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Abstract

Optical vortices, manifestation of phase singularities, are light beams with helical

wavefronts. This dissertation concerns with the study of the first and the second

order coherences of optical vortices.

We have used computer generated holography technique for the generation of

optical vortices. An algorithm has been developed to make a vortex of variable

core size and demonstrated experimentally. Interferometric techniques have been

described to characterize the optical vortices.

It has been observed that the diffraction of an optical vortex through an iris

diaphragm produces ball bearing sort of structures of darkness and brightness.

The singularity of the vortex beam is found to be persistent even after diffraction

through the aperture. The position of the singularity in the diffracted beam de-

pends on the relative positions of vortex center and the center of iris diaphragm.

These results may have implications to sub-diffraction imaging. A further study

of diffraction through a two dimensional sinusoidal grating produces four copies of

vortex with the same topological charge.

The stability and the propagation dynamics of high topological charge optical

vortices have also been discussed. We introduce an asymmetry in the core of a

high charge optical vortex by using a spatial light modulator. The splitting of a

high charge optical vortex core into unit charge vortices has been found to depend

on the extent of introduced asymmetry. The trajectories of the split unit charged

vortices and their separation have been recorded as a function of change in the

asymmetry of the core.

We have examined the spatial coherence characteristics of the one dimensional

projection of optical vortices. The obtained spatial coherence function is found

to be the characteristic of the order of the vortex. The knowledge of the spatial

coherence is used to extract the information entropy and the Wigner distribution

function as well.



We have studied intensity correlation function for optical vortices passing

through a rotating ground glass (RGG) plate and compared them with that of

the TEM00 mode of a He-Ne laser beam passing through the same RGG plate. It

has been observed that the intensity correlation curves for the scattered optical

vortices decrease much faster than the corresponding curve for a TEM00 mode of

the He-Ne laser. We attribute this to the complex phase structure of the optical

vortices.

Keywords: Singular optics, Optical vortex, Coherence, Diffraction, Stability of

high charge vortex, Computer generated holography.
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Chapter 1

Introduction

The concept of phase in optics is important because it gives a visual perception of

wave propagation and transformation along its path. The phase in a beam of light

is characterized by the wavefront that is a surface of equal phase, which can have

regular shapes like planer, spherical, cylindrical and even helical. The correlation

in the phases of two wavefronts led to the interference fringes in the celebrated

Young’s double slit experiment [1] and supported the wave theory of light. These

interference fringes were the bright and the dark patches. Instead of bright and

dark patches, Thomas Young could have seen the points of darkness, if he would

have further extended his experiment to three or more slits. It is observed that

the interference pattern of three or more waves consists the points of darkness in

destructive interference. At these points, the intensity of the wave is zero and

the phase is undefined (singular); being phase singular points, the optical energy

circulates around them. Such singular points are common in optical fields and are

known by various names like nodal points, phase singularities, wave dislocations

and optical vortices [2–5].

One hundred and fifty years ago, the Scottish Physicist James Clerk Maxwell

[6, 7] unified the three apparently separate phenomena i.e. electricity, magnetism

and light through the four differential equations. They are now known as Maxwell’s

equations and elegantly describe several scientific laws very concisely. Using

1



Chapter 1. Introduction

Maxwell’s equations, one can derive second order partial differential equations for

electric and magnetic fields those govern the propagation of electromagnetic fields.

Only the electric field is responsible for optical effects, therefore we would discuss

the solutions of the second order partial differential equations with electric field.

When the direction of the polarization is fixed, the electric field vector may be

replaced by the scalar electric field strength. In this case, the original vector wave

equation reduces to scalar wave equation and in free space it has the form

(52 + k2)χ(x, y, z) = 0 (1.1)

where k = 2π/λ and λ is the wavelength. This equation is known as the Helmholtz

equation and it is the most general equation of the propagation of electromagnetic

fields. If the space dependent field χ(x, y, z) is propagating in the z-direction, it

can be written as χ(x, y, z) = u(x, y, z)exp(ikz). In case of lasers, the z-dependence

of the wave amplitude u(x, y, z) is very slow compared to the transverse variation

in the width of the beam i.e. the following inequalities can be used in the scalar

wave equation [8] ∣∣∣∣∂2u∂z2
∣∣∣∣� k

∣∣∣∣∂u∂z
∣∣∣∣, ∣∣∣∣∂2u∂x2

∣∣∣∣, ∣∣∣∣∂2u∂y2
∣∣∣∣ (1.2)

On using these inequalities, the scalar wave equation reduces to

i
∂u

∂z
= − 1

2k

(
∂2

∂x2
+

∂2

∂y2

)
u (1.3)

This is the paraxial wave equation for the wave propagation. Output fields

from the most of practical lasers are described by the solution of the paraxial wave

equation. The most common solution is given in terms of the Hermite-Gaussian

(HG) polynomials. In rectangular coordinates, these solutions can be separated

into products of identical solutions in the x and y directions, i.e. uHGnm (x, y, z) =

un(x, z)um(y, z), where un(x, z) and um(y, z) have the same mathematical form, n

and m are positive integers. The most general form of the HG mode functions can

2



Chapter 1. Introduction

be written as [9]

uHGnm (x, y) =
CHG
nm

w(z)
exp

[
− ik (x2 + y2)z

2(z2 + z2R)

]
exp

(
− x2 + y2

w2(z)

)
×exp[−(n+m+ 1)ψ(z)]Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
(1.4)

where w2(z) =
2(z2+z2R)

kzR
, ψ(z)=arctan( z

zR
), CHG

nm is a normalization constant, Hn(x)

is the Hermite polynomial of order n, k is the wave number, zR is the Rayleigh

range, (n+m+ 1)ψ(z) is the Guoy phase, R(z) the radius of curvature and w(z)

is the radius at which the Gaussian term falls to 1/e of its on-axis value.

In addition to these HG modes which have rectangular symmetry, the solutions

of paraxial wave equation could also be expressed in terms of cylindrically sym-

metric Laguerre-Gaussian (LG) functions. The field amplitude of the LG modes

is given as [9]

uLGlp (x, y) =
CLG
lp

w(z)

(
r
√

2

w(z)

)l
exp

[
− r2

w2(z)

]
Llp

(
2r2

w2(z)

)
×exp

[
− ikr2z

2(z2 + z2R)

]
exp(−ilφ)exp[i(2p+ l + 1)ψ(z)] (1.5)

where CLG
lp is the normalization constant, Llp(x) is the generalized Laguerre poly-

nomial, l = m− n and p = min(n,m). These LG modes have an azimuthal phase

dependence term exp(−ilφ) which makes the wavefront helical and in turn gives

an orbital angular momentum to these beams. The LG modes with a particular

mode indices (p = 0 and l=integer) are called optical vortices of order l. Since

the HG and LG modes form a complete basis sets therefore each of these can be

expressed in terms of the other.

It is clear from the above discussion that solutions of the paraxial wave equation

which is derived from the Maxwell’s equations can contain azimuthal phase terms.

These phase terms are responsible for the existence of the singularities.

It should be noted that the Laguerre- Gaussian modes are not the only solution
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Chapter 1. Introduction

of paraxial wave equation that contain the azimuthal phase dependence, there are

other class of solutions also, like Mathieu [10], Bessel [11], Bessel-Gaussian [12],

Ince-Gaussian [13], Circular [14], Hypergeometric [15], Hypergeometric-Gaussian

type-I and type-II beams [16,17] that contain the azimuthal phase dependence.

This thesis deals with the coherence properties of optical vortices. It includes

interference, diffraction and intensity correlation of electromagnetic waves which

are some of the observable facts and owe their explanation to the coherence.

1.1 Singular Optics and Optical Vortices

In the beginning of 1970s, it was observed that in the ultrasonic pulses reflected

from a rough surface, the scattered wave trains carried dislocations in their wave-

front (surface of constant phase) which were similar to the dislocations in imper-

fect crystals [2,18]. This discovery originated from the understanding of the radio

echoes from the bottom of the Antarctic ice sheet. The spatial fine structure of the

radio echoes was studied for the precise determination of the position of hidden

objects. The laboratory analogue of this experiment was done with ultrasound

instead of radio waves due to the obvious reason of low frequency of ultrasound.

The low frequency of ultrasounds enabled to the detailed study of phase structure

of the echoes and led to the discovery of dislocations in the wavefront. In detailed

theoretical model of Nye and Berry [2], it was proposed that these dislocations

may be edge, screw or mixed edge-screw. It has also been proposed that these dis-

locations can be curved, collide and rebound, annihilate each other or be created

as loops or pairs. The phase of waves remains indeterminate on the points along

the dislocation line. Such phase indeterminate points of the wave fields are called

phase singularities. The earliest known scientific description of phase singularity

was made in the 1830s by Whewell as described by Berry [19]. Dirac [20] in 1931

was the next who talked about the quantized singularities in electromagnetic fields.

Nowadays, singularities are identified differently in different systems like in acous-
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tics, they are threads of silence [2]; in optics, they are caustics-the infinite intensity

points [18], optical vortices-the points of phase singularity [3], and polarization sin-

gularities [21]; in superfluids and superconductors, they are quantized vortices [22].

The wide interests of singularities in electromagnetic fields have motivated to start

a new branch in optics known as singular optics [5, 23].

Although there exist different types of singularities, we will focus only on the

phase singularities of the electromagnetic fields. At the point of a phase singularity,

phase is undefined. This can be understood by considering the simplest complex

function x+ iy whose phase can be given as arctan(y/x). At the point x = y = 0,

amplitude of the wave becomes zero and phase is not defined, hence it is a phase

singular point, or the function is said to have a phase singularity at this point.

Waves those possess phase singularity and rotational flow around the singular

points are called vortices. Vortices can be found in nature at different scales from

water whirlpools, atmospheric tornadoes to quantized vortices in superfluids and

Bose Einstein condensate. However, we are interested in studying the properties of

optical vortices. They are recognized as beams having zero intensity (darkness) at

their center. The phase of an optical vortex varies in a cork screw manner along the

direction of propagation. Unlike the well known plane, spherical and cylindrical

wave fronts, an optical vortex has helical wavefront. As discussed in LG beams,

the phase in such a wavefront depends on the azimuthal angle like exp(ilθ). The

factor l is called the order of the vortex or its topological charge, which determines

how many times the phase should change by 2π on one complete rotation around

the center of the vortex [24]. It is positive for clockwise sense of rotation of the

phase and negative for the counter-clockwise (Fig. [1.1]). As a result of the helical

wavefront, an optical vortex contains orbital angular momentum [25]. If a vortex

beam is circularly polarized it will have both the spin angular momentum and the

orbital angular momentum.

In Fig. [1.1], we have shown a comparison of different properties of a plane

Gaussian beam and optical vortices of positive and negative unit charges. In case
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of oppositely charged vortices the intensity profiles are similar, however other
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Figure 1.1: Comparison of (a,b) 2D and 3D intensity profile (c) wavefront (d) phase
profile and (e,f) interference pattern with a plane reference beam and spherical beam
of (I) a plane Gaussian beam (II,III) optical vortex of charge +1 and -1
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properties are different. In Fig. [1.2] we show all of these properties for optical

vortices of charge +2 and -2.
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Figure 1.2: Comparison of (a-b) 2D and 3D intensity profile (c) wavefront (d) phase
profile and (e-f) interference pattern with a plane reference beam and spherical beam
of (I-II) optical vortex of charge +2 and -2

Optical vortices could be seen in scattering of laser light through rough surfaces

[26], however, they can also be generated in a controlled manner [27]. In the speckle

patterns formed by scattering of laser beams, one can see many dark spots which

are actually optical vortices of order 1. These are formed by the interference of

many scattered waves [28]. In isotropic random fields the probability of creating
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positive and negative-charge vortex is the same, so the sum of all the vortex charges

remains zero.

1.2 First Order Coherence

Interference is a key aspect for demonstrating the wave nature of light. The fa-

mous Young’s double-slit experiment shows the interference phenomena and has

supported the wave nature of light. The concept of coherence comes from this

landmark double slit experiment of Thomas Young [1]. Since then the coherence

properties of electromagnetic fields have been a source of interest to many funda-

mental and applied issues in science and technology. The simplest manifestation

of coherence in the oscillations of electromagnetic fields is provided by the interfer-

ence fringes. Traditionally, the degree of coherence in optics is defined as a measure

of the degree of correlation in the electromagnetic field at two spatial or temporal

coordinates [29]. If the coherence is measured at two spatial points at a fixed time

then it is said to be a spatial coherence, and the maximum distance between the

two points where the considerable correlation of the field is observed, is called the

coherence distance. The total area in which fields between any two points could

be correlated is called coherence area. On the other hand, if the correlation of the

field is measured at a fixed point for different time intervals then it is said to be

temporal coherence. The time for which the correlation between the fields exist is

called the coherence time and the coherence time multiplied by the speed of light

is known as the coherence length.

All the properties which deal with the correlation of fields can be listed under

the first order coherence [29]. The diffraction pattern is one of the consequences

of the first order coherence. According to Huygens theory, the diffraction from an

aperture is the superposition of many secondary wavelets and forms a characteristic

pattern. We have studied the vortex diffraction through different apertures. The

spatial phase distribution of a beam also plays a crucial role in its propagation
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and governs the stability of the propagating beam. The distribution of composite

vortices in a beam can be studied through the interference. We have used the

interferometric technique to detect the splitting of higher order optical vortices

with introduced asymmetry.

Figure 1.3: Mach-Zehender Interferometer to study the first order coherence.

Mach-Zehender interferometer shown in Fig. [1.3] is one of the simplest arrange-

ments that could be used to study the first order coherence of the electromagnetic

fields. It is an arrangement of two mirrors and two beam splitters. The light beam

from the source is divided by a beam splitter into two beams and with the help

of two mirrors the desired additional path is introduced in one of the beams. Fi-

nally these two beams are combined at the second beam splitter and results into

the interference fringes that can be recorded by either of the two detectors. The

visibility of these fringes is a measure of the first order coherence.
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1.3 Second Order Coherence

In astronomy, the Michelson stellar interferometer is the most common method to

determine the angular size of the visible stars. This interferometer measures the

fringe visibility to find the size of stars and deals with the first order coherence. In

the 1950s, two astronomers Robert Hanbury Brown and Richard Q. Twiss (HBT)

thought of doing intensity interferometric experiments. They performed a series of

experiments to show whether there exists any correlation between the intensities

coming from stars. As a result, they found the existence of correlation between the

intensities. If the two points where the correlation in intensities are to be measured

lie within the coherence area of the source, a good correlation is observed. In this

way they developed a new interferometric technique called intensity interferom-

etry [30] which was a breakthrough in astronomy as well as in the fundamental

coherence theory of electromagnetic fields. Until this experiment, it was known

that the coherence could be defined only by the interference fringes and the degree

of coherence was found to depend on the field variables. However, after the HBT

experiments, the coherence could not only restricted to the correlation between

the fields but can also be measured by the correlation between the intensities.

Since intensities depend quadratically on the field variables therefore these exper-

iments have led to study of higher order correlations in fields. The intensity is

defined as the modulus square of the field, therefore, coherence measured in HBT

experiments can be named as the second order coherence. The results of HBT

experiments heralded the birth of modern quantum optics [31].

The intensity correlation is studied under various names like the intensity corre-

lation spectroscopy (ICS), the intensity fluctuation spectroscopy (IFS), the photon

correlation spectroscopy (PCS), the quasi elastic light scattering (QELS) and the

dynamic light scattering (DLS) [32].

After this brief introduction we would like to elaborate on interesting historical

progress of the second order coherence phenomena. As pointed out in earlier dis-
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cussion, the concept of second order coherence came from the radio astronomy [33].

It was known since a long ago that the Michelson stellar interferometer could be

used to determine the size of astronomical objects. This technique relies on the

visibility of interference fringes, therefore, it is very much sensitive to the atmo-

spheric turbulence and other fluctuations. Also, if somebody wants to do the radio

astronomy with this interferometer it would not be possible to get encouraging re-

sults because of the large wavelength of radio waves. The required stability in the

interferometer could not be maintained over such long distances and the resolving

power of the instrument was the main problem in measuring the angular diame-

ter of the distant stars. In Michelson stellar interferometer, the resolving power

depends primarily on the ratio of the wavelength to the base line. For achieving

a good resolution in interference fringes either wavelength should be very small or

the base line should be large. To measure the angular size of the two brightest

radio stars Cygnus and Cassiopeia with much accuracy, it was estimated a need of

interferometer with 10-50 Km baseline [33]. However, with such a large baseline it

was very difficult task to maintain the adequate stability of the phase. To overcome

these difficulties Robert Hanbury Brown and colleagues in 1952 [33] suggested a

new technique for determining the size of radio stars. In their new setup, radio

waves were collected by two aerials and passed through the two separate square law

detectors and the to low band pass filters. Finally, the individual intensities from

the two detectors and a correlation between them was measured. It was essential

that all the low frequency components preserve the phase of the two low frequency

signals. In practice this process was considerably simpler than preserving the rela-

tive phase of the radio frequency signals in conventional interferometer. Therefore

this new type of interferometer was easier to use and became popular.

The simplest expression of the cross correlation coefficient (ρ) is calculated by

assuming a rectangular source with uniform surface intensity and is given as

ρ =
sin2(παb/λ)

(παb/λ)2
(1.6)
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where b is the base line length, λ is the wavelength of the light and α is the angular

width of the source. Therefore, by knowing the value of the cross correlation coef-

ficient and the base line length, the angular diameter of the star can be evaluated.

This expression is equivalent to the fringe visibility in a Michelson stellar inter-

ferometer. To find the shape of stars, base lines of different lengths and different

orientations are used.

In the theoretical formulation of the new type of interferometer, the different

points of the radio star are considered to emit electromagnetic radiation of slightly

different frequencies in different directions. At a particular detection point the

superposition of the many frequencies forms the beats and the detector detects

the intensity variation of the beats [30]. In this arrangement, it is noteworthy

that although the use of the two independent receivers destroy all information

about the absolute phase in either aerial of any single radio frequency component,

information about the angular size of the source is preserved by the relative phases

of the corresponding beat-frequencies in the detectors output.

Soon after the successful experiment on radio sources, Brown and Twiss used

intensity interferometer for the visible (optical) sources. It was expected that the

time of arrival of photons at two photo cathodes should be correlated when the

incident light beam upon two mirrors are coherent, but it was not tested until the

HBT experiment. However, it is by no means certain that the correlation would

be preserved in the photo detection process. To demonstrate these facts, HBT [34]

performed a laboratory experiment (setup shown in Fig.[1.4]) with Hg arc lamp

(λ =435.8 nm). The light from the Hg arc lamp was divided by a half silvered

mirror (beam splitter) and detected by two photomultiplier tubes (PMTs). One

of the PMT was mounted on a horizontal slide which could be traversed normal

to the incident light. The outputs of the two PMTs were amplified and sent to

the correlator. First data set was recorded by keeping two PMTs as the mirror

image of each other (cathodes of the PMTs superimposed) and the next set of

data was recorded with displacing one of the PMTs. As a result, maximum corre-
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Figure 1.4: Laboratory setup of the Hanbury-Brown and Twiss experiment (not to
scale). (Redrawn following Hanbury Brown et al.) [34].

lation was observed when both the cathodes were superimposed. It decreased with

the displacement of the PMT and became minimum (ideally zero) when the two

cathodes were separated by twice of their aperture size (Fig.[1.5]) [35]. Thus the

experiment answered the question that the photons in two coherent beams of light

were correlated and this correlation was preserved in the process of the photoelec-

tric emission. Theoretical formulation of these experimental results was made by

assuming that the probability of emission of a photoelectron is proportional to the

square of the amplitude of the incident light. The classical electromagnetic wave

theory was employed to calculate the correlation between the fluctuations in the

currents from the two cathodes. The experimental results were in a fair agreement

with the theoretical results. Soon after the successful laboratory experiment of the

HBT, some controversy surrounded the HBT results [36].
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Figure 1.5: The experimental and theoretical values for the normalized correlation
factor Γ2(ν0, d) for different values of separation of the photocathodes. The full line
represents the theoretical while dots show experimental values. (Redrawn following
Hanbury Brown et al.) [35].

A few papers appeared showing no change in the results of HBT type experi-

ments with coincidence techniques, for coherent and incoherent light. Furthermore,

these authors suggested that the results obtained by HBT were due, not to a true

correlation between the arrival times of quanta, but to some other cause such as

an intensity fluctuation in the light source.

In reply to all these controversies, it was stated by Purcell [37] and HBT [38]

that there was no real disagreement between the results of these two experiments

but the experiments which raised the controversy were too insensitive to detect

the effect. A new experiment was performed [39] and instead of the correlator,

a coincidence technique was used to detect the behavior of the light quanta from

the coherent beams of light. The results of the experiments were found consis-

tent with the previously reported HBT experiment. In addition, the experiments
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which created controversy were also repeated under the conditions which permit

the detection of the effect and obtained positive results. Thus, it was confirmed

again that the arrival times of photons at different points were correlated when

these were illuminated by a coherent beam of light. Soon after the laboratory

experiment, HBT tested this new type of interferometer for calculating the size

of a star (Sirius) and found good agreement in the experimentally observed and

theoretically calculated results [40].

The explanation of the detection processes for the radio waves and the optical

waves through a consistent theory was a difficult task. The measurement of the

correlation in intensity fluctuations is straightforward for the radio waves, how-

ever the detection of the optical waves rely on the fast photoelectric detectors.

In the spectral regions of radio waves, the electromagnetic field drives the oscilla-

tory motion of electrons in an antenna and the subsequent detection of intensity

fluctuations is done by well known electronic devices. However, the situation is

quite different with the detection of optical waves. Optical frequencies oscillate

too rapidly to directly measure and process the electric field electronically. Instead

optical photons are (usually) detected by absorbing the photon’s energy, thus only

revealing the magnitude, and not the electric field’s phase. Such detectors are,

however, highly non-classical devices, making use of photoelectric effect. There-

fore, it was a genuine issue that whether the expression for the intensity correlation

function based on the classical wave theory of radio waves would also hold for op-

tical detection or not. This issue was resolved and results pointed to the validity

of the classical formula even under the optical detection [41]. The justification

involved the beautiful physics of the wave-particle duality of light.

The original HBT experiment was done with a thermal light source and a bunch-

ing effect (tendency of photons to clump) was observed for this source. However,

after the invention of laser, the same experiment was repeated with a laser beam

that gave a flat correlation curve (no bunching effect) [42]. The HBT results are

even more surprising when the experiment is done with a single photon source, for
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such sources minimum correlation is observed for zero path delay between the two

arms in HBT experiment (anti bunching) [43]. These results are purely quantum

mechanical and beyond the scope of this thesis.

We have performed the HBT type experiments with optical vortices- beams

carrying an additional degree of freedom i. e. orbital angular momentum. Results

are compared with the that of the Gaussian laser beam.

1.3. Second Order Coherence 16



Chapter 2

Generation and Characterization

of Optical Vortices

In the laser speckle one can see many dark points/spots which are randomly dis-

tributed optical vortices, however, in this form they could not be useful for further

applications. Therefore, it is necessary to generate optical vortices in a controlled

manner. The prime task for the generation of optical vortex is to make a suitable

diffractive optical element (DOE). Although the DOE for the generation of opti-

cal vortices can be fabricated by the lithography techniques, but these are relatively

expensive and labor intensive. Thanks to the computer generated holography tech-

nique that has made life much simpler, its inexpensiveness and versatility of the

generation of the desired DOE has been widely acclaimed. For some specific appli-

cations, other methods like spiral phase plate and astigmatic mode converters are

also used for the generation of optical vortices. We would elaborate on the com-

puter generated holography technique and also highlight some of the other methods

in the first section of this chapter.

Optical vortices have helical wavefront that defines the topological charge and

gives orbital angular momentum to such beams. To characterize vortices for their

charge, interferometric method would be discussed in the second part of the chapter.
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2.1 Generation of Optical Vortices

2.1.1 Computer Generated Holography

In this section we would discuss computer generated holograms and spatial light

modulators. These are technically two different methods working on the principle

of computer generated holography.

2.1.1.1 Computer Generated Holograms

This is the simplest method to generate an optical vortex. Computer generated

hologram (CGH) is basically an interference pattern of an object beam with a

reference beam obtained through a computer [44–46]. When the object beam

is an optical vortex and the reference beam is a plane Gaussian beam then the

interference pattern looks a fork like pattern. The reduced size of this pattern

is either cast on a holographic sheet [44] or printed by a high dpi laser printer

on a transparency sheet. On passing a laser beam through the branch point of

generated fork pattern we get a diffraction pattern consisting of various orders of

optical vortex. The intensity of these vortices decreases as the order increases. The

dark area at the center of the cross section of the beam increases with the increase

in the order of the vortex.

Before describing the experimental part, we would discuss the mathematical

formulation for the generation of the CGH. The electric field of an optical vortex

of order m can be given as

E = E0(x+ iy)me−(x
2+y2)/w2

e−ik(x
2+y2)/2Re−i(kz+φ) (2.1)

where w is the spot size, R is the radius of the curvature and φ is the Guoy phase

shift. In cylindrical coordinate system this equation reduces to

E = E0r
me±imθe−r

2/w2

e−ikr
2/2Re−i(kz+φ) (2.2)
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Consider a plane reference beam

Er = Er0e
−i(kxx+kzz) (2.3)

The intensity distribution of the interference of a first order vortex (say at beam

waist, R→∞) and the reference beam at z = 0 can be given as

I = |Er0e−ikxx + E0re
±iθe−r

2/w2|2 (2.4)

Assuming Er0, E0 and w as unity and ignoring all the amplitude variations in Eq.

(2.4), we get the spatially varying transmission function as

T = 2[1 + cos(kxx+mθ)] (2.5)

When this pattern is illuminated by a Gaussian beam propagating along the axis

then the field just after the hologram becomes

ET = TA0e
−r2/σ2

(2.6)

here A0 is the amplitude and σ is the beam size. On using Eq. (2.5) we get

ET = 2A0e
−r2/σ2

+ A0e
−r2/σ2

ei(kxx+mθ) + A0e
−r2/σ2

e−i(kxx+mθ) (2.7)

This output field contains one zero order diffraction pattern along the axis and

two first order diffracted beams with vortices of opposite charge on either side

of the zeroth order. The amplitude transmission function of Eq. (2.5) is a fork

like grating with sinusoidal optical density variation (Fig. [2.1a]). This is called

an amplitude hologram because it modulates the amplitude of the incident beam.

The white portion (transparent part) of this hologram allows the light beam to

transmit while the black portion (opaque part) absorbs the light. Therefore, the
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light diffracted through such hologram acquires the prescribed phase-front defined

by the transmission function.

 

(a) (b) (c) 

Figure 2.1: Computer generated holograms with different transmission functions for
the generation of optical vortex of order 1, (a) Sinusoidal (b) Binary (c) Blazed.

Apart from sinusoidal transmission function, holograms with other types of

transmission functions can also be generated, e.g. for binary hologram, the trans-

mission function becomes

Tbinary = sign[2(1 + cos(kxx+mθ))] (2.8)

where sign[x] = x/|x|. Binary holograms (Fig. [2.1b]) are much easier to print

than the sinusoidal variation of optical density given in Eq. (2.5) and also their

diffraction efficiency is better than the sinusoidal transmission grating.

Blazed gratings are also used to generate optical vortex with good diffraction

efficiency in the first diffracted order. The transmission function for such a grating

is

Tblazed =
1

2π
Mod(kxx+mθ, 2π) (2.9)

where Mod(α, β) is the remainder on division of α by β. A blazed grating for the

formation of an optical vortex of order 1 is shown in Fig. [2.1c].

Amplitude holograms absorb most of the input power therefore their diffraction

efficiency is poor. To overcome this limitation and to maximize the power of optical
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vortices phase holograms are used. These holograms ideally do not absorb any

power and modulate the phase of incident light according to the stored interference

pattern.

 

He-Ne Laser 
CGH 

Diffraction orders

Figure 2.2: Generation of optical vortex from the CGH and a He-Ne laser.

In Fig. [2.2], we have shown a simple setup for the generation of optical vortices

through a CGH with sinusoidal transmission function. The central order diffraction

is a Gaussian beam while first order diffracted beams carry vortices of unit opposite

charges.

2.1.1.2 Spatial Light Modulator

Spatial light modulator (SLM) is a device that can modulate light spatially in

amplitude and phase [47]. The principle of SLM is based on the properties of

liquid crystals. It consists of liquid crystals’ cells in which the arrangement of

liquid crystal molecules can be altered by applying electric field. SLMs can be

electrically addressed or optically addressed. However, in our experiments we have

used electrically addressed SLM (Holoeye LC-R 2500). The calculated fork like

pattern is transfered into the SLM through a computer. The graphics card for the

SLM which is installed in a computer, generates video signal corresponding to the

input fork like pattern. This signal is transmitted to the SLM. The electric field

of the signal align molecules of the liquid crystals to form a fork type pattern. If
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a laser beam is incident on the SLM it results into optical vortices as diffracted

orders in reflection or transmission. The SLM we have used is of reflective type.

In Fig. [2.3], we have shown a pictorial diagram for working of the SLM used for

our experiments.

Figure 2.3: Generation of optical vortex from the SLM and a He-Ne laser.

SLMs are used to generate optical vortex beams in a prompt and efficient

manner. We can generate an array of optical vortices using SLMs [48], which are

used for trapping of microscopic particles. The main advantage of SLM over CGH

lies in its flexibility and control in real time. One can make any diffractive optical

element and refresh it to generate optical vortex of any order when required.

We have studied the effect of resolution of the CGH onto the core size of

optical vortices [49]. The CGH with different resolution are transfered to the

SLM and corresponding images of vortices are recorded. If we holographically

store the interference of a perfect vortex beam with a plane reference beam and

reproduce it with the same reference beam, we would get the vortex beam itself with

zero intensity at the center, where it has phase singularity. Ideally, the complete

darkness (zero intensity) should be only at the center. Practically, we get a dark
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region around the center and the holographic image is not having enough resolution

to store the detailed information about the rapid variation of the phase near the

center of the vortex. To store an interference pattern of a vortex beam and a plane

beam of wavelength 632.8 nm, both making angles π/6 and −π/6 with the axis,

the hologram should be able to record around 16,000 values within 1 cm [50]. But

neither a laser printer nor a spatial light modulator is having such an accuracy.

It is this inefficiency of casting the hologram, which causes expansion of the dark

region from an ideally single point to a larger region. Therefore, as the quality of

hologram improves, the quality of image should also improve, which in the case

of a vortex, causes a compression of the phase singularity region. We have tried

to prove this fact by studying the intensity profile of the vortex of order 1 while

changing the resolution of the computer generated holograms.

We supplied holograms to the SLM (Holoeye, LC-R 2500) via a computer moni-

tor interface. The SLM, which works in reflection mode, produces the same diffract-

ing effect as that produced by a grating on a holographic sheet. The resolution of

the our SLM is 1024 × 768 that matches with the interfacing computer monitor.

An intensity stabilized He-Ne laser (Spectra-Physics, 117A), wavelength 632.8 nm

and power 1 mW is used as the source. The incident laser beam creates a diffrac-

tion pattern with vortices whose topological charge increases with diffraction order.

The zero order is Gaussian, and the vortices have opposite helicity on either side

of this central order. Thus it reproduces the vortex - our object beam. The images

are captured using a CCD camera (Point Grey, Flea2 20S4) and the horizontal line

intensity profile is analyzed.

We took different images by changing the resolution of the diffracting optical

element on the SLM. However, on increasing the resolution of the grating element

beyond the resolution of the SLM, the quality of the vortex remains unchanged.

Therefore in experiments, the maximum possible resolution of the diffracting ele-

ment is limited to the maximum resolution 1024×768 of the SLM while in the case

of simulation this restriction was imposed by the limited memory of the system.

2.1. Generation of Optical Vortices 23



Chapter 2. Generation and Characterization of Optical Vortices

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a1 b1 c1 d1 

a2 b2 c2 d2 

a3 b3 c3 d3 

D

Figure 2.4: Experimental (ais, bis) and simulated (cis, dis) images of optical vortices
(m=1) and their horizontal line intensity profiles at different resolutions: (a1−d1)
250; (a2 − d2) 500; and (a3 − d3) 800.

The quality of the image is enhanced by increasing the number of data points

used to store a fixed computer generated hologram, that is, by increasing the

resolution. In Fig. [2.4] we have shown the experimental (two left side columns)

as well as the simulated images (two right side columns) of optical vortex of order

1 and their intensity profiles along a horizontal line passing through the center of

the vortex. As expected, the diameter of the hole was found to be decreasing with

increasing resolution.

We have plotted the normalized diameter (D) of the core (the distance between

two diametrically opposite points inside a vortex core where the intensity falls to

half of its maximum value) with the resolution of computed diffracting element for

simulated as well as experimentally obtained vortices in Fig. [2.5]. The nature of
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both experimental and simulated results matches to a great extent. However, as

expected, increasing the resolution of the CGH beyond the total number of pixels

of the SLM does not make any difference to the diameter of the experimentally

obtained vortex. This can be seen through the flat portion of the experimental

curve. On the other hand, for simulation there is not any practical limitation for

the higher resolution except the memory of the computer used.

Figure 2.5: Plot showing the variation of normalized diameter of an optical vortex
core with resolution of the CGH transferred to the SLM

Our results suggest that when vortex beams are produced using computer gen-

erated holography, the vortex diameter can be controlled by simply varying the

resolution of the hologram i.e. by changing the number of data points used to

make the hologram.
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2.1.2 Astigmatic Mode Converter

The paraxial Laguerre-Gaussian (LG) beams have an azimuthal phase dependence

exp(ilφ) which causes the orbital angular momentum in these beams. The LG

modes as well as the well known Hermite-Gaussian (HG) modes of the lasers form

a complete basis set, therefore any of the fields can be written as a superposition of

the other. The principle of astigmatic mode converter is based on the conversion

of HG mode into LG mode by using a suitable combination of two cylindrical

lenses [9, 51]. This conversion exploits properties of the Guoy phase shift which

is a phase shift acquired by a Gaussian beam along the direction of propagation

during its propagation. At a distance z from the beam waist (z = 0) it is defined

as φ(z) = tan−1(z/zR), where zR is the Rayleigh range. The astigmatic mode

converter converts a HG mode of arbitrary order into the same order of Laguerre-

Gaussian mode and vice-versa. Therefore, using this method one cannot convert

the common HG00 or TEM00 Gaussian beam of the laser to an optical vortex.

2.1.3 Spiral Phase Plate

The spiral phase plate is also a type of mode converter that can generate LG

mode from HG beam by introducing a spiral phase to the HG beam [52]. It is a

transparent disc whose thickness varies circumferally but is uniform radially. These

are constructed from a piece of transparent dielectric materials. When a light beam

passes through such plates then it suffers different path delays around the center of

the disc. Light beams passing through the thicker part suffer longer optical path

and hence greater phase shift. On the whole, due to spiraling thickness it generates

spiral phase distribution of the optical vortex.

The traditional spiral phase plate is useful only for one wavelength of light and

produces one topological charge. However, the adjustable spiral phase plates [53]

can be used with multiple wavelengths and can produce a range of topological

charges. Such kind of plates are created by making a crack in a parallel sided
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transparent plexiglass, the crack starts from one edge and terminates near the

center. Now the plate is mounted in a rigid frame and keeping one tab fixed the

other tab is twisted. If a laser beam falls perpendicular to one tab then it will not

remain perpendicular to other tab. This modifies the phase of incident light in

such a way that a laser beam directed at the end of crack will produce an optical

vortex. Thus by changing the twist we can change the order of vortex.

2.2 Characterization of Optical Vortices

The presence of darkness in the intensity profile of any beam does not imply helical

wavefront (optical vortex) for the beam, one requires to find out a phase variation

around the darkness to confirm the existence of optical vortices in a given beam.

Therefore, to identify the helical wavefront or the Laguerre-Gaussian mode, inter-

ferometric techniques are used. We know that the interference fringes resulting

from the superposition of the two beams with plane wavefronts are straight lines

whose spacing depends on the intersection angle and the wavelength of light. How-

ever, when we interfere a beam having helical wavefront with a beam having plane

wavefront, we get a complicated fringe pattern. The resulting fringe pattern looks

like a fork or spiral that depends on the shape and relative orientations of the

interfering wavefronts. The number of prongs in the resulting fork pattern decides

the order of the vortex. In general, for lth order vortex, we get a fork pattern with

l+ 1 prongs. Interestingly, when we pass a laser beam through a hologram having

l + 1 prongs in its fork, we get lth order vortex as first diffracted order. However,

some find easier to interfere an optical vortex with its own mirror image rather

than a plane wave, the resulting interference pattern consists of 2l dark spokes

(for lth order vortex) [54]. In Fig. [2.6], we show a Mach-Zehnder interferometric

setup to characterize an optical vortex. In one arm of the interferometer we have

kept a CGH to form vortices and here, we have selected a first order vortex. We

let it interfere with a reference Gaussian beam at the beam splitter BS2 and the

2.2. Characterization of Optical Vortices 27



Chapter 2. Generation and Characterization of Optical Vortices

interferograms are recorded through a CCD camera.

 

He-Ne Laser BS1 BS2 

M1 M2 

CGH A L CCD 

Figure 2.6: Mach-Zehnder interferometric setup for the characterization of optical
vortices. BS1, BS2 beam splitters; M1, M2 mirrors; CGH computer generated
hologram; A aperture; L lens; CCD charge coupled device camera.

In general, for the characterization of an optical vortex, we look for its following

physical properties.

2.2.1 Topological Charge

The order of optical vortex is characterized by its topological charge. Topological

charge is defined as the number of twists in wavefront per unit wavelength of the

light, higher the topological charge more the twisting of wavefront [55]. For an

optical vortex of topological charge l, the circulation of the argument of the field

E(x, y) along a closed contour containing x = y = 0 is defined as

∮
5.arg[E(x, y)]dL = 2lπ (2.10)

The topological charge of a vortex is a direct measure of the orbital angular mo-

mentum content, therefore, a great deal of attention has been paid for its deter-

mination. Common methods for the determination of topological charge of an
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optical vortex include interferometry [56] and diffraction [57,58]. The interference

of an optical vortex with a reference wave produces either spiral fringe pattern

or the radial/fork like fringes [59, 60] depending on the relative wavefront curva-

tures of the two interfering beams. On interfering a vortex beam with a coherent

co-propagating divergent spherical beam, one gets the spiral interference fringes

exhibiting l fringes starting from the center. The sense of the circulation of the

interference fringes is determined by the sign of the topological charge and relative

curvatures of the two interfering waves [59]. With equal radii of curvatures, the

interference fringes do not bend and look like a star with number of arms equal to

the modulus of the topological charge. Topological charge of an optical vortex can

also be determined by using off-axis interferograms [59]. When a reference wave

has positive projection of a wave vector with polar axis and the topological charge

is positive, a fork like pattern directed upward appears and this orientation would

be downward for the negative topological charge. The magnitude of the topological

charge is equal to the number of prongs in fork minus one i.e. for the topological

charge l we would get a fork with l + 1 prongs.

In Fig. [2.7], we have shown the interference fringes obtained through the Mach-

Zehnder interferometer shown in Fig. [2.6] for beams with topological charges 0,

1 and -1. In first row, the interference fringes obtained by interfering a vortex

beam with a tilted plane reference beam has been shown. As discussed, it can

be seen that the interference fringes are straight lines for a plane Gaussian beam

(l=0) and these are fork like patterns with upward and downward orientations for

positive and negative topological charges respectively. In second row, interference

fringes are recorded for co-propagating plane reference wave and object beam with

topological charges 0, 1 and -1. The resulted interferograms verify our earlier

assertion.
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Figure 2.7: Interference fringes obtained through the Mach-Zehnder interferometer
for beams with topological charges 0, 1 and -1.

It has been found that the topological charge of a noncanonical vortex, for

example a vortex passed through a cylindrical lens reverses its sign on propagation

[56, 61]. The coaxial and the non coaxial superposition of optical vortices create

different topological charge content in the resultant beam [62]. Topological charges

are found to be very robust with respect to the perturbation. On adding a small

coherent background to such beams they do not destroy, however, they shift to

the new positions that could be found out by equating the total wave amplitude

to zero [24]; the higher topological charges break up into same number of unit

charges [63].

2.2.2 Orbital Angular Momentum

Unlike usual Gaussian beams from the lasers, optical vortices have an orbital angu-

lar momentum (OAM). The spin angular momentum of light or photon is always
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intrinsic but the orbital angular momentum of the photon may be either intrin-

sic or extrinsic [64, 65]. The OAM of a light beam depends on the inclination of

wavefront [66]. The spin angular momentum of light is always σ~ where degree

of polarization σ = ±1 for right and left handed circularly polarized light respec-

tively and it is zero for linearly polarized light. Unlike spin angular momentum,

the OAM depends on the choice of aperture or calculation axis. The OAM is l~

per photon only when the aperture or calculation axis coincides with the axis of

original beam.

Allen et al. [25] proposed the measurement of OAM of the LG beam by measur-

ing the torque applied to an optical system by the transfer of OAM. Consequently

the direct transfer of OAM to absorptive particles from a laser beam with phase

singularity (optical vortex) was observed [67]. They trapped an absorptive particle

by an optical vortex and observed the rotation of particles in the trap. To confirm

that this rotation is only due to the OAM associated with the helical wavefront

they took the linearly polarized light having zero spin angular momentum. They

also observed that on inverting the sign of optical vortex, the direction of rotation

of particles also gets inverted. Presently, experimental techniques are available

which can measure orbital angular momentum of single photon [68] along with

spin angular momentum and total angular momentum [69] of the photon.

The transfer of OAM by a fractional optical vortex has also been observed [70].

It was observed that the rotational speed of particles decreases with increase of the

radial opening of optical vortex even though the fractional charge has increased.

Unlike the integer order optical vortices, fractional optical vortices have radial

opening which resists or even stops the rotation of particles.

2.2.3 Propagation

The propagation dynamics of a single charge vortex or the multiple charges sitting

in the same host beam is very peculiar either in free space or any optical system.
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The propagation of an optical vortex embedded in a host beam depends upon the

shape and evolution of the host beam [71–73]. A canonical vortex, a vortex for

which lines of zero crossing of the field form a right angle, sitting in a rotationally

symmetric beam can propagate without change of its shape and location in free

space [74]. However, for a non-canonical vortex for which lines of zero crossing

of the field don’t form a right angle [75], the trajectories are not straight lines.

For such a vortex, the topological charge also changes its sign even for free space

propagation [56, 61]. Propagation of non-canonical vortices can be controlled by

the non-canonical parameter associated with these vortices.

To produce a noncanonical vortex, one can put a cylindrical lens in the path of

canonical vortex. Singh et al. [75] placed a positive cylindrical lens in the path of

the vortex beam. The shape of the resulting noncanonical vortex at two different

distances from the cylindrical lens is shown in Fig. [2.8]. It is clear from the the

images that the shape of noncanonical vortex changes on propagation, initially it

is aligned along the horizontal axis, however, on propagation it tends to align in

vertical direction.

 

Figure 2.8: Shape of the vortex after passing through the cylindrical lens of focal
length 7 cm at distances 2.5 cm (left) and 22.5 cm (right) from the lens: theoretical
(top), experimental (bottom) with no image processing.
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Figure 2.9: Shape of the vortex without cylindrical lens at same distances as in Fig.
[2.8]

The interferometric investigation has also been done [56] and it was found that

the topological charge inverts its sign after such propagation. Images of the canon-

ical vortex are also recorded at the same distances just by removing cylindrical

lens. Fig. [2.9] shows experimental and theoretical images for a canonical vor-

tex. It could be seen that the shape of a canonical vortex does not change on the

propagation. It has also been tested that the sign of topological charge remains

invariant on propagation. A good agreement has been seen in the experimental

and the theoretical images.
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Diffraction Characteristics of

Optical Vortices

Although the phenomenon of diffraction is a very old concept in classical physics,

nevertheless, it plays a role of utmost importance in many branches of physics

and engineering that deal with the propagation of wave. It is widely observed phe-

nomenon in nature and has always motivated scientists to make new discoveries.

The Fresnel and Fraunhofer diffraction of light through the circular aperture are

well known with Airy pattern being one of the most ubiquitous diffraction patterns

in optics. In this chapter, our motivation is to explore the diffraction of optical

vortices through the different apertures and gratings. In first section we would

study the diffraction effects produced by an iris diaphragm and in second section

the diffraction through a sinusoidal grating would be discussed. In addition, we also

suggest the possible applications of our findings.
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3.1 Diffraction of Optical Vortex through an Iris

Aperture

The diffraction of an optical vortex through an iris diaphragm which is a close

approximation to a circular aperture has been investigated. The results are com-

pared with those obtained from the diffraction of a Gaussian beam through the

same aperture. In our findings, diffractions of an optical vortex and a Gaussian

beam produce ball bearing sort of structure of darkness and brightness. The singu-

larity of the vortex beam is found to be persistent even after the diffraction through

the aperture. The presence of singularity at the center of diffraction pattern of an

optical vortex has been confirmed by interferometry. There is a good agreement

between the experimental and the numerical results. We propose that these results

may find various applications in optical trapping experiments.

An iris aperture is an extensively used device in most of the optics experi-

ments and microscopy. The important thing to notice is that although the iris

diaphragm is a close approximation to a circular aperture, however, in contrary

to smooth bright and dark rings produced by circular aperture diffraction [76], we

have observed fascinating structure of darkness and brightness. Our results could

be used to make array of optical traps by just exploiting the diffraction properties

of an iris diaphragm. It shows that one can produce the desired number of traps

only by changing the number of leaves in the diaphragm.

3.1.1 Experiment

The setup used for the experiments is given in Fig. [3.1]. An intensity stabilized

He-Ne laser (Spectra-Physics, 117A), wavelength 632.8 nm, and power 1 mW is

used as a source of light. The light beam coming from the laser is divided into two

parts by a beam splitter (BS1). The transmitted part goes towards the Spatial

Light Modulator (Holoeye, LC-R 2500) and the reflected one is sent towards the
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lens L1 and mirror M. The Spatial Light Modulator SLM is a liquid crystal based

device and can modulate light spatially in amplitude and phase, so it acts as

a dynamic diffractive optical element. The holographic image or the computer

generated interferogram with the fork pattern is introduced to the SLM via the

computer interface PC1. The light diffracted from the SLM contains the optical

vortices of different orders whose topological charge increases with diffraction order.

The zero order is Gaussian, and the vortices on either side of this central order

have opposite helicity.

 
 
 

PC2

 A1 ID 

 

   He-Ne Laser 

M

BS2
SLM

NDF2 CCD 

  NDF1

 L1 

L2 

BS1

PC1 
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Figure 3.1: Experimental setup for the generation of optical vortices, their diffrac-
tion and characterization through interferometry (Inset shows the structure of iris
diaphragm that encloses a polygon with eleven arms). BS1, BS2, beam splitters;
L1, L2, lenses; SLM, spatial light modulator; PC1, PC2, computers; A1, aperture;
ID, iris diaphragm; M, mirror; NDF1, NDF2, neutral density filters; CCD, charge
coupled device camera.

To check whether a given beam with darkness at its center is really a vortex, we

use the interferometric method (the Mach-Zehnder interferometer shown in Fig.

[3.1]). If the interference of the beam with a reference beam produces a spiral or

fork pattern then it proves the presence of the vortex. The interference pattern
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will be of the form of spiral or a fork that depends on the shape and relative

orientations of the interfering wavefronts [59,60].

In our experimental setup, aperture A1 is used to stop all the diffracted orders

except the required vortex. The selected vortex is then expanded by using a lens

L2 of focal length 12 cm. Thereafter it is passed through the iris diaphragm (ID-

Melles Griot) which is the key element of this experiment and also shown in inset

of the Fig. [3.1]. This ID has 11 leaves and hence the aperture formed by this ID

has a shape of regular hendecagon. The reflected beam from BS1 (reference beam)

is expanded by a lens L1 of focal length 7 cm and then again reflected by mirror

M. This reflected part is combined with optical vortex at the beam splitter BS2.

To record the experimental images, we first blocked the reference beam and then

the image of the vortex limited by the ID of a particular size is captured using a

CCD camera (Media-Cybernetics) and recorded in a computer PC2. Afterwards,

we let the reference beam mix with ID limited vortex and allow them to interfere.

The CCD camera is kept at a distance of 430 mm from the ID. To equalize the

intensity of both interfering beams we have put a neutral density filter NDF1 in the

path of reference beam. The interference fringes are then captured and recorded

in PC2. Another neutral density filter NDF2, kept in front of CCD camera is

used to avoid the saturation of the camera. After recording the intensity patterns

for the vortex limited by aperture of different sizes and corresponding interference

fringes, we have replaced SLM by a plane mirror and repeated the experiment with

a Gaussian beam with different radii of the ID.

We have made all the observations in the near field zone (Fresnel zone). By

moving the observation plane (CCD Camera) away from the aperture, we observed

that the central fringe in diffraction of the Gaussian beam regularly alters as bright

and dark which proves that our observations are in Fresnel Zone. Also, we calcu-

lated the Fresnel number F = R2/zλ at the observation plane (z = 430 mm). The

values of F for three radii 0.68 mm, 0.71 mm and 0.88 mm of our aperture come

out as 1.699, 1.853 and 2.846 respectively. All of these F numbers are greater than
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1 that is again a justification for Fresnel diffraction.

To ascertain the size of opening of the iris diaphragm (ID) i.e. the radius of

aperture, we use the diffraction method. In the diffraction of a circular aperture,

the radius of the central maxima (y) is given as y = Dλ/2R where D is the distance

of screen from the aperture, λ is the wavelength of the light used and R is the radius

of the aperture. The uncertainties in the measurements of the radius of the central

maxima and the distance of the observation give a total uncertainty of 0.03 mm in

the radius of the ID.

3.1.2 Simulation

The results of our experiments could be modeled simply by using the scalar diffrac-

tion theory [50]. Let us consider our observation plane at (x, y) and the aperture

(iris diaphragm) plane at (ξ, η). The resultant field at the observation plane can

be calculated using Huygens-Fresnel principle. In the limiting case, when the dis-

tance z of the observation plane is too large in comparison to the size of diffracting

object, the resulting expression for the field at (x, y) becomes

U(x, y) =
exp(ikz)

iλz

∫ ∞
−∞

∫ ∞
−∞

MU(ξ, η)exp

[
i
k

2z

{
(x− ξ)2 + (y − η)2

}]
dξdη (3.1)

Here U(ξ, η) is the incident field at the aperture plane. M is the aperture

function of the iris diaphragm which is a regular hendecagon (Inset in Fig. [3.1])

and it is constructed numerically.

The mechanism for the numerical construction of aperture function is as follows:

We find the coordinates of the vertices of hendecagon using parametric equation

of a circle, x = rcosθ, y = rsinθ where r is the radius of the aperture and θ is the

polar angle. The angle θ is divided into 11 equal intervals to find the coordinates for

the vertices of the hendecagon. After finding the coordinates for all the 11 vertices

of hendecagon, we take any two consecutive vertices, say, (x1, y1) and (x2, y2). A

3.1. Diffraction of Optical Vortex through an Iris Aperture 38



Chapter 3. Diffraction Characteristics of Optical Vortices

line, (y − y2)(x1 − x2)− (x− x2)(y1 − y2) = 0, is constructed by joining these two

points. Now we define a function f(x, y) = (y − y2)(x1 − x2) − (x − x2)(y1 − y2)

which has very interesting properties, i.e. f(x, y) = 0, for all points lying on the

line, f(x, y) < 0 for all points lying on the left side of line and f(x, y) > 0 for

all points lying on the right side (we go in an anticlockwise direction from the

point (x1, y1) to (x2, y2)). We check the condition f(x, y) 6 0 for all the pair of

vertices, the points for which it is true lie to the left of all the 11 arms and form

the aperture.

When the aperture is illuminated by an optical vortex then the field U(ξ, η)

can be given as

U(ξ, η) = (ξ + iη)lexp

(
− ξ2 + η2

σ2

)
exp

{
i
k

2f
(ξ2 + η2)

}
(3.2)

where l is the topological charge of the vortex, σ is the beam radius, k = 2π/λ is

the magnitude of wave vector, λ is the wavelength of light and f is the focal length

of the lens used.

Therefore, the diffracted field for a vortex of charge l = 1, say UV (x, y), becomes

UV (x, y) =
1

λz

∫ ∞
−∞

∫ ∞
−∞

Mexp

(
−ξ

2 + η2

σ2

)
[(ξsinβ+ηcosβ)−j(ξcosβ−ηsinβ)]dξdη

(3.3)

where β is a function of (ξ, η, x, y) which is expressed as

β(ξ, η, x, y) =
k

2f
(ξ2 + η2) +

k

2z
{(x− ξ)2 + (y − η)2}+ kz. (3.4)

When the aperture is illuminated by a Gaussian beam then the field at the

aperture plane can be obtained just by removing the complex part (ξ+ iη)l in Eq.

[3.2]. Thereafter, the diffracted field for the Gaussian beam, say UG(x, y), can be

calculated by following the same steps that yields
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UG(x, y) =
1

iλz

∫ ∞
−∞

∫ ∞
−∞

Mexp

(
− ξ2 + η2

σ2

)
[cosβ + isinβ]dξdη (3.5)

To get the resultant intensity distribution for diffracted optical vortex and

Gaussian beam, we have numerically solved Eqs. [3.3] and [3.5] separately and

evaluated the absolute square of each of them.

3.1.3 Diffraction of an Optical Vortex

The diffraction of an optical vortex through an iris diaphragm have been studied

experimentally as well as numerically. It has been found that the singularity of

the optical vortex retains its presence even after the diffraction through the iris

diaphragm. The position of the singularity in the diffracted beam depends on the

relative positions of vortex center and the center of iris diaphragm. When both

of the centers coincide, the position of singularity remains unchanged after the

diffraction, however, if it is not so, the singularity position shifts from the center.

To measure and adjust the relative positions of the center of the vortex and the

center of the ID we make use of our experimental observations. When the vortex

center is not aligned with the center of the aperture then on reducing the size of

the aperture, the dark core of the vortex in the recorded images do not appear at

the center of circularly symmetric bright background. We align the aperture in

such a way that on reducing the aperture size to its smallest value, the dark spot

of the vortex remains at the center of circularly symmetric bright background. In

a separate, but parallel to our experiment, Brunet et. al. [77] have exploited the

shift of a vortex center with aperture for the subwavelength imaging.

We observe very interesting ball bearing sort of structures of darkness and

brightness in the diffraction of the vortex through the iris diaphragm. These struc-

tures look similar to the vortices; however using interferometry we have confirmed

that these are not the vortices. In Fig. [3.2], we have shown the experimental (first
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column) and simulated (second column) images of an optical vortex of topological

charge (l = 1) passed through the ID of three different radii (R). It has been ob-

served that as the size of aperture decreases the ball bearing structure of darkness

becomes pronounced and for an optimum value of aperture size these structures

become quite prominent. The corresponding interferograms for these images with

a reference beam have been shown in third and fourth column of Fig. [3.2]. It is

very clear from the interference fringes that the singularity or the vortex is present

only at the center of the beam and even after the diffraction through the very small

size of the aperture the singularity does not get disturbed. The single arm of the

spiral starting from the center proves that the singularity is present only at the

center of the diffracted vortex beam. The experimental results are consistent with

simulated results. 

Figure 3.2: Experimental (first column) and simulated (second column) images of
an optical vortex of topological charge l = 1 passed through an iris diaphragm of
variable radii R and their interference patterns (third column experimental and
fourth column simulated) with a reference beam: R varies as- first row, R = 0.88
mm; second row, R = 0.71 mm; third row, R = 0.68 mm.
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3.1.4 Diffraction of a Gaussian Beam

Like vortex diffraction, we also observe the ball bearing sort of structures of dark-

ness and brightness in the diffraction of a Gaussian beam through the iris di-

aphragm. However, unlike the vortex diffraction where the center of diffracted

beam is always dark, in the case of a Gaussian beam (l = 0) the center of the

diffracted beam may be dark or bright (Fig. [3.3]). The interference fringes do not

show any signature of the singularity in the diffracted Gaussian beam. Therefore,

we can conclude that the spots of darkness visible in the intensity profile of the

diffracted beam are not the optical vortices. The experimental results of Gaus-

sian beam diffraction and their interferograms (first and third column) are also

consistent with the simulated results (second and fourth column).
 

Figure 3.3: Experimental (first column) and simulated (second column) images
of a Gaussian beam (l = 0) passed through an iris diaphragm of variable radii
R and their interference patterns (third column experimental and fourth column
simulated) with a reference beam: R varies as- first row, R = 0.88 mm; second
row, R = 0.71 mm; third row, R = 0.68 mm.
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It is quite clear from the experimental and simulated diffraction patterns of iris

diaphragm that the numbers of dark or bright spots in the diffraction rings are

equal to the number of the leaves of ID. Therefore by clever choice of the ID we

can have full control over the number of these bright and dark spots. The ball

bearing sort of structures may be useful in optical trapping experiments. These

structures may be utilized as a multiple trap. In the diffraction patterns formed

by an optical vortex we get singularity at the center, this means that the dark

spot at the center is a vortex while the rest of the dark spots are the usual zero

intensity points. If we trap an absorptive particle at the center of such beam it will

gain the orbital angular momentum of light and will start rotating. Meanwhile, if

we use these ball bearing structures as the trap center for other particles then it

would be very interesting to observe the effect of the central rotating particle on

the neighboring stationary trapped particles. By increasing the topological charge

or the order of the vortex we can increase the rotation speed. We can change

the sense of rotation also by just changing the sign of the topological charge. We

anticipate that it would give a new insight on the distribution of orbital angular

momentum in a system of micro particles.

3.2 Diffraction of Optical Vortices through a

Two Dimensional Sinusoidal Grating

We demonstrate a technique for making copies of optical vortices. It has been

shown that by using suitable diffractive optical elements, several copies of optical

vortices could be created with the same topological charge. We have devised such

diffractive optical element (two dimensional sinusoidal grating) using a spatial light

modulator which could be used to make copies of the vortices without inverting

the charge. The nature of the topological charge was investigated with the inter-

ferometric technique. The experimental results are verified with the theoretical

3.2. Diffraction of Optical Vortices through a Two Dimensional Sinusoidal
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analysis [78]. We anticipate that our results may find applications ranging from

optical manipulation to quantum information.

3.2.1 Experiment

The set up for our experiment is shown in Fig. [3.4]. The vortex generation part

of the experiment is similar to that used in Fig. [3.1].

Figure 3.4: Experimental setup for generating copies of optical vortices and finding
their topological charges. M1, M2, M3 and M4, mirrors; BS1 and BS2, beam
splitters; SLM, spatial light modulator; A1 and A2, apertures; L1, L2 and L2′

lenses; P and P′, polarizers; CCD and CCD′, charge coupled device cameras; PC1,
PC2, PC2′ computers. (Alphabets A, B, C, ..written with each component are used
for the exact modeling of the propagation of the beam.)

Here the aperture A1 is used to select the desired order of the vortex which is

again sent towards the SLM (but at a different location from the previous) with the

help of mirrors M2 and M3. The two dimensional (2D) sinusoidal grating which

3.2. Diffraction of Optical Vortices through a Two Dimensional Sinusoidal
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can generate many identical topological charges from a single charge is introduced

to the SLM via the same computer PC1. Note that to economize the resources, we

are displaying two different diffractive optical elements at two portions of the same

SLM. The SLM generates many copies of optical vortices after diffraction through

the 2D sinusoidal grating.

This grating produces four copies of optical vortices in each diffraction order.

However the intensity of these copies decreases with increasing diffraction order.

Therefore, we have selected only the first order diffraction pattern along with the

central beam using iris aperture A2. The selected copies of optical vortices are

imaged by using a lens L2 of focal length 20 cm onto a color camera CCD (shown

through the dashed line in Fig. [3.4]).

To investigate the topological charges of generated vortices, we perform an

interference experiment. The generated beam that carries different vortices prop-

agates towards the beam splitter BS2 with the help of mirror M4 and combines

with the reference beam coming from BS1. Since the size of the beam carrying

copies of the vortex becomes large, a lens L1 (focal length 5 cm) is used to expand

the reference beam as well. A lens L2′ (focal length 20 cm) is used to image the

resultant interference pattern at the monochrome camera CCD′ interfaced with the

computer PC2′. We could have recorded the images of the copies of vortices at this

position. However, to make the copies clean and free from the noise introduced

by the additional optics used in the interferometric setup, we preferred to record

them earlier at the camera CCD.

The recorded intensity of the copies of vortex beam appears much less than that

of the central vortex beam. For a better contrast between the vortex copies and the

central vortex beam, we note that the polarization of the different copies of optical

vortex is different from the central vortex beam. Therefore, we use polarizers P and

P′ in the path of the beam and rotate them until maximum contrast is obtained.

In the interference patterns, the number of fringes radiating from the center is

equal to the modulus of the topological charge, and the direction of the spiraling

3.2. Diffraction of Optical Vortices through a Two Dimensional Sinusoidal
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is determined by the sign of the topological charge and the relative curvature of

the wavefront.

3.2.2 Theoretical Analysis

The propagation of a field through a paraxial optical segment is described by the

Huygens-Fresnel diffraction integral containing the ABCD matrix elements for that

segment. All these integrals have been evaluated exactly.

The electric field amplitude of an optical vortex of order l propagating along

the z-direction, at the plane (u, v) just after the SLM, is given as (we have ignored

the overall phase factor due to the optical path length throughout the analysis)

E1(u, v) = E0(u+ iv)l exp
[
−(u2 + v2)/w1

2
]
, (3.6a)

1

w1
2

=
1

w2
+
ik

2R
. (3.6b)

Here, w = w0

√
1 + (z1/z0)2 is the radius of the Gaussian beam containing the

vortex, w0 = 0.3 mm is the beam waist at the laser exit, z1 = AB+BC+CD = 78

cm is the distance between the laser and the SLM, z0 = πw2
0/λ, R = z1+z20/z1 and

k = 2π/λ is the magnitude of the wave vector of He-Ne laser light with wavelength

λ = 632.8 nm.

The vortex is redirected to a different location in the SLM after a free-space

propagation by a distance z2 = DE + EF + FG = 126 cm. The field E2(x, y) at

the SLM is given by

E2(x, y) =
ik

2πB0

∫ ∫
du dv E1(u, v)

× exp

[
− ik

2B0

{
A0(u

2 + v2)− 2(xu+ yv) +D0(x
2 + y2)

}]
(3.7)

where, A0 = D0 = 1 and B0 = z2. Substituting the expression for E1(u, v), one
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can write E2(x, y) as

E2(x, y) =
ikE0

2πz2
exp

[
− ik

2z2

(
x2 + y2

)]
I(X, Y ) (3.8)

where

I(X, Y ) =

∫ ∫
du dv (u+ iv)l exp

[
−(u2 + v2)/w2

2 + i(uX + vY )
]
, (3.9a)

with

1

w2
2

=
1

w1
2

+
ik

2z2
and

 X

Y

 =
k

z2

 x

y

 . (3.9b)

Note that

−i
(

∂

∂X
+ i

∂

∂Y

)
exp[i(uX + vY )] = (u+ iv) exp[i(uX + vY )]. (3.10)

Thus, I(X, Y ) can be re-written as

I(X, Y ) = (−i)l
(

∂

∂X
+ i

∂

∂Y

)l
I(X, Y ) (3.11)

where

I(X, Y ) =

∫ ∫
du dv exp

[
−(u2 + v2)/w2

2 + i(uX + vY )
]
. (3.12)

Using the formula
∫∞
−∞ dx exp[−ax2 − 2bx] =

√
π/a exp[b2/a] [79], we obtain

I(X, Y ) = πw2
2 exp(−w2

2ρρ
∗/4), where ρ = X + iY. (3.13)

We evaluate I(X, Y ) by noting that

∂

∂X
+ i

∂

∂Y
≡ 2

∂

∂ρ∗
(3.14a)
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and (
∂

∂ρ∗

)l
exp(−w2

2ρρ
∗/4) = (−w2

2ρ/4)l exp(−w2
2ρρ

∗/4) (3.14b)

Thus,

I(X, Y ) = πw2
2(iw

2
2ρ/2)l exp(−w2

2ρρ
∗/4) (3.15)

Substituting the above expression in Eq. [3.8] and simplifying, we get

E2(x, y) = E0

(
ikw2

2

2z2

)l+1

(x+ iy)l exp[−(x2 + y2)/w2
3], (3.16a)

where

w2
3 = w2

1 − 2iz2/k. (3.16b)

At the SLM, the vortex reflects off a sinusoidal grating which provides a phase

factor exp(i sinαx sinαy) to the propagating vortex E2(x, y). After reflection, the

beam traverses a free-space distance z3 = GH + HJ = 75 cm, passes through

a lens L2 of focal length f1 = 20 cm and reaches the CCD placed at a distance

z4 = JK +KL = 16 cm from the lens. The field at the CCD has the expression

E3(x, y) =
ik

2πB1

∫ ∫
du dv E2(u, v) exp(i sinαx sinαy)

× exp

[
− ik

2B1

{
A1(u

2 + v2)− 2(xu+ yv) +D1(x
2 + y2)

}]
(3.17)

where, A1 = 1 − z4/f1, B1 = z3 + z4 − z3z4/f1 and D1 = 1 − z3/f1. Substituting

for E2(u, v), using the Bessel function expansion

exp[ix cosφ] =
∑
n

inJn(x) exp[−inφ]
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and simplifying the resulting expression, we get

E3(x, y) =

(
ikE0

2πB1

)(
ikw2

2

2z2

)l+1

exp

[
−
(
ikD1

2B1

)(
x2 + y2

)]
×
∑
n,n′

in(−i)n′
Jn(1/2)Jn′(1/2)Knn′(x, y) (3.18)

where

Knn′(x, y) =

∫ ∫
du dv (u+ iv)l exp

[
−(u2 + v2)/w2

4 + i(uXnn′ + vYnn′)
]
.

(3.19a)

Here,
1

w2
4

=
1

w2
3

+ i
kA1

2B1

, (3.19b)

and

Xnn′ = kx/B1 + α(n′ − n), Ynn′ = ky/B1 + α(n′ + n). (3.19c)

Using an identity of the form [3.14a], we write

Knn′(x, y) = (−i)l
(

∂

∂Xnn′
+ i

∂

∂Ynn′

)l
Knn′(x, y) (3.20)

where

Knn′(x, y) =

∫ ∫
du dv exp

[
−(u2 + v2)/w2

4 + i(uXnn′ + vYnn′)
]

= πw2
4 exp

[
−w2

4ρnn′ρ∗nn′/4
]

(3.21a)

with

ρnn′ = Xnn′ + iYnn′ . (3.21b)

Since
∂

∂Xnn′
+ i

∂

∂Ynn′
≡ 2

∂

∂ρ∗nn′
, (3.22)

the differentiation in Eq. [3.20] can be easily performed. Substituting in Eq. [3.18]
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and simplifying, we obtain

E3(x, y) =

(
kE0

B1

)[
−kw2

2w
2
4

4z2

]l+1

exp

[
−
(
ikD1

2B1

)(
x2 + y2

)]∑
n,n′

fn,n′(x, y),

fn,n′ = in(−i)n′
Jn(1/2)Jn′(1/2)ρlnn′ exp

[
−w2

4ρnn′ρ∗nn′/4
]
. (3.23)

The term with n = n′ = 0 corresponds to the vortex with zero order diffraction

whereas terms corresponding to first order diffraction will have either n = 0, n′ =

±1 or n′ = 0, n = ±1. As copies with diffraction orders higher than one are

cropped, we restrict the values of n and n′ to -1, 0 and 1 only. Furthermore, the

term with zero order diffraction has been pre-multiplied by a factor 0.25 to model

the role of the polarizer in the reduction of its intensity. Thus E3(x, y) reduces to

E3(x, y) = (
kE0

B1

)[
−kw2

2w
2
4

4z2
]l+1 exp[−(

ikD1

2B1

)(x2 + y2)]

×(0.25f0,0 + f0,1 + f0,−1 + f1,0 + f−1,0) (3.24)

To measure the fringe pattern, the vortex from the SLM is sent to a different

CCD. The beam traverses a free-space distance z5 = GH + HI + IJ ′ = 145 cm,

passes through a lens of focal length f2 = 20 cm and reaches the CCD placed at a

distance z6 = J ′K ′ + K ′L′ = 13 cm from the lens. Replacing z3, z4 and f1 in Eq.

[3.17] by z5, z6 and f2 respectively, we immediately obtain the field E4(x, y) at the

camera CCD′:

E4(x, y) = (
kE0

B2

)[
−kw2

2w
2
5

4z2
]l+1 exp[−(

ikD2

2B2

)(x2 + y2)]

×(0.25f̂0,0 + f̂0,1 + f̂0,−1 + f̂1,0 + f̂−1,0) (3.25a)

where

f̂n,n′ = in(−i)n′
Jn(1/2)Jn′(1/2)ρ̂lnn′ exp[−w2

5ρ̂nn′ ρ̂∗nn′/4], (3.25b)
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A2 = 1− z6/f2, B2 = z5 + z6 − z5z6/f2, D2 = 1− z5/f2,

1

w2
5

=
1

w2
3

+ i
kA2

2B2

(3.25c)

and

ρ̂nn′ = ρnn′cB1→B2 . (3.25d)

This beam is made to interfere with the laser beam which reaches CCD′ after

passing respectively through a free-space distance d1 = AB+BC+CM = 55 cm, a

lens of focal length f3 = 5 cm, a free-space distance d2 = MI+IJ ′ = 104 cm, a lens

of focal length f4 = 20 cm, and finally, a free-space distance d3 = J ′K ′+K ′L′ = 13

cm. The Gaussian beam at the laser exit is given by E0 exp[−(x2 + y2)/w2
0]. At

CCD′, this beam evolves into E5(x, y) which has the form

E5(x, y) =

(
ikE0

2πB3

)∫ ∫
du dv exp[−(u2 + v2)/w2

0)]

× exp

[
− ik

2B3

{
A3(u

2 + v2)− 2(xu+ yv) +D3(x
2 + y2)

}]
(3.26a)

where,

A3 = (1− d2/f3)(1− d3/f4)− d3/f3

B3 = d1(1− d3/f4) + (1− d1/f3)(d2 + d3 − d2d3/f4)

D3 = −d1/f4 + (1− d1/f3)(1− d2/f4) (3.26b)

3.2.3 Copies of Optical Vortices

In Fig. [3.5], we have shown the experimental and theoretical intensity profiles of

copies of the optical vortex for different topological charges.
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Figure 3.5: Experimental (left column) and theoretical (right column) intensity
profiles of the original vortex and its copies for topological charges 1 (top row), 2
(middle row)and 3 (bottom row).

The theoretical intensity plot is based on the absolute square of E3(x, y) as given

by Eq. (19). The vortex at the center of each image is of zero order diffraction and

is identical to the original vortex beam. The copies of the vortex are situated at the

four corners of each image. Fig. [3.6] show both experimentally and theoretically
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obtained interference fringes of vortices with a reference beam.

Figure 3.6: Experimental (left column) and theoretical (right column) interferro-
grams corresponding to the results of Fig. [3.5]. The topological charges are as in
Fig. [3.5].

The theoretical plot is based on |E4(x, y) + E5(x, y)|2. It is evident from the

fringes that the direction of the branching and the number of branches in a fork
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are the same for all the vortex copies of a fixed topological charge. This shows

that all the formed copies have the same topological charge.

As shown in Figs. [3.5] and [3.6], the experimental results for intensity and

fringe patterns are in excellent agreement with the corresponding theoretical pre-

dictions.

3.2.4 Conclusions

In the first section of this chapter, we have studied the diffraction of a single

charge optical vortex through the iris diaphragm. It has been observed that the

phase singularity of a vortex beam is very robust and it doesn’t destroy even after

diffraction through the ID. In addition, the beautiful dark and bright ring lattice

structures could be obtained just by exploiting the diffraction through the ID.

In the second section of the chapter, diffraction of optical vortices through a

2D sinusoidal grating has been studied. It has been shown that such diffraction

produces four identical copies of an optical vortex. Therefore, we suggest a very

simple yet efficient method for the generation of copies of optical vortices. One

could argue that the copies of optical vortices can also be generated by using a

beam splitter. However, the problem with a beam splitter is that an optical vortex

inverts its charge on refection. Therefore the transmitted and the reflected vortex

beams from a beam splitter carry opposite topological charges and thus they would

not be identical. Our findings may be useful in the field of optical manipulation

and optical communication. The identical copies of optical vortex could be used as

a vortex lattice where the behavior of different objects trapped in identical vortex

traps may be studied. Furthermore, the same technique of producing copies of

the vortex could be utilized to make copies of the down converted orbital angular

momentum (OAM) states for quantum information and computation since these

OAM states are spatial modes which are detected through holograms only.
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Chapter 4

Stability and Propagation

Dynamics of High Charge Optical

Vortices

We introduce an asymmetry in the core of a high charge optical vortex by using an

appropriate computer generated hologram. The splitting of a high charge optical

vortex core into unit charge vortices has been found to depend on the extent of the

asymmetry. For a second order vortex, the trajectories of the split unit charged

vortices and their separation have been recorded as a function of change in the

asymmetry of the core. We also study the effect of core asymmetry to the third

and fourth order vortices. We find a good agreement between the experimentally

obtained and numerically calculated results.
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4.1 Introduction

An optical vortex is characterized by a unique phase profile and it is only this

phase profile that makes optical vortices very special and very important in optics.

Fundamentally, the phase profile of a vortex governs the propagation dynamics of a

single vortex or multiple vortices sitting in the same host beam. Also the stability

of high charge vortices could be determined by investigating the phase profiles of

the vortices.

The stability and the propagation dynamics of a vortex core may be of rele-

vance to the field of optical communication using such beams. Therefore, a great

deal of attention has been given to the dynamics and propagation properties of

optical vortices in free space and in nonlinear media [56,74,80–82]. Ginzburg and

Pitaevskii [83] pointed out that a vortex with higher charge (say l , where l > 1)

in a superfluid is energetically unfavorable compared to l vortices of unit charge.

Hence, a vortex with higher charge always has a tendency to break up into unit

charge vortices, although the physical mechanism that creates them may be dif-

ferent for different systems. The breaking up of optical vortices can be controlled

by several external parameters [84]. A detailed theoretical description of breaking

the degeneracy of an optical vortex core has been given by Freund [85]. The decay

of a vortex due to perturbation and anisotropy produced by the nonlinear media

has also been explored [86].

The break up of a high charge optical vortex leads to the formation of an array

of unit charged vortices lying in the same host beam. However, such a composite

structure of vortices has also been formed by the superposition of the two or more

phase singular beams [87–91]. By a clever choice of different Laguerre Gaussian

(LG) beams, one can generate a linear as well as a circular array of optical vortices.

Franke-Arnold et al. [88] have generated a beautiful ring lattice of optical vortices,

an optical ferris wheel, which is useful in the trapping of red and blue detuned

cold atoms. The superposition of various phase singular beams was also utilized
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by Berry and Dennis [89] to produce the knots and the links in optical dislocations.

The theoretical results [89] were experimentally verified in separate experiments

by Leach et al. [90] as well as Dennis et al. [91]. However, in their experiments

instead of using two or more separate LG beams, they designed a phase hologram

to produce such a superposition by a spatial light modulator (SLM) . In all of

these experimental as well as theoretical studies [90,91], some kind of perturbation

has been applied to cylindrically symmetric LG beams. Adding a perturbation

breaks the symmetry of such beams and leads to the decay of the LG beams with

a high topological strength [92, 93]. Dennis [92] has discussed different kinds of

perturbations which may cause the breakup of high-order vortices. He differentiates

between the elliptically perturbed LG beams and the LG beams perturbed by a

small real constant.

We have studied the effect of introducing an asymmetry to a vortex [63]. The

asymmetry was introduced through the CGH that produces the vortex. The in-

troduced asymmetry destabilizes a high-order vortex that splits into a number of

first order vortices, the number being same as the order of the vortex. We would

like to point out that although a perfectly symmetric vortex is used in most of the

discussions on vortices, no real system can exhibit a perfect symmetry. Therefore,

an elliptically perturbed vortex provides a more realistic and widely applicable

vortex model. It should be noted that optical vortices show a deep similarity with

the quantized vortices in superfluids and Bose Einstein Condensates. Therefore,

the results presented here may also be useful in fields other than optics.

4.2 Experiment

The experimental set up is shown in Fig. [4.1]. An intensity stabilized He-Ne laser

(wavelength 632.8 nm and power 1 mW) is used as the light source. The light

beam coming from the laser is reflected by a mirror M1 and is sent towards a beam

splitter BS1 where it is divided into two parts. The reflected part goes towards the
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SLM (Holoeye, LC-R 2500) and the transmitted part towards the mirror M2. The

diffractive optical elements or the CGH with different fork patterns corresponding

to different asymmetry parameters are introduced into the SLM via a computer

PC1.

 

Figure 4.1: Schematic of the experimental setup. M1, M2, M3 mirrors; BS1, BS2
beam splitters; A1, A2 apertures; PC1, PC2 computers; NDF1, NDF2 neutral
density filters; SLM, spatial light modulator; CCD, charge coupled device camera.

To generate a fork pattern for producing an optical vortex, we imprint an

azimuthal phase dependence on a Gaussian beam by calculating the interfero-

gram of the object beam exp(ilθ)exp{−(ξ2 + η2)/2σ2} and the reference beam

exp(ikξ)exp{−(ξ2 +η2)/2σ2} . Here, l is the charge of the vortex, θ = Arg[aξ+bη]

is the azimuthal angle, σ is the beam radius and k is the component of the wave

vector along the X-axis. The real parameters a and b define the asymmetry of

the vortex core. The interference of these two beams gives the following intensity

pattern,

Ui(ξ, η) = 2[1 + cos(kξ − lθ)]exp
(
− ξ2 + η2

σ2

)
(4.1)

This equation provides the required CGH for the production of an optical vor-

tex. Here, the field amplitudes have been taken as unity. For a symmetrical vortex
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the ratio a/b is unity, but in the case of an asymmetrical or an elliptical vortex,

a/b 6= 1. In our experimental and numerical results we have chosen several val-

ues of the asymmetry parameter, α = a/b and recorded the images showing the

splitting of the core of the vortices at a fixed distance in free space.

The ellipticity of an optical vortex can be controlled by the azimuthal angle

α. The different values of α, yield different diffracting optical elements to produce

asymmetric optical vortices (Eq. [4.1]). Since α contains a and b, the same can be

achieved by varying the asymmetry parameter α. Therefore, to produce asymmet-

rical vortices, we have made a number of CGH by using different values of α. The

diffracted light from the SLM contains optical vortices of increasing topological

charge with increasing diffraction order. The zero or the central order remains a

Gaussian, and vortices on either side of this central order acquire opposite topolog-

ical charges. To check whether a given beam with a dark core is really a vortex, we

use the interferometric method (the Mach-Zehnder Interferometer shown in Fig.

[4.1]). If the interference of the beam with a reference beam produces a fork or

a spiral pattern (depending on the wavefront curvatures of the interfering beams)

then it proves the presence of a vortex.

In our experimental setup, aperture A1 is used to stop the higher diffracted

orders. The selected first order diffracted beams along with the central Gaussian

are sent to the beam splitter BS1. Therefore, the transmitted part from the BS1

contains the central Gaussian beam and vortices in the first order diffraction. We

select one of these vortices by suitably adjusting the aperture A2 and send it to

another beam splitter BS2. The Gaussian laser beam, coming from M1 and trans-

mitted through BS1, is reflected by two mirrors M2 and M3. It is finally combined

with the selected optical vortex at the beam splitter BS2. In our experiment, first

we record the asymmetric vortex by blocking the reference beam. The image is

recorded in a computer PC2 using a CCD camera, placed at 50 cm from the SLM.

After recording the image of the vortex, we let the reference beam interfere with

the vortex. To equalize the intensity of the interfering beams, for getting fringes

4.2. Experiment 59



Chapter 4. Stability and Propagation Dynamics of High Charge OVs

with a better contrast, we have used a neutral density filter NDF1 in the path of

the reference beam. The interference fringes are recorded in PC2. Another neutral

density filter NDF2, kept in front of the CCD camera, is used to avoid saturation

of the CCD.

4.3 Theoretical Background

Elliptic vortices in an electromagnetic field are one of the solutions of linear as

well as nonlinear wave equations [94,95]. Chávez-Cerda et al. [94] have shown the

existence of elliptic vortices in scalar wave fields as a solution of Helmholtz and

Schrödinger wave equations. The well known LG beams with cylindrical symmetry

are also one of the solutions of the Helmholtz equation in the paraxial approxima-

tion. For mode indices l and p = 0 in the associated Laguerre polynomial (LGl
p),

the LG beam carries an optical vortex of order l. The effect of ellipticity in such

a cylindrically symmetric beam has been discussed by Dennis [92] and also by

Kotlyar et al. [93].

Like all wave fields, propagation of asymmetric vortices in free space can be

dealt with using the Huygens-Fresnel principle [50]. We consider our observation

plane at (x, y), which is parallel to the initial vortex plane (ξ, η) and situated at

a normal distance z from this plane. On illuminating a diffracting object by a

Gaussian laser beam, the resulting expression for the field at (x, y) can be written

as

U(x, y) =
1

iλz

∫ ∞
−∞

∫ ∞
−∞

Ui(ξ, η)exp

[
ikz

{
1 +

(x− ξ)2 + (y − η)2

z2

}1/2]
dξdη (4.2)

Under the Fresnel approximation [50], Eq. [4.2] reduces to

U(x, y) =
exp(ikz)

iλz

∫ ∞
−∞

∫ ∞
−∞

Ui(ξ, η)exp

[
i
k

2z

{
(x− ξ)2 + (y − η)2

}]
dξdη (4.3)

where Ui(ξ, η) is the aperture function used to produce optical vortices by a Gaus-
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sian beam illumination as explained in Eq. [4.1]. Here, k = 2π/λ and λ is the

wavelength of light.

4.4 Effect of Asymmetry to High-Charge Optical

Vortices

We have explored the splitting of high order optical vortices due to the asymmetry

in a vortex core. It has been shown that the asymmetry introduced in the vortex

beam during its generation is adequate for the splitting of the dark core. In Fig.

[4.2], we show the experimental and simulated optical vortices of topological charge

two with zero asymmetry and their interference with a reference beam.

Figure 4.2: Images of a second order vortex and the characteristic interferogram.
(a, b) experimental; (c, d) simulated.

It is clear from Fig. [4.2] that a vortex of charge two is located at the center of

the beam, as the corresponding interference fringes show the branching of one line

into three lines, the characteristic interferogram of a charge two vortex. However,

if we introduce an asymmetry into this vortex beam, the dark core starts breaking

(Fig. [4.3] and Fig. [4.4]).

4.4.1 Splitting of a Second Order Optical Vortex

In Fig. [4.3], we have shown the images of the optical vortices and their corre-

sponding interferograms for different values of the asymmetry parameter.
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(I) (II) (III) (IV) 

Figure 4.3: Experimental results of the splitting of a second order optical vortex on
increasing (top to bottom) the asymmetry i.e. asymmetry parameter α is moving
away from the value 1.0. (I, II) optical vortices and interferograms with decreasing
α = 0.7, 0.5 and 0.3; (III, IV) optical vortices and interferograms with increasing
α = 1.43, 2.0 and 3.33.

Column (I) shows vortices generated through a hologram with different values

of the asymmetry parameter α < 1. The asymmetry to the core increases from top

to bottom of any column. The asymmetry parameter α is defined in such a way

that it is unity for a perfectly symmetric vortex and it goes away from unity with

increasing asymmetry to the vortex core. It is clear from the images of the vortices

and the corresponding interference fringes (column II) that with an increase in the

asymmetry, the breaking of the core into vortices of unit charge becomes faster.

The same is seen to be true for the values of α > 1 (columns III and IV), with

the only difference being that the singly charged vortices align themselves into a

different orientation. The simulated results for the experimental observations are

shown in Fig. [4.4] and found to be in good agreement. These results were obtained
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by numerically solving the Fresnel integral (Eq. [4.3]) with the Simpsons’ one third

rule. The integral was solved by constructing a grid of 800× 800 with a step size

of 6.5 µm in (ξ, η) plane. The propagation distance z is taken to be 50 cm. The

program written in C language was run on the PRL 3TFLOP HPC cluster.

 
(I) (II) (III) (IV) 

Figure 4.4: Simulated results for the same asymmetry parameter values as in Fig.
[4.3].

4.4.2 Trajectories of Split Vortices

To investigate the path followed by singly charged vortices, produced from the

splitting of a doubly charged core, we have plotted the trajectories of split vortices

in Fig. [4.5a] and Fig. [4.5b] for α < 1 and α > 1. The center of a circularly

symmetric vortex has been taken as the origin in these plots. In both graphs,

the position of the vortices has been shown in normalized coordinates for different

asymmetry parameters α indicated in the legend. It should be pointed out that

the value of asymmetry increases along the trajectory on either side of the origin.
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It is clear from the curves that the nature of the trajectories followed by the

split vortices is similar in the two cases, α < 1 and α > 1, except their orientation.

The trajectories followed by the simulated split vortices have been shown along

with their experimental counterparts in Fig. [4.5a] and Fig. [4.5b]. Note that all

these images have been recorded at z=50 cm.
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Figure 4.5: Experimental (open symbols) and simulated (filled symbols) trajecto-
ries of the unit charge vortices after splitting from a doubly charge vortex as the
asymmetry parameter (α) moves away from 1. (a) α < 1 ; (b) α > 1 .
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It is understood that a perturbation breaks the rotational symmetry of a high-

order vortex beam, thereby leading to its decay into single order vortices [92]. In

the present case, an elliptic perturbation is given by the substitution (ξ + iη) →

(aξ+ ibη) into the core of the wave function made on the input plane. It is known,

when a beam carrying two or more single order vortices propagates in free space,

vortices with similar charge rotate in the same direction around the center of the

host beam [96]. Therefore, for α < 1, a pair of vortices initially (at z = 0) located

along the X-axis (Fig. [4.6(III)]) will rotate in the clockwise direction, giving rise

to a negative slope as the beam propagates. However, for α > 1, the vortices which

are initially located along the Y-axis (Fig. [4.6(II)]) rotate clockwise, and give rise

to a positive slope.

 I II III 

Figure 4.6: Symmetric (I) α = 0 and asymmetric (II) α > 1, (III) α < 1 vortices
of order 2 at z=0.

After propagation, the orientation of split vortices depends on their relative

separation at z = 0 . One finds that for α < 1, contours of the amplitude are

elliptical along the X-axis at z = 0, therefore, the initial split vortices are located

along the X-axis only [92]. However, as the beam propagates, the split vortices start

rotating in a clockwise direction [96]. The vortices with smaller separation (lesser

asymmetry) rotate faster than vortices with larger separation (higher asymmetry).

This fact is clear in Figs. [4.5a] and [4.5b]. The inset in Fig. [4.5a] shows that

for a small value of asymmetry (α = 0.90), the vortex separation is smaller than

that for a large asymmetry (α = 0.20). Also, it is clear from the lines joining the
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split vortices that the slope for the vortices with smaller asymmetry (line joining

rectangles) changes faster than that of larger asymmetries (line joining triangle)

as the beam propagates. A similar kind of behavior for the asymmetry parameter

values α > 1 has been shown in the inset of Fig. [4.5b].

The effect of asymmetry on the separation between the split vortices has been

quantified in Fig. [4.7]. Both, the experimental as well as the simulated results

verify our earlier assertion that the distance between the split vortices increases

with increasing the asymmetry. In the plot shown in Fig. [4.7], the distance

between the split vortices is maximum (1, normalized unit) for α = 0.2 and it is

minimum (0.25, normalized unit) for α = 0.9.
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Figure 4.7: Plot showing the increase of the distance between split vortices as the
asymmetry parameter (α < 1) moves away from the value 1.

4.4.3 Splitting of Higher Order Optical Vortices

The splitting of vortices of the order higher than two has also been studied. It

would be quite interesting to observe the alignment of split unit charge vortices
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from a higher charge vortex. In order to demonstrate the effect of the asymmetry

for high-order vortices, we have done the experiment with the third and the fourth

order vortices. The experimental results are shown in Fig. [4.8], where column (I,

II) show the splitting of a third order vortex with increasing asymmetry and the

respective interferograms. Here, the asymmetry parameter α runs as 1.00, 0.70,

0.50 and 0.30 from top to bottom in each column. 

(I) (II) (III) (IV) 

Figure 4.8: Experimental results of the splitting of high-order optical vortex on
increasing (top to bottom) the asymmetry, α = 1.00, 0.70, 0.50 and 0.30 (I, II)
optical vortices of third order and their characteristic interferograms; (III, IV)
optical vortices of fourth order and their characteristic interferograms.

In column (III, IV), an optical vortex of fourth order and its characteristic

interferograms at the same α has been shown. The splitting of high charge vortices
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into a linear array of unit charge vortices (separate isolated dark spots), and their

separation with increasing asymmetry is clearly visible in the images as well as in

the corresponding interferograms. Circles shown in the interferograms represent

the positions of the single fork patterns which are the characteristic of the first

order optical vortices. The simulated results for the experimental observation of

splitting of the third and the fourth order vortices are shown in Fig. [4.9].

 (I) (II) (III) (IV) 

Figure 4.9: Simulated results for the same asymmetry values as in Fig.[4.8].

The simulated results for the decay of third and fourth order vortices are in

very good agreement with the experimental results. The emergence of a linear

array of single charge vortices could be seen after the splitting of a higher charge

vortex.
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4.5 Conclusion

In conclusion, we have shown the effect of asymmetry in experimentally produced

high order optical vortices. It is observed that the splitting of high topological

charge vortices into vortices of single charge becomes more pronounced with in-

crease in the asymmetry. After the splitting, the single charge vortices align them-

selves in a straight row. In addition, we have verified our experimental observations

with numerical simulations. The experimental and the numerical results presented

here confirm results from earlier theoretical studies [92]. The results presented

in this chapter show that the stability of high charge vortices breaks down with

introduced asymmetry to the core. It is also to be noted that in earlier discussions

on the stability of high charge vortices, the perturbation is applied externally after

the formation of the vortex. However, in the present work, perturbation is applied

to the vortex during their production itself. This perturbation is in the form of

the asymmetry to the vortex core. We show that the inter-vortex spacing of single

charge vortices, which break up from a high charge vortex, can be controlled by

the asymmetry parameter. We anticipate that the control over the formation of

a stable array of unit charge vortices will find use in a variety of optical trapping

experiments. However, if one wishes to generate a stable high charge optical vortex

he will have to be very careful on the perturbation in the system. As discussed, a

very small perturbation may leads to the breaking of a high charge vortex.
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Spatial Coherence Properties of

Optical Vortices

We study, experimentally as well as theoretically, the spatial coherence function and

the Wigner distribution function for one-dimensional projections of optical vortices

of different orders. The information entropy derived from the spatial coherence

functions has been used to quantify the information content of the vortices and

compared with those obtained for the Gaussian beam. The experimental results

verify the earlier proposed theoretical results.
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5.1 Introduction

Optical vortices, being points of darkness in a bright background, are easily rec-

ognizable light structures [4]. If one goes around the point of darkness and finds a

phase change of 2πl, it is called a vortex of topological charge l.

Coherence of an optical field plays a crucial role in almost all the issues per-

taining to the fields. Therefore, study of the spatial coherence - a two-point cor-

relation function (TPCF) Γ
(2)
nm(x,, y,;x, y) = 〈E∗(x,, y,)E(x, y)〉 of optical vortices

becomes quite important. Here E(x, y) and E∗(x,, y,) are the optical vortex field

and its complex conjugate at points (x, y) and (x,, y,) and the angle brackets de-

note the ensemble average. However, unlike a Gaussian beam and other fields

studied earlier [97, 98], the field associated with an optical vortex, E(x, y), can-

not be written in a separable form f(x)g(y) [99]. A useful way to study fields of

such two-dimensional (2D) beams is by means of their projections. Agarwal and

Banerji (AB) [100] used this technique in the theoretical study of the vortex fields

described by the Laguerre-Gaussian (LG) modes and derived the spatial coherence

function and also the information entropy for one-dimensional (1D) projections of

the LG beams.

To verify the theoretical results of AB, we produce vortices of different orders

described by the LG modes with a spatial light modulator (SLM). To find the

TPCF, the interference between vortices of the same order is scanned using a

shearing Sagnac interferometer [97]. The TPCF for the 1D projections of the

optical vortices is realized by summing over the contributions along one transverse

direction. The experimentally observed TPCF is used to find the information

entropy or the information content of optical vortices [101].
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5.2 Theoretical Analysis

The field of an LG beam can be written as

uLGn,m(x, y) =

√
2

πw2

min(n,m)!√
n!m!

(−1)min(n,m)exp[−i(n−m)φ]

×exp
[
− r2

w2

](
r
√

2

w

)|n−m|
L
|n−m|
min(n,m)

(
2r2

w2

)
, (5.1)

where r2 = x2 + y2, φ = arctan(y/x), w is the beam waist and Llp(x) is the gener-

alized Laguerre polynomial. For optical vortices, the mode indices, l = m− n and

p = min(n,m) = 0. It is quite intuitive that when we project such a 2D field to

1D, we would not get all the information given by the 2D field, we lose some infor-

mation in the 1D projection. We have compared the spatial coherence functions

obtained for the 2D fields with their 1D projections. Also we have derived the

information entropy, the degree of coherence and the Wigner distribution function

(WDF) for the 1D projection of optical vortices and Gaussian laser beam.

The TPCF of the 1D projection of an LG beam is defined as

Γ(1)
nm(x, x,) =

∫ ∞
−∞

u∗LGn,m (x, y)uLGn,m(x,, y)dy. (5.2)

Since the LG and the Hermite-Gaussian (HG) modes form a complete basis set,

either of the modes can be written as a superposition of the others. For example,the

LG modes can be written as [9]

uLGn,m(x, y) =
m+n∑
k=0

ikb(n,m, k)uHGm+n−k,k(x, y), (5.3)

with

b(n,m, k) =

[
(n+m− k)!k!

2n+mn!m!

]1/2
1

k!

dk

dtk

[
(1− t)n(1 + t)m

]∣∣∣∣
t=0

. (5.4)

Therefore, the TPCF of the 1D projection of an optical vortex field can be written
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as

Γ(1)
nm(x, x,) =

m+n∑
j=0

b2(n,m,m+ n− j)φj(x)φj(x
,). (5.5)

which is known as Mercer’s expansion. In Eq. [5.5],

φn(x) =

( √
2√

π2nwn!

)1/2

Hn(
√

2x/w)exp(−x2/w2), (5.6)

and ∫ ∞
−∞

φn(x)φm(x)dx = δmn. (5.7)

Using the coefficients of the Mercer’s expansion (Eq. [5.5]), the information

entropy is defined by

Inm =
m+n∑
j=0

b2(n,m,m+ n− j)log[b2(n,m,m+ n− j)]. (5.8)

The degree of the coherence is given as

µnm =

∫ ∫
dxdx,|Γ(1)

nm(x, x,)|2

[
∫
dxΓ

(1)
mn(x, x)]2

=

m+n∑
j=0

b4(n,m,m+ n− j)[
m+n∑
j=0

b2(n,m,m+ n− j)
]2 . (5.9)

The WDF that provides coherence information in terms of the joint position and

momentum (direction) phase space distribution of the optical field is expressed in

terms of the TPCF:

Wnm(x, p) =
1

2πλ

∫ ∞
−∞

dξexp(−ipξ/λ)Γ(1)
nm(x− ξ/2, x+ ξ/2). (5.10)

5.3 Experiment

The experimental arrangement to find the spatial coherence function and the re-

lated quantities is shown in Fig. [5.1]. A Gaussian laser beam from an intensity
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stabilized He-Ne laser (Spectra-Physics, 117A) is incident normally to the SLM

(Holoeye, LC-R 2500) using the mirror M1 and the beam splitter BS1. Higher

order vortices are produced in the first diffracted order by introducing different

fork patterns onto the SLM via a computer (PC1). Apertures A1 and A2 are

used to select an optical vortex of the desired order. A polarizer P is used to fix

the polarization (here vertical) of the optical vortex. The vortex with a vertical

polarization is coupled to the shearing Sagnac interferometer that comprises the

beam splitter BS2 and two mirrors, M2 and M3. A quarter-wave plate QWP and

a half-wave plate HWP are kept in common path for the quadrature selection. A

glass block mounted upon a rotation stage is also kept in the common path to

introduce the shear in the two transverse directions. The two counter-propagating

beams are interfered and imaged by lens L onto a CCD camera and recorded in a

computer PC2.

The same procedure is used to find the spatial coherence function of the Gaus-

sian beam, except the forked grating is replaced with a normal grating.

 

 

Figure 5.1: Experimental setup of a shearing Sagnac interferometer for obtaining
the TPCFs and the WDFs for the optical vortices. M1, M2, M3 mirrors; BS1, BS2
beam splitters; A1, A2 apertures; P, Polarizer; QWP, quarter wave plate; HWP,
half wave plate; L, lens; SLM, spatial light modulator; CCD, charge coupled device
camera; PC1, PC2 computers.
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5.4 Two Point Correlation Function of Optical

Vortices

First, we have recorded the interferograms by keeping the fast axes of the QWP

and the HWP parallel to the incident beam’s polarization direction and rotating

the glass block in both the transverse directions. The recorded interferograms with

different lateral shifts contain the information of Re[Γ
(2)
nm(x, y, x,, y,)]. Keeping all

of these lateral shift values the same, another set of interferograms is recorded

by rotating the HWP through an angle of π/4. These interferograms contain the

information of Im[Γ
(2)
nm(x, y, x,, y,)].

The experimental results of the TPCF are derived from the recorded interfero-

grams [8]. We take two sets of interferograms corresponding to Re[Γ
(2)
nm(x, y, x,, y,)]

and Im[Γ
(2)
nm(x, y, x,, y,)] with two different shear values. The same types (real/

imaginary) of interferograms are then subtracted to eliminate the contribution due

to the individual beams. These results provide us with real and imaginary parts

of the TPCF. The absolute square of the complex TPCF |Γ(2)
nm(x, y, x,, y,)|2 of a

Gaussian beam and an optical vortex of order 1 are shown in Figs. [5.2a] and

[5.2b], respectively. In Fig. [5.2b], the darkness seen at the center of the TPCF of

an optical vortex is due to the presence of the phase singularity [102].

 

y, 

x,

a 

y,

x, 

b 

Figure 5.2: TPCF |Γ(2)
nm(x, y, x,, y,)|2 for (a) a Gaussian beam and (b) an optical

vortex of order 1, for fixed x and y.
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5.4.1 One Dimensional Projection of Two Point Correla-

tion Function

Using Eq. [5.2], along with the experimental data for Γ
(2)
nm(x, y, x,, y,) , we obtained

the TPCF for the 1D projections Γ
(1)
nm(x, x,) of optical vortices, with the results

shown in Fig. [5.3]. Figures [5.3a-d] show the theoretical and Figs. [5.3e-h] show

the experimental images of |Γ(1)
nm(x, x,)|2 for a Gaussian beam (l = 0) and the

optical vortices of orders 1, 2, and 3. On comparing the results shown in Figs.

[5.2] and [5.3], one can easily see that the shape of the TPCF of a Gaussian beam

remains unchanged for the TPCF of its 1D projection (Figs. [5.2a], [5.3a], and

[5.3e]), while the TPCF of the 1D projection of an optical vortex changes (Fig.

[5.2b], [5.3b], and [5.3f]). This change for an optical vortex can be attributed to

the nonseparability of the vortex field.

    
  
 
 
   
 
  
 
 
 
 
 
 
 

a b d c 

e f g h 

Figure 5.3: Plots of the TPCF |Γ(nm)(1)(x, x,)|2 for the 1D projections of beams
with topological charges 0, 1, 2, and 3: (a-d) theoretical; (e-h) experimental.

A careful observation of the TPCF of the 1D projections of optical vortices

(Fig. [5.3]) demonstrates that the number of side lobes is equal to the order of the

vortex. Therefore, one can easily determine the vorticity of the unknown beam

from the TPCF of its 1D projection.
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5.4.2 Degree of Coherence

It is evident from the Eq. [5.9] that, for the estimation of the degree of coherence,

we need the Mercer’s coefficient b2(n,m,m + n − j). By using Eq. [5.5] and the

images of Γ
(1)
nm(x, x,) (Fig. [5.3]), we have calculated b2(n,m,m+ n− j) with help

of the least square fitting method. Once the coefficients b2(n,m,m + n − j) for

optical vortices of different orders are known, the degree of coherence is evaluated

using Eq. [5.9] with the results shown in Fig. [5.4].
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Figure 5.4: Plot of degree of coherence of 1D projections of a Gaussian beam (l = 0)
and optical vortices of different order (l=1,2,3).

Figure [5.4] shows a plot of the degree of coherence for a Gaussian beam and

the vortices of different orders. It is clear from the theoretical and the experimental

results that the degree of coherence in 1D projections of optical vortices decrease

with increase of the order. In a different context, it has been observed that the

temporal coherence also decreases with increase in the order of the vortex [103].
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5.4.3 Information Entropy

The information entropy given in Eq. [5.8] is calculated using the Mercer’s coeffi-

cient b2(n,m,m + n − j). It is plotted in Fig. [5.5] with the order of the vortex.

It is clear from the graph that the information entropy increases with the increase

of the order of the vortex. Therefore, according to the information theory, we can

conclude that higher order vortices will carry more information.
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Figure 5.5: Plot of information entropy of 1D projections of a Gaussian beam
(l = 0) and optical vortices of different orders.

Equation [5.8] describes the information entropy, a measure of the disorder, in

terms of the distribution of TPCF for the 1D projections of optical vortex fields.

Thus, the correlation properties of the field will dictate if the information entropy

of the field is increasing or decreasing. It is natural that the correlation between

two points across the field for a higher order vortex with more windings of the

wavefront would be more complex. This increase in the complexity will result in

higher information entropy for higher order vortices.
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5.4.4 Wigner Distribution Function

The WDF for an optical vortex has already been studied by our group [99]. How-

ever, here we are reporting the WDF for the 1D projection of optical vortices and

a Gaussian field. Figure [5.6] shows the theoretically calculated WDFs for the 1D

projections of a Gaussian beam and the optical vortices of different orders, which

have been normalized with their maximum values. The experimental counter-parts

of these results are shown in Fig. [5.7]. The experimental results for the WDF are

obtained by using the experimentally calculated values of the TPCF in Eq. [5.10].

It is clear from the theoretical as well as the experimental plots that the WDF for

an optical vortex vanishes at the center, while for a Gaussian field, it is peaked

at the center. Thus, an intensity minimum at the center of an optical vortex is

manifested in its WDF also. The obtained results show good agreement between

theory and experiment.
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Figure 5.6: Theoretical plots of the WDF of 1D projections of a Gaussian beam
and optical vortices of order 1, 2 and 3 with r = [(x/w)2 + (wp/2λ)2]1/2.
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Figure 5.7: Experimental plots of the WDF of 1D projections of a Gaussian beam
and optical vortices of order 1, 2, and 3 with r = [(x/w)2 + (wp/2λ)2]1/2.

5.5 Conclusion

We have tested a fundamental property of vortices. In contrast to Gaussian fields,

vortices are very unique in their 1D projections. This uniqueness is evident in the

spatial coherence function or the TPCF of the 1D projections of a Gaussian and

the optical vortex fields. It is of a Gaussian shape for a Gaussian field; however,

for vortices, it has characteristic shapes that depend on the order of vortex (Fig.

[5.3]).

In conclusion, we have found the spatial coherence function, the degree of coher-

ence, and the information entropy of the 1D projections of beams with topological

charges 0, 1, 2, and 3. We have also obtained the WDFs for all these beams, which

show marked differences for different orders of vortices. Our results show that a

higher order vortex may carry more information because of its higher information

entropy.
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Chapter 6

Intensity Correlation Properties

of Optical Vortices

In this chapter we study the intensity correlation or the second order coherence

properties of optical vortices vis-à-vis the TEM00 mode of a He-Ne laser beam. We

also study the intensity correlation function for optical vortices passing through a

rotating ground glass (RGG) plate and compare them with those of the TEM00

mode of a He-Ne laser beam passed through the same RGG. We have observed that

the intensity correlation curves for the scattered optical vortices decrease much

faster than the corresponding curve for a TEM00 mode of the He-Ne laser. The

rate of decay of the correlation increases with the increase of the order of vortices.

Our experimentally observed results are supported by exact analytical results.
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6.1 Introduction

The properties of optical vortices discussed so far concern with the electric field

correlation; Mach-Zehnder and shearing Sagnac interferometers are used to demon-

strate the electric-field correlation with the result of interference fringes. However,

in this chapter we would discuss the intensity correlation experiments with optical

vortices. The experiments owe their origin to the landmark work of Hanbury-

Brown and Twiss, dealing with the second order coherence or the measurement

of the intensity correlation [29, 104]. In the 1950s, Robert Hanbury Brown and

Richard Q. Twiss performed a series of intensity correlation experiments to mea-

sure the correlation between intensity fluctuations in the light beams coming from

different sources. As discussed in the first chapter, results of HBT experiments

heralded the birth of modern quantum optics [31].

The intensity correlation spectroscopy and the singular optics/optical vortices

are the two completely different areas of research which are separately finding

numerous applications in basic and applied sciences. However, to the best of our

knowledge, nobody has tried to combine them. Therefore, it becomes imperative to

explore the intensity correlation experiments with optical vortices. In this chapter,

we present for the first time and to the best of our knowledge, the results of the

intensity correlation function for optical vortices of different orders. In addition to

the intensity correlation measurement of optical vortices, we have also scattered

optical vortices through a rotating ground glass (RGG) plate and studied the

intensity correlation functions for scattered vortices [103, 105]. These results have

been compared with that of the TEM00 mode of He-Ne laser under the same

experimental conditions.
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6.2 Experiment

The experimental set-up is shown in Fig. [6.1]. An intensity-stabilized red He-Ne

laser (Spectra-Physics, 117A) with a spatial light modulator (SLM, Holoeye LC-R

2500) is used to generate optical vortices. A fork like pattern is introduced into the

SLM through the computer PC1. Mirror M is used to direct the laser beam onto

the SLM and also used for the fine tuning to form a symmetrical vortex. To obtain

vortices of different orders in the first diffracted order, we have introduced different

fork patterns into the SLM via a desktop computer PC1. After introducing an

appropriate fork pattern, the desired vortex is selected through apertures A1 and

A2 (A1 is used for stopping higher diffracted orders from the SLM, and A2 is used

for fine selection of a particular order of the vortex). In our first set of experiments,

we don’t use the lens L and the RGG plate shown in Fig. [6.1], instead we reduce

the intensity of optical vortices with polarizer P and then send them directly to the

photomultiplier tube PMT and the digital correlator installed in computer PC2.

 

LASER 

PMT 
   RGG 

P 

PC1 

M 

SLM A1 A2 L 

PC2+Correlator

Figure 6.1: Experimental arrangement to study the intensity correlation function.
M, mirror; SLM, spatial light modulator; A1 and A2 Apertures; L, lens; P, polar-
izer; RGG, rotating ground glass plate; PMT, photomultiplier tube; PC1 and PC2,
computers; the digital correlator card is installed in PC2.
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The photomultiplier tube (PMT-Hamamatsu R6358P) with dark count less

than 50 counts/sec and shielded with an aperture (not shown in experimental

figure) of size 0.20 mm, is used for the photon counting. A digital correlator

(Photocor-FC) is used for acquiring the intensity correlation data. There are two

types (linear and multi) of time binning modes in this correlator. We have set

linear time binning mode, through which it stores intensity correlation data upto

maximum 128 channels. The width of each channel is defined as the sample time,

that can vary from 20 ns to 1.3 ms. The operating software (Photocor) for this

correlator is also installed in computer PC2.

Once the data acquisition for the intensity correlation of optical vortices is

over, we move to study the dynamic light scattering with optical vortices. For that

purpose we passed optical vortices through a rotating ground glass plate (RGG). A

lens L of focal length 240 mm is used to focus optical vortices towards the plane of

the RGG plate. The normal distance between the lens plane and the RGG plane is

228 mm. The average inhomogeneity size in the RGG plate is ∼20 µm. The size of

the inhomogeneity is measured using an inverted microscope (NIKON ECLIPSE

TE2000-U, MO 10X) and a CCD camera (Point Gray, pixel size 4.4 µm). The

RGG plate is mounted through a motor and can be rotated around its axis with

different speeds. The speed of the RGG plate is calibrated using an optical method

based on measuring a periodic signal obtained by blocking the laser spot with a

sticker attached to the plate.

After completing data acquisition for vortices of different orders, the fork grat-

ing on the SLM is replaced with a usual grating so as to let the Gaussian beam

traverse the same path as the vortices. Keeping all other experimental conditions

unchanged, we recorded the intensity correlation values for a Gaussian (TEM00)

laser beam and for the same beam scattered through the RGG plate.
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6.3 Intensity Correlation Function for Optical

Vortices and TEM00 Mode of He-Ne Laser

We have used an intensity stabilized He-Ne laser with intensity stability of ±0.1%

over one hour operation. It is known that the intensity correlation function for such

lasers remains constant with respect to the time delay. We have experimentally

tested this fundamental result for the He-Ne laser being used and also obtained the

intensity correlation values for the optical vortices of first and third order. It has

been found that the intensity correlation for optical vortices follows similar trend

as for the Gaussian laser beam. In Fig. [6.2], we show intensity correlation curves

for a Gaussian beam as well as the first and the third order vortices.
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Figure 6.2: Intensity correlation curves for a Gaussian beam and optical vortices
of first and the third order.

It could be noticed in Fig. [6.2] that the intensity correlation data for the

TEM00 mode of He-Ne laser are lying on a flat smooth line, however, for optical

vortices, data points are a bit spreaded around the smooth line. The reason for this

small deviation in case of vortices could be attributed to the change of the mode

6.3. Intensity Correlation Function for Optical Vortices and TEM00 Mode of
He-Ne Laser
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of laser while forming vortices. Optical vortices are generated by the diffraction

of TEM00 mode of the He-Ne laser, therefore one could not expect them to be as

stable as the initial mode of the laser.

6.4 Scattering of Optical Vortices through Ro-

tating Ground Glass Plate

The light scattering by a plane wave has already been worked out theoretically as

well as experimentally and finds a lot of applications, however, light scattering with

helical wavefront has not yet been studied either theoretically or experimentally.

Therefore it would be worthwhile to pursue the field that can supplement the

knowledge gained by the plane wave scattering. Here, we have started the dynamic

light scattering study with optical vortices. As a dynamic scattering medium, we

have taken a rotating ground glass plate that has been considered the simplest

device for such studies (details are given in Experiment section). A Gaussian

laser beam and the optical vortices of orders 1, 4 and 7 are scattered through the

RGG plate. Figure [6.3a] shows the experimental results obtained for the intensity

correlation function of a Gaussian laser beam and for the optical vortices of different

orders at a linear speed 645.1±0.8 mm/sec of the RGG plate. It is clear from the

curves that on passing optical vortices and a Gaussian laser beam through the same

RGG plate, the intensity correlation function of optical vortices decreases faster

than that of a Gaussian laser beam. The decay rate of the intensity correlation

function is quantified in terms of the correlation time, which is the time at which

the intensity correlation function falls to 1/e of its maximum value. The points in

Fig. [6.3b] show the calculated correlation times obtained from the experimental

intensity correlation curves for the optical vortices and a Gaussian beam. The

point for the Gaussian beam lies much above the points for vortices.
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Figure 6.3: (a) Experimental results for the normalized intensity correlation func-
tion of the scattered TEM00 mode and scattered optical vortices of order 1, 4, and
7; speed of the RGG plate is 645.1±0.8 mm/sec. (b) Correlation time vs. order of
the optical vortex.

We have repeated the experiment with the different speeds of the RGG plate.

In Fig. [6.4(a,b)], we show the intensity correlation curves with linear speed of the

RGG as 879.4±0.4 mm/sec, and corresponding correlation times.
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Figure 6.4: (a) Experimental results for the normalized intensity correlation func-
tion of the scattered TEM00 mode and scattered optical vortices of order 1, 4, and
7; speed of the RGG plate is 879.4±0.4 mm/sec. (b) Correlation time vs. order of
the optical vortex.

The results of the intensity correlation experiments are seen consistent at dif-

ferent speeds of the RGG. It could be seen that the slopes of the correlation curves

are increasing with increasing speed of the RGG plate, which is the well known
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observation in dynamic light scattering, it proves that the digital correlator we

have used is working properly.

6.5 Theoretical Analysis

The electric field amplitude of an optical vortex of order l propagating along the

z direction, at the plane (u, v) just after the spatial light modulator (SLM), is

given as (we have ignored the overall phase factor owing to the optical path length

throughout)

E1(u, v) = E0(u+ iv)lexp

[
−
{

1

w2
+ i

k

2R

}
(u2 + v2)

]
(6.1)

where w = w0

√
1 + (z1/z0)2 is the radius of the Gaussian beam containing the

vortex, w0 =0.3 mm is the beam waist at the laser exit, z1 =1000 mm is the

distance between the laser and the SLM, z0 = πw2
0/λ, R = z1+z20/z1 and k = 2π/λ

is the magnitude of the wave vector of light with the wavelength λ.

The field E2(x, y) at the receiving plane of the ground glass is calculated by

using the Huygens-Fresnel diffraction formula. Thus

E2(x, y) =
ik

2πB

∫∫
dudvE1(u, v)exp

[
− ik

2B
{A(u2+v2)−2(xu+yv)+D(x2+y2)}

]
(6.2)

where the ABCD matrix for propagation of light beam from the SLM to the RGG

plate have been calculated as A = 1− z3/f , B = z2 + z3 − z2z3/f , C = −1/f and

D = 1 − z2/f . Here, f = 240 mm is the focal length of the lens, z2 = 700 mm is

the distance from the lens to the SLM, and z3 = 228 mm is the distance from the

lens to the RGG plate.

Because the ground glass rotates with a constant angular velocity, the inhomo-

geneities in the RGG plate through which the laser/vortex scatters are repetitively

changing. Figure [6.5a] shows a schematic of the focusing of laser towards the plane

6.5. Theoretical Analysis 89



Chapter 6. Intensity Correlation Properties of Optical Vortices

of the RGG plate and Figs. [6.5(b,c)] show the geometry of RGG plate used in the

experiment. The annular ring (Fig. [6.5b]) indicates a small section of the RGG

plate from where the light is scattered, and the small circle within the annular

ring shows the laser spot (not to scale) on the RGG. As a result of the rotation of

ground glass, an inhomogeneity situated at a point P(x, y) is moved to P(x,, y,) in

a certain amount of time τ . The linear velocity V of the RGG can be resolved into

two components, Vx = V sinφ and Vy = V cosφ, where φ is the angle subtended

by the inhomogeneity at the x-axis in time τ . Hence, the new coordinates for the

inhomogeneity become x, = x+ V τsinφ, y, = y − V τcosφ.
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Figure 6.5: (a) Focusing of laser/vortices towards the plane of rotating ground
glass. The lens has been kept at (u, v) plane and the rotating ground glass is located
at a distance z from the lens in (x, y) plane. (b) Annulus ring shows the portion
of ground glass from where the light is being scattered. (c) Magnified laser/optical
vortex spot. P (x, y) was the position of a particular inhomogeneity which has been
moved to P (x,, y,) after a certain time interval τ .
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On using the new set of coordinates in Eq. [6.2], one can get the field amplitude

E2(x
,, y,) at the ground glass after a certain time τ .

The inhomogeneities of the RGG plate scatter the incident fields E2(x, y) and

E2(x
,, y,). Therefore, the resultant field at the detector can be calculated by taking

the superposition of all the field amplitudes scattered by each inhomogeneity. The

diffraction effects produced by each inhomogeneity can be summed up [106, 107]

to account for the modification produced in the incident fields due to the RGG.

The final form of the normalized field correlation function for the vortex scattered

from the RGG is given by

g(1)(τ) = α(τ)/α(0) = exp

[
− ik

2B
(D − 1)V 2τ 2 − 1

2

(
V τ |ζ|
w

)2]
×

l∑
j=0

1

j!

[
−Dζ

(
V τ

w

)2]j
Ljl−j

[
− ζ2

2

(
V τ

w

)2]
(6.3)

where

α(τ) =

∫∫∫
dxdydφE2(x, y)E∗2(x+ V τsinφ, y − V τcosφ), (6.4)

ζ = 1 +
ikw2

2B
(1− A−B/R) (6.5)

and Ljl−j(x) is an associated Laguerre polynomial.

For a large number of scatterers, i.e., in the Gaussian limit, the intensity cor-

relation function g(2)(τ) ∝ |g(1)(τ)|2. The theoretical results of |g(1)(τ)|2 obtained

from Eq. [6.3] have been shown in Fig. [6.6a]. These results show a good similarity

with the experimentally observed results for g(2)(τ). The correlation times shown

in Fig. [6.6b] are the calculated values from the theoretical plots of |g(1)(τ)|2.
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Figure 6.6: Plot showing analytical results for (a) |g(1)(τ)|2 at the speed of RGG
plate 879.4 mm/sec and (b) correlation time obtained from |g(1)(τ)|2.

The results presented here bear a good similarity with the decoherence of optical

vortices stored in atomic ensembles [108]. The theoretical results presented in [108]

deal with diffusion-induced decoherence of the stored optical vortices in atomic

ensembles. It shows that the coherence of optical vortices stored in such atomic

ensembles decreases faster than a stored Gaussian beam, and also it decreases
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with the order of vortex. We have observed a similar behavior in our intensity

correlation experiments. We attribute this similarity to the topological structure

of optical vortices.

6.6 Summary

In the work presented in this chapter, our motivation was to observe the results

of the second order coherence function of optical vortices and the dynamic light

scattering with optical vortices. Although, there is not any significant difference

between the intensity correlation curves for optical vortices and the TEM00 mode

of a He-Ne laser. However, we see a clear difference in the correlation curves

for scattered Gaussian beams and optical vortices; the intensity correlation of

optical vortices decreases faster than that of a Gaussian laser beam. It means that

for a given dynamical system the optical vortex is addressing the phenomenon

on a different time scale than the Gaussian beam. We feel that the observed

dependence of the correlation time on the order of the vortex can be effectively

utilized to extract additional information about the system that might otherwise

not be possible.
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Summary and Scope for Future

Work

This thesis deals with the basic properties of optical vortices. The introductory

chapter gives a broad overview of the singular optics, optical vortices and their co-

herence properties. We have observed that the resolution of the CGH introduced

into the SLM is a key factor that determines the size of dark core of the vortex.

The single charge vortex is found to be very robust and it is not destroyed even

after the diffraction through an iris aperture. However, high-charge vortices are

very sensitive to the perturbation or asymmetry, they break into equal number of

unit charge vortices. The field of vortex beams can not be written as only the

function of either x or the y coordinates. Such field distributions can be studied

in one dimension by taking their projections. The degree of coherence of optical

vortices in their one dimensional projection decreases with increase of the charge

of the vortex. In intensity correlation experiment also, it has been observed that

degree of temporal coherence of vortices scattered through a rotating ground glass

plate decreases with increasing charge of the vortex.
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The present study can be summarized as below:

Chapter 1 gives a brief introduction of the subject i.e. singular optics and

optical vortices. We show that the Laguerre-Gaussian beam containing phase sin-

gularities or optical vortices is one of the solutions of scalar wave equation under

the paraxial approximation. There could be other solutions also which contain

vortices, one of them being the higher order Bessel beam. After the discussion on

optical vortices, the first and the second order coherence properties of an optical

field has been discussed in detail with their historical development.

In chapter 2, we discuss methods for the generation and the characterization

of optical vortices. Vortex generation through the computer generated holography

and the spatial light modulator are the most common methods which have been

discussed in detail. A technique to design an optical vortex with a variable core size

has been enumerated. It uses the resolution of the computer generated hologram as

a parameter for controlling the core size. The other methods like astigmatic mode

converter and spiral phase plates have also been discussed in brief. After providing

methods for the generation of optical vortices, we highlight different characteristics

like topological charge and orbital angular momentum of vortices. The last part

of the chapter deals with the propagation properties of vortices.

In chapter 3, we have elaborated the diffraction characteristics of optical vor-

tices. Although the phenomenon of diffraction is a very old concept in classical

physics, nevertheless, it plays a role of utmost importance in many branches of

physics and engineering that deal with the propagation of waves. The Fresnel and

Fraunhofer diffraction of light through the circular aperture are well known with

Airy pattern being one of the most ubiquitous diffraction patterns in optics. In the

first section of the chapter, we have studied the diffraction effects produced by an

iris diaphragm. It has been observed that the diffraction of an optical vortex and
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a Gaussian beam through an iris aperture produces ball bearing sort of structure

of darkness and brightness. The singularity of the vortex beam is found to be

persistent even after diffraction through the aperture. The presence of singularity

at the center of the diffraction pattern of an optical vortex has been confirmed by

interferometry. In the second section, the diffraction through a two dimensional

sinusoidal grating has been discussed. We find that the diffraction of optical vor-

tex through a two dimensional sinusoidal grating produces four copies of vortex

with the same topological charge, which may be useful in making copies of vor-

tex with same orbital angular momentum in the context of optical communication.

Chapter 4 presents the stability and the propagation dynamics of high topo-

logical charge optical vortices. We introduce an asymmetry in the core of a high

charge optical vortex by using an appropriate computer generated hologram. The

splitting of a high charge optical vortex core into unit charge vortices has been

found to depend on the extent of introduced asymmetry. For a second order vor-

tex, trajectories of the split unit charged vortices and their separation have been

recorded as a function of change in the asymmetry of the core. We also study the

effect of core asymmetry to the third and the fourth order vortices which form an

array of three and four unit charge vortices. We find a good agreement between

the experimentally obtained and numerically calculated results.

In chapter 5, we examine the spatial coherence characteristics of optical vor-

tices. Here, along with the spatial coherence, the information entropy and the

Wigner distribution function have also been derived for the one dimensional pro-

jection of optical vortices. The spatial coherence functions of the one dimensional

projection of optical vortices show characteristic features for different orders of the

vortices. The degree of coherence is found to be decreasing with the increase of

the order of the vortex. On the other hand, the information entropy increases with

the increase of the order of the vortex. The experimental results verify the earlier
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proposed theoretical results.

Chapter 6 describes the intensity correlation or the second order coherence

properties of optical vortices vis-à-vis the TEM00 mode of a He-Ne laser beam. We

also study the intensity correlation function for optical vortices passing through a

rotating ground glass (RGG) plate and compare them with those of the TEM00

mode of a He-Ne laser beam passed through the same RGG plate. We have ob-

served that the intensity correlation curves for the scattered optical vortices de-

crease much faster than the corresponding curve for a TEM00 mode of the He-Ne

laser. The rate of decay of the correlation increases with the increase of the order

of vortices. Our experimentally observed results are supported by exact analytical

results.

Scope for Future Work

The intensity correlation properties of optical vortices need to be studied in

more detail. In future, we would be studying intensity correlation properties of

vortices scattered through different dynamical systems. Also, we would work on

finding the exact relationship between first and second order coherence of optical

vortices for these dynamical systems. Although, the intensity correlation properties

of optical vortices scattered through a RGG plate has been discussed, the photon

statistics of vortices needs to be explored. The photon correlation experiments

with very less number of photons of optical vortices would be studied.

The spontaneous parametric downconversion experiments with a BBO crystal

has also been planned out. Firstly we would generate the polarization entangled

photons. As discussed, optical vortices carry one more degree of freedom i.e. the

orbital angular momentum, we would also work on the entanglement between the

orbital angular momentum states of vortices. We would perform the spontaneous
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parametric downconversion experiments with optical vortices and use the coinci-

dence technique to detect the entangled photons.

It has been observed that two vortices of the same charge, sitting in a same host

beam (dipole vortex), rotate around their common center as the beam propagates.

The rotation speed depends on their initial separation. We suggest a technique to

measure the refractive index of a material based on the rotation of dipole vortices.

We will take samples of different refractive indices and pass a dipole vortex through

them and measure the angle rotated by dipole vortex. The measured value of

rotation angle for different samples can be used to calculate the refractive index

of the materials of samples. We would experimentally implement this technique in

future.
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