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Chapter 1

Introduction

The investigation of Time Dependent Canonical Perturbation Theory (TCPT) was
motivated by the need to understand and analyze Hamiltonian chaos. In this chapter
we give an introduction to the field of chaos and some major historical developments
in the field. We also give an introduction to Lie method of canonical transformations
which has been used in the formalism of TCPT.

1.1 Introduction to Hamiltonian Chaos

Chaos is an interdisciplinary subject results of which are useful in many diverse
fields, from Biology and Economy to fluid dynamics and particle physics. It also
enters in fundamental subjects like ergodicity and the relation between classical
dyna.mi_cs and quantum mechanics. Study of chaos started in 1885 in the time of
Poincare with the famous three body problem [1]. The problem can be stated as
follows;

Given three masses interacting only through gravitational interactions, prove either
stability or instability of the system.

For this problem one was required to determine whether the three bodies will collapse
into each other, go away from each other or will remain in the same state as three
separate objects at finite distances from each-other in the asymptotic limit of time.

Physical examples of this mathematical problem are, system of earth, moon and sun
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or the system of two planets and an asteroid.

The problem turns out to be non-integrable, i.e. it is not possible to solve for
the differential equations of the system either in terms of known functions or in
terms of quadrature, further for a range of values of masses the system exhibits
random dynamics. This kind of random evolution of a dynamical system is known
as chaos. Chaos appears when the equations governing the evolution of the system
are nonlinear. Though not all the nonlinear systems are chaotic, the problem of
chaos appears in most of the non-linear systems encountered in different branches

of science.

Dynamical systems can be divided in two classes,

(1) discrete systems, where dynamics is defined by maps, and

(2) continuous systems, where dynamics is defined by a set of differential equations.
Continuous systems can be further divided in two subclasses, (1) Hamiltonian sys-
tems, (2) Non-Hamiltonian systems. In this thesis we shall be discussing application
of the TCPT to Hamiltonian chaos. Following section gives an introduction to the
concept of integrability in Hamiltonian systems.

1.1.1 Integrability in Hamiltonian Systems

An n-degree-of-freedom (n-DOF) Hamiltonian system is described by following 2n

equations,
dgg _ OH
dt ~—  Op;
dp; oH
i ol (NN o 1
dt 0q; (L.3)
where i = 1,2,...,n (if not mentioned explicitly, the subscripts 7, j,k are to be

understood as dummy variables taking the values from 1 ton). H is the Hamiltonian,
which is a function of the phase-space variables ¢; and p;. The variables ¢; and p;

are said to be conjugate to each other.



Liouville proved the following for Hamiltonian systems (see [2] and [3]);

For an n-DOF Hamiltonian system, where H is analytic in a given domain D of
phase-space and if n uniform integrals I, . .., I, in involution are known in a domain
D’ of phase-space belonging to D then in D’ the system is integrable, i.e. reducible
to quadratures.

In other words if the following conditions are satisfied then the system is integrable,

{I,H} = 0 constancy
{I,I;} = 0 mutually involutive

where the bracket {, } represents the Poisson bracket. Given these constants of
motion one can construct a canonical transformation from the coordinates (g;, p;)
to the action-angle variables (I;, 6;), where I; are the action variables and ; are the
conjugate angle variables. In this coordinate system the equations of motion (EOM)
can be trivially solved. For non-integrable Hamiltonian systems it is not possible to

find such constants of motion.

If the Hamiltonian system is integrable, the Hamiltonian in the transformed coordi-
nates is a function only of the action variables, i.e., H(g:,p;) = H(I;). The equations

of motion are,

dI;

E“O
o _ dH_
dt ~— dI1, ~

where w; are the frequencies which are functions of the action variables I;. This
set of equations can be trivially integrated. Thus existence of action-angle variables

shows that the system is integrable.

There is an important theorem for integrable systems which can be stated as follows
(see [4] and [2]);

Let the n-DOF Hamiltonian system described by equation 1.1 have n first uniform
integrals Iy, I, ..., I, in involution. If the equations I; = C; define a compact mani-
fold M = M., at every point of which the vectors \7I; are linearly independent in the
phase-space of dimension 2n, then M is a torus of dimension n and the solutions of

equations of motion has a quasiperiodic motion on M.
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This theorem is important because it ensures that the motion of an integrable system
lies on a small n-dimensional region, namely n-torus in phase-space and it does not
cover the whole energy surface, which is 2n — 1 dimensional. When an integrable
system is perturbed in such a way that the perturbed system becomes chaotic the
unperturbed tori are said to be broken. This phenomenon will be discussed in detail
in the section on KAM theorem.

1.1.2 Detection of Hamiltonian Chaos

Given a Hamiltonian system there does not exist any general analytical method
to decide if it is chaotic. Work done by Ziglin [5], Yoshida [6] and others prove
non-integrability only for specific classes of Hamiltonian systems. There exists more
general analytical methods to detect chaos like Painleve analysis [7], which predict
integrability of a set of differential equations from the behavior of the solutions in
the series form of the variable (¢t — t,), where ¢ is the independent variable and ¢,
is the position of the movable singularity of the solution. A system which is inte-
grable according to Painleve’s criterion is said to be possessing the Painleve property.
Though Painleve’s method has been very successful in study of Hamiltonian chaos,
so far it is only a conjecture. Further it is possible to make a nonanalytic coordinate
change for a system with Painleve property so that the resulting system does not
have Painleve property. Because of unavailability of any faithful and simple analyt-
ical method to detect chaos one has to resort to numerical methods. There are two
main methods to detect chaos numerically, (1) Lyapunov exponents, (2) Poincare

sections.

Lyapunov exponents [8] measure the rate of exponential divergence for two nearby
orbits. Non-zero Lyapunov exponents for a compact Hamiltonian system in general
imply chaos. This method is easy to implement and widely used but it also has
some drawbacks. In Hamiltonian systems there can be integrable bounded orbits
with nen-zero Lyapunov exponents, thus there is a risk (though quite small) of
predicting chaos when the system is integrable. We shall be using the method of .
Poincare sections [9] to detect chaos. Advantages with this method are that it is

easy to implement, gives a pictorial view of the system’s dynamics and so gives
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insight into the phenomenon of breaking of the KAM tori. We give the basic ideas
of the method in the following.

For a two-DOF Hamiltonian system the phase-space is four dimensional. For a
fixed energy the four independent variables are related by the Energy equation
E = H(¢1,92,p1,p2). To get the Poincare section, the value of one of the variables
is fixed to a constant. For example ¢; = ¢, with this condition the system has only
two independent variables effectively because condition on ¢; reduces one variable
leaving three independent variables and energy equation determines one variable in
terms of the remaining two variables. These two independent variables define the
Poincare plane. If an orbit is regular, it lies on a torus and thus it’s intersection
with Poincare plane can be either finite number of points or a regular closed curve.
Instead if the orbit is chaotic, it’s intersection points on the Poincare plane do not
form any regular curve. For a chaotic orbit, the intersection points on the Poincare
plane are distributed randomly. Further, intersection of the Poincare plane with
a torus is a union of two disjoint sets in general, to select one of the subsets a
condition is put on one of the variables of Poincare plane. Appropriate condition in

our example can be p; > 0 or p; < 0 at the time of intersection.

The problem with the Poincare section method is that there is no unique way to
define a proper Poincare plane for a given system, for wrong choices of fixed variable
an orbit may never intersect the plane, secondly, this method is useful only when the
given system is with 2-DOF, for systems with higher degrees of freedom there is no
simple method to view chaos pictorially. With this background in chaos now we can
review some major historical developments towards analyzing and understanding

chaos.

1.2 Historical Developments

Poincare was the first person to study chaos extensively [1]. Many new techniques
have been developed in the field of chaos since the times of Poincare. We shall
be concerned here only with the major developments in the canonical perturbation

theory and related fields. Poincare in his work developed perturbation theories based
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on Hamilton-Jacobi (H-J) formalism of canonical transformation. The H-J theory in
itself also gives useful insights into the theory of Hamiltonian chaos as we shall see
when we discuss the relation of TCPT to H-J theory. Following section overviews
some fundamental aspects of H-J theory.

1.2.1 Hamilton-Jacobi theory

The H-J theory makes use of the fact that evolution of the phase-space variables
under the Hamilton’s EOM is a canonical transformation. One attempts to con-
struct a time dependent canonical transformation which transforms the phase-space
variables at time ¢ to that at ¢ = 0. The H-J equation is,

oS a0S

5 T HG0 =0

where S is the generating function of the transformation which is also called the
Hamilton’s principle function, it is a function of old coordinates and transformed
momentai.e., S = S(g,a). S generates a transformation from (g, p) to (3, @) so that
resulting coordinates and momenta, (8, a) are constant. (3, a) are some functions
of coordinates and momenta at ¢ = 0. Calculating S is equivalent to solving for the
EOM for H. If we assume S to be linear in time, i.e., S = W — Et, the H-J equation

becomes,

oW
H(=,q)=E
(aq q)

It is this version of H-J theory which was used by Poincare in his work. The function

W is called Hamilton’s characteristic function.

There is no general method for solving the H-J equation. One special solution of

the H-J equation (Hamilton’s principle function) is,
S = /Ldt + constant

where L is the Lagrangian of the system. Practically this method is not of much use
because to integrate L with respect to time, one is required to know the coordinates
and velocities as functions of time i.e. one is required to know the solutions of EOM
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beforehand. Another situation where H-J equation can be solved for is the case
where separation of the variables is possible, in this case S can be written as

aS;
S = E Si(q‘-;als ceey O, '8';:: Qiglyeee -.nan)

where ¢; are old coordinates and a; are transformed momenta. In this case the H-J
equation becomes equivalent to a set of n first order, decoupled, ordinary differential

equations which are solvable by quadratures.

Though it is not easy to find S for any general problem because existing systematic
ways of calculating the generator requires either the system to be separable or the
knowledge of solutions beforehand, still the existence of S provides us with useful
information. Poincare remarks in his “New methods of celestial mechanics” that
from the H-J theory it is clear that it is possible to construct a convergent canonical
transformation for a chaotic system. This special kind of time-dependent canonical
transformation, where transformation equations are the same as solutions to the
equations of motion are intimately related to the TCPT transformations considered
in this thesis, we shall discuss this relationship in detail in the next chapter

1.2.2 Poincare’s Work

Poincare made invaluable contributions in the field of nonlinear dynamics. We shall
discuss only one of them here, that is generalization of Lindstedt’s method in terms of
Hamiltonian dynamics. Before Poincare’s work there existed series solution methods
of different types for solving nonlinear differential equations. An important series
solution method was that of Lindstedt’s method ([10],[1]).. Lindstedt developed a
technique to solve for a set of differential equations of the type,

F

F + me = fé(may:t)
d?

-de- + niy = ep(z,y,t)

to get a formal series solution in terms of the perturbation parameter. These series
solutions had the problem of secular terms where the independent variable appeared

algebraically and further, convergence properties of the series were not known.
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Poincare formulated the problem in terms of Hamiltonian dynamics. He wrote the
solvable part of the differential equation as unperturbed Hamiltonian equations and
the full system as perturbation on the unperturbed Hamiltonian. He assumed the
perturbed Hamiltonian as well as the action-angle variables for it to be analytic

functions of the perturbation parameter ¢, i.e.,
H = Ho+eHi+eEHy+ ...

§; = 9‘(0] + 69‘('1} + 629}2) G e
L = IP4edM+&1P+ ...

He also assumed series expansions in € for the energy and the generating function,

B = Eo:{-EEl-}-EZE:'i-...
W = Wo+eW,+EWy+...

where W = W(0, J) is a function of the old angle variables 8 and transformed action
variables J. Now, because the canonical transformation given by the H-J theory is
given by the relations,

oW
k= o
oW
¢‘.=3_J;'

where I; are old action variables and ¢; are transformed angle variables, using above

relations the H-J equation reduces to,

ow ow

H(@jﬁa---,m,

61,...,9n)=E0+€E1 +€2E2+...

from which one can calculate W by solving equations at different orders of €. It was
found that this method fails due to singularities encountered during calculation of

W (the small denominator problem).

Poincare established legitimacy of Lindstedt’s method by putting it in Hamiltonian
formalism and also generalized it. He showed that Lindstedt’s method is divergent
in general because of the small denominator problem. We discuss this problem in

next section.



1.2.3 The Small Denominator Problem

Given a chaotic Hamiltonian system, it is not possible to get exact solutions for
equations of motion or constants of motion using known methods. If the non-
integrable Hamiltonian H can be written as a small perturbation on an integrable

Hamiltonian Hy, i.e.,
H(I;,0;) = Ho(I;) + eH\(;, 0;) (1.2)
then one can try to solve the problem perturbatively. We wish to construct a

canonical transformation such that in the new coordinates I/, 6! the Hamiltonian H

becomes integrable, i.e.

H(L,6) = H'(I!) (1.3)
The canonical transformation is generated by the function W(6;, I!), which gives,
ow , oW
I‘_a_ﬂ,- 6; = ol (1.4)

where I;, 0; are action-angle variables for Hy and I/, 8. are action-angle variables for
H. One assumes an expansion of W as a series in perturbation parameter [3],

W(6,I') = 0I' +eW1(0,I')+. . ., where the coordinates without subscript means the
vector coordinates, for example I = (I, I2,...,1,). Inserting this series expansion
of W in the equation 1.4 and using the new expression for I; in equation 1.3 yields

upto first order in ¢,
Vi Ho(I'). v W1 + Hi(I',0) = 0 (1.5)
Above equation can be written in terms of Poisson bracket as follows,
{S1, Ho} = —H; (1.6)
Using fourier expansions for W; and H,,

Wi = ) Wietd (1.7)

i=0

H] = ZHlnei(n-G) (18)

1=0

in equation 1.5, it can be shown that,



where m is a number vector, components of which are integers and wy are unper-
turbed frequencies i.e. wy = %5);“. It is the denominator in equation 1.9 which makes
the calculation of canonical transformation impossible in certain regions of phase-
space. The meaning of the denominator being zero is that the unperturbed motion
has a closed orbit. Thus in the regions of phase-space where unperturbed frequencies
are commensurate, the corresponding Fourier component of the generator becomes
infinity and so Fourier sum for W, becomes divergent [3]. Even in the case where the
frequencies are not commensurate it is always possible to find some m for which the
denominator becomes very small, again leading to divergence. Thus it is not possible
to use the canonical perturbation theory to solve for a non-integrable Hamiltonian

system because of the small denominator problem.

A break-through came in the field with the KAM theorem. In the next subsection
we will have a brief overview of the KAM theorem.

1.2.4 The KAM theorem

The KAM theorem is the major advancement in the field of chaos after the work
of Poincare. It was first outlined by Kolmogorov in 1954, afterwards it was proved
by Moser (1962), and Arnold (1963) for maps and Hamiltonian systems respectively
(see Gia Caglia [2], Arnold [11] and Wiggins [12] for details). The statement of the
theorem is;

If the unperturbed vector field is given by,

dl

® =

dé

& = ViHo(I)

and if the following condition is satisfied,

det[V7H(I)] # 0

then “most” of the invariant tori persist for sufficiently small €. The motion on
these surviving tori is quasiperiodic, having m < n rationally incommensurate fre-
quencies. The invariant tori are dense in the sense that the Lebesgue measure of the

complement of the union of the preserved tori is small when € is small.
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The theme of KAM is to select a torus on which frequencies are sufficiently irrational
and apply perturbation theory on it. The irrationality condition ensures nonsingu-
lar generator of canonical transformation. The Hamiltonian found after canonical
transformation is taken as the unperturbed Hamiltonian for the next step and the
same procedure is repeated. The change in unperturbed Hamiltonian at each stage
makes the convergence of the perturbation theory faster compared to the usual per-
turbation theory where the initial Hamiltonian remains unchanged, thus KAM is
called a superconvergent perturbation theory. KAM is function space analog of the
Newton-Raphson method.

Let us discuss the conditions for KAM theory to be convergent in detail;

(1) The unperturbed torus on which the calculations are applied should be suffi-
ciently irrational. Kolmogorov proved that if the unperturbed frequencies are suf-
ficiently irrational then the approximation method for accelerated convergence can
be applied without encountering the problem of small denominators. He also proved
that if the frequencies are sufficiently irrational at the first step of calculation then

the total iterated canonical transformation gives convergent results.

(2) The unperturbed motion is non-degenerate, i.e., det[\7#H(I)] # 0 which can be

also written as,
6&-&.?0.'

det 3o, #0 (1.10)

where wo; are unperturbed frequency components and Ip; are unperturbed action
variables. This condition can be interpreted as all the unperturbed frequencies are
functionally independent. This condition ensures that the unperturbed frequencies
are in general linearly independent and so irrational. In other words, the resonant
unperturbed tori are of Lebesgue measure zero (but at the same time dense on
energy surface). Now one condition for KAM method to give convergent results is
that the unperturbed frequencies should be sufficiently irrational, thus condition of
non-degeneracy implies that most of the unperturbed tori are preserved under small

perturbations.

We shall illustrate some number theoretic ideas of KAM for the two degrees of free-
dom case in the following. Given a ratio o = wﬁ'-‘-;z (where wp; and wyy are unperturbed

frequencies), it is possible to approximate it using continued fraction representation
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[3]. At the n'* stage of approximation one gets,

Tn 1
| g — — <
Sn SnSn_l

where i is the approximation for o at the n'* stage, with s, > s,_;. Now the

condition for destruction of tori is as follows,

K(e)

32-5

=
lo—-|<
s

where K(¢) is independent of r and s and goes to zero as ¢ — 0. This condition
is stricter than that found from continued fraction representation and so not all
the frequency ratios will satisfy the condition for tori destruction. Thus there is a

non-zero measure of preserved tori.

KAM does not give a global perturbation theory, rather it provides perturbation
theory on a single sufficiently irrational tori. KAM holds in those regions of phase
space where the small denominator problem does not exist. Thus it does not provide
any insight into the small denominator problem or in the mechanism of tori breaking.
Further, because KAM has been formulated for quite general Hamiltonian systems,
it’s results turn out to be too strict for many practical situations. KAM predicts
break-down of rational tori for extremely small value of perturbation parameter,
whereas for most of the Hamiltonian systems studied so far the numerical evidence
shows the motion to be regular for much higher values of e.

One important technique that makes the scope of application.of KAM much wider
is that of the renormalization [13]. Using renormalisation method one can apply
KAM theory to analyze stability of a preserved torus for much higher value of
the perturbation parameters than in general allowed by KAM. In renormalization
method the question of stability of a given torus 7, for a Hamiltonian system H,
for which the perturbation parameter is outside the region of convergence given by
KAM is addressed.

Suppose that the given preserved torus 7 is enclosed between two higher order
resonances, R; and R;. One truncates the Hamiltonian H neglecting terms other
than R; and R; in the perturbation part. A renormalisation transformation I,

which is a combination of coordinate transformation and reparametrization of the
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perturbation parameters is applied on this truncated Hamiltonian system. The
transformation is selected in such a way that the resulting Hamiltonian is similar
to the one with which one started. The transformed torus 7y is still preserved and
is enclosed between two higher order resonances which may be of different order
than before. The transformed Hamiltonian will in general have other resonances
away from 7, which are to be neglected and the same procedure is repeated. If
under these iterations of the transformation I';, the amplitude of the two resonances
decreases, the resulting system becomes a system with small perturbation parameter,
thus KAM theorem can be applied to it. Thus with renormalization method one
can reduce the e value so that the torus comes into convergence region of KAM. If
instead of decreasing, the amplitude of the resonances increases then it can be said

that with increase in perturbation the torus under consideration will break-down.

Though the KAM theorem does not get rid of the small denominator problem,
it gives a superconvergent perturbation theory, proves its convergence away from
the region of small denominators and gives a criteria as to where the theory will
give convergent results. Because of the condition of non-degeneracy KAM can not
be applied to those Hamiltonian systems where the unperturbed Hamiltonian is
harmonic-oscillator (and also to any other system which has degenerate unperturbed
frequencies), for these systems Gustavson developed a method based on Birkhoff
normal form theory, we shall discuss this technique in next subsection.

1.2.5 Gustavson’s Normal Forms

Gustavson used Birkhoff’s normal form method ([14],[15]) to approximate a chaotic
Hamiltonian system by an integrable one in the neighborhood of a fixed point. This
method relies on successive canonical transformations of the phase-space coordinates
so that the resultant Hamiltonian is integrable if truncated. The outline of the

method is as follows.

Let us assume that a Hamiltonian H(q,p) is given which is a power series in the
phase-space variables (where ¢ and p are n-vectors). Let us further assume that H
is convergent in the neighborhood of the fixed point ¢ = p = 0. H can be written
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as sum of homogeneous polynomials,
H(g,p) = H®(g,p) + H®)(q,p) + ... (1.11)

where the superscripts denote the degree of homogeneity and H(? is the harmonic

oscillator Hamiltonian,

n a,
H®(g,p) = 3 (@} + 7))
v=1
Let us define the operator,
0 a
D= Zﬂi(Pna—q: * Qia—m)

An expression G(q,p) is said to be in normal form if DG = 0. Note that the
operator D is the same as the time derivative operator for the Harmonic oscillator
Hamiltonian, thus the condition for an expression to be in normal form is the same
as the condition for constant of motion under H(®). We shall denote a homogeneous
polynomial of degree n, which is in normal form by I'™. Our aim is to construct
a canonical transformation so that the given Hamiltonian in the new coordinates
is in normal form, for that purpose let us assume that the Hamiltonian in 1.11 is
in normal form upto degree s — 1 and it is written in terms of the transformed
variables (g, p) which are composite of the earlier s — 3 canonical transformations

(the Hamiltonian was in normal form upto degree 2 initially).

We want to construct a canonical transformation from (g, p) to (£,7),

q=£+¢(€:’?)
p=1n+%(n)

such that the resulting Hamiltonian system is in normal form upto degree s of
homogeneity. Suppose the transformation is generated by a function W = ¢ -5 +

W?(q,n), which gives the transformation equations,

_oW . O

- 9q dq

oW OW?
.+.




where W* is a homogeneous polynomial of degree s. The transformation that we

are looking for is such that,

oW oW
H(q,n + —67?—) =ID(q¢+ an y 1)

where I'(¢,7) = 122, I"(€,n) and upto r = s — 1, I'" = H". This gives an equation

r=2

determining W?*,
DW?*(z,n) = —H*(z,n) + I*(z,7)
where in definition of D, p is replaced by 7.

Now the domain of the operator D can be written as union of two subspaces D =
N UUR where N and R are null and range spaces of D respectively, so that if P* € N
then DP* = 0. It is possible to write H® uniquely as H* = R’ + N°® where R’ and
N?* are members of R and N respectively. By choosing DW* = R® one gets ['* = N*

thus the new Hamiltonian is in normal form upto degree s.

Gustavson’s method is very useful in studying the dynamics of a chaotic system in
regular regime. This technique was applied to the Henon-Heiles (H-H) Hamiltonian
system by Gustavson [15]. His results were shown on Poincare sections and were
compared with the numerical calculations of Poincare sections at corresponding en-
ergies. The numerical studies of the Henon-Heiles system shows that the system is
integrable upto energy = 1 for € = 1; for ;5 < energy < § the motion is quasi-
chaotic, and beyond energy = -16- the motion is non-compact (there are non-compact
orbits also below energy = ¢ which are not considered). The system shows increase
in chaotic behavior with increase in energy. Gustavson’s results are in good agree-
ment with the numerical results upto energy = 75, beyond this énergy the numerical
calculations for Poincare section shows regions in phase-space which are not foliated
by regular curves whereas the normal-form calculations show regular motion every-
where on the energy surface. Thus in chaotic regime Gustavson’s method does not

converge.

In contrast to KAM, Gustavson’s method is applicable only when the unperturbed
Hamiltonian is harmonic oscillator (unperturbed frequencies are degenerate), thus

KAM and Gustavson’s method are applicable to two disjoint classes of Hamiltonian
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systems. We shall show analytically as well as numerically that the TCPT can be
applied to Hamiltonian systems belonging to both these classes.

1.3 The Lie Canonical Transformation

Canonical transformations are those transformations of the phase-space coordinates
under which the Hamiltonian equations of motion remain unchanged. One way of
defining canonical transformation is as follows ([16],[17]);

Suppose given phase-space coordinates (g,p) are transformed to new coordinates
(§,n) such that the old and new coordinates are related by ¢ = £(q,p) and 7 =
n(¢,p). If f(q,p) and g(q,p) are some functions over phase-space which become
f'(&,7),9'(€,n) under the transformation and if the Poisson bracket remains invari-
ant under the transformation, i.e.

{fig};q,p) = {f,‘gf}(ﬁ,ﬂ)

then the transformation is called canonical transformation.

Hamilton’s equations of motion in Poisson bracket form are,

dq

E = {qu}
dp
E}' = {Hap}

because Poisson brackets are preserved in the transformed coordinates, Hamiltonian
equations are also preserved, with Hamiltonian written in the new coordinates. For
many Hamiltonian systems the EOM become very simple in some specific phase-
space coordinates, because of this the study of canonical transformations is impor-

tant.

The usual way of defining canonical transformations is as follows; if S(g, P) is some

well defined function then it generates the following canonical transformation,

_os
aS
Q=ﬁ
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and the new Hamiltonian K is,

aS
K=H+ 5

S is called the generator of canonical transformation. There are different ways of
writing S as a function of mixed variables but essentially S is a function of half of the
old phase-space coordinates and half of the transformed coordinates. We shall be
calling this generating function which is defined in usual method as the Goldstein
generator and the transformation generated as the Goldstein transformation for

convenience.

In classical way of defining canonical transformation one does not get a relation
between old and new coordinates directly, to get such relationship one has to invert
the canonical transformation equations. Because of this it is difficult to work with
Goldstein transformations. Unlike the usual method of doing perturbation theory,
we have worked with Lie method of canonical transformations (LCT) (for detailed
formalism of Lie canonical transformations see [17]). The Lie generator F', which is a
function of phase-space coordinates, defines a continuous canonical transformation.
Unlike the Goldstein generator the Lie generator defines a one parameter group of
transformations. The Lie canonical transformations have been well-studied by De-
prit and Hori [18] and successfully applied to Plasma physics problems by Kaufman
[19].

The advantage with Lie generator is that one does not work with mixed variables as
argument of the generating function, the generating function is-either a function of
old variables or that of the transformed variables. Thus the transformation equations
take a simple form and give direct relationship between old and new coordinates.
According to our conventions a Lie generating function G is to be considered as the
Poisson-bracket operator {G, } when exponentiated and a function over phase-space
otherwise. Thus €°C is the operator,
e =1+46{G,}+ ‘;—2!-—-—-———{0‘ {2(,; I

where 1 is the identity operator and § is a parameter that can take continuous values.
For each value of 6, G defines a Lie transformation as shown above (Note that G
has to be independent of § for the transformation formula to be valid). The result
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of the operator e’C operating on some phase-space function A is another function

A’ given by,

8 pG{G, A}
P 5G4 ’

A=e A-.A+6{G,A}+2! 51 +...

If G is an explicit function of é§ then the Poisson bracket has to be redefined as

{,} = & + {,} and the same formulae as for the case where G is independent of §
are valid.

If a Hamiltonian Hj is transformed to H by a Lie transformation, i.e., €S Hy = H
(where H is still written in the old coordinates) then the solutions of EOM for Hy,
¢ are mapped into solutions of EOM for H, &; by,

6 = 5o (112)

and if H is written in terms of the old action-angle variables, (I,8) then constants

of motion I! for H are related to constants of motion I; for Hy by,
I' = 5CI, - (1.13)
We shall prove these relationships in the next chapter.

The disadvantages with LCT are as follows;

The transformation generated gives the new coordinates in terms of an infinite
series in 6§, where the coefficients of é are functions of old coordinates. Similarly
the transformed Hamiltonian is also written in terms of an infinite series in §. In
specific cases it may be possible to sum up these series to give a finite form but in
general one has to work with the infinite series. If § can be assumed to be small then
the series can be truncated to get an approximate transformation. Secondly the Lie
method can be used only when the transformation is continuous whereas Goldstein
generator can also give discrete canonical transformations.

Before concluding this section we shall illustrate how the small denominator problem
translates into the LCT notations. The canonical transformation that one is looking
for is the one that transforms Hp to H = Hy + ¢Hy, 1.e.,

EL(FI H{] = H{] e €H1
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comparing O(¢) terms in both the sides,
{F1, Ho} = Hy (1.14)

This equation is the same as equation 1.6 in the small denominator problem but
with a sign change and with the difference that S; was written in mixed coordinates
whereas Fj is written in the old action-angle coordinates. As in the small denom-
inator problem, writing Fourier expansions for F; and H; in the above equation
yields,

Fi, = i(ff’;) (1.15)
which is the small denominator problem. It is easy to see that both F; and S give

the same result upto O(e). The Goldstain transformation upto O(e€) generated by
S=S8+eS1=1'-0+e5(1',0) is given by,

aS 95,
= —= 4 —
a6 -+
0S a5,
=22 g es2h
ar ' T 31
which can be written as
, 05:(1,8)
I'=] —e————=
‘o0
051(1,9)
T ’
0 =0+ c——a 7
considering terms of O(€). The transformation equations generated by F; are,
I'=ehf]= I+e%
OF;
1 __ _eF — — "__l
0 =e"0=0-—¢ £
thus F; = —5; and both of them generate the same transformation upto O(e). This

exercise shows that LCT gives the same results as the goldstein notations but in a

simpler manner without any need of inversion.

1.4 Plan of The Thesis

Plan of the thesis is as follows; Chapter-2 gives motivation for use of TCPT compared

to CPT. We explain the reason of singularity in CPT from many different view
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points and show in each situation how TCPT helps in removing the singularities.
We give the general formalism of TCPT and discuss the relationship between the
TCPT generating function and the Hamilton-Jacobi generating function. Analytical
properties of the TCPT generating function are discussed in chapter-3. We show
that in contrast to CPT generating functions, the TCPT generating functions can
be guaranteed to be nonsingular at each order of calculation for finite time. We also
discuss two special cases where a definite prediction can be made about the analytical
properties of the total TCPT generating function. Analytical continuation of the
generating function is possible when the singularities are isolated, we show this for
a 1-DOF example.

Chapters 4 and 5 describe application of TCPT to two specific Hamiltonian systems.
In chapter-4 we discuss application of TCPT to the Henon-Heiles system. The
generating function, invariants and the mapping relationships are calculated upto
third order. Numerical prediction of mapping for higher order perturbation theory
are given. To understand the convergence properties of the perturbation series we
calculate numerically the radius of convergence for a regular and a chaotic orbit.
We also apply the perturbation theory to the anti-Henon-Heiles oscillator to see the
effect of non-compactness of the potential on convergence of the perturbation series.
We also study the dependence of radius of convergence of TCPT on energy for the
Henon-Heiles system.

The Henon-Heiles Hamiltonian is a non-KAM type Hamiltonian because the un-
perturbed frequencies are degenerate. To show that TCPT can be applied to both
KAM-type as well as non-KAM type Hamiltonian systems in chapter-5 we apply
TCPT to a KAM-type Hamiltonian system. We do similar numerical studies as
in Henon-Heiles case. We also show that this Hamiltonian belongs to the class of
Hamiltonian systems discussed in chapter-3 for which analytical properties of the
total generating function can be predicted. Finally we conclude with a summary of

work done and some open questions.
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Chapter 2

The Time-dependent Canonical
Perturbation Theory

2.1 Why is time dependence necessary ?

In this chapter we discuss the reasons for failure of usual (time-independent) per-
turbation theory and the advantages of choosing TCPT. We show theoretically as
well as with some simple examples how TCPT helps in getting rid of some of the

problems in usual perturbation theory [20].

(1) The idea of canonical perturbation theory is to find a generator of canonical
transformation F such that there is a one to one map between the orbits of the
unperturbed Hamiltonian Hy and that of the perturbed Hamiltonian H, i.e. the

following diagram should commute.

Hr

£'(0) ¢'(7)
F F
£(0) §(r)
H()T

Figure 2.1: Commutation relation of 7 with evolution
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In the figure the symbol HT denotes the canonical transformation given by the

~H7 and similarly Hor denotes the corresponding time evolution generator.

operator e
The symbol ¢ denotes phase-space coordinate vector and ¢’ denotes the transformed
coordinates. The meaning of the diagram is that whether one first evolves a phase-
space point £(0) in time according to the unperturbed equations to get a new point
¢(7) and then apply a canonical transformation F to get the transformed point
§'(r) or first the canonical transformation F is applied to £(0) to get £(0) and
then this point is evolved using the perturbed Hamiltonian EOM, both the way
one gets the same end result. The diagram is true for any canonical transformation
which transforms Hy to H but we are interested in the special case where Hy is an

integrable Hamiltonian and H is a chaotic Hamiltonian.

Suppose £(0) is a phase-space point on a periodic orbit of Hy with time period

—Hom transforms it back to the same point,

7, so that the action of the operator e
ie., £(0) = £(r). Now if the generator F is independent of time, i.e., F depends
only on the phase-space coordinates then it will transform both the points £(0)
and £(7) to the same point in the transformed coordinates, i.e., £'(0) = ¢ (7). But
this condition implies that if the unperturbed solution £ is periodic with period 7
then the perturbed solution is also periodic with the same time period. In general
this can not be true because as we know most of the phase-space of the perturbed
Hamiltonian is covered by a single chaotic orbit which never comes back to it’s
starting point. Thus if a canonical transformation exists which transforms Hy to H
then it has to be either multiple valued function of phase-space so that the same
point £(0) = {(7) can be transformed to two different points £(0) and £(7), or it
has to be time dependent in which case it will give different transformations at ¢t = 0
and ¢t = 7 and so the transformed orbit need not be periodic.

(2) Equation 1.14 can be considered as an operator equation in a Hilbert space of
periodic functions. Now as we know, an operator equation admits solutions iff the
RHS of the equation is orthogonal to the null eigen vector of the adjoint of the
operator. In our case the operator in the equation is A,, = w - %, which operates
on F} to get H, in RHS, i.e.,

AopFl = Hl

The operator A,, is anti-self-adjoint, so the null eigen vectors of A,, and adjA,,
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are the same. The eigen vectors of A,, are of the form f(/)e'™®) and the eigen
values are of the form ¢(m - w). Thus for equation 1.14 to be solvable, H; should
be independent of €™ whenever m - w = 0 or equivalently Hi,, should be zero
whenever m -w =0 '

Above argument shows that by considering equation 1.14 as an operator equation
and trying to solve it, the problem encountered is the same as that in the small
denominator problem. In the small denominator problem also we required Hy,, = 0
when m - w = 0 for getting a non-singular solution. One possible reason for the
failure is that the assumption with which we started, i.e. F} is Fourier expandable
in terms of angle variables may be wrong, i.e. F; may be an aperiodic function of 6.

(3) Alternatively let us look at this problem as that of solving the equation 1.14,
{Fly HD} = Hl

which is a first order partial differential equation. The equation can be solved using
method of characteristics (to be discussed in detail later). The formal solution is
given by,

Fi(z) = /Hl dz (2.1)

where z is the characteristic direction of the differential equation. This direction is
defined by solutions of unperturbed Hamiltonian equations and it turns out to be

the same as the arc parameter t.

- F 1] i
R=" £ ={ F, (T)
A, \

To write down the solution explicitly, one requires to give initial value of F; at

F.'qwu-— 1.2

t =0, i.e. Fio. Let us consider the situation shown in the figure 2.2 where F is to
be calculated for a periodic orbit, the boundary values of F; are given on a surface
Ao. Now because Fj is a function of phase-space coordinates when the phase-space

point takes it’s initial value, F also should take it’s starting value. As can be seen
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Zom the formal solution if we insist F) to be periodic for a periodic unperturbed
orbit, integral of H; on that orbit should be zero. But an orbit being closed implies
that the corresponding frequencies are commensurate, i.e. there exists a non-zero
numbey vector m such that m -w = 0. Now considering the corresponding Fourier
component H;,, and assuming it to be non-zero gives the old small denominator
problem, so for the generator to be finite H;,, has to necessarily be zero. Analyzing
the situation differently, if integral of H, over the unperturbed orbit is non-zero then
with increase in time [ Hydz over the closed orbit keeps increasing and in the limit
t — 0, the integral becomes oo. This explains appearance of singularity in usual
canonical perturbation theory when H;,, # 0 and m -w = 0.

It is easy to see that the condition H;,, = 0 when m-w = 0 is not satisfied in general.
One example is the case where H; is a function only of the action variables. In this
case the only non-zero Fourier component of H; which is the component with zero
number vector m is non-zero i.e. Hjo # 0 but the corresponding m - w = 0. In
such cases F) turns out to be singular. One can get rid of the problem by making
Fi a multiple valued function of phase-space variables. We show in the following
that this property of F; being ill-defined can be removed by making it explicitly
time-dependent.

(4) Interpreting the above situation in a different manner; let us assume that H,
contains a piece which is constant over the unperturbed trajectory, i.e.,

Hy = f(I)+¢(1,9)

then from the formal solution,

Fi(z) = ] Hidz = f(I)z + [ g(1,0)dz

thus F; will contain a piece which is linear in time If we substitute back the
characteristic variable z in terms of the phase-space variables from § = 6y + wz, we
get a term which is linear in §. Now a function which is linear in 6 is an aperiodic
function of 6 and so it can not be Fourier expanded. This result is in agreement
with our analysis in (2).

Now as we have seen if m - w = 0 and H;,, # 0 then one encounters the small

denominator problem and it is exactly in such cases that we expect Fj to be aperiodic
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in 0, from this we can say that the small denominator problem comes-up because we
are working with Fourier expansion of an aperiodic function. If the phase-space is
extended to include time then an unperturbed orbit never closes into itself because
all the orbits travel forward in time and the time dependence of the transformation
will arise naturally from the part of H; which is constant over unperturbed orbit.

(5) A well defined canonical transformation which is not explicitly dependent on
time is equivalent to a coordinate transformation of phase-space variables. One can
not expect such a transformation to change the dynamical features of the motion
like topology of an orbit or that of an energy-surface. It is possible to change
topology of an orbit by applying a time-dependent canonical transformation. As
an example consider a free particle for which the phase-space diagram is straight
lines with momenta p; being constant. If for a given trajectory the coordinates are
transformed as x; — z; — p;t, then the corresponding straight line in old coordinates
will now become a point in the transformed coordinates thus changing the topology
of the phase space curve.

It is known that when a perturbation on an integrable Hamiltonian results in a non-
integrable Hamiltonian there are drastic changes in the topology of the phase-space
(e.g. break-down of resonant tori.). It is easy to see how a time-dependent canonical
transformation can account for topology change of phase-curves by considering the
extended phase-space. In the extended phase-space a fixed point in the usual phase-
space diagram becomes a straight line whereas a straight line goes into another
straight line. Thus topologically different phase-curves can have the same topology
in extended phase-space.

Conclusion from the above discussion is that if a canonical transformation exists
which transforms Hy to H, it should have one of the following properties

a. [ll-defined by being singular(as in the small denominator problem).

b. Aperiodic in angle variables.

¢. Time-dependent canonical transformation.

We have assumed F to be time dependent.
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2.2 The Formalism

In order to use TCPT for chaotic Hamiltonian systems, for simplicity of calculations
we have introduced the following notation. We take time t as a new DOF and intro-
duce a new phase-space variable T which is conjugate to t. We redefine the initial
and the perturbed Hamiltonian as Hy — Ho+ T and H — H + T respectively. The
Poisson bracket is now defined on the extended phase-space. Now let us solve equa-
tion 1.14 in this formalism using the Fourier expansion method. Writing equation
1.14 as a first order partial differential equation in the extendend phase-space we

get,
0F, 0H, aF, OHy _
+2 %, 9L, ~ oI, o6~ h @2
Here H, is integrable and so it is a function of action variables only, so ae =0

and derivative of Ho with respect to the action variables gives the unperturbed

frequencies w; = a 7 thus the above equation reduces to,

aF F,
— E B (2.3)

Inserting Fourier expansions of H; and F; and solving for Fourier components of F}

we get the following,

L t 5 '
Fln =e fO :{_n-w)dr/ H]_nefﬂ i(n-w)dr dr + Fan (24)
0
which upon integration yields,
. inw)t _ 1
Fi, = e ity ﬂe,— Fin .
In =€ W ) + Fino (2.5)

and thus using 8 = 6y + wt, the Fourier sum for Fj is,
—i(n-w)t

11—
Ri= T Hund P

i(n-w) o (2:6)

As can be easily checked, unlike the time independent first order generator, this
generator of canonical transformation does not become singular when (n - w) = 0
but in the limit (n - w) — 0 the generator becomes explicitly dependent on time t.

The other way of solving the equation for F; which is sometimes more useful is the

method of characteristics for solutions of first order partial differential equations.
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If we assume the characteristic direction for the equation to be z then the partial
differential equation for Fy corresponding to equation 1.14 is,

dF, _ OF, dF, OF, oy | OF, dl,
"o 2ot = (2.7)
With the formal solution,
Fi(z) = / Hyd: (2.8)

Comparing the coefficients of partial derivatives of F} in equation 2.7 with that in
the equation 2.2 gives the characteristic equations,

dt

- =1
b _
dz_wk
dI}

ay =)

which can be easily solved as they are the equations of motion for Hp.

t(z) = t0)+=
6(z) = 6(0) +w=z
I(z) = I(0)

We shall select ¢(0) = 0 for convenience. Using above expressions of phase-space

variables in terms of characteristic direction in H; in equation 2.8 yields,
2)= [ Hi(6(0) +wr,1(0),7)dr + F1(0) (2.9)
0

in which 6(0), I(0) and 7 are to be substituted back in terms of 8, I and ¢. The final
expression for F; becomes,

) = f; Hy(6 + w(r —t), I, 7)dr + Fy(0) (2.10)

It can be easily seen that Fy(0), which is a function of the phase-space variables
I,T,0 and t corresponds to an arbitrary canonical transformation which can be
selected at ¢ = 0. It is also easy to see from the following diagram that application
of Fy is equivalent to using the unperturbed Hamiltonian to go back in time and
using the perturbed Hamiltonian to go forward in time, if F;(0) is selected to give
identity transformation.
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Figure 2.3: Commutation relation of F; with time evolution when Fj; =0

eF;
£(t) §'(t)
Hyt Ht
£(0)

In this thesis we have chosen Fjg = 0 (The commutation relation shown in diagram

is correct upto first order in € only).

As we had seen earlier the first order generator F} can be calculated using the
method of characteristics to be as in equation 2.10. The action of F; on Hy gives
rise to higher order terms in € apart from the perturbation part H;.

2
C‘F‘Ho=Ho+€{F1,Ho}+%{F1,{F1,Ho}}+--- (2.11)

To remove higher order terms form the right side of the equation one uses higher
order generators, for example equation for the second order generator is determined

by,

2
e“PeeFi o = Hy + e{Fy, Ho} + %{F,, {(Fi,Ho}} + ...+ E{Fy, Ho} +... (2.12)

Let us select F3 such that the second order terms in ¢ from the RHS are removed,
this gives an equation determining F3,

(s, Ho} = = {Fy, (s, Ho}} = 5, {Fy, Hi) (213)

Similarly an equation determining Fj is found by applying a third order canonical
transformation e®®* and selecting F3 so that it cancels third order terms in € from

the RHS, Y
{Fs, Ho} = —Q{Fl, {F,{F1, Ho}}} — {F2, {F1, Ho}}) (2.14)

The transformation upto order n transforms the Hamiltonian Hy to the Hamiltonian
H correctly upto n** order in €. Notice that the equations determining Fy, F; and

F3 have the same form,
{Fria HO} =RHS
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where j = 1,2,3 and RHS is some function of phase-space variables. Because the
equations come in the.same form, the procedure can be generalized for an arbitrary
order transformation and all the equations can be solved using the same method.
In general the partial differential equation determining the (n + 1)* order generator
can be determined using the following set of equations.

HO = H,,
{Fl'.l HU} — Hl',l
HY) = MR g > g,

— {Fint1), Ho} = coefficient of €"*! in H™ n >1 (2.15)

Where the n** order generator is such that it kills terms of order € (which are

generated by lower order generators) in the following equation.

et P =H (2.16)

2.2.1 Solutions and Invariants

Using the generators upto order n one can calculate approximate constants of motion
which are mutually involutive. These constants are given by,

Il=e"Fn | e, (2.17)

where I; represent solutions for equations of action variables of H and I’ are the con-
stants of motion. The way to calculate I is to calculate the action of the generating
functions on I; symbolically to get an expression in the unperturbed coordinates. In
the resulting expression when (7, §) are evolved according to the EOM of H, the I!

remain constant.

It is easy to see that I] are indeed mutually involutive and are constants of motion

from the following,

(LI} ={e"™...ePL e . . eF L} = &P .. eI, I;) (2.18)

17
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but {I;,I;} = 0, hence the I! are mutually involutive. I} are constants of motion

can be shown as follows,

(IHY = {e"Fr... Rl H)
= edrl ...ean"{L'.,—E"F’ ...e_cﬂF"H}
= ECFI ...etnF"{f;,Hg}

=0 (2.19)

where we have used the fact that action variables are constants of motion for un-
perturbed Hamiltonian, i.e. {I;, Hy} = 0.

The mapping from the unperturbed solutions to the perturbed solutions can be
derived as follows, suppose ¢! represents solutions of EOM of Hy and £; represent
solutions of EOM for H (here £; = 6, etc. for EOM for H and & = 6, etc. for EOM
for Hy), then

&(t) = eH&(0)

but from the commutation relation e~¢f1e~tHo = ¢=tHe=¢Fi which holds because F,

is a canonical transformation we get the following equation,

&i(t) = e e Hoefig(0)
Operating by e*f* on both the sides in the above equation yields,

ePigi(t) = e Tig 0)
Now if we define the mapping relation as £/ = eF1¢; then,

&(t) = e*™€(0)
which is the evolution equation for the unperturbed solutions.
The general mapping equation can be given by,
fr=ePre P e g (2.20)

where ¢! and §; are solutions for unperturbed and perturbed Hamiltonian systems
respectively. Equation 2.20 allows one to calculate the solutions for perturbed sys-

tem accurate upto order n in € once the unperturbed solutions and the generating
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function upto order n are known. It should be noted that higher order in € does not
mean highly accurate numerical results as time t appears explicitly in the transfor-
mation equations, what can be ensured is that for small values of time and away from
the singularity in complex € plane above formulae provide very good approximations

for the constants of motion as well as the solutions.

2.3 TCPT and the Hamilton-Jacobi theory

One motivation for considering TCPT comes from the Hamilton-Jacobi theory.
Poincare believed that the time dependent series solutions of the perturbed sys-
tem should be convergent because the solution of the Hamilton-Jacobi equation
exists [1]. Instead of working in Lie formalism one can as well have time dependent
canonical transformation generator which is of Goldstein type, one such generator is
the Hamilton’s principle function. This generator gives a transformation(in mixed
notation) which transforms the phase-space coordinates at time t to phase-space
coordinates at time zero and the inverse transformation equations are the solutions

of the Hamilton’s equations of motion.

The generating function for Hamilton-Jacobi theory, S is given by,

as 8S
= T H(55.0)=0 (2.21)

where S is a function of the old angle variables 6; and the new momenta a;. If the
Hamiltonian H does not explicitly depend on time then one assumes S to be linear
in time. Assuming S = W — Et, the Hamilton-Jacobi equation becomes,

H(%—‘;’,a) =E (2.22)

Instead of taking S to be linearly dependent on time let us assume a general time

dependence of S and write power series expansion of S in terms of ¢,

H(1,0) = Ho(l)+ eHy(1,0)
S5(0,t) = So(0,t)+€S1(0,t) + €2S2(0,t) + ...
r =%
T 09
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(We have not shown the constant transformed action variables in the arguments of
S). Using these equations in the Hamilton-Jacobi equation 2.21 and equating equal
powers of € we get a series of equations determining the S;. It can be seen that by
making S explicitly dependent on time the resulting canonical transformation turns
out to be equivalent to transformation given by TCPT.

The relation between the Goldstein type generator S and the Lie generating function

F which generates translation in € is given by,

aS as
Be + F(0, 3_8) =0 (2.23)
For the case where S is the solution of Hamiltonian-Jacobi equation this relation is,
as
T +H=0 (2.24)

which is the Hamilton-Jacobi equation itself. In H-J equation S generates the canon-
ical transformation which connects the phase-space coordinates at time ¢ to the
phase-space coordinates at time ¢ = 0, the Hamiltonian generates the same trans-

formation when used as a Lie generating function.

Here it will be worth-while to show a relationship which makes the relationship
between the TCPT, the Hamilton-Jacobi theory and the time evolution of the system
clear. Suppose that an operator F,, defines a canonical transformation (either Lie or
Goldstein), then according to the definition of canonical transformations the Poisson
bracket should be invariant, i.e.,

Fop{Ha ¢} = {FopH= F0p¢'}

where ¢ is some function over phase-space. Now if we write the transformed Hamil-
tonian as H' = Fo,H and write adH for the operator {H,} then the following two
operator relations hold,

FopadH = adH'F,,

which implies,

(=) tn (=] tn s
Fop(t) Z ;GdHn = Z gadﬂ. Fop(ﬂ)
n=0 """ n=0 """

= F(t)e™ = ¢ *H'F,(0)



where the arguments 0 and t of F,, indicates that the two operators are to be con-
sidered at different times. Now let us select F,,(0) to be an identity transformation,
then

Fap(t) = e—tH'etH

thus a canonical transformation which takes EOM of H to that of H' can be written
as above mentioned composition of the time evolution of the two Hamiltonian sys-
tems, but as we know the H-J generator provides transformation equations which
are the same as solutions of EOM, thus the H-J theory,F,, and the time evolution of
the Hamiltonian systems are closely related and the TCPT generator is effectively
the same as F,, when at ¢t = 0 the TCPT transformation is selected to be identity.

In general one expects the TCPT generator to be singular in €. As is the usual case
the unperturbed evolution is always independent of € so all the € singularities of F
should be coming from the time evolution given by the perturbed Hamiltonian sys-
tem. But the transformation given by F is composition of the two transformations
F = efloteHt thus a non-trivial € singularity structure in F corresponds to a similar
nontrivial singularity structure of S, the H-J generating function.
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Chapter 3

Analiticity Properties of the
Perturbation Series

In this chapter we discuss analyticity properties of TCPT. This discussion is im-
portant in understanding convergence properties of the perturbation series and it
also provides insight into results of other methods like KAM and the Gustavson’s
method. We shall consider two important aspects,

1. The finiteness of each term in the perturbation theory.

2. Analyticity of the total generator F, defined by,

F=...em R (3.1)

3.1 Finiteness of the F;

For a perturbation series to be convergent there are two requirements, (1) each
term in the series should be finite and (2) the series while summed over should
give a finite result. Now as we know from the small denominator problem, in the
usual way of doing perturbation theory the first order generator turns out to be
singular (In fact the same problem persists at all orders). We require the canonical
transformation given by different orders of the perturbation theory as well as the
total transformation given by composite of transformations at all the orders to be
convergent. Thus our first step in the direction of a convergent perturbation theory
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is to have the generating functions at different orders to be nonsingular. This result

is shown in the following.

It is shown that If F} is an entire function of the two variables t and (n - w) (and
hence of I, if w’s and H;, are entire functions of I), and periodic in # the same
property will hold for generators at all orders [20].

Lemma: Assume that Hy and H; are analytic in I. Define a sequence of canonical

transformations through the equations 2.15:
HO — Ho,

{Fh HD} - Hl;

HH) — P gr(n) > )
—~{Fp41, Ho} = coefficient of ¢"*' in H™ n > 1

Then, F, is an entire function of I and t and is periodic in 0 for alln = 1, 2, ...
(In brief, we shall say that F™ is regular).

Proof: The proof follows from induction, using the following facts:

(1) If H™ is regular and F(») is regular, so is H("+1): this follows from the fact that
the computation of H("*!) involves the computation of derivatives, which preserves

regularity.

(2) The PDE {A, Ho} = G has the property that if G is regular, then A-is regular;
in fact, if G = ¥ Gne'™®, where the Fourier coefficients are entire functions of I
and t, then A = 3 A,e’ ™9 where

. t
A, = e~imw)t f e IG, dt (3.2)
V]

In the RHS (n - w) and ¢ appear as arguments of the exponential function which
can be singular only when the variable themselves become oo, further because the
integration is to be done for finite real time the integrand remains within the region
of analyticity during the integration. Thus the RHS is an integral of an entire
function of ¢ and (n - w) along a contour which lies within the region of analyticity;

hence the conclusion. |
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Above result shows that the TCPT is successful in removing the problem of singular-
ities in the generating function at each order of calculation, which was encountered
in usual perturbation theory. The next question that remains is that of the conver-
gence of the perturbation theory as a whole, i.e., when the total perturbation series
is summed will it give convergent result? It should be noted that because now the
generating functions are also dependent on time, a higher order calculation in € only
does not suffice for high accuracy, value of ¢ also becomes important in determining
converg;ance. We discuss this problem of convergence of the total TCPT series in
the next section.

3.2 Convergence of the Perturbation Theory

In calculation of the generating functions at different orders, we have assumed that
the total Lie generator F is analytic in € and F can be calculated as power series in
¢ from the equation,

‘?_‘ — eE"Fn c¢F1

If F has singularities in complex € plane then this power series approximation for F
will converge for that finite radius in € which is defined by the nearest singularity.
Thus if F has a singularity in complex € plane then the mapping and constant of

motion approximation will be valid only inside the radius of convergence.

Now the total canonical transformation F is equivalent to transforming backwards
in time using Ho and then transforming forwards in time using H. Since the first
step is independent of ¢, the analyticity properties of F is decided by the analyticity
properties of the time evolution operator H as a function of €. In general, of course,
the analyticity properties of F as a function of € will depend on ¢; this is in contrast
to the time independent case, where analyticity properties are independent of ¢. It
is not possible to derive general results regarding the analyticity properties of the
transformation for any given perturbative Hamiltonian system.

There is no known analytical method to predict complex € singularities. We have

developed a numerical method for this purpose. The idea of our method is as
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follows. Solutions of the perturbed equations can be calculated from the unperturbed
solutions using the equation 2.20. It is also known that the unperturbed solutions are
analytic in € (in fact they are independent of €), which implies that any € singularity
present in the solutions of the perturbed system has to come from the singularity in
F. Thus singularities in perturbed solutions are the singularities of the generating
function. To investigate singularities in F in this manner a Fortran program was
developed, we shall discuss this program in the chapter on the Henon-Heiles system.

Once the position of complex-¢ singularity for a fixed real time is known, it is
possible to overcome the convergence problem caused by this singularity, provided
the singularity in question is an isolated singularity (which is almost always the
case in Hamiltonian quasi-chaos). The way of avoiding convergence problem in
perturbation series due to existence of isolated singularity is to analytically continue
the generating function, we shall discuss this in detail later.

There are two special cases where definite predictions can be made about analyticity
of F.
1. The region in phase space where KAM tori exist.

2. The case where Hy and H; are homogeneous polynomials in the phase space
variables.

We discuss these two cases in following two sections.

3.2.1 Relation of F with Frau

According to KAM theorem the perturbation theory converges for the irrational tori
when the perturbation parameter is small. We show in the following that TCPT will
give convergent results in the cases where the KAM generator exists and is analytic
in action angle coordinates. |

We assume that there exists a time independent canonical transformation Fxanr
(calculated using KAM theory) for given irrational frequencies and for a certain
value of €. The existence of KAM generator for a torus implies that Fx 4ps inter-
twines between the time evolution generated by the unperturbed and the perturbed

Hamiltonian systems, which implies that the following diagram commute. This
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diagram shows Relation of F with Fxnm.

Fiam F

Hyt Ht Hyt

Fram
Figure 3.1:Relation of F with Fxam

This means that given a phase-space point (on the KAM torus) one can first apply
the canonical transformation generated by Fx 4p and then evolve the resultant point
under H or one can first evolve the point under Hy and then apply the canonical
transformation generated by Fxam, in both the cases, final result will be the same.
We also know that if F exists, it maps the solutions for Hy to the solutions of H.

From the diagram one gets the following formula,
F = Fram et Frchini etHo (3.3)

thus F will exist provided the time evolution of Fx 4ar under the unperturbed Hamil-
tonian is well defined for real ¢. In particular, since Fxapm will depend on 1,6 and
their evolution under Hp is trivial, 7 will be analytic in € provided Fxanm exists.
Further, in such a case, F will be analytic in € for all ¢, hence existence of Fxam
guarantees convergence of the TCPT.

Above relation provides us with insight into the results of the KAM theorem and
the structure of the perturbation theory. KAM theorem guarantees convergence
of perturbation theory under the conditions that the unperturbed frequencies are
irrational and non-degenerate. Equation 3.3 implies that if KAM theory give conver-
gent results, the usual canonical transformation generator F will have only isolated
singularities in complex-¢ real time space and so it can be analytically continued.

The KAM theorem does not provide us with any insight in case of rational tori. The
method of overlapping resonances give good estimates of the critical energy for chaos

to start but does not give any information about nature of the perturbation theory.
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We propose that in the case of chaos the singularity structure of F should be such
that it does not allow for analytical continuation in the real-t real-¢ direction. In the
following section we prove a result for a special class of Hamiltonian system which
shows that analytical continuation of the generating function may not be possible
when the system is chaotic and it’s solutions have a natural boundary structure in
complex time.

3.2.2 Relation Between Complex-¢ and Complex-¢ Singu-
larities

For a class of Hamiltonian systems it is possible to relate the complex-time analyt-
ical structure of fully perturbed Hamiltonian systems to the complex-¢ analytical
structure of the canonical transformation which transforms the Hamiltonian with a
small € value to the Hamiltonian with a large € value [20]. -

Let us take a Hamiltonian system where the unperturbed part is homogeneous
function of degree m in phase space variables (g¢:,p:;) and the perturbation part
is homogeneous function of degree n,

H(qi,pi) = Ho(gi, pi) + €H1(gi, pi); (3.4)

For such Hamiltonian systems, it is possible to do a scale transformation of the
phase space variables so that the resulting Hamiltonian is the same Hamiltonian,
with ¢ = 1 and a constant multiplier. Assuming n > m the transformation is,

g = qie®, pi = pie” (3.5)
where o = —— and the Hamiltonian becomes
H'(qi,p;) = €™ (Ho(q}, P;) + Hi(q},P})) (3.6)

(Note that this transformation is not a canonical transformation, but it transforms
the vector field of H at some € to the vector field of H at e = 1.). It is possible to
reparametrize the system with €’ defined by, e = (1 + € )‘ﬁl?, this yields,

H'(qi,p;) = (1 + €)(Ho(gi, i) + Hi(g}, P})) (3.7)
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but the above Hamiltonian is equivalent to perturbing the Hamiltonian,
H=1(q,pi) = Ho(qi,p;) + Hi(q;,p}) by itself, the perturbation parameter being €',
i.e.,

H'(g, p;) = He=1(qi> P;) + € He=1 (45, ) (3.8)

for such a perturbation the first order generator F) alone gives the total canonical
transformation because F; = H.=1(q}, p;)t and all the higher order generators vanish.
F can also be treated as the Hamiltonian for € evolution (except at € = 0 because
there the scaling transformation is ill-defined.) because it generates infinitesimal

transformation in €¢’. The € evolution equations are,

o _oF o __oR
d¢ — Op.’ 0¢ 0q

(3.9)

Now F} is the same as H(gi,p;) at € = 1, but for an extra multiplier t. So above

equations can be rewritten as,

9q; — OHe=1(4i, ;). 9pi _ _ch=1(Q£ap:‘)
Oe't Op; " Oe't dq;

(3.10)

But these equations are the time evolution equations for the Hamiltonian H.—;. Thus
if H=; has singularities in the complex ¢ plane, then a canonical transformation
defined by F; also will have singularities in the complex €'t plane, and hence in
the complex € plane for a fixed t. Also, the presence of a natural boundary in the
complex t plane for the Hamiltonian H,=; will manifest itself as a natural boundary
in the complex € plane for 7. For example consider the ¢ = 1 case, where the
evolution equations for € are the same as for t and so natural boundaries in complex
t plane will manifest itself into that for complex € plane and hence for complex €
plane. Hamiltonian systems with homogeneous perturbation and which have natural
boundary structure in complex time plane can be easily found in literature, one such
well-studied system is the Henon-Heiles system [21].

H in the complex € plane

In case the singularities of the time evolution operator e~
are isolated(which almost always happens in the case of Hamiltonian quasi-chaos), it
is possible to use analytic continuation to define F' beyond the radius of convergence.
However, as the above study shows, the existence of natural boundaries in the

complex t plane may imply the existence of similar boundaries in the complex ¢
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plane also. It is possible to study the analyticity properties of F' using standard
tools for determining the analyticity properties of the solutions of the equations
of motion of H. We discuss one such technique in the appendix A-1 in the next
chapter.

3.3 Analytical Continuation of the Transforma-
tion

A perturbation theory gives convergent results provided the value of the perturbation
parameter lies inside the radius of convergence determined by the position of nearest
singularity in complex perturbation parameter plane. Thus the TCPT becomes
divergent beyond this radius. A way out of this problem is to analytically continue
the generator of the transformation.

A two step perturbation theory was worked out. In this theory the range of € for
which calculations are to be done is divided in two small steps € = €; + €. The first
step of the canonical transformation transforms the initial unperturbed Hamiltonian
to the Hamiltonian with perturbation parameter value €. In the next step the

Hamiltonian resulting from first step is transformed to get the final Hamiltonian
with perturbation parameter value €; + ;.

The transformation equation for a (2 + 1) perturbation theory (second order trans-
formation in first step and first order transformation in second step) is,

etzFlpequenﬂHo - H

where Fy, is the first order generator for the second step. Which can be calculated

as following,

2R F
{1 1:.::6el Te’ IHO} = Hl
- -3 F. F, 25
= {3 CIFIC ‘1 2F191H0} =e 1Me™™ 2}'{l

z
=> Fl z) = 8(?}:‘2 ee;F’; efHu e—qF; e‘-‘!?Fg H]. dT + FI, (0)
P 0 P

The single step perturbation theory diverges if value of € is beyond the radius of

convergence but the two-step perturbation theory will give convergent results if the
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two steps are correctly chosen. Inside the radius of convergence a third order single-
step perturbation theory is supposed to give better results compared to a (2 + 1)
order two-step perturbation theory.

We applied the double-step perturbation theory to calculate the canonical trans-
formation from Hy = ﬁ}ﬁ to H = Hy + 694:. The perturbed Hamiltonian H is
one-degree-of-freedom and so it is integrable, further for positive values of € the
motion is compact for all energies. When ¢ is negative the motion for H become
noncompact at large enough energy values. We calculated radius of convergence in
€ in real time at the point € = (0,0) for specific initial conditions and applied the
two-step theory té.king both steps in € to be positive so that the resulting system
has compact dynamics. The results were compared at two different initial condi-
tions and compared with the single-step theory results. Graph 3.1a shows constant
of motion where the final € lies outside the radius of convergence, plot O(3) is the
result of the single-step third order perturbation theory and O(2 + 1) is the result
of the two-step theory. Graph 3.1b is the same as graph 3.1a with the final ¢ being

inside the radius of convergence.

As can be clearly seen from the graphs, In both the cases the third order predictions
are better for time values which are well within the radius of convergence whereas
the two-step perturbation theory results turn out to be better for larger time values.
Graph 3.1a shows that when the radius of convergence is small the analytically

continued generating function gives much better results than the single step theory.
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Graph: 3.1a: Relative variation in predicted time-dependent constant of motion I'.
The nearest singularity is at t ~ 2.67. O(2 + 1) shows the two-step perturbation
theory results and O(3) shows a single-step third order perturbation theory result.
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Graph: 3.1b: Same as graph 3.1a, In this case the singularity is at t ~ 9.63
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3.4 Exact Calculation of the TCPT for Some
Special Cases

Though it is not possible to calculate the full TCPT transformation in general, for
a class of perturbations where the resultant system are integrable, it is possible to
calculate the total TCPT transformation.

Consider an integrable Hamiltonian Hy which is perturbed by a constant perturba-
tion Hi,

{H(Js Hl} = 0

Examples of such systems are where,

(1) H, is a function only of the unperturbed action variables,

(2) The angle dependence of H is such that H; remains constant over unperturbed
orbits.

In these cases only the first order generating function F} is non-zero, all the higher
order generators vanish. This can be shown as follows. H; being constant on the
unperturbed orbits means that F; = [ H;dr = H;t. Calculation of F, requires
calculation of {Fy,{F, Ho,}} = {F1,H:}. Now F\, = Hyt implies {F;,H,} = 0
which in turn implies F; = 0. In the same manner generators at all the orders
are seen to be zero. In other words, because F; does not create terms of O(€?) or
higher orders, there is no need to have higher order generating functions which were

required to kill higher order terms in € in the transformed Hamiltonian.

It should be noted that in both the above cases (1) and (2) the CPT is singular and so
can not be applied. Now because in these cases only F; is nonzero and higher order
generating function vanish, Fy can be treated as the Hamiltonian for ¢ evolution.
This follows from the fact that if the unperturbed Hamiltonian is considered to be
Ho + €, Hy and the perturbation part, €2 Hi, for all finite values of €, F} remains the

same. In other words at all values of e,

dl;

—d-C- = {IivFl}
do;
I’ = {gi:Fl}
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which are the coefficients of the first order term in € in the equations for mapping.

Let us consider an example where,
Hg = Il + fg; Hl =2 1112 605(91 - 92)

It is easier to solve for the canonical transformation after the following coordinate
change,

2 2
I]'_’p1+ql
2 2
Iz_’ p2+q2

—h
Q1
1=P2

q2

under which the perturbed Hamiltonian becomes,

6, — tan™!
0, — tan~

9} + g2 + pi + P}

H= 5 + €(q192 + p1p2)

Now,
Fi(t)= | " Hy(¢ + w(r — t), J, 7)dr + Fi(0)
with F1(0) = 0 and because H, is constant over unperturbed orbits,
| Fy = Hit = (192 + p1pa)t

F, is calculated by integrating —-{E-‘-%H—‘}- over unperturbed orbits but {Fy, H;} = 0,
thus F, vanishes and similarly all the higher order generating functions also vanish.

The equations defining the canonical transformation are,

dq _
il pat
% = —qat
%:—2- = —qt
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Which can be solved as,

qi(€) = quocoset + pyosinet
g2(€) = gqaocos et + piosin et
pi(€) = —goosinet + pygcoset
p2(€) = —quosinet + pyocoset

where ¢;9 denotes solution of the ¢; equation at € = 0, i.e. the unperturbed solution
etc.. It is straight-forward to see that these mapped solutions satisfy the differential

equations given by the perturbed Hamiltonian system.
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Chapter 4

Application of TCPT to the
Henon-Heiles System

4.1 The Hamiltonian

The Henon-Heiles (H-H) system is a non-integrable Hamiltonian system which was
first studied by Henon and Heiles [22] to investigate the integrability of the system
describing the motion of a particle in an axisymmetric potential an example of which

is the motion of a star in axisymmetric gravitational field. The Hamiltonian is given
by,

p2+p2+q2+q2 3
H=BTBRTHTE 4 (2, B (4.1)

2 3

where € is the perturbation parameter. This Hamiltonian can also be derived by

truncating the Toda-lattice Hamiltonian which is for a system of three particles

moving on a circle with exponential interactions,

2 2
H = w + e~ (@1=Q3) 4 —(Q2-Q1) 4 ,—(Q3-Q2) _ 3 (4.2)

truncating this Hamiltonian upto third order and applying a canonical transfor-
mation one gets the H-H Hamiltonian [3]. It is interesting to note that the Toda-
lattice Hamiltonian is completely integrable whereas the H-H Hamiltonian is non-

integrable. In fact truncation at different orders in the Toda-lattice Hamiltonian
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gives a class of Hamiltonian systems, this class of Hamiltonian has been well-studied
by Contopoulos and Polymilis [23]. The H-H Hamiltonian has also been studied
extensively regarding the Painleve property and complex-time singularities of the
solutions ([21],(7]).

One useful property of the H-H system is that the perturbation parameter ¢ can
be scaled to one without changing the form of the Hamiltonian by following scaling

transformation,
L@
qi z
i
Pi p
¢ = 1,2, under which,
1
where, . .
+Qi+ PP+ P} 3
p= WA LE L g1, - S

thus solving for motion of Henon-Heiles system for one value of € and different values
of energy is equivalent to solving for one value of energy and different values of e.
Our approach here has been the first one i.e. we have fixed the value of € to .01
and studied the system for different values of energy (energies are quoted for the
equivalent Hamiltonian A, for comparison with other results).

The potential of the H-H is such that in a small region near origin it gives rise to
a potential well, inside which the motion remain bounded but away from the origin
the potential valley exists where the motion is unbounded. The critical value of the
potential (and so the energy) upto which the motion is compact can be found by
finding out the turning points of the potential, this critical energy E. turns out to

be E. = }.

The H-H system shows a transition from regular behavior to chaotic behavior on
the Poincare section with change in energy [3]. For E < {; the Poincare sections
indicate regular motion, i.e. the section is filled with closed curves and there is no
exponential divergence of the trajectories. In the range {5 < E < § the motion shows
a transition from regular to chaotic behavior, becoming more and more chaotic with
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increase in E, i.e., the area which is covered by closed curves in the section becomes
smaller with increase in E. Beyond E = £, the motion becomes non-compact, with
solutions escaping to infinity. (There are unbounded orbits for all energies, including
for those with E < £; these orbits do not play any role in our analysis, as a suitable
choice of initial conditions ensures that the orbits remain bounded.)

Classical perturbation theory is known to be singular for this Hamiltonian because
of resonances, which arise at second order in Perturbation theory.The KAM theorem
cannot be applied directly to the system because the condition,

B

det(afj) #0

is not satisfied, as the unperturbed frequencies are independent of the actions. Gus-
tavson’s method give good results for small energies but does not predict the chaotic
behavior of Poincare sections.

4.2 Generating Functions, Solutions and Invari-
ants

We redefine the unperturbed Hamiltonian which is the harmonic oscillator Hamil-
tonian in the extended phase-space as,

2 1.2 1 .24 .2
HO__iP1+P2+9'1+Qz 4T

: (43)
and the full Hamiltonian as,
H—i H0+6H1+T (4.4)
where,
a3
Hy=qlqo— 2 (4.5)

3

where (t,T') are extra phase space coordinates and the new Poisson bracket is rede-

fined as, 8f 8 8f 9
9799 _9J 9%

with {f, g} denoting the usual Poisson bracket of f with g.
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In unperturbed action-angle coordinates we get,

Hy = L+ L+T, (4.6)

V21 6,)3
H, = 2I,cos?6,\/2I, cos 8, — (——3;()5—2) (4.7)

The equations determining the generators are,

{EhHD} = H (4-8)
{EQ,HQ}' e _{Eh{-ihHO}} (49)
(i = BB g gy @)

The E; were calculated using Mathematica programs. The Mathematica program
for calculation of the generating functions is given in the Appendix A-2 and the

expression for the generating functions are given in the appendix A-3 to this chapter.

The constants of motion for H to third order are given by,

o= Lte(h,n)+ SEnlBll) SGNGRENA)

+ 52{£:2:Ii}+€3{E5:{E1:Ii}} +€3{'&~»1L’} (411)

where 1 = 1, 2.

The solutions of the EOM for H can be obtained from those of Hj using the equa-
tions:

_ n oy 256 {6, {5, {5 )]}
& = & —e{B, &} +e 5 =i 31

— E{B, &} + R, (B, )} - S{F,¢) (4.12)

where i = 1,2,3,4, 'El = 11, Eg = Ig, £3 = 61, 64 = 92, 6; = I{., f; = };, 5= 6;,
£ = 03

Here I(t), 6(t) represent the solutions of the EOM for the Henon-Heiles Hamiltonian,

while I’(t), 8'(t) represent the solutions for the Harmonic Oscillator Hamiltonian.
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4.3 Numerical Results

Using a 4** order Runge-Kutta-Gill adaptive ODE solver, the EOM for the Henon-
Heiles system were solved and the invariants predicted by third order Perturbation
theory were computed. Following are the results;

Graph 4.1a and 4.1b give relative variation in one of the constants of motion (/)
for two different energies. Energy for graph 4.1a is such that the perturbed motion
is regular. Energy for graph 4.1b is above the energy for onset of chaos. In both
the graphs results of the first, second and third order perturbation theory are shown
which are denoted by Oy, Oz and O3 respectively. We have shown in the graphs the
relative variation in I(¢) which is calculated as 2(Ij(t) — I7(0))/(I;(¢) + I;(0)). If the
predicted constant were really a constant of motion the graph would have been the
same as the = axes with the relative variation being zero all the time.Here because
the perturbation theory has not been calculated exactly(and also because there are
singularities in real time complex-¢ space.) we do not get the expected result but it
can be seen clearly that with increase in order of calculation the perturbation theory

result limits to the expected result for small times.

Graph 4.2 shows the third order prediction of the constant of motion at different
energy values, ranging from the regular (energy< ;) to the chaotic regime (energy>
;). With increase in energy the constancy becomes worse i.e. error increases but
higher order results remain superior to lower order results for all energies for short
time, at larger time the errors become too large because of exphcnt dependence on
time and finite order calculation.

For computing the solutions, the same Runge-Kutta-Gill ODE solver was used and
results were compared with the predictions of equations 4.12. These results are
summarized in graphs 4.3a and 4.3b (solid lines), which show the relative error in
predicted solutions with respect to numerical solutions; for the first, second and third
order perturbation theory. The relative error in Iy(t) is, 2(y,(t) — 11.(8))/(11,(t) =
I1a(t)), where Iy, is the predicted solution calculated using 4.12 and I, is the
numerical solution calculated using Runge-Kutta algorithm. Graph 4.4 shows the

mapping of solutions results of application of the third order perturbation theory
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for a spectrum of energies ranging from the regular to the chaotic regime.

We also tested perturbation theory for two orbits of the Henon-Heiles system, one
of which is known to be chaotic and the other regular (as seen from their Poincare
sections). Graph 4.5a shows the behavior of the constants of motion for a chaotic
trajectory and 5(b) shows the same for a regular trajectory, energy for both the
orbits being the same. Graphs 4.6a and 4.6b are the Poincare sections for the initial
conditions of 4.5a and 4.5b respectively. The Poincare section were computed in
(p,q) coordinates, value of q; was set to zero and p; was required to be positive on
intersection. (gz,p2) is the plane of the section shown. Following pages show the
graphs.
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Graph 4.1a: Relative variation in predicted time-dependent constant of motion I}

for E = .034. 0O(1), O(2) and O(8) represent the first, second and third order
perturbation theory results respectively.
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Graph 4.1b: Same as graph 4.1a for E = .112.
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4.4 Convergence of the Series

As it is obvious from the numerical results, the prediction of the perturbation theory
does not seem to be in agreement with the numerical results for long time and high

energies. This can be caused by two reasons,

1. Only first few orders of the perturbation series are considered, in which case the
perturbation theory should agree with the numerical results at higher energies and
larger times if enough number of terms in the perturbation series are considered.
2. Contrary to our assumption that the generating function is analytic in the com-
plex € plane, there exists a singularity; in that case one can expect the perturbation
theory to converge only in the region where the distance of € from origin is less than
that of the radius of convergence.

To investigate which one of the former reasons is responsible for the disagreement
of the perturbation theory with numerical calculations we analyzed the analytic
structure of the system in complex € real t space.

For the initial conditions selected for the graph 4.2, the equations were integrated
in real time for 100 different € values lying on a circle with radius .01 and center
e = (0,0). The failure of the integration subroutine was considered as existence of
singularity. Three different subroutines drkgs(SSP; Runge-Kutta), d02baf(IMSL)
and d02ebf(IMSL stiff equation solver) were used. Failure of d02ebf with ihalf =
2, was taken as presence of singularity. The results of the calculations are shown
in table below. The smallest time at which one of the points on the circle becomes
singular is given. |

It is not expected that the above test will work for any general Hamiltonian be-
cause it does not detect branch point singularities, but in this specifi¢ case it turns
out that a branch point in ¢; corresponds to a branch point in p; with negative
exponent (this can be seen from Painleve analysis [7]) and same is true for ¢; and
p2. Thus eventhough there are singularities where the position variables remain fi-
nite, the corresponding momentum variables becomes infinite, hence the two type

of singularities occur at the same time.
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Complex-e¢ singularities in real time

initial conditions time for appearance of singularity
ql q2 pl | p2 | drkgs d02baf d02ebf
4.4721 |1 4.89898 | 0 | 0 | ¢£> 200 - -
14.1421 | 21.4476 | 0 | O | 111.6145 [ 111.8 <t < 111.9 | 111.8 <t < 111.9
30 244949 [ 0 | O | 27.0544 213 <t < 274 273 <t <274
29.6648 [ 31.9374 [ 0 | O 19.37 19.6 <t <19.7 19.6 < t <19.7
34.9285 | 34.9285 | 0 | 0 | 13.4095 13.6 < t <13.7 13.6 t <13.7

This analysis indicate that the perturbation theory should be convergent for given
initial conditions and e for larger time values than what is seen in the graph 4.2, thus
the reason for disagreement should be truncation of the series rather than existence
of a singularity. To verify this reasoning we did a numerical study as follows.

When one uses the generating functions for mapping of the solution for unperturbed
Hamiltonian into the solution of the perturbed Hamiltonian, the result is the solution
¢ of H in terms of solutions ¢ of Hy, t and a power series in €. In this series for
€ the coefficient of a term €" is nl,_j—;?. We did numerical calculations for g—,? using
contour integral definition for derivatives and matched our numerical results with
the analytical results predicted by perturbation theory. Details of this numerical
calculation of the analytical prediction is given in appendix A-1. As can be seen
from the graph 4.3, where the dotted curves denote numerically calculated higher
orders, the third order analytical predictions are well in agreement with numerical
values and the forth and fifth order numerical results shows that a higher order

analytical calculation would make the predictions better.

To explain the worsening of perturbation theory at higher energies, we did the
following calculation. We selected 100 different initial conditions randomly for each
of 49 different energies and for each set of initial conditions we fixed 100 points on
the complex € circle with radius 1 and center (0,0) and calculated the minimum
value of time at which one of the points on the circle became singular. This value
of time is the minimum real time at which there is a singularity in the complex e
plane and this singularity will decide the radius of convergence for the perturbation

theory. Graph 4.7 in next page shows the minimum and maximum value of the
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above minimum time from the 100 initial conditions at each energy value. The
minimum time value in the graph is the value upto which the perturbation theory
wiil converge if enough number of orders are calculated, whereas the maximum at
each energy shows that there are some initial conditions for which the perturbation
theory will converge for very large time without any need for analytical continuation

of the generator.

One important question is that what is the reason for reduction in radius of con-
vergence with increase in energy 7 It may be happening because of one or both of
the following reasons, (1) The onset of chaos. (2) Approaching non-compact phase-
space region. To test the second we applied TCPT to the anti-Henon-Heiles system

defined by,
g _Pitrita+a
¢ 2
This system is known to be integrable because it is separable under the canonical

3
+elga+ ) (4.13)

transformation,

QI—’_y 92—’x_y
2 2
Pz + Py _’p:_py

2 P 2

n—
For this system the motion becomes non-compact at energy= 13-. The constants of
motion calculation for H, shown in graph 4.8 shows similar increase in errors as in

Henon-Heiles, from which we conclude that non-compactness of motion also play a

very important role in determining the behavior of the perturbation theory results.

It thus appears from our analysis that the time dependent canonical perturbation
theory can be used for studying the Henon-Heiles system, the fact that the results
show disagreement with numerical results is to be attributed to the low order of
perturbation theory used.
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Graph 4.7: At fized energy 100 different initial conditions are chosen randomly and
each initial conditions is evolved in time with all the 100 different € values equally
spaced on a circle of radius 1 and center (0,0) in the complez-¢ plane. The minimum
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Appendix A-1: Numerical Calculation of Mapping

The mapping of solutions in TCPT is given by the following equation,

Ei — E:_E{Ehé:}+£2{El,{§h£:}} _ES{Fli{Ehg{'Fh&}}}

- E{E, &)+ SR, (B, ¢)}) - &{F, &)

where ¢ = 1121314! 61 = Ils 62 — 121 {3 == 9], E-i = 82! 6; = I;! E; ! I;a 6;3 = 9;

Where I(t), 6(t) represent the solutions of the EOM for the perturbed Hamiltonian,
while I'(t), 0'(t) represent the solutions for the unperturbed Hamiltonian.

Thus the perturbed solution are written as a power series in e. While compared
with Taylor expansion in € the term independent of ¢ in mapping equations is the
perturbed solution at € = 0, i.e. the unperturbed solution. The coefficient of the the
first order term in € is the derivative of the perturbed solution evaluated at ¢ = 0.

The first order derivative can be evaluated as follows:
4 €

“\ Kj | er
v

-

As shown in the figure around the point € = (0,0) in the complex plane values of ¢
were selected on a circular contourjel]= r. For given initial conditions the equations
of motion can be solved with all these ¢ values upto time ¢ of interest. Using these
values the first order derivative of the perturbed solutions at the given time can be

calculated using the following formula,

de(t) &(1)
dﬁ e=0_/contour T dt

where ;(t) as a function of € has been calculated by numerically solving the equa-

tions of motion for different € values. In the same manner all the higher order
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coefficients of € can be calculated numerically and thus one can predict the result of
analytical calculation numerically. One efficint algorithm for numerical calculation

of derivatives is described in [26], based on it’s main idea our algorithm for numerical
derivatives was written.

It is also possible to calculate the distance to the nearest singularity at a given
time using the derivative ratios or other convergence tests proposed by Corliss and
Chang [25]. We tried to calculate the radius of convergence using ration test as well
as the three term test but because of requirement of calculation of very high order

derivative and high precision our numerical method did not give convergent results.
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Appendix A-2: Program for Calculation of Generating Func-
tions

(* The Hamiltonian and the variables *)
gl = Sgrt[2xil] x Cos[thetal]
q2 = Sqrt[2 2] * Cos[theta2)
pl = =Sgrt[2x11] * Sin[thetal]
p2 = —Sqrt[2+12] * Sin[theta?2)
h0 = EzpandAll[pl*/2 + p2*/2 + q1%/2 + q2?/2 + T, Trig — True]
hl = EzpandAll[q1®* q2 — ¢q2°/3,Trig — True]
(* The definition of a pb *)

pblf-,9-]:=  D[f,thetal] = D[g,:1] — D[f,i1] * D[g, thetal] +
D[f,theta2] x D[g,12] — D[f,:2] * D|[g, theta2] +
D[f,t] x Dlg,T] - D[f,T] * D[g, 1]
(* solving the perturbation equations *)
solvel[rhs_] := Integrate[rhs/.{thetal — thetal + tau — t,
theta2 — theta2 + tau — t,t — tau},tau]
solve[rhs_] :=
Apply[Plus, Map[solvel, Apply[List, EzpandAll[rhs, Trig— > True]]]|
(* Rules for Dt *)

Unprotect[Dt]

h = hO + eps * h1
Dt[thetal,t] = D[h, 1]
Dt[theta2,t] = D[h,2]
Dt[i1,t] = — D[k, thetal]
Dt[i2,t] = —D[h,theta2]

Dteps,t] =0
Dt[T,t] = —D[h,t]
Protect[Dt]
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ol := Block |
02 := Block |
03 := Block |

{}

f1h0 = h1;

rhsl = f1h0;

f1 = solve[rhsl];

fl=(f1/.tau — t) — (f1/.tau — 0);
f1 = EzpandAll[f1,Trig — True]

J

{}

f12h0 = pb[f1, f1A0];

rhs2 = — f12h0/2;

f2h0 = rhs2;

f2 = solve[rhs2];

f2 = (f2/.tau — t) — (f2/.tau — 0);
f2 = EzpandAll[f2,Trig — True]

]

{},

f2f1h0 = pb[f2, f1R0];

f13h0 = pb[f1, f12h0];

rhs3 = — f13h0/6 — f2f1h0;

f3h0 = rhs3;

f3 = solve[rhs3];

f3=(f3/.tau — t) — (f3/.tau — 0);
f3 = EzpandAll[f3,Trig— > True]
]
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Appendix A-3: Expressions for The Generating Functions

We give below the form of the generating functions upto order €.

F

— (L% sin(3t — 36,))

F, = + V2 I\/I, sin(t — 6,)

9v2
L7 sin(t—-0,) I, T sin(3t — 206, — 6,)
vz 3v2
¢ LoBEl0=8) gy T e
V2
I,? sin(6,)  I? sin(36,)
V2 92
LT, sin(t — 20, +6;) I /T; sin(26, + 6,)
V2 * 3v2

—5112t + 11 Igt _ 5.I22t _ 7.[1 .Igt COS(281 — 202)

12 3 12 6
3N%sin(t) I I;sin(t) 31,7 sin(t) I, sin(3t)
s 2 T 8 ‘1T m
L I;sin(3t) I*sin(3t) ;% sin(t—46,)
18 ¥ 72 v 24
I, sin(3t — 4 6,) 5 I,*sin(4t —46,) I,*sin(2t—26,)

24 48 6
I I; sin(2t — 26,) & L% sin(3t — 26,) " I I sin(3t — 26,)

6 12 12
I,% sin(26,) B I I, sin(26,) i I,? sin(4 6y)

6 6 48 |
L sin(t+20)) | Lbsin(t+26,) | 1" sin(t —46;)
12 12 24

I? sin(3t — 46,) " I? sin(4t —46;) I I sin(2t — 265)
24 48 6
I;? sin(2t — 26,) 4 I I, sin(3t — 26,) N I,? sin(3t —26,)

6 12 12
1'1 Ig sin(t —261 —262) _ 1112 sin(3t it 291 = 292)

12 12
Il Iz Siﬂ(4t —291 —292) + 511 Ig Slll(t+291 — 292)

24 8
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Fy

LLsin(3t+26, —26;) L L;sin(26;)  Io” sin(26,)

72 6 6
I;? sin(4 6;) & I I sin(t + 26,) + 1% sin(t +26,)
48 12 12
511 sin(t — 26, +268;) I 1, sin(3t — 26, +26,)
8 B 72
I I, sin(26, + 206,)
24
—TL L5t cos(20, —36,) 1312 /T;t cos(20;, — 65)
212 - 3V2
37T L5t cos(20, —0;)  TL2 VTt cos(46; — 6,)
62 - 182
11 1,2 Tt cos(6;) 131, I,7 t cos(6s)
6v2 B 32
512% t cos(f;) 4 V21 12% t cos(36;)
6v2 9
51,7t cos(36,)  2V2 12 /Tot cos(20; + 65)
18v2 9
I It cos(26, + 0,)  I,? sin(t — 56,)
32 182
L% sin(2t — 56,) 7L% sin(3t — 56,)
2162 - 108 v2
51,7 sin(4t —560;) 2v2L,% sin(5t — 56,)
722 - 135
L7 sin(6t —56,) 51, I? sin(t — 36,)
216 /2 92
71,% sin(t—36;) I I,? sin(2t — 365)
362 - 182
13 1,% sin(2t — 36,) V21, IL? sin(3t — 36,)
722 ¥ 27
51,7 sin(3t —36,) I I,? sin(4t — 36,)
272 B 182

I3 sin(4t—36;) I, I,7 sin(6t — 36,)
182 * 1622

L% sin(6t —36,) I I,7 sin(t — 26, — 36,)
648vV2 92
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I, I,? sin(2t — 26, — 36,) L1k I,? sin(3t — 26, — 36,)

1082 54 /2
51, L7 sin(4t — 20, —36,) 421, I,? sin(5t — 26, — 365)
36 V2 * 135
I 1,7 sin(6t — 20, —36,) 3551, I,5 sin(26, — 36;)
108 v/2 - 216 /2
49V2 1 I? sin(t +26, —36;) 131 I,? sin(2t + 26, — 36,)
27 B 182
L I,7 sin(3t+20, —36;) 71, I, sin(4t + 26, — 36,)
54 /2 216 /2
V2 1,% T, sin(t — 6,) L BVEL L7 sin(t - 6,)
3 9
202 1,7 sin(t — 0;) L2 /T; sin(2t — 6,)
27 - 22
2v2 1, I,? sin(2t — 6,) L u I sin(2t — 6,)
3 182
5L%yT; sin(3t —0;) I I,7 sin(3t — 6,)
1812 92
7L sin(3t—0;) L2 T, sin(4t — 6,)
54 /2 - 24/2 |
I Ig% sin(4t — 6;) Ig% sin(4t — 6,)
36 v/2 216 /2
I2VT; sin(t—46, —6;) L’ /T, sin(2t — 46, — 6,)
62 + 722
7L?I;sin(3t —46, —0;) 51,2 /T; sin(4t — 46, —8,)
36 /2 B 242
2vV2 L1 /T; sin(5t — 40, — 0;) 1,2 \/T; sin(6t — 46, — 6,)
45 B 722
L2 VT sin(t— 26, — 6;) I I, sin(t — 26, — 6,)
32 B 62
L2 VT sin(2t — 26, —0;) 51, I,7 sin(2t — 26 — 6,)
22 * 122
1V2 12 VT sin(3t — 26, —0;)  2v21 17 sin(3t — 26, — 6;)
27 9
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L2 VT, sin(dt —20, — 6;) I, I, sin(4t — 26, — 6,)

62 62
L2 VT sin(6t —20, —0;) I, I, sin(6t — 26, — 6,)
162 /2 - 108 2
851,% /T, sin(26, — 0,) 1851, I,? sin(26; — 65)
36 /2 B 22
51,2 /T; sin(t + 26, —6;) 131, L7 sin(t + 26, — 65)
3v2 B 62
L2 T sin(2t +26, —0,) V21, 1,7 sin(2t + 26, — 6,)
9v2 - 9
L L% sin(3t+26, —6;) 51,2/ sin(46; — 6,)
92 ¥ 54 V2
LT, sin(t+ 46, — 6;) 1,2VT; sin(3t + 46, — 6;)
62 - 324 /2

50,2\/T; sin(6,) 85I I, sin(6,)
24 /2 * 362

155 1,7 sin(6;) . 51, I,? sin(36,)

216 /2 * 54 /2
51,7 sin(36,) 43,7 sin(506,)

27V2 080 V2
L2 VT, sin(t+6,) 51 I,? sin(t + 6,)

22 * 3v2

L7 sin(t+6;) L2V sin(2t +6,)

18v2 3V2
L 17 sin(2t +60;) 2217 sin(2t + 6,)
9v2 F 27
2T sin(3t +6,)  Ip? sin(3¢+ 6,)
92 Y
L2V sin(t— 46,4+ 6;)  L,*/T; sin(2t — 46, + 6;)
42 + 24 /2
L2 JT; sin(3t — 46, + 6,) N L2 VT, sin(6t — 46, + 6,)
272 648 /2
28 V21" VT sin(t — 26, + 6;) 26 V21, I? sin(t — 26, + 6,)
9 9
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2v2 1,2 /T; sin(2t — 26, + 6,) L 5h L7 sin(2t — 26, + 6,)

3 62
L? VT, sin(3t — 20, +6,) I I? sin(3t — 26, + 6,)
9v2 i 62
L? T, sin(4t — 20, +0;) 51, 1,5 sin(4t — 26, + 6,)
36 /2 B 722
25 1,2 /T, sin(26; +6;) 51, I, sin(26, + 65)
54 /2 182
L L7 sin(t+26,+60;,) 12T sin(3t +206, + 6;)
3v2 ™ 812
LI7 sin(3t+26, +6;)  431,% /T, sin(46; + 6,)
542 B 360 /2
L* VT sin(t+ 46, +6,)  2v21 I,? sin(t + 36,)
362 % 9
L7 sin(t +36;) I I,? sin(3t + 365)
18v2 812
Lf sin(3t+36,) 231, I, sin(t — 26, +36,)
324/2 182
L L7 sin(2t — 20, +36;) I, 1,3 sin(3t — 26, + 36,)
272 - 272
431, I,? sin(26, +362) I, I,? sin(t + 26, + 36,)
540 /2 + 54 /2
L,? sin(t + 506,)

108+/2
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Chapter 5

Application of TCPT to a
KAM-type System

In chapter 4 we discussed application of TCPT to the Henon- -Heiles Hamiltonian,
for which the unperturbed frequencies are independent of phase-space variables,
because of which KAM theorem can not be applied to this system. Application of
KAM theorem requires the unperturbed frequencies to be non-degenerate, i.e.,

det(g}“’—f) £0
-3

in this chapter we shall consider a Hamiltonian system for which the unperturbed
frequencies are non-degenerate and apply TCPT to it.

5.1 The Hamiltonian

The Hamiltonian considered is,

2 12
H(Il,fz,al,gg) = %+?2+€(1100893+1200891) (51)
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This Hamiltonian was chosen because,

1. It is a Hamiltonian on which KAM theory can be applied.

2. The simplicity of the solutions of unperturbed equations of motion makes the
application of TCPT simpler.

Non-degeneracy of the unperturbed frequencies can be easily seen as follows. The
unperturbed frequencies for coordinates 6, and 6, are I, and I, respectively. The
following condition is satisfied everywhere on the phase-space,

3&).‘
oI,
thus frequencies are functionally independent everywhere on the phase-space and so
KAM theorem can be applied.

det(==) = 1

Usually integrable Hamiltonian systems with phase-space dependent frequencies
have solutions which are Jacobi Elliptic or related functions of time. TCPT requires
integration over unperturbed trajectories for calculation of generating function. It
is very difficult to integrate products of above mentioned function analytically, fur-
ther one expects the expressions of the integrand to become clumsier at each order
of the perturbation theory. The Hamiltonian selected has the advantage that the
unperturbed solutions are very simple and so choice of this Hamiltonain makes the

application of TCPT simpler.

Poincare sections for the system shows the Hamiltonian to be non-integrable. As
can be seen from the poincare section of graph 5.1a and 5.1b, chaotic and regular
orbits coexist at energy= 2.0 and € = .15. Graph 5.2 shows a chain of island at the
same energy. Ergodicity on phase-space increases with increase in the perturbation
parameter while energy is fixed or equivalently with decrease in energy with pertur-
bation parameter € fixed. The equivalence of increase in ¢ with decrease in energy
comes from the scaling property of the Hamiltonian with which one can transform
Hamiltonian with a given perturbation parameter to the Hamiltonian with € = 1,

with corresponding scaling in energy.The scaling equations are,

0; — ¢
I,' = J{E
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which yields,

H = é®h (5.2)
where,
J I3 ,
h(J1, J2, ¢1,¢2) = b} I 7(J1005@2 + J2Cosgy) (5.3)

Thus as we had seen in the case of the Henon-Heiles Hamiltonian, existence of natu-
ral boundary in complex time for the system implies existence of natural boundary
in complex € plane for fixed real time, also studying the system at a fixed energy
and different € values is equivalent to studying the system at a fixed € value and
different energies.

5.2 Numerical Results

We used Mathematica programs for calculation of the generating functions, invari-
ants and mapping results. All calculation were done with € = .15. There are terms
in the generator and the invariants with denominators of the form (n - w) and its
powers, which vanish in certain regions of phase-space. These singularities which
are also known as the resonant terms arise because the canonical transformation
being calculated is ill-defined. The apparent singularities (resonant terms) can be
removed by making the canonical transformation time-dependent and taking the
limit (n-w) — 0 in the region of phase-space where the usual generating function
is singular. The limit turns out to be finite as can be seen from expressions for the
first two order calculation of the generating function and two of their limits given in
appendix B. The limit calculations were also done on Mathematica. The expressions
for invariants and mapping of solutions upto n** order are given by ‘the following

formulae. For invariants I,
Il =¢e"Fn R, (5.4)

where /; represent solutions for equations of motion for 1I. Mapping from solutions

& of Hy to solutions ¢; of H is given by,
&= S s I e ¢ Fngl (5.9)

76



For the calculation of invariants a Runge-Kutta fourth order algorithm was used.
Graph 5.1a and 5.1b show Poincare sections of a chaotic and a regular orbit respec-
tively at the same energy, energy = 2.0 (¢ = .15). Graph 5.2 shows a chain of island
at the same energy. Graph 5.3a shows the relative variation in I for the chaotic or-
bit of graph 5.1a (the relative variation is defined as 2 (I7(t)— I3(0))/(1}(¢) + 13(0)).
Graph 5.3b shows the same for the regular orbit of graph 5.1b. Graph 5.4a shows
mapping of solution for chaotic orbit of graph 5.1a, the connected line is the relative
error in mapped solution with respect to numerically calculated exact solution at
first order of calculation, the dotted curves shows the relative error at higher orders.
(The relative error in mapping is defined as 2(1y,(t) — I1a(t))/(11p(t) — l1n(t)) where
I,, is the predicted solution and I, is the numerical solution.) Graph 5.4b is the
same as 5.4a for the regular orbit of graph 5.1b. Calculation for mapping at higher
orders (shown by dotted curves in the graph) was done numerically using a program
that calculates derivatives of the perturbed solution with respect to € at € = 0 at
given time and initial conditions. The program has been discussed in appendix A-1
of chapter-4. Both the invariant and the mapping errors decrease with increase in
order of the calculation.

We also calculated position of blowing-up singularities (where solutions become in-
finite) in complex € plane for real time, which gives the radius of convergence of the
perturbation series in ¢ if there are no other finite singularities (where solutions have
finite values). The NAG program d02baf was used with 256 points equally spaced
on a circle with center (0,0) and radius 0.15 in complex-¢ plane, to get evolution of
given initial conditions in real time and to find the smallest value of time at which
one of the points on the circle has a blowing-up solution. The initial conditions of
graph 5.2a has a singularity at ¢ ~ 22.6 and for graph 5.2b there is a singularity at
t~113.
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Graph 5.1a: Poincare section of a chaotic orbit at E = 2.0.
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Appendix B: The Generating Functions

I sin(6:) | I sin(6)

= 3 5
Iz sin(& - I] t) Jrl Sil’l(gg - Ig t)
B I B I,
LAt L2t
F, = m*’m
2 L*tcos(yt) I*t cos(It)
41,* 41,°
% I*t cos(26, — I t) i L%t cos(26;, — I t) 3 1% sin(26,)
41,? 4I,* 81I,°
3 sin(6y — 6,) I, sin(6; — 6,)
2L +21, —-4L* 4411,
+ Iy sin(6, — 60;) I,? sin(26,)
—41112+4122 ) 8123
+ sin(6, +6;) I sin(6; + 62)
2L +2I, 4AL’+45L1,
Iy sin(6, + 6;)  L? sin(I; t)
- 4L h+4R® 3L
_ Isin(ft) | LPsin(20, —25t) sin(6, — 0, — Iy )
25" 81,3 B AL,
sin(6, — 0, — I1t) sin(6y + 0, — I t)
- 41, 41,
_sin(8y+ 68— Lit) | Lsin(20,—2Lt)  sin(6, + 0, — L)
41, 8 1,° B 41,
4 sin(6, + 0; — I, t) 3 sin(6; + 0, — Lt — I t)
4.{2 211 +21‘2
+ I sin(6, + 0, — [t — I t) g, I sin(0; + 0, — It — I t)
AL2+41 I, AL L +417
4 sin(6; — 6, + I, t) & sin(f; — 0, + I t)

Il sin(91 — 92 = Il t + Iz t)
—4L L +41?
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lim F; = It cos(6;)

I, —0

lim Fi = It cos(6,)

I, —0-

) __sin(6,)
pm b= r

(12 C'OS(GQ) —-12 COS(Gz — Ig t) = 1’23 f3 Sil’l(ﬂ]) + 6 Igt sin(ﬂg) + 612t Sil’l(gg — .lrg t))

-0 ° 121,
(12 cos(6y) — 12 cos(8; — I1 t) + 6 I, t sin(6,) — I;* t3 sin(6,) + 6 I t sin(6; — I t))
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Chapter 6

Summary and Conclusions

The TCPT was studied analytically as well as numerically to understand the small
denominator problem. We have shown that some of the singularities of the usual
perturbation theory can be removed by using TCPT. In the following we summarize

the work done.

6.1 Summary

We show that in contrast to CPT, the TCPT predicts generating functions which
are finite at all orders. Convergence of the total perturbation series depends on the
position of € singularities of 7. Though is not possible to study analytical properties
of the total TCPT generator F in general, we show that for two special class of
problems analytical properties of F can be predicted. One of the abave mentioned
class is of the cases where Fi ap exists. The other class is where the unperturbed
Hamiltonian Hy and the perturbation H;, both are homogeneous polynomials of
different degrees in phase-space variables. For this class we show that the complex
time behavior of solutions of the fully perturbed (e = 1) Hamiltonian is related to the
complex-¢ behavior of the canonical transformation cquations. Our result suggest
existence of natural boundary in complex-e plane (fixed real time) in the canonical
transformation equations for this class of Hamiltonian systems. We have also shown

that in certain integrable cases where CPT is singular, the TCPT generator can be
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calculated exactly and gives convergent results.

Our numerical studies on the H-H system as well as on the KAM-type system shows
that the TCPT gives convergent results for small perturbation and small times,
with increase in perturbation the radius of convergence decreases. The TCPT gives
convergent results for both regular as well as chaotic orbits. Numerical calculation of
mapping shows that eventhough there is explicit time-dependence in the generating
functions, with increase in order of calculations the results become better. It should
be noted that we were able to connect the singularities of the perturbed solutions
with singularities in canonical transformations by selecting F to be identity at ¢t = 0
(equivalently Fjo = 0). If a non-trivial canonical transformation selected at ¢t =
0 then it is not possible to predict singularities of the canonical transformation
numerically. The mapping results indicate that the radius of convergence of the
perturbation theory is defined by the nearest singularity in complex-¢ plane. The
-constants of motion calculations show increase in error with increase in energy,
we explain this by showing that the singularities at fixed | € | appear at smaller
real times with increase in energy and thus convergence of the perturbation theory
worsen at higher energy values. We also show that chaos only is not responsible for
decrease in radius of convergence by applying the TCPT to the anti-H-H system
which is integrable. The anti-H-H results also show increase in error in predictions
with increase in energy. We explain this result as follows, with increase in energy
of the anti-H-H system the motion approaches to the region of phase-space where
motion is non-compact which gives rise to decrease in radius of convergence of the

perturbation series.

Application of TCPT to the KAM-type system shows similar results as for the H-H
system. We show for this case also that TCPT is applicable to both chaotic and
regular orbits and gives good agreement with numerical predictions at small time
and small perturbations. From the analytical result, we predict that the canoni-
cal transformation that transforms the unperturbed Hamiltonian to the perturbed
Hamiltonian will have a natural boundary structure in complex-¢ plane for fixed
real real time for both the H-H system and the KAM-type system. In the following

section we give conclusions and mention some open questions.
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6.2 Conclusions

We have shown that TCPT is more general in the following sense; One can use
KAM approximation only in the case of irrational tori and when unperturbed fre-
quencies are non-degenerate. The Gustavson’s normal form method can be applied
only when the unperturbed frequencies are constant. The TCPT can be used ir-
respective of the unperturbed frequencies being rational or irrational. Further it is
well-known that KAM predicts total breakdown of perturbation theory even under
a very small perturbation because it considers generic perturbations whereas TCPT
predicts breakdown of perturbation theory from the complex-e singularity structure
of the generating function. We suggest that the results of the KAM theory and Gus-
tavson’s normal-form method can be better understood with the insight provided

by understanding of analytic structure of TCPT generating function.

Existence of singularity in complex-¢ for fixed real time in the total canonical trans-
formation puts limitation on convergence of the perturbation series. We have shown
that if the complex-¢ singularities of the canonical transformation are isolated the
canonical transformation can be analytically continued. Qur result shows existence
of natural boundary in complex- € plane of the canonical transformation equations
for a class of Hamiltonian systems. We suggest that this type of behavior should be
investigated for other type of Hamiltonian systems as well, we also suggest that this
type of breakdown of the analytical continuation of TCPT generating function can
be used to understand breakdown of the KAM tori.

The numerical study of TCPT on the H-H system and the KAM-type system shows
that TCPT is applicable to both KAM-type and non-KAM-type systems. The study
of anti-H-H system shows that apart from chaos, noncompactness of the potential

can also affect convergence properties of TCPT.

One problem in constructing a canonical transformation which transforms an in-
tegrable Hamiltonian to a non-integrable one arises due to Lyapunov exponents.
Lyapunov exponents measure the exponential rate with which two nearby orbits
diverge away from each-other. For a dynamical system with compact dynamics,

non-zero Lyapunov exponents indicate chaos. Lyapunov exponents for a system
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with continuous dynamics are defined as follows,

__ .1 d(t)
A —tllglod{lé;{l.ot In 200) (6.1)
Where d(t) = /T, 8z?(t) and z; are dependent variables of the system of differ-

ential equations. éz; is infinitesimal variation along an orbit.

In general Lyapunov exponents do not change under canonical transformations be-
cause the equations determining éz; evolution come from the second order terms of
the action principle. At the same time if a canonical transformation exists which
transforms an integrable Hamiltonian to a non-integrable Hamiltonian, it should
be such that the zero Lyapunov exponents goes to non-zero Lyapunov exponents.
We try to understand this situation in TCPT as follows. Calculation of Lyapunov
exponents requires calculation of the solutions of EOM for asymptotic time limit.
The transformation generated using TCPT can not be calculated for asymptotic
time limits in general. The finite order transformation will have algebraic explicit
dependence on time in general and so it will be singular in the limit ¢ — oco. The
cases where TCPT generating function can be calculated exactly for all time are
all integrable cases. Further our analysis shows that a TCPT transformation that
transforms an integrable Hamiltonian to a non-integrable Hamiltonian will have
natural-boundary singularity structure in complex-epsilon real time space. In these
cases one has to analytically continue the generating function to get a convergent
canonical transformation for larger times. If the natural boundary structure is such
that the singularities come arbitrarily close to the real time axes then it would not
be possible to calculate an exact canonical transformation for larger time. Thus we
are not able to come to a definite conclusion about conservation of the Lyapunov

exponents under a TCPT transformation.
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