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Abstract

Transients like solar flares, coronal mass ejections (CMEs), coronal jets, etc.

are ubiquitous in the solar atmosphere. For several decades, investigations in-

cluding theoretical studies, numerical modeling and observations have been car-

ried out to reveal the intriguing physics behind them. The events vary in energy,

spatial and temporal scales; providing outstanding opportunities for a compre-

hensive study of the solar atmosphere. A better understanding of these events

is not only of fundamental importance but is of practical significance to real-

ize potential space-weather influences. A near-consensus exists in contemporary

research that magnetic reconnection—a fundamental process in the solar atmo-

sphere involving rearrangement of magnetic field line connectivity, conversion

of stored magnetic energy to kinetic energy, heat and acceleration of charged

particles—is responsible for the onset and the evolution of these events. Also,

important is the site of magnetic reconnection where these transients are be-

lieved to be triggered. Magnetic null points (where the magnetic field vanishes),

separators (connecting layers between null points), and quasi-separatrix surfaces

(regions with a sharp change in field line connectivity) are the preferential lo-

cations where the vanishing of the magnetic field or local enhancement of the

current density can initiate reconnection. Identifying these locations and realiz-

ing their influences on local magnetic field lines are interesting and important to

investigate the dynamics near the transients. Therefore, the thesis aims to study

the role of magnetic field and electric current in the transients and, specifically

focuses on the topology near the locations of reconnection—highlighting their

generation and evolution along with the impact on the neighboring magnetic

flux systems.

The coronal magnetic field, where most of the transients are traced, is also

important. The coronal magnetic field is obtained by extrapolating the photo-

spheric magnetic field. Subsequently, the extrapolated field is used as an input

to a magnetohydrodynamics (MHD) model to capture the evolution. The works

in the thesis have utilized both extrapolated and analytically derived magnetic

fields as the initial inputs. For the extrapolations, the non-force-free-field (NFFF)
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model is employed in conjunction with the photospheric vector magnetograms

from Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Obser-

vatory (SDO). For the numerical simulation, we have used the well-established

magnetohydrodynamics model EULAG-MHD. We have studied a blowout jet

and a near co-temporal C-class flare hosted by the active region NOAA 12615

on 2016 December 5 via extrapolation and simulation. Near the jet, we find

a pair of three-dimensional (3D) null points and a flux-rope (or mini-filament)

lying below the nulls. In the simulation, the reconnection near the nulls initi-

ates the jet and the cool materials escape from the mini-filament through the

channel made by the ambient field lines of the corresponding spine axis. The

simulation results validate the standard scenario where a mini-filament interacts

with the ambient open field lines causing the jet material to eject (Sterling et al.,

2015). In case of the C-class flare, we find the presence of a single 3D null and

quasi-separatrix layer (QSL) in the extrapolated field. In the simulation, the

dynamics near these topologies explain the flare onset and match well with the

observational signatures.

We have then simulated an X-class flare on 2014 March 29, to understand

the initiation process. In the extrapolated field we find one 3D null, a pair of

flux ropes, a set of sheared arcades, and a set of magnetic loops connected to a

distant region which, is affected by the flare. The MHD evolution also matches

well with the observations. We have estimated the stored energy released during

the process and found it to be ≈ 6.8 × 1031 ergs, again which is in agreement

with the corresponding observational value. Another promising result is the value

of Pearson correlation coefficient of ≈ 0.7 between the observed and simulated

transverse magnetic fields toward the end of the simulation.

In the next work, we have explored a circular flare ribbon and found a 3D

null co-located with the flare location. The footpoint motions of the field lines

lying on the fan surfaces and spines are following the circular brightening and

a distant region away from the ribbon location. These data-constrained simu-

lations of different solar transients showcase the role of complex topologies and

corroborate remarkably with observations, and hence, prove the efficacy of both
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the extrapolation and MHD model.

Albeit their impact on triggering the transients, the generation of such null

points in the solar atmosphere is counterintuitive. We sought out this issue by

employing a two-pronged approach: (1) with the relaxation of a deformed po-

tential null, and (2) relaxation of a modified Arnold-Beltrami-Childress (ABC)

field—chaotic in nature and devoid of any null. The simulations show a spon-

taneous generation of 3D nulls, indicating their omnipresence in the solar at-

mosphere. Further, we also explore magnetic reconnections in the vicinity of

the QSLs. We have investigated the effect of multiple sites of reconnection in

a computational domain. The simulation results examine the role of plasma

flow in presence of various topologies favoring magnetic reconnection. Overall,

the thesis explores the importance of magnetic reconnection in the different solar

transients via numerical and observational studies. Future studies will accommo-

date high-resolution magnetic field data from upcoming space and ground-based

observations. Toward simulating more accurate dynamics of the transients, a

data-driven model is also envisaged as a future assignment.

Keywords: Magnetic Reconnection; Magnetohydrodynamics; Magnetic

fields; Corona; Flares; Activities.
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Å (panels (b) and (d)), 131 Å (panels (c) and (e)); each at two

different viewing angles. The box on the top figure represents

the span of the above two images with respect to the full active

region cutout. The locations of the ribbons reasonably match with

footpoints of the MFLs executing slip MRs. . . . . . . . . . . . . 74

4.15 Left-side footpoints of MFLs locating the QSL (marked by Q-

constant contours) sustain a motion—which is more distinguish-

able in the animation. The sequence covers the range t ∈ {05 :

48, 06 : 13} UT (approx). The motion is because of slip MRs, as

the tangential component of the bulk flow is directed differently. 75



LIST OF FIGURES xvii

4.16 Panels (a)–(d) correspond to the pre-flare stage and panels (e)–(h)

belong to the flaring evolution. The high intensity regions are

highlighted by the green contours in the channel 1600 Å (panels
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Chapter 1

Introduction

To quote E. N. Parker, “if it were not for its variable magnetic field, the Sun would

have been a rather uninteresting star” (Low, 1996). The solar dynamo contin-

uously converts this magnetic field into toroidal and poloidal components, back

and forth, as the magnetic field lines (MFLs) break into the photosphere by the

magnetic buoyancy (Parker, 1994), creating magnetically Active Regions (ARs).

The corresponding magnetic field lines thread through the solar atmosphere—

located above the photosphere, constituting the chromosphere (≈ 2 Mm), tran-

sition region (≈ 104 km) and the solar corona (from 2 Mm onward). The so-

lar atmosphere being at a temperature > 4000K, it is at a plasma state—the

fourth state of matter comprising almost 97% of the visible universe (https:

//farside.ph.utexas.edu/teaching/plasma/Plasma/Plasmahtml.html). In

conjugation with the plasma, the magnetic field provides a cradle for a myriad of

fundamental processes which manifest themselves as spectacular transient events.

The events heat the plasma, release energies in the range 1026−32 ergs while accel-

erating charged particles, particularly when the Sun is magnetically active and

the plasma is most structured. Understanding these events is essential because of

their fundamental nature as well as their possible influence on the space assets.

Importantly, magnetic reconnection (MR): the process in which magnetic energy

gets converted into heat and accelerates charged particles along with a general

rearrangement of magnetic field lines, are believed to be responsible for the tran-

sients. The MRs are ubiquitous in both astrophysical and laboratory plasmas.

1

https://farside.ph.utexas.edu/teaching/plasma/Plasma/Plasmahtml.html
https://farside.ph.utexas.edu/teaching/plasma/Plasma/Plasmahtml.html
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Examples are the tail of magnetosphere, the accretion disks, the tokamak, the

reverse field pinch etc. and can explain the million degree Kelvin temperature

of the solar corona (Parker, 1994).

Traditionally, most of the solar coronal plasma is approximated to have

a large electrical conductivity and governed by the equations of single fluid

magnetohydrodynamics, hereafter referred as magnetohydrodynamics (MHD)

(Alfvén, 1942). The MHD description treats the plasma as a continuum, cou-

pling Maxwell’s equations with Navier-Stokes equations and is valid if the system

size and time scale are much larger than the ion skin depth and the ion gyrope-

riod. To satisfy the quasineutrality condition, the volume current density is

expressed by the Ampere’s law and the displacement current is neglected. The

MHD equations along with their physical significance are listed below.

� Equation of motion (conservation of momentum)

ρ
Dv

Dt
= −∇p+

1

4π
(∇×B)×B + ρg, (1.1)

where, D
Dt
≡ total derivative, p is the kinetic or gas pressure, ρ ≡ plasma

density, B ≡ magnetic field, v ≡ plasma velocity, g ≡ gravitational accel-

eration.

� Continuity equation (conservation of mass)

∂ρ

∂t
+∇ · (ρv) = 0, (1.2)

� Solenoidality condition

∇ ·B = 0, (1.3)

� Ampere’s law in pre-Maxwellian form

∇×B =
4π

c
J, (1.4)
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� Induction equation

∇× E = −1

c

∂B

∂t
, (1.5)

� Ohm’s law

E +
v ×B

c
= ηJ, (1.6)

� Energy equation
d

dt
(
p

ργ
) = 0, (1.7)

where, J is the current density, η is the electrical resistivity and γ is the ratio

of specific heats. As evident, the MHD equations are a combination of hydrody-

namic equations and Maxwell’s equations satisfying the quasineutrality that is

fundamental to plasma.

Eq.s-1.4, 1.5 and 1.6 can be combined to generate the induction equation,

∂B

∂t
−∇× (v×B) = λ∇2B. (1.8)

λ ≡ ηc2

4π
is the magnetic diffusivity. The ratio between the advective term (∇×

(v×B)) and the diffusive term (λ∇2B) defines the Magnetic Reynolds number

RM = vL/λ, (1.9)

where L ≡ the length scale over which the magnetic field varies. The RM deter-

mines the effect of advection over the diffusion in a fluid, specifying two important

limits of MHD. If RM � 1, then the induction equation reduces to

∂B/∂t−∇× (v ×B) = 0, (1.10)

which ensures magnetic field lines to be tied with the plasma parcels (see Ap-

pendix A)—the flux-freezing condition. For example, magnetic field lines traces

the plasma loops observed in the corona, shown in Fig.-1.1. Along with the

Ampere’s law, a general picture then emerges. An unbalanced force accelerates

plasma parcels through the Eq.-1.1. Consequently, the frozen-in field lines will

deform and generate a current in accordance with the Ampere’s law. The flow-
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field interaction can sharpen the magnetic field gradient by a local decrease in L,

in effect, decreasing RM and the induction equation reduces to the other limit,

Figure 1.1: Magnetic loops in the solar atmosphere.

∂B/∂t = λ∇2B. (1.11)

The above equation represents the diffusive limit of the induction equation which

describes MFLs to diffuse out from the plasma parcels over a time scale τd =

L2/λ, known as the diffusion time scale (see Appendix A). If the orientations of

these diffused field lines from different plasma parcels are favorable, the MFLs

can reconnect and generate the solar transients. In the following we present a

brief overview of these transients, the list is not exhaustive but focuses on those

relevant to the thesis. Importantly, in the frozen-in limit, the magnetic field lines

trace the plasma structure whereas the diffusion limit is achieved by an increase

in the current density. In consequence, both the magnetic field and the current

are important to understand the solar transients.
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1.1 Solar Flares

Flares are the most intense radiative emissions from the solar atmosphere. They

are of interest from their discovery on September 1, 1859 by R.C. Carrington

and R. Hodgson (Carrington, 1859; Hodgson, 1859). Many studies have revealed

their occurrences, sources of emission, associated magnetic configuration and

their impact; utilizing both ground and space based observatories. The flares

are not only observed over the whole range of electromagnetic spectrum but also

have different temporal scales. The various stages of a flare includes

� pre-flare phase or precursor phase: where the building up of energy occurs

with heating of the plasma, soft X-ray (SXR) emission is also detected at

this stage.

� impulsive phase: where the stressed energy is released and particles accel-

erate, the signature is the X-ray footpoint sources appearing at the chro-

mospheric height.

� intermittent phase or flash phase: where intensity in Hα increases rapidly.

� decay phase: where the coronal plasma relaxes (Benz, 2017). The stages

of a flare in multi-wavelengths are depicted in the Fig.-1.2.

There is a near-consensus that the flares occur as the magnetic free energy stored

in twisted magnetic field lines are released by magnetic reconnection. For the

typical length scale and magnetic field on a sunspot, this stored magnetic energy

can be

E ≈ (
B2

8π
)L3 ≈ 1033(

B

103G
)(

L

109cm
) ergs, (1.12)

which is sufficient enough to produce a large flare (Shibata & Magara, 2011).

Giovanelli (1947, 1948); Hoyle (1950) in their work, first suggested the role of

hyperbolic X-type neutral points (where magnetic field vanishes) for the excita-

tion of particles during flares and auroras. Later, (Dungey, 1953) in his work,

first proved that the X-type neutral point to be a likely site to release charged

particles in astrophysical plasmas. Further indirect evidences support similar
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Figure 1.2: A schematic showing different stages of a flare; adapted from Benz
(2017).

reconnection assisted events in other astrophysical plasmas also (Verbunt, 1982;

Mullan, 1986; Romanova & Lovelace, 1992; Drenkhahn & Spruit, 2002; Gian-

nios, 2010). The standard flare model by Carmichael (1964); Sturrock (1966);

Hirayama (1974); Kopp & Pneuman (1976); Svestka & Cliver (1992) (CHSKP

model) is based on magnetic reconnection and is explained in the schematic

1.3. Essential to the standard flare model is the existence of a magnetic flux

rope, which is a set of twisted magnetic field lines anchored on the photosphere

and confines the cooler plasma material. The rope is quantified by the winding

number or twist (Tw) parameter which measures the number of turns the field

lines make about the axis while going from positive to negative polarity, across

the polarity inversion line (PIL). Studies from Yan et al. (2001); Roussev et al.

(2003) showed the optimal winding number is > 2 whereas, Amari & Luciani

(1999); Aulanier & Demoulin (1998); Régnier & Amari (2004); van Ballegooijen

(2004); Su (2007); Savcheva & van Ballegooijen (2009) suggest the number is
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Figure 1.3: The schematic shows a modified version of CHSKP model; adapted
from Shibata et al. (1995).

< 2. Antiochos et al. (1994) suggested the number to be even less than 0.5.

Importantly, If the rope activates and begins to rise, it stretches the overlying

field lines and generates a magnetic vacuum below it. The local drop in magnetic

pressure brings oppositely directed field lines toward each other, developing an

extended current sheet (CS) that onsets magnetic reconnection, which manifests

itself as the flare. The reconnection also accelerate charged particles which moves

along the post-reconnection magnetic field lines and ultimately impact the lower

atmosphere. Consequently, the ambient plasma is heated and the corresponding

pressure imbalance causes a plasma upflow. This upflow gradually fills up the

magnetic loops with plasma. The process is known as chromospheric evaporation

and the field lines being visible in the soft X-ray, are called the soft X-ray loops.

The details are in (Benz, 2017; Shibata & Magara, 2011).
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1.2 Jets

Jets are the collimated eruptions from the solar atmosphere. These are ener-

getically 104-105 orders less than the flares (Pucci et al., 2013; Raouafi et al.,

2016) and can be of many varieties—like chromospheric jets, surges, spicules,

microspicules, and large coronal jets. The nomenclature is based on their obser-

vational traits. They differ in length scales and also the formation heights in the

solar atmosphere. The jets are reckoned as smaller versions of the large filament

eruptions like in CMEs. They are ubiquitous and are visible in the active re-

gions, coronal holes, quiet sun, and preferably in boundaries with open coronal

field lines. Jets are seen in different wavelengths like in Hα, extreme UV and X-

rays and can have different temperatures. Several instruments such as Solar and

Heliospheric Observatory (SOHO; (Domingo et al., 1995)), the Transition Region

and Coronal Explorer (TRACE; (Handy et al., 1999)), the Reuven Ramaty High

Energy Solar Spectroscopic Imager (RHESSI; (Lin et al., 2002)), the Hinode (Ko-

sugi et al., 2007), the Solar Terrestrial Relations Observatory (STEREO; (Kaiser

et al., 2008)), the Solar Dynamics Observatory (SDO; (Pesnell et al., 2012)), and

the Interface Region Imaging Spectrograph (IRIS; (De Pontieu et al., 2014)) have

recorded jets in the past and still are doing so. Some ground based observatories

have also contributed in the study of the jets. Shibata et al. (1994) arranged the

jets into two types. One is the straight anemone jet and the other is the two-sided

jet. In case of an anemone jet, a collimated plasma erupts (the spire part) with a

bright point (at the base part) behind it or in the inverted Y-shape (also referred

as lambda or Eiffel tower shape) whereas the two sided jet has bipolar plasma

columns spreading out from the central bright point. Panel-(a) in Fig.-1.4 shows

an anemone jet and the panel-(b) shows a two-sided jet. The anemone jets are

again classified into two sub-types (1) standard jets and (2) blowout jets based

on their appearances (Moore et al., 2010). A standard jet has a narrower spire

part in comparison to that of a blowout jet. The Fig.-1.5 shows one standard

jet in panel-(a) and one blowout jet in panel-(b), respectively. The coronal jets

are mostly reconnection driven phenomena. Shimojo et al. (1998) provided a
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Figure 1.4: Two different types of jets, (a) an anemone jet, and (b) a two-sided
jet; picture credit: (Shen, 2021). The arrow marks highlight the bright points
near the base of both jets.

Figure 1.5: The figure depicts two different types of jets observed on Hinode on
September 22, 2008, and September 20, 2008, respectively, (a) a standard jet,
and (b) blowout jet; picture credit: (Moore et al., 2010).

standard jet model via magnetic reconnection. Also, studies by (Yokoyama &

Shibata, 1995; Shimojo et al., 1996; Canfield et al., 1996; Shimojo & Shibata,

2000) have highlighted the role of reconnection in standard jets. In their work,

Shibata et al. (1992) attributed the origin of jets observed by the Soft X-ray

Telescope on Yokoh (Tsuneta et al., 1991) to magnetic reconnection and the



10 Chapter 1. Introduction

consequent release of twist. Sterling et al. (2015) have further revised the sce-

nario by investigating 20 random X-ray jets. According to them, the process of

X-ray jet formation is similar to large-scale eruptions, but in smaller scales. The

scenario of jet formation involves erosion of cool plasma from a mini-filament

structure involving a two-step reconnection process with the ambient field lines.

First, the field lines underlying the filament material reconnect with formation

of hot loops close to the solar surface. Hence the reconnection is called as the in-

ternal reconnection. Afterwards, when the filament ascends through the channel

of the ambient and enveloping field lines, reconnection occurs above the filament

between oppositely oriented field lines. This second reconnection is named as

the external reconnection. As a result, the plasma material escapes through the

open field lines with a wide spire and forms the blowout jet. On the other hand,

if the external reconnection ceases before the arrival of the filament, then a stan-

dard jet results, trapping the cool material underneath the enveloping field. The

discussed scenario is illustrated in Fig.-1.6. Recently, Wyper et al. (2017) have

Figure 1.6: A schematic depicting the eruption mechanism of a jet; adapted
from Sterling et al. (2015). (a) Initial configuration, (b) the filament material
is setting out to erupt, and (c) noteworthy is the both reconnections supporting
the eruption of the cool material.

given an universal model for eruption of CME and jet, shown in Fig.-1.7, where

they claim the eruptions to follow the breakout model. The jets can be due to

flux cancellation also, as reported by Panesar et al. (2016, 2017, 2018) and flux

emergence (Mulay et al., 2016). The details of different eruption mechanisms

and origins can be found in the comprehensive reviews by Raouafi et al. (2016);

Shen (2021).
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Figure 1.7: A numerical simulation showing the mini-filament eruption scenario
in case of a jet; picture taken from Wyper et al. (2017).

1.3 Coronal Mass Ejections

CMEs are the gigantic eruptions from the solar atmosphere into the interplane-

tary medium. A typical CME has a three-part structure: (1) the bright frontal

loop, (2) the dark cavity, and behind it (3) the bright core. The mass contained

in a CME ranges from 1 × 1011 − 4 × 1013 kg with average value of 3 × 1012
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(Jackson, 1985; Gopalswamy & Kundu, 1992; Hudson et al., 1996). The pro-

jected velocity of a CME ranges from 20− 2000 km/s, reaching upto 3500 km/s

(Chen, 2011). Based on their angular width, they are known as narrow CMEs

with smaller angular width blue(≈ 10◦) and normal CMEs with larger angular

width. They are depicted in Fig.-1.8. The normal CMEs oriented toward Earth

are known as the halo CMEs.

Figure 1.8: The panels show two different types of CMEs captured by the Large
Angle Spectrometric Coronagraph (LASCO) onboard SOHO; (a) a difference
image of a narrow CME on the left with a less angular width and without any
distinct three-part structure, and (b) a normal CME on the right with its charac-
teristic three-part structure; picture credit for narrow cme (Kahler et al., 2001)
and normal cme (Riley et al., 2008).

Possible reasons for triggering of these two types of CMEs are different. Narrow

CMEs, shown in the Fig.-1.8, are mainly due to EUV jets and these jets may

be associated with flares occurring down below the atmosphere. The normal

CMEs are also linked with flares though not always. They mainly possess a

filament—an elongated structure carrying cold and dense plasma hanging on

the solar atmosphere, also called prominence when viewed at the solar limb

during their initiation phase. The eruption process is generally explained by the

standard flare model or the CHSKP model (previously discussed). Nevertheless,

reconnection may not be always responsible for triggering CMEs. Presence of

a flux rope has been successfully explained the three part structures of normal

CMEs since they can carry material, own current (because of winding of the

field lines owing to photospheric motions) and hence store the magnetic energy.
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When, the flux rope becomes unstable, it starts to rise forming a current layer

near the footpoints of the rope which leads to reconnection. As a result the

plasma above the reconnection region gets ejected. However, it is not necessary

to have a pre-existing flux rope since the rope may develop in-situ by reconnection

of sheared field lines.

As a precursor to the eruption, sigmoidal structures, observed in SXR are

contemplated as a proxy to filament lying below it (Canfield et al., 1999). Dif-

ferent triggering mechanisms are proposed with the help of observations and

numerical modeling. In their tether-cutting model, Moore et al. (2001) have

provided a plausible triggering mechanism, which is shown in the Fig.- 1.9. In

the panel-(a) of the schematic, there are a set of strongly sheared arcades, and

visibly less sheared overarching arcades hanging over the atmosphere. Owing

to the action of shearing motion, the strongly sheared arcades reconnect and a

long field line above and a short field line below the point of reconnection are

formed. The plasma begins to move in both directions. The resulting plasma

flow further pushes the newly formed filament to rise. Simultaneous removal of

arching field lines occur forming a current sheet above the neutral line and also

produces two flare ribbons on the surface. Studies by van Ballegooijen & Martens

(1989) along with a numerical simulation by Amari et al. (2003) also supports

a similar mechanism, but with an inclusion of flux cancellation on generating

helical field lines and subsequent eruption as CME due to reconnection. Studies

considering shearing motions are also found to be engendering eruptions (Deng

et al., 2001; Aly, 1990; Mikic & Linker, 1994; Kusano et al., 2004). Antiochos

et al. (1999) have argued about another mechanism known as magnetic breakout

model, which relies on the reconnection between sheared arcades and the sur-

rounding flux systems in a multi polar eruptive flare system. The schematic is

shown in Fig.-1.10.

In their work, Lynch et al. (2004) have compared the observational features

with their MHD simulation result and found the support of breakout model in

explaining the CME. Archontis & Török (2008); MacTaggart & Hood (2009)

have also explored a similar scheme in their models. Later studies provided the
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Figure 1.9: Eruption scenario in the tether-cutting model depicting the rise of
the rise of the core flux system after the reconnection of the sheared field lines
lying below it, picture credit: (Moore et al., 2001).

evidences for CMEs to be triggered by the breakout model (Tang, 1987; Aulanier

et al., 2000; Li & Luhmann, 2006; Ugarte-Urra et al., 2007). Emergence of

flux before eruption and their reconnection between the pre-existing field lines

are also found to reinforce CME eruption (Feynman & Martin, 1995), which

is later validated by Chen & Shibata (2000); Chen (2008). According to the

model, emerging fluxes reconnect with pre-existing flux systems in the filament

and hence decreases the local magnetic pressure. The lateral loops then rush

toward the low pressure region and a current sheet forms. If the emerging fluxes

appear outside of the filament, they reconnect with the pre-existing loops and

consequently the overlying loops expand, creating a current sheet below the

filament (Fig.-(1) in (Chen, 2008)). The eruption mechanisms may also rely

on ideal MHD instabilities of the flux rope/filament, namely torus instability
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Figure 1.10: Eruption scenario in the breakout model showing the evolution of
magnetic field with reconnection occurring near the null point situated above
the central flux system or flux rope at the core, picture credit: (Antiochos et al.,
1999).

(Fan & Gibson, 2007; Kliem & Török, 2006; Chen, 1989) and kink instability

(Sakurai, 1976; Hood & Priest, 1979; Mikic et al., 1990; Török & Kliem, 2005;

Inoue & Kusano, 2006). The formalism based on the torus instability or the

lateral kink instability relies on the the stability model of toroidal current ring

discussed in Shafranov (1966); Bateman (1978). In brief, the eruption onsets if

the external/overlying field falls rapidly along the major axis of the torus (the

flux rope is envisaged as a half-cut torus). This fall is quantified by the critical

decay index n = −∂(log |B|)
∂(log z)

, where B is the strength of the external magnetic

field and z is the height above the photosphere. Whereas, in the helical kink

instability, the magnetic flux rope confining the filament material about the axis
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gets twisted and develops a writhe. When the winding number of the MFLs

around the axis exceeds the threshold value of 1.25 turns, the flux rope erupts.

The scenario for both the instabilities are depicted in the Fig.-1.11 and Fig.-1.12.

Figure 1.11: MHD simulation showing the evolution of the magnetic field in torus
unstable scenario, image credit:(Fan & Gibson, 2007).

Figure 1.12: MHD simulation showing the evolution of the magnetic field in kink
unstable scenario, image credit:(Fan & Gibson, 2007).

As a whole, magnetic reconnection is proposed as the underlying cause of the

solar transients like the flares, jets and CMEs. It is established that both the

magnetic field and current density are important to understand the reconnection

driven events, the frozen-in condition enabling the magnetic field to determine

the global evolution of a magnetic structure whereas the reconnection itself is due

to a reduction in the length over which the magnetic field varies and hence, an

enhancement of magnetic Reynolds number. The importance will be highlighted

later in the thesis, as and when necessary. Few other properties are of worth

mentioning. Most of these transients initiate predominantly at lower solar atmo-

sphere and depends on the local morphology of MFLs. It is then imperative to

explore the MFL dynamics near reconnection sites and their effect on the global

evolution of a magnetic structure to understand the transients—the objective

of the thesis. For the purpose we have carried out three dimensional numerical
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simulations using both analytical initial magnetic field along with magnetic field

extrapolated from solar magnetograms. For ready reference, a more detailed

objective of the thesis along with its structure is listed in the next section.

1.4 Objective and Outline of the Thesis

As described upfront, the objective of the the thesis is to numerically explore

dynamics of magnetic reconnection and its influence on the evolution of MFLs

(magnetic field lines) near and away from the reconnection sites. The require-

ment is to understand the relevant magnetic topology and the current density

along with their evolution. The reconnection sites are identified by studying the

MFL topology obtained from coronal magnetic field extrapolations using photo-

spheric magnetograms as well as by analytical constructions. Both approaches

are necessary. The MHD simulations initiated with extrapolated MFLs, the so-

called data-constrained simulations, are realistic and the simulated dynamics can

readily be compared with the observations. Contrarily, simulations with analyt-

ical initial field give more control and focuses on exploring a particular aspect

of the reconnection along with basics of the involved magnetic topology. Impor-

tantly, active region MFLs are twisted and hence, mostly three-dimensional (3D).

Consequently, 3D reconnections initiated with 3D magnetic nulls and Quasi-

Separatrix-Layers (QSLs) are of utmost importance. The thesis specifically fo-

cuses on 3D reconnections using state-of-the-art simulations and data analysis

tools. For convenience, we catalog the chapter titles below along with brief notes.

Chapter 2 is on Magnetic Reconnection, Extrapolation Models and Data Ac-

quisition and lays down the basic ideas of magnetic reconnection with special

focus on its 3D variant. Also various coronal field extrapolation models are dis-

cussed while emphasizing the non-force-free-field (NFFF) model by Hu et al.

(2008); Hu & Dasgupta (2008); Hu et al. (2010).

Chapter 3 titled Numerical Model introduces the EULAG-MHD model, used

extensively for the simulations.

Chapter 4 describes Data-constrained Simulations where extrapolated mag-
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netic fields are used as initial conditions. To understand the reconnection pro-

cess, the simulated transients are selected to be of topologically and energetically

different to mitigate any conceptual bias.

Chapter 5 Simulations with Analytical Initial Conditions presents the simu-

lations initiated with the analytical initial conditions.

Chapter 6 Summary and Future Scopes summarizes the thesis and discusses

future scopes.



Chapter 2

Magnetic Reconnection,

Extrapolation Models and Data

Acquisition

The objective of the thesis being to numerically explore MR (magnetic reconnec-

tion) driven coronal transients with a particular focus on the magnetic topology

and associated current density, in the following we present the salient features of

MR. We also briefly discuss different extrapolation models and their relevance

in the coronal physics.

2.1 Magnetic Reconnection

In the early days, the MR was also termed as magnetic merging (Vasyliunas,

1975) and their investigation first started using two-dimensional (2D) analyses.

In 2D, hyperbolic X-type neutral points (Pontin et al., 2004) can host MRs.

The schematic in Fig.-2.1 shows the configuration of an X-point topology where

the orange and blue color field lines have different connectivities. The black

straight lines distinguish different topological domains and are known as the

separatrices. The neutral point having |B| = 0 is located at their intersection.

19
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The configuration can be obtained by writing the magnetic field as

B = yî + xĵ, (2.1)

where î and ĵ are unit vectors along x and y directions of a Cartesian coordinate

system. In response to an unbalanced force, a pair of oppositely directed field

lines (say, AB and DC) comes to close proximity near the neutral point where

they diffuse out because of a loss in the condition of flux-freezing. At the neutral

point the two field lines reconnect, change their connectivities to AC and DB,

subsequently leaving the reconnection region with the outflow indicated by the

double horizontal arrow. In another scenario, a combination of two Y type nulls

can develop which, can be envisaged by an asymmetric compression of the X-

type null. Such Y-type nulls are characterized by strong current densities, or

current sheets, localized on a plane across which the magnetic field flips sign.

A B

C D

A B

C D

Figure 2.1: Schematic representation of reconnection near an X-type null point.

For completeness, the MFLs are tangential to the local magnetic field vector

B and are the solutions of

dxi
ds

=
Bxi

|B|
, i = 1, 2, 3, (2.2)

are the three indices of a Cartesian coordinate system. Another type is the O-

type null, located at the point of collapse of a closed field line. The field lines

are shown in the Fig.-2.2.

In order to explain the energy release in flares, Sweet and Parker (Parker,
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Figure 2.2: Magnetic field lines near an o-type null point.

1957; Sweet, 1958) modeled the magnetized plasma to be in steady-state and

2D. They further proposed anti-parallel magnetic field lines to get pushed toward

each other forming a current sheet of length 2L and width 2l. Subsequently,

the anti-parallel field lines reconnect and in the process generate kinetic energy

and heat (via Ohmic dissipation). However, the obtained reconnection rate was

slower in comparison to what is theorized in flares and hence, it is known as the

slow-reconnection model. Compared to the Sweet-Parker model, the Petschek

model (Petschek, 1964) yields a faster reconnection rate. Further improvement

in 2D reconnection models were made by including two-fluid and kinetic effects

(Zweibel & Yamada, 2009). Though the scenario in 2D aids us in understanding

the reconnection process, in reality we find complex 3D magnetic structures in

the solar atmosphere and in other astrophysical systems. In 3D, the reconnection

is more complex and may not necessarily involve anti-parallel field lines. Instead,

there exist many plausible sites for MRs in the likes of null points, separators

and non-null locations such as quasi-separatrix layers (QSLs). We will discuss

each regime as a primer to understand the works carried out in the thesis.

The Fig.-2.3 illustrates the topology of a linear 3D null, where the MFLs

increase linearly from the origin (Priest & Forbes, 2000) when expanded in a

Taylor’s series. Magnetic field for such linear null in the Cartesian coordinates
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z

Fan-plane

Spine axis

x
y

Figure 2.3: A schematic of a 3D null point with spine axis and fan plane with
the null point located at the center.

can be written as

B(x, y, z) = xî+ ayĵ − (a+ 1)zk̂, (2.3)

so that ∇ ·B = 0. The solution to the field line equation for a = 1 is

y = Cx & z = K/x2, (2.4)

and the location of the null point is at x = y = z = 0. The Fig.-2.4 plots

MFLs for the 3D null pertaining to C = 1. In the Fig.-2.4, the sets of MFLs

asymptotically approaching the null point constitute the spine or γ-line whereas

the surface to which the receding MFLs are tangential, is called the fan plane

or Σ-plane (Priest & Titov, 1996; Lau & Finn, 1990). The fan plane separates

the different topological domains of magnetic flux and hence also is known as

separatrix surface. In general, B for generating linear null points in 3D can be

written as


Bx

By

Bz

 =


1 1

2
(b− j‖) 0

1
2
(b+ j‖) a 0

0 j⊥ −a− 1



x

y

z


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Figure 2.4: Plot of a 3D null skeleton with its characteristic spine and fan field
lines with the null point (marked by red iso-surface).

Where j⊥ and j‖ are the current densities perpendicular and parallel to the spine.

If j⊥ is non-zero, the fan surface is inclined to the spine at a certain angle and

the corresponding null is known as the oblique null. When the j‖ along the spine

exceeds a critical value, the eigen values of the matrix in Eq.-2.1 are not real

anymore and the null is called a spiral null. The oblique and spiral nulls are

plotted in Fig.-2.5.

When the spine field lines approach (or recede) toward (or away from) the

null and those on fan recede (or approach) away from (or toward) the null, the

null points are termed as positive (or negative) (Priest & Forbes, 2000). The null

presented in the Fig.-2.4 is called a proper radial null, since the fan field lines are

straight lines directed radially outward. If a 6= 1 in the Eq.-2.3, the field lines

are not straight lines anymore and such nulls are termed as improper radial nulls

(Priest & Forbes, 2000).

Reconnection involving null points are classified into different regimes. In

kinematic models, Pontin et al. (2004); Pontin et al. (2005) found that the align-

ment of electric current dictates the reconnection process. According to Pontin

et al. (2004); Wyper & Jain (2010), when current becomes parallel to the spine

of the null, there will be counter-rotational flows having center on the spine.
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Figure 2.5: Depiction of (a) an oblique null, and (b) a spiral null. The red
iso-surfaces shows the location of the null point.

This leads to rotational slippage of the field lines due to reconnection. Notably,

there is no transport of magnetic flux across either the spine or the fan (Pon-

tin, 2012). Whereas, flux transport occurs if the current is parallel to the fan

surface. In order to find current density near the null, Rickard & Titov (1996)

along with Pontin & Galsgaard (2007) found the accumulation of current along

the spine axis for an isolated 3D null when disturbed by rotational and shearing

motion. From these investigations, two types of reconnection stem out. Upon

rotational disturbances on fan, a current tube forms by the winding of field lines

around the spine in parallel to it. So, there will be a rotational slippage of field

lines. This is known as torsional spine reconnection and is shown in the Fig.-2.6.

In torsional fan reconnection, a planar current layer develops (Galsgaard et al.,

2003) near the fan when the spine is rotated, shown in Fig.-2.7. In another sce-

nario called the spine-fan reconnection model, either the spine or the fan field

lines are perturbed by the disturbances in the form of a shear, the null collapses
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to form a localized current layer in a Y-type manner (depicted in the Fig.-2.8)

reconnection. The current is transported via both spine and fan while remaining

parallel to the fan surface. Here also, transfer of magnetic flux occur through

both spine and fan. Then, in the separator reconnection, the joining line or the

separator line, between two nulls oriented perpendicular to each other (shown in

Fig.-2.9), result in formation of current layer near it (Longcope & Cowley, 1996;

Longcope, 1996). Parnell et al. (2010b,a) has observed the formation of current

away from the null points.

Figure 2.6: Schematic representation of torsional spine reconnection, where the
black and gray lines are magnetic field lines, the shaded surfaces are current
density iso-surfaces, gray arrows indicate the direction of the current flow, while
black arrows indicate the driving plasma velocity. Adapted from Pontin (2012).

Non-null reconnection refers to magnetic reconnection in the absence of any

null points and in presence of a sharp change in the magnetic field line con-
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Figure 2.7: Schematic of torsional fan reconnection, where different color field
lines, shaded surfaces and arrows represent the same as depicted in Fig.-2.6.
Adapted from Pontin (2012).

Figure 2.8: Schematic of spine–fan reconnection at an isolated null. Again, dif-
ferent color field lines, shaded surfaces and arrows represent the same as depicted
in Fig.-2.6. Adapted from Pontin (2012).

nectivity. This is also known as magnetic flipping (Priest & Forbes, 1992) or

slip-running reconnection when the motion of field lines exceed the Alfvén speed

(Aulanier et al., 2006). This concept was already proposed by Schindler et al.
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Figure 2.9: Magnetic field lines near a fan-fan separator line. Adapted from
Pontin (2012).

(1988) where the non-null reconnection was called as finite-B reconnection. Con-

sidering Ohm’s law as stated in Schindler et al. (1988),

E + v×B = R, (2.5)

where R is a finite vector and represents the non-idealness in the plasma in form

of collisions, fluctuations and particle inertia. The presence of this non-idealness

can be important in a localized region with sharp gradient, with length scale

smaller than the ion Larmour radius. These locations can become potential sites

for current enhancement (Schindler et al., 1988). A convenient form of R in

presence of Ohmic dissipation can be ηJ, where η is the electrical resistivity.

Necessary and sufficient condition for reconnection is that the magnetic field be

nonzero in the diffusion region and B× (∇×R) 6= 0 at a given point—located

at the diffusion region. An important parameter here is the electric field (E‖)

parallel to the magnetic field. If
∫
E‖ds along a measurable set of field lines in

diffusion region is nonzero, then the effect of reconnection is felt outside the region

and we get global reconnection; otherwise, the reconnection is local. For example,

the process of plasmoid formation is by global finite-B reconnection. QSLs are
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such preferential locations for formation of current sheets and reconnections to

occur without any presence of null points. QSLs are the type of location where

there occurs a drastic change in the magnetic field line connectivity (Demoulin

et al., 1996, 1997; Titov, 2007). This change is quantified by the value of the

squashing factor Q. To elucidate, we consider two footpoints P1(x1, y1) and

P2(x2, y2). When mapped from P1 to P2, the Jacobian associated with it is given

by

D1,2 =

∂x2
∂x1

∂x2
∂y1

∂y2
∂x1

∂y2
∂y1

 =

a b

c d

 (2.6)

yielding to,

Q =
a2 + b2 + c2 + d2

|Bn,1(x1, y1)/Bn,2(x2, y2|
, (2.7)

where Bn,1(x1, y1) and Bn,2(x2, y2) are the components normal to the target

planes. Q > 2 determines the degree of squashing and the location of QSL (Liu

et al., 2016). Intersection of QSLs make a Hyperbolic Flux Tube, which is also a

potential site of reconnection (Titov et al., 2002; Titov, 2007). The plot of Q for

a submerged poles model of Sweet’s configuration and a Hyperbolic Flux Tube

are shown in the Fig.-2.10 and Fig.-2.11, adapted from Titov et al. (2002).

2.2 Coronal field models and extrapolation

techniques

The last section highlights the importance of magnetic topology in magnetic

reconnection. Consequently, crucial is to determine the magnetic topology of the

coronal field to understand MR there. In absence of a reliable direct measurement

of the coronal magnetic field, the viable alternative is to employ various models

of the solar coronal magnetic field. In the following, we briefly introduce these

models.

The standard is the force-free approximation of the corona (Lüst & Schlüter,

1954; Chandrasekhar, 1956) which treats it as a low β plasma (β ≡ 8πp/B2)
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Theory of magnetic connectivity in the solar corona

Journal of Geophysical Research: Space Physics, Volume: 107, Issue: A8, Pages: SSH 3-1-SSH 3-13, First published: 06 August 2002, DOI: (10.1029/2001JA000278) 

Figure 2.10: Distribution of Q on the photospheric magnetogram plotted in iso-
contours in the background. Picture credit: (Titov et al., 2002).Theory of magnetic connectivity in the solar corona

Journal of Geophysical Research: Space Physics, Volume: 107, Issue: A8, Pages: SSH 3-1-SSH 3-13, First published: 06 August 2002, DOI: (10.1029/2001JA000278) Figure 2.11: Depiction of the hyperbolic flux tube with magnetic flux surface
Q = 100 on the same magnetogram shown in Fig.-2.10. Picture credit: (Titov
et al., 2002).

where the magnetic pressure B2 dominates over the plasma pressure p. With all

other forces neglected and assuming the global corona to be under equilibrium,
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the Lorentz force

J×B = 0, (2.8)

from Eq.-1.1.

2.2.1 Potential field

The simplest non-trivial solution of Eq.-2.8 is J = 0, or the magnetic field to

be potential or current-free. The magnetic field can be found by solving the

Laplace’s equation satisfied by the magnetic scalar potential with appropriate

boundary conditions. The coronal extrapolation of such field requires only the

line-of-sight field of a magnetogram. The idea is to solve the Laplace boundary

value problem with photosphere as the lower boundary and any desired height

in the corona as the upper boundary. The Laplace’s equation is given by

∇2Φ = 0, (2.9)

Φ being the scalar potential. The model is popularized as the potential source

surface model (PFSS) where the source surface lies at around 2.5 solar radii

and the magnetic field lines from there are assumed to be radial. The Fig.-2.12

shows the field lines obtained using the PFSS model. Although the PFSS model

is proved to be useful in explaining many interesting observations, however, the

active region MFLs responsible for transients have to be twisted to store excess

magnetic energy and hence are non-potential.

2.2.2 The Linear-Force-Free-Field (LFFF)

The LFFF model satisfies Eq.-2.8 by assuming J ‖ B, or,

∇×B = α0B, (2.10)

where α0 is a constant. It represents the magnetic circulation per unit flux and

is related to the twist of a field line. With the MFL twist constant everywhere,
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Figure 2.12: Global magnetic field topology obtained with PFSS extrapola-
tion. Image taken from http://www.cessi.in/solareclipse2020/images/

obs_pred_eclipsedec2020_1.png.

the LFFF model is applicable to only a small region as observations directly

suggest MFLs to be non-uniformly twisted. The α can be computed from vector

magnetograms in the following way,

α(x, y) = µ0Jz0/Bz0 (2.11)

and

Jz0 =
∂By0

∂x
− ∂Bx0

∂y
, (2.12)

where Bx, By, and Bz are the three magnetic field components and Jz0 is the

vertical current density measured on the photosphere. Taking curl of Eq.-2.10,

(∇2 + α2)B = 0, (2.13)

which is the vector Helmholtz equation for magnetic field and solution to this

equation is given by Chandrasekhar & Kendall (1957). According to them, a

force-free-field with constant α can be written explicitly with two components,

one poloidal and one toroidal, owing to the selection of a gauge for the vector

potential and solenoidal constraint. Hence, B in a Cartesian coordinate system

http://www.cessi.in/solareclipse2020/images/obs_pred_eclipsedec2020_1.png
http://www.cessi.in/solareclipse2020/images/obs_pred_eclipsedec2020_1.png
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can be written as,

B =
1

α0

∇×∇× (ψêz) +∇× (ψêz), (2.14)

and applying it to 2.13, we get

Bx =
∞∑

m,n=1

Cmn
λmn

exp(−rmnz) · {απn
Ly

sin(πmx/Lx)

cos(πny/Ly)− rmn
πm

Lx
cos(πmx/Lx) sin(πny/Ly)},

(2.15)

By =
∞∑

m,n=1

Cmn
λmn

exp(−rmnz) · {απm
Lx

cos(πmx/Lx)

sin(πny/Ly) + rmn
πn

Ly
sin(πmx/Lx) cos(πny/Ly)},

(2.16)

Bz =
∞∑

m,n=1

Cmn exp(−rmnz) · sin(πmx/Lx) sin(πny/Ly), (2.17)

where λmn = π2(m2/L2
x + n2/Ly2) and rmn =

√
λmn − α2 (Nakagawa & Raadu,

1972; Seehafer, 1978; Wiegelmann & Sakurai, 2012). For the solution of LFFF

equation, several techniques are exploited, like Green’s functions, Fourier trans-

forms in different coordinate systems (Levine & Altschuler, 1974; Nakagawa &

Raadu, 1972; Levine & Altschuler, 1974; Chiu & Hilton, 1977; Nakagawa et al.,

1978; Alissandrakis, 1981; Wu & Wang, 1984, 1985; Semel, 1988; Durrant, 1989;

Gary, 1989; Yan, 1995; Kusano & Nishikawa, 1996; Abramenko & Yurchishin,

1996; Amari et al., 1998; Clegg et al., 1999, 2000). For photospheric magne-

tograms, Bz for z = 0 is considered and comparing with Eq.-2.17, the coefficients

Cmn can be found out. The construction of LFFF for magnetogram is done by

adapting the procedures documented in Seehafer (1978). There the original mag-

netogram of dimension 0 → Lx in x and 0 → Ly in y is stretched to dimension

−Lx → Lx in x and −Ly → Ly in y to maintain the flux balance. Subsequently,

the coefficient Cmn is computed using fast fourier transform (FFT) from this

new modified magnetogram. For a consistent solution for Eq.-2.17, rmn should
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be real, positive and α2 should be less than the maximum value

α2 = π2(
1

L2
x

+
1

L2
y

) (2.18)

If Lx = Ly, then, α ∈ (−
√

2π,
√

2π) (Wiegelmann & Sakurai, 2012). The diffi-

culty with the LFFF model is that an univalued α is not sufficient for the coronal

magnetic loops (Leka & Skumanich, 1999; Leka, 1999).

2.2.3 Non-linear-force-free-field (NLFFF) model

The equation for NLFFF is

∇×B = α(r)B, (2.19)

∇α ·B = 0. (2.20)

The α here is a function of position implying different twist in different loca-

tions whereas the second condition comes from the solenoidality of B, making

the twist constant along a given field line. Implementation of NLFFF for real

magnetogram is challenging. However, there are numerous procedures aimed

to solve the problem from different approaches viz. vertical integration (Wu &

Wang, 1985; Cuperman et al., 1989, 1990b,a; Wu et al., 1990; Demoulin et al.,

1992; Song et al., 2006, 2007), Grad-Rubin methods (Sakurai, 1981; Amari et al.,

1997, 1999; Wiegelmann, 2004; Amari et al., 2006; Inhester & Wiegelmann,

2006; Wheatland, 2006; Wheatland & Régnier, 2009; Malanushenko et al., 2009),

boundary integrals (Yan & Sakurai, 1997, 2000; He & Wang, 2008), optimiza-

tion (Wheatland et al., 2000; Wiegelmann, 2004), MHD evolutionary techniques

(Yang et al., 1986) and force-free electrodynamics (Contopoulos, 2013). A com-

parative analysis between these algorithms is discussed in (Schrijver et al., 2006,

2008; Metcalf et al., 2008; De Rosa et al., 2009).
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2.2.4 Non-force-free-field (NFFF) model

The NLFFF has to preprocess data to make the photosphere force-free for mathe-

matical continuity. In the process, precision is lost since the photospheric plasma

is of high β and is not force-free. Interestingly, it is suggested by Gary (2001)

that the plasma-β is negligible only at the mid-corona, see Fig.-2.13. More-

Figure 2.13: variation of plasma beta over the atmosphere. Picture credit: Gary
(2001).

over, for both LFFF and the NLFFF, the solution does not match the boundary

conditions i.e. the α-value computed from the data may generally not be the

same at both ends of a field line in the extrapolated field. Consequently, in the

thesis we use a model that allows for non-force-free magnetic field on the photo-

sphere while the Lorentz force decays with height. Several other non-force-free

models are put forwarded to obtain the coronal magnetic field. Wiegelmann &

Neukirch (2006); Wiegelmann et al. (2007) have adapted the optimization scheme

to solve the magnetohydrostatic equation. In their non-force-free model, Gary

& Alexander (1999) have tried to construct the coronal magnetic field by com-
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bining photospheric magnetograms and the structures of coronal loops. For a

detailed discussion on the algorithms, efficacy of all the models, see (Wiegelmann

& Sakurai, 2012; Régnier, 2013).

In the thesis, we follow the method developed by Hu & Dasgupta (2006,

2008); Hu et al. (2008, 2010). The extrapolation method is based on the principle

of minimum dissipation rate (MDR) (Bhattacharyya & Janaki, 2004) which is

applicable to open dissipative systems like the solar corona (Bhattacharyya et al.,

2007). According to the principle, the terminal state of a relaxing magnetofluid

is determined by minimizing the total (Ohmic+viscous) dissipation rate while

keeping the generalized helicity dissipation rates invariant.

The model essentially solves an inhomogeneous double-curl Beltrami equation

for the magnetic field B given by Bhattacharyya & Janaki (2004); Bhattacharyya

et al. (2007)

∇×∇×B + a1∇×B + b1B = ∇ψ. (2.21)

where a1 and b1 are the constants which depends on the parameters of the system.

The equation can be cast in an auxiliary form,

∇×∇×B* + a1∇×B* + b1B* = 0, (2.22)

where, B is replaced by B = B* + ∇ψ/b1. Then the solution to the auxiliary

equation will be

B* = λ1Y1 + λ2Y2 (2.23)

where, Y1 and Y2 are the Chandrasekhar-Kendall functions, forming a complete

orthonormal basis and satisfying the Linear-Force-Free equation ∇×Yi = ζiYi.

If we write the solution in terms of original field variable B, then it turns out

that,

B = λ1Y1 + λ2Y2 +∇ψ (2.24)

where the solution is a superposition of three force-free fields, two of them being

LFFFs and one being potential field. When applied to the real magnetogram

data, the algorithm of the NFFF model works in the following way. The magnetic



36
Chapter 2. Magnetic Reconnection, Extrapolation Models and Data

Acquisition

field is constructed as (Hu et al., 2010)

B =
∑
i=1,2,3

Bi; ∇×Bi = αiBi, (2.25)

where αi being constant for a given Bi. Each subfield Bi is a LFFF and α1 6=

α2 6= α3. Hereafter we follow the notations used in Hu et al. (2008, 2010) to

maintain homogeneity. Without any loss of generality, we further take α1 6= α3,

and α2 = 0 which makes B2 a potential field. Thereafter, an optimal pair

α = {α1, α3} is attained using an iterative trial-end-error method which finds a

pair {α1, α3} that minimizes the average deviation between the observed (Bt)

and the computed (bt) transverse field on the photospheric boundary, expressed

by the metric

En =

(
M∑
i=1

|Bt,i − bt,i| × |Bt,i|

)
/

(
M∑
i=1

|Bt,i|2
)

(2.26)

where M = N2, represents the total number of grid points on the transverse

plane. The grid points are weighted with respect to the strength of the observed

transverse field to minimize the contribution from weaker fields, see (Hu et al.,

2008, 2010), for further details. The extrapolated B is essentially a solution of

the equation

∇×∇×∇×B + a1∇×∇×B + b1∇×B = 0 (2.27)

where a1 and b1 are constants. Since Eq.-2.27 involves the evaluation of the

second-order derivative, ∇×∇×Bz = −∇2Bz at z = 0, evaluation of B requires

magnetograms at two different values of z. In order to work with the generally

available single-layer vector magnetograms an algorithm was introduced by Hu

et al. (2010). The flowchart is presented in Fig.-2.14. This algorithm involves

additional iterations to successively correct the potential sub-field B2. The sys-

tem is reduced to second order by taking initial guess B2 = 0 which makes it

easier to determine the boundary condition for B1 and B3 using the method
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described earlier. If the calculated value of minimum En is not satisfactory, then

a potential field corrector to B2 is calculated from the difference in observed and

computed transverse fields, i.e. Bt - bt. The difference value is added to the

previous B2, in expectation of an improved match between the transverse fields

measured by En. Further details will be presented later in the thesis during the

extrapolation of active region magnetic fields.

Figure 2.14: The flowchart showing the algorithm used in the NFFF extrapola-
tion (Hu et al., 2010).

2.3 Data Acquisition

In the thesis, we complement the extrapolations and numerical simulation

with multi-wavelength observations. Also for extrapolations, data from pho-

tospheric magnetograms are required. For the purpose, we employ data from

the space-based instrument Solar Dynamics Observatory (SDO) because of its

high-resolution data products. SDO is a mission under NASA Living With a

Star (LWS) program. It was launched on 2010 February 11 from Kennedy Space

Center in Florida. It is positioned in a geosynchronous orbit. The SDO provides
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variety of data sets like magnetic field, imaging of different layers, Doppler ve-

locity for full disk and active region patches extracted with advanced algorithms

unprecedentedly for 24 hours. There are three payloads in SDO: (1) Atmospheric

Imaging Assembly (AIA), (2) Helioseismic and Magnetic Imager (HMI), and (3)

Extreme ultraviolet Variability Explorer (EVE). The thesis will use two of the

three instruments, AIA and HMI.

2.3.1 Helioseismic and Magnetic Imager (HMI)

HMI (Schou et al., 2012) aims to study oscillations and the magnetic field at the

solar surface. HMI observes the full solar disk at 6173 Å with a resolution of 1

arcsecond. The data types are: dopplergrams (maps of solar surface velocity),

continuum filtergrams (broad-wavelength photographs of the solar photosphere),

and both line-of-sight and vector magnetograms (maps of the photospheric mag-

netic field). See http://hmi.stanford.edu/ for more details. HMI consists of

a refracting telescope, a polarization selector, an image stabilization system, a

narrow band tunable filter and two 4096 pixel CCD cameras with mechanical

shutters and control electronics. Images are made in a sequence of tuning and

polarizations at a 4-second cadence for each camera. One camera is dedicated

to a 45s Doppler and line-of-sight field sequence while the other to a 90s vector

field sequence. The magnetic field on the Sun’s photosphere is measured by us-

ing Zeeman’s effect which explains the splitting of spectral lines in the presence

of magnetic field. For a weak field, the splitting depends on the magnetic field

strength (δλ ∝ B). With respect to an observer, along the line-of-sight, the lines

split into shifted circular polarized σ components and an unshifted π component

(see Fig.-2.15). If the radiation is along the magnetic field, then the observer

will be able to see the circularly polarized components and the effect is known

as longitudinal Zeeman effect, depicted in Fig.-2.15. Whereas, if the direction of

the radiation is perpendicular to the magnetic field, then the observer see the lin-

early polarized components and the effect is transverse Zeeman effect, depicted

in Fig.-2.15. The polarization is described by the Stokes parameter (I, Q, U ,

and V ), where I represents the total intensity of the radiation, Q represents the

http://hmi.stanford.edu/
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intensity difference between vertical and horizontal linear polarization, U is the

intensity difference between linear polarization at +45◦ and -45◦ and V is the

intensity difference between right and left hand circular polarization. The Stokes

Figure 2.15: A schematic showing the Zeeman effect an an atomic system. The
magnetic field is aligned along the z- and x- axes respectively, showing the longi-
tudinal (top) and transverse (bottom) Zeeman effect. Taken from Lites (2000).

parameter can be written as (Venkatakrishnan & Gosain, 2008):

I = 〈ExE∗x〉+
〈
EyE

∗
y

〉
(2.28)

Q = 〈ExE∗x〉 −
〈
EyE

∗
y

〉
, (2.29)

U = 2Re
〈
ExE

∗
y

〉
, (2.30)

V = 2Im
〈
ExE

∗
y

〉
, (2.31)

where, Ex and Ey are components of Electric field and 〈〉 represents the expec-

tation value. For a strong magnetic field, the magnetic field is estimated by

spectropolarimeter which provides the Stokes profile with proper atmospheric

model like inclusion of line formation mechanism and radiative transfer equa-

tions.

HMI provides the full disk vector magnetic measurement with the measured

Stokes vector at six wavelengths across the Fe I absorption line at 6173 Å. It
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employs the Very Fast Inversion of Stokes Vector (VFISV) (Borrero et al., 2011)

algorithm to obtain the field components from the observed Stokes parameters.

Then to resolve the 180◦ ambiguity in the transverse fields, which arises due to the

azimuthal angle associated with the polarization, the minimum energy method

by Metcalf (1994); Leka et al. (2009) is used after inversion. Two types of data

sets are available at HMI pipeline: (1) full disk of temporal cadence 720s and

135s and (2) a cylindrical equal-area active region patch with temporal cadence of

720s, for details http://jsoc.stanford.edu/jsocwiki/HARPDataSeries. The

components of the field are the azimuthal Bp, the zenith Bt and radial Br and

Bx, −By and Bz in heliographic co-ordinates respectively. For details of the data

products, see http://jsoc.stanford.edu/HMI/Vector_products.html.

2.3.2 Atmospheric Imaging Assembly (AIA)

The Atmospheric Imaging Assembly (AIA) (Lemen et al., 2012) provides an un-

precedented observation of the solar corona with a field of view of at least 1.3

solar diameters in multiple wavelengths simultaneously, at a resolution of about

1 arcsec (4096 × 4096-pixel images) in 10 wavelengths of ultraviolet (UV) and

extreme ultraviolet (EUV) windows every 10 seconds https://aia.lmsal.com/.

With combination of data from other SDO instruments and from other observato-

ries, it aims to develop a better understanding of the physics behind the activity

seen in the Sun’s atmosphere. The AIA gathers data of both the quiescent and

activity phases which are essential to study the evolution of the magnetic field

in the the atmosphere and its impact on the space-weather. The AIA is an array

of 4 telescopes that together provide full-disk images of the solar corona at 1

arcsec resolution. The AIA instrument consists of four generalized Cassegrain

telescopes that are optimized to observe in narrow band-passes in UV and EUV

in order to observe solar emissions from the transition region and corona. Table

2.1 details the observation channels of AIA along with the corresponding regions

of solar atmosphere at a characteristic temperature (Lemen et al., 2012).

http://jsoc.stanford.edu/jsocwiki/HARPDataSeries
http://jsoc.stanford.edu/HMI/Vector_products.html
https://aia.lmsal.com/
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Table 2.1: Primary ions observed by AIA; Adapted from Lemen et al. (2012).

Channel Primary ion(s) Region of atmosphere Char. log(T)

4500 continuum photosphere 3.7
1700 continuum temperature minimum, photosphere 3.7
304 He II chromosphere, transition region 4.7
1600 C IV + cont. transition region, upper photosphere 5.
171 Fe IX quiet corona, upper transition region 5.8
193 Fe XII, XXIV Corona and hot flare plasma 6.2, 7.3
211 Fe XIV active-region corona 6.3
335 Fe XVI active-region corona 6.4
94 Fe XVIII flaring corona 6.8
131 Fe VIII, XXI transition region, flaring corona 5.6, 7.0





Chapter 3

Numerical Model

A successful numerical simulation of active region dynamics requires a strin-

gent satisfaction of the condition of flux-freezing away from the reconnection

sites, while at the sites the requirement is to break the flux-freezing and allow

for diffusion of magnetic field lines. In other words, the necessity is an inter-

mittent diffusivity that appears only when and where the MRs occur. For our

computations, we utilize the well established numerical model EULAG-MHD

(Smolarkiewicz & Charbonneau, 2013) which is an extension of the hydrody-

namic model EULAG predominantly used in atmospheric and climate research

(Prusa et al., 2008). The EULAG-MHD is based on the spatio-temporally (at

least) second-order accurate non-oscillatory forward-in-time (NFT) advection

scheme multidimensional positive definite advection transport algorithm, MP-

DATA, (Smolarkiewicz & Margolin, 1998; Smolarkiewicz, 2006). The accuracy

of MPDATA ensures the satisfaction of the flux-freezing with a high fidelity away

from the reconnection region. Additionally, a feature unique to MPDATA and

important in our calculations is its proven effectiveness in generating an intermit-

tent and adaptive residual dissipation, whenever the concerned advective field

is under-resolved (Margolin et al., 2006). The magnetic nulls and QSLs in the

absence of magnetic diffusion provides an unbound sharpening of the correspond-

ing field gradient and inevitably generates under-resolved scales. The MPDATA

then produces the residual dissipation to regularize these scales through onset of

simulated magnetic reconnections. In the following we present salient features of

43



44 Chapter 3. Numerical Model

the EULAG-MHD relevant to our simulations.

3.1 Advection solver MPDATA

MPDATA is a finite-difference algorithm invented by P. K. Smolarkiewicz in the

early 1980’s (Smolarkiewicz, 1983, 1984; Smolarkiewicz & Clark, 1986). The

algorithm is at least second-order accurate, positive definite, conservative, and

computationally efficient. The second-order accuracy in MPDATA is achieved by

utilizing the first-order accurate donor cell (also known as upstream or upwind)

scheme in an iterative manner. The first iteration is a simple donor cell differenc-

ing. With a donor cell solution obtained from first iteration, MPDATA increases

the accuracy of the calculation by estimating and compensating (second-order)

truncation error in the second iteration. Similarly, additional iterations can be

performed to approximately compensate the residual error produced from previ-

ous iteration which further enhance the accuracy.

Since its invention, MPDATA is extended to curvilinear coordinates, full

monotonicity preservation, third-order accuracy and variable sign fields; details

can be found in (Smolarkiewicz & Margolin, 1998; Smolarkiewicz, 2006). Here we

discuss basic concepts underlying the design of the MPDATA scheme in Cartesian

coordinates.

3.1.1 Derivation of MPDATA

To fix ideas, we consider a simple one-dimensional advection equation,

∂ϕ

∂t
+
∂(kϕ)

∂x
= 0, (3.1)

for a scalar variable ϕ. The velocity k may also be a function of space and time.

The donor cell discretization of the advection equation is given by,

ϕn+1
i = ϕni −

δt

δx
(ki+ 1

2
ϕnr − ki− 1

2
ϕnl ), (3.2)
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where ϕnr and ϕnl are chosen depending on the sign of ki+ 1
2

and ki− 1
2
:

ϕnr =

ϕ
n
i , ki+ 1

2
> 0,

ϕni+1, ki+ 1
2
< 0,

(3.3)

and

ϕnl =

ϕ
n
i−1, ki− 1

2
> 0,

ϕni , ki− 1
2
< 0,

(3.4)

with the integer and half-integer indices corresponding to cell centers and cell

walls. In Eq.-(3.2), ϕn+1
i on the LHS is the solution sought at the grid point

(tn+1, xi) with δt = tn+1 − tn and δx = xi+1 − xi representing temporal and

spatial increments respectively. The above case distinctions can be avoided by

writing the Eq.-(3.2) in the following form,

ϕn+1
i = ϕni −

δt

2δx
[ki+ 1

2
(ϕni + ϕni+1)− ki− 1

2
(ϕni−1 + ϕni )

+ | ki+ 1
2
|(ϕni − ϕni+1)− | ki− 1

2
|(ϕni−1 − ϕni )]. (3.5)

Notably, if the sign of k determines the flow direction, this scheme always chooses

the values of ϕ (for a given time) which lies in the upstream direction (Griebel

et al., 1998). The donor cell approximation in flux form is expressed as,

ϕn+1
i = ϕni − [F (ϕni , ϕ

n
i+1, Ui+ 1

2
)− F (ϕni−1, ϕ

n
i , Ui− 1

2
)], (3.6)

where the flux function F is

F (ϕL, ϕR, U) ≡ [U ]+ϕL + [U ]−ϕR, (3.7)

with U ≡ aδt

δx
represents the dimensionless local Courant number while, [U ]+ ≡

0.5(U+ | U |) and [U ]− ≡ 0.5(U− | U |) denoting the nonnegative and non-

positive parts of the Courant number (Smolarkiewicz & Margolin, 1998; Smo-
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larkiewicz, 2006).

The donor cell scheme is conditionally stable and the corresponding stability

condition, for every time step, has a form

max

(
| ki+ 1

2
| δt

δx

)
≤ 1 ∀i. (3.8)

Moreover, under the condition (3.8), the scheme is also positive definite, imply-

ing: if ϕ0
i ≥ 0 ∀i then ϕni ≥ 0 ∀i and n. These two properties as well as low

computational cost and low phase error make the scheme (3.6) attractive for

the numerical evaluation of the advection equation. However, the scheme being

first-order accurate (both in space and time) produces large implicit numerical

diffusion.

Toward quantifying the diffusion in (3.6), for simplicity we assume k to be

constant and ϕ to be nonnegative. A straightforward truncation analysis, ex-

panding all dependent variables in a second-order Taylor series about the time

level n and spatial point i, reveals that the scheme more accurately approximates

the advection-diffusion equation

∂ϕ

∂t
+
∂(kϕ)

∂x
=

∂

∂x

(
K
∂ϕ

∂x

)
, (3.9)

where the diffusion coefficient

K =
δx2

2δt
(| U | −U2). (3.10)

In other words, the scheme estimates the solution of the advection equation with

a second-order truncation error. To enhance the accuracy, it is necessary to

construct a numerical estimate of the error and subtract it from (3.6). The basic

strategy, fundamental to all MPDATA schemes, is then to once again utilize a

donor cell approximation to calculate the error term in order to preserve the

properties of donor cell scheme. To do so, the error term, the RHS term of (3.9),

is rewritten as
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e1 ≡ ∂

∂x

(
K
∂ϕ

∂x

)
=
∂(k1ϕ)

∂x
, (3.11)

where e1 symbolizes error term and k1 ≡ K

ϕ

∂ϕ

∂x
is termed as pseudo velocity.

The superscript (1) is used to mark the first iteration for subtracting the error.

To compensate the error, we again use the donor cell scheme but this time with

the pseudo velocity k1 and the ϕn+1 already available from (3.6) in lieu of the

physical velocity k and the ϕn. A first-order accurate estimate of the pseudo

velocity is

k1
i+ 1

2
≡ 2K

δx

ϕ
(1)
i+1 − ϕ

(1)
i

ϕ
(1)
i+1 + ϕ

(1)
i

(3.12)

where ϕ(1) represents the first-order accurate ϕn+1 estimated from (3.6). The

modified Courant number is V 1
i+ 1

2
≡
k1
i+ 1

2

δt

δx
. In the second iteration, we subtract

a donor cell estimate of the error to improve the accuracy. The equation of the

second iteration is

ϕ2
i = ϕ1

i − [F (ϕ1
i , ϕ

1
i+1, V

1
i+ 1

2
)− F (ϕ1

i−1, ϕ
1
i , V

1
i− 1

2
)], (3.13)

which estimates ϕn+1 which is the second-order accurate while preserving the sign

of ϕ. It is an easy matter to show that, like the donor cell scheme, MPDATA

is consistent and conditionally stable (Smolarkiewicz, 1983; Smolarkiewicz &

Margolin, 1998; Smolarkiewicz, 2006). But, in contrast to the donor scheme,

MPDATA does not contain strong numerical implicit diffusion because of the

improved accuracy.

The extension of MPDATA to multiple dimension is straightforward. To

demonstrate, we consider a simple two-dimensional advection equation,

∂ϕ

∂t
+
∂(kϕ)

∂x
+
∂(lϕ)

∂y
= 0, (3.14)

where k and l are velocities in x and y directions. The corresponding donor cell

approximation is then
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ϕn+1
i,j = ϕni,j − [F (ϕni,j, ϕ

n
i+1,j, Ui+ 1

2
,j)− F (ϕni−1,j, ϕ

n
i,j, Ui− 1

2
,j)]

−[F (ϕni,j, ϕ
n
i,j+1, Vi,j+ 1

2
)− F (ϕni,j−1, ϕ

n
i,j, Vi,j− 1

2
)], (3.15)

where the flux function is similar to (3.7) and, U ≡ kδt

δx
and V ≡ lδt

δy
are Courant

numbers. Further, the Taylor’s series expansion of (3.15) about the cell point

(i, j) and the time level n with constant velocities yields the following advection-

diffusion equation,

∂ϕ

∂t
+
∂(kϕ)

∂x
+
∂(lϕ)

∂y
= K

∂2ϕ

∂x2
+ L

∂2ϕ

∂y2
− UV δxδy

δt

∂2ϕ

∂x∂y
, (3.16)

with K ≡ δx2

2δt
(| U | −U2) and L ≡ δy2

2δt
(| V | −V 2). To estimate the truncation

error using the donor cell scheme, we rewrite the error terms, the RHS terms of

(3.16), in the following form

K
∂2ϕ

∂x2
+ L

∂2ϕ

∂y2
− UV δxδy

δt

∂2ϕ

∂x∂y
=

∂

∂x
(k1ϕ) +

∂

∂x
(l1ϕ) (3.17)

where

k1 ≡ K

ϕ

∂ϕ

∂x
− UV δxδy

2δt

1

ϕ

∂ϕ

∂y
and l1 ≡ L

ϕ

∂ϕ

∂y
− UV δxδy

2δt

1

ϕ

∂ϕ

∂x
(3.18)

are pseudo velocities in x and y directions. Utilizing these velocities and updated

value of ϕn+1 from (3.15), the donor cell scheme is used to estimate the error. In

the second iteration, the error is subtracted to enhance the accuracy.

3.1.1.1 Extension to generalized transport equation

The general transport equation is

∂ϕ

∂t
+∇ · (kϕ) = R, (3.19)
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where R combines all forcing and source terms. In general, both R and velocity

k depend on variable ϕ. The forward-in-time discretization of (3.19) is assumed

as,

ϕn+1 − ϕn

δt
+∇ · (kn+

1
2ϕn) = Rn+ 1

2 . (3.20)

Expansion of (3.20) into the second-order Taylor series about the time level n

shows that the scheme (3.20) approximates to the equation

∂ϕ

∂t
+∇·(kϕ) = R−∇·

[
0.5δtk(k ·∇ϕ)+0.5δtkϕ(∇·k)

]
+∇·(0.5δtkR)+O(δt2).

(3.21)

In RHS of (3.21), all O(δt) truncation errors originated by uncentered time

differencing in (3.20) are already expressed by spatial derivatives. Specification

of the time levels of both the advective velocity and the forcing term as n+1/2 in

(3.20) eliminatesO(δt) truncation errors which are proportional to their temporal

derivatives (Smolarkiewicz & Clark, 1986). From (3.21), it is clear that the

formulation of second-order accurate forward-in-time scheme for (3.19) requires

the compensation ofO(δt) truncation errors to at least the second-order accuracy.

For such a formulation, we note O(δt) error terms in (3.21) have two dis-

tinct components. The first component is merely due to advection and does not

involve the forcing R. In contrast, the second component depends on the forc-

ing R. Toward compensating the first component, notable is the reduction of

(3.19) to homogeneous transport equation for R = 0. Then, MPDATA scheme

retains the form of the basic scheme (subsection 5.2.1) where the first donor cell

iteration utilizes the advective velocity kn+
1
2 and ϕn, and subsequent iterations

use pseudo velocities and ϕ calculated from the preceding iteration; for details

cf. (Smolarkiewicz, 1991; Smolarkiewicz & Margolin, 1993, 1998; Smolarkiewicz,

2006). Compensation of the second component requires subtracting of a first-

order accurate approximation of the error from the RHS of (3.20). A simple,

efficient, and second-order accurate MPDATA for (3.19) can then be symboli-

cally written as,
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ϕn+1
i = Ai(ϕn + 0.5δtRn,kn+

1
2 ) + 0.5δtRn+1

i , (3.22)

where A denotes the basic MPDATA advection scheme (Smolarkiewicz, 1991;

Smolarkiewicz & Margolin, 1993). In this equation, we assume Rn+ 1
2 = 0.5(Rn+

Rn+1) with Rn+1 representing O(δt2) accurate approximation of R at time level

(n + 1). Noticeably, first donor cell iteration in the MPDATA scheme uses the

auxiliary variable ϕn+0.5δtRn in lieu of the physical variable ϕn with a physical

advective velocity kn+
1
2 . The advection of the auxiliary field is important for pre-

serving the global accuracy and stability of the forward in time approximations

(Smolarkiewicz, 1991; Smolarkiewicz & Margolin, 1993, 1997).

The advective velocity at intermediate n+ 1
2

time level may be approximated

by linear interpolation or extrapolation

kn+
1
2 =

1

2
(kn+1 + kn), (3.23)

kn+
1
2 =

1

2
(3kn − kn−1), (3.24)

either of which is sufficient to maintain second-order accuracy in (3.22). For

the subtleties involved in a particular choice of kn+
1
2 , readers are refereed to

(Smolarkiewicz & Clark, 1986).

3.1.1.2 Nonoscillatory MPDATA

The basic MPDATA scheme discussed above preserves sign1 but not monotonic-

ity of the advected variables (Smolarkiewicz, 1983, 1984; Smolarkiewicz & Clark,

1986) and, in general, the solutions are not free of spurious oscillations partic-

ularly in presence of steep gradients (Smolarkiewicz & Grabowski, 1990; Smo-

larkiewicz, 1991). However, MPDATA is made fully monotone (Smolarkiewicz,

1991) by adapting the flux-corrected-transport (FCT) methodology (Boris &

Book, 1973; Book et al., 1975; Boris & Book, 1976). Actually, MPDATA is well

1For historical reasons, we refer to this property as positive-definiteness in the previous
subsections.



3.1. Advection solver MPDATA 51

suited for this kind of approach for a number of reasons. First, the initial MP-

DATA iteration is the donor cell scheme—a low-order monotone scheme which is

commonly used as the reference in the FCT design. Second, assuring monotonic-

ity of subsequent iterations provides a higher-order accurate reference solution

for the next iteration with the effect of improving the overall accuracy of the re-

sulting FCT scheme. Third, since all MPDATA iterations have similar low phase

errors characteristic of the donor cell scheme (Smolarkiewicz & Clark, 1986), the

FCT procedure mixes solutions with consistent phase errors. This benefits sig-

nificantly the overall accuracy of the resulting FCT scheme (Smolarkiewicz &

Grabowski, 1990).

3.1.2 EULAG-MHD

The numerical model EULAG is an established model for simulating fluid flows

across a wide range of scales and physical scenarios (Prusa et al., 2008). The

name EULAG alludes to the capability to solve the fluid equations in either an

Eulerian (Smolarkiewicz & Margolin, 1993) or a Lagrangian (Smolarkiewicz &

Pudykiewicz, 1992) mode. The numerics of EULAG are unique, owing to a com-

bination of MPDATA advection schemes, robust elliptic solver, and generalized

coordinate formulation enabling grid adaptivity. The EULAG-MHD is a spin-off

of the numerical model EULAG (Smolarkiewicz & Charbonneau, 2013). Here, we

describe the numerical apparatus of EULAG-MHD utilized for our calculations.

3.1.2.1 Governing equations of EULAG-MHD

MHD equations for an incompressible magnetofluid with infinite electrical con-

ductivity are cast in the following form

dv

dt
= −∇π +

1

4πρ0
B · ∇B + Fν , (3.25)

dB

dt
= B · ∇v −B∇ · v, (3.26)

∇ · v = 0, (3.27)

∇ ·B = 0, (3.28)
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in non-rotating Cartesian coordinates. The Lagrangian derivative is related the

Eulerian derivative in the usual manner

d

dt
≡ ∂

∂t
+ (v · ∇). (3.29)

Importantly, by incompressibility we mean dρ
dt

= 0 and ρ 6= constant. Although

incompressibility approximation is a restrictive approximation for the coronal

plasma, but was used in earlier works also (Dahlburg et al., 1991; Aulanier et al.,

2005). Moreover, the compressibility of the fluid is important for the thermody-

namics of the coronal loops (Ruderman & Roberts, 2002) whereas the magnetic

topology is not affected by viscosity. On the RHS of the momentum transport

equation (3.25), π is a density normalized pressure in which thermodynamic pres-

sure is subsumed to magnetic pressure. Fν symbolizes the viscous drag force. All

other symbols have their usual meaning.

On a general note, EULAG’s governing equations are formulated and solved

in transformed time-dependent generalized curvilinear coordinates

(t̄, x̄) ≡ (t, F (t,x)). (3.30)

The physical domain (t, x), where the physical problem is posed, is assumed to

be any stationary orthogonal coordinate system (i.e., Cartesian, spherical and

cylindrical). Moreover, the transformed horizontal coordinates (x̄, ȳ) are assumed

to be independent of the vertical coordinate z (Prusa & Smolarkiewicz, 2003).

The calculations carried out in this thesis implement the physical domain to

be Cartesian and, therefore both the computational domain and the physical

domain are identical, i.e., (t̄, x̄) ≡ (t, x). Here, we present the details of the

EULAG-MHD for Cartesian domain. The generalized coordinate formulation of

EULAG-MHD utilizes the rigorous tensorial exposition of MHD equations; cf.

(Smolarkiewicz & Charbonneau, 2013).
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3.1.2.2 Numerics

Utilizing equations (3.27) and (3.28), the momentum transport equation (3.25)

and the induction equation (3.26) can be rewritten as,

∂Ψ

∂t
+∇ · (vΨ) = R (3.31)

where

Ψ = {v,B}T (3.32)

represents the vector of dependent variables and

R = {Rv,RB}T (3.33)

denotes the RHS forcing terms in (3.25) and (3.26). Notably, in (3.31), the

Lorentz force term of the momentum transport equation and the convective term

of the induction equation are cast in the conservative forms via relations,

B · ∇B = ∇ ·BB, B · ∇v = ∇ ·Bv. (3.34)

In addition, an ad hoc term −∇π? is added to RHS of the induction equation,

in the spirit of the pressure π in the momentum transport equation, to ensure

∇ ·B = 0 in numerical integrations.

The equation (3.31) is integrated using nonoscillatory forward-in-time algo-

rithm MPDATA. Following section (3.1.1.1), an EULAG template algorithm for

integration of the (3.31) can be compactly written as,

Ψn+1
i = Ai(Ψn + 0.5δtRn,vn+

1
2 ) + 0.5δtRn+1

i ≡ Ψ̂i + 0.5δtRn+1
i , (3.35)

where Ψn+1
i is the solution sought at the grid point (tn+1, xi).

For an inviscid dynamics (Fν=0), the model template algorithm (3.35) is

implicit for all dependent variables in (3.25) and (3.26) because all forcing terms

are assumed to be unknown at time level n + 1. To retain the proven structure
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of (3.35) for the MHD system, EULAG-MHD template can be viewed as

Ψn+1,q
i = Ψ̂i +

δt

2
LΨ |n+1,q

i +
δt

2
N(Ψ) |n+1,q−1

i −δt
2
∇Θ |n+1,q

i , (3.36)

where the RHS forcing R is decomposed into linear term LΨ with L denoting

a linear operator, non linear-term N(Ψ), and potential term −∇Θ with Θ ≡

(π, π, π, π?, π?, π?). In (3.36), q = 1, ...,m numbers fixed point iterations. The

algorithm (3.36) is still implicit with respect to the forcing terms LΨ and −∇Θ.

Using straight-forward algebraic manipulations, the representation (3.36) can be

cast into a closed form

Ψn+1,q
i = [I− 0.5δtL]−1

(
ˆ̂
Ψ− 0.5δt∇Θn+1,q

)
i
, (3.37)

where the explicit element is modified to

ˆ̂
Ψ ≡ Ψ̂ + 0.5δtN(Ψ) |n+1,q−1 . (3.38)

The viscous forcing within this algorithm frame work is incorporated by in-

tegrating explicitly to the first-order accuracy in time and then adding to the

the auxiliary argument of MPDATA operator A. Now the argument modifies as

Ψ̃ ≡ Ψn + 0.5δt(Rn + 2R̃) where R̃ symbolizing the first-order time accurate

viscous forcing. All the dependent variables being spatially co-located in (3.37),

the time updated Ψ is obtained by solving two the discrete elliptic equations for

π and π∗ generated by the solenoidality constraints (3.27) and (3.28) discretized

consistently with the divergence operator implied by A; see (Prusa et al., 2008).

Under appropriate boundary conditions, these elliptic equations are solved iter-

atively using a preconditioned generalized conjugate residual (GCR) algorithm

(Eisenstat, 1983; Eisenstat et al., 1983; Smolarkiewicz et al., 1997). Because the

GCR is an iterative scheme, to distinguish the iterations appearing in (3.36) and

in the GCR solver, the iteration in (3.36) is refereed as “outer”, while the iter-

ation corresponds to GCR is termed as “inner”. The convergence of the outer

iteration is generally controlled by the time step of the model and monitored
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by the convergence of the inner iteration in the GCR solvers (Smolarkiewicz &

Szmelter, 2009, 2011). With the completion of the outer iteration loop, the solu-

tion updates and, the total implicit forcing RI = LΨ−∇Θ in (3.36) is returned as

RIni =
2

δt
(Ψn

i −
ˆ̂
Ψi). While, the total explicit forcing RE = N(Ψ) + R̃ is calcu-

lated according to its definition using the updated solution, so REn
i = REi(Ψ

n).

The total forcing R = RI+RE is then stored for the use in the subsequent time

step in the auxiliary argument of MPDATA operator in (3.35).

In the following, we briefly discuss the actual implementation of iterative for-

mulation of (3.35). The iterations progress stepwise such that the most current

update of a dependent variable is used in the ongoing step, wherever possible.

Each outer iteration has two distinct blocks. The first block involves the inte-

gration of the momentum transport equation where the magnetic field enters the

Lorentz force and is taken as supplementary. Being at the half of a single outer

iteration, it is denoted by the index q−1/2. This block ends with the final update

of the velocity via the solution of the elliptic equation for π. Hence, this block

actually mirrors standard EULAG solution of hydrodynamic equations (Prusa

et al., 2008), leading to the nomenclature “hydrodynamic block”. The second

block, referred as “magnetic block”, uses the current updates of the velocities

to integrate the induction equation. It ends with the final update of the mag-

netic field via the solution of the elliptic equation for π? to clean the divergence

of magnetic field. In the following we summarize sequence of steps fulfilled at

each outer iteration for integrating the MHD Eq.s-(3.25)-(3.28). For brevity, the

superscripts n are dropped everywhere as by now there should be no ambiguity.

Moreover, at q = 1 the initial guess for v and B is assumed as v0 = 2vn+1 − vn

and B0 = 2Bn+1 −Bn, respectively.

The first step of the hydrodynamic block starts with the estimation of the

magnetic field Bq−1/2 at time tn+1 by inverting the induction equation,

B
q−1/2
i = B̂i + 0.5δt

[
Bq−1/2 · ∇vq−1 −Bq−1/2tr{∇vq−1}

]
i
. (3.39)

The subsequent step uses this latest magnetic field to obtain velocity following
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the standard EULAG procedure,

vqi = v̂i +
0.5δt

ρ0µ0

(∇ ·BB)
q−1/2
i − 0.5δt(∇π)qi . (3.40)

Plugging this velocity in the discrete form of the Eq.-(3.27) produces the elliptic

equation for the pressure π, the solution of which provides the updated solenoidal

velocity v.

The first step of the magnetic block begins with estimation of magnetic field

Bq−1/4 at tn+1 using the update velocity, and the latest magnetic field is evaluated

implicitly in analogy to (3.39):

B
q−1/4
i = B̂i + 0.5δt

[
Bq−1/4 · ∇vq −Bq−1/4tr{∇vq}

]
i
. (3.41)

where the superscript q− 1/4 symbolized as such for being a quarter of iteration

away from the accomplishment. The subsequent step follows in the spirit of the

momentum transport equation, using the conservative form of the forcing terms

in the induction equation:

Bq
i = B̂i + 0.5δt(∇ ·Bq−1/4vq)i − 0.5δt(∇π?)qi . (3.42)

Implementing the magnetic field in the discrete form of the solenoidality con-

dition (3.28) produces the elliptic equation for auxiliary pressure term π?, the

solution of which provides the updated solenoidal magnetic field B.

EULAG-MHD is parallelized with MPI (Message Passing Interface) sup-

porting NetCDF for writing output data and NCAR graphics for visualization.

The model is presently running on the High Performance Computing Cluster:

Vikram-100, operational at Physical Research Laboratory, which is a hundred

teraflops machines with 97 computing nodes and offers 2,328 CPU cores, 1,15,200

GPU Cores, 25 terabytes (TB) of RAM and 300 TB of high performance parallel

filesystem (https://www.prl.res.in/hpc). For visualization, we also complement

the NCAR Graphics with the VAPOR (Visualization and Analysis for Ocean,

Atmosphere, and Solar Researchers) which can easily handle data up-to terabytes
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(Clyne & Rast, 2005). We have adopted its field line advection technique to plot

the magnetic field lines under the influence of flow vector (Clyne & Rast, 2005).

3.2 Implicit large eddy simulation

As discussed above, EULAG-MHD is based on MPDATA advection scheme. No-

tably, the higher-order truncation terms of MPDATA provide an implicit turbu-

lence model (Domaradzki et al., 2003; Margolin et al., 2006) and hence, allow to

conduct large eddy simulations (LESs) without using an explicit subgrid model

(Smolarkiewicz & Prusa, 2002; Domaradzki et al., 2003; Domaradzki & Rad-

hakrishnan, 2005; Rider, 2006; Prusa et al., 2008). In contrast to the standard

LESs which filter out the under-resolved scales by applying explicit subgrid-scale

models, MPDATA filter-outs the under-resolved scales by utilizing the residual

dissipation—intermittent and adaptive to generation of under-resolved scales—

produced via numerics which mimics the action of explicit subgrid scale tur-

bulence models. In literature, such calculations relying on the properties of

nonoscillatory numerics are referred as implicit large eddy simulations (ILESs).

A comprehensive review of ILES with numerous examples are provided in the

volume edited by Grinstein et al. (Grinstein et al., 2007), including applications

to local and global solar/stellar convection.

In a simulation having fixed grid resolution, under-resolved scales appear at

the reconnection regions. MPDATA then removes these under-resolved scales by

producing locally effective residual dissipation, sufficient to sustain monotonic

nature of the solution. Being intermittent and adaptive, the residual dissipation,

as mentioned above, facilitate the model to perform ILESs. Such ILESs per-

formed with the model have already been successfully utilized to simulate regu-

lar solar cycles (Ghizaru et al., 2010), with the rotational torsional oscillations

subsequently characterized and analyzed in (Beaudoin et al., 2013). The simula-

tions conducted with EULAG-MHD continue relying on the effectiveness of ILES

in regularizing the onset of magnetic reconnections, concurrent and collocated

with the reconnection sites (Kumar et al., 2013, 2015a; Kumar & Bhattacharyya,
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2016).

In summary, the chapter describes the numerical models EULAG-MHD used

to explore the MHD relaxation. The numerical models are based on (at least)

second-order accurate (both in space and time) non-oscillatory forward in-time

advection scheme MPDATA. MPDATA basically utilizes the donor-cell scheme

in iterative manner to improve the accuracy of the solution while preserving

the properties of the donor cell scheme. We discuss the derivation of MPDATA

along with its features which are relevant to our calculations. Then, we review

the numerics of the numerical model EULAG-MHD. The model employs the

established frame-work of EULAG with an additional magnetic block to solve

the induction equation. Notably, the proven property of MPDATA to produce

locally adaptive residual dissipations in response to generation of under-resolved

scales, facilitates the numerical model to carry out computations in the spirit of

implicit large eddy simulations.



Chapter 4

Data-constrained Simulations

The chapter explores various types of solar transients characterized by different

physical properties using data-constraint MHD simulations. The focus is on

the coronal jets and solar flares, providing unprecedented information about

reconnection processes, the responsible magnetic topologies and the dynamics

of the MFLs as they evolve. Additionally, the simulations being initiated with

photospheric magnetic field, are of direct relevance to observations. Hence, each

simulation is augmented with multi-wavelength images of the associated regions

for verification as well as to enrich the present understanding.

4.1 Case-I: Simulation of a Coronal Jet

The observational signature of coronal jets have been extensively studied in the

literature. Specially, the blowout jets stand out because of their contribution

to the CMEs. The jet that we simulate occurred on 2016 December 5 hosted

by a bipolar active region NOAA 12615, located near the disk center (S07W32;

https://www.solarmonitor.org/?date=20161205). It was found to be con-

current with a C1.2 flare occurring on the same active region, providing us an

excellent opportunity to cover both the transients in a single simulation. A rig-

orous analysis of various observational aspects of the event had already been

done by Joshi et al. (2017b)—which further helped us to interpret simulation

results. The lifespan of the jet is shown in the Fig.-4.1 in 304 Å channel of the

59
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AIA on board the SDO. The cutouts are processed by remapping through the
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Figure 4.1: Evolution of the jet where the bright point is marked by an arrow.
The base and the spire become well developed at ≈ 06:00 UT.

Lambert cylindrical equal-area (CEA) projection and then transformed into the

heliographic coordinates (Gary & Hagyard, 1990). The panel (a) shows the ap-

pearance of a bright point (indicated by the arrow) at 05:48:54 UT which marks

the location where MRs probably originate. Afterwards, the immediate neigh-

borhood of the point gets brightened, but asymmetrically (panels (b) and (c)).

For instance at 05:57:18 UT (panel (b)) the region at the bottom of the bright

point is brighter than the top, signifying a possibility that after reconnection

MFLs are more closely packed at the bottom. At 06:00:18 UT (panel (c)) the

base and spire of the jet are well recognizable. Later, the jet starts decaying as

depicted in panel (d).

In Fig.-4.2, we plot histories of the footpoint brightening in the channel 304

Å (chromosphere) and dynamics of magnetic loops in 94 Å (flaring corona) near

the flaring region. The flare ribbons start to develop at ≈ 06:00 UT, later become

prominent, seen in panels (c) and (d), and finally diffuse and the surrounding

region brightens up. The panels (a) to (e) at 94 Å shows the evolution of the

coronal loops covering the active region and highlights their expansion (indicated

by arrows) during the flare. Within the purview of the standard flare model

(Shibata, 1999), a development of flare ribbons suggests presence of magnetic

flux-rope. Interestingly, no matching filament was observed in any of the AIA

channels immediately before, during or after the flare.
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Figure 4.2: History of flare ribbons in 304 and 94 Å. Images in 304 Å show the
development of flare ribbons, whereas dynamics of the overlying coronal loops are
captured in 94 Å. Notable is a general ascent of loops, as indicated by changing
positions of the arrow

4.1.1 NFFF Extrapolation of the AR 12615

In order to extrapolate the magnetic field of AR12615, we consider the magne-

togram of “hmi.sharp cea 720s” data series on December 5 2016 at 05:48 UT

from the HMI/SDO. The original downloaded magnetogram cutout was of di-

mensions 611× 246 pixels along x and y axes of a Cartesian coordinate system.

To minimize the computational cost, we have extrapolated with a re-binned do-

main of 384 × 156 × 156 grids in the x, y and z directions respectively. The

corresponding physical domain is ≈ 220 Mm in the x direction and ≈ 89 Mm in

the y and z direction.
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Figure 4.3: Number of iterations vs. En. The plot saturates asymptotically
to 0.202, which indicates the extrapolated transverse field in the photosphere is
within 20.2% of the magnetogram value whilst the longitudinal component Bz

agrees exactly with the magnetogram.

The extrapolation has an acceptable error of En = 0.202 or 20.2% in the

transverse fields, plotted in Fig.-4.3. In Fig.-4.4a and Fig.-4.4b, we have shown

the vector plots of transverse components (Bx and By) on the longitudinal com-

ponent Bz on the photosphere for original and reconstructed magnetograms re-

spectively.

The calculated Pearson correlation coefficient between the pair of transverse

components is found to be strong with a value of ≈ 0.966 and the scatter plot

is depicted in Fig.-4.3. The average magnetic field at the bottom boundary is ≈

700 G, that makes β ≈ 2.83 with an estimated gas pressure of ≈ 5.5 kPa, using

p = nkBT , where the number density n and temperature T have their typical

photospheric values for sunspots while | ρdv/dt |≈| J×B |—rationalizing use of

the NFFF extrapolation.

Altogether, the qualitative and quantitative correspondences between the

original and the reconstructed magnetograms are remarkable.

The extrapolated MFLs over the whole computational domain are presented

in Fig.-4.6a while the coronal loops at the same time in 171 Å are plotted in

Fig.-4.6b. Noteworthy is their visual agreement. A side view of the MFLs are

shown in Fig.-4.6c. The distribution of Lorentz force and current density over

the extrapolated volume are depicted in Fig.-4.7a,4.7b with a Direct Volume
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Figure 4.4: (a) CEA projected vector magnetogram of AR 12615 at 05:48 UT on
2016 December 5 obtained from HMI. The saturated value of Bz is represented
with the grayscale color bar. The blue and red arrows illustrate the vector plots of
the transverse field components. (b) The reconstructed synthetic magnetogram.

Rendering (DVR). In Fig.-4.7c, we have provided an additional plot showing the

variations of Lorentz force and current averaged over x and y as a function of z.

Important is the faster decay of the Lorentz force than the current density, ef-

fectively making the corona approximately force-free while retaining the current.

Auxiliary analysis shows that the Lorentz force decreases by 99% at a height of

≈ 83 Mm, while the current density decreases only by 9% of its initial value.

This indicates that the corona to be reasonable force-free while retaining a finite

current density.

Fig.-4.8 has featured three magnetic structures pertinent to the onset of MRs

and co-located with the jet and the flare. They are described in detail in the

following:
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Figure 4.5: Scatter plot of transverse components of the reconstructed vs. actual
magnetic field. With a Pearson’s coefficient of 1 as an exact match, the plot finds
a value of 0.966.

1. A pair of 3D nulls are found adjacent to the jet and marked by the orange

arrow in Fig.-4.6a. The corresponding spines and fans in the 3D null skele-

ton are depicted in red and blue colors. In the 3D nulls, the open MFLs

constitute the outer spines leaving outward the region whereas the inner

spines are anchored below, shown in Fig.-4.8a. The nulls are highlighted in

pink colors and their locations are found by using the procedure employed

in Kumar et al. (2013). The procedure adapts a Gaussian function

ψ = exp

[
−
∑

i=x,y,z

(Bi − B0)
2

d2
0

]
, (4.1)

where B0 and d0 are constants that defines an iso-value of Bi and the spread

of the Gaussian respectively. For B0 ≈ 0 and a small d0, the function ψ

takes significant values only if Bi ≈ 0 for each i. A 3D null is then the

location where the three iso-surfaces having iso-values Bi = B0 intersect.

The procedure is realization of Dirac-Delta function in a discretized grid.

However, there are other null detection techniques as described in Parnell

et al. (1996, 2010b); Olshevsky et al. (2020). Additionally, we overlay the
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Figure 4.6: (a) Top view of the extrapolated field lines. (b) Magnetic loops in
171 Å from the AIA at 05:48 UT, which is also the time slice for the magnetic
field extrapolation. The field of view of the two panels are same. The general
agreement with the 171 Å loops is appealing. (c) Lateral view of the extrapolated
MFLs. The regions of interest are MFLs spanning a pair of 3D nulls (red and
blue), a single 3D null (cyan and peach), and a QSL marked by the purple MFLs.

bottom boundary with the Q-map estimated by using the code of Liu et al.

(2016) (mentioned in chapter 2). The map presented in panel (b), Fig.-4.8,

highlights the interesting matching between the footpoints of inner (blue

color) and outer (red color) spines with the contours of large Q values as

lnQ ∈ {3, 6}. It is well known that the region having a large Q is favorable
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|JXB|
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Figure 4.7: (a) Direct volume rendering (DVR) of the Lorentz force exerted by
the extrapolated field. (b) DVR of the volume current density of the extrapolated
field. The slower decay of volume current density with height in comparison to
the Lorentz force, which signifies an effectively force-free corona, is important.
(c) An additional plot showing the variations of Lorentz force and current over
the height.

for initiating slipping MRs (Démoulin, 2006). There is also a set of twisted

MFLs in yellow color constituting a flux rope and is located below the inner

fan of the nulls.

2. A single 3D null with the characteristic spine (cyan color MFLs) and fan

(peach color MFLs) is located in the flaring region. It is pointed by the
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Figure 4.8: Left column shows close ups of the magnetic nulls (in pink) with
corresponding MFLs and the MFLs for the QSL (in descending order). The
right column is the corresponding top-down view where the bottom boundary
is superimposed with lnQ contours having lnQ ∈ {3, 6}. The viewing angle of
the panels is according to the orientation of the axes. The footpoints tracing the
Q-contours, which have large values, signify a sharp change in MFL connectivity.
A region with QSL is characterized by its large Qvalue. The presence of highly
twisted MFLs—in yellow at the left.

yellow arrow (in Fig. 6a). In Fig.-4.8c, we have provided a zoomed in

view of the null, highlighted with the null location. The pink colored iso-

surface denotes the location of null, detected by the procedure mentioned

above. The height of the null is found to be at ≈ 3.3 Mm or in the low

corona. Unlike the pair of nulls near the jet, the outer and inner spines

of the null are rooted within the extrapolation domain. Again here, in

the Q-map plotted in the panel (d), the footpoints trace large Q contours

(lnQ ∈ {3, 6}), marking it a suitable site for slipping reconnections.

3. A QSL (green arrow in Fig.-4.6a) with MFLs depicted in purple color, co-

located with the eastward flare ribbon is situated at the left of the above

null and in between the major negative polarity region and the single null.

Panels -(e) and (f) illustrate the zoomed in view of QSL and the contours
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of high Q-value where lnQ ∈ {3.5, 5} respectively. The large Q-value

indicates the sharp change in field line connectivity which can facilitate

the reconnection.

4.1.2 Simulation Results and Discussions

The following MHD equations govern the dynamics of an ideal, incompressible,

thermally homogeneous and having perfect electrical conductivity plasma:

∂v

∂t
+ (v · ∇) v = −∇p+ (∇×B)×B +

τa
τν
∇2v, (4.2a)

∇ · v = 0, (4.2b)

∂B

∂t
= ∇× (v ×B), (4.2c)

∇ ·B = 0, (4.2d)

using standard notations in dimensionless form. The normalizations for various

terms in Equation (4.2) are,

B −→ B

B0

, v −→ v

va
, L −→ L

L0

, t −→ t

τa
, p −→ p

ρva2
. (4.3)

The constants B0 and L0 are selected as the average magnetic field strength and

length-scale of the vector magnetogram. Further, va ≡ B0/
√

4πρ0 is the Alfvén

speed and ρ0 is the mass density. The τa and τν are respectively Alfvén transit

time (τa = L0/va) and viscous diffusion time scale (τν = L2
0/ν), ν ≡ kinematic

viscosity. The ratio τa/τν is an effective viscosity of the system which, along with

other forces, influences the magnetofluid evolution. These equations are used to

obtain the evolution of other transients in this chapter.

The MHD simulation is initiated with the above extrapolated field from a

motionless state where the magnetofluid is assumed to be incompressible and

having a perfect electrical conductivity. The fluid is relaxed to quasi-steady

terminal state achieved by appropriate force balance. The initial Lorentz force

drives the plasma and generates plasma flow. All components of volume B and



4.1. Case-I: Simulation of a Coronal Jet 69

flow velocity except for Bz, are continued to the boundaries for a given time

step (Kumar et al., 2015a), ensuring the net magnetic flux to be zero in the

computational domain. The bottom boundary is approximated to follow the line-

tied boundary condition by keeping Bz fixed. The approximation is validated

from the minimal flux change i.e. only 4% of its initial value, shown in Fig.-4.9.
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Figure 4.9: Temporal variations of positive and negative magnetic fluxes across
the photosphere.

The dimensionless constant τa/τν in the Eq.-4.2 is set at ≈ 2× 10−3, which is

roughly three orders of magnitude larger than its coronal value. The higher value

of τa/τν accelerates the viscous relaxation without altering magnetic topologies

and minimizes the computation cost. The density ρ0 is set to 1 while the kine-

matic viscosity is ν to 0.005, in scaled units. The dimensionless spatial step size is

∆x = 0.0026. The temporal step size is considered as ∆t = 2×10−3 to satisfy the

Courant-Friedrichs-Lewy (CFL) stability condition (Courant et al., 1967). The

computation run time is 1000 ∆t, roughly amounting to an observation time of

≈ 33 minutes. The magnetic Reynold’s number RM throughout the simulation

is infinity except during MRs facilitated by the MPDATA assisted reconnection.

4.1.2.1 Evolution of the jet:

The evolution of MFLs surrounding the jet is illustrated in the Fig.-4.10. Here,

we retain the same MFLs as depicted in panels (a), (b) of Fig.-4.8 where the

MFLs in blue and red constitute the 3D nulls and the yellow MFLs, the flux-
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rope. The generated flow velocity are depicted in green colored arrows, implying

their absence at t = 0. The reconnection commences at the null points depleting

magnetic pressure there. Consequently, the flux-rope rises toward the nulls, but

asymmetrically. After the rise, the MFLs of flux-rope take part in the reconnec-

tion near the null and become a part of the outer or the inner spine. Because of

this, a channel is created for the ejection of cooler plasma contained in the rope.

The post-reconnection loops also form below the nulls. To track the interim

(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Snapshots of field line evolution during t ∈ {05 : 48, 06 : 05} UT,
covering the jet. Notable are the conversions of anchored MFLs constituting the
rope into the outer spine (panel (d)). Consequently, the entrapped cold plasma
can get funneled out along the open MFLs of the outer spine and generate the
spire. Instantaneous velocity vectors are illustrated in green. Noticeably, the
flow vectors become more field-aligned with time.

evolution the simulated field lines are overlaid with the images with 304 Å and

131 Å at ≈ 05:59 UT with the simulated field lines (see Fig.-4.11) and find an

astounding overlap of bright structures with MFLs.

The detailed dynamics of the rope is shown in Fig.-4.12. The cyan-colored

MFLs in panel (a) are less twisted, present in the neighborhood of the rope (yel-
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Figure 4.11: Jet corresponding MFLs overlaid with the boxed part of (b) 304 Å
and (c) 131 Å images. The similarity is recognizable.

low MFLs). Notable is the transition from panel (b) to (c) as the MFLs change

their connectivity and join with the rope. Such changes in connectivity are sig-

natures of reconnection and indeed an X-type null clearly appears at panel (c),

marked by the red circles. Additionally, the conversion of less twisted MFLs to

rope is a telltale sign of internal MRs during flux-rope activation (Kumar et al.,

2016). Moreover, velocity vectors (in green) throughout the evolution are—en

gros—in line with the outer spine indicating a mass flow along it. The maxi-

mum flow speed is found to be ≈ 300 km/s whereas in Joshi et al. (2017b), the

projected speed of the jet is found to be 200 km/s at coronal temperature. Gen-

erally, the scenario is compatible with a mini-filament eruption and the findings

are congruent with the model proposed by Moore et al. (2013); Sterling et al.

(2015). The salient features of the simulated evolutions

4.1.2.2 Evolution of the single null and the QSL:

In Fig.-4.13, the evolution of the single 3D null near the flare is shown. Panels

(a), (c), (e), and (g) depict the dynamics of the complete loops whereas evolution

at the near- neighborhood of the null is demonstrated in panels (b), (d), (f),

and (h). The bottom boundary is overlaid with the Q-map. Evident is the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Depiction of the flux-rope evolution only. Noticeable is the devel-
opment of the X-type null marked by red circles in panels (c) and (d). The null
is the location for internal MRs envisaged in the standard scenario of flux-rope
eruption. Further dynamics of the null is depicted in panels (e) and (f). The
whole evolution covers approximately the first 5 minutes of the jet.

movement of MFLs such that their footpoints are always on the instantaneous

Q-constant contours (depicted in color). The white arrows represent the direction

of the plasma flow tangential to the z = 0 plane and visibly different from the

apparent rotation of the MFLs; assigning their motion to slipping MRs instead

of a bodily displacement of the plasma. Moreover, at its peak intensity (≈

06:03 UT), the westward ribbon traces the corresponding Q-contours (Fig.-4.14)

which further corroborates the inference. Additionally, the closer inspection of

the inner spine dynamics shows composing MFLs (in peach color) to reconnect

and get transferred to the outer spine. The reconnected MFLs are seen to ascend

and contract toward the end of the evolution. Such ascend is expected in flares

and also the terminal contraction is in agreement with the confined nature of
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Figure 4.13: Sequences of the single null during its evolution in the time span
≈ t ∈ {05 : 48, 06 : 13} UT. The left column shows a general ascent of MFLs
after an initial contraction. The right column focuses on the MFL dynamics
near the Q-contours. Footpoints of the two MFLs in pink are seen to trace the
Q-contours. The motion is due to slip MRs as the tangential component of the
local plasma flow (white arrows) is in a direction different than the footpoint
motion.

the flare. Importantly, Fig.-4.2 has already conferred the likelihood of such an

ascend from observations.

In Fig.-4.15, the purple colored MFLs of the QSL terminate at footpoints lo-

cated on the eastern (left) side of the Q-constant contours having lnQ ∈ {3.5, 5}.
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Figure 4.14: Superimposition of extrapolated MFLs on the flare ribbons at 304 Å
(panels (b) and (d)), 131 Å (panels (c) and (e)); each at two different viewing an-
gles. The box on the top figure represents the span of the above two images with
respect to the full active region cutout. The locations of the ribbons reasonably
match with footpoints of the MFLs executing slip MRs.

Identity of these MFLs during evolution are maintained by using identical initial

coordinates for the field line integration at each time step. The green arrows

represent projections of flow vectors on the z = 0 plane, near the eastern side

of the Q-constant contours. Evident from the figure is the apparent motion of

MFLs as their footpoints lying on the Q-constant contours trace those contours.

With the velocity vectors being pointed along a direction different than the foot-

point motion, the MFLs actually slip and change magnetic connectivity because

of MRs. The coincidence of the Q-constant contours with the Eastward flare

ribbon, Fig.-4.2, indicates the credibility of the simulation.

To conclude from the above dynamics, the involvement of 3D nulls in two

energetically different events—a flare and a jet, is indicative of an inherent scale-

invariance of MR. To contemplate, additional to its demonstration of flux-rope
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Figure 4.15: Left-side footpoints of MFLs locating the QSL (marked by Q-
constant contours) sustain a motion—which is more distinguishable in the ani-
mation. The sequence covers the range t ∈ {05 : 48, 06 : 13} UT (approx). The
motion is because of slip MRs, as the tangential component of the bulk flow is
directed differently.

eruptions at 3D null being responsible for blowout jets—the simulation also high-

lights the importance of MFL complexity in developing flares. A possibility opens

up where multiple nulls and QSLs can be present in a complex AR, leading to

flares. The aforesaid flares can lack a well extended flux-rope and the resulting

absence of plasma confinement will prohibit subsequent CMEs. Definitely, being

outside the scope of the standard flare model, such flares warrant further at-

tentions. Toward this, an interesting data-constrained simulation of an eruptive

flare is presented as the next case study.
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4.2 Case-II: Simulation of an X-class Eruptive

Flare

Toward understanding the MHD of an observed flare, we carry out data-

constrained numerical study of a flaring active region initialized with the NFFF

extrapolation. We choose the AR 12017 for its magnetic complexity while pos-

sessing a βδ type structure, located at N10W32 (https://www.solarmonitor.

org). Particularly, we concentrate on the onset of the well documented X1.0

flare at 17:48 UT on 2014 March 29, which produces a halo CME.

The X1.0 flare is captured by AIA/SDO, IRIS, EUV Imaging Spectrometer

(EIS; (Culhane et al., 2007))/Hinode, RHESSI, Interferometric BIdimensional

Spectropolarimeter at the Dunn Solar Telescope (DST/IBIS), Flare Monitoring

Telescope (FMT), Halpha Solar Telescope for Argentina (HASTA), and Facility

Infrared Spectrometer (FIRS) at the Dunn Solar Telescope. Due to its availabil-

ity of unprecedented observational data resources, different aspects were studied.

Judge et al. (2015) reports on the sunquake by spectral and polarimetric studies

from line profiles of Si I and He I where as Young et al. (2015) has studied the

foot point emissions near the flare ribbons and the post-flare loop arcade. Their

study shows an agreement with the standard flare model. Further, Kleint et al.

(2015) reports on the fast acceleration of the filament during the eruption while

Woods et al. (2017) reports on the drivers of the eruption and they propose the

role of tether-cutting reconnection on eruption of the filament. Again, Woods

et al. (2018) report on the eruption with findings of two filaments in the flar-

ing region. They suggest that one of the filaments first gets triggered by the

tether-cutting reconnection and later becomes torus unstable, ultimately leading

to the eruption. Kleint et al. (2018) also present their study on the photospheric

and chromospheric magnetic changes during the flare. Though these studies fo-

cus on the eruption mechanism from an observational basis, corresponding 3D

MHD simulations are scarce. This motivates us to bridge the gap between the

observational and numerical aspects.

The flare starts at around 17:35 UT, while it peaks at 17:48 UT and ends

https://www.solarmonitor.org
https://www.solarmonitor.org
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at 17:54 UT. In Fig.-4.16, we have plotted the episode of the flare in the UV

(1600 Å) and EUV (304 Å, 171 Å, 94 Å) channels of AIA/SDO. The images

here, are processed with the routine AIA PREP.PRO available in the Solarsoft

packages and spans over the life time of the flare. Fig.-4.16(a)–(d) represent the

pre-flare stage in the upper-photosphere/chromosphere (1600 Å, 304 Å) and the

corona (171 Å, 94 Å), while Fig.-4.16(e)–(h) illustrate the ongoing flare evolution.

The green contours in panels (a) and (e) are plotted to locate the regions with

high intense brightenings. Initially, the contours with high intensity are densely

populated near the flare kernel and then spread to the neighborhood or toward

the east of the kernel, as the flare proceeds. For clearer identification, we have

marked the kernel of the flare by “R1” and the distant region by “R2” in white

boxes (panel (a)). The channel 304 Å in panel (b) depicts a pair of filament

structures (marked by white arrows). The pre-flare loop structures can be seen

in the 171 Å channel (panel (c)). The large-scale loops marked by the green

arrows appear to connect the region R1 and R2 (panel (c)), which diappeared

during the flare (panel (g)). From the 94 Å channel, the signature of hot sigmoid

(loops with S-shaped morphology) is observed (marked by white arrow in panel

(d)) which is co-spatial with R1. The post-flare hot loops are shown in panel (h)

(highlighted by white and green arrows).

4.2.1 NFFF Extrapolation of AR 12017

We obtain the non-force-free coronal magnetic field of AR12017 using the photo-

spheric vector magnetogram of HMI/SDO at 17:30 UT (≈ 5 minutes prior to the

flare start time). We use the “hmi.b 135s” series of the magnetogram and trans-

form it to a cylindrical equal area projected map where the bottom boundary is

approximately flux balanced. The cutout is made using the “mapproj” option

given in http://jsoc.stanford.edu/. The cutout of the magnetogram is ex-

tended to 600× 648 grids along x and y axes in a Cartesian coordinate system.

Then it is carefully rescaled to 300× 324 grids in the x and y directions respec-

tively to reduce the computational time, while preserving the inherent magnetic

structures. The height of the computational box is 300 grids. The physical di-

http://jsoc.stanford.edu/
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Figure 4.16: Panels (a)–(d) correspond to the pre-flare stage and panels (e)–(h)
belong to the flaring evolution. The high intensity regions are highlighted by the
green contours in the channel 1600 Å (panels (a) and (e)). Two regions R1 and
R2 denoted by white boxes represent the locations of flare kernel and the distant
brightening, respectively. A pair of the filaments is identified in 304 Å, indicated
by white arrows in panel (b). The pre-flare loops are shown in 171 Å (panel (c)).
The loops marked by green arrows connect R1 and R2 (panel (f)). White arrow
in panel (d) marks the sigmoid in 94 Å before the onset of the flare. Post-flare
hot loops in 94 Å are marked by white and green arrows in panel (h).

mensions are ≈ 216 Mm in the x, ≈ 233 Mm in the y and ≈ 216 Mm in the

z directions. The En is found to be saturated to ≈ 0.31, a reasonably small

value, after 1.8 × 104 number of iteration with α1,2 ∈ {0.0179,−0.0179}. Next

we estimate the deviation between the observed and reconstructed transverse

magnetic fields. The Pearson correlation coefficient calculated between the ob-

served and reconstructed transverse magnetic fields is found to be ≈ 0.91 and is

shown in the Fig.-4.17. Notably, the corresponding Lorentz force is found to de-

crease faster than the current with height (shown in Fig.-4.18), which effectively

makes the corona almost force-free, adhering to the usual description of the solar

atmosphere.

The extrapolated MFLs are depicted in Fig.-4.19(a), overlaid with |Bz| map

(in gray scale) on the bottom boundary. Within the extrapolated volume, one

3D null, a pair of magnetic flux ropes (MFRs), a set of sheared arcades and

field line connectivity between the regions R1 and R2 (Fig.-4.16(a)) exist in the
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Figure 4.17: The plot shows the correlation between the observed and recon-
structed transverse fields of AR12017.

Figure 4.18: Logarithmic variation of current and Lorentz force over the height
in the extrapolated domain.

vicinity of the flare. The spine located above the null and the corresponding

dome-shaped fan surface are constituted by the skyblue MFLs whereas the spine

located below the null and associated dome surface are comprised of the pink

MFLs. Noticeable is the linking of the upper spine to the region R2 while the

field lines along the fan surface surround the region R1. The location of the
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null is detected using the same technique described in the Eq.-4.1 and height of

the null point is ≈ 25 Mm from the photosphere. The figure further highlights

the pair of MFRs, colored in chartreuse (hereafter MFR1) and red (hereafter

MFR2); along with the twist parameter Tw (Liu et al., 2016). The large Tw

indicates helical nature of the field lines constituting the MFRs. Importantly,

in 304 Å (Fig.-4.16(b)), the two filaments observed are nearly co-spatial with

the two MFRs. However, previous studies by Kleint et al. (2018); Yang et al.

(2016) based on the NLFFF extrapolation, found the presence of a single MFR

along with quasi-separatrix layers and no 3D null. Additionally, a set of sheared

arcades colored in ultramarine overlie the MFRs and are located below the dome

of the 3D null (Fig.-4.19(a)). The magnetic connectivity between the R1 and R2

regions can be seen from the golden colored magnetic loops. The distributions

of current density in the volume are shown in Fig.-4.19(b). Notably, the current

is larger at lower heights, in particular near the MFRs (inset in Fig.-4.19(b)).

4.2.2 Simulation Results and Discussions

The MHD simulation is performed by using Eq.-4.2. Similar to the Case I,

it starts with a motionless state and the associated Lorentz force pushes the

magnetofluid to initiate the dynamics. We have approximated the boundary to

be line-tied where the z component of the magnetic field B is kept constant

at the bottom boundary, which is reasonable since the maximal variation of

magnetic flux through the photosphere is only 7% of its initial value during the

flare. All other components are continued to the boundaries for a given time

step, Nayak et al. (2019). The mass density ρ0 and kinematic viscosity ν are set

to 1 and 0.0001 respectively. The plasma-β at the coronal height remains ≤ 0.05

throughout the simulation. The total simulation time is ≈ 40 minutes of the

flaring period, covering the time range shown in the AIA channels (Fig.-4.16).

Fig.-4.20 shows the dynamics of the MFLs during the flare. Panel (a) illus-

trates the topologies at the initial state. First, the reconnections initiate at the

3D null which rearrange the corresponding spine and fan MFLs. The location

of reconnection is marked by the green arrow in the panel (b). Due to lowering
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Figure 4.19: Panel (a) shows the extrapolated MFLs overlaid with the z compo-
nent of B on the bottom boundary of range {−600, 600}G. Important features
of the MFLs are (1) a 3D null represented by pink and skyblue MFLs, (2) two
MFRs (chartreuse and red colors), (3) a set of sheared arcades (ultramarine
color) and, (4) the loops connecting the R1 and R2 (golden color). Insets in
panel (a) depicts the zoomed-in view of the MFRs overlaid with the twist Tw on
the bottom boundary with the range Tw ∈ {−1.6, 1.6} and the null point. Panel
(b) illustrates the Direct Volume Rendering of current density. High values of
current are evident near the MFRs (inset).

of the magnetic pressure near the null point, the surrounding field lines sucked

toward it (marked by red arrow in panel (b)) and further participate in the re-

connection process. Noteworthy is the connectivity change in the field lines from

the lower spine and fan (in pink) to the upper spine and fan (in skyblue). In

panel (c), we overplot the intensity image in 304 Å at ≈ 17:49 UT, with the

co-temporal field line structures of the 3D null. The footpoints of MFLs lying on

the fan surface match well with the observed chromospheric brightenings. These

brightenings result from the dissipation of energy in the denser chromosphere by

the transferred accelerated charged particles after reconnections near the 3D null

(Masson et al., 2009; Jiang et al., 2013).
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The ultramarine colored sheared MFLs located over the MFR1 appear to

rise upward (Fig.-4.20(b) and (d)). Arguably, the rise is because of the removal

of overlying pink MFLs of fan through MRs at the null. The rising sheared

MFLs ultimately approach the vicinity of the null and take part in MRs (Fig.-

4.20(d)). To examine the evolution of the MFRs, in Fig.-4.21, we show the

enlarged views of the corresponding evolution overlaid with the sheared MFLs,

streamlines of the flow, and initial Lorentz force (panel (a)). Notable is the

continuous decrease in the twist of the MFRs in the early phase of the evolution.

For an explanation, we note that the nearby legs of the MFR1 and MFR2 are

anchored at opposite polarity regions (Fig.-4.21(a)) and hence, are oppositely

directed. Because of the favorable initial Lorentz force (Fig.-4.21(a)), they seem

to move toward each other and reconnect—a possible cause for the decrease in

the twist. In addition to that, the flow generated near the ropes untwist them

(Fig.-4.21(b)) and gradually aligns along vertical direction—uplifting the sheared

MFLs. With time, the MFLs of the ropes (as well as the sheared MFLs) become

almost perpendicular to the bottom PILs, akin to potential field loops (Prasad

et al., 2020). These visibly less twisted loops (in chartreuse and ultramarine

colors) located above the main PIL almost agree with the observed post-flare

arcades marked by the green arrow in Fig.-4.16(f). The rise and the simultaneous

removal of the overlying loop systems, shown in panels (b) and (d) of Fig.-4.20,

are mostly in agreement with the observed loop dynamics depicted in the 171

Å images in Fig.-4.16. Importantly, the golden MFLs, being connected to the

regions R1 and R2, may transport the charged particles to the region R2 by

participating in the null-point reconnections and lead to the brightenings in the

R2 as depicted in Fig.-4.16(d). Interestingly, the post-reconnection golden MFLs

are nearly similar to the loops marked by the white arrow in Fig.-4.16(f).

We have compared the horizontal magnetic field components at the end of

the simulation with their observed values by calculating the Pearson correlation

coefficient. We obtain the value of the coefficient to be 0.703, which shows a

reasonable correlation between the two. We have also estimated the free energy

released during the entire simulation period. Fig.-4.22 shows the evolution of
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Figure 4.20: Simulated dynamics spanning the flaring time, t ∈ {17:30,
18:10}UT. Panel (a) depicts the MFLs at the start of the simulation. Important
are the MRs (marked by green arrow in panel (b)) at the null which change the
connectivity of the spine and fan MFLs. The footpoints of the fan surface MFLs
almost trace the brightenings observed in 304 Å at ≈ 17:49 UT (panel (c)). The
sheared MFLs (in ultramarine) and the yellow MFLs (marked by red arrow) also
appear to engage in MRs near the null. The post-reconnection MFLs (marked
by black arrows in panel (d)) are comparable with the observed post-flare loops
(Fig.-4.16).

Figure 4.21: Evolution of the MFRs and the overlying sheared arcades during the
early phase, t ∈ {17:30, 17:31}UT. Panel (a) is overlaid with initial Lorentz force
(in purple). Panels (b)-(f) are overplotted with streamlines of the flow (in dark
green). Notable are the nearby legs of the ropes which are rooted in opposite
polarities (panel (a)). The twist of both the ropes reduces with time (see panels
(b)-(f)).

kinetic and magnetic energies (normalized to the initial total energy). The mag-

netic energy is decreased by ≈ 10% of its initial value, which corresponds to a
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release of free energy ≈ 6.8× 1031 ergs. Interestingly, this release is comparable

to the same from the observations (Aschwanden et al., 2014). We have observed

the topological inference of this expelled energy in the panel (d) of Fig.-4.20 at

the end of the evolution, where the MFLs appear to be losing their twists.

Figure 4.22: Temporal profile of the normalized kinetic (blue) and magnetic
(yellow) energies.

4.3 Case-III: Simulation of a Confined X-class

Flare Associated with a Circular Flare Rib-

bon

The AR12192 was the largest active region in the solar cycle 24 and has pro-

duced many X-class flares (Chen et al., 2015). On October 24, 2014 around

21:15 UT, it has produced the strongest X3.1 flare which was found to be not

associated with CME (Sun et al., 2015; Sarkar & Srivastava, 2018). Jiang et al.

(2016) found no presence of flux rope to explain the confined nature whereas the

onset of the flare was attributed to tether-cutting reconnections (Moore et al.,

2001) between sheared arcades. Further studies of successive strong X-class flares

triggered by tether-cutting MRs, in the same AR, were also reported in Chen

et al. (2015). Contrarily, using NLFFF extrapolation, Inoue et al. (2016) found

a multiple flux tube system located near a PIL to be favorable for the tether-

cutting reconnections. They attributed the stability of the flux tube system to

the overlying strong tethering MFLs. Similar results were also reported in Chen

et al. (2015), where the mean decay index of the horizontal background field
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was found to be less than the typical threshold required for the torus instability

(Kliem & Török, 2006) to take place. An alternative explanation was provided

by Zhang et al. (2017) who attributed the confined nature to the complexity of

the involved magnetic field structures.
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Figure 4.23: (a) GOES 15 X-ray flux for AR 12192 on 24th October, 2014 plotted
with time during the X3.1 flare event. Notable is the peak around 21:15 UT
indicating the flare. (b) The evolution of positive and negative magnetic flux at
the photospheric boundary during the flare. The vertical dashed lines mark the
interval between onset and peak of the flare. Importantly, there is no appreciable
flux change within the interval.

The confined X3.1 flare was of long duration, lasting for 6 to 7 hours as shown

in Fig.-4.23(a). The figure shows the GOES 15 X-ray flux observed during this
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event in the 1-8 Å and 0.5-4 Å channels. Notably the vertical magnetic field

flux at the photosphere was approximately conserved during the flare. This is

shown in Fig.-4.23(b) which depicts the evolution of negative (dashed line in red)

and positive magnetic fluxes (continuous line in blue), calculated by using the

photospheric vector magnetograms from the HMI/SDO.
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Figure 4.24: The AR 12192 observed in AIA 1600 Å (panel (a)) during the flare
at 24th October, 2014 at 21:21 UT and AIA 131 Å (panel (b)) at 20:58 UT. The
abscissa and ordinate are in arcsecond with one unit corresponding to a physical
length of 720 km. Important is the circular brightening located approximately
between 150 and 200 arcsecond along the abscissa.

Importantly, a circular brightening was observed in the chromospheric flare

ribbons at the ultra-violet (UV) 1600 Å channel preceded by a brightening of

the flaring loops in the EUV channel 131 Å of the AIA/SDO. The brightenings

occur in the interval 21:20 to 21:35 UT in the 1600 Å channel (Fig.-4.24 (a))
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and is co-located with the brightening in the 131 Å channel as seen around

20:58 UT, which is just before the X-class flare. The circular flare ribbons are

known to map MFLs constituting the fan plane of a 3D null on the photosphere

(Masson et al., 2009). To our knowledge, the generation of the circular ribbon

was not reported in the earlier works which is the main focus here.
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Figure 4.25: (a) Photospheric vector magnetogram from HMI of AR 12192
remapped on a CEA projection at 20:46 UT on 2014-10-24, highlighting the
magnetic field line topology before the flare. The black and white contours rep-
resent the negative and positive polarities of Bz whereas the red and blue arrows
are the vector plots of the transverse magnetic field. (b) AIA 171 Å EUV image
of the AR, highlighting the magnetic field line topology before the flare.
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4.3.1 NFFF Extrapolation for the AR 12192

The magnetograms are taken from the ‘hmi.sharp cea 720s data series’ that pro-

vides full-disk vector magnetograms of the Sun with a temporal cadence of 12

minutes and a spatial resolution of 0′′.5. The dotted vertical lines mark the be-

ginning and peak phase of the flare. Hence, to a good approximation, the vertical

magnetic field Bz at the bottom boundary remains constant during the interval.

Due to this, here also we have used the line-tied boundary like previous cases.
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Figure 4.26: Contour plots of the transverse field of the observed (panel (a)) and
extrapolated (panel (b)) magnetic field shown at the photospheric boundary.

We consider the magnetogram on October 24, 20:46 UT obtained from the

SDO/HMI. The vector field shown in Fig.-4.25(a) corresponds to an original
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cutout of dimension 1024 × 512 pixels. The field is rescaled and extrapolated

over a computational domain having 256 × 128 × 128 grids in the x, y and

z directions to reduce the expensive computational cost. The corresponding

physical domain covers 360 Mm in the x direction and 180 Mm in the y and z

direction, respectively. The best-fit values obtained for the α parameters in this

case are α = {0.1145,−0.0016} which corresponds to an En = 0.31.
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Figure 4.27: Scatter plot showing the correlation between the observed and ex-
trapolated magnetic field. The red line is the expected profile for perfect corre-
lation.

The contour plots for the transverse components of the observed and extrap-

olated fields at the photospheric boundary are shown in Fig.-4.26. The figure

indicates most of the large scale magnetic features to be well-captured by the

extrapolated field. The scatter plot of the observed and the extrapolated fields

is shown in Fig.-4.27. The plot documents the agreement to be better for the

higher field side. The Pearson-r correlation between the two fields is 0.933, which

is acceptable.

The top and side views of MFLs over the full vector magnetogram are shown

in Fig.-4.28 with the field lines being depicted in red. A smaller set of MFLs

in the vicinity of the flaring region (around 21:15 UT) are shown in white. The

white MFLs resemble the topology of a 3D magnetic null (Lau & Finn, 1990) and

are shown in greater detail in Fig.-4.29. The similarity of MFL morphology of

the extrapolated field (panel (b) of Fig.-4.28) with the observed EUV structure
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(a)

(b)

Figure 4.28: Top (panel (a)) and side-view (panel (b)) of the overall NFFF
extrapolated magnetic field line topology for the AR 12192 on 2014, October
24, 20:46 UT. The bottom boundary represents the strength (in kG) of the Bz

component of the magnetic field and the extrapolated fields lines are depicted in
red and a small set of field lines close to the location of the 3D null—identified
in the Fig.-4.29—are depicted in white.

(panel (b) of Fig.-4.25) advocates effectiveness of the extrapolation. The MFL

geometry is characterized by the presence of high and low-lying loops. Notably

the low-lying MFLs, depicted in white, connecting the weak positive polarity

with the surrounding negative polarity regions generate the 3D null. Fig.-4.29(a)

corroborates the 3D null to be complete with a dome shaped fan and an elongated

spine. The panel (b) of Fig.-4.29 depicts MFLs on a stack of planes which are

approximately tangential to the spine. The MFLs are overlaid with an iso-surface
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(a)

(b)

Figure 4.29: The top- (panel (a)) and side-view (panel (b)) of the magnetic field
lines drawn near one of the polarity-inversion lines, where the flare was later
observed. The field line topology indicates the presence of a 3D null, complete
with a dome-shaped fan and elongated spine. The red surface inside the field
lines represents an iso-surface having 2.5% of the maximal field strength of B and
locates the null. The height of the null is roughly 3 Mm from the photosphere.
The bottom boundary is same as that of Fig.-4.28.

(in red) of |B| having an iso-value which is 2.5% of its maximum (magnified in

the inset). The iso-surface locates the 3D null. The height of the null point is

roughly 3 Mm from the photospheric plane. Notably, the MFLs constituting the

dome intersect the bottom boundary to generate footpoints that are distributed

in a circular pattern. The MFLs below the null point form an elongated arcade,

as seen in the inset of Fig.-4.29.

The direct volume renderings of volume current density |J| and Lorentz force
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(a)

(b)

Figure 4.30: The spatial distribution of volume current density (panel (a)) and
Lorentz force (panel (b)) in arbitrary units. Notably, appreciable current is
present throughout the volume while most of the force is present only near the
bottom boundary which sharply falls to zero with increase in height.

are depicted in Fig.-4.30. Noticeably, the regions of large Lorentz force and high

current overlap with those of high values of |Bz|, which can be realized by a

direct comparison with Fig.-4.28(b). The values for |J| and Lorentz force are

mentioned in arbitrary units as we are mostly interested in their variations with

height. The figure reveals a sharp decay of the Lorentz force with height (by a

factor of 1/5000) while the current shows a decay by only a factor of 1/100.
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4.3.2 Simulation Results and Discussions

The simulations are initialized from a motionless state with the initial magnetic

field given by the NFFF extrapolation and the magnetofluid idealized to be

thermally homogeneous and having perfect electrical conductivity. The flow is

generated as the initial Lorentz force pushes the plasma. To ensure the net

magnetic flux to be zero in the computational domain, all components of volume

B except for Bz, are continued to the boundaries for a given time step (Kumar

et al., 2015a). At the bottom boundary, Bz is kept constant (line-tied boundary)

since the change of magnetic flux at the boundary is minimal (see Fig.-4.23(b)).

For the simulation, we set the dimensionless constant τa/τν ≈ 7× 10−3, which is

roughly two orders of magnitude larger than its coronal value. The higher value

of τa/τν speeds up the relaxation because of a more efficient viscous dissipation

without affecting magnetic topologies. The density is set to ρ0 = 1 and kinematic

viscosity to ν = 0.002, in scaled units. The spatial unit step ∆x = 0.0078, while

the time step is taken as ∆t = 5 × 10−3. The results presented here pertain to

a run for 1000 ∆t which roughly corresponds to an observation time of one and

half hour. Notably, the RM throughout the simulation is infinity expect during

MRs facilitated by the MPDATA driven dissipation.

Fig.-4.31 depict MFL evolution in the neighborhood of the 3D null. The Bz

contours are plotted on the bottom boundary. Four sets of MFLs are highlighted.

The fan and the spine of the null are made by the yellow MFLs whereas the red

MFLs are overlying the null. The blue MFLs are located inside the dome whereas

the arcade below the null is formed by the green MFLs. With evolution, the null

and the constituent yellow MFLs do not sustain an appreciable ascent whereas

the red MFLs expand significantly to a threshold height (≈ 78 Mm), after which

they contract. To explore the underlying physics, we note the arcade MFLs (in

green) and the dome (yellow) constitute an X-type geometry cf. panel (b) of

Fig.-4.29. As reconnection occurs at the X-type null, blue MFLs come out of the

dome and overlays it. The consequent increase in local magnetic pressure pushes

the red MFLs upward, resulting in their overall rise. Furthermore, the red MFLs

get stretched as they rise and at a threshold generate enough magnetic tension
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(a) (b)

(c) (d)

(e) (f)

Figure 4.31: Side view of evolution of four sets of magnetic field lines close to
location of the 3D null, shown at t = 0, 200, 400, 600, 800 and 1000 in panels (a)-
(f) respectively. The bottom boundary in all the panels represents the strength
Bz on the photospheric plane as in Fig.-4.28 but now in grayscale for clarity.

to stop additional upward motion. Interestingly, we also fail to identify a flux

rope like (Jiang et al., 2016), which further agrees with the confined nature of

the flare.

The simulated 3D null appears to rotate with evolution (Fig.-4.32). For aiding

visualization, the MFLs have been color-coded based on their distance along the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.32: Panels (a)-(f) spanning t = 0, 80, 160, 240, 320 and 400, illustrate
rotation of the dome structure of the field lines constituting the 3D null. The
cuboidal rake in the figure shows the volume where the seed points are chosen.
The field lines are color-coded with respect to their distance in the y direction.
This helps us to visualize the rotation of the field lines.

y axis. We have also shown the volume wherein the seed points of MFLs are

located. When viewed from the top, an anti-clockwise rotation of the MFLs

is quite prominent which matches well with the dynamics seen in the AIA 131

Å channel. This similarity with observations makes the simulation credible.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.33: Panels (a)-(f) spanning t = 0, 200, 400, 600, 800 and 1000, illustrate
the evolution of magnetic field lines (yellow), velocity field (green) and |J|/|B|.

The Fig.-4.33 is also overlaid with streamlines (green) and |J|/|B|. Noticeable

is the initial high value of |J|/|B| near the null. The value increases with time,

becoming maximum at t = 400, decaying subsequently. The peaking of |J|/|B|

is indicative of magnetic reconnections occurring near the null. The resultant

outflow is shown by the red streamlines.

For further investigation, Fig.-4.34 plots the Q-map where the squashing
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(a) (b)

(c) (d)

(e) (f)

Figure 4.34: Panels (a)-(f) spanning t = 0, 200, 400, 600, 800 and 1000, illustrate
the slipping reconnections in the MFLs (shown in yellow) spanning the dome of
the 3D null. The streamlines of the flow are shown in green. The bottom
boundary shows contours of high values of log Q. (An animation of this figure
is available.)

factor Q is calculated by following Demoulin et al. (1996); Liu et al. (2016)

and ascertains the dome to have high gradient of magnetic connectivity which

results in slipping reconnections (Aulanier et al., 2007). The subsequent change

in magnetic connectivity manifests as the seeming MFL rotation. For validation,



98 Chapter 4. Data-constrained Simulations

we note the co-located flow (in green) is not along the rotation and hence, cannot

cause it.

(a) (b)

Figure 4.35: The AIA 1600 Å and 131 Å channel images as depicted in Fig.-4.24
are overlaid with the relevant magnetic field lines. Important is the almost exact
match of footpoints with the location of the brightening.

In panels (a) and (b) of Fig.-4.35, we overlay intensity structures in wave-

lengths 1600 Å at 21:25 UT and 131 Å at 20:50 UT with corresponding MFLs.

Importantly, the almost exact match of the footpoints for both wavelengths with

brightenings not only establishes the importance of the 3D null in the circular

flare ribbon but also being in agreement with the contemporary understanding,

validates the effectiveness of the NFFF extrapolation in constructing an appro-

priate coronal field model.

4.4 Inferences

The chapter focuses on the data-constrained numerical simulation of active region

transients where the photospheric magnetic field is directly used to generate the

coronal magnetic field. The transients considered here are a blowout jet and

two flares of C- and X- class. Interestingly, the blowout jet is also accompanied

with a C-class class flare, giving an unique opportunity to explore two near-

simultaneous events in a single simulation. Additionally, the computations are

in the spirit of the ILES. The MRs are mimicked when the field variables are

under resolved whereas, away from the reconnetion sites the condition of the
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flux-freezing is ensured by the second order accurate MPDATA. The simulations

paint a scenario that is different from the standard flare model and highlights the

role of 3D nulls and QSLs in initiating the transients. Particularly, 3D nulls are

found to be ubiquitous in all the three simulations and warrant further attention.

In the next chapter, we develop relevant initial value problems using analytical

means to explore the 3D reconnections in a more tractable way.





Chapter 5

Simulations with Analytical

Initial Conditions

Magnetic null points are ubiquitous in the solar atmosphere which we have wit-

nessed in all of the transients explored in the chapter 4. Other extrapolated

fields have shown their abundances in the lower atmosphere during the activity

minimum (Régnier et al., 2008; Longcope & Parnell, 2009). Three-dimensional

nulls were also found to be responsible for the Bastille Day Flare (Aulanier et al.,

2000) and causing coronal mass ejections via magnetic breakout (Lynch et al.,

2008). A concise list of natural systems where 3D nulls are important can be

found in Wyper et al. (2012); Wyper & Pontin (2014a,b). Recent simulations

have emphasized the role of repeated MRs in driving various eruptive events

occurring in the solar atmosphere and heating the corona to its 106K tempera-

ture (Parker, 1994; Shibata & Magara, 2011; Kumar et al., 2013; Prasad et al.,

2017; Joshi et al., 2017a). The coronal MFLs anchored to an active region are

inherently 3D because of their twist. The consequent possibility of triggering

solar flares by 3D null facilitating MRs is interesting and merits attention. The

numerical simulations reported in Kumar et al. (2013) explore the possibility

by attributing the onset of current sheets to deformation of magnetic separator

at the neighborhood of 3D nulls. Importantly, the presence of magnetic nulls

constrains the dynamics of magnetofluids. Utilizing the induction equation of

the ideal MHD, Hornig & Schindler (1996) have emphasized the null to preserve

101
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its identity during evolution—due to vanishing of the Lagrangian time derivative

DB/Dt where B = 0—in the strict absence of any magnetic energy dissipation.

They further extended the notion of the magnetic topology and the preservation

of the null to non-ideal plasmas by assuming a velocity w, satisfying

w ×B = v ×B− ηJ, (5.1)

in usual notations. The w has contributions from the bulk plasma velocity v

and the MFL diffusion. A first order Taylor expansion of B in the neighborhood

of the ιth 3D null, located at xι(t) = x(xι, t0), gives for sufficiently smooth field

(Greene, 1992; Murphy et al., 2015)

B = ∇B|xι · (x− xι), (5.2)

which exposes the importance of the Jacobian matrix ∇B|xι for field topology.

In particular, the quantity

D ≡
∑
ι

sign
(
det(∇B|xι)

)
, (5.3)

is conserved (Hornig & Schindler, 1996) and is known as the overall topological

degree (Greene, 1992; Longcope, 2005). In effect, the conservation suggests the

nulls to appear (or disappear) in pairs of opposite topological degrees unless they

move across the boundaries of a domain.

Although 3D nulls are studied extensively, the present understanding falls

short in explaining their ubiquity which is not self-explanatory. To elucidate

further, we note, a way to construct a 3D null is to follow the technique of the

magnetic charge model where distinct sources or magnetic “charges” are used to

construct the photospheric magnetic field (Barnes et al., 2005). Let the resultant

magnetic field of N − 1 such charges to be B1 at a location r1. In principle, B1

can be balanced by placing another magnetic charge having a field −B1 at r1.

For the configuration, the net field at the point r1 is zero—rendering it a 3D

null. This special magnetic configuration lacks generality and only represents
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a charge distribution for a specific outcome. With the MHD equations being

inherently non-linear, a maintenance of this particular alignment of charges in

a complexly evolving magnetofluid is presumably non-trivial and merits further

attention. Hence, it is essential to take a deeper look at the physics behind the

onset of 3D nulls in naturally existing plasmas. Indeed, Albright (1999) conjec-

tured magnetic nulls to be autonomous outcome of a turbulent plasma evolution

and emphasized the importance of 3D MHD simulations for realizing the same.

The role of 3D nulls in constraining the dynamics of an evolving plasma is also

explored with MHD simulations. For instance, Kumar & Bhattacharyya (2016)

argued in favor of the possibility that MRs at autonomously developed current

sheets near 3D nulls are crucial for an onset of circular flare ribbons. Recent

simulations by Thurgood et al. (2017) have demonstrated spontaneously gener-

ated oscillations associated with MRs, initiated by localized collapse of a 3D null

under the influence of external MHD waves. The null detection technique also

got refined over the years and presently the one developed by Haynes & Parnell

(2007) effectively uses the tri-linear method to locate 3D nulls with subgrid-scale

accuracy.

Additional to the generation of 3D nulls, the interplay of different reconnec-

tion scenarios existing in a system is also intriguing. Other coronal locations like

separators and quasi-separators, as discussed in chapter 2, are responsible for

reconnection. Additional to the pre-existing preferential locations such as nulls,

separators and QSLs, MHD simulations with idealized scenario of infinite elec-

trical conductivity show that the potential sites for reconnection can naturally

be generated because of the inherent dynamics (Kumar et al., 2014, 2015b).

The magnetofluid evolution being congruent with the Parker’s magnetostatic

theorem (Parker, 1972, 1994, 2012), attributes the generation of such sites to

a development of favorable magnetic stresses which naturally bring non-parallel

magnetic field lines to close proximity. As a result, layers of intense volume

current density (J) or the current sheets originate. In the presence of slight but

non-zero magnetic diffusivity, as the case for the coronal plasma, the CSs get

dissipated by magnetic reconnections.
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In the above backdrop, the presented MHD simulations aim to numerically

explore the formation of null points, the magnetic reconnections in the presence

of 3D nulls and QSLs; and to examine the role of such MRs in shaping-up the

dynamics. In order to achieve the above goals we have constructed justifiable

initial magnetic topologies with analytical models but similar to the topologies

found in the solar corona. To understand the genesis of 3D nulls, we have pro-

ceeded with two suitable initial magnetic fields. Next, to understand interplay

between different potential sites of reconnection, we have considered two cases

and report the dynamics found during the evolution. The detailed discussions

pertaining to the two cases are presented below.

5.1 Generation of 3D nulls

5.1.1 Initial Value Problems

The first set of initial magnetic field is obtained by deforming MFLs associated

with an isolated 3D null at (x, y, z) = (0, 0, 0) (Parnell et al., 1996), having

components

Bx = C x , By = C y , Bz = −2C z , (5.4)

defined on a Cartesian domain [−π, π] × [−π, π] × [−π, π], discretized on the

64×64×64 regular grid with open boundaries. C = 1 [Gs · cm−1]. In all relevant

illustrations, the 3D null is constructed by the procedure introduced in chapter

4 and documented in Kumar et al. (2013).

To explore the dynamics of null formation, we conduct simulations charac-

terized by two sets of initial condition. In the first, a given magnetic null is

deformed by a prescribed flow and subsequently relaxed to a terminal state. In

the second set, the initial magnetic field is casted in the form,

Bx = c0
(
0.5 A sin(z) + 1.5 C cos(y)

)
, (5.5)

By = c0
(
0.5 B sin(x) + 1.5 A cos(z)

)
, (5.6)

Bz = c0
(
0.5 C sin(y) + 1.5 B cos(x)

)
. (5.7)
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and is constructed by a linear superposition of two Arnold-Beltrami-Childress

(ABC) fields, each of which is a solution of the linear-force-free equation (Dom-

bre et al., 1986; Ram et al., 2014; Kumar et al., 2017) and is chaotic. The

modified field (5.5)-(5.7) is topologically similar to the ABC field (Kumar et al.,

2017) which is well known to be chaotic in three dimensions and regular in two di-

mensions. Likewise, the superposed field is also two-dimensional with the MFLs

tangential to global flux surfaces when any one of the constants A, B or C is

set to zero. Avoidance of having 3D magnetic nulls within the computational

volume requires A = B = 1 and C /∈ {0.3142, 3.01} (Kumar et al., 2017).

5.1.2 Simulation Results and Discussions

5.1.2.1 Case-I, Deformation and Relaxation of a potential 3D null

point

The governing equations (in CGS units) used to deform the 3D null are:

ρ0

[
∂v

∂t
+ (v · ∇) v

]
= −∇p+

1

4π
(∇×B)×B + ν∇2v , (5.8)

∇ · v = 0 , (5.9)

∂B

∂t
= ∇× (v ×B) , (5.10)

∇ ·B = 0 , (5.11)

in usual notations, where ν is the kinematic viscosity. The pressure perturba-

tion p, about a thermodynamically uniform ambient state, satisfies the elliptic

boundary value problem, generated by imposing the incompressibility constraint

(5.9) on the momentum equation (5.8); see Bhattacharyya et al. (2010) and the

references therein.

The deformation of MFLs is achieved by numerically integrating (4.2a)-(4.2d)

with the initial solenoidal flow v = (vx , vy, vz) specified as

vx = 0 , vy = 0.5 sin(z) , vz = 0, (5.12)

whose stagnation plane includes the null at z = 0, and the selected amplitude
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ensures a smooth traceable evolution of the flow. The kinematic viscosity is

ν = 0.01 and ρ0 = 1, and the spatial and temporal grid increments are ∆x =

∆y = ∆z = 0.09817 and ∆t = 0.016, respectively, all in the cgs units.

The overall system dynamics are depicted in Fig.-5.1, whose panels (a) and

(c) show the histories of the total magnetic and kinetic energy normalized by the

initial magnetic energy. The evolution proceeds without any large-scale recon-
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Figure 5.1: History of the normalized (a) magnetic and (c) kinetic energies, along
with the grid-averaged (b) field-aligned current density and (d) volume current
density during the deformation with the sinusoidal initial velocity. Notable are
the approximate constancy of the field-aligned current and a non-zero value of
the volume current density at the terminal state.

nection, evidenced by the small change in the domain-averaged J ·B plotted in

panel (b). The corresponding evolution of MFLs is shown in Fig.-5.2. The two

spine axes are pushed toward the fan plane by the initial Lorentz force, resulting

in a spine-fan reconnection. Consequently, the initial 3D null (topological degree:

+1) bifurcates into two 3D nulls (inset in panel (e) of Fig.-5.2) of degrees +1

(left) and +1 (right) along with two disjoint flux ropes depicted at the panel (f),

generating a null with topological degree -1. The overall topological degree is

then still +1 and as theorized, preserved during the evolution. Wyper & Pon-

tin (2014a,b) have also reported similar results where the spine-fan reconnection

was occurred due to an initial tanh velocity profile. The agreement between

the two simulations not only corroborates the theory but simultaneously justifies
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flux rope
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(c) (d)

t = 10s t = 10s

(e) (f)

t = 19.2s t = 19.2s

(g) (h)

t = 400s t = 400sFigure 5.2: MFL evolution during the deformation seen from two different angles.
The MR initiates as the spine and fan approaches each other, panels (c) and (d).
Important are the pitchfork bifurcation of the 3D null and the flux ropes, marked
by arrows, as shown in panel (e) and (f), respectively. With MFLs drawn in a
favorable viewing angle, the panel (f) shows the post-reconnection fan plane to
be sandwiched between the two flux ropes (in magenta and blue). Also the net
topological degree (denoted by D) is preserved (D = +1) which is in congruence
with the theory. The magnetic field for the MFLs in panels (e) and (f) serves as
the initial field for the relaxation. Red, green, and blue arrows mark x, y, and z
axes, respectively.

the null-detection technique used here. As expected, the average | J | increases

as the MFLs get deformed more and more. The deformation is terminated at

t ≈ 19.2s.

Subsequently, the plasma is relaxed from the above terminal state while set-

ting the velocity and pressure perturbation to zero. The density is set to unity,

and the simulation is executed on the identical (64× 64× 64) grid. The overall
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Figure 5.3: Evolution of the (a) magnetic energy, (b) field-aligned current density,
(c) kinetic energy and (d) volume current density for the relaxation initiated with
the magnetic field obtained by the sinusoidal deformation. The magnetic energy
decays almost monotonically signifying relaxation of the magnetofluid. Both the
energies attain a quasi-steady state from t ≈ 100s onward. The first peak in the
kinetic energy develops as the increase in flow velocity gets arrested by viscosity.
Also important are the non-zero current density at the terminal state along with
an overall decrease in the field-aligned current and hence, the twist; which is
consistent with the decay of magnetic energy.

dynamics can be assessed from the history of the magnetic and kinetic energies

plotted in Figs.-5.3(a) and 5.3(c). Important in both the plots is the attainment

of a quasi-steady state from t ≈ 100s onward. The average MFL twist (quanti-

fied by the field-aligned current) oscillates, Fig.-5.3(b). The evolution of MFLs

depicted in Fig.-5.4 suggests that the formation of the 3D null (panel (f)) is due

to a simultaneous coalesce of the three nulls in a (reverse) pitchfork bifurcation.

The reconnections seen here can be inferred from the connectivity change of blue

MFL from the panel (c) to (d). The MFL is identified by keeping the initial

point for the field line integration fixed at every instant. The average current

at the quasi-steady state is non-zero, Fig.-5.3(d), making this newly formed null

different from the preceding current-free case. Incidentally, Parnell et al. (1997)

considered an ideal fluid at the equilibrium, and by employing a linear perturba-

tion analysis they have inferred that the Lorentz force cannot be balanced by a
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Figure 5.4: MFL evolution during the relaxation where the initial field was ob-
tained by the sin flow deformation. Important is the generation of the null point
and its fine-tuning across the panels (c)–(f) which belongs to the quasi-steady
phase of evolution. The terminal null at the panel (f) is non-potential because
of the non-zero volume current density. The change in connectivity of the blue
MFL suggests occurrence of MR.

pressure gradient for a 3D null. Our findings do not necessarily contradict their

result, because our simulation includes non-linear effects, and the fluid is not at

equilibrium due to the viscous dissipation of kinetic energy along with the MR

driven irrecoverable loss of magnetic energy. Nevertheless, the simulation also

shows a decrease in current density with the progress of the quasi-steady state,

thus offering the possibility of a complete decay of the current density with time.
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5.1.2.2 Case-II, Relaxation of a chaotic magnetic field

The simulation is executed with 64 × 64 × 64 grid resolution with other model

parameters and the boundary condition are being kept identical to the previous

simulation. The coarse resolution is preferred to enhance MRs. The constant C is

set to 0.2. To focus on ideas, three field lines, each starting from a different spatial

location, are shown to generate three concentric local flux surfaces; panels (a)-(c)

of Fig.-5.5. The MFLs tangential to each flux surfaces are regular. As shown in

(a) (b)

(c) (d)

xy

z

Figure 5.5: Panel (a) shows a single MFL ergodically spanning a local magnetic
flux surface. Shifting the initial point for the MFL integration such as to increase
the surface radius is documented in panels (b) and (c). After the attainment of
a threshold radius, the flux surface is lost and the MFL becomes volume-filling
as depicted in panel (d).

Kumar et al. (2017), with a shift in its initial location the MFL becomes chaotic

and volume-filling; panel (d). The volume encompassed by the outermost closed

flux surface then quantifies the regularity or periodicity of the MFLs. An increase

in C ∈ {0.1, 0.3} decreases the above threshold volume and hence, increases the

chaoticity of the MFLs (Kumar et al., 2017).
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Figure 5.6: Evolution of (a) magnetic energy, (b) field-aligned current density,
(c) kinetic energy and (d) volume current density for the relaxation initiated
with the modified ABC magnetic field. The generation of the quasi-steady state
is evident whereas the volume current density at the terminal state is non-zero.

The histories of the magnetic and kinetic energies are plotted in panels (a)

and (c) of Fig.-5.6 showing attainment of the quasi-steady state from t ≈ 150s

onward. A decrease in the field-aligned current density (panel (b)) indicates a

decrease in the MFL twist during the relaxation quantifying a substantial change

in the global magnetic topology and frequent occurrence of MRs. The plot of

the current density depicted in Fig.-5.6(d) suggests the magnetic field remains

non-potential throughout its evolution. The overall MFL dynamics is illustrated

in Fig.-5.7. In evolution, MRs manifest as changes in the field line connectivity.

One such plausible change is demonstrated by the blue MFL in its passage from

the panel (b) to (c) where the MFL is again identified by maintaining the initial

point for the field line integration same at different instants. The nulls are

drawn with the constants B0 = 0.00001 and d0 = 0.0004, respectively. To gain

further insight, in Fig.-5.8, we track the evolution of MFLs in the neighborhood

of the nulls depicted in panel (d) of Fig.-5.7. The direction of the magnetic

field is indicated by arrows while the oppositely directed spine pairs are colored

cyan and peach for easy identification. The nulls found are of mixed topological

degrees (+1 and -1) which approximately concurs with the invariance of the
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Figure 5.7: Overall evolution of MFLs as the fluid relaxes from the initial mod-
ified ABC field. The change in connectivity of the blue MFL, panels (b) and
(c), showcases an instance of MR. Such MRs and the corresponding connectivity
changes play a crucial role in the relaxation. The development of the 3D null
spans from the panels (b) to (d).

overall topological degree. Such pair-generations occur at other instances too.

Because the amplitude of C is proportional to the chaoticity of the MFLs, a

series of low-resolution simulations is performed to assess the effect of C on

the 3D null generation. The calculations are carried out on 32 × 32 × 32 grid

with C = 0.1, 0.2 and 0.3. The values are restricted to 0.3 since auxiliary

analyses found that a choice of C � A ≈ B actually reduces the chaoticity.

Current carrying nulls having mixed topological degrees appear in each of these

simulations (not shown), confirming the null generation to be independent of the

grid resolution and chaoticity.
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Figure 5.8: Evolution of MFLs in the neighborhood of the nulls depicted in panel
(d) of Fig.-5.7. The arrowheads point the magnetic field directions. Notably, the
nulls have both +1 and −1 topological degrees which suggest a conservation of
net topological degree.

5.2 Magnetic reconnection in the Presence of

3D Null and QSL

To understand the interplay between different reconnection mechanisms, in the

following we execute a simulation by analytically constructing a new initial mag-

netic field. The initial field is characterized by having two 3D magnetic nulls—

morphologically similar to the ones observed in the solar corona, and QSLs.

Additionally, the magnetic fields are envisaged to support the Lorentz force to

naturally initiate dynamics without any prescribed boundary flow.
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5.2.1 Initial Value Problems

To achieve a complex magnetic topology with 3D nulls and QSLs, the initial

magnetic field is established by modifying the field in Kumar & Bhattacharyya

(2017) based on the superposition of a constant vertical field over a LFFF, de-

fined in a Cartesian domain. Particularly, to achieve a configuration consistent

with solar coronal loops, the magnetic field is set to decay exponentially along

the z-direction in the positive half-space Γ defined by (z ≥ 0). Consequently,

the z = 0 plane is treated as the photosphere. Moreover, the constant verti-

cal magnetic field with straight MFLs is not likely to alter the topology of the

LFFF appreciably and, hence, the superposed field B is expected to be topolog-

ically similar to the unperturbed LFFF. Relevantly, the solar corona is thought

to be in the state of force-free equilibrium under the approximation of a ther-

modynamic pressure that is negligibly small compared to the magnetic pressure

(Priest, 2014).

As proposed, the initial magnetic field is derived by superposing a 3D LFFF

B1 and a uniform vertical field B2, where the components of B1 are,

B1x = sin (x− y) exp (−z) , (5.13)

B1y = − sin (x+ y) exp (−z) , (5.14)

B1z = 2 sin (x) sin (y) exp (−z) . (5.15)

The magnetic circulation per unit flux of B1 has a value of unity and measures

the twist of the corresponding MFLs (Parker, 1994; Kumar et al., 2014). The

superposed field B is

B = B1 + c0B2, (5.16)

where the superposition coefficient c0 relates the amplitudes of the two super-

posing fields and determines the deviation of B from the force-free equilibrium

(Kumar & Bhattacharyya, 2017). Explicitly,
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Bx = sin (x− y) exp (−z) , (5.17)

By = − sin (x+ y) exp (−z) , (5.18)

Bz = 2 sin (x) sin (y) exp (−z) + c0, (5.19)

in the domain Γ which, physically extends from 0 to 2π while having periodic and

open boundaries in the lateral (x and y) and the vertical directions, respectively.

As the LFFF B1 being exponentially decaying along z, all the three components

of B are also exponentially decaying functions along the vertical.

The Lorentz force is

J×B = c0(B1 ×B2) (5.20)

which is non-zero for c0 6= 0 and has the functional form

(J×B)x = −c0 sin (x+ y) exp (−z) , (5.21)

(J×B)y = −c0 sin (x− y) exp (−z) , (5.22)

(J×B)z = 0. (5.23)

Clearly, the initial Lorentz force acts laterally. For the simulations, we select

c0 = 0.1 and c0 = 0.5 to obtain two sets of initial magnetic fields with different

magnitudes of Lorentz force—allowing us to assess the role of different dynamical

evolution of the MFLs on the MRs.

To explore the geometrical similarity of the initial MFLs with the coronal

MFLs, in Fig.-5.9 we depict the MFLs of B for the cases c0 = 0.1 (panels (a) and

(b)) and c0 = 0.5 (panels (c) and (d)). The figure shows a physical resemblance

of the MFLs to the open and the closed coronal loops.

To carefully examine the magnetic topology of the initial field B, first we plot

neutral points in its transverse field (obtained by setting Bz = 0 in B). Notably,

in all relevant illustrations, the neutral point is depicted by using the numerical
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technique documented in chapter 4 and Nayak et al. (2020). Fig.-5.10(a) shows

the neutral points in the transverse field overlaid with corresponding field lines at

z = 0 plane. Notably, the field line geometry near these neutral points suggests

that there are four spiral-type nulls (Lau & Finn, 1990) at (x, y) = (π/2, π/2),

(π/2, 3π/2), (3π/2, π/2), (3π/2, 3π/2), and one X-type null (Kumar et al., 2015b)

at (x, y) = (π, π) inside the computational box. To further verify, we have

checked that the eigenvalues for the X-type null are real (
√

2,−
√

2) and, for the

spiral nulls are complex numbers (for example the eigenvalues of a spiral null

at (π/2, π/2) are (1 + i, 1 − i)). In addition to these five nulls, there are eight

X-type nulls at the boundaries of the domain. Relevantly, MRs can occur on

separators with spiral-type as well as X-type neutral points in the perpendicular

plane (Parnell et al., 2011). Next we note that the superposition of B1z (Eq.-

5.15) on the transverse field generates B1. In Fig.-5.10(b), we illustrate the

magnetic nulls in B1 overplotted with its MFLs. Nine X-type neutral lines are

evident in B1 which are co-located with the X-type nulls of the transverse field

at z = 0 plane. However, the four spiral nulls get destroyed in B1. To relate

the location of the spiral nulls to the possible QSLs, we also plot the Q-map

at the bottom boundary in Fig.-5.10(b) by using the code of Liu et al. (2016).

Notably, the regions with large Q-values include both separatrices and QSLs

(Titov et al., 2002). Important are the large Q-values at the locations of the

spiral nulls (marked by black arrows in Fig.-5.10(b)), suggesting that some of

the spiral nulls (of the transverse field) convert into the QSLs for B1.

To describe the topological structure of B, in Fig.-5.11, we examine its mag-

netic skeleton by plotting magnetic nulls, separatrix surfaces and spines. The

skeleton of B is shown for the chosen c0 = 0.1 (panels (a) and (b)) and c0 = 0.5

(panels (c) and (d)). For c0 = 0.1, the panels (a) and (b) of the figure confirm

the presence of two 3D nulls located at the height z ≈ 0.955π over the sites of the

two spiral nulls (i.e., at (π/2, 3π/2) and (3π/2, π/2)) of the transverse field. The

3D nulls have well-defined spine axes and dome-shaped separatrix or fan surfaces

whose feet coincide with many of the regions of strong Q in Fig.-5.12. Similarly,

for c0 = 0.5, panels (c) and (d) of Fig.-5.11 show the existence of a pair of 3D nulls
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Figure 5.9: Side (panel (a)) and top (panel (b)) views of MFLs of the B for
c0 = 0.1. While panels (c) and (d) illustrate side and top views of the MFLs
for c0 = 0.5. The MFLs are in the form of twisted closed (marked by navy blue
color) as well as open magnetic loops (shown in grey color). All the panels are
overplotted with Bz values on the z = 0 plane. Yellow line represents the contour
corresponding Bz = 0.
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Figure 5.10: Panel (a) shows the neutral points and the field lines of the trans-
verse field overlaid with the function ψ at z = 0 plane. Large values of ψ
represent the locations of neutral points. Notable is the existence of the nine
X-type (one inside the domain and eight at the boundaries) and four spiral-type
neutral points. Panel (b) depicts the magnetic nulls (in pink) and MFLs of B1

overlaid with the corresponding Q-map at z = 0. The nine X-type neutral points
of the transverse field also retain in B1. Noticeable is the larger values of Q near
the sites of the spiral neutral points (marked by black arrows)—suggesting that
the spiral neutral points correspond to QSLs in B1. In the figure, the domain
size is marked as 1 instead of 2π in all the directions.

over the two spiral nulls of the transverse field. The coordinates of the nulls are

(x, y, z) ≈ (π/2, 3π/2, 0.44π) and (3π/2, π/2, 0.44π). We have also analytically
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verified the locations of the nulls in B which are (x, y, z) = (π/2, 3π/2, ln(2/c0))

and (3π/2, π/2, ln(2/c0)) for c0 = 0.1 and 0.5—matching well with the locations

obtained from the employed numerical technique. Importantly, for both cases,

the overall morphology of the nulls is similar to the 3D nulls obtained with the ex-

trapolated coronal fields (Longcope & Parnell, 2009; Platten et al., 2014; Prasad

et al., 2018; Nayak et al., 2019; Prasad et al., 2020). The MFLs constituting

the dome-shaped separatrix surfaces predominately intersect the bottom bound-

ary and the intersection points, or the footpoints, trace nearly-closed circular

curves—further advocating the similarity.

Bz

Bz

(a) (b)

(c) (d)

Spines

Separatrix
surfaces

Spines

Separatrix 
surfaces

Figure 5.11: Magnetic (topological) skeleton of the initial field B in terms of 3D
nulls, separatrix surfaces and spines for c0 = 0.1 (side view in panel (a) and top
view in panel (b)) and c0 = 0.5 (side view in panel (c) and top view in panel (d)).
Notable are straight spine axes and the dome-shaped separatrix or fan surfaces
(intersecting bottom boundary) of the nulls. For c0 = 0.1, the separatrix domes
touch at the base of the quasi-separator at (π, π, 0) (panel (b)). For c0 = 0.5,
the separatrix domes are separate (panel (d)).

Additionally, as shown in Fig.-5.11, the 3D nulls are located at higher heights

and, therefore, their separatrix domes are larger for c0 = 0.1 than 0.5. Fig.-

5.11(b) demonstrates that, from a top view, the separatrix surfaces of the 3D

nulls for c0 = 0.1 seem to touch in the vicinity of the points (x, y) = (π, π) along
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(a)
(b)

(c) (d)

ln Q

Figure 5.12: The structural skeleton (i.e., the separatrix skeleton plus the QSL
quasi-skeleton) of B with the bottom boundary being superimposed with lnQ
for c0 = 0.1 (side and top views in panels (a) and (b)) and c0 = 0.5 (side and top
views in panels (c) and (d)). The existence of large Q (such that lnQ ∈ {2, 8})
represents the location of separatrices or QSLs. For both c0 values, notable is the
presence of both the separatrices of the coronal nulls and also the QSLs associated
with the central quasi-separator at (π, π, z) and the extra quasi-separators on the
boundary. Also interesting is the larger Q values for c0 = 0.1 than 0.5 at the
central quasi-separator at (π, π, z).

z and, as a result, the geometry of the MFLs in the vicinity is resembling to a

quasi-separator (or Hyperbolic Flux Tube). The neutral X-line (π, π, z) of B1

(see Fig.-5.10(b)) turns into the quasi-separator when the vertical field B2 is

added. To further confirm, we expand components of B in a Taylor series in the

immediate vicinity of x = π, y = π, z = 0 to get

Bx = x− y, (5.24)

By = −(x+ y) + 2π, (5.25)

Bz = c0, (5.26)

which attest the absence of the X-type null at (x, y, z) = (π, π, 0). However, for
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both c0 = 0.5 and 0.1 the nearby geometry is that of a Hyperbolic Flux Tube.

Interesting is the orientation of the MFLs of the hyperbolic flux tube for c0 = 0.1,

which is expected to be favorable for initiating MRs. In comparison to c0 = 0.1

case, the magnitude of B2 is larger for c0 = 0.5 case and, consequently, the

corresponding separatrix dome surfaces are separate—leading to the elimination

of the favorable orientation in this case (see Fig.-5.11(d)).

For further investigation, in Fig.-5.12 we illustrate the topological skeleton of

B overlaid with the Q-map at the bottom boundary for both c0 = 0.1 (panels (a)

and (b)) and c0 = 0.5 (panels (c) and (d)). Note that for both the cases, large Q

exists at the central region near the point (π, π, 0). The presence of the large Q

suggests that a X-line (i.e., a line of X-points in z-constant planes) located along

(π, π, z) (see Fig.-5.10) converts into a quasi-separator (or hyperbolic flux tube)

by the addition of the constant vertical field c0B2 to B1. Noticeably, because

of a smaller c0, the Q values in the central region are higher for c0 = 0.1 in

comparison to c0 = 0.5—indicating a more favorable location for reconnection

provided the flows are appropriate. Moreover, the large Q values near the bound-

aries for B (Fig.-5.12) are almost co-spatial with the rest of the X-type neutral

lines of B1 (and the X-type neutral points of the transverse field) located at

boundaries (Fig.-5.10)—indicating toward the transformation of all the neutral

lines into QSLs. In addition, in the initial field B, unlike B1, QSLs seem to be

absent over the two spiral nulls of the transverse field located at (π/2, π/2, z) and

(3π/2, 3π/2, z). The absence can be attributed to the addition of the constant

field B2 to B1. From Figs.-5.12(a) and (b), we also note the existence of large

Q values near the footpoints of the MFLs of the separatrix dome surfaces for

c0 = 0.1. Similarly, Figs.-5.12(c) and (d) show the presence of the contours of

large Q approximately co-located with inner and outer vicinity of the foot-points

of the dome separatrices for the case c0 = 0.5. Relevantly, Titov (2007) suggested

that the QSLs determine the quasi-skeleton of a magnetic field and one can de-

fine the structural skeleton which is the sum of the topological skeleton and the

quasi-skeleton. Hence, Fig.-5.12 plots the structural skeleton of the initial field

B.
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Based on the above analysis, overall, the selected initial magnetic fields can

be divided into two broad categories. The first one (belonging to c0 = 0.5)

supports a relatively simpler topology with a pair of coronal 3D nulls located at

low heights and a central quasi-separator. The corresponding separatrix surfaces

do not touch to each-other and, hence, are independent. While the second one

(corresponding to c0 = 0.1) also contains a pair of 3D nulls and a central quasi-

separator. But, for this case, the coronal nulls are situated at greater heights

and the separatrix surfaces appear to interact with the larger Q values in the

central region of the computational domain—making the case more suitable for

QSL reconnection in addition to the null point reconnection at the coronal nulls.

This further justifies the selection of the two particular c0 values.

5.2.2 Simulation Results and Discussions

The presented simulations are governed by the Eqs.-4.2a-4.2d. The size of the

computational box is spanned 128 × 128 × 128 grids in x, y and z-directions,

resolving the domain Γ. The initial states are characterized by the magnetic field

B given by equations (5.17)-(5.19) and the velocity field v = 0. Simulations are

performed with c0 = 0.1 and 0.5. The lateral boundaries (x and y) are chosen to

be periodic, while magnetic fluxes at the vertical boundaries are kept fixed to zero

(Kumar et al., 2015a). At the bottom boundary, the z-components of B and v are

kept fixed to their initial values (line-tied boundary condition). In the conducted

simulations, the dimensionless coefficient τa/τν ≈ 10−4, which is roughly one

orders of magnitude larger than its coronal value (Prasad et al., 2018). The

larger τa/τν , however, is expected to only speed-up the evolution without an

effect on the corresponding change in the topology of MFLs. The initial Lorentz

force pushes the plasma from the initial static state and imparts dynamics. To

examine the onset of MRs, in the following, we analyze the evolution of the

two sets c0 = 0.1 and 0.5 separately. For c0 = 0.5, the 3D nulls are located at

lower heights and the corresponding separatrix domes are fairly independent (see

Fig.-5.11). Therefore, we first consider this case.
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5.2.2.1 Set I, c0 = 0.5

Here, the initial magnetic field which consists a pair of 3D nulls and a central

quasi-separator. For a careful inspection of the simulated dynamics, in Fig.-5.13,

we first present the evolution of the transverse field overlaid with the plasma

flow (projected at z = 0 plane) and the Lorentz force at the bottom boundary.

Notable are the reversal of the direction of initial Lorentz force (marked by red

color) with generation of rotational flow (in green color) around the spiral nulls

in the early phase of evolution.

Fig.-5.14 shows the time sequences of the magnetic skeleton of the initial

field B (Fig.-5.11). From Fig.-5.14, notable is the rotation of the separatrix

domes of the 3D nulls. In the figure, black arrows and motion of the blue MFLs

clearly mark the direction of the rotation. The rotation appears to be initiated

by the Lorentz force after t = 3.2s (see Figs.-5.13 and 5.14(a)). Initially, the

rotation is in clockwise direction (Fig.-5.14(b)). This increases the twist and

hence, the tension in the MFLs of the separatrix domes (panel (c)). Eventually,

the magnetic tension changes the direction of rotation and the MFLs rotate in

counter-clockwise direction (panel (d)). The twist of the MFLs then decreases

with time. Such twisting and untwisting rotational motion of the MFLs is ex-

pected to repeat in time and, ultimately, get damped by the viscous drag force.

To investigate the MRs at the 3D nulls, the time evolution of the spine and

the separatrix fan surface of a 3D null located at (3π/2, π/2, 0.44π) is shown

in Fig.-5.15. In the figure, we also plot two sets of MFLs (in yellow) which are

situated under the dome-shaped fan surface at t = 0s. Moreover, to demonstrate

the current sheet formation, we overlay the figure with iso-surfaces of current

density | J | having an iso-value which is 70% of the maximal value of | J |. The

selection of the iso-value is based on an optimization of constructing a smooth

and identifiable iso-surface with a large iso-value. We call these iso-surfaces

J − 70 and identify them as the CSs because they are 2D manifolds and not the

boundaries of 3D volumes. Notably, the yellow MFLs do not appear to co-rotate

with the MFLs of the fan surface (as evident from the motion of the blue MFL).

This seems to generate favorable contortion in the MFLs—making the yellow
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(a)
(b)

(c) (d)

t=0s t=3.2s

Figure 5.13: Evolution of field lines of the transverse field (in cyan color) at
z = 0 plane for c0 = 0.5. The figure is further overplotted with the streamlines
of the flow (in green color), Lorentz force (red arrows) and, the neutral points
(in pink).

MFLs and the MFLs of the fan, non-parallel. Consequently, the CSs develop

in the vicinity of the fan surface (panel (b)). In addition, the yellow MFLs

rise toward the 3D null and, eventually come out of the dome. This is a clear

indication of the change in connectivities of the yellow MFLs, suggesting the

occurrence of torsional fan reconnections at the 3D null (Priest & Pontin, 2009;

Pontin et al., 2013). With reconnections, the CSs dissipate and the contortion

in the MFLs decrease with time (panel (d)). Similar evolution is found for the

other 3D null.

Fig.-5.16 depicts the time profile of the Q-map at the bottom boundary over-

laid with the 3D nulls. To locate the QSLs, we plot the skeleton of the separatrix

surfaces and, then the extra features in the Q-map (marked by QL in Fig.-5.16(a))

are identified as the QSLs (also shown in Fig.-5.12). Relevantly, as mentioned

in Section 2, these QSLs correspond to the X-type nulls of the transverse field

(see Figs.-5.10 and 5.13). To explore the possibility of reconnections near the
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(a) (b)

(c) (d)

t=3.2s t=12.8s

t=32s t=70.4s

Figure 5.14: Evolution of the topological skeleton of B for c0 = 0.5 (Figs.-5.10(c)
and (d)). Panel (a) is overlaid with Lorentz force (red arrows) at the bottom
boundary. The rotation of the separatrix surfaces is evident from the movement
of the blue MFLs (further marked by black arrows).

QSLs, Fig.-5.16 is overlaid with plasma flow (green arrows) near the regions of

three QSLs marked by rectangular boxes in Fig.-5.16(a), as representative cases.

Additionally, the current density | J | having values around 35% of its maxi-

mal value are plotted on a z-constant plane (in pink) situated near the bottom

boundary. Notably, the direction of plasma flow (green arrows) is visibly differ-

ent from the direction of the motion of MFLs (showcased by the blue MFLs) in

the vicinity of the separatrices—a telltale sign of the flipping or slipping of field

lines (Priest & Forbes, 1992; Aulanier et al., 2006; Janvier, 2017). Moreover,

with time, the currents start to appear near the fan separatrix regions (although

remains negligible at (π, π, 0))—further supporting the CS development and the

onset of the reconnections in the vicinity of the separatrices. Under the simu-

lated viscous relaxation, such appearances of the CSs can be attributed to the

autonomous development of the favorable forcing (Kumar et al., 2015b). How-

ever, the strength of the currents near QSLs is almost half of the strength at the

fan surfaces of the 3D nulls (Fig.-5.15)—indicating the reconnections near QSLs
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(a) (b)

(c) (d)

t=0s
t=16s

t=23.04s t=32s

Figure 5.15: Evolution of a 3D null along with the fan surface (represented by
cyan MFLs) for c0 = 0.5. The figure is further overplotted with two sets of
MFLs (in yellow) situated below the dome and the J − 70 surfaces (in pink).
The movement of MFLs of the dome is marked by a blue MFL. Important are
the appearances of the J − 70 surfaces at the fan surface and change in the
connectivities of the yellow MFLs.

to be less energetically efficient than the 3D nulls. This supports the proposal

of Priest & Forbes (1989, 1992) that the more efficient reconnections require the

favorable geometry of MLFs (such as separatrix, QSL, null or separator) as well

as the favorable flows. It appears that both are present at the 3D nulls, while

the favorable flow is missing in the case of the QSL around the point (π, π, 0).

5.2.2.2 Set II, c0 = 0.1

As found in the initial field, the 3D nulls for this case are located at greater heights

in comparison to c0 = 0.5 and the separatrix surfaces touch in the central region

that is located around the line (π, π, z)—leading to an MFL geometry favorable

to MRs. Fig.-5.17 depicts the time sequences of the field lines of the transverse

field during their evolution. The figure also plots plasma flow (denoted by green

arrows) projected on the lower boundary and the Lorentz force (marked by red

arrows). Noticeably, in response to the initial Lorentz force, a rotational flow is

produced near the spiral nulls of the transverse field.
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t=0s t=12.8s
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Figure 5.16: Evolution of 3D nulls with bottom boundary being overplotted with
lnQ (c0 = 0.5). The regions of strong Q in the initial field are marked by QL
in panel (a). We also plot the streamlines of plasma flow (green arrows) near
the three QSLs marked by rectangular boxes in panel (a), some of which are
separatrices. Currents having sufficiently high values are shown at a z-constant
plane (in pink). The motion of the dome MFLs is depicted from the blue MFLs.
The direction of the MFLs movement is largely different from the flow direction—
manifesting the flipping MFLs in the separatrices and QSLs.

To have an overall understanding of the dynamics, in Fig.-5.18, we show the

time sequences of the topological skeleton in the forms of the 3D nulls and the

corresponding spines and separatrix surfaces. The initial Lorentz force (marked

by red arrows in panel (a)) appears to push the footpoints of the separatrix

domes and initiate the rotational motion of the domes (also evident from Fig.-

5.17). When viewed from the top, the rotation is in counter-clockwise direction—

illustrated by the blue MFLs and black arrows. Similar to the case of c0 = 0.5,

it enhances the twist and, consequently, magnetic tension in the MFLs (see Fig.-

5.18(c)) which, finally, reverses the direction of rotation in clockwise direction (cf.

Fig.-5.18(d)). The rotational motion is found to oscillate in time and eventually

gets damped by the viscosity.

To explore the initiation of MRs at the 3D nulls, in Fig.-5.19, we display the

evolution of a 3D null situated at (3π/2, π/2, 0.955π) along with the correspond-
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(a) (b)

(c) (d)

t=0s t=3.2s

Figure 5.17: Time sequences of the transverse field (in cyan color) at the bottom
boundary for c0 = 0.1. The flow (green arrows), the Lorentz force (red arrows)
and the neutral points (in pink) are also overplotted in the figure.

ing separatrix surface. The figure is further overlaid with the J − 70 surfaces

and two sets of magnetic loops of different heights, initially located under the

separatrix dome. Importantly, in this case, the CSs appear to form below the

dome surface and, then extend toward the dome (marked by black arrows in Fig.-

5.19(c)). The figure indicates that the initially parallel yellow and green loops

become increasingly non-parallel and lead to the CS formation. To confirm this,

in Fig.-5.20, we analyze the evolution of MFLs in the vicinity of a J − 70 sur-

face. At t = 0s, the MFLs are in the form of two different loop systems situated

at two different heights (Fig.-5.20(a)). The corresponding MFLs at lower and

higher heights are marked by colors green and yellow respectively. The arrow-

heads represent the directions of the MFLs. These initially parallel MFLs start

to become non-parallel from t ≈ 10s onward, ultimately leading to the appear-

ance of the J−70 surface and its subsequent spatial extension. Such spontaneous

development of CSs is in accordance with the Parker’s magnetostatic theorem.

Further, from Fig.-5.19, as the CSs approach the separatrix surface, the yellow
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(a) (b)

(c) (d)

t=0s t=22.4s

t=32s t=64s

Figure 5.18: Time profile of the magnetic skeleton (3D nulls, separatrix dome
surfaces and spines) of B for c0 = 0.1 (see Figs.-5.10(a) and (b)). Red arrows in
panel (a) show the direction of Lorentz force at the lower boundary. Evident is
rotational motion of the separatrix domes, as illustrated by the blue MFLs and
black arrows.

MFLs move toward the 3D null and change their connectivities from the inner

to the outer connectivity domain. This reveals the onset of the MRs at the 3D

null. Identical dynamics is realized for the other 3D null also (not shown).

Further, to explore the possibility of the reconnections at the QSLs, we show

the time evolution of the topological skeleton superimposed with the Q-map at

the bottom boundary in Fig.-5.21. To keep the presentation tidy, we focus only

on the QSL located around the line (π, π, z) as a representative case. For this

case, the domes almost touch each-other and result-in a favorable MFL geometry

around the line (Fig.-5.11). To clearly illustrate this, in Fig.-5.21, we further

plot two sets of MFLs (in colors purple and green) near the line. Moreover, the

plasma flow (white arrows), tangential to the z = 0 plane, is depicted in the

vicinity of the QSL location. Notably, at t = 0s, the geometry of the purple and

green MFLs is what is expected for a quasi-separator or hyperbolic flux tube.

Under the favorable initial Lorentz force (marked by red arrows in panel (a)),
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(a) (b)

(c) (d)

t=0s t=16s

t=28.8s t=38.4s

Figure 5.19: Time evolution of a 3D null with the fan surface and spine (denoted
by cyan MFLs) for c0 = 0.1. The figure is further overlaid with two sets of
magnetic loops located at different heights (in colors green and yellow) under
the fan surface at t = 0s and, the J − 70 surfaces (in pink). The motion of dome
MFLs can be tracked by a blue MFL. Notable are the appearances of the J − 70
surfaces inside the fan surface which later extend toward the fan (marked by black
arrows in panel (c)). With time, the yellow MFLs change their connectivities.

the oppositely directed purple and green MFLs are pushed toward each other.

With time, the MFLs appear to change their connectivities, as evident from the

panels (b)-(d) of the figure. This is a marker of reconnections, which repeat in

time, near the QSL. The post-reconnection MFLs move away from central region

around the line (π, π, z) because of the plasma flow (panel (d)). Here also, like

c0 = 0.5, the CSs develop near the QSL location (not shown). For c0 = 0.1,

the rotating separatrix domes being in close proximity, interact rather strongly

about the (π, π, z) line and cause the reconnections at the QSL that are more

prominent in comparison to the case c0 = 0.5. Identical dynamical evolution is

observed near the other QSLs located above the X-type nulls of the transverse

field (Fig.-5.10(a)) for c0 = 0.1 which is not presented here.

To have an overall comparison of the dynamics for c0 = 0.5 and c0 = 0.1,

in Fig.-5.22, the histories of kinetic and magnetic energies (normalized to the

corresponding initial total energies) are plotted for c0 = 0.1 and 0.5. For both the
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(a) t=0s (b) t=12.8s

(c) t=16s (d) t=22.4s

Figure 5.20: Time evolution of MFLs in the vicinity of a J − 70 surface for
c0 = 0.1. Initially, the MFLs are in form of closed parallel loops situated at two
different heights (panel (a)). As time progresses, the loops become increasingly
non-parallel, resulting in the formation of CS.

(a) (b)

(c) (d)

ln Q

t=0s t=6.4s

t=9.6s t=16s

Figure 5.21: Time profile of 3D nulls with lnQ being superimposed at the lower
boundary for c0 = 0.1. Two sets of MFLs (in colors purple and green) are
plotted near the QSL located in the central region around (π, π, z). The figure
also shows the streamlines of plasma flow (grey arrows) and initial Lorentz force
(red arrows) near the QSL. Notable is the change in the topology of the purple
and green MFLs.
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cases, the plasma flow is generated via the corresponding initial Lorentz force and

the MRs. Subsequently, the flow gets arrested by the viscous drag, leading to the

formation of peaks in kinetic energy plots. From Eq.-5.20, evident is the larger

magnitude of the Lorentz force for c0 = 0.5 than c0 = 0.1. Although, the height

of kinetic energy peaks for c0 = 0.1 is greater in comparison to c0 = 0.5 (top

panel of Fig.-5.22). In addition, the depletion of the magnetic energy is larger for

c0 = 0.1 (around 24% from its initial value) than c0 = 0.5 (approximately 10%

from the corresponding initial value), as shown in the bottom panel of Fig.-5.22.

The higher peak height of the kinetic energy and larger decay of the magnetic

energy for c0 = 0.1 case (along with a lower magnitude of initial Lorentz force)

indicate that the MRs for c0 = 0.1 case are more energetically efficient and

generate stronger flow than c0 = 0.5 case. We note that, with an identical

MFL geometry in the vicinity of the 3D nulls, reconnections at the 3D nulls are

expected to be similar for both the cases. Then, the reconnections at the QSLs

for c0 = 0.1 are expected to be more energetically efficient than the ones for

c0 = 0.5. This can be attributed to the existence of the more favorable MFL

geometry and flow near the QSLs (as illustrated near the central region around

(π, π, z)) for c0 = 0.1 than c0 = 0.5 (Kumar et al., 2015b).

5.3 Inferences

The presented simulations make the concept of spontaneous generation of 3D

nulls in nature credible. An extension of the idea to the solar corona is inter-

esting. The quiescent corona, being in approximate equilibrium, is expected to

have 3D nulls. The slow photospheric motion deforms the anchored field lines,

increasing their magnetic energy and eventually attaining a state favorable for

MRs. The motion, being at a rate much slower than the coronal reconnection,

can be neglected and with no loss of generality the field lines can be idealized

to be in a steady state just prior to an eruptive event. Consequently, during the

eruptive event a monotonic decay of magnetic energy is assured which leads to

secondary 3D nulls, and the whole process repeats itself culminating into repeated
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Figure 5.22: Histories of kinetic (top panel) and magnetic (bottom panel) ener-
gies for c0 = 0.1 and c0 = 0.5. The solid line is for c0 = 0.1, while the dashed
line corresponds to c0 = 0.5. The energies are normalized to the initial total
energies. Notable is the higher height of the peaks in the kinetic energy and the
larger decay of the magnetic energy for c0 = 0.1 than c0 = 0.5.

reconnections. Such repeated reconnections can influence the coronal dynamics.

Admittedly, these inferences are based on a limited number of case studies that

only concur with the idea rather than providing a rigorous proof. However, hav-

ing the ubiquity of 3D nulls in an equilibrium magnetofluid is thought-provoking

and merits further attention.

Then, the mere presence of QSLs in initial field is not sufficient to initiate

energetically efficient reconnections. The nature and magnitude of the flow is

equally crucial in commencing such reconnections. Noticeably, the presented

simulations identify the rotation of the MFLs associated with the dome-shaped



5.3. Inferences 133

fan surfaces of the 3D nulls—also observed in the solar corona. Interestingly,

under similar magnetic configuration used in the simulations, a physical scenario

can be envisioned in which the charged particles accelerated through MRs at 3D

nulls located in the corona can move along the MFLs of dome-shaped fan surfaces

and potentially cause the observed circular brightening in the denser lower solar

atmosphere during solar flares. In addition, the spontaneous development of the

CSs can be crucial to the coronal heating.





Chapter 6

Summary and Future Scopes

6.1 Summary of The Thesis Work

The thesis explores the role of magnetic field and electric current in relation to

magnetic reconnections which, are primarily responsible for the solar transients.

Abundant observational evidences document the importance of magnetic topol-

ogy at the sites of reconnection in piling up and releasing the magnetic energy

while driving the transients. Specifically, the active region transients are crucial

because of their impact on space weather and are routinely observed in high

spatial and temporal resolutions.

Over the years, attempts are made to obtain the coronal magnetic field by an

indirect approach—the extrapolation techniques. Several algorithms have been

devised to model the coronal magnetic field using the state-of-the-art photo-

spheric vector magnetograms. Standalone numerical simulations have also been

performed to understand the dynamics during the activities.

In the above backdrop, the focus of the thesis is to study magnetic topology

responsible for reconnection in different solar transients, varying temporally and

spatially over large ranges. The topologies are identified by using the non-force-

free-field extrapolation model for the corona. The advantage in using this model

is its ability to mimic the real corona where Lorentz force is non-zero on the pho-

tosphere but drops sharply with height. The photospheric magnetogram data

from HMI/SDO are employed for extrapolations reported in the thesis. The ex-
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trapolated magnetic field lines are also compared with the observational features

extracted from AIA/SDO to add further credibility. In the extrapolated field,

we find the presence of different magnetic topologies viz. magnetic null points,

QSLs, magnetic flux ropes near the vicinity of the transients. Primarily the

reconnection onsets at the null points and quasi-separatrix layers, subsequently

sustaining the transients. Notable is the good quantitative and qualitative cor-

relation between the extrapolated and the observed magnetic structures.

To understand the topological evolution during the events, MHD simulations

are carried out. For the purpose, we have utilized the well established magne-

tohydrodynamic code, EULAG-MHD model. The simulation is started with the

extrapolated field and the non-zero Lorentz force drives the plasma to generate

mass flow. The evolution relaxes to a terminal quasi-steady state by dissipat-

ing magnetic and kinetic energies via reconnection and viscous dissipation. The

simulation covers the duration from start time to end time of all the events. The

findings from the data-constrained simulations are condensed below.

1. In the study of a blowout jet, the eruption in the simulation is caused by

the presence of null points and flux rope (mini-filament) that excellently

matches with the existing conjecture for a blowout jet model. Whereas, the

flare occurring possibly simultaneously is the result of reconnection near

the null point and quasi-separatrix layer.

2. The study of an eruptive X-class flare highlights the effect of a complex

and multiple flux system on the reconnection process. Most of the ob-

served aspects are captured profoundly by both the extrapolation and the

corresponding simulated dynamics.

3. In the case of a circular flare ribbon, we again find a 3D null point in

the proximity of the flaring region in the extrapolation. The corresponding

simulation successfully explains the genesis of the the flare and flare ribbon

by exhibiting the dynamics of the field lines topology associated to the null

point.
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The extrapolation and simulation of transients not only explain the observed

phenomena but also highlights the importance of reconnection sites. Generally,

the extrapolated fields exhibit the presence of null points co-located with the

transients. However, their generation in the corona is non-trivial. Their effect

on reconnection in the simultaneous presence of other potential sites is again

intriguing. To explore these problems,

1. by our two way approaches with analytical fields, we have shown the genera-

tion of 3D null points spontaneously as a dissipative self-organized state for

a plasma similar to the solar corona. The simulations show many promising

results like formation of current in the topological system and preservation

of topological degree even when morphed from the original configuration

and importantly may explain the ubiquitous nature of the 3D nulls in the

solar atmosphere.

2. in the second study, we investigate the reconnection process in a system

accompanying 3D nulls and QSLs concurrently. Here too, we have varied

the initial magnetic field with different strength of Lorentz force and with

topological complexity. In one case, the 3D nulls lead in driving the re-

connection with preferable Lorentz force whereas in the second case, the

reconnection is guided by the QSLs with generation of suitable plasma flow.

This encourages us to examine reconnection carefully while analyzing the

transients with such complex topologies.

The inference of the thesis can be summarized as the reconnection in 3D

is definitely complex, particularly owing to the presence of different topologies.

Study of different transients culminates to the understanding that a single geom-

etry can lead to different transients, which indicates the requirement of further

research to identify the building blocks of reconnection exquisitely. The null

points indeed play a crucial role in dictating the process of reconnection in spite

of presence of other plausible topologies. Due to their ubiquity, the 3D nulls,

along with the QSLs can help in explaining the upper atmospheric dynamics like

solar wind generation and can be an important area of future research.
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The non-force-free-field extrapolation technique is efficient in obtaining the

coronal magnetic field. One of the advantages of this model will be its em-

ployment into the upcoming high-resolution data sets, where the force-free-field

approximation at the bottom boundary is inaccurate. Though it is natural, but

an attempt to study different transients at different layers with multi-instrument

data sets, accompanied with numerical modeling will help in understanding the

multifaceted reconnection process in solar atmosphere as well as in other astro-

physical phenomena.

6.2 Future scopes

The thesis work can be extended

1. to develop a more realistic model like a data-driven EULAG-MHD model

for the study of transients. In their work, (Tiwari et al., 2014, 2019) point

out the role of magnetic flux changes on the photospheric layer in influenc-

ing the transients in the upper layer of the atmosphere like chromosphere

and lower corona. Majorly reported is the flux cancellation that primarily

affect the disturbances. Hence, in this direction, the extended work will

focus on the incorporation of variable bottom boundary particularly on

varying the line-of-sight component of the magnetic field with updating

observed plasma flow.

2. to study the small scale transients are important in understanding the long-

standing coronal heating problem. According to Parker’s nano-flare model

(Parker, 1988), the magnetic field upon small and any arbitrary pertur-

bation, will relax to a state with tangential discontinuity assisting recon-

nection and dissipation of energy (Pontin & Hornig, 2020). The process is

known as the topological dissipation or the idea as Parker problem. There

are several attempts are continuously being made to address the problem

by studying micro/nano flares both observationally or with the numerical

simulation to capture the source of heating in the solar corona. The the-

sis will focus on this aspect with multi-instrument and high-resolution data
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sets to explore the contribution of these small scale energetic to the heating

and mass motions of the corona.





Appendix A

Appendix

A.1 Ideal limit of MHD, RM � 1

Under the ideal limit the induction equation is,

∂B/∂t−∇× (v ×B) = 0, (A.1)

which helps the magnetic field lines to be tied with the plasma parcel as the

flux-freezing condition holds.

Alfvén’s flux-freezing theorem: In a perfectly conducting plasma, the mag-

netic flux through any closed contour in the plasma, each element of which moves

with the local plasma velocity, is a conserved quantity.

Proof: To prove the above statement, we need to show that the rate of change

of magnetic flux in a closed contour moving with a local plasma velocity remains

constant with time.

Let’s consider a surface S bounded by a closed contour C, which moves with

a plasma velocity. Then an elementary magnetic flux φ, for a constant magnetic

field, through an infinitesimal area dA is

dφ = B · n̂dA, (A.2)

where B is a constant magnetic field and n̂ is the unit vector normal to A. The

change in the flux will be achieved by

141



142 Chapter A. Appendix

1. change in magnetic field strength crossing at a fixed location with time

(∂B
∂t
· n̂dA), and

2. the change in the magnetic field at two points separated by an infinitesimal

length dl moving with velocity v with respect to time (B · (v× dl)).

Combining these, we can write the total flux change through the contour C,

d

dt

∫
S

B · n̂dA =

∫
S

∂B

∂t
+

∫
C

B · (v× dl). (A.3)

Using vector identity, a · (b× c) = (a× b) · c, the second term on the R.H.S. of

Eq.-A.3 can be transformed to

B · (v× dl) = −(v×B) · dl. (A.4)

Now, Eq.-A.3 can be cast as,

d

dt

∫
S

B · n̂dA =

∫
S

∂B

∂t
· n̂dA−

∫
C

(v×B) · dl. (A.5)

According to Stoke’s theorem,

∫
C

(v×B) · dl =

∫
S

(∇× (v×B)) · n̂dA, (A.6)

Therefore, Eq.-A.5 becomes

d

dt

∫
S

B · n̂dA =

∫
S

(
∂B

∂t
−∇× (v×B)) · n̂dA, (A.7)

Applying induction equation, the Eq.-A.7 turns out to be

d

dt

∫
S

B · n̂dA = 0, (A.8)

hence, the magnetic flux remains conserved.
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A.2 Diffusive limit of MHD, RM � 1

In the diffusive limit of MHD, the induction equation is

∂B/∂t = λ∇2B. (A.9)

above equation has a solution

B = B0 exp(−t/τd) (A.10)

where τd = L2/λ. In the above expression, L ≡ length scale over which magnetic

field varies and λ ≡ magnetic diffusivity. Evidently, the magnetic field diffuses

faster for a smaller length scale.
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Régnier, S. 2013, Solar Phys., 288, 481
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