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Abstract

Atoms and molecules are called the natural laboratories to probe electron-electron, electron-

proton, electron-neutron, proton-proton, proton-neutron, and neutron-neutron interactions. Ex-

cept for the electron-electron interactions, other interactions originate at the quarks levels. There

have been immense interest to probe the nature of all possible phenomena involving these inter-

actions. Direct probes of interactions involving electrons and quarks demand very large energy

facilities like the Large Hadron Collider (LHC) at CERN owing to Heisenberg’s uncertainty prin-

ciple. However, using atoms or molecules, one can indirectly probe these interactions. These

probes sometimes include evaluation of certain properties of fundamental particles, which can

have further implications in fields like cosmology. One of the biggest cosmological mysteries

in the present universe is the riddle of matter-antimatter asymmetry. According to Sakharov’s

conditions, it requires sufficient amount of CP (C: charge conjugation, P : parity) violation

to properly explain the matter-antimatter asymmetry. Although there are a few known signa-

tures of CP violation in the electro-weak interaction sector, those are insufficient to explain the

matter-antimatter asymmetry. Therefore, it is imperative to search for new sources of CP viol-

ation. The electric dipole moment of electron (electron’s EDM or eEDM, de) being a P, T -odd

(T : time-reversal) property, is one such CP violating phenomenon which is yet to be observed.

Therefore, the eEDM, if detected, would be regarded as a direct signature of CP violation and

it can throw light into explaining matter-antimatter asymmetry.

Probing eEDM through accelerator method with a single isolated electron is impractical, as

it demands huge amount of energy that is currently beyond the capacity of existing as well as

projected laboratory set ups. However, in non-accelerator probes, many-electron systems like

paramagnetic atoms or molecules are used as proxies in EDM experiments. Due to their better

experimental sensitivities, heavy polar molecules have historically become superior choices over

atoms for EDM experiments. Within an atom or a molecule, an electron with EDM experiences

an internal electric field due to other electrons and nuclei. For molecules, this electric field

can be viewed as an effective electric field (Eeff), a large value of which would imply a better

sensitivity in EDM experiments. Eeff of a molecule is completely a relativistic phenomenon and
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cannot be measured in experiments, thus requiring a fully relativistic framework to perform

theoretical calculations. Combination of relativistic many-body calculation of Eeff and experi-

mentally measured molecular energy shift can together put a stringent bound to de. The best

experimental upper limit on de comes from a heavy diatomic molecule, ThO, which is about ten

orders larger than the upper bound predicted by the Standard Model (SM) of particle physics.

Experimentally set upper limit to de may constrain theories beyond the SM (BSM) which pre-

dict larger values of eEDM. An improvement in the upper bound to de through molecular EDM

experiments and relativistic many-body calculations could guide us to reach near to the actual

value of eEDM. In this thesis work, we mainly focus on exploring new molecular candidates for

EDM experiments to obtain better sensitivity by means of our theoretical analyses. For this

purpose, we employ the relativistic coupled-cluster (relativistic CC or RCC) method to carry

out theoretical calculations relevant to EDM searches.

Before employing RCC theory to calculate molecular properties pertaining to high-precision

EDM experiments, it is essential to test the potential of the RCC method to produce accurate

results. As we do not have the option to compare our RCC results of properties related to EDM

studies of new molecular candidates with existing literature, we employ the RCC method to

calculate a few molecular properties for a couple of systems for which previous theoretical stud-

ies and/or experimental results are available. To serve this purpose, we calculate static dipole

polarizabilities and permanent electric dipole moments (PDMs) of closed shell heteronuclear

alkali-dimers for which experimental values are available. We discuss in detail the relativistic

and correlation effects in both the properties. We compare our results from relativistic calcu-

lations with existing non-relativistic results as well as experimental data. We observe that our

results obtained from RCC calculations agree well with experimental results and improves upon

existing non-relativistic results. As open-shell paramagnetic molecules are considered for EDM

experiments, similar exercise of testing the RCC theory needed to be performed with open-

shell molecules also. For that matter, we considered open-shell alkali-alkaline earth (Alk-AlkE)

molecules to calculate their PDMs and static dipole polarizabilities using the RCC method. Ex-

perimental results of PDMs and polarizabilities of these systems are not available. Therefore, we

had to settle by comparing our RCC results with non-relativistic results from our calculations
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as well as from other works available in literature. We observe that our RCC calculations of

PDMs of Alk-AlkE systems significantly improve over the non-relativistic estimates, while the

relativistic effects in dipole polarizabilities become prominent for heavier systems. After check-

ing the capability of the RCC method, we employ it to assess the suitability of new molecular

candidates for EDM searches.

Diatomic heavy polar molecules have been very popular for both theoretical and experi-

mental studies of eEDM. However, it is recently shown by Kozyrev et al. [Phys. Rev. Lett. 119,

133002] that due to the presence of internal comagnetometer states in triatomic molecules, they

could offer extra advantages over diatomic molecules in EDM experiments. We know that HgF

possesses the largest Eeff among the theoretically proposed molecules. Keeping this in mind, we

chose HgF’s triatomic isoelectronic counterpart HgOH for conducting theoretical analyses to as-

sess its suitability in EDM experiment. Based on our RCC calculations and several experimental

considerations, we provide the projected sensitivity of HgOH, which is better than the current

best experimental limit set by the ThO experiment. We also explored feasibility of HgOH for

different types EDM experiments.

As Eeff is a purely relativistic property, we expect its value to get enhanced for molecules which

exhibit relativistic effects more prominently. Superheavy molecules are generally anticipated to

exhibit larger relativistic effects than the non-superheavy ones. Therefore, in our next endeavour,

we selected three superheavy molecules, namely LrO, LrF+, and LrH+ to assess their prospects

in EDM experiments. Using RCC calculations, we obtained the equilibrium bond-lengths of the

molecules at their ground states from the minima of the corresponding potential energy curves

(PEC). Once we found that stable bound state formation is quite possible for the considered

Lr molecules, we employed the RCC theory to calculate Eeff and PDM of the chosen molecules.

We observe that the values of Eeff for all the three molecules are almost 3 to 4 times larger than

that of the current best theoretically proposed candidate HgF and experimentally considered

molecule ThO. RCC values of PDM are also found to be quite large for the aforementioned

systems. In superheavy molecules, along with the eEDM, another P, T -odd phenomenon that

may significantly contribute to the molecular energy shift during an EDM experiment is the
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nucleus-electron scalar-pseudoscalar (S-PS) interaction. In the S-PS interaction, the properties

analogous to de and Eeff are S-PS coupling coefficient ks and S-PS enhancement factor Ws,

respectively. Calculated values of Ws using RCC method for the chosen superheavy molecules

are observed to be almost four to five times larger than that of HgF and ThO. We also provide a

pathway to produce Lr atoms in larger numbers, which is crucial in the formation of Lr molecules

during EDM experiments. Enhanced values of Eeff and PDMs of the chosen Lr molecules make

them interesting for future EDM experiments. Our precise calculations of the molecular PECs

and PDMs could also guide other future experiments with these molecules.
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Chapter 1

Introduction

1.1 Electric dipole moment (EDM) of a system

Electric dipole moment (EDM, d⃗) is the measure of charge separation within a system. For

composite systems made of discrete charges, EDM is given by

d⃗ =
∑
i

qir⃗i, (1.1)

where qi stands for the charge of i
th particle and r⃗i is the position of ith particle with respect to

a chosen origin. For a continuous charge distribution of charge density ρ(r⃗), EDM is defined as

d⃗ =

∫
r⃗ρ(r⃗)dτ, (1.2)

where the integral is calculated within the total volume of the charge distribution. Composite

systems like atoms do not possess any EDM because of their spherical charge distribution. On

the other hand, molecules do not have spherical charge distribution and possess intrinsic electric

dipole moment (not induced by any external electric field), which is generally referred to as

permanent electric dipole moment (PDM).

If treated as point-like particles, elementary particles (electrons, quarks etc.) cannot have

any EDM. But, according to quantum field theory (QFT), an elementary particle is surrounded
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by a cloud of virtual particles, and the charge distribution of the cloud may give rise to an

EDM. In our work, we mainly focus on the EDM of an electron (eEDM). The eEDM arises due

to the simultaneous violations of two discrete symmetries, namely parity (P ) and time-reversal

(T ) symmetries. Therefore, eEDM is a P, T -odd phenomenon. Moreover, according to the CPT

theorem [1], T violation implies CP violation. Hence eEDM is a CP violating property. The

eEDM is yet to be observed in experiments. Therefore, if detected, eEDM would be considered

to be an intrinsic property of an electron and it would be a direct signature of CP violation in

nature.

The Standard Model (SM) of particle physics sets a very tiny upper bound to eEDM,

de < 10−38 e-cm. Several theories that explains physics beyond the Standard Model (BSM)

predict much larger value of eEDM as compared to the SM bound. Direct measurement of

eEDM with a single electron is impractical owing to its tiny size, which necessitates the use of

very high energy accelerator facilities (as a consequence of Heisenberg’s uncertainty principle),

which are beyond our reach in near future. That is why many-body systems like atoms and

molecules are used as proxies for conducting EDM experiments, where the relevant signals can

be enhanced by many orders of magnitude. The model independent eEDM bounds obtained

by combining atomic or molecular experiments with the corresponding theoretical many-body

calculations have already constrained the parameter space of BSM physics to a reasonable extent

and have thrown some light into the long standing problem of matter-antimatter asymmetry [2]

in the universe.

Historically, heavy polar molecules have been proven to be better choices over atoms for

EDM experiments. However, several challenges are posed regarding the choice of candidate

molecules in terms of the experimental sensitivities that they promise to offer. Therefore, search

for new molecular candidates for EDM experiments becomes necessary to improve upon the

experimental bound to eEDM. The primary objective of this thesis work is to propose new

molecular candidates suitable for EDM experiments based on our theoretical calculations and

several experimental considerations.
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1.2 P, T -odd phenomena and EDM of a system

As mentioned above, eEDM is an outcome of simultaneous violations of P and T symmetries

(hereafter referred as P, T -odd for convenience). Here we justify this statement for its better

understanding. Symmetry transformations play a huge role in our current understanding of

nature. In quantum mechanics, if a physical property or operator remains unaltered under some

physical or mathematical transformation, we consider that transformation as a symmetry trans-

formation to the system. Under a symmetry transformation, the quantum mechanical operator

remains invariant, and its eigenvalue also remains constant in time. Symmetry operations are

broadly classified into two categories, namely discrete and continuous symmetries. A continuous

symmetry operation is described by a continuous group (e.g. Lie group) which is labelled by a

continuous parameter. A discrete symmetry operation involves non-continuous transformation

of a system, and described by finite groups (e.g. point groups). There are mainly three different

types of discrete symmetry operations in quantum mechanics: parity (P ), time-reversal (T ), and

charge conjugation (C). The operators corresponding to these symmetry transformations are

expressed as either unitary or anti-unitary operators. Parity is the operation of space inversion.

Under P transformation, the position operator (r⃗) changes its sign: P r⃗P−1 = −r⃗. The P oper-

ator is a linear operator with eigenvalues ±1.

The dipole operator (d⃗) of any atomic or molecular system undergoes parity transformation

as: P d⃗P−1 = −d⃗. In the absence of an external electric field, a stationary state |Ψ⟩ would

possess a non-zero PDM given by

⟨d⃗⟩ = ⟨Ψ|d⃗|Ψ⟩. (1.3)
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Using the unitarity of parity operator P (i.e., PP † = P †P = I, and P † = P−1) we can rewrite

Eq. (1.3) as

⟨d⃗⟩ = ⟨Ψ|P †P d⃗P †P |Ψ⟩

= ⟨Ψ|P †P d⃗P−1P |Ψ⟩

= −⟨PΨ|d⃗|PΨ⟩

= −⟨Ψ′|d⃗|Ψ′⟩, (1.4)

where P |Ψ⟩ = |Ψ′⟩.

Now we need to find out |Ψ′⟩, i.e., how parity transformation impacts the stationary state

wave function |Ψ⟩. Schrödinger equation is satisfied by |Ψ⟩

H|Ψ⟩ = E|Ψ⟩, (1.5)

where H is the Hamiltonian of the system, and E is the energy eigenvalue. In general, the

Hamiltonian can be assumed to remain invariant under parity transformation [3]:

PHP−1 = H, (1.6)

which leads to

H|Ψ⟩ = E|Ψ⟩

⇒ PH|Ψ⟩ = EP |Ψ⟩

⇒ PHP−1P |Ψ⟩ = EP |Ψ⟩

⇒ HP |Ψ⟩ = EP |Ψ⟩

⇒ H|Ψ′⟩ = E|Ψ′⟩. (1.7)

Therefore from Eq. (1.3) and Eq. (1.7), it is evident that both |Ψ⟩ and |Ψ′⟩ describe stationary

states with same energy eigenvalue E. If |Ψ⟩ and |Ψ′⟩ are non-degenerate, they cannot be

4



independent eigenvectors, and they must have a relation of following kind:

P |Ψ⟩ = p|Ψ⟩, (1.8)

⇒ ⟨Ψ|P †P |Ψ⟩ = |p|2⟨Ψ|Ψ⟩ (1.9)

⇒ ⟨Ψ′|Ψ′⟩ = |p|2 (1.10)

⇒ |p|2 = 1 (1.11)

⇒ p = ±1, (1.12)

where p is a constant, and must be equal to one of the eigenvalues of parity operator, i.e., p = ±1.

Now combining this with Eq. (1.4), we get

⟨Ψ|d⃗ |Ψ⟩ = −⟨Ψ′|d⃗ |Ψ′⟩ = −p2⟨Ψ|d⃗ |Ψ⟩ = −⟨Ψ|d⃗ |Ψ⟩. (1.13)

From Eq. (1.13), we can infer that if the Hamiltonian is parity invariant and if the stationary

state is non-degenerate, the system cannot possess a non-zero spontaneous EDM.

The time-reversal operation (T ) is analogous to motion reversal and under this transformation,

the temporal component (t) of the four-position changes its sign: TtT−1 = −t. The momentum

operator also undergoes a sign change under T transformation. Unlike the P operator, the T

operator is a anti-linear operator with properties:

Tc|Ψ⟩ = c∗T |Ψ⟩, (1.14)

where c∗ refers to the complex conjugate of the constant c.

If the Hamiltonian of a system is invariant under some unitary rotation, it should commute

with the generators of rotation, i.e., components of the angular momentum operator (J⃗). The

eigenvectors of H, J⃗ · J⃗ , and Jz form a complete set denoted as |E, j,m⟩. Now, we make an

assumption that the only degeneracy arises from the (2j +1) values of m. Invoking the Wigner-
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Eckart theorem [4] to the irreducible rank 1 tensor EDM operator d⃗, we get

⟨E, j,m|d⃗|E, j,m⟩ = CE,j⟨E, j,m|J⃗ |E, j,m⟩, (1.15)

where CE,j is a scalar coefficient independent of m.

For any two functions |u⟩ and |v⟩, if

T |u⟩ = |u′⟩ and T |v⟩ = |v′⟩, (1.16)

it can be shown that [3]

⟨u′|v′⟩ = ⟨u|v⟩∗. (1.17)

Let us choose |u⟩ = |Ψ⟩, and |v⟩ = dα|Ψ⟩ with dα being one of the components of the EDM

operator. Therefore, |u′⟩ = |Ψ′⟩ = T |Ψ⟩ and |v′⟩ = Tdα|Ψ⟩ = dαT |Ψ⟩ = dα|Ψ′⟩, where we used

the fact that T commutes with dα. Combining these, we get

⟨Ψ′|dα|Ψ′⟩ = ⟨Ψ|dα|Ψ⟩∗. (1.18)

As dα is a hermitian operator (hence possesses real eigenvalues), Eq. (1.18) can be written as

⟨Ψ′|d⃗α|Ψ′⟩ = ⟨Ψ|d⃗α|Ψ⟩. (1.19)

Generalising, it yields

⟨Ψ′|d⃗|Ψ′⟩ = ⟨Ψ|d⃗|Ψ⟩. (1.20)

Instead of using dα, the same exercise can be done using J⃗ , which can give rise to

⟨Ψ′|J⃗ |Ψ′⟩ = −⟨Ψ|J⃗ |Ψ⟩, (1.21)
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where the reason behind the negative sign in Eq. (1.21) is that T anticommutes with J⃗ , i.e.,

TJα = −JαT. From the definition we know

Jz|E, j,m⟩ = m|E, j,m⟩ (In atomic units (a.u.), ℏ = 1.)

TJz|E, j,m⟩ = mT |E, j,m⟩

TJzT
−1T |E, j,m⟩ = mT |E, j,m⟩

Jz(T |E, j,m⟩) = −m(T |E, j,m⟩). (1.22)

With the aforementioned assumption for restricting degeneracy to only (2j+1), the eigenvector

T |E, j,m⟩ can differ from |E, j,−m⟩ by only a phase factor. Therefore, for |Ψ⟩ = |E, j,m⟩ and

|Ψ′⟩ = T |E, j,−m⟩, we obtain from Eq. (1.20) that

⟨E, j,−m|d⃗|E, j,−m⟩ = ⟨E, j,m|d⃗|E, j,m⟩, (1.23)

and from Eq. (1.21) we get

⟨E, j,−m|J⃗ |E, j,−m⟩ = −⟨E, j,m|J⃗ |E, j,m⟩. (1.24)

If we replace m to −m in Eq. (1.15), we achieve

⟨E, j,−m|d⃗|E, j,−m⟩ = CE,j⟨E, j,−m|J⃗ |E, j,−m⟩. (1.25)

Using Eq. (1.23) and Eq. (1.24) in Eq. (1.25) leads to

⟨E, j,m|d⃗|E, j,m⟩ = −CE,j⟨E, j,m|J⃗ |E, j,m⟩. (1.26)

Now combining Eq. (1.15) and Eq. (1.26), we see that

⟨E, j,m|d⃗|E, j,m⟩ = 0. (1.27)
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Therefore, we observe that under the assumption of rotational invariance, time-reversal invari-

ance and degeneracy restricted to arise only from 2j + 1 values of m, the average spontaneous

EDM of a state vanishes. This is a generalised proof and not only restricted to EDM of an

electron, but also valid for EDM of other fundamental particles and composite systems.

1.3 General features of elementary particle physics

Subatomic particles which are not composed of other particles are called elementary or fun-

damental particles. The SM of particle physics, by far the most celebrated model in physics,

describes the phenomena of these fundamental particles well. However, the SM is an effective

manifestation of a complete unknown theory that needs to be unearthed. The SM successfully de-

scribes the three (electromagnetic, weak and strong) interactions of the four existing fundamental

forces in the universe and classifies the known elementary particles as matter (six quarks and six

leptons), force carriers (photon, gluon, W boson, and Z boson) and the Higgs boson. The SM has

been precisely verified through numerous accelerator based high energy experiments. The SM

is based on a non-Abelian gauge theory [5] that belongs to SU(3)c×SU(2)L×U(1)Y symmetry

group, and it contains twelve gauge bosons (photon, three weak bosons, and eight gluons). All

the three fundamental forces described by the SM are invariant under SU(3)c×SU(2)L×U(1)Y
transformation. With the venture to unify these three fundamental forces with gravity, the SM

serves as an intermediate stage which unifies the electromagnetic and weak forces. Rrecent dis-

covery of the Higgs boson (2012) in A Toroidal LHC ApparatuS (ATLAS) and Compact Muon

Solenoid (CMS) experiments conducted at Large Hadron Collider (LHC) further strengthened

the basis of the SM. Though the SM successfully explains most of the elementary particle phys-

ics, there are certain phenomena in physics that cannot be explained by the SM. A few examples

of limitations of the SM are listed below:

(a) The formulation of the SM is based on QFT, while the origin of gravity is explained by

theory of general relativity. If QFT is applied to general relativity, it leads to divergences [6].

(b) Only 5% of the total cosmic energy budget is made of baryonic matter, interactions (ex-
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cept gravitational) of which are explained by the SM. Cosmological observations assert that

26% of the energy budget should be constituted by dark matter. Dark matter interacts only

through gravitational interactions and does not interact with electromagnetic forces, thus making

it impossible to probe with light or electromagnetic pulses. Hence, the prefix ‘dark’ is associated

with dark matter. Fundamental particles present in the SM are not good dark matter candidates.

(c) The remaining 69% energy budget of the universe is believed to be comprised of dark energy.

Dark energy is presumed to be responsible for the expansion of the universe. Dark energy is

hypothesised as a constant energy density of the vacuum. However, the value of vacuum energy

density in the SM calculated using QFT is off by 120 orders of magnitude relative to the observed

one [7]. Therefore, the SM cannot successfully address the reason for the existence of dark energy.

(d) In the SM, neutrinos are considered as massless particles. However, the neutrino oscillation

experiment [8] established that neutrinos have mass. To address this inadequacy, mass inform-

ation has to be added to the SM by hand explicitly, thus indicating an incompleteness in the SM.

(e) One of the biggest mysteries in cosmology is the riddle of matter-antimatter asymmetry

(baryon asymmetry), i.e., the asymmetry in the number of baryons and their anti-baryons in

our observable universe. The SM cannot sufficiently explain this anomaly. Russian physicist

Andrei Sakharov proposed three necessary conditions, known as Sakharov’s conditions [9], for

explaining matter-antimatter asymmetry :

(i) baryon number (B) violation,

(ii) sufficient amount of C and CP (C: charge conjugation, P : parity) violation, and

(iii) interactions out of thermal equilibrium.

Baryon number is a conserved quantity in the SM, with one possible exception of the hypo-

thetical Adler–Bell–Jackiw [10, 11] anomaly in quantum electrodynamics (QED). CP symmetry

is conserved in QED but it is violated in electroweak interactions. The CP violating interactions

in the SM are insufficient to adequately address the matter-antimatter asymmetry. Therefore,
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Figure 1.1: Tree-level and loop-level (1-, 2-, 3-, and 4- loop) diagrams representing electroweak
interactions in the SM. As can be seen, the first non-zero contribution to eEDM arises at the
4-loop level electroweak diagram of the SM.

search for additional sources of CP violation is necessary to unravel the mystery behind the

baryon asymmetry.

As mentioned earlier, eEDM (de) arises due to P, T -odd interactions and its observation

would amount to be another signature of CP violation in nature, which would in turn help

throw light into the matter-antimatter asymmetry. The SM imposes a very small upper limit

to eEDM (de < 10−38e-cm), while several BSM frameworks (e.g. left-right symmetric model,

supersymmetric model, multi-Higgs model etc.) predict much larger value for eEDM than the

SM limit, which we shall discuss later in this chapter.

1.4 The SM and BSM sources to the eEDM

If an electron is regarded as a point particle, i.e., all of its charge is contained in a point, it

cannot possess an EDM. However, from a QFT point of view, an electron is always surrounded

by a cloud of several virtual particles. The asymmetry in this electron cloud is responsible for

the concept of eEDM. In the SM, CP symmetry is conserved in electromagnetic interactions.

The first non-zero contribution to eEDM appears from the 4-loop electroweak diagrams in SM

(Fig. 1.1). As a 4-loop correction corresponds to the fourth order perturbation, eEDM in the

SM is predicted to be very small (< 10−38 e-cm) as it is proportional to the fourth power of the

weak interaction parameter αw (O(10−6)) [5].
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Several BSM frameworks predict eEDM much larger than the aforementioned SM limit. For

example, the minimal supersymmetric model (MSSM) predicts an eEDM O(10−26) e-cm, which

is several orders larger than the SM bound. The reason behind this is that in the MSSM, the

first non-vanishing contribution to eEDM appears at the first loop level itself. This is because

unlike the SM, the complex CP violating phases involved in absorption and emission of virtual

particles need not be same in the MSSM. The MSSM allows several CP violating phases in

contrast to only one CP violating phase (the phase appears in the Cabibo-Kobayashi-Masakawa

(CKM) matrix) allowed in the SM.

1.5 Molecules for eEDM searches

Despite the bounds to eEDM set by different models, any experimental detection of eEDM

is yet to be confirmed in the accelerator based experiments. However, non-accelerator based

experiments using atoms or molecules in combination with theoretical many-body calculations,

can put a stringent bound on eEDM, which in turn can constrain or rule out (up to certain

level of confidence) some of the BSM scenarios that predict larger value of eEDM. The current

best limit to eEDM set by an atomic experiment comes from the thallium (Tl) EDM experiment

(de < 20 × 10−28 e-cm), while even better eEDM bounds come from three molecular EDM

experiments [12, 13, 14]. By far, the best upper limit to eEDM arises from the ThO [12] EDM

experiment (de < 1.1× 10−29 e-cm with 90% level of confidence). Several other molecules have

also been considered for the EDM experiments. Of them, the HfF+ experiment [13] provides

an eEDM bound of 1.3 × 10−28 e-cm and the YbF EDM experiment [14] sets an eEDM bound

of 10.5 × 10−28 e-cm. EDM experiments with BaF molecule are underway [15, 16]. On the

theoretical front, there are a plethora of proposed molecular candidates for the EDM experiments

with even higher projected sensitivity. YbOH is the current best theoretically proposed molecular

candidate for the EDM measurement with a projected statistical sensitivity O(10−32) e-cm. One

of the main goals of this thesis work is to find even better molecular candidates for EDM

experiments on the grounds of several theoretical and experimental considerations.
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1.6 Current limits on eEDM from molecular studies

Table 1.1: Projected statistical uncertainties to de (δdstate ) of the currently proposed (on the
basis of theoretical analyses) molecules for EDM experiments. All the values are given in units
of e-cm.

Molecule δdstate (e-cm)

HgLi [9] 1.3× 10−30

HgNa [9] 2.5× 10−30

HgK [9] 3.1× 10−30

YbOH [17] 2.76× 10−32

RaH [18] 1.63× 10−29

HgF [19, 20] 6× 10−32

RaF [21] 2.49× 10−29

YbF [22] 1.06× 10−27

Only a handful of molecules have been considered so far for the EDM experiments. EDM

experiments were conducted with ThO [12], HfF+ [13], and YbF [14] molecules. The race is on

to find better molecular candidates that would promise higher statistical sensitivity and in turn

help improve upon the currently existing experimental eEDM bound. In Table 1.1 we enlist the

projected statistical sensitivities of some of the theoretically proposed molecules. Among the

listed molecules, YbOH offers the highest projected statistical sensitivity.

1.7 Manifestation of eEDM in molecules

The EDM interaction Hamiltonian due to eEDM manifested at the molecular level can be ex-

pressed as [23]

HeEDM = −de
Ne∑
i=1

βΣi · Eint
i , (1.28)

where β is the one of the of Dirac matrices (γ0), Ne is the total number of electrons in the

molecule, Σ is the four-component Pauli spin matrix, and Eint
i is the internal electric field
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experienced by the ith electron due to presence of other electrons and nuclei, and is given by

Eint
i = −∇

[
VNe(ri) +

1

2

∑
j ̸=i

1

rij

]
, (1.29)

where VNe is the nucleus-electron attractive Coulomb potential, and the second term inside the

square bracket corresponds to the Coulombic electron-electron repulsion potential. The first-

order shift in energy due to the EDM interaction Hamiltonian is given by

E(1) = ⟨Ψ|HeEDM |Ψ⟩

= −de
Ne∑
i=1

⟨Ψ|βΣi · Ei
int|Ψ⟩

= −deEeff , (1.30)

where

Eeff =
Ne∑
i=1

⟨Ψ|βΣi · Eint
i |Ψ⟩ (1.31)

is called the effective electric field of the molecule and |Ψ⟩ is the total unperturbed wave function

of the molecule which actually is a Slater determinant wave function made of molecular orbitals

|ϕk⟩s. Eq. (1.31) can be written as a sum of one-body operator [24]

Eeff = − 1

de

⟨Ψ|HeEDM |Ψ⟩
⟨Ψ|Ψ⟩

= 2ic
Ne∑
i=1

⟨ϕi|βγ5p2i |ϕi⟩. (1.32)

It can be shown that in Eq. (1.32), only the matrix element corresponding to the valence

molecular orbital would survive (see Appendix A for details). Hence, for closed-shell molecules,

the value of Eeff would be zero in the first order approximation. Only molecular systems having

one or more unpaired electrons would possess non-zero Eeff , thus making them apt for the eEDM

search experiments. The signature of eEDM in an open-shell molecular system is effectively

manifested only upon the valence shell electron. It is also noteworthy that in a non-relativistic

framework, Eeff = 0 due to Schiff’s theorem [25]. Thus one has to undertake only a relativistic

theory to calculate Eeff . This has been shown explicitly in the later part of the thesis.

13



1.8 Typical principles of molecular EDM experiments

From Heisenberg uncertainty principle, we know that

∆p∆x ∼ ℏ
2
, (1.33)

where ∆p and ∆x represent uncertainties in momentum and position, respectively. Due to the

tiny dimension of electron, ∆x is very small, thus leading to very large ∆p. Therefore, the

typical energy required, (∆p)2

2m
, to trap an electron would also be very high. Thus, trapping a

single electron requires a huge amount of electric field which is beyond the reach of current

experimental facilities. However, EDM measurements of composite systems like molecules are

possible. There are two broad types of molecular EDM experiments, namely, beam experiment

and trap experiment. Hence, instead of a single electron, atomic or molecular systems with one

or more unpaired electrons are used as proxies in the EDM experiments.

In a beam EDM experiment, an atomic or molecular beam is passed through a chamber where

it subject to external electric field (E⃗ext) and magnetic field (B⃗ext). Due to the application of

external magnetic field, the energy of the atom or molecule would shift due to Larmour preces-

sion, as atomic or molecular electrons with magnetic dipole moment (µmag) would experience a

torque, given by

τ⃗ =
dJ⃗

dt
= µ⃗mag × B⃗ext = γJ⃗ × B⃗ext. (1.34)

Here J⃗ is the total angular momentum vector, γ is the gyromagnetic ratio defined as γ = ge
µB

ℏ =

geµB (in a.u.) µB is the Bohr magneton expressed as µB = eℏ
2me

= 1
2
(in a.u., both the electron

charge and mass are unity). The torque in Eq. (1.34) would try to align the magnetic moment,

µ⃗mag, towards the direction of B⃗ext. As µ⃗mag ∝ J⃗ , J⃗ would also be affected by the magnetic field

in the same manner as µ⃗mag. From Eq. (1.34), it is evident that torque or the rate of change of

angular momentum is perpendicular to J⃗ . This leads to the precession of J⃗ around the direction

of B⃗ext.
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Now, if we invoke a time-reversal operation, i.e., if we run the entire process backward in time,

the Larmour precession also should flip its direction. Therefore, if an EDM experiment can be

set up in such a manner that it is analogous to running the whole experimental procedure back-

ward in time, and if the precession gets its direction reversed (and the time-reversed precessional

frequency is different from the original frequency of precession), it would be a test of T violation.

But, the magnetic field also switches direction under the transformation t→ −t. Therefore, we

cannot distinguish between the precessions before and after the time-reversal. The electric field

does not flip under time-reversal. Thus, we can implement this idea in experiments by measuring

the precession of spin of the unpaired electron of a molecule in an electric field. In a typical

beam EDM experiment, along with an external electric field (E⃗ext), an external magnetic field

(B⃗ext) is also applied as a carrier signal. The idea behind using carrier signal is to amplify the

signal. The effect of the external magnetic field is balanced out by performing two experiments,

one with E⃗ext and another with E⃗ext flipped. The shifts in energy in a molecule before and after

electric field flip are respectively given by

E1 = ω1 = −d⃗e · E⃗ext − d⃗e · E⃗eff + µ⃗ · E⃗ext − µ⃗mag · B⃗ext (1.35)

and

E2 = ω2 = −d⃗e · E⃗ext + d⃗e · E⃗eff + µ⃗ · E⃗ext − µ⃗mag · B⃗ext. (1.36)

Here, we denote the PDM of the molecule as µ⃗. Electric dipole moments tend to align towards

the direction of externally applied static electric field to attain the minimum energy configura-

tion (as energy: Edip = −D⃗ · E⃗ext, where D⃗ is a general notation for electric dipole moment).

Therefore, when the direction of E⃗ext is reversed, both the electric dipole moments µ⃗ and d⃗e

would flip their orientation. As Eeff is an internal property of the molecule, it is not affected due

to the reversal of the external electric field. Atomic units (a.u.) are used both in Eq. (1.35) and

(1.36).

The difference between the two energy shifts is measured in experiments in terms of frequency
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shift ∆ω = ω1 − ω2. This energy shift difference is given by

∆E = E2 − E1 = ω2 − ω1 = ∆ω = 2d⃗e · E⃗eff . (1.37)

In Eq. (1.37), ∆E or ∆ω is measured in experiments, while Eeff is not a measurable quantity,

and therefore must be calculated using relativistic quantum many-body theory [26]. Combining

these two results (experimental, and theoretical) one infers the de value. Since thus far all the

measurements of ∆E have much larger uncertainties than their magnitudes, we can only assign

to the de value.

Now, we proceed to give a brief overview of trap EDM experiments. Although by far the

most accurate eEDM bound comes from a beam experiment with ThO [12], beam experiments

are constrained by very low coherence times (∼ O(1− 10 ms)). As eEDM sensitivity is directly

proportional to the coherence times, beam experiments give very low coherence times which

fall short to improve the sensitivity. Whereas, EDM experiments with trapped molecules can

achieve much longer coherence time (∼ O(1 s)) [27] and thus could improve the sensitivity of

eEDM by several orders. One of the popular techniques to trap molecules in an EDM experiment

includes direct laser cooling of cryogenic buffer gas beams (CBGBs) followed by trapping in a

magneto-optical trap (MOT). CBGBs produce molecular beams with high brightness and low

velocity. Cooling and trapping procedures of a proposed EDM experiment with YbOH molecules

have been discussed thoroughly in Ref. [10]. Another trapping mechanism, called EDM3 [28, 29]

experiment, has been introduced recently. In this procedure, molecules are trapped inside a

solid-state inert gas (e.g. Ar, He etc.) matrix (crystal). It is possible to trap a large number

of polar molecules [O(1010 − 1016)] inside these solid inert gas matrices, while the typical value

of number of molecules per second (N), is at most O(105) in the beam experiments. Capab-

ility of trapping a large number of molecules and with a large coherence time of 1 s make the

EDM3 technique a lucrative option to conduct future EDM experiments, as it could lead to

obtain δde ∼ 10−35− 10−37 e-cm [28]. The influence of the transparent inert gas matrices on the

molecules is very negligible, which permits similar state preparation and detection mechanisms

used in beam experiments. In this method, polar molecules are embedded inside a solid state
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inert-gas matrix and fully oriented with the help of an external electric field of strength 1-3 MV/

cm [30] generated by the ice-film nanocapacitors [31].

1.9 Criteria for searching suitable molecules for eEDM

searches

The figure of merit for the choice of a suitable molecular candidate for experiments to probe

eEDM depends upon several factors. The statistical sensitivity offered by a molecule in a beam

EDM experiment is given by [32]

δdstate ∼ 1

2πEeff
√
NTτη

(1.38)

where N is the rate of production of number of molecules, T is the total integration time of the

experiment, τ is the coherence time of the molecular state of interest, and η (0 ≤ η ≤ 1) is the

polarization factor which depends on external electric field strength (Eext) and the PDM of the

molecule. It is given by,

η(Eext, D) ∝ ⟨n̂ · ẑ⟩, (1.39)

where ẑ is chosen to be the direction of applied electric field and n̂ is the direction of the inter-

nuclear axis. In an ideal case, η is unity, i.e., molecule is said to be fully polarized. From Eq.

(1.38) we see that δdstate is inversely proportional to Eeff . Therefore, the larger the value of Eeff
of a molecule, more suitable it is for the EDM experiment. Hence, once a molecule appears to

be reasonably suitable, based on experimental factors, one needs to calculate Eeff by employing

relativistic many-body theory.

From an experimental point of view, polarization factor modifies the energy shift due to eEDM
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in a molecule by a factor

∆E = −deEeffη (1.40)

We shall briefly analyze the expression in Eq. (1.39) to understand our objective better. We

basically intend to justify here how a molecule has advantage over atoms to be considered for

eEDM measurement. In a polar molecule, one can obtain a very large Eeff value compared to

atoms as orbitals are highly polarized in the molecule. Further, η can be enhanced dramatically

in molecules compared to atoms with a small application of electric field owing to the presence of

rotational spectra. This can be shown by writing down the wave function of a diatomic molecule

in the presence of an external electric field as

|Ψα⟩ = |Ψ(0)
α ⟩+ |Ψ(1)

α ⟩+ |Ψ(2)
α ⟩+ · · · , (1.41)

where |Ψ(0)
α ⟩, |Ψ(1)

α ⟩, |Ψ(2)
α ⟩ etc. are the zeroth, first, second etc. order wave functions. The

polarizing factor η is given by

η = ⟨Ψα|n̂ · ẑ|Ψα⟩, (1.42)

where n̂ is the unit vector of the electric field and ẑ is the electric vector of the electric dipole

operator. Keeping only terms up to first-order wave function, we can get

η = 2⟨Ψ(0)
α |n̂ · ẑ|Ψ(1)

α ⟩. (1.43)

Here only the rotational states contribute significantly because for the energy denominator from

rotational states are ∼ 1 GHz, whereas for vibrational states it is ∼ 10 THz, and for electronic

states it is ∼ 100 THz. Since interaction due to the electric field mixes rotational states under

the selection rule ∆Jr = ±1 for the rotational quantum number Jr, we can thus write

η = DEext

∑
β ̸=α

|⟨Jα|n̂ · ẑ|Jβ⟩|2

Br

, . (1.44)
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One should note here that, the matrix element of n̂ · ẑ between rotational states Jα = 0 and

Jβ = 0 is zero, as Jr = 0 → 0 is a forbidden rotational transition. In the above expression, Br is

the rotational constant of the molecule that depends on the reduced mass and the equilibrium

bond-length (Re) of the molecule. In our case, we have considered ground state with Jα = 0 so

the intermediate states will have Jβ = 1. The energy denominator becomes 2Br when Jr = 0

and Jr = 1 states are considered.

We observe that for achieving an optimal sensitivity in the experiment, the polarization factor

has to be close to unity, which depends on the PDM, Re, and the reduced mass of the molecule,

and the the external field. Therefore, one needs to calculate the PDM and equilibrium bond-

length of the molecule to get an estimate of η. The information of PDM (mu) is useful not only

to calculate η, but also to estimate the polarizing electric field (Epol = 2Br

µ
). After theoretically

evaluating Re, Eeff , PDM, η, and providing a reasonable estimate of N , T , and τ , one can decide

on the suitability of a molecule for eEDM search experiments. In this thesis, we shall focus on

the proposal of a few new molecular candidates such as triatomic molecular candidate HgOH

and superheavy lawrencium (Lr) molecular systems for eEDM search experiments.

1.10 The eEDM and matter-antimatter asymmetry

As mentioned earlier in this chapter, eEDM, by the virtue of being a CP violating property

can help throw light on understanding the matter antimatter asymmetry in the universe. In

their 1992 work [33], Kazarian, Kuzmin and Shaposhnikov used the framework of two Higgs

doublet model to correlate the magnitude of CP violation (λCP ) to de, and showed that their

estimate of eEDM is close to the then best experimental limit to eEDM available from the Cs

atomic EDM experiment. Therefore, any molecular EDM experiment with better experimental

sensitivity on eEDM would help to impose a better constraint on λCP value. Thus, molecular

EDM experiments might improve the limits of magnitudes of CP violation.
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1.11 Nucleus-electron scalar-pseudoscalar interaction

In an EDM experiment, another source of P, T -odd contribution arises from the nucleus-electron

scalar-pseudoscalar (S-PS) interaction. The net energy shift due to both the eEDM and S-PS

P, T -odd interactions in an EDM experiment can be given by

∆EP,T−odd = −deEeff + ksWs, (1.45)

where ks is the S-PS coupling coefficient and Ws is the S-PS enhancement factor. Just like Eeff ,

Ws also must be calculated using relativistic many-body theory. In Eq. (1.45), there are two

unknown quantities, namely, de and ks. Therefore, at least two sets of EDM experiments (i.e.

EDM experiments with two molecules) are necessary to be performed to infer about de and ks

independently. Once Eeff and Ws are obtained from theoretical calculations and energy shifts

are measured in experiments, values of de and ks can be achieved.

The S-PS interaction Hamiltonian in a molecule with N number of nuclei and Ne number of

electrons can be expressed as [24, 34]

HS−PS =
N∑

A=1

HS−PS,A, (1.46)

where HS−PS,A = i
GF√
2
ks,AMA

Ne∑
j=1

βγ5ρA(rAj
). (1.47)

In Eq. (1.47), HS−PS,A is the S-PS Hamiltonian corresponding to the Ath nucleus, GF = 2.219×

10−14 a.u. is the Fermi constant,MA is mass number of the Ath nucleus withMA = ZA+NA (ZA

is the atomic number of the Ath nucleus and NA is the number of neutrons in the Ath nucleus),

ks,A stands for the S-PS coupling coefficient of the corresponding nucleus and ρA denotes the Ath

nuclear charge distribution. The quantity of theoretical interest pertaining to nucleus-electron

S-PS interaction is Ws and can be evaluated from the expectation value of S-PS Hamiltonian

Ws =
1

ks

⟨Ψ|HS−PS|Ψ⟩
⟨Ψ|Ψ⟩

. (1.48)
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1.12 Motivation of the work

The prime objective of this thesis work is to probe P, T -odd molecular properties based on

theoretical many-body analyses. The P, T -odd phenomenon that we mainly focus on is the

eEDM through molecular EDM. The SM predicts a very tiny upper bound to eEDM but it is

yet to be experimentally verified. Due to very small value of eEDM, it is very challenging to

detect in experiment. Combination of theoretical calculation with low-energy atomic or mo-

lecular experimental result can place a bound on eEDM. As mentioned earlier, the current best

upper bound to de is 1.1 × 10−29 e-cm [12]. An improved upper limit to de through molecular

EDM experiments and many-body calculations could help to reach closer to the actual eEDM

value. New upper limit to de could discard (with certain level of confidence) several BSMs

which predict larger values of eEDM and suggest for modification of parameter spaces of those

BSMs. As eEDM is a CP violating property, a new bound to it may lead to improvement over

our current understanding about matter-antimatter asymmetry which requires ample amount

of CP violation to be explained. To improve upon the current bound on de, we need to look

for new molecular candidates which could offer better experimental sensitivity over the already

proposed molecules. As mentioned earlier, heavy polar molecules possess larger Eeff than other

lighter molecules, thus becoming solicited candidates for EDM experiments. In our work, we

aim to theoretically explore the suitability of new molecular candidates for EDM experiments

depending upon the values of their parameters (Eeff , PDM etc.) and other possible experimental

considerations.

Although a few heavy polar diatomic molecules have been proved to be suitable for eEDM

searches, efforts to find even more appropriate polyatomic molecules are underway. It has been

realized that polyatomic molecules exhibit similar advantages to a diatomic molecule, along

with other additional features like the presence of internal comagnetometer states. The tri-

atomic YbOH [35] molecule offers a projected sensitivity to de of 2.8 × 10−32 e-cm, which is

by far the best among the proposed molecular candidates. YbOH is the triatomic isoelectronic

counterpart of YbF. Both YbF and YbOH offer almost similar values of Eeff . Whereas, the HgF

molecule possesses an Eeff almost five times larger than YbF or YbOH. Therefore, it motivates
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us to anticipate that HgOH, the triatomic isoelectronic counterpart of HgF, could also offer a

large Eeff and an improved projected sensitivity. We examine the potentiality of the triatomic

HgOH molecule for EDM experiment [12].

We have stated earlier that Eeff is a purely relativistic property. Therefore, it is fairly logical

to expect that Eeff should be sufficiently large for heavier molecules, as relativistic effects are

more prominent in the heavier systems. We explore the suitability of superheavy Lr molecules

(LrX; X=O, F+ and H+) for eEDM searches [39].

We use the RCC theory to calculate molecular properties related to eEDM searches. It is

essential to test the potential of the RCC method to produce accurate results in the molecular

systems before employing them for calculations pertaining to eEDM probes. To do so, we carry

out the calculations of static dipole polarizabilities and PDMs of heteronuclear alkali-dimers [36].

Expectation value of dipole polarizability has functional resemblance with that of Eeff . On the

other hand, PDM is a property that is also relevant to eEDM searches. Therefore it is prudent

to calculate these properties using the RCC methods and compare our theoretical results with

the previous theoretical and experimental results to assert the capability of the RCC theory.

We also demonstrate how relativistic effects play important roles in determining the above

properties by carrying out calculations using non-relativistic CC theory and comparing with our

RCC calculations.

1.13 Outline of thesis

This thesis is organized in the following manner. In Chapter 2, we discuss in detail on quantum

many-body theory (both relativistic and non-relativistic) in the context of molecular physics.

We introduce the Hartree-Fock (HF) method as a mean field approach. Then we put emphasis

on adding electron correlation effects on top of mean field calculations. Among the several avail-

able techniques to account for the correlation effects, we mainly elaborate on the CC theory that

we use extensively for our calculations.
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For calculating properties pertaining to EDM searches, we need to adapt a reliable technique

to obtain an accurate wave function. It is therefore necessary to demonstrate the accuracy of the

RCC methods that we employ for calculations. Properties like Eeff and Ws cannot be measured

through experiments. Hence, we do not have the choice to directly compare the calculated values

of these properties with experimental data. Therefore, we choose to calculate PDMs and static

dipole polarizabilities for some systems for which previous theoretical as well as experimental

results are available. In Chapter 3, we discuss on our fully relativistic calculations of PDMs and

static dipole polarizabilities of heteronuclear alkali-alkali-dimers, as demonstrated in Ref. [36].

Most of the previous calculations were done in a non-relativistic framework or adding relativistic

effects partially. We compare our relativistic results with the non-relativistic results and also

with the literature data. We make a thorough analysis of the correlation effects at different

levels of theory. While analyzing these quantities, we show that the implication of relativistic

calculations of PDMs and polarizabilities greatly improve the estimation of van der Waals C6

coefficients. This clearly indicates the importance of considering a relativistic theory for high

accuracy calculations of molecular properties. We also provide a meticulous error estimation

procedure for the calculated properties.

Since alkali-dimers are closed-shell molecules, the next logical step for proceeding is to check

whether the results obtained for open-shell molecules are as accurate as in the case of the closed-

shell ones. In Chapter 4, on the basis of Ref. [37], we discuss on the fully relativistic calculations

of PDMs and static dipole polarizabilities of open-shell alkali-alkaline earth molecules. We make

an in depth analyses of trends in the relativistic and correlation effects in the values of static

polarizability and PDM of alkali-alkaline earth molecules. We compare our relativistic results

with the existing non-relativistic calculations. We also establish an empirical formula to relate

average static polarizability of a molecule with the constituent atomic polarizabilities and verify

the functional form of the formula for a couple of systems. In these calculations also, we make

a detailed error analysis.

After verifying the reliability of the RCC theory through the calculations of PDMs and static

dipole polarizabilities for a number of molecular systems, we are in a firm ground to start our
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venture of probing eEDM through molecules. In Chapter 5, we discuss in detail on the suitability

of HgOH molecule for an EDM experiment, as described in Ref. [38]. We optimize the ground

state geometry of the molecule, which affirms to be having a bent configuration. For conducting

a beam EDM experiment, one of the prerequisites is a slow molecular beam for avoiding sys-

tematic effects. The kinetic energy of the molecules in a beam can be reduced by cooling them

down to mK temperatures. For trap EDM experiments also, one needs to cool the molecules

down to µK temperature before trapping. That is why it becomes necessary to check out the

cooling prospects of HgOH. We scrutinized the laser cooling possibilities of HgOH by calculating

the Franck-Condon factors between different vibrionic states. At the end, weighing upon some

realistic assumptions about possible experimental scenarios we provide a projected sensitivity

offered by HgOH for the EDM experiment.

In Chapter 6, the discussion is based on Ref. [39], where we scrutinize the prospect of three

superheavy lawrencium molecules (LrO, LrF+, and LrH+) as EDM experimental candidates. To

ensure the formation of a stable state of the molecules, we find out the equilibrium bond-lengths

of the molecules from the minima of their corresponding PECs. Then, we carry out relativistic

calculations to find out their Eeff and PDM. We also probe another P, T -odd interaction, namely

the S-PS interaction which has significant impact on the molecular energy change due to in the

EDM experiments. We calculate the S-PS enhancement factor Ws and show its dependence on

nuclear charge distribution of Lr nucleus. We also comment on favourable experimental set ups

for each molecule. At first, we begin with the geometry optimization of the molecules. After

that, we calculate Eeff , PDM and Ws of the aforementioned molecules by employing the RCC

theory. We also propose suitable experimental set ups for each of these molecules.

In Chapter 7, we draw an overall conclusion to this PhD thesis work. We also provide an

insight about the future course of actions on the above studies.

24



Bibliography

[1] G. Lauders, Ann. Phys. 281, 1004 (2000).

[2] B. A. Robson, JHEPGC, 4, 166-178 (2018)

[3] L. E. Ballentine, Quantum mechanics: A modern development, World scientific publishing,

Singapore (1998).

[4] J. J. Sakurai, and J. Napolitano, Modern quantum mechanics, Second edition, Addison-

Wesley, San Francisco (2011).

[5] F. Halzen and A. D. Martin, Quarks and Leptons: An Introductory Course in Modern

Particle Physics, John Willey & Sons., New York (1984).

[6] S. Desser, Rev. Mod. Phys. 29, 3 (1957).

[7] R. J. Adler, B. Casey, and O. C. Jacob, Am. J. Phys. 63, 620 (1994).

[8] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 81, 1562 (1998).

[9] A. D Sakharov, JETP Lett. 5, 32 (1967).

[10] S. L. Adler, Phys. Rev. 177, 2426 (1969).

[11] J. S. Bell, R. Jackiw, Il Nuovo Cimento A 60, 47 (1969).

[12] V. Andreev et al., the ACME collaboration, Nature 562, 355 (2018).

[13] W. B. Cairncross, D. N. Gresh, M. Grau, K. C. Cossel, T. S. Roussy, Y. Ni, Y. Zhou, J.

Ye, and E. A. Cornell, Phys. Rev. Lett. 119, 153001 (2017).

25



[14] J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds,

Nature 473, 493 (2011).

[15] The NL-EDM collaboration, P. Aggarwal, H. L. Bethlem et al. Eur. Phys. J. D 72, 197

(2018).

[16] A. C. Vutha, M. Horbatsch, and E. A. Hessels, Atoms 6, 3 (2018).

[17] I. Kozyryev, and N. R. Hutzler, Phys. Rev. Lett. 119, 133002 (2017).

[18] N. M. Fazil, V. S. Prasannaa, K. V. P. Latha, M. Abe, and B. P. Das, Phys. Rev. A 99,

052502 (2019).

[19] V. S. Prasannaa, A. C. Vutha, M. Abe, and B. P. Das, Phys. Rev. Lett. 114, 183001 (2015).

[20] Z. Yang, J. Li, Q. Lin, L. Xu, H. Wang, T. Yang, and J. Yin, Phys. Rev. A 99, 032502

(2019).

[21] S. Sasmal, H. Pathak,M. K. Nayak, N. Vaval, and S Pal, Phys. Rev. A 93, 062506 (2016).

[22] D. M. Kara et al, New J. Phys. 14, 103051 (2012).

[23] E. E. Salpeter, Phys. Rev. 112, 1642 (1958).

[24] B. P. Das, Aspects of Many-Body Effects in Molecules and Extended Systems, edited by D.

Mukherjee (Springer, Berlin, 1989), p. 411.

[25] Schiff, L. Measurability of nuclear electric dipole moments. Phys. Rev. 132, 2194 (1963).

[26] E. R. Meyer, in Structure and spectroscopy of candidates for an electron electric dipole

moment experiment, PhD thesis, University of Colorado (2010).

[27] Y. Zhou et al, Phys. Rev. Lett. 124, 053201 (2020).

[28] A. C. Vutha, M. Horbatsch, and E. A. Hessels, Atoms 6, 3 (2018).

[29] A. C. Vutha, M. Horbatsch and E. A. Hessels, Phys. rev. A 98, 032513 (2018).

[30] Y. Park, H. Kang, H. Kang, Angew. Chem. 56, 1046–1049 (2017).

26



[31] S. Shin, Y. Kim, E. Moon, D.H. Lee, H. Kang, H. Kang, J. Chem. Phys. 139, 074201

(2013).

[32] I. B. Khriplovich, S. K. Lamoreaux, Springer-Verlag, Berlin, Heidelberg (1997).

[33] A.M. Kazarian a S.V. Kuzmin a and M.E. Shaposhnikov, Phys. Lett. B 276, 131 (1992).

[34] M. G. Kozlov, Phys. Lett. A 130, 426 (1988).

[35] I. Kozyryev, and N. R. Hutzler, Phys. Rev. Lett. 119, 133002 (2017).

[36] R. Mitra, V. S. Prasannaa, and B. K. Sahoo, Phys. Rev. A 101, 012511 (2020).

[37] R. Mitra, B. K. Sahoo, and V. S. Prasannaa, Phys. Rev. A 105, 062811 (2022).

[38] R. Mitra, V.S. Prasannaa, B.K. Sahoo, N.R. Hutzler, M. Abe, B.P. Das, Atoms 9, 7 (2021).

[39] R. Mitra, V. S. Prasannaa, R. F. Garcia Ruiz, T. K. Sato, M. Abe, Y. Sakemi, B. P. Das,

and B. K. Sahoo, Phys. Rev. A 104, 062801 (2021).

27



28



Chapter 2

Molecular Many-Body Theory

2.1 Introduction

Quantum many-body theory is a branch of quantum mechanics that deals with systems hav-

ing two or more constituent quantum particles. It is applicable to various branches of physics,

e.g. atomic physics, molecular physics, condensed matter physics, nuclear physics etc.. In this

chapter, we shall discuss quantum many-body theory in the context of molecular physics. For

molecules with two or more electrons, the Schrödinger equation cannot be solved exactly and

one needs to adopt approximation methods to achieve a near accurate wave function for determ-

ining molecular properties. For more accurate calculations, it is imperative to apply quantum

many-body methods in the relativistic framework. Accurate calculations of molecular properties

to study EDMs due to P, T -odd interactions also require use of a reliable many-body method.

Relativistic effects are quite significant in the heavier molecules and ions owing to the fact that

electrons close to the nucleus can move at relativistic speeds. Again, it is not possible to consider

a covariant form of relativistic Hamiltonian for the calculation of molecular properties due to

complexity involved in handling it and none of the existing computers will be able to solve it.

As a result, we consider Dirac Hamiltonian and non-relativistic form for nuclear potential and

electron-electron interactions in defining the total molecular Hamiltonian to determine molecular

spectroscopic properties. If necessary, corrections due to the Breit interactions to account for

the contributions due to exchange of transverse photons among the electrons and lower-order
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quantum electrodynamics (QED) effects can be included to improve accuracy of the molecular

calculations. However, these higher-order corrections do not contribute significantly in our ana-

lyses of the interested molecular properties; hence neglected in this thesis work. Furthermore, we

are interested only in the electronic properties of a molecular system. So we freeze the nuclear

degrees of freedom in the calculations by invoking Born-Oppenheimer approximation throughout

the calculations. Also, it is being considered that interaction among two electrons is itself too

much to solve exactly the equation-of-motion of a system. Thus, it is a challenge to take into

account Coulomb interactions due to electrons in a molecular system exactly because of which

approximated many-body methods are being applied in our analyses. A perturbative approach

cannot be useful for us to produce molecular properties with reasonable accuracy. Therefore,

we employ an all-order perturbative theory in the RCC method framework to carry out the

calculations. For this purpose, we begin with a mean-field approximation in the HF (referred as

Dirac-Fock (DF) in the relativistic form) procedure to consider the Coulomb interactions among

the electrons as an average potential, and then the residual interactions are treated to all-order

perturbation through the RCC methods. In this chapter, we discuss these procedures briefly for

the general understanding of calculating molecular properties. We have also performed calcu-

lations for a few cases using non-relativistic Hamiltonian, and compared results from both the

approximations in order to demonstrate the importance of relativistic effects in the investigated

spectroscopic properties.

2.2 Born-Oppenheimer approximation

Let us consider a molecule with N number of nuclei and Ne number of electrons. The total

Hamiltonian (in a.u.) of the molecule can, then, be written as

Htot =
N∑

A=1

P 2
A

2MA

+
Ne∑
i=1

p2i
2mi

+
1

2

∑
A ̸=B

ZAZBe
2

|RA −RB|
−
∑
i,A

ZAe
2

|RA − ri|
+

1

2

∑
i ̸=j

e2

|ri − rj|
(2.1)

= −
N∑
i=1

∇2
A

2MI

−
Ne∑
i=1

∇2
i

2
+

1

2

∑
A ̸=B

ZAZB

RA −RB

−
∑
i,A

ZA

RA − ri
+

1

2

∑
i ̸=j

1

|ri − rj|
(2.2)

= TN(R) + Te(r) + VNN(R) + VeN(rR) + Vee(r) (2.3)
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where the first two terms are the kinetic energy operators of the nuclei and electrons respectively,

the third term accounts for the nucleus-nucleus Coulomb repulsions, the fourth corresponds to

the electron-nucleus Coulomb interactions and the last term involves the electron-electron re-

pulsive Coulomb interactions. In Eq. (2.1), PA and pi denote the momentum operators of Ath

nucleus and ith electron, respectively, MA and mi are masses of I th nucleus and electron, re-

spectively. Nuclear coordinates are defined as R and electronic coordinates are given as r and

ZA is the atomic number of the Ath nuclei.

The Hamiltonian in Eq. (2.1) satisfies the Schrödinger equation

Htot|Ψ(r,R)⟩ = Etot|Ψ(r,R)⟩, (2.4)

where the wave function |Ψ(r,R)⟩ carries information about the nuclei and electrons of a mo-

lecule. Since we shall be dealing with mostly diatomic molecules, number of nuclei present in

our case is two and for some situations it is three where we work with triatomic molecules. Solv-

ing the Schrödinger equation for the total wave function with the above Hamiltonian is still a

cumbersome job as it includes 3(N +Ne) coordinates. Since we are interested only in electronic

properties in this study, we invoke a pragmatic approximation, known as Born-Oppenheimer

(BO) approximation [1], to decouple electronic and nuclear wave functions. The basic idea be-

hind this approximation lies in the fact that the nuclei are heavier than the electrons by three

orders of magnitude, and thus there exists a strong separation of time scales between the nuclear

and electronic motions. Therefore, nuclear positions can be regarded as fixed (clamped-nuclei)

and nuclear wave functions are considered to be highly localized to the nuclei positions. This

can be exploited by using the quasi-separable ansätz

|Ψ⟩ = |ΨN(R)⟩ ⊗ |Ψe(r,R)⟩. (2.5)

Under the BO approximation, the kinetic energy term of nuclei (TN(R)) can be neglected as

it is smaller than Te(R) by a factor M
me

. As the inter-nuclear separation R is a constant in

BO approximation, the nuclear-nuclear interaction term VNN(R) is also a constant and can be
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left out of the electronic Hamiltonian and its contribution can be added later by hand to the

calculated properties. Hence, after invoking the BO approximation, the electronic Hamiltonian

takes the form

HBO
e (r,R) = Te(r) + VeN(r,R) + Vee(r), (2.6)

which follows the electronic Schrödinger equation

HBO
e |Ψe(r,R)⟩ = Ee|Ψe(r,R)⟩, (2.7)

where Ee is the eigenvalue of H
BO
e and it gives the total molecular energy when added with VNN .

Eq. (2.7) represents the clamped-nuclei Schrödinger equation.

In the BO approximation, electrons are assumed to be pulled towards the heavier nucleus

with almost no relaxation time and thus follow the nuclear motions adiabatically. There can be

systems with the presence of non-adiabatic effects which do not allow electrons to move in this

instantaneous manner. This adiabatic approximation is valid and widely employed in most of

the systems of our interest.

2.3 Challenges involved with HBO
e

Let us consider the simplest molecular ion, the H+
2 ion. The electronic Hamiltonian under BO

approximation can be expressed as

HBO
e =

p2

2m
−

2∑
I=1

1

|RI − r|
, (2.8)

where the first term denotes the kinetic energy of the electron and the second term corresponds

to the nucleus electron attractive potential. RI and r represent the nuclear and electronic

positions, respectively. It can be easily shown that exact solution of the above equation can

be easily obtained in the analytical approach, but one needs to choose a suitable coordinate

system (i.e. elliptic coordinate) [2] to achieve this. However, it becomes strenuous when another
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electron is added to the system; i.e. for the H2 molecule. The electronic Hamiltonian for the

H2 molecule contains the extra two-body term of electron-electron repulsive Coulomb potential

and is given by

HBO
e =

2∑
i=1

p2i
2mi

−
2∑

i,I=1

1

|RI − ri|︸ ︷︷ ︸
h1

+
1

2

∑
i ̸=j

1

|ri − rj|︸ ︷︷ ︸
h2

, (2.9)

=
2∑

i=1

h1(x⃗i) +
1

2

∑
i ̸=j

h2(x⃗i, x⃗j), (2.10)

where h1 and h2 represent the one-body and two-body terms respectively with x⃗is being the

generalised coordinates. Due to the presence of the two-body potential term in Eq. (2.9), the

Schrödinger equation cannot be exactly solved for H2 molecule. For the same reason, exact

solution to Schrödinger is not possible for molecules having more electrons. In such scenarios,

we need to solve the Schrödinger equation using approximation methods but their solutions

should tend towards the exact values for producing accurate theoretical results. The exactness

of the results can be assumed by comparing calculated theoretical results with the experimental

values of some physical observables.

Since electrons are fermions, the total electronic wave function |Ψ⟩ for a molecule is a Slater

determinant. For example, for the H2 molecule it can be given by

Ψ =
1√
2!

∣∣∣∣∣∣ϕ1(x⃗1) ϕ1(x⃗2)

ϕ2(x⃗1) ϕ2(x⃗2)

∣∣∣∣∣∣ (2.11)

where ϕis correspond to the molecular orbitals (MO). It can be generalised to a molecule with

Ne number of electrons. The electronic BO-Hamiltonian of such a molecule in the absence of
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any external perturbation can be written in the following form

H = −
Ne∑
i=1

∇2
i

2
−
∑
i,I

ZI

|RI − ri|
+

1

2

∑
i ̸=j

1

|ri − rj|
, (2.12)

=
Ne∑
i=1

(
−∇2

i

2
−
∑
I

ZI

|RI − ri|

)
︸ ︷︷ ︸

h1(x⃗i)

+
1

2

∑
i ̸=j

1

|ri − rj|︸ ︷︷ ︸
h2(r⃗i,r⃗j)

, (2.13)

where all the notations are already defined earlier and we have dropped the suffices from the

notation of the electronic Hamiltonian for simplicity. In Eq. (2.12) it is clear that the first two

terms are sums of single particle (one-body) operators while the last term is a sum of two electron

(two-body) operators. To calculate the molecular ground state energy from the Hamiltonian in

Eq. (2.13), we need to evaluate the following integral

⟨Ψ|H|Ψ⟩ = ⟨Ψ|
∑
i

h1(x⃗i)|Ψ⟩+ ⟨Ψ|1
2

∑
i ̸=j

h2(x⃗i, x⃗j)|Ψ⟩. (2.14)

In this case the total electronic wave function is a Slater determinant composed of different

molecular orbital with dimension of the determinant as Ne ×Ne; i.e.

Ψ =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(x⃗1) ϕ1(x⃗2) · · · ϕ1(x⃗Ne)

ϕ2(x⃗1) ϕ2(x⃗2) · · · ϕ2(x⃗Ne)
...

. . .
...

ϕNe(x⃗1) ϕNe(x⃗2) · · · ϕNe(x⃗Ne)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.15)

To evaluate the one-body integral ⟨Ψ|
∑

i h1(x⃗i)|Ψ⟩ and the two-body integral ⟨Ψ|1
2

∑
i ̸=j h2(x⃗i, x⃗j)|Ψ⟩

in Eq. (2.14), there exists a convenient recipe to boil down the integrals containing the Slater

determinant wave function to sum of integrals involving individual molecular orbitals. These set

of rules are called Slater-Condon (SC) rules [3, 4] and are outlined below

(i) For a one-body operator F in an N particle system defined as a sum of individual operators,
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F =
∑N

i=1 f(x⃗i), it can follow

(a) ⟨Ψ|
∑
i

f(x⃗i)|Ψ⟩ =
∑
i

⟨ϕi|f(x⃗i)|ϕi⟩, (2.16)

(b) ⟨Ψ|
∑
i

f(x⃗i)|Ψa
i ⟩ = ⟨ϕi|f(x⃗i)|ϕa⟩, (2.17)

and (c) ⟨Ψ|
∑
i

f(x⃗i)|Ψa,b,···
i,j,··· ⟩ = 0. (2.18)

(ii) For a two-body operator (G) in an N particle system, defined as G = 1
2

∑
i ̸=j g(x⃗i, x⃗j),

we have

(a) ⟨Ψ|1
2

∑
i,j

g(x⃗i, x⃗j)|Ψ⟩ = 1

2

∑
i,j

(⟨ϕiϕj|g(x⃗i, x⃗j)|ϕiϕj⟩ − ⟨ϕjϕi|g(x⃗i, x⃗j)|ϕiϕj⟩) ,(2.19)

(b) ⟨Ψ|1
2

∑
i ̸=j

g(x⃗i, x⃗j)|Ψa
i ⟩ =

∑
j

(⟨ϕiϕj|g(x⃗i, x⃗j)|ϕaϕj⟩ − ⟨ϕiϕj|g(x⃗i, x⃗j)|ϕjϕa⟩),(2.20)

(c) ⟨Ψ|1
2

∑
i ̸=j

g(x⃗i, x⃗j)|Ψa,b
i,j ⟩ = ⟨ϕiϕj|g(x⃗i, x⃗j)|ϕaϕb⟩ − ⟨ϕiϕj|g(x⃗i, x⃗j)|ϕbϕa⟩, (2.21)

and (d) ⟨Ψ|1
2

∑
i ̸=j

g(x⃗i, x⃗j)|Ψa,b,···
i,j,··· ⟩ = 0. (2.22)

In the following discussions, we shall make use of these relations.

Applying the SC rules in Eq. (2.14), the integral takes the form

⟨Ψ|
∑
i

h1(x⃗i) +
1

2

∑
i ̸=j

h2(x⃗i, x⃗j)|Ψ⟩ =
∑
i

⟨ϕi|h1(x⃗i)|ϕi⟩+

1

2

∑
i,j

(⟨ϕiϕj|h2(x⃗i, x⃗j)|ϕiϕj⟩ − ⟨ϕjϕi|h2(x⃗i, x⃗j)|ϕiϕj⟩) . (2.23)

As the molecular orbitals are constructed from finite number of atomic basis functions, energy

obtained from solving Eq. (2.23) iteratively does not guarantee to yield the ground state energy.

Here comes the necessity to apply the variational principle to Eq. (2.23) in order to obtain the

ground state energy. In the next section we shall introduce the variational principle and the

variational method to obtain the ground state wave function and energy of a molecule.
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2.4 Variational method

The variational method is a way to obtain the lowest energy eigenstate (ground state) of a sys-

tem for which we do not know the exact wave function. This method employs the variational

principle to achieve the lowest energy eigenstate from an approximate (trial) wave function. [5]

Assume that H is the Hamiltonian of such a system and |Ψ0⟩ is the exact (but unknown)

ground state wave function. Then,

H|Ψ0⟩ = E0|Ψ0⟩, (2.24)

where E0 is the exact ground state energy of the system given by

E0 =
⟨Ψ0|H|Ψ0⟩
⟨Ψ0|Ψ0⟩

. (2.25)

If |Ψ′⟩ is an arbitrary wave function and E is the corresponding energy

E =
⟨Ψ′|H|Ψ′⟩
⟨Ψ′|Ψ′⟩

, (2.26)

then the variational principle states that E ≥ E0.

Proof: As the exact unknown eigenfunctions (|ψn⟩) form a complete set, the approximate

state can be written in terms of linear combination of them

|Ψ′⟩ =
∑
n

Cn|ψn⟩, (2.27)

withH|ψn⟩ = En|ψn⟩ (2.28)

Assume that the eigenfunctions are orthonormalized: ⟨ψm|ψn⟩ = δmn.
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The normalization of |Ψ⟩ leads to

⟨Ψ′|Ψ′⟩ = 1 (2.29)

⇒
∑
m,n

C∗
mCn ⟨ψm|ψn⟩︸ ︷︷ ︸

δmn

= 1 (2.30)

⇒
∑
n

|C2
n| = 1. (2.31)

The expectation value of the Hamiltonian in the approximate state is

⟨Ψ′|H|Ψ′⟩ = E =
∑
m,n

C∗
mCn⟨ψm|H|ψn⟩ (2.32)

=
∑
m,n

C∗
mCnEn⟨ψm|ψn⟩ (2.33)

=
∑
n

En|C2
n|. (2.34)

But, by definition, the energy of the ground state (E0) is the lowest. Therefore, E0 ≤ En.

Invoking this in Eq. (2.34) we get

⟨Ψ′|H|Ψ′⟩ ≥ E0

∑
n

|C2
n|︸ ︷︷ ︸

=1

(2.35)

⟨Ψ′|H|Ψ′⟩ ≥ E0. (2.36)

Therefore, from Eq. (2.36) it is evident that the energy expectation value using the approximate

wave function must be minimized, with respect to the variation of some parameter, to obtain

the ground state wave function.

2.5 The HF method

The variational technique we shall follow does not include minimization of energy with respect to

coefficients of the basis functions, instead we conduct the minimization with respect to the basis

functions themselves. In this variational approach, we assume that the functional differentiation

of the expectation value in change in Eq. (2.23) due to any infinitesimal change in |ϕ⟩ is zero,
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i.e.,

for |ϕk⟩ → |ϕk⟩+ δ|ϕk⟩, δ⟨Ψ|H|Ψ⟩ = 0. (2.37)

Moreover, we demand that the |ϕi⟩’s would remain orthogonal throughout the process of min-

imization

⟨ϕi|ϕj⟩ = δij. (2.38)

If both the conditions in Eq. (2.37) and Eq. (2.38) are satisfied, we can connect the two equations

through Lagrange’s undetermined multipliers (λij)

δF = δ

[
⟨Ψ|H|Ψ⟩ −

∑
ij

λij(⟨ϕi|ϕj⟩ − δij)

]
= 0, (2.39)

δ

[
⟨Ψ|

∑
i

h1(x⃗i) +
1

2

∑
i ̸=j

h2(x⃗i, x⃗j)|Ψ⟩ −
∑
ij

λij(⟨ϕi|ϕj⟩ − δij)

]
= 0. (2.40)

In Eq. (2.39), we set F = ⟨Ψ|H|Ψ⟩−
∑

ij λij(⟨ϕi|ϕj⟩− δij). It is evident from Eq. (2.40) that the

number of Lagrange’s undetermined multipliers is N2
e . We demand that first-order derivatives

of Eq. (2.40) with respect to all the λij’s vanish. At first, we shall look at the variation of the

one-body term in Eq. (2.40) due to any infinitesimal change in orbital |ϕk⟩

δ⟨Ψ|
∑
i

h1(x⃗i)|Ψ⟩ = δ

[∑
i

⟨ϕi|h1(x⃗i)|ϕi⟩

]
(2.41)

= ⟨δϕk|h1(x⃗i)|ϕk⟩+ ⟨ϕk|h1(x⃗i)|δϕk⟩ (2.42)

= ⟨δϕk|h1(x⃗i)|ϕk⟩+ ⟨δϕk|h1(x⃗i)|ϕk⟩∗, (2.43)
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where the symbol ‘*’ in the second term is used to denote hermitian conjugate (h.c.). Similarly,

the variation of the two-body term in Eq. (2.40) can also be simplified as

δ⟨Ψ|1
2

∑
i ̸=j

h2(x⃗i, x⃗j)|Ψ⟩ = δ
1

2

∑
i ̸=j

(⟨ϕiϕj|h2|ϕiϕj⟩ − ⟨ϕjϕi|h2|ϕiϕj⟩)

=
1

2

∑
i

(⟨ϕiδϕk|h2|ϕiϕk⟩+ ⟨ϕiϕk|h2|ϕiδϕk⟩ − ⟨δϕkϕi|h2|ϕiϕk⟩

−⟨ϕkϕi|h2|ϕiδϕk⟩) +
1

2

∑
j

(⟨δϕkϕj|h2|ϕkϕj⟩+ ⟨ϕkϕj|h2|δϕkϕj⟩

−⟨ϕjδϕk|h2|ϕkϕj⟩ − ⟨ϕjϕk|h2|δϕkϕj⟩) (2.44)

Invoking the identity

⟨ϕ1ϕ2|A|ϕ3ϕ4⟩ = ⟨ϕ2ϕ1|A|ϕ4ϕ3⟩

in Eq. (2.44) for any two-body hermitian operator A, we get

δ⟨Ψ|1
2

∑
i ̸=j

h2(x⃗i, x⃗j)|Ψ⟩ =
∑
i

(⟨ϕiδϕk|h2|ϕiϕk⟩+ ⟨ϕiδϕk|h2|ϕiϕk⟩

−⟨δϕkϕi|h2|ϕiϕk⟩ − ⟨δϕkϕi|h2|ϕkϕi⟩), (2.45)

where we exploited the dummy nature of the indices i and j in Eq. (2.45). Combining Eq. (2.43)

and Eq. (2.45) we can write

δF = ⟨δϕk|h1|ϕk⟩+ ⟨δϕk|h1|ϕk⟩∗ +∑
i

(⟨ϕiδϕk|h2|ϕiϕk⟩+ ⟨ϕiδϕk|h2|ϕiϕk⟩∗ − ⟨δϕkϕi|h2|ϕiϕk⟩ − ⟨δϕkϕi|h2|ϕiϕk⟩∗)

−
∑
i

(λik⟨δϕk|ϕi⟩∗ + λki⟨δϕk|ϕi⟩) . (2.46)

Terms in Eq. (2.46) written in their integral form would read, for example,

⟨δϕkϕi|h2|ϕiϕk⟩ =
∫ ∫

δϕ∗
k(x⃗1)ϕ

∗
i (x⃗2)h2(x⃗1, x⃗2)ϕi(x⃗1)ϕk(x⃗2)dx⃗1dx⃗2. (2.47)
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Now, we shall evaluate the variation of F with respect to |ϕk⟩∗,

δF

δϕ∗
k

= δϕ∗
kh1ϕk(x⃗1) +

∑
i

[∫
ϕ∗
i (x⃗2)h2(x⃗1, x⃗2)ϕi(x⃗2)ϕk(x⃗1)dx⃗2 −

∫
ϕ∗
i (x⃗2)h2(x⃗1, x⃗2)ϕk(x⃗2)ϕi(x⃗1)dx⃗2

]
−
∑
i

λkiϕi = 0, (2.48)

which can be written as [
h1 +

∑
i

(Ji −Ki)

]
ϕk =

∑
i

λkiϕi, (2.49)

where the Ji is the direct term and Ki is the exchange term and defined as

Jiϕk(x⃗1) =

[∫
ϕi(x⃗2)

∗h2(x⃗1, x⃗2)ϕi(x⃗2)dx⃗2

]
ϕk(x⃗1), (2.50)

Kiϕk(x⃗1) =

[∫
ϕ∗
i (x⃗2)h2(x⃗1, x⃗2)ϕk(x⃗2)dx⃗2

]
ϕk(x⃗1). (2.51)

From Eq. (2.50) it is evident that the direct term is the classical Coulomb interaction averaged

over ϕi and the exchange term is an integral operator with no classical analogue and is a result

of the antisymmetric nature of the wave function.

The left hand side of Eq. (2.49) is called the Fock operator: F = h1 +
∑

i(Ji − Ki). Then

Eq. (2.49) takes the form

Fϕk =
∑
i

λkiϕi. (2.52)

Several solutions to Eq. (2.52) are possible for different choices of λki. However, we have the

liberty to focus on those values of λki which satisfy the following condition

λki = δkiϵk, (2.53)

where ϵk is a new Lagrange’s multiplier. With this special choice of λki, Eq. (2.52) assumes the
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following form

Fϕk = ϵkϕk. (2.54)

Eq. (2.54) is called the HF equation [6] where ϵks are the eigenvalues of the Fock operator.

2.5.1 Roothaan’s equation

The HF equation can conveniently be written in terms of a mean-field potential (VHF ) as follows

h1|ϕk⟩+ VHF |ϕk⟩ = ϵk|ϕk⟩. (2.55)

The HF potential VHF is given by

VHF |ϕk⟩ =
Ne∑
i=1

[
⟨ϕi|

1

r12
|ϕi⟩|ϕk⟩ − ⟨ϕk|

1

r12
|ϕi⟩|ϕi⟩

]
. (2.56)

In Eq. (2.56), the summation over the orbital indices run from 1 to total number of core electrons

(Ne), not (Ne − 1). However, both the cases would lead to same expression as when i = k, the

right hand side of Eq. (2.56) vanishes. The above set of equations are for core orbitals. If we

consider a virtual orbital |ϕa⟩,

h1|ϕa⟩+ VHF |ϕa⟩ = ϵa|ϕa⟩, (2.57)

VHF |ϕa⟩ =
Ne∑
i

[
⟨ϕi|

1

r12
|ϕi⟩|ϕa⟩ − ⟨ϕa|

1

r12
|ϕi⟩|ϕi⟩

]
(2.58)

where VHF , in this case, is a V N−1 potential as discussed above. Under a V N−1 potential an

electron experiences a mean potential due to the presence of N − 1 electrons. Eq. (2.56) and

(2.58) can be combined and written for a generalised orbital |ϕp⟩ as

h1|ϕp⟩+ VHF |ϕp⟩ = ϵp|ϕp⟩, (2.59)

VHF |ϕp⟩ =
Ne∑
i=1

[
⟨ϕi|

1

r12
|ϕi⟩|ϕp⟩ − ⟨ϕp|

1

r12
|ϕi⟩|ϕi⟩

]
. (2.60)
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To solve Eq. (2.59), let us write F = t1 + VHF

F|ϕp⟩ = ϵp|ϕp⟩. (2.61)

For atoms, the single particle orbital orbital |ϕp⟩ can be written as a linear combination of atomic

basis functions (|χ⟩)

|ϕp⟩ =
∑
n

Cpn|χn⟩. (2.62)

Using Eq. (2.62) in Eq. (2.61) we get

F
∑
n

Cpn|χn⟩ = ϵp
∑
n

Cpn|χn⟩ (2.63)∑
n

⟨χm|F|χn⟩Cpn = ϵp
∑
n

⟨χm|χn⟩Cpn (2.64)∑
n

FmnCpn = ϵp
∑
n

SmnCpn, where Fmn =
∑
n

⟨χm|F|χn⟩, Smn = ⟨χm|χn⟩.(2.65)

Eq. (2.65) can be written in a matrix form

FC = ϵSC (2.66)

FS−1/2S1/2C = ϵS1/2S1/2C (2.67)

S−1/2FS−1/2S1/2C = ϵS1/2C (2.68)

F ′C ′ = ϵC ′, (2.69)

where F ′ = S−1/2FS−1/2 and C ′ = S1/2C. Eq. (2.69) is an eigenvalue equation and solved self

consistently. This equation is solved for C ′ and hence C while the information about |χ⟩s are

given as inputs. To solve the HF equation in a matrix formulation, one needs to construct the

Fock matrix F given by

F = h1 + VHF (2.70)

Fmn = (h1)mn + (VHF )mn, (2.71)
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where Fmn = ⟨χm|F|χn⟩, (h1)mn = ⟨χm|h1|χn⟩, and (VHF )mn = ⟨χm|VHF |χn⟩. Now, we shall

simplify Eq. (2.71). We have,

VHF |ϕp⟩ =
∑
i

[
⟨ϕi|

1

r12
|ϕi⟩|ϕp⟩ − ⟨ϕi|

1

r12
|ϕp⟩|ϕi⟩

]
(2.72)

|ϕi⟩ =
∑
n

Cin|χn⟩, |ϕp⟩ =
∑
l

Cpl|χl⟩. (2.73)

∴ VHF

∑
l

Cpl|χl⟩ =
∑
i

[∑
kln

C∗
inCik⟨χn|

1

r12
|χk⟩Cpl|χl⟩ − C∗

inCpl⟨χn|
1

r12
|χl⟩|χk⟩Cik

]
.(2.74)

For a given value of p,

∑
l

⟨χm|VHF |χl⟩Cl =
∑
i

(∑
kln

ClC
∗
inCik⟨χmχn|

1

r12
|χkχl⟩

−
∑
kln

ClC
∗
inCik⟨χmχn|

1

r12
|χlχk⟩

)
. (2.75)

For a known value of l,

⟨χm|VHF |χl⟩ =
∑
i

(∑
kn

C∗
inCik⟨χmχn|

1

r12
|χkχl⟩

−
∑
kn

C∗
inCik⟨χmχn|

1

r12
|χlχk⟩

)
(2.76)

=
∑
kn

ρnk

(
⟨mn| 1

r12
|kl⟩ − ⟨mn| 1

r12
|lk⟩

)
, (2.77)

where density matrix ρnk =
∑

iC
∗
inCik, and for simplicity we have used the notation |χm⟩ = m,

|χn⟩ = n and so on. We solve the HF equation for these ρs. From the density matrix elements

we can calculate the coefficients (Cs) and ultimately obtain the HF wave function.

So far, we described the procedure of solving the HF equation for atoms. However the case

is slightly different for molecules. Unlike the construction of atomic single particle orbitals,

construction of molecular single particle orbitals is a two-fold process. For the molecular case,

at first atomic orbitals (AO) are generated from atomic basis functions (|χ⟩s) and thereafter
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linear combinations of the atomic orbitals construct the molecular orbitals (MO). The process

of construction of MOs is as follows

|AOl⟩ =
∑
n

Cln|χn⟩, (2.78)

|ϕp⟩︸︷︷︸
pth MO

=
∑
l

Cpl|AOl⟩ =
∑
l

∑
n

CplCln|χn⟩. (2.79)

Using Eq. (2.79) in Eq. (2.61) we get

F
∑
l

∑
n

CplCln|χn⟩ = ϵp
∑
l

∑
n

CplCln|χn⟩, (2.80)

and taking inner product with |χm⟩ on both sides, (2.81)∑
l

∑
n

CplCln︸ ︷︷ ︸
Cpln

| ⟨χmFχn⟩︸ ︷︷ ︸
Fmn

= ϵp
∑
l

∑
n

CplCln︸ ︷︷ ︸
Cpln

⟨χm|χn⟩︸ ︷︷ ︸
Smn

. (2.82)

∑
l,n

FmnCpln = ϵp
∑
l,n

CplnSmn. (2.83)

In matrix form,

FC = ϵCS. (2.84)

Our aim is now to determine the matrix element Fmn = (h1)mn + (VHF )mn. This requires

the knowledge of the matrix element VHF , which can be determined in the following way. By

expanding the MOs using basis functions and inserting in Eq. (2.72), we get

VHF

∑
ln

CplCln|χn⟩ =
∑
i

[∑
αβ

∑
qr

∑
ln

C∗
iαC

∗
αβCiqCqr⟨χβ|

1

r12
|χr⟩CplCln|χn⟩−

∑
αβ

∑
ln

∑
qr

C∗
iαC

∗
αβCplCln⟨χβ|

1

r12
|χn⟩|CiqCqr|χr⟩

]
.

(2.85)
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For a given value of l, Eq. (2.85) takes the form

∑
n

CpCn⟨χm|VHF |χn⟩ =
∑
i

[∑
αβ

∑
qr

∑
n

C∗
iαC

∗
αβCiqCqr⟨χmχβ|

1

r12
|χrχn⟩CpCn−

∑
αβ

∑
qr

∑
n

C∗
iαC

∗
αβCpCn⟨χmχβ|

1

r12
|χnχr⟩CiqCqr

]
.

(2.86)

For a known value of p and n, Eq. (2.86) can be expressed as

⟨χm|VHF |χn⟩ =
∑
i

[∑
αβ

∑
qr

C∗
iαC

∗
αβCiqCqr⟨χmχβ|

1

r12
|χrχn⟩−

∑
αβ

∑
qr

C∗
iαC

∗
αβCiqCqr⟨χmχβ|

1

r12
|χnχr⟩

]
.

(2.87)

2.6 The DF method

HF theory is based on the Schrödinger equation which is not invariant under Lorentz trans-

formation. Any theory which does not obey Lorentz invariance is deemed to be incompatible

for relativistic calculations, as Lorentz invariance is a necessary condition for the inclusion of

special relativity. Therefore, for performing relativistic calculations one needs to undertake a

theory which is consistent with special relativity. In 1928, Paul Dirac introduced the Dirac

equation which is consistent with both quantum mechanics and special relativity. Dirac equa-

tion successfully describes the properties of spin 1/2 massive particles (electrons, quarks). The

Dirac equation for a molecular system under Coulomb potential reads

HDC |Ψ⟩ =

[∑
i

(αipi + β + V nuc
i ) +

∑
i>j

1

rij

]
|Ψ⟩ = E|Ψ⟩, (2.88)
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where HDC is the Dirac-Coulomb Hamiltonian, αis and β are four component Dirac matrices:

αi =

 0 σi

σi 0

 , β =

12×2 0

0 −12×2

 , (2.89)

where σi is the ith Pauli spin matrix. A single particle orbital |ϕ⟩ can be written as a four-

component one-particle wave function [7]

ϕ =


ϕ1

ϕ2

ϕ3

ϕ4

 =

 Pnκ(r)χκm

iQnκ(r)χ−κm

 (2.90)

where Pnκ(r) and Qnκ(r) correspond to the large component and small component of the single

particle orbital wave function, respectively. κ = −a(j + 1
2
), where a = 2(j − l) = ±1 serves as a

sign factor (j and l are total and azimuthal angular momentum quantum number, respectively).

The spin angular function χκm is given by

χκm =
1√

2l + 1


a
√
l + 1

2
+ am Y

m−1/2
l

√
l + 1

2
− am Y

m+1/2
l

 . (2.91)

When a = 1, i.e., j = l + 1/2,

χκm =
1√

2l + 1


√
l +m+ 1

2
Y

m−1/2
l

√
l −m+ 1

2
Y

m+1/2
l

 . (2.92)
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When a = −1, i.e., j = l − 1/2,

χκm = − 1√
2l + 1


√
l −m+ 1

2
Y

m−1/2
l

√
l +m+ 1

2
Y

m+1/2
l

 . (2.93)

In this relativistic treatment, we use the same form of the mean-field equations but with the

relativistic Dirac-Coulomb Hamiltonian with orbitals becoming four-component spinors. As

mentioned above, the orbitals can be broken into large (L) and small (S) components in the

relativistic approach

ϕi =

ϕL

ϕS

 . (2.94)

We solve the DF equation for each of these components and find out the coefficients. Therefore,

if there exists N coefficients for the non-relativistic case, there would be 2N coefficients in the

relativistic scenario. Hence, the computational cost shoots up for the relativistic case.

The Dirac Hamiltonian for a many electron system with a potential V is given by

HD = c(α · p) + βmc2 + V. (2.95)

The rest mass subtracted form of the Hamiltonian is

H ′
D = HD −mc2. (2.96)

The total energy E becomes

E ′ = E −mc2. (2.97)
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The rest mass subtracted time-independent Dirac equation takes the form

(V − E)ϕL + c(σ · p)ϕS = 0 (2.98)

and c(σ · p)ϕL + (V − E − 2mc2)ϕS = 0. (2.99)

Let us expand the large and small components in terms of 2-spinors {χL
µ , χ

S
µ}

ϕL =

NL∑
µ=1

aLµχ
L
µ , ϕ

S =

NS∑
µ=1

aSµχ
S
µ , (2.100)

where NL and NS need not be the same.

Substituting the values of ϕL and ϕS from Eq. (2.100) in Eq. (2.98) and Eq. (2.99), we get

(V − E)

NL∑
µ=1

aLµχ
L
µ + c(σ · p)

NS∑
µ=1

aSµχ
S
µ = 0, (2.101)

c(σ · p)
NL∑
µ=1

aLµχ
L
µ + (V − E − 2mc2)

NS∑
µ=1

aSµχ
S
µ = 0. (2.102)

Eq. (2.101) and (2.102) can together be written in the following matrix form after taking the

inner product with the matrix
∑

ν(χ
L
ν χ

S
ν )V LL − ESLL cΠLS

cΠSL V SS − (E + 2mc2)SSS

aL

aS

 = 0, (2.103)

where the elements of V LL, V SS, ΠLS, ΠSL, SLL, and SSS matrices are given by V LL
µν =

⟨χL
µ |V |χL

ν ⟩, V SS
µν = ⟨χS

µ |V |χS
ν ⟩, ΠLS

µν = ⟨χL
µ |σ · p|χS

ν ⟩, ΠSL
µν = ⟨χS

µ |σ · p|χL
ν ⟩, SLL

µν = ⟨χL
µ |χL

ν ⟩,

and SSS
µν = ⟨χS

µ |χS
ν ⟩, respectively. It should be noted that ΠLS

µν = ΠSL
νµ

†
, so that

Π =

 0 ΠLS

ΠSL 0

 (2.104)

48



is a Hermitian matrix. Now, we have obtained a two-body integrals in a 2- spinor form like

⟨pLqL| 1
r12

|rLsL⟩ =
∑
µνκλ

C∗L
µpC

∗L
νq C

L
κrC

L
λs⟨χL

µχ
L
ν |

1

r12
|χL

κχ
L
λ⟩, (2.105)

where we have followed the notation: |ϕp⟩ = |p⟩. Other combinations also holds similar kind of

expressions. Here, we shall introduce the density matrix P given by

P =

PLL PLS

P SL P SS

 , (2.106)

where PLL = C∗
LCL and so on.

In the relativistic case, the Fock matrix F is given by

F =

FLL FLS

F SL F SS

 (2.107)

with the components are given by

FLL
µν = V LL

µν +
LL∑
κλ

PLL
κλ [⟨χL

µχ
L
ν |

1

r12
|χL

κχ
L
λ⟩ − ⟨χL

µχ
L
ν |

1

r12
|χL

λχ
L
κ⟩] +

∑
κλ

P SS
κλ [⟨χL

µχ
L
ν |

1

r12
|χS

κχ
S
λ⟩],

FLS
µν = F SL

µν = cΠLS
µν −

∑
κλ

[P SL
κλ ⟨χL

µχ
S
ν |

1

r12
|χS

κχ
L
λ⟩] and (2.108)

F SS
µν = V SS

µν − 2c2SSS
µν +

∑
κλ

PLL
κλ ⟨χS

µχ
s
ν |

1

r12
|χL

κχ
L
λ⟩+

∑
κλ

P SS
κλ [⟨χS

µχ
S
ν |

1

r12
|χS

κχ
S
λ⟩ − ⟨χS

µχ
S
ν |

1

r12
|χS

λχ
S
κ⟩].

Therefore, in the matrix representation, as mentioned in Eq. (2.108), the DF equation resembles

its non-relativistic form, i.e.

FC = ϵSC. (2.109)
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2.7 Kinetic balance condition

Earlier efforts to solve the DF equations sometimes did not lead to convergence to a lowest

bound state. [8] The obtained energy often came out to be very low due to the negative energy

continuum. The root of this problem lies in the fact that each of the four components of the

spinor was permitted to vary independently, which basically means that each component used

to be treated with its corresponding independent basis without paying attention to the inter-

dependence of the large and small components of an orbital. This hurdle was finally overcome by

inspecting the non-relativistic limit of the Dirac equation, and establishing the relation between

the small and large components. This relation is known as the “kinetic balance” condition

(KBC) [9].

Derivation of KBC: The matrix equation in Eq. (2.103) can be written as a sum of two

coupled matrix equations

(V LL − ESLL)aLcΠLSaS = 0 (2.110)

and cΠSLaL + [V SS − (E + 2mc2)SSS]aSS = 0. (2.111)

Our objective is to find the solutions for energies above the negative energy continuum limit,

i.e. for E > −2mc2. In most of the cases V SS is negative definite for atoms or molecules. The

two aforementioned conditions of E > −2mc2 and V SS < 0 together allow to invert the matrix

in square bracket in Eq. (2.111). This gives

aS = [(E + 2mc2)SSS − V SS]−1cΠSLaL. (2.112)

Now we eliminate the small component expansion coefficient from Eq. (2.110)

(V LL − ESLL)aL + cΠLS[(E + 2mc2)SSS − V SS]−1cΠSLaL = 0. (2.113)
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Using the relation for any two matrices A and B

(A−B)−1 = A−1 + A−1B(A−B)−1, (2.114)

we can expand the square bracket term in Eq. (2.113) where we set A = 2mc2SSS and B =

V SS − ESSS. Thus we rewrite Eq. (2.113) as

(V LL − ESLL)aL +
1

2m
ΠLS{[SSS]−1 + [SSS]−1(V SS − ESSS)[(E + 2mc2)SSS − V SS]−1}ΠSLaL = 0.

Keeping terms of order c0 in the left hand side and order c−2 or lower in the right hand side of

the equation, we get

[V LL − ESLL +
1

2m
ΠLS[SSS]−1ΠSL]aL =

1

2m
ΠLS[SSS]−1(V SS − ESSS)[V SS − (E + 2mc2)SSS]−1ΠSL.

With the application of the non-relativistic limit c → ∞, the right hand side of the above

equation vanishes and we are left with

[V LL − ESLL +
1

2m
ΠLS[SSS]−1ΠSL]aL = 0. (2.115)

Now drawing analogy with the non-relativistic case [note that for non-relativistic case the kinetic

energy operator T = 1
2m

(σ · p)(σ · p)], we can claim that the third term in the left hand side of

the equation correspond to the kinetic energy operator, T , expressed as

T =
1

2m
ΠLS[SSS]−1ΠSL. (2.116)

The matrix element of TLL in Eq. (2.116) can explicitly be written as

TLL
µν = − ℏ2

2m

∑
κλ

⟨χL
µ |σ · ∇|χS

κ⟩ ⟨χS
κ |[SSS]−1|χS

λ⟩︸ ︷︷ ︸
=[SSS ]−1

κλ

⟨χS
λ |σ · ∇|χL

ν ⟩ (2.117)

= − ℏ2

2m

∑
κλ

⟨χL
µ |σ · ∇|χS

κ⟩[SSS]−1
κλ ⟨χ

S
λ︸ ︷︷ ︸ |σ · ∇|χL

ν ⟩. (2.118)
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The underlined part of Eq. (2.118) acts as an inner projection operator onto the small compon-

ent basis space. Therefore, the small component is sometimes called as a mathematical glue

connecting the two momentum operators. Under the constraint where small component basis

function spans the space of the momentum operators in the large component space, {σ · ∇χL
µ},

the inner projection just becomes the identity and we retrieve the non-relativistic version of

Eq. (2.118) as

Tµν = − ℏ2

2m
⟨χL

µ |(σ · ∇)(σ · ∇)|χL
ν ⟩ = − ℏ2

2m
⟨χL

µ |∇2|χL
ν ⟩, (2.119)

which resembles the kinetic energy term in a pure non-relativistic framework. Hence, at the

outset of performing a relativistic calculation, if we set the constraint

χS
µ = (σ · p)χL

µ , (2.120)

we would recover the accurate non-relativistic limit. Under this constraint of the KBC given by

Eq. (2.120) solutions would no longer collapse to energies lower than −2mc2. Moreover, when

calculations are performed with finite basis sets, the common problem of variational collapse [9]

appears. This is because the Dirac equation permits negative energy continuum in its energy

spectrum which leads to large negative energy of the single particle states during numerical

calculations. Application of the KBC resolves the problem of variational collapse, but throws an

error of the order of c−4 to the total DF energy [10]. We make use of the KBC in our relativistic

calculations.

2.7.1 Brillouin’s theorem

Statement: For a given HF wave function |Φ0⟩, the matrix element of the Hamiltonian between

the ground state wave function and the singly excited state wave function (|Φa
i ⟩) vanishes

⟨Φ0|H|Φa
i ⟩ = 0. (2.121)
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Proof:

⟨Φ0|H|Φa
i ⟩ = ⟨ϕi|h1|ϕa⟩+

∑
j

(⟨ϕiϕj|
1

r12
|ϕaϕj⟩ − ⟨ϕiϕj|

1

r12
|ϕjϕa⟩). (2.122)

Eq. (2.122) can be written as [11]

⟨Φ0|H|Φa
i ⟩ = ⟨ϕi|h1|ϕa⟩+

∑
j

(⟨ϕi|(2Jj −Kj)|ϕa⟩), (2.123)

which can be identified as an off-diagonal matrix element ⟨ϕi|F|ϕa⟩ of the Fock matrix. But,

the HF wave function |Φ0⟩ was achieved by diagonalizing the Fock matrix. Therefore, for an

optimized wave function |Φ0⟩, the off-diagonal matrix element in Eq. (2.123) is indeed zero. We

shall use this fact while calculating wave functions using beyond HF/DF methods.

2.8 Electron correlation effects

The underlying approximation in the HF/DF method is that a part of electron-electron inter-

actions is included in the mean-field approach leaving out a gross amount of dynamic electron

correlation effects in the calculations. In other words, the interaction between electrons are

treated in the HF/DF method in an averaged manner rather than a instantaneous way. For

accurate estimate of spectroscopic properties, particularly EDM enhancement factors, in the

molecular systems, roles of the neglected residual Coulomb interactions can be crucial. This

problem can be understood as follows.

The HF/DF Hamiltonian for a many-body system can be written in a compact form as

HHF =
∑
i

h1(x⃗i) +
∑
i

(VHF )i, (2.124)

which is basically a mean-field Hamiltonian and satisfies the following relation

HHF |Φ0⟩ = EHF |Φ0⟩, (2.125)
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where |Φ0⟩ is the mean-field wave function and EHF is the HF energy.

The actual Hamiltonian of a many-body system is given by

H =
∑
i

h1(x⃗i) +
1

2

∑
ij

1

rij
(2.126)

=
∑
i

h1(x⃗i) +
∑
i

(VHF )i︸ ︷︷ ︸
=HHF

+
1

2

∑
ij

1

rij
−
∑
i

(VHF )i︸ ︷︷ ︸
=Vres

(2.127)

= HHF + Vres, (2.128)

where Vres is called the residual Coulomb potential. From Eq. (2.128) we can see that the

total Hamiltonian is comprised of the HF Hamiltonian along with the residual Coulomb poten-

tial. This means that the HF method does not account for Vres, which is a part of the actual

Hamiltonian. The physical effects that arise due to this residual Coulomb interaction are re-

ferred to as electron correlation effects, which are beyond the reach of the mean-field calculations.

The actual energy of a state can be obtained using the equation

H|Ψ⟩ = E|Ψ⟩, (2.129)

where |Ψ⟩ is the total wave function the many-body system. The actual quantity that is calcu-

lated using many-body methods is Ecorr = E − EHF , defined as the correlation energy, as EHF

can be evaluated with the knowledge of HF/DF wave function. The commonly employed many-

body methods for molecular calculations are the many-body perturbation theory, configuration

interaction (CI) method, CC method etc. and their relativistic counterparts.

2.9 Many-body perturbation theory

Many-body perturbation theory (MBPT) is an another tool to take into account the electron

correlation effects perturbatively. In MBPT method the residual Coulomb potential, Vres, as
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defined in Eq. (2.127) is treated as perturbation. The MBPT wave function is written as

|Ψ⟩MBPT = |Φ(0)
0 ⟩+ |Φ(1)

0 ⟩+ |Φ(2)
0 ⟩+ · · · , (2.130)

where |Φ(i)
0 ⟩ is the ith order correction to the HF/DF wave function due to the perturbation Vres

with |Φ(0)
0 ⟩ = |Φ0⟩ and |Φ(n)

0 ⟩. Some of the popular MBPT theories include Rayleigh-Schrödinger

perturbation theory, Brillouin-Wigner perturbation theory, Moller-Plesset perturbation theory

etc.. Relativistic MBPT techniques use the Dirac-Coulomb Hamiltonian instead of the non-

relativistic Hamiltonian and the wave function becomes a four-component one.

2.10 CI method

CI method is one of the many-body theories that takes into account electron correlation effects

to all orders. The CI wave function of a molecule with N electrons can be written as a linear

combination of Slater determinants made of any occupation of HF orbitals. Let us start with

the simplest configuration of a CI wave function which is a linear combination of two such Slater

determinants

|Ψ⟩ = c1|Φ1⟩+ c2|Φ2⟩, (2.131)

where c1 and c2 are two unknown real coefficients which we have to solve for and |Φ1⟩ and |Φ2⟩

are known and they follow the orthonormal condition

⟨Φi|Φj⟩ = δij, (2.132)

i.e., ⟨Φ1|Φ2⟩ = 0. Therefore the energy functional (F ′) that has to minimized is

F ′ = ⟨Ψ|H|Ψ⟩ − E⟨Ψ|Ψ⟩. (2.133)
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First term in the left hand side of Eq. (2.133) can be elaborated as

⟨Ψ|H|Ψ⟩ = (c1⟨Φ1|+ c2⟨Φ2|)H(c1|Φ1⟩+ c2|ϕ2⟩) (2.134)

= c21⟨Φ1|H|ϕ1⟩+ c1c2⟨Φ1|H|Φ2⟩+ c1c2⟨Φ2|H|Φ1⟩+ c22⟨Φ2|H|ϕ2⟩ (2.135)

= c21⟨Φ1|H|ϕ1⟩+ 2c1c2⟨Φ1|H|Φ2⟩+ c22⟨Φ2|H|ϕ2⟩, [as H is Hermitian] (2.136)

= c21H11 + 2c1c2H12 + c22H22, (2.137)

where Hij = ⟨Φi|H|Φj⟩. Now applying the variational principle (i.e. δF ′

δci
= 0) to Eq. (2.133) we

get

δF ′

δc1
= 2c1H11 + 2c2H12 − 2c1E = 0, (2.138)

⇒ c1H11 + c2H12 = c1E (2.139)

δF ′

δc2
= 2c1H12 + 2c2H22 − 2c2E (2.140)

⇒ c1H12 + c2H22 = c2E. (2.141)

Eq. (2.139) and Eq. (2.141) can conveniently be written in a matrix form

H11 H12

H21 H22

c1
c2

 = E

c1
c2

 , (2.142)

which is actually an eigenvalue equation. One needs to solve this matrix equation to find the

unknown coefficients c1 and c2.

The above exercise can be extended to any number of configurations and in general Eq. (2.142)

takes the form

HC = EC. (2.143)

56



The generalised CI wave function is expressed as

|Ψ⟩CI = c0|Φ0⟩+
∑
i,a

cai |Φa
i ⟩+

∑
i,j,a,b

cabij |Φab
ij ⟩+ · · · (2.144)

= c0|Φ0⟩+
∑
i,a

cai a
†i|Φ0⟩+

∑
i,j,a,b

cabij a
†b†ij|Φ0⟩+ · · · (2.145)

= (c0 +
∑
i,a

cai a
†i+

∑
i,j,a,b

cabij a
†b†ij)|Φ0⟩) (2.146)

= (c0 +C1 +C2 + · · · )|Φ0⟩, (2.147)

where |Φ0⟩ is the HF wave function, i, j · · · denote the occupied orbitals and a, b define the vir-

tual orbitals, and the exciation operators take the form C1 =
∑

i,a c
a
i a

†i, C2 =
∑

i,j,a,b c
ab
ij a

†b†ij,

and so on. The creation operators a†, b† correspond to the virtual orbitals a and b respectively

and the annihilation operators i and j correspond to occupied orbitals i and j.

The entire formulation of CI method can be carried out for the relativistic case in a similar

way but with the Dirac-Coulomb Hamiltonian and using four-component wave functions.

2.11 The (R)CC method

The CC method is the state-of-art theory for quantum chemistry calculations to include correl-

ation effects to all-orders like the CI method, but its truncated versions have several advantages

over the truncated CI methods. Basically approximated CC methods obey size-consistency and

size-extensivity properties, and they include more physical effects compared to approximated CI

methods at a given level of approximation. This is why the CC theory is considered to be the

gold standard of modern quantum chemistry calculations. The CC theory was first introduced in

the context of calculating ground state energies of atomic nuclei [12]. In this method, the wave

function of a many-body quantum system is described in terms of virtual excitation operators

corresponding to the excitation of clusters consisting of one or more than one particles. In the

molecular physics, after calculating the mean field wave function, one employs the CC theory to

incorporate the correlation effects to estimate the accurate wave function. According to the CC
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ansatz, the wave function of a many-body system is expressed as [13]

|Ψ⟩ = eT |Φ0⟩, (2.148)

where |Φ0⟩ is the mean field (HF/DF) wave function, T is called the ‘cluster-operator’ which is

responsible for the virtual excitations of electrons from occupied orbitals to virtual orbitals due

to Vres. To understand the concept of cluster excitations, we explain first classification of elec-

tron orbitals as the occupied and virtual orbitals through an example. Let us take the example

of neon (Ne) atom. The electronic configuration of Ne at its ground state is 1s22s2sp6, i.e., 1s,

2s, 2p orbitals are occupied with electrons and called occupied orbitals. Whereas, the orbitals

3s, 3p, 3d, 4s etc. are unoccupied and referred to as virtual orbitals. The virtual excitation

operators operate on the occupied states (e.g. 1s, 2s, 2p for Ne) to excite the occupied electrons

to virtual states (3s, 3p, 3d, 4s · · · etc. for Ne). Occupied states are often called holes and vir-

tuals states are called particles, as it is conveniently viewed as the excitations leave a hole in the

occupied states and creates new particles in the virtual states. Excitations from the occupied to

virtual orbitals may happen in multi fold ways: single excitation, double excitation,· · · N−tuple

excitation due to the residual Coulomb interactions in an N−electron molecular system.

We discuss about the single excitations at first. In a single excitation process, one electron

from an occupied orbital is excited to a virtual orbital. This type of excitations are also known

as one hole-one particle excitations, as during this process one hole and one particle is created

as a result of the excitation. Mathematically speaking, in a single excitation event, fermionic

annihilation operator acts on an occupied state to destroy one electron in that state and a

fermionic creation operator acts on a virtual state to create a particle in that state. The wave

function of a many-body system after a single excitation is given as [14]

|Φa
i ⟩ = a†aai|Φ0⟩ = a†i|Φ0⟩ (2.149)

where ai is the annihilation operator corresponding to an occupied orbital i and a†a is the cre-

ation operator corresponding to a virtual orbital a. For simplicity, we make use of the notation
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a instead of aa and i in the place of ai. In our notation, the occupied orbitals are denoted as i, j,

k · · · and virtual orbitals are described as a, b, c · · · . Eq. (2.149) tells that the excitation creates

a hole at the occupied orbital i and a particle at the virtual orbital a leading to a state |Φa
i ⟩.

Not all the single excitations are equally likely happen. To describe this let us choose lithium

(Li) atom at its ground state configuration 1s22s1. The excitation from 1s to 4s is less probable

than the excitation from 2s to 4s in Li atom. This is the reason why we should attach a weight

factor while estimating the probability amplitude of a single excitation. For a single excitation

from i to a, let us call the weight factor as tai . Taking into account all the possible single

excitations, the total amplitude reads

∑
i,a

tai |Φa
i ⟩. (2.150)

Similarly, the amplitude corresponding to all possible double excitations can be written as

∑
i>j,a>b

tabij |Φab
ij ⟩, (2.151)

where tabij corresponds to the excitation from occupied orbitals i and j to virtual orbitals a and b,

respectively. Amplitudes corresponding to triple, quadruple, · · · , N−tuple excitations can also

be expressed likewise.

Another possible scenario may appear if two single or double or · · · n−tuple excitations

occur simultaneously. In case of two single excitations occurring simultaneously, the amplitude

is given by

∑
i>j,a>b

tai t
b
j|Φab

ij ⟩ =
1

2!
T 2
1 |Φ0⟩, (2.152)

where the factor 1
2!

appears to avoid double counting. Taking into account these type of ex-

citations, one would get amplitude terms like 1
2!
T 2
2 ,

1
2!
T 2
3 ,· · · , 1

2!
T 2
N . Similarly, terms like 1

3!
T 3
1 ,

1
3!
T 3
2 ,

1
3!
T 3
3 · · · , 1

4!
T 4
1 ,

1
4!
T 4
2 ,

1
4!
T 4
3 · · · would also appear. There can also be composite singles
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and doubles excitations leading to terms like T1T2, T
2
1 T2, T1T

2
2 and so on. All other types of

possible composite excitations would also come into picture. Therefore, taking into account all

possible combinations of excitations, the total probability amplitude can be written in terms of

an exponential operator

|Ψ⟩ = |Φ0⟩+
∑
i,a

tai |Φa
i ⟩+

∑
i>j,a>b

tabij |Φab
ij ⟩+ · · ·+

∑
i>j,a>b

tai t
b
j|Φab

ij ⟩+∑
i>j,k>l,a>b,c>d

tabij t
cd
kl |Φabcd

ijkl ⟩+ · · · (2.153)

= |Φ0⟩+ T1|Φ0⟩+ T2|Φ0⟩+ · · ·+ 1

2!
T 2
1 |Φ0⟩+

1

2!
T 2
2 |Φ0⟩+ · · · (2.154)

|Ψ⟩ = eT |Φ0⟩, (2.155)

where the cluster operator is given by

T = T1 + T2 + T3 + · · ·+ TN . (2.156)

The CC method is equally applicable for relativistic calculations. In the RCC theory, the single

particle wave functions of |Φ0⟩ are four-component ones |Φ0⟩ is a four component one and the

Hamiltonian is the Dirac-Coulomb Hamiltonian.

Next, we would proceed to discuss about how to obtain the amplitudes of the T−operators.

For that matter, we need to introduce the CC amplitude equations. Before deriving the CC

amplitude equations, one needs to have a prerequisite knowledge about certain techniques to

tactfully handle the algebra of second quantization operators. For that, we discuss the Baker-

Campbell-Hausdorff (BCH) formula and the linked cluster theorem (LCT) in the two subsequent

subsections.

2.11.1 The BCH expansion formula

Assume two operators A and X. The BCH formula is a tool to expand the expression e−XAeX .

Let us choose a parameter λ and consider the λ dependent expression A′(λ) = e−λXAeλX , where
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A′(λ) is the transformed operator A. Considering the differential of A′ with respect to λ, we get

dA′(λ)

dλ
= −Xe−λXAeλX + e−λX dA

dλ
eλX︸ ︷︷ ︸

=0

+e−λXAXeλX (2.157)

= −e−λXXAeλX + e−λXAXeλX (2.158)

= e−λX [A,X]eλX . (2.159)

Similarly, the second-order differential can be written as

d2A′(λ)

dλ2
= −Xe−λX [A,X]eλX + e−λX [A,X]XeλX (2.160)

= e−λX [[A,X], X]eλX . (2.161)

In a similar way it can be shown that

d3A′(λ)

dλ3
= e−λX [[[A,X], X], X]e−λX , (2.162)

and so on.

Expanding A′(λ) in a Taylor series, it yields

A′(λ) = A′(0) + λ
dA′

dλ
|λ=0 +

1

2!
λ2
d2A′

dλ2
|λ=0 + · · · (2.163)

= A+ λ[A,X] +
1

2!
λ2[[A,X], X] + · · · (2.164)

A′(1) = A+ [A,X] +
1

2!
[[A,X], X] + · · · (2.165)

A′(1) = e−XAeX = A+ [A,X] +
1

2!
[[A,X], X] + · · · (2.166)

e−XAeX =
∞∑
n=0

1

n!
[A,X](n), (2.167)

whre [A,X](n) = [[A,X](n−1), X]. Eq. (2.167) is known as the BCH formula [15].
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2.11.2 The LCT

LCT is a useful recipe to deal with a string of creation and annihilation operators. At first, let

us consider a string of creation and annihilation operators ABC · · · . The normal product of this

string of second quantization operators is defined as {ABC · · · }, such that, all the hole creation

operators (i†, j†,· · · ) and particle annihilation operators (a, b, · · · ) are to the right of the other

operators. Hence, the expectation value of the string is zero:

⟨Φ0|{ABC · · · }|Φ0⟩ = 0. (2.168)

The expectation value in Eq. (2.168) vanishes because the hole creation operators are at the

right of the string and no further hole can be created at the Fermi vacuum state |Φ0⟩.

Now we define a operation called contraction. The contraction of a general creation operator

p† and an annihilation operator q is defined as

︷︸︸︷
p†q = p†q − {p†q}. (2.169)

Different cases arising from different choices of p and q are discussed below:

• Case 1: Both p and q represent particles. One such combination is ba†.

∴
︷︸︸︷
ba† = ba† − {ba†}. (2.170)

From the anticommutation relations of fermionic second quantization operators we know

[a†, b]+ = δab (2.171)

a†b+ ba† = δab (2.172)

ba† = −a†b+ δab (2.173)
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Plugging Eq. (2.173) in Eq. (2.170) we get

︷︸︸︷
ba† = −a†b+ δab − {ba†}

=−a†b

(2.174)

︷︸︸︷
ba† = −a†b+ δab + a†b = δab. (2.175)

• Case 2: Another combination where p and q both represent particles could be a†b.

︷︸︸︷
a†b = a†b− {a†b}. (2.176)

By definition {a†b} = a†b. Hence, Eq. (2.176) can be rewritten as

︷︸︸︷
a†b = 0. (2.177)

• Case 3: p and q both correspond to holes. One such combination is i†j.

︷︸︸︷
i†j = i†j − {i†j}. (2.178)

By definition {i†j} = −ji†, therefore, from Eq. (2.178) we get

︷︸︸︷
i†j = i†j + ji† = δij. (2.179)

• Case 4: p and q both are holes and another combination of this kind could be ij†. Therefore,

︷︸︸︷
ij† = ij† − {ij†}

=ij†

= ij† − ij† = 0. (2.180)

After explaining the process of contraction of string of creation and annihilation operators,

we explain the usefulness of the Wick’s theorem [16].
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Wick’s theorem

If ABC · · · is a string of creation and annihilation operators,

ABC · · · = {ABC · · · }+
∑

single contractions

︷︸︸︷
AB CDE · · ·+

∑
double contractions

︷︸︸︷
AB

︷︸︸︷
CD E · · ·+ · · · . (2.181)

Therefore, the expectation value of such a string of operators is given by

⟨Φ0|ABC · · · |Φ0⟩ =
∑

full contractions

⟨Φ0|

︷ ︸︸ ︷
A

︷ ︸︸ ︷
B
︷ ︸︸ ︷
C · · · |Φ0⟩. (2.182)

Now, we introduce the normal product form of an operator A as

AN = A− ⟨Φ0|A|Φ0⟩. (2.183)

Hence the Hamiltonian H can also be decomposed as

H = HN + ⟨Φ0|H|Φ0⟩, (2.184)

whereHN is the normal ordered Hamiltonian. HN can be written in terms of second quantization

operators [17]

HN =
∑
pq

fpq{p†q}+
1

2

∑
pqrs

⟨pq||rs⟩{p†q†sr}, (2.185)

where fpq is a matrix element of the Fock operator and given by

fpq = ⟨p|F |q⟩ (2.186)

and the Mulliken’s notation ⟨pq||rs⟩ = ⟨pq| 1
r12

|rs⟩−⟨pq| 1
r12

|sr⟩. Now, we define what is called an

object. An operator that contains same number of creation and annihilation operators. Suppose,
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A and B are two objects. Therefore, from the generalised Wick’s theorem

AB = {AB}+
︷︸︸︷
AB (2.187)

and BA = {BA}+
︷︸︸︷
BA . (2.188)

As AB and BA consist of same number of creation and annihilation operators, {AB} = {BA}.

Hence, the commutation of A and B is given by

[A,B] = AB −BA =
︷︸︸︷
AB −

︷︸︸︷
BA . (2.189)

The Schrödinger equation says

H|Ψ⟩ = E|Ψ⟩ (2.190)

⇒ HeT |Ψ0⟩ = EeT |Φ0⟩ (2.191)

⇒ e−THeT = E|Φ0⟩. (2.192)

From the BCH formula, we can write

e−THeT =
∞∑
n=0

1

n!
[H,T ](n). (2.193)

The first term of the right hand side of Eq. (2.193) is H, which is connected. While, the second

term is [H,T ] =
︷︸︸︷
HT −

︷︸︸︷
TH . Again,

HN = H − ⟨Φ0|H|Φ0⟩, (2.194)

HN = H −
︷︸︸︷
H . (2.195)

∴
︷︸︸︷
H = ⟨Φ0|H|Φ0⟩. (2.196)

Similarly, the second term in Eq. (2.196) can be written as

︷︸︸︷
TH = ⟨Φ0|TH|Φ0⟩ = 0. (2.197)
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The left hand side of Eq. (2.197) vanishes as particle annihilation operator(s) of T † acting on the

Fermi vacuum state gives a zero. Therefore, only one term survives in the expression of [H,T ],

i.e.

[H,T ] =
︷︸︸︷
HT . (2.198)

Similarly, the third term in Eq. (2.193) can be written as

[H,T ](2) = [[H,T ], T ] (2.199)

= [
︷︸︸︷
HT , T ] =

︷ ︸︸ ︷︷︸︸︷
HT T −

︷ ︸︸ ︷
T
︷︸︸︷
HT =

︷ ︸︸ ︷︷︸︸︷
HT T , (2.200)

where we used the fact that the contraction between T and T is zero, making the second term

in the right hand side of the equation vanish. Following the same analogy we can write

[H,T ](n) =

︷ ︸︸ ︷︷ ︸︸ ︷
HT · · ·T . (2.201)

Therefore, invoking the above relation in Eq. (2.193) we get

e−THeT = (HeT )c, (2.202)

where the subscript states that all the terms are connected. This form of Eq. (2.202) is referred

as the LCT.
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2.11.3 (R)CC energy and amplitude equations

The Schrödinger equation is given by

H|Ψ⟩ = E|Ψ⟩ (2.203)

(H − EHF/DF

=HN

)|Ψ⟩ = (E − EHF/DF )|Ψ⟩ where (EDF = ⟨Φ0|H|Φ0⟩) (2.204)

HNe
T |Φ0⟩ = ∆EeT |Φ0⟩ (2.205)

e−THNe
T |Φ0⟩ = ∆E|Φ0⟩ (2.206)

∆E = ⟨Φ0|e−THNe
T |Φ0⟩ (2.207)

∆E = ⟨Φ0|(HNe
T )c|Φ0⟩, (2.208)

where ∆E = E − EHF/DF is the measure of correlation energy. Eq. (2.208) is known as CC

energy equation. To obtain the CC amplitudes (tai , t
ab
ij , etc.), one solves the CC amplitude

equations

⟨Φab···
ij··· |(HNe

T )c|Φ0⟩ = 0. (2.209)

2.11.4 CC energy and amplitudes in singles and doubles approxim-

ation

In CC method, the cluster operator, T , is defined as the sum of single, double, · · · , N -tuple

excitations (see Eq. (2.156)). Also, due to the exponential form of the CC wave functions, the CC

amplitude equations would include non-linear terms. Therefore, with a limited computational

facility, it is very difficult to include all the non-linear terms as well as all possible virtual

excitations while solving the CC amplitude equations for heavy molecules. This is the reason

that one needs to consider only important excitations at a reasonable level of approximation and

only a certain non-linear terms depending on the problem to be solved. In most of the important

problems single and double excitations give rise to the largest contributions. Therefore, the CC

singles and doubles (CCSD) method have been extensively used in a large number of calculations.
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In the CCSD method, the CC wave function is approximated as

|ΨCCSD⟩ = e(T1+T2)|Φ0⟩ (2.210)

= (1 + T1 + T2 +
1

2!
T 2
1 +

1

2!
T 2
2 + T1T2 +

1

2!
T 2
1 T2 + · · · )|Φ0⟩, (2.211)

where we can see that non-linear terms like T 2
1 , T

2
2 , T1T2, T

2
1 T2, and so on. From Eq. (2.211) it is

visible that the CCSD wave function includes disconnected triple excitations in the form of T1T2

along with additional disconnected quadruple excitations in the form of T 2
1 T2 and many more

higher excitations in disconnected form. Therefore, it is evident that the CCSD formalism not

only takes into account full contributions from single and double excitations, but also includes

other higher order excitations in a disconnected form.

Now we shall derive the CCSD energy equations. In CCSD approximation, Eq. (2.208) takes

the form

∆ECCSD = ⟨Φ0|(HNe
(T1+T2))c|Φ0⟩. (2.212)

If we expand the right hand side of Eq. (2.212), the first term ⟨Φ0|HN |Φ0⟩ comes out to be zero.

This is obvious from the fact that the hole creation and particle annihilation operators at the

right of HN gives zero while operating on the Fermi vacuum state |Φ0⟩. Terms containing T 2
2 or

higher powers of T2 and T 3
1 and higher powers of T1 would not contribute in the estimation of

∆ECCSD, as there would remain unconnected second quantization operators causing the matrix

elements vanish. With all these considerations the CCSD energy equation can be written as

∆ECCSD = ⟨Φ0|(HNT1 +HNT2 +
1

2!
HNT

2
1 )|Φ0⟩. (2.213)

To get a more specific form of Eq. (2.213), we use the form of the normal-ordered Hamiltonian

HN from Eq. (2.186), which gives

∆E =
∑
ia

fiat
a
i +

1

4

∑
a>b,i>j

⟨ij||ab⟩tabij +
1

2

∑
a>b,i>j

⟨ij||ab⟩tai tbj (2.214)
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Now we would like to obtain the CCSD amplitude equations. The CCSD singles amplitude

equation contains the terms:

∑
c

fact
c
i −
∑
k

fkit
a
k +

∑
kc

⟨ka||ci⟩tck +
1

2

∑
kcd

⟨ka||cd⟩tcdki −
1

2

∑
kcl

⟨kl||ci⟩tcakl

+
∑
kcd

⟨ka||cd⟩tcktdi −
∑
kcl

⟨kl||ci⟩tcktal −
∑
klcd

⟨kl||cd⟩tcktdi tal +
∑
klcd

⟨kl||cd⟩tcktdali

−1

2

∑
klcd

⟨kl||cd⟩tcdkital −
1

2

∑
klcd

⟨kl||cd⟩tcakl tdi = 0. (2.215)

69



Similarly, the CCSD doubles amplitude equation contains the terms:

∑
c

⟨ab||cj⟩tci −
∑
c

⟨ab||ci⟩tcj −
∑
k

⟨kb||ij⟩tak +
∑
k

⟨ka||ij⟩tbk +
∑
c

fbct
ac
ij −

∑
c

fact
bc
ij

−
∑
k

fkjt
ab
ik +

∑
k

fkit
ab
jk +

1

2

∑
kl

⟨kl||ij⟩tabkl +
1

2

∑
cd

⟨ab||cd⟩tcdij +
∑
kc

⟨kb||cj⟩tacik

−
∑
kc

⟨kb||ci⟩tacjk −
∑
kc

⟨ka||cj⟩tbcik +
∑
kc

⟨ka||ci⟩tbcjk +
∑
kc

⟨ak||ci⟩tcbjk −
∑
kc

⟨bk||ci⟩tcajk

+
1

2

∑
kl

⟨kl||ij⟩taktbl −
1

2

∑
⟨kl||ij⟩tbktal +

1

2

∑
cd

⟨ab||cd⟩tci tdj −
1

2

∑
cd

⟨ab||cd⟩tcjtdi

−
∑
kc

⟨kb||ic⟩taktcj +
∑
kc

⟨kb||jc⟩taktci +
∑
kc

⟨ka||ic⟩tbktcj −
∑
kc

⟨ka||jc⟩tbktci +
1

2

∑
klcd

⟨kl||cd⟩tacik tdblj

−1

2

∑
klcd

⟨kl||cd⟩tacjktdbli − 1

2

∑
klcd

⟨kl||cd⟩tbciktdalj +
1

2

∑
klcd

⟨kl||cd⟩tbcjktdali +
1

2

∑
klcd

⟨kl||cd⟩tcdij tabkl

−1

2

∑
klcd

⟨kl||cd⟩tacij tbdkl +
1

2

∑
klcd

⟨kl||cd⟩tbcij tadkl −
1

2

∑
klcd

⟨kl||cd⟩tabik tcdjl +
1

2

∑
klcd

⟨kl||cd⟩tabjktcdil

−1

2

∑
klcd

⟨kl||cd⟩tacil tdbkj +
1

2

∑
klcd

⟨kl||cd⟩tbcil tdakj −
1

2

∑
klcd

⟨kl||cd⟩tacik tbdlj +
1

2

∑
klcd

⟨kl||cd⟩tbciktadlj

+
1

2

∑
klcd

⟨kl||cd⟩tackitbdlj − 1

2

∑
klcd

⟨kl||cd⟩tackjtbdli +
1

2

∑
klcd

⟨kl||cd⟩tcail tdbkj −
1

2

∑
klcd

⟨kl||cd⟩tcbil tdakj

−1

2

∑
klcd

⟨kl||cd⟩tackl tdbij +
1

2

∑
klcd

⟨kl||cd⟩tackl tdbji +
1

2

∑
kcd

⟨kb||cd⟩tcjtdi tak +
1

2

∑
kcd

⟨ka||cd⟩tci tdj tbk

−1

2

∑
kcd

⟨kb||cd⟩tci tdj tak −
1

2

∑
kcd

⟨ka||cd⟩tcjtdi tbk +
1

2

∑
kcl

⟨kl||cj⟩tci tbl tak −
1

2

∑
kcl

⟨kl||cj⟩tci tbktal

−1

2

∑
kcl

⟨kl||ci⟩tcjtbl tak +
1

2

∑
kcl

⟨kl||ci⟩tcjtbktal −
∑
kcl

⟨kl||ci⟩tcktablj +
∑
kcl

⟨kl||cj⟩tcktabli

+
∑
kcd

⟨ka||cd⟩tcktdbij −
∑
kcd

⟨kb||cd⟩tcktdaij +
∑
kcd

⟨ak||dc⟩tdi tbcjk −
∑
kcd

⟨ak||dc⟩tdj tbcik

−
∑
kcd

⟨bk||dc⟩tdi tacjk +
∑
kcd

⟨bk||dc⟩tdj tacik +
∑
kcl

⟨kl||ic⟩tal tbcjk −
∑
kcl

⟨kl||jc⟩tal tbcik

−
∑
kcl

⟨kl||ic⟩tbl tacjk +
∑
kcl

⟨kl||jc⟩tbl tacik +
1

2

∑
kcl

⟨kl||cj⟩tci tabkl −
1

2

∑
kcl

⟨kl||ci⟩tcjtabkl

−1

2

∑
kcd

⟨kb||cd⟩taktcdij +
1

2

∑
kcd

⟨ka||cd⟩tbktcdij +
∑
kcd

⟨ak||dc⟩tci tdbjk −
∑
kcd

⟨ak||dc⟩tcjtdbik

+
∑
kcl

⟨kl||ic⟩taktcblj −
∑
kcl

⟨kl||ic⟩tbktcalj −
∑
kcb

⟨ak||bc⟩tcjtbdik +
∑
kcb

⟨ak||bc⟩tci tbdjk

−
∑
kcl

⟨kl||cj⟩tcl tabki +
∑
kcl

⟨kl||cj⟩tcl tbaki −
∑
kcd

⟨ka||cd⟩tdktcbij +
∑
kcd

⟨ka||cd⟩tdktcbji

−
∑
kcl

⟨kl||ic⟩taktcbjl +
∑
kcl

⟨kl||ic⟩tbktcajl +
∑
kcld

⟨kl||cd⟩tci taktdj tbl −
∑
kcld

⟨kl||cd⟩tcktdi tablj

+
∑
kcld

⟨kl||cd⟩tcktdj tabli −
∑
kcld

⟨kl||cd⟩tcktal tdbij +
∑
kcld

⟨kl||cd⟩tcktbl tdaij +
1

2

∑
kcld

⟨kl||cd⟩tci tdj tabkl
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−1

2

∑
kcld

⟨kl||cd⟩tcjtdi tabkl +
1

2

∑
kcld

⟨kl||cd⟩taktbl tcdij −
1

2

∑
kcld

⟨kl||cd⟩tbktal tcdij −
∑
kcld

⟨kl||cd⟩tci taktdbij

+
∑
kcld

⟨kl||cd⟩tcjtaktdbli +
∑
kcld

⟨kl||cd⟩tci tdktablj −
∑
kcld

⟨kl||cd⟩tci tdktbalj +
∑
kcld

⟨kl||cd⟩taktdi tcblj

−
∑
kcld

⟨kl||cd⟩tdj taktcbli +
∑
kcld

⟨kl||cd⟩tci taktdbjl −
∑
kcld

⟨kl||cd⟩tci tbktdalj = 0. (2.216)

For relatively heavier systems, sometimes it becomes very challenging to cope with the non-linear

terms even at the CCSD level, for which often one settles with considering only the linear terms

of the CCSD wave function, in which we approximate as eT ≈ 1 + T1 + T2.

2.11.5 CC expectation value expression

Following the CC wave function |Ψ⟩ = eT |Φ0⟩, the expectation value of any physical operator Ô

is given by

⟨Ô⟩ =
⟨Ψ|Ô|Ψ⟩
⟨Ψ|Ψ⟩

(2.217)

=
⟨Φ0|eT

†
ÔeT |Φ0⟩

⟨Φ0|eT †eT |Φ0⟩
(2.218)

=
⟨Φ0|[1 + T † + 1

2!
(T †)2 + 1

3!
(T †)3 + · · · ]Ô[1 + T + 1

2!
T 2 + 1

3!
T 3 + · · · ]|Φ0⟩

⟨Φ0|[1 + T † + 1
2!
(T †)2 + 1

3!
(T †)3 + · · · ][1 + T + 1

2!
T 2 + 1

3!
T 3 + · · · ]|Φ0⟩

,(2.219)

where the expansions of eT
†
and eT terminate individually if the total excitation level of the

product of excitation operators in any term exceeds the total number of electrons in the system.

Because of the large number of excitation operators involved in the expectation value expression,

the process of evaluating the numerator and denominator followed by the division of numerator

by denominator would require huge computational cost. However, Cizek [18] showed that the

numerator can actually be factorized such that the denominator becomes one of the factors.

Under this prescription, the numerator takes the following form

⟨Φ0|eT
†
ÔNe

T |Φ0⟩ = ⟨Φ0|eT
†eT |Φ0⟩⟨Φ0|eT

†
ÔNe

TΦ0⟩c, (2.220)
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where the subscript c denotes that all the terms are connected. Now, invoking Eq. (2.220) in

(2.218) we get the final form of the CC expectation value

⟨Ô⟩ = ⟨ÔN⟩+ ⟨Φ0|Ô|Φ0⟩ (2.221)

= ⟨Φ0|eT
†
ÔNe

TΦ0⟩c + ⟨Φ0|Ô|Φ0⟩. (2.222)

This way of expressing the expectation value significantly simplifies the calculation. However, one

still requires to truncate the two infinite series in the numerator. Under CCSD approximation,

the expectation value of an operator Ô takes the following form

⟨Ô⟩CCSD =
⟨Φ0|e(T1+T2)†Ôe(T1+T2)|Φ0⟩
⟨Φ0|e(T1+T2)†e(T1+T2)|Φ0⟩

(2.223)

In our calculations, we choose Ô = HeEDM for calculating Eeff , Ô = D to determine PDM,

Ô = HS−PS to evaluate Ws and so on.

Sometimes, for saving computational cost, eT is approximated as 1 + T at the time of cal-

culating expectation value of some property. This approach of obtaining expectation value of a

property is known as linearized expectation value coupled-cluster (LECC) method.

2.11.6 Truncated CC vs CI methods

Both CC and CI method take into account electron correlation effects and untruncated CC is

equivalent to full CI. However, these two techniques have certain subtle differences when they

are truncated at a certain level, which make each of them distinct than the other. As mentioned

earlier, the CCSD wave function contains not only upto double excitation operators but also

higher disconnected higher excitation terms. Similarly the coupled-cluster singles, doubles, and

triples (CCSDT) wave function is expressed as [19, 20]

|ΨCCSDT ⟩ = eT1+T2+T3|Φ0⟩ = |ΨCCSD⟩+ (T3 + T1T3 + T2T3 + T 2
3 /2 + · · · )|Φ0⟩. (2.224)
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It is evident from Eq. (2.224) that the CCSDT wave function also includes higher order excitation

terms. If we continue upto n−tuple excitations, we would get the full CI (FCI) wave function

|ΨFCI⟩ = (1 +C)|Φ0⟩ (2.225)

= (1 +C1 +C2 +C3 + · · · )|Φ0⟩. (2.226)

If we compare between FCI and untruncated CC wave function, we would get [21]

C1 = T1 (2.227)

C2 =
1

2
T 2
1 + T2 (2.228)

C3 =
1

3!
T 3
1 + T1T2 + T3 (2.229)

C4 =
1

4!
T 4
1 +

1

2
T 2
1 T2 +

1

2
T 2
2 + T1T3 + T4 (2.230)

...

From the above set of equations we see that in CI singles and doubles (CISD) method, terms that

correspond to more than double excitations do not appear, unlike in the case of CCSD. Similar

trend is found for CISDT (CISD triples), CISDTQ (CISD triples, quadruples) and so on. Hence,

at the same level of truncation, the truncated CC method would include more excitations than

the truncated CI method. We know that the more possible excitations are taken into account,

the more accuracy in result is obtained. Thus, truncated CC method would yield more accurate

result over truncated CI method if the level of truncation is the same.

Size-extensivity: Another aspect that is crucial in understanding the nature of a many-

body method is the size-extensivity property. A property of a uniformly distributed system

is said to be size extensive if its value is proportional to the size of the system. A quantum

mechanical computation method is called size extensive if the energy of a many-body system

computed via that method scales properly with the size of the system. For example, we consider

He gas with N non interacting He atoms. For size-extensivity, the energy of N He atoms together

should be equal to the energy of a single He atom multiplied (or scaled) by a factor of N . But
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for a truncated CI method, namely CI doubles (CID), the correlation energy can be expressed

as [17]

∆E = E − E0 ∝
√
N∆ϵ, (2.231)

where ∆ϵ is the correlation energy of a single He atom computed through CID method. From

Eq. (2.231) we see that the CID method is not size extensive as the total correlation energy ∆E

scales with
√
N , instead of N . Similar trend can be seen for all other truncated CI methods.

Therefore, truncated CI is not size extensive. However, in CC doubles (CCD) method, the total

energy of an N non-interacting He atom system is given by [17]

E = Nϵ, (2.232)

where ϵ is the CCD energy of a single He atom. From Eq. (2.232) it is visible that the total energy

of the N particle system scales with N , proving the size-extensivity of truncated CC method.

Hence, truncated CC theory holds the upper hand over truncated CI in terms of size-extensivity.

Size-consistency: Another broad distinction between the truncated CC and truncated CI

methods arises from the qualitative point of view of size-consistency. Truncated CC is size-

consistent, whereas truncated CI is not. To explain this, at first, we introduce size-consistency.

Consider two non-interacting atoms A and B far apart from each other (at dissociation limit)

composing a system A· · ·B. At the dissociation limit, the Hamiltonain of the composite system

is equal to the sum of the Hamiltonians of the sub-systems, i.e.

H(A · · ·B) → HA +HB (2.233)

and [HA, HB] = 0. (2.234)

A many-body method is said to be size-consistent if the total wave function of the composite

system A· · ·B is separable and the energy of the composite system A· · ·B calculated through
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that method is equal to the sum of the energies of A and B calculated separately:

|Ψ(A · · ·B)⟩ = |Ψ(A)⟩ ⊗ |Ψ(B)⟩ (2.235)

and E(A · · ·B) = E(A) + E(B). (2.236)

Both Eq. (2.236) and Eq. (2.235) are necessary conditions for size-consistency. Assume that the

reference wave function of the composite system is separable, i.e.

|Φ0(A · · ·B)⟩ = |Φ0(A)⟩ ⊗ |Φ0(B)⟩ (2.237)

Consider the CCSD method as an example of a truncated CC method. In the CCSD method

|Ψ(A · · ·B)⟩ = eT |Φ0(A · · ·B)⟩ (2.238)

= eT
A+TB |Φ0(A · · ·B)⟩ (2.239)

= eT
A
1 +TA

2 +TB
1 +TB

2 |Φ0(A · · ·B)⟩ (2.240)

= eT
A
1 +TA

2 +TB
1 +TB

2 |Φ0(A)⟩ ⊗ |Φ0(B)⟩ (using Eq. (2.237)) (2.241)

= eT
A
1 +TA

2 |Φ0(A)⟩ ⊗ eT
B
1 +TB

2 |Φ0(B)⟩ (2.242)

= |Ψ(A)⟩ ⊗ |Ψ(B)⟩ (2.243)

Therefore, one of the two conditions of size-consistency is met by the CCSD method. Next, we

inspect if CCSD method holds the second condition also. The separability of the wave functions

would lead to the additive nature of the energies. Consider the equation

H(A · · ·B)|Ψ(A · · ·B)⟩ = (HA +HB)|Ψ(A · · ·B)⟩ (2.244)

⇒ E(A · · ·B)|Ψ(A · · ·B)⟩ = (HA +HB)|Ψ(A)⟩|Ψ(B)⟩ (2.245)

= (HA|Ψ(A)⟩)|Ψ(B)⟩+ (HB|Ψ(B)⟩)|Ψ(A)⟩ (2.246)

= (E(A) + E(B))|Ψ(A)⟩|Ψ(B)⟩ (2.247)

= (E(A) + E(B))|Ψ(A · · ·B)⟩ (2.248)

E(A · · ·B) = (E(A) + E(B)). (2.249)
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We see that CCSD also fulfills the energy additivity property. Hence, the truncated CC is size-

consistent. Now we turn our attention to CISD as one of the truncated CI methods. CISD wave

function of the system A· · ·B is given by

|Ψ(A · · ·B)⟩ = (1 +C1 +C2)|Φ0(A · · ·B)⟩ (2.250)

= (1 +CA
1 +CA

2 +CB
1 +CB

2 )(|Φ0(A)⟩ ⊗ |Φ0(B)⟩). (2.251)

Now,

|Ψ(A)⟩ ⊗ |Ψ(B)⟩ = (1 +CA
1 +CA

2 )|Φ0(A)⊗⟩(1 +CB
1 +CB

2 )|Φ0(B)⟩ (2.252)

= (1 +CA
1 +CA

2 +CB
1 +CB

2 +CA
1 C

B
1

+CA
1 C

B
2 +CA

2 C
B
1 +CA

2 C
B
2 )(|Φ0(A)⟩ ⊗ |Φ0(B)⟩). (2.253)

From Eq. (2.251) and Eq. (2.253) we can see that CISD wave function does not meet the separ-

ability of wave function criterion. Therefore, unlike the truncated CC method, truncated CI

method is not size-consistent.

Variational property: One common criticism received by the truncated CC method is that

it is not variationally consistent. This is due to the fact that unlike a variational theory, the trun-

cated CC energy is not calculated as an upper bound to the exact energy. However, we can view

this from a rational point of view. We know that FCI method is variational and energy obtained

from FCI calculation is exactly equal to that from full CC calculation. Moreover, truncated CC

methods like CCSD, CCSDT etc. are considered to be considerably good approximations to full

CC. Therefore, we can expect that the energy obtained from truncated CC methods would be

close to the energy calculated using full CC method. Therefore, truncated CC methods, though

being non-variational, would provide reliable estimates of energies.

2.11.7 Comparison between the CC and MBPT methods

We know that a full CC calculation is equivalent to an all-order MBPT calculation [22]. We try

to examine the qualitative difference between the truncated CC and truncated MBPT methods.
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In the MBPT method, the residual Coulomb interaction is considered as a perturbation:

H ′ =
1

2

∑
ij

1

rij
−
∑
i

(VHF )i = Vres.

So that we can express the molecular wave function as

|ΨMBPT ⟩ = |Φ(0)
α ⟩+ |Φ(1)

α ⟩+ |Φ(2)
α ⟩+ |Φ(3)

α ⟩+ · · · , (2.254)

where |Φ(i)
α ⟩ is the ith order perturbative correction to the wave function.

The first-order correction to the wave function in the MBPT method is given by

|Φ(1)
α ⟩ =

∑
n̸=α

|Φn⟩⟨Φn|H ′|Φ(0)
α ⟩

E
(0)
α − En

. (2.255)

If |Φn⟩ = |Φa
i ⟩ and |Φ(0)

α ⟩ = |Φ0⟩, the matrix element in the numerator would represent a T1

excitation, which is specifically the part of T1 that is contained in C
(1)
S .

Similarly, the second-order correction to the wave function in MBPT is given as

|Φ(2)
α ⟩ =

∑
m,n ̸=α

|Φn⟩⟨Φn|H ′|Φm⟩⟨Φm|H ′|Φ(0)
α ⟩

(E
(0)
α − En)(E

(0)
α − Em)

. (2.256)

When |Φn⟩ = |Φab
ij ⟩, the matrix element in the numerator of Eq. (2.255) becomes

⟨Φab
ij |H ′|Φ(0)

α ⟩ = ⟨ab| 1
r12

|ij⟩ − ⟨ab| 1
r12

|ji⟩. (2.257)

This matrix element represents a T2 excitation, more specifically, the part of T2 excitation that

is contained in C
(2)
D . Therefore, we can rewrite these corrections to the wave functions in an
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order as a sum over single, double, triple, · · · excitations. i.e.

|Φ(1)
α ⟩ =

∑
S

(C
(1)
S + C

(1)
D + · · · )|Φ(0)

α ⟩ (2.258)

|Φ(2)
α ⟩ =

∑
S

(C
(2)
S + C

(2)
D + · · · )|Φ(0)

α ⟩, (2.259)

...

From the above equations it is clear that a truncated CC method like CCSD contains single

and double excitations to all-orders of perturbation. If, in Eq. (2.256), |Φn⟩ is a doubly ex-

cited state and |Φm⟩ is a singly excited state, both the matrix elements in the numerator would

represent T1 excitation each, and the entire term would represent that part of T 2
1 which is con-

tained in C
(2)
D . Also, when |Φn⟩ is a singly excited state and |Φm⟩ is a doubly excited one,

the numerator would represent a T1T2 like excitation. This procedure of mapping between the

MBPT and CC methods can be repeated for other excitations too. This approach of looking

at the CC method helps us intuitively identify the important excitations which will give more

significant contributions to the energy calculations. For example, both T1 and T2 appear in

the first-order perturbation, while T 2
1 appears in the second-order and so on. In perturbation

theory, the second-order correction is usually supposed to be smaller than the first-order one.

Therefore, in view of the above rationale, T1 and T2 are anticipated to contribute more than

T1T2 excitations in the evaluation of CC energy.
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Chapter 3

PDMs and Static Electric Dipole

Polarizabilities of Alkali-Dimers

3.1 Introduction

For inferring de from molecular EDM experiments, reliable calculations of Eeff are very import-

ant. General perception is that while intending to establish existence of de, accuracy of Eeff
is not essential. However, this understanding is not correct because of two reasons. First, at

times mean-field calculation of a property can have opposite sign than the final result (observed

experimentally or obtained from a rigorous calculation). In such a scenario, the result may

misguide the experimentalists to carry out measurements. Second, even though a finite value

of de cannot be inferred sooner from the combined experimental and theoretical results, but

more precise value of measurement of Larmour precession and accurate calculation of Eeff can

put stringent limit on de that would help us in ruling out CP violating phenemona of certain

energy scale. From this point of view, it is necessary to verify reliability of the many-body

method employed to determine Eeff in the molecular systems. We had also demonstrated in

Chapter I, why it is imperative to apply a relativistic version method to calculate Eeff . In this

thesis, we have employed the RCC theory to evaluate Eeff of different molecular systems. Due

to computational complexity in molecular systems, it is not possible to apply full RCC method.

Also, a reasonable accuracy of our calculations of Eeff would serve our purpose. The traditionally
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considered RCCSD method can be sufficient enough to incorporate electron correlation effects in

the evaluation of Eeff . The RCCSD results can be further improved by adding correlation effects

through partial triple excitations (RCCSD(T) method) perturbatively. In order to demonstrate

reliability of the RCCSD and RCCSD(T) methods for molecular property calculations, we de-

termine PDMs and electric dipole polarizabilities of molecules using the above methods and

compare them with the literature values. Since earlier calculations for these properties were

performed for the alkali-dimers, we first study PDMs and electric dipole polarizabilities of these

molecules. Apart from the necessity of employing a relativistic method to determine Eeff of a

molecule, it is also essential to use a relativistic theory to improve the accuracy of molecular

calculations in heavier molecules where relativistic effects are prominent. To demonstrate the

role of relativistic effects in improving the results, we also present non-relativistic calculations of

PDMs and electric dipole polarizabilities using CCSD and CCSD(T) methods. The other reason

for investigating these quantities in the context of molecular EDM studies can be understood

from the following discussions.

The expression of Eeff as mentioned in Eq. (1.31) can be expressed as

Eeff = − 1

de

∑
i

⟨0|deβΣiE
int|0⟩ = − 1

de

∑
i

⟨0|D′
iE

int
i |0⟩ (3.1)

= − 1

de

∑
i

∑
n̸=0

⟨0|D′
i|n⟩⟨n|Eint

i |0⟩, (3.2)

where D′ = deβΣ.

On the other hand, the static dipole polarizability expression of a molecule is given by

α =
∑
n̸=0

⟨0|D|n⟩⟨n|D|0⟩
E

(0)
n − E

(0)
0

, (3.3)

where the dipole operator D = −
∑

i ri+
∑

A ZARA with ZA is the atomic number corresponding

to the Ath nuclei. We can see from Eq. (3.2) and Eq. (3.3) that for both the cases we have to

calculate the matrix element ⟨0|D|n⟩. Again, both D and Eint
i are one-body operators with
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odd-parity. Therefore, obtaining accurate result for α using RCC method would in turn assert

on the reliability of the approach for calculating Eeff . Unlike Eeff , α is a measurable quantity and

RCC calculations of α can be verified with the existing experimental results. PDM is another

measurable quantity that plays a role in determining the sensitivity of EDM experiments. A

larger PDM of a molecule means that a small amount of polarizing electric field (Epol =
Br

2µ
, Br =

rotational constant) would be sufficient to polarize the molecules, which would help in reducing

the systematic uncertainty associated with an EDM experiment. Keeping this rationale in the

back of mind, we decided to calculate α and µ for a set of molecules having a range of potential

applications in ultracold physics. As we know that the molecules adapted for EDM experiments

are also needed to be cooled down to low temperatures, it is necessary to conduct the test of

RCC method with cold or ultracold molecules.

We would like to give a brief overview on other applications of PDMs and static dipole po-

larizabilities of ultracold alkali dimers apart from using them to test the potential of the RCC

method. For the last few decades, enormous interest has grown in the field of ultracold mo-

lecules for their wide array of applications [1, 2] which include exciting possibilities to probe

fundamental constants [3]. A significant molecular property that plays a crucial role in most of

these applications as well as in molecular EDM experiments is the PDM (µ) of a molecule. A

large value of molecular PDM would enable one to polarize the molecules with a small amount

of external electric field, which would help to reduce systematic effects like motional magnetic

field B⃗mot =
E⃗ext×v⃗

c2
with v⃗ being the molecular beam velocity. On the other hand, molecules

which possess large PDMs find their application in various fields of ultracold physics. Molecules

with fairly large PDMs give rise to long-range and anisotropic dipole-dipole interactions that can

be controlled by external electric fields [4]. To realise the dipole-dipole interactions, molecules

with large values PDM enable us to align them with comparatively low external electric field [5].

Moreover, a knowledge of PDM helps understand the dipole interaction strengths for a specified

density of trapped molecules [6]. Electric dipole-dipole interactions are extensively utilised in the

emerging field of quantum phase transitions [7]. One of the salient features of these interactions

is that they could couple qubits described as molecular electric dipoles aligned along or opposite

to an external electric field, thus indicating possibilities for quantum computation with trapped
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polar molecules [8, 9, 10]. The PDM plays an important role in chaining of polar molecules [11],

during the process of molecular chaining in a one-dimensional optical lattice, the interaction

strengths for this chaining process are directly proportional to the square of the molecular PDM.

As already stated, evaluation formula of α has resemblance with the expression of Eeff . There-

fore, accurate estimation of α using a many-body method ((R)CC in our case) would be a in-

triguing test of the quality of its wave functions before conducting theoretical calculations of Eeff
for prospective EDM candidate molecules. Besides, the information of static dipole polarizabil-

ity is crucial in the context of laser cooling and molecular trapping too. The restoring force of a

trapping laser beam inside an optical tweezer is proportional to the static dipole polarizability

of the molecule [12]. Therefore, larger the value of static dipole polarizability, more suitable

the molecule for laser cooling and trapping. For a molecule trapped inside a far-off resonance

optical trap, the static dipole polarizability helps predict the depth of the trap depending on

the intensity of the laser fields [6]. Knowledge of polarizability also finds importance in the field

of femtosecond spectroscopy, especially in laser-induced impulsive alignment of molecules [13].

So, in view of the above discussions, knowledge of both PDMs and static dipole polarizabilities

are crucial for studying ultracold molecules trapped in laser fields [14]. For example, authors

in Ref. [15] studied three-body interactions in polar molecules and took LiCs molecule for in-

vestigation because of its large PDM. Actually, prospects of orienting and aligning alkali-dimers

can be viewed in terms of their PDMs and polarizabilities, respectively [16]. The significance

of PDMs and polarizabilities, especially in the case of alkali-dimers, are further elaborated in

Ref. [17].

There are only a handful number of experimental values for PDMs of the alkali-dimers that are

available in literature [18, 19, 20, 21, 22, 23, 24, 25]. Experimental results for dipole polarizabilit-

ies of alkali-dimers are even more rare [20, 18]. In contrast, there are numerous theoretical works,

applying different variants of many-body theory, available in literature on evaluating PDMs of

alkali-dimers, from as early as 1970s (e.g., see Ref. [26]) until very recently [27, 16, 28, 29, 30].

However, static dipole polarizabilities of alkali-dimers have not been explored as much in the-

oretical sector, but a few studies have been conducted on this property [31, 16, 29]. Most of
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these calculations were carried out by employing non-relativistic framework, with some works

included lower-order relativistic corrections [16, 27, 29, 30, 32]. Molecular orbitals get deformed

more prominently due to the relativistic effects in heavier alkali-dimers. Therefore, we anticipate

significant departures from the non-relativistic to relativistic values for the PDMs and static di-

pole polarizabilities of heavier systems. Previously, static dipole polarizabilities of homonuclear

alkali-dimers have been investigated by Lim et al [33], and it was found that relativistic effects

become significant for the heavier dimers. They made use of the scalar 2-component Douglas-

Kroll (DK) Hamiltonian to take into account the relativistic effects.

We scrutinize the roles of relativistic effects in the values of PDMs and dipole polarizabilities

of heteronuclear alkali-dimers, comprised of Li, Na, K, Rb and Cs. In view of the aforementioned

purpose, in this chapter (based on Ref. [34]), we perform calculations of PDM and dipole polar-

izabilities by employing a non-relativistic Hamiltonian as well as 4-component Dirac-Coulomb

Hamiltonian in the RCC theory. We have undertaken the finite field (FF) approach to evalu-

ate the first-order and the second-order perturbed energies of the ground states of the above

mentioned heteronuclear alkali-dimers (LiNa, LiK, LiRb, LiCs, NaK, NaRb, NaCs, KRb, KCs,

RbCs), by varying an weak external electric field. From these energies, values of the PDMs and

dipole polarizabilities are inferred. Mean field level results are first calculated using HF and DF

methods. Once the mean field results are obtained, correlation effects are then systematically

added by employing the (R)CCSD method, followed by the (R)CCSD(T) method. We compare

our results with the previously reported non-relativistic calculations as well as those obtained

using a 2-component scalar relativistic DK Hamiltonian. We also compare our results of PDM

and polarizabilities with the existing experimental results, wherever available. In this process,

we investigate the reason behind the discrepancy observed earlier between the theoretical and

experimental results in the PDM of LiNa, and attempt to explain the disparity. To validate the

accuracy our polarizability calculations, we verify the variation of the components of polarizab-

ility with the volume of the molecule using our relativistic results. We perform detailed error

analyses taking into account all possible sources of errors. Finally, we throw some light into

the effect of relativity in determining the isotropic C6 coefficients of the intermolecular van der

Waals potential, where we show to which extent the values of C6 coefficients change if relativistic
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Figure 3.1: Demonstration of extrapolation procedure of the PDM values (in a.u.) using complete
basis set for LiNa, calculated using the CCSD(T) and the RCCSD(T) methods. The former is
shown as a dashed red line with the results from the double, triple and the quadruple zeta basis
functions marked by circles, while the latter is a solid blue line, with the results from the double,
triple and the quadruple zeta basis functions marked by triangles. The green dotted line is the
experimental value. N in the x axis of the plot defines the quality of the N -zeta basis; N = 2
for double-zeta basis, N = 3 for triple-zeta basis, N = 4 for quadruple-zeta basis, and so on.

PDMs are used instead of non-relativistic values.

This chapter is structured as follows: Sec. 3.2 describes the theory of PDMs and static dipole

polarizabilities in a FF approach, and after giving a brief introduction of (R)CC method (already

discussed in Chapter 2), we present the details of the tools of our calculation. In Sec. 3.3 we

present our results and thoroughly analyze them. We then examine the trends observed for

the considered properties, with emphasis on relativistic and correlation effects. We also made a

comparative study of our obtained values with the results available in the literature. Thereafter,

we briefly demonstrate the variation of the components of polarizability with volume in both

relativistic and non-relativistic frameworks. Next we present a detailed error analysis covering

almost all possible sources and quote the estimated uncertainties. In the last sub-section, we

report the values of C6 coefficients of the alkali-dimers due to the inclusion of relativistic effects.

At the end, we conclude our work in Sec. 4.3. We use a.u. as our default unit system throughout

this exercise, unless mentioned otherwise. We made use of the conversion factors of 1 Debye

= 0.3934 a.u. and 1 Å3 = 6.7483 a.u.3 while comparing our results with other literature works

86



which do not use a.u..

3.2 Theory and methodology

We employ the FF approach to calculate µ and α of heteronuclear alakli-dimers, in which the

properties are calculated using energy derivative technique. We elaborate the basic idea of FF

method here. In the FF method, an nth order molecular property can be expressed as a nth

order derivative of energy with respect to a perturbation parameter, which is a weak external

electric field for our case. In the presence of a weak, static, and homogeneous electric field of

strength E , the ground state energy (E0) of a molecule can be expressed as

E0 = E
(0)
0 + EE(1)

0 + E2E
(2)
0 + · · · , (3.4)

where E
(0)
0 , E

(1)
0 , E

(2)
0 etc. are the zeroth-order, first-order, second-order etc. contributions to

the total energy, respectively. In traditional form, it can be written as

E0 = E
(0)
0 − µiEi −

1

2
αijEiEj + · · · , (3.5)

where the indices i and j run from 1 to 3, while µi and αij are the components of the vector

PDM (µ) and rank-two dipole polarizability tensor (α), respectively. Now, invoking the Taylor

series expansion, it yields

E0 = E
(0)
0 +

∂E0

∂Ei

∣∣∣∣∣
Ei=0

Ei +
1

2!

∂2E0

∂Ei∂Ej

∣∣∣∣∣ Ei=0,
Ej=0

EiEj + · · · . (3.6)

Comparing Eqs. (3.5) and (3.6), we get

µi = −∂E0

∂Ei

∣∣∣∣∣
Ei=0

(3.7)
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and

αij = − ∂2E0

∂Ei∂Ej

∣∣∣∣∣ Ei=0,
Ej=0

. (3.8)

Using these components, the average dipole polarizability (ᾱ) of a polar molecule is defined as

ᾱ =
1

3
(αxx + αyy + αzz) =

1

3
(αzz + 2αxx). (3.9)

Here, the quantization axis is assumed along the bond-length and is in the z- direction. Therefore,

it follows that αxx = αyy, leading to the last part of the above equation. It is common to denote

αzz as α∥, and αxx and αyy as α⊥, for such diatomic systems. Hence,

ᾱ =
1

3
(α∥ + 2α⊥). (3.10)

We will use this notation hereafter. Further, one defines polarizability anisotropy as the

difference between the parallel and perpendicular components of the polarizability tensor, and

is given by

∆α = α∥ − α⊥.

We chose E = 0.0001 a.u., for all our FF calculations. At first, we calculated the ground state

energies of the molecules using both non-relativistic and relativistic theory. After calculating

the mean field energies using HF (DF) method, we took into account the correlation effects

by employing the (R)CCSD and (R)CCSD(T) methods. We evaluated the energy derivatives

numerically using a three-point central difference formula for our FF calculations of PDMs and

static dipole polarizabilities.

In our work, we used a Gaussian charge distribution for the nucleus [35]. We chose the same

bond-lengths as in Refs. [16, 29] for the alkali-dimers, and they are 5.4518 a.u. for LiNa, 6.268

a.u. for LiK, 6.5 a.u. for LiRb, 6.93 a.u. for LiCs, 6.61 a.u. for NaK, 6.88 a.u. for NaRb,

7.27 a.u. for NaCs, 7.688 a.u. for KRb, 8.095 a.u. for KCs, and 8.366 a.u. for RbCs. We used

Dyall’s triple zeta (TZ) basis sets [36] for heavier nuclei (K, Rb, and Cs) and for lighter elements
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(Li and Na), we opted for augmented correlation-consistent polarized core valance triple zeta

(aug-cc-pCVTZ) basis functions [37]. We used Dirac16 program [38] to carry out all the property

calculations related to this work.

For heavier molecules, to reduce our computational cost, we imposed a cut-off to electron

excitations to high-lying virtuals as their contributions are almost negligible. For NaCs, a cut-off

of 2000 a.u. was imposed, while for the KRb, KCs and RbCs molecules, we cut-off all the orbitals

possessing energies above 1000 a.u..

3.3 Results and discussion

In this section, we discuss our results for the PDMs and then polarizabilities, followed by a

detailed error analysis. We discuss in detail the trends observed for the PDMs, based on Table

3.1 and Table 3.2. We then proceed to compare our results with previous works. Fig. 3.1

presents our accurately calculated relativistic µ values for LiNa, obtained at complete basis set

(CBS) limit, and its excellent agreement with experiment. In Tables 3.3, 3.4 and 3.5, we present

our results for α∥ and α⊥. This is followed by discussions on the average polarizabilities and

polarizability anisotropies, with the corresponding data presented in Table 3.6 and Table 3.7,

respectively. Table 3.9 and Table 3.10 illustrate the importance of relativistic calculations for

the isotropic Van der Waals C6 coefficients in molecule-molecule interactions, while Fig. 3.7

shows the linear variation of the components of polarizabilities with volume. We then present

detailed error estimates, one of which is shown explicitly in Table 3.8. In order to determine

the reliability of our numerical technique, we systematically tested our FF results by comparing

them with results from a five-point central difference scheme.

In the paragraph below, we discuss our calculated results on PDMs and polarizabilities of

the considered molecules along with their trends that we observe from our calculations. We then

proceed to compare our values with the available ones from literature, for each property. While

reporting the trends, we do so within a family (for example, Li family refers to LiA; A=Na, K,

Rb, and Cs) and between them, rather than look for trends by arranging the molecules in the

increasing order of the number of electrons. This is because two molecules that are next to each
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other in the number of electrons could be very different, as one may possess a combination of

light-heavy nuclei and other moderate-moderate nuclei. We will see in the subsequent paragraphs

that ordering molecules in this manner, i.e., by family, provides better insights in trends. A useful

quantity to define for the following discussions is the percentage fraction change, F , given by the

magnitude of (Rel−NR
Rel

×100) for a property; with ‘Rel’ and ‘NR’ being the respective relativistic

and non-relativistic values from a given approach. Basically, F quantifies the corrections due to

the relativistic effects in a molecule, for that property.

3.3.1 Results for PDMs

Here, we analyze the trends in the PDMs (whose results are provided in Table 3.1 and Table 3.2),

starting with the Li family. In this paragraph, we first examine the effects of correlations on

the PDMs including the roles of partial triples, followed by a detailed report on relativistic ef-

fects. We adopt this order of discussing results for the polarizabilities too. By comparing the

three methods that we have employed, we observe that for a given molecule in a family, the

inclusion of correlation effects steadily decreases the value of µ, in both the non-relativistic and

relativistic cases. We find that partial triples in the (R)CCSD(T) methods reduce the values

of PDM as compared to those from the (R)CCSD methods. This effect could be as large as

17 percent, as in the case of KRb. We now move on to investigating the roles of relativistic

effects. When we inspect the data for the Li family and calculate F , we notice that the differ-

ences between the non-relativistic and relativistic results widens as a molecule becomes heavier,

but from LiK through LiCs. LiNa displays more percentage fraction change in its PDM with

the inclusion of relativistic effects than LiK, in all the three methods (in the HF, CCSD and

CCSD(T) methods as well as in the DF, RCCSD and RCCSD(T) methods). We also observe

that relativity decreases the PDM of LiCs at the RCCSD(T) level of correlation by about 18

percent, which is clearly not negligible. The trends in the Na family are qualitatively similar

to those in the Li family. Again, with the exception of LiNa, we witness a monotonic increase

in F , with relativistic effects accounting for as high as about 21 percent for NaCs. In the K

family, it is seen that the first deviation from monotonic behaviour as the PDMs decrease from

KLi to KRb, and then increase from KRb to KCs. We come across similar trends with the Rb

90



family as well. In the Cs family, we report a monotonic decrease in the values of PDM. Also,

we see that the relativistic effects play significant roles starting from the K family, with F being

about 50 percent for KRb, KCs, and RbCs. In light of the significance of relativistic effects for

these systems, our RCCSD(T) calculations for the heteronuclear alkali-dimer molecules are the

most accurate, to the best of our knowledge. Lastly, we comment on the importance of triple

excitations, at the CCSD(T) and RCCSD(T) levels. We also compare our results with some of

the recent works on the PDMs of alkali-dimers, and compare their results with ours below.

•LiNa

There are a number of calculations on the PDM of LiNa; for example, see Refs. [26, 39, 40,

41, 42, 43]. Most of these earlier works were carried out by employing non-relativistic methods,

and some of the results were at odds with the experimental values. We focus on and compare

here our results with experiments, and the more recent theoretical studies.

Dagdigian et al [21], in 1971, reported the PDM of LiNa to be 0.18(1) a.u.. In the ex-

periment, the measured quantity is actually µ2/B, where B is the rotational constant of the

molecule. Then, B was obtained by using Badger’s rule, which required the knowledge of the

then-existing literature values for the spectroscopic constants of the molecule. In a subsequent

work [22], they improved their value for B, and obtained a PDM of 0.1822(7) a.u., with much

lesser uncertainty. A third work from the same group [18] found the quantity to be 0.1822(8)

a.u., by performing a molecular beam resonance experiment. A fourth experimental result was

obtained in 1982, as 0.1777(2) a.u. [25], using laser-induced fluorescence spectra. They too ob-

tained B, and hence the PDM. A PDM of 0.18 a.u. was reported by Tarnowsky et al [20]. They

estimated the property from the empirically derived formula µXY = C(ᾱX2 − ᾱY2), where µXY

corresponds to the PDM of a molecule made of atoms X and Y , and αX2 corresponds to the

average polarizability of a homonuclear dimer of type X2, and likewise for αY2 . The PDM, µXY ,

was computed by the authors with a fitting procedure, which in turn required their measured

homonuclear polarizabilities of Li2 and Na2 as well as their PDMs taken from the then-recent

literature.

91



As a survey of literature described above shows that five different measurements give almost

the same value, the experimental result of about 0.18 a.u. itself is very reliable. However,

we note that there is a strong tension in results between experiment and theory, as seen from

Table 3.1. In fact, for a specified method employed by a work on alkali-dimers, the agreement

between experiment and theory is the least for LiNa among other reported alkali-dimers. One

such example is Ref. [43], where the authors have employed the CI method to find this issue. We

proceed now with discussion of the results obtained from more recent calculations. The work by

Urban and Sadlej [31] considers the electron correlation contribution due to the next-to-valence

electrons of the two atoms forming a dimer, and reported a PDM of 0.17 a.u.. They employed the

CCSD(T) method and added relativistic corrections due to mass-velocity and Darwin (MVD)

terms. A subsequent work [44] employed CI in the singles and doubles approximation consid-

ering correlations only among ten electrons to obtain 0.19 a.u.. Aymar and Dulieu [27] had

employed a full valence CI approach with pseudo-potentials (PP). The PPs included relativistic

effects via MVD terms for the heavier Rb and Cs atoms. They took core polarization into

account via an l-dependent effective core potential (ECP) due to the sensitivity of the PDM

to this effect. They considered three different basis sets, which we denote in the Table 3.1 as

Basis A, B, and C. They obtained 0.221 a.u. and 0.218 a.u., by using basis sets A and B,

respectively. Mabrouk and Berriche [32] obtained 0.228 a.u. using their CI approach involving

the perturbation of a multi-configuration wave function selected iteratively, in a PP approach.

Core-polarization and core-valence interactions were partially considered by using l-dependent

core-polarization potentials. Zuchowski et al [29] computed the PDM of LiNa to be 0.19 a.u.,

using the CCSD(T) method, and employed a cc-pCV5z basis, augmented with diffuse functions.

They also used small-core type ECPs in their calculations. We obtain µ=0.22 a.u., using the

RCCSD(T) approach, with aug-cc-pCVTZ basis sets. Our result is in excellent agreement with

that reported in Federov et al (0.21 a.u.) [30]. They employ the the CCSDT method, include

scalar relativistic effects, and use the cc-pCVQZ basis. Below, we try to investigate possible

reasons due to which results from both our works match well. There are three major differences

among these calculations: consideration of relativistic effects, basis functions, and the approx-

imations in the correlation effects due to triple excitations. We observe from Table I that our
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RCCSD(T) result is less than the non-relativistic one by about 4.5 percent. Since Federov et

al perform their calculations at the scalar-relativistic level while ours uses the DC Hamiltonian,

we check the extent to which the difference in relativistic effects affects the final value of PDM.

We perform four-component spin-free calculations [45] and show that spin-dependent effects are

negligible. For completeness, we have also verified that including Gaunt interaction (which adds

the spin-other orbit interaction to the DC Hamiltonian) in our relativistic calculations does not

alter the PDM, both at the TZ and QZ levels of basis functions. Therefore, the difference in

relativistic effects between the two works leaves the PDM unaltered. The results from both our

work as well as from Ref. [30] indicate that as we go to a higher quality basis, the value of PDM

decreases. Therefore, we anticipate our PDM obtained at the TZ level of basis to be slightly

higher based on this observation. In order to further verify this aspect, we perform RCCSD(T)

calculations with aug-ccpCVQZ basis sets, and indeed found that our PDM reduces to 0.197

a.u.. At this point, we verify the importance of diffuse functions in the basis, as the authors

of Ref. [30] do not include them. However, we find that diffuse functions hardly change the

final results, while core functions (which were employed in both our work as well as Ref. [30])

significantly modifies the PDM. This is in agreement with the findings in Ref. [30]. Next, we

observe from our results that as we go from DF to RCCSD(T), correlation effects seem to reduce

the value of PDM. However, a careful look shows that the drop in the value of PDM is sharper

from RCCSD to RCCSD(T) method. Based on the comparison of the QZ results from our work

as well as from Ref. [30], and the facts that a scalar relativistic and a fully relativistic approach

gives the same value of PDM, and inclusion of diffuse functions does not change the PDM, we

conclude that the missing triples contributions increase the PDM value of LiNa by around 4.5

percent. This analysis also provides an indicator of the importance of choice of basis, scalar

relativistic effects, and the importance of higher-order excitations.

We improve our value for the PDM of LiNa further by using the two-point scheme by Hel-

gaker for CBS extrapolation, which is known to be simple and accurate [46, 47]. Fig. I shows

our relativistic results (as a solid blue line, with the double, triple and the quadruple zeta results

shown as triangles), and we obtain a CBS value that is very close to experiment, at 0.178 a.u..

Our result is in very good agreement with the CBS value from Ref. [30], which employs the

93



CCSD method for this purpose. This indicates that the contributions that could have other-

wise occurred from partial triples to the PDM of LiNa is offset by basis extrapolation. Also,

we observe from Fig. (3.1) that the non-relativistic CBS curve (as a dashed red line, with the

corresponding double, triple and quadruple zeta values indicated by circles) yields a PDM of

0.189 a.u., as compared to the relativistic value of 0.178 a.u., which is different by about 6 percent.

•LiX; X = K, Rb, and Cs

Our results for LiK and LiRb are in excellent agreement with experimental results from

Dagdigian et al [22], and are well within the error bars. However, the other experimental result

presented in Ref. [19] that is available for LiK provides a slightly higher value. Since Ref. [19]

uses an improved value for B as compared to that used in Ref. [21], we expect the former to be

more accurate. We anticipate that calculations with an even higher quality basis than ours could

account for this gap of about 1.5 percent between our work and experiment. For the heavier

LiRb and LiCs molecules, even though our calculations and the existing theoretical works agree

closely, we expect our all-electron calculations which go beyond the scalar relativistic effects to

be an improvement over the existing theoretical works (we did not find any experimental result

for LiCs for comparison). The most recent calculation by Federov et al [30] employs a higher

quality 5Z basis for the lighter Li as compared to our TZ basis. However, they correlate only 9

occupied electrons (one valence electron from the outermost s orbital, and 8 from the next inner

sp-shell) of K, Rb, and Cs in their work. We do not make any such approximations, and we

correlate all electrons besides not cutting-off any virtuals in our RCCSD(T) calculations with a

TZ basis for the LiX molecules. The importance of relativistic effects is especially evident from

the difference between our non-relativistic and relativistic results for LiCs.

•The Na family

Tarnovsky et al [20] reported a PDM of 1.34 a.u. for NaK using an approach that combines

measurement with an empirical rule, as discussed under Sec. IIIA of their paper. The work in
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Ref. [22] found the PDM to be 1.09(4) a.u., using their B value, which in turn was obtained

from an extrapolation of Badger’s rule. Our result is within 2 percent of both the experimental

value as well as the most recent theoretical work [30]. The experimental values for NaRb and

NaCs were obtained too with their respective B values computed using an extrapolation of

Badger’s rule [22]. Our results agree well with both experiment and recent calculations from

other groups [30, 29].

•The K and Rb families

The last three molecules that we consider, viz. KRb, KCs, and RbCs, are made solely of

relatively heavier atoms. Experimental values exist for KRb and RbCs, and our PDMs differ

from the experimental results by about 8 percent and 4 percent, respectively. At this point, it is

worth noting that the most recent scalar relativistic calculation on the heavy KRb system using

relativistic ECP, done in Ref. [30], differs from experiment by about 17 percent. We now examine

if the difference of 0.02 a.u. between our results and those from Ref. [30] is due to relativistic

effects beyond those included in the latter. We find that in the case of KRb, we had obtained

0.24 a.u. with our RCCSD(T) calculations, while performing four-component spin-independent

calculations give us 0.25 a.u., which is closer to the 0.26 a.u. obtained by Ref. [30]. Therefore,

the differences in results between our RCCSD(T) calculations and Ref. [29] are, in part, due to

spin-dependent effects such as spin-orbit coupling, while the rest could be due to level of relativ-

ity, that is, the use of ECP in Ref. [30] as against an all-electron four-component calculations in

the current work. For the heaviest system, RbCs, there is no change in the PDM when we ignore

spin-dependent effects. Therefore, we conclude that like KRb, the difference in our RbCs res-

ults as compared to those obtained from Ref. [30] are possibly due to our all-electron calculations.

The trends of relativistic effects in PDM in different families are pictorially demonstrated in

Fig. 3.2, where we have plotted the CCSD(T) and RCCSD(T) level values of PDM against the

atomic number (ZA) of the other constituent nuclei of the molecules under a single family. From

the figure it is evident that relativistic effects in PDM increase from lighter to heavier systems

in each family, except for Cs family. In Cs family, the relativistic effects become prominent from
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Figure 3.2: Plots comparing the CCSD(T) and RCCSD(T) values of µ (in a.u.) for the het-
eronuclear alkali dimers belonging to the (a) Li-, (b) Na-, (c) K-, (d) Rb-, and (e) Cs-families
against the atomic number ZA.

the lightest molecule of the family, LiCs.

3.3.2 Results for polarizabilities

We now turn to discussing parallel component results of polarizability. The α∥ values from our

calculations, as well as those from previous works and experiments, are shown in Table 3.3 and

Table 3.4. It can be observed from this table that the effects of electron correlations are increas-

ing the α∥ values from their HF and DF values, except in the cases of KRb, KCs, and RbCs.

This is opposite to the trend that we observed for the PDM, where we found that inclusion of

correlation effects lowered their magnitudes. We see that for KRb, KCs, and RbCs, the inclusion

of partial triples increases α∥ in the non-relativistic calculations, while in the relativistic calcu-

lations, we observe a non-uniform trend where it increases α∥ values for KCs, and reduces it for
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Figure 3.3: Graphs illustrating the differences between the CCSD(T) and RCCSD(T) values of
the parallel components of polarizabilities (in a.u.) of (a) Li-, (b) Na-, (c) K-, (d) Rb-, and (e)
Cs-families of heteronuclear alkali dimers against the atomic number ZA.

KRb and RbCs. However, unlike in the case of PDM, the contribution from partial triples to α∥

is quite small, with NaCs differing the most between the (R)CCSD and (R)CCSD(T) results, at

about 4 percent. Relativistic effects themselves do not become important for the molecules up to

KRb, with F being less than 2 percent throughout (at the CCSD(T) level of theory). However,

the relativistic corrections result in a slightly higher F of about 4.5 and 6.5 percent for KCs and

RbCs, respectively.

We now briefly discuss the previous works on the α∥ values of alkali-dimers. There are

no measurements of individual α∥ and α⊥ components; experiments obtain average polarizab-

ility and polarizability anisotropy. We could only find limited works in literature that report

calculation of α∥, and with the exception of Ref. [29], the other works discuss the polarizabil-
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Figure 3.4: Graphs showing the departure between the values of perpendicular components of
polarizabilities (in a.u.) obtained from the CCSD(T) and RCCSD(T) calculations of different
families of heteronuclear alkali dimers. The sub-figures (a) shows the trends in the Li family,
while (b), (c), (d), and (e) correspond to Na, K, Rb, and Cs families, respectively.

ities of only one or a few alkali-dimers. In Ref. [31], Urban and Sadlej reported α∥ for LiNa,

LiK, LiRb, NaK, NaRb, and KRb, using the CCSD(T) method (along with MVD corrections),

with the electron correlations accounted from the valence and next-to-valence shells only. The

authors in Ref. [48], on the other hand, employed a Numerov-Cooley (NC) scheme in their

semi-numerical approach. They reported their results for α∥ of LiK in this approach by using

Complete Active Space Self-Consistent Field (CASSCF) approach and second-order Complete

Active Space Perturbation Theory (CASPT2). They also perform CASSCF in combination with

Bishop-Kirtman perturbation theory (BKPT), besides calculating vibrational corrections to α∥.

Merawa et al [49] calculated α∥ of LiNa to be 350.6 a.u., by using the CCSD(T) method, and

exciting all the electrons in their calculations. They also obtained this property to be 352.3 a.u.,

using a time-dependent gauge invariant (TDGI) method. The most recent work by Deiglmayr

98



(a) (b) (c)

(d) (e)

Figure 3.5: Plots depicting the fork between the average dipole polarizabilities (in a.u.) in the
(a) Li-, (b) Na-, (c) K-, (d) Rb-, and Cs-families from the CCSD(T) and RCCSD(T) methods.

et al [16] employed the CI approach by perturbing the multi-configuration wave function, and

had performed calculations on all the alkali-dimers. We find that our RCCSD(T) results are in

excellent agreement with their results up to NaCs (the differences are less than 2 percent), after

which we observe a sharp deviation of up to 10 percent for KCs. We expect that the differences

are not only because of relativity, but also due to correlation effects, recalling our observation

that the electron correlations reduce this quantity from the HF or DF to the (R)CCSD(T)

methods only for these last three heavier molecules. To verify this hunch further, we performed

four-component spin-independent calculations [45] for the heavier KRb, NaCs, KCs, and RbCs.

We reported that spin-dependent effects such as SOC add to only about 0.1 percent to both

parallel as well as perpendicular components of polarizability. A full valence CI treatment in

Ref. [16] could be superior to our single reference treatment, but there could also have been

a difference due to their ECP versus our all-electron calculations and their CISD against our
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Figure 3.6: Plots highlighting the variation of relativistic effects in the polarizability anisotropies
(in a.u.) of the heteronuclear alkali dimers belonging to (a) Li-, (b) Na-, (c) K-, (d) Rb-, and
(e) Cs-families using the CCSD(T) and RCCSD(T) methods.

RCCSD(T) level of excitations. A reasonable check without expending computational resources

is to compare the calculated average polarizabilities from both the works, which is constructed

from the parallel and perpendicular components, with experiment. The only available exper-

imental result is from Ref. [20] for KCs, and we find that our result is in better agreement

with experiment (within 1 percent) than the result from Ref. [16] (about 5 percent). We do

note that these differences are well within our quoted error bars of 10 percent, but based on

our observations above, it is very likely that our calculations are more accurate. For the ease of

understanding, we present the relativistic effects in α∥ for each family of alkali-dimers in Fig. 3.3.

Proceeding with the discussions on the results for α⊥, we find that these values consistently

decrease with the inclusion of electron correlation effects in both the non-relativistic and relativ-
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Figure 3.7: The values of α∥ and α⊥ (commonly denoted by X, and given in a.u.) are plotted
against volume (in a.u.). In the legend, ‘NR’ refers to the CCSD(T) results while ‘Rel’ denotes
to the RCCSD(T) values.

istic calculations, as shown in Table 3.5, contrary to α∥, and similar to PDM. Relativistic effects

are also found to decrease α⊥. Examining F values reflect that relativistic effects become more

important as a molecule in a family gets heavier, with the exception of LiRb. Also, similar to

α∥, F is the largest for RbCs, and is about 7 percent. The effect of partial triples is slightly

higher for α⊥, and is about 4.5 percent for RbCs (see Fig. 3.4). In the previous paragraph,

we had compared our calculated values for α∥ with those from earlier literature. All of those

references also computed α⊥ (with the exception of Ref. [48]), and therefore, we will not discuss

their methods again in this paragraph.

We see from Table 3.6 that for the non-relativistic as well as the relativistic cases, the average

polarizability value decreases from mean-field to (R)CCSD(T) methods, with the exception of

LiNa. This can be understood from the fact that for LiNa, the parallel component increases

more due to correlation than the decrease in the perpendicular component. This is not the case

for all of the other molecules. In fact, the change in perpendicular components even dominates

over that of parallel components for the heavier molecules. Relativity, as seen by comparing the

CCSD(T) and RCCSD(T) results, further reduces ᾱ results. Again, relativistic effects do not

alter the average values of polarizabilities significantly, as they do not do so for the individual

components. Examining the trends in ᾱ at the (R)CCSD(T) level by family, we observe that the
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relativistic effects within each family become increasingly important as the non-family atom (for

example, in the Li family, it could be Na, K, Rb, or Cs) becomes heavier, with the exception of

LiCs (see Fig. 3.5). The effect of partial triples is seen to be unimportant for ᾱ from Table 3.6.

Our results also agree very well with the available experimental values, and are within the error

bars of the measured values for NaK and KCs that are reported by Tarnovsky et al [20]. These

experimental results for NaK and KCs are obtained by combining measurements of average ef-

fective polarizabilities with the then-available PDM values taken from Igel-Mann et al [43], at an

average temperature of 612 K and 494 K for NaK and KCs, respectively. When we replaced the

PDMs from Igel-Mann et al [43] with ours, we observed negligible difference in ᾱ that Tarnovsky

et al obtained. However, to estimate ᾱ for the other alkali-dimers, the work by Tarnovsky et al

combines their measured homonuclear dimer polarizabilities with an empirical formula, thereby

possibly introducing fairly large errors in some of their results. Regarding temperature depend-

ency, we do not expect that our T= 0 K results would differ significantly from the measurements

carried out at the aforementioned temperatures, based on the earlier mentioned work by Muller

and Meyer on homonuclear alkali-dimers [50]. In these rigorous studies, Muller and Meyer had

shown that the dependency of average polarizability on a wide range of temperatures (between

0 and 1000 K) are not going to change the results significantly, and the maximum variation is

anticipated to be about 10 percent from the values obtained at the zero temperature.

For completeness, we discuss the experimental results briefly for ᾱ of LiNa from Ref. [22],

where the authors have first measured polarizability anisotropy, ∆α, by determining Stark fre-

quencies at some value of external electric field. They have combined this information with their

knowledge of PDM (which is in turn obtained by measuring the rotational constant, as discussed

in the previous paragraphs), to get ᾱ, as prescribed in Ref. [21]. At this point, it is worthwhile to

mention that all of the current theoretical values underestimate the average polarizability when

compared with the experimental results for LiNa (we add that all of these theoretical values

are within or very close to the error bars from experiment). This observation holds in spite of

the theoretical results agreeing very well with their measurement for the anisotropy. However,

since only one known experimental work exists (both for average polarizability and polarizbility

anisotropy of LiNa), more detailed calculations and further experiments are possibly required,
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before arriving at further conclusions.

The trends in ∆α (listed in Table 3.7) stem from those in parallel and perpendicular compon-

ents of polarizability, as ∆α is the difference between α∥ and α⊥. For example, since relativistic

effects increase α∥ while they decrease α⊥ for LiCs, we observe that relativistic effect matters

the most for the molecule (about 5 percent) (see Fig. 3.6). Also, partial triples in ∆α become

more important than in ᾱ, with NaCs and LiCs accounting for 8 and 9 percent, respectively. We

are not discussing here the ∆α results of Ref. [22] as it has already been done in the previous

paragraph.

•Volume effects

Next, we examine the dependence of components of polarizability on molecular volume. This

aspect has been addressed by using models in the past, for example, see Refs. [51, 52]. It has

also been discussed in Ref. [16], where the volume, V , is defined as 4
3
πr3e , with re denoting the

equilibrium bond-length. We plot the components of polarizabilities, both from non-relativistic

and relativistic calculations, against volume in Fig. 3.7. From the figure, we see that a linear fit

to our relativistic calculations gives 0.36V + 104.26 for α∥, and 0.17V + 66.7 for α⊥. We find

that the ratio of the slopes of α∥ versus V to α⊥ versus V from our relativistic calculations agree

well with the non-relativistic ones, and we obtain a value of about 2 for the ratio. This is in

agreement with the slope obtained by Deiglmayr et al [16] from their calculations. The linear

polarizability-volume relationship could be viewed as an effective elliptic charge distribution for

a dimer at a specified re [16]. Although relativistic and non-relativistic results for the lighter

systems are very close to each other, we observe that the linear fits between the two cases devi-

ate further as we go to the heavier molecules, while continuing to preserve the ratio of the slopes.

•Error Analysis

We discuss the possible sources of uncertainties in our calculations of PDMs and polarizab-

ilities of the considered alkali-dimers. We assume our RCCSD(T) values are the most accurate

103



among other methods in literature and therefore the uncertainties are estimated for these results.

Since we have adopted the FF approach, it is essential to choose the perturbation parameter, E ,

carefully in order to obtain reliable results. Our choice of E = 10−4 a.u. is consistent with those

from the previous works that had determined PDMs and polarizabilities using the FF procedure.

However, we had also verified consistencies in the results by performing calculations of PDMs as

well as polarizabilities by using the following values of E , namely 10−3, 5× 10−4, and 10−4 a.u..

For this purpose, and in view of minimizing the computational cost, we chose only the Li family

as a representative case, and repeated the non-relativistic calculations with a double-zeta (DZ)

basis. We did not find any significant differences in these calculations due to the choice of E . We

also anticipate similar trends with the relativistic calculations and in other heavier alkali-dimers.

We found that the PDM values hardly change, while the parallel and perpendicular components

of polarizability smoothly change in the first decimal place for LiNa and LiK, and within 3 a.u.

for LiRb and LiCs. Also, the truncation errors that could result from numerical differentiation

schemes have been taken care of by comparing our results using three-point as well as five-point

formulae and we found that the results in both those approaches are identical.

It is imperative to ensure that there is negligible uncertainty involved due to cut-off of virtual

orbitals in our relativistic RCCSD(T) calculations for the heavier alkali-dimers. Therefore, we

chose NaCs, a moderately heavy molecule where relativistic effects are sufficiently important

and yet practical for multiple computations, for this purpose. The results with different set of

virtual orbitals are tabulated in Table 3.8. It shows that the PDM values remain identical, while

the components of polarizability change in the second decimal place, which are much smaller

than the level of accuracy intended to achieve in the present work.

We check the error due to performing calculations on a single geometry instead of vibrational

averaging. We have estimated these uncertainties for PDMs as well as parallel and perpendic-

ular components of polarizabilities for the Li family, using the CFOUR program [53, 54]. We

employed the CCSD(T) method, and the same basis sets as in our single point calculations. We

find that the values of PDM and α⊥ change by less than 1 percent for the Li dimers, while the

parallel components change by about 1 percent. We do not expect the error due to neglecting
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vibrational averaging to exceed a conservative estimate of 2 percent for all of the three properties

in alkali-dimers.

Next, we proceed to discuss on the most traditional uncertainties due to neglected effects in

our calculations. It is beyond the scope of this work to estimate contributions due to the full

Breit and quantum electrodynamics interactions. However, it is expected that these higher-order

relativistic corrections will not exceed 0.5% in all the considered molecules. Uncertainties could

also arise because of neglecting contributions from higher level excitations in the (R)CC the-

ory and use of incomplete basis functions. The percentage fraction difference in our relativistic

results from RCCSD to RCCSD(T) methods indicate that higher-level excitations should not

contribute beyond 5 percent to the PDMs. A similar analysis provides us with an error estimate

of about 3 percent for α∥ and α⊥. We now analyse the error due to incompleteness in basis.

We had employed a TZ basis for our relativistic calculations, and included diffuse functions,

wherever available. We could not, however, perform relativistic calculations using a QZ basis,

as they are forbiddingly expensive, even for moderately heavy systems like KRb. Therefore, we

resort to an approximation, where we first perform extensive CBS calculations for the alkali-

dimers using the CCSD(T) method. We employed the two-point scheme by Helgaker [46, 47]

for CBS, which was mentioned earlier. We then approximate the relativistic CBS value of µ

and α (commonly denoted here as O for ease in notation) by ORel
CBS ≈ (ONR

CBS/O
NR
TZ )ORel

TZ , where

the subscripts refer to the basis and the superscripts indicate whether the property has been

obtained using an non-relativistic calculation or a relativistic one. With this approximation, we

obtain a percentage fraction difference of less than 2 percent for the PDMs of the alkali-dimers,

with the exceptions of NaK and NaRb, as the PDMs for these systems do not converge from DZ

through quadruple-zeta (QZ) basis, hence making a CBS extrapolation not possible. However,

we do not expect the errors to be beyond 2 percent in these cases too. A similar exercise was also

carried out for α∥, and we found that the fraction difference was less than 4 percent for all the

alkali-dimers, except for LiRb. We also verified our approximate formula for ORel
CBS, by explicitly

performing RCCSD(T) calculations for the PDM and α∥ of NaCs (with aug-cc-pCVTZ for Na

and Dyall’s 4Z basis for Cs), and obtained exactly the same PDM as that from ORel
CBS, while

α∥ differed from the ORel
CBS estimate by just 0.6 percent. We would expect an error percentage
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that is similar to that in α∥ for the perpendicular components of polarizabilities too, which is

at most 4 percent. Finally, we linearly add the errors and estimate that the uncertainties in

our relativistic calculations are about 10 percent for the PDMs, as well as for the parallel and

perpendicular components of polarizabilities.

3.3.3 Importance of relativistic effects

In this section, we intend to discuss on the implications of our relativistic calculations in a prop-

erty which is crucial in understanding inter-molecular interactions. For this, we have chosen the

van der Waals coefficient C6, whose values are very sensitive to the relativistic effects even in

the lighter dimers.

As known, when two heteronuclear alkali-dimer molecules interact via a long-range van der

Waals interaction, its dominant potential is given by −C6/r
6 [17, 29, 55]. Here, r is the inter-

molecular separation and C6 is known as van der Waals coefficient. For molecules, C6 can be

expressed as [17, 29, 55]

C6 = Cdisp
6 + Cind

6 + Crot
6 , (3.11)

where the three terms on the right hand side are known as the dispersion (denoted by superscript,

‘disp’), the induction (denoted by superscript, ‘ind’), and the rotational (denoted by superscript,

‘rot’) contributions, respectively. We estimate the induced contribution, using the expression

[29]

Cind
6 = 2µ2ᾱ, (3.12)

by substituting our calculated PDM and ᾱ values. Similarly, we determine the rotational con-

tributions using the expression given by [17, 29, 55]

Crot
6 =

µ4

6B
. (3.13)
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Due to the fourth-power dependence on PDM, the rotational term dominates over the sum of

the other two terms by at least an order of magnitude in the evaluation of C6 values for mo-

lecules with large PDMs [17]. This is indeed the case for eight of the ten alkali-dimers with

the exceptions LiNa and KRb, owing to their small PDMs and larger B value of LiNa. This

dependence on accurate calculations of C6 coefficients become more relevant for molecules such

as LiCs and KCs, for which experimental values of PDM do not exist. For estimating B values,

we consider the 7Li, 23Na, 41K, 87Rb, and 133Cs bosonic isotopes.

We, however, have borrowed the most accurately calculated results for the dispersion terms

from Ref. [29]. This is done keeping in mind that the dispersion contributions are at least one

order lesser than the rotational ones for most of the alkali-dimers. We tabulate all these contri-

butions and the final results of C6 for various heteronuclear dimers in Table 3.9 and Table 3.10.

It can be clearly seen from this table that use of revised Cind
6 and Crot

6 contributions change

the final results of C6 significantly than the values reported in Ref. [29]. In fact, the results

become substantially different compared to pure non-relativistic calculations of Ref. [55], which

are also quoted in the above table for the comparison. We see from the table that the isotropic

C6 coefficient can vary as much as 7 percent for LiCs, when compared to that from Ref. [29],

while it can be about 20 percent for LiK and 15 percent for LiRb with respect to Ref. [55],

when relativistic effects are included in obtaining the PDM and polarizabilities. We also observe

that there are significant differences between our results and those obtained from the recent

calculations in Ref. [56], and are over 25 percent for LiK, LiRb, LiCs, and KCs. At this point,

we would also like to draw attention to the fact that although PDM values from Ref. [29] are

in close agreement with ours, the differences in our results are still sufficiently large to lead to

a non-negligible change in C6 values owing to the µ4 dependence. This clearly highlights the

crucial roles that accurate calculations of PDM play in determining the C6 coefficients of alkali-

dimers.

With the above discussion it is evident that the many-body theory, i.e. RCC theory, that we

have employed gives very reliable estimates of permanent electric dipole moments and polarizab-

ilities of heteronuclear alkali-dimers which are in very good agreement with previous theoretical
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as well as experimental results.
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Table 3.1: Values of PDM (µ) (in a.u.) for LiNa, LiK, LiRb, LiCs and NaK from both relativistic
and non-relativistic calculations. We compare these values from various previous calculations
and available experimental results. Our results from both the non-relativistic and the relativistic
methods are given separately. The errors are quoted within the parentheses.

Method LiNa LiK LiRb LiCs NaK

PDM results
This work
HF 0.26 1.65 2.09 2.92 1.41
CCSD 0.25 1.49 1.88 2.70 1.19
CCSD(T) 0.23 1.39 1.75 2.54 1.09
DF 0.25 1.62 1.96 2.61 1.39
RCCSD 0.24 1.45 1.72 2.33 1.16
RCCSD(T) 0.22 1.36 1.59 2.16 1.07
RCCSD(T): QZ 0.197
RCCSD(T): CBS 0.178
Previous calculations
CCSD(T) [31] 0.17 1.36 1.71 1.12
CI [44] 0.19
CI [27]: Basis A 0.22 1.40 1.64 2.17 1.09
CI [32] 0.23
CCSD(T) [29] 0.19 1.34 1.57 2.12 1.07
CCSDT [30] 0.21 1.34 1.60 2.11 1.05
Experiment
Ref. [21] 0.18(1)
Ref. [22] 0.1822(7) 1.36(4) 1.57(4) 1.09(4)
Ref. [18] 0.18
Ref. [25] 0.1777(2)
Ref. [19] 1.381(2)
∗Ref. [20] 0.18 1.52 1.59 2.48 1.34

∗The values given for a molecule XY that is made of atoms X and Y are actually obtained by
employing an empirical rule, which requires a combination of experimental values of

polarizabilities of the homonuclear X2 and Y2 molecules, and the values of PDM from the
then-recent literature.
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Table 3.2: Values of PDM (µ) (in a.u.) for NaRb, NaCs, KRb, KCs and RbCs from both
relativistic and non-relativistic calculations. We compare these values from various previous
calculations and available experimental results. Correlation effects are added through both
the (R)CCSD and (R)CCSD(T) methods. Our results from both the non-relativistic and the
relativistic methods are given separately.

Method NaRb NaCs KRb KCs RbCs

PDM results
This work

HF 1.88 2.75 0.50 1.46 0.98
CCSD 1.57 2.39 0.42 1.28 0.87
CCSD(T) 1.43 2.21 0.36 1.14 0.77
DF 1.75 2.42 0.37 1.10 0.73
RCCSD 1.43 2.02 0.28 0.90 0.61
RCCSD(T) 1.29 1.83 0.24 0.78 0.53

Previous calculations

CCSD(T) [31] 1.43 0.43
CI [27]: Basis A 1.30 1.82 0.24 0.75 0.49
CCSD(T) [29] 1.30 1.82 0.24 0.78 0.52
CCSDT [30] 1.29 1.78 0.26 0.75 0.48

Experiment

Ref. [22] 1.22(12) 1.87(8)
∗Ref. [20] 1.38 2.31 0.08 1.02 0.94
Ref. [24] 0.2227(8)
Ref. [23] 0.51(4)

∗The values given for a molecule XY that is made of atoms X and Y are actually obtained by
employing an empirical rule, which requires a combination of experimental values of

polarizabilities of the homonuclear X2 and Y2 molecules, and the values of PDM from the
then-recent literature.
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Table 3.3: A comparative analysis of parallel component of the dipole polarizabilities, α∥ (in a.u.)
of LiNa, LiK, LiRb, LiCs and NaK, between the non-relativistic and relativistic calculations.
We also present results from the earlier studies for the comparative purpose.

Method LiNa LiK LiRb LiCs NaK

This work
HF 301.98 425.92 470.95 525.74 502.15
CCSD 341.02 470.47 512.88 563.86 522.24
CCSD(T) 344.78 482.64 530.04 594.94 531.01

DF 301.63 425.52 465.38 529.48 500.20
RCCSD 340.55 470.06 507.80 577.23 519.73
RCCSD(T) 344.29 481.94 523.26 604.40 528.01

Previous works
CCSD(T) [31] 352.26 484.53 591.83 537.16
CASSCF/NC [48] 532.00
CASSCF/BKPT [48] 532.00
CASPT2/NC [48] 512.90
TDGI [49] 350.6
CCSD(T) [49] 352.3
CI [16] 347.6 489.7 524.3 597.0 529.2

Table 3.4: A comparative analysis of parallel components of the dipole polarizabilities, α∥ (in
a.u.) of NaRb, NaCs, KRb, KCs and RbCs, between the non-relativistic and relativistic calcu-
lations. We also present results from the earlier studies.

Method NaRb NaCs KRb KCs RbCs

This work
HF 553.93 625.42 816.33 955.87 1084.57
CCSD 574.12 653.41 792.99 929.26 1023.90
CCSD(T) 587.90 685.49 794.12 942.39 1025.35

DF 549.97 621.75 808.95 932.45 1034.89
RCCSD 567.46 648.24 783.30 900.21 971.17
RCCSD(T) 578.50 672.12 780.48 902.22 962.85

Previous works
CCSD(T) [31] 606 842.19
CI [16] 572.0 670.7 748.7 822.3 904.0
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Table 3.5: The values of perpendicular components of dipole polarizability, α⊥ (in a.u.), both
from the non-relativistic and relativistic methods. We have also added results that are obtained
in the previous works for comparing with our calculations.

Method LiNa LiK LiRb LiCs NaK NaRb NaCs KRb KCs RbCs

This work
HF 203.04282.32 306.98 347.67 321.88 352.61 402.27 516.23 605.67 681.61
CCSD 187.67249.42 264.58 294.69 284.17 307.90 346.94 424.52 489.13 541.42
CCSD(T) 186.98247.27 266.80 293.37 280.06 303.41 343.51 410.83 473.24 519.76

DF 202.67280.92 301.20 335.69 319.57 344.86 385.81 501.11 571.87 628.52
RCCSD 187.33248.31 262.50 287.97 282.08 300.90 333.43 412.41 463.20 505.76
RCCSD(T) 186.44246.13 260.10 286.01 277.90 296.02 328.84 398.58 446.81 484.38

Previous works
CCSD(T)[31] 188.8 246.6 268.7 268.7 303.2 411.5
CCSD(T) [49] 187.7
TDGI [49] 183.1
CI[16] 181.8 236.2 246.5 262.5 262.3 280.3 304.2 382.9 425.62 492.3

Table 3.6: The average values of dipole polarizability, ᾱ (in a.u.), of the alkali-dimers from both
our and previous calculations. We have also given experimental values for the comparison.

Method LiNa LiK LiRb LiCs NaK NaRb NaCs KRb KCs RbCs

This work
HF 236.02 330.19 361.64 407.03 381.97 419.72 476.65 616.26 722.40 815.93
CCSD 238.79 323.10 347.35 384.41 363.53 396.64 449.10 547.34 635.84 702.25
CCSD(T) 239.58 325.72 354.55 393.90 363.71 398.24 457.50 538.59 629.62 688.29

DF 235.64 329.12 355.93 400.29 379.78 413.23 464.46 603.72 692.06 763.98
RCCSD 238.40 322.23 344.27 384.39 361.30 389.75 438.37 536.04 608.87 660.90
RCCSD(T) 239.06 324.73 347.82 392.14 361.27 390.01 443.27 525.88 598.61 643.87

Previous works
Experiment
Ref. [18] 269.93(33.74)
Ref. [20] 344.16(26.99) 600.60(42.24)
Ref. [20]* 249.69 377.91 384.65 465.63 391.40 398.15 479.13 526.37 607.35 614.10

Theory
CCSD(T) [31] 243.23 326.00 365.20 365.57 404.23 555.13
CI [16] 237.0 320.7 339.1 374.0 351.3 377.5 426.4 504.8 571.1 602.8
CCSD(T) [29] 237.7 324.2 347.2 391.9 358.1 387.1 439.3 523.5 596.0 638.6

*These values are not strictly experimental, as they are obtained by combining measured homonuclear polarizability with an
empirical rule. The rule may not always hold, as evident from the difference in their results that they arrived at by using this

approach as compared to their experimental value, for NaK.
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Table 3.7: The non-relativistic and relativistic values of dipole polarizability anisotropy, ∆α (in
a.u.), reported at different levels of (R)CC theory and other methods. A list of previous works
are added to the table for comparison with our results.

Method LiNa LiK LiRb LiCs NaK NaRb NaCs KRb KCs RbCs

This work
HF 98.94 143.60 163.97 178.07 180.27 201.05 223.15 300.10 350.20 402.96
CCSD 153.35 221.05 248.30 269.17 238.07 266.22 306.47 368.48 440.13 482.48
CCSD(T) 157.80 235.37 263.24 301.57 250.95 284.49 341.98 383.29 469.15 505.59

DF 98.96 144.60 164.18 193.79 180.63 205.11 235.94 307.84 360.58 406.37
RCCSD 153.22 221.75 245.30 289.26 237.65 266.56 314.81 370.89 437.01 465.41
RCCSD(T) 157.85 235.81 263.16 318.39 250.11 282.48 343.28 381.90 455.41 478.47

Previous works
Experiment
Ref. [18] 161.96(13.5)

Theory
CCSD(T) [31] 163.3 238.2 289.5 2579 303.1 430.9
CCSD(T) [29] 156.3 234.5 262.0 317.8 247.2 279.2 339.4 367.6 436.1 462.1
CI [16] 165.8 253.5 277.8 334.5 266.9 291.7 366.5 365.8 436.7 491.7

Table 3.8: Demonstration of changes in the α∥, α⊥, ᾱ, ∆α, and µ values of NaCs molecule at
different virtual energy level cut-offs using the RCCSD(T) method. Calculations were performed
using the TZ basis functions. All the quantities are specified in a.u..

Cut-off Method α∥ α⊥ ᾱ ∆α µ

1000 DF 621.78 385.80 464.46 235.98 2.42
1000 RCCSD 648.26 335.48 439.74 312.78 2.02
1000 RCCSD(T) 672.15 331.56 445.09 340.59 1.82

2000 DF 621.75 385.81 464.46 235.94 2.42
2000 RCCSD 648.24 333.43 438.37 314.81 2.02
2000 RCCSD(T) 672.12 328.84 443.27 343.28 1.82

5000 DF 621.78 385.81 464.47 235.97 2.42
5000 RCCSD 648.26 333.43 438.37 314.83 2.02
5000 RCCSD(T) 672.15 328.93 443.34 343.22 1.82
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Table 3.9: Values of isotropic C6 coefficients (in a.u.) of LiNa, LiK, LiRb, LiCs, and NaK by
combining our estimated Cind

6 and Crot
r contributions with the Cdisp

6 contributions borrowed from
Ref. [29]. We have also compared these results with the previously reported two non-relativistic
calculations. The differences between our results with other calculations demonstrate importance
of relativistic calculations in the determination of the C6 coefficients.

Molecule Reference C6 value

LiNa Ref. [55] 3 880
Ref. [56] 3 583
Ref. [29] 3 709
This work 3 807

LiK Ref. [55] 524 000
Ref. [56] 570 190
Ref. [29] 411 682
This work 434 316

LiRb Ref. [55] 1 070 000
Ref. [56] 1 252 300
Ref. [29] 884 705
This work 929 144

LiCs Ref. [55] 3 840 000
Ref. [56] 4 585 400
Ref. [29] 3 409 406
This work 3 664 836

NaK Ref. [56] 561 070
Ref. [29] 516 606
This work 518 370
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Table 3.10: Values of isotropic C6 coefficients (in a.u.) of NaRb, NaCs, KRb, KCs, and RbCs by
combining our estimated Cind

6 and Crot
r contributions with the Cdisp

6 contributions borrowed from
Ref. [29]. We have also compared these results with the previously reported two non-relativistic
calculations.

Molecule Reference C6 value

NaRb Ref. [56] 1 524 900
Ref. [29] 1 507 089
This work 1 457 076

NaCs Ref. [56] 7 323 100
Ref. [29] 6 946 696
This work 7 086 877

KRb Ref. [56] 15 972
Ref. [29] 17 720
This work 17 542

KCs Ref. [56] 345 740
Ref. [29] 469 120
This work 469 769

RbCs Ref. [56] 147 260
Ref. [29] 180 982
This work 190 442
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Chapter 4

PDMs and Static Electric Dipole

Polarizabilities of Open-Shell

Alkali–Alkaline-Earth Molecules

4.1 Introduction

With a view to examining the potential of the RCC method we use, in the preceding chapter

we have discussed on the relativistic effects in the determination of PDMs and static dipole

polarizabilities of heteronuclear alkali-dimers. Our theoretical RCC results for PDMs and polar-

izabilities agreed reasonably well with the literature values wherever available. One can assert

that the RCC method is fairly accurate, at least to produce accurate wave functions in the

heteronuclear alkali-dimers. But, the alkali-dimers are closed-shell molecules. Only open-shell

molecules are sensitive to eEDM in the EDM experiments. Therefore, we are interested to find

out accurate wave functions for one-valence molecular systems using RCC theory in order to ap-

ply the method to search for eEDM studies. In view of this, our next rational step forward is to

study PDMs and static electric dipole polarizabilities of the open-shell laser coolable molecules.

We extend our RCC calculations to the hetoeronuclear molecules consisting of alkali (Alk) and

alkaline-earth metal (AlkE) atoms. Successful cooling of the the Alk [1] and AlkE atoms [2]

to ultracold temperatures opens up the opportunity to produce Alk-AlkE molecules. In this
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chapter, we shall discuss about the relativistic effects in PDMs and static dipole polarizabilit-

ies of open-shell Alk-AlkE molecules along with other useful aspects. The Alk-AlkE molecules

promise similar potential applications like alkali-dimers along with some advantageous features

due to the possession of non-zero magnetic dipole moments. Non-zero magnetic moments of Alk-

AlkE molecules would enable us to control and manipulate them with external magnetic fields.

Bauschlicher et al. [3] had carried out one of the first theoretical studies on Alk-AlkE molecular

bond-lengths and PDMs. Kotochigova et al. [4] had investigated the electronic properties of

Li-AlkE molecules employing non-relativistic CC theory. In Ref. [5], ground state properties for

eight Alk-AlkE molecules (Alk: Li, Na, K, Rb, and AlkE: Ca, Sr) were calculated using CCSD(T)

method. Roles of relativistic effects were not investigated in these studies. In an another recent

work [6], electronic and spectroscopic properties of sixteen Alk-AlkE molecules (Alk: Li, Na, K,

Rb and AlkE: Be, Mg, Ca, Sr) were investigated using multi-reference CI (MRCI) method. In

our work, we consider sixteen Alk-AlkE molecules made from the combination of four Alk atoms

(Li, Na, K, Rb) and four AlkE atoms (Be, Mg, Ca, Sr). We compare results obtained from both

the non-relativistic (NR) and relativistic (Rel) calculations of µ and α of the chosen molecules

in their ground state (2Σ+). In this work too, we adopt the FF approach to estimate the PDMs

and polarizabilities from the ground state energies of the molecules calculated at different levels

of theory (HF/DF, (R)CCSD, and (R)CCSD(T) methods). The theory of estimating PDM

and polarizability in the FF approach has been already discussed in the previous chapter. We

also analyze the correlation effects in great detail as done for the alkali dimers in the previous

chapter. The discussions that follow in this chapter include studying the associated uncertain-

ties of our results, establishing empirical relationship between average molecular polarizability

and constituent atomic polarizabilities, and lastly comparing our results with those available in

literature.

This chapter is organised as follows: In Sec. 4.2, we briefly describe the basis sets used in

our calculations, cut-offs imposed on high-lying virtual orbitals, and other important parameters

crucial to our calculations. In Sec. 4.3, we present our results and discuss about their trends.
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Table 4.1: Values of PDMs (in a.u.) of LiBe, LiMg, LiCa, LiSr, NaBe, NaMg, NaCa, and NaSr
molecules from the HF, DF, CCSD, RCCSD, CCSD(T), and RCCSD(T) methods.

Molecule Method Non-relativistic Relativistic

LiBe HF/DF 2.04 2.04
(R)CCSD 1.39 1.39

(R)CCSD(T) 1.33 1.33
LiMg HF/DF 0.33 0.34

(R)CCSD 0.36 0.35
(R)CCSD(T) 0.41 0.40

LiCa HF/DF 0.85 0.84
(R)CCSD 0.47 0.44

(R)CCSD(T) 0.43 0.40
LiSr HF/DF 0.30 0.23

(R)CCSD 0.18 0.13
(R)CCSD(T) 0.16 0.11

NaBe HF/DF 0.09 0.12
(R)CCSD 0.70 0.76

(R)CCSD(T) 0.85 0.86
NaMg HF/DF 0.25 0.25

(R)CCSD 0.25 0.24
(R)CCSD(T) 0.31 0.30

NaCa HF/DF 0.09 0.06
(R)CCSD 0.45 0.42

(R)CCSD(T) 0.46 0.43
NaSr HF/DF 0.09 0.08

(R)CCSD 0.28 0.21
(R)CCSD(T) 0.26 0.20
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Table 4.2: Values of PDMs (in a.u.) of KBe, KMg, KCa, KSr, RbBe, RbMg, RbCa, and RbSr
molecules from the HF, DF, CCSD, RCCSD, CCSD(T), and RCCSD(T) methods.

Molecule Method Non-relativistic Relativistic

KBe HF/DF 0.33 0.32
(R)CCSD 0.58 0.57

(R)CCSD(T) 0.76 0.75
KMg HF/DF 0.47 0.46

(R)CCSD 0.25 0.24
(R)CCSD(T) 0.37 0.35

KCa HF/DF 0.05 0.08
(R)CCSD 0.66 0.61

(R)CCSD(T) 0.76 0.70
KSr HF/DF 0.16 0.13

(R)CCSD 0.57 0.44
(R)CCSD(T) 0.64 0.51

RbBe HF/DF 0.45 0.40
(R)CCSD 0.49 0.46

(R)CCSD(T) 0.69 0.64
RbMg HF/DF 0.54 0.49

(R)CCSD 0.23 0.21
(R)CCSD(T) 0.37 0.33

RbCa HF/DF 0.09 0.09
(R)CCSD 0.69 0.60

(R)CCSD(T) 0.81 0.70
RbSr HF/DF 0.04 0.14

(R)CCSD 0.60 0.50
(R)CCSD(T) 0.72 0.58
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(a) (b)

Figure 4.1: Plots demonstrating relative percentage changes in the values of µ in the Alk-AlkE
molecules due to (a) the electron correlation effects (δcorrµ ) and (b) the relativistic effects (δrelµ )
through the four-component spinfree Hamiltonian in the RCCSD(T) method. The x-axis shows
atomic number of the alkaline-earth atoms.

4.2 Methodology

We employ both the CC and RCC theories to calculate PDMs and static dipole polarizabilities of

the Alk-AlkE molecules in the FF approach. We consider both the (R)CCSD and (R)CCSD(T)

approximations to carry out these calculations.

We have used the equilibrium bond-lengths of the Alk-AlkE molecules from Ref. [6], where

the authors had employed the MRCI method to obtain the ground state energies of the chosen

molecules, and obtained the equilibrium bond-lengths from the minima of the corresponding

PECs. For lighter elements (Li, Be, Na, Mg), we used correlation-consistent polarized core-

valance quadruple zeta (cc-pCVQZ) basis sets [7, 8], and for the heavier ones (K, Ca, Rb, Sr),

we used Dyall’s quadruple zeta (QZ) [9] basis functions. We chose a reasonably small static

electric field perturbation parameter ϵ = 10−4 a.u. for the property calculations. For the

reduction of computational cost, at both the (R)CCSD and (R)CCSD(T) levels, we have cut-off

virtual orbitals having energies greater than 1000 a.u. for the relatively heavier molecules (NaSr,

KSr, RbBe, RbMg, RbCa and RbSr). All the computations were carried out using the DIRAC

program [10].
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Table 4.3: Values of different components of the electric dipole polarizabilities (α∥ and α⊥) as
well as average polarizability (ᾱ) and polarizability anisotropy (∆α) of LiBe, LiMg, LiCa, LiSr,
NaBe, NaMg, NaCa, and NaSr molecules from the HF, DF, CCSD, RCCSD, CCSD(T), and
RCCSD(T) methods. All units are in a.u..

Non-relativistic Relativistic

Molecule Method α∥ α⊥ ᾱ ∆α α∥ α⊥ ᾱ ∆α

LiBe HF/DF 211.36 88.52 129.46 122.84 212.06 88.56 129.73 123.5
(R)CCSD 373.58 111.54 198.87 262.04 374.13 111.6 199.11 262.53
(R)CCSD(T) 376.55 114.42 201.78 262.13 376.9 114.12 201.91 262.48

LiMg HF/DF 557.42 197.55 317.51 359.87 553.14 197.66 316.15 355.48
(R)CCSD 497.42 169.19 278.6 328.23 495.95 169.37 278.23 326.58
(R)CCSD(T) 481.64 166.64 271.64 315 480.63 166.84 271.44 313.79

LiCa HF/DF 445.36 252.82 317 192.54 455.26 250.32 318.63 204.94
(R)CCSD 559.03 231.68 340.8 327.35 563.01 229.97 340.98 333.04
(R)CCSD(T) 580.16 229.88 346.64 350.28 584.28 228.08 346.81 356.2

LiSr HF/DF 504.27 332.4 389.69 171.87 464.91 296.6 352.7 168.31
(R)CCSD 597.14 283.13 387.8 314.01 560.36 268.63 365.78 291.73
(R)CCSD(T) 622.61 276.08 391.59 346.53 620.03 268.5 385.68 351.53

NaBe HF/DF 532.87 153.96 280.26 378.91 536.96 147.47 277.3 389.49
(R)CCSD 396.7 144.08 228.27 252.62 402.3 140.48 227.75 261.82
(R)CCSD(T) 390.48 137.79 222.02 252.69 392.99 140.2 224.46 252.79

NaMg HF/DF 490.11 220.49 310.36 269.62 485.25 219.52 308.1 265.73
(R)CCSD 446.77 186.06 272.96 260.71 442.72 185.37 271.15 257.35
(R)CCSD(T) 441.11 183.04 269.06 258.07 437.29 182.39 267.36 254.9

NaCa HF/DF 743.08 276.5 432.03 466.58 730.78 274.73 426.75 456.05
(R)CCSD 605.78 246.26 366.1 359.52 600.19 245.06 363.44 355.13
(R)CCSD(T) 590.94 243.6 359.38 347.34 585.93 242.25 356.81 343.68

NaSr HF/DF 816.5 325.57 489.21 490.93 784.82 316.82 472.82 468
(R)CCSD 666.07 299.65 421.79 366.42 648.63 284.99 406.2 363.64
(R)CCSD(T) 652.97 296.04 415.02 356.93 636.1 280.9 399.3 355.2
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Table 4.4: Values of different components of the electric dipole polarizabilities (α∥ and α⊥) as
well as average polarizability (ᾱ) and polarizability anisotropy (∆α) of KBe, KMg, KCa, KSr,
RbBe, RbMg, RbCa, and RbSr molecules from the HF, DF, CCSD, RCCSD, CCSD(T), and
RCCSD(T) methods. All units are in a.u..

Non-relativistic Relativistic

Molecule Method α∥ α⊥ ᾱ ∆α α∥ α⊥ ᾱ ∆α

KBe HF/DF 763.69 433.35 543.46 330.34 745.42 424.52 531.49 329.9
(R)CCSD 646.62 276.35 399.77 370.27 628.81 271.91 390.88 356.9
(R)CCSD(T) 638.91 250.30 379.84 388.61 621.5 246.63 371.59 374.87

KMg HF/DF 764.42 451.98 555.86 312.84 749.44 443.96 545.79 305.48
(R)CCSD 671.65 315.14 433.98 356.51 657.19 310.20 425.86 346.99
(R)CCSD(T) 658.97 295.79 416.85 363.18 644.47 291.31 409.03 353.16

KCa HF/DF 1209.95 462.82 711.86 747.13 1171.9 468.66 703.07 703.24
(R)CCSD 956.7 347.2 550.37 609.5 931.75 350.76 544.42 580.99
(R)CCSD(T) 909.43 330.71 523.62 578.72 888.38 334.4 519.06 553.98

KSr HF/DF 1339.52 505.45 783.47 834.07 1249.65 498.21 748.69 751.44
(R)CCSD 1026.44 388.06 600.85 638.38 975.42 387.44 583.43 587.98
(R)CCSD(T) 971.74 372.68 572.37 599.06 928.23 372.13 557.5 556.1

RbBe HF/DF 819.56 554.86 643.09 264.7 773.14 507.91 576.32 265.23
(R)CCSD 697.67 333.56 454.93 364.11 648.61 312.05 424.24 336.56
(R)CCSD(T) 692.69 295.05 427.6 397.64 644.08 278.14 400.12 365.94

RbMg HF/DF 862.3 567.18 665.55 295.12 806.75 523.44 617.88 283.31
(R)CCSD 740.42 366.43 491.09 373.99 684.47 343.39 457.08 341.08
(R)CCSD(T) 720.48 335.83 464.05 384.65 667.39 316.44 433.42 350.95

RbCa HF/DF 1372.88 567.82 836.17 805.06 1260.82 533.44 775.9 727.38
(R)CCSD 1072.62 393.68 619.99 678.94 986.42 380.38 582.39 606.04
(R)CCSD(T) 1015.59 368.26 584.04 647.33 939.92 357.71 551.78 582.21

RbSr HF/DF 1526.59 599.47 908.51 927.12 1349.35 562.62 824.86 786.73
(R)CCSD 1150.27 438.2 675.56 712.07 1027.13 407.66 614.25 619.77
(R)CCSD(T) 1080.95 414.26 636.49 666.69 970.25 385.59 580.48 584.66
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4.3 Results and discussion

We investigate the trends of relativistic effects as well as electron correlation effects by analyzing

results from the HF/DF, (R)CCSD and (R)CCSD(T) methods in the undertaken properties of

the Alk-atom family-wise. Which means is that, for example, Li-family refers to LiX molecules,

where X could be Be, Mg, Ca, or Sr atom. The rationale behind categorizing the chosen

molecules as families rather than looking for trends based on electron number is due to the fact

that two molecules that are next to each other in the periodic table can display very dissimilar

trends, since one molecule may contain a combination of light-heavy nuclei, while the other

could contain moderate-moderate combination of nuclei. There is no particularly strong reason

to provide our results based on Alk-atom family rather than AlkE-atom family, and therefore

when certain trends are easier to see with the latter, we have appropriately discussed them in the

main text. For the purpose of analyzing the trends, we use two quantities in the subsequent sub-

sections – one for correlation effects and the other for relativistic ones. For the former, we define

δcorrP =
(

P(R)CC−PDF/HF

PDF/HF
× 100

)
that signifies the relative percentage of correlation contributions

to the property, P . For the latter, we define δrelP =
(

PRel−PNR

PNR
× 100

)
.

4.3.1 Results for PDMs

In Table 4.1, we present the values of PDM for all the considered systems from both the NR

and Rel calculations. To demonstrate the roles of electron correlation effects explicitly, we give

values from the HF/DF, (R)CCSD, and (R)CCSD(T) methods for all the molecules. We observe

from the table that electron correlation effects play significant roles in determining the quality

of the final values. These effects are largest in the RCCSD(T) values for NaCa (where the

percentage fraction correlation is about 620), KCa (775), and RbCa (680). In the LiX family,

the magnitudes of the PDM decrease gradually from the HF method to the CCSD(T) method,

except in the case of LiMg, which shows the opposite behaviour. However, this trend changes for

NaX family, where the values increase from the HF method to the CCSD(T) method, with two

exceptions – NaSr, where the PDM increases from HF to CCSD, but decreases slightly (within

error margins) in the CCSD(T) method, and NaMg, where the relativistic results decrease ever

so slightly (again within error margins) from the HF to CCSD methods, and then show a clear
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(a) (b)

Figure 4.2: Schematic figures showing relative percentage changes in (a) the ᾱ values and (b) the
∆α values of the Alk-AlkE molecules due to the electron correlation effects at the RCCSD(T)
method. The values in y-axis are given in % while x-axis shows atomic number of the alkaline-
earth atom for a given alkali atom family.

increase in the magnitude of the PDM. For both the KX and RbX families, the values increase

from the HF method to the CCSD(T) method gradually, except for KMg and RbMg. In a nut-

shell, for non-Mg containing molecules, we observe from our results for PDM that except for the

lightest Li family, where correlation effects decrease the PDM, the general tendency of electron

correlation is to increase the value of the property. For those chosen molecules that contain Mg,

correlation effects increase the PDM in the lighter Li and Na families, whereas for the heavier

K and Rb families, correlation decreases the PDM. Fig. 4.1(a), which plots the related quantity,

δcorrµ for the relativistic case for the four families, shows these observed trends. An interesting

observation that arises from the distribution of δcorrµ for the Mg family in the figure is that

|µcorr/µHF | is almost a constant, especially relative to the same quantity for the other families.

Having discussed trends of correlation effects, we now compare the results for PDMs between

the non-relativistic and relativistic methods, from the data presented in Table 4.1, Table 4.2

and Fig. 4.1(b), with the figure plotting percentage fraction difference due to relativity at the

(R)CCSD(T) level of theory. The first observation that we can draw from our results is that the

effect of relativity is usually small in the evaluation of PDM values in most of the cases. The only

exceptions are the lightest LiBe, where there is practically no difference between NR and Rel
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(a) (b)

Figure 4.3: Schematic figures showing relative percentage changes in (a) δrelᾱ , and (b) δrel∆α in the
Alk-AlkE molecules using the RCCSD(T) method. The x-axis provides atomic number of the
alkaline-earth atom, as in the previous figure.

values, and NaBe, where relativistic effects are around 1 percent. This is reflected in Fig. 4.1(b),

where for each of the families, the slope is negative. The figure also shows that in each family,

the importance of relativity increases with the atomic number of the AlkE atom. However, the

rate of change is non-trivial, with crossings observed between families. We also note that the

importance of relativistic effects is most pronounced in the heaviest molecules considered of each

family, with the PDM of LiSr changing the most with the inclusion of relativistic effects (31

percent). In summary, while the PDM is lowered when one switches to a relativistic framework

from a non-relativistic one, the degree to which the quantity decreases increases with the atomic

number of a given AlkE atom. Note that this is not directly obvious visually from Fig. 4.1(b),

since the x-axis is not linear.

Relativistic effects impact the results both at the mean-field level and after inclusion of cor-

relation effects in the RCC theory. In the former, we see that relativity accounts for as much as

250 percent for RbSr, but also note that this is an exception; they are at most about 33 percent

in the the rest of the molecules. In the correlation sector, inclusion of relativity can decrease the

correlation value by as large as 35 percent for RbSr.
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4.3.2 Results for polarizabilities

In Tables 4.3 and 4.4, we present values of α∥, α⊥, ᾱ, and ∆α, both from NR and Rel calcu-

lations, and in each of these cases, we provide results at the mean-field, CCSD, and CCSD(T)

levels of theory. We note that the individual values as well as the trends for ᾱ and ∆α are

obviously influenced by those in α∥ and α⊥. Therefore, in view of the former two quantities

being the ones that are obtained in experiment, we focus on the individual values and trends of

these properties. Otherwise, the discussion of the flow of results in this sub-section will be very

similar to that from the previous one.

We begin with a discussion on correlation effects, based on data from Table 4.3, Table 4.4

and Fig. 4.2. We expect the trends in polarizabilities to be at least somewhat different from

those in PDMs not only because the quantities are intrinsically different, but also because the

stress would not be on α∥ and α⊥, but rather on ᾱ and ∆α. We observe that electron correlation

influences the results significantly, with the largest percentage fraction difference between the

RCCSD(T) and DF results occurring for the lightest LiBe molecule (about 60 percent for ᾱ and

about 110 percent for ∆α). However, it is not as striking as in the case of PDMs, where we

encountered changes as large as about 775 percent. Trend-wise, the plots in sub-figures 2(a) and

2(b) display an almost monotonic trend for each of the families, with the molecules containing Be

in each family being an exception, unlike in the case of PDMs. Note that in the non-relativistic

case, the correlation trends are similar for ∆α, but are slightly different in the case of ᾱ. One

can also observe from sub-figures 2(a) and 2(b) that with the exception of the Li family, the

correlation trends vary relatively mildly for the rest of the families for ᾱ, whereas for ∆α, we see

more variation. This indicates that accurate determination of the values of ∆α for the Alk-AlkE

systems would be more sensitive to proper inclusion of the electron correlation effects. We ob-

serve similar signs of the peculiarity seen in the Mg family of Fig. 4.1 in our relativistic results,

and in this case, we find that |∆αcorr/∆αHF | varies within around 30 percent, which is not small

but still significantly smaller relative to other families. The same quantity constructed for ᾱ

also varies within 30 percent across the Mg family, which is again much less than the maximum

variation seen in each of the other families. To summarize, we find that correlation effects play
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a very important role in determining ᾱ and ∆α, but not as extreme as in the case of PDMs.

We also observe that the trends for both ᾱ and ∆α are smoother than the trend found for the

PDMs. Lastly, we see a similar behaviour in |Pcorr/PHF | for the Mg family as it was for PDMs.

We now turn our attention to the importance of relativistic effects in polarizabilities. From

Fig. 4.3(a), we immediately notice that the effect of relativity decreases the value of ᾱ in each

of the families, with the Li family being an exception. On the other hand, relativity increases

the value of ∆α for six out of the sixteen systems considered (see Fig. 4.3(b)). The trends are

a reflection of those in α∥ and α⊥, as ᾱ involves a sum of these quantities, while ∆α is con-

structed from the differences among them. When we compare the importance of relativistic and

correlation effects, we find that while the former can be as large as 10 percent and therefore not

negligible in their own right, the latter is more pronounced, and is as large as 120 percent for

LiBe. Thus, the relativistic trends in ᾱ and ∆α are not as clear as in the case of PDM, and

relativistic effects are not as dominant as correlation effects, while being non-negligible.

4.3.3 Reliability tests of the results

In order to present our recommended values along with their uncertainties from our calculations,

we first assess the reliability of our results in the form of multiple precision checks. The precision

of a calculation would depend on the choice of approximations in the Hamiltonian and the wave

functions. The choice of wave function entails selecting the single particle basis as well as the

quantum many-body theory to employ. Further, since we adopt the FF approach, we also need

to check the dependence of the precision in our results on the choice of perturbing parameter.

We will address each of these aspects very briefly in the next few paragraphs, in order to arrive

at a reasonable estimate for the recommended values of the properties for the chosen molecules.

Note that choosing a better stencil than our simplest central difference scheme would have little

effect on results given that the perturbing parameter, ϵ, is already small. For carrying out these

reliability tests, we choose three representative systems, which include the lightest LiBe, the

slightly heavier KBe, and the moderately heavy RbBe. In view of the steep computational cost,
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Table 4.5: The values of PDM and parallel components of polarizabilities of the LiBe, KBe, and
RbBe molecules using different approximations in Hamiltonian from the RCCSD(T) method.
All units are in a.u..

Molecule µ α∥

Dirac-Coulomb

LiBe 1.33 376.96
KBe 0.75 621.64
RbBe 0.64 644.01

4-component spinfree

LiBe 1.33 376.9
KBe 0.75 621.5
RbBe 0.64 644.08

Spinfree-X2C

LiBe 1.32 376.86
KBe 0.75 621.76
RbBe 0.64 644.58

DKH2

LiBe 1.32 376.99
KBe 0.72 620.31
RbBe 0.64 644.87

Non-relativistic

LiBe 1.32 376.55
KBe 0.76 638.91
RbBe 0.69 692.69
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Table 4.6: The values of PDM and polarizability of four representative molecules (LiBe, KBe,
RbBe, and RbSr) with basis sets of increasing cardinal number (DZ to QZ) in the RCCSD(T)
method, and with the four-component spinfree relativistic Hamiltonian. We also give results
from a CBS extrapolation scheme. All units are in a.u..

Molecule Basis µ α∥ α⊥ ᾱ ∆α

LiBe DZ 1.1 387.33 114.73 205.6 272.6
TZ 1.27 378.12 114.06 202.08 264.06
QZ 1.33 376.9 114.12 201.91 262.48
CBS 1.37 376.01 114.69 201.8 261.32

KBe DZ 0.35 555.73 257.82 357.12 297.91
TZ 0.65 608.5 248.04 368.19 360.46
QZ 0.75 621.5 246.63 371.59 374.87
CBS 0.81 630.99 245.6 374.06 385.39

RbBe DZ 0.27 577.9 289.86 385.87 288.04
TZ 0.55 627.78 279.22 395.41 348.56
QZ 0.64 644.08 278.14 400.12 365.94
CBS 0.71 655.97 277.34 403.55 378.63

RbSr DZ 0.26 915.82 387.95 563.91 527.87
TZ 0.52 957.48 384.35 575.39 573.13
QZ 0.58 970.25 385.59 580.48 584.66
CBS 0.62 979.56 386.49 584.18 593.07

134



we did not choose the heavier systems for reliability tests.

The first of our precision checks is on the influence of the choice of Hamiltonian. For this

analysis, we assume that our RCCSD(T) values are the more accurate results compared to those

from the RCCSD method due to the fact that the former takes into account more physical ef-

fects. We consider a hierarchy of Hamiltonians in terms of physical effects included as well as the

resources that they consume. They include the computationally very expensive four-component

Dirac-Coulomb Hamiltonian, the four-component spinfree Hamiltonian that we used for all our

main results, an exact two-component Hamiltonian (spinfree X2C) [11], an approximate two-

component Hamiltonian (we choose second-order Douglas-Kroll-Hess [12, 13, 14] Hamiltonian

for this purpose), and finally the non-relativistic Hamiltonian. Note that the four-component

Dirac-Coulomb Hamiltonian (DCH) does not include the Coulomb integrals of the type SSSS

(where S stands for small component), but rather replaced by interatomic corrections [15, 16].

This approximation is known to be very accurate, and save lots of computational time. In spite

of this approximation, the DCH is very expensive. In view of this situation, we only test the

dependence of results on the choice of Hamiltonian for µ and α∥, and assume that the difference

in results between any two chosen Hamiltonians would be comparable for α⊥ too. The results

in Table 4.5 show that the PDM of the considered systems are practically unchanged between

the DCH and our four-component spinfree calculations. We observe a similar behaviour for α∥.

This indicates that the effect of spin-orbit coupling is negligible in these systems, and we expect

a similar behaviour to hold for the other Alk-AlkE molecules. We see that the results agree very

well with the spinfree X2C Hamiltonian. Note that spinfree X2C Hamiltonian, which is a two-

component Hamiltonian, still contains in it relativistic effects (excluding spin-orbit coupling).

We see no noteworthy deviations when we compare our results with DKH2 Hamiltonian. We

take this a step further by carrying out calculations of the PDM and α∥ for the heaviest RbSr

molecule with spinfree X2C Hamiltonian, and find that the PDM remains unchanged while α∥

changes well within 1 percent.

Another important test of reliability of our calculations is to analyze the basis set dependence

of the results. To that end, we have performed calculations using the four-component spinfree
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Table 4.7: The PDMs and dipole polarizabilities (all in atomic units) of the LiBe, KBe, and
RbBe molecules with different choices of the perturbing parameter, ϵ.

Molecule ϵ µ ᾱ ∆α

LiBe 0.00005 1.33 203.77 259.68
0.0001 1.33 201.91 262.48
0.0005 1.32 201.29 263.92

KBe 0.00005 0.75 370.42 376.64
0.0001 0.75 371.59 374.87
0.0005 0.75 372.08 372.98

RbBe 0.00005 0.64 404.22 359.91
0.0001 0.64 400.12 365.94
0.0005 0.64 399.18 366.73

relativistic Hamiltonian in the RCCSD(T) method with Dyall’s triple-zeta (TZ) and double-zeta

(DZ) basis functions. Again, we have considered LiBe, KBe and RbBe as representative mo-

lecules. Further, we carry out a two-point complete basis set (CBS) [17, 18] extrapolation with

our TZ and QZ results upto ζ = 50. We enlist the RCCSD(T) values of µ, ᾱ and ∆α using the

aforementioned basis sets in Table 4.6. The table shows that µ increases and converges system-

atically from cardinal numbers 1 through 50. However, we see a relatively strong dependence

of PDMs on basis, as the results change from QZ to the CBS limit by about 4% for LiBe, 8%

for KBe, and 11% for RbBe. We extended our analysis to the heaviest RbSr molecule in view

of this dependence being important, and found that the percentage fraction difference between

results using QZ basis and with CBS extrapolation is 7.5%. We carry out the same analysis

for polarizabilities too, and we find that the QZ basis is reasonably good, with the percentage

fraction differences between QZ and CBS extrapolation being utmost 1% for ᾱ and 4% for ∆α.

The other possible source of uncertainty in our calculation could stem from the contributions

from high-lying orbitals that are not considered to account for electron correlation effects in the

RCCSD(T) method. To carry out the calculations with the available computational resources,

we have imposed a cut-off to virtual orbitals having more than energies at 1000 a.u. for relatively

heavier systems. To get an estimate of error arising from the neglected higher virtual orbitals, we
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calculate PDMs and polarizabilities for RbBe, by considering all the generated virtual orbitals in

the QZ basis. We found that the changes in the values are insignificant and within the precision

of the present interest. This further assured us about the precision in the calculations.

We now consider the error due to the missing triple excitations in the CC method. Since

CCSD(T) is widely regarded as a gold standard for molecular property calculations, we expect

that the error due to missing triple excitations from RCCSD(T) would be much lesser than the

percentage fraction difference between the RCCSD and the RCCSD(T) values, and assume that

it would be roughly half its magnitude or lower. We find that the percentage fraction difference

between the RCCSD and the RCCSD(T) methods is at most about 6 percent for ᾱ, and is

within 7 percent for ∆α, except in the case of LiSr, where it is significant at about 17 percent.

However, for the PDM, we find that the percentage fraction difference is well over 15 percent

for some of the chosen systems, and is as large as 57 percent in the case of RbMg. We therefore

expect that while the error due to missing higher order excitations are usually reasonably small

for polarizabilities, the PDM is much more sensitive to this factor. Hence, we defer detailed

analysis to a future study and conservatively set an error estimates in the PDM as mentioned

in the beginning of this paragraph.

Another factor that needs to be taken into account in determining the precision of our results

is the dependence on the choice of ϵ. We again choose our representative molecules LiBe, KBe

and RbBe. We check the change in our results in the neighborhood of ϵ = 10−4 a.u., as shown

in Table 4.7, and find that the results are stable in that range, with negligible variation.

4.3.4 A simple empirical relation between PDM and average polar-

izability

In this subsection, we seek to explore interesting connections between µ and ᾱ just to under-

stand how both the quantities behave. Such knowledge may be useful to estimate one property

qualitatively from value of other in other molecules. Previous works have sought such empirical
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(a) (b)

(c)

Figure 4.4: (a) Plot showing the agreement between average polarizabilities calculated using
the RCCSD(T) method (in blue) and our empirical relation (in red). The dominant part of
the empirical relation is shown in green. We find that the red and the blue curves agree to
within 10 percent for each of the points, whereas the green curve deviates from the blue one for
heavier systems. The shaded background regions have been given to distinguish between families.
Sub-figures (b) and (c) show the same plots, but for alkali-alkali molecules and alkaline-earth–
monofluorides, respectively. The RCCSD(T) values of PDM and ᾱ given in sub-figure (b) were
taken from our previous work [19], whereas the ab initio values of PDM and ᾱ in sub-figure (c)
were taken from Ref. [20] and Ref. [21], respectively.
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Table 4.8: The estimated ᾱ values (in a.u.) of the considered Alk-AlkE molecules using the
empirical relation given by Eq. (4.1). In the table, the entry in the first row and third column
of the results, for example, corresponds to LiCa.

Alk
AlkE

Be Mg Ca Sr

Li 218.41 250.69 348.71 374.54
Na 216.81 250.82 353.17 386.97
K 344.42 381.07 495.26 544.84
Rb 375.47 412.58 527.57 583.29

relationships, but they usually give complicated functions; for example, the authors in Ref. [6]

find such a function connecting PDM and average atomic polarizabilities. We intend to find

a relatively simple relation, ᾱ = f(µ, ZAlk, ZAlkE, ᾱat), whose predictions for ᾱ should agree

reasonably well with our RCCSD(T) results. Here, ZAlk and ZAlkE are the atomic numbers

of the alkali and alkaline earth atoms, and ᾱat is the average atomic polarizability, given by

ᾱat = (αZAlk
+ αZAlkE

)/2. We find that ᾱ predicted by the empirical relation

ᾱ = [aᾱat + πln(ZAlk) + bµZAlkE]/c, (4.1)

with a = 2, b = 2.5, and c = 1. This agrees reasonably well with our RCCSD(T) results of ᾱ.

We note that the dominant contribution comes from the first term, that is, the term containing

average atomic polarizability. However, as Fig. 4.4(a) shows, using just the first term does not

reproduce the RCCSD(T) results for ᾱ well for heavier systems in each family. The next two

terms play an important role in improving the predictability of the empirical relation. Within

those two terms, the result is not strongly influenced by the term containing the atomic number

of the alkali atom, owing to the log dependence. An interesting occurrence in the expression is

the presence of π. We have used the ᾱat values from Ref. [22] in our analyses. In Table 4.8, we

have listed ᾱ estimated using the above relation. By comparing these results with the corres-

ponding values from Table 4.3 and Table 4.4 it is clear that the relation predicts ᾱ well within

10 percent of the RCCSD(T) values. It is worth commenting at this point that we have made

a conscious choice to exclude the dependence of the function on electronegativity differences,

as the PDMs that we obtained do not follow the straightforward and simplistic dependence on
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Table 4.9: Our final recommended results for µ, α∥, α⊥, ᾱ, and ∆α of LiBe, LiMg, LiCa, LiSr,
NaBe, NaMg, NaCa, and NaSr from the RCCSD(T) calculations, along with the estimated
uncertainties that are quoted in the parentheses. We have also compared our results with the
previously reported values using the MRCI and CCSD(T) methods. ᾱ and ∆α are rounded-off
to the nearest whole number, given that fact that they have large values. All the results are
given in a.u..

Molecule µ α∥ α⊥ ᾱ ∆α Method Reference

LiBe 1.33(18) 376.9 114.12 202(3) 263(11)RCCSD(T)This work
1.32 376.55 114.42 201.78 262.13 CCSD(T) This work
1.36 365 MRCI [6]

LiMg 0.40(7) 480.63 166.84 271(6) 314(19)RCCSD(T)This work
0.41 481.64 166.64 271.64 315 CCSD(T) This work
0.46 470 MRCI [6]

LiCa 0.40(6) 584.28 228.08 347(6) 356(26)RCCSD(T)This work
0.43 580.16 229.88 346.64 350.28 CCSD(T) This work
0.43 594 230 352 364 CCSD(T) [5]
0.47 588 MRCI [6]

LiSr 0.11(2) 620.03 268.5 386(14) 352(44)RCCSD(T)This work
0.16 622.61 276.08 391.59 346.53 CCSD(T) This work
0.12 621 271 395 372 CCSD(T) [5]
0.11 653 MRCI [6]

NaBe 0.86(15) 392.99 140.2 224(4) 253(15)RCCSD(T)This work
0.85 390.48 137.79 222.02 252.69 CCSD(T) This work
0.92 397 MRCI [6]

NaMg 0.30(7) 437.29 182.39 267(5) 255(11)RCCSD(T)This work
0.31 441.11 183.04 269.06 258.07 CCSD(T) This
0.34 432 MRCI [6]

NaCa 0.43(5) 585.93 242.25 357(5) 344(27)RCCSD(T)This work
0.46 590.94 243.6 359.38 347.34 CCSD(T) This work
0.39 581 240 354 361 CCSD(T) [5]
0.46 577 MRCI [6]

NaSr 0.20(3) 636.1 280.9 399(7) 355(18)RCCSD(T)This work
0.26 652.97 296.04 415.02 356.93 CCSD(T) This work
0.19 633 281 398 352 CCSD(T) [5]
0.20 636 MRCI [6]
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Table 4.10: Our final recommended results for µ, α∥, α⊥, ᾱ, and ∆α of KBe, KMg, KCa, KSr,
RbBe, RbMg, RbCa, and RbSr from the RCCSD(T) calculations, along with the estimated
uncertainties that are quoted in the parentheses. We have also compared our results with the
previously reported values using the MRCI and CCSD(T) methods. ᾱ and ∆α are rounded-off
to the nearest whole number, given their large values. All the results are given in a.u..

Molecule µ α∥ α⊥ ᾱ ∆α Method Reference

KBe 0.75(20) 621.5 246.63 372(13) 375(24)RCCSD(T)This work
0.76 638.91 250.30 379.84 388.61 CCSD(T) This work
0.87 628 MRCI [6]

KMg 0.35(12) 644.47 291.31 409(12) 353(17)RCCSD(T)This work
0.37 658.97 295.79 416.85 363.18 CCSD(T) This work
0.42 656 MRCI [6]

KCa 0.70(13) 888.38 334.4 519(17) 554(36)RCCSD(T)This work
0.76 909.43 330.71 523.62 578.72 CCSD(T) This work
0.64 892 326 515 566 CCSD(T) [5]
0.83 869 MRCI [6]

KSr 0.51(10) 928.23 372.13 558(18) 556(38)RCCSD(T)This work
0.64 971.74 372.68 572.37 599.06 CCSD(T) This work
0.50 942 367 559 574 CCSD(T) [5]
0.60 925 MRCI [6]

RbBe 0.64(20) 644.08 278.14 400(15) 366(29)RCCSD(T)This work
0.69 692.69 295.05 427.6 397.64 CCSD(T) This work
0.78 631 MRCI [6]

RbMg 0.33(13) 667.39 316.44 433(16) 351(19)RCCSD(T)This work
0.37 720.48 335.83 464.05 384.65 CCSD(T) This work
0.41 664 MRCI [6]

RbCa 0.70(14) 939.92 357.71 552(20) 582(35)RCCSD(T)This work
0.81 1015.59 368.26 584.04 647.33 CCSD(T) This work
0.68 961 357 558 604 CCSD(T) [5]
0.86 922 MRCI [6]

RbSr 0.58(11) 970.25 385.59 581(22) 585(41)RCCSD(T)This work
0.72 1080.95 414.26 636.49 666.69 CCSD(T) This work
0.55 1009 394 599 615 CCSD(T) [5]
0.64 972 MRCI [6]
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electronegativity differences.

We take the applicability of the empirical relation a step further, and check if we can repro-

duce the correct value of molecular polarizability of LiBa, given its PDM. For this purpose, we

use the RCCSD(T) results for the PDM, and find that the average polarizability thus obtained

using our empirical relation (459.09 a.u.) matches remarkably well with the RCCSD(T) result

for the same quantity (443.69 a.u.), to within 4 percent.

Lastly, we check if the functional form given in Eq. (4.1) can reliably predict ᾱs for at least a

few other diatomic molecules. For this purpose, we choose two other systems that find important

applications, heteronuclear Alk-Alk (see Fig. 4.4(b)) and AlkE-F (see Fig. 4.4(c)) molecules. For

the former, the empirical relation that agrees reasonably well (within 15 percent) with results

from RCCSD(T) calculations (both PDM and ᾱ have been taken from Ref. [19]) is with a = 1.5,

b = 2.5, and c = 1. i.e.

ᾱ = 1.5ᾱat + πln(ZAlk1) + 2.5µZAlk2. (4.2)

Here, Alk2 can be Li, Na, K, or Rb. For a given Alk2, Alk1 is either Li, Na, K, or Rb. We

also test the quality of the results obtained from the above mentioned equation for homonuclear

alkali-alkali molecules. We borrow the values of average polarizabilities from Deiglmayr et al [23]

for comparison, and find that Eq. (4.2) gives results that are in reasonable agreement (within

10 percent, except in the case of Li2, which gives 20 percent).

A similar empirical equation is found to give reasonably good agreement (within 15 percent)

with ab initio theory for AlkE-F molecules when a = 2, b = 2.5, and c = 2. i.e.

ᾱ = [2ᾱat + πln(ZF ) + 2.5µZAlkE]/2. (4.3)
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For this purpose, we chose the PDMs from our previous work [20], and ᾱs from Ref. [21].

The former work uses RCCSD method, while the latter employs Kramers Restricted CI (KRCI)

method. It is worth noting that in spite of the values of µ and ᾱ being taken from different

relativistic many-body methods, the empirical data generated from Eq. (4.3) agrees well with

theory. This is not very surprising, as the KRCI results for the PDMs agree well with the

corresponding RCCSD results for these systems. The causes behind the seemingly unreasonable

effectiveness of the simple functional form based on Eq. (4.1) are unclear, and future studies

on these aspects with more systems may shed light on the rationale behind these observations.

Nonetheless, we assume that ᾱ of other heavier Alk-AlkE molecules, which are not considered

here, will obey our above suggested empirical relation.

4.3.5 Recommended values

After performing the reliability test of our results and finding out possible uncertainties in their

evaluation using the RCCSD(T) method, we would like to provide now their final values for their

possible applications in the future. From the above discussions, it is clear that the uncertainties

to our calculated values of µ, ᾱ and ∆α come mainly from the dependence on basis functions

and missing higher order CC excitations. From our CBS extrapolation results in an earlier

section, we conservatively assign a maximum uncertainty in the PDMs of about 11%, about

1% uncertainties to ᾱ, and about 4% to ∆α. The uncertainties due to the neglected electron

correlation effects are calculated for each of the molecules and are added linearly to the error

arising from incompleteness of basis, and are quoted in Table 4.9 and Table 4.10 in brackets

next to our recommended values, which are our RCCSD(T) results. In the same table, we also

give the previously calculated values of some of the above quantities that are obtained using the

MRCI method [6] and non-relativistic CCSD(T) method [5]. Our RCCSD(T) values and the

MRCI values for the PDMs mostly agree within our quoted uncertainties, thus reinforcing our

error estimates. It can be noted that the values of µ from the CCSD(T) calculations in Ref. [5]

differ from the present CCSD(T) results listed in Table 4.1 and Table 4.2. This may be due to

the fact that different basis functions (their ANO-RCC contracted bases versus our cc-pCVQZ

and Dyall bases) are used in both the works. Moreover, we carry out all-electron calculations,
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and we expect that to have a non-negligible bearing on the precision of our results, whereas the

authors in Ref. [5] freeze inner orbitals. We did not find any other calculations of the ᾱ and ∆α

values apart from the CCSD(T) calculations in Ref. [5].

In this chapter, we saw that our RCC calculations improved the values of PDMs and polar-

izabilities reported earlier using non-relativistic CC and other many-body methods. Therefore,

in view of the preceding and current chapters, it can be safely concluded that the RCC theory

is an accurate as well as reliable relativistic method for calculating first-order and second-order

molecular properties. This, in turn, gives us the liberty to employ the RCC theory for precise

calculations of properties pertaining to eEDM searches in the upcoming chapters.
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Chapter 5

Triatomic HgOH Molecule for EDM

Study

5.1 Introduction

This chapter and the next one are more relevant to the main objective of this thesis work. In

both the chapters, we explore the suitability of new molecular candidates for future experiments

to search for eEDM with the help of relativistic many-body calculations. In the current chapter,

we shall analyze in detail the prospects of using heavy polar mercury hydroxide (HgOH) molecule

for EDM experiment to infer the value of de more precisely.

Selection of a new molecule for an eEDM study is based on the statistical uncertainty ex-

pression mentioned in Eq. (1.38), which is the figure of merit for the suitability of a molecule for

an EDM experiment. It is evident from the expression for sensitivity that a large value of the

molecule-specific effective electric field (Eeff) promises better experimental sensitivity. Historic-

ally, it is observed that certain heavy polar molecules can possess much larger Eeff in comparison

with atoms [1, 2, 3, 4], thus making heavy polar molecules the favourable choice for EDM ex-

periments over atoms. For the past few decades, there have been tremendous developments

on both experimental and theoretical sectors in the exploration for eEDM searches using diat-

omic polar molecules. On the theoretical front, several interesting proposals have been made

to identify suitable polar molecules and molecular ions for EDM experiments, including PtH+,
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HfH+ [3], YbRb, YbCs, YbSr+, YbBa+ [5], WC [6], RaF [7], TaN [8], HgX (X=F, Cl, Br, and

I) [2], HgA (A=Li, Na, and K) [9], and RaH [10]. Among these candidates, the diatomic polar

HgX molecules have the edge in terms of possessing significantly larger Eeff than other proposed

systems. As eEDM is yet to be confirmed from the molecular EDM experiments due to very

large uncertainties associated with the measurements, further search for favourable molecules

with suppressed errors and improved sensitivity is necessary.

5.2 Why triatomic molecules?

Despite all the favourable prospects of heavy polar diatomic molecules for EDM experiments,

the quest for suitable polyatomic molecules has also begun due to several reasons. Polyatomic

molecules can offer similar advantages of a diatomic molecule, along with other features such

as full polarization with small external electric fields and the ability to gain good control over

systematic effects by exploiting their internal co-magnetometer states (low-lying opposite parity

doublets) [11]. Additionally, molecules like YbOH possess additional desirable features such

laser coolability [11, 12]. In the works [13, 14, 15, 16], it has been shown that if an EDM

experiment is conducted with a large number of YbOH molecules prepared in the low-lying

(010) vibrational state of the ground electronic state, and are trapped in an optical lattice, it

promises a sensitivity to eEDM that is four orders of magnitude better than the current best

limit obtained using the ThO molecule; albeit YbOH possesses three times smaller Eeff than ThO.

It is noted from Ref. [1, 15] that YbF and its isoelectronic triatomic counterpart YbOH have

almost comparable values of Eeff . On the other hand, HgF molecule possesses 5 times larger Eeff
than YbF. HgOH is an isoelectronic triatomic counterpart of HgF. Heuristically, one may expect

that HgOH would also possess as large an Eeff as HgF. However, studies on HgOH spectroscopy

are very limited and the molecule has not received significant attention in previous works, unlike

in the case of YbOH. In fact, we come across the mention of HgOH in literature mainly in the

realm of atmospheric physics while studying Hg removal processes in the atmosphere [17]. It

is only in this context that limited information on the geometry of the molecule and properties

exist in literature [18, 19]. However, HgOH is yet to be considered in laboratory for carrying out
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Figure 5.1: Pictorial representation of the bent geometry of the ground state of HgOH. Our
finding shows θHg−O−H = 104.83◦.

any spectroscopic measurements.

In this chapter, we scrutinize the candidature of HgOH for a future EDM experiment to infer

de with better limit, based on the aforementioned considerations. Since not much information on

the structure and/or spectroscopic properties of HgOH are available in literature, our primary

task is to find out its bond formation. Thus, we chose to optimize the ground state geometry of

the molecule by employing density functional theory (DFT), and inferred its bond-lengths and

bond angle. We then calculated Eeff and PDM of HgOH at the DF level. Next, we proceeded

to analyze the potentiality of the molecule for future EDM measurements in plausible exper-

imental conditions. This included the investigation of laser-cooling possibilities in HgOH, for

which we calculate the Franck-Condon factors (FCF) between pairs of vibrational states across

two electronic states. To serve this purpose, we optimized the geometries of higher excited states

of HgOH. The lowest vibrational level of the ground state was chosen for carrying out the pro-

posed EDM measurements.

The schematic structure of HgOH with a bent geometry that has been optimized with the
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help of potential energy curve (PEC) as depicted in Fig. 5.1. We enlist the optimized parameters

of ground state and other excited state geometries in Table 5.1. To examine the departure of the

values of µ and Eeff from a linear geometry to a bent one, we also carried out the calculations of the

aforementioned properties for a fictitious linear geometry HgOH after obtaining its equilibrium

bond-length in a linear configuration (Fig. 5.2). In Table 5.2, we show the results of µ and Eeff
calculated at different levels of theory. We inspected the contributions of different RCC terms

to the value of Eeff as given in Table 5.3. We also analyzed to see how the different AO-mixings

contribute to Eeff at the DF level as demonstrated in Table 5.4. In Table 5.5, we presented

the projected statistical sensitivity offered by HgOH in EDM experiments and compared it with

those of other theoretically proposed and experimentally considered molecules. We also extended

our study to Hg containing polyatomic molecules like HgCH3 and HgCF3, and estimated their

projected sensitivities based on our mean-field calculations.

5.3 Theory

Among the properties relevant to EDM experiments, we have already introduced Eeff in Chapter

1 of this thesis. Another relevant molecular property that is crucial in finding sensitivity of the

EDM experiment is the molecular PDM and is given by

µ =
⟨Ψ|D|Ψ⟩
⟨Ψ|Ψ⟩

, (5.1)

where D = −
∑Ne

i=1 ri +
∑Nnuc

A=1 ZArA (in atomic units (a.u.)) for the position vector ri of the i
th

electron from origin, rA is the site of the Ath nucleus, and ZA is the atomic number of the Ath

nucleus. For the sake of simplicity, we choose the oxygen atom as our origin and we work with

the BO approximation. Therefore, in the expression for PDM, rA are simply the chosen values

of bond-lengths in the molecule.
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5.4 Ground state geometry optimization

In order to obtain the aforementioned properties of HgOH, it is necessary to evaluate its many-

body wave function. In the relevant equations to be solved, the ground state equilibrium geo-

metry of the molecule is a crucial input. It includes the equilibrium bond-lengths, RHg−O and

RO−H , and the bond angle, θHg−O−H , which is the angle formed between Hg-O and O-H, as

shown in Fig. 5.1. As stated earlier, we used the DFT method in order to optimize the geometry

of the molecule. We chose the ωB97xD functional, which is known to perform well in obtaining

equilibrium geometries [20], and opted for the LANL2DZ [21, 22, 23] basis sets for Hg, while we

choose cc-pVTZ [24] functions for O and H. We performed these calculations using the Gaussian

16 software [25]. We took utmost care to avoid saddle points, and among those optimized geo-

metries without negative frequencies, we selected the equilibrium bond-lengths and bond angle

from the configuration with the lowest energy.

In order to assess the laser coolability of HgOH, we also optimized three excited electronic

states. We used time-dependent DFT for the excited state optimizations. We then calculated

the FCFs using the parallel approximation between the ground state and each of the four ex-

cited electronic states. The FCF for a transition from a vibrational state |Ψv(τn)⟩ to another

vibrational state |Ψ′
v(τn)⟩ is given by

FCF = ⟨Ψ′

v(τn)|Ψv(τn)⟩, (5.2)

where the integral is taken over the nuclear coordinates (denoted by τn). We used the ezSpectrum

3.0 software [26] to calculate the FCF matrix elements for the transitions between the ground

state and the excited states. A highly diagonal FCF matrix is a good indicator of laser coolability

of a molecule.

5.5 Method of calculation

Once the equilibrium geometry was obtained, the next step was to calculate the wave function

of the ground state. In this work, we made use of the RCC theory for this purpose. In the
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previous two chapters, we had studied PDMs and electric dipole polarizabilities of the alkali

dimers and alkali–alkaline-earth metal molecules extensively to demonstrate its capability for

producing reliable results.

The Dirac-Coulomb Hamiltonian was chosen to describe the molecular interactions in this

work. We invoked the BO approximation to the total Hamiltonian to separate out the electronic

part of the Hamiltonian. We start with HgOH having a hypothetical linear geometry and

calculate the values of µ and Eeff to extrapolate from the linear one the correlation effects in

its bent counterpart. Understanding the roles of electron correlation effects in the relevant

properties of HgOH in a linear geometry using RCC theory allowed us to extrapolate values of

different properties with a bent geometry by only performing calculations using the mean-field

theory. For calculating the PEC (see Fig. 5.2) of the hypothetical linear geometry, we employed

the RCCSD(T) method. The calculation of molecular ground state energies to obtain the PEC

of the hypothetical linear HgOH was performed using the Dirac16 program [27]. In order to

reduce the computational cost, we restricted ourselves to only considering those virtual orbitals

with energies not more than 1000 a.u. The DF calculations of Eeff and µ and the AO to MO

integral transformations were carried out using the UTChem program [28, 29], while the RCCSD

calculations of the aforementioned properties were conducted on the Dirac08 software [30]. We

used here the expectation value approach (Eq. (2.219)) to calculate Eeff and µ. First, we carried

out the calculations using the RCCSD method, keeping only the terms that are linear in T and

T † (both of them are treated independently) of the expression in Eq. (2.219) and the results

from this approximation are quoted under LECC abbreviation. Then, contributions from the

non-linear terms were included using intermediate steps to obtain the final recommended RCC

values.

5.6 Results and discussion

For performing an electron EDM experiment on HgOH, it is imperative to show that it possesses

a bound ground state. Since HgOH is a triatomic molecule, its ground state geometry need not

be linear. This required us to perform geometry optimization to find out its equilibrium bond-
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Table 5.1: List of the optimized geometry of the ground electronic state and three low-lying
excited states of HgOH from various works. The unit of bond-lengths is angstrom (Å), while
that of the bond angle is degrees.

State RHg-O RO−H θHg−O−H

Ground 2.2294 0.9633 104.83

First-excited 3.1458 0.9563 180
Second-excited 2.0766 0.9615 102.5
Third-excited 3.5482 1.0095 81.93

lengths and the bond angle. We followed the procedure outlined in the previous section, and

found that the molecule has a bent structure in its ground electronic state (2A′ state), unlike in

the case of YbOH [15]. Although one may expect a metal-hydroxide molecule to be linear on

grounds of the ionic nature of its bonding, a bent structure for HgOH indicated that the bond

may possess a hint of covalent nature too, similar to the case of ZnOH [31, 32]. We determ-

ined the optimized RHg−O to be 2.2294 Åand RO−H to be 0.9633Å, with the HgOH bond angle

(θHg−O−H) being 104.83◦. These results are presented in Table 5.1, along with the optimized

values that we obtained for some of the excited states as well. Our DFT results of geometry

optimization have been obtained using the ωB97xD functional and with the LAN2LDZ basis for

Hg and cc-pVTZ basis sets for O and H.

We also determined the PEC for the hypothetical linear ground state geometry in the

RCCSD(T) method using the two-component X2C Hamiltonian [33], by varying RHg−O and

keeping fixed RO−H at 0.922 Å. Further details can be found in Ref. [34]. As described earlier,

the purpose of carrying out this exercise is to extrapolate the results from the linear geometry

calculations to the actual bent geometry of the ground state of HgOH. In principle, it is possible

to perform the RCC calculations using the bent geometry itself. However, it demands large

computational resources. As we will demonstrate later, the roles of the electron correlation ef-

fects are not significant in determining the values of Eeff and PDM (µ) of HgOH. Therefore, it

is acceptable to evaluate the results using the hypothetical linear geometry and then estimate

results for the bent geometry by scaling the RCCSD results from the linear geometry for the
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Figure 5.2: The ground electronic state PEC of the hypothetical linear geometry of HgOH
in the DF, RCCSD, and RCCSD(T) approximations using the exact two-component (X2C)
Hamiltonian, with a double-zeta basis. In the plot, R is the Hg-O bond-length. The DF energy
has been shifted by −2.9 units, in order to make it easier to compare the three curves.

purposes of present work. If necessary, more accurate calculations can be performed wif the

experiment were to be realized.

The result for our linear geometry calculation, presented in Table 5.2, gives an Eeff of 108.9

GV/cm. This value is somewhat similar to that of HgF [2], which is about 115 GV/cm. We also

note that while correlation effects account for about 9 percent in HgF, it is less than 2 percent for

HgOH in its linear geometry. This implies that it is not necessary to employ a more sophisticated

method for calculating Eeff at this stage. The PDM of HgOH is 1 D, which is much smaller than

that of HgF. This is possibly due to reasons similar to that which explains YbOH having a much

smaller PDM than YbF [15]. At the DF level of calculation (which is the dominant contribution

to the total value of Eeff), Eeff is about 3.83 times smaller than that in a hypothetical linear

geometry. This gives a scaled RCC value of 28.44 GV/cm, as compared to the DF value of 28.01

GV/cm. In contrast, the PDM value increases from the DF method to the RCC calculation.

After scaling the values from linear geometry to the bent geometry, we got its value to be 2.43

D. Comparing this value with the previous works, we find that our estimate µ value is relatively

large. This could be due to two main reasons: We have used a double-zeta (DZ) quality basis sets

[35, 36] and our calculations are based on relativistic methods whereas the previous calculations
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Table 5.2: A comparative analysis of the calculated Eeff (in GV/cm) and µ (in D) values in
HgOH by assuming its hypothetical linear and the actual bent geometry ground state using the
DF and RCCSD methods. We also give µ values from the previous calculations using DFT.

Geometry Eeff µ

DF LECC RCC DF LECC RCC

From this work
Linear 107.24 109.02 108.9 1.57 1.04 1.00
Bent 28.01 28.47† 28.44† 3.67 2.43† 2.34†

From other works
1.89 [37]
1.92 [38]
1.96 [39]

†Scaled results from the DF and LECC values of the linear geometry calculations.

were carried using non-relativistic methods. We expect that maximum error in the estimated

value of Eeff to be within 10 percent, while the error in the PDM is expected can be slightly higher.

Table 5.3 gives the contributions to Eeff and µ from each of the terms of the RCCSD method

in the LECC approximation for the linear geometry. We note that of the nine resulting terms in

the LECC approximation, OT2 and its h.c. do not contribute, due to the Slater-Condon rules.

We now discuss the contributions from different individual terms to Eeff . It can be seen from the

above table that the dominant correlation contributions come from OT1 and its h.c. terms, and

there are strong cancellations of correlations effects through different RCC terms. As a result,

there is a very small difference between the DF and RCCS values. For PDM too, OT1 term and

its h.c. gives dominant correlation contributions. There is an important difference between the

correlation contributions to Eeff and µ in that in the former quantity, they cancel out whereas in

µ, they add up to give a reduced value than the DF result.

Since the DF term contributes the most to Eeff , we intend to analyze contributions from

various single particle orbitals (especially from the heavier Hg and O atoms) to it in both the
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linear and bent geometry configurations. In our calculation, the DF value is computed by

EDF
eff = ⟨Φ0|HeEDM |Φ0⟩ (5.3)

= −4ic

NB∑
j=1

2NB∑
k=NB+1

C∗S
j CL

k ⟨χS
n,j|p2|χL

n,k⟩, (5.4)

where the summations are over large (denoted by superscript L) and small (denoted by super-

script S) component basis functions, NB is the total number of large component basis functions,

Cj and Ck are the MO coefficients, heEDM is the single particle effective eEDM Hamiltonian

operator, and χ is the atomic orbital basis function, with the subscript n denoting the singly

occupied molecular orbital. The results of this analysis are presented in Table 5.4. We have not

provided the results for terms that arise from mixings between other orbital combinations, as

they are well below error margins, and are almost zero. The table shows that the DF term is

dominated by the contributions that arise from the mixing of the s and p1/2 orbitals of Hg. The

rest of the terms almost completely cancel out in pairs. While the s and p1/2 mixing accounts

for nearly 108.14 GV/cm for the linear case, we see that it contributes only 29.30 GV/cm for

the bent geometry. We also observed that although the values of the other contributions are

different between the linear and bent cases, their differences turn out to be very similar. Thus,

the major deciding factor for the effective electric field between the linear and bent cases is the

mixing between the s and p1/2 orbitals.

We propose that the EDM experiment to be performed on the lowest vibrational level of

the ground state of HgOH. We note that in YbOH, the chosen EDM measurement state is the

low-lying (010) vibrational state of the ground electronic state. This was necessary for YbOH,

as it is in a linear geometry. The choice of a bent mode allows to make use of the closely-

spaced doublets of opposite parity as internal co-magnetometer states [11]. In such a case, there

is no need to flip the external electric field in order to perform electron EDM measurements,

and this feature, therefore, helps to avoid systematic effects associated with reversing electric

fields. Since HgOH is permanently bent in its ground electronic state unlike YbOH, it would

have these relevant parity doublets even in its ground vibrational state. We now estimate the
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Table 5.3: Contributions from the individual RCC terms to Eeff (in GV/cm), µ (in D), andWs (in
kHz) from both the linear and bent geometries of HgOH. O denotes the operator corresponding
to the properties. Note that for the PDM, the term corresponding to the DF contribution also
accounts for the nuclear contribution in it.

Term Eeff(GV/cm) µ(D)

O (DF) 107.24 1.57
OT1+h.c. 9.50 -0.42

T †
1OT1 -2.76 -0.15

T †
1OT2+h.c. -0.38 0.12

T †
2OT2 -4.58 -0.11

size of such a doublet for HgOH, which is an asymmetric top. Using the computed values for

the rotational constants, 623.56714, 6.39027, and 6.32545 (in GHz), we estimate the size of the

K-doublet [40, 41] to be 30 MHz, which is comparable to that of YbOH (∼ 10 MHz) [11].

We then conducted a preliminary survey of the possible experimental schemes for an EDM

measurement using the HgOH molecule. We began with the statistical sensitivity of an electron

EDM experiment with HgOH. If we were to propose a trap experiment, a preliminary require-

ment would be laser cooling of the molecules, as typical ‘non-perturbative’ traps are ∼ mK deep.

We used the data from Table 5.1 to calculate FCFs from the ground electronic state to each

of the four low-lying excited electronic states. We found that the diagonal FCFs are negligibly

small, thus, rendering HgOH unsuitable for a trap experiment. This result suggested us that

albeit one may naively expect HgOH to possess highly diagonal FCFs based on its isoelectronic

counterpart, HgF, it need not be the case. A possible reason for this observation may be the

presence of inner (n − 1)d orbitals, unlike in the case of YbOH. The (n − 1)d orbitals possibly

led to a strong coupling between electronic and vibrational degrees of freedom, thus, allowing

for off-diagonal excitations. However, the precise mechanism of the (n − 1)d orbitals in sub-

stantially lowering the diagonal nature of FCFs is unclear. A reasonable understanding of this

mechanism is useful for qualitatively predicting the laser coolability of other polyatomic systems

in the future.
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Table 5.4: Contributions from different atomic orbital (AO) mixing to the DF value of Eeff (in
GV/cm), where the AO in the left hand side is a small component AO and that in the right
hand side is a large component AO. Non-zero contributions may come only from odd-parity AO
mixings ⟨(AO)S1 |Ô|(AO)

L
2 ⟩, where superscript S, and L stand for small component and large

component AOs respectively. Results are given for both the linear and the actual bent geometry
HgOH molecule.

Atom AOs Linear Bent

Hg sS1/2 − pL1/2 378.40 100.11

pS1/2 − sL1/2 -270.26 -71.81

pS1/2 − dL3/2 -31.40 -8.07

dS3/2 − pL3/2 30.19 7.77

dS5/2 − fL
5/2 0.79 0.19

fS
5/2 − dL5/2 -0.78 -0.18

O sS1/2 − pL1/2 2.78 1.44

pS1/2 − sL1/2 -2.77 -1.44

We shift our focus now to a beam EDM experiment. The figure of merit for statistical

sensitivity of a beam experiment is given in Eq. (1.38). We attempted to roughly estimate the

statistical sensitivity of HgOH molecule by projecting the values of N , T , τ and η based on

some practical considerations in combination with the calculated value of Eeff . We anticipated

that the Eeff in the ground vibrational state will be very close to the calculated value in the

absolute ground state. Photoassociation of laser cooled Hg and magnetically trapped OH [42]

to produce HgOH molecules may be a possibility [2]. Based on other optimized beam sources,

we expect that we can produce 109 molecules in a single pulse for a slow beam. Assuming the

detection area of radius ∼ 1 cm to be 1 m away, and using a slow beam divergence of 1 sr, we

expect a total of ∼ 105−6 molecules. One can also increase the number of molecules by magnetic

or electrostatic guiding [43, 44]. There are also possibilities that the molecular production can

be chemically enhanced [45]. A distinct advantage over ThO is that HgOH is not limited by

radiative decay. With a slow beam [46] of buffer gas-cooled HgOH molecules, one can hope to

achieve τ ∼ 10 ms. Combining these estimates with an Eeff of 28.47 GV/cm and T ∼ 107, the

projected statistical sensitivity is about 5× 10−30 e-cm, which is an improvement over ThO, the

system that has set the current best limit for electron EDM.
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We also examined the possibility of an EDM experiment with HgOH using the EDM3 pro-

posal [47]. In this class of experiments, a molecule of interest to eEDM searches is embedded

in an inert gas matrix, while retaining the measurement schemes of a beam experiment. Since

the molecules are embedded in a matrix, one can achieve large values of N and long coherence

times, τ . Given that the molecules are already embedded, a laser cooling scheme gives no spe-

cific advantage. Since the FCFs are unfavourable for laser cooling in HgOH, we consider the

possibility of employing HgOH in an EDM3 experiment. A reasonably large PDM in its ground

state facilitates orienting the molecule in a relatively low applied electric field. Moreover, our

preliminary DFT calculations showed that HgOH possesses very large PDM of around 7 D in

an excited 2Σ state. A large difference between PDMs of the ground and an excited electronic

state offers promise in state selective detection [47]. However, from a comagnetometry point of

view, it is unclear if parity doublets can arise, in view of HgOH interacting with the inert gas

atoms in the lattice. With the possible absence of this advantage, HgOH in itself may not offer

any distinct advantage in an EDM3 experiment over HgF, although in principle, an EDM3 meas-

urement with HgOH is very much possible. HgOH may offer some advantage in a clock-state

EDM experiment [48] due to its polarizability, though the advantages of that approach would

be most notable in a trap experiment. Hence, we conclude from our preliminary survey that

a beam experiment is best suited for HgOH, given its spectroscopic properties. Moreover, we

forecast that as the co-magnetometer states in polyatomic species aid extensively in controlling

systematics, one can extract parameters from the BSM theories with very stringent constraints,

with possible combinations like YbOH and HgOH. The more the number of such systems, the

tighter the bounds. To that end, we discuss next other natural extensions of HgF and HgOH

for EDM experiments.
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Table 5.5: Comparison of measured and projected sensitivities offered by different molecules
for EDM experiments. For molecules where measurements are not available, the sensitivity is
estimated with to projected N , T , τ , and η values. The unit chosen for δde is e-cm.

Molecule δde Reference(s)

HgLi 1.3× 10−30 Ref. [9]
HgNa 2.5× 10−30 Ref. [9]
HgK 3.1× 10−30 Ref. [9]
RaH 1.63× 10−29 Ref. [10]
YbOH 2.76× 10−32 Refs. [11, 15, 56]
ThO 1.1× 10−29 Ref. [51]
HfF+ 1.3× 10−28 Ref. [52]
YbF 1.06× 10−27 Ref. [53]
HgF 6× 10−32 Ref. [54]
RaF 2.49× 10−29 Ref. [55]
HgOH 5× 10−30 This work
HgCH3 2× 10−30 This work
HgCF3 2× 10−30 This work

5.6.1 Other prospective polyatomic molecules for EDM measure-

ments

We now briefly look into two other molecular candidates that are natural extensions to HgF

and HgOH, namely HgCH3 and HgCF3. These systems are expected to preserve the features

of K-doublets, with the additional advantage that these splittings will be even smaller [11]. We

chose our geometry for HgCH3 from Refs. [49, 50]. We obtained 75.07 GV/cm for Eeff at the

DF level of theory, which is almost comparable to that of ThO, thereby giving this system an

edge over HgOH. We do not expect the effective electric field to change beyond 10 percent when

we include electron correlation effects. We found that the PDM of HgCH3 is about 0.47 D at

the DF level of theory and 0.44 D using DFT. This low value for PDM can be explained by

observing the fact that the difference in electronegativity is very less for CH3. We expect that

this issue will be alleviated when CH3 is replaced by CF3. Indeed, we observed that the value

of Eeff for HgCF3 is 60.95 GV/cm, while its PDM is 3.33 D. The projected eEDM sensitivit-

ies from HgCH3 and HgCF3 were found out to be 2×10−30 e-cm and 2×10−30 e-cm, respectively.
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Table 5.5 presents the sensitivities of several ongoing and proposed EDM experiments to

eEDM, and compares the projected sensitivities of Hg-containing polyatomics that have been

considered in this work, with them. We see immediately that the projected eEDM sensitivities

from HgOH, HgCH3, and HgCF3 are better than RaH and RaF, and comparable to mercury al-

kalis. The estimated sensitivities for HgCH3 and HgCF3 assume that they are not laser coolable.

Given the stark contrast in FCFs between HgF and HgOH, it is not inconceivable that HgCH3

and HgCF3 may offer prospects for cooling. In such a case, a trap experiment could provide

much higher sensitivities to eEDM compared to YbOH.
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Chapter 6

Theoretical and Experimental

Perspectives of Superheavy Diatomic

Molecules for Probing eEDMs

6.1 Introduction

In pursuit of searching for appropriate candidate molecules for EDM experiments, several heavy

polar molecules have been considered so far [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. In the

previous chapter, we have discussed the suitability of triatomic HgOH molecule for carrying out

an EDM experiment to infer eEDM. In this chapter, we explore the prospects of some superheavy

molecules (molecules containing superheavy atoms with atomic number ≥ 100) for future EDM

searches.

6.2 Why superheavy systems?

Paramagnetic molecules with heavy nuclei have become popular choices for EDM experiments

over atoms due to their enhanced sensitivities to eEDM. Enhancements of this type were elab-

orated in Ref. [14] from the atomic perspective, and Ref. [15] for diatomic molecular point of

view. eEDM enhancement factors (R) in heavy atoms scale as the third power of corresponding
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atomic numbers (Z) [16], such that, R = Z3R(Zα), where R(Zα) is the relativistic factor which

depends on both Z and the fine structure constant α. Therefore, nuclei with large Z are prefer-

able for high-precision EDM experiments, as the enhancement factor increases with the cubic

power of Z. With the increasing value of Z of a nucleus, relativistic effects become more prom-

inent owing to the fact that the electrons in a heavier atom move at relativistic speeds, therefore

giving rise to significant orbital deformation. The Z dependence of the sensitivity of an atom

to CP -violating nucleus-electron scalar-pseudoscalar interaction is also discussed in Ref. [17].

Based on the aforementioned rationales, it is reasonable to expect that the superheavy atoms

could offer better sensitivities to eEDM in the EDM experiments due to their large Z and highly

relativistic nature. It is also prudent to anticipate that similar advantages of a superheavy atom

will be qualitatively retained in a superheavy molecule along with other advantages. Superheavy

molecules are expected to exhibit a substantial enhancement in their effective electric field, Eeff .

Indeed, effective electric fields of CnH [18, 19], CnF [20], LrO, NoF, RfN, E120F, and E121O [21]

have been calculated, which assert the above statement. However, so far no experiment has been

conducted with superheavy systems to probe EDM. Spectroscopic results from studies of super-

heavy elements have recently been reported. In view of these developments, it is desirable to

investigate EDMs of molecules with superheavy atoms. Our experimental knowledge of such rare

molecules is in its infancy, and theoretical developments are critical to motivate and guide the

experimental progress [22, 23]. These developments motivate us to consider diatomic molecules

containing superheavy atoms for EDM studies.

6.3 Lr containing molecules

A purified single ion-beam of 256Lr, synthesized in the 249Cf (11B, 4n) reaction, has been recently

produced by using the ISOL (Isotope Separator On-Line) system at the Tandem accelerator

facility of Japan Atomic Energy Agency (JAEA) [24]. Success in producing Lr atom in experi-

ment opens up the possibility of artificial formation of Lr molecules. In this work, we focus our

studies on diatomic molecules containing Lr atoms, i.e. LrO, LrF+, and LrH+ to assess their

feasibility for EDM experiments. There are fourteen different isotopes of Lr, of which we propose

to employ 256Lr (half-life ≈ 27 s), which has been used in several studies of atomic properties.
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(a) (b) (c)

Figure 6.1: Potential energy curves (PEC) of neutral LrO (sub-figure (a)), as well as LrF+

(sub-figure (b)), and LrH+ (sub-figure (c)) molecular ions with a range of typical molecular
bond-lengths (R) using the RCCSD(T) method. The plot shows that LrO can form a stable
molecule around the equilibrium bond-length Re ≃ 3.46, while both the ions possess their minima
around Re ≃ 3.56. All the values are given in a.u..

Because of short half-lives and the low production rates, superheavy elements, including Lr, need

to be handled on a single-atom scale. We explore a possible alternative scheme to produce Lr

atoms. Our work also aims to extend the studies of molecular ions, which could enable precision

measurements with just a single molecular ion [25, 26, 27].

6.4 Theoretical aspects

At the outset, it is crucial to find if the chosen Lr molecules can form stable bound states.

At first, we calculate the PEC for each molecule and obtain Re from corresponding PEC min-

imum. After ensuing the bound state formation, we calculate µ and Eeff of the molecules using

RCC theory. A fully relativistic approach becomes especially crucial here, as theoretical calcu-

lations have predicted that the Lr atom would have a configuration different from that expec-

ted by a non-relativistic treatment, [Rn]5f 146d17s2, due to strong relativistic effects [28]. The

[Rn]5f 147s27p1/2 configuration would be most probable for the Lr atom according to the measure-

ment of the first ionization potential [24]. Since LrO, LrF+ and LrH+ have one unpaired electron

each, these molecules are sensitive to both the eEDM and nucleus-electron scalar-pseudoscalar

(S-PS) interactions [29]. Thus, these P, T -odd sources can induce energy shifts (approximated

to first order) in the ground state, as already shown in Eq. (1.45). Ws, being the analogue of Eeff ,
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Table 6.1: Calculated values of Eeff , Ws (with MA = 256) and µ for LrO, LrF+, and LrH+ using
the RCCSD method, and comparison with literature values wherever they are available. We also
compare these values with calculations of the corresponding quantities for other molecules and
atoms (see the text for further details).

Molecule Eeff Ws Ws/Eeff Ws/Eeff µ Reference
(GV/cm) (kHZ) (kHz-cm/GV) (×10−21 e-cm) (D)

LrO 258.92 2565.54 9.91 41.03 4.58 This work
250.21 2367.77 9.46 39.16 [21]
246.5 [30]

LrF+ 246.31 2445.83 9.93 41.11 12.29 This work
LrH+ 343.38 3402.36 9.91 41.03 11.05 This work
ThO 87 300.24 3.45 14.29 4.27 Ref. [2]
HgF 115.42 668.37 5.79 23.97 3.96 Ref. [8, 20]
HfF+ 22.5 49.41 2.20 9.11 [31]
YbF 23.2 100.67 4.34 17.97 3.91 [32]
Atom R S (×10−18 e-cm) S/R (×10−21 e-cm) - Reference

Cs 120.53 0.80 - 6.64 - [33, 34]
Tl 558 6.77 - 12.13 - [35]
Rb 25.74 0.11 - 4.27 - [33]
Fr 812.19 10.62 - 13.08 - [36]

Note: In the literature values given in the table for molecules, the authors use ZA in place of MA in
the definition of Ws, and we have multiplied by MA/ZA to rescale those values to be consistent with
the definition adopted in the present work.

is the quantity of theoretical interest pertaining to S-PS interactions. The expression of Ws is

described in Eq. (1.48). The calculation of Eeff and Ws, in combination with the measured value

of ∆E, can provide upper bounds on de and ks. It is worth mentioning that we only consider the

S-PS interaction involving Lr nucleus, as we expect that the major contribution to the molecular

energy shift due to S-PS interaction would come from the superheavy nucleus. Therefore, we

actually calculate Ws,Lr instead of total Ws. For the sake of brevity, we use Ws instead of Ws,Lr

throughout this work.
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6.5 Method of calculation

The PEC of the molecules are obtained from calculations of energies by varying the bond-lengths.

We calculate the molecular ground state energies using the RCCSD(T) method. Once the ground

state equilibrium geometry is obtained, we calculate wave functions of the molecules using the

Dirac-Coulomb Hamiltonian under the BO approximation. Then, we evaluate the properties of

interest, i.e. µ, Eeff , and Ws by adopting the expectation value approach in the RCCSD method.

6.6 Results and discussion

The ground electronic state energies at several bond-lengths were calculated to construct the

PEC of each molecule. We then identified the minimum of the PEC, whose corresponding bond-

length provided the molecular Re. We carried out this procedure for LrO, LrF+, and LrH+ (see

Fig. 6.1), while ensuring that for each molecule, we choose more grid points around the min-

imum, to pin-point Re to an accuracy of two decimal places in a.u.. We employed the RCCSD(T)

method, using the Dirac18 package [37, 38] to perform the calculations. We used Dyall’s triple-

zeta (TZ) v3z [39] basis sets to generate the single particle orbital wave functions. For reducing

the computational requirements with little loss in accuracy, we cut-off the high-lying virtual

orbitals with energies above 2000 a.u.. The value of Re for LrO was found to be 3.46 a.u., while

that of LrF+, and LrH+ were found to be 3.56 a.u.. The PEC of each of the molecule exhibited

a smooth trend with a clear global minimum (see Fig. 6.1).

After finding the equilibrium bond-lengths of the investigated molecules, we calculated other

properties of interest. For this purpose, we used Dyall’s quadruple-zeta (QZ) v4z [39] basis sets.

We employed the UTChem [40, 41] package for the DF calculations and for atomic orbital to

molecular orbital integral transformations, and in tandem, use the Dirac08 package for RCC

calculations [42]. We finally used our expectation value code to evaluate the values of the prop-

erties [43]. We present the calculated values of Eeff , Ws, their ratios, and µ of LrO, LrF+, and

LrH+ from the DF and RCCSD methods in Table 6.1. We also compare our results for LrO

with the only available values in literature from Refs. [21, 30]. In Ref. [21], the authors had
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Table 6.2: Contributions from the individual terms of the expectation value expression in the
RCCSD method to Eeff , Ws and µ for LrO, LrF+, and LrH+. The table shows the trends in
different contributions between Eeff and Ws.

Term Eeff (GV/cm) Ws (kHz) µ (D)

LrO LrF+ LrH+ LrO LrF+ LrH+ LrO LrF+ LrH+

O 235.16 215.20 283.59 2346.95 2149.75 2821.54 −898.40 −828.32 −919.79
OT1+h.c. 65.02 35.52 76.06 632.20 348.28 746.75 −1.62 −0.56 −0.72

T †
1OT1 −26.28 −2.24 −9.56 −262.64 −22.42 −96.71 −0.59 −0.09 −0.14

T †
1OT2+h.c. −8.11 −2.87 0.95 −82.72 −29.38 −81.92 0.58 0.14 0.12

T †
2OT2 −8.54 −1.70 −8.21 −85.57 −17.05 9.27 −0.48 −0.14 −0.14

Others 1.67 2.4 −0.45 17.32 16.65 3.43 −0.44 0.08 0.02
Nuclear term − − − − − − 905.56 841.27 931.73

Total 258.92 246.31 343.38 2565.54 2445.83 3402.36 4.58 12.29 11.05

used (37s, 34p, 14d, and 9f) uncontracted Gaussian type functions for Lr, and a decontracted

atomic natural orbital (ANO) basis set of TZ quality for O. They performed their calculations

by employing complex generalised Hartree-Fock (cGHF) as well as complex generalised Kohn-

Sham (cGKS) theories. They obtained an Re of 3.51 a.u. and 3.53 a.u. with cGHF and the

cGKS approaches, respectively, which is in reasonably close proximity to our estimated value of

3.46 a.u.. The value of Eeff using cGHF method came out to be 322.58 GV/cm, while the cGKS

method yielded 250.21 GV/cm. Our calculation, using the RCCSD method and with Dyall’s

QZ bases for Lr: (37s, 34p, 24d, and 14f) and O: (18s and 10p), give an Eeff of 258.92 GV/cm,

which is in better agreement with their results from the cGKS method than the cGHF approach.

In Ref. [30], the authors used analytic first derivatives for X2C (exact 2-component) CCSD

and CCSD(T) methods, and employed TZ quality basis sets. Further, they froze several of the

occupied orbitals in their computations, and obtain an effective electric field of 263.9 GV/cm

with CCSD and 246.5 GV/cm with the CCSD(T) approaches. Although their CCSD results

are in reasonable agreement with our CCSD results obtained using all-electron fully relativistic

CCSD calculations and with a QZ basis, it could be fortuitous. This is evident from the dis-

agreement in the correlation trends in Ref. [30], where the DF result is greater than that CCSD
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counterpart. In Table 6.1, we have also compared our results with the corresponding values of

ThO, where the most accurate EDM measurement is available, and HgF, which possesses the

largest Eeff estimated thus far for non-superheavy systems. The Lr molecules were found to have

values of Eeff that are 3-4 times larger than ThO and HgF [2, 8]. Similarly, the values of Ws for

LrO and LrF+ were found to be about 4 times larger than that for HgF. The table also provides

the values for these quantities for other leading candidates, HfF+ and YbF [31, 32]. Table 6.1

also provides data on the ratio of Ws and Eeff . The significance of the quantity is related to

the fact that one needs to perform two experiments to extract both the electron EDM and the

S-PS interaction, as seen from Eq. (1.45). We have also presented R, S, and their ratios for

the leading atomic candidates, Cs, Tl, Rb, and Fr in Table 6.1 [33, 34, 35, 36] from the literature.

In Table 6.2, we present contributions to the values of Eeff , Ws and µ for LrO, LrF+, and

LrH+ from different terms of the RCCSD method, given in Eq. (2.219). The first term cor-

responds to the DF value, while other terms represent correlation contributions. As the table

shows, OT1+h.c. terms contribute the most to the correlation effects. We note at this point

that OT1 primarily contains in it correlation effects arising from interaction of pairs of electrons.

T †
1OT1 also contains effects involving pairs of electrons, but the interplay between the EDM

and Coulomb interactions are more complex. The next leading-order contributions arise from

T †
1OT1. Albeit the terms related to T2 operator give comparatively small contributions, they are

non-negligible. In fact, for LrO, a sizeable amount of the contributions from OT1+h.c. terms are

cancelled out by the other terms that are linear in T . The row denoted as ‘Others’ show that

the non-linear terms are negligible even for the considered superheavy systems. Comparisons

between the ratios of the magnitudes of OT1+h.c. and DF values of Eeff ,Ws, and µ in LrO, which

come out to be ≈ 0.28, ≈ 0.27 and ≈ 0.23, respectively, indicate that the electron correlation

effects are almost equally important in all these quantities. Similarly, for Eeff , Ws, and µ, we

find these ratios as ≈ 0.16, ≈ 0.16 and ≈ 0.27, respectively, for LrF+, and ≈ 0.27, ≈ 0.17 and

≈ 0.26, respectively, for LrH+. These results suggest that the electron correlation trends are

almost similar in both molecular ions.

We now briefly comment on the molecular orbital information in the chosen systems. We
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expected that the singly occupied molecular orbital (SOMO) electron is localized in the s orbital

of Lr from the following reasoning: as Lr has 7s27p1 configuration, while O, H+, and F+ are

expected to pull two electrons towards themselves owing to their larger electronegativity, thus

leading to Lr 7s1. We verified this reasoning explicitly by examining the atomic components of

the SOMO for all three systems, and indeed found that the atomic orbitals from Lr provide the

dominant contributions. We also carried out population analysis, and found that in LrF+, for

example, the SOMO is predominantly made out of the s function of Lr (0.86), followed by its d

(0.09) and p functions (0.0388).

As seen in Table 6.2, the major contributions to the properties of interest in this work come

from the DF part. Therefore, we take a closer look at the DF contribution, in order to understand

the possible reasons for observing large values of Eeff andWs in the studied superheavy molecules,

as compared to other systems. Typically, in these molecules, the heavier atom provides most

of the contributions to Eeff and Ws. Due to the short-range and odd-parity nature of the scalar

interaction Hamiltonians, the s1/2 and p1/2 orbitals generally contribute predominantly to Eeff
andWs. It is known that relativistic effects deform the inner core orbitals, s1/2 and p1/2, strongly

in the heavier atomic system. Thus, it is anticipated that these orbitals can strongly influence the

Eeff andWs values in LrO, LrF+, and LrH+. We explicitly verified this argument by decomposing

the DF contribution to Eeff (we do not repeat the analysis for Ws, as we expected for it similar

trends as the effective electric field) for all the three systems as

EDF
eff =

1

de
⟨Φ0|HEDM |Φ0⟩

=
1

de

∑
j

⟨ϕj|hEDM |ϕj⟩

=
1

de
⟨ϕv|hEDM |ϕv⟩

=
1

de

∑
k

∑
l

CkCl⟨χv,k|hEDM |χv,l⟩. (6.1)

In above expression, the sum over all MO contributions boils down to only the valence mo-

lecular orbital (SOMO, denoted as v in the above set of equations) term due to the fact that
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Figure 6.2: Bar plots showing effective electric fields of LrO, LrF+, and LrH+ at three levels:
the s− p1/2 mixing contributions from Lr at the DF level of theory (as red bars), the DF values
themselves (as green bars), and the total values (in blue). All units are in GV/cm.

contributions from the orbitals with opposite spin components of the closed-shell configuration

cancel out each other. In Eq. (6.1), we have expanded the valence molecular orbital as the sum

of atomic orbitals (AOs), |χv,i⟩, where i can be l or k. Further details about this decomposi-

tion of SOMO to AOs can be found in, for example, Ref. [44]. Note that the SOMO contains

contributions from both the constituent atoms of a molecule. Of all the terms in Eq. (6.1), the

contributions from the s and p1/2 orbitals of Lr dominates, and accounts for about 232, 214, and

281 GV/cm, for LrO, LrF+, and LrH+, respectively, as shown in Fig. 6.2. Note that the DF

values for these systems are 235, 215, and 284 GV/cm for LrO, LrF+, and LrH+, respectively.

The other contributions, such as those from p3/2 and d3/2 of Lr, s and p1/2 of the lighter atom

etc., are less than 1 GV/cm. It is also worth noting that while the DF values of LrO and LrH+

themselves are different only by about 50 GV/cm, the total effective electric fields are apart by

over 80 GV/cm. This is attributed to the significant cancellation between the OT1 + h.c. and

the T †
1OT1 terms in LrO, as shown in Table 6.2.

We would like to mention here that the above calculations were carried out by assuming
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Gaussian nuclear charge distribution. Since Gaussian type functions are used for constructing

the MOs, it was convenient to consider the Gaussian nuclear charge distribution in the calcula-

tions [45]. Because Lr is a superheavy radioactive element, its nuclear charge distribution may

be explained more accurately by using a more realistic nuclear charge distribution such as Fermi

[46] or the Woods-Saxon charge distribution [47, 48]. In order to get an impression about how

the results differ by considering different nuclear charge distribution models in the Lr isotopes,

we investigated below the EDM enhancement factors, R and S, in two isolated isotopes of Lr

due to de and kS, respectively, using various forms of nuclear charge distributions and potentials.

In the point-like nuclear model, the nuclear density is ρA(0) = 0 and the nuclear potential

takes the form

V (r) = −ZA

r
. (6.2)

In the simplest case, one can assume uniform nuclear charge density in which the nuclear density

and potential are given by

ρA(r) = ρ0Θ

(
1− r

RA

)
, (6.3)

and

V (r) =

− 3ZA

2Rrms
A

(
1− 1

3

(
r

Rrms
A

)2)
for r ≤ Rrms

A

−ZA

r
, for r > Rrms

A

, (6.4)

where ρ0 = 3ZA/4πR
3
A is the normalization constant, RA is the radius of an arbitrary sphere

in which nuclear charges are distributed and Rrms
A is root mean squared (rms) radius of the Ath

nucleus. Θ is the Heaviside step function. We have determined RA = r0M
1/3
A with r0 = 1.2 fm

and atomic mass MA, and R
rms
A =

√
(3/5)RA.
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In the Gaussian nuclear charge distribution model, the nuclear density is given by

ρA(r) =
(ηA
π

) 3
2
e−ηAr2 (6.5)

with ηA = 3
2
(Rrms

A )−2, where Rrms
A is the rms nuclear charge radius of the Ath nucleus. This leads

to the expression for nuclear potential observed by an electron as

V (r) = −ZA

r
erf (

√
ηr) . (6.6)

Similarly, the Fermi nuclear charge distribution is given by

ρA(r) =
ρ0

1 + e(r−c)/a
, (6.7)

where ρ0 is the normalization constant, c is the half-charge radius and a = 2.3/4ln(3) is known

as the skin thickness. The expression for the nuclear potential in this case is given by [49]

V (r) = −ZA

N r
× 1

c
(3
2
+ a2π2

2c2
− r2

2c2
+ 3a2

c2
P+
2

6a3

c2r
(S3 − P+

3 )) for ri ≤ c

1
ri
(1 + a62π2

c2
− 3a2r

c3
P−
2 + 6a3

c3
(S3 − P−

3 )) for ri > c,
(6.8)

where the factors are

N = 1 +
a2π2

c2
+

6a3

c3
S3

with Sk =
∞∑
l=1

(−1)l−1

lk
e−lc/a

and P±
k =

∞∑
l=1

(−1)l−1

lk
e±l(r−c)/a. (6.9)

In the Woods-Saxon model, the nuclear charge density is again given by using a uniform

charge distribution but using different rms radii for protons and neutrons as

ρn(r) = ρn0Θ

(
1− r

Rn

)
, (6.10)
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with the corresponding normalization constant ρ0 = 3ZA/4πR
3
n for Rn = rn0M

1/3
A . We have

taken rn0 = 1.275 fm and rn0 = 1.347 fm for protons and neutrons respectively [50]. Therefore,

the Coulomb potential due to this charge distribution can be given by

V n
C (r) =

− 3ZA

2Rrms
n

(
1− 1

3

(
r

Rrms
n

)2)
for r ≤ Rrms

n

−ZA

r
, for r > Rrms

n

. (6.11)

In addition to the Coulomb interaction, the Woods-Saxon model takes care of corrections to

nuclear potential due to diffuse surface (Vds) and spin-orbit (Vls) interactions. This results in a

net nuclear potential given by [48, 47]

V (r) = V n
C (r) + V n

ds(r) + V n
ls (r), (6.12)

where V n
ds = V0f

n
ds(r) with a

′
= 0.65fm, Rrms

n = rn0MA
1/3 fm and

fn
ds(r) =


1

1+e(r−Rrms
n )/a

′ for r ≤ Rrms
n

0, for r > Rrms
n

, (6.13)

and

V n
ls (r) = V c

lsr
n2
0L · S1

r

dfn
ls(r)

dr
(6.14)

for the orbital angular momentum operator L, spin operator S, V c
ls = 0.44V n

0 and

fn
ls(r) =


1

1+e(r−Rls
n )/a

′ for r ≤ Rls
n

0, for r > Rls
n

(6.15)

with Rls
n = rnlsM

1/3
A . We have taken rnls = 0.932 fm and rnls = 1.280 fm for protons and neutrons

respectively [50]. In the above expressions, V n
0 are chosen as V n

0 = 51+33(NA−ZA)/(NA+ZA)

MeV and V n
0 = 51− 33(NA − ZA)/(NA + ZA) MeV for protons and neutrons, respectively.

Though we have suggested earlier to consider 256Lr in the experiment, but we consider here
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Table 6.3: The enhancement factors of the isolated Lr isotopes, 253Lr and 255Lr, due to de and ks
by considering various nuclear charge density distributions, using the DF method. In the Woods-
Saxon model, results quoted under ‘Coulomb’ refer to Coulomb interaction contributions, while
revised values after adding corrections due to diffuse surface and spin-orbit interactions are given
as ‘+Surface diffuse’ and ‘+LS’, respectively.

Model R S (×10−18 e-cm)

In case of 253Lr isotope
Point-like −2091.39 0.0
Uniform −1628.51 −31.74
Gaussian −1638.11 −33.18
Fermi −1631.06 −32.28
Woods-Saxon:

Coulomb −1608.66 −31.20
+Surface diffuse −1420.18 −15.18
+LS −1403.27 −15.45

In case of 255Lr isotope
Point-like −2091.39 0.0
Uniform −1627.66 −31.71
Gaussian −1637.35 −33.40
Fermi −1630.29 −32.48
Woods-Saxon:

Coulomb −1607.79 −31.17
+Surface diffuse −1420.40 −15.18
+LS −1414.60 −15.25

the 253Lr and 255Lr odd-isotopes to analyze the spin-orbit effects. This is not going to affect the

Eeff value estimation much. However, considering odd isotopes is helpful to analyze spin-orbit

effects conveniently. It can be noticed that other contributions, except the spin-orbit interac-

tions, from the aforementioned models will be almost similar in the calculations of R and S.

According to shell-model configurations, these isotopes have odd-proton in the valence orbitals

(in the f7/2 orbital for 253Lr) and (in the p1/2 orbital for 255Lr) [51]. The dependencies of these

charge distribution models to the estimation of Eeff comes indirectly through V (r), while eval-

uation of Ws depends both directly and indirectly from it. Since this exercise is carried out to

demonstrate influence in the results due to choice of different nuclear distribution models, we

have employed the DF method for this purpose and the results are given in Table 6.3. As can

be seen from this table, there is a significant differences in the results when finite size nucleus is
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considered over the point nucleus. The results do not differ substantially when different nuclear

charge distribution models are considered, but a large effect is seen when diffuse surface inter-

action is introduced. The results do not change significantly due to the spin-orbit interactions.

Also, differences between the results for the 253Lr and 255Lr isotopes are negligibly small. This

analysis suggests that the Ws values of the considered molecules may reduce approximately by

∼ 40% if the calculations are carried out by introducing diffuse potential, which we defer to the

future work.

Using the values of PDM and bond-length of a molecule, we estimate the polarizing electric

field for that system, which is given by Epol =
2B
µ
, with B being the rotational constant. The

Epol of LrO is 18.38 kV/cm, while they are 5.79 kV/cm and 101.03 kV/cm in LrF+ and LrH+,

respectively. The Epol required to polarize LrO and LrF+ are practically achievable in the labor-

atory. The larger, and thus less desirable, value of Epol in LrH+ can be attributed to its smaller

reduced mass. Therefore, LrH+ may not be as suitable as the other two considered candidates,

but it can also be considered in an experiment if any alternative suitable technique to measure

EDM in this ion can be found.

We now turn our attention to estimating the production rates of Lr molecules for an EDM ex-

periment. We propose to use the RIKEN heavy-ion linear accelerator (RILAC) facility because a

high intensity ion beam is readily available to produce atoms of interest. As for 256Lr production,

we propose the 209Bi(48Ca, 1n) reaction as a possible candidate, where a production cross-section

of 60 nanobarns (nb) has been reported [52], although it is necessary to have a prospect of stable

supply of 48Ca. As explained in Ref. [53], the 249Cf(11B, 4n) reaction was employed in the single

ion beam production of 256Lr at JAEA due to its relatively high cross-section of 122 nb. The

249Cf target material is, however, radioactive, and too rare to prepare a sufficiently large target,

which can be applied to a beam from the RILAC. On the other hand, 209Bi is stable and easy to

handle to make a target with a large area. A typical target thickness is 300 µgcm−2 [54]. The

RILAC facility can typically provide a 3− pµA 48Ca beam. Under the situation, Lr atoms can

be produced with a rate of one atom per second. In the case that GARIS (GAs-filled Recoil Ion

Separator) is applied to mass-separation and single ion beam production, a transparent efficiency
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of 50% is expected [55]. In addition, in preliminary experiments at JAEA, about 20% of Lr can

be converted to LrO. Thus, we estimate N ≈ 0.1 molecules per second. It means only about

one-atom-per-minute molecular beam could be produced, which presents major challenges for

experiments with neutral molecules. On the other hand, molecular ions such as LrF+ and LrH+

can be efficiently guided and trapped by electromagnetic fields, enabling experiments even with

just a single molecular ion.
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Chapter 7

Summary and Outlook

In this chapter, we summarize the work carried out in this thesis in a nutshell. First, we have

performed four-component relativistic finite-field coupled-cluster calculations of permanent elec-

tric dipole moments and different components of static dipole polarizabilities of heteronuclear

alkali-dimers (in their ground states) and compared these results with the non-relativistic cal-

culations at the same level of approximations in the theory. We find from our observations that

the relativistic effects become very prominent in the evaluation of permanent electric dipole

moments, especially in the heavier alkali-dimers. We attempt to explain the mismatch between

the experimental value of permanent electric dipole moment of LiNa with previous theoretical

calculations and resolve the discrepancy by invoking the complete basis set extrapolation tech-

nique. We briefly discuss the trends in electron correlation effects in the calculated properties

of alkali-dimers by grouping them into different family of molecules. We compare our calculated

values with the previous experimental and theoretical works from literature. We verify the linear

variation of the components of static electric dipole polarizability with molecular volume. We

report the uncertainties to the calculated properties arising from several possible sources. At

the next step, we illustrate the importance of incorporating relativistic effects in the evaluation

of the permanent electric dipole moments and static dipole polarizabilities, by using them to

determine the van der Waals C6 coefficients of the considered alkali-dimers. It is evident from

our calculations that the relativistic coupled-cluster theory that we have employed gives very

reliable estimates of permanent electric dipole moments and static dipole polarizabilities of het-
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eronuclear alkali-dimers, which are in very good agreement with the previous theoretical as well

as experimental results.

Then, we have investigated the roles of relativistic and electron correlation effects in the

determination of the permanent electric dipole moments and static electric dipole polarizabilit-

ies of the alkali-alkaline earth heteronuclear dimers. For this purpose, we employed finite-field

coupled-cluster theory in the singles, doubles and perturbative triple excitation approximation

in both non-relativistic and relativistic frameworks. We find that electron correlation effects can

have significant impact on the final values of the permanent electric dipole moments of some of

the considered molecules. Trend-wise, we observe that while correlation effects decrease the per-

manent electric dipole moments of the Li-family, they increase it for the rest of the families, with

Mg-containing molecules being exceptions. We also find that for molecules containing Mg, the

ratio of the correlation contributions to the permanent dipole moments to their mean-field val-

ues are almost constant. We find that relativistic effects decrease the magnitudes of permanent

dipole moments in most cases. The importance of relativistic effects increases from the lighter

to the heavier molecules in each family, as expected. Correlation effects play important roles

and are pronounced in the determination of polarizabilities too, but not as much as in the case

of permanent electric dipole moments. Moreover, the observed correlation trends in evaluation

of polarizability anisotropies indicate that this property is likely more sensitive to correlation

effects than the average polarizabilities. Relativistic effects in polarizabilities are found to be

non-negligible but are much less prominent than in the case of permanent electric dipole mo-

ments. The analyses of relativistic and correlation effects are followed by tests of precision in our

results, where we find that the errors due to spin-orbit coupling are negligible. We also test the

stability of our numerical results by varying the perturbing parameter in the neighborhood of the

chosen value for this work. We observe that the uncertainties due to the choice of basis sets and

missing higher-level excitations of coupled-cluster theory are the dominant error sources. We find

a simple and interesting empirical functional form that connects average molecular polarizabilit-

ies with constituent atomic polarizabilities reasonably well and does so consistently, not only for

the considered alkali-alkaline earth molecules, but also for homonuclear as well as heteronuclear

alkali-alkali systems and for alkaline earth-fluorine molecules. We finally provide recommended
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relativistic values of permanent dipole moments and polarizabilities of the alkali-alkaline earth

systems using coupled-cluster singles, doubles and perturbative triple excitation method, and

compare them with the available literature values as well as with our non-relativistic calcula-

tions. In this work, we saw that our relativistic calculations improve the values of permanent

electric dipole moments and polarizabilities over the reported values using the non-relativistic

methods in the literature. Therefore, in view of the preceding and current chapters, it can be

safely concluded that the relativistic coupled-cluster theory is an accurate as well as reliable

recipe for calculating first-order and second-order molecular properties. This analysis allows

us to employ relativistic coupled-cluster theory for precise estimations of molecular properties

relevant to electron electric dipole moment probes.

After studying permanent electric dipole moments and electric dipole polarizabilities of a

number of molecules with closed-shell and one-valence configurations, we investigate the feasib-

ility of using triatomic molecules over traditional diatomic molecules for electron electric dipole

moment studies. For that purpose, we analyzed the suitability of HgOH molecule as a plausible

candidate for experiments to measure electric dipole moment of an electron. To that end, we

have evaluated the effective electric field and permanent electric dipole moment of the HgOH

molecule. We have also calculated the Franck-Condon factors of HgOH among the lowest and

other higher vibrational levels of the ground state. Very negligible values of the Franck-Condon

factors indicate that HgOH is not laser coolable, unlike its isoelectronic diatomic counterpart

HgF. The aspect of laser non-coolability of HgOH makes a trap experiment with the molecule

very challenging. We closely inspect the possible experimental scenarios with HgOH based on

some reasonable guess estimates of different parameters. We have also pointed out that HgOH

may not provide specific advantages in other experimental schemes such as the EDM3, except

a possibility of state selective detection. We reached at a conclusion that HgOH molecule is

best suited for a beam experiment as it offers a statistical sensitivity of 5 × 10−30 e-cm, which

is an improvement over ThO, which sets the current best limit on the upper bound of the elec-

tron electric dipole moment. Moreover, we have conducted preliminary analyses on HgCH3 and

HgCF3 and find that these two molecules could offer statistical sensitivities of the same order as

that of HgOH.
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After analyzing the suitability of the heavy polar triatomic HgOH molecule for electron elec-

tric dipole moment searches, we turn our attention to the combined search of electron electric

dipole moment and the nucleus-electron scalar-pseudoscalar coupling constant in the superheavy

LrF+, LrH+, and LrO molecules. We find that bound states with a stable minima do occur

in the chosen molecular systems. We reported calculations of effective electric fields, scalar-

pseudoscalar enhancement factors, and permanent electric dipole moments for the aforemen-

tioned molecules, using the relativistic coupled-cluster method. We analyze the importance of

correlation effects for the properties in these three systems. We observe that the values of effect-

ive electric fields for the three superheavy molecules are about three to four times larger than

other molecules on which electron electric dipole moment experiments have been performed or

proposed to be performed. Similarly, the values of the scalar-pseudoscalar enhancement factors

are found to be about eight times larger than ThO (experimentally undertaken best molecule so

far) and about three to four times larger than the current best theoretically proposed molecule

HgF. By analysing the Woods-Saxon model to account for the nuclear charge density distribu-

tion, we found that the calculated scalar-pseudoscalar interaction coefficients are very sensitive

to the diffuse surface interactions in the superheavy Lr nucleus and need to be accounted for,

for accurate estimate of the scalar-pseudoscalar interaction constants for the Lr-containing mo-

lecules. We discuss a feasible pathway to produce Lr atoms, which are necessary for the creation

of superheavy molecules containing these atoms. We also study the properties of LrF+ and LrH+

molecules and their potentials for future single ion experiments. Our precisely estimated bond-

lengths and permanent electric dipole moment values of the LrF+, LrH+, and LrO molecules

can also be useful to guide other experimental setups using these superheavy molecules.

Our overall findings in this thesis work are listed in bullet points as follows

• From the calculations of permanent electric dipole moments and static dipole polarizab-

ilities of alkali-dimers, we come to the conclusion that our relativistic coupled-cluster theory is

very efficient in precisely calculating molecular properties that agree very well with experimental

results.
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• We also observed that electron correlation effects can play significant roles in the determ-

ination of the calculated molecular properties, which justifies the usage of the sophisticated

relativistic coupled-cluster theory over mean-field methods to estimate enhancement factors as-

sociated with the electron electric dipole moment and scalar-pseudoscalar interaction.

• We observe that relativistic effects become prominent in the evaluation of permanent elec-

tric dipole moments in the heavier alkali-dimers, which suggests that one needs to perform a

relativistic calculation to obtain an accurate permanent electric dipole moments of heavy polar

paramagnetic molecules in general as well as for the considered molecules for electron electric

dipole moment experiments in particular.

• In our second work, which can be viewed as a sequel to our first, we calculated perman-

ent electric dipole moments and static dipole polarizabilities of the paramagnetic alkali-alkaline

earth molecules.

• As paramagnetic molecules are essential for electric dipole moment searches, it was a ne-

cessary check to see whether the relativistic coupled-cluster theory is able to produce reliable

results for these molecules. In this exercise too, we found that electron correlation effects become

important for the evaluation of permanent electric dipole moments, thus necessitating the use of

the state-of-art non-relativistic and relativistic coupled-cluster theory to account for the electron

correlation effects.

• We also observe that the relativistic effects in permanent electric dipole moments of the

open-shell alkali-alkaline earth molecules can be as large as 32 percent (for LiSr). This fur-

ther suggests that employing a relativistic theory is essential for calculating permanent dipole

moments of heavier paramagnetic molecules that are chosen for theoretical studies involving

electron electric dipole moment searches.

• After analyzing the potential of the relativistic coupled-cluster theory and getting an in-
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sight of correlation effects in paramagnetic molecules, we began to work on theoretical proposals

for new molecular candidates for electron electric dipole moment experiments.

• We chose the heavy polar triatomic HgOH molecule to investigate its feasibility for future

electron electric dipole moment search experiments using the relativistic coupled-cluster theory.

• We found that the effective electric field of HgOH is not as large as its diatomic isoelec-

tronic counterpart, HgF. The reason behind the comparatively smaller value of effective electric

field can be back-traced to the bent geometry of the HgOH molecule. A reasonable value of

the molecule’s permanent electric dipole moment at the actual bent geometry suggests that the

molecule can be easily polarized during an electron electric dipole moment experiment. From

our theoretical estimates of Frank-Condon Factors for transitions between the lowest vibrational

level of the ground state and other higher vibrational levels of low-lying excited electronic states,

we conclude that HgOH is not laser coolable, thus discarding the possibility of a trap electron

electric dipole moment experiment with the molecule.

• Based on several experimental considerations, we conclude that HgOH is best suited for

a beam electron electric dipole moment experiment, with its projected statistical sensitivity

promising to be an order of magnitude improvement over the ThO experiment, which gives the

current best experimental limit to the electron electric dipole moment.

• Depending on our preliminary calculations at the Dirac-Fock level and other projected

experimental scenarios, we found that the polyatomic HgCH3 and HgCF3 molecules also offer

similar sensitivity to electron electric dipole moment experiments. Further studies on these two

systems using relativistic many-body theories, which include correlation effects, could improve

upon the estimated sensitivities.

• In the next work, we consider superheavy LrO, LrF+, and LrH+ molecules to carry out

a theoretical study to assess their applicability in electric dipole moment experiments. We

have explicitly shown that the formation of these superheavy molecules are actually possible,
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as we obtained their equilibrium bond-lengths employing the relativistic coupled-cluster theory

with singles, doubles and triples excitations approximation. These estimates of bond-lengths can

prove to be useful for any future experiments using these molecules. With the ground state equi-

librium bond-lengths at our disposal, we calculated effective electric fields, scalar-pseudoscalar

interaction constants, and permanent electric dipole moments of these molecules. As anticipated,

we have observed that the values of effective electric fields and scalar-pseudoscalar enhancement

factors get heavily amplified for these superheavy systems, when compared with other non-

superheavy molecules that are either theoretically proposed or experimentally considered.

• The polarizing electric fields of LrO and LrF+ are found to be quite achievable in conven-

tional experimental setups.

• Along with our theoretical calculations, we also propose a possible technique to produce Lr

atoms in laboratories. Further progress in the experimental sector to produce Lr atoms (followed

by Lr-containing molecules) in large numbers could make the considered molecules very exciting

candidates for future electron electric dipole moment experiments.

In the voyage of probing eEDM with molecules through theoretical calculations using the

RCC method, we would like to give a brief sketch about the future direction of our work. After

theoretically surveying the prospects for HgOH, HgCH3, and HgCF3 for EDM experiments, we

can extend our exploration to several other triatomic/ polyatomic paramagnetic molecules.

As the three considered superheavy Lr-molecules showed enhanced values of Eeff , PDM, and

Ws, it would be appropriate to explore more superheavy molecular systems (containing Cf, Es,

No, Cn etc.) for their suitabilities in EDM experiments.
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Appendix A

Contributions to Eeff from Only Valence

Orbitals Survive

As stated earlier in Chapter I, only valence MOs contribute to the final expression of Eeff . This

happens because contributions from all other MOs cancel out. One can realise this as follows.

Consider the numerator of Eq. (1.32) and expand it in terms of MOs of a single valence molecule

with N electrons:

⟨Ψ|HeEDM |Ψ⟩ =
N∑
i

⟨ϕi|heEDM |ϕi⟩, (A.1)

where heEDM = −2icdeβγ5p
2 is the one-body eEDM interaction Hamiltonian. Invoking Kramer’s

symmetry [1], we can decompose the right hand side of Eq. (A.1) as

N∑
i

⟨ϕi|heEDM |ϕi⟩ =

(N−1)/2∑
i′

⟨ϕi′|heEDM |ϕi′⟩+
(N−1)/2∑

ī′

⟨ϕī′|heEDM |ϕī′⟩

+⟨ϕv|heEDM |ϕv⟩, (A.2)

where the first two terms in the right hand side correspond to the doubly occupied Kramer’s

pair orbitals |ϕi′⟩ and |ϕī′⟩. The Kramer’s pair orbitals |ϕi′⟩ and |ϕī′⟩ are connected by the
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time-reversal operator:

|ϕi′⟩ = T |ϕī′⟩ and |ϕī′⟩ = −T |ϕi′⟩. (A.3)

Invoking the above relations we get

⟨ϕī′ |heEDM |ϕī′⟩ = ⟨ϕi′|T †heEDMT |ϕi′⟩. (A.4)

Next, we find how heEDM converts under time-reversal operation. Time-reversal operator has

the following form for spin-1/2 particles such as electron [1]

T = −iΣyτ0, (A.5)

where Σy is the four-component counterpart of Pauli spin matrix σy, i.e. Σy =

σy 0

0 σy

, τ0 is

the complex conjugation operator. The T operator takes the form

T =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


︸ ︷︷ ︸

=M

τ0 =Mτ0. (A.6)

Therefore,

⟨ϕi′ |T †heEDMT |ϕi′⟩ = ⟨ϕi′|τ †0M †heEDMMτ0|ϕi′⟩. (A.7)

Property of complex conjugation operator tells ⟨ϕi′ |τ †0 = ⟨ϕi′ | and τ0|ϕi′⟩ = |ϕ∗
i′⟩ = |ϕi′⟩ (as MOs

are real). Inserting these relations in Eq. (A.7) we get

⟨ϕi′ |T †heEDMT |ϕi′⟩ = ⟨ϕi′ |τ †0M †heEDMMτ0|ϕi′⟩. (A.8)
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Now, we simplify the operator M †heEDMM . We know

heEDM = −2icdeβγ5p
2 = −2icdep

2


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


︸ ︷︷ ︸

=β


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


︸ ︷︷ ︸
=γ5=iγ0γ1γ2γ3

(A.9)

= −2icde


0 0 p2 0

0 0 0 p2

−p2 0 0 0

0 −p2 0 0

 (A.10)

⇒ τ†0M
†heEDMMτ0︸ ︷︷ ︸

T†heEDMT

= 2icde


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


︸ ︷︷ ︸

M†


0 0 p2 0

0 0 0 p2

−p2 0 0 0

0 −p2 0 0




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


︸ ︷︷ ︸

=M

(A.11)

= 2icde


0 0 p2 0

0 0 0 p2

−p2 0 0 0

0 −p2 0 0

 = −heEDM (A.12)

⇒ T †heEDMT = −heEDM . (A.13)

Inserting this result in Eq. (A.4) we get

⟨ϕī′ |heEDM |ϕī′⟩ = −⟨ϕi′|heEDM |ϕi′⟩. (A.14)

Using this relation in Eq. (A.2) we see that the first two terms are cancelling out, which gives

N∑
i

⟨ϕi|heEDM |ϕi⟩ = ⟨ϕv|heEDM |ϕv⟩, (A.15)

⇒ Eeff = − 1

de

∑N
i ⟨ϕi|heEDM |ϕi⟩

⟨Ψ|Ψ⟩
= − 1

de

⟨ϕv|heEDM |ϕv⟩
⟨Ψ|Ψ⟩

. (A.16)

From Eq. (A.16) it is evident that only valence molecular orbital contributes to Eeff .
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