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Abstract

Networks are everywhere and most of the the networks support a number of

transport processes. Fluctuations in traffic flow constitute one of the main factor

affecting the dynamics of these systems. Fluctuations above a certain threshold

can be labeled as extreme events. This definition of extreme events as exceedances

above a prescribed quantile is not necessarily related to the constraints imposed

by the capacity of the node. It arises from the natural fluctuations in the traffic

passing through a node. The transport model that we have adopted is the random

walk on complex network. Thus, in this thesis we place our results in the context

of both the random walks and extreme events in a network setting.

In the case of a simple random walk, we show that the small degree nodes

of a network are more likely to encounter extreme events than the hubs. The

result remains unchanged even with the use of shortest path strategy on networks.

We also obtain the extreme event probability in the case of topologically biased

random walk and show that biasing the traffic towards hubs can increase the risk

of bottlenecks on networks.

Using the above notion of extreme events, we study the nature of failure of a

network by removing nodes which experience an extreme event and redistributing

the walkers on the remaining or active nodes. We find that in an all-to-all network,

cascade failures cause the sudden collapse of the network.

This thesis, as a whole, is an attempt to understand extreme events occurring

on the nodes due to flow on networks. It discusses the importance of lower degree

nodes in scale free network and presents a different but natural mechanism for the

complete failure of a network. The work done in the thesis can help in designing

the networks which will be better prepared to meet the expected extreme events.

However, extreme events discussed here being due to inherent fluctuations will

nevertheless take place and can not be avoided.
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Chapter 1

Introduction

1.1 Motivation

We live in an environment which is full of extremely complicated systems. Our

life unfurls in a society, whose functioning depends on co-operation among billions

of individuals. Every day we use a transport system for commuting or the trans-

portation of various physical entities, a communication system consisting of cell

phones, computers, internet etc. Our existence depends on the interaction of genes

and metabolites, forming metabolic network. Our thinking ability is an outcome

of the interactions among billions of neurons. Behind all these systems, there are

complicated networks which keep the information about the interactions between

different components. Smooth functioning of all these systems must result in a

hassle-free life, this is what we desire. But we always find disruptions in these

systems. Burst of unwanted activities in societies, traffic congestions on transport

networks, slow down of internet, non-availability of particular websites, physical

illness or epileptic seizure in brain, they all exist in real world. In an individual

system, such incidents may not be very frequent but still they account for great

losses. Because of the strong impact and low frequency of these special events, the

tag ‘extreme events’ seems appropriate.

Every time while facing these extreme events we wonder about the origin of

such extreme events. They may arise because of some external disturbances or

the dynamics of the system itself can give birth to such events. Their origin may

1



1.2. Aim of the thesis 2

also be due to the combinations of both. Most of the times, we do not have any

control over external shocks but the system can be secured in some cases against

these external disturbances. On the other hand, extreme events arising due to

the internal dynamics are unavoidable. Of course, if the dynamics stops, these

events will not occur but that is a trivial solution. Hence we need to come up

with a solution where at least the occurrences or consequences of extreme events

can be reduced without stopping the dynamics. For this, at first hand we need to

understand the network structures, dynamical processes and the coupling between

them. Then, we need to device a criterion to separate the extreme events from the

normal events. Only after doing all this, we can hope to understand the role of

network structure in the origin and the dynamics of extreme events.

1.2 Aim of the thesis

The accurate prediction of extreme events has been a dream of humans down the

ages but that is not the main aim of this thesis. The specific aim of this thesis is to

prepare a framework for studying the extreme events taking place on a network and

to understand the role of network structure, which is a step taken in the direction

of realizing our dream.

As mentioned earlier, there can be different genesis for extreme events, here we

concentrate on the extreme events whose origins lie in the dynamics itself. The

dynamics we choose to study extreme events is the transport process, which is

an important process not only in physics but also in many other disciplines like

biology, social sciences etc. Hence, the first and important aim is the study of

transport mechanism on networks.

The earlier work done on extreme events was not on networks, hence we lack

the criterion for calling an event as extreme event in network settings. We should

define a natural criterion based on the network properties for differentiating the

extreme events and the normal events. To predict extreme events on network,

we should take a step forward from defining the extreme events to studying their

occurrences in terms of network properties. To correlate the extreme events with

the parameters related to network structure is the central part of the thesis.
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Extreme events are often disastrous and when they occur on networks, they

may even destroy the network itself. With this scenario, the question arises if

a network can survive against such extreme events. Studying robustness of the

network against extreme events is an important part of the thesis. The thesis also

includes the nature of failures on the network, if the network fails. This can be

helpful in stopping the spread of extreme events. The understanding gained from

these studies can be useful in designing the network which can handle the extreme

events smoothly. It is a small but important step in making the life better.

Following the preface of the thesis, in the next part we provide a brief intro-

duction of the essential ingredients used in studying extreme events on complex

networks. An outline of the thesis is presented in the last section of this chapter.

1.3 Prelude

This section includes the overviews of two different fields; networks and extreme

events. They together form the basis of this thesis. The first section is about the

networks and the terminology used in the field of network science. Next, there

is a small discussion regarding the dynamical processes taking place on complex

networks. And then, the field of extreme events is presented in a nutshell.

1.3.1 Complex networks

Networks are everywhere. They can be as noticeable as highways or subway sys-

tems, power grids, the internet or more abstract ones such as friendship network,

ecological network or co-occurrence networks. The list of networks can be very long,

as many of the systems can be simplified using the network description without

loosing the complexity. This section provides a brief history of networks followed

by the terminology of network science, properties of real world networks and their

mathematical models. There are very good reviews on the network science and

we would like to suggest the reviews by Barabási [1], Boccaletti [2], Newman [3],

Barthélemy [4] and a book by Dorogovtsev [5].



1.3. Prelude 4

History

The very first example of network based approach to problems dates back to year

1736 when Swiss mathematician Leonhard Euler solved the so called Königsberg

bridge problem by reducing the problem to a graph - the set of nodes and links

(see Fig. 1.1). After Euler’s work, for almost 200 years, mathematicians developed

the theory of graphs known as graph theory and around year 1920 social scientists

started using the network representation for quantifying the relationships among

social entities and developed tools for social network analyses. In year 1959, Paul

Erdős and Alfred́ Rényi defined random graph, a graph with n links chosen ran-

domly among N nodes, and studied structural properties of these graphs. Later

empirical results drawn from small data sets gave the hint that real world networks

are not completely random and they have some structure in them. In late 1990, in-

creasing computing power and emergence of large databases of real world systems

enabled scientists to analyze networks with thousands or millions of nodes. Em-

pirical results revealed that there are unifying principles and statistical properties

common to completely different real world systems ranging from social to biological

sciences. In year 1998, Watts and Strogatz proposed a simple model of real world

networks and a year after in 1999, Barabási and Albert proposed a mechanism

behind evolution of the real world networks. After these two seminal papers, field

of complex networks has developed at a brisk pace and has seen a lot of advances

mainly due to its interdisciplinary nature but the spirit, basic terminology and the

basic structure of networks remains similar.

Glossary and notations

Historically, networks have been studied by the mathematicians under the term

called a graph theory. A structure consisting of a set of entities having pairwise

connections, is called graph in mathematical literature while in other sciences, the

word network is extensively used. The set of entities is called nodes or vertices

denoted by N and the pairwise connections are labeled as edges or links denoted

by E. The set of N nodes and E edges define a graph G = (N,E). A node is drawn

as a dot while an edge is drawn as a line connecting two nodes, called endpoints.
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Figure 1.1: (a) Könisberg city had seven bridges connecting the four different land
masses and the challenge was to take a walk through the town via all seven bridges
but any bridge should not be crossed twice. (b) Mathematical representation of
the city used by Euler. Each land mass is represented by a node (solid blue dots)
and a bridge by a link (black lines). Euler proved that it is impossible to win this
challenge. Pictre Source: wiki.

A loop is an edge having both the endpoints as a single node. If in between two

endpoints, there are more than one links, the edge is called as the multiple. A

graph without any multiple edges and loops is called simple graph otherwise it is a

multiple graph. In general, graph is considered as simple graph, unless mentioned

otherwise.

A central concept in graph theory is a path or walk which is a sequence of

nodes n1, n2, n3... such that from each of its nodes there is a link to the next node

in the sequence. A path may be infinite but if the path is finite, there is a start

node and an end node. On a simple path, no two nodes appear twice. A graph is

called connected if there exists a path in between every pair of nodes in the graph,

otherwise the graph is disjoint. If the start node and the end node of a simple

path are same, the path is called a cycle. The length of a path is the number of

edges in it, counting multiple edges multiple times. For a single node, the path is

of length 0. The smallest possible length in between two nodes (ni, nj), is called

the distance between the nodes ni and nj and is denoted by d(ni, nj). The Set of

nodes at distance 1 from node ni is called the neighborhood of ni and is denoted

by Γni
. The maximum distance over the graph is called the diameter of the graph

while minimum distance is the radius of the graph.

A cycle with an odd length is an odd cycle otherwise it is an even cycle. A

graph without odd cycles is a bipartite graph. A graph without any cycle is an
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acyclic graph. A tree is a connected acyclic simple graph.

In some cases, edges can have directions (run only in one direction), these edges

are called arcs and can be represented graphically by an arrow. A graph having

arcs is a directed graph. Undirected link does not have any sense of direction and

can be considered as a link with arrows drawn in both the directions. A graph

with undirected links is called undirected graph. A graph having both directed and

undirected links is called mixed graph.

It is also possible that edges or nodes can carry some weight, then the term

used for such networks is weighted networks. If every pair of distinct nodes in a

graph is connected by an unique edge, it is called a complete graph.

The graph G(N,E) is represented in the form of a N ×N matrix A called an

adjacency matrix. It has the matrix entires Aij such as,

Aij =




1 if i and j are connected

0 Otherwise.

(1.1)

with

2E =
N∑

i=1

N∑

j=1

Aij. (1.2)

Number of non-zero elements in the ith row, is called the degree of ith node and is

denoted by Ki. Degree is a local property of the node because it represents the

number of links connected to a node.

The adjacency matrix of an undirected graph is the symmetric matrixAij = Aji,

and hence will have all real eigenvalues and an orthogonal eigenvector basis. The

degree of a node i can be written as

Ki =
N∑

j=1

Aij. (1.3)

In the case of directed networks Aij 6= Aji and there are two types of degrees,

in-degree Kin (number of incoming links) and out-degree Kout (number of outgoing

links), associated with a node.

The matrix entries in the n − th power of an adjacency matrix, An, i.e. the
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Networks Size Nodes Links References
Movie Actor 105 Actors acted in same movie [7]
Co-authorship 105 Researchers co-authors [8, 9, 10]
Citation 106 Research Papers Citation [11]
Phone call 107 Phone no. Completed calls [12]
Ecology 102 Animals food web [13]
Cellular 102 substrates Chemical Reactions [14]
Sexual 103 Individuals Sexual relationships [15]
Linguistic 106 words used together [16]
Protein folding 103 Distinct states simple conformations [17]
Power grid 103 Generator etc. Transmission lines [7]
Neural Network 102 Neurons Synapse [7]
WWW 108 Documents hyper links [18]
Internet 106 Routers wires [19]

Table 1.1: Different real world networks and their properties.

matrix product of n copies of A, reveals the number of paths of length n in between

the nodes. The entry in i− th row and j − th column of the matrix A3 represents

number of paths of length 3 in between node i and node j and the diagonal entry

of i− th row represents the number of cycles of length 3 for node i. This implies,

for example, that the number of triangles in an undirected graph is exactly the

trace of A3 divided by 6.

A complete graph is the one in which every node is connected to every other

node. In this case, each node will be having degree K = N − 1 and total number

of undirected edges E = N(N − 1)/2.

There are many other terms from graph theory which are left untouched in this

section but those terms are used at very specific places.

Real world networks

The aim of network approach is to understand various real systems ranging from

financial to biological. There are many systems for which networks are relevant

models. In this section, a brief description of such systems and their network

models is provided. A small number of different networks (depending upon inter-

actions) are listed ( see table 1.1) to give an idea about the interdisciplinary nature

of network based studies.

These networks have played a major role in the development of network the-
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ory. There have been many quantities which were defined to study the structural

properties of such networks.

Properties of networks

After the empirical studies of the real world networks, it had been very clear that

real networks stand somewhere in between random graphs and regular lattices. In

this section, main properties of real world networks which appear to be shared by

large number of systems are discussed.

Small world property In year 1967, Milgram’s experiment suggested that the

real world is very small [6] and later, this small world effect has been studied and

verified in many real world networks having large number of nodes.

Consider an undirected connected network with N nodes and define the mean

path length l between node pairs in a network

l =
2

N(N + 1)

∑

i≥j

dij, (1.4)

where dij is the distance from node i to node j. As a network often is disconnected,

the distance between disconnected nodes is ∞ and hence, it is useful to study l of

the largest connected component or the sum of reciprocal distances [20].

A network is called a small world if the average distance l scales logarithmically

or slower with the number of nodes N . Many real world networks exhibit the small

world property.

Betweenness centrality A measure of the importance of the node related

to shortest path is the betweenness. It is defined as the number of all possible

shortest paths in a network passing through node i. It is defined as,

b(i) =
∑

u 6=i 6=v

σuv(i)

σuv

, (1.5)

where σuv is the total number of shortest paths in between the nodes u and v and

σuv(i) denotes the number of those paths passing through node i. A node with the
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highest betweenness is the the most central node in the network.

Clustering Clustering is another feature of real world networks which makes

them different from the random graphs. It is observed in many networks that if

node A is connected to node B and node B is connected to node C, it is more

likely that node A will also be connected to node C. The clustering coefficient

of a node is the probability that two neighbors are sharing a common neighbor.

Mathematically, if node i has the degreeKi and there are Ei connections in between

these Ki neighbors, the local clustering coefficient is

Ci =
2Ei

Ki(Ki − 1)
. (1.6)

The clustering of the whole network is given by its average C =
∑

i Ci/N . The

value of clustering coefficient tends to be considerably higher for real world net-

works than the random graph with a similar number of nodes and edges. The

clustering coefficient decreases as the degree of the node increases and it varies

approximately as K−1
i .

Degree Distribution Degree distribution is the probability distribution of the

degrees of the nodes in the network. Mathematically, the degree distribution P (K)

is defined as the probability that a randomly chosen node in a network has the

degree K.

In the case of random network, the links are random and hence the majority

of the nodes have the number of connections close to the average degree 〈K〉. The

degree distribution of a random graph is Poisson distribution with peak at P (〈K〉)

and it decays as P (K) ∼ 1/K!.

In contrast, real world networks have degree distribution which significantly

deviates from Poisson and it is a slowly decaying degree distribution. An asymp-

totic power-law distribution is an example of a slow decaying distribution and for

a large number of networks, the degree distribution has a power law tail,

P (K) ∼ K−γ, (1.7)
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with exponent varying in the range 2 < γ < 3. Such networks are called scale-free

networks. In scale free networks, small degree nodes are present in large numbers

but higher degree nodes are very few. These higher degree nodes are called hubs.

Presence of hubs has been noticed in many real world networks. Other common

forms for the degree distribution are exponential and it has been noticed in many

real world networks.

Network models

The observations discussed in the previous section motivated the introduction of

new mathematical models to explain the structural properties of the real world

networks. Regular lattices are popular among physicists since a very long time

and then on the other hand, random models are well studied by mathematicians.

Structurally, these models display two extremes, ordered and random. The real

world networks occupy a position in between them. Real world networks were

modeled on the basis of their properties, small world and scale free. In this sec-

tion, two very popular models of real world networks are discussed along with the

random network models.

Random Networks In year 1959, Paul Erdős and Alfred́ Rényi defined random

graph, a graphG(N,E) with E links chosen randomly from theN(N−1)/2 possible

connections [21]. The Erdős Rényi (ER) graph can be generated by connecting a

pair of nodes with probability p.

The degree distribution is binomial and it is given by,

P (K) =

(
N − 1

K

)
pK(1− p)N−1−K , (1.8)

with average number of links 〈K〉 = pN(N − 1)/2. For large N , the distribution

takes Poissonion form. The graph remains connected for 〈K〉 & ln(N). The

average path length l ∼ ln(N)/ln(K) shows small world property but for large

networks the clustering coefficient C ≈ 〈K〉/N is very small, which is very different

from real world networks. Hence, this model could not represent the real world

networks. However, for random networks most of the quantities of interest can be
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calculated analytically.

Small world Networks Real world networks have small diameter and large

clustering coefficient which could not be explained by random network model.

In year 1998, Watts and Strogatz proposed a model, now known as W-S model,

which could have both the properties [7]. In the model, every link on a regular

lattice with K neighbors (K > 2) is randomly rewired with probability p such that

self connections and multiple connections are avoided. For p = 0, the network

is a regular network but for large p it has the properties of a random network.

Even for smaller values of p, the average path length is of the order of that for

random network but due to regular structure present in the network, clustering

coefficient remains very high. Rewiring process keeps the average degree of the

network unchanged but the local degree of the nodes changes and hence, the degree

distribution also changes.

This was the first model that could explain the high clustering and small di-

ameter present in real world networks. However this model could not explain the

scale-free feature in the real world networks and a search for alternative models

started.

Scale-free Networks One year after the WS model, Barabási and Albert sug-

gested a mechanism responsible for the emergence of networks with power law dis-

tribution [22]. It is a network growth model with preferential attachments which

favors attachment to the nodes with higher degree. This manifests the “rich get

richer” principle.

Initially there are m0 nodes with no connections in between them. At every

time step, a new node with m(≥ m0) edges is added. It connects with m different

nodes already present in the network. The probability π that a new node connects

to node i depends upon the degree Ki such that,

π(Ki(t)) =
Ki(t)∑
j Kj(t)

. (1.9)

After t time steps, the resulting network has N = t + m0 nodes and mt links.

Simulations show that network has the power law degree distribution P (K) ∼ K−γ
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with exponent γ = 3. The model has shorter path length than the small world

networks and is given by,

l ∼
lnN

ln(lnN)
. (1.10)

The clustering coefficient also scales as power law, C ∼ N−.075. Power law degree

distribution in the BA model arises only for linear attachment, hence the model

is not a general model but it was the first model to discuss a mechanism behind

power law degree distribution.

After these models, there have been many other models which could capture

the properties of real world networks [23, 24, 25]. But the BA-model, ER model

and the WS model belong to the first generation of simple mathematical models

of networks and hence, these models have their own charm and importance in the

theory of complex networks.

1.3.2 Dynamics on complex networks

Going beyond the structural properties of networks, the dynamical processes on

the networks have generated considerable interests. Spreading of a disease, power

black-outs, efficient navigation, emergence of social behavior etc. are some ex-

amples of dynamical processes taking place on networks. All These processes are

strongly affected by the network topology and the understanding obtained from

these studies is relevant in very different fields like biology, physics, computer sci-

ences and social sciences.

Many of the dynamical processes have been studied on regular lattices but the

outcomes of the dynamics on underlying heterogeneous network structure often

differ from the standard results. Most of these results are documented in textbooks

like [26, 27]. Therefore, it becomes necessary to understand the impact of network

characteristics on the basic features of dynamical processes. The aim of studying

dynamics on networks is to understand the emergence of co-operation and other

properties of the dynamical processes from the very basic and simple microscopic

interactions among the system elements.

There are two approaches to model dynamics on complex networks. In the

first, each individual node of the network is like an element of the system. In the
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second approach, dynamic entities such as energy, people, packets flow through a

network whose nodes identify the location of entities. In both the cases, each node

i has the dynamical variable fi characterizing the dynamical state of the node.

The dynamical evolution of the system is given by the dynamics of {fi} and is

described by the transition from one state to another state i.e. fa → f b.

In general it is impossible to follow the microscopic dynamics of a network. The

master equation approach becomes useful to study the dynamics of the system. The

master equation consists of evolution of probability P (f, t) of finding a system in

state f and time t. It can be written as,

∂tP (f, t) =
∑

f ′

[P (f ′, t)Πf ′→f − P (f, t)Πf→f ′ ] , (1.11)

where the Πf→f ′ is the transition probability of going to state f ′ from f and the sum

is over all the possible states. In the case of networks, where the transition takes

place among the neighbors only, the transition probability for the whole system

can be decomposed into the products of single node transition probabilities. Now,

the transition probabilities for a node depend on its local structure. Therefore, the

network structure becomes evident and strongly influences the dynamics.

While it is not possible to solve the master equation in general, it is possible

to obtain the stationary distribution which can be defined as,

lim
t→∞

P (f, t) = P∞(f). (1.12)

The stationary distribution may not exist in all the dynamical systems but if the

system is ergodic, the existence of a unique stationary distribution is guaranteed.

In the case of equilibrium dynamics, the stationary distribution can also be

obtained using detailed balance condition,

Peq(f
′)Πf ′→f = Peq(f)Πf→f ′ , (1.13)

which means that the net flow in between the pairs of state is zero. The detailed

balance is a strong condition but it is not true in the case of non-equilibrium

dynamics. However, the detailed balance does not imply the lack of stationary
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distribution. As mentioned earlier, it is not possible to obtain the complete so-

lution of the master equation representing the dynamical process. In such cases,

approximate solution for the system can be obtained using various approximation

schemes.

In a more complicated processes, detailed computer simulations are performed.

In these simulations, each node is assumed to be in one of the several states and

the state updates depend on the microscopic dynamics applied to each node. This

approach mimics the whole system with detailed dynamical rules in a computer

and provide us the understanding of the dynamical processes.

There are many dynamical processes which have been well studied earlier in

statistical physics or nonlinear dynamics and later, the generality of the results

have been tested on networks. A review article by S. N. Dorogovtsev et al. is a

good reference for dynamics in complex networks [28]. Following is a small list of

dynamical processes studied on networks with the main references.

� Ising model in networks [29, 30, 31].

� Synchronization phenomena in complex networks [32, 33, 34].

� Percolation in complex networks [35, 36, 37].

� Diffusion in networks [38, 39, 40, 41].

� Epidemic models in networks [42, 43, 44, 45].

� Opinion formation and the voter model [46, 47, 48].

� Transport processes on networks [49, 50, 51].

Out of these processes, transport processes are very well studied in complex

network. One of the reasons behind it is the importance of transportation and

technological infrastructure in our life. In most of the transport processes, traffic

can be modeled in many different ways, from simple non-interacting random walk-

ers [52, 53] to interacting random walkers with random traps [54, 55, 56]. In all the

transport processes, congestion arises as an essential part of the flow on network.

Consider, for an instance, a web server not responding to due the http requests
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due to heavy load. In most of the cases, one of the reason behind the congestion

can be the limited handling capacity of the nodes or links through which the flux

is passing. In this case, the overloading of node may lead to their failure and the

redistribution of the traffic can trigger other failures in the network. This is called

the cascading failure and can be treated as an example of extreme event on the

transport network. The major power blackouts across the world [57], gridlocks on

highways are the examples of cascading failures. Transport on networks continues

to be widely studied in terms of congestions [58] and cascades [59] but much less

attention has been focused on it from the point of view of extreme events arising

due to the inherent fluctuations in the flux passing through the nodes.

1.3.3 Extreme events

Extreme events are just like any other events taking place in a system but they are

very different in terms of their magnitude. The very large/small magnitude of these

events creates a very high impact on the system and their rarity makes them special.

Statistically, extreme events occur in the tail of probability distributions that define

the occurrence of events of a given size, shown in Fig. (1.2). Floods, earthquakes,

tsunami stock market crash, an epileptic seizure, a storm, magnetic storms or any

other such events come under the category of extreme events. Extreme events are

often associated with catastrophic consequences which lead to huge socio-economic

losses. Therefore, it becomes very important to understand extreme events. The

reasons behind the occurrences of extreme events are not precisely known. The

questions related to their predictions can help in bringing down the losses but

unfortunately they also remain unanswered in most of the cases.

The origin of extreme events is mainly related with the complex dynamics of

the system. They occur usually where the system’s variability and collective effects

are dominant. Hence, the search of dynamic mechanism which allows system to

visit the state away from its normal states has inspired us to look at the collective

dynamics on the networks. But without knowing the dynamics behind the extreme

events, it is possible to study the statistical properties of extreme events using a

well developed theory known as extreme value theory [60, 61]. Main results of the
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Figure 1.2: The complete Probability distribution function of a random variable
(Blue bars). Extreme events lie in the tail of the distribution (shown in green bars)

extreme value theories are presented here in a very concise form.

Extreme value theory

The extreme value theory is an established area in mathematical statistics and is

widely used in many disciplines ranging from structural engineering to economics.

Extreme value theory was initiated by Fisher and Tippet and later developed by

Von Mises, Gumbel, Gnedenko and many more. The aim of extreme value theory

is to find the probability distribution functions of extreme events and calculating

the probability of extreme events of a given size in a given time interval or the

largest event that may occur in a given period of time. The limitations of the

theory comes from the basic assumption made in it which says events are inde-

pendent and identically distributed (iid), which is hardly a case in real life. This

theory is important because it sets a basic benchmark and is useful in weakly cor-

related cases. It estimates for the magnitudes of extreme events which helps in the

preparedness to meet the extreme events.

Extreme value theory deals with the events in the tail part of the distribution.

In real life data, there are two ways of defining extreme events which result in two

different types of distributions.

� Block maxima: It is the traditional approach where the data is separated into

blocks (days, months etc) and from each block only the maximum values are
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Figure 1.3: Two approaches for selecting extreme data. (a) Variable {Xi} as a
function of time. (b) Block maxima approach:{Xi} is divided into blocks of equal
intervals (green lines) and Red blue dots are the maximum values attained in
each block which are called as extreme events here. (c) Peak over threshold: The
green line here represents some threshold q and any value exceeding it is called
as extreme event (Red blue dots). ri is the time interval between two successive
extreme events.

picked up (refer to Fig. 1.3 (b)). This lead to the classical extreme value

distributions. Here, the width of blocks plays an important role.

� Threshold exceedances: A threshold is decided on the basis of the data and

the data above the threshold is called an extreme event as shown in Fig.

1.3(c). The choice of threshold becomes very critical here in determining the

extreme events. This lead to different probability distributions.

The probability distributions associated with these two ways of defining an

extreme event are presented below.

Extreme value Distributions Suppose, we have a stationary sequence of iid

random variables, {X1, . . . , Xn} with a common cumulative distribution F (x) =

Pr(Xi > x). The maximum of these random variables isMn. Then, the cumulative

distribution of Mn is given by

Pr{Mn ≤ x} = {F (x)}n, (1.14)

which converges to zero for x < x+ and to 1 for x ≥ x+, where x+ is the upper

end point of F , defined as the smallest value of x for which F (x) = 1. However if
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there exists a sequence of constants {an > 0} and {bn}, such that the renormalized

variable,

M∗
n =

Mn − bn
an

, (1.15)

has a non-degenerate limiting distribution, i.e.,

lim
n→∞

Pr

{
Mn − bn

an
≤ x

}
= F n(anx+ bn) = G(x), (1.16)

where G is a non-degenerate cumulative distribution function. Then, G belongs to

one of the following extreme value cumulative distributions:

Gumbel: G(x) = exp

{
− exp

[
−

(
x− b

a

)]}
, −∞ < x < ∞; (1.17)

Fréchet: G(x) =




0, x ≤ b,

exp
{
−
(
x−b
a

)−α
}
, x > b, α > 0;

(1.18)

Weibull: G(x) =




exp

{
−
[
−
(
x−b
a

)−α
]}

, x < b, α > 0;

1, x ≥ b.

(1.19)

These three classes of distributions are called the extreme value distributions.

While a and b are the scale and the location parameters respectively for each

distribution, Fréchet and Weibull have an additional parameter α, known as shape

parameter. The remarkable result of extreme value theory is that these three

distributions are the only possible limiting distributions of M∗
n regardless of the

distribution F of random variables. This result is similar to the central limit the-

orem and can be considered as an extreme value analog of it.

The three types of extreme value distributions have their own domain of at-

tractions and the limiting distribution is decided on the behavior of the tail of the

distribution F of random variables Xi. Gumbel distribution is obtained as a limit-

ing case of any distribution F with the tail falling faster than a power law. In the

case of Fréchet, the tail of F must fall as a power law. For both the distributions,

the upper end point x+ of F is infinite while in the case of Weibull distribution, F
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has the finite upper end point.

All the three extreme value cumulative distributions can be combined into a

single distribution function known as generalized extreme value (GEV) cumulative

distribution of the form,

G(x) = exp

{
−

[
1 + ξ

(
x− µ

σ

)]−1/ξ
}
, (1.20)

for (1 + ξ(x− µ)/σ) > 0 with location parameter −∞ < µ < ∞, scale parameter

σ > 0 and shape parameter −∞ < ξ < ∞. Fréchet and Weibull distributions are

obtained respectively for ξ > 0 and ξ < 0. The Gumbel distribution is obtained in

the limit ξ → 0.

The similar limiting distributions can be obtained for block minima by using

the trick Yi = −Xi.

Exceedances over thresholds Consider the cumulative distribution of Xi ex-

ceeding some high threshold q. The cumulative distribution will be given by,

Pr{X > q + y|X > q} =
1− F (q + y)

1− F (q)
, y > 0. (1.21)

For very high threshold q, the cumulative distribution function of (X − q) condi-

tional on X > q is approximately

H(y) = 1−

(
1 +

ξy

σ̃

)−1/ξ

, (1.22)

with y > 0 and (1+ξy/σ̃) > 0 where σ̃ = σ+ξ(q−µ). The cumulative distribution

is known as Generalized Pareto Distribution(GPD). ξ is the shape parameter but

it no longer depends on the width of blocks. Like the GEVs, here also shape

parameter ξ determines the qualitative behavior of GPD and the values of ξ are

similar to the previous model. However, the scale parameter σ̃ depends on the

threshold except in the case of ξ = 0.
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Recurrence of extreme events

As discussed earlier, extreme events are rare but they are recurrent. Hence, one

important issue related with extreme events is the predictability and the quantity

of interest can be the time interval between events that exceed a threshold (say, q),

known as return intervals (rq) (refer to Fig. 1.3(c)). The mean return time 〈r〉q and

the distribution Pq(r) are the important quantities from the predictability point of

view. When the threshold (q) is small, extreme events are frequent and the return

intervals are short and when the threshold is large, return intervals are also long.

The basic assumption in the extreme value theory is that events are iid, i.e.,

they are uncorrelated. When events are uncorrelated, their return intervals are also

uncorrelated. The correlation is measured by the two-point correlation function as

N → ∞ and is given by,

C(τ) =
〈x(t)x(t+ τ)〉

〈x2(t)〉
, (1.23)

where 〈.〉 denotes the time average. In the case of uncorrelated events,
∑

τ C(τ) <

∞ and the return intervals follow the exponential distribution.

Pq(r) =
1

〈r〉q
exp

(
−r

〈r〉q

)
. (1.24)

But, if the events are correlated i.e.
∑

τ C(τ) = ∞, the return interval distribution

Pq(r) differs from the exponential distribution. Most of the natural phenomena

e.g. earthquakes, river run-off, daily atmosphere temperature etc. display long

range correlations or in other words, long memory [62, 63]. Hence, in these cases

time intervals in between extreme events should also be correlated and should

differ from exponential distribution. In the case of long range correlated time

series, Santhanam et al. have shown that, under some approximations, the return

interval distribution gets modified and it turns out to be a product of power law

and a stretched exponential when the average return intervals are large [64].
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1.4 Thesis outline

The thesis is organized as follows.

Chapter 2 is about random walk and extreme events on complex networks. In

that, we discuss the random walk dynamics on network with fluctuating number of

walkers on the network. Based upon the random walk dynamics, extreme events

on networks are defined as the exceedances over threshold and the probability

of occurrence of extreme events on nodes is calculated. The correlation among

extreme events using their return intervals on the nodes is discussed. Also, the

scaling relation in extreme event probabilities is obtained for different thresholds.

Finally, the results related to shortest path strategy are compared against the

random walks.

In chapter 3, Extreme events on networks are investigated under the situation

where dynamics has some preferences among nodes. They are discussed with the

biased random walk dynamics. An appropriate parameter ’generalized strength’ is

used to characterize the extreme events. Event sizes are calculated under differ-

ent biases and the role of network topology under different biasing parameters is

discussed.

Chapter 4 is devoted to the study the resilience of network against extreme

events. A model of network failure based on extreme events is proposed. The

nature of failures and the conditions responsible for network failures are presented

on a fully connected network.

A brief summary of our results described in Chapter 5 will conclude this thesis.



Chapter 2

Extreme Events on Complex

Networks

2.1 Introduction

Extreme events taking place on the networks is a fairly commonplace experience.

Traffic jams in roads and other transportation networks, web servers not responding

due to heavy load of web requests, floods in the network of rivers and power black-

outs due to tripping of power grids are some of the common examples of extreme

events on networks. Such events can be thought of as an emergent phenomena

due to the transport on networks. As extreme events lead to losses ranging from

financial and productivity to even life and property [65], it is important to estimate

probabilities for the occurrence of extreme events and, if possible, incorporate them

in the design of networks so that it can handle such extreme events.

The transport phenomena on networks have been studied vigorously in the

last several years [66, 67] though these studies were not focused on the analysis

of extreme events. An extreme event can be defined as the exceedances above

a prescribed quantile and is not necessarily related to the handling capacity of

the node in question. It arises from the natural fluctuations in the traffic passing

through a node and not due to constraints imposed by the capacity. Thus, in

the rest of this chapter, we discuss the transport on networks and analyze the

probabilities for the occurrence of extreme events arising in them without having

22
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to prescribe capacity at each of the nodes.

The transport model we adopt is the random walk on complex networks [68].

Random walk is of fundamental importance in statistical physics though in real

network settings many variants of random walk could be at work [69, 70]. For

instance, in the case of road traffic, the flow typically follows a fixed, often shortest,

path from node A to B and can be loosely termed deterministic. Thus, given the

operational principle of network dynamics, i.e., deterministic or probabilistic or

a combination of both, we obtain the probabilities for the occurrence of extreme

events on the nodes. The study reveals a significant and unexpected result; namely

that the extreme events are more prone to occur on a small degree node than on a

hub. This feature is robust against fluctuating traffic and even upon the application

of intelligent routing algorithms (e.g. shortest paths). This principal result implies

that the design principles for networks should focus on small degree nodes which

are prone to extreme events. Further, these probability estimates allow us to design

nodes that can have sufficient capacity to smoothly handle extreme events of certain

magnitude. Currently, for a univariate time series, there is a widespread interest

on the extreme value statistics and their properties, in particular in systems that

display long memory [64, 71]. We use multivariate time series and place our results

in the context of both the random walks and extreme events in a network setting.

2.2 Random walk on network

We consider a connected, undirected, finite network with N nodes with E edges.

The links are described by an adjacency matrix A whose elements Aij are either 1

or 0 depending on whether i and j are connected by a link or not respectively. On

this network, we have W noninteracting walkers performing the standard random

walk. A random walker at time t sitting on the ith node with Ki links can choose

to hop to any of the neighboring nodes with equal probability. Thus, transition

probability for going from ith to jth node is Aij/Ki. We can write down a master

equation for the n−step transition probability of a walker starting from node i at
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time n = 0 to node j at time n as,

Pij(n+ 1) =
∑

k

Akj

Kk

Pik(n). (2.1)

Here, the n−step time-evolution operator corresponding to this transition, acting

on an initial distribution, leads to a stationary distribution P∞
i = pi with eigenvalue

unity [68]. The stationary distribution exists if and only if the network contains

an odd loop, which is not true for a bipartite network. In a bipartite network, all

the cycles are of even length [72] and hence, one of the eigenvalues is λ = −1 for

which the distribution never converges to a stationary distribution.

The transition probability Pij to go from node i to node j in n + 1 steps can

be written as,

Pij(n+ 1) =
∑

ji...jn

Aij1

Ki

.
Aj1j2

Kj1

. . .
Aijn

Kn

. (2.2)

A similar expression can be written for Pji(n+ 1),

Pji(n+ 1) =
∑

i1...jn

Aji1

Ki

.
Ai1i2

Ki1

. . .
Ajin

Kn

. (2.3)

Now, if we compare these two equations for Pij and Pji, we see that

KiPij(n) = KjPji(n). (2.4)

In the limit n → ∞,

Kipj = Kjpi, (2.5)

which implies that,

pi = CKi (2.6)

where C is a constant and using the normalization condition
∑

i pi = 1 we get,

C =
1∑
i Ki

=
1

2E
. (2.7)
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So, the stationary probability turns out to be

lim
n→∞

Pij(n) = pj =
Kj

2E
. (2.8)

It is easy to confirm if the obtained distribution is stationary. Using the definition

of stationary probability,

pj =
∑

i→j

piPij

=
∑

i→j

Ki

2E

1

Ki

=
∑

i→j

1

2E

pj =
Kj

2E
.

The stationary distribution obtained here is unique and it is the consequence of

connected network. Here, the stationary distribution depends only on the degree

of the nodes which means that the network topology does not play any role as far

as the stationary state is concerned but how fast the distribution converges to the

stationary distribution depends on the network structure. The convergence time

is bounded by O(N3) time steps for any graph with N nodes because a walker can

take maximum O(N3) time steps to commute in between any two nodes [72].

Physically, the stationary probability in Eq. (2.8) implies that more walkers

will visit a given node if it has more links. The existence of stationary distribution

is crucial for defining extreme events.

Consider a situation, where more than one walkers are present and preforming

random walks. These W walkers are independent and they do not interact with

each other. A schematic diagram mimicking the scenario for time steps, n =

0, 1, 2, 3, 4, is shown in Fig. 2.1. There are W = 5 walkers moving randomly on

the network with N = 6 nodes and E = 8 links. Their random movement leads to

fluctuations in the number of walkers present on a node.

Now we can obtain the distribution of random walkers on a given node. We ask
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Figure 2.1: Schematic diagram to show random walk and extreme events. There
are W = 5 independent and noninteracting walkers performing random walks on
a small network(N = 6, E = 8). Number of walkers on nodes are shown for
n = 4 time steps. Extreme event is defined as the number of walkers exceeding a
predefined threshold, say (q = 2) here, on a node at any time instant. At n = 2,
there are 3 walkers accumulated on a particular node. This node is said to have
an extreme event at n = 2.

for the probability f(w) that there are w walkers on a given node having degree

K. Since the random walkers are independent and non-interacting, the probability

of encountering w walkers at a given node turns out to be binomial distribution,

given by

f(w) =

(
W

w

)
pw (1− p)W−w. (2.9)

Now, the mean and variance for a given node can be explicitly written down as

〈f〉 =
WK

2E
, σ2 = W

K

2E

(
1−

K

2E

)
. (2.10)

As expected, the mean and variance depends on the degree of the node for fixed

W and E. The maximum convergence time is O(N3) for an N node graph but in

a crude sense, the minimum time required for the convergence can be equal to the

diameter of the graph. To show the convergence in terms of number of walkers, the
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Figure 2.2: Convergence of average number of walkers 〈w〉n to the analytically
calculated stationary distribution 〈f〉 for nodes with different degree is shown here.
Numerically, the distribution is said to converge if (〈f〉 − 〈w〉n) < 0.05σ.

difference between the stationary distribution 〈f〉 and the time average of walkers

on a node, 〈w〉n, is plotted as a function of time in Fig. 2.2. The nodes with

smaller degree converge faster to their stationary distribution than the high degree

nodes. Overall, the distribution converges to a stationary distribution in O(N)

time steps. Note that K/2E << 1 and hence σ ≈ 〈f〉1/2. This reproduces the

relation proposed in Ref. [73], later shown to have limited validity [74].

One natural extension of the result in Eq. (2.9) is to account for the fluctuations

in the number of walkers. We assume that the total number of walkers is a random

variable uniformly distributed in the interval [W−∆,W+∆]. Then the probability

of finding w walkers becomes

f∆(w) =
2∆∑

j=0

1

2∆ + 1

(
W̃ + j

w

)
pw (1− p)W̃+j−w, (2.11)

where W̃ = W − ∆. The mean of the distribution should remain unchanged

because of the mean field approach and is given by,

〈f∆〉 = 〈f〉. (2.12)

For estimating variance, we need to calculate the second moment of the distribu-
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tion, 〈f 2,∆〉 = 〈w2f∆(w)〉, which is given by,

〈w2f∆(w)〉 =
1

W

W∑

w=0

w(w − 1)f∆(w) + 〈f∆〉, (2.13)

substituting the value of f∆(w) from Eq. (2.11),

〈w2f∆(w)〉 =
1

2∆ + 1

2∆∑

j

[(W +∆+ j)(W +∆+ j − 1)] p2 + 〈f∆〉,

= p2
[
W 2 −W +

∆2

3
+

∆

3

]
+ 〈f∆〉,

〈f 2,∆〉 = 〈f∆〉
2
+ (pW )2

[
−

1

W
+

∆2

3W 2
+

∆

3W 2

]
+ 〈f∆〉.

and the variance of this distribution turns out to be,

σ2
∆ = 〈f∆〉

[
1 + 〈f∆〉

{
∆2

3W 2
+

∆

3W 2
−

1

W

}]
. (2.14)

2.3 Extreme event probability

In the spirit of extreme value statistics, an extreme event is the one whose prob-

ability of occurrence is small, typically associated with the tail of the probability

distribution function. In the network setting, we will apply the same principle to

each of the nodes. Based on Eqns. (2.9-2.10), we will designate an event to be

extreme if more than q walkers traverse a given node at any time instant (shown

in Fig. 2.1,n = 4). The probability for the occurrence of extreme event can be

obtained as

F (K) =
2∆∑

j=0

1

2∆ + 1

W̃+j∑

k=⌊q⌋+1

(
W̃ + j

k

)
pk (1− p)W̃+j−k, (2.15)

where ⌊u⌋ is the floor function defined as the largest integer not greater than u.

Notice that necessarily the cutoff q will have to depend on the node (or rather,

the traffic flowing through the node) in question. Applying uniform threshold

independent of the node (q = constant) will lead to some nodes always experiencing
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an extreme event while some others never encountering any extreme event at all.

Hence we define the threshold for extreme event to be,

q = 〈f〉+mσ, (2.16)

where m is any real number and it decides the rarity of the extreme events. The

threshold, chosen in this way, automatically takes care of the variability in the

average flux passing through the nodes with different degrees. It also incorporates

the fluctuations in the number of walkers on a node.

It does not seem possible to write summation in Eq. (2.15) in closed form.

However, for the special case when ∆ = 0, Eq. (2.15) simplifies to

F (K) =
W∑

k=⌊q⌋+1

f(k) = Ip (⌊q⌋+ 1, w − ⌊q⌋) , (2.17)

where Ip(., .) is the regularized incomplete Beta function [75].

For a given choice of network parameter E and number of walkers W , the

extreme event probability at any node depends only on its degree. In Fig. 2.3 we

show F (K) as a function of degree K superimposed on the results obtained from

random walk simulations. The agreement between Eq. (2.15) and the simulated

results is quite good. Further, each point in the figure represents an average over

all the nodes with the same degree. We emphasize that the oscillations seen in Fig.

2.3 are inherent in the analytical and numerical results and not due to insufficient

ensemble averaging. These oscillations are the consequences of the fact that the

number of walkers on a node can take integer values only.

An important feature of this result is that the nodes with smaller degree (K <

20) reveal, on an average, higher probability for the occurrence of extreme events

as compared to the nodes with higher degree, say, K > 100. By careful choice of

parameters, the probability F (K) can differ by as much as an order of magnitude.

This runs contrary to a naive expectation that higher degree nodes garner more

traffic and hence are more prone to extreme events. While the former contention

is still true in the random walk model we employ, the results here indicate that

the latter one is not generally correct. As shown in Fig. 2.3(b,c), this feature is
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Figure 2.3: Probability for the occurrence of extreme events as a function of de-
gree K with fluctuations ∆ in the total number of walkers on semilog plot. The
threshold for extreme events is q = 〈f〉+4σ. The solid lines are from the analytical
result in Eq. (2.15). All the simulations shown in this chapter are obtained with
a scale-free network (degree exponent γ = 2.2) with N = 5000 nodes, E = 19815
vertices and W = 2E walkers averaged over 100 realizations with randomly chosen
initial conditions.

robust even when the number of walkers becomes a fluctuating quantity. Though,

the analytical and simulation results shown in Fig. 2.3(b,c) are in good agreement

with each other but they do not match exactly as in Fig. 2.3(a). This may be the

consequence of mean field approach used in writing Eq. (2.15). The mean field

approach does not account for the fluctuations in extreme events arising due to

fluctuating number of walkers on the network.

We note that Eqns. (2.15-2.17) for the extreme event probability do not depend

on the topology of the network. Even though the simulation results are shown

for scale-free graphs, it holds good for other types of graphs with random and

small world topologies shown in Fig. 2.4(a) and 2.4(b) respectively. However, the

difference in probability for extreme events between hubs and smaller degree nodes

is not pronounced in the case of random graphs.

The threshold q that defines an event to be extreme depends on the traffic

flowing through a given node. The choice q = 〈f〉+mσ is arbitrary. Now, we show

that the extreme event probability in Eq. (2.17) scales with the choice of threshold

q or, equivalently, m. In the Fig. 2.5(a) we show Fm(K) for various choices of
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Figure 2.4: Extreme event probability FK for ∆ = 0 for two different networks,
(a) random network (N = 1000, E = 4929) and (b) small world network (N =
1000, E = 5000). The threshold for extreme events is defined according to Eq.
(2.16) with m = 4. The extreme event probability depends on the degree of the
node K irrespective of the network topology.

m in log-log scale. Clearly, as m decreases, ignoring the local fluctuations, the

curves tend to become horizontal. Physically, this can be understood as follows;

q → 0 implies that the threshold for extreme events decreases and this leads to

larger number of extreme events and hence higher probability of occurrence. In

the limiting case of q = 0, F (K) = 1 for all nodes and all the events would be

extreme.

The graph in Fig. 2.5(a) suggests that it might be scaling with respect to

q or m. Starting from Eq. (2.17), we were not able to determine the scaling

analytically. Hence, we empirically show that the following scaling relation holds

for the probability of extreme event,

Fm(K)

K1−Sm
= constant, (2.18)

where Fm(K) represents extreme event probability for threshold value q with pa-

rameter m. In this, Sm is the slope of the curves Fm(K) in the Fig. 2.5(a). Using

Eq. (2.18) on the simulated data for ∆ = 0, we find that all the curves for the

probability of extreme event, shown in Fig. 2.5(b), collapse into one curve to a
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Figure 2.5: Probability for occurrence of extreme events for several values of thresh-
old q = 〈f〉+mσ. (a) shows the extreme event probabilities in log-log plot obtained
from simulations with ∆ = 0. (b) shows scaling extreme events probabilities. S0

represents the reference slope with m = 2. The thresholds applied for the curves
from top to bottom are m = 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0.

good approximation.

2.4 Return interval distribution

In the study of extreme events, distribution of their return intervals is an important

quantity of interest. This carries the signature of the temporal correlations among

the extreme events and is useful for hazard estimation in many areas. We focus

on the return intervals for a given node of the network. Since the random walkers

are noninteracting, the events on the individual nodes are uncorrelated. Then, the

recurrence time distribution is given by P (τ) = e−τ/〈τ〉, where the mean recurrence

time is 〈τ〉 = 1/F (K). In the inset of Fig. 2.6, we show P (τ) obtained from

simulations for three nodes with different degrees. In semi-log plot, they reveal

an excellent agreement with the analytical distribution P (τ) (shown as solid line).

The main graph of Fig. 2.6 shows the mean recurrence time 〈τ〉, the only parameter

that characterizes the recurrence distribution, as a function of K and it agrees with

the analytical result. The mean recurrence time can be obtained analytically by

taking the inverse of extreme event probability calculated using Eq. (2.17).

However, there can be some spatiotemporal correlations among extreme events
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Figure 2.6: The inset shows the recurrence time distribution for extreme events
from simulations (symbols) with ∆ = 0 for nodes with 5, 12 and 19 links. The
solid line is the analytical distribution. The main figure shows the mean recurrence
time as a function of degree K.

occurring on different nodes of the network. These correlations may arise due to

the network structures and the fact that total number of walkers are constant.

Think about the extreme situation, when all the walkers are on a single node i

at time n = 0. The probability of such situation is infinitesimally small but it

provides the arguments in the favor of correlations among extreme events on the

network. At n = 0 there is only one extreme event occurring on node i. At n = 1,

when these walkers perform the random walk from node i, the nearest neighbors

of node i may experience extreme events. At n = 2, some walkers may choose to

return to the node i while others get diffused on the rest of the network. So, at

n = 2, it is more likely that node i may experience the extreme event again. So, if

an extreme event of very large magnitude occurs on node i, it is more likely that

extreme events may continue to occur on successive time steps on node i and/or in

the neighborhood of node i. Once the walkers get diffused on the whole network,

the extreme events occur on network almost at random. In the long time limit,

statistical correlations among extreme events on networks becomes very small.



2.5. Walk through shortest paths 34

2.5 Walk through shortest paths

As pointed out before, many types of flow on the network, such as the information

packets flowing through the network of routers and traffic on roads, use more intel-

ligent routing algorithms [76] rather than a random walk. To check the robustness

of results in Eqns. (2.15-2.17), we implemented the random walk simulation with

the constraint that the traffic from node i to j takes the shortest path on the net-

work. The source i and destination j for a walker are assigned randomly and the

total number of walkers on the network are kept constant. In the case of shortest

paths, walkers need to have information about the whole network and calculating

shortest paths in between all pairs of nodes on a network is a computationally

challenging task. There can be more than one shortest paths in between a pair of

nodes. In this situation, walkers can choose any one of them with equal probability.

In this setting, for every random choice of source-destination pair the paths

are laid out by the algorithm. Once the source and the destinations are chosen,

a walker walks on a predetermined path. Hence, the dynamical process is mostly

deterministic. The stochasticity arises only when multiplicity of shortest paths is

available. Thus, this can be thought of as a walk with large deterministic com-

ponent. The simulation results with shortest path algorithm [77] shown in Fig.

2.7 are qualitatively similar to the trend displayed in Fig. 2.3. In this scenario of

predominantly deterministic dynamics, it is conceivable that the degree of a node

does not determine the flux passing through it. This role is played by the centrality

of the node with respect to the shortest paths in the network, quantified by the

betweenness centrality b of a given node [78, 79, 80].

In general, the definition of betweenness centrality does not include the source

and destination nodes. It results into zero betweenness for nodes with degree 1 i.e.

nodes on the periphery of the network. Here, while calculating the betweenness,

the end points are included.

Based on this qualitative argument, the results in Fig. 2.7 can be understood

if we replace Eq. (2.8) with p = βb/B where B is a normalization factor that

depends on the sum of betweenness centrality of all the nodes on the network. From

the numerical simulations, we obtain β ≈ 0.94. After obtaining the stationary
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Figure 2.7: Extreme event probability Fsp for ∆ = 0 with shortest path algorithm
implemented for random walkers. The data are plotted in two different ways.
(a) Fsp(b) as a function of betweenness centrality, (b) Fsp(K) as a function of
degree K of the node. Nodes with same value of K can have different betweenness
centrality. In (b), in order to reduce the clutter, for every value of K, the extreme
event probability for the node with largest (bmax, solid circles) and least value
(bmin, solid square) of b is plotted.

probability, we can calculate the probability distribution of the walkers on a node.

Again, the distribution is given by the binomial distribution due to the fact that

walkers are independent. We can go through the same arguments as before and

analytically obtain 〈f〉, σ2, q and the probability Fsp(b) for occurrence of extreme

events. In Fig. 2.7(a), Fsp(b) is shown as solid curve. Here, the nodes with smaller

betweenness centrality have higher chances of receiving extreme events than the

nodes with higher betweenness. In general, on average betweenness centrality is

directly proportional to the degree of the node in scale free graph. Hence, the

result that hubs are less likely to experience extreme events remains valid. In Fig.

2.7(b), the same data for Fsp(b) is shown as a function ofK for an easier comparison

with Fig. 2.3. Since nodes with the same degree can have different betweenness

centralities, we have plotted Fsp(K) only for the nodes with maximum betweenness

bmax and minimum betweenness bmin for a given degree. Thus, even with the SP

algorithm thrown in, the extreme event probabilities are higher for the nodes with

smaller degree (K < 20) than for the ones with larger degree (K > 100).
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2.6 Discussion and summary

This work is an attempt to understand the extreme events occurring on the nodes

due to the random flow on the network. In this work, we study random walk model

with fluctuating number of walkers and analytically obtain the probabilities for the

occurrence of extreme events on the nodes. In this framework, extreme events occur

due to the fluctuations in the flux passing through any node and are defined as the

exceedances above a chosen threshold q. The threshold is chosen to be proportional

to the natural variability of the node. Here, we have shown that extreme events are

more likely to occur on the low degree nodes in comparison with the high degree

nodes and it is true irrespective of the network topology. The choice of threshold

q is crucial in defining the extreme events and it is characterized by the parameter

m, which decides the rarity of the extreme events. Here, we obtain the scaling

relation for the extreme event probabilities with respect to m. Recurrence time

distribution shows that the events on a node are independent from each other and

hence, follow exponential distribution. Here, we also looked upon the cases where

walkers perform the walk on network via shortest paths in between a pair of nodes

and show that the main results associated with the extreme event probabilities

remain unchanged and hubs experience less extreme events than the low degree

nodes.

Finally we comment on how these results can be applied as a basis to design

nodes of a network. The central result in this chapter in Eq. (2.15) allows us

to a priori estimate the extreme event probabilities. These depend on whether

operating principle of dynamics is deterministic or probabilistic. If the idea is

to avoid congestion or other problems arising due to extreme events of certain

magnitude, then these estimates can be used as an input to the design principles

for the nodes. For instance, for the road traffic that operates broadly on the

shortest path principle the probabilities can be used as a basis to provision for

higher capacity to nodes that will avoid bottlenecks arising from extreme events

of a given magnitude.

In scale-free networks, small degree nodes form the bulk, are more prone to

encounter extreme events. But network design principles and practice generally
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focus on the hubs. Such evolved practices might work best for average conditions.

Our work suggests that they might fail in the context of extreme events and hence

a revised approach is necessary. A careful design for the capacity of small degree

nodes is important as well. It must be emphasized that incorporating such extreme

event estimates in design principles will only help in better preparedness to meet

the expected extreme events. The extreme events discussed here being due to

inherent fluctuations will nevertheless take place and cannot be avoided.



Chapter 3

Biased Random Walk and

Extreme Events

3.1 Introduction

Random walk on complex networks is a useful fundamental model against which

to compare other transport processes. Most realistic transport phenomena on

networks, such as the flux of information packets passing through the network

of routers or road traffic, do not proceed by performing random walk. In order

to model the flux in a more realistic way, it is useful to generalize the standard

random walk to a situation in which the flux is either biased toward hubs or small

degree nodes. For example, consider the case of two remote airports which are not

directly connected by flights. Typically, they would be connected through a major

hub on the airline network. This is one practical scenario in which the traffic

is biased toward the hubs. This happens in many a network settings; railways

tend to connect the hinterland with the hubs, phones connect to nearest hubs on

the network. Motivated by these physical examples, in this work, we model the

transport process as random walks biased by the topology of the network and study

the process from extreme event point of view.

In the world of internet, consider the most common experience of web surfers;

a web server not responding due to the heavy load of http requests. This is an

extreme event taking place on the network of world wide web. For example, the

38
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popular social networking site Twitter handled about 600 tweets per second in

early 2010 [81]. According to an industry estimate, the Google search engine

received approximately 34000 search requests per second by the end of 2009 [82].

For most websites on the world wide web that are unprepared for such a large

number of http requests, these numbers would represent extreme events and could

potentially disrupt the service. Grid locks in highways is an example of extreme

event on transportation network. From the point of view of physics, all these

events could be thought of as an emergent phenomena arising due to flux on the

networks and could be regarded as extreme events arising primarily due to the

limited handling capacity of the node.

However, extreme events happen not only because of the limited handling ca-

pacity of the node on a network but also because of inherent fluctuations in the flux

passing through the node. These fluctuations in the flux passing through a node

could be so large as they breach a prescribed threshold, in which case, we label

the event as an extreme event for the node. Then, a relevant question is how the

connectivity of the network affects the probability for extreme event occurrence.

By modeling the transport as standard random walks on networks, it was shown

in Ref. [83] that the probability for the occurrence of extreme events P (ki), arising

due to inherent fluctuations, depends only on the degree ki of the i-th node in

question. In this work, the threshold qi was chosen to be proportional to typical

fluctuation size on i-th node. Thus, the extreme events are identified after taking

care of the natural variability of the flux passing through the given node. Further,

it was shown that, on the average P (k) is higher for small degree nodes than for

hubs.

Here in this chapter, we study biased random walk on network and calculate

extreme event probabilities and event-size distributions. We show that the biased

random walk leads to extreme fluctuations in the event sizes on the network. In the

subsequent sections, we discuss the topologically biased random walk model on a

network and obtain analytical results for the probability of occurrence of extreme

events on any node. We show that the analytical and simulation results are in

good agreement.
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3.2 Biased random walk on networks

Stationary distribution

We consider a connected, undirected, finite network with N nodes and E edges.

The network is characterized by a symmetric adjacency matrix A with elements

Aij = 1 if nodes i and j are connected by an edge and Aij = 0 otherwise. There

are W independent walkers performing biased random walk on this network in the

sense explained below. We denote by bij the transition probability for a walker

to hop from a node i to a neighboring node j. Let Pij be the probability that a

walker starting at the node i at time n = 0 is at node j at time n. Then, the

master equation can be written as

Pij(n+ 1) =
∑

l

Alj blj Pil(n). (3.1)

The random walkers are biased by taking the time-independent transition proba-

bility for hopping from l-th to j-th node to be [84, 85, 86]

blj ∝ kα
j , (3.2)

where α is a parameter that defines the degree of bias imparted to the walkers.

Clearly, α = 0 corresponds to the standard random walk and the transition prob-

ability is unbiased, where the walker can hop to any of the neighboring nodes with

equal probability.

For α > 0, the random walkers are biased toward the nodes with larger degree

or hubs. The schematic diagram of the walk is shown in Fig. 3.1. In the scale-

free network, there are large number of lower degree nodes but most of them are

connected to hubs. So, even though the walk is biased towards the lower degree

nodes, hubs remain occupied by the walkers. The walk, biased towards the lower

degree nodes, helps in spreading the walkers on the network. In contrast, if α < 0,

walkers preferentially hop to the small degree nodes (refer to Fig. 3.2). There are

very few large degree nodes in the scale-free network and it is more likely that

they are connected among themselves. Hence, most of the walkers remain confined
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Figure 3.1: Random walk biased towards the lower degree nodes (α < 0) is shown
here using a schematic diagram. In the scale-free network, walkers visit the large
degree nodes regularly though they prefer lower degree nodes.

to the hubs and small degree nodes receive the walkers occasionally. The larger

(smaller) the α, stronger the bias toward the hubs (small degree nodes) is. Then,

the normalized transition probability becomes

blj =
kα
j∑kl

m=1 k
α
m

. (3.3)

The summation in the denominator runs over the nearest neighbors of node l.

Using the transition probability in Eq. (3.3), the master equation becomes

Pij(n+ 1) =
∑

l

Alj

kα
j∑kl

m=1 k
α
m

Pil(n). (3.4)

By repeated iteration of Eq. (3.4), it can be shown that Pij(n), as n → ∞ leads

to the stationary distribution

lim
n→∞

Pij(n) = pj =
kα
j

∑kj
l=1 k

α
l

∑N
m=1

(
kα
m

∑km
l=1 k

α
l

) . (3.5)
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Figure 3.2: Random walk biased towards the hub (α > 0) is shown here using a
schematic diagram. Walkers remain confined to the large degree nodes.

We can define the generalized strength of j th node to be

φj = kα
j

kj∑

i=1

kα
i , (3.6)

which is a measure of the ability of a node to attract the walkers. Note that φj

depends on the bias parameter α and the degree of the nearest neighbors to which

it is connected by an edge. Hence, it is possible for the nodes with the same

degree to have different generalized strengths. Thus, the generalized strength of

the node is independent of the global network structure but is dependent on the

local connectivity structure around the node. This is in contrast to the case of

standard random walk (on networks) in which the large-scale structure of the

network topology plays no significant role. The local network structure is important

for biased random walks on networks. In Fig. 3.3, we show how the generalized

strength φ depends on the degree of a node, for several values of α, in a scale-

free network with degree exponent γ = 2.2. For α = 1 (crosses in Fig. 3.3),

the generalized strength of a node is higher for large degree nodes (hubs) and an

approximate linear relation is seen between φi and ki . For α = 0, which is the
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standard random walk case, the generalized strength of the node is the same as

the degree of the node (solid circles in Fig. 3.3). However, for α = −1.0, φ is

independent of k especially for the large degree nodes (triangles in Fig. 3.3). In

this case, the bias in the random walk represented by its generalized strength φ is

balanced by the degree of the node. In a scale-free network, a large number of small

degree nodes are present and they do not have identical values for the generalized

strength φ. This explains the spread in φ for all values for k < 50. Upon further

decrease in the bias parameter α below -1.0 (open squares in Fig. 3.3), nodes

with a smaller degree or neighbors with smaller degree become important and the

generalized strength decreases with increasing degree.
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Figure 3.3: Normalized strength φ as a function of degree k for different values of
α in log-log plot.

Extreme event probability

The stationary distribution for the number of walkers in j-th node can be rewritten

in terms of the generalized strength φ as

pj =
φj∑N
l=1 φl

. (3.7)

Thus, every node can be uniquely characterized by its generalized strength φ. It

is expected that two nodes with the same value of φ show similar behavior as

far as biased walks on networks based on Eq. (3.2) are concerned. In the case
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of α = 0, we get φi = ki and the stationary distribution simplifies to pj =
kj
2E

,

the result obtained for the case of standard random walk in Ref. [68]. Thus, in

the case of a standard random walk, the degree k characterizes the node. In the

case of uncorrelated random networks, the stationary occupation probability can

be further simplified by using the mean field approximation and can be written as

[84, 85]

pj =
kα+1
j

N〈kα+1〉
. (3.8)

This approximate result suggests that the nodes with the same degree should have

identical transition probabilities [84]. This is not necessarily as good for the nodes

of correlated networks such as the scale-free networks. This is because in a scale-

free network, the neighborhood of nodes with identical degrees are not identical.

Hence, to study extreme events we use Eq. (3.7) instead of Eq. (3.8).

Given that Eq. (3.7) gives the probability to find one walker on i-th node with

generalized strength φi, we can now obtain the distribution of random walkers on

i-th node. The formulation is applicable to any node on the network and hence,

in our further discussions, we suppress the index i of the node. Random walkers

are independent and non-interacting and hence the probability f(w) of finding w

walkers on a node is pw while the rest of the walkers, W − w are distributed on

the rest of the nodes of the network. When properly normalized, this leads to a

binomial distribution given by

f(w) =

(
W

w

)
pw (1− p)W−w. (3.9)

The mean and variance of the flux passing through a given node is

〈f〉 = W
φ

∑N
l=1 φl

,

σ2 = W
φ

∑N
l=1 φl

(
1−

φ
∑N

l=1 φl

)
. (3.10)

Note that the results in Eqs. (3.9) and (3.10) depend only on the generalized

strength φ that characterizes a node including its neighborhood. It does not de-

pend on the large scale connectivity pattern. Hence, these results will hold good
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for any network, such as scale-free, random or small world, irrespective of its degree

distribution. Further, in the cases for which
∑N

l=1 φl >> φ, we obtain the approx-

imate relation σ ≈ 〈f〉1/2. This relation can be thought of as a generalization of a

similar relation for the unbiased random walks reported in Ref. [83]. However, the

exponent 1/2 is not universal and instead depends on details such as the fluctuation

in number of walkers and the sampling resolution of the flux [74]. The distribution

of random walkers on two nodes with different degrees, k = 4 and k = 234, is

plotted in Fig. 3.4. The biased random walk simulations were performed on a

scale-free network with 5000 nodes with 19915 links and 39830 walkers. Initially,

at time n = 0, the walkers are randomly distributed on N nodes. The simulation

results presented in Fig. 3.4 have been obtained after averaging over 100 realiza-

tions with different initial conditions of random walkers. The simulation results,

the solid lines in Fig. 3.4, show a good agreement with the analytical distribution

given by Eq. (3.9).
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Figure 3.4: The distribution of walkers on two nodes with k = 4 and k = 234 for
α = −1.0, 0.0 and 1.0. The solid lines show the distribution of walkers obtained
from simulation while the solid circles belong to the binomial distribution obtained
analytically using the stationary probability in Eq. (3.7).

3.3 Probability for extreme events

We take an extreme event to be the one for which the probability of occurrence

is small and is typically associated with the tail of the probability distribution
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function for the events. We extend this principle to the events on the nodes of a

network [83]. Given that the number of walkers w passing through a node with

generalized strength φ follow the Binomial distribution, if more than q walkers pass

through the node, then it is an extreme event for the node. Then, the probability

for the occurrence of extreme event is

Fi =
W∑

w=qi

(
W

w

)
pwi (1− pi)

W−w, (3.11)

= Ipi(⌊qi⌋+ 1,W − ⌊qi⌋), (3.12)

where ⌊u⌋ is the floor function defined as the largest integer not greater than u and

Iz(a, b) is the standard incomplete Beta function [87]. In this form, the extreme

event probability will depend on the choice of threshold qi. First, we consider the

case of constant threshold. If qi = 0, using Eq. (3.11) we obtain Fi = 1 for all the

nodes on the network. Thus, all the nodes will experience extreme events all the

time. On the other hand, if we set qi = W , then we obtain

Fi = pWi . (3.13)

Since pi << 1, we get Fi ≈ 0 for all the nodes implying that there are no extreme

events anywhere in the network. Hence, these choices of threshold values are not

physically interesting cases. Any other arbitrary choice such as qi = q0, where q0

is a constant, will predominantly lead to some nodes encountering extreme events

nearly all the time and others having no events at all. This too is not an interesting

case. The foregoing arguments imply that an interesting scenario would arise if the

threshold is chosen to be proportional to the natural variability of the flux passing

through a node. Thus, we choose the threshold for extreme events to be [83]

qi = 〈fi〉+mσi, (3.14)

wherem ≥ 0. The mean flux 〈fi〉 and standard deviation σi are given by Eq. (3.10).

Substituting qi in Eq. (3.12), it is clear that the probability for the occurrence of

extreme events is dependent only on the generalized strength φ of the node. In
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Fig. 3.5, we show the simulation and analytical results for the probability of

extreme events as a function of φ for several choices of α. The numerical results

are based on simulations with W = 39380 walkers on a scale-free network with

N = 5000 nodes evolved for 107 time steps. An unusual feature is that Fi predicts

higher probability of occurrence of extreme events, on average, for nodes with

small values of generalized strength φ than for the nodes with higher values of

generalized strength φ. For instance, in Fig. 3.5(a), the probability of extreme

event occurrence is generally higher for nodes with φ < 10−5 than for nodes with

φ > 10−3. A similar effect is seen in Figs. 3.5(b)- 3.5 (e). Even though the nodes

with higher generalized strength φ attract more walkers as given by Eq. (3.5), this

does not imply that they also have higher probability for extreme events. This is a

generalization of the result obtained in Ref. [83] for the standard random walk on

networks which shows that the extreme events are more probable for nodes with

small degree than for the ones with high degree. The local fluctuations seen in

Fig. 3.5 are inherent in the system and not due to insufficient ensemble averaging.

Further, notice that Eq. (3.12) does not depend on the large scale structure of the

topology and hence it is valid for biased random walks on any topology, random

or small-world or scale-free.

However, the local connectivity patterns in the vicinity of any node plays a

crucial role in the diffusion of an extreme event. Suppose an extreme event takes

place at node A at time n, then one interesting question is how probable it is for an

extreme event to take place in its immediate neighborhood at time n+1, i.e, after

the first jump. We call it the first-jump probability and it is similar to the one

reported in [52]. In the case of a standard random walk (α = 0), our simulations

(not shown here) indicate that in general if the node A is a hub, then the probability

to encounter an extreme event in its neighborhood is higher (at least by a factor

of 3-4) compared to the case when the node A is a small degree node. For biased

random walks, the results suggest a higher likelihood for an extreme event to be

transferred to its neighborhood in the case when α < 0 compared to the case when

α > 0.
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Figure 3.5: The probability for the occurrence of extreme events plotted as a
function of node generalized strength φ (normalized) for different values of bias
parameters (a) α = −2.0, (b) α = −1.0, (c) α = 0.0, (d) α = 1.0 and (e) α = 2.0.
The threshold for extreme event is q = 〈f〉 + 4σ. The circles are from analytical
results in Eq. (3.12) while solid lines are the simulation results performed on a
scale-free network (N = 5000, E = 19915) with W = 2E walkers averaged over
100 realizations with randomly chosen initial positions of walkers.

3.4 Fluctuations in event size

The size of an event is measured in units of the standard deviation σ of the flux

passing through a node. In this section, we show that the extreme fluctuations in

the flux of walkers are realized in the case of α = 2 which implies that the walkers

are biased toward the nodes with larger generalized strength φ (hubs). An event

on a given node is of size m if mσ ≤ w − 〈w〉 < (m+ 1)σ, where w is the number

of walkers on the given node.

Then, the probability for the occurrence of an event of size m can be written

down as,

Pm = Ip(⌊qm⌋+ 1,W − ⌊qm⌋)− Ip(⌊qm+1⌋+ 1,W − ⌊qm+1⌋). (3.15)

To illustrate the result, we show the distribution of event sizes in Fig. 3.6 for

α = −2,−1, 0, 1, 2 in a scale-free network obtained from simulations evolved for
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107 steps and averaged over 100 ensembles. Here, the events with probability

of occurrence of less than 10−8 have been discarded to maintain the numerical

accuracy. In the case of α = 0 (standard random walk), the distribution of events

is shown in Fig. 3.6(c). The events of sizem = 0 are highly probable with P0 ∼ 0.1.

In contrast, the probability for the events of size |m| > 0 decrease and thus the

extreme events of size m = −2, 8 occur with probability P−2 ∼ P8 ∼ 10−8. The

limitation on the lower limit of event sizes is restricted by the minimum possible

number of walkers on a node, i.e., 0. For lower degree nodes, events of sizes −2σ

to 8σ are observed but in the case of higher degree nodes k > 100, events sizes

range from −5σ to 6σ only. In the case of a standard random walk, for the whole

network, event size m varies from −5σ to 8σ.
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Figure 3.6: The distribution of event sizes for biased random walks as a function
of node number on x-axis obtained from simulations performed on a scale-free
network for different values of bias parameters (a) α = −2.0, (b) α = −1.0, (c)
α = 0.0, (d) α = 1.0 and (e) α = 2.0. The nodes are arranged in the order of
increasing degree. The probability values Pm are color coded. This should be
compared with analytical results in Fig. 3.7.

In comparison, for the case of α = 1 shown in Fig. 3.6(d) the events of size 8

have higher probability of occurrence (P8 ∼ 10−7) and the events of even higher

sizes are also possible. For α = 2, even higher size events, as large as 40, become

highly probable for small degree nodes as seen in Fig. 3.6(e). Thus, in general, for
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larger α, larger size events become probable when compared with the case of α = 0.

Physically, this can be understood as follows. With α = 0, the random walkers

perform unbiased random walk. However, for α = 2, the walkers preferentially

choose to hop to the nodes with larger degree (hubs). Since the large degree nodes

are mostly well connected among themselves, very few walkers reach small degree

nodes. Hence the average flux through the small degree nodes becomes so small

that even occasional visits by a few walkers lead to extremely large size events.

These occasional visits lead to probabilities of order 10−6 even for events of size

40. Hence, in the case of biased random walks, extremely large fluctuations in

event sizes can be observed in small degree nodes. This effect is also seen in the

analytical results obtained using Eq. (3.15) shown in Fig. 3.7.
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Figure 3.7: The distribution of event sizes for biased random walks as a function of
node number on x-axis obtained analytically using Eq. (3.15) for different values
of bias parameter (a) α = −2.0, (b) α = −1.0, (c) α = 0.0, (d) α = 1.0 and (e)
α = 2.0. The nodes are arranged in the order of increasing degree. The probability
values Pm are color coded.

On the other hand, for the cases α = −2,−1 such large fluctuations are not

visible in the event sizes in Fig. 3.6(a) and 3.6(b). For α = −1 in Fig. 3.6(b),

there is a small increase in the event sizes (when compared to α = 0) for the small

degree nodes but it is not as large as in α = 1 case. Further, with α = −1, it

must also be noted that the probability profile remains similar for most of the
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nodes irrespective of the large differences in their degree. This is because φ is an

approximate constant for most of the nodes since, in this case, the effect of the bias

is balanced by the degree of these nodes. For α = −2, the flux is strongly biased

towards small degree nodes and again events of sizes m = 10 can be seen in Fig.

3.6(a) though only on the higher degree nodes. The event sizes for hubs are not as

large as observed in the case of α = 2 for lower degree nodes. It can be explained

as follows; when α = −2, the flux preferentially flows through the small degree

nodes which form the bulk in a scale-free network. Most small degree nodes do not

have a direct link with other small degree nodes but are connected through a hub.

Hence, despite the biased walk favoring the small degree nodes, sufficiently large

flux flows through the hubs as well. Hence, abnormally large event size fluctuations

are not seen in hubs for α = −1,−2. All these features show a good agreement

with the analytical result obtained in Eq. (3.15) and shown in Fig. 3.7.

3.5 Discussion and summary

This work is an attempt to understand the extreme events occurring on the nodes

due to flow on networks which typically is directed toward or away from the hubs.

In this work, we study a biased random walk model in which the traffic prefer-

entially moves either toward or away from the hubs and we analytically obtain

the probabilities for the occurrence of extreme events. In this framework, extreme

events are due to inherent fluctuations in the flux passing through any node and is

defined as the exceedances above a chosen threshold q. The threshold is chosen to

be proportional to the natural variability of the node. Each node on the network

is characterized by generalized strength φ which depends on its degree and that

of its immediate neighborhood. It is a measure of how much traffic is attracted

to the particular node. The larger the generalized strength of a node is, larger

is its ability to attract walkers. In this chapter, we have shown that the nodes

with a smaller generalized strength, on an average, have a higher probability for

the occurrence of extreme events when compared to nodes with higher generalized

strength. Further, we have also shown that when the flux is biased toward the

hubs, abnormally large fluctuations in event sizes become highly probable. This is
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one possible signature of the topologically biased flow in a scale-free network.

In general, it is possible to conceive of many ways by which bias can be im-

parted to the independent random walkers on networks. These biasing strategies

are motivated by real observations and the quest for efficient search strategies on

networks. Various kind of biases based on the local environment, shortest paths,

the entropy of random walk and various adaptive strategies are some examples of

biased random walk on networks [52, 58, 88, 89, 90, 91]. It will be interesting to

study the extreme event probabilities under such biasing strategies. However, we

emphasize that if the stationary probability distribution equivalent to Eq. (3.5)

exists for all the above strategies, then it would be possible to define extreme events

and analyze them following the methods presented in this work.

In the context of scale-free network, it has been argued that hubs are important

for better functioning of the network. Apart from being responsible for providing

better connectivity, existence of hubs makes the scale-free network robust against

the random node removal but fragile if the node removal is targeted [92, 93]. The

results in this chapter show that extreme events due to natural fluctuations are

more probable on the small degree nodes (when compared to the hubs). Hence

special attention must be paid to designing the capacity of the small degree nodes

so that extreme events can be smoothly handled without leading to disruption of

the node. The results in this chapter can be used to estimate the capacity a node

should possess if it should handle extreme events of size, say, m. If we want the

node to handle 4σ events smoothly, then the required capacity can be obtained by

inverting Eq. (3.12). Thus, the numbers so obtained can be useful as an input for

arriving at a capacity to be built for the nodes on a network.



Chapter 4

Network vulnerability to Extreme

Events

4.1 Introduction

Complex networks are everywhere and they support important dynamical processes

on them. Hence, smooth functioning of the networks is not only desirable but

also essential for everyday life. Congestion on roads, slowdown of Internet, power

blackouts etc are a few examples of unwanted situations which appear on the

networks. Sometimes, these undesirable scenarios are not confined to a small part

of the network but tend to cover the whole network and lead to serious economic

and social consequences. It is therefore important to understand the mechanism

behind such large scale failures on the networks.

In the past, the structural robustness of different networks have been studied

against the external attacks on the node/links i.e. the removal of a finite numbers of

nodes and/or links. It has been concluded that networks with large heterogeneity

in their node-degrees, such as scale-free networks, are more robust against the

random removal of the nodes than the homogeneous networks (random networks,

small-world networks). In contrast, the heterogeneous networks prove to be more

vulnerable against the deliberate attacks on the high degree nodes [94]. A fully

connected network always remains fully connected the against node removals.

Later, the dynamics on the network was introduced and if the flow passing

53
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through the node exceeds its capacity, the node is removed from the network.

Under such rules, the effect of a single or multiple node failures on the network

topology was examined [95]. In these studies, it has been observed that such large

scale collapses can happen due to the breakdown of a single node or link. Most of

the times, the networks remain stable against small failures but sometimes major

damages can be triggered by the small shocks arising due to external factor.

In this work, we explore the network failure mechanism based on the extreme

events on the nodes in the network. After encountering an extreme event, a node

stops working and is deleted from the network. The failure of a single node due

to an extreme event on it, causes the redistribution of the load on the neighboring

nodes. It enhances the load on rest of the nodes in network and the extreme events

on network become more probable. The process continues until the whole network

collapses or an steady state is reached. Since, these extreme events occur due to

the internal fluctuations in the dynamics, the large scale collapses on networks can

occur due to the dynamical process itself. A real life example of such failure is the

power-grid failure where a transmission line gets overloaded [96] and causes the

shutdown of a whole power grid. To avoid such failures, we need to understand

the route to the state of complete network failure. Here, we discuss the nature of

the network failure and show that even a fully connected network is not robust

against the extreme events occurring in the dynamics taking place on network.

In this chapter, before we discuss the model of catastrophe based on extreme

event, a brief review of the earlier approaches to study the robustness of the net-

works is presented. The earlier models relating to the robustness of the networks

can be categorized in two main classes. These two classes are distinct in terms of

physical quantities affecting the network.

Structural robustness

The simple model of the network failure is based upon the removal of the nodes/links

from a network and studies the impact of it on the topological structure of the net-

work.

In the year 2000, a comparative study of topological effects of node removal
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(random and targeted) was made on homogeneous and heterogeneous networks

[94]. Each time, when a node is removed, all the links of the node are also deleted

and the connectivity properties of the network is measured. The quantitative mea-

sure of damage is given by the relative size of the largest connected component

to the original size of the network. As long as the largest connected component

remains comparable to the original size of the network, the network has the ability

to perform its tasks but when the largest connected cluster breaks into smaller

clusters, network is considered to be non-functional. Results show that the het-

erogeneity (in terms of degree) in the network provides more protection to the

network against the random removal of the nodes but the same heterogeneity in

the network can be held responsible for the failure of the networks against the

targeted attacks (removal of high degree nodes). There have been many analytical

and numerical studies which discussed the tolerance of the network to the error

and attacks [35, 92, 93, 97, 98].

This approach to study the structural robustness of the system does not include

the detailed technical effects such as flow, capacity etc on the network but provides

initial insight into the large scale failures on the network. Later, the concept of

loads and capacities was introduced and models with these features could capture

the cascading feature of the network failures. Cascades are observed during the

failure of a power-grid network. The models incorporate the fact that networks

can have dynamics and due to this dynamics, the load of a failed node should be

redistributed on the network.

Dynamical robustness

The structural robustness was studied using the static properties of the networks

however the main aim to understand the network robustness remained incomplete

because the dynamical processes taking place on the networks were not taken into

account. In a network, the components, nodes/links can support different type of

flows but the quantity of the flux passing through them is often limited due to

their transmission capacities. There can be financial or physical reasons behind

these finite capacities. If the flow property and capacity of a network, are taken
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into account, the failure of a single component due to external factors can have

serious consequences.

These models argue that failure of a component causes the redistribution of

the flow over rest of the network. It results into some extra load on the compo-

nents. Not all the components can tolerate the excessive load due to their limited

capacities and hence, their failure may trigger a cascade of overload failures.

In 2002, fiber bundle model [63] on scale-free network was studied to model

cascading failures[99]. In this model, the capacities of the nodes are randomly

distributed using weibull distribution and a constant external pressure (load) is

imposed on each node of the system. All the nodes with capacities less than

the load fail in the first instance. The individual load carried by each of the

failed node is equally transferred to their surviving neighbors which may result in

secondary failures and then, tertiary failures and so on. The equilibrium is finally

attained when there are no more failures on the network. The results indicate

that at the critical load, network loses its functionality and the final breakdown

of the network arises more abruptly and catastrophically. In 2003, Moreno et

al discussed the updated version of a similar model [100] but there are several

important differences. In this model, the rules are performed on the links and, in

one case, the redistribution of the load among the neighbors of the failed node is

done randomly. The results point out that above the critical average load, any

small failure in scale free network leads to the whole network collapse.

In a network, the average load and the capacity of the components play a major

role in cascade failures. In a simple model, suggested by Motter and Lai, the ca-

pacity of a component is assumed to be proportional to the betweenness centrality

[95]. The model shows that global cascades in a network with the capacities de-

fined according to the flux passing through the component can either be triggered

by high degree nodes or the nodes with high load or both. Subsequent studies in-

troduced more realistic redistribution mechanism and also used different measures

for the capacities of the components of a network [101, 102, 103, 104, 35, 105, 106].

Watts modeled cascades in a system where an agent on the network can choose

one of the binary states and also, influence the neighbors [107]. The model finds its

usefulness in the social and economic systems. In 2010, the cascading behavior was
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studied in interdependent networks [108]. These networks can not be considered

as a single large network because they have their own dynamics. Authors studied

the vulnerabilities of the interconnected network, the electrical network spatially

coupled with the Internet network.

All these studies were performed under the assumption that a node/link of

the network fails due to some external reason. Then due to the redistribution

mechanism, failure spreads and affects the whole network. After this brief review,

we study the robustness of the networks against extreme events taking place on it

due to internal fluctuations.

Network robustness against extreme events

The mechanisms behind the growth of local failure vis-a-vis the global failure have

been extensively studied in the past but the reason behind the first node failure is

always assumed to be external. Here, we argue that the first trigger responsible for

the failure of a network need not be external, it can be an outcome of the dynamics

taking place on the network. Extreme event on a node can cause the node failure

and also the network failure. The model based upon the extreme events is not only

a different model from the earlier ones but also it is a realistic model of network

failures.

We consider a connected, undirected finite network consisting of N nodes and

E links. The dynamics on the network has been modeled using the standard ran-

dom walk model with multiple random walkers. There are W walkers performing

random walk on the network and a walker on node i can hop to any of the neigh-

boring nodes with equal probability. The random walk model is discussed in details

in chapter 2. As discussed earlier, the distribution of the walkers on a node is a

binomial distribution with probability pi = ki/2E. The mean and the variance of

the number of walkers passing through the node i is given by,

〈fi〉 = W
ki
2E

(4.1)

σi
2 = W

ki
2E

(
1−

ki
2E

)
. (4.2)
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An event is called an extreme event on node i at time t if the flux passing

through the node exceeds a given threshold qi. The threshold can be defined in

many ways but in the network context, it is natural to define it as

qi = 〈fi〉+mσi. (4.3)

where m can be any real number and the numerical value of m decides the

rarity of an extreme event. The threshold, defined in Eq. (4.3), is function of the

average flux passing through a node and the variance in it. Hence, it not only

takes care of the load(here, W walkers) on the network but also incorporates the

fluctuations in the flux passing through a node.

The number of walkers on a node fluctuates with time and when it exceeds the

capacity of the node defined as Eq. (4.3), it experiences an extreme event, and the

probability of such an event is,

F (K) =
W∑

k=⌊q⌋+1

f(K) = Ip (⌊q⌋+ 1,W − ⌊q⌋) , (4.4)

where Ip(., .) is the incomplete beta function.

4.2 Model of network failure

There are W walkers on the network and they walk on the nodes following the

rules of random walk on a network and extreme events occur on different nodes

due to the fluctuation in number of random walkers on the nodes.

In our model, a node after experiencing an extreme event stops functioning

and it sheds all its incoming links with the neighboring nodes. So that, at the

next step, walkers present on the node could walk out to its neighboring nodes

as per the rules of the dynamical process, however, due to the dropped incoming

links, the node does not receive any walker. Hence, the node stops supporting the

dynamics taking place on the network and gets deleted from the network.

The random walk continues on the modified network but the capacities of the

nodes on the modified network are not altered. A cartoon of the model is shown
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Figure 4.1: A network failure model is proposed based on extreme events. At
t = 0, extreme event occurs at node i and it gets deleted from the network at the
next time step i.e. t = 1. Before the node is deleted, walkers present on the node
move to neighboring nodes as per the dynamical rules.

in Fig. 4.1. At t = 0, an extreme event occurs of node i. At t = 1, the node i and

its links are deleted from the network and walkers continue to walk randomly on

the modified network.

In this process, a node may get isolated on the network due to its non-functioning

neighbors. In such situation, walkers present on the isolated node, stay there for

infinite time and do not participate in the dynamics. Walkers on the isolated nodes

can be considered as dead.

The dynamical process stops with the collapse of the network which means that

there does not remain a single node which could support the dynamical process.

The dynamics can also stop when there does not remain a single walker alive to

perform the random walk which is highly improbable. In either case, the network

stops functioning and fails.

The model has many qualitative differences with other models used to study

the network failures. It incorporates the internal dynamics of the system and does

not require any external factor unlike other models of dynamic failures. The failure

mechanism is based upon the fluctuations in walkers on the node and these large

fluctuations may arise due to the regular dynamics, following the extreme event

probability given by (refer to chapter 2), or due the redistribution dynamics after

the failure of a node, or due to both. In previous models, the redistribution of

the load among neighbors was either uniform or random. In this model walkers
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always follow the rules of the dynamics and therefore, the redistribution of walkers

is also governed by rules of the dynamical process. Hence, the model provides the

generalized framework to check the robustness of the network against the dynamical

process taking place on it.

In previous models, an external trigger is provided by the removal of a single

node or a group of nodes and based on the properties of this nucleation node, the

network may fail or survive. But here, due to the internal dynamics of the network,

failure does not depend on the properties of the initial node failure. Hence, it lacks

the concept of nucleation points.

Also, in this model, capacities of the nodes take care of the total load presented

on the network and also, incorporates the fluctuations present in the network

dynamics. Hence, the network failure does not depend on the initial load on the

network. The network failure model based on extreme events proposed in this work

captures most of the features of the network failures discussed in earlier studies.

To begin with, we check the robustness of a completely connected network

against the random walk dynamics and in the next section, we show that even

all-to-all network fails to support the random walk dynamics for infinite time.

4.3 Failure of an all-to-all network

We consider a fully connected network made of N = 100 nodes and E = 4950 links.

There are W = 9900 walkers on the network performing the random walk. In a

fully connected network, all the nodes have the same degree K = 99 and hence,

have equal capacities, q = 148. The capacity of node is defined as in Eq. (4.3)

with m = 5. The total capacity of the network is defined as

Q =
N∑

i=1

qi. (4.5)

Then, for our choice of W and N , we have

Q = Nq ∼
3W

2
. (4.6)
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The total capacity of the network is approximately 1.5 times the total load on

the network. The first extreme event strikes a node on the network with probability

F = 1.49× 10−6, calculated using Eq. (4.4). The probability that a extreme event

can occur anywhere on a fully connected network is,

FN = 1− (1− F )N ≈ FN, (4.7)

which means that first node from the network gets deleted with probability FN =

1.49 × 10−4. Here in the case of fully connected network, the probability of the

occurrence of an extreme event on any node always remains same. Another ad-

vantage of a fully connected network is that it always remains an all-to-all network

even after the nodes are removed. However, the degree of the nodes decreases with

every node removal.
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Figure 4.2: Number of active nodes on a network as a function of time. The
capacity of each node is q = 〈f〉 + 5σ. Different colors represents different ini-
tial conditions of walkers on the network.The simulation is performed on a fully
connected network with N = 100 nodes, E = 4950 links and W = 2E walkers.

In Fig. 4.2, the number of active nodes Nact is plotted against time and different

realizations are shown using different colors. Active nodes are defined as the nodes

which participate in the network dynamics at a given time. In each realization, the

clock starts as soon as the first extreme event strikes the network, so at t = 1, the

first node fails and Nact = N−1. Solid dots indicate that a node has been removed

at the time. Concentrating on any realization (say, red line) it is found that initially,
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the nodes fail at a slow rate but with every failure, the failure rate increases

smoothly until a critical number of nodes get deleted. After that, there is a sharp

decrease in the number of active nodes and the entire remaining network collapses

in a very few time steps. It shows that even fully connected networks are not very

robust against the extreme events which are inherent in the dynamics supported

by the network. A similar behavior can be observed in other realizations(different

colors). A sudden collapse of the network is a very robust feature against different

initial settings. The collapse occurs at different times in different realizations due

to the stochasticity involved in the dynamics.
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Figure 4.3: Number of deleted nodes on a network at each step. The step is a time
at which at least one extreme event has occurred on the network.

To understand the dynamics of node failures, the number of deleted nodes is

plotted against the steps in Fig. 4.3. A step is defined as the time at which at least

one node gets removed from the network. It shows that initially there was one node

failure at each step and the behavior continues until 20 nodes get deleted. After

these 20 steps, number of deleted nodes at each step increases and at around 23rd

steps, almost 50 nodes fail at a single time which results in a network collapse. The

remaining small number of nodes also get deleted after this big event. In Fig. 4.4,

the average number of failures per step (red dots) is plotted. The average is over 200

different initial conditions of random walkers. Maximum and minimum number of

failures per step is represented using error bars (Blue solid lines). The average does

not depict the correct picture but it clearly shows that a large number of nodes fail
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Figure 4.4: Average number of deleted nodes (red dots) on a network at each
step. The step is a time at which at least one extreme event has occurred on the
network. The average is taken over 200 realizations. Error bars are the minimum
and maximum number of deleted nodes at a step in these 200 realizations.

in a single step and the major failure happens roughly after 20 steps. The error bar

show that in one step even more than 50 nodes may fail and the remaining nodes

fail at the very next step. It is clear that it takes a small number (< 30) of steps

for an all-to-all connected network to fail completely. It is evident that with each

node failure, the probability of another node failure increases and when, it crosses

a certain value, the network as a whole fails. The time of failure remains uncertain

due to the cumulative stochasticity present in the system. With the fact that an

all-to-all connected network is almost certain to fail, it becomes very important to

understand the underlying mechanism behind the network failure.

4.4 Nature of failures

We note that the total number of walkers on the network remains constant in the

case of all-to-all network, but the total capacity of the network keeps decreasing

with every failure. At the time of complete failure, capacity of the network becomes

very small compared to the number of walkers present on the node. Hence, we can

define a parameter,

η =
Q

W
. (4.8)
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Figure 4.5: The ratio η = C/W is plotted against the number of deleted nodes
in the network. Different colors represent different realizations. On the black
dash-dot line the capacity of the network equals the total load(walkers) on the
network.

for the network and it can be an important parameter in studying network failures.

The capacity to load ratio η is plotted in Fig. 4.5 against the deleted number of

nodes. Initially, η decreases linearly, which means that the capacity of the network

is decreasing linearly. Then, η shows small deviations from the linear behavior and

towards the end, these deviations become larger and larger. The similar behavior

is noticed in all the realizations of network failures, shown in different colors in Fig.

4.5. For an all-to-all network, nodes do not get isolated and therefor, W always

remains constant. So η depends only on the capacity Q of the network which is

a linear function of number of active nodes in the network. Hence, the deviations

from the linear behavior represent the total number of nodes failed in one time

step.

For an all-to-all network, the model is analytically tractable. As we know, the

probability F (K) that an extreme event occurs on a node depends on the degree

(Ki), cutoff (q) and the total number of walkers on the network (W ) (refer to Eq.

(4.4)). With every node failure, degree Ki of the nodes changes while other pa-

rameters remain fixed for a fully connected network. The diameter of the network

is 1, hence it can be assumed that random walkers spread all over the network

immediately after the node fails. This assumption allows us to calculate the ex-

treme event probability on a node using Eq. (4.4). The steady state probability

of finding a walker on node i after the failures of Ndel nodes can be written as,
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PNdel

i =
KNdel

i∑N−Ndel

j=1 KNdel

j

. (4.9)

For an all-to-all network.

Kn
i = N − 1−Ndel; (4.10)

So,

PNdel

i =
N −Ndel − 1

∑N−Ndel

j=1 (N −Ndel − 1)
(4.11)

=
N −Ndel − 1

(N −Ndel)(N −Ndel − 1)
(4.12)

=
1

(N −Ndel)
. (4.13)

Using PNdel

i , the probability of occurrence of an extreme events on a node can

be obtained as,

F (Ndel) = IP (Ndel) (⌊q⌋+ 1,W − ⌊q⌋) . (4.14)

Where Ix(., .) is the incomplete beta function. Since, all the nodes have the

same degree, one can calculate the expected number of extreme events on the

network per time. Expectation value of extreme events on the network is equal

to the expected number of deleted nodes per time. The formal equation can be

written in the following way,

〈Ndel〉 = Ndel ∗ F (Ndel), (4.15)

and it is plotted in Fig. 4.6 as the blue dashed line against the η. Initially,

〈Ndel〉 = 0 for η = 1.49. As the Ndel increases, the network capacity decreases. In

the beginning, 〈Ndel〉 increase slowly until it becomes greater than 1. The green

line in Fig. 4.6 indicates 〈Ndel〉 = 1 and it cuts the curve at η = ηc1 = 1.23.

After that, 〈Ndel〉 increase rapidly and attains the maximum value at η = .84. The

〈Ndel〉 starts decreasing until 〈Ndel〉 = 0 with η = 0. Soon after, reaching its peak

value, 〈Ndel〉 becomes comparable to the network size, Nact at η = ηc2 = 0.79. The
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Figure 4.6: The number of deleted nodes are plotted against the capacity-load ratio.
Blue dashed line is obtained from Eq. (4.15). Symbols represent the data obtained
from simulations. Different symbols are used for different realizations. Along the
black dot-dash line, 〈Ndel〉 = Nact. Red solid lines are used for separating the
different natures of failure. Along the green solid line 〈Ndel〉 = 1.

behavior of 〈Ndel〉 changes drastically at two points ηc1 and ηc2, represented by solid

red lines in Fig. 4.6. Based on the behavior of 〈Ndel〉 in the regions demarcated

by the critical points ηc1 and ηc2, we can divide the dynamics of network failure in

three different regions.

� Independent failures: 〈Ndel〉 < 1 and η > ηc1.

� Cascade failures: Nact > 〈Ndel〉 ≥ 1 and ηc1 > η > ηc2.

� overload failures: 〈Ndel〉 ≈ Nact and η < ηc2

The detailed descriptions of these three regions are as follows.

4.4.1 Independent failures

The region of independent failures is marked as region (I) in Fig. 4.6 for the range

η > 1.23. In this region 〈Ndel〉 < 1 which means that it may take more than 1 time

step for the extreme event to occur on any of node on the network. It happens

because the network in the region (I) has excess capacity than the total load and

hence, the individual nodes also have the capacities more than the average number

of walkers. Hence, the redistributed random walkers get absorbed in the network

without causing any other extreme event on the network at the next time step. As

the number of deleted node, increases the probability of the node failure on the
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network also increases.The probability that a node gets deleted from the network

in the region ranges from O(10−3) to O(10−1). Therefore, the time intervals in

between the successive node failures also range from O(103) to O(101).

As we know, that the diameter of an all-to-all network is 1 and hence, with in

a single time step, the modified network should attain a steady state. Therefore,

the node failures occurring in the region (I) can be considered as independent from

each other. The small dependencies in between the node failures arises due to the

fact that each failed node decreases the total capacity of the network.
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Figure 4.7: The time at which a node fails is plotted as a function of the capacity-
load ratio η in the region of independent node failures(1.25 < η). The time starts as
soon as the first node fails. Again, different colors are used for different realizations.

Region (I) corresponds to the linear region (η > 1.25) in Fig. 4.5. This region

is plotted against time in Fig. 4.7. The starting time tstart is set to 0 as the first

extreme event knocks out a node from the network. Solid dots represent the node

failures. Initially, the time differences in between the successive node failures are

large O(103) in the range η > 1.42 and they become O(101) for 1.35 > η > 1.25.

In the Fig. 4.7, it seems that there are multiple failures at a single time step but

it is just an artifact of the time scale.

For an easy comparison, the data of node failures obtained from simulations

is also shown in Fig. 4.6 and is represented by the symbols. Different types of

symbols correspond to different realizations of the network failure. In simulations,

the number of failed nodes can take integer values only hence in region (I) of Fig.

4.6, differences between the analytically obtained 〈Ndel〉, (blue dashed line) and
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Ndel obtained from simulations (symbols) can be observed. In this region, most

of the symbols lie on top of each other, which represents that only one node may

fail at a given time. However, there remains a very small but finite probability of

multiple independent failures on the network and it is confirmed by the presence

of one lower triangle, deviating from line of 〈Ndel〉 = 1. At this step, there were

two nodes which failed together.

Though the numerical simulations give an approximate value, one can get an

exact analytical estimation. The value of ηc1 = 1.25 obtained from simulations is

approximate and it varies, to some extent, from realization to realization. As the

〈Ndel〉 approaches the green line, node failures become more frequent and another

mechanism starts playing role in node failures.

4.4.2 Cascade failures

As η decreases, 〈Ndel〉 increases and at η = ηc1 = 1.23, the value of 〈Ndel〉 exceeds

one. It means that at every time step, at least one node gets deleted from the

network. Here, the node failures are not independent and they tend to follow one

another. Though, in some part of the region (II) the total capacity of the network

η > 1 is still more than the total load present on the network but some of the

nodes can no longer handle the extra walkers which arises due to the fluctuations

in the number of walkers on a node and they get deleted due to excess load received

from the redistribution of walkers. In an all-to-all network, all the nodes are the

neighbors of each other and hence, these failures are correlated to one another.

The failure of a small number of nodes is followed by the failure of a larger number

of nodes at the next time step. Failure of nodes in such a manner is called the

cascade failures. The cascade failures are shown as region (II) in Fig. 4.6. In this

region also, simulation results deviate from the blue curve obtained analytically but

still, they are in good harmony with each other. The deviation from the analytical

results seems to be an effect of the region (I) in which the number of deleted nodes

in simulations can take integer values only.

Cascades can be clearly seen in time domain in Fig. 4.8 where the region

η < 1.25 of Fig. 4.5 is plotted against the time. Here, the time at which the entire
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Figure 4.8: The time at which a node fails is plotted as a function of the capacity-
load ratio in the region of cascade failures and over load failures (0 < η < 1.25).
Here, the time of the total failure is considered as 0 and ′−′ sign represents the time
steps just before the network failure. Again, different colors are used for different
realizations.

network fails is set to 0 and the history of node failures is shown. Again, the solid

dots represent the node failures and it is evident from Fig. 4.8 that in the range

1.2 > η > 0 nodes get deleted at each time step until the entire network fails. In

the earlier studies, cascade failures have not been reported on a fully connected

network.

The region of cascading failures, region (II) extends up to η > ηc2 = 0.79

which means that the capacity of the network is less than the total load present

on the network. In this case, the entire network should fail in single time step but

stochasticity present in the dynamics prevents it from one step failure in the region

of C < W . It also becomes clear from the Fig. 4.6, where 〈Ndel〉 < Nact though,

the network is overloaded.

4.4.3 Overload failures

The last stage of cascade failure is the overload failure because the network fails

with deletion of the remaining nodes in one time step. In the region of overload

failures marked as region (III) in Fig. 4.6 ,〈Ndel〉 becomes equal to Nact and the

total load on the network is much greater than the capacity (η ≤ 0.79) of the

network. One can safely say that in this region, each node in the network is

already overloaded and hence, it does not take more than one time step for a
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complete failure of the network. The range of region (III), also matches with the

simulation results plotted in Fig. 4.5. In this region of Fig. 4.6, every symbol

appears only once, it implies that the all the remaining node in the network fail

together.

Therefore, the network collapse is triggered by the failure of a single load fol-

lowed by the independent failures of few other nodes. These independent failures

brings the network at the state of cascade failures which leads to the successive

failures of the nodes and in the end, the network collapses in a single time step

due to overload failure.

4.5 Discussion and summary

Here, in this chapter, a scenario is presented in which extreme events can cause

node failures which lead to the complete failure of a network. We argue that

our model is conceptually different from the models earlier studied. Based on the

studies performed on a fully connected network, the nature of failures have been

discussed. The network failure starts with independent node failures which gives

rise to cascading failures of the nodes and in the end, the remaining nodes fail

in one time step due to over load. The process of network failure is also studied

analytically and the analytically obtained regions matches well with the simulation

results. In contrast with the earlier studies we show that cascade failures can also

occur in all-to-all networks. The model captures all the features of the network

failures in an all-to-all network.



Chapter 5

Conclusion

A wide spectrum of extreme events ranging from the traffic jams to floods take

place on networks. Motivated by these, this thesis was aimed for understanding the

disruptions in the flow occurring on networks due to the internal fluctuations arising

in the flow. This thesis is an attempt to perceive the effect of heterogeneity, inbuilt

in complex networks, on the occurrences of extreme events and may be regarded

as the first document to provide a frame work for studying extreme events on

networks arising due to the internal fluctuations in the dynamical process. The

extreme events studied here can occur in any dynamical process but here we have

restricted ourselves to the transport process.

To begin with, we employ the random walk model for transport on networks

and extreme events were defined on network using a carefully chosen criterion. We

obtained various analytical and numerical results for the extreme events on net-

works. They revealed an unforeseen yet a robust feature: small degree nodes of a

network are more likely to encounter extreme events than the hubs. Further, we

also studied the recurrence time distribution and scaling of the probabilities for

extreme events. Recurrence time distribution suggests that extreme events occur-

ring on individual nodes are independent but it does not rule out the possibility

of correlations among extreme events occurring on different nodes in the network.

This cross-correlations among extreme events on different nodes can shed light on

the dynamics of extreme events. It can be a useful tool to predict the extreme

events on network provided that it has already occurred on some node. In the
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case of random walk, network topology does not play any role in the occurrence

of extreme events. However the magnitude of the extreme events can depend on

network structure but without receiving the support from the dynamics, effect of

topology remains invisible.

In order to validate our expectations, the dynamics was modeled using general-

ized random walk. Here, the walk is biased by the network topology and tuning of

a parameter allows the walk to be biased towards the hubs or small degree nodes.

In this setting, we show that extremely large fluctuations in event sizes are possi-

ble on small degree nodes when the walkers are biased toward the hubs. Further,

the probability for the occurrence of extreme events on any node in the network

depends on its generalized strength, a measure of the ability of a node to attract

walkers and nodes with smaller strengths display larger probability for the occur-

rence of extreme events compared to the nodes of higher strengths. The role of the

network topology in the occurrence of extreme events could also be captured.

After studying the occurrences of extreme events on networks, we studied the

effect of extreme events on networks under the assumption that extreme events

destroy the node on which they occur. We realized that our model of network

failure based on extreme events is conceptually different from the earlier models

of network failures. To understand the dynamics arising due to this model, it was

tested on a full connected network. At least in this case, we expected our results

to follow the earlier known results of network failure. But to our surprise, results

revealed more than what was expected based on the results reported by others.

The network not only collapses against extreme events but also the collapse occurs

just after the failure of only 10%−15% nodes. Moreover, cascades of node failures

were observed in all-to-all networks other than the usual over-load failures. On the

all-to-all network, the model was analytically tractable and conditions for different

kinds of failures were obtained.

All the results documented in this thesis suggest that the nodes with smaller

degree are very important from extreme events point of view. On a scale-free

network they are large in numbers and carry most of the load. At the same time,

they are the most vulnerable to face the extreme events. These results can be used

to design the network which can handle the extreme events smoothly.
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The work reported in this thesis provides a general framework to study the ex-

treme events in the case when dynamics is taking place on the networks. Though,

here we have studied extreme events on networks using the random walk dynamics

but it is possible to study extreme events for other dynamical processes on net-

works. Hence, this thesis opens a new window to look at the various phenomena

occurring on networks and understand them in terms of extreme events.

I would like to conclude this thesis with the following quote,

Now this is not the end.

It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.

– Sir Winston Churchill (1942)
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A wide spectrum of extreme events ranging from traffic jams to floods take place on networks.

Motivated by these, we employ a random walk model for transport and obtain analytical and numerical

results for the extreme events on networks. They reveal an unforeseen, and yet a robust, feature: small

degree nodes of a network are more likely to encounter extreme events than the hubs. Further, we also

study the recurrence time distribution and scaling of the probabilities for extreme events. These results

suggest a revision of design principles and can be used as an input for designing the nodes of a network so

as to smoothly handle extreme events.
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Extreme events (EE) taking place on networks is a fairly
commonplace experience. Traffic jams in roads and other
transportation networks, web servers not responding due to
heavy load of web requests, floods in the network of rivers,
and power blackouts due to tripping of power grids are
some of the common examples of extreme events on net-
works. Such events can be thought of as emergent phe-
nomena due to transport on the networks. As EE lead to
losses ranging from financial and productivity to even life
and property [1], it is important to estimate probabilities
for the occurrence of extreme events and, if possible,
incorporate them to design networks that can handle such
extreme events.

Transport phenomena on the networks have been studied
vigorously in the last several years [2,3] though they were
not focused on the analysis of EE. However, one kind of
extreme event in the form of congestion has been widely
investigated [4]. For instance, a typical approach is to
define rules for (a) generation and transport of traffic on
the network and (b) capacity of the nodes to service them.
Thus, a node will experience congestion when its capacity
to service the incoming ‘‘packets’’ has been exceeded [5].
In this framework, several results on the stability of net-
works, cascading failures to congestion transition have
been obtained. An extreme event, on the other hand, is
defined as exceedances above a prescribed quantile and is
not necessarily related to the handling capacity of the node
in question. It arises from natural fluctuations in the traffic
passing through a node and not due to constraints imposed
by capacity. Thus, in the rest of this Letter, we discuss
transport on the networks and analyze the probabilities for
the occurrence of EE arising in them without having to
model the dynamical processes or prescribe the capacity at
each of the nodes.

The transport model we adopt is the random walk on
complex networks [3]. Random walk is of fundamental
importance in statistical physics though in real network
settings many variants of random walk could be at work

[6]. For instance, in the case of road traffic, the flow
typically follows a fixed, often shortest, path from node A
to B and can be loosely termed deterministic. Thus, given
the operational principle of network dynamics, i.e., deter-
ministic or probabilistic or a combination of both, we obtain
the probabilities for the occurrence of EE on the nodes. This
reveals a significant and unexpected result: namely, that the
EE are more prone to occur in a small degree node than in a
hub. This feature is robust against fluctuating traffic and
even upon the application of intelligent routing algorithms
(e.g., shortest paths). This principal result implies that the
design principles for networks should focus on small degree
nodes which are prone to EE. Further, these probability
estimates allow us to design nodes that can have sufficient
capacity to smoothly handle EE of a certain magnitude.
Currently, for univariate time series, there is a widespread
interest on the extreme value statistics and their properties,
in particular, in systems that display long memory [7].
Thus, we place our results in the context of both the random
walks and EE in a network setting.
We consider a connected, undirected, finite network

with N nodes with E edges. The links are described by
an adjacency matrixA whose elements Aij are either 1 or 0

depending on whether i and j are connected by a link or
not, respectively. On this network, we haveW noninteract-
ing walkers performing the standard random walk. A ran-
dom walker at time t sitting on the ith node with Ki links
can choose to hop to any of the neighboring nodes with
equal probability. Thus, transition probability for going
from the ith to the jth node is Aij=Ki. We can write

down a master equation for the n-step transition probability
of a walker starting from node i at time n ¼ 0 to node j at
time n as,

Pijðnþ 1Þ ¼ X
k

Akj

Kk

PikðnÞ: (1)

It can be shown that the n-step time-evolution operator
corresponding to this transition, acting on an initial
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distribution, leads to stationary distribution with eigen-
value unity [3] and it turns out to be

lim
n!1PijðnÞ ¼ pj ¼

Kj

2E
: (2)

The existence of stationary distribution is crucial for defin-
ing EE. Physically, the stationary probability in Eq. (2)
implies that more walkers will visit a given node if it has
more links.

Now we can obtain the distribution of random walkers
on a given node. We ask for the probability fðwÞ that there
are w walkers on a given node having degree K. Since the
random walkers are independent and noninteracting, the
probability of encounteringwwalkers at a given node is pw

while the rest of the W � w walkers are distributed on all
the other nodes. This turns out to be binomial distribution
given by

fðwÞ ¼ W
w

� �
pwð1� pÞW�w: (3)

Now, the mean and variance for a given node can be
explicitly written down as

hfi ¼ WK

2E
; �2 ¼ W

K

2E

�
1� K

2E

�
: (4)

As expected, the mean and variance depends on the degree
of the node for fixed W and E. Note that K=2E � 1 and

hence � � hfi1=2. This reproduces the relation proposed in
Ref. [8], later shown to have limited validity [9].

One natural extension of the result in Eq. (3) is to
account for fluctuations in the number of walkers. We
assume that the total number of walkers is a random
variable uniformly distributed in the interval ½W � �;
W þ ��. Then the probability of finding w walkers
becomes

f�ðwÞ ¼ X2�
j¼0

1

2�þ 1

~W þ j
w

� �
pwð1� pÞ ~Wþj�w; (5)

where ~W ¼ W � �. The mean and variance of this
distribution can be obtained as

hf�i ¼ hfi;

�2
� ¼ hf�i

�
1þ hf�i

�
�2

3W2
þ �

3W2
� 1

W

��
:

(6)

In the spirit of extreme value statistics, an extreme event
is one whose probability of occurrence is small, typically
associated with the tail of the probability distribution func-
tion. In the network setting, we will apply the same prin-
ciple to each of the nodes. Based on Eqs. (3) and (4), we
will designate an event to be extreme if more than q
walkers traverse a given node at any time instant.
The probability for the occurrence of an extreme event
can be obtained as

FðKÞ ¼ X2�
j¼0

1

2�þ 1

X~Wþj

k¼bqcþ1

~W þ j
k

� �
pkð1� pÞ ~Wþj�k;

(8)

where buc is the floor function defined as the largest integer
not greater than u. Notice that necessarily the cutoff q will
have to depend on the node (or rather, the traffic flowing
through the node) in question. Applying uniform threshold
independent of the node (q ¼ const) will lead to some
nodes always experiencing an extreme event while
some others never encountering any extreme event at all.
Hence we define the threshold for extreme event to be
q ¼ hfi þm�, where m is any real number.
It does not seem possible to write the summation in

Eq. (8) in closed form. However, for the special case
when � ¼ 0, Eq. (8) simplifies to

FðKÞ ¼ XW
k¼bqcþ1

fðkÞ ¼ Ipðbqc þ 1; w� bqcÞ; (9)

where Ipð:; :Þ is the regularized incomplete beta function

[10]. For a given choice of network parameter E and
number of walkers W, the extreme event probability at
any node depends only on its degree. In Fig. 1 we show
FðKÞ as a function of degreeK superimposed on the results
obtained from random walk simulations. The agreement
between Eq. (8) and the simulated results is quite good.
Further, each point in the figure represents an average over
all the nodes with the same degree. We emphasize that the
oscillations seen in Fig. 1 are inherent in the analytical and
numerical results and not due to insufficient ensemble
averaging.

0

0.0005

0.001 Simulation
Analytical

0

0.0005

0.001

F
(K

)

3 9 27 81 243
K

0

0.0005

0.001

(a)

(b)

(c)

∆=0.01W

∆=0

∆=0.1W

FIG. 1 (color online). Probability for the occurrence of ex-
treme events as a function of degree K with fluctuations � in the
total number of walkers on semilog plot. The threshold for EE is
q ¼ hfi þ 4�. The solid lines are from the analytical result in
Eq. (8). All the simulations shown in this Letter are obtained
with a scale-free network (degree exponent � ¼ 2:2) with
N ¼ 5000 nodes, E ¼ 19 815 vertices, and W ¼ 2E walkers
averaged over 100 realizations with randomly chosen initial
conditions.
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An important feature of this result is that the nodes with
smaller degree (K < 20) reveal, on an average, a higher
probability for the occurrence of EE as compared to the
nodes with higher degree, say, K > 100. By careful choice
of parameters, the probability FðKÞ can differ by as much
as an order of magnitude. This runs contrary to a naive
expectation that higher degree nodes garner more traffic
and hence are more prone to EE. While the former con-
tention is still true in the random walk model we employ,
the results here indicate that the latter one is not generally
correct. As shown in Figs. 1(b) and 1(c), this feature is
robust even when the number of walkers becomes a fluc-
tuating quantity. We note that Eqs. (8) and (9) for the
extreme event probability do not depend on the topology
of the network. Even though the simulation results are
shown for scale-free graphs, it holds good for other types
of graphs (not shown here) with random and small world
topologies. However, the difference in probability for EE
between hubs and smaller degree nodes is not pronounced
in the case of random graphs.

The threshold q that defines an event to be extreme
depends on the traffic flowing through a given node. The
choice q ¼ hfi þm� is arbitrary. Now, we show that the
extreme event probability in Eq. (9) scales with the choice
of threshold q or, equivalently, m. In the Fig. 2(a) we show
FmðKÞ for various choices ofm in log-log scale. Clearly, as
m decreases, ignoring the local fluctuations, the curves
tend to become horizontal. Physically, this can be under-
stood as follows: q ! 0 implies that the threshold for EE
decreases and this leads to larger number of EE and hence a
higher probability of occurrence. In the limiting case of
q ¼ 0, FðKÞ ¼ 1 for all nodes and all the events would be
extreme. The graph in Fig. 2(a) suggests that it might be
scaling with respect to q or m. Starting from Eq. (9),
we were not able to determine the scaling analytically.

Hence, we empirically show that the following scaling
relation holds for the probability of EE,

FmðKÞ
K1�Sm

¼ constant; (10)

where FmðKÞ represents extreme event probability for
threshold value qwith parameter m. In this, Sm is the slope
of the curves FmðKÞ in the Fig. 2(a). Using Eq. (10) on the
simulated data for� ¼ 0, we find that all the curves for the
probability of EE, shown in Fig. 2(b), collapse into one
curve to a good approximation.
In the study of EE, distribution of their return intervals is

an important quantity of interest. This carries the signature
of the temporal correlations among the EE and is useful for
hazard estimation in many areas. We focus on the return
intervals for a given node of the network. Since the random
walkers are noninteracting, the events on the nodes are
uncorrelated. Then, the recurrence time distribution is

given by Pð�Þ ¼ e��=h�i, where the mean recurrence time
is h�i ¼ 1=FðKÞ. In the inset of Fig. 3, we show Pð�Þ
obtained from simulations for three nodes with different
degrees. In semilog plot, they reveal an excellent agree-
ment with the analytical distribution Pð�Þ (shown as a solid
line). The main graph of Fig. 3 shows the mean recurrence
time h�i, the only parameter that characterizes the recur-
rence distribution, as a function of K and it agrees with the
analytical result.
As pointed out before, many types of flow on the net-

work, such as the information packets flowing through the
network of routers and traffic on roads, use more intelligent
routing algorithms [11] rather than a random walk. To
check the robustness of results in Eqs. (8) and (9), we
implemented the random walk simulation with the con-
straint that the traffic from node i to j takes the shortest
path (SP) on the network. If multiple shortest paths are
available to go from node i to j, the algorithm chooses any
one of them with equal probability. Thus, in this setting,

3 9 27 81 243
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FIG. 2 (color online). Probability for occurrence of extreme
events for several values of threshold q ¼ hfi þm�. (a) shows
the extreme event probabilities in log-log plot obtained from
simulations with � ¼ 0. (b) shows scaling EE probabilities. S0
represents the reference slope with m ¼ 2. The threshold applied
for curves from top to bottom are m ¼ 2:0, 2.5, 3.0, 3.5, 4.0, 4.5,
and 5.0.
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FIG. 3 (color online). The inset shows the recurrence time
distribution for extreme events from simulations (symbols)
with � ¼ 0 for nodes with 5, 12, and 19 links. The solid line
is the analytical distribution. The main figure shows the mean
recurrence time as a function of degree K.
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for every random choice of source-destination pair the
paths are laid out by the algorithm and randomness arises
only when multiplicity of SPs are available. Thus, this can
be thought of as a walk with a large deterministic compo-
nent. The simulation results with the SP algorithm [12]
shown in Fig. 4 are qualitatively similar to the trend dis-
played in Fig. 1. In this scenario of predominantly deter-
ministic dynamics, it is conceivable that the degree of a
node does not determine the flux passing through it. This
role is played by the centrality of the node with respect to
the SPs in the network, quantified by the betweenness
centrality b of a given node [13]. Based on this qualitative
argument, the results in Fig. 4 can be understood if we
replace Eq. (2) with p ¼ �b=B where B is the normaliza-
tion factor that depends on the sum of betweenness central-
ity of all the nodes on the network. From the numerical
simulations, we obtain � � 0:94. Using this p in Eq. (2),
we can go through the same arguments as before and
analytically obtain hfi, �2, q, and the probability FspðbÞ
for occurrence of EE. In Fig. 4(a), FspðbÞ is shown as solid
curve. In Fig. 4(b), the same data for FspðbÞ are shown as a
function ofK for easier comparison with Fig. 1. Thus, even
with the SP algorithm thrown in, the EE probabilities are
higher for the nodes with smaller degree (K < 20) than for
the ones with larger degree (K > 100).

Finally, we comment on how these results can be applied
as a basis to design nodes of a network. The central result
in this Letter in Eq. (8) allows us to a priori estimate the EE
probabilities. These depend on whether operating principle
of dynamics is deterministic or probabilistic. If the idea is
to avoid congestion or other problems arising due to EE of
certain magnitude, then these estimates can be used as an
input to the design principles for the nodes. For instance,

for the road traffic that operates broadly on the shortest
path principle the probabilities can be used as a basis to
provision for higher capacity to nodes that will avoid
bottlenecks arising from EE of a given magnitude.
In scale-free networks, small degree nodes form the bulk

and are more prone to encounter EE. But network design
principles and practice generally focus on the hubs. Such
evolved practices might work best most of the time. Our
work suggests that they might fail in the context of extreme
events and hence a revised approach is necessary. A careful
design for the capacity of small degree nodes is important
as well. It must be emphasized that incorporating such EE
estimates in design principles will only help in better
preparedness to meet the expected EE. The EE discussed
here being due to inherent fluctuations will nevertheless
take place and cannot be avoided.
The simulations were carried out on computer clusters at
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Random walk on discrete lattice models is important to understand various types of transport processes. The
extreme events, defined as exceedences of the flux of walkers above a prescribed threshold, have been studied
recently in the context of complex networks. This was motivated by the occurrence of rare events such as traffic
jams, floods, and power blackouts which take place on networks. In this work, we study extreme events in a
generalized random walk model in which the walk is preferentially biased by the network topology. The walkers
preferentially choose to hop toward the hubs or small degree nodes. In this setting, we show that extremely large
fluctuations in event sizes are possible on small degree nodes when the walkers are biased toward the hubs. In
particular, we obtain the distribution of event sizes on the network. Further, the probability for the occurrence of
extreme events on any node in the network depends on its “generalized strength,” a measure of the ability of a
node to attract walkers. The generalized strength is a function of the degree of the node and that of its nearest
neighbors. We obtain analytical and simulation results for the probability of occurrence of extreme events on the
nodes of a network using a generalized random walk model. The result reveals that the nodes with a larger value
of generalized strength, on average, display lower probability for the occurrence of extreme events compared to
the nodes with lower values of generalized strength.

DOI: 10.1103/PhysRevE.85.056120 PACS number(s): 89.75.Hc, 05.40.Fb

I. INTRODUCTION

Extreme events are typically associated with disasters of
some kind or other, e.g., droughts, cold wave, cyclones,
earthquakes, wind gusts, and economic recession. When a
relevant variable, such as the wind speed w(t) recorded at
time t in the case of wind gusts, exceeds a certain prescribed
threshold q due to its inherent fluctuations, i.e., w(t) > q, then
it is taken to be an extreme event. In particular, it is important to
note that the magnitude of the tremor, wind speed, temperature,
economic growth, etc., are scalar variables. A large number of
results, both theoretical and empirical, are known about the
statistics and dynamics of extreme events for such univariate,
scalar variables [1]. One significant result due to classical
extreme value theory is that, depending on the probability
distribution function of the variable, the distribution of block
maxima for the uncorrelated sequence of random variables
converges to only one of three possible forms, namely, Fréchet,
Gumbel, and Weibull distributions [2].

In contrast to this scenario, extreme events can also
take place on complex networks. Consider, for instance, the
most common experience of web surfers, a web server not
responding due to the heavy load of http requests. This is
an extreme event taking place on the network of the World
Wide Web. For example, the popular social networking site
Twitter handled about 600 tweets per second in early 2010 [3].

*phy.vimal@gmail.com
†santh@iiserpune.ac.in
‡amritkar@prl.res.in

According to an industry estimate, the Google search engine
received approximately 34 000 search requests per second by
the end of 2009 [4]. For most web sites on the World Wide
Web that are unprepared for such a large number of http
requests, these numbers would represent extreme events and
could potentially disrupt the service. The power blackout in
the northeastern United States in 2003 is also an example of
extreme event on the power transmission grid network. The
cascading failures shut down more than 508 power generating
units at 265 power plants during the peak of this blackout [5].
Gridlock on highways is an example of an extreme event on
the transportation network. From the point of view of physics,
all these events could be thought of as an emergent phenomena
arising due to flux on the networks and could be regarded as
extreme events arising primarily due to the limited handling
capacity of the node. Transport on networks continues to be
widely studied, but much less attention has been focused on
it from the point of view of extreme events. Generally, when
the flux (packets of information or power or highway traffic
in the case of the examples given above) exceeds the handling
capacity, it turns out to be an extreme event for the particular
node on the network. In earlier works related to congestion
and cascade on networks [6–13], handling capacity is a key
ingredient that needs to be prescribed upfront.

However, extreme events happen not only because of the
limited handling capacity of the node on a network but also
because of inherent fluctuations in the flux passing through
the node. These fluctuations in the flux passing through a
node could be so large that they breach a prescribed threshold,
in which case we label the event as an extreme event for
the node. This definition of extreme event for a node on any
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network is similar in spirit to that of the classical extreme value
theory. Then, a relevant question is how the connectivity of the
network affects the probability for extreme event occurrence.
By modeling the transport as standard random walks on
networks, it was shown in Ref. [14] that the probability
for the occurrence of extreme events P (ki), arising due to
inherent fluctuations, depends only on the degree ki of the ith
node in question. In this work, the threshold qi was chosen
to be proportional to typical fluctuation size on ith node.
Thus, the extreme events are identified after taking care of
the natural variability of the flux passing through the given
node. Further, it was shown that, on average, P (k) is higher
for small degree nodes than for hubs. This is a surprising result
because it implies that, within the framework of random walk
on networks, even though hubs attract large flux (compared
to small degree nodes) they are less prone to extreme events.
Thus, in the context of a node on a connected network, larger
flux does not necessarily translate into higher probabilities
for extreme events. This feature is one possible signature of
connectivity, i.e., the network setting on which the system
operates. In contrast, for a scalar time series w(t) larger flux
would imply higher extreme-event probabilities.

Random walk on complex networks is a useful fundamental
model against which to compare other transport processes.
Most realistic transport phenomena on networks, such as
the flux of information packets passing through the network
of routers or road traffic, do not proceed by performing a
random walk. In order to model the flux in a more realistic
way, it is useful to generalize the standard random walk to
a situation in which the flux is either biased toward hubs or
small degree nodes. For example, consider the case of two
remote airports which are not directly connected by flights.
Typically, they would be connected through a major hub on
the airline network. This is one practical scenario in which
the traffic is biased toward the hubs. This happens in many
network settings; railways tend to connect the hinterland with
the hubs, phone connect to nearest hubs on the network.
Motivated by these physical examples, in this work, we model
the transport process as random walks biased by the topology
of the network and study the extreme-event probabilities and
event-size distributions. We show that a biased random walk
leads to extreme fluctuations in the event sizes on the network.
In the subsequent sections, we discuss the topologically biased
random walk model on a network and obtain analytical results
for the probability of occurrence of extreme events on any
node. We show that the analytical and simulation results are in
good agreement.

II. BIASED RANDOM WALK ON NETWORKS

A. Stationary distribution

We consider a connected, undirected, finite network with
N nodes and E edges. The network is characterized by a
symmetric adjacency matrix A with elements Aij = 1 if nodes
i and j are connected by an edge and Aij = 0 otherwise. There
are W independent walkers performing biased random walks
on this network in the sense explained below. We denote by
bij the transition probability for a walker to hop from node i to
a neighboring node j . Let Pij be the probability that a walker

starting at node i at time n = 0 is at node j at time n. Then,
the master equation can be written as

Pij (n + 1) =
∑

l

Alj bljPil(n). (1)

The random walkers are biased by taking the time-independent
transition probability for hopping from the lth node to the j th
node to be [15–17]

blj ∝ kα
j , (2)

where α is a parameter that defines the degree of bias imparted
to the walkers. Clearly, α = 0 corresponds to the standard
random walk, where the transition probability is unbiased
and a walker can hop to any neighboring node with equal
probability. For α > 0, the random walkers are biased toward
nodes with larger degree or hubs. In contrast, if α < 0, walkers
preferentially hop to small degree nodes. The larger (smaller)
α is, the stronger the bias toward hubs (small degree nodes) is.
Then, the normalized transition probability becomes

blj = kα
j∑kl

m=1 kα
m

. (3)

The summation in the denominator runs over the nearest
neighbors of node l. Using the transition probability in Eq. (3),
the master equation becomes

Pij (n + 1) =
∑

l

Alj

kα
j∑kl

m=1 kα
m

Pil(n). (4)

By repeated iteration of Eq. (4), it can be shown that Pij (n) as
n → ∞ leads to the stationary distribution

lim
n→∞ Pij (n) = pj = kα

j

∑kj

l=1 kα
l∑N

m=1

(
kα
m

∑km

l=1 kα
l

) . (5)

We can define the generalized strength of the j th node to be

φj = kα
j

kj∑
i=1

kα
i , (6)

which is a measure of the ability of a node to attract walkers.
Note that φj depends on the bias parameter α and the degree
of the nearest neighbors to which it is connected by an edge.
Hence, it is possible for nodes with the same degree to have
different generalized strengths. Thus, the generalized strength
of the node is independent of the global network structure but
is dependent on the local connectivity structure around the
node. This is in contrast to the case of a standard random walk
(on networks) in which the large-scale structure of the network
topology plays no significant role. The local network structure
is important for biased random walks on networks. In Fig. 1,
we show how the generalized strength φ depends on the degree
of a node for several values of α in a scale-free network with
degree exponent γ = 2.2. For α = 1 (crosses in Fig. 1), the
generalized strength of a node is higher for large degree nodes
(hubs), and an approximate linear relation is seen between
φi and ki of the ith node. For α = 0, which is the standard
random walk case, the generalized strength of the node is
the same as the degree of the node (solid circles in Fig. 1).
However, for α = −1.0, φ is independent of k, especially for
large degree nodes (triangles in Fig. 1). In this case, the bias
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FIG. 1. (Color online) Strength φ as a function of degree k for
different values of α in log-log plot.

in the random walk represented by its generalized strength φ

is balanced by the degree of the node. In a scale-free network,
a large number of small degree nodes are present, and they
do not have identical values for the generalized strength φ.
This explains the spread in φ for all values of k < 50. Upon
a further decrease in the bias parameter α below −1.0 (open
squares in Fig. 1), nodes with a smaller degree or neighbors
with a smaller degree become important, and the generalized
strength decreases with increasing degree.

B. Extreme-event probability

The stationary distribution for the number of walkers in the
j th node can be rewritten in terms of the generalized strength
φ as

pj = φj∑N
l=1 φl

. (7)

Thus, every node can be uniquely characterized by its
generalized strength φ. It is expected that two nodes with the
same value of φ show similar behavior as far as biased walks on
networks based on Eq. (2) are concerned. In the case of α = 0,
we get φi = ki , and the stationary distribution simplifies to
pj = kj

2E
, the result obtained for the case of a standard random

walk in Ref. [18]. Thus, in the case of a standard random walk,
the degree k characterizes the node. In the case of uncorrelated
random networks, the stationary occupation probability can be
further simplified by using the mean field approximation and
can be written as [15,16]

pj = kα+1
j

N〈kα+1〉 . (8)

This approximate result suggests that the nodes with the same
degree should have identical transition probabilities [15]. This
does not necessarily hold well for the nodes of correlated
networks, such as scale-free networks. This is because in
a scale-free network, the neighborhoods of nodes with an
identical degree are not identical. Hence, to study extreme
events we use Eq. (7) instead of Eq. (8).

Given that Eq. (7) gives the probability to find one walker on
the ith node with generalized strength φi , we can now obtain
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FIG. 2. (Color online) The distribution of walkers on two nodes
with k = 4 and k = 234 for α = −1.0,0.0, and 1.0. The solid lines
show the distribution of walkers obtained from simulation, while the
solid circles belong to the binomial distribution obtained analytically
using the stationary probability in Eq. (7).

the distribution of random walkers on the ith node. The for-
mulation is applicable to any node on the network, and hence,
in our further discussions, we suppress the index i of the node.
The random walkers (W ) are independent and noninteracting,
and hence the probability f (w) of finding w walkers on a node
is pw, while the rest of the walkers, W − w, are distributed
on the rest of the nodes of the network. When properly
normalized, this leads to a binomial distribution given by

f (w) =
(

W

w

)
pw(1 − p)W−w. (9)

The mean and variance of the flux passing through the given
node is

〈f 〉 = W
φ∑N

l=1 φl

,

σ 2 = W
φ∑N

l=1 φl

(
1 − φ∑N

l=1 φl

)
. (10)

Note that the results in Eqs. (9) and (10) depend only on the
generalized strength φ that characterizes a node including its
neighborhood. It does not depend on the large scale connectiv-
ity pattern. Hence, these results will hold good for any network,
such as scale free, random, or small world, irrespective of its
degree distribution. Further, in the cases for which

∑N
l=1 φl �

φ, we obtain the approximate relation σ ≈ 〈f 〉1/2. This rela-
tion can be thought of as a generalization of a similar relation
for the unbiased random walks reported in Ref. [14]. However,
the exponent 1/2 is not universal and instead depends on details
such as the fluctuation in number of walkers and sampling
resolution of the flux [19]. The distribution of random walkers
on two nodes with different degrees, k = 4 and k = 234, is
plotted in Fig. 2. The biased random walk simulations were
performed on a scale-free network with 5000 nodes with
19 915 links and 39 830 walkers. Initially, at time n = 0, the
walkers are randomly distributed on N nodes. The simulation
results presented in Fig. 2 have been obtained after averaging
over 100 realizations with different initial conditions of
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random walkers. The simulation results, the solid lines in
Fig. 2, show a good agreement with the analytical distribution
given by Eq. (9).

III. PROBABILITY FOR EXTREME EVENTS

We take an extreme event to be the one for which the
probability of occurrence is small and is typically associated
with the tail of the probability distribution function for the
events. We extend this principle to the events on the nodes of
a network [14]. Given that the number of walkers w passing
through a node with generalized strength φ follow the binomial
distribution, if more than q walkers pass through the node, then
it is an extreme event for the node. Then, the probability for
the occurrence of extreme event is

Fi =
W∑

w=qi

(
W

w

)
pw

i (1 − pi)
W−w (11)

= Ipi
(	qi
 + 1,W − 	qi
), (12)

where 	u
 is the floor function defined as the largest integer
not greater than u and Iz(a,b) is the standard incomplete beta
function [20]. In this form, the extreme event probability will
depend on the choice of threshold qi . First, we consider the
case of constant threshold. If qi = 0, using Eq. (11) we obtain
Fi = 1 for all the nodes on the network. Thus, all the nodes
will experience extreme events all the time. On the other hand,
if we set qi = W , then we obtain

Fi = pW
i . (13)

Since pi � 1, we get Fi ≈ 0 for all the nodes, implying
that there are no extreme events anywhere in the network.
Hence, these choices of threshold values are not physically
interesting cases. Any other arbitrary choice such as qi = q0,
where q0 is a constant, will predominantly lead to some nodes
encountering extreme events nearly all the time and others
having no events at all. This too is not an interesting case. The
foregoing arguments imply that an interesting scenario would
arise if the threshold is chosen to be proportional to the natural
variability of the flux passing through a node. Thus, we choose
the threshold for extreme events to be [14]

qi = 〈fi〉 + mσi, (14)

where m � 0. The mean flux 〈fi〉 and standard deviation σi are
given by Eq. (10). Substituting qi in Eq. (12), it is clear that the
probability for the occurrence of extreme events is dependent
only on the generalized strength φ of the node. In Fig. 3, we
show the simulation and analytical results for the probability of
extreme events as a function of φ for several choices of α. The
numerical results are based on simulations with W = 39 380
walkers on a scale-free network with N = 5000 nodes evolved
for 107 time steps. An unusual feature is that Fi predicts a
higher probability of occurrence of extreme events, on average,
for nodes with small values of generalized strength φ than
for the nodes with higher values of generalized strength φ.
For instance, in Fig. 3(a), the probability of extreme-event
occurrence is generally higher for nodes with φ < 10−5

than for nodes with φ > 10−3. A similar effect is seen in
Figs. 3(b)–3(e). Even though nodes with higher generalized
strength φ attract more walkers as given by Eq. (5), this
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FIG. 3. (Color online) The probability of the occurrence of
extreme events plotted as a function of the node generalized strength
φ (normalized) for different values of bias parameters: (a) α = −2.0,
(b) α = −1.0, (c) α = 0.0, (d) α = 1.0, and (e) α = 2.0. The
threshold for an extreme event is q = 〈f 〉 + 4σ . The circles are from
analytical results in Eq. (12), while the solid lines are the simulation
results performed on a scale-free network (N = 5000, E = 19 915)
with W = 2E walkers averaged over 100 realizations with randomly
chosen initial positions of walkers.

does not imply that they also have a higher probability for
extreme events. This is a generalization of the result obtained
in Ref. [14] for the standard random walk on networks which
shows that extreme events are more probable for nodes with a
small degree than for the ones with a high degree. The local
fluctuations seen in Fig. 3 are inherent in the system and not
due to insufficient ensemble averaging. Further, notice that
Eq. (12) does not depend on the large scale structure of the
topology, and hence it is valid for biased random walks on any
topology, random or small world or scale free.

However, the local connectivity patterns in the vicinity of
any node play a crucial role in the diffusion of an extreme
event. Suppose an extreme event takes place at node A at time
n; then one interesting question is how probable it is for an
extreme event to take place in its immediate neighborhood
at time n + 1, i.e., after the first jump. We call it first-jump
probability, and it is similar to the one reported in [21]. In the
case of a standard random walk (α = 0), our simulations (not
shown here) indicate that, in general, if node A is a hub, then the
probability to encounter an extreme event in its neighborhood
is higher (at least by a factor of 3–4) compared to the case when
node A is a small degree node. For biased random walks, the
results suggest a higher likelihood for an extreme event to
be transferred to its neighborhood in the case when α < 0
compared to the case with α > 0.

IV. FLUCTUATIONS IN EVENT SIZE

The size of an event is measured in units of the standard
deviation σ of the flux passing through a node. In this section,
we show that the extreme fluctuations in the flux of walkers are
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FIG. 4. (Color online) The distribution of event sizes for biased
random walks as a function of the node number on the x axis obtained
from simulations performed on a scale-free network for different
values of the bias parameter: (a) α = −2.0, (b) α = −1.0, (c) α = 0.0,
(d) α = 1.0, and (e) α = 2.0. The nodes are arranged in order of
increasing degree. The probability values Pm are color coded. This
should be compared with analytical results in Fig. 5.

realized in the case of α = 2, which implies that the walkers
are biased toward the nodes with a larger generalized strength
φ (hubs). An event is of size m if mσ � w − 〈w〉 < (m + 1)σ ,
where w is the number of walkers on a given node.

Then, the probability for the occurrence of an event of size
m can be written down as

Pm = Ip(	qm
 + 1,W − 	qm
) − Ip(	qm+1

+ 1,W − 	qm+1
). (15)

To illustrate the result, we show the distribution of event sizes
in Fig. 4 for α = −2,−1,0,1,2 in a scale-free network obtained
from simulations evolved for 107 steps and averaged over 100
ensembles. Here, the events with a probability of occurrence of
less than 10−8 have been discarded to maintain the numerical
accuracy. In the case of α = 0 (standard random walk), the
distribution of events is shown in Fig. 4(c). The events of
size m = 0 are highly probable with P0 ∼ 0.1. In contrast,
the probability for events of size |m| > 0 decreases, and
thus extreme events of size m = −2,8 occur with probability
P−2 ∼ P8 ∼ 10−8. The limitation on the lower limit of event
sizes is restricted by the minimum possible number of walkers
on a node, i.e., 0. For lower degree nodes, events of sizes −2σ

to 8σ are observed, but in the case of higher degree nodes
k > 100, event sizes range from −5σ to 6σ only. In the case
of a standard random walk, for the whole network, event size
m varies from −5σ to 8σ .

In comparison, for the case of α = 1 shown in Fig. 4(d)
the events of size 8 have a higher probability of occurrence
(P8 ∼ 10−7), and events of even higher sizes are also possible.
For α = 2, even higher size events, as large as 40, become
highly probable for small degree nodes, as seen in Fig. 4(e).
Thus, in general, for larger α, larger size events become
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FIG. 5. (Color online) The distribution of event sizes for biased
random walks as a function of the node number on the x axis obtained
analytically using Eq. (15) for different values of the bias parameter:
(a) α = −2.0, (b) α = −1.0, (c) α = 0.0, (d) α = 1.0, and (e) α =
2.0. The nodes are arranged in the order of increasing degree. The
probability values Pm are color coded.

probable when compared with the case of α = 0. Physically,
this can be understood as follows. With α = 0, the random
walkers perform unbiased random walks. However, for α = 2,
the walkers preferentially choose to hop to nodes with a
larger degree (hubs). Since large degree nodes are mostly well
connected among themselves, very few walkers reach small
degree nodes. Hence the average flux through the small degree
nodes becomes so small that even occasional visits by a few
walkers lead to extremely large size events. These occasional
visits lead to a probability of order 10−6 even for events of
size 40. Hence, in the case of biased random walks, extremely
large fluctuations in event sizes can be observed in small degree
nodes. This effect is also seen in the analytical results obtained
using Eq. (15), shown in Fig. 5.

On the other hand, for cases α = −2,−1 such large
fluctuations are not visible in the event sizes in Figs. 4(a)
and 4(b). For α = −1 in Fig. 4(b), there is a small increase in
the event sizes (when compared to α = 0) for the small degree
nodes, but it is not as large as in the α = 1 case. Further,
with α = −1, it must also be noted that the probability profile
remains similar for most of the nodes irrespective of the large
differences in their degree. This is because φ is an approximate
constant for most of the nodes since, in this case, the effect of
the bias is balanced by the degree of these nodes. For α = −2,
the flux is strongly biased toward small degree nodes, and
again events of sizes m = 10 can be seen in Fig. 4(a), though
only on the higher degree nodes. The event sizes for hubs
are not as large as observed in the case of α = 2 for lower
degree nodes. It can be explained as follows: when α = −2,
the flux preferentially flows through the small degree nodes,
which form the bulk in a scale-free network. Most small degree
nodes do not have a direct link with other small degree nodes
but are connected through a hub. Hence, despite the biased
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walk favoring the small degree nodes, a sufficiently large flux
flows through the hubs as well. Hence, abnormally large event
size fluctuations are not seen in hubs for α = −1,−2. All
these features show a good agreement with the analytical result
obtained in Eq. (15) and shown in Fig. 5.

V. DISCUSSION AND SUMMARY

This work is an attempt to understand the extreme events
occurring on the nodes due to flow on networks which typically
is directed toward or away from the hubs. In this work,
we study a biased random walk model in which the traffic
preferentially moves either toward or away from the hubs, and
we analytically obtain the probabilities for the occurrence of
extreme events. In this framework, extreme events are due to
inherent fluctuations in the flux passing through any node and
is defined as exceedences above a chosen threshold q. The
threshold is chosen to be proportional to the natural variability
of the node. Each node on the network is characterized by
the generalized strength φ, which depends on its degree and
that of its immediate neighborhood. It is a measure of how
much traffic is attracted to the particular node. The larger
the generalized strength of a node is, the larger its ability
to attract walkers is. In this paper, we have shown that
the nodes with a smaller generalized strength, on average,
have a higher probability for the occurrence of extreme
events when compared to nodes with a higher generalized
strength. Further, we have also shown that when the flux
is biased toward the hubs, abnormally large fluctuations in
event sizes become highly probable. This is one possible
signature of the topologically biased flow in a scale-free
network.

In general, it is possible to conceive of many ways by
which bias can be imparted to independent random walkers
on networks. These biasing strategies are motivated by real

observations and the quest for efficient search strategies
on networks. Various kind of biases based on the local
environment, shortest paths, the entropy of random walk,
and various adaptive strategies are some examples of biased
random walk on networks [21–26]. It will be interesting
to study the extreme-event probabilities under such biasing
strategies. However, we emphasize that if the stationary
probability distribution equivalent to Eq. (5) exists for all the
above strategies, then it would be possible to define extreme
events and analyze them following the methods presented in
this work.

In the context of scale-free network, it has been argued
that hubs are important for better functioning of the network.
Apart from being responsible for providing better connectivity,
the existence of hubs makes the scale-free network robust
against random node removal but fragile if the node removal
is targeted [27,28]. The results in this paper show that extreme
events due to natural fluctuations are more probable on small
degree nodes (when compared to the hubs). Hence special
attention must be paid to designing the capacity of the small
degree nodes so that extreme events can be smoothly handled
without leading to disruption of the node. The results in this
paper can be used to estimate the capacity a node should
possess if it should handle extreme events of size, say, m.
If we want the node to handle 4σ events smoothly, then the
required capacity can be obtained by inverting Eq. (12). Thus,
the numbers so obtained can be useful as an input for arriving
at the capacity at which the nodes on a network should be built.
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