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Abstract

The present thesis ié devoted to a detailed
study of the linear stability properties of the
Bennett equilibrium. The main emphasis 1is on
the Kinetic aspects and non-local effects arising
from the large excursion betatron orbits bf the
particles in the inhomogeneous magnetic field.
An appropriate non-local theory 1is developed
within the framework of the Vlasov-Maxwell equations.
A matrix dispersion relation 1s obtained whose
solutions represent the eigenfrequencies of the
system against electromagnetic perturbations.
In general, the dispersion relation is difficult
to soclve analytically except 1in certain simple
limits. The.principal approach taken in this thesis
is therefore a detailed numerical solution wusing
a variety of methods (e.g. graphical scanning,
Nyquist method, Muller's method etc.). .Analytical
solutions are also obtained in some limits to
support the numerical results as well as to deli-

"neate the physical mechanisms.

The dispersion relation 1is wused to study
three important physical problems, which are
related to experiments where the Bennett equilibrium
provides alrealistic representation of the plasma

configuration. In the low ffequency electrostatic



limit, an ion-acbustic type instability is studied.
This mode is driven by the relative drift between
electrons and ions in a two component plasma.
The ion betatron motion is found to have a stabili-
zing influence on the mode by raising the instabi-
lity threshold and by shifting the real frequency.
These results are discpssed in the context of
microinstability observations of Z~-pinch and
plasma focus experiments. For the Z-pinch the
m=1 kink instability is another very important
mode, which has been studied extensively in the
past, usually within the framework of MHD theory.
%his instability is quite sensitive to the plasma
profile. A detailed study is therefore carried
out for this mode both in the MHD and the kinetic
limits, using the Bennett profile. Kinetic effects
are again found to have an important influence.
They stabilize the mode at large k - an effect
not predicted by MHD theory. The third application
of the dispersion relation is made to the resistive
firehose instability which is studied in the context
of a non-relativistic beam prop;gating in a resi-
stive background plasma. This instability which
arises dQé to the resistive phase-lag between
the plasma and the magnetic field is found to
be stable at very large and very small wavenumbers.

Earlier theoretical models of this mode accounted



for the phase-mixing Between the particle orbits
arising from the radial dependence of the betatron
Frequency, but ignored the wave-particle effects
as well as non-local effects arising from density
inhomogeneities. These effects are included in
our calculation, although, phase mixing is omitted.
It is found that Kinetic damping effects aré compa-
rable to the damping effect due to the phase-mixing
of orbits 1in realistic parameter regimes. Our
calculation also predicts a lower cut-off in k

which 1s not predicted by the earlier models.
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Chapter |

Introduction

I.1 Background
The confinement of plasmas by magnetic fields hasgs been
a major subject of study over the past gseveral decades, The

principal wotivation ‘has come from the field of controlled
thermonuelear fusion -~ where the aim is to build a reactor
capable of exploiting the energy released in the fusion
reaction of light elements, For example, 1f a nucleus of
Deuterium and a nucleus of Tritium are made Lo fuse they

produce one nucleus of Helium and the reaction gives off a

Lot of energy din the form of a fast neutron. several such

.
@

reactions are possible (see Table 1, where some important

sted) and the energies released are quite large

onmesg are L
£ the ovder of several Mevs. This energy can be
captured in a reactor by elther slowing down the energetic
neutron in appropriate blanket materials or in the case of
charged pariicles by devigsing a direct means of converting

rtrical  energy. However, in order to bring about




- D
the fusion reactions, enorméus amount of energy has to be
initiaily supplied to the reacting nuclei so that they can
overcome the strong electrostétic repulsion between them,
The required temperature for D-D and D=T reactions.is'in‘
the range of 10 KeV.At such high temperatures the reacting
nuclei (the plasma) will tend to fly apart and one needs to
devise a method of holding them together. In facf, to get a
net gain in energy the reacting plasma must be dense enough
and must be held long enough for a large number of nuclear
reactions to happen s0 that they can compensate for the
initial energy investment., A quantitative criterion to
express this breakeven condition was first worked out by
Lawson [1]. The Lawson condition states that the produé£‘of
the plasma density (in pavticles per cubic centimetre) and
confinement time (in seconds) should be greater than 10l4,
Attadiaoment of this conditlion has been the major goal of
fusion research and several ideas and schemes have been
developed over the years. They can be broadly classified
into two categorlies ~ the magnetic confinement approach
and the idnevtial confivnement method.

Since c¢harvged particles remain tied to magnetic field
lines due to the Lorentz force, the first approach is to‘
create suitable magnetic traps that will hold a tenuous
plasma (of density about 1014) for about a second.Heating
is primarily done by passing strong currents which lead to
Joule digsipation on account of the plasma reglstivity.
Beyond a certailn temperature,however, this heating method

becomes dineffective as the plasma becomes less resistive.
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Additional methods of heating rely on  shining strong
electromagnetic radiation that helps excite collective
modes in the plasma (which are eventually damped by

interaction with the particles) or Injecting energetic
neutral particles which get iomnised and transfer energy

through collisions. In the dnertial approach there is no

attempt to confine the plasma but solid fuel pellets are
imploded and compressged by dintense pulses of laser
radlation or energetic particle beam.At such high densities
Lawson criterion can be satisfied for times less than a
nanosecond which is of the order of the time for free
expansion of the plasma. The laser pulse also leads to
heating the plasma.

Historically, the magnetic confinement approach
developed earlier [2] and is today in a more advanced sfage
of achievement than the dinertial approach,. One of the

earliest magnetic confinement devices (and conceptually one

of the simplest) that was used in fusion regsearch is the
Idnear Z~pinch., n this, a strong current flows in the

axial (z) direction of a cylindricél plasma inducing a
magnetlic field in the azimuthal (§) divection (Flg,.l1.1).The
self~induced magnetic field compresses (pinches) the

plasma and confines it.The basic equilibrium is established
by the balance between the magnetlic and thermal forcesg.The
early experiments showed that the linear Z-pinch was an

unstable configuration and exhibited wvarlous growing

oscilillations. The prominent ones were identified as gross
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aﬁd kink modes. In é sausage mode (Pig.1.2) the plasma
column is constricted at some places and develops bulges in
between two mnecks., The plasma current flowing through the
necks produces a sgtronger azimuthal field in that region
(due to the small cross section of the plasma in that
region) and this stroanger field tends to further constrict
the plasma. This is thus an unstable sltuation which
favours the grow%h of the sausage mode. Fig., (1.3) shows a
plasma column subjected to a kink type perturbation -
involving a gross motion of the plasma off the symmetry
axls and a helical distortion.It is seen that as a result
of the perturbation the magnetic field lines are compressed
together on the concave side of the bend and separated out
on the convex side. This creates an imbalance in the
magnetic pressure on the two sides.Again the net magnetic
force 1s such ag to enhance the pervturbation and Ffurther
distort the plasma column and eventually break it up.These
instabilities were predicted from fluid theory studies‘by
Kruskal and Schwavrzchild [3].Further work in this direction
Wa s done by Newcomb [4] who enunciated some general

tébility of a

jee]

stability conditions for the hydromagﬁetic
diffuse linear pinch.Growth rate calculations using normal
mode analysis of the linear MHD equations were done using
various current models -such as the skin current model [5]

and various distributed current models [6, 7], The
experimental work of Carruthers and Davenport [8] first
demonstvated the unstable wriggling of the discharge, which

was probably dominated by the m=1 kink mode. Another MHD



instability, the m;O Rayleigh«Taylor instability, Qas
extenSiVely studied by Curzon et al [97. Uncontrolled
contractions and expansions of the plasma column were also
observed by Cousins and Ware [10] who took streak
photographsg of this motion.

Further theoretical studies and some experimental
evidence indicated enhanced stability in the présence of a

4

strong axial magnetic field. This brought about a major

shift in the choice of magnetic configurations considered
for plasma confinement. The preference wa s for
configurations with strong axial fields (equal to or larger
than the induced field) and toroidal geometries to
eliminate the end losses endemic to linear devices,
Examples of such devices are the tokamaks and reversed
field pinches. With the remarkable success of tokamak
experiments 1n achieving higher and higher o7 values and.
pushing up the ion temperature by means of various heating
schemes, interest 1in linear pinches diminished cougid¢“agly.
The largest operating fusion type experiments today are
tokamaks and it 1s expected that some of them will
demonstrate scientific breakeven in a véry short time,
However, there 1is a .resurvgence of interest in the

Z~pinch. There are several reasons for this surprising

renewed interest. Desplte thelr remarkable laboratory
success, it is widely accepted that tokamaks are not

ideally suited for a ryreactor confilguration.The tovroidal
geometry puts severe engineering difficulties Iin the design

of blankets and other operational aspects. The tokamak 1s
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also limited to raﬁher small @ values because of ballooning
instabilities[11w13]' ( whereé ﬁ igs the ratio of the plasma
pressure to the magnetic field pressure). Thus it is not a
very efficient device in terms of utilising the magnetic
energy dinvested to hold the hot plasma., For magnetic fileld
values of 5 ~10T aund ﬁ of about 10%Z the plasma density is
restricted to values of about lOllF cm”3uTo satisfy the
Lawson criterion this requires energy containment time of
the order of seconds whiech in turn requires plasma radil to

be of the order of metres (from present thermal conduction

values). As against this, devices such as linear Z-pinches

can, in principle, offer a more compact and efficient
alternative. Theoretical calculations show [14-161 that a

Z-pinch of 0. Im length and ZOHm radius with a density of
1023 en™3  and  self magnetic field of 104 T from a current
6

of 107A gives a confinement time of 100ns agalnst end

losses to satisfy the TLawson condition. These parameter

values place the potential Z-pinch reactor gomevwhere
between the tokamak approach and the dinertial fusion

schemes. A linear device has also a simpler geometry alding
accessibility and other design considerations for a reactor.

Intevest 1In the Z=-pinch has been further helghtened by
some recent experimental evidence which suggests improved

stability of this configuratlion. In particular, a related

configuration, the plasma focus has already demonstrated
: . ; o . ;1 A19 -3
the achievment of plasma density of 107 "cm and an

electron temperature of several keV in a narrow pinch a few

millimetres in diameter and about a centimetre in
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length[17]. The plasma focus is created between two annular
electrodes connected to a condenser bank (Fig.l.4). As the
'bank is fired across 'the gap between the electrodes,
breakdown occurs along the dnsulator and the resulting
cﬁrrent sheet is accelerated by a J X B force 1n the axial
direction. As the plasma reaches the end of the inner
electrode 1t undergoes rapid three dimensional compression
and becomes a ‘highly compressed cylindrical filament very
much similar to a linear Z-pinch.Another recent experiment

which thas shown good promise is the Extrap Z-pinch [18,19]

high density pinch is embedded in an octopole

.

in which a

jas]

field (Fig. 1. 5). Again the plasma is found to exhibilt
remarkably good stability. The FLR effects could be a
stabilizing wmechanism for linear Z-pinches, provided, the

pinch is operated in a suitable regime. Such a prospect has
spurred both theoretical [20,21] and experimental work [22,
23] in this direction. Fluid theory assumes smallness of

.Hence o

jind

the Larmor radius compared to plasma dimensiong
properly account for FLR effects the attempts are Lo
include them in a perturbative sense or resort to kinetlc
formulations. Experimental interest has shifted towardﬂ high
densgity Z-pinch configurations alided to a grealt extent by
the developments in  high wvoltage, high current pulse

technology.



1.2 Motivation
The present work is motivated by this renewed interest
in linear pinches and the need for a detailed understanding

of their stability properties from a microscoplce point of

view. For a proper theoretical treatment of particle orbit
effects, a kinetic formulation is most appropriate. The

Bennett equilibyium [24,25] 18 a partlicular case Qf a class
of Vlasov equilibria characterised by a constant axial
macroscopic velocity for the plasma specles.Ilt has several
features which make it d1deally suited to represent the
linear pinch and other related configurations., We have
therefore chosen to study the kinetic stability of this
equilibrium. Tt is important to point out two significant
features that have hitherto not recetved adequate attention
with regard to this problem - inhomogeneity effects and
betatron orbit effects. There are a variety of possible
particle orbits in the inhomogeneous magnetic field of the
Bennett profile. In addition to the wusual TLarmor oxbits
(near the plasma edge), there are large excuraion betatron
orbits close to the axis of the plasma where the magnetic
field 1s nearly linear.In many sltuations these orblts can
be the dominant ones and,as our work shows, they can have a
significant dnfluence on the stability propervtlies of the
plasma. Since their orbit vradil are comparable to the
gpatial scale lengths of the plasma column, a non-local

and kinetic approach is mnecessary to take account of
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wave=-particle resonances and the vradial dependence of

perturbations. In this thesis, such a non-local theory for
general electromagnetic perturbations of the Bennett

equilibrium has been deQeloped'within the framework of the
Vlasov~Maxwell equations, taking into account betatron
orbit effects. The theory is appllicable to a variety of
physical situations including the Z-pinch, plasma focus,
Extrap and beamplasma propagation experiments :and allqws

us to gain some insight into their macroscopic and

microscopic behaviour.
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1.3 Scope of the thesis

The thesis has been organised as follows. In chapter 2

we have carried out a systematic development of a
non-local kinetic stabllity theory for the Bennett
equilibrium taking into account dits large excursion

betatron orbits. Various nmon=local theories for the plasma
stability analysis have been developed earlier 126~321.0ur

¢

formulation is closest to the one developed by DaVidSon[BB]

for the theta pinch and further adapted by Sharma[34] for

the Z-pinch. It wuses a Bessel function representation for
the radial amplitﬁdes of the perturbed quantities. Using
the linearised Vlasov-Maxwell theory we obtain a set of
integro~differential equations for the pertufbed

quantities = @1 the scalar potential and X& the vector

potential. These are converted to an Iinfinite set of
algebralc relations with the help of the basis function
expansions. The sgolvability condition of these equations
requires the vanishing of a determinant and leads to the
dispersion relation for the linear modes of the system. Thé

o

lements of the determinant are functions of (D the
J

6}

frequency, k the wave number and the basic parameters of the
plagma. In obtaining them we perform orbit integrations
over the betatron orbits(analytically) and express the
nonlocal contributions in terms of radial dontegrals which
are to be evaluated numerically. This chapter also contains

a  general discussion on the Bennett equilibrium and the
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betatron orbits, Tn deriving the dispersion relation we
also make the assumption that the principal contribution to

the pevturbed currents are those arising from AFz(the axial

component of the wave vector) and neglect contributions
from Aqy and Al@” This assumptlion 18 valid for low

frequency perturbations.

In general the dispersion relation 1is difficult to
solve analytically except in certain simple limits. The
principal approach taken in this thesis igs therefore a
detailed numerical solution of the dispersion felatidn
using a variety of complex~root solving techniques. These
results are supplemented wherever possible by limiting
analytic expressions. The latter are Vvery helpful in
clarifying some of the underlying physics. The dispersion
relation has been studied in detall for three dlstinct
problems which are related to lmportant physical slituations.

In EEEBEEEWME? we have looked at the m=1(kink type)
‘instability which is one of the most important modes for
the Z-pinch configuration. For this eiectromagnetic mode

the contribution from the scalar potential 1s negligible

and putting ¢>1=0 we simplify the dispersion relation
somewhat. However, the determinant 1s at1ll of infinite

order and we truncate 1t Lo appropriate dimensions (20x20)
or (40x40) Dby checking the convergence of a given root. We
have. also Dbeen able to reduce the wmatrix dispersion
relation to a simpler form by explolting certaln analytilc
relations Dbetween the coefflicients. This reduced form i1s

fagster Lo solve numerically and vields limiting analytile
o &
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forms as well. 6ur resﬁlts.indicate that the current driven
kink mode can be stabilised beyond a certain k value by
virtue of the damping introducgd by the betatron effects.At
low k the behaviour of the growth rate is similar to that
predicted by fluid theory treatments. Incidentally the
earlier fluid <calculations are based on simple current
profile models. We also solve the linearized MHD equations
with a Bennett profile for a more reélistic comparison with

our kinetic results.

There 1is also ample experimental evidence for a variety
of microinstabilities in the pinch configuration,
particularly in the 1later compression stages[35]. These
have been discussed by various workers([36,37] and some of
the possible modes suggested are the Buneman, the
ion—-acoustic and the lower hybrid drift instabilities.With
a view to understanding some of this activity, we have next
looked at the electrostatic limit of our generalized

dispersion relation in Chapter 4, Numerical solutions

reveal an unétable mode whose characteristics are very
similar to those of an ion-acoustic mode in a two

component plasma with a relative drift. The mode 1is stable
for very large and very small values of the wave number.
The range of unstable k increases with the increase in Voo
the electron drift. There 1is also a threshold Ve below
which the mode is stable. The real part of the frequency at
large k 1is close to —kCS where CS is the lon-acoustic

speed. But at small k there is a significant departure from
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the lon-acoustic frequency which 1s a modificati{on arising
from the ion betatron motionfThere is also a significant
stabilization effect arising from the betatron motion which
raises the threshold of instability much above the onset of
the wusual current driven idon-acoustic instability. The
results of this calculation are applied to some recent
experiments on the Extrap Z=pinch and the plasma focus.,
‘

In the next chapter, Chapter 5, we return to the m=1

kink mode but look at a resistive wversion of this
instability. Better known as the resistive (fire)hosge
instability, it is a growing lateral distortilon of an
energetic self-pinched beam propagating 1in a dense

resistive plasma. The dnstability is driven by a reslstive
lag of the wmagnetic field 1in responding to transverse
displacements of the beam. The hose instablility has been
studied extensgively [38-~41], but most of the theoretical
work is based on very simplified models of beam particle
dynamics. There are two important physical effects that need
to be taken into account properly. Since the pinch Zorce is
anharmonic whenever the radial profile of current density
s rounded, particlesg have a spread of betatyon frequencies
that dntroduces phase mixing and tends to damp the mode .
The other effect has to do with the betatron particle
orbits and the locallized wave~particle resonances they

introduce, in some of the recent work [42-44] realistic

estimates have been obtalned for the phase milxing effect

through improved beam modelling (e.g. "spread mass" model
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‘ étc, ) However the vwavé -particle effect iSvStill not

treated very satisfactorilyev Our present formulation is
well suited for this purposevand we have applied 1t
\ tq this problem by dncluding the resilistive contribution
;from the background plasma.Our numerical results show that
in some regilmes the damping effects of the Landau type (due
‘to wave particle resonances) are comparable to thé phase
l'mixing effects. We discuss the implications of these for

¢

experimental situations.

Our final chapter, Chapter 6, contains a short summary
of the main results of the thesis., 1t also discusses some
of the main assumptions made in our theoretical analyses
and the consequent limitations of the present work. These

also provide a «clue to possible future extensions of this

work and these are briefly stated.
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~Table 1
D ===> T (1 Mev) + p(3 Mev).
D ===> He3(.8Mev) + n(2.5Mev).
Tvmww> He4(395Mev) + n(l4 Mev),

Hedw=> He® (3.6 Mev) + p(l4.7 Mev).

. Ji
Libwmm> He' ' -+ He3 + 4.0 Mev

Bllavuy 3fHe? 4+ 8.7 Mev
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for chapter 1.

Figure captions

The Z-pinch configuration.,

m = 0 Sausage Instability,

m = 1 Kink Instability.

Schematic view of the Plasma Focus.

The Extrap configuration.
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Chapter 2

Non=local stability theory for

2

general electromagnetic perturbations.

2.1 Introduction.

The 1linear vresponse of a collisionless plasma to a
perturbation d1s described by the linearised Vlasov-Maxwell
equations, which is a gset of integro-differential equations.
The dntegrations over the unperturbed trajectories of the
charged particles leads to the dntegral nature of these
equations. When the scale lengths of the inhomogeneities are
large, the perturbed quantities appearing in the orbit
integrals are usually approximated by thedir Taylor

expansions around the local positions of the particles.

This leads to the elgenmode equations which éré now
differential equations. However,in the case of equilibria
where the spatial inhomogeneities of the fields and
currents are large, this “localw-approximation’ 1s not
Justified, It is therefore nwnecessary In such Caseé.to

consider a non-local theory for studying the modes of the-
system, namely, an integral formulation of the stability

analysis. In such theorles, the eigenmodes of the system are



- 09w
linearised Vlasov-Maxwell set of equations ylelds a matrix
dispersion relation. Such a theory has been developed for
the rilgid-rotor equilibria of a theta-pinch by Davidson[1l],
wherein the perturbations were expressed in terms of Bessel

d - by

[t}

functions. A similar integral approach was us
Shgrma[Z] to study the stabllity of Bennett equilibrium
when most of the particles execute betatron orblts. In
recent times ‘the dintegral approach to the stability
analysis has been used to study various physical situations.

The don~gyro instability associated with the flow of dlons
encircling the magnetic axis in an inhomogeneous
mirror-plasma has been studied by Catto,et al [3]., Myra et
al. [4] studied the stability of an inhomogeneous
cylindrical plasma to electrostatic flute perturbatlions in
the dion=cyclotron and lower~hybrid frequency vrange. Yor
large growth rates they were able to reduce the.integral
equation for the radial eigenmodes to a differential
equation in the limit of straight line dlon orbilits. Marchand
et al [5] have used the dntegral formulation to study the
drift-type electrostatle perturbations of a collislonless
cylindrical plasma with an axial magnetic field”Théy‘have
solved the integral equatipn for the lower hybrid mode and
the low-frequency drift mode numerically by the Gaussian
gquadrature method. In a series of papers Lewls et al [6~8]

have presented a general formulation for the study of
linear stability of dinhomogeneous plasmas. By expanding the.

perturbed distribution function in terms of the

eigenfunctions of the unperturbéd Liouville operator they
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obtained a dispersion matrix which yields the elgenmodes of

the problem. The dispersion matrix is expressed in terms of

a dynamlic spectral matrix which ig dependent on the
unperturbed particle orbits. This method was applied to

study the stability of wmulti-species Vliasov plasmas and the
~Vlasov=fluid model, and a necessary and sufficient
condition for the stability of the latter was derived [7m8];
The drift and dr#ft cyclotron dnstability din a cylindrical
plasma has been studied by TFerraro et al [9] using the
integral approach. The elgenfunctlons in this case wére
expanded in terms of the Associated Laguerre functions. The
tearing dinstability of a neutral sheet was recently studied
by Chen and Lee[10] wusing the Galevrkin method to solve the
integral equations.
The Bennett equilibrium {11] i1s a particular example of
a class of axilally and azimuthally symmetric equilibria
with an equilibrium axial current.These equilibria which
are characterised by strong gpatlial inhomogeneities have
been gstudied extensively earlier [2, 11-13]. They are in
general described din  terms of an equilibrium distribution
function which is an avbitrary Function of the
single~particle constants of motion. These constants of
motion are determined by the symmetries in the equilibrium
configuration. Por a given system the equilibrium fields
and currents can be obtalned self-consistently by solving
the Vlasov-Maxwell system of equations, wilth appropriate
boundary conditions. The dIntegral stablility analysls for

electrostatic pervturbations of the ‘Bennett equilibrium was
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developed by Sharma [2].
In this <chapter we consider the stabllity of a Bennett

conflguration against general electromagnetic perturbations

with arbitrary azimuthal mode mnumber and develop a
non-local perturbative theory to obtain a dispersion
relation. This dispersion relation 1s quite general and is

applicable to all cylindrical plasmas with Bennett profiie
and perturbations with arbitrary scale lengths foncluding -

those comparable to the gpatial scale lengths of the

equilibrium, We have applied this dispersion relation to
the study of electrostatic and electromagnetic

instabilities in a pure Z-pinch, the plasma focus and the
resistive dnstability of a beam propagating in a background
plasma channel., In the next gsection we outline the
derivation of the equilibrium , 1ts properties and the

particle orbits in this equilibrium.
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FEquilibrium and part € rbits

Congider an infinitely long cylindrical plasma column
along the

consisting of electrons and ilomns counterstreaming

the cylinder with a uniform velocity Vja We choose

axis of
a cylindrical polar coordinate system(r, 8 » z) with its
s~axis aloug the axis of the cylinder. We assume that the
7z and &, so that

¢

quantities are independent of

equilibrium

i

9= 0 and jg‘= 0
Y o8

of the charged particles gives

The equilibrium drift

rise to an axial current and consequently to an azimuthal
magnetic field which can be represented by a gingle

component Ay(r) of the vector potential:

A= (0,0,8,(r))

In addition we assume that the equilibriam is
chargewneutral so that @ = O,(%being the scalar potential.
{n this field

a particle with charge q‘i

The Lagranglan of

can bhe written &8

¢ q.
e 2} ;s v 2- . }f‘, V. A
- e,
''''' o ) (2.1)
ooy (st ) b an

where ~j7 refers to the particle gpecies and dots vepresent
rime derivatives.From equation (2.1) it is clear that € and
z are cyclic coordinates. Tt therefore follows from the
Lagrange’ s equations that the axial and azimuthal conjugate
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momenta are constants of the motion. Also for a
congervative system the . Hamiltonian or energy HOj is a

constant of the motion.These are given by:

Do e a, ., (2.2)
T, == ™z + Top A7)
. o :
" . (2.3)
F b = no
2.4)
, ) (
M F{' o Y.
E\ ©; )é J v
Trom these constants of motion one can construct
distribution functions f0j<§’ v ), all of which would

satisfy the Vlasov equation., For a given equilibrium the

chodlce of the functional form of. fO is governed by the

specific properties of that equllibrium. For . the
Bennett~type equilibria vhere the particles ~have
temperature T and axial dvift Vo the equilibrium

distribution function dis chosen to be of the rigid-drift

4

type:

f ;JCY\ ) wV) - C.‘,I 0. F ....... o, 7>}?J\/j (2.5)

where ey is a constant determined by the normalisation
condition. This 1s called the rigid-drift distribution

because it leads to an average macroscoplc drift of each

species along the z-axls,and is appropriate for describing
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high-beta collisionless plasmas [13].

The equilibrium density is given by:

( 2 *® 6 >
(Y\_ . sgoanas 5 ._2) MJ
. J [e— q \/ 7 )

0)

Substituting for foj from (2.5) we obtain

"

,. My exp (9 | (2.7)
Yl.j = My &% 5:3 “%jwii A /@7))
7 .

e

From the charge neutrality condition,viz.,

~

j
We obtain:

exp  Az[ v,
f “*“’”“'“’““‘ N \} o

This implies that * {&

>
%:
~~
no
.
o
p——g

e -t r—— O
b lo
Defining T,/Ty =7, Ty = T and V, = V&

we obtain from the above relation Viw VQT and Tiﬂ T/?

The equilibrium current is given by

o < . A e
s 7 (] - / l
(T/c) :sw i\’ av Vv o)
A TN exh (&Y A (hj (2.9)
oM, eV (L) ex f—-* o g

[y B L A
The vector potential A?(r) 1s given by the equilibrium

Ampere’s law:
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Choosing the Coulomb gauge viz. , Bz and expressing join

terms of A7 we have

_— Z, N /’ s i~
oo :\:..73 W) o o)
VA, = 4 OL«\/Q ..... ) E)’})<—-~ AéCh)

In the cylindrical coordinates with P and z symmetry, we

have

Introducing the variables x = Kr and y = eVAZ/CT

we obtain from equation (2.10)

Aod (e ﬁvj

ﬁ (2,11)
& o
ES &o& &@&

The general solution of equation(2,11) is given by [12]:

AL (“ = gﬂ:ﬁnﬁmﬁ;mw~h>l; ﬁ€¢%} (2.12)

e L am> e n

Equation (2. 12) represents the generalised Bennett
equilibria. The constants rO and'q are arbitrary constants
and depend on the boundary conditions. The constant r(
represents & scale length associated with the vadial
variation of the beamnm profilew‘q s a shaping parameter,
Flgure(2, 1) shows the dénsity profiles for different values
oquda ForWl ¥ 1 the solution is not physical. Tn such casegs
additional current is needed to balance internal forces in
the beam. The case with 7 =1 and ry™ L/¥ corresponds to

the Bennett equilibrium. Here the self-pinching due to the
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magnetic field just compeusatés for the tendency of the
thermal motion to make‘ the likewcharges Ffly apart,
Substituting WL =1 and roml/K in equation (2.12) we obtain

the solutions for the Bennett profile:

. L2
Ao = — ST < |+ kZn*

©\/

et

-

Sy PN 2.13
e W
(CAY) Lp

&

The density and current profiles in this case are

obtained by substituting for AO? from (2.13) 4dn (2.7) and

(2.9) respectively:

e = R exp (LY 4, 00)

~ (2.14)
Q*%* Vﬂh ) -
jé.g(ﬁ) = meeV (T Q/{ eNv p
ns T P
— aL e V(T \ (2.15)

The magnetic field profile correspondlng to equation (2.

13) is given by

' I . .
5 b = UC\ e L e . r;> (2.16)

From the above profiles it is clear that the density
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and current have thelr peak wvalues on the axis. The
magnetic fleld peaks at r= 2/K and the peak value 1s given
by BochK/eV Figure (2. 2) shows the plot of the density
and the magnetic field profiles as functions of the radial
coordinate r. It ig clear that for particles near the axis
the magnetic’ field 41s almost linear in r and goes as BOKra
As the density of the particles peaks on the axis, most of
the particles are located in the swmall v region and
therefore experlence a linear field, The orbits of such
particles are Dbetatron oscillations and have been analysed.
in  detail by Gratrveau[l5]. These orhits have large radial
excursions comparable to the lateral dimensipnsv of the
plasma and their exact shape and extent depends on the
initial radial positions and veloclties of the particles.

To obtain the exact trajectories of the particles,
consider the approximate magnetic field ESBOKr' for
K2r2/4<<10 Transforming to Cartesian coordinates(x,y) which

“are  gilven by x=r cos® and y=r sin® we can write the

magnetic field in Cartesian coordinates as

R %b < QW X 4 X Z}) - (27

\

Writing down the Carteslan components of the force

equation for a particle of charge q_j and mj we have

2/ C
(W N R v 5 CD L
W = jﬁl - \/}r, B > o lJ ...... Kol vy
0, J Q,
moy ' — 9 (e )
J ? i‘i < & B) 3,(»’> wwwwww - u(ml\i BO l< b V’,( (2.18)



For small rt, the z component of forece can be neglected
and the axial wvelocity is nearly constant.Therefore the x

and y components of the force equation can be written as:

X ok N (2.19)
F)

ot
.

A R AN

f

2.
whereLO.m3%6VkN%% is the betatron frequency. The solutions to

o \
equations (2 19) define the charged particle trajectories

in the equilibrium field.With the boundary conditions

&

VD:..(S&‘ L;,,L) = \/ ({ @ (2.20)

these solutions are given by

T v b Wy R c\i““ SRENCS
\FAJ

4= Y coso (tb 4 Yy g g ¢ L) (2.21)

PR
1y
LN
g

Z ooV, (=6

The pacrticle orbits 1u the r~¢ plane consist of large

excursion radlial oscillations. The extent and shape of
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these oscillations 1ig deterﬁined by the initial position
and velocity of  the pavticle. superimposed on thesge
oscillations is an axial drift which leads to helical
orbits. TFor particles having zervo angular momentum thege
oscillations are sinusoidal and confined to a given 1~z
plane and cross the z=axis. TFor particles with Finite
angular momentum these orbits are helical and encircle the
axis. Far away %rom the axis the magnetic field 1is nearly
constant and the vparticle orbitsg in this region are the
usual Larmor orbits, However such particles constltute a
small fraction of the total number, Therefore we assume the
dominant particle orbits to be betatron orbits. Figs., (2.3a
and 2. 3b) show the projections of the betatron and Larmor
orbits in the 11~z plane. TExpress ing the perpendicular
veloclty components in terms of the corresponding polar
coordinates so that Vs v cosc% pov,= v sin#;the orbits

A L

given by equation (2.,21) can be expressed ag

i
== U Ceh & Cog Oy, E'~) + Ve QoS¢ g, @ﬁ({;/m £)
On
, )
i‘f . 91 »JJJV?O (‘@5 U)f ('% ) }. \/,,L JJ\/HC}') &"p{)w <L &:B (2«22)
g, »
I;nJ
?29» ‘
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2.3 Derivation of the non-~local dispersion relation

Tn this section we use the linearised Vliasov-~Maxwell

equations to dnvestigate the stability of the Bennett
equilibrium agalnst small amplitude electromagnetic
perturbations in the absence of collisions. For small

amplitude perturbations the linearised Vlasov equation can

9

be written as

N — . (2.23)

LR P V) e s e )

0T 5% e\ e Jee !
- 0% ; - 2V mA_ e

The perturbed fields ﬁland pycan be expressed in terms

of scalar and vector potentials ﬁ> and Alas
|

Pr——

{E o~ 7 }’ . C") A
~ ) . v q) Caenes  wasaves - t

The perturbed electric and magnetic fields are given by
the Linearised Poisson’s and Ampere’s equations

reppectively:

— w\lm - JE—

CL' -4y Q/ ra‘.{:.u

VA4 ?5;3 = 4y 5 2k i (2.26)

For Low frequency electromagnetic modes the
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displacement current term In  equation(2, 26) can bhe

neglected. Substituting forB.and

! ﬁlfrom (2.24) 1n (2.25) and

(2.26) we have:

~- b . L OA\ L (2.27
VA (w \/C{J{ A W‘“t'l> — éi[i;, CLJ $>‘J d 3"\ ) ( )

) Q’J
and
7y 7 B . - : (2025)
V X <§7 X /\,/} pma p%{&k z clj v {"15 (A 5\/ 4 -
.- J . '

Using the Coulomb gauge (Y .X=0) in (2.27) and (2.28) we

have
e L - v \ P2 [ 0
v df)i - “}({}' %n Obj TIJ AV = “Jc;i\’ jﬂ ]’ INIJ'
' J

- (2.29)

The perturbed distr ibution flj (f,;,t) is obtained by
integrating equatilon (2. 23) over the unperturbed particle
trajectories which in the present case are the betatron

orbits given by (2.22).Thus we have;

. /
e N 2.0
0.9, 8= m (s;: X VK_(M)  Ofoi dt! 230
SOV
The primes within the dntegral dindicate that the
quantities are to be evaluated at the unperturbed particle
orbilts. £ is the normalised equilibriam distributinn

‘ fi)j

function given by
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G = (o8 L by
} L R S
) o T axviww§<ﬂ%«¥é\/ vt \
- 2.

22 - LA
Also € C ”&t Q C %? szﬁﬁﬂ
?Lﬁ — M \/>
SAVE (D“ f
substituting in (2.30) we obtaln
'f . o I
2] = - e L.
,j(u &, v = ﬂg v \/) .\'W-‘\/c + _L OABE _L JAL&
r‘) =0 j—j

s | [ ! o 1
V 13} (: \ . \{ _{\JZ‘:> -+
J C

T? o
YJJ

(L \Saﬂqﬁ ;{\/ ‘C/)CF ‘ 3(\1 ,L\)WW(\\/ ) (V. A >[ ’“'/ (2.33)

~ 5D

The particle trajectories satisfy the equations

e s im'" ;
e K Y ' aV B q (\/ . p
dt > dt o E‘m:?,?

~

(2.34)
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Each of the perturbed quantities can be expressed asg a

sum over Fourier components of the form:

i

Ay !, / "
f? (ﬁ Z ¢ > . M(,@, 5 o (kz'4+ mo' - wf/)

) (2.35)
A rl {m (.D”) i
A (5B ) - 5 A Qk(jké Fm bl ot

where k, m, and Ware respe ctively the axial wavenumber,
+

azimuthal wmode number and frequency of the perturbation.

Substituting 1in (2.33) we have:
&

Cv' ; / A i vesay /
o =~y (b A §>“’”*qi(o (o-hap(d, VR )i 220
3 o .
=X )

The perturbed density and current are obtained by

taking the veloclty moments:

O oy AN . 1 N
My = S T P = Oﬂa j@q - }{;ﬁ@ Foﬂ‘f\/ ¢ e-ky )
(

-+
) by (e ) ooy
e}

_t

e Ao . o Iy (2.37)
DS A R A NN : {)» o 2
& )"ﬂ% F iR @ Y@f\ﬁ A o *y
’ e B ’
J' - Qj ‘{‘: .
N g oA\ (2.38)
= 5, bt s b - A
b VA j E ’ “M“i{ ........... (:’.» y
H Q.- 0
Th e perturbed current i1 is. predominantly in the

z-direction which ecan be written as
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j‘wﬁ gci% \H/w{ﬁw @ V'ﬁw' o /, @3 {\ﬂ% ( UA)A};(? 39)

For Low frequency perturbations the transverse

components of the perturbed cuarrent can be neglected, as .

compared to ?i « Equation (2.39) can be written as
%

j o= - F 945 v | b f
V7 ; AV Vg A,,:Jmfo( !> i’ O
2 = g kg L ;Q} ?v> @; z::““Qé
. t
= eV e YA ‘ ﬂ

s e WA el ic Iy, o / ' ‘

ot &C i j ) v Byl G) e > Ao
4 o3 “ S

substituting for the perturbed density and current from eq.

-

(2.37) and (2.40) in the eq.(2.29) we have:

¢

t
é’“‘p) [ @»:’,,f;‘ "?m 4 L. /) . g s ( 2.41 )
% L{f o (T’f\'/\lf:{f, c’f\/( %”A; j‘> My 4. i Qtu - ‘;‘QVJ} GD @)iw Vj\' d }Q:Fs:xi EN y +
) T" " %:l:f J - ) ') . @» .

and
m..vz”/i\ B q T
—VA = -y ey
J
L
(2.42)
8] B 4 -k -5 b
e A

Taking the z-component of this equation we have:

{\

-9 /f% p i?(ff . % )(O%f"’\/ Ve ALW {b <C{> — \/ f\i%
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{5

Substituting for Cﬁ s Aw,from equation (2.35) in (2.41) and -
) _

(2. 43) and expanding the Y T operator in cylindrical

coordinates we obtailn

L lnd N 1 2% 4+ 8

r ) pya ~e. L ;;((/evée WA B cﬂ;}
| A % N o ) cﬁ(b} €
Lov onlon) ™ spdpr Tz

-t
b § e e ) - T

= 4N 4 1oy : 22t wn©- o) -

5< oY ’Q‘(E\ «;’)A( .

L e P e , _
y TN - ¢ e et
j \ AN \ L o, I “I"’w’fm Io
oy o . . Thoo
J/N \ Z & = F‘\ “ = J(, ( -
\ d;)i \j,,ﬁl § )Ql " “ "}t 1! Tj by J (2.44)
AN g |

and ‘
| L M> U };% ;)3 B i '({ AQR;’:. twm - w&)
_watAJf Jj; ?ﬁﬂﬂsQﬂ” \y?M - |

- j&& e 1{»‘;( N A ) e 3 a5 @ )& f.¢ . d®y «

4 )

‘ ™y R ' Qla) -+ @‘” LDHJ r 1 (2.45)

EQ o Viiﬁt) ot TdE o
5
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“im’ and ik’ and

replac1ngﬂ§ and_@w‘in the opeéerators with
90 0F _(R¥emo-ut)
multiplying through with ¢ we obtain:

L2 (5 P w5 QU7 ,
& o (ﬁ M) — kS 4 (W)= br 2 ) Gﬂ ....... i Ag) o

e )
J

;\ Mé'“é)‘T L@ — L alk "“‘«)j U (2.46)

and
s wm me 2% ﬁ\ﬁ(yz)w 7 ol f
(380 30- 5 -] Mg e

Lo . oa% -
POORD S 4 on) [y 1, any

3r%

i " e - o ' Lo s
x(%e o Vg A > &k@: 2)t mb-6) - ot - (2.47)

4\ e
K0

for z’~z from equation (2.18) and changing the

Substituting
to t'wtxf we obtain:

variable in the time integration

C\wi' wé)« <31 D ,,,,,, ' — (W)*?“-‘ },?( | o de
RSV - & At L9 g+
e ‘W[

J
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e e Tt

ufl (\ 'aji/) e V{ /\Hﬁ('£> pm

bk

€. ,:,_’”"’3" s ) 1.

*2%" ««ZW"“' “> ‘Y\F)(-{ff) A' Cf(ju { ) j( 4NA ‘“;Z /i'w ((i)“ : %’ ) .
oI

J

e
R

&
}

\}. F ) Oi"”\/ QD er)m \/t;: A,‘{«U"l)) ‘M@ A CLD P\)éaB i‘? (2 w49)

e nb kT

Q. -

>

Equations (2. 48) and(2. 49) represent two coupled
integro~differential equatlions for the eigenmodes of the
system. The time integrals on the right hand sides are the
orbit integrals to be evaluated over the wunperturbed
trajectories of the charged particles.These trajectories
are described by equation (2. 18) and consist of large
excursilon radial oscillations whose extent and shape is
determined by the dnitial conditiong. Due to these large
excursions the pérticles traversing these orbilts will see
large gradients in the electric and magnetic flelds.Hence
the wusual “local~ approximation’ in  which the perturbed
fields and potentials are expressed by a Taylor expansion
around the Local positions of the particles 1s not
applicable., The appropriate way to evaluate the orbit

integral for such orbits 1s the non-local method glven by
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Davidson [1]. Ler consglsts In expressing the radial
amplitudes of the vperturbations over a complete set of
basis functions. In a cylindrical geometry it 1a conveqient
to take these basis functions as the Bessel functions. If
we assume that the plasma 1s surrounded by a @rcunded
conducting cylinder of radius Rc then the radial amplitudes
can be expressed in terms of the vacuum efgenfunctionsg
d%\(r) of the <¢ylinder where the Cﬁh s are glven by the

equation,

C’\

C
L2 /n2) - ’W)L? P, L :
\}# ?__ i;)j"g <\ :é«:}:l_ "j;:’z"a’”} Pm Q‘I) s R, >»V‘, q)ly"(‘?'z—) . ( 2 .5 O )

where mh’s are the eigenvalues corresponding to the

i
eigenfunctionsﬁﬁﬁr)@The boundary conditionsg are given by
)

Py .
1 a®m, . . P ) (2.51)
’ EE

The first boundary <condition 1is obtained by demanding
that the solutions be regular at the origin while the
second condition follows from the . fact that the field

vanishes on the boundary. From equation(2.50) we have:

(2.52)

‘%&&Jﬁ} S [XW\ 3qw kbﬂqji>

whereJm(knr) 1g the mth order Bessel function of the first

kind and eigenvalues %W are given by the condition:



.
(%)
—

“Yf’h %Q> J;WOW\ @(‘g Elled (2.5

. . . A B ;
The eigenfunctions ﬁ%‘(r) form an orthonormal set such

that
Ko
A % *
(jv/] J? ) (}7") ?} (}‘/) s (5 (2,54
ey :
0
where é)n'n is "a Kronecker delta function,and A, s are the
o

normalisation coefficients defined as:

PNy BN

ka2 ot
f Lw
p J Q M &@B
Y =\ -

Expanding the radial amplitudes 1(r) and Ay,

(r) in terms

of the eigenfunctiOHSC#n of equation (2.50) we have
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is the orbit integral evaluated over the unperturbed

particle orbits which in this case are the betatron orbits,

The orbit trajectories are given Dby equation(2,22), In
termg of these can be written as
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we have from (2.60)
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Therefore we have
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Z(g,) is the plasma dispersion function ,
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The v dintegral in the Ampere’s equation 1is given by’
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Equation(2. 81) determines the eigeﬁmodes of the systewm.

The condition that these equationsg have non-trivial
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solutions for ®&,’s and ﬁn g 1s that the determinant of the

coefficient matrix is zero.Thus we have
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This is a transcendental equation in () and k,and

represents the electromagnetic modes of the plasma.



2.4 Summary

We have derived a kinetic non-local dispersion relation
for the most general low  fregency eletromagnetic
perturbations of a cylindrical plasma represented by the
Bennett equilibrium, taking into account the non-local and
wave-particle effects. The non=local effects arising frowm
the inhomogeneity are represented by the coefficients of
the dinfinite matrix and the wave partlcle interactions ave
given by the plasma dispersion functions.

In the case of general electromagnetic perturbations
the electrostatic and electromagnetic effects aye coupled
and it is difficult to obtain the results in}a simple
analytic form. However there may be situations where either
of the two effects may become dominant as compared to the
other and electrostatic and electromagnetic effects may get
decoupled. In such limits the matrix dispersion relatilon
gets simplified and in eq. (2. 83) only pl in  the
electrostatic case) and D4 in the electromagnetic case arve
relevant. Further approximations may be uged to convert the
matrix dispersion relation into a gsimple analytic Fform
where the non-local and wave-particle effects on the modes
can be understood in a more systematic manner.The present
method of analysis which has been carried out for the
specific case of the Beonett equilibrium can be easily
extended to other inhomogeneous equllibria with diffuse
profiles. In subsequent chapters, we shall discuss the

various limiting forms of the dispersion relation (2.83)
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obtained here and apply it to the study of wvarious

experimental situations.



4

10,

1L,

12.

- 57w

References

Davidson,R.C., Phys, Fluids 19, 1189 (1976).

Sharma,A.S., Nucl, Fusion 23, 1493 (1983).

Catto, P. J., Aamodt,R.E., Rosenbluth,M.N., Byers,J.A.&

Pearlstein,L.D., Phys. Fluids 23, 764 (1980).

v

Myra, $. R., Catto,P.J. & Aamodt,R.J., Phys. Fluids 24,

651 (1981)

Marchand, R. , Zhang,C.F. & Lee,E.P., Phys. Fluids 26,

194 (1983).

Symon, K. R., Seyler,C.E. & Lewis,H.R., J. Plasma Phys.

27, 13 (1982).

Lewis, H. R. & Seyler, C. E., J. Plasma Phys. 27, 25

(1982),

Seyler, C. B, & Lewls, H. R., J. Plasma Phys. 27, 37

(1982).

ferraro, R.D., Sanuki,H., Littlejohn,R.G. & Fried,B.D.,

Phys. Fluids 28, 2181 (1985).
Chen,J. & Lee,Y.C., Phys. Fluids 28, 2137 (1985).

Bennett, W. H. Phys. Rev. 45, 890 (1934); 98, 1584

(1955).

Benford, G. & Book, D. L. 4 in  Advances In Plasma



13.

14,

150

Physics(Interscience,New York) 4, 153 (1971).

Buneman, 0. , in Plasma Physics, Ed. W. E., Drummond

(Chapter 7).

Morse, R. L. & Friedberg, J.P., Phys., Fluids 13, 531

(1970) .

Gratreau,P., Phys. Fluids 21, 1302 (1978).



59 -

Figure captiong for chapter 2

Fig. (2. 1) Density profiles for generallsed DBennett

Equilibria.

Fig. (2. 2) Normalised deusgity and maguetic field profile

for the Bennett Equililbrium,

Fig. (2. 3) a) Betatron orbit and bH) Larmor .orbit

projection in the r=-z plane.
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Electromagnetic m=1 kink instability

3.1 Introduction

The kink dnstability 1s one of the earliest known
instabilities of a cylindrical plasma column and has been
studied quite extensively by several workers. In a pure
Z-pinch a lateral displacement of the plasma column leads
to a decrease in .magnetic pressure in front of the
displacement and an increase behind it. This enhances the
plasma displacement, leading to the kink instability which
has an azimuthal mode number m=1, Using the ideal MHD

theory Kruskal & Schwarzehild [1] first predicted the kiak

instability of a cylindrical plasma column . This
instability was experimentally observed in a Z-pinch

discharge by Carruthers & Davenpovt [2] and subsequently by
others [3,4].
The hydromagnetic energy principle developed by

Bernstein et al [5] using a variational formulation of the
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linearised tdeal MHD equations also predicts thisg
instabilicy. The first order variations of all physical

quantities with respect to their equilibriom values are

retalined in the equations, and expressed In terms of a
Lagrangian displacement vector % (f09 £) . 'hils wvector
o

represents the displacement of a given fluid element from

its equilibrium position ?O at time t. From the fdeal MHD

equations a second order differential equation for the

displacement %‘ ig obtained as

el :
e, 90 g (3.1)

=y - Fj g“
ot &)

where TF(¥ ) represents a force density operator and 18 a

L

complicated function of the equilibrium profiles of curreunt,

frequently

magnetic field, pressure etc. This equation 1s |
employed in studying the Linear crowth for given plasma
profiles. Kruskal and Schwarzchild [1] have studled the m=1
kink mode for a linear pinch assuming infinite counductivity
and a surface current model, They have shown that for auny
given wavelength the mode 1is always unstable, the growtﬁ
increasing monotonically with k. Taylor [6] investilgated
the stébility of the Z-discharge against m=1 perturbation
assuming a volume current with a power law digtribution. He
showed that the volume current model was more stable with
regpect to the surface current model, Later he included an
external axial magnetic field and conducting walls and

showed that the mode could be stabilized provided all the



- 62
current flowed on the surface of the cylinder, and the wall
radius does not exceed the discharge radius by more than a
factor of five [7].Newcomb [8] used the energy princlple to
obtain the necessary and sufficient conditions Ffor the
hydromagnetic stability of a diffuse lineavr pinch with
distributed current. For diffuse current models the growth’
rate calculations based on i1deal MHUD equations ﬁave also
been carried out by several other workers [9~11] and these
are found to depend sensitively on the current profilé used.
The various studies of the hydromagnetic stability has
been reviewed by Kadomtsev [12] and more recently by
Friedberg [13].

As a result of these theoretical investigations efforts
were made to Ffind more stable configurations for the
confinement of thermonuclear plasma. These include the
addition of an axial external magnetic field for the

suppression of magnetohydrodynamic instabilitles and

@

introduction of toroldal dilscharges to eliminate end losses

This 1led to the class of discharges known as the tokamak
and the stabilized pinch.However, for practical values of
the magnetic fields (5-10T) and at fusion temperatures this
restricted the density to about 10ldem=3 [14]. In order to
satisfy the Lawson criterion, therefore, the confinement

time has to be rvoughly one second which 1s quite high.The 7

pinch, on  the other hand, has the advantage of producing
much higher plasma density and therefore requires a much
shorter confinement tlime. Moreover under the reactor

conditions the ion orbit size 1s of the order of the pinch
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radius and this ié expected to have a strong stablldzing
influence [15]. Recent Z-pinch expeviments have shown [16]
remarkable stability propertiles. The experiments on
compression Z-pinch at Imperilal College [17] show that the
plasma is stable for the duration of the dlscharge. The

pinch plasma 1in fxtrap [18] have been found to be stable

for 100 Alfven times. The plasma focus which 1In its

compression phase closely resembles the Z=pinch
. s . . . 9 -3

configuration vields a density of 107 "em and a

temperature of about 1 KeV in a narvow filament of radius 1

mim . It also exhibitg enhanced stability properties which
are attributed to finite ion orbits [197. The

experimentally observed growth times of the dnstabllity in

the Z-pinch are found to be much larger than those
predicted by fluid theory [16]. This discrepancy 1s

attributed to the fact that the fluid theory does not take
into account the findte particle orbit effects and
therefore the predicted growth rates from MHD calculations
cannot be compared with these experiments. It is therefore
necesgsary to have a realistic theory which would account
for the finite particle orbits ana thedr effect on the
growth rates of the instabilities. This would lead to a
better wundevrstanding of the observed stabllity of the pinch
and enable a closer comparison between theoretical
predictions and observations of the growth rateg.

One of the attempts in this dirvection is the Vliasgov
fluid model of Friedberg for high _B‘ plasmas [20]. In this

)

model the ions are treated as collisionless and described



by the Vliasov equation,

a simple cold Fluid d

model Friedberg

of m % 0
& -p

later

stabllity the

_growth rates for a

This model was

the stability o £ th

Z-pinches.

n this chapter,; we

Z=pinch with the Bennett

both magnetohydrodynamic

the magnetohydrodynamic

the modes with any m

stabilised by an approp

[12]. This makes the s

important. The magne

investigated for a

analysis  of the 1deal

elgenfunctions are obta

Bennett profile. Tt 1

profiles 1like the Benn

such profiles have been

gliven by sharp boundary

have been compaved with

which is based on a

Limit we adopt the

dispersion relation is

electromagnetic

obtained

number

pure

approach

perturbatious

-

while the elecltronsg arve treated as

escribed Ohm’s law. Using this

by

a comparison theorem for the

mode. He also obtained approximate

inch using a surface cuvrent model.

used by Coppins et al [21] to study

e axisymnmetric perturbations in

investigate the m=1 kink mode of a

profile in cylindrical geometry In

as well as the kinetic limits.From

stability theory 1t d1s Ffound that

except for the case m=1 can be

riate choice of the diffuse profile

tudy of the m=1l mode partlcularly

tohydrodynamic case has been

Z-pinch using a normal wmode

MHD equations, The elgenvalues and

ined by a shooting method using a

important to use realistic diffuse

ett as the growth rates for

profile

found to be about one—~thirvd of that

current profiles [11].These results

a calculation by Nycander et al[22]

perturbation theory.For the kinetic

developed in Chapter 2.The

conslidered. for the Tlimit of pure

with m=1 and growth rateg arve



- 6
obtained both numerically and din approximate analytic

limits.
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3.2 The m=1 ideal MHD eigenmodes of arpure Z=pineh

We consilder an axially and azimuthally symmetric

cylindrical plasma carrying a uniform axial current. As

discussed in Chapter 2 such a conflguratlon can bhe
I 3 &
described by the Beunett equilibrium. The curvent and

magnetlic field profiles are then respectively given by

I - B, = Py K .
Q”‘“LK'LJ@ - ) (‘1 i h) 2

They are related through the velation

— n J0
3o = Pe . dBe (3.3)

The equilibrium pressure 1s given by

20 (,%%W (f 1 ?30> | (3.4)

We assume that the plasma 1s infinltely conducting and
the pressure 1is isotropic. To investigate the stability of
the plasma against small amplitude perturbations the
linearised ideal MHD equations are wused. Tollowing the
earlier derivation [8, 51 the elgenmode equation may he

derived as follows. Let £, p, and B represent the first
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order wvariations of the density, pressure and magnetic
field from their equilibrium values Po’ D, and B

\ : ) O
respectively. Then the linearised. MHD equations can be

written as

< | S (3.5)

(3.6)

aﬁ'-\’} / KW T g e -
Po SE -+ \7}5 o 7{1: VX BO>>< B ?.L:E_ C\-]K p,OAQb

- (3.7)
(a§ + V.up, + (pVv=0
ar@; o (3.8)
2B gk (VAR
It is uéually more convenlent to use the plasma
displacement n% instead of the perturbed Velocity—giand

the two are related as V . Replacing V by g

il
ey
ll
s
j g

in the above equations and integrating with respect to time,

we obtain

P — VLP()%) (3.9)

(3.10)



Substitution in eq. (3.6) yields a single second order

differential equation in the vector % .

H

0028 o G (F Vhet (p W E)+ el vbolrni))

R

€ = e w NN R (3.12)
-+ zg};«q IV X (V€ % B O))ﬁ % B, J |

or

N
Po 8: ..... 3 2, (3.1)

The right hand side may be interpreted as the force
density operator. For a conservative system thils operator
can be shown to be Hermitian and therefore has real
eigenvalues. We assume that the perturbation Ls

incompressible so that

e 3.13
\Vl ﬁ O ( :

Fourier analysing the displacement E as exp 1(kz

-

+ mb W(Dt) for a perturbatlon of wave number k, azimuthal

wave number m and frequency ¢0 , and eliminating ?@ and
k" from the above three equations, we obtaln a single
w

4
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second order differential equation in the radial

displacement % L = %, 3 viz., the Euler~Lagrange equation:

o
A £ as O o o (3.14)
A < \{ dr ) + 3 5 ,

where

(BP0
R

(3.15)

G =R _)yad By g4t g (Bt @U‘ 3] 5169

Making the substitution x = r? we have

gl &)

; < S {3 “ffz' Qo
5 I Csz%\ / 2. pz, d € B 4 J 5

- e

% C y

&

| "i%’,? + & . — | (3.17)
doc %g T j b g

Defining new variables F and G as

Fo fou G = & (3.18)

we have



(3.19)

= K Saindb | 4 "

b ( %%Q e W’ W

(4/1ﬁ§ in equation (3.17) we

Making a substitution

\
Sant

obtain

+ A () LU e o (3.21)

where

@Uﬁﬁ Jﬂigﬁf'wm f: ............ #,ZL Qf;, (3.22)

The primes here.denote differentiation with respect to
X o BEq.(3.21) is the radial eigenmode equation which may be
gsolved with appropriate boundary conditions to yield the
elgenvalues and eigenfunctions,

Figure (3. 1) shows a plot of Q(x) ve, x for typical
values of (& and k. For large values of x 1t is seen that
Q(x) is mnegative and a slowly varying functlon of %, In

thig region, therefore, the solution to Equation(3.21) can
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In the other

approximately

From (3.19),

where

Substitution

where

Pre )

approximated by the

- 71~

WKB solution

— XA %;‘ e | i..k(; z;( ) (‘Mz;

=D

limit viz.,x ~» 0 the eq.(3.21) can be

as follows:

%

we get

0. BB o

e o

n L |

+ Ry 3»

into (3.22) yields

e .

§

...
n!
:':NW ,,‘..‘..m..ﬂ,l,_, ,,,,,,,,,,,,,,,,,,,,,,,,, “"!w 52” ‘éd‘t M_“ h ( _}:)
B C (+la* u(\) L L& L,:}:;

solved



Substituting in the expression for

r R
kﬁﬂ%%kw @;iw %%

AE) 2‘;,,. C,D"Lf;}f:,.

-+

..... : . - -
e (1 ko) ( BE 650

For the Bennett profile, we

A——y

where K is the inverse scale length

(A

B =

—3n
§

Koo .
jS~ iﬁ(‘r&'bc/épo““

<

Therefore we have

Bo' = k= (1= Ka)

R
e o . -‘lﬂ-\. P \‘?’
Qf\ I f//&
s o 9 2
BT = K© (1= K™/
e ( ( + o 7»,}(: /4} ¢
i L. 3 e
‘B Ao - WK ........ w*‘**(”‘“”zj"ww < L | f
a:m,{.,:)(:_ Lr\ by 1/;,%

80 thact

GoB R (2 BB - o)

0(x) we have

.fm

[P

L G D
4{ (wﬁgL;m Ciffﬁ;)

2 R
z) | ’ T K% “"“'*r(zf'“

(3.24)

have

e
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Taking the limit when %3 0 and rearvanging the terms, we

have
- 2L
Beo = N-
Lroc.
where 0 r
‘ 0 A LD o (1% Y oo Ty el
}3’ U X:Q,\CL”Q k= 7)o { ZM(LQZS(M},_) 4T ie S
iz ﬂ__ﬂ;ﬂ_,.«/wa’. ] - - - el
(&)
Therefore in the limit x->»0 the equation (3, 21)
reduces to
09 )
U (& -~
éff% w# ,bw»kk o O (3.25)
dox .

The solution is given by [23]

o= e j)”" (» §) ~ L (3.26)

In equation (3. 21) the variable x is a function of

and k. in principle the eigenvalue () for a given k is
obtained by solving the differential equation iIn two
regions and matching the solutions at some physical
boundary. However, in the present case of the Bennett

profile the plasma Dboundary extends to infinity and the
transcendental mnature of Q(x) does not permit analytic

solutions at every vradial point. The solutions obtained
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above are wvalid only in the asyuptotic limits,and there is
no common region where both the gsolutiong ave wvalild.
Therefore we have to match the two solutions numerically.
This 1is done by wusing a numerical shooting method and we
adopt the Numerov shooting scheme., We start with a guess
value W, for the eigenvalue and evaluate the elggnfnnﬂtion
at a sultably large value of x using the WKB expression
given by equation(3.23).We then integrate the differential
equation inwards untilil some point x<<1 where the analytic
golution given by TFquation(3.26) 1s valid.These solutionsg
and their derivatives are then compared at this polnt in x.
The guess value of Q% is now changed and the process of
matching repeated. An lteration of this process ylelds the
eigenvalue (J corresponding to a given k. For the iterations
Muller’s method with deflation 1 used from the software
library package IMSL. For a‘given set of plasma parameters
the growth rvates for different wavenumbers are computed,and
these are plotted in the curve marked “a’ in FPlg.(3.2).71T¢t
is seen that the mode 1is unstable at all wavelengths With

the growth rate dncreasing monotonically with increasing

wave number. It may be noted that the eigenvalues are
purely imaginary. Ideal MHD theory assumes that there are

no dissipations present in the system, so the frequency 1s
purely imaginary with Re W = 0,

The MHD growth rate of the kink mode has been computed
for a pure Z-pinch by Nycander et al.[22] By expanding the
operator in equation (3. 14) and.retaining terms upto the

lowest order in kZ and 2 they obtain an approximate



dispersion relation of the form

|

- 7. \ l; i ) [
W = Rn ks b L"( T — V5§ c‘_,ﬂ\ (3.27)
7o AR B,
<o
where ) and k are the frequency and axial wavenumber of

the mode and are normalised to VA/rO and T respectively.
Here Vj is the Alfven speed at the plasma boundary r = r,
and ’( is Euler’s constant given by X’ = .577. For the

sake of comparison we Thave computed growth rates of the

kink mode for the Bennett profile from their dispersion

relation (3. 27). However, the integral in eq.(3.27) 1u
divergent for the Bennett profile because the plagma
boundary is at infindity, We have therefore assumed the

plasma Dboundary to be truncated at r = 2Ln’ Ln = | /K belng
the characteristic scale length corresponding to the
Bennett profile. These growth rates are as shown in Fig.(3,
2b). Also using the same analytlc expression|[22] the growth
rate for a volume current case 1s obtained and shown in Fig.
(3.2¢).

The eigenfunctions % . are obtained numerically from

the solution of equation (3. 21) and then through the

transformation g =U/JFQ A physical solution of lq.(3.21),
viz. an eigenmode that decays for large x, 1s obtained

when Q(x) has a well=-like potential structure with negative
values for a large x. The displacement %‘r For the case k =

1. 1 is shown in TFig. (3. 3). It g found that the

cigenfunction is peaked on the axls and goes to zero at
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large distances. There are no vadial oscillatrions and this
corresponds to the radial node mnumber zero. Also 1t 1is
found that for large axial wavenumbers the displacement 1s
more localised mnear the axis of the plasma, whereas for
small k 1t has a larger width. For k = 0,1 the whole of the
plasma suffers a large displacement and thus {8 more like a
global mode. The displacement of the plasma surface is much

reduced for smaller wavelengths and for k = 1.1 (Fig, 3.3)

0

the instability ds quite localized to the centre of the
pinch. However at the plasma boundary,which may be at a few

Ln,the displacement is finite as shown in figure(3.3).



3.3 Kinetic Theory for the m=1 mode instabil ity dn Z-pinch

In this sectlon we investigate the stability of a high

;5 cylindrical plasma against small amplitude
electromagnetic perturbations with the azimuthal mode

number m=1, The plasma is considered collisionless so that

this analysis corresponds to the kinetic theory of the m=]

¢

ideal MHD mode discussed in the preceding sectlon.High beta

plasmas are characterised by  high temperatures, Jlarge

spatial inhomogeneities and finite sgize particle ovbics (15,

24-26), ln Chapter 2, we derived a fully kinetic non-local
dispersion relation for a general electromagnetic
perturbation of the Bennett equilibrium using the

linearised Vlasov-Maxwell equatlons for both electrons and

ions assuming betatron orbits. Without using the local
approximation in the orbit integral and expressing the
radial amplitude of the perturbations 1{n terms of a

complete set of basis functions, a dispersion relation in
matrix form was obtained for a given azimuthal mode number
m and axial wavenumber k. Here we consider the limiting
form of the general matrix dispersion relation for a purely
electromagnetic perturbation din the limit (¢)1w}0) an d
fnvestigate the stablility of m=1 kink type perturbations.
We shall briefly outline the essential steps of the
derivation of the dispersion relation for this mode on the
lines of the analysls presented in chapter 2. This is

followed by a discussion on the numerical computation of
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the eigenvalues and the analytic solutions 1

cases.

Consgider an infinitely long cylindrical p

an axial current J,,° This current produc

magnetic field The equilibrium ¢

B@ (r).

magnetic field are related through the Ampere

Pr—

Y x @D 5
o

4
[

axially

88

th

For an equilibrium which 1is

azimuthally symmetric we have 0

e

5

the equilibrium ds one~dimensional and

quantities such as the current ,magnetilc

functions of the radial coordinate alone

profiles are obtained by solving the Vlas

of equations self-consistently, as shown in

the Bennett equilibrium these are glven by

of the

the

To dinvestigate gstability

small amplitude perturbations the

equation and Maxwell ‘s equations form

description:

es

‘s

.The

ov—Ampere

linearis

n the limiting

lasma carrying

an azimuthal

urrcent and the

equatlon:

(3.28)

untform and

sConsequently

e equilibrium

( .’[. € 1 (‘I , & e, are

equilibrium

S Cem

ys

chapter 2. For

(3.29)
system againsi
Viasov

ed

a complete
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L, — - e, (3.30)
Ty, 4+ V. B{ Qo B ) ?‘3 = F 9 L, ,
v 2% ' oy £ 55

(3.31)
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e
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,O‘

R ’ (3.32)
V. Suy I o ﬁ‘r?{*@(

For low frequency electromagnetic perturbations
described by scalar and vector potentlials % and Alz the
( . J 4

dispersion relation was obtained in chapter 2, by expanding
the radial amplitudes of the perturbations over a complete
set of basis functions, and dntegrating over the
unﬁerturbed orbits,namely,the betatron orbits.This is glven

by

. N \ -
AT e
D,.v D
e o s
T o O
o) -
(3) | Y
D | D (3.33)
- " " l NN

where D(l)7 DQZ)s p(3) and D€4) are submatrices. This

iy Moy W e "
1s the most general dispersion relation for electromagnetic
perturbations. When the perturbation is purely

electromagnetic i. e, the charge density perturbations are

ZeTro but current perturbations are findte, 1. e. , when
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the system can. be

4) 1 > 0

Vlasov and Ampere’s equatilon alone.

in this case reduces to
. I ( l\
Q @ L’ \ ‘thfm \ s (D
where

@y
]lw B x p )
m ik

) a2t } 5; ) Ma

Here

degcr

G- (1 )
AN

ibed

The

disperslon

by the linearised

relation

(3.34)

A N

i, (g) EQ [,'},Q +2 }) =N — Q‘_A)"‘"(( +2.4 ”%)w ’*D g(,}#)j

Y2k Vi

(3.35)
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We have

=2 To, I L) 428 b [
“(/f’ RJ ;')( > f i ngg ( p
!
-1 EE) S TS
j: RA & ) ¢ b ['R,Q & ’) ! f:

Now Ip = T > for integer p [23] and

&
T o
éi IP (=0 o @
I": - )
o : P tl .
Therefore it follows that 2 | Loand 2 Fr = ()

FP b

Substituting above we have

)

CoTo T ety 2p)

-

=2 T

We will now show that this term vanishes identically, Let

Substituting for Ipy Ve havg

“ P /Q_ T )1 -\7 ( ( ,.—») ‘
S = gy (ndrgy T L 7. (l4ed)
For m=1 modes we have

S o i - D &\ 1 JL ("f)ry J/q An j7 > J <\’Y\?J»>( 1L ,QB

The third term in eqn.(3.35) can be sim plified as follows:
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= -q we have

¥
v

- 5 (- D‘“ ndn b T, T agen

A R T A Al

S Q2
e I

Therefore it follows that § = 0. Hence the third term in
equation (3. 35) vanishes identically. The last term can be

expanded as follows:

"

4.
s 1 ri’(m 25 dezp) )T ,Q\_\@,)
Ty RIS E
o ' Q S 9 kv, th

1p . . .
L P and putting 1 + p = K this gives

SR . ) - Pp |
R T X
§ RGO Tk, \fzﬁ.\'rm

summation and writing

On  carrying out the X — down the
first few terms we

have
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Therefore we can write the equation (3.35) as

= (K S — Fr 55 £ A

o =
: &9 - ) q
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TEO st e

—

&,,/..,_ﬂ.-..w,..

£(05. b (200 74
( 3 Q ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ l-) /'(,:M,O 3.36)

where Py g is a matrix defined by
l’«Lo
(< i
} ....... <1 . r"> JL ({)( \3 (}mj 1> ) >\/v\/ { } (’b L
v m RS 2 (- o :
( ...................... R 7
| D PR 04.“ g (3.37)
({ % K )
&)
The index S now takes on positive {ntegral values only.
Equation (3. 34) therefore represents the general

with the matrix Doy * glven by

dispersion relation nn
(3. 36). Because of the nature of the betatvon

equation

orbit,the



- 85
particles execute helical orbits whose pitch depends on the
initial position of the particle.Thus a perturbation wlith a

given piltch, i.e. m and k,will resonate only with particles

with a particular initial posltion. This makes the
wave-—particle resonance localised, and this elfect is

represented in the above matrix elements by the combination
of the plasma ,dispersion function and the matri# elements
Pn'n" The wave-particle Tresonance vepresented by Z(Y ) is
non-local but is weighted by P,/ to yleld the effect of

the profile. The first term in the p-summation represents

the fundamental betatron resonance and the succesgive terms

represent higher harmonics resonances The strength of
these succe ive harmonics hecomes smaller and smaller asg

ol is increased. Tor an m=1 mode 1t is found that only the
odd harmonics are present. Retaining only the fundamental
resonance term and writing down the electron and lon terms

separately we have in (3.36)

. .
) kY wf@f’f} A E O o4 Ope \
RV, Mo “(\ﬂ—‘f& £8e) + (‘:’*‘”‘"“' - B Z(s )|t

P ge;;_ﬁ?@%iy (sh )4 (2194 P,
\Y‘Q“b’\)ﬁni 00 dN_ak BRI \MQEQ: N

(3.38)

The watrix Dyr, LS in princip}e of infinite order with

n and n’ extending upto infinity. However in practice Lt is
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usually possible to truncate the matrix at sultably large n
depending on the convergence of the matrix elements and
solve the resulting determinant dumericallyw
We have solved the matrix dispersion relationn by taking
a typlcal wmatrix size of 20, The matrix D can be expraessed

as a sum over coefficient matrices Pi ete., multiplied

PQ 5
by functions of @ and k. These coefficlent matr{aes depend
on the equilibrium parameters and are independent of W.,For
a given set of equilibrium parameters these matrices are
evaluated only once., To solve for the ()s we follow the

following procedure:

We write equation (3.38) in the form

L,»in? E )= >\}: l/\j = O
vhere the Ai's are eigenvalues of the complex matrix D. Now
N
N b wi
llﬂk, j) = 7\ %Aj
rk::f
and solving equation(3. 38) reduces to obtaining ;\fs and
"

iterating till thelr product is small enough. We now start

with an initial guess value CDO, and obtain the matrix D(w,
k). In  order to obtain the elgenvalues A the original

matrix was first balanced and then transformed to the

complex upper Hessenberg Fform using elementary similarity

transformations. This leads to an Increased accuracy and
numerical stability of the eigenvalues[28]. The eigenvalues

s method

are then obtained by the modified LR method. In thi
a sequence of complex upper Hessenberg matrices,simlilar to

the input matrix is generated, which converges to a
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triangular wmatrix. The eigenvalues are then determined from
the diagonal elements of the triangular matrix[29].From the
product of the elgenvalues the determinant (D[ ftg obtained,
!
This process is repeated for a new value of @and iterated
using Muller’s method[30] till convergence is achieved. The
real and imaginary parts of&?xL%ﬁﬂfYobtained by this method
are shown by the solid curves In TFig. (3. 4).Relative
convergence of the ©product of the elgenvalues was used as
the criterion for the vroots. The root~finding process in
the complex W+-plane based on Muller’s method is quite
sengitive to the initial guess value Wg - Therefore 1t i1s
important to have a good initial guess value Tor (J in order
to obtain convergence., Two different methods vig.,Nyquist
and graphic methods,have been used before solving for ¢ in
a given parameter region.

The HNyquist method[31] is based on the residue theorem
in complex analysis.Though 1t does not determine the actual
root of the given function,it is sti1ll useful because 1t
tells wus whether there exists a root in the upper half
W~plane with Im & >0, In order to determine whether such a

root exists for a function D(W) we conslider a contour in

the complex (>~plane defined by the real axis from -0 to +Qw
an d the gsemicircle in  the upper half plane 1In an

anti~clockwise manner. Then the integral:

SO W LZ R

. s

<y
taken over thig contour will have a finite value according

to Cauchy’s residue theorem 1f D= 0 for some ® along the
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contour, assuming D has no poles, In the D-plane the
integral may be written as

™,

s L)

3 G

e

1 = o

B p D
where the integration contour isg mapped into the Dwplane.In
the Dw-plane the pole occurs at D = O,hence I hasvg value
when the mapped contour in the D-plane encircl&svthe origin
in the Dmplane: In other words instability occurs when the
mapping into the D-plane of the contour that encircles the
upper half ()~ plane encircles the origin in the D~ plane.
The contribution from the semiclrcle at Infinity vanishes,
so 1t is necessary to do the mapping for the real axils from
= 0 to 4o and see if the contour encloses the origin.
However, this method only tells wus whether or not there
exists a root with Tme > 0 in a given regilon., Inrorder to
obtain rough estimate of where a root lies,in the W=-plane
we used the graphic method[32]. In this method the complex
W-plane is divided into a serles of grids and the real and
imaginary parte of the given function whose root isg desired,

are obtained at each grid point.From the change of sign of
the function) the roots are obtained to an accuracy of the
order of the width of the grid.Repeating this method for
smaller and smaller grid size the contours of Re Flew)=0 and
Im  f(w)=0 are obtained and plotted in the W-plane, The
intersections of these curves determine points in the
t-plane where Re (F)=0 and Tm (£)=0 and therefore yleld an
estimate of the roots.These roots are fed as inftial guess

in the Muller’s method for obtaining an actual root.
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The above procedure for Finding the rootg of equation (3,
38) is quite general but Involves extensive cowmwputations.In
some partlcular cases {1t 1ig possible to reduce the martrix
dispersion relation to a more convenient form whiceh 1g
easier to handle numerically as well as analytically., This
can be doue as follows:
We first show that the matrices An’n and Pn’n are
related.
We have (from chapter 2): p‘
A = Ay A, DA Nl Qm‘ Y o \71\

q’y’f;*\
J b < t) 0\7“/21)

Using the addition theorem for Bessel functions

G (=2 T3, (2 T dan

o b9
i . S »
e — LO C;\L) ”!" a)ﬂw ‘5;;:‘{ [ CJ)
we can write Ro
- N ( :2/ g ]? v <> ],2> % j \/n?}) ) (\/‘w\j?
A = Ay A, | ez ) Gy
0 M B P wwwwwwwwww
s{ "i"‘" v-~[—~' ‘(ﬂL:th’ ,,,,,
R
- N A V(N ) T )
= 2 by by | Tgn) I Pehy 3 (@UF
)
3
00 ovh
-j")('?{ ) (3.39)
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Using (3.39) we can now write down D. - as

. .’ \\\

et RV q ﬂ' OnT =
( W:W»iww Q/O...i« i— 7 (oY m!fl\// - (Jw:m
;"'ZJQ‘\?H) b A S P
( T thi

(3.40)

The second term on the right hand gside can be neglected
for low frequency waves.The resulting matrix can be written

as

[(h > - U< o 6[1(@3 (P (3.41)

where K is a diagonal matrix with the matrix elementsy

2 2¢ , . P is the matrix with the elements P , and £(d
Ik >\D¢ ®nn « n’n ¢ ()

is given by

Loy (O K \) (O~ > e - '
(tj")) B ({____A C/\D—* Sy o ‘ . B
gA \j’?w Y o | N\ Ch (} (S 0. > + ,“__{ - P’ . (ﬂ. e ) f-
fi?ikgg Q&g:f?2;> gf@f ““““ ) F(T. uD )"‘ g (3.42)
2 b\j "y N B .
The determinant of the matrix P 18 non-zero so that 1lts

, . -1
inverse exists.Then operating with P we have
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L | D= }P Ko i) I

Therefore Det D x Det P = = Det [P =~ K = f(&w) 1] or Det D

= 0 implies

r«/“ Y R K e .
RX RV (( ) 1 e ()

D™ : (3.43)
This equation can be compared with the eigenvalue equation

S o ) .
of the matrix P "y, K which is given by

N A i - T
szﬁu p , K e LA N [ \ (O (3.44)

where Wt{ are the elgenvalues of the matrilx 'P""'l.,Ko From

Eqs.(3.43) and (3.44) we have

(3.45)

Equation (3. 45) is the veduced dispersion relation for

the electromaganetic modes and may be solved for given Hﬂand
)

k. For a given set of plasma parameters the elements of the

- l .

matrix P K are functions of k, and therefore the

elgenvalues }ig of thig wmatrix are functionsg of k., The
[

numerical solution of equatlion (3.45) has been obtalned for

various parameter regions using the following scheme:Tirst
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the plasma parameters ave fFixed so that the matvix P and
L - -1 . ) o . .
therefore P is evaluated. Then a specific value of k 1is

taken. Using the numerical algorithms for finding the

eigenvalues of a general complex matrix described earlier

the complex eigenvalues are obtained.On taking one of the
elgenvalues, typically the small one, equation (3.45)

becomes an equation in the complex frequency () . Starting

with a puess wvalue of () , equation (3.45) 1is now solved

o
iteratively  using the Muller’s method. To obtain another
value of O , we change the value of k and repeat the whole
cycle 6f computations. The rveal and imaginary parvts of &)
thus obtained is plotted as the dashed curve in Flg. (3.4),
It is seen that the values of () obtained thus is very close
to the values obtained previously by the matrizx method.
This provides a good check on these two methods of solving
eq. (3. 45). The advantage of the latter method ls that the
simple function FQN) 5 rather than the complex matrix

K IMJ@] is evaluated at each itervation step. This
yields 'considerable saving of computer time. On the DEC
1091  system which was wused for all the computations, the
typical CPU times for obtaining a single value by these two
methods are 2.6min. and 0.36sec respeétively.It 1s seen 1in
Fig. (3. 5) that the growth rate increases Linearly with %k

for small wavenumbers while the real part of the frequency

remains nearly zero. At large wvalues of k the kinetie
effects e. g. |, Landau damping, become important, and the
growth rate decreases after Teaching a maximum and

eventually becomes negative fFor abkill hioher ¥ . Aa tha
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~particle drift velocity y 1is increased the growth rate for
a2 given k increases and the peak'ghifts fo higher k values.
‘The position of maximum growth as well as the thrteshold k
for damping are found to increase With the electron drift
velocity. The increase in the growth rate with V may be
anderstood from the fact thiat the drift veloclty 1 a
source of free eunergy {n the system and therefore higher V
would yield faster growth .

To wunderstand the above results physically we golve the
dispersion relation (3. 45) approximately in appropriate
limits. Tn the low frequency limit and for small values of
k we can approximate the #Z=functions in (3.45) by thelr
corresponding large argument expansionsoSubstituting in (3,
44) and retaining only the [first term in the power series
expansion we obtain:

~

-
R QD%\ w«QQ_\Q\) e e ‘f

o o e {

. P

():) '(-D 7 N e ! \f‘v \) - {./ p

kQWg”"l;E‘“> S\ ,iz,u__l{‘?f: WWWWWWWWW - Li_, i }\ Q» el , QJ\) -»_ (’? M>
-~

00 RV e (23@ It

I

(p N C ) ) 2 - '
4 @" OPAY D ,.:i;‘::jff..i“_t ............ T vt "w§> S j o=
ok, L 0D = z\// - W‘ ‘ \f? R\ th ‘

Tor o L ﬂﬁ} ) we can neglect the exponential

terms 1n the above expansion. The dispersion rvelatlon then

approximates tO
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Multiplying through with ¢?k? we have

Lk{ / o (Quf,\\f>\<<0 couaB(co RV 4 {gﬁ + (o auﬁ ) (m, e w )>
Lo ‘ o ((:'D *% ~\)\/ ....... " (‘LL)Z_ 2

()}C o \)\ o)m(/o)u) Qﬁ) ’”ﬂ u%g ‘[ @) + MP ) (0 ” . MCO'T )
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O
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R
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(o RV qu o
R w° (=R } (p}f_m ( ;Q?-\/‘”Z/W(’,L__ a,o'z‘)
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Taylor—expanding the brackets

Qu Ay

/fz

W=
poiGy 9 —

-

From the equilibrium we have the

ween V2, ¢+ and )\Z2:
between V<, 7 and Ab

. . ; 2 2
Substituting above for V /c we have

et
___________

for e ¢« w peo V) 2 i

following

! w{ v VY2

(WQ\/K)‘? c,,o['j;;

we obtain

Q)

relation



Retaining only the leading telrms for Jmaal k we have

'L
g ‘ji’g" + = R/ ,_%< - >\,,f:ﬁ.ﬁ§ 22 0
j)l:) .

RV
RV T oET

)
multiplying through wiuj {Lvi we have

[+

2 5 R
w 4o 2.0 }’) \/ ~ J,_rg- +

THCre) e @

30,3 g
() = o RV [ R, 0
RO A - e el VP (3.46)
) 6o | el e s )

These solutions are shown by the dashed curves in TFig.
(3., 6b) and are in good agreement with the general golutionsg

(Fig.(3.6a)),
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3.4 Discussion

We have investigated the

equilibrium for m=1 electromagn

as well as

magnetohydrodynamic

lLimit we have solved for

numerically dnd obtained the r

indicate that the displacement

the pinch especially for short

of vs. r it is clear that

Er

not cross the axis at any finite

zero node number. For a given

most unstable eigenmode [27]. Tho

m=1 mode in the Z-pinch has been

of Kruskal and Schwarzcehild

fmportant to compute the

profiles such as the Bennett pr

the growth rate for the sharp

times that of a diffuge pinch

that the growth rate obtained

of the eigenvalue equation is con

obtained from approximate analyti

or other equilibrium profiles.

In the kinetic case , we ha
to study the wm=1 kink mode in
with a diffuse profile. The
dispersion relation using diffe

which driven basically

growth

boundary

by the numerical

of a Bennett

gstablility

etic perturbatlionsg in the

kinetic Limits. Io the MHD

the linear prowth rates

adial elgenfunctions.,These

peaked at thsa centre of

18

wavelengths. From the plot

the eigenfuncitlon does

£y

radial point and this has

m and k value this 1s the

ugh the instability of the

well known since the work

(1], it i neverthelegs

S

rates for realistic

ofile due to the fact that

pinch 1s about three

JFrom Fig.(3.2) 1t is seen

integratcion

siderably lower than those

¢ expressions for the same

ve used a non-local theory
a current carryling plasma
numerical solution of the
rent methods yields a mode

by the plasma current.At small
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wavenumbers the mode 1s unétable and the growth 1ig linear.
For these small values of k approximalbe analytic
expressions for ( are obtainedvand these coincide with the
numerically computed values, As Lk 18 increased Cthe two
depart from each other, as would be expected.At higher
values of k the kinetic effects become important ﬂnd the
Landau damping 1is strong enough to stabilii& the mode
completely. This Is a mew feature of the instabllity that
the dinclusion of the kinetic effects has yielded, In the
MHD analysis the growth rate monotonically increases with k

and there are no stabilizing effects that would provide

@

saturation It may be noted that for m T I the i1deal MHD
gross instabilities may be stabllized by an appropriate
choice of equilibrium profiles[12]. However for m = 1 this
is not possible and the present study shows that the

kinetic damping effect can stabilize the instability, at

least for higher k.
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Figure captions for chapter 3

Fig. (3.1) Plot of Q(x) vs. x for a typical and lc,

Fig. (3.2) Pfot of Y vs., k: a) Bennett Profile (numerical
solution) b) Nycander et al’s approximate solution for
Bennett profile. «¢) Nycander et al’s approximate solution
for a uniform volume current.

&

Fig. (3.3) Plot of ve, 1t for k=1,1,

Fig. (3. 4) Plot of Qh and T‘ vs., k .Matrix solution

(solid curve).Reduced dispersion relation (dashed curve),
Flg. (3.5) Plot of’( vs. k for V =1 , 2 and 5,

Fig. (3. 6) Plot of ), and Y/ vs, k Numerical solution

(solid curve).Analytical solution (dashed curve).
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Betatron modified ITon-acoustic instability

4.1 Introduction

The resence of gross MHD modes in the Z-pinch has been
P g

=

known since early times and these are the most dangerous:
modes for confinement. As a result of these dnstablilities
the earlier pinch configurations were found to be highly
unstable., However, recent experiments perfovrmed in the low
line density pinches reveal remarkable stabilicy [1,2].
This parameter region which corresponds to low line
densities and low atomic number 1is being exploited for the
consideration of a Z-pinch reactor [3,4] where gstabilitcy is
attributed to the finite particle orbit effects., Under
these conditions it 1is believed that microingtabilities
could play an dmportant role 1n determining the dynamics of

the pinch. Sowe experiments have reported the observation

of microinstabilities in the pinch and the plasma focus in
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the later stages of compression [5-8]. These cou]d possibly
give rise to turbvlence, enhanced resistivity and thereby
cause heating and expansion of the pinch. Some of the
importaﬁt microinstabilities which could arise in the pinch
are the Buneman , bIon~acoustic, lower hybrid drift
instability etc. These have been studied by some wofké?;w[g,
10]. Bach  of these has a specific threshold value for 1ts
exclitation, The lower hybrid drift instability has a
threshold Vo »> V,, where V,. 13 the ion thermal speed. The
e Hhi o

ion—-acoustic

the ion

requires VQ>\4F .

excited becau

sound 3

instability on the other hand requires V¢> Ce s

peed and Te { - The Buneman instability
2%

This instability 1is less likely to be

se the threshold is quite high.Tn this chapter

we have studied this aspect by looking at the electrostatic
limit of our geneval dispersion relation., In the Timit
h?, >\7-»— , , ,

p <K< 1 where k is the wavenumber and >b is the Debye
length we are able to reduce the matrix dispersion relation
to a simple analytic Form which makes it possible to
clearly understand the various physical processes

responsgible

have solved

frequency

the ion—acous

the iton—-acous

a relative dr

electron drif

ion betatron

influence on

electrostatic

for the growth ov damping of the eigenmodes. We

the dispersion relation to obtain a new low

instability, This instability is in

tic range and has characteristics similar to

tic instability of a two-component plasma with

ife. Tt is primarily driven by the equillibrium

t- but has significant modificationa From the

motion. The betatron motion has a stabllizing

the mode at long wavelengths and also causes



shift in the real frequency.
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4.2 The electrostatic dispersion relation

For low frequency electrostatic perturbations the
system can be described by the linearised Vlasov equation
and the Poisson’s equation described in chapter 2. A linear
perturbation analysis, following the standardvprocedure
outlined earlier and using the non-local approximation to
evaluate the orbit integrals leads to a matrix dispersion

relation of the form

Dot [“D:()m @R =o (4.1)

where ﬂaln(UJ,k) is defined in Chapter 2.

This dispersion relation given by (4.1) 1s a rather
complicated function of () and k and cannot 1n general be
solved analytically. Its mnumerical solution 15 also quilte
cumbersome , as one has to evaluate a lavrge complex
determinant (typically of order 20) over several lterations
in the root finding process. The numerical technlque for
solving the matrix dispersion relation is  described in

detail in chapter 3. Since each element of the determinan t

involves evaluation of the plasma dispersion Ffunction
several times, the numerical calculations are time
consuming and prone to cumulative errors. Tt is also

difficult to trace the physical nature of a given root From

the complex expression of the determinant.So, although, in
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principle, equation (4. 1) represents the complete

dispersion relation for linear perturbation of the Bennett

equilibrium, it 1is not a very convenilient form for numerical
solution or analytical interpretation. We now reduce the

matrix dispersion relation to a simpler form in the limit

Koy <<t

The matrix Dn'n can be written as

+

ke S, + HC Cs(-RVY C/ ”D 0 (a2
" =3 i % )D (0 Jz%&v G ” rP |

electron and ion terms separately and
1
multiplying with %D&(O), we have

Rewriting the

, o ¢
Dy, = ki, Mo f v O Aty 4 %iji

Z (@_t,‘,{\),,@/\+?,£l—{r2 Dwﬁ?— [w A wﬂ'(»#em\_)- w., h\// — ('m 4 214”[)}0}; Z( 4.3)
+ . ¢
‘\\ gilkl\ﬂﬁe, P 2.vy G
)A \3-“2_ ‘Z\Lt‘h';\

Here m is the azimuthal mode number. We consider the casge

m=0 which corresponds to the sausage modes and has no

structure in the zimuthal directlon. Writing 1 -+ P o= A
€

and noting that {; —- y}* — r4 , we have
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e R ~r—29i,ﬂ&~?

\Fz . to b
the. J"? }Lv,uP @Wﬁ; NERAUTY, |

k= 6. '
vy ADe Omlyy - Q +"C) A%i,ﬁ -+

&) k
5 2 wiky
d. & 2 Rvy, (5 >+ (’OEF;-%—;Q/- Z(5, )} | (4.5)
where
) L
réy\‘,v) — J% .].RQ ,;UX (4.6)

and ~g 5— — Qw -+ ;Q\/,.. 'L[)(CO?}L>
2hvy,

. ): . \j 0 (/O .
g o - R /.C 2 (AJL0<
A : (4.7
‘E?-b \ff’h»l |
Substituting for —T in eq.(4.4) we have
—R4
R(‘L
) ”
( h ,f >\/ }?
= 7 O b T T,

4 (\( b 2 5 )

Changing 1 to -1 we have
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D)
'P:L: — i Arn C"Dhq> YL (AM)?) ot
Q-fwg; K”’J@
© rPL_.zoo (4.8)

Therefore we can write (4.5) as

¢ 2~
Do = hi;xk%mw3 +~Q+T>QMW3 +
(0 § 4Ry W RV
=T 7 ()
fo [2RVye ¢ t Bk o j
(D;h\) 3 ﬁRVMZUBM} + 2 (©thV+20pe >(
J2 Vthe. “ﬁh\/me rhvm
WwT-RV 2 Ve — , "
+ @‘%1 2R/, 2@> -k pauiy
. 2kVp, J2hN”A /
1AL {0) 0O (7"’0 S
- k") >\D‘?fg’n"r>+<( +t> A"*"Y‘) + (R)' N (30 »}F o(?j:.-:{ rﬁdm 30{ (4.9
where

& o ©
Jo = Se 26D 4T %, 7(c)
(4.10)

and

%0 =T, %zgj) + —zé(f;q)j
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o 08 X
+ Cgt %, é@;) ”f‘ ZGA )j (4.11)
o P2
We shall now show that the matrices AW and PC )

related to each other:

We have

, Re
Ay = A Ay | At TOLR)TOWMN)
( A

o)

R
= Ay A, | dn n JQ\W/‘DZ(A) 3, (M)

Q‘h T (ke KL Jz7’>

R
= £, [T TG )
: (i oy

o T

(o) 0o (2“0 . N

— ] S ¢ (4.12)
= B+ 22 T,

In  deriving the above equation we have made use of the

following two Bessel function identities [11]

Ty e (4.13)
j:h(JCJ Mm(f_“:) WV\(
an d
. 29 I (4.14)
€. R 1 L’l) - 2. () CDC)
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Using equation (4. 12) we can now write down more

compactly as:

. PN (©) (243
I%ﬂwgh%b:):: l@m‘XDeggmﬁ +’?D@£Df1¢n tfﬁfy%k) ?;“h (4}15)

where

]ﬂo = |+ + e (4.16)

and

(4.17)
{)4 == 2 (\+7T) - ?}o«

In equation (4. 15) it is easier to understand the

Che e

physical significance of each term. The first term kw;%b
arises fFrom the departure From charge neutrallty for the
perturbations and is the usual disperslve contributlon Ffrom
Poisson’s equation. The term ﬁoim) represents the
homogeneous plasma contribution In the absence of the
magnetic field, but includes the contribution From the

cequilibrium axial drifts, The Cerm ﬁ¥ containg the effect

of the self- magnetic field and displays the contribution
fFrom betatron orbits. The constant coefficlient matrices

RMM are a manifestation of the non~local character of the
stability analysis and arise from the inhomaogeneity and
large excursion lengths of the pavticle orbits.

If we now consider the limit of low frequency
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perturbations in the Trange LO,é_ wP*\ then the & —-summation
in equation (4.12) can be truncated at ® =1. If the number
of terms in the expansion for qg(r) is not too large and
2\ 1—
k'»\kb <K 1 we can approximate matrix 'D’h’ by the simple

m

form

’ g ) (2) - |
Doy = Fo By _ill P (4.18)

The dispersion relation (4.1) can now be expressed as

—

!
m W'

NN ©)
Dt K(l" pM N F[ (%)

-
{”@) 5m‘,~> t rPo-PQ,} —e (4.19)

where y’ - S M

F e

Here we have assumed that f’ () i‘ 0 and the determinant of
~ (©) _
the matrix k *'V\‘N\ :X;*Dso that its inverse 1s defined. The

matrices P. and P, are constant matrices independent of

0 2
and I and depend only on the scale length of the
inhomogeneity, in the equilibrium. The equation (4.19) can

be compared with the characteristic equatlon of the real

-
matrix PO. P, ,namely:

o

- A :
“ilp _ﬁxl\ =0 e
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The eigenvalues F‘ are a set of constant numbers and can be
evaluated numerically. Thus we can now write the dispersion

relation as

?Qm) P 7[,(/‘«

{10((@ + M 30( (W) = o C4.21)

Equation (4.21) is the reduced dispersion relation with
Ff a constant number typically of the order unilty. The
numerical solution of equation (4.21) is much simpler than
the solution of eqn.(4.1) and it is also possible to obtain
approximate analytic solutions of equation (4. 21) in
limiting cases, These solutions help us to understand thé
physical nature of the instability and the role played by
the betatron motion. We shall present the solutions to

equation (4.21) in the next section.
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4.3 Numerical and analytical solutions

We have carried out a detailed numerical investigation
of equation (4.21) in order to obtain unstable solutions of
the dispersion relation in the complex &-~plane. Basically
we find only one type of unstable mode which is in the
low~frequency raﬁge and whose characteristics are similar
to the ion-acoustic dnstability of a two component plasma
with a relative drift., TFigure (4.1) is a typical plot of
the growth rate T’ and real frequency th versus the
wavenumber for a typical set of parameters. The mode 1g
found to be stable for very small as well as very large
wavenumbers k. The range of k for which the mode 1is
unstable increases with increasing wvalue of the electron
drift Ve° This 1s shown in Figure (4.2) where the growth
rate 1is plotted as a function of k for different values of
the electron drift. There is a threshold veloclty for the
electrons below which the mode 1s stable for all
wavenumbers. This threshold velocity 1s around Vegz 6 in
units of the don thermal speed. Further, it is found that
only modes propagating in the direction of electron drift

(%h/k < 0) are unstable. The plot of real frequency @,

versus k shows that at large wavenumbers the frequenc W
g y r
goes as -kC, where Cg is the ion-—-acoustic speed; however at

small k, there 1s a significant departure from the

ion—-acoustic frequency. This is a modification ariging from
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the betatron motion of the ions and the shift is found to
be proportional to the ion betatron frequency. The
instability threshold (k > k,) 1is also higher than the
usual ion-acoustic instability threshold (Ve > CS),which
indicates a stabilizing influence on the dion Dbetatron
motion at long wavelengths.

Figs. (4.3a, b, & c) show a plot of Y versus k pbtained
by solving the dispersion relation (4.21) numerically for
three different values of f&,but for a fixed value of the
electron drifec %g , It is seen that as H_ is increased, the
range of unstable wavenumbers as well as the wavenumber
corresponding to maximum growth shift to the right, and the
width of the unstable spectrum increases. The magnitude of
maximum growth rate increases only by a small amount.

We can understand the abovementioned results more
quantitatively by obtaining an approximate analytic
solution of equation (4.21) in the appropriate limits. We
look for solutions to the" dispersion relation in the
frequency domainkotphV}§>kVW&and[w+kW<§thQand T >> 1 which
is typical of the ion-acoustic range in plasmas. Making the

approximate expansions of the plasma dlspersion functions

we have

v 4R \
Z(2ARIN L o

Z\l_\ ''''' SRS
(oC RV - -
o = )RV b\) s
ﬁihﬁﬂbx :> TR % {2k rh¢v _j} b

w»&-—wm-ﬂw———amu-—n
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=RV +200,
%( ,z>w-~f2h\/m Hf\[ez hv~ (4.22)
{2 RV, W k\/r&wﬁ %Jzkvmra

Substituting these expansions in falw ) and fl(u)) we

can write equation (4.21) as

COIF %W) + gy <L R — 2R Y e J“V%P_k\/n{(

ZRye. Rkine/ kv, SRy
JUTRNE
2[r {ot’ H;:\) \ +,uﬁv Q,/CF zj;”kvr) + \F?-k\’m +Jzk\/ C
NV wT- RV -f-zo)?»jf @-”ETE!\)"/L»,&Sf;r

e

+ ol %u« @T_Ry 4 >
’ % JEF{V&M —-E~ F €X¢ ifii%giugfﬂ§f>
=0

Here we have neglected the electron betatron term in F ()

because it will have a contribution of order &/ er‘WhiCh

is negligibly small. Rearranging the terms above we obtain

IO CHapd o aff( 20N oky¥ v,
zﬂ Ve @%—;W
— 2T M COfC«« }Q\D 0 ¢ (
- s + O WERY) 50 ot
(R gepi V2RV, ( T M (5e)

T o 42 T — 2T (0 VY kR
-k — 4u; (TR V)
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. : | (
T iy Otk Y 4 Tk ,ﬂglz‘ T
ZRVge — 2RUg (& 4 /f&‘(e, SRR )
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where Cg ='fﬂm)1s the ion- ﬁcou%tlgfgpée
L
This equation can be solved perturbatively as follows:
We write W = COh + 1'(and assume that ® j?(’ ubstituting

in (4.23), we have

(*‘O‘MQ — g wﬁ* __________ I //wfg‘f/v
Q’O [ :‘3\/) 4°OPL Sy {’("COJ"C k\/\ 2RVe

- e mrri s
- -
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Taking the real and imaginary parts of Lquat{on (4.24)

we have
' T WD 2 . 2
(o) —BRTO ke s
QJ !QVJ 403/9) (w kV/)

and

16U, T w .Y <w k\/z) 2 ( kel

- ~

C Wtk

EG% - ;%) — 4 w/h.j - (wn - lzv/a {/ zA 7

o QZQ\/;—:E/ Q:EL\L%* M -éjg"j: L) =0 (4.26)
From (4.25) the solution for a)n is given by
@1 -_J - &k?“@;%%fb( W= + 4 (42 ) % £~
St e sono o)
12 (42 H}jM \ (4.27)

The corresponding growth rate “{A is given by



=119~

V- - /E W;fg R |
TNt R L Sy (wn-RV/)
Gn—‘%{ @n——- SQ%FZ;%: | (4.28)

N ,"%\/_ + (R gMT wffg :
{+Q4AX '

. gw‘“(.‘
e~ - (’OP,‘ [:—{AIL—L:—* at small k
T 2 4L

and

kY ¢ kes | |
' ——— at large k (4.29)
From equation (4. 29) we see the hehaviour of the real
frequency in low k and high &k regions; this fis basically
the ion-acoustic mode modified by the {on betatron
frequency., The valuesg of dk and r‘obtained from (4.27) and

(4. 28) for typical values of the equilibrium pavameters are

plotted in Fig. (4.1) and are shown by the dashed curves
along with the corresponding numerical solutions of the

full dispersion relation (solid curves) Tt Ls found that

the two avre in Ffair agreement. From equation (4.28) we see
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that the wmode with negative sign in equation (4.27) is the
unstable mode and the instability arises from the electron
Landau damping term,which is proportional to ,va_“ . The
the.

threshold at low k is therefore given by the condition

kv >W . which using equation (4.29) for o). leads to

\j > .(i).é’; EE&E___ (4.30)
R (24

This agrees quite well with numerical results. We find
that this threshold is higher than Cs which 1s the usual
threshold for the ion-acoustic instability, indicating the
stabilizing influence of the ion betatron motion for large
wavelength modes. |

The stability of the mode at the higher k-values arises
from the wusual ion TLandau damping term i.e. exponential
terms in (4. 28); however, it is difficult to obtain a
quantitative measure of this upper threshold because of the

transcendental nature of the dispersion relation.



4.4 Discussion

We have investigated the kinetic stability of the
Bennett equilibrium for low frequency electrostatic
perturbations. The analysis is based on the integral
Formulation which provides a rigorous framework fof dealing
with inhomogeneous bounded plasmas whose particle
trajectories have large excursion lengths, comparable to
their radial positions. In the limit kz/X2‘<< I and with a

n D ™~

finite number of terms din the eigenfunction expansion we
are able to obtain a simple expression for the dispersion
relation, which is convenient for both analytical and
numerical computations. We have numerically computed the
eigenvalue spectrum for various equilibrium parameters. We
find that the Bennett equilibrium has a Iow—frequgncy
instability that is primarily driven by the electron drift
motion. The instability occurs above a minimum threshold
value VX6V 4 (in physical units). The mode characteristics
of the dnstability are very similar to the ion-acoustic
mode. At small wavenumbers, there is a significant shift 1in
the real frequency, brought about by the ion betatron
motion, and thus has a stabilizing effect on Gthe mode.

Our calculations are pertinent to varlous experimental
situations where the Bennett profile provides a close
description of the plasma equilibrium e.g., the Z-pinches,

Extrap configuration, plasma focus,etc. Ton-acoustic type
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turbulence phenomena have been mentioned earlier with
reference Lo observations of density fluctuations in
various plasma focus experiments [5-8,12]. However, there
has been no realistic identification of these fluctuations.
On the basis of conventional slab geometry and Larmor orbit

theory estimates), the"fluctuwations are assumed Co have

their origin in current driven ion-acoustic instability,or
electron cyclotron drift instability or lower hybrid drift
instability [10]. We can examine these data in the light of
our present theory which takes 1into account some of the
specific features of the Bennett pinch, namely,the large
orbits of the particles due to the self consistent
confining fields, the cylindrical geometry etc. We note in
particular- that the average electron drifts reported in
these experiments are typically V Vihi [6-8 ] and V.~ 2.1
Vthi [12] which is well below the threshold value predicted
by our theory. Consequently, the observed density
fluctuations are wunlikely to be due to the ion~acoustic
instability. It is interesting to note that even in fusion
reactor scenario bases on the Bennett equilibrium of the
burning plasma [3, 4, 13] the electron drift would be well
below the threshold, since the ion temperatures are
estimated to be a few tens of kilo electron volts, whereas
the plasma current would be typically the Pease limiting
current {.e. 1.35 MA [l4]. However, during the current rise
phase when the current flows mostly on the outside and the
densities are 1ow,theiaverage drift may become large enough

to excite the dlon-acoustic waves.In the equilibrium pinch



stage also, if  the thermal conductivity is high and
viscosity is low, the average drift on the outside can
become very large [14]. In such situations ion-acoustic

turbulence would develop and would contribute to anomalous

plasma transport processes.
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Figure captions for chapter 4

Fig. (4. 1) Plot of W) and Tﬁ vse k . a) Solid curve

(numerical solution) b) Dashed curve (analytic solution).
Fig. (4.2) Plot of'( ve. k for different values of V.

Figs. (4, 3) Plot of "( vs. k different values of H{.

a)f&-= (.9907,.006) b)}% = (.6679,0.) ¢) ﬂ{= (.4999,0.).
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“ive firehosge instablility of a beam

@,

with a Benunett profile

Introduction

When a

plasma channel

macro-instabilities. TIFf

finite

like the
mode (m=1) or
Out of these

firehose mode

fastest growth

instability ig

the beam, this

[1]

tran gport

instabllity 1

N
a Bennett
plasma with

theoretically

energetic

charged

resistivity

resistive

current

charged

particle beam propagates In a resistive

it 1s susceptible to various Fforms of

the background plasma or hasg a

a8

the bean can encounter Instabilities

sausage mode (m=0),resistive flirehoge

the resigtive filamentation (m=2) mode, etc,
the most significant one is the registive
with azimuthal . mode number m=1 and has thae
rate. As the free energy  source for the
derived from the dirvected kKinetle energy of

mode imposes severe Limitations on hean
In this chapter we Invegstlpgate thisg
the Vlasov-Maxwell Framework for a beam with

1 background

A

profile, propagating in

67 (). 1t hasg been ghown

conductivity

[2] and in that when an

experiments[3]

particle bheaw propagates in a gaseous
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medium it undergoes a series of small angle scalbiterings by
the medium and attains an fsothermal equilibrium of the
Bennett type in the plane perpendicular to the direction of

propagation. Collisional d1onisation of the gaseous medlium by
the beam particles pgives rise to a plasma of high
conductivity. Firehose instability results as a consequence

of the interaction of the beam with the resistive plasma.

When the beam is subjected to a small transverse

displacement in the background plasma 1t gives rise Lo an
eddy current which acts as a restoring force.This eddy

current however decays in the resistive diffusion time"{”go

Therefore, for time scales which are long compared to the
diffusion time, the restoring force vanishes and the

inicial displacement of the Dbeam tends to amplify , thus
giving vrise to unstable growth. Since the Instability ig
driven by the directed kinetic energy of the baam,1t grows
at the expense of the beam, and thus results in rapid loss
of the beam energy. The growth rate of the Iinstabilitcy
varies dnversely as the resistive diffusion time and alao
depends sensitively on the equilibrium profiles of current

and conductivity.

The firehose instabilitcy has been studied quite
extensively by several workers. One of the earliest

theoretical investigations of the hose mode was cacried out
by Rosenbluth [4]. He obtained a dispersion relation for
the firehose dnstability of a mneutralilised relativistic
electron beam in a vresistive plasma channel using the

relativistic Vlasov equation 1a the limit <<, . w0 being
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the frequency of the mode in the beam frame and Qﬁ)th&
betatron frequency of the particles In the self-field of
the beam. Employing a phénomenological approach,
Yadavalli [5] has obtained a simplified dispersion relation
for the those instability of a uvoniform beam in the presence
of a constant conductivity plasma channel assuming a rigild
beam displacement in the limit &><<&%a Lee and Pearlstein
[6] investigated the stability of a relativistlie electron
beam propagating in a pre~ionised éhannel. of high
conductitvity and showed that the beam could assumé a
hollow current profile as a result of the induced plasma
currents, Weinberg [7] obtained the dispersion relatlon for
the hose instabilicy of relativistic electron beams

propagating in resistive plasma channels in the limit{@MhV’

5 Cb%i assuming equilibrium particle orbits to be civrcular
s
helices. An extensgive analysls of the filrebose mode was

carried out by Lee [1] using a detalled kinetic description
for the motion of the bheam particles in the plane
trangverse to the direction of propagation, asmqmiug an
equilibrium Bennett profile.The analysis 1s based filirst on
a ‘rigid beam model’ where‘all particles in a given thin
segment of the beam suffer the same digsplacement and the
beam 1s displaced more or less rigidly off the axis without
any internal distortions. An approximate dispersion
relation is obtained using this model In the low and high

frequency limits by makilng appropriate perturbation

~

expansions. However, this model assumed a single betatron

frequency for all the particles,which 18 not Lrue 1n the
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case of the Bennett profile. The anharmonic plnch force,
which gives rise to a radial dependence of the betatron
frequency, would in principle lead to a phase-mixing
between the particle orbits at various vadial positions. Tt
was suggested by TLeell] that this could have a damnping
effect on the hose motion.He proposed a “distributed mass
model’ to incorporate the effect of phase-mixing 1n a
semiwquantitatiQe manner.In this model, each segment of the
beam 1is considered as made up of many rigild disks having
the same profile as the undisturbed beam current but with
different masses and executing simple harmonic motion in
the r—§ plane. The distribution of wmasses 1s chosen
according to the properties of the Bennett profile and
their frequency ranges between 0 and &%ww the bhetatron
frequency corresponding to the particles localised near fthe
axis. Using this model he obtained the growth vate of the
hose mode and showed that the phase-~mlxing thad a
stabilizing influence on the mode, Subsequently, Uhm and
Lampe [81] proposed a model for the veslstive hose
instability of a neutralised relativistic electron beam iu
the presence of an applied axial maénetic field: Uslng the
Viasov-Maxwell theory they obtained a general integHOW
differential equation for the elgenmodes.This was converted
to an ordinary differential equation using a model in whileh
the eclass of beam electrons with a given trangverse energy
displaces as A rigid segment. Later on, Sharp et al [ 4]
proposed a refined version of this model by consildering the

beam as a superposition of rigid, dndependently moving
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components with different radii, and obtainead the
elgenvalues and eigenfunctions for the hose dispergion
relation. Lampe et al [10] have studied the hose instabllity
of a beam moving in a weakly ionilsed wmedium., The
conductivity of the channel which arises as a result of the
lonisation of the wmedium by the beam is treated as a
function of Dboth position and time. They show that this
leads to a convective nature of the instability.All these
models have one common feature.They all adopt an averaging
scheme to approximate the perturbed beam response in the
plasma. In reality the Dbeam particle orbits in the self
field are quite intricate and the particles moving in these
orbits encounter large local wvarilations in tha field
quantities , leading to strong correlations between the
different radial segments of the beam.Also the averaging
scheme excludes wave-particle resonances thal may glve rise
to Landau damping etc. In order to take account of these
effects a more vrealistic model 18 requived which would
retain the details of the particle motion and at the game
time yield a more quantitative account of the correlations
between the different radial locations. This problem 19
analyzed in the present chapter by wusing a non-local theory
described earlier in chapter 2., The present analysis hag
been carried out for non~relativistic electvon and fon
beams which are counterstreaming in the axtial dirvection
inside a cylindrical channel with a background plasma of
finite conductivity G7(r). We assume ‘both the beams to have

finite thermal spreads and obtain a matrix dispersion
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relation in the next gsection.In the low~frequency limit we
find that the dispersilon relation can be reduced to a
simple scalar form,which 1s solved both numerically as well

as analytically in section 5.3.These results are compared

with the predictions of earlier models in section 5.4.



542 Basic assumptions and the dispersion relation
We congider a self-pinched mnon-relativistic beam

consisting of electrons and ions that are counterstreaming
along the z-direction of an ~infinltely 10ngv'cylinder
embedded 1in a vpartially ionised gas.FBach of the beams is
characterised by an equilibrium drift velocity sz and a
finite thermal spread represented by tewperature TjﬁAt

equilibrium  these electron and ion beams are assumed to

have a rigid=-drift distribution of the form:

\ _ |
j T Cpoexp e Mo r% v, (5.1)
4] ’! T
N g 'ﬁ

-

In  chapter 2 we have discussed in detail the equilibria
represented by such a distribution.In the present case we
assume a Bennett equilibriam for the beam.This cholee 1g
motivated Dby the knowledge that an energetic beam of
charged particles passing through a gaseous medium evolves
to ‘the Bennett equilibrium as a result of multiple
scatterings by the gas particles. As the bean propagates

eglon of high conductivity 1s

[t

through the background gas a
created mainly by the collisional d{onisation of the gas
molecules by the bheam pariticles, The conductivity which
depends on the plasma electron density is therefore assumed
to have a Bennett profile.Usually this conductivity ls very

high so  that the charge neutralisatlon time .o s small

Gr(
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compared to the time scales of the pfoblem@Therefore charge
neutrality can be assumed and the displacement current can
be neglected. For the hose instability which appears at
nearly zero frequency the .transverse motion of the
particles are effectively decoupled frém the axial motilon.
Under these conditions the fields can be deséribed by a
single component of the vector potential AlzuThe PeftUTPéd

fields Ei and Bi can then be wriltten as

B = Vxpz (5.2)
E L otz g e
la = o BT

The plasma conductivity 1s assumed to have @ Bennett

profile and is given by:

G = O (5.4

Q—L 4 K2 g,j?
ﬁﬁ being the conductivity on the‘axisq To describe the
resistive firehose instabllity, we wuse the linearized

Vlasov-~Maxwell equatlons as before:

(5.5)

N
4+ Voot 4w q. /55N g o

% (Fg}ﬂ,” ! ,ji'im <§i§m@‘b> L9 {'13 - ('}rj 0 f; (f
< IR - i T e

o\ o av LTINS 0

The plasma 1s assumed to be collisional Lto the extent

trhat it can be represented by a scalar conductivity, and

its vesponse 1s described by a scalar Ohm’s law:



The perturbed magnetic field which 1s gilven by the
linearised Ampere’s equation with an additional source terw
arising Ffrom the background plasma response can he written

as

VX P) =Y} X(/\/f( /3\‘> o /U,L. Q?ﬂ o “}"’i > ‘( 5.7)

Using the Coulomb gauge(;VQﬂ:q>this hecomes,

oy %
AL LETC [ e - -
— VA5 = W%f& <\Jbsz + ‘)%?Z;> (5.8)

where J an d N ar the ver turbed beam and plasma
wh bz arv bl re e | turbe ¢ vird plasme

curcents respectivly , and ave glven by

(5,99

IS TR, ot ST DA (5.10)
pre = 7 Fle = w ot

Substituting in (5.8) from (5.9) and (5.10) we obtain
7l LRE , . (5,11)
Vg + 910 20 a5 q (g y diy
o ) » J oy

1y
Using the normal mode approach and expressing /M In termg
"
o

of the Fourler components, we have,
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Substituting these 1in the above equations (5, 11) and

,,,,,, 9 ) , ,
expressing \/ in eylindrical coordinates, we obtain,

bk

2 (02 +o 7‘/“6‘0 by %,  (5.13
“ BTL( DN SR “"‘Z ‘‘‘‘‘ Az = 7 %’ﬁg fipvgdtv G

This is an  iIntegro~differential equation for the
resistive firehose mode, The perturbed distvibution
function I in (5.13) is obtained by Ilntegrating equation

TU
(5. 5) over the wunperturbed betatron orbits described in

chapter 2. The derivation of the disperslon relatton using
the mnon-local approximation in this case follows along the
same lines as given for the m=1 kink mode except that there
Ls now an additional term coming from the beam plasma
coupling. This additional term can be evaluated separately
as follows:

We have from equation (5.13) the beam pianmﬂ coupling
term given by _— .
e G a9

e 1%

Following the non-local approximation the radial
elgenfunction A'%(r') is expressed as a sum over a complete

set of basis functions:

A | Z(}»ﬂ) = 7 o, b(n') (5.14)

| ] ‘ ) ,
wvhere %/5 are the normallzeq basts functions.Substituting
N
W R

for A and operating withh1$.J}Lthe beam plasma coupling
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term in (5.13)
’y\(“/

-~

equation become

La O 2

D ey - wsaianid g

_d,

S

(Lm i 0\

ha
O
Substituting for O(r) from eq.(5.4) we have
Re.
5 o, ARG 9N ndnd 4, 5
! - TR A o
“ U+%Kﬁﬂ "
where A, is the radial integral given by
lY')hf\t P -
Ke
[V . g
JLC.U’ L (\}7‘ ' (_i%, N
A 2 2y /15
J Q by KR
O -
Taking the beam radius a=2 Ln where Ln is the
scale~length of the Bennett profile and def Fiing . the
. _
diffusion time ¢, “‘7igﬁji, the beam plasma coupling term
2.
2.0

becomes

— DA w"i‘ff, N (5.15)
SN T
1
The non=-local dispersion relation Ffor the resistive
firehose mode is thus obtained by adding this term in the
matrix q’> obtained earlier and setting the determinant
L
of the resulting matrix to =zero. The «covresponding
dispersion relatlon 1s then given by
i~ H
! 9 2 W
QQY{DMMJ DQfB}l kﬁ)gmMg’W“wf; Adm » "V
™ T
¢ iRy, M.) )
e
5 W (1+20) Wy, >
Heo ok

- N v {20000, o
Z(% oy ~tp2xd }U>

\fﬁh\).bhj
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\ “ %, § ; (2 ) 7 COI\) t .
Q) = )\/j e (L“}"QD/O fii[‘x{'} P (5.16)

A J 'V)’ "y

v R

This is the most general dispersion relation for the
elgenvalues of the resistive hose mode. The first term
represents the radial correlations between the different

g

modes and the geometrical effects arising from the finite
boundary. The second term represents the coupling of the
beam with the plasma motion through the resletivicy of the
latter. This has a destabilising effect on the mode, The
third term coutains the wavew-particle resonaunces. Thege

localised wave-particle resonances are expressed In terms

of the plasma dispersion functions. From the arguments of

the dispersion function, it 1s apparent that in the heamn

frame, the mode can be in resonance with odd harmonics of

the corresponding betatron frequenciles. The coefficient
Ry

matrices t#m represent the strength of these resonances. The

fundamental resonance corresponding to oL =0 or

Lomhvs o uﬁg 1s the strongest resonance., The successive

]

terms in  the O~ summation represent the successive odd
harwmonics and thelr strength decreases as W ig Increased.
The mnon-local nature of the perturbations 1s manifested {n

the Infinite order of the matrix,
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5.3 Numerical solution of the Non-local dispersion relation

The dispersion relation represented by equation (5.16)
is an infinite order transcendental equation and 1s
difficult to solve exactly, In practice, it 1s mﬁfficient
to retain a finite number of terms In the basis Ffunction
expansion and thereby truncate the infinite matrix after a
finite size.

We have solved the matrix dispersion relatlon and
obtained the eigenvalues <corresponding to the rveslstive
firehose dinstability by taking a matrix of ovder 20 X 20.
The matrix method based on the subroutine paclkage EISPAGK
described ian chapter 3 was used for the computation.This
instablility corresponds to the low=frequency regime and,

therefore, it is suffilcient to consider the fundamental
mode , iﬂeoj(x =0, term in the wave-particle intevactions. The
matrix in this case can be written as
T £ Nl A RN R W X
Dy (R%+ ) Bty Zi.ﬁwﬁ Ay < ok ),
Y J ‘\E’Z g,’{'\/ %’l"
. by 3
o {0 »
C/’\) A 5 - b \), v»»(,,\,%;'\ X
““““““““ =) J - 00 i
Tk ek O (w O
\Wwﬁob \Lk e (5.17)
\f 3 3 \/ hj
The solutions of this matrix are plotted for typilcal
values of the beam plasma parameters. Figure (5.1) (solid

curve) shows a plot

of the real frequency and growth rate
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versus wavenumber.

However, eq. (5. 16) is a very in
numerical calculations as it involves
large‘ matrix determinant for very itera
m=1 modes it has been shown in chapte
can  be reduced to a very simple form
handle numerically and also analytical

cases,The matrix 4 , is related to P _,
n n o n
We have (from chapter 3)
0 (o)
ot ““) “
A’h[ . . 2.. 2. (} ! 7
Mo
Substituting in (5.18&) we have,
' LT e
j)'v\’ vy T \’V) > g,\()\ [‘f“ Yoy Cj}: } G ( ) o
el LR -
oy ol
oo (G ) {1
ot [P (AT
5> 0 “___Mf__“_z_wl% Z[00 =Ry ~ 14206 >f) 4<
- N 'd i ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
o * kY thy
For low=frequency modes we need to lkeep
so that we have

b Ty
I’).:— nvnes g N { L%
Yy

D m Ay T (‘F{ “{“>V’f;> é)’h’) o

ﬂ S

m~) ‘* \ Y” (’\)
A a f(
. R

L - }Q_\j’ J,.UJ’

convendient form for

calculation of a

tion in ()., For the

r 3 that the matrix

which 18 easier to

ly in sowme Ldmitdng

as follows:

j ‘Kj? \/ i)3 }D ("}
w RV, %((r?i‘()(”’

i
JMW

the ({= 0 term onl
A Y

o

P“(mss)
)H’)

({’ijfi_)i?).,\) 7((13 = RV~ O (21 HOp\
LRGN h_v ) Rk
The D can therefore be written as

matrix

-+ gﬁ (o) ‘E’ J

)

o

(5.19)
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where

.

]Q = \ G >\f3> Moo Omim

and

d

& 1, 2
5\»{@0 e ‘Z«‘»()‘)L{) L Wt RV Q@ Wfk) L (wﬂa\%‘u%e) C&n(;)ﬁ@!

% (T RV |\ ek J2RV e

RN Y. A

) AN E R\ .
3 (Efijfi’:‘iff;:)% - :.;. T-RY S Qi - fﬂ“) BY 0N o pepa®
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Operating on the right-hand ulde

assuming the matrix [P] to be non-singular, we have,
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Equation (5.20) can be compared with the chavacteristic

o1 ;
equation of the matrix P "K, namely,
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Comparing the above two equations we find
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compact form. The
functions of the

discuss the
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A

gives the dispersion relation in a more

sigenvalues Hﬂi of the matrix P K are

€
wavenumber ., In the following gectlon we
numerical solutions and analytical

approximations of the reduced dispersion relation (5.22).



5.4 Numgﬁiggl_@esults and Discussion
We have carried out an extensive numerical
investigation of the dispersion relation (5.22) in various

parameter regimes. A plot of the temporal growth rate and
real frequency against axial wavenumber k for a t?pidal
value of the equilibrium electron drift and the resistive
diffusion time is shown in Figure (5.1) by the dashed curves
Tor comparison the solution of the Full wmatrlx dispersion
relations 1is also plotted in the same graph and is shown by
the solid curvee Tt turns out that the two values ale in
good agreement thus justifying our approximation, Therefore,
we will consider the reduced dispersion relatton only in
all our subsequent discussionse.
Figure (5.2) shows the growth rate and the frequency of

the hose mode for a fixed value of ¢, but different values
B /

of the electron drift velocity. The electron to lon
remperature ratio is chosen such that the filon drift remains

congtant and is small compared LO the electrouns 80 that
majority of the current 18 carried by the electrons only.
1t is found that for each of the values of V there ig a
certain range of unstable values of k. For a glven value of
t the growth rate i{ncreases with the increase 1ln V.The

range of aunstable wavenumbers decreases with the Increase

in the electron drift. For very small waveunumbers and very
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large wavenumbers the mode is found to be stable. At
intermediate wvalues of ¥k, the mode is unstable. At any

given k the growth or the stability is determined by a

balance between two competbing processes. One 1s the
destabilizing force due to the resistivity of the plasma

represented by the(DTg term and the other 1s the stabilising
force due to the electron Landau damping. For véry small
values of the wavenumbers the destabilizing teIWlQTBiﬂ
small and thence the mode 1s stable. As k is increased this
destabilizing force increases as well as the Landasu damping
term, un til a value of k is reached wheve the Landau
damping takes over and 1s the dominant mechanisw.

The increase in growth rate for a given k with V g
attributed to the fact that V determines ithe directed
energy of the electron beam which supplies the free energy
source for the dinstability. As V 18 dincreased the beam
energy increases and more free energy is available to feed
the Instability theveby leading to larger growth vate.

Figure (5. 3) shows a plot of growth rate and real
frequency as a function of wavenumber for filzed V but
¢ . As U 1s increased the diffusion

B B

time increases. This dmplies that the magnetic field

different wvalues of
persists for a longer durvation and as this exerts a
restoring force on the beam the growth of the dinstability
is suppressed. These physilcal mechanisms become more
apparent when we consilder the analytic expansions of the
various terms in the dispersion relation in agymptotic

lidmits. In the limit of small k we have the following
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Figures (5.4a and 5.4b) show the plot of the amalytical
solution versus the numerical solution for a Fixed value of
Tﬁ and the drift wvelocity \ . For very small values of k
the two results are in good agreement. However for large k.
more terms have to be retained in the Zefunctipn expansion
and this makes the analytical solution difficult.

The inverse dependence of the growth rate isrcbvious
from the analytic limit obtailned above for a glven k‘and V.,
Figure(5. 5) shows a plot of the growth time as a functilon
of TB for different k’s and for a fixed V. However the
threshold Kk for‘ {nstability cannot be obtalned from the
above analytic expression because Mﬁ ig a functlion of k and
{ts exact functional dependence is not known.

In figure(5. 2) it is shown that the pealk growth rate
decreases with ¥V and the cut-off k for damping increases
with reduction in V.This result can be better understood by
plotting the growth rate against k/k where kﬁ is the

betatron wavenumber and determines Lhe geale length of the
o
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oscillation in the axial difectionw Figure(5,6) shows a
plot of the growth rate versus kﬁ?for different values of V.
As V  is increased the ratio V/Vmﬁ also dncreases aﬁd
therefore vrequires a larger wvalue of k for gthe Landau
damping to be effective.Hence the upper cutwoff in k shifts
to the right. In this region of cut-off we can wake a vough
estimate of the growth rvate or damping by auv ﬂpﬁroximate
analytic limit. In this 1limit we havcfh MUﬁf“*mﬁiTﬁ@
damping therefore comes from the electron Z-functlon term.’
Putting(ﬂ:wwwfand settingm(ﬂo we obtain
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or taking the imaginary part we have
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Experimental work on the firehose dIustablillity of a
relativistic beam travevsing through a background gas has

been carried out by several workers [3,11,12]. Lauer et al



w48
have observed the disruption‘ of a relatlvistic electron
beam in a mneutral gas and shown 1t to be due Lo the
firehose instability [121]. These experiments usually
involve high energy pulsed beams that are In jected into the
gas at a fixed point and tickled with a fized frequency.
The subsequent development of the perturbatlon 1o glhudied
in space vrather than time. The instability therefore
. :
depends on whether Imkor >0, In the experiment the Spatial
growth of the {nstability 'was studied as A Funetlon of
frequency and they found an upper cutwoff in frequengys
This was explained in terms of the ‘distributed mass &odel'
of TLee, according to which the damping of the perturbation
was an effect related to the phasé mixing bétﬁéen‘th@
particle orbits at varlous radial locatlons. Phase mixing
in case of betatron orbills arises as a result ol the radial
dependence of the betatron Frequency. A perturbation with a
given phase can match - with rhe phase of the betatron
oscillation at one radlal coordinate at & particulav
instant of time. As the perturbation moves outwards iﬂyth@
course of 1lts propagatilon it will go out of phase Withvthe
particles at another radial point,Thérefore the net result
may lead to a damping of the wave OF perturbation. Lee s
nodel takes into account the phase mixiog effect 1n a
seml~-quantitative way by treating the hetatron frequency as
4 function of the radial coordinate. However the process of
averaging the motion of the particles in the transverse

plane Lgnores the non=—Llocal eflfects arising from the

inhomogeneities in the density profiles. [t also does not
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account for the TLandau damping which is a wave particle
effect., Our model on rhe other Thand accounts for the

non~local effects a well as wavewparvticle resonances by

o3}

means of expansion of radial amplitudes over a complete set
of Dbasis functions and the integration over the hetatron
orbits. However these orbits arve obtained undet the
assumption of a linear magnetic field (the K2r2/ﬁ patm Lo
the denominator of B being neglected) ,and thus exclude
the phase mixing effect arlsing Ffrom the radial dependence
‘of the Dbetatron frequency. in some sense therefore.our
theory is complementary to that of Lee and others where
this effect 1s considered,but wave—particle regonances have
been ignored.

We have solved Lee’s dispersion relation obtained from
the ‘distributed mass model’ for real Ik in the complex
wplane. Figure(5. 4e) shows a plot of this solutioun égainst
our numerical solution (5.4b). It is seen that for both the
models the growth rates are of the same order of magnitude.
The other wode characteristics like the range of unsgtable
‘wavenumbers, the wavelength corresponding to max Lmum growth'
as well as the upper cutoff in k for instabillty ave
comparable for the parameters considered.This shows that
the mnon-local and wave-particle effects are as important as
the phase mixing in defermining the stability of the mode.
Qur calculation also predicts a lower cutoff in k which is

not predicted by the phase mixing models.
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Figure captions for chapter 5

Fig. (5. 1) Plot of G%_andf(yvsg k., a)Solid curve (matiix
solution) b)Dashed curve (veduced form).

¢

Fig. (5.2) Plot of'( ve. k for fixed I% and different V‘s?

Fig. (5. 3) Plot of &%l and '{‘ VS . k for fixed V and

different “ff’le?:.
.

Fig. (5. 4) Plot of “{ VS lt for fixed V and ?%@ a)
analytical solution. b) Numerical solution of the reduced
dispersion relatlon. <¢) Lee’s solution(distributed omass
model) .

Fig. (5.5) Plot of /y, vs. U, for Flxed k and Yo,
(G

i)

n o o . T e o o 1? T 1 Faran b :f‘
Fig. (5.6)  Plot of {g, vs. /k!‘biur different V's.
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Chapter 6

Summary

6.1 Results and conclusions

In  this thesis,we have carried out a detailed study
of the Bennett equilibrium with regard to 1its linear
stability using a kinetic and non-local theory. By
expanding the radial amplitudes of the perturbations over a
complete set of bbasis functions a matrix dispersion
relation 1is obtained. The non-local effects arising from
the spatial inhomogeneities in the system are reflected in
the elements of the dispersion matrix.

The non-local dispersion relation obtained for an
electromagnetic perturbation of the Bénnett equilibrium in
Chapter 2 1is a general result and is applied in various
limiting cases to study the dinstabilities 1in different
experimental configurations where the Bennett profile
provides a close representation of the plasma equilibrium.
One such experimental configuration 1is the pure Z~pinch
with B, = 0. In recenf experiments conducted on the Z-pinch
in the FLR regime, several new features have been observed
which cannot be explained using the earlier fluid

treatments[1]. For example, the observed growth rates of the

global MHD modes are found to :be much less than those
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predicted by the fluid theory. This was attributed to the
particle effects which are not incorporated in the fluid
theorieg. Moreover, In the proposed Z-pinch reactors the
particle orbit size {s of the same order as the plasma
dimension and Thence the kinetic effects are expected to be
quite important [2]. One of the most Imporvtant global MHD
modes 1s the m = 1 current-~driven kink mode. We have
investigated the kinetic effects on this mode using our
kinetic formulation in the pure electromagnetic limic,
putting % ) and solved for the growth rate spectrum. We
have also reduced the matrix dispersion relatdion to a
simpler form by wusing certailn analytic relations between
the coefficients. This reduced form is easler to solve
numerically and yields approximate analytiec solutions in
certain limits. Tt is found that this mode is unstable For
small k and the growth rate 1s linear in Lk, As the
wavenumber {s increased beyond a certain value the mode 1sg
stabilized, due to the kinetic damping effects. The maximum
growth rate as well as the corresponding wavenumber
increase with the increase in the electron drift velocity.
The range of unstable wavenumbers also dincreases with
increase in the veloclty. The fluid treatments of this mode
are all based on slmplified current models. Tn order to
have a more realistic estimate of the MHD growth rate we
have computed these growth rates for the Bennelt profile
numerically, by integrating the eigenmode equatlons,lt is
found that the growth rates Ffor the Benneft profile are

much legs than those obtalned for the other prafiles from
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approximate solutions of the MHD equations [37. The
corrésponding eigenfunction ig  found to be peaked on the
axis of the plasma and falls off rapidly at large distances.
This peak 1is sharper for large wavenumbers as discussed in
Chapter 3.

Various experiments also veport the observations of

microinstabilities in the pinch, in the later stages of
compression {4, 5]. These could possibly gilve rise to
turbulence, enhanced resistivity and thereby cause heating

and expansion of the pinch. These effects are belleved o
be dominant for low atomic number and low line density
regimes which are relevant to the Dense Z-pinch reactor [67.

This has been discussed by several workers [7,8] and some

of the important modes which have been suggested are the

Buneman, the dion~acoustic and the lower-hybrid-drift
instabilities. We have studied this aspect by looking at
the electrostatic limit of our dispersion relation in

Chapter 4 [9]. In this limit we have found that the matrix
dispersion relation can again be reduced to a simple form
which admits analytic solutiong in  certain limits. This
reduced dispersion relatlion has been solved numerically as
well, The numerical solution reveals a mode in th e
fon—-acoustic range and itg characterlisticsg are similar to
the don-acoustic instability in a two-component plasma with
a relative drift. This mode 1is driven by the plectron drift
velocity., There 1s a threshold wveloclty V > 6V .y below
which the mode 18 stable at all wavelengths, Ag the

electron drift increases beyond this wvalue theve 1s a
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finite range of k for which the mode is unstahle. At very
small and very large wvalues of k the mode 1g¢ stable. The
range of unstable k increases with increase in the electron
drife. At  large k,the real part of the frequency 18 close
to ~kCq , Cg being the ion acoustic speed, buf at swmall &
the betatron motion causes a shift in the real.freequency‘9
this shift being proportional to the betatron frequency of

ions. At small k the betatron motlion has a stabillizding

effect on the mode and dncreases the threshold for
instability. These results are applicable to sowme of the
Z-pinch and plasma focus experiments. Some of thesge
experiments have reported the observation of  density

fluctuations [4] and it is suggested that these could bhe
attributed to ion=-acoustlc turbulence.However, the electron
drifts for these experiments are found to be well below
that required by our theory. Therefore, these reported
fluctuations cannot be due to ion-acoustic turbulence.

In  Chapter 5, we have applied the kinetliec formulation
to study the vesistive firehose instability of a bean
propagating in a resistive plasma changelv This instability
results from a reslstive phase lag between the magunetidc
field and the plasma. This dnstability has been studied
quite extensively [10~12] in the past using simplifled bean
models. These models thave wusually idgnored two iImportant
physical effects. Due to the anharmonic nature of the pinch

force the particles have a spread in betatron frequencles,
I ]

~

which -~ causes a phase mixing between the particle othits.

Also, the particle orbits are quite Intricate and lead to.
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localized wave-particle vresonances. Some of the rvevent

models v[l3w16] have accounted for the phase mixing effect

in an approximate way but ignored the wave-parvtlcle
resonances by averaging over the beam motion iIn the
transverse plane. VWe have considered the localilsed

wave-particle <resonances by using the Vlasov theory and
consideriﬁg the Qetatron orblts of the particles to do the
orbit dintegrations, However, in obtaining these orbits we
have approximated the magnetic field to be linear as this
is true for a wmajority of the particles that are located
near the axis. This assumption leads to a constant betatron
frequency for all the particles of a given species and
thereby excludes the phase mixing effects. This is one of
the 1imitations of the present analysilis. However, even with
the dincluslon of wave-particle resonances alone, our model
predicts dawmping effects which are of the same order as
those predicted by the phase mixing models. Tt is found
that the mode is stable for very small and very large
wavenumbers and the growth rate variles inversely as the
resistive diffusion time, as expected. We have compared the
i

growth rates obtaingd from our model with those of the
“distributed mass model” of Lee [13]. Tt d1g found that the
mode characteristlics like the range of unstable wavenumbers,

the wavelength corresponding to maximum growth as well as
the upper cutoff for the instability are comparable In the

pavametey regime considered.
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6.2 Limitations and future extensions of the present work
Our present theoretical model which takes Into account

the kinetic and non~local effects on the stabillity of the
Bennett equilibrium, is useful In understanding the role of
inhomogeneities . and wave-particle resonances 1in plasma
stability. This may be extended to the case of other
inhomogeneous equilibria, where the effects due to the
spatial dinhomogeneities being of the same order as the size
of the particle orblts are of dinterest. The non-local
effects arising from the large spatial inhomogeneities lead
to a coupling Dbetween the different Fourier components. of
the system, and are represented by the elements of the
dispersion matrix.

However there are certain limitations and
approximations iIn our model, which we would now like to
discuss., In obtaining the trajectories of the particles in
the equilibrium field we have taken the magnetic field to

. 2 2
be linear in r neglecting the K r“/4 term in the expregsion
for self -fields This leads to a constant betatron

However,in the actual

~
ol
<

frequency for all the particles
field there are generally two types of particle orbits for
a glven specles. In the rvegilion of small v the orbits are
the betatron orbilts while beyond a certain radilus they are
Larmor orbits. The actual transition point between the two

kinds of orbits is a function of ‘the initial conditions. Tt
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is .therefore desirable to have a wmore rvealistic model that
will be able to Incorporate two types of orbits for a given

species. Tt 1s difficult to do this in the framework of oux

model. However, it is possible to extend this work in a
straightforward manner to the case when differeat species

have different types of orbits. The stability analysis for
the case when the particles thave Larmor orbits has also
been developed [17].

The assumption K2r2/4 << 1 in the magnetilic fileld also
eliminates an important effect from our model, namely, the
phase mixing between the particle orbits. Inclusion of this
term would lead to a vradial dependence of the betatron
frequency and, thereby, cause phase mixing =~ an effect
which could be significant in determining the stability of
low mwm modes [13-157. However, Ehe orbit integrals in this
case cannot be done analytically,and numerical techulques,
though cumbersome have to be resorted to. This could be an
interesting extension of the present work.

In the analysis we have assumed a pure Zepinch

confilguration having only an azimutﬁal magnetlc fleld,
These results, are therefore applicable only to those
Z~pinch experiments which do not have any external fields.
The additdion of an external field configuration would not
affect the equilibrium but will lead to different kiods of
particle trajectories. The theory can be extended to such
cases as well.

The present work 1s carried out for a radially bounded
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the corresponding radial wavefunction 1s expressed asg a sum
over a discrete set of basis functions. I[f the plasgsma ig
unbounded or i1f the external boundary is vremoved to
infinity the eigenvalues form a continuum and the radial

wavefunction may be expressed as an Integral over this

continuum [18]. The dispergion relation in" this cage
becomes an integral equation and may be solved

approximately using wvariational techuniques, This would be
an  Interesting limit of the present theory, and more
amenable to analytic solution.

Within the above mentiloned constraintg) the present
theory is still quite wuseful 1In understanding the linear
stability of Z-pinch~like configurations; partieularly)in
domains where the fluid theofy is not applicable and
provides a theoretical basis Ffor the interpretation of
experimental observations, as well as a more realistic

comparison wilth the measured growth rates.
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