
Theoretical Studies of Cosmological
Models In The Light of Experimental

Observations

A Thesis

submitted for the Award of Ph.D. degree of

MOHANLAL SUKHADIA UNIVERSITY

in the

Faculty of Science

By

Moumita Das

Under the Supervision of

Prof. Subhendra Mohanty

Professor
Theoretical Physics Division

Physical Research Laboratory, Ahmedabad, India.

DEPARTMENT OF PHYSICS
FACULTY OF SCIENCE

MOHANLAL SUKHADIA UNIVERSITY
UDAIPUR (RAJ)

Year of submission: 2012





To

my parents





DECLARATION

I, Mrs. Moumita Das, D/o Dr. Chitta Ranjan Kar, resident of

A-1, PRL residences, Navrangpura, Ahmedabad 380009, hereby declare that

the research work incorporated in the present thesis entitled, “Theoretical

Studies of Cosmological Models In The Light of Experimental Ob-

servations” is my own work and is original. This work (in part or in full) has

not been submitted to any University for the award of a Degree or a Diploma.

I have properly acknowledged the material collected from secondary sources

wherever required. I solely own the responsibility for the originality of the

entire content.

Date:

Signature of the candidate





CERTIFICATE

I feel great pleasure in certifying that the thesis entitled, “Theoretical

Studies of Cosmological Models In The Light of Experimental Ob-

servations” by Mrs. Moumita Das under my guidance. She has completed

the following requirements as per Ph.D regulations of the University.

(a) Course work as per the university rules.

(b) Residential requirements of the university.

(c) Regularly submitted six monthly progress reports.

(d) Presented her work in the departmental committee.

(e) Published/accepted minimum of one research paper in a referred re-

search journal.

I recommend the submission of thesis.

Date:

Prof. Subhendra Mohanty

(Thesis Supervisor)

Professor, THEPH,

Physical Research Laboratory,

Ahmedabad - 380 009.

Countersigned by

Head of the Department





i

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advi-

sor Prof. Subhendra Mohanty for the continuous support during my Ph.D.

study and research, with his patience, motivation, enthusiasm, and immense

knowledge. His guidance helped me throughout my research period and prepar-

ing of this thesis. The courses, taken by him during PhD, help to understand

the subject. The way, he explained the subject in a simple manner, enrich my

knowledge to do the research. I could not have imagined having a better advisor

and mentor for my PhD studies other than him.

I thank Prof. Saurabh Rindani, Dr. Srubabati Goswami, Dr. Raghavan

Rangarajan, Dr. Dilip Angom, Dr. Namit Mahajan, Dr. Partha Konar, and

Dr. D. K. Gosh for the courses they taught and many fruitful discussions.

They were always very much encouraging and supportive and made me feel

comfortable.

Dr. Raghavan Rangarajan took the initiative to organise ‘cosmology journal

club’. It is good platform to discuss the recent topics in our research. I want to

acknowledge our cosmology group members namely, Dr. Raghavan Rangara-

jan, Prof. Subhendra Mohanty, Dr. Jitesh Bhatt, Dr. Namit Mahajan, Dr.

Anjishnu Sarkar, Sasmita Mishra, Abhishek Basak, Tanushree Basak, Gaurav

Tomar and Girish Chakravarty for valuable discussions.

I thank Prof. J. N. Goswami, the Director, Prof. Utpal Sarkar and Prof.

A. K. Singhvi, former Deans, and Prof. Anjan Joshipura, Dean of PRL for

providing necessary facilities and encouragements to carry out research work.

I thank all the staffs of PRL computer center for providing excellent com-

putational and internet facilities.

I specially thank Jayati Chatterjee, Pravin Vaity, Bikkina Srinivas, Rajput

Prasant, Tapas Baug, Suman Acharyya, Shivani Gupta, Ketan Patel, Paramita

Deb, Bhaswar Chatterji, Amazad Hussain Laskar, MD. Rabiul Haque Biswas,

Soumya Rao, Siddhartha Chattopadhyay, Joydeep Chakrabortty and Subrata

Khan for there unconditional support and many memorable experiences with

them.



ii

I would like to thank my parents and my sister, Mim for their love, en-

couragement and support in all my pursuits, for being encouraging and patient

with constant support during all the stages of this Ph.D. Finally, I would like

to thank my husband, Saurabh Das. He is always there cheering me up and

stood by me through the good times and bad.

The final words of my thesis are dedicated to those people whose name might

be unsaid in this section but was always with me and helped me to choose the

right direction during the last few years.

Moumita



iii

ABSTRACT

Measurement of large angle correlations in the cosmic microwave background

(CMB) anisotropy by COBE and WMAP experiments indicates that the uni-

verse went through a period of accelerated expansion in the past known as

inflation. Inflation not only explains the long standing horizon and flatness

problems of standard hot-big bang cosmology, it can also describe the struc-

ture formation very well in addition to the cosmic microwave anisotropy. In

general, inflation is driven by the scalar field, which is known as inflaton. In

this thesis we study the consequences of assumption that the Higgs field of the

standard model can be the inflaton.

It is known that non-minimal coupling of the Higgs and gravity sector is

needed to create a successful model of Higgs inflation. In this thesis we study

magnetic field generation in the curvature coupled Higgs inflation model. It

not only explains the magnitude of experimentally observed magnetic field at

large scales, we also show that in this model there is no problem of back-

reaction on the inflaton potential, which is normally seen in the generation of

magnetic field studied in generic inflation model.

It is also known that in a potential with a large negative quartic coupling

of a conformally coupled scalar field, one can generate scale invariant density

perturbations to explain the structure formation of the universe and the CMB

anisotropy. In this thesis we have implemented this idea in realistic inert dou-

blet model. We show that we can generate the observed spectrum of the CMB

anisotropy in this model by a suitable choice of the scalar Higgs couplings.

With this choice of parameter one can tune the couplings to give a Higgs mass

around 125.6 GeV along with light scalar dark matter candidate of mass 33.7

GeV which may be detected in the experiments.

In last part of this thesis we discuss the study of vacuum stability of the

standard model Higgs potential which is the condition that the Higgs quartic

coupling does not become negative under renormalization, all the way upto

the Planck scale. In particular we study the phenomenological constraints

on the heavy neutrino of Type-I seesaw models from the criterion of Higgs
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vacuum stability. We find that the Dirac mass of the neutrino is constrained

to mD ≤ 24.36 GeV through the bound on the neutrino Yukawa coupling,

Yν ≤ 0.14. This has application on the phenomenology of TeV scale heavy

neutrinos, which can be tested in Large Hadron Collider. The three aspect of

the heavy neutrino phenomenology, namely, Neutrino-less double beta decay

(0νββ), Lepton flavor violating decays like µ → eγ and Like-sign dilepton

signals are studied in the light of the vacuum stability condition.
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Chapter 1

Introduction

This chapter is the preface of this thesis. It helps to understand the motivation

and importance of the thesis in current status of the particle and astroparticle

physics.

1



2 Chapter 1. Introduction

The standard model (SM) is completely established with the discovery of

the last remaining particle, the Higgs bosons [1]. The discovery of the Higgs

particle opens up channels of model building where the Higgs particle may be

useful in solving existing problems of cosmology and astroparticle physics. In

this thesis we examine several issues where the Higgs plays a role in the stan-

dard model or in the models which extend the standard model. One primary

area of cosmology is the theory of inflation, which is motivated by the obser-

vation of super-horizon correlations in the temperature anisotropy of cosmic

microwave background observed by COBE [2, 3] and WMAP [4] satellite based

experiments. While cosmological paradigm of inflation is generally accepted

by cosmologists and particle physicists, however, there is no specific particle

theory model of inflation which is universally accepted. The standard inflation

model requires a scalar field which should have very small interactions with

other particles and itself. This restricts severely the particle physics candidates

which can serve as the ‘inflaton’, responsible for inflation.

In the standard model of electroweak interactions a scalar particle namely,

the Higgs boson, is needed for making the theory renormalizable. The Higgs

boson has finally been confirmed and focus now shifts to studying its couplings

with other particles and to determine whether it is the Higgs boson of the

standard model or its one of the many Higgs bosons of models beyond the SM

like Supersymmetry and Inert-Higgs models. The main purpose of the models

beyond the SM is to solve the problem of protecting the Higgs boson mass

from getting quadratic divergence by loop corrections. If SM is an effective

theory, which has a cutoff at some scale Λ, which may be the GUT scale 1016

GeV, then corrections to the Higgs mass m2
h are expected to be of the order

Λ2. This problem is solved by Supersymmetry and also by Inert-Higgs doublet

model.

One more sector of particle physics, which directly involves the Higgs cou-

plings, is the see-saw models of neutrino masses. In the simplest version, called

Type-I see-saw, one introduces a number of right handed gauge singlet neu-

trinos, which can then form a gauge singlet Yukawa coupling term with the
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left-handed neutrinos of the standard model and the Higgs doublet. After elec-

troweak symmetry breaking, when the neutral component of the Higgs gets a

non-zero vacuum expectation value (vev), the neutrinos get Dirac mass. In

addition the right-handed neutrinos can have a large Majorana mass. When

the mass matrix of the light+heavy neutrinos is diagonalised, it is seen that the

light neutrino masses is suppressed by the heavy neutrino mass scale. This is

called the see-saw mechanism which accounts for the observed small neutrino

masses.

In this thesis we have studied the consequences of the standard model Higgs

and its variants in cosmology and particle physics phenomenology. The SM

Higgs has been proposed as a candidate for being the inflaton by F. L. Bezrukov

and M. E. Shaposhnikov [5]. There is a problem that the Higgs self cou-

pling λ ∼ 0.1, whereas to generate the observed CMB anisotropy amplitude

∆T/T ∼ 10−5 and spectral index ns = 0.96± 0.01, the value of the quadratic

coupling needed is λ ∼ 10−12. This problem is solved by introducing a large

curvature coupling for the Higgs ξφ2R with ξ ∼ 104. This large coupling leads

to a problem of non-unitary Higgs-graviton couplings and this aspect is being

actively investigated [6, 7, 8, 9, 10, 11, 12]. We have investigated the idea of

using the Higgs inflation model for generating the observed large scale mag-

netic fields in the universe. We start with the conformal symmetry breaking

coupling of the Higgs with the photons which arises form loop corrections and

add this interaction to the Higgs inflation model. We see that the Higgs pho-

ton coupling can generate a large scale magnetic field when the Higgs rolls

down the inflaton potential. This mechanism has the advantages over simi-

lar inflaton-photon coupling terms, which can generate magnetic fields, that

there is no problem of back-reaction due to the large curvature coupling. The

Higgs-photon coupling term does not dominate the Higgs potential term as it

is suppressed by the curvature coupling ξ.

The standard model of inflation involves a slow-roll potential where the

inflaton potential term dominates the kinetic energy term. This gives rise to

an exponential expansion of the universe which is responsible for the solving
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the horizon and flatness problems of cosmology but in addition it gives rise to

scale-invariant density perturbations. One method of creating scale invariant

density perturbations which does not need a slow roll potential was pointed out

by Rubakov [13]. He showed that if a scalar is conformally coupled to gravity

and it has a negative quartic potential where the radial part rolls down, then

the phase of the scalar field has a scale invariant density perturbations. We

apply this idea in the inert Higgs doublet model where we show that in the

early universe the inert Higgs has a negative quartic potential and one can

generate the observed scale invariant density perturbations without involving

order 10−12 coupling constants. In addition the parameters of this model can

be chosen to give correct Higgs mass of 125-126 GeV and viable dark matter

candidate.

The mass of the Higgs boson lies in the range 125-126 GeV which is close

to the vacuum stability limit [14, 15, 16, 17]. This Higgs mass corresponds to

a Higgs self coupling of λ ∼ 0.13 at the electroweak scale. The idea of vacuum

stability is that the λ(µ) should remain positive for all µ upto the Planck scale

otherwise the universe will roll down the negative potential making the vacuum

unstable. This mass range of Higgs implies that any new physics which has

interaction with the Higgs will influence the vacuum stability and therefore

the vacuum stability condition can be used for constraining new physics. In

this thesis we study the Type-I seesaw models where the neutrino Yukawa

couplings change the renormalization group running of the Higgs coupling λ.

So the vacuum stability condition implies that the neutrino Dirac mass cannot

be larger than 20 GeV. This has important consequences for neutrino mass

models and heavy neutrino phenomenology which we study in detail.



Chapter 2

Review of cosmological theory

of Inflation

This chapter summarizes the previous work done in the proposed area of this

thesis. It contains the standard model of cosmology and its success and draw-

backs. This chapter describes how inflation can solves the problem of Big-bang

model. Description of the inflationary dynamics and different kinds of infla-

tion models are presented in this chapter. This chapter also includes the Higgs

inflation model. The last section of this chapter describes the study of vacuum

stability for the standard model Higgs.

5



6 Chapter 2. Review of cosmological theory of Inflation

2.1 Standard Model of Cosmology

Cosmological model of the universe predicts about the early stage of the uni-

verse. Big-bang theory is one of the successful cosmological models in ex-

plaining the early universe. This can be regarded as the starting point in our

understanding of the evolution of the universe. According to this theory, the

universe was extremely hot and dense about 12 to 14 billion years ago. After-

wards the universe started expansion and continues till date. The idea of ex-

panding universe is mainly based on the observation of American astronomer,

Edwin Hubble in 1929 and the observation was that the redshift of galaxies

are proportional to their distances. The expansion caused the hot universe to

cool down to the present stage and during this, it produced the matter. Hence

the radiation decoupled from matter and continued travel through the space

mostly without any hindrance. This radiation is known as Cosmic Microwave

Background Radiation (CMBR). The discovery of CMBR by Arno Penzias

and Robert Wilson in 1964 satisfied this theory from observational point of

view. This theory rests on two theoretical pillars, one is “General Theory of

Relativity” and the other one is the assumption, known as “Cosmological prin-

ciple”, that the universe is homogeneous and isotropic. Knowledge of General

Relativity helps to understand the cosmology. The realization of the space is

done by the Friedmann-Robertson-Walker metric (FRW) as follows,

gµν =

















−1 0 0 0

0 a(t)2 0 0

0 0 a(t)2 0

0 0 0 a(t)2

















(2.1)

where a(t) denotes the scale factor of the universe. The Einstein equation

relates the space with matter in universe [18],

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν (2.2)
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where Gµν and G are Einstein tensor and constant, Rµν and R are Ricci tensor

and scalar, which depend on the metric gµν , Tµν is the energy momentum

tensor. Using Tµν = (p + ρ)uµuν + pgµν , we can solve the Einstein equation,

which gives the following Friedmann equations,

(

ȧ

a

)2

=
8πG

3
ρ− κ

a2
(2.3)

ä

a
= −4πG

3
(ρ+ 3p) (2.4)

where dot signifies the derivative with respect to time and ȧ
a
denotes the Hub-

ble parameter and its present value is, 71.0 ± 2.5 km/s/Mpc [19]. Here κ

indicates the curvature and κ = (+1, 0,−1) respectively denotes closed, flat

and open universe. The Friedmann equation alone is not sufficient to describe

the universe and we need the fluid equation,

ρ̇

ρ
= −3 (1 + ω)

ȧ

a
(2.5)

where ω ≡ p/ρ signifies the equation of state. Different values of ω describes

the different era of the universe as follows,

• Matter dominated era:

ω = 0, ρ ∝ 1
a3

and a ∝ t2/3

• Radiation dominated era:

ω = 1
3
, ρ ∝ 1

a4
and a ∝ t1/2

• Era dominated by cosmological constant: ω = −1, ρ = Constant and

a ∝ eHt

The density of the universe is defined by the density parameter Ω as follows,

Ω ≡ ρ(t)

ρc
(2.6)

where ρc = 3H2

8πG
is the critical density. The values of Ω > 1, = 1 and <

1 describe the closed, flat and open universe respectively. Eq. (2.3) can be
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rewritten in terms of the density parameter Ω as follows,

Ω− 1 =
κ

a2H2
(2.7)

In spite of its success, Big-bang theory has unsolved problems such as

Flatness problem and Horizon problem.

2.1.1 Flatness problem

Observations reveals that the density parameter at present Ω ≃ 1 and hence

the total energy density is almost equal to the critical energy density. If at

present day, Ω is exactly equal to 1, then it has always been equal to one.

However if Ω ≃ 1 at present era, then it was extremely close to 1 at the time

of the Hot Big Bang and extrapolating back in times gives Ω = 1± 1× 10−60

at that time. In order to get the correct value of Ω at present, the value of

Ω at early times has to be fine-tuned to the value amazingly close to zero,

but without being exactly zero. Hence this flatness problem is also known as

“fine-tuning problem”.

2.1.2 Horizon problem

Decoupling of the photons, from matter, produced Cosmic Microwave Back-

ground radiation at “Last scattering surface” with red shift of z ≃ 1100. The

red shift, z can be defined in terms of scale factor as,

1 + z ≡ a(t0)

a(t)
(2.8)

where a(t0) denotes the scale factor at present universe. Detection of CMBR

reveals the snapshot of the universe of age around 300, 000 years old. This

CMBR can be described by the a black body at temperature 2.73 K. If RH(t0)

denotes the present Hubble radius, then it was correspond to the length scale
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λH(tLS) at the time of last scattering surface and is given by,

λH(tLS) = RH(t0)
aLS
a0

= RH(t0)
T0
TLS

(2.9)

However the Hubble length was decreased with a different law during the

matter-dominated period,

H2 ∝ a−3 ∝ T 3 (2.10)

Hence at last scattering surface horizon was,

H−1
LS = RH(t0)

(

TLS
T0

)−3/2

(2.11)

and it is much smaller than RH(t0). Comparing the volumes corresponding to

these two era gives,

λ3H(tLS)

H−3
LS

=

(

T0
TLS

)−3/2

≈ 106 (2.12)

The volume, which corresponds to our horizon, contained ∼ 106 number of

casually disconnected regions in the past.

2.2 Historical developments of Inflation

These unsolved problems of Big-bang model motivated people to modify or

extend this theory without losing its successful predictions. In 1980, an Amer-

ican physicist, Alan Guth was came up with the new idea, called Inflation [20].

This hypothesis is based on scalar field with first order phase transition.

The idea of inflation is a leading contender as a cosmological theory. In

inflationary epoch, universe underwent an era of exponential expansion. Infla-

tion can give the resolution to the flatness problem. During the inflationary

period, space-time expanded to such an extent that its curvature have been

smoothed out and driven the Universe to a very nearly spatially flat state,



10 Chapter 2. Review of cosmological theory of Inflation

with almost exactly the critical density. This exponential expansion pushed

the large regions of space well beyond our observable horizon and solved the

Horizon problem. Inflation can also help to understand the problem of mag-

netic monopole. Due to the rapid expansion, inflation can dilute the abundance

of these objects to such an extent that it can not be measured. This idea of

inflation not only explains the long standing horizon and flatness problems of

cosmology but also generates a scale invariant density perturbations needed to

explain the galaxy formation.

2.3 Inflation solves the Flatness and Horizon

problems

2.3.1 Flatness problem

Flatness, which is also known as fine-tuning problem can be solved in the

inflation model. From Eq. (2.7), the relation of density parameter with Hubble

parameter and scale factor is given by,

Ω− 1 =
κ

a2H2
∝ 1

a2
(2.13)

considering Hubble parameter, H remains constant in inflationary era. At

present era, it is,

Ω0 − 1 ∼ 1 (2.14)

where 0 denotes the present epoch. Extrapolation of this present day value to

the beginning of radiation-dominated era gives,

|Ω− 1| ∼ 10−60 (2.15)

As the staring of the radiation era is considered as the end of inflation t = tf ,

|Ω− 1|t=tf ∼ 10−60. If we consider at the starting of inflation, |Ω− 1|t=ti ∼ 1,



2.3. Inflation solves the Flatness and Horizon problems 11

then it can be decreased upto |Ω − 1|t=tf ∼ 10−60, by considering N ≈ 70,

number of e-foldings as follows,

|Ω− 1|t=tf

|Ω− 1|t=ti

=

(

ai
af

)2

= e−2N (2.16)

Hence we can avoid the fine tuning and solve the flatness problem in inflation-

ary models.

2.3.2 Horizon problem

The physical scales which are larger than horizon scale during radiation-dominated

or matter-dominated era, left the horizon. However the presence of sufficiently

long inflation period can exponentially reduce these physical scales and these

scales reentered the horizon afterwards. Microphysics can act on these scales

as they are within the horizon and hence help to create approximately homo-

geneous universe. It can also resolve the issues relating to the homogeneity of

CMB and the initial conditions for cosmological perturbations.

The largest scale, we observed today, is the present horizon H−1
0 and during

inflation, the scale λH0
(ti), which corresponds to H−1

0 at present, should be

smaller than the horizon length during inflation H−1
I . This is the necessary

condition to solve the horizon problem and now we can find out the number

of e-foldings required for this condition as follows,

λH0
(ti) = H−1

0

(

atf
at0

)(

ati
atf

)

= H−1
0

(

T0
Tf

)

e−N ≤ H−1
I (2.17)

where Tf denotes the temperature at the end of inflation and also signifies the

reheating temperature. The simplification of Eq. (2.17) gives,

N ≥ ln

(

T0
H0

)

− ln

(

Tf
HI

)

≈ 67 + ln

(

Tf
HI

)

(2.18)

Hence number of e-foldings, N ≥ 70 can solve the horizon problem.

To have the inflation in past, the scalar field with high energy density is
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required to be present at that time. This scalar field is known as Inflaton.

In 1982, Linde, Albrecht and Steinhardt amongst other gave a new model for

inflation [21, 22]. In subsequent years, the different idea for inflation came up

in the literature such as Chaotic inflation, Hybrid inflation, Power-law inflation

etc.

2.4 Basic of Inflation Model

In the next section, basics of the inflation models are provided for completeness

of the theory.

2.4.1 Inflationary Dynamics

Idea of inflation is not the replacement to Big-bang model, rather accompany-

ing with it, inflation can solve the cosmological problems. Inflation is defined

as an epoch during which scale factor is accelerating,

ä > 0 (2.19)

In this era, the universe underwent exponential expansion. This relation can

be reconstructed into the condition for equation of state (ω = p/ρ). From 2nd

Friedmann equation, (2.4), we find

(ρ+ 3p) < 0 (2.20)

p < −ρ
3

(2.21)

As the energy density is always a positive quantity, the pressure should be

negative for the occurrence of the inflation.

The candidate responsible for inflation can be the simple scalar field, which

can easily satisfy the criteria for negative pressure. The recent measurement

of ATLAS and CMS [1, 23, 24] have confirmed the existence of a new boson

which has mass in the range 126.5 GeV (ATLAS at 5.0σ) and 125.3±0.6 GeV
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(CMS at 4.9σ), and it is expected to be a Standard Model Higgs.

The Lagrangian which describes the inflaton field is as follows,

L = −1

2
gµν∂µφ∂νφ− V (φ) (2.22)

The stress energy momentum tensor will be,

Tµν = (p+ ρ)uµuν + pgµν (2.23)

where uµ is 4-velocity, ρ is density, p is pressure and T 00 and Tii are defined

as ρ and p δii, respectively. Using the Lagrangian in Eq. (2.22) and the stress

energy momentum tensor in Eq. (2.23), we can derive the equations for energy

density and pressure of the scalar field φ as follows,

ρφ =
1

2
φ̇2 + V (φ)

pφ =
1

2
φ̇2 − V (φ) (2.24)

Here if V (φ) ≫ φ̇2, called the slow roll approximation, then the relation be-

tween energy density and pressure of the scalar field will be,

pφ ≃ −ρφ (2.25)

This simple calculation, reveals that a scalar field whose energy is dominant

in the universe and whose potential energy dominates over the kinetic term,

gives inflation.

The equation of motion for the field φ derived from the Lagrangian Eq. (2.22)

will be,

φ̈+ 3H φ̇+ V ′(φ) = 0 (2.26)

where H is the Hubble parameter and V ′(φ) is the derivative of the potential



14 Chapter 2. Review of cosmological theory of Inflation

with respect to φ. The Hubble parameter is,

H2 =
8πG

3

(

V (φ) +
φ̇2

2

)

(2.27)

2.4.2 Slow roll approximation

To analyze the inflation, we need to assume the slow roll approximation. Ac-

cording to this approximation, inflaton field is slowly rolling down a flat po-

tential and hence the slow roll conditions will be,

V (φ) ≫ φ̇2 (2.28)

3Hφ̇≫ φ̈ (2.29)

These conditions can be rewritten in terms potential and Hubble parameter

as,

(V ′)2

V
≪ H2 (2.30)

V ′′ ≪ H2 (2.31)

A. Liddle and D. Lyth introduced two parameters ǫ and η which express these

conditions mathematically. These are known as slow roll parameter and de-

fined as,

ǫ ≡ 1

16πG

(

V ′

V

)2

≪ 1 (2.32)

η ≡ 1

8πG

V ′′

V
≪ 1 (2.33)

These parameters are very useful to quantify the predictions of the inflation.

Using this slow roll approximation, we can simplify the Eq. (4.19) as follows,

3H φ̇+ V ′ ≃ 0 (2.34)
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and the Hubble parameters becomes,

H2 ≃ 8πG

3
V (φ) (2.35)

In general, slow-roll inflation is attained if ǫ≪ 1 and η ≪ 1 and as soon as this

condition fails, inflation ends. Therefore ǫ = 1 signifies the end of inflation.

2.4.3 Duration of inflationary era

Duration of inflation is defined by the number of e-foldings N . The amount of

inflation is in general quantified by the ratio of the scale factor at final to its

initial value. The number of e-foldings N can be defined as,

N ≡ ln
a(tf)

a(ti)
=

∫ tf

ti

Hdt (2.36)

where ti and tf denote the starting and the end of the inflation. Using slow

roll approximation, the number of e-foldings N can be simplified as,

N =

∫ tf

ti

Hdt

≃ H

∫ φf

φi

dφ

φ̇

≃ −3H2

∫ φf

φi

dφ

V ′

≃ −8πG

∫ φf

φi

V dφ

V ′ (2.37)

To solve the horizon and flatness problems, approximately, 60 e-foldings are

required.

2.4.4 Generation of scale invariance density perturba-

tion

The important aspect of inflation model is the generation of density perturba-

tion and the formation of large scale structure. Quantum fluctuations of the
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inflaton field generate the density perturbation, which subsequently produce

galaxies. In inflationary era, scale factor grows exponentially and the vacuum

structure is much more complicated compared to ordinary Minkowski space.

According to quantum field theory, an empty space is not absolutely empty,

instead it is full of quantum fluctuations of different physical fields. These

fluctuations contain the waves of different wavelengths of these physical fields

and are moving in every directions. Hence the average over macroscopically

large time creates vacuum and these fields appear to us as empty.

If the fluctuation of the inflaton field φ is denoted by δφ, then the equation

of motion of these fluctuations will be,

δφ̈k + 3H δφ̇k +
k2

a2
δφk = 0 (2.38)

The wavelength of the fluctuation (λ = 2πa/k) within the horizon λ≪ H−1

implies,

k ≫ aH (2.39)

and we can neglect the friction term 3H δφ̇k due to the expansion, then the

Eq. (2.38) becomes,

δφ̈k +
k2

a2
δφk = 0 (2.40)

which simply describes the equation of motion for harmonic oscillator. When

wavelength remains within the horizon, these fluctuations of the field oscillate.

For superhorizon case, λ≫ H−1 gives the relation as follows,

k ≪ aH (2.41)

Now we can neglect the last term of the left hand side of Eq. (2.38) and it

simplifies to,

δφ̈k + 3H δφ̇k = 0 (2.42)
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This equation clearly shows that at superhorizon scale, the solution for δφk

becomes constant in time and hence the amplitude became frozen. This phe-

nomena occurred in inflationary era, when fluctuations left the horizon. At

the time of inflation, the wavelengths of the quantum fluctuation of the in-

flaton field φ grows exponentially. When the wavelength becomes larger than

horizon H−1, the oscillations of the fluctuations cease and the propagation of

those fluctuations also stop. At this stage, the amplitude of these fluctuations

becomes frozen to some value δφk. This happened due to the friction term

3H δφ̇k, coming from the expansion.

Quantum fluctuations of the inflaton field are also connected to the per-

turbations of the metric through Einstein equation, Eq. (2.2). Now we will

discuss the generation of density perturbations in details and use the simplest

mathematical gauge ‘Longitudinal gauge’ [25, 26, 27, 28]. We have consid-

ered the only scalar degrees of freedom for the perturbed metric and the line

element will be as follows,

ds2 = a2(τ)
[

− (1 + 2A) dτ 2 + 2∂iBdτdx
i + ((1− 2Ψ)δij

+ (∂i∂j −
1

3
δij∇2)E)dxidxj

]

(2.43)

where A, ψ, B and E are the scalar quantities, depend on space and time. For

longitudinal gauge, the condition is B = E = 0 and putting A = Φ, the metric

will be,

ds2 = a2(τ)
[

− (1 + 2Φ) dτ 2 + ((1− 2Ψ)δijdx
idxj

]

= − (1 + 2Φ) dτ 2 + a2(t)(1− 2Ψ)δijdx
idxj (2.44)

The potential Φ and Ψ are the gauge invariant quantities which remain un-

changed under the conformal transformation. For diagonal energy-momentum

tensor, these two become alike. Without cosmological constant Λ = 0, the

Einstein equation is,

δGµ
ν = 8πGδT µ

ν (2.45)
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and the perturbed Einstein equations are,

∆2Φ− 3HΦ′ −
(

H′ + 2H2
)

Φ =
8πG

2

(

φ′
0δφk + V ′(φ)a2δφk

)

φ′ +HΦ =
8πG

2
φ′
0δφk

Φ′′ − 3HΦ′ +
(

H′ + 2H2
)

Φ =
8πG

2

(

φ′
0δφk − V ′(φ)a2δφk

)

(2.46)

where H ≡ a′/a and φ0 and δφk are the homogeneous background and the

perturbation of the inflaton field. Simplification of these equations give the

equation for the gauge-invariant scalar field,

δφ′′
k + 2Hδφ′

k −∇2δφk + V ′′(φ)a2δφk = 4φ′
0Φ

′ − 2V ′(φ)a2Φ (2.47)

The relation between the scalar potential and fluctuations is Φ ≃ ǫHδφk/φ̇0

On superhorizon scale, |4φ′
0Φ

′| ≪ |2V ′(φ)a2Φ| and using the slow roll condition

3Hφ̇ ≃ −V ′(φ)

δφ′′
k + 2Hδφ′

k +
[

k2 + V ′′(φ)a2 + 6a2ǫH2
]

δφk = 0 (2.48)

After redefinition of the field δφk = δσk/a, Eq. (2.48) becomes,

δσ′′
k +

[

k2 − 1

τ 2

(

ν2 − 1

4

)]

δσk = 0 (2.49)

where ν2 = 9
4
+ 9ǫ− 3η and in this case,

a′′

a
= a2 (2− ǫ)H2

≃ 2 + 3ǫ

τ 2
(2.50)

Solution of this equation Eq. (2.49) can be written in term of Hankel function

as follows,

δσk =
√
−τ
[

c1(k)H
(1)
ν (−kτ) + c2(k)H

(2)
ν (−kτ)

]

(2.51)
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where H
(1)
ν and H

(2)
ν are the first and second Hankel functions. For superhori-

zon case (k ≫ aH or − kτ ≫ 1), quantum fluctuations are plane-wave form

e−ikτ/
√
2k. This solves the constant c1 and c2 as follows,

c1(k) =

√
π

2
ei(ν+

1

2
)π
2 (2.52)

c2(k) = 0 (2.53)

and the solution becomes,

δσk =

√
π

2
ei(ν+

1

2
)π
2

√
−τH(1)

ν (−kτ) (2.54)

When −kτ ≪ 1, the Hankel function becomes,

Hν(−kτ ≪ 1) ≃
√

2

π
e−iπ

2 2ν−
3

2

(

Γ(ν)

Γ(3
2
)

)

(−kν)−ν (2.55)

Using the Hankel function (2.55) and δφk = δσk/a, the amplitude of the fluc-

tuations becomes,

|δφk| ≃
H√
2k3

(

k

aH

)
3

2
−ν

(2.56)

The calculation of the curvature power spectrum is given in the next section

2.4.5 Curvature power spectrum

Power spectrum is an important quantity to analyze the perturbations. Any

quantity f(x, t) can be written in Fourier space as,

f(x, t) =

∫

d3k

(2π)3/2
eik·xfk(t) (2.57)

Now the power spectrum of the function f(x, t) is defined as,

〈0|f ∗
k1
fk2

|0〉 ≡ δ(3) (k1 − k2)
2π2

k3
Pf (k) (2.58)
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Hence the relation of the power spectrum will be

〈0|f 2(x, t)|0〉 =
∫

dk

k
Pf(k) (2.59)

The gauge invariant comoving curvature perturbation is,

Rk =
Hδφk

φ̇0

(2.60)

Therefore, the power spectrum of comoving curvature perturbation Rk will be

as follows,

PR =
k3

2π2
〈|R|2〉 = k3

2π2

H2

φ̇2
0

|δφk|2 (2.61)

Substituting δφk from Eq. (2.56), power spectrum will look like,

PR =
4π

M2
p ǫ

(

H

2π

)2(
k

aH

)3−2ν

≡ A2
R

(

k

aH

)ns−1

(2.62)

where ns denotes the spectral index. It can calculated from the power spectrum

as,

ns − 1 =
dlnPR

dlnk
= 3− 2ν (2.63)

ν is defined in Eq. (2.49) and it can simplified to (3 + 6ǫ − 2η)/2. Hence the

spectral index will be,

ns = 1− 6ǫ+ 2η (2.64)

ns defines the tilt of the spectrum. ns ∼ 1 corresponds to the scale invariant

perturbation, which is consistent with the WMAP observations [19]. In infla-

tionary models, the slow-roll parameters ǫ and η are small, hence it is easy

to produce the scale invariant perturbations. ns < 1 corresponds to red-tilted

spectrum, occurred in chaotic inflation model. However ns > 1 signifies blue-

tilted spectrum and power spectrum of the hybrid inflation is an example of
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it.

2.4.6 Observable parameters

One of the important tools to study the origin and characteristics of the uni-

verse is the knowledge of CMBR. Primordial vacuum fluctuations resulting

from the quantum nature of the scalar field relate the inflation model and

CMBR. WMAP observations of CMBR puts the bound on the inflation pa-

rameters, such as spectral index ns, amplitude of curvature fluctuation PR etc

[19] as follows,

ns = 0.963± 0.014 (2.65)

PR = (2.43± 0.11)× 10−9 (2.66)

Both notation PR and ∆2
R have been used in this thesis.

I have mentioned only those parameters, which have been used in my cal-

culations. However there are more parameters of inflation model, which are

bounded from the CMBR observations.

2.5 Reheating

The discrepancy of the Big-bang theory has been smoothed out due to the rapid

expansion of the universe during inflationary epoch. With the acceleration, ä >

0, the temperature of the universe falls exponentially and the universe becomes

supercooled. However, this is not a favorable situation for the formation of

atomic nuclei, which requires far greater temperature. To achieve this, we need

the reheating era in most of the inflation models. Reheating can be thought

as a graceful exit to the inflation and it can transformed supercooled universe

to the hot radiation-dominated universe.

The details of reheating mechanism depends on the interactions between

the inflaton field and the surrounding fields. In standard inflationary theory,

the production of particles happens during this oscillatory reheating phase.
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Reheating process, in general, consists of three following parts,

• Oscillation of the inflaton :

At the end of inflation, the inflaton field comes down to the minimum of

the potential and starts oscillation. In this oscillation phase, the energy

density follows the equation of the density of non-relativistic matter and

hence density varies as 1/a3.

• Decay of inflaton particle :

Decay of inflaton particle happens when the Hubble parameter becomes

equal to the decay time. In this case, the equation of motion of the

inflaton field is modified by the decay term “Γφ̇” and becomes,

φ̈+ (3H + Γ) φ̇+ V ′(φ) = 0 (2.67)

This kind of equation is valid in slow-decay case and in this decay mode,

only fermionic decays are available. However rapid decay of inflaton

particle can produce the bosonic particles also. Parametric resonance

allows this decay. In rapid decay of inflaton, the oscillating phase ends

nearly as soon as it begins and this decay mode sometime termed as

“preheating”.

• Thermalization of the decay products :

The decay product reach thermalization through the interactions, which

depends on the accepted field theory. And it also determines the temper-

ature, at which the universe reenter the standard Hot Big-bang scenario.

2.6 Different models of Inflation

In 1983, Andrei Linde proposed the most popular single field inflation model,

Chaotic inflation, based on a scalar field with no phase transition and the

shape of the potential automatically lead to inflation [29].
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2.6.1 Chaotic inflation

The name “Chaotic” is related to the arbitrary initial conditions for the scalar

field. The only restriction on the scalar field is that it should be greater than

Plank scale Mp.

In general, this kind of inflation can be derived from the potential of the

form,

V (φ) =
m2φ2

2
(2.68)

In chaotic inflation, the inflaton field φ is moving towards the origin of its

potential.

The field φ satisfies the following equation of motion,

φ̈+ 3Hφ̇ = −m2φ (2.69)

The term 3Hφ̇ behaves as the friction term. In this case, the Hubble parameter

will be,

H2 =
8πG

3

(

φ̇2

2
+
m2φ2

2

)

(2.70)

considering the flat universe (κ = 0). As φ is very large (∼ Mp), the friction

term 3Hφ̇ will be large and the field rolls down the potential very slowly. Hence

the kinetic energy in Hubble parameter in Eq. (2.70) can be neglected and in

this scenario,

H2 =
8πG

3

m2φ2

2
=
m2φ2

6M2
p

(2.71)

where (8πG)−1 =M2
p .

Solving the Eq. (2.71), gives exponential scale factor a ∼ eHt with H =

mφ/
√
6Mp. Note that, in the chaotic inflation scenario, the inflationary ex-

pansion does not depend on the choices of initial conditions. After inflation,

reheating process will start. During reheating, the inflaton field oscillates
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coherently around the minimum of its potential and produces particles via

parametric resonance.

Later on more than one scalar field are also used to describe the inflation.

This kind of models in the literature are known as Hybrid inflation[30].

2.6.2 Hybrid inflation

In the mid-1990s, there was challenge to build inflation model based on particle

physics motivation such as supersymmetry, supergravity and superstring the-

ory. This motivation reveals the idea of Hybrid inflation and it was introduced

by Linde [30, 31, 32].

This models consist of at least two scalar fields. One field behaves as

inflaton field, rolling down its flat potential, and the other field is a symmetry

breaking field that is trapped in a false vacuum state. Symmetry breaking

field remains zero in inflationary era and hence does not contribute to the

perturbation spectrum.

Figure 2.1: Schematic diagram of Hybrid inflation model

Hybrid inflation described by the two scalar fields can be generated from
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following potential shown in Fig. (2.1),

V (ψ, φ) =
1

4λ

(

M2 − λψ2
)2

+
m2

2
φ2 +

g2

2
φ2ψ2 (2.72)

When φ > φc = M/g , the minimum of the potential will be at ψ = 0 and

the universe is in inflationary era. Then the inflation ends at φ = φc and

subsequently the phase transition with the symmetry breaking occurs when

φ < φc.

The most interesting feature of this model is that the inflation field only

generates the inflationary expansion, while the symmetry breaking field helps

in reheating the universe and particle production. There is no need to couple

the inflaton field directly to other degrees of freedom, unlike in the simpler

versions of chaotic inflation.

2.6.3 Power-law inflation

In this kind of inflation model, the universe underwent power-law expansion

and because of this, it has named “Power-law inflation”. This kind of inflation

can be generated from the exponential potential as follows,

V (φ) = V0 exp

(

−
√

2

p

φ

Mp

)

(2.73)

The most interesting feature of this inflation model is that this model can be

solved analytically and gives the scale factor as,

a(t) ∝ tp (2.74)

where t denotes the time scale. To satisfy the conditions for the inflation p has

to be greater than 1. In this case, the slow roll parameters do not depend on

the inflaton field φ and becomes ǫ = η/2 = 1/p. The WMAP constrain on

the spectral index, ns = 1 + 2η − 6ǫ in [19] is,

ns = 0.963± 0.012 (2.75)
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and this gives p ∼ 50.

Inflation models discussed till now are basically “Supercooled inflation”

model. In these kind of model the universe becomes supercooled during infla-

tion and after that reheating is required to produce the light particles and to

warm up the universe.

However, there are other kind of inflation, known as Warm inflation [33,

34, 35, 36, 37, 38]. In this case, the dissipative effects are important and the

radiations are also produced simultaneously during inflation.

2.6.4 Warm inflation

In supercooled inflation models, as the universe expands, the temperature

drops exponentially and immediately it becomes irrelevant for the particle

production. If the interactions between the inflaton field with the other parti-

cles of the universe remain there, then the inflaton field transfers some of its

energy to the thermal bath. In this way it prevents the temperature to fall to

zero. This is the main idea for warm inflation.

Hence in warm inflation model, the dissipative effects become important

during the inflationary epoch. In this case production of radiation occurs

concurrently with the expansion, resulting in inflaton interactions.

In this case, the inflaton field satisfies the following equation of motion,

φ̈+ 3H (1 + r) φ̇+ V ′(φ) = 0 (2.76)

where r is the ratio between the thermal damping factor Γ and the expansion

damping, signifies by the Hubble parameter H . Small value of r suppresses

the effect of the thermal damping and it becomes supercooled inflation model.

I have briefly discussed the basics of the inflation and the different kinds

of inflation model. However depending upon the nature of the potential and

type of the inflaton field, there are various models described in literature. Be-

sides the standard inflation model, people came up with non-standard inflation

model such as, natural inflation, inflation from f(r) gravity, SUSY F-term infla-
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tion, SUSY D-term inflation, tachyon inflation, DBI inflation etc, to describes

the different aspect of the experimental results and phenomenology. Since

my work is primarily dealt with Higgs-inflation, therefore, only this model is

presented in next section.

2.7 Higgs inflation

The recent measurement of ATLAS and CMS [1, 23, 24] have confirmed the

existence of a new boson which has mass in the range 126.5 GeV (ATLAS at

5.0σ) and 125.3±0.6 GeV (CMS at 4.9σ), and it is expected to be the Standard

Model Higgs. In particle physics, Higgs boson plays the fundamental role by

generating the masses of all the known particles through electroweak symmetry

breaking. Higgs is not only a favorable candidate for particle physics, it also

has great importance in cosmology as most of the inflation models need scalar

field to explain the early universe. Hence the study of the inflation model, in

which standard model Higgs can be the inflaton field, has great importance in

understanding the early universe.

2.7.1 Higgs minimally coupled with gravity

The subsequent attempt to make Higgs as inflaton is to consider the minimal

coupling between the Higgs and the gravity. In this kind of model, action will

be,

S =

∫

d4x
√−g

[

RM2
p

2
− 1

2
∂µφ∂

µφ− λ

4

(

φ2 − v2
)2
]

(2.77)

First term denotes the Einstein-gravity term and second and third term of the

action describes the kinetic and potential energy. In inflationary era, φ is large,

we can neglect the vev of the Higgs, v = 246 GeV and the potential becomes,

λ

4

(

φ2 − v2
)2 ≃ λ

4
φ4 (2.78)
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In this case, equation of motion of the Higgs will be,

φ̈+ 3H φ̇+ λφ3 = 0 (2.79)

and the Hubble parameter is,

H2 =
1

6M2
p

(

φ̇2 +
λ

2
φ4

)

(2.80)

Slow-roll approximation gives,

φ̇2 ≪ λ

2
φ4 and |φ̈| ≪ 3H |φ̇| (2.81)

and Eq. (2.79) and (2.80) become,

H2 ≃ λφ4

12M2
p

(2.82)

and φ̇ ≃ − λ

3H
φ3 (2.83)

In inflationary era, slow roll parameter ǫ is,

ǫ = − Ḣ

H2
≃

8M2
p

φ2
≪ 1 (2.84)

Form classical gravity, the Ricci scalar will be R ≃ 12H2 and it should be

much smaller than M2
p/2 to avoid the quantum gravity. Using the expression

for the Hubble parameter in (2.82), the relation will be,

12H2 =
λφ4

M2
p

≪M2
p/2 (2.85)

From Eq. (2.84) and (2.85), we can find the bound on the Higgs quartic cou-

pling as follows,

λ≪ 0.008 (2.86)

Again we can find values of λ from the observation of curvature power
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spectrum [29]. The curvature perturbation is as follows,

R =
Hδφ

φ̇
(2.87)

and in case of inflationary era δφ can simplified to H/2π. Hence, the curvature

perturbation becomes,

R =
H2

2πφ̇
(2.88)

Using the values of H and φ̇ from Eq. (2.82) and (2.83), we can find out,

R ∼ λ1/2
(

φ

Mp

)3

(2.89)

Using the experimental observation on the power spectrum of curvature

perturbation,

PR ∼ λ

(

φ

Mp

)6

= 2.43× 10−9 (2.90)

we can find the constrain on the Higgs quartic coupling λ as follows,

λ ∼ 10−12 (2.91)

However, according to the recent experimental results, Higgs mass is ∼
125 GeV which gives Higgs quartic coupling λ ∼ 0.13 [1, 23, 24] and it is

inconsistent with the tiny value of λ coming from inflation. Hence standard

model Higgs minimally coupled to gravity cannot be the slow-roll Inflaton.

2.7.2 Higgs non-minimally coupled with gravity

Finally F.L. Bezrukov and M. Shaposhnikov came up with a inflation model,

in which standard model Higgs behaves as inflaton [5]. The main idea of

this model is based on the non-minimal coupling ξ between gravity and scalar

sector. However this couplings should not change the degrees of freedom. The
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number of degrees of freedom of gravity and the Higgs are 2 and 1 respectively.

Inclusion of the coupling ξφ2R will not alter the degrees of freedom and the

Lagrangian will be,

SJ =

∫

d4x
√−g

[

−
M2

p + ξφ2

2
R +

1

2
gµνφ,µφ,ν − V (φ)

]

(2.92)

Here the Lagrangian is written in Jordan frame, denoted by the suffix J . The

presence of the coupling between gravity and Higgs indicates the frame as

Jordan frame. However it is easy to do the calculations in Einstein frame, in

which this coupling can be removed by the following conformal transformation,

gµν → ĝµν = Ω2gµν where Ω2 = 1 +
ξφ2

M2
p

(2.93)

This non-minimal coupling ξ makes the Higgs potential sufficiently flat in this

frame,

V̂ =
V

Ω4
=
λM4

p

4ξ2

(

1 +
M2

p

ξφ2

)−2

(2.94)

where hat signifies the Einstein frame.

In this model, from the experimental results on temperature correlation

gives,

ξ ≃ 104
√
λ = 104

m√
2v

(2.95)

where m denotes the Higgs mass and ξ ∼ 104 gives rise to the correct mass,

predicted by Atlas and CMS experiment. This large value of ξ suffers the

problem of unitarity. However there are various attempts reported in the

literature to handle this problem. There are different approaches to consider

Higgs as inflaton using this non-minimal coupling [9, 39, 40].

Complete discussion of this model and the study of the generation of mag-

netic field in this model are discussed in next chapter. This model matches

the observation for the magnetic field very well with out facing backreaction
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problem, described in subsequent chapter.

Inflation helps to generate the density perturbations as well as explains the

structure formation. There is another approach to get the density perturbation

as discussed in [13, 41, 42]. It was shown that a conformally coupled field

rolling down negative quartic potential can generate scale invariant density

perturbation. These perturbations can become superhorizon in an inflationary

era or in a ekpyrotic scenario. This kind of model can also accommodate Higgs.

Thorough discussion of this type inflation model in realistic inert doublet model

has been given in Chapter-4.

2.8 Vacuum stability

The last section of this chapter provides the study of vacuum stability for

the potential of the standard model Higgs. This is motivated from the recent

observation for Higgs mass from Atlas and CMS experiment [1, 23, 24]. The

study of vacuum stability for Higgs and constraining Higgs mass from this

study was started long way back as mentioned in [14, 15, 16, 17]. The Higgs

potential called instable when it becomes negative and unbounded from below.

The instability mainly comes from the loop correction to the potential.

To be consistent with the recent results of Higgs mass, this analysis has to

be done again. Recently the behavior of the Higgs quartic coupling λ, staring

from electroweak scale to Planck scale, is studied in [43]. In [44], Xing et.

al. showed the implication of recent range of Higgs mass on the SM vacuum

stability by using the two-loop renormalization-group equations (RGEs) and

repeated the determination of the branching ratios of some important two-

body Higgs decay modes. Chetyrkin et. al. [45] reproduced this analysis in

more details by considering the three-loop β-functions for top-Yukawa and the

Higgs self-interaction. One step ahead of the procedure (“one-loop matching–

two-loop running”) to calculate vacuum stability is presented in [46]. They

considered the 3-loop RGEs of the couplings of the Standard Model. Subse-

quently the first complete next-to-next-to-leading order analysis of the Stan-
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dard Model Higgs potential is presented in [47] and this detailed study reduced

the theoretical uncertainties. The determination of vacuum stability is carried

out beyond the standard model by including the right handed neutrino to the

standard model [48, 49, 50, 51, 52] and adding extra singlet [53].

We also study the vacuum stability in seesaw model, going beyond the

standard model and we have shown that this subject has important effect on

the LHC signature. The details of this study are discussed in Chapter-5.

2.9 Conclusion

Inflationary paradigm has become widely accepted from its introduction by

Alan Guth in 1980 to explain the early universe. In the literature there are

various models depending on the nature of the inflaton field and different types

of potential. Higgs can be the most favorable candidate for the inflation model.

Hence the study of Higgs inflation has important prospect in cosmology as well

as in particle physics.



Chapter 3

Magnetic field generation in

Higgs Inflation

This chapter presents comprehensive study of the Higgs inflation model. Brief

discussions of the conformal transformation are provided to elucidate the cal-

culations of the inflationary observables in Einstein frame. This model suc-

cessfully describes the generation of magnetic field. Complete derivation for

the production of the magnetic field is also discussed in this chapter.

33
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3.1 Introduction

The importance of the Higgs inflation model has already been established in

Chapter-2. It is also pointed out that non-minimal coupling between Higgs and

gravity sector is the main ingredient in this type of inflation model. Starting

point of this model is the Lagrangian written in Jordan frame. The presence

of the non-minimal coupling between Higgs and gravity defines the frame as

a Jordan frame. However the subsequent calculations are easy to handle in

Einstein frame as this frame is devoid of this coupling between Higgs and

gravity. The change of the frame can be done by the conformal transformation,

which is discussed next.

3.2 Conformal transformation

Conformal transformation is a mathematical tool in the field of General rel-

ativity [54, 55]. In current situation, the use of conformal transformation

techniques has become widespread in the literature on cosmology, specifically

on nonminimally coupled scalar fields. This transformation relates the Jordan

frame and the Einstein frame. In this scenario, the metric transforms as field

dependent way as follows,

gµν → ĝµν = Ω2gµν (3.1)

where Ω is a field-dependent variable. Under this transformation, determinant

transform as,

det (gµν) = g → ĝ = Ω4g (3.2)

Quantities in the Einstein frame is denoted by a hat (e.g. ĝµν). The change

of the metric is depicted in other quantities, such as Christoffel symbol Γρ
µν ,

Ricci tensor R σ
µνρ and Ricci scalar R derived from the metric. The definition
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of these quantities, deduced from the metric, are as follow,

Γρ
µν ≡ 1

2
gρσ
(

∂gνσ
∂xµ

+
∂gµσ
∂xν

− ∂gµν
∂xσ

)

(3.3)

R σ
µνρ ≡

∂Γσ
µρ

∂xν
−
∂Γσ

νρ

∂xµ
+ Γα

µρΓ
σ
αν − Γα

νρΓ
σ
αµ (3.4)

Rµρ ≡ R ν
µνρ (3.5)

R ≡ gµρRµρ (3.6)

Under the conformal transformation (3.1), these quantities will be trans-

formed as,

Γρ
µν → Γ̂ρ

µν = Γρ
µν + Ω−1

(

δρµΩ;ν + δρνΩ;µ − gµνg
µαΩ;α

)

(3.7)

Rν
µ → R̂ν

µ = Ω−2Rν
µ − (n− 2)Ω−1

(

Ω−1
)

;µρ
gρν

+ (n− 2)−1Ω−µ
(

Ωn−2
)

;ρσ
gρσδνµ (3.8)

R → R̂ = Ω−2R + 2(n− 1)Ω−3Ω;µνg
µν + (n− 2)(n− 4)Ω−4Ω;µΩ;νg

µν(3.9)

where n (n ≥ 2) signifies the dimension of the spacetime manifold. We will use

this transformed quantities in dimension 4 and in this case Ricci scalar will be,

R→ R̂ = Ω−2R + 6Ω−3Ω;µνg
µν (3.10)

and this will be used afterwards for Higgs inflation model.

3.3 Higgs inflation model

There has been much interest recently in Higgs-Inflation model [5], as already

mentioned in chapter-2. In this case, Standard Model (SM) Higgs boson,

non-minimally coupled to the Ricci scalar, can give rise to inflation without

additional degrees of freedom to the SM. The cosmic microwave background

anisotropy data estimates the very small value for the Higgs quadratic coupling

λ and this tiny value for λ does not support the recent hint for Higgs mass

from Atlas and CMS experiments [1, 23, 24]. However a large non-minimally
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coupling with gravity can resolve this issue. In this model, the resultant poten-

tial of Higgs inflaton in the inflationary domain is effectively flat. It can result

in successful inflation for values of non-minimally coupling constant ξ ∼ 104.

We will start with the action written in Jordan frame, in which Higgs

non-minimally coupled to the Ricci scalar,

SJ =

∫

d4x
√−g

[

−
M2

p + ξφ2

2
R +

1

2
gµνφ,µφ,ν − V (φ)− 1

4
I2(φ)F µνFµν

]

(3.11)

where suffix J signifies the Jordan frame, Mp denotes the Planck scale and

Higgs scalar Φ = 1√
2
(0, v+φ)T written in unitary gauge and the Higgs potential

is given by,

V (φ) =
λ

4

(

φ2 − v2
)2

(3.12)

and we can ignore the Higgs vev v = 246 GeV in inflationary era, where φ takes

Planck scale value. We also consider Higgs-photon interaction, denoted by the

last term in the action. This term breaks the conformal symmetry and helps

to generate the magnetic field. Here I is the inverse of the electromagnetic

coupling and we assume that it has the explicit dependence on φ as,

I2(φ) =
1

e2
+
φ†φ

M2
p

(3.13)

This Higgs photon interaction term is the lowest order term which is invariant

under SU(2) transformations of the Higgs. In the present epoch, when φ = v,

the effective photon kinetic term (1/e2 + v2/M2
P )F

2 reduces to the standard

photon kinetic term (1/e2)F 2. When we deal with the perturbations during

inflation, we drop the standard photon kinetic term and consider only the

second term in I (φ).
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3.3.1 Conformal transformation in Higgs inflation model

In Jordan frame, we consider the following metric,

ds2 = dt2 − a2(t)δijdx
idxj (3.14)

To transform the action (3.11) to the Einstein frame, we consider the following

conformal transformation [56, 57],

gµν → ĝµν = Ω2gµν where Ω2 = 1 +
ξφ2

M2
p

(3.15)

and follow the prescription of conformal transformation as described in Section-

3.2.

Let us look at each of these terms in turn. The first term of Eq. (3.11)

becomes,

−
∫

d4x
√−g

(

M2
p + ξφ2

)

2
R = −

∫

d4x

√
−ĝ
Ω4

(

M2
p + ξφ2

)

2

[

Ω2R̂ +
6

Ω
✷Ω

]

= −
M2

p

2

∫

d4x

√
−ĝ
Ω2

[

Ω2R̂ +
6

Ω
✷̂Ω

]

(3.16)

Here we use the definition of Ω2 from Eq. (3.15) and ✷Ω = gµν∇µ∇νΩ =

1√
−g
∂µ [

√−ggµν∂νΩ]. In this case, ∂̂µ = ∂µ as xµ remains unaffected under this

transformation. Because the covariant derivatives act only on scalar functions,

we have,

∇µΩ = ∂µΩ and ∇̂µΩ = ∇µΩ (3.17)

The simplification of Eq. (3.16) gives,

−
∫

d4x
√
−g
(

M2
p + ξφ2

)

2
R =

∫

d4x
√

−ĝ
[

−
M2

p

2
R̂ +

3ξ2

M2
pΩ

4
(φ φ,µ)

2

]

(3.18)

Now we consider the transformation of the kinetic energy, potential energy and
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Higgs-photon interaction term,

∫

d4x
√−g

[

1

2
gµνφ,µφ,ν − V (φ)− 1

4
I2(φ)F µνFµν

]

=

∫

d4x
√

−ĝ
[

1

2Ω2
gµνφ,µφ,ν −

V (φ)

Ω4
− 1

4
I2(φ)F µνFµν

]

(3.19)

Here it is important to notice that
√−gF µνFµν is a conformally invariant

term. However the conformal invariance is broken by the presence of I2, as

it is explicitly depend on the Higgs field φ. In Einstein frame, the action will

look like,

SE =

∫

d4x
√

−ĝ
[

−
M2

p

2
R̂ +

1

2Ω2
gµνφ,µφ,ν +

3ξ2

M2
pΩ

4
(φ φ,µ)

2 − V (φ)

Ω4

−1

4
I2(φ)F µνFµν

]

(3.20)

This conformal transformation produces non-canonical kinetic terms for the

scalar field φ. To make the kinetic term of the φ field canonical, we have to

redefine the φ field in terms of new scalar φ̂,

dφ̂

dφ
=

√

Ω2 + 6ξ2φ2

M2
p

Ω4
(3.21)

When φ ≪ MP/
√
ξ , Ω ≃ 1 and φ̂ = φ. This corresponds to the situation

in the present era where φ = v. Inflation takes place when φ ≫ MP/
√
ξ and

in this regime Ω ≃
√
ξφ/MP and the relation between φ and φ̂ obtained from

(3.21) is,

φ =
Mp√
ξ

exp

(

φ̂√
6Mp

)

(3.22)

The action (3.20), in terms of φ̂ is ,

SE =

∫

d4x
√

−ĝ
[

−
M2

p

2
R̂ +

1

2
ĝµνφ̂,µφ̂,ν −

V (φ̂)

Ω4
− 1

4
I2(φ̂)F µνFµν

]

(3.23)
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where φ is an implicit function of φ̂.

In terms of new scalar field φ̂, Higgs potential will be,

V̂ =
V

Ω4
≃ λφ4

4Ω4

=
λM4

p

4ξ2

(

1 +
M2

p

ξφ2

)−2

=
λM4

p

4ξ2

exp
(

4φ̂√
6Mp

)

(

1 + exp
(

2φ̂√
6Mp

))2 (3.24)

In inflationary era, φ≫Mp/
√
ξ implies φ̂ ≫

√
6Mp and potential in this limit

will be.

V̂ =
λM4

p

4ξ2

(

1 + exp

(

− 2φ̂√
6Mp

))−2

(3.25)

Since, φ >> Mp√
ξ

(

or φ̂ ≫
√
6Mp

)

, the Higgs-inflaton has the exponentially flat

potential in the Einstein frame.

3.3.2 Renormalization of tree level potential
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Figure 3.1: Running of λ as with the renormalization scale µ.
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We consider the one loop correction to the tree level potential following the

Coleman-Weinberg formalism in [58]. Loop correction for this kind of model

is already discussed in [59, 60]. The effective potential is of the form,

V̂eff. = V̂ + δV̂ (3.26)

where the loop correction is as follows,

δV̂ =
m4

φ

64π2
log

m2
φ

µ2
+

6m4
w

64π2
log

m2
w

µ2
+

3m4
z

64π2
log

m2
z

µ2
− 3m4

t

16π2
log

m2
t

µ2
(3.27)

As was discussed in [5, 61, 62], loop corrections also change the values of λ

and ξ at Planck scale compared to the values at electroweak scale. The main

contribution comes from the following RG equation for the running of λ and

ξ.

16π2dλ

dt
= 24λ2 + 12λy2t − 9λ(g2 +

1

3
g′2)− 6y4t +

9

8
g4 +

3

8
g′4 +

3

4
g2g′2(3.28)

16π2dξ

dt
=

(

ξ +
1

6

)(

12λ+ 6y2t −
9

2
g2 − 3

2
g′2
)

(3.29)

where t = log
(

µ
mz

)

, yt is the Yukawa coupling and g and g′ are the gauge

couplings. Neglecting the two loop contributions to the beta functions, from

these two Eq. (3.28) and (3.29), we can see that,

16π2 d

dt

(

λ

ξ2

)

= 0 (3.30)

The effective potential (3.26) should be independent of the renormalization

scale µ ,

dV̂eff.
dµ

=
d

dµ

(

V̂ + δV̂
)

= 0

d

dµ

(

λ(µ)

ξ(µ)2
M4

p

4
− 3m4

t

16π2
log

m2
t

µ2

)

= 0 (3.31)

Here V̂ ∼ λ
ξ2

M4
p

4
at inflationary era (φ̂ ≫

√
6Mp) and we consider only top
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quark contribution as it is the dominant one. From Eq. (3.30), we see that

this condition (3.31) can be satisfied if the logarithms is zero. This can be

achieved by suitably choosing the value of µ as follows,

µ2 ≃ yt(µ)
2

2

M2
P

ξ(µ)

(

1− e
− 2φ̂√

6MP

)

(3.32)

We shall use this value of µ in the renormalized Higgs potential. We will

see that by choosing λ(MZ) = 0.132 (which corresponds to mh = 126 GeV,

consistent with the recent measurements by Atlas and CMS [1, 23, 24]) and

ξ(MZ) = 103 we get the requisite value of the perturbation ∆R and spectral

index ns at the time of inflation and in addition we can generate the comoving

magnetic field of 10−7 Gauss.

3.3.3 Dynamics of Higgs inflation

The time derivative of the redefined field φ̂ in Einstein frame is follows,

˙̂
φ ≡ dφ̂

dt̂
(3.33)

The inflaton field satisfies the equation,

¨̂
φ+ 3

˙̂
φĤ + V̂ ′ = 0 (3.34)

where prime denote the derivative with respect to φ̂ and Ĥ2 = V̂ /
(

3M2
p

)

.

Using slow-roll approximation, the field equation becomes,

dφ̂

dt̂
= − V̂ ′

3Ĥ
(3.35)

We can find the relation between φ and the number of e-foldingsN =
∫ φ̂

φ̂end
(Ĥ/

˙̂
φ)dφ̂

using equation (3.35) for
˙̂
φ,

φ2 = φ2
end +

4N

3

M2
p

ξ
(3.36)
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The field value at the end of inflation, φend, corresponds to the slow-roll pa-

rameter ǫ =
M2

p

2

(

V̂ ′

V̂

)2

≃ 4M4
p/ (3ξ

2φ4) = 1 and it gives φend = 1.2Mp√
ξ
. Taking

the horizon crossing of the large scale perturbations to be at Nk=60, the value

of φk turns out to be φk = 9Mp√
ξ
. Therefore, the relation between the scale

factor and field can be written as,

φ2 =

[

1.2 + 1.3 log

(

âend
â

)]

M2
p

ξ
(3.37)

Using the equation (3.13) , we can write I(φ) as a function of â as follows,

I2(φ) =
1

ξ

[

1.2 + 1.3 log

(

âend
â

)]

(3.38)

For the calculation of δB, we have to know the value of ξ, which can be

calculated from the curvature perturbation. The amplitude of the curvature

perturbation can be written as,

∆2
R =

1

4π2

(

Ĥ2

dφ̂/dt̂

)2

=
1

8π2M2
p

Ĥ2

ǫ
(3.39)

Therefore, the amplitude of the curvature perturbation for the large scale

perturbation is,

∆2
R = 5.19

λ

ξ2
(3.40)

WMAP measures ∆2
R = 2.43 × 10−9 in [19] for the length scale of 3000 Mpc.

From this we can calculate the amplitude of the curvature perturbation at

length scale 100 Kpc,

∆R(k = 2π/100 Kpc−1) = ∆R(k0 = 2π/3000 Mpc−1)

(

k0
k

)ns−1

(3.41)

Using the WMAP measured value of ns = 0.963 in [19], we have ∆2
R = 5.2 ×

10−9 for the length scale of 100 Kpc, at which scale the magnetic field is

measured. From RG equations (3.28), we can find out the values of λ and
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ξ at inflationary era with their values at the electroweak scale as shown in

Fig. (3.1). The recent measurement of Higgs mass 126 GeV measured by

LHC, gives λ(MZ) ∼ 0.132. Therefore at inflationary era, λ(MP ) = 10−4.

Considering ∆2
R = 5.2× 10−9, we find out ξ(MP ) = 3.16× 102. In electroweak

scale the values of ξ is ∼ 103, (this is in the allowed range of parameter space

which was studied in [61, 62]). We see that value of ξ which gives the correct

amplitude of curvature perturbation predicts that the spectral index ns is,

ns = 1 + 2η − 6ǫ = 0.966 (3.42)

where η =
(

M2
p V̂

′′
)

/V̂ ≃ −4M2
p / (3ξφ

2). This value of ns is consistent with

the WMAP result ns = 0.963± 0.012 in [19]. However this large coupling ξ ∼
104 leads to problem with unitarity [6, 7, 8] of graviton-scalar scattering. Some

ideas to solve the unitarity problem associated with Higgs inflation models are

discussed in [9, 10, 11, 12]

3.4 Cosmological magnetic field

In 1908, the first extraterrestrial magnetic field was observed in sunspots [63].

Since then magnetic fields have been observed in galaxies (1949) [64], galaxy

clusters and potentially in superclusters [63]. Afterward, the generation and

the evolution of the magnetic field become an interesting subject for physicist.

Magnetic fields are the only large-scale matter source, known in the universe

today. Understanding the history of magnetic fields will help to understand

the dynamics of the early universe and the formation of the first stars and

galaxies. Primordial magnetic fields, which are present since before matter-

radiation equality, affect the spectrum of temperature anisotropies and the

polarization of the cosmic microwave background (CMB). Furthermore, a pri-

mordial magnetic field causes Faraday rotation of the orientation of the CMB

polarization which leads to the creation of a B-mode.

Observations [65, 66] of magnetic field associated with high red-shift (z > 1)
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galaxies suggest that the large scale magnetic fields have a cosmological rather

than an astrophysical origin. For a long time, dynamo mechanism was the the

preferred mechanism to explain the aforementioned observations. A dynamo is

a mechanism in which kinetic energy of an electrically conducting fluid convert

into the magnetic energy. Mean field dynamo is the most common approach

in this kind of mechanisms. The assumption for mean field dynamo model

is that the fluctuations in the magnetic and velocity fields are much smaller

than the mean slowly varying components of the corresponding quantities.

This mechanism depends on the idea that is the amplification of a tiny field

created early enough by differential rotation of the galaxies and the subsequent

generation of the galactic and cluster fields. This model is applicable to explain

the amplification of large scale magnetic structures starting from small scale

seed fields in the presence of a turbulent fluid.

In the dynamo theory of magnetic field amplification in galaxies [67, 63],

the initial seed B-field of strength 10−20 Gauss can be amplified to the observed

10−7 Gauss by the magnetohydrodynamics of galactic rotation. However ob-

servations [65, 66] show that the magnetic fields associated with galaxies have

a very narrow spread around a micro-Gauss and therefore independent of the

number of rotations of the galaxies. Hence several experts of this field ques-

tioned about the effectiveness of this mechanism.

3.4.1 Magnetic field generation in inflation model

In the standard hot Big bang model of cosmology, the generation of mag-

netic fields of large coherence scales (1kpc-1Mpc) runs into the problems with

causality. For example, if B-fields are generated in the electro-weak era then

the present coherence length of the 100 kpc would correspond to a length scale

λEW = 100kpc(T0/100GeV) = 107cm. This length scale is much larger than

the distance scale of causal Horizon at the electro-weak era H−1
EW = 10−2cm.

This suggests that if B-fields have an origin in the fundamental interaction

then the perturbations must be super-horizon and this can happen during in-

flation. The magnetic field generated with the coherence scale HI during the
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time of inflation can be as large as the present horizon H0. Generation of mag-

netic field during inflation has been studied extensively starting with Turner

[63, 68, 69] and Widrow [70]. This kind of models are based on the coupling

between electromagnetic fields and curvature. The coupled electromagnetic

fields with the axion-inflaton was considered in [71]. Subsequently Bamba and

Yokoyama studied the coupled electromagnetic field with the dilaton-inflaton

in [72]. However in recent studies [73, 74, 75, 76], it has been observed that,

in theories where B-field is generated during the inflation the fluctuations of

the electromagnetic field are as large as the perturbations of the inflaton and

spoil the prediction of near-scale invariant primordial density perturbation of

inflation.

Magnetic field generation during inflation requires the breaking of con-

formal invariance of the electromagnetic action. We outline one particular

scenario for such generation. We study the generation of magnetic field during

Higgs inflation. We introduce a non-renormalisable coupling of the Higgs with

the electromagnetic fields of the form φ†φ
M2

P

F 2 in the action (3.11). This term

breaks the conformal symmetry and generates a magnetic field at the time of

inflation when φ ∼MP/
√
ξ.

3.4.2 Generation of magnetic field during Higgs infla-

tion

We consider separately the term containing massless vector field from the Ein-

stein action (3.23),

SE =

∫

d4x
√

−ĝ
[

−1

4
I2(φ̂)F µνFµν

]

(3.43)

where Fµν = ∂µAν − ∂νAµ and Aµ = (A0, Ai). Decomposing the spatial part

Ai in terms of its transverse and longitudinal components Ai = AT
i + ∂iχ and

considering ∂iA
T
i = 0 and A0 = χ′, we get the action as follows,

SE =

∫

d4x I2
(

AT ′
i A

T ′
i + AT

i ∆A
T
i

)

(3.44)
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where primes denotes the derivative with respect to the conformal time τ . The

transverse component of Ai can be written in Fourier space as follows,

AT
i (x, τ̂ ) =

∑

σ=1,2

∫

d3k

(2π)3/2
Aσ

k(τ̂ ) ε
σ
i (k)e

ik·x (3.45)

where εσi (k), σ = 1, 2 are two orthogonal polarization vectors and they satisfy

the relations kiε
σ
i (k) = 0 and εσi (−k)ερi (k) = δσρ, the action will be,

SE =
1

2

∑

σ=1,2

∫

I2
(

Aσ′
k A

σ′
−k − k2Aσ

kA
σ
−k

)

dτ̂d3k (3.46)

Defining Aσ
k = Ãσ

k/I, the action becomes,

SE =
1

2

∑

σ=1,2

∫
[

Ãσ′
k Ã

σ′
−k −

(

k2 − I ′′

I

)

Ãσ
kÃ

σ
−k

]

dτ̂d3k (3.47)

We can expand Ãσ
k in terms of the creation and annihilation operators as

follows,

Ãσ
k =

1√
2

(

uka
σ
k + u⋆ka

σ†
k

)

(3.48)

where the creation and annihilation operators satisfy the relation
[

aσk, a
ρ†
k′

]

=

δσρδ(k− k′).

Therefore, the equation of motion of the mode function uk, derived from

the action (3.47), is as follows,

u′′k +

(

k2 − I ′′

I

)

uk = 0 (3.49)

For large value of k, equation (3.49) reduces to

u′′k + k2uk = 0 (3.50)
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and the solution will be of the form,

uk>
=

1√
2k
eikτ̂ (3.51)

But for smaller value of k, the term I′′

I
will dominate and the solution will be,

uk<
= cI + c′I

∫

dτ̂

I2
≃ c I (3.52)

where we have dropped the second term in equation (3.52) as it is suppressed

by a factor 1
â
compared to the first term. By matching the equation (3.51) and

equation (3.52) at τ̂ = 1
k
, we determine the constant c,

c =
ei

9

√

ξ

2k
(3.53)

Therefore, the solution of the mode functions of the electromagnetic pertur-

bations is of the form,

uk ≃ ei

9
√
2k

(

1.2 + 1.3 log

(

âend
â

))1/2

(3.54)

The correlation function will be,

< 0|ÂT
i (τ̂ , x)Â

T i(τ̂ , y)|0 > =
1

â2I2

∑

σσ′

∫

d3k d3k′

(2π)3
ei(k·x+k·y) < 0|uσkuσ′k′|0 >

=
1

4π2â2I2

∫

dk

k
|uk|2k3

sin k(x− y)

k(x− y)

≡
∫

dk

k
δ2A(k, τ̂)

sin k(x− y)

k(x− y)
(3.55)

The power spectrum of the vector field δ2A(k, τ̂) can be identified with,

δ2A(k, τ̂ ) =
|uk|2k3
4π2â2I2

(3.56)

Using the relation between magnetic field and vector field B2 = 1
2â4
FikFik =

1
â4
(∂iAk∂iAk − ∂kAi∂kAi), we can calculate the power spectrum of the mag-
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netic field δ2B(k, τ̂ ) as follows,

δ2B(k, τ̂) = δ2A(k, τ̂)
k2

â2
=

|uk|2k5
4π2â4I2

(3.57)

Using the expression for uk from equation (3.54), we can calculate δB, at the

time of horizon crossing as follows,

δ2B(k) ≃ 1.5× 10−4 ξĤ4 (3.58)

At the time of inflation, δ2BI
= 1.04 × 10−6

(

(λ2M4
p )/ξ

3
)

= 1.09 × 1052GeV4

and it is scale invariant. Now, we study the perturbation of the magnetic field

in present era as follows,

δB0 = δBI

(

T0
Treh

)2

(3.59)

As the experimental results for δB0 is ∼ 10−7 Gauss at length scales of 100kp,

we can calculate the reheat temperature Treh ∼ 1013 GeV, which agrees with

the results in [77]. We have to study the back-reaction of the generated electro-

magnetic field on the background. For this, we will calculate the energy density

ρem which is defined as T 0
0 component of the energy-momentum tensor.

T 0
0 = I2

(

1

4
FαβF

αβ − F0αF
0α

)

=
I2

2â4
(

AT ′
i A

T ′
i + ∂iA

T
k ∂iA

T
k

)

(3.60)

Using the relation (3.48) , the energy density ρem will be,

ρem =< 0|T̂ 0
0 |0 > =

1

8π2â4

∫

dk

k

(

|u′k|2 + k2|uk|2
)

k3 (3.61)

neglecting the derivatives of I. Using the solution (3.54) for the mode function,

in equation (3.61), the energy density perturbations of electromagnetic fields
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will be,

ρem ≃ 1.2× 10−3

π2
Ĥ4 (3.62)

≃ 8.4× 10−7
λ2M4

p

ξ4
(3.63)

≃ 2.81× 1049 GeV 4 (3.64)

The energy density of the inflation will be

ρφ ≃ V̂ (φ) = 0.25
λM4

p

ξ2
(3.65)

≃ 8.3× 1063GeV 4 (3.66)

As ρφ ≫ ρem, the back-reaction of the generated electromagnetic field can not

spoil the inflation.

3.5 Conclusion

We have shown that the Higgs model of inflation [5, 77], in which a large Higgs-

Ricci coupling gives rise to a flat Higgs potential in the Einstein frame in early

universe, is also ideal for generation of magnetic field during inflation. Breaking

the conformal invariance of electromagnetism by a non-renormalizable Higgs-

photon coupling term in the Jordan frame enables us to generate large scale

magnetic field during inflation while keeping the backreaction, as pointed out

in [73]-[76], is under control. We find that by choosing λ(MZ) = 0.13 (which

corresponds to mh = 126 GeV, in agreement with the recent measurements

by ATLAS and CMS [1, 23, 24]) and ξ(MZ) = 103 we get the correct values

for the perturbation ∆R and spectral index ns. These results are consistent

with WMAP measurements and we can also generate the comoving magnetic

field of 10−7 Gauss in this model. The consequences of primordial magnetic

field fluctuations on the CMB anisotropy have been studied in [78, 79]. The

cosmological isotropy is broken by large scale magnetic fields which will show

up in the CMB anisotropy and polarization spectrum. This points to the
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possibility that the magnetic field generation model studied in this work can

be tested in the CMB anisotropy measurement experiments like PLANCK [80].



Chapter 4

Higgs inflation in Inert Doublet

Model

This chapter includes the study of inert doublet model, which is the minimal

extension to the standard model of particle physics. Complete discussion of the

generation of density perturbation in this model is presented here. Moreover,

the study of electroweak symmetry breaking reveals the scalar dark matter

candidate in this model which is presented in the last section of this chapter.

51
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4.1 Introduction

It is well known that to generate the density perturbation of the CMB as

per the magnitude observed by COBE [2, 3] and WMAP [4], we need an

inflationary period generated by the flat potential of a scalar field with coupling

λ ∼ 10−10 in a λφ4 theory. For standard model Higgs, λ is approximately

∼ 0.1 and hence Higgs can not be used as inflaton. A way out was proposed

by Bezrukov and Shaposhnikov [5] who coupled the standard model Higgs

with the Ricci scalar with a large coupling constant ξ ∼ 104. The exhaustive

discussion of this kind of inflation model already presented in Chapter-2 of

this thesis.

In this chapter we will follow a different approach for the generation of scale

invariant density perturbations. It was shown by Rubakov and collaborators

[13, 41, 42] that a conformally coupled field rolling down negative quartic po-

tential can generate scale invariant density perturbation. These perturbations

can become superhorizon in an inflationary era or in a ekpyrotic scenario [81].

We work with this idea in inert Higgs doublet (IDM) model [82, 83]. To start

with, we present the brief discussion of inert doublet model in the next section.

4.2 Inert doublet model

In standard model, single Higgs doublet can successfully introduce the elec-

troweak symmetry breaking and generate the masses for other particles. How-

ever considering more than one scalar doublet is not excluded instead it is an

interesting extension of standard model. Inert doublet model is a special case

of two Higgs doublets model. IDM was first proposed by Deshpande and Ma

in 1970’s [84]. However the importance of this model becomes prominent in

[82] discussed by Barbieri et.al.

This model has been used in the literature to explain various physical

processes. It has explained the ‘LEP paradox’ in [85, 82, 86]. The generation of

light neutrino mass through one-loop radiative see-saw mechanism is discussed

in IDM in [87]. This kind of models also help to generate the leptogenesis by
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the inclusion of TeV scale right handed neutrinos as pointed out in [88]. The

detailed analysis of electroweak symmetry breaking in this model is discussed

in [83].

In short, IDM, which is an economical extension of Standard Model, solves

the problem of naturalness [82] and it can also explain the electroweak sym-

metry breaking [83]. The Lagrangian of this model respects the Z2 symmetry,

under which all the standard model particles including the SM Higgs doublet

H1 are even and an extra scalar doublet H2 is odd. Due to this Z2 symmetry,

the cubic term and Yukawa term for H2 doublet are forbidden. This makes

the inert doublet stable and its neutral component can be a candidate for dark

matter.

The two Higgs doublets H1 and H2 can be written in terms of their com-

ponent fields as,

H1 =





h+

h+iG0√
2



 H2 =





H+

H0+iA0√
2





The one of the attractive implication of this model is to provide the dark

matter candidate. In literature there are various attempts to search dark

matter candidates in IDM [89, 90, 91, 92]. However, here we able to use this

model to generate the inflation in early universe and in this way, this model

also has significant effect in explaining large scale structure of the universe.

4.2.1 Tree level potential of the model

We have already pointed out that the conformally coupled Higgs can produce

the scale invariant density perturbations. We make use of this result in this

realistic inert Higgs doublet model, where we have a pair of Higgs doublets con-

formally coupled to the gravity in the early universe. The main motivation of

this work has been to show that a Higgs potential with not too small couplings
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can be a viable source of the observed scale invariant density perturbations.

This is independent of the background metric as the scalar fields are assumed

to be conformally coupled. The scale invariant density perturbations can occur

in radiation or matter era also if the conditions of the potential are met. The

scale invariant density perturbations become superhorizon during a phase of

inflation at the electroweak scale. However other cosmological scenarios like a

bounce models [81] of making the density perturbations superhorizon may be

equally viable with our model.

We will start with tree level potential and again consider the loop-corrections.

In this case, the most general renormalisable potential will be,

Vtree = Vc + µ2
1|H1|2 + µ2

2|H2|2 + λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2 +

λ4|H†
1H2|2 +

λ5
2

[

(

H†
1H2

)2

+ h.c.

]

(4.1)

Here, we consider the conformal case where µ1 = µ2 = 0. Vc is the

constant potential, which acts as cosmological constant and can be formed

from the vev of different Higgs fields. We have chosen Vc = 4× 107GeV4 such

that the minimum of the total potential becomes zero at present era. In the

early universe the cosmological constant gave rise to an exponential expansion

during which the scale invariant perturbations of the phase of the neutral

component of H2 became super-horizon. To achieve this we need that the

potential is such that in the early universe, V ∼ −|λ2||H2|4 ∼ −|λ2||H0+ iA0|4

and the neural component of H2 rolls down this quartic potential while the

minimum of H1 is at 〈H1〉 = 0. In the present era the potential should be such

that the minima occurs at 〈H2〉 = 0 and 〈H1〉 = v = 246 GeV which gives rise

to the electro-weak symmetry breaking. We show in the next section how this

is achieved by radiative corrections starting from a scale invariant tree level

potential.
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4.2.2 Loop correction to the potential

We derive the one-loop correction to the potential (4.1) following Coleman-

Weinberg formalism [58]. The generic one-loop correction to the potential

can be written as [93],

∆V 1 =
1

2

∑

i

(−1)2Ji (2Ji + 1)

∫

d3k

(2π)3

√

k2 +m2
i (4.2)

where Ji are the spin of the fields and mi are the tree level masses, function

of the Higgs field. The double derivative of the tree level potential (4.1) with

respect to the fields give the the tree level masses, which are,

m2
h = λ1(G

2
0 + 3h2 + 2h+h−) + λ3H

+H− +
λL
2
H2

0 +
λS
2
A2

0

m2
G0

= λ1(h
2 + 3G2

0 + 2h+h−) + λ3H
+H− +

λL
2
A2

0 +
λS
2
H2

0

m2
h± = 2λ1(G

2
0 + h2 + 6h+h−) + λ3(H

2
0 + A2

0) + 2λLH
+H−

m2
H0

= λ2(A
2
0 + 3H2

0 + 2H+H−) + λ3h
+h− +

λL
2
h2 +

λS
2
G2

0

m2
A0

= λ2(H
2
0 + 3A2

0 + 2H+H−) + λ3h
+h− +

λL
2
G2

0 +
λS
2
h2

m2
H± = 2λ2(A

2
0 +H2

0 + 6H+H−) + λ3(h
2 +G2

0) + 2λLh
+h− (4.3)

where λL,S ≡ λ3 + λ4 ± λ5. We regularize the divergent terms in Eq. (4.2)

using the cut-off scale Λ and obtain

∆V 1 =
∑

i

(

m2
iΛ

2

32π2
+

m4
i

64π2

(

ln
m4

i

Λ2
− 1

2

))

(4.4)

The divergence in Eq. (4.4) can be removed by adding the counter terms in

the potential of the form,

Vct(φ) = δµ2
φφ

2 + δλφφ
4 (4.5)

where φ denotes the scalar fields, considered in the model.



56 Chapter 4. Higgs inflation in Inert Doublet Model

We impose the regularization condition on the effective potential, such that

at early era (with high µ value), the potential is scale invariant form (4.1) by

choosing the counter terms as follows,

δµ2
φφ

2 = (6λ1 + 2λ3 + λ4 + 1/2) h2 + (6λ2 + 2λ3 + λ4) A
2

+ (6λ1 + 2λ3 + λ4) G
2 + (6λ2 + 2λ3 + λ4) H

2
0 (4.6)

+ 2 (8λ1 + 2λ3 + λ4 + λ5) h
+h− + 2 (8λ2 + 2λ3 + λ4 + λ5) H

+H−

δλφφ
4 = h4

(

9λ21 f(m
2
h) + λ21 f(m

2
G0
) + 4λ21 f(m

2
h±) +

λ2L
4
f(m2

H0
)

+
λ2S
4
f(m2

A0
) + λ23 f(m

2
H±)

)

+H4
0

(

λ2L
4
f(m2

h) +
λ2S
4
f(m2

G0
) + λ23 f(m

2
h±)

+ 9λ22 f(m
2
H0
) + λ22 f(m

2
A0
) + 4λ22 f(m

2
H±)

)

+ G4
0

(

λ21 f(m
2
h) + 9λ21 f(m

2
G0
) + 4λ21 f(m

2
h±) +

λ23
4
f(m2

H0
) +

λ2L
4
f(m2

A0
) + λ23 f(m

2
H±)

)

+ A0

(

λ2S
4
f(m2

h) +
λ2L
4
f(m2

G0
) + λ23 f(m

2
h±) + λ22 f(m

2
H0
) + 9λ22 f(m

2
A0
) + 4λ22 f(m

2
H±)

)

+ (h+h−)2
(

4λ21 f(m
2
h) + 4λ21 f(m

2
G0
) + 144λ21 f(m

2
h±)

+ λ23 f(m
2
H0
) + λ23 f(m

2
A0
) + 4λ2L f(m

2
H±)

)

+ (H+H−)2
(

λ23 f(m
2
h) + λ23 f(m

2
G0
) + 4λ2L f(m

2
h±)

+ 4λ2L f(m
2
H0
) + 4λ22 f(m

2
A0
) + 144λ2L f(m

2
H±)

)

(4.7)

where f(m2
i ) = log

(

Λ2

µ2 + µ2

m2

i

)

. With these counter terms, the form of the

effective potential turns out to be,

Veff.(H0, h, µ) = Vtree +
1

64π2

∑

i

nim
4
i ln(

m2
i

µ2
+ 1) (4.8)

where ni is degrees of freedom and mi are tree level masses, shown in Eq. (4.3).

In this case we have also considered the loop corrections from the top quark
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and gauge bosons. However the gauge boson loop has negligible effect on the

results.

4.2.3 Renormalization group equations for IDM model

We have used the RG equations of the two Higgs doublet model to find out

the values of the coupling constant for different renormalization scale. The

one-loop renormalization group equations are as follows [94],

dλi
dlogµ

=
1

16π2
βi(λ) (4.9)

where µ is the scale of renormalization and the β-functions are as follows,

β1 = 12λ21 + 4λ23 + 4λ3λ4 + 2λ24 + 2λ25 +
3

4

[

2g4 +
(

g2 + g′
2
)2
]

− 12λ4t − 64π2λ1γ1

β2 = 12λ22 + 4λ23 + 4λ3λ4 + 2λ24 + 2λ25 +
3

4

[

2g4 +
(

g2 + g′
2
)2
]

− 64π2λ1γ1

β3 = 2 (3λ3 + λ4) (λ1 + λ2) + 4λ23 + 2λ24 + 2λ25 +
3

4

[

2g4 +
(

g2 + g′
2
)2
]

− 32π2λ3 (γ1 + γ2)

β4 = 2λ4 (λ1 + λ2 + 4λ3 + 2λ4) + 8λ25 + 3g2g′
2 − 32π2λ4 (γ1 + γ2)

β5 = 2λ5 (λ1 + λ2 + 4λ3 + 6λ4)− 32π2λ5 (γ1 + γ2) (4.10)

where the anomalous dimensions of the two Higgs doublets are.

γ1 =
1

64π2

(

9g2 + 3g′
2 − 12λ2t

)

(4.11)

γ2 =
1

64π2

(

9g2 + 3g′
2
)

(4.12)

4.2.4 Values of coupling constants

To get the correct electro-weak symmetry breaking in the present era and the

scale invariant density perturbation in the early era, we have chosen a set of

λ values in present epoch as shown in Table-(4.1).

Now we have study the running of couplings λi, where {i = 1 to 5} shown

in Fig. (4.1) using the one-loop renormalization group equation mentioned in
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λ1 λ2 λ3 λ4 λ5
-0.14 -11 2.8 -1.52 -1.52

Table 4.1: The scalar couplings in the present era with µ = 165.6 GeV
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Figure 4.1: Running of scalar couplings from present to early era

the section 4.2.3 [82]. The variation of Yukawa coupling λt and the gauge

couplings are shown in Fig. (4.2).

From Fig (4.1), we can find the λ values in the early era µ ≃ 105 GeV and

are given in Table-4.2. Only λ2 at early universe is relevant for calculating

λ1 λ2 λ3 λ4 λ5
0.49 -0.5 2.1 0.84 -2.2

Table 4.2: The scalar couplings in the early era with µ = 105 GeV

the scale invariant density perturbation. We constrain the couplings of the

scalar potential by comparing with the amplitude of the spectrum of CMB

anisotropy measured by WMAP.



4.2. Inert doublet model 59

6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

logHΜL

Λ

g3

g2

g1

Λt

Figure 4.2: Running of Yukawa coupling λt and gauge couplings g1, g2 and g3
from present to early era

4.2.5 Variation of potential in early era

The change in shape of the effective potential Veff(H0, h, µ) in Eq. (4.8) from

the early universe where we take µ = 105 to the present epoch where µ = 165.6

GeV is shown in Fig (4.7). We see that in the early universe for a given value

of H0, the minima of Veff(h) (shown in Fig (4.3)) is at h = 0. We assume that

in the early universe h = 0 and we see that Veff(H0) is of the form as shown

in Fig (4.4).

4.2.6 Variation of potential in present era

The one loop correction of the potential has significant contribution in present

era. When we take µ = 165.6 GeV then the potential (4.8) is of the form

shown in Fig (4.5) and Fig (4.6). In this era, the Veff(H0) has a minimum

at H0 = 0 as shown in Fig (4.6). With H0 = 0 , the potential as a function

of the field h has a minimum at h = v ∼ 246GeV signifying the electroweak

symmetry breaking.

It is important to note that we calculate the potential at zero temperature,
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Figure 4.3: Effective potential in the early universe for SM Higgs doublet
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Figure 4.4: Effective potential in the early universe for inert Higgs doublet

which accurately describes the universe during inflation (when any prior tem-

perature goes down exponentially in time) or in the present universe where the

background temperature negligible compared to the electroweak scale. There

is a radiation era after reheating at the end of inflation. The effective potential

at high temperature has been computed for the inert Higgs doublet model in
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Figure 4.5: Effective potential the present universe for SM Higgs doublet

[95], where the thermal evolution of the effective potential has been shown. In

this work we deal with the T = 0 case which is relevant during inflation and

in the present universe.

4.3 Generation of the scale invariant density

perturbation

We now turn to the question of the generation of density perturbations in the

early era when Veff (4.8) simplifies to the form,

Vinf ∼ Vc +
λ2
4

|H2|4, (4.13)

where Vc = 4 × 107GeV4 and λ2 = −0.5. The Hubble parameter Hu in this

era can be calculated from Eq (4.13),

Hu|inf =
1√
3

V
1/2
inf

Mp

∼ 1√
3

V
1/2
0

Mp

(4.14)

= 3× 10−16GeV (4.15)
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Figure 4.6: Effective potential the present universe for inert Higgs doublet

We take the inert Higgs doublet to be conformally coupled to gravity and

the action for this field can be written as,

S =

∫

d4x
√−g

[

gµν∂µH
∗
2∂νH2 −

R

6
H∗

2H2 − Vinf

]

(4.16)

where H2 contains the neutral part of the inert doublet i.e. H2 =
H0+i A0√

2
and

R is the scalar curvature, which conformally coupled with the field H2. The

equation of the field H2 will be,

Ḧ2 +

(

k

a

)2

− 3Hu Ḣ2 +
R

6
H2 +

∂Vinf
∂H2

= 0 (4.17)

where a and Hu are the scale factor and Hubble constant respectively. Now

defining H2 = χH2
/a and rewriting the Eq (4.17), we will get,

χ
′′
H2

+

(

k2 − a
′′

a

)

χH2
+
R

6
a2χH2

+ a3
∂Vinf
∂H2

= 0 (4.18)

where ′ denotes the derivative with respect to conformal time η. We note

that both a
′′
/a and (Ra2)/6 are equal to 2/η2 and hence these two terms in
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Figure 4.7: Variation of the potential at different era

Eq. (4.18) cancel each other. So the equation for H2 becomes,

χ
′′
H2

+ k2χH2
+ a3

∂Vinf
∂H2

= 0 (4.19)

Expressing χH2
= ρ exp(i θ), the conserved current will be of the form,

d

dη
(ρ2θ′) = 0 (4.20)

Hence, the field rolls along the radial direction while the phase θ remains

constant with the increase of ρ. Without loss of generality we can choose the
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fixed phase such that the field H2 has only real neutral component χH0
. The

perturbations of H2 will be along the imaginary axis and we can denote the

full H2 with the perturbations as χH2
= χH0

+ i δχA0
. From Eq (4.19) the

equation of motion of χH0
will be,

χ′′
H0

+ k2χH0
− λ2

2
χ3
H0

= 0 (4.21)

Considering k ≪ 1/η at late time, the solution will be,

χH0
≈ 1√

−λ2(η∗ − η)
(4.22)

where
√
−λ2 is a real quantity as λ2 is negative and η∗ is a constant of in-

tegration. At the end of inflation when µ << 104 the shape of the potential

changes, and H0 starts rolling back to zero shown in Fig. (4.6).

Starting from (16) we see that the equation of motion of the perturbation,

δχA0
is given by,

δχ′′
A0

+ k2δχA0
+
λ2
2
χ2
H0
δχA0

= 0 (4.23)

Substituting χH0
from Eq (4.22), the equation becomes,

δχ′′
A0

+ k2δχA0
− 1

2(η∗ − η)2
δχA0

= 0 (4.24)

This equation can be solved for early times and later times separately. At

early time (k(η∗ − η) ≫ 1), third term can be neglected and the solution will

be

δχA0
=

1

(2π)3/2
√
2k

expik(η∗−η) (4.25)

At later times, when (k(η∗ − η) ≪ 1), third term will dominate and in this
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case solution will look like,

δχA0
∼ 1

k3/2(η∗ − η)
(4.26)

Hence, the super-horizon perturbations of the phase can be defined as,

δθ ≡ δχA0
/χH0

(4.27)

Therefore the perturbation of the phase δθ becomes,

δθ =

√
−λ2
k3/2

(4.28)

The power spectrum of δθ is scale invariant,

Pδθ =
k3

2π2
|δθ|2 = −λ2

2π2
(4.29)

If one considers the k dependence of the equation of motion of H0 as dis-

cussed in [42] there will be a deviation from the scale free power spectrum

(4.29) which will give rise to a non-zero spectral index,

ns − 1 =
3λ2
4π2

(4.30)

From Table-(4.2) we see that in the early universe λ2 = −0.5 which gives

the spectral index ns − 1 = −0.04. This value is consistent with the WMAP

observation of ns = 0.967 ± 0.014 [96]. The perturbations of the phase δθ =

δA0/H0 can be converted to adiabatic perturbation by the decay of A0 field

into standard model fields as in the curvaton mechanism [97]. The amplitude

of the adiabatic perturbation is related to the phase perturbation as

Pζ = r2
Pδθ

θ2c
= r2

−λ2
2π2θ2c

(4.31)

where r is the ratio of the energy density in the A0 field oscillations to the

total energy density. Taking the unperturbed phase to be θc ∼ π/2, and with
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λ2 = −0.5, we see that r = 2× 10−4 can give the required Pζ = 10−10.

4.4 Scalar mass spectrum

The identification of the dark matter particle is one of the most challenging

problem in astro-particle physics today. As the field H2 has a zero vev in

the present universe the lightest neutral components of H2 will be stable and

can be the candidates for dark matter. We study the masses of the fields in

present universe from the effective potential. Taking < H1 >= 246GeV and

< H2 >= 0GeV and for λi as in Table-(4.1) we find the mass spectrum of

scalars in the present universe and it is given in Table 3. We see that A0 field

can be a candidate for light dark matter. We also see that the Higgs mass is

predicted to be Mh = 125.6 GeV which matches with the current observation

of CMS and Atlas experiments.

Mh MH0 MA0 MH±

125.6 273.6 33.7 433.5

Table 4.3: Scalar mass spectrum in GeV

4.5 Conclusions

The inert Higgs doublet model is a natural extension of the standard model

and can be used for explaining the electroweak symmetry breaking by loop

corrections [83] starting from a scale invariant tree level potential. We con-

nect the scale invariance of the inert Higgs potential to the generation of scale

invariant spectrum of a conformally coupled scalar as discussed by Rubakov

and collaborators [13, 41, 42]. The requirement of scale invariance at high en-

ergy scale and electroweak symmetry breaking at low energies fix the coupling

constants of the theory. Specifically we find that the quartic coupling of the

inert doublet is λ2 = −0.5 at µ = 105 GeV and it predicts the spectral index

of the power spectrum of the perturbations and it is consistent with WMAP

observations. The amplitude of the power spectrum Pζ can be tuned with
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the observations by choosing a suitable curvaton mechanism. We also make

the predictions for masses of the Higgs bosons and the dark matter (which is

the lightest neutral component of the inert doublet) which can be tested in

forthcoming experiments.





Chapter 5

Phenomenology of vacuum

stability of standard model

Higgs

This chapter presents the discussions of the running of the Higgs quartic cou-

pling in the standard model for the 125 GeV Higgs. We introduce the Yukawa

couplings Yν between the Higgs and heavy neutrinos in the context of Type-1

see-saw models and study the effect of neutrino Yukawa’s on the running of

the Higgs quartic coupling. We establish the bound on Yν from the stability

criterion. The three aspect of the heavy neutrino phenomenology, namely,

Neutrino-less double beta decay (0νββ), Lepton flavor violating decays like

µ → e γ are studied in the light of the vacuum stability condition. We esti-

mate the same-sign-dilepton signals at the LHC.

69
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5.1 Introduction

The recent measurement of Atlas and CMS [1, 23, 24] have confirmed the

existence of a new boson which has mass in the range 126.5 GeV (Atlas at

5.0σ) and 125.3±0.6 GeV (CMS at 4.9σ), and it is expected to be a Standard

Model Higgs. This mass range implies that quartic coupling λ of the Higgs

has a value close to the vacuum stability limit [17, 43, 98, 44, 45, 46, 47].

The top-quark loops make a negative contribution to the β-function of λh

while the gauge couplings give a positive contribution. If the quartic coupling

λh(µ) becomes negative at large renormalization scale µ, it implies that in

the early universe the Higgs potential would be unbounded from below and

the vacuum would be unstable in that era. It has been pointed out that the

Higgs mass ∼ 126 GeV range being close to the vacuum stability limit, one

can put stringent constraint on new physics which affects the running of the

Higgs quartic coupling.

One class model, which can be constrained from the stability criterion of the

Higgs coupling, is the see-saw models of neutrino masses [48, 49, 50, 51, 99, 52].

In Type-I see-saw models [100] one introduces number of heavy gauge singlet

Majorana neutrinos which have Yukawa couplings with the Higgs and lepton

doublets. The electroweak symmetry breaking gives rise to the Dirac mass

matrix MD,

−L = N̄RMDνL +
1

2
N̄RMRN

c
R + h.c. (5.1)

If MD << MR in pure Type-I models [100], the light neutrino masses are

given by Mν = MT
DM−1

R MD. It has been discussed earlier in many pa-

pers that light neutrino masses, which can explain the solar and atmospheric

neutrino oscillations, are obtained by assuming the eigenvalues MD ∼ 100

GeV and MR > 1014 GeV. By a suitable choice of MD and MR one can set

MT
DM−1

R MD = 0 and the light neutrino masses are given by higher order

terms in MT
DM−1

R [101, 102, 103]. In this way it is possible to generate vi-

able light neutrino masses while reducing the scale MR to less than a TeV.
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In [99, 52], the constraints on various TeV-scale Type-I neutrino mass models

from the vacuum stability criterion of Higgs coupling has been checked.

In this study we assume Yukawa couplings Yν of heavy Majorana neutrinos

with the lepton doublets and the Standard Model Higgs and that the heavy

neutrinos masses are in the 100 GeV-10 TeV range. We obtain the constraints

on the Higgs-neutrino Yukawa couplings by calculating the renormalization

group evolutions (RGEs) of λh(µ) (which is fixed at the electroweak scale

by the Higgs mass). The vacuum stability condition is the requirement that

λh(MW ≤ µ ≤ MP ) ≥ 0. We find that this leads to the constraint Yν ≤
0.14 on the elements of the Yukawa coupling matrix. We then apply this

condition (which implies that the Dirac neutrino masses MD ≤ 24.36 GeV) on

the phenomenology of TeV scale heavy neutrinos [104, 105, 106, 107, 108, 109].

First we will presents the Renormalization Group evolutions for standard

model followed by the discussion of vacuum stability of the Standard Model

Higgs potential.

5.2 Vacuum stability of the Standard Model

Higgs potential

The Higgs mass measured by Atlas and CMS collaborations [1, 23, 24] is in

the mass range 124.7 GeV-126.5 GeV and this range is close to the bound on

Higgs mass from electro-weak vacuum stability condition [17]. In [43], it has

been shown that in standard model, the Higgs boson quartic coupling λh can

remain positive upto Planck scale with appropriate choice of top quark mass

mt, strong coupling constant αs etc. The coupling λh > 0 ensure the stable

vacuum and the bounded potential from below. Details of this study is done

recently in [47].

The RG-improved Higgs potential can be written as,

Veff =
λh(t)

4!
[ξ(t)φ]4 (5.2)
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where ξ signifies the wave function renormalization and t ∼ log(µ/MZ), µ is

the scale of renormalization. Here λh(t) is the effective Higgs quartic coupling

with loop corrections. Loop corrections can cause an instability of the potential

if λ(t) becomes negative at any scale µ < MP . The gauge boson loop makes a

positive contribution whereas the top quark makes a negative contribution to

the β function of λh. Hence the instability of the potential mainly comes from

loop-correction of top quark.

We compute the RG running of λh(µ) using the two loop RG equations for

the Standard Model [110, 111, 112, 113, 114, 43, 46].

5.3 Renormalization Group Equations

In general, the beta functions for the couplings λh can be written as,

βλ = µ
dλ

dµ
=
∑

i

β
(i)
λ

(16π2)i
(5.3)

where λ denotes the Higgs quartic coupling λh, top quark Yukawa coupling

λt, gauge couplings gi, (i = 1, 2, 3) and neutrino coupling Yν for Type-I seesaw

model respectively.

5.3.1 Higgs Quartic coupling λh

One-loop and two-loop corrections for λh are as follows,

β
(1)
λh

= λh
(

−3g21 − 9g22 + 12λ2t
)

+
3g42
4

+
3

8

(

g21 + g22
)

2 + 24λ2h − 6λ4t (5.4)

β
(2)
λh

=

(

85g21
6

+
45g22
2

+ 80g23

)

λhλ
2
t +

629

24
g41λh +

39

4
g22g

2
1λh + 36

(

g21 + 3g22
)

λ2h

− 73

8
g42λh −

19

4
g41λ

2
t −

8

3
g21λ

4
t +

21

2
g22g

2
1λ

2
t − 32g23λ

4
t −

9

4
g42λ

2
t −

379g61
48

− 559

48
g22g

4
1 −

289

48
g42g

2
1 +

305g62
16

− 3λhλ
4
t − 144λ2hλ

2
t − 312λ3h + 30λ6t (5.5)
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5.3.2 Yukawa coupling for Top quark λt

One and two loop β functions for λt are given by,

β
(1)
λt

=

(

−17g21
12

− 9g22
4

− 8g23

)

λt +
9λ3t
2

(5.6)

β
(2)
λt

= λt

(

λ2t

(

131g21
16

+
225g22
16

+ 36g23 − 12λh

)

+
1187g41
216

− 3

4
g22g

2
1 +

19

9
g23g

2
1

− 23g42
4

+ 9g22g
2
3 − 108g23 + 6λ2h − 12λ4t

)

(5.7)

5.3.3 Gauge couplings g1, g2 and g3

In standard model, gauge couplings have following one-loop and two-loop cor-

rections [43],

β(1)
g1

=
41g31
6

(5.8)

β(1)
g2

= −19g32
6

(5.9)

β(1)
g3 = −7g33 (5.10)

β(2)
g1 = g31

(

199g21
18

+
9g22
2

+
44g23
3

− 17λ2t
6

)

(5.11)

β(2)
g2

= g32

(

3g21
2

+
35g22
6

+ 12g23 −
3λ2t
2

)

(5.12)

β(2)
g3

= g33

(

11g21
6

+
9g22
2

− 26g23 − 2λ2t

)

(5.13)

We have also included the proper matching conditions at top pole mass

[115]. The Higgs boson pole mass MH is determined by its relation to the

running Higgs quartic coupling through the one-loop matching condition,

λh(Mt) =
M2

H

v2
(1 + δh(Mt)) (5.14)

and δh(Mt) is defined as,

δh(Mt) =
M2

z

32π2v2
[

ξf1(ξ) + f0(ξ) + ξ−1f−1(ξ)
]

(5.15)
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where ξ ≡M2
h/M

2
z and the functions fi, (i = 1, 0,−1) are as follows,

f1(ξ) = −Z
(

c2w
ξ

)

− log
(

c2w
)

+ 6 log

(

M2
t

M2
h

)

− 1

2
Z

(

1

ξ

)

+
3 log(ξ)

2

+
9

2

(

25

9
− π√

3

)

(5.16)

f0(ξ) = −6 log

(

M2
t

M2
z

)(

2c2w − 2M2
t

M2
z

+ 1

)

+

(

3c2w
s2w

+ 12c2w

)

log
(

c2w
)

+ 4c2wZ

(

c2w
ξ

)

+
3ξc2w log

(

ξ
c2w

)

ξ − c2w
− 15

2

(

2c2w + 1
)

− 3
M2

t

M2
z

(

2Z

(

M2
t

ξM2
z

)

+ 4 log

(

M2
t

M2
z

)

− 5

)

+ 2Z

(

1

ξ

)

(5.17)

f−1(ξ) = 6 log

(

M2
t

M2
z

)(

2c4w − 4M4
t

M4
z

+ 1

)

− 12c4wZ

(

c2w
ξ

)

+ 8
(

2c4w + 1
)

− 12c4w log
(

c2w
)

+ 24
M4

t

M4
z

(

Z

(

M2
t

ξM2
z

)

+ log

(

M2
t

M2
z

)

− 2

)

− 6Z

(

1

ξ

)

(5.18)

with s2w = sin2 θW = 0.23116(13) [116], c2w = cos2 θW (θW denotes the weak

mixing angle) and

Z(z) =







2A arctan(1/A) (z > 1/4)

A ln [(1 + A)/(1− A)] (z < 1/4),
(5.19)

with A =
√

|1− 4z| and we use the value αs (Mz) = 0.1184 [116].

Fig. (5.1) shows the variation of λh with different values top quark mass

mt. With increase of mt, λh becomes negative even before the Planck scale.

For subsequent calculations, we have chosen different sets of top mass keeping

Higgs mass constant.

Now we move beyond the standard model by adding a Higgs-lepton doublet

and heavy neutrino Yukawa coupling.
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Figure 5.1: Running of λh for different values of mt in Standard Model (mh =
125 GeV, αs = 0.1184).

5.4 Higgs coupling with heavy neutrino

The Standard Model Higgs can couple to a singlet neutrino NR via the gauge

invariant interaction term,

−LY = YνLHNR +
1

2
N̄RMRN

c
R + h.c., (5.20)

where L = (ν, l)T is the lepton doublet, H = (h0, h−) is the Higgs doublet and

NR is right-handed singlet neutrino. MR are the Majorana masses for NR.

Once this neutral field h0 acquires vacuum expectation value (vev) v = 174

GeV, the electroweak symmetry breaking occurs. This interaction generates

Dirac mass term, MD, after electroweak symmetry breaking which reads as

MD = Yνv (v = 174 GeV).

In our further analysis we will not consider the flavour structures of both

Yν and MR, i.e., we will assume that Yν = Yνdiag(1, 1, 1) and right-handed

neutrinos are degenerate, i.e. MR =MR diag(1, 1, 1).

This new Yukawa coupling affects the RG evolutions of λh and thus gets

constrained from vacuum stability. This Yν also plays an important role in the

production and decays of NR leading to same-sign-dilepton associated with
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Figure 5.2: Running of λh for different values of mh in Standard Model (mt =
172.5 GeV, αs = 0.1184).

jets at the LHC.

The running of neutrino Yukawa coupling is as follows, [48, 50, 51]

µ
d

dµ

(

Y†
νYν

)

=
1

(4π)2
Y†

νYν

[

6λ2t + 2 Tr
(

Y†
νYν

)

−
(

9

10
g21 +

9

10
g22

)

+ 3Y†
νYν

]

.(5.21)

The introduction of neutrino sector to Standard Model also modify the RG

evolution of the Higgs quartic coupling λh and Yukawa coupling of top quark

λt as follows,

The extra contribution for the singlet fermionic field to Higgs quartic cou-

pling (λh) is

β̂λh
=

1

(4π)2
[

−4 Tr(YνY†
νYνY†

ν) + 4λh Tr(YνY†
ν)
]

, (5.22)

and to the top quark Yukawa coupling (λt) is

β̂λt
=

1

(4π)2
[

Tr
(

Y†
νYν

)]

. (5.23)

Keeping top quark mass mt fixed, we can find different values of neutrino

coupling for different Higgs masses. This variation of λh with different values
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Figure 5.3: Running of λh for different values of neutrino Yukawa coupling Yν
with MR = 0.1-1 TeV, (mt = 172.5 GeV, αs = 0.1184).

of Higgs mass is presented in Fig. (5.2). Using these RG equations, we can also

study the effect of neutrino coupling on λh with fixed Higgs mass mh and top

quark mass mt. This running of λh has been shown in Fig. 5.3. The impact of

neutrino Yukawa coupling Yν on λh is in similar fashion as λt and λh becomes

negative before Planck scale (MP ) with comparatively larger values of Yν . We

know that there is an uncertainty in top mass measurement 173.2 ± 0.9 GeV

[117] and 173.3±2.8 GeV [118], and that feature has been grabbed in Fig. 5.1.

We outline the RGEs of λh for different sets of Yν for mh = 124.7− 126.5

GeV and mt = 172.5 GeV. We check the stability condition, defined as λ(µ ≤
MP ) > 0 and reveal that, to avoid the instability of potential, the maximum

value of the Yukawa coupling Yν at µ ∼ TeV must be,

Yν ≤ 0.14. (5.24)

This upper limit of Yν sets the tolerance of the vacuum in this model. It has

been noted that the light-heavy mixing parameter can be encapsulated in terms

of the Dirac mass,MD ∼ Yνv, see [109, 119]. In other words, this mixing, which

in turn also affects the production and decay of the heavy Majorana neutrino,
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gets constrained. Thus eventually this bound can be useful to adjudge the

possibility of being probed or ruled out this TeV scale model at the LHC.

5.5 Gauge interactions of heavy neutrinos

We consider three generations of Standard Model SU(2)L lepton doublets

LlL = (νl, ℓl)
T
L, (ℓ = e, µ, τ) and three singlets NR. The relation between

the neutrino flavour and the mass eigenstates can be written as,

νlL =
3
∑

i=1

UliνiL +
3
∑

k=1

VlkN
c
kL (5.25)

U †U + V †V = I, (5.26)

where the mixing between the light and heavy neutrinos is V †V ≃ (MDM−1
R )2 =

(vYνM−1
R )2. In terms of the mass eigenstates the charged current interaction

vertices can be written as

−Lcc
int =

g√
2
Wµ

(

3
∑

i=1

U∗
liν̄iγ

µPLl +
3
∑

k=1

V ∗
lkN

c
kγ

µPLl + h.c.

)

(5.27)

Our phenomenological studies involve ∆L = 2 processes, like same-sign-

dilepton (including (0νββ)) production at colliders where the source of the

lepton number violation is the exchange of heavy Majorana neutrino. The

coupling of the heavy neutrino to the charged leptons is parametrized by the

mixing angles of Vlk. We use the upper bound of Yν from Eq. (5.24) to predict

the parameter space where these processes may be observable. We also study

lepton flavour violations like µ → eγ whose upper limits are again restricted

by Eq. (5.24).

5.5.1 Neutrinoless double beta decay
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Figure 5.4: Neutrinoless double beta diagrams involving heavy Majorana field

Neutrinoless double beta decay is one of the important phenomena to probe

the lepton number violation. In this process, the lepton number violation

occurs by two units. The half-life time of this process is also ascribed by this

mixing Vli as following,

T−1
1/2 = κ0ν

∣

∣

∣

∣

(Mν)ee
〈p2〉 − |Vei|2

MR

∣

∣

∣

∣

2

, (5.28)

where κ0ν = G0ν (MNmp)
2, nuclear matrix element (NME) for heavy neutrino,

MN = 363±44,mp is the proton mass, and G0ν = 7.93×10−15 yr−1. We assume

that the second term, arising from the heavy neutrino mixing, dominates over

the first term and the mixing parameter Vei is explicitly related to the neutrino

Yukawa coupling Yν via Dirac mass as,

|Vei|2 =
∣

∣

(

MDM
−1
R

)

ee

∣

∣

2
, (5.29)

and the relation Eq. (5.28) for half-life time of neutrinoless double beta decay

becomes,

T−1
1/2 ≈

κ0ν |Vei|4
M2

R

=
K0ν

M2
R

∣

∣

(

MDM
−1
R

)

ee

∣

∣

4
. (5.30)

The experimental bound on half-life time is T1/2 = 2.23+0.44
−0.31 × 1025 yr

shown in [120]. The study of vacuum stability gives MD ≤ 24.36 GeV. Using

the values for T1/2 and MD, we can put the limit on the mass of the heavy
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neutrino,

MR ≤ 4.5 TeV (5.31)

5.5.2 Lepton flavor violation

The mixing of active neutrinos with heavy neutrinos can give rise to lepton

flavour violations (LFV) like µ→ eγ as shown in Fig. 5.5, if we generalize MR

matrix to contain off-diagonal terms. In this case, the structure of MR matrix

will be,

M−1
R =M−1

R











1 ǫ1 ǫ2

ǫ1 1 ǫ3

ǫ2 ǫ3 1











, (5.32)

where ǫis can be chosen to satisfy the correct light neutrino maxing angles.

ℓi ℓj

N

WW

γ

Figure 5.5: Lepton Flavour Violating process ℓi → ℓjγ.

We know among the ℓi → ℓjγ type LFV decays, µ → eγ holds the most

stringent bound on its decay branching ratio (BR) which is 2.4×10−12 (Present)

[121], and 1.0× 10−13 (Future) [122].

We estimate the branching ratio of this process from vacuum stability and

check its compatibility with the existing direct bounds. This branching ratio

for µ → eγ is accompanied by the mixing Vli (l = e, µ) between light to heavy
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neutrino [123, 124, 125, 104, 105, 106, 107, 108] as,

Br (µ → e γ) =
3α

8π

∣

∣

∣

∣

∣

∑

i

VeiV
∗
µi ĝ(r)

∣

∣

∣

∣

∣

2

, (5.33)

where ĝ(r) = r (1− 6r + 3r2 + 2r3 − 6r2 ln(r)) /(2 (1− r)4), and r =M2
R/M

2
W .

Again taking the constraint from vacuum stability MD ≃ 24.36 GeV,

Eq. (5.33) is simplified to,

Br (µ→ eγ) = 2.82× 10−10

(

MD

24.36 GeV

)4(
TeV

MR

)4

. (5.34)

Taking the experimental bound Br (µ → eγ) < 2.4× 10−12 from [121] and

if MD ≃ 24.36 GeV (in order to give a sizable contribution to (0νββ) and

SSD signal at LHC), we see that MR ≥ 3.3 TeV. This implies that in order to

observe (0νββ) or like-sign-dilepton signals, we need MR to be small and the

texture of Yν and MR should be such that the e− µ flavour mixing is small.

5.6 Same-Sign-Dilepton signal at LHC

The processes for same-sign-dilepton (SSD) production are similar to the neu-

trinoless double beta decay, see Fig. 5.4. These processes have phenomenolog-

ical importance as it involves both e and µ . The signal is identified as the

same-sign-dileptons + N jets, N > 2. The interaction vertices of the heavy

neutrino (NR) are suppressed by the mixing parameters ∼ O(Yνv/MR). As-

suming again a flavour diagonal Yν and degenerate NR, we estimate the cross

section for SSD at the LHC.

We have implemented this SM ⊕ Heavy Singlet neutrino model at Calchep

[126] and estimated the cross-section for the process pp → e±e± + jets and

pp → µ±µ± + jets. We have considered the range of MR to be 0.1-1 TeV and

no flavour structure for the simplification of study. It has been noted that

in the Fig. 5.4 (left) the amplitude is suppressed more ((MD/MR)
4) than the

other diagram Fig. 5.4 (right) (here the suppression is O(MD/MR)
2). The
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choice of our MR is such that the mixing is much smaller than 1 and that

dictates us to work safely with the Fig. 5.4 (right).

In earlier section we have noted the maximum MD = Yνv from the vacuum

stability of the Standard Model Higgs field. In this section we have use that

limit and estimate the largest possible maximum cross-section for the process

Fig. 5.4 (right) with two different sets of center of mass energy at the LHC.

These two cross-sections are calculated with center of mass energy (
√
s) 7 TeV

and 14 TeV shown in Fig. 5.6 and Fig. 5.7 respectively.
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Figure 5.6: Production cross-section Fig. 4 (right) with
√
s=7 TeV in the LHC.

In recent paper by Atlas [127] the Standard Model background has been

estimated at 2.1 fb−1 luminosity. As shown in Fig. 5.6 and Fig. 5.7, the vacuum

stability puts a stringent bound on the production cross-section, through the

MD and the maximum allowed cross-section is 49.02 fb at 7 TeV center of mass

energy. This is the maximum cross-section that one attains using no cuts.

But due to the stringent constraint from the demand of vacuum stability, the

allowed cross-section is quite small. However LHC does not have enough data

to see the process compared to the SM background [127]. Thus we have to

wait for future data with 14 TeV center of mass energy and large integrated

luminosity (L=
∫

Ldt = ∼ 100 fb−1). The cross section for the SSD process at

the LHC with
√
s=14 TeV is shown in Fig. 5.7 and the region above the ‘thick
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Figure 5.7: Production cross-section of the process Fig. 4 (right) with
√
s=14

TeV in the LHC.

(red)’ line is disallowed by the vacuum stability. In Fig. 5.7 we see that ‘shaded

(cyan)’ area is the accessible region at the LHC with
√
s=14 TeV at L=100

fb−1 considering at least 3 events over the zero background, i.e, at 95% C.L.

Hence taking into account the vacuum stability condition it may be possible

to observe SSD signal at LHC if MR < 400 GeV.

5.7 Conclusion

In this work we have focused on the vacuum stability of the Higgs field in a

specific scenario where the Standard Model is extended by singlet Majorana

fermions. We have studied the impact of such new field that couples to the

light neutrinos via the SM Higgs doublet on the RG evolution of the Higgs

quartic coupling (λh). We show that expectedly this new coupling (Yν) lowers

the scale µ at which λh(µ) becomes negative. In this study the aim is to find

the maximum value of Yν which is compatible with the vacuum stability with

heavy neutrino field having mass MR ∼ TeV.

We showed that the vacuum stability condition constrains the Dirac mass

(which we have taken to be degenerate) to be MD ≤ 24.36 GeV. We studied



84 Chapter 5. Phenomenology of vacuum stability of standard model Higgs

∆L = 2 processes like (0νββ) and same-sign-dileptons at LHC and lepton

flavour violating processes like µ→ eγ taking into account the vacuum stability

bound on MD. This bound restricts the mixing between the light and heavy

neutrinos and the mixing varies as MD/MR.

We find that in order to observe (0νββ) signal, which saturates the exper-

imental bound T1/2 = 2.23+0.44
−0.31 × 1025 yr [120], the heavy neutrinos must have

a mass MR < 4.5 TeV.

For the LFV process µ→ eγ if we assume MD at the largest possible value

24.36 GeV from vacuum stability (to maximize the chances for other signals),

then we get the constraint MR > 3.3 TeV. It may be possible to evade this

bound on MR by choosing the texture of MD and MR matrices such that

e− µ mixing is suppressed.

Finally we estimate the maximal cross-section for the signal, like same-

sign-dilepton associated with jets imposing the vacuum stability condition.

We show that the data attained with 2.1 fb−1 integrated luminosity cannot

rule out right-handed neutrinos as the vacuum stability criterion shows that

the dilepton signal would be way below the SM background. It may be possible

to observe the SSD at the LHC with
√
s=14 TeV and integrated luminosity of

100 fb−1 as long asMR < 400GeV. If a larger signal is seen at the LHC then it

would be a sign of new physics beyond SM + sterile right-handed neutrinos.



Chapter 6

Summary and conclusions

This chapter summarizes the results of the thesis and we have drawn the

conclusions for the work presented here.

85
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This thesis covers the study of inflation model, which is an exponentially

expanded era of early universe. Inflation can successfully discuss the early uni-

verse. Standard model of cosmology mainly depends on the Big-bang theory.

Big-bang theory solely can not describe the early phenomena of the universe.

Inflation is one of the important cosmological model, which along with Big-

bang model can solve the horizon and flatness problem. The discussion of the

drawback of Big-bang theory and how it can be solved by considering inflation

is described in Chapter-2. The requirement of the inflationary model can be

fulfilled by simple scalar field, named as ‘Inflaton’. Dynamics of this inflaton

field is presented here. For completeness of the basic of inflation, we also briefly

discuss the different possible kinds of inflation model.

We have presented a comprehensive study of Higgs inflation model in

Chapter-3. And it is the main focus of this thesis. The recent measurement of

Higgs mass, around 125.3± 0.6 GeV at 4.9σ level from CMS experiment and

126.5 GeV at 5σ level from Atlas experiment [1], imply λ ∼ 0.14. However

inflation predicts λ ∼ 10−12 from the WMAP observation of curvature pertur-

bation ∆2
R = 2.43 ± 0.11 × 10−9 [96]. Hence it seems impossible to consider

standard model Higgs as inflaton to satisfy WMAP results as well as Atlas

and CMS prediction for Higgs mass. However the large conformal coupling

between Higgs and the gravity [5] helps to clarify both the observations and

obtain the correct value for the Higgs quartic coupling λ. This large curva-

ture coupling creates the problem of unitarity which also can be handled in

this model. We couple the Higgs field to the Electromagnetic fields via a non-

renormalizable dimension six operator suppressed by the Planck scale in the

Jordan frame. We show that by choosing the Higgs coupling λ(MZ) = 0.132

(which is related to mh = 126GeV consistent with the recent results of Atlas

and CMS experiments) and curvature coupling ξ(MZ) = 103, we can generate

comoving magnetic fields of 10−7 Gauss at present and at comoving coherence

length of 100kpc. We have calculated the magnetic field at inflationary era as

δ2BI
= 1.09× 1052GeV4. Along with this value and the observation for present

magnetic field give the correct reheating temperature, Treh ∼ 1013 GeV. This
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reheating temperature is matches with the results described in [77]. There is

also a scope to check the back-reaction problem in this model. Energy density

of the electromagnetic field is, ρem = 2.81 × 1049 GeV4, whereas the energy

density of the inflation is, ρφ = 8.3×1063GeV4, which is much larger than ρem.

Hence the back-reaction of the generated electromagnetic field can not spoil

the inflation. The problem of large back-reaction which is generic in the usual

inflation models of magneto-genesis is avoided in this Higgs inflation model as

the back-reaction is suppressed by the large Higgs-curvature coupling.

In next chapter we have considered a distinct method to generate the den-

sity perturbation for explaining the structure formation of the universe. Ac-

cording to this method, conformally coupled field rolling down negative quartic

potential can produce density perturbations. We have applied this idea in In-

ert doublet model, which is the minimal extension of the standard model. The

predictions of this model for inflation are consistent with the WMAP obser-

vations. However, Inert doublet is an established and well-known model to

produce dark matter candidate by imposing Z2 symmetry. In this model, light

neutral component of the inert Higgs doublet becomes the dark matter. Our

study reveals light scalar dark matter of mass 33.7 GeV. Moreover the success-

ful electroweak symmetry breaking makes possible to get correct Higgs mass

around ∼ 126.5 GeV.

Subsequently we studied the vacuum stability of 125 GeV Higgs. This

study have started long way back by G. Altereli [17]. The Higgs potential

becomes instable if the coupling becomes negative in any scale within the

scale, from electroweak to Planck scale. The unbounded potential from the

below, can create problem to explain early universe, as energy density as well as

Hubble parameter become negative. Keeping in mind the present observation

of Higgs mass, we have done the full analysis. To study the phenomenology of

TeV scale heavy neutrinos, we have added extra right handed neutrino to the

standard model. We have constrained the neutrino yukawa coupling Yν < 0.14

through the study of vacuum stability and this can reflected as the bound on

Dirac mass as mD = Yνv, where Higgs vev, v = 174 GeV. This constraint
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effects the mixing parameter, V †V =
(

mDM
−1
R

)2
. Hence the processes such

as, Neutrinoless double beta decay (0νββ), Lepton flavor violating decays like

µ → eγ and Like-sign dilepton signals at LHC have significant effects from

vacuum stability.
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