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ABSTRACT

In this thesis we investigate the formatieﬁ end
eyelution of solitary waves in laboratory and space plasmas
upde: various situations. The electrostatic«drift’Qaves

in a highly dispersive magnetized plasma can undergo non-
linear self modulation and give rise to envelope solitons
'q:_envelope holes. The dependence of the modul ational
stability of these waves on the wave number, the angle of
p;epagation,‘the magnetic field and density gradient is
stuaied. In an inhomqgeneous plasma an“ion acousﬁic envelope
soliton with width of the order of the density gradieht scale
length is found to split into two envelope solitonsfone of

which damps afterwards, But if the width is very small,



s e‘Qery long interval of.tlme it attains a large
plitude and splits 1nto many envelope Solitons. An
velope hole, on the other hand develops two soliton-like
:mps whereas a periodic modulation develops a spectrum
g*envelope waves, A magnetized plasma with hot ions and

d electrons can sustain electron acoustic waves, These

;w§§és in the limit of weak nonlinearity and dispersion
' ‘cén give rise to solitary waves which undergo ion Landau
faamping or growth depending on whether they are moving
fféster or slower than the electron drift in the medium,
;Ajgng with this damping or growth they develop tails. The
;teﬁe of these processes with respect to changes in the
angle of propagation and electron to ion temperature ratio
.ére;also studied. In the absence of ion Landau damping
“;tﬁe,electron acoustic waves can form finite amplitude
édlitary waves with an upper limit on the‘Mach number,

The coupled ion acoustiCALangmuir solitons in a partially
ionized Plasma are found to be affected by collisionel_
 and viscous dissipations, The result of electron-ion and
/eiectron-neutral collisions is to make the Langmuir field
to damp and let the ion density perturbations to radiate
;away; Whereas the ion-neutral collisions damp the ion
'i*t‘density perturbations and let the Langmuir field to flow
:out. In the case of ion viscosity the ion density perturbat-

ions start radiating away followed by the Langmuir field,




ong these various processes, the effect of electron-ion
1d;é1éétronaneutral collisions is found to be stronger

'ﬁéﬁ—the other two,




CHAPTER I

INTRODUCTION

Wave motion is so widespread in nature that the
importance of its study can hardly be overemphasised. Waves
in liquids, elastic waves, electromagnetic waves, waves in

' plasmas etc, are only a few of the representatives of an
‘extensive family of waves in continuous media, - The linear
properties of most of these waves have been studied in
great detail. But i1f the amplitude of a‘wave becomes

very large then one has to deal with its nonlinear propert-
ies., Many interesting phjsical phenomena have been

discovered in nonlinear media in recent years. This includes



e effect of harmonic generation, self focussing and

/ééiflcOnEraction of wave packets, stimulated scattering,

'ufbulence in plasmas, formation of solitary waves,
anomalous heating, anomalous transport etc.

Here we present an investigation of some nonlinear

Jwave phenomena in plasmas under dlfferent COnflguratlons

HRR TS

,piasmas ¢an sustain a rich variety of waves manQ»of Wthh
;afe‘unstahie and grow to become nonlinear. Oné can explain
7&5@ nonlinear devqlopment of a wave as follows:

'Let us considér wave motion governed by the nonlinear
 équation,

,a_.fé -/-C(qﬁ)ajf_ =0,
D E a2 x

(1.1)

f Where 96 represents one of the fluctuating variables
(density, electric field etc.) due to the wave., TIf the wave
‘amplitude is not very large then this equation ¢an be

linearised as,

~

¢ L (cf: 1”3 (1.2)
2t

where ﬁb is the average equlllbrlum value of gﬁ

B o
Eq. (1.2) can have periodic wave solutions of the form,

g]ﬁ:axél(/vv(k Z”Wtf) 1.3)

with g (<< ) as its amplitude and () and k as

its frequency and wave number, Substituting (1.3) ints




2) we get the linear dispersion relation of the wave,
C(gl:)’)k? | (1.4)

The muantity (W/k ) = C (¢ ) is called the phase

o
ve1001ty and the wave as a whole moves with this ve1001ty

without.any,change in its shape. But if the wave amplltude

is large then the linear dispersion relation is not valid,

Thén to solve Eq. (1.1), we define (Witham, 1974)

()

and. rewrite it as,

_f.ﬂ(z éf = 51?5 =0, (1.6)

-

At 0 = A¥

’Which means that if we take (1.3) as the form of the wave

(1.5)

A x
At

Q/‘\g

~at t = 0 (with the amplitude 'a' no Yonger very small),
 different portions of the wave will move with different
constant velocities, For example, if we take C@'S) = 76/

then the crest of the wave moves faster than its trough.

This deforms the shape and leads to the steepening and the
ultimate breaking of the wave. This is the nonlineér '
development of a wave described by Eg. (1.1). But if the
éystem is diépersive then this equation will have higher order
VJ space derivative terms due to which the nonlinear steepening

Qf the wave can be arrested, The presence of such terms



:will alter the llnear dlSper51on relatlon (1 4) this in

urn may lead to the relatlon,
al :

 Waves with this property are called dispersive (Witham,

-Ig7¢}ﬁwaves. In—such cases—<?197L1¢i>M-willnelonger,be»
"avcéhstant and for an arbitrary initial perturbation, its
aifférent Fourier components will move with different
 §hase velocities, Consequently the wave will spread out
ai~in space, This effect is opposite to that of nonlineér
steepening. So if a wéve motion is characterised by both
L'~nonlinearity and dispefsion, these two effects can be

balanced with each other,

To illustrate this, let us consider the equation,

X R < 2¢ L5234 -0, s
2 xd 2t pPhoe o

which is the well known Korteweg-de Vries equation, This
equation was originally derived for shallow water waves by
Korteweg and devVries (1895). It has stationary solutions

of -the form,

p = () o (18 om0 o

This represents a wave with a locaif:e&f;giitary hump




Vgh§ with a constant‘&elbcity u without any change in
tﬁeféhape, The amplitude of this solitary wave is directly
proportional to its'velocity'and its width is inversely
4§roportional to the square root of its amplitude., Eqg, (1.8)
?has‘been found to be applicable in many other physical
%sit&ationsmaLSGTWMAm@ngwthemwavesminmplasmasfwhydromagneticw
WaVes(_ion acoustic waves, drift waves etc, (Gardner and

Morikawa, 1960; Washimi and Taniuti, 1966; Kever and

'beikawa,_1969; Jeffrey and Kakutani, 1972; Jeffrey, 1973)
Hére found to be governed by the K-dV equation or modified
.k-dv equétions. Most éf these modern applicatioﬁs began
 with the study of the problem of a nonlinear vibrating
system by Fermi, Pasta and Ulam (1955) where a lack of

| ﬁhermalization of the enérgy in the system was observed;
Later on it was found that such a nonlinear system can be
modeled by the K-dV equation and there existed‘solitary
waves in the system., These solitary waves were found to

be stable under perturbationé and collisions among themselves
(zabusky and Kruskal, 1965) which explained the lack of the
energy £hermalization. Because of their stability these

solitary waves were named 'solitons',

When a medium is strongly dispersive, then it is
difficult to study the behaviour of an erbitrary wave form,
This is because the difference in the phase velocities of

its different Fourier components will be very large and the




. will Quickly'brdadén.. In such cases it is more

appropriate tn study the. behavinur of the envelope of a

single monochromatic wave like,

4/5 = a wﬁ[@’(k x——wf) +C.C, (1.9)

‘ nvelope which is usually governed by an equation (Karpman,

f1967 Karpman and Kruskal, 1969; Hasegawa, 1975)
(90. +~ 2 a
ot JB?C,

FRew) Oa + (k) |a e =0, 10
D x*

where \, = 9 u.)/ak) is the group velocity of the wave

Q¥Q

and = 1 . This is called the nonlinear

: :;7:;

Schrbdlnger equation in which the third and the fourth
terms represent dispersion and nonlinearity. Comparing with

the ordinary Schrddinger equation the nonlinear term

represents a self generated potential seen by the quasi-

particles whose wave function is 'a', This potential is
attractive if PQ >0; in which case quasiparticles are
trapped in it. This results in the increase of the quasi-

particle density [a |2 thereby increasing the strength of




potential. Consequently more quasi particles will be trapped
eaéiﬁg to an instabiiity‘of the wave, This instability is
'céiied the modulaticnal instability or self trapping insta-
bility_(HasegaWa, 1970;1971; 1975). However, after a certain
étagéthe dispersive term of the equation will take over and

balance off the further growth of the instability. Stationary

SOluthnS of this equation where this bal ahce has been

maintained are of the form,

&l = a /daeldﬂéza (x Ve ﬁ)] (1.11)

i$Which, like Eq, (1.9) represents a solitary hump in the wave
'envélope or a wave packet moving with the group velocityyvg.
It is called an envelope soliton (Karpman, 1967; Hasegawa,
"1975:'Mio et al., 1976). The width of this soliton -is
inversely proportional to the square root of its amplitude

but the velocity is independent of its amplitude.

On the dther hand when PQ < 0, the waves are modul at-

innally stable, The corresponding stationary solution is given

by
- v
[a] = ) |— @ /@@L [[ {Cw
~ » \/2
acl’\;af)] (1.12)
where a, is the asymptotic value of [a| and 3 is the

depth of the modul ation (Hasegawa, 1975). This solution




egénts~a local ized depletion propagating with velocity
and it is called an/ envelope hole, When @ tends to unity,

12) becomes,

o om——

| Vs
|,
= Ql Towdh "‘““!0‘:) (I V {'_) ? (1.13)

which is called an envelope shock.

The Boussinesqg equation (Boussinesq, 1872), the non-
1ineér'Klein—Gordon equation (Schiff, 1951), the nonlinear
Sine#Gordon equation (Barone et al,, 1971), the Hirota
éQuation (Hirota, 1973) etc., are a few more examples of
,hohlinear dispersive wave equations, In most of these cases,
:Ey‘the method of inverse scattering, one can show that any
afbitrary initial wave will be decompdsed into a series of
solitons (Gardner et al., 1967; Lax, 1968; Zakharov and
 Shabat, 1972; Atlowitz et al., 1973; Scott et al,, 1973;
J;Mlura, 1976). Apart from plasma physics, the nonlindar
fdiSpersive wave equations and soliton solutions have found
iapélications in many other fields of FPhysics (Bishop énd
‘ fSchneider, 1978; Lonngren and Scott, 1978; Physica Scripta

 Vol.20, 1979).

The present thesis constitutes the study of the

'Qrmation and time evolution of solitary waves in plasmas



inder different situations,

Tn chapter II we have investigated the envelope

?éfties of drift waves (Kadomtsev, 1965; Krall, 1968) in

@kly inhomogeneous, collisionless, low F3 plasma, The

inear Schr&dinger equation governing these waves has

eﬁiderived by'means of the Krylov-Bogol iubov-Mitropolsky

erturbation method (Bognliubov and Mitropolsky, 1961}). This

éﬁhod,can be briefly outlined as follows:

Usually any wave motion is governed by a system of
nonlinear partial differential equations of the form

(Taniuti and Wei, 1968)

where éﬁ; is a column vector with components ﬁi(i =1 to n)
and A, %;? and K are n x n matrices the elements of
B )

which are functions of qb s , x and t in general, But in

,/ i : H : " ’ N
the following discussions we will assume them to be functions
- ? 3

'Of-cb S alone., These Cb,s represent fluctuating
T __ I
Variables (like electric field, density, fluid velocity
_etc.) associated with the wave. In the limit of weak

o . L)
nonlinearity, each of the 4}53 can be expanded as,

{ .
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’*’ ’ré/ﬁ - € ¢(L)+'~'./ (1.15)

' {

where €& 1is a small parameter appropriate for the system,

. : ) ) (1)
Then for one of the Qb s say for qS , we take a plane

av9«~cn'| u tion,

(0 , |

C}b = Q @(P \ (k X’Wt)‘i* C-C,  (1.16)
! .

shere the amplitude a depends on time and space through,

. —_— 2. —
| Q_QL - &€ A@a) +e¢ AL@,QN“"" (1.17)
. ot
and
o | _ 2 B
Jda =¢ B,@)C«) + & BZ(Q)ON— v (1.18)
0

,Thén we substitute the expansions (1.15), (1.17) and (1.18)
finto the e equation (1.14) and impose the condition that the
V @) (3
’equatlons determining the higher order solutions ( CP CP
etc ) are free of resonant and nonresonant secularltles.
From these conditions, one can determine the quantities
Als and B's of Egs., (1.17) and (1.18), The secularity
' 3

_ removal condition to order €~ gives the relation,

20 +V, 29 4+ Pk w oa
;L B'WiL a:x 2

+a(k ) " o + R(K, wi=o (1.19)
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v ‘ ' ).' . ’ . 2
:Cii: E'D() X, =& . and'tl.:ié t

a nonlinear Schr&dinger equationn,
In the case considered in chapter II, the wave is
to propagate at an arbitrary angle say ¢X , with

to the magnetic field, By computing the product PQ.

determined the values of k for which the waves are

quﬁiationally unstable. When X 2= 0°, the waves are
aéinary ion acoustic waves and the modul atinnal instability
sets in only when Fi;\ ™ 1.47 (Kakutani and Sugimoto,
1974), where )\ is the electron Debye length. ' But when
; 6<.”“ 90° the waves are drift waves and the region of k-
values for the case of modul atinnal 1nstablllty is found to
béxsome-what complex (Mohan et al., 1978). However, one

c;n study the variations in these regions with respect to
_¢hangés in the magnetic field and thé density gradient, This
fﬁés/bceh carried ~ut £or a typical Q-machine plasma andrthe
fﬁagnetospheric plasma., It is seen that an increase in the
;denSity gradient increases the growth rate but decreases
the region of instability. On the other hand, an increase

. in the magnetic field decreases the growth rate but increases

the region of instability.

Chapter III deals with the modul ational stability of
ion acoustic waves in collisionless plasmas with density
{and electron temperature inhomogeneities, The electron

temperature inhomogeneity is taken to be much smaller than
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ensity inhomogenéity since the heat éohductivity

2/2) is very large at.ﬁigh temperatures., The ion-
acQQStic’waves are found to be governed by the modified
,r,:xl:i'r_lear Schrdinger equation which has some additional
nonlinear nonlocal terms and damping terms introduced by the

nhomogeneltlesijohan and Buti, 1979), Since it is dlfflcult

Mtoﬂénalytically solve this modified nonlinear Schr&dinger
;ééuation, we numerically compute the time evolution of
véfibus initial wave forms e,g., envelope solitons, envelope
qlés and periodic modul ations, For‘the parameters approp-
'riéte for Q-machine plasmas, an envelope soliton with width
ébmpérable to the scale size of the density inhomogeneity is
_fdund tn split into two envelope solitons. But afterwards
ﬂtﬁe one in the front damps while the other one grows. 1In
_the case of an envelope hole two soliton-like humps start
?,developing on either side of the central'depreSSion. And

a periodic modulation excites other wave numbers énd develops
favspectrum. It has been found that a decrease in the
*Enﬁomogeneity slows down these processes, 'For solar wind.
and snlar COrona the density gradients being much smailer,
the envelope solitons,with widths ofthe order of a few
Debye lengths, are found to grow into large amplitudes and
‘éttain saturation. Afterwards they split into many solitons,
| A current carrying magnetized plasma with hot ions

and cold electrons has been found to be unstable with
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péct;to electron acoustic waves (Arefev, 1970;
sﬁmoreéDavies and Martin; 1973). One encounters such
lég@as in magnetron type devices, plasma accelerators,
inng current system in the magnetosphere etc, 1In
‘hapfer IV, we have studied the nonlinear properties of

'1ectrostat1c electron acoustic waves propagatlng at an

'angle 69 to the magnetic field (with Cos B < (m /h )1/2)‘

?Bykmaking use of the reductive perturbation technique
1(féhiuti, 1974), we derive a modified KdVv-equation for
,tgeSe waves (Mohan and Buti, 1980). Apart from the non-
 iineérity and dispersion, this equation takes into account
the ion Landau damping of the waves, Here we give a
implified description of the reductive perturbation scheme
'théh is essentially a method of co-ordinate stretching.
 We assume that the wave is governed by a set of nonlinear
 partial differential equations like (1.14). This method is
 more suitable in the limit of small wave nmumbers and weak
dispersion, That is for waves whose linear dispersion

~_relation can be expanded 1like,
| P
VK +K K+, (1.20)

Where k ¢< 1 and #) is a positive integer greater than
uﬁity. V is approximately the phase velocity of the wave,

Carrying out a Galelilan transformation,

X = x=VE& : | (1.21)
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. ‘ D )
. = A {q} s (1:23)

. ! 1/
I we”denote the smallness of K by & /2 Cie-,- k,\,é/“)

lch is essentlaily a measure of the operator— ’@*v**-w; )
. cE3 27X
ﬁuﬁhe relation (1.23) tells us that in the moving frame

e wave frequency or the measure of the operator ,,\._a._. is
- >T

; o) . .
e order, 6 // . Accordingly one can define two new

e and time variables as,

£€=cex=e"E-ve) (1,20

(1.25)

In this new stretched co-ordinate system the wave numbers
and frequencies are of the order of unity. For weak nonlinear-
‘yit'ieS, we can expand the variables 4)’5 as,

(2)

q\)‘ :(7}(&_!“ 60("%6(1)._’_ Q_ (—P PN (1.265
o ’ '

{
S )
where X s can be different for different variables, The
. ! )
values of ¢X , 8 are chosen so that when we substitute (1.26)
5 ' N H

and make use of (1.24) and (1.25) in the basic eguations,

~ and consider equations to different orders in the powers of

& , they are mathematically consistent with each other,
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NIOm”ﬁhe equations eorresponding to the lowest order
e power of & , we get a set of‘relationships among
Going over into next higher order equations

(2))

nd eliminating the second order quantities qb , one

where '435 and cis are constants, For F) = 3, Eq. (1.27)

epresents the well known K-dV equation.

Following the above procedure, we find that the
electron acoustic waves are characterised by the modified
J.dev equation. Treating the ion Landau damping as a small
perturbation we then study the time evolution of solitons
ﬁsihg‘the method of inverse scattering (Kérpman and Maslov,
’f1977; Karpman, 1978; 1979). We observe that the electron
 écoustic snlitons undergo damping or growth according as they
are faster or slower than the electron drift in the medium.
Along with this they develop tails also. The rates of
'-idamping, growth and the tail formation are found to increase
- With a decrease in the angle fa . But changes in the

k electron to ion temperature ratio is foundrto affect only
the velocity of the soliton,

In all the problems discussed so far, the nonlinearity

considered was rather weak, That is, the wave amplitudes
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,on81der@d to be small and the basic equations were
ated'perturbatively. But it will be an interestlng case
‘né éan study large, amplitude waves accouﬁting for the

mpléte nonlinearity in the system, This can be donevonly

\adrifiCing certain other features of the medium like

au damplng, collisional and viscous dlSSlpatlonS etc,

’wever, one can afford to neglect these processes if their
:effects are very small, This is what we have done in

:hépter V. Accounting for the full electron and ion non-
‘nearltles, we reduce the original set of equations
ao&erning the electron-acoustic waves to a single equatiOn
Euﬁi et al., 1980). This equation is similar to the enérgy
3ihtegral of a classical particle of unit mass. The potential
;eﬁérgy of this particle is called the Sagdeev potential |
Ségdeev, 1966). By analysiﬁg the Sagdeev potential, we
~Sh§Q that supersonic finite amplitude electron acoustic
Solitary waves with density humps can exist, The upper limit
"6n the Mach number for these waveé is also determined,

Plasma is a medium which is prcne to the excitafioﬁ

 bf turbulence Very easily and it can sustain a multitude

nf waves simultaneously. The investigation of turbulence

_ in plasma is of very great significance from the poiﬁt of
 view of plasma heating, production of high electric and
ﬁggnetic fields, shock waves etc., in laboratory as well as

'éstrophysical situations. In an unmagnetized plasma with
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1éétrons and cold ions the most important modes to be
defed are the high frequency Langmuir mode and the low
reqpéncy ion acoustié mode (%akharov, 1972; Thornhill and
ef Héaf, 1978) which interact with each other. 1In chapter

ViiWe have considered the effects of collisional and viscous

§ip§ti@nsWUnmnangmuirziﬂn:acmustic~inters@tiuus, We
défive a pair of modified Zakharov equations which couples
t&éUmrm&m-&mm@htMamm&xmthefmmeoftma
,Léngmuir field, These equations have 501itary wave solutions
:high'represent localized ion dénsity depressions with
aﬁgmuir field trapped in it moving with subsonic velocities.‘
_They'are called coupled ion acoustic-Liangmuir solitons., In
iordef to find the effects of dissipations, we follow the timé
]evoiution of solitary waves according to the modified
 Zakharov equations, In the case of electron—neutralrand
‘électron—ion collisions, the Langmuir field damﬁs at first.
 Then the ion density perturbations radiate away. In the-

. case of'ion neutral»collisions, the ion density perturbation
1\damps at first and the Langmuir field starts flowing out,
SWﬁeréaS the result of ion viscosity is to make the ion
density perturbation to radiate away which will be followed
by the Langmuir field, of all the three dissipative
‘meéhaniSms,electron-ion and electron-neutral collisions

seem to be stronger than the other two.



CHAPTER II

STABILITY OF ELECTROSTATIC SOLITARY DRIFT WAVES

_II;l Introduction

Drift waves in a magnetized plasma arise’whenever
there is a density or temperature inhomogeneity across the‘
magnetic field, These plasma oscillations move perpendi-
 cular to thremagnetic field and the inhomogeneity. .
Inhomogeneous plasmas are qﬁite common in all systems that
use magnetic confinement and therefore the instability
associated with these wéves is called universal instability.

(Galeev et al., 1963). In the linear limit, the drift
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are stable in the absence of dissipétions and their

as *Qélocity for long wave lengths is same as the velocity
hefaiamagnetic drift in the medium (Kadomtsev, 1965; Krall
aﬁé‘ffiVElpiece, 1973). A general study of these waves

propagating obliquely to the magnetic field and the effects

of finite-ion Larmour.radius,density variation, magnetic

'fiéld variation, the presence of a neutral background in

, ﬂe”plasma etc. on them has been carried out by various
f;x{i{:h‘cirs (Rudakov and Sagdeev, 1961; Rosenbluth et al., 1962;
kféll, 1968; Timofeev and Shvilkin, 1976). 1In the presence
6f;collisions, the drift waves éan give rise to drift

iésipative instability which has been considered to be a
ﬁéésible mechanism for the Bohm diffusion (Bohm et al., 1949)
 of the plasma particles., As far as their nonlinear propert-
jes are concerned, in the regime of weak nonlinearity and
’dispersion, they have been found to propagate as solitary
waves (orefice and Pozzoli, 1970; Nozaki and Taniuti, 1974;
Todérnki and Sanuki, 1974).

In this chapter, we investigate the .nonlinear self
modul ation of finite ampl itude, monochromatic drift waves
in a strongly dispersive medium. FolloWing Krylov-
 Bogoliubov-Mitropolsky perturbation technique . as described
in chapter I, we derive a nonlinear Schrddinger equation
for the amblitude of a wave propagating at an arbitrary

direction with respect to the magnetic field. This
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‘qqéﬁion determines the modulational stability and the
’nﬁéioﬁe properties of.the wave for long periods of tiﬁe
;OQé; large intervals in space. When the propagation
fairection is parallel to the magnetic field, the wave is
’ioh acoustic and as it becomes perpendicular, tha wave

pbecomes a pure drift wave.

We also diséuss the applications of our results in
, ‘the”context of Q-machine plasmas and magnetospheric plasmas.
. The values of the critical wave numbers which #oparate the
.:regions of modulational stability and instability are
,_computed numerically for various diredtions of propagation.
The effects of the changes in the magnetic field and density

gradient are also studied.

IT.2 Nonlinear Schrddinger Equation

We consider a collisionless, lOW'/S plasma with
éold ions and isothermal electrons, It has an external
‘magnetic field in the z-direction and a weak density gradient
iﬁ the x-direction. We make use of <he following M.H.D,
equations to illustrate the propagation of an electrostatic

wave in this medium:

‘\, ‘!f{r. :‘-‘;“ ,/‘_, :-‘ ) — - '
g+ V() =o "

¥
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1} s '\7) V oz = *6 \79[, + U)( ul ‘ (2.2)

=4 Te Lyw 1, ox (e 4»/ ] o

In these equations, the inertia of the electrons

has been neglected and they have been described by a
iéoltzmann distribution. The quantities n, no(x),.Q |

 and L*)ei are the ion density, equilibrium plasma density,
;’igﬁ'fluid velocity, the electricrfield potential and the

idn gyrofrequency respectively.

o We assume that the wave is planar and it propagates
ih the y-z plane making an angle & with the magnetic field,
On defining a new space variable along the propagation
direction, nmmely, g =y SinX + 2 Cos{X , Egs.(2.1) -

(2.3) become,

N L2 [nak) + F = ¢

S, W, = (2.4

Jd + U é\)" —(J, WV, o0

R TV RE I 2.2
i '

D L ;a.) U, + 0D 0+ A =

YR PV J¢ b

. /
| o (2.7)



ot
=

and t are normalized—with
,igépect to the local equilibrium density ng (x = 0), ion

acoustic velocity (Te/mifl/z, the characteristic potential

(r_/e), the local Debye length {?8/41T ng, (x = 0)e” ;11/2

and the local ion plasma period !‘mi/4TTno (x = O)e2 :11/2.
! L’
1

. ) - ‘ 1/2 |
;?urther, VO = (c Te/e B) ng (a no/dx) . (mi/Te) is the

normalized diamagnetic drift velocity of the medium in the
“y—direction and v, = Vy Sin ¢k + v, Cos¢X . Hereafter, we
”will be dealing with only the normalized quantities,

For a weakly nonlinear system, we expand all the

 quantities about the unperturbed uniform state as,

e e N R
g 0 , ﬂ(1) ﬁ(2>
. . A1) (2
v.i=| 0o |+ & v;“ +&2 vgn + ..... (2.9)
(1) (2)
Ty i V{l) v%2>
REE NI Va o _ Uz

We now seck a monochromatic planc wave solution

for Q<1) of the form,
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;‘({, o ,',,/;(_g]/

a € + &: € ) (2.10)

‘f‘: k¢-wt is the phase factor and a is the

% amplitude which is slowly varying function of‘g’
v ' /]

and t throngh the relations:

:.E/A@%ﬁ)-+éLAL@BE)P“&Ju

i

€ B@,a)+E B,@,a)+ .

rthermore all the quantities in the expansion (2.9) are
_assumed to depend on g and t through a, a and (f,/. The

'operators,a-« and 2 are transformed as,

26 ¢
d =20 2 pla 2 _cod (2.13)
2+ 2t oa > €& ol 2y

5 - da 2 2a 2 + k2

g = 1 2 4 2 + K (2.14)
d¢ 5% oa  J¢ 2a X7

Putting (2.9) in Egs. (2.4) - (2.8) and using (2.11) -
(2,14) from the set of equations to order & we get the

following dispersion relation:
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«

D) = L[+ k) ke, 4k o
e IO NN | ) (

. +k \/Dwﬂ: Lion K + k Lu&)' ﬁmLOC JZ -0
- £ (2.15)

For an arbitrary angle ¢\ , this equation gives four roots.

. for (W in terms of k. These correspond to an accelerated
ion acoustic.wave, a decelerated ion acoustic wave (Kadomtsev,
1965; Krall and Trivelpiece, 1973) and two ion cyciotron
ﬁWaves. For Q{ N O? the accelerated ion acoustic wave

becomes pure ion acoustic wave with the dispersion relation,

| —y |
o= k (1+k*) 2 (2.16)

LoD
But in the limit oK 22'9() , it becomes the drift wave which
for low frequencies ( LL){E&(A%&‘) has the dispersion

relation,

“ - k{ . +[(§~¢)1/ VO] E’ k) 4 (kz/a)p)‘)]} ’
‘ [({ +k "'“(‘k}/""h’/:if):[ B JRERY

(1)

Z

(1) v(l)' v(l> in terms

Then, solving for n ' Vo v and v

of ﬁ(1>, we have,
2D e g(b) (2.18)
~n A _ _ :

(1) (1) '
VX = CX ,@ y, (2.19)
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<
i

v = vy . (2.20)

(1)

<
s
O

(2.21)

}- -
~

S
A
3
QA

’ (L™~ C*)(gﬁ)
c, = k Loz X
(I

Now, going over to order é':2 , Eq. (2.4) - (2.8)
()
‘yield the following equation for 4) :

e { 719')}7 + 02D A -20D 8,)6/{(//

D Lo Dk
24 Y |
+ a"»ﬁ(k} w);z Y +C =0, (2.22)

where the operator ofis defined as,
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~

+ (-lf)/é C’\ Cor' ol — o+ A v k) 2

4 D «'.‘V ‘ e .

‘." .{ - _ -J ) 2..’ ] . 5
Z: w’k O —+ L ((,LJ "(/u' + Kk 2) _aw
- : : 243

' 2D = (j)) [d-# kl)(;’ L - C«OE(\Z' ) ('/Ul

'~

. , L ,b Z . v, _ ,
e ) A o »-&‘) ’ >
R+ o, T Lo o&/)j) (2.24)

_ (k=)= ) o *
Dk Cul< 1‘
— /<2 C ro o (/JK'B«?Z o7 ) _/ (2.25)

“and

?(k W) __((,L) “-(,4) S ﬁ(‘ﬂ 0() {/(,&) Z',Lv_) )‘(
ot )

/c'i (Hkl_) ot K Lm 20(4/ + k9wl % —_—

- CL:’ ( (_AJ‘ E_. /dc:,,, ) i

E / (2 : 2 j( 2 )l""" i~ ‘_ ) fd& g 0(7
(o coing! + k@i, o

— & W (fufj - Lz“ a,u\’“) } (2.26)

In Eq, (2,22), the terms proportional to e + would
)

]

give rise to resonant secularity in the solution for g(z
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(Kakutani and Sugimoto, 1974; Buti, 1976, 1977; Sharma

and Buti, 1976, 1977). This can be removed by putting

AL+ Vg B, =0, (2.27)

where Vg = - (a D/t) k) /¢ () D/ 20 ) is the group velocity

of the wave, Under the condition (2.27), the second order

solutions are,

= (A >Q L €
(6T, =l T o )
- ,
+ = e_‘ F%c.wc -+ (S;P ; (2,28)

w af %(i"*k“)ﬁ,' e’ ¥

(2.29)

+ &) +gc}3
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@“) R a k (e, . C 02 y
x - = '»" Ay ) C
(Gpr —ht w__[ =/ 7
+ X »van 0(,(4," , e
FErs] e e
{[&4»“0& —_ CUJ *(Q”H’UC%)? B,
S A
+oeo kol Dj e e C (2.30)

(1) 2. /
Vs —ak [@)h ( +R2wC., )C
3 (Lu}' ““l'rn)'z)k Lo 3> % '
{-ol//vbvvuOQ(/vx— @Mﬂ(}/{"___‘______.—
j (\3 i( ""' ) - |
[ [iodonct = Vg (W eyt ey, )8

gk k0 Bj e’ L//«f-c.c—;zkcg C, lai®
( L'/L)'&‘\ _é2.31)
V- a‘k T, —)~Xﬁo’fg( ]62.2&}1
A \ -
R A e I

_f..L_ZwA.’C&i}O( V(7:] 1+‘P&7OCB} W

N S ~ (2.32)

C o K +C, ﬁm X
X =9kl [Co Qoo = e )

__((Q
QS
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NG I

R Wldﬂ - co (g 4 ) g,

Leog 2K

2
£l

2 _ 2 2 . 2.
k_évs)’o(m}; =0 w&;ﬂ%k V. el X w&‘ :
o
| = 3 AN
]’37 :(/chﬁ kK —co +kw
2
r;; - (X)"B L;

B is an arbitrary complex quantity and 9 and S;: are
\real quantities all of which being indepéndent of %/. In
order to find out gf}sand&, we have to go to next higher
order; namely to order,€;3, The self éonsistency condition
which ensures third order solutions free of nonresonant

secularities (Kakutani and Sugimoto, 1974),yields,

5%5 = ?/7)(#) o) [G-] - ’7‘“'/"c (2.33)

SZ = ?(k, ) {Qll + ), (2. 34)
pd |
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?75& u)) (- ch} [V ~k(+kH) (o= - € g()

L (P w) ?
Lt . L\ - |
— k @ - LU‘G(‘; Lo O<) (2,35)
(= wpt)” | B
f? (/\/ W) = [f(rjf?( { ( +Z[/<5V' Ak o' )

z . ’ (/(..)C(/

— k€2 [A(+kY) ok 1+ it )] f
Lo g JJ

~k Lo, Losok (Vg ém&()(l:m « Lk !5‘“‘2”{)

Y, oz
4 &\

7((,0 [&J A ;L (\/?’\/ﬁhﬂx)]f (2.36)

with /(,( and ‘)) as absolute constants independent of a, a

and ‘7], Once again, from the set of equations to order 6,3,

we get the following equation for 52! )
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(2.40)
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N oAyl ,. . (1) R })
o, 2u® a0 0" 8 20
L 5 0 ’ D A
/ ™ _(:2) ~ 7(!)
flex(BdE + B, d )+
oG4 Ja -
i ) S S E—
g e Y D)
TRV e Ty 22 ) | e
! oy J Y )
o . D - (1)
— ,(i{,‘ _fl + B, %)(B,u’ e 15};\49::)#‘
| C)C(\' o . A eRel

+ 3 »’ﬂ(& 2’3—- + B, L) 9,4: + d k([%, 335

— (2) (1, (2)
B2\ W(tw,kw ) |
)5t ¢ o 2.

As was done in the case of Eq, (2.22), we remove the

resonant secularity in the solution for Q’(3) by putting the

coefficient of o L}/ in (2.37) equal to zero. Then we
get,
. /. " YA o Y o
A (B VB )T P( B 28 +B 28
z (] - N v =
e g S
ASRs T R - O
tO g a+Ra =o, (2.43)
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AN

. s Lo
A AR f / [ ‘

20N | e 3 ! . - :
-y ) J — V}L@ kwd = (+ e, \)k ”
Y [ epr)eo”
1) _,;fg_)v .3
-I*C(A) Coa oK c/ujjg- i,,_( cu
-;2wLw&f(H~k7f) . i<’j‘ + kV, o Aun f

7

T(2.44)
Q = Ak 5@ 230wt + kD) "
(a)/)w)

+ k’“ ((w™+ oy, ?"“MZO‘)]( A, Moo X
w*

+A, Lo O()f_l__ [’w 2 (o B ey )
-k (IJJ .—.(/(J

L Lo O() 2 ( k, u))

(W, i X+ U, t:mo<)+ Lcu (w*

2-‘7\2[(,(,' (/( &,{n")m
LA)(_oul e
—~\/Vu)m+(kwa<w \/u,z)%

PE Em @t W) W]+ gEn

—_— ((;1) - L, {*2’) (f‘f kz/) - _..—- C (A) (/{) “)]

- %).ﬂg (144 k(= o )Yy
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oyt (g ]

(2.45)

0:.-—'—!«(7\ dar X+ N 'ﬁmcx)“'“ [_j;ff (WZ

_ il @:}p@)\ —Cu ((,u ~—u,/&‘“)/t(
| ]:(a:f&f’-—- 3w X+ K5) +*L (oo EXS 6@’70()]

- (2.46)

The h's,u's and j appearing in (2,45) are defined as,

‘ <2 v/ ) : B ‘ 2y7
— g’k ) + NV £k ] [ 5 (=% 7],
L/L -~c [CJ;--Z‘f“&(/f)((A) — (g, 80?0\)
((u /fl,(’) ’ C/?CCU — ?’)L
CkE ,,d/” * & +L,L<,u/¢w0<’p7t</

U, = k. /au«(/i “ feo 0()1,\ Cmk 4 Cog ol V]
Y 2. ;™) C}
- o Qw ’Cd.cé
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=k 30 (w?
((/J f/( 1—'— Wl)
— W sz)k n L

4

o X 7&“}

,‘ ; k’ { U) /{ Vo =& k (l eSS ) T
_3(_/ U= L 5" T |
(ot €t ) Vg — (&@u - Gl Emk)]
. d : w L‘LA- (/L) ‘L)L
(2.47)

i (CA'l’ W )

= Vi (}u (—;—k )(ou v‘(_)& En o() {2.48)
9 o (Lot — we)

Further, the )\ 's appearing in (2.46) are absolute constants

independent of a, a and ¢

In Bq. (2.43), a,, B, and (B 08, __ B 35,)

t

| Pa a Y
_can be interpreted respectively as (&g e\_L) 2 G
: )

,,2.. : &
/ , — Ln and a where the new time and

AR

) = . =
é’e varlables are defined las, t, = « 2t, 5, = & 2 ’é"

& & , .
and ‘?1 = & E' . Further on introducing the co-ordinate
i

transformation YI - & (‘c, — \'/& ,) and 7 = é:)“',t' and by

making use of relation (2.27), BEq. (2.43) simplifies to:
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o o §
o o G -+ PQ a4 + &Klal a+Ra =o. (2.49)

S t—————

a ;:J (') 7{; -

This is the required nonlinear SchrBdinger equation

 for the complex amplitude a of the drift waves.

TIT.3 Modulational Stability of the Wave Envelopes

Eq. (2.49) describes the behaviour of the énvelope
of a monochromatic wave in the y-z plane., 1In order to study
‘the stability of the envelopé,'let us express the complexA
‘amplitude a in terms of two real functions j9 and T~

(Hasegawa, 1975) as, -
a = f e 1, ) exp { AT, )Jv (2.50)

We eliminate the quantity R from Eq. (2.49) through a
transformation, a —» a exp (i R ). Then substituting
(2.50) for a, the real and imaginary parts of the resulting

equation give,

(2.51)

-p_ o) —QP=o (252
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 For fhe. linear stabili{:_y d_f the envelope, we can take f’

= + _eyfw&(ﬁ(7~nrl?9

0 T

(2. 53)

U
J— — —— | - J—
Further on linearising (2.51) and (2.52), we obtain the

ollowing dispersion relations
- | | ! . .
T=(Qf-PKY) —(QLf)

his shows that the wave envelope is stable or unstable

W 2.
| (2.54)

according as PQC O or PQ>O0.

’

Looking for a stationary solution for las ; we put

f)‘al = EJ .0 in Eqg. (2.51) and integrate once over
o o

Space to obtain,

for = (2.55)
~where C is a function of ’E/ alone. Using Egs. (2,52) and

(2.55), we get,

4+c

T R

A ¥ / ‘ : o _
But the solution corresponding to the equation(ﬂ P C/IJ =

const)is physically inadmissible. So we have to choose;,
g

(2.56)

C(7T) = constant = Cl’ (2.57)
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ﬁq‘~(2,55) can now be integrated to give,
i v___.‘ - o “/,‘! " N P "y \ .
U= 7 A A ACT): | (2.58)

A\ e
Since by (2.55) g;i» is a function of 47 alone, it

2

follows from (2,52) that 7132:- must also be a function of

:?Talone. So~we—take;
@liﬁ = Const = 7/\ (2.59)

il

 The solution (2,.58) can therefore be written as,
¢ '

() ﬁ{ A A e

“);3‘ M I\ T (2.60)
Substituting for (J in (2,52) and integrating after

{_7
multiplying by 4.

| )
, e\ Z — 3 ! oj,.;.. ‘ .~2_ C 2 ] -
[4L) =SB b h fHG pobll e

where C2 is a constant.
For PQ >0, Eq. (2.61) can be integrated with the
choice of the constants C, =C, = 0 to give the following

local ized solution:

\

7 T = AT (2.62)
}

- Whe e, o= ;Qh/\ 2
wher ‘f; < // .)

This localized solution represents a soliton with ampl itude

Nz )
[/ 'aa wiatn (2p/0 J’*S)l/z,

)
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When PQ < 0, the waves are modulationaliy stable

and (2.61) can be integrated with the choice of the

\)

< :‘f"( LF =AY e € = A FOOF -4 A)
'

.-..o-- 1
0

to give a solutions

j’:f l"(/& 41/‘ (_—}’L f) jf
Y, . ‘

(7—. ~ v | )
z\\r& du,m M]“’i f’,) &J v,
+ AT + (&5 /\) " ey

This solution represents a 1oca11zed depletion in the wave

r—

amplitude from ; 172 to [J (1 ~’”2)v]1/2. This is called

! o .V
an envelope hole with(/%_!i: | as its width,
(a} : |

J = 3:’

ITI.4 Discussions:

When the waves are modul ationally unstable, for
small values of K (Taniuti and Yajima, 1969) the growth rate

is given by
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e /2
= ‘Y/:: a. (yﬂ\/FDél':> K ) (2.64)

:wﬂére aaiis the initial amplitude of the wave,

With P -and Q given by (2.44) and (2.45) and (&)

defined by (2.15), it is difficult to determine the values

of k corresponding to stability and instability analytically.
However, we have computed the critical values of k Separat-
ying the stable and unstable regions for the Q-machine

and the magnetospheric plasmas (Mohan et al., 1978).

1)Q-machine Plasma

‘ Physical conditions for the occurance of drift

waves are usually present in Q-machines (Motley, 1975)., The

- magnetic field, density, density gradient scale lengths
and electron temperéture are typically of the order of

101° em=3, 1 em ana 10-%

"103 Gauss, eV. In Figs, 1-4, the
eritical wave numbers kc which separates the region$ of
modul ational stability and instabillitv are plotted against
the angle of propagation., The haﬁched regions correspond
to stability. When (X is zero, (Figs: 1 and 2), the wave

is ion acoustic and k . (k>k unstable) becomes
c min /

C min

1.47 Wwhich is in agreement with the result of Kakutani and

Sugimoto (1974).
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'As the angle of ﬁropagétion ihcreaseé, a sméll

::ggion of instability develépes near k = 0 and spreads
J£§ all values,of k., This is due to the presence of the
,magnetic»field since it is seen from Figs., 1 and 2 that

_this region becomes larger with an increase in the

:magnetic,fi 1d and remains almost unaffected due to changes
fin the density gradient,

When the angle O{ approaches 90°, the wave becomes
‘mdrift wave, Figs, 3 and 4 show the wave number .ranges for
which this wave is stable, In Fig., 3, the effect of the
increase in the magnetic field is shown., We observe

that as the magnetic field is increased keeping the density
gradient fixed, the area of the region of stability
decreases, In this case, the value of Ko ooy (K< X max’
unstable) at ¢X = 90° increases with the magnetic field,

Fig.4 shows that for a fixed magnetic field, the
area of the region of stability decreases with an increase
in the density gradiént scale length, However, the value
of Ko pax = 0.57 at (X = 90° remains fixed,

The maximum value of l PQ’ in the region of inst-
ability for different angles of propagation are given in
Tables 1 and 2 for changes in the magnetic field and density
gradient respectively. Here we see»that>lPQ‘ max and hence
the maximum growth rate W/max decreases with an increase

either in the magnetic field or in the inhomogeneity scale
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’length;' In theblatter“case,~the growth rate is further

reduced due to the following reason: For a drift wave,
the density perturbation is caused by a transverse displace-
ment in the plasma (Kadomtsev, 1965) . Now, as the scale

length of the inhomogeneity increases, for the same amount

—of "displacement; the amplitude a, of the density perturbat-
ion (n(1>:i (1 + k2) ﬁ(1> for CA)fngi) which appears in
the growth rate (2.64) also decreases,

From Table 1, we observe that at C7<»V Qéf; the
_growth rate varies as g~k (1 & pX 2), however its variation
with ﬁ is some what more complicated., For example at ok = 87°,
/ max O 1! put at '(_;("= "(T/z, ‘/max o 1P with p
sometimes exceeding 3., From these two tables, it is quite
clear that the variations of the growth rate of the insta-
bility on the density gradients arnd on magnetic field are
very complex. For this reason it is difficult to give a
simple physical interpretation to the results obtained;
Neverthless, we may remark that since the cause of the
instability under consideration is the inhomogeneity, the
growth rate should increase with an increase in the inhomo-
geneity; this is exactly what we find., Regarding the variat-
ions with the magnetic field, if we consider the envelogpe
soliton as a bunch of quasi particles moving with the group
velocity'vg, whose motions get restricted with an increase

1

in B since Vgg{}B~ , the decrease in MY/max with an increase
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wn'B is7expected1 V. also being proportional to L‘l, a

g
ysimllar interpretation for the increase of ’Y/max with a

decrease in L would be justified,

yMagnetospheric P1asma

Recently electrostatic turbulence at frequencies
betWeen 1.7 and 56,2 Hz has been detected by the satellite
ﬁawkeye 1 (Kintner and Gurnett, 1978)., This turbuience was
 Qbserved when the space craft crossed the plasma pause at

altitudes higher than 3 Rgs Ry being the earth radius,

E

' There was no corresponding magnetic field disturbance
ihdicating that the waves were electrostatic, They propa-
gated across the density gradient and were interpreted as

drift waves. Based on the values of the magnetospheric

3

plasma parameters (T, = 100 eV, B 6 x 107~ Gauss,

3

n_ = 500cm >, L~ 0.1 RE), we have determined the values

o
of k for the modulational stability and instability, These
are shown in Figs, 5 and 6. The shapes of these regions
are somewhat different from those in the case of Q-machine
‘plasma, However, the variations in the areas of these
regions with respect to changes in the magnetic field and
.density gradient remain the same, Again, from Tables 3 and

4 it is seen that at (X = 90°, the Behaviour of f PQ' max

is same as in the case of Q-machine; But as X decreases,
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I?QI:fbecomes large_véry rapidly.and the linear result
(2.64) for”y/ becomes invalid. This rapid change is
because of the factor: (?A)u..cdg Con p{) which occurs
ery often in P and Q, changes sign for some value of (X
between 89° and 90° whereas in the case of Q-machine this

happens only for ¢X around 85°,

I.S Summary and Conclusions

The modulational stability of electrostatic drift Waves,

vin a weakly inhomogeneous, ecollisionless, low /3 plasma is

investlgatud by deriving the nonlinear Schr&dinger eqpation

l characteris1ng them. The values of the critical wave 4

fnumber kc’ separating the regions of stability and instability'

Jare computed for different directions of propagation ¢X ,

‘ﬁhe waves, When (X = 0°, the waves are ion éCoustic and

‘are unstable onhly for k 7\3‘> 1.47. But for g 2¢ 90° the waves
arevdrift waves and thatr behaviour is studied for Q-machine
and magnetospheric plaSmés, It 1is seen that an inerease in

the density gradient increases the growth rate but deéreases

the region of instability. On the other hand an increase

“in the magnetic field decreases the growth rate but increases

the region of instability,



TABLE 1

Q-machine plasma,

Values of

=

1

1 max

~ for increasing

~magnetic field but with constant inhomogeneity scale

length (L = 40)

- in‘

max
w .
g7° gge gg° 90°

0.25 | 1.0 x 10~° 8.0 x 1072 | 6.7 x 10°3| 7.7 x 103
0.35 | 6.8 x 1072 4.9 x 1072 | 3.5 x 1073 3.7 x 107°
0.45 | 5.3 x 10~° 3.7 x 1072 | 2.4 x 1073] 2.1 x 1073
0.55 | 4.5 x 1073 2.9 x 1073 1.8 x 1073 1.3 x 1073
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TAELE 2

Q-machine plasma., Values of kPQ \ max LOF increasing
inhomogeneity scale length but with constant magnetic

fiéld (LD = 0.35)

cl

\PQK_max

87° 88° I 89° 90°

30 | 9.4x10"3] 7.2 x 1073 | 5.6 x 1077 | 6.5 x 10”

50 5.5 x 10~ 3.9 x 10

60 4.7 x 10° 3.3 x 107 2.2 x 10 1.1 x




TABLE} 3

Magnetospheric plasma. Values of ‘PQ‘ hax for

- increasing magnetic field but constant inhomoge-

neity scale length (L = 0.1 RE)

TO ‘PQ‘ max
Ccl
89° 90°
2 x 107° 5.264 x 1074 6.020 x 107°
2,25 x 10~2 5.548 x 10~% 4.648 x 107°
2,50 x 10‘2‘ 5.741 x 1074 3.842 x 10°°
2.75 x 107% 5.930 x 1077 3,182 x 10°°




TABLE 4

Magnetospheric plasma. Values of | PQ | max LOF

increasing inhomeogeneity scale length but constant

magnetic field ( (D 4 =2 x 10™%)
‘ PQ % max
L
89° 90°
~4 | -6
0.1 Ry 5.264 x 10 6.020 x 10
S -6
0.125 RE 5.712 x 10 3.851 x 10
-4 -6
0.150 Rg 6.084 x 10 2.675 x 10
-4 -6
0.175 Ry 6.348 x 10 1.964 x 10




(o) (b)
wg,= 0.25 W, =0.35
. 0.4 - We; =0.45 wCi=O.55
0 i | i I I 1

Fig.1ls (Q-machine). Regions of stability and instability
in the ion acoustic regime for a constant inhomogeneity

scale length (L = 40) and for wci = 0,25, 0,35, 0,45
and 0,55,




(a) (b)

Fig.2:; (Q-machine). Regions of stability and instability

in the ion acoustic regime for a constant magnetic field

( ngi = 0,35) and for L = 30, 40, 50 and 60,
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Fig.3; (Q-machine), Regions of stability and instability
in the drift wave regime for a constaht inhomogeneity
scale length (L = 40) and for wci = 0,25, 0.35, 0.45

and 0,55,



(b)

L=40
(d)
0.4
0.2 L=50 " L=60
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Fig.4: (Q-machine), Regions of stability and instability
in the drift wave regime for a constant magnetic field

( Coéi - 0.35) and for L = 30, 40, 50 and 60,




-2
W; *2.75% 10

Fig, 53 (Magnetosphere). Regions of stability and

instability of drift waves for a constant inhomogeneity

) -2
scale length (L = 0.1 RE) and for (L)ci = 2 x 10 and

2.75 x 10‘2.




L:0.175 Rg

Fig.6s (Magnetosphere)., Regions of stability and
instability of drift waves for a constant magnetic
field ( C"‘)ci = 2 X 10_2) and for L. = 0,1 RE and

0.175 RE.



CHAPTER ITI

MODULATED ION ACOUSTIC WAVES IN INHOMOGENEQUS PLASMAS

ITI.1 Introduction

Ion acoustic waves are one of the most common modes
in plasmas., They are electrostatic oscillations sustained
by a bal ance between the pressure of the hot electrons and
the inertia of the relatively cold iens. The existence -~
and behaviour of ion acoustic waves in the linear as well
as in the weakly nonlinear regimés have been verified in
many laboratCry experiments (Wong and D'Angelo, 1964;

Tkezi et al., 1970; Ikezi and Kiwamoto, 1971). They have



50

mportant practical applications such as a diagnostic tool
to measure the electron temperature in a plasma, heating of

the ions by Landau damping etc,

In a weakly dispersive and homogeneous plasma, non-
linear ion acoustic waves are governed by a K-dv equation

(Washimi and Taniuti, 1966; Davidson, 1972) which have

stationary solitary wave solutions travelling with velocit-
ies hear the ion sound speed , Cs -.=(Te/mi)1/2 « The
_presence of density or temperature inhomogeneity however
 modifies the K-av equation (Nishikawa and Kaw, 1975;

Goswgni and Sinha, 1976). This changes the propagation
characteriétics of the ion acoustic solitons. The amplitude
’of a soliton decreases as it moves towards increasing

density,

In a highly dispersive but homogeneous plasma, the
~self modulation of a monochromatic ion acoustic wave is
governed by a nonlinear schrddinger equation (Shimizu and
ichikawa, 1972; Kako, 1974; Kakutani and Sugimoto, 1974).
In this Chapter we study how this equation will get modified
1f the plasma has inhomogeneities in density and electron
temperature, We consider the gradient in electron tempe -
rature to be much smaller than that in the density. This
is because a high temperature plasma cannot sustain large
gradients in‘temperature since the conductivity goes as T5/2.

As in chapter II, the Krylov-Bogoliubov-Mitropolsky
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 pérturbation scheme (Bogoliubov and Mitropolsky, 1961;
’Kakutéhi and Sugimoto,'1974) is employed to derive the
 modified nonlinear schrddinger equation, Assuming a plane
&Qave solution, the growth rate for the wave is calcul ated,
Then we étudy the time evolution of different envelope

waves for long intervals of time, It is seen that for

conditions suitable for Q-machine plasmag, an éﬁvelépe
’soliﬁon,climbing up a.density gradient slows down and
splits into two envelope solitons. Then the one in the
front damps while the other grows, In the case of an
~envelope hole two asymmetric solitonelike humps deveiop dn
either side of the central depression with the larger ﬁuﬁp‘
. in the front, For a periodic quulation, other wavevnumbeﬁs

are excited nonlinearly giving rise to a spectrum,

Apart from laboratory plasmas, ion acoustic waves
are observed in space plasmas too, Plasma wave frequeﬁcy
measurementé by the spacecrafts Helios 1>and 2 and aneb
length measurements by the spacecraft Imp 6 now provide
strong evidence of the presence of short wavelength ion
acoustic waves in the solar wind plasmalnear the earth
(Gurnett and Frank, 1978). But the density gradient in
this plasma is extremEvasmall. However, an envelope
soliton with a very small width after very long intervals
of time is found tokgrow into a large amplitude and attain |

saturation, Then it starts splitting into many soliton-like
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7ﬁumps,; The same phenomenon has been found to take place

in the case of solar corona plasma also.

 III.2 The Modified Nonlinear Schrdinger Equation

We consider a c¢ollisionless plasma with ¢old ions
and hot electrons. Tt has weak gradients in density and
electron temperature. These gradients are maintained by
a zero order electric field Eo and an external force F say;-
. due to gravitational field, In the énalysis that follows,
we neglect the inertia of the electrons. The relevant one
‘dimensional fluid equations considered for the present

situations are,

oW 4 2 (wV) = o, (3.1)
- 2N
batzf +'(V‘zzi£~ = aéi- = -+ JE; y (3.2)
It 2 MY ™ '
- _ T e s 3.3)
IE  =4Te(w-my) (
oxX | |
and

O = — €& «:}'UE E ——'-2__(‘7/\/6 7&) (3,4)
X |

where n and n, are the ion and electron densities, v is the
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ion fluid velocity, E is the electric field and P is the
,exterﬁal force, We nofmalize these quantities to the
local equilibrium values of the plasma density N, ion

1/2

acoustic velocity'(Te)mi) and the characteristic electric
field (T /e )\D ) and the space and time variables with

\respect to the local electron Debye length and ion plasma

period. Then after eliminating the electron density from

Eqs. (3.3) and (3.4) we get,

Yo HK A+ /R WY+ 2 (’Vv W20, (55

91/‘ + Vd i +F5 ’),"——«,E’F" =0 (3.6)
9—6—" afx 2
and
WE —EJL I_L(OW,B)E NGy IRL
ﬁ P

0 X* ’ (3.7)

-1 -1
where CK = n (dn/dx) and ﬁa = Ty~ (AT, /dx) rgpresent
the density and electron temperature gradients. TIr the above
equations, the terms containing (X and fg are due to the
normal ization with respect to the local equilibrium

parameters which are themselves functions of space,

We expand E, n and v about the unperturbed state as,
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T 7 [~ S T
’Eo e g (2)
= 1 | +£& (1 +é;L n(2) +oeews (348)
oo MeN! <(2)
SR I S N -

As _in chapter II, we choose a plane wave solution for

1)

, E( namely

-1

o e
F = A& €& +a € 2 (3.9)

where y& = kx - W +t, a is the complex amplitude and ¢

»and k are related by the dispersion rel atiorng
. _ z 2 Loy oy |
D(k) ("J) - (w —k A+ w k ) =0 (3.10)

: ' 2

With the choice oK z. & f and 3=€ Y( £, ) being of
order unity), on following the Krylov-Bogoliubov-Mitropolsky
perturbation scheme, from Egs, (3.5) - (3.7) to order & ,

we can show that

f}’Lm» = 4k C(A €A» 4/“‘ a e (P) (3.11)

U2
and Ay Y
| \ | A _ — A
"V““) = 4 (& e K{/‘" a < k//) (3.12)
O |

o A ;
For E(z) Egs. (3.5)-(3.7) to order &  yields the

equation,
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1A & | o (2) T
(WT—k") E .c/u L2 o_E Al%)/\‘

o
f2D\g +a f o /L rk”

\
' 24 A

40’ <er~—.%’<U€ f—C.-C.:&

(3.13)

The removal of resonant 'seculérity in E(z) in'Eq,(3.l3)

demands that

atis Vi, b, + Aoa - 0, (3.14)
| where, V = - (B _D/Q l()/(a .D/&W) = ('LL’?/Qi)iS the ion
acoustic group veloc1ty and h fu)3 (4 + k )/2k on

replacing Al' and B1 by cbt/o f‘, , and 00&/’7 l,, where

ty = €t and x; = € x and on using the substitution,

_ — A4y 4 s
A =Ae (3.15)

(3.14) can be rewritten as,

(3.16)
ot
This means that A depends on t and x only through
4 - - — - . . ] (‘
(U’ = (x1 Vgtl) = & (x Vgt), So the wave amplitude 'a‘,

as a whole damps with a rate h in a frame moving with

velocity V_.
ocity g
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- Under the condition (3.14), we have the following

_secular free second order solutions:

) z o4 ; ' »
E(z = A (3 kz':wz’“) a)'e ) t A e’ \%f-c. C (3,17
\)IJ(A)‘T |
nO- - [agorrykbot] o aid
B L é T - e
6o k*
+ | (*=1) B +1ik_ {L+a f(k‘?i-z)]e 1
k. w Tk -
)
| +C ¢+ (3.18)
Aand
|() T ] A\ |
La(w tk - 2 o2 '
Lo k2
— [w B, A & + afw(wkﬂ r
0 o?_k5
C+ &
+C Ct ) (3.19)

where b is an arbltrary complex quantity independent of(P
ér and (S are real constants which are determined as in
chapter II using the condition that the third order solut-

ions are free from secularities arising due to constant
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‘»ﬁérmsﬁ. They are found to be,’

e
— (1 2 ( 5\
”«2 A +HE+kf e - | lagte s e’
i a0 <
y j = !
i« +(é+k"')f7 ") " Kw{ldﬁ,z
- ~ ) -
| | 2 0y a2 | |
1 (0%5 \/3 «rl)(\/d ~1) (4 (3.20)

{r( Lj;bz ) oK, +(D7 oGk T Tk +é)ﬂ |
“ g

(. j
f 14 l' A A"‘%’/‘ﬁ[if;—g-;-z)o(},ﬁ—(&ké

wé /.7ﬁ ., 3 -
. i ;(/{{7—6 m‘ﬁdé :g

o ‘“-,»;D

4 y ‘21_‘ N 31
FEE ) () e -

i)~

. - A
+ 6 K TR+ (;)J”/ ¢

Wi R |
m = P [ Rk 2k 3) ,[@ by o kF

Y,
— ,2‘ o SRR - ) 2 \//2—
45 - ak)'j:; (k7+2) (k7+1) _2 (3.22)
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In determining the above relations it has been assumed that

Removing the resonant secularity from thethird order

solutions, we obtain the relation,

' { 5 LY = 3 3
A } — (A /’/.¢~k ) [ I,
= : S =2 pIG
L(:. 52&;\ T = 2 ‘3
. , . .
w” (k7 +io) 4 +FPI2 +adQa*t
YAk °¢ 7g"
; 25 &

—Y B
X € L -~ e on
“_€~%f;a,1e_ ﬂf/’igj
=0 :
+Ra =0 (3.23)
el B t?" V . = ..-_.3. _(ﬁ..:l.—— (3.24)
A Tk & b '
. , X )
~@w /12 k8 (k" ezk 2
C3k "L kE- [”“9“”‘%’90 ’9)) (3.25)
= 3 ,,f;,‘ \/< — ")fz‘@t | (3.26)



59

and o o N
X, =/ KRR (Khrakiea)

[(Kr k329K 40k 1 32 K549)

Iy

(Gl IEtPR G TV VL B

. _ {3.27)
The time variable in Eq,(3,23) is defined as ’2: :.é}LCZ
Eg. (3.23) is the reguired modified nonlinear schrBdiﬁger
equation. Apart from the usual nonlinearity and dispersion
the additional features of this equation are the dampihg
terms and the nonlinear nonlocal terms introduced by the
inhomogeneities. So if we put J” =Y =0, it reduces to
the ordinafy nonlinear schr¥dinger équation considered

earlier (Kakutani and Sugimocto, 1974).

ITITX.3 Discussions

The modified nonlinear schriddinger equation charges
the characteristics of the time evolution of ion acoustic
wave envelopes. In the following part of the discussion,
first we give the iinear and then the nonlinear analysis

of different kinds of wave envelopes and their applications

to laboratory plasmas, solar wind and solar coroha.
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i) Linear Stability

For a small amplitude plane wave solution for (3,23)
“némély,

- N ‘[.A':“ -« ' )
o= G, axp FA ("€ —-) _/ (3.28)

we get the dispersion relation,

- E PR { 6L (Ky J&r) + (>’<—-/o<-_.)} |
0= ] L WYRRDEARIF + /2K

) (3.29)

where a_ is a complex constant and K and {1  are wave
number and frequency of the wave envelope, According to
Eq, (3,29), the damping rate of the wave is given by

V= =02 k3 (4 kDX 407/ k1)

+ U’,\ i /Q) K (_)( -+ é,’ w /‘/;;(_ /<5) = J | (3.30)
where K’ =¢ K (<< k) is the envelope wave number as seen
in the (x,t) co-ordinate system. The last two terms in
(3.30) are very small compared to the first term., Consequently
we observe that the effect of density gradient dominates
over that of the temperature gradient for small values of’Kf
This makes *y/almost same as the darmping rate described by
(3.15)., If the wave is moving towards decreasing density,

y/is + ve and the wave grows, Then it becomes modulationally

unstable, This happens even for k ( kC = 1.47 where kc
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is the critical wave number above which the modul ational
instability sets in if the plasma is homogeneous, On the
other hand when the wave is moving towards increasing density,

it damps.

ii) Long Time Behaviour of the WaVe Envelopes

The linear theory helps us to study only the initial
stages of the development of the waves, But numerically
solving Eq. (3.23), the long time behaviour of different
finite amplitude wave envelopes can be studied (Mohan and
Buti, 1979). For this we adopt the DuFort-Frankel scheme
(Richtmyer and Morton, 1967; Smith, 1969) with asymptotic
and periodic boundary conditions for the solutions, The:
~accuracy of the procedure 1s checked by varying the time
and space step sizes, Computational results are shown in
- Figs, 1-9. Figs.1 and 2 show the evolution of an |
envelope soliton as it travels towards increasing density
and temperature. The varlous parameters are same as those
given in chapter II for Q-machine plasmas., For these
figures we have taken the initial wave form which corresponds
to the stationary solution of the nonlinear Schrddinger

equation when PQ >0, This is given by,
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S

o ) } / : -’ : : :
=, /tf,v_..é:/{«f /;2@_/5__,[ QD f-:’ (3,31)

and is shown in Fig.3 by the curve A, Curve B corresponds to

the potential/in an ordinary nonlinéar schrydinger équation

and curve C corresponds to the modified potential in the
;nitial stages of thé evolution when the neonlinear-nonlocal
terms are included, In plotting C, the function ’al 2bin
.the nonlocal term is replaced by an equal-area rectaﬁgle

with height equal to (ai/Z). Thid causes the tatal effective
attractive potential to shift to the left as shown by the
eurve D. As a result; some of the plasmeons contained in the
initial wave packet moves to the left, giving risé to é

wave deformation which in turn leads to a further change in
the potential and hence an additional shift. As more and-

more plasmons accumul ate over the shifting potential trough,

as deseribed by Eq. (3.30), the wave undergoes an initial
damping as seen in Figs, 1 and 2. This is because the
plasmons in the enveiOpe encounter a force due to the density
gradient namely,——G?QQ/B"K.Cf-‘aé. wd K opposite to the
direction of propagation. The wave loses part of its

energy in overcoming this force which results in its damping.
The energy thus spent is used in nonlinearly exciting more

pl asmons represented by the nonlinear nonlocal term in

a new soliton is formed while the initial one damps. Further,
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s

(3,23). this causes the Qave ampl itude to gfow aftefwards.
it isfalso seen from Fig,?2 that an increase in the inhomo-
geneity scale lengths slows down the above mentioned
processes,

An analytical treatment of envelope Lkangmuir solitons
vwinwplaSmashwithwveﬁy;weakwinhomoggnities_has,beenmdongmby
Chen andlL iu (1976,i978). They showed that the solitons
undergo nonuniform acceleration without any change in their
ampl itudes and widths, Following the method of inverse
scattering it was shown by Karpman (1979) that an envelope
‘ 56liton evolving according to a pertburbed non 1linear
Schrodinger equation does not develop tails or undergo'SPlit;
_ting., This is true for a broad class of perturbations. But it
should be noted that in the Eq.(j_23)bthe additional terms
introduced by the inhomogeneities are not very small to be
considered as perturbations and a direct comparison of the

results cannot be made., A numerical study of a modified

equation with a non-local term introduced by the: Landau damp-
ing has also been carried out by Yajima et al.(1978), They
find an asymmetric broadening of an envelopé soliton due to
the resonant particle interation, But again it does nét split

into two as in our case,
Figures 4and 5 show the time evolution of an envelope

. hnle, This is a stationary wave envelope in a homogeneous

plasma when PQ¢ 0, The initial wave form in this case is



64
; én to‘ e //L | //é
ak - i%l {{‘ “,Cg ,5ﬁ£CJL [jng) ng}
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where Aé(l is a real quantity, This wave, after an initial
damping is found to grow into two soliton-like humps, The
éontribution from the nonlocal term of (3.23) to the total
‘potential in this‘case is shown by curve C in Fig.6, Once
again, this is calculated by approximating |
7aSech [] ‘/2. g :I appearing in | al of the nonlocal
term by an equal area rectangle of hight, CE??) The
effect of this is to lower and form an attractive region in
the total potential as shown by the curve D, This causes
the wave to have a larger ahplitude on the right side than
on the left side, However for large values of 12’ , the
amplitude of the wave decreases, This is because in this
1imit a becomes constant in space and according to (3.23),
2(0[2'/3 ?° becomes negative, In this case also, we find
that with a decrease in the inhomogeneity,these: processes

slow down,
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In Figures 7 and 8 is shown the behaviour of an

inltlal periodic disturbance glven by,
A = a, + A fed Cz"%,> © (3.33)

- This wave after an initial damping, nonlinearly excites other

wave numbers and develops a Spectrum; As a result, the

fcity as the original wave, Within each period, there are
»£WO pulses which have the appearance of solitons. As in the
}case of envelopesoliton, the time evolution. of an envelope
hole as well as a periodic disturbance in the presence of
“inhomogeneities are also different from those described by

Yajima et al., (1978).

The time scales involved for these processes in the
~Q=machine are of the order of 10 6Secs ‘f\J(() (hd ) ;]
¢

-~

(T=1.2 in Fig. 1 corresponds to t ~10 = Sec.).

In the cases we have discussed so far, we had taken
>\NL’ where M is the wave length of the envelope and L is
density gradient scale length. But if ;\,ﬂ,eg L , the
initial part of the evolution of envelope solitons over very
short intervals of time (in terms of ¢ ) is same as the
ones shown in Figs. 1 and 2, However, afterwards the
amplitudes grow into large values and saturat&s. Then they
are found to split into many soliton-like humps. This is

shown in Figs. (9a) and (9b) for the cases of solar wind

initial perturbation grows into shapes with the same periodi-—""
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L

and solar corona with the following parameterss

1) Solar Wind

Te =.2 X 105 %, n =8 cm-3

L = 1019 X\

2
¢ AN pe =6 x 107 ems,
(O = 3.7 x 107 sec™?,

b«

De!

Solar Corona

7 = 10° °k, n = 10° cmf3, ;\Iya = 7 cms,

L = 105)\D , (D .= 1.3 x 10° sec™?
e Fﬂ

Since the density gradient scale lengths in these plasmas
are very large, the values of € are extremely small,
Because of this, al though the time intervals involved in
these processes are very smaitl in terﬁs of Zf ’ in-real
t;me.(t e’ T ) they are quite large., For example, for
éﬂé éolar corona thé time taken for the initial soliton to
split into many solitons is of the order of

Q;i Sec [E; ‘OS'CLQ%AL)‘ﬂi]' whereés in the case of solar
wind it turns out to be the order of 106 Secs fviog(}kjnf)iﬂ
which is of the order of a month, Assuming that the ion
acoustic instability in the solar wind arises around 0.9 AU

it will take about 104'Secs (Tfpglo-%z

See - Fig, 9a) to
’ readh the earth and by that time the initial soliton would

not have étéfted splitting. So it is rather difficult to
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_observe the splitting of_solitons in the solar Wind near
the earth. It should be further noted that even though the
wave amplitudes attain large values, in the real space and
time variables the wave amplitudes (~~&(¢{ ) still remain

less than unity (~f. Egs. (3.8) and (3.9)).

III.4 Summary

A modified nonlinear schr®dihger ecuation, governing
the envelope properties of ion acoustic waved in inhomogeneous
plasmas is derived., For small amplitudes the wave gets
aamped while propagating towards increasing density. A finite
ampl itude wave, say an envelope soliton in a typical Q-machine
plasma with width of the order of the density inhomogeneity
sc¢ale length splits into two envelope solitons, one of which
damps afterwards. In the case of an envelope hole, two
soliton-like humps devélOp on either side of the central
depression whereas a periodi¢ modul ation excites other wave

numbers and develops a spectrum. An increase in the IinhomOe

.genéity scale lengths 8lows down these processes. The
plasmas of solar wind and solar corona have extremely weak
density gradients; however, envelope solitons with very

small widths after long intervals of time are found to attain

large amplitudes and then split into many solitons,
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Fig.1l: (Q-machine). Evolution of an envelope soliton (PQ>0)
for p=&kfE=1, V= p/e’“_—,l) k=4 and a, = 2 with the ratio

of the density gradient scale length to the Debye length,

L/ Xp = < ~1 = 10.
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Fig.2: (Q-machine)., Same as Fig.1 but for L/7\D = 20.
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Fig.3s (Q-machine), The ;nitial envelope soliton and the
total potential V given by the nonlinear terms of (3.23)
for p=AjE=1] V= p/e’=1, k=2, &=2 ad
L/>‘D = 10, The curves A and B correspond to the initial
wave packet and the unmodified potential respectively.
The curve C gives the contribution from the nonlocal term

whereas the curve D represents the total effective

potential,



Fig.4: (Q-machine)., Evolution of an envelope hole (PQ <0)
for p=k/€=1, ¥ = ple’=l, k=], a,=[-5&= 0k ana
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Fig.5: (Q-machine), Same as Fig.4 but for L/)\D = 20,
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Fig, 63 (0-machine). The -initial envelope hole (PQL O) and

the total potential V, given by the nonlinear terms of (3.23)
forf::o(,/é:l) Y= ’3/62-: I, k = b O..o:l's*)a’::o,tr and
L/>WD = 10. The curve A represents the initial wave and the
curve B represents the unmodified potential. The cufves C and

D give the contribution from the nonlocal term and the total

 effective potential respectively.



T=0.33

Fig.7: (Q-machine). Evolution of a periodic modulation

- - -_ 2z - "'"" . N"' ‘
(PO <0) for P=Kfe=1,)= B/e*= 1, k=1,0,=16,0=04,
[=TT/5 and L/xp = 10.
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Fig.8: (Q-machine). Same as Fig.7 but for L/ = 20.
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Fig.(9a)s (Solar Wind). Evolution of an envelope

soliton (PQ) 0) for f = KA/€ =1, =0, k =2,
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Fig.(9b): (Solar Corona). Same as Fig.(9a) but
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CHAPTER 1V

ELECTRON ACOUSTIC SOLITONS IN CURRENT-CARRYING

MAGNETIZED PLASMAS

IV.1l Introduction

In a low’ﬁB magnetized plasma, if the ions are much
hotter than the electrons, then the iens can be considered
to be nonmagnetized and the e¢lectrons to be magnetized,

That is, for oscillations across the magnetic field with
frequencies lying between the electfon and ion gyrofrequenc-
ies, the electrons are ratheér tightly bound to the maghetic
field whereas the ions move quite freely., In other words,

the effective mass of an electron inereases, the latter
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- \ * ; 2 . . , :
being m, = (me/Cos, U ), where m, is the electron mass and

6} is the angle of propagation of the oscillations with the

magnetic field, For Cos &< (me/mi)l/z, the effective

..

mass of the electron becomes larger than that of an ion, In
analogy with the ion acoustic waves, one f£inds that these

~electron acoustic waves propagate with a phase velocity

Vo = (Ti cOszg}/me)l/Z; T, being the ion temperature. Their

wave lengths lie between the electron and ion Liarmour radii.

In most of the cases the-thermal velocity of the ions is

not very large compared to the electron acoustic phase
velocity which makes these waves to undergo ion Liandau
damping. But if there are external electric fields or
inhomogepeities in the plasma, then the electrons will

acquire an averave drift across the magnetic field, The
velocity of this drift adds to the phase velocity of the waves
vectorially. Then there will be two kinds of electron ;
acoustic wavés: those which are faster than the electron

drift and those which are sléwer than the electron drift,

The faster waves undergo Landau damping whereas the slower
ones are negative energy waves and they undergo Landau

growth (Lashmore-Davies and Martin, 1973).

Magnetized plasmas wWith hot ions and cold electrons
are expected to occur in magnetron type devices, plasma
accelerators, collisionless'shocks, in the terrestrial

magnetosphere etc. Especially in the case of magnetospheric
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plasmas, there are some observations on the ring current
around 7.RE.: Russel andAThorne (1970) and Frank (1971)
have shown that the plasmasbin this region have protons
and electrons with energies of the order of 40 keV and
1-4 keV reSpectively. In the magnetotail also some times

the ions are found to be hotter than the electrons (Frank

et ai.,v1976)

The linear properties of electrostatic and electro-
magnetic electron acoustic waves have been studied by many
authors (Arefev, 1970; Lashmore_Davieé and Martin, 1973 ;
Sizonenko and Stepanov, 1969) to explain c¢ertain phenomena
such as the rapid turbulent heatinhg, anomalous conductivity,
anomalous diffusion, radiation in theta pinches etc,
'Gdedbloed and coworkers (1973) have éxténded their theory
to the nonlinear regime in the electremagnetic case, By the
method of averaging over random phases; they have estimated
the level of turbulence attained by the field fluctuations.

In 1In this chapter, we consider the propagation of electro-
static electron acoustic waves in a weakly nonlinear plasma,
The nonlinearity, dispersion and ion Landau damping are
systematically taken into account., By means of reductive
perturbation technique (Washimi and Taniuti, 1966), we show
that these nonlinear waves are governed by a modified K-dv
equatién. An analysis of this equation by the method of
inverse scattering (Karpman and Maslov, 1977; Karpman, 1978;

1979) gives the time evolution of electron acoustic solitons,
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We observe the damping or growth of these solitons along
with the appearance ofAthe»tails. The rates of these
procesées increase with a decrease in the angle of

propagation.

IV.2 Linear Dispersion Relation

We consider a low ﬁS , collisionless plasma, The
magnetic field is in the z-direction and the electrons have
an average drift VO in the y-direction. The ion temperature
(Ti) is taken to be much larger than the electron temperature
(Te). Let the propagation direction lie in the y-z plane
making an angle E} with the magnetic field. The angleé} is
such that the phase velocity in the z-direction is greater
than the electron thermal velocity, V., = (T / 1/2
Consequently for the electron dynamics, electron inertia is
not negligible and they are governed by fluid-equations,

But for the ions, we use.Vlasov equation so. that the ion-
L andau damping can be taken into account. In this equation
the magnetic field is ignored since the ions are considered

to be nonmagnetized. Thus the basic equations for the

system are,

-

N -
U;W@ V (Vk @ - (4,1)
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- = 2y Y =
A:._I)L, T{ﬂ’i{ v Ui - ,-:tf..--«\/ ¢ T»—f— Ljéx 8 -TT;' V ‘Y\)e J (4.2)
A v e ", Yo ¥ ﬂ(:
z — ' o 7 ) .
V¢ =yTelm = [ fdvy (4.
and

{i (u \‘7/¢-C’ \/775"34); =0 | (4.4)
AT A

-
In these equations, ng is the electron density, Ve is the
electron fluid veloc:.ty, @ is the electrlc field potentlal,

B is the magnetic field and f is the ion distribution

function,

Defining a new space variable in the direction of

propagation namely % = vy Sin »9’+Vz Cos €3 and using the

following normalizations:

- _ N2 ? ~ : .
L@ﬁ”jUhﬂ%W@“JJO:%%@)
{ —
%@ - o, g — f / A ‘_"ﬂ‘ /(:Tg /1) j

> e g/T (.5
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where

ﬁfﬁ

is the electrOneLarmour'radius, no the equilibrium
electron and ion density and E% is specified by a fixed

direction, Egs.(4.,1) to (4.4) can be rewrittén as

(4.6)

(4.7)

(4.9)

(4.10)

(4.11)

Here v, = vy'Sin(ﬁ + VZ Cosfﬁ is the component of the

electron fluid velocity in the f{ -~ direction.
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| Linearising Egs, (4.6) ~ (4.11), keeping in mind
that 0 £ (Cos 89 , Cos B ) &K (me/mi)‘ / and C_< V

we get the dispersion relation,

Ti?

((,Q «-'k»\/;) aon @)L}// + 4 ( | klg#w'z'@)(ﬁ;/&)‘/;

k/ 7;.‘ L350, (4.12)

(g,}* & |- IKA(H« Kt o ) Lote

This gives the frequency and growth rate in the small wave

number limit as,

(“{)/\ > kY, e BT L B
| € o
*+ LKk CMont e Cod @/ﬁm B, ) (4.13)
ol - .
and
- i e
}/ + /l /‘L:)  an B k/CS >
Lo O, L Vo

(4, 14)

The - ve and + ve signs correspond to the phase velocity
being greater or less than v, Sin {“} . Since S8in & ~ 1,
this means that the waves will damp or grow according as
they are faster or slower than the electron drift, Moreover

A o
from (4.14) we see that ‘V/’ increases as L} decreases;
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v,3 Modified K-dv Equation
Next, we consider‘the' propagation of small but finite
amplitude electron acoustic waves, Following the method of

reductive perturbation (discussed in chapter I), we

introduce the stretched variables,

o ¢

,/’~ I’ - - — ”

m o= e - U %ﬂ) and T = &
A =

Here, the smallness parameter ¢ is taken to be the same as

Cos? O, adu =V, Sin G + (CosQ Losf,), is the wave phase
& -

velocity. PFurther, we define,

oo - A N =
Coi & = K| € %, (G/ Vp ) =Ky A,

(2/T5)2 45 € (Gn 040 )= o st

‘where CA 1 O(“Z' (7<ﬁ3 and 0<4 are of order unity and A
is such that &< A< 1. For a weakly nonlinear system, we

use the following expansionss:

, _ N 2 (2)

Wz v e w et e (4.17)
N _ oy 2 (2) :

. - e . . e

, 3 L.._;,(( + € l).k ) (4.18)

) oz () ‘
/‘)ﬁ - & CfD + € C}‘D + (4.19)
and
(i - (t‘)

(%4
Wi th fo = (27‘,7)"1/2 exp (—V2/2). As far as the Vy and v,

(4.15)
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expansions are concerned! we must satisfy the ineqpélity,

<

v - VO £ ng< vZ. This restriction can be easily understood
by going into the reference frame of the drifting electrons:
The fluctuating electrostatic field of the wave is almost in

the y-direction. So in the linear 1imit, it cannot produce

any fluid motion in the y-direction because of the external
magnetic field, Any fluid motion in the y-direction can only
be due to the nonlinearity, The second part of the inequality
follows from the requirement that the wave frequency 1s much

less than the electron gyrofrequency, Further to make the

expansions (4.17) - (4.20) to be consistent with (4,15) and
(4,16),; we choose the following exparisions for VY and v,
, 2 (0 (2)
Voo F etV s eV (4.21)
‘; 0 3} ;y ,
and / (
V2 | 3/ %+ 2)

Making use of (4,17) - (4.22), Egs. (4.6) - (4.11) to

the lowest order in GE yvield, ,
(0 () '
T, = (f) , (4.23)

O ()
Fel o= 9
w34

: Y, = 4
V%() _ OA“’\{,) Z)chD ) (4.25)

i

(4.24)
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,1)’('” — 06 o ¢ | | - | v
Ve = & CF _ (4.26)
(U-V,) - |
and ' »
(1) @ ’
1 T ' 4,27
f f(’o ¢ (4.27)

To the next order in & on using the results (4.23) -

(4,27)., wWe _obtain,

PN ) bl (1} (). Iy
él,ééiin +(Cl043“ﬁvQ! VLJ);%%£'+~;3(§L qﬁ Uéaé%g)

ra X¢ +ad (-1 )=0
ZE ey . (4:28)
, .

(D , (2) (2
K 0 = f /g dv =7 (4.29)

, S /
=/ X
+ &K U(2TT) Fl s 21 o
— ,

where a =u - V_ and P denotes the principal part:(4,30) is
similar to the corresponding relatiOnship derived earlier by
Ott and Sudan (1969) in the case of ion acoustic anes.
f(z) (2) from these equations, we geﬁ

Eliminating ﬁ(z), and n

the following modified K-dv equation:
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(4.31)
(4.32)
(4.33)
and —
o - . ‘/j _’, O s 2 .
D A K 5 H (?5 ( (4.34)

In Eq. (4.31) ﬁ(l) has been repiaced by #.

IVv.4 Discussions

The last term in Eq. (4.31) represents the ion-Landau
damping. To check this, we linearise this equation and then

Fourier analyse it (Davidson, 1972). Let us define,

S{D (7' v = / () € ¢ k? Ak’ (4.35)

’,

ott and Sudan, 1969) namely,

4](4&7%»{/) ejk ] AL
o0

i

-2 PL, (4.36)

/
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and solving for qﬁ Ct) , we obtain, ' ,
75('1") -’“(13 CE O)JQXP[ k ’Z.J/QJ""/ T] (4.37)

Here 7£fis the growth rate of a wave with wave number k. In

/e &)) frame of reference, this becomes,

1)
M \ m/cﬁ_\(wwmfmﬁ\k
K \8 Coo 6, \vr/

;H

(4.38)

‘which is same as (4.14).

However, if the wave has finite amplitude even if it
is small, the nonlinearity is not negligible, Egq, (4.31)

wiﬁhout the last term has a stationary solution of the form,

qb = 72 AZerlVL [}i:» t@z ‘“'\/’ti%;Z) (4.39)

where gé is the amplitude, L = (Q’Oa/12B)'1/2 is the width

and V = (goa/B + A) is the velocity.

Now, applying the inverse scattering analysis |
(Karpman and Maslov, 1977; Karpman, 1978; 1979) on Eq. (4.31)
we obtain the time evolution of wéﬁes wh;ch are initially
of the form (4.39) (Mohan and Buti, 1980), We rewrite
Eq. (4 31) as, ’ |

5 —6 ¢t 22 & 0”2 2355 = AR @]
T 2X _

where we have used the transformatidns,

F g e

(4.40)




80
» IR A o .
o= 8Rg-A, e

T = % o - (4,43

e | . »,y: v'EBE?i /
!2)(15/ = =D B~ Pf ;')*(;’;L“ _’;7{ A (4.44)
. | J (x —x")

and

(Lax, 1968; Scott et al., 1973) as,

i oL -/l/:);\J = Af{)ﬂ; 7 (4.45)

e
where v
~ ~Z -
[, =—0 4+ (4.46)
R
and :
I -
A =Lt 2~ + 24 02¢
o= | D X
+ 34 4 ~ (4.47)

Consider now the eigenvalue problem,

A . ‘ |
LN‘/S &J?(XJT)‘é L/J(X/T) - 7\<T) %(%)T) ) (4.43)’:-,';
wneze (B (X, £) 15 the solucion of Ba.(4.40). After

differentiating (4.48) with respect to T and using (4.45),

we get, . a4 e "
L-nfps «i A ¢)=-oRIE]?

+ 4N t/ C (a.49)

E¢. (4,40 can further be rewrittenin an operator form-
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For the contlnuous region of the elgenvalue Spectrum,é)7\ = O
o

But to find the time variation in the discrete region, we

multiply (4,49) with ﬁJ%( and integrate over X; this leads

?7\ A J 7’ RE} <,bd()< (4.\5o>.

j‘ L UJL%.X

;’ ) : ) i
Now, sincé\each of the discrete eigenvalues changes 1in

~time, the shapes of the corresponding solitons are no longer
invariant. However, the rate of the time variation is very
small, since A\ <i‘ . So for time intervals, 7’<31(1/f£>),'
it is justified to look for solutions of Eq. (4.40) of tﬁe

form,

F(x,T) = Cfs Kx AWy} 7—]
+ 8? Kx - V—(_'T)ﬁ)Tj , (a51)

where
B % ”} T «“,‘-'
F, = B0 Aok |, (= D D] e
and

g}é‘ S‘E(T) W | = v T‘),T’} ) | (4.53)

'/ .
A |
CE,(T..)j ; (4.54)

Y

\ZT) = =4 éO(T> " (4,55)
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and :
O N S ' : :
5 P << ji V : ~ (4.56)
()
At T = 0, W vanishes and qﬁ correSponds to the solution
. ' ) .
(4.39).

To solve the eigenvalue equation (4.48), we approximate

. " N
i;occuring inL by ¢ ; this gives,

b R

D

©——

’0(4 7) 1_ Ao }'/7 K)( —- \/(U T) / (4.57)

and

M) Et}"(j')/o‘ [ (4.58)
o -
Substituting (4.57) and (4.58) in (4.50), to the first order

in ll_ , we get,

»O
A = b / [@;7 A2 d o 599
6:7: ~—D j N -
where 7 = (X — VI(T) }//L.(/ ). From this we immediately
obtain, , ‘

it

i{(}@ﬂ) _Lj:(d +AGT, (4.60)

. §
where , )? 2
.y . p r
G = — D 2 P A (Wech X )
A ‘ —
g ; %) J‘ o

deeh” z =2 dx
(z -~z (4.61)

Integration of (4.,40) over X, gives
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r f ‘/I)‘(/( X :‘../j’ ' (4.62)

(T’ )
raY
Thls shows that the total area under the curve g? remains

invariant, However, the area of the soliton part of the
solution g% as given by {4.51) changes with time. To
compensate thlsﬂthemarcuwgornggpondlnghto éﬂjt also has to
change. Substituting (4.51) in (4.62) and using (4.52),
(4.53) and (4.61), we get

ox)

f FWwdz =246T (s.63)

Hence the area of the tail is proportional to time. But since
éﬂq?‘\s\ éEj ., the nonlinearity in é:g? is very small and it
will lag behind the soliton. This gives it the appearance of
a tail. The formation of such tails has been observed numer-
ically in an earlier study by Watanabe (1977) in the case Of,

KmdV equations modified to include the effects of collisions
and viscosity.

By dividing (4.63) by the distance travelled by the
soliton in time T, we get the approximate height of the tail

as,
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H = *A——-ﬁf . | (4.64)

Tn compute the integral G, we rewrite it in the follow-

~ing form (Ott and Sudan, 1969):

)
(=1 8" 5]1;\{ F(k) F(-k) dt
KD

(4.65)

where F(k) = (7T/2)1/2k Cosech (k11/2), is the fourier.
transform of Sechzz. Since F (k) is symmetric in k, (4.65)

can be evaluated to yield (Gradshteyn and Rizhik, 1965),

o
, - - ' S-SR g Ny
(h=-D& ™~ fa@)j k7 fozech (’%ﬂ—- Ak, (4.66)
‘O - ’

!

R
= -DR "> (6 /q(j), (4.67)

o

-0 !/J

where fl (3) is a Reimann Zeta function.

Trénsforming back into the , 7 frame of referencé,
we £ind that for 2./ L G/L\) , the amplitude, width and
velocity of the soliton as well as the length and height of

its tail at any time are given Dby,

95(%’/‘ = Cf’j(‘i’) EI’“-* o CJ) | (4.68)
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o [1+ax]

Z\

'S
~
—_
i

Vi) = 4 p(r) + A, | (4.70)
2 o _
- a ) T | (4.71)
A E c,b |
and ‘
. /'j

Lo=lolre)a]Pioke)

0 = [L\ {d AL, o 4(3)’] [o? “ T 7/1L(03~ / *‘<4.73) k

The growth rate of the soliton amplitude given by

(4068) isl

[* = o 1 (4.74)

We have computed Fq for various angles of propagation for
damping as well as growing solitons. These are given in
Table 1. We find that, as in the linear case, here also [
increases when the angle of propagatién decreases. But if
theie are changes in the electron to ion temperature ratio,
the pressure in the medium gets affected and it changes the
soliton velocity according to (4.70) while its ampiitude and

width remain unchanged,
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v.5 Conclusions

Collisionless magnetized plasmas with low fg with hot
~ions and cold electrons can sustain electron acoustic waves,
In case of weak nonlinearity and dispersion they are described

bv a modified K-dv equation. Initial perturbations in the

form of solitons undergo ion Lrandau damping or growth;
simultaneously giving rise to tails. The rates of these
processes increase as the angle of propagation of the wave with

the magnetic field decreases,




Table 1
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propagations with ¢, , = 3, V_ =4 and L (0)

’Damping and growth rate of the soliton for various angles of

= 1,

Cos fj 1 . | i -
Q(; — (Rate of Damping) X A\ ~" | (Rate of Growth) X/
' Cos 6‘0
0.5 0.6266 0.4874
0.75 0.9922 0,6789
1.0 1.,3926 0.8353
1.25 1.828 0.9572
1.5 2.298 1,462




CHAPTER V

EXACT ELECTRON ACOUSTIC SOLITARY WAVES

V.1l Introduction

In chapter IV, we discuséed the formation and evolut-
ion of electron acoustic waves in a weakly nonlinear plasma,
There the electrons were described by means of fluid equa-
tions and the ions by means of the Vlasov equation which
helped us to consider the ion-Liandau damping, As a conseq-
uence of the ion-Landau damping, the waves were seen to
undergo deformations such as damping, growth and tail for-
mations. This prevented us from finding stationary solutions

of the KAV equation governing the electron acoustic waves,




On the'other hand, if thevthermal velocity of the idns'”‘

the ion-Landau damping is completely negligible. The ions can
_then very well be described by a Bel tzmann distribution
instead of the Vlasov equation. In this chapter, we consider

this case. Then taking into account the complete electron

ions into & .single equation. This ecuation is similar to
the energy integral of a classical particle of unit mass, The
potential energy of the particle is referred tokas the
Sagdeev potential. A careful analysis of the éagdeev potent—.
al reveals some important characterlstlcs of statlonary
solitary wave solutions to the basic equations, The main
advantage in this scheme is that the wave amplitudes heed;no
longer be small since the fuli‘nonliﬁearityvin the sYstem‘
has been included. This kind of analysis was first'carfied
out by Sagdeév (1966) for ion acoustic waves, He found that
finite amplitude ion acoustic solitary waves can exist with
an upper limit on their amplitudes. Recently Buti (1980)
studied these nonlinear ion-acoustic waves iﬁ a two-electron-
temperature plasma and showed the possible existence of
solitons and holes (corresponding to density dips in the
plasma).

In case of electron acoustic waves also, We show that

there can be both solitons and holes. However, the hole

&

{s much larger than the electron acoustic phase velocity, then
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solutions have widths much less than the characteristic

length scale in the system which invalidates their descript-

ion in terms of a fluid theory.

_V,2 Basic Equations and the Sagdeev Potential

The plasma considered is same as the one describedvin
chapter IV except that we assume that there are no zero order
electron drifts. Further we replace the Poisson$ equation with
the quasi-neutrality condition. That is, the electron and ibn
density perturb ations are taken to be the same, This is
justified as long as the wavelengths are much larger than the
characteristic length scales((Ti/Te)l/zjza) where f; is the
electron-Larmour radius) in the medium, Besides, with this

condition it becomes possible to integrate the basic equat- .

ions governing the system exactlvy. The basic equations are,

) = —
3o . '/\. " i -t .
iﬂl}fi + V (‘EK]QE“) ~ <, (5.1)
ot
N ey ST ; o . — -
St Mg WVGC
- -
— eV N (5.2)
2 7‘/Ve

and
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We assume that the wave is propagating in the y-z plane

making an angle 6 with the magnetic field and define a new

space variable ? = v Sin @ + Z Cos 6 . We normalize these:

—.equations . in_the following ways

g £ J[(T/DAE] A Ctae,
g—ﬁ v /1 / me)esse | (4 = "a“?’fz’
N—=> W, /Ny, =Te [Ty ﬁbﬁa“‘e#)m'

Then we have,

N 0 / o
g__t_ 1*5_{.;-(’7\1 (Vé) = 0, (5.4)
oV, + V- oV Vi = o0

%x E 572’"% ‘/‘ég@ o, (5.5-) |
2V LV, L w2V
7 2 Y+ 2 - X
P} an, ?52? &3*0 0% Ao

4+ X L O 2N =0 (5.6)
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“and

M = ”YL‘( = M/D(C;b) N | (5.8)

n and ny are the normalized electron and ion densities‘,

0(1 = (Te/Ti) and V/él =Vy Sin & «+ VZ Cos .

We now look for stationary solutions of Egs.(5.4) -

(5.8) which depend on ﬁf and tonly through the variable;

’Yl = K 41 - ) t. These represent waves moving with
constant velocity (<2/K) without any deformation. The opera-
tors B and f) can the be replaced by —Jl.& ‘and K ()
respectively, Now Egs. (5.4) and (5, 7) can be 1ntegrated once

which together with Eq. (5.8) yield,
K@y Gin® +V, Lo ) = (=L )2 s

and
U:‘Z,’ = K (H‘O(-) ("’V\/'—') (5.10)
In deriving these and further relations, we impose

asymptotic boundary conditions on the waves; namely

m— 1

V=0 as va —3 e

—

(A n/d 2)@ o

From (5.5) and (5,6) we obtaln,

— 41 AV LV , | o (s5.11)
e : o= o AE
no VZ ‘/?3; _
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o™ 0( ook A © I+ &) dn
N .{ﬁf M Eeste ( A"
- Vo
Cea 6

Eliminating v, vy and Vv_, Egs., (5.9) = (5.12) can be

(5.12)

T reduced to;,

A <d/ 14 )L 4+ «71/ (M) =9 (5.13)

L 7_] L
G+« av-"
;{ 61732—63 ,Z - 213

The quantity M (=.4”L//K sin © ), is the Mach number of the

(5.,14)

wave in the y-direction.

Eq. (5.13) is in the form of the energy equation of a
classical particle of unit mass whose total energy is zero,
First term on the left hand side corresponds to its kinetic

energy and &f/(n) corresponds to its potential energy which



is called the Sagdeev potential.

V.3 Solitary Waves

Equation (5.13) will have real solutions - (Buki et al.,

1380) only if, (5.15)

v

11;({\;\1\ < ')
To check this, first we analyse LP (n) near n = 1, From
]

(5.14), retaining terms up to order (n - 1)2 we get,

§ov =)= @'H)Z’CW‘UL [M S ETI: x)]‘
| a M KR*

[~ a7 ] s

where. )Q = Cfgﬁlﬁ/#/d/f/\w - (9)) (<<~ l). To satisfy the

condition (5.15) we must have,

(I+&)(1+x) < ME< () (7 X)‘L/X (5.17)

Moreover, from expression (5.16), it is apparent thatn = 1 1s

a double root of the equation g}/(n) = 0, Consequently,

Cily \ = 0 which means the oscillating particle in the
pziggilal :réugh slowly comes to rest at the point n = 1,
This corresponds to the asymptotic boundary conditions of the
wave, That is, the density in the wave becomes n = 1 as

Y =10

The equation ﬂb (n) = 0 will have one more root say,
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at n = N corresponding to the maximum displacement of the
oscillating particle so that the amplitude of the wave will

be (N -~ 1), By putting 79 (N) = 0 we get,
b |
L B,M —C, =o, (5.18)

where

B,= N - (1) 1+ ) [C N =] — ,//w /\/)
(N-1)* X )
+- X (N "’)L_] ~ (5.19)

N

and

C, = NP (% (5.20
| X

Solving Eq, (S.ig), we obtain,

| A
M B = BD + (802_ Cv}

2
Let us examine the root with the positive sign. For N >, 1,
ld

g}

(5.21)

5 :
M” is very large since X << 1 and this case is inadmissible
because our basic'eQuations are valid only for wave velocit-

ies smaller than the ion thermal velocity. This puts an

Z i ; N/ pIP

. ~ Y — / ; . ¥a “ |

upper limit on M namely, [\ < | 1@& = !@’“’e/ )’V\{‘ )/L{:Oj T
However, for N << 1, one can achieve this condition and

(5.21) can be rewritten as,

2 o | e i S e (5.22)
(M2 N (14X )(H-o()i"‘,fw‘l\/ + (L N 72\<T' j o
7( !
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. . v |
with the restrictions thvat, /(/f:/\/ N ‘> (X h/N)
| For N 1, defining N= 1 - éﬂN and using the series
expansions for.en,N, in the root. with the negative sign we
have,

5 2
Mo Lo = A0 @+ 5023

2

A Dg I+ 2X+LF)

where

F=(5+ x)gan»(—}F FX)ONT+ (5,24

so that, [ 2’<(\ +'0§)G+-X)- This violates the inequality
(5.17) énd hence this case is also ruled out, Henceforth we
will consider only the root with the positive sign for N 2;1
with _far N "’>' ()( \/ 2 / N) and the root with the negative
sign for N >-1. ‘

Now we consider the nature of the potentlal #/(n)

near n = N, Here the condition (5.15) demands,

(ﬂ <0 for N < | (5.25)

d y > SN0 for N > | (5.26)
Ad N |

Combining (5.17), (5.21), (5.25) and (5.26), we finally

obtain the following inequal ities:
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N (1+4) G, >[M "":: Bo--(é:'—-cojl/ 2']
G*kok) (\ + X) Cfor N > (5.27)

and

; >3- : - V /2]
(o) 1+ M= B, +HBo—Co) /j>
% L

Nﬁﬂdﬂ"j&ir N < ) ; A NM‘ > (% \/71\1 > (5.28)
AN

Usually we have X <;(me//mi). Hence the reqiirements
N1 and A N‘}>< x‘/‘/N) ¢an be similtaneously satisfied,
Under these conditions, relation (5.28) with the help of

Eq._(S 22) can be rewritten as,

CI-FX)/N > A N ><l‘* X) (5.29)

which is indeed satisfied for N{L1. So we conclude that
electrou holes can exist for| >N 23)<v2746ml‘-1 our
numerical computations confirm their existence, For X =0.1
and X = 10~%, electron holes could oc-ur for |
3 x 10074 N< 8 x 1073, The value o Iq/@’\)i at

= (1-}-1\1)‘/2‘ (midpoint between n = 1 and n = N).,i‘s»vloe

Using this in Eq. (5.13),we find that
| — &
Z:;/ ~ L;~'02/ Lf’(74/'>t] ) (5.30)

where W is the width of the hole. This gives the value of Ws
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2 | | (5.31)

This means that the holes will have spatial extensions much
1/2p . . e b
smaller than (Ti/Te) r which we have used to normalize the
e
~lengths-scale-in -the system..Because of this our fluid model
is not quite adequate. Consequently the existence of electron
“holes may not be realizable, A satisfactory answer can be

obtained only by including kinetic effects in our approach.

V.4 Small Amplitude Limit

In the small amplitude limit, we can take n = l—kg—n;

- oo . ,
g n << 1. On retaining terms up to o n3, Eqg., (5.13) reduces

to,
where
){\( - ( :f“ ),<) ,, \ l/l L (J_IL X )( e '()l
MERE
— o, 2
"~ (4% (0407 ] .
B ! !

and
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K= A U+><> [M X (1K) ([ )f
/~7 U

4t X1 [GEE ‘?{2 +50) (4 ) {1+ [

We can easily show that Eq, (5.32) has a square hyperbolic

“secenttype solution, mamely,

g Yl o= g’)’\lb Ao e, z<? / I~ ) ) (5.35)

D

where
o= X / X2 (5.36)
and
o o NS
L = (K, / 4—) - (5.37)

In order that I is real, we must have )(!<,O which is ensured
if (5,17) is satisfied, i.e., if <0. Moreover, with X<0,
o~

the amplitude P n, will be positive if X, >0 which demands

that,

™ < §§ O+X) (5.38)

.In calculatiﬁg (5.38), we have neglected terms of order X in
(5.,34), When M2:> % (1 4—0\}. ST ho is negative, But in that
‘case, the small amplitude limit calculation has to be abandoned’
because by putting N = (1 + 5Tn ) in (5.21) and expanding,
we can show that E;I%y> g for M > = (l~+”<) so that the

wave amplitude is no longer very small,
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We conclude this section'with a remark that in the small
amplitude limit, we can have only solitons and not the elect-

ron holes.

Next, we compare the small amplitude limit solution

with the solution obtained in chapter IV in the absence of the

1on4Landau damping. The solution (4.39) in terms of the
density perturbation to the first order in 6 can be written

in the ( {- t) frame of reference as,

ém,~cm,->>wmw)<(’ (g e, . (5.39)

where we have put V_ = 0, K, = 0 and Cos © = cos @o'
Evaluating the coefficients ;Kfl' and )(2 in Eq. (5.32) after

neglecting X and X , we have,

7(,1 = “,%. g")’\/o (5.40)
J K:L
and
D G- S (5.41)

which give the solution (5,35) as,

g’rv = g-wo MM/A L(gw l(ﬁj'w(‘ﬁ:)]a (5.42)

This is same as (5.39)
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V.5 Conclusions

Fof X = J.O"4 and g&,: 0.1, the region of Mach numbers

corresponding to solitary waves with density hump 1s deter-
~-mined numerically-and-it-is shown -in Fig,1l., We observe that
only supersonic electron acoustic solitons can occur, The
upper limit of the amplitudes in this case turns out to be
M, = 2.3, | |

In summery, we find that in the absence of Landau
damping, supersonic, finite amplitude electron acoustic

solitary waves with density humps can exist in a

- magnetopl asma,
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Fig,l:'M2 versus N, ©Solitary waves with density hump for

K=0,1, X = 10™% can exist in the shaded region.



CHAPTER VI

EFFECTS OF COLLISIONAL AND VISCOUS DISSIPATTIONS ON-

THE ION ACQUSTIC~LANGMUIR INTERACTIONS

VI.1 Introduction

Quite frequently the plasmas of laboratory as well as of~
astrophysical situations are in a state of turbulence, Any
small noise or oscillations in a plasma may develop and set-'
off turbulence in.it, The main characteristic of a turbulent
system is that its total energy will be exchanged and shared
among the different modes tﬁat it can sustain simultaneously

(Kadomtsev, 1965; Tsytovich, 1970, 1972;Davidson, 1972;
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Ichimaru; 1973); Turbulence in plasmas has a very important
rolevﬁé play in varioué phenomena like heating, anomélous.
diffusion of particles, anomalous conductivity, transport
of energy, nonlinear excitation of waves etc,
| In an unmagnetized turbulent plésma with hot electrons

and ¢0ld ions the most important modes to be considered

are the Langmuir andythe ion ac¢oustic moded (Thornhill and
ter Haar, 1977). These two modes are coupled to each other
in the following way: The energy density of the high
frequéncymLangmuir oscillations has a pressure aséociated
with it (similar to the fadiation pressure)., Whenever this
pressure develops a spatial gradient, it gives rise to-a
force called the Miller force {(Gaponov and Miller, iQSB)-or
the ponderomotive force, Tﬁisiforce acts on the ions in
the plasma and drives low frequency ion acoustic perturbate
ions which in turn trip the Langmuir waves in them, The
coupled oscillations thus produ¢ed move with velocities less
than the ion acousti¢ velocity because of the resistence
offered by the trapped Langmuir field. In the limit of
small Mach numberé (near zero) the nonlinearity in the ion
perturbations is very’Small and the weaves are described by
the Zakharov equations (Zakharov, 1972). These are a pair
of coupled nonlinear Schr¥dinger equation for the electric
field of the Langmuir field and a wave equation for the ion

density perturbations of the ion acoustic mode, These



104

equations have been found to have stationary solitary wave

solutions (Gurovich and Karpman, 1970; Karpman, 1975; Gibbons

et al., 1977). But as the Mach number increases (approaches
unity), the ion density perturbations grow larger and steeper
which makes the associated ion nonlinearity an important

factor. 1In such cases, the wave equation for the ion is to

be replaced by the K-dV equation or the Boussinesqg equation

(Ikezi et al., 1975; Kaw and Nishikawa, 1976; Makhankov, 1974},

In this case also, there are stationary solitary solutions
(Nishikawa et al., 1974) with the amplitude of the ion

density perturbations larger than that in the previous case,

Such coupled oscillations have been observed in
various laboratory experiments and cemputer simulations
(Morales and Lee, 1974; Abdulloev et al., 1975; Degtyarev

et al,, 1975; Ikezi et al., 1974; Appert and Vaclavik, 1977).

In this chapter, we discuss the effectsoof dissipat-
ions on the ion acoustic-Langmuir interactions. The types of
dissipative processes considered are the inter-particle
collisions and ion viscosity. These dissipative processes
are important in plasmas, with neutral backgrounds which
are quite common in laboratory experiments such as rotating
plasma devices like the Homopolar, plasma guns, plasma-
neutral gas-impact experiments etc, (Danielsson, 1970;1973;

Alfven, 1960; Bratenahl et al., 1960; Wilcox et al., 1964),
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In certain fusinn deVices alSO; the regions of plasma

near the boundaries are rélatively cold and not fully ionized,
Taking into account these dissipative processes, we

derive a pair of modified Zakharov equations, Since it is

not possible to f£ind an analytic solution to these equations,

the time evolution of solitary waves according to these

equations are studied numerically, We see that the effect
of electron-ion and electron-neutral collisions is to damp
the Langmuir oscillations. As the Langmuir field amplitude
goes down, the ion density perturbation starts radiating
away, On the other hand the effect df ion-neutral collisions
is to damp the ion density perturbations, Consequently‘ﬁhe
trapped Langmuir field starts to flow out. TIn the case of
ion viscosity the ion density perturbations radiate away

at first which is followed by the Langmuir field., As far

as the relative strengths of these processes are concerned,
the effect nf electron-ion and electron-neutral collisions
dominate over the other two,

These results are of considerable significance from
the point of view of modulational instability and the
subsequent collapse of solitons in a three dimensional
L angmuir turbulent plasma (Thornhill and ter Haar, 1978;
Wong and Quon, 1975; Buti, 1977; Pereira et al., 1977). The
main consequence of collapse is the electric fields and the

ion density perturbations growing into narrow and very
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large amplitude waves Called‘spikbns and cavitons respect-
ively. But if there are dissipative mechanisms such as the
ones considered here present in the system, the process of
collapse can be slowed down., A similar effect was actually
observed in the case of Landau damping by Khakimov and

Tsytovich (1976). This slowing down can affect the energy

distribution among the different wave numbers in the system

or in other words modify/the spectrum of Langmuir turbulence,

VI.2 Modified Zakharov Equations of the Ion Acoustic-

Langmuir Waves

Let us consider an unmagnetized, partially ionized

plasma with hot electrons and cold ions and non zeroc ion
viscosity. Tw~ kinds of oscillations can occur in this
blasma: One is the high frequency Langmuir oscillations
with a characteristic time period (Lu%&)'l and the other is‘

the low-frequency ion acoustic perturbations with a .

characteristic time period (L&%i)'l where,
— > 7, NI/ 2
(J.)’/OE }’ ""(‘fﬁ"y\jo é /7‘*’"_9_,4-‘) /

The governing equations for the electrons ares

PR

DWW, L 2 (Wé've,) =0, ~ (6.1)
Jt Ix
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(6.2)
~ 2 v
_.9 P - LTe (_’%*f Wy, (6.3)
ox” -
where lé,n is the electron-neutral collision frequéhcy,)éi

is the electron-ion collision frequency and ’ﬂ; is the ratio
of specific heats for the electrons; Since the electrons
are light , they respond to both kinds of oscillations and so
we assume that their motion has two components with time
scales (u)be)hl and <UJP1)_% Whereas the ions are heavy and
they respond only to the low frequency oscillations,

Accordingly we take,

_ C,
T, = W+ 5, + STy, (6. 4)
WAj = W, ¢ b-’rvd. ) (6.5)
V- I
Vo = Vg + ’V% | (6.6)

and

-
i1

qe + #% | _(6.7;

with
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& Cgfy\;s gy\\,’l/ ) 5)( %(’V\%,q{f;c&) (6.8)

and

é%z<£5hm Sﬁmhwﬂf‘ lfmﬁéw_<£x ,_u(l ww_Aﬁ;g ,Cﬁ§;> -~ (6.9)

The subscripts s and £ refer to the slow and fast _oscillét-
ions. Further, we assume that 7{; ™~ 'Vs and S’Y\{S’,\/_S’m:gﬂ
as far as the fast oscillations are concerned, But the ’
difference (g’Y\/S* g"ﬂﬂ\) will be aecounted for

slow oscillations since it is responsible for the slow part

c*) of the potential 75 (Thornhill and ter Haar, 1978).
O]

We substitute Eqgs. (6.4) - (6.7) in Egs. (6,1) - (6.3)
and neglect the nonlinear terms in the fast oscillations,
Then by making use of the conditions (6.8) and (6.9) and

after eliminating 57\% and "(},ﬁ , we get,

\JE q e

(v +9a._)__g__£+w <(+5rv)£ Te() g
(6.10)

w;ere )/e = ('g)e%ﬁ.)é{’)and E'%:——-(a?ﬁ/&){)is the

electric field of the high frequency oscillations which are

defined (Zakharov, 1972) as,
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(6,11)

£, :»}E(" D e +c.c,
t E _
where the amplitude E (x,t) is a slowly varying function of

space and time, Substituting (6,11) in (6,10) and neglecting

the second order time variations in E (for ) «< (2 ), we
: © g

obtain
DN . ’ 1. Ny T
Qi oE + 7, Te O_E 4+ A%E
co, N E (6.12)
pe Zv

which is a mhdified nonlinear Schridinger equation, Invthis
equation, gaﬁ/has been replaced by N which represents the
potential trough created by the ponderomotive force of the
Langmuir field which in turn 18 trapped in it, To calculate
this pon-deromotive force, we average equation (6.2) over

the fast osc¢illations; this leads to:

‘ . af ' _ : L
29, % e, - 24

2 LEL'.W¥T 26m,

Ox e = DX
lfw Mpe v Cn/45w)

(6.13)
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In deriving Eq, (6,13), we have~uséd,

JU—, ,( U)P t— -
V. ~ =2 E e +C.C (6.14)
% Q’Yy'\/e,‘/‘f’b e -
and
/N Wb N o (6.15)

N A

where <;>>denotes tHe time average over the fast time scale,
(kaﬁ)_l, Eq. (6.13) tells us that on the slow time scale,
apart from the force of the slowly varying electric field,

" the electrons feel an additional force [?3/3 x(ez’E[2/4 mé;¥;§7
ThishiE the ponderomotive force, Further, since the | P
electrons are thermalized, one can neglect the electron

inertia and integrate (6.13) to obtain the electron density;

this is given by

)T

(6.16)

(), +Sw) W, ,e/xp[(

l¥WVV CQbQ

Next, we consider the low frequency ion motion. The

governing equations are,

9 W, + r3 (v, V. ) (6.17)
5 }) ) U o ’CP rl}'

. ir /' —— e )\
5’__..7( t _—) P= 3 VLA o,r. — ATV

(6.18)

e
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and  - : - :
Vh = Te (W), (6,19

where ))‘Vb is the ion—neutrai collision frequency, »Qki
CA .

is the ion-electron collision frequency and 7? is the

coefficient of ion viscosity. We. assume that%ieﬁs Pinwhlch

is in fact the case for the plasmas we are going to consider
Subsequently. Since erv»lf we can neglect the term
Cﬂ) L71) in comparison with )/ ), . Hence Eq,

_ ATV A
(6.18) after replacing v by ». becomes,
: AN A

%

Y
S
_+
N
Q)
<
{
l
m
Q)

) —_— = < v T
é)i' 3:21 qy%{ O X

— VU +f>] ) 4,
' o> - (6.20)
| Following the reductive perturbation method outlined
in chapter I and IV, we introduce the following sﬁretched

variabless

1/ 2 2 ‘ .
g6 x—¢t), T= e, (6.21)

where C_ = ('I.‘e/mi)l/2 is the ion acoustic phase velocity, We
expand n,, vy and qb as,
: S () 2, (2)
", = YW.+ &n +& N 4+ AR (6.22)
4 o - .
] 2. 2

A | ' (6.23)
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P

. e

) é&z—iﬁf;)ﬁP %

Here the smallness parameter (& is chosen in such a way

.

(6.24)

that the order of 8 o C_ S ~ e ')/%')) which is a measure

of ion nonlinearity, is same as that of [E{z occuring in

def ine,
El =€ (E],
p N
Y, =& BV,
and
0?’ o é—ﬁ/"V OZj

the ponderomotive force (Nishikawa et al,, 1974). Let us

(6.25)

(6.26)

(6.27)

where f‘) !3 and ’)/ are of the order unity and P 'andcj'/

are positive numbers,

Substituting (6.21) - (6.27) in (6.17), (6.19) and

S

(6.20) from the lowest order in

get the equations,'

(cf. chapter III) we

‘ i () 3 (DY _
,.%41?/ +;?(@%v )»45 <@m)
—c av(l) _—-e M e((p—%) ()
3 TE ;;jgé” - g ¥V
ICASDETING
+ € W 7’2;7; a v (6.29)
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and

(r)

NOE _
O o= T f‘_ﬁ.. A 6-20

Now we choose the numbers p and g in such a way that the

lowest order equations are not affedted by collisions and

viscosity, Hence we take p = (3/2) and g = (1/2) so that

the last two terms on the right hand side of Eq. (6,29) will
go to the next higher order equation in & , Solving (6,28)-

(6.30), we get
s

: 0 ” o 74/ C:) .
e =n Yy = . (6.31)
Cs /e

From the equatlons corresponiding to next higher order in t:,

after eliminating n<2), V< ) and ﬂ( ) and using (6,31), we

get
(1 {2} 5
oY G n I CGTe P
D W,  F% — B e ? 35
N AP ﬁ/ / 2 (1)
Y. Ty — S M
+‘%’ A > ] r)gL

(6.32)
v Transforming back into the (x,t) frame of reference and

using Egs. (6.25)-(6.27), Eq: (6.32) becomes,
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TE T O W, DX
T C:s‘ Te  J°N Y. N —7d AN
FTW,e® 223 % 12 * Iy

. 2 3
: "‘CS Wove X a E‘
% T el 0 X > (6.33)

e

where Qe have replaced é;qq}” C:igﬁVVth'N. This equation

is a mrhdified K-dV equation which 1is coupled to Eq, (6,12)
through the ponderomotive force term,

On using the following normalizations,

x = x({3 75 ) At Es ),
N N $ e/ Te),
v V()T %> % (/R
= 05/, =1 7)),

-1/ |
F— E (IQTT”WOT;,) )/ (6.34)

Egs, (6,12) and (6.33) reduce to,

QLELE ¢ LE 4 i E = NE (69
X | |

0w’
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and _ . : : 3

DN 4 oN L NN 312N
ot J x o & ’5‘;5
+ V‘ ~Np — - oy 4 N -‘l \L ’ (6, 36)
S NT SR Ty 5
where 2 = (me/Bm )1/ and we have used ){: = 3, These

are the modified coupled Zakharov equations,

VI.3 Discussilons

For the case ‘})e = ):‘( = ")?;0, Eqgs, (6.35) and (6,36)
have the following stationary solitary wave solutions

(Nishikawa et al., 1974):

E = a deels by X Tond b x

exp {A‘ EM X +(€ miﬂ)ﬂ} (6.5

and , ' :
N = A Aeed b X, | (6. 38)
where
X = x— Mt (6.39)
a = 643 (I-™M), (640
5 /2
- ™M) - (6.41)

_.f‘a;“
”Y*fa‘
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A= “:Bi{_ (I— M) | (6.42)
and ' :
/L Ll 2

o) :;Z QO *'"éll\’i )/ (6.43)

with M as the Mach numberxr of the wave,

For nonzero values of )éa) ;Q and ’Q{, the system»is
dissipative and hence it is not possible to find stationary
snlutions to (6,35) and (6,36)., In order to f£ind the effects
of the various dissipative mechanisms, we study nhumerically
the time evolution of an initial wave given by (6,37) and
(6.38) according to the modified Zakharov equations. We
have used the following three-time-level Zabusky4Kruskal

| method (Zabusky and Kruskal, 1965; Appert and Vaclavik, 1977)

for the ion densxty equation (6 36);

N
4 .

({\12 L **(N“. NS )z
H,Neiz +--N] + N‘j ) ( Ng_,r, f H)“"’ﬁ
S AT SN

n

_ )
o NEZ * fog—*l) HE T ( IL’€+1 /mi”

(BT —FL ) S e
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whereaé?and j refer to the spatial and temporal points

and H and T to the space and time step sizes,

The electric field equation (6,35) was discretized

according to the Crank-Nicholson (1965) scheme as follows
S A Y gt e
LE(EN-E] )L+ (159 g E
._ . X 2/ T L1 A
, . j

- JJ” ::2 . — 9 :3
+l::£__‘ +L£+J 2 E«@ +C )7, L

\

1

It

(6.45)

-+ 4 9 — 0.
Ny By
The values of T and H are chosén so that the SOIutionS(6.375,

and (6.38) remain stationary for very long intervals of time

when we put ) AT V. .
e = ="=¢

The values of )) }{and‘leappropriate for some:
€, 4 '
rotating plasma devices (Danielsson, 1973) have been deter-

mined. Such plasmas have neutral density ~~u plasma density

(n )f\’lollcms’3;e1ectron temperature (T _) ~ 10X ion
& , e

temperature(Ti),\aloo eV. The calculated values of the
electron-neutral and electron_ion;collision'croéS'sections
are, :

g ~ 0, ~ |0 ernn
€N € L
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and the ion-neutral collision cross sectioh is,
. = R ’
q}’ﬂ_,\{ ) + v

Since (227{\10“‘\, the electron-neutral and the electron-

e 4
ion cnllision frequencies are,

/2 7
Y = / -
™ el T Mo oy, (.E/er) ~ 10 dee

and the ion neutral collision frequency isﬂ

) | \/2 G, -}

V. = T (T v )R 0 e
A e AN A

The electron and ion plasma frequencies are,

L /2 9 .y
W, =Tt/ ) 10 dee

and

7 !

- /T 2 \/ 2 doo
Oy = (4T w,e*/wv.) "~ lo dee

respectively. And the ion viscosity (Braginskii, 1965) is,

fyz = vfgzﬂ(’f’jf /Mi )_//C) ~ io(’@wvl,&,z.e“l

Figs., (1-5) show the effects of the various dissip-

ative processes on an inn acoustic-Langmuir soliton in the

reference frame moving with its initial velocity. Fig.1l

corresponds to the case of electron-ion and electron=-

neutral collisions alone. As was observed in the case of

electron-ion collisiors in an earlier work (Gurovich and

Karpman, 1970; Karpman, 1975) here also we see that at first
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the‘ﬁangmuir osaillations’démp. But as the Langmﬁir field
amplitude gnes down, the aésociated ponderomotive force
decreases, Now the ion density depression 1s no more stable
and it starts to emit ion acoustic radiation, The latter
part of the evolution is similar to the one observed by

_Appert and Veclavik (1977) for an ion density depletion

without any Langmuir field in it,

F;g,Z shows the snliton evolution in the presence of
ion-neutral collisions alone, In this case the ion density
amplitude damps at first., This means a decrease in the
potential trough‘containing the Langmuir field. Hence the
Langmuir field starts to flow out. Eventually all the iQn

density perturbations will damp out,

Fig.3 shows the effect of ion viscosity. 1In this case
the wave undergoes slight deformation, Then the ion density
perturbation starts radiating away, Since the Langmuir
oscillations are not affected directly by the ion viscosity,

the Langmuir field flows out rather slowly,

In Figs. 4 and 5 we show the time evolution of the
initial solitary wave when all the three dissipative proces$es‘
are operative. It is seen that the effect of electron-
neutral and electron-ion collisions dominates over the oﬁher
two in spite of )%, (normalized) being much smaller than |

the other two,
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VI.4 - Summarz

A pair of modified Zakharov equations is derived to
study the effects of collisional and viscous dissipations
on the ion acoustic-Liangmuir interactions, Using these

equations, the time evolution of cbupled sonic-~Liangmuir

- solitons are investigated for some typical rotating device
plasma parameters, The effect of electron-inn and electron-
neutral collisions is to make the Langmuir field damp at
first and then to let the ion density pefturbations radiate
away, In'the case of ion neutral collisions, the ion density
perturbation damps at first and the Langmuir field starts to
flow out, Whereas in the case of ion viscosity, the ion
density perturbations radiate away followed by the Langmuir
field, Of the various processes studied, the effects of
electron~ion and electron-neutral collisions are found to be

stronger than the other two,
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