (P )
, (1.13)

where the set S is defined as all the particles (measured in some detector subcom-

ponent) within a radius R : ∆RiP < R, with a threshold pT (i) > pminT on their

transverse momentum. A lower value of I denotes better isolation and an upper

bound I0 is set on I to identify the particle P . Therefore, the three parameters

of interest in determining the isolation criteria of a type of particle are R, pminT

and I0. The various reconstructed objects which are obtained after processing

the measurements of the different detector components are summarised in the

following:

� Electrons: Electrons and positrons are charged particles which will leave

tracks and deposit all of their energies in the electromagnetic calorimeter.

Their reconstruction, therefore, involves determining their isolation in the

tracker as well as the electromagnetic calorimeter, with no deposits in the

hadronic calorimeters.

� Photons: Photons will leave no tracks but deposit all their energy in the

electromagnetic calorimeter. Therefore, an isolation criterion of deposits on

the electromagnetic calorimeter with no signatures in any other component

reconstructs them efficiently.

� Muons: Muons and anti-muons will leave tracks in the trackers, not deposit

any discernible energy in the calorimeters, and reach the muon chambers

mostly unaffected. Therefore, the presence of isolated tracks in the inner

tracker and the muon chambers with suppressed activity in the calorimeters

will identify muons.

� Jets: Strongly interacting energetic particles manifest themselves as colli-

mated sprays of various charged and neutral particles, which show signa-

tures in most detector components. They are reconstructed into composite

objects called jets consisting of collimated multiparticle final states. Their

definition, which is discussed in the next chapter, has undergone extensive

investigation to facilitate a comparison between theoretical predictions and

experimental measurements. The third-generation particles in the SM, like

tau leptons and bottom quarks, decay to the lower mass particles with a

finite decay length (although the taus decay directly to mesons or lighter

leptons, bottom quarks first hadronise to form B-hadrons which then decay

to lighter hadrons). Such heavier states can be identified by observing the

displacement of the decay particles from the initial collision point.

� Long-lived Particles: In the Standard Model, only neutrinos or muons

can reach the muon chambers. However, in many BSM models, quasi-stable

neutral particles can decay to SM particles with a long enough lifetime
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to reach the muon chambers. Such long lived particles’ decay to charged

particles will manifest as tracks originating within the muon chambers and,

therefore, can be used as an identifying signature.

� Missing transverse energy: Those particles that do not undergo strong

interaction and are electrically neutral like neutrinos will not show any

signatures anywhere in the detector. Their presence in the final state can

be inferred from a momentum mismatch in the vector sum of all detected

particles. Since the partonic longitudinal boost along the collision axis

is indeterminable, we can only measure the momentum mismatch in the

transverse plane. Thus, the missing transverse energy (MET) is a two-

vector defined in the transverse plane as,

~/ET = −
∑

i∈visible

~PT , (1.14)

where the sum over particles is generally taken over all the detected particles

in the calorimeters.

Although we have described the nominal aspects of event reconstruction, many

aspects of experimental importance have been ignored. In the following para-

graphs, we briefly describe the qualitative aspects of some crucial experimental

factors.

The first important aspect is that our discussions focused on reconstructing

events after being recorded into storage– the so-called “offline” event reconstruc-

tion. The LHC collides bunches of protons which collide almost every twenty-five

nanoseconds. Most of these collisions are uninteresting and produce events within

known sectors of the Standard Model. The result of all these collisions cannot

be stored due to the hardware’s limited processing and storage capabilities, and

dedicated online tiered trigger systems select interesting events recorded for later

analysis. The intricate design of such online triggers [73–76] achieves unbiased

event selection for interesting processes.

Another important aspect is the presence of pileup–the collision of more than a

pair of protons from opposite beams. These secondary collisions are unavoidable,

and multiple collisions happen at each bunch crossing. The collision point of two

protons shows in the detector as vertices where clusters of tracks originate. Out

of these, the one with the highest constituent energy is the primary vertex. Most

of the charged particles arising from secondary collisions can be determined from

the track information if the collision point is resolvable from the primary vertex.

The subtraction of pileup deposits from neutral particles is vital in assessing

the accuracy of theoretical predictions of jets from QCD. Hence, it is of major

phenomenological and experimental interest [77–82].
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1.4 Outline of thesis

This thesis investigates the use of deep-learning algorithms for identifying signa-

tures of new physics at the LHC, concentrating on three aspects of phenomeno-

logical relevance:

� The first aspect explores the power of deep learning to signature specific

searches of new physics. We show that deep-learning algorithms like Con-

volutional Neural Networks can outperform traditional univariate or multi-

variate analyses of high-level variables in identifying processes with unique

radiation patterns like vector-boson fusion.

� In taking the raw detector level inputs, the precise determination of an

algorithm’s working based on first principle analysis is often lost, leading

to such algorithms showing a higher systematic uncertainty. The second

aspect studies the dependence of deep-learning algorithms on the specifics

of the simulation, like the parton-recoil scheme and perturbative accuracy

of the hard simulations. We also devise procedures to make the output of

deep-learning algorithms robust to soft and collinear emissions.

� Due to the absence of well-motivated new-physics scenarios at the LHC,

model-independent search techniques are increasingly important so that we

do not miss out on possible new physics. Unsupervised deep-learning meth-

ods provide powerful ways of learning background-only distributions, which

could mine the presence of new physics signals in a very large phase space

volume. The third aspect explores anomaly detection techniques based on

Graph Neural Networks and Variation Quantum Circuits.

Before going into the details of the study conducted, we introduce the basic

concepts related to the theoretical basis of machine learning with artificial neural

networks in the second chapter. The different types of neural networks and their

current use in LHC phenomenology are also explained in this chapter.

In the third chapter, we look at the ability of Convolutional Neural Networks

(CNNs), taking the full calorimeter information as an image (tower-image) to

identify invisible decays of the Higgs boson produced via the Vector Boson Fusion

(VBF) process, which is the most sensitive channel for constraining the invisible

branching ratio of the Higgs boson, important in various Higgs-portal dark matter

models. CNNs using the tower image outperform ANNs based on high-level

variables or the shape-analysis of variables like the invariant mass of the dijet

system or their pseudorapidity separation.

Although CNNs show the best performance in identifying the invisible Higgs

signal, using the raw calorimeter information to train the network presents the

possibility of the CNN picking up subtle aspects of the simulation. One such

aspect is the inability of a global-recoil scheme in the parton shower algorithm
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to describe the wide-angle radiation in VBF events correctly. In the fourth chap-

ter, we scrutinise the effect of using the more physically accurate dipole-recoil

scheme for the VBF signal on the network’s performance, finding that it is more

important than the perturbative accuracy of the parton-level matrix-element sim-

ulation. We find that even though the training accuracy is highly affected by the

type of simulation used, the validation accuracy of the most physically accurate

simulation: the ones with a next-to-leading perturbative parton-shower accuracy

coupled with a dipole-recoil parton shower, has a validation accuracy relatively

unaffected by the dataset used to train a CNN.

The results of the fourth chapter show that the learning of deep neural net-

works is heavily dependent on the input data. In the fifth chapter, we devise

an infra-red and collinear safe graph neural network algorithm to improve the

response of deep-neural networks to imperfect modelling of hadronisation dynam-

ics. Graph Neural Networks are a different deep-learning algorithm that takes

the favourable properties of CNNs and generalises them to higher dimensional

non-Euclidean spaces and forgoes the sparse representation found in calorimeter

images. We apply such an IRC safe network to the problem of jet identification

on publicly available datasets and find that their performance is comparable to

current state-of-the-art but IRC unsafe algorithms.

All studies in the previous chapters concentrated on signal specific discrimina-

tion, and the model was specifically trained to maximise the signal discrimination.

Such analyses fall into the wider purview of model-specific searches and learn the

decision boundary between the signal and background distributions. With all

current model-specific searches for physics beyond the Standard Model yielding

negative results, it is paramount that we explore all possible avenues, increasing

the importance of model-unspecific investigations. Modern deep-learning algo-

rithms provide powerful tools to learn background only distribution in a large

phase space volume. In the sixth chapter, we devise a graph autoencoder based

on the message-passing paradigm, capable of inductively learning the substruc-

ture of QCD jets. As a benchmark on possible signals, we find that the loss

function is a capable discriminant in identifying various n-prong jets.

Quantum computing promises to revolutionise various aspects of simulation

and data analysis. One such area of interest is Quantum Machine Learning, using

parametrised variational quantum circuits with tunable unitaries for machine

learning purposes. In the seventh chapter, we explore the power of quantum

autoencoders for anomaly detection at the LHC. Compared to similarly expressive

bit-based autoencoders, they converge much faster with minuscule datasets and

outperform them on benchmark signal scenarios.

In the eighth chapter, we summarise the findings of the thesis and elucidate

future lines of investigation into the problems tackled in the thesis.



Chapter 2

Methodology

In the previous chapter, we have described the underlying importance of theo-

retical QCD predictions and precise experimental measurements to facilitate the

discovery of new physics at the LHC. This chapter discusses the theoretical basis

of analysing hadronic final states at colliders–jets, with current definitions satis-

fying the principle of IRC safety, which facilitates an accurate prediction of jet

cross-sections order by order in perturbation theory. The very high energy of the

LHC also motivates looking within such jets. Most heavy particles in the SM like

the Higgs, top-quark, or the vector bosons and any appropriately coupled BSM

particles predominantly decay to quarks due to their higher (colour) multiplic-

ity. Although at low boosts, these decays are indecipherable due to the massive

backgrounds originating from QCD jets, due to the high energy of the LHC, one

can find a statistically significant amount of events at the high-momentum tail

where the markedly different energy patterns from QCD jets can discriminate and

enhance searches. To exploit such differences, made possible by the better granu-

larity of the installed detectors, a vibrant field of jet substructure has emerged in

the past decade, which also planted the entry of modern deep-learning techniques

in the form of classifying jet images.

In the Section 2.1, we describe the definition of jets and provide elements of

modern jet substructure techniques and bridge the connection to visual recog-

nition techniques. Section 2.2 describes the rigours of artificial neural networks

in the supervised and unsupervised settings with autoencoders as a specific ex-

ample, along with a basic introduction to the optimisation procedure. Having

laid down the necessary groundwork, we examine the details of the deep-learning

algorithms employed in the thesis in Section 2.3 and summarise in Section 2.4.

2.1 Jets

Jets are ubiquitous final states at any hadronic collider. Therefore, the analysis of

any probable physics at the LHC requires detailed knowledge of their kinematics

and cross-sections. Due to their importance both in theory and experiments,

17
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jet definitions have undergone a lot of scrutiny [83–91] and discussions [92] to

facilitate their theoretical calculability and ease of experimental calibration and

measurements. Jet definitions can be broadly divided into cone algorithms and

sequential recombination algorithms. The former is motivated by a top-down

approach considering that low energy effects do not significantly alter the hard

energy flow of the event. In contrast, the latter follows a bottom-up approach

and sequentially recombines measured particles via a metric generally following

the structure of QCD splittings.

A prime example of a cone algorithm is the Sterman-Weinberg jet definitions

for e+e− collisions, where an event is classified as a two jet event if one could find

an energy fraction 1−ε of the entire event in two back-to-back cones of solid half-

angle δ. Although the Sterman-Weinberg jet is infra-red and collinear safe, its

generalisation to hadronic colliders is challenging primarily due to the presence of

final state particles not participating in the hard interaction, thereby making the

concept of total energy nonsensical. This issue results in the arbitrariness of cone

placements and overlaps for a higher multiplicity of jets. Iterative procedures

with initial seeded placement of cones have been widely used in hadron colliders,

which were found to be IRC unsafe in retrospect.

Cone algorithms are particularly advantageous for experimental calibrations

due to the geometric nature of their definitions. Seedless cone algorithms which

are IRC safe have been formulated [93], whose implementation takes up a lot of

memory and computational power. With the advent of the anti-kt algorithm,

a sequential recombination algorithm giving ideal cone-like jets and its fast im-

plementation in the FastJet [94] package, most analyses have shifted to using

the anti-kt algorithm at the LHC. Therefore, we describe the modern variant of

sequential recombination algorithms, namely the generalised kt family of algo-

rithms. Other than the anti-kt algorithm being a member, its different variants

like the kt and the Cambridge-Aachen (CA) algorithms, which have well-defined

connections to the splitting structure of QCD are important in the study of jet-

substructure, which we will also touch upon briefly.

2.1.1 Generalised kt algorithms

The generalised kt algorithms for hadron colliders are described in terms of the

distance metric dij and a jet radius Rjet as

dij = min(p2p
T i, p

2p
Tj)

∆R2
ij

R2
jet

, diB = p2p
T i , (2.1)

where p = 1 for the kt algorithm [87, 89], p = 0 for the Cambridge-Aachen (CA)

algorithm [90, 95, 96], and p = −1 for the anti-kt algorithm [91]. Note that the

distance ∆Rij is defined as ∆Rij =
√

(yi − yj)2 + (φi − φj)2, with y being the
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rapidity.* For a final state consisting of four vectors {p1, p2, ....pN}, the algorithm�

to form the jet goes as follows.

1. Evaluate all possible dij and diB.

2. From all dij and diB if the minimum is some dij combine i and j via a

recombination scheme to form k, and replace i and j in the set with k,

and go to step 1. Unless otherwise stated, we will always use the E-scheme

where the combined particle is formed by taking the sum of the four-vectors

of the two particles, pk = pi + pj.

3. remove i from the set of particles if the minimum is diB and declare it as

as a jet, and return step 1.

4. Terminate when no particles remain.

Since every particle gets assigned to a jet, a minimum criterion is often applied to

the transverse momentum of the obtained jets to ignore contributions from soft

particles.

We can now understand the reason behind calling the distance parameter Rjet

as the jet’s radius from the second step: it puts a limit on any particle j, which

can combine with i at each stage. Dividing dij by diB we have,

dij
diB

=
min(p2p

T i, p
2p
Tj)

p2p
T i

∆R2
ij

R2
jet

.

Since all values are strictly positive, we have for ∆Rij > Rjet,

dij
diB

>
min(p2p

T i, p
2p
Tj)

p2p
T i

. (2.2)

It is straightforward to see that for p = 0, any particle j outside Rjet will not be

combined with i since we get dij > diB. The same line of argument follows when

pT i ≤ pTj for p = 1, and pT i ≥ pTj when p = −1. For p = 1 and pT i > pTj, we

have
p2
Tj

p2
T i

< 1 =⇒
min(p2

T i, p
2
Tj)

p2
Tj

=
p2
Tj

p2
Ti

< 1 .

Since, a > b ∧ b < c =⇒ a > c, we have dij > diB. Similarly for p = −1 and

pT i < pTj we get dij < diB, since

p2
T i

p2
Tj

< 1 =⇒
min(p−2

T i , p
−2
Tj )

p−2
Tj

=
p2
T i

p2
Tj

< 1 .

*We cannot use pseudorapidity since a combination of two massless particles pi, and pj (in
the E-scheme described thereafter) would yield a particle pk = pi + pk of mass 2 pi.pj which
need not be zero, hence making the two quantities unequal.

�We describe the inclusive variant widely used currently, although there is an exclusive
variant with a slightly different algorithmic evolution.
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Therefore, for all three cases, the parameter Rjet determine the distance beyond

i for which any particle j will not get combined into a jet.

Although Rjet is analogous to a radius parameter in cone algorithms, jets

formed via the kt and CA algorithms are irregularly shaped in the y − φ plane.

This irregularity is due to the nature of the evolution of the combinatorial se-

quence determined by dij. For the kt algorithm, soft particles get combined first

and grow to the harder regions leading to unstable jet axes as one evolves fur-

ther. The CA algorithm, oblivious to the pT , starts from the nearest pairs and

gradually moves to combine faraway particles. Although not as unstable as the

kt algorithm, it still produces irregularly shaped jets, as the jet axis can change

dynamically as the jet grows. Note that the kt measure dij is proportional to the

square inverse of the splitting probability for a parton to split into two particles i

and j in the collinear regions when either one of them is soft. On the other hand,

the CA measure goes from combining particles with small angular separations to

larger angular scales and thereby can look at multiple angular scales of emission

in an event or a jet.

Unlike the kt and CA algorithms, the anti-kt algorithm gives almost conical

jets in the y − φ plane since the combination starts from the hardest particles

and gradually collects softer particles, leading to a very stable jet axis as one

adds more particles. Its disadvantage is that the recombination sequence bears

no connections with QCD. When needed, one can define anti-kt jets and then

recluster its constituents with kt or CA algorithm to infer the underlying QCD

evolution of the jet.

2.1.2 Jet substructure

Before the Large Hadron Collider, analysing hadronic final states at all colliders

was almost exclusively done by taking the jets as single entities and examining

their kinematic configurations with other jets or reconstructed objects like lep-

tons and photons. However, the very high centre-of-mass energy of the collisions

can result in the production of a significant number of electroweak scale parti-

cles in the boosted regime. Their decay captured within wider radius jets will

generally have different energy patterns and evolution of the emitted particles

than QCD jets. These features can be used as discriminants to enhance searches

in the boosted regime. A significant example is the s-channel production of a

vector boson and a Higgs boson via Higgs-strahlung processes via the mass-drop

algorithm [97], which led to the observation [98,99] of the Higgs’ decay to a pair

of bottom quarks. Due to the larger multiplicity of quarks, most heavy particles

in the SM and any new BSM particle with democratic couplings to the quarks

and leptons will decay predominantly to quarks. Moreover, the LHC can directly

probe various multi-TeV scale particles hypothesised in different BSM models.

These heavy particles’ decay will naturally produce highly boosted SM particles.

Therefore, looking into the substructure of large-radius jets provide novel ways
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of looking at various SM and BSM physics at the LHC.

Since the literature is dynamic and extensive, we will concentrate on the es-

sential ideas necessary to motivate the complexity of the subject. We describe

the general idea behind prong finders which generally decluster a jet and try to

find splittings with not too asymmetrical energy divisions, and generic observ-

ables designed to exploit the different radiation patterns arising from QCD jets

and signal jets. The effect of underlying events (UE), which is important even for

small radius jets, is even more pronounced for large-radius jets since their contri-

bution grows with Rjet [100]. We also discuss some basic UE and pileup removal

techniques which increase the performance of the prong finders and observables.

Prong finders and jet-shapes

The first proposal of using jet-substructure techniques, i.e. the mass-drop tagger,

falls into a broader class of methods called prong-finders. These techniques use the

dominance of mostly soft gluon emissions from the primaeval parton for QCD jets

against the almost symmetrical parton-level decay dynamics of a heavy particle

like the Higgs’ decay to two bottom quarks. As an example, we discuss the

modified Mass-Drop tagger [101], which has a small modification over the original

mass-drop leading to better logarithmic behaviour. The algorithm follows the

declustering sequence of the angular ordered CA algorithm with two parameters

µ and ycut, and proceeds as:

1. Undo the last clustering of the jet j to form two subjets and label them as

j1 and j2 such that mj1 > mj2 .

2. If there is a significant mass-drop mj1 < µ mj and a fairly symmetric

splitting

y =
min(p2

Tj1
, p2

Tj2
) ∆Rj1j2

m2
j

> ycut ,

then j is a tagged jet

3. If the above condition is not satisfied, replace j with the one from j1 or j2

which has a larger transverse mass m2
ji

+ p2
Tji

and start from the first step.

If ji is a single particle the jet is not tagged, and discarded.

The mass-drop tagger and the modified one were specifically designed to tag the

Higgs’ decay to a pair of bottom quarks. The principle for a prong finder to tag a

heavy state decaying to more than two particles [102,103] have similar procedures

for multiple declustering of the branches. Thus, such methods can be generalised

to tag the decay of a heavy particle into some n number of strongly interacting

particles. These n-particle decays give rise to the so-called n-prong jet signature,

and a large portion of the literature on jet substructure revolves around finding

ways to distinguish different pronged jets.
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A complementary approach to tagging any generic n-prong hadronic decays

of heavy particles is to study the jet-shape [104]–observables that are sensitive

to the energy distribution of particles within a jet. Such observables are closely

connected to event-shape observables in e+e− colliders. They need to satisfy

infra-red and collinear safety to reduce sensitivity to low-energy and long-range

physics. A standard example is the N -subjettiness [105] variable adapted from

the inclusive event shape observable N -jettiness [106] at hadron collider environ-

ments. It requires defining N axes within the jet via some reclustering procedure.

A straightforward choice is to take the N exclusive subjets obtained with the kt
algorithm. Once the axes are obtained, it is defined as

τN =
1

d0

∑
k

pTk min{∆Rk1,∆Rk2, ...∆RkN} . (2.3)

The distances ∆Rki =
√

(ηk − ηi)2 + (φk − φi)2 are calculated for each particle

k with each of the candidate subjets, and the sum is over all particles. The

normalisation factor is defined as d0 =
∑

k pTk Rjet. It is evident that when

τN ≈ 0, most of the radiation within the jet is aligned with the axes; therefore it

will have N (or fewer) hard subjets. If τN >> 0, then the N subjet axes fail to

capture all the radiation within the jet pointing towards the jet having at least

N+1 pronged hard subjets. Since a single N is not enough to ascertain the exact

behaviour of the jets, often the N -subjettiness ratios τN+1,N = τN+1/τN , which

have more discriminatory power, are used in analyses. However, since the ratio

is not continuous for τN → 0, it is IRC unsafe.� Moreover, the naive selection

of N exclusive subjets is sensitive to the recoild from emissions of soft particles

outside the jet leading to complications in predicting their all-order behaviour.

The winner-takes-all recombination scheme [107] guarantees that the axes are

recoil-free.

Another important variable of interest which does not need any subjet reclus-

tering are energy-correlation functions [108]. For hadron colliders, it is defined

as

ECF(N, β) =
∑

i1<i2<....iN−1<iN∈J

(
N∏
a=1

zia

) (
N−1∏
b=1

N∏
c=b+1

∆Rβ
ibic

)
, (2.4)

where zi = pT i/(
∑

j∈J pTj). Clearly, ECF(N, β) = 0 for any jet with less than

N particles and IRC safe for any β > 0. Note that the angular exponent β

introduces non-linearity in the Euclidean distances ∆Rij on the rapidity-azimuth

plane. Similar to the N -subjettiness, the ratio

rβN =
ECF(N + 1, β)

ECF(N, β)
, (2.5)

�They are, however, calculable with perturbative methods [60] as Sudakov factors exponen-
tially suppress the singular regions and hence follow “Sudakov safety”.
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is helpful in discriminating N+1-prong jets from other jets of lower multiplicities.

Jet groomers

The preceding discussions have focussed on ways to discriminate different N -

prong jets, assuming that the constituents follow the structure of the parton

evolution described via perturbative QCD. Various non-perturbative effects and

experimental conditions like underlying events and pileup inhibit the direct appli-

cation of such techniques. There is a need to reduce their impact before applying

the earlier methods to the large-radius jets. Jet grooming methods reduce the

contribution from unwanted soft radiation keeping mostly the hard part that is

likely to have originated from hard partons so that the jets have a better suscep-

tibility to tagging techniques. They can be broadly divided into

� Filtering: It was originally proposed in reference [97] to sharpen the mass

peak of the Higgs boson against the contribution of UE after applying the

mass-drop tagger. The jet is reclustered again with the CA algorithm on

a smaller angular Rfilt, and only the hardest nfilt subjets are kept for

analysing the mass distribution. Knowledge of the N -prong structure of

the signal jet is required to apply this technique, where nfilt is generally

taken to be N+1 to account for additional gluon radiation from the decayed

partons.

� Pruning: It was proposed [109,110] as a bottom-up approach to removing

soft and wide-angle radiation regardless of the prong structure of the jet.

The original jet constituents are reclustered with the kt or CA algorithm,

and the procedure follows its declustering sequence. For each declustering

j → j1, j2 with pTj1 > pTj2 , we define z = min(pTj1 , pTj2)/pTj and ∆Rj1j2 ,

and compare it with zcut and Dcut = mJ/pTJ , with mJ and pTJ being the

original jet’s mass and transverse momentum respectively. If z < zcut and

∆Rj1j2 > Dcut remove j2 otherwise keep both j1 and j2.

� Trimming: It was proposed in reference [111] as a generic method of re-

moving contamination from non-relevant emissions like ISR, UE and pileup.

The procedure involves reclustering the constituents of the jet with an al-

gorithm with radius Rtrim and keeping all those subjets with transverse

momentum higher than a fraction ftrim of the original jet’s transverse mo-

menta, i.e. a given reclustered subjet s is removed if pTs < ftrim pTJ , where

pTJ is the transverse momentum of the original jet.

The methods discussed here have undergone intensive scrutiny of their various

experimental and theoretical properties. More improved versions are available

that are currently being used by the experimental collaborations. The current

landscape of various new techniques, including machine-learning methods, is pre-

sented in recent reviews [112,113] and lecture notes [114].
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Jet images

Alongside the development of theoretical tools to study the structure of large-

radius jets, there has been a growing impetus for using modern deep-learning

techniques to identify hadronic decays of boosted heavy particles. We will de-

scribe the technical details of such algorithms based on Artificial Neural Networks

in the next section. Here, we give a brief account of the benefits and drawbacks

of representing large-radius jets as images [115–117] over the more conventional

jet-substructure analysis techniques. These image-based representations were the

first forrays of modern deep-learning methods into mainstream particle physics

phenomenology, resulting in a dynamic and exciting area of enquiry.

Any quantity sampled on a two-dimensional grid can be represented as an

image (of one channel). The pixel values denote the quantity’s value in a par-

ticular bin of the x and the y-axes. Therefore, the jet constituents registered as

calorimeter readings in the η−φ plane can be represented as a “jet image”. Even

though the calorimeter cells measure the total energy, one would use its trans-

verse component ET for a hadronic environment. Convolutional Neural Networks

(CNNs) trained to identify the decays of theW -boson [117], or the top quark [118],

against jets of QCD origin have found a significant gain in performance compared

to those using jet substructure methods described in the preceding sub-sections.

These gains persist even in underlying events and pileup [119]. Despite the huge

improvements, there is a general apprehension about these methods as they are

poorly understood theoretically. Practically these translate to higher system-

atic uncertainties [120] in experimental applications. One might argue that the

present scenario is similar to jet substructure techniques’ situation upon their ini-

tial introduction and general acceptance after intensive scrutiny of their properties

within QCD. However, an analytic understanding of these techniques is highly

challenging [121], although numerical results [122, 123] point towards favourable

behaviour against phenomenologically relevant factors.

2.2 Artificial Neural Networks

In the preceding section, we have seen the importance of examining the hadronic

final states of processes to look for signatures of new physics and gave a brief ac-

count of Convolutional Neural Networks’ power in segregating boosted hadronic

decays of heavy particles from an overwhelming QCD background by looking at

jet images. These networks fall within a generally larger class of models called

Artificial Neural Networks (ANNs). ANNs are statistical learning models inspired

by the biological structure of neurons [124, 125]. They are highly expressive sta-

tistical models capable of approximating a general class of function between two

well-behaved spaces [126–129] and form the backbone of the modern artificial

intelligence (AI) and deep-learning revolution. Before discussing specialised and

deep architectures like Convolutional Neural Networks, in this section, we will
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Figure 2.1: The figure shows a single perceptron (or a node) taking an n dimen-
sional vector xi. It consists of n weights wi and a bias term w0, via which we
evaluate y′. A non-linear activation function A(y′) is applied to get the output y
of the perceptron.

introduce the most basic networks: “Multilayer Perceptrons” (MLPs), their opti-

misation procedure, and some use cases that will be of interest in the subsequent

chapters.

2.2.1 Multilayer Perceptrons

The fundamental building blocks of MLPs are perceptrons or colloquially known

as nodes,§ which take a vector x as input and apply an affine function y′ =∑n
i=1 wixi + w0, with {w0, w1, ...wn} the tunable parameters and {x1, x2, ....xn}

the components of the input vector x. To introduce non-linearities (required

for better expressivity), one applies a non-linear function to get the output of

the perceptron as y = A(y′). A single perceptron is diagrammatically shown in

figure 2.1. The generalisation to an MLP requires two steps:

� increasing the dimensions of the output y by promoting it to a generic m

dimensional vector y

� introducing functional compositions to account for hidden layers between

the input x and the output y.

For the first step, we have each component of y as

yj = A

(
n∑
i=1

wji xi + wj0

)
, (2.6)

§Depending on the context, we will use nodes to mean either a perceptron or a graph’s node
in the subsequent discussions and following chapters.
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Figure 2.2: The figure shows a multilayer perceptron for a four dimensional input
and three dimensional output with a single hidden layer with six nodes.

where wji is the component of an m× n dimensional weight matrix, and wj0 are

the components of an m-dimensional bias vector. Note that such a generalisation

introduces the concept of an input layer that takes the input vector x and an

output layer that gives the output vector y. Here, the input layer is directly

connected to the output layer. These architectures do not yet possess the ability

to universally approximate any function f : Rn → Rm with a compact domain

and range, which require the second part of the generalisation.

To increase the expressive power of neural networks, one introduces hidden

layers between the input and output layers, which, mathematically, are functional

compositions of hidden vectors v(h) between the input and output vectors, with h

denoting the layer index. The input vectors feed into a hidden layer with outputs

v
(1)
i = A

(
n∑
i=1

w
(0)
ji xi + w

(0)
j0

)
.

These v
(1)
i can then produce the output yi by replacing xi in eq. 2.6, or feed into

subsequent hidden layers. Note that the dimension of the vector v(1) is not fixed

and can be chosen to be an arbitrarily large but finite value. Such architectures

with a single hidden layer with arbitrary width and some non-linear and non-

polynomial activation possess the universal approximation property [127]. The

generalisation to any MLP with K hidden layers is

v
(k)
i = A

(∑
i=1

w
(k−1)
ji v

(k−1)
i + w

(k−1)
j0

)
, (2.7)

where k is the layer index with v
(0)
i = xi and v

(K+1)
i = yi. Note that although we

have used a generic notation A to denote the activation function, there is freedom

in choosing the activation function for any layer. A graphical representation of
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an MLP with a single hidden layer is shown in figure 2.2.

2.2.2 Optimisation

Having discussed the structure of MLPs, we now turn our attention to the op-

timisation procedure of the weights. The most common form of training is by

reducing a loss function L(y0,yt), which quantifies a faithful distance between

the network output y0 and a target vector yt. Note that these target vectors can

be the input vectors x as well, as we have not currently specified the nature of

the learning process. If the loss function is differentiable, one can use gradient

descent in the space of weights to reach an optimal position. In this section, we

will describe the basics of back-propagation, taking a relatively simple approach,

and discuss some practical aspects when training a neural network for inductive

learning purposes.

Gradient descent and back propagation

To understand gradient descent, we concentrate on a simple linear regression

between a dependent variable y and an independent variable x, with the sampled

data consisting of ordered pairs {(x, yt)α}, with α ∈ {1, 2, ...Nsamples}, being the

sample index and Nsamples the data size. Let y0 = w1x + w0 and L = (y0 − yt)2

denote the loss function. The procedure of finding the optimal weights w0
i via

gradient descent involves an iterative update of each weight wi as

wi ← wi − γ
∂〈L〉
∂wi

, (2.8)

where

〈L〉 =
1

Nsamples

Nsamples∑
α=1

L(y0, yt)|(x,yt)α . (2.9)

The constant factor γ is called the learning rate and determines the rate and

the precision of the converged position. The process is shown geometrically in

figure 2.3 by projecting on a single weight wi with a quadratic loss function. In

such a simple scenario with a two-dimensional weight space, the loss function

has a global minimum accessible from every point in (w0, w1) ∈ R2. This very

special circumstance is not generally required and seldom satisfied for the training

of complicated neural networks. However, the loss function should be bounded

from below for gradient descent to work.

The generalisation of gradient descent to a multi-layer feedforward network

requires the implementation of a back-propagation algorithm [130]. It is a con-

sequence of the functional compositions that the input vector x goes through to

evaluate the output y. For a single hidden layer network, we have

y0 = f1(w(1),v(1)) = f1(w(1), f0(w(0),x)) , (2.10)
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Figure 2.3: A geometrical representation of gradient descent for a quadratic loss
function with a weight wi.

where the vector functions fi : Rdi → Rdi+1 map between the relevant spaces, with

definite dimensions di and di+1, and w(h) represent the weights and the biases of

the hth layer. Therefore the loss function is of the form

L = L(y0,yt) = L(f1(w(1), f0(w(0),x)),yt) .

We have the gradient descent for the weights w
(h)
ij as

w
(h)
ij ← w

(h)
ij − γ

∂〈L〉
∂w

(h)
ij

. (2.11)

The derivative of the loss function with respect to w
(1)
ij and w

(0)
ij are of the form

∂〈L〉
∂w

(1)
ij

=
∂〈L〉
∂y0

∂y0

∂w
(1)
ij

,

∂〈L〉
∂w

(0)
ij

=
∂〈L〉
∂y0

∂y0

∂v(1)

∂v(1)

∂w
(0)
ij

=
∑
k,l

∂〈L〉
∂w

(1)
kl

∂w
(1)
kl

∂v(1)

∂v(1)

∂w
(0)
ij

.

Clearly, the second relation generalises for any hidden layer h and h− 1 as

∂〈L〉
∂w

(h−1)
ij

=
∑
k,l

∂〈L〉
∂w

(h)
kl

∂w
(h)
kl

∂v(h)

∂v(h)

∂w
(h−1)
ij

. (2.12)

The evaluation of the weight updates (eq. 7.3) of the hidden layers can be effi-
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Figure 2.4: The figure shows the history of a neural network training for hundred
epochs.

ciently implemented with a backward pass algorithm following eq 2.12. Such an

evaluation of the gradient updates is known as the back-propagation algorithm

and is used to train deep neural networks efficiently.

Practical considerations

In implementing back-propagation for the studies conducted in this thesis through

deep-learning packages in python, we will generally use improved versions of gra-

dient descent with velocity and momentum terms, which have better convergence

properties over the vanilla gradient descent. While the discussions till now have

been based on the gradient of the averaged loss function as defined in eq. 2.9,

the number of training samples Nsamples is generally very large (of the order of

a hundred thousand and sometimes millions). Therefore, it is computationally

prohibitive to use the total dataset for updating the gradients. The training is

done with small batches sampled uniformly from the training data with a fixed

size Nbatch << Nsamples to circumvent this issue. An epoch consists of a single

pass over all training samples. Due to the large parameter space and dataset, the

loss reaches an asymptotically small value¶ after a large number of epochs.

For inductive purposes, since the model should be able to generalise to unseen

data following the same underlying distribution, the training process involves a

validation step with a separate dataset not used to update the gradients. After

each training epoch, the model’s performance is evaluated for this validation

dataset. Comparing the averaged training loss to the average validation loss

gives us an estimate of the network’s generalisation capability. This feature is

¶This is, of course, dependent on the efficiency of the architecture to capture the data’s
underlying properties, which otherwise would not converge.
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captured in the average training and validation loss plot against the number of

epochs called the training history. An example is shown in figure 2.4, which

ideally has an overlapping validation and training curve. More often than not,

one would find that the training curve is lower than the validation curve, which

indicates a degree of overfitting–the network has learnt specifics of the training

data not present in the validation data. However, such a difference is generally

tolerated as long as the validation curve continues to reduce. An extreme case of

overfitting would occur when the training curve continues to decrease while the

validation curve starts increasing after reaching a minimum point. The training

is generally stopped once such behaviour is found in the training history.

The value of the learning rate γ is another crucial aspect when training a

neural network. A larger value would generally have faster convergence but a

higher loss value in the converged plateau of the training history. On the other

hand, a lower learning rate would converge slowly but will reach a lower plateau.

A reduce-on-plateau condition generally combines the favourable behaviour of

both these situations by starting with a relatively larger learning rate but reducing

it every time on reaching a plateau.

Another important aspect of neural network training and inference is its un-

certainties arising from the finite training size and noise associated with the data-

taking process. Although the statistical uncertainties associated with the train-

ing size reduce with increasing data size, noise in the training data translates

as a source of systematic uncertainty in the training process. Bayesian Neu-

ral Networks [131, 132] can estimate such uncertainties by providing per-sample

uncertainty estimates and have been studied in the context of LHC [133, 134].

Another way of assessing the uncertainties widely used by the various LHC col-

laborations [135, 136] is by using bootstrapping [137] methods. In the simplest

scenario, the statistical uncertainties are estimated from multiple datasets (called

bootstrap samples) generated by random sampling (with replacement) from the

nominal test dataset.

In the following sections, we will look at some specific applications of ANNs,

concentrating on supervised classification and unsupervised anomaly detection

techniques which are used in the remainder of the thesis. We note that these

are but a small part of their applicability, and there are different scenarios like

the generation of events [138–147], simulation of detector response [148–152],

and pileup mitigation [153–155] which generally proceeds through adversarial

training [156], normalising flows [157], or regression methods.

2.2.3 Supervised Classification

One of the most prevalent uses of neural networks is in various classification tasks

like pattern recognition and image classification. Such classification scenarios

naturally exist in multiple areas of LHC. Therefore, it is not surprising that there

is a major focus on applying neural networks to such classification tasks. We
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discuss the general formulation of such classification tasks in this section.

In supervised classification, we have a dataset of two tuples

D = {(x,yt)α} |D| = Nsamples ,

with x the input vector to the network, yt giving the class information, and α the

sample index. The most popular method of embedding the class information in a

vector is the one-hot encoding. In this method, yt has the same dimensions as the

number of classes Nclass, with zero entries in all but one dimension. The position

of the non-zero element gives the class of each sample, and all samples belonging

to the same class have the non-zero component at the same index. The output of

the network y0, therefore, is made to correspond to an Nclass dimensional vector

whose components y0,i follows the required probability normalisation

Nclass∑
i=0

y0,i = 1 .

Although this is the only essential requirement on the output, simple activation

functions like a linearly normalised vector y0 with components

y0,i =
ŷ0,1∑Nclass

i=1 ŷ0,i

,

with ŷ0,i the components of the network output before normalisation is highly

sensitive to outliers in the data. The SoftMax activation function, which is a

multidimensional generalisation of the sigmoid function σ(z) = 1/(1 + e−z), ren-

ders the output insensitive to outliers in the data and is, therefore, the preferred

choice of output activation for classification tasks. It is given as,

y0,i =
e−ŷ0,i∑Nclass

j=1 e−ŷ0,j

. (2.13)

Note that it has Nclass−1 degrees of freedom due to the normalisation condition.

The preferred loss function for training supervised classification networks is

the cross-entropy loss. The cross-entropy between two probability distributions

y0(x) and yt(x) is defined as,

L = −
∑
x∈B

∑
i

yt,i(x) ln(y0,i(x)) , (2.14)

where the distributions are functions of the feature-vector x, and B denote the

batch of training data. It is a measure of how well a modelled distribution

y0, corresponding to the network output, resembles the true distribution of yt,

the true values provided during training. For a fixed true-distribution yt with

a sample space X , minimising the cross-entropy essentially minimizes the KL-
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divergence [158],

DKL(yt||y0) =
∑
x∈X

yt(x) ln(yt(x))−
∑
x∈X

yt(x) ln(y0(x)) ,

which is a measure of the similarity between two distributions and becomes zero

iff they are identical.

2.2.4 Unsupervised learning

We have laid down the basics of supervised classification with neural networks

in the preceding discussions. Although such techniques are highly effective, their

application requires at least one signal hypothesis through which the training pro-

ceeds to distinguish them from background processes. Since all model-dependent

searches at the LHC have returned null results, we require broad-ranging model-

independent investigations that would look for hidden clues in a large phase

space volume. These searches where we look into the background-only hypoth-

esis without having any particular signal in mind can be accommodated within

unsupervised learning techniques. Broadly speaking, while supervised learning

looks to find the best boundary between at least two overlapping� probability

distributions in the underlying space of x, unsupervised methods try to learn the

distribution themselves.

We can distinguish between the two by taking a simple example of binary

classification of a hypothetical signal distribution pS(x) and background pB(x),

where x ∈ X is the input vector to an ML model, and X is the underlying space.

If S ⊆ X and B ⊆ X denote the support of the distributions pS(x) and pB(x),

respectively, then S∩B 6= ∅. A supervised classification model f(Θ,x) amounts to

finding an optimal point Θ0 in the weight space, such that the function f(Θ0,x)

approximates some monotonic function of the likelihood ratio for the training

dataset, which is the optimal classifier via the Neyman-Pearson lemma [159].

Therefore, the network output in such a case is not a simple projection of the

probabilities pS(x) or pB(x).

On the other hand, an unsupervised learning model tries to learn the under-

lying distribution

p(x) = ωS pS(x) + ωB pB(x)

in the sample space X , where ωS and ωB are weight factors determined by their

relative occurrence. Since the cross-section of the background would be orders of

magnitude higher than most probable signals, which will determine their relative

weights, we have

ωB >> ωS =⇒ p(x) ≈ pB(x) .

�The problem of statistical inference does not arise when we have probability distributions
with non-overlapping support and can be classified into different classes with perfect efficiency,
by looking at the values of the observables x in X .
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Figure 2.5: The figure shows a schematic representation of an autoencoder. The
encoder (shown in green) maps the input vectors x to a latent representation z
of reduced dimensionality, while the decoder (shown in light red) maps it back
to the reconstructed vector x̂ of the same dimensions as the output. These steps
can be achieved by specific architectures dependent on the data representation,
like convolutional architectures and graph neural networks. We explore graph
autoencoders and quantum autoencoders in this thesis.

Therefore, one can train on the background data in unsupervised learning to

a good approximation. This is in stark contrast to supervised learning, where

one takes a balanced dataset to train classification models to ensure that the

optimisation procedure democratically picks up both classes’ features. An unsu-

pervised learning model f(Θ,x) tries to learn a representation of the underlying

distribution p(x).

2.2.5 Anomaly detection with autoencoders

Autoencoders [160] are neural networks utilised in various applications of unsu-

pervised learning. They learn to map input vectors x to a compressed latent

vector z via an encoder. This latent vector feeds into a decoder that recon-

structs the inputs. Denoting the encoder and decoder networks as E(ΘE,x) and

D(ΘD, z) with ΘE and ΘD denoting the learnable parameters of the respective

network, we have

z = E(ΘE,x) , x̂ = D(ΘD, z) , (2.15)

where x̂ denotes the reconstructed output vector. The whole network is trained

via gradient descent to reduce a faithful distance L between the reconstructed

output x̂ and the input vector x. For instance, L can be the root-mean-square

error (RMSE),

L(x, x̂) =

√∑i=n
i=1 (x̂i − xi)2

n
, (2.16)

where x̂i and xi are the ith component of the reconstructed and input vectors,

respectively, and n is their dimension. A faithful encoding should have an optimal
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latent dimension k < n, with k being the intrinsic dimension of the data set. This

dimensionality reduction is crucial in many applications of autoencoders, which

otherwise learn trivial mappings to reconstruct the output vectors x̂. Unsuper-

vised learning deals with learning probability distributions, and properly trained

autoencoders are excellent for many applications. A schematic representation of

an autoencoder is shown in figure 2.5. As described in the preceding section, the

loss function L :W ×X → R, where W denote the weight space (ΘE,ΘD) ∈ W ,

is a one-dimensional projection of the probability distribution p(x).

One popular usage of autoencoders in collider physics is anomaly detection [161–

170]. In various scenarios at the LHC, the background processes’ contributions

are orders of magnitude larger than most viable signals. However, a plethora of

possible signal scenarios exist that could be realised in nature, making it unlikely

that the signal-specific reconstruction techniques of supervised learning meth-

ods comprehensively cover all possible scenarios. This motivates unsupervised

anomaly detection techniques, wherein a statistical model learns the probability

distribution of the background to classify any data not belonging to it as anoma-

lous (signal) data. Using an autoencoder as an anomaly detector, we train it to

reconstruct the background data faithfully. Many signals have a higher intrin-

sic dimension than background data due to their increased complexity. Hence,

they incur higher reconstruction losses. Thus, the loss function can be used as a

discriminant to look for anomalous events.

2.2.6 Performance metrics
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Figure 2.6: The figure shows the relation between the separation of the distribu-
tion of two classes (left) and the corresponding ROC curve (right) for a binary
classifier. As the separation increases, the distance of the ROC curve increases
from the black line, which indicates completely overlapping distributions.

In the preceding discussions, we have reviewed most of the essential ingredients
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of machine learning with artificial neural networks. Before discussing specialised

architectures in the next section, we briefly present the performance metrics used

to compare various machine learning models. Since the main emphasis of the

thesis would be on unsupervised or supervised segregation of signal and back-

ground events, we will describe those metrics used to compare binary classifi-

cation models. Thus, we will exclusively work with one-dimensional probability

distributions. Note, however, that such a distribution is obtained as an output

of a model f(Θ0,x) by mapping a very high dimensional input x where the op-

timal parameters Θ0 maximally address the particular aim of the training, and

hence the inference. Moreover, since we have the class information from the

Monte-Carlo simulations, we will work with metrics that assume such knowledge.

Let pS(y) and pB(y) denote the normalised probability distribution of a single

variable y. In a supervised model y can be the binary classification score, while

for anomaly detection with autoencoders, it can be the loss function. Regardless

of the nature of y, we define the signal acceptance and background acceptance

based on the signal rich region in y ∈ R by evaluating the median values ỹS and

ỹB, such that
∫ ỹX
−∞ dy pX(y) = 0.5, for pS and pB. If ỹB < ỹS, then we define the

signal acceptance εS = fS(T0) and the background acceptance εB = fB(T0) as

fS(T0) =

∫ T0

−∞
dx pS(x) , fB(T0) =

∫ T0

−∞
dx pB(x) . (2.17)

When ỹB > ỹS, one would change the limits from T0 to infinity. The signal and

background acceptance quantify the fraction of selected signal and background,

respectively, for a threshold T0 on the value of observable y, while the ordering

of the median values determines which side of the distribution one should keep.

Therefore, the background rejection ε̄B is simply defined as

ε̄B = f̄B(T0) = 1− fB(T0) .

One would ideally want the signal acceptance to be always larger than the back-

ground acceptance for all thresholds. If εS < εB, for all values of thresholds, it

implies an incorrect identification of the signal rich regions, and one would get

a correct ordering (εS > εB), once it has been fixed. However, an undesirable

situation would be when εS ≈ εB for all threshold values, which would imply

that the two probability distributions are virtually overlapping and the classifier

is not able to distinguish between the two. For a fixed signal and background, a

better classifier would have a higher signal acceptance for the same background

acceptance (or rejection).

As one can see, the dependence of the signal acceptance εS on the background

acceptance or rejection quantifies the ability of a classifier to segregate the signal

from the background. This dependence can be diagrammatically shown in a plot

between the signal acceptance and the background acceptance or rejection by
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using the threshold to connect the two quantities of interest, i.e.

εS = fS(T0) = fS(f−1
B (εB)) = fS(f̄−1

B (ε̄B)) . (2.18)

For historical reasons, such a plot between the signal acceptance and the back-

ground acceptance or rejection is known as a Receiver-Operator-Characteristics

(ROC) curve. The area under the ROC curve (AUC) is an integrated quantity

useful in comparing various classifiers. An AUC of 0.5 would mean εS = εB for all

values of thresholds, while a value of 1.0 would mean εS = 1 and εB = 0. for all

values of thresholds. Therefore, a classifier with a higher value of AUC performs

better than those that have a lower AUC.

A diagrammatic representation of three hypothetical classifiers A, B, and

C for the same signal and background is shown in figure 2.6. For a simple

comparison, we take the background distribution of all three classifiers to coincide,

while the separation increases from classifiers A to B, and B to C, as shown

in figure 2.6(a). The ROC curve of these three classifiers shown in figure 7.6,

reflects the increase in performance, with the curve closest to the upper top

corner performing the best, which is evident also from the value of the AUC.

2.3 Deep-learning on high-dimensional raw data

In the previous section, we have discussed the essential idea behind the architec-

ture and training of multilayer perceptrons. Such multilayer perceptrons have a

long history in particle physics phenomenology, well before the LHC era, along

with other shallow machine learning techniques like boosted decision trees. The

major difference between these algorithms and the current influx of deep-learning

algorithms is in the dimensionality of the input vector x and, consequently, the

design of the architectures used to handle such high-dimensional data. First, we

discuss the differences and similarities between such shallow machine learning

techniques and the modern deep-learning methods. We then describe the details

of Convolutional Neural Networks and Graph Neural Networks, the algorithms

used in the studies presented in the subsequent chapters.

2.3.1 Looking at high-dimensional phase space

It is well known that multivariate analyses of different physically constructed vari-

ables outperform a traditional cut-based approach. The reason ascribed to such

an increase is the formulation of non-linear cut boundaries in the multidimen-

sional space spanned by the various quantities in the input vector. The variables

used in such multivariate analyses are highly specific and based on physical in-

tuition for the particular type of signal and background. Such domain-specific

variables (like the dijet mass), which are obtained after significant processing of

raw data (particle four-vectors in the present case), are called high-level vari-
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ables. In contrast, the unprocessed quantities are called low-level variables. The

underlying cause of a performance gain from a cut-based approach to a high-

level multivariate approach is similar, in principle, to the improvements found

in employing deep-learning algorithms with low-level high-dimensional data over

a multivariate analysis of high-level features. In other words, with multivariate

methods, one can directly look at the multidimensional distribution of the vari-

ous high-level features. Similarly, deep-learning algorithms can look into the very

high dimensional phase space of the particles measured by the detector and pick

up the underlying features directly.

The gain in performance with deep-learning algorithms is made possible mainly

by two factors: (1) the highly improved versions of gradient descent optimisation

currently available and (2) the exploitation of inherent features in the data by

appropriate representations and designing architectures that can exploit the un-

derlying features efficiently. The first point is crucial since the power of neural

networks to approximate functions, although known through various universal ap-

proximation theorems [126–128], most, if not all, are existence-theorems stating

that such approximators exist, without any hints of obtaining or designing a prac-

tical approximator. Highly improved gradient descent algorithms like Adam [171]

or Nadam [172] ensure a relatively fast training of neural networks with a huge

parameter space.

In statistical learning terminology, the design of architecture and data rep-

resentation to bring out particular features in the data is known as building

“inductive biases”. Such inductive biases help effectively approximate functions

by favouring certain minima over others or even restricting the nature of the ob-

tainable minima itself during the gradient descent optimisation. As an example,

many jet-shape observables which discriminate between different n-prong jets are

some pT weighted non-linear functions of the Euclidean distance ∆Rij in the η−φ
plane. Therefore, this inherent Euclidean structure in the jets can be aptly rep-

resented as jet images and efficiently extracted with convolutional architectures.

In general, such designs are advantageous in fundamental physics because we

know the properties of the underlying distribution even though analytic expres-

sions are not always feasible, which can be exploited by building physical biases

and symmetries into the architecture and the data representations. Many recent

works [173–183] have started to explore such directions with exciting results and

new insights into the workings of neural networks.

The power of deep-learning algorithms to efficiently extract features from data

directly is unparalleled. However, we rely on an extensive simulation program

through various Monte-Carlo procedures to study the properties of neural net-

works. Although their actual realisation would be based on a complex validation

process with experimental data, there is a possibility of the algorithms learn-

ing features of the imperfect simulations. In any analysis, including multivariate

or a cut-based approach, we have to invariably deal with the imperfections in

the simulations in the data from the underlying theory predictions, which trans-
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lates as a source of systematic uncertainty in the result. Modern deep-learning

algorithms that take low-level inputs suffer from larger systematics [184] since

they look into more subtle differences in the data. However, their relative gain

in performance compensates for the higher uncertainties, although it would be

favourable to reduce the uncertainties for precision analyses with more data in

the future LHC runs. One such source of uncertainty is the relative stability of

the network output to soft and collinear emissions, which we will work upon in

chapter 5.

In the remainder of this chapter, we discuss the inbuilt inductive biases and

the data representation for two important types of architectures and explain their

widespread applicability at LHC, including a brief outline of the available public

packages for implementing these algorithms.

2.3.2 Convolutional Neural Networks

Convolutional Neural Networks [185] are deep-learning models inspired by the

brain’s visual cortex [186]. They are powerful models capable of image classifi-

cation and segmentation and have been widely used in various fields (see refer-

ences [187, 188] for recent reviews). Here, we present its basic structure and the

inductive biases that one implicitly assumes when using Convolutional Neural

Networks (CNNs). We will exclusively work with two-dimensional images since

most uses of CNNs are restricted to the two-dimensional case. The performance

of CNNs can be attributed to two steps:

� Convolution on local regions: the network executes convolution opera-

tion with several filters with significantly smaller dimensions than the image,

which is shared for the whole image, followed by a non-linear activation

� Pooling: a downsampling operation which progressively reduces the di-

mensionality of the data by taking a summary statistics of a local region

forward to the next layer.

We will outline the basics of these two steps and the biases they generate in

the following paragraphs. To understand the properties of convolution operation

within perturbative QCD (which will be discussed in the next subsection), we

will discuss them in the continuum limit by neglecting the activation function

and bias terms. Doing so simplifies the expressions through which we can infer

interesting behaviours in the soft and collinear regions of the multi-particle phase

space.

Convolution operation: A two-dimensional image is some Nr×Nc matrix of

real-valued elements Fij ∈ R, with Nr and Nc denoting the number of rows and

columns, respectively. Relevant to the nature of calorimetric measurements, Fij
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Figure 2.7: The figure shows a diagrammatic representation of the effective region
(shown as a solid greed box) in the input image for a second convolution on the
first feature map. The result of the convolution on the green region of the image
with the filters (shown as hollow red squares) produces a part of the feature map
shown as a solid red box. Similarly, a second convolution on the region of the
feature map with the different filters of the same size produces a region of a new
feature map. Therefore, the second filters learn the features corresponding to a
much larger area (determined by the relative size of the filters) in the original
image.

can be mathematically defined as the binned value of an observable of bin size

(∆x,∆y)

Fi,j = F (xi, yi) :=

∫ xi+∆x/2

xi−∆x/2

dx

∫ yi+∆y/2

yi−∆y/2

dy f(x, y) , (2.19)

where f(x, y) denotes the underlying continuous function for the observable. Let

(x0, y0) be the central point in the image. It is the central value of the central

bin when Nc and Nr are odd, while it is the upper boundary of the (Nr/2)th or

(Nc/2)th bin in case they are even. The region of the two-dimensional Euclidean

plane R2 where we sample the image can be written as,

F(x0, y0) =

[
x0 −Nc

∆x

2
, x0 +Nc

∆x

2

]
×
[
y0 −Nr

∆y

2
, y0 +Nr

∆y

2

]
⊂ R2 .

(2.20)

It is straightforward to describe the convolution operation** with a filter wai,j with

size nr × nc with a denoting the filter index as

Ga
k,l = A

(∑
i,j

ωai,j Fk−i,l−j + wa0

)
, (2.21)

where A is the activation function. The matrices Ga
ij are commonly referred to

as feature maps. Neglecting the bias term wa0 and taking a linear activation, this

**Introducing strides overcomplicates matters since, we will be solely using convolution op-
erations with single stride.
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can be written in the continuous form as

ga(x, y) =

∫ x+nc
∆x
2

x−nc∆x
2

dx′
∫ y+nr

∆y
2

y−nr ∆y
2

dy′ wa(x′, y′)f(x− x′, y − y′) . (2.22)

Let us denote the region of the integration in R2 as

R(x, y) =

[
x− nc

∆x

2
, x+ nc

∆x

2

]
×
[
y − nr

∆y

2
, y + nr

∆y

2

]
⊂ F̃(x0, y0) ⊂ R2 ,

(2.23)

which is a fixed neighbourhood of a finite area around (x, y). The region F̃(x0, y0)

is an expansion of F(x0, y0) given as

F̃(x0, y0) =

[
x0 − (Nc + nc)

∆x

2
, x0 + (Nc + nc)

∆x

2

]
×
[
y0 − (Nr + nr)

∆y

2
, y0 + (Nr + nr)

∆y

2

]
⊂ R2 ,

and we assume that f(x, y) = 0 when (x, y) falls outside of F(x0, y0), colloqui-

ally referred to as zero-padding. Note that ga(x, y) is defined for every point in

F(x0, y0) and not F̃(x0, y0). It is now easier to infer the biases that eq. 2.22

places on the function ga(x, y), without loss of generality in the discrete case. In

analogy to Ga
ij, we will refer to ga(x, y) as the feature function in the following

discussion.

Local connectivity: The region of integration R(x, y) implies that the feature

function ga(x, y) is dependent on the values of f(x, y) in a small neighbourhood

determined by the filter size. Such a quality is known as local connectivity, and it

effectively decouples the amalgamation of information from f(x, y) into ga(x, y)

into a local scale, determined by the filter size.

Parameter sharing: The sharing of the filter by the whole image imposes a peri-

odic boundary condition on the functions wa(x, y) as

wa(x, y) = wa(x+ nc∆x, y) , wa(x, y) = wa(x, y + nr∆y) .

This condition translates to the inherent assumption that learning a function

wa(x, y) amounts to extracting features common to all regions of size R(x, y) in

f(x, y).

Separation of Scales: This results as a consequence of the local connectivity

and the sequential application of convolution operations on the feature function

ga(x, y). We can write down the convolution operation of ga(x, y) with new sets
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of filters ub(x, y)

h(b,a)(x, y) =

∫
R(x,y)

ds′ ub(x′, y′) ga(x− x′, y − y′) , (2.24)

where ds′ = dx′dy′. For simplicity, we have taken the size of the new filters to be

the same as wa(x, y), making R the region of integration in R2. However, the new

feature functions h(b,a)(x, y) is dependent on the input image f(x, y) of a larger

area than R. The reason behind this lies in the integration of the feature map

ga(x, y) to determine h(b,a)(x, y). The feature map ga(x, y) at the extremal points

of the region, say (xb, yb) = (x−nc∆x
2
, y−nr∆t

2
) to determine h(b,a) is dependent on

the value of the input image f(x, y) in the neighbourhood R(xb, yb) (c.f. eq 2.22).

This is true for any (xb, yb) at the boundary ofR(x, y), which is figuratively shown

in figure 2.7, where the effective area in the input image for the output h(b,a)(x, y)

in the blue square is given by the red square. Therefore, the successive application

of convolution operation separates the problem of extracting features to different

length scales in the input image f(x, y). The effective range of correlations that a

filter can extract increases as one increases the number of convolution operations.

Pooling: The success of CNNs depends on another important operation which

downsamples a feature map Ga
ij. Such operations, called pooling operations,

replace the value of the element Ga
ij by a function of its neighbouring values.

The size of the neighbour is called the pool size, and popular choices include

taking the maximum, average or sum of the neighbourhood. A pooling operation

reduces the dimensionality by taking only a summary over a larger area. A more

aggressive dimensionality reduction can be achieved if we pool over the image with

more than a single stride. In the continuous limit, one can write a max-pooling

operation as

pa(x, y) = max
(x′,y′)∈Rp(x,y)

ga(x′, y′) , (2.25)

while an average pooling operation can be written as,

pa(x, y) =

∫
Rp(x,y)

dx′dy′ ga(x′, y′)∫
Rp(x,y)

dx′dy′
. (2.26)

The neighbourhood Rp(x, y) is defined in analogy to R(x, y) (eq. 2.23) for a pool

size of say mr ×mc.

2.3.2.1 Calorimeter Images

In the preceding discussions, we have laid down the basic concept of convolutional

architecture and its inductive biases. Here, we define calorimeter images and

look at some of their properties from the perspective of perturbative QCD. A

calorimeter image in some connected region in the (η, φ) plane can be defined in
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analogy to eq 2.19 as

Fi,j = F (ηi, φi) :=

∫ ηi+
∆η
2

ηi−∆η
2

dη

∫ φi+
∆φ
2

φi−∆φ
2

dφ pT (η, φ) , (2.27)

which is sampled with a resolution (∆η,∆φ). The convolution operation now

becomes,

ga(η, φ) =

∫
R(η,φ)

dη′dφ′ wa(η′, φ′) pT (η − η′, φ− φ′) . (2.28)

From this expression, one can infer that the feature functions ga(η, φ) for any

generic filter wa(η, φ) is not sensitive to the soft radiation when pT → 0. Since

CNNs are connectionist models where all following layers are sequentially depen-

dent on ga(η, φ), the output will therefore be robust to soft emissions. This has

been numerically verified in reference [123].

For exactly collinear emissions, the calorimeter resolution (∆η,∆φ) provides a

natural cutoff. However, one would not want the output to be highly sensitive to

the experimental resolutions. The pooling operation whose output is tolerant to

small deformations in the data should make the network output less susceptible

to small angle (but not exactly collinear) emissions. A max-pooling operation

will be more sensitive to such effects since emissions from the hardest particles

determining the maximum value of ga(η, φ) in the neighbourhood will change

the maximum value. However, an average pooling operation (or a sum pooling)

would be more resilient since the pT sum would not be significantly affected

in a particle’s neighbourhood with such a splitting. A CNN is not completely

impervious to such effects since a splitting that changes the value of η and φ of

the daughter particles will cause a change in the value of the filter wa(η, φ) while

evaluating ga(η, φ) with eq. 2.28.

The other properties of CNNs like local connectivity, parameter sharing, and

scale separation are good approximations of QCD behaviour. The parton shower

structure in the collinear limits mandates that particles are closely related to other

particles in their immediate vicinity. Although wide-angle soft gluon emissions

are important in determining the colour flow in an event, they are sensitive to

non-perturbative multi-parton interactions. They are not as well-controlled as the

collinear regions, and one would not want the algorithm to be highly susceptible

to such effects for general searches. The universality of parton emissions makes it

favourable to share the weights to pick up their features irrespective of the posi-

tion. Moreover, identifying hard prongs within jets or jets within an event requires

looking at different scales in the image, which is naturally done with sequential

convolutions. Due to their favourable biases in identifying QCD radiation pat-

terns, CNNs have been applied to various supervised [117–120,122,167,189,190]

and unsupervised [167,169,170,191] jet-tagging tasks and signal event classifica-

tion [192–196] scenarios.
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2.3.2.2 Drawbacks of CNNs in LHC phenomenology

We have seen in the preceding discussions that CNNs and images have inductive

biases innately suitable for differentiating QCD radiation patterns. However,

they have some disadvantages in identifying various other factors of QCD and

event kinematics beyond the Euclidean nature that it presumes. This section will

highlight some of the issues that limit the practical application of CNNs to LHC

phenomenology.

The first disadvantage is the sparsity of the calorimeter images, which makes

their use waste a lot of computational power. The number of non-zero pixels in a

calorimeter image of N×N dimensions is approximately O(N). For a typical jet-

image size of 32×32, only about 3% of the total pixels are non-zero. This fraction

decreases as one increases the image size. This also prohibits the generalisation

of convolutional architectures to higher dimensions as the sparsity will reduce as

one increases the dimensions.

The next drawback is the generalisation of convolution operation to non-

Euclidean domains. The generality of Riemannian manifolds makes it highly

non-trivial to have a common framework of convolutional operations with non-

Euclidean metric signatures [197]. The situation is even more intricate in the case

of high-energy physics, where the underlying manifold is pseudo-Riemannian and

is formally non-compact.

The nature of the image representation prohibits an efficient representation of

heterogeneous data, which is naturally obtained at LHC, whether low-level from

the different components of the detector or the various classes of reconstructed

objects. Moreover, a Euclidean binning assumes an ordered structure and fixed

dimensions, which is not the natural representation of the obtained data. The raw

or reconstructed data can have a variable number of particles or reconstructed

objects, respectively, from event to event and is essentially an unordered set with

only their interrelations being important.

2.3.3 Graph Neural Networks

In the discussions above, we have seen that although CNNs can differentiate

Euclidean patterns in the QCD radiation patterns in the lego plane, they cannot

capture many other aspects of high-energy collisions like the non-Euclidean nature

of spacetime. Graph Neural Networks [198–200] (GNNs) are hierarchical neural

networks [201] that take the favourable inductive biases like local connectivity

(thereby separating the scales with sequential application) and parameter-sharing

of CNNs to data sampled from an underlying metric with possibly any non-

Euclidean metric. GNNs consist of several subnetworks organised so that the

output respects properties of graph-structured data like permutation-invariance of

the nodes. In machine-learning literature, two distinct subareas use GNNs. One

consists of learning the structure of graphs (generally very large) and classifying



44 Chapter 2. Methodology

the nodes or edges. Such problems are usually transductive [202], where the

model tries to extend knowledge from labelled data to unlabelled regions. The

other area of more immediate interest in LHC physics uses GNNs [203] to extract

features from point clouds [204–206].

The evolution of a typical QCD event from high to low energies is well un-

derstood over a vast range of energy scales, as demonstrated by the successful

application of QCD shower Monte Carlo programmes to the modelling of collider

data (see, e.g. [207]). This evolution also motivates the application of Graph

Neural Networks (GNNs) [208, 209] to QCD phenomenology, as recently done

in Refs. [210], and exploit the Lund-plane representation of splittings [211, 212].

GNNs have also been studied in various scenarios [155, 213–216] at the LHC.

Moreover, they have also shown promising performances for use in real-time trig-

gers [217].

GNNs have been studied for jet classification in supervised [210, 218–222]

as well as unsupervised [168, 223] scenarios and have state-of-the-art perfor-

mance [219] compared to other still excellent architectures [224] like Convolutional

Neural Networks (CNNs), Deep-sets, and Recurrent Neural Networks (RNNs).

The better performance originates in GNNs having an inductive bias more appro-

priate for jet substructure and collider physics. These biases include generalising

the Euclidean bias of CNNs to higher dimensional non-Euclidean spaces [225],

enhancing the feature extraction in the deep-sets [204–206] framework by includ-

ing local structures [203], and generalising RNNs [226, 227] to undirected cyclic

graphs [198]. It has received wide attention in recent years and has been con-

cisely described in the message-passing neural network (MPNN) formalism [199].

Thus, we will examine the MPNN formalism concentrating on the problem of

inductive graph classification. Before explaining MPNNs, we will briefly describe

the basic properties of graphs focussing on those neccesary to understand their

construction from point clouds, and a better understanding of information flow

in MPNNs.

2.3.3.1 Point clouds to graphs

Point clouds are sets of data points sampled from an underlying metric space. It

is the most general and abstract way to define data and hence can represent data

of virtually any nature. For instance, the calorimeter hits would be represented

by a set of S = {p1, p2, ...., pNhits} with the four vectors of the impacts as its

elements. Note that since S is a set, the ordering of the particles does not matter.

Moreover, we can now have different sets for each detector component. At their

outset, models capable of processing point clouds should be capable of handling

sets of variable cardinality, and their output should not depend on the order of the

data. The second point is a practical consequence since computing models will

invariably take data in some particular order–to preserve the underlying property

of sets, we make the model’s output invariant to permutations in the order of the
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constituents.

Models which process point clouds do so by looking at the topology and

the geometry of the point cloud. Simpler models [204–206] take these points to

output their collective property. However, many tasks in machine-learning and

collider physics generally involve complex correlations between the constituents

of the sets. As a concrete example, to study any process, we look at the relative

positions of the final state particles like the rapidity gap ∆ηjj for vector-boson

fusion processes or the interparticle distance ∆Rij for various substructure ob-

servables. Therefore, such inter particle correlations can be efficiently abstracted

by constructing a graph out of the constituents. Thus, for our case, graphs are

point clouds with the addition of edges and edge features, which capture the

inter-component relations.

A graph G(S, E) is defined on a set of nodes S with edges E ⊆ S × S =

{(i, j) | i, j ∈ S} consisting of an ordered pair of elements in S. The nodes can

have a representation hi ∈ M ∀ i ∈ S, in some metric space M, where hi is

the feature of node i. In the context of LHC phenomenology, this metric-space

is the union of the timelike and lightlike regions of the Lorentz manifold with

the Minkowski metric or some other metric in flat spacetime. It can also include

other information like charge, detector component etc. When learning from a

point cloud, the edge set E is not provided a priori and is constructed with an

algorithm defined on the node features. Well-known examples exist in the point

cloud literature [228], the most famous one being the k-nearest neighbour (k-NN)

graph [203, 219]. The edges can also have a representation eij in some space X .

In our context, these can be quantities like mass, directional separation, or the

generalised kt measures [91], which are derived from the node features themselves.

A walk is a sequence of edges that joins a sequence of nodes; for instance,

W = ((i, j), (j, l), (l,m), (m, i), (i, j))

is a walk with the edge (i, j) repeated twice. On a graph, all possible walks of

length L would indicate all possible flow of information between the nodes under

L iterative application of message-passing operations. If all the edges are distinct,

a walk is called a trail. A path is a trail with no repeated nodes. The distance

between two nodes is given by the number of edges of their shortest possible path.

Considering a jet graph after L message-passing operations, any two nodes with a

distance less than or equal to L would have information about each other encoded

in the updated node features. A graph cycle is a trail where the first and the last

node corresponds to the same node, with all other nodes distinct. A cyclic graph

has at least one graph cycle. If a graph has no graph cycles, it is called an acyclic

graph. A connected acyclic graph is called a tree. QCD splittings are naturally

described by a tree [211,229].

A simple graph is one where two distinct nodes can have at most one connec-

tion, and there are no self-loops. A graph is undirected if we do not distinguish
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an edge based on the order of the nodes it connects; instead of the edge being

defined by an ordered pair, we define it by an unordered pair. Constructing a

directed graph will inherently have richer structural information of the underlying

space on a point cloud. If a graph is simple, it can be equivalently represented in

terms of neighbourhood sets N (i) in place of the edge set E . For a directed graph,

N (i) is defined for each node i, as the set containing all the nodes with incoming

connections to i. We can allow for self-loops if we take the closed neighbourhood

where i is also a part of the set N [i] 3 i. The l-hop neighbourhood of a node i is

the set of all nodes with distances from i, less than, or equal to l.

2.3.3.2 Message-passing Neural Networks

Modern deep neural networks (DNNs) generally have a two-stage architecture:

a specialised feature extraction section, followed by a generic dense architecture

processing the extracted information further. Message-passing neural networks

(MPNNs) are specialised feature extraction modules that act on graphs with node

features and edge features. A message-passing operation takes a graph with node

features h
(l)
i as input and updates it to h(l+1), with a two-step process:

1. Message passing: We define a learnable function Φ(l) with trainable pa-

rameters,�� which takes as input the node features h
(l)
i and h

(l)
j , connected

by the edge�� (i, j) and returns the message im
(l)
j ,

im
(l)
j = Φ(l)(h

(l)
i ,h

(l)
j ) . (2.29)

The message is calculated for all edges present in the graph. We choose to

use the notation im
(l)
j instead of a homogenous subscript to make it evident

that the message or the function Φ(l) need not be symmetric with respect

to the source node j, and the destination node i.

2. Node readout: The nodes are updated with new features h
(l+1)
i by apply-

ing a permutation invariant function �local to all incoming messages

h
(l)
i → h

(l+1)
i = �local

j∈N (i)
im

(l)
j . (2.30)

Note that the updated features h
(l+1)
i , contain the local neighbourhood in-

formation of i.

As one can see, the process of constructing a graph itself is a strong inductive

bias in any GNN since the neighbourhood set N (i) constrains the local connectiv-

ity of any nodes i. Therefore, an MPNN taking as the complete graph Kn (each

node is connected to every other node) as inputs will have no local connectivity.

��This can be a multilayer perceptron, but it can be a collection of sub networks arranged in
some particular way in general.

��It can also take the corresponding edge feature e
(l)
ij if present.
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Message-passing

Node Readout

Graph Readout

Classification score

Figure 2.8: A diagramatic representation of a message-passing neural net-
work(MPNN) for graph-classification. We are given a graph G(S, E) with nodes

S and edge set E . Each node i has a feature vector h
(l)
i . The first step called

the message-passing involves evaluating the message im
(l)
j for each edge in (j, i)

via a DNN Φ(l) shared for all edges. The different MPNN proposed in literature
has structural differences in how Φ(l) takes the inputs, which could include edge
features as well. The second step, called the node readout, updates the features of
each node to h

(l+1)
i with a permutation invariant function �local acting on all in-

coming messages. After L iterations, a graph readout function �global on the final
node features h

(L)
i , gives fixed length n-dimensional graph representation g. This

is fed into a downstream neural network which outputs the graph classification
score y.

This global connectivity is similar in spirit to using a filter size of the same dimen-

sions as the image in the case of CNNs. The learnable parameters are shared all

over the graph since the message-function Φ(l)(h
(l)
i ,h

(l)
j ) is shared for all edges in

the graph. The sequential application of message-passing operation coupled with

the local connectivity ensures a separation of scales similar to the case of CNNs.

In the following, we discuss the scale separation and other emergent features in

MPPNs in detail.

The message-passing operation can be repeated any number of times. Each it-

eration leads to a gradual increase in the neighbourhood information held within
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the node features. On a static graph where the neighbourhood sets N (i) or

equivalently the edge set E remain unchanged, the node features contain infor-

mation of the L-hop neighbourhood when applied L times. Thus, the number of

message-passing operations applied L, is a crucial hyperparameter in any GNN.

It determines the scale at which the final node features h
(L)
i , capture the local

structures within the graph. The number L is restrained by the high computa-

tional cost of applying message passing operations, thereby reducing expressive

power for the classification of large graphs. Even for jet graphs, we have a rela-

tively large number of nodes, and hence, the information gets restricted to a local

scale, intrinsically determined by L. For instance, in a two-prong W tagging case,

if L is lesser than the length of the path between the two hard subjets, which

would vary for each jet graph, the message-passing functions Φ(l) would not see

this feature for jets with several soft particles nsoft > L, between the two subjets.

Nevertheless, a precisely determined graph construction algorithm would proba-

bilistically give graphs with very low < nsoft >≈ 0. To avoid this limitation in

the message-passing step, dynamic graphs are used to gather information from

different scales, with the possibility of learning correlations from the entire graph

after one dynamic iteration. However, for the same L, dynamic MPNNs will

have a higher computational cost because of the added graph construction after

each message-passing operation. Moreover, it may not always be desirable to mix

information at the message-passing stage as the graph representation would still

have the global features intact.

Note that the number of nodes in a graph can vary. For graph classification,

a permutation invariant graph readout function �global is applied to these node

features, giving a fixed-length global representation of the graph

g = �global
i∈G h

(L)
i . (2.31)

In all instances, a graph readout serves similar purposes to the node readout, with

the only difference being the scale of the operation. The graph representation is

fed into a densely connected network, which outputs a classification score for the

whole graph. The steps of an MPNN for graph classification, which we have

discussed, are shown diagrammatically in Figure 2.8.

2.3.4 Deep-learning libraries

The applications of modern deep-learning in industry and fundamental research

are propelled by the wide availability of easy-to-code python libraries with back-

ends having GPU acceleration capabilities. Such libraries accelerate the imple-

mentation of complex deep-learning modules and their training by implementing

automatic differentiation libraries in GPUs for the back-propagation algorithm

while leaving the essential aspects of architecture design highly flexible. Here, we

summarise the various libraries used extensively in the studies conducted for this
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thesis.

TensorFlow [230] and PyTorch [231] are two of the most popular deep-learning

libraries which provide a base for other high-end packages. Initially, Tensorflow

was based on a static computational graph for executing the models, making

it problematic to implement models that inherently take variable-length inputs.

Recent versions have moved to dynamic computational graph definitions, similar

to PyTorch. The Keras [232] package provides high-level abstractions to Tensor-

Flow’s model definition and training implementations, which now comes prebuilt

as a module within TensorFlow. On the other hand, although default classes

in PyTorch, like “torch.nn.module”, provides high-level model implementation,

training implementation is still rather involved compared to Keras. However, the

design of PyTorch is generically pythonic and less complicated compared to their

equivalent TensorFlow implementations.

Due to TensorFlow’s initial static computational design, the generic imple-

mentation of models like graph neural networks with variable length inputs have

been popularly based on PyTorch. Deep Graph Library [233] is a high-level

python package for implementing graph neural networks. Although it has op-

tional backends to both TensorFlow and PyTorch, we will primarily use the Py-

Torch version, which is more mature. Pytorch Geometric [234] is a high-level

extension of PyTorch with easy-to-use abstractions for handling and designing

new graph neural network architectures. It follows the same design principles as

PyTorch and is much more pythonic than DGL.

2.4 Summary

This chapter has laid down the basics of jet substructure techniques and Artificial

Neural Networks. Although deep-learning algorithms are extremely powerful,

we have seen that this excellent performance results from an intricate design of

neural network architectures and exploiting underlying features in data. In stark

contrast to practical applications of such algorithms in the industry, problems

in particle physics phenomenology consist of studying the nature of fundamental

interactions which have well-understood behaviour but intractable probability

distributions. Therefore, it is essential to scrutinise such deep-learning algorithms

in detail, including, but not limited to, their resilience to imperfect simulations,

interpretability, and possibly an understanding of their convergence properties

from a first principle analysis. We will analyse their applicability and performance

in some scenarios of interest in the following chapters.





Chapter 3

Probing invisible VBF Higgs

decay with CNNs

In this chapter, we study the capability of CNNs to identify vector boson fusion

signatures. Vector-boson fusion (VBF) production of color singlet particles pro-

vide a unique signature in hadron colliders. First studied in reference [235–237],

they are characterised by the presence of two hard jets in the forward regions

with a large rapidity gap, and a relative absence of hadronic activity in the cen-

tral regions, when the singlet particle decays non-hadronically. For illustration,

the left panel of figure 3.1 shows an event of a Higgs produced in VBF channel

decaying invisibly in a simplistic tower geometry, while the same event is mapped

in a flattened (η, φ) plane by rolling out the φ-axis, with the height of the bars

corresponding to the magnitude of the transverse projection of calorimeter en-

ergy deposits in each pixel. In order to highlight the differences with non-VBF

processes, it is instructive to show one such example in figure 3.2. This is a rep-

resentative event from Z(νν̄) + jets background, where the jets arise from QCD

vertices, which inherently has a much higher hadronic activity in the central re-

gions between the two leading jets. Even though the rapidity gap vanishes when

the singlet particle decays hadronically, the absence of color connection between

the two forward jets and the central region persists and has been used in the

experimental analysis [238], in searches of the Higgs boson decaying to bottom

quarks. The VBF process was proposed as the most important mechanism for

heavy Higgs searches [239] thanks to a much slower fall in cross-section com-

pared to the s-channel mediated process. Usefulness for intermediate to light

mass scalar was also subsequently realised [240] due to its unique signature at

the collider. VBF process holds great importance to measure Higgs coupling with

gauge bosons and fermions as it allows independent observations of Higgs decay

like h0 → WW [241], h0 → ττ [242]. Therefore, it also plays a vital role in

determining anomalous coupling to vector boson [243, 244] or the CP properties

of the Higgs [245, 246]. Its clean features make it the most sensitive channel for

searching invisible decay of the Higgs boson [247] and in search for physics beyond

51
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Figure 3.1: The figure shows a 3D depiction of a prototype signal event originated
from an electroweak VBF Higgs production in a naive detector geometry in left
plot. The same event is flattened in a convenient η − φ plane in right plot,
where the transverse projection of calorimeter energy deposits in different pixels
are drawn. Two reconstructed primary jets are shown with color circles, and
corresponding transverse energy deposits are visible from height of the bars.

the standard model [248–250].

The rest of the chapter is organised as follows. In Section 3.1, we discuss the

Higgs production mechanism via the VBF channel and different SM backgrounds

contributing to this process. We also discuss the generation of simulated data

consistent with the VBF search strategy. In Section 3.2, we describe the details

of the data representation used in the present study. Here, different classes of

high-level variables are also defined. Preprocessing methods of feature spaces

are addressed in Section 3.3. We discuss the seven different neural network ar-

chitecture and its performance in Section 3.4. The results, interpreted in terms

of expected bounds on the invisible branching ratio, for all the architectures are

presented in Section 7.4. There, we also discuss the impact of pileup on the result

of our analysis. Finally, we close our discussion with the summary and conclusion

in the Section 3.6.

3.1 Vector Boson Fusion production of Higgs

and analysis set-up

VBF production of the SM Higgs has the second-highest production cross-section

after gluon-fusion at the LHC. Loop induced Higgs production and decay depend

on the presence of contributing particles and different modifiers in fermions and

gauge boson coupling with the scalar. Hence, both production cross-section and

decay branching ratios are modified in the presence of new physics. In this present

work, we consider the production of SM like Higgs boson and constrain its invisible
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Figure 3.2: Same as figure 3.1, but for a prototype background event originated
from a Z(νν̄) + jets production, where the jets originate from QCD vertices.

q q

h0

q′ q̄

g

g

h0

Figure 3.3: Representative diagrams for production of Higgs signal through (left)
electroweak VBF channel and (right) a higher-order QCD process in gluon fusion
where two QCD jets can be detected along with a sizable missing transverse-
energy from invisible Higgs decay.

decay width. Such constraint is essential in many new physics scenarios, such

as Higgs portal dark matter [27–31], where new particles do not modify their

couplings with SM particles.

The electroweak production of Higgs is dominated by the fusion of two massive

vector bosons, which are radiated off two initial (anti-)quarks, as represented in

figure 3.3 (left plot). This exchange of color singlet state between two quarks

ensures no color connection between two final jets, typically produced in a forward

(backward) region of the opposite hemisphere. The central region - between

these two jets remain color quiet, lacking any jet activity even after radiation

and fragmentation of the two scattered quarks while looking at the hadronic final

states. As we have already discussed, an agnostic viewpoint requires a serious

re-examination after the inclusion of all other processes, such as non-VBF Higgs

signal from gluon fusion. One such sample diagram is shown in figure 3.3 (right

plot). Additional radiation from gluons can provide a typical VBF type signal,

once again, in the absence of the key attributes like color-quiet central region,

etc.

Another interesting feature of VBF Higgs production is that the corresponding

cross-section has very modest correction under higher-order QCD, which has been

known for a long time [251,252]. Integrated and differential cross sections for VBF
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Higgs production have now been calculated up to very high levels of accuracy.

QCD corrections are known up to N3LO [253], reducing the scale-uncertainty

up to 2%, while Electroweak corrections are known up to NLO [254]. Moreover,

non-factorizable contributions have also been calculated for the first time [255],

and show up to percent level corrections compared to the leading order (LO)

distributions.

At hadron colliders, traditional searches [256–259] of non-hadronically decay-

ing color-singlet particles in the VBF production channel focus on rejecting the

large QCD backgrounds from Z+jets, and W+jets background via a central jet-

veto, after a hard cut on the separation of the two forward jets in pseudorapidity

|∆ηjj|, and the dijet invariant mass mjj. This opens up the possibility of us-

ing inclusive event-shape variables like N-jettiness [106], to improve the selection

efficiency [260]. In this study, we explore the feasibility of using deep-learning

techniques instead of event-shape variables. We study the invisible decay of the

Higgs boson as a prototype channel for gauging the power of deep-learning meth-

ods in VBF since there is no contamination on the radiation patterns between

the two forward jets from the decay products. We closely follow the shape-based

analysis performed by the CMS experiment at LHC [261].* As already com-

mented, the central jet veto played a critical role in the usual searches of VBF

to control the vast QCD background. The role of additional information from

QCD radiation between the tagging jets and within the jet itself was explored in

references [263, 264]. It was found that relaxation of the minimum pT require-

ment of the central jet improved the sensitivity, and the inclusion of subjet level

information resulted in further suppression of backgrounds. However, the present

analysis does not rely on a central jet veto, as the main aim is to study the VBF

topology with the low-level data, made possible with modern deep-learning algo-

rithms. Therefore, with the relaxed selection requirements on |∆ηjj| and mjj, the

selected signal gets a significant contribution from the gluon-fusion production of

Higgs on top of VBF processes. Due to the relaxed selection criteria, we also get

a substantial contribution from QCD backgrounds.

3.1.1 Signal topology

The present study relies on all dominant contributions to Higgs coming both

from electroweak VBF processes and also higher-order in QCD gluon fusion pro-

cesses. Here at least two jets should be reconstructed along with sizable missing

transverse-energy from invisible decay of Higgs. Hence, we classify the full signal

contribution in two channels:

� SQCD: Gluon-fusion production of Higgs with two hard jets, where the

Higgs decays invisibly.

� SEW : Vector-Boson fusion production of Higgs decaying invisibly.

*For the ATLAS results with similar data, see reference [262].
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q q
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q̄ q̄

g q
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Figure 3.4: Representative diagrams for dominant background processes through
(left) VBF type weak production and (right) QCD production of massive vector-
bosons V , such as W or Z which decay invisibly by producing undetected lepton
or neutrinos.

The subscript EW (QCD) denotes the absence (presence) of strong coupling αS,

at leading order(LO) for the interested topology. This also segregates the channels

with absence or presence of color exchange between the two incoming partons at

LO. Figure 3.3 shows a representative Feynman diagram of the signal channels

in each class.

3.1.2 Backgrounds

The major backgrounds contributing to the invisible Higgs VBF signature can

come from the different standard model processes. Among them, VBF type

electroweak, and QCD production of massive vector-bosons (W or Z) contribute

copiously. All these processes ensure a pair of reconstructed jets along with

considerable missing transverse energy from invisible decay of these gauge bosons.

A substantial fraction of W and Z can produce neutrinos or a lepton which remain

undetected at the detector. We consider the following backgrounds in all our

analyses:

� ZQCD: Z(νν̄) + jets process contributes as the major SM background due

to high cross section.

� WQCD: W±(l±ν)+jets process also contribute to the SM background when

the lepton is not identified.

� ZEW : Electroweak production of Z decaying invisibly along with two hard

jets is topologically identical with the electroweak signal and contributes

significantly to the background.

� WEW : Electroweak production of W± with two hard jets can also pro-

duce an identical signal when the lepton does not satisfy the identification

criteria.

Similar to the signal processes, the subscript EW (QCD) denotes the absence

(presence) of strong coupling αS, at LO for the interested topology having at

least two reconstructed jets in the final state. Figure 3.4 shows representative

Feynman diagrams of the background channels divided into four different classes.



56 Chapter 3. Probing invisible VBF Higgs decay with CNNs

There are also other background processes like top-quark production, diboson

processes, and QCD multijet backgrounds whose contribution would be highly

suppressed compared to these four backgrounds. The top and diboson back-

grounds would contribute to leptonic decay channels where charged leptons, if

present, are not identified, while the QCD multijet background would contribute

when there is severe mismeasurement of the jet energies.

3.1.3 Simulation details

We used MadGraph5 aMC@NLO (v2.6.5) [61] to generate parton-level events for all

processes at 13 TeV LHC. These events are then showered and hadronised with

Pythia8 (v8.243) [70]. Delphes3 (v3.4.1) [72] is used for fast-detector simulation

of the CMS working conditions. Jets are clustered using the FastJet (v3.2.1) [94]

package. The signal processes are generated using a modified version of the Higgs

Effective Field Theory (HEFT) model [69, 265, 266], where the Higgs boson can

decay to a pair of scalar dark matter particle at tree level. We are interested in

probing high transverse momentum of Higgs, where the finite mass of top quark

in gluon fusion becomes essential. Hence, we have taken into account such effect

by reweighting the missing transverse energy (met) distribution of the events

with recommendations from reference [267]. The parton level cross-sections of

ZQCD and WQCD were also matched up to four and two jets, respectively, via the

MLM procedure [268]. Since the W± backgrounds contribute when the leptons

are missed within the range of tracker or when they are not reconstructed at the

detector, the parton level cuts on the generated leptons are removed to cover the

whole range in pseudorapidity (η).

For a consistent comparison with current experimental results, we repeat the

shape-analysis of reference [261] with our simulated dataset. The met cut for the

deep-learning study is relaxed from 250 GeV to 200 GeV.

Baseline selection criteria: We apply the following pre-selections:

� Jet pT : At least two jets with leading (sub-leading) jet having minimum

transverse momentum pT > 80 (40) GeV.

� Lepton-veto: We veto events with the reconstructed electron (muon) with

minimum transverse momentum pT > 10 GeV in the central region, i.e.

|η| < 2.5 (2.4). This rejects leptonic decay of single W±, and semi-leptonic

tt̄ backgrounds.

� Photon-veto: Events having any photon with pT > 15 GeV in the central

region, |η| < 2.5 are discarded.

� τ and b-veto: No tau-tagged jets in |η| < 2.3 with pT > 18 GeV, and

no b-tagged jets in |η| < 2.5 with pT > 20 GeV are allowed. This rejects

leptonic decay of single W±, semi-leptonic tt̄ and single top backgrounds.
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Figure 3.5: Distribution of (left) mjj and (right) ∆ηjj of events passed after the
passing the tighter selection requirement (met > 250 GeV). The contribution of
each channel to its parent class has been weighted by their cross-sections and the
baseline efficiency at 13 TeV. The signal and backgrounds are then individually
normalised, and the lines/color show the contribution of each channel to its parent
class.

� MET: Total missing transverse momentum for the event must satisfy met >

200 GeV for all our deep-learning study, whereas we compared CMS shape-

analysis consistent with met > 250 GEV.

� Alignment of MET with respect to jet directions: Azimuthal angle

separation between the reconstructed jet with the missing transverse mo-

mentum to satisfy min(∆φ(~pmetT , ~pjT )) > 0.5 for up to four leading jets with

pT > 30 GeV and |η| < 4.7. QCD multi-jet background that arises due to

severe mismeasurement is reduced significantly via this requirement.

� Jet rapidity: We require both jets to have produced with |ηj| < 4.7, and

at least one of the jets to have |ηji | < 3, since the L1 triggers at CMS do

not use the information from the forward regions.

� Jets in opposite hemisphere: Those events which have the two leading

jets reside in the opposite hemisphere in η are selected. This is done by

imposing the condition ηj1 × ηj2 < 0.

� Azimuthal angle separation between jets: Events with |∆φjj| < 1.5

are selected. This helps in reducing all non-VBF backgrounds.

� Jet rapidity gap: Events having minimum rapidity gap between two lead-

ing jets |∆ηjj| > 1 are selected.

� Di-jet invariant mass: We required a minimum invariant mass of two

leading jets, mjj > 200 GeV. Note that, this along with the previous se-

lection requirements are relatively loose compared to traditional selection

criteria of VBF topologies, which result in significant enhancement of the

signal from SQCD, although at the cost of increased QCD backgrounds

(ZQCD and WQCD).
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Interestingly, one can notice that a relaxed selection requirement may give rise to

additional contamination from Higgs-strahlung type topologies to the SEW chan-

nel, which is included in our EW generation of events. However, these events are

not expected to survive a selection of di-jet invariant masses of more than 200

GeV. After extracting the events passing the above selection requirements and

the respective selection efficiency (calculated from the weights) for SQCD, the pre-

selected events are unweighted again so that we get equal weights for individual

events.� The background and signal classes are formed by mixing the channels

with the expected proportions using appropriate k-factors, cross-sections, and the

baseline selection efficiencies. We use cross-sections quoted in reference [267] for

both signal processes. For instance, the SQCD is calculated up to NNLL +NNLO

accuracy [269], while for SEW it is calculated up to NNLO [270] in QCD and

NLO in electroweak. We use the LO distributions with their overall normali-

sations increased to accommodate the total cross-section at higher perturbative

accuracies without accounting for the possible change in shape. Similarly, all

background cross sections are calculated by scaling the LO result with global

NLO k-factors [271, 272]. We generated 200,000 training and 50,000 validation

balanced dataset of events for the deep-learning classifier. The signal class con-

sists of 44.8% SEW and the 55.2% SQCD channels; while the background class

consists of 51.221% ZQCD, 44.896% WQCD, 2.295% ZEW and 1.587% WEW chan-

nels.

We also extract event sample for all channels with the harder selection re-

quirement on missing transverse momentum (met > 250 GeV), the value used in

reference [261], from the same set of generated events used for the deep-learning

analysis. The extracted dataset contains: 39% SEW and the 61% SQCD channels

for the signal class; and 54.43% ZQCD, 40.92% WQCD, 3.05% ZEW and 1.58%

WEW channels for the background class. The bin-wise stacked histogram of all

channels for mjj and |∆ηjj| are shown in figure 3.5. The properties of the EW

and the QCD subsets are evident from these distributions: EW contribute more

at higher mjj and |∆ηjj|, while the opposite is true for QCD.

3.2 Data Representation for the Network

Neural network architectures for deep-learning are mostly designed with two

blocks. The first stage generally consists of locally-connected layers (with or

without weight sharing) with some particular domain level specifications which

extract the features. The second stage consists typically of densely connected

layers, whose function is to find a direction in the learned feature-space, which

optimally satisfies the particular target of the network locally by learning its pro-

jections in different representations at each subsequent layer. For instance, in

�See Appendix A, for the distribution of important kinematic variables and details of the
re-weighting and unweighting of events.
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Figure 3.6: Similar to figure 3.5, some of the basic input high-level kinematic
variables used for our analysis (met > 200 GeV) are shown for signal and back-
ground.

classification problems, it finds the decision boundary between different classes.

At the same time, in an unsupervised clustering, it compresses the feature-space

so that the modes become localised in a smaller volume. A synergy between the

representation of data and the network architecture is a must for efficient feature

extraction. This is evident from the fact that convolutional neural networks per-

form best with data structures that have an underlying Euclidean structure, while

recurrent networks work best with sequential data structures. In the context of

classifying boosted heavy particles like W , Higgs, top quark or heavy scalars de-

caying to large-radius jets from QCD background, a lot of efforts [115–119, 122]

went into representing the data like an image in the (η, φ) plane to use convo-

lutional layers for feature extraction, while some others [173, 178], use physics-

motivated architectures. Convolutional architectures work in these cases because

the differences between the signal jet and the background (QCD) follows a Eu-

clidean structure.� The Minkowski structure of space-time prohibits a direct

use of convolutional architectures. Although geometric approaches [197] exist to

counter the non-Euclidean nature, the number of dimensions makes it computa-

tionally expensive. Graph neural networks [200, 216, 273, 274] provide a possible

workaround which is computationally less intensive, for feature learning in non-

Euclidean domains.

�Most high-level variables designed from QCD knowledge are functions of ∆R =√
∆η2 + ∆φ2.
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Figure 3.7: The separation of the 7 highest performing variables (given in per-
centage).

We want to study the difference in radiation patterns between the two forward

jets for signal and background events; hence, we primarily choose a convolutional

architecture for automatic feature extraction. Therefore, the low-level feature

space we prefer is the tower-image, in the (η, φ)-plane, with the transverse energy

ET , as the pixel values. One can take into account the different resolutions in the

central and forward regions of calorimeter towers in LHC detectors. For simplic-

ity, and also to demonstrate the resolution dependence, we construct two images -

a high-resolution image with bin size 0.08×0.08, and a low-resolution image with

bin size 0.17× 0.17, in the full range of the tower, [−5, 5] for η and while [−π, π)

for φ. Convolutional neural-networks, in general, look at global differences, and

increasing the resolution does not play as important a role. We examine CNNs

in these two different resolutions to inspect this for our particular case. The pro-

cedure of forming a tower-image does not naturally take the periodicity of the φ

axis into account. In order to let the network know this inherently, we expand the

image obtained after binning, in the φ axis such that the connectivity between

the two edges is not broken. This is done by taking a predetermined number

of φ-rows from each edge of the original image and forming a new image where

these rows are padded [192, 195] in their corresponding opposite sides, thereby

mimicking the periodicity. This is similar to cutting the cylinder at two different

points in φ for each edge, such that there is an overlapping region in the final

image. Taking the jet radius R = 0.5, which have a regular geometry since they

are clustered with anti-kt algorithm [91], we choose the number of rows to be 4

(8) for the low (high)-resolution images, with one bin as a buffer. This gives a

low-resolution (LR) image of 59× 45 and a high-resolution (HR) one of 125× 95.

A significant difference between low-level and high-level feature spaces is that

the modes of the data in low-level representations are not distinct. Although

this is marginally enhanced by preprocessing, high-level features derived from

the said low-level features have distinctly localised modes in their distribution.

An exemplary ability of deep-learning algorithms is to by-pass this step and

learn their own representations which perform better than the high-level variables

developed by domain-specific methods. To analyse the relative performance of
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physics-motivated variables derived from the calorimeter deposits, we consider

two classes of high-level variables. The first one consists of the following kinematic

variables:

K ≡ ( |∆ηjj|, |∆φjj| , mjj , met , φmet , ∆φj1met , ∆φj2met , ∆φj1+j2
met )

φmet is the azimuthal direction of met in the lab-frame. ∆φj1met, ∆φj2met and

∆φj1+j2
met are the azimuthal separation of met with the direction of the leading,

sub-leading and the vector sum of these two jets, respectively. Clearly, these

do not contain any information about the radiation pattern between the tagging

jets. The second class of variables: the sum of ET of the tower constituents in

the interval [−ηC , ηC ], incorporates this information:

R ≡ (HηC
T |ηC ∈ E) , HηC

T =
∑
η<|ηC |

ET . (3.1)

E denotes the set of chosen ηC ’s. We vary ηC uniformly in the interval [1,5]:

E = {1, 1.27, 1.53, 1.8, 2.07, 2.33, 2.6, 2.87, 3.13, 3.4, 3.67, 3.93, 4.2, 4.47, 4.73, 5},

to get 16 such variables. Their inclusion helps us to provide a thorough compar-

ison of the high-level and low-level feature spaces. Figure 3.6 shows the signal

vs background distribution of some important kinematic-variables. The channel-

wise contributions to the parent class are also stacked with different colors/lines.

We see that the characteristics of the mjj and |∆ηjj| are the same with figure

3.5, with the electroweak processes contributing more at higher values. A feature

seen for |∆φjj| is the shape of the signal and background distributions. Clearly,

the difference is due to the SEW contribution since SQCD has a very similar shape

as that of the background. This is another characteristic of VBF processes that

the leading jets, originating from electroweak vertices, have lower separation in

φ compared to those originating from QCD. Similar plots for the remaining four

kinematic variables and the R set of variables are given in Appendix B. A brief

discussion of the two feature spaces (mainly R) is also presented. We denote the

combined high-level feature-space as H, which is 24-dimensional.

In order to gauge the discriminating power of each feature x, we determine

the separation [275] defined as,

< S2 >=
1

2

∫
(pS(x)− pB(x))2

pS(x) + pB(x)
dx . (3.2)

pS(x) and pB(x) denote the normalised probability distribution of the signal and

background classes. It gives a classifier-independent discrimination power of the

feature x. A value of zero (one) denotes identical (non-overlapping) distributions.
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Figure 3.8: Scatter plot of tower constituents of an event in the (η, φ)-plane
showing: (a) the raw event; and the effects of (b) rotation (φj1 = 0), and (c)
reflection (ηj1 > 0) operations. The pseudorapidity of met has been set to zero
for illustration. It is important to note that the points here are not binned into
pixels and the values are the ones extracted from the Delphes Tower constituents.

We plot the separation (in percentage) of the seven highest important variables

out of the 24 features in figure 3.7. It is interesting to note that out of these,

there are five variables from R, even though the first and the second are from K,

and they are much greater in magnitude.

3.3 Preprocessing of feature space

Preprocessing of features is indispensable for shallow machine learning as it helps

maximise the statistical output from smaller data sizes. In deep-learning appli-

cations, it helps in faster convergence of the training and in approaching optimal

accuracy with a lesser amount of data using simpler architectures. Even though

the primary aim of our model is to learn the differing QCD radiation patterns, we

can only devise preprocessing operations that preserve the Lorentz symmetries of

the event. The spatial orientation of the events, in general, can be regularised by

the following procedure:

1. Identify principal directions: Choose three final-state directions {n̂1, n̂2, n̂3}.
These can be any three final state objects, which are the interest of our

studies like photons, leptons, and jets, or they can be chosen to be generic

directions in the lab frame.

2. First Rotation: Rotate the event such that:

n̂1 → n̂′1 = (0, 0, 1) ≡ n̂a , n̂2 → n̂′2 , n̂3 → n̂′3 .

After this operation, the orientation of n̂1 is the same for all events.
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3. Second Rotation: Rotate the event along n̂a such that:

n̂′2 → n̂′′2 = (0, nby, n
b
z) ≡ n̂b , n̂′3 → n̂′′3 .

The plane formed by n̂1 and n̂2 has the same orientation for all events after

this operation.

4. Reflection: Reflect along yz-plane such that:

n′′3 → (|ncx|, ncy, ncz) ≡ n̂c .

The half-space containing n̂3 becomes the same for all events after this step.

These are passive operations which affect the orientation of the reference frame

without changing the physics. For most event topologies, we can see that there

will be better feature regularisation when n̂2 and n̂3 are equal. In hadron colliders,

due to the unknown partonic center-of-mass energy
√
ŝ, we set the z-axis as n̂1,

preserving the transverse momentum of all final state particles. We choose two

different instances of n̂2 ∈ {n̂met, n̂j1}. For our choice of n̂1, the z-direction of

n̂2 does not matter and we can take its value for n̂met to be zero. However, the

z-direction becomes important for the third operation and we choose n̂3 = n̂j1 .

This translates to applying the following operations to the four-momenta of each

events:

1. Rotate along z-axis such that φ0 = 0. We choose two instances of φ0 ∈
{φmet, φj1}.

2. Reflect along the xy-plane, such that the leading jet’s η is always positive.

After these two steps, the tower-constituents are binned in the resolutions

as mentioned earlier and then padded on the φ-axis. We denote the feature-

spaces obtained after preprocessing with the two instances of φ0 as Pmet and

PJ . Figure 3.8 shows the different steps of preprocessing steps for an event

taking φ0 = φj1 . Averaged low-resolution image of the validation dataset of each

class without preprocessing, and for both instances of φ0 are shown in figure

3.9. As emphasised earlier, it is seen that there is a better regularisation when

n̂2 = n̂3 (φj1 = 0, ηj1 > 0). Clearly, the dominant features are the jets, and

while for PJ , these lie in the center; for Pmet they lie at the φ-boundary. Thus,

the effect of padding is much more pronounced in Pmet. In analogy, it becomes

crucial when the Higgs boson decays in a hadronic channel (say h0 → bb̄ or

even h0 → τ+τ−), where we would desire the jets arising from Higgs – be it

normal or large-radius, to be at the center of the image. Combining the instances

of preprocessing and resolutions, there are four low-level feature spaces, namely:

PLRmet, PHRmet, PLRJ and PHRJ . The superscripts LR andHR denote the low and high-

resolutions. We notice that all the high-level variables except φmet, are invariant

under the two preprocessing operations, although, for our purpose, we extract
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Figure 3.9: Average of 25,000 low-resolution tower-images of (left) unprocessed,
(center) processed image with φmet = 0 and (right) φJ = 0 for (top panel) signal
and (bottom panel) background classes. The images are binned in the full range
of the tower: η ∈ [−5, 5] and φ ∈ [−π, π). We can see that as we go from left to
right, there is a discernible improvement in regularisation of the features. There
are no distinctly localised hard regions for the unprocessed case, while there are
some for the φmet = 0 instance, which becomes harder for φj1 = 0 case with the
hardest region around the leading jet.

them prior to their application. This follows from the usual physical intuition

that absolute positions in the lab-frame are of no particular importance, and the

useful information comes from the relative position of the different final-states.

We regularise the high-level features by mapping the distribution of each vari-

able to their z-scores. Calculating the mean x̄j, and the standard deviation σj

for each feature of the whole dataset (training and validation data of both classes

together), we perform the following operation on each variable of all events,

zji =
xji − x̄j

σj
. (3.3)

The superscript j denotes the feature index, and the subscript i denotes the

per-event index. It is particularly useful since the features have very different

ranges (for instance, mjj and |∆ηjj|), and the operation minimises this disparity.

Furthermore, the features of zj are now dimensionless. A caveat here is that

the values of mean and standard deviations used are calculated from a balanced

dataset. In experimental data, the presence of both classes, if at all, there is a

positive signal, is never balanced. We justify our choice by their class indepen-

dence, by virtue of which the relative differences in the shape of the signal and
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Figure 3.10: Simplified architecture of (left) CNNs and (right) ANNs.

background distributions are conserved, and the same set of values can be used

when applying to unknown data with no labels.

3.4 Neural Network architecture and performance

In the previous sections, we have defined seven feature spaces, which are broadly

grouped into high-level classes comprising of K (kinematic), R (QCD-radiative)

and H (a combination of the two previous spaces); while the low-level spaces are:

PLRmet, PHRmet, PLRJ and PHRJ . With these as inputs, we train neural networks for

classification. The generic architecture chosen for the high-level feature spaces

are dense Artificial Neural Networks (ANNs) while for low-level ones are Convo-

lutional Neural Networks. Hence, we name the 7 networks as: K-ANN, R-ANN,

H-ANN, PLRmet-CNN, PHRmet-CNN, PLRJ -CNN and PHRJ -CNN. All networks were

executed in Keras (v2.2.4) [232] with the TensorFlow(v1.14.1) [230] backend.

3.4.1 Choice of hyperparameters

The CNN is composed of three modules with each module formed by two con-

volutional layers followed by an average-pooling layer. Each convolutional layer
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consists of sixty-four filters with a size 4×4, with a single stride in each dimension.

We pad all inputs to maintain the size of the outputs after each convolution. The

pool-size is set to be 2× 2 for all three modules with 2× 2 stride size. The third

module’s output is flattened and fed into a dense network of three layers having

three hundred nodes each, which we pass into the final layer with the two nodes

and softmax activation. The convolutional layers and the dense layers before

the final layer have ReLu activations. In total, the CNNs for the high-resolution

(low-resolution) images have approximately 3.7 (1.2) million trainable parame-

ters. The information bottleneck principle [276] inspires the ANN architectures.

It has close connections to coarse-graining of the renormalisation-group evolution

and was, in fact, priorly pointed out in reference [277]. We choose the number of

nodes in the first layer to be equal to the number of input-nodes, which is then

successively reduced after two layers of the same dimension.§ These reductions

in successive nodes are chosen to be five for the R-ANN and H-ANN, while for

K-ANN, we consider four due to the low-dimensionality of the input. We stop

this process when there is no further reduction possible, or after four such reduc-

tions. We checked two activation functions: sigmoid and ReLu for the ANNs.

We found that sigmoid activation gave the best validation accuracy for R-ANN

and H-ANN, while it decreased over ReLu activations for K-ANN. In total, the

K-ANN, R-ANN, and the H-ANN have 210, 991, and 2790 trainable parameters,

respectively. Since this is a first exploratory study, we do not optimise the hyper-

parameters and use the values specified here for extracting the results. Simplified

architecture flowcharts for each of the different networks are given in figure 3.10.

We chose categorical cross entropy as the loss function. We used Nadam [172]

optimiser with a learning rate of 0.001 to minimise the loss function for all neural-

networks. The optimiser’s adaptive nature: smaller updates for frequently occur-

ring features while larger updates for rare features, helps in better convergence

for the sparse image-data that we have, with the added benefits of Nesterov

accelerated gradient descent [278]. Moreover, the learning rate is no longer a

hyperparameter. For the CNNs, training does not require more than ten epochs

to reach optimal validation accuracy. Nevertheless, we train them five times

from random initialisation for twenty epochs. The ANNs are trained for more

epochs since the relatively fewer parameters make the convergence slower. For

the ANNs, ReLu activation networks are trained for two hundred epochs. In com-

parison, sigmoid activation networks are trained for one thousand epochs due to

their relative difference in convergence compounded with fewer parameters. A

batch size of three hundred was chosen for training all networks. Each model,

including all of its parameters, is stored after every epoch in the Keras-provided

“hdf5” format during training. Out of these, we use the best performing model

with the highest validation accuracy for further analysis.

§This provides stability of the representations learned at each dimension
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(a) (b)

(c) (d)

Figure 3.11: Binned distribution of the network output for (a) PHRJ -CNN (top-
left), (b) PLRJ -CNN (top-right), (c) PHRmet-CNN (bottom-left) and (d) PLRmet-CNN
(bottom-right).

3.5 Results

3.5.1 Network Performance

We extract the network output y0, which is the probability of the event being a

signal, from the best performing model from each network class. The class-wise

binned distribution of y0, for training and validation datasets of the low-level

and high-level feature spaces, are shown in figure 3.11 and 3.12, respectively.

These also show the channel wise contribution to their parent class. The choice

of binning is set to the same ones used in extracting the bounds on the invisible

branching ratio of the Higgs in Sect. 7.4. It has been set such that the minimum

number of entries of each class for the validation data in the edge bins have enough

numbers to reduce the statistical fluctuations to less than 15%. Contributions of

the SEW and SQCD components to the signal class follow a definite pattern. As

expected, all networks find it difficult to distinguish the SQCD signal from the

QCD dominated background. Hence, SQCD contributes more in the bins closer
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Figure 3.12: Binned distribution of the network output for (left) K-ANN, (center)
H-ANN, and (right) R-ANN.

to zero, which is governed by the background class. SEW shows the opposite

behavior dominating near one. This same feature, although a little inconspicuous,

is present for the background class’s EW subset as well. It may be pointed

out that even for traditional analysis methods, there is significant contamination

from SQCD. A relevant machine-learning paradigm [279] where mixed samples

are used in place of pure ones, could have an interesting application in reducing

this SQCD contamination of the signal for precision studies. Another notable

feature prominent in the CNN outputs is the relative contribution of the ZQCD
and WQCD channels to the background in the first bin, which is dominated by

WQCD. This can be apprehended from the fact that some of the leptons from W±

decay, although not reconstructed, can still make calorimeter deposits on top of

the QCD radiation to make itself visible to CNNs.

Receiver operating characteristic (ROC) curves between the signal acceptance

εS, and the background rejection 1/εB; and also the area under the curve (AUC)

for all networks are shown in figure 3.13. The AUCs were calculated using y0

and the true class labels yt with the scikit-learn(v0.22) [280] package. It is in-

teresting to see that the so-called QCD-radiative variables (R) perform almost

as good as the kinematic-variables (K) with only less than a percent difference

in the validation AUCs. It can be understood by recalling that the radiative

variables’ definition includes the radiation pattern of the event, including the

radiation inside the jet in cumulative η bins. This, in principle, has similar infor-

mation to |∆ηjj|, which is one of the kinematic-variables with high separation.

We confirm this by observing the correlations (shown in figure 3.14) between the

variables HηC=2.07
T and HηC=1.8

T with |∆ηjj| and mjj. They are relatively more

correlated with |∆ηjj| than with mjj. The AUC for our combined variable H-

ANN shows that the R variables may contain some extra information on top of

what is extracted from the kinematic variables. As emphasised earlier, we get less

than 0.1 percent difference in the validation AUCs of the low and high-resolution

networks. The difference in AUC between PJ and Pmet, although small, is still

significant. It can be understood by looking at figure 3.9: there is better feature

regularisation in PJ due to the choice of φ0 than in Pmet. CNNs, in general, are

supposed to be robust to these kinds of differences owing to their properties of

translational invariance [197]. In our case, the presence of fully-connected layers
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Figure 3.13: The validation (top panel) ROC-curves and (bottom panel) train-
ing/validation AUC for (left) low-level and (right) high-level feature spaces. In
order to compare the feature spaces, the highest performing CNN is added to the
plots on the right. The x-axis of the ROC-curve is the signal acceptance εS, while
the y-axis is the inverse of background acceptance εB.

and the relatively small training sample hamper the generalisation power of the

CNNs. Application of global-pooling instead of using fully-connected layers and

an increase in data size coupled with proper hyper-parameter optimisation should

reduce this difference in AUCs. These can be explored in future studies.

The class-wise linear correlation matrix between the network-outputs, along

with the four high-level variables possessing the highest separations, are shown

in figure 3.14. As expected, the outputs within the respective subset of networks

are highly correlated. The outputs of the ANNs and the CNNs are also correlated

significantly. A closer look reflects the addition of information in the high-level

feature spaces: the correlations increase as we go from R/K-ANN to H-ANN.

In fact, if we extrapolate this argument in conjunction with the relative increase

in AUC, we find that the CNNs have extracted the most information from the

low-level data, which is not present in any of the high-level variables. A detailed

description of the correlation of high-level variables and the ANN outputs are

given in C.

3.5.2 Bounds on Higgs invisible Branching Ratio

In order to quantify our network performance in terms of expected improvements

in the invisible Higgs search results at LHC, we obtain expected upper limits
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Figure 3.14: Pearson’s correlation coefficients amongst the first four high-level
variables with highest separation and the network-outputs for (left) signal and
(right) background. These have been calculated using the validation dataset.

on the Higgs to invisible BRs from the distribution of the network output. We

use CLs method [281, 282] in the asymptotic approximation [283], to calculate

the upper limit on the invisible BR at 95% CL. The method is briefly discussed

as follows. In a binned Poisson counting experiment of expected signal si and

background bi (which are functions of nuisance parameters jointly denoted by θ)

in a bin with observed number ni of some observable, we can write the likelihood

function as:

L(µ,θ) =

Nb∏
i=1

(µ si(θ) + bi(θ))ni

ni!
e−(µ si(θ)+bi(θ)) , (3.4)

where Nb is the total number of bins. Nb and the bin-edges for the different

variables are chosen as shown in their respective distribution plots (figures 3.5,

3.6, 3.11 and 3.12). The profile-likelihood ratio:

λ(µ) =
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)
, (3.5)

where the arguments of the denominator maximises L, and
ˆ̂
θ conditionally max-

imises L for the particular µ, is used as a test-statistic in the form of log-likelihood,

tµ = −2 ln(λ(µ)) . (3.6)

The distribution of the test statistic for different values of µ, is required to extract

frequentist confidence intervals/limits. Since, we have fixed the total weight of the

signal events with respect to the background to correspond to the ones expected
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Figure 3.15: Expected 95% C.L median upper limit on the invisible branching
ratio of SM Higgs with one and two sigma sidebands for (left) 36 fb−1 and (right)
140 fb−1 integrated luminosities.

with the total expected production cross-section from SM for each channel(SEW
and SQCD), µ corresponds to the invisible branching ratio of the Higgs. In the

asymptotic method, for one parameter of interest, approximate analytical expres-

sions for the distribution are derived using a result from Wald [284], in the form

of a non-central Chi-square distribution. Monte-Carlo simulations required to ex-

tract the unknown parameters are by-passed by choosing the best representative

data called the Asimov data, by the authors of reference [283]; which is defined

as the data when used to estimate the parameters, produces their true values.

We used HistFactory [285] to create the statistical model, and the RooStats

[286] package to obtain the expected limits. This provides us with greater ease

of handling systematic uncertainties. As stated before, we also redo the shape-

based analysis of reference [261] with our dataset only considering a few simpler

systematics, to consistently gauge the increased sensitivity of the deep-learning

approach. We incorporate three overall-systematics: uncertainty of the total

cross-section, statistical uncertainty of Monte Carlo simulated events, and ap-

proximate luminosity uncertainties. We do not take into account the possible

change in the shape of the distributions due to Monte Carlo simulation effects.

The per-bin statistical error is taken into consideration by activating each sam-

ple’s statistical-error while creating the statistical model in HistFactory. This is

essentially a shape-systematics that considers the bin-wise change in shape due to

the statistical uncertainties. Its inclusion increases the median expected upper-

limit by around three percent in the reproduced shape-analysis. The number of

events for the analysis with the higher met cut is set to the expected number

at 36 fb−1 for all background channels. This result is also scaled for the other

luminosities. For the ones with the lower met cut, we use the validation data

scaled by appropriate weights for the respective luminosities.

The median expected upper limit on the invisible branching ratio of SM Higgs



72 Chapter 3. Probing invisible VBF Higgs decay with CNNs

Expected median

Sl.No Name Description upper-limit

on BR(h0 → inv)

L = 36 fb−1 L = 140 fb−1 L = 300 fb−1

1. mjj(met > 250 GeV) reproduced shape analysis of reference [261] 0.226+0.093
−0.063 0.165+0.082

−0.056 0.130+0.089
−0.027

2. |∆ηjj|(met > 250 GeV) |∆ηjj| analysis with shape-cuts of reference [261] 0.200+0.080
−0.056 0.128+0.050

−0.036 0.106+0.041
−0.025

3. mjj(met > 200 GeV) mjj shape analysis with weaker cut 0.191+0.075
−0.053 0.116+0.071

−0.036 0.101+0.037
−0.045

4. |∆ηjj|(met > 200 GeV) |∆ηjj| analysis with weaker cut 0.162+0.065
−0.045 0.105+0.042

−0.029 0.087+0.034
−0.025

5. PLRJ -CNN Low-Resolution, φ0 = φj1 0.078+0.030
−0.022 0.051+0.020

−0.014 0.045+0.017
−0.013

6. PHRJ -CNN High-Resolution, φ0 = φj1 0.070+0.027
−0.020 0.043+0.017

−0.012 0.035+0.013
−0.010

7. PLRmet-CNN Low-Resolution, φ0 = φmet 0.092+0.037
−0.025 0.062+0.024

−0.017 0.053+0.023
−0.014

8. PHRmet-CNN High-Resolution, φ0 = φmet 0.086+0.035
−0.024 0.058+0.023

−0.016 0.051+0.020
−0.014

9. K-ANN 8 kinematic-variables 0.101+0.052
−0.022 0.075+0.029

−0.021 0.063+0.027
−0.017

10. R-ANN 16 radiative HηC
T variables 0.138+0.055

−0.039 0.094+0.036
−0.027 0.079+0.032

−0.022

11. H-ANN Combination of K and R variables 0.094+0.038
−0.026 0.065+0.026

−0.018 0.057+0.022
−0.015

Table 3.1: Short description of the different analyses shown in figure 3.15 and the
expected median upper-limit on BR(h0 → inv) at 95% CL for each integrated
luminosities which also include projections for L = 300fb−1.

at 95% CL along with the one and two sigma error bands are shown in figure 3.15

for integrated luminosities of 36 fb−1 and 140 fb−1. A short description of the

datasets used, and the corresponding median-expected upper limits with 95 %

CL is tabulated in Table 3.1. This also contains the projected limits for 300 fb−1,

the integrated luminosity expected at the end of LHC Run III. We emphasise

that even though we scale to 300 fb−1 luminosity, we use the same dataset, and

hence, the statistical uncertainties are not reduced. Consequently, our estima-

tion for 300 fb−1 is a conservative one. First and foremost, one can notice that

the reproduced result of the shape-analysis of reference [261] for an integrated

luminosity of 36 fb−1 is quite consistent, and the difference can be accounted

to the excluded background channels and experimental systematics. We repeat

this analysis with the weaker selection criteria and see a modest improvement in

the median-expected upper-limit. We also perform similar analyses with |∆ηjj|
distributions, and get an improvement of 2.9 % for met > 200 GeV, and 2.6 %

for met > 250 GeV cuts. The worst (best) performing neural-network R-ANN

(PHRJ -CNN) has an improvement of 8.8% (14.6%) from the repeated experimental

analysis. This, although, is with different cuts, and for the same cut in met, we

have an improvement of 5.3% (12.1%) for R-ANN (PHRJ -CNN). For an integrated

luminosity of 140 fb−1, we get an improvement of 2.2 % and 7.3 % for R-ANN

and PHRJ -CNN, respectively. The reduced difference for higher luminosities is, of

course, expected since the significance does not scale linearly with an increase in

data size. An expected median upper-limit of about 3.5% can be achieved with

300 fb−1 of data using the highest performing network, PHRJ -CNN.

The results of the different feature spaces follow the expected trend. For

this discussion, we quote the numbers for an integrated luminosity of 36 fb−1.

Comparing the performance of high-level feature spaces, we see that R performs
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the worst while the combined space H puts the most stringent bounds. The

difference is minimal (0.7 %) with K-ANN, and appreciable (4.4%) with R-ANN.

Amongst the image-networks, the difference between the low and high-resolution

networks is less than a percent (0.8 % for PJ , and 0.6% for Pmet). Differences in

performances of the different preprocessing instances are reflected in this analysis:

PJ puts nominally stricter bounds on the branching ratio (1.4 % for LR, and 1.6

% for HR).

Up to now, we demonstrated the capability of our CNN based low-level net-

works and also ANN-based networks considering particle level data, including

detector effects as well as underlying events during our simulations as discussed

in Section 3.1. However, we neglected the effect of simultaneous occurrences

of multiple proton-proton interactions (pileup) in our analysis. The amount of

pileup is relatively moderate in low luminosity data, but increasingly significant

once we move towards high luminosity. We believe that its presence would not

alter our primary results substantially from the calorimeter image data. CNN ar-

chitectures look into the global features of an input image. Calorimeter deposits

due to pileup are expected to be similar for different classes since they are inde-

pendent of the hard scattering processes. The same can be identified as redundant

information, as a consequence of the optimisation algorithm effectively searching

for dissimilarities between the two classes. Optimal pdfs acquired by CNNs re-

main very similar, whether it is with or without pileup. This issue was analysed

before, where it was shown that unlike high-level methods, deep-learning from

calorimeter deposits shows robustness to pileup effects in the classification of jet-

image [119]. Although, in these studies, the jets have large transverse boosts and

mostly reside in the central regions where its effect is reduced. However, various

other studies [193,194] have also shown that deep-learning on the full calorimeter

information is less prone to pileup effects. These existing results further elucidate

our presumption that CNNs would be less affected by higher pileup expected at

future runs of LHC. In contrast, the other analyses, including the ANNs trained

on high-level feature spaces, can be relatively more affected.

To present our arguments in perspective, we combined each event (tower-

image) with an additional N randomly chosen minimum bias event with CMS

switch through Pythia8 and Delphes without any pileup subtraction. At the same

time, N follows a Poisson distribution with < N >= 20, 50, 50 for integrated

luminosity 36, 140 and 300 fb−1, respectively. Merged tower-image with pileup is

then trained and tested for our high-resolution CNN scenario (PHRJ -CNN, which

can be noted from Sl.No (6) in Table 3.1). We found a very mild depreciation over

our estimated median upper-limit at 0.076, 0.059, and 0.045, which all lie within

the 1σ error band in the branching ratio constraints. Note that no effort was made

to mitigate the effects of the pileup during these estimates, which will not be the

case in experimental analyses. In fact, there are extensive studies [153, 287] of

using powerful machine-learning algorithms specially designed to reduce pileup

contamination of events. A new interpretation of collider events in terms of
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optimal transport [288, 289] have also provided promising new techniques for

pileup mitigation on top of reinterpretation of existing ones [290, 291]. These

developments offer further optimism for better mitigation of pileup effects in the

future.

To test the robustness of our proposal, we also consider the effect of an im-

portant experimental systematic uncertainty. One of the significant experimental

systematic uncertainties affecting the result of this analysis can be the uncertainty

on the jet energy scale. Therefore, we estimate the effect of uncertainties on the

jet energy scale for our main results with calorimeter input data in CNN archi-

tecture. We vary the pixel-wise input values (which has already gone through the

smearing in Delphes) by 10% in upward and downward directions,¶ and record

the variation in the shape of the network output without considering any pileup.

This is added as a coherent shape systematics, and we obtain an increased ex-

pected median upper-limit of 0.071+0.028
−0.019 for PHRJ -CNN at 140 fb−1 integrated

luminosity, which is still better by a factor of almost two when compared to the

latest result from ATLAS [262].

3.6 Summary

In this chapter, we have studied the capability of CNNs in identifying VBF pro-

duction of Higgs from the dominant QCD backgrounds. We choose VBF produc-

tion of the Higgs boson decaying to invisible particles as a case study for neural

networks to learn the entire event topology without any reconstructed objects.

We use the compelling capability of Convolutional Neural Networks (CNN) to ex-

amine the potential of deep-learning algorithms using low-level variables. Instead

of identifying any particular objects, we utilise the entire calorimeter image to

study the event topology, which aims to learn the difference in radiation patterns

between the two forward jets of the VBF signal. We specifically develop prepro-

cessing steps that preserve the Lorentz symmetry of the events and are essential

for maximising the statistical output of the data.

Apart from low-level variables as calorimeter images for CNN, we also consider

two sets of high-level features. One such set is based on the kinematics of the VBF,

whereas the other set of variables are designed to portray the radiation pattern

HT calculated in different η ranges of the calorimeter. For a comprehensive

analysis, we constructed several neural network architectures and demonstrated

the comparative performance of CNN and ANN using different feature spaces.

All these networks achieved excellent separation between signal and background.

However, we found that CNN based low-level PHRJ -CNN performs the best among

all the networks, which is based on the high-resolution images, although the

¶Reference [292] reports jet energy scale uncertainty for various observables, which lie well
within 5%. However, since such uncertainties are significantly controlled in jets reconstructed
with the particle-flow (PF) method, we take a relatively conservative measure for the pixel-wise
uncertainty of the measured energies.



3.6. Summary 75

dependence on image resolution is relatively insignificant. We also note that

deep-learning on the full calorimeter information is less prone to pileup effects as

well. Without relying on any exclusive event reconstruction, this novel technique

can provide the most stringent bounds on the invisible branching ratio of the

SM-like Higgs boson, which can be expected to be constrained up to 4.3% (3.5%)

using a dataset corresponding to an integrated luminosity of 140 fb−1 (300 fb−1).

These limits can severely constrain many BSM scenarios, especially in the context

of (Higgs-portal) dark matter models. The techniques presented here can easily

be extended to a more complex event topology.





Chapter 4

Sensitivity of CNNs to

simulation aspects of VBF Higgs

In the last chapter, we have seen that CNNs can efficiently identify vector boson

fusion produced Higgs events from those originating from the QCD background,

concentrating on the invisible decay. In this chapter, we scrutinise the training

and performance of the CNN against important factors in the data generation

process. We note that it is essential to scrutinise the differences in leading-order

(LO) and next-to-leading-order (NLO) simulations; the presence of a third jet

needs the proper introduction of real and virtual corrections to the tree level

process. Another issue of central importance in the simulation of VBF events

is the inability of a global-recoil scheme in initial state radiations (ISR) of the

parton showering algorithm to describe the central-jet activity correctly [293].

We will systematically investigate these issues for the VBF signal search with

CNNs.

Although the preceding arguments apply to the VBF production of weak

bosons, we presently ignore its effects as they are much less in proportion (∼ 5%

of the total background for the cuts used here). We also neglect the contribu-

tion of the gluon-fusion events in the signal. The global recoil scheme correctly

produces the leading logarithmic behaviour, already incorporated in our previous

analysis. A precise determination of its various effects demands a very high level

of sophistication, requiring much higher perturbative and logarithmic accuracy.

Although the cuts used in the analysis have a sizable amount of gluon-fusion con-

tribution, the large amount of data from high-luminosity LHC runs will provide

ways to do precision analysis with more stringent cuts, with negligible contribu-

tion from gluon-fusion events. These do not impede our final goal, as our intention

is not to project experimental sensitivities but to usher pragmatism and careful

examination while using inclusive event information as inputs to DNNs.

Although DNNs generally perform better than ML algorithms utilising high-

level variables, their usability in phenomelogical analyses is determined by our

ability to simulate subtle aspects of the data accurately. To this end, we show the

77
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possibility of CNNs learning inaccurate representations of inclusive events due to

a global recoil used in the simulation of VBF events.

The rest of the chapter is organised as follows. In Section 4.1 we discuss the

parton shower scheme and NLO effects in the simulation of VBF Higgs signal.

In Section 4.2, we examine the impact of the different signal simulations on the

trained network output and its performance. We conclude in Section 5.4.

4.1 Impact of NLO corrections and recoil schemes

Although VBF processes have relatively lower higher-order corrections, utilising

the hadronic activity between the two tagging jets would use information not

captured by a leading-order simulation. This inadequacy is due to the inher-

ent assumption in parton shower generators, primarily focusing on the soft and

collinear regions. A next-to-leading-order hard partonic simulation merged with

a parton shower algorithm would accurately describe the kinematics of the third

leading jet (if present) over the full range of transverse momentum. Additionally,

for event topologies with no colour flow between the two incoming partons from

the colliding protons, a parton shower algorithm with a global-recoil scheme for

the initial-state radiation (ISR) is known to have a further inefficient simulation

of the wide-angle soft radiation patterns. The cause for this inaccuracy is due to

the incorrect assumption of an II dipole in the global-recoil scheme [293], while

VBF processes have a double DIS scattering topology with an IF/FI dipole struc-

ture. Existing phenomenological studies [294,295] are consistent with this known

limitation of the global-recoil scheme, and recent experimental results [296–298]

have employed the dipole recoil scheme [299–302] for the relevant VBF topolo-

gies. The effects of both higher-order virtual corrections and the recoil scheme are

even more important when using powerful deep-learning algorithms with low-level

inputs.

4.1.1 Signal generation

Since VBF Higgs processes are our primary interest, we do not include the gluon-

fusion processes in the present analysis. We, therefore, study the four different

possible combinations of the perturbative accuracy and the parton shower’s recoil

scheme for the VBF channel. These are described as follows:

1. Global LO: Parton level events simulated at leading-order perturbative

accuracy showered with a global-recoil scheme for the ISR parton shower.

This recoil scheme is the default implementation in Pythia8 and was used

in chapter 3 for the VBF processes.

2. Dipole LO: Parton level events simulated at leading-order perturbative

accuracy showered with a dipole-recoil scheme.
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Figure 4.1: Distribution of the absolute Zeppenfeld variable |z∗j3| for the four
signal simulations. To capture the relative occurrence of the third jet, we set
each event weight so that the total sum with or without an additional jet in each
signal simulation sum to unity.

3. Global NLO: Parton level events simulated at next-to-leading order ac-

curacy merged with parton shower employing the global-recoil scheme for

ISR.

4. Dipole NLO: Parton level events simulated at next-to-leading order accu-

racy merged with parton shower using the dipole-recoil scheme.

We use the same set of parton-level events for the LO and NLO simulations

to shower with the two recoil schemes. The parton-level events at LO were

generated with MadGraph5 aMC@NLO, while the NLO events were generated with

the POWHEG-BOX [62–65]. The renormalisation and factorisation scales for both

orders are set for each event as,

µ2
0 =

mh

2

√(mh

2

)2

+ p2
T,h , (4.1)

where mh =125 GeV is the mass of the Higgs and pT,h is the transverse mo-

mentum of the Higgs boson in the event. For the parton level generation, we

use the PDF4LHC15 nlo 100 pdfas [303] parton distribution function (PDF) set

implemented with LHAPDF6 [304] (v6.1.6) package. This PDF set is a combina-

tion [305] of CT14 [306], MMHT14 [307], and NNPDF3.0 [308] PDF sets using the

Hessian reduction method proposed in reference [309]. We use MadSpin [310] to

decay the Higgs boson at parton-level to two scalar dark matter particles for the

NLO events, while we simulate the full decay chain for the LO events. All parton

showers are performed in Pythia8.235. For the NLO events, we perform the

POWHEG-merging with recommended values from reference [311]. The switch

to a dipole-recoil scheme is done by setting "SpaceShower:dipoleRecoil=on"
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Figure 4.2: Two dimensional histogram of events with the transverse
momentum(P j3

T ) of the third jet and |z∗j3 | for four different cases of signal simu-
lations, such as, dipole NLO, dipole LO , global NLO and global LO of the VBF
Higgs signal.

for the parton shower. We note that the events generated at NLO and showered

with the dipole-recoil scheme should be the most physically accurate simulation

of the VBF Higgs process. These four sets of showered events are then passed

through the same detector simulation and selection criteria described in the pre-

vious chapter for the deep-learning analysis with MET > 200 GeV. We divide

the dataset of each of these simulations into 100k training and 25k validation

samples for the neural network analysis.

4.1.2 Characteristics of the third jet

To compare the different signal simulations, we plot distributions of the Zeppen-

feld variable z∗j3 in Figure 4.1 for events passing the selection criteria and having

a third jet with pT > 20 GeV. It is defined as,

z∗j3 =
ηj3 − (ηj1 + ηj2)/2

|∆ηj1j2|
, (4.2)

where ηji is the pseudorapidity of the ith hardest jet, and ∆ηj1j2 is the rapidity

gap between the two tagging jets. This variable looks at the position of the third

jet relative to the tagging jets and is important when considering the additional

information available beyond the two-jet system. We set the normalisation such

that the cumulative sum of the bins corresponds to the fraction of events that

satisfy the requirement on the third jet. The dipole-NLO signal has the least

proportion of events passing the additional criteria at 30%, while the global NLO

has 35%. The fraction for LO events with dipole and global recoil schemes are

37% and 55% respectively. From these values and the shape of the distribution in

Figure 4.1, we can infer that out of the four, global LO should be most similar to

the QCD-dominated background, and dipole-NLO should be the least identical.

Consequently, we expect these to be reflected on the performance of any statis-

tical model utilising radiative information beyond the two jets. Although the
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proportion of events with a third jet is very close for global NLO and dipole-LO,

note that the former has more jets in the central regions from the shape of |z∗j3 |
distribution. Hence, we would expect better discrimination for Dipole-LO.

Even though z∗j3 is a good variable, a model like a CNN that uses the inclusive

event information will use the third jet’s position as well as its transverse momen-

tum implicitly to find the decision boundary. To this end, in Figure 4.2 we plot

the 2-D histogram plot of the transverse momentum P j3
T of the third jet and |z∗j3|.

Due to the artificial enhancement from the II-assumed global showering scheme

in the central regions, we can see that the third jet is relatively harder than their

dipole counterparts for both orders. Moreover, since the third jet results from the

parton shower for LO, there is a drastic difference between global LO and dipole

LO relative to the same comparison at NLO. From this, we can infer that events

that do not have a third reconstructed jet would still follow the same pattern and

expect the same effect on the performance of the CNN.

4.2 Results

In this section, we examine the performance of CNNs in identifying the different

simulations of the same signal from the same background dataset used in the

previous chapter. When trained with the same architecture, the relative discrim-

ination power should reflect the physical intuition we presented in the preceding

section. The four sets of signal events are preprocessed so that φj1 = 0 and ηj1 > 0

and binned with ther the lower resolution. Therefore, the network PLRJ -CNN is

trained with the procedure used in the previous chapter. The performance on

the higher resolution should follow the same trend, and hence unwarranted for

the aim pf this study.

4.2.1 Effects of central radiation on the network output

The two-dimensional histogram of the network output y0 (the probability of an

event being a signal) of the signal validation datasets with various variables quan-

tifying the additional information beyond the two-jet system are shown in Fig-

ure 4.3. The weight of each event is set such that the total sum of all events

with or without the third jet corresponds to one. Therefore, the total sum of

the histogram with the physical quantities of the third jet corresponds to the

fraction with at least one additional jet.* The comparatively lower concentration

of events for the global LO simulation is due to the lower performance of the

network (presented in Section 4.2.2) compared to the other three simulations.

In Figure 4.3(a), in which the histogram is with the transverse momentum

of the third jet, we see that for the dipole recoil, both orders have the maxi-

*Due to the range of the variables, the total sum is not equal to the fraction presented in
Section 4.1.2
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Figure 4.3: Two dimensional histogram of events of the network output y0 for each
signal simulation with the (a) P j3

T and (b) |ηj3| of the third jet (when present),
and (c) the HC

T between the two tagging jets.
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mum concentration of events in the top-left corner. The third jet has the least

transverse momentum in this region, and the network identifies the event as most

signal-like. For the case of the global recoil, we see that the NLO simulation has a

higher concentration near the top-left corner. In contrast, the LO simulation has

significantly reduced events near the top left, with the shift toward the bottom

in the y-axis more prominent. The greater change in the network output can be

understood by recalling from Figure 4.2 that the relative position of the third jet

is much more central for the global LO simulation event if its transverse momen-

tum is in a similar range. This property is further confirmed in Figure 4.3(b)

where the histogram is on the |ηj3| and y0 plane. The events for the global LO

simulation is closer to the left side: implying that the third jets are much more

central; and lower in the y0 axis: indicating that the network identifies the signal

less efficiently. Similarly, the same histogram for the dipole-recoil scheme and

different orders shows a concentration of events in the top right corner, where

the third jets are more forward, and the network identifies the signal with greater

confidence.

To look collectively into the events with or without a third jet, we define the

scalar sum of pT between the two tagging jets as,

HC
T =

∑
ηi∈[ηl,ηu]

piT , (4.3)

where the range is determined by the pseudorapidity of the two jets: ηj1 and

ηj2 mapped such that ηl < ηu. We do not remove the particles within the jets

when calculating HC
T , thus giving a non-zero value for all events. As expected, we

see in Figure 4.3(c), that the dipole-NLO simulation has the highest proportion

of events near the top left corner, followed by dipole LO and global NLO, with

global LO having a larger concentration in the central regions of the (HC
T , y0)-

plane. Therefore, we see that events without the third jet also follow a pattern

similar to those with the additional jet.

4.2.2 Dependence of performance on the signal simulation

The normalised distribution of the network output y0 of each class are shown in

Figure 4.4 for the four different signal simulation approaches. One can see that

the CNN trained and validated with the dipole-NLO simulation has the highest

separation from the background. To better quantify the power, we look at the

receiver operating characteristic (ROC) curves between the signal acceptance εS
and the background rejection 1/εB, and the area under the ROC curve (AUC).

These are shown in Figure 5.4. As expected, the highest discrimination is ob-

tained for dipole NLO with a validation AUC of 0.9355, followed by dipole LO

with 0.9243 validation AUC. Inadvertently, the dipole-NLO signal happens to be

the most physically accurate simulation. The hierarchy suggests that the recoil
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Figure 4.4: Normalised binned distributions of the network output discriminating
background from signal class for four different instances of signal simulations.

Train Test Signal Dataset

Sl.No Signal Dataset Globalo-LO Global-NLO Dipole-LO Dipole-NLO

1. Global-LO 0.8599 0.8956 0.9027 0.9201

2. Global-NLO 0.8486 0.9036 0.9112 0.9288

3. Dipole-LO 0.8036 0.8878 0.9243 0.9335

4. Dipole-NLO 0.8234 0.8922 0.9200 0.9355

Table 4.1: The table shows the test AUC evaluated for all signal simulation for
each CNN trained on the different signal simulations.

scheme is of greater importance than the perturbative accuracy for the CNN

analysis with tower images. Looking at the global recoil for each order, we see

that global NLO has better performance, with the CNN trained and validated

with global LO having the least discriminatory power. To understand this rela-

tive power, we note that the third jet in an NLO simulation has a leading-order

accuracy. Whereas, for the LO case, the third jet, if present, is a consequence of

the parton shower. The global-recoil scheme enhances the radiation in the central

regions for both orders; however, it is partially controlled by the NLO simulation

of the first real emission, while there is no such control for the LO case.

Although we have seen that the network trained and tested with different

signal simulations shows notable differences, it is worth investigating how a CNN

trained on a specific simulation fares when tested on other signal simulations.

The validation AUC for all signal simulations evaluated on each of the networks

trained on the different signal simulations is shown in table 4.1. For each signal

type, the network it was trained on has the maximum discrimination, which is
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unsurprising given that the purpose of the training is to encode its behaviour into

the network. Moreover, the trend of increasing performance is the same regardless

of the signal dataset used in training, pointing towards all networks learning the

underlying difference between the signal and the background. Another feature

of interest is the relatively higher range of AUCs for the LO datasets than NLO

ones, pointing towards their relatively high uncertainties. Interestingly, regard-

less of the nature of the simulation used during the training, the most accurate

simulation among the four, dipole-NLO events, has a very stable validation AUC

with only a 1.6% deviation. This stability shows that CNNs can learn the under-

lying differences between VBF events and non-VBF events even when the VBF

simulation is suboptimal.

To gauge the possible improvement in using a dipole scheme over the global

scheme used in our previous work, we train the CNN with the combined gluon-

fusion signal and the instance of dipole-NLO simulation of the VBF process in

the same proportion as described in Section 3.1 and extract the bounds on the

branching ratio. We find the median upper limit on the invisible branching ratio

for an integrated luminosity L = 300 fb−1 to be 2.22%.

In all preceding analyses, we have used LO samples without any matching,

and the third jet originates exclusively from the parton-shower, which is inac-

curate in describing harder emissions. It is worth examining how a matching

procedure between the hard matrix element and the parton shower, which im-

proves the description of the third jet in the harder regions, influences the network

performance. To inspect the possible improvement of such matching procedures,

we generate VBF events matched with an additional jet via the MLM proce-

dure [312,313] for both parton-recoil schemes. We found a continuous differential

jet rate and transverse momentum distribution of the different jet samples for

an xqcut value of 100. As recommended for VBF processes, the auto ptj mjj

flag was set to false. All other aspects of the simulation including the renor-

malisation and factorisation scale, PDFs, and baseline selection criteria are the

same as described in Section 4.1.1. We generated about 25k events after baseline

selection for both recoil schemes. Testing with these samples for the networks

trained with the leading order unmatched samples with the same parton-shower

recoil against the validation background dataset, we find an AUC of 0.8651 and

0.9261 for the global and dipole matched LO samples, respectively. Compared to

the full NLO simulation values tested on these networks (Table 4.1), these values

lie closer to the LO simulation, indicating that the matching procedure does not

help alleviate the issues of the global parton shower. In contrast, the matched

dipole value is still relatively stable, although closer to the LO value than the

NLO value, signifying the relative importance of the virtual corrections of the

NLO simulation.
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Figure 4.5: Comparison of the performances in terms of Receiver operating char-
acteristic (ROC) curves (left plot) on the validation dataset between the signal
acceptance εS and the background rejection 1/εB, and the corresponding areas
under these ROC curves (AUC) (right plot) for the training and validation data
are shown for the four different cases of signal simulations.

4.3 Summary

In this chapter, we carried out a quantitative analysis to investigate the depen-

dence of a CNN’s performance on the recoil scheme of the parton shower and

the perturbative accuracy of the matrix element simulation for a VBF Higgs sig-

nal decaying to invisible particles. The difference between the leading order and

next-to-leading order, although present, is not very pronounced for the physically

correct dipole-recoil scheme. We found that the training is highly dependent on

the recoil scheme, with a better performance coming for the physically accurate

dipole recoil. With this fortunate coincidence, a complete analysis with all VBF

processes showered with a dipole recoil scheme will possibly reduce the upper

limits on the invisible branching ratio even further than the projection which

used a global recoil scheme. Furthermore, we find that

� the training performance is greatly reduced when we use signal simulated

with a global-recoil scheme on parton level events generated with leading-

order or next-to-leading accuracy and improves for a dipole recoil, with

events generated at next-to-leading-order accuracy showered with a dipole

recoil having the highest training accuracy.

� for each set of signal simulations, the highest validation accuracy is achieved

for the network that used the same type during the training process with the

same trend as the training accuracies. However, the validation performance

of the NLO events showered with dipole recoil (which is the most accurate

description of the actual events amongst the four signals used) is affected

mildly by the kind of data used during the training.

Our findings show that CNNs can learn the underlying differences between VBF

type events and the dominant QCD backgrounds, even when trained on sub-

optimal simulated data.



Chapter 5

An infra-red and collinear safe

message-passing algorithm

Although the findings of the previous chapter suggest that CNNs can learn the

underlying differences in the QCD radiation pattern even with suboptimal data,

one would like deep-learning algorithms to have a better property within the the-

oretical biases involved in perturbative QCD calculations. One such theoretical

requirement is the infra-red and collinear safety of observables. It ensures the

appropriate handling of real and virtual corrections order by order in perturba-

tive calculations via the KLN theorem [52, 53]. Thus, an IRC safe deep-learning

algorithm would learn features that are, in principle, calculable in perturbative

QCD. In this chapter, we devise such an IRC safe Graph Neural Network and

study its performance on the problem of jet-tagging and its resilience to nearly

soft and collinear emissions.

A closely connected algorithm to GNNs: the deep-sets framework for feature

learning on point clouds, has been explored for jet physics. Energy Flow Networks

(EFNs) [314] are IRC safe deep learning models for point clouds, where the feature

extraction component learns a per-particle-map to a latent space. The process

of constructing graphs out of the point cloud imposes additional structures into

the data, which can be efficiently extracted with the help of MPNNs. Concretely,

an MPNN based feature extraction phase improves the per-particle-map in the

following ways:

� It can extract inter particle information courtesy of the trainable message-

passing function Φ(pi, pj), acting on each pair of nodes pi and pj connected

by each of the edges in the graph.

� The node readout updates the node feature as a permutation invariant

function of all incoming messages. The readout, along with the message-

passing step, forms one message-passing operation. It controls the extent

of information passed from one layer to another. Therefore, the graph

construction algorithm directly controls the nature of the information that

goes into learning the parameters of the message function of the first layer.

87
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� Since the updated node features are functions of all the neighbouring node

features, the range of information in the node features gradually increases

with the repetitive application of the message-passing operation. This is

not the case for EFNs, as the function is dependent on single-node fea-

tures. Thus, applying a subsequent learnable function to the updated node

features becomes a functional composition, which does not add additional

complexity to the process of feature extraction.

� On top of the graph construction itself, the number of applications of the

message-passing operation also controls the amount of local information

encoded into the final node features. For EFNs, this is always limited to

single particles.

Forgoing the permutation invariance of EFNs, for permutation equivariance [315]

has better feature extraction by partially taking care of the last two points, at the

additional cost of having to abandon the variable-length inputs. On the contrary,

an IRC safe MPNN would improve upon the EFNs and still be permutation

invariant. Intrinsically, this is because they are very similar, which is also self-

evident within the discussed reasons. Once the graph construction algorithm is

taken care of, we find that implementing an IRC safe MPNN can be done via an

energy-weighted message (feature) with summed aggregation at the node (graph)

level. We find that the network, which we refer to as Energy-weighted Message-

Passing Network (EMPN), improves upon EFNs with a single message-passing

operation. Moreover, EMPNs can, in principle, improve upon EFNs in all the

four points discussed above as the iterative application does not spoil the IRC

safety.

The rest of the chapter is organised as follows. We present the main results of

this work in Section 5.1, where we devise the graph construction algorithm and

the MPNN architecture, which guarantees the IRC safety of the network output.

We describe in detail the application of EMPNs to three jet-tagging scenarios:

gluon vs quark, QCD vs W , and QCD vs top, in Section 5.2. The results of these

three scenarios are presented in Section 7.4. We conclude in Section 5.4.

5.1 IRC safe message-passing

In this section, we examine the subtleties of building an IRC safe message-passing

neural network. We can divide this into three steps: graph construction, message-

passing and node readout, and graph readout. In the following, we analyse the

graph construction algorithm in Section 5.1.1, and the message-passing, node

readout and graph readout together in Section 5.1.2.
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5.1.1 Constructing the neighbourhood of a particle

An infra-red and collinear safe observable has to be equal in the presence or

absence of soft or collinear particles. Specifically, given a set S of n massless

particles with their four momenta pi = (zi, p̂i), with zi = piT/
∑

j∈S p
j
T denoting

the relative hardness of the particle, and p̂i being the directional (angular) coor-

dinates. If a particle q undergoes a splitting q → r+ s, with pq = pr + ps, an IRC

safe observable On must satisfy

On+1(pa, ..., pb, pr, ps, pc, ...)→ On(pa, ..., pb, pq, pc, ...) as zr → 0 ,

On+1(pa, ..., pb, pr, ps, pc, ...)→ On(pa, ..., pb, pq, pc, ...) as ∆rs → 0 ,
(5.1)

where zr is the relative hardness of pr, and ∆rs is the angle between ~pr and

~ps. Consequently, the algorithm for constructing graphs should allow for the

addition of soft or collinear particles without changing the whole structure of the

graph. The graph constructed by a vertex deletion of a soft or collinear particle

should be equal to the one formed in its absence, with proper substitution of

the four-momenta in the case of collinear particles. For instance, a k-nearest

neighbour (k-NN) graph would not allow for an IRC safe message-passing since

adding a particle in the vicinity of a node i could change the neighbourhood

set N (i) to N ′(i) with a fixed cardinality. The fixed cardinality would induce

a domino effect in the neighbourhood sets of the subsequent neighbours and

change the graph’s structure to a large degree. As a concrete example, for a k-

NN graph in the (η, φ) plane, the addition of a particle closer to the node could,

in principle, omit the hardest particle out of the neighbourhood in N ′(i). This is

diagrammatically shown in Figure 5.1, where a particle q splitting to two particles

r and s excludes another particle b from the neighbourhod of particle i. Thus,

in the node readout for particle i, a message-passing algorithm based on a k-NN

graph cannot smoothly extrapolate between the two scenarios, when taking the

IRC limits of the daughter particles r and s. This warrants a careful examination

of the graph construction algorithm.

Since our final aim is to have a message-passing neural network whose output

is IRC safe, the correctness of the graph construction algorithm is intimately

connected with the subsequent operations the network will perform on the graph’s

nodes. From the perspective of QCD, the node readout and the graph readout

functions are on the same footing, with the only difference being the scale. We

look into the jet substructure with the help of the nodes and the edge connections,

which gives us a representation of the whole jet.* In graph theory, self-loops are

often ignored, and most of the efforts concentrate on analysing simple graphs.

However, from the perspective of QCD, the destination node itself can also emit

*This could be extrapolated to the event shape, where an IRC safe graph neural network
would look into the subsequent scales present in the event and construct an event level repre-
sentation which would have the desirable property of being less affected by soft and collinear
radiations.
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Figure 5.1: A k-nearest neighbour graph in the (η, φ)-plane will have a different
structure when any particle q splits to r and s. The set S denote the particles in
the jet when there is no splitting, while S ′ denotes the particles with q splitting.
We show the directed edge connection to i from its three nearest neighbours
with red on either side. The neighbourhood set N (i) has b in it, however when
q splits, N ′(i) does not contain b. Therefore, the graph’s structure prevents a
smooth extrapolation between the two scenarios in the infra-red and collinear
limit. This is not the case for a radius graph with radius R0 in the (η, φ) plane,
which is shown with black connections. We also include the self-loop of i, by
using the closed neighbourhood sets N [i] and N ′[i], since the node i could also
split into two particles.

soft or collinear particles. Therefore, an IRC safe aggregation must act on the

closed neighbourhood N [i], which includes the destination node i.

Let us take a set S of the four momenta of n massless particles. Out of these,

any particle q could undergo a splitting to r and s, which enlarges the set S to

S ′ with S ′ = S \ {q} ∪ {r, s}. The three four momenta can be written in general

as

pq = (zq, p̂q) , pr = (zr, p̂r) zr = λzq , ps = (zs, p̂s), zs = (1− λ) zs ,

(5.2)

with λ ∈ [0, 1], and pq = pr + ps. Following are the limits that are of interest:

� IR limit: λ→ 0(λ→ 1), for r(or s) in the soft limit,
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� C limit: p̂r → p̂s → p̂q or equivalently ∆rs → 0, for any λ.

For the IR limit, the two cases are for either of the daughter particles becoming

soft, and it suffices to take one of them, say λ→ 0 =⇒ zr → 0 in the following

presentation. A graph construction method on S would allocate to each particle

i a neighbourhood set N [i] ⊆ S. We would have to apply the same method to S ′,
which would give neighbourhood sets N ′[i] ⊆ S ′. To devise an IRC safe message

passing operation, a simple procedure is to assume that the neighbourhood sets,

N [i], behave the same way as the total set S. By keeping the behaviour of the

sets the same, the graph structure essentially works as a control over the scale of

the message-passing operation. In the IR limit, the emitter q and the daughter

r need not fall in the same neighbourhood since the other daughter s will have

the same four momenta of q in the limit zr → 0. However, in the C limit, if the

emitter q is in the neighbourhood of N [i], we need both the daughters to be in

N ′[i]. Mathematically, we can write this condition as:

� IR limit: If r /∈ N ′[i] =⇒ N ′[i] = N [i]

else N ′[i] \ {r} = N [i] ,when zr = 0 ; (5.3)

� C limit: If {r, s} ∩ N ′[i] = ∅ =⇒ N ′[i] = N [i]

else N [i] = N ′[i] \ {r, s} ∪ {q} ,when ∆rs = 0 . (5.4)

The aim now is to devise a graph construction algorithm that will give us

neighbourhood sets satisfying these conditions. Constructing graphs from sets

sampled from a point cloud uses functions defined on the features ~βi. The al-

gorithm can be surmised by comparing two functions, which, in general, depend

on features ~βi (which need not be the same as the node features hi) of elements

i belonging to subsets of the whole sample set S, which itself can change as

the edge set E grows. Calling these two functions as the decision function D,

and the threshold function T, we say that a particle j will be placed into the

neighbourhood of i, if D is less than or equal to T,

D(~βi, ~βj|~βk, ~βl, ...) ≤ T(~βi, ~βj|~βk, ~βl, ...) =⇒ j ∈ N [i] . (5.5)

The features ~βi can generally contain any quantity of i like charge, four-momenta,

or the identity of the sub-detector component of i. Graphs are versatile data

structures that can encode the detector components together into a compact,

unified representation. However, as our current aim is to incorporate IRC safety, it

restricts us to calorimeter or particle flow constituents with no charge information

and the four vectors of the particles. In the following, we systematically reduce

the possible four-vectors which could come into the arguments of the decision and

the threshold functions.
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As was previously discussed, D or T cannot be dependent on the cardinality

of the neighbourhood set N [i]. Consider the functions depending on another

particle pq to decide whether pj should be in N [i]. A splitting on pq can create

situations where pj can be in N [i] and not in N ′[i] or vice versa. Thus, the

functions can not depend on any other four vectors than the two particles in

question. Looking at eq. 5.4, we see that the emitter and the daughter particles

of a collinear splitting need to be in both in the neighbourhood N [i] and N ′[i],
respectively, or not at all. We have the following condition on the decision and

threshold functions,

D(pi, pr + ps) ≤ T(pi, pr + ps)⇔ D(pi, pr) ≤ T(pi, pr) and D(pi, ps) ≤ T(pi, ps) ,

D(pr + ps, pi) ≤ T(pr + ps, pi)⇔ D(pr, pi) ≤ T(pr, pi) and D(ps, pi) ≤ T(ps, pi) ,

(5.6)

in the exact collinear limit of ∆rs = 0. The second line arises when considering

the emitter or daughters as the destination node, with pi denoting any particle

in their respective sets. A simple way to satisfy these inequalities is by using

the condition of collinearity and making the functions dependent only on the

directional coordinates,

D = D(p̂i, p̂j) , T = T(p̂i, p̂j) . (5.7)

The functions can also have additional dependence on any IRC safe quantity

defined on the set S.

For our network analysis, we explore the simplest possible graphs to gauge

the power of this method by constructing graphs with constant radius R0,

D = ∆Rij , T = R0 , (5.8)

in the (η, φ)-plane. Complicated dependencies on the directional variables and

on IRC safe quantities like the jet’s pT can be explored in future work. The black

connections to particle i in Figure 5.1 show a case where a split in particle q

preserves the other particles in the neighbourhood sets, except for the emitter

and the daughters.

5.1.2 Energy-weighted Message-Passing

Now that we have the graph construction algorithm, we look into building an IRC

safe message-passing function. The message-function at the first layer Φ(0) would

take two four-vectors pi and pj for a directed edge from j to i, to give the message
im

(0)
j . The node features are then updated to h

(1)
i , by applying a permutation

invariant function on the messages im
(0)
j for all possible j ∈ N [i]. Commonly

used permutation invariant functions can be classified in the sense of QCD into

exclusive or inclusive functions: the function output depends on a specific subset
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of the neighbourhood, or it depends equally on all the neighbourhood particles.

Max/min falls within the first class, while mean/sum falls under the second class.

As one can presume, it is inherently problematic to build IRC safety into exclusive

functions. Building IRC safety into a mean readout is not straightforward since

it depends explicitly on the number of particles in N [i]. In the following, we

examine the conditions which give IRC safety of the updated node features on the

message-passing function for the exclusive and summed node readout operations.

Max/Min readout: Since, the only difference between max and min readout is

the comparison, we look at max readout. The same for min readout follows by

replacing the greater-than with the less-than symbol in the message comparisons.

We have the messages Φ(0)(pi, pj) = im
(0)
j with the max update as,

h
(1)
i = max

j∈N [i]
Φ(0)(pi, pj) .

For a splitting q to r and s with pq = pr+ps and assuming that the neighbourhood

sets follow eq. 5.3 and 5.4. In the soft limit when zr → 0, we have

zj > zr =⇒ Φ(0)(pi, pj) > Φ(0)(pi, pr) for IR safety.

For the collinear limit ∆rs → 0, we have

Φ(0)(pi, pj) ≥ Φ(0)(pi, pr) and Φ(0)(pi, pj) ≥ Φ(0)(pi, ps) ∀ j ∈ N [i] for C safety.

Implementing C safety in a max/min node readout is not possible since the angle

∆rs needs to control the ordering of the messages im
(0)
r and im

(0)
s with all other

messages im
(0)
j . The max function chooses the maximum value out of all im

(0)
j ,

with the ordering essentially determined by the second argument in Φ(0). Consider

an exactly collinear splitting of the particle contributing to the highest message

vector inN [i], say pM → λ pM+(1−λ) pM , with λ ∈ [0, 1]. The max value in both

the scenarios can be equal only at the endpoints λ ∈ {0, 1}, which is essentially

the soft and collinear limit. The same is true for min readout when considering

the particle determining the minimum value of Φ(0) in the neighbourhood.

Sum readout: The updated node features are given by,

h
(1)
i =

∑
j∈N [i]

Φ(0)(pi, pj) . (5.9)

For a splitting q ∈ N [i] to r, s ∈ N ′[i] changing the neighbourhood set N [i] to

N ′[i]. The requirements on the message function Φ(0) are

IR safety: Φ(0)(pi, pr)→ 0 as zr → 0 (5.9a)

C safety: Φ(0)(pi, pr + ps) = Φ(0)(pi, pr) + Φ(0)(pi, ps) as ∆rs → 0 .

(5.9b)
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Satisfying these conditions gives IRC safe updated node features

h
(1)
i = h

′(1)
i =

∑
j∈N ′[i]

Φ(0)(pi, pj) . (5.10)

We have written these conditions for the second argument only, even though the

splitting can occur in the destination node, since it has a special status in the

message passing operation. Applying similar conditions for the first argument is

highly restrictive with no practical gain. Nodes corresponding to the daughters

are present in the graph even in the IRC limit, which is precisely the objective

of the present study – to get fixed-length representations of two graphs, with

one having an additional node, which is the same when the additional node or

particle is soft or collinear. Including the destination node in the neighbourhood

set makes it possible for the emitter and the two daughters to have the same

updated node features in the exact collinear limit, with the two collinear copies

propagating forward simultaneously. In either of the limits (soft or collinear),

these copies are then taken care of separately by an IRC safe graph readout.

These are explained in more detail in the following paragraphs.

We now present an implementation of message-passing operation which sat-

isfies the IRC safe conditions for a summed node readout. The message function

Φ(0) has a dependence on two four-vectors, which allows an MPNN to extract

richer features than the ones employed in EFNs [314] with a single particle map.

However, the per-particle map can be functionally regarded as a special mes-

sage function constant for the second argument. The point cloud could then be

regarded as a graph of N nodes, with N disconnected components with only

self-loops entering the edge set. Therefore, generalising the per-particle map, we

define the message function as

im
(0)
j = Φ(0)(pi, pj) = ω

(N [i])
j Φ̂(0)(p̂i, p̂j) , (5.11)

where Φ̂ takes only the directional information of the four vectors and we define

scalar weights ω
(K)
j , dependent on the scope K of the readout operation,

ω
(K)
j =

pjT∑
k∈K pkT

. (5.12)

Clearly, for the full set S, ω
(S)
j = zj, and zj → 0 =⇒ ω

(K)
j → 0 regardless of K,

thereby satisfying� eq. 5.9a. Moreover, as long as the neighbourhood sets N [i]

and N ′[i] satisfy eq. 5.4 which is true even when i undergoes a splitting we have,

ω(N [i])
q = ω(N ′[i])

r + ω(N ′[i])
s ,

�Note, when a soft particles has no other neighbour except itself, the node readout might
change to a finite value. However, the graph readout, and therefore the network output, will
remain unchanged, as K = S.
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where q is the emitter and r and s are the daughter particles. Since p̂q = p̂r = p̂s
in the collinear limit, we have

Φ̂(0)(p̂i, p̂q) = Φ̂(0)(p̂i, p̂r) = Φ̂(0)(p̂i, p̂s) ,

Φ̂(0)(p̂q, p̂i) = Φ̂(0)(p̂r, p̂i) = Φ̂(0)(p̂s, p̂i, ) .
(5.13)

Hence, the updated node features

h
(1)
i =

∑
j∈N [i]

ω
(N [i])
j Φ̂(0)(p̂i, p̂j) , (5.14)

satisfies the IRC safety condition eq. 5.10. Note that the expression does not limit

the form of the function Φ̂(0) other than differentiability which is required for

back propagation. Thus, we can modify any existing message-passing algorithm

into the IRC safe version by implementing the appropriate message weights and

restricting the input to the directional coordinates. We therefore implement the

IRC safe version of edge-convolutions as a proof-of-principle analysis.

Looking at the structure of the updated node features after the first message-

passing operation, we can see that it is a function of all the four-momenta of its

neighbourhood particles. If n is the number of nodes in the set N [i], we have the

updated IRC safe node feature as h
(1)
i (p1, p2, ...pn). We want to investigate the

IRC safety of another message passing on the updated quantities h
(1)
i . If true,

the architecture could accommodate multiple iterations of message-passing oper-

ations, thereby increasing the model’s expressive power. For simplicity, one can

consider static graphs with the same neighbourhood sets. A weighted message-

passing with of the same form as eq. 5.14

h
(2)
i =

∑
j∈N [i]

ω
(N [i])
j Φ̂(1)(h

(1)
i ,h

(1)
j ) ,

with the same weights ω
(N [i])
j , but with the updated node features h

(1)
i satisfies IR

safety. For it to be C safe, the features h
(1)
i should behave just like the directional

coordinates p̂i. Note that the neighbourhood sets for the two collinear daughters

are the same. The emitter also has the same neighbourhood after replacing the

daughters with their summed four-vector (cf. eq. 5.4). Their aggregated node

vectors become equal to that of the emitter in S via the cancellation of the λ

factors in the weights. Thus, the updated node vectors after the first message-

passing of the daughters and the emitter are exactly equal in the collinear limit

h
(1)
q = h

(1)
r = h

(1)
s . Hence, they have essentially the same characteristics as the

directional coordinates. This ensures that Φ̂(1)(h
(1)
i ,h

(1)
j ) follow analogous equa-

tions to eq. 5.13, thereby making the weighted message ω
(N [i])
j Φ̂(1)(h

(1)
i ,h

(1)
j )

follow similar equations to eq. 5.9. Moreover, the new features h
(2)
i , would have

this same property. Hence, repeating the energy weighted message passing oper-

ation any number of times satisfies IRC safety at the level of each updated node
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feature. Denoting the node features for the lth iteration as h
(l)
i with h

(0)
i = p̂i, we

have the iterative application of the energy-weighted message passing as

h
(l+1)
i =

∑
i∈N [i]

ω
(N [i])
j Φ̂(l)(h

(l)
i ,h

(l)
j ) . (5.15)

As seen above, there will be copies of emitted particles even in the IRC limit,

propagating forward in the graph formed after a soft or collinear splitting. Thus,

any generically defined graph readout operation acting on the node features of

the full graph will not be IRC safe. The graph readout should guarantee the

equality of the obtained representation of the two graphs in the IRC limit, with

one having an additional node. The node features at the final message-passing

layer, say h
(L)
i , will behave the same way as the directional variables, regardless

of L, the number of message-passing iterations. Thus, a graph readout of the

form

g =
∑
i∈G

ω
(S)
i h

(L)
i , (5.16)

with zi = ω
(S)
i , is IRC safe. This is an analogue of the sum over the per-

particle representation employed in EFNs. The graph convolution operation now

replaces the per-particle maps. The scale of the representation which undergoes

the sum, which contains local structural information, is determined by the number

of message-passing operations and the graph construction algorithm. A schematic

representation of such a network for L = 1 is shown in Figure 5.2.

5.2 Details of network implementation

In this section, we present the numerical results of the IRC safe message passing

neural network. The details of the datasets are given first, followed by the network

hyperparameters and training aspects.

5.2.1 Analysis setup

For assessing the power of Energy-weighted Message Passing Networks (EMPN),

we consider three scenarios: quark/gluon discrimination as a benchmark for IRC

safe, supervised identification of normal radius quark jets from gluon jets, boosted

W vs QCD jet tagging as an example of two-prong tagging, and boosted top

vs QCD jet tagging as an example of three-prong tagging. We use publicly

available datasets for the quark vs gluon tagging [314, 316], and the top tagging

scenarios [178,317]. These datasets were generated at 14 TeV center-of-mass en-

ergy proton-proton collisions in Pythia8 [70]. The parton level events were gen-

erated in Pythia 8.226 using the processes WeakBosonAndParton:qqbar2gmZg

and WeakBosonAndParton:qg2gmZq for the gluon and quark samples respectively.

These events were showered with the default tunings of the shower parameters
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Message-passing

Node Readout

Graph Readout
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Figure 5.2: The specific architecture used for the three jet tagging scenarios
of an Energy-weighted Message-Passing network(EMPN), with a single energy-
weighted message passing operation. It takes graphs of constant radius R0 in
the (η, φ)-plane. The message-passing network Φ(0), takes the directional inputs

of the four-vectors in the form of h
(0)
i , and calculates a weighted message im

(0)
j

with ω
(N [i])
j as the weights. It then undergoes a summed node readout operation

to update their features to h
(1)
i . The graph representation g obtained after a

summed graph readout operation on the node features h
(1)
j weighted with ω

(S)
j ,

is fed into a DNN which outputs a binary classification score.

with multi-parton interactions (MPI) and hadronisation. All final state parti-

cles except neutrinos were clustered with FastJet 3.3.0 [94] into anti-kT [91]

jets of radius R = 0.4, with no detector simulation. Jets are required to have

pT ∈ [500, 550] GeV and rapidity |y| < 2. Parton level events for QCD jets and top

jets in the top tagging dataset were generated with Pythia 8.2.15. These were

showered without MPI effects and passed through Delphes3 [72], with the default

ATLAS detector card. The particle-flow objects are clustered into anti-kT jets

with R = 0.8. The jets are required to have pT ∈ [550, 650] GeV, with pseudora-

pidity |η| < 2. For the top-jets, the parton-level top quark and its decay products

were required to fall within ∆R = 0.8 of the reconstructed jet axis. QCD jets from

this dataset was used for the W -tagging scenario. For the W jets, we generated

the parton level process p p > w± z in MadGraph5 aMC@NLO(v2.6.5) [61], at 14

TeV proton-proton collisions, forcing the W boson to decay hadronically, and
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Sl.No Jet Class Parton-level MPI Detector Sim. Jet-radius
1. Gluon Pythia8 Yes No 0.4
2. Quark Pythia8 Yes No 0.4
3. QCD Pythia8 No Yes 0.8
4. Top Pythia8 No Yes 0.8
5. W MadGraph5 aMC@NLO No Yes 0.8

Table 5.1: A summary of the different classes of data used in the three classifica-
tion scenarios. The W data was generated for this study, while for the first four
classes, we use publicly availaible datasets [316, 317]. All datasets were show-
ered and hadronised with Pythia8, while the detector simulation was done with
Delphes3, with the default ATLAS card.

the Z boson to decay to neutrinos. Parton level cuts on the missing-transverse

energy with /ET > 500 GeV, and the pseudorapidity of the W bosons, |ηw| < 3,

were applied during the generation. Further downstream simulation of these

partonic events was done by implementing the same configuration details of the

top-dataset, including the jet-reconstruction and baseline selection criteria. We

also matched the parton level W and its decay products to be within ∆R = 0.8

of the reconstructed W jet axis. Up to two-hundred hardest constituents within

the jet were used to construct the graphs for the three large-radius jet tagging

datasets. For all three scenarios, we have 1.2 million training, 400k validation,

and 400k test jets.

5.2.2 Constructing the jet graphs

The jet graphs of each jet are constructed by taking their constituents. We

calculate the interparticle distance ∆Rij =
√

∆η2 + ∆φ2, in the (η, φ) plane. For

each node i, we define the neighbourhood set N [i] as the set of all the particles i

with ∆Rij ≤ R0. After the neighbourhood sets, or equivalently the edge set E of

the graph are obtained, we shift the coordinates of each constituents (ηi, φi) to

(∆ηiJ ,∆φiJ), their distance between the jet axis (ηJ , φJ). The node features that

the network takes has the φ coordinates mapped to two-dimensional coordinates

(a cosφ, a sinφ). Keeping in mind the total allowed range of η ∈ [−5, 5], we

choose a = 5. Thus, for each jet constituent, we have the node features of the

input graph as

h
(0)
i = (5 cos ∆φiJ , 5 sin ∆φiJ ,∆ηiJ) .

This choice of representation makes the edge-convolution (which we will be using)

look at the φ information through an embedding in a two-dimensional Euclidean

space. This is essential since multilayer perceptrons (MLPs), the building blocks

of neural networks, are essentially sequential affine maps interspersed by non-

linear activation functions, and the periodicity of φ may not be evident to it

directly even if the graph has the periodicity. The range of φ for jets consid-
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ered here are not wide enough for the periodicity to become a major bottleneck.

However, it is crucial when considering the inclusive event information. We also

calculate the weights ω
(K)
j defined in eq. 5.12, for all neighbourhood sets N [i] and

the full set S. The jets are not preprocessed with steps like rotation and reflection

before extracting the node features. Doing so should improve the network per-

formance as these symmetries are not built into the architecture. Incorporating

these symmetries into the architecture could also improve the performance in the

absence of preprocessing.

5.2.3 Network hyperparameters and training

As this is a proof-of-principle study, we examine the simplest of architectures to

showcase the ability of EMPNs at the different classification scenarios. We imple-

ment an EnergyWeighted message-passsing module in PyTorch-Geometric-1.7.2 [234],

for the analysis of the EMPN network. The message-passing function corresponds

to an energy-weighted edge convolution [203],

im
(0)
j = ω

(N [i])
j Φ̂(0)

(
h

(0)
i ⊕ (h

(0)
j − h

(0)
i )
)

. (5.17)

The learnable function Φ̂(0) is an MLP having two hidden layers. The input layer

takes the six-dimensional concatenated vector h
(0)
i ⊕ (h

(0)
j − h

(0)
i ), and maps it

to a 128-dimensional representation. Both hidden layers are also fixed to have

128 nodes each with ReLU activations, while the output layer has Linear activa-

tion. The graph representation obtained after applying the IRC safe-readout (cf.

eq. 5.16) is fed into a downstream MLP, which outputs the binary classification

score. This MLP has three hidden layers, with all of them having sixty-four nodes

and ReLU activations. The structure of the EMPN network is summarised in Fig-

ure 5.2. We use Adam [171] optimiser with an initial learning rate of 0.001, which

reduces with a decay-on-plateau condition by a factor of 0.5, with the patience of

two epochs without any cooldown. We scan over a set of R0 values for each classi-

fication scenario. For the W and top tagging with large-radius jets (R = 0.8), we

choose R0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, while for the quark-gluon classification with

normal-radius jets (R = 0.4), we choose R0 ∈ {0.1, 0.2, 0.3, 0.4}. For all three

scenarios and each R0, we train the same network from random initialisation five

times. All networks were trained for seventy epochs. The epoch with minimum

validation loss is used for evaluating the model with their respective test datasets

for each instance of the training. Note that we do not perform any hyperparam-

eter optimisation, and doing so should further improve the performance.
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Figure 5.3: ROC curve for the three tagging scenarioes and different values of
R0. The three sets of curves correspond to QCD vs W , QCD vs top, and gluons
vs quarks from respectively from top to bottom. The band shows the maximum
and the minimum values of the inverse of background acceptance 1/εB, for fixed
values of signal efficiency εS from seperate runs.

5.3 Results

5.3.1 Tagging performance

The ROC curve for the three jet-tagging scenarios for the various values of R0

are shown in Figure 7.6. We evaluate the background acceptance εB, at the same

set of signal efficiencies εS for all instances of the trained networks. For a specific

tagging case and fixed R0, the boundary indicates the maximum and the mini-

mum values of 1/εB from the five training instances. The variation of the mean

AUC and their error for the five training instances for each R0 and the three cases

are shown in Figure 5.4. These values, along with the background rejection 1/εB
at 50% signal efficiency, are shown in Tables 5.2, 5.3 and 5.4 for gluon/quark, top

and W tagging respectively. For comparison, we also include relevant numbers

for gluon vs quark and top tagging scenarios from reference [314] for Energy Flow

Networks (EFNs). Since we have not preprocessed our data, the values for top

discrimination is for the unprocessed case. The quark-gluon tagging networks

already show improvement at R0 = 0.1 with an AUC of 0.8888 over EFNs with

0.8824. However, for the top tagging case, the AUC (0.9734) for R0 = 0.1 is

less then that of EFNs (0.9760). This decrease indicates that the local struc-

tural information at that scale does not help distinguish QCD jets from top jets

with a single message-passing operation. The local information learned by the
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Figure 5.4: Variation of mean AUC with R0 for the three tagging scenarios. For
the W tagging scenario (green cross), the AUC has saturated at R0 = 0.1 and
does not increase when compared to the other two. AUCs for the top vs QCD
(red triangle), and the gluon vs quark (blue square) classification increases as
we increase R0. The error bands are the standard deviation from five training
instances.

message-passing phase confuses the downstream MLP, decreasing its performance

compared to EFNs. Although, the message function or the downstream MLP we

used is not exactly the same as the analogous per-particle map and the down-

stream MLP used in reference [314], and hence the comparison is not exactly

like-for-like. The difference reaches parity at R0 = 0.2, which further increases

and reaches a stable value for higher R0. Thus, for both scenarios, the energy-

weighted message-passing help in better feature extraction of the local features.

For the W tagging results, we see very stable values of AUC (see Figure 5.4),

which do not vary appreciably with R0 compared to the other two cases. The

EMPN can already extract very rich features for the graphs at R0 = 0.1, giving

an AUC of 0.9865. Increasing the complexity of the graph by enlarging R0 does

not add new information which the current architecture can extract. The stabil-

ity of the AUC shown in Figure 5.4 is likely due to the high kinematic range of

the jets compared to the W mass, giving the separation between the two decay

products as ∆R ∼ 2mW/pT ∼ 0.25. To check whether the performance decreases

for smaller R0, we repeat the training process for R0 = 0.02 and find that the

mean AUC indeed falls mildly to 0.9845 for five training instances.
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Sl.No R0 AUC 1/εB at εS = 50%
L = 1

1. (EFN [314]) 0.8824±0.0005 28.6±0.3
2. 0.1 0.8888±0.0013 30.1±0.3
3. 0.2 0.8909±0.0009 30.1±0.2
4. 0.3 0.8916±0.0008 30.7±0.2
5. 0.4 0.8919±0.0006 31.0±0.1

L = 2 (Discussed Later)
1. 0.1 0.8932±0.0006 30.8±0.2

Table 5.2: AUC values and the background rejection for different values of R0

for gluons vs quark tagging dataset. Uncertainties for AUC are the standard
deviation from five training instances, while for the background rejection 1/εB
are half of the inter-quartile range. The first entry is quoted from the cited
reference.

Sl.No R0 AUC 1/εB at εS = 50%
1. (EFN [314]) 0.9760±0.0001 143± 2
2. 0.1 0.9734±0.0009 115±2
3. 0.2 0.9764±0.0004 151±2
4. 0.3 0.9779±0.0005 167±4
5. 0.4 0.9782±0.0002 174±2
6. 0.5 0.9781±0.0002 168±3

Table 5.3: AUC values and the background rejection for different values of R0

for top tagging dataset. Uncertainties for AUC are the standard deviation from
five training instances, while for the background rejection 1/εB are half of the
inter-quartile range. The first entry is quoted from the cited reference.

Other than the apparent variation of the mean AUCs and the ROC curves,

we also see interesting features in the error bars of the AUC and the band of

the ROC curves. If the AUC increases, its errors also gradually decrease as one

increases R0. On the other hand, across the different scenarios, the errors do not

follow the same relation. The variation of AUC for each R0 is due to the random

initialisation of weights from the same underlying weight space with the same

distribution� for all networks. The optimisation proceeds via a gradient descent

algorithm that goes to a local minimum of the loss function accessible from the

initialised point in the space of weights for each instance. We can infer the relative

quality of the local minima accessible from the initialised point. Lower the error,

the easier it is to get to approximately similar values of the stable loss function.

Comparing the three scenarios with stable AUC for the same R0, we see that the

top tagging case has a minor variance, followed by W tagging. Thus, even though

the performance of W tagging is relatively higher, the distinguishing features for

�We are using the same initialiser for all networks.
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Sl.No R0 AUC 1/εB at εS = 50%
1. 0.1 0.9865±0.0004 2415±104
2. 0.2 0.9864±0.0004 2332±95
3. 0.3 0.9863±0.0004 2381±71
4. 0.4 0.9868±0.0004 2254±80
5. 0.5 0.9868±0.0005 2300±226

Table 5.4: AUC values and the background rejection for different values of R0

for W tagging dataset. Uncertainties for AUC are the standard deviation from
five training instances, while for the background rejection 1/εB are half of the
inter-quartile range.

QCD vs top jets have a higher number of equally good local minima. The ROC

band also enlarges with increased performance due to the decreasing statistics of

the finite test sample.

5.3.2 Examining IRC safety

We now check the numerical stability of the network output for additional emis-

sions. Since the network respects IRC safety, a jet with an additional splitting in

the exact collinear or soft limit would have the same output without any splitting.

We explicitly verified that the difference between the network output of jets and

their respective copies with one additional splitting in the exact collinear or soft

limit are zero within numerical precision. In order to check the network output’s

stability, we create copies of an original top jet belonging to the test dataset by

splitting the hardest constituent. We choose the hardest constituent since nu-

merically, it should have the maximum effect on the probabilistic output due to

the ω
(K)
i weighted node and graph readouts. The splitting is done as follows. We

create a scaled copy zr pq of the hardest four-momentum pq. Taking the plane

formed by the hardest particle and the softest particle in the jet, we rotate it by

an angle θ giving us the four-momentum of one daughter pr. The second daugh-

ter’s four-momentum ps is determined by the enforcing conservation of energy

and momentum. We vary the two quantities zr and θ independently to get the

network output of the jet with an additional split yS′(zr,∆Rrs) as a function of

zr and ∆Rrs.

The contour of the absolute difference |yS−yS′(zr,∆Rrs)| between the network

output of the initial jet yS and those with an additional splitting yS′(zr,∆Rrs)

for different values of R0 is shown in Figure 5.5. We evaluate the difference of

the best network from each of the five instances of training. For each R0, we

have plotted the contour having the maximum variance. The value of yS , which

is the probability of the jet being a top, is also displayed. It can be seen that the

difference goes to zero independently in the soft or collinear limits for all networks.

This difference is low in considerable portions of the domain, indicating that the
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Figure 5.5: Variation of the network output with one additional particle, emitted
from the hardest constituent in a top jet, on trained networks for various values
of R0. The contour figures show the contour of |yS − yS′(zr,∆Rrs)| in the two-
dimensional place (zr,∆Rrs). Although, the differences are finite for non zero zr
or ∆Rrs, it goes to zero independently at the infra-red or collinear limits.

network output is relatively stable (at least for the particular jet).§

We see an increase of the area with non-zero differences as one increases R0.

To understand this behaviour, we examine how the neighbourhood sets of each

particle in the jet with an additional splitting evolve as one increases R0. For a

fixed ∆Rrs, the two daughter’s neighbourhood set would grow as one increases R0.

In contrast, for the remaining particles, the number of particles that have either

of the daughter particles in them would increase with increasing R0. Since they

are greater in number, we expect this second aspect to influence the network

output to a greater degree. Thus, even though the network performances are

generally lower for smaller values of R0, the network output is more stable for

additional emissions that are not too soft or collinear. Increasing R0, therefore,

increases network performance at the cost of increased computational load (due

to the addition of edges) but decreases the network’s stability to QCD emissions.

Since the increase in performance for increasing R0 comes at a price of a

growing sensitivity to additional emissions, it is worth investigating how a deeper

EMPN with more message-passing operations (which should increase the dis-

crimination for a fixed R0) fare against the same QCD radiations. We, therefore,

train EMPN with two different message passing operations for R0 = 0.1. For

demonstration, we chose the gluon vs quark scenario because both classes’ one-

prong nature elevates the importance of the differing soft radiation patterns. We

keep the structure of the downstream MLP and the message function at the first

layer identical to the previously presented network. The second one is chosen to

correspond to an edge-convolution operation given in eq. 6.4, with l = 1 in the

superscript instead of l = 0. The MLP, therefore, takes a 256-dimensional input

and outputs a 128-dimensional vector. It contains two hidden layers of 128 nodes

§We tested with multiple jets from the different classes and found similar features, for brevity
we have only included a single plot.
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Figure 5.6: Comparing the variation of the network output |yS−yS′(zr,∆Rrs)| of
a gluon jet for a deeper network (right) with L = 2 and smaller radius R0 = 0.1
against a shallower network (middle) with L = 1 and different R0 ∈ {0.1, 0.2, 0.4}.
For comparison, the variation with L = 1 and R0 = 0.1 is also shown on the left.

each, with ReLu activation. The training is done five times with the same set of

hyperparameters. We find a mean AUC of 0.8932 ± 0.0006 over the five train-

ing instances, confirming our presumption implying increasing performance with

deeper models. Moreover, from Table 5.2, one finds that the value is even better

than R0 = 0.4 at L = 1 with AUC=0.8919±0.0006, which indicates that the

performance scales much faster with the number of message-passing operations

L than with R0.

We now turn to investigate the phenomenologically important resilience to

additional emissions. Following the procedure explained in the preceding para-

graphs, the contours of |yS − yS′(zr,∆Rrs)| for a gluon jet with

(L,R0) ∈ {(1, 0.1), (1, 0.2), (2, 0.1)}

are shown in Figure 5.6. Along with the increasing discrimination, the model

with L = 2, R0 = 0.1 also provides better stability to additional emissions. The

variation reduces with increasing depth for a constant R0. Naturally, compared

to R0 = 0.2, which is less stable than with R0 = 0.1 for constant L, we find that

increasing L has an overall better phenomenological suitability than increasing

R0. Thus, deeper networks increase the performance and enhance the stability of

additional emissions. This stability might be due to the larger number of func-

tional compositions that a deeper model applies to the input, thereby reducing

the sensitivity of the weight space (fixed after the training) to perturbations in

the data. However, it needs a more detailed study since our present analysis is

not extensive and does not reflect a truly realistic QCD picture.
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5.4 Summary

In this chapter, we have devised an IRC-safe EMPN algorithm, and applied this

approach to the discrimination of hadronically decaying top quarks and W bosons

from QCD jets and the classification of jets into quark or gluon-induced jets.

We find this algorithm to be highly performant, at par with other state-of-the-

art neural network classification methods quoted in the literature. Thus, our

definition of an IRC-safe Energy-weighted Message-Passing Network paves the

way to highly performant jet classification algorithms that are at the same time

insensitive to often poorly modelled parts of the event simulation, i.e. phase-

space regions in the training event samples that are plagued by large theoretical

uncertainties.



Chapter 6

Detecting anomalous jets with a

Graph Autoencoder

In the preceding chapters, we have primarily considered supervised applications

of deep-learning algorithms where we have some particular signal models. Such

studies concentrate on a specific region of phase space to look for the hypothesised

signal. However, the LHC, to date, has not found any tell-tale signs of new

physics, which motivates model-unspecific searches. In this chapter, we explore

the capability of graph neural networks in the form of graph autoencoders to the

problem of anomaly detection of any non-QCD jet.

Convolutional autoencoders have been proposed and studied in [167, 169,

170, 191, 318, 319] for distinguishing QCD jets from non-QCD jets using “jet-

images” [115, 117] as the input space. However, as discussed in chapter 2, con-

volutions on these images are expensive due to their extreme sparsity and are

limited to the Euclidean domain. GNNs mitigate these two inadequacies, so

studying their performance as anomaly finders is motivated. A study of parti-

cle graph autoencoders for anomaly detection has been carried out in the LHC

Olympics community challenge [320]. A typical obstacle of GNN-based autoen-

coders is achieving an appropriate reflection of all network features on the de-

coding side. Existing graph-autoencoders in the literature [321–325] are designed

mostly for node-classification or link prediction, while we desire a network capa-

ble of classifying graphs. Moreover, jets provide us with multidimensional edge

information, along with node features; classifying the entire graph thereby ex-

ploits the full kinematic information of the event. To solve this known difficulty

of graph-autoencoders, we design a decoder network capable of simultaneously

reconstructing multidimensional edge, and node features with the help of Inner

Product Layers.

This chapter is organised as follows: Section 6.1 introduces our analysis setup.

The graph neural network methodology that we use in this work is described in

Section 6.2, where we provide details on the network’s architecture and its per-

formance. Results are presented in Section 7.4, and we summarise in Section 7.5.

107
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Figure 6.1: Normalised angular separation distribution between three leading
microjets in the fat jet for the physics scenarios discussed in this work.

6.1 Elements of the Simulation

For our proof-of-principle analysis*, we generate events using MadGraph5 [61]

at leading order (LO), followed by Pythia8 [326] for showering and hadroniza-

tion. The hadronic final states are then clustered into jets using the anti-kt
algorithm [91] with parameter R = 1.5 using FastJet [94]. Along with a require-

ment that the rapidity of jets is |y| < 2.5, the minimum transverse momentum

of a jet is required to be pT > 1 TeV for this “fat jet” cluster. Only the leading

jet from each multi-jet event is used as an input to the graph network and we

do not include detector effects to our analysis. The sample used for training of

the autoencoder (for details see below) is a QCD multi-jet background sample,

consisting of 200k generated pp→ jj events.

To test the autoencoder’s anomaly detection performance we use three dif-

ferent signal samples, each consisting of 100k events generated with MadGraph5,

using the same procedure described above. These samples consist of

(i) boosted hadronically-decaying W bosons as a benchmark for two-prong jet

structure,

(ii) boosted hadronically-decaying top quarks, as a benchmark for a three-prong

structure, and

(iii) a boosted scalar φ decaying as φ → W+W− → 4j to give a four-prong

structure. The interaction is based on a simplified Lagrangian

L ⊃ −c1

v
φW µνWµν − c2(uū+ dd̄)φ, (6.1)

where c1 and c2 are dimensionless constants and v is the Higgs field’s vac-

uum expectation value (vev). We choose mφ = 700 GeV for demonstration

purposes, but note that our results are not too sensitive to the φ mass scale.

*Throughout this work, we will focus on 13 TeV LHC collisions.
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Figure 6.2: Similar to figure 6.1, but showing the normalised invariant mass
distribution between three leading microjets in the fat jet.

To map out an infrared safe input to the graph network, we first use the anti-

kT jet algorithm to re-cluster the fat jet constituents into microjets� with a finer

resolution of R = 0.1 and minimum pT = 5 GeV. We consider fat jets with at

least three microjets for our neural network analysis.

Identifying each microjet as a node in the network, we construct a graph

associated with each jet as follows:

� Node feature vectors: We associate five microjet observables as the

node’s feature vector ~x. These are log pt, ∆η ,∆φ, ∆R, and m̄. Here,

pt is the transverse momentum of the microjet, ∆η,∆φ, and ∆R are dif-

ferences in pseudorapidity, azimuthal angle, and angular distance between

the microjet and the jet axis respectively. m̄ is the mass of the microjet

divided by 100 GeV, which, along with the log on pt, reduces the disparity

in the range with the other three angular variables.

� Edge feature vectors: After the nodes are defined, we define the graph

as the complete graph with all possible edge connections. For each edge,

we construct an associated edge-feature vector of three dimensions. Its

components are the two distance parameters between the nodes as defined

below, and one invariant mass parameter: ~eij ≡ (dCA
ij , log dktij , logmij). The

metric dij is given by

dij = min(p2p
ti , p

2p
tj )
R2
ij

R2
,

where p = 0 for Cambridge-Aachen (CA) jets, p = 1 for kt jets and R

is radius parameter for the fat jet. The CA measure provides information

about the geometric distance between two microjets, whereas the kt measure

is motivated from QCD splittings [89,328]. mij is the invariant mass of the

two microjets. These three variables capture the essential physics between

two nodes.

� Adjacency Matrix: We also construct the adjacency matrix for each edge

feature to facilitate their reconstruction at the decoder side. It is defined
�As shown in reference [327], such objects are under good experimental control.



110 Chapter 6. Detecting anomalous jets with a Graph Autoencoder

NNConv
(128)

EdgeConv
(64, 32, 6)

Input Graph

Edge features

Node features

Latent node representation

Node
Reconstruction Loss

EdgeConv
(32,64,128)

EdgeConv
(5)

EdgeConv
(32,16,8)

EdgeConv
(32,16,8)

EdgeConv
(32,16,8) InnerProduct

InnerProduct

InnerProduct

Edge
Reconstruction Loss

Edge Reconstruction Network

Decoder

Encoder

Total Loss

Figure 6.3: A schematic representation of a graph-autoencoder network. The
network contains the (a) Encoder and the (b) Decoder. We employ an edge
reconstruction network in the decoder to reconstruct the multidimensional edge
information.

as

Aaij = Aaji =

{
eaij if i 6= j

1 otherwise
,

where a is the vectorial index. Thus, for a jet-graph of N nodes, we have

three N×N matrices. The network outputs the edge-features in this repre-

sentation, and hence the edge-loss is defined as a function of these adjacency

matrices.

The distribution of ∆Rij and mij for the 3-leading microjets of each jet are shown

in figures 6.1 and 6.2. The construction of the graphs and the network analysis are

performed using the Deep Graph Library [233] with the PyTorch [231] backend.

6.2 Graph Autoencoders

In this section, we describe the various components of our neural network analysis.

We briefly detail the conceptual structure of the graph autoencoder before moving

on to describe the ones we utilise in our analysis, along with the explicit form

of the autoencoder’s loss function. The network architecture and the process of

training are described thereafter.

Graph-autoencoders are typically designed for classifying nodes or edges, fo-

cusing on learning local features of a huge graph. However, as our goal is to

classify small graphs, the network needs to learn global graph structures and lo-

cal features. To overcome this, we design an edge-reconstruction network within

the decoder, making our network capable of learning graph structures by recon-

structing the graph in its entirety. The complete structure of our network is
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shown in figure 6.3, where the black boxes encase the encoder and the decoder.

The edge-reconstruction network is shown bounded by the blue box. These are

described in greater detail in the following passages.

6.2.1 Designing a graph autoencoder

Autoencoders are neural networks that map an input space to a bottleneck di-

mension (the latent dimension) and then back again to a space identical to the

input. We use the graph-convolutions proposed in reference [199] to incorpo-

rate the multi-dimensional edge information along with the input node features.

Our network, therefore, learns the physics information that is encoded into our

3-dimensional edge feature. The timesteps until we reach the latent space em-

ploy edge-convolution [203], which has proved excellent performance in supervised

learning scenarios [210,219]. We refer to these two layers as NNConv, and Edge-

Conv respectively, according to the python class name implemented in the Deep

Graph Library. The encoder block outputs a graph with the same edge con-

nections as that of the input with updated latent features ~fi for each node. The

decoder reconstructs the node and edge features from this latent node representa-

tion. As shown in figure 6.3, the decoder has a shared block of edge convolutions,

after which the output feeds into four different blocks of edge convolutions: a

single layer for the node reconstruction, and three edge reconstruction blocks.

These three blocks are identical in structure and reconstruct each edge feature

independently from the propagated information from the shared block. We use

an Inner Product Layer [321] to reconstruct the edge information in the form of

three adjacency matrices. These three components and the composition of the

loss function are explained in the subsequent paragraphs.

NNConv: The first layer takes the node and edge features as input and performs

a weighted graph convolution by making use of an MLP, referred to as edge

function Fw. This takes the edge features as input and maps it to a dimension

of m × n, where m is the input node’s dimensions (5 in the present case), and

n is the dimension of the updated node features. The message passing function

performs a broadcasted element-wise multiplication of the form

abm
(1)
ij = abFe(~eij)× abh̃

(0)
j , (6.2)

where a and b are the indices of the matrix, and abh̃
(0)
j is formed by repeating ~h

(0)
j ,

the input node features, n times. The aggregation step takes the mean of abm
(1)
ij

over all neighbouring nodes j, and then sums over the a index of the matrix:

bh
(1)
i =

∑
a

meanj∈N (i)

({
abm

(1)
ij

})
, (6.3)

to give updated n dimensional node features ~h
(1)
i .
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EdgeConv: The backbone of our architecture is the edge convolution opera-

tion [203]. This involves two linear layers: Θw and Φw, with identical input and

output dimensions, which determine the dimensions of original and updated node

features respectively. The message passing function is defined as

~m
(l)
ij = Θw(~h

(l)
j − ~h

(l)
i ) + Φw(~h

(l)
i ) , (6.4)

while the aggregation step involves taking the maximum value

ah
(l+1)
i = max

j∈N (i)
{am(l)

ij } , (6.5)

in each component a of the incoming message vectors to give the updated node

features ~h
(l+1)
i .

Inner Product Layer: The edge-reconstruction network uses an Inner Product

Layer to reconstruct the edge features from the node features of the final edge

convolution output. The inner product makes the correspondence to the two-

node indices for each edge. Since our graphs are undirected, the layer constructs

a symmetric N × N matrix, N being the number of nodes in the graph. Its

components are therefore

Âij = ~hi . ~hj , (6.6)

where ~hi and ~hj are node-feature vectors.

6.2.2 Loss Function

We use root-mean squared error (RMSE) for the node as well as the edge recon-

struction losses. For the node feature this is

Lnode =

√∑
ia

(x̂ai − xai )2

N × 5
, (6.7)

where a is the node-feature index, i is the node index, x̂ai and xai are the recon-

structed and input node features, respectively. We define the edge reconstruction

loss as the sum of three individual RMSEs for each edge feature

Ledge =
∑
a

√√√√∑
ij

(Âaij − Aaij)2

N ×N
, (6.8)

where a is the edge-feature index, i and j are node indices. Âaij and Aaij are the

reconstructed and input adjacency matrices respectively. The total loss is the

weighted sum of the individual losses,

Lauto = λnode Lnode + λedge Ledge (6.9)
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We choose λnode = 0.3 and λedge = 1, so that the combined node features get the

same weight as each individual edge feature, which carry more relevant physics

information. Note that the loss function is invariant to node permutations of the

input graph since, mean is a permutation invariant function, and the architecture

respects permutation invariance: any change in the node ordering changes the

output of each layer (via the node readout) in conjunction with the adjacency

matrix. Our network however, does not reconstruct an arbitrarily permuted graph

for a given input, which is not strictly necessary since we concentrate on the

reconstruction error of a single graph and not of an equivalence class of graphs.

6.2.3 Network Architecture and training

Neural networks require a careful optimal choice of hyperparameters. As this is a

proof-of-principle analysis, we do not perform an extensive hyperparameter scan.

However, we scan over the latent dimension, which is critical for any autoencoder.

For the first layer of the graph-encoder (NNConv), we use an MLP of hidden di-

mensions: 256, 128, 64, and 32 as the edge function to map the 3-dimensional

edge features to a 5 × 128 dimensional output. The hidden layers have ReLU

activations, whereas the final layer has a sigmoid activation. The limited range

of the sigmoid activation helps in giving the addition operation in aggregation (as

defined in eq. 6.3) an interpretation of a weighted sum over messages in an addi-

tional dimension without the dynamics being entirely dominated by the outputs

of the edge function. Each hidden layer has a dropout layer with fraction 0.2 of

disconnected nodes between layers to avoid overfitting and achieve better gener-

alisation. After the aggregation, we get a 128-dimensional output that feeds into

a series of edge-convolution layers with linear layers as Θw and Φw. The output

dimensions of the linear layers are 64 and 32 and outputs a 6 dimensional latent

node encoding. This value is chosen after a scan over different latent dimensions

which we elaborate on in the next section. The shared block of the decoder uses

the encoder’s reversed dimensions: 32, 64, and 128. With the 128-dimensional

vector as input, the node reconstruction layer performs an edge-convolution to

give the reconstructed node vectors ~̂x. Similarly, each edge reconstruction net-

work has three successive edge convolutions of output dimensions 32, 16, and 8.

We calculate the inner products on the 8-dimensional vector space to give the

reconstructed adjacency matrices Âaij.

We train the network with the Adam optimiser [171] initialised with a 0.001

learning rate on mini-batches of 64 samples. The learning rate is decayed with a

reduce-on-plateau condition with decay factor 0.5, and a patience of five epochs

with an additional five epochs of cool-down. We use 85k jets to train the network.

After each epoch, we calculate the loss of an independent validation dataset

containing 28k QCD jets. We stop the training once the learning rate goes below

10−8. The epoch with minimum validation loss is used for further inference.
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Figure 6.4: The AUC and mean loss for the three signal classes as a function of
latent dimension from 2 to 12 for the given architecture

6.3 Results and Discussion
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Figure 6.5: The loss of the graph-autoencoder (a) and ROC curves (b) for a
network trained only on QCD jets.

6.3.1 Performance for benchmark signals

In order to test the performance of the graph-autoencoder for the different non-

QCD signals described in section 6.1, we evaluate the discrimination power of

the total loss function as defined in eq. 6.9. We use an independent testing data

set of 28k for QCD jets and a similar number for the signal samples. We first
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Figure 6.6: The distribution of six dimensional latent space after the training is
performed only on QCD jets.
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Figure 6.7: The AUC for all three signal classes corresponding to each latent
dimension in the network.

scan the latent dimension from 2 to 12 in multiples of two, keeping all other

hyperparameters fixed. The Area-Under-(the)Curve (AUC) between the signal

acceptance and the background rejection for each latent dimension is shown in

figure 6.4(a). In figure 6.4(b), we show the mean loss for each class as a function

of the latent dimension. We can see that although the mean loss is relatively

stable for QCD jets after 4-dimensions, the AUC of the different signal vs. QCD

scenarios varies significantly. The variation is due to the unsupervised nature of

the algorithm; the network has no information about the signal classes.

On the other hand, from the different nature of the AUC curves, we can un-

derstand the information passed for differing latent dimensions. The increasing

AUCs for the W classification hints that the network sees them as similar to QCD

jets when the information passed in the bottleneck is smaller, but the features of

a typical QCD jet are not fully modelled for low dimensions, thus making this dis-

crimination not reliable. Increasing the bottleneck dimension makes the network

learn QCD features, which then leads to robust anomaly detection for top quarks

and W bosons. The φ jets, which have the most noticeably different structure

from QCD jets, reach a stable AUC much faster than tops and W bosons. We
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infer that latent dimension of ∼ 6 shows a stable performance for all three classes

(in particular for QCD jets) and has reached the plateau in the mean loss. Since

we cannot optimise the network to each class in anomaly detection, we fix six as

the latent dimension parameter. The normalised distribution of the loss function

for all classes is shown in figure 6.5(a). As the network is trained using QCD

jets, the autoencoder reconstructs them with lower loss, while all signal classes

have a relatively higher loss. By vetoing the QCD jets with lower losses, we tag

(new physics) signal jets (anomalous class); the Receiver-Operator-Characteristic

(ROC) curve between the signal acceptance and background rejection is shown in

figure 6.5(b)�. The performance increases as the prong structure becomes richer

for the signal classes.

6.3.2 Looking at the latent graph representation

We also investigate the latent representation learned by the graph-autoencoder

to explore compressed representations for QCD jets. Latent representations have

also been investigated in similar, and indeed different, physical scenarios recently

in references [329–331]. Even though we do not perform graph readouts dur-

ing the training, the graph-autoencoder learns the graph structure via the edge

reconstruction network. We use a graph readout that takes the mean in each

dimension of the latent node features to obtain a fixed-dimensional latent graph

representation. More precisely, we consider

f̃a =
1

N

∑
i∈G

fai ,

where a is the vector-index, i is the node index and G is the set of all nodes of the

graph. The normalised distribution of the four classes for each latent dimension

is shown in figure 6.6, while the corresponding AUC for each signal vs. QCD

discrimination is shown in figure 6.7. We find that f̃ 2 performs best for top and

φ jets, while f̃ 5 gives the maximum AUC for W jets. The AUC for top quarks

and scalar φ from f̃ 2 is 0.74 and 0.84 respectively. Thus, we find a significant

improvement for φ from the value obtained with the loss function, which is also

the case for the W jets whose AUC is 0.78 from f̃ 5. The latent distributions are

prone to training uncertainties since they do not have any regularising terms in

the loss function.

More precisely, the shapes and location of these distributions will vary signif-

icantly for different training instances even when they give very similar distribu-

tions of the loss function. There are available remedies [332–334] for the training

class, but controlling the signal distributions during unsupervised training is not

possible by design. However, it may be possible to control them using physically

�We compare the results obtained for our dataset with particle graph autoencoders used in
reference [320] in Appendix D.
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motivated priors, which is beyond the scope of our present work. Nevertheless,

once we have a single training instance, latent dimension-based anomaly find-

ers can be used by trimming the encoder network after training to contain only

these two outputs. Control samples can be used to quantify the latent space

distributions and could therefore find applications in trigger optimisation.

6.3.3 Correlation of the loss function with jet observables

The correlation of the loss function with different jet variables is essential in de-

termining the trained network’s biases. Although perfectly decorrelated discrim-

inants to the jet’s physical variables like transverse momentum (pT ), mass (M),

or the number of constituents are highly coveted, it is not possible in practice –

known methods to decorrelate them, like adversarial training, diminish the power

of the discriminant. We discuss the correlation of our network’s loss function with

the quantities mentioned earlier in this section. The class-wise correlation of the

four quantities is shown in figure 6.8. We see that the loss function and the pT are

uncorrelated with small positive values (the highest being 0.27 for φ), indicating

that the loss function tends to increase with an increase in transverse momentum

of the jet slightly, although the increase is minimal for the background QCD jets

(∼ 0.10). Jet mass is an important variable that helps in discriminating different

classes of jets. However, a discriminant (the loss function) needs to be decorre-

lated entirely with jet mass as putting a cut on a correlated variable will lead

to artificial bumps in the jet-mass distribution of the selected events. As can be

seen, from figure 6.8, the loss function is reasonably correlated with the jet mass

even for the QCD jets. Decorrelating the jet mass from the loss can be done via

an adversarial network [169].

The reconstruction efficiency of convolutional autoencoders has been shown to

decrease with an increase in the number of non-zero pixels [191], which leads to the

possibility of missing out on potential signals with lower complexities than QCD

jets. We find that our network behaves in the opposite way: the reconstruction

error reduces with an increase in the number of microjets. More importantly,

this reduction is minimal for the QCD jets, suggesting that the network learns a

uniform feature of the jet graph regardless of the number of microjets. We can

understand this independence via the structure of a graph neural network. A

graph convolution layer essentially learns a set of weights shared for all the nodes

and edges and hence learns the underlying feature regardless of the number of

nodes/edges in the graphs. However, there is a strong negative correlation of

the loss of the different signal classes with the number of microjets which can be

understood via the fact that any extra radiation other than the said multiplicities

essentially arise from QCD splittings. To further understand this behavior, we

plot the median loss of the events with a fixed number of microjets for the four

classes in figure 6.9. The initial increase in the median loss from three to five for

the four-pronged φ jets further solidifies the preceding argument regarding the
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Figure 6.8: Linear correlation coeeficient between the loss, number of
microjets(Nm), transverse momentum (pT ), mass(M) of the jet for the four
jet classes: QCD(top left), W-boson (top right), top-quark (bottom left) and
φ(bottom right).

decrease of the loss function with an increase in the microjet multiplicity. Such

a peak is absent for the lower multiplicity signal classes.

6.4 Summary

In this chapter, we have introduced a GNN-based autoencoder for unsuper-

vised anomaly detection in QCD boosted jet data. We design a novel edge-

reconstruction network for the graph-decoder, which allows us to reconstruct

multidimensional edge information. This gives the graph-autoencoder the capac-

ity to classify entire graphs, unlike previously existing graph-autoencoders. We

use NNConv to incorporate the multidimensional edge and node features as in-

puts to a graph-autoencoder while utilising edge convolutions to learn inductive

latent space representations of QCD jets’ graph-structured data.

The anomaly finder based on the reconstruction loss shows good performance

for the non-QCD scenarios that we consider. We further explore the possibility of
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Figure 6.9: The median loss of events (from the test dataset) with fixed number
of microjets for the various types of jets.

exploiting latent space variables as discriminants for anomalous jets and find that

latent variables can indeed lead to improved anomaly detection by accessing the

compressed information of the QCD data. While GNNs are known to be good

candidates for trigger-level implementations, we study latent dimension-based

anomaly finders with graph-autoencoders. Using latent dimensions instead of

the loss has the additional appeal of halving the number of layers, thus resulting

in a shallower network. Studying the latent dimension representation of QCD jets

therefore provides a compressed arena for new physics discovery by using these

observables directly.





Chapter 7

Anomaly detection with

variational quantum circuits

With the advent of widely available noisy intermediate-scale quantum computers

(NISQ) [335] the interest in quantum algorithms applied to high-energy physics

problems has spurred. Today’s quantum computers have a respectable quan-

tum volume and can perform highly non-trivial computations. This technical

development has resulted in a community-wide effort [336,337] exploring the ap-

plications of quantum computers for studying quantum physics in general and in

particular, the application to challenges in the theoretical description of particle

physics. Some recent studies in the direction of LHC physics include evaluating

Feynman loop integrals [338], simulating parton showers [339] and structure [340],

quantum algorithm for evaluating helicity amplitudes [341], and simulating quan-

tum field theories [342–347]. An interesting application of quantum computers

is the nascent field of quantum machine learning–leveraging the power of quan-

tum devices for machine learning tasks, with the capability of classical* machine

learning algorithms for various applications at the LHC already recognised, it is

only natural to explore whether quantum machine learning (QML) can improve

the classical algorithms [348–355].

In this chapter, we explore the feasibility and potential advantages of using

quantum autoencoders (QAE) for anomaly detection. Most quantum algorithms

consist of a quantum state, encoded through qubits, which evolves through the

application of a unitary operator. The necessary compression and expansion of

data in the encoding and decoding steps are manifestly non-unitary, which has

to be addressed by the QAE using entanglement operations and reference states

which disallow information to flow from the encoder to the decoder. To this end,

a QAE should, in principle, be able to perform tasks ordinarily accomplished by a

classical autoencoder (CAE) based on deep neural networks (DNN). The ability

of DNNs are known to scale with data [356], and large datasets are necessary

*By classical, we mean any machine learning algorithm that leverages only discrete bit
computations, while by quantum, we imply a computation that uses the properties of quantum
mechanics and qubits, even if they are simulated on classical hardware.
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to bring out their better performance over other machine-learning algorithms.

Interestingly, we find that a quantum autoencoder, augmented using quantum

gradient descent [351,357] for its training, is much less dependent on the number

of training samples and reaches optimal reconstruction performance with minus-

cule training datasets. Since the use of quantum gradient descent is a relatively

new way of improving the convergence speed and reliability of the quantum net-

work training, we provide a detailed introduction in Section 7.1.1. Moreover,

compared to CAEs, which use the same input variables as the QAE, QAEs have

better anomaly detection capabilities for the two benchmark processes we use in

our study. This better performance is particularly interesting as the CAE has

O(1000) parameters compared to just O(10) for the QAE. The study indicates

the possibility to study quantum latent representations of high-energy collisions,

in analogy to classical autoencoders [358–360]. With the current state-of-the-art

quantum computers capable of processing more than a hundred qubits, quantum

anomaly detection could already rival classical state-of-the-art anomaly detection

techniques.

The rest of the chapter is organised as follows. We describe the basic ideas

of quantum machine learning and a quantum autoencoder in section 7.1. The

details of the data simulation, network architecture, and training are described

in section 7.3. We present the performance of a quantum autoencoder compared

to a classical autoencoder in section 7.4. We conclude in section 7.5.

7.1 Quantum machine learning

Quantum machine learning broadly deals with extending classical machine learn-

ing problems to the quantum domain with variational quantum circuits [361]. We

can divide these circuits into three blocks: a state preparation that encodes classi-

cal inputs into quantum states, a unitary evolution circuit that evolves the input

states, and a measurement and post-processing part that measures the evolved

state and processing the obtained observables further. For this discussion, we will

always work in the computational basis with the basis vectors {|0〉, |1〉} denoting

the eigen states of the Pauli Z operator σ̂z for each qubit.

There are many examples of state preparation in literature [362], which has

their own merits in various applications. We prepare the states using angle encod-

ing, which encodes real-valued observables φj as rotation angles along the x-axis

of the Bloch sphere

|Φ〉 =
n⊗
i=1

Rx(φj) |0〉 =
n⊗
j=1

(
cos

φj
2
|0〉 − i sin

φj
2
|1〉
)
, (7.1)

where Rx = e−i
φj
2
σ̂x denote the rotation matrix. The number of qubits required

n, is same as the dimensions of the input vector. A parametrised unitary circuit
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U(Θ), with Θ denoting the set of parameters, evolves the prepared state |Φ〉 to

a final state |Ψ〉,
|Ψ〉 = U(Θ) |Φ〉 . (7.2)

The final measurement step involves the measurement of an observable on the final

state |Ψ〉. Since measurements in quantum mechanics are inherently probabilistic,

we measure multiple times (called shots) to get an accurate result. In order to

do that, we need quantum hardware that can prepare a large number of pure

identical input states |Φ〉 for each data point.

After defining a cost function, the parameters Θ can be trained and updated

using an optimisation method. To better capture the geometry of the underlying

Hilbert space and to achieve a faster training of the quantum network,� we will

use quantum gradient descent [357], where the direction of steepest descent is

evaluated according to the Fubini-Study metric [363,364]. The general idea is to

make the optimisation procedure aware of the weight space’s underlying quantum

geometry, which improves the speed and reliability of finding the global minimum

of the loss function. A brief outline of quantum gradient descent is given in

Section 7.1.1.

While we have not discussed the specific form of the parametrised unitary

operation U(Θ), it is important to note that one of the major advantages of

quantum computation is due to its ability to produce entangled states, a phe-

nomenon absent in devices based on classical bits. The prepared input state is

separable into the component qubits, and a product of unitaries acting on single-

qubit states will not entangle the subsystems. The CNOT gate is a standard

two-qubit gate, which will be used in our circuit to entangle the subsystems.

7.1.1 Quantun Gradient Descent

We discuss the basic idea behind quantum gradient descent [357] in this section.

The general idea is to make the optimisation procedure aware of the underlying

quantum geometry of the weight space. Denoting any generic weight vector by

Θ, we have the vanilla gradient descent update as,

Θi+1 = Θi − γ ∇Θ L(Θ) , (7.3)

where L is a well-behaved loss function. This expression implicitly assumes that

l2 distances correctly describe the underlying geometry of the weight space, plac-

ing all directions in the weight space on an equal footing. In reality, however,

the geometry of the weight space can be much more complicated, and such a

straightforward update rule may not converge to the optimal point. Therefore,

�See [351] for a brief presentation of the Fubini-Study metric and a comparison of natural
and quantum gradient descent for the training of classical and quantum networks. It was
shown that quantum gradient descent improves the training of a variational quantum circuit
significantly.
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to have an idea of the underlying geometry, we modify eq. 7.3 with the metric

tensor G,

Θi+1 = Θi − γ G−1(Θi) (∇ΘL(Θ))Θ=Θi
, (7.4)

to get the Natural Gradient descent [365]. Note that Natural Gradient descent

gives the usual gradient descent (eq. 7.3) for a Euclidean metric G = I. Due

to the extremely large parameter space, it is computationally prohibitive to put

metric-restrained optimisation in deep neural networks, which is not the case

for currently used variational quantum circuits. The natural metric on complex

projective Hilbert Spaces (the space containing physical quantum states) is the

Fubiny-Study metric [363,364],

gij = Re[ 〈∂iφ0|∂jφ0〉 − 〈∂iφ0|φ0〉 〈φ0|∂jφ0〉 ] . (7.5)

Here, |∂iφ0〉 = ∂|φ0〉
∂θi

, with θi, a component of the weight vector Θ and |φ0〉, a state

in the Hilbert space. The inverse of the metric is evaluated in Pennylane using

the Moore-Penrose pseudo inverse [366,367]

g+ = (gTg)−1gT ,

which is well-behaved even when det g = 0 and is numerically equal to the inverse

when it exists.

7.2 Quantum autoencoders on variational cir-

cuits

Quantum autoencoders based on variational circuit models have been proposed

for quantum data compression [368]. In our work, we want to learn the param-

eters of such a network to compress the background data efficiently. Along the

same principles as anomaly detection on classical autoencoders, we expect that

the compression and subsequent reconstruction will work poorly on data with

different characteristics to the background.

A quantum autoencoder, in analogy to the classical autoencoders has an en-

coder circuit which evolves the input state |Φ〉 to a latent state |χ〉 via a unitary

transformation U(Θ), and then reconstructs the input state, via its hermitian

conjugate |Φ〉 = U†(Θ)|χ〉. However, note that since unitary transformations are

probability conserving and act on spaces having identical dimensions, there is

no data compression in such a set-up. In order to have data compression, some

qubits at the initial encoding |χ〉 are discarded and replaced by freshly prepared

reference states. Such a setup for a four feature input and two dimensional latent

space is shown in figure 7.1. The unitary operators output identical number of

qubits, however at the encoder step, two of its outputs (shown by green lines) are

replaced by freshly prepared reference states (shown in orange lines), devoid of
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Encoder Decoder

Encoder Decoder

Figure 7.1: Schematic representation of a simple dense classical autoencoder (left)
and a quantum autoencoder (right) for a four dimensional input space and a
two dimensional latent space. To induce an information bottleneck in quantum
unitary evolutions, we throw away states |β′i〉 (trash states) at the encoder output
(green lines), which are replaced by reference states |βi〉 (shown in orange lines
), containing no information of the input |xj〉. The mechanism can be better
understood by dividing the Hilbert space of the complete system into three parts:
HA the subspace formed by the qubits that are fed to the decoder, HB the
subspace of the qubits that are discarded after encoding, and HB′ the subspace
where a fixed reference state (initialised as |0〉⊗ dimHB) unacted by the encoder is
fed to the decoder. SWAP gates can achieve the exchange of states denoted by
black lines.

any information of the input states. We describe the basics of quantum autoen-

coding in the following, mainly based on the discussion of quantum autoencoders

for data compression from reference [368]. Quantum anomaly detection of simu-

lated quantum states has been investigated in reference [369]. To the best of our

knowledge, our study is the first to explore anomaly detection of classical inputs

via a quantum autoencoder. The main difference between existing studies and

ours is that the input states for the former are inherently quantum mechanical.

In contrast, the choice of input embedding of the classical numbers in our case
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determines the nature of the quantum state. We will use angular encoding, where

the quantum states are separable into the constituent qubits. We will, however,

be extensively using CNOT gates in the unitary evolution which will entangle the

different qubits.

Let us denote the Hilbert space containing the input states by H. For de-

scribing a quantum autoencoder, it is convenient to expand H as the product of

three subspaces,

H = HA ⊗HB ⊗HB′ , (7.6)

with subspace HA denoting the space of qubits fed into the decoder from the en-

coder, andHB denoting the space corresponding to the ones that are re-initialised,

and HB′ denoting the Hilbert space containing the reference state. In the follow-

ing, we will denote states belonging to any subspace with suffixes while the full

set will have no suffix. For example, |a〉AB ∈ HA⊗HB, |κ〉 ∈ H, |b〉B′ ∈ HB′ etc.

We will use the same convention for operators acting on the various subspaces.

Since we entangle the separable input qubits in the subspaces HA ⊗ HB via

UAB(Θ), the latent state |χ〉AB ∈ HA ⊗ HB , in general, is not seperable. The

input of the larger composite system including the reference state is |Φ〉AB⊗|β〉B′ ,
with |β〉B′ denoting a freshly prepared reference state (initialised as |0〉⊗ dimH′B)

not acted on by the unitary UAB. The process of encoding can be therefore

written as,

|χ〉AB ⊗ |β〉B′ = (UAB(Θ)⊗ IB′) |Φ〉AB ⊗ |β〉B′ , (7.7)

where IB′ denotes the identity operator on HB′ . Explicitly, the dimensions of the

subspaces HA, HB, and HB′ are 2Nlat , 2Ntrash , and 2Ntrash , respectively, where Nlat

is the number of qubits passed to the decoder directly from the encoder, while

Ntrash are the ones that are discarded. Swapping the B and B′, gives the input

to the decoder as

|χ′〉 = IA ⊗ VBB′ |χ〉AB ⊗ |β〉B′ , (7.8)

where VBB′ indicates a unitary that performs the swap operation,� and IA is the

identity operator on HA. The output of the decoder can now be written as

|Ψ〉 = U†AB(Θ)⊗ IB′ |χ′〉 , (7.9)

with IB′ being the identity operator on HB′ . The decoding, therefore, takes the

swapped latent state |χ′〉, and the unitary U†AB evolves it with no information

from the encoder in the subspace HB. The reconstruction efficiency of the au-

�For instance swapping the state of two qubits in the basis {|00〉, |01〉, |10〉, |11〉}, can be
implemented via the unitary matrix

VBB′ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
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toencoder can be quantified in terms of the fidelity between the input and output

states in the subspace HA⊗HB, which quantifies their similarity. For two quan-

tum states |ψ〉 and |φ〉, it is defined as

F (|φ〉, |ψ〉) = F (|ψ〉, |φ〉) = |〈φ|ψ〉|2 .

For normalised states, we have 0 ≤ F ≤ 1, with F = 1 only when |φ〉 and |ψ〉 are

exactly identical. We can write the fidelity of the complete system as

F (|Φ〉AB ⊗ |β〉B′ , |Ψ〉)
= F (|Φ〉AB ⊗ |β〉B′ ,U†AB VBB′ UAB |Φ〉AB ⊗ |β〉B′) ,

where we have implicitly assumed that the unitary operators are extended to the

whole space via a direct product with the identity operator on the subspace it

does not act on, for notational compactness. Noting that UAB|Φ〉AB = |χ〉AB, we

can write this as,

F (|Φ〉AB ⊗ |β〉B′ , |Ψ〉)
= F (|χ〉AB ⊗ |β〉B′ ,VBB′ |χ〉AB ⊗ |β〉B′) .

Writing the swaped state as VBB′ |χ〉AB ⊗ |β〉B′ = |χ〉AB′ ⊗ |β〉B, we have

F (|Φ〉AB ⊗ |β〉B′ , |Ψ〉) = F (|χ〉AB ⊗ |β〉B′ , |χ〉AB′ ⊗ |β〉B) . (7.10)

Since we are interested in the wave functions belonging to the subspace HA⊗HB,

we trace over B′ to get the required fidelity. However, a perfect fidelity between

the input and outputs of the AB system can be achieved when the complete

information of the input state passes to the decoder, i.e.

UAB|Φ〉AB = |Φc〉A ⊗ |β〉B . (7.11)

The state |Φc〉A denotes a compressed form of |Φ〉AB, i.e it should contain the in-

formation of the AB system in the input, while |β〉B is equivalent to the reference

state, with no information of the input. If the B and B′ systems are identical

during the swap operation, the entire circuit reduces to the identity map. The

output of the B′ system, hereby referred to as the trash state, is itself the de-

termining factor of the output state fidelity. The output of the B′ system can

be obtained after tracing over the A system as: ρ̂B′ = TrA {|χ〉〈χ|AB′} and the

required fidelity of the B′ system is F (|β〉B′ , ρ̂B′).
A perfect reconstruction of the input is possible only when the trash state

fidelity F (|β〉B′ , ρ̂B′) = 1. Thus a quantum autoencoder can be trained by max-

imising the trash state fidelity instead of the output fidelity, which has the ad-

vantage of reducing the resource requirements during training. Although, the

output fidelity obtained by tracing over the B′ system is numerically not equal to
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the trash state fidelity, we can use the latter in anomaly detection as well, since

it is a faithful measurement of the output fidelity. Thus, unlike vanilla classical

autoencoders, we can reduce the execution and training of QAEs into the encoder

circuit for anomaly detection.

The above discussions have focused on the underlying principles behind a

quantum autoencoding process on single input states. As stated before, we need

to prepare identical input-states for each data point and repeat the unitary evo-

lution and measurement to get a useful estimate of the fidelity, evident also from

the use of density operators to express the output state. Referring to the ensemble

of the input states as {pi, |Φi〉AB}, we obtain for the cost function

C(Θ) = −
∑
i

pi F (|β〉B′ , ρ̂B′) , (7.12)

where the negative sign converts the optimisation process into minimising the cost

function. It is important to note that the ensemble should not be taken as being

analogous to the batch training in classical neural networks, as it is required for

the accurate prediction of the network output even when testing the autoencoder

network.

7.3 Analysis Setup

7.3.1 Data simulation

To show the prowess of the quantum autoencoders, we study two processes with

distinctive features: a QCD continuum background of top pair production taking

possible signal signatures of resonant heavy Higgs decaying to a pair of top quarks,

and invisible Z decays into neutrinos with a likely signal of the 125 GeV Higgs

decaying to two dark matter particles. As we shall see in the following sections,

the relative performance of QAEs over CAEs show parallels in these two different

signatures, pointing towards an advantage of QAEs over CAEs not governed by

the specific details of the final state.

Resonant Higgs signal over continuum top pair background

The first background and signal samples used in our analysis consist of the

QCD tt̄ continuum production, pp → tt̄, and the scalar resonance production

pp → H → tt̄, respectively. The background and the signal events are gener-

ated with a centre-of-mass energy of 14 TeV, as expected during future LHC

runs. Each top decays to a bottom quark and a W boson, and we focus on the

decay of the W ’s into muons exclusively. We consider four different masses of

the scalar resonance, mH = 1.0, 1.5, 2.0, and 2.5 TeV. All events are generated

with MadGraph5 aMC@NLO [61], and showered and hadronisation is performed by

Pythia8 [70]. Delphes3 [72] is utilised for the detector simulation, where the
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Figure 7.2: The figure shows a Quantum autoencoder circuit for a four qubit
input and two latent qubits. The inputs are already embedded in qi (by the
input embedding circuit), which are then rotated by tunable angles θi in the y-
direction of the Bloch sphere by Ry(θi) gates (shown in purple boxes). Each pair
of these qubits are entangled via CNOT gates(shown with blue lines). For the
trash training, we need a two-dimensional reference state denoted by ti qubits
and an ancillary qubit a0. The fidelity between two qubits at the encoder output
and the reference states is measured via a SWAP test.
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jets are clustered using FastJet [94]. We generate about 30k events for the

background samples, while for each signal sample, we generate about 15k. The

background events are divided into 10k training, 5k validation and 15k testing

samples.

For the object reconstruction, a standard jet definition using the anti-kt al-

gorithm [91] with the jet radius R = 0.5 is used. For the signal bottom jets, the

output from Delphes 3 is used and require pbT > 30 GeV. For isolated leptons,

we require plT > 30 GeV and its isolation criteria with R = 0.5. We extracted

four variables {pb1T , p
l1
T , p

l2
T , /ET} for our analysis, keeping in mind the limitations of

current devices. To conserve the aperiodic topology of these variables in the angle

embedding (given in eq. 7.7) we fix the range of each variable to [0, 1000] by adding

two points§ and map the whole dataset to a range [0, π] via the MinMaxScaler im-

plemented in scikit-learn [280]. The two added points are then removed from

the dataset. This maps each feature’s minimum and maximum to two distinct

angles separated by a finite distance due to the selection criteria.

Invisible Higgs signal over invisible Z background

To test the anomaly detection capabilities of QAEs in a different scenario, we

study invisible decays of a Z boson produced with two jets originating from QCD

vertices. As a possible signal, we take the production of the 125 GeV Higgs

boson and two jets originating from Electroweak vertices, decaying to two scalar

dark matter particles. The generation is carried out in the same manner as in

the previous case, including the definition of jets. We demand that we have at

least two reconstructed jets with pT > 30 GeV, and the events have a missing

transverse momentum /ET > 30 GeV. For the background, we have 30k events

divided into 10k training, 5k validation, and 15k test events, while for the signal,

we have 15k test events. We extract six variables to train the QAE and the CAE.

They are the absolute separation in pseudorapidity between the two jets |∆ηjj|,
the invariant mass of the dijet system mjj and the sum of transverse energies

HηC
T =

∑
|ηi|<ηC

Ei
T ,

within four ranges of pseudorapidity ηC ∈ {1.0, 1.5, 2.0, 2.5}. The mapping to

conserve the aperiodic topology of these variables in the angular embedding is

done by increasing their range on the higher side.

7.3.2 Network architecture and training

The QAE was implemented and trained using Pennylane [370]. As stated before,

we train and test the QAE model with only the encoder circuit. After the input

§Events with the variables lying above 1000 GeV are very rare and excluded in our case. In
a realistic analysis, the upper bound can be determined from the data.
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features are embedded as the rotation angle of the x-axis in the Bloch sphere,

the unitary evolution U(Θ) consists of two stages. In the first step, each qubit is

rotated by an angle θi in the y-axis of the Bloch sphere. The values of these angles

are to be optimised via gradient descent. After this, we apply the CNOT gate

to all the possible pairs of qubits, with the ordering determined by the explicit

number of the qubit. This circuit is shown in figure 7.2 for a four qubit input

QAE with two-qubit latent representation. It is given by,

UAB = C23⊗C13⊗C12⊗C23⊗C03⊗C02⊗C01⊗R0
y(θ0)⊗R1

y(θ1)⊗R2
y(θ2)⊗R3

y(θ3) ,

where Cij is the CNOT operation acting on the composite space of two qubits i

and j, and Ri
y(θi) is the rotation of a single qubit i about the y-axis of the Bloch

sphere. Note that the expression does not contain the operations of the SWAP

test, which will be explained in the following paragraphs. The training proceeds

to find the optimal values for θi.

The number of qubits discarded at the encoder, the size of the trash-state,

fixes the latent dimension¶ via Nlat = Nin−Ntrash, with Nlat the latent dimension,

Nin the size of the input state, and Ntrash the number of discarded qubits. The

reference state |β〉B′ , has the same number of qubits Ntrash, and it is initialised

to be

|β〉B′ = |0〉⊗Ntrash .

We measure the fidelity between the trash-state ρ̂B′ and the reference state |β〉B′
via a SWAP test [371]. It is a way to measure the fidelity between two multi-

qubit states. For any two states |φ〉 and |ψ〉 with the same dimensions, the fidelity

F (|φ〉, |ψ〉) can be measured as the output of an ancilliary qubit |a〉anc after the

following operation,

Hanc ⊗ I (c-SWAP) Hanc ⊗ I |0〉anc ⊗ |φ〉 ⊗ |ψ〉 , (7.13)

where Hanc is the Hadamard gate acting on the ancilliary qubit, and c-SWAP is

the controlled swap operation between the states |φ〉 and |ψ〉 controlled by the

ancilliary qubit. Thus the total number of qubits required for a fixed Nin and

Ntrash is Nin + Ntrash + 1. Due to the limitation of current quantum devices we

limit the input feature to four, and scan over the possible latent dimensions.

The quantum network is trained by minimising the cost function (c.f eq. 7.12)

with quantum gradient descent for the one, two and three-dimensional latent

spaces. We train these instances for different training sizes of 1, 10, 100, 1000

and 10000 events to study the dependence of the QAE’s performance on the size

of the training data. We update the weights for each data sample, with 5000 shots

in all training scenarios. For training sizes greater than or equal to 100, we train

the networks for 50 epochs. In comparison, for sample sizes 1 and 10, we train

¶In our discussions, we will use the number of latent qubits as the latent dimension, although
the Hilbert space would have 2Nlat dimensions.
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the QAE for 500 and 200 epochs, respectively. To benchmark the performance of

a QAE on a quantum computer, we train a QAE with the two inputs pl1T and pb1T
with quantum-gradient descent on Pennylane, and compare the test performance

with the simulation and the IBM-Q. For running on the IBM-Q, we build and

implement the test circuits in Qiskit [372].

We also train classical autoencoders using Keras (v2.4.0) [232] with Tensorflow

(v2.4.1) [230] for the same input features, for comparison. The encoder is a dense

network mapping the input space to a latent dimension of Nlat ∈ {1, 2, 3}, and

has three hidden layers with 20, 15, and 10 nodes. The hidden layers have ReLU

activations while the latent output has Linear activation. The decoder has a sym-

metric configuration to the encoder. The networks are trained with Adam [373]

optimiser with a learning-rate of 10−3 to minimise the root-mean-squared error

between the input vector x and the reconstructed vector x̂. For the CAEs, we

found that training with single data per update (technically batch size=1) has a

volatile validation loss per epoch, with slow convergence. Therefore, we choose a

batch size of 64 to train the CAEs.�

We train the QAE with analogous architecture for a six-dimensional input

for the second scenario for a two-dimensional latent space in a similar fashion

for all training sizes. For the CAE keeping the number of nodes and layers

identical to the previous case for six-dimensional input and output vectors, we

perform a hyperparameter scan, the details of which is given in Appendix E.

All results shown in the next section for this scenario is for the best performing

hyperparameters.

7.4 Results

Results of the various training scenarios are presented in this section. We present

a detailed investigation of the QAE and CAE’s properties for the tt̄ background

scenario in Sections 7.4.1 to 7.4.4. The lessons learnt from these analyses, par-

ticularly the training size independence and the relative performance, are then

tested for the invisible Z background in Section 7.4.5.

7.4.1 Dependence of test reconstruction efficiency on the

number of training samples

The distribution of the loss function of the independent background test samples

for different training sizes of the CAE is shown in figure 7.3. Although training

with a single data point is inherently inaccurate, we perform such an exercise as

a sanity check of the CAE’s comparison to a QAE. The test distribution shifts

�The network performs one update per epoch for training with a number of samples less
than 64. These training sizes are too small for a CAE to have any good learning capability.
Hence, we do not try to modify the batch sizes or interpret the test distributions.
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Figure 7.3: Loss distribution of the test background samples (15k) for different
sizes of training dataset. We can see that the distribution shifts significantly
towards the left (direction with lower loss) as one increases the training data
size, which reflects that there is noticeable incraase in learning with larger data
samples.
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Figure 7.4: Cosine similarity (analogous to quantum fidelity) distribution of the
test background samples (15k) for different sizes of training dataset of the CAE.

towards the left as one increases the training size, thereby signifying increased

reconstruction efficiency. For training sizes of up to 102, the limited statistics will

produce a very high statistical uncertainty. Since it is not the main emphasis of

our present work, we do not comment any further. Looking at the distribution

across different latent dimensions for 103 and 104 training samples, one can see

the impact of the information bottleneck. For a singular latent dimension, the

passed information is already available from 103 samples, and hence the loss

distribution is very close to the one trained on 104. This relative separation

increases as we go to higher latent dimensions, denoting the higher information

passed to the decoder to reconstruct the input, which is exploited with higher

training samples. For an analogous comparison with the quantum fidelity, we

define the cosine similarity between the input vector x and the reconstructed

vector x̂ as,

cosα =
x.x̂

|x| |x̂|
, (7.14)

where the dot product is done with a Euclidean signature. The distribution of the

cosine similarity shown in figure 7.4, shows similar features to the loss function’s
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Figure 7.5: Fidelity distribution of the test background samples (15k) for different
sizes of training dataset. The peak shifts towards the right in analogy to the
CAE, however the shift is not as pronounced. With a single training sample, the
network is not able to converge completely while for anything greater than 10,
the increase in training size has practically no effect.

distribution, with efficient reconstruction possible only when the train size is at

least 103.

We have seen that CAEs cannot be trained with limited statistics to recon-

struct the statistically independent test dataset. From the distribution of the

test sample’s fidelity in figure 7.5, we see that QAEs are much more effective in

learning from small data samples. Although training with a single data point has

not reached the optimal reconstruction efficiency, it is obtained with ten sample

events. Unlike CAEs, see figures 7.3 and 7.4, the test fidelity distribution for all

latent spaces are identical for training sizes greater than or equal to ten. The

independence of the sample size is particularly important in LHC searches where

the background cross section is small. This particularly interesting feature may

be due to the interplay of an enhancement of statistics via the uncertainty of

quantum measurements and the relatively simple circuits employed in our QAE

circuit. For a single input point and assuming that we have hardware capable

of building exact copies, a finite number of measurement processes always in-

troduces a non-zero uncertainty in the network output. This uncertainty can

act as additional information in the quantum gradient minimisation, which is

performed after the measurement process, increasing the convergence for smaller

data samples. Moreover, existing studies [374, 375] show the advantage of quan-

tum machine learning over classical approaches. Additionally, the use of quantum

gradient descent [351] makes the loss landscape more convex, thereby speeding

up convergence.

7.4.2 Classification Performance

We compare the QAE and the CAE’s performance for the four-dimensional input

feature space. The metrics used in this presentation bear similarity to those

used in a supervised framework. It also assumes that a randomly chosen event
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Figure 7.6: ROC curve between signal acceptance vs background rejection for
Quantum Autoencoder (QAE) and Classical Autoencoder (CAE) for various val-
ues of mH and different latent dimensions for a training datasize of 10k samples.
The trend across latent dimensions is same for both QAE and CAE with QAEs
performing better in all cases.

is equally likely to be either the background or the signal. This assumption is

not sound in the context of LHC searches or in an anomaly detection technique

since the background’s cross-section is orders of magnitude larger than that of

the signal. Nevertheless, they are handy when comparing different classifiers.

For each value of mH , we plot the Receiver-Operator-Characteristics (ROC)

curve between the signal acceptance and the background background rejection

in figure 7.6, for the networks trained with 10k samples. The black dotted lines

denote the performance of a random classifier with no knowledge of either the

signal or the background, and the lines further away from it indicate better per-

formance than those in its vicinity. The performance reduces with increasing

latent dimensions for CAEs and QAEs, with the highest background rejection

coming for a singular latent dimension. Comparing the QAEs and the CAEs

(dotted vs solid lines for each colour), we find that QAEs perform better than

CAEs consistently in all latent dimensions and the different values of mH . This
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Figure 7.7: Significance as a function of the threshold T0 on the fidelity and root-
mean-squared-error (RMSE) of the QAE and the CAE, respectively, for each of
the signal scenarios and singular latent dimension trained on 10k samples. To
keep the signal rich region on the right side for both, we have used (1−Fidelity)
for the QAE. We fix the cross-section of all signals to 10 fb, and evaluate the
yields at an integrated luminosity of 3000 fb−1.

better performance may be a universal property of QAEs. However, as our anal-

ysis is a proof-of-concept, an in-depth exploration of the properties of QAEs in

general and anomaly detection at colliders, in particular, is needed to affirm this

observation.

7.4.3 Anomaly detection

We now explore the performance of the autoencoders in a semi-realistic search

scenario. When we scale the normalisation of the signal and the background by

their respective probability of occurrence, i.e. their respective cross-sections, we

are essentially in an anomaly detection scenario since the background is orders of

magnitude larger than the signal. The performance of the autoencoders can then

be quantified in terms of statistical significance as a function of the threshold

applied on the loss. For the background, we scale the cross-section obtained from

Madgraph by a global k-factor of 1.8 [376], while for all the signal masses, we fix

a reference value of 10 fb. The yield is then calculated as

Np = εp σp L Ep(T0) ,

where εp is the baseline selection efficiency, σp the cross-section, and Ep(T0) the

efficiency at a threshold T0 of the loss distribution, for a process p, while L is the

integrated luminosity which we take to be 3000 fb−1.

Since it is natural to use the best classifier in a search, we evaluate the signifi-

cance of the autoencoders with one latent dimension, trained on 10k samples. We
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Figure 7.8: The correlation between the fidelity values obtained by Pennylane

and by the IBM-Q backends. On the left we show the comparison of a 2-1-2
QAE, where we directly measure the trash state (orange) and with a SWAP test
employing a CSWAP gate. We find that the shallower implementation without
the CSWAP gate has lesser decoherence effects, and hence better agreement with
the simulation. The correlation with the direct measurement for the 4-3-4 case
is shown on the right.

apply the threshold for the QAE and the CAE on the quantum trash state fidelity

and the RMSE loss, respectively. We use (1−Fidelity) for the QAE to make the

signal-rich regions same in both scenarios. RMSE loss is chosen over the cosine

similarity since the former was found to have a higher performance. The signifi-

cance NS/
√
NB for each of the signal masses as a function of the threshold T0 is

shown in figure 7.7. We fix the threshold range so that there are enough back-

ground test statistics in the least background like bin. Looking at the peak of the

significance, we note that QAEs outperform CAEs, which is only natural from

the preceding discussions. However, an interesting development is the relative

performance for the different masses. Even though the ROCs indicated higher

discrimination with increasing mass, the significance increases for mH = 1.0 TeV

to 1.5 TeV and decreases for higher masses. Since we have fixed a fiducial cross-

section for each signal mass, it plays no role in this irregularity. The trend arises

via an interplay between the higher discrimination by the autoencoder output

and the decrease in baseline efficiency with increasing mass mH . The decreasing

selection efficiency is due to the isolation criteria of the jets and the leptons, which

would be naturally boosted when we go to higher resonant masses mH , thereby

becoming more collimated.

7.4.4 Benchmarking on a quantum device

We now compare the performance of the quantum simulator and the actual quan-

tum hardware. Since there is a limitation on the available number of qubits, we

limit the feature space in two dimension, which consists of {pb1T , p
l1
T }. For our QAE

setup, in addition to the two qubits for embedding the input features, one qubit
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Figure 7.9: ROC curves based on the fidelity distributions. Those evaluated by
the Pennylane simulator (left panel), by the quantum device IBM-Q belem back-
end with the SWAP test (central panel), and with the second qubit measurements
(right panel) are shown.

for the reference state and another ancilliary qubit for the SWAP test are needed.

We use the simpler version of the quantum circuit shown in figure 7.2, which is

implemented and trained using PennyLane. To compare the performance, we use

the same circuit with the same optimised parameters both for PennyLane and

for the IBM-Q belem backend. Accessing the IBM hardware was done through

Qiskit.

In figure 7.8, we show the fidelity distributions for the background and the sig-

nal samples for our QAE circuit with the optimised circuit parameters computed

by the simulator in Pennylane and in the actual quantum device of IBM-Q belem

backend. The plot shows the shape of the distribution (denoted by the width of

the shaded region) in the y-axis for each bins of size 0.1 in the x-axis (plotted

at each bin center). The lines at each ending denote the range of the data of

the y-axis. Since IBM-Q does not have a shallow implementation of the CSWAP

operation, the fidelity distributions are smeared toward 0.5, and especially it is

worse around 1. One of the advantages of using the SWAP test is to reduce

the number of qubits for the evaluations of the fidelity during the optimisation

process. For example, to check the performance of the current circuit, directly

measuring the fidelity between the reference state and the output for the second

qubit would be enough. It can be achieved by the simple Pauli z measurements.

The correlation of the fidelities obtained by Pennylane and by IBM-Q belem,

based on the SWAP test and on the Pauli z measurement are shown in the right

panel as the violin plots, in blue and in orange, respectively. The correlation is

better for the Pauli z measurements for the same circuit part with the identical

input parameters. It suggests that the decoherence effects from a deeper circuit

obscure the performance.

In figure 7.9, we show the ROC curves based on the fidelity distributions

for the background and the signal samples evaluated by Pennylane simulator in

the left panel. The central panel shows the ROC curves based on the fidelities

evaluated by the SWAP test, while the right panel shows those by the second
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Figure 7.10: The test distribution of the invisible Z background scenario for
different training sizes of a CAE (left) and a QAE (center) for a two-dimensional
latent representation, and their respective ROC curve (right) for the training
done with 10k events. Similar to the previous case, the QAE has converged with
much smaller datasets than the CAE. Moreover, the QAE performs relatively
better than the CAE for the particular signal.

qubit Pauli z measurements, for the same IBM-Q device of belem backend. As

one can see, the performances based on the Pauli z measurements on the IBM-Q

device follow those obtained by the Pennylane simulator. The AUCs for them are

also essentially the same. Thus, the deficit in the performance with the SWAP

test is due to the too deep circuit realisation for the CSWAP operation in the

IBM-Q device. Therefore, the realisation of a CSWAP operation with a shallow

circuit is necessary.

To check the efficacy of quantum hardware for the four input QAE, we evaluate

the trash state fidelity of a QAE with four-dimensional input features. Due to

hardware limitations discussed above, we estimate it without the SWAP test for

a single trash qubit giving us a three-dimensional latent representation. The

correlation between the Pennylane evaluated fidelity and the output from IBM-

Q lagos, shown in figure 7.8, displays a good agreement between the simulation

and the hardware.

7.4.5 Comparative training efficiency and performance for

invisible Z background

We have seen that a QAE trains efficiently and performs better than a CAE in a

hypothetical resonant signal scenario. To gauge how these important behaviours

carry over to a different process, we study the training size dependence and per-

formance of a QAE and CAE for an invisible background (and signal), detailed in

the last paragraph of Section 7.3.1 for a two-dimensional latent space. Note that

all the results for the CAE are for the best model chosen after a hyperparameter

scan described in Appendix E.

The loss distribution of the test dataset for the background for different sizes

of training data and their ROC curve for the case of 10k training samples are
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shown in figure 7.10. The characteristics are similar to the previous scenario,

giving further evidence that the training efficiency of the QAE is not limited to

a specific kind of process. Moreover, from the ROC and the AUC value, we see

that the QAE also performs better than the CAE. This superior performance is

particularly noteworthy given that the CAE’s hyperparameters has been chosen

after a hyperspace scan restricted to a fixed width and depth.

7.5 Summary

The lack of evidence for new interactions and particles at the Large Hadron Col-

lider has motivated the high-energy physics community to explore model-agnostic

data-driven approaches to search for new physics. Machine-learning anomaly de-

tection methods, such as autoencoders, have shown to be a powerful and flexible

tool to search for outliers in data. Autoencoders learn the kinematic features

of the background data by training the network to minimise the reconstruction

error between input features and neural network output. As the kinematic char-

acteristics of the signal are different to the background, the reconstruction error

for the signal is expected to be larger, allowing signal events to be identified as

anomalous.

Although quantum architecture capable of processing huge volumes of data is

not yet feasible, noisy-intermediate scale devices could have very real applications

at the Large Hadron Collider in the near future. With the origin of the collisions

being quantum-mechanical, a quantum autoencoder could, in principle, learn

quantum correlations in the data that a bit based autoencoder fails to see. We

have shown that quantum-autoencoders based on variational quantum circuits

have potential applications as anomaly detectors at the Large Hadron Collider.

Our analysis shows that for the scenario we consider, i.e. the same set of input

variables, quantum autoencoders outperform dense classical autoencoders based

on artificial neural networks, asserting that quantum autoencoders can indeed

go beyond their classical counterparts. They are very judicious with data and

converge with very small training samples. This independence opens up the

possibility of training quantum autoencoders on small control samples, thereby

opening up data-driven approaches to inherently rare processes.



Chapter 8

Summary and future directions

The Large Hadron Collider (LHC), to date, is the most sophisticated machine

built to probe physics at the sub-nuclear length scales. It generates huge amounts

of data that are stored all over the world in the worldwide LHC computing grid.

Therefore, the physics goals of the LHC present in itself a humongous data anal-

ysis task. The particle physics community has been using machine learning

techniques in data analysis for decades. However, with the advent of modern

deep-learning algorithms propelled by the wide availability of high-end GPU ac-

celeration and a rich research ecosystem unearthing state-of-the-art algorithms

and architectures, there is an unprecedented increase in applying such algorithms

at various stages of the analysis pipeline.

The nature of investigations in fundamental physics presents a unique situa-

tion where one cannot simply use these deep-learning algorithms as a black box

without understanding their behaviour in various working conditions. Although

their universal approximation capabilities provide innovative ways of solving var-

ious problems of interest, their flexibility, high dimensionality, and the numeric

nature of finding effective approximators impede a complete understanding of

their workings. Understanding their behaviour is paramount for phenomenolog-

ical applications at the Large Hadron Collider, which heavily depends on the

accurate, but ultimately approximate simulation of Quantum Chromodynamics

at different energy scales extensively validated on experimental data. They take

in the four-vector information of the measured particles, bypassing and (most

of the time) improving over the use of distinct variables created by extensive

domain knowledge and physics intuition. This thesis studies some aspects of util-

ising deep-learning algorithms for phenomenological searches at the Large Hadron

Collider.

In the first study (chapter 3), we investigated the improvement in the searches

of invisible Higgs decays produced via Vector Boson Fusion (VBF) with Convolu-

tional Neural Networks (CNNs). Such processes have a different radiation pattern

from most QCD backgrounds due to the absence of colour exchange between the

two protons in the underlying hard partonic process. The upper bounds on the

invisible branching ratio of the Higgs boson, which is very important for various
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Higgs-portal dark matter scenarios, is still much higher than the one expected

in the Standard Model. We find that CNNs can put much stricter constraints

on this branching ratio, outperforming both univariate shape analysis of single

variables and multivariate analysis of high-level observables.

Deep-learning algorithms can utilise minute differences in the data; therefore,

it is imperative to scrutinise the phenomenological implications of various aspects

of the simulation. For the VBF production, we study the dependence of the

CNN’s performance on the recoil scheme used in the parton shower and the

perturbative accuracy of the matrix-element simulation of the hard process in

chapter 4. We find that the testing performance is dependent on the signal used

during the training. However, this dependence is mild for the next-to-leading-

order simulated signal suggesting that the CNNs can partially understand the

better stability of higher-order simulations from the tree level simulations.

The result above indicates that neural networks, although highly expressive,

are not well understood from a physical perspective. As a step toward resolving

these issues, we build an infrared and collinear safe graph neural network algo-

rithm in chapter 5. This network performs comparably to state-of-the-art IRC

unsafe algorithms on standard top tagging datasets.

In the remainder of the thesis, we take a different approach to signal-dependent

classification scenarios and study unsupervised anomaly detection models trained

only on the background for wider model-independent search strategies relying on

the background-only hypothesis. Such model-independent search strategies are

important given that direct searches for various well-motivated new physics sce-

narios have been inconclusive. In chapter 6, we devise a graph autoencoder

capable of learning inductive jet graph representations by utilising edge recon-

struction networks. We find that they can recognise higher-multiplicity decays

captured within large radius jets when trained to only reconstruct QCD jets.

In chapter 7, we compare the capabilities of a quantum autoencoder based on

variational quantum circuits against a bit-based autoencoder with the same set

of features. The quantum autoencoder, augmented with quantum gradient de-

scent, converges with very small datasets and considerably outperforms classical

autoencoders for two benchmark signal scenarios.

The influx of modern deep-learning methods into high energy phenomenol-

ogy is not restricted to LHC applications but to other allied fields like neutrino

physics [377–379], cosmology [380–383], gravitational waves detection [384–386],

and dark matter [387, 388] searches. Due to their superior performance in many

regards, some of which we have touched upon in this thesis, and with community-

wide interest in their inner workings, their reach will expand further in the coming

years. However, applications in fundamental physics demand a level of rigour and

understanding beyond their formal universal approximation capabilities.

For instance, a practical aspect of importance in experimental analyses with

wide phenomenological implications is the propagation of systematic uncertain-

ties [163,389–392] when using deep-learning algorithms. These uncertainties can
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be of theoretical origin like the factorisation and renormalisation scale uncertainty

in the simulation of the events. Rather than relying only on data-driven methods

to quantify such systematics, it is important to look into the inner workings of

deep-learning algorithms to understand how exactly these theoretical considera-

tions affect the nature of the converged minima in the weight space. Doing so

could not only unearth ways of reducing the uncertainties but also deepen our

understanding of deep-learning algorithms in a more general setting.

A related and highly promising avenue for the near future is using quan-

tum computing technology to bolster machine learning models. Existing noisy-

intermediate-scale-quantum devices already show favourable performance against

their classical counterparts, one of which we found in our study of quantum au-

toencoders. The technological advancements in quantum noise corrections would

increase near-term devices’ overall stability and usability. There are various un-

explored avenues in using such quantum devices for machine learning tasks and

the efficient simulation of the inherently quantum mechanical collisions at the

Large Hadron Collider.

Although the studies in the thesis have focussed on the backdrop of signal

searches based on data simulated using traditional techniques, these conven-

tional techniques can be augmented using deep-learning methods. With the fu-

ture high-luminosity phase placing huge computational requirements [393–395]

overall, there is already a considerable effort in inspecting machine learning-

based alternatives for the more computationally intensive part of the simulation

pipeline. One such stage is the generation of parton-level events traditionally

done using Monte-Carlo methods. Along with reducing the computational re-

quirements [396–398], there is also considerable focus on improving the precision

and robustness [399–401] of the generated data using novel techniques.

The development of powerful and data-hungry deep-learning algorithms has

propelled the nature of mainstream scientific inquiry into a data-driven era. This

situation has percolated into fundamental physics research, with a multifaceted

effort within various fields to utilise big data to deepen our understanding of the

universe. Nevertheless, applying such techniques as a black box could (and most

likely would) yield spurious results. Due to the extreme mathematical complex-

ity of such algorithms, it is important to ascertain their behaviour under various

extreme conditions.* Therefore, a pragmatic optimism toward deep-learning al-

gorithms in the community should lead to fertile progress of fundamental science

in the information age.

*In the sense of statistical outliers as well as physics scenarios one could consider





Appendix A

Finite mass effect of top quark in

gluon-fusion events

We generate the gluon-fusion production of the Higgs boson used in the study

of chapter 3 by using the Higgs Effective Field Theory (HEFT) model, where

the interaction of the Higgs boson with gluons is approximated by an effective

vertex calculated by taking the top-quark mass to infinity. This is a reasonable

approximation only when all relevant scales in the physical process are less than

2 mt. The distribution of pT of the Higgs boson (equivalently met with detector

effects introduced via Delphes) has a significant portion of events in regions where

the approximation is not valid. We remove this inconsistency by reweighting the

met distribution of the events obtained after Delphes. We extract weights (ratio

of the full SM results to HEFT) and bins in pT of the Higgs for the present final

state topology from figure 30 on reference [267]. Each event is then assigned the

corresponding weight of the bin of its met. After reweighting the events, we

apply the preselection-cuts and extract the cut efficiency using the weights.

Since we need unweighted events for the neural network training, the passed

events are again unweighted. This is done in the following steps. We divide all

events into sets with unique weights. This is nothing but grouping the events into

the extracted bins in met. We get mutually exclusive subsets of events Si, with

i being the bin-index. The per-bin weights are divided by their maximum value.

We get a weight wi ∈ (0, 1] for each Si. From each set Si, we randomly choose wi
proportion of events rounded to the closest integer. We show in figure A.1, the

distribution of some kinematic-variables of the three datasets: unweighted events

generated with HEFT model, weighted events with finite-top mass effects, and

unweighted events used in neural network training. The effect of rounding to the

nearest integer is seen in the later bins in met, where the statistics are weaker

due to fewer events.
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.

Figure A.1: Comparative distribution of kinematic variables for HEFT, weighted
with finite-top mass effects and unweighted distributions for passed events used
in deep-learning training and validation.



Appendix B

Characteristics of High-level

variables

In this appendix, we take a closer look at the high-level variables, especially the

R variables defined in eq. 3.1 in chapter 3. A key element in the extraction of

variables belonging to the two spacesK andR is that theK variables are functions

of four-momenta of reconstructed objects while the R variables are functions of

four-momenta of tower-constituents (in our case from the Tower class of Delphes).

The R variables do not take into account the tower-resolutions in the strict sense.

This may point to a further reduction in the performance of ANNs compared to

CNNs, where the tower-resolutions are better modeled.

We show the signal vs background distribution of all R variables in figure B.1.

The contribution of SEW and SQCD to the total signal is stacked. The separation,

as defined in eq. 3.2, are shown for these variables for the total signal (also, SEW )

and background in figure B.2. We can see that the trends in the distribution are

in accordance with their respective values of separation. The shape of SQCD
and the background distributions are similar for all values of ηC , and the overall

differences, if any, comes from the contribution of SEW . The separation is minimal

and remains constant for ηC > 4. This can be attributed to the fact that above

these values, almost all of the calorimeter hits contribute to HηC
T . It increases

continuously up to ηC = 1.8 and then decreases till ηC = 1.0. The increase is

expected from the VBF topology, while the decrease can be attributed to the

smallness of the region [−ηC , ηC ].

In figure B.3, we show the remaining kinematic variables not shown in figure

3.6. As can be seen, there is not much discriminatory information in any of

these variables: φmet is uniform for all channels since the beams are unpolarised,

while ∆φJmet (J ∈ {j1, j2, j1 + j2}) has most contributions around ±π, due to the

imposed separation of two jets ∆φjj and momentum conservation in the recoil of

quarks/gluons against heavy bosons (W±, Z0 and h0).
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Figure B.1: Signal vs Background distribution for all HηC
T variables. We can see

that for higher values of ηC the signal and background are not that different and
the difference grows as we approach the cut value of η cut.
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Figure B.2: Seperation of all HηC
T variables for (left) signal vs background and

(right) SEW vs background. These have been calculated with 25000 events for
each of the three datasets with the same binning. We can see that the presence
of SQCD significantly reduces the discriminating power of HηC

T variables on the
left.

Figure B.3: Signal vs Background distribution of the high-level kinematic vari-
ables excluded in figure 3.6



Appendix C

Correlation between High-level

variables and network-outputs

Salient features of the correlation of important variables with all neural network

outputs have been given in the chapter 3 (figure 3.14). We examine the corre-

lation of the ANNs with their inputs in this section. All correlations have been

calculated using the inbuilt function in NumPy(v1.17.2) [402].

In figure C.1 we show the correlations amongst the K variables including the

K-ANN network output for each class. As expected, the K-ANN output is highly

correlated with the two most discriminating variables |∆ηjj| and mjj. The next

highest correlation with K-ANN is found to be with met for background and

|∆φjj| for signal. Except for |∆φjj|, all other φ variables are almost uncorrelated

with K-ANN for both classes. The uniformity of φmet results in its negligible

correlation with all other variables. In the correlation among K variables, we

can see two distinct sets of variables with comparatively moderate to high cor-

relations formed amongst {|∆ηjj|,mjj,met} and {∆φj1met,∆φj2met,∆φj1+j2
met }. In

the first set, |∆ηjj| and mjj are almost completely correlated since, the angu-

lar opening between two four vectors pµj1 and pµj2 , determine the invariant mass

mjj = (pµj1 + pµj2)2. The met shows a moderate correlation with both |∆ηjj| and

mjj as momentum conservation forces |~pj1 +~pj2| to be higher for higher met. The

correlation amongst the second subset can also be explained by transverse mo-

mentum conservation in the collision, with contamination from subsidiary QCD

radiation and detector effects.

The class-wise correlations amongst the outputs ofR-ANN and H-ANN along

with six variables from R with high separation, and the two kinematic variables

|∆ηjj| and mjj are shown in figure C.2. As expected, we see that the R variables

are highly correlated with one another, which decreases with increasing distance in

ηC . Another highlight is the negative correlation between them and the kinematic

variables. It can be understood if we recall that the dominant radiation in the

tower comes from the two leading jets, and an increase in |∆ηjj| will decrease

the calorimeter hits in the central regions. In the case of correlations between
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Figure C.1: Correlation between the high-level kinematic variables K and the
network-output of K-ANN for (left) signal and (right) background.

neural-network outputs and their respective inputs, the sign of the correlation is

not much relevant for binary classification due to the probabilistic interpretation

of the outputs yi: y0 + y1 = 1 and yi > 0. On the contrary, the relative difference

in sign and magnitude in correlations between the different input features and

the output is relevant. In the case of H-ANN, we can see that in terms of both

magnitude (importance as plotted in figure 3.7) and sign (as discussed here),

the relations amongst K and R variables are carried over to their corresponding

correlations with the network-output.
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Figure C.2: Correlation between the high-level variables H and the network-
outputs of R-ANN and H-ANN for (left) signal and (right) background. For
better representation we have chosen variables with non-negligible correlations
with the network outputs.



Appendix D

Comparison with Particle Graph

Autoencoder
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Figure D.1: Distribution of the loss function of the PGAE (a) and the corre-
sponding ROC curves (b) for the different signal classes for a network trained
only on QCD jets.

We compare the performance of the network proposed in chapter 6 with

the particle graph autoencoders (PGAE) proposed in reference [320]* with our

dataset. This study focussed on identifying anomalous events with dijet signa-

tures (large-radius jets and high pT ) and used the two leading jets in the event to

learn latent event representations. In contrast, our present focus is jet-level clas-

sification. For the input, we consider the four-vector of each microjet as the node

feature and use a complete graph with all possible connections. The network is

a graph-autoencoder that takes the vectors as input with a single edge convolu-

*We use the code available in https://github.com/stsan9/AnomalyDetection4Jets/

tree/rnd_cuts
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tion to map it to a two-dimensional latent node representation and maps it back

with another single edge convolution. We use the mean squared error as the loss

function and train with a batch size of 32. For more details of the architecture,

we refer the reader to Section 3.7 of reference [320]. We show the distribution of

the loss function and the corresponding ROC curve in figure D.1. The first thing

that we notice is that the location of the peaks is identical for all four classes,

with the only difference coming in the tail of the distribution. The value of the

AUCs is significantly reduced for W and top jets compared to our work, while

for φ-jets, the reduction is not that drastic. Out of the three signal classes, φ

jets are the least QCD-like, and hence, the networks find it easier to distinguish

them with less information. At the same time, the edge-reconstruction employed

in our architecture helps identify the W and top jets more efficiently. Hence,

we infer that the edge-reconstruction and the multidimensional edge feature rep-

resentation is crucial for a graph-autoencoder as these complex and physically

relevant features are not learned by the network even though they are, in princi-

ple, constructed from the node features. Moreover, using only the node features,

the graph autoencoder is insensitive to the n-prong structure of the signals as the

AUCs do not follow the usual QCD intuition. The addition of the edge features

and their reconstruction enables the graph-autoencoder to learn the signal jets’

n-prong topology in an unsupervised manner.



Appendix E

Details of hyperparameter scan

for Classical autoencoder

Sl. no. Hyper Parameter Value Space Best value
1. Activation function tanh, ReLu, Sigmoid, Linear ReLu

2. L1 Regularisation 0,0.1,0.01,0.001,0.0001 0

3. L2 Regularisation 0,0.1,0.01,0.001,0.0001 0

4. Dropout 0,0.1,0.2,0.3 0

5. Learning Rate 0.01,0.001,0.0003 0.0003

6. Batch Size 32,64,128,256,512,1024 64

Table E.1: The table shows the different values of the hyperparameters and their
best values after the scan.

The details of the hyperparameter scan of classical autoencoder with six-

dimensional inputs and outputs are given in this appendix. We use the RandomSearch

algorithm implemented in KerasTuner [403] for the scan. The number of nodes

in the hidden layers of the encoder is kept fixed to 20, 15, and 10. With a (fixed)

two-dimensional latent space, we use a symmetric decoder setup. Once the skele-

ton of the architecture is fixed, we scan over the activation function of the layers,

L1 regularisation and L2 regularisation of the weights, the dropout value between

two successive layers, and the training’s learning rate and batch size. Their re-

spective values along with the best one chosen for the final training are given

in table E.1. The best value of the hyperparameters are from thousand trials

trained for hundred epochs, and the training is terminated if the validation loss

does not improve for ten epochs (implemented as the EarlyStopping callback

during training).

We do not vary the width or the depth to compare the capabilities of CAEs

with at least some degree of comparability to the simple QAE used in the study.

Increasing the width and depth will undoubtedly increase the expressive power

of a CAE, which is not the objective of the current study. Networks like Con-

volutional or graph autoencoders acting on low-level high dimensional data will
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undoubtedly perform better than currently executable QAEs. However, existing

quantum resources cannot process such high dimensional data.
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[144] C. Gao, S. Höche, J. Isaacson, C. Krause and H. Schulz, Event Generation

with Normalizing Flows, Phys. Rev. D 101 (2020) 076002, [2001.10028].

[145] C. Krause and D. Shih, CaloFlow II: Even Faster and Still Accurate

Generation of Calorimeter Showers with Normalizing Flows, 2110.11377.

[146] A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman and T. Plehn,

GANplifying event samples, SciPost Phys. 10 (2021) 139, [2008.06545].

[147] S. Badger et al., Machine Learning and LHC Event Generation,

2203.07460.

[148] M. Paganini, L. de Oliveira and B. Nachman, CaloGAN : Simulating 3D

high energy particle showers in multilayer electromagnetic calorimeters

with generative adversarial networks, Phys. Rev. D 97 (2018) 014021,

[1712.10321].

http://dx.doi.org/10.1214/aos/1176344552
http://dx.doi.org/10.1214/aos/1176344552
http://arxiv.org/abs/1707.00028
http://dx.doi.org/10.1038/s41467-021-22616-z
http://dx.doi.org/10.1038/s41467-021-22616-z
http://arxiv.org/abs/1901.00875
http://dx.doi.org/10.1103/PhysRevD.100.034515
http://dx.doi.org/10.1103/PhysRevD.100.034515
http://arxiv.org/abs/1904.12072
http://dx.doi.org/10.21468/SciPostPhys.7.6.075
http://arxiv.org/abs/1907.03764
http://dx.doi.org/10.1088/1742-6596/1525/1/012081
http://dx.doi.org/10.1088/1742-6596/1525/1/012081
http://arxiv.org/abs/1912.02748
http://dx.doi.org/10.1140/epjc/s10052-019-7501-1
http://arxiv.org/abs/1909.01359
http://dx.doi.org/10.1103/PhysRevD.101.076002
http://arxiv.org/abs/2001.10028
http://arxiv.org/abs/2110.11377
http://dx.doi.org/10.21468/SciPostPhys.10.6.139
http://arxiv.org/abs/2008.06545
http://arxiv.org/abs/2203.07460
http://dx.doi.org/10.1103/PhysRevD.97.014021
http://arxiv.org/abs/1712.10321


168 BIBLIOGRAPHY

[149] M. Paganini, L. de Oliveira and B. Nachman, Accelerating Science with

Generative Adversarial Networks: An Application to 3D Particle Showers

in Multilayer Calorimeters, Phys. Rev. Lett. 120 (2018) 042003,

[1705.02355].

[150] P. Musella and F. Pandolfi, Fast and Accurate Simulation of Particle

Detectors Using Generative Adversarial Networks, Comput. Softw. Big

Sci. 2 (2018) 8, [1805.00850].

[151] LHCb collaboration, L. Anderlini, Machine Learning for the LHCb

Simulation, 10, 2021. 2110.07925.

[152] G. R. Khattak, S. Vallecorsa, F. Carminati and G. M. Khan, Fast

Simulation of a High Granularity Calorimeter by Generative Adversarial

Networks, 2109.07388.

[153] P. T. Komiske, E. M. Metodiev, B. Nachman and M. D. Schwartz, Pileup

Mitigation with Machine Learning (PUMML), JHEP 12 (2017) 051,

[1707.08600].

[154] J. Arjona Mart́ınez, O. Cerri, M. Pierini, M. Spiropulu and J.-R. Vlimant,

Pileup mitigation at the Large Hadron Collider with graph neural

networks, Eur. Phys. J. Plus 134 (2019) 333, [1810.07988].

[155] V. Mikuni and F. Canelli, ABCNet: An attention-based method for

particle tagging, Eur. Phys. J. Plus 135 (2020) 463, [2001.05311].

[156] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair et al., Generative Adversarial Networks, 1406.2661.

[157] D. Rezende and S. Mohamed, Variational inference with normalizing

flows, in Proceedings of the 32nd International Conference on Machine

Learning (F. Bach and D. Blei, eds.), vol. 37 of Proceedings of Machine

Learning Research, (Lille, France), pp. 1530–1538, PMLR, 07–09 Jul,

2015. 1505.05770.

[158] S. Kullback and R. A. Leibler, On information and sufficiency, Ann.

Math. Statist. 22 (03, 1951) 79–86.

[159] J. Neyman, E. S. Pearson and K. Pearson, Ix. on the problem of the most

efficient tests of statistical hypotheses, Philosophical Transactions of the

Royal Society of London. Series A, Containing Papers of a Mathematical

or Physical Character 231 (1933) 289–337,

[https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1933.0009].

[160] M. A. Kramer, Nonlinear principal component analysis using

autoassociative neural networks, AIChE Journal 37 (1991) 233–243,

[https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690370209].

http://dx.doi.org/10.1103/PhysRevLett.120.042003
http://arxiv.org/abs/1705.02355
http://dx.doi.org/10.1007/s41781-018-0015-y
http://dx.doi.org/10.1007/s41781-018-0015-y
http://arxiv.org/abs/1805.00850
http://arxiv.org/abs/2110.07925
http://arxiv.org/abs/2109.07388
http://dx.doi.org/10.1007/JHEP12(2017)051
http://arxiv.org/abs/1707.08600
http://dx.doi.org/10.1140/epjp/i2019-12710-3
http://arxiv.org/abs/1810.07988
http://dx.doi.org/10.1140/epjp/s13360-020-00497-3
http://arxiv.org/abs/2001.05311
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1505.05770
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1098/rsta.1933.0009
http://dx.doi.org/10.1098/rsta.1933.0009
http://dx.doi.org/10.1098/rsta.1933.0009
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1933.0009
http://dx.doi.org/https://doi.org/10.1002/aic.690370209
http://arxiv.org/abs/https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690370209


BIBLIOGRAPHY 169

[161] R. T. D’Agnolo and A. Wulzer, Learning New Physics from a Machine,

Phys. Rev. D 99 (2019) 015014, [1806.02350].

[162] J. A. Aguilar-Saavedra, J. H. Collins and R. K. Mishra, A generic

anti-QCD jet tagger, JHEP 11 (2017) 163, [1709.01087].

[163] A. Blance, M. Spannowsky and P. Waite, Adversarially-trained

autoencoders for robust unsupervised new physics searches, JHEP 10

(2019) 047, [1905.10384].

[164] V. Mikuni, B. Nachman and D. Shih, Online-compatible Unsupervised

Non-resonant Anomaly Detection, 2111.06417.

[165] E. Govorkova et al., Autoencoders on FPGAs for real-time, unsupervised

new physics detection at 40 MHz at the Large Hadron Collider,

2108.03986.

[166] J. Hajer, Y.-Y. Li, T. Liu and H. Wang, Novelty Detection Meets Collider

Physics, Phys. Rev. D 101 (2020) 076015, [1807.10261].

[167] T. S. Roy and A. H. Vijay, A robust anomaly finder based on

autoencoders, 1903.02032.

[168] S. Tsan, R. Kansal, A. Aportela, D. Diaz, J. Duarte, S. Krishna et al.,

Particle Graph Autoencoders and Differentiable, Learned Energy Mover’s

Distance, in 35th Conference on Neural Information Processing Systems,

11, 2021. 2111.12849.

[169] T. Heimel, G. Kasieczka, T. Plehn and J. M. Thompson, QCD or What?,

SciPost Phys. 6 (2019) 030, [1808.08979].

[170] M. Farina, Y. Nakai and D. Shih, Searching for New Physics with Deep

Autoencoders, Phys. Rev. D 101 (2020) 075021, [1808.08992].

[171] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization,

1412.6980.

[172] T. Dozat, Incorporating nesterov momentum into adam, in ICLR 2016

Workshop, 2016.

[173] M. Erdmann, E. Geiser, Y. Rath and M. Rieger, Lorentz Boost Networks:

Autonomous Physics-Inspired Feature Engineering, JINST 14 (2019)

P06006, [1812.09722].

[174] S. H. Lim and M. M. Nojiri, Spectral Analysis of Jet Substructure with

Neural Networks: Boosted Higgs Case, JHEP 10 (2018) 181,

[1807.03312].

http://dx.doi.org/10.1103/PhysRevD.99.015014
http://arxiv.org/abs/1806.02350
http://dx.doi.org/10.1007/JHEP11(2017)163
http://arxiv.org/abs/1709.01087
http://dx.doi.org/10.1007/JHEP10(2019)047
http://dx.doi.org/10.1007/JHEP10(2019)047
http://arxiv.org/abs/1905.10384
http://arxiv.org/abs/2111.06417
http://arxiv.org/abs/2108.03986
http://dx.doi.org/10.1103/PhysRevD.101.076015
http://arxiv.org/abs/1807.10261
http://arxiv.org/abs/1903.02032
http://arxiv.org/abs/2111.12849
http://dx.doi.org/10.21468/SciPostPhys.6.3.030
http://arxiv.org/abs/1808.08979
http://dx.doi.org/10.1103/PhysRevD.101.075021
http://arxiv.org/abs/1808.08992
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1088/1748-0221/14/06/P06006
http://dx.doi.org/10.1088/1748-0221/14/06/P06006
http://arxiv.org/abs/1812.09722
http://dx.doi.org/10.1007/JHEP10(2018)181
http://arxiv.org/abs/1807.03312


170 BIBLIOGRAPHY

[175] A. Chakraborty, S. H. Lim and M. M. Nojiri, Interpretable deep learning

for two-prong jet classification with jet spectra, JHEP 07 (2019) 135,

[1904.02092].

[176] A. Bogatskiy et al., Symmetry Group Equivariant Architectures for

Physics, in 2022 Snowmass Summer Study, 3, 2022. 2203.06153.

[177] S. Villar, D. W. Hogg, K. Storey-Fisher, W. Yao and B. Blum-Smith,

Scalars are universal: Equivariant machine learning, structured like

classical physics, 2106.06610.

[178] A. Butter, G. Kasieczka, T. Plehn and M. Russell, Deep-learned Top

Tagging with a Lorentz Layer, SciPost Phys. 5 (2018) 028, [1707.08966].

[179] S. Gong, Q. Meng, J. Zhang, H. Qu, C. Li, S. Qian et al., An Efficient

Lorentz Equivariant Graph Neural Network for Jet Tagging, 2201.08187.

[180] A. Bogatskiy, B. Anderson, J. T. Offermann, M. Roussi, D. W. Miller and

R. Kondor, Lorentz Group Equivariant Neural Network for Particle

Physics, 2006.04780.

[181] K. Desai, B. Nachman and J. Thaler, SymmetryGAN: Symmetry

Discovery with Deep Learning, 2112.05722.

[182] B. M. Dillon, G. Kasieczka, H. Olischlager, T. Plehn, P. Sorrenson and

L. Vogel, Symmetries, Safety, and Self-Supervision, 2108.04253.

[183] D. Kim, K. Kong, K. T. Matchev, M. Park and P. Shyamsundar,

Deep-Learned Event Variables for Collider Phenomenology, 2105.10126.

[184] CMS collaboration, A. M. Sirunyan et al., Identification of heavy,

energetic, hadronically decaying particles using machine-learning

techniques, JINST 15 (2020) P06005, [2004.08262].

[185] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning

applied to document recognition, Proceedings of the IEEE 86 (1998)

2278–2324.

[186] K. Fukushima, Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position, Biological

Cybernetics 36 (Apr, 1980) 193–202.

[187] A. Dhillon and G. K. Verma, Convolutional neural network: a review of

models, methodologies and applications to object detection, Progress in

Artificial Intelligence 9 (Jun, 2020) 85–112.

[188] A. Khan, A. Sohail, U. Zahoora and A. S. Qureshi, A survey of the recent

architectures of deep convolutional neural networks, Artificial Intelligence

Review 53 (Dec, 2020) 5455–5516.

http://dx.doi.org/10.1007/JHEP07(2019)135
http://arxiv.org/abs/1904.02092
http://arxiv.org/abs/2203.06153
http://arxiv.org/abs/2106.06610
http://dx.doi.org/10.21468/SciPostPhys.5.3.028
http://arxiv.org/abs/1707.08966
http://arxiv.org/abs/2201.08187
http://arxiv.org/abs/2006.04780
http://arxiv.org/abs/2112.05722
http://arxiv.org/abs/2108.04253
http://arxiv.org/abs/2105.10126
http://dx.doi.org/10.1088/1748-0221/15/06/P06005
http://arxiv.org/abs/2004.08262
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1007/BF00344251
http://dx.doi.org/10.1007/BF00344251
http://dx.doi.org/10.1007/s13748-019-00203-0
http://dx.doi.org/10.1007/s13748-019-00203-0
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.1007/s10462-020-09825-6


BIBLIOGRAPHY 171

[189] S. Macaluso and D. Shih, Pulling Out All the Tops with Computer Vision

and Deep Learning, JHEP 10 (2018) 121, [1803.00107].

[190] J. H. Kim, M. Kim, K. Kong, K. T. Matchev and M. Park, Portraying

Double Higgs at the Large Hadron Collider, JHEP 09 (2019) 047,

[1904.08549].
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