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Abstract

Flavor physics is the study of quark “flavors” and their interactions involving

change of one type of flavor to another type of flavor. It is known that, histori-

cally, the study of flavor physics has played a key role in the development of the

Standard Model (SM) of particle physics. The recent discovery of the last miss-

ing piece, the Higgs boson, in the first run of the Large Hadron Collider (LHC)

marks the completion of the SM. The SM has been exceptionally successful in

explaining the experimental data collected so far. However, there are many ex-

perimental measurements which point towards the existence of physics beyond

the SM. Therefore, it is natural to consider SM as the low-energy limit of a more

general theory above the electroweak scale. The next important task is then to

look for hints of the physics beyond the SM. In this endeavour, the study of flavor

physics continues to be an integral part of the searches at the intensity frontier.

The study of flavor physics offers unique possibilities to study the weak inter-

actions operating at the fundamental level governing the decays in conjunction

with the strong forces responsible for keeping the constituents bound in various

colorless hadronic states. In recent years, due to dedicated efforts by the Belle,

BaBar, CDF, and LHCb experiments, a great theoretical understanding of the

flavor dynamics of the SM has been achieved, and severe constraints on the new

physics parameters have been imposed. The rare and flavor changing neutral

current processes of b quark have been quite instrumental and valuable probes of

new physics, thanks to their suppressed nature in the SM and high sensitivity to

the new physics effects.

In this context, the exclusive semileptonic decay B → K∗`+`− governed by

the quark-level transition b → s`+`− is one of the most interesting candidates,

which has received great attention, experimentally as well as theoretically. The

analysis of the angular distribution of its four-body final state gives access to a

large number of experimentally accessible observables as a function of invariant

mass squared of the dilepton system (q2). Interestingly, the LHCb collaboration

has found deviations from the SM predictions in the measurement of angular

observables of B → K∗µ+µ−. These measurements are reported in bins of q2.
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Particularly, the discrepancy in one of the angular observables, P ′5, in two of low

q2 bins is quite intriguing. However, in order to be certain that the reported

deviations are hints of new physics or artifacts of underestimated theoretical

uncertainties, it is necessary to measure the observables which are as insensitive

to hadronic effects as possible with more precision. In this thesis, we study some of

these “theoretically cleaner” observables which are independent of hadronic form

factors within the heavy quark effective framework. We show that zero crossing

points of observables P ′5, P ′4, and of a new observable, OL,R
T , are independent

of form factors, and are functions of short-distance Wilson coefficients in the

considered limit. The zero crossing of OL,R
T in the standard model coincides with

the zero crossing of the forward-backward asymmetry (AFB) of the lepton pair.

But in the presence of new physics contributions they show different behaviors.

Moreover, we show that there exist relations between the zeros of P ′5, P ′4, OL,R
T , and

the zero of AFB, which are also independent of hadronic uncertainties. We point

out that precise measurements of these zeros in the near future would provide a

crucial test of the standard model and would be useful in distinguishing between

different possible new physics contributions to the Wilson coefficients. If the

experimental observations are in fact due to NP in b → s``, then similar effects

must also be seen in other b→ s`` transitions involving different hadronic states.

This fact sets the tone for our next work in which we study the semileptonic

baryonic b → s decay, Λb → Λ`+`−. We construct new angular observables

and asymmetries; all of which have zero crossing points in the large q2 region.

The zeros of proposed observables in the heavy quark and large q2 limit are

again functions of Wilson coefficients only, and therefore have less sensitivity to

hadronic effects. We discuss the potential of the decay Λb → Λ`+`− in probing

the new physics effects in b→ s`+`− along with the decays B → K(∗)`+`−.

In the second part of the thesis, we present the explanation of some of the

experimentally observed anomalies in the flavor sector within the framework of

left-right symmetric gauge theories motivated by one of the low-energy subgroups

of E6 naturally accommodating leptoquarks. First, we explain the enhanced de-

cay rates of B → D(∗)τν in E6 motivated Alternative Left-Right Symmetric
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Model. We discuss the constraints from the flavor sector on the couplings in-

volved in explaining the experimental data. We further consider the framework

of E6 motivated Neutral Left-Right Symmetric Model, and give simultaneous ex-

planation for B decay anomalies in B → D(∗)τν and B̄ → K̄`+`− together with

the anomalous magnetic moment of the muon, consistent with the constraints

from other flavor data.

In the last part of the thesis, we carry out a detailed study of the effects of

new physics originating from a scalar leptoquark model on the kaon sector. It is

known that kaon decays provide some of the most stringent constraints on vari-

ous extensions of the SM. We consider a simple extension of the SM by a scalar

leptoquark of charge −1/3 with (SU(3)C, SU(2)L) quantum numbers (3, 1), which

is able to account for the deviations observed in B decays. The leptoquark we

consider is a TeV-scale particle and within the reach of the LHC. We use the ex-

isting experimental data on the several kaon processes including K0−K̄0 mixing,

rare decays K+ → π+νν̄, KL → πνν̄, the short-distance part of KL → µ+µ−,

and lepton-flavor-violating decay KL → µ±e∓ to obtain useful constraints on the

model.

Keywords: flavor physics, rare decays, semileptonic B decays, Kaon decays,

baryonic b decay, effective field theory, Wilson coefficients, beyond the Standard

Model, leptoquarks.
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Chapter 1

Introduction

1.1 The Glashow-Weinberg-Salam Model

The Glashow-Weinberg-Salam (GWS) model, also known as the Standard Model

(SM) [1–3], is a theoretical framework which describes how the fundamental con-

stituents of matter—elementary particles—interact with each other through the

strong and electroweak forces. Since its inception in the 1960s, the SM has

withstood the test of time, and has been extremely successful in explaining the

experimental data. It has predicted many particles and phenomena which were

confirmed afterwards in experiments; the Higgs boson being the last missing par-

ticle which was discovered recently in 2012 [4, 5], and therefore completing the

SM. The SM contains in total 17 fundamental degrees of freedom: 12 spin half

elementary particles (fermions), 4 spin-1 particles (gauge bosons), and one scalar

particle, the Higgs boson. All the known matter in the universe is comprised of

fermions, which are further divided as quarks and leptons in the SM. The gauge

bosons: photon (γ), weak gauge bosons (W±, Z), and gluon (g), are the carriers

of electromagnetic, weak and strong forces, respectively, through the exchange

of which the fermions interact with each other. The leptons and quarks both

have three families in the SM with the members of the third family being the

heaviest and that of the first family being the lightest. The quarks come in six

“flavors”: up, down, charm, strange, top, and bottom. The quarks do not exist in-

dependently, rather combine together to form two-quark bound states (mesons),

1
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and three-quark bound states (baryons). The SM Lagrangian is invariant under

the gauge group SU(3)C × SU(2)L × U(1)Y which spontaneously breaks down to

SU(3)C × U(1)Q,

SU(3)C × SU(2)L × U(1)Y
spontaneous−−−−−−−−−−→

breaking
SU(3)C × U(1)Q, (1.1.1)

where ‘C’ refers to color charge, ‘Q’ refers to electric charge, and ‘Y’ refers to

hypercharge quantum number. The subscript L signifies that generators of SU(2)

act only on left-handed fermions. The matter content of the SM, i.e., leptons and

quarks, are grouped into multiplets of the SM gauge group. The weak interaction

violates parity, and this feature is embedded in the SM by assigning different

quantum numbers to the left- and right-handed part of particles. The left-handed

quarks transform under the SM group
(
SU(3)C, SU(2)L

)
Y

as (3, 2)1/6,

qiL ≡

u′L
d′L

 ,

c′L
s′L

 ,

t′L
b′L

 , (1.1.2)

where u′, c′, t′ are called ‘up-type’ quarks and have electric charge +2/3, and

the ‘down-type’ quarks d′, s′, b′ have electric charge -1/3 in the units of proton

charge. On the other hand, the right-handed quarks transform trivially under

SU(2). The up-type right-handed quarks u′iR transform as (3, 1)2/3, whereas the

down-type right-handed quarks d′iR transform as (3, 1)−1/3. Here the subscripts

L and R refer to the left-handed and right-handed projections,

ψL/R =
1∓ γ5

2
ψ. (1.1.3)

Similarly, the left-handed leptons transform under the SM group as (1, 2)−1/2,

`iL ≡

νeL
e−L

 ,

νµL
µ−L

 ,

ντL
τ−L

 . (1.1.4)

The right-handed charged leptons eiR transform as (1, 1)−1, whereas the neutral

leptons (neutrinos), do not have right-handed part, and therefore are massless in

the SM. The leptons do not have color quantum number as they don’t participate

in strong interaction.
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The most general gauge-invariant GWS Lagrangian is comprised of the fol-

lowing parts,

LSM = LFermion + LGauge + LYukawa + LHiggs. (1.1.5)

The first term LFermion contains the kinetic part of the leptons and quarks, and

is given by,

LFermion = ¯̀iiγµDµ`i + q̄iiγµDµqi, (1.1.6)

with the covariant derivative Dµ defined as

Dµ = ∂µ − igsAaµ
λa

2
− ig2W

i
µ

τ i

2
− ig1

Y

2
Bµ, (1.1.7)

where Aaµ (a = 1, 2, ..., 8) are eight gluon fields corresponding to SU(3)C, W i
µ are

three weak fields corresponding to gauge group SU(2)L, and Bµ is the gauge boson

corresponding to U(1)Y. The λa and τ i are the Gell-Mann and Pauli matrices,

the generators of SU(3) and SU(2), respectively. For fermion fields transforming

as singlet under SU(3)C and SU(2)L, the terms containing matrices λi and τ i

vanish. The parameters gs, g2, and g1 are the SU(3)C, SU(2)L, and U(1)Y gauge

coupling constants, respectively.

The second term in Eq. (1.1.5), LGauge, contains the gauge part of the model, and

is given by

LGauge = −1

4
Gµν
a G

a
µν −

1

4
F µν
i F i

µν −
1

4
BµνBµν , (1.1.8)

where Gµν
a , F µν

i and Bµν are the field strengths of SU(3)C, SU(2)L, and U(1)Y,

respectively. In terms of gauge boson fields Aiµ, W i
µ, and Bµ, field strengths are

defined as

Ga
µµ = ∂µA

a
ν − ∂νAaµ + gsε

abcAbµA
c
ν ,

F i
µµ = ∂µW

i
ν − ∂νW i

µ + g2ε
ijkW j

µW
k
ν , (1.1.9)

Bµν = ∂µBν − ∂νBµ.

The third term in Eq. (1.1.5), LYukawa, describes the interaction of fermions with

the Higgs field (φ), and is given by

LY = Y d
ij q̄iLΦd′jR + Y u

ij q̄iLΦ̃u′jR + Y e
ij

¯̀
iLΦejR + h.c., (1.1.10)
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where Y d
ij , Y

u
ij , and Y `

ij are the arbitrary Yukawa couplings and Φ̃ (≡ iτ2Φ∗) is the

charge conjugate to the Higgs field doublet Φ (Y = +1),

Φ =

φ+

φ0

 . (1.1.11)

The last part of Eq. (1.1.5), LHiggs, is the Lagrangian for the Higgs sector and

describes the interaction of the Higgs with the gauge bosons,

LHiggs = (DµΦ)†(DµΦ)− V (Φ), (1.1.12)

with V (Φ) being the self-interaction part,

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2, (1.1.13)

where λ is a positive number which ensures the vacuum stability, and µ2 is chosen

to be positive. The local gauge invariance of the SM forbids to have the mass

terms in the LSM. The mass generation for the bosons and fermions is achieved

by means of the so-called ‘Higgs mechanism’ [6] which spontaneously breaks the

gauge symmetry SU(2)L × U(1)Y to U(1)Q. The Higgs potential is chosen in

such a way that the Higgs field Φ develops a non-zero vacuum expectation value

(VEV) which respects the conservation of electric charge,

〈Φ〉0 =
1√
2

0

v

 ; v =
√
µ2/λ. (1.1.14)

It should be noted here that the neutral diagonal generator τ3
2

of SU(2) and

generator of U(1) acting on scalar VEV give

τ3

2
〈Φ〉0 6= 0,

Y

2
〈Φ〉0 6= 0, (1.1.15)

but the combination (
τ3

2
+
Y

2

)
〈Φ〉0 = 0. (1.1.16)

can be identified with the unbroken electromagnetic charge generator Q of U(1)Q:

Q〈Φ〉0 = 0 implying that the vacuum remains invariant under U(1)Q symmetry

and therefore the corresponding gauge boson (photon) is massless. The charge

equation is, then, given by

Q = T3 +
Y

2
, (1.1.17)
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where T3 is the third component of weak isospin of SU(2)L.

After spontaneous symmetry breaking (SSB), the fermions and bosons acquire

masses from their interaction terms with the Higgs in LSM. The masses of gauge

bosons can be obtained by substituting Eq. (1.1.14) in the scalar kinetic term of

Eq. (1.1.12) giving

Lmass
W±,Z,A =

1

4
g2

2v
2W+µW−

µ +
1

8
v2
(
W 3
µ Bµ

) g2
2 −g2g1

−g2g1 g2
1

W 3
µ

Bµ

 .

(1.1.18)

Therefore the charged gauge bosons W±
µ which are combinations of gauge bosons

W 1
µ and W 2

µ corresponding to off-diagonal generators of SU(2)L:

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, (1.1.19)

acquire mass

MW± =
1

2
g2v. (1.1.20)

The SSB induces mixing between neutral gauge bosons W 3
µ and Bµ and the

resulting spectrum of neutral gauge bosons has one massive neutral weak boson

Z

Zµ =
−g1Bµ + g2W

3
µ√

g2
2 + g2

1

, (1.1.21)

with

MZ =
1

2
v
√
g2

2 + g2
1. (1.1.22)

while the other neutral gauge boson, identified with photon field Aµ, remains

massless:

Aµ =
g2Bµ + g1W

3
µ√

g2
2 + g2

1

. (1.1.23)

Introducing the weak mixing angle, θW , also called Weinberg angle, given by

θW = arctan

(
g1

g2

)
, (1.1.24)
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one can rewrite Zµ and Aµ as

Aµ = sin θW W 3
µ + cos θW Bµ,

Zµ = cos θW W 3
µ − sin θW Bµ. (1.1.25)

The charged- and neutral-current interactions of gauge bosons with the fermions

in the SM are described by Eq. (1.1.6). The charged current interaction involving

first generation of family of fermions is given by

LCC
int =

g2√
2

(ν̄Lγ
µeL + ū′Lγ

µd′L)W+
µ + h.c. , (1.1.26)

whereas the neutral-current interaction part in terms of physical gauge fields Zµ

and Aµ is given by

LNC
int = eQfi f̄iγ

µfiAµ +
g2

2 cos θW
f̄iγ

µ
[
(T fi3 − 2Qfi sin2 θW )− T fi3 γ5

]
fiZµ,

(1.1.27)

where sum over repeated indices is implied. The first term corresponds to elec-

tromagnetic current, while the second one corresponds to weak neutral current.

Here, Qf is the charge of fermion f in units of e, and T f3 is the third component

of weak isospin of f as discussed in the text earlier.

1.2 Mixing of the quarks and the CKM mecha-

nism

Following the SSB, the mass terms for the quarks can be obtained from the

LYukawa by replacing the Higgs field with its VEV,

Lmass
Yukawa =

v√
2
Mu

ij u
′
iLu
′
jR +

v√
2
Md

ij d
′
iLd
′
jR + h.c., (1.2.1)

where the quark fields, u′i and d′i, are written in the flavor eigenstate basis, and

Mu,d
ij are 3× 3 generational coupling matrices. In general, these matrices are not

diagonal and contain off-diagonal elements which are responsible for the flavor

violating transitions among quarks. These Yukawa matrices can always be diago-

nalized by means of the biunitary transformations on the fields. The fields in the
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flavor eigenstates and in the mass eigenstates are related through the following

linear transformations,

u′iL,R = (V u
L,R)ij ujL,R, (1.2.2)

d′iL,R = (V d
L,R)ij djL,R, (1.2.3)

where the unprimed quark fields, ui and di, correspond to the mass basis. In the

mass basis, by definition, the Yukawa matrices are diagonal, and given by

Mu
diag. = V u†

L Mu V u
R , (1.2.4)

Md
diag. = V d†

L Md V d
R . (1.2.5)

The non-trivial implications of the fields transformation from flavor to mass basis

are realized in the Lagrangian containing gauge interaction of the quark fields.

In the mass basis, the weak charged current interaction for the quarks, LCC
int , is

given by,

LCC
int =

g2√
2

(
ūL c̄L t̄L

)
γµ VCKM


dL

sL

bL

W+
µ + h.c. , (1.2.6)

where VCKM is a 3× 3 unitary matrix which appears as a result of redefining the

quark fields in the mass eigenstate basis, and is the genesis of flavor-violating

quark interactions in the SM. VCKM is referred to as the Cabibbo-Kobayashi-

Maskawa (CKM) matrix [7, 8], and is defined by,

VCKM = V u†
L V d

L ≡


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.2.7)

1.2.1 Parametrization of the CKM matrix

A general N× N unitary matrix contains N2 real-valued parameters. Out of

N2, N(N− 1)/2 are the Euler angles and the remaining N2 − N(N− 1)/2 =

N(N + 1)/2 are the phases. However, some of the phases are spurious, and do

not have any physical significance. The spurious phases arise because one has the
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freedom to redefine the fermion fields by a phase,

ψα → exp(iα) ψα; α = 1, 2, ...,N. (1.2.8)

By rephasing of the quark fields, one can eliminate (2N− 1) phases from the

VCKM. Therefore the final counting for the physical phases reads

1

2
N(N + 1)− (2N− 1) =

1

2
(N− 1)(N− 2). (1.2.9)

Thus, in the two-generation SM, there are no physical phases. A 2 × 2 quark

mixing matrix has only one parameter known as the Cabibbo angle θC [7]. In the

case of N = 3 generations, the VCKM matrix has four parameters. Of these, three

are the angles and one is the physical phase. This phase is the only source of CP

violation (CPV) in the SM. This mechanism of naturally incorporating the CPV

in the SM via the three-generation quark mixing was first proposed by Kobayashi

and Maskawa in 1973 [8], and is known as the CKM mechanism.

There are various ways to represent the CKM matrix using the four parame-

ters. One of parameterizations of VCKM, also recommended by the Particle Data

Group (PDG) [9], employs three mixing angles θ12, θ13, θ23, and one CPV phase

δ in the following way,

VCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (1.2.10)

where the abbreviations are sij = sin(θij), cij = cos(θij), with the indices i and j

being the family labels. By appropriately choosing the quark field phases, all the

angles can be constrained to lie in the range 0 ≤ θij ≤ π/2. The phase δ lies in

the range 0 ≤ δ ≤ 2π.

Another popular parametrization of VCKM, known as the Wolfenstein parametriza-

tion [10], utilizes the experimental information on CKM elements. From exper-

iments, it is known that quark flavor transitions within the family are favored,

i.e., the diagonal entries in the VCKM are of order unity. On the other hand,

the inter-generation quark transitions are suppressed, implying the off-diagonal

entries in the VCKM to be small. Therefore, each element in the VCKM can be
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written as an expansion in powers of the small parameter λ (≡ sin(θ12)) in the

following way,

VCKM =


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (1.2.11)

In the Wolfenstein parametrization, the four parameters are λ, A, ρ, and η. The

present experimental results on the CKM elements give [9]

λ = 0.22537± 0.00061, A = 0.814+0.023
−0.024, (1.2.12)

ρ̄ = 0.117± 0.021, η̄ = 0.353± 0.013, (1.2.13)

where the parameters ρ̄, and η̄ in terms of ρ, and η are given by

ρ̄ '
(

1− λ2

2

)
ρ+O(λ4), η̄ '

(
1− λ2

2

)
η +O(λ4). (1.2.14)

and appear in VCKM if the O(λ5) terms are also included in Eq. (1.2.11). The

Wolfenstein parametrization in Eq. (1.2.11) is true upto O(λ4), and therefore, the

unitarity of VCKM holds approximately. The Wolfenstein parameters are related

to the set (θ12, θ13, θ23, δ) of the standard parametrization through the following

relations,

s12 = λ, s23 = Aλ2, s13 e
−iδ = Aλ3(ρ− iη). (1.2.15)

The above relations are valid to all orders in λ. The exact parametrization of

VCKM in terms of (λ,A, ρ, η) can be obtained from the standard parametrization

in Eq. (1.2.10) by replacing the parameters (θ12, θ13, θ23, δ) with the Wolfenstein

parameters using the above relations.

1.2.2 The Unitarity triangle

The unitarity of the CKM matrix ( VCKMV
†

CKM = V †CKMVCKM = Î ) implies that

there are several orthonormal relations between the rows and columns of the

VCKM. For a three-generation matrix, this leads to a set of 12 bilinear relations

between combinations of the CKM elements,

VijV
∗
ik = δjk, (1.2.16)
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VijV
∗
kj = δik, (1.2.17)

where i, j = 1, 2, 3 and repeated indices are summed over. The first relation cor-

responds to the orthonormality of the rows, and the second relation corresponds

to orthonormality of the columns of the VCKM. Since the CKM elements are, in

general, complex, these relations can be geometrically represented as triangles in

the complex plane. For example, the product of the first and the third columns

of VCKM gives the following condition,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.2.18)

If each of the complex number is viewed as a vector in the complex plane, the

above relation can be represented as a triangle in the complex plane as shown

in Fig 1.1. Since the orthonormal conditions are born out of the unitarity of

VCKM, these triangles are known as unitarity triangles (UTs). The conditions in

Eq. (1.2.16) and Eq. (1.2.17) give six UTs for a 3×3 VCKM. In Fig 1.1, the angles

α, β, γ in the triangle are given by,

α ≡ arg

(
− VtdV

∗
tb

VudV ∗ub

)
, (1.2.19)

β ≡ arg

(
−VcdV

∗
cb

VtdV ∗tb

)
, (1.2.20)

γ ≡ arg

(
−VudV

∗
ub

VcdV ∗cb

)
. (1.2.21)

α

βγ

α

βγ

VudV
∗
ub

VtdV
∗
tb

VcdV
∗
cb

(0,0) (1,0)

(ρ, η)

ρ+ iη
1− ρ− iη

Figure 1.1: The Unitarity triangles (UTs). The UT (left) represents the

Eq. (1.2.18) in the complex plane. The UT (right) corresponds to the same

equation with each side being rescaled by |VcdVcb| in the (ρ, η) plane.

By definition, it follows that the sum of three angles is α+β+ γ = π. All the

six triangles have different shapes which depend on its angles and the magnitude
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of its sides. The angles of the UT are invariant under the rephasing of the quark

fields, and therefore the shape of the triangle does not change. The rephasing

only rotates the triangle in the plane. Another important feature of all UTs is

that despite their different shapes, the area of every UT is the same and is given

by,

Area of UT =
1

2
|J |, (1.2.22)

where J is a rephasing invariant quantity and is called the Jarlskog invariant [11].

It is defined as,

J =
∑
m

εikm
∑
n

εj`n Im(VijV
∗
kjVk`V

∗
i`). (1.2.23)

It is more convenient to work with the rescaled version of the UT as shown in

Fig 1.1. The equation representing the rescaled UT is obtained from Eq. (1.2.18)

by dividing the length of each side by VcdV
∗
cb, and choosing a phase convention

such that VcdV
∗
cb is real. With this choice of phase convention, in the leading order

in Wolfenstein parametrization, we obtain

−VudV
∗
ub

VcdV ∗cb
= ρ+ iη, (1.2.24)

−VtdV
∗
tb

VcdV ∗cb
= 1− ρ− iη. (1.2.25)

Therefore, one side of UT aligns with the real axis in the complex plane, and has

a length of unity. The coordinates of the two vertices of the rescaled UT are (0, 0)

and (1, 0), while the coordinates of the third vertex are given by the Wolfenstein

parameters (ρ, η). The shape of the triangle remains unaltered. In the (ρ, η)

plane, the lengths of other two sides are
√
ρ2 + η2, and

√
(1− ρ)2 + η2.

1.3 Weak decays of hadrons in effective field

theory

An effective field theory (EFT) is an approximation to a more complete field

theory that is sufficiently accurate to describe the dynamics of the physical system

up to a limited energy scale E. The basic concept of EFT is that in order to

describe the physical phenomena at a low-energy scale E, one needs to know
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only the degrees of freedom which are relevant up to the mass scale E; it is not

necessary to know the details of the theory at a heavy scale Λ � E. Therefore,

one can construct an effective Lagrangian which describes low-energy physics with

only degrees of freedom relevant up to the scale under consideration, while the

degrees of freedom corresponding to short-distance physics (equivalent to high-

energy scale) do not appear explicitly in the Lagrangian. The EFTs are more

convenient and useful to study the physical systems in which widely separated

energy scales are present; E corresponds to the natural scale of the process under

consideration, and Λi (� E) are the other mass scales involved in the system.

For example, in the weak decays of mesons K, B, D, etc., there are two disparate

mass scales present: mass of the decaying meson (∼ 1 GeV), and the electroweak

scale ∼ 100 GeV. The heavier degrees of freedom are integrated out and the the

action for the process can be described as an expansion in powers of E/Λi, and

contains only the light degrees of freedom. The effect of removing the heavy

degrees of freedom from the theory is that the renormalizable “full” theory now

can be written as an effective theory with infinite numbers of non-renormalizable

interactions suppressed by powers of high-energy scales Λi. These effects being

suppressed in general can be neglected, which is in accord with the statement of

the “decoupling theorem.” There are several advantages of studying a physical

system using the effective theory over the “full” description of the system. Since

in the effective theory only light degrees of freedom are dynamical, description of

the physics becomes rather simple. The other key advantage of using the effective

theory is that long-distance physics and short-distance physics get separated; the

contribution of light degrees and heavier degrees can be treated independent of

each other. We will discuss more about this feature later in the section.

1.3.1 The Effective Hamiltonian

A convenient framework to parametrize the low-energy effects of the full theory

in terms of fewer degrees of freedom is known as the operator product expansion

(OPE) [12–14]. The basic idea of OPE can be grasped from the simple example

of the decay b → cūd. It is a weak charged-current transition which proceeds
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at tree level via the mediation of W -boson in the SM as shown in Fig 1.2. The

tree-level amplitude in the full theory is given by,

b

u

c

d

W

Figure 1.2: Feynman diagram corresponding to quark transition b→ cūd at tree

level in the full theory.

Afull = −g
2
2

2
V ∗cbVud(c̄γ

µ1− γ5

2
b)

gµν
q2 −M2

W

(d̄γν
1− γ5

2
u), (1.3.1)

where V ∗cb, Vud are CKM elements, and q is the is the momentum flowing through

W-propagator. Since the decaying meson has mass mb ' 5 GeV, the momentum-

transfer q2 is small compared with M2
W . Therefore the propagator can be written

as a expansion in powers of q2/M2
W � 1,

1

q2 −M2
W

=
−1

M2
W

(
1 +

q2

M2
W

+ ...

)
, (1.3.2)

and the tree-level amplitude in the full theory can be approximated by ignoring

the higher-order terms in the q2/M2
W expansion,

A ' g2
2

8M2
W

V ∗cbVud(c̄γ
µ(1− γ5)b) (d̄γµ(1− γ5)u) +O(

q2

M2
W

), (1.3.3)

However, the leading term in Eq. (1.3.3) can also be obtained by sandwiching the

following local effective Hamiltonian between initial and final states,

Heff =
g2

2

8M2
W

V ∗cbVud(c̄γ
µ(1− γ5)b) (d̄γµ(1− γ5)u), (1.3.4)

which corresponds to the Feynman diagram in Fig 1.3. The operator (c̄γµ(1 −
γ5)b) (d̄γµ(1− γ5)u) in Eq. (1.3.4) is a dimension-six operator. The effects of the

terms O(q2/M2
W ) or higher can be taken into account by including the higher
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b

u

c

d

Figure 1.3: Feynman diagram corresponding to quark transition b→ cūd at tree

level in effective theory.

dimensional operators in the Heff . In the low-energy effective description of the

decay, the external quark fields which constitute the local operators are the dy-

namical degrees of freedom, and the heavy degrees, like W-boson in this example,

have been ‘integrated out’ and are no longer a dynamical degree of the theory.

The heavy degrees, though, do not appear explicitly in the Heff , but their effects

are embodied in the effective coupling strengths of the local operators. In the

example above, there is only one dimension-six operator in the effective Hamil-

tonian Heff , but in general there can be a number of effective local operators

(Oi) with different Dirac structures governing the process in question. A list of

operators relevant for weak decays of hadrons has been given in Appendix A.

The series in local operators is known as the operator product expansion (OPE).

The expansion is based on the fact that effects of high energy appear local when

viewed at low energy. Let us consider two local operators which have coordinates

x and y in the position space. The product of operators O(x)O(y) is a non-local

quantity and the separation between the operators O(x) and O(y) corresponds

to energy scale ∼ 1/(x− y). However, in low-energy systems with characteristic

energy scale � 1/(x − y), the product of operators O(x)O(y) becomes a local

quantity, and therefore, in the limit (x − y) → 0, the product can be expressed

as,

O(x)O(y) ≈
∑
i

Ci(x− y)Oi(
x+ y

2
). (1.3.5)

Here, Oi are the local operators. The distance scale (x+ y)/2 corresponds to the

intrinsic scale of the low-energy theory. The coefficients of these operators, Ci, are



1.3. Weak decays of hadrons in effective field theory 15

complex valued numbers, and are known as the Wilson coefficients. Ci contain

the short-distance, i.e., x → y information. Therefore, in the OPE framework,

one can write the effective Hamiltonian as a series of local operators weighted by

the Wilson coefficients,

Heff =
∑
i

Ci(µ)Oi. (1.3.6)

The Wilson coefficients Ci as well as matrix elements of local operators 〈Oi〉
depend on an arbitrary scale µ. The scale µ has the dimension of mass and is

chosen appropriately to separate the contribution of long-distance (low-energy

part) and short-distance (high-energy part). In the Heff , all the contributions

above the scale µ belong to short-distance physics and are contained in the Wilson

coefficients, while the contributions below µ belong to long-distance physics and

are contained in the matrix elements 〈Oi〉. The origin of the µ-dependence of Ci

and 〈Oi〉 lies in the quantum loop corrections they receive due to short-distance

QCD effects. For example, in the decay b→ cūd we discussed above, the effective

Hamiltonian given in Eq. (1.3.4) does not include the QCD effects, and can be

rewritten in a compact form as,

Heff (without QCD) =
4GF√

2
V∗cbVud Ca Oa, (1.3.7)

with Oa = (c̄iγ
µLbi) (d̄jγµLuj), and Ca = 1. Here i, j are the color indices. Since

quarks are involved in the problem, one has to take inevitable QCD quantum

corrections into consideration as well. The one-loop QCD corrections to the the

effective current-current operators are shown in Fig 1.4. The operator Oa is

comprised of two color-singlet currents with (V − A)⊗ (V − A) Dirac structure.

However, a gluon connecting the two color-singlet weak-current lines, as shown

in Fig 1.4, induces the mixing of the color indices owing to the following relation,

T aikT
b
jl = − 1

2N
δikδjl +

1

2
δilδjk. (1.3.8)

The QCD effects induce a new four-quark operator (Ob) with different color struc-

ture in addition to the color-singlet operator Oa given in the Heff . This results

in modifying the Heff to the following form,

Heff =
4GF√

2
V ∗cbVud(CaOa + CbOb), (1.3.9)
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Figure 1.4: One-loop QCD corrections to current-current operators Qa and Qb.

with Ob = (c̄iγ
µLbj) (d̄jγµLui), and Oa given in Eq. (1.3.7), with the correspond-

ing Wilson coefficient Cb and Ca, respectively, which develop dependence on scale

µ due to short-distance QCD corrections. A crucial point here is the asymptotic

freedom of QCD [15,16] that allows one to use perturbation theory in calculating

the QCD short-distance corrections. The calculation of the Wilson coefficients Ci

at the low-energy scale in effective theory involves several steps. The first step is

to calculate the amplitude Afull corresponding to the process M → F in the full

theory upto the desired order in the αs. Here M stands for meson such as K,

B, D, etc., and F stands for final state which in general can include hadrons as

well as leptons. Now, since the effective theory should be able to reproduce the

physics of full theory at the low-energy scale, the amplitude A(M → F ) in the

full theory and in the effective one are set equal to each other,

A(M → F )full = A(M → F )eff

= 〈F |Heff |M〉 ≡
∑
i

ci(µ) 〈F |Oi(µ)|M〉. (1.3.10)

This matching of the amplitudes is done at a typical scale (µh) of the full theory

(for weak interaction processes, it is the mass of W-boson, MW ), and this step of

comparing the full amplitude to the effective amplitude is called “the matching

of the full theory onto the effective theory”. It should be stressed here that the

Wilson coefficients do not depend on the external states. Their extraction is



1.3. Weak decays of hadrons in effective field theory 17

independent of the external states in the problem. In order to extract the correct

Wilson coefficients from the matching procedure, the external states in both, the

full and the effective theory, should be dealt alike. The matching gives the Wilson

coefficients at the scale µ ∼ µh, which are now functions of heavy masses, gauge

couplings αem, αs, and renormalization scale µ. The Wilson coefficients extracted

from the matching condition can be written as a series in αs and αem in ordinary

perturbation theory. For example in pure QCD case, the general form of the

Wilson coefficients is given by [17],

Ci(µh, µ, αs) = a00
i

+ a11
i

(αs
4π

)
log

µh
µ

+ a10
i

(αs
4π

)
+ a22

i

(αs
4π

)2

log2 µh
µ

+ a21
i

(αs
4π

)2

log
µh
µ

+ a20
i

(αs
4π

)2

+ a33
i

(αs
4π

)3

log3 µh
µ

+ a32
i

(αs
4π

)3

log
µh
µ

+ a31
i

(αs
4π

)3

log
µh
µ

+ ...

(1.3.11)

Although the scale µ is arbitrary, it is typically chosen to be the characteristic

scale appearing in the matrix elements of operators. This generally corresponds

to the mass of the decaying hadrons. But, the value of µ should not be chosen

smaller than ∼ 1 GeV as below this QCD is expected to become non-perturbative

and the perturbative expansion in αs would no longer be valid. However, this

choice of µ also poses another problem. The general expression for the Wil-

son coefficients given in Eq. (1.3.11) contains logarithmic terms involving ratios

αms logn (µh/µ). As long as µ is in the vicinity of µh, the smallness of αs en-

sures the validity of perturbative expansion in αs in Eq. (1.3.11). But, for the

values of µ ∼ 1 − 5 GeV corresponding to the masses of decaying hadrons, the

logarithmic values can become large enough to compensate the smallness of the

strong coupling αs. For example, for the decays of hadrons containing b quark,

the high scale µh is of the order of MW , and choosing µ to be the mass of b

quark, mb ∼ 5 GeV, one finds that log(MW/mb) ∼ 3. This implies that, despite

αs being a justified expansion parameter in Eq. (1.3.11), the logarithmic terms

αms logn(MW/mb) can be large, and therefore, might spoil the ordinary perturba-

tive treatment of the short-distance QCD corrections. This problem is solved by
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resumming the large logarithms to all orders in αs by utilizing the renormaliza-

tion group (RG) machinery. The solution of the RG equations allows one to sum

the large logarithms automatically. In particular, the summation of the terms

(αs)
n log(µh/µ)n to orders in n is called the leading-logarithmic approximation

(LO). Including the summation of the terms (αs)
n log(µh/µ)n−1 to all orders in n

corresponds to the next-to-leading logarithmic approximation (NLO), and so on.

The resulting RG improved perturbation series does not contain large logarithms

and therefore a more trustworthy calculation for the Wilson coefficients can be

performed.

The RG equations for the matrix elements and the Wilson coefficients fol-

lows from the requirement that a physical amplitude cannot depend on the ar-

bitrary scale µ. Therefore, the matrix element of the effective Hamiltonian, i.e.,

〈F |Heff |M〉, should not change under change of scale µ. The RG equations for

the Wilson coefficients are given by,

d

d log µ
Ci(µ) = γTij Cj(µ), (1.3.12)

where γ is the anomalous dimension matrix which depends on αs and αem. The so-

lution of above RG equations, with initial conditions determined from the match-

ing condition at the scale µh, C(µh), gives the evolution of the Wilson coefficients

from high scale µh to the desired low-energy scale µ. The general form of the

solution can be written as,

C (µ) = U(µ, µh) C(µh), (1.3.13)

where the evolution matrix U(µ, µh) is given by,

U(µ, µh) = 1 +

∫ g(µ)

g(µh)

dg1
γT (g1)

β(g1)
+

∫ g(µ)

g(µh)

dg1

∫ g1

g(µh)

dg2
γT (g1)

β(g1)

γT (g2)

β(g2)
+ ... ,

(1.3.14)

where g is the QCD coupling constant, and β(g) determines the flow of the

coupling g with the change in µ, and is defined as,

β(g) =
d

d log µ
g(µ) (1.3.15)
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This implies that the µ dependence of the Wilson coefficients Ci(µ) must cancel

the µ dependence of matrix elements of operators, 〈F |Oi(µ)|M〉.

However, in order to calculate the amplitude 〈F |Heff |M〉, the matrix elements

of local operators 〈F |Oi(µ)|M〉 also need to be calculated. The main limitation

in the calculations of 〈F |Oi(µ)|M〉 is that these objects are inherently nonper-

turbative. Around the scale ΛQCD, QCD becomes non-perturbative; the quarks

and gluons hadronize and are no longer dynamical degrees of the theory. Since

the matrix elements 〈Oi(µ)〉 contain the contribution below the scale µ, the so-

called long-distance physics, one can not really use the tools of the perturbation

theory to calculate them. Therefore, one has to rely on nonperturbative methods

such as lattice calculations, heavy quark effective theory (HQET) [18–20], the

1/N expansion [21–23], QCD sum rules [24–26], chiral perturbation theory etc.

to evaluate the matrix elements 〈Oi(µ)〉. Although there have been considerable

improvements in evaluating these hadronic objects using these non-perturbative

techniques, the computations still have some limitations. Therefore, the theoreti-

cal uncertainties in the calculations of the matrix elements 〈Oi(µ)〉 account for the

major source of error in the theoretical predictions of the amplitude A(M → F ).

1.3.2 Effective Hamiltonian for |∆F | = 1 transitions

In this subsection we will discuss the effective Hamiltonian for flavor transitions,

|∆F | = 1, which involve change in the flavor quantum number by one unit. The

processes relevant for our discussion are decays of bottom, strange and charm

hadrons. Since the mass of decaying particles (∼ 1 − 5 GeV) are much smaller

than the mass of W±, Z and top quark, these heavy particles can be integrated

out and the processes can be studied in an effective theory framework. We start

by discussing first the effective Hamiltonian for nonleptonic b → s transition

which is a |∆B| = |∆S| = 1, |∆C| = 0 process. The effective Hamiltonian

consists of four current-current operators (Oc
1, O

c
2) and (Ou

1 , O
u
2 ) corresponding to
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b→ scc̄ and b→ suū transitions, respectively:

Ou
1 = (s̄iγ

µLuj)(ūjγµL bi), Ou
2 = (s̄iγ

µLui)(ūjγµL bj), (1.3.16)

Oc
1 = (s̄iγ

µLcj)(c̄jγµLbi), Oc
2 = (s̄iγ

µLci)(c̄jγµLbj). (1.3.17)

In addition to these operators, the u and c quarks can also form a loop, emitting a

gluon which can couple to quark-antiquark pair. The resulting penguin diagrams

(see Appendix A) generate the following four QCD penguin operators:

Q3 = (s̄iγ
µLbi)

∑
q

(q̄jγµLqj), Q4 = (s̄iγ
µLbj)

∑
q

(q̄jγµLqi), (1.3.18)

Q3 = (s̄iγ
µLbi)

∑
q

(q̄jγµRqj), Q3 = (s̄iγ
µLbj)

∑
q

(q̄jγµRqi). (1.3.19)

The operator basis also includes the so-called “Electro-weak penguin” operators

(OEW
7,8,9,10) which are generated by diagrams similar to gluon-penguin diagrams but

with gluon replaced by a photon or Z boson. The expression of these operators

and the corresponding diagrams in the full theory are collected in Appendix A.

Therefore, the effective Hamiltonian for nonleptonic b→ s transitions is given by

Heff =
4GF√

2

{
VcbV

∗
cs (C1O

c
1 + C2O

c
2) + VubV

∗
us (C1O

u
1 + C2O

u
2 )

− VtbV
∗
ts

(
6∑
i=3

CiOi +
10∑
i=7

CEW
i OEW

i

)}
+ h.c. , (1.3.20)

For radiative and (semi) leptonic b → s transitions (b → sγ, b → s`+`−), the

operator basis is further extended to include the following operators:

O7 =
e

16π2
mb(s̄iσµνRbi)F

µν , O8 =
gs

16π2
mb(s̄iT

a
ijσµνRbj)G

aµν , (1.3.21)

O9 =
e2

16π2
(s̄iγ

µLbi)(¯̀γµ`), O10 =
e2

16π2
(s̄iγ

µLbi)(¯̀γµγ5`). (1.3.22)

Here, O7 and O8 corresponds to magnetic-penguin operators, whereas operators

O9,10 are called semileptonic operators. After including these operators and using

the unitarity condition of CKM elements (VubV
∗
us+VcbV

∗
cs+VtbV

∗
ts = 0), the general

effective Hamiltonian for b→ s transition can be expressed as

Heff = −4GF√
2

{
VubV

∗
us

(
C1(Oc

1 −Ou
1 ) + C2(Oc

2 −Ou
2 )
)

+ VtbV
∗
ts

(
10∑
i=1

CiOi +
10∑
i=7

CEW
i OEW

i

)}
+ h.c. , (1.3.23)
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where terms in the first line of above equation are doubly-cabibbo suppressed

with respect to terms in the second line and are generally omitted. The effective

Hamiltonian for other ∆F = 1 flavor transitions can be obtained by suitable

change of quark fields given in Eq. (1.3.23). For example, for the flavor transition

∆B = 1, ∆C = ∆S = 0, the corresponding effective Hamiltonian and the opera-

tor basis is obtained by replacing s quark field with d quark field in Eq. (1.3.23).

It should be pointed out here that for transitions which involve four different

quark flavors, the penguin operators cannot be generated and the corresponding

effective Hamiltonian consists of current-current operators only. For example, for

the case of flavor transition ∆B = ∆C = 1, ∆S = 0, the corresponding effective

Hamiltonian involves current-current operators only as given in Eq. (1.3.9).

1.3.3 Effective Hamiltonian for |∆F | = 2 transitions

The effective Hamiltonian for flavor transitions ∆F = 2 (e.g., K0-K̄0, B0-B̄0

mixing) in the SM consists of one four-quark operator only. The effective operator

for ∆F = 2 in the leading order in electroweak interaction is induced by box

diagrams (see Appendix A). For ∆S = 2 transition, the effective Hamiltonian is

given by

H|∆S|=2
eff =

G2
FM

2
W

4π2

{
(V ∗csVcd)

2ηccS0(xc) + (V ∗tsVtd)
2ηttS0(xt)

+ 2 (V ∗tsVtd)(V
∗
csVcd)ηctS0(xc, xt)

}
K(µ)(s̄γµLd)(s̄γµLd),

(1.3.24)

where xi = m2
i /M

2
W , ηi are the QCD-correction factors (see Chapter 6 for de-

tails), K(µ) is a short-distance factor defined in Eq. (6.2.3) such that the product

K(µ)(s̄γµLd)(s̄γµLd) is independent of µ, and S0(x) and S0(xi, xj) are loop func-

tions given in Eq. (6.2.2).

Similarly, the effective Hamiltonian for ∆B = 2 transition corresponding to

B0
d − B̄0

d mixing is given by

H|∆B|=2
eff =

G2
FM

2
W

4π2
(V ∗tbVtd)

2ηttS0(xt)B(µ)(b̄γµLd)(b̄γµLd). (1.3.25)

The corresponding effective Hamiltonian for B0
s − B̄0

s is obtained by replacing d

quark field with s quark field in the above equation. Here, B(µ), similar to K(µ)
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in the case of K0 − K̄0, is a short-distance factor which is required to make the

product B(µ)(b̄γµLd)(b̄γµLd) independent of µ, and is defined in terms of the bag

parameter BBq (q = s, d) and the decay constant fBq as [27]

BBq =
3

2
B(µ)

〈B̄0
q |(b̄γµLq)(b̄γµLq)|B0

q 〉
f 2
Bq
m2
Bq

. (1.3.26)

1.4 Flavor physics as a tool to probe the SM

and beyond

The study of flavor physics, in particular, the decays of K and B mesons, has

played a crucial role in the development of the SM to its present form. For ex-

ample, the first observation of breaking of CP-invariance in the weak interactions

came from the decays K → 2π, 3π [28]. This experimental discovery later led

Kobayashi and Maskawa to predict three generations of quarks in the SM even

before the discovery of the charm quark. In 1970, to explain the small branching

ratio of KL → µ+µ−, S. L. Glashow, J. Iliopoulos and L. Maiani proposed the

famous GIM mechanism responsible for the suppression of FCNC transitions [29].

This also required them to predict the existence of the fourth quark, charm, which

was discovered four years later. By incorporating the charm contribution in the

calculation of K0 − K̄0 mass-difference, ∆MK , Gaillard and Lee predicted the

mass of the charm quark before its experimental discovery. Similarly, the first

hint towards the large mass of the top quark came from the experimental mea-

surement of semileptonic decays of the B meson and the Bd − B̄d oscillations.

Moreover, the study of various charged current and FCNC processes of the K

and B mesons has provided important information for the determination of the

elements of CKM matrix. The precision measurements of the flavor transitions

b → d, b → u, and time-dependent CPV asymmetries in the B sector at the B

factories Belle and BaBar have further established the CKM mechanism to be the

dominant source of CPV in the SM. Subsequently, with the availability of high

precision experiments at experimental facilities such as LHCb, the role of flavor

physics has shifted to constraining the parameter space of the SM, and possibly

even discovering the new physics (NP).
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Despite the fact that the SM has explained the experimental data upto the

electroweak scale (∼ 100 GeV) with remarkable success, there are many theo-

retical motivations as well as experimental evidences which point towards the

existence of NP. Here, the term NP is used for physics which lies beyond the SM,

and is able to correct the shortcomings of the SM. A partial list of deficiencies

of the SM includes the following. The scalar sector of the SM is unnatural. In

order to prevent the Higgs mass from getting a large radiative correction, one has

to extend the SM to include NP at a scale ∼ 1 TeV. This problem is known as

the fine-tuning problem of the Higgs mass or the hierarchy problem of the SM.

Neutrinos in the SM are massless, which is in contradiction with the experimen-

tal observation of neutrino oscillations. The SM does not have any dark matter

candidate. The SM also does not explain the matter-antimatter asymmetry of

the universe. In the SM, there is only one source of the CP violation, namely,

the complex CKM phase. However, the CKM mechanism fails to account for the

required amount of CP violation needed to explain the matter-antimatter asym-

metry. Also, the SM does not include the gravitational force and hence does not

unify all known forces in a single framework. Therefore, there must exist a more

general unified theory above the electroweak scale. Since the SM does explain

the low-energy phenomena involving the strong and electroweak interactions, it

is natural to consider the SM as an effective low energy description of the gen-

eral theory. Broadly, there are two approaches to search for NP. Of these, one is

the collider searches of new particles at high energies, known as the searches at

the energy frontier. In this approach, particle beams are produced and collided

at the ever higher energies achievable at state of the art experimental facilities.

If the centre-of-mass energies are high enough, new particles can be produced

and detected. The other approach is the so-called indirect searches for NP at

the intensity frontier. In such searches, the basic idea is to measure the low-

energy processes with high precision and then confront the measurements with

the SM predictions. The deviation between theory and the experimental measure-

ments will indicate the presence of NP. The most promising processes for indirect

searches are the ones which are suppressed in the SM, in particular, the processes
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which occur at the loop level in the SM. The amplitude of such processes, e.g.,

neutral meson mixing, FCNC decays of K, B, and D, etc., are suppressed due

to loop and CKM factors and therefore have a very small value in the SM. Now,

since these processes proceed at loop level, the so-far unknown heavy particles

can also contribute to them via the quantum corrections. The effects due to new

particles can be in principle large relative to the very small prediction in the SM,

and therefore, are easier to be identified at the high precision experiments.

The direct collider searches at the high-energy frontier ( TeV scale) have not

found any new particle but, interestingly, there are some tantalizing hints to-

wards NP from high-precision low-energy experiments in the flavor sector. In

particular, the experimental measurements in the semileptonic decays of the B

meson have reported some deviations with respect to the SM predictions. To be

specific, in 2012, BaBar measured the ratios of branching fractions for the semi-

tauonic decay of B meson, RD(∗) = BR(B̄ → D(∗)τ ν̄)/BR(B̄ → D(∗)`ν̄`) with

` = e, µ, and reported 2.0σ and 2.7σ excesses over the SM predictions in the

measurement of RD and RD∗ , respectively [30,31]. The Belle [32] and LHCb [33]

collaborations have also reported measurements of these decays recently. These

measurements also show deviations from the SM. Another interesting indirect

hint of NP has been reported in the b→ sµ+µ− processes. The LHCb collabora-

tion has seen a 2.6σ departure from the SM prediction in lepton flavor universality

ratio RK = BR(B̄ → K̄µ+µ−)/BR(B̄ → K̄e+e−) = 0.745+0.090
−0.074 ± 0.036 in the

dilepton invariant mass bin 1 GeV2 < q2 < 6 GeV2 [34]. Though the individual

branching fractions for B̄ → K̄µ+µ− and B̄ → K̄e+e− are marred with large

hadronic uncertainties in the SM [35], their ratio is a very clean observable and

predicted to be RK = 1.0003 ± 0.0001 [35, 36]. Also, the recent data on angular

observables of four-body distribution in the process B → K∗(→ Kπ)`+`− indi-

cate some tension with the SM, particularly the deviation of ∼ 3σ in two of q2

bins of the angular observable P
′
5 [37–39]. In the decay Bs → φµ+µ−, a deviation

of 3.5σ significance with respect to the SM prediction has also been reported by

LHCb [40].
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B → K∗`+`− : Zeros of Angular

Observables

2.1 Introduction

Rare B decays are mediated by FCNC transitions which are absent in the SM

at tree level. The leading contributions come from one-loop diagrams. Being

suppressed by GIM- and CKM-suppressed factors, their predictions in the SM

are very small. As these processes are very sensitive to heavy particles in the

loops, any effect of NP will potentially show significant deviation from the SM

predictions. This makes these decays assets in probing NP. So far data collected

on rare B decays by dedicated particle physics experiments (e.g., B-factories,

LHCb) are in excellent agreement with the SM predictions. The data have been

used to retrieve information on flavor structure of possible NP and to put stringent

constraints on beyond Standard Model (BSM) scenarios, but expectations of

looking for any definitive hints of NP have not met with success. The results

seem to be consistent with the CKM mechanism of the SM [8]. However, recent

data on angular observables of four-body distribution in the rare decay, B →
K∗(→ Kπ)`+`−, indicate a plausible change in this situation. In 2013, LHCb

reported measurements of several form-factor independent angular observables of

B → K∗µ+µ− as a binned function of the dilepton invariant mass squared (q2)

using dataset corresponding to an integrated luminosity of 1 fb−1. Interestingly,

25
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the analysis showed a discrepancy of 3.7σ significance with respect to the SM in

the measurement of angular observable P ′5 in the low q2 bin 4.30 < q2 < 8.68 GeV2

[37]. Later in 2015, this result was confirmed by LHCb in its updated analysis

using 3 fb−1 integrated luminosity data and observed discrepancy of 2.8σ and

3.0σ significance with respect to the SM in P ′5 in bins 4 < q2 < 6 GeV2 and

6 < q2 < 8 GeV2, respectively [38]. Very recently, Belle Collaboration [41]

has also reported a deviation in P ′5 in a long bin 4 < q2 < 8 GeV2 consistent

with LHCb measurement. These discrepancies might be a result of statistical

fluctuations or inevitable theoretical uncertainties inherent in the calculation of

these observables [42–47]. One has to wait for more experimental data and a

more careful analysis of theoretical uncertainties to clear the smoke. Assuming

that these discrepancies are solely due to NP effects, there have been attempts in

the literature to resolve this tension between theory and experimental data (see,

for example, [48–70]).

In this chapter, we study some of the angular observables, P
′
4, P

′
5, AFB, and a

new observable, which we call OL,R
T , with a different approach. We look at the ze-

ros of these observables. The expressions, under certain reasonable assumptions,

are more or less independent of theoretical uncertainties, and depend solely on

the short distance Wilson coefficients, and thus have very clean predictions in the

SM. The precise measurements of these quantities gives certain relations (exper-

imentally testable) among the Wilson coefficients, and therefore provide tests of

short-distance physics. The most favored solutions to the present data explain-

ing these deviations generally point towards new physics in the Wilson coefficient

(Ceff
9 ) of the semi-leptonic operator O9 [39, 48, 49, 71, 72]. Since these zeros es-

sentially probe new contributions to the Wilson coefficients, their experimental

measurement in the near future can be worthwhile.

The chapter is organized in the following way. In the next section, we discuss

the effective Hamiltonian for b → s`+`−. In section 2.3, we describe the four-

body angular distribution of B → K∗(→ Kπ)`+`−, and various observables in

the large energy recoil limit. In section 2.4, we calculate zeros of the observables

P
′
4, P

′
5, OL,R

T , and obtain correlations among them. In section 2.5, we give the
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SM predictions for the zeros of the considered observables, and discuss the im-

plications of the zeros and their correlations in providing the new constraints on

the BSM scenarios. The NP sensitivity of these zeros is discussed in detail. In

section 2.6, we summarize the results of this chapter.

2.2 The effective Hamiltonian for b→ s`+`−

The rare decay B → K∗`+`− proceeds via the transition b→ s`+`− at the quark

level, and is governed by the effective Hamiltonian

Heff = −4GF√
2
V ∗tsVtb

∑
i

(Ci(µ)Oi + C
′

i(µ)O
′

i) + h.c. , (2.2.1)

where the contribution of the Cabibbo-suppressed term (∝ VubV
∗
us

VtbV
∗
ts

) has been ig-

nored. O
(′)
i are the effective local operators, and C

(′)
i (µ) are the Wilson coefficients

evaluated at scale µ. At the leading order in the SM, the process B → K∗`+`− is

induced by the γ, Z-penguins, and W -box diagrams as shown in Fig 2.1, which

generate the following effective operators

O7 =
e

16π2
mb(s̄ασµνRbα)F µν , (2.2.2)

O9 =
e2

16π2
(s̄αγ

µLbα)(l̄γµl), (2.2.3)

O10 =
e2

16π2
(s̄αγ

µLbα)(l̄γµγ5l). (2.2.4)

Here α, β are the color indices, L/R = (1 ∓ γ5)/2 represent chiral projections,

e is the electric charge, and mb is the b-quark mass. The primed operators have

chirality opposite to that of the unprimed operators. Their contribution within

the SM is either severely suppressed or not present.

The operators Oi, (i = 1,2,..,6), do contribute to the process b → s`+`−,

and their effects can be parametrized in terms of effective Wilson coefficients of

operators O7 and O9. The effective Wilson coefficients Ceff
7 and Ceff

9 are defined

as

Ceff
7 = C7 −

1

3
C3 −

4

9
C4 −

20

3
C5 −

80

9
C6, (2.2.5)

Ceff
9 = C9 + Y (ŝ), (2.2.6)
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W

b sui

ℓ+

ℓ−

γ,Z

(a)

b sui

W W

νiℓ ℓ

(b)

Figure 2.1: Feynman diagrams for b→ s`+`− in the SM. (a) the penguin diagram,

and (b) box diagram.

Here s (≡ q2) is dilepton invariant mass and ŝ is the invariant mass (s) normalized

by B-meson mass square, i.e., ŝ = s/m2
B. Y (ŝ) is a loop function containing the

contribution from one-loop matrix elements of operators Oi, i= 1,...6, and is given

by [73]

Y (ŝ) =
4

3
C3 +

64

9
C5 +

64

27
C6 + h(z, ŝ) T9 + h(1, ŝ) U9 + h(0, ŝ) W9, (2.2.7)

where

h(z, ŝ) = −4

9
ln(z) +

8

27
+

16

9

z

ŝ
− 2

9
(2 +

4z

ŝ
)

×

 2 arctan
√
ŝ/(4z − ŝ), ŝ < 4z,

ln[(
√
ŝ+
√
ŝ− 4z)/(

√
ŝ−
√
ŝ− 4z)]− iπ, ŝ > 4z,

(2.2.8)

and

T9 =
4

3
C1 + C2 + 6 C3 + 60 C5, (2.2.9)

U9 = −7

2
C3 −

2

3
C4 − 38C5 −

32

3
C6, (2.2.10)

W9 = −1

2
C3 −

2

3
C4 − 8C5 −

32

3
C6, (2.2.11)

where z = m2
c/m

2
b . Due to Y (ŝ), Ceff

9 is not real but has a small imaginary part.

In the analytic relations below, Y (ŝ) is neglected and all the Wilson coefficients

are assumed to be real, but for numerical calculations, we include Y (ŝ) in Ceff
9 .

As we will see, this turns out to be a good working approximation.



2.2. The effective Hamiltonian for b→ s`+`− 29

To calculate observables for the B → K∗ process, one needs to calculate

matrix elements of the local operators Oi’s. These matrix elements are generally

parametrized in terms of seven form factors V , A0,1,2, T1,2,3, which are functions

of squared momentum transfer (q2) between initial and final meson, and are given

as [74]

〈K̄∗(k)|s̄γµ(1− γ5)b|B̄(p)〉 = −iε∗µ(mB +m∗K)A1(q2) + i(2p− q)(ε∗.q)

× A2(q2)

mB +m∗K
+ iqµ(ε∗.q)

2m∗K
q2

[A3(q2)− A0(q2)]

+ εµνρσε
∗νpρkσ

2V (q2)

mB +m∗K
, (2.2.12)

〈K̄∗(k)|s̄σµν(1 + γ5)b|B̄(p)〉 = iεµνρσε
∗νpρkσ2T1(q2) + T2(q2)

[
ε∗µ(m2

B −m2
K∗)

−(ε∗.q)(2p− q)µ
]

+ T3(q2)(ε∗.q)

[
qµ

− q2

m2
B −m2

K∗
(2p− q)µ

]
, (2.2.13)

with

A3(q2) =
mB +m∗K

2m∗K
A1(q2)− mB −m∗K

2m∗K
A2(q2), (2.2.14)

A0(0) = A3(0), T1(0) = T2(0), (2.2.15)

where qµ = (p− k)µ, and εµ is the polarization vector of K∗. These form factors

are calculated via non-perturbative methods like QCD sum rules on the light

cone (LCSRs) [75]. Working in the QCD factorization (QCDF) framework and

heavy quark and large recoil limit (low q2 region), all seven “full” form factors

can be written in terms of only two independent universal “soft” form factors:

ξ⊥ and ξ‖ [76–79]. The two sets of form factors are related to each other as (see,

for example, [79])

ξ⊥ =
mB

mB +mK∗
V (q2), (2.2.16)

ξ‖ =
mB +mK∗

2EK∗
A1(q2)− mB −mK∗

mB

A2(q2), (2.2.17)

where EK∗ = (m2
B +m2

K∗ − q2)/2mB is the energy of the K∗ meson.
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2.3 Angular distribution and observables of B →
K∗`+`−

The angular distribution of B → K∗(→ Kπ)`+`− offers a plethora of experi-

mentally accessible observables which are independent of form factors in certain

limits, and therefore are theoretically cleaner. The fully differential decay distri-

bution can be completely described in terms of four kinematic variables: dilepton

invariant mass q2, θ`, θK , and φ, and is given by [74,80,81]

d4Γ(B̄ → K̄∗(→ Kπ)`+`−)

dq2 d cos θK∗ d cos θl dφ
=

9

32π
J(q2, θ`, θK , φ)

= Js1 sin2 θK + J c1 cos2 θK

+
(
Js2 sin2 θK + J c2 cos2 θK

)
cos 2θ`

+ J3 sin2 θK sin2 θ` cos 2φ+ J4 sin 2θK sin 2θ` cosφ

+ J5 sin 2θK sin θ` cosφ

+
(
Js6 sin2 θK + J c6 cos2 θK

)
cos θ` + J7 sin 2θK sin θ` sinφ

+ J8 sin 2θK sin 2θ` sinφ+ J9 sin2 θK sin2 θ` sin 2φ,

=
∑
i

Ji(q
2)fi(θ`, θK∗ , φ), (2.3.1)

where θ` is the angle between K̄∗0 and `− in the rest frame of lepton pair, θK is

the angle between K̄∗0 and K− in the centre mass of frame of (K− − π+) pair,

and φ denotes the angle between the planes containing lepton pair and (K−−π+)

pair in the B meson rest frame as depicted in Fig 2.2.

There are in total 24 angular coefficients [Ji(q
2) and J̄i(q

2)]. The CP con-

jugated coefficients J̄i (corresponding to CP conjugate mode of B → K∗(→
Kπ)`+`−) are given by Ji with the weak phases conjugated. To obtain de-

cay distribution of CP conjugated mode, one has to make the replacements:

J1,2,3,4,7 → J̄1,2,3,4,7 and J5,6,8,9 → −J̄5,6,8,9. These angular coefficients, Ji(q
2), are

expressed in terms of complex transversity amplitudes AL,R⊥,0,‖, At and As. For
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Z

ℓ+

ℓ−

K−

π+

θK
θℓ

K
∗

B
0

φ

Figure 2.2: Topology of the four-body angular distribution of B̄ → K̄∗(→
K−π+)`+`− with the description of the angles θ`, θK , and φ.

m` 6= 0, we have [80,82]

Js1 =
(2 + β2

` )

4
[|AL⊥|2 + |AL‖ |2 + (L→ R)] +

4m2
`

q2
Re(AL⊥A

R∗
⊥ + AL‖A

R∗
‖ ),

(2.3.2)

J c1 = |AL0 |2 + |AR0 |2 +
4m2

`

q2
[|At|2 + 2Re(AL0A

R∗
0 )] + β2

` |As|2, (2.3.3)

Js2 =
β2
`

4
[|AL⊥|2 + |AL‖ |2 + (L→ R)], (2.3.4)

J c2 = −β2
` [|AL0 |2 + (L→ R), (2.3.5)

J3 =
1

2
β2
` [|AL⊥|2 − |AL‖ |2 + (L→ R)], (2.3.6)

J4 =
β2
`√
2

[Re(AL0A
L∗
‖ ) + (L→ R)], (2.3.7)

J5 =
√

2β`[Re(AL0A
L∗
⊥ )− (L→ R)− m`√

q2
Re(AL‖A

∗
s + AR‖ A

∗
s)], (2.3.8)

Js6 = 2β`[Re(AL‖A
L∗
⊥ )− (L→ R)], (2.3.9)

J c6 = 4β`
m`√
q2

Re[AL0A
∗
s + (L→ R)], (2.3.10)

J7 =
√

2β`[Im(AL0A
L∗
‖ − (L→ R) +

m`√
q2

Im(AL⊥A
∗
s + AR⊥A

∗
s)], (2.3.11)

J8 =
1√
2
β2
` [Im(AL0A

L∗
⊥ ) + (L→ R)], (2.3.12)

J9 = β2
` [ImA

L∗
‖ A

L
⊥) + (L→ R)], (2.3.13)

(2.3.14)

where β` =
√

1− 4m2
`

q2
.

Note that As contributes only when scalar operators are taken into account.

In this chapter, we do not consider contributions from scalar operators. However,
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for the sake of generality, we include As in the expressions of Ji(q
2). Also, we have

dropped the explicit q2 dependence of the transversity amplitudes for notational

simplicity. The eight transversity amplitudes, AL,R
⊥,‖,0, and As,t in terms of B → K∗

form factors and the Wilson coefficients are given by the following expressions:

AL,R
⊥ = N

√
2λ1/2

[(
(Ceff

9 + Ceff′
9 )∓ (Ceff

10 + Ceff′
10 )

)
V

mB +mK∗

+
2mb

q2
(Ceff

7 + Ceff′
7 )T1

]
(2.3.15)

AL,R
‖ = −N

√
2(m2

B −m2
K∗)

[(
(Ceff

9 − Ceff′
9 )∓ (Ceff

10 − Ceff′
10 )

)
A1

mB −mK∗

+
2mb

q2
(Ceff

7 − Ceff′
7 )T2

]
(2.3.16)

AL,R
0 = − N

2mK∗
√
q2

[(
(Ceff

9 − Ceff′
9 )∓ (Ceff

10 − Ceff′
10 )

)(
(m2

B −m2
K∗ − q2)

(mB +mK∗)A1 − λ
A2

mB +mK∗

)
+ 2mb(C

eff
7 − Ceff′

7 )

×
(

(m2
B + 3m2

K∗ − q2) T2 −
λ

m2
B −m2

K∗
T3

)]
, (2.3.17)

At =
N√
q2
λ1/2

(
2(Ceff

10 − Ceff′
10 ) +

q2

2mµ

(CP − C ′P )

)
A0, (2.3.18)

As = −Nλ1/2(Cs − C ′s)A0. (2.3.19)

In the above expressions,

N =

[
G2
Fα

2

3 · 210π5m3
B

|VtbV ∗ts|2q2λ1/2β`

]1/2

, (2.3.20)

and λ = m4
B + m4

K∗ + q4 − 2(m2
Bm

2
K∗ + m2

K∗q
2 + m2

Bq
2), m̂b = mb/mB. C

(′)
s and

C
(′)
P are the Wilson coefficients of scalar and pseudoscalar operators which, as

mentioned before, have been ignored in this analysis. Interestingly, in the heavy

quark and large recoil limit, the transversity amplitude can be written simply in

terms of two universal form factors ξ⊥ and ξ‖. At the leading order in 1/mb and

αs, the transversity amplitudes read

AL,R⊥ =
√

2NmB(1− ŝ)
[
(Ceff

9 + C
′eff
9 )∓ (C10 + C

′

10)

+ 2
m̂b

ŝ
(Ceff

7 + C
′eff
7 )

]
ξ⊥(EK∗), (2.3.21)
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AL,R‖ = −
√

2NmB(1− ŝ)
[
(Ceff

9 − C
′eff
9 )∓ (C10 − C

′

10)

+ 2
m̂b

ŝ
(Ceff

7 − C
′eff
7 )

]
ξ⊥(EK∗), (2.3.22)

AL,R0 = − Nmb

2m̂K∗
√
ŝ

(1− ŝ)2

[
(Ceff

9 − C
′eff
9 )∓ (C10 − C

′

10)

+ 2m̂b(C
eff
7 − C

′eff
7 )

]
ξ‖(EK∗), (2.3.23)

At =
Nmb

m̂K∗
√
ŝ

(1− ŝ)2
[
C10 − C

′

10

]
ξ‖(EK∗). (2.3.24)

In writing the above expressions, terms of O(m̂2
K∗) have been neglected. However,

it is worth mentioning that these relations hold only in the kinematic region

1 < q2 (GeV2) < 6, which is precisely the region of interest.

As mentioned before, one can extract 24 angular coefficients Ji(q
2) from the

full fit of B → K∗µ+µ− (including its’ CP conjugated mode). The key ob-

servables like branching ratio, longitudinal polarization fraction FL, forward-

backward asymmetry of lepton pair AFB can be expressed in terms of functions

Ji(q
2) integrated in q2- bins. For example, the dilepton mass distribution can be

written in terms of Ji as

dΓ

dq2
=

1

4
(3J1c + 6J1s − J2c − 2J2s) . (2.3.25)

and the q2-binned observables AFB and FL are given as,

AFB = −3

4

∫
dq2(J6s + J̄6s)∫

dq2(dΓ/dq2 + dΓ̄/dq2)
, (2.3.26)

FL = −
∫
dq2(J2c + J̄2c)∫

dq2(dΓ/dq2 + dΓ̄/dq2)
. (2.3.27)

Apart from these observables, one can also construct new observables by con-

sidering ratios of certain combinations of coefficients Ji(q
2) in such a way that

LO hadronic uncertainties get canceled in particular q2 region and therefore these

observables are theoretically under more control. In literature, several such “opti-

mized” observables P
(′)
i have been constructed and studied. For example, observ-

able P1 [83] was proposed to probe the right-handed structure in B → K∗`+`−.

Due to left-handed structure of the SM, P1 vanishes in the SM and therefore a

nonzero measurement of this quantity immediately points towards the departure
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from the SM. P2 [81] is theoretically more cleaner observable than AFB. On the

other hand, observable P3 [84] has the capability to probe weak as well strong

phases in the SM and beyond. Below, we list interesting “optimized” observables

defined in terms of q2 -integrated J ′is [85],

P1 =
1

2

∫
dq2(J3 + J̄3)∫
dq2(J2s + J̄2s)

, P2 =
1

8

∫
dq2(J6s + J̄6s)∫
dq2(J2s + J̄2s)

,

P3 = −1

4

∫
dq2(J9 + J̄9)∫
dq2(J2s + J̄2s)

, P
′

4 =
1

N

∫
dq2(J4 + J̄4), (2.3.28)

P
′

5 =
1

2N

∫
dq2(J5 + J̄5), P

′

6 = − 1

2N

∫
dq2(J7 + J̄7),

with N =
√
−
∫
dq2(J2s + J̄2s)

∫
dq2(J2c + J̄2c). The “optimized” observables are

sensitive to combinations of different short-distance Wilson coefficients (for ex-

ample, see [72] for a recent and detailed discussion on observables Pi’s sensitivity

to NP Wilson coefficients) and therefore their precise measurement holds a good

chance of unraveling patterns of NP in this mode.

2.4 Zeros of angular observables and relations

in the SM

The zero crossing of the forward-backward asymmetry of the lepton pair (ŝ0) is

known to be highly insensitive to form factors. This was first pointed out in [86]

where a number of form-factor models were considered, and was noted that the

value of ŝ0 is practically independent of hadronic form factors. Later Ali et.

al. [87] in their analysis showed that ŝ0 depends on the Wilson coefficients and

ratios of form factors, and in the heavy quark limit and large EK∗ ∼ O(mB/2),

the hadronic uncertainties in ratios of form factors drop out, and ŝ0 essentially

depends on a combination of short distance parameters only. This leads to a

nearly model-independent relation between the Wilson coefficients. The position

of the zero crossing is thus heralded as a test of the SM.

In the SM, ŝ0 is given by [87]

Re(Ceff
9 (ŝ0)) = −2

m̂b

ŝ0

Ceff
7

1− ŝ0

1 + m̂2
K∗ − ŝ0

∼ −2
m̂b

ŝ0

Ceff
7 . (2.4.1)
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Note that existence of zero from the above Eq. (2.4.1) necessarily requires the

condition Sign
[
Re(Ceff

9 )Ceff
7

]
= −1 to be satisfied. For NP models where Ceff

7

has the same sign as Ceff
9 , there will then be no zero crossing. The LHCb col-

laboration [88,89] has measured the zero of forward-backward asymmetry of the

lepton pair to be q2
0 = 3.7+0.8

−1.1 GeV2. which, within errors, is consistent with

the SM predictions, typically lying in the range (3.7 - 4.3) GeV2 which in units

normalized by mass of the B-meson (ŝ = q2/m2
B) translates to the range (0.13 -

0.16), and have relative uncertainties below 10% level [79,90,91].

We now discuss the angular observables of interest and work in the basis

where the SM operators are augmented with their helicity flipped counterparts.

We retain contributions of the helicity-flipped Wilson coefficients so that anal-

ysis done includes a subset of NP models involving primed Wilson coefficients∗.

The expressions below clearly show the power of the zero crossing point of these

angular observables to probe different NP scenarios.

The value of ŝ0 can be easily obtained from integrated q2 angular observable,

AFB. In terms of the angular coefficients [Ji(q
2)], AFB is defined as

AFB = −3

4

∫
dq2(J6s + J̄6s)∫

dq2(dΓ/dq2 + dΓ̄/dq2)
. (2.4.2)

To calculate ŝ0, we use the expressions for the transversity amplitudes given in

Eqs. (2.3.21 -2.3.24), which are valid in the large recoil region. The zero crossing

of any observable is easily obtained by equating the numerator to zero. From

Eq. (2.4.2), we obtain

ŝ0 = −2
(C10C

eff
7 − C ′10C

′
7)

(C10Ceff
9 − C ′10C

′
9)
m̂b (2.4.3)

Within the SM (C
′
i → 0), dependence on C10 cancels out, and the expression

reduces to Eq. (2.4.1), sensitive to the ratio of Ceff
7 and Ceff

9 .

The angular observables P
′
5 and P

′
4 both have zero crossing point in their mass

spectrum. The value of zero crossing for both lies in the “theoretically clean” low-

q2 region; interestingly the same region where the LHCb has measured deviation

from the SM prediction for the angular observable P
′
5.

∗We reiterate that in the analytic relations, we assume Ci’s to be real but retain the complex

nature in numerical analysis.
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Observable P
′
5 is related to the angular coefficient J5 through the following

relation

P
′

5 =

∫
dq2(J5 + J̄5)

2
√
−
∫
dq2(J2s + J̄2s)

∫
dq2(J2c + J̄2c)

(2.4.4)

The numerator of P
′
5 in the massless lepton limit is proportional to [Re(AL0A

L∗
⊥ )−

(L↔ R)]. Then the zero of P
′
5, in the large recoil region, is given by the following

combination of short-distance parameters

ŝP5
0 =

(Ceff
7 + C

′
7)(C

′
10 − C10)

[C10Ceff
9 − C ′10C

′
9 + (Ceff

7 − C ′7)(C10 + C
′
10)m̂b]

m̂b (2.4.5)

The zero of P
′
5 turns out to be insensitive to hadronic form factors similar to

the zero of AFB. In the SM limit, C10 dependence disappears and the expression

reduces to a very simple relation between value of zero and the Wilson coefficient

Ceff
7 and Ceff

9 ,

ŝP5,SM
0 = − Ceff

7

Ceff
9 + Ceff

7 m̂b

m̂b (2.4.6)

Interestingly enough, we find that within the SM, the zero of P
′
5 can be written

solely in terms of ŝ0, the zero of AFB

ŝP5,SM
0 =

ŝSM0 /2

1− ŝSM0 /2
(2.4.7)

We find this correlation between zero of AFB and that of P
′
5 an important result.

Eq. (2.4.7) can be expanded in a Taylor series, and dropping out terms of order

O
(
(ŝSM0 /2)2

)
and higher, the relation predicts that zero of P

′
5 is approximately

half of the value of ŝ0 in the SM.

A similar analysis can also be done for the observable P
′
4. In terms of angular

coefficients J ′is, observable P
′
4 is written as

P
′

4 =

∫
dq2(J4 + J̄4)√

−
∫
dq2(J2s + J̄2s)

∫
dq2(J2c + J̄2c)

(2.4.8)

The numerator of P
′
4 is ∝ [Re(AL0A

L∗
‖ ) + (L ↔ R)]. Using expressions in Eqs.

(2.3.22) and (2.3.23) for transversity amplitudes AL‖ and AL0 , we find the zero of

P
′
4 to be

ŝP4
0 = −2

(Ceff
7 − C ′7)[Ceff

9 − C ′9 + 2(Ceff
7 − C ′7)m̂b]

[(Ceff
9 − C ′9)2 + (C10 − C ′10)2 + 2(Ceff

7 − C ′7)(Ceff
9 − C ′9)m̂b]

m̂b (2.4.9)
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The expression is again very ‘clean’ and has a non-trivial dependence on short-

distance parameters in the large recoil region. In the SM limit, this relation

yields

ŝP4,SM
0 = −2

Ceff
7 Ceff

9 + 2(Ceff
7 )2m̂b

C2
10 + (Ceff

9 )2 + 2Ceff
7 Ceff

9 m̂b

m̂b (2.4.10)

The zero of P
′
4 can also be written in terms of ŝ0 (utilizing the fact that within

the SM, C10 = −C9)

ŝP4,SM
0 =

ŝSM
0 (1− ŝSM0 )

(2− ŝSM0 )
(2.4.11)

Again using the fact that the value of ŝ0 is very small compared to unity, we find

the value of the zero of P
′
4 to be approximately half of ŝ0, similar to the case of

P
′
5. However, if we keep effects of higher order terms in ŝ0, the value of zero of

P
′
5 and that of P

′
4 turns out be a bit larger and smaller than ŝSM

0 /2 respectively

and the leading effect is of order (ŝ0)2. From the experimental point of view, this

accuracy is currently not there and therefore the effect can be safely neglected.

The correlation between zeros of AFB, P
′
4, P

′
5 is quite intriguing since in a chosen

optimal basis of observables, AFB, P5
′ and P

′
4 are independent observables, and

there is no a priori reason for their zero crossing points to develop this dependence

on each other.

With enough data available, one would be able to perform a full angular

analysis of the final state distribution in the decay B → K∗(→ Kπ)`+`−, and

this would allow complete determination of the K∗ spin amplitudes. Therefore

one can use the spin amplitudes to design observables which are sensitive to

specific NP and have relatively controlled theoretical uncertainties. With this in

mind, we propose a new CP conserving observable which we call OL,R
T . It has the

following form

OL,RT =
|AL⊥|2 + |AL‖ |2 − (L↔ R)

8(J2s + J̄2s)
(2.4.12)

This new observable is constructed out of both parallel and perpendicular spin

amplitudes of K∗ and has not been explored before in the literature. The ratio

of amplitudes is chosen such that theoretical uncertainties due to the hadronic

form factors cancel at the leading order. The profile of OL,R
T also has a zero in

low-q2 region. In a basis where the SM operator structure is augmented with
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right-handed currents, the zero of OL,R
T has NP sensitivity different from that of

AFB. Its zero crossing point occurs at

ŝ
OL,RT
0 = −2

(C10C
eff
7 + C

′
10C

′
7)

(C10Ceff
9 + C

′
10C

′
9)
m̂b (2.4.13)

The expressions ŝ0 [Eq. (2.4.3)] and ŝ
OL,RT
0 [Eq. (2.4.13)] have some interesting

features. By definition, observables AFB and OL,RT have non-identical dependence

on invariant mass ŝ and therefore vary differently as functions of ŝ. But within

the SM, despite q2 profiles being different, the values of zero crossings, ŝSM0 and

ŝ
OL,RT ,SM
0 , are degenerate. However, in the presence of helicity flipped operators,

the positions of zero crossing shift in a dissimilar fashion and the degeneracy gets

lifted. This rather utilitarian feature can be used to probe contributions from

helicity flipped operators once the values of ŝ0 and ŝ
OL,RT
0 are known experimentally

with good precision.

Let us remark that all the expressions and relations obtained above have been

worked out under the hypothesis of no scalar and tensor contributions. Observ-

ables AFB, P
′
4 and the proposed new observable ŝ

OL,RT
0 are blind to the presence

of scalar/tensor contributions. Therefore, the expressions for zeros will remain

unaltered even in the presence of these new contributions. The observable P
′
5,

however, does receive contributions from the scalar component of K∗-spin ampli-

tudes. But the sensitivity to this contribution is highly suppressed ( m2
µ/q

2 is the

suppression factor) and in the limit of negligible leptons mass, these contributions

vanish.

2.5 Constraining New Physics

All the Wilson coefficients are assumed to be real in this analysis, i.e., NP does

not introduce any new weak phase in the Wilson coefficients and we assume that

the sign of C7 is as in the SM. We will ignore NP scenarios where C7 and C9

have the same sign. The expressions of zeros of these observables depend only on

the Wilson coefficients, practically independent of form factors, thereby leading

to theoretically clean predictions. To calculate these zeros, we use C9 = 4.2297,
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C10 = -4.2068, Ceff
7 = -0.2974 [71] at scale mb. Other input parameters are:

mpole
b = 4.80 GeV, GF = 1.166 × 10−5, mB = 5.280GeV, mK∗ = 0.895GeV,

mµ = 0.106GeV, α = 1/129, αs = 0.21.

Value of zero Exact values of zero crossings

Observable using analytic using “full” form factors using “soft” form factors

relations (V , A0,1,2, T1,2,3) (ξ⊥, ξ‖)

AFB 0.128 0.122 0.125

P
′
5 0.068 0.069 0.069

P
′
4 0.059 0.054 0.056

OL,RT 0.128 0.122 0.125

Table 2.1: Zeros in the SM. In column II, we quote the values calculated using

relations [Eq. (2.4.3), Eq. (2.4.7), Eq. (2.4.11), Eq. (2.4.13)], while the third and

fourth columns have entries predicted in the SM using form factors (V , A0,1,2,

T1,2,3) and (ξ⊥, ξ‖), respectively.

In Table 2.1, we give the numerical values of zeros of the observables in the SM.

The values in the second column are obtained using the relations in Eq. (2.4.3),

Eq. (2.4.7), Eq. (2.4.11), and Eq. (2.4.13). To compare with the exact predictions

in the SM and to have a consistency check of these relations, we also calculate

values of these zeros in the SM using form factors and retaining Y (ŝ) in Ceff
9 , which

we had ignored for obtaining analytic relations among the zeros. We use “full”

form factors (V , A0,1,2, T1,2,3) calculated in [75] using light-cone sum rule and

tabulate the results in the third column of Table 2.1 whereas in the last column we

tabulate the same results using “soft” form factors (ξ⊥, ξ‖) given in Refs. [76–78]

(see appendix B for more details). As is evident, the two sets of form factors yield

very similar values, thereby confirming that these zeros are (almost) independent

of form factors. Clearly, the employed analytic relations yield values close to those

when no approximations are made, showing the robustness of these relations. All

the zeros lie in the low-q2 region, where form factors are known with relatively
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greater precision. At LO, soft form factors cancel precisely and predictions of

zeros are clean. Largest corrections to the values of zeros come from form factor

uncertainties when NLO effects are included (as noted in [78] for the case of ŝ0).

The typical error on form factors is ∼ 10-12% (see [75]). Assuming the size of

errors in all the form factors of the same order, we find the relative uncertainties

in our estimates of these zeros to be ∼ 30%. So far experimentally as well

as theoretically only ŝ0 has received attention. The experimental value of ŝ0 has

large relative uncertainties (of order 35%) [88,89]. Though we have ignored O(αs)

contributions in favor of obtaining form-factor insensitive correlations among the

zeros, our theoretical estimate of ŝ0 is still competitive with the experimental

value with current precision as discussed above. The zeros and the relations

among them can be used to constrain the Wilson coefficients in the following

ways:

• Under the hypothesis of no NP-induced right-handed currents and real Wil-

son coefficients, all the zeros including that of the new observable OL,RT are

functions of Ceff
7 and Ceff

9 only. With the magnitude of Ceff
7 stringently

constrained from branching ratio of decay B → K∗γ (and B → Xsγ), the

zeros provide new information on Ceff
9 .

• Some of the zero crossing points are sensitive to right-handed currents (more

details below). These contributions can be probed once the precise mea-

surements of zero crossings are made.

Global fits to recently updated data on angular analysis of the B → K∗µµ indi-

cate significant tension with the SM [39,48,49,71,72]. It has been suggested that

solutions having destructive NP contribution to C9 or with CNP
9 = −CNP

10 < 0

are in very good agreement with the data. From this perspective, the measure-

ment of these zero crossing points would provide a very clean and good test of the

hypothesis of NP contribution to C9. In Fig 2.3, we show the constrained region

in C7 and C9 plane in the SM-like operator basis. The most stringent bounds on

C7 come from the decay B → Xsγ. The formula for branching ratio of B → Xsγ
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Figure 2.3: Constraints on CNP
7 −CNP

9 from zeros of observables AFB (Gray), P
′
5

(Red) and P
′
4 (Cyan) using analytic relations Eq. (2.4.1), Eq. (2.4.6), Eq. (2.4.10).

The light orange band shows the constraints on the values of C7 from the inclusive

and exclusive b → sγ modes as discussed in the text. The black filled circle

shows the SM point whereas the blue colored ‘+’ in the plots corresponds to the

simplest possible NP solution CNP
9 = −1.5 to explain the observed tension in the

experimental data on b → sµ+µ−. The NP solution CNP
9 = −1.5 corresponds to

‘BSM1’ scenario and has been discussed in detail later in the text.

with photon energy cut E0 = 1.6 defining the threshold is given by [92],

BR(B → Xsγ)Eγ>E0 = BR(B → Xceν̄)

∣∣∣∣VtbV ∗tsVcb

∣∣∣∣2 6αem

πC
(P (E0) + δnonp.),

(2.5.1)
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where C is a semileptonic phase-space factor given by [93]

C =

∣∣∣∣VubVcb

∣∣∣∣2 Γ(B̄ → Xceν̄)

Γ(B̄ → Xueν̄)
= 0.58± 0.01, (2.5.2)

and δnonp. is the nonperturbative contribution estimated in Ref. [94]. At LO,

P (E0) = |C7|2 and NNLO QCD corrections have been computed in Ref. [95–97].

The formula for branching ratio for exclusive B → K∗γ is given by [98]

BR(B → K∗γ) = τB
G2
Fαemm

3
Bm

2
b

32π3

(
1− m2

K∗

m2
B

)3

|VtbV ∗ts|2
(
|C7|2 + |C ′7|2

)
T1(0),

(2.5.3)

where form factor T1(0) is the main source of uncertainty in the prediction of

branching ratio. The updated LCSR calculation of the full QCD form factors

gives T1(0) = 0.282 ± 0.031 [99], and combined fit of the LCSR and lattice

calculation gives T1(0) = 0.312 ± 0.027 [100]. Constraint on the real part of

NP Wilson coefficient CNP
7 from updated data on inclusive as well as exclu-

sive b → sγ processes allows −0.043 ≤ Re CNP
7 ≤ 0.030 at 95% C.L [98]. In

Fig 2.3, we have taken a more conservative value of this constraint and allowed

for −0.05 ≤ Re CNP
7 ≤ 0.05.

Then the precise measurement of ŝ0 essentially determines the effective coef-

ficient Ceff
9 . The recently measured value of ŝ0 currently involves large errors (

∼ 35%) [88]. Therefore, bounds on Ceff
9 are not as stringent. But a qualitative

analysis shows that ŝ0 is compatible with models having NP contribution to C9.

We also provide constrained region in C7 − C9 plane using bounds from zero of

P
′
4 and P

′
5. However, we must mention that constraints from zero of P

′
4 and P

′
5 in

Fig 2.3 are not to be taken at the face value (as the experimental measurements

of zeros of P
′
4 and P

′
5 are not available†) and are shown for illustrative purpose

only. This exercise shows that the measurement of these zeros will provide equally

efficient constraints on C9 as drawn from ŝ0.

Finally, we investigate the BSM reach of these zeros by carrying out a numer-

ical study of the ŝ
P
′
5

0 , ŝ
P
′
4

0 and ŝ
OL,RT
0 in Table 2.2. In the SM, their values lie in

the large recoil region and therefore these observables, like the zero of AFB, are

†LHCb has now started measuring these zeros and the reported measurements, which came

after the publication of this work, have been discussed at the end of this Chapter.
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expected to be very clean. These zeros also have sensitivity to BSM effects in-

duced by right-handed currents. The BSM scenarios we have chosen in Table 2.2

are motivated from the analysis [39] of the updated data on B → K∗µµ and are

obtained by allowing variation in single Wilson coefficient at a time. The case

BSM1 is most favored while the cases BSM2 and BSM3 are less favorable. The

three columns in Table 2.2 correspond to these scenarios as follows:

• The scenario BSM1 corresponds to a negative contribution of −1.5 to the

SM value of C9 (shown in Fig 2.3 by the symbol ‘+’). This kind of sce-

nario could, for example, be generated by a Z
′

boson which has vector like

coupling to muons [53], where C9 has a non-zero contribution while the NP

contribution to the Wilson coefficient C10 vanishes.

• The other two columns correspond to cases where NP enters in a correlated

way in two Wilson coefficients. The second scenario, BSM2, has new physics

in the SU(2)L invariant direction CNP
9 = −CNP

10 and can be realized in Z
′

models with the Z
′

boson having coupling to left-handed muons [53]. A

scalar leptoquark φ transforming as (3, 3)−1/3 with couplings to left-handed

muons can also generate this scenario [101].

• The third scenario stems from new contributions from helicity-flipped semilep-

tonic operators O
′
9 and O

′
10. This case was specifically chosen to show the

distinguishing features of these zeros when only right-handed currents have

new physics contributions.

In each of the BSM scenarios, estimates of uncertainties are the same as discussed

for the SM case. Our numerical analysis explicitly shows that the observables ŝ
P
′
5

0 ,

ŝ
P
′
4

0 and ŝ
OL,RT
0 along with ŝ0 can certainly distinguish between the SM case (the

SM predictions for zeros are given in Table 2.1) and different BSM hypotheses.

An important point we would like to make here is that from Table 2.2, it is clear

that ŝ0 has very similar values as ŝ
OL,RT
0 in all scenarios. This is true only when

there is no contribution from right-handed currents (like the cases BSM1 and

BSM2). The values of zero crossing points would not be identical when right-

handed currents are invoked (like in the case BSM3). However, the difference
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between ŝ0 and ŝ
OL,RT
0 in the case BSM3 is arising only beyond third decimal

place and therefore, at present, can be neglected in favor of experimental errors.

We would be able to identify distinctions among different NP scenarios more

Observable BSM1 BSM2 BSM3

CNP
9 = −1.5 CNP

9 = −CNP
10 = −0.53 C

′
9 = C

′
10 = −0.10

ŝ0 0.198 0.146 0.127(76)

ŝ
P
′
5

0 0.109 0.078 0.067

ŝ
P
′
4

0 0.050 0.067 0.061

ŝ
OL,RT
0 0.198 0.146 0.127(91)

Table 2.2: Values of zeros compared between different BSM scenarios. Only

non-zero NP Wilson coefficients are shown in each scenario. The values in the

parenthesis correspond to beyond the third decimal place. See Table 2.1 for values

in the SM.

accurately once these zeros are precisely measured. Experimentally, only ŝ0 has

received attention. We stress that the other zeros are equally important and

should be measured or extracted experimentally, since this could already yield

crucial information about NP, if present. Further, it may happen that some of

the observable profiles (i.e. values in experimentally measured bins) turn out to

be different from the SM, as is the case say with P ′5. In such a situation, a further

check would be the position of the zero. These two pieces of information put

together will clearly point out to any NP present.

2.6 Summary and Conclusions

The radiative and semi-leptonic b→ s decays have a potential sensitivity to effects

beyond the SM. With LHCb’s dedicated efforts to measure the decay B → K∗``

and associated angular observables extensively, the decay B → K∗`` seems to be

a promising field to identify patterns of NP which can be probed by experimental

data. Recent data shows some discrepancies in comparison to the SM predictions
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but due to uncertainties inherent in the theoretical calculations of such processes,

at present, it is difficult to infer the same in affirmation. Precise measurements of

theoretically clean observables hold the best chance of unambiguously revealing

the presence of physics beyond the SM, if any. The zero of the forward-backward

asymmetry (ŝ0) is known to fall under this category of observables. But the cur-

rent measurement is not precise enough to say anything definitive and is totally

consistent with the SM. It may be useful to have more such observables mea-

sured with precision. In this chapter, we have pointed out that along with ŝ0, the

zeros of observables P
′
5, P

′
4 and OL,RT (a new angular observable proposed) are

suitable candidates in this regard. The zeros of these observables, like the case

of ŝ0, have good theoretical control over hadronic uncertainties and can provide

crucial tests of the SM. We noted that there exist correlations among zeros of

different observables within the SM, and the positions of all the zeros are essen-

tially fixed by ŝ0, up to small corrections. We further used these relations to

model-independently constrain the CNP
7 − CNP

9 plane. To this end, we defined

our framework by considering that NP enters in electromagnetic (O7) and semi-

leptonic operators O9, and O10, together with their chirally-flipped counterparts.

We have assumed the Wilson coefficients to be real, but generalization to complex

coefficients is straightforward.

We studied the implications of these zeros on CNP
7 − CNP

9 plane in the SM

like operator basis. The conservative bounds on CNP
7 are taken from B → Xsγ

experimental data. Owing to the rather large uncertainties in the current mea-

sured value of ŝ0, the constraints on the Wilson coefficient C9 are rather weak

and the deviations of up to ∼ −1.5 in C9 are compatible with experimental data

within the 1σ range. We showed that observables ŝ
P
′
5

0 , ŝ
P
′
4

0 have equally good sen-

sitivity to C9 and C7 as ŝ0. In addition to the SM-like basis scenario, we further

investigated the cases where the operator basis is augmented by helicity-flipped

operators. We noted that the zeros of these observables are quite sensitive to the

effects stemming from BSM scenarios. This can be observed from the numerical

analysis we performed in Table 2.2. The analysis clearly shows that the zeros have

the capability to discriminate between different BSM scenarios. This sensitivity
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can be further exploited to test such scenarios once more precise data on the zeros

of discussed observables become available. To date, only ŝ0 has received attention

but we have shown that zeros of other angular observables also carry important

and complementary information on short-distance parameters. We thus hope

that these observables will be measured precisely by the LHCb collaboration, and

data on these observables can certainly be used to put strong constraints on NP

physics. The relations are obtained in the large recoil region in the large energy

limit where theoretical uncertainties are supposed to be minimal. To the best of

our knowledge, this is the first attempt to use such correlations as a stringent test

of the SM itself. A simultaneous accurate determination of these zeros will surely

provide conclusive evidence of any NP present. Moreover, in a general setting,

the zeros by themselves carry complementary information about the Wilson co-

efficients and their measurement, together with the existing data can be used to

pinpoint the class of NP scenarios which can give rise to such predictions. This

is clearly evident from the position of ŝ
OL,RT
0 which in the standard model limit

yields the same value as ŝ0 but when the helicity flipped operators are included,

leads to complementary information on the Wilson coefficients compared to what

can be inferred from ŝ0.

In the end, we must mention that following the suggestion of this work that

apart from the zero of AFB, the zeros of observables P ′5 and P ′4 can also provide

new and theoretically cleaner tests of the SM, the LHCb collaboration has started

measuring the zeros of observables P ′4 and P ′5 (see [38] ). However, the associated

experimental errors are still large to draw any conclusions on the presence of NP,

and the values of zero crossings are consistent with the SM. The zero crossing

points determined from the decay amplitude fit are [38]

s
P ′5
0 ∈ [2.49, 3.95] GeV2 at 68% confidence level (C.L.),

s0 ∈ [3.40, 4.87] GeV2 at 68% C.L.,

s
P ′4
0 < 2.65 GeV2 at 95% C.L.

We hope that with more data, not just the position of various zeros, but also

the complete profiles of angular observables will be known with high precision,

which can be used further as a crucial test of the SM.
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Angular Observables and

Asymmetries for Λb→ Λ`+`−

3.1 Introduction

As discussed in the previous chapter, semileptonic decays mediated by the quark

level transition b→ s`+`− offer cleaner probes compared to nonleptonic exclusive

hadronic decays. In the latter case, theoretical calculations are more difficult in

general and they are also marred by issues related to QCD effects, both pertur-

bative and nonperturbative, in a bigger way. Semileptonic decays on the other

hand are somewhat easier at the theoretical level as the leptonic sub-system fac-

torizes as far as the QCD effects between the final state subsystems go. Further,

since LHCb observations hint at deviations from the SM predictions in observ-

ables related to B → K(∗)µ+µ− channels (see [37, 38, 41] for anomalies in K∗

channel and [34] for hints of lepton universality violation in K channel), which

proceed at the quark level by the same b→ s semi-leptonic decay, it is of utmost

importance to study any other such semi-leptonic decay modes to clarify the sit-

uation and pin point the source of these deviations. Since the hadronic effects

bring along large uncertainties, the above mentioned hints cannot be conclusively

taken as evidence for new physics, which is part of the short distance structure.

However, if a similar pattern emerges for decays with different hadronic parti-

cles but governed by the same b→ s`+`− quark level transition, then that would

47
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amount to an unambiguous signal for physics beyond the SM. The baryonic decay

Λb → Λ`+`− satisfies all these requirements, and therefore, it is useful to study

it in detail. This decay has been studied theoretically in the past [102–123] but

the emphasis has been somewhat different from that in this chapter. This decay

mode, like B → K∗`+`−, has many angular observables to offer as probes. This

fact was utilized to some extent in Ref. [124]. Here we take it further and also

construct some new angular observables which can be used to extract information

on the short-distance structure which is theoretically clean and less sensitive to

the hadronic form factors. On the experimental side, this decay was observed at

the Tevatron [125]. Recently, LHCb has measured the branching fraction along

with some angular coefficients [126, 127]. The errors are still quite large but one

hopes to have better results in the near future.

3.2 Effective Hamiltonian and the decay Λb →
Λ`+`−

Since the decay Λb → Λ`+`−, at the quark level, is governed by FCNC transition

b → s`+`−, the effective Hamiltonian is identical to that given in Section 2.2 in

the previous chapter,

Heff = −4GF√
2
V ∗tsVtb

∑
i

(Ci(µ)Oi + C
′

i(µ)O
′

i) + h.c. , (3.2.1)

The operators contributing significantly in the SM are the semileptonic vector

operator O9, the axial vector operator O10, and the magnetic photon penguin

operator O7.

Taking into account the polarizations of Λb and Λ, there are a host of form

factors that enter the calculations. The Λb → Λ form factors parametrize the

(axial-)vector, (pseudo-) scalar and (pseudo-) tensor matrix elements and are

defined in the helicity basis as follows [128]. For vector and axial-vector currents,
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we have

〈Λ(k, sΛ)|s̄γµb|Λb(p, sΛb)〉 = ūΛ(k, sΛ)

[
fVt (q2)(mΛb −mΛ)

qµ

q2

+fV0 (q2)
mΛb +mΛ

s+

(
pµ + kµ − (m2

Λb
−m2

Λ)
qµ

q2

)
+ fV⊥ (q2)

(
γµ − 2mΛ

s+

pµ − 2mΛb

s+

kµ
)]

uΛb(p, sΛb),

(3.2.2)

and

〈Λ(k, sΛ)|s̄γµγ5b|Λb(p, sΛb)〉 = −ūΛ(k, sΛ)γ5

[
fAt (q2)(mΛb +mΛ)

qµ

q2

+fA0 (q2)
mΛb −mΛ

s−

(
pµ + kµ − (m2

Λb
−m2

Λ)
qµ

q2

)
+ fA⊥ (q2)

(
γµ +

2mΛ

s−
pµ − 2mΛb

s−
kµ
)]

uΛb(p, sΛb),

(3.2.3)

with the condition fVt (0) = fV0 (0), fAt (0) = fA0 (0), where qµ = (p − k)µ is the

momentum transfer and s± = (mΛb ±mΛ)2 − q2.

The form factor parametrization for scalar and pseudo-scalar current can be ob-

tained from Eq. (3.2.2) and Eq. (3.2.3) via use of the equations of motion. These

are given by,

〈Λ(k, sΛ)|s̄b|Λb(p, sΛb)〉 = fVt (q2)

(
mΛb −mΛ

mb −ms

)
ūΛ(k, sΛ) uΛb(p, sΛb),

(3.2.4)

and

〈Λ(k, sΛ)|s̄γ5b|Λb(p, sΛb)〉 = fAt (q2)

(
mΛb +mΛ

mb +ms

)
ūΛ(k, sΛ) γ5uΛb(p, sΛb),

(3.2.5)

For tensor and pseudo-tensor current, we have

〈Λ(k, sΛ)|s̄iσµνqνb|Λb(p, sΛb)〉

= −ūΛ(k, sΛ)

[
fT0 (q2)

q2

s+

(
pµ + kµ − (m2

Λb
−m2

Λ)
qµ

q2

)
+ fT⊥(q2)(mΛb +mΛ)

(
γµ − 2mΛ

s+

pµ − 2mΛb

s+

kµ
)]

uΛb(p, sΛb),

(3.2.6)
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and

〈Λ(k, sΛ)|s̄iσµνqνγ5b|Λb(p, sΛb)〉

= −ūΛ(k, sΛ)γ5

[
fT50 (q2)

q2

s−

(
pµ + kµ − (m2

Λb
−m2

Λ)
qµ

q2

)
+ fT5⊥ (q2)(mΛb −mΛ)

(
γµ +

2mΛ

s−
pµ − 2mΛb

s−
kµ
)]

uΛb(p, sΛb).

(3.2.7)

Note that our notations for form factors are identical to the ones used in Ref. [124]

but differ from the ones used in Ref. [128]. The two sets of notations used in

Ref. [124] and Ref. [128] can be translated into each other via the following

change: fVt = f0, fV0 = f+, fV⊥ = f⊥, fAt = g0, fA0 = g+, fA⊥ = g⊥, fT0 = h+,

fT⊥ = h⊥, fT50 = h̃+, fT5⊥ = h̃⊥.

At first sight the decay Λb → Λ`+`− may seem not to be too useful owing to

larger uncertainties in the transition form factors involved, when compared to the

mesonic counterpart B → K∗`+`−. However, this decay offers a larger number

of observables. For example, in contrast to K∗ → Kπ decay in the mesonic

counterpart which is parity conserving, Λ → Nπ is a parity violating decay and

hence brings along the possibility of measuring forward-backward asymmetry in

the hadronic system as well. This decay has been studied theoretically, but the

emphasis in most of those studies was mainly on the lepton forward-backward

asymmetry and/or lepton polarization asymmetry. Since the decay was observed

at Tevatron, there has been some activity, both on the form factors [128–137]

as well as on exploiting the angular observables [124]. In the present work, we

extend the analysis of [124] and also propose new observables and asymmetries

which are theoretically clean and can be used with the limited data expected in

the near future.

3.2.1 Angular distribution of Λb → Λ(→ Nπ)`+`−

The four-body differential decay Λb(p) → Λ(k)[→ N(k1)π(k2)]`+(q1)`−(q2) can

be conveniently written in terms of the variables: invariant mass squared of the

lepton system q2 = (p−k)2, helicity angles θΛ and θ` of the hadronic and leptonic
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subsystems respectively, and the azimuthal angle φ between the hadronic and

leptonic planes. The four body differential decay rate can be written as

d4Γ

dq2d cos θ`d cos θΛdφ
=

3

8π
K(q2, cos θ`, cos θΛ, φ). (3.2.8)

where

K(q2, cos θ`, cos θΛ, φ) = K1ss sin2 θ` +K1cc cos2 θ` +K1c cos θ`

+ (K2ss sin2 θ` +K2cc cos2 θ` +K2c cos θ`) cos θΛ

+ (K3sc sin θ` cos θ` +K3s sin θ`) sin θΛ cosφ

+ (K4sc sin θ` cos θ` +K4s sin θ`) sin θΛ sinφ.

(3.2.9)

µ−

µ+

θℓ

φ

θΛ

p

π−

Λb
Z

Figure 3.1: Schematic diagram showing the angular distribution of Λb → Λ(→
Nπ)`+`− decay with the description of the angles θ`, θΛ and φ.

The angular coefficients Ki’s depend only on the dilepton invariant mass, q2,

and carry the hadronic information. They are in turn expressed in terms of the

transversity amplitudes. These transversity amplitudes are written as combina-

tions of Wilson coefficients and baryonic form factors in the helicity basis. A

typical helicity amplitude, defined by the contraction of matrix elements with

the virtual polarization vectors, is denoted as H(sΛb , sΛ) where we have sup-

pressed the indices V, T, A signifying the type of operator sandwiched between
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the external hadronic states but have explicitly shown the two spin projection

vectors which take values ±1/2. The explicit expressions of helicity amplitudes

H(sΛb , sΛ) in terms of Λb → Λ form factors fV,At,0,⊥, fT,T50,⊥ are given in Ref. [124]

and have been collected in Appendix C. The transversity amplitudes then in the

SM are given by

A
L(R)
⊥1

=
√

2N

(
C
L(R)
9,10 H

V
+ (−1/2, 1/2)− 2mbC7

q2
HT

+(−1/2, 1/2)

)
, (3.2.10)

A
L(R)
‖1 = −

√
2N

(
C
L(R)
9,10 H

A
+(−1/2, 1/2) +

2mbC7

q2
HT5

+ (−1/2, 1/2)

)
,

(3.2.11)

A
L(R)
⊥0

=
√

2N

(
C
L(R)
9,10 H

V
0 (1/2, 1/2)− 2mbC7

q2
HT

0 (1/2, 1/2)

)
, (3.2.12)

A
L(R)
‖0 = −

√
2N

(
C
L(R)
9,10 H

A
0 (1/2, 1/2) +

2mbC7

q2
HT5

0 (1/2, 1/2)

)
, (3.2.13)

where C
L(R)
9,10 = (C9 ∓ C10) and N is the normalization factor given by

N = GFVtbV
∗
tsαe

√√√√q2
√
λ(m2

Λb
,m2

Λ, q
2)

3π5(2)11m3
Λb

(3.2.14)

with λ(m2
Λb
,m2

Λ, q
2) = m4

Λb
+m4

Λ + q4 − 2(m2
Λb
m2

Λ +m2
Λb
q2 +m2

Λq
2).

In terms of the transversity amplitudes, the angular coefficients appearing in

the fully differential decay rate are defined as [124]

K1ss =
1

4

[
|AR⊥1
|2 + |AR‖1|2 + 2|AR⊥0

|2 + 2|AR‖0|2 + (R↔ L)
]
, (3.2.15)

K1cc =
1

2

[
|AR⊥1
|2 + |AR‖1|2 + (R↔ L)

]
, (3.2.16)

K1c = −Re
{
AR⊥1

A∗R‖1 − (R↔ L)
}
, (3.2.17)

K2ss =
α

2
Re
{
AR⊥1

A∗R‖1 + 2AR⊥0
A∗R‖0 + (R↔ L)

}
, (3.2.18)

K2cc = αRe
{
AR⊥1

A∗R‖1 + (R↔ L)
}
, (3.2.19)

K2c = −α
2

[
|AR⊥1
|2 + |AR‖1|2 − (R↔ L)

]
, (3.2.20)

K3sc =
α√
2

Im
{
AR⊥1

A∗R⊥0
− AR‖1A∗R‖0 + (R↔ L)

}
, (3.2.21)

K3s =
α√
2

Im
{
AR⊥1

A∗R‖0 − AR‖1A∗R⊥0
− (R↔ L)

}
, (3.2.22)

K4sc =
α√
2

Re
{
AR⊥1

A∗R‖0 − AR‖1A∗R⊥0
+ (R↔ L)

}
, (3.2.23)

K4s =
α√
2

Re
{
AR⊥1

A∗R⊥0
− AR‖1A∗R‖0 − (R↔ L)

}
, (3.2.24)
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where the parameter α is the parity violating parameter in the Λ → Nπ decay.

Experimentally, we have α(Λ → pπ−) = 0.642 ± 0.013, α(Λ̄ → p̄π+) = −0.71 ±
0.08, and α(Λ→ nπ0)/α(Λ→ pπ−) = 1.01± 0.07 [9].

The task then is to experimentally determine these angular coefficients. In

principle, once there is sufficient data, a full angular fit would end up determining

these coefficients (up to discrete ambiguities). One could proceed by studying

angular asymmetries allowing for the extraction of specific angular coefficients

and/or some combinations of those. In [124], the authors considered the following

observables which provide a handle on a select few angular coefficients:

(i) Decay rate as a function of q2

dΓ

dq2
= 2K1ss +K1cc. (3.2.25)

(ii) Transverse (and therefore longitudinal) polarization fraction

FL = 1− FT =
2K1ss −K1cc

2K1ss +K1cc

. (3.2.26)

(iii) Forward-backward asymmetries in the leptonic, hadronic and mixed sub-

systems:

A`FB =
3

2

K1c

2K1ss +K1cc

,

AΛ
FB =

1

2

2K2ss +K2cc

2K1ss +K1cc

, (3.2.27)

A`,ΛFB =
3

4

K2c

2K1ss +K1cc

.

Analogous to the lepton forward-backward asymmetry in B → K∗`+`−, A`FB

and A`,ΛFB have a zero crossing, which essentially depends on the short distance

parameters only (in the approximation when the form factor dependence more or

less cancels) and its value is the same as in the the mesonic case, scaled by the

Λb mass instead of the B-meson mass. Specifically, the zero of A`FB [124]

s`0 = −2mbmΛb

C7

C9

. (3.2.28)

3.3 More asymmetries and new observables

We extend the previous work by constructing asymmetries such that all the an-

gular coefficients can be extracted. To this end, we construct the following ob-
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servables:

Y2 =

∫ 2π

0
dφ
[∫ 1

0
−
∫ 0

−1

]
d cos θΛ

[∫ −1/2

−1
−
∫ 0

−1/2
−
∫ 1/2

0
+
∫ 1

1/2

]
d cos θ`K(q2, θ`, θΛ, φ)∫ 2π

0
dφ
∫ 1

−1
d cos θΛ

∫ 1

−1
d cos θ`K(q2, θ`, θΛ, φ)

,

=
3

8

K2cc −K2ss

2K1ss +K1cc

, (3.3.1)

Y3s =

[∫ π/2
0
−
∫ π
π/2
−
∫ 3π/2

π
+
∫ 2π

3π/2

]
dφ
∫ 1

−1
d cos θΛ

∫ 1

−1
d cos θ`K(q2, θ`, θΛ, φ)∫ 2π

0
dφ
∫ 1

−1
d cos θΛ

∫ 1

−1
d cos θ`K(q2, θ`, θΛ, φ)

,

=
3π

8

K3s

2K1ss +K1cc

, (3.3.2)

Y3sc =

[∫ π/2
0
−
∫ π
π/2
−
∫ 3π/2

π
+
∫ 2π

3π/2

]
dφ
∫ 1

−1
d cos θΛ

[∫ 1

0
−
∫ 0

−1

]
d cos θ`K(q2, θ`, θΛ, φ)∫ 2π

0
dφ
∫ 1

−1
d cos θΛ

∫ 1

−1
d cos θ`K(q2, θ`, θΛ, φ)

,

=
1

2

K3sc

2K1ss +K1cc

, (3.3.3)

Y4s =

[∫ π
0
−
∫ 2π

π

]
dφ
∫ 1

−1
d cos θΛ

∫ 1

−1
d cos θ`K(q2, θ`, θΛ, φ)∫ 2π

0
dφ
∫ 1

−1
d cos θΛ

∫ 1

−1
d cos θ`K(q2, θ`, θΛ, φ)

,

=
3π

8

K4s

2K1ss +K1cc

, (3.3.4)

and

Y4sc =

[∫ π
0
−
∫ 2π

π

]
dφ
∫ 1

−1
d cos θΛ

[∫ 1

0
−
∫ 0

−1

]
d cos θ`K(q2, θ`, θΛ, φ)∫ 2π

0
dφ
∫ 1

−1
d cos θΛ

∫ 1

−1
d cos θ`K(q2, θ`, θΛ, φ)

,

=
1

2

K4sc

2K1ss +K1cc

. (3.3.5)

Clearly, Eq. (3.3.1)-Eq. (3.3.5) along with the other equations above determine
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all the angular coefficients. Although true in principle, in practice any such deter-

mination will be severely hampered by the uncertainties coming from transition

form factors. In the baryonic case, the form factors are rather poorly known when

one compares the situation with the mesonic counterparts. In the latter, there

has been lot of progress in having a reliable set of form factors. But even there,

hadronic uncertainties prevent one from making any sound claim of new physics

when encountering deviations from the SM.

3.3.1 In large q2 (low-recoil energy) approximation

The kinematic region can be divided into the large and small q2 or equivalently

the low and large recoil regions. In each of the regions, one can make suitable

approximations which allow a smaller set of form factors to be employed, and

there are certain relations that emerge between various form factors. A typical

matrix element one is interested in is of the form: 〈Λ(k, sΛ|s̄Γb|Λb(p, sΛb〉, where

sΛ(b)
are the spin vectors associated with the baryons. In full generality, there are

a large number of form factors that would contribute to the physical decay rate.

There exists several estimates of the form factors in the literature [128–137]. If,

however, one makes use of the heavy quark symmetry (working systematically in

heavy quark effective theory (HQET)), the number of independent form factors

reduces to just two. Employing HQET, the two relevant form factors appear in

the hadronic matrix elements as:

〈Λ(k, sΛ|s̄Γb|Λb(p, sΛb〉 = ū(k, sΛ) [F1(k.v)+ 6 pF2(k.v)] ΓU(v, sΛb) (3.3.6)

where v is the velocity of Λb and the two form factors depend only on the invariant

k.v, the energy of Λ in the rest frame of Λb. The spinors satisfy the relations

∑
s=1,2

u(p, s)ū(p, s) = mΛ+ 6 p,
∑
s=1,2

U(v, s)Ū(v, s) = 1+ 6 v (3.3.7)

It turns out that the two linear combinations F± = F1 ± F2 are more useful and

one therefore prefers to work with them. Therefore in low recoil region, we have
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the following form factor relations:

fV⊥ = fV0 = fT⊥ = fT0 = F−, (3.3.8)

fA⊥ = fA0 = fT5⊥ = fT50 = F+ (3.3.9)

Using the form factor relations (3.3.8) and (3.3.9) valid in the large q2 region,

one can rewrite the transversity amplitudes defined in Eqs. (3.2.10-3.2.13). In this

approximation, the transversity amplitudes simplify to the following expressions:

A
L(R)
⊥1

= −2N

(
C
L(R)
9,10 +

2mb(mΛb +mΛ)

q2
C7

)√
s− F−, (3.3.10)

A
L(R)
‖1 = 2N

(
C
L(R)
9,10 +

2mb(mΛb −mΛ)

q2
C7

)√
s+ F+, (3.3.11)

A
L(R)
⊥0

=
√

2N
(
C
L(R)
9,10 (mΛb +mΛ) + 2mbC7

)√s−
q2

F−, (3.3.12)

A
L(R)
‖0 = −

√
2N
(
C
L(R)
9,10 (mΛb −mΛ) + 2mbC7

)√s+

q2
F+, (3.3.13)

Thus, in heavy quark and large q2 approximation, each transversity amplitudes

depend on single form factor (either F− or F+).

The recent LHCb measurements of the branching ratio and the simplest angu-

lar asymmetries are mostly in the large q2 region. It is worthwhile and important

to construct observables which are as free of the hadronic inputs as possible and

therefore can be used to probe the short-distance physics. In this spirit we pro-

pose the following observables written in terms of angular coefficients Ki(q
2)

T1(q2) =
K2ss −K2cc/2− αK1c

2K1ss +K1cc

, (3.3.14)

T2(q2) =
α(K1ss −K1cc)−K2c/2

2K1ss +K1cc

, (3.3.15)

and

T3(q2) =
α(K1ss/

√
2−K1cc/2)−K2c/

√
2

2K1ss +K1cc

. (3.3.16)

Since the proposed observables T1(q2), T2(q2), and T3(q2) are combinations of

angular coefficients Ki’s, these are experimentally measurable observables.

It is interesting to note that all three observables T1, T2, and T3 have zero

crossing points in their q2 profile. The observables T1, T2, and T3 are designed
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such that their zero crossing point lie in the large q2 region where at present

there is more control theoretically. Working in the large q2 and HQET limit,

the zeros can be evaluated easily and turn out to be less sensitive to form factor

uncertainties. Especially, the zero crossing of T1 is completely independent of

form factors and has the following expression in the SM

ŝ0(T1) =
− (C2

10 + C2
9)
(
m2

Λb
−m2

Λ

)
− 4C7mbmΛb(2C10 + C9)− 4C2

7m
2
b

4C10C9m2
Λb

,

'
(
ŝ`0
2

)2

+
ŝ`0
2

+
1− m̂2

Λ

2
(3.3.17)

where the ’hat’ notation is used for convenience and corresponds to quantity

normalized by mass of Λb to make it dimensionless. For example, ŝ = s(≡
q2)/m2

Λb
, m̂Λ = mΛ/mΛb etc. In the penultimate step of last equation we used

the approximate relation of the leptonic forward-backward zero crossing, s`0 '
−2mbmΛbC7/C9, given in Eq. (3.2.28), and the approximation C10 ' −C9 valid

in the SM. However, it should be mentioned that even without making use of this

relation, s0(T1) is a genuinely short distance quantity, and therefore, has a precise

value within the SM that can be unambiguously compared with the experimental

determination. Numerically, using C9 = 4.2297, C10 = -4.2068, C7 = -0.2974 [71]

in the SM, we find: s0(T1) = 16.89 GeV2 for mΛb = 5.619 GeV, mΛ = 1.115 GeV,

and mb = 4.18 GeV. Similarly, zeros of the other two observables, T2, and T3,

ŝ0(T2) ∼ 1

8

(
(ŝ`0)2 + 2ŝ`0 + 2 +

√
(ŝ`0)4 + 4(ŝ`0)3 − 8(ŝ`0)2 + 8(ŝ`0) + 4

)
, (3.3.18)

ŝ0(T3) ∼ 1

4

(√{
(ŝ`0)2 + 2

}{
ŝ`0

(
(3− 2

√
2)ŝ`0 + 12

√
2− 16

)
+ 6− 4

√
2
}

+(
√

2− 1)(ŝ`0)2 + (4− 2
√

2)ŝ`0 + 2
√

2− 2

)
. (3.3.19)

The above two expressions for zeros are obtained in the approximation mΛ ' 0

and turn out to be free of form factors in this limit. We find rough estimates

for zeros: s0(T2) ∼ 17.3 GeV2 and s0(T3) ∼ 15.0 GeV2 using the approximated

relations given in Eq. (3.3.18) and (3.3.19), respectively.

As discussed in the previous chapter, recent LHCb results on the angular anal-

ysis of B → K∗`+`− have shown deviations from the SM expectations, especially
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for the observable P ′5. Many possible solutions have been suggested, among which

the minimal solution that gives a reasonably good fit is the solution where the SM

operator basis is employed and the only deviation is in C9: δC9 ∼ −1, while there

are practically no deviations in the other two Wilson coefficients [39, 48–50, 72].

Assuming this scenario, it is clear that the above observables, in particular the

zero crossings can, very effectively and in a robust manner, test this hypothesis.

In fact, extension to an extended operator basis is straight forward. We thus

immediately see the immense potential of these asymmetries and zero crossing

points which are very clean. The other advantage of these zero crossing points

lies in the fact that they lie in the high q2 region, in sharp contrast to the zero

crossings of the observables in B → K∗`+`−. This additional feature will also

help in understanding possible q2 dependence and differentiate between possi-

bly overlooked hadronic effect from genuine new physics contribution which by

definition should be q2 independent.

These zero crossing points, along with the zeros of the leptonic and hadronic

forward-backward asymmetries can be simultaneously used to not only test the

SM but also to infer more about the form factors. Without making any assump-

tions, these quantities are functions of various form factors (actually ratios of

various form factors). Measurement of these quantities, along with the profiles

of various observables will allow us to extract some of these ratios at specific

points. This information can then be utilized to cross-check the consistency of

the form factors that one has employed. At present, this may appear as a daunt-

ing task but with more data available and more observables measured precisely,

a simultaneous fit will provide this valuable information.

3.4 Discussion and conclusions

Experimentally, several anomalies, though not conclusive at the moment, have

been seen in the flavor sector. Most recent ones are related to b→ s semileptonic

decay modes. In this vein, it is important to study different modes and channels

which are mediated by the same b → s fundamental interactions. Recent times
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have seen a lot of theoretical and experimental effort in exploiting B → K(∗)`+`−

modes to their full potential. The corresponding baryonic mode Λb → Λ`+`−

has started to be studied experimentally. Since the baryonic counterpart now

involves a completely different set of hadronic inputs, this becomes a very useful

playground to cross-check the anomalies seen in the mesonic channels. Only re-

cently, a more systematic approach to fully exploit the host of angular observables

this mode has to offer has been initiated. In the present chapter we have extended

that effort and listed all the angular asymmetries that pin down the complete set

of angular coefficients. We have also proposed several other angular observables

which should be easy to access experimentally. At present, this theoretical effort

is limited by our knowledge of the hadronic effects in this mode (in particular, the

estimates of nonfactorizable hadronic corrections are not available). However, the

zero crossing points of the observables suggested in the chapter are less sensitive

to hadronic effects (especially, the zero of T1(q2) is completely free of form factors

in HQET and large q2 limit ) and can be used to probe the genuine short distance

content of the underlying theory. Therefore, this baryonic decay has an immense

potential to test the SM precisely and even with limited amount of data available

in near future, there may be hope to have a good indication of any new physics,

if it is really there at the TeV scale. One of the possible improvements and future

directions in this context would be to include other operators beyond the SM

and study the proposed observables within the extended operator basis. This

would shed some light on the (ir)relevance of some operators. When combined

with similar studies on the mesonic counterparts, this could limit the beyond the

SM contributions significantly. In particular, a detailed numerical investigation

of the baryonic mode with inputs and recent hints of possible new physics from

B → K(∗)`+`− would be very useful.





Chapter 4

Explaining Anomalies in R
D(∗) in

Alternative Left-Right

Symmetric Model

4.1 Introduction

Recently, the LHCb collaboration has reported the ratio of branching fractions

for the semileptonic decay of the B meson,

RD(∗) =
BR(B̄ → D(∗)τ ν̄)

BR(B̄ → D(∗)`ν̄)
; ` = e, µ, (4.1.1)

to be RD∗ = 0.336± 0.027(stat.)± 0.030(syst.) with the SM expectation 0.252±
0.005 [138], amounting to a 2.1σ excess [33]. This measurement is in agree-

ment with the measurements of B̄ → D(∗)τ ν̄ reported by the BaBar [30, 31] and

Belle [139] collaborations∗ and with earlier measurements [140, 141] and when

combined together show a substantial deviation from the SM. A summary of the

measurements of RD(∗) done by different collaborations together with the SM

predictions is given in Table 4.1.

Several NP scenarios accommodating semileptonic b → c decay have been

proposed to explain these excesses. The two-Higgs Doublet Model (2HDM) of

∗Recently, Belle collaboration has updated its results on RD∗ which came after the publica-

tion of this work. The updated measurement gives RD∗ = 0.302 ± 0.030 ± 0.011 [32] which is

within 1.6σ of the SM prediction.

61
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RD∗ RD

LHCb [33] 0.336 ± 0.027 ± 0.030 -

BaBar [30] 0.332 ± 0.024 ± 0.018 0.440 ± 0.058 ± 0.042

BELLE [139] 0.293 ± 0.038 ± 0.015 0.375 ± 0.064 ± 0.026

SM Pred. [138,142] 0.252 ± 0.003 0.300 ± 0.010

Table 4.1: Summary of experimental measurement for the ratios RD(∗) , and the

expectation in the SM. Here the first (second) errors are statistical (systematic).

type II is one of the well studied candidates of NP which can affect the semi-

tauonic B decays significantly [143–149]. However, the BABAR collaboration

has excluded the 2HDM of type II at 99.8% confidence level [30,31]. Phenomeno-

logical studies of the four fermion operators that can explain the discrepancy have

been carried out in Refs. [138, 150–157]. The excesses have been explained in a

more generalized framework of 2HDM in Refs. [158–160] and in the framework of

R-parity violating (RPV) Minimal Supersymmetric Standard Model (MSSM) in

Ref. [161], while in Refs. [151,155,156,162,163] the excesses have been addressed

in the context of leptoquark models. In Ref. [164], a dynamical model based on

a SU(2)L triplet of massive vector bosons, with predominant coupling to third

generation fermion was proposed to explain the excesses, while other alternative

approaches have been taken in Refs. [165–167].

From a theoretical point of view, NP scenarios explaining the above discrep-

ancies and addressing other direct or indirect collider searches for NP are partic-

ularly intriguing. To this end, we must mention the recently announced results

for the right-handed gauge boson WR search at
√
s = 8 TeV and 19.7 fb−1 of in-

tegrated luminosity by the CMS Collaboration at the LHC. They have reported

14 observed events with 4 expected SM background events, amounting to a 2.8σ

local excess in the bin 1.8 TeV < meejj < 2.2 TeV, which cannot be explained in

the standard framework of Left-Right Symmetric Model (LRSM) with the gauge

couplings gL = gR [168]. On the other hand, the CMS search for di-leptoquark
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production at
√
s = 8 TeV and 19.6 fb−1 of integrated luminosity have been

reported to show a 2.4σ in the eejj channel and a 2.6σ local excess in the e/pT jj

channel corresponding to 36 observed events with 20.49 ± 2.4 ± 2.45 (syst.) ex-

pected SM events in the eejj channel and 18 observed events with 7.54±1.20±1.07

(syst.) expected SM events in the e/pT jj channel respectively [169]. These excesses

have been explained as arising from WR decay in the framework of LRSM with

gL 6= gR embedded in the SO(10) gauge group in Refs. [170–172] and in LRSM

with gL = gR by taking into account the CP phases and non-degenerate masses

of heavy neutrinos in Ref. [173], while other NP scenarios have been proposed in

Refs. [174–186]. Interestingly, in some of these NP scenarios attempts were made

to explain the discrepancies in decays of B meson in a unified framework [178] or

separately [161].

In this chapter we study the flavor structure of the E6 motivated Alterna-

tive Left-Right Symmetric Model (ALRSM) [187], which can explain the CMS

excesses and accommodate high scale leptogenesis † [181], to explore if this frame-

work can address the experimental data for RD(∗) explaining the discrepancy with

the SM expectations. This scenario is particularly interesting because unlike the

R-parity violating MSSM in Refs. [161,176,178], this model involves only R-parity

conserving interactions. Furthermore, a careful analysis of the flavor physics con-

straints, such as the rare decays and the mixing of mesons can play a crucial role

in determining the viability of any NP scenario. Therefore, we study the leptonic

decays D+
s → τ+ν̄, B+ → τ+ν̄, D+ → τ+ν̄ and D0-D̄0 mixing to constrain the

semileptonic b→ c transition in ALRSM. We find that despite being constrained

by the above processes ALRSM can explain the current experimental data on

RD(∗) quite well.

The rest of this chapter is organized as follows. In section 4.2, we discuss the

effective Hamiltonian and the general four-fermion operators that can explain

the RD(∗) data. In section 4.3, we introduce ALRSM and present the viable

interactions, followed by the evaluation of the Wilson coefficients in section 4.4.

†Note that in the conventional LRSM framework the canonical mechanism of leptogenesis is

inconsistent with the range of WR mass (∼ 2 TeV) corresponding to the excess at CMS [188,189].
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In section 4.5, we discuss the constrains from the leptonic decays D+
s → τ+ν̄,

B+ → τ+ν̄, D+ → τ+ν̄ and mixing between D0-D̄0. In section 4.6, we summarize

our results and conclude.

4.2 The effective Hamiltonian for the decay B →
D(∗)`ν

To include the effects of NP, the SM effective Hamiltonian for the quark level

transition b → c`ν̄` can be augmented with a set of four-Fermi operators in the

following form [150]

Heff =
4GF√

2
Vcb

∑
`=e,µ,τ

[(1 + C`
VL

)O`
VL

+ C`
VR
O`
VR

+ C`
SL
O`
SL

+ C`
SR
O`
SR

+ C`
TL
O`
TL

],

(4.2.1)

where GF is the Fermi constant, Vcb is the appropriate CKM matrix element

and C`
i (i = VL/R, SL/R, TL) are the Wilson coefficients associated with the new

effective vector, scalar and tensor interaction operators respectively. These new

six dimensional four-Fermi operators are generated by NP at some energy higher

than the electroweak scale and are defined as

O`
VL

= (c̄Lγ
µbL)(¯̀

Lγµν`L), (4.2.2)

O`
VR

= (c̄Rγ
µbR)(¯̀

Lγµν`L), (4.2.3)

O`
SL

= (c̄RbL)(¯̀
Rν`L), (4.2.4)

O`
SR

= (c̄LbR)(¯̀
Rν`L), (4.2.5)

O`
TL

= (c̄Rσ
µνbL)(¯̀

Rσµνν`L), (4.2.6)

where σµν = (i/2)[γµ, γν ]. The SM effective Hamiltonian corresponds to the case

C`
i = 0. Note that in writing the general Heff , we have neglected the tiny con-

tributions from the right-handed neutrinos, and therefore, we treat the neutrinos

to be left-handed only.

In order to perform the numerical analysis of the transition B → D(∗)τν,

we need to have the knowledge of the hadronic form factors which parametrize

the vector, scalar and tensor current matrix elements. The B → D(∗)τν matrix
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elements of the aforementioned effective operators depend on the momentum

transfer between B and D(∗)(qµ = pµB − kµ), and are generally parametrized in

the following way [163,190].

〈D(k)|c̄γµb|B̄(pB)〉 =

[
(pB + k)µ −

m2
B −m2

D

q2
qµ

]
F1(q2) + qµ

m2
B −m2

D

q2
F0(q2),

(4.2.7)

〈D∗(k, ε)|c̄γµb|B̄(pB)〉 = −iεµνρσεν∗pρBkσ
2V (q2)

mB +mD∗
, (4.2.8)

〈D∗(k, ε)|c̄γµγ5b|B̄(pB)〉 = ε∗µ(mB +mD∗)A1(q2)− (pB + k)µ(ε∗ · q)

× A2(q2)

mB +mDast
− qµ(ε∗ · q)2mD∗

q2

(
A3(q2)− A0(q2)

)
,

(4.2.9)

〈D∗(k, ε)|c̄σµνb|B̄(pB)〉 = εµνρσ
{
−ε∗ρ(pB + k)σT1(q2)

+ ε∗ρqσ
m2
B −mD∗

q2
(T1(q2)− T2(q2))

+ 2
ε∗q

q2
pρBk

σ

(
T1(q2)− T2(q2)− q2

mB2 −mD∗2
T3(q2)

)}
,

(4.2.10)

where F1(0) = F0(0), A3(0) = A0(0), and

A3(q2) =
mB +mD∗

2mD∗
A1(q2)− mB −mD∗

2mD∗
A2(q2). (4.2.11)

Here, εµ is the polarization vector of the D∗. Note that the hadronic matrix ele-

ments of the scalar and pseudoscalar operators can be conveniently derived from

their vector counterparts by applying the equations of motion −i∂µ(q̄aγµqb) =

(ma−mb)q̄aqb and −i∂µ(q̄aγµγ5qb) = (ma +mb)q̄aγ5qb. However, in what follows,

we choose to work with the following parametrization of the form factors which

are more suitable for including the results of the heavy quark effective theory

(HQET). The matrix elements of the vector and axial vector operators can be
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expressed as [146,191]

〈D(v′)|c̄γµb|B̄(v)〉 =
√
mBmD {ξ+(w)(v + v′)µ + ξ−(w)(v − v′)µ} ,

(4.2.12)

〈D∗(v′, ε)|c̄γµb|B̄(v)〉 = i
√
mBmD∗ξV (w)εµνρσε

∗νv′ρvσ, (4.2.13)

〈D∗(v′, ε)|c̄γµγ5b|B̄(v)〉 =
√
mBmD∗

{
ξA1(w)(w + 1)ε∗µ − (ε∗ · v) (ξA2(w)vµ

+ ξA3(w)v′µ)} . (4.2.14)

The form factors of tensor operators are defined as [155]

〈D(v′)|c̄σµνb|B̄(v)〉 = −i√mBmDξT (w)
(
vµv

′
ν − vνv′µ

)
, (4.2.15)

〈D∗(v′)|c̄σµνb|B̄(v)〉 = −i√mBmD∗εµνρσ {ξT1(w)ε∗ρ(v + v′)ρ + ξT2(w)ε∗ρ(v − v′)σ

+ ξT3(w)(ε∗ · v)(v + v′)ρ(v − v′)σ} , (4.2.16)

where v = pB/mB, and v′ = k/mD(∗) are the four-velocities of the B and D(∗)

mesons, respectively, and the kinematic variable w(q2) is the product of the veloci-

ties of initial and final mesons w(q2) = (m2
B +mD(∗) − q2) /2mBmD∗ . The HQET

and QCD dispersive techniques can be used to constrain the shapes of these form

factors [192]. To this end, the HQET form factors are redefined as linear combi-

nations of the different form factors V1(w), S1(w), A1(w) and R1,2,3(w) [155,192],

which reduce to the universal Isgur-Wise function [193] normalized to unity at

w = 1 in the heavy quark limit. The form factors in the parameterization of

Caprini et al. [192], which describes the shape and normalization in terms of the

four quantities: the normalizations V1(1), A1(1), the slopes ρ2
D, ρ2

D∗ and the am-

plitude ratios R1(1) and R2(1) are determined by measuring the differential decay

width as a function of w. The form factors V1(w) and S1(w) contribute to the

decay B → D`ν̄` (` = e, µ, τ), while the decay B → D∗`ν̄` receives contributions

from A1(w) and R1,2,3(w). However, the semileptonic decay into light charged

leptons B → D`ν̄` involves only V1(w) and therefore, V1(w) can be measured

experimentally. The parametrization of the form factors in terms of the slope

parameters ρ2
D, ρ2

D∗ and the value of the respective form factors at the kinematic
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end point w = 1 is given by [192,194]

V1(w) = V1(1)
{

1− 8ρ2
Dz + (51ρ2

D − 10)z2 −(252ρ2
D − 84)z3

}
, (4.2.17)

A1(w) = A1(1)
{

1− 8ρ2
D∗z + (53ρ2

D∗ − 15)z2 −(231ρ2
D∗ − 91)z3

}
,

(4.2.18)

R1(w) = R1(1)− 0.12(w − 1) + 0.05(w − 1)2, (4.2.19)

R2(w) = R2(1) + 0.11(w − 1)− 0.06(w − 1)2, (4.2.20)

R3(w) = 1.22− 0.052(w − 1) + 0.026(w − 1)2, (4.2.21)

with z = (
√
w + 1−

√
2)/(
√
w + 1 +

√
2). For S1(w) we use the parametrization

given in Ref. [149]

S1(w) = V1(w) {1 + ∆ (−0.019 + 0.041(w − 1) −0.015(w − 1)2
)}
,

(4.2.22)

with ∆ = 1±1. By fitting the measured quantity |Vcb|V1(w) to the two parameter

ansatz as given in Eq. (4.2.17), the heavy flavor averaging group (HFAG) extracts

the following parameters: V1(1)|Vcb| = (42.65± 1.53)× 10−3, ρ2
D = 1.185± 0.054

[195]. In the case of B → D∗`ν̄`, HFAG determines A1(1)|Vcb| = (35.81± 0.45)×
10−3, ρ2

D∗ = 1.207 ± 0.026, R1(1) = 1.406 ± 0.033 and R2(1) = 0.853 ± 0.020

by performing a four-dimensional fit of the parameters [195]. However, since

the fitted curves are plagued with large statistical and systematic uncertainties,

for form factor normalizations, we use V1(1) = 1.081 ± 0.024 from the recent

lattice QCD calculations [196] and for A1(1) we use the updated value A1(1) =

0.920 ± 0.014 from the FNAL/MILC group [197]. The amplitude ratios R1(1)

and R2(1) are determined from the fit by HFAG R1(1) = 1.406± 0.033, R2(1) =

0.853± 0.020 [195].

4.3 Low-energy effective subgroups of E6 and

leptoquarks

One of the most intriguing feature of the SM is that quarks and leptons field

appear as independent fields. This is puzzling since leptons and quarks exhibit



68
Chapter 4. Explaining Anomalies in RD(∗) in Alternative Left-Right

Symmetric Model

symmetry in their organization in the SM: both leptons and quarks are grouped

into three generations with each consisting of a pair of leptons and a pair of quarks,

respectively; all three generation of quarks (as well as leptons) are replicas of each

other except for the hierarchy in their masses. The first generation contains the

lightest matter fields and the next generation contains more massive fields than

the previous one. Furthermore, it is known that, for any quantum field theory

to be consistent, the gauge anomalies associated with it must cancel. In the SM,

these anomalies are associated with triangular fermion loops with gauge bosons at

the vertices. In the SM, the leptons and quarks of each generation provide equal

and opposite contributions to cancel the anomalies. This cancellation does not

happen for the quarks or the leptons alone, rather it occurs for each generation.

Therefore, it is natural to consider that in a more fundamental theory than SM

the leptons and quarks can interact with each other directly. As a result, there

are many extensions of the SM which predict new bosons, namely, leptoquarks,

which can convert leptons into quarks and vice versa. The leptoquarks are color-

triplets under SU(3)C ; they carry lepton as well as baryon quantum numbers;

they have fractional electric charge; and can be scalars or vectors. The existence

of leptoquarks, for the first time, was proposed in the SU(4) model of Pati and

Salam [198]. The most obvious extensions of the SM which naturally accommo-

date leptoquarks are the grand unified theories (GUTs) which try to unify all the

matter fields by including leptons and quarks in a single multiplet. For example,

GUTs based on gauge groups SU(5) [199], SO(10) [200,201], superstring-inspired

E6 models naturally contain leptoquarks (for a review, see [202]). Extended

technicolor models (see, for example, [203, 204]), and composite models (see, for

example, [205, 206]) are also the examples of models which contain leptoquarks.

Scalar partners of quarks in supersymmetric theories with R-parity violating in-

teractions also have leptoquark-type Yukawa couplings [207]. A comprehensive

recent review on leptoquarks in the context of flavor physics can be found in

Refs. [208].

In the present and the next chapter, we study low-energy effective rank-5

subgroups SU(3)C × SU(2)L × SU(2)× U(1) of superstring-inspired E6, naturally
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accommodating leptoquarks, in the context of anomalies seen in the flavor sector.

Our primary interest in this analysis will be to study the set of interactions involv-

ing leptoquarks and their supersymmetric partners. E6 is a rank-6 exceptional

group which has 78 generators, and is a natural anomaly-free choice for the GUT

group [209]. There are several maximal subgroups of E6 which contain the group

SU(3)C × U(1)EM. For example, some of the choices are E6 ⊃ SO(10)× U(1),

⊃ SU(2)× SU(6). The subgroup which we are interested in is E6 ⊃ SU(3)C×
SU(3)L × SU(3)R; it is the only maximal subgroup of E6 which contains QCD as

an explicit factor. The fundamental 27 representation of E6 can be decomposed

under this subgroup as

27 = (3, 3, 1) + (3∗, 1, 3∗) + (1, 3∗, 3) (4.3.1)

where the fields are assigned as follows. (3, 3, 1) corresponds to (u, d, h), (3∗, 1, 3∗)

corresponds to (hc, dc, uc) and the leptons are assigned to (1, 3∗, 3). Here h rep-

resents the exotic −1
3

charge quark which can carry lepton number depending on

the assignments. The other exotic fields are N c, n and two isodoublets (νE, E)

and (Ec, N c
E). Note that superstring-motivated E6 models carry an N = 1 super-

symmetry. Therefore the particle spectrum of the E6 subgroups also contain the

scalar superpartners of all the fermions along with these exotic fields. The pres-

ence of these exotic fields makes the phenomenology of the low energy subgroups

of E6 very interesting. The superfields of the first family can be represented as


u

d

h

+
(
uc dc hc

)
+


Ec ν νE

N c
E e E

ec N c n

 , (4.3.2)

where SU(3)L operates along columns and SU(3)R operates along rows. The most

general renormalizable superpotential describing interactions among matter fields

and invariant under the SM group SU(3)c × SU(2)L × U(1)Y is given by [202]

W = W0 +W1 +W2 +W3, (4.3.3)



70
Chapter 4. Explaining Anomalies in RD(∗) in Alternative Left-Right

Symmetric Model

where

W0 = λ1X
cQuc + λ2XQd

c + λ3XLe
c + λ4X

cXn+ λ5hh
cn, (4.3.4)

W1 = λ6hu
cec + λ7Lh

cQ+ λ8N
chdc, (4.3.5)

W2 = λ9hQQ+ λ10h
cucdc, (4.3.6)

W3 = λ11X
cLN c, (4.3.7)

where notations used for isodoublets are Q = (u, d)L, L = (ν, e), X = (νE, E)

and Xc = (Ec, N c
E). Few points are to be noted here. First is that assignment of

quantum numbers to the exotic fields is not unique. While the color, charge and

isospin quantum numbers can be fixed by the breaking of E6 to the SM group

SU(3)c × SU(2)L × U(1)Y, there are several choices for assigning the baryon (B),

lepton (L) numbers and R-parity quantum numbers to the exotic fields which

lead to different interactions among these fields. Second point is that all the

terms in the superpotential W cannot be present simultaneously which would

otherwise lead to rapid proton decay. For example, if exotic quark field h is

assigned L = 1 (the case we will be considering in this work), the conservation of

B and L numbers ensure that couplings λ9 and λ10 are zero. Different assignments

of B and L number results in vanishing of different couplings [202]. In this and

the following chapters we will consider the low-energy E6 subgroups having an

additional SU(2) symmetry compared to the SM group, which also induces the

vanishing of various terms given in Eq. (4.3.3). We will discuss these details later

in the text.

The SU(3)L in the maximal subgroup SU(3)C × SU(3)L × SU(3)R of E6 fur-

ther break into SU(2)L × U(1)L. Note that U(1)L here cannot be identified with

the U(1)Y of the SM because if this were the case then it has to satisfy charge

equation Q = T3L+Y/2 which would imply (hc, dc, uc) to have electric charge zero.

Therefore the group SU(3)R must contribute to the charge equation. Regarding

the choice of SU(3)R decomposition into SU(2)R × U(1)R, there are three choices

of assigning the isospin doublets corresponding to T, U, V isospins (generators of

SU(2)) of SU(3).
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Case 1:

One of the choices have (dc, uc)L assigned to the SU(2)R doublet giving rise

to subgroup SU(3)c × SU(2)L × SU(2)R × U(1)YL+YR
. This choice corresponds

to the usual left-right symmetric extension of the standard model [210–215]

including the exotic particles. The charge equation in this case is given by

Q = T3L + T3R + 1
2
(YL + YR).

Case 2:

The second possible choice where the SU(2)R doublet is chosen to be (hc, uc)

gives the subgroup referred to as the Alternative Left-Right Symmetric Model

(ALRSM) [187], and will be the topic of this chapter.

Case 3:

In another choice, the SU(2)R doublet is chosen to be (hc, dc) [216] with the

charge equation given by Q = T3L + 1
2
YL + 1

2
YN , where the chosen SU(2)R does

not contribute to the electric charge equation and is often denoted by SU(2)N.

The further details of this subgroup are given in Chapter 5 where we discuss

this subgroup in the context of various flavor processes and anomalous magnetic

moment of the muon.

4.3.1 Alternative Left Right Symmetric Model

In ALRSM, the superfields have the following transformations under the subgroup

G = SU(3)c × SU(2)L × SU(2)R′ × U(1)Y ′

(u, d)L : (3, 2, 1,
1

6
)

(hc, uc)L : (3̄, 1, 2,−1

6
)

(νE, E)L : (1, 2, 1,−1

2
)

(ec, n)L : (1, 1, 2,
1

2
)

hL : (3, 1, 1,−1

3
)
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dcL : (3̄, 1, 1,
1

3
)νe Ec

e N c
E


L

: (1, 2, 2, 0)

N c
L : (1, 1, 1, 0), (4.3.8)

where Y ′ = YL+Y ′R. The charge equation is given by Q = T3L+ 1
2
YL+T ′3R+ 1

2
Y ′R,

where T ′3R = 1
2
T3R + 3

2
YR, Y ′R = 1

2
T3R − 1

2
YR. The superpotential governing

interactions of the superfields in ALRSM is given by [202]

W = λ1 (uucN c
E − ducEc − uhce+ dhcνe) + λ2 (udcE − ddcνE)

+λ3 (hucec − hhcn) + λ4hd
cN c

L + λ5 (eecνE + EEcn− Eecνe − νEN c
En)

+λ6 (νeN
c
LN

c
E − eEcN c

L) . (4.3.9)

The superpotential given in Eq. (4.3.9) gives the following assignments of R-

parity, baryon number (B) and lepton number (L) for the exotic fermions ensuring

proton stability. h is a leptoquark with R = −1, B = 1
3
, L = 1. νE, E and n have

the assignments R = −1, B = L = 0. N c has two possible assignments. If N c

has the assignments R = −1 and B = L = 0 (in a R-parity conserving scenario

demanding λ4 = λ6 = 0 in Eq. (4.3.9), νe becomes exactly massless. However if

N c is assigned R = +1, B = 0, L = −1, then νe can acquire a tiny mass via the

seesaw mechanism.

ALRSM can explain both eejj and e/pT jj signals from the decay of scalar

superpartners of the exotic particles, for example, through (i) resonant produc-

tion of the exotic slepton Ẽ, subsequently decaying into a charged lepton and a

neutrino, followed by R-parity conserving interactions of the neutrino producing

an excess of events in both eejj and e/pT jj channels [181], (ii) pair production of

scalar leptoquarks h̃. On the other hand, high scale leptogenesis can be obtained

via the decay of the heavy Majorana neutrino N c in ALRSM. From the interac-

tion terms λ4 and λ6 in Eq. (4.3.9), it can be seen that the Majorana neutrino N c
k

can decay into final states with B − L = −1 given by νeiÑ
c

Ej
, ν̃eiN

c
Ej
, eiẼ

c

j, ẽi, E
c
j

and dih̃j, d̃
c
ih̃j and to their conjugate states. Thus, ALRSM has the attractive

feature that it can explain both the excess eejj and e/pT jj signals and also high-

scale leptogenesis [181].
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ATLAS and CMS have searched for pair-produced scalar leptoquarks in differ-

ent final states. The current limits on leptoquark masses from CMS searches for

scalar leptoquarks pair production (assuming decaying branching fraction β = 1

) exclude leptoquarks with masses below 830, 840, and 525 GeV for first, second,

and third generations, respectively, while the lower bounds from ATLAS (for

β = 1) are 660, 422, and 534 GeV, respectively [9]. However, by choosing β to

be smaller than 1 the lower limits on leptoquarks masses can be reduced. From

single production of scalar leptoquarks with charge −1/3, the current lower limit

on the first generation is 304 GeV [9].

4.4 Analysis of operators mediating semileptonic

decay B → D(∗)`ν`

Having introduced ALRSM above we are now ready to analyze the semitauonic

B decay B̄ → D(∗)τ ν̄ based on the general framework introduced in section 4.2.

From the superpotential given in Eq. (4.3.9) it follows that in ALRSM there

are two possible diagrams, shown in Fig 4.1, which can contribute to the decay

B̄ → D(∗)τ ν̄. The effective Lagrangian corresponding to these diagrams is given

by

Leff = −
3∑

j,k=1

V2k

[
λ5

33jλ
2∗
3kj

m2
Ẽj

c̄LbR τ̄RνL +
λ1

33jλ
1∗
3kj

m2
h̃j∗

c̄Lτ
c
R ν̄

c
RbL

]
, (4.4.1)

where the superscript corresponds to the superpotential coupling index and the

generation indices are explicitly written as subscripts. Here mẼ(mh̃) is the mass

of slepton Ẽj (scalar leptoquark h̃j∗) and Vij corresponds to the ij-th component

of the CKM matrix. Using Fierz transformation the second term of Eq. (4.4.1)

can be put in the form given by

c̄Lτ
c
R ν̄

c
RbL =

1

2
c̄Lγ

µbL τ̄LγµνL. (4.4.2)
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We can now readily obtain the expressions for the Wilson coefficients of operators

Oτ
SL

and Oτ
VL

defined in Eqs. (4.2.4) and (4.2.2), respectively, and are given by

Cτ
SL

=
1

2
√

2GFVcb

3∑
j,k=1

V2k

λ5
33jλ

2∗
3kj

m2
Ẽj

,

Cτ
VL

=
1

2
√

2GFVcb

3∑
j,k=1

V2k

λ1
33jλ

1∗
3kj

2m2
h̃j∗

, (4.4.3)

where the neutrinos are assumed to be predominantly of tau flavor.

To simplify further analysis, we invoke the assumption that except the SM

contribution only one of the NP operators in Eqs. (4.2.2 - 4.2.6) contributes

dominantly. This assumption helps us in determining the limits on the dominant

Wilson coefficient from the experimental data for RD(∗) and the generalization of

this situation to incorporate more than one NP operator contribution is straight

forward.

Figure 4.1: Feynman diagrams for the decays B̄ → D(∗)τ ν̄ induced by the ex-

change of scalar leptoquark (h̃∗) and Ẽ.

The case where Cτ
SL

is the dominant contribution, similar to 2HDM of type

II or type III with minimal flavor violation, cannot explain both RD and RD∗

data simultaneously [151, 160], as can be seen from Fig 4.2. However, Cτ
VL

has

an allowed region which can explain both RD and RD∗ data as shown in Fig 4.3.

We find that for
∣∣Cτ

VL

∣∣ > 0.08 the current experimental data can be explained.

A comment regarding the RG running of these Wilson coefficients is in order.

Wilson coefficients are computed at the matching scale (electroweak scale) by a

matching between the full theory and the effective theory. With these Wilson

coefficients at the electroweak scale as initial conditions, their evolution from

the matching scale down to scale O(mb) is governed by the RG equations. The



4.4. Analysis of operators mediating semileptonic decay B → D(∗)`ν` 75

charged (pseudo) vector currents do not renormalize and the anomalous dimen-

sion of corresponding operators (O`
VL,R

) vanishes. Therefore, charged (pseudo)

vector currents do not run. However, (pseudo) scalar and tensor current require

renormalization and corresponding operators (O`
VL,R

, O`
TL

) have finite anomalous

dimension. Therefore, (pseudo) scalar, and tensor current operators have QCD

running. Owing to this reason, the Wilson coefficient Cτ
SL

of (pseudo) scalar

operator has a non-trivial running while Cτ
VL

does not run. Since we focus on

the case where only Cτ
VL

contribution is present, RG running does not affect the

analysis of this work. Also note that we use the central values of the theoretical

predictions because the theoretical uncertainties are sufficiently small compared

to the experimental accuracy.

Figure 4.2: The dependence of the observables RD(∗) on Cτ
SL

: red (blue) line

corresponds to RD (RD∗), and the horizontal light red (blue) band corresponds

to the experimentally allowed 1σ values. No common region exists for Cτ
SL

which

can simultaneously explain both RD and RD∗ .
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Figure 4.3: The dependence of the observables RD(∗) on Cτ
VL

: red (blue) line

corresponds to RD (RD∗), and the horizontal light red (blue) band corresponds

to the experimentally allowed 1σ values. Cτ
VL

can explain both RD and RD∗ data.

4.5 Constraints from B, D decays and oscilla-

tion D0 −D0

4.5.1 Constraints from B → τν

In this section we discuss the new contributions to purely leptonic decay mode

B → τν due to scalar leptoquark h̃j∗ exchange and utilize the measured branching

fractions of the decay to derive constraints on the product of couplings λ1
33jλ

1 ∗
31j.

In the SM, the decay B → τν proceeds via annihilation to a W boson. In

the ALRSM, the exchange of the scalar leptoquark h̃j∗ leads to the additional

diagrams shown in Fig 4.4. Since the mass scale of scalar leptoquark is far above

the scale of the B meson, we can integrate out the heavy degree of freedom

to generate new four-fermion interaction ∼ q̄L(τ c)R (ν̄c)RbL, with the Wilson

coefficients parameterizing the effects of the integrated out non-standard particles.

The NP effective Hamiltonian is given by

HNP
eff (bq̄ → τ ν̄) =

4GF√
2
Vqb C

qb
VL

(q̄Lγ
µbL)(τ̄LγµνL), (4.5.1)
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where Vqb (here q ≡ u) is the relevant CKM matrix element. The Wilson coeffi-

cient Cub
VL

in terms of the couplings λ′s is given by

Cub
VL

=
1

2
√

2GFVub

3∑
j,k=1

V1k

λ1
33jλ

1∗
3kj

2m2
h̃j∗

. (4.5.2)

In our notation, the Wilson coefficient of the SM effective operator is set to unity.

Figure 4.4: Feynman diagrams for the decay B → τν induced by the exchange

of the scalar leptoquark h̃j∗.

In what follows, we will neglect the subleading O(λ) terms and retain only the

leading CKM element V11.

Note that the decay B → τν is the only experimentally measured purely leptonic

mode of charged B±. The current experimental value of the branching ratio of

B → τν is (1.14± 0.27)× 10−4 [9]. The presence of NP modifies the expression

of the SM decay rate in the following way

Γ(B → τν) =
G2
F |Vub|2
8π

mBf
2
Bm

2
τ ×

(
1− m2

τ

m2
B

)2

|1 + Cub
VL
|2, (4.5.3)

where mB is the mass of B± and fB is the decay constant which parametrize the

matrix elements of the corresponding current as

〈0|b̄γµγ5q|Bq(pB)〉 = ipµBfB. (4.5.4)

Here pB is the 4-momentum of the B± meson. We use the CKM matrix elements,

the lifetimes, particle masses and decay constants fB, fDs , fD+ from PDG [9] for

numerical estimations throughout the chapter. Here, we assume that contribution
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from only one type of scalar leptoquarks is dominant and real. For simplicity, we

will further assume the couplings to be real in the rest of this chapter. In Fig 4.5

we plot the BR(B → τν) as a function of the product of the couplings λ33jλ31j

for different values of mh̃j∗ . Numerically these constraints are given by

λ33jλ31j ≤ 0.04
( mh̃j∗

1000GeV

)2

. (4.5.5)

Figure 4.5: BR(B → τν) as a function of couplings λ33jλ31j for mh̃j∗ = 800, 1000,

1500, 2000 GeV corresponding to black, blue, orange, and green lines respectively.

The horizontal brown (light) band shows the 1σ experimentally favored values.

4.5.2 Constraints from D+
s → τν and D+ → τν

Along with rare B decays, the study of the decays of charmed mesons also offers

attractive possibilities to test the predictions of extensions of the SM [217–219].

In fact, these processes are quite sensitive to the contributions of charged Higgs

boson and scalar leptoquarks [220] and to the new contributions from squark ex-

change in the framework of R-parity violating SUSY as examined in Ref. [221].

In this section we consider the purely leptonic decays D+
s → τν and D+ → τν

in ALRSM and use their measured branching ratios to obtain constraints on the

couplings (λ32j)
2 and λ32jλ31j respectively. The relevant Feynman diagrams in
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ALRSM for the decays D+
s → τν and D+ → τν are shown in Fig 4.6. Inte-

grating out the heavy energy scales yields the following non-standard effective

Hamiltonian

HNP
eff (cq̄ → τ ν̄) =

4GF√
2
Vcq C

cq
VL

(q̄Lγ
µcL)(ν̄LγµτL) (4.5.6)

where q = s, d for D+
s , D

+ respectively. In the SM these processes occur (similar

to B → τν) via W± annihilation and the SM Wilson coefficient is given by unity

in our notation. The corresponding Wilson coefficient Ccq
VL

parameterizing the

NP effects is given by

Ccq
VL

=
1

2
√

2GFVcq

3∑
j,k=1

Vkq
λ1

32jλ
1∗
3kj

2m2
h̃j∗

. (4.5.7)

We will keep only the leading terms Vcs for D+
s decay and Vud for D+ case re-

Figure 4.6: Feynman diagrams for the decay D+
s → τν induced by scalar lepto-

quarks. The corresponding diagram for the decay D+ → τν can be obtained by

replacing s quark by d quark.

spectively and neglect the subleading Cabibbo suppressed O(λ) terms. Although

this process occurs in the SM at the tree level, the branching fraction is helicity-

suppressed. For τ , this suppression is less severe but phase-space suppression is

larger compared to that for light leptons. In the presence of the scalar leptoquark

contribution, the SM decay rate is affected in the following way [220,222]

Γ(D+
q → τν) =

G2
F |Vcq|2
8π

mDqf
2
Dqm

2
τ ×

(
1− m2

τ

m2
Dq

)2

|1 + Ccq
VL
|2. (4.5.8)

Here mDq is the mass of charm-mesons D+
s and D+ for q = s, d respectively

and Vcq is the relevant CKM element. The decay constant fDq is defined by
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〈0|q̄γµγ5c|Dq(pDq)〉 = i(pDq)µfDq , where (pDq)µ is the 4-momentum of the Dq

meson.

Figure 4.7: Dependence of (upper figure) BR(D+
s → τν) on the coupling λ2

32j

[(lower figure) BR(D+ → τν) on the coupling λ32jλ31j] for mh̃j∗ = 800, 1000, 1500,

2000 GeV corresponding to black, blue, orange, and green lines respectively. In

the upper (lower) figure the horizontal brown band shows the 1σ experimentally

allowed (disfavored) region.

Assuming that only one combination of the product of scalar leptoquark cou-

plings is nonzero, we get upper bounds on (λ1
32j)

2 and λ1
32jλ

1∗
31j. In Fig 4.7, we

plot the dependence of BR(B → D+
(s)ν) on the coupling λ32jλ31j(λ

2
32j) for different

mh̃j∗ . Numerically the constraints are given by

λ2
32j ≤ 0.85

( mh̃j∗

1000GeV

)2

, (4.5.9)

λ32jλ31j ≤ 3.12
( mh̃j∗

1000GeV

)2

. (4.5.10)
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4.5.3 Constraints from mixing D0 −D0

The phenomenon of meson-antimeson oscillation, being a flavor changing neutral

current (FCNC) process, is very sensitive to heavy particles propagating in the

mixing amplitude and therefore, it provides a powerful tool to test the SM and a

window to observe NP. In the D0 − D̄0 system, the b-quark contribution to the

fermion loop of the box diagram provides a ∆C = 2 transition which is highly

suppressed ∼ O(λ3) (by a tiny Vub CKM matrix element). Therefore, the large

non-decoupling effect from a heavy fermion in the leading one-loop contribution

is small. D0− D̄0 mixing involves the dynamical effects of rather light down-type

particles and therefore it provides information complementary to the strange

and bottom systems where the large effects of heavy top quark in the loops are

quintessential. The D0−D̄0 mixing is described by ∆C = 2 effective Hamiltonian

which induces off-diagonal terms in the mass matrix for neutral D meson pair and

typically parametrized in terms of following experimental observables

xD ≡
∆MD

ΓD
, and yD ≡

ΓD

2ΓD

, (4.5.11)

where ∆MD and ∆ΓD are the mass and width splittings between mass eigenstates

of D0 − D̄0 systems respectively and ΓD is the average width. The parameters

xD and yD can be written in terms of the mixing matrix as follows

xD =
1

2MDΓD
Re
[
2〈D̄0|H|∆C|=2|D0〉 +〈D̄0|i

∫
d4xT{H|∆C|=1

w (x)H|∆C|=1
w (0)}|D0〉

]
,

(4.5.12)

yD =
1

2MDΓD
Im〈D̄0|i

∫
d4x × T{H|∆C|=1

w (x)H|∆C|=1
w (0)}|D0〉, (4.5.13)

with H|∆C|=1
w (x) being the Hamiltonian density that describes |∆C| = 1 transi-

tions at space-point x and T denotes the time ordered product. Since the local

|∆C| = 2 interaction does not contain an absorptive part, this term does not

affect yD and contributes to xD only. The measured values of xD and yD as

determined by HFAG are [223]

xD = 0.49+0.14
−0.15 × 10−2, (4.5.14)

yD = (0.61± 0.08)× 10−2, (4.5.15)
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Figure 4.8: Feynman diagrams contributing toD0−D̄0 mixing in ALRSM induced

by scalar leptoquark and slepton.

Charm mixing in the SM is highly affected by contributions from intermediate

hadronic states, and therefore the theoretical estimations in the SM suffer from

large uncertainties and generally stretch over several orders of magnitude (for a

review, see Ref. [224]). Like in the case of mixing in neutral K and B systems,

D0− D̄0 mixing is also sensitive to NP effects. Both xD and yD can receive large

contributions from NP. The contribution to yD in several NP models including

LR models, multi Higgs models, SUSY without R-parity violations and models

with extra vector like quarks has been studied in Ref. [225], while in Ref. [224] the

NP contributions to xD in 21 NP models have been discussed. In this section,

we use the neutral D meson mixing to obtain constraints on λ32jλ31j. These

bounds are tighter than those obtained in the previous section from measured

BR of D+ → τν. The relevant Feynman diagrams which contribute to D0 − D̄0

mixing in the ALRSM are shown in Fig 4.8. These box diagrams are similar

to the diagrams generated from internal line exchange of lepton-squark pair or

slepton-quark pair in the case of R-parity violating models [224,226]. The mixing

is described by the effective Hamiltonian

Heff =
1

128π2
(λ32jλ31j)

2

(
1

m2
τ̃

+
1

m2
h̃j∗

)
(c̄Lγ

µuL)(c̄LγµuL), (4.5.16)

where we assume that the box diagrams receive contributions from third genera-

tion of leptons only. Taking mh̃j∗ ' mτ̃ , the constraints on the size of couplings

is given by

λ32jλ31j ≤ 0.17

√
xexpt
D

( mh̃j∗

1000GeV

)
. (4.5.17)
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In Fig 4.9, we plot the dependence of xALRSMD on the product of the couplings

λ32jλ31j for different mh̃j∗ . As discussed in the subsection 4.5.3, the branching

ratio of the decay D+ → τν also constrain the same product of the couplings

λ32jλ31j (given in Eq. (4.5.9)) and for a 1 TeV leptoquark mass we find λ32jλ31j ≤
3.12. However, D0 − D̄0 mixing rules out a large parameter space available for

this coupling product as shown in Fig 4.9. For a 1 TeV leptoquark and taking

the upper limit of the experimental value of xexpt
D given in Eq. (4.5.14) for a

conservative estimate, we find the allowed size of product to be λ32jλ31j ≤ 1.3×
10−2 which is about two order of magnitude tighter compared to those from

D+ → τν .

Figure 4.9: Dependence of xALRSMD on the coupling λ32jλ31j for mh̃j∗ = 800, 1000,

1500, 2000 GeV corresponding to black, blue, orange, and green lines respectively.

The horizontal brown (light) band shows the 1σ experimentally disfavored region.

4.6 Results and discussion

Having discussed the allowed region for Cτ
VL

which can explain both RD and RD∗

data simultaneously in section 4.4 and the constraints on the couplings λ33j and

λ32j involved in Cτ
VL

from the leptonic decays D+
s → τ+ν̄, B+ → τ+ν̄, D+ → τ+ν̄

and D0-D̄0 mixing in section 4.5, we are now ready to translate these analysis
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into a simple λ33j-λ32j parameter space analysis. In Fig 4.10, we plot the range

Figure 4.10: The region of λ33j-λ32j parameter space compatible with the ex-

perimental data for RD(∗) and constraints from the leptonic decays D+
s → τ+ν̄,

B+ → τ+ν̄, D+ → τ+ν̄ and D0-D̄0 mixing. We take mh̃j∗ = 1000 GeV for

this plot. Blue band between dashed lines shows allowed values considering con-

straints from RD only, Orange band between bold black lines shows allowed region

favored by experimental data for both RD∗ and RD. The shaded (light blue) rect-

angles correspond to the allowed regions of λ33j-λ32j parameter space for different

values of λ31j marked with the corresponding allowed upper boundary shown in

dashed lines consistent with the present experimental data on B → τν, Ds → τν,

D+ → τν and D − D̄ mixing.

of the couplings λ33j and λ32j (for mh̃j∗ = 1000 GeV) that can explain both RD

and RD∗ data over the parameter space allowed by the the leptonic decays and

D0-D̄0 mixing. From the decay D+
s → τ+ν̄, we constrain the allowed upper limit

of the coupling λ32j. The decay D+ → τ+ν̄ and D0-D̄0 mixing give constraints

on the upper limit of the product of couplings λ32jλ31j. We find that among

the two processes the latter gives more stringent constraints and therefore we



4.6. Results and discussion 85

use the constrains on the allowed upper limit of λ32jλ31j coming from D0-D̄0

mixing. Finally, we use the decay B+ → τ+ν̄ to constrain the upper limit of

λ33jλ31j. The latter two constraints on the products of couplings have λ31j as a

common free parameter and the shaded rectangles in Fig 4.10 correspond to the

allowed regions of λ33j-λ32j parameter space for different values of λ31j marked

in the figure with the corresponding allowed upper boundary shown in dashed

lines. The blue band corresponds to the allowed band of λ33j-λ32j explaining

the RD data and the orange band corresponds to the allowed band of λ33j-λ32j

explaining both RD and RD∗ data simultaneously. We would like to note that the

list of constraints mentioned above is far from exhaustive and many other possible

leptonic and semileptonic decays can give independent constrains. For instance,

the decay process τ+ → π+ν can give independent constraint on λ31j, which we

find to be consistent with the values extracted out of the above constraints and

used for the parameter space analysis. On the other hand, the semileptonic decay

t → bτν can give constraint on λ33j which we find to be again consistent with

the values used in the above parameter space analysis. Also the effective NP

operators under consideration may induce B-decays such as b → sνν̄ [227, 228],

which can be an interesting channel for the future experiments.

In conclusion, we have studied the superstring inspired E6 motivated Alterna-

tive Left-Right Symmetric model to explore if this model can explain the current

experimental data for both RD and RD(∗) simultaneously addressing the excesses

over the SM expectations. We use the leptonic decays D+
s → τ+ν̄, B+ → τ+ν̄,

D+ → τ+ν̄ and D0-D̄0 mixing to constrain the couplings involved in the semilep-

tonic b→ c transition in ALRSM. We find that ALRSM can explain the current

experimental data on RD(∗) quite well while satisfying the constraints from the

rare B, D decays D0-D̄0 mixing. Furthermore, ALRSM can also explain both

the eejj and e/pT jj signals recently reported by CMS and also accommodate

successful leptogenesis. If these excess signals are confirmed in future B-physics

experiments and at the LHC then ALRSM will be an interesting candidate for

NP beyond the Standard Model.





Chapter 5

Explanation of Anomalies in

R
D(∗), RK, and (g − 2)µ in E6

Motivated Left-Right Model with

Leptoquarks

Apart from the discrepancies seen in the measured decay rates of semileptonic

decays B → D(∗)τντ , the LHCb collaboration [34] has recently also reported an-

other striking deviation from the SM prediction of the ratio of branching fractions

of charged B̄ → K̄`+`− decays

RK =
Br(B̄ → K̄µ+µ−)

Br(B̄ → K̄e+e−)
. (5.0.1)

The measured value of RLHCb
K = 0.745 ±0.090

0.074 ±0.036, in the dilepton invariant

mass squared bin 1 GeV2 ≤ q2 ≤ 6 GeV2 corresponds to a 2.6σ deviation from the

SM prediction RSM
K = 1.0003± 0.0001 [35]∗.

On the other hand, currently the most precise measurement of the anomalous

muon magnetic moment by E821 experiment at BNL has been reported to show a

significant deviation from the SM prediction ∆aµ = aexp
µ −aSM

µ = (2.8±0.9)×10−9

∗The updated SM estimate for RK using unquenched lattice QCD results for form factors

involves somewhat larger errors than the quoted value here and is predicted to be RK =

1.00074± 0.00035 [36] in the low q2 bin 1 < q2 < 6 GeV2.

87
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amounting to a ∼ 3σ level deviation [229, 230]. This discrepancy also points to

the possible existence of NP beyond the SM.

Several attempts have been made in the literature to explain the above anoma-

lies in B decays by invoking NP models [66, 164, 231–237] and separately using

a model independent approach [101, 138, 151, 152, 156, 163, 208, 238–240]. Among

them, one of the extensively studied class of models relies on scalar or vector

leptoquarks. However, in these models the leptoquark couplings are often taken

at an effective level without any concrete framework. In this chapter we explain

all three anomalies consistently within the framework of a left-right symmetric

gauge theory naturally accommodating leptoquarks. This framework, motivated

by one of the low energy subgroups of E6, can naturally enhance both B̄ → Dτν̄

and B̄ → D∗τ ν̄ via the exchange of scalar leptoquarks to explain the anomalies,

while the RK data can be explained simultaneously through one loop diagrams

induced by leptoquarks. The anomalous muon magnetic moment can also be

explained in this model without utilizing a nonzero right handed coupling of lep-

toquarks. We also discuss various constraints from the current measurements of

(semi-) leptonic decays and B0
s − B̄0

s , D
0 − D̄0 mixings.

5.1 E6 motivated Neutral Left-Right Symmetric

Model

In the previous chapter, we discussed that the breaking of SU(3)L to SU(2)L ×
U(1)L is fixed by the SM isodoublet structure, for example, (u, d, h)L : (3, 3, 1)

must break to the usual SM isodoublet (u, d)L and an isosinglet hL. However,

there are three choices to break SU(3)R to SU(2)R × U(1)R depending on the

three possible choices of the SU(2)R doublet corresponding to T, U, V isospins of

SU(3)R. The three choices of the residual SU(2)R give three possible left-right

symmetric frameworks. In this chapter, we are interested in the choice where

(hc, dc)L is the residual SU(2)R isodoublet [216]. Interestingly, this choice results

in a unique situation where the residual SU(2)R does not contribute to electric

charge [216] and hence we call this model “Neutral” Left-Right Symmetric Model
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(NLRSM). We will denote the residual SU(2)R by SU(2)N . The corresponding

charge equation is given by Q = T3L + 1
2
YL + 1

2
YN . The fields have the following

transformations under the NLRSM gauge groupG = SU(3)c×SU(2)L×SU(2)N×
U(1)Y [181]

(u, d)L : (3, 2, 1,
1

6
), (hc, dc)L : (3̄, 1, 2,

1

3
),

(Ec, N c
E)L : (1, 2, 1,

1

2
), (N c, n)L : (1, 1, 2, 0),

hL : (3, 1, 1,−1

3
), ucL : (3̄, 1, 1,−2

3
),

ecL : (1, 1, 1, 1),

νe νE

e E


L

: (1, 2, 2,−1

2
). (5.1.1)

The gauge bosons corresponding to SU(2)N are electrically neutral and are de-

noted by ZN ,W
±
N , where the ± sign refers to the SU(2)N charge. The interactions

of the new exotic fields with the SM sector are governed by the superpotential

W = λ1 (νeN
c
LN

c
E + eEcN c

L + νEN
c
En+ EEcn)

+ λ2 (dcN c
Lh+ hhcn) + λ3ucech+ λ4 (uucN c

E + ucdEc)

+ λ5 (νee
cE + eecνE) + λ6 (udcE + ddcνE + uhce+ dhcνe) . (5.1.2)

From the superpotential it follows that the leptoquark h has the assignment

B = 1/3 and L = 1, while the exotic fields νE, E and n have B = L = 0 and N c

has B = 0, L = −1. In the gauge sector, WN carries a nonzero lepton number

B = 0, L = −1.

In addition to the above superpotential couplings, the gauge couplings of

WN and ZN to the fermions can also induce FCNC processes such as B0 − B̄0,

K0− K̄0 mixings and in the leptonic sector lepton flavor violating processes such

as the decay µ→ eγ, as well as can contribute to the anomalous muon magnetic

moment in presence of mixing between new exotic fields [202]. To keep things

minimal, in the following analysis we assume that the dominant FCNC and LFV

contributions come from scalar leptoquark induced processes.
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5.2 Explaining RD(∗) anomalies

In NLRSM the scalar leptoquark (h̃∗) and slepton (Ẽ) can mediate the semilep-

tonic decays B̄ → D(∗)τ ν̄ at tree level. The effective Lagrangian is given by

Leff =
3∑

i,k=1

V2i

[
λ5

33kλ
6∗
i3k

m2
Ẽk

c̄LbR τ̄RνL +
λ6

33kλ
6∗
i3k

m2
h̃k∗

c̄Lτ
c
R ν̄

c
RbL

]
, (5.2.1)

where the superscripts are superpotential coupling indices and the generation

indices are written as subscripts. Here mh̃(mẼ) is the mass of scalar leptoquark

h̃k∗ (slepton Ẽk) and Vij is the ij-th component of the CKM matrix. Adhering

to the convention used in Chapter 4, the Wilson coefficients are given by

Cτ
SL

= − 1

2
√

2GFVcb

3∑
i,k=1

V2i
λ5

33kλ
6∗
i3k

m2
Ẽk

,

Cτ
VL

= − 1

2
√

2GFVcb

3∑
i,k=1

V2i
λ6

33kλ
6∗
i3k

2m2
h̃k∗

, (5.2.2)

where the neutrinos are assumed to be of tau flavor. To simplify further analy-

sis, we assume that except the SM contribution only the scalar leptoquark NP

operator contributes dominantly.

The leptonic decay modes B → τν, D+
s → τν, D+ → τν and D0− D̄0 mixing

induced by scalar leptoquark h̃k∗ exchange can be utilized to derive constraints

on the product of couplings λ6
33kλ

6∗
13k using measured branching fractions for the

decays and D0 − D̄0 mixing parameters. In NLRSM, the exchange of the scalar

leptoquark h̃k∗ leads to an additional tree level diagram for the decay B → τν

in addition to the usual SM contribution. Assuming couplings to be real, the

modified rate of the decay process B → τν gives constraint on the product of

couplings λ6
33kλ

6∗
13k given by

−0.04
( mh̃k∗

1000GeV

)2

≤ λ6
33kλ

6
13k ≤ 0.03

( mh̃k∗

1000GeV

)2

. (5.2.3)

The measured branching ratios of the decays D+
s → τν and D+ → τν can be used

to obtain constraints on (λ6
23k)

2 and λ6
23kλ

6
13k respectively. The decay D+

s → τν

gives the constraint

(λ6
23k)

2 ≤ 1.9
( mh̃k∗

1000GeV

)2

, (5.2.4)
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and the decay process D+ → τν gives a weaker constraint on λ6
23kλ

6
13k compared

to D0 − D̄0. The relevant box diagrams for D0 − D̄0 are similar to the diagrams

generated from internal line exchange of lepton-squark pair or slepton-quark pair

in the case of R-parity violating models [224, 226]. The relevant constraint is

given by

−0.012
( mh̃k∗

1000GeV

)
≤ λ6

23kλ
6
13k ≤ 0.012

( mh̃k∗

1000GeV

)
. (5.2.5)
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Figure 5.1: RD(∗) compatible λ6
33k − λ6

23k parameter space constrained from B →
τν, D+

s → τν and D0 − D̄0 mixing for mh̃k∗ = 750 GeV. The (deep) blue bands

show the region consistent with the RD experimental data at (1σ) 2σ level and

the (deep) pink bands show the region consistent with both RD∗ [at (1σ) 2σ

level] and RD data simultaneously. See text for details on the constraints from

the flavor processes.

In Fig 5.1, we plot the range of the couplings λ6
33k and λ6

23k (for mh̃k∗ =

750 GeV) that can explain both RD and RD∗ data over the parameter space
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allowed by the leptonic decays and D0-D̄0 mixing. The shaded (light gray) rect-

angles with dashed boundaries correspond to regions of λ6
33k-λ

6
23k parameter space

allowed by the constraints from the B → τν, D+
s → τν decays and D0− D̄0 mix-

ing for different values of λ6
13k. The (deep) blue bands correspond to the (1σ) 2σ

allowed band explaining the RD data and the (deep) pink bands correspond to

the allowed band explaining both RD and RD∗ data simultaneously. Finally,

the effective NP operators under consideration also predict an enhanced decay

rate for b → sνν̄ [227, 228], which can be an interesting channel for the future

experiments and can be intriguing in the context of radiative neutrino masses.

5.3 Explaining RK anomaly

The lepton non-universality in the ratio RK has been analyzed in a model-

independent fashion in Refs. [101, 238] suggesting that a good fit to the data

is obtained for the constraints

−1.5 . Cµ
LL . −0.7 ,

−1.9 . Cµ
LL − Cµ

LR . 0. (5.3.1)

The study [101] has also discussed leptoquark induced tree level contributions

which require either very large leptoquark masses or small couplings in order

to explain the data. In Ref. [234] it was explicitly pointed out that one loop

box diagrams can also explain the departure from the SM prediction for O(1)

left handed couplings and suppressed right handed couplings. In NLRSM also,

the b → s`` flavor changing transition can occur at one-loop level via the scalar

leptoquark and its supersymmetric partner induced box and penguin diagrams

shown in Fig 5.2. We find that the γ- and Z-penguin diagrams (including their

supersymmetric counterparts) give a vanishing contribution †, which is in agree-

ment with Ref. [234]. The contribution to Cµ
LL from scalar leptoquark and its

supersymmetric partner induced box diagrams in the limit m2
h̃,h
� m2

W,t is given

† Note that that a careful dimensional reduction ensures a vanishing contribution from Z-

penguin diagrams Ref. [241–244]. Note that there are also diagrams involving charginos and

neutralinos at one loop level independent of the leptoquarks giving a subdominant contribution.
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b

µ h̃

u ν

s

µ

W

b

s µ

µ

h̃

h̃

uν

b sν

γ/Z µ−

µ+

h̃

Figure 5.2: Representative diagrams for b→ s`` transition. The supersymmetric

counterparts of these diagrams are also present.

by

Cµ
LL =

λ6
32kλ

6∗
32k

8παe

(
mt

mh̃j

)2

−
λ6

3jkλ
6∗
2jlλ

6
i2kλ

6∗
i2l

32
√

2GF VtbV ∗tsπαem
2
h̃

−
λ6

3jkλ
6∗
2jlλ

6
i2kλ

6∗
i2l

32
√

2GF VtbV ∗tsπαem
2
h

g

(
m2
ũi

m2
h

, 1,
m2
ν̃j

m2
h

)
, (5.3.2)

where repeated indices are summed over and the loop function g(x, y, z) is defined

by

g(x, y, z) =
x2 log x

(x− 1)(x− y)(x− z)
+ (cycl. perm.).

Note that Cµ
LL depends on the product of couplings λ6

3jkλ
6∗
2jk with the j = 3 set of

couplings appearing in the Wilson coefficient Cτ
VL

in Eq. (5.2.2). The contribution

from the box diagrams also involves one additional set of couplings λ6∗
i2kλ

6
i2l which

can be constrained from the measurement of Z → µµ̄ decay rate. In Ref. [234],

it was found that for a TeV scale leptoquark, the size of such couplings can be

as large as ∼ O(1). Processes such as t → bµν̄µ, Ds → µν̄µ etc give similar

constraints on individual couplings λ6∗
i2kλ

6
i2l. The product of couplings λ6

3jkλ
6∗
2jk

contributes to Bs− B̄s mixing amplitude. Following the suggestion of the UTfit

collaboration [245] we define the ratio CBse
2iφBs = 〈Bs|H full

eff |B̄s〉/〈Bs|HSM
eff |B̄s〉 to

obtain

CBse
2iφBs = 1 +

m2
W

g4S0(xt)

( 1

m2
h̃

+
1

m2
h

)λ6
3jkλ

6
3lmλ

6∗
2jmλ

6∗
2lk

(VtvV ∗ts)
2

, (5.3.3)

which gives an allowed range consistent with the value of λ6
3jkλ

6∗
2jk required to ex-

plain the RK data using the latest UTfit values of the Bs−B̄s mixing parameters.

As a benchmark point taking λ6
3jkλ

6∗
2jk ' 0.07 for mh̃ ∼ 750 GeV, mh ∼ 600 GeV
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and taking λ6∗
i2k ∼ O(1), we obtain the standard benchmark solution Cµ

LL = −1

and Cµ
LR = 0 which satisfies the conditions given in Eq. (5.3.1). Note that in this

model the leptoquark induced additional contribution to C7γ turns out to be too

small to have any perceptible effects.

5.4 Explaining anomalous muon magnetic mo-

ment

In the SM the muon anomalous magnetic moment is chirally suppressed due to

the small muon mass, aµ ∼ m2
µ/m

2
W . In NLRSM, leptoquarks can induce an

additional contribution to the anomalous magnetic moment of the muon through

one-loop vertex diagrams. However, the sole contribution from leptoquark in-

duced diagrams cannot explain the experimental deviation from the SM. One

way out is to follow the approach taken in Ref. [234], where a nonzero right

handed coupling of leptoquark is utilized. Interestingly, in NLRSM it is possible

to explain the experimental data through a dominant contribution from λ5 terms

in Eq. (5.1.2). The new contribution from λ6
ijk terms in Eq. (5.1.2) is given by

aµ(λ6) =
m2
µ

32π2

 1

m2
h̃∗jR
−m2

t

|λ6
32j|2

(
1 +

2xt
1− xt

)(
1

2
+

3

1− xt
+

2 + xt
(1− xt)2

ln xt

) ,
(5.4.1)

where xt = m2
t/m

2
h̃
. The λ5

ijk terms in Eq. (5.1.2) give the following contribution

induced by sleptons

δaµ(λ5) =
m2
µ

16π2

[
|λi2k|2F (ek, ν̃Ei)− |λi2k|2F (ẽk, νEi) + |λij2|2F (ej, ν̃Ei)

−|λij2|2F (ẽj, νEi) + |λij2|2F (Ej, ν̃ei)− |λij2|2F (Ẽj, νei)
]
, (5.4.2)

where F (a, b) is defined as

F (a, b) =

∫ 1

0

dx
x2 − x3

m2
µx

2 + (m2
a −m2

µ)x+m2
b(1− x)

. (5.4.3)

The existing measurements of the decay rates like τ → µγ, τ → 3l, and τ → µνν̄

can give constraints on λ5
i2k and λ5

ij2 separately in combination with some other
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independent couplings [246]. Assuming a hierarchy between mẼ,ẽ and mν̃E ,ν̃e ,

and taking mẼ,ẽ ∼ 700 GeV and mν̃E ,ν̃e ∼ 250 GeV as a benchmark point, we

find that the current experimental data can be explained with less than order

unity values of the couplings. Interestingly, in the presence of a mixing between

left and right handed leptoquarks (h̃L,R) it is possible to enhance the leptoquark

contribution significantly to explain the data even without the slepton induced

contributions.

5.5 Conclusions

We have presented a minimal framework of a left-right symmetric gauge theory

naturally accommodating leptoquarks which can provide a unified explanation

of the B-decay anomalies in RD(∗) and RK together with the anomalous muon

magnetic moment, while being consistent with the constraints from the current

measurements of (semi-)leptonic decays and B0
s − B̄0

s , D
0 − D̄0 mixings. In this

model both RD and RD∗ anomalies can be explained via the exchange of scalar

leptoquarks at tree level, while the RK data can be explained simultaneously

using one loop diagrams induced by leptoquarks. The anomalous muon magnetic

moment can also be addressed in this model without utilizing a nonzero right

handed coupling of leptoquark.





Chapter 6

Constraining Scalar Leptoquark

from the Kaon Sector

6.1 Introduction

In view of recently observed anomalies in the flavor sector, we are motivated to

study a TeV-scale leptoquark model in this chapter, and analyze NP effects on the

kaon sector. It is known that the studies of kaon decays have played a vital role

in retrieving information on the flavor structure of the SM. In particular, neutral

kaon mixing and rare decays of the kaon have been analyzed in various extensions

of the SM and are known to provide some of the most stringent constraints on

NP [247–256]. The NP model we consider in this chapter is a simple extension

of the SM by a single scalar leptoquark. The leptoquark φ with mass Mφ has

(SU(3)C, SU(2)L) quantum numbers (3, 1) and is of charge −1/3. This model is

interesting considering that it has all the necessary ingredients accommodating

semileptonic b → c and b → s decays [101, 234] to explain the anomalies in the

lepton flavor universality ratios discussed in the previous chapter. To this end,

we must mention that along with anomalies observed in the flavor sector, the

leptoquark model under study is also capable of explaining the new diphoton

excess recently reported by the ATLAS and CMS collaborations in their analysis

of
√
s = 13 TeV pp collision [257].

Following the conventions of Ref. [234], the Lagrangian governing the lepto-

97
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quark interaction with first-family fermions is given by

L(φ) 3 λLueūcLeLφ∗ + λRueū
c
ReRφ

∗ − λLdν d̄cLνLφ∗ + h.c. , (6.1.1)

where L/R are the left/right projection operators (1 ∓ γ5)/2. The couplings λ’s

are family dependent, and uc=CūT are the charge-conjugated spinors. Similar in-

teraction terms for the second and third families can also be written down. In this

model, B → D(∗)τ ν̄ proceeds at tree level through the exchange of leptoquark

(φ). Integrating out the heavy particles gives rise to low-energy dimension-6

effective operators, which can produce the required effects to satisfy the experi-

mental data. In Ref. [234] it was shown that with O(1) left-handed and relatively

suppressed right-handed couplings, one can explain the observed excesses in the

rate of B → D(∗)τ ν̄ decays. The authors of Ref. [234] were also able to simul-

taneously explain the observed anomalies in RK with large [∼ O(1)] left-handed

couplings for a TeV scale leptoquark. In this model, such large couplings are

possible because the leading contribution to B̄ → K̄µ+µ− comes from one-loop

diagrams and therefore additional GIM and CKM suppression compensates for

the “largeness” of the couplings. This is in contrast to NP models [101,258,259]

in which RK arises at tree level, which renders the couplings very small in order

to have leptoquarks within the reach of the LHC. Apart from B system, this

model has also been explored in the context of FCNC decays of D-meson. In

Refs. [260–262] impact of scalar (as well as vector) leptoquarks on the FCNC

processes D0 → µ+µ− and D+ → π+µ+µ− have been studied, and using the ex-

isting experimental results, strong bounds on the leptoquark coupling have been

derived. However, to the best of our knowledge, the effects of new physics on the

kaon sector have not been investigated before in the scalar leptoquark (3, 1)−1/3

model. We start by writing the effective Hamiltonian relevant for each case and

discuss the effective operators and corresponding coupling strengths (Wilson co-

efficients) generated in the model. The explicit expressions of new contributions

in terms of parameters of the model are derived. We then discuss NP affecting

the various kaon processes such as K+ → π+νν̄, KL → π0νν̄, KL → µ+µ−, and

the LFV decay KL → µ±e∓. Using the existing experimental information on

these processes, constraints on the leptoquark couplings are obtained.
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The rest of the chapter is organized in the following way. In section 6.2 we

study K0 − K̄0 mixing in this model and obtain constraints on the couplings.

In section 6.3 and 6.4 we constrain the parameter space using information on

BR(K+ → π+νν̄) and CP-violating BR(KL → π0νν̄) respectively. In section

6.5 we discuss the new contribution to the short-distance part of the rare decay

KL → µ+µ− in this model and obtain constraints on the generation-diagonal

leptoquark couplings using the bounds on BR(KL → µ+µ−)SD. In section 6.6,

we discuss the LFV process KL → µ∓e± and constrain the off-diagonal couplings

of the leptoquark contributing to NP Wilson coefficients. Finally, we summarize

our results in the last section.

6.2 Constraints From K0 −K0
Mixing

The phenomenon of meson-antimeson oscillation, being a FCNC process, is very

sensitive to heavy particles propagating in the mixing amplitude, and therefore,

it provides a powerful tool to test the SM and a window to observe NP. In this

section, we focus on the mixing of the neutral kaon meson. The experimental

measurement of the K0 − K̄0 mass difference ∆mK and of CP-violating param-

eter εK has been instrumental in not only constraining the parameters of the

unitarity triangle but also providing stringent constraints on NP. The theoreti-

cal calculations for K0 − K̄0 mixing are done in the framework of effective field

theories (EFT), which allow one to separate long- and short-distance contribu-

tions. The leading contribution to K0−K̄0 oscillations in the SM comes from the

so-called box diagrams generated through internal line exchange of the W boson

and up-type quark pair. The effective SM Hamiltonian for |∆S| = 2 resulting

from the evaluation of box diagrams is written as [263,264]

H|∆S|=2
eff =

G2
FM

2
W

4π2

[
λ2
cηccS0(xc) + λ2

tηttS0(xt) + 2 λtλcηctS0(xc, xt)
]
K(µ)Qs(µ),

(6.2.1)

where xi = m2
i /M

2
W , GF is the Fermi constant, and λi = V ∗isVid contains CKM ma-

trix elements. Qs(µ) is the dimension-6, four-fermion local operator (s̄γµLd)(s̄γµLd),



100 Chapter 6. Constraining Scalar Leptoquark from the Kaon Sector

and K(µ) is the relevant short-distance factor which makes product K(µ)Qs(µ)

independent of µ. The Inami-Lim functions S0(x) and S0(xi, xj) [265] contain

contributions of loop diagrams and are given by [266]

S(xc, xt) = xcxt

[
− 3

4(1− xc)(1− xt)
+

Lnxt
(xt − xc)(1− xt)2

(
1− 2xt +

x2
t

4

)
+

Lnxc
(xc − xt)(1− xc)2

(
1− 2xc +

x2
c

4

)]
, (6.2.2)

and the function S0(x) is the limit of S0(x, y) when y → x, while ηi in Eq. (6.2.1)

are the short-distance QCD correction factors ηcc = 1.87, ηtt = 0.57, and ηct =

0.49 [267–269]. The hadronic matrix element 〈K̄0|Qs|K0〉 is parametrized in

terms of decay constant fK and kaon bag parameter BK in the following way:

BK =
3

2
K(µ)

〈K̄0|Qs|K0〉
f 2
Km

2
K

. (6.2.3)

The contribution of NP to |∆S| = 2 transition can be parametrized as the ratio

of the full amplitude to the SM one as follows [245]:

C∆mK =
Re〈 K|HFull

eff |K̄〉
Re〈K|HSM

eff |K̄〉
, (6.2.4)

CεK =
Im〈K|HFull

eff |K̄〉
Im〈K|HSM

eff |K̄〉
. (6.2.5)

In the SM, C∆mK and CεK are unity. The effective Hamiltonian 〈K̄0|Heff |K0〉 can

be related to the off-diagonal element M12 through the relation ∗

〈K̄0|HFull
eff |K0〉 = 2mKM

∗
12, (6.2.6)

with M12 = (M12)SM+(M12)NP . In the SM, the theoretical expression of (M12)SM

reads [247]

(M12)SM =
G2
F

12π2
f 2
KBKmKM

2
WF

∗(λc, λt, xc, xt), (6.2.7)

∗The observables mass difference ∆mK and CP-violating parameter εK are related to off-

diagonal element M12 through the following relations: ∆mK = 2[Re(M12)SM + Re(M12)NP ],

and εK = kε expiφε√
2(∆mK)exp

[Im(M12)SM + Im(M12)NP ], where φε ' 43o and kε ' 0.94 [270–272].
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where the function F (λc, λt, xc, xt) stands for

F (λc, λt, xc, xt) = λ2
cηccS0(xc) + λ2

tηttS0(xt)

+ 2 λtλcηctS0(xc, xt), (6.2.8)

with xi=m
2
i /M

2
W .

In the leptoquark model considered, the internal line exchange of the neutrino-

leptoquark pair induces new Feynman diagram shown in Fig 6.1, which con-

tributes to K0 − K̄0 mixing. The new effects modify the observables C∆mK and

d

s

s

d

φ φ

ν

ν

Figure 6.1: New contribution to K − K̄ mixing induced by the scalar leptoquark

(φ).

CεK , and in the approximation M2
φ � m2

t,W , their expressions are given by

C∆mK = 1 +
1

g4
2

M2
W

M2
φ

ηtt
Re(F ∗)

Re (ξds)
2 , (6.2.9)

CεK = 1 +
1

g4
2

M2
W

M2
φ

ηtt
Im(F ∗)

Im (ξds)
2 , (6.2.10)

where we have used notation F for F (λc, λt, xc, xt) for simplicity. g2 is the SU(2)

gauge coupling and we define

ξds ≡ (λLλL†)ds =
∑
i

λLdνiλ
L∗
sνi
. (6.2.11)

Solving Eqs. (6.2.9) and (6.2.10) for real and imaginary parts of ξds in terms of the

experimental observables C∆mK , and CεK , we obtain the following expressions:

(Re ξds)
2 =

(
g4

2

2

M2
φ

M2
W

)(
Re(F ∗)

ηtt

(
−1 + C∆mK

))(
1 +

√
1 +

(
ImF ∗

ReF ∗
· CεK − 1

C∆mK − 1

)2
)
,

(6.2.12)
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(Im ξds)
2 =

(
g4

2

2

M2
φ

M2
W

)(
Re(F ∗)

ηtt

(
−1 + C∆mK

))(
−1 +

√
1 +

(
ImF ∗

ReF ∗
· CεK − 1

C∆mK − 1

)2
)
.

(6.2.13)

To constrain the leptoquark couplings Re ξds and Im ξds, we use the latest

global fit results provided by the UTfit collaboration and to be conservative evalu-

ate the constraints at the 2σ level: C∆mK = 1.10±0.44 and CεK = 1.05±0.32 [245].

Here, to account for the significant uncertainties from poorly known long-distance

effects [273], we allow for a ±40% uncertainty in the case of ∆MK . For Re ξds

and Im ξds, we obtain the following upper bounds:

(Re ξds)
2 ≤ 6.0× 10−4

(
Mφ

1000 GeV

)2

, (6.2.14)

(Im ξds)
2 ≤ 3.8× 10−4

(
Mφ

1000 GeV

)2

. (6.2.15)

As discussed in the next section, we find that a more constraining bound on

the product of the couplings Re(ξds) and Im(ξds) can be obtained from the the-

oretically rather clean rare processes K+ → π+νν̄ and KL → π0νν̄ as compared

to K − K̄ mixing.

6.3 Constraints from rare decay K+ → π+νν

The charged and neutral K → πνν̄ are in many ways interesting FCNC processes

and considered as golden modes. Both the decays can play an important role in in-

direct searches for NP because these decays are theoretically very clean and their

branching ratio can be computed with an exceptionally high level of precision (for

a review, see Ref. [274]). In the SM these decays are dominated by Z-penguin

and box diagrams, which exhibit hard, power-like GIM suppression as compared

to logarithmic GIM suppression generally seen in other loop-induced meson de-

cays. At the leading order, both modes are induced by a single dimension-6 local

operator (s̄d)V−A(ν̄ν)V−A. The hadronic matrix element of this operator can be

measured precisely in K+ → π0e+ν decays, including isospin breaking correc-

tions [275,276]. The principal contribution to the error in theoretical predictions
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originates from the uncertainties on the current values of λt and mc. The long-

distance effects are rather suppressed and have been found to be small [277–279].

In the SM, the effective Hamiltonian for K → πνν̄ decays is written as [280]

HSM
eff =

GF√
2

2α

π sin2 θW

∑
`=e,µ,τ

(
λcX

`
NNL + λtX(xt)

)
(s̄LγµdL)(ν̄`Lγ

µν`L), (6.3.1)

The index ` = e, µ, τ denotes the lepton flavor. The short-distance function X(xt)

corresponds to the loop-function containing top contribution and is given by

X(xt) = ηX ·
xt
8

[
xt + 2

xt − 1
+

3xt − 6

(xt − 1)2
Lnxt

]
, (6.3.2)

where the factor ηX includes the next-to-leading-order (NLO) correction and is

close to unity (ηX = 0.995) while the remaining part describes the contribution

of the top quark without QCD correction. The NLO QCD corrections have been

computed in Refs. [281–283], while two-loop electroweak corrections have been

studied in Ref. [284]. The loop-function XNNL summarizes the contribution from

the charm quark and can be written as [249]

XNNL =
2

3
Xe
NNL +

1

3
Xτ
NNL ≡ λ4P SD

c (X), (6.3.3)

where λ = |Vus|. The NLO results for the function XNNL can be found in [280,283]

while next-to-next-leading-order (NNLO) calculations are done in Refs. [285,286].

In the model considered, leptoquark φ mediates K+ → π+νν̄ at tree level.

The corresponding Feynman diagram is shown in Fig 6.2. The NP effective

Hamiltonian relevant for K+ → π+νν̄ decay is given by

HNP
eff = −λ

L∗
sν`
λLdν`

2M2
φ

(s̄γµLd)(s̄γµLd). (6.3.4)

The new contribution alters the SM branching ratio of K+ → π+νν̄ [287] as

s

ν ν

d

Figure 6.2: Feynman diagram for the decay K → πνν̄ induced by the exchange

of the scalar leptoquark φ.
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BR(K+ → π+νν̄) = κ+(1 + ∆EM)

[(
Imλt
λ5

Xnew

)2

+

(
Reλc
λ

Pc(X) +
Reλt
λ5

Xnew

)2
]
,

(6.3.5)

where κ+ contains relevant hadronic matrix elements extracted from the decay

rate of K+ → π0e+ν along with an isospin-breaking correction factor and is given

by [287]

κ+ = (5.173± 0.025) · 10−11

(
λ

0.225

)8

. (6.3.6)

In Eq. (6.3.5), ∆EM describes the electromagnetic radiative correction from pho-

ton exchanges and amounts to -0.3%. The charm contribution Pc(X) includes the

short-distance part P SD
c (X) plus the long-distance contribution δPc (calculated

in Ref. [276]). We use Pc(X) = 0.404 given in [287]. The function Xnew con-

tains a new short-distance contribution from the leptoquark-mediated diagram

and modifies the SM contribution through

-4 -2 0 2 4 6

-8

-6

-4

-2

0

2

4

ImH Ξds L H10- 4 L

R
eHΞ

ds
LH

10
-

4
L

Figure 6.3: The constraints on Re(ξds)− Im(ξds) parameter space from the mea-

sured value of BR(K+ → π+νν̄). The blue colored region shows experimentally

allowed values at the 1σ level.

Xnew = X(xt) +
Xφ

λt
, (6.3.7)



6.4. Constraints from KL → π0νν 105

where X(xt) is the top contribution in the SM already defined in Eq. (6.3.2)

and Xφ is the contribution due to leptoquark exchange. In terms of the model

parameters, Xφ is given by

Xφ = −
√

2

4GF

π sin2 θW
α

ξds
M2

φ

, (6.3.8)

where α(MZ) = 1/127.9 is the electromagnetic coupling constant and sin2 θW =

0.23 is the weak mixing angle. Using the experimental value of the branching

ratio provided by BNL-E949 experiment, BR(K+ → π+νν̄) = (1.7± 1.1)× 10−10

[288], we obtain the constraint on Re ξds and Im ξds, shown in Fig 6.3. A most

conservative bound on individual couplings Re ξds and Im ξds can be obtained by

taking only one set to be nonzero at a time. We find that for a leptoquark of

1 TeV mass the constraints are given by −7.2 × 10−4 < Re ξds < 2.2 × 10−4 and

−3.3 × 10−4 < Im ξds < 4.9 × 10−4. As pointed out before, these bounds rule

out a large parameter space allowed from K0 − K̄0 mixing. The coupling Im ξds

can also be probed independently through the decay KL → π0νν̄, which is the

subject of our next section.

6.4 Constraints from KL → π0νν

The neutral decay mode KL → π0νν̄ is CP-violating. In contrast to the decay

rate of K+ → π+νν̄ which depends on the real and imaginary parts of λt, with a

small contribution from the real part of λc, the rate of KL → π0νν̄ depends only

on Imλt. Because of the absence of the charm contribution, the prediction for

BR(KL → π0νν̄) is theoretically cleaner. The principal sources of error are the

uncertainties on Imλt and mt. In the SM, the branching ratio is given by [274]

BR(KL → πνν̄) = κL

(
Imλt
λ5

X(xt)

)2

, (6.4.1)

with [287]

κL = 2.231× 10−10

(
λ

0.225

)8

. (6.4.2)
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The exchange of leptoquark φ induces a new contribution to the rate which

can be accommodated in the expression for the branching ratio by replacing

X(xt) by Xnew given in Eq. (6.3.7). KEK-E391a experiment has searched for

KL → π0νν̄ and set an upper limit on BR(KL → π0νν̄) < 2.6 × 10−8 at 90%

C.L. [289]. In Fig 6.4, we plot the dependence of the KL → πνν̄ branching ratio

on the imaginary part of the effective couplings ξds. Numerically, the constraints

are given by

Figure 6.4: The dependence of BR(KL → π0νν̄) on Im ξds. The red shaded region

is currently disfavored by the experimental data at 90% C.L.

−0.0021 <
Im ξds(
Mφ

1000 GeV

)2 < 0.0023, (6.4.3)

Since the decay has not been observed so far and the present experimental limits

are 3 orders of magnitude above the SM predictions [287], we find that constraints

from KL → π0νν̄ are weaker compared to those obtained in the case of K+ →
π+νν̄.

Before proceeding further, we summarize the analysis done so far and present

combined constraints on Re (ξds) - Im (ξds) parameter space from K0−K̄0 mixing,

rare decays K+ → π+νν̄ and KL → π0νν̄ in Fig 6.5 for a scalar leptoquark

(φ) of 1 TeV mass. The real and imaginary part of NP amplitude for neutral

kaon mixing give individual bound on Re (ξds) and Im (ξds), respectively and are
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Figure 6.5: Re (ξds) - Im (ξds) parameter space allowed by neutral kaon mixing

(gray), rare decays KL → π0νν̄ (orange) and K+ → π+νν̄ (dark blue) for a 1 TeV

leptoquark (φ) mass. For details see text.

the weakest among processes considered in this work. The CP violating process

KL → π0νν̄ gives bounds on Im (ξds) only and is relatively tighter than those from

neutral kaon mixing. But the most stringent constraints come from K+ → π+νν̄

and allows only a very small parameter space as discussed in section 6.3.

6.5 Constraints from KL → µ+µ−

The decay KL → µ+µ− is sensitive to much of the same short-distance physics

(i.e., λt and mt) as K → πνν̄ and therefore provides complementary informa-

tion on the structure of FCNC |∆S| = 1 transitions. This is important because

experimentally a much more precise measurement compared to K → πνν̄ is

available: BR(KL → µµ) = (6.84 ± 0.11) × 10−9 [9]. However, the theoretical
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situation is far more complex (for a review, see Refs. [290, 291]). The amplitude

for KL → µ+µ− can be decomposed into a dispersive (real) and an absorptive

(imaginary) part. The dominant contribution to the absorptive part [as well as

to total decay rate (KL → µ+µ−)] comes from the real two-photon intermediate

state. The dispersive amplitude is the sum of the so-called long-distance and

the short-distance contributions. Only the short-distance (SD) part can be re-

liably calculated. The most recent estimates of the SD part from the data give

BR(KL → µ+µ−)SD ≤ 2.5 × 10−9 [292]. The effective Hamiltonian relevant for

the decay KL → µ+µ− is given by [280]

Heff(KL → µ+µ−) =
GF√

2

α

2π sin2θW
[λcYNL + λtY (xt)] (s̄γµ(1− γ5)d)(µ̄γµγ5µ),

=
GF√

2
V ∗usVud ∆K

SM (s̄γµ(1− γ5)d)(µ̄γµγ5µ),

(6.5.1)

where ∆K
SM describes the Wilson coefficient of the effective local operator [s̄γµ(1−

γ5)d][µ̄γµγ5µ] and is given as

∆K
SM =

α(λcYNL + λtY (xt))

2π sin2θw V ∗usVud
, (6.5.2)

The short-distance function Y (xt) describes contribution from Z-penguin and

box diagrams with an internal top quark with QCD corrections. Its expression

at NLO can be written as [282,283]

Y (xt) = ηY ·
xt
8

(
4− xt
1− xt

+
3xt

(1− xt)2
Lnxt

)
, (6.5.3)

where the factor ηY summarizes the QCD corrections (ηY = 1.012). The function

YNL represents the contribution of loop-diagrams involving internal charm-quark

exchange and is known to NLO [280,283] and recently to NNLO [293]. The charm

contribution is also often denoted by Pc(Y ) and is related to YNL analogous to

the relation in Eq. (6.3.3). In the SM, the branching ratio for the SD part is

written as [293,294]

BR(KL → µ+µ−)SM(SD) =
N2
K

2π ΓKL

(
mµ

mK

)2
√

1− 4m2
µ

m2
K

f 2
Km

3
K(Re ∆K

SM)2,

(6.5.4)
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where NK = GFV
∗
usVud and ΓKL is the decay width of KL. Before proceeding

µ

s

W

φ

d

µ

ν t

d φ µ

ν t

s φ µ

Figure 6.6: Feynman diagrams relevant for the decay KL → µ+µ− induced by

the scalar leptoquark φ.

to discuss the constraints on leptoquark couplings from KL → µ+µ−, we give a

description of the “operator basis” we use in the present and the next sections.

The effective Hamiltonian for KL → µ+µ− in Eq. (6.5.1) is written in the oper-

ator basis of {Q7V , Q7A} following [294]. In what follows, we will switch to the

{QK
V LL, Q

K
V LR} operator basis. The operators in the two bases are written as

Q7V = (s̄γα(1− γ5)d)(µ̄γαµ),

Q7A = (s̄γα(1− γ5)d)(µ̄γαγ5µ), (6.5.5)

and

QK
V LL = (s̄γαLd)(µ̄γαLµ),

QK
V LR = (s̄γαLd)(µ̄γαRµ). (6.5.6)

To change from the basis {Q7V , Q7A} to the basis {QK
V LL, Q

K
V LR}, the following

transformation rules hold:

QK
V LL =

1

4
(Q7V −Q7A) , QK

V LR =
1

4
(Q7V +Q7A) .

(6.5.7)

The scalar leptoquark φ contributes to the quark-level transition s̄ → d̄µ+µ−

at the leading order through loop diagrams. The Feynman diagrams relevant

for KL → µ+µ− are shown in Fig 6.6. These diagrams are similar to the ones

calculated in the case of b→ sµµ in Ref. [234]. Correcting for the different quark

content and coupling, and taking into account the prefactors in the definitions of
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the effective Hamiltonian for K and B system, we obtain the following NP Wilson

coefficients of effective operators QK
V LL and QK

V LR:

C
K(new)
V LL = − 1

8π2

λt
λu

m2
t

M2
φ

|λLtµ|2 +

√
2

64GFπ2M2
φ

ξds ξ
L
µµ

λu
, (6.5.8)

C
K(new)
V LR = − 1

16π2

λt
λu

m2
t

M2
φ

|λRtµ|2
(

Ln
M2

φ

m2
t

− f(xt)

)
+

√
2

64GFπ2M2
φ

ξds ξ
R
µµ

λu
, (6.5.9)

where the function f(xt) depends on the top-quark mass and is given in Ref. [234]

and we define

ξ
L(R)

``
′ =

∑
i

λ
L(R)∗
ui`

λ
L(R)

ui`
′ . (6.5.10)

The one advantage we get by the change of basis is that the contribution of

Figure 6.7: The dependence of BR(KL → µ+µ−) on the Wilson coefficient

C
K(new)
V LL . We have assumed one-operator dominance as discussed in the text.

The red shaded area shows the disallowed values satisfying the conservative up-

per bound on BR(KL → µ+µ−)SD ≤ 2.5× 10−9.

right-handed interaction terms in the Lagrangian [Eq. (6.1.1)] is contained only

in C
K(new)
V LR . After adding the leptoquark contribution to the SM value, the total

SD branching ratio for the decay KL → µ+µ− is given by
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BR(KL → µ+µ−)SD =
N2
K

2π ΓKL

(
mµ

mK

)2
√

1− 4m2
µ

m2
K

f 2
Km

3
Kλ

10

{
Reλc
λ

αPc(Y )

2π sin2θWλu

+
1

λ5

(
Reλt

αY (xt)

2π sin2θWλu
+

1

4
Re(C

K(new)
V LR − CK(new)

V LL )

)}2

,

(6.5.11)

To simplify further analysis, we invoke the assumption that, except the SM

contribution, only one of the NP operators contributes dominantly. This as-

sumption helps us in determining the limits on the dominant Wilson coefficient

from BR (KL → µ+µ−)SD, and the generalization of this situation to incorpo-

rate more than one NP operator contribution is straight forward. Therefore,

in what follows, we will ignore the contribution of the right-handed operator

in further analysis. In Fig 6.7, we show the dependence of the SD part of

BR(KL → µ+µ−) on ReC
K(new)
V LL . Numerically, the bound on the Wilson co-

efficient reads −1.00 × 10−4 < ReC
K(new)
V LL < 0.27 × 10−4. We use the upper

bound to constrain the generation-diagonal leptoquark couplings in the following

way. Employing Eq. (6.5.8), the upper bound on the Wilson coefficient can be

written in terms of model parameters as(
− 1

8π2

Reλt

λu

m2
t

M2
φ

|λLtµ|2 +

√
2

64GFπ2M2
φ

Re ξds

λu
ξLµµ

)
< 0.27× 10−4, (6.5.12)

Assuming the worst possible case in which the bound on Re ξds from K+ → π+νν̄

(as obtained in section 6.3) is saturated, i.e., using Re ξds = 2.2 × 10−4 in the

above equation, we get

√√√√|λLuµ|2 + |λLcµ|2 +

(
1 +

2.52

(
Mφ

1000 GeV
)2

)
|λLtµ|2 < 11.83, (6.5.13)

We find that constraints from the SD branching ratio of KL → µ+µ− are not

severe and large ∼ O(1) generation-diagonal leptoquark couplings are allowed.

In this context, we must mention that the above bound is in agreement with

the constraint obtained in Ref. [234] while explaining the anomaly in RK in this

model. We also note from Eq. (6.5.13) that the top contribution to s̄ → d̄µ+µ−
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for the considered masses of the leptoquark (∼ 1 TeV) is enhanced in contrast

to the effects found in the case of b → sµ+µ− processes [234] where the top

contribution is suppressed for the same choice of the leptoquark masses.

6.6 Constraints from LFV decay KL → µ∓e±

In this section, we discuss the effects of the leptoquark φ on the LFV process

K → µ∓e±. BNL E871 experiment has searched for this decay and provided an

upper limit on BR(KL → µ∓e±) < 4.7× 10−12 at 90% C.L. [295]. LFV processes

are interesting because in the SM they are forbidden. Therefore any observation

of such a process immediately indicates the presence of NP. The leptoquark φ

can mediate KL → µe decay through diagrams similar to those shown in Fig 6.6

with one of the µ lines replaced by e. After integrating out heavy particles, new

effective operators relevant for KL → µe are generated. The operators are similar

to those in Eq. (6.5.6) but with one of the µ changed to e. The branching ratio

in terms of the new Wilson coefficients Cµe
V LL and Cµe

V LR is given by [294]

BR(KL → µe) =
N2
Kf

2
K

64πΓKL

(
mµ

mK

)2(
1− m2

µ

m2
K

)2 (
|Cµe

V LL|2 + |Cµe
V LR|2

)
. (6.6.1)

Adapting the results of Eq. (6.5.8) to the LFV case, we find

Cµe
V LL = − 1

8π2

λt
λu

m2
t

M2
φ

(λLteλ
L∗
tµ ) +

√
2

64GFπ2M2
φ

ξds ξ
L
µe

λu
, (6.6.2)

Cµe
V LR = − 1

16π2

λt
λu

m2
t

M2
φ

(λRtµλ
R
te)

(
Ln
M2

φ

m2
t

− f(xt)

)
+

√
2

64GFπ2M2
φ

ξds ξ
R
µe

λu
. (6.6.3)

Using the current experimental bound onKL → µe, we get [|Cµe
V LL|2 + |Cµe

V LR|2]
1/2

<

3.9 × 10−6. Following a similar analysis as done in section 6.5 for the case of

KL → µµ, we obtain the constraints on the leptoquark couplings,

√√√√(λLuµλ
L
ue) + (λLcµλ

L
ce) +

(
1 +

2.52

(
Mφ

1000 GeV
)2

)
(λLtµλ

L
te) < 4.49, (6.6.4)
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where the top contribution is again enhanced. For simplicity, we assumed the cou-

plings to be real. Here, we would like to mention that the same Wilson coefficients

also contribute to other LFV processes such as K → πµe. However, as pointed

out in Ref. [294], the constraints on Wilson coefficients (|Cµe
V LL|2 + |Cµe

V LR|2)
1/2

are about an order of magnitude weaker than the one from KL → µ∓e±. There-

fore, experimental data on K → πµe do not improve the constraints obtained in

Eq. (6.6.4).

6.7 Results and Discussion

In light of several anomalies observed in semileptonic B decays, often explained

by invoking leptoquark NP models, we have studied a scalar leptoquark model

in the context of rare decays of kaons and neutral kaon mixing in this chapter.

The model is interesting because it can provide one of the possible explanations

for the observed discrepancies in semileptonic B decays. We examined the effects

of leptoquark contributions to several kaon processes involving K0 − K̄0 mixing,

K+ → π+νν̄, KL → π0νν̄, KL → µ+µ−, and LFV decay KL → µ∓e±. Working

in the framework of effective field theory, we have discussed the effective opera-

tors generated, and written down the explicit expressions for the corresponding

Wilson coefficient in terms of the leptoquark couplings. Using the present experi-

mental information on these decays, we derived bounds on the couplings relevant

for kaon processes. We found that the constraints from K0− K̄0 on the real and

imaginary parts of left-handed coupling ξds are ∼ O(10−2). However, the same set

of couplings can also be constrained from BR(K+ → π+νν̄), BR(KL → π0νν̄),

and it was found that constraints from the rare process BR(K+ → π+νν̄) are

about 2 orders of magnitude more severe than those obtained from the mixing

of neutral kaons. In fact, the decay BR(K+ → π+νν̄) gives the most stringent

constraints on the leptoquark couplings among all the processes studied in this

chapter and therefore is the most interesting observable to test the NP effects of

the scalar leptoquark in the kaon sector. Assuming a one-operator dominance

scenario, we constrained the NP Wilson coefficient contributing to the rate of
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KL → µ+µ−. We further used the bounds on the NP Wilson coefficient to ob-

tain the constraints on generation-diagonal leptoquark couplings. We found that

the present measured value of BR(KL → µ+µ−) allows generation-diagonal cou-

pling of the leptoquark to be ∼ O(1). The constraint on the combination of

generation-diagonal couplings from KL → µ+µ− is in agreement with the one

obtained in Ref. [234] for explaining experimental data on RK . However, whereas

the top contribution to b → sµ+µ− is suppressed, we found that in the case of

s̄ → d̄µ+µ− the top contribution is enhanced for the considered range of lep-

toquark masses. We also did a similar analysis for the case of the LFV decay

KL → µ∓e±, which involves generation-diagonal as well as off-diagonal couplings.

We found that present experimental limits on BR (KL → µ∓e±) do not provide

very strong constraints and involved couplings can be as large as ∼ O(1).



Chapter 7

Summary

In recent years, a great amount of experimental data on flavor physics has been

accumulated which has contributed to a better understanding of flavor structure

of the SM and beyond it. A more precise study of rare FCNC decays of hadrons

is now possible at collider experiments such as the LHC, which are capable of

providing sufficient luminosity to overcome the problem of low statistics. Inter-

estingly, the recent measurements reported on flavor changing decays of b quark

show several deviations from the SM predictions, which have received a lot of

attention theoretically. In particular, a significant deviation has been reported

for the observable RK , which, if true, signals the violation of lepton universal-

ity. Another set of remarkable deviations has been seen in the decay rates of

B → D(∗)τν, which is more interesting considering that these decays proceeds at

the tree level in the SM, and the observation of deviation is against the general

expectation that the first sign of NP in flavor physics is most likely to come from

the loop induced processes. The full angular analysis of B → K∗`+`− performed

by the LHCb collaboration also indicates deviations from the SM expectations.

In this thesis, in Chapter 2, we have studied the four-body angular distribution

of the rare decay B → K∗`+`−, which is one of the most promising candidates

to search for NP due to multiple observables it offers. In order to predict the

theoretical value of the observables, the knowledge of hadronic form factors is

required. The estimates of hadronic effects involve sizeable uncertainties, thereby

inducing the errors in the theoretical predictions. This issue calls for measur-

115
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ing observables which are more or less free from such hadronic effects. We have

shown that similar to the celebrated zero crossing of the forward-backward asym-

metry of the lepton pair, AFB, the zero crossings of the observables P ′4 and P ′5 are

also free from form factors in the large recoil region and heavy quark limit. We

also proposed a new observable, OL,R
T , which has a unique property that its zero

crossing, in the SM-like operator basis, coincides with the zero of AFB. But, in

the presence of NP (for example, finite contribution of right-handed operators),

the zero crossings of OL,R
T and AFB shift differently. This feature can be useful to

probe NP once the precise measurements on the value of zero crossings are avail-

able. All the zero crossings of the considered observables depend on the Wilson

coefficients and the mass of the B meson, and therefore are sensitive to NP and

theoretically cleaner observables to measure experimentally. We have pointed

out that in the heavy quark and large recoil limit, the zero crossings of AFB, P ′5,

P ′4, and OL,R
T are correlated in the SM. The relations, in the considered approx-

imation, are also independent of form factors. Since the zeros and the relation

among them are functions of the Wilson coefficients only, their measurement can

be used to constrain the NP contribution present in the Wilson coefficients. We

have discussed the constraints on the CNP
7 −CNP

9 plane, stemming from the zeros

of these observables. We considered multiple BSM scenarios, which are favoured

over the SM by the present global fits to present data on b→ s`+`−, and showed

that precise measurements of the zero crossings have the potential of differen-

tiating between different BSM cases. Interestingly, the LHCb collaboration has

started measuring the zero crossing of these observables. Current measurements

still have large uncertainties to have any conclusive result on the presence of NP.

But, high precision data on these zeros in the future can certainly provide crucial

information in this regard.

In Chapter 3, we have studied the semileptonic b → s baryonic decay Λb →
Λ`+`−. The angular distribution of the final state, similar to mesonic counterpart

B → K∗`+`−, gives access to many observables. The analysis of these observables

can offer information which can complement the current search of NP in b → s

transition. We have listed the angular observables and asymmetries which can be
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used to extract all the angular coefficients independently. In order to probe the

short-distance NP, it is necessary to focus on observables which do not depend on

hadronic form factors or are largely insensitive to them. With this in mind, we

have presented three new observables [T1(q2), T2(q2), and T3(q2)], which can be

experimentally probed. The new observables are constructed such that the zero

crossings of these observables lie in the large q2 region. In the HQET and large

q2 approximation, these zeros turn out to be less sensitive to the form factors

(especially the zero of T1(q2)), and therefore their measurement holds a better

chance of probing the NP effects in b→ s transitions.

In Chapter 4 and 5, we have presented an NP explanation of the flavor anoma-

lies seen in B decays in the framework of E6 motivated left-right symmetric gauge

theories. E6 provides one of the natural, anomaly free choices for grand unified

theories which have a unique virtue of unifying matter–leptons and quarks. Due

to the presence of new particles in the theory, the phenomenology of low en-

ergy subgroups is quite rich and interesting. We have considered the maximal

subgroup, SU(3)C× SU(3)L × SU(3)R, of E6. The SU(3)(L,R) in the maximal sub-

group can further break into SU(2)(L,R) × U(1)(L,R). Among the three possible

options for choosing SU(2)R, in Chapter 4, we have considered the choice where

(hc, uc) is assigned to the SU(2)R doublet. This subgroup is referred to as the

Alternative Left-Right Symmetric Model (ALRSM). We have studied ALRSM

in the context of charged decay modes B → D(∗)τν, and have shown that the

enhanced decay rates reported by the Belle, BaBar and LHCb collaborations can

be explained with new contributions involving the tree level exchange of scalar

leptoquark. We have discussed the constraints on the NP couplings coming from

B → τν, D(s) → τν and D0 − D̄0 in detail. The constraints are compati-

ble with the size of the couplings required to explain the data. In Chapter 5,

we have studied E6 motivated Neutral Left-Right Symmetric Model (NLRSM),

which corresponds to the choice where (hc, dc)L is chosen as the SU(2)R doublet.

Working in this framework, we have shown that anomalies observed in RK and

RD(∗) can be simultaneously explained. In this model, RD(∗) can be explained via

new contribution from tree level Feynman diagrams involving exchange of scalar
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leptoquarks, while RK can be explained by the one loop diagrams involving lep-

toquarks. We have also shown that the anomalous magnetic moment of the muon

can also be explained simultaneously. The analysis is compatible with present

measurements of other flavor observables like B0− B̄0 and D0− D̄0 mixings, and

(semi) leptonic decays of B and D.

In Chapter 6, noticing that NP models having a scalar leptoquark φ of charge

−1/3 with (SU(3)C, SU(2)L) quantum numbers (3, 1) are capable of explaining the

flavor anomalies in semileptonic B decays, we have investigated the constraints

from the kaon sector. This study provides the information on the allowed size

of the couplings of the scalar leptoquark, and helps in shedding light on the

kaon observables where promising signals of the considered leptoquark can be

expected. We have analysed the effects of the leptoquark on the neutral kaon

mixing, rare decays K+ → π+νν̄, KL → π0νν̄, KL → µ+µ−, and lepton flavor

violating decay KL → µ∓e±. The scalar leptoquark φ contributes to K0 − K̄0

via new box diagrams involving internal exchange of leptoquark and neutrinos.

We noticed that constraints from K0 − K̄0 on the left-handed coupling ξds are

∼ O(10−2). On the other hand, scalar leptoquark φ contributes to rare decays

K+ → π+νν̄ and KL → π0νν̄ via tree level exchange. We found that the con-

straints from BR(K+ → π+νν̄) turn out be about 2 orders of magnitude tighter.

We then discussed the effects of leptoquark φ on the decay KL → µ+µ−. The

leptoquark φ contributes to KL → µ+µ− via box diagrams. We have found that

present measurement of BR(KL → µ+µ−) allows generation-diagonal coupling of

the leptoquark to be ∼ O(1), which is compatible with the required size of the

relevant couplings needed to explain the B decay anomalies. We also studied the

leptoquark effects on the LFV decay KL → µ∓e±, which allows to constrain the

off-diagonal couplings as well. We found that the present experimental data on

KL → µ∓e± allows the involved coupling to be ∼ O(1). Therefore, at present, the

tightest bounds on the leptoquark couplings in kaon-related observables are from

the decay BR(K+ → π+νν̄), and therefore appears to be the most interesting

observable to test the NP effects of scalar leptoquark in the kaon sector.

In the end, we would like to conclude with the following remarks. At present,
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in the face of non-observation of new particles at direct collider searches, and

with the lack of any unambiguous signal of NP in flavor precision data, the task

of uncovering NP seems to be challenging. However, there are some tantalizing

hints of NP in the flavor sector, as discussed in this thesis, which demand for

a more careful scrutiny of these signals in order to probe NP. The advancement

of flavor physics has always banked on close interplay and cooperation between

experiment and theory. On the theory side, there has been immense progress in

calculating the low-energy observables with high precision. The theoretical uncer-

tainties in the estimation of several observables have reduced significantly, and the

current values are sufficiently accurate to be compared with the high-precision

experimental data to detect any discrepancy between the SM and experiment.

On the other hand, very high-luminosity particle physics experiments are now

able to measure the flavor-precision observables with great accuracy and large

statistics. With the upgraded LHC, and the possible future experimental facil-

ities such as super B-factories, capable of providing higher luminosity, the level

of precision in the measurements of low-energy observables is certainly going to

improve. Hopefully, with these improvements, flavor physics will be able to either

provide unambiguous signs of NP or give us a clear direction towards this goal.
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A A compendium of effective operators

Here, we present a partial list of the effective operators relevant for weak decays

of hadrons given in Refs. [264] (for a recent review, see [296] ).

A.1 The effective ∆F = 1 nonleptonic operators

Current-Current operators

O1(∆S = 1) = (s̄iγ
µLuj) (ūjγµLdi), (A.1)

O2(∆S = 1) = (s̄iγ
µLui) (ūjγµLdj), (A.2)

O1(∆C = 1) = (s̄iγ
µLcj) (ūjγµLdi), (A.3)

O2(∆C = 1) = (s̄iγ
µLci) (ūjγµLdj), (A.4)

O1(∆B = 1) = (b̄iγ
µLcj) (ūjγµLdi), (A.5)

O2(∆B = 1) = (b̄iγ
µLci) (ūjγµLdj). (A.6)

QCD-Penguin operators

O3 = (s̄iγ
µLbi)

∑
q

(q̄jγµLqj), (A.7)

O4 = (s̄iγ
µLbj)

∑
q

(q̄jγµLqi), (A.8)
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O5 = (s̄iγ
µLbi)

∑
q

(q̄jγµRqj), (A.9)

O6 = (s̄iγ
µLbj)

∑
q

(q̄jγµRqi). (A.10)

Electroweak-Penguin operators

OEW
7 =

3

2
(s̄iγ

µLbi)
∑
q

eq(q̄jγµRqj), (A.11)

OEW
8 =

3

2
(s̄iγ

µLbj)
∑
q

eq(q̄jγµRqi), (A.12)

OEW
9 =

3

2
(s̄iγ

µLbi)
∑
q

eq(q̄jγµLqj), (A.13)

OEW
10 =

3

2
(s̄iγ

µLbj)
∑
q

eq(q̄jγµLqi). (A.14)

Magnetic-Penguin operators

O7 =
e

16π2
mb(s̄iσ

µνRbi)Fµν , (A.15)

O8 =
gs

16π2
mb(s̄iT

a
ijσ

µνRbj)G
a
µν . (A.16)

A.2 ∆S = 2 and ∆B = 2 operators

O(∆S = 2) = (s̄iγ
µLdi)(s̄jγµLdj), (A.17)

O(∆B = 2) = (b̄iγ
µLdi)(b̄jγµLdj). (A.18)

A.3 Semileptonic operators

O`
9V = (s̄iγ

µLbi)(¯̀γµ`), (A.19)

O`
10A = (s̄iγ

µLbi)(¯̀γµγ5`), (A.20)

O(ν̄ν) = (s̄iγ
µLbi) (ν̄γµLν). (A.21)

where i, j are the color indices and L/R = (1∓ γ5)/2.
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Figure A: Representative Feynman diagrams in the full theory. (a), (b) the

current-current diagrams, (c) QCD-penguin diagram, (d), (e) electroweak pen-

guin diagram, (f) QED magnetic penguin diagram, (g) QCD magnetic penguin

diagram, (h) ∆F = 2 box diagram, and (i) semileptonic penguin diagram.

B Form Factors for B → K∗

Here, we give q2 dependence of the form factors for the process B → K∗. We

have employed two sets of form factors (V , A0,1,2, T1,2,3) [75] and (ξ⊥, ξ‖) [79]

for numerical evaluation of the zeroes of the angular observables in chapter 2.

The form factors (V , A0,1,2, T1,2,3) are valid in full kinematical range of q2, while

the form factors (ξ⊥, ξ‖) are applicable in the large recoil (low-q2) region. The
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parametrization of q2 dependence of V , A0,1,2, T1,2,3 is given by [75]

V (q2) =
r1

1− q2/m2
R

+
r2

1− q2/m2
fit

, (B.1)

A0(q2) =
r1

1− q2/m2
R

+
r2

1− q2/m2
fit

, (B.2)

A1(q2) =
r2

1− q2/m2
fit

, (B.3)

A2(q2) =
r1

1− q2/m2
fit

+
r2

(1− q2/m2
fit)

2 , (B.4)

T1(q2) =
r1

1− q2/m2
R

+
r2

1− q2/m2
fit

, (B.5)

T2(q2) =
r2

1− q2/m2
fit

, (B.6)

T̃3(q2) =
r1

1− q2/m2
fit

+
r2

(1− q2/m2
fit)

2 , (B.7)

where form factor T3 is related to T̃3 through the following relation

T3(q2) =
m2
B −m2

K∗

q2
[T̃3(q2)− T2(q2)]. (B.8)

The values of the parameters r1, r2, m2
R, and m2

fit are given in Ref. [75], and are

listed in the Table below.

r1 m2
R r2 m2

fit

V (q2) 0.923 28.30 -0.511 49.40

A0(q2) 1.364 27.88 -0.990 36.78

A1(q2) 0.290 40.38

A2(q2) -0.084 0.342 52.00

T1(q2) 0.823 28.30 -0.491 46.31

T2(q2) 0.333 41.41

T̃3(q2) -0.036 0.368 48.10

Table A: Values of the fit parameters for B → K∗ form factors.

On the other hand, for the form factors ξ⊥, ξ‖, we use the following parametriza-
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tion [78]

ξ⊥(q2) = ξ⊥(0)

(
1

1− q2/m2
B

)2

, (B.9)

ξ‖(q
2) = ξ‖(0)

(
1

1− q2/m2
B

)3

, (B.10)

where ξ⊥(0) = 0.266± 0.032 and ξ‖(0) = 0.118± 0.008 [74].

C Λb → Λ Helicity Form Factors

Here we provide the relations of helicity amplitudes and Λb → Λ form factors for

a particular Dirac spinor [u
(
p(k), sΛb(Λ)

)
] representation as obtained in Ref. [124].

The helicity amplitudes HV,A, T, T5
λ are defined by

Hκ
λ(sΛb , sΛ) ≡ ε∗(λ) · 〈Λ(k, sΛ|s̄Γκb|Λb(p, sΛb〉, (C.1)

where sΛ(b)
are the spin vectors associated with the baryons; ε∗(λ = t,+,−, 0)

are virtual polarization vectors with q.ε(±) = 0 = q.ε(0); and Γκ = γµ, γµγ5,

iσµνqν , and iσµνqνγ5 correspond to helicity amplitudes HV
λ , HA,

λ , HT
λ , and HT5

λ ,

respectively.

For the vector current, the corresponding helicity amplitudes HV
i (sΛb , sΛ) in terms

of helicity form factors fVt , fV0 , fV⊥ are given by

HV
t (1/2, 1/2) = HV

t (−1/2,−1/2) = fVt (q2)
mΛb −mΛ√

q2

√
s+ , (C.2)

HV
0 (1/2, 1/2) = HV

0 (−1/2,−1/2) = fV0 (q2)
mΛb +mΛ√

q2

√
s− , (C.3)

HV
+ (−1/2, 1/2) = HV

− (1/2,−1/2) = − fV⊥ (q2)
√

2s− . (C.4)

For the axial-vector current, the analogous expressions for the corresponding

helicity amplitudes HA
λ (sΛb , sΛ) are given by

HA
t (1/2, 1/2) = −HA

t (−1/2,−1/2) = fAt (q2)
mΛb +mΛ√

q2

√
s− , (C.5)

HA
0 (1/2, 1/2) = −HA

0 (−1/2,−1/2) = fA0 (q2)
mΛb −mΛ√

q2

√
s+ , (C.6)

HA
+(−1/2, 1/2) = −HA

−(1/2,−1/2) = − fA⊥ (q2)
√

2s+ . (C.7)
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For the tensor current, the corresponding nonzero helicity amplitudes HT
λ (sΛb , sΛ)

involve two form factors fT0 and fT⊥ only

HT
0 (1/2, 1/2) = HT

0 (−1/2,−1/2) = −fT0 (q2)
√
q2
√
s− , (C.8)

HT
+(−1/2, 1/2) = HT

−(1/2,−1/2) = fT⊥(q2)(mΛb +mΛ)
√

2s− . (C.9)

The expressions for nonzero HT5
λ (sΛb , sΛ) corresponding to pseudo-tensor current

involve two more form factors fT50 and fT5⊥

HT5
0 (1/2, 1/2) = −HT5

0 (−1/2,−1/2) = fT50 (q2)
√
q2
√
s+ , (C.10)

HT5
+ (−1/2, 1/2) = −HT5

− (1/2,−1/2) = −fT5⊥ (q2)(mΛb −mΛ)
√

2s+ .

(C.11)
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We calculate the zeros of angular observables P0
4 and P0

5 of the angular distribution of 4-body decay
B → K�ð→ KπÞlþl− where LHCb, in its analysis of form-factor independent angular observables, has
found deviations from the standard model predictions. In the large recoil region, we obtain relations
between the zeros of P0

4, P
0
5 and the zero (ŝ0) of forward-backward asymmetry of lepton pair, AFB. These

relations are independent of hadronic uncertainties and depend only on the Wilson coefficients. We also
construct a new observable, OL;R

T , whose zero in the standard model coincides with ŝ0, but in the presence
of new physics contributions will show different behavior. Moreover, the profile of the new observable,
even within the standard model, is very different from AFB. We point out that precise measurements of these
zeros in the near future would provide a crucial test of the standard model and would be useful in
distinguishing between different possible new physics contributions to the Wilson coefficients.

DOI: 10.1103/PhysRevD.93.054041

I. INTRODUCTION

Rare B decays are mediated by flavor changing neutral
current (FCNC) transitions (e.g. b → s) which are absent in
the standard model (SM) at tree level. The leading
contributions come from one-loop diagrams. Being sup-
pressed by Glashow-Iliopoulos-Maiani mechanism (GIM)
and Cabibbo-Kobayashi-Maskawa (CKM) factors, their
predictions in SM are very tiny. As these processes are very
sensitive to heavy particles in the loops, any effect of new
physics (NP) will show significant deviation from SM
predictions. This makes these decays assets in probing
NP. So far data collected on rare B-decays by dedicated
experiments (LHCb, B-factories) are in excellent agreement
with the predictions of SM. The data have been used to
retrieve information on flavor structure of possible new
physics and to put stringent constraints on beyond Standard
Model (BSM) scenarios, but expectations of looking for any
definitive hints of NP have not met with success. The results
seem to be consistent with the Cabibbo-Kobayashi-
Maskawa mechanism of the SM [1]. However, recent data
on angular observables of 4-body distribution in the process
[B → K�ð→ KπÞlþl−] indicate a plausible change in this
situation. LHCb has measured several angular observables
as a binned function of the dilepton invariant mass squared
(q2). The data indicate some tension with the SM [2]. These
discrepancies might be a result of statistical fluctuations or
inevitable theoretical uncertainties inherent to the calcula-
tion of these observables [3]. One has to wait for more
experimental data and a more careful analysis of theoretical
uncertainties to clear the smoke. Assuming that these
discrepancies are solely due to NP effects, there have been

attempts in the literature to resolve this tension between
theory and the experimental side (see for example [4]).
In this paper, we study some of the angular observables

P0
4,P

0
5,AFB and a newobservable,whichwecallOL;R

T ,with a
different approach.We look at the zeros of these observables.
The expressions, under certain reasonable assumptions, are
more or less independent of theoretical uncertainties, and
depend solely on the short distanceWilson coefficients, and
thus have very clean predictions in SM. Precise measure-
ment of these quantities gives certain relations (experimen-
tally testable) among the Wilson coefficients and therefore
provides tests of short-distance physics. The most favored
solutions to the present data explaining these deviations
generally indicate towards new physics in the Wilson
coefficient (Ceff

9 ) of the semileptonic operator O9 [5].
Since these zeros essentially probe new contributions to
the Wilson coefficients, their experimental measurement in
the near future can be worthwhile.
We proceed as follows. In the next section, we recall the

effective Hamiltonian for b → slþl−. We discuss the 4-body
angular distribution of B → K�ð→ KπÞlþl− and various
observables in the large energy recoil limit. In Sec. III, we
calculate zeros of the observables P0

4, P
0
5, O

L;R
T and obtain

correlations among them. In Sec. IV,we give SMpredictions
for the zeros of the considered observables and discuss the
implications of the zeros and their correlations in providing
the new constraints on the BSM scenarios. The NP sensi-
tivity of these zeros is discussed in detail. Finally, we
summarize the results of this paper in Sec. V.

II. ANGULAR OBSERVABLES OF B → K�lþl−
IN THE LARGE RECOIL LIMIT

The basic framework to study rare FCNC decays is that
of the effective Hamiltonian which is obtained after

*girishk@prl.res.in
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integrating out the heavy degrees of freedom. The rare
decay B → K�lþl− is governed by the effective
Hamiltonian,

Heff ¼−
4GFffiffiffi

2
p V�

tsVtb

X
i

ðCiðμÞOiþC0
iðμÞO0

iÞþH:c:; ð1Þ

where contribution of the term ∝ VubV�
us

VtbV�
ts
is neglected. Oi are

the effective local operators and CiðμÞ are called Wilson
coefficients evaluated at scale μ. The factorization scale μ
distinguishes between short distance physics (above scale
μ) and long distance physics (below scale μ). The Wilson
coefficients encode information about heavy degrees of
freedom which have been integrated out while matrix
elements of local operators Oi dictate the low energy
dynamics (for a review, see [6]). The operators contributing
significantly to the process B → K�lþl− in SM are

O7 ¼
e

16π2
mbðs̄ασμνRbαÞFμν;

O9 ¼
e2

16π2
ðs̄αγμLbαÞðl̄γμlÞ;

O10 ¼
e2

16π2
ðs̄αγμLbαÞðl̄γμγ5lÞ: ð2Þ

Here, α, β are the color indices, L, R ¼ ð1∓γ5Þ
2

represent
chiral projections and mb is the b-quark mass. The primed
operators come with flipped helicity. Their contribution
within SM is either severely suppressed or not present. The
effective coefficient of operator O9 is given by

Ceff
9 ¼ C9 þ YðŝÞ. Here s is lepton invariant mass (q2)

and ŝ ¼ s=m2
B. YðŝÞ contains contributions from one-loop

matrix elements of operators O1;2;3;4;5;6. The functional
form of YðŝÞ can be found in [7]. Due to YðŝÞ, Ceff

9 is not
real but has a small imaginary part. In the analytic relations
below, YðŝÞ is neglected and all the Wilson coefficients are
assumed real, but for numerical calculations we include
YðŝÞ in Ceff

9 . As we will see, this turns out to be a good
working approximation.
To calculate observables for the B → K� process, one

needs to calculate matrix elements of the local operators
Oi’s. These matrix elements are generally expressed in
terms of seven form factors V, A0, A1, A2, T1, T2 and T3.
These form factors are calculated via nonperturbative
methods like QCD sum rules on the light cone [8].
Working in the QCD factorization framework and heavy
quark and large recoil limit, all seven form factors can be
written in terms of only two independent universal factors:
ξ⊥ and ξ∥ [9]. The two sets of form factors are related to
each other as (see for example [10])

ξ⊥ ¼ mB

mB þmK�
Vðq2Þ;

ξ∥ ¼
mB þmK�

2E
A1ðq2Þ −

mB −mK�

mB
A2ðq2Þ: ð3Þ

The angular distribution of B → K�ð→ KπÞlþl− offers
experimentally accessible observables which are indepen-
dent of form factors and hence theoretically cleaner. The
fully differential decay distribution is given by [11]

d4Γðb → K�ð→ KπÞlþl−Þ
dq2d cos θK�d cos θldϕ

¼ 9

32π
Jðq2; θl; θK� ;ϕÞ

¼ Js1sin
2θK� þ Jc1cos

2θK� þ ðJs2sin2θK� þ Jc2cos
2θK�Þ cos 2θl

þ J3sin2θK�sin2θl cos 2ϕþ J4 sin 2θK� sin 2θl cosϕþ J5 sin 2θK� sin θl cosϕ

þ ðJs6sin2θK� þ Jc6cos
2θK� Þ cos θl þ J7 sin 2θK� sin θl sinϕ

þ J8 sin 2θK� sin 2θl sinϕþ J9sin2θK�sin2θl sin 2ϕ;

¼
X
i

Jiðq2Þfðθl; θK� ;ϕÞ ð4Þ

The angular coefficients Jiðq2Þ are expressed in terms of complex transversity amplitudes AL;R
⊥;0;∥, At and As. Forml ≠ 0, we

have [11]

Js1 ¼
ð2þ β2l Þ

4
½jAL⊥j2 þ jAL

∥ j2 þ ðL → RÞ� þ 4m2
l

q2
ReðAL⊥AR�⊥ þ AL

∥A
R�
∥ Þ;

Jc1 ¼ jAL
0 j2 þ jAR

0 j2 þ
4m2

l

q2
½jAtj2 þ 2ReðAL

0A
R�
0 Þ� þ β2l jAsj2;

Js2 ¼
β2l
4
½jAL⊥j2 þ jAL

∥ j2 þ ðL → RÞ�;
Jc2 ¼ −β2l ½jAL

0 j2 þ ðL → RÞ;
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J3 ¼
1

2
β2l ½jAL⊥j2 − jAL

∥ j2 þ ðL → RÞ�;

J4 ¼
β2lffiffiffi
2

p ½ReðAL
0A

L�
∥ Þ þ ðL → RÞ�;

J5 ¼
ffiffiffi
2

p
βl

�
ReðAL

0A
L�⊥ Þ − ðL → RÞ − mlffiffiffiffiffi

q2
p ReðAL

∥A
�
s þ AR

∥A
�
sÞ
�
;

Js6 ¼ 2βl½ReðAL
∥A

L�⊥ Þ − ðL → RÞ�;
Jc6 ¼ 4βl

mlffiffiffiffiffi
q2

p Re½AL
0A

�
s þ ðL → RÞ�;

J7 ¼
ffiffiffi
2

p
βl

�
Im

�
AL
0A

L�
∥ − ðL → RÞ þ mlffiffiffiffiffi

q2
p ImðAL⊥A�

s þ AR⊥A�
s

��
;

J8 ¼
1ffiffiffi
2

p β2l ½ImðAL
0A

L�⊥ Þ þ ðL → RÞ�;

J9 ¼ β2l ½ImAL�
∥ AL⊥Þ þ ðL → RÞ�; ð5Þ

where

βl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
l

q2

s
: ð6Þ

Note that As contributes only when scalar operators are taken into account. In this paper, we do not consider contributions
from scalar operators. However, for the sake of generality, we have included As in the expressions of Jiðq2Þ. Also, we have
dropped the explicit q2 dependence of the transversity amplitudes for notational simplicity. At the leading order in 1=mb and
αs, the transversity amplitudes read

AL;R
⊥ ¼

ffiffiffi
2

p
NmBð1 − ŝÞ

�
ðCeff

9 þ C0eff
9 Þ∓ðC10 þ C0

10Þ þ 2
m̂b

ŝ
ðCeff

7 þ C0eff
7 Þ

�
ξ⊥ðEK� Þ; ð7Þ

AL;R
∥ ¼ −

ffiffiffi
2

p
NmBð1 − ŝÞ

�
ðCeff

9 − C0eff
9 Þ∓ðC10 − C0

10Þ þ 2
m̂b

ŝ
ðCeff

7 − C0eff
7 Þ

�
ξ⊥ðEK�Þ; ð8Þ

AL;R
0 ¼ −

Nmb

2m̂K�
ffiffiffî
s

p ð1 − ŝÞ2½ðCeff
9 − C0eff

9 Þ∓ðC10 − C0
10Þ þ 2m̂bðCeff

7 − C0eff
7 Þ�ξ∥ðEK� Þ; ð9Þ

At ¼
Nmb

m̂K�
ffiffiffî
s

p ð1 − ŝÞ2½C10 − C0
10�ξ∥ðEK� Þ: ð10Þ

In the above expressions,

N ¼
�

G2
Fα

2

3 × 210π5m3
B
jVtbV�

tsj2q2λ1=2βl
�
1=2

: ð11Þ

Here, λ ¼ m4
B þm4

K� þ q4 − 2ðm2
Bm

2
K� þm2

K�q2 þm2
Bq

2Þ,
m̂b ¼ mb=mB, and EK� is the energy ofK� meson. Terms of
Oðm̂2

K� Þ have been neglected. However, it is worth mention-
ing that these relations hold only in the kinematic region
1 < q2 ðGeV2Þ < 6,which isprecisely the regionof interest.
There are in total 24 angular coefficients [Jiðq2Þ and J̄iðq2Þ].
The charge-parity (CP) conjugated coefficients J̄i [corre-
sponding to CP conjugate mode of B → K�ð→ KπÞlþl−]

are given by Ji with the weak phases conjugated.
The full angular analysis of B → K�ð→ KπÞlþl− offers
opportunities to construct observables which are insensitive
to form factors as much as possible and therefore
are theoretically cleaner and have high sensitivity to NP
effects [11,12].

III. ZEROS OF ANGULAR OBSERVABLES
AND RELATIONS IN SM

The zero crossing of the forward backward asymmetry of
the lepton pair (ŝ0) is known to be highly insensitive to
form factors. This was first pointed out in [13] where a
number of form-factor models were considered and was
noted that the value of ŝ0 is practically independent of
hadronic form factors. Later Ali et al. [14] in their analysis
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showed that ŝ0 depends on the Wilson coefficients and
ratios of form factors and in the heavy quark limit and large
EK� ∼OðmB=2Þ, the hadronic uncertainties in ratios of
form factors drop out, and ŝ0 essentially depends on a
combination of short distance parameters only. This leads
to a nearly model-independent relation between the Wilson
coefficients. The position of the zero crossing is thus
heralded as a test of SM.
In SM, ŝ0 is given by [14]

ReðCeff
9 ðŝ0ÞÞ ¼ −2

m̂b

ŝ0
Ceff
7

1 − ŝ0
1þ m̂2

K� − ŝ0
∼ −2

m̂b

ŝ0
Ceff
7 :

ð12Þ

Note that existence of zero from the above Eq. (12)
necessarily requires the condition Sign½ReðCeff

9 ÞCeff
7 � ¼

−1 to be satisfied. For NP models where Ceff
7 has the

same sign as Ceff
9 , there will then be no zero crossing.

The LHCb collaboration [15]1 has measured the zero of
forward-backward asymmetry of the lepton pair to be q20 ¼
4.9� 0.9 GeV2 which, within errors, is consistent with SM
predictions. The SM predictions for ŝ0 typically lie in
the range ð3.7–4.3Þ GeV2 which in units normalized by
mass of B-meson (ŝ¼q2=m2

B) translates to range
(0.13–0.16) and have relative uncertainties below 10%
level [10,17,18].
The value of zero ŝ0 can be easily obtained from

integrated q2 angular observable, AFB. In terms of the
angular coefficients ðJiðq2ÞÞ, AFB is defined as

AFB ¼ −
3

4

R
dq2ðJ6s þ J̄6sÞR

dq2ðdΓ=dq2 þ dΓ̄=dq2Þ : ð13Þ

To calculate ŝ0, we use the expressions of the transversity
amplitudes given in Eqs. (7)–(10), which are valid in the
large recoil region. We retain contributions of helicity-
flipped Wilson coefficients so that analysis done includes a
subset of NP models involving primed Wilson coeffi-
cients.2 We now discuss the angular variables of interest
and work in the basis where SM operators are augmented
with their helicity flipped counterparts. The expressions
below clearly show the power of the zero-crossing point of
these angular observables to probe different NP scenarios.
The zero crossing of any observable is easily obtained by
equating the numerator to zero. From Eq. (13), we obtain

ŝ0 ¼ −2
ðC10Ceff

7 − C0
10C

0
7Þ

ðC10Ceff
9 − C0

10C
0
9Þ
m̂b: ð14Þ

Within SM (C0
i → 0), dependence on C10 cancels out and

the expression reduces to Eq. (12), sensitive to the ratio of
Ceff
7 and Ceff

9 .
The angular observables P0

5 and P0
4 both have zero-

crossing point in their mass spectrum. The value of zero
crossing for both lies in the “theoretically clean” low-q2

region; interestingly the same region where LHCb has
measured deviation from SM prediction for angular observ-
ables P0

5.
Observable P0

5 is related to angular coefficients J5
through the following relation:

P0
5 ¼

R
dq2ðJ5 þ J5Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
R
dq2ðJ2s þ J2sÞ

R
dq2ðJ2c þ J2cÞ

q : ð15Þ

The numerator of P0
5 in the massless lepton limit is

proportional to ½ReðAL
0A

L�⊥ Þ − ðL↔RÞ�. Then the zero of
P0
5, in the low-recoil region, is given by the following

combination of short-distance parameters:

ŝP5

0 ¼ ðCeff
7 þ C0

7ÞðC0
10 − C10Þ

½C10Ceff
9 − C0

10C
0
9 þ ðCeff

7 − C0
7ÞðC10 þ C0

10Þm̂b�
m̂b:

ð16Þ
The zero of P0

5 turns out to be insensitive to hadronic form
factors similar to the zero of AFB. In the SM limit, C10

dependence disappears and the expression reduces to a very
simple relation between the value of zero and the Wilson
coefficient Ceff

7 and Ceff
9 ,

ŝP5;SM
0 ¼ −

Ceff
7

Ceff
9 þ Ceff

7 m̂b
m̂b: ð17Þ

Interestingly enough, we find that within SM, the zero of
P0
5 can be written solely in terms of ŝ0: zero of AFB

ŝP5;SM
0 ¼ ŝSM0 =2

1 − ŝSM0 =2
: ð18Þ

We find this correlation between zero of AFB and that of P0
5

an important result. Equation (18) can be expanded in a
Taylor series and dropping out terms of order OððŝSM0 =2Þ2Þ
and higher, the relation predicts that zero of P0

5 is
approximately half of the value of ŝ0 in SM.
A similar analysis can also be done for observable P0

4. In
terms of angular coefficients Ji0s, observable P0

4 is written
as

P0
4 ¼

R
dq2ðJ4 þ J̄4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−
R
dq2ðJ2s þ J̄2sÞ

R
dq2ðJ2c þ J̄2cÞ

q : ð19Þ

The numerator of P0
4 is ∝ ½ReðAL

0A
L�
∥ Þ þ ðL↔RÞ�. Using

expressions (8) and (9) for transversity amplitudes AL
0 and

AL
∥ , we find zero of P0

4 to be

1The LHCb collaboration has recently updated its measured
value: q20 ¼ 3.7þ0.8

−1.1 [16].
2We reiterate that in the analytic relations, we assume Ci’s to

be real but retain the complex nature in numerical analysis.
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ŝP4

0 ¼ −2
ðCeff

7 − C0
7Þ½Ceff

9 − C0
9 þ 2ðCeff

7 − C0
7Þm̂b�

½ðCeff
9 − C0

9Þ2 þ ðC10 − C0
10Þ2 þ 2ðCeff

7 − C0
7ÞðCeff

9 − C0
9Þm̂b�

m̂b: ð20Þ

The expression is again very “clean” and has a nontrivial
dependence on short-distance parameters in the large recoil
region. In the SM limit, this relation yields

ŝP4;SM
0 ¼ −2

Ceff
7 Ceff

9 þ 2ðCeff
7 Þ2m̂b

C2
10 þ ðCeff

9 Þ2 þ 2Ceff
7 Ceff

9 m̂b
m̂b: ð21Þ

The zero of P0
4 can also be written in terms of ŝ0 only as

ŝP4;SM
0 ¼ ŝSM0 ð1 − ŝSM0 Þ

ð2 − ŝSM0 Þ : ð22Þ

Again using the fact that the value of ŝ0 is very small
compared to unity, we find the value of zero of P0

4 to be
approximately half of ŝ0, similar to the case ofP0

5. However,
if we keep effects of higher order terms in ŝ0, the value of
zero ofP0

5 and that ofP
0
4 turns out be a bit larger and smaller

than ŝSM0 =2 respectively and the leading effect is of order
ðŝ0Þ2. From the experimental point of view, this accuracy is
currently not there and therefore the effect can be safely
neglected. The correlation between zeros of AFB, P0

4, P
0
5 is

quite intriguing since in a chosen optimal basis of observ-
ables, AFB, P5

0 and P0
4 are independent observables and

there is no a priori reason for their zero-crossing points to
develop this dependence on each other.
With enough data available, one would be able to

perform a full angular analysis of the final state distribution
in the decay B → K�ð→ KπÞlþl− and this would allow
complete determination of the K� spin amplitudes.
Therefore one can use the spin amplitudes to design
observables which are sensitive to specific NP and have
relatively controlled theoretical uncertainties. With this in
mind, we propose a new CP conserving observable which
we call OL;R

T . It has the following form:

OL;R
T ¼ jAL⊥j2 þ jAL

∥ j2 − ðL↔RÞ
8ðJ2s þ J̄2sÞ

: ð23Þ

This new observable is constructed out of both parallel and
perpendicular spin amplitudes of K� and has not been
explored before in the literature. The ratio of amplitudes
is chosen such that theoretical uncertainties due to the
hadronic form factors cancel at the leading order. The
profile of OL;R

T also has a zero in the low-q2 region. In a
basis where SM operator structure is augmented with right-
handed currents, the zero of OL;R

T has NP sensitivity differ-
ently from that of AFB. Its zero-crossing point occurs at

ŝ
OL;R

T
0 ¼ −2

ðC10Ceff
7 þ C0

10C
0
7Þ

ðC10Ceff
9 þ C0

10C
0
9Þ
m̂b: ð24Þ

The expressions ŝ0 [Eq. (14)] and ŝ
OL;R

T
0 [Eq. (24)] have some

interesting features. By definition, observables AFB and
OL;R

T have nonidentical dependence on invariant mass ŝ and
therefore vary differently as a function of ŝ. But within SM,
in spite of the different profiles, the values of zero crossings,

ŝSM0 and ŝ
OL;R

T ;SM
0 , are degenerate.However, in the presence of

helicity flipped operators, the positions of zero-crossing
shift in a dissimilar fashion and the degeneracy gets lifted.
This rather utilitarian feature can be used to probe contri-
butions from helicity flipped operators once the values of ŝ0

and ŝ
OL;R

T
0 are known experimentally with good precision.

Let us remark that all the expressions and relations
obtained above have been worked out under the hypothesis
of no scalar and tensor contributions. Observables AFB, P0

4

and the proposed new observable ŝ
OL;R

T
0 are blind to the

presence of scalar/tensor contributions. Therefore,
the expressions for zeros will remain unaltered even in
the presence of these new contributions. Observable P0

5,
however, does receive contributions from the scalar com-
ponent of K�-spin amplitudes. But the sensitivity to this
contribution is highly suppressed (m2

μ=q2 is the suppression
factor) and in the limit of massless leptons limit, which we
have entertained in this paper, these contributions vanish.

IV. CONSTRAINING NEW PHYSICS

All the Wilson coefficients are real in this analysis, i.e.,
NP does not introduce any new weak phase in the Wilson
coefficients and we assume that the sign of C7 is as in the
SM.Wewill ignore NP scenarios where C7 and C9 have the
same sign. The expressions of zeros of these observables
depend only on the Wilson coefficients, practically inde-
pendent of form factors, thereby leading to theoretically
clean predictions. To calculate these zeros, we use
C9 ¼ 4.2297, C10 ¼ −4.2068, Ceff

7 ¼ −0.2974 [19] at
scale mb. Other input parameters are mpole

b ¼4.80GeV,
GF ¼ 1.166 × 10−5, mB¼5.280GeV, mK� ¼ 0.895 GeV,
mμ ¼ 0.106 GeV, α ¼ 1=129, and αs ¼ 0.21.
In Table I, we give the numerical values of zeros of the

observables in the SM. The values in the second column are
obtained using the relations in Eqs. (14), (18), (22), and
(24). To compare with the exact predictions in the SM and
to have a consistency check of these relations, we also
calculate values of these zeros in the SM using the form
factors and retaining YðŝÞ in Ceff

9 , which we had ignored for
obtaining analytic relations among the zeros. We use the
form factors calculated in [8] using the light-cone sum rule
and tabulate the results in the third column of Table I
whereas in the last column we tabulate the same results
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using form factors as in Beneke et al. [9]. As is evident, the
two sets of form factors yield very similar values, thereby
confirming that these zeros are (almost) independent of
form factors. Clearly, the employed analytic relations yield
values close to those when no approximations are made,
showing the robustness of these relations. All the zeros lie
in the low-q2 region, where form factors are known with
relatively greater precision. At leading order, soft form
factors cancel precisely and predictions of zeros are clean.
Largest corrections to the values of zeros come from form-
factor uncertainties when next-to-leading order effects are
included (as noted in [20] for the case of ŝ0). The typical
error on form factors is∼10%–12% (see [8]). Assuming the
size of errors in all the form factors of the same order, we
find the relative uncertainties in our estimates of these zeros
to be of order ∼30%. So far experimentally as well as
theoretically only ŝ0 has received attention. The experi-
mental value of ŝ0 has large relative uncertainties (of order
35%) [15,16]. Though we have ignored OðαsÞ contribu-
tions in favor of obtaining form-factor insensitive correla-
tions among the zeros, our theoretical estimate of ŝ0 is still
competitive with the experimental value with current
precision as discussed above. The zeros and the relations

among them can be used to constrain the Wilson coef-
ficients in the following ways:

(i) Under the hypothesis of no NP-induced right-
handed currents and real Wilson coefficients, all
the zeros including that of the new observable OL;R

T
are functions of Ceff

7 and Ceff
9 only. With the

magnitude of Ceff
7 stringently constrained from

branching ratio of decay B → K�γ (and B → Xsγ),
the zeros provides new information on Ceff

9 .
(ii) Some of the zero-crossing points are sensitive to the

right-handed currents (more details below). These
contributions can be probed once the precise mea-
surements of zero crossings are made.

Global fits to recently updated data on angular analysis
of the B → K�μμ indicate significant tension with the SM
[5]. It has been suggested that solutions having a destruc-
tive NP contribution to C9 or with CNP

9 ¼ −CNP
10 < 0 are in

very good agreement with the data. From this perspective,
the measurement of these zero-crossing points would
provide a very clean and good test of the hypothesis of
the NP contribution to C9. In Fig. 1, we show the
constrained region in C7 and C9 plane in the SM-like
operator basis. The most stringent bounds on C7 come from
decay B → Xsγ. Then the precise measurement of ŝ0
essentially determines the effective coefficient Ceff

9 . The
recently measured value of ŝ0 currently involves large
errors (∼35%) [16]. Therefore, bounds on Ceff

9 are not as
stringent. But a qualitative analysis shows that ŝ0 is
compatible with models having NP contribution to C9.
We also provide a constrained region in the C7–C9 plane
using bounds from the zero of P0

4 and P0
5. To this end, we

employ derived relations between ŝ0 and zeros of P0
4 and

P0
5. Further, we use the experimentally measured value of

ŝ0 as an input to get constraints from zeros of P0
4 and P0

5.
We find that the measurement of these zeros will provide
equally efficient constraints on C9 as drawn from ŝ0. We
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FIG. 1. Constraints on CNP
7 − CNP

9 from zeros of observables AFB (gray), P0
5 (red) and P0

4 (cyan) using analytic relations [Eqs. (14),
(18), (22), and (24)]. The light orange band shows the constraints on the values of C7 from B → Xsγ. The black filled circle shows the
SM point whereas the blue colored “+” in the plots corresponds to the simplest possible NP solutionCNP

9 ¼ −1.5 to explain the observed
tension in the experimental data on b → sμþμ−. The NP solution CNP

9 ¼ −1.5 corresponds to the “BSM1” scenario and has been
discussed in detail later in the text.

TABLE I. Zeros in the SM. In the second column, we quote the
values calculated using Eqs. (14), (18), (22), and (24), while the
third and fourth columns have entries predicted in the SM using
form factors from [8,9], respectively.

Value of zero Exact values of zero crossings

Observable
Using analytic

relations
Using FFs
from [8]

Using FFs
from [9]

AFB 0.128 0.122 0.125
P0
5 0.068 0.069 0.069

P0
4 0.059 0.054 0.056

OL;R
T 0.128 0.122 0.125
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also note that zero-crossing points of these observables are
rather sensitive to a slight change in the Wilson coefficient
C7 compared to a change in C9 and C10 in the SM-like
basis. For illustrative purposes, we individually varied C7,
C9, andC10 by 15% with respect to their SM value. We find

that the change in C7 causes central values of ŝ0, ŝ
P0
5

0 , ŝ
P0
4

0

and ŝ
OL;R

T
0 to shift by about 15%with respect to the SM value

on the negative side, the change in C9 causes relatively less

shift (about 13%) in ŝ0, ŝ
P0
5

0 , ŝ
P0
4

0 and ŝ
OL;R

T
0 and no shift in ŝ

P0
4

0

while the change in the Wilson coefficient C10 does not

cause any modification in the SM value of the ŝ0, ŝ
P0
5

0 and

ŝ
OL;R

T
0 but shifts the SM value of ŝ

P0
4

0 by a positive 15%.
In Fig. 2, we plot the q2 spectrum of all four observables

(AFB, P0
5, P

0
4 and OL;R

T ) in different NP models along with
SM. On the x-axis, the red interval shows the 1σ allowed
region currently supported by experimental data on ŝ0. In the
plot AFB vs ŝ, the red interval corresponds to experimental
value q20 ¼ 3.7þ0.8

−1.1 GeV2 [16]. Since at present measure-
ments of zeros except AFB are not available, we employ
the correlations in Eqs. (14), (18), (22) and (24) and use the
experimental value of ŝ0 with associated errors to obtain the
values and corresponding errors in the values of other zeros.
As an illustration of howmuch these zeros can constrain the
NP models, we include two scenarios of new physics in our

analysis. First is the often discussed NP scenario which
postulates a new Uð1Þ0 gauge boson. These models, typi-
cally known as Z0 models, have been shown to explain the
observed anomalies inB → K�μμ [21,22].We find that such
models, which have NP contribution to CNP

9 ∼ −1.5, are at
1.1σ tension with the current data on ŝ0. The same tension
translates to the zero of P0

4 as well. The theoretical value of

ŝ
P0
5

0 in this model is at 1.5σ tension with the data while the

value of ŝ
OL;R

T
0 has 1.3σ tension with experimental data.3 We

also show the q2 profile of all four observables with their
zeros in the supersymmetric models (SUSY). The decays
B → ðK;K�Þll are sensitive to the new contributions in these
models and the invariant mass spectrum, forward-backward
asymmetry, and lepton polarizations of these modes can
constrain these models [23]. The variant of SUSY we have
considered corresponds to large tan β with the masses of
superpartners being relatively large. The details of themodel
can be found in [23]. Here we only show that zeros of all
four observables in this model are consistent with the
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FIG. 2. The q2 spectrum of observables AFB, P0
5, P

0
4 andO

L;R
T in SM (black curve) and two BSM scenarios: Z0 motivated models (blue

curve) and SUSY models (green curve). The Z0 model [21,22] corresponds to CNP
9 ∼ −1.5. The SUSY model (green curve) corresponds

to large tan β with superpartners being heavy [23]. The red interval on the x-axis shows the experimentally allowed 1σ region. We
use ŝ ¼ q2=m2

B.

3Let us remind again that since no actual data is available for
the zeros if P0

4, P
0
5, and OL;R

T , what is meant by data in this
specific context is the values obtained using correlations
[Eqs. (18), (22) and (24)] with ŝ0 as measured by LHCb as an
input.
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experimental data within 1σ. This good agreement between
predictions in the discussed models and the measurement
can be expected given the fact that substantial uncertainties
are affecting the present experimental measurement of these
zeros. Let us remark that the analysis in Fig. 2 for the cases of
P0
5, P

0
4,O

L;R
T is of qualitative nature since the zeros of these

observables have not been measured so far (we again
reiterate that we have used the experimental value of ŝ0
to obtain the “experimentally allowed” red interval for these
observables in Fig. 2). Our purpose here is just to illustrate
that not only the q2 profile, but the precise measurement of
the zero-crossing points can also be used to discriminate
various NPmodels. Once precise measurements of the zeros
are available, the analysis can be donemore precisely and the
relations can certainly provide improved constraints on NP,
especially on the Ceff

9 .
Finally, we investigate the BSM reach of these zeros by

carryingout anumerical studyof ŝ
P0
5

0 , ŝ
P0
4

0 and ŝ
OL;R

T
0 inTable II.

In the SM, their values lie in the large recoil region and
therefore these observables, like zero ofAFB, are expected to
be very clean. These zeros also have sensitivity to BSM
effects inducedbyright-handedcurrents.TheBSMscenarios
wehavechosen inTable II aremotivated from theanalysis [5]
of the updated data on B → K�μμ and are obtained by
allowing variation in a single Wilson coefficient at a time.
The case BSM1 is most favored while the cases BSM2 and
BSM3 are less favorable. The three columns in Table II
correspond to these scenarios as follows:

(i) The scenario BSM1 corresponds to a negative
contribution of −1.5 to the SM value of C9 (shown
in Fig. 1 by the symbol “þ”). This kind of scenario
could, for example, be generated by a Z0 boson
which has vectorlike coupling to muons [24], where
C9 has a nonzero contribution while the NP con-
tribution to the Wilson coefficient C10 vanishes.

(ii) The other two columns correspond to cases where
NP enters in a correlated way in two Wilson
coefficients. The second scenario, BSM2, has new
physics in the SUð2ÞL invariant direction CNP

9 ¼
−CNP

10 and can be realized in Z0 models with the Z0

boson having coupling to left-handed muons [24]. A
scalar leptoquark ϕ transforming as ð3; 3Þ−1=3 under

ðSUð3Þ; SUð2ÞÞUð1Þ with couplings to left-handed
muons can also generate this scenario [25].

(iii) The third scenario stems from new contributions from
helicity-flipped semileptonic operators O0

9 and O0
10.

This case was specifically chosen to show the dis-
tinguishing features of these zeros when only right-
handed currents have new physics contributions.

In each of the BSM scenarios, estimates of uncertainties are
the same as discussed for the SM case. Our numerical

analysis explicitly shows that the observables ŝ
P0
5

0 , ŝ
P0
4

0 and

ŝ
OL;R

T
0 along with ŝ0 can certainly distinguish between the SM
case (SM predictions for zeros are given in Table I) and
different BSMhypotheses.An important pointwewould like
to make here is that from Table II, it is clear that ŝ0 has very

similar values as ŝ
OL;R

T
0 in all scenarios. This is true only when

there is no contribution from right-handed currents (like the
cases BSM1 and BSM2). The values of zero-crossing points
would not be identical when right-handed currents are
invoked (like in the case BSM3). However, the difference

between ŝ0 and ŝ
OL;R

T
0 in the caseBSM3 is arising only beyond

the third decimal place and therefore, at present, can be
neglected in favor of experimental errors. We would like to
draw attention to the fact, as emphasized above also, that not
just the position of the zero of an angular observable but also
the complete profile as a function of ŝ0 is a powerful tool at
hand. This is illustrated in Fig. 2 where one can clearly see

that, though the value of ŝSM0 coincides with ŝ
OL;R

T
0 in the SM,

the q2 spectrums of AFB and OL;R
T are quite different.

We would be able to identify distinctions among differ-
ent NP scenarios more accurately once these zeros are
precisely measured. Experimentally, only ŝ0 has received
attention. We stress that the other zeros are equally
important and should be measured or extracted experimen-
tally, since this could already yield crucial information
about NP, if present. Further, it may happen that some of the
observable profiles (i.e. values in experimentally measured
bins) turn out to be different from SM, as is the case say
with P5

0. In such a situation, a further check would be the
position of the zero. These two pieces of information put
together will clearly point out to any NP present.

TABLE II. Values of zeros compared between different BSM scenarios. Only nonzero NP Wilson coefficients are
shown in each scenario. The values in the parentheses correspond to beyond the third decimal place. See Table I for
values in the SM.

BSM1 BSM2 BSM3

Observable CNP
9 ¼ −1.5 CNP

9 ¼ −CNP
10 ¼ −0.53 C0

9 ¼ C0
10 ¼ −0.10

ŝ0 0.198 0.146 0.127(76)

ŝ
P0
5

0 0.109 0.078 0.067

ŝ
P0
4

0 0.050 0.067 0.061

ŝ
OL;R

T
0 0.198 0.146 0.127(91)
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V. SUMMARY AND CONCLUSIONS

The radiative and semileptonic b → s decays have a
potential sensitivity to effects beyond the SM. With
LHCb’s dedicated efforts to measure the decay B →
K�ll and associated angular observables extensively, the
decay B → K�ll seems to be a promising field to identify
patterns of NP which can be provided by experimental data.
Recent data shows some discrepancies in comparison to
SM predictions but due to uncertainties inherent in the
theoretical calculations of such processes, at present, it is
difficult to infer the same in affirmation. Precise measure-
ments of theoretically clean observables hold the best
chance of unambiguously revealing the presence of physics
beyond the SM, if any. The zero of forward-backward
asymmetry (ŝ0) is known to fall under this category of
observables. But the current measurement is not precise
enough to say anything definitive and is totally consistent
with the SM. It may be useful to have more such
observables measured with precision. In this paper, we
point out that along with ŝ0, the zeros of observables P0

5, P
0
4

andOL;R
T (a new angular observable proposed in this paper)

are suitable candidates in this regard. The zeros of these
observables, like the case of ŝ0, have good theoretical
control over hadronic uncertainties and can provide crucial
tests of the SM. We note that there exist correlations among
zeros of different observables within the SM and the
position of all the zeros is essentially fixed by ŝ0, up to
small corrections. We further use these relations to model-
independently constrain the CNP

7 − CNP
9 plane. To this end,

we define our framework by considering that NP enters in
electromagnetic (O7) and semileptonic operators (O9,O10),
together with their chirally flipped counterparts. We have
assumed the Wilson coefficients to be real, but generali-
zation to complex coefficients is straightforward.
We studied the implications of these zeros onCNP

7 − CNP
9

plane in the SM-like operator basis. The conservative
bounds on CNP

7 are taken from B → Xsγ experimental
data. Owing to the rather large uncertainties in the current
measured value of ŝ0, the constraints on the Wilson
coefficient C9 are rather weak and the deviations of up
to ∼ − 1.5 in C9 are compatible with experimental data
within the 1σ range. Using relations between ŝ0 and zeros

of P0
5 and P0

4, we show that observables ŝ
P0
5

0 , ŝ
P0
4

0 have

equally good sensitivity to C9 and C7 as present in ŝ0. In
addition to the SM-like basis scenario, we further inves-
tigated the cases where operator basis is augmented by
helicity-flipped operators. We note that these observables
are quite sensitive to the effects stemming from BSM
models. This can be observed from the numerical analysis
we performed in Table II and Fig. 2. The analysis clearly
shows that these observables have the capability to dis-
criminate between different BSM models. Especially, the
new proposed observable OL;R

T and its zero are relatively
more sensitive to the scenarios where one only includes the
NP contribution to semileptonic vector operator O9 (e.g.
Z0-model). These scenarios are currently favored by data
over SM (by 3.7σ for CNP

9 ∼ −1.1) as noted in [5]. This
sensitivity can be further exploited to test such scenarios
once more precise data on this new observable as well as on
the zeros of aforementioned observables become available.
To date, only ŝ0 has received attention but we have shown
that zeros of other angular observables also carry important
and complementary information on short-distance param-
eters. We thus hope that these observables will be measured
precisely by the LHCb collaboration and data on these
observables can certainly be used to put stern constraints on
NP. The relations are obtained in the large recoil region in
the large energy limit where theoretical uncertainties are
supposed to be minimal. To the best of our knowledge, this
is the first attempt to use such correlations as a stringent test
of SM itself. A simultaneous accurate determination of
these zeros will surely provide conclusive evidence of any
NP present. Moreover, in a general setting, the zeros by
themselves carry complementary information about the
Wilson coefficients and their measurement together with
the existing data can be used to pinpoint the class of NP
scenarios which can give rise to such predictions. This is

clearly evident from the position of ŝ
OL;R

T
0 which in the

standard model limit yields the same value as ŝ0 but when
the helicity flipped operators are included, leads to com-
plementary information on the Wilson coefficients com-
pared to what was inferred from ŝ0. We also hope that with
more data, not just the position of various zeros, but also the
complete profiles of angular observables will be known
with high precision, which can be used further as a crucial
test of the standard model.

[1] M. Kobayashi and T. Maskawa, CP violation in the
renormalizable theory of weak interaction, Prog. Theor.
Phys. 49, 652 (1973).

[2] R. Aaij et al. (LHCb Collaboration), Measurement of
Form-Factor-Independent Observables in the Decay
B0 → K�0μþμ−, Phys. Rev. Lett. 111, 191801 (2013).

[3] D. Das and R. Sinha, New physics effects and hadronic
form-factor uncertainties in B → K�lþl−, Phys. Rev. D 86,
056006 (2012); S. Jäger and J. Martin Camalich, On B → V
l l at small dilepton invariant mass, power corrections, and
new physics, J. High Energy Phys. 05 (2013) 043; C.
Hambrock, G. Hiller, S. Schacht, and R. Zwicky, B → K�

B → K�lþl−: ZEROS OF ANGULAR … PHYSICAL REVIEW D 93, 054041 (2016)

054041-9



form factors from flavor data to QCD and back, Phys. Rev.
D 89, 074014 (2014); J. Lyon and R. Zwicky, Resonances
gone topsy turvy—the charm of QCD or new physics in
b → slþl−?, arXiv:1406.0566; S. Descotes-Genon, L.
Hofer, J. Matias, and J. Virto, On the impact of power
corrections in the prediction of B → K �muþmu− ob-
servables, J. High Energy Phys. 12 (2014) 125; R. Mandal,
R. Sinha, and D. Das, Testing new physics effects in
B → K�lþl−, Phys. Rev. D 90, 096006 (2014).

[4] S. Descotes-Genon, J. Matias, and J. Virto, Understanding
the B → K�μþμ− anomaly, Phys. Rev. D 88, 074002
(2013); W. Altmannshofer and D. M. Straub, New physics
in B → K�μμ?, Eur. Phys. J. C 73, 2646 (2013); R. Gauld, F.
Goertz, and U. Haisch, On minimal Z’ explanations of the
B → K �muþmu− anomaly, Phys. Rev. D 89, 015005
(2014); A. J. Buras and J. Girrbach, Left-handed Z’ and Z
FCNC quark couplings facing new b → sμþμ− data, J. High
Energy Phys. 12 (2013) 009; A. Datta, M. Duraisamy, and
D. Ghosh, Explaining the B → K�μþμ− data with scalar
interactions, Phys. Rev. D 89, 071501 (2014); W.
Altmannshofer and D. M. Straub, New physics in b → s
transitions after LHC run 1, arXiv:1411.3161; S. Jäger and
J. Martin Camalich, Reassessing the discovery potential of
the B → K�lþl− decays in the large-recoil region: SM
challenges and BSM opportunities, Phys. Rev. D 93,
014028 (2016); L. Hofer and J. Matias, Exploiting the
symmetries of P and S wave for B → K�muþmu−, J. High
Energy Phys. 09 (2015) 104; S. Descotes-Genon, L. Hofer,
J. Matias, and J. Virto, Theoretical status of B → K�μþμ−:
The path towards new physics, J. Phys. Conf. Ser. 631,
012027 (2015).

[5] W. Altmannshofer and D. M. Straub, Implications of b → s
measurements, arXiv:1503.06199.

[6] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Weak
decays beyond leading logarithms, Rev. Mod. Phys. 68,
1125 (1996).

[7] H. M. Asatrian, K. Bieri, C. Greub, and A. Hovhannisyan,
NNLL corrections to the angular distribution and to the
forward backward asymmetries in b → XðsÞlþ l−, Phys.
Rev. D 66, 094013 (2002).

[8] P. Ball and R. Zwicky, BðD; SÞ → ρ, ω, K�, ϕ decay form
factors from light-cone sum rules revisited, Phys. Rev. D 71,
014029 (2005).

[9] J. Charles, A. Le Yaouanc, L. Oliver, O. Pene, and J. C.
Raynal, Heavy to light form factors in the heavy mass to
large energy limit of QCD, Phys. Rev. D 60, 014001 (1999);
M. Beneke and T. Feldmann, Symmetry breaking correc-
tions to heavy to light B meson form-factors at large recoil,
Nucl. Phys. B592, 3 (2001); M. Beneke, T. Feldmann, and
D. Seidel, Systematic approach to exclusive B → Vlþ l−,
Vγ decays, Nucl. Phys. B612, 25 (2001).

[10] M. Beneke, T. Feldmann, and D. Seidel, Exclusive radiative
and electroweak b → d and b → s penguin decays at NLO,
Eur. Phys. J. C 41, 173 (2005).

[11] F. Kruger, L. M. Sehgal, N. Sinha, and R. Sinha, Angular
distribution and CP asymmetries in the decays anti-B →

K − π þ e − eþ and anti-B → π − π þ e − eþ, Phys. Rev.
D 61, 114028 (2000); Phys. Rev. D 63, 019901(E) (2000);
W. Altmannshofer, P. Ball, A. Bharucha, A. J. Buras, D. M.
Straub, and M. Wick, Symmetries and asymmetries of B →
K�μþμ− decays in the standard model and beyond, J. High
Energy Phys. 01 (2009) 019; J. Matias, F. Mescia, M.
Ramon, and J. Virto, Complete Anatomy of B̄d → K̄�0ð→
KπÞlþl− and its angular distribution, J. High Energy Phys.
04 (2012) 104.

[12] F. Kruger and J. Matias, Probing new physics via the
transverse amplitudes of B0 → K � 0ð→ K − piþÞlþ l−
at large recoil, Phys. Rev. D 71, 094009 (2005); U. Egede, T.
Hurth, J. Matias, M. Ramon, and W. Reece, New observ-
ables in the decay mode anti-BðdÞ → anti − K � 0lþ l−, J.
High Energy Phys. 11 (2008) 032.

[13] G. Burdman, Short distance coefficients and the vanishing
of the lepton asymmetry in B → V lþlepton−, Phys. Rev.
D 57, 4254 (1998).

[14] A. Ali, P. Ball, L. T. Handoko, and G. Hiller, A comparative
study of the decays B → (K, K�Þlþl− in standard model
and supersymmetric theories, Phys. Rev. D 61, 074024
(2000).

[15] R. Aaij et al. (LHCb Collaboration), Differential branching
fraction and angular analysis of the decay B0 → K�0μþμ−, J.
High Energy Phys. 08 (2013) 131.

[16] LHCb Collaboration, Angular analysis of the B0 →
K�0μþμ− decay, Reports No. LHCb-CONF-2015-002 and
No. CERN-LHCb-CONF-2015-002.

[17] C. Bobeth, G. Hiller, D. van Dyk, and C. Wacker, The decay
B → Klþl− at low hadronic recoil and model-independent
ΔB ¼ 1 constraints, J. High Energy Phys. 01 (2012)
107.

[18] A. Ali, G. Kramer, and G. h. Zhu, B → K þ lþ l− decay in
soft-collinear effective theory, Eur. Phys. J. C 47, 625
(2006).

[19] T. Hurth and F. Mahmoudi, On the LHCb anomaly in
B → K�lþl−, J. High Energy Phys. 04 (2014) 097.

[20] M. Beneke, T. Feldmann, and D. Seidel, Systematic
approach to exclusive B → Vlþ l−; Vγ decays, Nucl. Phys.
B612, 25 (2001).

[21] R. Gauld, F. Goertz, and U. Haisch, On minimal Z0
explanations of the B → K�μþμ− anomaly, Phys. Rev. D
89, 015005 (2014).

[22] R. Gauld, F. Goertz, and U. Haisch, An explicit Z’-boson
explanation of the B → K�μþμ− anomaly, J. High Energy
Phys. 01 (2014) 069.

[23] Q. S. Yan, C. S. Huang, W. Liao, and S. H. Zhu, Exclusive
semileptonic rare decays B → (K, K�Þlþl− in supersym-
metric theories, Phys. Rev. D 62, 094023 (2000).

[24] W. Altmannshofer and D.M. Straub, New physics in
b → s transitions after LHC run 1, Eur. Phys. J. C 75,
382 (2015).

[25] G. Hiller and M. Schmaltz, RK and future b → sll physics
beyond the standard model opportunities, Phys. Rev. D 90,
054014 (2014).

GIRISH KUMAR and NAMIT MAHAJAN PHYSICAL REVIEW D 93, 054041 (2016)

054041-10



J
H
E
P
0
1
(
2
0
1
6
)
1
1
7

Published for SISSA by Springer

Received: November 23, 2015

Accepted: January 4, 2016

Published: January 19, 2016

B̄ → D(∗)τ ν̄ excesses in ALRSM constrained from B,

D decays and D0 − D̄0 mixing

Chandan Hati,a,b Girish Kumara,b and Namit Mahajana

aPhysical Research Laboratory,

Navrangpura, Ahmedabad 380 009, India
bIndian Institute of Technology Gandhinagar,

Chandkheda, Ahmedabad 382 424, India

E-mail: chandan@prl.res.in, girishk@prl.res.in, nmahajan@prl.res.in

Abstract: Recent experimental results from the LHCb, BaBar and Belle collaborations

on the semitauonic decays of B meson, B̄ → D(∗)τ ν̄, showing a significant deviation from

the Standard Model (SM), hint towards a new physics scenario beyond the SM. In this

work, we show that these enhanced decay rates can be explained within the framework of E6

motivated Alternative Left-Right Symmetric Model (ALRSM), which has been successful

in explaining the recent CMS excesses and has the feature of accommodating high scale

leptogenesis. The R-parity conserving couplings in ALRSM can contribute universally to

both B̄ → Dτν̄ and B̄ → D∗τ ν̄ via the exchange of scalar leptoquarks. We study the

leptonic decays D+
s → τ+ν̄, B+ → τ+ν̄, D+ → τ+ν̄ and D0 − D̄0 mixing to constrain

the couplings involved in explaining the enhanced B decay rates and we find that ALRSM

can explain the current experimental data on R(D(∗)) quite well while satisfying these

constraints.

Keywords: Rare Decays, Beyond Standard Model, B-Physics

ArXiv ePrint: 1511.03290

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP01(2016)117



J
H
E
P
0
1
(
2
0
1
6
)
1
1
7

Contents

1 Introduction 1

2 The effective Hamilonian for B̄ → D(∗)τ ν̄ decay 3

3 Alternative Left-Right Symmetric Model and analysis of operators me-

diating B̄ → D(∗)τ ν̄ 5

4 Constraints from B, D decays and D0 − D̄0 oscillation 9

4.1 Constraints from B → τν 9

4.2 Constraints from D+
s → τν and D+ → τν 10

4.3 Constraints from D0 − D̄0 mixing 11

5 Results and discussion 13

1 Introduction

Recently the LHCb collaboration has reported the ratio of branching fractions for the

semitauonic decay of B meson, B̄ → D∗τ ν̄, to beR(D∗) = 0.336±0.027(stat.)±0.030(syst.)

with the Standard Model (SM) expectation 0.252± 0.005, amounting to a 2.1σ excess [1].

In general, the observables are introduced as ratios to reduce theoretical uncertainties

R(X) =
B(B̄ → Xτν̄)

B(B̄ → Xlν̄)
, (1.1)

where l = e, µ. This measurement is in agreement with the measurements of B̄ → D(∗)τ ν̄

reported by the BaBar [2, 3] and Belle [4] collaborations. The results reported by BaBar

and Belle are given by R(D)BaBar = 0.440±0.058±0.042, R(D)Belle = 0.375±0.064±0.026

and R(D∗)BaBar = 0.332± 0.024± 0.018, R(D∗)Belle = 0.293± 0.038± 0.015, with the SM

expectations given by R(D)SM = 0.300 ± 0.010 and R(D∗)SM = 0.252 ± 0.005. These

results are consistent with earlier measurements [5, 6] and when combined together show

a significant deviation from the SM.

Several new physics (NP) scenarios accommodating semileptonic b → c decay have

been proposed to explain these excesses. The two-Higgs Doublet Model (2HDM) of type

II is one of the well studied candidates of NP which can affect the semitauonic B decays

significantly [7–13]. However, the BABAR collaboration has excluded the 2HDM of type

II at 99.8 % confidence level [2, 3]. Phenomenological studies of the four fermion operators

that can explain the discrepancy have been addressed in refs. [14–22]. The excesses have

been explained in a more generalized framework of 2HDM in refs. [23–25] and in the

framework of R-parity violating (RPV) Minimal Supersymmetric Standard Model (MSSM)

– 1 –
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in ref. [26]. While in refs. [16, 20, 21, 27, 28] the excesses have been addressed in the context

of leptoquark models. In ref. [29], a dynamical model based on a SU(2)L triplet of massive

vector bosons, with predominant coupling to third generation fermion was proposed to

explain the excesses, while other alternative approaches have been taken in refs. [30–32].

From a theoretical point of view, NP scenarios explaining the above discrepancies and

addressing other direct or indirect collider searches for NP are particularly intriguing. To

this end, we must mention the recently announced results for the right-handed gauge boson

WR search at
√
s = 8TeV and 19.7fb−1 of integrated luminosity by the CMS Collaboration

at the LHC. They have reported 14 observed events with 4 expected SM background events,

amounting to a 2.8σ local excess in the bin 1.8 TeV < meejj < 2.2 TeV, which cannot be

explained in the standard framework of Left-Right Symmetric Model (LRSM) with the

gauge couplings gL = gR [33]. On the other hand, the CMS search for di-leptoquark

production at
√
s = 8TeV and 19.6fb−1 of integrated luminosity have been reported to

show a 2.4σ in the eejj channel and a 2.6σ local excess in the e/pT jj channel corresponding

to 36 observed events with 20.49 ± 2.4 ± 2.45(syst.) expected SM events in the eejj

channel and 18 observed events with 7.54 ± 1.20 ± 1.07(syst.) expected SM events in the

e/pT jj channel respectively [34]. These excesses has been explained from WR decay in the

framework of LRSM with gL 6= gR embedded in the SO(10) gauge group in refs. [35–37]

and in LRSM with gL = gR by taking into account the CP phases and non-degenerate

masses of heavy neutrinos in ref. [38], while other NP scenarios have been proposed in

refs. [39–51]. Interestingly, in some of these NP scenarios attempts were made to explain

the discrepancies in decays of B meson in an unified framework [43] or separately [26].

In this paper we study the flavor structure of the E6 motivated Alternative Left-Right

Symmetric Model (ALRSM) [52], which can explain the CMS excesses and accommodate

high scale leptogenesis1 [46], to explore if this framework can address the experimental

data for R(D(∗)) explaining the discrepancy with the SM expectations. This scenario is

particularly interesting because unlike the R-parity violating MSSM in refs. [26, 41, 43],

this model involves only R-parity conserving interactions. Furthermore, a careful analysis

of the flavor physics constraints, such as the rare decays and the mixing of mesons can

play a crucial role in determining the viability of any NP scenario. Therefore, we study the

leptonic decays D+
s → τ+ν̄, B+ → τ+ν̄, D+ → τ+ν̄ and D0-D̄0 mixing to constrain the

semileptonic b → c transition in ALRSM. We find that despite being constrained by the

above processes ALRSM can explain the current experimental data on R(D(∗)) quite well.

The rest of this article is organized as follows. In section 2, we discuss the effective

Hamiltonian and the general four-fermion operators that can explain the R(D(∗)) data.

In section 3, we introduce ALRSM and present the viable interactions, followed by the

evaluation of the Wilson coefficients. In section 4, we discuss the constrains from the

leptonic decays D+
s → τ+ν̄, B+ → τ+ν̄, D+ → τ+ν̄ and mixing between D0-D̄0. In

section 5, we summarize our results and conclude.

1Note that in the conventional LRSM framework the canonical mechanism of leptogenesis is inconsistent

with the range of WR mass (∼ 2TeV) corresponding to the excess at CMS [53, 54].

– 2 –



J
H
E
P
0
1
(
2
0
1
6
)
1
1
7

2 The effective Hamilonian for B̄ → D(∗)τ ν̄ decay

To include the effects of NP, the SM effective Hamiltonian for the quark level transition

b→ clν̄l can be augmented with a set of four-Fermi operators in the following form [15]

Heff =
4GF√

2
Vcb

∑
l=e,µ,τ

[(1 + C lVL)OlVL + C lVRO
l
VR

+ C lSL
OlSL

+ C lSR
OlSR

+ C lTLO
l
TL

], (2.1)

where GF is the Fermi constant, Vcb is the appropriate CKM matrix element and C li
(i = VL/R, SL/R, TL) are the Wilson coefficients associated with the new effective vector,

scalar and tensor interaction operators respectively. These new six dimensional four-Fermi

operators are generated by NP at some energy higher than the electroweak scale and are

defined as

OlVL = (c̄Lγ
µbL)(l̄LγµνlL),

OlVR = (c̄Rγ
µbR)(l̄LγµνlL),

OlSL
= (c̄LbR)(l̄RνlL),

OlSR
= (c̄RbL)(l̄RνlL),

OlTL = (c̄Rσ
µνbL)(l̄RσµννlL), (2.2)

where σµν = (i/2)[γµ, γν ]. The SM effective Hamiltonian corresponds to the case C li = 0.

Note that in writing the general Heff , we have neglected the tiny contributions from the

right-handed neutrinos and therefore, we treat the neutrinos to be left-handed only.

In order to perform the numerical analysis of the transition B → D(∗)τν, we need to have

the knowledge of the hadronic form factors which parametrize the vector, scalar and tensor

current matrix elements. The B → D(∗)τν matrix elements of the aforementioned effective

operators depend on the momentum transfer between B and D(∗)(qµ = pµB − kµ) and are

generally parametrized in the following way [15, 55]

〈D(k)|c̄γµb|B̄(pB)〉 =

[
(pB+k)µ −

m2
B−m2

D

q2
qµ

]
F1(q2) + qµ

m2
B−m2

D

q2
F0(q2), (2.3)

〈D∗(k, ε)|c̄γµb|B̄(pB)〉 = −iεµνρσεν∗pρBk
σ 2V (q2)

mB +mD∗
, (2.4)

〈D∗(k, ε)|c̄γµγ5b|B̄(pB)〉 = εµ∗(mB +mD∗)A1(q2)− (pB + k)µ(ε∗ · q) A2(q2)

mB +mD∗

−qµ(ε∗ · q)2mD∗

q2

(
A3(q2)−A0(q2)

)
, (2.5)

〈D∗(k, ε)|c̄σµνb|B̄(pB)〉 = εµνρσ

{
− ε∗ρ(pB + k)σT1(q2)

+ε∗ρqσ
m2
B −m2

D∗

q2
(T1(q2)− T2(q2)) (2.6)

+ 2
ε∗q

q2
pρBk

σ

(
T1(q2)− T2(q2)− q2

m2
B −m2

D∗
T3(q2)

)}
,
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where F1(0) = F0(0), A3(0) = A0(0) and

A3(q2) =
mB +mD∗

2mD∗
A1(q2)− mB −mD∗

2mD∗
A2(q2). (2.7)

εµ is the polarization vector of the D∗. Note that the hadronic matrix elements of

the scalar and pseudoscalar operators can be conveniently derived from their vector

counterpart by applying the equations of motion −i∂µ(q̄aγµqb) = (ma − mb)q̄aqb and

−i∂µ(q̄aγµγ5qb) = (ma + mb)q̄aγ5qb. However, in what follows, we choose to work with

the following parametrization of the form factors which are more suitable for including the

results of the heavy quark effective theory (HQET). The matrix elements of the vector and

axial vector operators can be expressed as [10, 56]

〈D(v′)|c̄γµb|B̄(v)〉 =
√
mBmD

{
ξ+(w)(v + v′)µ + ξ−(w)(v − v′)µ

}
〈D∗(v′, ε)|c̄γµb|B̄(v)〉 = i

√
mBmD∗ξV (w)εµνρσε

∗νv′ρvσ, (2.8)

〈D∗(v′, ε)|c̄γµγ5b|B̄(v)〉 =
√
mBmD∗

{
ξA1(w)(w + 1)ε∗µ − (ε∗ · v)

(
ξA2(w)vµ+ξA3(w)v′µ

)}
.

The form factors of tensor operators are defined as [20]

〈D(v′)|c̄σµνb|B̄(v)〉 = −i
√
mBmDξT (w)

(
vµv
′
ν − vνv′µ

)
,

〈D∗(v′)|c̄σµνb|B̄(v)〉 = −i
√
mBmD∗εµνρσ

{
ξT1(w)ε∗ρ(v + v′)ρ + ξT2(w)ε∗ρ(v − v′)σ

+ ξT3(w)(ε∗ · v)(v + v′)ρ(v − v′)σ
}
, (2.9)

where v = pB/mB and v′ = k/mD(∗) are the four-velocities of the B and D(∗) mesons

respectively, and the kinematic variable w(q2) is the product of the velocities of initial and

final mesons w(q2) =
(
m2
B +mD(∗) − q2

)
/2mBmD(∗) . The HQET and QCD dispersive

techniques can be used to constrain the shapes of these form factors [57]. To this end,

the HQET form factors are redefined as linear combinations of the different form factors

V1(w), S1(w), A1(w) and R1,2,3(w) [20, 57], which reduces to the universal Isgur-Wise

function [58, 59] normalized to unity at w = 1 in the heavy quark limit. The form factors

in the parameterization of Caprini et al. [57], which describes the shape and normalization

in terms of the four quantities: the normalizations V1(1), A1(1), the slopes ρ2
D, ρ2

D∗ and

the amplitude ratios R1(1) and R2(1) are determined by measuring the differential decay

width as a function of w. The form factors V1(w) and S1(w) contribute to the decay

B → Dlν̄l (l = e, µ, τ ), while the decay B → D∗lν̄l receives contributions from A1(w) and

R1,2,3(w). However, the semileptonic decay into light charged leptons B → Dlν̄l involves

only V1(w) and therefore, V1(w) can be measured experimentally. The parametrization of

the form factors in terms of the slope parameters ρ2
D, ρ2

D∗ and the value of the respective

form factors at the kinematic end point w = 1 is given by [57, 60]

V1(w) = V1(1)
{

1− 8ρ2
Dz + (51ρ2

D − 10)z2 −(252ρ2
D − 84)z3

}
, (2.10)

A1(w) = A1(1)
{

1− 8ρ2
D∗z + (53ρ2

D∗ − 15)z2 −(231ρ2
D∗ − 91)z3

}
, (2.11)

R1(w) = R1(1)− 0.12(w − 1) + 0.05(w − 1)2,

R2(w) = R2(1) + 0.11(w − 1)− 0.06(w − 1)2,

R3(w) = 1.22− 0.052(w − 1) + 0.026(w − 1)2, (2.12)
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with z = (
√
w + 1 −

√
2)/(
√
w + 1 +

√
2). For S1(w) we use the parametrization given in

ref. [13]

S1(w) = V1(w) {1 + ∆ (−0.019 + 0.041(w − 1) −0.015(w − 1)2
)}
, (2.13)

with ∆ = 1± 1. By fitting the measured quantity |Vcb|V1(w) to the two parameter ansatz

as given in eq.(2.10), the heavy flavor averaging group (HFAG) extracts the following

parameters: V1(1)|Vcb| = (42.65 ± 1.53) × 10−3, ρ2
D = 1.185 ± 0.054 [61]. In the case of

B → D∗lν̄l, HFAG determines A1(1)|Vcb| = (35.81 ± 0.45) × 10−3, ρ2
D∗ = 1.207 ± 0.026,

R1(1) = 1.406 ± 0.033 and R2(1) = 0.853 ± 0.020 by performing a four-dimensional fit of

the parameters [61]. However, since the fitted curve are plagued with large statistical and

systematic uncertainties, for form factor normalizations, we use V1(1) = 1.081±0.024 from

the recent lattice QCD calculations [62] and for A1(1) we use the updated value A1(1) =

0.920 ± 0.014 from the FNAL/MILC group [63]. The amplitude ratios R1(1) and R2(1)

are determined from the fit by HFAG R1(1) = 1.406± 0.033, R2(1) = 0.853± 0.020 [61].

3 Alternative Left-Right Symmetric Model and analysis of operators

mediating B̄ → D(∗)τ ν̄

One of the maximal subgroups of superstring inspired E6 group is given by SU(3)C ×
SU(3)L×SU(3)R. The fundamental 27 representation of E6 can be decomposed under this

subgroup as

27 = (3, 3, 1) + (3∗, 1, 3∗) + (1, 3∗, 3) (3.1)

where the fields are assigned as follows. (3, 3, 1) corresponds to (u, d, h), (3∗, 1, 3∗) corre-

sponds to (hc, dc, uc) and the leptons are assigned to (1, 3∗, 3). Here h represents the exotic

−1
3 charge quark which can carry lepton number depending on the assignments. The other

exotic fields are N c and two isodoublets (νE , E) and (Ec, N c
E). The presence of these exotic

fields makes the phenomenology of the low energy subgroups of E6 very interesting. The

superfields of the first family can be represented asud
h

+
(
uc dc hc

)
+

Ec ν νE
N c
E e E

ec N c n

 , (3.2)

where SU(3)L operates along columns and SU(3)(R) operates along rows. The SU(3)(L,R)

in the maximal subgroup of E6 can further break into SU(2)(L,R)×U(1)(L,R) and there are

three choices of assigning the isospin doublets corresponding to T, U, V isospins (generators

of SU(2)) of SU(3). One of the choices have (dc, uc)L assigned to the SU(2)R doublet giving

rise to the usual left-right symmetric extension of the standard model including the exotic

particles. In another choice, the SU(2)R doublet is chosen to be (hc, dc) [64] with the charge

equation given by Q = T3L + 1
2YL + 1

2YN , where the chosen SU(2)R does not contribute to

the electric charge equation and is often denoted by SU(2)N . While these two subgroups

are quite interesting from a phenomenological point of view, the superpotential couplings in

these two subgroups can not explain the R(D(∗)) data. The third possible choice where the
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SU(2)R doublet is chosen to be (hc, uc) gives the subgroup referred to as the Alternative

Left-Right Symmetric Model (ALRSM) [52] and it has the right ingredients to address

R(D(∗)) excesses.

In ALRSM, the superfields have the following transformations under the subgroup

G = SU(3)c × SU(2)L × SU(2)R′ ×U(1)Y ′

(u, d)L :

(
3, 2, 1,

1

6

)
(hc, uc)L :

(
3̄, 1, 2,−1

6

)
(νE , E)L :

(
1, 2, 1,−1

2

)
(ec, n)L :

(
1, 1, 2,

1

2

)
hL :

(
3, 1, 1,−1

3

)
dcL :

(
3̄, 1, 1,

1

3

)
(
νe E

c

e N c
E

)
L

: (1, 2, 2, 0)

N c
L : (1, 1, 1, 0), (3.3)

where Y ′ = YL + Y ′R. The charge equation is given by Q = T3L + 1
2YL + T ′3R + 1

2Y
′
R, where

T ′3R = 1
2T3R + 3

2YR, Y ′R = 1
2T3R − 1

2YR. The superpotential governing interactions of the

superfields in ALRSM is given by [65]

W = λ1 (uucN c
E − ducEc − uhce+ dhcνe) + λ2 (udcE − ddcνE) + λ3 (hucec − hhcn)

+λ4hd
cN c

L + λ5 (eecνE + EEcn− Eecνe − νEN c
En) + λ6 (νeN

c
LN

c
E − eEcN c

L) .

(3.4)

The superpotential given in eq. (3.4) gives the following assignments of R-parity, baryon

number (B) and lepton number (L) for the exotic fermions ensuring proton stability. h

is a leptoquark with R = −1, B = 1
3 , L = 1. νE , E and n have the assignments R =

−1, B = L = 0. N c has two possible assignments. If N c has the assignments R = −1 and

B = L = 0 (in a R-parity conserving scenario demanding λ4 = λ6 = 0 in eq. (3.4)), νe
becomes exactly massless. However if N c is assigned R = +1, B = 0, L = −1, then νe can

acquire a tiny mass via the seesaw mechanism.

ALRSM can explain both eejj and e/pT jj signals from the decay of scalar superpartners

of the exotic particles, for example, through (i) resonant production of the exotic slepton

Ẽ, subsequently decaying into a charged lepton and a neutrino, followed by R-parity con-

serving interactions of the neutrino producing an excess of events in both eejj and e/pT jj

channels [46] (ii) pair production of scalar leptoquarks h̃. On the other hand, high scale

leptogenesis can be obtained via the decay of the heavy Majorana neutrino N c in ALRSM.
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Figure 1. Feynman diagrams for the decays B̄ → D(∗)τ ν̄ induced by the exchange of scalar

leptoquark (h̃∗) and Ẽ.

From the interaction terms λ4 and λ6 in eq. (3.4), it can be seen that the Majorana neu-

trino N c
k can decay into final states with B − L = −1 given by νeiÑ

c
Ej
, ν̃eiN

c
Ej
, eiẼ

c
j , ẽi, E

c
j

and dih̃j , d̃
c
i h̃j and to their conjugate states. Thus, ALRSM has the attractive feature that

it can explain both the excess eejj and e/pT jj signals and also high-scale leptogenesis [46].

Having introduced ALRSM above now we are ready to analyze the semitauonic B

decay B̄ → D(∗)τ ν̄ based on the general framework introduced in section 2. From the

superpotential given in eq. (3.4) it follows that in ALRSM there are two possible diagrams

shown in figure 1. which can contribute to the decay B̄ → D(∗)τ ν̄. The effective Lagrangian

corresponding to these diagrams is given by

Leff = −
3∑

j,k=1

V2k

[
λ5

33jλ
2∗
3kj

m2
Ẽj

c̄LbR τ̄RνL +
λ1

33jλ
1∗
3kj

m2
h̃j∗

c̄L(τ c)R (ν̄c)RbL

]
, (3.5)

where the superscript corresponds to the superpotential coupling index and the generation

indices are explicitly written as subscripts. Here mẼ(mh̃) is the mass of slepton Ẽj (scalar

leptoquark h̃j∗) and Vij corresponds to the ij-th component of the CKM matrix. Using

Fiertz transformation the second term of eq. (3.5) can be put in the form given by

c̄L(τ c)R (ν̄c)RbL =
1

2
c̄Lγ

µbL τ̄LγµνL. (3.6)

We can now readily obtain the expressions for the corresponding Wilson coefficients, defined

in eq. (2.2), given by

CτSL
=

1

2
√

2GFVcb

3∑
j,k=1

V2k

λ5
33jλ

2∗
3kj

m2
Ẽj

,

CτVL =
1

2
√

2GFVcb

3∑
j,k=1

V2k

λ1
33jλ

1∗
3kj

2m2
h̃j∗

, (3.7)

where the neutrinos are assumed to be predominantly of tau flavor.

To simplify further analysis, we invoke the assumption that except the SM contribution

only one of the NP operators in eq. (2.2) contributes dominantly. This assumption helps

us in determining the limits on the dominant Wilson coefficient from the experimental

data for R(D(∗)) and the generalization of this situation to incorporate more than one NP

operator contribution is straight forward.

The case where CτSL
is the dominant contribution, similar to 2HDM of type II or type

III with minimal flavor violation, can not explain both R(D) and R(D∗) data simultane-

ously [16, 25], as can be seen from figure 2. However, CτVL has an allowed region which can
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Figure 2. The dependence of the observables RD(∗) on CτSL
: red (blue) line corresponds to RD

(RD∗), and the horizontal light red (blue) band corresponds to the experimentally allowed 1σ values.

No common region exists for CτSL
which can simultaneously explain both RD and RD∗ .

Figure 3. The dependence of the observables RD(∗) on CτVL
: red (blue) line corresponds to RD

(RD∗), and the horizontal light red (blue) band corresponds to the experimentally allowed 1σ values.

CτVL
can explain both RD and RD∗ data.

explain both R(D) and R(D∗) data as shown in figure 3. We find that for
∣∣∣CτVL∣∣∣ > 0.08

the current experimental data can be explained. A comment regarding the renormalization

group (RG) running of these Wilson coefficients is in order. Wilson coefficients are com-

puted at the matching scale (electroweak scale) by a matching between the full theory and

effective theory. With these Wilson coefficients at electroweak scale as initial conditions,

their evolution from matching scale down to scale O(mb) is governed by the RG equations.

Note that, the Wilson coefficient CτSL
has a non-trivial running while CτVL does not run.

Since we focus on the case where only CτVL contribution is present, RG running does not

affect the analysis of this work. Also note that, we use the central values of the theoreti-

cal predictions because the theoretical uncertainties are sufficiently small compared to the

experimental accuracy.
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Figure 4. Feynman diagrams for the decay B → τν induced by the exchange of the scalar

leptoquark h̃j∗.

4 Constraints from B, D decays and D0 − D̄0 oscillation

4.1 Constraints from B → τν

In this section we discuss the new contributions to purely leptonic decay mode B → τν due

to scalar leptoquark h̃j∗ exchange and utilize the measured branching fractions of the decay

to derive constraints on the product of couplings λ1
33jλ

1 ∗
31j . In the SM, the decay B → τν

proceeds via annihilation to a W boson in the s-channel. In the ALRSM, the exchange

of the scalar leptoquark h̃j∗ leads to the additional diagrams shown in figure 4. Since the

mass scale of scalar leptoquark is far above the scale of the B meson, we can integrate out

the heavy degree of freedom to generate new four-fermion interaction ∼ q̄L(τ c)R (ν̄c)RbL,

with the Wilson coefficients parameterizing the effects of the integrated out non-standard

particles. The NP effective Hamiltonian is given by

HNP
eff (bq̄ → τ ν̄) =

4GF√
2
Vqb C

qb
VL

(q̄Lγ
µbL)(τ̄LγµνL), (4.1)

where Vqb (here q ≡ u) is the relevant CKM matrix element. The Wilson coefficient CubVL
in terms of the couplings λ′s is given by

CubVL =
1

2
√

2GFVub

3∑
j,k=1

V1k

λ1
33jλ

1∗
3kj

2m2
h̃j∗

. (4.2)

In our notation, the Wilson coefficient of the SM effective operator is set to unity. In

what follows, we will neglect the subleading O(λ) terms and retain only the leading CKM

element V11.

Note that, the decay B → τν is the only experimentally measured purely leptonic

mode of charged B±. The current experimental value of the branching ratio of B → τν is

(1.14± 0.27)× 10−4 [66]. The presence of NP modifies the expression of the SM decay rate

in the following way

dΓ

dq2
(B → τν) =

G2
F |Vub|2

8π
mBf

2
Bm

2
τ ×

(
1− m2

τ

m2
B

)2

|1 + CubVL |
2, (4.3)

where mB is the mass of B± and fB is the decay constant which parametrize the matrix

elements of the corresponding current as

〈0|b̄LγµqL|Bq(pB)〉 = pµBfB. (4.4)

Here pB is the 4-momentum of the B± meson.
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Figure 5. BR(B → τν) as a function of couplings λ33jλ31j for mh̃j∗ = 800, 1000, 1500, 2000 GeV

corresponding to black, blue, orange, and green lines respectively. The horizontal brown (light)

band shows the 1σ experimentally favored values.

We use the CKM matrix elements, the lifetimes, particle masses and decay constants

fB, fDs , fD+ from PDG [66] for numerical estimations throughout the paper. There have

been attempts to account for flavour symmetry breaking in pseudoscalar meson decay

constants in literature [67, 68]. Here, we assume that contribution from only one type

of scalar leptoquarks is dominant and real. For simplicity, we will further assume the

couplings to be real in the rest of this paper. In figure 5 we plot the BR(B → τν) as a

function of the product of the couplings λ33jλ31j for different values of mh̃j∗ . Numerically

these constraints are given by

λ33jλ31j ≤ 0.04
( mh̃j∗

1000GeV

)2
. (4.5)

4.2 Constraints from D+
s → τν and D+ → τν

Along with rare B decays, the study of the decays of charmed mesons also offer attractive

possibilities to test the predictions of extensions of the SM [69, 70]. In fact, these processes

are quite sensitive to the contributions of charged Higgs boson and scalar leptoquarks [71]

and to the new contributions from squark exchange in the framework of R-parity violating

SUSY as examined in ref. [72]. In this section we consider the purely leptonic decays D+
s →

τν and D+ → τν in ALRSM and use their measured branching ratios to obtain constraints

on the couplings (λ32j)
2 and λ32jλ31j respectively. The relevant Feynman diagrams in

ALRSM for the decays D+
s → τν and D+ → τν are shown in figure 6. Integrating out the

heavy energy scales yields the following non-standard effective Hamiltonian

HNP
eff (cq̄ → τ ν̄) =

4GF√
2
Vcq C

cq
VL

(q̄Lγ
µcL)(ν̄LγµτL) (4.6)

where q = s, d for D+
s , D

+ respectively. In the SM these processes occur (similar to

B → τν) via W± annihilation in the s-channel and the SM Wilson coefficient is given by

unity in our notation. The corresponding Wilson coefficient CcqVL parameterizing the NP

effects is given by

CcqVL =
1

2
√

2GFVcq

3∑
j,k=1

Vkq
λ1

32jλ
1∗
3kj

2m2
h̃j∗

. (4.7)
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Figure 6. Feynman diagrams for the decay D+
s → τν induced by scalar leptoquarks. The cor-

responding diagram for the decay D+ → τν can be obtained by replacing s quark by d quark.

We will keep only the leading terms Vcs for D+
s decay and Vud for D+ case respectively

and neglect the subleadiing Cabibbo suppressed O(λ) terms. Although this process occurs

in the SM at the tree level, the branching fraction is helicity-suppressed. For τ , this

suppression is less severe but phase-space suppression is larger compared to light leptons.

In the presence of scalar leptoquark contribution, the SM decay rate is affected in the

following way [71, 73]

dΓ

dq2
(D+

q → τν) =
G2
F |Vcq|2

8π
mDqf

2
Dq
m2
τ ×

(
1− m2

τ

m2
Dq

)2

|1 + CcqVL |
2. (4.8)

Here mDq is the mass of charm-mesons D+
s and D+ for q = s, d respectively and Vcq is

the relevant CKM element. The decay constant fDq is defined by 〈0|c̄LγµqL|Dq(pDq)〉 =

pµDq
fDq , where pDq is the 4-momentum of the Dq meson.

Assuming that only one product combination of the scalar leptoquark couplings is

nonzero, we get upper bounds on (λ1
32j)

2 and λ1
32jλ

1∗
31j . In figure 7, we plot the dependence

of BR(B → D(s)
+ν) on the coupling λ32jλ31j(λ

2
32j) for different mh̃j∗ . Numerically the

constrains are given by

λ2
32j ≤ 0.85

( mh̃j∗

1000GeV

)2
,

λ32jλ31j ≤ 3.12
( mh̃j∗

1000GeV

)2
. (4.9)

As discussed in the next subsection, we find that a more constraining bound on the product

of the couplings λ32jλ31j can be obtained from D0 − D̄0 mixing as compared to those

obtained from D+ → τν.

4.3 Constraints from D0 − D̄0 mixing

The phenomenon of meson-antimeson oscillation, being a flavor changing neutral current

(FCNC) process, is very sensitive to heavy particles propagating in the mixing amplitude

and therefore, it provides a powerful tool to test the SM and a window to observe NP.

In the D0 − D̄0 system, b-quark contribution to the fermion loop of the box diagram

provides a ∆C = 2 transition which is highly suppressed ∼ O(λ3) (by a tiny Vub CKM
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Figure 7. Dependence of (left figure) BR(D+
s → τν) on the coupling λ232j [(right figure) BR(D+ →

τν) on the coupling λ32jλ31j ] for mh̃j∗ = 800, 1000, 1500, 2000 GeV corresponding to black, blue,

orange, and green lines respectively. In the left (right) figure the horizontal brown band shows the

1σ experimentally allowed (disfavored) region.

matrix element). Therefore, the large non-decoupling effects from a heavy fermion in the

leading one-loop contributions is small. D0 − D̄0 mixing involves the dynamical effects of

rather light down-type particles and therefore it provides information complementary to

the strange and bottom systems where the large effects of heavy top quark in the loops are

quintessential. The D0 − D̄0 mixing is described by ∆C = 2 effective Hamiltonian which

induces off-diagonal terms in the mass matrix for neutral D meson pair and typically

parametrized in terms of following experimental observables

xD ≡
∆MD

ΓD
and yD ≡

ΓD

2ΓD
, (4.10)

where ∆MD and ∆ΓD are the mass and width splittings between mass eigenstates of

D0 − D̄0 systems respectively and ΓD is the average width. The parameters xD and yD
can be written in terms of the mixing matrix as follows

xD =
1

2MDΓD
Re
[
2〈D̄0|H|∆C|=2|D0〉 +〈D̄0|i

∫
d4xT{H|∆C|=1

w (x)H|∆C|=1
w (0)}|D0〉

]
,

yD =
1

2MDΓD
Im〈D̄0|i

∫
d4x × T{H|∆C|=1

w (x)H|∆C|=1
w (0)}|D0〉, (4.11)

with H|∆C|=1
w (x) being the Hamiltonian density that describes |∆C| = 1 transitions at

space-point x and T denotes the time ordered product. Since the local |∆C| = 2 interaction

does not contain an absorptive part, this term does not affect yD and contributes to xD
only. The measured values of xD and yD as determined by HFAG are [74]

xD = 0.49+0.14
−0.15 × 10−2,

yD = (0.61± 0.08)× 10−2, (4.12)

Charm mixing in the SM is highly affected by contributions from intermediate hadronic

states, and therefore the theoretical estimations in the SM suffers from large uncertainties

and generally stretched over several orders of magnitude (for a review, see ref. [75]). Like
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Figure 8. Feynman diagrams contributing to D0 − D̄0 mixing in ALRSM induced by scalar

leptoquark and slepton.

in the case of mixing in neutral K and B systems, D0 − D̄0 mixing is also sensitive to NP

effects. Both xD and yD can receive large contributions from NP. The contribution to yD
in several NP models including LR models, multi Higgs models, SUSY without R-parity

violations and models with extra vector like quarks has been studied in ref. [76], while in

ref. [75] the NP contributions to xD in 21 NP models have been discussed. In this section,

we use the neutral D meson mixing to obtain constraints on λ32jλ31j . These bounds are

more tighter than those obtained in the previous section from measured BR of D+ → τν.

The relevant Feynman diagrams which contribute to D0 − D̄0 mixing in the ALRSM are

shown in figure 8. These Box diagrams are similar to the diagrams generated from internal

line exchange of lepton-squark pair or slepton-quark pair in the case of R-parity violating

models [75, 77]. The mixing is described by the effective Hamiltonian

Heff =
1

128π2
(λ32jλ31j)

2

(
1

m2
τ̃

+
1

m2
h̃j∗

)
(c̄Lγ

µuL)(c̄LγµuL), (4.13)

where we assume that the box diagrams receive contributions from third generation of

leptons only. Following ref. [75, 77] and taking mh̃j∗ ' mτ̃ , the constraints on the size of

couplings is given by

λ32jλ31j ≤ 0.17

√
xexpt
D

( mh̃j∗

1000GeV

)
. (4.14)

In figure 9, we plot the dependence of xALRSM
D on the product of the couplings λ32jλ31j for

different mh̃j∗ .

5 Results and discussion

Having discussed the allowed region for CτVL which can explain both R(D) and R(D∗) data

simultaneously in section 3 and the constraints on the couplings λ33j and λ32j involved in

CτVL from the leptonic decays D+
s → τ+ν̄, B+ → τ+ν̄, D+ → τ+ν̄ and D0-D̄0 mixing in

section 4, we are now ready to translate these analysis into a simple λ33j-λ32j parameter

space analysis. In figure 10, we plot the range of the couplings λ33j and λ32j (for mh̃j∗ =

1000 GeV) that can explain both R(D) and R(D∗) data over the parameter space allowed

by the the leptonic decays and D0-D̄0 mixing. From the decay D+
s → τ+ν̄, we constrain

the allowed upper limit of the coupling λ32j . The decay D+ → τ+ν̄ and D0-D̄0 mixing

– 13 –
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Figure 9. Dependence of xALRSM
D on the coupling λ32jλ31j for mh̃j∗ = 800, 1000, 1500, 2000 GeV

corresponding to black, blue, orange, and green lines respectively. The horizontal brown (light)

band shows the 1σ experimentally disfavored region.

Figure 10. The region of λ33j-λ32j parameter space compatible with the experimental data for

R(D(∗)) and constraints from the leptonic decays D+
s → τ+ν̄, B+ → τ+ν̄, D+ → τ+ν̄ and D0-D̄0

mixing. We take mh̃j∗ = 1000 GeV for this plot. Blue band between dashed lines shows allowed

values considering constraints from RD only, Orange band between bold black lines shows allowed

region favored by experimental data for both RD∗ and RD. The shaded (light blue) rectangles

correspond to the allowed regions of λ33j-λ32j parameter space for different values of λ31j marked

with the corresponding allowed upper boundary shown in dashed lines consistent with the present

experimental data on B → τν, Ds → τν, D+ → τν and D − D̄ mixing.

give constraints on the upper limit of the product of couplings λ32jλ31j . We find that

among the two processes the latter gives more stringent constraints and therefore we use

the constrains on the allowed upper limit of λ32jλ31j coming from D0-D̄0 mixing. Finally,

we use the decay B+ → τ+ν̄ to constrain the upper limit of λ33jλ31j . The latter two

constraints on the products of couplings have λ31j as a common free parameter and the
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shaded rectangles in figure 10 correspond to the allowed regions of λ33j-λ32j parameter

space for different values of λ31j marked in the figure with the corresponding allowed

upper boundary shown in dashed lines. The blue band corresponds to the allowed band of

λ33j-λ32j explaining the R(D) data and the orange band corresponds to the allowed band

of λ33j-λ32j explaining both R(D) and R(D∗) data simultaneously. We would like to note

that the list of constraints mentioned above is far from exhaustive and many other possible

leptonic and semileptonic decays can give independent constrains. For instance, the decay

process τ+ → π+ν can give independent constraint on λ31j , which we find to be consistent

with the values extracted out of the above constraints and used for the parameter space

analysis. On the other hand, the semileptonic decay t → bτν can give constraint on λ33j

which we find to be again consistent with the values used in the above parameter space

analysis. Also the effective NP operators under consideration may induce B-decays such

as b→ sνν̄ [78, 79], which can be an interesting channel for the future experiments.

In conclusion, we have studied the superstring inspired E6 motivated Alternative Left-

Right Symmetric model to explore if this model can explain the current experimental

data for both R(D) and R(D(∗)) simultaneously addressing the excesses over the SM

expectations. We use the leptonic decays D+
s → τ+ν̄, B+ → τ+ν̄, D+ → τ+ν̄ and D0-D̄0

mixing to constrain the couplings involved in the semileptonic b→ c transition in ALRSM.

We find that ALRSM can explain the current experimental data on R(D(∗)) quite well

while satisfying the constraints from the rare B, D decays D0-D̄0 mixing. Furthermore,

ALRSM can also explain both the eejj and e/pT jj signals recently reported by CMS and

also accommodate successful leptogenesis. If these excess signals are confirmed in future

B-physics experiments and at the LHC then ALRSM will be an interesting candidate for

NP beyond the Standard Model.
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B̄ → D(∗)τ ν̄ and the mass matrices constraints, JHEP 11 (2013) 084 [arXiv:1306.6493]

[INSPIRE].

[31] P. Biancofiore, P. Colangelo and F. De Fazio, On the anomalous enhancement observed in

B → D(∗)τ ν̄τ decays, Phys. Rev. D 87 (2013) 074010 [arXiv:1302.1042] [INSPIRE].

[32] Y.-Y. Fan, Z.-J. Xiao, R.-M. Wang and B.-Z. Li, The B → D(∗)lνl decays in the pQCD

approach with the Lattice QCD input, arXiv:1505.07169 [INSPIRE].

[33] CMS collaboration, Search for heavy neutrinos and W bosons with right-handed couplings in

proton-proton collisions at
√
s = 8 TeV, Eur. Phys. J. C 74 (2014) 3149 [arXiv:1407.3683]

[INSPIRE].

[34] CMS collaboration, Search for pair-production of first generation scalar leptoquarks in pp

collisions at
√
s = 8 TeV, CMS-PAS-EXO-12-041 (2012).

[35] F.F. Deppisch, T.E. Gonzalo, S. Patra, N. Sahu and U. Sarkar, Signal of right-handed charged

gauge bosons at the LHC?, Phys. Rev. D 90 (2014) 053014 [arXiv:1407.5384] [INSPIRE].

[36] F.F. Deppisch, T.E. Gonzalo, S. Patra, N. Sahu and U. Sarkar, Double beta decay, lepton

flavor violation and collider signatures of left-right symmetric models with spontaneous

D-parity breaking, Phys. Rev. D 91 (2015) 015018 [arXiv:1410.6427] [INSPIRE].

[37] P.S. Bhupal Dev and R.N. Mohapatra, Unified explanation of the eejj, diboson and dijet

resonances at the LHC, Phys. Rev. Lett. 115 (2015) 181803 [arXiv:1508.02277] [INSPIRE].
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Recently, several anomalies in flavor physics have been observed, and it was noticed that leptoquarks
might account for the deviations from the Standard Model. In this work, we examine the effects of new
physics originating from a scalar leptoquark model on the kaon sector. The leptoquark we consider is a
TeV-scale particle and within the reach of the LHC. We use the existing experimental data on the several
kaon processes including K0 − K̄0 mixing; rare decays Kþ → πþνν̄, KL → π0νν̄; the short-distance part of
KL → μþμ−; and lepton-flavor-violating decay KL → μ�e∓ to obtain useful constraints on the model.

DOI: 10.1103/PhysRevD.94.014022

I. INTRODUCTION

The discovery of the last missing piece, the Higgs boson,
in the first run of the LHC marks the completion of the
Standard Model (SM) [1,2]. Though the SM has been
exceptionally successful in explaining the experimental
data collected so far, there are many evidences which point
towards the existence of physics beyond the SM (see, for
example, Ref. [3]). Therefore, it is natural to consider the
SM as the low-energy limit of a more general theory above
the electroweak scale. The direct collider searches at the
high-energy frontier (TeVscale) have not found any new
particle, but, interestingly, there are some tantalizing hints
toward new physics (NP) from high-precision low-energy
experiments in the flavor sector. To be specific, in 2012,
BABAR measured the ratios of branching fractions for the
semitauonic decay of the B meson, B̄ → D�τν̄,

RðDð�ÞÞ ¼ BRðB̄ → Dð�Þτν̄Þ
BRðB̄ → Dð�Þlν̄Þ ; ð1Þ

with l ¼ e, μ, and reported 2.0σ and 2.7σ excesses over the
SM predictions in the measurements of RðDÞ and RðD�Þ,
respectively [4]. Very recently, these decays have been
measured by BELLE [5] and LHCb [6]. These results are in
agreement with each other and when combined together
show a significant deviation from the SM. A summary of
the measurements of RðDð�ÞÞ done by different collabo-
rations together with the SM predictions is given in Table I.
Another interesting indirect hint of NP comes from the

data on b → sμþμ− processes. The LHCb Collaboration
has seen a 2.6σ departure from the SM prediction in the
lepton flavor universality ratio RK ¼ BRðB̄ → K̄μþμ−Þ=
BRðB̄ → K̄eþe−Þ ¼ 0.745þ0.090

−0.074 � 0.036 in the dilepton
invariant mass bin 1 GeV2 < q2 < 6 GeV2 [8]. Though
the individual branching fractions for B̄ → K̄μþμ− and

B̄ → K̄eþe− are marred with large hadronic uncertainties in
the SM [9], their ratio is a very clean observable and
predicted to be RK ¼ 1.0003� 0.0001 [9,10]. Also, the
recent data on angular observables of four-body distribu-
tion in the process ðB → K�ð→ K →Þlþl− indicate some
tension with the SM [11,12], particularly the deviation of
∼3σ in two of the q2 bins of angular observable P0

5 [13]. In
the decay Bs → ϕμþμ−, a deviation of 3.5σ significance
with respect to the SM prediction has also been reported by
LHCb [14]. The model-independent global fits to the
updated data on b → sμþμ− observables point toward a
solution with NP that is favored over the SM by ∼4σ [13].
Several NP scenarios have been proposed to explain

these discrepancies. The excesses in RðDð�ÞÞ have been
explained in a generalized framework of 2HDM (two Higgs
doublet model) in Refs. [15–17], in the framework of the
R-parity-violating minimal supersymmetric Standard
Model in Ref. [18], in the E6-motivated alternative left
right symmetric model in Ref. [19], and using a model-
independent approach [20–23], while in Refs. [24–27] the
excesses in RðDð�ÞÞ have been addressed in the context of
leptoquark models. The possible explanation for the
observed anomalies in b → sμþμ− processes preferably
demands a negative contribution to the Wilson coefficient
of semileptonic operator ðs̄bÞV−Aðμ̄γαμÞ [13,28]. Several
NP models, generally involving Z0 vector bosons [29–35]
or leptoquarks [36–44], are able to produce such operators
with the required effects to explain the present data.
In view of this, we are motivated to study a TeV-scale

leptoquark model and analyze NP effects on the kaon
sector. It is known that the studies of kaon decays have
played a vital role in retrieving information on the flavor
structure of the SM. In particular, neutral kaon mixing and
the rare decays of the kaon have been analyzed in various
extensions of the SM and are known to provide some of the
most stringent constraints on NP [45–56]. The NP model
we consider in this paper is a simple extension of the SM by
a single scalar leptoquark. The leptoquark ϕ with massMϕ
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has ðSUð3Þ; SUð2ÞÞUð1Þ quantum numbers ð3; 1Þ−1=3. This
model is interesting, considering that it has all the necessary
ingredients accommodating semileptonic b → c and b → s
decays to explain the anomalies in the LFU (lepton flavor
universality) ratios discussed above [40,41]. To this end, we
must mention that, along with anomalies observed in the
flavor sector, the leptoquark model under study is also
capable of explaining the new diphoton excess recently
reported by the ATLAS and CMS collaborations in their
analysis of

ffiffiffi
s

p ¼ 13 TeVpp collision [57].
Following the conventions of Ref. [40], the Lagrangian

governing the leptoquark interaction with first-family
fermions is given by

LðϕÞ∋λLueūcLeLϕ� þ λRueūcReRϕ
� − λLdνd̄

c
LνLϕ

� þ H:c:; ð2Þ

where L/R are the left/right projection operators
ð1 ∓ γ5Þ=2. The couplings λ’s are family dependent, and
uc ¼ CūT are the charge-conjugated spinors. Similar inter-
action terms for the second and third families can also be
written down. In this model, B → Dð�Þτν̄ proceeds at tree
level through the exchange of leptoquark ðϕÞ. Integrating
out the heavy particles gives rise to low-energy six-
dimension effective operators, which can produce the
required effects to satisfy the experimental data. In
Ref. [40], it was shown that with Oð1Þ left-handed and
relatively suppressed right-handed couplings one can
explain the observed excesses in the rate of B → Dð�Þτν̄
decays. The authors of Ref. [40] were also able to
simultaneously explain the observed anomalies in RK with
large ½∼Oð1Þ� left-handed couplings for a TeV scale
leptoquark. In this model, such large couplings are
possible because the leading contribution to B̄ → K̄μþμ−
comes from one-loop diagrams and therefore additional
GIM (Glashow-Iliopoulos-Maiani) and CKM (Cabibbo-
Kobayashi-Maskawa) suppression compensates for the
“largeness” of the couplings. This is in contrast to NP
models [37,41,58] in which RK arises at tree level, which
renders the couplings very small in order to have lepto-
quarks within the reach of the LHC. Apart from the B
system, this model has also been explored in the context of
flavor changing neutral current (FCNC) decays of the D
meson. In Refs. [59–61], the impact of scalar (as well as
vector) leptoquarks on the FCNC processes D0 → μþμ−

and Dþ → πþμþμ− have been studied, and using the
existing experimental results, strong bounds on the lep-
toquark coupling have been derived. However, to the best
of our knowledge, the effects of new physics on the kaon
sector have not been investigated before in the scalar
leptoquark ð3; 1Þ−1=3 model. We start by writing the
effective Hamiltonian relevant for each case and discuss
the effective operators and corresponding coupling
strengths (Wilson coefficients) generated in the model.
The explicit expressions of new contributions in terms of
parameters of the model are derived. We then discuss NP
affecting the various kaon processes such as Kþ → πþνν̄,
KL → π0νν̄, KL → μþμ−, and LFV (lepton flavor violat-
ing) decay KL → μ�e∓. Using the existing experimental
information on these processes, the constraints on the
leptoquark couplings are obtained.
The rest of the article is organized in the following

way. In Sec. II, we study the K0 − K̄0 mixing in this model
and obtain constraints on the couplings. In Secs. III and IV,
we constrain the parameter space using information on
BRðKþ → πþνν̄Þ and CP-violating BRðKL → π0νν̄Þ,
respectively. In Sec. V, we discuss the new contribution
to the short-distance part of rare decay KL → μþμ− in
this model and obtain constraints on the generation-
diagonal leptoquark couplings using the bounds on
BRðKL→μþμ−ÞSD. In Sec. VI, we discuss the LFV process
KL → μ∓e� and constrain the off-diagonal couplings of
the leptoquark contributing to NP Wilson coefficients.
Finally, we summarize our results in the last section.

II. CONSTRAINTS FROM K0 − K̄0 MIXING

The phenomenon of meson-antimeson oscillation,
being a FCNC process, is very sensitive to heavy particles
propagating in the mixing amplitude, and therefore it
provides a powerful tool to test the SM and a window
to observe NP. In this section, we focus on the mixing of the
neutral kaon meson. The experimental measurement of the
K0 − K̄0 mass difference ΔmK and of CP-violating param-
eter ϵK has been instrumental in not only constraining the
parameters of the unitarity triangle but also providing
stringent constraints on NP. The theoretical calculations
for K0 − K̄0 mixing are done in the framework of effective
field theories (EFT), which allow one to separate long- and
short-distance contributions. The leading contribution to
K0 − K̄0 oscillations in the SM comes from the so-called
box diagrams generated through internal line exchange of
the W boson and up-type quark pair. The effective SM
Hamiltonian for jΔSj ¼ 2 resulting from the evaluation of
box diagrams is written as [62,63]

HjΔSj¼2
eff ¼ G2

FM
2
W

4π2
ðλ2cηccS0ðxcÞ þ λ2t ηttS0ðxtÞ

þ 2λtλcηctS0ðxc; xtÞÞKðμÞQsðμÞ; ð3Þ

TABLE I. Summary of experimental measurement for the ratios
RðDð�ÞÞ and the expectation in the SM. Here, the first (second)
errors are statistical (systematic).

RðD�Þ RðDÞ
LHCb [6] 0.336� 0.027� 0.030 � � �
BABAR [4] 0.332� 0.024� 0.018 0.440� 0.058� 0.042
BELLE [5] 0.293� 0.038� 0.015 0.375� 0.064� 0.026
SM Pred.[7] 0.252� 0.003 0.300� 0.010
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where GF is the Fermi constant and λi ¼ V�
isVid

contains CKM matrix elements. QsðμÞ is a dimension-6,
four-fermion local operator ðs̄γμLdÞðs̄γμLdÞ, and KðμÞ is
the relevant short-distance factor which makes product
KðμÞQsðμÞ independent of μ. The Inami-Lim functions
S0ðxÞ and S0ðxi; xjÞ [64] contain contributions of loop
diagrams and are given by [65]

Sðxc; xtÞ ¼ xcxt

�
−

3

4ð1 − xcÞð1 − xtÞ

þ Lnxt
ðxt − xcÞð1 − xtÞ2

�
1 − 2xt þ

x2t
4

�

þ Lnxc
ðxc − xtÞð1 − xcÞ2

�
1 − 2xc þ

x2c
4

��
; ð4Þ

and the function S0ðxÞ is the limit when y → x of S0ðx; yÞ,
while ηi in Eq. (3) are the short-distance QCD correction
factors ηcc ¼ 1.87, ηtt ¼ 0.57, and ηct ¼ 0.49 [66–68]. The
hadronic matrix element hK̄0jQsjK0i is parametrized in
terms of decay constant fK and kaon bag parameter BK in
the following way:

BK ¼ 3

2
KðμÞ hK̄

0jQsjK0i
f2Km

2
K

: ð5Þ

The contribution of NP to jΔSj ¼ 2 transition can be
parametrized as the ratio of the full amplitude to the SM
one as follows [69]:

CΔmK
¼ RehKjHFull

eff jK̄i
RehKjHSM

eff jK̄i
;

CεK ¼ ImhKjHFull
eff jK̄i

ImhKjHSM
eff jK̄i

: ð6Þ

In the SM, CΔmK
and CεK are unity. The effective

Hamiltonian hK̄0jHeff jK0i can be related to the off-
diagonal element M12 through the relation1

hK̄0jHFull
eff jK0i ¼ 2mKM�

12; ð7Þ

with M12 ¼ ðM12ÞSM þ ðM12ÞNP. In the SM, the theoreti-
cal expression of ðM12ÞSM reads [54]

ðM12ÞSM ¼ G2
F

12π2
f2KBKmKM2

WF
�ðλc; λt; xc; xtÞ; ð8Þ

where the function Fðλc; λt; xc; xtÞ stands for

Fðλc; λt; xc; xtÞ ¼ λ2cηccS0ðxcÞ þ λ2t ηttS0ðxtÞ
þ 2λtλcηctS0ðxc; xtÞ; ð9Þ

with xi ¼ m2
i =M

2
W .

In the ð3; 1Þ−1=3 leptoquark model, the internal line
exchange of the neutrino-leptoquark pair induces new
Feynman diagrams, which contributes to K0 − K̄0 mixing.
The diagrams are shown in Fig. 1. The new effects modify
the observables CΔmK

and CεK , and in the approximation
M2

ϕ ≫ m2
t;W , their expressions are given by

CΔmK
¼ 1þ 1

g42

M2
W

M2
ϕ

ηtt
ReðF�ÞReðξdsÞ

2; ð10Þ

CεK ¼ 1þ 1

g42

M2
W

M2
ϕ

ηtt
ImðF�Þ ImðξdsÞ2; ð11Þ

where we have used notation F for Fðλc; λt; xc; xtÞ for
simplicity. g2 is the SU(2) gauge coupling, and we define

ξds ≡ ðλLλL†Þds ¼
X
i

λLdνiλ
L�
sνi : ð12Þ

Solving Eqs. (10) and (11) for real and imaginary parts of
ξds in terms of the experimental observables CΔmK

and CεK ,
we obtain the following expressions:

ðReξdsÞ2 ¼
�
g42
2

M2
ϕ

M2
W

��
ReðF�Þ
ηtt

�
−1þ CΔmK

��

×

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
ImF�

ReF� ·
CεK − 1

CΔmK
− 1

�
2

s �
; ð13Þ

ðImξdsÞ2 ¼
�
g42
2

M2
ϕ

M2
W

��
ReðF�Þ
ηtt

�
−1þ CΔmK

��

×

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
ImF�

ReF� ·
CεK − 1

CΔmK
− 1

�
2

s �
: ð14Þ

To constrain the leptoquark couplings Reξds and
Imξds, we use the latest global fit results provided by the
UTfit collaboration and to be conservative evaluate the

FIG. 1. New contribution to K − K̄ mixing induced by the
scalar leptoquark ðϕÞ.

1The observables mass difference ΔmK and CP-violating
parameter εK are related to off-diagonal element M12 through
the following relations: ΔmK ¼ 2½ReðM12ÞSM þ ReðM12ÞNP�
and εK ¼ kεexpiϕεffiffi

2
p ðΔmKÞexp

½ImðM12ÞSMþ ImðM12ÞNP�, where ϕε ≃ 43°

and kε ≃ 0.94 [70–72].
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constraints at the 2σ level: CΔmK
¼ 1.10� 0.44 and CεK ¼

1.05� 0.32 [69]. Here, to account for the significant
uncertainties from poorly known long-distance effects
[73], we allow for a �40% uncertainty in the case of
ΔMK . For Reξds and Imξds, we obtain the following upper
bounds:

ðReξdsÞ2 ≤ 6.0 × 10−4
�

Mϕ

1000 GeV

�
2

; ð15Þ

ðImξdsÞ2 ≤ 3.8 × 10−4
�

Mϕ

1000 GeV

�
2

: ð16Þ

As discussed in the next section, we find that a more
constraining bound on the product of the couplings ReðξdsÞ
and ImðξdsÞ can be obtained from theoretically rather clean
rare processes Kþ → πþνν̄ and KL → π0νν̄ as compared to
K − K̄ mixing.

III. CONSTRAINTS FROM RARE
DECAY Kþ → πþνν̄

The charged and neutral K → πνν̄ are in many ways
interesting FCNC processes and considered as golden
modes. Both the decays can play an important role in
indirect searches for NP because these decays are theo-
retically very clean and their branching ratio can be
computed with an exceptionally high level of precision
(for a review, see Ref. [74]). In the SM, these decays are
dominated by Z-penguin and box diagrams, which exhibit
hard, powerlike GIM suppression as compared to loga-
rithmic GIM suppression generally seen in other loop-
induced meson decays. At the leading order, both modes
are induced by a single dimension-6 local operator
ðs̄dÞV−Aðν̄νÞV−A. The hadronic matrix element of this
operator can be measured precisely inKþ → π0eþν decays,
including isospin breaking corrections [75,76]. The princi-
pal contribution to the error in theoretical predictions
originates from the uncertainties on the current values of
λt and mc. The long-distance effects are rather suppressed
and have been found to be small [77–79].
In the SM, the effective Hamiltonian for K → πνν̄

decays is written as [80]

HSM
eff ¼ GFffiffiffi

2
p 2α

πsin2θW

X
l¼e;μ;τ

ðλcXl
NNL þ λtXðxtÞÞ

× ðs̄LγμdLÞðν̄lLγμνlLÞ: ð17Þ

The index l ¼ e, μ, τ denotes the lepton flavor. The short-
distance function XðxtÞ corresponds to the loop-function
containing top contribution and is given by

XðxtÞ ¼ ηX ·
xt
8

�
xt þ 2

xt − 1
þ 3xt − 6

ðxt − 1Þ2 Lnxt
�
; ð18Þ

where the factor ηX includes the next-to-leading-order
(NLO) correction and is close to unity (ηX ¼ 0.995), while
the remaining part describes the contribution of top quark
without QCD correction. The NLO QCD corrections have
been computed in Refs. [81–83], while two-loop electro-
weak corrections have been studied in Ref. [84]. The loop-
function XNNL summarizes the contribution from the charm
quark and can be written as [55]

XNNL ¼ 2

3
Xe
NNL þ

1

3
Xτ
NNL ≡ λ4PSD

c ðXÞ; ð19Þ

where λ ¼ jVusj. The NLO results for the function XNNL can
be found in Refs. [80,83], while next-to-next-to-leading-
order (NNLO) calculations are done in Refs. [85,86].
In the considered model, leptoquark ϕ mediates Kþ →

πþνν̄ at tree level. The corresponding Feynman diagram
is shown in Fig 2. Integrating out the heavy degrees of
freedom, we obtain the following NP effective Hamiltonian
relevant for Kþ → πþνν̄ decay:

HNP
eff ¼ −

λL�sνlλ
L
dνl

2M2
ϕ

ðs̄γμLdÞðs̄γμLdÞ: ð20Þ

The new contribution alters the SM branching ratio of
Kþ → πþνν̄ [87] as

BRðKþ → πþνν̄Þ ¼ κþð1þ ΔEMÞ
��

Imλt
λ5

Xnew

�
2

þ
�
Reλc
λ

PcðXÞ þ
Reλt
λ5

Xnew

�
2
�
;

ð21Þ

where κþ contains relevant hadronic matrix elements
extracted from the decay rate of Kþ → π0eþν along with
an isospin-breaking correction factor. The explicit form of
κþ can be found in Ref. [88]. ΔEM describes the electro-
magnetic radiative correction from photon exchanges and
amounts to -0.3%. The charm contribution PcðXÞ includes
the short-distance part PSD

c ðXÞ plus the long-distance
contribution δPc (calculated in Ref. [76]). We use PcðXÞ ¼
0.404 given in Ref. [87]. The function Xnew contains a new
short-distance contribution from the leptoquark-mediated
diagram and modifies the SM contribution through

Xnew ¼ XðxtÞ þ
Xϕ

λt
; ð22Þ

FIG. 2. Feynman diagrams for the decay K → πνν̄ induced by
the exchange of scalar leptoquark ϕ.
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where XðxtÞ is the top contribution in the SM already
defined in Eq. (18) and Xϕ is the contribution due to
leptoquark exchange. In terms of the model parameters, Xϕ

is given by

Xϕ ¼ −
ffiffiffi
2

p

4GF

πsin2θW
α

ξds
M2

ϕ

; ð23Þ

where αðMZÞ ¼ 1=127.9 is the electromagnetic
coupling constant and sin2 θW ¼ 0.23 is the weak mixing
angle. Using the experimental value of the branching
ratio from the Particle Data Group, BRðKþ → πþνν̄Þ ¼
ð1.7� 1.1Þ × 10−10 [89], we obtain the constraint on Reξds
and Imξds, shown in Fig 3. A most conservative bound on
individual couplings Reξds and Imξds can be obtained by
taking only one set to be nonzero at a time. We find that
for a leptoquark of 1 TeV mass the constraints are given
by −7.2 × 10−4 < Reξds < 2.2 × 10−4 and −3.3 × 10−4 <
Imξds < 4.9 × 10−4. As pointed out before, these bounds
rule out a large parameter space allowed from K0 − K̄0

mixing. The coupling Imξds can also be probed independ-
ently through the decay KL → π0νν̄, which is the subject of
our next section.

IV. CONSTRAINTS FROM KL → π0νν̄

The neutral decay mode KL → π0νν̄ is CP violating. In
contrast to the decay rate of Kþ → πþνν̄ which depends on
the real and imaginary parts of λt, with a small contribution
from the real part of λc, the rate ofKL → π0νν̄ depends only
on Imλt. Because of the absence of the charm contribution,

the prediction for BRðKL→π0νν̄Þ is theoretically cleaner.
The principal sources of error are the uncertainties on Imλt
and mt. In the SM, the branching ratio is given by [74]

BRðKL → πνν̄Þ ¼ κL

�
Imλt
λ5

XðxtÞ
�

2

; ð24Þ

with [87]

κL ¼ 2.231 × 10−10
�

λ

0.225

�
8

: ð25Þ

The exchange of leptoquark ϕ induces new contribution
to the rate which can be accommodated in the expression
of branching ratio by replacing XðxtÞ with Xnew given in
Eq. (22). Experimentally, only a upper bound on the
branching ratio is available: BRðKL→π0νν̄Þ<2.8×10−8

at 90% C.L. [89]. In Fig 4, we plot the dependence of
the KL → πνν̄ branching ratio on the imaginary part of the
effective couplings ξds. Numerically, the constraints are
given by

−0.0021 <
Imξds

ð Mϕ

1000 GeVÞ2
< 0.0023: ð26Þ

Since the decay has not been observed so far and the
present experimental limits are 3 orders of magnitude above
the SM predictions [87], we find that constraints from
KL → π0νν̄ are weaker compared to those obtained in the
case of Kþ → πþνν̄.

V. CONSTRAINTS FROM KL → μþμ−

The decay KL → μþμ− is sensitive to much of the same
short-distance physics (i.e., λt and mt) as K → πνν̄ and
therefore provides complementary information on the
structure of FCNC jΔSj ¼ 1 transitions. This is important

4 2 0 2 4 6
8

6

4

2

0

2

4

Im ds 10 4

R
e

ds
10

4

FIG. 3. The constraints on ReðξdsÞ − ImðξdsÞ parameter space
from the measured value of BRðKþ → πþνν̄Þ. The blue colored
region shows experimentally allowed values at the 1σ level.

FIG. 4. The dependence of BRðKL → π0νν̄Þ on Imξds. The red
shaded region is currently disfavored by the experimental data
at 90% C.L.
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because experimentally a much more precise measurement
compared to K → πνν̄ is available: BRðKL → μμÞ ¼
ð6.84� 0.11Þ × 10−9 [89]. However, the theoretical situa-
tion is far more complex (for a review, see Refs. [90,91]).
The amplitude for KL → μþμ− can be decomposed into a
dispersive (real) and an absorptive (imaginary) part. The
dominant contribution to the absorptive part [as well as to
total decay rate (KL → μþμ−)] comes from the real two-
photon intermediate state. The dispersive amplitude is the
sum of the so-called long-distance and the short-distance
contributions. Only the short-distance (SD) part can be
reliably calculated. The most recent estimates of the SD
part from the data give BRðKL → μþμ−ÞSD ≤ 2.5 × 10−9

[92]. The effective Hamiltonian relevant for the decay
KL → μþμ− is given by [80]

HeffðKL → μþμ−Þ

¼ GFffiffiffi
2

p α

2πsin2θW
ðλcYNL þ λtYðxtÞÞðs̄γμð1− γ5ÞdÞðμ̄γμγ5μÞ;

¼ GFffiffiffi
2

p V�
usVudΔK

SMðs̄γμð1− γ5ÞdÞðμ̄γμγ5μÞ; ð27Þ

where ΔK
SM describes the Wilson coefficient (WC) of the

effective local operator ðs̄dÞV−Aðμ̄γμγ5μÞ and is given as

ΔK
SM ¼ αðλcYNL þ λtYðxtÞÞ

2πsin2θwV�
usVud

: ð28Þ

The short-distance function YðxtÞ describes contribution
from Z-penguin and box diagrams with an internal top
quark with QCD corrections. Its expression in NLO can be
written as [82,83]

YðxtÞ ¼ ηY ·
xt
8

�
4 − xt
1 − xt

þ 3xt
ð1 − xtÞ2

Lnxt

�
; ð29Þ

where the factor ηY summarizes the QCD corrections
(ηY ¼ 1.012). The function YNL represents the contribution
of loop-diagrams involving internal charm-quark exchange
and is known to NLO [80,83] and recently to NNLO [93].
The charm contribution is also often denoted by PcðYÞ and
is related to YNL analogous to the relation in Eq (19). In the
SM, the branching ratio for the SD part is written as [93,94]

BRðKL → μþμ−ÞSMðSDÞ ¼
N2

K

2πΓKL

�
mμ

mK

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
μ

m2
K

s

× f2Km
3
KðReΔK

SMÞ2; ð30Þ

where NK ¼ GFV�
usVud and ΓKL

is the decay width of KL.
Before proceeding to discuss the constraints on leptoquark
couplings from KL → μþμ−, we give a description of the
“operator basis” we use in the present and next sections.
The effective Hamiltonian for KL → μþμ− in Eq. (27) is

written in the operator basis of fQ7V;Q7Ag following
Ref. [94]. In what follows, we will switch to the
fQK

VLL; Q
K
VLRg operator basis. The operators in both bases

are written as

Q7V ¼ ðs̄γαð1 − γ5ÞdÞðμ̄γαμÞ;
Q7A ¼ ðs̄γαð1 − γ5ÞdÞðμ̄γαγ5μÞ; ð31Þ

and

QK
VLL ¼ ðs̄γαLdÞðμ̄γαLμÞ;

QK
VLR ¼ ðs̄γαLdÞðμ̄γαRμÞ: ð32Þ

To change from the basis fQ7V;Q7Ag to the basis
fQK

VLL; Q
K
VLRg, the following transformation rules hold:

QK
VLL ¼ 1

4
ðQ7V −Q7AÞ;

QK
VLR ¼ 1

4
ðQ7V þQ7AÞ: ð33Þ

The scalar leptoquark ϕ contributes to the quark-level
transition s̄ → d̄μþμ− at the leading order through loop
diagrams. The Feynman diagrams relevant for KL → μþμ−
are shown in Fig 5. These diagrams are similar to the ones
calculated in the case of b → sμμ in Ref. [40]. We adapt the
results in Ref. [40] to the case of s → dμþμ− to obtain the
NP Wilson coefficients of effective operators QK

VLL and
QK

VLR given by,

CKðnewÞ
VLL ¼ −

1

8π2
λt
λu

m2
t

M2
ϕ

jλLtμj2 þ
ffiffiffi
2

p

64GFπ
2M2

ϕ

ξdsξ
L
μμ

λu
; ð34Þ

CKðnewÞ
VLR ¼ −

1

16π2
λt
λu

m2
t

M2
ϕ

jλRtμj2
�
Ln

M2
ϕ

m2
t
− fðxtÞ

�

þ
ffiffiffi
2

p

64GFπ
2M2

ϕ

ξdsξ
R
μμ

λu
; ð35Þ

where the function fðxtÞ depends on the top-quark mass
and is given in Ref. [40] and we define

ξLðRÞll0 ¼
X
i

λLðRÞ�uil
λLðRÞuil0

: ð36Þ

FIG. 5. Feynman diagrams relevant for the decay KL → μþμ−
induced by the scalar leptoquark ϕ.
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The one advantage we get by the change of basis is that
the contribution of right-handed interaction terms in the

Lagrangian [Eq. (2)] is contained only in CKðnewÞ
VLR . After

accommodating the leptoquark contribution to the SM
value, the total SD branching ratio for the decay KL →
μþμ− is given by

BRðKL → μþμ−ÞSD ¼ N2
K

2πΓKL

�
mμ

mK

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
μ

m2
K

s

× f2Km
3
Kλ

10

�
Reλc
λ

αPcðYÞ
2πsin2θWλu

þ 1

λ5

�
Reλt

αYðxtÞ
2πsin2θWλu

þ 1

4
ReðCKðnewÞ

VLR − CKðnewÞ
VLL Þ

��
2

:

ð37Þ

To simplify further the analysis, we invoke the assumption
that, except the SM contribution, only one of the NP
operators contributes dominantly. This assumption helps
us in determining the limits on the dominant WC from
BRðKL → μþμ−ÞSD, and the generalization of this situation
to incorporate more than one NP operator contribution is
straight forward. Therefore, in what follows, we will ignore
the contribution of the right-handed operator in further
analysis. In Fig. 6, we show the dependence of the SD part

of BRðKL → μþμ−Þ on ReCKðnewÞ
VLL . Numerically, the bound

on the WC reads −1.00×10−4<ReCKðnewÞ
VLL <0.27×10−4.

We use the upper bound to constrain the generation-diagonal
leptoquark couplings in the following way. Employing
Eq. (34), the upper bound on the WC can be written in
terms of model parameters as

�
−

1

8π2
Reλt
λu

m2
t

M2
ϕ

jλLtμj2 þ
ffiffiffi
2

p

64GFπ
2M2

ϕ

Reξds
λu

ξLμμ

�

< 0.27 × 10−4: ð38Þ

Assuming the worst possible case in which the bound
on Reξds from Kþ → πþνν̄ (as obtained in Sec. III) is
saturated, i.e., using Reξds ¼ 2.2 × 10−4 in the above
equation, we get

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jλLuμj2 þ jλLcμj2 þ

�
1þ 2.52

ð Mϕ

1000 GeVÞ2
�
jλLtμj2

s
< 11.83: ð39Þ

We find that constraints from the SD branching ratio of
KL → μþμ− are not severe and large ∼Oð1Þ generation-
diagonal leptoquark couplings are allowed. To this end, we
must mention that the above bound is in agreement with the
constraint obtained in Ref. [40] [see Eq. (17) therein] while
explaining the anomaly in RK in this model. We also note
from Eq. (39) that the top contribution to s̄ → d̄μþμ− for the
considered masses of the leptoquark ð∼1 TeVÞ is largely
enhanced in contrast to the effects found in the case of
b → sμþμ− processes [40] where the top contribution is
suppressed for the same choice of the leptoquark masses.

VI. CONSTRAINTS FROM
LFV DECAY KL → μ∓e�

In this section, we discuss the effects of the leptoquark ϕ
on LFV process K → μ∓e�. Experimentally, there is
only an upper bound on this process: BRðKL → μ∓e�Þ <
4.7 × 10−12 [89]. LFV processes are interesting because in
the SM they are forbidden. Therefore, any observation of
such process immediately indicates toward the presence of
NP. The leptoquark ϕ can mediate KL → μe decay through
similar diagrams shown in Fig. 5 with one of the μ lines
being replaced with e. After integrating out heavy particles,
new effective operators relevant for KL → μe are gener-
ated. The operators are similar to those in Eq. (32) but with
one of the μ changed to e. The branching ratio in terms of
the newWilson coefficientsCμe

VLL andC
μe
VLR is given by [94]

BRðKL → μeÞ ¼ N2
Kf

2
K

64πΓKL

�
mμ

mK

�
2
�
1 −

m2
μ

m2
K

�
2

× ðjCμe
VLLj2 þ jCμe

VLRj2Þ: ð40Þ

Adjusting the results of Eq. (34) to the LFV case, we find

Cμe
VLL ¼ −

1

8π2
λt
λu

m2
t

M2
ϕ

ðλLteλL�tμ Þ

þ
ffiffiffi
2

p

64GFπ
2M2

ϕ

ξdsξ
L
μe

λu
; ð41Þ

FIG. 6. The dependence of BRðKL → μþμ−Þ on the Wilson

coefficient CKðnewÞ
VLL . We have assumed one-operator dominance

as discussed in the text. The red shaded region shows the
experimentally disallowed values at 1σ.
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Cμe
VLR ¼ −

1

16π2
λt
λu

m2
t

M2
ϕ

ðλRtμλRteÞ
�
Ln

M2
ϕ

m2
t
− fðxtÞ

�

þ
ffiffiffi
2

p

64GFπ
2M2

ϕ

ξdsξ
R
μe

λu
: ð42Þ

Using the current experimental bound on KL → μe, we get
½jCμe

VLLj2 þ jCμe
VLRj2�1=2 < 3.9 × 10−6. Following the similar

analysis as done in Sec. V for the case of KL → μμ, we
obtain the constraints on the leptoquark couplings, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðλLuμλLueÞ þ ðλLcμλLceÞ þ
�
1þ 2.52

ð Mϕ

1000 GeVÞ2
�
ðλLtμλLteÞ

s !

< 4.49; ð43Þ

where the top contribution is again enhanced. For simplic-
ity, we assumed the couplings to be real. Here, we would
like to mention that the same Wilson coefficients also
contribute to other LFV processes such as K → πμe.
However, as pointed out in Ref. [94], the constraints on
Wilson coefficients ðjCμe

VLLj2 þ jCμe
VLRj2Þ1=2 are about an

order of magnitude weaker than the one from KL → μ∓e�.
Therefore, experimental data on K → πμe do not improve
the constraints obtained in Eq. (43).

VII. RESULTS AND DISCUSSION

In light of several anomalies observed in semileptonic B
decays, often explained by invoking leptoquark NP models,
we have studied a scalar leptoquark model in the context
of rare decays of kaons and neutral kaon mixing. The
model is interesting because it can provide one of the
possible explanations for the observed discrepancies in
semileptonic B decays. We examined the effects of lep-
toquark contribution to the several kaon processes involv-
ingK0−K̄0 mixing,Kþ→πþνν̄,KL → π0νν̄,KL → μþμ−,
and LFV decay KL → μ∓e�. Working in the framework of
EFT, we have discussed the effective operators generated
after integrating out heavy particles and written down the
explicit expressions of the corresponding Wilson coeffi-
cient in terms of the leptoquark couplings. Using the

present experimental information on these decays, we
derived bounds on the couplings relevant for kaon proc-
esses. We found that the constraints from K0 − K̄0 on the
real and imaginary parts of left-handed coupling ξds are
∼Oð10−2Þ. However, the same set of couplings can also be
constrained from BRðKþ → πþνν̄Þ, BRðKL → π0νν̄Þ, and
it was found that constraints from the rare process
BRðKþ → πþνν̄Þ are about 2 orders of magnitude more
severe than those obtained from the mixing of neutral
kaons. In fact, the decay BRðKþ → πþνν̄Þ gives the most
stringent constraints on the leptoquark couplings among all
the processes studied in this work and therefore is the most
interesting observable to test the NP effects of a scalar
leptoquark in the kaon sector. Assuming a one-operator
dominance scenario, we constrained the NP Wilson
coefficient contributing to the rate of KL → μþμ−. We
further used the bounds on the NP Wilson coefficient to
obtain the constraints on generation-diagonal leptoquark
couplings. We found that the present measured value of
BRðKL → μþμ−Þ allows generation-diagonal coupling of
the leptoquark to be ∼Oð1Þ. The constraint on the combi-
nation of generation-diagonal couplings from KL → μþμ−
is in agreement with the one obtained in Ref. [40] for
explaining experimental data on RK . However, whereas the
top contribution to b → sμþμ− is suppressed, we found that
in the case of s̄ → d̄μþμ− the top contribution is enhanced
for the considered range of leptoquark masses. We also did
a similar analysis for the case of LFV decay KL → μ∓e�,
which involves generation-diagonal as well as off-diagonal
couplings. We found that present experimental limits on
BRðKL → μ∓e�Þ do not provide very strong constraints,
and involved couplings can be as large as ∼Oð1Þ.
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