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Abstract

In the history of elementary particle physics, the discovery of the Higgs boson

at the Large Hadron Collider (LHC) in July 4, 2012 is an important breakthrough

which completes the Standard Model (SM) of particle physics. Nevertheless, there

exist experimental observations which cannot be explained by the SM, like the

neutrino oscillations, dark matter, baryon asymmetry etc. With these experimen-

tal shortcomings it is evident that there exist some beyond the Standard Model

(BSM) physics. There are several ways to extend the SM to explain some of

the experimental phenomena which is still to be observed in the state-of-the-art

experiment like LHC. But the recent Higgs discovery can shed some light in the

uncharted territory of theoretical physics. We are living at a minima of the Higgs

potential where the Higgs field acquires a vacuum expectation value (vev) which

is intertwined with the Higgs boson mass (mH) measured at the LHC. The sta-

bility of the minimum is ensured by the condition that the Higgs quartic coupling

should be positive. But recent observation of mH at the LHC indicates that the

SM minima does not remain stable upto the Planck scale. This also indicates

that there must be some new physics phenomena which will stabilize the mini-

mum. Hence the stability analysis of the BSM scenarios is necessary to constrain

parameters of the model. There are other constraints like perturbativity and

unitarity of scattering amplitudes of longitudinal gauge boson modes which will

also restrict the parameter space.

The BSM models that include many scalar fields posses scalar potential with

many quartic couplings. Due to the complicated structures of such scalar poten-

tials it is indeed difficult to adjudge the stability of the vacuum. Thus one needs

to formulate a proper prescription for computing the vacuum stability criteria.

We have used the idea of copositive matrices to deduce the conditions that guar-

antee the boundedness of the scalar potential. We have discussed the basic idea

behind the copositivity and then used that to determine the vacuum stability cri-

teria for the Left-Right symmetric models with doublet, and triplet scalars and

Type-II seesaw. As this idea is based on the strong mathematical arguments it

helps to compute simple and unique stability criteria embracing the maximum
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allowed parameter space.

We study the B−L gauge extension of the Standard Model which contains a

singlet scalar and three right-handed neutrinos. The vacuum expectation value

of the singlet scalar breaks the U(1)B−L symmetry. The B −L symmetry breaks

when the complex singlet scalar acquires a vev. We studied two different cases of

B−L breaking scale: TeV scale and ∼ 1010 GeV. The TeV scale breaking scenario

can have signatures at the LHC and we have constrained parameter space of

this model. The high scale breaking scenario provides a constrained parameter

space where both the issues of vacuum stability and high-scale inflation can be

successfully accommodated.

The Left-Right symmetric model (LRSM) is theoretically well motivated and

also contains rich phenomenology. We used idea of copositivity to calculate vac-

uum stability conditions for two variants of the LRSM. We incorporate the uni-

tarity conditions in LRSM which can translate into giving a stronger constraint

on the model parameters together with the criteria derived from vacuum stability

and perturbativity. In this light, we demonstrate the bounds on the masses of

the physical scalars present in the model and find the scenario where multiple

scalar modes are in the reach of Large Hadron Collider.

We have also studied a variant of TeV scale seesaw model in which three addi-

tional heavy right handed neutrinos are added to the standard model to generate

the quasi-degenerate light neutrinos. This model is theoretically interesting since

it can be fully rebuilt from the experimental data of neutrino oscillations except

for an unknown factor in the Dirac Yukawa coupling. We study the constrains on

this coupling coming from meta-stability of electro-weak vacuum. Even stronger

bound comes from the lepton flavor violating decays on this model, especially in

a heavy neutrino mass scenario which is within the collider reach. Bestowed with

these constrained parameters, we explore the production and discovery potential

coming from these heavy neutrinos at the 14 TeV run of Large Hadron Collider.

Signatures with tri-lepton final state together with backgrounds are considered

in a realistic simulation.
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Chapter 1

Introduction

Ever since the ancient times, people are interested to know how Nature works.

Today, the best theory as we understand Nature is the Standard Model (SM) of

particle physics along with the theory of General Relativity. Dynamics and inter-

actions of the fundamental particles and their interactions (except gravitational)

are contained in the SM of particle physics. The theory is backed by huge amount

of experimental evidences and by far is the most precise theory ever constructed.

The elegance of the construction relies on symmetry principles. Almost all the

elementary particles remain massless if absolute symmetry holds. As we observe

that several of these elementary particles are in fact massive, we have to have a

mechanism to generate mass. In this chapter we will briefly describe the Standard

Model and also the Higgs mechanism which is responsible for giving masses to

most of the elementary particles along with a few force carriers.

1.1 The Standard Model of Particle Physics

The Standard Model is a quantum field theoretical description of three of the

four fundamental forces, viz., strong, electro-magnetic and weak interactions.

Quantum chromodynamics (QCD) is the theory of strong interactions governed

by the non-Abelian gauge group SU(3)c [1]. The theory of electromagnetic and

weak interaction (from now on electro-weak theory) is called Glashow-Weinberg-

Salam(GWS) model [2–4], named after the developers of the model. The full

1
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Fields Names Spin SU(3)c SU(2)L U(1)Y

Qi
L =

(
uiL
diL

)
quarks 1

2
3 2 1

3

uiR
1
2

3 1 4
3

diR
1
2

3 1 −2
3

LiL =

(
νiL
eiL

)
leptons 1

2
1 2 −1

eiR
1
2

1 1 −2

G 1 8 1 0
W±,W 3 gauge fields 1 1 3 0

B 1 1 1 0
Φ Higgs field 0 1 2 1

Table 1.1: The fundamental fields of the SM are tabulated here with their representations
under SM gauge groups. The subscript L/R represents left/right chiral†fermions. Also note
that the gauge bosons lie in the adjoint representation of the respective symmetry group. Here
superscript i (= 1, 2, 3) stands for the generation index .

symmetry group of the SM is

GSM = SU(3)c ⊗ SU(2)L ⊗ U(1)Y , (1.1)

where all the symmetries are gauged. The gauge group SU(2)L ⊗ U(1)Y corre-

sponds to the GWS model. All the elementary particles are fermions (half integer

spin) and the force carrier particles are bosons (integer spin). The fermions are

assigned intrinsic quantum numbers depending on how they behave under a par-

ticular symmetry. In Table 1.1 we have summarized the field content of the SM

and also tabulated dimensions of representations under different gauge groups.

The last column represent the intrinsic quantum number under the U(1)Y group.

There exist three generations of fermions and labelled by the index i (= 1, 2, 3)

which is called the generation index. A particular interaction is governed by a

gauge group and the mediators of that interaction are called the gauge bosons

which lie in the adjoint representations of the respective symmetry group. Medi-

ators of the strong force are called gluons and denoted by G. The gauge bosons

†A particle is right-handed if the direction of its spin is the same as the direction of its
momentum. It is left-handed if the directions of spin and momentum are opposite. Chirality
is the Lorentz invariant generalization of this handedness to massive particles and is analogous
to handedness for massless particles.
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W± mediate the charged current weak interaction, whereas the neutral part W 3

and B mix with each other and produce two vector bosons, Z and the photon (γ).

The neutral weak interaction mediator is the Z boson and γ is responsible for

the electromagnetic force. The mixing between the W 3 and B will be discussed

later in this chapter. The only scalar field in the SM is the Higgs field introduced

to generate mass via the Higgs mechanism which we will discuss in detail. Now

we focus on all the three different sectors (gauge, fermionic and scalar) in short.

1.1.1 Gauge Sector

This sector contains only the spin-1 fields. Gluons are denoted by Gα
µ where

α = 1, 2, · · · , 8 labels the component of the adjoint representation of the SU(3)c

group. The SU(2)L gauge bosons are denoted as W a
µ where a = 1, 2, 3. The

vector boson associated with the U(1) gauge group is Bµ.

The gauge invariant SM Lagrangian containing all these gauge fields can be

written as

LGauge = −1

4
Gα
µν G

µνα − 1

4
W a
µνW

µνa − 1

4
Bµν B

µν , (1.2)

where the field strengths are defined by

Gα
µν = ∂µG

α
ν − ∂ν Gα

µ − g3 f
αβγ Gβ

µG
γ
ν , (1.3)

W a
µν = ∂µW

a
ν − ∂νW a

µ − g2ε
abcW b

µW
c
ν , (1.4)

Bµν = ∂µBν − ∂ν Bµ. (1.5)

Here g2 and g3 which define strengths of the interactions are the coupling con-

stants of the SU(2)L and SU(3)c gauge groups respectively. The factors fαβγ

and εabc are called structure constants which relates the commutation relation

between the generators of the associated Lie algebra. Note that due to gauge

invariance we cannot write mass a term like m2WµW
µ and all the gauge bosons

are massless here. We will discuss later how some of the gauge bosons will become

massive.



4 Chapter 1. Introduction

1.1.2 Fermion Sector

The gauge invariant fermion Lagrangian can be written as

Lfermion =
∑
f

i ψf /Dψf , (1.6)

where /D = γµDµ with Dµ being the covariant derivative. The exact form of the

covariant derivative is

Dµ ≡ ∂µ + i g3
λa

2
Ga
µ + i g2

σa

2
W a
µ + i g1 Y Bµ , (1.7)

where λa (a = 1, 2, · · · , 8) are the Gell-Mann matrices and σa (a = 1, 2 & 3)

are the usual Pauli matrices. These matrices are the generators of SU(3)c and

SU(2)L gauge groups respectively. The U(1) gauge coupling strength is g1. Again

it is not possible to write a mass term of the form mf f f as it will violate gauge

invariance.

1.1.3 Scalar Sector

The SM contains a single spin-zero field namely the Higgs field, a complex scalar

field which is a doublet under the SU(2)L. In component notation it can be

represented as

Φ =

φ+

φ0

 . (1.8)

The Lagrangian associated with the scalar field reads as

Lscalar = (DµΦ)† (DµΦ)− V (Φ), (1.9)

where V (Φ) is the scalar potential which has the form

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2. (1.10)
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Since the Higgs field is singlet under the SU(3)c gauge group, the covariant deriva-

tive in Eq. 1.9 takes the following form

Dµ ≡ ∂µ + i g2
σa

2
W a
µ + i g1

I
2
Bµ, (1.11)

where I is the identity matrix. Interactions of the Higgs boson with other gauge

bosons originate from the scalar kinetic term in Eq. 1.9. The fermions also interact

with the Higgs boson through the Yukawa interaction of the form,

LYukawa = QL Yu uR Φ +QL Yd dR Φ̃ + LL Ye eR Φ + h.c., (1.12)

where Φ̃ = iσ2Φ∗ and we have suppressed all the generation indices. The matri-

ces Yu, Yd and Ye are the Yukawa matrices which encode the respective Yukawa

couplings.

Now we discuss how this Higgs boson is responsible for generating masses for

elementary fermions.

1.1.4 Spontaneous Symmetry Breaking

If the SM gauge group remains exact then all the gauge bosons and fermions

remain massless. But in Nature we observe massive fermions and massive electro-

weak gauge bosons, which demands breaking of the underlying symmetry to a

lower symmetry group. Also we know that the electromagnetic gauge invariance

is unbroken and the mediator of this interaction, the photon (γ) remains massless.

So it is obvious that the symmetry breaking pattern is

SU(2)L ⊗ U(1)Y
〈Φ〉−−→ U(1)em. (1.13)

Let us now briefly discuss how this symmetry breaking happens. It is easy to

check that the Higgs potential in Eq. 1.10 is invariant under the SU(2)L⊗U(1)Y

gauge group. However for the parameter µ2, λ > 0 , the potential has a minimum



6 Chapter 1. Introduction

at

Φmin = 〈Φ〉 =
1√
2

0

v

 with v =
µ√
λ
. (1.14)

Now at Φmin, only a particular combination of SU(2)L and U(1)Y generators

remains unbroken, i.e., (
σ3 +

Y

2

)
〈Φ〉 = 0. (1.15)

Thus the electromagnetic charge is linear combination: Q = T3L +
Y

2
, where T3L

is the 3rd component of the isospin generators (which is basically σ3).

Masses of elementary particles

At the minimum of the Higgs potential we can now calculate the interactions

of the Higgs boson with other gauge bosons by using the following form (in the

unitary gauge),

Φ =
1√
2

 0

v +H(x)

 , (1.16)

where H(x) is a small perturbation around the minimum which will be the Higgs

boson field. Substituting this in the scalar potential Eq. 1.10 we have the following

relations:

m2
H = 2λv2, v2 =

µ2

λ
. (1.17)

Now as we know mH ' 125 GeV, the scalar potential is fixed with parameters‡

µ2 ∼ (88GeV)2 λ ∼ 0.13. (1.18)

Similarly, using Eq. 1.16 in the kinetic part of the scalar Lagrangian Eq. 1.9

we can easily find that the gauge boson mass eigenstates are W±
µ
§, Zµ and Aµ

‡The value of vacuum expectation value v is known from independent observation of gauge
boson masses using the Eq.1.22 we will discuss shortly.
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where,

W± =
1√
2

(
W 1
µ ∓ i W 2

µ

)
, (1.19)

Zµ
Aµ

 =

cos θw − sin θw

sin θw cos θw

W 3
µ

Bµ

 , (1.20)

where the weak mixing angle θw is called the ‘Weinberg angle’ and is defined as,

cos θw =
g2√
g2

1 + g2
2

. (1.21)

The corresponding mass eigenvalues are,

m±W =
1

2
v g2,

mZ =
1

2
v
√
g2

1 + g2
2 =

mW

cos θw
,

mA = 0. (1.22)

Thus the gauge bosons become massive except the photon owing to spontaneous

breaking of the gauge symmetry. The fermion masses originate by the Yukawa

couplings by substituting for Φ (from Eq. 1.16) in Eq. 1.12. The corresponding

Lagrangian now takes the form,

Lmass
Yukawa = uLMu uR + dLMd dR + eLMe eR + h.c., (1.23)

where we have used Mf =
1√
2
Yf v. Again we have suppressed the generation

indices and the matrices Mu,Md and Me are the mass matrices.

The mathematical framework of the SM model, alluded to above, took its

final form in the early 70’s. Discovery of the neutral current (1973), theW and Z

bosons (1983), the b quark(1977), the t quark(1995) and ντ proved the correctness

of this model. Recently the discovery of the Higgs boson at the Large Hadron

§W 1
µ and W 2

µ are degenerate mass eigenstates and W±µ combination is a charge eigenstate
with mass eigenvalue same as that of W 1

µ or W 2
µ .
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Collider both by ATLAS [5] and CMS [6] collaborations have put the Standard

Model (SM) on a firm footing. However there are a few outstanding issues which

the SM cannot explain. In the next section we will sketch some of the problems

that need to be addressed for our complete understanding of the Nature.

1.1.5 Issues with the SM

In spite of being a very successful theory to explain most of the experimental

data, we are certain that the SM is not the complete theory and we need to go

beyond the SM paradigm. Here we will briefly describe some of the puzzles that

cannot be addressed in the SM.

Neutrino Oscillation and Seesaw

Convincing indications of BSM physics have emerged from the phenomenon of

neutrino oscillation observed in terrestrial experiments. Neutrino oscillation is a

quantum mechanical phenomenon in which one flavor of neutrino is converted to

another. These results have conclusively established that neutrinos have non-zero

mass and flavor mixing. But in the SM neutrinos are massless due to absence of

right handed neutrinos. In principle it is possible to write down Majorana mass

terms with left handed(LH) particles alone. But in the SM the LH neutrinos are

doublet under SU(2)L and the gauge invariant Majorana mass term is possible if

there exists a scalar which is a triplet under SU(2)L. Such a scalar is certainly

not present in the SM. Thus neutrino oscillation implies that we need to look

beyond the SM.

Seesaw mechanism is a generic mechanism to generate neutrino masses and

it naturally explains the smallness of these masses. The origin of seesaw is the

dimension-5 effective operator
c5

M
LLHH, where L(H) being the SM lepton(Higgs)

doublet and c5 is a dimensionless effective coupling. To achieve this effective

operator, we need to introduce heavy field which violates lepton number by two

units. M is the mass of the heavy particle.
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Dark Matter

Roughly 25 percent of the universe is made up of material that we cannot directly

observe. But there are several observations which indirectly confirm the existence

of non-luminous non-relativistic matter. One of the famous observations comes

from the galaxy rotation curve, which is almost flat for spiral galaxies. This phe-

nomena cannot be explained exclusively by luminous matter. Also the precise

measurement of temperature fluctuation in the spectrum of Cosmic Microwave

Background Radiation(CMBR) confirms that there must exist non-baryonic mat-

ter with energy density roughly five times more than that of visible baryonic mat-

ter. Moreover, gravitational lensing observations from the Bullet cluster confirm

the existence of dark matter. Dark matter can be made of non baryonic and

electrically neutral colorless elementary particle. The Neutrinos in the SM can

be the dark matter but since rest mass of neutrinos are very small compare to

neutrino decoupling temperature (∼ 1 MeV) they can only be hot dark matter

which can not explain the structure formation. Hence we need to go beyond the

SM to explain all the the astrophysical observations.

Baryonic Asymmetry

Baryon asymmetry refers to the observation that there is matter in the Universe

but not much antimatter. We know that the galaxies do not contain antimatter

because if they did, we should have observed gamma rays that would be produced

when large amount of antimatter annihilate with matter. So at an early time,

there must have been a phenomenon which generated a little bit more matter

than antimatter. The asymmetry is quantified using the asymmetry parameter

ηb =
nbaryon − nanti-baryon

nphoton
, (1.24)

where n defines the number density. From cosmological measurements such as

made by the Planck Collaboration we get the asymmetry as ηb ∼ 6× 10−10. The

following conditions must be satisfied in order to have baryon asymmetry:

1. Baryon number violation.
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2. Violation of both Charge conjugation symmetry, C, and Charge conjugation

times Parity, CP symmetry.

3. The Universe is out of thermal equilibrium.

These are called Shakharov’s conditions. The amount of CP violation present in

the SM is not enough to the generate desired amount of asymmetry.

Hierarchy Problem

The hierarchy problem is a long standing theoretical puzzle which impels one to

go for BSM scenarios. We know that all couplings and parameters are modified

by higher order effects. When the mass of a fermion receives radiative corrections

the correction term is proportional to the mass of the fermion. In the limit

mf → 0, we have an additional symmetry, viz.,the chiral symmetry. But this is

not true for a scalar field and the mass correction is quadratically dependent on

the highest scale available in the theory (which is the Planck scale MPl ∼ 1019

GeV if there exists no new physics between the electro-weak scale and the Planck

scale). We have already observed a Higgs boson with mass ∼ 125 GeV and we

know that quantum correction to this mass scale is

m2
h = m2 + δ m2 ' (125 GeV)2 , (1.25)

but

δ m2 ∝ κM2
Pl ∼ 1038 ( GeV)2 . (1.26)

Hence the correction term must cancel upto 34 decimal places which is unnatural.

The problem can be rephrased as “Why is the Planck scale (MPl) so different from

the electro-weak scale?”. In the Standard Model we do not have any solution to

this problem. The most popular solution for the hierarchy problem is Super-

symmetry. Extra Dimensional models can also evade this hierarchy problem.

All these unsolved problems clearly direct us to extensions of the SM of particle

physics.
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1.2 Beyond the Standard Model

Any extension of the SM is called beyond the SM (BSM) scenario. These models

can possess extra symmetry or may contain new particles which are not present

in the SM. Many BSM models possess extra scalar fields along with the SM

Higgs and thus the extended scalar potential contains many quartic couplings.

While some of these couplings can be related directly to masses of (neutral or

charged) heavy scalars, other couplings only generate mass splitting among these

heavy scalars. These quartic couplings can be constrained by imposing vacuum

stability, perturbativity and unitarity of scattering amplitudes of longitudinal

gauge boson modes. Vacuum stability gives a lower limit, whereas perturbativity

and unitarity constrain the couplings from above. Unitarity constraint was first

analyzed by Lee, Quigg and Thacker (LQT) [7] for the SM where they examined

two-body scattering amplitudes involving the Higgs boson and also longitudinal

gauge bosons (VL ≡ W±
L , ZL). Since we are interested in the high energy behavior

of the scattering amplitudes, it is possible to use unphysical scalars instead of VLs

owing to the famous equivalence theorem. Unitarity has been used to constrain

models which contain an extended scalar sector like two Higgs doublet model

(2HDM) or Type-II seesaw model [8].

Since neutrino oscillation is one of the strongly established BSM effects so far,

it is very important to study models which can explain the generation of neutrino

mass naturally. Moreover, with the ongoing LHC experiment it is possible to

explore these models up to a few TeV. But the vast parameter space of these

models makes it a challenging task to explore the models at colliders like the

LHC, and it is very important to constrain these models theoretically to predict

precise signals. With this view we consider various models which can naturally

generate neutrino masses and can be probed at the LHC in near future.

The first model we consider is the U(1)B−L model which is the minimal gauge

extension of the Standard Model. The model can explain neutrino mass gen-

eration via the seesaw mechanism and can also provide a viable dark matter

candidate. Since the (B − L) breaking scale can be as low as a few TeV it is

very important to study this model as it can be probed at the LHC in the near
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future. This model was studied in [9] with different values of the SM Higgs boson

mass. The effect of different parameters on the vacuum stability was not dis-

cussed there. We have studied this model in great detail with the observed mass

of the Higgs boson. We have also discussed the effect of other parameters of the

model in vacuum stability analysis [10,11].

Another class of models are the Left-Right symmetric models (LRSMs) [12–

15] which are very appealing as BSM scenarios. These models resolve the ori-

gin of Parity violation in weak interactions; spontaneous breaking of Parity oc-

curs at the higher energies beyond which Parity is an exact symmetry. LRSM

predicts the presence of heavy right handed neutrinos and thus explains light

neutrino mass generation via the seesaw mechanism. Moreover LRSM can be

realized as a low energy effective theory of non-supersymmetric Grand Unified

Theories(GUTs) [16]. We analyze vacuum stability aspects of these models in

[10,17]

Finally demonstrate how vacuum metastability can constrain TeV scale phe-

nomenological seesaw models which are likely to be constrained by LHC in the

next run. In this model the stability issue affects the Dirac Yukawa coupling

as opposed to the scalar quartic couplings. Thus the production rate and phe-

nomenology of heavy neutrinos are directly affected by metastability of the EW

vacuum. Our results are discussed in [18].

We try to constrain parameters of the new physics models using theoretical

constraints like vacuum stability, unitarity and perturbativity which we describe

in the next chapter.

1.3 Thesis Overview

The thesis is organised as follows: In the next chapter (Chapter 2) we describe the

methodology of our analysis. There we discuss how vacuum stability can be used

to constrain parameters of BSM scenarios. To calculate vacuum stability criteria

we have used the notion of copositivity which is widely used in the theory of linear

systems. We describe how copositivity can be used to find vacuum stability
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criteria. We also touch upon the subject of unitarity of scattering matrices.

Equipped with the tools we then move to the various BSM scenarios which are

well motivated and can be observed in the LHC in near future. In Chapter 3 we

consider a minimal gauge extension of the SM namely the U(1)B−L model. We

describe the model and present how vacuum stability can constrain the model.

Next we consider another phenomenologically interesting model, the left-right

symmetric model. We have depicted the model in Chapter 4 and also discussed

impact of vacuum stability and unitarity on this model. In Chapter 5 we consider

a TeV scale seesaw model which contains right handed neutrinos along with the

SM particles. The Yukawa coupling of this model can be restricted severely if

we consider metastability of the electro-weak vacuum. Finally we summarize in

Chapter 6.



Chapter 2

Methodology

In this chapter, we briefly discuss the methods we have used to calculate var-

ious theoretical constraints on a BSM scenario. In the scalar sector the main

theoretical constraints are coming from vacuum stability, unitarity of scattering

amplitudes and perturbativity of quartic couplings. The condition of perturbativ-

ity is straight-forward : All scalar quartic couplings should be ≤ 4π. Calculation

of vacuum stability criteria and unitarity conditions is discussed in detail in this

chapter.

2.1 Vacuum Stability

In the previous chapter we briefly discussed the Standard Model which contains a

Higgs boson. Symmetry breaking occurs when the Higgs field acquires a vacuum

expectation value (vev). The scalar Lagrangian and the scalar potential are

written in Eq. 1.9 and in Eq. 1.10 respectively.

In the unitary gauge ∗, the scalar doublet (Φ) can be written as

Φ =
1√
2

 0

ϕ

 . (2.1)

Then the scalar potential expressed in Eq. 1.10 becomes function of the real scalar
∗Gauge choice is necessary to deal with redundant degrees of freedom of a scalar field (here,

the Higgs field). In unitarity gauge number of scalar degrees of freedom becomes minimal.

14
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field ϕ,

Vϕ = −1

2
µ2ϕ2 +

1

4
λϕ4. (2.2)

After the ϕ develops a vev, we can write ϕ = v+H and consequently all particles

in the SM get masses (except neutrinos and photons). The mass of the Higgs

particle H can be written as

m2
H = 2λv2, v2 =

µ2

λ
. (2.3)

Quantum loop corrections make the mass parameter and the quartic coupling

dependent on the energy scale Λ,

Veff = −1

2
µ(Λ)2ϕ2 +

1

4
λ(Λ)ϕ4. (2.4)

Here the scale Λ can be taken to be the field value ϕ. While discussing about

vacuum stability † we are concerned with large field values and can safely neglect

the quadratic term in the potential. The coupling λ varies with the energy scale

Λ which is governed by the renormalization group equation (RGE),

Λ
d

dΛ
λ = βλ, (2.5)

and at one loop βλ is given by [19]

βλ =
1

(4π)2

[
24λ2 − 6y4

t +
3

8

(
2g4

2 +
(
g2

2 + g2
1

)2
)

+
(
−9g2

2 − 3g2
1 + 12y2

t

)
λ

]
.

(2.6)

In the previous equation g1 (g2) is the U(1)Y (SU(2)L) gauge coupling and

yt is the top quark Yukawa coupling. When λ becomes negative at a particular

energy scale the potential turns out to be unbounded from below which indicates

that the vacuum stability criterion for the SM is λ > 0.

As we can see from Eq. 2.6 the running of the quartic coupling depends

on the top-quark Yukawa coupling and also on the gauge couplings‡. The top-
†Vacuum is stable if the potential is bounded from below.
‡The SU(3) gauge coupling g3 does not affect the scalar quartic coupling directly at one-loop.

However it affects indirectly through the top-quark Yukawa coupling.
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Figure 2.1: Running of the quartic coupling as a function of energy scale using the state-of-
the-art three loop beta functions for all the couplings. Effect of yt and g3 is also shown here.
Note that the scale µ is the same as the scale Λ we have defined. This figure is taken from [20].

quark coupling and the strong coupling constant affect the running of the quartic

coupling and is depicted in the Fig. 2.1. Depending on the value of the top-quark

mass and the strong coupling constant the quartic coupling λ becomes negative

at energy scale 108−11 GeV which makes the SM vacuum unstable.

Thus it indicates that some new physics might be there before the SM vacuum

stability gets ruptured i.e., below the scale where λ becomes negative. The physics

beyond the SM is expected to take care of stability of the vacuum of the full scalar

potential. In the literature the stability of the vacua was discussed in several

scenarios beyond Standard Model. These models are extended by an extra gauge

symmetry and (or) addition of new particles. Quantum corrections of the quartic

couplings depend on the spin of the particles that belong to the particular model.

The fermion loop contributions contain a relative minus sign relative to that for

the bosonic fields. Thus the Yukawa couplings tend to spoil the stability unlike

the gauge and other scalar self couplings.

In a theory involving multiple scalar fields the structure of the potential is

complicated. The vacuum stability criteria depend on some combinations of the

scalar quartic couplings. Now we will discuss different methods to calculate the

stability conditions which will ensure that the scalar potential remains bounded
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from below provided the stability criteria are satisfied.

2.2 Positivity of Quadratic Equation

Let us consider a theory which contains two scalar fields φA and φB, then the

most general potential involving both the scalar fields can be written as :

V0 = A|φA|4 +B|φA|2|φB|2 + C|φB|4. (2.7)

Here, we have neglected the quadratic terms, since we are interested in high

energy behavior of the couplings. We can rewrite the above equation (Eq. 2.7)

as follows:

V0 =
(√

A |φA|2 −
√
C |φB|2

)2

+ (B + 2
√
AC) |φA|2|φB|2,

= λ11x
2 + 2λ12xy + λ22y

2. (2.8)

To ensure that the potential is bounded from below, it is evident that the neces-

sary and sufficient conditions are (cf. Eq. 2.8)

λ11 ≥ 0, λ22 ≥ 0 and 2λ12 + 2
√
λ11 λ22 ≥ 0. (2.9)

It is possible that a BSM scenario can involve more than two scalars and using

the aforementioned conditions iteratively we can calculate stability conditions for

those models. We explain this in detail afterwards in Section 2.4.1.

2.3 Copositivity of Symmetric Matrix

Apart from using the positivity of quadratic forms we can use matrix properties

such as copositivity (cop) to adjudge stability criteria. The notion of copositivity

was first introduced by Motzkin in 1952 [21] in the context of linear algebra and

thereafter it has been explored in the literatures of mathematics, see e.g., some

of the widely accepted references [22, 23]. It has been noted that the positive

definite matrices are subset of the copositive (conditionally positive) matrices
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and are included within that. Some of the references, extremely useful for our

analysis, in which copositive criteria have been discussed are [24–26] and more

recently [27].

Definition : Let Sn be a set of symmetric matrices of order n, and <n be

the real coordinate vector space. Any matrix Λ ∈ Sn is defined to be copositive iff

the quadratic form xTΛx ≥ 0 for all non-negative vectors (x), i.e., x ∈ <+
n , the

non-negative orthant§ of <n.
Analytic criteria for copositivity are extremely complicated and lengthy for

larger order matrices with negative off-diagonal elements. The general cop con-

ditions up to order four matrices are available which we will briefly discuss in the

next few sections. Also we should keep in mind that if some of the off-diagonal

elements of a higher order (≥ 4) matrix are non-negative then copositivity can

be addressed using the knowledge of cop criteria for rather lower order matrices.

2.3.1 Copositivity Conditions of Order Two Matrices

Let us consider a quadratic form,

F(x, y) = λ11x
2 + λ22y

2 + 2λ12xy. (2.10)

We can easily convert the above equation to a matrix equation

F(x, y) = XT S2 X, where X =

x
y

 , (2.11)

where S2 is a symmetric matrix of order two ¶:

S2 =

 λ11 λ12

λ22

 . (2.12)

§An orthant can be understood as the n-dimensional Euclidean space, generalization of a
quadrant or an octant in two or three dimensions respectively.
¶As for symmetric matrices (Λ)ij = (Λ)ji, we are not writing the full matrix. The upper-

triangular matrix with the diagonal elements are sufficient to represent the full matrix. Through
out the thesis we have used this notation to represent the symmetric matrices.
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This matrix is copositive if and only if

λ11 ≥ 0, λ22 ≥ 0, and λ12 +
√
λ11λ22 ≥ 0. (2.13)

These conditions are the same as the criteria that we have described in the Sec-

tion 2.2. However, for larger matrices (order three or more) there will be no

one-to-one correspondence between conditions derived using the method of posi-

tivity of quadratic form and COP conditions. This is due to the fact that we can

use the method of positivity taking two fields at a time in any order.

2.3.2 Order three matrix

Now we will consider a symmetric matrix of order three:

S3 =


λ11 λ12 λ13

λ22 λ23

λ33

 . (2.14)

This matrix is copositive if and only if,

λ11 ≥ 0, λ22 ≥ 0, λ33 ≥ 0,

λ12 +
√
λ11λ22 ≥ 0, λ23 +

√
λ22λ33 ≥ 0, λ13 +

√
λ11λ33 ≥ 0,

√
λ11λ22λ33 + λ12

√
λ33 + λ23

√
λ11 + λ13

√
λ22

+
√

2(λ12 +
√
λ11λ22)(λ23 +

√
λ22λ33)(λ13 +

√
λ11λ33) ≥ 0. (2.15)

2.3.3 Order four matrix

Let us consider a symmetric matrix of order four:

S4 =


λ11 λ12 λ13 λ14

λ22 λ23 λ24

λ33 λ34

λ44

 . (2.16)



20 Chapter 2. Methodology

To determine whether this matrix is copositive or not we need to adjudge eight

different cases depending on the sign distributions of the off-diagonal elements.

But in all the cases one generic condition that all the diagonal elements are

positive, must be satisfied. From here onwards {i, j, k, l} are any permutation of

{1, 2, 3, 4}.

Case I: If all the off-diagonal elements of S4 are positive then this is copositive if

and only if λii ≥ 0 ∀ i.

Case II: If λij ≤ 0 and other off-diagonal elements are positive then S4 is copositive

if and only if (λiiλjj − λ2
ij) ≥ 0.

Case III: If λij, λlk ≤ 0 and other off-diagonal elements are positive then the matrix

is copositive if and only if (λiiλjj − λ2
ij) ≥ 0, (λllλkk − λ2

lk) ≥ 0.

Case IV: If λij, λik ≤ 0 then we must have(
λiiλjk − λijλik +

√
(λiiλjj − λ2

ij)(λiiλkk − λ2
ik)
)
≥ 0 to make this matrix

copositive.

Case V: If λij, λjk, λik ≤ 0 while the other off-diagonal elements are positive then

S4 is copositive if and only if the following order three matrix is copositive:
λii λij λik

λjj λjk

λkk

 .

Case VI: If λij, λik, λil ≤ 0 and other off-diagonal elements are positive then the

following matrix:
λiiλjj − λ2

ij λiiλjk − λijλik λiiλjl − λijλil
λiiλkk − λ2

ik λiiλkl − λikλil
λiiλll − λ2

il


must be copositive in order to make S4 copositive.

Case VII: If λij, λjk, λkl ≤ 0 and other off-diagonal elements are positive then we need

to construct a matrix of order three which has to be copositive and that



2.3. Copositivity of Symmetric Matrix 21

will imply S4 is copositive. Let us consider a matrix S ′3:

λkk
(
λjjλ

2
ik −

2λijλikλjk + λiiλ
2
jk

) λkk(λjjλik − λijλjk) λkk(λikλjl − λjkλil)

λjjλkk − λ2
jk λkkλjl − λjkλkl

λkkλll − λ2
kl


.

Thus S4 matrix will be copositive if and only if S ′3 is copositive.

Case VIII: If λij, λjk, λkl, λil ≤ 0 and other off-diagonal elements are positive then

similar to the Case VII one needs to reconstruct a matrix of order three

which has to be copositive in order to make S4 copositive. That matrix of

order three should be S ′′3 :



λll(λiiλ
2
jl −

2λijλilλjl + λjjλ
2
il)

λll(λiiλjl − λijλil) λll(λikλjl − λilλjk)

λiiλll − λ2
il λllλik − λilλkl

λkkλll − λ2
kl


.

To derive analytic criteria for copositivity of a higher order matrix, one can

make use of the rank reduction theorem as discussed in [24] and use the reduced

rank criteria successively. Using this rank reduction theorem, copositivity criteria

for order five matrices have also been computed in [28]. In our analysis higher

order (more than four) matrices contain many non-negative off-diagonal elements.

Thus the knowledge of copositivity of order four matrix is sufficient to deal with

all our example models.
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2.3.4 Copositivity Using Principal Sub-matrices

Since analytic form of copositive criteria for the most generic symmetric matri-

ces of larger order is not straight forward and not available till date, one can

suitably explore the alternative algorithm exploiting the copositivity conditions

recursively. There are few approaches available in this direction and they are

in principle available to incorporate numerically. We have discussed one such

proposition‖ and shown how they can be incorporated and tested in a numerical

code. For that purpose, we note the theorem in [25,26] where it was shown that

the necessary and sufficient conditions for the copositivity can be expressed as,

Λ is copositive iff every principal sub-matrix Λ
′ of Λ does not posses any positive

eigenvector associated with a negative eigenvalue. This procedure is useful while

we are dealing with a matrix numerically.

While adjudging the validity of a model up to a certain scale we need to

perform the renormalization group evolutions of the quartic couplings belonging

to the scalar potential. There this matrix can be constructed out of these quartic

couplings at each scale and one can check the copositivity using this method. Now

we will provide a brief algorithm encoded in Mathematica for this approach.

Algorithm to examine copositivity of any given order n matrix

Here we have demonstrated an algorithm for a matrix of order n. Let us first
define a matrix of order n and some initializations:

mats= {{a11,a12,...,a1n},{a21,a22,...,a2n},....,{an1,an2,...,ann}};

degree = Length[mats]; Print[degree];

mat[1, 1] = mats;

For[ii = 1, ii <= degree, ii++, {n[ii] = 1}];

matdummy[1, 1] = degree + 1;

mategsystm[1, 1] = Eigensystem[mat[1, 1]];

counter = 0;

Number of principal sub-matrices of matrix of order n is (2n − 1). It is very
easy to identify the principal sub-matrices of order n and order one of a particular
matrix. It will have n-numbers of principal sub-matrices of order one and they
‖Yet another prescription given in [29] puts conditions on determinant and adjugate matrix

to find whether a matrix of order n is copositive or not.
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are the just diagonal elements of the original matrix. The matrix itself is the
principal sub-matrix of order n.

For[ibig = 2, ibig <= degree, ibig++, {

For[ismall = 1, ismall <= Binomial[degree, ibig - 2], ismall++, {

For[i[ibig] = 1, i[ibig] < matdummy[ibig - 1, ismall], i[ibig]++, {

mat[ibig, n[ibig]++] =

Drop[mat[ibig - 1, ismall], {i[ibig]}, {i[ibig]}];

matdummy[ibig, n[ibig] - 1] = i[ibig];

mategsystm[ibig, n[ibig] - 1] =

Eigensystem[mat[ibig, n[ibig] - 1]];

}]

}]

}]

Now one needs to calculate all the eigenvalues and identify the negative ones.
Then one has to check whether the eigenvector associated with the negative eigen-
value is negative or not. If the eigenvector is positive then the matrix of order n
is not Copositive.

For[pp = 1, pp <= degree , pp++, {

For[oo = 1, oo <= Binomial[degree, pp - 1], oo++, {

For[ii = 1, ii <= degree + 1 - pp, ii++, {

If[N[Extract[mategsystm[pp, oo], {1, ii}]] < 0, {

vector[pp, oo] = N[Extract[mategsystm[pp, oo], {2, ii}]];

If[MemberQ[vector[pp, oo], _?Positive] !=

MemberQ[vector[pp, oo], _?Negative],

Print["Error!!!!! ----->\tEigenvalue= ",

N[Extract[mategsystm[pp, oo], {1, ii}]],

"\tEigenvector:\t", vector[pp, oo]]; counter++]

}]

}];

}];

}]

Thus finally determine whether the matrix is copositive or not:

If[counter != 0, Print["\n The Matrix is NOT copositive."],

Print["\n The Matrix is copositive."]];
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Numerical example with an order four symmetric matrix

mats= {{1,-0.72,-0.59,0.6}, {-0.72,1,0.21,-0.46}, {-0.59,0.21,1,0.6},

{0.6,-0.46,0.6,-1} } ;

Principal sub-matrices of order three


1 0.21 −0.46

0.21 1 0.6

−0.46 0.6 −1

 ,


1 −0.72 −0.59

−0.72 1 0.21

−0.59 0.21 1

 ,


1 −0.59 0.6

−0.59 1 0.6

0.6 0.6 −1

 ,


1 −0.72 0.6

−0.72 1 −0.46

0.6 −0.46 −1

 .

Eigensystems associated with negative eigenvalues {eigenvectors}

-1.27588 {0.214546,-0.26745,0.939383}

-1.39819 {-0.300393,-0.300393,0.905278}

-1.19908 {-0.221234,0.129747,0.966551}

Principal sub-matrices of order two

 1 0.6

0.6 −1

 ,

 1 −0.46

−0.46 −1

 ,

 1 0.6

0.6 −1

 ,

 1 0.21

0.21 1

 ,

 1 −0.59

−0.59 1

 ,

 1 −0.72

−0.72 1

 .

Eigensystems associated with negative eigenvalues {eigenvectors}

-1.16619 {0.266934,-0.963715}

-1.10073 {-0.213904,-0.976855}

-1.16619 {0.266934,-0.963715}
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Principal sub-matrices of order one

(1), (1), (1), (−1).

Eigensystems associated with negative eigenvalues {eigenvectors}

-1 {1.}

The matrix is NOT copositive.

2.4 Basis Dependency of the Copositive Condi-

tions

Here we would like to make an important note related to the basis dependency

of the copositivity of a symmetric matrix. In general it is indeed possible to

switch on some norm preserving rotation and that might change the structure of

the quadratic form in new basis. This choice can even be made such that the

matrix out of the transformed quadratic form is no longer copositive. But this is

not counter-intuitive since any arbitrary norm preserving rotation can import the

elements of <−n and the transformed matrix might be non-copositive. Moreover,

this is not the reason of worry in our case. As soon as we mention that this

quadratic form is a part of our Lagrangian, arbitrary rotations are prohibited.

From the symmetry principle we can allow only those rotations which leave the

Lagrangian invariant. This simply says that the all allowed rotations will leave

the quadratic form intact in any new basis. From the point of copositivity the

quadratic form is the fundamental one, i.e., if the matrix corresponding to a

quadratic form is copositive then any other matrices written in any other basis

out of that quadratic form will be copositive.

Another important property of copositivity is its invariance under the op-

eration of permutation and scaling. So, if Λ be a copositive matrix then after

combined operation, the new matrix PDΛDP T is also copositive given that P

be a permutation matrix and D is a diagonal matrix with non-negative elements.



26 Chapter 2. Methodology

We will use this property in our analysis to ensure a single set of copositivity

conditions independent to the order of the basis elements.

2.4.1 Vacuum Stability and Copositivity

So far we have sketched the mathematical foundation and the criteria of copos-

itivity of symmetric matrices of finite order. Now we intend to implement this

idea to adjudge the stability of the scalar potential. We will see how the coposi-

tivity guarantees the boundedness (≥ 0) of the quadratic form. Since part of the

scalar potential that contains the quartic couplings plays the crucial role while

deciding the vacuum stability of the corresponding potential, we shall concentrate

on those terms only. We would like to note that this part of the scalar potential

is treated as the quadratic form while the basis are bi-linear in fields. We con-

struct symmetric matrices in terms of monomial basis so that the quadratic form

xTΛx ≥ 0 as expressed in the copositivity definition can be achieved. Hence one

can directly apply the copositivity conditions for these Λ matrices whose elements

are made of quartic couplings. Thus by implementing the mathematical idea of

copositivity we can guarantee the boundedness of the potential along the all field

directions. This construction also allows us to find the largest parameter space

over which the vacuum is stable.

An Example With New Physics

To consolidate the claim, now we will present an example where we have shown

how copositivity can help to find the largest parameter space. We revisit the

Type–II seesaw model discussed in [30], and adopt the same scalar potential for

having a straightforward comparison of vacuum stability conditions. Scalar sector

of this models consists of a doublet scalar (Φ) and a triplet scalar (∆) with weak

hypercharge +1 and +2 respectively. Structures of these scalars can be written

in the following form:

Φ =

 φ+

φ0

 , ∆ =

 δ+/
√

2 δ++

δ0 −δ+/
√

2

 .
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Scalar potential for Type–II seesaw can be written as [30]:

V Q
Type−II(Φ,∆) =

λ

4

(
Φ†Φ

)2

+ λ1

(
Φ†Φ

) (
Tr[∆†∆]

)
+ λ2

(
Tr[∆†∆]

)2

+λ3Tr[
(
∆†∆

)2
] + λ4

(
Φ†∆ ∆†Φ

)
.

The neutral components of the scalars acquire vevs as follows:

〈Φ〉 =

 0

v

 , 〈∆〉 =

 0 0

v∆ 0

 .

leading to spontaneous breaking of the symmetry. To establish the multi-field

conditions, Arhrib et.al. used the same method discussed in 2.2.

As our first example we have chosen a simpler 3-field direction that contains

the field directions φ0 , φ+ and δ+ and corresponding potential term is

3FV10(φ0 , φ+ , δ+) = (λ2 +
λ3

2
)δ+4

+
λ

4
φ04

+
λ

4
φ+4

+
λ

2
φ+2

φ02

+(λ1 +
λ4

2
)δ+2

φ+2
+ (λ1 +

λ4

2
)δ+2

φ02
. (2.17)

The notation 3FV10 stands for the 10th 3-Field potential direction as described in

our article [17].

Using the method suggested in [30] and discussed in 2.2 one can calculate the

necessary stability conditions as

λ > 0 & λ2 +
λ3

2
> 0 & 2λ1 + λ4 +

√
2λ(2λ2 + λ3) > 0 &(

2λ1 + λ4 > 0 || 2λ(2λ2 + λ3) > (2λ1 + λ4)2
)
. (2.18)

These expressions exactly match with criteria given in [30]. For the same

potential, the independent cop criteria∗∗

λ ≥ 0, λ2 + λ3
2
≥ 0,

κ1 = κ3 =
λ1+

λ4
2

2
+
√

λ
4

(
λ2 + λ3

2

)
≥ 0,

κ2 = λ
4

+
√

λ
4
· λ

4
= λ

2
≥ 0,

∗∗The fourth term in Eq. 2.19 can be simplified and written in terms of other conditions.
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√(
λ

4

)(
λ

4

)(
λ2 +

λ3

2

)
+

λ

4

√
λ2 +

λ3

2
+
λ1 + λ4

2

2

√
λ

4

+
λ1 + λ4

2

2

√
λ

4
+
√

2(κ1)(κ2)(κ3) ≥ 0, (2.19)

can be noted in compact form as

λ > 0 & λ2 +
λ3

2
> 0 & 2λ1 + λ4 +

√
2λ(2λ2 + λ3) > 0. (2.20)

Here both the methods give the same allowed parameter space since the additional

part in eqn. 2.18 does not put any new constraint.

In a second example we consider two 3-field directions (φ0, δ+, δ0) and

(φ+, δ+, δ++). Corresponding stability conditions are more complicated:

• For 3-field direction (φ0, δ+, δ0)

λ > 0 ∧ λ2 + λ3 > 0 ∧ 2λ2 + λ3 > 0 ∧
√
λ(λ2 + λ3) + λ1 + λ4 > 0 ∧({

2λ(2λ2 + λ3) > (2λ1 + λ4)2 ∧[(√
2
√
λ3(λ2 + λ3)((2λ1 + λ4)2 − 2λ(2λ2 + λ3)) + 2λ2λ4 > 2λ1λ3 ∧

λ3 < 0
)
∨
(

(2λ2 + λ3)((2λ1 + λ4)(2λ1 + 3λ4)− 4λ(λ2 + λ3))

2λ1 + λ4

> 0 ∧

2λ1 + λ4 < 0

)]}
∨ 2λ1 + λ4 > 0

)
. (2.21)

• For 3-field direction (φ+, δ+, δ++)

λ > 0 ∧ 2λ2 + λ3 > 0 ∧ λ2 + λ3 > 0 ∧
√
λ(4λ2 + 2λ3) + 2λ1 + λ4 > 0 ∧({

λ(λ2 + λ3) > (λ1 + λ4)2 ∨[(√
2

√
λ3(λ2 + λ3)

(
(λ1 + λ4)2 − (λ2 + λ3)

)
> λ4(λ2 + λ3) ∧ λ3 < 0

)
∨(2λ1λ2 + 3λ1λ3 + λ3λ4 >

2λ(λ2 + λ3)2

λ1 + λ4

∧ λ1 + λ4 < 0)

]}
∨ λ1 + λ4 > 0

)
.

(2.22)
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These two equations are same as the Eqs. B.27 and B.33 of Ref. [30]. Look-

ing throughout the parameter space we have verified that these different looking

conditions in fact cover the same parameter space. Instead of two apparently dif-

ferent looking conditions, invariance of copositivity ensures a single set of stability

conditions for both the directions 3FV2 and 3FV3 as follows

3FV2(φ0 , δ+ , δ0) = (λ2 + λ3)δ04
+ (λ2 +

λ3

2
)δ+4

+
λ

4
φ04

+ 2(λ2 + λ3)δ02
δ+2

+ (λ1 + λ4)φ02
δ02

+ (λ1 +
λ4

2
)δ+2

φ02
. (2.23)

3FV3(φ+ , δ+ , δ++) = (λ2 +
λ3

2
)δ+4

+ (λ2 + λ3)δ++4
+
λ

4
φ+4

+ 2(λ2 + λ3)δ+2
δ++2

+ (λ1 + λ4)φ+2
δ++2

+ (λ1 +
λ4

2
)δ+2

φ02
. (2.24)

In matrix form both can be represented in basis (φ02 ⇔ φ+2
, δ+2

, δ02 ⇔ δ++2
):


λ
4

λ1+λ4
2

λ1+
λ4
2

2

λ2 + λ3 λ2 + λ3

λ2 + λ3
2

 .

Copositivity condition:

λ ≥ 0, λ2 + λ3 ≥ 0, λ2 +
λ3

2
≥ 0,

κ1 = λ2 + λ3 +

√
(λ2 +

λ3

2
)

(
λ2 +

λ3

2

)
≥ 0,

κ2 =
λ1 + λ4

2

2
+

√
λ

4
(λ2 + λ3) ≥ 0,

κ3 =
λ1 + λ4

2
+

√
λ

4
(λ2 + λ3) ≥ 0,

√
λ

4
(λ2 + λ3) (λ2 +

λ3

2
) +

λ1 + λ4

2

√
λ2 +

λ3

2
+
λ1 + λ4

2

2

√
λ2 + λ3

+(λ2 + λ3)

√
λ

4
+
√

2 (κ1)(κ2)(κ3) ≥ 0.
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This is ensured by the following property of copositivity: invariance under per-

mutations. Note that the basis are different in each case, however, that is not a

problem since we are only interested to find the conditions for stability in these

situations, and as expected the basis dependency does not matter at all. The

stability conditions calculated using copositivity ensure the boundedness of the

potential with mathematical confirmations. Moreover it ensures the minimum al-

lowed conditions resulting into more parameter space compared to the conditions

obtained from the successive squaring method. This was also verified numeri-

cally that the cop conditions correspond to 3FV2 (or, 3FV3) indeed allow more

parameter space.

We would like to end this section pointing out the limitation of copositivity

in the application to vacuum stability analysis. Restrictions arise due to the

fact they the basis vectors x of the quadratic form xTΛx should be non-negative

vectors. Hence if there exist a term like λ1234φ1φ2φ3φ4 in the potential, we have

to construct basis vectors like φ1φ2. Since φi’s are complex scalar field the term

φ1φ2 may not be non-negative vectors for all values of the fields φ1 and φ2. In this

case only a fraction of the full parameter space can be analyzed using copositivity.

2.5 Unitarity of scattering amplitudes

To find the upper bound of scalar masses of any theory we can rely on the

perturbative unitarity of the scattering amplitude. Any scattering amplitude can

be written as an infinite sum of partial waves, in the form,

M(θ) = 16π
∞∑
l=0

al (2l + 1)Pl(cos θ), (2.25)

where al is the scattering amplitude of order l, θ is the scattering angle and

Pl(cos θ) is lth-order Legendre polynomial. In SM, by analyzing the two-body

scattering between longitudinal gauge bosons and Higgs it was shown in the

pioneering paper by LQT [7] that unitarity of S-matrix constrains the zeroth

partial wave amplitude as, |a0| ≤ 1 which in turn restricts the Higgs quartic

coupling and therefore constrains the Higgs mass from the above. The unitarity
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Charge(q) 0 1 2 3 4
Number of possible
2-particle states

n(n+1)
2

+ s2 + d2 s(n+ d) nd+ s(s+1)
2

sd d(d+1)
2

Table 2.1: Number of all possible q-charged 2-particle states constructed from n neutral, s
singly charged and d doubly charged fields.

constraint can be recast as,

|M| ≤ 8π, (2.26)

whereM is the full tree level matrix element. This method can be extended to

the scenario where extra scalar fields are present [8, 31–33]. Thus in the present

scenario, we also consider the appropriate two-body channels. By virtue of equiv-

alence theorem, in the high energy limit, one can use the unphysical scalars in-

stead of original longitudinal components of the gauge bosons. Thus the relevant

2 → 2 scatterings will get contributions from the quartic couplings; the contri-

bution from trilinear couplings can safely be ignored due to the fact that the

diagrams resulting from the trilinear couplings will have an E2-suppression com-

ing from the intermediate propagators. So we need to find the matrix elements

for relevant 2 → 2 processes. Accordingly an S-matrix can be constructed by

taking different two-particle states as rows and columns and each entry of that

matrix will give the scattering amplitude between the corresponding 2-particle

state in the row and the 2-particle state in the column. Clearly, the unitarity

constraints (eq. 2.26) manifest themselves as bounds on the eigenvalues of this

matrix.

The 2-particle states are made of the component fields of the scalar particles

of any BSM theory. As an example, let us consider that a model contains neutral,

singly charged and doubly charged states. Using them we constructed all possible

q-charged 2-particle states, where q can be anything from zero to four. If one has

(n)-neutral, (s)-singly charged and (d)-doubly charged fields then the number of

all possible 2-particle states are tabulated in the table 2.1.
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An Example

Let us consider a doublet scalar field:

Φ =

 φ+

φ0
r + i φ0

i

 .

Then all possible 2-particle states are as follows:

Neutral basis : φ0
r φ

0
r , φ

0
r φ

0
i , φ

0
i φ

0
i , φ

+ φ−

Singly charged basis : φ+ φ0
r , φ

+ φ0
i Doubly charged basis : φ+ φ+

We have used this method to explicitly compute the unitarity bounds for the

Left-Right symmetric model with triplet scalars as discussed in Chapter 4 and

also full calculation can be found in the appendix C. For the case of gauged

U(1)B−L model, unitarity have been studied extensively in [34].

2.6 Conclusion

The vacuum stability is an important issue that must be addressed for any be-

yond standard model scenario. Thus one needs to carefully examine the vacuum

stability criteria that lead to the boundedness of the full scalar potential.

The straight forward way to calculate the stability criteria is by using the pos-

itivity of the quadratic form. However this calculation is very complicated when

multiple scalar fields are involved and often contains combinatorial ambiguity.

We have adopted another technique which is well discussed in the context of

Linear Algebra, namely copositivity of symmetric matrix. Here we have discussed

two approaches to check the copositivity – using the explicit structure of that

matrix and other one using the principal sub-matrices. We have first discussed

how to reconstruct the symmetric matrices using the quartic couplings and then

compute the copositivity criteria to deduce the vacuum stability conditions. We

have then used this method for complicated models like Left-Right symmetry to

compute the stability criteria for these models for different field directions. Apart
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from this analytical but in some sense restricted procedure we also discuss an

alternative method to check whether a matrix is copositive or not using principal

sub-matrix formalism. For the principal sub-matrix approach we have provided a

general algorithm to check the copositivity of a symmetric matrix of finite order

and also provide explicit numerical example.

Also we have discussed how perturbative unitarity of the scattering amplitudes

can constrain quartic couplings. These constraints can easily be translated into

the upper bound of the masses of the physical scalars present in any BSM scenario.

We obtain these constraints by evaluating the zeroth order partial wave amplitude

of various 2→ 2 scatterings.



Chapter 3

B − L Extended Standard Model

In this chapter we discuss the minimal U(1)B−L extension of the SM [9, 35]. It

has been noted in [36] that an extra U(1) gauge symmetry along with the SM

can provide solutions to some of the unaddressed issues in the SM. These extra

Abelian symmetry groups can, in general, originate from different high scale

GUTs, like SO(10), E(6). These larger groups contain U(1)B−L as a part of the

intermediate gauge symmetries.

The gauge group under consideration is SU(3)C⊗SU(2)L⊗U(1)Y ⊗U(1)B−L.

This minimal model contains an extra complex singlet scalar field S and the B−L
symmetry is broken once S acquires a vacuum expectation value (vev) [9,35,37].

Thus, the vev determines the breaking scale of the B−L symmetry and also the

mass of the extra neutral gauge boson ZB−L.

Now we briefly discuss the scalar, gauge and fermion sector of this model.

3.1 Scalar sector

The scalar sector consists of a Higgs doublet Φ as in the SM and a complex singlet

scalar S. The scalar kinetic energy term reads as:

Ls = (DµΦ)†(DµΦ) + (DµS)†(DµS)− V (Φ, S), (3.1)

34



3.1. Scalar sector 35

where the potential V (Φ, S) is given as:

V (Φ, S) = −m2Φ†Φ− µ2 | S |2 +λ1(Φ†Φ)2 + λ2 | S |4 +λ3 Φ†Φ | S |2 . (3.2)

After the scalars acquire vevs, these fields then be expressed as:

Φ ≡

 0

1√
2
(v + φ)

 , S ≡ 1√
2

(v
B−L + s) , (3.3)

where, the EW symmetry breaking vev v and the B − L breaking vev v
B−L are

real and positive.

Now minimizing the scalar potential we find the following relations:

−m2 + 2λ1v
2 + λ3 v v

2
B-L = 0,

−µ2 + 4λ2v
2
B-L + λ3 v

2 vB-L = 0. (3.4)

Using the minimization equations it is easy to find the scalar mass matrix,

which takes the following form:

M =

 λ1v
2 λ3vB−Lv

2

λ3vB−Lv

2
λ2v

2
B−L

 =

 M11 M12

M21 M22

 . (3.5)

After diagonalizing this mass matrix we construct two physical scalar states, light

h and heavy H, having masses Mh and MH respectively:

M2
H,h =

1

2

[
M11 +M22 ±

√
(M11 −M22)2 + 4M2

12

]
. (3.6)

The mass eigenstates (h, H) are linear combinations of φ and s, and written as

 h

H

 =

 cosα − sinα

sinα cosα

 φ

s

 . (3.7)

Here we assume that the lightest mass eigenstate h is the SM-like Higgs boson.

The scalar mixing angle α can be expressed in terms of the elements of the mass
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matrix Eq. 3.5,

tan(2α) =
2M12

M11 −M22

=
λ3 v vB−L

λ1v2 − λ2v2
B−L

. (3.8)

Using eqs. 3.6 and 3.8 the quartic coupling constants λ1, λ2, and λ3 can be recast

in the following forms:

λ1 =
1

4v2

{(
M2

H +M2
h

)
− cos 2α

(
M2

H −M2
h

)}
,

λ2 =
1

4v2
B−L

{(
M2

H +M2
h

)
+ cos 2α

(
M2

H −M2
h

)}
,

λ3 =
1

2 v v
B−L

{
sin 2α

(
M2

H −M2
h

)}
. (3.9)

It can be noted from Eq. 3.9 that we would get a duplicate set of solutions with

inverted sign of both α and λ3. Also when the mixing angle α vanishes the quartic

coupling λ1 becomes purely the SM quartic coupling and λ2 is determined solely

by the additional scalar state. By setting λ3 to zero, vanishing mixing angle also

ensures that there is no mixing between the SM Higgs doublet and the additional

singlet.

3.2 Gauge Sector

The model contains another U(1) symmetry along with the SM gauge symmetry

and this U(1)B−L symmetry is broken by the additional complex singlet scalar S.

Due to the presence of an extra U(1)B−L gauge symmetry, there is an additional

gauge kinetic Lagrangian term which reads,

L KE
B−L = −1

4
F ′µνF ′µν , (3.10)

where,

F ′µν = ∂µB
′
ν − ∂νB′µ , (3.11)

The covariant derivative for the SU(2)L ⊗ U(1)Y ⊗ U(1)B−L sector in this
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Particle Q uR dR L eR Φ S NR1,2 NR3

SU(2)L 2 1 1 2 1 2 1 1 1
U(1)Y 1/3 4/3 -2/3 -1 -2 1 0 0 0
U(1)B−L 1/3 1/3 1/3 -1 -1 0 2 -1 -1

Table 3.1: Particle content of the minimal U(1)B−L model and their representations (for
SU(2)L) and internal quantum numbers (for U(1)Y/B−L)

model is modified as∗

Dµ ≡ ∂µ + ig2 T
aW a

µ + ig1 Y Bµ + i(g̃ Y + g
B−L YB−L)B′µ . (3.12)

Here g̃ is a free parameter which quantifies mixing between the U(1) gauge groups.

If we set g̃ to zero, then the model is called pure B − L model.

We will now use this covariant derivative in the kinetic term of the scalar

Lagrangian in Eq. 3.1 to calculate the masses of gauge bosons. The SM gauge

bosons Bµ and W 3
µ will mix with the new gauge boson B′µ and after symmetry

breaking there will be two massive physical fields Z and ZB−L and one massless

photon field A. Assuming there is no mixing at tree level, i.e., g̃ = 0 at EW scale,

the physical gauge boson masses are given as

M2
Z =

1

4

(
g2
1

+ g2
2

)
v2, (3.13)

M2
ZB−L

= 4g2
B−L

v2
B−L

. (3.14)

We will use this expressions in our analysis. Explicit expressions for masses of

neutral gauge bosons and the mixing matrix can be found in [40].

3.3 Fermion Sector

Along with the Standard Model particles, three right-handed neutrinos (νR) with

QB−L = −1 have to be introduced in this model for the sake of anomaly cancel-
∗In principle it is also possible to write another term in the Eq. 3.10, κ2F

µνF ′µν which is the
kinetic mixing term. This term is allowed by gauge invariance only for Abelian gauge groups.
It is possible to diagonalize the kinetic terms by a GL(2,R) transformation [38,39] and we arrive
at the covariant derivative stated here.
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lation. The relevant Yukawa interactions can be written as

− LY = ylijliL Φ̃ νjR + yhij (νR)ci νjR S + h.c. (3.15)

where Φ̃ = iσ2Φ∗ with σ2 being the second Pauli matrix. the second term of the

above equation is the Majorana mass term for RH neutrinos. We see from the

Eq. 3.15 that conservation of B −L charge requires the singlet scalar field, S, to

have QB−L = −2. When the SM Higgs and the singlet scalar S acquire vevs the

neutrino mass matrix takes the form

Mν =

 0 mD

mT
D mR

 , (3.16)

where mD = yl v√
2
and mR =

√
2 yhv

B−L . The light (mνl) and heavy (mνh)

neutrino masses are

mνl = −mT
Dm

−1
R mD, (3.17)

mνh = mR. (3.18)

In this model, the heavy neutrino mass mR is also generated through the

Yukawa terms unlike the gauge invariant Majorana mass term in type-I seesaw.

It can be noted that for mR ∼ O(TeV), yl needs to be very small to generate

light neutrino masses ∼ O(eV). But yh can be large ∼ O(1) as v
B−L is around

the TeV scale.

In Table 3.3 we summarize the particle content of the U(1)B−L model along

with their representation (for SU(2)L) and internal quantum numbers (for U(1)Y/B−L).

3.4 Vacuum Stability of TeV scale B−L symmetry

In the previous section we argued that successful light neutrino mass generation

does not constrain yh. But as the heavy neutrino is also coupled to the SM-like

Higgs, yh affects the vacuum stability of the scalar potential in this model and

gets constrained. The gauge coupling g
B−L and the vev of the B − L breaking
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scale (vB−L) are also free parameters. In this section we discuss how these pa-

rameters are constrained from vacuum stability of the scalar potential and also

from perturbativity of the couplings.

It is clear from the structure of the potential (Eq. 3.2) that the vacuum stabil-

ity conditions are different from that for the SM due to the presence of an extra

singlet scalar. If all the quartic couplings are positive, the potential will be triv-

ially bounded from below, i.e., the vacuum is stable and these stability conditions

read simply as λ1,2,3 > 0. But it is indeed possible to allow λ3 to be negative and

the vacuum still can be made stable. Thus vacuum stability conditions beyond

the trivial ones allow a larger parameter space and need to be accommodated

in these conditions. We find the non-trivial vacuum stability criteria using the

proposal dictated in [30], as†

4λ1λ2 − λ2
3 > 0,

λ1 > 0, λ2 > 0. (3.19)

Together with these we have also incorporated perturbativity constraints on quar-

tic couplings by demanding an upper limit, i.e., |λi| < 1 (i = 1, 2, 3). Noting that

from Eqs. 3.6 and 3.8 that the physical Higgs field is an admixture of two scalar

fields φ and s, in our study the scalar mixing angle α is considered to be a free

parameter instead of the quartic couplings λi(i = 1, 2, 3). This model consists

of two different scales, the EW scale and the B − L symmetry breaking scale.

Thus two RGEs are invoked for the analysis. As we have two Abelian couplings

in this model, there might be mixing between them [41, 42]. To simplify the sit-

uation, without hampering any other conclusions, we impose no mixing between

the ZB−L and Z gauge bosons at the tree-level. This follows from the condition

g̃(QEW ) = 0 as already discussed in the previous section. As a consequence, the

B − L breaking vev v
B−L relates to the new ZB−L boson mass as in Eq. 3.14.

For demonstration, we have picked the value of this additional gauge coupling at

the breaking scale as, g
B−L = 0.1. For simplicity, we further assume that heavy

†Note that in the positive λ3 region stability criteria are trivially satisfied i.e. all λi’s are
positive. In Fig.3.1 we have shown this region to compare with the negative λ3 region.
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Figure 3.1: The allowed parameter space in heavy Higgs mass (MH) and scalar mixing angle
(α) plane, consistent with vacuum stability and perturbativity bounds are shown here. The
gray region is the domain of allowed input parameters. The red, green, and black sub-parameter
spaces show the domain ofMH and α for which this B−L theory is valid till 107, 1010 and 1019

GeV respectively. The Majorana neutrino mass is fixed at 200 GeV and B − L breaking vev
(v

B−L
) is set at 7.5 TeV. The U(1)B−L gauge coupling is taken to be 0.1. The shaded region

satisfy λ3 < 0 (as well as α < 0 from Eq. 3.9). Thus the non-trivial vacuum stability conditions
are being satisfied in this region.

neutrinos are degenerate m1,2,3
νh
≡ mνh ' 200 GeV, which is within the allowed

values. We have used the central value of the light Higgs mass (Mh) as 125 GeV,

top quark mass as 173.2 GeV and strong coupling constant αs as 0.1184. Thus

the remaining free parameters in our study are MH , α and v
B−L . We have ex-

plored the correlated constraints on these parameters from vacuum stability and

perturbativity.

The set of RGEs of different couplings that we have used in our analysis are

listed in appendix A.2 [9]. The parameter space consistent with vacuum stability

in the heavy Higgs mass (MH) and scalar mixing angle (α) plane is depicted in

Fig. 3.1. All the couplings are perturbative through out their evolutions. The

grey region is the domain of allowed input parameters. The red, green, and black

sub-parameter spaces show the domain ofMH and α for which this B−L theory is

valid till 107, 1010 and 1019 GeV respectively. In this figure, for a particular heavy

scalar mass each allowed domain is restricted at some minimum (maximum) value

of α due to the vacuum stability (perturbativity) of the quartic couplings. The
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other parameters, like the Majorana neutrino mass is fixed at 200 GeV and B−L
breaking vev (v

B−L) is set at 7.5 TeV. The U(1)B−L gauge coupling is taken to

be 0.1 which implies MZB−L=1.5 TeV, consistent with the present experimental

bound [43]. The yellow shaded region contains the set of allowed parameters

for λ3 < 0 (i.e. for α < 0 from Eq. 3.9). Though the pattern of the allowed

parameter space in the positive λ3 region is very similar to that of the negative

λ3 region, it is not exactly symmetric. The upper boundaries of each color in

the Fig. 3.1 matches exactly for both positive and negative α region. This is

not surprising because the outer boundary is determined by the perturbativity of

the couplings and thus not affected by the vacuum stability conditions which are

different for different signs of λ3. However, the lower boundaries are the outcome

of the demand to satisfy the criteria of vacuum stability. Allowed parameters in

the yellow shaded region (which represents λ3 < 0) in the Fig. 3.1 reflects the

non-trivial vacuum stability condition in Eq. 3.19, which sequentially plays a role

in determining the lower boundaries in the allowed parameters. Thus expectedly

in the positive α region (i.e. λ3 > 0 region) the allowed parameter space is

larger than that for negative α (i.e. λ3 < 0). Also, note that α = 0 leads to

the decoupling limit when the heavy scalar will not affect the vacuum stability.

It can easily be inferred from Fig. 3.1 that the parameter space shrinks as the

validity of the model is demanded towards the Planck scale .

To study the effect of vacuum stability on different parameters, we plot the

region in the MH − α plane which corresponds to parameters consistent with

vacuum stability and where all the couplings are perturbative till the Planck Scale.

In Fig. 3.2(a) the Majorana neutrino Yukawa coupling yh is varied keeping v
B−L

and g
B−L fixed. As yh increases, the allowed parameter space shrinks since the

Yukawa coupling affects the quartic couplings negatively in their RG evolutions.

Thus larger Yukawa couplings spoil the vacuum stability. Fig. 3.2(b) shows the

dependence on B − L breaking vev for fixed g
B−L and yh. v

B−L determines the

scale of new physics beyond the Standard Model, i.e., from where the RGEs are

being modified due to the presence of new particles. Larger v
B−L implies that the

new set of RGEs come to play later. In the B−L extended model, λ3 is inversely
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Figure 3.2: Allowed parameter space in MH −α plane, with α varies between [0,−π/2], con-
sistent with vacuum stability, perturbativity bounds up to Planck scale. Figure (a): Majorana
neutrino Yukawa coupling yh is varied keeping v

B−L
and g

B−L
fixed. Figure (b): Two different

set of B −L breaking vev, v
B−L

are chosen keeping g
B−L

and yh fixed. Figure (c): In this plot
g
B−L

varies where v
B−L

and yh are kept constant.

proportional to v
B−L at the EW scale (see Eq. 3.9). Thus for the same set of

values of MH and α, λ3 is smaller for larger v
B−L at 15 TeV. The RGE of λ3 is

such that for our choice of parameters it grows with mass scale. Thus there is a

possibility of generating large λ3 such that vacuum stability and perturbativity

conditions are not valid at some higher scale. This plot therefore shows that

it is possible to have larger allowed parameter space for larger v
B−L . Finally in

Fig. 3.2(c), g
B−L varies where v

B−L and Y h are kept constant. As the larger values

of the gauge couplings affect the RGEs of the quartic couplings positively, the

vacuum stability is improved. Thus with the larger value of gauge coupling the

larger parameter space is allowed. But the U(1) coupling increases with the mass

scale. Hence the couplings with much larger values at low scale might be non-

perturbative in the high scale. In our analysis, when v
B−L is at 7.5 TeV, any value

of g
B−L more than 0.34 are disallowed as the coupling becomes non-perturbative
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before Planck scale.

3.5 High scale B − L symmetry and vacuum sta-

bility

In the previous section we have shown that a TeV scale B −L gauged symmetry

can restore vacuum stability of the scalar potential. However, the B−L breaking

scale is not necessary to be in TeV scale and in principle high scale breaking of

the symmetry is allowed. In this section we discuss about high scale breaking of

B − L symmetry and its implication towards vacuum stability.

Theoretical motivation for this model comes from the fact that it can yield

high-scale inflation successfully [11,44,45]. The B−L symmetry breaking scalar

can accommodate the inflaton field. Also, couplings between the scalar of the

U(1)B−L and the SM particles help to reheat the Universe at the end of the

inflation.

As has been proposed in [46], presence of a heavy scalar, besides the SM

particles, eventually leads to a threshold correction to the SM Higgs quartic

coupling and helps to stabilize the electroweak vacuum as long as the mass of

the heavy scalar lies below the instability scale of electroweak vacuum which is

around 1010 GeV.

Threshold Correction

To show how the threshold correction due to the presence of a heavy scalar

modifies the evolution of the Higgs quartic coupling λ1 at a lower scale [46],

let us consider the scalar potential after U(1)B−L symmetry breaking. At lower

energy scales, when the heavy scalar S has reached its minimum, its equation of

motion yields (using Euler-Lagrange equation)

S†S =
1

2
v2
B−L −

λ3

2λ2

Φ†Φ. (3.20)

Below the mass scale of the heavy scalar, one can thus integrate out the heavy



44 Chapter 3. B − L Extended Standard Model

field S using the above equation of motion and the potential becomes

V (Φ)|eff =

(
λ1 −

λ2
3

4λ2

)
(Φ†Φ)2 −m2(Φ†Φ). (3.21)

After that the dynamics of this theory is effectively governed by the SM particles

where the SM scalar potential is written as

V (Φ)|SM ≡ λΦ(Φ†Φ)2 −m2(Φ†Φ), λΦ(ms) =

[
λ1 −

λ2
3

4λ2

]
ms

. (3.22)

Here λΦ is the SM Higgs quartic coupling related to the electroweak symmetry

breaking scale and the SM Higgs mass only. This shows that the matching con-

dition (at the scale Q = ms) of the Higgs quartic coupling gives a tree-level shift,

δλ =
λ23
4λ2

, as we go from λ1 just above ms to λΦ just below ms.

This is a pure tree-level effect by which the heavy scalar of the extended

theory affects the stability bound of the low energy effective theory even when

these two theories are effectively decoupled. The Higgs quartic coupling λΦ of

the low energy effective theory receives a positive shift at the mass scale of the

inflaton which thus helps to avoid the instability which might have occurred above

ms scale.

Inflation in the B − L model

In this model under consideration the real part s(t,x) of the U(1)B−L breaking

scalar field, S, apart from the vev, can be written as a background field s0(t)

which plays the role of an inflaton and fluctuations δs(t,x) which give rise to the

primordial perturbations during inflation. Such a scenario has previously been

considered in [45]. Before going into the details and particularities of our infla-

tionary set up, we first briefly discuss what we know from the simplest single-field

inflationary model in the light of recent BICEP2 as well as PLANCK observa-

tions. The amplitude of the two-point correlation function or the power spectrum

of primordial scalar perturbations are measured through the two-point correla-

tion of the temperature fluctuations in the CMBR. PLANCK has measured this
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value as [47]

PR ∼ 2.215× 10−9. (3.23)

The ratio of the tensor (PT ) and the scalar (PR) power spectrum is represented

by

r =
PT
PR

, (3.24)

where r is conventionally called the tensor-to-scalar ratio. This ratio r has re-

cently been measured by the BICEP2 experiment to be 0.20+0.07
−0.05 [48]. But after

the release of PLANCK’s recent dust data [49] the observation of BICEP2 has

been put under serious scrutiny. Though for the time being, before PLANCK and

BICEP2 combine their observations, the upper-limit on r set by PLANCK [49]

still survives, i.e.,

r < 0.11 (95% CL). (3.25)

In single-field scenarios, the tensor power spectrum turns out to be a sole function

of the Hubble parameter H during inflation,

PT =
2

π2

H2

M2
Pl

, (3.26)

whereMPl ∼ 2.4×1018 GeV is the reduced Planck mass. As the Hubble parameter

during inflation is related to the inflaton potential Vs by

H2 =
Vs

3M2
Pl

, (3.27)

knowing PR and r one can determine both the Hubble parameter during inflation

H ∼ √r × 10−4MPl, (3.28)
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and the scale of inflation V 1/4
s

V
1
4
s ∼

( r

0.01

) 1
4 × 1016 GeV. (3.29)

Furthermore, in a single-field model the scalar power spectrum turns out to be

PR =
H2

(2π)2

(
H2

ṡ2
0

)
, (3.30)

where the over-dot represents derivative with respect to cosmic time t and this

yields the tensor-to-scalar ratio as

r =
8

M2
Pl

(
ṡ0

H

)2

=
8

M2
Pl

(
ds0

dN

)2

, (3.31)

where N is the number of e-foldings during inflation. This indicates that the

excursion of the inflaton field during inflation would be

∆s0

MPl

=

∫ NCMB

Nend

dN

√
r

8
, (3.32)

where Nend and NCMB are the number of e-foldings at the end of inflation and

when the largest observable mode in the CMBR leave the horizon before inflation

ends, respectively. Assuming that r would not change much during inflation, and

∆N ≈ 65 to solve the issues with Big Bang scenario, we have

∆s0

MPl

=
√

530× r. (3.33)

Hence, for r ≥ O(10−2) the field excursion during inflation would be super-

Planckian (large-field inflationary models), and for r < O(10−2) it would be

sub-Planckian (small-field inflationary models).

In the present model the inflaton potential can be written as [45]

V (s0) =
1

4
λ2(s2

0 − v2
B−L)2 + aλ2 log

(
s0

vB−L

)
s4

0 , (3.34)
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where we have

a ≡ 1

16π2λ2

(
20λ2

2 + 2λ2
3 + 2λ2

(∑
i

(Y NR
i )2 − 24g2

B−L

)
+ 96g4

B−L −
∑
i

(Y NR
i )4

)
.

(3.35)

The above potential contains the radiative correction added to the tree-level one.

Here Y NR
i stand for the right handed neutrino Yukawa couplings. The value

of ‘a’ determines whether the U(1)B−L symmetry is broken through the tree-

level potential or the radiatively generated logarithmic term. As the value of

‘a’ mostly depends on the value of gB−L and Y NR
i , it can either be positive or

negative depending upon the values of the couplings at inflationary scale. At tree

level one can then identify the mass term of the inflaton as

ms =
√
λ2vB−L . (3.36)

In large-field inflationary models one would naturally expect the quartic term with

radiative corrections to dominate over the mass term in the inflaton potential and

the form of the potential responsible for inflation would be

Vs(s0) ≈ 1

4
λ2s

4
0 + aλ2 log

(
s0

vB−L

)
s4

0. (3.37)

The flatness of the potential is determined by the slow-roll parameters

εV =
1

2
M2

Pl

(
V ′s
Vs

)2

, ηV = M2
Pl

(
V ′′s
Vs

)
, ξ2

V = M4
Pl

(
V ′sV

′′′
s

V 2
s

)
, (3.38)

where a prime denotes derivative with respect to the field s0. These slow-roll

parameters remain small (εV , ηV � 1) during inflation till εV becomes ∼ 1, which

marks the end of inflation. In a single-field scenario the tensor-to-scalar ratio r

and the scalar spectral index ns (which is a measure of the tilt of the scalar power

spectrum) are related to the slow-roll parameters by

r ≈ 16εV , ns ≈ 1− 6εV + 2ηV , (3.39)
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which are measured in CMBR observations. PLANCK measures the scalar spec-

tral index as ns = 0.9603±0.0073 [50]. The evolution of the scalar spectral index

can also be determined in terms of the slow-roll parameters as:

dns
d ln k

≈ 16εV ηV − 24ε2V − 2ξ2
V . (3.40)

If one assumes that the quartic self-interacting term without the radiative

correction in the inflaton potential drives inflation, the tensor-to-scalar ratio and

the scalar spectral index turn out to be

r =
128M2

Pl

s2
0

,

ns = 1− 24M2
Pl

s2
0

. (3.41)

The number of e-foldings can be computed as

Nk =
1

M2
Pl

∫ s0k

s0end

Vsds0

V ′s
, (3.42)

where s0k is the field value at the co-moving scale k and s0end is the field value at

the end of inflation. This yields

Nk∗ ≈
s2

0k∗

8M2
Pl

, (3.43)

where k∗ denotes the pivot scale and it has been considered that s0end � s0k∗
.

Hence, if the mode corresponding to the pivot scale would have left the horizon

around 65 e-foldings before inflation ends, then the above expression helps to

determine the field value during that time, which turns out to be s0k∗
∼ 23MPl.

The tensor-to-scalar ratio and the scalar spectral index at scale k can be expressed

in terms of the e-foldings as

rk =
16

Nk

,

nsk = 1− 3

Nk

. (3.44)
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The number of e-folds when the pivot scale crosses the horizon during inflation

can also be written as

N∗ ' 65 + 2 ln

(
Vs(s0∗)

1/4

1014 GeV

)
− ln

(
Tf

1010 GeV

)
, (3.45)

where Tf is the temperature at the end of inflation and can be considered as the

reheating temperature TRH. If the pivot scale set by PLANCK, i.e., k∗ = 0.002

Mpc−1, crosses the horizon during inflation when N∗ ∼ 65 then it generates

large tensor-to-scalar ratio as r∗ ∼ 0.25 which is also large enough even for BI-

CEP2 observations. This corresponds to the field excursion during inflation to be

∆s ∼ 12MPl. Hence, our aim would be to generate lower values of r while keep-

ing the scenario consistent with the observations of ns and PR by PLANCK. It

has been pointed out in [51] that the radiative corrections to the quartic potential

play an important role to lower the tensor-to-scalar ratio. Hence, for our infla-

tionary scenario we consider the inflaton potential including radiative correction

for inflation. When inflation is driven by this quartic potential, we find

Vs =
1

4
λ2s

4
0

[
1 + 4a ln

(
s0

vs

)]
,

V ′s = λ2s
3
0

[
1 + a+ 4a ln

(
s0

vs

)]
,

V ′′s = 3λ2s
2
0

[
1 +

7

3
a+ 4a ln

(
s0

vs

)]
,

V ′′′s = 6λ2s0

[
1 +

13

3
a+ 4a ln

(
s0

vs

)]
. (3.46)

These give the slow-roll parameters as

εV =
8M2

Pl

s2
0

[ u2

(u− 1)2

]
, ηV =

12M2
Pl

s2
0

[u+ 4/3

u− 1

]
, ξ2

V =
96M4

Pl

s4
0

[u(u+ 10/3)

(u− 1)2

]
,

(3.47)

where we have defined u = (1 + a+ 4a ln s0/vB−L)/a. Hence, the tensor-to-scalar

ratio, the scalar spectral index and the running of the scalar spectral index can
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be written as:

r =
128M2

Pl

s2
0

u2

(u− 1)2
,

ns = 1− 8M2
Pl

s2
0

3u2 − u+ 4

(u− 1)2
,

dns
d ln k

= −64M4
Pl

s4
0

[
u(3u3 − 4u2 + 15u+ 10)

(u− 1)4

]
, (3.48)

respectively. If we consider the radiative correction to the scalar potential, as

given in Eq. (3.46), to be negligible (which implies a→ 0, i.e., u→∞), the stan-

dard expressions for r and ns for quartic coupling can be recovered. Furthermore,

the scalar power spectrum given in Eq. (3.30), can be represented as

PR =
1

24π2εV

(
Vs
M4

Pl

)
=

1

12π2M6
Pl

(
V 3
s

V ′2s

)
, (3.49)

where we have used the Hubble slow-roll parameter ε = 1
2M2

Pl

ṡ20
H2 and the Fried-

mann equation during inflation given in Eq. (3.27) with ε ≈ εV . The power

spectrum for the inflaton potential including radiative correction turns out to be

PR =
λ2

768π2

(
s0

MPl

)6
a(u− 1)3

u2
. (3.50)

Now, this scenario can be realized in two cases. In the limit u � 1, one can

have |a| � 1, then the radiative corrections become negligible. In such a case the

standard results for φ4 potential should be retrieved. The other branch known as

hilltop solution is important when u ≈ 1 leading to a ∼ − (4 ln(s0/vB−L))−1.

We also require to determine the reheat temperature in order to compute the

number of e-foldings which corresponds to the pivot scale as given in Eq. (3.45).

We notice that, apart from the self-interaction term, the inflaton field is also

coupled to the SM Higgs field via the mixing term λ3 which allows it to decay

into a pair of SM Higgs during inflation. The decay rate of such an interaction is

given as [45]:

ΓS(s0 → SS) =
λ2

3v
2
B−L

32πms

. (3.51)
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This decay of inflaton field into SM Higgs would make inflaton unstable for larger

values of λ3. Thus one requires to restrain the decay width of the inflaton during

inflation. This requirement can be met if one demands that ΓS < ms which yields

λ3 <
√

32πλ2. (3.52)

From Eq. (3.51) we can also roughly estimate the order of reheating temper-

ature TRH if the reheating phase is dominated by the Higgs decay. If during

the reheating phase the inflaton and its decay products are just in equilibrium

then ΓS ∼ H where H is the Hubble parameter during the radiation dominated

reheating phase. This condition yields

λ2
3v

2
B−L

32πms

=

√
π2

90
g∗

T 2
RH

MPl

, (3.53)

where g∗ ∼ 100.

Now, let us determine the parameters for a large-field inflationary scenario

and take s0k∗
∼ 23MPl. Putting the central value of scalar spectral index as ns =

0.9603, we find two solutions (u∗) for u at the pivot scale: −0.333 and −11.001.

The first solution indicates a hilltop branch inflation, whereas the second one

gives rise to a φ4−branch inflation. Let us now analyze the parameters for these

two scenarios :

• Hilltop inflation : If one sets the vev that breaks U(1)B−L, i.e., the scale

of inflation as 1016 GeV, then for u∗ = −0.333 one finds a∗ ∼ −0.028. This

indicates the field value at the end of inflation would be s0end ∼ 0.71MPl

when εV ≈ 1. This value of u∗ yields the tensor-to-scalar ratio as r∗ = 0.015

and the inflaton quartic coupling, from the observation of the scalar power

amplitude by PLANCK, as λ2 ∼ 1.89×10−13. This yields the tree-level mass

of the inflaton as ms ∼ 4.3×109 GeV. The evolution of the spectral index in

such a scenario would be dns
d ln k
|k∗ ∼ 1.07×10−4. In this scenario the inflaton-

Higgs coupling can be of the order of 10−6, which yields the reheating

temperature as TRH ∼ 1.29 × 1013 GeV. This reheating temperature and

the energy-scale of inflation yield the e-folding at which pivot scale would
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have exited the horizon as N∗ ∼ 67.

• φ4−branch inflation : If one sets the scale of inflation to be 1016 GeV like

the hilltop case, one gets a∗ ∼ −0.022 for u∗ = −11.001. This indicates that

the field value at the end of inflation, when εV ≈ 1, would be s0end ∼ 2.6MPl.

This u∗ yields the tensor-to-scalar ratio as r∗ = 0.203 and the inflaton

quartic coupling, from the observation of the scalar power amplitude, as

λ2 ∼ 3.6 × 10−13. This provides the tree-level mass of the inflaton as

ms ∼ 6.0 × 109 GeV. The running of the spectral index in such a scenario

would be dns
d ln k
|k∗ ∼ −5.6×10−4. In this scenario the inflaton-Higgs coupling

can be of the order of 10−6, which yields the reheating temperature as

TRH ∼ 1.09 × 1013 GeV. This reheating temperature and the energy-scale

of inflation generate the e-folding at which pivot scale would have left the

horizon as N∗ ∼ 67.

Vacuum Stability
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Figure 3.3: This plot shows the running of the SM quartic coupling as a function of energy
scale. The discrete jump at scale very near to ∼ 1010 GeV is because of the presence of the
inflaton having mass ∼ 1010 GeV.

In the previous subsection, we have shown that to achieve successful inflation

the inflaton quartic coupling have to be fine tuned. Fine-tuning of inflaton quartic

coupling evidently brings down the mass scale of the inflaton field which turns

out to be below the instability scale of the electroweak vacuum. Following [46],
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one can integrate out the heavy inflaton field below its mass scale which then

adds a tree-level threshold correction to the low energy effective Higgs quartic

coupling λΦ given by

λ1 = λΦ +
λ2

3

4λ2

.

Hence, below the inflaton mass scale the stability condition (λΦ > 0) for the SM

Higgs quartic coupling would get shifted upwards λ1 > δλ ≡ λ23
4λ2

. The other two

quartic couplings λ2 and λ3 would start evolving at energies above this mass scale.

The relevant RGEs are written in appendix A.2. To illustrate the threshold effect,

the running of Higgs quartic coupling has been shown in Fig. 3.3. Here we have

taken the heavy scalar mass ms = 8×108 GeV before which λΦ runs according to

SM β-functions. Beyond that point new loop effects due to the extended theory

start to affect its running and the discrete jump in the Higgs quartic coupling at

ms is due to the threshold effect.

Apart from the SM fermions this model also contains three right handed neu-

trinos, νRi , which appear in the Lagrangian as in Eq. 3.15. The second term in the

above Lagrangian gives rise to the coupling of the inflaton to heavy right handed

neutrinos and also masses for νR. It is important to note that when the (B − L)

symmetry is broken at the TeV scale the masses of the right handed neutrinos

are less compared to the present scenario. In the case of TeV scale breaking the

Yukawa couplings (Y νL) giving rise to the Dirac mass of light neutrinos have to

be vanishingly small unless some special textures are considered. Thus in such

cases, impact of Y νL in the evolutions of the quartic and other necessary cou-

plings is negligible. But in the present case the right handed neutrino masses are

very heavy ∼ 1011−13 GeV, due to high U(1)B−L breaking scale. Thus the light

neutrino masses are still light ∼ O(eV) even with Y νL ∼ O(1). Hence unlike

the cases where U(1)B−L symmetry is broken at TeV scale, one cannot ignore the

contributions of light neutrino Yukawa couplings Y νL in the RGEs in our scenario

(see appendix A.2).

Looking at the threshold correction, which is essential for electroweak vacuum

stability, it may seem that λ3 < 0 can still be retained as a possible condition.
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But in our analysis this opportunity of achieving a larger parameter space for

λ3 is restricted as here λ2 is very small ∼ 10−14 due to inflationary constraints.

The absolute value of λ3 can never be too large as it affects the running of λ2

by driving its value to a much larger value which might not be able to explain

inflationary dynamics. Thus λ3 is constrained from above by the requirement

of inflation. The smallness of |λ3| ensures that the two scalars present in the

theory are basically decoupled from each other as the mixing angle between then

becomes too small.

3.6 Conclusion

We analyzed the structure of the scalar potentials of SM⊗U(1)B−L model. We

found that the addition of new scalars help to stabilize the scalar potential. Using

one-loop RGEs we constrained the parameter space of this model. Effect of

different parameters like new gauge coupling gB−L, RH neutrino Yukawa and

B − L breaking vev have been discussed.

Another scenario of SM⊗U(1)B−L has been discussed where the B−L gauge

symmetry is broken at very high scale beyond the SM instability scale. In this

case the presence of a heavy scalar yields a threshold correction to the Higgs

quartic coupling, if one integrates out this heavy scalar below its mass scale.

Hence if the mass of this heavy scalar lies below the electroweak instability scale

(∼ 1010 GeV), the threshold correction eventually helps avoid the instability of

the vacuum by correctly uplifting the value of the SM Higgs quartic coupling at

this mass scale.

In summary, it is meaningful to mention that more precise knowledge of the

SM parameters, like Higgs mass, top quark mass and strong coupling will con-

strain the parameters (couplings, masses, scales) of new physics and that might

direct us towards the correct theory for beyond standard model physics.



Chapter 4

Left-Right Symmetric Model

The Standard Model of particle physics does not treat left-handed and right-

handed particles in the same way. The left handed quarks and leptons transform

as doublets under the SU(2)L gauge group, whereas the right-handed fields are

singlets under the same gauge group. This is due to the chiral structure of

the weak interaction. On the other hand SM cannot explain non-conservation of

Parity in weak interaction which was first observed by Madame Wu in beta decay

of 60Co [52].

Left-Right symmetric model (LRSM) unravel the aforementioned issues of the

SM. In addition, there are several features which appear naturally in LRSM but

remained unexplained in the SM. Some of these are:

• Generation of tiny non zero neutrino masses via seesaw mechanism.

• Physical interpretation of the hypercharge quantum number (Y ) in terms

of Baryon number (B) and Lepton number (L).

• Possibility to realize gauge coupling unification in the non-supersymmetric

GUTs where LRSMs appear as low energy effective theories [16]

The matter field contents now are symmetric and represented as left and right

55
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handed doublets. For quarks we have

QiL =

u′i
d′i


L

: (3, 2, 1, 1/3) QiR =

u′i
d′i


R

: (3, 1, 2, 1/3),

and for leptons

LiL =

ν ′i
`′i


L

: (1, 2, 1,−1) LiR =

ν ′i
`′i


R

: (1, 1, 2,−1).

(4.1)

The first three integers in the parentheses are dimensions of SU(3)C , SU(2)L and

SU(2)R representations respectively, while the fourth number characterizes the

B−L quantum number. The primes are used to remind that these are not mass

eigenstates but gauge eigenstates.

We will now briefly discuss the scalar sector and spontaneous symmetry break-

ing in LRSM. After that we will explore the gauge sector and the fermion sector

of this model.

4.1 Spontaneous Symmetry Breaking Pattern

The full LR symmetric gauge group is

SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L. (4.2)

Symmetry breaking occurs in two steps which can be schematically illustrated in

the following manner:

SU(2)L ⊗ SU(2)R ⊗ U(1)B−L︸ ︷︷ ︸
〈∆R〉 or 〈HR〉

��
SU(2)L ⊗ U(1)Y︸ ︷︷ ︸

〈Φ〉 and 〈∆L〉 or 〈HL〉

��
U(1)EM .

(4.3)
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The SU(2)R ⊗ U(1)B−L is broken to U(1)Y at a scale higher than the EW

symmetry breaking one. Thus the hypercharge generator is a linear combination

of SU(2)R and U(1)B−L generators. In this model, the hypercharge Y can be

reconstructed from the SU(2)R and U(1)B−L quantum numbers as

Y = T3R +
B − L

2
, (4.4)

T3R being the third component of the SU(2)R isospin. This explains the electric

charges of particles, which is given by

QEM = T3L + Y. (4.5)

Note that the electromagnetic charge consists of physical quantum numbers like

baryon number and lepton number along with eigenvalues of the generators of

SU(2)L/R gauge groups.

The LR symmetric gauge group SU(2)L⊗SU(2)R⊗U(1)B−L is broken down to

SM gauge group SU(2)L⊗U(1)Y when the neutral component of an SU(2)R dou-

blet scalar HR or SU(2)R triplet scalar ∆R acquires a vacuum expectation value.

This leads to two variants of Minimal Left-Right Symmetric Models (MLRSMs):

• Scalar sector consists of a bi-doublet (Φ), one left-handed triplet (∆L), and

one right-handed triplet (∆R) [12–15].

• Scalar sector consists of a bi-doublet (Φ), one left-handed doublet (HL),

and one right-handed doublet (HR) [53–55].

4.1.1 LR Model with Triplet Scalars (LRT)

In this case triplet scalars are present in the theory. The explicit structures of

the scalars can be presented in the form

Φ =


φ0

1 φ+
1

φ−2 φ0
2

 , ∆L,R =


δ+
L,R/
√

2 δ++
L,R

δ0
L,R −δ+

L,R/
√

2

 .
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These fields transform under the SU(2)L⊗SU(2)R⊗U(1)B−L gauge group in the

following manner:

Φ ≡ (2, 2, 0), ∆R ≡ (1, 3, 2), ∆L ≡ (3, 1, 2). (4.6)

Once neutral components of these scalars acquire vacuum expectation values,

they can be written in the form,

〈Φ〉 =

 v1 0

0 v2e
iθ

 , 〈∆L〉 =

 0 0

vL 0

 , 〈∆R〉 =

 0 0

vR 0

 .

(4.7)

For simplicity we will choose v2 = 0 without loss of generality hereafter. With

these structures of the vacuum expectation values, symmetry breaking occurs in

two stages.
The most general form of LRT scalar potential is discussed extensively in

[56–58] and for our analysis we use the form given in [58], which reads as,

VLRT (Φ,∆L,∆R) =

− µ2
1

{
Tr
[
Φ†Φ

]}
− µ2

2

{
Tr
[
Φ̃Φ†

]
+ Tr

[
Φ̃†Φ

]}
− µ2

3

{
Tr
[
∆†L∆L

]
+ Tr

[
∆†R∆R

]}
+ λ1

{(
Tr
[
Φ†Φ

])2}
+ λ2

{(
Tr
[
Φ̃Φ†

])2
+
(
Tr
[
Φ̃†Φ

])2}
+ λ3

{
Tr
[
Φ̃Φ†

]
Tr
[
Φ̃†Φ

]}
+ λ4

{
Tr
[
Φ†Φ

](
Tr
[
Φ̃Φ†

]
+ Tr

[
Φ̃†Φ

])}
+ λ5

{(
Tr
[
∆L∆†L

])2
+
(

∆R∆†R

)2}
+ λ6

{
Tr
[
∆L∆L

]
Tr
[
∆†L∆†L

]
+ Tr

[
∆R∆R

]
Tr
[
∆†R∆†R

]}
+ λ7

{
Tr
[
∆L∆†L

]
Tr
[
∆R∆†R

]}
+ λ8[∆L∆†L

]{
Tr
[
∆L∆†L

]
Tr
[
∆R∆†R

]}
+ λ9

{
Tr
[
Φ†Φ

](
Tr
[
∆L∆†L

]
+ Tr

[
∆R∆†R

])}
+ (λ10 + i λ11)

{
Tr
[
ΦΦ̃†

]
Tr
[
∆R∆†R

]
+ Tr

[
Φ†Φ̃

]
Tr
[
∆L∆†L

]}
+ (λ10 − i λ11)

{
Tr
[
Φ†Φ̃

]
Tr
[
∆R∆†R

]
+ Tr

[
Φ̃†Φ

]
Tr
[
∆L∆†L

]}
+ λ12

{
Tr
[
ΦΦ†∆L∆†L

]
+ Tr

[
Φ†Φ∆R∆†R

]}
+ λ13

{
Tr
[
Φ∆RΦ†∆†L

]
+ Tr

[
Φ†∆LΦ∆†R

]}
+ λ14

{
Tr
[
Φ̃∆RΦ†∆†L

]
+ Tr

[
Φ̃†∆LΦ∆†R

]}
+ λ15

{
Tr
[
Φ∆RΦ̃†∆†L

]
+ Tr

[
Φ†∆LΦ̃∆†R

]}
,

(4.8)

where all the coupling constants are real.
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The symmetry group SU(2)L⊗SU(2)R⊗U(1)B−L breaks down to SU(2)L⊗
U(1)Y by vR at high scale. Subsequently, the vacuum expectation value v1 of the

bi-doublet breaks SU(2)L⊗U(1)Y to U(1)EM . So the total number of Goldstone

bosons are six. Now the Higgs sector has twenty degrees of freedom (eight real

field for the bi-doublet and six each for the triplet fields). Hence, the remaining

fourteen fields will be physical scalars and they are

1. Two doubly charged scalars (H±±1 , H±±2 ),

2. Two singly charged scalars (H±1 , H
±
2 ),

3. Four neutral CP-even scalars (H0
0 , H

0
1 , H

0
2 , H

0
3 ),

4. Two neutral CP-odd pseudo scalars (A0
0, A

0
1 ).

We have already mentioned that the scale vR is much higher than that of

the electro-weak breaking vev v1. The scalar masses can be expressed in leading

order∗ [59, 60]

M2
H0

0
' 2λ1 v

2
1,

M2
H0

1
' 1

2
λ12 v

2
R,

M2
H0

2
'M2

A0
1
'M2

H±2
' 2λ5 v

2
R,

M2
H0

3
'M2

A0
2
'M2

H±1
'M2

H±±1
' 1

2
(λ7 − 2λ5) v2

R,

M2
H±±2

' 2λ6 v
2
R. (4.9)

MH0
0
is the Standard Model Higgs boson and will be denoted by Mh from here

onwards. It is important to note that the remaining quartic couplings only con-

tribute to the scalar masses as sub-leading terms and proportional to the v2
1 at

the EWSB scale. Hence, λ2, λ3, λ4, λ8, λ9, λ10, λ11 induce only the relative mass

splittings among these heavy scalars which are almost phenomenologically inac-

cessible at present experiments.
∗These leading order terms match exactly with the masses of the heavy scalars at scale vR,

i.e., before electro-weak symmetry breaking (EWSB). After the EWSB, some correction terms
are generated which are proportional to v21 . But as vR � v1, the splitting among the masses
of these heavy scalars are negligible compared to their relative masses. It is important to note
that this ‘'’ will be replaced by ‘=’ in Eq. 4.9 when these masses are given at vR scale.
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4.1.2 LR Model with Doublet Scalars (LRD)

In this case the scalar sector consists of a bi-doublet (Φ), one left-handed doublet

(HL), and one right-handed doublet (HR). The SU(2)L ⊗ SU(2)R ⊗ U(1)B−L

quantum numbers of these fields can be written as

Φ ≡ (2, 2, 0), HL ≡ (2, 1, 1), and, HR ≡ (1, 2, 1), (4.10)

and the structure of HL/R can be written as

HL/R =


h0
L/R

h+
L/R

 . (4.11)

The neutral components of Φ and HL/R acquire the vacuum expectation values:

〈Φ〉 =

 v1 0

0 v2e
iθ

 , 〈HL〉 =

 0

vL

 , 〈HR〉 =

 0

vR

 . (4.12)

As before, we put v2 = 0. The scalar sector consists of sixteen real scalar fields

out of which six are Goldstone bosons. Finally we have four CP-even scalars,

two CP-odd scalars and two charged scalars. Among the CP-even scalars one is

the Standard Model Higgs boson with mass Mh and the other three are taken as

degenerate heavy scalars having massMH . The parameters in the Higgs potential

can be recast in terms of the masses of the neutral and charged scalars. Details

about the scalar sector have been discussed in [61].

The scalar potential for the LR model with doublet scalars can be written as

VLRD(Φ, HL, HR) = 4λ1

(
Tr[Φ†Φ]

)2

+ 4λ2

(
Tr[Φ†Φ̃] + Tr[ΦΦ̃†]

)2

+

4λ3

(
Tr[Φ†Φ̃]− Tr[ΦΦ̃†]

)2

+
κ1

2

(
H†LHL +H†RHR

)2

+
κ2

2

(
H†LHL −H†RHR

)2

+β1

(
Tr[Φ†Φ̃] + Tr[ΦΦ̃†]

)(
H†LHL +H†RHR

)
+f1

(
H†L
(
Φ̃Φ̃† − ΦΦ†)HL −H†R

(
Φ†Φ− Φ̃†Φ̃

)
HR

)
.



4.2. Gauge Sector 61

In the limit vR � v1 and assuming that all the heavy scalars are degenerate,

we have

f1 = (MH/vR)2 = κ1 = −κ2, (4.13)

whereas, minimization of the potential requires:

v2
1

v2
R

=
f1 − 2β1

4λ1

.

4.2 Gauge Sector

4.2.1 LR Model with Triplet Scalars

The kinetic energy term of the scalar part of LRSM with triplet scalars can be

written as

Lkin = Tr
[
(DµΦ)†(DµΦ)

]
+ Tr

[
(Dµ∆L)†(Dµ∆L)

]
+ Tr

[
(Dµ∆R)†(Dµ∆R)

]
,

(4.14)

where

DµΦ =
(
∂µ + ig2LT

aW a
Lµ + ig2RT

aW a
Rµ

)
Φ,

Dµ∆(L/R) = ∂µ∆(L/R) − ig(2L/2R)

[
T aW a

(L/R)µ,∆(L/R)

]
− ig

B−LIBµ∆(L/R).(4.15)

After spontaneous symmetry breaking the charged W boson mass terms can be

written,

Lcharged =
(
W+µ
L W+µ

R

)
(M±)2


W−
Lµ

W−
Rµ

+ h.c (4.16)

whereM± is the charged gauge boson mass matrix

(M±)2 =
1

4
g2

 v2
1 0

0 v2
1 + 2v2

R

 (here g2L = g2R ≡ g). (4.17)

Note that since we have taken v2 = 0 there is no mixing between left and right

charged W bosons and WLµ is the SM charged gauge boson.
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The neutral part of the Lagrangian is

Lneutral =
(
W 3µ
L W 3µ

R Bµ

) 1

2
(M0)2


W 3
Lµ

W 3
Rµ

Bµ

 , (4.18)

with

1

2
(M0)2 =


g2v2

1 −g2v2
1 0

−g2v2
1 g2(v2

1 + 4v2
R) −4ggB-Lv

2
R

0 −4ggB-Lv
2
R 4g2

B-L
v2
R

 . (4.19)

Diagonalization of this mass matrix yields two massive neutral gauge bosons, Zµ
1

and Zµ
2 , and one neutral boson Aµ. The lighter vector boson Z1 is identified as

the SM Z boson.

4.2.2 LR Model with Doublet Scalars

The gauge sector for the LR model with doublet scalar is very similar to that of

the LR model with triplet scalars. The kinetic term of scalar part can be written

as

Lkin = Tr
[
(DµΦ)†(DµΦ)

]
+ (DµHL)†(DµHL) + (DµHR)†(DµHR), (4.20)

where

DµΦ =
(
∂µ + ig2LT

aW a
Lµ + ig2RT

aW a
Rµ

)
Φ (4.21)

DµH(L/R) = ∂µH(L/R) − ig(2L/2R)

[
T aW a

(L/R)µ, H(L/R)

]
− ig

B−LIBµH(L/R) (4.22)

After symmetry breaking the mass eigenvalues appear to be the same as in

the LR model with triplet scalars and we do not write them explicitly here.

4.3 Yukawa sector

Unlike the gauge sector, the Yukawa sector of LRSM depends on the structure

of the scalar sector. Here we will discuss the Yukawa sector separately for LRSM
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with triplet scalars and with doublet scalars.

4.3.1 LRSM with triplet scalars

Under the gauge group SU(2)L ⊗ SU(2)R quarks and leptons are doublets, as

written in Eq. 4.1. The most general lepton Yukawa Lagrangian can be written

as

− LY =

[
LL

(
(yl)Φ + (ỹl)Φ̃

)
LR + h.c

]
+ LcRΣL(yh)LL + LcLΣR(yh)LR, (4.23)

here Φ̃ = iσ2Φ∗ and ΣL/R = iσ2∆L/R. The triplet scalars ∆L/R are defined in

4.1.1. The matrices yl, ỹl and yh are the Yukawa coupling matrices.

The neutral fermion masses are generated once the Φ and ∆L acquire vev.

The neutral fermion mass matrix is given by

Mν =

 mII
ν mD

mT
D mR

 , mD =
1√
2
ylv1, mR =

√
2yhvR, mII

ν =
√

2yhvL.

(4.24)

Thus the light neutrino mass matrix

mνl = mII
ν −mT

Dm
−1
R mD, (4.25)

is generated through type-I and type-II seesaw mechanisms. The first term comes

from type-II seesaw and hence the superscript II. The second term originates via

type-I seesaw.

After Higgs bi-doublet and triplet scalars get vev, the neutrino part of the

above Lagrangian can be rewritten as

− Lν =
1

2

(
ncLMνnR + ncRM

∗
νnL

)
, (4.26)

with mass matrix Mν where,

nR =

 νcR

νR

 , nL =

 νL

νcl

 , ncL/R = Cν̄TL/R. (4.27)



64 Chapter 4. Left-Right Symmetric Model

In the left-right symmetric model with triplet scalars neutrino masses are

generated through type-I and type-II seesaw mechanisms. As the vev of the

left-handed triplet scalar is constrained from ρ parameter, it cannot be larger

than O(few GeV). Thus it is indeed possible to generate light neutrino masses

∼eV with vL ∼eV, while the neutrino Yukawa coupling can be O(1). The heavy

neutrino mass mR is also generated through the Yukawa terms. It can be noted

that with mR ∼ O(TeV), mD needs to be very small to generate light neutrino

masses ∼ O(eV). But yh can be as large as O(1) when vR is around the TeV

scale. Thus, a successful light neutrino mass generation cannot constrain yh. But

yh affects the vacuum stability of the scalar potential in this model as the heavy

neutrino is also coupled to the SM like Higgs and thus gets constrained. We

will discuss later how these parameters are constrained from vacuum stability,

triviality and perturbativity of the couplings.

4.3.2 LRSM with doublet scalars

In Left-Right symmetric model with doublet Higgs, the leptonic part of the

Yukawa interaction can be written as

− Ll = l̄L

(
y1Φ + y2Φ̃

)
lR + h.c. (4.28)

where SU(2)L⊗SU(2)R quantum numbers of lL and lR are (2,1) and (1,2) respec-

tively. So from this Lagrangian the neutrino mass (Dirac type) can be written

as

mD = y1v1 + y2(v2e
iθ)∗. (4.29)

Unlike the case of triplet scalars it is not possible here to write a Majorana

mass term for right handed neutrinos. But we can write dimension-5 terms which

can give rise to Majorana mass terms

LD−5 =
ηL
ML

lLlLHLHL +
ηR
MR

lRlRHRHR (4.30)

where ML and MR are some very high scales.



4.4. Vacuum Stability in LRSM 65

With the assumption that 〈HL〉 = 0 we have effectively

mR '
ηRv

2
R

MR

.

With this effective operator Majorana mass term, the neutrino mass matrix be-

comes

Mν =

 0 mD

mT
D mR

 . (4.31)

After diagonalization, the light neutrino mass matrix can be written as

mνl = −mT
D m−1

R mD (4.32)

which is the double see-saw formula.

In the left-right symmetric model with two doublet scalars instead of two

triplets, neutrino masses cannot be generated through type-II seesaw mechanism.

Type-I seesaw is the natural choice in this case. But the right-handed neutrino

masses are generated through an effective operator that does not include any

Yukawa couplings. Thus with TeV scale right-handed neutrinos light neutrino

masses arise if and only if the Dirac-type neutrino Yukawa coupling is very small.

Then vacuum stability is automatically satisfied. Thus, only the quartic couplings

get constrained through vacuum stability, triviality and perturbativity of the

couplings. Within this framework it is indeed possible to generate light neutrino

masses of the correct order without lowering the Yukawa coupling as the light

neutrino masses are independent of vR but suppressed by some heavy scale. In

that case the vacuum stability constraints cannot be avoided and play the most

crucial role in constraining the Yukawa couplings and other parameters.

4.4 Vacuum Stability in LRSM

In this section we will discuss how vacuum stability can constrain parameters in

the LR symmetric model. We have already discussed the tools we need to adjudge

vacuum stability, viz. positivity of quadratic form and copositivity in Chapter2.
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Here we will use those methods to calculate the stability criteria. Imposing the

condition that the vacuum should be stable all the way till the Planck scale, the

parameter space of the model will be constrained.

We consider the LR model with doublet scalar first because of its simplicity.

4.4.1 LR Model with Doublet Scalars

The scalar sector of this model is discussed in detail in 4.1.2. In appendix B we

have calculated the conditions for copositivity, or in other words, conditions for

vacuum stability of the Left-Right symmetric model with doublet scalars. Here

we have first expanded the full scalar potential in terms of the component fields†.

We then construct quadratic forms considering 2-, 3-, and 4-fields directions. As

there are maximum four component fields (φ0
1, φ

+
1 , h

0
R, h

+
R), in our analysis all the

possible quadratic forms have been considered.

One can easily follow the copositivity conditions derived from the given quadratic

form of the potential written in a symmetric matrix. These conditions directly

follow from our previous discussion on general matrix. At this point, we would

like to note and discuss some interesting situations which arise during these cal-

culations. Notice that while constructing the matrix form in some of the cases,

we have to introduce one or more extra unphysical parameters to accommodate

the most general multi-field terms of the potentials. For instance, if we consider

the quadratic form like Eq. B.10 we have to construct a matrix that contains such

new parameters‡ in the form of C and K. That bears interesting consequences of

generating nontrivial conditions for different regions of these parameters. How-
†We have considered only those scalar multiplets whose components acquire non-zero vacuum

expectation values. Our assumption simplifies the analysis but does not spoil the spirit of our
formalism. The most general structure surely envelopes all field directions but that might
weaken the clarity of this formalism.
‡These situations arise when some of the fields appear in linear form in the scalar quartic

terms. They also create another problem due to the linearity in one of the fields. All the basis
elements are not guaranteed now to belong in <+

n , which can be taken care of by introducing
suitable phases in the respective couplings. Now, in general, stability of the scalar potential can
be ensured by demanding copositivity of the matrix form of the potential. However, one may
not get a simpler set of conditions to ensure stability of the scale potential as we have obtained
in our model. This is the generic problem while dealing with multi-component scalar field
models, for example see ref. [62] where the author had discussed the most general Two Higgs
Doublet Model(2HDM). An alternative approach for this 2HDM can be found in Ref. [63, 64].
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ever, one needs to note that C and K are not the physical parameters as they do

not exist at the Lagrangian level. Thus, we expect final conditions on stability

of the potentials to be independent of these parameters. To discuss further, we

rewrite the 4-field direction conditions as computed in B.10:

λ1 ≥ 0 & C(f1 + 2β1) ≥ 0 & K(f1 + 2β1) ≥ 0

& C K

(
f1 + 2β1

2

)2

− f 2
1 ≥ 0.

These conditions can be examined along with additional conditions we already

derived from 2- and 3-field directions. These existing conditions being indepen-

dent of these unphysical parameters, put constraint over them. So, using such

conditions: λ1 ≥ 0 and β1 ≥ |f1|/2, one readily notes that both C and K have

to be non-negative. Hence, following this argument, the last condition can be

rewritten as (2β1 + f1) ≥ 2|f1|/(CK). Our intention is to find the largest param-

eter space which is compatible with the vacuum stability. In other words, one can

simply evade these superficial parameters involving C and K by fixing their val-

ues leading to the largest allowed parameter space. Following this principle, the

product CK which can have any non-negative value is favored when it approaches

infinity. Thus the largest parameter space is allowed when the constraint is given

as (2β1 + f1) ≥ 0. Thus the final vacuum stability conditions read λ1 ≥ 0 and

β1 ≥ |f1|/2.
We have also noted the required RGEs for our analysis in appendix A.4 [65].

In Fig. 4.1 we constrain the universal quartic coupling λu (≡ λ2, -λ3) for LR

model with doublet scalars in low vR region for different values of heavy scalar

mass MH . Similar to the previous case, the yellow shaded region in the plot is

disallowed by low energy data (MWR
> 3.5 TeV) and the green shaded region is

excluded by direct search at LHC (MWR
> 2.5 TeV).

As we can see in Fig. 4.1, for any particular heavy scalar mass (MH), universal

quartic coupling λu is disallowed above the corresponding line. For example, as

seen from the plot, the maximum allowed value of the universal quartic coupling

is 0.033, if one considers LR breaking scale at 10 TeV and heavy scalar mass of
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Figure 4.1: Constraints on the universal quartic coupling λu (≡ λ2, -λ3) for LR model with
doublet scalars in low vR region for different values of heavy scalar mass MH . Yellow shaded
region is disallowed by low energy data (MWR

> 3.5 TeV) and green shaded region is excluded
by direct search at LHC (MWR

> 2.5 TeV).

1 TeV. As before, the allowed maximum quartic coupling is lowered for heavier

scalar.

In Fig. 4.2 we check the compatibility for stable vacuum in vR −MH plane

for LR model with doublet scalars. Each color represents a particular set of light

Higgs mass (Mh) and top mass (Mt) in respective plot. In Fig. 4.2(a) Higgs mass

is fixed at 125 GeV and top quark mass is varying from 170 GeV to 175 GeV where

as, in Fig. 4.2(b) top quark mass is fixed at 173.2 GeV and Higgs mass is varying

from 122 GeV to 127 GeV. Upper-left region (shaded with light blue) above the

lineMH = vR is disallowed since quartic couplings are non-perturbative at the low

scale itself in this domain. The blank (white) strip is also ruled out as the value

of the couplings in this region is such that they become non-perturbative before

reaching the Planck scale. Lower-right region (shaded with light pink) quartic

coupling related with heavy Higgs mass becomes extremely small (≤ O(10−7)).

We choose universal quartic coupling λ1 = −λ2 = λu fixed at 0.04. Here, the

choice of λu allows only vR ≥ 100 TeV. Inset to both figures show the higher

vR scale where color patches terminate, representing the very scale where in fact

Standard Model breaks down for a particular Higgs mass or top quark mass at

one loop.
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Figure 4.2: Compatibility for stable vacuum in vR and MH plane in LR model with doublet
scalars. Each color represents a particular set of light Higgs mass (Mh) and top mass (Mt) in
respective plot. In figure (a) Higgs mass is fixed at 125 GeV and top quark mass is varying,
where as, in figure (b) top quark mass is fixed at 173.2 GeV and Higgs mass is varying. Upper-
left region (shaded with light blue) above the lineMH = vR is disallowed since quartic couplings
are non-perturbative at the low scale itself in this domain. Lower-right region (shaded with light
pink) quartic coupling related with heavy Higgs mass becomes extremely small (≤ O(10−7)).
We choose universal quartic coupling λu fixed at 0.04. Inset to both figures shows the higher vR
scale where color patches terminate, representing the very scale where in fact Standard Model
vacuum becomes unstable for a particular Higgs mass or top quark mass at one loop.

4.4.2 LR Model with Triplet Scalars

This model contains triplets scalar along with the Higgs bi-doublet and the scalar

structure is discussed in 4.1.1. For this model, while computing the cop condi-

tions we have also encountered the similar situations as in section 4.4.1 and have

dealt them with the same spirit. We consider one such example where a single

symmetric matrix coming from two different directions 3FV6 and 3FV7. Corre-

sponding quadratic forms are followed in Eqs. B.26 or B.27. Similar to our dis-

cussion in section 4.4.1, we encounter one such unphysical parameter C. Here we

have also illustrated the removal of superficial parameters from the final vacuum

stability conditions. Theoretically, as it is stated earlier, in the λi parameter space

one needs to vary the parameter C for all possible ranges (which is [−∞,∞]) to-

gether with conditions depicted in Eq. B.28 as well as in Eqs. B.29, B.30, B.32

(which are once again listed as follows) and take union of all such allowed regions

to achieve the full parameter space. We have categorized the C dependency as

follows:
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(a) C ≥ 0 such that (1− C) ≥ 0, i.e., C ∈ [0, 1]:

λ5 + 2λ6 ≥ 0, (4.33)

(b) C ≥ 0 such that (1− C) ≤ 0, i.e., C ∈ (1,∞]:

λ5 + 2λ6 ≥ 0 & λ2
5 − (1− C)2(λ5 + 2λ6)2 ≥ 0, (4.34)

(c) C < 0 such that (1− C) ≥ 0, i.e., C ∈ [−∞, 0):

λ5 + 2λ6 ≤ 0 & λ2
5 − (1− C)2(λ5 + 2λ6)2 ≥ 0. (4.35)

However, this procedure is highly impractical to implement in real calculations.

But, as we have discussed in the previous section, it is possible to remove the

presence of C from the final copositive conditions through the careful inspection

of all the copositivity criteria. By combining last two cases (b and c) we can

write λ5 ≥ |(1 − C)(λ5 + 2λ6)|, with C ∈ [−∞,∞] excluding the range [0, 1].

It is obvious that the other derived condition λ5 ≥ 0 is more relaxed for the

given range of C. Thus λ5 ≥ 0 allows larger parameter space than the condition

λ5 ≥ |(1−C)(λ5 + 2λ6)|. Now the case (a) possess the criteria λ5 + 2λ6 ≥ 0 that

leads to the less parameter space than the already derived condition λ5 + λ6 ≥ 0

for λ6 < 0. For λ6 ≥ 0 both conditions are automatically satisfied as λ5 ≥ 0.

This can also be demonstrated pictorially in the following manner. Assuming

that we are interested in the region of |λi| ≤ 1 from perturbativity, we would like

to find out particular values of C which actually maximize the allowed regions for

a given condition. Thereafter we simply rewrite those conditions at that point and

demand that to be the final conditions. In our present example, conditions given

in Eqs. 4.34 and 4.35 depend on the parameter C. However, as demonstrated in

Fig. 4.3 they maximize the allowed parameters at C = 1 and C = 0, respectively.

Moreover, union of these sets of nontrivial conditions for different ranges of C is

equivalent to a simple condition given by (λ5 + λ6) ≥ 0 which is independent of

C. Interestingly, this is not a new condition and already is explored in several
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Figure 4.3: Maximizing allowed parameter space the in λ5−λ6 plane corresponds to suitable
parameter C in the case of 3FV6 and 3FV7. The figure in the left panel is for small value of ε
(= 0.2) chosen to parametrize C. Black arrows represent the movements of boundary lines for
increased values of ε satisfying the conditions. In the right panel we demonstrate that at the
limit ε goes to zero, maximum allowed space is achieved. Clearly these sets of conditions at the
C values which maximize the allowed parameters are equivalent to a simple condition given by
(λ5 + λ6) ≥ 0 which is independent of C.

2-field copositivity conditions like 2FV8 and 2FV10. Final copositivity conditions

in this case can be written as B.33. Including all copositive conditions we get a

final set of conditions as

λ1 ≥ 0 & λ5 ≥ 0 & λ5 + λ6 ≥ 0 & 16 λ1 λ5 − λ2
12 ≥ 0.

The renormalization group evolutions that we have considered in our analysis

are depicted in appendix A.3 [66]. In Fig. 4.4 we show the constraints on universal

quartic coupling λu (≡ λ2, λ3, λ4, λ8, λ9, λ10, λ11) for LR model with triplet

scalars in low vR region. Yellow shaded region is disallowed from low energy data

(MWR
> 3.5 TeV) [67–70] and green shaded region is excluded from direct search

at LHC (MWR
> 2.5 TeV) [71–74]. One can easily translate these bounds to the

LR symmetry breaking scale vR using the relation:

M2
W±R

=
1

4
g2
2

(
v2

1 + v2
R

)
. (4.36)

In our analysis we also set Majorana Yukawa, yh at 0.25. We note that, for any

particular heavy scalar mass (MH), universal quartic coupling λu is disallowed

above the corresponding line shown in the figure. For example, as seen from the
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Figure 4.4: Constraints on universal quartic coupling λu (≡ λ2, λ3, λ4, λ8, λ9, λ10, λ11) for
LR model with triplet scalars in low vR region. Yellow Shaded region is disallowed from low
energy data (MWR

> 3.5 TeV) and green shaded region is excluded from direct search at LHC
(MWR

> 2.5 TeV).

plot, maximum allowed value of the universal quartic coupling is 0.024 if one

considers LR breaking scale at 10 TeV and heavy scalar mass at 1 TeV. Allowed

maximum quartic coupling is lowered for heavier scalar which can be understood

from vacuum stability and perturbativity.

In Fig. 4.5 we depict the vacuum stability allowed parameter space in LR

model with triplet scalar in Left-Right symmetric breaking scale vR and heavy

scalar MH plane. Each color represents a particular set of light Higgs mass (Mh)

and top mass (Mt) in respective plot. In Fig. 4.5(a) Higgs mass is fixed at 125 GeV

and top quark mass is varying from 170 GeV to 175 GeV where as, in Fig. 4.5(b)

top quark mass is fixed at 173.2 GeV and Higgs mass is varying from 122 GeV to

127 GeV. Upper-left region (shaded with light blue) above the line MH = vR is

disallowed since quartic couplings are non-perturbative in this domain. The blank

(white) strip is also ruled out as the value of the couplings in this region is such

that they become non-perturbative before reaching the Planck scale. Lower-right

region (shaded with light pink) quartic coupling related with heavy Higgs mass

becomes extremely small (≤ O(10−7)). We choose universal quartic coupling λ2,

λ3, λ4, λ8, λ9, λ10, λ11 = λu fixed at 0.03. This choice of λu allows only vR ≥ 100

TeV which can be inferred from Fig. 4.4. Inset to both figures show the higher
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Figure 4.5: Compatibility of stable vacuum in vR and MH plane in LR model with triplet
scalar. Each color represents a particular set of light Higgs mass (Mh) and top mass (Mt)
in respective plot. In figure (a) Higgs mass is fixed at 125 GeV for different top quark mass
whereas in figure (b) top quark mass is fixed at 173.2 GeV and Higgs mass is varying. Upper-left
region (shaded with light blue) above the lineMH = vR is disallowed since quartic couplings are
non-perturbative in this domain. Lower-right region (shaded with light pink) quartic coupling
related with heavy scalar mass becomes extremely small (≤ O(10−7)). We choose universal
quartic coupling λu fixed at 0.03. Inset to both figures show the higher vR scale where the
Standard Model vacuum becomes unstable.

vR scale where color patches terminate, representing the very scale where in fact

Standard Model breaks down for a particular Higgs mass or top quark mass at

one loop.

We have computed the vacuum stability conditions using copositivity and to

construct the symmetric matrices we have to chose a particular basis. Recently

we have found that it is indeed possible to choose a different basis where the

stability conditions can be relaxed. We are working to find the stability conditions

via copositivity in a basis independent way which can provide the necessary and

sufficient conditions.

4.5 Unitarity constraints in LRSM with Triplet

Scalars

To illustrate the effect of unitarity, we consider the quartic couplings λ2, λ3, λ4, λ8,

λ9, λ10 (=λu) to be universal as they only contribute in mass splittings between the

heavy scalar states. Since these couplings are not accessible at the collider, they

can only be constrained by using vacuum stability, perturbativity and unitarity.

While the effect of vacuum stability and perturbativity was extensively discussed
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Figure 4.6: Constraints on the universal quartic coupling λu for LR model coming from
unitarity (red) and perturbativity (blue) bounds for multi-TeV region of Left-Right symmetry
breaking scale vR. Also, vR scale is heavy enough (> 10 TeV) to satisfy the constraints.
Stringent bounds are coming from unitarity. Two different sets of heavy scalar states (MH),
viz., 5 TeV and 12 TeV are considered for demonstration.

in the previous section, here we would like to analyze the bound from unitarity

of the S-matrix and demonstrate combined results together. In the appendix C

we included all the explicit calculations done using Mathematica to compute

unitarity constraints for LR model with triplet scalars. The Mathematica

notebook files can be obtained from the URL: http://www.prl.res.in/~konar/

data.html or from the source file in arXiv [75].

Using the RGE equations [65], we extract maximum allowed values for quartic

couplings keeping all heavy scalar masses degenerate satisfying constraints coming

from unitarity, vacuum stability and perturbativity. We have adopted vR to be

heavy enough (> 10 TeV) for our analysis so that the bounds on WR are easily

satisfied.

Figure 4.6 demonstrates both the constraints coming from unitarity (red-

dotted curves), as well as perturbativity (blue-solid curves) on the universal quar-

tic coupling λu for Left-Right symmetric model. Multi-TeV region of Left-Right

symmetry breaking scale vR is considered. Also, two different sets of heavy scalar

states (MH), assuming heavy scalar states are nearly degenerate, are considered

for presentation. Clearly, for a particular value of Left-Right symmetry breaking

scale (vR) unitarity bounds put severe constraints on quartic couplings compared

http://www.prl.res.in/~konar/data.html
http://www.prl.res.in/~konar/data.html
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to that of coming from perturbativity bounds. We have implemented the pertur-

bativity bound as |λi| < 4π, ∀ i ∈ [0, 15].

4.5.1 Constraints on Physical Scalar Masses

So far in this section we have demonstrated the usefulness of unitarity to constrain

the quartic coupling in the Left-Right symmetric model. Now, we turn to look

for some more phenomenologically useful aspects, in an era, when the LHC is

expected to explore new physics at multi-TeV scale. Here we use vacuum stability

along with unitarity and perturbativity to constrain the physical scalar mass

states. Vacuum stability criteria for this model are calculated using copositivity

of symmetric matrices in [17] and combined conditions read as:

λ1 ≥ 0 ∧ λ5 ≥ 0 ∧ λ5 + λ6 ≥ 0 ∧ 16 λ1 λ5 − λ2
12 ≥ 0. (4.37)

To explore the allowed mass range of physical scalars, at LR symmetry break-

ing scale (i.e., vR scale) we randomly vary the quartic couplings§ λ5, λ6, λ7 and

λ12 in their allowed range¶ [0, 4π] and estimate the corresponding mass scales.

These quartic couplings run according to their respective RGEs [65] and we ensure

that the quartic couplings obey all the conditions coming from vacuum stability,

unitarity, as well as perturbativity at each scale below MPl. The input quartic

couplings which obey these conditions, till MPl, are interpreted as the accepted

mass scale of physical scalars using Eq. 4.9.

In Fig. 4.7 we demonstrate the allowed mass range for four sets of heavy

scalar states listed in Eq. 4.9 (except first one, which is actually input parameter

mass) after imposing all constraints as described above. Below we present the

detailed discussion about each of these sets of heavy scalars. This is demonstrated

for two different LR symmetry breaking scale viz. 30 TeV and 100 TeV and

corresponding mass ranges are also tabulated in Table 4.1. We also display, in
§The parameter (λ7 − 2λ5) sets mass scale for some scalars and instead of λ7 we randomly

vary the difference (λ7−2λ5) in the range [0, 4π] to ensure that no unphysical mass scale appears
in the model.
¶In general quartic coupling can take any value from [−4π, 4π] but here these couplings

cannot be negative as it will lead to tachyonic states.
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Figure 4.7: Allowed mass range for four sets of heavy scalar states (MX) after imposing all
constraints coming from vacuum stability, unitarity, as well as perturbativity at each scale all
the way up to the Planck scale (MPl). Two different sets of Left-Right symmetry breaking scale
vR are considered, which are 30 TeV and 100 TeV. The bound MH0

1
> 10 TeV has also been

taken into account. Here λu is set to the value 0.01 which is much below the unitarity bound
and this is evident from the Fig. 4.6. Inset shows how one set of heavy scalar mass (e.g., MH0

2
)

is constrained from vacuum stability (red) and unitarity (black) bounds over a continuous range
of vR.

the inset of Fig. 4.7, how one set of heavy scalar mass (e.g., MH0
2
) is constrained

from vacuum stability (red) and unitarity (black) over a continuous range of vR.

From these considerations one can make following observations about the

allowed mass range:

• To suppress the FCNC effects the fields H0
1 and A0

1 should be heavy ' 10

TeV [76–78]. We use this information to limit the corresponding quartic

coupling λ12 from below at vR scale, and, on the other hand perturbativ-

ity restricts the coupling from above. This can be seen in the purple bar

(left most region) where allowed mass range forMH0
1
,MA0

1
and MH±2

is very

narrow for small vR value. Large vR relaxes the perturbativity bound and

larger region is allowed. This also sets a minimum allowed value of LR

breaking scale vR coming from vacuum stability and perturbativity, which

can also be marked from the inset plot. However, this would make sense

only if FCNC bound is robust. Non-minimal LR model can avoid FCNC

bound and few TeV scale H0
1 is allowed [79].

• Allowed range of MH0
2
(= 2λ5 v

2
R) is depicted in orange/yellow band. To
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explain its behavior we add an inset in the Fig. 4.7 where a continuous

variation of MH0
2
with vR is shown. Since λ5 and λ12 are coupled through

vacuum stability condition (cf. Eq. 4.37) the minimum allowed value of λ5 is

fixed at vR scale which sets the scale ofMH0
2
. For fixedMH0

1
(10 TeV), higher

value of vR supports lower λ12 which eventually decreases minimum allowed

value for λ5. Maximum allowed value of λ5 is restricted from unitarity. As

evident from the figure, MH0
2
can be light enough i.e., O (TeV) for higher

values of vR.

• Mass of MH±±2
is defined by the quartic coupling λ6. With low initial

value, this coupling decreases with energy and eventually becomes negative,

leading to tachyonic states. To get rid of tachyonic states the boundary

value for λ6 at vR scale should be high enough and this leads to relatively

higher mass states for MH±±2
as shown in olive band.

• The parameter (λ7−2λ5) governs mass scale for‖MH0
3
,MA0

2
,MH±1

, and MH±±1

and it can become very small as it is not constrained from below via vacuum

stability. But the mass scale will shift as there are secondary contributions

coming from universal quartic couplings and EW breaking vev v1. The cyan

bar represents the allowed range for these scalars. In principle contribution

to these scalars coming from LR breaking vev can be zero and in that case

the secondary contribution of O(100) GeV will set the mass scale. The

minimum values shown in Fig. 4.7 are nothing but numerical artifact where

the coupling is already very small (∼ 10−5).

4.6 Conclusion

Being a very simple gauge group extension of the SM and giving a rich dividend

in BSM phenomena, Left-Right symmetric models are phenomenologically inter-

esting in their own right. The scalar sector of this model is quite rich due to the

fact that an enlarged scalar sector is required to get a mechanism for breaking
‖Note that LEP II data yields a lower bound on the mass of H0

3 , which is about 55 GeV [80].
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vR MH0
1
,MA0

1
,MH±2

MH0
2

MH±±2
MH0

3
,MA0

2
,MH±1

,MH±±1

(TeV) (TeV) (TeV) (TeV) (TeV)
30 10− 12 10.5− 16.5 10.5− 20 O(0.1)− 13.5

100 10− 37.5 4.4− 60 33− 78 O(0.1)− 59

Table 4.1: Allowed mass range in TeV for two different vR scale. These are approximated
values as there will be secondary contributions which will shift masses upward by O(100) GeV
which is insignificant except for the lower limit of the last column.

the Left-Right symmetric group to the SM gauge group. In the present work

we analyzed the scalar sector of the Left-Right symmetric model in the light of

various theoretical and experimental constraints.

We have computed the criteria for the potential to be bounded from below, i.e.,

the conditions for vacuum stability. We also perform the renormalization group

evolutions of the parameters (couplings) of these models at the one loop level

with proper matching conditions. We have shown how the phenomenologically

inaccessible couplings can be constrained for different choices of scales of new

physics. They in turn also affect the RGEs of the other couplings. We have

noted that the new physics effects must be switched on before the SM vacuum

faces the instability. This helps the vacuum stability of the full scalar potential

and achieve a consistent spontaneous symmetry breaking. We have analyzed

these aspects varying Higgs and top quark mass over their allowed ranges.

Also, we constrain the masses of the other physical scalars by using the unitar-

ity constraints. We obtain these constraints by evaluating the zeroth order partial

wave amplitude of various 2 → 2 scatterings. We find that for any Left-Right

symmetry breaking scale, unitarity bounds put severe constraints on quartic cou-

plings compared to that of coming from perturbativity. We also demonstrated

that some of the physical scalars can have the mass in the TeV range which can

have interesting LHC prospects. It is to be noted that the masses of these scalars

are dependent on the Left-Right symmetry breaking scale vR, and consequently,

obtained bounds are highly sensitive to this vR.
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TeV Scale Seesaw Model

Convincing indications of BSM physics have emerged from the phenomenon of

neutrino oscillation observed in terrestrial experiments. These results have con-

clusively established that neutrinos have non-zero masses and flavor mixing. Os-

cillation data together with the cosmological bound on the sum of neutrino masses

(Σmi < 0.23 eV including the PLANCK data [81]) indicate that neutrino masses

are much smaller than those of other fermions in the SM. Such small masses can

be generated naturally by the seesaw mechanism. The origin of seesaw is the

dimension 5 effective operator
c5

M
LLHH, where L(H) is the SM lepton(Higgs)

doublet, c5 is a dimensionless coupling and M is the mass scale at which the

effective operator is being generated [82]. The smallness of neutrino masses in

these models is related to the scale of lepton number violation which is required

to be very high ∼ O(1015 GeV) to generate neutrino masses in the right ballpark.

The most economical in terms of particle content is the type-I seesaw in which

heavy singlet right-handed neutrinos are added to the SM Lagrangian [83–87].

However, the natural seesaw scale is far beyond the reach of the LHC. To have

signatures of seesaw models at the LHC, the heavy neutrino (N) mass needs to

be ∼ O (TeV).

Seesaw models which lead to light neutrino masses are studied in the con-

text of (meta)stability of the electroweak vacuum [88–97], lepton flavor violating

(LFV) decay [98–100], and new physics signatures of such models at present col-

liders [101–122]. Seesaw models which consist of extra heavy fields added to the

79



80 Chapter 5. TeV Scale Seesaw Model

SM can predict a hierarchical light neutrino mass spectrum as well as a degener-

ate light neutrino mass spectrum [83–87, 123]. With recent results from Planck

data [47], a degenerate mass spectrum becomes severely restricted, although a

quasi-degenerate (QD) mass spectrum [83–87, 123] is not fully ruled out. It is

worthwhile to study QD models in the light of new constraints coming from vac-

uum (meta)stability and lepton flavor violation (LFV) and also to investigate the

possibility of observing signatures of these models at the upcoming 14 TeV LHC.

5.1 The model

We extend the Standard Model (SM) particle spectrum by adding three heavy

right handed neutrinos having masses at the TeV scale. The additional part of

the Lagrangian is given by

Lext = − Φ̃†NRYνlL −
1

2
NRM N c

R + h.c. , (5.1)

where lL is the left handed lepton doublet, Φ is the SM Higgs doublet and Φ̃ is

given by Φ̃ = iσ2Φ∗. The right handed singlet heavy neutrino field is denoted by

NR and (Yν)ji are the elements of the Dirac Yukawa coupling matrix of dimension

(3× 3) in the present model with the first(second) index assigned to heavy(light)

neutrinos. After spontaneous symmetry breaking the Higgs field acquires a vac-

uum expectation value v. Consequently the light neutrino mass matrix is given

by,

mν = mT
DM

−1mD, (5.2)

where the Dirac mass term is given bymD = Yνv/
√

2. Using the parameterization

à la Casas and Ibarra [124], the texture of the Yukawa coupling matrix Yν can

be expressed as∗

Yν =

√
2

v

√
MdR

√
md
ν U
†
PMNS, (5.3)

∗For the two heavy neutrino case, the parameterization has been studied by Ibarra et.al.
[125].
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where Md and md
ν are the heavy and light neutrino mass matrices respectively in

their diagonal basis†. UPMNS is the light neutrino mixing matrix, given by

UPMNS =


c12 c13 s12 c13 s13 e

−iδ

− c23 s12 − s23 s13 c12 e
iδ c23 c12 − s23 s13 s12 e

iδ s23 c13

s23 s12 − c23 s13 c12 e
iδ − s23 c12 − c23 s13 s12 e

iδ c23 c13

P , (5.4)

with cmn = cos θmn, smn = sin θmn and δ the CP-violating Dirac phase. The ma-

trix P is the Majorana phase matrix, expressed as P = diag(e−iα1/2, e−iα2/2, 1).

For this parameterization of Yν , it is evident that the measurable parameters from

the low energy neutrino experiments enters through md
ν and UPMNS, whereas all

unknown parameters are originate from Md as well as from complex the orthogo-

nal matrix R. For simplicity Md has been approximated with a single parameter

of heavy neutrino mass (i.e. all the heavy neutrinos are degenerate). Elements

of the matrix R are completely arbitrary and can be very large which eventually

elevate the Yukawa couplings (cf. Eq. 5.3) to O(1). On the other hand, owing to

the relation RRT = I, these arbitrary elements do not effect the determination

of mν in Eq. 5.2. In other words, the matrix R acts like a fine tuning parameter

which helps to generate sufficiently large Yukawa couplings along with TeV scale

MR.

Orthogonality ensures that the matrix R can be written as,

R = O eiA, (5.5)

where O and A are real orthogonal‡ and real antisymmetric matrices respectively.

For nearly degenerate light neutrinos one can absorb O in UPMNS [126]. The general

form of the antisymmetric matrix A can be expressed in terms of three unknown
†In the present work we have takenM to be diagonal which impliesM andMd are equivalent.
‡Satisfying det[O] = det[R].
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parameters

A =


0 a b

−a 0 c

−b −c 0

 , (5.6)

with a, b, c ∈ <. Expanding and rewriting in terms of a new parameter ω =
√
a2 + b2 + c2 one would obtain

eiA = 1− coshω − 1

ω2
A2 + i

sinhω

ω
A . (5.7)

In order to reduce the number of free parameters in our analysis, we choose

a = b = c = ω/
√

3. Now, we are left with a single unknown parameter ω

(together with single unknown heavy neutrino mass scale MR as diagonal entries

of matrix Md) that will be constrained by imposing the bound of metastability

of the electroweak vacuum and non-observation of LFV decay processes. These

constraints would in turn be reflected in terms of the norm for Yukawa coupling

matrix which is extremely crucial the production of the heavy neutrinos and

essentially determine the discovery potential at the collider. Since Yν is a complex

square matrix of dimension three, magnitude of which can be best represented in

terms of the norm of Yν ,

Tr[Y †ν Yν ] =
2MR

v2
Tr
[√

md
ν R
†R
√
md
ν

]
,

=
2MR

v2
m0 (1 + 2 cosh( 2ω)) . (5.8)

One can arrive at this much compact expression§ in terms of the parameter ω, as

shown in the last equation, assuming an exact degenerate common light neutrino

mass scale m0. For demonstration, contours of constant values of (Tr[Y †ν Yν ])1/2 is

shown in Fig. 5.1 with these parameters. For our analysis, the common mass scale

for light neutrinos is chosen to be m0 ' 0.07 eV, whereas heavy neutrino mass
§Note that, choice of equal a, b, c parameters does not affect this expression. However,

unequal parameters would significantly complicate the LFV calculation in Eq. 5.21. Also note
that if one of the parameters (a, b or c) is zero, then also it is possible to satisfy LFV bound,
but it is not the case when two parameters are zero.
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Figure 5.1: Parametric plot of (Tr[Y †ν Yν ])1/2 with ω and the common light neutrino mass
scale m0. The heavy neutrino mass is fixed at 100 GeV. The numbers in the plot indicate the
corresponding values for the different set of parameters ω and m0.

is fixed at 100 GeV. We note that the present allowed light neutrino mass can

maximally access the quasi-degenerate range, and hence the hierarchical neutrino

mass is no more can be neglected completely. One can parameterize this effect so

that the observed neutrino mass hierarchy can be correctly accommodated within

this framework of quasi-degenerate neutrinos. We classify them as ‘normal’ and

‘inverted’ hierarchy of masses over the common mass scale for light neutrinos. As

evident from the figure, for a fixed value of m0, different values of (Tr[Y †ν Yν ])1/2

can be obtained by varying ω accordingly [127]. To present one example, for this

particular choice of degenerate light (heavy) neutrino mass of 0.07 eV (100 GeV),

the norm (Tr[Y †ν Yν ])
1/2 ' 0.5 can be considered for choice of the parameter ¶

ω = 13.4.

5.2 Metastability bound

The SM potential at tree level is given by

V(φ) = λ
(
φ†φ
)2 −m2 φ†φ . (5.9)

¶Note that, for this value of ω, elements of the matrix eiA of Eq. 5.5 are of O(106) which
enhances the Yukawa coupling matrix as in Eq. 5.3.
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The physical Higgs mass, in the above convention, is defined as m2
h = 2λ v2. The

Renormalization Group equation for λ can be expressed up to ith loop as

dλ

d lnµ
=
∑
i

β
(i)
λ

(16π2)i
, (5.10)

where µ is the renormalization scale. The β-function at one loop is given by,

β
(1)
λ = 24λ2 −

(
9

5
g2

1 + 9 g2
2

)
λ+

27

200
g4

1 +
9

20
g2

1 g
2
2 +

9

8
g2

2 + 4Tλ− 2Y , (5.11)

where,

T = Tr
[
3Yu

†Yu + 3Yd
†Yd + Yl

†Yl + Y †ν Yν
]
, (5.12)

Y = Tr
[
3(Y †uYu)

2 + 3(Y †d Yd)
2 + (Y †l Yl)

2 + (Y †ν Yν)
2
]

(5.13)

and gi’s are the gauge coupling constants. GUT modification for the U(1) gauge

coupling has been taken into account. Yu, Yd and Yl denote the Yukawa coupling

matrices for the up type quark, down type quark and charged lepton respectively.

Expectedly, the dominant contribution comes from the top Yukawa (up type

quark) running and the one-loop β function is governed by the following equation:

β
(1)
Yu

= Yu

[
3

2
Yu
†Yu +

3

2
Yd
†Yd + T −

(
17

20
g2

1 +
9

4
g2

2 + 8g2
3

)]
. (5.14)

Three-loop RGE for the Higgs self coupling (λ), the top Yukawa coupling and the

gauge couplings has been used in the numerical analysis [128–135]. Matching cor-

rections for the top Yukawa coupling has been taken up to three-loop QCD [136],

one-loop electroweak [137,138] and O(ααs) [139,140] while for the Higgs self cou-

pling, they have been taken up to two loop [141, 142]. The Higgs self coupling

also receives an additional contribution from the higher order corrections of the

effective potential. The loop corrected‖ effective self coupling denoted by λ̃, is
‖We incorporated two loop correction due to the SM and one loop correction due to neutrino

Yukawa couplings.
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given by [93,143,144],

λ̃ = λ− 1

32 π2

[
3

8

(
g2

1 + g2
2

)2
(

1

3
− ln

(g2
1 + g2

2)

4

)
+ 6 y4

t

(
ln
y2
t

2
− 1

)
+

3

4
g4

2

(
1

3
− ln

g2
2

4

)
+ ([Y †ν Yν ]ii)

2

(
ln

[Y †ν Yν ]ii
2

− 1

)
+([Yν Y

†
ν ]jj)

2

(
ln

[Yν Y
†
ν ]jj

2
− 1

)]
+

Y 4
t

(16π2)2 ×
[
g2

3

{
24

(
ln
Y 2
t

2

)2

−64 ln
Y 2
t

2
+ 72

}
− 3

2
Y 2
t

{
3

(
ln
Y 2
t

2

)2

− 16 ln
Y 2
t

2
+ 23 +

π2

3

}]
,

(5.15)

where i , j denote the generation index of light and heavy neutrinos respectively.

The absolute stability of the electroweak vacuum implies λ̃ ≥ 0 up to Planck

scale. However, as shown in [141], the absolute stability is highly restrictive. In

this light we shall consider metastability i.e., transition time from a metastable

vacuum towards instability should be greater than the age of the universe. In

other words the transition probability through quantum tunneling should be less

than unity.

The tunneling probability within the semi-classical approximation is given by

(at zero temperature) [145–148],

p = max
µ<Λ

VU µ
4 exp

(
− 8π2

3|λ(µ)|

)
, (5.16)

where Λ is the cutoff scale and VU is volume of the past light-cone, taken as τ 4.

Here τ is the age of the universe taken from Planck data as τ = 4.35× 1017 sec.

For the vacuum to be metastable, one should have p < 1 which can be recast in

terms of a lower bound on λ given by

|λ| < λmax
meta =

8π2

3

1

4 ln (τµ)
. (5.17)

The above equation can be utilized to put an upper bound on Tr[Y †ν Yν ] from

the running of λ as a function of the heavy neutrino mass MR. This has been

displayed in Fig. 5.3 by horizontal slanting lines corresponding to different choices



86 Chapter 5. TeV Scale Seesaw Model

of the top mass and strong coupling. Now, the region below this line is consistent

with the metastability bound.

5.3 Lepton Flavor Violation bound

Lepton flavor violating decay processes get significant contribution from the heavy

neutrino due to its relatively low mass scale compared to the canonical seesaw

mechanism. The experimental upper limit on µ→ e γ processes can be translated

to an upper bound on Tr[Y †ν Yν ] as a function of MR. The branching ratio for

µ→ eγ [149] is given by

Br (µ→ eγ) =
3α

8π

∣∣∣∣∣∑
j

VejV
†
jµf(xj)

∣∣∣∣∣
2

, (5.18)

where the dependence on the heavy neutrino mass is expressed in terms of the

dimensionless parameter xj = (M2
Rj
/m2

W ) by a slowly varying function,

f(x) =
x (1− 6x+ 3x2 + 2x3 − 6x2 lnx)

2 (1− x)4
. (5.19)

In present case, right handed neutrinos are degenerate, i.e., MRj = MR. The

light-heavy mixing matrix V is obtained through the diagonalization of the full

neutral lepton mass matrix and is given by [152],

V = m†D
(
M−1

)∗
UR , (5.20)

where UR is a unitary matrix∗∗ that diagonalizes M . Using Eq. 5.3 and 5.20 with

Eq. 5.18 one gets,

Br (µ→ eγ) =
3α

8 πM2
R

[
f

(
M2

R

m2
W

)]2 ∣∣∣UPMNS

√
md
ν R
†R
√
md
ν U
†
PMNS

∣∣∣2 (5.21)

and Tr[Y †ν Yν ] is given by Eq. 5.8. From Eq. 5.21, 5.8 and 5.8 one can see that

the angular and phase dependence of the branching ratio comes from the UPMNS,
∗∗UR is the identity matrix in the present scenario as M is diagonal.
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Figure 5.2: (Left panel) Contours of allowed lepton flavor violating regions with Br (µ→ eγ) =
5.7×10−13 in the parameter plane of Majorana phases α1 and α2 with different values of Dirac
CP phase δ. Taking all the neutrino oscillation parameters and mass differences at the global
best-fit values, the area within each contours are consistent with the experimental LFV upper
bound from the decay rate of µ → e γ. The Right panel demonstrates the variation of these
LFV equality contours for different choices of the heavy neutrino mass MR and parameter ω
considering one example (δ = π/2) contour from the left panel. As expected, on decreasingMR

or increasing ω the area under the contour shrinks, retaining a smaller window for choices of
these unknown parameters.
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Figure 5.3: Allowed region of the Yukawa norm Tr[Y †ν Yν ] as a function of the heavy neu-
trino massMR by imposing combined constraints coming from metastability of the electroweak
vacuum as well as lepton flavor violating decay (µ → e γ). The SM Higgs mass is fixed at
mh = 126 GeV. The horizontal slanting lines represent the upper bound on Tr[Y †ν Yν ] consistent
with the metastability bound, as in Eq. 5.17. The three lines are due to three different sets of
values for the top mass and the strong coupling [150, 151]. The shaded area below the curved
line is allowed from the lepton flavor violating constraint as given in Eq. 5.22. The yellow line
corresponds to ω = 11.9 and gives us the best choice for study within the bound of LFV. Hence,
the region marked “Disallowed" is ruled out from LFV for such choice of ω.

whereas the magnitude of the branching ratio is encoded in
√
md
ν R
†R
√
md
ν whose

modulus is proportional to Tr[Y †ν Yν ]. The analytical expression of Br(µ→ eγ) is
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somewhat lengthy and hence omitted here. Subjected to the present experimental

upper bound on the µ→ e γ process [153]

Br (µ→ eγ) ≤ 5.7× 10−13, (5.22)

one would obtain, numerically, an upper bound on Tr[Y †ν Yν ] by inverting Eq. 5.21.

In a numerical calculation with a very high degree of precision, it is observed

that the 3σ uncertainty of the oscillation parameters together with all the phases

varied in the full range [154] would not bound Tr[Y †ν Yν ]. Hence an effective

bound on Tr[Y †ν Yν ] is coming only from vacuum metastability. To probe this a

little further, in Fig. 5.2 (left panel) we demonstrate the contours of allowed lepton

flavor violating regions in the parameter plane of Majorana phases α1 and α2 with

different values of Dirac CP phase†† δ. Taking all neutrino oscillation parameters

and mass differences at the global best-fit values the area within each contours

are consistent with the experimental LFV upper bound from the decay rate of

µ→ e γ. Although not conspicuous from the analytic form of the multi-parameter

expression from Eq. 5.21, one can estimate that a suitable and precise choice of δ

and α parameters within such contours can indeed evade the bound. In the right

panel of Fig. 5.2 we demonstrate the variation of these LFV equality contours for

different choices of the heavy neutrino massMR and the parameter ω considering

once such example (δ = π/2) contour from the left panel. As expected, decreasing

MR or increasing ω would make the contour narrower retaining a smaller window

of choices for these unknown parameters.

From our discussion above, it is clear that one can choose a parameter for

any phenomenological analysis bounded by metastability. However, we took an

approach to consider a conservative estimate for Tr[Y †ν Yν ] satisfying both LFV

and vacuum metastability bounds. To begin with, we choose a particular set of

oscillation parameters such as the global best-fit values of oscillation parameters.

Now, if one examines the particular choices of these unknown phases which would

be just enough to satisfy the equality of Eq. 5.22, they are essentially all the points
†† In the 3σ range of oscillation parameters, the Dirac CP phase δ is allowed in its full range

(0-2π). Also the Majorana phases α1,2 are not constrained by oscillation experiments, hence
are varied in full range (0-2π). These three phases are considered here as unknown parameters.
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residing over the contours shown in Fig. 5.2. All the points inside the contours

will give BR(µ → eγ) < 5.7 × 10−13. Since all the contours are drawn with a

fixed ω value, the norm Tr[Y †ν Yν ] will be the same for all the contours shown in

Fig. 5.2(left panel).

The dependence of the norm Tr[Y †ν Yν ] as a function of the heavy neutrino

mass is depicted in Fig. 5.3. The upper bound on the norm is depicted by the

golden solid line for ω = 11.9. This gives us the best choice to study within the

bound of LFV for this particular value of ω. The yellow shaded area below the

curve is allowed‡‡ from the lepton flavor violating constraint as used in Eq. 5.22.

Hence, the region marked “Disallowed" is strictly ruled out from LFV for such

choice of ω.

5.4 Neutrino Less Double Beta Decay

In this section we briefly discuss the contribution of this particular model towards

neutrino less double beta decay (0νββ). The general expression of half-life for

0νββ in the context of Type-I seesaw is given by [155,156]

T−1
1
2

= G
|Mν |2
m2
e

∣∣∣∣∣∑
i

(UPMNS)
2
e i

(
md
ν

)
i
+
∑
j

〈p2〉 V
2
e j

MRj

∣∣∣∣∣
2

, (5.23)

where G = 7.93 × 10−15 yr−1, Mν is the nuclear matrix element due to light

neutrino exchange and me being the electron mass. 〈p2〉 in the second term,

which is due to the contributions from heavy singlet neutrinos, is given by [157]

〈p2〉 = −memp
MN

Mν

, (5.24)

which is taken to be 〈p2〉 = − (182 MeV)2 [155]. Here mp is the proton mass and

MN is the nuclear matrix element due to heavy neutrino exchange.

The first and the second term in Eq. 5.23 represent contributions from light

and heavy neutrinos respectively and thus summed over corresponding number of

light(heavy) neutrinos. Accordingly with the help of Eq. 5.3 and 5.20, the second
‡‡This is over the choice of decreasing values of ω parameters.
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term can be expressed as,

〈p2〉
M2

R

(
UPMNS

√
md
ν R
†R ∗

√
md
ν U

T
PMNS

)
e e

=
〈p2〉
M2

R

(UPMNS)
2
e i

(
md
ν

)
i
. (5.25)

Consequently Eq. 5.23 becomes

T−1
1
2

= G
|Mν |2
m2
e

(
1 +
〈p2〉
M2

R

)2 ∣∣(UPMNS)
2
e i

(
md
ν

)
i

∣∣2 . (5.26)

One can notice that the contribution on 0νββ from heavy neutrinos is extremely

tiny, e.g. only 0.001% of the light neutrino contribution can come towards the

half-life of 0νββ even for a heavy neutrino mass of 100 GeV. This contribution is

even suppressed as the mass increased. Although light neutrino contribution to

the neutrino less double beta decay can be sizable and can possibly be explored

in the future experiments [158], the heavy neutrino contribution in this scenario

can be neglected. This outcome is not surprising if one follows from Eq. 5.25.

The large values in the matrix R, which is essential to obtain large Dirac Yukawa,

gets canceled. Finally we get very small value of (V V T )`` for same sign di-lepton

(SSDL) production. In the same ground collider production of SSDL is suppressed

and hence not considered although the heavy neutrino is of Majorana type. In-

terestingly, this is a general consequence of Casas-Ibarra parameterization when

the heavy neutrinos are degenerate. At the same time large Yukawa makes the

opposite sign di-lepton (OSDL) cross section (which is proportional to (V V †)``)

sizable. Large SM background in this channel compelled us to consider for tri-

lepton signal at the LHC. In the next section, we would explore the production

of these heavy neutrinos at the collider and discuss the discovery potential for 14

TeV large hadron Collider.

5.5 Collider Phenomenology

Heavy neutrinos can be produced dominantly by s-channel W-boson exchange

at the hadron collider. We also explore the corresponding vector boson fusion

(VBF) production associated with two forward jets. At the leading order, parton
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Figure 5.4: (Left panel)Production of heavy neutrino via the s− channelW boson production
mode. The corresponding W − ` − N vertex is the heavy-light mixing matrix, V as defined
in Eq. 5.20. (Right panel) The corresponding Standard Model production channel W → `ν,
where the W − `− ν vertex is the UPMNS matrix element.

level processes producing heavy neutrinos (N) in the mass basis are as follows:

qq̄′ −→ W±∗ −→ l±N (s-channel),

qq′ −→ l±N q q′′ (VBF) , (5.27)

where q represents a suitable parton and the associated leptons are l ≡ (e, µ, τ).

In Fig. 5.4 (left panel) we have shown the s-channel production model of the

heavy neutrino associated with a charged lepton. The heavy-light mixing matrix

V is responsible for this channel as shown in the figure. The matrix V is defined

as V = m†D (M−1)
∗
UR where mD = Yν

v√
2
. As we have shown in Fig. 5.1 the

value of the Dirac Yukawa coupling (Yν) can be large and it is possible to probe

heavy neutrinos at the LHC. For comparison we have also shown the correspond-

ing Standard Model production channel. For the SM the W − ` − ν vertex is

proportional to the PMNS matrix as defined in Eq. 5.4.

In Fig. 5.5 (left panel) the total cross section for these processes is shown as

a function of the heavy neutrino mass after applying the pre-selection cuts i.e.,

pTl > 20 GeV and |ηl| < 2.5. The solid (dashed) line shows the leading order

production cross section through the s-channel (VBF) process. From the figure

it is evident that the VBF cross section is insufficient for discovery at the LHC,

and we shall not discuss this production mechanism afterwards and concentrate

only on s-channel process for phenomenological analysis.

For our simulation we consider the maximum allowed value coming from

Tr[Y †ν Yν ] satisfying combined LFV and metastability bounds as depicted in Fig. 5.3,
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Figure 5.5: (Left panel) Total cross section is plotted for leading order s-channel heavy
neutrino production (solid line) associated with charged lepton at the 14 TeV LHC. Basic pre-
selection cuts pT` ≥ 20 GeV and |η`| ≤ 2.5 are applied and choice of parameters are compatible
with the neutrino oscillation data constrained with vacuum metastability and LFV. The dotted
line shows the corresponding VBF production cross section, where basic VBF cuts were used in
addition to the pre-selection cuts. (Right panel) Demonstration of the decay branching ratios
of the heavy neutrino in different channels as a function of mass. Total decay width is also
shown with red-solid line.

together with the neutrino oscillation data within their uncertainties. One can

notice that the higher values of Yukawa coupling are permitted from these con-

straints once we move towards higher masses of heavy neutrinos. We have used

MadGraph5 [160] to simulate the production and decay of heavy neutrinos. Parton

distribution functions CTEQ6L1 [161] have been used and the factorization scale

is set at the heavy neutrino mass.

A heavy neutrino can decay into weak gauge bosons (W±, Z) or the Higgs

boson (H) in association with leptons because of mixing between light and heavy

neutrinos:

N −→ W± l∓/Zνl/Hνl. (5.28)

Branching ratios of N in these channels are shown in Fig. 5.5 (right panel) with

varying heavy neutrino mass MR. In this plot the red-solid line shows the total

decay width (ΓN) of the heavy neutrino. The figure manifests that the Wτ

channel is the dominant decay mode for the low mass region and saturates at

∼ 22% for MR & 400 GeV. Both Hν and Zν channels saturate at ∼ 25% in the

high mass region leaving approximately 18%(10%) for the We(Wµ) channel.

To analyze signals for heavy neutrino, we have implemented this model in
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Selection Criteria
Lepton identification criteria |η`| < 2.5 and pT ` > 20 GeV
Detector efficiency for leptons Electron efficiency (for e− & e+): 0.7 (70%)

Muon efficiency (for µ− & µ+): 0.9 (90%)
Smearing Gaussian smearing of electron energy and muon pT
Jet reconstruction PYCELL cone algorithm in PYTHIA
Lepton-jet separation ∆Rlj ≥ 0.4 (for all jets)
Lepton-lepton separation ∆Rll ≥ 0.2
Lepton-photon separation ∆Rlγ ≥ 0.2 for all pT γ > 10 GeV
Hadronic activity Hadronic activity for each lepton:
(To consider leptons with very less

∑
pThadron

pTl
≤ 0.2 (≡ radius of the cone around the

hadronic activity around them.) lepton)
Final pT cuts for leptons pT l1 > 30 GeV, pT l2 > 30 GeV and pT l3 > 20 GeV
Missing pT cut /pT > 30 GeV
Z-vetoa |m`1`2 −MZ | ≥ 6ΓZ

VBF Cuts
Central jet veto On any additional jet with pT 3 > 20 GeV,

and |η0| < 2 events are discarded.
Pseudorapidity difference between the average
of the two forward jets and the third jet:
η0 = η3 − (η1 + η2)/2.

Pseudorapidity [159] of charged leptons ηj,min < η` < ηj,max
Cut applied to jets pT j1,j2 > 20 GeV

Mj1j2 > 600 GeV
ηj1 · ηj2 < 0 and |ηj1 − ηj2 | > 4

Table 5.1: Selection criteria used in simulation.
aZ-veto: Invariant mass for the same flavored and opposite sign lepton pair, m`1`2 , must

be sufficiently away from Z pole.

FeynRules [162] to generate the Feynman rules compatible with MadGraph. Par-

ton level cross sections were generated using MadGraph5 and for showering and

hadronization of the lhe [163] event file, PYTHIA6 [164] has been used.

To enhance the signal over background, selection criteria tabulated in Ta-

ble. 5.1 have been implemented. In the top portion of this table, all selection

parameters and efficiencies are listed. Cuts entitled “VBF cuts” are applied only

for the VBF part of the analysis. For detail see references [118,122].

Signal Estimation

Following from our earlier discussion on heavy neutrino production and decay,

we are looking for tri-lepton production at the LHC,

pp→ `±N → `±(W±`∓/Zν)→ e±e±e∓/e±µ±e∓/e±µ±µ∓/µ±µ±µ∓ + /ET .
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Total signal Flavor allocated cross section (fb)
cross section (fb) eee eeµ eµµ µµµ

2.732 0.318 1.144 1.030 0.2

Table 5.2: Final tri-lepton with /ET signal cross section in fb produced through
s-channel heavy neutrino for the benchmark mass MR = 100 GeV at the 14 TeV
LHC. All event selection cuts were applied (Table 5.1) except the VBF cuts as
described in the text. We have also classified total tri-lepton signals into four
different flavor combination of leptons and presented expected cross section in
each category.

Cross section of final tri-lepton signal through s-channel heavy neutrino pro-

duction at 14 TeV LHC for a benchmark point of MR = 100 GeV is listed in

Table 5.2. Here we have incorporated all event selection criteria except the VBF

cuts. Total contribution from all the light leptons (e, µ) as well as the differential

contributions from the four flavor combinations are also presented.

Background Analysis

All the Standard Model channels which can mimic this tri-lepton signal with

missing ET are considered for the estimation of the SM background. For such

simulation, events are generated using ALPGEN [165] at the parton level and then

passed on PYTHIA for hadronization and showering. We have used the same

selection criteria as tabulated in Table 5.1. The inclusive cross section for the

`±`±`∓ν` final state from the SM is 32.722 fb. Details of contributions from

individual channels towards the SM background can be found in [118,122,166].

Discovery potential at the LHC

With our understanding of the signal strength for producing tri-leptons from

heavy neutrino and possible sources of leading background, it is convenient to

present our result in terms of significance which we express as S/
√
S +B, where

S (B) = LσS (B). L is the integrated luminosity of available data from the ex-

periment and σS(B) is the final cross section of the signal (background) after all

event selection cuts and with model parameters satisfying metastability and LFV

bounds. Fig. 5.6 depicts 3σ(magenta) and 5σ(blue) constant significance contours
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Figure 5.6: Contours of constant 3σ and 5σ significance at the 14 TeV LHC in terms of heavy
neutrino mass MR and integrated luminosity. With 300fb−1 data tri-lepton signal can probe
upto MR = 160(140) GeV with 3σ(5σ) significance, whereas with 3000fb−1 luminosity LHC
can reach up to 230(190) GeV. Inset shows variation of significance for the s-channel tri-lepton
production signal and backgrounds with heavy neutrino mass MR = 100 GeV.

at the 14 TeV LHC in terms of heavy neutrino mass and integrated luminosity.

Horizontal black-dotted lines represent integrated luminosities of 300 fb−1 and

3000 fb−1. This model can be probed through tri-lepton signals at the 14 TeV

LHC upto MR = 160(140) GeV with 3σ(5σ) significance with integrated lumi-

nosity of 300fb−1. Whereas with higher luminosity of 3000fb−1 it can be probed

upto ∼ 230(190) GeV. Inset of the figure demonstrates the expected significance

of the s-channel tri-lepton production from heavy neutrino with mass MR = 100

GeV as a function of integrated luminosity. We note that 3σ(5σ) significance

can be achieved with integrated luminosity ∼ 43(120)fb−1.

5.6 Conclusion

In this chapter we have considered a TeV scale seesaw model that leads to quasi

degenerate light neutrino mass spectrum. The model is fully reconstructible from

oscillation parameters apart from an unknown factor parameterized by a constant

ω for a particular light and heavy neutrino mass scale, md
ν and MR respectively.

We have demonstrated that the norm of Yukawa, Tr[Y †ν Yν ], can have arbitrary

magnitude with different choices of ω and the common light neutrino mass scale
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m0. Consequently, we have obtained bounds on Tr[Y †ν Yν ] from both the consid-

eration of the metastability of the electroweak vacuum as well as lepton flavor

violation. Mass scale of QD light neutrinos is set atm0 = 0.07 eV. Extremely fine-

tuned choices of unknown phases evade bounds on Tr[Y †ν Yν ] from LFV. However,

bulk region of parameters allows us a stronger LFV bound than that of metasta-

bility in the low MR regions. Beyond that mass range, LFV bound becomes

weaker than the metastability bound. The later remains slowly varying withMR.

However, contribution of the heavy neutrino towards neutrinoless double beta

decay is insignificant in this model compared to the light neutrino contribution.

The constrained model parameters were then used to study the production and

decay modes of the heavy neutrino at the LHC. Due to suppressed same sign di-

lepton signal in this model, we have studied tri-lepton associated with missing ET

signal coming from the s-channel production of the heavy neutrino with realistic

selection criteria as well as detailed simulation. However, a similar signal along

with two forward tagged jets, coming through the production of heavy neutrino

perceived in vector boson fusion comes with much smaller cross section at the

present scenario. With a benchmark point of heavy neutrino mass MR = 100

GeV, we have presented the discovery potential of heavy neutrino, fitted to the

model, with 3σ (5σ) significance for integrated luminosity ∼ 42(120) fb−1 at the

14 TeV LHC. Moreover, this model can be probed (at 3σ) for heavy neutrino

mass upto 160(230) GeV for low(high) luminosity options.



Chapter 6

Summary and Outlook

Quest for the SM Higgs boson finally comes to an end after the observation of

the Higgs boson at the LHC by CMS and ATLAS collaborations. The discovery

completes the SM and obtained data do not show any major deviation from the

SM expectations as yet. This leads us to a precision era, and, precise measure-

ments of the Higgs boson couplings are very crucial. The measured mass of the

Higgs boson is

mH = 125.09± 0.21 (stat) ± 0.11 (syst) GeV. (6.1)

It has been noted that the SM vacuum is not stable up to the Planck scale for

most values in the allowed range for the top-quark mass, the Higgs mass and the

strong coupling αs. This indicates the existence of new physics which can take

care of the stability issue. Also there are several other experimental evidences

for BSM scenarios, neutrino oscillation being one of them. Neutrino oscillation

indicates that neutrino have a tiny mass and there must be some mechanism to

generate it. The most popular mechanism of neutrino mass generation is the

‘seesaw’ mechanism.

In the run-I, the LHC has delivered the long sought Higgs boson and is now

running with a higher energy of 13 TeV to find signatures of BSM. Since BSM

scenarios often contain extended scalar sectors, it is worthwhile to study and

constrain the parameter space of the scalar sector of these models. This helps

97
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to search for these models at colliders like LHC. Any good theory should follow

some properties like unitarity, perturbativity and also vacuum stability which is

used to constrain new physics models.

One of the minimal extensions of the SM is the gauged U(1)B−L model, where

an extra U(1) gauge group is appended to the SM gauge group. Three RH

neutrinos naturally arise for the sake of anomaly cancellation which also help

to generate light neutrino masses via the seesaw mechanism. Apart from the

heavy neutrinos there exist a neutral gauge boson Z ′ and a heavy Higgs boson

along with the SM particles. The model can have interesting phenomenology

at the LHC owing to signatures for Z ′ or RH neutrinos. Also this model can

accommodate a dark matter(DM) candidate provided the DM is stable due to an

additional Z2 symmetry. We have studied vacuum stability and perturbativity

and constrained different parameters of the model. In another study we have

explored the possibility that the B −L gauge symmetry can be broken at a very

high energy scale, say ∼ 1016 GeV. In this case the tree level threshold correction

can be crucial to stabilize the EW vacuum. This model with high-scale B − L
breaking can explain inflationary dynamics where the heavy Higgs boson is the

inflaton.

We have also studied the Left-Right symmetric model. Being a very simple

gauge group extension of the SM and giving a rich dividend in BSM phenomena,

Left-Right symmetric models are phenomenologically interesting in their own

right. The scalar sector of this model is quite rich due to the fact that an enlarged

scalar sector is required for breaking the Left-Right symmetric group to the SM

gauge group. We analyzed the scalar sector of the Left-Right symmetric standard

model with triplet scalars in the light of various theoretical and experimental

constraints. The scalar sector comprising of one bi-doublet, one left handed and

one right handed triplet ultimately gives rise to fourteen physical scalars. The

lightest among them is expected to be the recently discovered Higgs boson with

mass around 125 GeV. We constrain the masses of the other physical scalars

by using unitarity constraints. We obtain these constraints by evaluating the

various zeroth order partial wave amplitude for 2→ 2 scattering. We find that for
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any Left-Right symmetry breaking scale, unitarity bounds put severe constraints

on quartic couplings compared to those coming from perturbativity. We also

demonstrated that some of the physical scalars can have the masses in the TeV

range and can have interesting LHC prospects. It is to be noted that the masses

of these scalars are dependent on the Left-Right symmetry breaking scale vR and

consequently the obtained bounds are highly sensitive to this vR.

Both the models discussed above are gauge extension of the SM, whereas it

is also possible to extend only the particle content of the SM to explain neutrino

mass generation keeping the gauge group same as that of the SM. We have con-

sidered this kind of model where the new particles are of TeV mass scale. The

model is fully reconstructible from oscillation parameters apart from an unknown

factor parameterized by a constant ω for specific light and heavy neutrino mass

scales, md
ν and MR respectively. We have demonstrated that the norm of the

Yukawa matrix, Tr[Y †ν Yν ] can be chosen of arbitrary magnitude with different

choices of ω and the common light neutrino mass scale m0. Consequently we

have obtained bounds on Tr[Y †ν Yν ] both from the consideration of the metastabil-

ity of the electroweak vacuum as well as lepton flavor violation. The mass scale

of quasi-degenerate light neutrinos is set at m0 = 0.07 eV. Extremely fine-tuned

choices of unknown phases evade the bound on Tr[Y †ν Yν ] from LFV. However

bulk of the region of parameters allows us a stronger LFV bound than that of

the metastability in the low MR regions. Beyond that mass range, the LFV

bound becomes weaker than the metastability bound. The latter remains slowly

varying with MR. However, the contribution of the heavy neutrino towards the

neutrinoless double beta decay is insignificant in this model compared to the light

neutrino contribution.

The constrained model parameters were then used to study the production and

decay modes of the heavy neutrino at the LHC. Due to the suppressed signature

of the same sign di-lepton signal in this model, we have studied tri-lepton associ-

ated with missing ET signal coming from the s-channel production of the heavy

neutrino with realistic selection criteria as well as detailed simulation. However, a

similar signal along with two forward tagged jets, coming through the production
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of heavy neutrino through vector boson fusion comes with a much smaller cross

section in the present scenario. With a benchmark point of heavy neutrino mass

MR = 100 GeV, we have presented the discovery potential for the heavy neutrino,

fitted to the model, with 3σ (5σ) significance for integrated luminosity ∼ 42(120)

fb−1 at the 14 TeV LHC. Moreover, this model can be probed for heavy neutrino

mass upto 160(230) GeV for low(high) luminosity options.

To summarize, we have studied scale dependent properties like vacuum sta-

bility, unitarity and perturbativity for different BSM scenarios. All the scenarios

under consideration can explain generation of tiny neutrino masses. In our study

we have shown how the scale dependent properties can restrict the parameters of

BSM scenarios. We have also shown that for LRSM with triplet scalars the quar-

tic couplings which are inaccessible to colliders like LHC can be constrained solely

from perturbativity or unitarity. Mostly the scalar sector of the models is con-

strained, but in the case of TeV scale seesaw model the Dirac Yukawa couplings

are restricted.



Appendix A

Renormalization Group Evolution

Equations

A.1 Standard Model RGEs

For Standard Model we have used renormalization group evolution equations

from [19] with matching conditions for top Yukawa and Higgs quartic coupling

at their pole masses.

A.2 U(1)B−L Model

Gauge RG Equations

Renormalization group equations for SU(3)C and SU(2)L gauge couplings g3 and

g2:

16π2 d

dt
g3 = g3

3

[
− 1 +

4

3
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]
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]

where ng is number of generations.
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Renormalization group equations for Abelian gauge couplings g1, gB−L and g̃:

16π2 d

dt
g1 =

[
41

6
g3

1

]
16π2 d

dt
g
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[
12 g3
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3
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]
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dt
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32
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]

Fermion RG Equations

RG evolution equation for top quark Yukawa coupling Yt:

16π2 d

dt
Yt = Yt

[
9

2
Y 2
t − 8g2

3 −
9

4
g2

2 −
17

12
g2

1 −
17

12
g̃2 − 2

3
g2
B−L
− 5

3
g̃g

B−L

]

In case of RH neutrinos RGEs we are considering degenerate RH neutrino Yukawa

coupling and we are in a basis where these couplings are diagonal, then we have :

16π2 d

dt
yhi = yhi

[
4(yhi )2 + 2 Tr

[
(yh)2

]
− 6g2

B−L

]

Scalar RG Equations

RGEs for the scalar couplings λ1, λ2 and λ3 are :

16π2 d

dt
λ1 =

[
24λ2

1 + λ2
3 − 6Y 4

t +
9

8
g4

2 +
3

8
g4

1 +
3

4
g2

2g
2
1 +

3

4
g2

2 g̃
2 +

3

4
g2

1 g̃
2

+
3

8
g̃4 + 12λ1Y

2
t − 9λ1g

2
2 − 3λ1g

2
1 − 3λ1g̃

2

]
8π2 d

dt
λ2 =

[
10λ2

2 + λ2
3 −

1

2
Tr
[
(yh)4

]
+ 48g4

B−L
+ 4λ2Tr

[
(yh)2

]
− 24λ2g

2
B−L

]
8π2 d

dt
λ3 = λ3

[
6λ1 + 4λ2 + 2λ3 + 3Y 2

t −
3

4
(3g2

2 − g2
1 − g̃2) + 2 Tr

[
(yh)2

]
− 12g2

B−L

]
+6g̃2g2

B−L
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A.3 LR Model with Triplet Scalars

Gauge RG Equations

16π2 d

dt
g3 = g3

3

(
− 7

)
16π2 d

dt
g2 = g3

2

(
− 15

6

)
16π2 d

dt
g
B−L = g3

B−L

(
28

9

)

Note that in our case g
2L

= g
2R

= g2 .

Fermion RG Equations

16π2 d

dt
Yt =

[
8Y 3

t − Yt
(2

3
g2

1 −
9

2
g2

2 − 8g2
3

)]
16π2 d

dt
Y M
i =

[
2Y M

i

(
− 3

4
g2

1 −
9

4
g2

2

)
+ 2Y M

i Tr
[
(Y M)2

]
+ 6(Y M

i )3

]

Scalar RG Equations

To write down scalar RG equations, We classified 15 scalar couplings into three

categories depending on how they coupled with scalar fields.

• Coefficients with Φ4

16π2 d

dt
λ1 = 32λ2

1 +
5

3
λ2

12 +
1

2
λ2

13 + 2λ2
14 + 64λ2

2 + 16λ1λ3 + 16λ2
3

+ 48λ2
4 + 6λ12λ9 + 6λ2

9 + 12λ1Y
2
t − 6Y 4

t − 18λ1g
2
2 + 3g4

2

16π2 d

dt
λ2 = 6(λ2

10 − λ112) +
3

2
λ14λ15 + 24λ1λ2 + 48λ2λ3

+12λ2
4 + 12λ2Y

2
t − 18λ2g

2
2

16π2 d

dt
λ3 = 12(λ2

10 + λ2
11)− (λ2

12 − λ2
13)− 1

2
(λ2

14 + λ2
15) + 128λ2

2

+24λ1λ3 + 16λ2
3 + 24λ2

4 + 12λ3Y
2
t + 3Y 4

t − 18λ3g
2
2 +

3

2
g2

2

16π2 d

dt
λ4 = 48λ4(λ1 + 2λ2 + λ3) + 6λ10(2λ9 + λ12)

+
3

2
λ13(λ14 + λ15) + 12λ4Y

2
t − 18λ4g

2
2
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• Coefficients with ∆4

16π2 d

dt
λ5 = 28λ2

5 + 16λ6(λ5 + λ6) + 16(λ2
10 + λ2

11) + 2λ2
12 + 3λ2

7

+4λ9(λ9 + λ12) + 2λ5Y
2
t − 16Y 4

t − 12λ5g
2
B−L

+6g4
B−L

+ 12g2
B−L

g2
2 − 24λ5g

2
2 + 9g4

2

16π2 d

dt
λ6 = 12λ6(λ6 + 2λ5 − g2

B−L
− 2g2

2) + 12λ2
8

−λ2
12 + 8Y 4

t + 8λ6Y
2
t − 12g2

B−L
g2

2 + 3g4
2

16π2 d

dt
λ7 = 4λ2

7 + 16λ7(2λ5 + λ6) + 32(λ2
10 − λ2

11) + 2(λ2
12 + λ2

13)

+4(λ2
14 + λ2

15) + 32λ2
8 + 8λ12λ9 + λ2

9

+8λ7Y
2
t − 12λ7(g2

B−L
+ g2

2) + 12g4
B−L

16π2 d

dt
λ8 = λ2

13 + 4λ14λ15 + 8λ8(λ5 + 5λ6 + λ7 + Y 2
t )− 12λ8(2g2

B−L
+ g2

2)

• Coefficients with Φ2∆2

16π2 d

dt
λ9 = λ9

(
20λ1 + 8λ3 + 16λ5 + 8λ6 + 6λ7 + 4λ9 + 6Y 2

t + 4Tr
[
(Y M)2

]
−6g2

B−L
− 21g2

2

)
+ 6g4

2 + 16(λ2
10 + λ2

11) + λ12(8λ1 + λ12) + 3λ2
13

+12λ2
14 + 8λ12λ3 + 48λ10λ4 + λ12(6λ5 + 8λ6 + 3λ7)

16π2 d

dt
λ10 = λ10

(
4λ1 + 4λ12 + 48λ2 + 16λ3 + 16λ4 + 16λ5 + 8λ6 + 6λ7 + 8λ9

+6Y 2
t + 4Tr

[
(Y M)2

]
− 6g2

B−L
− 21g2

2

)
− 3λ13(λ14 + λ15) + 12λ4λ9

16π2 d

dt
λ11 = λ11

(
4λ1 + 4λ12 − 48λ2 + 16λ3 + 16λ5 + 8λ6 − 6λ7

+8λ9 + 6Y 2
t + 4Tr

[
(Y M)2

]
− 6g2

B−L
− 21g2

2

)
16π2 d

dt
λ12 = λ12

(
4λ1 + 4λ12 − 8λ3 + 4λ5 − 8λ6 + 8λ9 + 6Y 2

t

4Tr
[
(Y M)2

]
− 6g2

B−L
− 21g2

2

)
− 12(λ2

14 − λ2
15)

16π2 d

dt
λ13 = λ13

(
4λ1 + 4λ12 + 8λ3 + 2λ7 + 8λ8 + 8λ9 + 3Y 2

t + Tr
[
(Y M)2

]
−6g2

B−L
− 21g2

2

)
+
(
8λ4 + 16λ10

)(
λ14 + λ15

)
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16π2 d

dt
λ14 = λ14

(
4λ1 − 4λ12 + 2λ7 + 8λ9 + 6Y 2

t + 4Tr
[
(Y M)2

]
− 6g2

B−L
− 21g2

2

)
+4λ13(λ4 + 2λ10) + 8λ15(2λ2 + λ8)

16π2 d

dt
λ15 = λ15

(
4λ1 + 12λ12 + 2λ7 + 8λ9 + 6Y 2

t + 4Tr
[
(Y M)2

]
− 6g2

B−L
− 21g2

2

)
+4λ13(λ4 + 4λ10) + 8λ14(2λ2 + λ8)

A.4 LR Model with Doublet Scalars

Gauge RG Equations

16π2 d

dt
g3 = g3

3

(
− 7

)
16π2 d

dt
g2 = g3

2

(
− 17

6

)
16π2 d

dt
g
B−L = g3

B−L
(
3
)

Note that in our case g
2L

= g
2R

= g2 .

Fermion RG Equations

64π2 d

dt
Yt =

(
− 2

9
g2
B−L
− 9g2

2 − 32g2
3

)
Yt + 7Y 3

t

Scalar RG Equations

• Coefficients with Φ4

128π2 d

dt
λ1 = λ1

(
− 72g2

2 + 256
(
λ1 + λ2 − λ3

)
+ 24Y 2

t

)
+ 1024(λ2

1 + λ2
2) + 32β2

1 + 8f 2
1 + 9g4

2 − 12Y − Y 4
t

512π2 d

dt
λ2 = λ2

(
− 288g2

2 + 768λ1 + 3072λ2 + 1024λ3 + 96Y 2
t

)
−8f 2

1 + 3g4
2 − 3Y 4

t

256π2 d

dt
λ3 = λ3

(
− 144g2

2 − 384λ1 − 512λ2 − 1536λ3 + 48Y 2
t

)
+4f 2

1 − 3g4
2 − 3Y 4

t
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• Coefficients with H4
L/R

512π2 d

dt
κ1 = κ1

(
− 96g2

B−L
− 144g2

2 + 576κ1 + 384κ2

)
+ 192κ2

2 + 256β2
1 + 128f 2

1 + 24g4
B−l + 12g2

B−L
g2

2 + 9g4
2

512π2 d

dt
κ2 = κ2

(
− 96g2

B−L
− 144g2

2 + 512κ1 + 384κ2

)
+ 128f 2

1

+12g2
B−L

g2
2 + 9g4

2

• Coefficeients with Φ2H2
L/R

256π2 d

dt
β1 = −4β1

[
− 8β1 + 6g2

B−L
+ 27g2

2 − 2
(
20κ1 + 4κ2 + 40λ1

+32λ2 − 32λ3 + 3Y 2
t

)]
+ 24f 2

1 + 9g4
2

256π2 d

dt
f1 = f1

(
16β1 − 6g2

B−L
− 27g2

2 + 8(κ1 + κ2) + 16(λ1 − 4λ2)

+64λ3 + 6Y 2
t

)



Appendix B

Conditions of cop for LR Model

B.1 LR Model With Doublet Scalars

B.1.1 2-Field Directions and Stability Conditions

(I)
2FV1(φ0

1 , φ
+
1 ) = λ1

(
φ0

1
2

+ φ+
1

2
)2

. (B.1)

Here we would like to note that all the field directions are evaluated in

terms of the modulus of each field, i.e., φ0
1 ≡ |φ0

1|, and we have used the

same notation through out the thesis.

In matrix form it can be represented in basis (φ0
1

2
, φ+

1
2
):

 λ1 λ1

λ1

 .

Copositivity condition:

λ1 ≥ 0.

(II)
2FV2(φ+

1 , h
+
R) = λ1 φ

+
1

4
+

2β1 + f1

2
h+
R

2
φ+

1
2
. (B.2)

107
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2FV3(φ0
1 , h

0
R) = λ1 φ

0
1

4
+

2β1 + f1

2
h0
R

2
φ0

1
2
. (B.3)

In matrix form each of them can be represented in basis (φ+
1

2 ⇔ φ0
1

2
, h+

R
2 ⇔

h0
R

2
):

 λ1
2β1+f1

4

0

 .

Here two different quadratic forms are represented by the same matrix

in different basis and the sign ‘⇔’ implies the mutual exchange of fields

leading one quadratic form to other one. For example, if we replace φ+
1

2

and h+
R

2 in 2FV2(φ+
1 , h

+
R) by φ0

1
2 and h0

R
2 simultaneously then we achieve

2FV3(φ0
1 , h

0
R). We have used the same notation through out the text.

Copositivity condition:

λ1 ≥ 0, 2β1 + f1 ≥ 0.

(III)
2FV4(φ0

1 , h
+
R) = λ1 φ

0
1

4
+

2β1 − f1

2
h+
R

2
φ0

1
2
. (B.4)

2FV5(φ+
1 , h

0
R) = λ1 φ

+
1

4
+

2β1 − f1

2
h0
R

2
φ+

1
2
. (B.5)

In matrix form both of them can be represented in basis (φ0
1

2 ⇔ φ+
1

2
, h+

R
2 ⇔

h0
R

2
):

 λ1
2β1−f1

4

0

 .

Copositivity condition:

λ1 ≥ 0, 2β1 − f1 ≥ 0.



B.1. LR Model With Doublet Scalars 109

B.1.2 3-Field Directions and Stability Conditions

(I)

3FV1(φ0
1 , φ

+
1 , h

0
R) = h0

R
2
(
β1(φ0

1
2

+ φ+
1

2
) +

1

2
f1(φ0

1
2 − φ+

1
2
)

)
+ λ1

(
φ0

1
2

+ φ+
1

2
)2

. (B.6)

3FV2(φ0
1 , φ

+
1 , h

+
R) = h+

R
2

(
β1(φ0

1
2

+ φ+
1

2
) +

1

2
f1(φ+

1
2 − φ0

1
2
)

)
+ λ1

(
φ0

1
2

+ φ+
1

2
)2

. (B.7)

In matrix form each can be represented in basis (φ0
1

2
, φ+

1
2
, h0

R
2 ⇔ h+

R
2
):


λ1 λ1

2β1−f1
4

λ1
2β1+f1

4

0

 .

Copositivity conditions:

λ1 ≥ 0, 2β1 − f1 ≥ 0, 2β1 + f1 ≥ 0.

(II)

3FV3(φ0
1 , h

0
R , h

+
R) =

1

2
φ0

1
2
(
f1

(
h0
R

2 − h+
R

2
)

+ 2β1

(
h0
R

2
+ h+

R
2
)

+ 2λ1φ
0
1

2
)
.

(B.8)

3FV4(φ+
1 , h

0
R , h

+
R) =

1

2
φ+

1
2

(
f1

(
h+
R

2 − h0
R

2
)

+2β1

(
h0
R

2
+ h+

R
2
)

+2λ1φ
+
1

2

)
.

(B.9)

In matrix form both can be represented in basis (φ0
1

2 ⇔ φ+
1

2
, h0

R
2
, h+

R
2
):



110 Chapter B. Conditions of cop for LR Model


λ1

2β1+f1
4

2β1−f1
4

0 0

0

 .

Copositivity condition:

λ1 ≥ 0, 2β1 − f1 ≥ 0, 2β1 + f1 ≥ 0.

B.1.3 4-Field Directions and Stability Conditions

(I)

4FV1(φ0
1, φ

+
1 , h

0
R, h

+
R) =

1

2

(
f1

(
h+
R(φ0

1 − φ+
1 ) + h0

R(φ0
1 + φ+

1 )
)

(
h0
R(φ0

1 − φ+
1 )− h+

R(φ0
1 + φ+

1 )
)

+ 2(φ0
1

2
+ φ+

1
2
)(

(h0
R

2
+ h+

R
2
)β1 + λ1(φ0

1
2

+ φ+
1

2
)
))

. (B.10)

In matrix form it can be represented in basis (φ0
1

2
, φ+

1
2
, h0

R
2
, h+

R
2
, φ0

1φ
+
1 , h

0
Rh

+
R):



λ1 λ1
(1−C)

2
f1+2β1

2
(1−K)

2
2β1−f1

2
0 0

λ1
2β1−f1

4
f1+2β1

4
0 0

0 0 0 0

0 0 0

C f1+2β1
2

−f1

K f1+2β1
2


.

Copositivity conditions :

λ1 ≥ 0, C(2β1 + f1) ≥ 0, K(2β1 + f1) ≥ 0,

C K

(
2β1 + f1

2

)2

− f 2
1 ≥ 0.
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In this case we do not have any other four field directions. Thus we can

find the conditions which ensure that the potential is bounded from below

by combining all cop criteria. From 2- and 3-fields directions we find

the following conditions: λ1 ≥ 0, β1 ≥ |f1|/2. We can eliminate both

the unphysical parameters C and K from the cop emerged from 4-field

direction by demanding the maximisation of the parameter space. Detailed

discussion is in section 4.4.1 which leads to a condition we already have

from 2- and 3-field directions.

B.2 LR Model With Triplet Scalars

B.2.1 2-Field Directions and Stability Conditions

(I)
2FV1(φ0

1 , φ
+
1 ) = λ1

(
φ0

1
2

+ φ+
1

2)2
. (B.11)

This can be represented as a symmetric matrix (Λ) of order two in basis

(φ0
1

2
, φ+

1
2
):

 λ1 λ1

λ1

 .

Copositivity condition:

λ1 ≥ 0.

(II)
2FV2(φ0

1 , δ
0) = λ5 δ

04
+ λ1 φ

0
1

4
. (B.12)

2FV3(φ+
1 , δ

++) = λ5 δ
++4

+ λ1 φ
+
1

4
. (B.13)

In matrix form both of them can be represented in basis (φ0
1

2 ⇔ φ+
1

2
, δ02 ⇔

δ++2
):
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 λ1 0

λ5

 .

Copositivity conditions:

λ1 ≥ 0, λ5 ≥ 0.

(III)

2FV4(φ0
1 , δ

+) = (λ5 + λ6)δ+4
+ λ1 φ

0
1

4
+

1

2
(λ12 + 2λ9) δ+2

φ0
1

2
. (B.14)

2FV5(φ+
1 , δ

+) = (λ5 + λ6) δ+4
+ λ1 φ

+
1

4
+

1

2
(λ12 + 2λ9) δ+2

φ+
1

2
. (B.15)

In matrix form both can be represented in basis (φ0
1

2 ⇔ φ+
1

2
, δ+2

):

 λ1
1
4
(λ12 +2λ9)

λ5 + λ6

 .

Copositivity condition:

λ1 ≥ 0, λ5 + λ6 ≥ 0.

(IV)
2FV6(φ0

1 , δ
++) = λ5 δ

++4
+ λ1 φ

0
1

4
+ λ12 δ

++2
φ0

1
2
. (B.16)

2FV7(φ+
1 , δ

0) = λ5 δ
04

+ λ1 φ
+
1

4
+ λ12 δ

02
φ+

1
2
. (B.17)

In matrix form each of them can be represented in basis (φ0
1

2 ⇔ φ+
1

2
, δ++2 ⇔

δ02
):

 λ1
λ12
2

λ5

 .
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Copositivity conditions:

λ1 ≥ 0, λ5 ≥ 0.

(V)
2FV8(δ0 , δ+) = λ5

(
δ02

+ δ+2)2
+ λ6 δ

+4
. (B.18)

2FV9(δ+ , δ++) = λ5

(
δ+2

+ δ++2)2
+ λ6 δ

+4
. (B.19)

In matrix form both can be represented in basis (δ+2
, δ02 ⇔ δ++2

):

 λ5 λ5

λ5 + λ6

 .

Copositivity condition:

λ5 ≥ 0, λ5 + λ6 ≥ 0.

(VI)
2FV10(δ0 , δ++) = λ5

(
δ02

+ δ++2)2
+ 4λ6 δ

+2
δ02
. (B.20)

In matrix form it can be represented in basis (δ02
, δ++2

):

 λ5 λ5 + 2λ6

λ5

 .

Copositivity conditions:

λ5 ≥ 0, λ5 + λ6 ≥ 0.
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B.2.2 3-Field Directions and Stability Conditions

(I)

3FV1(φ0
1 , φ

+
1 , δ

0) = λ1

(
φ0

1
2

+ φ+
1

2)2
+ λ5 δ

02
+ λ12 δ

02
φ0

1
2
. (B.21)

3FV2(φ0
1 , φ

+
1 , δ

++) = λ1

(
φ0

1
2

+ φ+
1

2)2
+ λ5 δ

++4
+ λ12 φ

0
1

2
δ++2

. (B.22)

In matrix form both of them can be represented in basis (φ0
1

2
, φ+

1
2
, δ02 ⇔

δ++2
):


λ1 λ1

λ12
2

λ1 0

λ5

 .

Copositivity conditions:

λ1 ≥ 0, λ5 ≥ 0.

(II)

3FV3(φ0
1 , φ

+
1 , δ

+) = λ1

(
φ0

1
2
+φ+

1
2)2

+(λ5+λ6)δ+4
+

1

2
(λ12+2λ9)

(
φ0

1
2
+φ+

1
2)
δ+2

.

(B.23)

In matrix form it can be represented in basis (φ0
1

2
, φ+

1
2
, δ+2

):


λ1 λ1

1
4
(λ12 +2λ9)

λ1
1
4
(λ12 +2λ9)

λ5 + λ6

 .

Copositivity condition:

λ1 ≥ 0, λ5 + λ6 ≥ 0.
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(III)

3FV4(φ0
1 , δ

0 , δ+) = λ1 φ
0
1

4
+ λ5

(
δ02

+ δ+2)2
+ λ6δ

+4
+

1

2
(λ12 + 2λ9) φ0

1
2
δ+2

.

(B.24)

3FV5(φ+
1 , δ

++ , δ+) = λ1 φ
+
1

4
+ λ5

(
δ+2

+ δ++2)2
+ λ6δ

+4
+

1

2
(λ12 + 2λ9) φ+

1
2
δ+2

.

(B.25)

In matrix form both can be represented in basis (φ0
1

2 ⇔ φ+
1

2
, δ02 ⇔ δ++2

, δ+2
):


λ1 0 1

4
(λ12 +2λ9)

λ5 λ5

λ5 + λ6

 .

Copositivity condition:

λ1 ≥ 0, λ5 ≥ 0, λ5 + λ6 ≥ 0.

(IV)

3FV6(φ0
1 , δ

0 , δ++) = λ5

(
δ02

+ δ++2)2
+ λ1 φ

0
1

4
+ 4λ6 δ0

2δ++2

+λ12 δ
++2

φ0
1

2
+ 2λ9 δ

0 δ++ φ0
1

2
. (B.26)

3FV7(φ+
1 , δ

0 , δ++) = λ5

(
δ02

+ δ++2)2
+ λ1 φ

+
1

4
+ 4λ6 δ0

2δ++2

+ λ12 δ
02
φ+

1
2

+ 2λ9 δ
0 δ++ φ+

1
2
. (B.27)
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In matrix form both of them can be represented in basis (φ0
1

2 ⇔ φ+
1

2
, δ02

, δ++2
):



λ1 0 λ12
2

λ9

λ5 (1− C)(λ5 +

2λ6)

0

λ5 0

2C(λ5 + 2λ6)


.

Copositivity conditions:

λ1 ≥ 0, λ5 ≥ 0, C(λ5 + 2λ6) ≥ 0. (B.28)

Here we encounter three possibilities in respect to the last condition for

three ranges of the unphysical parameter C:

(a) C ≥ 0 such that (1− C) ≥ 0, i.e., C ∈ [0, 1]:

λ5 + 2λ6 ≥ 0. (B.29)

(b) C ≥ 0 such that (1− C) < 0, i.e., C ∈ (1,∞]:

λ5 + 2λ6 ≥ 0 & λ2
5 − (1− C)2(λ5 + 2λ6)2 ≥ 0. (B.30)

(c) C < 0 such that (1− C) ≥ 0, i.e., C ∈ [−∞, 0):

λ5 + 2λ6 ≤ 0 & λ2
5 − (1− C)2(λ5 + 2λ6)2 ≥ 0. (B.31)

As C is a free parameter we can rewrite this condition as:

λ5 + 2λ6 ≤ 0 & λ2
5 − C2(λ5 + 2λ6)2 ≥ 0, (B.32)

with C ∈ (1,∞].

In principle, union of exhaustive scan over all possible C values would
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provide us total allowed region in the parameter space. That is indeed

possible in much simpler way by finding the particular C values which

maximise the allowed region. Thus one can eliminate this extra unphysical

parameter by writing unified condition which remain allowed. Detailed

discussion is in section 4.4.2. Similar method would be implemented in

many other cases as follows. Thus the final copositivity conditions in this

case can be written as,

λ1 ≥ 0, λ5 ≥ 0, (λ5 + λ6) ≥ 0. (B.33)

(V)

3FV8(φ0
1 , δ

+ , δ++) = λ1 φ
0
1

4
+ λ5

(
δ++2

+ δ+2)2
+ λ6 δ

+4

+
1

2
λ12 φ

0
1

2
(2δ++2

+ δ+2
) + λ9 φ

0
1

2
δ+2

.(B.34)

3FV9(φ+
1 , δ

0 , δ+) = λ1 φ
+
1

4
+ λ5

(
δ02

+ δ+2)2
+ λ6 δ

+4

+
1

2
λ12 φ

+
1

2
(2δ02

+ δ+2
) + λ9 φ

+
1

2
δ+2

. (B.35)

In matrix form both can be represented in basis (φ0
1

2 ⇔ φ+
1

2
, δ++2 ⇔

δ02
, δ+2

):


λ1

1
4
(λ12 +2λ9) λ12

2

λ5 + λ6 λ5

λ5

 .

Copositivity conditions:

λ1 ≥ 0, λ5 ≥ 0, λ5 + λ6 ≥ 0.
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(VI)

3FV10(δ0 , δ+ , δ++) = λ5

(
δ02

+δ+2
+δ++2)2

+λ6

(
δ+2

+2δ0δ++
)2
. (B.36)

In matrix form it can be represented in basis (δ02
, δ+2

, δ++2
):


λ5 λ5 (1−C)(λ5+2λ6) 0

λ5 + λ6 λ5 2λ6

λ5 0

2C(λ5 + 2λ6)

 .

Copositivity condition:

λ1 ≥ 0, λ5 ≥ 0, λ5 + λ6 ≥ 0, C(λ5 + 2λ6) ≥ 0.

Possible three cases are:

(a) C > 0, (1− C) ≥ 0, i.e., C ∈ [0 : 1]

λ5 + 2λ6 ≥ 0 & 2C (λ5 + λ6) (λ5 + 2λ6)− 4λ2
6 ≥ 0

(b) C > 0, (1− C) ≤ 0, i.e., C ∈ [1 :∞]

λ5 + 2λ6 ≥ 0 & λ2
5 − (1− C)2(λ5 + 2λ6)2 ≥ 0.

2C (λ5 + λ6) (λ5 + 2λ6)− 4λ2
6 ≥ 0

(c) C > 0, (1− C) ≤ 0, i.e., C ∈ [−∞ : 0)

λ5 + 2λ6 ≤ 0 & λ2
5 − (1− C)2(λ5 + 2λ6)2 ≥ 0.

2C (λ5 + λ6) (λ5 + 2λ6)− 4λ2
6 ≥ 0

We have already discussed the similar situation in detail in the section 4.4.2.
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Final conditions in this case can be calculated as:

λ1 ≥ 0, λ5 ≥ 0, λ5 + λ6 ≥ 0.

B.2.3 4-Field Directions and Stability Conditions

(I)

4FV1(φ0
1 , φ

+
1 , δ

0 , δ+) = λ5

(
δ02

+ δ+2)2
+ λ6 δ

+4
+ λ1

(
φ0

1
2

+ φ+
1

2)2

+
1

2
λ12

(
2δ02

φ+
1

2
+ 2
√

2φ0
1φ

+
1 δ

0δ+ + δ+2(
φ0

1
2

+ φ+
1

2))
+λ9 δ

+2(
φ0

1
2

+ φ+
1

2)
. (B.37)

In matrix form it can be represented in basis (φ0
1

2
, φ+

1
2
, δ+2

, δ++2
, φ0

1 φ
+
1 , δ

+ δ++):



λ1 (1− C)λ1
1
4
(λ12 +2λ9) 1

4
(λ12 +2λ9) 0 0

λ1 0 λ12
2

0 0

λ5 + λ6 (1−K)λ5 0 0

λ5 0 0

2Cλ1
λ12√

2

2Kλ5


.

Copositivity condition:

λ1 ≥ 0, λ5 ≥ 0, λ5 + λ6 ≥ 0, C ≥ 0, K ≥ 0.

Here the two possibilities are:

(I) (1− C) ≤ 0, i.e., C ∈ (1,∞]

λ1 λ1 − (1− C)2 λ2
1 ≥ 0 ⇒ C ∈ [0, 2].
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(II) (1−K) ≤ 0, i.e., K ∈ (1,∞]

λ5 (λ5 + λ6)− (1−K)2 λ2
5 ≥ 0.

The last condition leads to λ5 + λ6 ≥ (1 − K)2λ5, and this condition is

maximally relaxed for K = 1 as λ5 ≥ 0. It is also possible to confirm

numerically that K = 1 allows the largest parameter space. So, K = 1 and

C ∈ [0, 2] are the possible choices.

Then final conditions are

λ1 ≥ 0, λ5 ≥ 0, λ5 + λ6 ≥ 0.

(II)

4FV2(φ0
1 , φ

+
1 , δ

0 , δ++) = λ5

(
δ02

+ δ++2)2
+ 4λ6 δ

02
δ++2

+ λ1

(
φ0

1
2

+ φ+
1

2)2

+λ12

((
δ++2

φ0
1

2
+ δ02

φ+
1

2)
+ δ0 δ++

(
φ0

1
2

+ φ+
1

2
))

+2λ9 δ
0 δ++

(
φ0

1
2

+ φ+
1

2
)
. (B.38)

In matrix form it can be represented in basis (φ0
1

2
, φ+

1
2
, δ02

, δ++2):



λ1 λ1 0 λ12

2 λ9

λ1
λ12

2 0 λ9

λ5 (1−C)(λ5 + 2λ6) 0

λ5 0

2C(λ5 + 2λ6)


.

Copositivity conditions:

λ1 ≥ 0, λ5 ≥ 0, C(λ5 + 2λ6) ≥ 0.

The possible three cases are:
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(a) C > 0, (1− C) ≥ 0, i.e., C ∈ [0, 1]

λ5 + 2λ6 ≥ 0.

(b) C > 0, (1− C) ≤ 0, i.e., C ∈ (1,∞]

λ5 + 2λ6 ≥ 0 & λ2
5 − (1− C)2(λ5 + 2λ6)2 ≥ 0.

(c) C < 0, (1− C) ≥ 0, i.e., C ∈ [−∞, 0)

λ5 + 2λ6 ≤ 0 & λ2
5 − (1− C)2(λ5 + 2λ6)2 ≥ 0.

We have already discussed the similar situation in detail in the section 4.4.2.

Final conditions in this case can be calculated as:

λ1 ≥ 0, λ5 ≥ 0, λ5 + λ6 ≥ 0

(III)

4FV3(φ0
1 , φ

+
1 , δ

0 , δ+) = λ5

(
δ02

+ δ+2)2
+ λ6 δ

+4
+ λ1

(
φ0

1
2

+ φ+
1

2)2

+
1

2
λ12

(
2δ02

φ+
1

2 − 2
√

2φ0
1φ

+
1 δ

0δ+ + δ+2(
φ0

1
2

+ φ+
1

2))
+λ9 δ

+2(
φ0

1
2

+ φ+
1

2)
. (B.39)

In matrix form it can be represented in basis (φ0
1

2
, φ+

1
2
, δ+2

, δ++2
, φ0

1 φ
+
1 , δ

+ δ++):



λ1 (1− C)λ1
1
4
(λ12 +2λ9) 1

4
(λ12 +2λ9) 0 0

λ1 0 λ12
2

0 0

λ5 + λ6 (1−K)λ5 0 0

λ5 0 0

2Cλ1 −λ12√
2

2Kλ5


.

Copositivity condition:
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λ1 ≥ 0, λ5 ≥ 0, λ5 + λ6 ≥ 0, C ≥ 0, K ≥ 0 and

4C K λ1 λ5 −
λ2

12

2
≥ 0.

The two possible cases are:

(i) (1− C) ≤ 0, i.e., C ∈ (1,∞]

λ1 λ1 − (1− C)2 λ2
1 ≥ 0 ⇒ 1− (1− C)2 ≥ 0.

(ii) (1−K) ≤ 0, i.e., K ∈ (1,∞]

λ5 (λ5 + λ6)− (1−K)2 λ2
5 ≥ 0.

In a similar method discussed in detail in the section 4.4.2, we choose

C = 2 and K = 1 for the last copositivity condition in this present case,

e.g., C K λ1 λ5 − λ212
8
≥ 0. This choice of C and K are made, keeping in

mind that these unphysical parameters can be set to values which allows

the largest parameter space.

Here we can also argue the maximisation of the allowed parameter space,

as suggested in section 4.4.2. As C,K ≥ 0, we can rewrite the condition

as λ1λ5 ≥ |λ2
12/(8CK)|. Thus the largest parameter space can be accessed

if we use the conditions λ1λ5 ≥ 0, which would be achieved for either C or

K → ∞. But we have restriction on C as 0 ≤ C ≤ 2. The other condition

leads to λ5 + λ6 ≥ (1−K)2λ5, and this condition is maximally relaxed for

K = 1 as λ5 ≥ 0. So as the product λ1λ5 can be maximally relaxed for

allowed maximum values of C,K which are 2 and 1 respectively we find

the following constraint on this product as λ1λ5 ≥ λ2
12/16.

We finally arrived at the conditions as,

λ1 ≥ 0, λ5 ≥ 0, λ5 + λ6 ≥ 0, 16 λ1 λ5 − λ2
12 ≥ 0.
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(IV)

4FV4(φ0
1 , δ

0 , δ+ , δ++) = λ5

(
δ02

+ δ+2
+ δ++2)2

+ λ6

(
δ+2

+ 2δ0δ++
)2

+λ1 φ
0
1

4
+

1

2
λ12 φ

0
1

2
(2δ02

+ δ+2
)

+λ9φ
0
1

2
(
δ+2

+ 2 δ0 δ++
)
. (B.40)

4FV5(φ+
1 , δ

0 , δ+ , δ++) = λ5

(
δ02

+ δ+2
+ δ++2)2

+ λ6

(
δ+2

+ 2δ0δ++
)2

+λ1 φ
+
1

4
+

1

2
λ12 φ

+
1

2
(2δ02

+ δ+2
)

+λ9φ
+
1

2
(
δ+2

+ 2 δ0 δ++
)
. (B.41)

Both of them can be represented in basis (φ0
1

2 ⇔ φ+
1

2
, δ02

, δ+2
, δ++2

, δ0 δ++):



λ1
λ12

2
λ12

4 0 λ9

λ5 λ5 (1−C)(λ5 + 2λ6) 0

λ5 + λ6 λ5 2λ6

λ5 0

2C(λ5 + 2λ6)


.

Copositivity conditions:

λ1 ≥ 0, λ5 ≥ 0, λ5 + λ6 ≥ 0, C(λ5 + 2λ6) ≥ 0.

The possible three cases are:

(a) C > 0, (1− C) ≥ 0, i.e., C ∈ [0, 1]

λ5 + 2λ6 ≥ 0 & 2C(λ5 + λ6)(λ5 + 2λ6)− 4λ2
6 ≥ 0.

(b) C > 0, (1− C) ≤ 0, i.e., C ∈ (1,∞]

λ5 + 2λ6 ≥ 0 & λ2
5 − (1− C)2(λ5 + 2λ6)2 ≥ 0.

& 2C(λ5 + λ6)(λ5 + 2λ6)− 4λ2
6 ≥ 0.
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(c) C < 0, (1− C) ≥ 0, i.e., C ∈ [−∞, 0)

λ5 + 2λ6 ≤ 0 & λ2
5 − (1− C)2(λ5 + 2λ6)2 ≥ 0,

& 2C(λ5 + λ6)(λ5 + 2λ6)− 4λ2
6 ≥ 0.

We have already discussed the similar situation in detail in the section 4.4.2.

Final conditions in this case can be calculated as:

λ1 ≥ 0, λ5 ≥ 0, λ5 + λ6 ≥ 0.



Appendix C

Unitarity in LRSM with Triplet

Scalars

Here we present two mathematica files (which can be obtained from the URL:

http://www.prl.res.in/~konar/data.html or from the source file in arXiv

[75]) where we spell out the details of the calculation of the unitarity constraints.

In the file named LRT_Pot.nb we construct the 2 → 2 scattering matrices for

all the q-charged 2-particle states. One can also obtain the eigenvalues of those

matrices by running that code by appropriately uncommenting some commands.

We have collected all the independent eigenvalues of all the scattering matrices

in the second file called Eigenvalue_collect.nb.

125

http://www.prl.res.in/~konar/data.html
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The Mathematica file LRT_Pot.nb

Construction of the 2 ® 2 Scattering 

Matrices:

In the following we describe the scalar potential for the 

LRSM. Later we construct the scattering matrices 

q -charged 2-particle states by properly specifying the basis.

(Uncomment and run the command “Eigenvalues[X]” to 

obtain the eigenvalues of the matrix ‘X’.)

We have collected all the eigenvlaues and put it in a 

different file.

Defining the scalar potential

Clear@"Global`*"D

Φ =

1

2

HΦ10r + I Φ10iL Φ1p

Φ2m
1

2

HΦ20r + I Φ20iL
;

DR =

∆Rp

2

∆Rpp

1

2

H∆R0r + I ∆R0iL -
∆Rp

2

; DL =

∆Lp

2

∆Lpp

1

2

H∆L0r + I ∆L0iL -
∆Lp

2

;

Σ = K 0 -I

I 0
O; Φt = Σ.Φ.Σ;

V4 = Λ1 HTr@Φ¾.ΦDL2
+ Λ2 IHTr@Φt.Φ¾DL2

+ HTr@Φt¾.ΦDL2M + Λ3 HHTr@Φt.Φ¾DL HTr@Φt¾.ΦDLL +

Λ4 HHTr@Φ¾.ΦDL HHTr@Φt¾.ΦDL + HTr@Φt.Φ¾DLLL + Λ5 IHTr@DL.DL¾DL2
+ HTr@DR.DR¾DL2M +

Λ6 H HTr@DL.DLDL HTr@DL¾.DL¾DL + HTr@DR.DRDL HTr@DR¾.DR¾DLL + Λ7 HTr@DL.DL¾D Tr@DR.DR¾DL +

Λ8 HTr@DL.DLD Tr@DR¾.DR¾D + Tr@DL¾.DL¾D Tr@DR.DRDL + Λ9 Tr@Φ¾.ΦD HTr@DL¾.DL¾D + Tr@DR¾.DR¾DL +

HΛ10 + ä Λ11L HHTr@Φt¾.ΦDL HTr@DR.DR¾DL + HTr@Φ¾.ΦtDL HTr@DL.DL¾DLL +

HΛ10 - ä Λ11L HHTr@Φt¾.ΦDL HTr@DL.DL¾DL + HTr@Φt.Φ¾DL HTr@DR.DR¾DLL +

Λ12 HTr@Φ¾.Φ.DL.DL¾D + Tr@Φ¾.Φ.DR.DR¾DL;

replace = 8Conjugate@Φ10rD ® Φ10r, Conjugate@Φ10iD ® Φ10i,

Conjugate@Φ20rD ® Φ20r, Conjugate@Φ20iD ® Φ20i, Conjugate@Φ1pD ® Φ1m,

Conjugate@Φ2mD ® Φ2p, Conjugate@∆R0rD ® ∆R0r, Conjugate@∆R0iD ® ∆R0i,

Conjugate@∆RpD ® ∆Rm, Conjugate@∆RppD ® ∆Rmm, Conjugate@∆L0rD ® ∆L0r,

Conjugate@∆L0iD ® ∆L0i, Conjugate@∆LpD ® ∆Lm, Conjugate@∆LppD ® ∆Lmm,

Conjugate@I Φ10i + Φ10rD ® 8- I Φ10i + Φ10r<, Conjugate@I Φ20i + Φ20rD ® 8- I Φ20i + Φ20r<<;

H*Potential in terms of the fields *L
Vtot = Simplify@V4 �. replaceD;
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Construction of scattering amplitude matrix

For neutral two-particle states

NCColumn = 8
Φ1p Φ1m, Φ1p Φ2m, Φ1p ∆Rm , Φ1p ∆Lm H*4,4*L,
Φ2p Φ1m, Φ2p Φ2m, Φ2p ∆Rm , Φ2p ∆Lm H*4,8*L,
∆Rp Φ1m, ∆Rp Φ2m, ∆Rp ∆Rm, ∆Rp ∆LmH*4,12*L,
∆Lp Φ1m, ∆Lp Φ2m, ∆Lp ∆Rm, ∆Lp ∆LmH*4,16*L,
Φ10r Φ10r, Φ10r Φ10i , Φ10r Φ20r , Φ10r Φ20i ,

Φ10r ∆R0r, Φ10r ∆R0i , Φ10r ∆L0r, Φ10r ∆L0i H*8,24*L,
Φ10i Φ10i, Φ10i Φ20r , Φ10i Φ20i , Φ10i ∆R0r , Φ10i ∆R0i , Φ10i ∆L0r , Φ10i ∆L0iH*7,31*L,
Φ20r Φ20r, Φ20r Φ20i, Φ20r ∆R0r, Φ20r ∆R0i , Φ20r ∆L0r, Φ20r ∆L0i H*6,37*L,
Φ20i Φ20i, Φ20i ∆R0r , Φ20i ∆R0i , Φ20i ∆L0r , Φ20i ∆L0iH*5,42*L,
∆R0r ∆R0r, ∆R0r ∆R0i , ∆R0r ∆L0r, ∆R0r ∆L0i H*4,46*L,
∆R0i ∆R0i , ∆R0i ∆L0r , ∆R0i ∆L0i H*3,49*L,
∆L0r ∆L0r, ∆L0r ∆L0i H*2,51*L,
∆L0i ∆L0iH*1,52*L,
∆Rpp ∆Rmm , ∆Rpp ∆Lmm H*2,54*L,
∆Lpp ∆Rmm, ∆Lpp ∆Lmm H*2,56*L

<;
NCRow = 8

Φ1m Φ1p, Φ1m Φ2p, Φ1m ∆Rp , Φ1m ∆Lp H*4,4*L,
Φ2m Φ1p, Φ2m Φ2p, Φ2m ∆Rp , Φ2m ∆Lp H*4,8*L,
∆Rm Φ1p, ∆Rm Φ2p, ∆Rm ∆Rp, ∆Rm ∆LpH*4,12*L,
∆Lm Φ1p, ∆Lm Φ2p, ∆Lm ∆Rp, ∆Lm ∆LpH*4,16*L,
Φ10r Φ10r, Φ10r Φ10i , Φ10r Φ20r , Φ10r Φ20i ,

Φ10r ∆R0r, Φ10r ∆R0i , Φ10r ∆L0r, Φ10r ∆L0i H*8,24*L,
Φ10i Φ10i, Φ10i Φ20r , Φ10i Φ20i , Φ10i ∆R0r , Φ10i ∆R0i , Φ10i ∆L0r , Φ10i ∆L0iH*7,31*L,
Φ20r Φ20r, Φ20r Φ20i, Φ20r ∆R0r, Φ20r ∆R0i , Φ20r ∆L0r, Φ20r ∆L0i H*6,37*L,
Φ20i Φ20i, Φ20i ∆R0r , Φ20i ∆R0i , Φ20i ∆L0r , Φ20i ∆L0iH*5,42*L,
∆R0r ∆R0r, ∆R0r ∆R0i , ∆R0r ∆L0r, ∆R0r ∆L0i H*4,46*L,
∆R0i ∆R0i , ∆R0i ∆L0r , ∆R0i ∆L0i H*3,49*L,
∆L0r ∆L0r, ∆L0r ∆L0i H*2,51*L,
∆L0i ∆L0iH*1,52*L,
∆Rmm ∆Rpp , ∆Rmm ∆Lpp H*2,54*L,
∆Lmm ∆Rpp, ∆Lmm ∆Lpp H*2,56*L

<;

The symmetry factor is introduced to avoid double counting:

NCfacList@i_, j_D := FactorList@NCColumn@@iDD NCRow@@jDDD;
NCSymFac@i_, j_D := HIf@Length@NCfacList@i, jDD � 2, Return@Factorial@4DDD;

If@Length@NCfacList@i, jDD � 3, If@HNCfacList@i, jDL@@2, 2DD � 2 &&

HNCfacList@i, jDL@@3, 2DD � 2, Return@4D, Return@Factorial@3DDDD;
If@Length@NCfacList@i, jDD � 4, Return@2DD;
If@Length@NCfacList@i, jDD � 5, Return@1DDL;

NCcoeff@i_, j_D := Coefficient@Vtot, NCColumn@@iDD NCRow@@jDDD;
NCMatFunc@i_, j_D := NCSymFac@i, jD NCcoeff@i, jD;

For@i = 1; NCklist = 8<, i £ 56, i++,

For@j = 1; NCjlist = 8<, j £ 56, j++, AppendTo@NCjlist, 8NCMatFunc@i, jD<DD;
AppendTo@NCklist, Flatten@NCjlistDDD

H*NCklist��MatrixForm*L
H*Eigenvalues@NCklistD*L

2     LRT_Pot_v2.nb



128 Chapter C. Unitarity in LRSM with Triplet Scalars

For singly charged two-particle states

CCColumn = 8
Φ1p Φ10r , Φ1p Φ10i, Φ1p Φ20r, Φ1p Φ20i , Φ1p ∆R0r, Φ1p ∆R0i, Φ1p ∆L0r, Φ1p ∆L0iH*8,8*L,
Φ2p Φ10r, Φ2p Φ10i, Φ2p Φ20r,

Φ2p Φ20i , Φ2p ∆R0r , Φ2p ∆R0i, Φ2p ∆L0r, Φ2p ∆L0i H*8,16*L,
∆Rp Φ10r , ∆Rp Φ10i, ∆Rp Φ20r, ∆Rp Φ20i, ∆Rp ∆L0r,

∆Rp ∆L0i , ∆Rp ∆R0r , ∆Rp ∆R0iH*8,24*L,
∆Lp Φ10r, ∆Lp Φ10i, ∆Lp Φ20r , ∆Lp Φ20i, ∆Lp ∆R0r , ∆Lp ∆R0i, ∆Lp ∆L0r, ∆Lp ∆L0i H*8,32*L,
Φ1p ∆Rmm, Φ1p ∆LmmH*2,34*L,
Φ2p ∆Rmm, Φ2p ∆LmmH*2,36*L,
∆Rp ∆Rmm, ∆Rp ∆LmmH*2,38*L,
∆Lp ∆Rmm, ∆Lp ∆LmmH*2,40*L

<;
CCRow = 8Φ1m Φ10r , Φ1m Φ10i, Φ1m Φ20r, Φ1m Φ20i , Φ1m ∆R0r, Φ1m ∆R0i, Φ1m ∆L0r, Φ1m ∆L0iH**L,

Φ2m Φ10r, Φ2m Φ10i, Φ2m Φ20r, Φ2m Φ20i , Φ2m ∆R0r , Φ2m ∆R0i, Φ2m ∆L0r, Φ2m ∆L0iH**L,
∆Rm Φ10r , ∆Rm Φ10i, ∆Rm Φ20r, ∆Rm Φ20i, ∆Rm ∆L0r, ∆Rm ∆L0i, ∆Rm ∆R0r , ∆Rm ∆R0iH**L,
∆Lm Φ10r, ∆Lm Φ10i, ∆Lm Φ20r , ∆Lm Φ20i, ∆Lm ∆R0r , ∆Lm ∆R0i , ∆Lm ∆L0r, ∆Lm ∆L0i H**L,
Φ1m ∆Rpp, Φ1m ∆Lpp H**L,
Φ2m ∆Rpp, Φ2m ∆Lpp H**L,

∆Rm ∆Rpp, ∆Rm ∆Lpp H**L,
∆Lm ∆Rpp, ∆Lm ∆Lpp H**L

<;

Symmetry factor:

CCfacList@i_, j_D := FactorList@CCColumn@@iDD CCRow@@jDDD;
CCSymFac@i_, j_D := HIf@Length@CCfacList@i, jDD � 2, Return@Factorial@4DDD;

If@Length@CCfacList@i, jDD � 3, If@HCCfacList@i, jDL@@2, 2DD � 2 &&

HCCfacList@i, jDL@@3, 2DD � 2, Return@4D, Return@Factorial@3DDDD;
If@Length@CCfacList@i, jDD � 4, Return@2DD;
If@Length@CCfacList@i, jDD � 5, Return@1DDL;

CCcoeff@i_, j_D := Coefficient@Vtot, CCColumn@@iDD CCRow@@jDDD;
CCMatFunc@i_, j_D := CCSymFac@i, jD CCcoeff@i, jD;

For@i = 1; CCklist = 8<, i £ 40, i++,

For@j = 1; CCjlist = 8<, j £ 40, j++, AppendTo@CCjlist, 8CCMatFunc@i, jD<DD
AppendTo@CCklist, Flatten@CCjlistDDD

H*CCklist��MatrixForm;*L
H*Eigenvalues@CCklistD*L

For quartically charged two-particle states

QCColumn = 8 ∆Rpp ∆Rpp, ∆Rpp ∆Lpp , ∆Lpp ∆Lpp <;
QCRow = 8∆Rmm ∆Rmm, ∆Rmm ∆Lmm , ∆Lmm ∆Lmm<;

Symmetry factor:

QCfacList@i_, j_D := FactorList@QCColumn@@iDD QCRow@@jDDD;
QCSymFac@i_, j_D := HIf@Length@QCfacList@i, jDD � 2, Return@Factorial@4DDD;

If@Length@QCfacList@i, jDD � 3, If@HQCfacList@i, jDL@@2, 2DD � 2 &&

HQCfacList@i, jDL@@3, 2DD � 2, Return@4D, Return@Factorial@3DDDD;
If@Length@QCfacList@i, jDD � 4, Return@2DD;
If@Length@QCfacList@i, jDD � 5, Return@1DDL;

QCcoeff@i_, j_D := Coefficient@Vtot, QCColumn@@iDD QCRow@@jDDD;
QCMatFunc@i_, j_D := QCSymFac@i, jD QCcoeff@i, jD;

For@i = 1; QCklist = 8<, i £ 3 , i++,

For@j = 1; QCjlist = 8<, j £ 3, j++, AppendTo@QCjlist, 8QCMatFunc@i, jD<DD;
AppendTo@QCklist, Flatten@QCjlistDDD

H*QCklist��MatrixForm*L
H*Eigenvalues@QCklistD*L
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For doubly charged two-particle states

DCColumn = 8
Φ1p Φ1p, Φ1p Φ2p, Φ1p ∆Rp , Φ1p ∆Lp H*4,4*L,
Φ2p Φ2p, Φ2p ∆Rp , Φ2p ∆Lp H*3,7*L,
∆Rp ∆Rp , ∆Rp ∆Lp H*2,9*L,
∆Lp ∆Lp H*1,10*L,
∆Rpp Φ10r, ∆Rpp Φ10i, ∆Rpp Φ20r,

∆Rpp Φ20i, ∆Rpp ∆R0r , ∆Rpp ∆R0i, ∆Rpp ∆L0r, ∆Rpp ∆L0i H*8,18*L,
∆Lpp Φ10r, ∆Lpp Φ10i, ∆Lpp Φ20r, ∆Lpp Φ20i, ∆Lpp ∆R0r ,

∆Lpp ∆R0i, ∆Lpp ∆L0r, ∆Lpp ∆L0iH*8,26*L
<;

DCRow = 8
Φ1m Φ1m, Φ1m Φ2m, Φ1m ∆Rm , Φ1m ∆Lm H**L,
Φ2m Φ2m, Φ2m ∆Rm , Φ2m ∆Lm H**L,
∆Rm ∆Rm , ∆Rm ∆Lm H**L,
∆Lm ∆Lm H**L,
∆Rmm Φ10r, ∆Rmm Φ10i, ∆Rmm Φ20r,

∆Rmm Φ20i, ∆Rmm ∆R0r , ∆Rmm ∆R0i, ∆Rmm ∆L0r, ∆Rmm ∆L0i H**L,
∆Lmm Φ10r, ∆Lmm Φ10i, ∆Lmm Φ20r, ∆Lmm Φ20i, ∆Lmm ∆R0r , ∆Lmm ∆R0i, ∆Lmm ∆L0r, ∆Lmm ∆L0iH**L
<;

Symmetry factor:

DCfacList@i_, j_D := FactorList@DCColumn@@iDD DCRow@@jDDD;
DCSymFac@i_, j_D := HIf@Length@DCfacList@i, jDD � 2, Return@Factorial@4DDD;

If@Length@DCfacList@i, jDD � 3, If@HDCfacList@i, jDL@@2, 2DD � 2 &&

HDCfacList@i, jDL@@3, 2DD � 2, Return@4D, Return@Factorial@3DDDD;
If@Length@DCfacList@i, jDD � 4, Return@2DD;
If@Length@DCfacList@i, jDD � 5, Return@1DDL;

DCcoeff@i_, j_D := Coefficient@Vtot, DCColumn@@iDD DCRow@@jDDD;
DCMatFunc@i_, j_D := DCSymFac@i, jD DCcoeff@i, jD;

For@i = 1; DCklist = 8<, i £ 26, i++,

For@j = 1; DCjlist = 8<, j £ 26, j++, AppendTo@DCjlist, 8DCMatFunc@i, jD<DD;
AppendTo@DCklist, Flatten@DCjlistDDD

H*DCklist��MatrixForm;*L
H*Eigenvalues@DCklistD*L

For triply charged two-particle states

TCColumn = 8 Φ1p ∆Rpp, Φ1p ∆Lpp , Φ2p ∆Rpp , Φ2p ∆Lpp, ∆Rp ∆Rpp, ∆Rp ∆Lpp, ∆Lp ∆Rpp, ∆Lp ∆Lpp<;
TCRow = 8 Φ1m ∆Rmm, Φ1m ∆Lmm , Φ2m ∆Rmm , Φ2m ∆Lmm, ∆Rm ∆Rmm, ∆Rm ∆Lmm, ∆Lm ∆Rmm, ∆Lm ∆Lmm<;

Symmetry factor:

TCfacList@i_, j_D := FactorList@TCColumn@@iDD TCRow@@jDDD;
TCSymFac@i_, j_D := HIf@Length@TCfacList@i, jDD � 2, Return@Factorial@4DDD;

If@Length@TCfacList@i, jDD � 3, If@HTCfacList@i, jDL@@2, 2DD � 2 &&

HTCfacList@i, jDL@@3, 2DD � 2, Return@4D, Return@Factorial@3DDDD;
If@Length@TCfacList@i, jDD � 4, Return@2DD;
If@Length@TCfacList@i, jDD � 5, Return@1DDL;

TCcoeff@i_, j_D := Coefficient@Vtot, TCColumn@@iDD TCRow@@jDDD;
TCMatFunc@i_, j_D := TCSymFac@i, jD TCcoeff@i, jD;

For@i = 1; TCklist = 8<, i £ 8 , i++,

For@j = 1; TCjlist = 8<, j £ 8, j++, AppendTo@TCjlist, 8TCMatFunc@i, jD<DD;
AppendTo@TCklist, Flatten@TCjlistDDD

H*TCklist��MatrixForm*L
H*Eigenvalues@TCklistD*L
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130 Chapter C. Unitarity in LRSM with Triplet Scalars

The Mathematica file Eigenvalue_collect.nb

Eigenvalues of the Scattering Matrices 

and Unitarity: 

Eigenvalues of all the scattering matrices of q-charged 2-particle states. Each eigen-

value will have to be less than equal to 8Π which is basically the unitarity condition.

At the very end we also enlist the vacuum stability criteria.

Eigenvalues from neutral 2-particle scattering 

matrix:

Total 56 eigenvalues among which 29 (e1neut to e21neut + 8 soln) are independent:

e1neut =
4

3

H4 Λ5 + Λ6 - Λ7L - I21�3 I-76 Λ
5

2
- 80 Λ5 Λ6 - 112 Λ

6

2
+ 68 Λ5 Λ7 + 44 Λ6 Λ7 - 16 Λ

7

2MM �
K3 J1280 Λ

5

3
+ 2544 Λ

5

2
Λ6 - 1344 Λ5 Λ

6

2
- 2176 Λ

6

3
- 1752 Λ

5

2
Λ7 - 2352 Λ5 Λ6 Λ7 + 912 Λ

6

2
Λ7 + 816 Λ5 Λ

7

2
+

528 Λ6 Λ
7

2
- 128 Λ

7

3
+ -J4 I-76 Λ

5

2
- 80 Λ5 Λ6 - 112 Λ

6

2
+ 68 Λ5 Λ7 + 44 Λ6 Λ7 - 16 Λ

7

2M3

+

I1280 Λ
5

3
+ 2544 Λ

5

2
Λ6 - 1344 Λ5 Λ

6

2
- 2176 Λ

6

3
- 1752 Λ

5

2
Λ7 -

2352 Λ5 Λ6 Λ7 + 912 Λ
6

2
Λ7 + 816 Λ5 Λ

7

2
+ 528 Λ6 Λ

7

2
- 128 Λ

7

3M2NN1�3O +

1

3 ´ 2
1�3 J1280 Λ

5

3
+ 2544 Λ

5

2
Λ6 - 1344 Λ5 Λ

6

2
- 2176 Λ

6

3
- 1752 Λ

5

2
Λ7 - 2352 Λ5 Λ6 Λ7 + 912 Λ

6

2
Λ7 +

816 Λ5 Λ
7

2
+ 528 Λ6 Λ

7

2
- 128 Λ

7

3
+ -J4 I-76 Λ

5

2
- 80 Λ5 Λ6 - 112 Λ

6

2
+ 68 Λ5 Λ7 + 44 Λ6 Λ7 - 16 Λ

7

2M3

+

I1280 Λ
5

3
+ 2544 Λ

5

2
Λ6 - 1344 Λ5 Λ

6

2
- 2176 Λ

6

3
- 1752 Λ

5

2
Λ7 - 2352

Λ5 Λ6 Λ7 + 912 Λ
6

2
Λ7 + 816 Λ5 Λ

7

2
+ 528 Λ6 Λ

7

2
- 128 Λ

7

3M2NN1�3
;

e2neut =

4

3

H4 Λ5 + Λ6 - Λ7L + JJ1 + ä 3 N I-76 Λ
5

2
- 80 Λ5 Λ6 - 112 Λ

6

2
+ 68 Λ5 Λ7 + 44 Λ6 Λ7 - 16 Λ

7

2MN � K3 ´ 2
2�3

J1280 Λ
5

3
+ 2544 Λ

5

2
Λ6 - 1344 Λ5 Λ

6

2
- 2176 Λ

6

3
- 1752 Λ

5

2
Λ7 - 2352 Λ5 Λ6 Λ7 + 912 Λ

6

2
Λ7 + 816 Λ5 Λ

7

2
+

528 Λ6 Λ
7

2
- 128 Λ

7

3
+ -J4 I-76 Λ

5

2
- 80 Λ5 Λ6 - 112 Λ

6

2
+ 68 Λ5 Λ7 + 44 Λ6 Λ7 - 16 Λ

7

2M3

+ I1280 Λ
5

3
+

2544 Λ
5

2
Λ6 - 1344 Λ5 Λ

6

2
- 2176 Λ

6

3
- 1752 Λ

5

2
Λ7 - 2352 Λ5 Λ6 Λ7 + 912 Λ

6

2
Λ7 + 816 Λ5 Λ

7

2
+

528 Λ6 Λ
7

2
- 128 Λ

7

3M2NN1�3O -
1

6 ´ 2
1�3 J1 - ä 3 N

J1280 Λ
5

3
+ 2544 Λ

5

2
Λ6 - 1344 Λ5 Λ

6

2
- 2176 Λ

6

3
- 1752 Λ

5

2
Λ7 - 2352 Λ5 Λ6 Λ7 + 912 Λ

6

2
Λ7 +

816 Λ5 Λ
7

2
+ 528 Λ6 Λ

7

2
- 128 Λ

7

3
+ -J4 I-76 Λ

5

2
- 80 Λ5 Λ6 - 112 Λ

6

2
+ 68 Λ5 Λ7 + 44 Λ6 Λ7 - 16 Λ

7

2M3

+

I1280 Λ
5

3
+ 2544 Λ

5

2
Λ6 - 1344 Λ5 Λ

6

2
- 2176 Λ

6

3
- 1752 Λ

5

2
Λ7 - 2352

Λ5 Λ6 Λ7 + 912 Λ
6

2
Λ7 + 816 Λ5 Λ

7

2
+ 528 Λ6 Λ

7

2
- 128 Λ

7

3M2NN1�3
;

e3neut =

4

3

H4 Λ5 + Λ6 - Λ7L + JJ1 - ä 3 N I-76 Λ
5

2
- 80 Λ5 Λ6 - 112 Λ

6

2
+ 68 Λ5 Λ7 + 44 Λ6 Λ7 - 16 Λ

7

2MN � K3 ´ 2
2�3

J1280 Λ
5

3
+ 2544 Λ

5

2
Λ6 - 1344 Λ5 Λ

6

2
- 2176 Λ

6

3
- 1752 Λ

5

2
Λ7 - 2352 Λ5 Λ6 Λ7 + 912 Λ

6

2
Λ7 + 816 Λ5 Λ

7

2
+

528 Λ6 Λ
7

2
- 128 Λ

7

3
+ -J4 I-76 Λ

5

2
- 80 Λ5 Λ6 - 112 Λ

6

2
+ 68 Λ5 Λ7 + 44 Λ6 Λ7 - 16 Λ

7

2M3

+ I1280 Λ
5

3
+

2544 Λ
5

2
Λ6 - 1344 Λ5 Λ

6

2
- 2176 Λ

6

3
- 1752 Λ

5

2
Λ7 - 2352 Λ5 Λ6 Λ7 + 912 Λ

6

2
Λ7 + 816 Λ5 Λ

7

2
+

- M2NN O -
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2544 Λ
5

2
Λ6 - 1344 Λ5 Λ

6

2
- 2176 Λ

6

3
- 1752 Λ

5

2
Λ7 - 2352 Λ5 Λ6 Λ7 + 912 Λ

6

2
Λ7 + 816 Λ5 Λ

7

2
+

528 Λ6 Λ
7

2
- 128 Λ

7

3M2NN1�3O -
1

6 ´ 2
1�3 J1 + ä 3 N

J1280 Λ
5

3
+ 2544 Λ

5

2
Λ6 - 1344 Λ5 Λ

6

2
- 2176 Λ

6

3
- 1752 Λ

5

2
Λ7 - 2352 Λ5 Λ6 Λ7 + 912 Λ

6

2
Λ7 +

816 Λ5 Λ
7

2
+ 528 Λ6 Λ

7

2
- 128 Λ

7

3
+ -J4 I-76 Λ

5

2
- 80 Λ5 Λ6 - 112 Λ

6

2
+ 68 Λ5 Λ7 + 44 Λ6 Λ7 - 16 Λ

7

2M3

+

I1280 Λ
5

3
+ 2544 Λ

5

2
Λ6 - 1344 Λ5 Λ

6

2
- 2176 Λ

6

3
- 1752 Λ

5

2
Λ7 - 2352

Λ5 Λ6 Λ7 + 912 Λ
6

2
Λ7 + 816 Λ5 Λ

7

2
+ 528 Λ6 Λ

7

2
- 128 Λ

7

3M2NN1�3
;

e4neut =
Λ12

2

- I-48 Λ
10

2
- 9 Λ

12

2 M � 3 ´ 2
2�3

54 Λ
12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
+

54 Λ
12

3 + 2916 Λ
12

6 + 4 I-48 Λ
10

2 - 9 Λ
12

2 M3

1�3

6 ´ 2
1�3 ;H* Appeared 4 times *L

e5neut =

Λ12

2

+ JJ1 + ä 3 N I-48 Λ
10

2
- 9 Λ

12

2 MN � 6 ´ 2
2�3

54 Λ
12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
-

1

12 ´ 2
1�3 J1 - ä 3 N 54 Λ

12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
;H* Appeared 4 times *L

e6neut =

Λ12

2

+ JJ1 - ä 3 N I-48 Λ
10

2
- 9 Λ

12

2 MN � 6 ´ 2
2�3

54 Λ
12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
-

1

12 ´ 2
1�3 J1 + ä 3 N 54 Λ

12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
;H* Appeared 4 times *L

e7neut =
Λ12

2

- I-48 Λ
10

2
- 9 Λ

12

2 M � 3 ´ 2
2�3

-54 Λ
12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
+

-54 Λ
12

3 + 2916 Λ
12

6 + 4 I-48 Λ
10

2 - 9 Λ
12

2 M3

1�3

6 ´ 2
1�3 ;H* Appeared 4 times *L

e8neut =

Λ12

2

+ JJ1 + ä 3 N I-48 Λ
10

2
- 9 Λ

12

2 MN � 6 ´ 2
2�3

-54 Λ
12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
-

1

12 ´ 2
1�3 J1 - ä 3 N -54 Λ

12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
;H* Appeared 4 times *L

e9neut =

Λ12

2

+ JJ1 - ä 3 N I-48 Λ
10

2
- 9 Λ

12

2 MN � 6 ´ 2
2�3

-54 Λ
12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
-

;

2     Eigenvalue_collect.nb
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1

12 ´ 2
1�3 J1 + ä 3 N -54 Λ

12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
;H* Appeared 4 times *L

e10neut = 2 HΛ1 - 2 Λ2 - Λ3L; H* Appeared twice *L
e11neut = 4 HΛ1 - 2 Λ2 - Λ3L;
e12neut = 2 HΛ1 + 2 Λ2 + Λ3L; H* Appeared twice *L
e13neut = 2 HΛ1 + 2 Λ2 + Λ3 - 2 Λ4L;
e14neut = 2 HΛ1 + 2 Λ2 + Λ3 + 2 Λ4L;
e15neut = 3 Λ1 + 6 Λ2 + 3 Λ3 - Λ

1

2
+ 4 Λ1 Λ2 + 4 Λ

2

2
+ 2 Λ1 Λ3 + 4 Λ2 Λ3 + Λ

3

2
+ 32 Λ

4

2
;

e16neut = 3 Λ1 + 6 Λ2 + 3 Λ3 + Λ
1

2
+ 4 Λ1 Λ2 + 4 Λ

2

2
+ 2 Λ1 Λ3 + 4 Λ2 Λ3 + Λ

3

2
+ 32 Λ

4

2
;

e17neut = 2 Λ5; H* Appeared twice *L
e18neut = 4 Λ5; H* Appeared twice *L
e19neut = Λ7; H* Appeared twice *L
e20neut = Λ7 - 4 Λ8; H* Appeared 3 times *L
e21neut = Λ7 + 4 Λ8; H* Appeared 3 times *L

The Equation:

Remaining 8 eigenvalues are the solution of x of the following

eqn of the following form. Please check the original

notebook file for the coefficients HðxL. We omitted the
exact expression here because the coeffients are lengthy.

x
8

+ ð7 x
7

+ ð6 x
6

+ ð5 x
5

+ ð4 x
4

+ ð3 x
3

+ ð2 x
2

+ ð1 x + ð Constant � 0;

Eigenvalues from singly charged 2-particle 

scattering matrix:

Total 40 eigenvalues among which 14 (e1sing - e14sing) are independent.

H*e1sing-e3sing appeared once,e4sing-e9sing appeared twice and four zero eigenvalues.*L
e1sing =

2

3

H2 Λ1 + Λ5L -

I21�3 I-4 Λ
1

2
- 12 Λ

4

2
+ 8 Λ1 Λ5 - 4 Λ

5

2
- 6 Λ

12

2 MM � K3 J-16 Λ
1

3
+ 144 Λ1 Λ

4

2
+ 48 Λ

1

2
Λ5 - 144 Λ

4

2
Λ5 -

48 Λ1 Λ
5

2
+ 16 Λ

5

3
- 36 Λ1 Λ

12

2
+ 36 Λ5 Λ

12

2
+ -J4 I-4 Λ

1

2
- 12 Λ

4

2
+ 8 Λ1 Λ5 - 4 Λ

5

2
- 6 Λ

12

2 M3

+

I-16 Λ
1

3
+ 144 Λ1 Λ

4

2
+ 48 Λ

1

2
Λ5 - 144 Λ

4

2
Λ5 - 48 Λ1 Λ

5

2
+ 16 Λ

5

3
- 36 Λ1 Λ

12

2
+ 36 Λ5 Λ

12

2 M2NN1�3O +

1

3 ´ 2
1�3 J-16 Λ

1

3
+ 144 Λ1 Λ

4

2
+ 48 Λ

1

2
Λ5 - 144 Λ

4

2
Λ5 - 48 Λ1 Λ

5

2
+ 16 Λ

5

3
- 36 Λ1 Λ

12

2
+

36 Λ5 Λ
12

2
+ -J4 I-4 Λ

1

2
- 12 Λ

4

2
+ 8 Λ1 Λ5 - 4 Λ

5

2
- 6 Λ

12

2 M3

+

I-16 Λ
1

3
+ 144 Λ1 Λ

4

2
+ 48 Λ

1

2
Λ5 - 144 Λ

4

2
Λ5 - 48 Λ1 Λ

5

2
+ 16 Λ

5

3
- 36 Λ1 Λ

12

2
+ 36 Λ5 Λ

12

2 M2NN1�3
;

e2sing =
2

3

H2 Λ1 + Λ5L +

JJ1 + ä 3 N I-4 Λ
1

2
- 12 Λ

4

2
+ 8 Λ1 Λ5 - 4 Λ

5

2
- 6 Λ

12

2 MN � K3 ´ 2
2�3 J-16 Λ

1

3
+ 144 Λ1 Λ

4

2
+ 48 Λ

1

2
Λ5 -

144 Λ
4

2
Λ5 - 48 Λ1 Λ

5

2
+ 16 Λ

5

3
- 36 Λ1 Λ

12

2
+ 36 Λ5 Λ

12

2
+ -J4 I-4 Λ

1

2
- 12 Λ

4

2
+ 8 Λ1 Λ5 - 4 Λ

5

2
- 6 Λ

12

2 M3

+

2NN O -

Eigenvalue_collect.nb    3
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144 Λ
4

2
Λ5 - 48 Λ1 Λ

5

2
+ 16 Λ

5

3
- 36 Λ1 Λ

12

2
+ 36 Λ5 Λ

12

2
+ -J4 I-4 Λ

1

2
- 12 Λ

4

2
+ 8 Λ1 Λ5 - 4 Λ

5

2
- 6 Λ

12

2 M3

+

I-16 Λ
1

3
+ 144 Λ1 Λ

4

2
+ 48 Λ

1

2
Λ5 - 144 Λ

4

2
Λ5 - 48 Λ1 Λ

5

2
+ 16 Λ

5

3
- 36 Λ1 Λ

12

2
+ 36 Λ5 Λ

12

2 M2NN1�3O -

1

6 ´ 2
1�3 J1 - ä 3 N J-16 Λ

1

3
+ 144 Λ1 Λ

4

2
+ 48 Λ

1

2
Λ5 - 144 Λ

4

2
Λ5 - 48 Λ1 Λ

5

2
+ 16 Λ

5

3
-

36 Λ1 Λ
12

2
+ 36 Λ5 Λ

12

2
+ -J4 I-4 Λ

1

2
- 12 Λ

4

2
+ 8 Λ1 Λ5 - 4 Λ

5

2
- 6 Λ

12

2 M3

+

I-16 Λ
1

3
+ 144 Λ1 Λ

4

2
+ 48 Λ

1

2
Λ5 - 144 Λ

4

2
Λ5 - 48 Λ1 Λ

5

2
+ 16 Λ

5

3
- 36 Λ1 Λ

12

2
+ 36 Λ5 Λ

12

2 M2NN1�3
;

e3sing =
2

3

H2 Λ1 + Λ5L +

JJ1 - ä 3 N I-4 Λ
1

2
- 12 Λ

4

2
+ 8 Λ1 Λ5 - 4 Λ

5

2
- 6 Λ

12

2 MN � K3 ´ 2
2�3 J-16 Λ

1

3
+ 144 Λ1 Λ

4

2
+ 48 Λ

1

2
Λ5 -

144 Λ
4

2
Λ5 - 48 Λ1 Λ

5

2
+ 16 Λ

5

3
- 36 Λ1 Λ

12

2
+ 36 Λ5 Λ

12

2
+ -J4 I-4 Λ

1

2
- 12 Λ

4

2
+ 8 Λ1 Λ5 - 4 Λ

5

2
- 6 Λ

12

2 M3

+

I-16 Λ
1

3
+ 144 Λ1 Λ

4

2
+ 48 Λ

1

2
Λ5 - 144 Λ

4

2
Λ5 - 48 Λ1 Λ

5

2
+ 16 Λ

5

3
- 36 Λ1 Λ

12

2
+ 36 Λ5 Λ

12

2 M2NN1�3O -

1

6 ´ 2
1�3 J1 + ä 3 N J-16 Λ

1

3
+ 144 Λ1 Λ

4

2
+ 48 Λ

1

2
Λ5 - 144 Λ

4

2
Λ5 - 48 Λ1 Λ

5

2
+ 16 Λ

5

3
-

36 Λ1 Λ
12

2
+ 36 Λ5 Λ

12

2
+ -J4 I-4 Λ

1

2
- 12 Λ

4

2
+ 8 Λ1 Λ5 - 4 Λ

5

2
- 6 Λ

12

2 M3

+

I-16 Λ
1

3
+ 144 Λ1 Λ

4

2
+ 48 Λ

1

2
Λ5 - 144 Λ

4

2
Λ5 - 48 Λ1 Λ

5

2
+ 16 Λ

5

3
- 36 Λ1 Λ

12

2
+ 36 Λ5 Λ

12

2 M2NN1�3
;

e4sing =
Λ12

3

- I-192 Λ
10

2
- 28 Λ

12

2 M �
K24 J144 Λ

10

2
Λ12 - 10 Λ

12

3
+ 3 3

,I-4096 Λ
10

6
- 1024 Λ

10

4
Λ
12

2
- 368 Λ

10

2
Λ
12

4
- 9 Λ

12

6 MN1�3O +

1

6

J144 Λ
10

2
Λ12 - 10 Λ

12

3
+ 3 3

,I-4096 Λ
10

6
- 1024 Λ

10

4
Λ
12

2
- 368 Λ

10

2
Λ
12

4
- 9 Λ

12

6 MN1�3
;

e5sing =
Λ12

3

+ JJ1 + ä 3 N I-192 Λ
10

2
- 28 Λ

12

2 MN �
K48 J144 Λ

10

2
Λ12 - 10 Λ

12

3
+ 3 3

,I-4096 Λ
10

6
- 1024 Λ

10

4
Λ
12

2
- 368 Λ

10

2
Λ
12

4
- 9 Λ

12

6 MN1�3O -

1

12

J1 - ä 3 N J144 Λ
10

2
Λ12 - 10 Λ

12

3
+ 3 3

,I-4096 Λ
10

6
- 1024 Λ

10

4
Λ
12

2
- 368 Λ

10

2
Λ
12

4
- 9 Λ

12

6 MN1�3
;

e6sing =
Λ12

3

+ JJ1 - ä 3 N I-192 Λ
10

2
- 28 Λ

12

2 MN �
K48 J144 Λ

10

2
Λ12 - 10 Λ

12

3
+ 3 3

,I-4096 Λ
10

6
- 1024 Λ

10

4
Λ
12

2
- 368 Λ

10

2
Λ
12

4
- 9 Λ

12

6 MN1�3O -

1

12

J1 + ä 3 N J144 Λ
10

2
Λ12 - 10 Λ

12

3
+ 3 3

,I-4096 Λ
10

6
- 1024 Λ

10

4
Λ
12

2
- 368 Λ

10

2
Λ
12

4
- 9 Λ

12

6 MN1�3
;

e7sing =
2 Λ12

3

- I-192 Λ
10

2
- 28 Λ

12

2 M �
K24 J-144 Λ

10

2
Λ12 + 10 Λ

12

3
+ 3 3

,I-4096 Λ
10

6
- 1024 Λ

10

4
Λ
12

2
- 368 Λ

10

2
Λ
12

4
- 9 Λ

12

6 MN1�3O +

1

6

J-144 Λ
10

2
Λ12 + 10 Λ

12

3
+ 3 3

,I-4096 Λ
10

6
- 1024 Λ

10

4
Λ
12

2
- 368 Λ

10

2
Λ
12

4
- 9 Λ

12

6 MN1�3
;

e8sing =
2 Λ12

3

+ JJ1 + ä 3 N I-192 Λ
10

2
- 28 Λ

12

2 MN �
K48 J-144 Λ

10

2
Λ12 + 10 Λ

12

3
+ 3 3

,I-4096 Λ
10

6
- 1024 Λ

10

4
Λ
12

2
- 368 Λ

10

2
Λ
12

4
- 9 Λ

12

6 MN1�3O -

1

12

J1 - ä 3 N J-144 Λ
10

2
Λ12 + 10 Λ

12

3
+ 3 3

,I-4096 Λ
10

6
- 1024 Λ

10

4
Λ
12

2
- 368 Λ

10

2
Λ
12

4
- 9 Λ

12

6 MN1�3
;

e9sing =
2 Λ12

3

+ JJ1 - ä 3 N I-192 Λ
10

2
- 28 Λ

12

2 MN �
-
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K48 J-144 Λ
10

2
Λ12 + 10 Λ

12

3
+ 3 3

,I-4096 Λ
10

6
- 1024 Λ

10

4
Λ
12

2
- 368 Λ

10

2
Λ
12

4
- 9 Λ

12

6 MN1�3O -

1

12

J1 + ä 3 N J-144 Λ
10

2
Λ12 + 10 Λ

12

3
+ 3 3

,I-4096 Λ
10

6
- 1024 Λ

10

4
Λ
12

2
- 368 Λ

10

2
Λ
12

4
- 9 Λ

12

6 MN1�3
;

e10sing = 2 HΛ1 - Λ4L; H* Appeared 3 times *L
e11sing = 2 HΛ1 + Λ4L; H* Appeared 3 times *L
e12sing = 2 Λ5; H* Appeared 5 times *L
e13sing = Λ7; H* Appeared 6 times *L
e14sing = Λ12; H* Appeared 4 times *LH* Total 3+H6*2L+4+3+3+5+6+4=40 *L

Eigenvalues from doubly charged 2-particle 

scattering matrix:

Total 26 eigenvalues among which 16 (e1doub - e16doub) are independent.

e1doub =
Λ12

2

- I-48 Λ
10

2
- 9 Λ

12

2 M � 3 ´ 2
2�3

54 Λ
12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
+

54 Λ
12

3 + 2916 Λ
12

6 + 4 I-48 Λ
10

2 - 9 Λ
12

2 M3

1�3

6 ´ 2
1�3 ; H* Appeared twice *L

e2doub =
Λ12

2

+ JJ1 + ä 3 N I-48 Λ
10

2
- 9 Λ

12

2 MN �
6 ´ 2

2�3
54 Λ

12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
-

1

12 ´ 2
1�3 J1 - ä 3 N 54 Λ

12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
; H* Appeared twice *L

e3doub =
Λ12

2

+ JJ1 - ä 3 N I-48 Λ
10

2
- 9 Λ

12

2 MN �
6 ´ 2

2�3
54 Λ

12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
-

1

12 ´ 2
1�3 J1 + ä 3 N 54 Λ

12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
; H* Appeared twice *L

e4doub =
Λ12

2

- I-48 Λ
10

2
- 9 Λ

12

2 M � 3 ´ 2
2�3

-54 Λ
12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
+

-54 Λ
12

3 + 2916 Λ
12

6 + 4 I-48 Λ
10

2 - 9 Λ
12

2 M3

1�3

6 ´ 2
1�3 ; H* Appeared twice *L

e5doub =
Λ12

2

+ JJ1 + ä 3 N I-48 Λ
10

2
- 9 Λ

12

2 MN �
6 ´ 2

2�3
-54 Λ

12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
-

;

Eigenvalue_collect.nb    5
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1

12 ´ 2
1�3 J1 - ä 3 N -54 Λ

12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
; H* Appeared twice *L

e6doub =
Λ12

2

+ JJ1 - ä 3 N I-48 Λ
10

2
- 9 Λ

12

2 MN �
6 ´ 2

2�3
-54 Λ

12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
-

1

12 ´ 2
1�3 J1 + ä 3 N -54 Λ

12

3
+ 2916 Λ

12

6
+ 4 I-48 Λ

10

2
- 9 Λ

12

2 M3

1�3
; H* Appeared twice *L

e7doub = 4 Λ1; H* Appeared twice *L
e8doub = 2 Λ1 + 4 Λ2 + 2 Λ3;

e9doub = 2 HΛ5 + 2 Λ6L; H* Appeared twice *L
e10doub = Λ7; H* Appeared 3 times *L
e11doub = Λ7 - 4 Λ8;

e12doub = Λ7 + 4 Λ8;

e13doub = 3 Λ5 + 4 Λ6 - 4 Λ8 - Λ
5

2
+ 16 Λ

6

2
- 32 Λ6 Λ8 + 16 Λ

8

2
;

e14doub = 3 Λ5 + 4 Λ6 - 4 Λ8 + Λ
5

2
+ 16 Λ

6

2
- 32 Λ6 Λ8 + 16 Λ

8

2
;

e15doub = 3 Λ5 + 4 Λ6 + 4 Λ8 - Λ
5

2
+ 16 Λ

6

2
+ 32 Λ6 Λ8 + 16 Λ

8

2
;

e16doub = 3 Λ5 + 4 Λ6 + 4 Λ8 + Λ
5

2
+ 16 Λ

6

2
+ 32 Λ6 Λ8 + 16 Λ

8

2
;H*Total H7*2L+1+2+3+6=26 eigenvalues.*L

Eigenvalues from triply charged 2-particle 

scattering matrix:

e1trip = Λ12;H*Appeared twice*L
e2trip = 2 Λ5;H*Appeared twice*L
e3trip = Λ7;H*Appeared twice*LH*Total H3*2L+2=8 eigenvalues.Two of them are zero*L

Eigenvalues from quartically charged 2-particle 

scattering matrix:

e1quart = 4 Λ5; H* Appeared twice *L
e2quart = Λ7;H* Total 3 eigenvalues *L

Vacuum stability criteria of left-right model from 

copositivity

[Phys.Rev. D89 (2014) 9, 095008]

Λ1 > 0;

Λ5 > 0;

Λ5 + Λ6 > 0;

16 Λ1 Λ5 - Λ
12

2
> 0;

6     Eigenvalue_collect.nb
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