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Abstract

The parity non-conservation (PNC) in atoms arises mainly due to the weak
interaction between nucleus and the electrons. The first theoretical prediction
of large parity violation in heavy atomic systems was give by M. A. Bouchiat
and C. Bouchiat in 1974. They showed that the PNC effects in heavy atoms
or ions scale as cube of the atomic number of the atom. Following their
prediction, PNC has been confirmed in several atoms such as, Cs, Bi, Pb,
Tl and Yb. Results from the atomic-parity-violation (APV) experiments in
combination with the precise theoretical data can be an important probe of
physics beyond the Standard model of particle physics.

The most precise measurement to date, with an accuracy of 0.35%, is
performed by Wiemen and collaborators [C. S. Wood, et al. Science 275,
1759 (1997).] in atomic Cs. The precise theoretical calculation, however, is
also done for the same atom with an accuracy of 0.5% [V. A. Dzuba, V. V.
Flambaum, and J. S. M. Ginges, Phys. Rev. D 66, 076013 (2002).]. It must
be mentioned that unlike the Cs which resembles a relatively simple electron-
nucleus structure, the precise calculation of the PNC observable in some of the
complicated structured atomic systems, such as Yb, is nontrivial. However, for
this atom PNC experiment is in progress. In the case of atomic Yb for example,
the theoretical and experimental uncertainties are approximately about 15-
20% and 14%[K. Tsigutkin, et al. Phys. Rev. Lett. 103, 071601 (2009).],
respectively. The current thesis work is theoretically aimed to develop the
atomic many-body methods for precise, perhaps to the level commensurate
with Cs, calculation of PNC observables in these systems.

The coupled-cluster theory (CCT) is proven to be one of the accurate
atomic many-body methods for structure calculations of the many-electron
atoms. As a part of the thesis work, we have developed the CCT based meth-
ods for closed-shell, one-, and two-valence atoms. To test the quality of the
atomic wave functions hence calculated, we examine several atomic proper-
ties, for example correlation energy and dipole polarizibility at the closed-shell
sector and excitation energy, hyperfine structure constants, and electric dipole
transition reduced matrix elements at one- and two-valence sectors. The PNC

xix



observable E1PNC is then calculated, for many transitions, in the case of one-
valence systems, Cs, Fr, Ba+ and Ra+, and in the two-valence system, Yb.

xx



Chapter 1

Introduction

Symmetry is the preservation of a physical quantity, which could be scalar,
vector, or tensor, under a transformation about a point, a line, or a plane.
Objects in nature exhibit various symmetries. According to Weyl, An object
is said to be symmetrical if certain transformation associated with an operation
leaves the object unchanged. For example, a sphere is symmetric when rotated
around an axis passing through its center. similarly, an equation describing a
systems is said to be invariant when its form remains unchanged after a given
transformation. Following Noether’s theorem, a continuous symmetry opera-
tion in nature is associated with a invariant quantity. Often, invariance is also
referred to as conservation and in this thesis we use the two interchangeably
and mean the same. An example is, linear momentum is the invariant quantity
associated with translation in space (∆x).

Depending on the associated transformations, symmetries can be classified
in to two broad categories

• continuous and

• discrete.

Continuous symmetries can undergo infinitesimal transformations and finite
transformations are results of a finite number of infinitesimal transformations.
For example, rotation is a continuous symmetry parametrised by the angle of
rotation and we can define rotation by an infinitsimaly small angle. The other
important continuous symmetry transformations in nature are, translation in
space, translation in time, etc. Discrete symmetries, on the other hand, do not
have an associated infinitesimal transformations. The transformation param-
eter are allowed to have only discrete finite values. For example, symmetries
associated with crystals are discrete in nature. There are three fundamental
discrete symmetries in the nature. These are, the time reversal(T), space in-
version or parity (P), and the charge conjugation (C). Out of these, the effects
of parity violation in atomic systems is the main objective of this thesis work.
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Chapter 1. Introduction

1.1 Parity or space inversion symmetry

In quantum mechanics, the concept of parity arises when we examine the form
of a wave function under the operation of inversion of coordinates, namely
x → −x, y → −y and z → −z. Parity transformation is represented by
the operator P̂ and it has eigenvalues η = ±1. The even (odd) parity wave
functions correspond to parity eigenvalue 1 (−1). In the context of atoms, the
Hamiltonian H of an atom transforms under the parity operation as

Hp = PHP−1. (1.1)

The atomic Hamiltonian is invariant under the above transformation if it sat-
isfies

H = Hp = PHP−1. (1.2)

This implies that
[H,P ] = 0. (1.3)

This is true when H includes only electromagnetic interactions between the
sub-atomic particles. The invariance is, however, violated when the atomic
Hamiltonian incorporates parity nonconserving (PNC) weak interactions be-
tween the subatomic particles. The total Hamiltonian may then be written
as

HA = H +HPNC, (1.4)

where HPNC is the PNC interaction Hamiltonian described in the subsequent
sections of the chapter. The total Hamiltonian, then no longer commute with
parity operator

[HA, P ] 6= 0. (1.5)

Consequently, the eigen states of Ht do not have definite parity, and are not
parity eigenstates.

1.2 Parity non-conservation in nature

Until 1950, like conservation of energy and momentum, parity of a system
or a process was believed to be conserved. First indication that parity may
not be conserved in certain process came in 1950 while solving the theta-tau
puzzle. The theta and tau mesons were discovered in the cosmic ray by C.
F. Powell. These two particles were turned out to be indistinguishable other
than their mode of decay. The former one was found to be disintegrating into
two pions, however the later one into three. In 1956, T. D. Lee and C. N.
Yang [1] predicted that it could be because of the violation of the parity in the
decay process. And later they proposed several experimental schemes to test
the non-conservation of parity in weak interactions. The prediction of Lee and
Yang was verified when C. S. Wu [2] and collaborators studied the beta decay
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Chapter 1. Introduction

of Cobalt-60 in 1957. In the experiment, they lowered the temperature of
cobalt atoms to about 0.01K and polarized the nuclear spins along a direction
with external field. The angular distribution of the electron emitted during
the beta decay were then measured. If parity is conserved, equal numbers of
electrons should be emitted parallel and anti-parallel to the nuclear spin. But
they measured more electrons in the direction opposite to the nuclear spin.
This is a clear indication of parity non-conservation.

1.3 Parity non-conservation in atoms

Much before the formulation of a unified gauge theory of electromagnetic
and weak interactions, Zel’dovich [3] had suggested the possibility of non-
conservation of parity in atoms due to weak interaction between the electron
and nucleon. He calculated the observable effects in atomic hydrogen using
optical rotation and predicted the effects rather small for experimental obser-
vation. Despite the initial investigations of Zel’dovich [3] and Curtis-Michel
[4], the possibility of parity violations in radiative transitions of atoms was not
accepted. One important reason is, until 1970s all the processes involving weak
interactions were believed to involve exchange of the electric charge between
the interacting particles. It was therefore concluded that the weak interaction
and its associated parity violation is not of the relevant to the atoms.

The important break through was the prediction of neutral weak current
as a consequence of electroweak unification. The unification was achieved
through the pioneering works of Abdus Salam [5], Sheldon Glashow [6]and
Steven Weinberg [7], for which they were awarded the Nobel Prize of Physics
in 1979. It provides a unified description of the electromagnetic and weak
interactions. One outcome of the unification is the prediction of a neutral
gauge boson Z0 which mediates neutral weak current. These new developments
in weak interaction physics renewed interest in the physics of parity violation
in atomic systems. And the first theoretical analysis of PNC in atoms was
reported in 1974 by Bouchiat and Bouchiat [8]. They predicted that in the
heavy atoms, due to the stronger nuclear potential the probability distribution
of electrons within nucleus is larger and enhances the Z0 exchange between
the electrons and nucleons. The effect scales as the cube of the atomic number
[9] of the atoms. Following the theoretical prediction, PNC in atoms was
investigated by several experimental groups. As a result PNC in atoms was
observed in several heavy atoms like Cs [10], Bi [11], Pb [12], Tl [13, 14] and
Yb [15].
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b1959
Ya. B. Zeldovich predicted the existence of PNC in atoms. He concl-
uded that the effects are too small to be observed.

b1974
M. A. Bouchiat and C. Bouchiat theoretically showed that the effects

grow as faster than Z
3 and, can therefore be experimentally observed

in heavy atoms.

b1978
PNC was observed in Bi by L. M. Barkov and M. S. Zolotrov at No-

vosibirsk.

b1979
PNC in atomic Tl was observed by Commins and collaborators at B-
erkeley.

b1995
PNC was seen in Cs, Tl, Bi and Pb by groups at Boulder, Oxford, O-
xford and Seattle respectively.

b1997
Most precise experiment in Cs was performed by Weiman and collab-

orators at Boulder.

b2009
Enhanced PNC was confirmed in Yb by Budker and collaborators at B-
erkeley.

Figure 1.1: Schematic of the various achievements of PNC in atoms.

1.3.1 Theoretical calculations of atomic PNC

The observable quantity arising from PNC in atoms is the parity-violating
electric dipole transition amplitude (E1PNC). It is expressed in terms of
a parameter, such as the nuclear weak charge QW and parity odd nuclear
moment µ′w, these are extracted from the results of APV experiments after
combining with the theoretical results. In the absence of PNC interaction,
atomic states have definite parity, and the electric dipole transition amplitude
(E1) between states of same parity is zero. The PNC interactions, however,
mixes atomic states of opposite parities and introduces a finite transition am-
plitude, E1PNC, between states of same parity. In the subsequent chapters
of the thesis we provide detailed expressions of E1PNC using relevant atomic
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many-body methods.
Most of the accurate calculations to date have been carried out to study

the effects of nuclear spin-independent (NSI) part of the PNC. Some important
ones are listed in Table. 1.1. Apart from those mentioned in the table, there are

Table 1.1: Summary of the NSI E1PNC theoretical calculations.

Atom Transition Theoretical Reference
Uncertainty

205Tl 6P1/2 −→ 6P3/2 2.5− 3% [16, 17].
205Tl 6P1/2 −→ 7P1/2 6% [16].
208Pb 3P0 −→ 3P1 8% [18].
209Bi 3S3/2 −→ 2D3/2 11% [18, 19].
209Bi 3S3/2 −→ 2D5/2 15% [20].
133Cs 6S1/2 −→ 7S1/2 0.5% [21].
133Cs 6S1/2 −→ 7S1/2 < 1% [19, 22, 23]

few other important recent studies on NSI E1PNC. These are the studies of
Sahoo and collaborators [24, 25] for Ba+, [26] for Ra+ and Pal and collaborators
[27] for Ra+. Unlike the NSI part, the nuclear spin-dependent (NSD) part of
PNC on the other hand has not been studied in detail and there are few
results in literature. Some of the important ones are Singh [28], and Porsev
and collaborators [29] for Yb, Johnson and collaborators [30] for Cs, Porsev
[31] for Fr, and Singh and collaborators [32, 33] for Ba+ and Ra+. In a very
recent work, Sahoo and collaborators [34] have examined several transition
reduced matrix elements for different isotopes of Ba+ and Ra+ ions.

As its evident from the Table. 1.1, except for the atomic Cs theoretical
results are not very accurate. Hence these need to be calculated using more ac-
curate atomic many-body theories, as there has been enormous improvements
in computational resources and many-body methods applicable to atoms in
the last few years. However, the current thesis focuses more on the NSD
part of the PNC violation where there is a need of precise theoretical data in
experimentally important systems like atomic Yb.

1.3.2 Sources of PNC in atoms

There are two important sources of PNC in atoms [28, 29]. These are the

• neutral weak current interactions between the nucleons and electrons
through the exchange of Z0 boson.

• electromagnetic interaction between the nuclear anapole moment (NAM)
of the nucleus and the electrons [10].

5



Chapter 1. Introduction

The anapole moment, introduced by Zel’dovich [35], is an odd parity elec-
tromagnetic moment arising from the toroidal current distribution within the
nucleus. In other words, the parity non-conserving nuclear forces create heli-
cal spin and magnetic moment distribution inside the nucleus lead to nuclear
anapole moment. For a point like nucleus the contribution from the anapole
moment to the nuclear vector potential is given by the expression

Aanapole = aδ(r), (1.6)

where the anapole moment

a = −π
∫

j(r)r2d3r. (1.7)

Here, j(r) is the current density inside the nucleus. For details on the anapole
moment one can see the review article [36].

1.3.3 Z3 dependence in heavy atoms

As mentioned earlier, in 1974 Bouchiat and Bouchiat [8, 9, 37] predicted that
PNC effects in atoms scales as Z3. To understand the Z3 scaling, consider the
PNC electron-nucleus potential expressed in the form [8],

Vpv =
QWGF

4
√

2

[
δ3(re)

σ · ve

c
+ h.c.

]
. (1.8)

Where, QW and GF are the weak nuclear charge and the Fermi coupling con-
stant respectively, associated with the weak interaction between the nucleus
and electrons. σe and ve are the spin and velocity of the electron respec-
tively. The delta function here signifies that unlike the Coulomb potential, the
electron-nucleus interaction is short range in comparison to the atomic size.
The origin of each Z dependence are described in the following paragraphs.

First, one factor of Z arises from the weak charge of the nucleus. It is
defined as

QW = −N + Z(1− 4 sin2 θw), (1.9)

where N and Z are the number of neutrons and protons respectively in the
nucleus and, θw is the Weinberg angle. The experimentally measured value of
sin2θw is ≈ 0.23. Hence from Eq. (1.9)

QW ≈ −N ≥ Z, (1.10)

for most of the heavy stable nuclei N/Z ≥ 1.
Second, one Z factor arises from the helicity factor σ · ve/c in Eq. (1.8).

Within the nuclear region the electronic velocity ve is proportional to the
nuclear charge Z.
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Finally, another Z factor is attributed to the delta function appearing in
Eq. (1.8). The consequence of having delta function is that, only the electronic
wave function which has non zero probability within the nucleus contributes
the to the PNC observables. For example, the most dominant contributions
are from s1/2 and p1/2 orbitals.

1.4 PNC interaction Hamiltonian

The PNC electron-nucleus interaction Hamiltonian density of an atom in sec-
ond quantized form is expressed as

HPNC = GF(C1ψeγµψeψnγ5γµψn + C2ψeγ5γµψeψnγµψn). (1.11)

In the above equation GF is the Fermi coupling constant and it gives a measure
of the weakness of the interaction. In atomic units it has the value 2.2225 ×
10−14. C1 and C2 are electron-nucleon coupling coefficients. γµ and γ5 are the
Dirac matrices expressed as

γk =

(
0 −iσk

iσk 0

)
, k = 1, 2, 3 and γ5 =

(
0 I
I 0

)
, (1.12)

I here is the nuclear spin quantum number. The first term in Eq. (1.11) is
the nuclear-spin dependent (NSD) part of the PNC interaction Hamiltonian,
as it has the vector electron (ψeγµψe) and the axial vector nucleus (ψnγ5γµψn)
currents. The second term on the other hand, has the vector nucleus (ψnγµψn)
and the axial vector electron (ψeγ5γµψe) currents and hence represents the
nuclear spin-independent (NSI) part of the PNC interaction Hamiltonian. As
vector changes sign under the parity operation but the axial vector does not,
and hence the product of two violates the parity transformation. From Eq.
(1.11), the total PNC Hamiltonian is then

HPNC =

∫
HPNCd

3r. (1.13)

In the subsequent sections we provide expressions for the NSD and NSI PNC
interaction Hamiltonian’s separately.

1.4.1 NSD-PNC interaction Hamiltonian

From Eq. (1.11), consider the first term

GFC1ψ̄eγµψeψ̄nγ5γµψn = −GFC1ψ
†
eγ0γµψeψ

†
nγ0γµγ5ψn, (1.14)

we have used the anticommuation relation {γ5, γµ} = 0, µ = 0, 1, 2, 3, and the
expression ψ̄ = ψ†γ0. Using Eq. (1.13), the total NSD-PNC Hamiltonian is

HNSD
PNC = −GFC1

∫
ψ†

eγ0γµψeψ
†
nγ0γµγ5ψnd

3r. (1.15)
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Expanding this equation for all values of µ, we get

HNSD
PNC = −GFC1

∫ [
ψ†

eγ0γ0ψeψ
†
nγ0γ0γ5ψn + ψ†

eγ0γkψeψ
†
nγ0γkγ5ψn

]
d3r.(1.16)

Consider the first term, µ = 0, and treat the nuclear part non-relativistically,
we then get∫

ψ†
eγ0γ0ψeψ

†
nγ0γ0γ5ψnd

3r =

∫
ψ†

eψeψ
†
nγ5ψnd

3r

=

∫ (
Pnχκnmn

0

)†(
0 I
I 0

)(
Pnχκnmn

0

)
ψ†

eψed
3r = 0, (1.17)

here we have used the relations γ2
0 = 1. Similarly, for the remaining terms

µ = 1, 2, 3, which are the spatial components we get∫
ψ†

eγ0γkψeψ
†
nγ0γkγ5ψnd

3r =

∫
ψ†

eiαiψeψ
†
niIiψnd

3r,

where we have used the relations γ0γi = iαi and γ0γiγ5 = iIi. From Eqs.
(1.17), (1.18) and (1.15), the NSD PNC interaction Hamiltonian in the first
quantized form is

HNSD
PNC =

GFµ
′
W

2
√

2I

∑
i

~αi · ~IρN(r), (1.18)

where µ′W is the weak nuclear moment of the nucleus and ρN(r) is the nuclear
density. The weak nuclear moment is expressed in terms of the neutron and
proton numbers µ′W = 2(ZC1p + NC1n), where C1p and C1n are respectively
the vector electron and the axial vector nucleon coupling coefficients.

The parameter µ′W introduced here has the combined effects of three par-
ity violating NSD-PNC contributions: interaction between nuclear anapole
moment and electrons; Z0 exchange between electron and nucleons; and com-
bined effect of perturbation of the NSI contribution and hyperfine interaction.
Among these, the first is the most dominant, however, experimentally it can
not be distinguished from the effects of neutral weak currents. This must be ac-
counted for while extracting the anapole moment from atomic measurements.
Using the above arguments we can write in Eq. (1.18)

µ′W = (−1)I+1/2−l

(
I + 1/2

I + 1

)
µa + µ2 + µQW

, (1.19)

where, the constant µa represents the contribution from anapole moment, the
constant µ2 accounts for the contribution from the neutral weak currents, and
the last term µQW

corresponds to the interference between the NSI and the
hyperfine interaction. l is the orbital angular momentum of the unpaired
nucleon.
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1.4.2 NSI PNC interaction Hamiltonian

The NSI part of HPNC is the most dominant source of PNC effects in atoms.
At the nuclear level, the associated parameter of the NSI-PNC interaction is
the weak charge of the nucleus QW and the interaction Hamiltonian is [8]

HNSI
PNC =

GF

2
√

2
QW

∑
i

γ5ρN(ri), (1.20)

where the weak charge QW of the nucleus is

QW = 2(ZC2p +NC2n). (1.21)

Here, Z and N are the number of protons and neutrons respectively. And
C2p and C2n are the vector and axial coupling constants of the nucleon and
electron respectively. As mentioned earlier, ρN(ri) is the nuclear density.

1.5 Objectives of the current study

The standard model (SM) of particle physics is a theory of the elementary
particles in nature and their interactions. It correctly predicts the existence of
guage bosons, the force carriers which mediates the the strong, weak, and elec-
tromagnetic fundamental interactions. However, a hypothetical massive scalar
elementary particle predicted by the SM and referred to as the Higgs boson is
yet to be detected in experiments. The Higgs boson plays an important role
in explaining the origin of mass. Apart from this, the SM lacks a consistent
description of several observed phenomena, to mention a few

• the origin of strong CP violation,

• matter-antimatter asymmetry in the universe,

• neutrino oscillations,

• the origin and nature of dark matter and dark energy,

In the literature, these fall under the broad category of physics beyond the
SM. These have motivated several extensions to the SM and these are for ex-
ample supersymetric and left-right symmetric models. One way to investigate
these extended models is at the high-energy collider experiments, where new
particles can be detected and study their properties. Another way to probe
physics beyond the SM is with low-energy atomic experiments. The experi-
mental results when combined with high precision atomic theory calculations
provide estimates of parameters in SM. Any deviation from the predictions of
SM is indicative of new physics.
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The current thesis work is motivated to contribute to the new physics
by developing atomic many-body theory methods to carry out high precision
atomic theory calculations. For the computational results, the focus of the
work is the PNC of Yb [38, 39, 40, 28, 41, 15] and in particular, the NSD-PNC
component. The PNC effects of atomic Yb are reported to be almost ≈ 100
times larger than the most precisely studied case of atomic Cs [10]. Apart form
the previously mentioned implication to the new physics, there are several
other important implications of the proposed work. As an application of the
theoretical methods developed, we also examine the spectroscopic properties
of atoms. A major part of the new atomic many-body methods developed are
based on the relativistic coupled-cluster theory.

1.6 Outline of the chapters

The chapters in the remaining part of the thesis are briefly outlined in this
section.

The second chapter, Atomic many-body perturbation theory (MBPT), pro-
vides a basic description of atomic structure calculations. Towards the end
of the chapter, MBPT is applied to calculate energy and E1PNC. The first
section of chapter discusses the many-electron relativistic Hamiltonian and re-
lations between different wave functions, the spin-orbitals, the configuration
state functions (CSF) and the atomic state functions (ASF). The concepts in
MBPT based on Rayleigh-Schroedinger perturbation theory are described in
Sec. II. The application MBPT to the closed- and open-shell atoms are dis-
cussed in the Sec. III and IV, respectively. In these sections, the details of the
calculations of the correlation and excitation energies are provided. Applica-
tion of MBPT to study PNC in atoms are discussed in the Sec. V and results
are presented in the section.

The third chapter, Perturbed configuration interaction (PCI), provides an
important scheme to overcome the computational difficulty of diagonalizing
two very large matrices in configuration interaction (CI). The first section is
a brief description of the CI method and its application to calculate E1PNC.
The next section forms the core of the chapter and the PCI method is examined
in detail. It gives the E1PNC expression within PCI and demonstrates the
advantage of PCI over CI. Sec. III deals with the application to the atomic
Yb and results are presented in the last section of the chapter.

In the fourth chapter, Coupled-cluster theory for closed-shell and one-
valence atoms, we deal with the developments and implications of most efficient
atomic many-body method, the coupled-cluster. This chapter is comprise of
four sections. The CC equations of closed-shell systems are derived in the first
section of the chapter. The properties calculation for closed-shell systems us-
ing CC wave function is also discussed in the same section. Sec. II deals with

10



Chapter 1. Introduction

the method in the context of one-valence atoms. The coupled-cluster working
equations are derived, and application to the excitation energy calculation is
briefed. The properties calculations for one-valence atoms, in particular the hy-
perfine structure constants (HFS) and the electric dipole transition amplitudes
(E1), are discussed in Sec. III. A scheme for all-order properties calculation
is also described in the same section. This scheme enable us to include higher
orders of closed-shell cluster operators in the properties calculation. Results
obtained based on CC theory are presented in the last section.

The fifth chapter, Coupled-cluster theory for two-valence atoms, is the heart
of the thesis. In this chapter we deal with CC theory for two-valence atomic
systems. This is broadly classified in to four sections. Sec. I provides an
overview of the multi-reference CCT followed by complete and incomplete
model spaces. The coupled-cluster working equations using exponential ansatz
and the Bloch equation are derived in Sec. II of the chapter. The properties
calculations using CC method are discussed in Sec. III. In particular, we pro-
vide working equation and diagrammatic analysis for the calculation of HFS
constants and E1 transition matrix element. The results calculated using CC
method are presented and analyzed in last section of the chapter.

The sixth chapter, Coupled-cluster theory with PNC perturbation, is to
account for PNC perturbation in atomic systems using the coupled-cluster
method. In the first section we consider closed-shell atoms in the PNC per-
turbation. The perturbed CC equations for the same are are derived. We also
describe the scheme for properties, in particular, the dipole polarizibilty, cal-
culation. The perturbed CC equation for one-valence atoms are discussed in
Sec. II. As an application we implement it for the E1PNC calculation, which
is also given in the same section. Sec. III considers two-valence atoms in the
PNC perturbation. The perturbed CC equations for the same are derived, and
is also applied to E1PNC calculation. Results are presented in the last section
of the chapter.

The last chapter, Summary of the E1PNC results and future directions,
entangle the outcomes of the thesis. This chapter is divided into two sections.
Sec. I present the E1PNC results calculated using the methods which are
developed as the part of the thesis work for one-valence systems. The same
for two-valence systems are presented in Sec. II.

11



Chapter 2

Atomic many-body
perturbation theory

The many-body perturbation theory (MBPT) is an approach based on the
perturbation procedure to account for electron-electron interactions in many-
body systems. In atomic physics it was first introduced by Kelly [42] in 1969
and later proved as a powerful and suitable method for atomic and molecular
calculations. It has been applied quite successfully for correlation energy cal-
culation to the several atomic systems [43, 44, 45]. It is, however, not practical
to proceed beyond the third order as the number of terms proliferate rapidly
with the order of perturbation. At fourth order, there are large number of
terms and calculations are unmanageable. Perhaps in future, a combination of
symbolic manipulation and advances in computational many-body techniques
may remedy the complications. The method, however, is indispensable in
optimizing and testing the quality of the single-electron basis functions. In
addition, it is invaluable as a benchmark to test and validate other atomic
many-body theories.

The chapter is organized as follows. In Section.II we give an overview of
the method and described the basic idea followed. The next section deals,
in brief, with very general and widely applicable perturbation scheme, the
Rayleigh-Schroedinger perturbation scheme, followed by the description of the
Generalized Bloch equation. Section.IV. is about the application of MBPT
for the correlation energy calculation in the case of closed- and open-shell
atomic systems. In the two-valence atoms case the construction of the ef-
fective Hamiltonian matrix and its diagnolization in the jj coupled states is
elaborated. And the last section describes the scheme to calculate the E1PNC
using MBPT wave function.

12



Chapter 2. Atomic many-body perturbation theory

2.1 Relativistic atomic theory

To obtain precise results it is necessary to include effects of relativity in
the atomic many-body calculations. It is particularly important in high Z
atoms/ions as relativistic effects are large. The Dirac-Coulomb Hamiltonian
[46], HDC, is an appropriate choice to incorporate relativistic effects. For an
N-electron atom or ion

HDC =
N∑

i=1

[
cαi · pi + (β − 1)c2 − Z

ri

]
+
∑
i<j

1

rij

, (2.1)

where, α and β are the Dirac matrices. The first term in above equation is
the kinetic energy of the electrons. The third term is the nuclear potential,
and the last term represents Coulomb interactions of electrons. As the name
suggests, HDC includes all possible Coulomb interactions, and neglects the
magnetic interactions. It satisfies the Schroedinger equation

HDC|Ψi〉 = Ei|Ψi〉, (2.2)

where |Ψi〉 is the exact wave function usually referred as the atomic state
function (ASF). And, Ei is the exact energy of the atomic system considered.

2.1.1 Dirac-Hartree-Fock theory

Hydrogen atom, which has only one electron along with the nucleus, is a two-
body system and is exactly solvable. However, the other atoms or ions with
two or more electrons are not exactly solvable. This is on account of of the
electron-electron Coulomb interaction

∑
i<j

1
rij

in atomic Hamiltonian.

To solve Eq. (2.2) we invoke the independent-particle model, which assume
each electron to move independently of others in an average potential arising
from the nucleus and other electrons. The average potential from the other
electrons [46, 47] is the Dirac-Hartree-Fock central potential

uDF(ri)|i〉 =
occ∑
a

[
〈a| 1

r12
|ia〉 − 〈a| 1

r12
|ai〉
]
, (2.3)

where, i represents any orbital (core, valence, or virtual) and a represents only
the occupied orbitals. The first and second terms on right hand side are the
direct and exchange terms respectively. It is evident that direct and exchange
cancels when i = a and avoids self interaction. We can then rewrite

HDC =
N∑

i=1

[
cαi · pi + (β − 1)c2 − Z

ri

+ uDF(ri)

]
+

N∑
i<j

1

rij

−
N∑

i=1

uDF(ri),

= H0 + Ves. (2.4)

13



Chapter 2. Atomic many-body perturbation theory

Where, H0 is the solvable part of HDC, conventionally referred as zeroth order
Hamiltonian. It can further be expressed as the sum of single particle operators

H0 =
N∑
i

hDF(i), (2.5)

where

hDF(i) = cαi · pi + (βi − 1)c2 − Z

ri

+ u(ri), (2.6)

is the Dirac-Fock operator. The remaining part of the electron-electron Coulomb
interaction

Ves =
N∑

i<j

1

rij

−
∑

i

uDF(ri), (2.7)

is the residual Coulomb interaction [46, 47] or the perturbative part of HDC.
The purpose of any atomic many-body theory is to account for this term as
accurately as possible. And, that is the objective of the many-body atomic
calculations.

2.1.2 Single-electron wave function

The Dirac-Fock operator, introduced in Eq. (2.5), satisfies the eigenvalue
equation

hDF(i)|ψi〉 = εi|ψi〉, (2.8)

where, |ψi〉 and εi are the single electron wave function and energy respectively.
These are obtained from a self consistent field calculations of the single particle
equations. The relativistic orbitals are of the form

ψnκm(r) =
1

r

(
Pnκ(r)χκm(r/r)

iQnκ(r)χ−κm(r/r)

)
, (2.9)

where, Pnκ(r) and Qnκ(r) are the large and small component radial wave
functions, κ is the relativistic total angular momentum quantum number and
χκm(r/r) are the spinor spherical harmonics defined as

χκm(r) =
∑

σ=± 1
2

〈lm− σ, 1
2
σ|jm〉Y m−σ

l (θ, φ)|σ〉. (2.10)

The term 〈lm − σ, 1
2
σ|jm〉, in the above equation, is a Clebsch-Gordan co-

efficient and Y m−σ
l (θ, φ) and |σ〉 are the spherical harmonics and spin basis

functions respectively. The radial components of the wave function is further
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Chapter 2. Atomic many-body perturbation theory

expressed as the linear combination of Gaussian like functions, referred to as
Gaussian type orbitals (GTOs) [48, 49]

Pnκ(r) =
∑

p

CL
κpg

L
κp(r),

Qnκ(r) =
∑

p

CS
κpg

S
κp(r). (2.11)

The index p runs over the number of the basis functions. For large component

gL
κp(r) = CL

κir
nκe−αpr2

, (2.12)

here nκ is an integer. And the small components are related to the large
component through the kinetic balance condition

gS
κp(r) = CS

κi

[
d

dr
+
κ

r

]
gL

κp(r). (2.13)

The exponents in the above expression follow the general relation

αp = α0β
p−1. (2.14)

Where, the parameters α0 and β are optimized for an atom to provide good
description of the atomic properties.

2.1.3 Slater determinants, CSFs and ASFs

Solving the Dirac-Hartree-Fock equation, Eq. (2.8), we obtain a set of orbitals
{|ψi〉}, and the corresponding eigenvalues {εi}. From these we can construct
a set of many-electron wave functions. However, to satisfy Pauli’s exclusion
principle, the many-electron wave function must be antisymmetric with respect
to interchange of coordinates. Slater determinantal wave functions satisfy this
condition [46, 47, 50] and for an N -atom

D(r1, r2, r3, . . . , rN) =

∣∣∣∣∣∣∣∣∣∣
ψa(r1) ψb(r1) · · · ψN(r1)
ψa(r2) ψb(r2) · · · ψn(r2)
ψa(r3) ψb(r3) · · · ψn(r3)
· · · · · · · · · · · ·

ψa(rN) ψb(rN)e · · · ψn(rN)

∣∣∣∣∣∣∣∣∣∣
. (2.15)

Slater determinants are eigen functions of the zeroth-order Hamiltonian H0

and the corresponding eigenvalue equation is

H0|Di〉 = E
(0)
i |Di〉, (2.16)

where, E
(0)
i is the sum of all single electron energies. The difference between

the exact and the mean field energy, ∆Ei = Ei−E0
i , is the correlation energy
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of the ith state. Here, the Slater determinants are the antisymmetrised direct
product of single particle wave functions. However, H0 commutes with J2,
J and Jz and taking these into account, we can define many-electron states
which are eigenstates of J . Such states represented as |γPJM〉 are referred as
configuration state functions (CSFs) and are, in general, linear combinations of
the Slater determinants. Where P is the parity of the state, M is the magnetic
quantum number and γ is an additional quantum number to define each CSF
uniquely. From the considerations mentioned

J2|γPJM〉 = J(J + 1)|γPJM〉,
Jz|γPJM〉 = M |γPJM〉,
P |γPJM〉 = P |γPJM〉,

(2.17)

here, M varies from −J to +J .
The next level of many-particle wave function is the atomic state functions

(ASFs). These are the linear combinations of CSFs and general expression is

|ΓPJM〉 =
n∑

i=1

cΓi |γiPJM〉. (2.18)

The additional quantum number Γ is defines each ASF uniquely. And cΓi is
the mixing coefficients. In the later sections we will using Eq. (2.18) in the
representation

|Ψi〉 =
n∑

j=1

cij|Φj〉, (2.19)

where j is restricted to one for closed-shell atoms.

2.2 Basics of atomic MBPT

The basic idea behind atomic MBPT is to incorporate the residual Coulomb
interaction Ves , defined in Eq. (2.7), systematically to higher orders in a
sequence. So that the eigen value equation given in Eq. (2.2) is solved exactly.
From previous descriptions, the total Hamiltonian is

HDC = H0 + Ves. (2.20)

The initial step of MBPT calculations is to solve the eigenvalue equation of H0

and obtain a complete set of eigen states {|Φi〉}. The next step is separation
of {|Φi〉} into a model space or P -space, it comprises of eigen states which
are best approximation to the exact atomic state. And, the Q-space or the
complementary space, it consists of the remaining eigen states. Defining the
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two subspaces is straight forward in closed-shell states as P -space has only
one state and it is the determinant corresponding to the configuration of the
atomic state. The projection operators are

P = |Φi〉〈Φi|, and Q =
∑

|Φj〉/∈P

|Φj〉〈Φj|. (2.21)

In the open-shell systems, however, the selection of P -space is tricky as several
eigen states may contribute equally at the lowest approximation. Details on
the choice of the model space in open-shell systems shall be discussed in later
parts of the thesis. The operator P satisfies the relation

P |Ψi〉 = |Φi〉. (2.22)

And the final step is to define the wave operator Ω which operates within the
model space but it generates the exact atomic state

|Ψi〉 = Ω|Φi〉, (2.23)

where |Ψi〉, as mentioned earlier, is the exact wave function and |Φi〉 is the cor-
responding model wave function. There are two important perturbation theo-
ries to calculate the wave operator: Brillouin-Wigner and Rayleigh- Schroedinger.
Detailed discussions on these theories are given in Ref.[47, 50].

The expansion series in the Brillouin-Wigner perturbation theory require,
in denominator, exact energy of the atomic states. Calculation of which is
one objective of the perturbation scheme. For this reason the implementation
of the theory is through self consistent schemes. This constrain the general
applicability of the theory as self consistent schemes usually encounter diver-
gences while calculating several states. As a result, the theory is appropriate
for calculations involving a few atomic states.

The Rayleigh-Schroedinger perturbation theory, on the other hand, depend
entirely on the eigen states and eigen values ofH0. The wave operator of a state
is well defined once the eigen value equation of H0 is solved. And, unlike the
Brillouin-Wigner theory, it can be applied to a group of states with relatively
simple generalizations. The theory was first applied to N -electron systems by
C. Moller and M. S. Plesset and hence, in atomic and molecular physics, it is
also referred as Moller-Plesset perturbation theory. In the next section a brief
description of the theory is provided, which is perhaps essential and the later
sections in the thesis rely on the theory either for validation or are based on
it.

2.2.1 Rayleigh-Schroedinger perturbation theory

As mentioned earlier, the exact atomic state is generated from the model space
wave function by means of the wave operator. This is done iteratively through
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successive corrections to the model function. The wave operator, in general,
can be define as

Ω = 1 + Ω(1) + Ω(2) + Ω(3) + · · · , (2.24)

where the superscript represents the order of perturbation. The wave operator
Ω(µ) has the perturbation Ves a µ number of times. In the same way, the exact
state Eq. (2.23) is

|Ψi〉 = |Φi〉+ λ|Φ(1)
i 〉+ λ2|Φ(2)

i 〉+ λ3|Φ(3)
i 〉+ · · · (2.25)

Here, λ is the perturbation parameter and indicates the order of of perturba-
tions in each term. As we have discussed earlier as well, |Φi〉 is the zeroth-order
wave function and in closed-shell case is the best approximation to the exact
state. And the others, |Φ(1)

i 〉, |Φ
(2)
i 〉, and so on, are the corrections evaluated

with the wave operator in Eq. (2.24).

2.2.2 Generalized Bloch-equation

The wave operator, in Rayleigh-Schroedinger perturbation theory, is the solu-
tion of the iterative equation

[Ω, H0]P = V ΩP − ΩPVesΩP. (2.26)

This equation is referred as the generalized Bloch equation and was formulated
by Lindgren in Ref. [51]. It is widely used in perturbative calculations of
atomic and molecular physics, and it is a convenient starting point in the
derivations of non perturbative schemes like coupled-cluster theories. Another
form of the equation, suitable to calculate the order wise expansion of the wave
operator in Eq.(2.24), is to rewrite it as a recurrence relation

[Ω(µ), H0]P = QV Ω(µ−1)P −
µ−1∑
ν=1

Ω(µ−ν)PV Ω(ν−1)P. (2.27)

The equation is solved in a sequence to obtain terms in the waver operator as a
function of V to various orders. However, beyond second order algebraic eval-
uation of the wave operator is cumbersome and book keeping of various terms
is impractical. With diagrammatic evaluation, it is fairly straight forward to
calculate up to third order and simplifies calculations of selective terms in
MBPT to higher orders. Two classes of diagrams occur in the diagrammatic
expression of Eq. (blocheq1), namely: linked diagrams, where it possible to
traverse all the interaction lines in one stroke, and unlinked diagrams, where
it require more than one stroke to traverse all the interaction lines. Follow-
ing linked cluster theorem [52, 53], only the linked diagrams appear in Eq.
(blocheq1). More appropriately

[Ω(µ), H0]P =

[
QV Ω(µ−1)P −

µ−1∑
ν=1

Ω(µ−ν)PV Ω(ν−1)P

]
linked

. (2.28)
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Where the subscript linked denotes only linked diagrams are retained in the
equation. Ideally, in any many-body theory only linked diagrams should ap-
pear so that the theory is size extensive. Otherwise, the theory is not size
extensive and there are terms which are unphysical.

2.3 Closed-shell atomic MBPT

For closed-shell atoms or states, diagrammatically, PV Ων−1P in the second
term of Eq. (2.28) is a closed diagram. Where closed diagrams are the ones
without any free orbital lines and any term which involves a closed component
is then unlinked. Hence, the re-normalization term Ω(µ−ν)PV Ω(ν−1) in closed-
shell atoms or systems is unlinked and the generalized Bloch is reduced to[

Ω(µ), H0

]
=
[
V Ω(µ−1)

]
linked

, (2.29)

where µ ≥ 1. This is the linked diagram equation for closed-shell atomic
systems. The first order wave operator equation is[

Ω(1), H0

]
= [V ]linked = V1 + V2, (2.30)

where the one- and two-body operators ( V1 and V2 ) in operator form are

V1 =
∑
ij

{a†iaj}〈i|v|j〉, (2.31a)

V2 =
1

2

∑
ijkl

{a†ia
†
jalak}〈ij|r−1

12 |kl〉. (2.31b)

Here, a† (a) are creation (annihilation) operators of single particle states,
respectively. The indexes i, j, k, . . . which represent general orbitals. For the
HDC and partitioning of H0 considered in this work V1 = uDF. Following the
form of V , the general expression of the first order wave operator is

Ω(1) = Ω
(1)
1 + Ω

(1)
2 . (2.32)

The subscripts in the first and second terms on the right hand side indicate
level of excitations single and double, respectively. After evaluating the com-
mutation relation in Eq. (2.30)

Ω
(1)
1 =

∑
ap

a†paa
〈p|v|a〉
εa − εp

, (2.33a)

Ω
(1)
2 =

1

2

∑
abpq

a†pa
†
qabaa

〈pq|v|ab〉
εa + εb − εp − εq

. (2.33b)
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Here, indexes a, b, c, . . . (p, q, r, . . .) represent core (virtual) orbitals. Diagram-
matically, the representation of the wave operators are given in Fig. 2.1. The
off diagonal matrix elements of V1 are zero when Dirac-Hartree-Fock orbitals
used in the calculations. At the first order only the two-body V2 then has
non-zero contribution.

Ω1 Ω2

Figure 2.1: The diagrammatic representations of the one- and two-body wave
operator for the closed-shell atoms. Lines with downward (upward) arrows
represent core (virtual) single particle states.

2.3.1 Correlation energy of closed-shell atoms

Consider the eigen value equation of HDC in Eq. (2.2). It can be written in
terms of the MBPT wave function as

HΩ|Φi〉 = EiΩ|Φi〉. (2.34)

Project the equation to model space or reference state, we get

Heff |Φi〉 = Ei|Φi〉, (2.35)

where,
Heff = PH0P + PV ΩP, (2.36)

is the effective Hamiltonian. The Eq. (2.35) is an important one, it implies
that Heff is defined once the wave operator Ω is calculated. The key point of
calculating Heff is, it operates on the model function and gives the exact eigen
energy. More appropriately, one can get the exact energy as

E0 = 〈Φ0|Heff |Φ0〉, (2.37)

expectation value of Heff with respect to the model function. The first term
in Eq. (2.36) is the leading order contribution, E

(0)
i , to the exact eigen energy

Ei. It is referred as the self-consistent field (SCF) energy. And the second

term, with wave operator Ω, is the correction to E
(0)
i referred as the correlation

energy. Depending on the orders of Ω, various corrections to the energy can be
calculated using second term in Eq. (2.36) and the nth order energy correction,
for closed-shell systems, is

E
(n)
i = 〈Φi|V Ω(n−1)|Φi〉, for n > 2. (2.38)

Unlike the case of Ω diagrams, the E
(n)
i diagrams are topologically closed.

Which is natural as it is expectation of a closed-shell state.
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(a) (b)

Figure 2.2: MBPT diagrams which contribute to the second-order correlation
energy.

2.3.2 Second-order correlation energy

From Eq. (2.38), the second order correlation energy is

E(2)
corr = 〈Φ0|V Ω(1)|Φ0〉. (2.39)

Separate the perturbation Hamiltonian and wave-operator to one- and two-
body parts, as in Eq. (2.31) and (2.33),

E(2)
corr = 〈Φ0|(V1 + V2)(Ω

(1)
1 + Ω

(1)
2 )|Φ0〉. (2.40)

However, as mentioned earlier, the one-body term does not contribute at the
first order. The expression for E

(2)
corr is then reduced to

E(2)
corr = 〈Φ0|V2Ω

(1)
2 |Φ0〉, (2.41)

The diagrams which contribute to E
(2)
corr arise from the contraction of V2 with

Ω
(1)
2 such that there are no free lines. There are two diagrams which meet the

conditions of no free lines and these are shown in Fig. 2.2.

2.4 One- and two-valence atomic MBPT

Application of many-body atomic theories to the open-shell atoms, in general,
is not straight forward like in closed-shell atoms. There are two reasons for
this. First, in addition to the core and virtual orbitals, open shell atoms/ions
require a third category, the valence orbitals. This is because, the valence
shells are partially filled and these have properties typical of core shells as well
as the virtual shells. And second, there is lack of a priori information about
the reference state or the zeroth order wave function. This is for the following
reason: usually, the valence-valence correlation effects are strong in open-shell
systems and states in the model space mixes very strongly. To account for
this, a reference state must be linear combination of states in the model space.
However, there are no simple ways to assign the coefficients of mixing. One
widely often used solution is to diagonalize the effective Hamiltonian matrix
within model space configurations.
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Figure 2.3: Diagram showing merging of valence orbitals with cores and vir-
tuals.

In short, for open-shell calculations, the valence must be treated either as
core or virtual depending on the context. This is depicted schematically in
the Fig. 2.3 and there are advantages of such a treatment while evaluating
diagrams. The open-shell diagrams are equivalent to closed-shell diagrams
with the core lines transformed to valence lines. The model space consist of
several states or more appropriately, the calculation is multi-reference. For
single-valence case, the model functions are

|Φv〉 = a†v|Φ0〉, (2.42)

where |Φ0〉 is the core part and v represents the valence electron.
Diagrammatically, the effective Hamiltonian PV ΩP is no longer a closed

diagram. It may have valence orbitals as free lines and contraction with Ω is
possible. In which case, the connecting line(s) must be contorted to obtain cor-
rect expressions (denominator) and a new class of diagrams, folded diagrams,
emerge from third order onwards. This is a major departure from the dia-
grammatic description of closed-shell atomic MBPT. Perturbation expansions
are therefore based on the equation[

Ω(µ), H0

]
=

[
QV Ω(µ−1) −

µ−1∑
ν=1

Ω(µ−ν)PV Ω(ν−1)

]
linked

. (2.43)

Recollect that the second term on the right-hand side of Eq. (2.43) is absent
in close-shell case.

2.4.1 Excitation energy of one-valence atoms

In analogy with the expression for second-order correlation energy for closed-
shell atoms, Eq. (2.41), the second-order correlation energy of one-valence

22



Chapter 2. Atomic many-body perturbation theory

atoms is

E(2) = 〈Φv|V2Ω
(1)
2 |Φv〉 = E(2), core + E(2),val, (2.44)

where |Φv〉 is the model state function for single-reference atoms. Like in
closed-shell case, only closed diagram contribute to E(2). For the core part
E(2), core , diagrams are same as in closed-shell system. However, for the valence
part E(2), val closed diagrams are those with free valence lines and the diagrams
are shown in Fig. 2.4.

(a) (b) (c) (d)

Figure 2.4: Diagrams which contribute to second-order correction to the at-
tachment energy.

The experimentally observable quantity is the attachment energy of the
valence electron v. It is the energy released when the valence electron is added
to the system and is given as

Eatt
v = εv + E(2), val. (2.45)

It is equivalent to the calculating ionization potential as the later is negative
of the former. Another quantity relevant to experiments are the excitation
energies

∆E = Ev − Eg, (2.46)

where Eg is the energy of the ground state function. In the result section the
excitation energies for a group of one-valence atoms are presented.

2.4.2 Excitation energy for two-valence atoms

Like in the one-valence system the two-valence many particle states, which
belong to the model space, are

|Φvw〉 = a†va
†
w|Φ0〉, (2.47)

where v and w are valence orbitals. As mentioned earlier, although the many
particle states which span the model space are known, the reference states are
not defined initially. The reason is the general form of a reference states |Φα〉
is the linear combination

|Φα〉 =
∑

i

cαi |Φviwi
〉, (2.48)
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where cαi are the coefficients of linear combination. There are no non-trivial
way to define these coefficients. The approach is then, perturb first and di-
agonalize the effective Hamiltonian within the model space. Accordingly, to
calculate the second order correlation energy apply the first order wave oper-
ator in Eq. (2.33) to all the many particle states |Φi〉 ∈ P . The next step
is then to generate the effective Hamiltonian matrix within the model space
with jj coupled states.

2.4.2.1 First- and second-order effective Hamiltonian

Following Eq. (2.36), the first-order correlation energy is

H
(1)
eff = PV P = P (V0 + V1 + V2)P. (2.49)

where, V0 is the contribution from the close-shell part. This contributes equally
to all the states in model space and shifts all the energy levels by the same
amount. The one- and two-body terms, V1 and V2, have contributions from
open-shell part only. The nonzero contribution in particular from the one-
body term adds same to the all diagonal elements of the effective Hamiltonian
matrix and is therefore does not account for the energy level splitting. From
Eq. (2.49), H

(1)
eff is reduced to the form

H
(1)
eff = PV2P. (2.50)

The contributing diagram is a close diagram, shown in Fig. 2.6(a), with a pair
of valence lines at each vertex.

(a) (b) (c) (d) (e)

Figure 2.5: Representation of the first-order wave operator diagrams for two-
valence atoms. Double arrows to the bottom of the interaction represents the
valence orbital.

The second-order effective Hamiltonian is

H
(2)
eff = PV Ω(1)P = P (V1 + V2)

[
Ω

(1)
1 + Ω

(1)
2

]
P, (2.51)

here, the V1 contribution is zero when Dirac-Fock orbitals are used in the
calculations. The expression of H

(2)
eff is then reduced to

H
(2)
eff = PV2Ω

(1)
2 P. (2.52)
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(a) (b) (c) (d) (e) (f) (g)

Figure 2.6: The two-body diagram (a), arises from the first-order effective

Hamiltonian H
(1)
eff . The remaining two-body diagrams, from (b) − (g), con-

tribute to the second-order effective Hamiltonian H
(2)
eff .

The diagrammatic representation of the first-order wave operator, in Eq. (2.52),
is shown in the Fig. 2.5. These contract with the diagrams of V and generates
the second order effective Hamiltonian diagrams. These are calculated with
respect to uncoupled states and treated as one- and two-body effective opera-
tors. The diagrammatic representation of the effective operators are shown in
Figs. 2.4 and 2.6.

2.4.2.2 Heff matrix elements with jj coupled states

Electrons being fermions Pauli’s exclusion principle must hold true and to
preserve this, the many particle wave function of two-valence systems must
be antisymmetric. For two non-equivalent electrons, the antisymmetrised jj
coupled state may be expressed as

|{γvjvmvγwjwmw}JM〉 =
1√
2

[
|(γvjvmvγwjwmw)JM〉

+(−1)jv+jw+J |(γwjwmwγvjvmv)JM〉
]
. (2.53)

where, jv and jw are the total angular momenta of the single electron states |φv〉
and |φw〉 respectively, mv and mw are the magnetic quantum numbers, γv and
γw are additional quantum numbers to identify each spin-orbitals uniquely, and
J and M are the total angular and magnetic quantum numbers of the coupled
state, respectively. Using Eq. (2.53), the matrix element of the Coulomb
interaction Hamiltonian is

〈{jxmxjymy}JM |
1

r12
|{jvmvjwmw}JM〉 =

1

2

[
〈(jxmxjymy)JM |

1

r12
|(jvmvjwmw)J ′M ′〉 − (−1)jx+jy−J

〈(jymyjxmx)JM |
1

r12
|(jvmvjwmw)J ′M ′〉 − (−1)jv+jw−J ′

〈(jxmxjymy)JM |
1

r12
|(jwmwjvmv)J

′M ′〉+ (−1)jx+jy+jv+jw−J−J ′

〈(jymyjxmx)JM |
1

r12
|(jwmwjvmv)J

′M ′〉
]
. (2.54)

25



Chapter 2. Atomic many-body perturbation theory

While implementing the matrix elements all the four terms in Eq. (2.54)
are explicitly calculated with proper normalization factor. To illustrate the
procedure consider the direct matrix element in the above equation. In terms
of uncoupled states

〈(γvjvmvγwjwmw)JM | 1

r12
|(γxjxmxγyjymy)J

′M ′〉 =
∑

k

(−1)jx+jw+J+k

δ(J, J ′)δ(M,M ′)

{
jx jx k
jy jw J

}
〈γvjv||Ck||γxjx〉〈γwjw||Ck||γyjy〉Rk. (2.55)

Where Rk is the radial integral and Ck is the spherical tensor operator of rank
k. For matrix elements, as evident from the delta functions, to be non-zero the
states should have the same parity, J and M . The expression in Eq. (2.55) are
applicable to the matrix elements of the two-body diagrams (Fig. 2.6(b-g). In
this case the multipole k and the radial integral arise from the combination of
two orders of residual Coulomb interactions.

Similarly, the matrix element of the one-body operator of rank k, with
respect to the jj coupled states is

〈(γvjvγwjw)JM |Fk(1)|(γxjxγyjy)J
′M ′〉 = δ(γw, γy)δ(jw, jy)

(−1)J−M(−1)jv+jy+J ′+k[J, J ′]1/2

(
J k J ′

−M 0 M

){
jv jx k
J ′ J jw

}
×〈γvjv||fk||γxjx〉. (2.56)

This is a very general expression and applicable to one-body operator of any
rank k. In the present calculations, however, one-body effective operator is
scalar ( k = 0). Using Eqs. (2.55) and (2.56) the matrix elements of the
effective Hamiltonian can be evaluated in the jj coupled states.

2.5 E1PNC from MBPT

In this section we derive the expression for E1PNC transition amplitude using
first-order many-body perturbation theory, for one- and two-valence atomic
systems. The results obtained from the calculations are discussed in the second
last chapter of the thesis.

2.5.1 The one-valence atoms

In the presence of the PNC interaction, the total Hamiltonian of an atom is the
sum of the Dirac-Coulomb Hamiltonian and the PNC interaction Hamiltonian.
The eigen value equation is modified to

(HDC + λHPNC)|Ψ̃i〉 = (Ei + λE1)|Ψ̃i〉, (2.57)
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where |Ψ̃i〉, is a mixed parity eigen state. It is defined as

|Ψ̃i〉 = |Ψi〉+ λ|Ψ1

i 〉, (2.58)

where |Ψ1

i 〉 is the first-order correction to |Ψi〉. It arises from the HPNC induced
mixing from opposite parity state.

In MBPT, the wave functions |Ψv〉 and |Ψ̄1
v〉 are evaluated using the ex-

pressions
|Ψv〉 ≈ (1 + Ω(1))|Φv〉, and |Ψ̄1

v〉 = Ω
(1)
PNC|Ψ̄v〉. (2.59)

To avoid the complexity of the equations restrict to the first-order correction
only. It is, however, possible to extend the method up to second-order without
much difficulty. But going beyond the second order requires a very systematic
approach and huge computational resources. The wave operator Ω, as describe
in the previous sections, incorporates the correlation effects. And the wave
operator ΩPNC incorporates the effects of PNC interaction. Using (2.59), the
PNC induced electric dipole transition amplitude is

E1PNC = 〈Φw||
(
1 + Ω(1) + λΩ

(1)
PNC

)†
D
(
1 + Ω(1) + λΩ

(1)
PNC

)
||Φv〉. (2.60)

Retaining only the terms which are first order in the perturbation parameter
λ

E1PNC = 〈Φw||
(
1 + Ω(1)

)†
DΩ

(1)
PNC + Ω

(1)
PNC

†
D
(
1 + Ω(1)

)
||Φv〉,

= 〈Φw||DΩ
(1)
PNC + Ω

(1)
PNC

†
D + Ω(1)†DΩ

(1)
PNC + Ω

(1)
PNC

†
DΩ(1)||Φv〉.(2.61)

This is the expression for one-valence systems and can be extended to the
two-valence systems. The corresponding diagrams of the first and third terms
in Eq. (2.61) are are shown in the Fig. 2.7. The diagrams arising from the
second and fourth terms are obtained by taking the Hermitian conjugate of
those from first and third terms, respectively.

2.5.2 The two-valence atoms

The PNC perturbed atomic state function using first-order MBPT, for two-
valence atoms is

|Ψ̃i〉 =
(
1 + Ω(1) + λΩ

(1)
PNC

)∑
k

cik|Φk〉, (2.62)

where Ω(1) and Ω
(1)
PNC, as mentioned in the previous section, are the wave

operators corresponding to the residual Coulomb and the PNC interactions
respectively. cik is the expansion coefficient, when a two-valence exact wave
function is expanded in terms of the configuration state functions contributing
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Figure 2.7: Diagrams which contribute to the first (diagrams (m) and (n))
and third (remaining diagrams) terms of the Eq. (2.61). The dashed line
represents the residual perturbation and the solid line ended with the circle
is to represent the dipole operator. The solid line having square at the end
represents the PNC operator.

to the model space. And |Φk〉 is the two-valence configuration included in
the model space. Using Eq. (2.62) and following the similar steps as the
one-valence case, we get

E1PNC =
∑
j,k

cfj
∗
cik〈Φj||DΩ

(1)
PNC + Ω

(1)
PNC

†
D + Ω(1)†DΩ

(1)
PNC + Ω

(1)
PNC

†
DΩ(1)||Φk〉.(2.63)

This is the first-order MBPT expression of E1PNC for two-valence atoms. As
evident, it requires an additional task of calculating the coefficients cfj

∗
and cik.

The diagrammatic evaluation of the Eq. (2.63) consist of the diagrams
which have two pairs of free lines as the valence. The terms first and second
contribute through one spectator valence line. The contributing diagrams to
the terms fist and third are shown in the Fig. 2.8. The diagrams which
contribute to second and fourth terms are not given, as the terms second and
fourth are the Hermitian conjugate of first and third respectively. These are
however included in the actual calculations.
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Figure 2.8: Diagrams which contribute to the first (diagrams (a) and (b))
and third (diagrams from (c) to (l)) terms of the Eq. (2.63). The Hermitian
conjugate diagrams are not shown.

2.6 Summary of the results

2.6.1 Basis functions

The first step and perhaps the most important in precision atomic calculations
is the generation of good quality orbitals. The results described and discussed
are from computations with Gaussian type orbitals (GTOs), optimized to re-
produce the numerical single particle energies and self consistent field (SCF)
energy. The GTOs are even tempered, which unlike the universal basis, the
exponent parameters α0 and β are different for each symmetries. This provides
more flexibility to obtained a good quality basis. The numerical results are
obtained using the multi-configuration Dirac-Fock code GRASP92 [54]. The
exponent parameters of the inert gas atoms and alkaline-Earth ions are listed
in Tables. 2.1 and 2.2, respectively. To start with we use the parameters of
Tatewaki and collaborators [55] and then optimize further.

2.6.2 Correlation energy of closed-shell atoms

The ground state SCF energy ( E
(0)
DC ), the second order correlation energy (

E
(2)
corr ), and the total energy (E) of the inert gas atoms are listed in Table.

2.3. For comparison, the results from previous calculations are also listed in
the table. The results from Ishikawa and collaborators [56], the only previous
work which incorporate relativistic effects, is chosen for a detailed comparison
with the results from the present studies. The SCF energy from the present
work, for all the atoms, are slightly lower than the results in Ishikawa’s et al
[56]. And as noticeable in Table. 2.3, the correlation energies from the present
work are, except for Xe, slightly higher. Consequently, the total energy (E)
are in good agreement with the values of Ishikawa et al.
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Table 2.1: Basis set of the parameters, α0 and β, used in the correlation energy
calculations for inert gas atoms.

Atom Symmetry α0 β Basis function
20Ne s 0.0925 1.4500 38

p 0.1951 2.7103 35
d 0.0070 2.7000 25

40Ar s 0.0985 1.8900 38
p 0.0072 2.9650 35
d 0.0070 2.7000 28

84Kr s 0.0002 2.0220 30
p 0.0072 2.3650 28
d 0.0070 2.5500 25

132Xe s 0.0001 2.0220 32
p 0.0072 2.3650 28
d 0.0070 2.5500 25

To investigate the electron correlation effects in more detail, E
(2)
corr is cal-

culated with systematic inclusion of higher symmetry orbitals–higher orbital
angular momentum l–in a sequence. The cumulative contributions from vari-
ous symmetries to E

(2)
corr are presented in the Table. 2.4. The value of Ne ground

state correlation energy −0.3811, computed with orbitals up to i symmetry is
in very good agreement with the value −0.3836 from a similar calculations of
Lindgren and collaborators [57]. The difference between the two results is at
the millihartree level. In this analysis, it is observed that contributions from
the higher l orbitals to E

(2)
corr is negligible for lighter atoms. For heavier atoms,

however, a systematic inclusion of higher l orbitals can improve the results.
The contribution from k (l = 9) symmetry to E

(2)
corr of Ne is −0.0007 and in

percentage it is 0.20%. It is however, 0.24%, 0.45% and 0.59% for Ar, Kr and
Xe, respectively. The Fig. 2.9 shows the variation of change in E

(2)
corr when

the orbitals from higher symmetries are included in the virtual space. It is
evident that, the pattern of the largest contribution are from the p, d, d and f
symmetries for Ne, Ar, Kr and Xe, respectively. On further examination, the
most dominant contributions are from the core-core combinations of 2p3/22p3/2,
3p3/23p3/2, 3d5/23d5/2 and 4d5/24d5/2 for Ne, Ar, Kr and Xe respectively. The
variation of cumulative correlation energy with the orbitals is shown in the
Fig. 2.10.
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Table 2.2: Basis set parameters, α0 and β, used in the excitation energy cal-
culations for alkaline Earth ions.

Ion Symmetry α0 β Basis function
25Mg+ s 0.0083 2.8900 28

p 0.0072 2.9650 25
d 0.0070 2.7200 22

43Ca+ s 0.0063 2.8800 29
p 0.0072 2.9650 26
d 0.0070 2.7000 24

87Sr+ s 0.0083 2.9800 30
p 0.0072 2.9650 27
d 0.0070 2.8000 25

137Ba+ s 0.0063 2.9800 31
p 0.0072 2.9590 28
d 0.0070 2.4500 26

2.6.3 Excitation energy of one-valence atoms

To examine the MBPT for one-valence systems, the attachment energies of
S1/2 (ground state), and first excited P1/2, P3/2, D3/2 and D5/2 states of Mg+,
Ca+, Sr+, and Ba+ ions are calculated from Eq. (4.35). From these using
Eq. (2.46), the excitation energies are also evaluated. The results from these
calculations are listed in the Table. 2.5. Like in previous case–closed-shell cor-
relation energy–results from the previous theoretical works and experimental
are listed for comparison. Among the previous works, Guet and collaborators
[65] employed the same many-body method as ours but used a different basis,
namely B-spline functions. For most of the states the differences between the
current results, and Guet and collaborators [65] is at the millihartree level.
More importantly, the difference is random in nature. The deviations may be
attributed to the nature of the basis functions used in the two calculations. As
evident from Table. 2.5, in the case of Mg+ the excitation energies of states
3d 2D3/2,5/2 are higher than that of 3p 2P1/2,3/2 states. The sequence is, how-
ever, reversed for other ions. This is consistent with the theoretical [65] results
and experiment data.

Deviations from the experimental data gradually increases from Mg+ to
Ba+. The excitation energies of the P1/2, P3/2, D3/2 and D5/2 states of Mg+

differ form the experiment by 0.11%, 0.10%, 0.21% and 0.21% respectively. In
the case of Ba+, these are however 4.12%, 4.13%, 9.91% and 6.23% for P1/2,
P3/2, D3/2 and D5/2 states, respectively. Another important observation is,
except for Sr+, large is deviation is observed in the D3/2 and D5/2 excitation
energies for all the ions. However for Sr+ the excitation energies of P1/2 and
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Table 2.3: The SCF E
(0)
DC , the second-order correlation E

(2)
corr, and the total

energies E of Ne, Ar, Kr and Xe atomic systems. All the values listed are in
atomic units. For comparison results from other calculations are also listed.

Atom This work Other work

E
(0)
DC E

(2)
corr E E

(0)
DC E

(2)
corr

20Ne −128.6932 −0.3830 −129.0762 −128.6919 −0.3834a

−0.3836b

−0.3822c

−0.3697d

−0.3804e

40Ar −528.6882 −0.6938 −529.3820 −528.6838 −0.6981a

−0.6822e

−0.685f

−0.790g

84Kr −2788.8659 −1.8426 −2790.7085 −2788.8615 −1.8468a

132Xe −7446.8887 −2.9767 −7449.8654 −7446.8880 −2.9587a

aReference[56]. bReference[57]. cReference[59].
dReference[60]. eReference[61]. fReference[62].
gReference[58].

Table 2.4: Cumulative second-order correlation energy, calculated using
MBPT, when orbitals up to k symmetry are included in the virtual space.
All values are in atomic units.

Symmetry Ne Ar Kr Xe
s −0.0194 −0.0210 −0.0236 −0.0247
p −0.1920 −0.2043 −0.2479 −0.2687
d −0.3216 −0.5401 −0.9512 −1.0419
f −0.3589 −0.6330 −1.5213 −2.2972
g −0.3732 −0.6695 −1.7077 −2.6879
h −0.3786 −0.6830 −1.7843 −2.8520
i −0.3811 −0.6891 −1.8179 −2.9238
j −0.3823 −0.6921 −1.8343 −2.9591
k −0.3830 −0.6938 −1.8426 −2.9767
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Table 2.5: Ionization potential and excitation energies calculated using MBPT.
For comparison other results and experimental values are also listed. All values
are in atomic units.

Ion state This work Other works Exp.Ref[63].
IP EE IP EE EE

25Mg+ 3s1/2 −0.55156 0.0 −0.55252 0.0 0.0
3d3/2 −0.22652 0.32504 −0.22677 0.32575a 0.32573
3d5/2 −0.22652 0.32504 −0.22677 0.32575a 0.32574
3p1/2 −0.38922 0.16234 −0.39003 0.16249a 0.16252
3p3/2 −0.38878 0.16278 −0.38961 0.16291a 0.16294

43Ca+ 4s1/2 −0.43784 0.0 −0.43836 0.0 0.0
3d3/2 −0.37797 0.05987 −0.37768 0.06068b 0.06220
3d5/2 −0.37762 0.06022 −0.37731 0.06205b 0.06247
4p1/2 −0.32180 0.11604 −0.32217 0.11619b 0.11478
4p3/2 −0.32075 0.11709 −0.32111 0.11725b 0.11580

87Sr+ 5s1/2 −0.40788 0.0 −0.40839 0.0 0.0
4d3/2 −0.34236 0.06552 −0.34279 0.06560b 0.06632
4d5/2 −0.34091 0.06697 −0.34132 0.06707b 0.06760
5p1/2 −0.29793 0.10995 −0.29838 0.11001b 0.10805
5p3/2 −0.29421 0.11367 −0.29463 0.11376b 0.11171

137Ba+ 6s1/2 −0.37297 0.0 −0.37308 0.0 0.0
5d3/2 −0.35296 0.02001 −0.35172 0.02136b 0.02221
5d5/2 −0.34872 0.02425 −0.34748 0.02560b 0.02586
6p1/2 −0.27685 0.09612 −0.27532 0.09776b 0.09232
6p3/2 −0.26882 0.10415 −0.26946 0.10362b 0.10002

a Reference[64]. b Reference[65].
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Figure 2.9: Diagram showing the change in the second-order correlation energy
with the various symmetries.
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Figure 2.10: Diagram showing the cumulative second-order correlation energy
when orbitals from higher symmetries are included.

P3/2 are larger and it is not the D3/2 and D5/2 states as in other ions.

2.6.4 Excitation energy for two-valence atoms

In this section we examine the two-electron removal and the excitation energies
calculated using MBPT for two-valence atoms. For this, we choose Mg, Ca,
Sr, Ba, and Yb atomic systems. Except Ca and Sr, all the other atoms have
different energy level sequence, and therefore would be a good test for the
reliability of the method. In all the cases we calculate the ground state and
eight exited states. In these calculations we have used V n− 2 single-electron
orbitals.

In Table. 2.6 we present the excitation energies for atomic Mg. The fine
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Table 2.6: Two-electron removal and excitation energies for ground and some
of the low lying excited states of Mg and Ca, calculated using MBPT. All
values are in atomic units.

State Ours Exp.Ref[63].
Evw EE EE

26Mg; [Ne]3s2

3s2 1S0 −0.80564 0.0 0.0
3s3p 3P0 −0.71417 0.09147 0.09956
3s3p 3P1 −0.71422 0.09142 0.09965
3s3p 3P2 −0.71433 0.09131 0.09983
3s3p 1P1 −0.62485 0.18079 0.15971
3s3d 1D2 −0.59869 0.20695 0.21143
3s3d 3D2 −0.57183 0.23381 0.21851
3s3d 3D3 −0.57183 0.23381 0.21851
3s3d 3D1 −0.57183 0.23381 0.21851

40Ca; [Ar]4s2

4s2 1S0 −0.63336 0.0 0.0
4s4p 3P0 −0.56980 0.06356 0.06906
4s4p 3P1 −0.56995 0.06341 0.06930
4s4p 3P2 −0.57026 0.06310 0.06978
4s3d 3D1 −0.51987 0.11349 0.09265
4s3d 3D2 −0.52000 0.11336 0.09272
4s3d 3D3 −0.52016 0.11320 0.09282
4s3d 1D2 −0.51314 0.12022 0.09955
4s4p 1P1 −0.51722 0.11614 0.10777
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structure splitting of the configuration 3s3d is found to be consistent with the
experimental data. This is however not correct for the configuration 3s3p.
3P2 appears first then 3P1 followed by 3P0. The two-electron removal energy
of our result is about 3.3% smaller than the experiment. The discrepancy in
excitation energy is observed to be larger than the case of Mg+. The error
in the 3PJ states is approximately about 8.5%. This is however significantly
large, about 13.2%, in the case of 1P1. Unlike 1P1, the state 1D2 is closer to
the experiment. The deviations are about 2.1% and 7.0% respectively for the
states 1D2 and 3DJ .

The ground state energy of Ca, like the Mg, is smaller than the experiment.
The difference is 4.2%, slightly larger than the Mg. Fine structure splittings
for both the configurations, 4s4p and 3d4s, are different than the experiment.
Like Mg, 3P2 appears first then 3P1 followed by 3P0. The same sequence is
observed for 3DJ states also. As its evident from Table. 2.6, the excitation
energies of 3PJ states are lower than the experimental results. It is however
higher in the case of 1P1. The deviations for the states 3P0,

3P1,
3P2 and 1P1

are 8.0%, 8.4%, 9.6% and 7.8% respectively. In contrary to the 3PJ states, the
excitation energies for 3DJ and 1D2 are greater than the experimental values.
In this case discrepancy is even larger, about 22% and 20.8% respectively for
3DJ and 1D2, in comparison to the triplet and singlet P .

As we see in the Table. 2.7, the atomic Sr follow the same energy levels se-
quence as Ca. We find, for this atom our computed sequence of the states is in
agreement with the experiment. Like Mg and Ca, the two-electron excitation
energy, −0.58512, of our results is smaller, by 4.8%, than that of the experi-
ment. The excitation energies for all the states follow the same pattern as in
the case of Ca. These are lowered by 0.5%, 10.9% and 11.9% respectively for
3P0,

3P1 and 3P2 states, than the experimental values. The excitation energies
are however higher for the states 1P1,

3DJ , and 1D2. The differences are 28%,
≈14% and 13.4% respectively.

The atomic Ba shows different energy level structure than the atomic Mg,
Ca and Sr. Unlike the Mg, Ca and Sr, the states of the configuration 5d6s
appear lower to that of the 6s6p. The results from our calculations are listed
in the Table. 2.7. Our calculated energy levels sequence differ than the ex-
periment. Like the other atoms, the ground state energy is lower than the
experiment. The discrepancy is slightly larger, it is about 5%, than the Mg,
Ca, and Sr. The excitation energies for the triplet and singlet D are greater
than the experiment. These are however smaller for the triplet and singlet
P . Errors with respect to the experimental results have further increased in
comparison to Mg, Ca, and Sr. These are 24.6%, 23.3%, 20.3% and 22.2%
respectively for the states 3D1,

3D2,
3D3 and 1D2. The less deviations, 10.5%,

10.8%, 12% and 0.2% respectively, are observed for 3P0,
3P1,

3P2 and 1P1

states.
The parameters α0 and β used to optimize the basis for Yb are given in
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Table 2.7: Two-electron removal and excitation energies for ground and some
of the low lying excited states of Sr and Ba, calculated using MBPT. All values
are in atomic units.

State Ours Exp.Ref[63].
Evw EE EE

87Sr; [Kr]5s2

5s2 1S0 −0.58512 0.0 0.0
5s5p 3P0 −0.52673 0.05839 0.06524
5s5p 3P1 −0.52627 0.05885 0.06609
5s5p 3P2 −0.52534 0.05978 0.06788
5s4d 3D1 −0.49050 0.09462 0.08274
5s4d 3D2 −0.49046 0.09466 0.08301
5s4d 3D3 −0.49038 0.09474 0.08347
5s4d 1D2 −0.48105 0.10407 0.09181
5s4d 1P1 −0.48347 0.10165 0.09887

137Ba; [Xe]6s2

6s2 1S0 −0.53110 0.0 0.0
6s5d 3D1 −0.47983 0.05127 0.04116
6s5d 3D2 −0.47934 0.05176 0.04199
6s5d 3D3 −0.47847 0.05263 0.04375
6s5d 1D2 −0.46768 0.06342 0.05192
6s6p 3P0 −0.48108 0.05002 0.05589
6s6p 3P1 −0.47976 0.05134 0.05758
6s6p 3P2 −0.47691 0.05419 0.06158
6s6p 1P1 −0.44901 0.08209 0.08229

Table 2.8: Basis set parameters, α0 and β, used in the excitation energy cal-
culations for atomic Yb.

Symmetry α0 β Basis function
s 0.0077 2.8400 36
p 0.0075 2.8420 33
d 0.0072 2.670 31
f 0.0071 2.701 29
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Table 2.9: Two-electron removal and the excitation energies for states of Yb
calculated using MBPT. All values are in atomic units.

State Ours Exp.Ref[63].
Evw EE EE

173Yb; [Xe]4f 146s2

6s2 1S0 −0.63659 0.0 0.0
6s6p 3P0 −0.56743 0.06916 0.07877
6s6p 3P1 −0.56454 0.07205 0.08198
6s6p 3P2 −0.55814 0.07845 0.08981
6s5d 3D1 −0.51488 0.12171 0.11158
6s5d 3D2 −0.51394 0.12265 0.11278
6s6p 1P1 −0.51671 0.11988 0.11422
6s5d 3D3 −0.51216 0.12443 0.11514
6s5d 1D2 −0.50034 0.13625 0.12611

the Table. 2.8. The excitation energies are presented in the Table. 2.9. As its
apparent from the Table. 2.9, energy levels of this atom show even complicated
pattern than the previously described atoms. It is 1P1, lies between 3D2 and
3D3, which differentiate from Ca and Sr atoms. In the present theoretical
study, 1P1 is situated above the 3P2. Like Ca, Sr, and Ba, the excitation
energy of triplet P is less, and same for the triplet D is greater, than the
experimental results. The largest discrepancy is observed in 3PJ state, and it
is approximately 12.5%. This is less than 13.2% for 1P1 in Mg, 22% for 3DJ in
Ca, 28% for 1P1 in Sr, and 24% for 3D1 in Ba, implying different nature of the
electron correlation in Yb. This is ascribed to the fact that unlike the other
atoms considered, Yb has 4f electrons.

The large discrepancy in the excitation energy, in all the atoms, is at-
tributed partly to the nature of the method, as electron correlation is consid-
ered only up to the second-order perturbation, and partly to the nature of the
potential we choose.
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Perturbed configuration
interaction

For quantum systems the wave function and energy are the basic ingredients
to describe it’s properties. These are obtained, in general, by solving the
Schroedinger equation and in the case of atoms it is

Ha|Ψ〉 = E|Ψ〉, (3.1)

where Ha is the atomic Hamiltonian, E and |Ψ〉 are the energy and the
wave function respectively. Solving the above equation for many-electron
atoms/ions, is however, not possible due to the electron-electron interaction.
With Hartree-Fock theory [47], the solution is separated into mean field and
perturbative parts. It is an ideal starting point to calculate approximate single-
electron wave functions and the energies. However, it does not take into ac-
count for the electron-electron repulsion term.

Configuration Interaction [50, 66], best suited for small systems [67], is a
post Dirac-Fock theory. It diagonalizes the Hamiltonian matrix in a many
particle basis to account for the electron correlation effects in the atoms/ions.
Properties calculations, especially in case E1PNC calculation, using CI wave
functions requires diagonalization of two sets of matrices: one each in the two
opposite parity subspaces. This is computationally expensive both in memory
and operations. The is problem is partly mitigated in the Perturbed CI theory.
In this theory, there is only one diagonalization and the second diagonalization
is recast as solving a set of linear algebraic equations.

This chapter is organized as follows: Section. I describes the CI method,
and PCI is discussed in Section. II of the chapter. Application to the atomic
Yb is described in Section. III. And results hence obtained are presented in
the last section of the chapter.
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3.1 Configuration interaction

The Configuration interaction (CI) is a variational based method and widely
used in atomic and molecular physics calculations. The exact wave function
in CI theory [50, 66] is defined as

|Ψ〉 = c0|Φ0〉+
∑
ap

cpa|Φp
a〉+

1

(2!)2

∑
abpq

cpq
ab|Φ

pq
ab〉+

1

(2!)2

∑
abcpqr

cpqr
abc |Φ

pqr
abc〉+ · · · (3.2)

where, indices a, b, c, · · · (p, q, r, · · · ) represent the occupied (virtual) orbitals.
In terms of CSFs, |Φ0〉 is the dominant or the reference state of |Ψ〉, |Φp

a〉
is a singly excited CSF, where an electron from occupied orbital a is excited
to the virtual orbital p. Similarly, |Φpq

ab〉 is a doubly excited CSF and so on
till all the electrons in the occupied shells are excited to virtual shells. The
multiplying factors 1/(n!)2 ensures no double counting occurs and c······ are the
mixing coefficients. The mixing coefficients are such that the wave function is
normalized

〈Ψ|Ψ〉 =
∑
ij

cicj〈Φ|Φ〉 =
∑

i

c2i = 1, (3.3)

for convenience of notation c······ are shortened to ci. To calculate ci define the
energy functional

E = 〈Ψ|H|Ψ〉 − λ(〈Φ|H|Φ〉 − 1) =
∑
ij

cicj〈Φi|H|Φj〉 − λ(〈Φ|H|Φ〉 − 1). (3.4)

Here λ is a Langrange undetermined multiplier to incorporate the normal-
ization condition as a constraint. The mixing coefficients are solution of the
variational minimization

δE = 0, (3.5)

with ci as parameters of variation. This leads to an eigenvalue equation and
for a CI calculation with n CSFs, the eigenvalue equation is∑

j

Hijcj = λci, i = 0, 2, · · · , n− 1. (3.6)

In matrix notation
Hc = Ec. (3.7)

This is the standard eigen value equation. And in actual implementation, CI
calculation amounts to diagonalization of the Hamiltonian matrix. The lowest
eigen value is an upper bound to the ground state energy. And in the same
way, higher eigen values are upper bound to the excited states of the atom.
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3.1.1 Single-double CI

The CI method, in principle, provides an exact solution of the many-electron
Schroedinger equation. However, in practice, it is computationally impossible
to implement for atoms or ions with a large number of electrons as the number
of CSFs increases exponentially with the number of electrons. This follows
from the MCN scaling of arranging N electrons in M orbitals, where in general
M � N . Even for small atom or molecules with moderate size basis sets, the
full CI matrix can be as large as 109 × 109. One simple way to reduce the
size of the matrix is truncate the full CI expansion in Eq. (3.2). A reasonable
truncation, which captures correlation effects quite accurately, is the single-
double approximation. Where CSFs up to double excitation are retained, the
CI wave function is then

|Ψ〉 = c0|Φ0〉+
∑
ap

cpa|Φp
a〉+

1

(2!)2

∑
abpq

cpq
ab|Φ

pq
ab〉. (3.8)

The contribution from the singly excited states to the correlation energy is
negligibly small compared to the double excitation. However, these can can
be included in the CI expansion without complicating the expression as singles
are much less in number than the doubles. The Hamiltonian matrix is then 〈Φ0|H|Φ0〉 0 〈Φ0|H|Φpq

ab〉
0 〈Φp

a|H|Φp
a〉 〈Φp

a|H|Φ
pq
ab〉

〈Φpq
ab|H|Φ0〉 〈Φpq

ab|H|Φp
a〉 〈Φ

pq
ab|H|Φ

pq
ab〉

 . (3.9)

This is the CI matrix within the single-double approximation and c0, c
p
a, and cpq

ab

are obtained by diagonalizing it. From the above matrix elements we can make
two important observations. First, 〈Φ0|H|φp

a〉 = 0 this implies that the single
excitations do not coupled with the reference state. Which is a consequence
of the Brillouin’s theorem. And second, doubly excited states mixes with the
reference state and accounts for the correlations effects.

3.1.2 E1PNC matrix element using CI

D = qr, (3.10)

where q is the electric charge and r is the position vector of the particle
considered. Since in our case the charge particle is an electron, the above
equation can further be written as

D = −er, (3.11)

where e is the electric charge of the electron and in atomic unit it is equal to
one.
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In the presence of parity violating interaction Hamiltonian HPNC, which
arise from the weak interactions or other interactions which are beyond the
standard model of particle physics, the atomic Hamiltonian is then modified
to

Ha = HDC + λHPNC,

=
N∑

i=1

[
cαi · pi + (β − 1)c2 − Z

ri

]
+
∑
i<j

1

rij

+ λHPNC. (3.12)

Here, λ is the perturbation parameter. The atomic Hamiltonian satisfy the
eigenvalue equation

(HDC + λHPNC)|Ψ̃i〉 = (Ei + λE1)|Ψ̃i〉, (3.13)

where |Ψ̃i〉, is a mixed parity eigen state. It is defined as

|Ψ̃i〉 = |Ψi〉+ λ|Ψ1

i 〉, (3.14)

where |Ψ1

i 〉 is the first-order correction to |Ψi〉. It arises from the HPNC induced
mixing from opposite parity state. Due to the parity mixing, two states of same
parity |Ψi〉 and |Ψf〉 acquires a finite dipole transition amplitude

E1PNC = 〈Ψ̃f |D|Ψ̃i〉 =
[
〈Ψf |+ λ〈Ψ1

f |
]
D
[
|Ψi〉+ λ|Ψ1

i 〉
]
. (3.15)

Considering that 〈Ψf |D|Ψi〉 = 0, and λ is a small parameter, we can retain
only those terms which are linear in λ. Dropping the perturbation parameter

E1PNC = 〈Ψf |D|Ψ
1

i 〉+ 〈Ψ
1

f |D|Ψi〉. (3.16)

Using time independent perturbation theory, the first-order correction to wave
function is

|Ψ1

i 〉 =
∑

I

〈ΨI |HPNC|Ψi〉
Ei − EI

|ΨI〉. (3.17)

|ΨI〉 is an intermediate exact atomic eigen state obtained from diagonalizing
the CI matrix in the opposite parity space. Using this expression, Eq. (7.3)
assumes the form

E1PNC =
∑

I

[
〈Ψf |D|ΨI〉〈ΨI |HPNC|Ψi〉

Ei − EI

+
〈Ψf |HPNC|ΨI〉〈ΨI |D|Ψi〉

Ef − EI

]
.

(3.18)
Putting the expression of ASFs, Eq. (2.19), as linear combination of CSFs, we
can further write

E1PNC =
∑

I

∑
kjlm

a∗fk a
I
ja

∗I
l a

i
m

[
〈Φk| ~D|Φj〉〈Φl|HPNC|Φm〉

Ei − EI

+
〈Φk|HPNC|Φj〉〈Φl| ~D|Φm〉

Ef − EI

]
.

(3.19)
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This is the expression of E1PNC derived using the wave functions calculated
in CI theory. As its clear from Eq. (7.4), this approach requires two diag-
onalizations, one each in the two opposite parity CSF subspaces. When the
number of CSFs are large, the diagonalization approach is less desirable in
terms of computational efficiency and memory requirement. In the next sec-
tion we show that the problem of occurrence diagonalization of the CI matrix
in two opposite parity subspaces can be mitigated using Perturbed configura-
tion interaction method.

3.2 Perturbed CI equations

The HPNC perturbed eigen state, given in Eq. (2.19), can be written in terms
of CSFs as

|Ψ̃i〉 =
∑

k

ai
k|Φk〉+ λ

∑
j

cij
∑

k

aj
k|Φk〉,

=
∑

k

ai
k|Φk〉+ λ

∑
k

di
k|Φk〉. (3.20)

Here, we have used |Ψi〉 =
∑

k a
i
k|Φk〉 and

∑
j c

i
j

∑
k a

j
k =

∑
k d

i
k, where the

coefficients cij and aj
k are combined with respect to the dummy index j to give

a single coefficients di
k. This coefficient subsumes or combines the effects of

HPNC and Ves. Using Eq. (3.20) in Eq. (3.13), we get

(HDC + λHPNC)(
∑

k

ai
k|Φk〉+ λ

∑
k

di
k|Φk〉) = Ei(

∑
k

ai
k|Φk〉+ λ

∑
k

di
k|Φk〉).

(3.21)
Retaining the terms linear in λ∑

k

di
kH

DC|Φk〉+
∑

k

ai
kHPNC|Φk〉 = Ei

∑
k

di
k|Φk〉. (3.22)

Projecting above equation with 〈Φj|∑
k

di
k〈Φj|HDC|Φk〉+

∑
k

ai
k〈Φj|HPNC|Φk〉 = Ei

∑
k

di
k〈Φj|Φk〉. (3.23)

Considering that the CSFs are orthonormal 〈Φj|Φk〉 = δjk, the above equation
can be written in the form∑

k

di
k

(
HDC

)
j,k

+
∑

k

ai
k (HPNC)j,k = Eid

i
k. (3.24)

This equation is the perturbed CI equation and as evident from the discussions
di

k are the unknown quantity.

43



Chapter 3. Perturbed configuration interaction

3.2.1 Linear equation form of PCI

The PCI equation, Eq. (3.24), can be rearranged and written in the more
convenient form∑

k

[
Eiδjk −

(
HDC

)
j,k

]
di

k =
∑

k

ai
k (HPNC)j,k . (3.25)

This evidently is in the form of matrix equation Ax = B, where di
k are equiv-

alent of the unknown x. And, the elements of the matrices A and B are

Ajk =
[
Eiδjk −

(
HDC

)
j,k

]
, and Bk = ai

k (HPNC)j,k . (3.26)

The linear equations can then be solved with any of the standard methods.
However, as the number of unknowns is in general very large, it is preferable
to use more efficient linear equation solvers like conjugate gradient. In our
implementation of the method, the matrix elements

(
HDC

)
jk

is generated using

GRASP92 [54]. The term (HPNC)j,k in the B matrix are also computed with
GRASP92. This way, the angular factors required in the CSF matrix elements
are conveniently generated with GRASP92.

3.2.2 E1PNC from PCI wavefunctions

Once the coefficient di
k are obtained after solving the PCI equations, we can

use it to compute E1PNC. Using Eq. (3.20) in Eq. (7.3)

E1PNC = 〈Ψf |D|Ψ
1

i 〉+ 〈Ψ
1

f |D|Ψi〉,

=
∑
j,k

[
af

kd
i
j〈Φk|D|Φj〉+ df

j a
i
k〈Φj|D|Φk〉

]
, (3.27)

We implement this method, Eq. (3.27), to calculate the E1PNC transition
amplitude for the atomic system Yb.

3.3 Yb E1PNC

To the PNC experiment point of view, the configurations [Xe]4f 146s2, [Xe]4f 146s6p
and [Xe]4f 145d6s are of great importance. As the allowed electric dipole tran-
sitions are |6s2 1S0〉 −→ |5d6s 3D2〉 and |6s2 1S0〉 −→ |5d6s 3D1〉, through the
intermediate states 3P1 and 1P1.

For |6s2 1S0〉 −→ |5d6s 3D2〉 transition, Ji = 0, Jf = 2 and I = 5/2, Fi =
I = 5/2, and the dominant intermediate states are |6s6p 3P1〉 and |6s6p 1P1〉.
Based on Eq. (3.19), the leading order terms in the HNSD

PNC induced electric
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dipole transition amplitude are

(E1PNC)
3D2
1S0

=

〈6s5d 3D2, Ff ||D||6s6p 3P1, FI〉〈6s6p 3P1, FI ||HNSD
PNC||6s2 1S0, Fi〉

E6s2 1S0
− E6s6p 3P1

+

〈6s5d 3D2Ff ||HNSD
PNC||6s6p 1P1, FI〉〈6s6p 1P1, FI ||D||6s2 1S0, Fi〉

E6s5d 3D2
− E6s6p 1P1

. (3.28)

Where the state |a〉 ≡ |(I, Ja)FaMFa〉, is the hyperfine state and F = I + J ,
as mentioned earlier, is the hyperfine quantum number. One point to be
noted is, the terms with the dipole matrix elements 〈6s5d 3D2|D|6s6p 1P1〉
and 〈6s6p 3P1||D||6s2 1S0〉 are not considered as these are spin changing and
rather weak. For short notation, we have dropped writing the nuclear spin
I = 5/2 and MF quantum numbers. Using Eq. (C.8), for the hyperfine
quantum numbers Ff = 5/2, FI = 5/2 and Fi = 5/2

(E1PNC)
3D2
1S0

=

√
210GFµ

′
w

10
(−1)5

{
5/2 1 5/2
1 5/2 2

}
[
〈2||αρN(r)||1〉〈1||D||0〉
E6s5d 3D2

− E6s6p 3P1

+
〈2||D||1〉〈1||αρN(~r)||0〉
E6s2 1S0

− E6s6p 3P1

]
.(3.29)

Similarly, for |6s2 1S0〉 ←→ |5d6s 3D1〉 transition

(E1PNC)
3D1
1S0

=

√
210GFµ

′
w

10
(−1)5

{
5/2 1 5/2
1 5/2 1

}
[
−〈1||αρN(~r)||1〉〈1||D||0〉

E6s5d 3D1
− E6s6p 3P1

+
〈1||D||1〉〈1||αρN(~r)||0〉
E6s2 1S0

− E6s6p 3P1

]
.(3.30)

These are the expressions of leading order terms of the HNSD
PNC induced dipole

transition amplitude in terms of the CI wave functions. In a similar way,
an expression of the leading order terms in the PCI method can as well be
evaluated.

3.4 Summary of the results

The Table. 3.1 lists the energies of the spin-orbitals, 〈r〉 and 〈r−1〉 , these are
calculated numerically with GRASP92. In the table, the self-consistent field
(SCF) energy is also listed as well.

For atomic Yb a systematic study of electron correlation effect is done
with Multi-configuration Dirac-Fock (MCDF) and the Configuration interac-
tion (CI) theories. The Table 3.2 lists the the excitation energies in sequence
for some of the low-lying states. The first calculation is with the configuration
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Table 3.1: Energies of the core- and valence-orbitals for the atomic Yb++,
calculated using Dirac-Fock theory. All values listed are in atomic units.

Spin-orbital Energy 〈r−1〉 〈r〉

Self-consistent field energy −14067.6716
1s1/2 2268.1763 80.5793 0.0196
2s1/2 389.4170 19.5344 0.0825
3s1/2 90.2277 7.1755 0.2146
4s1/2 19.1507 2.9864 0.4806
5s1/2 3.0121 1.0091 1.2443
6s1/2 0.4136 0.3257 3.7785
2p1/2 370.5739 19.4585 0.0685
3p1/2 81.9379 7.0673 0.02044
4p1/2 15.7493 2.8550 0.4892
5p1/2 2.0080 0.8826 1.3928
6p1/2 0.3011 0.2549 4.7184
2p3/2 332.0058 16.7235 0.0760
3p3/2 73.6093 6.3731 0.02180
4p3/2 13.8380 2.6292 0.05191
5p3/2 1.7809 0.8042 1.5026
6p3/2 0.2883 0.2421 4.9557
3d3/2 59.6919 6.2820 0.1912
4d3/2 8.3275 2.3417 0.5580
5d3/2 0.3031 0.4127 3.1958
3d5/2 57.8888 6.1138 0.1953
4d5/2 7.9737 2.2820 0.5696
5d5/2 0.3009 0.4025 3.2552
4f5/2 1.0646 1.7768 0.7416
4f7/2 1.0061 1.7439 0.7594

46



Chapter 3. Perturbed configuration interaction

Table 3.2: Configuration interaction calculation of the excitation energies for
some of the low-lying levels in atomic Yb. Values listed are in atomic unit.

Configuration No. of CSF Energy Excitation Exp. result
level energy

4f 146s2 + 4f 146s6p 9 1S0 0.0 0.0
+4f 145d6s 3P0 0.04518 0.07877

3P1 0.04916 0.08198
3P2 0.05669 0.08981
3D1 0.09586 0.11158
3D2 0.09607 0.11278
1P1 0.12046 0.11422
3D3 0.09638 0.11514
1D2 − 0.12611

previous + 38 1S0 0.0 0.0
4f 146p2 + 4f 145d2 3P0 0.06410 0.07877

+4f 136s25d 3P1 0.06745 0.08198
3P2 0.07422 0.08981
3D1 0.11570 0.11158
3D2 0.11590 0.11278
1P1 0.14643 0.11422
3D3 0.11622 0.11514
1D2 0.12122 0.12611

previous + 47 1S0 0.0 0.0
4f 146p2 + 4f 145d2 3P0 0.06398 0.07877

+4f 136s26p+ 4f 136s25d 3P1 0.06734 0.08198
3P2 0.07410 0.08981
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Configuration No. of CSF Energy Excitation Exp. result
level energy

3D1 0.11538 0.11158
3D2 0.11574 0.11278
1P1 0.14602 0.11422
3D3 0.11631 0.11514
1D2 0.12124 0.12611

previous +4f 145d6p 61 1S0 0.0 0.0
3P0 0.06101 0.07877
3P1 0.06412 0.08198
3P2 0.07108 0.08981
3D1 0.11670 0.11158
3D2 0.11689 0.11278
1P1 0.11426 0.11422
3D3 0.11723 0.11514
1D2 0.12155 0.12611

previous +4f 136s6p5d 163 1S0 0.0 0.0
3P0 0.06117 0.07877
3P1 0.06428 0.08198
3P2 0.07133 0.08981
3D1 0.11611 0.11158
3D2 0.11631 0.11278
1P1 0.11281 0.11422
3D3 0.11664 0.11514
1D2 0.12179 0.12611
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4f 146s2 + 4f 146s6p+ 4f 145d6s. There can be at the most 9 CSFs constructed
form this and all of these are optimized. However, as evident from the ta-
ble, the energy level sequence is inconsistent with the experimental data. The
state 1P1 appears above the all other states. However it should lies between
the states 3D2 and 3D3. In addition, the excitation energies deviate from the
experimental data by ≈ 36-42%, ≈ 14-16% and ≈ 6% for 3P , 3D and 1P
respectively.

In the next step of the calculation, the configurations 4f 146p2 + 4f 145d2 +
4f 136s25d added to the previous one. In this case there is no change in the
energy level sequence. However there is significant change in the excitation
energies. The discrepancies are now ≈ 17-19% ≈ 1-4% , ≈ 28% and ≈ 4% for
3P , 3D, 1P and 1D respectively. In the third step, the odd-parity configuration
4f 136s26p added. However, the changes in the energy occur at the fourth place
of the decimal.

In the next step of the calculation, the odd-parity configuration 4f 145d6p
is added to the previous one. This is a configuration which mixes very strongly
with the 4f 146s6p, and as result there is significant change in the energy level
sequence. As noticeable from the Table, the state 1P1 is shifted below 3D1.
This points to strong mixing between the the two odd-parity configurations.
The excitation energy of the 3P and 3D states deteriorate, however there is
excellent improvement in the case of 1P1. The corresponding discrepancies are
≈ 20-23%, ≈ 2-6%, ≈ 0.04% and ≈ 4% in 3P , 3D, 1P and 1D respectively.
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Chapter 4

Coupled-cluster theory of
closed-shell and one-valence
atoms

The coupled-cluster theory [47] is one of the best many-body methods to incor-
porate electron correlation effects in atomic calculations. It was first developed
in nuclear many body physics [68, 69] and in recent times has been used with
great success in nuclear [70], atomic [71, 72], molecular [73] and condensed mat-
ter [74] calculations. In the literature several authors refer to coupled-cluster
as all-order method. A description of the all-order method and applications
are given in Ref [75]. A recent review [66] provides an excellent overview of
recent developments and different variations.

CCT is a non-perturbative many-body theory which account for the corre-
lation effects in terms of cluster operators, which transforms a reference state
to state of different excitations. The cluster operators are solutions of equa-
tions consisting of only connected terms and generates the linked wave function
through an exponential operator. In the context of diagrammatic analysis of
many-body perturbation theory, coupled-cluster theory is equivalent to a se-
lective evaluation of the connected diagrams to all orders. Then casting the
disconnected but linked diagrams as products of connected diagrams.

The Figs. 4.1 and 4.2 show a schematic representation of the single and
double excitation cluster operators. It is possible to obtain triple and quadru-
ple excitations as product of these operators. In other words, even when the
cluster operator is restricted to singles and doubles it is possible to incorporate
electron correlation from triple and quadrupole excitations. This is because of
the exponential nature of the wave operator in CCT.

This chapter is organized as follows. In Sec. II the closed-shell CCT
theory is described. Properties calculations of the closed-shell systems is also
given. The CCT and the working equations of open-shell one-valence systems
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OCCUPIED STATES

EXCITED STATES

All-order single excitation

Figure 4.1: Diagrammatic representation of the all-order single excitations
from occupieds to the virtuals.

OCCUPIED STATES

EXCITED STATES

All-order double excitation

Figure 4.2: Diagrammatic representation of the all-order double excitations
from occupieds to the virtuals.

is elaborated in Sec. III. Like in closed-shell case, this section also describes the
properties calculations for one-valence systems. Sec. IV gives a description of
CCT of two-valence system and provides the details of properties calculations.

4.1 Closed-shell system

The main purpose of the method is to solve the equation

HDC|Ψ0〉 = E0|Ψ0〉, (4.1)

for wave function |Ψ0〉 and energy E0.
The exact atomic wave function, Eq. (4.1), in the CC theory is defined as

|Ψ0〉 = eT (0)|Φ0〉, (4.2)

where T (0) is the cluster operator and |Φ0〉 is the Dirac- Fock reference state,
described in the Chapter. II., of closed-shell system. The superscript is a tag
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T
(0)

1
T

(0)

2

Figure 4.3: Representation of unperturbed single and double cluster operators.
Incoming(downwards) arrow represent the hole state and outgoing(upwards)
arrow is to represent the particle state.

to identify cluster operators arising from different perturbations. The tag 0
here indicates that no external perturbation is applied. For the case of an N
electron system, the cluster operator, in principle, is

T (0) =
N∑

i=1

T
(0)
i . (4.3)

In closed shell systems, the single and double provide a good approximation
of the exact ground state. The cluster operator is then T (0) = T

(0)
1 + T

(0)
2 and

is referred to as the coupled-cluster single and double (CCSD). The cluster
operators in the second quantized notations are

T
(0)
1 =

∑
a,p

tpaa
†
paa , and T

(0)
2 =

1

2!

∑
a,b,p,q

tpq
aba

†
pa

†
qabaa. (4.4)

These act on the reference state as

T
(0)
1 |Φ0〉 =

∑
a,p

tpa|Φp
a〉 , and T

(0)
2 |Φ0〉 =

1

2!

∑
a,b,p,q

tpq
ab|Φ

pq
ab〉. (4.5)

The indices abc . . . and pqr . . . represent the core and virtual states respectively.
Here, tpa and tpq

ab are the single and double cluster amplitudes respectively, and
|Φp

a〉 and |Φpq
ab〉 are the singly and doubly excited determinants respectively. As

mentioned in the Chapter. II., these differ from the reference state in having
one and two electrons respectively from the cores are replaced by the virtuals.

Subtracting 〈Φ0|H|Φ0〉 from both sides of Eq. (4.1) and define the normal
form of the operator, HN = H − 〈Φ0|H|Φ0〉. The equation is then

HN|Ψ0〉 = ∆E|Ψ0〉, (4.6)

where ∆E is the difference of the exact energy and the self-consistent field
energy, E−〈Φ0|H|Φ0〉. It is referred to as the correlation energy of the system.
Substituting the CCT wave function from Eq. (4.2), we get

HNe
T (0)|Φ0〉 = ∆EeT (0)|Φ0〉. (4.7)
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Operating with e−T (0)
and projecting on the excited states 〈Φp

a| and 〈Φpq
ab|, we

get the coupled-cluster equations of the singles and doubles cluster operators
as

〈Φp
a|H̄N|Φ0〉 = 0, (4.8)

〈Φpq
ab|H̄N|Φ0〉 = 0. (4.9)

Where, H̄N = e−T (0)
HNe

T (0)
is the similarity transformed or dressed Hamilto-

nian. Following the Wick’s theorem the structure of H̄N is

H̄N = HN + {HNT
(0)}+

1

2!
{HNT

(0)T (0)}+

1

3!
{HNT

(0)T (0)T (0)}+
1

4!
{HNT

(0)T (0)T (0)T (0)}, (4.10)

The single and double cluster amplitudes are solutions of Eqs. (4.8) and (4.9)
respectively.

4.1.1 Linearized coupled-cluster

An approximation often used as a starting point of coupled-cluster calculations
is to retain only the first two terms in the dressed operator H̄N . We then can
write

H̄N = HN + {HNT
(0)}. (4.11)

The coupled-cluster equations, Eq. (4.8)-(4.9), are then a pair of linear equa-
tions

〈Φp
a|HN + {HNT

(0)}|Φ0〉 = 0, (4.12)

〈Φpq
ab|HN + {HNT

(0)}|Φ0〉 = 0. (4.13)

In the CCSD approximation T (0) = T
(0)
1 + T

(0)
2 , these equations are

〈Φp
a|{HNT

(0)
1 }+ {HNT

(0)
2 }|Φ0〉 = −〈Φp

a|HN|Φ0〉 (4.14)

〈Φpq
ab|{HNT

(0)
1 }+ {HNT

(0)
2 }|Φ0〉 = −〈Φpq

ab|HN|Φ0〉. (4.15)

These are the linearized coupled-cluster equations of single and double cluster
amplitudes. The diagrams contributing to these equations are shown in the
Figs. 4.4 and 4.5 respectively. The Eqs. (4.14) and (4.15) can be written as
the matrix equation(

H11 H12

H21 H22

)(
t1
t2

)
= −

(
H10

H20

)
, (4.16)

where H11 = 〈Φp
a|HN|Φs

b〉, H12 = 〈Φp
a|HN|Φst

bc〉 and so on. The equations form
a set of coupled linear equations and is solved using standard or specialized
linear algebra solvers.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.4: Coupled-cluster diagrams which contribute to the unperturbed
single cluster operator, T

(0)
1 , in the linearized coupled-cluster theory. Dashed

line represent the residual coulomb interaction and the lower solid line is to
represent the cluster operator.

(f) (g) (h) (i) (j)

(a) (b) (c) (d) (e)

Figure 4.5: Coupled-cluster diagrams which contribute to the unperturbed
double cluster operator, T

(0)
2 , in the linearized coupled-cluster theory.

4.1.2 Correlation Energy from CCT

Operating Eq. (4.7) with e−T (0)
and projecting on the model wave function

〈Φ0|, we get the ground state correlation energy of the closed-shell system as

∆E = 〈Φ0|HN|Φ0〉 = 〈Φ0|{HNT
(0)
1 }+ {HNT

(0)
2 }+ {HNT

(0)
1 T

(0)
1 }|Φ0〉. (4.17)

The diagrams which contribute to ∆E are obtained by applying Wick’s theo-
rem such that there are no free lines after the contraction. These are shown in
the Fig. 4.6. The dominant contributions arise from the diagrams (a) and (b),
which is expected as the doubles cluster amplitudes are larger in value than
the singles. Diagram (e) has zero value if Dirac-Fock orbitals are used.
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(a) (b) (c) (d) (e)

Figure 4.6: Coupled-cluster diagrams contributing to the correlation energy.
Dashed lines represent the residual Coulomb interaction and the solid lines at
the bottom are to represent the coupled-cluster operators. Diagram (e) will
not contribute if Dirac-Fock orbitals are used in the calculations.

(a) (b)

Figure 4.7: Representation of the approximate triple cluster operators.

4.1.3 Approximate triples

The inclusion of T3, triples cluster operator, in CCT is computationally ex-
pensive. However, the dominant triples contribution can be accounted as a
contraction of T2 and HN. This is in literature referred to as the approxima-
tion triples [76, 77]. The contribution to correlation energy from approximate
triples is

(∆E)triples = 〈Φ0|{HNHNHNT}|Φ0〉. (4.18)

Selected diagrammatic representation of these are shown in Fig. 4.8. This
shows that the correlation energy contribution from the approximate triple
cluster amplitudes involve three-orders of the perturbation and one order of
the cluster operator T . For this reason the contribution is expected to be very
small. And this is what is observed from the results of actual calculations.

As shown in Fig. 4.7, there are two categories of triples. First is HN

contracted with T (0) through a hole line, and second contracted through a
particle line. The diagrams contributing to the correlation energy are obtained
as the contraction of two orders of HN with the approximate triple cluster
operators. There are several diagrams contributing to the Eq. (4.18), and as
example two diagrams arising from each category of the approximate triples
are shown in Fig. (4.8). To simplify in the computational implementation,
these diagrams are separated into three categories based on the number of
internal lines. These are: two particle and two hole internal lines (2p-2h),
three particle and one hole internal lines (3p-1h), and one particle and three
hole internal lines (1p-3h). Contributions from each of these categories are
listed in the result section.
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(a) (b)

Figure 4.8: Representation of the correlation energy diagrams arising from the
approximate triple cluster operators.

Occupied states

T2

T1

Valence states

S
(1)

1
S

(1)

2

Excited states

Figure 4.9: Energy level diagram showing the excitations of electrons from core
to the valence and virtuals, and from valence to the virtuals, for one-valence
atoms.

4.2 One-valence systems

In this section we describe the CCT of one-valence systems. For such systems
the Schroedinger equation to be solved is

HDC|Ψv〉 = Ev|Φv〉, (4.19)

where |Ψv〉 is the exact state and Ev is corresponding exact energy. In single-
valence systems there is a valence orbital in addition to the cores and virtuals.
An excitation of electron is then from the cores to the valence or virtuals
or from the valence to the virtuals. As shown in Fig. 4.9, the former is
accounted by the closed-shell cluster operator T and for the later, a new class
of cluster operator S is introduced. These are referred to as the open-shell
cluster operator.

The exact wave function in one-valence CCT is

|Ψv〉 = eT+S|Φv〉. (4.20)

The operator T , described in the previous section, is the cluster operator of the
closed-shell sector. In the Fock space coupled-cluster theory of single valence
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this is evaluated first. The newly introduced operator S is the coupled-cluster
operator of the one-valence sector. |Φv〉 is the one-valence reference state
obtained by adding an electron to the closed-shell reference state. That is

|Φv〉 = a†v|Φ0〉. (4.21)

For single valence atoms
eS = 1 + S, (4.22)

since there is only one valence electron the higher order cluster operators in
the exponential do not contribute. Using Eq. (4.22) in Eq. (4.20) we can write

|Ψv〉 = eT (1 + S)|Φv〉. (4.23)

For an N electron atom

T =
N−1∑
i=1

Ti, and S =
N∑

i=1

Si. (4.24)

Here the summation index of the T is up to the N − 1 core electrons, where
as S is up to N to include the valence electron. Following the the closed-shell
case, in CCSD approximation the open-shell cluster operator S = S1 + S2. In
the second quantized representation these are

S1 =
∑

p

sp
va

†
pav, and S2 =

∑
a,p,q

spq
vaa

†
pa

†
qaaav. (4.25)

Diagrammatic representation of S1 and S2 are shown in Fig. 4.10. These
generate the singly and doubly excited determinants respectively, after acting
on the reference state |Φv〉. That is

S1|Φv〉 =
∑

p

sp
v|Φp

v〉 and S2|Φv〉 =
∑
a,p,q

spq
va|Φpq

va〉. (4.26)

S
(0)

1
S

(0)

2

Figure 4.10: Diagrammatic representation of open shell cluster operators. The
orbital lines with double arrows indicate valence and single up (down) arrow
indicate particle (hole) states.

Using normal-ordered form of the Hamiltonian, HN = H − 〈Φv|HΦv〉, Eq.
(4.19) can further be written as

HN|Ψv〉 = ∆EvΨv〉. (4.27)
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Where, in analogy to the closed-shell atoms case, ∆Ev,= Ev − E
(0)
v , is cor-

relation energy of the one-valence atoms. Putting the coupled-cluster wave
function, defined in Eq. (4.23), to the Eq. (4.27) and applying e−T on both
sides of the equation, we get

H̄N(1 + S)|Φv〉 = ∆Ev(1 + S)|Φv〉, (4.28)

where H̄N is the dressed Hamiltonian defined in Eq. 4.10. The coupled-cluster
amplitude equations for singles and doubles are obtained after projecting Eq.
(4.28) on singly and doubly replaced states 〈Φp

v| and 〈Φpq
va|.

〈Φp
v|H̄N(1 + S)|Φv〉 = ∆Ev〈Φp

v|S2|Φp
v〉, (4.29)

〈Φpq
va|H̄N(1 + S)|Φv〉 = ∆Ev〈Φpq

va|S2|Φv〉. (4.30)

Here we have used 〈Φp
v|Φv〉 = 0 and 〈Φpq

va|Φv〉 = 0, as singly and doubly excited
determinants 〈Φp

v| and 〈Φpq
va| are orthogonal to the reference state |Φv〉. Using

Wick’s theorem above equations can further be reduced to the form

〈Φp
v|H̄N +{H̄NS1}+{H̄NS2}|Φv〉 = Eatt

v 〈Φp
v|S1|Φv〉, (4.31)

〈Φpq
va|H̄N + {H̄NS1}+ {H̄NS2}|Φv〉 = Eatt

v 〈Φpq
va|S2|Φv〉, (4.32)

where Eatt
v is the attachment energy of the valence electron v.

4.2.1 Energy from CCT

To obtain the energy eigenvalue Ev of the state |Ψv〉, project Eq. (4.19) on
the state 〈Φv| after putting the CC wave function from Eq. (4.23). We then
get

〈Φv|H̄(1 + S)|Φv〉 = Ev, (4.33)

here we have used 〈Φv|S|Φv〉 = 0, as S acting on the reference state produces
an excited state which is orthogonal to the reference state. Using the normal-
ordered Hamiltonian defined earlier, above equation becomes

〈Φv|H̄N (1 + S) |Φv〉 = ∆EN,corr
v , (4.34)

where ∆EN,corr
v is the correlation energy of N-electron (one-valence) system.

The attachment energy introduced in the CC equations is expressed in terms
of the correlation energies of N− and (N − 1)-electron systems. That is

Eatt
v = ∆EN,corr

v −∆EN−1,corr
v + εv,

= ∆Eatt
v + εv. (4.35)

Where, εv is the single electron energy of the valence electron. And ∆Eatt
v ,=

∆EN,corr
v −∆EN−1,corr

v , is the difference of correlation energy of the closed-shell
sector from that of the open-shell sector. The contributing diagrams to ∆Eatt

v

are shown in the Fig. 4.11.
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(a) (b) (c) (d) (e) (f)

Figure 4.11: Diagrams which contribute to ∆Eatt
v . The dashed lines repre-

sent the residual Coulomb interaction. And at the bottom solid lines are to
represent the cluster operator.

4.3 Properties from CC wave function

In this section we describe the procedures for atomic properties calculations
using CC wave functions, calculated in the previous sections. For this, we
consider, for example, calculation of the hyperfine structure constants and
the electric dipole transition amplitudes. There is an important difference be-
tween these two properties, first is the expectation of the hyperfine interaction,
and second is the matrix element of the electric dipole operator between two
different states.

4.3.1 Hyperfine Structure constants

The hyperfine splitting is the outcome of the interaction between the nuclear
electromagnetic moments and the electromagnetic fields of the atomic elec-
trons. The energy shift, due to the hyperfine splitting, is typically orders of
magnitude smaller than the fine structure splitting. The hyperfine structure
(HFS) constants are considered to be important parameters to measure the
energy shifts. In this case F (I +J) is a good quantum number, and hence the
HFS splitting is associated with the coupled states |(IJ)FMF 〉, I and J are
the nuclear spin and total angular momentum quantum numbers respectively.

4.3.1.1 Hyperfine interaction Hamiltonian

The general form of the hyperfine interaction Hamiltonian is [46, 78]

Hhfs =
∑

i

∑
k,q

(−1)qtkq(r̂i)T
k
−q, (4.36)

where tkq(r) and T k
q are irreducible tensor operators of rank k in the electron

and nuclear spaces respectively. From the parity selection rule of the elec-
tric multipole transitions, π(Ek) = (−1)k, only even multipoles are allowed.
Following this, the allowed multipole for the electric quadrupole transition is
k = 2. Similarly, following the selection rule, π(Mk) = (−1)k+1, for the mag-
netic multiples transitions, the allowed multipole for magnetic dipole transition
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is k = 1. For magnetic dipole hyperfine, the explicit form of the electronic and
nucleonic parts of the tensor operators, in Eq. (4.36), are

t1q(r) =
−i
√

2[α ·C1(r̂)]q
cr2

, and T 1
q = µq. (4.37)

where, C1(r̂) is a rank one tensor operator in electron space and µq is a compo-
nent of µ, the nuclear magnetic moment operator. Then the nuclear moment
is the expectation value of µ in the stretched state µ = 〈II|µ0|II〉. Similarly,
for the electric quadrupole hyperfine

t2q(r) = −
C2

q (r̂)

r3
, and T 2

q = Qq. (4.38)

Where, Qq is the irreducible tensor operator of rank 2. For one valence systems,
the magnetic dipole and electric quadrupole HFS constants are

a =
gIµN

jv

(
jv 1 jv
−jv 0 jv

)
〈nvκv||t1||nvκv〉. (4.39)

b = 2Q

(
jv 2 jv
−jv 0 jv

)
〈nvκv||t2||nvκv〉. (4.40)

Here, gI (µ = gIIµN) is the gyro-magnetic ratio and µN is the nuclear mag-
netron. For details of the derivation see the reference [46]. The reduced matrix
elements 〈nvκv||t1||nvκv〉 and 〈nvκv||t2||nvκv〉 can further be evaluated by using
relativistic single-electron wave function. The details about the derivation are
given in the Appendix.D.

4.3.1.2 HFS constants from CC wave function

The general expression of the HFS constants, for one-valence atomic systems,
is written as

A =
〈Ψv|Hhfs|Ψv〉
〈Ψv|Ψv〉

. (4.41)

Where, |Ψv〉 is the CC wave function. The HFS constant A, in the Eq. (4.41),
can be either magnetic dipole or electric quadrupole constants depending on
the form of the hyperfine interaction Hamiltonian HHFS. Using the CC wave
function from Eq. (4.23), the numerator of the Eq. (4.41) is

〈Ψv|Hhfs|Ψv〉 = 〈Φv|eT (1 + S)†Hhfse
T (1 + S)Φv〉,

= 〈Φv|H̃hfs + 2S†H̃hfs + S†H̃hfsS|Φv〉. (4.42)

Where, H̃hfs = eT †
Hhfse

T is the dressed hyperfine operator. The factor of two
in the second term on the right hand side accounts for H̃hfsS as S†H̃hfs = H̃hfsS.
The dressed hyperfine operator can be expanded as

H̃hfs = Hhfse
T +

∞∑
n=1

1

n!

(
T †)nHhfse

T . (4.43)
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(a) (b) (c) (d) (e)

Figure 4.12: Representation of effective one- and two-body dressed properties
operators.

(a) (b) (c) (d) (e) (f)

(g) (h) (l) (m)(i) (j) (k)

Figure 4.13: The leading diagrams contributing to the hyperfine structure
constants in Eq. (4.42). The dashed lines terminated with a circle represent
hyperfine interaction.

As evident from Eq. (4.43), the dressed properties operator H̃hfs is a non
terminating series. And it is therefore not possible to incorporate all the terms
in the calculations. In the actual calculations , a truncated expression consist-
ing of terms up to the second-order in T is considered. In this approximation

H̃hfs ≈ Hhfs +HhfsT + T †Hhfs + T †HhfsT. (4.44)

The normalization factor, denominator in Eq. (4.41), in the HFS constants
expression is expressed as

〈Ψv|Ψv〉 = 〈Φv|
(
1 + S†) eT †

eT (1 + S) |Φv〉. (4.45)

In the actual implementation, like in H̃hfs, only terms up to the second-order
in T are included. The contribution from the higher order terms is negligibly
small.

4.3.2 Dipole transition amplitudes from CC wave func-
tion

An atom in the initial state |Ψi〉 may undergo a transition to another state
|Ψf〉 while interacting with electromagnetic fields provided incident photon is
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resonant. Among various possibilities, transitions arising from electric dipole is
the most dominant radiative transition. A quantity which is closely associated
with transition properties is the transition amplitude, the matrix element of
the electromagnetic multipole operator. However, it is more convenient to cal-
culate the reduced matrix element, from which transition amplitude between
specific magnetic quantum numbers may be valuated.

The reduced matrix element of the dipole operator D between the initial
and final states is

Dfi =
〈Ψf ||D||Ψi〉√
〈Ψf |Ψf〉〈Ψi|Ψi〉

. (4.46)

It is non-zero when the two states are of opposite parity, as D is an odd parity
operator. Using CC wave function from Eq. (4.23),

〈Ψw||D||Ψv〉 = 〈Φw||eT (1 + S)†DeT (1 + S)||Φv〉,
〈Φw||D̃ + S†D̃ + D̃S + S†D̃S||Φv〉, (4.47)

where, |Φv〉 and |Φw〉 are the initial and final reference states of the system
with valence electron v and w respectively. Here, D̃ is the dressed dipole
operator, it has the form

D̃ = DeT +
∞∑

n=1

1

n!

(
T †)nDeT . (4.48)

Like in HFS, in calculations D̃ is approximated as

D̃ ≈ D +DT + T †D + T †DT. (4.49)

The contributing diagrams to Eq. (4.47) are topologically similar to H̃HFS.
The only difference is D replaces the hyperfine operator.

4.3.3 Properties to all order

The properties calculation discussed in the previous section is based on the
truncated form of the dressed properties operator. In this section we demon-
strate a scheme, we have developed, to incorporate the effects of all-order T
in the dressed properties operator. This is desirable for the properties calcu-
lations with accuracy level commensurate with the experimental data. This is
done by grouping the diagrams arising from the dressed operator into differ-
ent level of excitation (loe) and the higher order diagrams are then evaluated
iteratively. Here, loe is the number of core or valence electrons replaced with
virtual electrons. For example, the diagrams in Fig. 4.14 have loe one. In each
of these diagrams, one core electron is replaced by a virtual electron.
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To demonstrate the proposed scheme consider the example of the loe one
diagrams. We start with the first term, Hhfse

T , in Eq. (4.43). Considering the
contribution from the diagrams which have loe one, we can write(

Hhfse
T
)
1

=

(
Hhfs +HhfsT +

1

2
HhfsTT

)
1

. (4.50)

The subscript 1 here is represents the loe of the contributing terms. There are
six diagrams which contribute to the above equation and these are shown in
the first row of the Fig. 4.14. These diagrams constitute an effective opera-
tor with the loe one, which is the starting point of the iterative calculation.
The diagrams of the next iteration are obtained by sandwiching this effective
operator between the closed-shell cluster operators of equal but opposite loe,
so that net loe remains one. The equivalent algebraic expression of the next
iteration is(

T †Hhfse
T
)
1

=
∑

i

[
T †

i

(
Hhfs +

1

2
HhfsT +

1

6
HhfsTT

)
Ti

]conn

1

, (4.51)

In the CCSD approximation the index i runs from 1 to 2. In this case, however,
we don not consider the terms (diagrams) arising due to the single cluster
operator T1 as the contributions can be neglected in comparison to the T2

operators. The other superscript conn, in the above equation, imply only the
connected diagrams contribute. There are eight diagrams which contribute to
this iteration and these are shown as the diagrams in the second and third row
of the Fig. 4.14.

Following the above discussions we can then write the general expression
as (

T †nHhfse
T
)
1

=
∑

i

[
T †

i

(
T †n−1

Hhfse
T
)

1
Ti

]conn

1
. (4.52)

This is an iterative equation and it is possible to evaluate it order by order to
convergence. The sum of all the contributions is equivalent to calculating the
effective operator

H1 = (eT †
Hhfse

T )1. (4.53)

From Eq. (4.42), this contribute to the hyperfine structure through the term
S†

2H1. At the lowest level, the contributing hyperfine diagrams are shown as
Fig. 4.13(j-k). Using the same terminology described here, as an example, for
loe one it is possible to extend the method for to higher loe.

4.4 Summary of the results

In this section we present and analyze the results calculated using coupled-
cluster theories for closed-shell and one valence atomic systems. In the context
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= + + + + + +

+ + + +

+ + +

Figure 4.14: Diagrammatic representation of the iterative equation to calculate
the loe one effective hyperfine operator Hhfs

eff
1 . The iteration is implemented

with the T †
2 and T2.

of closed-shell atoms, we have done a detail study of the correlation energy. We
also examine the contribution from the approximate triples to the correlation
energy. For the one-valence atoms, however, apart from correlation energy,
the HFS constants and the electric-dipole (E1) transition amplitudes are also
studied. Like in the MBPT case, here also we have employed the even tempered
Gaussian-type basis functions. We have used the same basis set parameters
listed earlier.

4.4.1 Correlation energy of closed-shell atoms

The coupled-cluster results of the correlation energy of the inert gas atoms
are presented in the Table. 4.1. Contribution from the nonlinear terms in the
coupled-cluster is tabulated separately. An optimal basis set is chosen based
on the results of a series of calculations, such that the basis set is suitable for
CCSD computations. Unlike in MBPT, the virtuals space includes orbitals
up to the h symmetry only. Contributions from the higher symmetry orbitals
are negligible. In addition, it is computationally expensive as the number of
cluster amplitudes scale as n2

vn
2
c , nv and nc are the number of virtual and core

orbitals respectively.
To account for the correlation energy contribution from the higher symme-

tries orbitals, not included in the CCSD calculations, we resort to the second
order correlation energy. For this we calculate E

(2)
corr with the basis set cho-

sen in CCSD calculations and subtract from the converged E
(2)
corr described in

Chapter. II. The estimated correlation energy is the sum of this difference and
CCSD ∆E. Our estimated value of 0.3882 for Ne is in excellent agreement
with the experimental value, which lies in the range 0.385 and 0.390 [60, 67].
The contribution from the nonlinear terms is found to be 0.6%, 0.8%, 0.08%
and 0.03%. It must be mentioned that, though the difference in ∆E is small,
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Table 4.1: Correlation energy using coupled-cluster theory for inert gas atoms.
All the values are in atomic units.

Atom Active Orbitals ∆E(ccsd)
Linear Nonlinear

Ne 17s10p10d9f9g8h -0.3783 -0.3760
18s11p11d10f10g9h -0.3805 -0.3782

Estimated -0.3905 -0.3882

Ar 17s11p11d9f9g9h -0.6884 -0.6829
18s12p12d10f10g10h -0.7001 -0.6945

Estimated -0.7258 -0.7202

Kr 22s13p11d9f9g9h -1.5700 -1.5688
23s14p12d10f10g10h -1.6730 -1.6716

Estimated -1.8480 -1.8466

Xe 23s14p12d10f10g10h -2.5500 -2.5509
24s15p13d11f11g11h -2.6874 -2.6881

Estimated -2.9973 -2.9979

Table 4.2: Correlation energy contributions from the approximate triples in
the coupled-cluster theory. All the values are in atomic units.

Atom Basis size ∆E
2p-2h 1p-3h 3p-1h

Ne 18s11p11d10f10g9h 0.00672 -0.00145 -0.00164

Ar 18s12p12d10f10g10h 0.00805 -0.00066 -0.00192

Kr 22s13p11d9f9g9h 0.01546 -0.00171 -0.00305

Xe 19s15p10d9f5g2h 0.02011 -0.00148 -0.00260
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the computational cost of non-linear CCSD is far higher than the linearized
CCSD calculations.

The correlation energy contributions arising from the approximate triples
are listed in Table. 4.2. As discussed in the previous sections, the correlation
energy diagrams from the approximate triples are grouped into three classes.
In the actual calculation, we incorporate eight diagrams from 2p-2h and two
each from 3p-1h and 1p-3h categories. Since we include only few correlation
energy diagrams it is difficult to estimate the percentage contribution. It is,
however, evident from the table that the contribution from 1p-3h and 3p-1h
are negative and adds to the magnitude of ∆E. Whereas, the contribution
from 2p-2h is positive and reduces the magnitude of ∆E.

4.4.2 Excitation energy of one-valence atoms

The ionization potentials and excitation energies calculated using coupled-
cluster CCSD method are presented in the Table. 4.3. In this case also we
have chosen the same set of alkaline-earth ions as in the MBPT calculations.
Comparison of these results with the experimental data can throw some light
on the reliability of CCT. The largest deviations from the experimental data
are 0.1% for state D5/2 in Mg+, 2.5% for state D5/2 in Ca+, 0.7% for state
P1/2 in Sr+ and 4.2% for state D5/2 in Ba+. In the MBPT results, these are
however 0.2% for D3/2 in Mg+, 3.6% for D5/2 in Ca+, 1.8% for P1/2 in Sr+ and
9.9% for D5/2 in Ba+. So the CCSD results are closer to the experimental data
than the MPBT results. This is not surprising as CCSD encapsulates electron
correlations more accurately.

Among the results from earlier works listed in the Table. 4.3, results of the
Ref.[64], for Mg+, are obtained using the same method as ours. In addition, the
correlation corrections due to the some dominant contributing triples cluster
amplitudes and due to Breit interaction are also taken in to account. And
therefore, as its evident from the table, the results of the Ref.[64] are more
accurate than the ours. For other atomic systems, Ca+, Sr+ and Ba+, for
most of the states our results are more accurate than the previous theoretical
work Ref. [65]. This is perhaps expected as we have used more accurate
method.

4.4.3 Magnetic dipole HFS constants

The magnetic dipole structure constants computed using coupled-cluster the-
ory for the alkaline-earth ions are presented in the Table. 4.4. In all the ions
considered, we have computed magnetic dipole HFS constants for the ground
state s1/2 and the few low lying excited states p1/2, p3/2, d3/2 and d5/2. For
comparison, we also list the results from the other theoretical works and the
experiments data. The respective contributions from the different terms in the
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Table 4.3: Ionization potentials and excitation energies using coupled-cluster
theory for alkaline-earth ions. All values are in atomic units.

Ion state This work Other works Exp.Ref[63].
IP EE IP EE EE

25Mg+ 3s1/2 −0.55203 0.0 −0.55252 0.0 0.0
3d3/2 −0.22666 0.32537 −0.22677 0.32575a 0.32573
3d5/2 −0.22668 0.32535 −0.22677 0.32575a 0.32574
3p1/2 −0.38950 0.16253 −0.39003 0.16249a 0.16252
3p3/2 −0.38917 0.16286 −0.38961 0.16291a 0.16294

43Ca+ 4s1/2 −0.43671 0.0 −0.43836 0.0 0.0
3d3/2 −0.37601 0.06070 −0.37768 0.06068b 0.06220
3d5/2 −0.37578 0.06093 −0.37731 0.06205b 0.06247
4p1/2 −0.32128 0.11543 −0.32217 0.11619b 0.11478
4p3/2 −0.32119 0.11552 −0.32111 0.11725b 0.11580

87Sr+ 5s1/2 −0.40573 0.0 −0.40839 0.0 0.0
4d3/2 −0.33926 0.06647 −0.34279 0.06560b 0.06632
4d5/2 −0.33827 0.06746 −0.34132 0.06707b 0.06760
5p1/2 −0.29696 0.10877 −0.29838 0.11001b 0.10805
5p3/2 −0.29425 0.11148 −0.29463 0.11376b 0.11171

137Ba+ 6s1/2 −0.36862 0.0 −0.37308 0.0 0.0
5d3/2 −0.34758 0.02104 −0.35172 0.02136b 0.02221
5d5/2 −0.34386 0.02476 −0.34748 0.02560b 0.02586
6p1/2 −0.27483 0.09379 −0.27532 0.09776b 0.09232
6p3/2 −0.26821 0.10041 −0.26946 0.10362b 0.10002

a Reference[64]. b Reference[65].
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Table 4.4: Magnetic dipole hyperfine structure constants (in MHz) for 25Mg+,
43Ca+, 87Sr+, and 137Ba+ ions.

state This work Other works Experiment
25Mg+

3s1/2 −596.785 −597.6l, −554s,
−(602± 8)t −596.254m

3p1/2 −102.997 −103.4l,−100s -
3p3/2 −19.546 −19.29l,−19s -
3d3/2 −1.083 −1.140l,−1.25s -
3d5/2 0.118 0.1196l, 0.107a -

40Ca+

4s1/2 −808.126 −805.35b, −819g, −797.5(2.4)c −805(2)d

−794.7h,−806.4(2.5)u

4p1/2 −142.782 −143.07b,−148g, −158(3.3)c, −145.5(1.0)d,
−144.8h,−143s, −142(8)e, −145.4(0.1)f

4p3/2 −32.185 −30.50b,−30.9g, −29.7(1.6)c, −31.9(0.2)d,
−29.3h,−30s, −31.0(0.2)f

3d3/2 −45.294 −47.82b, −52g, −48.3(1.6)e, −47.3(0.2)f

−49.4h, −47.3(3)u

3d5/2 −4.008 −3.351a,−3.55b, −3.8(0.6)f , 3.8931(2)v

−5.2g, −4.2h, −3.6(3)u

87Sr+

5s1/2 −990.638 −10003.18b, −1000k −1000.5(1.0)i

5p1/2 −169.988 −178.40b,−177k, −175s -
5p3/2 −36.225 −35.11b,−35.3k −30s −36.0i

4d3/2 −44.320 −47.36b, −46.7k -
4d5/2 2.168 2.156a, 2.51b, 1.1k 2.17j

137Ba+

6s1/2 4021.721 4072.83p 4018.2q

6p1/2 705.039 736.98p -
6p3/2 130.191 130.94p,126s 126.9o, 112.77r

5d3/2 185.013 192.99n,188.76p 215o 189.730o, 170.88r

5d5/2 −12.593 9.39n,−11.717a, −18o −12.028o

aReference[79].bReference[80]. cReference[81]. dReference[82]. eReference[83].
fReference[84].gReference[85]. hReference[86]. iReference[87]. jReference[88].
kReference[89].lReference[64]. mReference[90]. nReference[91]. oReference[92].
pReference[93].qReference[94]. rReference[95]. sReference[96]. tReference[97].
uReference[98].vReference[99].

68



Chapter 4. Coupled-cluster theory of closed-shell and one-valence atoms

Table 4.5: Contributions from different terms in the coupled-cluster properties
expression for magnetic dipole hyperfine constant. The values listed are in
MHz.

State Coupled-cluster terms

H̃hfs S†H̃hfs S†
2H̃hfsS1 S†

1H̃hfsS1 S†
2H̃hfsS2 Norm

+c.c +c.c.

25Mg+

3s1/2 −479.433 −111.099 −1.637 −0.396 −5.560 1.002
3p1/2 −79.738 −21.951 −0.348 −0.089 −0.989 1.001
3p3/2 −15.937 −3.340 0.000 −0.018 −0.277 1.001
3d3/2 −1.266 0.186 0.004 −0.001 −0.008 1.001
3d5/2 −.543 0.648 0.017 −0.000 −0.004 1.001

43Ca+

4s1/2 −601.783 −196.519 −4.782 −1.802 −10.717 1.009
4p1/2 −101.970 −39.042 −1.089 −0.446 −1.031 1.006
4p3/2 −19.969 −11.094 −0.244 −0.094 −1.004 1.007
3d3/2 −36.107 −7.464 −0.128 −0.260 −2.153 1.018
3d5/2 −15.541 13.531 0.490 −0.111 −2.449 1.018

87Sr+

5s1/2 −741.871 −235.962 −5.980 −3.046 −15.027 1.011
5p1/2 −123.038 −44.789 −1.199 −0.678 −1.446 1.007
5p3/2 −21.899 −13.096 −0.353 −0.126 −1.043 1.008
4d3/2 −34.452 −8.184 −0.263 −0.139 −1.979 1.016
4d5/2 −14.706 18.484 0.473 −0.058 −1.991 1.016

137Ba+

6s1/2 2964.012 1003.841 27.452 17.598 66.108 1.014
6p1/2 498.248 197.723 5.728 4.072 6.064 1.010
6p3/2 74.339 50.583 1.605 0.619 4.480 1.011
5d3/2 142.440 35.669 1.067 0.462 9.495 1.022
5d5/2 59.325 −80.381 −1.553 0.191 9.554 1.022
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Table 4.6: Magnetic dipole hyperfine structure constant contributions from
higher-order terms in the all order scheme.

Ion state S†H̃hfs

iter = 0 iter = 1 iter = 2 Converged

(Hhfse
T )1 T †

2 (Hhfse
T )1T2 T †

2

2
(Hhfse

T )1T
2
2 value

25Mg+ 3s1/2 −53.663 −53.502 −53.503 −53.503
3p1/2 −10.627 −10.563 −10.564 −10.564
3p3/2 −1.592 −1.577 −1.577 −1.577
3d3/2 0.093 0.091 0.091 0.091
3d5/2 0.324 0.321 0.321 0.321

43Ca+ 4s1/2 −90.109 −89.776 −89.778 −89.778
4p1/2 −18.757 −18.570 −18.574 −18.574
4p3/2 −4.845 −4.792 −4.793 −4.793
3d3/2 −3.851 −3.887 −3.885 −3.885
3d5/2 6.715 6.638 6.639 6.639

87Sr+ 5s1/2 −109.153 −108.716 −108.720 −108.720
5p1/2 −22.116 −21.908 −21.912 −21.912
5p3/2 −6.006 −5.943 −5.944 −5.944
4d3/2 −4.216 −4.267 −4.265 −4.265
4d5/2 8.822 8.687 8.689 8.689

137Ba+ 6s1/2 469.636 467.423 467.450 467.449
6p1/2 98.036 97.052 97.075 97.074
6p3/2 22.917 22.655 22.660 22.660
5d3/2 18.959 19.161 19.150 19.150
5d5/2 −36.806 −36.092 −36.104 −36.104

70



Chapter 4. Coupled-cluster theory of closed-shell and one-valence atoms

couple-cluster hyperfine equation, Eq. (4.42), are given in the Table. 4.5. This
table provides lot more information about the electron correlation arising from
different terms. The second column, represented as H̃HFS, is the sum of the
Dirac-Fock and the terms which have closed-shell cluster. Contribution from
the later is found to be relatively much less than Dirac-Fock contribution.

In the case of Mg+ the experimental data is available only for the 3s 2S1/2

[90]. However, theoretical results are available for all the states. As evident
from the table, our total value −596.78 for the state 3s 2S1/2 is in very good
agreement with the experimental result, and is also consistent with the other
theoretical results. The difference between our result and the experiment is
about 0.08%. To compare results for the other states we resort on the other
theoretical works. The results of the Safronova et. al [64] are obtained using
linearized CCSD method which is similar to ours. In our case however nonlin-
ear terms in the CC equation are also included. For the 3p 2P1/2 and 3p 2P3/2

states, our values −102.997 and −19.546 compares very well with the results
of Ref. [64]. Our value of −1.083 for the state 3d2D3/2 is larger, and 0.118 for
the state 3d2D5/2 is smaller than the Ref.[64]. As evident from the Table. 4.5,
the largest contribution arise from the zeroth-order term. The second largest
contribution is from S†H̃hfs + c.c., this is expected as it has only one order of
cluster amplitude.

The alkaline-earth ion Ca+ is well studied, experimentally and theoretically,
and more data is available in the literature. It is evident from the Table. 4.4,
there is a large variation in the experimental results of 4s 2S1/2 and 4p 2P1/2,
and less in the results of 4p 2P3/2, 3d 2D3/2 and 3d 2D5/2 states. The theoret-
ical results, on the other hand, exhibit significant variations for all the states
except 4p 2P3/2. Our Dirac-Fock value −589.09 for the 4s 2S1/2 is in good
agreement with the previous theoretical results −589 [96] and −588.933 [80].
The small difference in DF value can be attributed to the nature of the basis
functions used in the three calculations. Our total value −808.12 is marginally
lower than the experimental values but lies between the other theoretical re-
sults. Similarly, for the states 4p 2P1/2 and 4p 2P3/2 our Dirac-Fock values of
−101.47 and 19.65 are in excellent agreement with the other theoretical values
−102 [96] and −101.492 [80], and −19.2 [96] and −19.646 [80], respectively.
Our total value −142.782 for the state 4p 2P1/2 is very close to the one of ex-
perimental results −142(8) of the Ref. [83], and is also in agreement with the
theoretical results [80] and [96]. The total value −32.185 for the state 4p 2P3/2

is smaller than all the previous theoretical values. However this is in good
match with the experimental result −31.9(0.2) of Ref. [82]. Our total value
−45.294 for the state 3d 2D3/2 is higher than the previous theoretical results
and the experimental results. However the DF values −33.55 compares well
with previous studies −33 [96] and −33.206 [80]. For the state 3d 2D5/2 our
calculated value of −4.008 in very close to the experimental results in Refs.
[84] and [99]. Our result is also in the range of the other theoretical results.
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In the case of Sr+, the experimental data is available only for the states
5s 2S1/2, 5p 2P1/2 and 4d 2D5/2. However, there are several theoretical results
in the literature. For the ground state, 5s 2S1/2, our total value is higher
than both the theoretical and experimental results. The discrepancy is about
0.9% with respect to the experiment. Our DF value −738.204, is however,
lower than the previous works −735 [89] and −736.547 [80]. The DF values
from our work are −122.363 and −21.501 for the states 5p 2P1/2 and 5p 2P3/2

respectively. These are very close to the results from previous works, −122
[89] and −121.576 [80] for the state 5p 2P1/2, and −21.4 [89] and −21.331 [80]
for the state 5p 2P3/2. There is a large deviation, about 4%, in our result with
respect to the other theoretical results for the state 5p 2P1/2. Our HFS total
value for the state 5p 2P3/2 is in excellent agreement with the experiment. In
fact our value is better than the previous results. There is no experimental
data is available for the state 4d 2D3/2. Our value of −44.320 deviates from
the other theoretical results [89] and [80]. The DF value −31.368 is however
consistent with −31.2 [89] and −31.126 [80]. There is good agreement between
our result 2.168, and the previous results 2.156 [79] and 2.51 [80] for the state
4d 2D5/2. The result of [79] is obtained with the same method and the basis
functions as ours. Our result compares well also with the experimental value.

The theoretical study of Ba+ hyperfine constants is very important, as
it is a potential candidate for the PNC experiments [100]. For the ground
state 6s 2S1/2, the difference between our result and the experiment is small,
∼0.09%. The previous work of Ref. [93] uses the method and basis functions
as ours. As noticeable in Table. 4.4, the difference between the two results is
∼1.3%. Like in the ions considered earlier, the next to leading term is S†H̃hfs,
it accounts for ≈23% of the total value. The DF value of 6p 2P1/2 and 6p 2P3/2

in the previous work are 492.74 [93] and 71.84 [93]. These are different from our
values of 504.196 and 73.674. The total result 705.039 for the state 6p 2P1/2

is lower than the previous theoretical value 736.98 [79]. However, the total
value of 130.191 for the state 6p 2P3/2 matches well with Ref. [79]. For the
5d 2D3/2 state our value is slightly lower than the previous theoretical results.
This is, however, lies within the range of the experimental data. The DF value
of this state is closer to the Ref. [93]. For the 5d 2D5/2 state, the total value
−12.593 from the present work is better than the other theoretical works and
the deviation from the experiment is about 4.5%.

We have also studied the HFS constants of Yb+. The magnetic dipole HFS
constants are presented in the Table. 4.8. Unlike the alkaline-earth metal ions,
there are very few theoretical results. Like Ba+, atomic Yb is also a promising
candidate of atomic PNC experiments. Our results of the magnetic dipole HFS
constant −3529.660 of the 6s 2S1/2 state is slightly lower than the experimental
and other theoretical values, the difference is about 0.6%. The result of the
Ref. [107] is better than ours. However, for the 6p 2p1/2 state our result is
better than the Ref. [107], the corresponding differences are ≈2% and ≈6%
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respectively. For the 6p 2p3/2, 5d 2D3/2 and 5d 2D5/2 states no experimental
data is available. For the state 5d 2D3/2 our result is consistent with the
previous result of Ref. [91]. However, there is a large difference for the states
6p 2p3/2 and 5d 2D5/2. Our results are larger by ≈17% and ≈536% respectively
for 6p 2p3/2 and 5d 2D5/2 than the previous results of Ref. [107] and Ref. [91].

4.4.4 All-order magnetic dipole HFS results

Table. 4.6 lists the results calculated from the iterative scheme to incorpo-
rate the higher-order terms in the dressed properties operator. As mentioned
earlier, to test our scheme we implement it for the loe one of the effective op-
erator. This contributes to the HFS constants through the term S†H̃hfs. As
it is listed in Table. 4.6, we start with the one order of cluster amplitude,
the contribution from which is listed in the second column of the Table. 4.6.
And then in each iteration we multiply by two orders of cluster amplitudes.
For example, in the first iteration the new effective operator is third order in
cluster amplitudes. We continue the interaction, until the difference of the
HFS value converges. The converged values are listed in the last column of
the table. After a detailed analysis we conclude that the contribution from the
higher order, cubic and higher, terms are negligibly small. This is found to
be less than 0.1% of the total value. And hence the terms with three or more
orders of closed-shell cluster amplitude, in the dressed properties operator, can
be neglected.

4.4.5 Electric quadrupole HFS constants

The electric quadrupole HFS constants calculated for the alkaline-earth ions
are presented in the Table. 4.7. The same for the ion Yb+ is however listed in
the Table. 4.8. For comparison, data from previous theoretical works as well
as the experimental data are listed. In Table. 4.9 we provide the individual
contributions from different terms in the coupled-cluster properties expression,
Eq.(4.42). Like in magnetic dipole HFS constants, H̃HFS is the sum of the
contributions from the Dirac-Fock and the term which contribute through
closed-shell cluster operators only. The individual contributions follow the
same pattern as the magnetic dipole HFS constants. After the zeroth-order
term, for all the ions, the dominant contribution is from S†H̃HFS, as it includes
the core polarization effects.

To the best of our knowledge there are no experimental data on the quadrupole
HFS constants for the 3p 2p3/2, 3d 2D3/2 and 3d 2D5/2 states of Mg+. The the-
oretical results are also limited to the first two states. Our results 22.849 and
1.168 for the 3p 2p3/2, 3d 2D3/2 states respectively are very close to the results
of the Ref. [101]. The better agreement in the two results is because of the
same method, the coupled-cluster, employed.
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Table 4.7: The electric quadrupole HFS constant for 25Mg+, 40Ca+, 87Sr+ and
137Ba+ ions. All the values are in MHz.

Ion state This work Other works Experiment
25Mg+ 3p3/2 22.849 22.91a −

3d3/2 1.168 1.26a −
3d5/2 1.673 − −

40Ca+ 4p3/2 −6.552 −6.505b −6.7(1.4)f ,−6.7(1.7)g

3d3/2 −2.912 −2.893b,−2.94c, −3.7(1.9)g

−2.777d,−2.77e

3d5/2 −4.301 −4.107b,−4.18c, −3.9(6.0)g,−4.241(4)h

−4.088d,−3.97e

87Sr+ 5p3/2 84.806 82.655i, 83.662j 88.5(5.4)l

4d3/2 33.961 35.075i, 36.051j, −
39.60c

4d5/2 48.055 48.800i, 51.698j, 49.11(6)m

56.451c 49.166k

137Ba+ 6p3/2 98.954 92.275n 92.5(0.2)o

5d3/2 45.765 51.32c, 47.3p, 46.82n 44.541(17)p

5d5/2 62.685 68.16c, 63.2p, 62.27n 59.533(43)p, 60.7(10)q,
62.5(40)r

a Reference[101]. b Reference[102]. c Reference[91]. d Reference[80].
e Reference[85]. f Reference[82]. g Reference[84]. h Reference[99].
i Reference[89]. j Reference[80]. k Reference[79]. l Reference[87].
m Reference[88]. n Reference[105]. o Reference[106]. p Reference[92].
q Reference[103]. r Reference[104].
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Table 4.8: The magnetic dipole and electric quadrupole HFS constants for
173Yb+. All the values are in MHz.

Ion state This work Other works Experiment

HFS constant a
173Yb+ 6s1/2 −3529.660 −3507a −3497.5(6)a, −3508(9)c

6p1/2 −612.362 −638a −518.2(4)a, −600c

6p3/2 −88.973 −107a −
5d3/2 −104.479 −110.31b −
5d5/2 22.078 3.47b −

HFS constant b
173Yb+ 6p3/2 1839.779 1780a 1460(50)d

5d3/2 902.301 951.4b −
5d5/2 1165.046 1190.4b −

a Reference[107]. b Reference[91].
c Reference[108]. d Reference[109].

Several theoretical and experimental data from the previous works implies
that Ca+ is a well studied system. For all the states our calculated results are
in good agreement with the other theoretical data. Our results −6.552 of the
4p 2p3/2 state deviate from the experiment by about 2.2%. The deviation in
the previous work of [102] is slightly larger than ours though both calculations
employ the same method and single-electron basis functions. For the state
3d 2D3/2, there are deviations in our as well as previous theoretical results
from the experimental data. This requires further experimental investigations
as only one data is available. For the 3d 2D5/2 state there is excellent agreement
with the experimental data, the difference is lower than 4p 2p3/2.

Like Ca+, the electric quadrupole HFS constants of Sr+ has been studied in
several theoretical works. Results from the other theoretical and experimental
works along with the ours are listed in the Table. 4.7. Among the previous
works, the calculations of Martensson [89] and Sahoo [79] uses the relativistic
coupled-cluster. We also use the same method. However, the single electron
basis functions used by Martensson [89] are different than ours and Sahoo [79].
As evident from the table, for all the states our results are lower than others.
The present result 84.806 of 5p 2p3/2 state is marginally better than the other
theoretical results. The result of Sahoo [79] for the 4d5/2 state is the best
theoretical result in the table. It has less error with respect to the experiment.
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Table 4.9: Electric quadrupole HFS constants contributions from different
terms in the coupled-cluster properties equation.

State Coupled-cluster terms

H̃hfs S†H̃hfs S†
2H̃hfsS1 S†

1H̃hfsS1 S†
2H̃hfsS2 Other Norm

+c.c. +c.c. terms

25Mg+

6p3/2 164.484 109.511 4.024 2.565 7.769 −2.302 1.001
5d3/2 88.818 26.888 −.573 1.073 −3.540 −0.791 1.005
5d5/2 126.565 34.180 −.848 1.377 −1.911 −1.081 1.005

40Ca+

6p3/2 223.341 170.985 7.425 5.364 −1.153 −3.097 1.002
5d3/2 147.733 46.886 .211 1.305 −7.849 −1.213 1.006
5d5/2 198.596 63.015 .333 1.627 −5.898 −1.508 1.005

87Sr+

6p3/2 164.484 109.511 4.024 2.565 7.769 −2.302 1.001
5d3/2 88.818 26.888 −.573 1.073 −3.540 −0.791 1.005
5d5/2 126.565 34.180 −.848 1.377 −1.911 −1.081 1.005

137Ba+

6p3/2 223.341 170.985 7.425 5.364 −1.153 −3.097 1.002
5d3/2 147.733 46.886 .211 1.305 −7.849 −1.213 1.006
5d5/2 198.596 63.015 .333 1.627 −5.898 −1.508 1.005

173Yb+

6p3/2 56.039 274.025 11.547 9.994 −0.212 6.441 1.001
5d3/2 210.175 112.382 1.292 3.058 −4.128 0.975 1.005
5d5/2 255.658 152.106 2.217 3.080 4.774 −0.041 1.004
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Ours on the other hand is ≈ 2.3% lower than his result.
In the case of Ba+, result of Sahoo [105] for state the 6p 2p3/2 compares

very well with experimental data. Our results for the same is about 7% larger
than his result. However, a remarkably good agreement is found between our
results and the experiment for 5d3/2 and 5d5/2 states. Our result 62.685 for the
5d5/2 state is consistent with the value 62.27 in Sahoo [105]. This is expected,
as mentioned earlier, both calculations employ the same many-body method.
However, for the state 5d3/2 our result is closer to the experimental data than
that of the Ref. [105]. This difference in the results could be on account
of minor differences in the exponents used in the basis set generation or the
truncation of the coupled-cluster properties expression.

The electric quadrupole HFS constant for Yb+ has not been studied in fine
detail. As evident from the Table. 4.8, experimental data is available only
for 6p 2p3/2 state. A large deviation is observed for this state. The error is
about 26% and 22% respectively in our value and the result of the Martensson
and collaborators [107]. Our results are lower but close to the values from
Itano [91]. A closer inspection of the results from Itano’s calculations of the
other ions (Sr+ and Ba+) reveals that, his results are consistently higher than
the other theoretical and experimental data. One possible reason could be the
contracted nature of the virtual orbitals, referred to as the correlation orbitals,
in MCDF calculations. Hence we can expect a similar trend in Yb+ as well
and it is possible that our results may be closer to the actual values.

4.4.6 Electric dipole transition amplitudes

Like in HFS constants, we use CC wave functions and calculate the reduced
matrix element of the dipole operator D for the alkaline-earth ions Sr+ and
Ba+, and Yb+. Results from our calculations are listed in Table. 4.10 and
the contributions from different terms in the properties expression are given in
Table. 4.11. It is evident from this table, like the HFS constants, in all the ions
considered the dominant contribution arises from the DF term. The second
largest contribution is from the term with one order in the open-shell cluster
amplitude. As listed in the penultimate column of the table, the contribution
from the S†

2D̃S2 is larger than S†
1D̃S2 or S†

2D̃S1. This is because of the fact
that S2 are in general larger than S1.

Our Dirac-Fock value of the E1 transition amplitudes matches well with
the results of Guet and Johnson [65] for Sr+ and Ba+. The total value from
our calculations are however higher for Sr+. The difference could be largely
attributed to the higher order core-polarization effects associated with the
random-phase approximation (RPA). The RPA effects are incorporated in the
coupled-cluster but not to higher order as in an iterative RPA calculations.

Unlike Sr+ and Yb+ there are several theoretical calculations of E1 transi-
tion matrix elements for Ba+. Among the previous works, the results of Sahoo
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Table 4.10: Magnitude of the electric dipole transition amplitudes for 87Sr+,
137Ba+, and 173Yb+ ions.

Ion Transition This work Other works

87Sr+ 5p1/2 −→ 5s1/2 3.2180 3.060a

5p3/2 −→ 5s1/2 4.9223 4.325a

5p1/2 −→ 4d3/2 3.4315 3.052a

5p3/2 −→ 4d3/2 1.4217 1.355a

5p3/2 −→ 4d5/2 4.5942 4.109a

137Ba+ 6p1/2 −→ 6s1/2 3.1974 3.300a, 3.36(1)b, 3.272c

6p3/2 −→ 6s1/2 5.0330 4.658a, 4.73(3)b, 4.614c

6p1/2 −→ 5d3/2 3.0898 3.009a, 3.11(3)b, 3.008c

6p3/2 −→ 5d3/2 1.2448 1.312a, 1.34(2)b, 1.313c

6p3/2 −→ 5d5/2 4.1347 4.057a, 4.02(7)b, 4.054c

173Yb+ 6p1/2 −→ 6s1/2 2.9069 2.731d

6p3/2 −→ 6s1/2 4.5256 3.845d

6p1/2 −→ 5d3/2 3.6317 3.782d

6p3/2 −→ 5d3/2 1.4918 1.546d

6p3/2 −→ 5d5/2 4.8500 4.769d

a Reference[65]. b Reference[98].
c Reference[110]. d Reference[111].
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Table 4.11: The electric dipole transition amplitude, contributions from dif-
ferent terms in the coupled-cluster theory.

Transition Coupled-cluster terms

D̃ S†D̃ S†
2D̃S1 S†

1D̃S1 S†
2D̃S2 Norm

+c.c. +c.c.

87Sr+

5p1/2 → 5s1/2 3.4877 −0.2715 −0.0043 0.0129 0.0233 0.9909
5p3/2 → 5s1/2 4.9265 −0.0072 −0.0003.1 0.0187 0.0034 0.9902
5p1/2 → 4d3/2 3.7250 0.2902 −0.0062 0.0178 0.0234 0.9889
5p3/2 → 4d3/2 1.6544 −0.2332 −0.0028 0.0080 0.0122 0.9882
5p3/2 → 4d5/2 −4.9942 0.3967 0.0085 −0.0238 −0.0334 0.9887

137Ba+

6p1/2 → 6s1/2 3.8930 −0.7618 −0.0097 0.0442 0.0715 0.9880
6p3/2 → 6s1/2 −5.4824 0.5275 0.0134 −0.0609 −0.0973 0.9872
6p1/2 → 5d3/2 −3.7530 0.7220 −0.0001 −0.0392 −0.0685 0.9846
6p3/2 → 5d3/2 1.6471 −0.4240 0.0005 0.0161 0.0363 0.9838
6p3/2 → 5d5/2 5.0107 −0.9544 0.0011 0.0485 0.0930 0.9847

173Yb+

6p1/2 → 6s1/2 3.2433 −0.3387 −0.0071 0.0181 0.0247 0.9872
6p3/2 → 6s1/2 −4.5458 0.0282 −0.0001 −0.0231 −0.0430 0.9868
6p1/2 → 5d3/2 −3.8635 0.2336 0.0095 −0.0286 −0.0366 0.9869
6p3/2 → 5d3/2 0.6972 −0.2551 −0.0039 0.0114 0.0165 0.9865
6p3/2 → 5d5/2 −5.1994 0.3448 0.0117 −0.0325 −0.0443 0.9881
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and collaborators [98] are obtained using the same many-body method as ours.
The single-electron basis functions are also same as we have used in the cur-
rent calculations. In the other work [110], they employed the sum over state
scheme in which correlation effects are selectively incorporated from the dom-
inant contributing states. This scheme is in general less accurate than ours.
Except the 6p3/2 → 5d3/2 and 6p3/2 → 5d5/2 transitions, an interesting pattern
is observed for the first three transitions. Our results are higher than [110] but
lies below of [98]. For the transitions 6p3/2 → 5d3/2 6p3/2 → 5d5/2, however,
our results are lower and higher respectively than the other two results.

For Yb+, the work of Safronova and Safronova [111] is the only previous
study on the electric dipole matrix elements. Their calculations are based
on the third order relativistic MBPT and the excellent agreement between
the length and velocity gauge results indicates the results are quite accurate.
Except the 6p3/2 → 6s1/2 transition, our results compare reasonably well with
the Ref. [111]. For the 6p3/2 → 6s1/2 transition, however, a larger deviation is
observed. Our result is about 18% larger than the result of Ref. [111].

80



Chapter 5

Coupled-cluster theory of
two-valence atoms

Apart from the atomic physics CCT has been extensively employed with great
success to study other many-body systems. In the context of atoms, the sin-
gle valence CCT has been applied to a large number of systems for ab initio
calculations of properties [71, 72, 112, 26, 98, 113]. However, for two-valence
systems there are very few attempts to implement CCT and these are limited
to wave-function calculations [114, 115]. The reason is, the two-valence CCT,
unlike the closed-shell and one-valence atoms, is nontrivial. There are three
factors which contributes to the complexity of two-valence CCT. First, though
the many-particle states (determinantal states) spanning the model space are
well defined, the model functions are not defined. For this diagonalization of
the effective Hamiltonian required. Second, atomic states are eigen states of
the total angular momentum obtained from coupling the angular momenta of
the two valence electrons. This leads to complication in the angular factors as-
sociated with the antisymmetrised many electron wave functions. And finally,
calculations often diverges because of the intruder states. In subsequent sec-
tions, we discuss these points in some details and illustrate ways to overcome
these difficulties.

This chapter is broadly separated in to four sections. Sec. I provides
an overview of the multi-reference coupled-cluster with respect to the single-
reference case. The complete and incomplete model spaces are then defined.
The divergence of the CC equations arising from the intruder states are also
discussed in the same section. The two-valence CC equations are derived in the
Sec. II. The schemes for properties calculations of the two-valence atoms are
illustrated in the Sec. III. And finally, the results are presented and analyzed
in the last section of the chapter.
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Figure 5.1: Energy level diagrams for the open-shell two-valence atoms.

5.1 Overview of multi-reference CCT

The multi-reference coupled-cluster (MRCC) is important in the study of the
systems which are degenerate. In multi-reference theory, unlike the single
reference case, several determinants span the model space. Within the frame
work of CCT, there are two approaches to multi-reference theory. These are
the

• Hilbert-space MRCC or the state-universal MRCC (SU-MRCC) and

• Fock-space MRCC or the valence-universal MRCC (VU-MRCC).

In the state universal MRCC approach [116, 117, 118, 119, 120] the wave
operator is unique defined for each of the reference states. In other words, the
wave operator is state dependent. That is

Ω =
∑

i

Ωi =
∑

i

eSi

Pi, (5.1)

where Pi is the projection operator expressed in terms of the determinants
which are the part of model space. The summation index i runs over the all
determinants. S is the excitation operator refereed to as the cluster operator.

In the valence-universal MRCC [121, 122, 123, 124, 125] the wave-operator
is common to all the states. The wave operator in this approach is therefore
expressed as

Ω = {eS}P. (5.2)

The detailed discussions on valence-universal CCT and subtle issues related
to the choice of model spaces are given in the review paper of Lindgren and
Mukherjee [117]. In the present study, we implement the valence-universal
MRCC within the frame work of an all particle approach. The theory can
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however be extended to systems with both particles and holes. In the all
particle approach, the valence electrons are treated as particles [126] and each
sector– closed-shell, one-valence and two-valence–are separate Hilbert spaces.

5.1.1 Complete model space

As mentioned in the previous section, for multi-reference systems a model
space may consist of several configurations with the valence electrons assigned
in different ways. The model space is complete if it includes all the possible
configurations. To illustrate, consider the example of the low lying valence
states 6s, 6p and 5d in atomic Yb. From these states the two-valence con-
figurations, formed by arranging two electrons in all possible ways, are 6s6p,
5d6s, 5d6p, 6s2, 6p2 and 5d2. A complete model space incorporates all of these
configurations.

The key advantage of choosing complete model space (CMS) is that the
wave operator linked. This is because the excitation operators x······ are common
to all the determinants in the model space. And consequently, x······ uniquely
separates into internal and external sectors. The external excitations are clus-
ter operators which excite electrons from cores to valence, valence to virtuals
and cores to virtuals. The internal excitations are those which involve only
valence orbitals. In other words, external excitations contribute to Ω and
projects a model function to the complementary space. Whereas, internal ex-
citations connect one model function to another model function and occurs
in the definition of Heff . Such a neat separation of the excitations is specific
to CMS and another class of model space referred to as quasicomplete [127].
However, the Hilbert spaces of two-valence subsumes the one-valence after a
direct product with a spectator valence state and similarly the closed-shell
after direct product with two valence states.

5.1.1.1 Intruder states

In the case of CMS, specially when it is large, it is very likely that the energy
range of the model space and the complementary space overlaps. When it
does overlap, states of the orthogonal space which have energies within the
range of the model space are referred to as the intruder states. Salomonson
and collaborators were the first to encounter the convergence difficulty because
of the intruder states in the atomic Be [128]. In the CCT the intruder state
leads to difficulties in obtaining the converged solutions of the nonlinear CC
equations. This is because, the equations are solved iteratively and divergences
occur when the denominators are small. This the main drawback of working
with the CMS in CCT.

Consider again the example of the low-lying levels of Yb atom. The first few
excited states important in precision spectroscopy are 6s2 (1S0), 6s6p (3PJ),
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5d6s (3Dj) and 6s6p (1P1). The 6s, 6p and 5d are the obvious choice of valence
shells. As mentioned earlier, CMS of the system then consists of the config-
urations: 6s2, 6s6p, 5d6s, 5d6p, 6p2 and 5d2 and all the other configurations
are in the complementary space. As shown in Fig. 5.2, the levels from the
orthogonal space 6p7p (3PJ), 6s7s (3S1) and 6s7s (1S0) lie within the model
space. With several orthogonal functions within the energy domain of model
functions, CMS based CCT calculations of Yb are likely to face with intruder
state related divergences. Indeed, we do encounter divergence while working
with CMS not only for Yb but in the other two-valence atoms (Ca, Sr and Ba)
as well.
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Figure 5.2: Low-lying energy levels of atomic Yb. This diagram shows the
occurrence of the intruder states in atomic Yb.

5.1.2 Incomplete model space

one method to mitigate the divergence arising from intruder states is to work
with the smaller model space referred to as the incomplete model space. In
these model spaces, only selected the all valence configurations span the model
space and remaining are part of the complementary space. There are however
disadvantages of working with an incomplete model space. First, the clean
separation of internal and external cluster amplitudes is no longer true. And
second, the subsystem embedding condition is violated. For example, cluster
operators which are external in one-valence Hilbert space may no longer be
so in the two-valence Hilbert space. However, all the good virtues of CMS,
in the context of Fock-space CCT, are applicable when the model space is
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quasicomplete. For a lucid description of what constitutes a quasicomplete
model space refer [117, 127].

To provide an example of IMS consider again the low-lying states of Yb. An
ideal incomplete model space would consist of the configurations 6s2, 6s6p and
5d6s. Model space would then encompass all the levels important to ongoing
precision experiments: 6s2 (1S0), 6s6p (3PJ), 5d6s (3Dj) and 6s6p (1P1). The
advantage of such a selection of model space is the separation, as evident in Fig.
5.2, from the potential intruder states 6p7p (3PJ), 6s7s (3S1) and 6s7s (1S0).
Here, we can apply subduction process to check if the model space considered
is quasicomplete and is shown in Fig. 5.3.

Two-valence6s2 6s6p 5d6s

One-valence6s 6p 5d
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Figure 5.3: Incomplete model space of Yb two-valence calculations. Arrows
indicate the subduction to lower valence sectors and respective model spaces.

As depicted in the Fig. 5.3, the initial stage is the two valence model space
consisting of the two electron configurations 6s2, 6s6p and 5d6s. Removal of
one electron from each of the configurations lead to a configuration in one-
valence model space, 6s, 6p and 5d. And finally, removal of another electron
gives the closed-shell model space, a determinantal state of the core orbitals.
All the configurations obtained in the subduction are part of respective model
spaces. This is the requirement of quasicomplete model space and necessary
condition for separation of internal and external excitations.

5.2 Coupled-cluster equations

5.2.1 Exponential ansatz

The eigen value equation of the two-valence systems to solved with coupled-
cluster theory is

HDC|Ψvw〉 = Evw|Ψvw〉. (5.3)
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|Ψvw〉 and Evw are the exact function and the energy respectively. The indices
v and w, here, represent the valence orbitals. In the coupled-cluster

|Ψvw〉 = eT

[
1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]
|Φvw〉. (5.4)

Where, T is the cluster operator of the closed-shell part of the two-valence
system. In CCSD approximation T = T1+T2 and are solutions of, as described
in the previous chapter, the Eqs. (4.8) and (4.9). S

(1)
1 and S

(1)
2 are the one-

valence cluster operators of the two-valence system and these are the solutions
of the Eqs. (4.31) and (4.32)respectively. The two-valence cluster operator

S(2), in Eq.(5.4) has only double S
(2)
2 as it operates on the two-valence reference

state. Like the closed-shell case and one-valence systems, |Φvw〉 is the Dirac-
Fock reference state of the two-valence system.
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Figure 5.4: Representation of the cluster operators which contribute to the
coupled-cluster equations for two-valence atoms.

Using the form of the wave function |Ψvw〉 from Eq. (5.4) in Eq. (5.3) and
operating with e−T , we get

e−THeT
[
1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]
|Φvw〉 =

Evw

[
1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]
|Φvw〉. (5.5)

Using the normal-ordered form the Hamiltonian, H = HN + EDF
vw , we can

further write

HN

[
1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]
|Φvw〉 =

∆Ecorr
vw
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(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]
|Φvw〉, (5.6)

where ∆Ecorr
vw ,= Evw−EDF

vw , is the correlation energy of the two-valence atoms.
As evident from Eq. (5.6), expression of the correlation energy is obtained by
projecting with the reference state 〈Φvw|, in the form

〈Φvw|HN

[
1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]
|Φvw〉 = ∆Ecorr

vw . (5.7)
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In deriving Eq.(5.7) we have used the relations 〈Φvw|S(1)
2 + 1

2
S

(1)
1

2
|Φvw〉 = 0,

and 〈Φvw|S(2)
2 |Φvw〉 = 0, since operation of S(1) and S(2) on |Φvw〉 produce

states orthogonal to |Φvw〉.
To derive the coupled-cluster equations project Eq. (5.6) on the doubly

excited determinant 〈Φpq
vw|. We then get

〈Φpq
vw|HN

[
1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]
|Φvw〉 =

∆Ecorr
vw 〈Φpq

vw|
[
S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]
|Φvw〉, (5.8)

This is the two-valence coupled-cluster equation. As evident from the equation,
to calculate S

(2)
2 we need the cluster operators T1, T2, S

(1)
1 , and S

(1)
2 . Using

Wick’s theorem Eq. (5.8) can be reduced to the form

〈Φpq
vw|H̄N + {H̄NS

(1)
1 }+ {H̄NS

(1)
2 }+ {H̄NS

(2)}+
1

2
{H̄NS

(1)
1

2
}|Φvw〉 =

Eatt
vw 〈Φpq

vw|
[
S

(1)
1 + S

(1)
2 + S

(2)
2 +

1

2
S

(1)
1

2
]
|Φvw〉. (5.9)

Eatt
vw is the difference of the correlated energy of the (n− 2)−electron (closed-

shell) atoms from that of n−electron (two-valence) atoms. It is referred to
as the two-electron attachment energy. Later we describe the diagrams con-
tributing to Eatt

vw and also the procedure to calculate the excitation energy.

5.2.2 Generalized Bloch equation

So far, the CC equations were derived from the eigenvalue equation of the
Dirac-Coulomb Hamiltonian. In this section we discuss an alternative ap-
proach to derive the two-valence CC equations. It is based on the generalized
Bloch equation and this approach is more transparent implementing the CC
equations with incomplete model space. For further consideration, take the
generalized Bloch equation, Eq. (2.26), the renormalization term on the right
hand side is often defined as

W = PV ΩP = (V Ω)close. (5.10)

Here, close indicates that the operator W acts only within the model space.
Diagrammatically, the operator has no free lines in the closed-shell sector and
only valence orbitals as free lines in the open-shell sector. Using Eq. (5.10),
we can write Eq. (2.26) as

[Ω, H0]P = (V Ω− ΩW )P. (5.11)

87



Chapter 5. Coupled-cluster theory of two-valence atoms

From the CC wave function given in Eq. (5.4), the above equation reduces to[
eT

(
1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

)
, H0

]
|Φvw〉 =

[
V eT

(
1 + S

(1)
1 +

1

2
S

(1)
1

2

+S
(1)
2 + S

(2)
2

)
− eT

(
1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

)
W

]
|Φvw〉. (5.12)

In the right-hand side of Eq. (5.12), we can write

V eT =

V + {V T}+
1

2!
{V TT}+

1

3!
{V TTT}+

1

4!
{V TTTT}

 eT ,

=
(
V eT

)
conn

eT = V̄ eT . (5.13)

More details of the derivation are given in Ref. [126]. Using Eq. (5.13) in Eq.
(5.12) and removing eT from both sides of the equation we then get[(

1 + S
(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

)
, H0

]
|Φvw〉 =

[
V̄

(
1 + S

(1)
1 +

1

2

S
(1)
1

2
+ S

(1)
2 + S

(2)
2

)
−
(

1 + S
(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

)
W

]
|Φvw〉. (5.14)

The CC equation is obtained by projecting this equation with the doubly
excited determinant 〈Φvw|. And then it is further simplified using Wick’s
theorem. As as consequence, there are connected and disconnected terms.
However, only the connected terms contribute [47] to Eq. (5.14) and we can
write

〈Φpq
vw|
[(

1 + S
(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

)
, H0

]
conn

|Φvw〉 =

〈Φpq
vw|
[
V̄

(
1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

)
−(

1 + S
(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

)
W

]
conn

|Φvw〉, (5.15)

where the subscript conn refers to connected terms. This equation can be
considered as the CC equation of the two-valence system derived from the
generalized Bloch equation. This, however, can further be simplified through
explicit representation of the contractions. Consider the left hand side of the
Eq. (5.15), we can simplify it as

〈Φpq
vw|
[(

1 + S
(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

)
, H0

]
conn

|Φvw〉 =

〈Φpq
vw|{(1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2 )H0} −

{H0(1 + S
(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2 )}|Φvw〉. (5.16)
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Similarly the terms on right hand side of the Eq. (5.15) are

〈Φpq
vw|
[
V̄

(
1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

)]
conn

|Φvw〉 =

〈Φpq
vw|{V̄ (1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2 )}|Φvw〉,

and

〈Φpq
vw|
[(

1 + S
(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

)
W

]
conn

|Φvw〉 =

〈Φpq
vw|{(S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2 )W}|Φvw〉, (5.17)

since the operator W acts only within the P space 〈Φpq
vw|W |Φvw〉 = 0. From

the definition of the normal Hamiltonian H̄N = V̄ + H̄0 and hence, we can
combine two of the terms as

〈Φpq
vw|{H0(1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2 )}+

{V̄ (1 + S
(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2 )}|Φvw〉 =

〈Φpq
vw|{H̄N(1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2 )}|Φvw〉. (5.18)

Using Eqs. (5.16), (5.17) and (5.17) in (5.15), and define the effective Hamil-
tonian as Heff = H0 +W , we get the CC equation as

〈Φpq
vw|{H̄N(1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2 )}−

{(S(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2 )Heff}|Φvw〉 = 0. (5.19)

The effective Hamiltonian, in above equation, acts within the model space only
and hence the contributing diagrams are close in nature. The above equation
can therefore also be written as

〈Φpq
vw|{H̄N(1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2 )}|Φvw〉 =

Heff〈Φpq
vw|(S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2 )|Φvw〉. (5.20)

This is identical to Eq. (5.9), which is obtained from the eigen value equation
of the Dirac-Coulomb Hamiltonian with the exponential ansatz.
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5.2.3 Renormalization term in the open-shell CCT

The nonzero renormalization term in the CC equation is the predominant
departure of open-shell CC equation from closed-shell CC. In the context of
MBPT it arises in the contraction of the wave operator with the close term
PV ΩP . In CCT too it arises from the contraction of the cluster operator with
the energy term. In the closed-shell case, Eqs. (4.8) and (4.9), renormalization
term vanishes as the energy diagrams do not have any free lines and cannot
contract with the cluster operator. For the open-shell case, energy diagrams
have incoming and outgoing valence free lines and these can contract with the
cluster diagram of S . This leads to nonzero renormalization term.

For example consider the case of two-valence CC, Eq. (5.9). In MBPT, the
diagrammatic representation of the renormalization terms require a contortion
to obtain correct energy denominators. Though CCT is a non-perturbative
theory and energy denominators do not arise, we adopt the same convention
to represent renormalization terms. So that these are distinct from the normal
terms. As example, the folded diagrams which contribute to the renormaliza-
tion term in two-valence CCT are shown in the Fig. 5.5.

(a) (b) (c)

Figure 5.5: Folded diagrams from the renormalization term in the generalized
Bloch equation of two-valence systems. In two-valence coupled-cluster theory
these diagrams arise from (a) Eatt

vw 〈Φpq
vw|S

(1)
2 |Ψvw〉, (b)Eatt

vw 〈Φpq
vw|S

(1)
1 |Ψvw〉 and

(c)Eatt
vw 〈Φpq

vw|S
(2)
2 |Ψvw〉.

5.3 Properties calculations

In this section we describe the schemes to calculate properties with the CC
wave functions of the two-valence systems. Unlike the case of closed-shell and
one-valence atoms, it is nontrivial for systems with more than one valence
electrons. We first describe method to calculate the ionization potential and
excitation energy, then the procedure for the HFS constants calculation is
illustrated and finally, the calculation of E1 transition amplitude.
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5.3.1 Excitation energy from CCT

The two-electron attachment energy in Eq. (5.9), is also expressed as

Eatt
vw = εv + εw + ∆Eatt

vw , (5.21)

where, εv and εw are the Dirac-Fock energy of the valence orbitals. And
∆Eatt

vw = ∆Ecorr
vw −∆Ecorr

0 , is the difference between the correlation energies of
closed-shell and two-valence sector of the atom. ∆Eatt

vw in Eq. (5.21) is repre-
sented by the closed diagrams with free lines representing the valence states at
the vertices’s. Diagrams contributing to ∆Eatt

vw can be separated in to one- and
two-body types. The one-body diagrams are similar to those in Fig. (2.4) but
with the bottom interaction (dotted line) replaced by cluster amplitude (solid
line). Similarly, the two-body diagrams are similar to those in Fig. (2.6) but
the bottom interaction, in the diagrams (b) to (g), is replaced by the cluster
amplitude. After the attachment energy calculation, the excitation energy of
a particular atomic state |Ψv′w′〉 is

∆Ev′w′ = Ev′w′ − Ens2 1S0
, (5.22)

where Ens2 1S0
is the ground state energy. We have used this equation and

calculated the excitation energy for alkaline-earth metal atoms. These results
are presented in the result section of the chapter.

5.3.2 Hyperfine structure constants

As mentioned in the previous chapter while discussing the one-valence systems,
HFS constant is the expectation of the hyperfine interaction Hamiltonian with
respect to the atomic state. Here we start with the Eq. (4.41), which is, after
using the coupled-cluster wave function of two-valence atoms defined in Eq.
(5.4)

〈Ψi|Hhfs|Ψi〉 =
∑
j,k

cij
∗
cik〈Φi|eT †

[
1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]†
Hhfs

×eT

[
1 + S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]
|Φk〉. (5.23)

This is the CC expression to calculate the HFS constants of two-valence elec-
tron atoms. Using the dressed hyperfine operator H̃hfs, defined in Eq. (4.43),
the expression simplifies to

〈Ψi|Hhfs|Ψi〉 =
∑
j,k

cij
∗
cik〈Φj|H̃hfs + H̃hfs

[
S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]
+

[
S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]†
H̃hfs +

[
S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]†
H̃hfs

[
S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]
|Φk〉. (5.24)
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As discussed in the one-valence case, comprehensive inclusion of terms of all
order in T is beyond the scope of current theories and computational resources.
Further more, the contribution from the terms higher than quadratic in T is
≈0.1% of the total value. So we consider the dressed operator only up to
quadratic in T . That is

H̃hfs ≈ Hhfs +HhfsT + T †Hhfs + T †HhfsT. (5.25)

The diagrams contributing to the Eq. (5.25) are separated as effective one- and
two-body operators. Diagrammatic representation of these effective operators
are as shown in Fig. 4.12. It is important to note that the two-body effective
operator, shown in Fig. 4.12(e), arises from the last term in Eq. (5.25). And,
as it has two-orders of T , the hyperfine diagrams obtained after contraction
with S may have negligible contributions.

5.3.2.1 The H̃hfs term

Only the last term i. e. T †HhfsT in the truncated H̃hfs contribute to the
HFS constants of the two-valence systems. There are four diagrams which has

non-zero contribution from this term. These arise from T †
2T2 with the bare

hyperfine interaction hhfs inserted to all the possible orbital lines. Contribution
from these diagrams all together is expected to be very small as it does not
involve S. Contribution from this term is separately given in the result section.

5.3.2.2 The H̃hfs

(
S

(1)
1 + 1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

)
+ h.c. term

There is one diagram each in the terms H̃hfsS
(1)
1 and S

(1)
1

†
H̃hfs. These arise

from the contraction of the two-body effective operator, shown as Fig. 4.12(e),

with the one-valence cluster operator. Similarly, H̃hfsS
(1)
1

2
and its Hermitian

conjugate contribute one diagram each. These are also from the two-body
effective dressed hyperfine operator. Since the two-body effective operator
involves two orders of T , the contribution form these diagrams is expected to
be very small. The contributions from these are listed in the table presented
in the result section of this chapter.

The H̃hfsS
(1)
2 and S

(1)
2

†
H̃hfs terms have one diagram each and these arise

when S
(1)
2 is contracted with the one-body effective operators: S

(1)
2 with dia-

gram in Fig. 4.12(d), and S
(1)
2

†
with diagram in Fig. 4.12(c). The diagram

arising from S
(1)
2

†
H̃hfs is shown in Fig. 5.6(a). Time reversed version of the

same diagram correspond to H̃hfsS
(1)
2 , however, this is not shown in figure. The

contributions from H̃hfsS
(1) and S(1)†H̃hfs are large as these are first order in S.

Further more, Hhfs is one-body interaction and one-body effective interaction
are large.
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: The actual hyperfine diagrams contributing to the terms, S
(1)
2

†
H̃hfs

(a), S(2)†H̃hfs (b), S
(1)
2

†
H̃hfsS

(2) (c) to (e), and S(2)†H̃hfsS
(2) (f). The diagrams

contributing to the corresponding Hermitian conjugate terms are the time
reversed of these diagrams, and are not shown explicitly.

The H̃hfsS
(2)
2 and S

(2)
2

†
H̃hfs terms also contribute one diagram each. These

arise from the contraction of S
(2)
2 with the one-body effective operator of H̃hfs

shown in diagram Fig. 4.12(a). The diagram from S(2)†H̃hfs is shown in Fig.

5.6(b). Like in the previous case, the time reversed diagram arise from H̃hfsS
(2)

and is now shown in the figure. One can expect these terms to form the leading
order as these are the lowest order terms with S

(2)
2 . The two-valence cluster

operator S
(2)
2 is in general larger in magnitude than the one-valence cluster

operator.

(a) (b) (c) (d)

Figure 5.7: Diagrams arising in contraction of S
(1)
2

†
with S

(1)
2 .

5.3.2.3 The S
(1)
1

†
H̃hfs

(
S

(1)
1 + 1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

)
term

The first two terms contribute one diagram each through the two-body effec-
tive operator diagram Fig. 4.12(e). These are not shown here as they have
negligible contribution. There are two diagrams which contribute to the term

S
(1)
1

†
H̃hfsS

(1)
2 . These arise from the contraction of the one-body effective op-

erator diagram Fig. 4.12(d) with S
(1)
2 and S

(1)
1

†
connected at the two free

lines. The last term also has contribution from two diagrams, arising in the
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contraction of S
(1)
1

†
and the effective operator diagram Fig. 4.12(a) with the

two-valence cluster operator diagram. We have not shown these diagrams as
the contribution, because of the S

(1)
1 , is small.

5.3.2.4 The S
(1)
1

2†
H̃hfs

(
S

(1)
1 + 1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

)
term

The first term is the Hermitian conjugate of the term S
(1)
1

†
H̃hfsS

(1)
1

2
, described

in the previous paragraph. And hence contributing diagram is the time re-

versed of those contributing to S
(1)
1

†
H̃hfsS

(1)
1

2
. There is only one diagram which

contribute to the second term. We do not include this term in the actual cal-
culation as there are four orders of S

(1)
1 involved. The third term contribute

two diagrams, arising from the contraction of diagram Fig. 4.12(d) with S
(1)
2 ,

and S
(1)
1

2†
connected at the free lines in all possible ways. There is one dia-

gram from the last term. This is expected to contribute large than the other
diagrams which involve two orders of S

(1)
1 .

(a) (b) (c) (d)

Figure 5.8: Hyperfine diagrams obtained after inserting the Hyperfine inter-
action operator in diagram (b) of Fig.(5.7).

5.3.2.5 The S
(1)
2

†
H̃hfs

(
S

(1)
1 + 1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

)
term

The contributing diagrams in the first two terms are the time reversed of the
those arising from the corresponding Hermitian conjugate terms discussed in
the previous paragraphs. For this reason we do not discuss these terms.

There are sixteen diagram arising from S
(1)
2

†
H̃hfsS

(1)
2 . Topologically these

are the effective one-body diagrams Fig. 4.12(a-b) sandwiched between S
(1)
2

†

and S
(1)
2 . To examine the diagrams in more detail, all the diagrams (four in

all) from S
(1)
2

†
S

(1)
2 are shown in in Fig. 5.7. To each of the diagrams in Fig. 5.7

the effective one-body operator can be inserted in four ways. As an example,
consider the diagram in Fig. 5.7(b), all the four diagrams after inserting the
effective one-body operator are shown in Fig. 5.8.
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There are five diagrams from S
(1)
2

†
H̃hfsS

(2)
2 . These are arise from the con-

traction of S
(1)
2

†
with S

(2)
2 through one-body operators in Fig. 4.12(a) and (c).

The diagrams from S
(1)
2

†
H̃hfsS

(2)
2 are as shown in Fig. 5.6(c-e).

5.3.2.6 The S
(2)
2

†
H̃hfs

(
S

(1)
1 + 1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

)
term

The Hermitian conjugate terms corresponding to the first three terms were
discussed in the previous paragraphs. So we do not consider these again. Only

one diagram arises from the last term, S
(2)
2

†
H̃hfsS

(2)
2 . This diagram is shown

in Fig. (5.6(f). Only Fig. 4.12(a) is the allowed effective one-body operator
which contribute to this term. This term is expected to contribute the most
as only one order of two-valence cluster operator is involved.

5.3.3 Electric dipole transition amplitudes

The E1 transition amplitude, as described in the context of the one-valence
atoms in the previous chapter, is a matrix elements between two opposite
parity states rather than the expectation in the HFS constants case. For
two-valence atoms using the coupled-cluster wave function the E1 transition
amplitude is derived, based on the Eq. (5.24), to the form

〈Ψf ||D||Ψi〉 =
∑
j,k

cfj
∗
cik〈Φj|D̃ + D̃

[
S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]
+

[
S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]†
D̃ +

[
S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]†
D̃

[
S

(1)
1 +

1

2
S

(1)
1

2
+ S

(1)
2 + S

(2)
2

]
|Φk〉. (5.26)

As we see, Eq. (5.26) has the same structure as the Eq. (5.24) for HFS
constants calculation. The only differences are the dipole operator replacing
the hyperfine operator and it is the matrix elements not the expectation. The
contributing diagrams are, therefore, same as those of the HFS constants.
Hence, in actual calculation, we proceed like in HFS and calculate the effective
diagrams, both one- and two-body. These are then contracted with the cluster
operators to contribute to the transition matrix.

5.4 Summary of the results

In this section we present and analyze some of the atomic properties calculated
from the relativistic two-valence CCT for two-valence atoms. Our results are
based on the mathematical expressions that we provide in the previous sections
of the chapter.
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5.4.1 Excitation Energies

Results of the two-electron attachment and the excitation energies of Sr, Ba,
and Yb atoms are listed in the Table. 5.1. For comparison the results from
previous theoretical calculations and experimental data are also listed. The
two-electron attachment energy is calculated using Eq. (5.21), however, to
calculate the excitation energy we use Eq. (5.22). The reason for choosing the
three atoms in our calculations is the significant difference in the sequences
of ns(n − 1)d 3DJ , ns(n − 1)d 1D2, nsnp

3PJ and nsnp 1P1 levels. As evi-
dent from Table. 5.1, in Sr the 5s4d 2S+1DJ levels lies between 5s5p 3PJ and
5s5p 1P1. Whereas the 6s5d 2S+1DJ levels are below the 6s6p 2S+1PJ levels
in Ba. The difference in the level structure can be attributed to the pres-
ence of an additional diffuse shell 4d. The sequence gets more complicated in
Yb, 6s6p 3PJ levels are below 6s5d 3DJ , however, the 6s6p 1P1 lies between
6s5d 3D2 and 6s5d 3D3. It is to be noted that, the difference between Ba and
Yb configurations is the presence of 4f in the Yb core. And, is the cause for
the change in the level sequence.

In the case of atomic Sr, all the previous theoretical results listed in the
table are with the atomic many-body methods different than ours. Porsev and
collaborators [129] provides data for all the states we consider in our calcula-
tions. They have used the method which is a combination of the Configura-
tion interaction and the many-body perturbation theory. The other available
data is from the work of Savukov and Johnson [130] and Vaeck, Godfroid and
Hansen [131]. The former is limited to the states 5s5p 3P1 and 5s5p 1P1,
and they employed the same method as the work of Porsev and collaborators.
However the single electron basis functions used in the two calculations are
very different. And this may be the reason for the difference in the excitation
energies of 5s5p 3P1 and 5s5p 1P1 states. The work of Vaeck and collabora-
tors is limited to 5s4d 1D2 and 5s5p 1P1 and they have used the less accurate
method, the multi-configuration Hartree-Fock (MCHF) theory. The excitation
energies obtained from our calculations are reasonably close to the results of
[129]. The difference, in all the states, is at the milihartree level. For the
state 5s5p 3P2 our result is closest to the experimental value. Our results are
consistently better than the MCHF results of the Ref. [131].

As its evident from the table, quite a few previous theoretical results are
available for the atomic Ba. Among the results listed, the work of Eliav, Kaldor
and Ishikawa [115] uses the method similar to ours. The single electron spin-
orbitals used in the calculations are generated in the same V n − 2 potential.
The other theoretical works of Dzuba and collaborators [132], and Safronova
and collaborators [133] uses similar basis sets but different many-body meth-
ods. The former used CI-MBPT, whereas the later used the recently developed
CI plus all order method [133]. The results from these two calculations are in
better agreement with the experimental data than the results of the Eliav and
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Table 5.1: Two-electron removal energy and the excitation energies calculated
using relativistic coupled-cluster theory. All values are in atomic units.

State Our result Other work Exp. Ref[63].

Evw EE EE EE

87Sr
5s2 1S0 −0.61939 0.0 0.0 0.0
5s5p 3P0 −0.55169 0.06771 0.06566a 0.06524
5s5p 3P1 −0.55170 0.06768 0.06651a, 0.06871b 0.06609
5s5p 3P2 −0.55203 0.06736 0.06833a 0.06788
5s4d 3D1 −0.53551 0.08388 0.08230a 0.08274
5s4d 3D2 −0.53478 0.08461 0.08260a 0.08301
5s4d 3D3 −0.53397 0.08542 0.08312a 0.08347
5s4d 1D2 −0.52594 0.09345 0.09210a, 0.11477c 0.09181
5s4d 1P1 −0.51283 0.10656 0.09851a, 0.10015b, 0.10730c 0.09887

137Ba
6s2 1S0 −0.56439 0.0 0.0 0.0

6s5d 3D1 −0.52303 0.04136 0.04211d, 0.04106e, 0.04119f 0.04116
6s5d 3D2 −0.52170 0.04269 0.04296d, 0.04193e, 0.04200f 0.04199
6s5d 3D3 −0.51960 0.04479 0.04473d, 0.04375e, 0.04366f 0.04375
6s5d 1D2 −0.51030 0.05409 0.05395d, 0.05197e, 0.05298f 0.05192
6s6p 3P0 −0.50667 0.05772 0.05697d, 0.05575e, 0.05591f 0.05589
6s6p 3P1 −0.50540 0.05899 0.05869d, 0.05742e, 0.05758f 0.05758
6s6p 3P2 −0.50311 0.06128 0.06284d, 0.06147e, 0.06159f 0.06158
6s6p 1P1 −0.47291 0.09148 0.08409d, 0.08256e, 0.08125f 0.08229

173Yb
6s2 1S0 −0.68083 0.0 0.0 0.0
6s6p 3P0 −0.59944 0.08140 0.07909g, 0.07874h, 0.07877i 0.07877
6s6p 3P1 −0.59645 0.08439 0.08242g, 0.08200h, 0.08200i 0.08198
6s6p 3P2 −0.58914 0.09170 0.09038g, 0.08999h, 0.09002i 0.08981
6s5d 3D1 −0.56110 0.11973 0.11362g, 0.11425h, 0.11158i 0.11158
6s5d 3D2 −0.55975 0.12109 0.11473g, 0.11136h, 0.11274i 0.11278
6s5d 3D3 −0.55602 0.12481 0.11699g, 0.11503h, 0.11517i 0.11514
6s6p 1P1 −0.55301 0.12782 0.12426g, 0.11253h, 0.11669i 0.11422
6s5d 1D2 −0.54667 0.13416 0.13025g, 0.12595h, 0.12672i 0.12611

a Reference[129]. b Reference [130]. c Reference [131]. d Reference[115].
e Reference[133]. f Reference [132]. g Reference[114]. h Reference[134].
i Reference[135].
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ours. For some of the states, 6s5d 3D1, 6s5d 3D2, 6s6p 3P2, our results are
closer to the experiment than Eliav [115].

Like the atomic Ba, several attempts have been made to produce the correct
energy level sequence and the accurate excitation energies of the states for
atomic Yb. However, this presents a serious challenge. A similar calculation to
ours [114] could not reproduced the experimental sequence. In particular, the
6s6p 1P1 is above the 6s5d 3DJ levels, whereas experimentally it lies between
6s5d 3D2 and 6s5d 3D3. The sequence, however, is correctly reproduced in
another calculation with the CI-MBPT method [134], where the basis set used
is combination of Dirac-Fock orbitals for the core and valence, and virtuals are
generated through recurrent procedure. Our results show the similar energy
level sequence as that of the Ref. [114]. However the excitation energies for
all the states are systematically higher than the previous theoretical data.
The excitation energies from the works [134] and [135] are better than [114]
and ours for all the states. As its clear from the discussions, none of the
results listed in the table follow the same atomic many-body methods and
the single electron basis functions. This could be the reason of the observed
inconsistency among the theoretical data. This atomic system, in our view,
requires a systematic analysis and inclusion of the various correlation effects
in the precision calculations.

5.4.2 Hyperfine structure constants

For the two-valence HFS calculations we have used the Eq. (5.24) describe
in the previous section of the chapter. The results from our calculation are
presented in the Table. 5.2. To compare and analyze, the results from previous
theoretical works and experimental data are also given. As evident from the
table, there are few theoretical and experimental work on the HFS constants
of the neutral alkaline-Earth metal atoms and Yb. However, the importance
of such investigations are likely grow in the near future as these, in particular
Sr and Yb, are candidates of precision experiments and have been cooled to
quantum degeneracy.

Unlike the case of one-valence atomic systems, the HFS contributions from
different terms in the CC HFS equation, Eq. (5.24), are separated in to three
groups. The second column, as in the one-valence atoms, comprise of the
contributions from two terms: the zeroth-order and the terms with only closed-
shell cluster operators. The contribution from the later is far less, almost
negligible, than the former for two-valence atoms. The next column presents
the results from terms which involve the one-body effective dressed properties
operator. And similarly, the last column lists the contributions from the term
with the two-body effective dressed properties operator. As we have mentioned
in the theoretical descriptions, the dominant contribution is from DF term for
all the states in all the atoms considered. The second largest contribution is
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Table 5.2: Magnetic dipole hyperfine structure constant for the atomic systems
87Sr, 137Ba and 173Yb, using relativistic coupled-cluster. All values are in
atomic units.

State Coupled-cluster terms Others Exp.

H̃hfs (H̃hfs)1b (H̃hfs)2b Total

87Sr
5s5p 3P1 −179.103 −49.121 0.002 −228.222 − −260.765(1)j

5s5p 3P2 −200.564 −47.045 0.002 −247.607 − −212.085(5)j

5s4d 3D1 145.433 6.348 0.001 151.586 − −
5s4d 3D2 −56.748 7.095 0.001 −49.654 − −
5s4d 3D3 −133.970 .194 0.002 −133.778 − −
5s4d 1D2 17.503 9.643 0.001 27.145 − −
5s4d 1P1 11.577 4.366 −0.002 15.941 − −

137Ba
6s5d 3D1 −588.088 −19.420 −0.004 −607.512 −547a −521c

6s5d 3D2 396.863 9.067 −0.009 405.921 405a 416c

6s5d 3D3 544.110 4.843 −0.008 548.945 443a 457c

6s5d 1D2 −149.004 −54.967 −0.006 −203.977 −102a −82d

6s6p 3P1 735.756 221.943 −0.004 957.695 1160a 1151e

6s6p 3P2 805.880 204.186 −0.010 1010.056 845a −
6s6p 1P1 −181.732 −38.353 0.009 −220.094 −107a −109f

173Yb
6s6p 3P1 −709.145 −197.665 0.004 −906.806 −1094b −1094.2(6)g

6s6p 3P2 −682.024 −181.832 0.003 −863.853 −745b −738h

6s5d 3D1 550.714 64.941 0.002 615.657 596b 563(1)i

6s5d 3D2 −456.216 −40.287 0.003 −496.500 −351b −362(2)i

6s5d 3D3 −454.458 −22.482 0.002 −476.938 −420b −430(1)i

6s6p 1P1 240.029 65.911 −0.002 305.938 191b 60h

6s5d 1D2 197.207 71.840 0.002 269.049 131b 100(18)i

a Reference[136]. b Reference[134]. c Reference[137]. d Reference[138].
e Reference[139]. f Reference[140]. g Reference[141]. h Reference[142].
i Reference[143]. j Reference[144].
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from the terms with the one-body effective operator. The contribution from
the two-body HFS terms all together is very less in comparison to the previous
two terms.

For the atomic Sr no theoretical data is available in the literature. The
experimental results however are available for only two states 5s5p 3P1 and
5s5p 3P2. Our results for these two states differ by about 12% and 16.5%
respectively, from the experimental values. Since there are not much data
available its inappropriate to comment on the accuracy of these results. This
atom needs to be investigated both theoretically and experimentally.

In the case of atomic Ba, the results of Kozlov and collaborators [136] are
the only theoretical results we could obtain from the literature. As mentioned
earlier, they employed a method which is a combination of the CI and the
MBPT. Considering the experimental results, none of the states have data
from the two different experiments. The results of Kozlov and collaborators
[136] are, however, in better agreement than ours. In our results, the large
discrepancy is observed in the singlet states, 6s6p 1P1 and 6s5d 1D2. The HFS
constants for the state 6s5d 3D2 from our results are in agreement with the
results of the Ref. [136].

Similar to the case of atomic Ba, the HFS constants of the atomic Yb there
is a lack of theoretical and experimental studies. The only previous theoretical
investigation in literature is the work of Porsev, Rakhlina and Kozlov [134].
Their results are in good agreement with the experimental data than ours.
However, the atomic many-body method and the single-electron basis func-
tions used in the two calculations are very different. The large discrepancy in
the our results may be attributed to the nature of the orbitals we have used,
the V N−2 orbitals. On account of the doubly ionized state of the core, the
orbitals are highly contracted and interacts rather strongly with the nucleus.
Such orbitals are suitable for properties calculations of singly ionized states
but not an ideal choice for neutral atoms.

5.4.3 E1 transition amplitude

The electric dipole reduced matrix elements of the two-valence atoms Sr, Ba
and Yb are presented in the Tables. 5.3, 5.4 and 5.5 respectively. In all the
cases, like the HFS constants, contributions from different terms are grouped
in to three categories. And the corresponding values are listed the tables. As
evident from the tables, the individual contributions follow the same trend
as the HFS constants. For all the atoms the dominant contribution is from
the Dirac-Fock term. The next prominent contribution is from the effective
one-body operator. And then the terms with only closed-shell cluster opera-
tors, D̃ −DF contributes. As mentioned in the HFS case, there is negligible
contribution from the terms with the two-body effective operator.

Out of the transitions we have considered in our calculations, the previous
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Table 5.3: E1 transition amplitudes for the atomic system 87Sr, using rela-
tivistic coupled-cluster theory. All values are in atomic units.

Transition Coupled-cluster terms Others

DF D̃-DF (D̃)1b (D̃)2b Total

3P1 → 1S0 −0.3759 −0.0001 0.8257 0.00001 0.4497 0.16a,
0.162b

1P1 → 1S0 −4.2442 0.0000 0.5283 −0.00002 −3.7159 5.28a,
5.238b,
1.9539c

3P0 → 3D1 2.6323 −0.0002 −0.3131 0.00000 2.3190
3P1 → 3D1 2.2652 0.0013 0.1116 0.00000 2.3781
3P2 → 3D1 0.5849 0.0009 0.3772 −0.00001 0.9630
1P1 → 3D1 0.2255 −0.0005 −0.2496 −0.00001 −0.0247
3P1 → 3D2 3.9538 0.0012 −0.5437 −0.00001 3.4114
3P2 → 3D2 2.2646 0.0006 0.0700 0.00001 2.3352
1P1 → 3D2 0.7531 −0.0004 −0.1054 0.00001 0.6473
3P2 → 3D3 −5.3938 −0.0001 0.3111 0.00001 −5.0828
3P1 → 1D2 −0.8822 0.0012 0.0387 0.00000 −0.8423 0.19a

3P2 → 1D2 −0.2854 0.0002 −0.3597 −0.00001 −0.6448 0.10a

1P1 → 1D2 −4.5484 −0.0008 0.3860 −0.00001 −4.1632 1.92a

a Reference[129]. b Reference[130]. c Reference[131].
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Table 5.4: E1 transition amplitudes for the atomic system 137Ba, using rela-
tivistic coupled-cluster theory. All values are in atomic units.

Transition Coupled-cluster terms Other work

DF D̃-DF (D̃)1b (D̃)2b Total

3P1 → 1S0 0.3888 −0.0003 −0.8090 0.00000 0.4205 0.4537a

1P1 → 1S0 −4.6768 −0.0002 0.6730 0.00000 4.0040 5.236a

3P0 → 3D1 2.6203 0.0004 −0.2585 0.00000 2.3622 2.3121a

3P1 → 3D1 2.2405 −0.0023 −0.0195 0.00000 2.2187 2.0108a

3P2 → 3D1 −0.5715 0.0019 −0.4782 0.00000 1.0478 0.5275a

1P1 → 3D1 −0.3364 −0.0002 0.3546 0.00000 0.0180 0.1047a

3P1 → 3D2 3.8886 −0.0022 −0.1585 0.00001 3.7279 3.4425a

3P2 → 3D2 −2.2265 0.0013 0.1007 −0.00001 2.1245 2.024a

1P1 → 3D2 −0.3874 −0.0005 0.0833 −0.00000 0.3046 0.4827a

3P2 → 3D3 5.3410 −0.0004 −0.3409 −0.00001 4.9997 4.777a

3P1 → 1D2 −1.1039 −0.0018 0.1178 0.00000 0.9879 0.1610a

3P2 → 1D2 0.4458 0.0005 0.5219 0.00001 0.9682 0.1573a

1P1 → 1D2 4.4933 −0.0011 −0.0773 0.00000 4.4149 1.047a

a Reference[132].
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Table 5.5: E1 transition amplitudes for the atomic system 173Yb, using rela-
tivistic coupled-cluster theory. All values are in atomic units.

Transition Coupled-cluster terms Others

DF D̃-DF (D̃)1b (D̃)2b Total

3P1 → 1S0 0.1445 −0.0003 −0.5320 0.00000 −0.3878 0.54(8)a,
0.44b,
0.587c

1P1 → 1S0 −3.8641 −0.0001 0.5999 −0.00001 −3.2643 4.40(80)a,
4.44b,
4.89d,
4.825c

3P0 → 3D1 2.7296 0.0001 −0.3209 0.00000 2.4088 2.61(10)a,
2.911c

3P1 → 3D1 2.3473 −0.0005 0.1811 0.00003 2.5279 2.26(10)a

3P2 → 3D1 −0.5997 0.0000 −0.2343 0.000002 −0.8340 0.60(12)a

1P1 → 3D1 −0.4503 −0.0002 0.1702 0.00000 −0.2803 0.27(10)a,
0.24b

3P1 → 3D2 3.9875 −0.0005 −0.6480 0.00002 3.3390 4.03(16)a

3P2 → 3D2 −2.2940 −0.0002 −0.1010 −0.00003 −2.3952 2.39(1)a

1P1 → 3D2 0.0716 −0.0003 0.0660 0.00000 0.1373 0.32(6)a,
0.60b

3P2 → 3D3 5.6130 0.0000 −0.3215 −0.00001 5.2915 6.12(30)a

3P1 → 1D2 −1.1920 −0.0006 0.0995 0.00000 −1.0931 0.54(10)a

3P2 → 1D2 0.5946 0.0002 0.3601 0.00000 0.9549 0.38(8)a

1P1 → 1D2 4.7006 −0.0002 −0.5209 0.00000 4.1795 3.60(70)a

a Reference[145]. b Reference[146]. c Reference[135]. d Reference[147].
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theoretical results are limited to 〈4s4p 3P1||D||4s2 1S0〉, 〈4s4p 1P1||D||4s2 1S0〉,
〈4s4p 3P1||D||4s4d 1D2〉, 〈4s4p 3P2||D||4s4d 1D2〉, and 〈4s4p 1P1||D||4s4d 1D2〉,
for the atomic Sr. These are calculated using atomic many body methods
significantly different than ours. Our results show large deviation from the
previous theoretical values. In the case of Ba, the previous theoretical calcu-
lations were done by Dzuba and Ginges [132]. They have used the combined
CI+MBPT. The single electron spin orbitals are g enerated in the VN−2 po-
tential, which is similar to the ours. The best agreement is for the transitions
〈6s6p 3D1||D||6s2 1S0〉 and 〈6s6p 3DJ ||D||6s5d 3DJ〉. There are large deviations
for the matrix elements involving the 6s6p 1P1 and 6s5d 1D2 states.

In comparison to Sr and Ba there are quite a few theoretical data of
the E1 reduced matrix elements of atomic Yb. For some of the transitions
our results are in good agreement with the previous works. Our results for
〈6s6p 3P0||D||6s5d 3D1〉, 〈6s6p 3P1||D||6s5d 3D1〉, 〈6s6p 1P1||D||6s5d 3D1〉,
and 〈6s6p 3P2||D||6s5d 3D2〉, compare well with that of Porsev and collab-
orators [145]. The large deviations are however observed in the transitions
〈6s6p 1P1||D||6s2 1S0〉, 〈6s6p 3P1||D||6s5d 3D2〉, 〈6s6p 3P2||D||6s5d 3D3〉, and
〈6s6p 3P1||D||6s5d 1D2〉. These discrepancies are partly attributed to the dif-
ferent atomic many-body methods used in the two calculations. And partly
to the nature of the potential used to generate the orbitals.
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Chapter 6

Coupled-cluster theory with
PNC perturbation

In the previous chapters we studied relativistic CCT of closed-shell, one-
valence and two-valence atomic systems for the Dirac-Coulomb Hamiltonian.
However, there are atomic properties of interest which are associated with
external perturbations, for example an atom in electromagnetic fields. In
the context of the atomic many-body theories, these additional interactions
are treated as perturbations to the atomic Hamiltonian. These modify the
wave function and energy of the atom. The precise calculations of the rele-
vant atomic properties require a systematic inclusion of the correlation effects
arising from the perturbation. The perturbed coupled cluster method is the
appropriate one. In this chapter we discuss and derived the perturbed CC
equations for closed-shell, one- and two-valence atoms. We also describe the
scheme to calculate the E1PNC transition amplitudes using perturbed CC
wave function.

This chapter is organize as follows. The first Section deal with the closed-
shell atomic systems with the perturbation. In particular, we treat the PNC
electron-nucleus as perturbation and the closed-shell perturbed CC equations
are derived. Sec. II describes the implementation of the perturbed CC theory
of one-valence atoms. This is applied to calculate the E1PNC transition
amplitudes in the same section. The perturbed CC method and application
to calculate E1PNC of two-valence atomic systems is discussed in Sec. III.
And the last Section is about the analysis of the results.

6.1 Closed-shell systems

There are several closed-shell atoms which are of experimental interests and
have important implications to new physics. Perhaps among all the experi-
ments, the electric dipole moment (EDM) of the atoms originating from the
hadron sector [112, 148, 149] is the most important one. To extract new physics
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Figure 6.1: Representation of the single and double perturbed cluster operators
contributing at the level of closed-shell perturbed CC.

from the experimental and theoretical results, it essential that the two should
be of comparable accuracy. And for the theoretical calculations with CCT,
the perturbed CC theory plays an important role. In this section we derive
the perturbed CC equations and use the wave function to calculate the dipole
polarizibility of the inert-gas atoms.

6.1.1 Perturbed CC equations

In presence of the PNC interaction Hamiltonian HPNC, the Schroedinger equa-
tion of closed-shell atoms is(

HDC + λHPNC

)
|Ψ̃0〉 = Ẽ|Ψ̃0〉. (6.1)

Here |Ψ̃0〉 is the perturbed wave function, Ẽ,= E + λE1, is the corresponding
eigenvalue and λ is the perturbation parameter. The perturbed wave function

is the sum of the unperturbed wave function and a correction |Ψ1

0〉 arising from
HPNC. That is

|Ψ̃0〉 = |Ψ0〉+ λ|Ψ1

0〉. (6.2)

Following the description of closed-shell unperturbed coupled-cluster wave
function, the perturbed wave function in the coupled-cluster is

|Ψ̃0〉 = eT (0)+λT (1)|Φ0〉. (6.3)

The cluster operator T (0) is the unperturbed operator. The cluster opera-
tor T (1), however, incorporates the effect of HPNC and is referred to as the
perturbed CC operator. It acts on the reference state |Φ0〉 to generate the
correction. Considering the perturbation expansion to first order in λ, we can
write Eq. (6.3) as

|Ψ̃0〉 = eT (0)

(1 + λT (1))|Φ0〉. (6.4)

Using Eq. (6.4) in Eq. (6.1)

(
HDC + λHPNC

)
eT (0) [

1 + λT (1)
]
|Φ0〉 = EeT (0) [

1 + λT (1)
]
|Φ0〉, (6.5)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.2: Diagrams which contribute to the perturbed coupled-cluster equa-
tion for singles at the linear level.

where we have used the relation E1 = 〈Ψ0|H1|Ψ0〉 = 0, as HPNC is an odd
parity operator it does not connect states of same parity. Using the normal-
ordered form of the Hamiltonian, HN = H − 〈Φ0|H|Φ0〉, above equation can
be be simplified to

(HN + λHPNC) eT (0) [
1 + λT (1)

]
|Φ0〉 = ∆EeT (0) [

1 + λT (1)
]
|Φ0〉, (6.6)

where ∆E is the correlation energy of the atom. The terms which are first-
order in λ is [

HNT
(1) +HPNC

]
eT (0)|Φ0〉 = ∆ET (1)eT (0)|Φ0〉. (6.7)

Operating with e−T (0)
and projecting on singly and doubly excited states 〈Φp

a|
and 〈Φpq

ab|, we get the working equations of the singles and doubles perturbed
cluster amplitudes

〈Φp
a|{H̄NT

(1)}|Φ0〉 = −〈Φp
a|H̄PNC|Φ0〉, (6.8)

〈Φpq
ab|{H̄NT

(1)}|Φ0〉 = −〈Φpq
ab|H̄PNC|Φ0〉. (6.9)

The dressed Hamiltonian H̄N is same as in Eq. (4.10).

6.1.2 Linearized perturbed CC equations

The dressed Hamiltonian’s, H̄N and H̄PNC, in the linear approximation are

H̄N = HN + {HNT
(0)}, (6.10)

H̄PNC = HPNC + {HPNCT
(1)}. (6.11)
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(f) (g) (h) (i) (j)

(a) (b) (c) (d) (e)

Figure 6.3: Diagrams which contribute to the perturbed coupled-cluster equa-
tion for doubles at the linear level.

Using the above approximations in Eqs. (6.8) and (6.9), we get the perturbed
coupled-cluster equations of singles and doubles in the CCSD approximation
as

〈Φp
a|{HNT

(1)
1 }+ {HNT

(1)
2 }|Φ0〉 = −〈Φp

a|HPNC + {HPNCT
(0)
1 }

+{HPNCT
(0)
2 }|Φ0〉, (6.12)

〈Φpq
ab|{HNT

(1)
1 }+ {HNT

(1)
2 }|Φ0〉 = −〈Φpq

ab|HPNC + {HPNCT
(0)
1 }

+{HPNCT
(0)
2 }|Φ0〉. (6.13)

Diagrams corresponding to the left- and right-hand sides of the singles equation
are shown in the Figs. 6.2 and 6.4 respectively. And the those corresponding
to the doubles equation are shown in Figs. 6.3 and 6.5.

rs

(a)

rs

(b)

rs

(c)

rs

(d)

rs

(e)

Figure 6.4: Coupled-cluster diagrams which contribute to the right-hand side
of the Eq. (6.8). The line terminated with the square represent the HPNC

operator.

opposite parity states rather than the e
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rs

(a)

rs

(b)

Figure 6.5: Coupled-cluster diagrams which contribute to the right-hand side
of the Eq. (6.9). The line terminated with square is to represent the PNC
interaction.

6.1.3 Dipole polarizibility from CCT

We calculate the dipole polarizibility to test the quality of the unperturbed
and perturbed wave functions. When an atom is subjected to an external
electric field E , it induces a dipole to the atom. The induced dipole moment
is

Dinduced = αE , (6.14)

where α is the dipole polarizibility of the atom. In terms of the perturbed
CC wave function it is the expectation of the dipole operator in the perturbed
atomic states. That is

α = 〈Ψ̃0|D|Ψ̃0〉. (6.15)

Using the form of the perturbed CC wave function from Eq. (6.3), we get

α = 〈Φ0|eT (0)†
(1 + λT (1))†DeT (0)

(1 + λT (1))|Φ0〉,
= 〈Φ0|D +DT (1) + T (1)†D + T (1)†DT (1)|Φ0〉. (6.16)

This the expression of the dipole polarizibility using CCT. In the above equa-

tion, the operator D = eT (0)†
DeT (0)

is the unitary transformed electric dipole
operator and is usually refereed to as the dressed dipole operator. It is evident
that the dipole polarizibility, in terms of perturbed cluster operator, distinctly
different from the sum over states approach. In the sum over states scheme,
contributions from a selected set of intermediates states are summed over.
This is, however, not recommended for high precision calculations. In Eq.
(6.16), contributions from all intermediate states within the chosen configura-
tion space are included. For precision calculations, this is a very important
advantage.

The diagrams contributing to the Eq. (6.16) are obtained by using the
Wick’s theorem. Contraction should be made in such a way that there should
be no free lines at any of the vertices. In our studies, we also examine the
contribution from the approximate triples. In the Fig. 6.6 we have shown an
example diagram for each of the approximate triples and the dipole polariz-
ibility.
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a p b r

q
c s

(a)

a p b q

r

c s

(b)

Figure 6.6: Diagrams of approximate triples calculated perturbatively:(a) (a)
Representation of approximate perturbed triples. (b) Contribution of approx-
imate perturbed triples to the dipole polarizibility.

6.2 One-valence systems

For one-valence atoms, the E1PNC transition amplitudes [26, 25, 24, 31, 151]
and the atomic EDM arising from the electron EDM [71, 154] are some of
the important atomic properties of current interests. These require precise
atomic theory calculations and the one-valence perturbed CC method is an
ideal choice for these calculations. In this section we derive the perturbed CC
equations and employ it to compute E1PNC of selected one-valence ions.

6.2.1 Perturbed CC equation from exponential ansatz

Following the perturbed Schroedinger equation of the closed-shell atoms, Eq.
(6.1), the equation for one-valence systems is

(H + λHPNC)|Ψ̃v〉 = (Ev + λE1
v)|Ψ̃v〉, (6.17)

where the first-order energy correction E1
v = 〈Ψv|HPNC|Ψv〉 = 0. In the CCT

the mixed parity state is describe using the cluster operators

|Ψ̃v〉 = eT
(
1 + λT (1)

) (
1 + S + λS(1)

)
|Φv〉, (6.18)

where |Φv〉 is the one-valence reference state. The newly introduced cluster
operator S(1) is referred to as the one-valence perturbed CC operator. Using
Eq. (6.18 in Eq. (6.17)

(H + λHPNC) eT
(
1 + λT (1)

) (
1 + S + λS(1)

)
|Φv〉

= Eve
T
(
1 + λT (1)

) (
1 + S + λS(1)

)
|Φv〉. (6.19)

Operating above equation with e−T and retaining the terms which are first-
order in λ, we get[

e−THeTS(1) + e−THeTT (1)(1 + S) + e−THPNCe
T (1 + S)

]
|Φv〉

=
[
EvS

(1) + EvT
(1)(1 + S)

]
|Φv〉. (6.20)
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Using normal-ordered form of the Hamiltonian, HN = H − 〈Φv|H|Φv〉, we can
further write [

H̄NS
(1) + H̄NT

(1)(1 + S) + H̄PNC(1 + S)
]
|Φv〉

=
[
∆EvS

(1) + ∆EvT
(1)(1 + S)

]
|Φv〉, (6.21)

where ∆Ev,= Ev − 〈Φv|H|Φv〉, is the correlation energy of the one-valence
atom. Projecting Eq. (6.21) with the excited determinants 〈Φp

v| and 〈Φpq
va|, we

get the perturbed CC equations of the singles and doubles respectively. These
are

〈Φp
v|H̄NS

(1) + H̄NT
(1)(1 + S) + H̄PNC(1 + S)|Φv〉 =

∆Ev〈Φp
v|S

(1)
1 |Φv〉, (6.22)

〈Φpq
vw|H̄NS

(1) + H̄NT
(1)(1 + S) + H̄PNC(1 + S)|Φvw〉 =

∆Ev〈Φpq
vw|S

(1)
2 |Φvw〉. (6.23)

In deriving above equations we have used the relations,

〈Φp
v|T (1)|Φv〉 = 0 and 〈Φp

v|T (1)S|Φv〉 = 0, (6.24)

as T (1), being the cluster operator of closed-shell sector, does not contribute to
the CC equation of S

(1)
1 . The same is also true for the doubles. Using Wick’s

theorem the CC Eqs. (6.22) and (6.23), can further be simplified to the form

〈Φp
v|{H̄NS

(1)}+ {H̄NT
(1)}+ {H̄NT

(1)S}+ {H̄PNC(1 + S)}|Φv〉
= Eatt

v 〈Φp
v|S

(1)
1 |Φv〉, (6.25)

〈Φpq
vw|{H̄NS

(1)}+ {H̄NT
(1)}+ {H̄NT

(1)S}+ {H̄PNC(1 + S)}|Φv〉
= Eatt

v 〈Φp
v|S

(1)
2 |Φvw〉. (6.26)

where Eatt
v is the attachment energy of the valence electron and is described in

Eq. (4.35). In Eqs. (6.25) and (6.26), the disconnected terms {HNT
(1)} and

{HNT
(1)S} do not contribute to the CC equations of single and double cluster

operators.

6.2.2 Perturbed CC equations from Bloch equation

In the presence of PNC perturbation Hamiltonian the Bloch equation, Eq.
(5.11), assumes the form

[Ω + λΩPNC, H0]P =
(
(V + λHPNC)(Ω + λΩPNC)− (6.27)

(Ω + λΩPNC)(W + λWPNC

)
P. (6.28)
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Figure 6.7: Representation of the single and double perturbed cluster operators
contributing at the level of one-valence perturbed CC.

Following Eq. (5.10), in the above equation

WPNC = P (V ΩPNC +HPNCΩ)P = 0, (6.29)

as WPNC acts within the same model space and the operators ΩPNC and HPNC

connects states of opposite parity. To obtain the Bloch equation appropriate
for the perturbed CCT retain terms linear in λ from the above equation. We
then get

[ΩPNC, H0]P =
(
V ΩPNC +HPNCΩ− ΩPNCW

)
P. (6.30)

Using the CC wave operators

Ω = eT (1 + S) and ΩPNC = eT (T (1) + S(1) + T (1)S), (6.31)

the Eq. (6.30) assumes the form[
eT (T (1) + S(1) + T (1)S), H0

]
|Φv〉 =

(
V eT (T (1) + S(1) + T (1)S) +

HPNCe
T (1 + S)− eT (T (1) + S(1) + T (1)S)W

)
|Φv〉. (6.32)

Following the derivation, Eq. (5.13), of the previous chapter, in the right-hand
side of Eq. (6.32)

V eT =
(
V eT

)
conn

eT = V̄ eT , and (6.33)

HPNCe
T = H̄PNCe

T . (6.34)

Using Eqs. (6.33) and (6.34) and removing eT from both side of the equations,
we get[

T (1) + S(1) + T (1)S,H0

]
conn
|Φv〉 =

[
V̄ (T (1) + S(1) + T (1)S) +

H̄PNC(1 + S)− (T (1) + S(1) + T (1)S)W
]

conn
|Φv〉. (6.35)

We have retained only connected terms in this equation based on the argument
given in the chapter. IV. The CC equation of singles is obtained by projecting
this equation with the excited determinant 〈Φp

v|.

〈Φp
v|
[
T (1) + S(1) + T (1)S,H0

]
conn
|Φv〉 = 〈Φp

v|
[
V̄ (T (1) + S(1) + T (1)S) +

H̄PNC(1 + S)− (T (1) + S(1) + T (1)S)W
]

conn
|Φv〉.(6.36)
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To simplify it further, various terms in Eq. (6.36) are derived in the following
way. The left-hand side of this equation is

〈Φp
v|
[
T (1) + S(1) + T (1)S,H0

]
conn
|Φv〉 = 〈Φp

v|
[
S(1), H0

]
|Φv〉, (6.37)

as the closed-shell cluster operator T (1) can not contract with H0 and con-
tribute to the S

(1)
1 equation. Similarly, for the other terms

〈Φp
v|V̄ T (1)|Φv〉conn = 〈Φp

v|{V T (1)}|Φv〉, (6.38)

〈Φp
v|V̄ T (1)S|Φv〉conn = 〈Φp

v|{V̄ T (1)S}|Φv〉, (6.39)

〈Φp
v|T (1)W |Φv〉conn = 0, (6.40)

〈Φp
v|S(1)W |Φv〉conn = 〈Φp

v|{S(1)W}|Φv〉conn. (6.41)

Using Eqs. (6.37) - (6.41), Eq. (6.36) is simplified to the form

〈Φp
v|{H̄NT

(1)}+ {H̄NS
(1)}+ {H̄NT

(1)S}+ {HPNC(1 + S)}|Φv〉 = (6.42)

Heff〈Φp
v|S

(1)
1 |Φv〉. (6.43)

Where we have used the relations

H0 = H̄0 , H̄0 + V̄ = H̄N , V̄ T (1)(1 + S) = H̄NT
(1)(1 + S), (6.44)

as no closed-shell cluster contributes to CC S(1) equation after contraction with
the open-shell cluster operator or with the H0. The same is true when T or
T (1) contract with the renormalization term W . Following the same procedure,
for doubles as

〈Φpq
vw|{H̄NT

(1)}+ {H̄NS
(1)}+ {H̄NT

(1)S}+ {HPNC(1 + S)}|Φvw〉 = (6.45)

Heff〈Φpq
vw|S

(1)
2 |Φv〉. (6.46)

As we can see Eqs. (6.43) and (6.46) are same as Eqs. (6.25) and (6.26)
respectively, which were derived earlier.

6.2.3 E1PNC from coupled-cluster theory

The perturbed closed- and open-shell wave functions calculated in the previous
section can be used to investigate the PNC effects in the atomic systems.
In this section we derive the expression to calculate E1PNC from CC wave
functions. From the CC wave function Eq.(6.18)

E1PNC = 〈Ψ̃w||D||Ψ̃v〉
= 〈Φw||eT †

(1 + λT (1))†(1 + S + λS(1))†DeT (1 + λT (1))

(1 + S + λS(1))||Φv〉. (6.47)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.8: Some of the leading-order diagrams contributing to the Eq. (6.50).
Exchange diagrams are not shown. The zigzag line represent the cluster opera-
tors T

(1)
1 or S

(1)
1 . Line terminated with the circle represent the dipole operator.

And the solid line with and without a bar in the middle is to represent the
cluster operator S

(1,1)
2 and S

(1,0)
2 respectively.

Retaining only the terms which are linear in λ, we get

E1PNC = 〈Φw||eT †
(1 + S)†DeT (T (1) + S(1) + T (1)S) +

eT †
(T (1) + S(1) + T (1)S)†DeT (1 + S)||Φv〉. (6.48)

Using the commutation relation of the cluster-operators and the expression of
the dressed dipole operator

D̄ = eT †
DeT , (6.49)

the E1PNC can further be written as

E1PNC = 〈Φw||D̄(T (1) + S(1) + T (1)S) + (T (1) + S(1) + T (1)S)†D̄ +

S†D̄(T (1) + S(1) + T (1)S) + (T (1) + S(1) + T (1)S)†D̄S||Φv〉. (6.50)

The diagrammatic representation of Eq. (6.50) is obtained by using Wick’s
theorem. Some of the leading diagrams are shown in Fig. 6.8.

6.3 Two-valence systems

As mentioned earlier, there very few investigations on the CCT of two-valence
systems. There are few applications [114, 115] and these too are at the un-
perturbed CC level. The properties calculations using perturbed CC of two-
valence systems has not been attempted. The atomic properties like E1PNC
amplitude [38, 39, 40, 28, 41, 15] and the atomic EDM have important con-
sequences in fundamental physics. It is therefore important to implement
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perturbed CC method and carry out precise theoretical calculations. In this
section we derive the perturbed CC equations and discuss the procedure to
calculate E1PNC of two valence systems.

6.3.1 Perturbed CC equations

As mentioned in the one-valence case, in presence of the PNC perturbation
Hamiltonian the wave operator in the Bloch equation is separated as

Ω = Ω + λΩPNC. (6.51)

In the CCT, for two-valence atomic systems

Ω = eT

(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
,

ΩPNC = eT

(
T (1) + S(1,1) + S(2,1) +

1

2
S(1,1)2

)
+

eTT (1)

(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
. (6.52)

S(1,0) and S(1,1) are the unperturbed and perturbed cluster operators, respec-
tively, of the one-valence part. Similarly, S(2,0) and S(2,1) are the two-valence
cluster operators of the unperturbed and perturbed atomic systems. Using
Eq. (6.52) in the Bloch equation (6.30)[

eT

(
T (1) + S(1,1) + S(2,1) +

1

2
S(1,1)2

)
+

eTT (1)

(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
, H0

]
P =[

V eT

(
T (1) + S(1,1) + S(2,1) +

1

2
S(1,1)2

)
+ V eTT (1)

(
1 + S(1,0) + S(2,0)+

1

2
S(1,0)2

)
+HPNCe

T

(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
− eT

(
T (1) + S(1,1)+

S(2,1) +
1

2
S(1,1)2

)
W − eTT (1)

(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
W

]
P.(6.53)

Using Eqs. (6.33) and (6.34) in Eq. (6.53) and removing eT from both
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Figure 6.9: Representation of the single and double perturbed cluster operators
contributing at the level of two-valence perturbed CC.

sides of the equation we get[(
T (1) + S(1,1) + S(2,1) +

1

2
S(1,1)2

)
+

T (1)

(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
, H0

]
P =[

V̄

(
T (1) + S(1,1) + S(2,1) +

1

2
S(1,1)2

)
+ V̄ T (1)

(
1 + S(1,0) + S(2,0)+

1

2
S(1,0)2

)
+ H̄PNC

(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
−
(
T (1) + S(1,1)+

S(2,1) +
1

2
S(1,1)2

)
W − T (1)

(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
W

]
P.(6.54)

The CC equation is obtained by projecting Eq. (6.54) with the excited deter-
minant 〈Φpq

vw|. This equation contains both connected and disconnected terms,
after the Wick’s theorem is applied. Retaining only the connected terms, dif-
ferent terms in Eq. (6.54) are simplified in the following way.

〈Φpq
vw|
[
T (1) + S(1,1) + S(2,1) +

1

2
S(1,1)2, H0

]
conn

|Φvw〉 =

〈Φpq
vw{(S(1,1) + S(2,1) +

1

2
S(1,1)2)H0} − {H0(S

(1,1) + S(2,1) +
1

2
S(1,1)2)}|Φvw〉,

(6.55)

as no contraction is possible with T (1) and contribute to the CC equation of
S(2,1). For the same reason

〈Φpq
vw|
[
T (1)(1 + S(1,0) + S(2,0) +

1

2
S(1,0)2, H0

]
conn

|Φvw〉 = 0. (6.56)

Similarly, for other terms

〈Φpq
vw|V̄

(
T (1) + S(1,1) + S(2,1) +

1

2
S(1,1)2

)
conn

|Φvw〉 =

〈Φpq
vw|{V̄ (S(1,1) + S(2,1) +

1

2
S(1,1)2)}|Φvw〉. (6.57)
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〈Φpq
vw|V̄ T (1)

(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
conn

|Φvw〉 =

〈Φpq
vw|{V̄ T (1,1)(1 + S(1,0) + S(2,0) +

1

2
S(1,0)2)}|Φvw〉. (6.58)

〈Φpq
vw|H̄PNC

(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
conn

|Φvw〉 =

〈Φpq
vw|{H̄PNC(S(1,0) + S(2,0) +

1

2
S(1,0)2)}|Φvw〉, (6.59)

as HPNC alone does not contribute to the S(2,1).

〈Φpq
vw|
(
T (1) + S(1,1) + S(2,1) +

1

2
S(1,1)2

)
conn

W |Φvw〉 =

〈Φpq
vw{(S(1,1) + S(2,1) +

1

2
S(1,1)2)W}|Φvw〉, (6.60)

〈Φpq
vw|
(
T (1) + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
conn

W |Φvw〉 = 0, (6.61)

as T (1) does not contract with W to give S(2,1). Using Eqs. (6.55) - (6.61)
in Eq. (6.54) we get the perturbed coupled-cluster equation for two-valence
atoms in the form

〈Φpq
vw|{H̄N(S(1,1) + S(2,1) +

1

2
S(1,1)2)}+ {H̄NT

(1,1)(1 + S(1,0) + S(2,0) +
1

2
S(1,0)2)}

|Φvw〉

= 〈Φpq
vw{(S(1,1) + S(2,1) +

1

2
S(1,1)2)Heff} − {H̄PNC(S(1,0) + S(2,0) +

1

2
S(1,0)2)}

|Φvw〉,
(6.62)

where we used the relation, H̄N = H0 + V̄ , for normal- ordered Hamiltonian.
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Figure 6.10: Some of the leading order diagrams contributing to the E1PNC
for two-valence systems.

6.3.2 E1PNC from coupled-cluster

Using CC initial and final wave functions of two-valence atoms, |Ψ̃i〉 and |Ψ̃f〉,
the expression of E1PNC is

E1PNC = 〈Ψ̃f ||D||Ψ̃i〉,

=
∑
j,k

cfj
∗
cik〈Φj||eT † (

1 + λT (1)
)†(

1 + S(1,0) + S(2,0) +
1

2
S(1,0)2+

λ(S(1,1) + S(2,1) +
1

2
S(1,1)2)

)†

DeT
(
1 + λT (1)

)
(

1 + S(1,0) + S(2,0) +
1

2
S(1,0)2 + λ(S(1,1) + S(2,1) +

1

2
S(1,1)2)

)
||Φk〉.

(6.63)
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Retaining the terms which are first-order in λ, we get

E1PNC = 〈Ψ̃f ||D||Ψ̃i〉 =
∑
j,k

cfj
∗
cik〈Φj||

eT †
(

1 + S(1,0) + S(2,0) +
1

2
S(1,0)2

)†

DeT

(
S(1,1) + S(2,1) +

1

2
S(1,1)2

)
+

eT †
T (1)†

(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)†

DeT

(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
+

eT †
(
S(1,1) + S(2,1) +

1

2
S(1,1)2

)†

DeT

(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
+

eT †
(

1 + S(1,0) + S(2,0) +
1

2
S(1,0)2

)†

DeTT (1)(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
||Φk〉. (6.64)

Introducing the dressed electric dipole operator, D̄ = eT †
DeT , above equation

can be written in the form

E1PNC =
∑
j,k

cfj
∗
cik〈Φj||(

1 + S(1,0) + S(2,0) +
1

2
S(1,0)2

)†

D̄

(
S(1,1) + S(2,1) +

1

2
S(1,1)2

)
+

T (1)†
(

1 + S(1,0) + S(2,0) +
1

2
S(1,0)2

)†

D̄

(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
+(

S(1,1) + S(2,1) +
1

2
S(1,1)2

)†

D̄

(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
+(

1 + S(1,0) + S(2,0) +
1

2
S(1,0)2

)†

D̄T (1)

(
1 + S(1,0) + S(2,0) +

1

2
S(1,0)2

)
||Φk〉.

(6.65)

This is the expression of E1PNC for two-valence atoms using CC wave func-
tion. In the above equation, the terms with one-order in the cluster operator
are expected to be the leading order terms. The second largest contribution
is expected from the terms which have two cluster operators. The terms with
three or more cluster operators are expected to contribute less. The diagrams
contributing to the leading and next to the leading order terms are shown in
Fig. 6.10. The coefficients cfj

∗
and cik are the eigen vectors of the effective

Hamiltonian matrix.
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6.4 Summary of the results

In this section we discuss results calculated using perturbed coupled-cluster
method. In particular, we discuss the dipole polarizibility results in the case
of some of the inert-gases. However, we implement the method to calculate
E1PNC as well, the results are given in the next chapter. For the polarizibil-
ity calculation we employed the Gaussian type basis functions for which the
convergence parameters α and β were give in chapter II.

Table 6.1: The dipole polarizibility of the ground state of neutral rare-gas
atoms. The values listed are in atomic units.

Contributions Ne Ar Kr Xe

T
(1)
1

†
D 2.7108 11.3330 17.2115 27.7427

T
(1)
1

†
DT

(0)
1 0.0771 0.0486 0.0429 -0.1495

T
(1)
1

†
DT

(0)
2 -0.0703 -0.8264 -1.2721 -2.3286

T
(1)
2

†
DT

(0)
1 -0.0004 -0.0001 0.0002 0.0027

T
(1)
2

†
DT

(0)
2 0.0053 0.2490 0.0439 0.0786

Total(CCSD) 2.7225 10.8041 16.0264 25.3459
Approx. triples 2.7281 10.7360 16.0115 25.2974
Exp. valuesa 2.670±0.005 11.070(7) 17.075 27.815

a Reference[155].

The results from our dipole polarizibility calculations of Ne, Ar, Kr and
Xe are presented in Table. 6.1. For this we have used the CC expression
Eq. (6.16). As mentioned earlier, the dressed dipole operator, D, is a non
terminating series of the closed-shell cluster operators T (0). For the present

calculations we consider the leading terms in T (1)†D. That is, we use the
approximation

T (1)†D ≈ T
(1)
1

† [
D +DT

(0)
1 +DT

(0)
2

]
+ T

(1)
2

† [
DT

(0)
2 +DT

(0)
1

]
. (6.66)

As evident from the above equation, the dipole polarizibility calculations with
relativistic CCT involve two sets of cluster amplitudes. These are the T (0) and
T (1) cluster amplitudes. The doubles unperturbed cluster amplitudes T

(0)
2 are

found to be larger in magnitude than the singles T
(0)
1 . However, in the case of

perturbed clusters T
(1)
1 is larger than the doubles. The reason for this is the

one-body nature of the perturbation.
In Table. 6.1 we give individual contributions from all the CC terms in Eq.

(6.66). The first term T (1)†D subsumes contributions arising from Dirac-Fock
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Chapter 6. Coupled-cluster theory with PNC perturbation

and random phase approximation. We can thus expect this term to have the
most dominant contribution, as it has only one order of cluster amplitudes
and that too the dominant cluster operators. This is evident from Table. 6.1,

which shows that the contribution from T (1)†D is far larger than the oth-

ers. The next two dominant contributions are expected to be T
(1)
1

†
DT

(0)
2 and

T
(1)
1

†
DT

(0)
1 . This is attributed to the reason mentioned earlier, i.e. T

(1)
1 and

T
(0)
2 are larger than T

(1)
2 and T

(0)
1 respectively. Based on the same argument,

the least contributing term hence is T
(1)
2

†
DT

(0)
1 . The same pattern is observed

in the Table. 6.1. Contribution from the approximate triples cluster ampli-
tudes can be derived from table, and it is about 0.2%, 0.6%, 0.09% and 0.19%
respectively for Ne, Ar, Kr and Xe. Our total value of 2.7281 for Ne is within
the 2% discrepancy with respect to the experimental data. The deviations
are even large in the case of Ar, Kr and Xe, these are respectively about 3.3%,
6.2% and 9.1%. One pattern discernible in the results is the better agreement

between the T (1)†D results and experimental data. The large errors in the
results are attributed to the approximation in Eq. (6.66) and partly to the
basis set.
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Chapter 7

E1PNC from coupled-cluster
theory

In the previous three chapters we described the CCT based methods we have
developed to calculate wave functions and properties. The main goal of these
developments is to compute E1PNC, the observable effect of PNC in atoms:
one-valence and two-valence systems. In this chapter we present the analysis
of the E1PNC results from computations based on the methods developed so
far. In the first section, we discuss the NSD E1PNC results of one-valence
atoms and ions, computed using first-order MBPT and coupled-cluster. The
results of E1PNC for two-valence atoms are then described in Sec. II.

7.1 E1PNC of one-valence atoms and ions

We have chosen Cs, Fr, Ba+ and Ra+ as one-valence systems of interest for
NSD E1PNC computations. These are the few atoms and ions which have
been studied previously, and hence theoretical results are available in the liter-
ature. The spin-orbitals employed in the calculations are of the Gaussian type
orbitals generated using even tempered scheme and optimized as described in
the Chapter. II. The basis parameters of Ba+ are given in Chapter. II and for
Cs, Fr and Ra+ the parameters are given in Table. 7.1 of this chapter. Our
E1PNC results of Cs and Fr are tabulated in Table. 7.2. For the Ba+ and
Ra+ ions the results are presented in the Tables . 7.3 and 7.4 respectively. For
comparison the results from other theoretical works are also listed.

For atomic Cs, the DF results of E1PNC for the F = 3 → F = 3,
F = 4 → F = 4, F = 4 → F = 3 and F = 3 → F = 4 transitions
are 2.011, 2.289, 5.000 and 5.774 respectively. These compare well with the
values of 1.908, 2.173, 4.746 and 5.481 from the previous work of Johnson
and collaborators [30]. The small deviations may be attributed to the form
of the spin-orbital used in the two calculations. In the current study, we have
used Gaussian type orbitals, whereas Johnson and collaborators [30] used B-
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Chapter 7. E1PNC from coupled-cluster theory

Table 7.1: Basis set parameters, α0 and β, used in the E1PNC calculations for
Cs, Fr and Ra atomic systems.

Atom Symmetry α0 β Basis function
Cs s 0.00721 2.8600 33

p 0.00755 2.8520 30
d 0.00653 2.9740 28

Fr s 0.00568 2.5300 39
p 0.00645 2.7890 36
d 0.00933 2.7790 34
f 0.00899 2.7250 29

Ra+ s 0.00625 2.9800 34
p 0.00715 2.9550 30
d 0.00700 2.5700 27
f 0.00695 2.6940 23

spline as basis functions to generate the spin-orbitals. As its shown in the
table, our first-order MBPT results of the first two transitions are close to
that of Ref. [30]. It is, however, significantly different for remaining two
transitions. The CC results from our calculations are also very different from
Ref. [30]. The discrepancies between the two results arise from the different
atomic many-body methods used. The results of Ref. [30] are obtained by
using random-phase approximation, which forms only a part of the many-body
effects incorporated in our CC based theory.

For the atomic Fr we could find only one NSD E1PNC data in the lit-
erature, and it is from the work of Porsev and Kozlov [31]. They have, in
particular, studied the 7s1/2F = 4→ 7s1/2F = 5 transition. Our DF value of
43.16 is ≈3.8% lower than the value reported in the work of Porsev and Ko-
zlov [31]. However, there is a large difference, ≈10%, between the first-order
MBPT result form our work and the total result of Ref. [31]. This is expected
as their total result comprise of the DF and core polarization effects. The CC
result from our calculation is closer to their results, our result is ≈6% lower.

There are a few theoretical results of Ba+ ion in literature. However, like
in atomic Cs none of these are based on CCT. The results of Sahoo and
collaborators [34] are from using the third-order MBPT. Whereas the other
works, of Molhotra and collaborators [32] and Geetha and collaborators [33],
are computations based on configuration interaction. For all the transitions,
DF contributions listed in the previous works and therefore, we compare total
results. The sign of MBPT and CCT results from the present work is consistent
with the results in Ref. [34].

For the magnitude of E1PNC, MBPT results from the present work are
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Table 7.2: Nuclear spin-dependent E1PNC reduced matrix element for the
atoms 133Cs and 211Fr. The values listed are in units of i× 10−12µ′W .

Transition E1PNC Other works
MBPT CCT

DF Total
Cs (I = 7/2)

〈7s1/2, F = 3||D||6s1/2, F = 3〉 2.011 2.060 4.905 2.249a

〈7s1/2, F = 4||D||6s1/2, F = 4〉 2.289 2.338 5.583 2.560a

〈7s1/2, F = 4||D||6s1/2, F = 3〉 5.000 4.819 8.073 6.432a

〈7s1/2, F = 3||D||6s1/2, F = 4〉 5.774 5.662 9.968 7.299a

Fr (I = 9/2)
〈7s1/2, F = 5||D||7s1/2, F = 4〉 43.16 44.15 45.84 49.10b

a Reference[30]. b Reference[31].

Table 7.3: Nuclear spin-dependent E1PNC reduced matrix element for the
ions 135/137Ba+ and 139Ba+. The values listed are in units of i× 10−14µ′W .

Transition E1PNC Others
MBPT CCT

DF Total
135/137Ba+ (I = 3/2)

〈5d3/2, F = 3||D||6s1/2, F = 2〉 90.554 96.299 84.890 62.1a,
97.18b

〈5d3/2, F = 2||D||6s1/2, F = 1〉 −90.230 −94.699 −81.741 −89.40b

〈5d5/2, F = 3||D||6s1/2, F = 2〉 0.100 3.116 10.078 1.37b,
−8.2c

〈5d5/2, F = 2||D||6s1/2, F = 1〉 0.056 1.526 4.820 −4.6c

139Ba+ (I = 7/2)
〈5d3/2, F = 3||D||6s1/2, F = 3〉 100.850 98.619 88.682 103.57b

〈5d3/2, F = 2||D||6s1/2, F = 3〉 −98.398 −105.818 −93.012 −105.55b

〈5d5/2, F = 2||D||6s1/2, F = 3〉 0.044 1.792 5.763 0.608b

a Reference[32]. b Reference[34]. c Reference[33].
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Table 7.4: Nuclear spin-dependent E1PNC reduced matrix element for the ions
225Ra+, 223Ra+ and a229Ra+. The values listed are in units of i× 10−14µ′W .

Transition E1PNC
MBPT CCT

DF Total
225Ra+ (I = 1/2)

〈6d3/2, F = 2||D||7s1/2, F = 1〉 −856.804 −910.554 −812.982a,
991.75b

223Ra+ (I = 3/2)
〈6d3/2, F = 3||D||7s1/2, F = 2〉 −1013.785 −1083.778 −968.837a,

1173.45b

〈6d3/2, F = 2||D||7s1/2, F = 1〉 1010.229 1076.207 886.318a,
−1017.49b

〈6d5/2, F = 3||D||7s1/2, F = 2〉 −1.329 −20.157 50.514a,
−17.52b,
−63.5c

229Ra+ (I = 5/2)
〈6d3/2, F = 2||D||7s1/2, F = 3〉 −404.345 −435.761 −313.266a,

325.94b

〈6d3/2, F = 2||D||7s1/2, F = 2〉 −1058.120 −1068.074 −927.788a,
1147.73b

〈6d5/2, F = 2||D||7s1/2, F = 3〉 −0.039 −6.487 18.510a,
−5.12b

a Present work. b Reference[34]. c Reference[33].

close to the results of Sahoo and collaborators [34]. As the basis function em-
ployed in both the calculations are same, the observed small deviation could
arise from the difference in the order of residual Coulomb interaction incorpo-
rated in the two calculations. Interestingly, the CC results for all the transi-
tions involving the state 5d3/2 are lower in magnitude than MBPT. However,
these are higher for the transitions which involve the state 5d5/2. A simi-
lar pattern is also observed in the results obtained from the computations
with the CI method. The CC results of 5d5/2F = 3 → 6s1/2F = 2 and
5d5/2F = 2 → 6s1/2F = 1 transition from the present work are 10.078 and
4.820, respectively. These are close to the to the CI results of −8.2 and −4.6
from the work of Geetha and collaborators [33]. However, as we notice the
signs are opposite. It is evident from Table. 7.3, there is large difference
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Table 7.5: Nuclear spin-dependent E1PNC reduced matrix element for Yb.
All the values listed are in units of i× 10−11µ′W .

Transition Our results Other works
MBPT CCT

171Yb (I = 1/2)
〈3D1, F = 1/2||D||1S0, F = 1/2〉 −0.257 −0.019 −1.2238a, −1.375b

〈3D1, F = 3/2||D||1S0, F = 1/2〉 −0.181 −0.008 0.8654a, −0.970b

173Yb (I = 5/2)
〈3D1, F = 3/2||D||1S0, F = 5/2〉 1.503 0.064 −1.2108a, 1.410b

〈3D1, F = 5/2||D||1S0, F = 5/2〉 −0.528 −0.022 −0.4237a, −0.495b

〈3D1, F = 7/2||D||1S0, F = 5/2〉 −1.518 −0.065 1.2231a, −1.425b

a Reference[28]. b Reference[29].

between the results from MBPT and CCT when the transitions involve 5d5/2.
For the Ra+ ion, unlike the case of Ba+, signs of the first-order MBPT

results of transitions involving the 6d3/2 state from the present study are op-
posite to the results of Sahoo and collaborators [34]. The signs are, however,
consistent for the transitions which have 6d5/2 as the final state. The CC re-
sults, however, show the opposite pattern for all the transitions. Magnitude
wise CC results exhibit the similar trend as in Ba+.

7.2 E1PNC of two-valence atoms

In this section, we present the E1PNC results of the two-valence atomic sys-
tems, 171Yb and 173Yb. The basis set parameters used in the calculation are
given in the Table. 2.8 of Chapter. II. The E1PNC results from our calcu-
lations along with previous theoretical results are listed in the Table. 7.5. It
evident from the table, we have chosen the 1S0 → 3D1 transition, for different
combinations of the allowed hyperfine states. One important consequence of
this choice is that the diagonalization of the effective Hamiltonian matrix is
not required as the model space does not have multiple states with the same
total angular momentum J .

The MBPT and CC results from the present work have the same sign as
the results of Porsev and collaborators [29]. However, there is a mismatch of
sign for the 〈3D1, F = 3/2||D||1S0, F = 1/2〉, 〈3D1, F = 3/2||D||1S0, F = 5/2〉
and 〈3D1, F = 7/2||D||1S0, F = 5/2〉 transitions between the results in Ref.
[28] and Ref. [29]. But in terms of magnitude the two results are very close to
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Table 7.6: MBPT E1PNC results for Yb, contributions from the one-body
(1b), two-body (2b), Hermitian conjugate of one-body (1bhc) and Hermitian
conjugate of two-body (2bhc) terms. All the values listed are in units of
i× 10−11µ′W .

Transition MBPT results
1b 2b 1bhc 2bhc

171Yb (I = 1/2)
〈3D1, F = 1/2||D||1S0, F = 1/2〉 −0.1506 0.0099 −0.115 −0.0007
〈3D1, F = 3/2||D||1S0, F = 1/2〉 −0.1065 0.0070 −0.0814 −0.0005

173Yb (I = 5/2)
〈3D1, F = 3/2||D||1S0, F = 5/2〉 0.8822 −0.0578 0.6740 0.0040
〈3D1, F = 5/2||D||1S0, F = 5/2〉 −0.3087 0.0202 −0.2359 −0.0014
〈3D1, F = 7/2||D||1S0, F = 5/2〉 −0.8912 0.0584 −0.6809 −0.0041

Table 7.7: CCT E1PNC results for Yb, contributions from the one-body (1b),
two-body (2b), Hermitian conjugate of one-body (1bhc) and Hermitian conju-
gate of two-body (2bhc) terms. All the values listed are in units of i×10−11µ′W .

Transition CCT results
1b 2b 1bhc 2bhc

171Yb (I = 1/2)
〈3D1, F = 1/2||D||1S0, F = 1/2〉 0.0004 −0.0108 −0.0011 0.0007
〈3D1, F = 3/2||D||1S0, F = 1/2〉 0.0003 −0.0076 −0.0008 0.0005

173Yb (I = 5/2)
〈3D1, F = 3/2||D||1S0, F = 5/2〉 −0.0021 0.0632 0.0066 −0.0039
〈3D1, F = 5/2||D||1S0, F = 5/2〉 0.0007 −0.0221 −0.0023 0.0014
〈3D1, F = 7/2||D||1S0, F = 5/2〉 0.0022 −0.0638 −0.0068 0.0039
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each other. As it is evident from the Table. 7.5, our MBPT results of 173Yb for
all the transitions in good agreement with the results from the two previous
works. For 171Yb the same transitions, however, show the large deviations.

As its shown in the Figs. 2.8 and 6.10 of the previous chapters, using
MBPT and CC respectively, the E1PNC diagrams can be separated into one-
((a) and (b)) and two-body ((c) − (l)) types. The individual contributions
from these, and also from the corresponding Hermitian conjugate terms are
given in the Tables. 7.6 and 7.7 using MBPT and CC method respectively.
As evident from the tables, CC and MBPT contributions from the two-body
terms (2b and 2bhc) are very close to each other. However, the CC results
from the one-body terms (1b and 1bhc) are two, in some cases three, orders
of magnitude less the corresponding MBPT results. This is also reflected in
the Table. 7.5, where the total E1PNC results using CC method is in general
two orders of magnitude less than the MBPT results. Unravelling the reason
require a detailed analysis and shall be addressed in future.
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Future directions

In the current thesis, we have developed an efficient and favorably known
atomic many-body method, the coupled-cluster, for closed-, one-, and two-
valence atomic systems. Furthermore, the method is used to study some of
the atomic properties such as correlation and excitation energies, hyperfine
structure constants, electric dipole transition amplitudes, dipole polarizibil-
ity and parity-violation observable E1PNC. Our results, in many cases, are
compatible with the other theoretical results, and in some cases even bet-
ter. However, there are lot more scope to improve the accuracy of the results
further. As a future work, we shall be working in the following areas:

As we have mentioned in the Introduction chapter, unlike the case NSI
E1PNC, the NSD E1PNC has not been studied in a great detail. There are
few calculations and that too are not with using the methods like coupled-
cluster. There is certainly room for a systematic study of the same in the
high-Z atoms, in view of the search of nuclear anapole moment.

The precise theoretical study of the properties for two-valence systems is
lacking. A comprehensive and systematic analysis of the same using the CC
method shall be the next aim in the future. In this connection, the nonlinear
terms in CC equation should be taken in to account.

At the level of properties calculation for the closed-shell case, in particular
for correlation energy and dipole polarizibilty, we have examined the contri-
butions from approximate triples cluster amplitudes. These are discussed in
the previous chapters of the thesis. At the level of CC equations, however, we
have used CCSD approximation, in which cluster operators are restricted up
to one- and two-body types only. As a future work, we would like incorporate
the higher excitation cluster amplitudes, such as triples and quadrupoles.

As reported by the Kozlov and collaborators [22] for PNC in atomic Cs,
Breit correction contribute approximately about 1%. Our next future goal is,
therefore, to incorporate the Breit interaction in CC formulation. So that the
accuracy of our results can be improved further.

The quantum electrodynamic (QED) effects, such as self-energy and vac-
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uum polarization, also play an important role in the case of heavy atoms.
Systematic inclusion and a quantitive analysis of the same is considered to be
next goal of the future work.
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Appendix A

Matrix element of HPNC

The matrix elements ofHPNC are calculated in the hyperfine states |γ(JI)FMF 〉.
This is essential as the property of interest is the transition probability aris-
ing from HNSD

PNC, the nuclear spin-dependent component of the Parity non-
conserving interaction Hamiltonian. In the coupled state |γ(JI)FMF 〉, J is
the total angular momentum quantum number of the electrons, I is the nuclear
spin quantum number, and F is the total angular momentum (F = I + J)
referred as the hyperfine quantum number. Using the Eq. (1.18)

〈γ(JI)FMF |HNSD
PNC|γ′(J ′I ′)F ′M ′

F 〉

=
GFµ

′
w

2
√

2I
〈γ(JI)FMF |

∑
i

αi · IρN(r)|γ′(J ′I ′)F ′M ′
F 〉,

=
GFµ

′
w

2
√

2I
(−1)J ′+I+F+1δ(F, F ′)δ(MF ,MF ′)

{
J J ′ 1
I ′ I F

}
×〈γ′J ||

∑
i

αiρN(r)||γ′J ′〉〈I||I||I ′〉. (A.1)

In the last step, the matrix elements are converted into uncoupled states. The
advatange is, only the electronic component of the reduced matrix element
require computation. The remaining angular factors can be evaluated sepa-
rately and these are just multiplying factors. The reduced matrix element of
the nuclear spin operator, in the above equation, is

〈I||I||I ′〉 = δ(I, I ′)
√

(2I + 1)I(I + 1). (A.2)

The reduced matrix element of α in terms of CSFs can be reduced to single
electron matrix elements as

〈γJ ||
∑

i

αρN(r)||γ′J ′〉 = dk
ab(JJ

′)〈γja||αρN(r)||γ′jb〉,

= dk
ab(JJ

′)〈γ(lasa)ja||αρN(r)||γ′(lbsb)jb〉, (A.3)
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where |(lbsb)jb〉 are single electron ls coupled states and dk
ab(J, J

′) is the angular
coefficient. For determinantal states the expression of the matrix is the similar,
it is without the angular factor.

Single electron matrix element is then calculated using the relativistic form,
Eq(2.9), of the single-electron wave function

〈γ(lasa)ja|αρN(r)|γ′(lbsb)jb〉 =

∫
ψ†

a(r)αρN(r)ψb(r)d3r,

=

∫ ∞

0

dr

∫
dΩ

(
Paχκama(r̂)
iQaχ−κama(r̂)

)†(
0 σ
σ 0

)(
Pbχκbmb

(r̂)
iQbχ−κbmb

(r̂)

)
ρN(r),

= i

∫ ∞

0

dr

∫
dΩ
[
PaQbχ

∗
κama

σχ−κbmb
−QaPbχ

∗
−κama

σχκbmb

]
ρN(r). (A.4)

The matrix element is nonzero only for orbitals which is nonzero in the nuclear
region. The transition matrix elements of HPNC between the orbitals |ns1/2〉
and |n′p1/2〉 are then the most dominant. The next is the transition matrix
between the states |ns1/2〉 and |n′p3/2〉. And, the other matrix elements are
practically equal to zero.

A.1 〈ns1/2|HPNC|n′p1/2〉
For better representation of the spin-orbitals the radial part, unlike in the
previous subsection, is denoted as ψnκ. And, the spin-angular part, like in the
earlier expressions are χκm. For shorter expression the funtional dependences
are not written explicitely. Using Eq.(A.4), the matrix element can be written
as

〈ns1/2|αρN(r)|n′p1/2〉 = i

∫ ∞

0

dr

∫
dΩ
[
PnQn′ρNχ

∗
−11/2σχ−11/2

−QnPn′ρNχ
∗
11/2σχ11/2

]
. (A.5)

The angular integrals in Eq.(A.5) are further evaluated using the following
relations for the spin-angular function χκm.

χκm =

√
l +m+ 1/2

2l + 1
Y

m−1/2
l

(
1
0

)
+

√
l −m+ 1/2

2l + 1
Y

m+1/2
l

(
0
1

)
for j = l + 1/2, and

χκm = −
√
l −m+ 1/2

2l + 1
Y

m−1/2
l

(
1
0

)
+

√
l +m+ 1/2

2l + 1
Y

m+1/2
l

(
0
1

)
for j = l − 1/2. (A.6)
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Using Eq.(A.6), the angular integral in the first term on the right hand side
of Eq.(A.5) is∫

dΩχ∗−11/2σχ−11/2 =

∫
dΩ

[{
Y 0

0

(
1
0

)}†(
1 0
0 −1

){
Y 0

0

(
1
0

)}]
=

∫
dΩY 0

0
∗
Y 0

0 = 1. (A.7)

Similarly, the angular integral in the second term∫
dΩχ∗11/2σχ11/2 =

∫
dΩ

[{
− 1√

3
Y 0

1

(
1
0

)
+

2√
3
Y 1

1

(
0
1

)}†(
1 0
0 −1

)
{
− 1√

3
Y 0

1

(
1
0

)
+

2√
3
Y 1

1

(
0
1

)}]
=

∫
dΩ

[
1

3
Y 0

1
∗
Y 0

1 −
2

3
Y 1

1
∗
Y 1

1

]
= −1

3
. (A.8)

In deriving Eqs.(A.7) and (A.8) we have used the orthonormality relation for
the spherical harmonics,

∫
Y m

l Y m′

l′ dΩ = δmm′δll′ . Using Eqs.(A.7) and (A.8)
in Eq.(A.5), the matrix element is then

〈ns1/2|αρN(r)|n′p1/2〉 = i

∫ ∞

0

dr

[
PnQn′ +

1

3
QnPn′

]
ρN. (A.9)

This is the expression of the most dominant matrix element. The expression
of the corresponding hermitian cojugate matrix element, 〈n′p1/2|HPNC|ns1/2〉,
can also be derived in the similar way to the form

〈n′p1/2|αρN(r)|ns1/2〉 = −i
∫ ∞

0

dr

[
PnQn′ +

1

3
QnPn′

]
ρN. (A.10)

A.2 〈ns1/2|HPNC|n′p3/2〉
Like in the previous case, using Eq.(A.4) we can write

〈ns1/2|αρN(r)|n′p3/2〉 = i

∫ ∞

0

dr

∫
dΩ
[
PnQn′ρNχ

∗
−11/2σχ23/2

−QnPn′ρNχ
∗
11/2σχ−23/2

]
. (A.11)

Using Eq.(A.6), the angular integrals are∫
dΩχ∗−11/2σχ21/2 =

∫
dΩ

[{
Y 0

0

(
1
0

)}†(
1 0
0 −1

)
{
−
√

2

5
Y 0

2

(
1
0

)
+

√
3

5
Y 1

2

(
0
1

)}]
= 0,(A.12)
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and∫
dΩχ∗11/2σχ−21/2 =

∫
dΩ

{− 1√
3
Y 0

1

(
1
0

)
+

√
2

3
Y 1

1

(
0
1

)}†(
1 0
0 −1

)
{√

2

3
Y 0

1

(
1
0

)
+

1√
3
Y 1

1

(
0
1

)}]
= −2

√
2

3
. (A.13)

Using Eqs.(A.12) and (A.13) in Eq.(A.11), we get

〈ns1/2|αρN(r)|n′p3/2〉 = i
2
√

2

3

∫ ∞

0

drPn′QnρN. (A.14)

This is the expression of the other single electron matrix element which con-
tributes to the E1PNC. Similarly we can derive for the corresponding hermitian
conjugate matrix element

〈n′p3/2|αρN(r)|ns1/2〉 = −i2
√

2

3

∫ ∞

0

drPn′QnρN. (A.15)
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Appendix B

Matrix element of dipole
operator

The matrix element of the dipole operator between two CSFs of opposite
parity, using Wigner-Ekart theorem, is

〈Φk|D|Φj〉 = 〈γ(JI)PFMF |D|γ′(J ′I ′)− PF ′M ′
F 〉

= (−1)F−MF

(
F 1 F ′

−MF q M ′
F

)
〈γ(JI)F |D|γ′(J ′I ′)F ′〉,

= (−1)F−MF (−1)J+I+F ′+1δ(I, I ′)[F, F ′]1/2

(
F 1 F ′

−MF q M ′
F

)
×{

F 1 F ′

J ′ I J

}
〈γJ ||D||γ′J ′〉. (B.1)

The reduced matrix element can further be simplified to the spin-orbital level
as

〈γJ ||D||γ′J ′〉 = dab
k (J, J ′)〈γJa||d||γ′Jb〉

= dab
k (J, J ′)〈γ(lasa)Ja||d||γ′(lbsb)Jb〉, (B.2)

where, like in the case HNSD
rmPNC d······ angular factors and the spin-orbitals as

usual are ls coupled states. The explicit expression of the dipole operator
matrix element in terms of the spin-orbitals is

〈γ(lasa)ja|d|γ′(lbsb)jb〉

= −
∫
d3rψ†

a(r)rψb(r),

= −
∫ ∞

0

dr

∫
dΩ

(
Paχκama(r̂)
iQaχ−κama(r̂)

)†(
r 0
0 r

)(
Pbχκbmb

(r̂)
iQbχ−κbmb

(r̂)

)
,

(B.3)
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Without loss of generality, the z-axis can be considered as the axis of quanti-
zation and component of d along the axis is dz = d cos θ. The corresponding
matrix element is then

〈γ(lasa)ja|dz|γ′(lbsb)jb〉 = −
∫ ∞

0

drr(P ∗
aPb+Q

∗
aQb)

∫
dΩχ∗κama

(r̂) cos θχκbmb
(r̂).

(B.4)
From this expression applying the Wigner-Eckert theorem it is possible to
obtain the reduced matrix element. The relations σ · r̂χ−κbmb

= χκbmb
, and

(σ · r̂)2 = 1 are used while arriving at the final expression.
A more general and convenient expression is to calculate the matrix element

with d defined in terms of C tensor as

d = rC1. (B.5)

Where, by definition the components of the C-tensor are

Ck
q (θ, φ) =

√
4π

2k + 1
Y k

q (θ, φ). (B.6)

In this case, as the dipole operator is defined as function of C-tensor, the
Wigner-Eckert theorem can be directly applied. The reduced matrix element
is then

〈γ(lasa)ja||d||γ′(lbsb)jb〉 = −
∫ ∞

0

drr(P ∗
aPb +Q∗

aQb)〈κa||C1||κb〉, (B.7)

where the reduced matrix element

〈κa||Ck||κb〉 = (−1)ja+1/2
√

(2ja + 1)(2jb + 1)

(
ja jb 1
−1/2 1/2 0

)
Π(la + lb +1).

(B.8)
Here, the parity function is

Π(la + lb + 1) =

{
1 if la + lb + 1 is even

0 otherwise
. (B.9)

It more convenient to use the dipole matrix element in Eq. (B.7) than the
previous expression. One basic advatage is, it directly computes the reduced
matrix element.
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Appendix C

E1PNC in hyperfine states

In terms of hyperfine states, the HPNC induced dipole transition amplitude
between initial and final states |Ψi〉 and |Ψf〉, respectively, is

E1PNC =
∑

n

[
〈(IJf )Ff ||D||(IJn)Fn〉〈(IJn)Fn||HPNC||(IJi)Fi〉

Ei − En

+
〈(IJf )Ff ||HPNC||(IJn)Fn〉〈(IJn)Fn||D||(IJi)Fi〉

Ef − En

]
. (C.1)

Here, the index n represents the intermediate states which are opposite in
parity to the initial and final states. Conventionally, I denotes the intermediate
states in time-independent perturbation theory but n is used to avoid confusion
with nuclear spin I. Using Eqs. (A.1) and (B.1) for the HPNC and dipole
matrix elements respectively, the reduced matrix elements in the first term in
Eq.(C.1) are

〈(IJf )Ff ||D||(IJn)Fn〉 = δ(I, I)(−1)I+Jn+Ff+1
√

(2Ff + 1)(2Fn + 1)

×
{
Ff 1 Fn

Jn I Jf

}
〈Jf ||D||Jn〉, (C.2)

〈(IJn)Fn||HPNC||(IJi)Fi〉 = −GFµ
′
w√

2I

√
3(2Fn + 1)(2Fi + 1)

×


I I 1
Jn Ji 1
Fn Fi 0

 〈I||I||I〉〈Jn||αρN(r)||Ji〉.(C.3)

The 9j in Eq.(C.3) can be simplified to
I I 1
Jn Ji 1
Fn Fi 0

 = δ(Fn, Fi)(−1)1+I+Jn+Fn
1√

3(2Fn + 1)

{
I I 1
Ji Jn Fn

}
.

(C.4)
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Similarly, for the second term in Eq.(C.1) the reduced matrix elements are

〈(IJf )Ff ||HPNC||(IJn)Fn〉 = −GFµ
′
w√

2I

√
3(2Ff + 1)(2Fn + 1)

×


I I 1
Jf Jn 1
Ff Fn 0

 〈I||I||I〉〈Jf ||αρN(r)||Jn〉,(C.5)

〈(IJn)Fn||D||(IJi)Fi〉 = δ(I, I)(−1)I+Ji+Fn+1
√

(2Fn + 1)(2Fi + 1)

×
{
Fn 1 Fi

Ji I Jn

}
× 〈Jn||D||Ji〉. (C.6)

The 9j in Eq.(C.5) is
I I 1
Jf Jn 1
Ff Fn 0

 = δ(Ff , Fn)(−1)1+I+Jf+Ff
1√

3(2Ff + 1)
×
{

I I 1
Jn Jf Ff

}
.

(C.7)
In the case of atomic Yb the HPNC induced dipole transitions of interest

are 1S0 → 3D1 and 1S0 → 3D2. The second, as mentioned else where in
the thesis, is an ideal choice to detect nuclear anapole moment as only the
HNSD

PNC contributes in this case. For the second transition, namely 1S0 → 3D1,
the values of angular momenta are Ji = 0, Fi = I, Jn = 1, and Jf = 2.
Using these in Eqs(C.2), (C.3), (C.5), and (C.6) and using in Eq.(C.1), after
rearranging

(E1PNC)
3D2
1S0

= GFµ
′
w(−1)2Ff

{
Ff 1 I
1 I 2

}√
(2Ff + 1)(I + 1)(2I + 1)

6I∑
n

[
〈3D2||αρN(r)||Jn = 1〉〈Jn = 1||D||1S0〉

E3D2
− En

+
〈3D2||D||Jn = 1〉〈Jn = 1||αρN(r)||1S0〉

E1S0
− En

]
. (C.8)

In a similar way, the expression of the transition amplitude for the 1S0 → 3D1

can be derived.
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Matrix element of hyperfine
operator

D.1 Magnetic dipole hyperfine matrix element

Using Eq. (4.37), the magnetic dipole hyperfine matrix element is

〈κw|t1q(r)|κv〉 = −i
√

2〈κw|
[α ·C(0)

1 (r̂)]q
cr2

|κv〉. (D.1)

Using the single electron relativistic wave function

〈κw|t1q(r)|κv〉 =

∫ ∞

0

dr

r2

∫
dΩ(

Pwχκwmw(r̂)
iQwχ−κwmw(r̂)

)†
(

0 σ ·C(0)
1 (r̂)

σ ·C(0)
1 (r̂) 0

)(
Pvχκvmv(r̂)

iQvχ−κvmv(r̂)

)
,

= −i
√

2

∫ ∞

0

dr

r2[
iPwQv 〈κwmw|σ ·C(0)

1 | − κvmv〉 − iQwPv 〈−κwmw|σ ·C(0)
1 |κvmv〉

]
.

(D.2)

In the above equation, for the convenience, the angular part of the integral is
retained in the form of the matrix element. For the same reason we have also
dropped the θ and φ dependence of the spherical tensor operator. Using the
following relations

〈κbmb|σ ·C(0)
kq | − κama〉 =

−κa − κb

k(k + 1)
〈κbmb|Ck

q | − κama〉, and

〈−κbmb|σ ·C(0)
kq |κama〉 =

κa + κb

k(k + 1)
〈−κbmb|Ck

q |κama〉 (D.3)
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Appendix D. Matrix element of hyperfine operator

for the matrix elements, Eq. (D.2) is simplified to the form

〈κw|t1q(r)|κv〉 = −
√

2

k(k + 1)
(κw + κv)∫ ∞

0

dr

r2

[
PwQv 〈κwmw|C1

0| − κvmv〉+QwPv 〈−κwmw|C1
0|κvmv〉

]
.(D.4)

From the symmetry condition 〈κwmw|C1
0| − κvmv〉 = 〈−κwmw|C1

0|κvmv〉 and
the multipole k = 1, the above hyperfine matrix element is further simplified
as

〈κw|t1q(r)|κv〉 = −(κw+κv)

∫ ∞

0

dr

r2
(PwQv +QwPv) 〈−κwmw|C1

0|κvmv〉. (D.5)

D.2 Electric quadrupole hyperfine matrix el-

ement

Using Eq. (4.38), the electric quadrupole hyperfine matrix element is

〈κw|t2q(r)|κv〉 = −〈κw|
C2

q(r̂)

r3
|κv〉. (D.6)

Using the single electron relativistic wave function and following the same
mathematical steps as in the case of magnetic dipole hyperfine matrix elements,
we can derive

〈κw|t2q(r)|κv〉 = −
∫ ∞

0

dr

r3
(PwQv +QwPv) 〈−κwmw|C2

0|κvmv〉. (D.7)

Where the general matrix element for the spherical tensor operator of rank k
and component q follows the relation, using Wigner-Eckart theorem

〈κb|Ck
q |κa〉 = (−1)jb−mb

(
jb k ja
−mb q ma

)
〈κb||Ck||κa〉, (D.8)

where, the reduced matrix element 〈κb||Ck||κa〉 is given in Eq. (B.8).
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