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There are btwo major problems in nuclear structoure

calentiationg, One concerns the nowledge of the two-body

interaction operating between the nucleons inside the

mueleus. Other relates to the golution of the many~body

gehrondinger eduation, In a wvay, bhoth
rutually dependent in the gense that the knowledge OF the
tvo=-body interaction will pave the way for the solution
of the mahy-body problew. In fact verinus schiemes and

methods for golving the rany-body problem have been deviged,

one or the other asbect of the two-body

3 L. -

interaction., 4s we are interested in the deformation oI
nuclei, we mainly concentrate on the field-producing proper—

the tuo-bhody interactions which cause thege deforma-

work in the fomalisms baged

The deformed Hartree-Focl (HF) fon is one yhich met

~'~1

iderable =snccess In describing thie pdroperties of

N » ) N - ) . ) .
heoretical model due Lo Tlliott which can

m ey e o e Sy o ] o J 3 o
rotational gpectra which are 50 characterigtic of

deforried nuclei, The success of this model should be explained

In terms of the nature of real two-body effective interaction.

o
|

The success or failure of a particular interaction in

any particuvlar case cannot be expleined easily unless one
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. £ailed etudy of the important congtituents of the
makes & detailed study of € I :

interaction, It ig Inown that ac the niclear interactions

Lre short-renged, the interactions in the gtate of relative
ar I

 anau1fw mopentun 1=0 of two nucleons form

of the interaction. These dinteractions are called gl gtate
. 1 n T ey e ey ey e 1 B g ey e
interactionz. Therefnre it zecers 0O be 0 great lmbortance

)

to gtudy the properties of 'g! state dnteractiong.

[V NI

ed in this thesis has been motivated by

rith the vnderstanding of trne nature of

)

raction. Second consideration tries o geek the proper
formallisn 0 describe the excited states which do not belong

t0 the ground stabte band.

. A
i ]

[n the beginning we have briefly reviewed the mogt

1

important and relevant developments in Nuclear Physicg in the

consext 01 the work presented here znd also described its

5¢0pe ond motivetion at gome length.

o

il Then we have studied the @Tg properties of

natrix elements of the clear interaction in general

,
e
)
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=
o
1
]
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in particular, both in

shelle. This study enables us tn understand the success of

353 scheme in the 1d-2s shell and it also clearly brings out

the limitation of this scheme as we g0 to 19-2p ghell.

and

ap



Tater we have discugssed the properties of tg! state
‘nteractiong in DI fommalism in LHL 1d-2g shell. Not only
these properties can throw light on the beghaviour of a

particular interaction, but also they brovide clues Lo use

these rodel interactions to nroduce the desired effects,

e heve alsd made the detalled analysis of the two-body

cffective intercctiong in the 11-2p shell. The vhole inte-

shell is dominantly d.q type and the abgsence of well-developed

spectra in the Lf=-2p shell is mainly due to the unfavourable

l..._I

sequence of gingle particle energles.

Ls a part of the study of the effective interactions,
we have studicd the effects of core-erxcibetiong in both HE

and SU, formalisms. The study is made in the 1ld-2s shell. The

results are discussed in the 11

07 conrdinate method

streined HIY

oo quite

~

ned from exact shell model

well upto 12 eV with thoge obte

calculationg.



Later we have discussed the pro

T

[FE SO Sy T J i Ty L ER
interactions in BT formalism in the
. FR " . = de T g ISR T .
thege properties can throw light on

o] mny

ol 5 G

these nodel interactinonsg to droduce
Je heve also made the detalled
effective interoctinong In the 11-2)
raction 1s expressed in the basgig 0l
reveals that the effective to-body

.4 Tyne and the

u;

gspectra in the 1Lf=2p ell 1s mainly
sequence OFf gingle particle energles

L a part of the study of the e
we have studicd the effectg of core-

pert

ties Of

1d-2g shell. Not only
the behaviour of a

v nrovide clueg to u

AL

sSe

the fects,

degired ef

alvsis of the two-body
shell., The whole inte-
SU. scheme. Thig enalysls

sgsence of well-developed

due to the uvnfavourable

HF

and formaliems. The study is made in the 1d=-2g shell. The
results are discussed in the light of the conclugions rcached in
4-1 a PDravi il e I} ’ o
chne _ple‘\/l'd,; :]‘L [CRARSTN

Finelly we have adpplied the generator conrdinate method
) - ] 1. ')O'n'r ¢ T e 2.1 4. 5 1 TITD
to calculate the “YNe spectrmum by usli the congtrained HT
states as basis. The resulte thus obtained compare duite
well unto 19 eV with those obteined from exect shell model

calculatinng,
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CHAPTER T

Introduction,

The theory of nuclear structure poses two major problems.
One reletes to the knowledge of the interaction operating
 \5éthen two nucleong ingide the nucleus. The second problem
is:cnncerned with the solution of many-body Schrodinger
equation. 1In a way, these two problems are inter-dependent.
The solution of the first problem cannot be obtained unless
one can solve the second problem at least approximately, if
not exactly. On the other hand the nature Qf the interaction
has a direct bearing on the possible solutibns of the many-body
system. The present thinking regarding the nature of the
inter-particle interaction ig based on the following Argumentcs .
\V\Th@ nuclear physics which is essentially a low-energy physics

deals with non-relativisgtic systemg and hence the mesonic

degrees of freedom of inter-particle interactions can be

'

fY

suppressed leading to the concept of an inter-nucleon potential,
The potential which can form a stable and strongly bound
huclear system is considered to be overall attractive and
short-ranged. It is further assumed that this poténtial is a
two-body potential. Apart from this, currently accepbed models

of the pontential contain exchange terms, as well as non-central

terms like tengor, spin-nrbit cte. Such models are quite

@]

complex, and several of them scem equally acceptable for

Nuclear struvcture studies. Thus even though we have a good

fecling for the qualitative aspects of nuclear interactinng,



we dn not have a unldue knowledge nf its form,

As far as the exact golution

oo

strength etc,

of the many-bndy system ig

anncerncd, ~ne knowg that it lg a mathematically complex

tagk and therefnre needs tn he snlved through appropriate

Capproximatlong about the behavisur of the gystem.

Higtorleally these problems have been tackled in the

following way. It was agsuned that the nuelesns in the bound

nuclear system erc wmoving approximately independently of each

nther in an average pntential

all nther particles,

galled an 'independent particle model!t.

This assumption gives rise t» what is

The development of

shell mndel which essentially specifies the frrm of the

average potential to be used in the independent particle

picture hag approximately snlved the aecnnd problem. Mayer

and Jensenl> first suggested that the

form of

the average

potential is that of a spherically symmetric harmonic oscilla

well. The actual shell-model botential is geners

ag

The term in the bracket on r.h.s denotes

spherical harménic o6s617114

Corresponds o the ginglé particle

S

50

v potential., The

T

spin-orhit

the thirg berm corresponds 10 the interaction

the usual
second term
interaction and

of the orbit

field created by the prescnce nf
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niclel and can alezo

moments of nuclel

with one valence particle.

faith dn shell wodel. Later such shell model calculationg were

The calculationg

more than one valcnce particles 1s briefly stated as follows.

are divided into two groups, the

The

g, The core ig

core nucleons and the

t0 be dnert go far as the propertics of lww—lying sta

nucledl are conce In »other words the zssumption

s E 3 . .
This meang 4} Lowvi-1lying stetes nf nucleugs

emerge nly from the valence perticles interactin

o
o

a The

the 'regidus

~ T T e R [ Ot S SV
’)Lcu“p.y %]l_‘gi 5 L)C,L.f. _L 1c ,J, € 500 IL; cs Il oa g i vien

& -1

m o T T e, e a0V B TR I B - . 0 [ »
The mixing of differcant cmfisuretiong will

7”tbr wetinn,  The twosbody matrix clements of the residual

Interaction which result in the counling
enter ag input information in In

culatione

W ona
brief, one may aay that L)




riltonian matrix for a given

of congbructing &

reaidual interaction in & given configuration space, which ig

subsequently diagonalised giving us various energy eigen valueg
su

and corresponding eigen functions.

It will be noticed that the advent of shell model hasa

modified the first problem slightly. What is now redquired in

the framework of shell model 1s the residual interaction in =
chogen configuration space and not the actual free nucleon-
nucleon (N-N) interaction, In fact the shell model assumes
that the main part of the total V-1 interaction has
absorbed in the average shell model potential which cenerabes
the basis states required for complicated shell-model calcula-
tions., To find a residual intersction which is wesalk enough to
justify a first order perturbation t}eatment over basis states
is the new problem in the frameswork of shell model. Wbeulo

to say, the form and nature of this intersction would:be a
function of confignration space used for shell wodel calculations
It also presumably depends on the numbar of valence particles.
Therefore the residual interaction is the 'effective interaction!
between = number of active valence ﬁucleons in a limited cdnfim

guration space of azingle particle states.,

In carly years, varioug® ghell model calculations were
Performed with simple residual interac tiong vsing different
coubling schemes. The "intermediate coubnling! scheme is

breferred to L-9 or J=J coupling schemes. A pure central orce



5

produces 1~-5 coupling while a pure gpin-nrbit force prnduces
=i coupling. As the nuclear interaction Cﬂgtains both the
ingredients, 1t is supposcd tn produce the 'intermediate

cwpling'. It should be pointed Qut hryever that there 1g no
pule for cnmstructing an 'intermediate coupled' state nther

than by ﬁhe fwll diaghalisatin »F the energy matrix in L-S
1

ar j-J coupling basis states.

The form Of regidual interacti-n was still unknown in
early days and hence a phenmmenalngical approach wags adnpted.

There are three ways »f parameterising the effective interaction.

@

a4y . . s , : . . b o
One*> 1g TN assume sNme analytical Torm »f the interactinn (shape
range, depth, exchange nature etc.) and fit its parameters sn as
tn get the best possgible agreement with observed snergy levels

5)

ard other nuclear properties. The second way~’is to treat all
the two-body matrix elements of the effective interaction
required in the calculationg as parameters and fit them to get
the observed energy level schemes. This method has a limited
scope and can be used only when the number of two-body matrix
elements involved is small. Alternatively the third method6>
is very useful. In this method the number of two-body natrix
elements (Lo be treated as fres parameters) is reduced by
€XPressing them in terms of a small set of radial matrix
elements, This expression is simple and practical if the
miclear interaction is assumed to be central, Another advan-

tage of this method is that no cexplicit radial dependence of



the interaction needs to be assumed. These parameters or radial
matrix elements are again fitted to get the best POsgsible

acrecment with observed nuclear cnergy levels. The shell model

fo)

alculations have been vsually performed using a j-j coupling
\schemé and all the three methods for the residvual interactions,
’Thé dramatic success of such calculations revealed tyo major
points. TFirstly the assumption of an independent particle model
and the comsequent existance of a single-particle potential seer
to have been amply justified. Secondly, with a suitable degree
of configuration mixing and an approprizte choice of two-body
effective interactions, it is possible to explain and predict

a large body of experimental information on nuiclel.

Apart from the phenomenoliogical approach there arc nther
Tfundamental approaches to understand the two-bndy effective

argued that microscopic considerationg

—
o+
O
iy
3
o~
[42]

interactions.

T

should Jead to this effective interaction from the Ohserved N

interaction, as abstracted from N-W scattering data and
deuteron data. The interactions derived by analysing scattering
data are called the frealistic interactions'. Many such poten-

ﬁials are now available in the liter&tur@7), Usually such
interactions are singular in nature (i.e. contain infinite
Tepulsion at short distance). Therefore they cannot be usged
in the shell model calculations directly. An effective
interaction can however be cxtracted from these singular

oy
O

Tealisgtie potentials using Brueckner-Bethe-Goldaetone formaliam.
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agveral such calculations are available in the literature )w
seveld '

Jome ttenntu 0) have also been made to derive the

tpealiztic interactiongt from field theoretical point of view.

slthough there does not exist a completely satisfactory field

thenretical derivation of nuclear interactions, some se smi-field
tﬁedretical considerations have been used in deriving such
interactions. The long-ranged pert of the interaction whichis
relatively weak is now lknown to result from cxchange of the

Je

well known 77 meson, while the short- ed part of the

interaction for whiich mwultiple meson exchange elffects become
irportant is treated phenominnlogically. The one boson exchange
potentials (OBEP) are the results of such phenomennlogical

i}
i

calculuatinneg In wh

[

he effects of multiple meson exchange

—~
]

tic
cat short distances ars simulated by the exchange of different

types of hezvy bhogons.

calculations

oo it was realised that the

nr nuclel with wore than twn vslence nrclenns 1s a prohibitively

complicated inb. The size of the Hawiltonien watrix tn be

ses very rapidly as the number of valence

chmstructed incre
nucleong and the configuretion space becmme larger and larger
and even bilg computers cannnt handle the situation beyond a

certain ILimit. Shell model calculatinng with six valence

particles in the configuration space containing three single

amnle in 1d-2s shell) have beesn

129

narticle levels (£nr e

1 o . . o .
repnrbed ? Similar calculatimnms O nuclel with more than
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the cofiguratinn space

[

whenever

level schemes

feagl

W

space

_mwathnds

Many
the

.‘jf

schemes

o Very impﬁfﬁaﬂt

DIré

stated

cnuld

snd

sHlving

an \J

be done

A11 these

foct that

Ao

atlie

abnve,
vhean the numb

are both large.

rethnds have been

reproduces

properties

the

gr Of

Therefnre

The imponrtance nf pairing in

'segninrity
= S _ 4. 14
Schriffer (BC3) formalism
forraligm

interaction.

ction ig

Hartree-Fock-Bognlyubnv (HFB) iirmfIWCu] )

On the

of Bohr
cing ¢
way of ta
interac

Forther,

and

tion i

lg

the

W”)VLLHLU

king

93}

the

scheme

algn

Nther
Mt

in

the

(13

hased
The mnre

aglf-~cnne

elann

introduced the vse of

ond,

,,,,,,

The later develnpment

nn

shphisticated developrent

igtent

shaell

noe

the

)
the

only usi

valecnce

nther important characteristic

1

which

orra

all

the

n

iy e

rection

ig

reas

19

Hi(

SUCCEess

indiceted the

dwrinance

sme

calculs

sy

L

scheme

the relatively gimple

me however

catures of

mably well.

nne has

PTOpPNS

ig

55

dnminance

o
fa=

mrdel calecul

clenng

tn

ed

twn-bndy

nera

nf the

tyo-hody interaction.

well-known

group

symmetry comgideratins

tdefnrmed Hartree-

find

ations

stressing

atressed in

of Bardeen-Cnoper-

n{ palring

11y kn

cnlleet

~f the field-produ-

The

into acenunt the field-producing part

N the nueclear

}«nr<|1cuL nethndg in

for

~1E

in

Pock!

truncating

the

are

some

the

in

this

garsel

ive

N1

RISES

reveal
shell mndel

nuecle

nnt

and the configuratinn

the many-body problew in nuclear physics.

interactins.

senticlly a vardational
ro-bndy
dire

o

(SRS

mdel

self-consistent
tha

. e
Formallsm

Hamiltr

nuclear

nther

o



N Ellintt, which

. at g o e The 9. f scheme
structure calculationg., Th U4 "

entially diagonalises the dominant field-producing comprnent
gssent it : ‘

=t

Fod

Q.Q of the interactinn, has been quite successful in study of
the defnrmed nuclel in 1d-2s shell, Since the wnrk we will be
presenting here concerns wainly with the study of the defnrmed
 hﬁéléi, we will descxibe the ‘SUB scheme! »f Bllintt and

tdefnrmed Hartree-Fock' formalism a little more elabnrately in

the fH11nwing paragraphs.

1. SUB Scheme

The SU8 scheme 1s deviged tn find the eigenfunctinng and
eigenvalues of the many-body system in the frame work »f shell
model. This job can be very well simplified, if we study the
symmetry properties of the nuclear Hamiltonian under congideration,
 In nther wordsg, if the Hamiltonian itself is invariant under
some group, the elgen functions nf such a Hamiltonian belnng
tn mne of the irreducible representations of that group and the
eigen values can be found analytically. The nuclear many-body
problem has been tackled using such group theoretical methods.
The SUg scheme developed by Elliott is one of such methods
based on the invariance of nuclear Hamiltonian under SUB

transformation group.

The nucleons are fermions and hence the nuclear wave
functions mugt be antisymmetric with respect to exchange of all

¢coordinates of any two nucleons. That is Lo say that the
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puclear man r-body wave functions belong to the anti ijGu(lC
: 2

tation of the permutation sgymmetry group. The SUI_3 scheme

that the nuclear forces are independent of gpin and

Iy

trateg of nucleons, Therefore the nuclear wave functilons

”xi1e”charactcr_zed by space coordinates only. These wave functions,

therefore, can be clasgsified according to the irreducible repre-

sentations of permutation group Sk(k = no. of particles). 1I%
ig well known that the classification acc ll“Lf to dlrreducible

representatinng of Sk is eguivalent to that according to the

irreducible representations of the group of all the unitary

trangformations between 's' gingle-particle bases i.e. the group
Fu

Us" rther it wag shown by Jouch and Hi1117) that a spherical

harmonic oscillator Hamiltonian in three dimensiong commutes with
the operators of the group Us. Therefore the eilgen functiong of
harmonic nscillator are labelled by the irreducible representa-
tion of Ug and there 1s a degeneracy of functinns belonging to
the same representations. The functions which transform accord-
ing tn on irredvcible representation of US algo btransform accnrd-
ing tn an irreducible representating nf SUSD Thug the gpetial
meny-body wave functions in a given major ngcillator shell
transform acenrding 0 o definite drreducible representatinn

Of permmatetion and S“U groups. Ffarther 1t was shnwn that Ry is

& subgroup of 3U0.

. Thie implies that the wave functinng can be
) A

Turther clagsified according tn the irreducible representationsg

D Re. Thus the wave function in this scheme can be written as
)
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bR Ay W e e £ A et . i
Jre o b where I hdenntes the permutatinn

. G
Blliott ) and Banerjee and

wave

worde we mast find out the
by oU save Tunctione, TLlintt hag shown thet the twn=hndy

lnt cIac b i on

Vo= (1/4) (Q.9) # 3(1.1) where § : a

i

T 1o s = v the o PO fune ki i
will bg diagmmalised by the U, wave functiong. In other wor

5 al
rp

will no ix gtates of diffe: il / ’
v l_.l not mix states of different D‘UB symmetry ( N\ aA),  But

“ Ak s . e g oy  F e 1 2 1. by 4
( 21;137 SUs symmetry and L>RB syrmecry. The detaile

ne
L .183 The next tagk is 4o e '
Levingon . 16 ne ¢ 1s to show that th 3 many-body SUg

e 10 i o oy s1loanln Trirn g s yE 4= T i1 3
functinn 1s an eigen Tunctin »f the Ha aniltonian, In other

ds

wtho wave functionsg have alagn grod angular momentum L. Therefnre

y b -‘ ) 1 e Fla e A 5 !
they will diagnnalise the tern (L.L) end hence the term 0eQ is
e o

alsd disgnnal with the cigen values

Qa0 = (/\ /‘-"‘\) -~ 3L (L % 1}

-

the Cagimir »sperator for

Ao e
SLaTCs

4 . given Y. o 4o ! x
Blven ( A M) symretry but with

fml-l [ Y - RN SIS SRR N y ]
il the rotatinngl setuence L(L 4+ 1),

Blliott has done shoell with thi
Pin S NI S L FRA A g . f)'

mdel,  He could zot g

Yhserved spectra

in 1d~2. the

Uz
~
)
[
—
Z
S
N
)

of central interacti

s,
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7t was shown by EI110Lt that the 'L' states projected from SU5
S, W 2
intrinsie gtates corresponding to maximum eigen value of Casimir

apératOT give good agrecment with the low-lying states of nuclei.

, Moreover 1t was also found convenient to use the state of 'maximum
\*Qgiéﬁtr’of a given SUB representation for calculation of low-
IYing gpectra of nuclei. The state of 'maximum weightt' is

defined as that state which has a raximum (or minimum) quadrupole
moment. It was further nbserved that the SUB representation nf
highest elgen value of Casimir operator belongs to the highest
spece symmetric representation. This s expected as the nuclear
forces are short ranged and chmgedquently their contribution to

the enti-symmetric states in space 1s much smaller compared o

that of the symmetric states in shace,

This scheme is somevhat rigid in the sense that it demands

strigt symmetry to be nbeyed by the nuclear Hamiltonian., The

o

A

assumption underlying this gchere is thet the nuclear forces
have Wignerts supcrmultiplot symmetrylg) and further that they
are nf q.q type. The succesgs N this mndel implics that the
two-body effective interaction indeed hago drminantly such
Properties. However the two-bndy interactiom als» containg nopn-
central parts like teonsor and spin-nrbit interactins and algo
Viriﬁus multipoles other than quadrupnle. TFarther the model
Tequired complete degeneracy »f single particle nrbits »F o
major ogecillator shell, whereas fetvally mne requires a me~bndy

SPIn-nrhit interaction Lo exploin the magic numbers observed in



)
.

)

{

jodic teble, All these terms will violate the 8U.
the“ pGIlL <
ymmet Ty and will try to mix different irreducible representa-
aym ‘

tions of §U8» As a result SUB gcheme cannot be an exact scheame

and very detalled and sophisticated nuclear structure calcula-

"g{bnsfdooshnw up departures from it; however, it can certainly

prnVidG a gnnd guldeline to gsuch calculationg.

L

To summarise we say that the SUB seheme provides a basgig
in which a dominant part of the residual interaction is already
diagonal. The natural extensinn of this scheme is tn dn the

basis. But such calcu-

configurating mixing calculationsg in gU

ot 0

lationg are much more ¢omplicated than the usual shell model
calculations., However the beauty of El1lintt's SUB scheme lieg
in the fact that it has built-in rotatinn in its formalism and
‘Tﬂ&bés not introduce the classical concepts like rotation, o

deformation etc.

2. Hp Tormaliam

Before the advent of Hartree~Fock formalism in nuclear
physics, several collective mndels were in Vﬂgue, They nwed
their Prigin to enllective features such as the rotational
sPectra,thie ainnene ed E? transitiong and the large quadrupnle
BMments exhibited by nuclei eéspecially in the rare earth reginn,
Bohr and Nﬂttelsﬁngo) argued thet these effects arc causcd by
collective mrtinns N many nuclenns, since such features cannnt

be Sxplained in termg 7 the single particle shell model, They
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proposed that the nucleil can be deformed and execute some
collective motions like vibrationg and rotations. Their model
could successfully explain the above collective features,

Later they nnified the collective model with the single
\yééfticle model and gave a vnified model of micleus, They
proposed that the nvelel have some deformed equilibrium shape
‘~and the valence nucleons move independently in this deformed
potential well., In additi n these nuclel also execute the
collective motions, They further argued that the frequencies
of the collective motiong or nucleus are such that this motion
can be easily decoupled from the motion of the single particles
in the deformed field, This is what is called "the adiabatic
approximation'., This approximation enables us to write the
 £Ota1 nuclear wave function as a product of the collective Wave
function and the intringic wave function of the particles,

ter Nilsson3> provided the intringic wave functione using the
Q_ deformation Tield. Though the vnified model was successful
in a Jarge numbar Of applications it has two inherent defects.

o

It is a macroscoplc model and does not involve the c¥plicit use

Of the two-hody interaction, Theoretically it is not satisfactory

as 1t intrﬁﬂuces 2 redundant collective coordinates for descri-

Ping the nuelear system.

An altcernative approach to study the collective Featureg

(vhich 1g not open to such criticism) is the HE theory of nuclear

Structurea This is a mierogenpic theory oo it nseo the tun-body
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raction plicitly. The brojection technique of Prierlg
. 21) . ‘ bjection of redundant
and Yoccoz has removed the second objection of redundan

conllective conrdinates. The AR thenry ig essentially aimed

at extracting the single particle potential and nuclear
defrrrations from the two-body interactinn, This is done
usually by a variational wethod. The actual procedure involves
finding out sultably defrrmed . single particle wave functinng by
minimising the tnotal energy in a gilven configuratin space.,

The resultant defHrrmatinng depends on the interactinn that isg
emplnyed and alsH on the mumber of particles in the intrinszic
states. The gnond angular momentun states are then pronjected
from such a deformed intrinsic state. The structure Nf these
states has bccn f\unJMD} tn be in gond agreement with the

Iow-1ying shell mndel states,

It shnuld be remembered here that the ghell mndel in its
fullest generality (i.c. incinding configuration mixing in
large space) emmtains in principle a full description of nuclear
Df“perties and theref re ig thenretically capable of handling
all c¢nllective features. But as the computational labnurp
involved is tremendmus, we have tn invoke the HF approximation

along with pr Njection technique. Therefore the validity or gp

approximetion can be assegsed by comparing the HF results with
the exact shell model results, There ig a reason to helicve

that the projected HF states would be in agreement with the

[}

Low-lying shell w el states.  When wve try to minimise the
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energy OT the intrinsic state, we are ¢ssentially increaging
the proportinn of low-lying stateg contained in the intringic
atates. At present the HE theory has been well established

. 22)
in nuclear structure calculatinng Of light nuclei. Thig
theory pf?vides an approximation to the shell model configurat.-
imﬁ mixing calculationg and simplifies them to a great extent.
This simplification crmeg essentially through the agsumptinn
that the intringic state »f the nucleus is suitably described
by a single determinantal wave function. The validity of this
agsumptinn is clnsely related to the largencss of the HF gap
(i.6. gap between the highest ccuvied and the Iowest
unnccupied HF single particle states) in N=Z even nuclei.
When the projected states of the nucleus fronm a single
determinantal HF intrinsic stete dn not have a gond overlap
with the shell mndel states, it is quite likely that the abowe
assumption is not valid for that particular nicleus. The next
step in such cageg is t9 perform the cmfiguratinn mixing

he basis of HF intringic states. These

D

&2}
N
S
ct

calculatinn

Il

ford

calculatinng as in SU~ scheme are quite cumbersome and therefore

m

may nnt be preferrcd tn sxact shell mndol calculatinng,

It may be nntegd that nns tn nne chrrespondence between
the cnllective mndel and the HE formalism seems asg vet tn be
not very clear, But it can be shown that the adiabatic
‘&Pprﬂximatiﬂn in the collective mndel ig the clasgical Iimit

D1 the projection formulac Of Peierls and Ynceny when the
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[’

‘;’qumqtiﬂn is very large. Algso the ¢comparigon of HF theory
deforms b .

and 8Ug scheme will make a very interesting study. Both the
thenries give intrinsic states from which states of gond

angular momentum can be projected. Whereas the SUB scheme workeg
only if the potential ig spin-independent and central (4.5 type)
u':in character, the HF theory can work with any well behaved

Ebtential including spin-dependence, Thus HE theory seems to

23

‘ifbe'extension to the SUB scheme. In fact Harvey hag shown
that for spin=independent potentials both the approaches are
equivalent. The above considerations lead us to agsume that
for central potentials the SUB scheme and HF scheme will leaq
to essentially the same collective states. With spin~dependent
potentials however the tywo schemes will deviate in their
brescriptions for geherating the lowest collective gtates, One
should not be surprised at the similarity of the HF and SUB
“~themes in the absence of spin-dependent forces., e know that

the HF procedure picks out the field effects from a given
Dpotential ang these are hecessarily of a long range character,
At the same time it should be noted that onc of the dominant
terms of 4 long-range potential has the Q.Q form which is
clogely éssociated with the Cagimir operator SUB' This explainsg
the similarity of both the schemes in the absence of gpin-

dependent Potentials.,

Marther the calculations of the nuclei in which there ig

€XCess of neutrons over brotons showed that the HF 15 not a



ot
oo

sod approximation for such nuclei and a single determinantal
g()() cL . |
description does not hold good for them. The excess of neutrong
escrlpt-
ives rise to short-range correlations which can not be taken
g i}
into account by HF formalism. Such pairing correlations in T=7
 states can be well taken care of by HFB formalism. It wasg
; 243

‘:farther shown that T=0 pairing correlatinng are also equally

strong and should be taken into account for better description
of nuclei.

The OF formalism as now developed is meant mmly for the
descriptinn nf states belonging tn ground state band and isg
therefore incapable nf giving description of excited states
thét are nnt part of the ground band, The variational procedurc
‘nf this thenry cannot be applied to them. One often Inoks for
nther minima nf HF‘calculati»ns with different symmetries and
ﬁakes them as intrinsic states for generating excited states.
Therefnre the study of excited stotes in thé HE framewnrk
deserves special care. The excited statesg may also alternatively
be projectea frm the excited binds which can be Nbtained by
‘p&rticlethle excltations »ver the HF ground state. This is in
fact the cwnfiguratiwn"mixing caleulationg in the basig nf
intrinsic states nhtained by particle-hnle excitationg nver the
BF ground state. Such an approximation is knrwn as Tamm~Danc nff

APbroximation., Tt Will be a good approximation provided the I
5P 1s large. Thig allows up to lgnore the contributiong frog

Mmany particle»many hnle excitationg to the Iowest excited bhands.



A few such calculatinng” have been repnried.

1.

+26)
) 1 o

variable (gene

“times the intrinsic part, which may be taken os

Ul
I
-
Pt
[
]
(@]
P
5
f

‘particle wvave-functinon evaluated a:

variable. A simple illustrztion »of this met thnd

from the HF intrinsic stote. This formalism is

Hill and Whecsle . They propneed thet the

= nucleuz could be written as an integral over

W

A

An alternative methnd tn nbtain excited levels in *

he

ave funct

the cnllective

tor conrdinate) of the 631]CCL1VL wave fu

!

spectra is the generatnr conrdinate method, suggested

‘xn

an. independent

case Of the generatnr cnordinate methnd s 7ith the

the ¢nllac

rotation of the symmetry axis as a gencrator conrdinate,

A

-J

o in

obtain addit’ nal leve: he nuclear spectra

‘ﬁhis methnd by using the deformatisn Of dintring

'

itself as an additional snerator conrdinate,
L LG

-

w
it
jai}
d.
[45]
45
2
o]

ic

_)‘J’lto

ive
is the pirnje-
~ ction Torpalism of obtaining statcg of g0nd angular momentum

particular

Wwe generalise

The dintrinsic

N different deformats ng are oHbtalined by driving

. 2
the HF golution by an external quadrupole G2

J.

R

ield.

Thusg

WG get an dmproved ground band as well as the excited states

not bolOD"lDG to ground bang Ye have applied this method

(fOT the firgt time)to obtain excited states not belonging

4= iy . . . . .
“0 the ground state band, 4 comparison of the result wi

those or exact shell model calculationg is satisfactory,

tth 1A 1 12 1 . - B
s Vindicating this rather gsimple wethod and

rcvhdllrv the underlying collective nature of +he

at

the =zame

shiell

th

piod



nethnd f generatnr cHordinate as explained above

"h much wider applicability than the complex shell mndel
: qg o7

- 1cul tins due t0 its simplicity.
c

acope Nf tihis thesis

The whrrk that is presented in this thesis has been

stivated by two consideratisng. The first consideration ig

 nf the interparticle interactiwns. Variws effective interactinng
have been used with HF mndels and they wore »r less yield similar

results. The success or failure of an interactim in any

pﬂrticular cese connnt be explained easily. To dn thig e needs

»atw study the detailed structvre »f the affective interactinong.

i;;Thbt 15 t7 say that the important ingredients which congtitute
the twn—bndy interaction should be isnlated and their propertics
.ishﬂuld be studied separately. It is well known that the two-body

‘iirésidual Interaction iz dominantly central in character. The

1

two-bndy matrix elerents of a central interaction can be expreg-

~

sed as linear combinetiong of diagnnal radial integrals. These

o
27) to nbhtain the

f,radial integrals in 1d-2s shells are fitted
st pnssible agrecment with the Pbserved energy levelg »f
Oxygen and Flunrine isntopes. It was observed that of 211 the
'rqdlﬂl integrals, the rodial integrals corre esponding to the
state of relative angular romentum 1=0, are dominant »nes. The
:interactinn that acts in the state ~F relative angular momentum

1=0 ig called 's' state interoction. Thug 's!' state interoctiong



a2l

the wost important ingredients of the total interaction in
Therefore it secms meaningful to undertake a
detailed study of 's'! gtate interactions. This study will

on the beshaviour of the nuclei.

[arnd

presumwably threw some ligh

yith this view in mind we have lonvestigated the properties
of such interactions both in JU_ schemc as well as in HF forma-
1ism., On the basgis of the propertics of these interactiong,
one can explain not only the success of the SUB scheme of Elliott
but also show the limitations of the sc ope of this SUB model.
wg also explain the success of HE formalism, in general, in the
beginning of 1d-2s shell, We can predict whether a HF approxi -
mation is good approximation in a given nucleus. In chapter two,
ve present the study of the properties of radial integrals in
U schcnc2 ) The regults for both 1d-2g and 1f-2p shells are
pressnved. In chapter three, we present the properties of tgf
state interactiong in UF forralism. Theo results are presented

for ld-2s shell in which the calculatinns are porformed {or

differcnt 'g' state interactiong.

L

<

several N=Z even nuclei by using

1

The results of HF calculations sre compared with the shell model

-

calculatinng wherever they are available. In chapter four we

have snalysed in detail the effective two-body interaction in

30)

1f-2p shell given by Kuo and Brown The complete interaction

31)

has been an 1alyseaed in the SUQ scheme. The abscnce nf well-

developed rotatinnal character in 1£-2p shell can be explained

o the basis of thisg analysis and the role of ginglce-particle

ehergics, In chapter five we shtudied the effects of corc-



~weitatinong both in SUB scheme and in HF formalism. The Lwo-body

. - ' oo ) g - .
cffective interaction given by Kuo 2) in 1d=2g shell has been
G L J > .

The calculatinns are performed using bare (without coree

used.
cxcitatinns) and rennrmalised (with chre-~excltation) interactinng.,
The effect NI core-excitating in 1£-2p0 shell are also studied and

compared with those in 1d-25 shell.

yal

The second part »f thig work deals with the descriptinn of

I

excited bands of states. As the HF formalism is inadequate £t

wn

study the excited bands oF states, the Tamm-Dancoff annroxi-
. > .
matlon has been used tn calculate the excited states of “ONe and

(]
19F The rennrmelised interaction nf Ku03“> has been used for

a

3 e A T - - o N T y
. this purpnse.  The K=0 and K=2 bands »f <9¢ and the K=3/2 band

nentum

iaf,lgF were calculated and the states »f gond angular meo
were projected from these bands. The results thus nbtained show
that a considerable band rix xing is required before we can get
‘-a Teasmably zood agreement with shell wodel results. However
due £0 limited comuter facility available 0 usy we could nnt
carry "t these calculatinng chmpletely and therefnre these

Tesults are not ine luded in the thesis.

In chapter six we have emploved the generator conrdinate

o~ . ?O
methnd 59 nhtain Me spectrum. The interacti m used ig again

the pomam 1 4 . 32)
1€ renormalicsd 1nceractinn Hf Kyon~™

i

The gencrator chnrdinate
()

]
20,
HE

o

f—' ‘ - . ..
sed is Q, nich drives the galution of

o different

-

y n

c“’] =) B n ey o - . N - - .
““f’rﬂdtiﬁﬂse Three points cre used op colculatinng.



s

4?85wlts thus Nbtained eompare very well with those obtained

. py exact shell rndel calculetinong,
i i

It is appropriate 2t thils stage to wention thet mosh of

the progromming part oF these calculationg, right from the simple

Clebsch—Gnrdan coefficients to the projectinn of gnod angular
mhmentum states 1s done by me. The preliminary work has been
ﬁﬂqe on IBM 1620 ¢ mputer at Physical Research Laboratory,

‘;Ahmédabad while mnst of the detailed calcvletiong are done on

CDC 3600/160A c waputer system installed at Tata Ingstitute nf

~ Fundarmental Rescarch, Bombay.



REFERENCES

v. G, Mayer and J.H.D. Jensen, Elementary thenry of

muclear Shell sStructure, John Wiley and Sons, Wew York,

1955,

J.P. Elliott and A.M. Lene, Handbuch der Physik, 39 (1957)

=nd the references thercin.

8,G. Wilgson, Mat. Fys. Medd. Dan., Vid. Selsk. 22,

n.16 (1955)

1) J.P. Ellintt and B.H. Flowers, Proc. Roy. Soc.
4229 (1955) 536,

ii) L. Resenfeld, MNuclear Forces, North-Hnlland

7

b3

Publishing Cn., Amsterdam, 1948.

. Talmi, Rev. Mnd., Phys. 34 (LQF ) 704

I
O
O

I
ii) P. Federman and I. Tolwmi, Phys. Lett. 19 (1965)
5.P. Pandya, Nucl. Phys. 43 (1963) G36.

i) T. Hamada end T.DJohngton, Iuel. Phys.34 (195 ) 383,
ii) TLassila, Hull, PRuppel, MocDonald and Breit,
Phys. Rev. 126 (19262) 321.

iii) F. Tabakin, Ann. Phys. 30 (1964)

1)  H.i. Bethe and J. GoHldstone, Proc. Roy. 89c. A238

(1957) 551.
i1) X.&. Brueckncr, and J.L. Gommel, Phys. Rev. 109

(1252) 1023



n

e
A%y
[AN

H.a. Bethe, Phys. Rev. 103 (1956) 12353,

oy

T.T.5., Xun ani .8, Brown, MNucl, Phys. 85 (1968) 40,

D.M., Clement and 7,17, BcrLﬂ“er7 Nucl. Phys. 4108

C.M. Bhekin, Y.R. Yaghpoere and M., Hull, Phys. Rev,

48y Reve Mod., Phys. go

e
s—-l .
o
o
[
e}
=
o

; -t
ct

y Proceedings of Internati-nal Conference

Moproperties of Nuclear States, Montreal, 1969, p.2923

11) E.C. Halbert, J.B, FeGrory, B.H. Wildenthal and g.P, Pandya,

2/

"idvances in Nuclear Phygicgn Vol, 4, edited by i Boranger
; v 3 y llger

cnd B. ook (Plbnvn Pﬂpv~7 Hew York, 1971).

12) 1) 4. arima, 3, Cohen,

R.D. Lawson ani M.H. Ma cfarlane,

Nucl, Phys. 4 108 (1962) 24,

ii) 7.B. MeGrory and B.H. Wildenthel, Phys, Lett. 24 B

(1971) 373,

el

1i1) s5.K.M, dong and L.P. Zuker, Phys. Lett, 26 B {(1971)

437,

5 Miclear shell Theory (Acadamic

ira

13) De—Shalit and T, Talpi

Pregg Ine., New York) 1962

e o

4.M. Lane Muclear theory (W... Benjamin Inc. 19¢64)



&j\i7)

iS),
- 19)

‘3€2b>

21)

 22).

939

24)

M"Baranger? Cargese Lectures in theoretical physics,

W.A., Benjamin, New York, 1962,

"7;i5Tf i) I. Kelsnn and C. Levinson, Phys. Rev. 134B (1964) 269.

ii) I. Kelson, Phys. Rev. 132 (1963) 2189,

See also refsrence 22.

Qﬁ) J.P. Elliott, Proac, Roy. Soc. A245 (1958) 128, s562.

~ ii) M. Harrey and J.P. Elliott, Pronc. Roy, Soc,

A272 (1963) 557,
J.M. Jouch and B.L. Hill, Phys. Rev. 57 (1240) 541.
M.K. Banerjce and C.A. Levinson, Phys, Rev., 130 (1953),10365
E.U, Wigner, Phys. Rev. 51 (1937) lOén

A. Bohr and B.R. Mottelson, Mat. Fys. Medd. Dan, Vid,

Selsk, 27 (1953) 16,

R.E. Peierls and J. Yoccoz, Proc, Roy. Snc. 70A (1957) as1,

G. Ripka, Advaences in Nuclear Physics Vol, T edited by

M. Baranger and E. Vogt (Plenum Press, 1963),

Y. Hervey, Advances in Muclear Physics, Vol. I edited by

K. Baranger and =. Vgt (Plenum Press, 1963)Y.

1) H.T. Chen and 4, Goswami, Phys. Lett. 24B (1967) 257.
11) J. Bar-Tauv, A. Goswami, A.L. Goodman and G.T.. Struble,

Phys. Rev. 178 (1969) 1670.



23)

Wolter, A. Faessler and ».U. Saver, ¥Yhys. Inst.

§.N. Tewari, Phys. Lett. 298 (1969) 5.

D.L., Hill and J.A. Wheeler, Phys., Rev. 89 (1953) 1102.

i)  Cohen, R.D. Lawson and g.P. Pandya, Nucl. »hys.

Al14 (1968) 547,

ii) s, Gohen, E.C, Halbert and S.7. vendya, Nucl., Phys.

4114 (1963) 353,

D.R. RKulkarni and $.?. Pandya, Nuovo Cim. €0B _ (1969) 100,

ks

D.R. Kulkarni and 3.P. Yandya, Nuovo Cim. Lebt. 4 (1970) 183,

T.T.S. Kuo and G.=&. Brown, Iucl. Phys. 4114 (1963) 941.

o W o -~ = = 3 T By oy e 1
- D.R. Knlkarni and K.H, Bhiett to be published.

T.T.3. Kuo, Mucl. Fhys. 4103 (1967) 71.



Introduction

SUq D“rn:m”c*r,w nf

[

(]

CHAPTER IT

9

1 Ta )

Radlal Integrals

The calculations of Ellioty for 1d-2g shell nuclel based

scheme confirmed that cven in compliceted nuclel, the SU,

<

geification seems ©0 be quite useful in gilving a qualitative

intion of the spectra., The success OF this scheme in turn
Jsubstdn ted the vinderlying assumption that the effective two-body

qinteract'\ns in 1d-2s shell is dominently (Q.Q) in character. In
the shell model studies of such nuvclel, several different intera-
2) Y . .

:ctwong have been used™’ and the wave functions generated by such
iﬁﬁeractions always apprar to have large overlaeps with exact SU.
e e

-

QSymﬁetrlc elgenifunc

Obtained by diagonalisd

tiong

ng I

In other word when the wave functiong

e

Hamiltoni

an matrices are in

analysed

;ﬁgrms.of orbital and 953 symrmetries, one particular SUB symretry
;Cﬂmponeﬂt 2opears 0 be quite dominant. This hag generally led to

the conclugion that in
1d-25 shell, tiwe guedrny

the effective interactions wvalid for the
pole force is quite dominant and hence the
ric structure of the wave functions, it ma.y
origin of this SUB symretry from a some-
T Cﬁhen3> et al, have showpn that the
shell cen be very well paraweterised
elements in relative orbital mgular

radial metrix elerents are essentd 1ally the



°:05poments of central interactions. Therefore 1t seels Necessary
c T

. the properties o g} A natriz elements
o study the SUsg propsrties of these radial matriz eler 3

 Separately g0 that one canin explain the success of SUq schemeg for

Via:given interaction in terms of these radlal matrix elements.
b0

:This study will also enable us to predict how far this scheme

i7ﬁillqbe vseful in other shells.

,Iigz Radial Intesrals

The celculations of two-body matrix elements of a central

ion is a comparatively easy job in the harmonic oscillator

Tn thig basis the two-body wave functions can be decomwpos ged

in the relative and centre-~of-mass coordinates using the following

transformations.

7 =7 e - Y, 4+
Y o= Y =, o= L -
- 2. (1)

The decompogition is of immense value in simplifying the
calculations as generally the nuclear interactions depend only
on the relative distance . The transformation brackets for
going to relative and centre-of-mass coordinates are given by
Brody snd boshingiyd) N , R
Brody and Moshineky ‘. The expression for two--body matrix

elements of central interactions can be given as follows.

Ny v JVJ/T/}TT

L,s,n b T (2)
NSEIRAPEY 0 0
1 ly %,3%/$<:n9 NAL I G, 0 dnln M | g Uy mg by
| N L TN AN L& ,
Lyos =
LU T N A | BN P WP SN



o curly brackets A denote the normalised nine-j symbolg for

whel

trangforming

the wave functinng from j-j to L-S coubled wave
- Ao D S S Y o
The terms < v L NOA lw_) 7 yi w,L~Q2~>>denote

 functions. i

:%the Moshinsky brackets for transformetion to relative and
éigentre_of_mass coordinates where n,1 and M, A are quantum numbers
:‘:describing orbital wotinn for relative and c.m. coonrdinates regpect-
;ifivﬁlyn The duantity <<”H Qﬁﬁ V (») | n{jis a radial matrix glement
aﬁd~depends on the radial dependence of Ehe given interaction. Iy

and N2 are the normalisation coefficients for bra and ket sides

of the ratrix elements. For example Nl is given as

%

NEXGE-
Sy g
It should be noted that in the expression (2), if all the

states Jjq, 32, Jo and j, belong to the same major shell, the radial

!

n . Ye denote these

SRR NS

50 the expression (2) in the single major shell can be written as

i

matrix element becomes diagonal i.e. n

1

diagonal radial watrix elements as I

T

N -

PN \ -
, | , N <7 L o

‘ S VT T o (3)

The coefficients a(nl, L8, JT) incorporate all the geometrical
factors like nine~j symbols, RBrody-Moningky brackets and so on.
In general the two- -body interaction 1s spin-isogpin dependent.

Therefore the strength of the interactiong 1s different in four
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Table II.1
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1t should then be of consgiderable interest to examine the

gnretries of the varioug parameters 1 individually, particu-
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/ ?Otentia1 show that the reduced watrix elements in relative 's'(1=0)

4

‘;states are indeed dowinant and would already provide a gond approms
. ximation to the level schemes of nuclei. The importance of Igt
atate interactions indeed reflects the fact that the nuclear
forces are short-ranged. Table 2 gives different radial integrals
encnuntered in 1p, 1d-2s and 1f-2p major shells, ‘Table 3 gives
~the strength of different radisl integrals for both T=0 and T=1
states obtained by Cohen et a12) by fitting the energy levels of
0 and F igotopes. We study the properties of s state interactions
in particular and will give a rule based on group theoretical

considerations for the 35U, properties of any radial integral in

_general,

I1.3 SU5 scheme for nuclei

Before Eﬂliottl)prmpnsed thie SUS scheme for 1d-2s shell
Nuclei, many attewmpts were made to clasggsify the many-particle
Wave functions using group theoretical methods. The states of
the configuration (l)k were clagsified uniquely under the group

Q

Uo s e L9
21 4T >%31¢1 7 Rq, Similarly attempts™ yere also made to classify
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change the eigenvalues k¥ and {7 o Many particle states Skfare

constructed by filling the gingle particle levelg in accordance =«

with the Pauli's principle, The state yill be symmebric or

antisymmetric depending on o wnichgifJ‘representation 1t belongs.

Tt should be remembered that the gtate of highest welght corresponds

to (— = {~ and k =k_ for a given ( /N M), e are
max max /

interested in forming the intrinsic state nf 2 particles. Table 4

gives the list of wvarious SU, representations possible for two

e J

particles end their L and k values., From table 4, it can be seen
that there are three IR of STB for two particles in 1d-2g shell.
The IR (40) and (02) are symmetric in space while (21) is antisymmetr

in space. Thus corresponding to these three IR of URB there will be
three intrinsic states. It cen also be seen that the (40) represent-

ation will be lowest as 1t hes highest elgenvalue for the Casimir

ate

ct
[4s)

operator. Ve will now consider how to form the intrinsic s

5

of highest weight corresponding to these representations in details.

2. The Tntrinsic state corresponding to (40), (21) and (02)
representations,
The intrinsic state of highest welght corres sponding to (40)
will have Q?ﬁ» = 8 units, Thig gstate can be formed by putting
HEEY

i ! b

two-particles in the lowest state

. g this stave belongs to

[l

2 i representatinn of permutation group, it 1s symmetric in
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Table IT.4

‘a representations of two particles

s

' in

t-...

i;ghell sion sentations
- ey ME;’ 1 ,3 nf

0

- SU3 Teprg- . N gy N Eigen-
unites of value

Cagimir
operator

2 ] (20) 0 2,0 4

10

—~
N
[
p—
O
SJTAN
AV
O
o o

28

10

ls-2d - e
Ll (21) 1 3,2,1 5 16
C2 (60) 0 6,4,2,0 12 54
LE-2p —mme-
2] (22) 0o 2,0 6 24
) 2 4,3,9 6 24
11 (41) ] 5,4,3,2,1 9 36

(02) 0 2,1 -6

o)

1 . . A ) ) . . X
the intringic state for (21) and (02) representations can bhe

(1)

the gymmetric combinations. Similarly



(12)

(13)

It should be noted thot ', is a linear cokbination of two
S
bilities in which “he atna- - 4 it
possi 1n wirich the state o= -4 unlits can be formed.
The coefficients can be determined by US'V step operators F,.
" " LU

) ATEn - N TR B alel £ Y ]
The operator F, increases k by 2 uvnits and leaves ¢~ unchane ged.
Hence 1f we operate by I, on \J! tha T 5in cat i i

:Ji if we operate by T, on i4:7 tie resulting state will have
=2. But =0 ig the maximm value of k that the state can

o Tenc Ualing T ¢ =R aVe B o 3 7
heve. Hence uging expression (13) and taking into account the proper

normalisation conztants we zet
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projection of good angular momentum states from \ff \})
"j "

and q/ .

We 0w Hroject th atat oo of
We now project the states of good angular momentum from these

INtpsm e (R .
ntringic states. The formula for projectinn From a two particle
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anasforpation matrly

il

from j~1 to

revresentvations for J=0, T=l.

(€)1
69

(5/2)" (3/2)"

C™
oy

¥k 0.4°16

0.51

0,4714

Sy o
0 PRSI

-0.63224 0.7746 0
Table 11.9
Transform: matrixz Trom j-3 to
S, represenvation for J=2 , T=1,
=1 =

0.4220 0,4667

=0 7099 ~0.2191 o)

0 0 O.

6224

e el

o .
(1) 5, ~0.2683  ~0.5059
e

0,8197 0




Transformetion matriz from j-j to SUq

representations for J=4, T=1,

oL

(5/2 3/2)

~0.4472

Transfo

Table IT.11

ion matrix from j-3 to SUB

repregentetions for J=1, T=0,

\" 3

S 3] .
(N 20 (5/2)
4 L S \

\V]

2
(2/2) (5/2 3/2)

(2/2 1/2)

(1/2>2

(40)21

-0.2494 0.8319

"“O 94‘ (367

n
A}
J

(40)0l 0,3F

Py

@]

©2)q, 0,294

0.7454

-0, 6667

06000 0,288 0




Tohle TT,12

Transforpation watrix from j-j to 5Ug

representation for J=2, T=0.

Table I1.13

Trangformation matrix from j-=3 to 3

representation for J-3, T=0.

(2/2)" (5/2 3/2)  (5/2 1/2)

(407, -0,1512 0.2071 -0.3023 0

(40) 0.3703 ~0,0617 -0,2851 0.8819

00,6928 -0,1155 ~0.5H333 -0.4714

(21}30 0.6000 0.4000 0.6922 0
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igenfunctiong of each radial integral i ndependently, ALL the
parameters except one of the I . are set equal to zero, so that
the 65 two-body matrix elements of 1d-2s shell (in j-j coupling
for convenlence) are exdressed in terme of only this one paramete:

lan metrices are then diagonalised and the

glgenfunctiong are transformed first to the LS coupling scheme to

4

exomine their orbital permubetion symmebry and second, the orbital

part of the wave function is analysed in terms of its 8U. compo-
I , 5 ,
nents., Note thet for two particles in 1d-2g shell (see tab 4)
et Orhital 71 - 5 o r ol 4} V
we expect orpilval symiretries ! a_jLﬂL }11J s Ghe former contain

ing SU3 components (40) and (02) and the latter nnly a unigue

o

component (21), The procedure is analogoug to that of Parikh and

: 2 i . . . .
Bhat « Bince initially we wish to concentr Le only on the SUq

symmetries of the interaction, we avoid the complication of the
single~particle spin-orbit force and teke all three orbitg dg /o,

51/2 and do/z as degenerate. Only the lowest gtates o
(=]

for T=1, J=0,2,4 and for T=0, J=1,2,3 are congidered. As seen

J

A

before, the T=1, J=1,3 gtates heve trivially (21) symmebry and

=0 J=4,5 have (40) symmetry only.

nfunctiong for two particles in the

case when the interaction ic described in terms of the para-

all other radial wetrix elements are set
squal to zero, The decomposition of the elgenfuinctiong in

terms of orbital and U, symmetries shows, for all the states,



@)

n
I

only a single component | 2 j (40). Since the interaction
ig operative only in s-states, one expects no admixture of

2 - . . ~ .

11} symmetry. The occurence of only symmetry (40)

L e 1_.l/».‘c) 5
ig the Moglkzoyasgl result.

the cage when the interaction containg only the parameter

I”s’ one finds non-zero two-body matrix elements only for
2
I'=l, J=0 and T=0, J=1L gtates. In fact it has already been

15) | o . . -
) hat such a peculiar Iinteraction exhibits a

demongtrated
pairing property in the senge that in L=S coupling only a

single L=0 state 1s depressed by this interaction, all other

states remalning at zero excitation energy. However, the
gigenfunctions for this interaction given in table 15 show

that they are quite different from the uvsual palring
L. = 1

elgenfunctions. We further find that the eigenfunctions

again belong to exect SU, symmetry.
q S

On the other hand, when the interaction consists of onlv the

parameter T the results obtained are shown in table 16,
1 ?

Now the elgenfunctiong have no definite SUo symmetry and
()

actually the (02) component seems to have a larger nma agnitude.
It is this component of the interaction which is primarily
regsponsible for the brealk-up of the SUB symmebry in the s-d

.. TI,\ (el LA o IR S .4 - 2 . o 2 R 3)
shell, The effective interactions derived empirically®’,
as well as from realistic two-body forces, show generally that

the largest parameter ig Lnge Although the magnitude of I,

[



as

spectroscopy only in the

hence together with I, it ig algo
& ! ')S

symmetry to the

gond approxima e

shell, becauvse

and overall contri-

Ja G oy e
DIYEs

sffect of Tls in & realistic

way, ve have calculated the two-bndy matrix elements with the

(for both T=L and T=0 gstate

o a least-squares £it to the

cenfunctions thus obtained (still
e-particle orhits) are shown in

decompogitinn into SU. ymetry

n

J=1)the ’J‘O sywmetry ig well

the (02) component is less than

digturbed and

She However, the T=0, J=1 stote ig stron 1y

contalng ohout 20% admivbture of (02).

ll dnteraction (i.e¢ including &

1 ) os deduced by Crhen et al®’., For degenearate

]
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E(d5/2) = 0, B(Sy,5) = 0.87, E(dg ) = 5.038 MeV




wigenfunctiong

Table I7.14

and symnetries

for

Case A.

stete and the overlaps belween the generated and shell
model waveivrnetinng are also shown.
T=1 | T
- B o
J 0 2 4 ' 1 2 3
2 - - ., -
(6_5/?>u (—)05163 :"\0526@ Ou‘/‘l“l'?_? 003917 anf,}(‘),?l
0,6861 0.5578 0.,8405

(d /9 Sl/))

(dg/o dg/o)

-]
o

..q
RN
o
(%)

)
a

o
%)
o
O

0,8944

04714 ~0.3906

(dg/g) 0.4217 00,2494 [ =0.3706 0,2158

i?wi(40> 0.9999  0.9999  0,9999 | 0.9998  0,9998 00,9999
(o2 0 0 0 0 0 0

11] (21) 0 0 0 0 0 0

Overlap

A e vt s e

0,929

0.299

265 0.896

T=1, '3 =o0.6325
=0, 1 %5 = 0.7000

gd5/2
15/2

t1/2
kD

- 0.3100

5164(3/2 1/?\
t3/2 1/2}

o)

/2> = 0.5

o))

Iz
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for

Case (2)
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Table 11,16

s A S N A e o I N JI e g
Eigenfunectiong and symmetries for Case G

0,785 0,6693 - 1 0,b184 0.7689

0.1999 - 0.1633 0.2681

~0,7807  0,9661 -0,5842
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Teble T1.17

overlaps

wodel

for Caze D, The

betuveen the

~

glzenfunctionsg

C
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0, 0944
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D
D
l.._i
(A

§
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~J
EEAN
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0
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Table TI1.18
L'}
Eigenfunctions and syrmetries for Case B, The
int state and the overlaps between the g enerated
and tihie states are shown,
i
T=1 ; T=0
J 0 - 4 ; 1 2 3
2
5
& i Ao . A
(d5/9) 0,.8046 0,946 0.8849 | 0,7142 0.6001
2
i

Ocoglg Pl 1”‘
0.5700 I 0,4642

[ -0,0341

; -
L=0,1426

}
}
!
H
1
!

0.0721 §

067744

0. 1959

...n-v'D -‘I
: =3 E

i
0.6598 i

002 =]
0.8286 C.3054

0.7171

Q. 0.0992

R

0.8028

0,0017

]

0.2481 0.,3506 1 0.0950

|

0,1962 0.,0432

)

0,987 0.980 © 0.260

0.9280
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in a self-conglstent manner and then a Slater

orbits and energles
;faeterminént for the orbits occupied by the nucleons is constructed.
'  SiﬂCe the orbits thus calcul
of good angnlar momentum have to be projected out

abed do not have a spherical symmetry,

l _J

5 band of states

~from gquch deformed intrinsic states. Te do not perform any

;ﬁartreeaFock calculations here but instead attempt o construct

‘ewPT:nCﬂJWr an intrinsic state such that wave functilons projected

out from it will give the best posgible overlap with twn-nucleon

yave functions described in the previous gection.

A deformed intrinsic single particle state relevent to our

discugsion of two nucleons in the beginning of the 1ld-2s shell is

ik = 4 Yand can be written as
//

mod
A
\
x\\ /

where b., ig the amplitude of the spherical ogcillator state

g

lim = 4> in the expansim of the intrinsic state.

7
/

1ith time

reversal symmetry one hes for the state k = w%:>

#

_ It 4.
: byg = (-1)°7% Dbyg

The most simple modell7) would now be to conglder for
iy

at s antlisyrmetrized intrinsic state

(T‘

S5

i

foared

C’\‘

proijection of T=1 st

«

}%: - %, K:O> and for T=0 states, the symmetric intrinsic state

I i 8 1 - 5 > . = o "
}L Ty Krlt} . Parikh and Bhattl’> have ghown in this way that the
f 13 12 , :

in ~70 and ? calculated by Kuo and

R

lowegt statesg of cach J

6 : )
Brown ) can all be generated from a single axially symmetric
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0
3

, L we were not able to find a single intringic state such that
facht, W& ¥

d wave functions and the shell wodel wavefunctions
. o cood overlaps for bobth T=1 and T=0 states. The
ould have go0a nve i

; d have ¢ 1

state which would gilve best overlaps for T=0 alone

sted separately in tables 14

]

constructed and are a

They differ somevhat from the T=1 intrinsic ghtates. Fven

651

¢ best overlaps thus obtained for T=0 states are not satisfactory
émept perhaps for the =2 states. For the states with J=1,3 we

only find overlaps of about 0.900.

It appears then that in the absence of single particle spin-

orbit force, 1t is not possible to characterize the T=0 states
(particularly J=1,3) in terms of an intrinsic deformed orbit of 2004

K, The reason may very =ell be that a description of these states

requires K mixing. e neglected here the symretric state

§ 1 T S ~ . ' ' - |
’@%ﬁ -z, BK=C. from which one can project out J=1,3,5 states.
Iﬁ may be that the J=1,2 shell wodel states calculated in casesg A

and D contain a mixzing of the K=0 and K=1 intrinsic states and hence

-

our failure to explain them in terms of the K=1 state alone. . is
would suggest that in the absence of gpin-orbit coupling, the T=0,
J2198 states may huve an intrinsic gtructure quite different from
that of the =0, J=2 states. TIf thig argument is correct, it
further appears that the single particle spin-orbit force plays

a very important role in supressing the K-mixing in the T=0 states,

for s we see in case H, the overlaps between projected K=1 statbes

ad zhell rodel states are much bebber. Ancther reagon why T=0
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(P9}

annot be nrojected from an intrinsic states perhaps lies
ct that © I Ccomponent in total T=0 interaction 1is
acmn snatw ll e i + ] k

then tnet in T=1 interaction. This component, as we
_have seen before, is the SU, - breaking component and hence does
be )

state which can give rise to different

?fﬂot allow 2

_J ctates.

1107 g7, symmetry properties of radial integrals:

"le have studied the U, symretry properties of 's' state
()

w

radial integrals and ve have shown that IOg and I obey the SU

gymmetry while Ils mixes the different IRs of SUB, The explana

of these properties will be now gought in group theoretical argu-
ments., This exvlanation also enables us to vnderstand the symmetry

+ e L

radial dintegral in seneral. Let uvus take the radial

in the ghell of wajor quantum number N. If we have
two particles in this shell, the total number of quantas are 2.
The Inl denotes the strengtnh of the interaction in
relative angulor vomentum 1 and radial duantum number n. We can
as well say thet the relative stote of the narticles is 1n the

T
I

Narmonic oscilletor shell of major quantum number (2n+l). aturally
4

the centre~of-mags state »f two particles must be in the harmonic
Oscillator shell of major cuantum number (2N-2n-1) as the total

Number of quantas are 2. The SU5 representation of the state of

o - .3, K I TN ol ! 3 o
relative motinn is therefore (2n+l, 0) while that of the state of



g7

. tfe—mass motion ig (2N-2n-l,0), The product of these repre-
cen he

. iation will yileld different U, representationsg and these are
_ gentdb-~ 3

zth@ repregentstimnz thot are affented by thet particular radial

CThis argument is precisely given 1n the following

ial integrals in gyrmetric and antigymmetric

ral any radial integral le actng in e symmetric
N I
atate in the siell beering a meajor gquentum number N will affect

the S0, renresentations of two particle states, resulting from the

v}

0) & (2N~-2n-1,0), This product is given as

product of (2n
( ,(l‘+l O) ( l > (2T\T O (‘?T‘T"ég?ﬂ)g (2N""8’4:) ® 2 8 9 9 O ¢ 8 0 O & a a @
cecenosesess (ON-dx4d, 2(x-1))

, , , . -
vhere 2(x~1) should be equal or less than min | (2n+41), (2N-2n-1) |

2) Similar expression caen be given for antisymmetric states

5

(2n+1,0)(é}(2ﬁ~2nn190) = (2N-2,1), (2H=6y3) socoe covsincossnons

vhere (Zx-1) should be equal to or legs than min ; (2n+1), (BJNanl)J

The corollary to above two ruleg is the fact thet any radial

integral I with the exception of Inm vhen it appears for the

nl

Tirst time in the lowest vogegible majior shell gives rise to a state

acts

Of unique SUq repregentation. Also the radial 1ntegral IOO

<

only in a unique SU, representation (2¥,0) in aiy shell of major

Quantum number II. of these riles, we will sgstudy the
symretry properties of all vadial integral in 1d4-2s shell for which
=2

s e
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6s

¢ The relative gtate has (00) representation while

the centre~of-mass state has (40) representation., The product |

of these representationg will yield a unidque SUq representation (40).
Thus Ipgg acts only in (40) representetion and hence preserves the
‘553 symretry, In this case the anguler momentum comes entirely
:ffom the centre-of-mags motion and therefore the Ios interaction
‘/gives rise to a degenerste sct of states with I=0,2,4, belonging

to (40) representation. A similer result is valid in any shell.

.14 : .
Moszkowski™ ) has also obgerved the same result.

Integral Ilﬁ: The relative state as well as the centre-of-mass state
e

have in this case (20) representation. The product will yield the

space symmetric representations (40) and (02) and an antisymmetric
representetion (21). But Ils acts only in symmetric representation

and therefore it mixes the symmetric representations (40) and (02).

Integral IOS: The relative state has (40) representation and

centre~of-mass state will have (00) representation., The product

- glves a unique (40) representation. Therefore 125 acts only in (40)
representations. It should be noted that though the relative state
has a representation (40) frow which different 1=0,2,4 can be projectec
out, 128 acts only in 1=0 state. Ag a result 125 acts only in

total IL=0 gtate and lowers down this gtate. In this way it resembles

the conventional pairing interaction.

Integral Tpg? The relative state has (20) representation and the

[

Centre~of-mass gtate also hasg (20) repregentation. The product
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in the case of ra l al integral 1159 the symmetric

ration (40) and (02) and an aentisymmetric representation (21).

radial integral I,4 which acts only in symmetric

The relative state has (40) repregentation and
cenbre—of-mass motion will have (00) representation.
111 yield (40) representation only. 4As a result I,y

symmetry. Again the relative state has representation

o2
(6]
[a—
o
L]
~
=
o |
L f‘

cted out but lld acts

b

which 1=0,2,4 stotes ca

state. Therefore it acts only in total L=2 state.

Integral T,,s 7ith similar arguments one can show that Iog preserves

Sﬂé syrmetry as it acts only in (40) representation. Also this

ntezral contributes to total L=4 state only.

For 8 a0ic g I5) a e af umm et ]
For odd redial integral Iop, 11[ and I,p the DJB symmeltry 1s

trivial. These radial integraels act only in space antisymmetric

) i

ntation naimely (21). Thus we conclude that all the odd

A
o
ks
®
ke
=
@
o
o
P

radial integrals in 1d-2s shell will trivially obey the SUg symmetry

2s there ig only one antisymmetric SUq representation available to

D

them in that spec

¢

1. The symretry of radial integrals in 1p and 1f-2p shells:

e will now study the »roperties of radial integrals in 1p

and 17-2p shcells.



70

shell? Thig shell hag N=1. There are in total 4 radial
shell

Lg:__,..———u
18 e

. ~ o~ B = - D . I 2 ‘ P
 ingegrals & an see from the tahle 2. The radial integrals

Q

Ils’ Iod act in space symmetric states while Iop acts in

vometric state. Using the rules given above, 1t can

/space antisyn

- s T - +that the adia integre 3
pe easily scen that the radial integrals 1059 1139 and T4 act

5ﬁiy in (20) representation and hence they preserve SUg symmetry.

,Mdféover the radiel integral Ii. acts only in total L=0 state
'_while Tog acts only in total L=z state. The odd rédial integral
Z_Iop acts only in gspace entigymmetric representation (01). Thus
all the radial integrals obey the SUS symmetry. Therefore we

conclude that any central interaction in 1p shell is SU3

dinvariant.

1£-2p shells:s The major guantum number N for this ghell has value
J 4

A

3, There are ten even state radial integrals and 6 odd state

R}

- ) N a7 oo
Sg9 12d7 Ilg and Igi appear

for the first time in this shell and therefnre they preserve

radial integrals. The integrals 1

SUs symmetry and act only in (60) vepresentation. Also the
integrals IBS’ T2gy Ilg and Tni act only in total L=0, 2,4 and 6
S?ates respectively. Iog also acts in a unidque SU, representation
(60) and gives rise to degenerate spectra. It can be further

seen that the radial integrals I, T T T
- 287 “odr ~1ds IOg mix the

space symmetric representation (60) and (22).

So far as the odd state integralg are concerned, one sees



appear for the first time in this shell
.née Liiey preserve SUB gymmetry and act in (41) represen-
stion only. The radial integrals Iip? Lo violate SUB symmetry
the space antisyrmetric 97, representations (41) and
The radial integral IO hag the same property as that of
nrezerves SUS symmetry in any shell by acting only in
(2N-2,1) representation, In 1f-2p shell it acts »aly in (1)

cation.

To sumrarise, e can gay thaet in the central interaction of
11 thiere ave many SU  mixing radial integrals. The

and Ilpa Therefore the central

interaction in 1f-2p shell is not very much SU g invariant., The

among them are Il I

s? T2s

important, SU, mixing component of 1d-2s shell is Il

central interaction in 1p shell is exactly SU, invariant.
[

Yl

At this stage we would like to meke a few remarks about the
18)

Q

work done by Vincent and others Vincent had shown that the
Central interectinn in 1d-2s shell can be expressed in terms of
multipoles which are the irreducible representations of sU.. To

shell can be expre

U"l

be precigse any central interection in 1d-2
as the linear combinations of irredvcible representatinng (00),
(22), (24) and (60) of Sﬁq group, The pronerties of these

different representationsg heve been studied. It wag found that
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CHAPTER TIT

’”hé\'rﬂperties of 'a' gstate interactions in Hartrece-Fock

3

rormallsme

iIIgl Introduction

After the study of the symmetry properties of 's' state
interactions, in thig chapter we will undertake the sﬁudy of the
properties of these interactions in the framework of Hartree-

Fock (HF) formalisml). The HF theory has been well establishedz)
in the study of deformations of light nucleil especially for those
in the 1d-2s shell, The HF approximation consists of asgsuming

that each nucleon of the nucleus is moving independently in a
potential field that is the sum of the interactions of this nucleon
with 211 other nucleong of the nucleus. The formation of such an
'.average potential is mainly caused by the field producing components
of the two-body interaction. In other words, the HF theory
esgentially tries to extract a one-body potentlal from the field-
producing components of the two-body interactions. It should be
noted that the HF method does not respond well to the pairing

_ Component of the interaction, and the short-range correlations
produced by this component are not adequately described in the
frameyork of the HF formalism. But the succegs of HF formalism,
appears to suggest that the field-producing component plays a
dominant role in many nuclear properties in 1d-2g shell.

o . o - 12
Extengive calculations have been performed >for 1d~2g shell
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puclel using wvarious effective interactiong in HF formalism.
su_rprisingly9 the results obtalned with quite different types

\of interactions are more or less gimilar. An essential character-
1gtic of all HF calculations in 1d-2g shell is that the resulting
qelf-consistent potentials are always non-spherical and generally
carry quadrupole deformation. This is vsually attributed to a

gominant d.q type of component in the effective interaction. We

1ook at this problem of deformationg from an entirely different

[N

of viewW.

&

poini

To obtain a satisfactory understanding of results it is
_pnecessary to ignlate the important componentg of the interaction

and investigate the properties of cach of these componentsg in HF
framework. Fortunately we know that the effective interactions in
1d=-25 shell can be reasonably well apprOximatedg | in termg of
central forces only. Hence the study of the properties of different
tgt gtate interactions which are the important components of this
interaction, in the HF formalism seem to be the next loglcal step

in attempting to understand the results of HF calculations in

1d-2s shell. Tt is with this object that we have carried out the

HF calculations employing ‘'s' stabe interactions for even-even
nuclei in 1d-2s shells. Before we present these results, we outline
in brief the HF formalism and the assoclated technique of projection

A= -

of good angular momentum states.
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117.2 Hartree-Fock theory

The main aim of the HF theory is to obtaln a single-particle
potential and the gingle-particle wave functions. We then repregent
the intrinsic state 2@§;> of the nucleus to be just a =slater
determinant of single nucleon orhits } )\:> in that potential field,

Tn the notation of second duantization we write

4T + ,
l ¢ :> = A OLA S A (D:> (1)

L "

o o iy o s ) o R . .
whers a 1s the fermlon operator which creates a particle in
the state { }f\ . Ihese operators obey the usual commutation
. e
relations. The nuclear Hamiltonian in the notations of second

guantization is

p- > AXIEIpYyaca v 5 KKpvive ya “p R
D<: !’f; ' | D(IPJYfg

/ [ i / g \ - Y 5 g 3
where <\e< P Ly } R } >> = - ~<u<}u | v{ SVX;> }s an

antisymmetrized matrix element of the two-body interaction V .

To obtain the orbits §>§> of the Slater determinant | é? j>

! 3
Wwe use a variational principlec. These orbits are go obtalned that
the energy of the system described by the wave function in eqn. (1)
is stationary for infinitesimal variations of the crbits >\ - The
energy of the gystem 1g obtained by taking the expectation value

0f the Hamiltonien equations (2) in the state of ed. (1),
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. A A
| et = S /I E AN L 5T LA ,

By =(PlHlg) = ‘gw»(/\H.li/\/, F L 2 LAplviAg S @

A= A p=)
vhere Egp is called HF energy, < A |t | ,\> ig the kinetic
energy of the orbit >\ .
Tt is convenient to expand the orbits on some basis j of
known wave functions
N A
J ' ‘

The basis j may be the set 3WW'Q)'?ﬁ?T>"ﬁfshell model

states in a harmonic oscillator. In fact any basis mey be used
to expand the orbits, provided one is able tO calculate matrix
| elements of the interaction \/ with the basis states. The set
of orbits ‘%‘ ig assumed to form an orthonormal set of wave

functions

< %
/~‘>\ 7 i~ ”}\’ < T /\\ s ! — Lo
E: (;i, Ch o= é)\)j * > (“f C.B' — éjk} )
| A b
J -
A

The wave function % 4?>> is determined by the coefficients  Cj4
which become variational parameters. The energy will be

stationary with the normalisation condition (8) when
-

(5 - — . . >\ % . )
A ; - D N G G = :
AN _Ctridgy Q)\-?LJ S X (6)

e

Here 6) is introduced as a Lagrange multiplier. Using the
. - . N\ .
expansion (5) of the orbits, the energy <i¢ | H j¢’> in eq. (6)
J i §

can be expressed in terms of known matrix elements of t and Vv
in the basis j. The derivative (7) may then be calculated

directly and one obtainsgs
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o K :
< rk RIS Y CAC3\<§S,\V\j1§ih?\“Qkéﬁ
The equation has the form of an eigenvalue problem
. , A / A
S Ly lhr g Cooo=m O0G (2)
)

where nh 1s the HF Hamiltonian given by its matrix elements as

&

Lyvhvd > o= oty >+ :“ IATVL N
N . N .19 J— | \ \ * /\ o ./
=Mt s 2 G Cp LIy ) @
Az J,)l o = -

The equations (2) and (9) are the HF equations for the orbitg ;X .

They may be solved by well-known iteration procedure.

The iteration process is somewhat complicated by the fact
that there are many local minimas of energy (3) and therefore many
SOlutions4) of HF equations. Various minimas may be reached by
various initial pguesses and therefore these are very critical

inputs,
1. Single major shell Hartree~Fock calculationsz-

The expangion of the HF orbit in (4) depends 1) on the
kind of solution one wantg, and 1i) on the configuration space
chosen for the calculationg. For our purpose we carry out the
Calculations in the space of a single major oscillator shell
l.e for configurations (ds)n, Also 1t 1g sufficient to illustrate

the points by considering nuclei only with N=Z=even. Further




we look for an axially s mmetric deformed self-consigtent
i)

potential. Therefore we will expand orbit A as
\ 4

PA> = 3¢ 1o
J
where J = ld5/2, 251/2‘j 1d8/2 for 1d-2s shell

e
N

Tn the single major shell HF calculations, the intrinsic | 8>

ig regritten as
T o+ +
! C% >> - (AA:CXAL‘M o7 (lka | %%§>>

where X¢O>> state corresponds to the reference nucleus. Thus

160 nucleus is used as the reference nucleus for 1d-2s shell nuclei.
We assume tGthat this reference nucleus ig inert so far as the
properties of nuclel are concerned., Therefore the HF self-
consigstency problem need be solved only for a Tew valence particles
outside this reference nucleus (which is also called tcoref). In

this Testricted HF calculations, the expregsion for the HF energy

reduces to

A ) = -
Fo.=F @+ > TP W RVE BN
- Ry o L PN S M ' f&/'] (10)
A=C+y TN A= O —
Generally (&, are taken as the experimental s.p. energies

S
appropriate for the core (in the 1d-2g chell, taken from 170 gpec trum

though ideally they should be the result of the HF calculations for
the core nucleus. By (c) is taken as the experimental binding
energy of the core. In fact, usually one only calculates the

energy of the nucleus relative to the core.



e ) ; _}r

i A y%‘ A A T

- 1 X . . ] | o |

T2 Sa ‘f’é“%: > S+ LT LAY, A
A= Ct LT A= O TN Moz O J

A a ”

R T

i ._Z \ a | L C/)\ 4 < A J (11)
A=Ct |

It should be noted that the HF energy presented in our later
results is the same as in ed. (11) and not the absolute energy of

the whole nucleus.

The justification of the agsumption of inert core can be gilven
in two ways. It makes the calculations ecagier and faster. Secondly
L. o~ 2 3 1 5> 2 6) J- Lo
the work of Redlich ’, Kurath and Picman ~ had shown that the wave
functions obtained from intermediate-coupling shell model calculat-
ions are very similar to those obtained by projecting states of
gnod angular momentum from the intrinsic states obtained by the

above procedures.

2. The projection of good angular momentum states.

[

In general the HF intrinsic atate is a deformed one and does
not have a gonod angular momentum. TO relate the HF wave functions
to the experimentally observed nuclear states of definite angular

momentum, the projection formalism is used. There are bagically



Co
A

two methols used to obtain the nuclear states which have a good
angular momentum from deformed HEF wave functionsg., 1) the
adiabatic approximation 1ii) angular momentum projectioﬁ, In fact
it can be shown that the method of adiabatic approximation becomes
cquivalent to the angular momentum projection when the deformation
ig very large. We give here only the relevant formulae used in
the anguler momentum projection method which is duite standard and
well-established for deformed HF solution32>s
The angular momentum projection method was first developed by
. 7)
Peierls and Yoccoz ~ for the axlally deformed HF solutions. They
solved the Hill-Wheeler integral equatinng) by using the angle of

collective coordinate. In

()

rotation of the symmetry axls as ths

¢

other words they have shown that the function of the angle of
rotation of the symmetry axis to be determined variationally in the
solution of Hill-iheeler integral equation 1s a simple rotation

6)}

g of Kurath and Picman have

[

sul

o

matrix element. ILater the r

[§)]

justified the validity and usefulness of this method.

If]@>is the axially deformed HF intrinsic state, then it
can be written as
- J N
i\ / / .
In order to obtain a particular state of good angular mcmentum

and projection ¥, we write

| JMK> =

e | 9% >




)
t

ereiﬂmzprojection operator ¥y

3 3 Ea A e -
MK ig dellned as
fSAN

J 2. \} + | ‘ d =l 7
Pff.i:r; T e ( J oD oy K 25y
i W;L J MR

Neow we will calculate the matrix element of an operator

Jid , L . . T o

hetween the two different projection stetes }oq i 1 Lxl:> and
) 1.1

]JZ Vin K?/} . The expression can be obtained®) easily for the

axially deformed statcs and ig written as

dhi' , 4 .ng%
a 12 - g A
A O MK YK ) }5omiz e l;o)&qb} T, ¢
/\’t V - O, R
....... — T w}xq
L N:f s/\\ ! ‘\I\J;_.kl__ R
where Nj K and Ny, are the normaligation constants. They

can be given as
B

v NE «’1F>j§

Ap s Ay < <

K’

1f we take o Hamiltonian operetor I which is a scalar,

the above expression becomes quite simple and we get the expecta-

tion value of H in the projected states a

5= (W TPV Wy /S
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11T.3 The HF calculations using 's'! state interaction in

1d-2s gshell.

HF calculations obtained with the 14t otate interactions. These

AT

calculationg have been carried out for even-evel N=%7 nuclei in.
. 20, 24, 28 .. .

1d-2s shell viz. Ne, Mg, Si. We have also projected the
states of good angular momentum and calculated thelr energies

ror these nuclei. We have further compared the HF results for

20We with the shell model results obtained using the same

e have used the following two-body matrix elements in all

calculations.

a) Two-body matrix elements calculated with IOs = =10 MgV and

J.

all other radial integrals assumed to be zero,

b) Tyo-body metrix elements using I35 = ~10 MeV and all other

radial integrals assumed to be zero.

c) Two=body matrix elements employing Igpg = ~10 MeV and all

other radial integrals equated to zero.

a) Two-body matrix elements using all 's' state inﬁegrals
(i.e. IOS *’Iis %412855 The value of each radial integrals
is taken from the results of Cohen et al4>°

e) We used the two-body matrix elements obtained by using all

the radial integrals whose values are determined by Cohen

4 s .
et al ), by Tfitting the spectra of O and I isotopes.

Tn this section we present the results of axially deformed

interactions. In other cases shell model results are not availables
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In caseg a,b,c,d we Use degenerate gingle-particle levels

el =] 9

ds/2s S1/2 and dg/p. Bssentially we syitch off 1.1 and 1.s

interactions. Tn cagse e , we use the 1.1 and l.s interaction
o that the gingle particle levels are non-degenerate. The
energies of these non-degenerate levels both for neutrons and

protons are given below.

(:”(1@5/2) =0 MeV, ((2s3) = 0.37 MeV, <‘;,/(1c13/2> = 5,0 8 MeV

Thus it should be noted that the case e) is the most
realistic case so far as the interactions are concerned. Finally
it chould be noted that all the nuclel discussed here are even-evel
and have EzZ‘nucleons and sO POsSsSEss. time-reversal as well as
igospin invayiance. Therefore each single particle Orbit’has
four-fold degeneracy with two neutrons and two protons 1n it. We

will now study the results obtained using different interactions

listed above separately.

a) I.. interactions:
0s
Thig interaction acts only in singlet-even (8=0, T=1) and
triplet-even (S=1, T=0) states. In order to study purely the
properties of tywo-body interaction, we switeh off the single
particle gpin=orbit and 1.1 interactions. AlsO to ensure the

spin and isospin independence of two-body interaction, we use

IOS ~ .10 MeV both for singlet-even and triplet-even states.

e T o TTT . . 20y, 24y 28 4.
L i‘f': eIk i MU L WAL L L VD L e il L R I N % w] Wi
"he prolate UF solutions for Ne, Mg and gi have bheen

obtained and the states of good angular momentum are projected from




) - - . 28
golutions. The oblate HF solntion of a1 has also been

rained but 1t 1s found to pe energetically degenerate with the

the sbructure of the single

. S 20 .
part? cle wavefunctions of prolate IF s gnlution of Ve. 'The single
24. 28 .
srticle orhitals for Mg or ai are not glven separately, since

pa
e find that the structure of single particle wavefunctions is

identical for all three nuclel for thig irt eraction, although

the energy of each orbital varies from nucleus to nucleus, 1In
[an XY

figure 1 we glve the gsinegle particle energ spectra for rolate
’ g © [S] &) &

) 20 o4 ZI 28 .
golutions of ~ Ne, Z‘Mg and “Csi end oblate solutinns of “Sgi.

Another significant Feature to be noted is that the structure of
the single particle wave fanctions is exactly the same as that for
a pure quadrupole field, although the energy separations are not

quite the same. Moreover the degeneracies obgerved in the spectrum
2

of QO are also present in the gpectrnm of Ios° This leads to the

conclugion that in the HF orbitals of Ios interaction, there is

maximum possible mixing of s and d states of 1d-2s shell. 3ince

the mixing of ¢ and d statez 1s a measure of deformatinn, XOS

interaction gives maximum possible deformation., It 1s alsoO

possible to describe these UT orbitals in (Im) representation
. 20\ 1 LR ] H
(see table 1). TFor example in " Ne, *=0 orbital (in (1m)

repregentatinn) ig completely filled. n Mg k=1 orbital 1s

partially filled (i.e. k=3/2 is filled but k=g'is still empty).

Thie partial occupar Y A [ . R
hig partial occupancy 1n Mg 1s reflectved 1N the slight eplitting

levels. But this

of k=tt and k=3/2 levels and other unoccupiled
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plitting ig removed when k:%‘ orbital 1

s
20, 8 . . .
Tn both © Ne and ~ 8i, there is a slzable

also filled as we see

N

very small, Therefore the axially deformed

[
0

: . 24, .
e a good representation of Mg miclens.

ground atate will not be &
This is all the wore true as 1,. ig the dominant component in the
»

2) o4
tal interaction. In fact it hes bhzen found that the “ Mg
tota =3

triaxial snlution 1s lover than the axial solution. Tt should be

* | - 2'3 2 -3 h 1
noted tiat the oblate solutinn of “7Si can be obtained by inver-

ting the energy seduence nf single particle orbits of prolate

anlution of “®gi, The degeneracy Of prolate and oblate solutions

of 2851 can be explained ag Tollows. e have seen in chapter 2

that Ims gives Slg symretry. From SUg point of view prolate HE

. S s : .
solution of 2853 has (12,0) SU5 representation while the oblate

solution has (0,12) representation. Fromw SU, considerationg, both

the solutions are degenerate. The IO interaction being SU,
ot

invariant retains this degenerscys.

. ) 20, .
The HF binding energy and the pro jected spectra of Ne QQN
> 53 9

and 2Q51 (oblate) heve been displayed in figure 2. It can be seen

<L

tnat the contribution to HF binding energy nf Ios intercction is

quite large. The distinguished feature of the projected spectra

of all nuclei is that all 4,6 and 8 states projected from

K=0 HF intrinsic ground sbetcs are degenerate with the HF energy

of the corresponding nvucleus The glight splitting observed in
2 - > LR} - ' . rad 1
°4Ng ig attributed to the partial occupancy Ol the Jlevels as ve

4

have scen before. The degeneracy Of the pnrojected spectrum 1
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1 1 T h - o Py . - . f:;)
explained by the fact that I, interaction can be expressed )
Jinear covbination of Casimir operator and Majorana operator,
Both of thege operators do not gplit the gtates of different J

vaelues.

)

Another effect which ig characteristic of HIF calculations i1g

gsecen dquite nicely

w2

the effect of spin-polaorization, This ce¢ffect 1

- o 24 . ; : ,
in the case of iz, In TTMe orbitals k= and k=3/2 are completely

occupied. The orbital k= is the k=0 state in (Im) representation

with epin-prnjection + 2. 3imilarly the orbitals k=3/2 and k=kt

1 the spin angular momentum
g 44 For k=3/2 orbital and -F for k=it

L2

wve in our calcula tiong forced occupa-

tion of the orbital k=2/2 and not k=%t has an effect on the order-
ing of uvnoccupied levels., In other words the orbitals with spin-
k4
1 4 M

1
-
Ut
D
P
-
=
i
anha
o
ot
[92)
9]
LA
fi
e}
}.J
o
s
=
S_‘
-
L

c7on % will be lower than the S

k=5/2 with g

¥ ]
1ode
¥
-
b

spin-projection -4,

projection 44 is

have carried out the deformed HF calculationg for the same

set of nuclel usging thig interaction. This interaction also acts

only in singlet-cven and triplet-even states. Ag in coage of L,
i

0

interaction, we heve used degenerete single perticle levels and

=
o
—
i
i
-
-]
=
D
1
-
5
et
e}
2
I
P

inglet~even and triplet-even stites.
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Table TIT.1

gingle Particle HF orbitals for Ios interactlion

—

F_J
N
wm
i...l
~~
Do
ol
0
~
0o
o
o
~
V]
3
[0}
te}
i
[©}
[62]
o
5
e
jrs
}..-‘ .
O
=

v [Py [
1/2 -0, 5773 =0 ,5164 00,6325 JZ/S A - 21/3 o

3/2 O "’O 9‘114:72 O e BC)/_’L__!.}_ dl

1/2! 0 0,7746 0.6325 dq

)]

~
N

-

O
§_I
O
Qs

AV

3/2" 0 0.8944 0.4472 a

2
1/2't  0.8165 -0.3651 0.4472 J1/3 4 # \ég/g Sh

° o oy oy -
The T gingle particle wave functions 1or prolate

f=)

solutions 20 9 24 P nd 25 ~. and for oblate solution of 28 .
Ne Me S g1
s} -

. - 0  imel e APl nersyv levels

are given in tables 2 €O 5. The gingle particle energy levels
: - S o + ol |

for the same solutions are displayed in figure J. Tt should be

. O 3 [ S S Iy e . at
noted that unlike for I,  lInteraction, the oblate and prolate

[AS]
)}

1 E A I 3 ET Y - YT AT Y o R A= S e Sl .‘;r, ymty o Anad d:‘\ s 0O
solutiong OF “7 31 o@ag nog seranahe,  Trig ann Do oexnloined due b

i iant natur [ interactio ler the 8U ansformation.
non-invarient nature of Ils interaction under the SUB transformea

1

2% = o5 4. 6 and 8 projected from th
Figure 4 shows the gtates J = 0y 2, 4, 6 and B8 projected fron e
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HE iptringic ground sﬁates of 20y, (prolate), 2%Mg (prolate) and

>

9. (oblate) which is lower than the prolate solution by 4.35 MeV.

gi

The structure of HF orbitals and thelr energy sequence can

pe qualitatively understood as follows. The interaction Ils can
N < P2 2 4 4 .

pe looked upon as the adnixture of Q7. Q7 and Q .@~ interactions.

We will not congider the monopole part of the interaction as 1t

does not play any part in deciding the ordering of the HF orbitals.

Table TIT1.2 also gives the ZONe HF orbitals in (Im)
representation. It can be seen that the total quadrupole moment
of goNe intfinsic state is only 10,08 b2 (b ig harmonic oscillator
’bdnstant) while the hexadecapole moment is about 18.0 b, Thus,
the 20)e HF field in this case is dominantly a hexadecapole field
and hence the ordering of levels will be mainly governed by Q%
field. The observed order dg, dg, d; and S5, ig consistent with
this interpretation except for the positi-n of 5,. This state

in the pure hexadecapole field should have been Jower than the

. . 4
d, state which has a Negative Q moment., But as we have seen above,

AV

there ig also a fairly large Q_ field along with the Qi field
s 20, o :
present in the HI' field of ON@. T™is field tries to push the

O

2 . .

level S, above the level dl as the QO moment of 35 1s negative
2 . e . , 2 \

(0.5 b7) while that of dq is about 2 b~. The obgerved degeneracy

of levels belonging to d2 and dq levels can also be explained in

this way. Thus one feels that it 1s the competition of relative

strengths of Qg and Qi miltipoles that ultimately decides the

ordering of levelse.




gimilarly the ordering of levels of Mg can also be explained

in the seme wey. The HF intrinsic state of Mg has (see table 3)

2 . ) - RN 0o P - N
L4,8 units of QS moment and the + 6 units of QL moment. Obviougly

o
. _ o, 2 s -
the BF field nov is dominantly a QD field., In the nure Qo field

ould have expected the ordering of levels as dg, dqs 5o and do-.

o 4 . \ . . : .
~ure positive Q field has following order viz. dy, doy Sn and

ecide the order.

[N

The competition between these fields will

ll
2 s . . . . Sy > -
since Qg field 1s dominant, the ordering is mainly that of Qg except

n

' s _ . . , 4
that the ponsltlions O SO and d2 are exchenged. However, the Q6

C,"!

. B . , .
poment of (0.75 b)Y is larger than that of S, (zero), therefore

[\)
'—B

the p051b7v Q field lowers the d, level. Thig explains the
: a

observed sequence and also shows the importance of Q4 field in

4
U

deciding 1

®

28
The HUF orbitals of “~gi (prolate) can be easily understood in

- = 5 - ) = I qij - - -
a gimilar way. The HF intrinsic state of g1 hag 19,52 units of

2 . A . .
02 moment and - 6 units of Q, moment. The ordering of the LlLevels
0 O &

will he the result of the competition between the positive QO and

. 4 ‘s 2 a: .
negative §, fields. The pure positive g field will arrange the

in the f owing order 8 . .
levels in the following order, d, d1, 8, and dy. The negative
4 ... . . .
05 field will arrange the levels like dq, Sos dy and dy. The
observed sequence will be dependent on the elative strengths of
2 4
Q@ and 9 multipoles. The slightly higher energy of dj with

4.
egpect to dy may be due to the positive Qg moment of d, level.

The fact that S, ig higher than dy may be attributed to the fact

So obgerved in this golution is re ally not a pure tg! gtabe. AlsO
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d, obtzined in this solution is alsoO not a pure 'd' state.
Similarly a qualitative understanding of the sedquence of

D
N , . . L 4
jevels for nblate solution of

84 can be obtained. For this

. - 4 L . . .
golution the positive Qg field is dominant, hence the ordering

her

R

-

s

A‘ 2 =1 i) 0 s
follows the sedquence of QF field., The fact that So remainsg hi
. - e -
than d; shows the importznce of Qf field also. Moreover the

D0

. . . N . .
degeneracies observed in the solutlon of “781 are consgistent with

our interpretation.

So far as the HF binding energies are concerned Ils component
does not contribute much. In spite of the fact that for both Ios

and Ils components strength of the interaction is chosen the same,
the contribution to the HF binding energy due to Ils component ig
almosgt half of that due to Ios component, The states of good
angular momentum are projected from these OF intrinsic states. As
shown in figure 4, it is observed that this interaction gives rise
to non-degenerate spectra for all the nuclei. Obviously the spectra
are not expected to be rotational as there seems tO be a consider~
able Qi component contained in this interaction. The important
point to be stressed is that unlike IO interaction, it gives rise

to non-degenerate spectra.

The final remark about this interaction is that its
contributinn to the HF gaps is elso smaller than that of IOS
interaction, even though the strength of both the interactions

ie the same.
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Table TIT.
) s ) 'l 20\
The HF orbhitals ©OIL e

1ls

= ~10.21 leV)

interaction

S—

[an

{

2/2

dg /o

(1m) repre-
sentation

~0.6298

0.7713

‘?ﬁdo

0,4472

1

0.3944

(BEyp

ls

= -18.79 MeV)

0 00,7740 0,6325 dl
0,2953 -0,0580 00,0711 “580
Table ITT.3
[ N . .
The HF orbitals of Mg T interaction

$1/2

dg /o

(1m) repre~
sentation

"O e 1315

0.7€79

mt Ay

1/2! 0

0.7746

d

3/2 0

""'O el‘js:‘{."\:r? 2

dl

3/2" 0

00,8944

dg

5/2 0

0

0.7913

-0.0832

o)
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Table 111.4
3 - 21(6 - - 1 Al Lo
The HF orbitals Of )?% (prolate) for Ig
interaction

~39.13 MeV)

(Byp =

Mwﬁmuwﬂu IR———

: 1 Im) repre-
jid Sl/rj C‘.B/Q db/z (

sentation

+ 2
B/K/‘ O OQS 41 054‘/‘:72 dz
1/2'" 0,98858 ~0,1061 0,1300 ~ 8,

The UF orbitals of ‘gi (oblate) for I g
. - (

s ae ) (1m) repre-
"1/2 dg/g 5/ sentation

1/2 0.0649 -0,6311 0,7730 st Ay

5/2 o 0 1.0 ds

L)

3/2 .O 0.,8944 0.4472 do

1/2! 0 0.7746 0.6325 dy

/20 0.9979 00,0411 -0.0603
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UF orbitalsg for I,, interaction

(e

.

— 7 "~
1/2 1.0 0.0022 ~0,0028
ME/B‘ 0 ~0,.6325 00,7746
“1f2” 0 0.7746 n.6225

!

@)

(1m) representation. For example & particle in the state dy

interacts only with a perticle in the state d. . We also know

that the only non-zero matrix elements of the I, interaction
[t

will be of the three types given below.

yd : 5| N ¢ - T ‘\\ e i 20

«\fhil Aoy L V1 die dmsz/ 1 Q‘ﬁsl dogr YV 8 >
R
. . . )

o

But in the HU-F calculations, the off-diagonal elements of the

v S‘"\> will not appear. The matrix

[ A
type qu dmkl !

©
H K S
s y S

clements of the type .7 Qo doy A d_yem N\ algo
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and take the form dgy duky | V| dieq dmkw\ ,

the HF field of the Ijo interaction is due to only

. . 2 AN
matrix elements of the tyDe { 82 V] 8 ~dnd

1

T ™~ - R . - o
Vo diy dmk1,> . Maturally there is no interaction
rent 1A and Tgi gingle particle orbitals This

ture explainsg the consgtancy of the energy Of the

. . . 20, , . . 1
It ig obvious that in Ne all the unoccupled "dV states are

at zero energy since these states do not interact with

cL P}

CD

g
=
D
[
)
0]

g
2

s
[
O
)

ner
the occupled g state. In the initial choice of the
intringic (HF) state is such that the orbital k = 3/2 ig also
filled completely with four nucleons. Since the orbital k = 3/2
in the 1m representation corresponds to the state dq and 1ts
time-reversal state k = -3/2 corresponds to the state d_y, it 1s
expected that the nucleong in the state dg will interact with
those in the state d_q. It can be further argued that since the
interaction in the "d" states is quite weak compared to that in

1

the #'g' state, the energy of th d orbital is much smaller than

the loweagt unoccublied

that of the ¢ orbitals. Surbdrising
. - ISR LI 241’:- e : 1 1 - Ml 3 o] 3
orbital k = 1/2' in Mg ig not at gzero energy. This 1s expected
becaunse the orbital k = 1/2' alsd comes from the state dy e
Thug the particles in the orbital k = 3/2 will definitely interact

with those in the vnoccupied orbital k = 1/2'. Hence the orbital

Ik = 1/2' ig alsgo slightly depressed compared to obher unoccubied

Q
orbitals. In 2”Si (prolate) the hoth orbitals k = 3/2 and
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. - . R T 4m =1 a Ty . JEIE FR oy A ] A oy e .
1&1/2' are fully pccupled. il other words both ll and d_, states

en11y occupied. Thus, nov there will be more number of particles
Ll )

cpressed moOre. Congeduently the orbital k=3/2 in gi (D
L 24
. more depressed than in Mg,

nother interesting consefuence of this peculiar behaviour of
!:)-. X
ig very well seel in “Mg. The total interaction in
- 25 - ot
ste is ~1.0 MeV as seen 10 “5i. b total energy of the
il hetween the occupicd nrbitel k=2/2 and

28 » R} - .
Tn the 2”33 (oblate) solution tne orbitals d, and d 5 8re

f9)

7 ot 1t seems that the interaction between the

orbital d.{(~1.0 ¥cV) in the oblate solution of
d, in tlie prolate solution. The essential difference between the

interaction in the states d1 and d- lies in the appearalcec of diff-

P

erent Clebsch-Gorden coefficients corresponding to different projec-
tion velue=z. But in this pat “ticulor case they differ in sign only.

Sincs in acotral calenlationg only the squares of these Clebsch-

Gorden coefficients appear, the interactions in the orbita g Ql and

ly are cssentially same. As we go from prolate to oblate solution,

0o

¢ pogitiong of the orbitals dy and do are evchanged. This

7111 obviougly prefer the
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sap is concerined, this interaction

o

/
=

the extent how strongly the particles in the
, | 20,
sith each other. In “Me the

srticles in the Mgl state interact very strongly and ve egot large

On the other hand in “ogi, the interaction in 'dy’ state

24,
ig quite wealk and hence we 706 amall gep. In Mg,

the particles

in the necupied orbital —~ /2 interact not only with each
other but also with the 1 noccupled orbital k = 1/2t., As a result
the total energy 1s divided between the orbitels k = 3/2 and
k = 1/2' giving us vsIy amall HE gab.

The HF binding energy due o this interaction 1s slightly
larger than that due to 14 interaction but much smaller than that

. . 20, .
due to I,. interaction. For example, the HI' energy of “"Ne (prolate
=0

golution is ~12.49 MeV while that of 24Mg (prolate) solution 1s

e . . 28
~13.83 MeV. The prolate and oblate solution of 41 are degeneratve

D)
to the HF energy ~16.47 ¥eV. The projected spectra due tO this
. 20, o4
1 \

gy Mg and

interaction are shown in figure € for nuc lei viz.

28 o . ] Y 1 1 (] o N Y R oy A
gi (oblate). Tt shc wld be noted that the oblate and prolate

golutinong of 28g4 fOr this interaction are degenaerate.

reagon for this degeneracy ig again the 58U, symmebric nature of the

)
Io, interaction., It should be noted thet the IT., interaction also
[

* = b - ) 1. ! rad BOTT -
giveg rlse O NoOn—-Gegenerate snectra except IOY Ve nucleug., For
i . 20 -
the nucleus Ng, only & =0 state can be projected and hu

T —

camentially thils interaction depresses the J = 0 state only.




For this case we have used all the 's' state integrals
viz. Togy I9, a0d Ip.. The values of these radial integrals are
yhtained by Cohen et al ". These values are
of chapter two. It ghould be noted that the
segrals for singletweven and triplet-—-even

'

e interaction has now

-3

become spin-isgospin~dependent. As in the previnus Ccasesy We

1 k]

nave used only the degenerate single particle levels. Table

7 to0 10 give the HF orbitals for different nuclel while figure 7

-

]

gives the HF single Dpe rticle encrgy spectra. Filgure 8 digplays
2

the projected spectra for 20ﬂ69 2%4\Me and ©

e note that the HF energy for the prolate solution of
9i is slightly lower than that for the oblate golution. This
is most nrobably because of the introduction of spin-isospin
dependence of the interaction. If the spin-igogpin independent
interaction would have been used, one would have expected oblate
solution to be loyer in energy than the prolate one as Iqg

interaction prefers oblate golution while the interactions IO"
MDD

and I, glve both the golutions degenerate.

m

The mogt ren urh\ble reature of all the solutions i1s thelr

close resemblance with the golution for qu interaction. The

overlaps Of these wave functions with thogse for the I interact Jon

el
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ey A AR R

ko 51/2 dz/2 ds/2

e A

1/3 “"On\5141 “““».‘954:?.:(# Oeri"eﬁfll

3/2 0

/2t o 0 T o eazs
1/20 h 'gfééggwwwmwwwmm 0.3932
5/2 0 0 1
VL s
Table IT11.5
24)o BR orbitals for all 's' state integrals.
(Eap = ~61.86 ¥eV)
k S1/2 dz/2 d5/2
3/2 0 i ~0.4472 0.8944

/2! 0 00,7746 0.6325

o/2 0 0 1.0

1/2" 0,8488 ~0 o 3344 00,4096

3/21 0 0.3944 0.4472
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Table IIL.9
orbitals for all tg! state radial integrals

(Egp = ~125.79 MeV)

Sl/g dg/g d5/2

-0.5406 ~-0,0321 0,6516

0 -0,4472 00,8944

0 0.7746 0,.6325

0 0 1.0

0 0.3944 0e4d72

0.5413 ~0,3419 0.4188

5/2 0 0 1.0

3/2 0 0.2044 0.4472
1/2 00,7789 ~0,3804 00,4659
3/2! Hw& ~0.4472 O.ég;é

1/21 0 0.7746 0.6325

/2" ~0.6015 ~0.5052 0,6188
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; large. The reason for these almogt asymptotic
larg L .

jolutinns lies in the fact that I, .is the most dominant

O
0

interaction among 21l the 's! state interactions. It 1s,
therefore, 1ot gurpriging thot the ordering of HI orbitalg in

e

211 the nuclei ig governed by this component only., Anot her
point to be noted is the exiatence of degeneraclces
the levels corresponding to d (orbitals 1/2' and 2/2) and

(orbitals 2/2' and

W

<

corres pond to that of

slight splitting of levels corresnonding to state do and the

€]
n
9]
lh.._l
!_I .
ct
ct
fde
s
d

orbital k=1/2". This

force contained in the 'g'!' state interaction,

Therefore, we conclude that the 's' state interac

. 2 4 .
shell conteing both a dominant § ,QZ and a weak @ .07 ilnteractlon
apart from the monopole interactis
The nrojected spectra in figure 3 shoy that Tt apec tra

¥

._.
0
=3
a5,
[earnd
o
gw]
=
=3
J
[
=
[

are gquite non-degen
is entirely due to the components 1, - and Ioge Alsn the
comparigon of the HF binding energy of all the nuclel for

the intercctions a) and d) will show thet wmosh of the binding

5

comes tTrom the Iﬂg component of the interaction.




re radial integrals
integrels in 'd! and
we use a complets
intersction along with the single particle spectrum observed in
175, Obviously this is the most realistic sitvation, Tables 11
to 14 =ive the IF orbitalg for 2 Ne, B4Mg5 2881 (p te)and 283i
(oblate) while the Figure 9 shows their HF gingle particle energy
20
spectrum. Al figure 10 displays the projected spectra for Ne,
24 and “°gi (oblate).
The inclusion of single particle l.s and 1.1 gplitting of
Tt and 'a' shates has many effects on the results of HEF calcula-
tions. First of all the single particle spin-orbit interaction
mixes different permutation svmnetries and to that extent 1t mixes
different 858 repregentationg algo, In other wordsg the simple
nature of the interaction iz lost. So far as the gstructure of HF
orbitals ig concerned, wve observe that they cannot be described noy
in a sirple (Im) representation. hspecially we note that among
the unoccupied orbitals, the orbital k=k' corresponds to pure Ql

ction)

radicl integrals (total inte:
have also obtained the HF solutions for the same nuclel
1 the radial integrals. These integrals are obtained
of Oxygen and Flourine isotopes. ‘e have
both for T=0 and T=1 states in Chapter

rals for states T:
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201s 0r orbitals using

= ""_j/ne

IT.11

all radial integrals

59 VMeV)

=
9]

A
L o /D
S/

dg /9o

1/2 ~0,5453

o e
an a LﬂJ \<‘lO ‘\7’

0.7521

3/2 0

-0, 2584

0.9660

1/2¢ 0,521z

0.5539

0.,6493

5/2 0

0

1/2" -0 . 6540

0.748C

3/2 0

0.96GC0

Mg HF orbitalg using

Table IIT.12

all radi

(Byp = ~42.71 MeV)

o k 51 /2 d3/2 d5 o
1/2 -0.5104 ~O@8;11 0.775"7
3/2 0 ~0.3192 0.9977
1/21 0.2543 0.7266 @,5%84
1/ 27" ;gjsu 5 0.4772 -0,3122
5/2 0 0 1.0 ) o

0,3192




(prolate) HF or

113

Table ITT.13
bitolg veing all radiel integrals

= ~01.09 MeV)

)

fa]

dq
<

1/2

aQ =
e O ® t34:2 )

0,.8006

3/2

0.9388

1/2!

0.5013

0O0
Oeg)zf_)ﬁ_c

5/2 0 0 1.0 r )
3/2! ) 0 0.9383  0.3444
Table IIT.14
2841 (oblate) HF orbitels using all radial integrals
(Byp = -92.46 MeV)
‘““"k““”“"“ “1/2 o “3/2 ds/2
- 5/2 0 0 1.0

1/2 0,8623 ~0.2412 0.4335
3/2 0 0.5008 0.5792
a/2! 0 o ~0.5992 ) 0,5506 -

1/2“

0,.4370

Say g
O a?SSL)

~0,4382

g NI et}
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gtate in the absence nf l-s and 1.1 gplitting, whereas its ghtructure

changes congiderably when fngu splitting is taken into account.

Thig would heve significent CﬂﬂgchCWCCS on the structure of the

sxcited k=0 bands Of 20yg, Also the degeneracies that are observed

in the absence of l.g interaction do not exlst any more. The

orbitals k=¢' and 1v=3/2 and k=5/2 and k=3/2! get gplit up. 1t

ig als0 seen that this l.s interaction J ust readjusts the re lative
crength of d and d components kKeeplng s components intact.

S'Ll 2 a3 5/2 s 8/2 it P 1/2 P 2

In general however it is clear that the structure and ordering of

HF orbitals h as been mainly influence ed by the dominant lgg component.

° b) ; L P T P = 20 ] 28 2 '] ]

Tt is also observed thet the HF gab i Ne and “°si (oblate)

] " K s 24-‘; 28(‘1 ey —~ 2 L3 . },'

decreages while 1n Mg and 51 (pf01aue) it increases. Thilg

cffect may be partly because of 1.s and 1.1 splitting of gt and

gt states a 1 may bhe partly due to the presence of ndd repulsive

integrals present in the interaction.

Another important obgervation is that there is a reduction oOf

T binding energy nf 11 the nuclel. meig may be agaln nartl
y 2 I

'Jt

s

-ting of single particle levels and partly due to

ga

hecause Of gplif

€]
f\

T gQ

the presence Of repulsive odd stabe interactions. e alsn note
that in this case the oblate HF solution of 28q4 ig lower in
energy than the prolate solution. However, it may be noted that
the HF energieg for both the solutionsg are quite close toO each
other and therefnre & good description of 2831 may require the
pixing of these two shapes. The projected gspectrum is atretched

s

by an almost constant scale factor of 1.2 ag we go from case )
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r words the cagential effect of spin-orbit

o
=

asc 6). In othe

gplittiﬂ@ ig to change the moment of inertie of the band.

771.4 Compalison vith shell models

Tn table 15 we have glven the shell model spectra of 20y¢
sbbzined uging int eractions a), D), ¢) and ¢). Tt may be nnted
h the two--body interzctions 2), b) and c), we have
d the desenerate single perticle levels while the interaction
i nged along with non-degenerate single particle levels of
model calculations have heen perinrmed for us

B!

Tt ig interesting to see that Tor Thg

interaction the shell mndel and HF projected spectra agree

perfectly. For 17¢ interaction, the shell model J=0 state 1s

0.7 MeV below J=0 projected state. However, Ghe overall agreement

{

except for J=8 state 1s not bad. For case ¢, the shell model
spectrum is the result of configuration mixing of dg/o dg/g and
while the HF projected spectra result from the sole

5 talbes
1/2 Suao 5

configuration ( 5

y*, Therefore the gpectira ave completely
different. The results of shell model calculations 10T the
interaction o) (all radial integrals with non-degenerate single
particle stateg) and the corresponding HE results agree very well.
Thus the agreement between the shell model and HF results depends

critically on the interaction employed for these calculations. The

Ing interaction which gives a maximum deformation by mixing 'd!

]
DJ

tgt stotes gives identical results for both shell mo?=al
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Table ITT.15

model spectra for different interactions

—

20y

shell

=
O]

(energics in MeV

n

2 —22.5 14,58 - 5,08 ~22.12

6 =225 - 5,47 - 3,08 -16.53

end TIF results, while the interactions Ijg and I, _ which give pure

0
0

occupied stabtes in HF intrinsic stotes ©oil to yield resulte in
agreement with the shell model, The HF calculations wvhich are
essentially the approximetion €O the shell model configuration

abions can yield grod results only if the interactions

(I—'

mizing calcu
used allow a congsiderable mixing of single-particles state in the

occupied orbits. In other words the interaction should have

» producing tendsncies. The gnod agreemcit between

-
)
Q
M
Cu
o
=
~
<
=3
’_‘?
9]
o
e
O
]a—-'

L

the shell model and HF results in case e) is partly because Of
dominance of Igg component and partly because of the apin-orbit
and 1.1 interactions which meke d,/oy ol/j and dn/g state
nonmdegenerate; This non-degeneracy of single particle states
may also change the nature of the HF orbitals of the occupiled

Tevels when different 's! state interactiong are used. Thus the
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e

reement between the shell model and I results

sgentially

D

ag

depends on the inter-particle interaction and provides a test as

to how good 1s the HF approsd for a given nucleus. It should

be noted that almost all the effective interactions in the 1d-Zs
<hell show the dominance of the Tnq interaction. This explains

de

why the axial HF for malism is equally successful in the beglnning

of the 1d-2s shell for all the intercctiong. Also the fallure of

. . Ay -
ayial HF formalism to explain the encrgy levels of Z%hg ond 2831

inly due to the dominance of the Ipg component ag we

have seeh Dolore.

IIT.5 Summerys

Tt has been seen that the structure of the lowest (occupied)

orbits devnends very drastically on the nature of the interaction,

The Ios interaction gives exactly the level scheme of Qg while Ils

AN

containg both Q and Q4 multipoles. The 125 interaction is a very
neculiar interaction. It operates only when the two particles are
in the time-reversed orbits of each other. In ld-2s shell the I,
interaction is the most influential component and maily goverlns

the structure of the HE orbitals of even-cven nucleil. This ig the
component which algso gives the dominant contribution to the binding
of the nucleug. Further this component is maln]v respongible for
d-s mixing which is a meesure of deformation. In fact this
component gives asymptotically deformed.nuclei s0 that ' . (the
noment of inertis is infinite - ) the vrojected spectrum 1s

degencrate. However, the compnrnents 174 and Io, reduce the

ob
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deformetion to a realistic value and thus gilve rise to non-
generate spectrur. The spin-~orbit interactlon seems to reduce the

inertis with the consedquent gtretching

uF energy and the moment of

nf the projected spectrum,
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CHAPTER. IV

The nature Of cffective intera tion in_LfﬁﬁgmﬁgﬂgL

V.1l Ir‘”wﬂucblmn

Unlike in 1d-2s ghell, nuclel in the beginning of the 1T-2p
shell 4o not exhibit well-develnped rotat ional apectra. This

ig generally attri ‘he enhanced palring correlations in
the Lf-2p shell. In particular these correlations manifest
themselves in showing a greater atability of Hartree-Fock=-
Bogolyubov (HFB) intrinsic ctates compared to that of Hartree-
- v it statest! . s 2)
Focle (HI) intrinsilc states Recently Sandhya Devi et als

nave algo demonsts ~ated that in the 1f-2p shell the energies of

good angular momentum states projected from HFB intrinsic states
are in bebter agreement with those of the exDerimental levels
than the energles of gtates projected from HE intrinsic statess

This increased imnnrtance of pairing correlatinns 1s generally

A o

attributed to a stronger pairing component in the cffective

tyo-body interaction in the 1f-2p shell than in the 1d-2s shell.
However, one possible Treasotil for the increased importance of

pairing correlations 1n the L f-2p shell could be the neutron

L]

excess which togetiael with the ex perimental gingle particle

)

1y responsible LOT giving rige to degeners cles

’D

energies is larg
a2t the neutron and proton ferml surfaces. Ihis degeneracy at

the fermi surface would favour peiring correlationg. These

(’)

correlationg would then be a dynamic affect and need not be due
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ro any cxbra pairing component.

17e Teel thet the greater 1 instability of the HF states of the

ied by the presence of the pailring

|r__q

1f-2P shell nuclel as imp
correlations ig largely due £o its unfavourable sequence Of gingle

article levels rather fhan due to the Presenc e of a large pairing

je]

component in the two-body interaction, 10 fact we shall show that

the eftfectlve Lo-hndy interactinm in the 1{-2p chell 1s predo-

ninantly quadrupmlemquadrupOle (q.q) Gybeo Tor this purposé, Ve

0= b0dy matrix clements c@ culated by Kuo and

consider the

3‘} T a 3
from Hamada a-Jd ohngton potential.

Brown

4.) . e .
Tn the SU, model of Tlliott ~, he congiders a Hamiltonlal

6

W

ctional spectras A1l the levels nf a rotational

~
o

which gives
tyo-body part of

hand belong to & unidue SUB representation. The

thig Hamiltonian ig a (.q force while the single particl

: 2 . . .
a simnle 1 interactlioil. The absence 0L wellcdeveloped robational

nuclei can thus he either due to

C)
r_
(,

n
1.1
-
]
ct

o
]
m
l.___\
e
!
\
o]
n
j=p
[0}
Ld
=

fe

nnfavourable gingle particle cnergies which do not have 11+

sequence or it may be due to the fro~body interaction not being

ond the gpreatel importance of the higher

predﬂminantly g.q type

multinoles.

Our aim isg GO gtudy the nature nf the effective interactinn

in the 1f-2D ghell T 1t d1g drminantly of q.q type it should

a0, symmetry when the single

O

give rise tO stabtes with delln ite

i
particle stateg are orranged in 1(1+1) sequence. Keeping in mind




this criterion we Ty to adjust the single particle level sequence

until the chogsen two-bhody interaction gives rise LO wave functions

Q
1
Q
O]
w0

ith definite 58U, gymetly. OQur exercise shows that the XKuo-Brovh
wJ

teraction” 3) wyith a suiltable choice of single particle energles

wh

gives rige O wWave functions of cood SUg gypnmetly, thue confirming

its dnminant d.4 character, &s vell as the importance of single

particle level scheme.

1v.2 Two-body wave func tiong in the SWB vcncw_

Tn this section we give the SU representations of two

CL’)

Cu

particles in the 1f-2p shell. The deta ils of sUg gcheme are

> s T 77 s R A 43) A . "] ] - s, 9 . s ‘5 1
given DY m11liott et al.,’ ana by Baner)ee and Levingoill . Fach
particle in the 1f-2p shell has three nscillator gquantas and
therefore it has ( N Pe) o= (30) U4 representation. A single

‘h the 1f~2p shell is thus written as <P (Ap), & )
\

i
: PN . ; . .
where & = < Qg > ig the quadrupole momet in units of b
1

U”
W
-
—
+

m
—
®

(hermonic Oscil ator constant) and L = < 1hj> . These
7

particle wave finctions are obtained by disa gonalising the Q

fferent k in the

1

operator in the basis vectors | 1k > of d

1f-2p shell. Thege states can he written as

P Foap, e | = s oalop ke U] Uk )

e R L

" TS . ‘,c’) »
the resulting eligen sbabtes Of Qg and 1Z are given belOw.




~ :
q) (30), -2 | = .9 (2)

The eigen values and 1t values are shown in figure L.

2. Tywo varticle states in SUq representation

The stateg OF articles will have SUB representations

T0

]

from the nroduct (80)@9(80), e have already gilven

(see Chepter IT, table 4) the various twd particle SUq
)
representabinng in the 1¢-2p shell along with their k and L

(M) G K

\}—/} {:(m 12 , 0]
W, 1 (22), 6 0]
wile, o 2] ‘)
g, [, 9

g, [0, <6 0]

.
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e will gee how various intrinsic states of two
defined in expressinn (2 can be obtained. TLet us

Te i Mnte that it 1s the symmetric state with
v = 0. In order to make (<= 12 and ¥ = 0, we have
voth the particles in a gingle particle stat ?

cgsiong (2). This makes

\%ﬁ I:(GSO)JCT:: 12%/}4‘:,6 i e <f>C\)<¥ ,1§

S (5)

'vhere quffix 's! denntes a symmetric combination of the states
CFg(l) and (2). gimilarly the antigymmetric \§f4 state with
(=0 and ¥ = 1 can be obtained uniquely by putting one particle

in the state Cbo and the other in the state C?lﬁ Thus

-1 — /o -_/ b - AN - \
¥, Tean,e=9, k=t ]= | R P (6)

n

vhere gsufllf

C?O(l) and F?(ﬁ ofined o8
| B g = = [ o e - far o o |

ta! denotes the antil avpmebric combination of staltes

o

T

(7)

- IS S ] o . . " N o . .o o R
The intringic states \}{ ig a symmetric state with =6 and

K =0, and it can be formed in twvo ways. 1} nne particle in the

state <i30 and the other in the state 4 i1) one particle

1
T 0



0o
D

pyo posslbilities as given below.

i / . .

. i (. :

Ty et ke = Xy d Y V] Py b @y

J [(z1) =0 ¥ =0 | = Koy gz () 4= Y] DR S
g, [ =0 k=0 S i AEY
where the mizxing coeificients X and Y are to be determined such

ot this combinati n belongs to (A pt) = (22) representatinn.

Tn order 4o determine the coefficients X and ¥ we will make

of the step-ud operator Fj defined as
Fr= —=T1a,-3L ] ()

is operstor decreases K by one unit and increases & by three
units. Since & = 6 ig the maximum possible cuadrupole moment of

(22) representation if we anply Fy on EYO, the result mugt be

&

ot
o)

nger be increased. If the linear combination

7er0 as (" can no

on the right hand gide in expression (8) is to correspond to (22)

Ly

representat inn, then we must have

F? \i{)— [VL'?_?’_’ - = é;} K= ¢ f = O

(10)

Usging the normalication condition along with the expression (10),

ve get
P [ /7 A Y e ~ — 2/
x= & end v= e

Therefore the state 9{r can be written as




5 . N (1)
+ ‘5’4’,<7<§ZU>5

orthogonal to (PZ belong to

an obtain the symmetric state

The results for SYé and

i - -
\Pi are given belmr,
= oA

¢ Ten,c=e, 102 = [F 160 §o) -

(12)

and

| o !
\£5L(~O‘?">;G:”é/k: oJ: E fT’Mi) d? (z)\ w\%i{ q)lm) CP’ ((23>

Tavine determmined the exact form of the tyo-particle intrinsic
5, onr next task 1s to project out the gond ang mlar momentum
states From them. The expression for projecting the states nf

good angular momentum i3 in Chepter IT (see expressinn

nse of that expression we have projected the

projected gtates are

6]

stete of zood angular momentum. Thes

bhlea 5Lh column denotesg the

given in tables 1 to 5, In these tables

&y -

norralisation factor,

v be noted that the stotes of angular momentur L

nrojected from tro bandg K=0 and K=2 of (22) representation are

&



Table IV.1

particles nrojected from intrinsic state
Wiy ey, ¢T=12, 0 K=0 2

0 [4 21

S
0o
0o} o
N
o=
o
R

. ) 763 [ o4 L0

= \[[125 J125 J125 21
P =5 Y

6 1 0 0 =2

notation here is that e.g. )

0 ) =[5 [£%)+ 2l %)

Table 1V.2

ood angular momentum states of two

particles projected from the intrinsic
[ H ‘ .
L £2 p® J%ﬂ (fp 4+ pi) N2
(2] (4 4
< 2b 25 15

A}

|
1
|
i

=T
o))
.Q
e
68}
[@))]
i,_l
@] S]
[NSRI®))!
3D
AR il
|l (VY]

J—
‘J1625 N
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Table IV.3

i + by wkiclas
The cond angular momentum states of two parvlc.les

, P o
Skt e Lote Yol (22), =6 F:P}
0] ed frer the intrinsic state Yal(22),¢7=6, K=2
projected {rom the intrinslc s jiBLE 3 9 ,

S R A DS 1 e

I 2 2 L (fp + pf) e

h
-
AV)

Ll

1375 21

O
v
-
O
o
(8]
)
I_I

0o
-
V%)
3
C
ot

&}
~J
@)

N
o)
Udm o
>
|
£
S
Ui
g | e

Table 1V.4
The good angular momentum states of two particles

s . ' KN - e e ! o™ g
projected from the intrinsic state g54[141 ), & =0, k”i}

L £ D2 L (fp 4 pf)x N7

j-
!
|

0o
O 1w
I

&
Lo
O
P
——

AN
O
O
i
}_..J

[
1..._!

@]

O
=
O
)1

% 3ign is 4 for even L and - for ndd L




Table IV.D

good engular momentum states of two pa LLC]GS

0ne

. . - _. e T/ B
projected from the intrinsic state \ \(OB} ¢ =6, 6X

L 72 Xz L (fp + pf) Né

t P J2
l \\{( Ig - \}' 16 O O
. - ) - -
] - (= ==
i 45 ° J5

ol . ) 2T o O T " o S Ao
orthogonal | the states of gooa anpular pomentum L projected

ifferent representatinms (/\f&) are all orthogonal to each

1 Therefore we form 2 linear combinatini of these two
states such that it will Dbe orthogonal tO the one projected from
x=0. ‘e will write the new L=2 state, for which only this
Jifficulty arises, &s

|9, =2y = & CRNET I R CL AN

quch that P v -
Y = 2 i/ _a 5 =0
™~ 5: :z) ( S ki 95 L LA /,
and Sy ~ - .WA7~\ _
LW, L= | Yy L=2) = |

Using the above two conditions one can detemine the values Of

a and b. These values are given DY

i s o o e
» ]

and

)

1
fau———
0

)

i

I
NN

{C

prs
et
s}
o

aubstituting these values of a end b and normalising we get
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; 7 l —-—-2 S b l; N CENINS 0 r () <), no ONEINT & 8 al 1 :[ - CiyD 1V 1
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belOW

S 0.587 Ip

| Wag, =2y = 0.762 £ 40

' i this =0 state instead of the
5 our analyslg ve will vee this new L=2 state 1NSLE

i i hand of representation and will call
one projected from h=2 band of representation (22

tion (22)! for convenlence.

i

S

this state as

omentuwn from

Having projec

= P
these transformation matrices have NOT

the thesis for the sake of brevity but will be

3 3 e o o
tlhe anthor. Finally it is alsoO nnsgslble tO

e

O

tri ments in j-Jj repr ntatinn
transform the Two-body matrlx elements in j-j representatlons

) ‘ - - - e e . -
batinn ing th ~nreasion ziven in Chapter 1l.
3Uq representations using uile expression gilven in Chafl

cril s in SU presentationg are thus
The two-body watrixz elements 1 bHU, Teprosedl ationg are g

s
)
0
"

3
o7
9]
fon
)
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&3]
-1
[
ja¥}
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(¥
=3
o)
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o
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=
=
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obtained for 21l valuss of J

2 -~ 5 -~ - e
potential Some of the important watrix clements are tabulated
X - el J- o S [T R AT
in appendix I “Te Adiscues poloyr the salient features OL these
- e e e U 500

cmatrix elements.

7 3 £+ Pfacti interaction in the
IV.3 The 8U. analvsis of the effective interact.lbn Lo £l

1f--2p shell

ing of permutation

1. Break

(. 2. - [, - oy e ey e -
The Lio-body matrix elements 11 JLB representations
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e that the interaction in general s mbre diagonal 1n
representations than in j-j representations. The matrix

TWwo SUB repres cnuutwo 5 belonging €O diffe~

rent permutation symmetry are

glemen nts connectin

s}

cro as expected 0T the bhare

ra

teraction., In contrast to this the above mentioned matrix

7e srall but non-zero values in case oOf renormalised

I8}

interaction, Moreover thig breaking seems tO be more prominent

in T=0 part of the interaction than in T=1 part of it. This
leads to the conclusion that the procedure of renonrmalisation
does not preserve the permutation symmetry. However thig
breaking of permutation symmetry is very small since the matrix

' . .

elements connecting states belonging to di nt permutation

=
o .
[t
®

gymmetries are small comparsd to energy differences betweeil

2. Breaking of SU_ sym et
)
Apart from the violation of permutation symmetry to a small

preserving 1i) 58U, breaking. Doth the parts have central and
non-central characters. The central part of the interaction 1g

dominant over the non-central port. Tosee this we will examine

some of the matrixz elements obtained using rennrmalised interac-

tion., Je will clagsify them 1in the following four categoriess

a) Central and SUn preserving:= The diagonal matrix clements

belong to this category. These ratriv elements are duite




- . P =
large. ‘Je give some of them for 111usu1mblﬁng (For

notations see exbression 19 of Ch apber I1)

!

/(@“) 00 | v | (69) ooj> = ~3.5067

(0“ 00 | v | (22) 00y = -2.862

il
kJ
;g

'/ %
{(e0) 20 | v | (60) =20,

/
Jez) =20 | v | (22) 200 = -1.141

Central and SU g2—~ The matrix elements which are

3
Qiaconal in L but not in SU, representalblon (/A}¢) belong

tn this class. Some of them are gilven below:

J60) 00 | v | (22) 00y = -1.617 for J=0, T=1

for J=2, T=1

~
Py
G
®)
p—g
Do
-
<
N
0d
A}
R
e}
o
"
1
O
q
l.__l
No]

These matrix elements are generslly smaller than those 01
catsgory (). Howyever 1t can be seen that the watrix

clements connecting two different SU_ states are larger than
)

tea., This means that the

the energy difference of these sta
interaction canses congiderable mixing of different su
¥ S

atates. Later it will be shown that this mixing will

almost climinated by a suitable choice of single particle

Non-central and SUg preserving:~ The watrix elements which
are diesonal in SU. representation but not in L are of this

© ! o
]

category. The non-central interaction contains both tensor
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)
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and

clements show

(60
/<m

0l

OL

the

1n«0rh1b components. The

exizstence

(60)

(22}

v

onf tensor

~ _
21 >

“l @ :LOF)

0.272
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T=0 matrix

interaction.

for J=1

for J=1

ey 21 | v | (B0) 4lh = =0 478 for J=3
N ' :
patriy elerents in which L on bra and ket sides differs
by one cannnt be explicitly attributed to tengor OF
spinnwrbit interactions as both the interactlinns can
contribute to these metrix elements., However they are
algo quite small. The evistence of Ttwo-bHody gnin-orblt
interaction is evident fron the following T=0 matrix
elements mainly because of the characteristic ordering of
the levels
‘o : : o1, = .2.332 for J=
\\QO) 21 | v ) (60) =l —~Z e 505
<f50) 21 | v | (60) 21y = -2.177 for J=2
&350) 21 | v | (69) 51y = 2,266 for J=3
Tn the absence of spin-0% “hit interaction the etates J=1,2423
would have sn degenerate.
Non-central and SU_ brealing:- The matrix elements which
(]
are not diagonal in both L and ( )\/A) come vnder this

cates0ry. 50m

@)

0o
[

0o

examples al

- \‘
ZAI
41) =

1

0.430 for J=1

o

~0,133 for J=

for J=b




nv f eatbesQry C are compa-
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PR v mr el
Mus even amollg non-central

3 A 7 - AR .1-1,1(::
) ! [SHARY) Aent 1.9 L omd .L’".L(”“kl’lb 0V Gl LLLE
4] ) SO 00 p;ﬂb _!, - CU~ fhl
: nts pl G5 SHAR _1_.['].‘-?:., C (/1;1_‘.‘~ ALt o]
c o '!.)C\.}, 1eflLig A

5 B e O 4
1 cimdlerly the matrlX clements of
7, bT Jcing component.  SIRLLESSS Y
at Or Gellvtire, I+
24 B

b) o eh 1srveer thon those OF ¢) and 4).
e MmUCii Lo b et

Tt can be obgerved tihat a

D d atiractive. The
i renresentation ig sbrong and attracitlive
lowest symEebl. ic represer

-

3 T AT e A e t g
ginglet-evel ratrix elemen

‘/\ _ o r(' _C“(‘-)r J:O
Jeoy 00 | v | (D) 00> = ~3.567 f
s » e for J=2
A60) 20 | v | (69) 20y = -2.344 for J=2
| = .1.698 for J=4
/fs0) 40 | v | (60) 40/ = -l T

~ ,

’ A0 e T:E‘
v | (s0) 0y = -1.233 for J=0

NG
o
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S
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Abmapy Lhe interaction LI
i ~ the contrary the 10U

i the Of Cvation On the ¢ 3

confirm the nhgervatlnil.

IRVae P i 2 g
repulgive as 18 sael

i rete dg o wedl and
lowest antisyrmetrlic state A5 Jeal anc
W oo b L R I
ing 1d matrixz elements.
from the follnwing T=0, singlet~0dd matils
l(« - = 1.019 for J=l1
da1) 10 lv | (a1) 10
/ ) P A
{a1) 20 [v | (1)

for J=2

Do
O

N
i
D
G
U

10

3 for J=3

{

{a1) 30 | v | (41)

S
o O
N
{
3
0
!_.J

~ 0,754 for J=4

{ar) a0 | v | (2D
Ja1) 50 | v | (a1)

for J=D
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~
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},_1
.
O
S
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in th
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Tt isg important to note that in the lowest gymmetric

s e P e I B ar e ]
csentation (60), splitting of the states with Aiile ent «

the order of Lthe le vr]s recembles the order of
pectra due t0 d.q interactini, Tn the lowest antisymmetric
are almost

interaction acting

G.q interactloll.
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we have nhserved thalt the effective
two-body interaction in the 1f-2p shell ig doninantly central in
character. llow we will show that this central interaction is
dominantly duadrupole~quadrupole {(q.q) type. To see this point

explicitly, congider the Hamiltonian for two narticleg,

where Q:q14qo ig the total cdrupole operator, H , the harmonic

e

1

and A, the strength of the interaction.

d-
!._.!
)
—

ogeillator voten
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n gives rotational spectra for states belonging

(:-‘,
. 0
representation )

@

~
L

_ 317

i

¢ ig the SU, Casimir operator, we call write
)
- o . = L 4B -
T = - A 2. Cq 38217~ 2k > (asq.)  (7)
o i i iy 9
an alsgo write

i o
e U & .
Ho=H 434 215 - 24 =~ (a3dy) (8)
’ i - 1< i
Where
H = H - A Ci

Ci denotes the

exnreasion (3)
will give ri
syrimetry,

sequence. 1n O

shonld be lLower

separation O

proportional to

N

the exzpression

1

inter

Kno-Browun

the 1.8 interac

are p

eliminated.

provid,

sction can be brought ovut by showing

tion is

gingle D operator. The

o

orticle SU, Cagimir
>

cwo-hody interaction mf(qdq Jtype

ded the singls particle energies heve & 141

ther words,

in energy than Moreover, this

¢ particle levels should directly
the strengtl

(8).

y of q.q interaction as seen from

-~

Hence the dominant q.q character of T

-y
)

ne

that

awlt of a

and

the energies 2p an

roperly chosen of ig

o

g SUB symmetry




e have nbbtained the two-body wave functiong using the

o o )
K 0w Brown interaetion“) and the following three chonices of

gingle~particle . energies: a) Bxperimental b)Y 2p and 1f orbits

‘hit interaction),

The experimente nsed in these

calculations

The wave funchtinng corresponding to the lowest elgenvalues are

g
then decrmpoged into various SU, components by making usge of
2 ”

*rnccs, An UB decompogition of the wave

functiong (gee tables 6 and 11) ehoys that in cass a) all
nmponents of different space

1

nixed. The later cdmixture is

~liminated in case b), showing that it is

gpin-orbit interaction which breaks the

permutation sympetry. This admiyture ig greatly reduced in

case c¢) where the

ia regtored for all the J

states gimultoneounsly. The analysis has been carried out for
. : : . . - . 4
both bare and renormalised interactions given by Kun and Brown >°
The average energy separation of levels 2D and 1f required toO

restore the SU. symmetry to about 950% for all J states 1s 0.8 MeV

for T=1 part of the bare interaction and 1.5 MeV for that of the
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renormalised interaction. The corresponding separations for

YeV for the bhare and 1.0

T=0 part of the int
VeV for renormaeliscd | The tables 6 to 11 show the

sU_ decomnogition of and T states obtained

3

with renormalised interacti-n, similar results are also obtained

1r
iy

for the other shtates. 4 gsimilar enalysis carried nut by Pari

o
-1 1) = - 3 h . LI . Al 3 C) - Py - |~ -
and ﬂnatt’) Tor the effective intersction in 1d-2z shell also

. -

shnys the features. ‘je noy discuss gsome 0 the featuresg o

+ o

the intersction in gpace symretric and space antisgymmetric stat

results in tables 6 to 11 show that tie Lowest elgen-~

functinns tend to belong to lowest symmetric representation (60

as the single particle 2p level is talken below the 1f level.
Figure 2 shows the tendency of the (60) states to form a rota-

1T orbit.

has a largs

renormallsed interaction the 1T-2p separation needed 0O restore

2t fnr T=0 stateg
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it ig only 1.0 MeV. As indicoted by equation (3) the 2p-1f

reduired tn restore tine S04 svmmetry of the wave-
) -

Tunctiong of

G.¢ interact on is dlrectly proportional to the

strencth of the a.q his would imply that the

=1 part of the interaction has & stronger 9.9 component than

It ig interegting to note that in !

€3

)

ated above thot the interaction




Tabhle

TV.6

T=1 state
levels

an of J=0,

i ., dec O]
3 )r, “fL ic l

2
- ) o) AT E T‘ll e
3 [CR. SRR

‘)-bbc

b) deg cxrz 2t e

l.
e}

; : i ¢) 2p level below 1T leve ]s

WJ Lh & g o (- F .
b\ - a3 o 0

(A P13 ‘ c

Components

(GO)OO 00,5345 0.77 983
20 . L BDA4AS _QGH 2 00,1794

(22) 00 0 04

e e A TR AL JUNEERERY

~Oa3680

(41)11 ”090058

(027 |

Table IV.7

sU, dec omnosition of J

)]
state (see the captinn Of

(A “)LS qu'

ol
Componeint ta

e o S

~ { ARTE
(00)20 Oa;clu

(22) 50 ~0.4387 ~0.2692
(uu) 0, 4324 0,1882

c

9662

O

it

0.1429

00,1797

I

221315””' e sy 0.1222 T 008
?OB)ll 0.2976 ) 0,0037 mo.oél4
ZZI;;mMM”M ~0,1092 ﬂwio¢dzg;“mw ~0.0232
(4 1>ql —ﬂ.zguéwwn mo,ozgéwmﬂ ”;o&oééiw

(03 D g ~0.1782 ~0,0153

~0,0075

AP
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Table IV.5

SUB decompogition of J=4

9
state. (see the caption af table IV.5)

( >\)W>TL.;‘5 a b c

Components

(60) 40

0.4009 0.9642 0.9974

?7)40

"’O 90416

0.5103

0,052

(41) 5,
(02) 9y

(41) 44

0.,4722 0.0153

-0 ,0658

§)
H
O
)
-
(@)1
(@3}

i
(@]
L
)
\G}
o~
AV}

(41) 5 -0,1811

SU. decomposition of J=1, I=

0 C
1le nerticle levels
icl

a) experimental sing paT
b) degenerate single particle levels
Y 2p level beleow 1F levels with é§,(f?_ 1.0 MeV

(N M3 R 5 .

Component

(e1>lo
(O'))Lm

(60)01 0,5921 ~0,.7323 0,8729

(22)01
{60>21
(22)

0.6195 ~0 4292 ~0), 2698

0.0201 -0 0 3439 -0 o 3945

O 0367

0.1104 091?37

~0.1457 ~0.0623

21

(22)44 -0, 0666




statbe

50

Table 1V.10

a0, decompngition of J=3, T=0
\;)

(see the cuption of table TV.9)

n

14: .

CA PI1g

2 D C
Component ) B

(41) 50

~0,03 lO

-0,0572

0.0020

0.0320

<03)3O Oa262‘) o
(60)01 N, 5657 =0 .7H39 -Og@730
(22591 -0,50206 0.4085 -0,1003

-0 ,2394

0.0060

-0,0318

-0 0667

able TV.11
SU,. decomposition of J=5, T=0
[
state (see the caption of table IV. )
(’XfA)LS a b c

Component

(41)50

0.3118 0.0163

0.017%7

(GQ)Al 0.8120 0,53995 0.9917
(22) ~0.4915 0.2152 0.0256

-0.0422 0.,3799

0.1247
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=0 part. This copclugion may not

f Higher multipoles in the inter
presence OF higher multipoles 1n the 1RLE

tend GO increase SEePATLT

gyrmetry. In i@
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cd should be the gpread of s
ror restoring SU gynmetry for dif
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~roe part of
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also

1f-2

ig more q.q like than the T=1
2. apoce antisymmetric states
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Attempts were moade regtore

gspace antisyrmetric states simult

averaze separation required ©

D

20% simultancougly for all J

[ D Ol Lt 0 1[_1 l. CT/— °

interactinn is
cle

seporationg is about 0.22

e e R S
states u ne

spread igs larger

Moreover the average separation is

required in the symwetric states.

thie the relevant quantity to be
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aneously.
0 restore

states

e

=
H>
~J

be quikte correct since the

raction would algo

ion needed to restore SUB

!

CcOils

cle separations redulred

from q.q Ttype.

about 0.2 MeV
Howevery, a

the J=0 vbe., 16 gshould

vticlae geparations is

pa

p geparation redquired in

vt the T=0 interaction

interaction.

STT
SL

[

the syrmetry of the lowest

It was found thet the

the SUB symetry to about

nf T=0 part of the renormali-

The spread of the single

in the

Unlike in gymmetric

averagse 1T-2p separation,

alan much smaller than is

For T=1 interactinn thc




optimum restoration of SU, symmetry to about 65% is possible
- .

shen 1T and 2p are degenerate with a spread of about 1.25 MsV,

These T esults tend Lo show that the interaction in the antilgy-

smetric state is guite weak and dones not have a dominant gq.g

decomnosition of central interaction

have shown that the effective Interaction

in 17-2p shell is dominantly central., The two-body matrix

clements of centrol interactinn in a glven major shell can be

i s : - &
cxpressed as a linear combination of diagonal radial integrals )
with reletive radial quantum number n and relative orbital angu-

lar romentum 1. Therefore we decompoge the two -body watrix

ig intercction in terms of va

various radial integrals

o

. -
o / £

&d / g ) r,j 5
L e Q' e 3 R“)"\ Q_ K /> \ & F ) A

a (9)

Ig symmetry of the total interection can be understood in
terms of ?Uq properties of these radial integrals discussed

earlier.

In scction 2, we have calculated the two-body matr

elements i 8U, representation. In order to dlsolate the pure
central component, we

have picked up thoge matrix elements

which hove 5=0 on both the sides. In other words we have




followss

CONPY L

e
Jar OPCL)(}f—APn\%)
where /1 i | n1d X LS and 4
Jhere <\n111 ﬂg 12 | nl? YTL/, and n31
Moghingky brackets. The two-body matrixz ele
interactinong have contributinng from

integrals,

I 1

35 Toa T130 Tgar lop:

Similarly those of ginglet-odd

interaction

-

the fnlloving V1

odd radial integrals.

I I

or? 1

1f and

op? f1p? Tops

A1l the even inte

,._.
,._

grals(except

to be zero) are obtained by a

even

- o

matrliz elemen

tg. Similerly all the odd redial integrals
(except Loy which 1s agein assumed t0 be zero) are obtained
from singlet-odd motrix elements. The even radial integralg

gelected the matrix elements of ginglet-even
odd (3=0, T=0) compnnents of the interaction
elements hove been expressed in terms of ra

dial integralsg

the following

are contributed to by

and IOi W

ares it
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(=0, T=1) and singlet-
These matrix

as

(10)

(nlN b L>> denote

ements of singlet-even

cven radial

Iq g9

1g 1

and Loi

hich are agsumed

T the

inglet-




p e

The leagt-zdquares fit to even radial interralg cives a
r.w.s. deviation of 1.4 KeV for bare interaction and of 70 KeV

for rennvrmalised interaction. The Fit to odd Iintegrals ig

almogt perfect for bare interaction Jives @ r.m.s. devia-
tion of 90 eV for renorwalised intersction. The fact

Teite 8. deviation Ior the renormalised interaction is concgider-—

that for the bare interaction may indicate that

e o 1, voradi =] ") 2 S ] i i T N
the NDigher radial integral Toe Ilg7 jIOf and Igp, which were

neglected in the fit, are more imnortant in the Tenormalised

nteraction. This way imply that the rennrmalised interaction

hag a "larger range’ than the bare interaction.

(=

z valuegs of even and odd radial 1tegrals oObtained for

bare and renormalised interactions are given in tablesg 12 and

13 respectively. The results show thet due to renormalis:

the over-all gtrength nf the singlet-even interaction 1s dncreased

but that of singlet-odd interaction is slightly decreased. Later

-5

1t willl be shown that sven the strenesth of

o

nlet-even inte-

CA
1

3___;

raction decreases slightly due t0 renormalisati

2

on, Thig leads

o conclusion that 4l renorrpaligation procedure decreases the

overall gtroncth of T=0 interaction slightly

SR
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to obtaln some estimate of the

i
o
[ )
;
0
o
i
n
>
o
=
JE—
!
fr
=
]
=3
9]
)
o

ion., To &0 this we

first averace over th of a given LS multi-

plet. TFor example, a lx element for a given

L state of the ( A M) = (60) wultiplet can be written as

. (27 { (6o ey sy
{(60) |V (w)L_} _ FOTEoLs IV ey Leyy

7: ( T+1) (119

to all such matrix elements
nbtained frow the renormalised interaction which are now similar
Je R s R B I . O o L S 3 3 2

to the two-body matriz elements of the singleb-even interaction,

The least-squoeres £it gives a r.m.s. deviation of 17 KeV fo

] - I Tt [, - i ~ oy o - = 3 7

hese matrix elements, The resul ting radial integrals are given
; ¢ given

in the 3rd column nf table 12. Tt can be secen that these radial

integrals are larger than thoge obtoined for 8= s 1=l renorma-
lised interaction (column 2, teble 12). This shows that as far

he gnin- Vﬂ”*ded T=0 interaction

c-?'

ate inter-
action, The singlet-ndd interaction ig expected to be stronger
vhan the spin-averoged triplet-ndd interaction., e have verified
that if the radial integrals obtained by fitting the singlet-odd
metrix elements are reduced by a factor of about 1.3, 1t is
possible to reduce the triplet-ndd matrix eclements fairly well.

(3ec table 13),
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pertics of radial

it ig noszible to
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rennrmalised interaction 1s less SU, pre oPVﬂﬂg than the bare
J

interact

1=

and 3 of table 12 we gee that the I, radial integral is signl-

ficantly larger in T=0 interaction compared to T=1 interaction,

13 28
same. Thnig meeng thot the T=0 intersction ig more SUg pres erving
10,11)
0s ’

while the 30, breaking components T and T remain almngt the
eJ i -

and contributes mnre to the binding energy through I
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The present analysis of the effective two-body interaction

in the 11-2p shell wag undertak to understand qualitatively

the reason for the empirical fact Lot the 1£-2p shell nuclei
do not exhibit rotationel features clearly observed in 1d-2s

shell nuclei. It dig commonly felt th ot the increase in the



of the interoction in the 11-2p shell is

-+

thic non-noeusance of rotational features.

atures of the interaction which give rise to rotation-

ere brought out by expressing the interaction in

inkercctinn is strongly attractive and dor q.q types

such an intercction will clearly give rise to rotetional spectra

i tl2913) | ging

-
—
3
.
c
et
2
(6]
—
-
=
et

if the gingle porticle 2p

experimentally this 1s not the case, it seems bthet it is not go

much the increase in the pairing character as the unfavourable
gequence of single~particle levels in the 1T~2p shell which

de

prevents the formation of rotational features.

Tn contrast t0 the interaction in the space symmetric states,

the interaction in the space antigymmetric states 1s weak and dnes

not hove dominent ¢.q character. This is revealed by the near
degeneracy of the multiplet of states belonging tn space anti-

“het Lthe intercctiom in the gpace symme-

bric stoates ig strong and hove algo ghown that it is dominantly
central. Such on interaction can give rise to non~rotational
spectro 1f it wmixes the different 35U, statos of symmetric space
3
representation. b?@iniﬂg components of a central
intesnction were igoloted by expressing the intercction in term

of radial inteprals. It wag shoym thaet the radial integrals
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—

T4 and nix the SU-
B 137 g ]—Od l,,d_ Iog M1 ‘1~b ..)L,B

and vould Jeaxd O the non-rotetional features. It is

miying which is congiderably reduced when the girgle particle

heloy 1F level. A rather sophisticated group

theoretical analysis of the Kuo-Brown interaction in 1f-2p

&

-

<

; . 4 )
shell has been carried out by Pluharl*>n The conclusions

drawn through thig ancl

e D

raig are very much similar to ours.

representatinns (60) and (22

)
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CHAPTER V

core~Excitation effects in Hartree-Fock and SUg Scheme

v.1 Iotroduction

The explicit nature of the effective nuclear force is one
_of the most importent ingredients of theories of nuclear structure..
wyith the steadily dmproving lknowledge of the interaction between

free nucleong, it is now becoming increasingly relevant and neces-

qary to carry out nuclear structure calcula tiong with such free

interactiong., An important contribution to this programme was

o

the work of Xuo and Brownl) in which they obtained an effective

interaction for A=18 nuclei (to be treated ag two nucleons oub-

5 . . \
laO core) starting from the free interaction

2)

gide an inert closed

of Hamada and Johngton They pointed out that not only must

/bne convert the free interaction (which has a hard~core) into

an effective G-matrix representing the direct (or'bare!) intera-
ction between the valence nucleons, but that it 1s equally impor-

tant to take into account interesction of the valence nucleong via
virtual excitationg of the core particles i.e. in this case the

1% core., The effective interaction

particles comprising the
vhich containg the core -~ excitation effects also ig called the
'renormalised! interaction. Brown and KuoB) showed in a further
analysis that this renormali ion introduces in the bare

Interactinn additional multipole components ag well as pairing

Interaction, In particular a Po-component roughly corresponding
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@1magnitude to that required empirically by Kigslinger and

4y . . : . . -
"yﬂenson*) ig contributed by the renormalisation effects.

The calculation of renormallsed matriv elements ig done Dby

tarting with the t wo-body matrix elements of

and evaluating

This 1s rather laboriovs and complicated and obviously involves

some uncertainties and approximations. Since it 1s indeed quite

important from a practical point of view to have an effective
which operates in a reasonably small configuration
cpace, it seems degirable to get a good feeling for the changes

in the overall nature of the effective interaction brought about

by inclugion of core-excitation effects.

We propoge to do the Hartree-Fock (HF) calculations for

1d~2s shell nuclei using both fbare’! and 'renormalised! interac-

3

tions. The self-consistent field as obtained by the HF calcula-

U

tiong ig very sensitive to the quadrupole component of the force
as shown by the very close resemblance of the spectrum nf HF
orhits to Nilggon orbits. On the other hand the pairing compo-
nent or a higher multi-pole such as a hexadecapole component

in the effective interaction may make 1ts presencé felt in the
energies of the good angular momentum states projected out of
the intrinsic deformed HI' state. It is therefore likely that a
comparison of HIF calculationsg for 1d-2s shell nuclel carried out

with bare and renormalised two-body matrix elements may give an

the bare interaction

the correction due to core evcitations in each cage.



ive and an interesting way to look into the nature of

COTG“LAC"LU tion effects. and to the degree to which the quadrupole

et enhanced. e have also ¢Om-

<O

ther multiponle components
the regults of our calculations for “ONP with the available

2y

ts Oof exact shell-model calculations in the 1d-2s configu-
on, Moreover the multi-shell HF calculations carried out
arge configuration gpace of firgt four major shells with

bare! interaction also provides an alterna tlve method of

taking core-sycitation into account. Henc

0]

1t is meaningful to

are results of such calculations with those obtained by usin

j3b}

renormalised interaction in 1d-2g shell. We have carried out

-~

a combarigson in the cage of ZONe and have pointed out certain

The relative increase in various mult cipoles in the 'renor-

meliged' interaction may also be reflected in the symmetry
properties of the interaction under SUB transformation. These
multipoles would mix different SU, drreducible representations.,
<

rasult, the renormalised interaction may show more mixing
Yo different ST representations than the bare one. To show
Shis explicitly we expressed both bare and renormaliced
interactions in the SUB bagisg, his analysis reveals the

Reture of the tvo interactions in the frameworl of SU8 scheme.

In previous chapters we have studied the properties of radial

Integrals in both SUB and HF formalisms. We tried to use these
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moperties in examining the core-excitation effects., For that

als in 1d-2g shell to hoth

qe first fitted various radial integr

,re and renormalised interactions. Ve thug obtained two sebsg of
bat

ondial integrals. The difflerences in magnitudes of different

1ol intesrals from two sebs clearly bear out the effects of

core~excl batlnn.

~

7.2 Brief degcription of calculations Of two-body matrix

elements

The calculations of 'renormalised' two-body matrix clements

ig cuite tedinus and a comnlicated task. e outline here the

1)

slient features of the procedure adopted by Kuo and Brown

.

egsentially to point out the approximations made at various

tares of the calculations. The pr roc edure can be mainly divided

.
4o
gL

in two parts. TFirst part relates with the calculations of bare

e
tyo-body matrix elements. gecond part egsentially deals with

o

the calculationg of the effects 0OF

1—,-_J

ion. Lt should

C OL r‘_,__e-w-('!
be noted that the 'hare! two-body matrix elements go as input

for the second part of the calculations.

The 'bare two-body ratrix elements have been calculated
nsing the realigtic Hama da~Johngton interaction” >. The Hemada—

1~ 4

Johnston potential fits the nueleon-nucleon scattering data

e

o about 230 MeV and has an infinitely repulsive hard core at

amall distance., The potential isg a sum of a spin-dependent




tensgor, a spln-~-orbit and a duadratic

2pproaches

lataices,
18 . . 2 PO o LY
P nucleld nn the agsumptilon n

articleg outglide a

¢ =7+ 7 % )

Y

¢ in the energies of th

cnd indtiel states, § 1s the Pauli operator which

the occupled intermediate states. G ig called the

Brueckner reaction ratriv and represents the effective interaction
in the model space derived from the realistic interaction V. In

other words the nuclear gtructure caleunlations shonld be verformed

elements,

In evaluatineg the reaction ratriv elements several appro-
dimationg are wade. Tn fact the react on masy "ix G depends on

states and shoruld be obtained using

Gy . - ,
ce- Fock liethod ) involving the double

self-congistency. But this problem of self-cong tency has been

Wsually avolded by making the following two assumpbions,

Y




e gingle-particle states in the model gpace

have hermonic oscillator wave functions and

ide the model sgnace are plane wave

~dependency of tlhie

\_)
1
D
b"
m
i
]_
i}
(o)
m
el
@
—
[aN
0]
S
fow'sd

is avolded and instead suiltabl

d.

O

energy denominators are use

calculationsg to a great extent.
partg of the interacti n are

7

tion method' /., The reaction

f‘\)

s-bMnazlioygkitls gepare

the short-range part (GS) of the interaction is

approvimately made to vanish by suitebly choosing the state-

indenendent geparation d. Moreover the calculations of GS

involve only the Plane-wave intermediate states. Since these

states are all unoccupied, the Pavlil operator Q is approximated
tn one in the celculations, The long-range part VL can be
calculeted very eagily, The tensor interaction has an apprecia-
ble second order correchtion in V.. The calculations of the

o

second order correction for tengor is alsn performed uging the

4

intermediate states ag plane waves and the state~independent

enerpy denminator. The singlet-odd and trinlet - odd parts of

G LYt
the interactions are dealt with by reference spectrum method

«Q
due to Bethe, DBrendow and Fetschek™ ) Apain the'Q' operator

is reploced by one and the state~independent energy denominator
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2t the state-~dependence is

alculations of reaction

o)

Later Kuo vsed also the state~

ially in the calculationg of G and the

qecond~0rder correction for the long-range tensolr interaction.

dependent reaction matrices o are found to be slightly

ractive the the original Kuo-IZrown ¢ matrices. Thus
cems to be a repulgive contribution coming in due €O

introduction of state-dependent paramelters. However

criticiem ageinst both these calculations ig the assumption that
thie states outside the model shace are plane waveg. 1n other

vords they asszume thet the shell-model potential vanishes for

states outside the model space. Thils seems to he a drastic

assurption and needs to be verified critically.

Tgine these reaction matrices, ivo and Brnwnl) have calcu~

e el

lated the single-particle sgpectrum of 0 with linked-clusgter

s

)

stion formula. They have tn introduce tie s6CO mg-order

q

perturb
contributions such as 2p-1h, 38p-2h due to p-i (particle-hole)
¢ the core. The resvlts thus obtained are in good

excitationg of the

agreement with the experimental levels of 0.

; Il

marther they 'renormalise’ the G reaction matrices by
including the effects of core excitations. The gecond-order
term in the linked-cluster perturbation serieg corresponds to
the process represented by the diagraw containing only one

o)

bubble.
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ie btekes into account the fact that one of this valence

=2

-ecract with a core-nucleon to

and then tihe particle-hole

excitation can be annihilated by an interaction with the second

18 residual

yalence nucleon. Since parity is conserv

hody force a restriction to excitation ener gles no greate

@]
]
=
ct
!—J.

cle~-hnle pairs to (2g,1s
1

1)7 (2p, 1Y'l) and(1f-1p ~) configurations only. There

vther first order diagrams which should he inc!’

sccurate calculation of renormalisation cffects

Ct10ﬂ5 correspond to the excitation of two valence particle to

The 5 coif 51ri-

1f-2p or the excitation of tyo mnleg in 1p shell,

pations have also been added to bare ratriz elements to get

Irenormalised! two-body matrix elements. fe »ave used the bare
- 1 o, e a2 N = N o g)

renormalised sebs of two-body matrizx elements given Dy LU0

our calculations,

In thig section we describe the structure

- - : " o 20 24, - 25,.
of the HF single particle orbitals for e, Mg and 51

T d . . ) . : ; (D]
obtained with the use of both bare aswell as renorma alised (dsz)”

matriz elements. The experimental levels of 25 gilven below

are used as single particle levels in these calculationg both Tor

protons and nentronsg.
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The reenlbs of these calculatinns are SIVEL L&
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to 9. Tt can be very well seel

necnoitivity of

o8

orb1t41b shows dramaticelly the almost total 1
B - component of the
the HF czleulationg to any but the quadrupole componeit OL

)

the overlaps of the wave functions

interactions. It 1s found

: ; At a are AN O
harte end rennrtralised mabtrix elements are 1n all
- . PICI . IR T - KR A O1L
T 0,005 “orec-ewe itabion apparen / has 1i tle effect or
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the nature of the HIY orpilvals. The recczon for thig becoms S
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runctionsg with asymptotic
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even the 'bare! interaction yvields alwogt exactly the agymptotic

LI R, '.1 JR e LIl w7
Hilason orbits and an additional gquadrupole component, 1f any,

R I SRS I T AT o )
brought in by the renorraliga atim of the matrix elements due to

core-excitatlon can produce little further chang

of the orbits.
Ty e

The nuclear intrinsic state obtained by filling the lowest

L

agyrptotic Nilgson orbits is a state of definite SU, synmelbry

with raximum weight. Our calculations show that writh both sets

9) ...

of matrix elements given by Kuo the 1P calculatinng also tend

do1

to yield essentially the intrinsic states of the SUg wodel,

The close similarity of the HE to the asympcotic Wilgson




201¢ HF single pa

Table V.L

rticle orbitals (bare interaction)

EL’ in
CMeV

51/2 ds /o ds /2

~0,5274 m() o 3945

0 -~0,1843

1/2! -2 .66 0.3127 0.6496

5/2 w2 2D 0 o) B 1@%

i/2” =0,.23 “ ~0,.4916 0.50640 N.1085

5/2 2,54 o 0.9220 0.1843
Table V.2

20y HF single particle Drbit%lﬂ (preclate)

(ren

1armalised interactlonl

1C E]{_ j_lfl
MeV

' ]
31/2 drw// 5 L5/2
~0,4925 ~0 . 3973

0.6860 7 MOW 0.6315

0 O 1.0

8436 0.0921

~0,5291 0.

0 Q) 0.2260

8]
3



l._J
[
8]

Table V.3

gingle-pa article orbitals (prolate)
(bare 'ﬂbCf?CLlfl)

[piniels
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v e et 50

-0, 9077

0,.7400 0.6063

1/2! ~ 9.15
1/2" 4071 Eg:78@2 ~0.6490  0.2944
3/2" ﬂlaégm”m o 5;9546 .,J«L‘Pf:?ii

34}0 ¥ single particle orbitals (DTOlpr)
(rcnormallsoﬂ Wltc action)

By 1n 81/2 ds/2 ds/2

e 8941 OwBr?l[lI

5/2 - 3,50 0 0 1.0
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Table V.0
DE g T LJ '] 3] WAt
2841 HF single part icle "T”l cals (oblate)
(baléc interaction)

A B AT S o A R

X da/2 ds/2

D ———SEEES e B PP AT R

5/2 -13.13 0 0 1.0

1/2 -17.05 /,uoo 0 o 26 1,526

1. 2‘ "8@6C _‘_0038817 O l[g}lz‘) Oo\i)OJ?
1/2" wd A8 00,4565 0.3511 ~0.2593

Sqi HUF single particle orbitalcs
('1ca<>ru~ nliaed interact?

= /e . -
5/2 ~19,35 O

1/2 -15,93 0,2108
3/%

et e A O£ T A A T AT AT e Pr——

"'O au)C/lO

0.4583 0.8262 ~Oeoa7~
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Table V. 7

L)

Overlape OF a“VNDt”ul ilagon orbitsg with OCLUOleQ
T orbitals calerlated irith bare interoctioht.

P . cove g e T e st

Overlalp

Hucleuls ; wmﬂwwmwMthme“
: o]
ok "= ¢ e
k=g k= B 7
201 (prola te) 0.984 - -

Table V.5

Tntrinsic gwadrupole moments of gmund HE states in
anits of be. The 5U3 limit velues =T¢ shoyn in the
Tast columi, with appropriat e SUn :w@try of the
ghtate 1in brackets.

cesmei D

Intringic qualﬁ3001@ moment QHE

lucleus ” Tt T '“““’“jf““““””“
bhare m“WIsed SUq

- gﬂ._-e,_..f-‘ :

i o et R A S SBT eeaerr s AR

20y7¢ (prolate) 15.59 1546 1'—“00(

(prolate) ?O oo(\ag

!

oz

i
H
§

L
68
o

|+

L)
L
J
3

2331 (oblate) ~93,03 ~02,96 M.,oo(o 12)

states 1N MeV.

UwLchowﬂnoL energies for

Pocl Energy. mi@l”Ww”m

(9194

2 OtN e ?:4—,]\[\ o <2 8 j_
(prolate’ (ploldLO) (oblate)

Tnteraction

o~ e g A O s e T L AT R e s ———E
})are "'17 966 ”"‘4_'056]_ "94:952
renormalised -21.23 —BO,ﬂﬂ -97 .88
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can be further demonstrated by cel culation of intrinsic

- 5 : O nn - S R Tiayl o
or MASS dquadrupole moments for the sround states. Iablie ©
- - Oy T e g o gy obe
shOWS the intr.¢s¢c quadrupole moments for the HF ground states

,Mlaoplﬁﬁl"-ue units, and lists algo values for the correspond-

iy intrinsic states of the SUg model. Both bare ag well as
=) €

renolmollgc interaction give intrinsic quadrupole moments thet

re very cloge to thoge for the & atates with maximom weight.

qowever, an additional point of interest from our point of

the small but sysbematic reduction of the intringic cuadrupole
poment given by the renorm alised interaction, compared to the

values given by the bhare interaction in each case. This sugges

that the core-excitation ef

n
i

O
o
n
Q_x
o'
=3
-
)
1S
=
5
Qo
[SRx]
Qu
frto
o
e
|~
o
o
[t
o
=
9]
O]
6!

which tend to brealt the SUB symmetry of HF orbitals, even thougn
their presence iz felt only very weakly in the strocture of

HF orbits.

7e have also plotted in fig.l the energy level spectra Of

e single particle orbits for all ceses. The spectra alown For
1T 245 . . , . .
e and ““Mg correspond to prolefte deformatior whereas th™7%

3 1-

31 corregponds to oblate deformation, since the HIY energy

ig Jower for this cage by about 3 eV (~91.33 MeV fnr Dro
deformatinn and -94.52 MeV for oblate deformation). Tt is

clear that the ernargies of all occupled orbits are lowered,

Q

whereas thoge of all unoccupied orbits are raised by the core-

excitation effects. Thus the renormalised interaction glves
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- - 24
ply larger gaps This is paftlcul&rly gn for Mg

1- = 3/2 orbltal

:Vm@re +he bare interac ction gives the occupied

 almost degenerate with the first unoccupied & = 4 orbital whareas

the renormalised interaction gives a gap of sbout 2 MeV. since

1

origin of the gab ig generally attributed a3 orane

)
e
@]
.C"i'
=5
@]

\compnnentlo) of the monopole part of the nuclear interaction, ORe

pight think that it 1g this component that may change conzilder-

ently, Rowett) has

Re

ably due O core-gycitation effects. HeCE

attributed the presence of gap in HF spectra to any component
of the effective interaction regulting in a HF field that violates
some symmnetry invariance of the nriginal Tapilbonian. The gab

given by the hare interaction may then be attributed to the

T
s L

T
(O]
h
—~
&
=
A
@
D
z
i
+
:_J
O
.
o

presence of the quadrupole component ¢
vinlobeg the angular momentum conservatlon ror the original
two-hody interactlnn, but which in turn gives neal S04 gymretry

snfunc tiong of HE Yamiltonian. Aga 1 then we may

for the elg

G‘”.

attribute further increase in gap to the core-gxcitation effects

4

which bring 1n components that brea th

ot
[l
@

near SUB symmetry OF
the bare interaction. This would be in line with our previous

obgervationg On the intringic quadrupole moments.

One of the important sU,, breaking components in the 1d-2s
9 "
4 .. . :
shell corresponds £ the multipole Q- Tt ig interesting O
see gualitatively from the energies of HF orhitals thet there is

an increase in thig component due to the core-excitation effectas
kh

e note that the structure of both bare and renormalised HI"
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.
quite similar. Yoreover the Qﬁ Meld v dominant

o

golutiong as seen from the sequence of HF energy
have also secn in  he thipd chapter that the small

it ig present, will cgsentially lead to the splitting

\3

42 and k'=0 levels of Q5 field. In fact

Jegeneracies of k=

L1=0 will be depressed muech more due to the @4 £ield than the
K ! 19)

& . d_ O} k4 —
s¢ nogitive Q5 momelt. We cal

ot

ct
w

}_1
P-S
O Q

~+2 levelgs becausc of 1

™ ot

100l for a similar effect in the IF orbitalg of both the bare

and renormalised interactiong. However the HI orbitals obtalned
py nsing bare and rennmmalised interactions are not exactly Slg
like- as we use non-degzenaerate gingle particle levels., This
non-~degeneracy Of single particle levelsg is mainly becauge of
the gpin-orbi - interaction. We also know that the non-central

interactinng are not important in 1d~-23 shell. ‘e mugst there-

1.

fore eliminate the cffect of Ll.s interaction,
the orbitals 1z=3/2' and k=5/2 will give us the shreng

1. interaction which congequently enables Us to determine the

da

pogition of atot

8]

[N

e k=2, Turther it can be seen that the 1.8

interaction pushes the orbital k=1/2" up. Therefore the

=

pogition of k'=0 can algso be obtained using the sallc s
of spinmorbit interaction Tt wag found that for 207@ nucleus

the pogition of k=2 Tevels ig at about 0,25 MeV vhile the level

kt=0 ig at about =2.40 MeV vhen the bore interaction 1s vecd.
Thus the net gplitting 1is about 2. 15 lieV. If the penormaligation
O

brings in the additional hexadecapole component in tie interactior




s
.q
w

aplitting shmuid increase. In the case Of
s2lised interaction for the same nuclens, it was observed
the pogitinn of k=2 level is about 1.0 eV while that of
0 level is about -1.9 MeV. Ag a rTesult the splitting of
these levels has been ralsed £rom 2,15 VeV to 2.920 ﬁeV. This

fact conpled with our obgervation that there is a glight

)

j) | R P . & »
decrease 1n mass 0 moment suggests thot there is @ large
hexadecea apole multipole prese in the renormzlised in

1t of core-excltation cffects.

7.4 FProiected Inerdy level opectra,

Tn this section we present the results 0of projection of

oA N S P . . . . o
 #yp and “731 described 1n sectlinon 3. The enersies of the
projected states hoth for bare and renorﬁalised.interactions

7.2, All energiles are shown rolative to the

v B(I7=0), a2nd the ahsolnte velue

nf thisg enercy is shown in hrackets below each spectrun. Al g0

shown in the table 9 are the HOF energies of the intringic gtates
for each cage., o note that these intrinsic HF energles are
lowered by several MeV due tO core-ercitation effectsy viz. DY

o

[T i Y - ZOKT 4 DN~ Rl 24:.r., p VA 8(1'
2,06 MeV for e, 4.73 McV for Mg and 3.36 MeV for 3.

T+ can he seen from fig.2 that the apectra for renormalised

interaction are much more apread out than those for the bare force,
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effects reduce by

!—«

dication then lg that @Orewexci tio
3 the moment of inertia of the lowest rota-

be in part due to the

t;opal band in these nuclel, This way
in the gap of the single particle level spectra
cribed earlier. e note that the relative increase in gap
s Taroeat for SEFMe fe the treduetion in moment

the largegst for Mg and go ig the reduction in moment of

inertia. It ig nogsible thet both these effects are due to

a strong renormaligation and enhancement of the other multipole
components of the effective interaction due to inclusgion of the
core~excitation effects, since in a rather simple view these

1d be the components walnly regpongible for the violation

of the near SU, symmetry of the bare interactinn,
J

It may be of sowe Interest to cowpare the results of HF
Tlenn tione fop 20Ne with it . ,
calculs tiong fox Ne with those of exact shell nndel calcula-
A £ TT O 4 12) <7 . -
tiong of Halbert et al who also use uo'sg renormalised matrix

. , 4 -
elerents and the (dg)™ configuration. The shell model spectrum

-

shown in fig.2 end the absolute value of tihe binding energy
of the four particles velative to the O core is also shown.
ieg are gnmswhat larger than
the HF energies by about 1 MeV for the cround state J=0 and

0e5 eV for J=2,4,6 states. We 0f course expect the exact shell
model energies to be lower than thrnse given by the variational

caleculation., Hovover the overall coreement between two sets of

ehergles appears o be zond,




1300w TI3HS

o {10-52-)

Mﬁn;ﬂa‘n.!asiﬁlﬁ

R

TIaHS  1LINKW
4-H

m>§ 69 +901-)

e

(2

s

¥i03ds 2Ngz
¢ K oid

TI3HS FONIS
4-H

(25-42-)

o YR

B e

e

m PN




179

e 2ls0 zhoy in £ig.,3 the results of multi-ghell HIF
-y .
galenlations for Qoﬁeg The caleunlationg have been carried

2 chells

O

ot using the full configuratim gpace of N=0,1,2 and
rreating explicitly all the twenty nicleonsg. Jhe effective

Ateraction matrix elements used are those derived by the

nesex 21 nup13> from N-N scattering phase shifts. e have

Vérified that these two-body matrix elements (at least for the

1d-2s shell) are very clogse to the bare ratrix elements of

) 2) the r.m.s. deviation between only
961 KeV. Moreover it should be noted that Xuo hog algo congi-
dered the configuration space of only first four major shells

to calculate the effects of virtual particle-~hole excitatlons

zrest to compare these results of HE calculations
2 large configuration space with the results with renormalised

raction in a truncated configuration gpace. The energy

¢

]

levels in two cases are in fairly gnod agreement (see f1g.3).
w2 () O

A1s0 the multi-shell HF calculations result in a larger gap at

the Fermi surface as compared with that in the 1d-2s shell

v__w

calculations with bare interaction. Thig dncreose in the ga]

esults from additional deforming component of the HF field

resulting from core-polarization.

Vo5 8U, analysis of

e 7

the interaction,

The relative enhancement of fferent multinoles and the




o
w
O

smponents 1n the renormaliscd

ion due to the affects 0f COTEC=- gycitation may also

in the 8U, analysls of bhoth bare and renormalised
et :

nna. The maln effect o1 the prese

nave corried ont the SUg analysis

evpru:qﬁnw the tuvo-body wmatbrix clements in SU, haglis. The
[

cquation for transforming the two-body matrix clements in j-J

B! NP

representation to SUB representation has beel given in

Shapter I1. /e have employed the sake gauation

the two-body ratrix elementg in SU

g. The results thus obtained are given in tahles 10
Tt should be noted that £or J=4,5 and T=0 states there
n unidue SU_ representation (20). The states (NL3)
L~ , o , ¢ \ .
rable 11 to 18 can be read as ]LA)A)LS/UhCTG !
\
v 7

denotes the different SUB representations o

§o=1 = (@), N =2z (02), =23z @)

e e ~ - . e TR JR I o -
Tt may algo be noted that for evely matrix element, upper

number dendtes the bare interaction and the lower oniie the

rennrmelised one. To be more expliclt we note that (NLS)

ey e - ~ - A s A o7 T u o) b £
corresponds to hra state while (N'L'3") stands for ket state.




Table V.10

SU., decompogition of Kuo interaction in 1ld-2g
. ,

hell J=0, T=1

0

T

(ML3)

et
‘“‘\ .

(100) (200)

(311)

(100)

~3, 6134 ~0.9311
wdk 7393 ~1.3988

""O 90868
0.0536

(200)

"'2 017 6.]_
~2.7074

~0.9311

~1.89838

~-0.,023¢
0.0073

~0,0235

0,.0073

”’WBOBESS
0.0836

204165
2.2017

Table V.11

SUr_3 dec onpogition of Kuo interaction

shell J=l, T=l

in 1d-2s

(311)

~0,3320
“091257

~-0.1675
~-0.,0976

~0.1678
~0.0976

=\l e 8278

0,2167

bt




Table

V.12

UO interaction

NI

SUB decompogition of K
in 1d-23 shell J=3, T=1
m§%%& (N(LXSY) .
' (221) 231)
(NL3)
(321) ~0,2877  ~0,0633
0.1723 O 00
. -0,0633 ~O 402
(331) olomen  0.1315
Table V.13
SL} decomposition of Kuo int sction in 1d-2s shell J=2, T=1
\\\\\K<N(Llst) ,
(120) (220) (311) 321) (331)
(.1LS)
(120) ~3,1707 -0,3855 0.0088 0.,0087 -0, OOC%
-3 0887 -0,6503 ~-0,1784 ~0,0781 0.035 %
(220) -0 .5955 ~0,2649 00,0041 0.0009 0. Oozd
-0.6603 -, 8144 0.04.05 00,1949 ~0.079%
(211) 0.0088 00,0041 -0, 3256 «O,ljfg 0.1675
- -0, 1784 0.0408 -0,.2350 ~0,1853 0.N84
(321) 00,0087 0.0009 ~0.1365 0.5966 ~0,.57%%
e ~0.0781 0.1949 —3@13“» 0.,8084  =Q,5147
(331) -0, 0094 -0.,0042 0.167 ~0.5799 0 444L
- 00,0386 -0, 0799 O, O“ﬂ” ~-0,5147 1.0525




Table V.14

n of Kuo interaction 1n
shiell J=4,T=1

SU, decompﬂ%“ﬁl

G
k\j -

F

(140) (331)

_0.5424 0.0072

(140) _oa0e4  -0.1735
0. 0073 0.0861

(231) _0.1735 07181

(221) (310)

- - EOGA ~0.7507 ).0142
1 ”Qn0377 "059775 ”l'p- L o 1w ) Ean
(101) TalE651 -1.5636 -2.1775  ~0.7791  ~0.2531

- ~0.9775  ~3.83 0
(121> 7175680  -4.3491 -0.7609  ~0.3001

et

74 0.8152
15 0.0048 -

0
0
93 *004515 “Ou1306 “80;
0
8

-0 ,7507 ~-0,1306 0.6183 -0, 6327 0.23%?
~0 7791 ~0,3001 0.0043 -0, 6481 () 22

I P ) . 'rBl
4.9 -0, 0067 00,0117 0.0020 2.3b
%“1 5.1502  ~0.1492  ~0.2249 1.5973

é)C
wcg

ﬂi




Table V.16

S0 decompogition of Kuo interaction in
ol

1d-2s ghell J=2, T=0

“““\\( NELT3")
T
(NL3) \\\\\\

(121) (221)

> Oez‘>23/) --l»lZQI

-5.E702

(221

J/—J.L..

0.3084
~0,0979

(320) mo

00,0001

llao

sU decompogition of Kuo

&%}

(%]

in
7=3, T=0

teraction

in  1ld-2s

“'G A“ISOE_S

shell

(330)

0.0072

~5.0383 -0, ~0.5392 ~0.1412

(141) ~0.4581 -3 ~0.6312 ~0,007
: ~0.6275 -3 ~0.7622 0.,0577
o \ ""O /hu(— ~\p‘n6812 “"_L O v:) ‘ L 1091‘7
(221.) ~0.5392 -0.7622 ~1.1829 0.0129
-0.0071 0.,0N17 1.1538

O a L/ ‘~_) ( 7

0.012%

Bare
"‘4.1(: © 158 2

(141)j> = ~3,4215

Renormalised

ot £

q B ale!
ie 3138

2. 6640
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Table V.20

‘ it Fr tuoebody interaction in 1d-2s shell
podinl integrals fitled to two-body interaction 1 ' 1 5

adial T=1 | T:O ;
ntegrals RenoOr- ) Aen?rw
- malised Bore ma}ised

) D70
I ""'GEBB—L "6@2‘6{7 “Oagqé‘l ""9@97(_:
I ""Pz‘ ] 860 “"6 0092 ""69 634 et a-._,'r74.
26255 -2 7HL ~3.873

1
TAs -0,0676 0.0388 -0, 604 ~0,575

i
)
@
AV
8%
\_‘
®)]
®
O
(]
e}
0o
®
0o
A}
Do
w2
®
I_l
o

4
ot
et
—
€M)
O
®
o
Q0
w
o
]
5N
>
)
5
[6))
0o

Tn talble 12 and 19, we have listed

!

ta i gl hes tates
Prnctiong £ or T=1 and T=0 gtotes in SU, basise. These s

s . U
1 i taeonaliaine the different Hamlltonian matricces
are obtoined by dﬁugouellclng the different

i to ] “1e have presented only the wave-
given in tables 10 toO 17. e have presented ly
functinne corrvegbonding to the lovest eigenvalue., Here also

. Jo I T g EN = hore
the voper number denotes the components obtained with the bare

t

G

Tregl tn +the renormalised
intercction while the lower ones corregpond to the renormalise

interaction.

1 e fheae tables that even the bare
Tt can be seen from these talbles that e

Lo avmmet T iving component
intercotion has o swall permutation - gymmebry mixing my

L]

. - . o on ahe .
TH wmay be noted thot the bare interaction in 1£-2D shell due



4
tn Ko and :’f‘iffi,\‘\«fl‘lL t) component ag geen from

cnalysia of 11=2D in chapter L7, However
procedure adopbed for calculating the "GY matriz elements

the 1d-2g and 1f-20 shells ig exactly

S MATI

s 1 - . “ I r q e N -~
cloments adopted by hun’) might have
honent ., The comparigon of the twn procedures

the fact that Ruolg bare

i A OO iy KR
main dlifference lies

snendent. Xuo / hag introduced thig

in the calculationg nf ghort-range reaction

o B ) i .
patriz ((xg ) and the second order term for the tensor force.

Nt this state-dependence

permutetion -gymmetry

e permutation sywmmetry mixing is

e olgo note that €

slightly more for T=1 inte

LOTEOVET increases os we g0 from bare to Tenorma

Ealial ?

Annther effect of core—~excitation seems to have been

reflect~? in the following observat:nn, The mixing of different
S, repregentati = of a given space-sywnelbry viz., (40) and (02)

ilncreases as we o frow bare to renormalised interaction. This

ig also geen from the structure of the wavefunctions for both



et
[69]
e8]

God Ty l I
_ gimpiler result is observed in 1f-2p shell

1y
T i
o
[
)
I~
s
=
i
el
o
gt
s
M

stote ia gtrong and

ig repulgive and rela

of core-evcitation seems in general the inte-

N 1N 4
state stronger while

mads someniat

srix elements of symmetric

Y

- )
= R e DT - ot i
mor SIUO0 Buahes 9 chie o L —l macriziz

20% 00 Vo i (40) 00> = =3.6120
i ) { S e 2D
<( / } e for J=0, 71
~ioe ’7\4"‘;‘?‘ 8
/ | \ ( ) \\\ ) f)l'l
10) 20 | v 40) 20> = =3,1707
o \ ] 4 forn J=2, T=1
,;f/ 40) 40 ( v ‘ 40) ﬂo> - : N
\\\\ s f(\r J:‘f.;.) f:_a
W A254
For antisyrmetric stetes, study the followying T=0 matrix




- | > / — OO
/ ¢ 10 v v § (Z:f 1 ) 10,5 = s IoNs]
(1M> - for J=1, T=0

21) 20 \ v } (21) 20> = 1.5137

‘ for J=2,

—
I
©)

N
J(21) 30 3 v \ (21) 39/’ = 1.,1623

i
b
@
-
L“
o
D_.
\’f»
{_l
-]
¢
]
[©)
el
o]
-l
<
m
w

T+ ig clear from these matrix ele

representation (40) the splitting of the states with
gifferent J valueg is sizable in both bare and renornalised

interactinng and the order of levels resembles
the spectra due to d.q interaction. In the antisymmetric

renresentation (21) the states with different J are almogt wade

to core~excitation in the r enormalised intera-

o
i
)
&)
=
o)
o
(L
oy
<
D

s seen 1in

ction. Both thege observationsg are gimilar

in the interact

in vhich L on bhoth sideg

The following
differ by two show the prescnce of 30, preserving tensgor

componentge.

N
N

i

p »
<(4n) o1 ‘ v ’ (40) \>> ~0,9775
- - - for J=1, T=0

-1.5686
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s
1
i

i

{
[

Jem o | v ] (20 21\;’* 0. OLes for J
‘\\“ 7 - o U..

0.0048

o

1
it

,;_"/(«;-O). 21 } v I (40) 41>' Tood

for J=3, T=D

Al=o the matri;

py 1 can also be attributed to tensor or gpin-orbit interaction;

1

however thaot the most of the importai”

or both., IT0 con oe

the overall

integral analvsis

the SU, analysis of the previous sectinn

'

renormalised interactinong can be reasonably

interaction., Alsc we lnow that oy

vHressed as o lincar combination oF

('IW

ratriy elements. Therefore e tried to obtain by o

integrals which besgt approximate to

these internctions It shmmld be noted tl

IOf from our fits asg

cont he gmall. Thus corresponding




Neomacnd Ny calce atd e Fr o r
e asgsegsed by calculating the ror.g. deviatinn of calcu-~

Ay e— oy ' I i1 I ot -
for T=0 gtates, the fit to the bare interactil has

ments can well describe features of both the

The values of

sclectively introduces different comnonents in the interaction

cion effects botbh




renormalise the s state

interections only.

. . - 5 e R P q
On the bhasig of these results one can explaln wthe results

analysils. ﬂ@llw’rthat‘muall

w

1
{

dominant component in the 1d-2

(63!
s
("\
b

which mixe increase O

not affecs

doore.. se
the SU. miwxing as there is reprcesci-

tation {(21). The d-gstate

There is soOme lncredse in

in the renormalised interaction. and a slight

Jdecrsase in the T., interaction which mixes SU, symneltry.
ASRN A

Therefore the additional SUg-breaking obgerved in the renorma-

the result of the large increcse

tra for the

increase in I and I component which are found to give
he splitting of the ground state bands in Chapter 11T,

oge dn KT the renormalised interaction may

5
(@]
=
f
@]
[
(:'1

also be probably the result of large T and T comraonent 1in
/ (%=} 1‘3 25 &

re shoyn in Chapter IIT

the renormalicsed interaction. Ve

Thue one concludes thatv
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+he HF
 component gh the IF

arbltals

in bthe rennrmralised

HNANC

Feraction,

It ig not very cl

in terms 0f radial integrals. But it secems almost certalin
miltipoles will increase the

nentz. Thus the salient

and SUg analysis can be

;.._.

fect of the

To surmarise, we briefly state that the e

to renormalise

core~avcitatbion in 1d-2c

che 's! stabe Interac tion remains

increase

congiderably. This exnlains the increased SU, breaking

[

T

chgerved in the renormalilsed ceraction. It can also explaln

1t
b
-

the stretehing eifect in the nrojocted gpectra of varioug

mictel obhzerved with renormelised interaction. These compo-

ents arec woinly regponsible for giving rige to larg

D - [}

®

energy

]



particle gpectra. e 8t
nell HR calowl afions With bare interaction
aimilar to those ohtainad by using

his implies that the

interaction seel

HIF calenlations paing bare

ror treating the core-cxcitations.

we whuld hriefly summarise

Tating the cffective interaction.

gOme

provemnent of the core-

nn the 1

celcments

sye itationg, le
and

the core-ercitation correctliomg, Ruo anc

l .. a4 l . "1 -
bruvl*) have congidered only

contribution, one cxnects thel hi

ma 7

consiating of many-bubbles may &atis:

order o AN S

le contribution

0.

noatursl course o ld D

IDwever

4 correction in TDA (Tammm-—

L_'"

Ation) or RPA (Randor-phase

f‘"\
r\

Capproxii

Danc ol

formalisms. The TDAL takes into account all

by dingonalising the

- -—-|W~

tiong describl

Te-nole internction. T4 wag ound thot for T=0




_account the ground sbate CcOXI

pproximation. The RPA cont cribubes quite largely

was found

calculatimns. Theseo diagrams

into account

ave tbhatinn correctiong, S

of discrams called Tertex modification®

they give repulsive cont tributions,

have carried out calcu-

"er corTection 1n the RPA formallsm.

Jlationg of

gies and yavefunctiong

»1 v

e

They arsue thet 1n odoulatin

not diogonalise the nar

of the vibrationel states, ORE

~le interaction it dngtead One




the renormelised parvticle-~hole interaction. They f1

itge reening’ effect cuts down the contribution from RPA so tha’

PR TR T
RPA togetiew

()

Finally GoodeZ0) h

, - . 16

functions of the vir

resnltant vibrations are then coupled to €

2 T . - -
of 90, ifhen this is done, Goode finds a

Kun,

rorn TDA calculation:

nedictinon of the contribution due 9 core-excitation is

valvues for core-excitation

has calculated the energies and wave-
of 0 by diagonelisging

e bare parbicle-~hnle interact on within the full one particle-

rbicle~nne hole nerturbation result

ing Fect counled with vertex modificati

the core-—-excl

This hod led to 2 near cancellation of the second-order

leaving only o much gsraller core-excitation effect than

g with some

ralculations

ahOw
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rmalieation of the bare inte-
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CHAPTER VI

The generator-coordinate method for 20Ne

vI.1 Introduction

The generator-coordinate formalisml?2> is bagically

intended to study the colléetive motion of the nucleong in a
aucleus. This ig a microscopic formalism based on the varia-
tional principle. This formalism 1s quite general in 1ts scOpe
and can handle any kind of collective excitations in the nucleus.
In fact it has been shown3> that the generator coordinate method
under some approximation ylelds the equationg corresponding to
the random phase approximation. which 1s essentially develcped
to gtudy the vibrational motion of the spherical nuclel. Also
the theory of palring vibrations can be obtained%) in the frame-
work of this method. Further it is known that the study of the
rotational motion of the deformed nuclel can be very well made
using the projected Hartree~-Fock (PHF) formalism which does not
nse the adiabatic approximation of the unified models Peierls
and Yoccoz5> were the first to ghow that the formalism of
angulsr momentum projection could be obtained by using the

angle of rotation ag the generator coordinate, This method

can be generalised by incorporating additional generator
coordinates begides the angle of rotation to obtain many

evcited sbtates not belonging to ground band. We will illu-

strate this method by presenting calculations for 20Ne spectrum.
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Thus in the framework of this method, different kindg of
collective motions can be studied by chnosing different
generator conrdinates. The suitable cholce nf the generator
coordinates to describe the collective excitations is the crux

of the method.

VI.2 Theory of generator ¢oordinate method

We will now discuss in brief the theory of generator
coordinate wethod. The theory has been first developed by
) e L) o ersn2)
Theeler with Hill™’ and Wheeler with Griffin®’. Later
T > L4 . LY PR, o) 3} 2 . 307, “4 6}
Jancovici and Schiff and also Brink and Welguny have
studied in deteil the integral eduation and the various asgpects
of itsg solutions. In this theory one avoids defining collective
variables explicitly in terms of the single particle varlables.
To gstart with, one congtructs a many-body wavefunction of the
nucleus as a function of the eonllective variables. The trial
vavefunction ig en integral over the collective variables with
unspecified amplitudes which are to be varied to nbtain an
approximate eligenstate of the nucleuss. In"the process we
replace the actual Hamiltonian by & new Hamiltonien as a
function of the generator coordinate o , by which we choose

Lo dezscri

4
|

he the collective motion of the nucleus.

Let ?? (:L,O<') be a nuclear A-particle wavefunction

depending on nuclear coordinates X = ( Xy , A5 ;5 cesense xn)
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and on variables (zenerator coordinates) o< = (c<{ﬁ§:,.m,ﬁ<wga

The trial vavefunction for the given nueleug can be constructed
ey e e PSS er Py e H (- ith th

as a superposition of the wavefunc tion @@ ( »,o ) with the

weight function g—(aﬁ )

() = g P (%, <) F=) A

(1)

where the right hend side of Ed. (1) is an m-diamensional

integral over the space of paramebters ag‘;xlja“,.,.o<hﬁ‘ The
)

quantities « 5 are called "genervator coordinates™ as they

serve L0 generate the wavefunction of the' system. It may be

noted that this erator coordinate is not expressed as a

G\—.

Jda

function of the coordinates (i, Xgssess. X ). Also the

A
final many-body wavefunc tion does not explicitly depend on X
We next determine the generator wvavefunction -§(“) from the

ional principle. In other words we equire that the

-
ca~

vari

—

¥

expectation value of the Ha miltonian of the A-particle gystem

to the variation of the gene-

i

shall be an extremum with respec

to the normalisation

ot

rator wavefunction j§(%) subjec

condition,

d [<yiniyy - ESY vy =0
EEYENN

Uriting explicitly we get



/

:%—

Ly iy =) (o) FeI(P I (ua)y de ey
- g g & "( A1) % (;%'1.) bl <7<1 ‘19<Z) 57{ Ay CZ{ g

(3)

 yhere

H %) = (plag) TH | G %) (4)
- Also we define

(£ T 1, d
LYVY) = [+ ) L, %) A 2 »

where .Iifd}pe(L)::. <:C§?(ﬁipﬁa> | %? (qC/°<2T§;> (6)

substitvting the eq. (3) and (5) in the eq. (2) and differen-

. 5.
tiating with respect ©o f (=,)» we get

g E }/!(%\ 9’{23 T E I(bﬁ )\7\2>j‘§cf’<2_\) C‘?J{&’;O
(7)

The equation (7) represents the famous Hill-Wheeler
integral equation, WNote that the gquantity H(a%\3;<l) isg
generally referred to as "energ kernel while the quantity

T( <),y ) is referred to as "overlap kernel? The overlap

Tt is clear that both the kernels are hermitian by definition,



ag a Schroding

he Hill-Wheeler integral edquation (7) can bhe interpreted
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7)

7 equatinn for the collective motion in the

non-~orthonomal baglg with '“04} as the aggociated collective

/

vavefunction, Tor every welght function -k@()9 there

is &

. - . \TJ PN '
corresponding many-particle wave function %’(XJ defined by

ed. (1). The set of gtates %P(X> generated by the Hill-Wheeler

17

intesral equation formsg a gubshace

.ﬁ§; of the complete Hilbert

space I of wavefunctions of the original many-~body system. Sol-.

ving the integ

e}

!

—

ral equation (7) is equivalent to diagonalizing

the complete Hamiltonian H of the system in the subspace Nq3

af . The generator coordinate method would give an exact

gnlution of the original problem if all A-particle states could

be generated by the integral (1), 1.e. N¢, = N. In
cases the method gives abproximate eigenfunctions and

alues and the accuracy of the method depends on the

;_A
pie}
[

i

which the Jow eligenstates of I can

other

extent to

e approximated by states

ZUlTQ? . Thig in turn depends on the choice of the generating

function <§D( “DC]D< Y and on the generator coordinate o
ke

.

It ig obvious now that the lowest elgenvalue of eg. (7) should

give an approximation to the ground state energy of

and higher valueg t0 the excited states.

the gystem

Recently Brink and Welguny 6) have suggested another

orocedure for golving the Hill-Wheeler integral equation.

The procedure conglists of chooging a subgpace N, such
[ X l:;

it dg connected to the subspace N¢) by a unitary

1

that
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prangformation. In this new subspace N, the Har iltonian
&
operator I may have relatively gimple TOIM, viz. hQ Thus

dgiagonaliging the Femiltonian operavor H in the gubspace Né7
ig made equivalent to diagonalizing the new Hamiltonian oper-

ce 0OF Hge T+ is obvious that this proce-

ator hoin the subs;
dqure is useful only if the equ1leenu Hamiltonian h 1s relatl~
vely simple. Thig approacn ls very neeful in solving Hill-
tTheeler integral squation when the Gaussian overlap approxi-
mation (GOA) is used. In GOA, we assume rhat the overlap kernel

nergy kernel €O overlap

h
[©)

has a Gaussian form and the ratin O

kernel l1s a slowly rangl ing function of generator coordinates.

Though there is no theoretical justification for this assump-

tion, 1T was round that the GOA is a good approxa ‘mation when
1y  the number of particles ig very large, and 1i) the nuclear
wave funcuion 1s well represented by 2 alater determinant.

Under the GOA, the cquivalent Hamiltonian h is just a set of

ogcillators. Therefore the eigenvalue problem in the

-

it coupled

M, can be easlly solved. It was showil that the

by

sibgpnace of

golntion of this eigenvalue aroblem leads to a setb nf RPA-1ike

equations.

g0 far we have lmplicltly r assumed that the generator

_ 6)
owever Brink and elgung

P

coordinates are real nupbers. I

‘or which a generaligzation To

-

have pointed out come problems

conbdlex parameters secms necessalye



ory to tyo

vI.3 Ceneralisation of the projectlor

cenerator coordinates,

s stoted in the section 1, if one uses the additional
generator coordinates Deslides the angle of rotation, one alsgo
gets the excited states not belonging to the ground band.

ith this view in wind, we have used One more generator

of course S, the angle of rotation,

coordinate A
e will denote both these coordinates by = (A, r). If
é?‘( Y denotes the generating function, then our trial

Twavelunetion can

~

Now for simplicity we agsumwe that

£y = F O b

Ve = (P ny g o) how 4 4

4

e will now determine the functions ?,(A) and h( J2) by
. ( ) ‘

the usual variational wmethoda. The condition that
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b l/\ Tﬂﬁ/ — o »

[ R e ! . w ,, T 3 —-

2 S [ BV [=0
T CRNCR NSl

yields the Hill-"Theeler intecral eguation for both g and h.
gqubstituting eq. (9) in ed. (10) and differentiating WY o

gr /\ Yy and hx( JX ) we get

A o i B
&%g<§%1jﬂjﬁﬂk\\W(xj”ﬁ))~ﬁg<gﬂxjnﬂbiqﬂqﬂkfﬁjzlx

cg()\) f}/\ () AXNdorn =0
(11)

Following Yoccoz and Pelerls we make the ansatz that

\P (%, h, o) = ROy W)

Also we mey expand h( ) in terms of rotation matrices Dy (V%)

as they fomm a complete sel. Therefore we write

W

ST J J
(Jr ) = Aix Dy (L ) (13)
J,M,K
gubgtituting eq. (12) and eq. (13) in ed. (11) and remembering

that Fariltonian in invariant under rotation we geb

g(} Z\ Y )\)’ D) R n\& W (>, \)\ E \y(x,;\‘){ §{C~‘1\)}§(\31>){k7(‘°(."\‘>>—i'

=

L, .

ST D (D) A dn =«
x(i ,,,,, T T Ixan =0
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" .
How define the rotation (w2 ) such that
' ~| /'y A
Ren) = R D) R
(15)

then we have

J ) g J -
N 3 = - -] ¢ 2
Dy € 92 o P o) Dy : (16)

substituting en. (15) and eq. (16) in eq. (14) we get

B g ‘Bdf('x/\/\\\) 1 -4 \"((_“i?_ ) \q) (o ,;\)/ Eéﬁ} (x,

" T I
K (/f‘: \S > ) (L) ) {5 )\%(x\»«fxal’
T RO MR k)
’ = O

Using the property of the orthogonality of the rotation matrices

we get the following empression Tor the axlally symmetric case

(»

for which summation over K does not exist.

po J T — |
\ T ("'1,*'//}\15 ~E 1 kftl,f,ﬂ Eia AN =

J L——

where 5

?#jk”x,}g/kx> = g<iﬁ?(%4*)1 'KK?(V })/} ;\dvmy)CJ\QH

R (") | bl x)/j
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L T oy = (Cweg )y ooy Do d ot
alicl T (’}@:/ ,\/\/ )\) = ) ~ S y N ‘V\
. . .y 44 An
the equation 17 is the modified Hi 1mfaboj r ointegral equation

shich can be solved by verioug sultable appr Ozimatilions In our

calculationg we have used the gtrengtn O the external

)

0 another gensrator coordinate ( A,

]
)

{
=
[
+
D
1
h

[

E

G

quadrupnle
The details of the golution of the squa ation (17) are given 1n

the nexlt sectloil,

VI.4 Apolication Lo T-lNe nucleugs

he PHF met hOdS) to

e
C
ct
o]
—
p
ct
e
i)
o
wn
pus
5}
et
o
fad
1
W
—
I
o
Qu
N
jrt
Q
(@]
(6]
|
=
i

1

~ 3 11+ = a7 a3 » '.}.
obtain the ground state bands of nuclel, 1t is natural to look

frda

o _ .} - I, oo = Sy . n 31
oy a generalisation based on this method TO obtain higher bands

Fal - ],.]

nf levels in the nuclear spectra The validity of su a

generaligation hasg tO De assess ed by comparison with exact shell

section we have shown thet the

model celculations. In

generator cnordinste colculations with constr rained axisl HF

onaralization which is

n

. ag bhagis dn provide guch a

state

U

_4

gimpler and computationally less involved than the alternative

-
-y
O
L
0]
0]
>
(]
(1
pu
0]
O

Formaligm of »rojecting the stotes from partic

intringic 3bubC;Q>e such calculations way also give gome
3 i 4 ot ] v ot aa d 41

ingight into the »hysical nature O the excited stateg 1n the

shell model gspectras

Tt may be noted that the generator conrdinate calculations

:

with Nilsson's states as bagls 1s able o pldln



e 204 - e
ground state band of One,  However it is wellkn
method ig equally cuccessful and mush gimpler. H

Ovri
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that PHFE

ence one would

look for the natural of the generator coordinate
method and PHF method by using constrained HE solutions in
projection formalism,
e have employed the effective interaction matrix elements
o e l1) od P , _ : oy
Kuo derived from the Hamada-olnston potential, renor-
naliged for the 1d-2g configuration gpace used in these

calculations alnng with the experimental single

gles of 170 as given beloy both for protong and n
dS/Z = O I\;j\}? d.B/g = 5503 1’.’"6_‘]7
e have used the ™ >\ " the st
interaction ag the generator coordinate and consgt
Homiltonian which will depend on the value of
helow,
- _ N N
o= o= )\“()
e have emploved the HF formaligm to get the
particle wavefunctiong for this new Hamiltonian,

the free energy E{:
the states CP
XN

solutiong P
N

heen

we minimised

;—/\QU

procedure to obtain

n

anluti

~
cl

The different

12) 4t

HE Ons. However 1t hag shnnwn at

for dlfl@feﬂb

re called the

particle ener-

sutrong,

s1 /9 = 0.87 eV,

rength of the duadrupole

ructed the newr
, as gilven
aingle

In other words

Hx in

alues of

G H=

he

congtrained

the constrained




all

PP goluviong are wultivelvued functiong of generatbr cnordinate

AN or euuivalently of the expectation value of quadrupole

[ / o = t PREN \\ 17 3 3 . A o ; e PR
O QNG v p) : . . hiz is expected due to the
O @I W ‘L% 1 (4\ o l &.‘) / 5 XL G

- e " . ~ . e - o 18 M e s ’)—f‘
pultiplicity of the exigbing HF golutions « To get rid Of
this problem we used the folloying procedure., We started

the lowest prolate IF golution corresponding to A = 0,

and then picked out that brench of the solution which ig

P
1

L

thig lowest HE solut

senerated, as smoothly as pogsible out o

S

Thiz iz achleved by using the HF golution

w
U
:;
o)

A

1

point for the iteration of the golutinn qj - viner c%}\i
g )-+c1}\

a small increrent in the strength of the external quadrupole
BT oy EF vV ;K and the quadrupoles

a1

the fig.1l in different

Ya noted that the congtrained I

Lfferent valueg of /\ are connected

interaction., Also the Tact that we

minimise the energy for each value of X indicates that we

()

cet the lowest golution for thet value of )\ s which can be

connec

o

1 by guadruoole interaction., This procedure thereinre,

ad
20 R, ;
“Oue wvill he well

in a way ensures that the lou-lying gtateg of

i o

described by the resulting wavefunctions,

Once the different constrained HIF solutions are obtained,
next task is to project out the good-d states from these HF

golutions. In fact it i1s in the basgsls of these gnod-J gta

starting

0O,
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t we will construct the trial wavefunction for Vgllat3>ﬂ.

solve eq. (17) in

ot
)
0}
i~
poeded.
Lda
-]
!
!_J
=5
s
D
()
!.._!
@
=
A
-
-
—
)
o
[
2
3
05
-~

- , . - N
T j /f - T J A \‘\
whele 0 ( >\ , N ) = ' (f’f)/\ )1.& POO ‘ klf? >\f J

=

moyn nrojection Nperator R

|
cy
SN
>
b
g
1
Vs
>
v
Oy
)

-
=
;:\“‘
D
3
®
e
!_!
[9)]
ct
1
@]
—
y
¢ D
[
11
}..A
,.ﬂ

One would expect that theze Hill-iheeler integral eduations may
famous Gausgian overlap approximation.
Put asg the number of narticles involved ig very

poggible that the Goussian overlaps approximaetion

valid. Alternatively "ne sees that

;9 ) N
and quadrupols moment 9 ) VS are dulte flat

he gtiffnege of “ile HF gsolution around prolate ag well

1203

we

(18)

"
-
]
O

In other words it is enough to talke a few points with guifi-
ciliently different deformation as otherwise the Hilbert space

Nl . _
Ci) 1g over comblete. In our calculations we have used



. 214

1ts to carry out the caleulations. In

: i n the e “r o golutions
table 1, 2 and 3 ve have glven fhe constrained HE golutiong

the nroblem of golving

reducead to diagonalisging

)

- L. : Y
. I aniutions al
states nrog ected from gnHiutlong ac

Of >\ .

- 1 aconelize a ~;-"3>
cO alagonallse a OXD

1.

therefore, that

after properly

s P T
appendix 2). The
S eand 8 are glven in

shere are three elgei~

i
0
T
()
e
9]
N
o
P
=
o
®
=)
o
o]
3]
3
o
m
]
-~
o
ct
4]
-
¢
-
oy
[

cigenfunctinng representing three

values and corirespon

T T = T o o PN " o Sy
for all J except for J=8, For J=G, there arec only two

<
I 3
A
fae
6]
@0
-~
>

{

: T Me 1o~ ') i1
A1l the stabes below 18 ghown in the fig.2 (GC). e

. oy R L aan P Y - - 1 ' 0
heve also showm the “OFe spectrum (zes fig.2 (1p-1R)) obtained

Hamiltonian in the gpace 0f good-J states

projected
ohtained by one particle-one hole (1Lp-1h) exci
senerator-conrdinete caleculationg along with
the ahove recults are compared with the result of the exact

mh;l].uwm1eWL ) (rig.2, (3~ Y)Y and the experir

S0 ]
(Tig.2 (exp)) for T=0 states of 2Ope,  The
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Table V1.2
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D
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= 2,57 eV Qup = ~7 .50 b~

1/2 -, 56 L5261

» 0.7793

N EDAG S0 o0
0, 5845 0,.6828

e LD

Table VI.5
BON@

5

J=2, T=0 gtateg of
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~0,0706

ASLY]
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coleulationg veing the Kuofs two-body matrix elements have

been done by McGrory for us. YWe have plotted all the energy

levels in abe lute scale to facilitate a weaningful compa rison

V.5 Diliscuggion

mpop fic,2 it can be seen that the agreement between the
cener-tor conordinate spectrum and the corresponding T=0 Jevels
in ehell model spectium is cuite good. e have been able to
identify15) 11 levels in the shell model spectrum which are

senerated in these axially svmmetric generator coordinate calcula-

l_J-

tiong. Tor the highest levels in the generator coordinate
spectrum with an anszular momentum 2 and 4, we do not have the
corresponding results of exact shell model calculations to
compere with, while there are several levels in the shell model
spectrum at excitationg of 8 to 10 MeV, which are not obtained

in the axial generator coordinate calculationg. Otherwise the

results are consistently better in agree-

gena
ment with the ewoct shell model results than thoge nbtained

through 1p-1h projection calculationg. Also note that the

ground band iz slightly improved in the generztor coordinate

)

calculationg. In short the states calculated

the generator

cnordinats wethod oive an excellent agreement with a major

part of the shell model spectrum below 18 FeV. 'le have geen

R |

From gseparcte cnlculatinong that there is a K=2 bhand at about




Thia band ig very likely to mix with other

Lo T +

to suzgest that

be posgeible to reproduce all - 11 woedel levels

heloy 19 hel non—-ayial defor-

cenarcbor-cnordinate method. 1In the experi-

> (exp.)), however, there are meny levels

frop the cnre-excitations.

ree solntions which

golution,

golutinn é_([

This sugg the shape-mixing

obhlate solution we have used ig different {rom the usuva

obhlate golution where the orbital k=5/2 is nccupied. T our
Ja

the middle

T
solution ﬁ%i ig unicue in the sense
N
-3

ved in any oOther way. Thus our procedure
solutiong as basis for the calculation

Tor the gooed asrcement vwith the shell model

)\ - gtrength of the quadrupole

interactinn proves to be a very useful and approprlate generator

Kl 2 O ]‘.]}' e

coordinate in the calculationg of spectrin .




T+ yould be interesting to ses noy this methnd with ol

in nther 1d-2s shell auclei. Also the study

th neration HNf states and the

nf the correlationg betueell ot &

D

<

yonding trensitlon probabilities will be of great interest.

minelly it may be worth studying the connection between the

imporhant effects present in the neutron excess

calcula~

nuee el ™ DI

Lionse.
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