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"aAbstract -

The present thesis is devoted to the study of some
nonlinear aspects of kinetic Alfven waves. It is motiva-
ted by the importance of kinetic Alfven waves in supple-
mentary heating of tokamak plasmas. In particular, near
the mode conversion layer, the wave has an enhanced
amplitude and can thus interact nonlinearly with other
normal modes of the plasma. Two such interactions have
peen chosen for detailed investigation in this thesis

- namely, the nonlinear excitation of tearing modes

and that of drift modes .

The basic non-linear process is the parametric
decay of the kinetic Alfven wave into another Alfven
wave and a low freguency wave (the tearing or the drift
mode). Several aspects of this dinteraction are studied
~ contributions from resonant (side band coupling) terms,

non-resonant (ponderomotive) terms, nonlinear equili-
brium drifts as well as phase mixing effects. The low
frequency modes considered include resistive m=1 and
m=2 tearing modes, collisionless tearing modes, kinetic
drift modes and drift temperature modes. For the drift
modes the effect of background inhomogeneity 1s also

taken into account.



The calculations are based on both fluid and kinetic
descriptions of the plasma. The method of solution is
mainly analytical - relying on variational and matched
asymptotic techniques. Some numerical support to the
analytical results is also provided. It 1is found that
the growth rates of the nonlinearly excited low frequency
modes are quite large for realistic tokamak parameters.
They can be comparable or even exceed growth rates of
other nonlinear processes proposed earlier [1] for heat-
ing purposes. Since drift waves play an important role
in plasma transport and can significantly influence
plasma confinement, their nonlinear excitation can have
serious implications for the Alfven wave heating schemes.

A Dbrief discussion on this aspect 1s made 1in 1light

of some of the preliminary experimental evidence of

such low frequency activity 1in tokamak experiments.

1. Hasegawa, A. and Chen, L., Phys. Fluids 19 1924

(1976)
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CHAFTCER 1

INTRODUCT ION

1.1 Background

Alfven waves are well known low frequency
oscillations of a uniform magnetised plasma and
were first treated in.a classic work by H. Altven
in 1242 [17 . GEarly investigations of these waves
were in connection with astrophysical plasmas. For
example, in tne solar atmosphere they were considered

to be responsible for the heating of the corona,

A simple physical analogy for understanding
the Alfven wave propagation, is the 'violin string
model' as proposed by Alfven. The magnefic field
lines immersed in a plasma can be viewed as plasma
loaded strings held under tension. This analogy is
useful since under certain conditions, (e.g. for
high plasma conductivity) the field lines are
'frozen' in the plasma and are thereby constrained
to move with the plasma, When the field lines are

'plucked transversely', the tension in the field



2

lines tends to straighten the distortion., The field
lines are pulled back, but due to the inertia of the
plasma particles, overshoot the equilibrium., The
resulting oscillations are the Alfven waves, which
are analogous to the transverse oscillations of
stretched strings, In the latter the waves propacate
with a velocity given by V = \~é;>2 , where 'T' is
the tension and '€>' the mass density. By replacing
'"T' by the magnetic field tension _Eni. and '@ ' by
the mass density of the plasma Which 5; msn, (where
m, and n; are the mass and density of the ions

respectively) the velocity of the Alfven wave (VA)

. B 2
can be obtained as

L .
o~ . A simple dispersion
-~ /MoanL

relation for the Alfven wave. propagation is then
W=k V,, where k 1is the wave vector along the

field lines,

The actual physical mechanism for Alfven wave
propagation can be wunderstood in térms of the
interaction between fields and particles in a plasma.
For instance, when the magnetic field lines are
perturbed by adding a small transverse component
there arise induced electric fields in the system,
These electric perturbations combine with the equili-
brium magnetic field and set the plasma in oscillation.
On account of the finite ion mass the ions leg behind

the electrons. This cives rise to currents, which
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generate electromagnetic forces (J X B). These
forces and the ion inertia .sustain the oscillations
and generate the Alfven wave propagation along the

field lines,

When compressioh effects are taken into con-
sideration, there is another low frequency mode of
oscillation possible in the plasma. This is a mode
which propagates perpendicular to the magnetic lines
of force, and whose restoring force is provided by
the compression in the field lines, Such a mode is

called a compressional Alfven wave,

Early investigations [2, 3] of Alfven waves
were concerned with the study of propagation and
dissipation of Alfven wiaves in a solar atmosphere,
The observations of Belcher and Davis (4] of large
amplitude Alfven waves in the solar wind stimulated
extensive research on these waves. Holleweg 5]
recognised the importance of such observations and
was the first to develop a model of Alfven wave

propagation in the solar atmosphere,

In laboratory plasmas, several investigations
both theoretical and experimental have been performed
in understanding the properties of Alfven waves (6] ,
namely reflection, refraction properties, effect of
finite conductivity and Hall current, In order to
understand the Alfven wave propagation in bounded

cylindrical plasmas several theoretical models were



qeveloped (7, 8] . When a cylindrical plasma
is perturbed axisymmetrically,,two modes of de-
coupled waves propagate in the system : the torsional
or the shear Alfven wave and the compressional wave.
The former is the plane transverse wave modified

by geometric effects. This wave motion causes the
magnetic surfaces to shear past each other, without
however any mutual coupling in their motion. When
pressure perturbations are taken into account the
torsional Alfven mode is not affected, The properties

of compressional wave however changes and the mode

couples to the acoustic wave.

In a non-uniform plasma, on the other hand, the
torsional and the compressional modes undergo several
striking important changes. The density gradient
introduces a frequency dependent coupling between
the torsional and compressional waves of the uniform
plasma. As a result an axial component of the
magnetic perturbation which is associated only with
the compressional wave is now carried by the torsional
wave as well. Such an effect was detected by
Pridmore~-Brown [9] , In a non-uniform plasma, the
Alfven wave speed (VA) is a function of position in
the direction of the inhomogeniety. This local
variation of Alfven wave velocity gives rise to a
singularity in the wave equation. at the point where

the wave phase velocity equals local Alfven velocity.



This in turn leads to a continuum spectrum of

Alfven waves in the plasma,

Physically the continuum indicates that the
plasma structure hosts a continuous spectrum of
internal oscillators, each representing the oscil~
latory characteristicé of an infinitesimally
small piece of plasma. The study of Alfven waves
in a non-uniform plasma was first initiated by |
Gajewski [10] . Actually the equation arrived
at by Gajewski did not show any singular behaviour
because the authors neglected the pressupe pertur-
bations. Pridmore-Brown [11] discussed various
features of the singular behaviour of the wave
equations, but did not érrive at the continuum
spectrum of frequencies, HasegawarChen[127] later
showed the existence of the continuum and demon-
strated that the singularity leads to the damping
of surface mode of g discdntinuous plasma. They
showed that the damping arises because the normal
modes which make up the continuum phase mix in
time leading to the decay of macroscopic variables,
This damping of surface waves has been observed
both experimentally [13] and in MHD computer
calculations [14] . The continuum spectrum for
Alfven waves plays an important role in practical

problems both in laboratory and space plasmas,



In the latter, this has led to an understanding
of the phenomena of magnetic'pulsations in the ULF
range [15) .

The siﬁgularity in the solution of the Alfven
wave equation originates from neglecting the non-
ideal effects. The singularity is seen to be
removed when finite resistivity or finite Larmor
radius effects afe introduced in the fluid equations,
~The effect of resistivity on Alfven surface waves
has been considered by Kabparoff (16] and Uberoi [17].
This treatment is valid only when the plasma skin
depth is shorter than the ion gyroradius. Vlhen finite
temperature effects are taken into consideration the
Larmor radius effectﬁ become significant and an
important change in theEAlfven wave propacation
occurs. The ions are no longer closely tied to the
magnetic field lines, whereas the electrons still
follow the field lines because of their small Larmor
radius. The ions can thus freely move across the
magnetic lines of force and enable a perpendicular
propagation as well, Hasegawa-Chen [18] using
kinetic theory to study the wave propagation , showed
that the singularity of the fluid equations is replaced
by a resonant layer,where a mode conversion occurs gene-
rating . a 'kinetic Alfven wave'. In a low é} plasma

(vﬂmnxe@ is the ratio of the plasma pressure to the



. | 2 . .
magnetic field pressure&%nnoT/Bo ) this wave is

represented by the dispersion relation
2yv 2 _ v 2n 2 , ; ” o
Vo o= (L + K Qi ) (where K and K, are

2,

U)/K“ i

the wave vectors perpendicular and parallel to the
magnetic field). The kinetic Alfven wave can

propagate across the magnetic field and experiences

both electron and ion Landau damping.

The resonant mode conversion to kinetic Alfven
waves in laboratory plasmas has received é great deal
of attention recently, due to some important appli-
‘cations. One such important application is in using
them for supplementary heating of tokamak plasma.,

In tokamaks, -Qhmic heating provides the initial
heating, However as the temperature rises, the
resistivity decreases as T -3 and radiation losses
“increase as T %. Hence at some point the radiation
losses overcome the Ohmic heating and puts an upper
limit on the achievable temperature, This femperature
is around 1 to 2 KeV for ions and thus far from the
ignition regime. Therefore in most of the devices
some form of supplementary heating will be necessary
to reach ignition temperature. In this context both
Hasegawa-Chen [18] , Grossman-Totaronis [19] proposed
the use of Alfven waves as candidates for supplementary
heating because of their high rate of resonant absor-

ption around the mode conversion region, A few of the



other attractive featureé of this scheme are

1) predictions that' it may provide a relatively
high efficiency for heating the plasma, 2) avail-
ability of low cost and reliable power supplies
in this frequency range, 3) the fact that the
principle is based on simple well established
theory, 4) the heating is localised near the
resonant layers,the location of which can be
controlled by the frequency and the launching

structures,

For typical tokamak parameters it was shown by
Hasegawa=Chen [18] that the heating of the particles
by linear processes, occdrs through ion viscosity
and electron Ohmic dissipations. For high temper-
atures the linear heating is dominated by electron
Landau damping. Since the initial proposal, other
authors namely Perkins-Karney (20] Appert et al

[21] , stix [22] and Puri 23] have elucidated
the absorption processes of the kinetic Alfven wave.
Recently Ross et al [24] and others [25] have
studied the problem in cylindrical geometry with
sheared magnetic fields, taking inte consideration
electron inertia, Landau damping, finite ion gyro-
radius and equilibrium current. They have obtained
numerical solutions of the eigenmode equations and
have observed the mode conversion to the Kinetic
Alfven wave., One important conclusion of the linear
study was that the amplitude of the excited kinetic

waves was strongly enhanced near the mode



conversion region, due to spatial resonance.
Consequently severél non-linear processes were
expected to take place. In fact one such process
namely parametric decay of a kinetic Alfven wave
into an acoustic wave was proposed as a means for
heating ions and found to be quite feasible for
existing tokamak parameters., It was shown that
if the applied oscillating magnetic field had an
intensity larger than a few tens of Gauss, non-
linear dissipation of the kinetic Alfven waves

was expected,

Although the theoretical proposal to use Alfven
waves in r.f., heating schemes was made more than ten
vears ago, experiments have begun only recently at
several places, The most notable of these results
are from the work of the experimental group on TCA
tokamak in Switzerland'[QQ] . Additional experiments
have been reported by the Texas group [27] , the
Wisconsin group [28] %nd Australian torus tokamak
group [29] . Initial experiments were conducted
at low power levels (P<3 KW), In all these experi-
ments efficient absorption and heating have been
observed and most of the results show quantitative
agreement with the theoretical predictions. However,
most results also show the existence of enhanced loss
of plasma and occasional major disruptions of the

plasma column. In stellarators nearly all the
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experiments involving Alfven wave heating report
enhanced transport 6f particles [30] in addition

to heating. The anomalous transport varies appro-
ximately linearly with respect to the amplitude of

the r.f.field and is believed to be caused by

magnetic island formation. At Lausanne, experiment®
have reported saw=tooth modulations of the resonance
peaks (of antenna loading) indicating the coupling

of Alfven waves to MHD activity [31l] . Alfven wave
experiments at Suhumi in addition to efficient heating
showed clearly the non=-linear aspect of heating as

a function of the r.f, magnetic field intensity [32] .
On the TCA tokamak at Lausanne recent advances have
enabled an increase of power to over 500 KW, Appeft
et al {33] have already reportéd an increased pro-

bability of disruptions,

These several experimental results and the
theoretical predictions, suggest that the excitation
of the kinetic Alfven wave is accompanied by non-
linear processes in the plasma, which could lead to
enhanced loss of plasma and disruptions. In order to
understand some of these features, it is important

to study the non~linear aspects.,

1.2 Motivgtion

The present work is concerned with the study of

some non-linear processes among kimetic Alfven waves.,
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The principal motivation fbf the study arose from
the recent interest in Alfven waves which are con-
sidered as excellent candidates for supplementary
heating schemes. It has been pointed out that the
amplitude of the excited kinetic Alfven waves is
sfrongly enhanced at the resovnance region. There-
fore it is highly probable that several non-linear
processes would take place around this region. One
such mechanism, i.e. parametric decay into acoustic
waves has been considered [18] . Besides the non-
linear interaction with acoustic waves, there could
in principle exist other modes of parametric decay
which could channel energy into deletericus modes
(namely drift modes) and thereby lead to loss of
confinement., In fact several results of experiments
conducted at Lausanne, . Wisconsin and other places
support tHe idea that the kinetic Alfven waves could
undergo non-linear processes, In order to understaund
these several experimental results and for proper
design of the antenna system, @ knowledge of the
non-linear evolution of the kinetic Alfven waves is
therefore essential. A systematic study of the non-
" linear properties of the mode converted kinetic
Alfven wave is in order and so far very limited work
in this field has been done. This thesis is devoted

to the non-linear study of kinetic Alfven waves and
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in particular non=linear interaction of kinetic

Alfven waves with drift and tearing modes.

In addition to their important applications

to the Alfven heating scheme, non-linear processes
among Alfven waves have importance in space plasmas
and are therefore of quite general interest. The
early pioneering works in this context were carried
out by Sagdeev-Galeev [34] , Galeev-Cfaeskii[35]
who studied the decay instability of a large
amplitude Alfven wave into an acoustic wave. Later
Cohen examining this instability by assuming a
broad band of Alfven waves, found the incoherent
spectrum to be statistically stable [36] . Since
then several analytical studies have been undertaken
to understand other non-linear properties like modu-
lational instabilities [37], existence of solitons
|38] etc. 1In recent times it has been of interest
to consider various parametric processes [39] associ-
ated with the Alfven waves, since in many schemes
large or fairly large amplitude Alfven waves are
produced., It has also been shown +that Alfven
waves may excite zero frequency vortex motion and
magnetostatic modes [40] which cause cross field
plasma diffusion having Bohmscaling. In addition,
recently it has been shown that magnetosonic modes

@i] could also be excited by kinetic Alfven waves. Our
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study of the non-linear interaction of kinetic Alfven

waves with drift and tearing>modes could contri-
bute’tb the general understanding of the non-
linear evolution of kinetic Alfven waves which
besides its potential applications to Alfven

heating schemes is also of basic interest,

We have chosen to investigate the non-linear
interaction of kinetic Alfven waves with drift
and tearing modes on ac@ount of the fact that
both these modes play significant roles in the
context of laboratory |42] and space plasmas.
In the latter, reconnection through tearing
instability is considered an excellent candidate
for coronal heating and is the most popular
flare mechanism proposed [43] . Much of the
recent revived interest in the tearing modes has
peen due to the fact that these modes have been
observed in laboratory plasma discharges [44] .
The disruptive instability is an unexplained phe-
nomenan occuring in tokamak plasmas which often
results in the termination of the discharge on a
very short time scale (1 millisec) and the long
wave length tearing modes are believed to play an
important part. The disruption is usuaily preceeded
by the m = 2, n = 1 oscillation in the soft x-ray

signal (where m’ and n’ are the poloidal and
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toroidal mode numbers respectively) and recently
a caugal relationship between the growth of these
large amplitude tearing modes and disruptions has

been established [44] .

Drift waves were until recently considered
universal instabilitiesbecause their existence
required only a density gradient which was a common
feature of both laboratory and astrophysical plasmas.
These collisionless drift waves in sheared magnetic
fields, which are driven by wave particle interact-
ions, have been the subject of numerous investi-
gations [45] . They are hazardous for plasma
confinement and are known to cause anomalous transport
of particles across the fﬁeld lines, The results of
our analysis of non~linear interaction of kinetic
Alfven waves which havebbeen obtained using variational
and asymptotic methods indicate that both drift and
tearing modes can be resonaﬁtly excited b? Alfven
waves with large growth rates. In the context of
Alfven wave heating schemes, the excitation of these
modes may be responsible for enhanced transport and

plasma disruptions,

Lle3 Scope of the thesis :

We have organised the present thesis in the

following manner. In Chapter II, we have carried out

an investigation of the non-linear interaction of the
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resistive tearing modes with kinetic Alfven waves,
We have studied the parametric decay of a pump
kinetic Alfven wave into a lower (upper) side
band Alfven wave and the resistive tearing mode
using the fluid formalism. The quasineutrality
condition and Ampere's law are used +to obtain the
expression for the Alfven wave potentials with
contributions from the non-linear interactions,
This contribution is proportional to the gradient
of the tearing mode perturbed current ‘ Jbg/ and
’is responsible for several interesting effects
namely anomalous resistive and viscous effects,
The dynamics of the tearing mode is. described by
Ohm's law and the momentunm equation, in the
incompressible hydromagnetic approximation. The
ponderomotive force (P.F,) generated by the non-
linear interaction simulates anomalous viscous
and resistive forces in Ohmgs law and additional
convective forces in the moéentum equation, For
large enough fluctuation levels of the kinetic
Alfven waves, the non-linear forces dominate and
in the equation of motion the linear shear flow
is driven against fluid inertia by the torque
produced by the non-linear ponderomotive force,

Similarly in Ohm's law the parallel electric field
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is balanced by the anomalous viscous effects rather
than the collisional drag. Our calculations predict
that the m =1 and m = 2 tearing instabilities can
indeed be resonantly excited with growth rates
proportional to fractional powers of the Alfven

pump amplitude,

We have also investigated the non-resonant inter-
action between kinetic Alfven waves and tearing |
modes, in which equilibrium flows generated by the
kinetic Alfven waves couple: non-linearly to the

tearing mode perturbations (Chapter III). These

drifts arise when quiver velocities of the particles
in the Alfven wave field are averaged over the fast
Alfvenic motions. This effect had been omitted in

the study of parameteric interaction between the
tearing and Alfven modes owing to the fact that the
resonant terms were much larger than the non-~ |
resonant ones., Although the dominant drift is

in the axial direction it is‘however the radial

drift which plays a significant role in the dynamics
of the tearing mode, Modelling the spatial variations
of the kinetic Alfven waves by a simple cosine profile,
we find that the azimuthal and axial drifts Doppler
shift the mode frequency while the radial drift

couples to a cubic derivative in the momentum equation.
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The grbwth rate of the'tearing instabilities 1s found
to be proportional tovthe%radial drift. The results
of our analysis in agreementwifh the scaling for the
weakly unstable modes are obtained by Pollard-Taylor

[463 , Bondeson [ﬁi] . In their assumption however

the radial drift was of an arbitrary nature, whereas
in the present work the radial drift is proportional

to the amplitude of the kinetic Alfven waves,

Chapter IV contains an investigation of non-

linear wave mixing phenomenon between kinetic Alfven
waves and the resistive tearing modes, We have con-
sidered two large amplitude kinetic Alfven waves
interacting to produce beat waves of the resistive
tearing mode frequency and resonantly exciting it.
Such a phenomenon is quite possible in the Alfven wave
heating scheme, where the antenna are phased to excite
several waves simultaneously, These kinetic Alfven
waves excited at different resonant surfaces could
interact and excite beat waves of the tearing mode
type. This phenomenon differs from the earlier

study of parametric  interacti®n- between kinetic
Alfven waves and resistive tearing modes, In the
present problem, the kinetic Alfven waves act as
external driver waves which act on the low frequency

tearing mode, The system acts like a harmonic
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oscillator, driven at the natural tearing fre-
quency by the wave mixing . phenomena between

the kinetic Alfven waves. To describe the evol-
ution of the resistive tearing modes, the single
fluid equations are used. The non-linear inter-
action generates ponderomotive forces in the
momentum equation and th's law which are the
two coupled equations ngcribing the dynamics of the
tearing mode. From the coupled set of equations, a
third order inhomogeneous differential equation
describing the evolution of the tearing mode is
obtained, The homogeneous part of the differential
equation has been the subject of several investi-
gations, We present an alternative method of
obtaining symmétric solutions of the differential
equation in terms of certain convenient set of
orthonormal basis functions, namely, Hermite
polynomials, We find that the solutions are very
sensitive to the parity of the driven Alfven waves
and separate out into an odd and even series. For
arbitrary wave lengths for the symmetric tearing
mode the log derivative Zl/ across the boundary
layer is matched to the outer infinite conduction
regions, It is shown that in the limit of vanish-
ing pump amplitude the earlier results of Paris [4@]
are recovered., In the presence of the external

driving forces in the limit of large Reynolds number
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the classical growth rates of the symmetric tearing
mode with positive'mode numbers are enhanced, For
modes with negative 'm' values, the effect is
stabilising. These driven tearing modes however
grow more slowly than the non-linearly tearing
instabilities due to parametric  interaction, In
laboratory plasmas both beat wave excitation and
parametric excitation of tearing modes by kinetic
Alfven waves are equally possible phenomena, However
on account of'their large growth rates the para-
metrically excited tearing modes are of greater

importance than the driven tearing modes.,

Drift waves play an ihportant role both in astro-
physical and laboratory plasmas. In the context of
magnetospheric plasmas, the importance of drift
waves im understanding the micropulsations in the
earth's magnetosphere has been stressed by several
authors, In laboratory plésmas, they afe considered
to cause anomalous transport of particlesacross the
magnetic fieid lines, In Chapter V we have studied
a non-linear interaction between collisionless
drift waves and kinetic Alfven waves., We have
investigated a parametric interaction wherein a
pump kinetic Alfven wave dgcays into a side band

|
kinetic Alfven wave and a drift mode.
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Since the dynamics of tﬁe drift wave are sensitively
dependant on the shear and finite Larmor radius effects
the kinetic equations areiused to describe the motion
of the ions and electrons. The quasineutrality condi-
tion and Ampere's law are used to derive the coupled
équations (which are of quite high order) describing
the decay process, We have used the local approximation
to simplify the differential operators.- The calculated
growth rates and thresholds for the drift wave decay
process are found to be comparable to other modes of
decay calculated by earlier workers 18] . We find
that the temperature gradient drift waves could also be
parametrically - excited with large 9rowth: rates. In
addition we have investigated the effects of density in-
homogeneity:7 on the decay process which entails
retention of the full differential operators in the
coupled equations., We have examined the equations in
Fourier space, using WKB techniques, and perturbative
methods., We have established the condition wunder
which an absolute instability, which i1s ai well behaved

solution, could occur near the mode conversion region.

In Chapter VI we have discussed another important

non-linear mechanism that of the effect of ponderomotive
force generated by two interacting kinetic Alfven waves

on the collisionless tearing and drift modes., As before,
the spatial variations of the interacting kinetic Alfven

waves are modelled by a simple cosine profile. In order



to describe the collisionless tearing modes, a
generalised Ohm's law is obtained from the electron
dynamics, The kinetic equations with the Krook
collision operator are used for this purpose. The
electron orbit equations are significantly modified
by the equilibrium P.F., ‘The perpendicular P.F. (Fie)
Doppler shifts the mode frequency while the parallel
P.F, (Fjo) alters the resonant wave particle pheno-

)

mena, This leads to a replacement of 2. by
0 ( where a =2t By, Ky, K"Lye

(k. Ve — )/ e

The other piece of information needed to study the
mode characteristics describe the ion dynamics, which
is given by the momentum conservation law. The
equilibrium ponderomotive force has no effect on the
ion motion. Using standard transformation the eigen-
mode equation in the slab model describing the
evolution of the tearing instability 1is then derived,
The eigen values of the coupled equationé are obtained
using variational methods prescribed by Hazeltine
et al [49] . We find that the effect of the parallel
P.F, is to enhance the growth rates of the tearing
modes in the collisional and collisionless regimes,
In the collisional regime however the enhancement

factor produced by the parallel force is of 2nd order

and hence quite feeble. For laboratory plasmas, for
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given tokamak parameters, the enhancement factor in

the collisionless regime is however quite large,

.We have in addition investigated the effect
produced by the P.,F., on the collisionless drift
waves. It has been shown that effects which modify
the electron orbits in the resonance region (namely
turbulent diffusion) serves to alter the stability
effects of shear and hence change the mode charact-
eristics [50] . It is therefore of importance to
investigate the effect of the P.F, on drift waves,
In order to retain effe?ts of shear, the electron
response is modelled by;the kinetic equations., As
in the case of the collisionless tearing modes the
parallel P,F, accelerates the particles along the
field lines resulting in resonance broadening of
electron response, For simplicity the ions are
treated by the hydrodynamic epproximation. From the
quasineutrality condition, the radial eilgen mode
equation describing the drift wave dynamics is
obtained, To obtain the eign values and to investi-
gate the effect of the P.F,, the variational principle
analogaus to the one prescribed by Ross et al [5]]
is employed. Our calculations show that the contribut-
ion from the equilibrium parallel force has a dest-
ablising etftect on the drift mode and competes

significantly with the shear stabilising effect,
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The results of our analysis indicate that both
drift and tearing modes could be excited by several
non=-linear effects produced by the kinetic Alfven
waves., In laboratory plasmas these instabilities
whose growth rates are proportional to the amplitude
of the kinetic Alfven waves could account for the
observed enhanced transport and power limitations

in Alfven wave heating schemes{jZS] .

Chapter VII contains a summary of the main

conclusions of our analysis and applicationsof our
results to laboratory plasmas. We have also discussed
the limitations of our theoretical model andg pointed

out future direction of work in this connection.
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CHAPTER II

RESONANT EXCITATION OF TEARING INSTABILITIES

BY KINETIC ALFVEN_ WAVES

20 Introduction @

In this chapter we h%ve investigated a resonant
interaction between kinetié Alfven waves and resistive
tearing modes. It can be viewed as a parametric decay
process wherein a pump kinetic Alfven wave decays into
a side=band Alfven wave and é tearing mode, The process
has particular relevance to the Alfven wave heating
scheme in tokamak plasmas. Alfven waves are considered
excellent candidates for laboratory supplementary
heating schemes [},2,3] . They are excited at the
resonant surfaces, (W = k,,VA) by the mode conversion
of an external source, Heating in the linear regime is
mostly that of electrons and occurs through the Landau
damping of the kinetic Alfven wave. Near the mode
conversion these modes have large amplitudes
and therefore several non-~linear processes were expected

to take place. One such process, that of the parametric
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gﬂdecay of the kinetic Alfven wave into an acoustic

”*QQVe’[El has been investigated. The excited ion

acoustic wave could then damp and heat the ions.

An important feature to examine at this juncture

is whether there exist other channels of non-linear
decay which compete with the ion acoustic decay

process and thereby influence the heating scheme.

In this context we have investigated another
such non-linear interaction wherein kinetic Alfven

waves resonantly excite the tearing modes,

Tearing modes feature in a wide variety of
important phenomena both in laboratory [4-8] and
astrophysical plasmas [9] . They occur wherever
there is a reversal in the magnetic field (i.e. 52
or a component of g;, goes through a zero). The
simplest of such cbnfigurationswhere tearing modes
feature is that produced by a sheet current, where
the magnetic field changes sign at Xzo (as depicted
in Fig.(2,1)). Suppose now the field lines are
perturbed (as shown in Fip(2.2)) with the wave vector
along E;, such that bugb) vanishes, Such a
perturbation in an ideal iniinitely conducting plasma
gives rise to Alfvenic motion everywhere except in the

small region where k“ vanishes., Within this region

(on account of the fact that R" ~is.zero) non-ideal
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effects namely resistivity come into play and the

: p@rtufbed.field can be dissipated only by these
\-’nohrideal effects. fhis'effeét'generally takes

pléce on a Very slow time scale compared to the
Alfvenié motion., However around this singular
region, on account of the small scale lengths, the
»resistive forces give rise to gradients which are
very steep, These give rise to rapid localised

. diffusion of the perturbed field which is the

tearing instability, The sheet current as a con-
sequence of this instability breaks along the current
~ flow lines to form parallel filaments. Basically it
‘is the free energy associlated with the magnetic field
gradient which drives the instability. In a tokamak,
there éxist axial and azimuthal magnetic fields and
confinement of plasma depends on the existence of
nested magnetic surfaces, The perturbation aligned
with the magnetic field K“ is related to the torodial
and polodial mode numbers n, m by, K = 2? BF + é}Bt
(where Bp’ By are the polodial and toroidal magnetic
fields respectively). This vanishes on surfaces
where 4G (™M is a rational number, namely 1, 2 ..,
etc.(9,(v) is the safety factor given by V"BL// - ).
So on these surfaces(K Q) O, The tearing modes
develop around these rational surfaces leading to

formation of magnetic islands. Since particles are



tied to the field lines +this eventually results in

plasma transport through destruction of magnetic
surfaces.,

In laboratory plasmas they were first observed
in pinches [10] and stellarators [11] in the limit of
high electrical conductivity. Much of the recent
iﬁterest in tearing modes is due to the fact that
they have been observed in tokamak discharges [6] .
It is Dbelieved that the disruptive instability, which
often results in the abrupt termination of the discharge
on a very short time scale is due to these long wave-
length tearing modes [12] . The first systematic
study of the tearing instability in a plane resistive
current layer was done by Furth et al [4] . Since then
| other authors [13] , recognising that fusion plasmas
are collision free extendéd the calculation to the
collisionless regime. In recent times, non-linear
excitation of tearing modes through mode-coupling
has also been of great interest, Various numerical and
theoretical analysis indicate that effects resulting
from these interactions could greatly enhance the growth

rate of these tearing instabilities [14] .
A study of the effect of MHD turbulence [15]
and stochastic magneti¢ fields [16] on low 'm' linear

!
tearing modes reveals that the non-linear interaction
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generates anomalous viscous and resistive forces
which give rise to tearing instabilities, The
growth rates of fhesejinstabilities, found to be
proportional to the a%plitude of the fluctuation
levels are much larger than the classical growth

rates,

The dynamics of the tearing modes could be
significantly modified by non-linear interactions
with electrostatic waves [17] . The effect of g
turbulent spectrum of lower hybrid waves [18] on
the tearing modes is to simulate resistive forces
which drive tearing instabilities which evolve

on a time scale much shorter than the classical ones,

We have in the pfesent problem used the fluid
picture to describe the non-linear interactions
between kinetic Alfven waves and tearing modes,

The special feature of the kinetic Alfven waves,

the finite Larmor radius effects can be ‘simulated
through this formalism. Using quasineutrality
condition and Ampere's law the expressionsfor the
side~band potentials with contributions from the
non-linear interaction are obtained., The dominant
contribution arises through the non-linear side-
band current, < Jhi ) which is proportional to the
gradient of Jhb (the tearing mode current density) .
This gives rise 1o interesting anomalous viscous

effects in the tearing mode eguations.
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The dynamics of tﬁe tearing mode are described
by the momentum transfer equation and Ohm's law. In
the former the fluid is driven against inertia by
1) the torque  produced by the ponderomotive force
generated by the non-linear interaction and 2) the
linear Eix g;forces. In Ohm's law, the parallel
electric field is balanced by the linear collisional
drag and the anomalous viscous forces generated by
the non-linear interaétion. For large levels of
fluctuation of the pump amplitude, the non-linear
forces dominate and excite the tearing instabilities,
Using variational [18] and ‘asymptptic methods [19]
we find that the growth rates of these m = 1 and m= 2

tearing modes are proportional to fractional powers of

the Alfven pump amplitude.

The calculated growth rates of the non-linear
tearing modes range from 107 - 106 sec™! for typical
tokamek parameters. Since these values afe signifi-
cantly large, these new resistive tearing modes could

possibly contribute to the destruction of good magnetic

surfaces and subsequent enhanced plasma transport,

The plan of the chapter is as follows. In
section 2,2, we derive the basic equations for the
non-linear decay process. The coupled differential
equations are analytically studied in section 2,3

invoking the variational principle, In section 2.4,
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the  asymptotic matchihg technique is applied to
obtain approximate solutions and eigen values of

the differential equations, The results are comp-
ared with those derived using variational formalism.
Finally the last section summarises the main results
and discusses their application for auxilary heating

with Alfven waves,

2.2 Basic equations @

In this section we derive the basic equations
for the decay process, We consider a mode converted
kinetic Alfven wave #%6?6), propagating in a
cylindrical magnetised plasma with q&@y& given by a

f
plane wave, !

67D = Boexpilhy —wb]

Such a model is quite justified as. long as we
are away from the mode conversion region (W= k“vn),
where the kinetic Alfven wave can have a complicated
radial structure (Airy's function) [1] ., Our primary
interest is in the mode rational surface which can be

well separated from the mode conversion region,

The equilibrium magnetic field is assumed to
have the f §> e e B her e d &
orm B = ea Béy) —+ e} . where o an 3

. . ~A A . s
are the unit vectors in the © and 2 directions
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respectively, The kinetic Alfven wave satisfies

the dispersion relation

™= BRIV C) 4 ko)

where @c is the ion geyro radius, VA is the
Alfven speed k” and RL are the parallel and
perpendicular wave vectors, The effect of the
finite Larmor radius which is the special feature
of the kinetic Alfven wave can be simulated by the
two fluid equations., For a low @ plasma

the perturbations associated with the magnetic

—~

compressions bg can be neglected, The electric
fields can then be represented in terms of parallel
and perpendicular potential%,ky and 4>a5 follows
| 20] ‘
B, = " V3¢, El= -V ¢

From the electron equation of motion, for massless
electrons, the balance between the pressure gradient
and the electrostatic forces along the field lines

leads to the Boltzmamrelation,

8]
Ne = ey

N Te

N
N
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For the heavier ions, the contributions to the density
perturbations, (which can be obtained from the equation
‘ of continuity for ions) arises mainly from the perpendi-

cular motion;

(‘) 2. 1 . » 2 2 . 28
he = “'RL<1 @fp
h, Te
~ Here Te is the electron temperature ng and n, are
 the density perturbations of electrons and ions
respectively., P - <4 where €, is the ion sound
C\)C("
speed, a;dlthe ion gyrofrequency, and N, is the
equilibrium density. The quasineutrality condition
N. = n ce. 2.2b

i e

provides one relation between ( and ¢

—_ — k*p2 e
o= - RN
The other relation required to eliminate the potentials

is provided by the parallel component of Ampere's law.

9. V" - = 4T T | cee 2.3

where ]%,is obtained from the equation ¥.J = 0. Solving
(2.2¢)and(2.3), the dispersion relation (2.1) can be

obtained.

lie now proceed to study the interaction of the

pump Alfven wave with a low frequency tearing mode
-

characterised by (o Rt ) giving rise to side-band

¢/
— - . . !
modes ( LJt + W, ‘?b =+ h, ). The dynamics of the

side-band kinetic Alfven waves can be adequately
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described by the 2 fluid equations, as shown earlier.

The interaction generates non-linear driving terms in

- - - ->
the form of (V X By) )} N v) Ve etc. as shown

below,

o+ > I -3 - -+
a—-ysé =+ CVer>vJ + (V; Ty)Ve = & [_E{ -+
4 d
ot y
.9;-*— - -> 'bi' —»:t g T’ i‘
Vi xB, * Yy xBT + Yy xBe |- 4 [Vno—
T C C hyno
n* +
N Vhg — Dy Vo - 0.
Ny 4 hod 4 /
+ +
ah“ - * >k
sj + hV:V. o+ V- (n."V, +n,_. vy )=0
a(-:J 54 (4 by & Y4 )
o & o 2‘5
4T ‘93h - V, E _—
prd _a_és L B Vi (v, Es) | .
=+ S+
Tus + Ve J —-)-CB'V)T'L_ +(B V>J—-

IB.] 1B
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The subscripts tth/ £ denote the pump, the

C type of species and the tearing. mode perturbations

—D
respectively. V%j)r\u andz jhb are the low freuquency

tearing mode velocity, den§ity perturbation and parallel
- + Y
current perturbation respectively, while \?é’ rug‘and =

are respectively the velocity, density and electric
-y

fields of the side-band modes at ( Wy an),ke:tE )
The velocity and density perfurbations (§7j;) nE )
the pump wave are obtained by solving the linearised
equations of motion and continuity for ions and

.~ electrons.

2>+ > +
Eliminating IJ \g and nd in equations

2.4) to(2,7) and following the procedure outlined
before (i.e. using equations(2.3) and (2.2a)) in deriving
the linear dispersion relation of the kinetic Alfven
wave, the side-band potentials are obtained as
(» ()
——y . ﬂ /\'
Pr = [3k:8 + 2R ¥ + 4T (Rxb- T,
= ¢ T 5 =
R, IB.] » Ry Va R RZ1R)
B —-> VAN > ~
— (R xb-v) (kX b-v)] [ (h’/é,j
. e ] co. 2,
kj_ IQH VA "/é'"
' A
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Wheré

il x 2 2
GA :‘<Lje ilﬁib/ - | - hhﬁi e,
+ N
N ( i Va)
Y -

£~,, k h .. 2.8a
¢fis the complex conjugate of CP.

In arriving at equation (2,8) , the following
approximations have been made. We have made use of
the adiabatic relation namely E‘: <<72>, ahd W << W
In the radial direction this implies that the width of

the tearing layer is much larger than the wave length

of the Alfven wave.

Typically the radial variations of the kinetic
Alfven wave in the absence of the non-linear coupling
with tearing modes (T.M.) are of the order of the
Larmor radius, while the variations of the tearing
modes in the fluid limit are much larger than QL
This enables us to write the side-band potential as a

=+ +
product of two functions, qb,{‘ exyp L(ki“') where gb/s"
is a slowly varying component indicating the contri-
bution from the non-linear coupling to the tearing
mode and the second part,&xri(kiYL represents the
fast fluctuations of kinetic Alfven wave (with kJ«é;),

with this formalism, using the fact]g,_i’-_g! & eo(kj;‘f)
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equation (2.8) is readily obtained,

Further in equation (2.8) , we have retained
the dominant non-linear contributions arising through
- o i 2,
the terms <\/ X B&) (\/& v) y in equation (2,4)
and the term (B ‘V) T in equation (2.7) . The

wE

punp amplitude [@,| is assumed to be sufficiently
2
~weak so that only interactions upto the order of |4

need be kept.

A short explanation of the origin of the termé
in equation (2.8) are in order. Terms (1) , (2) and
(3) arise from the coupling terms (?/j.x §t)’ (?/&x gi)
and ( 3 =3 V):’Dt respectively. Term(4) which plays
an important role in governing the dynamics of the
tearing mode comes from the non-linear contribution
to the current density jh+ , entering through the
coupling term (é:_oV) :T“& ;n the equation «.J = 0O,

In order to describe the dynamics of the
resistive tearing modes,éwe consider again the two
component fluid equations with the inclusion of non-
linear effects‘arising through the interaction of the

side band mode with the kinetic Alfven wave,.

These effects manifest via the Lerm¢<' V)\ﬁ
> + D e
VH$ -~ x B + ) etc and provide additional

sources for the tearing mode evolution. Taking into
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account these contributions, the two fluid equations

can be combined to yield the MHD equations

»67 o2 - o (1
€. % +vp = JeX& L T, xB,  F,
at c =
2.9
E VY - (2)
e T Y XBo = “?3'(, + Fuo ... 2.10
c |
(2
-
f}.—ff + V’(Povb) + Fy = © ce. 2,11
ok
- - - - -
'YXEE:—-J.@M(,)V)(Bb:é-_ﬁb/v.gt:o
c o€ <
. 2,12

Where QD is the mass density 7r'the classical

resistivity and JO the equilibrium current density,

In the equations(2,9) to(2,11), the non-linear terms,

FNL are defined by the expressions

(»
] - - - -
F - — M, . “ h :
NL .Z_ d’%[<\ﬁ'v)%g-+(Y§'V7ﬁ%]
d::l,}e ,
~->+ - _ f——a__ ~—-‘>_+
+ T%B 4+ Te xB' + c c
C . <
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FLZ’) ;)"" L -
N = MMy [(V V) VCS —+ <v(:5~. V) v‘:’*‘ —
30h5+h1) '

[QV V) eg ﬂ.<yés ‘V)\Vc ] —

Xm[\/*xg —+ “\Zl'hx E‘*J 4+ ¢, 2,14
Q"€+"‘)4 < C '
fé?
= . ) ‘*"’— + P
NL [ " (nd de' ) ™y (hsd' \Z )]“” G

ee 02,15

In the above system of equations, the values of

-+ + :
V.- n- Y = r;# expressed in terms of
d 7 4 is / 4s

CPr(obtained from equations(2.4)- (2.7)) are to be

substituted,

The density perturbations associated with the

tearing mode is due to the plasma inhomogeneity
)
( O, effects) and due to the source term F;
-

+
Subsiluutlng the values of V'“ h'; ; 4; ,/1‘?S
@ 4

from(2.4)to (2.7 , in Fyp , it can be shown that
these terms are proportional to<'éir - z} ) where
gftiﬁ defined in equation(2.8a),
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Taylor expanding & and € around CO{qhk)

the expressions for <~é;k =+ é%)can be obtained as :

(L + Ly = _ 8 RV

c” c— . s
Q + k> o> )(W¢ _3% ... 2.15a
while

Hence the contributions FN£3) to the density
perturbations of the tearing mode are negligible and

can be ignored.

Further, earlier investigations have demonstrated
that the effect of compressiblity is generally
negligible for tearing modes [3] . It was shown that
the allowance for deviation from incompressiblity
affects does not directly affect the fluid motion
involved in the tearing modes, which are then. Dbest
described by the condition V- '\?!:—“— © . This assumption
is justified for modes which evolve on time scales

much slower than the Alfvenic time,

To examine the tearing mode characteristics, we
express the system of equations(2.9)-2.12) in terms

-
of the variables B, and V.. To bring the equations

to the standard form the following procedure is adopted;



Equations(Q.lO)and(Z.lz)are combined to give

- s 5 (2
VX I_“(VCXBQ> -+ ’?;_ CVX 8(;) -+ FNL-.]
G

]
&
o
[

The % component of the curl of equation(2,9)

is taken to give

e 'g(WQD '/6\5 = Vx L(T):z, x B —+ (jixgg
C — <

+ FNL‘]. /e\% ¢ 90 20.]A7

The velocity and| magnetic field perturbations
can in turn be expressed in terms of scalar and vector
. — A - “
potentials respectively asVYe= C(b xvP) ahd B = Vx R.b
(=
[Since V.Y, =z0, - Ee = 0. ,B").] We look for
perturbations of the form

Q@ e83,6) ~ QM expi[me +/€?t% —~ W]

Taking the scalar product of equations(2,16)
~ A
with b (where b is the wunit vector in the

direction of the equilibrium magnetic field), we obtain
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. I * 2.
WA, = Ry cp = AT ... 218

LT, Cly VLCP = - %"_lf k“b g1 T,

18] |
4T m dTy A, T F vee 2,19
cC dT

- \ /

with k‘;t:'(Bo'V) and Y the radial co-ordinate of
180l

the cylindrical co-ordinate system., The non-linear

terms 'F' and 'G' in equations(2,19) and(2.18)respect-

ively are. given by

ILNneTe 1€ |* }27129 kj@cl Te
EX H‘Z’(E‘—’)( g&

[

pu——

(L, + L) A [Fikec do L, ]
ar Ry dv=

S A Lo

vee 2,20
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in which it is assumed that E& > kc
dry

Consequently only terms that give rise to the
highest derivatives are retained for studying +the

tearing mode dyamics.,

SimilarlyCﬁ=:

2,2 4 2
‘Wei(le) R O eS| (L Z"——M“%j%u

i) h s Jadll
0 W dv R dY
‘ I3
L, (Mme ky LRy ey g, ver 2,21

'The stability properties of the resistive tearing
modes are studied by solving the simultaneous different-
ial equations(2,18) and(2.19)with appropriate boundary

conditions.

We solve the equations in a small boundary layer
(inner layer) where k“k,x.oand in an outer region,
(where resistive and inertial effects are unimportant)
separately, and match the solutions in the two different

regions to obtain an expression for the growth rate,
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For the inner iayer, we défine a local region around
the mode rational surface where f%nb:: o in this
region, since the width of the layer is very small,
deriQatives of equilibrium quantities are negligible
and only the highest derivatives of perturbed gquantit-
ies play an important role. We expand &“573 about
the mode rational surface as hhbd = k“/(Y~ Y )

(v, is the radial co-ordinate of the rational surface
and the prime denotes the derivative with respect to

the radial co-ordinate ). We define x = Y -Ys ,the local
Ys

radial co-ordinate and a new variable \y :L%%i Ay
ClR s
The inner layer equations {2.18 and 2.19) achire
the form
Ma (»a (D o (4 &
2
d - 2 4
d’;il; =% db 4 & dy e db o
NA* dx® A dxg A dx*
(Ob (» b

DCCP—'\}/: dLP +(C —1~Cx

3%
(ewe#x)dq, + & xdo el 2.
X/ da dsc

23
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where A ( = CQL_ ?H = we/k“/e Vg v, ) is the charact-

eristic time scale of the tearing mode evoluticn,

being measured in units of poloidal Alfven time,ZH,
Y
[z, = 9m@Tnm)?/ g6 B

F ) = B?} /;z Be(r) ’

— 2z
B is the major radius and n = 7 ¢ (4!T‘Llf2,,/t)\/g 7’43)‘

The non-linear coupling co-efficients € ,éz/éR ¢tc.,
are defined as follows,

€ = - 3L k¢ VkeY & | s
) () mimree (6 )

=3 (ko Nrky\ ko ld™ L 0

2. 4.TT<ET:\E/A) -—_;;) l:e 43 o:. GAA é.ﬁ“‘)/

€= - 3@(%’::)(_%) k //%/:

!
Y (—5_,4*_.'.,:)/

- P
))(;Y/S 8o A
2.
G 7 3 (Rec) il o,
}?“qu A:. oz. éA+ N 7
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& :—‘ch
(MA

2- 2
<k ™ <é’l“++g"3>

.LVA (R“Y,O Y Bo A A

':'*LE___S Cbl (L*+J_~
< .LV%;) k“ fé) YsBo “ € )

(c is the velocity of 1light) ee. 2.23a

In the above expressions, all symbols stand for those

variables previously‘defined; chg is the plasma

frequency, and éﬁ: are the linear dielectric

functions: defined by

:t.

€

i

W + >2' . CJ ~f k&i;é%z).

[} R

kn—i \/A

Vithin the tearing layer, where small scale
fluctuations eéxist, the derivatives play an important role.
The doms . . (o

ominant coupling terms coming through :ﬂ,_+5 in

. . |
 “duation(2,7)(N.L. denotes the npn-linear component) give
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/
rise to a 4th order derivative in ¢ , 5th order

in Y in equation (2,22) and to 4th order terms in
\p  in equation (2.23).
Some of these non-linear terms in equations
(2.22) and (2.23) = can be readily associated with
the well known neo-classical dissipative effects

studied in literature.

In particular éﬁ (in(2.23)) could identified
with the anomalous resistivity and &, (in(2.23))

with the anomalous viscosity [23] .

A brief explanation of the origin of non-linear
terms in equations (2,22) and (2.23) are in order,
In equation (2.22) the non-linear interaction
. - _

generates ponderomotive forces (V . V) Ye T+ CCu
which when expressed in terms of electrostatic
potentials give rise to terms proportional to

Vy @ + P- . as pointed out earlier,
the side-band potentials Cb+_and Cﬁ_ (given by
equation (2.8)) contain terms proportional to ¥V, Ty,
and V., Vg

Hence the ponderomotive force is prowortional

to Vo N s Vi . The torque produced
by this force along the field lines, which is given
by the parallel component of the curl of the momentum
and vggve .

equation, is proportional to VQ33ht
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The former, by virtue of the relation between T
and \p , (T“ v - dj&) and- the latter through the
- dy>
relation between V& and @ give rise to terms (3a)

and (4a) respectively in equation (2.22).

In the equation (2.23), however the dominant
- :.." - I
non-linear contribution arises through the V™ X B
forces, which in terms of the side-band potentials,
are proportional to Vy¢, + Yy, ,Using the
relation between the Q.vectors, R“f; = h,MJZt k“
and the expression for CP*_J ¢ ‘in equation (2,8),
it can be seen that the non-linear mechanism generates
2.
terms proportional to CLLJ]lt and :Clb . The
Y
former gives rise to the anomalous viscous force,

and the later anomalous resistive effects in equation

(2.23).

Equation (2.22) the momentum transfer equation,
represents a balance beﬁween the inertial flow of the
fluid (t.e. %;f-D and the torque produced by

Y
1) ponderomotive forces of the non-linear interaction

—D -~
2) the linear ng BO forces,

For large enough fluctuation levels of +the
amplitude of the pump kinetic Alfven wave, the
ponderomotive force (vi‘va produced by the non-linear
interaction (term (3a)) dominates the linear:i X.Eo
forces (term (2a)) . The linear shear flow (term (la)) is

driven against fluid inertia by the torque produced

by the ponderomotive force.
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In equation (2.23) the force due to the parallel
electric field on the left hand side of the equation
is balanced by a combination of the classical
resistive forces ((1)b) , the anomalous resistive
((2)b) and viscous forces ((3) b) produced hy the
non=linear coupling mechanism. When the amplitude}?kl
of the pump kinetic Alfven wave is above a certain
threshold value, the anomalous viscous and diffusive
effects are much larger than the classical resistive
effects. The parallel electric field is then
balanced by these anomalous effects rather than the

collisional drag.

In the outer region where k”#:o the nominal
X -1
ordering V — & k‘ut , Vi — Va (where o,
is the minor radius) can be used,
The classical and anomalous dissipative effects
in Ohm's law have much larger time scales (using
the above ordering) than the convective term
- -
(Vi x B,). So rapid field annihilation is due to
convective processes rather than the dissipative

processes,

For the equation of motion, using the ordering

. 5 4

we have  mentioned, the contribution from dw , d"¢
dx®  dat

which scale as ¥ fé are very small compared

/
a.* ou
to the equilibrium current source, and can be neglected.
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Hence the outer layer eguations can be appro-

ximated as [ 5:1

2. ) ’ A

R, 1Bl VA + 4rm dI, A, =° e, 2,23b
& 1] = Y 27"

COA“ = k“t‘ CCP PR 2.23(:

A brief examination of equations 2,22 and 2.23
" reveals that they can be simplified further. On compar-
ing the qbandLydependent terms in eqguation (2.22), the
<pdependent term turns oﬁt to be small - compared to
the \f [18] dependent term for the range of mode with
X DS hnn A ( ALL 1) . The widths of the
mode (as later investigations show) satisfy this
relation, Further the terms proporﬁional toé;igsin
equation(é.23)(whose effects on the mode growth rate
has been extensively investigated [}B:Iplay negligible
roles in the preseﬁibproblem, since the higher
derivatives control the temporal evolution of the
resistive tearing modes. With these feetures taken
into consideration, equatién§<2.22)and62.2ﬁh take
the form

2 2. 5
d¢ . x dw + G dy Lo 20240

P

d x* A= x> A+ da®
4
xp = (Ey+ Go) d . 2.24b
A x4
The solutions of equation (2.24) will be discussed
in the following sections by employing the variational

21 and asymptotic matching techniques {}9] .



| 2.3 Solutions by the variational method

The variatioﬁal principle 1is a powerful tool
for solving systems of lequations such as C 2,24>. The
defails of this technique are elaborated in reference

LZL.]. Here we simply state the.prescription to be
followed, We note first that though the order of the
equation in 'x' space could be quité high, in
Fourier space it would be a 2nd order differential

equation. Ve define o0 e
Lp= it
Y, = j\y(x;e dx cp = fCPC?-Je de
~o P2

the Fourier transforms of HJGQ and c?cq. Replacing
'x' by the operator é? and performing partial
integration, the variable ¢ can be eliminated from
the coupled equations(2-24), to yield a 2nd order

. 3
equation in Jp  where J = Py, (the Fourier

transform of the perturbed current).

d.[d% 1 +<L€P2‘~6,P a7, + L/
dpl dp CP*/\’O] '}f“” “‘“)""P F("

- X

"”;6;_., . %rP + & P“’) = © v 2.2
/\2-
A A
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Equation(2.25) has to be cast into the self adjoint
form to make it amenable for variational treatment.

For this purpose, we define
o= Twer [(6F) - 1 (enrh)]
' lo

The equatibn for 160"wcomes

é%~ [ L GLQ] ] -+ J- [ _,L -+ éféfF’ —+

PA* dp ZA* A
CLF _ Pl — € V] =

l——' T e .-.-—L— - O e 0 o 2.26
A L ( * | A ) .7

This equation admits a variational treatment.
For this purpose, a functional S 1s constructed in
the following manner., Equation(2,26)is multiplied by
Jy and.integrated from — ©@ to 4+ oo . On performing

the integrations the equation reduces to

™

S = d ,
S gy Th g

Evp — P (Lep — €Y
”T“,/y\_f’ _Zfri(h 4 P %)JJ dp ce. 2,27

S h\n{
s
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Wé note that the variation of equation(2.27)i,e~¢§S:O,
leads back to equation(é.Zﬁ) In order to determine
the eigen values A we choose a simple trial function
of the form,exp(~6%?>) with Re(e) Do, We then solve

S =0, ds =0 for a self consistent solution. The

dot
tearing modes fall into two categories. The m = 1

mode, (m being the azimuthal mode number and the

m>» 2 modes. Of these the former (m = 1) is a highly
‘localised mode, It is confined to the inner layer and
does not manifest itself in the outer regions., The

m = 2 mode has more of a global structure, and

extends well into the outer region., For this mode,

the solutions are obtained independently in the
inner and outer regions. In order to connect the
solutions between the inner and outer regions, a

\ ;
quantity A defir}f_ed as [3]
€

Al - .55
< Y(o

the logrithmic derivative. of WV  across the tearing
layer is matched to that of the outer layer [51].
Hazeltine et al [22] have shown that the effect ofd
for the m = 2 mode can be incorporated into the
equation in the following manner. The contribution
from the equilibrium current source gives an

additional term in the solution of Ampere's law,
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This term can be accounted for by replacing ~% in

equation(2, 26)by(- - 6@3) whereélP) is the
)

Dirac  delta function and A’ is the stability

parameter. Taking into account the above consider-

ations, the expression for the functional can be

written as,

3, [
- §(=) = o< + 1c&[i.+ &, + 3 éfLs
vIT A* 2 P A2 JoAF T
I é 15 € )
+ -+ 4w
Al\/n- i—/%;cg/z_ 32. of /2_ 00 0 2.28

The dispersion relation can now be derived by
eliminating ©¢ between S = o, gﬁzo, This relation
in general is an algebraic polynomial in A and is
therefore difficult to solve for the Toots using ana-
lytical methods, We consider several limits of
equation(2.27) in thegparameter space to that it enables
us to find the approximate roots of the polynomial,
First we examine the case where \év ,alone is
present, In this case we find that the m = 1 and

m = 2 resistive tearing modes are excited with their
growth rates varying as (éi,)y& and CTGV>%CAD%6
respectively. These results are analogous to an
investigation on magnetic braiding effects reported

elsewhere [23] . This non-linear coefficient however
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turns out to be much smaller than the parameters €,
and Qq and hence.its effect will be ignored through-
out further discussions, The resultant dispersion
relation obtained by solving S=o  and gﬁ =D

with finite contributions from €&, and €, is discussed

2, s
in two limits, namely |«] > ] éq/\]/gand Job ) < )éq/\l

‘m =1 Hesistive tearing mode (Ve A D) _

In this limit the éﬁf term can be dropped from the
expression for the functional in equation(2.28).

Hence retaining all terms except éqand eliminating «tbetween
the two simultaneous equations a quadratic equation

for /A is obtained,

)
7. -
AT - T € [1 + (2 & Vi) :J ... .20

P

4 (= YTJ)S/:—

while the value of & is found +to be

]
V. /2_ g
o = * &7 (1 % VI) v 2030
=z
..Q(,Pl'
In order to ensure that the trial function ( € ) be

well behaved, we must choose that , value of A for
which Re(a) is > 0. &, is a function of A
(refer equation 2.23d) by virtue of its dependence

éA._

on the term(.é‘..+ + L ) (equation(2.15a).Using the
A
approximations,(qin'Wg(the pump frequency) and noting
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that W, =z Wy + Wo and o= W, - W the expression

for G|Simplifies to .

é “"“‘"é\l

62—- e o o 203.]_

where 5 = W — s 5 the frequency mismatch in
hub.VA Y5
the dimensionless form and é- is given by

g ke c> b & |
‘"' RV, )k,,,,;z"rﬁ“,gla+kez>

In deciding the nature of the complex term, G we
have made use of the fact tlatk b~«qKY)and assumed
R g™
that (,\)>(A)A( or §>0 ). Thus the dispersion relation
(2.29), in conjunction with equations(2,31) and (2.32)

gives the mode characteristics for the m =1 resistive

tearing mode,

We have solved the dispersion relation(2,29)
numerically. In general there are six complex roots
of equation (2.29) in A for a given value of § and €
The correct root is the one that satisfies the

consistency condition of Re £@) >o,

Typical plots of A_versus S , (for two different
-~
values of & ~ € )are shown in Figs,(2.3), (2.4)and (2.5).
It is seen that close to /\ﬁfg‘there is a resonant

behaviour and /& has a distinct peak.
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In the regions /\((5 and /\))5 , equation (2.,29)

can be solved approximately.and analytical solutions

are given by

w3 A LT
A= L2+ G Vi) ]g(a)/(’e 7 (A0)
A = vw)r

ees 2,33

2. ‘/L :
Ae [2 4 (2 2y8) ] (é"y‘f 'ebg%
q _—5\/',‘;)3/‘%’ <—5~>-‘/a. )

6 s 0 2034

For parameters of interest in tolkamak plasmas
and for moderate values of pump amplitude, [q@{, the
above results demonstrate the existence of unstable

modes with growth rates varying as fractional powers
of ]4’01,

Further in each case the criterion for neglecting

the E% term i.e, ot >](EQJ«)Fﬂ;is checked using the
value of o derived in equation(2,30)and the assumpt-
ion found to be consistent. On substituting the values
of € , €, in equation(2,23 a) the inequality
turns out to be proportional to (§L')<ktk> where L_

Iy

is the shear length, This ratio for typical

parameters is D> |
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Next we consider the case when |« ) £:]€4‘4{5%
For this limit, the contributions from the €Q_term
(neglected before) in equation(2,26)becomes important,
Webretain the dominant contributions in equation (2.28)
2.

namely cxwg Q%?/ €, . The dispersion relation can be
/

obtained as

g =2
A (.3.) (’:.f.l) €, = o ces 2,35
SO\ 5 €y

This is similar to the result (2,29), except for the
additional multiplicative factor (%L>g. As before,
the solutions also give rise to unsngle tearing modes
corresponding to the frequency domains /\>5 and A<8
The new feature is the fact that the growth rates
are now enhanced by a large factor proportional to

I gz [ <->.> ‘) . For typibal spectrum of
wave lengths of both kinetic Alfven waves and tearing
mode, this factor turns out to be large

Cll e“4éq-lj) = kr hn//ﬂzxk ol >

It may be remarked that a similar enhancement in
growth rate characteristics occurs for a non-linear
coupling between tearing modes and lower hybrid

waves [18],



' \
m= 2 Resist_i_ve tearing mode (o(,fi'A/<_< :)

For the Zﬁidriven modes, fhe widths are such that

d; > Az'. The dispersion relation is derived
from equation (2,28), reglecting the term 2V«
and following the same procedure as outlined for
the m = 1 mode., When [ob] > | 64/41%G‘, the

dispersion relation reduces to

3 A
A = :P_Lé‘/gCA/Jrr> cl ree 2036

where
Y.
¢ = [0+ vE) S e (i) +27]
(278 (1 + yze)°/®

and €, is defined by equation (2,31). Once acain

out of the roots of equation(2,36) only those which
satisfy the consisténcy criterion Reol(A) DO will
constitute admissible roots. Using(2.31), we obtain
the dispersion relation near the resonance region

GA»,S) to be

A A
A = =8 418 CA’vv)/sc\ééT ce. 2,37

e

This root yields a growing mode with its growth
2. ~ %7,

rate directly proportional to @l , & ‘3

This constitutes a mode - which is resonantly

ex.cited by the kinetic Alfven waves.

Away from the resonant region A > 5; A<:5)
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the dispersion relation has the form

) %, 3 4f i, +hTen) .. 2,38
: .
Where h +takes thevaluesO, 1, 2, 3, 4, 5, 6 .
Growing roots exist for values of n=0, 4,
For A < &
3)5)
A=+ € —
G exp L Q_?"J .. 2.39

E“EAQ s

This again is a growing root,

It may be concluded that the unstable nature still
persists away from the region where resonance occurs
(A~ 9) with growth rates proportional to'fractional

powers of the pump amplitude.

In the limit Jel] <& 54/\]27/5‘ , there arises an
additional contribution from the éz, term besides the
2. )
€ and A terms in equation(1°2ﬁ).Keeping these terms,

the eigen values, A are found to satisfy the relation

237 .
A = € s
TV = () @) (e .. 2.40
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bwﬁere é? is a fuﬁctidn of /A as defined in

equation (2.23a)., In this limit also, we conclude

that the non-resonant tearing instabilities consist-

ent with the condition Re AK(A)> O are excited by

the Alfven pump. The enhancement factor (§1>again
4

features in this case,

For typical tokamak parameters, i.e. o (minor
radius) ~ 45 cms, R(major radius) ~v 130 cms.

Br (toroidal magnetic field) ~ 50 KG, n,(equili-

13 T

o (electron temperature

brium density) ~ 7 x 10
in electronvolts)eu 2Ke¥,§%(ion gyroradius) ~ ,lcms,
¥, (co-ordinate of mode radional surface) A!é?

’ AZistability parameter )~ 4 , L_ (shear length) e~

-6 -8 S
150 cms, hv HP%/ l:JlO -10 Jthe computed growth
rates fall in the range ~ 104 - 10° sec™, In

particular the modes with growth rates proportional
to (;J“) have larger growth rates. In each case it
is clear that the gradients introduced by the non-
linear interaction drive rew m =1, and m = 2

resistive tearing modes unstable with significantly

large growth rates compared to their growth through

classical dissipative processes.,

2,4 Matched asymptotic solutions

In the previous section, we employed the
variational technique in solving equation (2.25%) and

computed the eigen values, /\ by demanding that the
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£rial function bevwell behaved at infinity. Although
this technique enables us to predict the instability
characteristics of resistive tearing modes accurately,
it gives little knowledge about the global structure
of the eigen function or its asymptotic behaviour.
Thus it becomes important to obtain analytical
solution of equation (2.,25) valid in the entire

- region of P-space.

The aymptotic matching [19] technique is an
important method, which can be used to find approximate
analytical solutions to differential equations and to
obtain global propefties like eigen values, The
>principle of this technique is as follows, The interval
on which the eigen value problem is posed is devided
into two or more overlapping regions. The equation is
solved in each of the subintervals and matched in
the overlap region. In this section, we demonstrate
that the dispersion relation derived in the previous

section, can be recovered using this technique.

In order to connect the results of the earlier
section with the direct method used here, we retain
the dominant terms in equation (2.,26) and rewrite it

as follows,
2a

1 d7 T T A _ Ktregr
[k"‘ d_'J +X§‘:[KL 4‘2%(7\&
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Wlhere k = PA ang the terms such gs &, , G etc,
A
are neglected consistent with the approximation

made in section (2,2),

The basic approach revolves around the fgact
that we devide the k-space into sub-regions wherein
a few terms depicting the physicg] effect provide
dominant balance., we then match the solutions in
the overlap region in Such a manner so as to obtain

a uniformly valid solution in the entire 'k' space.

We devide the realon into two pParts,

li<) < ]/\/e } and ki > )’\/é.f/g

in which the governing equations are

dk [' K* dj; ] - ;QL = o ee. 2,40
and

Ei. [ A dr, -kt y C:) -6 2.43

d.k kz. 2'1_7(] I %T“ J— 90 0 L,

Tespectively,

These equations(2.42)and(2.43) are the Fourier
transform of the inner region €quations, valid
in the dissipative Layer. ([K1 >5 ;). 1, order to

obtain 4 global continuous solution, the solutions of
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(.42), band (.43)have to be joined to those of the outer
region, (equations(ZfZSbL(2.230))where the equili~-
prium current plays a signifiéant role, For this
purpose, j}p
of IQ“b

rational surface, ( k“b ~ e ) are sought,

(in equation(2.,23b)) is expressed in terms

and solutions in the neighbourhood of mode-

The solutions of the resulting equations, for
standard current profile need to be obtained. It has
been shown that electrostatic potential d> and perturbed

current t& - Pﬁy , have the asymptotic forms [25]

¢~ ¢ + bl Ko, TR e 2044
& 7 dx

, ’
Where ¢, and ¢ are constants. 4 is related to these
constants through the relation 43': 99 . Equations

o
©.42) -(2.44) constitute the complete set for studying

the evolution of m =1 and m = 2 modes,

The solution of ecuation(2.,42)can be easily obtained as

(v w
>
T = A (Sink — kcosk) =B (K Sink+Cosk) 5 4s

While the 2nd region, is further broken into two sub-
regions, namely |<< K[<< lé‘/é,r) and [k >> | é‘/eéf]
In the former the equation has the form
d 7L dr - ' M T =0
dic K% di 4A¥

.46

N
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the solutions of which are

(2 _ kg/““ ;L(lm:]' . . (2 .
N l: 3 (‘é_/%k ) + BN, (;A4<)]

(1<< 1K1 L)€, )

@ 0 e

While in the region |k| > |2 z } the eqguation

takes the form

- kY Cie k)T -
dk(k dk IA% CLC"OT' 7

whose solutions are
(D
—I /2. T 5 5
[A /(:?k)#—ﬁ» (b;:,i;rk)

(11> ] € 1) 2049

In equations(2.47)and(2.49),the symbols . J and N are
the Bessel functions of the lst and 2nd kind resp-
ectively and the subcripts on (5i-3) denote the
sub-recions in 'k' space., A and B denote the

arbitrary constants in the various sub-regions,

We now investicate the solutions corresponding

to the m = 1 mode. For this mode, the stability

!
parameter A 1is very large and hence the constant ¢



70

(through the relation in equation (2.44)) is set to
zero. The solutions are highly localised in the
dissipative layer (lk} > “) , while in the outer
region <\)ﬁ L) the solutions asymtotically
approach the form ¢ —~ Cfa‘)/K/ dT/d — kCP. 55 Py
is zero). These asymptotic forms of the solutions
in thé outer region must match with the solutions
of region (1) in the small argument limit. In the

small argument limit, the solutions in Tregion (1)

have the form
(I) e)) o
dj\ .y Bk - Ak 0se 2,00

dk

To ensure matching between the solutions of recion
(1) and the outer region, the coefficient %> must
be chosen to be zero. The other boundary condition
arises from the fact that the solutions must be well-
behaved in the limit Kl . For the situatlon when

[ > \EQ.ﬂﬁVK , where VY& is to be identified
as the width of the mode in 'x' space, ( or Ué, the

© width of the mode in 'k' sbace) the solutions of

equation (2.43)do not play an important'role and
the term proportional to é% can be omitted from

equation (2.43), This is the limit discussed in

section (2.2) .
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The matching of solutions need be done only
petween region (1) and region (2) to arrive at the
dispersion relation., Choosing B(Z) (the 2nd co-
efficient of the solution in region (2)) to be iA,,
converts the Bessel solution into a Hankel solution

and ensures convergence,

To connect the sclutions in regions (1) and (2),
| (0 ®
we equate the coefficients of K and K (these are
the dominant terms) in the overlap region. The ratio

of the coefficients are as follows:

o (22 : ;3/?
B = B (L& L
Gorle S TR ve. 2.51
g
Q> (2> i3/
— : '3
B[";]L'*‘;;T]*-',@. ey ) vee 2,52
7 [ X —
L 3 Soh(%‘g) 16 /—;'3’/'9'
where & = é‘y /AQ— ces 2,53

Deviding equation (2.52) by the equation(éa53)

the dispersion relation relation is obtained as

8 p
A = - 36E ... 2.54

e

The scaling for /\ obtained from(2.54)agrees in its

functional form with equation (2.29). Out of all the
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rodts of(2.54))only thoée which ensure convergence
of Hankel solution of region (2) (which asymptotically
has the form ev ébe ) are acceptable,

| For the limit f"“ > /éq /\r/giscussed in
section (2,2), the term propoftional to éi; plays
a significant role, The solutions in region (3) i.e.
equation (2,49) have to be retained., The convergence
property now depends on fhe solutions in region

(

3). For this purpose, we impose the relation
®» @
B =¢ A . The solution in region (2) have now
to be connected to those of region (3). Equating
GO) !
the coefficients of ki and Qﬂ{ the connection can be

brought about.

@ 'Y’
Vo Yy =0 (> =Y
— B 6’-{2._‘:__”5_ (Lﬁ'h)_l«
Sin@my  *° [%o Qn%?‘ e 7,
1o :
+ o+ 2.55
(3> @ t I 3/
(A + Bok3r) 8_/_":(‘/2') T L =
o 2o {7}‘/‘9
(29 (2 AR
(A + B cok:g_lz*)(g_e__/‘)/gmL
¥ o
(O(,‘:i:; ) [_‘"}g 2 8 e -~.56
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i before,deviding(2.55)by(?-56)jth@ dispersion

relation is obtained as

2,57

The above relation is identical in its functional

jependence with the  solution derived in equation

(2.35). As before, among the roots of(é.57b only

_those which ensure the convergence of the solutions. are

accepted.

To compute the elcen values for the m = 2

mode by\the asymptotic method, we need to consider

the solutions in regilons | k] <<) (outer regions)

those in the dissipative regions. The stab~-

n Fourier space is defined as[25]

besides

,\'. . ,.
 ility parameter, A 1

; B
A = Lb - kT de = @ .. 2.58
k= X o0 ¢ dk &b,
Using equation(2.501,1n conjuction with(2.51) and (2.58)
(for the limit [el] > [GLI‘/\’Z'I/S' ) the ratio of the co-

oo (" uo
efficients A o B is given by

Q)
— é /\‘Al
"—(—5 el 9 o 2'59

A
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While the connection formula between the regions

(1) and (2) leads to the ratio of coefficients as

(> é? = ‘ 3/
AB = 5g Sin (3U)(LE
¢ Sin (37)( 7'4;“') .. 2,593

with the boundary condition B = YA | Using(2.59-2.59h),
the dispersion relation for the m = 2 mode 1s obtained
as
3.
2 - : “4
— L 4 {
A= lexpter JLLE T 3 74" | o0
‘ 1
[y
1

Wherelg& is the gamma function, This result is

similar to that given in equation(2.36),

Thus we conclude that the scaling for m = 1 and
m = 2 resistive tearing modes can be obtained
Tigorously by the asymptotic matching technicue,
The results of this séction quantitatively agree

with the varistional solutions of the previous section.

2,5 Summary

To summarise, we hgve studied an important mode

coupling mechanism, in which the kinetic Alfven waves



couple non-linearly among themselves to paramet-
rically excite tearing modes.

We have shown that the ponderomotive force
produced by the interaction, generates convective
forces in the equation of motion and simulates
anomalous viscous and resistive effects in Ohm's
1aw. Within the tearing layer, these effects
manifest'themselves as steep radial gradients of
the perturbed magnetic field and provide additional
sources of free energy. Outside the boundary layer,
the Alfvenic terms dominate and the solutions are
basically that of the ideal kink mode., We have
preserved the basic linear characteristic of the
tearing mode by retaining the non-linear terms only

in the inner region equations,

The momentum equation describes the motion of
the fluid driven against inertia by the torque
produced by the linear jingl forces and the pondero-
motive forces of the non-linear interaction. For
large enough fluctuation levels of the amplitude of

the pump Alfven wave the ponderomotive force emercges
as the dominant destabilising force.

The Ohm's law, represents a ‘balance between
the parallel electric field and the dissipative forces

of the classical resistive type, the anomalous
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resistive and viscous types generated by the non-linear

4

interaction. In the inner layer, where steep gradients

dominate, the perturbed magnetic field is dissipated by
the viscous forces of the non-linear interaction rather
than the collisional drag.

The tearing instab’ lity evolves under the combined
effect of the non-linear ponderomotive force and the

viscous draqg,

Using both variational and . asymptoiic matching
methods, we have demonstrated the existence of m = 1
and m = 2 tearing instabilities with their growth
rates varying as fractional powers of the pump amplit-
ude, namely p#%[yg (equations (2.23) and (2.34)) and

| b l3/7 4" *l7 (equation (2,36)).
For rether moderate Alfven wave intensity
h*?_'%'%/ » ~ 107% 10 107® and typical choice of
|84 | typical chnoice o

tokamak parameters namely a ~45 cms, (the.minor

radius) R ~130 cms (the major radius), B, ~ 150 KG,
nt~‘7x{LO?3.Qm‘3 , Te ™ 2KkeV, QNO'icm,W;Nalz LAy 4
we find that the calculated growth rates fall in the

range 10M0108 sec™t,

Alfven wave experiments are currently being
carvied out at several places. The most notable

results are from the TCA tokamak at Lausamne [3} .
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Ih‘most of the experjments in addition to efficient
electron heating enhaﬁced transport of particles
have been observed to take blace. It is believed
that this is due to the onset of tearing activity
which destroys good magnetic surfaces. It is however
unclear as to whether the tearing activity is trig-
gered by the kinetic Alfven waves, These experiments
also report disruptions for r.f. power above a certain
threshoid. There is indirect evidence that thege
power limitations may be due to the excitation of
tearing modes, However to make a direct correlation,
data on the MHD activity of the plasma and the mode
dependences of the power limitations are required.

We believe that work is in progress in this direction,

It may be remarked in conclusion that the growth
rate of these tearing instabilities triggered by the
kinetic Alfven waves will eventually be controlled
by non-linear saturation mechanismswhich have not
been studied here., In order to consider these non-
linear effects, we need to retain second order terms
of the tearing mode perturbation such as
etc. Presumably the rapid growth of these new modes
discussed here would be slowed down by considerations
similar to earlier works on non-linear tearing modes

(23, 24] .
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Fig (2.1)

Fig (2.2)

Fig (2.3)

Fig (2.4)

Fig (2.5)
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Fiqure captions for Chapter II

The equilibrium sheet current distribution
is shown in slab geometry. The current J,
runs along the field B, generating a

self-consistent By(x). The field BY changes

sign at x = O
The current slab of Fig (2.1) has been
subjected to a tearing instability with

kz = 0, k.Bb = ky Boy = 0 gt x = 0.

Plot of growth rate /\z versus the

mismatch parameter 6 for two different

values of G — .%

Plot of growth rate /\versus the mismatch
parameter 6 in the 4ﬁr<<5 regime. The
dotted curve is the analytical result,

equation (2,34)

Plot of growth rate A, versus 6 the. mis~
match parameter in the A_D) 5 regime, The
dotted curve is the analytical result,

equation (2.33)
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CHAPTER IIT

PONDEROMOTIVE EFFECTS ON RESISTIVE TEARING

MODES

3.l Introduction :

In the last chapter, we had discussed a resonant

interaction process by wqich an externally applied
kinetic Alfven wave field could excite tearing modes
with large growth rates in a tokamak plasma. This
parametric decay process takes place when the
frequency and wave vector matching conditions are
satisfied between the kinetic Alfven waves and the
tearing modes, However there are other non-linear
effects which we have not taken into account in our
calculation, These arise from the self interaction
of the Alfven wave giving rise to a d.c. force,the
so called ponderomotive force, The term responsible
for the parametric interaction is usually referred

to as the side-~band or mode coupling term,
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The‘ponderomotive force can give rise to two effects
a) it can couple to the low frequency tearing made
perturbation and provide an additional driving term
in the momentum equation, in the same manner as the
mode coupling term. 2) it can induce equilibrium
drifts. In this chapter we examine the stability of

the tearing mode in the presence of these effects.,

The equilibrium drifts have components in the
axlal, azimuthal and radial directions. Although the
dominant drift is in the axial direction, we find that
it.is the radial drift which plays a significant role
in the dynamics of the tearing mode.v The radial drift
couples to the gradient of the perturbed velocity of

the tearing mode and generates large gradients in the

momentum equation,

Our calculations show that the equilibrium flows
play a more significant ;ole in controlling the
dynamics of the tearing %ode than the convéctive
driving force due to the ponderomotive term. Using
a variational approach [1, 2] we find that a) the
axial and azimuthal drifts Doppler shift the mode
frequency. 2) the radial flow leads to steep gradients

and drive the tearing mode unstable,

The present chapter has been organised as follows.

In the next section, we derive the'equilibrium flows
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expérienced by the particles in the kinetic Alfven
wave field. In section 3.3 the basic equations
describing the tearing mode.in the presence of the
equilibrium drifts are obtained. Section 3.4 contains
an analysis of the equations using a variational
approach. The last section summarises and discusses
the méin results of the present chapter and compares
them to earlier work [4, 5] done on the effect of d.c.

flows on tearing modes.

3.2 Derivation of equilibrium flows :

In this section, we derive the equilibrium flows
experienced by the particles in the fields of the
kinetic Alfven waves, The drifts have components in
the axial, azimuthal and radial directions., The
salient features of the kinetic Alfven waves (namely
longitudinal propagation and finite Larmor radius
effects) can be simulated using the system of two

fluid-Maxwell equations [6]

— - )
. . T neée Y- - .
m¢n°{i’\fd ne e + 4,>_i_§o:] Y, .. 3.
a &
Cibd -+ V'C"“Z) = 0 se D42
Qt
- — -5
1 a8 = VxE, VxB= ltlr_,:r/
e 36 ‘ c
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Where fhe variables in équafions(3.l)to(3.3)are as
 gdefined in chapter II, The quiver velocities of
the particles (electrons and ions) obtained from the
equatibn of motion (equation (3.1)), in the fields

of the kinetic Alfven wave are given by the equation.

- . -
Y= CCE__?f_B) —~+ C_fr\j' dE, eee 3.4
d nx .2 dt
) @?Go

The first term is the crossed electric field drift
common to both electrons and ions. The second term
is the polarisation drift arising through the time
dependent electric field, This term isvtypically
proportional to Qiﬁ. where &4 and aq% are
the Alfven and Largar frequencies respectively,
The ratio &%M/le(for electrons) is one order of
magnitude less than &%VQddl(for ions) and can be

neglected,

The electric field drift in equation (3.4) has

a non-linear contribution arising from the eleétric
andiyagnetic fields of the wave itself i.e.

[E; Qo) % §;@0hiLé2. . This second order drift
has two components, o;e a d.c. component and the
other at the higher harmonic of the Alfven wave
fluctuation, In studying the problem of resonant
interactions, we have retained only those contributions

to the quiver velocities which were at the fundamental
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Alfven frequency. The basic reason was that only

these terms (at the fundamental Alfven frequency)
couple with pump Alfven wave to produce beat waves
of the tearing mode frequency and resonantly excite
it, )Here we study the second order contribution
(Ea » ézl/B:' to the quiver velocities and the

‘implication of their effect on the tearing modes.

The tearing modes [7]) evolve on the resistive
time scale, which is many orders of magnetitude
longer than the fast Alfvenic motions., Since we
are interested in studying the evolution of the
linear tearing instability in the presence of
Alfven fluctuations, the fast Alfvenic wiggles
in time cén be smeared out. To achieve that
equation<3.4) is averaged over the Alfvenic motion,
The only finite contribution arises through the
second order drift (E: X 5:)/82— ; so we notice that
on a time scale longer than th; Alfvenic iime scale
the particles execute certain average drifts,

The electric fields are expressed in terms of
perpendicular and parallel potentials as follows,

’E:Lz ""?L¢A}Eu:z ~V, Wa (refer chapter Il) ., The magnetic
field perturbations are related to the potentialsq%
and Hﬁ (the subscript 'A'refers +to the Alfven

fluctuation) through the Maxwell's equations
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l
@
o4

2.
__(_};__, CQbA“'\zup,) = J__QLS_.Y see 3.6

We choose a simple cosine profile for the
>
oscillating profiles as (PA = d% Ca&(ﬁ;y ~LaL>
Substituting the values for electric and magnetic
3 €, 16
fields in the term = 8
‘ NL AR A>'/%%l
the axial drift \4» has the form
(6,8, E,5,) = (ck) CRezrke)x
B>
S
Qén“CkA-v — W, k) ... 3.7

NL
the azimuthal drift VY

(E5RB )c_k? k C Yy (¢ — %) Stn (k ¥ -, £) 3.8
B By LA

the radial drift

v"%ﬁsgc—: ka k%’;c_ Yo B Stn (R, v ~08)  ...3.9

Bﬂa‘ wn. '302”
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The relation between the parallel potential YW, and

perpendicular potential <?A is given by the quasi-
) > w
neutrality condition, N, = Mg (where ne,
ud
N, are the density perturbations of the electrons

and ions respectively )

\+% = - ;; q%

where — h 2 2
L

)\a = Q/‘
The value of W, from equation (3,10) substituted in
equations((B.?)-(é.Q))and the averaging procedure is

carried out over the fast Alfvenic motions;

2/,
(’1': 5 D{(&) at >

The axial, azimuthal and radial drift respectively

have the form

NL. -2
= A C

v‘” C“E‘. )\’*(ﬁyc‘ cer 3401
Vo= &F R Gk etyk

o = % Ao, G )(f;:) -C%q) s 023,12
NL abl _

V., = @ A, (kZe?

Y 5 A(‘e'rn A )(%ﬂﬂ)(%) C/.f ) 3.13
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The-factor % in equations(B.lI) 13 appears as a

consequence of the averaging procedure, A brief

examination of equafions(B.ll - 3,13) reveals that the

azimuthal and radial drifts are smaller than the axial
drift by a factorﬁkgségﬂ hb@%o ](Por Alfven waves this
factor is of the order of (TifNevertheless it will be
shown that the radial drift plays the most significant

~role in the evolution of the linear tearing mode.

The other important term due to the ponderbm
motive force is the non-linear convective derivative
GLﬁfwv){? in the momentum equation for the tearning
mode.‘ The 'Vz appearing in the expression is the
quiver velocity of the particles having both perpendi-
cular and parallel components and 51 the tearing mode
density perturbation, fhe perpendicular component of

e
'Vt consists of the electric field drift and the

polarisation drift (equation (3.4)).

The parallel component can be obtained from the

two fluid equations as follows:

For the lighter electrons, the balance between
the electrostatic and pressure gradient forces in the
equation of motion, gives rise to the density pertur-
bation %L while the equation of continuity relates the
parallel motion to ﬁ;. (the polarisation drift of

the electrons is negligible),
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W
ah& —+ hnqlvn = O 2,1
—— ¢ ¢ 9 ° 4
Ak ©
Ve = L ey | ve. 3.15
Ry Te

For the heavier cold ions; the,équation of motion

provides the expression for \@L

m, dv,. = e

E_E: ¢ o 0 30]6
with V. = (@4 c, e
b v,.) ! }g cer 3017

(;<<\Q (the Alfven speed)

A comparison of (3.15)and(3,.17)reveals that the
parallel motion of electrons in much larger than that

of ions by a factor (}h ol
Ca

The perpendicular ponderomotive force for
the ions and electrons;is given by
-5 -> - L -

<(VE + ij),v'(vE - ij)>. (Here the term Vp refers
to the polarisation drift.) The averaging (as before)
is performed over the fast Alfvenic. motions. The
phases of the electric field drift VE and the polari-
sation drift are QO@apart. Hence <§ V)YL>
the -l? component after the averaging process is done
non-zero, while the parallel component of the pondero~

motive force vasnishes,
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Using the cosihe profile for the pump Alfven
wave, the perpendicular quiver velocities can be

written as

= C<3 xk.an’o) Sin CEA:: -~C«i‘b)

B,
— Cm; B oce (B7-105
_._._..d ¢O RLn . A.Y ’ A ...3.,18
€ 8> -
-~
Where kJA = < YA + B Roa

From equation(3,18)it is a short step to the expression

(V.V)v_% , (F d)

Z o 2> 2 0 >
FJ-J' = W, ki,,(Po('jxk_LAcbo) ot Ck v —wA(D> e 3419

e Bo?- 89

which can be further simplified to

J q% A .,ﬁ
2- (o‘-)c.d

—
C,sl- (%x'k;“ )

where e
( CPO = Eﬁo
Te

-
Though the parallel component of LV 99 Vu) produced

e 3,20

by a single Alfven wave vanishes, the parallel
ponderomotive force arising due to the interaction
of two kinetic Alfven waves at slightly different

wave numbers has a finite value., In chapter VI we
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we shall investigate the effect of this parallel

force on the tearing modes..

3.3 Derivation of tearina mode equations with
equilibrium drifts

We now go over to the study of the evolution

of the linear tearing mode in the presence of equili-
brium drifts and equilibrium ponderomotive force

discussed in the earlier section,

The resistive tearing modes are modelled by a

system of fluid - Maxwell equations,

C AV + O WV + 0. <G WV
at

—> -
= I x 8 — Vp vey 3,21
C
o " 3,22
%_(} -+ (v-v)@& + (Ve e =0 eee Do
b

Ee + & ><Bc) + (Ve x B -77 - VP, ... 3.23

< eno
-> - -> ->
L Be = ~VXE, , VKB, = 47T,
C At o

- -
VB =0, V=0 ... 3.24
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_ NL _ - N
The term V and €L<Qﬁ v)v>refer to the average

d.c. drifts and ponderomotive force, In the equation
3,21) the axial and azimuthal drifts give rise to
terms proportional to; Vt,hihus Doiiler shifting the
mode frcfav%uency to((;ot = RgVy — le% Va ) The radial
drift Yy couples to the derivative Cfﬁ;, while

the ponderomotive force couples to the dgnsity
perturbation., As in chapter II the perturbed
magnetic field and the velocity are expressed in
terms of potentialsAand q> as B=Y x bA“/vE_ C(Qx vé)
respectively, To study the tearing mode dynamlcs,

we take the’@ component of the curl of equation
3.21), the equation of continuity and the parallel
component of Ohm's law (3.23).The electric field and
current perturbations are related +to the vector ﬂ”
and scalar ¢ potentials of Maxwell's equations.,

The system of equations(3.21) to(3.23) are finally
expressed in terms of the three variables, A“ycp

and € . Expanding h” about Yg as R, =z k“%%~752
where Y, is the co-ordinate of the mode rational
surface, and defining x;:ft:ro (a dimensionless quan-

Ic]

tity) the three coupled equations can be reduced to
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2 NL. 3
dep - de 4 (8 F, dg
A dx (4{3 dx Q, ¢ clx
— |2 2.
= XcRy vy 4 e, 3,25
Vs dx?*
. k/ - ML
Tt Rexe g LAIIC“(».L—'LJMe)"‘ Yy C_iﬁn
| Y clse
=7me  d*a
—= Ay 5
ZT’.QL x;_ e ¢ o 30-6
. Ne N
(0.0 + N, d@ + epl Wy =7 e 3.27

Y dx Te

NL NL

Where O =(W - kg\h.”'ka Ve ) the Doppler shifted
frequency. Fe is the azimuthal component of the ponder-
omotive force (equation (3.20)) and Wy, the diamagnetic
drift frequency (:*B@EJEJ;, where L,, = scale length
of the inhomogeneit?f% o

An important feature to note is the presence of a
third derivative in the equation of motion due to the
radial drift. Since the tearing modes are driven by
steep gradients near the mode rational surface 18] we
anticipate that the cubic derivative could significantly
govern the dynamics of the tearing modes, A qualitative
study of the equations at this juncture yields inter-
esting results., The density perturbations are unimportant

for the tearing mode dynamics and for the present
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qualitative analysis can be ignored. The coupled

equations can be cast into dimensionless form as

follows:
Y @ (®
VL 8 2.
de - Vg do = x 45 ... 3.28
dox*> A dx’ A+ dx>
(@ (50 (62 )
X — LV fond B d \P ® ¢ 0 3 029
? N T
NL Ni - 2.
where A= W ;Yo F _‘\E/_xl. . (= ’ZCI .
k”l VAY/S L J VAY'S @f-TrL k“ Vh ‘:S )

pung ' = (r-v.
Y = w4, , X Or= )
=7 s
kll ch

For the m = 2 mode one uses the nominal scaling

d’» fvfgL, dy = ‘!H’ where 'x' is to. be

X > *

identified with the width of the tearing layer., By
identifying the terms which contribute to the
various physical processes the scaling for A can be
obtained. The classical growth rates can be obtained
in the following manner, For the m = 1l mode, a
balance between (1) and (3) (with é;%. —~ Hé“ )

X o

leads to an expression for 'x'as x ~u A . Physically
D
Term (3) arises from thet{xeoforce, while (1) arises
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from the fluid inertia. A balance between them

can be interpreted as the E;x é:forces working against
the inertial forces and causing a vortex flow., Balanc-
ing (4) versus (5) and (5) versus (6) , gives a
second relation between x and A (&?:jz)..Eliminating
X between the two relations leads to fﬂe scaling for

N as N~ C?f@ . The scaling for m = 2 mode,

i.e, /\A'Qﬂv%%cﬁfA? can be obtained using similar

dimensional arugments.

In the presence of equilibrium flows, the
equation of motion has an additional third derivative
(term (2)). For the m = 2 mode balancing (1), (2)

versus (3), we obtain,

NL

[

g :
.4 /\ ~

A e 3.30
A

The other relation is obtained from the second

equation .
— !

x [ A o ¢ 0 303—‘-
72/\

elimnating 'x'between(3.30)and(3.31) we get

c NL. 4
| Y. — e ‘Ufe
N\ [ FRAANN ] = @G)A
L‘VACkH Y )"? a
N

In the event of Vy 9, the classical growth rate
~NL

for the m = 2 is recovered. Note that \ is a

ees 3,32
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positive quantity,

Substituting the expression for ‘?)

c* 3
) -
‘7 AZWLkHV{& v 3433
NL '
for values of V, less than 4 M¢, the classical
4T

growth rate is either enhanced or reduced depending
on the direction of the radial drift; In the opposite
limit, equation (3.33) suggests the existence of a
new class of instabilities with typical growth rates

scaling as
/5" N‘_ /5‘ o 00 3034

A, ~ 167>l [ Ve

Physically the instability arises because the
torque produced by the llnearka Fi;. forces (term (3)
in equation (3.28)) along the direction of the
equilibrium magnetic field drives the convective flow
of the fluid, represented by term (2) in equation
(3.28), against the fluid inertia. -In the next
section using variational solutions, we obtain the

scaling given in equation (3.34) in a more rigourous

fashion.

3.4 Varigtional solutions

Having obtained the scaling for A on purely
dimensional arguments, we proceed to verify it and
solve the coupled equations in a more detailed and

systematic manner. To achieve this, we take the
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Fourier transform of the system of equations

(3.25 - 3,27)

~a K (Mw-f-m Fp (1R 6
e R k& > P
TéL po C-Té
ik/
= “_T_H__}’ACEL Ck’lﬁk) cee 303D
Y dk
. NL.
dk £ k” Y\}S h/ Y/S'L
2
?u(le B ... 3.36
A
ML
20+ Yy k8 — e ew. 4o
Y Te

Where the Fourier transformed variable is defined

as

L ko

o0
= Jr <?(ﬁ) e ol x
— o0

Eliminating@k,p between the equations (3,35 - 3,37)
and defining a variable, j‘k = hl'HJR
a second order differential equation in 'k' space is

obtalnpd.
ljd]} 4 (A— k‘vk>
dk DRI [(A— kY, +é,»/\,k]]

"”km vR -7 |=0

... 3.38
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Wé Qse the variatioﬁal technique to solve the above
equation and obtain the expression for the growth
rate, In equation (3.38) é% is given by Eéj%ﬁf

' . Wee : : . Ri'CdVa
and A is 14%‘Vﬁ12)' For typical tokamak para-
meters mentioned in chapter II, é} is estimated to
be much less than unity. On comparing the terms in
the denominator of the expression in the parenthesis
(of equation (3,38)), we find that the term proportional

to €p becomes important only in the region of 'k!

space such that k &&Ali.e. k<<, as Ay~ N
A

This region corresponds to the outer layer,
where the tearing mode exhibits an ideal kink behaviour.
The dynamics of the mode in this region are dominated
by the equilibrium current profiles and dissipative

effects are negligible.

It has been shown that field annihilation
occurs only through convective effects, hence both
non~linear source terms and classical resistive

terms can be ignored,

Hence we conclude that the perpendicular
ponderomotive force, does not play a significant role
in the evolution of the tearing mode, and we shall

therefore henceforth exclude this term from our analysis.

The prescription for obtaining eigen values of

differential equation of type given in equation(3.38),
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has been outlined in ‘the earlier chapter. Following

the method, we choose a simple Gaussian trial

—a B *
function ( € ) and obtain the expression for

the functionagl 'S',

S = A <> Z-(/\Jd) = ZAT

W""
R
o —-/\ s /\2— o e 0 3-39
7/»/04 Al

where '2' is the plasma dispersion function.,
Making a small argument expansion of the 2
function in the above equation the expression for

the functional is obtained as

S =tAdT  — 2 ATy — DAV
; NL.
v v
R 2.
— A ' .. 3,40
X
The condition for the small argument expansion

i
to be valid is that (AW /m)< 1orALL Ye
Ye Vel
This condition imposes a constrainton the pump
amplitude which is readily satisfied for typical

tokamak parameters and realistic levels of Alfven

wave intensities,
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golving S = 0 and g% =0 simultaneously
&

joVideS the dispersion relation. The equations are

AL = N = A oo 3441
Nl N3 Af
VR
. -3
—-2.1\'_3{1. + *2/\°< - - O ves 3.42
NL e |
VR

Solving equations (3.41) and (3.42) simultaneously,

the scaling for the growth rate /\L is readily

obtained as Lr/ oo -y
A . { 5 — i 1/g s
L Jal ;;{5 )"2] [\/K\

il

. e 3043

A= LA 5, 17 11

= U /Li_‘i/@' 7 &

This is the same scaling as that obtained in equation

(3.34) through physical arguments. This again is a

purely driven mode., 1IN obtaining the scaling we had

made a small argument expansion of the 'Z' function

in equation (3,39) and consequently the classical

contribution had been neglected. This is equivalent
2 NTH

to neglecting the d’%  term as compared with Vg 47
o A as’

in the equation of motion. This instability is

the consegquence of the balance petween the

forces and the convective flow arising due to the
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- Alfven fluctuations. The growth rate is proport-
ional only to the equilibrium radial drift, (given
by equation (3,43)) while the real part of the
frequency has contributions from the axial and azi-
muthal drifts. Substituting the expression for the
radial drift into equation (3.43), it can be seen
that the growth rate scales as fractional powers of

the Alfven pump amplitude.

3.5 Discussion

In this chapter we have investigated a non-
resonant interaction of kinetic Alfven waves with
tearing modes in which the d.c.ponderomotive force
couples non-linearly to the tearing mode perturbat-
ions, This force gives rise to two effects. One is a
convective term which couples to the density pertur-
bation of the tearing mode in the momentum equation
and the other is the equilibrium flow. Of the two,
the dominant effectgis that produced‘by the equili-
brium flows. The axial and azimuthal components of
the equilibrium drifts Doppler shift the mode
frequency while the radial drift gives rise to a
third derivative in the momentum equation, This fact
is significant as the tearing modes are driven by
steep gradients around the mode rational surface,
The variational method was used to analyse the

tearing mode equations, It was found that weakly
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gfoWing tearing modes with their growth rates
(given by equation (3.43)) proportional to fractional

powers of the radial drift could be excited.

The effect of equilibrium flows on the
~stability of linear tearing modes has been investi=-
gated by several authors in other contexts. Dobrott

et al [3] found that the effect of 'natural |
diffusion' on the tearing mode was to have a stab-
ilising influence, while a velocity in the reverse
direction could be destabilising. Pollard and Taylor
[4] examined the effect of arbitrary equilibrium flow
on the stsbility of the tearing mode. They found
weakly growing modes with growth rates proportional

to the radial velocity. Recently Bondeson et al

have presented a numerical and analytical study of

the stability problem of tearing modes in the

presence of equilibrium flows. In the weakly unstable
regime they find an instability with growth rate
proportional to fractional power of the perpendicular
flow, This result agrees with earlier investigation

of Pollard and Taylor [4] .

In the present work using a fluid model we
have shown that the radial flows induce tearing
instabilities with growth rates proportional to

fractional powers of the radial flow. The results of



105

our analysis are in agreement with the scaling
_obtained for weak tearing instabilities by Pollard-
Taylor, Bondeson, In their investigations however
the equilibrium flows are of an arbitrary nature.
In the present analysis the d.c., drifts are generated
by the kinetic Alfven wave fields, and the growth
rétes are therefore proportional to fractional
powers of the Alfven pump amplitude, These driven
instabilities inducéd by the radial flow howe&er

grow on a much larger time scale (for typical tokamak
parameters given in section 2.5) than the resonantly
excited tearing modes (of chapter II). Both of these
non-linear processes are equally possible phenomena
and could take place simultaneously in a tokamak
plasma. -~ The resonant parametric decay takes place
under rather special conditions when the frequency
matching conditions are satisfied. The second
effect which is due to the ponderomotive force
generated by the kinetic Alfven wave could take place
under more general conditions and is a more likely
feature. Tearing instabilities induced by these
non-resonant effects are hazardous for plasma
confinement and could eventually lead to transport

of plasma particles,
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CHAPTER IV

BEAT WAVE EXCITATION OF TEARING MODES

4,1 Introduction

The non-linear excitation of oscillations
in a plasma at the beat frequency of two high
frequency electromagnetic waves is of considerable
interest in plasma physics on account of its various
applications. It can be used as a density probe for
plasma diagnostics[l] and for ionospheric sounding [2]@
Recently it has been proposed as a basis for high
energy particle accelerators [3, 4] and. also for
current drive in magnetically confined plasmas [5, 6] .
Another important application of the beat wave
mechanism is as a possibility of heating the plasma
[7, 8, 9] . The method consists in the excitation of
longitudinal plasma waves by resonance with the

difference frequency of a set of transverse waves.

We have studied the beat wave interaction in
the following context. In Alfven wave heating scheme

in laboratory plasmas the antennae excite several waves



at the same time. (e.g. the antennae on the TCA
tokamak were phased to excite modes with n = +2, 46
and m = 1, #3 .... [10] .).These waves have a single
frequency, {(or a small spread in frequencies) and a
range of mode numbers (i.e, different poloidal
and toroidal  mode numbers.). This gives rise to
the possibility of two such excited kinetic Alfven
waves, with slightly different frequencies and mode
numbers to interact with each other. Such an inter-
action or mixing as it is called,will result in the exci-
tation of waves at the sum and difference frequencies,
due to the presence of non-linear terms which are
present in the governing equations. If one of the
beat waves correspdnds to a natural mode of the plasma,
then such an oscillation will be strongly enhanced.
We consider two kinetic Alfven waves with slightly
different frequencies Wi, W2 and wave vectors i;
and E;, interacting to produce beat waves
(L -0y =W, and k -k, = k) at the tearing
mode frequency (Lob'ﬁb) and resonantly exciting it,

The beat wave interaction between kinetic Alfven

waves differs from the earlier parametric interaction

with resistive tearing modes (investigated in
chapter II) in the following manner. For the parametric
interaction the non~linear coupling terms were proport-

ional to the tearing mode perturbation. In the beat wave
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mechanism, the beat waves produced by the interacting
kinetic Alfven waves are independent of the tearing
mode perturbations. Thus they act as external drivers,

exciting the system at its natural tearing frequency.,

To describe the evolution of the tearing mode,
the single fluid equations are used., The basic
equations are the Ohm's [aw and the momentum transfer
equation, By appropriate manipulation of the two
equations, an inhomogeneous third order differential
equation in the magnetic vector potential is obtained. The
equation has the form of a driven harmonic oscillator,
The driving terms which arise due to the non-linear
forces generated by the beat wave interaction are in
resonance with the tearing mode frequency, but are
external to the system. On account of the fact that
the differential equation has an inhomogeneous form,
the method we employ to obtain the solutions differs

from the earlier methods adopted in chapters II and IIT,

The corresponding homogeneous cubic equation for
the Symmetric tearing mode has been studied earlier
by Furth et al [11] and more recently by Paris [12] .
Paris obtained the solutions of the cubic equation
of the symmetric tearing mode in the long wave length
limit, He obtained analytical solutions for the

normalised magnetic field and velocity perturbations



110

within the boundary layer in the form of rapidly
convergent serieslinvolving hypergeometric

functions.

Our motive is to study the effect of the
driver waves, i.e. the kinetic Alfven waves on
the evolution of the plane symmetric tearing mode
represented by the inhomogeneous third order
differential equation. We have presented an
alternative method of obtaining solutions of the
Cubic equation, in terms of certain convenient
set of basis functions namely Hermite polynomials.
We find that the solutions are very sensitive to

the parity of the driver Alfven waves.

In order to obtain a global solution, the
logarithmic derivative A’ across the boundary
layer is calculated for the symmetric tearing
mode and matched to the outer infinite gonduction
regions. It is found that for certain values of
parameters, the classical growth rates for the
symmetric tearing modes are enhanced due to the

presence of the external non-~linear forces,

The chapter is organised in the following
manner, In the next section the principal equations
describing the beat wave interaction are obtained.
In section 4.3, the solutions to the basic inhomo-

geneous differential equation are derived and
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discussed. Section 4.4 contains a summary of the

work and the principal results.

4,2 Basic equations of the non=-linear process

In this section, the principal equations
which describe the excitation of tearing modes
due to resonant iﬁteraction with beat waves produced
by two kinetic Alfven waves are derived and discussed.
We consider a cylindrical plasma with the
equilibrium magnetic field given by E::: [ €, ”*‘3(”61

Two pump kinetic Alfven waves with oscillatlng

profiles having the form
' —- Wk
CB)L: CP°CY)8>LPL[MI,7_.6 + kl/,bg ,/3_] coldl

are assumed to be propagating in this equilibrium.
The frequencies and wave numbers of the kinetic
Alfven waves.are such that Lo, = ¢, kl~k2_=/€(_—
The subscripts 1, 2 and 't'refer to the interacting
Alfven modes and tearing modes respectively, ({0, kQ
and CLJL/EQsatisfy the kinetic Alfven wave

dispersion relation.

.,.—&..2.2: st < k_]. ‘/S 0o dfta?
Ry Ver
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The kinetié Alfven waves at frequencies (o,
W, , interact among themselves giving rise to
beat waves. These arise due to the presence of
non-linear terms governing the response of the
plasma to a given perturbation, They are at the
sum and difference frequencies and wave vectors
of the interacting waves i.2, (W =+ w, ,E, :tﬁ,;
The evolution of the tearing modes are

described by the following system of fluid -

Maxwell equations :

. o . - - -
Pla + Vv]v = Txg -vp,
Ak c ceo 4.3
; > - -
B \Q—‘gﬂ =77 cee 4.4
46+ v. (ev) =o , ves 4.5
Ak o
= pt 4.6
_—.'—)'Q__B — VXE s 00 »
C dl: d
- -
VAB = 4wrT N 4
Py ]
—
7B =0 ve. 4,8

Linearising the above system of equations and

eliminating the electric field perturbations from

3,4, (3.6, and(3.8)we obtain
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N _
AR Vx (N x B 7 W& Sy
=2 = XBo) + VYx (V. wf€) +vc"vE
eedd
While the current perturbation is eliminated
between (3.3) to(3.8), to give
¢ [ AV . 7
o[,d_(f +0, DY ] = xs,, +70><C_@e e 40

= -
- T‘:Xap — Vp.
C

The equation of continuity is replaced by

the incompressibility condition

J 7 — ces 4,110
e VNV + v ENy) = o 4.1

Equations (4,9) to (4,11} ,form the basic set
of equations describing the dynamics of the
resistive tearing mode., In the above system of
equations, the non~linear terms are (V V’) Vs JA X E}
in the momentum equation and (Vkﬁx BA)ln Ohm's law.
(The subscripts 'A' refer to the interacting Alfven
waves.) These can be identified as ponderomotive
and electromagnetic forces generated by the coupling
between two kinetic Alfven waves, and are independent
of the tearing mode perturbation. These non-linear
forces are at the sum and difference of the Alfven

wave frequencies. We have assumed the frequencies



114

of the interacting waves to be such that the diff-
erence frequency(co),,Lpabis equal to the tearing
mode frequency while the sum of the frequencies

is much larger than 64O, .

We retain only those non-linear terms which
produce beat waves of the tearing mode frequency,
.since the tearing mode perturbation can be resonantly
excited only when the oscillations of the external
force is in phase with tearing frequency &,. Ve
neglect the beat waves at the frequency (¢o, +w,), since

they are considered as off-resonant.

To describe the kinetic Alfven waves, we use
the two fluid equations. The Larmer radius
effects and longitudinal propagation can be described

in this formalism (chapter II).

The electrons in the field of the Alfven
waves, on account of their massless nature move
rapidly along the magnetic field lines and attain
Boltzmann distribution, given by equation (2.2 ).
For the same reason the dominant drift excuted by
them is the electric field drift. The inertial
drift which is proportional to the electron mass

can be neglected.
The dynamics of the heavier ions are predo-
minantly in the perpendicular plane, and the density

perturbation which arises mainly due to the gyro motion,
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is given by equation (2.,2a). Although the
dominant motion for the ions is the electric

field drift, the finite inertia makes an important
contribution giving rise to the polarisation drift

(equation (3.4)).

The variables V;, EZ and 6% in equations
(4.9)to(4.11) refer to the fluid velocity, magnetic
field and density perturbation respectively, of the
kinetic Alfven waves. These fluid variables are
perturbations defined in the center of mass frame

and are given by

—> ) —>
\/A = VL- m; —+ Ne Me ,
L N ] 4’..]_2
hw-4lmc
Co = Mene o ming ce. 4,13
mg -t nyg

Since the Alfven wave is a low frequency mode

( Wa < W), implying that quasineutrality

condition is satisfied ( Y@ = he ), the principal
contribution to the fluid perturbations arise through
the ion dynamics. The contributions from the electron
motion, on account of their negligible mass are very

small,

The electric and magnetic field perturbations

are expressed in terms of potentials cp and Y as

Eig s -LCPH / BA=(?X Y ¥a) cos A14
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Using equation (4.14) in equations (4.12) and (4.13),
the expressions for fluid velocity and density
perturbations, in the fields of the Alfven waves can

be reduced to

Y
A .
YLA = %(%X v, ) o+ L, ——Cé« V. ¢, L. 4.14a

' ]
wtu

pp, - le VJL%
Co

The tearing mode has an ideal kink like
behaviour every where except within a small boundary
layer , where steep radial gradients dissipate the
perturbed field. The non-linear ponderomotive and
electromagnétic forces, generated by the wave mixing
process between the two kinetic Alfven waves namely
(UA. ¥ ) V; in the momentum equation and(vz X g})in
Ohm's law, are in phase with the tearing frequency
and resonantly drive it. These external dfiving

forces are significant only inside the resistive

layer,

In the outer infinite conduction regions as
demonstrated in the previous chapter, both classical
dissipation and non-linear effects can be neglected,
owing to the fact that the dominant role is played
by fluid convection and the equilibrium current

profile [l3] .
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To study the dynamics of the tearing mode
within the boundary layer, we expand k“ in the
radial direction, around the singular surface Yx
as l@((f»-*}) and define a dimensionless radial
variable X = T%;% . By virtue of equation (4.7),
we note that tgz velocity and magnetic field
perturbation can be expressed in terms of potentials

qk_and A“ such

— —

Vt -‘r‘ OL\—/E = (}OLZCPI:)C e o » 401()
@o )Bpl
—>
B = (Vx A, B ves 4017

The two equations which are then required to
describe the tearing mode evolution are the parallel
component of Ohm's law (equation(4.9))and the
parallel component of the curl of equation (4.10).
In the latter equation, the contribution from the
equilibrium current source is neglected as it plays
an insignificant role in controlling the dynamics

of the tearing mode within the boundary layer.

The inner layer equations in dimensionless

radial variables are given by
. L (2 (3)
d*¢ = X d§£ -+ Fx) .. dg
ol x* AN dar '
(4 . (8 (6)

> — 2
xP — W = 7//\ %’ﬁi— + & e 4,10
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-— 3. x — 2. e
_— [M,LH TE am, dE A 4,20
(knf:Az) d a3 dx o+
2 — 3 x - 2.
(ETIMB AR o mdB, 4 ] e
VA dxg dx el 2=
(1?91_ = gZ?bL->
Te.
and
Gy = ____C\_ﬁ [};” ¢ @ d %
RivDvan b oo dar

[m@j;r + m, dc!’t,v,,]]+cc

one 4,21
The normalisation of the parameters in the
equations(4.18) and(4,19) is the same as those in
chapter II. F(x) and G(x) are non-linear terms
which, arise out of the beat wave mechanism between

kinetic Alfven waves,

Equation (4.18), the momentum transfer equation
describes the vortex flow within the boundary layer,
(represented by term (1)) acted on by the torque
produced by the linear 31x Eoforces, (given by term (2))
and the non-linear ponderomotive forces (term (3))

of the wave mixing mechanism. These non-linear forces
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are external to the system and act as additional

destabilising mechanisms,

Similarly in equation(4,.19), the Ohm's law,
the parallel component of the electric field
(given by term (4))is balanced by the collisional
drag (term(®))and the non-linear (aixugg forces.

(term (6)).

The non-linear terms F(x) and G(>) in
equationsé,18) and (4.19) are functions of the radial
co-ordinate through their dependence on the kinetic

Alfven wave potentials.

Our interest is principally around the mode
rational surface, where kuV:: o . The tearing
modes evolve around these surfaces and our objective
is to study the effect of the beat waves produced
by the interaction between kinetic Alfven waves,

andthe tearing mode dynamics.

For this purpose, we Taylor expand the kinetic
Alfven wave potential functions around the mode

rational surface,(which is at x = O, ( v= f4)>) as

H

9.7 B v ] T

’ - e e 0 4'0?2
X=eo X zo “
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Such an expansion is valid in a small region
around the surface defined by x = O, With this

expansion the source terms F(x) and G(x) reduce to

(1)

Floo= [Lm} ¢ (gbl/ T2 ")

A -
e s / 4 u i ~e
(%) ((Pi -—t-lx(;b’ )&"Z’q):amz.] veoe AOID
&)
= L [k 0 ki, 6" (+ x4y
/\ kH/Y/\SL\/A k—LI

/ { (LQ
=y Qv 22 D6 e ) T

® ¢ o 4‘24

In the momentum equation, (equation(4,18)),
the contribution to the non-linear forces F(x)
— -
arise through the ponderomotive force (VA.V)VA and

- '
the electromagnetic force (J, x By). Term (2) in

A
equation (4.23), arises through the former effect
2-
and is larger by a factor ('%—) s than the
A _

electfomagnetic forces given by term (1). There~
fore only the contribution coming from the pondero-
motive force produced by the interacting kinetic

Alfven waves 1is retained in the equation(4.18),

The dominant contribution to the non-linecar
. N .
force G(x) in Ohm's law, comes from the (VA X BA) forces
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which is given by term (4) in equation(4,.24)
Term (3), represents the characteristic feature
of the kinetic Alfven wave and comes from the
denéity perturbations due to the longitudinal
nature of the kinetic Alfven fluctuations, This

term is proportional to Larmor radius correction

and is smaller than term (4) by a factor ky e,

With these simplifications “of the two
non-linear terms F(x) and G(x), the coupled
equations describing the evolution of the tearing

mode in the resitive layer reduce to

2
d¢  _ 2 d% = -Gz ¢, v e4.25
dxz_. ;{; da* A e

+ Cox* | veld,26

where the coefficients are given by :

= =2 —9~>2'("’\”"£) CPQHL

Y
B k" Y,
/
CL = Jl(__\% > (M;“‘h\,_) Cj)o {b.,“
8]
Ku'y;L

C3 = “(‘6"» (ml:m;:) C#o qbv

n Yy
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U

CL}- =2 C __)____ (k_Lp'S> ¢a ¢D
OV (kv

_ . .
RN s o
« . W“J oo 4,206a
The form of these driving terms in equations
(4.25) and(4.26)y can be contrasted with non-linear
terms produced by the parametric interaction, which
were functions of large order derivatives of the

tearing mode perturbations, and could be identified

with anomalous viscous and resistive forces.

In the present work, the source terms in the
momentum equation and Ohm's law, are linear functions
only of the interacting Alfven waves. They are
independent of the tearing mode perturbation and
act as external sources, resonantly exciting it. It
may be remarked that in the earlier studies of beat
wave excitation of plasma waves by two electro-
magnetic waves, by Tajima et al [3] Rosenbluth ~Liu

[i}and several authors, the beat waves give rise
- to similar non-linear terms, which are independent
of the longitudinal mode, but act as external forces,

driving the plasma at its natural frequency.

We now look for the solutions of equations
(4.25) and (4.26) with appropriate boundary conditions.
We study the evolution of the symmetric tearing mode
and in particular look for modifications introduced

by the external driving sources.
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There are several methods of obtaining solutions
of the coupled differential equations (4.25)and (4,26).0ne
such method had been applied to study the resonant
parametric interaction between Alfven and tearing
modes. This involved converting the spatial variable
'x! to its Fourier transform variable 'k'. The result-
ing equation in Fourier space could be solved by
variational and asymptotic techniques. For the
present problem, such a method is not particularly
convenient and leads to several difficulties. We
propose to solve the coupled equations, using a well
known method, which is particularly amenable for
application to equations (4.25)and(4.26) but which
has hitherto, not been applied, to solve this

system of equations,

We note that the variable dl can be eliminated
between equations @.25)and (4.26), From equation
@.25), the value of ¢” can be obtained as

Cpll:éj;;[

Rle

— 2
-+ 2. C_j,ﬁt’L + &G + 6 —t-%_}’"]
Ax dx A A A

oot 27
This value is substituted in equation (4.26)
to obtain an inhomogeneous fourth order differential

equation of the form
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v LV = “l I 7
-2 + 2 + -2y
QY U TR e
4 %i%: - 4 QE}I'—r Cé:? . 21% eos 4,28

The homogeneous part of equation(4.28)is a
familiar one and has been studied by various.
authors. A simpler equation to handle is a third
order differential equation in E?} which can be

xl—
derived from equation (4.28). To obtain the desired
equation, equation (4.38)is differentiated once to

W
get a fifth order differential form, and is

eliminated between the resulting equation and equation

@.28)
5 I 2, u
A G S
A AT
+4—C.IDL -+ BCQ—- a0 0 4029
A7 AT
Defining q)‘='3», and making the transformation
2
o= ol X 94,4- - —| 0</\ ,,)\
J — )= =
N 7

equation (4.29) reduces to the form
3
dz . dy (A+ %) ~4%x = ~4Cx
ol x3 dx
+3C,
!
@t (A G
| s 4,30
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Equation(ﬁ.SO} has a form similar to that of

a driven harmonic oscillator. The equation describes
the dynamics of the linear resistive tearing mode
represented by the homogeneous part of equation

@.30), acted on by external forces generated by the

beat wave interaction between kinetic Alfven waves.

It can be seen from the form of equation
4.30), that the equation admits solutions of definite

parity.For example themagnetic field perturbations

for the symmetric tearing mode (m = 2 mode) which is

a solution of equation(4.30),is an even function

of the radial co-ordinate, while that of the m = 1
mode has an odd parity. As will be presently shown,
in order that the non-linear forces be in resonance
with the linear tearing oscillations the parity of the
driving forces, the odd or even nature of the radial
variations of the non-linear terms plays a significant

role in the resonant interaction.

Several authors [11, 12] have obtained the
solutions of the third order differential equation,
given by equation (4.30)Paris [12] obtained exact
analytical solutions for the perturbed magnetic
field potential \P and the velocity potential ¢ in
the resistive boundary layer about the resonant sur-
face described by equation(4.30), He also determined

analytically the value of /\ across the boundary
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layer for the symmétric tearing mode for arbitrary
values of wave numbers, The analytical solutions
for Y and @ were obtained in the form of
infinite series involving the Hypergeometric
functions, thus avoiding the necessity of solving
numerically the differential system of equations

(4.25) and (4,26).,

Here we present an alternate method for
solving the inhomogeneous equation (4.30), The
solutions ‘éllare expanded in terms of certain
suitable orthonormal basis functions. We choose
Hermite functions for this purpose. The cuble
equation(4.30) bears a close resemblance %o a
particular form of Hermite differential equation [14];
therefore Hermite functions are the most natural badis

for. the expansion procedure,

The expansion co-efficients are obtained
using the orthonormal properties of the basis
function. Using appropriate boundary conditions to
define the radial structure of the plane symmetric
tearing mode, valid within the boundary layer, we
obtain a symmetric solution which is an even function
of the radial co-ordinate as an infinite summation of
Hermite polynomials. The solution consists of two
parts, a complimentary function, which represents
the natural linear tearing mode, and a particular

integral which is the response of the plasma to the

exlternal forces,



127

The solutions obtained within the resistive
layer are then to be linked to those of the infinite
conduction region. For this purpose, the logarithmic
derivative LSI, across the boundary léyer is calculated
and matched to that of the infinite conduction regions.
In the limit of vanishing pump amplitude, in the
absence of non-linear forces, the value of Zy , reduces
to that obtained by earlier authors for arbitrary
wavelengths, In the presence of the driving forces
the response of the plasma, for a symmetric tearing
mode is studied. In the next section, the details of the

procedure are outlined, and the growth rates obtained.

4,3 Solutions in terms of Hermite polvnomials

In this section we obtain the symmetric solutions
of the inhomogeneous cubic equation(4.30); we derive a
general dispersion relation by matching the logarithmic
derivative in Y to the outer solutions. We also show
that in the event of the source terms gbing to zero,
the solutions reduce to that obtained by earlier

authors.,

The solutions of equation (4.30)is represented as

a summation of basis functions i.e.

o
5 = < A, He, 9

Nnoo
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Where Hen's are the Hermite functions [141 .
The boundary conditions we employ are that the
solutions must be well behaved at 2= o0 and have

a finite value at the origin [li] .

3(e0)z0 , 3= |, Z@=z0 .42

The first condition ensures the well behavedness
of the solution, The second normalises the flux
in the tearing layer and along with the third
determines the symmetry of the solutions. The
contribution to A’ the stability parameter comes

only from the even parity mode.

Substituting equation (4.31) into (4.30),we get

!

o
—2 A (27 h A e, _

h=o
)
+ Z n - B
=0 n Ch +l+) HCV\— 4C'x +
- C
[B +—~ET'—-?::“' i J 'Y 4;32
L"‘D/ﬁ‘(/\ 17">/1f

o< e
XV
Multiplying equation(4.323by’(Hq“e Ax
— &0
provides the recursion relation between the co-
efficients An" In arriving at the recursion relation,
we use the orthonormal conditions between the Hermite

polynomials
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~X72. |
T He He € {/Cﬁ = nl@my& (man)
m n )

= ©O (m #F1n) ...4.33

N

A L2 4w Qa9 ] 6

N = (m+D
o 2.
-1 (n+y) 6 + 4C g He U 5"/75[)(
n + h=Gm=D) ' e e

[ ¢}

o -

- 3 g HeyHe, e *dx Y
~oQ

where E;ﬂnis the Dirac delta function, and ‘'m'
takes values O to 0 o We note that in equation
@.34) the integral proportional to C, éxists only
for m = 1 , while that containing - B exists only for
m = O, For even values of 'm' i.,e. m = 0, 2, 4 etc,
the recursion equation relates Al to B, A3 to Ay
etc. giving rise to an odd series. For odd values
of my i.e. m =1, 3, 5 etc. equation(4,34) connects
Ay to Ay and C’, A4 to A2.etc. In particular to

demonstrate we write down the relation between the

first few coefficients.
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For m = ] the recursion relation leads +to

A, = = (- < ... 4.35
2(A 4 1
Ly
For m = 3
Pz R % er 4.26
4 CA — o
u 4

By virtue of equation@4.35),A4 can be expressed
in terms of Ao and Cl‘ Thus all the even order
coefficients can be expressed in terms of AO and Cl’
while the odd order coefficients can be expressed in
terms of Alo The solution of equatioﬁ(ﬁ.BO) separates
into an odd part proportional to Al and an even part

proportional to AO and Cl .

We note that the term proportional to C, in
equation (4.30),which has an odd parity contributes
to the even component of the solution, while B. which
has an even pariticontributes to the odd part. Our
interest lies in studying the modifications introduced
by the source terms Cl and l}. The odd solution

proportional to does not contribute to &' . This
can be readily verified.

The constant AO is determined from the boundary
conditions given by equation(4,31) . Applying the

normalising condition 5(0) =1, we get
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A = ! ’
©° [7: Z- n‘f’/_}_ lh"f‘Z_ X
(A1 hzo
4 g IA 41 4
A
o -
o ] e 4,27

The complete solution can be written as

(o
- (20
%Zlib 2 Thes __.,,,]wr“::
T
tfv—*‘%’r [,

0 h
X [“‘?:o (—-l) ]h_,_l/2~ I+ /—/%hCX)wa

L 4n
44
(3)
A ),,/_.\—f a [ 5 'n
R ?L) % +h T He (0
—— >b ZA
1 5~~/:z,~ Cln+o ') %—+i -+ N
Lt.
where .. 4.38
~X7,
M‘ j He He & gy 4.29

(2\-4-5') <0



In equation(4.38) term (1) , which is
independent of the source terms constitutes the
complimentary function, whiie terms (2) and(3)
form the particular integrals of the solution
representing the response of the system to the
external ponderomotive forces. The former is an
even function of x representing the driven
symmeiric tearing mode, while the latter is an

odd mode,

To obtain a global solution, the complete
solutions given by equation(4.38)has to be matched
wifh the outer kink solutions. For this purpose
the logarithmic derivative ¢ﬁ'evaluated across the
boundary layer is equated to that obtained from the

infinite conduction regions.,

!
The contribution to 4 from the odd part of
the particular solution vanishes, since for a

function 4@@ such that Jow = — o0
+ o0

J Jowdx = o eer 4,40
For matchlng to the outer infinite conductivity

solution, the quantity A for the symmetric tearing

mode is given by [li]

Al = z.Lb_>°o [CL;/ ’l“"’>] ce. 4,41
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where  the variable 4+ is proportional to the
radial co-ordinate., The denominator represents
the intersection of the asymptote of Y with the

\(~axis at qﬁ = 0

Equation(4.41) expressed in terms of'x'

reduces to A ,. 1/24—9.' ( ?” dx
(e ~—-/\ X £~V e
[\Y j; dx* ] ,
ﬁy veo 4,42
0 = 1 T 3/4' 1

EWL o> > (h.Yg}

Using this formalism, we first demonstrate
that the earlier results of Paris [127, the expression
for the logarithmic derivative A’ for arbitrary
wavelengths, can be recovered. For this purpose,
we take the limit of the Alfven pump amplitude
tending to zero, and look for the linear symmetric
tearing solutions, Substituting equation(4.38)into

(4.42) the expression for A' becomes

/q I
= »)‘*zL) /A %+ 4[26') [y, TR He (00 dx
[7;: G’_.h)’ ]2+7~t~h

M
. a 2. [Zjﬁwﬁ
[ m(/\ / f K) ],;2 =" 7 . 02 /—le(X)dﬂ
r"" 70 T . 2in
o (nl I-f{_\mr%rrn

oo 4,43



134

To evaluate the integrals in eqUation(4.43),

we note that the constant can be expressed in terms

of the Hypergeometric functions [15] as

-1
2_00 lh—ﬂ'(/,__ Jh‘t-)__ _L_ 2‘h —

hzo '-—2—-—#‘,}:..—-}-1’\ h!
-1
A4 F L2 A ]

4 4

4 2 4 2/ /

[V

The latter has an integral representation (15] as

=
T
!
—

~'/a.
4 WiR 4y

)
%~Ll = © ™
Lf ® & 4’45
where VV(V) is the Whittaker function of the
’/
I.f.

second kind.

Vie also note that 2 L*) =y [ “wl /—!e_Oo'

D"-*- 7+HJ(Z??3?'F

can be written as

od

¥ { ey J6p dy
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e e o

‘where 4 @ =
/5.

, 7-)

A

Using equations@,44),@.45) and (4.46) in equation

{
(4.43) the expression for A can be readily obtained
The properties of Fourier transformscan be used to
. , Whic

evaluate the numerator of equation(4.43) . which

reduces to
/\7) 4o

“@2)¢
where
Q}CO) = ﬂc ] - ce. 4,47
2 ET{

The denominatorfpf equation(4.43) is given by

Cg W(;))]c}

\ -
q /'8

o
3,2] [g K W)
Performing partial integration on the second

term of the above eguation and using the contiquous
ions |

4,49

° 2

relation between Hypergeometric functions YL6]

equation(4.48) reduces to
D - 2Vt — A
Y - NS———— s
I%@-+ %
can

ing (4 47)and(4.49)together, the dispersion
11, 12]

Usinc
relation obtained by earlier authors [Ll

be recovered
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z B T —
A= an(y Cagd’ s
Cl— A Ry 4,50

PRl .

The growth rate as a fhnction of the wave length
{
can be obtained by matching the value of A in equation
(4.50) to that in the outer regions, to reproduce the

numerical curve obtained in Appendix D of Furth et alfLﬂ,

The classical growth rate for the m = 2 mode is
obtained in the limit of large magnetic Reynolds
number, "ZR// = o0, Where Cp and T are the resistive
Zy
and hydrodynamic time scales respectively, In the
regime ER/ZJ€>QG s which is equivalent to /\tending to 0
the expression for A' reduces to the constant

approximation result [li]

We now investigate the modifications introduced
in the dispersion relation 4.50, by the non-linear
terms of the wave mixing phenomena. Substituting for y!'
from equation(4.38) into the expression of A'given by
equation(3.42) we find that the numerator (Nr)is

modified to

Ne= @) ke [ G g ]

while the denominator (fir) becomes
- 2 |~ — ’ s =y
D= 2= — o 5 35 FOL 32y
PR > Za

aes 4,52
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Combining equations(4,51) and(4.52) the dispersion
relation for arbitrary wave lengths can be readily
obtained. The resulting equafion is a transcendental
equation in A and as such cannot yield much infor-
mation. Hence we look for modifications introduced

in the classical m = 2, tearing mode, in the limit of
large magnetic Reynolds number. Setting A = o (which
is equivalent to making the constant W approximation)
the dispersion relation, for the symmetric tearing

mode becomes,

A = 29 /A —A q [3/z, l"C(r;>
(2) (=17 r*“[ G%)]

A =
ers 4,53

Where F\ in equation (4.51) has been expressed in terms
2

of gamma functions [16]

o= w(7)
(%)~

e a0 “1054

and c, is given by equation(4.26a).

Equation (4.53) is the growth rate for the symmetric
tearing mode. The expression in the parenthesis represents
the enhancement factor for the linear growth rate,
generated by the non-linear forces of the wave mixing

phenomena,
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The resistive tearihg modes with positive 'm!
numbers are resonantlly eﬁcited by the external pondero-
motive force, while for modes with negative 'm' numbers,
the effect of the driving force is to have a stabilising
effect. For typical tokamak parameters given in chapter
IV this enhancement factor is between 2 to 3,

However, these non-linear instabilities excited by beat
wave mechanism, grow on a longer time scale than the
parametrically excited tearing modes investigated in

the previous chapter.

4.4 Conclusions

In this chapter we have investigated the excitation

of tearing modes through beat wave interactions between
two kinetic Alfven waves with frequencies and wave vectors
given by (W, k) and (W, , k,). The interaction results in
the excitation of waves at the sum and difference fre-
quencies due to the presence of non-linear terms in the
governing equations. We have considered a situation é
where the difference frequency and wave vector combin- |
ations (&%~tbx,kr"hj is equal to that of the tearing mode |

(W¢, k). These non-linear beat waves at as external

forces driving the system at its natural tearing frequency.

To describe the dynamics of the kinetic Alfven
wave we have used the two fluid equations, The charact~
eristic features of the kinetic Alfven wave (finite

Larmor radius effects and longitudinal propagation) can
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bé represented in this formalism. The principal
equations governing the evolution of the tearing

mode, are the Ohm's law and the momentum equation.

These were obtained using a one £luid model, From

these two coupled equations, a third order inhomogeneous
differential equation in E%g; (where Y is proport-
ional to magnetic vector potential and x it the radial
co-ordinate) was derived. The equation has a structure
of a dfiven harmonic oscillator, with the non-linear
term (VA.V?) Vjy in the momentum equation playing the

role of the external driver,

We have obtained solutions of the cubic differ—
ential equation in terms of certain orthonormal basis
functions i.e., Hermite polynomials.' The logarithmic
derivative was then calculated for arbitrary wavelengths
and matched to the outer infinite conduction regions,

We have demonstrated that in the limit of vanishing

pump amplitude, the earlier results of Paris and

Furth et al [ll, 12] are recovered. In the presence

of non-linear effects, it was shown that in the 1limit

of large magnetic Reynold's number given by ZR/tg°=ﬂ
(where Tp is the resistive time scale and T4 the
hydrodynamic time scale) the external driving force
enhancer the growth rates of the symmetric tearing

modes with positive "m' numbers, For modes with

negative mode numbers the external force was found to
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have a stabilising influence. The enhancement factor
in the growth rate of the tearing mode, which is pro-
portional to the émplitude‘of the kinetic Alfven wave
is calculated for typical tokamak parameters (given in
chapter II, section 2.6). It is found that the growth
rate of these driven instabilities, (proportional to

(WOWK Qf)qk» is increased by a small factor approxi-

mately by a factor of (2 or 3 ),

Our analysis has application in the Alfvén wave
heating schemes in tokamak plasmas. The antennae in
these experiments excite several modes simultaneously
which are resonant at different surfaces. When the
resonant surfaces are widely spaced, the non-linear
processes are that due to a single kinetic Alfven wave
(namely parametric decay). This has been discussed in
chapter II. When the resonant surfaces are closely
spaced, it is possible for the excited kinetic Alfven
waves to interact and give rise to beat»waves. Our
investigations show that when the beat wave frequency
corresponds to that of the tearing mode, these modes
are driven into enhanced oscillations. The time scales
of these driven instabilities are only slightly shorter
than the classical resistive instabilities and much

larger than the parametrically excited tearing modes

(chapter II). However the excitation of these driven modeg

are harmful for confinment of tokamak plasmas. They
could help to explain the enhanced transport of

particles in Alfven wave heating schemes.
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CHAPTER_V

NON-LINEAR EXCITATION OF DRIFT WAVES
BY KINETIC ALFVEN WAVES

5.1 Introduction :

Over the years drift waves have been extensively
studied because of the wide range of conditions under
which they are unstable both in laboratory [1-7] and
space plasmas [8] . Their presence is believed to
contribute significantly to anomalous diffusion which
is a principal factor in the confinement of plasmas
in many laboratory experiments, These waves arise
due to the inhomogeneity in the plasma density. They
are driven unstable by the free energy associated with
the spatial gradients, VN@EY. Since the presence of
density gradients in a necessary feature of all
magnetically confined plasmas, the drift waves were
initially considered universal instabilities, In
addition to containing spatial density gradients, a
tokamak contains sheared magnetic fields, It is
now established that the shear in the magnetic
field lines plays an important role in the.stability

of the drift wave.,
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Since the pioneering work of Pearlstein and
Berk [1] the instability of the collisionless
drift waves in sheared magnetic fields has been
the subject of numerous investigations, By re-
cognising the existence of outgoing wave solutions,
it was concluded on the basis of WKB analysis that
there existed absolutely unstable collisionless
drift waves. Subsequent work by Gladd-Horton [2],
Liu et al 3] based on perturbative methods seemed
to confirm the existence of the instability. In ref-
:8fénce(4)¢the same differential equation represent-
ing the evolution of drift waves in sheared magnetic
fields was solved by breaking up the spatial domain
into inner and outer regions ,Later Tsang et al [5]
extended the work of reference [4] to obtain an
improved eigen value equation for all even and odd
radial eigen modes. As a result of their investigation
there emerged the possibility that the perturbation
theory form of the dispersion relation was inadequate f
because it could only be recovered in the limit in
which small corrections could be important. In
particular, the perturbative theory form was found

to be more accurate for more strongly damped modes,

Recently Ross-Mahajan [6] and several others [7]
retaining the full electron Z function showed that the

drift waves in slab model were actually stable, They
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confirmed the stability of the collisionless drift
waves by numerical and analytical solutions of the
appropriate second order differential equation for
parameter range of interest in tokamak plasmas. It
was pointed out that near the rational surface, the
electron Z function varies rapidly and is poorly
represented by its residue. Further more, away from
the rational surface, where the residue becomes_an
accurate approximation a comparison of perturbation
theory with numerical and improved analytical results
of Tsang et al [5] indicates that the wave-electron
interaction is somewhat less destabilising than is

believed,

Although most of the drift waves are stabilised
by magnetic shear, there remain several destabilising
mechanisms even in a sheared magnetic field., These
are force-free currents, toroidal effects, trapned
electrons, and non-linear [9] effects among others,
Of these the non-linear coupling of drift-waves,
namely parametric [lO] effects has been extensively
studied, The principal motivation for the studies have
been the understanding of wave phenomena, occurring

in r.f,., heating schemes,

The initial investigation of parametric excitation
and stabilisation of drift waves was done by Fainberg
Shapiro [121 who studied the stabilisation of collision-

less and collisional drift instabilities, by high
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fréquency electric fields along asteady magnetic

field. Later Amano et al [12] analysed the effects
of r.f. electric field on the excitation and stabili-
saiioh of various collisional and collisionless drift
waves., The effect of large amplitude spatially uniform
dipole electric field, at the lower hybrid frequency on
the drift waves in collisionless plasmas was investi~-
gated by Sundaram and Kaw [13] . It was shown that

the lower hybrid waves could parametrically excite or
suppress the drift waves. Subsequently Tripathi [14]
included finite wave length effects and found that the
drift wave spectrum was stabilised because of para-
metric coupling to lower hybrid waves. Antani-Kaup

[15] have considered a three wave decay, involving the
scattering of pump whistler from a drift wave., They
found that the scattering would be mainly restricted to
the forward direction .and the drift wave has a large

growth for parameters of interest.

In the context of Alfven wave heating scheme
[16, l7] an important problem to investigate is the
parametric interaction between kinetic Alfven waves
and drift wavése In a tokamak plasma the kinetic
Alfven waves have enhanced amplitude near the mode
conversion surface and several non-linear processes
are expected to take place., One such process, that
of the parametric decay of kinetic Alfven wave into

the acoustic wave has been investigated earlier [16] .
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We have studied the problem of non-linear interaction

of kinetic Alfven Waves with tearing modes in chapters
I1, III and IV, It was found that the tearing modes
could be resonantly excited with large growth rates,

In this chapter we examine the question of an alternate
channel of Alfven wave decay with particular reference
to drift waves, since they are known to influence plasma

confinement in tokamak devices.

We have studied the non=linear decay of the mode
converted kinetic Alfven wave into another kinetic
Alfven wave and a drift wave. We model the dynamics
of the electrons and ions using kinetic equations, to
retain the effects of shear and finite Larmor radius

corrections,

Using quasineutrality condition and Ampere's law,
we derive the coupled equations for the decay process.
These equations turn out to be quite complicated and

are not amenable to easy solutions,

Under a local approximation howevér, the diff-
erential operators simplify and reduce to algebraic
expressions. The growth rates and thresholds for the
decay process are calculated, and found to be comparable
to that of the ion acoustic process obtained by Hasegawa-
Chen [16] . The ratio of the growth rates for the two

¥

processes is proportional to Ew« ~ o) where Wy is
C
nCs
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thé diamagnetic drift frequency and Ce is the
velocity of sound.We have demonstrated that the
temperature gradient driven drift waves could
also be parametrically excited. These long wave

length modes are found to have larger growth rates,

These modes can jeopardise the heating
efficiency by providing alternate channels of non-
linear energy transfer as well as by their deleterious

effect on plasma confinements,

We have in addition investigated the effects
of the background inhomogeneity on the decay process,
Near the mode conversion region (U)= hﬁ%)where the
wavelengths of the decay waves could become
comparable to the background inhomogeneity scale
lengths, the linear dielectrics of the decay waves
are expanded linearly. Although the resulting
equation in 'x' space is of a high order, in
Fourier space it is only of second order and hence
amenable to WKB analysis. Treating the inhomogeneity
scale length as a perturbation on the homogeneous
plasma, we establish the condition under which an
absolute instability, which is a well behaved
solution of the differential equation can occur near
the mode conversion region. We find that for values
of the pump amplitgde above a threshold value, the
drift waves can be parametrically excited with large

growth rates.
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We present the bésic'coupled equations for the
parametric decay process in section (5.2) and obtain
growth rates and threshold conditions from local
approximation in section (5.3). Section (5.4) contains
a discussion on the effects 8f background inhomogeneity
and establishes the conditions for absolute instability.
The concluding section summarises the results and

discusses their relevance to present day tokamaks.

5.2 Bssic equations for the decay process :

In this section, we shall derive the basic coupled
equations describing the parametric decay of a mode
converted kinetic Alfven wave into another kinetic
Alfven wave and a drift wave., We choose a simple
slab geometry with an equilibrium field, E: = B,Ce\a'* l-té\*g).
wnere é\\dand é\% are unit vectors in the y and z dire:
ctions and LS is the shear length. Background
inhomogeneities in physical quantities such as
density, temperature ane assumed to be in the 'x!
direction and have simple linear variations. On this
equilibrium a self consistent pump wave QQCQID(the

kinetic Alfven wave) of the form

-
— N - 5
QQCDQEQ = #% exp [ k; % - LO,LJ—+c-a
| eee D4l
~—>
is imposed where (W, Re) satisfies the linear dispersion

relation for the kinetic Alfen wave.

L P N 3
Wo = ki veE (1—+ ke ) v 5.2
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Wle consider the non-linear coupling between the
pump wave, (un/ii) , the lower side-band Cuxj Ei)
= (W= W, R - Eo) and the low freguency drift
wave QQ/EB . Interactions with the upper side band
mode are neglected as they are off resonant for the
decay process, The pump field 4L is also assumed
to be sufficiently weak to that only interactions

upto order I®o1* need be kept.

For a low B plasma ( B~ Jé%), the compres -
sional perturbstion of the magnetic field L%is
negligible., We adopt the classic two potential

representation for the electric field [18]_ .

g—L ’-"‘ ”V_L‘-? J E” _: ’—v“q) L ] 503

In adopting different potentials for the parallel

and perpendicular electric perturbation, the shear

in the magnetic field lines 1s taken into consideration

but the compression of the field lines is neglected,

From Maxwell's equations

- —>
VxE = ""',_). 9*._8 L 5.4
c/ a L’ ° L] -~

'x' and 'y' components of equation (5.4) are

given by

s Cp—w) = ~L 48,

a§6y < ot
— Py = &
ég;;x- - éﬂ;? .. B.E
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while the '2Z' component vanishes.

The coupled equations can then be derived from the
guasineutrality condition and the parallel component
of Ampere's law

L. ~NL L NL.
n, + n = ng + Ne ver 5.7

L

L WL

f_V_LLCCP“W) = Z_fgf(j'é& 'f'gc
5 L NL.
-t 3%5 -+ j%¢ >

where subscripts 'e' and 'i' stand for electrons
ions. 'M' and 'J' are the number and current densities
respectively. The superscripts (L) and (NL) stand for
linear and non-linear contributions being proportional

to the first and second order perturbations in wave

amplitudes.

To calculate the above perturbed quantities, we
model the dynamics of the plasma by kinetic equations.
In the low frequency range, the finite Larmor radius
of the electrons are unimportant and the electrons can

be adequately described by the drift kinetic equation.
—5
He + vy He 1V Fyo —& Le, +
at Me

qQ
’ C:fixéz)-’e%]czi& = © ...5,
&V%
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where
N - - - > -
o - - C, bxeo
M= Ne o+ vp+ Vg Ve B
2 - ’
Yp: -~ e dE v v, €, d
- _— VA s ,C_{ = A \/'VD

and ~4£ is the drift distribution function,

For the ions, we use the Vlasov description, in
order to retain effects like Larmor radius, magnetic

shear etc. which are important for drift waves,

. - -> -
A 4+ Fodi + 2 LE + YXB] Hizo
Ak M o AV

o ver 510
(o) L

Writing 4y = {; =+ «%4') + S:'L) ve. 5.lL

(where superscript '0O' refers to equilibrium quantities,

and j = e, i) using (5,9)and (5.10),we now calculate the

first and second order perturbed number and current

densities to be substituted in equations(5.7)and(5.8) .

:The perturbed ' quantities are assumed to

be of the form Q@ —~ Q(x) expi’[.hag -+ bﬁ@ — bt ]

o e o

5.12
where 'Q' stands for any physical quantity,

The linear responses are straicht forward to
calculate, For the low frequency electrostatic drift

waves, the first order density perturbation is +then given

by
%2.: )qo£1'+ W= Wye 2 ( ﬁ§;>1 $
. Ihll V&l s [
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A | -~ cT
where CP = €9 1 Ry = ka -+ By X Wz~ Ce
Te ) L‘ré @8p LV\
-1
L"\ = a’ JVW hO) )
ol
\/. = 2T C \ /
d ?'»;Tdd' < d = b e) AT is the equili-

brium number density and Z(x) is the plasma dispersion
functioh.

The first order density perturbation for the ions
is calculated from the linearised Vlasov equation(5.10),
For this purpose, the expressions for the velocities of
the particles are substituted from the standard orbit

equations.

Carrying out the integration over the unperturbed

orbits, the density perturbation , given by
=9 o6
ne = S~d% i\a4&4w
—ob

is obtained,

/
N R L T o @Z‘:r:,cby&ﬂqg
e i ve 3
}kn le dc
o ... 5.4
Z*Té/n/ LDL:; btgL@;L.
Substituting equations (5.13) and (5.14) in equation

(5.7), we get

G &,

i1

where subscript 'D' is used to denote drift waves and

o W 2, ! L ClL
Eh [wttef\,bf“ 2 () P ol o]
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b(ﬁ-['rW“ Wike 2 W N —+ (W'C —+ We) by 2 }
i |RuVe | (k.u\/e> [Ru vl ()Q“vb
cve O,

—~]:>L - * e -\ A F A
where f; = 1:\(b£> e , ln is the modified

Bessel function of order n, and

To(be)

/
M by = <l
C C“m'

Equation (5.15) the linear eigen mode equation
for drift waves has been extensively discussed in
literature. In order to obtain equation (5.15) we
have used the quasineutrality condition, since for
electrostatic modes, the parallel and perpendicular
potentials ®,  are identical, (b = ) . For the
lower side band (kinetic Alfven wave) electromagnetic

mode,both equations (5.7) and (5.8) need to be used.

The linear density perturbations calculated
from (5.9) and(5.10) for electrons and ions respect-

ively are

(0
W) = n, ] § B
nﬁ( J> n [k Eij ¢,ok (1 w*.ﬁ)?p

d o g Lo,



w A
h(;: Mo L\_.,D.)_(f ba"/"' CF"/" vee 0018
w"/“‘ ke

In equations (5.17) and (5.18) the subscripts Cv(» stand
for the side band mode and pump mode respectively. Further

in arriving at the equations we have made use of the fact

that k“-—,o Ve <o, <k, Ve

~—0

The current density perturbations defined by

W T 0
= U. h. dv
T} e T gy "4 ¥ ees 5,19

is given by
(2

33 . (ww)

1§
]
\ &
N
[\
o
Y
e
A LE
A
N
]
-
3

I -6

4 O——_‘I;jj @ﬁ)ty} cos 5,20

5 l w"/ 9

The parallel current is mainly carried by the
massless electrons and hence the ion current density

perturbation is neglected, Substituting equations

(5.17) - (5.20) in equations (5.7) and (5.8), we obtain
2.
éA @)‘53—' d é\ - O ... D.21
d o>

withky,<? related through the equation
A 2.7
& = o> d% .. 5.22
x



156

g% is given by

- 2.
¢, = % d” 4 _._’AD*L — | .. 5.23
o Ckn,Vh)L

In the next order equations (5.15) and (5.21) get coupled
through the pump potential VQ% .

For the drift waves, the important electron non-

linear terms in equation (5.9) are those that originate

from.y - _' (o
{[VECwo,m X8, (w k> ] & + o;::—} Ve
C C)V%
-> - L
V. { Ve Go_kD + Vgl kD] Jo (o, %> + 0:*} 5,24
For the ion response the leading contributions in
equation (5,10) arise from
- - - L
{,@. [E (k) + VxBCo k) ] (o, k)
m; < av
+ o221
and o - _ A 0
{,é’_ (Vi Coo,, k) xB, Cto, k) - %7 9
yh‘;c, C)V? cre De2
e

\
The last term is due to the parallel ponderomotive force
A
£;~GME’<61>' C% acting on the ions, The expressions

forb fﬁb ;  are given by
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. . h!l Vc

gf—’f—“o‘t C,slr; }2_,,_}? “w.
2 () 25
(/t)C(L)R“l I\’\)a\/u

R,
+(a:»"?f ‘éﬁﬂl ﬂklf?cxz(/fﬁuﬂ}y

[k‘éo%C@O&j\—) *“%‘ﬁip% 1 } cee 5,26
vq);: CL, , W~ Lo, k Lo
o { N o ? (Ik“\@)}
(k )[’%f 4 (=R G- 1)3)
-423 (=4, 3;3‘)%5& (1 - @151;? C/ﬁ’] cee 5,27
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dWhere some alaebric simplification has been effected

- 2,
through the usual aprroximations of ( kL’O@ ) <)
e

kfl;ﬁ‘< L, <:< k;mva for the kinetic Alfven waves,
Substituting (5.26) and (9.27) in (5.7), the eigen

mode equation for the drift wa?e that is driven by the

mode coupling term proportional to the amplitude of the

pump wave and the lower side-band is obtained,

QEfB‘:C,:w [k_“‘wko C ° ’\'.__
SN N zf?ol[ [ K 488

() o -
g ) Y

‘gﬁ‘% — bgo %(‘ﬁ $.)]

+ Ry d [ (1= 67d" ) & (1= a4 ]
dx -

CIX Clx"
_ kg (b — 0 49 Y
' x>
oe. D.28

(c(i_l[gﬁ e d%)}]

Similarly, one needs to derive an equation for the
lower side band that is coupled to the drift wave

through the pump potenticl, For this, we need g

NL NL
calculate ru-<UL k{) and ]%J (w. kD)



For the electrons from the drift kinetic equation,
the dominant non-linear contributions once again
—> L > => A
fome from \/B("‘)o, ko) Je (w by and [VE (w2, k) ¥ BJ_(P%,&D):)‘%
NL
For ion density perturbations, ", can be calculated

from the equation of continuity,

a NL. Nl
-a— (C Y\‘:) - VJ— _\T_Lt” z o ¢ s 2 5#29
4
(The parallel ion current is negligible and can be
NL.
ignored.)where U]C is composed of

(0 - ¥ w N
e EY\L L \L o - N, W \/J_Lw.)] (\7&))
. / Lo DID

are the

fluid drifts).

The second order electron and ion density
perturbation for the side band mode obtained from

equations (5,9) and (5.29) are given by

ho(w) = Nely [- k%)" 3. %CG%%)

+ kﬁ S 4%3 22@3 — ﬁé“ Lwe Q%“cigi
Lo dx

0"5.:30
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fe oy = G Ry, ne (L0 =120 Z (L2 )x

Lo %‘, Lo, ] R.Vel Riive
[ k ( \1"0,(> -+ }?‘;j Cﬁ,% C $0x - @0%61

eve 5.3l

We note that Ng (0)defined in equation (5.31) is
proportional to (0 — Lo, For W~ o, the drift

NL.
frequency, Ngloyis negllglble compared to h (WJ .

Previous analysis have revealed the same result [161

One needs to now obtain the electron current contri-

bution I%e . This can be derived from the continuity
equation
NL N : -
V' T& —— ;9:_ Ne . O e = 9 50j2
art

For ions Jzi can be neglected since the ion dynamics

e

is mainly in the plane perpendicular to B
Carrying out these calculations and substituting the
resulting expressions in equations (5.7) and (5.8),
the non-linear dispersion relation for ﬁhe side band

mode is obtained

g, 0" AP = O Y
dx* o o {(}Qvﬂ (}?° jiaj

¢

oL

+ vl% (3;” ) + P d [}2 jg_) +

ky @p §€f¥] - Qs QLh '

C)Lx?‘ LRI 5.
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: n v N )
where , is the complex conjugate of d> and 'A' is

given by

Ao 2 (2 ) [hye 48 (8

en Ve
[ky Vel v i
( | = k% Lo ) + 6 g0 (0= C,}_R:f?vx} -+
kg*wp l‘%_wﬁ =
A nNo¥ 2. 3/\5
Qo { b (1 - ko ) w07k o

s D34

Equations (5.28) and (5.33) constitute the general set
of coupled equations between the kinetic Alfven mode

and the drift mode.

In this section, we shall examine the simplified
versions of coupled equations (5.28) and (5.33) under

the local approximation,

The local approximation is a major simplification
of the drift wave problem and will be employed here
without further proof. Extensive literature on this
subject is available., The physical basis for the local
approximation is that the mode is localised in a distance

much less than the scale length of the gradients,
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= L4 ﬂL Cib . 3
/\ %Zr h OID¢> ° . 5 35

Choosing a fourier wave field for the pump, the side
band and the low frequency modes, equations (5,28) and
(5.33) can be reduced to a set of algebraic equations.

%>$3:LC5 (ku* :mﬂzzkzﬂ'%j[ab'

&D ku -

{_) il (,,ve }4Cb)l$o @\_ y 5.36

RuVe

R hb)gwpkn
P g, (RxRe®) Lo O

'T(@:ifkg z (Lo M- k?w~C1+éﬁ $¥
[k“ \/e ) }?u \/6)'\“ k‘; L9 _—l}] ]
ees D37

where é_,/oz(k;a_,, O/(lg)”"o 4+ by + b b, é and E, are

gilven by
QR: (i"'*"b)(k" YA‘ ° 0 0 5038

€z I+ e+ e 2 q‘;‘:‘?\w/f)—%(w “ue) 2 (2
R vy | Ve |

. .
Eliminating é%_ and ¢5 from equations (5.36) and (5.37)
and taking ] -] ~ (D, Tthe local dispersion relation can

be written in the form
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- 2 . - A g,
€ € =~/ Cs >"*(m§:'€g) o C6) X
C\Dﬁcwb‘ lD__G—%:—b_)

L= e 200 .. 5.40

In reducing ecuation (5.40) to its simplified form,

we have used the fact that G; and E; are nearly zero

on the r.h.s. of equations (5.36) and (5.37). We shall

now analyse equation (5.40) to obtain some simple

estimates for the resonant decay instability. For the

drift waves, we make use of the aporoximation, b;(kib
R, Vi <<l wl << kVeso that & simplifies to

e_b = |+ tbi — w*’c +l'«\/7r Cw‘ Wyee)
Lo kiVe o, 5.4l
It may be recalled that the last term (being the

inverse electron damping effect in equation(5.42))is
the source of the universal drift instability. We

shall omit this term in equation(5.4l) for resonant
decay instability and set W= W+ v¥,; W-z - a +CY
where (0, = (9, _ly, is the kinetic Alfven wave frequency.
Assuming ¥ (< W, w, and Taylor expanding the dielectric

A
functions €, and €y about L9, W, respectively as

véh = 6y (W) —+ (W~ Wp) J o (w Lo, ~ and
€p = € (0g) 4 (W— R 99w | , equation (5,40)
(o=

b
Wr

—

reduces to

(O V) (e vy) = Wy b (
2_(1+tb;> 0. Lo

d?x Y3 b Bl
L b_(l+b-) J

ees D42
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Where ), and P, représent the linear damping rates
corresponding to kinetic Alfven waves and drift waves
respectively. The threshold amplitude for the potent-
ial ’ai’ can be obtained by setting ¥=o0in equation
(5.43) , The growth rate, well above the pump threshold

value turns out to be

Y, Yo ,
K GO R e SR
/7 L . B, C(+tbe—wQO+bi)L

2

e 0.43

In deriving the expression for Y7, we have used the
relationship between the pump magnetic field, B,  and
@,namely,
% 2
% k c 7 .
B = (ke ko, ) Titbed 1

L 5.A1.4

'5' is the angle between the vectors k-~ and k°
and 6 is the ratio of plasma pressure to magnetic
field pressure. The growth rate ¥t thus derived for
resonant excitation of drift waves is found to be
comparable in magnitude to the growth rate for
excitation of ion acoustic waves as calculated by
Hasegawa and Chen (l6] . The ratio of the two growth
rates can be readily calculated as

W — bW
h\\cd L 5.4}‘5




165

IhAfacf it is possible to obtain larger growth rates
if one couples to other branches of drift modes e,qQ.
a temperature gradient driven drift wave. The effect
of temperature gradients is appropriately taken into
account by modifying the equilibrium distribution

functions [13]

For an equilibrium temperature gradient in the 'x!

direction, €, is modified [13]

é:o = | 4+bl — Wye b“ iﬁit<l+?)+,s:
Lo o> L W0
oo D406
where Y = i#{ig _In eqguation (5.46) the electron
n e

Landau damping term has been neglected as its effect

is unimportant for the macroscopic mode under consider- 5
\/ ‘

e S 7 (/\_) <::r: b

ation , For WZ))I ) 3> Wye , RN mc) )

equation (5,46) reduces to

= 2,
E’:b: ]—— %_.“._:r wx&? P

3
M, W

.47

(@]

Considering the non-linear decay of a kinetic Alfven
wave into a stable branch of the mode given by equation
(5.47), we find the growth rate of the decay instability
to be given by

T cv IB J(k,—rww*z/ )/"ﬁﬁ,a,) Sin 6

2
Loa ()+b)/"‘(+19°>

L 5’453
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.Since Coﬂr (: WQQT» 2>b“gs, this growth rate is
much larger than.that for ion acoustic waves or
ordinary drift waves, The excitation of such
macroscopic modes with large growth rates can pose
a serious drawback to the efficacy of non-linear

ion heating schemes using kinetic Alfven waves.

5.4 Decay instability in an inhomogenous medium

The results of the previous section are based
on the solution of a local dispersion relation where
the effect of back ground inhomogeneities have not
been taken into account (except for inclusion of
the diamagnetic drift frequency). Further, near the

mode conversion region (W= km%,) the wave lengths

of the decay waves could become comparable to the @ 
background inhomogeneity scale lengths,hence the
spatial operators have large values and have to be
retained., We now study the coupled differential
equations (5.29)and (5.34) and analyse the stability
properties of the solutions., The problem of interest
is that of determining the nature of unstable waves
(if they exist) supported by the system. A wave is
said to be unstable if a complex W= Wy+ (¢ with
positive W¢ 1is obtained from the dispersion relation,
signifying growth in time of the disturbance, In an
infinite system [19]a pulse disturbance that is

initially of finite spatial extent may grow in time,
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without limit at every point in space, or it may
"propagate along' the system so that its amplitude
eventually decreases with time at any fixed point

in space, The former is termed 'absolute instability®
and the latter 'convective instability'. It is ofcourse
the former which is more dangerous because the distin-
guishing characteristicsof the absolute instability

is that it grows everywhere in space as a function of
time, The convective instability on the other hand
'propagates along' the system as it grows in time, so
that the disturbance eventually disappears if one
stands at a fixed point., We wish to ascertain whether
a growing solution, an absolute instability can be
supported by the system formed by coupled equations
(5.33), (5.28). The coupled equations are quite complex
in view of the complicated spatial structure of the
interacting waves in the region. To simplify the
analysis somewhat, we shall drop some uhimportant
terms, (e.g. the Landau damping term ) neglect €, (=2

on the right hand side of equation (5.28) and set
W =~ |
kn-\/n

With these simplifications and setting X: 2¢ equations

on the right hand side of equation (5.33).

(5.33) and (5.28) can be written in the form
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{i +9(X>} (PD (C‘) >J: u@t)\//(w*%w”){“(b‘)

Je

G [ 4B g R k4

clx 2 5,49

ﬂ@wa_f}i)}»—k(cﬁmﬁu (48 - 4]
{d‘ + AC><>} ¢ = -(%){ qB dcﬁ
+ k& i’ﬁx% gz.x’”[/eoc;bo“ s k&, J@]}

where k- /kop ka" e‘ A(X) E,,—. ) -l
?Q):~{Y+Z + Loz A4 Wke r;;afé%1’> [(ﬁ;rwlf"&){]
* 2 (W/(h.,\/.-,) ... 5.51

Near the mode conversion region of the pump wave,

the drift and the side band kinetic Alfven waves
are also close to their respective resonance points,
The functions g(x) and h(x) can therefore be Taylor
expanded around these points and expressed as

j(x) = kg (x=x%3) hoo = K, (X""XF\>

..5,53

where (xD)and (x,) are the resonance points for the
drift and kinetic Alfven waves respectively, KD and
K, are typical inverse scale lengths of shear vari-
ation and density inhomogeneity respectively, Since

at x and % the dispersion relation for the drift and

D A’

Alfven waves are satlsfied, g(xD) and h(x,) are set

A



169

equal to zero, The linear operators on the left
band sides of equations (5.49) and (5.50) therefore
indicate an Airy function kind of spatial behaviour
for the daughter waves, A similar spatial structure
also exists for the pump wave [16] , which couples
(5.49) and (5,50)., To solve this coupled set is
still quite formidable. For analytical simplification
we adopt a plane wave model for the pump wave and
study the spatial evolution of the daughter waves.
We follow the method of White et al [20] , for
analysising the instability. We Fourier analyse

the coupled equations (5.49) and (5.50) defining

0

- LPX
W, = 5 e g{g_ x) dx
o
oo .
N\ —{

CPP = j CP:D e anlx oo D.04

“ b
PaN

Eliminating the variable q%,we obtain a single second

order equation in \y, as

o

2
2. .
Eﬂ—:"f’ + FpWw, = o ... 5.55
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' ‘ -~
where \Yp is related to . through the relation

(5.57) and FZ(P) is given by,

Fin= L [é (rk, — Fridal,) + (K=" K>
l(ﬁ (l’(oL’? PL>
- K - 7’:{ L [P alprid”

U ko (Pt ey = ko] ™

P

N Q] PR R, Ity }2'
P e CkoCP+Ko)-Rko)

AN T (pmk,s-ﬁ{/m
(w—-f- wh‘(’_} (Vo Pl‘

— Ro (Pt ko) }7

where + .90
- 2.
Q - w..> ~:-Qaw j[{-{-tbb-—«w‘yc
-V [’\)ﬁ'w»ﬁv) bo
oee D07
and a = 1<h/kj(treated as a constant in this

analysis).
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Solutions of equation (5.55) are given in terms the

usual WKB expressions
"|/2. P =
\‘Fi = F exp Lj(; ‘S‘Fd?'] : vee D58

We require that the solution be localised in k-space
with finite extent of localisation, which implies the
localisation of the Fourier transform solution in
x-space. Such a localisation exists if the Bohr-

Sommerfield quantisation condition [20] is satisfied.

Foep = (h+ L) T ... 5.59

where Pl and P2 are called 'turning points', which
are the roots of F2(P) = 0. To solve for the exact
solutions for the turning points is quite complicated;
we shall therefore look for approximate solutions
and eigen value condition by using a perturbation
procedure, We treat L:las a small parameter and seek

corrections to the eigen values in successive orders

-1

of L, by perturbation.

In the limit of a homogéneous plasma, Ln-> qﬁ(kn‘>Q>
the Bohr-Sommerfeld condition requires that the

integral

Py

s‘F dP be vanishingly small
Py
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This implies that the two turning points must
coalesce., In the limit of homogenous plasmas, the

turning points obtained by setting iL:z © are the
h=> o

solutions of

P L (P k& — Rl Wee fo (PR kD
P o

[ ke C k- k —RoP] =0
5,60

¢ 0

From the above equation, calculation of the coalescence

condition is quite straight forward and is given by

komﬂ.—b — (_l—‘ a) [_ G - &‘ - AkDLj ¢ o e 5.6,]_

“where
Qy = Azl kv (l’f_‘:”‘)[k(%w?':“z-“""l)’* ko (=4
(a=1D*F e _10\)]

Solving for @ = Q. from equation (5.61) we get 5,62

—— RS

Go— 1 (o LO\"’)L
—2ar— ) & koC“—i"l“)}

P
QC. g I’\'oa -+ 2. Iq)o' e kol\/A ikcga—*‘&%

5,63
and the value of the coalesced variable obtained
from equation (5,60) is

Pz Koo ... 5.64
a —

2 . :
F can now written as

<0
2 L CP— PO (P-Py (PR

Fo = —
00 Lfky\ ° ¢ @ 5065
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Vihere P_ is given by equation (5.64), and Py 4 are
?

given by

P, _ =
319 - [\00" s \/koo»L_C{..a)(Q_*Q‘__aKDL

- e.. D66

The introduction of a large inhomogeneitly scale length
"L, ' produces a splitting of the coincident turning
points at P = PC . This can be readily investigated

2
by examining the behaviour of F“(x) near Q = Qc'

Thus we write

F*= FX + dF aa o dJF* (4
adK ol(—L) Ly
[ . .H.67

If Py and P, in equation (5.65) are sufficiently

4
far away from P_, we can treat (PmPB)(PmP4)

) 5 . -
_.(PC - P3) (PC - 14) as a constant. The resultant

equation for F2 is then a guadratic in 'P' and can

be solved for the two turning points p1;2 in the
neighbourhood of PC. We hence conclude that in the
vicinity of P = PC, the equation for F2 assumes

the form of a simple harmonic potential., In the
region of interest (i.e., around P= P.), we substitute

Q=Q, P= PC everywhere in FQ(P) in ecquation (5,65)

C’
except in the fast oscillating factor (P»PC).

#e then find that equation (5,67) reduces to

Fr = Q, Lar - a™]

2163 (=D
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where
Y= O~ erm [ka-»@\ 0" {Q___ﬂ
o _ z(ico -
-+ No ‘ = (P-P.)
(9120-kz-+km)}] v e 5,60

Applying the quantisation condition between the split
roots obtained by solving F2 = O (equation (5.76))
the Bohr-Sommerfeld condition reduces to

[ Q, ]'/L Cy:- o

.zk,\@x—w)

5.70

The expression for real and imaginary parts of

obtained from the above dispersion relation is given

by
l'i‘CE"‘*(A__?_@ = COR—;- [koa,— ‘] 5 .71
w o o e o § 2
R (a
where

Y= W (L, + Lo, >[ 4+ (a-D
o o, L{ (a— 0 @ 2.k,

& 4k
[a* -+ C@‘.ml)LJ (ko = k —+ ka) }]

~+ Vo (LQQ —+ (L&ey Czhd—D k'

.72
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In deriving equations (5.71) and (95.72) we have assumed
that Y (the non-linear growth rate) is << Lo
)

: 2.
Wy= W,— Wy and real [ W- )g_ | Typically k‘A::_LL

k, { 2 ku‘-VA M

— 2. A,

and l<3 - l 75.] kiﬁ* = L k“f; For W~ Wye ku@'l
[ Lo * L%L- o . 4 Z& X

Further L_ is much larger then L_. It follows therefore

that is much smaller than K,. (a= égﬁ >5 1),
D

Ky
For this value of &, we find from equation(5.62) that

Ql is much less than zero. For KA > O we observe

that for certain threshold value (1& 1> K:)of the

pump field, "Y' can be positive and therefore an
absolute instability can exist. It must be noted that

the threshold value fcr temporal growth of excited drift
mode predicted from (5.72) should be treated as approximate
since we have used a perturbative scheme, i.e. treating

1

L ™" as a perturbative parameter,

5.2 §MEMQ£X We have studied the parametric decay
of a pump kinetic Alfven wave into a side band kinetic
Alfven and a drift mode., The dynamics of the drift
wave are sensitively dependent on the shear and finite
Larmor radius effects, We have therefore used the
kinftic equations to describe the motion of electrons
and ions., Using quasineutrality condition and Ampere's
law, the coupled equations for the decay process are
derivea. The coupled equations in 'x' space are quite

complicated and are not amenable to easy solutions,
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Under a local approximation, hoWever, the differential
operators reduce to algebraic expressions, and the dis-
persion relation cbuld be readily obtained, Ve have
calculated the threshold value for the decay process
and the growth rate of the drift instability far above
the threshold value. We find that the calculated
growth rates are quite large and compete significantly
with the growth rates of excited ion acoustic waves,
calculated by Hasegawa-Chen flé] . The ratio of the

growth rates in the two processes was shown to be
Loy
Efcé

Alfven waves could couple to temperature gradient

~ O@0) . We have demonstrated that the kinetic

drift waves which have larger growth rates and longer
wave lengths, In addition we have investigated the
effects of the background inhomogeneity on the decay
process, Near the mode conversion region when the
wave lengths of the decay waves becoﬁe comparable to
the inhomogeneity scale lengths, the differential
operators play a significent role, Expénding the
linear dielectrics linearly around their resonant
surfaces, we have obteined a second order differential
equation in Fourier space, The equation is amenable
to perturbative WKB analysis., Treating the inhomo-
geneity scale length Lnesperturbation parameter, we
establish the condition under which an absolute drift
instability can exist in the plasma. We have shown

that for values of the pump amplitude above a certain
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threshold value, the drift waves could be parametrically

excited with large growth rates.

Our analysis has important apolication in Alfven
wave heating schemes in laboratory plasmas. It has been
shown by earlier investigations [16] that the excited
kinetic Alfven wave has an enhanced amplitude at the
mode conversion layer, which could lead to several non-
linear processes,Hence a study of the non-linear pro-
perties of the kinetic Alfven wave is essential for
better understanding of the propagation of the mode
converted wave, In laboratory plasmas several experi-
ments on Alfven wave heating have reported enhanced
diffusion of particles [21] in addition to efficient
heating, The diffusion of particles may have been
caused by the excitation of drift waves. These modes
could seriously jeopardise the heating efficiency by
providing alternate channels of non-linear energy

transfer, as well as by degrading plasma confinement,
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CHAPTER VI
EFFECT OF PONDEROMOTIVE FORCE ON THE
COLLISIONLESS TEARING AND DRIFT MODES

6,1 Introduction :

In the earlier chapters, we had studied the
non-linear interactions between the kinetic Alfven
waves and the resistive tearing modes, on account
of the important role played by the latter in
tokamak discharges, Traditionally these modes are
analysed by the use of resistive MHD theory which
predicts. instability for A >0 . Early studies
of the linear theory were based on such simple

-> B, )
models of the Ohm's law E -+ VQ%@ =7J , valid
only in the collisional limit. However as the
temperature of the plasma increases, the resistivity
3

- /. . . .
decreases as T and in the fusion regime, the

plasma is virtually collisionless, In this regime
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the collisionless veérsion of the tearing modes are
important and play éignificaht roles in both space
D]yand laboratory plasmas. These modes are des-
tabilised by the dissipative Landau resonance of
electrons and ions which move parallel to the d.cs
maconetic field. For comparable electron and ion
temperatures, the electrons make a dominant contri-
bution to the linear growth rate. Several authors

[2, 3, 41 have studied the kinetic theoretical
calculations including the full electron-electron,
electron-ion collision operators. Drake-Lee [3]
showed that the tearing mode, as a function of the
collisionality of the plasma falls into three cate-
gories, referred to as the collisionless, semi=-
collisional and collisional. An important conclusion
of their work was that the width of the current layer
becomes smaller than Pi’ the ion gyroradius, as the
plasma approaches the collisionless regiﬁe; therefore
previous theories based on hydrodynamicel model were
not valid. Recently studies of non-linear effects on
the evolution of collisionless tearing modes have been
of interest [5, 6, 7] . In these investigations non-
linear effects enter from the perturbation of particle
orbits near the singular layer., Coroniti [8] examined

the non-linear evolution of a broad 'k' spectrum of
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teéfing modes. For magnetised particles and low
frequency modes the turbulence produces a spatial
diffusion His calculations ﬁsing ad~hoc models

showed that the wave induced turbulent drifts lead

to non-linearly enhanced growth rates, Esarey [9]
investigating the effect of turbulent electron
diffusion from stocastic electron orbits, found that
for the tearing modes, stability is obtained for large

values of the diffusion coefficient,

These several diverse investigations [lCﬂ make
one fundamental point clear, which is that the
collisionless tearing modes are destabilised by the
dissipative Landau resonance of electrons and ions,
Therefore any effect which modifies the particle
motion within the singular layer strongly influences

the growth rate of these collisionless tearing modes,

Another mode whose stability depends on the
wave particle interaction around the resonant surface
is the collisionless drift wave, Within the framework
of linear theory absolutely unstable drift modes do
not exist in slab geometry with a single rational
surface., However recently Hrishman-Molvig [li]
investigated the turbulent diffusion of electrons in
the vicinity of a mode rational surface and found that
the stabilising influence of the non-resonant electrons

could be eliminated leading to absolute instability.
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Later, exteﬁding the work numerically Beasely et al
[12] showed that the unstable range could extend
down to almost zero ﬁurbulénce levels. Since then
several authors have pointed out the sensitivity of
the electron motion to external modifications at the

singular layer.

We have in this context investigated one such
non-linear phenomena, which modifies the particle
orbits around the singular surfaces and alters the
growth rates of the <collisionless tearing and drift
modes, We have considered the effect of the pondero-
motive force generated by two interacting kinetic
Alfven waves on the collisionless drift and tearing
modes. The ponderomotive force generated by the
kinetic Alfven waves is obtained from the two-fluid

equations,

The basic equations required to study the tearing
mode evolution ere the Ohm's law <&, - J (where v
is a generalised conductivity) and the momentum conser-
vation equation. The former is obtained from the
electron dynamics, described by the Vlasoo equation,
In the presence of the equilibrium ponderomotive force,
the electron orbits are strongly modified, the per-
pendicular ponderomotive force Doppler shifts the
mode frequency. The effect of the parallel P.F,(F”O )

‘is to alter the resonant wave particle -phenomenon,
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. LI (-
leading to a replacement of o by kx> Yo s
Kll‘_YC ( HG_\(’{, - 0~)
where A= ?—LanLQuk . Consequently the conductivity profile
Yie :

' o is altered significantly. This phenomenon is similar
to resonance broadening effects studied by several authors
[5-7].

The conductivity profile contained in the coupled
equation is in general a complicated function of 'x' and
as a result the analysis is rather involved. However recent
simplifications based on vaeriational methods by Hazeltine
et al [4] have simplified the treatment. Following the
earlier methods, we obtain the modifications introduced by
the parallel force in the growth rates of the tearing
modes in the collisional and collisionless regimes, We
find that the effect of the ponderomotive force is to
enhance the growth rates of Lawal et al [lé] and Drake
and Lee EB} in the two regimes. In the collisional regime
however, the enhancement factor produced by the parallel
force 1s second order and hence quite feeble, For given
tokamak parameters, the enhancement factof in the
collisionless regime is however quite large,

The P,F, has a similar effect on the dynamics
of the drift wave. To retain shear effects the electron
motion is modelled by the kinetic equations., As in the
case of the tecring mode, the electron orbits are greatly
modified due to the presence of the equilibrium P,F, The

electron wave particle response e is replaced by_W
J =,
Ri Ve anya’—« ay



Fof Simplicity the ions are treated by the hydro-
dynamic approXimation. Then from the quasineutrality
condition, the radial eigen hode equation 1is obtained.
To obtain the eigen values we emplcy a variational
principle analocgous to the one employed by Ross et al
[4) . Our calculations show that the P.F. generated
by the kinetic Alfven waves has a destabilising effect
on the drift mode., For typical tokamak parameters the
destabilising effect could be quite large and cémpetes

significantly with the shear stabilising effect,

6,2 Derivation of the Ponderomotive force

In this section, we obtain the expression for
the ponderomotive force produced by the interaction
of two pump kinetic Alfven waves. Ve consider the
non-linear coupling between two kinetlicAlfven waves
excited at the mode conversion regions by an external
r.f. source. Close to their resonance regions, the
excited waves have enhanced amplitudes with complicated
radial structures and propagate into the plasma

towards regions of increasing density [15] .

We use the two fluid equations to describe the
propagation characteristics of the kinetic Alfven
waves., As demonstrated earlier, the special features
of the wave, namely finite Larmor radius effects can
be adequately reproduced in this formalism. The non-

linear coupling between the kinetic Alfven waves
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' : , -> - . - -
manifests through the terms (VA X BA) ana (VA.YY)VA

in equation (3.1) ., where the subscript 'A' stands
for the interacting Alfven waves, In the first order,
equation (3.1) can be readily solved to obtain the
quiver velocities of the electrons and ions le and

Vi (j=¢,e) which are given by equations (3.4),
(3.15) and (3.17).

The second order part of the equation (3.1), is

then obtained as

M. dv [ v )V v .6

j e = m Ch DV, + € VA__X_@A)]
C
vov 6.1

Where V2 is the second order fluid velocity, VA the
linear quiver velocity, and_gz, the linear perturbed
maqgnetic field of the Alfven wave, The ponderomotive
force (P.F.), Fy;, acting on the electron and ion fluids
is obtained by averaging equation (6,1) over the fast
slfvenic fluctuations, In order to obtain the P,F,
generated by the kinetic Alfven waves, we require an
explicit form for the spatial variations of the field
potentials. For this purpose we choose oscillating

cosine profiles for the vump Alfven wave amplitudes

as

q% = q% Cers Cﬁi{éz - Wy 6> . 6.2

/7 v

Where the subscripts 1, 2, refer to the interacting

waves,
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Such a model fof the spatial variation of the
potential function is valid in the region away from
the mode conversion region, which is our region of
interesﬁ. In this recion the kinetic Alfven waves
have rapidly oscillating structures in the radial

direction and can be approximately described by

equation (6.,2),

Vle assume that the interacting kinetic Alfven
waves have the same frequenciequn, but different
—> —_>
wave vectors kl and k.. Our assumptions have
particular relevance to the Alfven wave heating
scheme, where the interacting waves arise, through
mode conversion of an external r.f. source at their
respective resonance surfaces. These waves excited
by an external antenna have the same frequency, but
different wave numbers and our analysis which has been
done with a motive to understand the non-linear
features of this scheme [lél uses this model for
the kinetic Alfven waves,

Substituting the expression for the 4uiver
velocities into equation (6,1) and using equation (6.2),
the second order equatioh of motion for the particles
in terms of the potential functions q>and YW can be
readily obtained, In order to obtain the non-linear

ponderomotive force FHL’ acting on the electron and
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ion fluids, equation (6.1) is averaged over the fast
Alfvenic motions, The averaging is defined in the

followinag manner;

'Lrl'/(,a
Foy = L [ o ar ree 6.3
N’L‘J T Y "?lt
where 4&) - Cv;qx Bn) —+ md(_vh v v’“

Equation (C.C) describes the d.c. (P.F.) acting
on the electron and ion fluids due to the wave mixing

phenomena between the kinetic Alfven woves.

Of the two components of the ponderomotive force
described in equation (5.3), the dominant part comes

-

from the (VA'<7)Vp term and is qgiven by

= (Cdj G?J.@ D(‘f d’> ™ M EZ] - Xk] ...6.4a

R, )U@yk) ¢ v m A (etp (Ak ean

llﬂ

where A ki is](hﬂ~ R, )|the difference in the per-
pendicular wave vectors of the interacting kinetic
Alfven waves, On account of the short wave lengths
= 8 - L S n . s -+ !A'l
15| (of the interacting Alfven waves) in the 'X
direction, which i tne direction of the density
nhomogeneity, kx for the Alfven wave ic much
larger than k_. Therefore the principal value of

\/
-

P
0 03 M . N 3 .
Fo, in equation (6,4a) is along the vy direction,
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It ié to be noted thai in equations (6.4a) and (6.4b),
the perpendicular and parallel ponderomotive forces
F, and FHO , are proportional to the finite Larmor
radius corrections, indicating that these forces

arise because of the kinetic charzcteristics of the

interacting Alfven waves,

We remark that for the given profiles for the
field variations, the perpendicular ponderomotive:
force in equation (6.,4a) is a positive definite
cquantity, while the sign of the parallel P.F., could
be negative or positive depending upon the combination
of the parameters. For (El X Eb).gz areater than
zero i.e, h11,> Eﬁ}} F, 1s a positive quantity,

R Y ’
while for the reverse inequality, it has a negative
value. We have, in the subsecuent sections examined
the effect of the P,F..on the low frequency drift and
tearing modes., It was found that the sign of FHO
plays a significant role in the stability of the

modes examined,

6.3 Interaction of Ponderomotive force with collision -

less learing _modes :

In this section, we investigate the interaction
between the P.F.(derived in the earlier section,
produced by the non-linear coupling between two
kinetic Alfven waves)and the collisionless tearing

modes, In a plane one-dimensional magnetic neutral
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sheet, the collisionlessitearing modes are deste
abilised by the dissipative Landau resonance of
electrons and ions which move parallel to the d.c.
maanetic field. For comparable electrdn and ion
temperatures, the dominant contribution to the

linear growth rate comes from the electrons.

Earlier theories of the tearing mode were

based on such resistive models as Ohm's law,

el — - e
E -+ VXB - M']— . o u 6'4c
c (

All these calculations

continued to assume at least implicitly equation
(6.4¢c). The width A of the current layer produced

by the induced parallel electric field is an important
quantity which can be determined from the plasma
dynamics in the layer. Previous authors have

assumed A >> Q, where @; is the ion gyro-radius.
However an important conclusion reached by later
investigations [3:]was that A becomes smaller than €, as
the plasma approaches collisionless regime, Using heu-
ristic . consideration it is in fact possible +to

show that /) << @, . The correct basis is
therefore to replace equation(6.4c) by a suitably
ordered version of the kinetic equations, which

employs the collision operator.

We calculate the electron response by means of

Vlasovecuation with Krook collision operator on the
v - = -~
r.h.s. The perturbed current jﬂz jl-+ ];/ which is
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produced by the induced electric field is primarily
along the direction ofvthe equilibrium magnetic
field. The parallel response of'the electrons to
the induced field is much larger than that of the

ions so that T > J,, (= 9o),

ie obtain the electron response to the equili-
brium consisting of a sheared magnetic field and a
ponderomotive force generated by the wave mixing
phenomena, The eqﬁilibrium distribution function
is to be constructed from the constants of motion
obtained, in the presence of the equilibrium force,

and is given by [17]

) ¥eap [ =me( e Vi) +(Fxp°‘ + Fyeb’)
2T 2T r-—-_F""
e-

-+ﬁkj][j-« G'Qt+ﬁj)]

T, (Oca
ove 6.5
where F,l_p: k. ”t‘é\ F‘<7° and F,, are the perpendi-
cular and parallel ponderomotive forces given by
equations (6,4a) and (6.4b) respectively, and ét=%;
the scale length of inhomogeneity. The perturbed
distribution function of the electrons is obtained

from the linearised Vlasov equation with Krook

collision term,

[§E+VV+&CYx&)+ 9,4, ~;[ L

»Q%gtlﬁz4ea 'F<E%§2; ees 6.6
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(%@ ; -V ("/1 '" )%D*Jeo>

(9 is the collision frequency)

We consider the response of this equilibrium
to a general perturbation of the form

Q = QU @lflﬂkée% —t-kat;t - w&t]

Where @ is any physical guantity. The perturbed
-
fields are represented by a vector potential A(x,t)

and & scalar potential (X Kas

=P o -3 . —
B = <xA E = WA —v0o
¢ . 6.7

'A' is driven by the perturbed plasma currents

2.~ - -
JA = *4—_2"(?&-1-]1)
... 6.8

-
The current J which is produced by the induced

electric field is primarily along the 2 directions,
so the vector potential Z? defined in equation (6.7)
is dominated by its % component and therefore the
perpendicular component (AL) can be neglected, The
parallel response of the electrons in the induced
field is much larger than that of the ions, so

I%e > J%({ . Further the radial gradients are
much larger than the spatial variations in the other
two directions i.e. a o> k%,'::/ h{;("’ aJ“)

&

Equation (6.8), therefore simplifies tTo
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2. _

Cg%"»,: “ﬁg,rr_jb“l‘ .. 6.9
The orbit eguations of the electrons in the

presence of the ponderomotive force are obtained

and substituted in equation (6.6) to derive the

linearised electron response. The trajectory of

the particles is obtained from the equations

dx vi
at
du> - - -
W2 Lo, (VxR BeX Ry
CH’/ Me Me
F. 2
- ...6,10

Using the above equations in equation (6.6), the

perturbed electron density is readily calculated

to give
3
Ner = (dv"ie' ves 0,11
o
Ne, = l,eg“ | + & y % — '/2]
k’n Te Ck“L ) Ckn Ve~ a)

Y
w%&i [Q?Lv%a) Z[ Ty - co/]

! /
+ By et o [ \ +Ck“7~\/a"..- o & R a)/;(

‘kll wC€
— (Dhe, 2| 2 1
P {
ijuL\/ch — ) ' Ckua"\feL —ay /-
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where Q.= 2 Fy, bnb L= o Ly end A=a- kye%o
e >

is the Doppler Shifted frecuency due to LHO(“l xlﬁJ

drift,

Ve note that the ecuilibrium perpendicular force
gives rise to a Doppler shift of the mode frecguency
from 1 to L due to the(a.x BO> drift. However the
frequency shift fb—.0. = g Vo which is proportional
to the electron Larmor radius is very small and plays
no significant role in the mode dynamics. Ve shall
therefore omit this effect henceforth in our analysis.
The parallel ponderomotive force on the other hand
alters the characteristics of the wave-particle
response of the electrons. The resonant interaction
term undergoes a shift from Ly e e

‘Qu(,-\'/‘& Ebu‘,VC j/
the Landau interaction occurring at w,_~ Ckuw»-a) On

 with

account of the fact the modification is spetially
dependent, the resultant effect induces a spatial

resonance broadening of the electron response.

The parallel perturbed electron current density
is then calculated in a straight forward manner from

the relation

o
]ha - Cn”f Ui e 44
A

6,13

with

T

He.

= LEE (W-twa [ ‘gz(s’)

Te (khw &J D

Z
(ku‘,ve Py (g)]
.. 6.14
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T . ">
where b“ expressed in terms of the potentials A

and @ is given by -~ E, = QEDA” — Jucp ..06.14a
<

Equation (6.,14), can be written as

]}l = Ty .6.15

where < is the conductivity profile. Equation (6.15)
is the generaliced Ohm's law which describes the force

g

balance eguation in the parallel direction,

The conductivity profile is now & complicated -
function of the radial co-ordinate 'x' through its
dependence not only on k,0OVe but also on the factor
which is a function of Fi, . In chapter II, we pointed
out that the parallel ponderomotive force did not
manifest itself in the fluid model. In fact, the
parallel component of Ohm's law does not contain the
parallel force, while the conductivity profile given
by equation (6.15), is a function of the parallel
force., This apnarent contradiction is resoived by the
fluid limit of equation (6.15) and demonstrating that
in this limit, the parallel force, cancells exactly.
The hydrodynamic limit is taken by imposing the

Wy )
condition that {E?TSQF~¢x%’>>" Making a large

argument expansion of the plasma dispersion function

the expression for the conductivity becomes

= Y 6,16
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where ? is the claSSfcal Spitzer resistivity and
the parallel combonent of Ohm's law reduces to the
s‘tandard form E, = ? T

Expressing Ih , By, the perturbed current and
parallel electric field variations in terms of the
potentials @, A, using equations (6,9) and (6.14a)

equation (6,15) becomes

S \

¢ di o i g, g
c
LR BN 6017

The other relation between @ and A, is given
by the equation which describes the ion dynamics.
A heuristic method for investigating the ion
response 1is provided by the momentum conservation
law. The ponderomotive force generated by the
kinetic Alfven waves couples to the fluid density
perturbation, It had been shown earlier (chapter II)
that this effect is negligible within the tearing
layer. We shall therefore omit the coupling of the
P.F. to the density perturbation. The equation which
describes the ion dynamics then has the standard

form [4] .

6,18

Ckut Cizu :(£>L<wk— L‘)n‘> ‘f_@
d

x> Va da>
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Equations (6.17) and (6.18), provide the coupled
system of equations in ¢ and A, describing the dyna-
mics of the tearing mode in the collisional and
sollisionless regimes. To solve the system of
equations and obtain eigen values in the presence of

the parallel force, we first cast the equations
” /
into a more convenient form. We expand k as k

ne g
around the mode rational surface defined at x = O,
In terms of x, equations (6.17) and (6.18) reduce to

respectively

d =I[__§_:'—CPJ

ax* oC
... 6,19
2.
99, = =, Ly —¢]
A
.. 6.20

In equations (6.19) and (6.20) < is given by

= — Z)CL (W= e ) [f + Sz
(Lo+ W) (1 —_a ) [:/ EUY Z(§)J
with Rify Ve Ck '/
Ve —a)/*
= %(‘*’e’f" Ly ;) <= Lo+ Cy |
aXE‘V;V CA“Q@ —ayh

...6.21
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The other parameters in the equations (6.19)
and (6.20) are the same as those defined in the

earlier c¢hapters.

Equations (6.,19) and (6.,20) are now in the
standard form for which methods of solutions have
been developed, Kecently treatments based on |
variational technigues [ 4] have brought considerable
simplification +to the solution of the eigen) mode
problem. The method allows uniform analytical treat-
ment in addition to enabling handling of more compli-
cated models 6f plasma behaviour, readily. The coupled
equations are first reduced to a simple second order
differential equation in Y = Céi-— qﬁ. We observe

that equation (6.20) can be written as,

s P
qlﬁl - ry = x dy s
dx DLRL SR v . (6,22)
and further :Lff} can be expressed as
alx*
!
xd% xr (Y '
clx* = L (pc)-] e (6.23)

Substituting equation (6.23) into (6.22) and inte~-

grating once, we obtain

2 /
e L)
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where ( 1s the constant of integration, Differ-
‘ /
entiating equation (6.2la) once and eliminating Cf)
X

between the resulting equation and (6.24) we obtain

¢! Ty C

- 20
% 1 A (6.25)
J(AL—-— )(, 5 LY .

c . "
Differentiating equation (6.25) and eliminating ¢
between the resulting equation and (6.22) the required

second order equation is y is obtained,

fi j ~+ = — 2Cx
Cbc 2,—~z¢ C@E“X;UL

where the constant C in equation (6.24) is related
[
to & of the kink tearing theory by
00
. I-l v— d
C = - éﬂ ) _’g oL
x
e,

ves (6.,27)

Equation (6.26) can then be cast into the self adjoint

form [4 ]

2 { _
Z:Jh oL a J — U”g - GA*FLV”>I4,>cx :]x
S . = )
‘lﬂ x Y dx
(e )
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Equation (6.28)”is an integro-differential
equation, which is amenable to variational treat-
ment, The variational method consists in const-
ructing a functional 'S', by means of an appropriate
trial function which ié variational. The equations

S=o, clg = O ( o¢ is the variational parameter)
ev
are to be solved simultaneously to obtain the eigen
values, In the next section, we solve for the eigen

values of the equation (6.28) using variational methods.

6.4 Variational solutions for tearing modes :

In this section, we solve for the eigenvalues
of equation (6.28) by setting up a variational principle
for the variable \?/. Multiplying equation (6,28) by

3and integrating from —wto 4. , we obtain

S:(Al+g>(rl+r}) + T, .. 6.29
DLA

where Il’ 12 and I3 are integrals given by

oQ

1T J éf [LJI X" ] oex ... 6.30

— (& — 2¢7)

p
I, = r Ty e .. 6.31

—

—
i

1, = 220 *gd . da o 6432
- CXE~3‘;3
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It can readily be shown that the functional

defined by equation (6.29) is variational in that
5§:c>generates the eguation (6.28) and hence equations
(6.19) and (6.,20). The next step is to choose an ap-
propriate trial function for ?’ evaluate the integrals
and solve the set of equations gi:o and S =° to obtain
the dispersion relation as well as the variational parameter
o« . The choice of the trial function is dictated by
the nature of the mode we need to study. The tearing
modes are characterised by localised symmetric solutions
of E, which tear the magnetic surfaces. The trial
function for E, therefore must be even, Ve deal with

modes of the tearing symmetry and cnoose the trial
E

-t 2>
. !
function for Y = ~§L , as € ,  with Re«t> O,
' «' is the variational parameter and the condition

Re<ois imposed to ensure the well behavedness of the
solutions.,
With this choice of E L, and 13 can be readily

calculated,

i
i

'/:/ ’5/,_
”3&:“ ["{ -+ 7‘:< + (_LS - 2o +°(;() ... 6,33
Jﬂ )C
g CW%3%>]

3 [(2»() -+ (o(x 4 1 >Z[("<) ] ... 6,34

]
1

here # is the plasma dispersion function, To complete

~ ool
the evaluation of S, we need to determine 12 = —«;8
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Inépite of the complicated x dependence of o , I2

can be expressed in terms of known functions for

many cases of interest. In.the presence of the
non-linear interaction, however, the modification
introduced by the parallel force in the conductivity
profile makes the integral complicated., We first
study the modifications introduced by the equilibrium

parallel force in the limit of collisionless plasmas,

The electron parallel conductivity can be
described by a collisionless model when ever the ele-
ctron collision frequency » is much smaller than the mode
frequency 0%, The latter is typically of the order of
the electron diamagnetic drift frequency ﬁ)kf For

this case < is given by

T = ,,x:‘ (L= wy) LI+ SZ2®] oo 6,35
((/J Wye) I — &
where i ¥> [ I?T:VC
% oz _W

(k;}&f"“aL)VL

Despite the simplified form for the conductivity
profile, the exect evaluation of the integral I, is
not possible. We therefore obtain approximate values
of the integral by treating the term proportional to

o

the parallel force i.o. ﬁjf”l in equation (6.33) as
Ve

a small parameter, (€<< D and accordingly make Taylor

expansion of the plasma dispersion function. The assumption
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a
Fi T
h”kve - << implies that ﬁ:é; L kne (with F,_
defined by ecuation (6,46)) and puts an upner bound on
the pump amplitude, However for nominal levels of

Alfven fluctuations, this condition is readily

fulfilled,

With this approximation the expression for the

conductivity reduces to

v e (W= W) [+

{[ e 1G]

(1o ki
+ 1L a (
= v\ k > % ‘an\/c
e ‘e ”b’yﬂ

L(km,\/c> ( wr

The integral I, with the conductivity profile

2
defined by equation (6.,35), can now be readily

evaluated.
o0 —lx*
I - —x (w LW,.) { e [{[
- fe -k_,g 2(X
CLJE_ +- wn) :LL (J)}
L2+ L[ 2(W]]

{A: 3L‘FH ( B:“lLF:Ho ((’OL‘ N
e V> k,,kv) e ki 79-’?)

*e= ()]
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The expression for Ii, 12, 13 are then substituted
in equation (6,29), to obtain the expression for the
functional S, The resulting equation is an extremely
complicated function of & and to obtain analytical
solutions retaining the exact form for $ is a forbidding
task., It is possible however to solve for the dispersion
relation in verious interesting limits. One such class
of modes which have been extensively studied are the

current channel modes [18] o

It hasbeen pointed out by earlier investigation [18]
that in the case of kinetic drift tearing modes, there
exist two singular lay~rs. The outer singular layer
is the region within which the parallel electric field

is significant and the typical variations of this region

w
is x| D> ngV%.' There is also, an inner siﬂgular layer

the variations of which typically are ||~ R, Ve °
Physically the electrons can be readily accelerated by
the parallel electric field only if ux; kﬁk\@ , SO that
most of the perturbed current lies within this inner
region, The width of the current channefdﬁs the
typical scale length over which the conductivify varies
t4] . Whenever the extent of the field variable 'E !
is greater than ,ﬁv_, the modes have a current channel
or alternately they are called current channel modes. The
interesting class of modes are likely to occur in the

shear and 'Q ' range of present day tokamaks., In fact
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it has been shown that.the condition that the width of
the outer layer, i.e. variations of E“ be larger

than the inner layer, (the variations of conductivity
n > )’ﬂg)l/ .

profile) becomes & s
Ly

usually satisfied in tokamaks.

a condition that is

We study the modificetions introcduced in these
current channel modes by the psrallel force. These
modes have widths such thaf Xi>(the mode width) is
much larger than (g ( ku ) This leads to the
condition that 1 d/L,Xe{<Z{) where ,L is the mode
width.

Expanding 12 for (%{1{[4(}, we write the

functional in the form,

S = Se —+ Vd Sl —+ < Sl— ... 6,28
vhere So = ,
A [-éﬁ: N R R R
“n EX (t0+ L)
(w —f‘{:A -+ bfr' ]{ :{H?‘C(AJE;— w,(e_) X
Ae Cw&“" w“) (Wt e
AL — 3 2= (a- 0, Lre !
2 )(6 ‘)“f' Q/‘JL;"?‘ wb’.) lel'l‘



S = 2 (A{. -+ Qjﬁ")Jﬁ* X, x

(L= 0 1)
th,"‘f‘ w;ﬂ:,)
. [ .
SZ-:: UL T A l bé — A +b£ ] L 1 /_)_ X
o D(A

oTr"(w WO Pye) —t—é[sc’n“x Q0 LOxe

(o o) . (Lo Ca.)

— LB (> (o Losd
D(gL ( (/\Jk-—f—b\')x‘_")

A simultaneous solution of j%:oand S$=zo yields

Vo, = — S, and the dispersion relation is
ZS,
2,
Se = LS, 7 S
4 S, ... 6,38a

We determine the eigenvalues & by solving equation
(6.38a), keeping in mind the consistency criteria
Recd > O

s, which ensures that the solutions are well

behaved at x = + o . Ve obtain

(w__w,m)[ [A+LW kuvqj[zf“ i %J}

R:Vﬁnk-»%
- Lb/L‘ L 603C)
.
where Y, = A k“y;‘ ... 6,40

Vi Ve
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is the growth rate of the collisionless tearing mode

discussed by Laval et al [13] for the m>2 modes.

N /
when @7 is large that is & << and
| Tge th Cﬁfkg )
positive, the solutions for () approaches the results
of Laval et al, with modifications from the parallel

force. In this limit the dispersion relation becomes

M kg Ve v 6,41

where the expression in the parenthesis is the effect

produced by the parsllel ponderomotive force generated
by the wave mixing pheﬁomenon. It is to be noted that
the growth rate of the collisionless tearing mode is a

linear function F and therefore the sign of Frig o

Ho?
plays a crucial role in deciding the stability of the
mode., For certain combinstion of parameters i.e,

for hx' > k * the parallel ponderomotive force F. R

Xa 4= Ho

has a positive sign and therefore by ecuation (6,41)
has a destabilising effect on the mode, For the reverse
inequality, Fllo has a stabilising effect on the
collisionless tearing modes, For typical tokamak

parameters given in chapter II, the enhancement factor

although not large is £ 00) .

Collisional limit
In this limit, the full parallel conductivity
profile o7, defined by equation (6,21) including the

electron-ion collisions Y has to be retained in the
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integral I,. The width of the electron layer X,
_ , . i ’ W -+ LY
in this regime is now given by X = k] ]

) Hkvﬁ
This value could much larger than its collisionless
) oY

e
values in this reqimg,the integral with full cond-

To solve for the eigen-

counter part Xe= Vﬁz.

uctivity profile has to be evaluated. As pointed
out earlier, this cannot be done exactly, We therefore
make some simplifying approximations.

Tn the large V¥ limit, the electron layer
becomes large and tearing modes with widths much less
than the electron layer become important. For these
modes the conductivity can be brought to a standard
form with appropricte contributions from the parallel
force, by making use of the assumption that X, , the
width of the electron layer is much larger than the
width of the tearing moce under consideration, Making
a large argument expansion of the plasma dispersion

function we obtain [4] ,

a = ;?* Cjﬁi” :LI;>

eees 6.42
5. 2.
X — —2C
where [' R & .Ei]
. Eal i, )
g Ga o Cua, B QR o
LR Y "
“: 2LFH0X,_.L... ‘

I"ﬁ bn/(,\/e:f.
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XR defined in the above equation defines anotner
scale length which lies betweenxC and Xe . If the
collision frequency is increased still further, such

that XR exceeds the spatial width of the mode, <

takes on its classical collision dominated form

e 2
= (X Voo 6,44
xR
for which solutions are known.

The parallel force in this regime identically cancells
which is consistent with our analysis of the resistive

tearing modes in chapter II. .

The conductivity in the regime defined by equation
(6.42) varies on a scale length [XR[ , and therefore

the width of the current channel is determined by XR .

To obtain the functional, we now have to evaluate

oA
the integral 12 = Jgg; ¢ ckoc with' - «given by equation

(6.42). As before we treat 'b' as a perturbation
parameter and solve the coupled equations S=o and %%30

simultaneously, to obtain the eigenvalues.

We obtain modifications to the dispersion relation
obtained by Drake and Lee [3] , due to the presence of

the external ponderomotive force in this regime.
L .Y l2 1
&gﬁh<g)_ W) = U LIK;ﬂgn kiiﬂ(yé>][1 +
™ VY

L3, [TV v !
L LV vk, (v
¢ VX - l(V%)H . 6,45
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‘.Solving for the growth rates, we find that the
linear growth rates predicted by Drake aend Lee [3]
contained in the first paranfhesis of r.h,s.) are
modified by the parallel P.,F. produced by the Alfvenic
| fluctuations. Equation (6.45) demonstrates that the
contribution . from the parallel force contained in

the second paranthesis is proportional to BZ and

2

ilo
collisionless regime, this implies that the modifi-

therefore to F Hence unlike the results of the

v

cations introduced by F , are independent of the

e
sign of the parallel force. However we note that

these corrections in equation (6.45), are only of
the second order and therefore not very significant,.
In fact our calculations of these modifications due
to the parallel force in the collisional regime

indicate, that these corrections are of no importance,

6.5 Interaction of the ponderomotive force with

collisionless drift waves

In this section, we study the effect of the
ponderomotive force generated by the Alfven waves
on the collisionless drift waves. These waves have
been extensively studied in the last few years on
account of their wide application in both laboratory
and space plasmas. They are endemic to tokamak plasmas

and are considered to be the cause for the observed
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anomaious diffusion, ‘Although within the framework

of linear theory the drift waves have been shown to

be stable in a sheared magnetic field, in slab geo-
metry, they could exhibit highly non-linear behaviour.
Several investigations have to be devoted to the
understanding of this feature,

In this context in the previous chapter, we had
investigated the parametric excitation of drift waves
through decay of a mode converted kinetic Alfven wave
in an inhomogeneous plasma and established the existence
of various drift instabilities. In this section, we
consider a non-linear interaction between two pump
kinetic Alfven waves and a drift wave., We investigate
the effeét of ponderomotive force(generated by two
interacting kinetic Alfven waves)(derived in section

6.1 ) on the drift mode,
We consider the plasma in slab geometry with
gradient in density along the 'x! direction and with

a sheared magnetic field given by
- et xl'\
B:B e "}‘ """e e ° 9 6946
L&+ xe]

vhere LS is the shear length,

The gradient in density is assumed to be weak in the sense
that

S fndn ) ca
d 2 oe. 6,47
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where @Lis the ion Larmor radius.,

Using simple fluid model, we first describe the
propagation characteristics and the linear stability
properties of drift waves, In the equilibrium des-

scribed by equations (6.46) and (6.47), the electrons

drift with a velocity, VU, = ”'CT%/ L dn . For
ewce_ no Cl 20
simplicity we take the ions to be cold. For longi-

tudinal oscillations, assuming the electric field to
be curl free, and writing E =-V¢, the perturbation
of the electron density '"n.' which follows the Boltzman

distribution, can be expressed in terms of ¢

yl'c' : ?——v’? LI 6948
N, 'T;/

Physically the above relation implies that the massless
electrons attain thermal equilibrium very fast along
the field lines. The ion density perturbation can be
readily obtained from the continuity equation,

é_’ifq —t v- C}'\orv‘?) o0
at eor 6,49

where Vi’ is the macroscopic velocity and can be

determined from the linearised equation of motion

-

)

-
Q&f :.-*§1‘7q>—+ ¢ <;Zx
d(" m: m; <

%

96 0 6.50
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For WL W | the second term can be neglected
and then the velodity of the ions is determined by the
drift in the electric field, Substituting the value

of V; obtained into the equation of continuity, we

obtain

f‘_é.' - w%e eci)
Ne —_

w —T; @ o 2 6.5.].

Where W),is the diamagnetic drift frequency of the
. — ky TG L.
electrons given by ] ;&80 Lo

The effect of the inhomogeneity on the oscillation
frequency arises from the transverse drift of the ions.
By itself the motion is incompressible i,e. VKQL =0
and in a homogeneous plasma does not lead to 2 change
in density. However in an inhomogeneous plasma, even
an incompressible displacement leads to a perturbation

of the density n. .

Using quasineutrality condition, solving equations
(6.48) and (6.51), the dispersion relation is obtained
Ww = Wy = b"a Uéo
ees 6,52
To understand why the drift waves are unstable, one
->
must realise that V¢ is not quite 7; (the electric field
drift) for the ions . There are corrections due to
polarisation drift and non-uniform 'E' drift, The result
of these drifts is always to make the potential C# lag

behind the density perturbation.
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—
As long as the electrons are free to move zlong B,

to cancel space chérge, the Boltzmanhrelation is ful-
filled and the drift wave is stable. There are however
several effects that may limit the mobility of the
electrons. These effects are generally more important
for small h, and could be electron ion collision,
Landau damping. If the electrons are not able to
move completely freely there will appear a phase shift

corresponding to a time lag between density and potential.

We then write

— —

Neo

Ne, = e¢ L1~ ib]
Te

where S signifies the phase lag. Subsequently the

dispersion relation gets modified to

W = Wi (1’*“:8)

.
:

(@)
L
o

(if we assume | 6 1<<1)

ie note that a time variation exp(—itwo€), §> 0,
means that the potential lags behind the density, This

situation corresponds to an instability, the energy for

which arises due to the spatial gradient.

In a collisionless plasma, the instability arises
from the interaction between drift waves and resonant
particles, which must be represented on the basis of

kinetic considerations. It is straight forward to
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show that the growth rate 1s proportional to @U*L“ﬁ>
where W is the frequency of the oscillating
perturbations. Any effect which shifts the
oscillation frecuency from the value Wyleads

to growth (or damping) of the drift waves.

In order to describe drift waves in an in-
homogeneous system with magnetic shear, a diff-
erential equation for the field variation in 'x!
has to be solved, and the solution for the mode
frequency becomes an eigenvalue problem., The
effect of the magnetic shear will be to twist the
maunetic field. 1In a tokamak for example a toroidal
eigen mode will also be +twisted according to its
toroidal and pooidal = numbers. At a certain value
of 'r', where 'r’' is the raedial co-ordinate, the
drift eigen mode has the same degree of twisting as
the magnetic field and the wave number parallel to
the field, i.e,. }ml = o , The drift waves have the
strongest tendency of instability, for small kn
where the electron shielding is ineftficient, They
are generated near kuta and propagate towards

larcer ' 1! When Ry has grown so that k“ﬁéstd

(where vﬁuis the ion thermal velocity) the ion
Landau damping sets in and absorbs the wave,
In order to have an absolute instability the

growth rate of the drift instability must exceed the
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damping due to ions. It has been shown both analytically
and numerically that both the collisional and universal
drift waves are stable. In toroidal systems with pol-
0ldal variations of E; , however, toroidal couplings may
introduce absolute instabilities. It is clear that s;noe
the shear in the magnetic field plays an important role
in the stability properties of the drift wave, any modi-
fication in the shear effect alters the mode character-
istics., In this context, a study of the effect of P,F,.
on the drift mode, is an important problem,for as demon-
strated in the previous section, the equilibrium P,F,
significently modifies the electron response and alters

the mode characteristics,

In the equilibrium described by equations (6.46) and
(6.47), we consider two mode converted kinetic Alfven
waves interacting to generate the ponderomotive force (F).
Wie consider a general perturbation of the equilibrium of
the form |

Q= Qoo Cacpi(ka‘g —+ kﬁ% ~ot)
ees 6,55

Where Q is any physical quantity.

To retain the effects of the shear, we model the
electron response by the Vlasov equation.

As demonstrated in the previous analysis the electron
response to the equilibrium constructed from the constants

of motion is given by



_J = Mg
e —
’ (T, j&% eD”’[fYn Cvavi) —+ o ﬁ' gt vee 6,56

2LTe
+ F"o%]['“‘ € @‘“’*‘J)]
The perturbed electron distribution function is
obtained from the linearised form of Vlasov equation.
As shown earlier, the perpendicular ponderomotive force
civen by equation (6.4a), Doppler shifts the mode
frequency, while the parallel P.F. gives rise to
acceleration of particles along the fileld lines, leading

to modification of the wave-particle response,

The perturbed electron density  given by

3
j‘d U de eo. 6.57
is obtained as
Ney = ﬁcb [+ w W e Z(’S)] ver 6.58
hn e 2
® i Ye — Ou
with a = *¢Fy, jQu R , and O- = W- RV

me.
'_nt' represents the Doppler shift of the mode freguency

corresponding to the (gix ﬁ;) drift, We note however
that this shift is proportional to the electron Larmor
radius and therefore very small. As in the previous
case, this effect shall be neglected, as it plays an
insignificant role in the mode dynamics, The parallel
ponderomotive force serves to modify the electron orbits

around the resonance region. The electron wave-particle
W d ,

response is changed from ("‘“ ) to .

pons J Rive. Lklf‘v“"-— o] /a.



This spatial broadening of the electron response due
to the parallel force alters the mode characteristics
considerably.

For the ions, however, we make the hydrodynamic
approximation., The dynamics of the ions therefore
are governed by the fluid equations. For simplicity
we treat the ions as cold. For the electrostatic
drift waves, since the electric field is curl free,
it can be represented as the gradient of a scalar

potential i.e.

E= -V V.. 6,50

such that E, = —"Lbﬁ ¢ - i_‘f ee. 6,60
X

Substituting the vealue of the perturbed velocity from
equation (6.50) into equation (6.,49), the expression

for the perturbed lon density is obtained as

2
P p 2,
_Vlgzc.j_fbb_e._%_ "}Qa_e_?&i. + € W, +
ho da* To 1o Te Wi T
2
Rica” ey
W'}- :?;; cc‘f 696_‘_
where h“ = ks, = hﬁ’* %% k? ers 6.62
| B, | "

Using quasineutrality condition we now obtain the eiqen
mode equation with appropriate contributions from the

parallel force.
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‘ere o= 20 F, ki and ‘g = Tty Q‘J/L .. 6,64
e Eye —

Since drift waves have the largest tendency for

instability around kw = 0, we expand kH in Taylor
§

it

/ .

expansion as k“ = k,'x éag . The shear length LS is
)

the characteristic length over which the magnetic field

changes direction.

Defining the dimensionless variable

¥ = X equation (6.63) reduces to
PA
a2 {2
Ci.g) —+Cf’[ware ———k () - i 2'42"._..
(AJL

LA 6'65

In the absence of the electron resonent term,
equation (6.65) is a Weber differential ecuation
having solutions in terms of Hermite polynomials with
discrete eigenvalues. FPrevious analysis ELQ} of the
problem centred on the treatment of a Weber-like

differential ecuation (including the electron resonant
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tefms) using perturbatién methods. In particular
the destabilising effect of the inverse Landau

amping as a perturbation on the eigen solutions
of the Vieber equation,

6.6  Variational solu.ions for the drift wave :

Wie now preceed to apply the variational method
to ecuation (6.65). ‘e construct a functional 'S
which is varistionzl, in that $Sze reproduces equation

(6.65), The functional so constructed is qiven by
w0 o0
2 2
S :-f éﬁ) dx ~+(E§ -kles-—9 S b dat
) Ndx Lo ¢ 20

e
L ki e [ A de - (o-enT
lor g ... 6,66

<
In ecuation (6.66), I = ( l /2<§)
—o0 Eklvc aj‘\‘

We restirict ourselves to the lowest Peerlstein-

ees 6,067

Berk [2@] mode and choose as a trial function the h=o

Hermite function [14]
@ = exp "'Ld>< > ... 6,68

where «is the veriational parameter. The equations

S:o/%if have now to be solved simultaneously to obtain
the dispersion relstion. The problem of solving the
differential ecuation (6.65) is now converted to that of
evaluating the integral 1 in equation (6.67). In the
absence of the parallel force the inteqral I can be
evaluated exactly, however the presence of the pondero-
motive force adds seversgl complicstions, and renders the

integral I difficult to solve exactly,
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We theretfore resort to approximate methods such as

by treating the modiciations due to the parallel

force as a perturbation on the shear terms, We
o s
assume that { "3_ ‘,_ ) << | . This implies that
l?i,ﬁﬁ [<<l Whl(h puts an upper bound for the
me kn Ve

amplitude | ¢,)of the interacting Alfven waves, For
nominal values of Alfven waove intensities and tokamak

paerameters, the above inecuality is readily satisfied,

#ith this condition on the pump amplitude the
integral I is expanded in terms of the small parameter

and the functional ecquation (6.66) reduces to

-
2 = j CPld};—‘ J (t’ [.C -+ }2" GALdLXLJ dx —
ORI

6.69

where

=2 W=tk c= (F - Fy, @; W)

/
ku/\/c es h‘\c CIQ @ ) \/c
d= 1(0 (_w (2 ke
e (k€ VA
= b A .y b
e 8 () T - [ ¢ e (R
e

— X —

J@ j2~ = ﬁq dx L. W

/ <‘Qul (.)/5 Ve)
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The coefficients f, ¢, d are proportional to

(M)~toﬁa, the deviaticn of the mode frequency from

the diamacnetic drift frecuency and are of the order of

hjL@L. In order to now evaluate the integrals and
A

obtain the dispersion relation in the presence of Fmo

we first express the plasma dispersion function in terms
of error function as

o

2(s) = Lvre O ECS)

where @ is the error function.

The integral I, expresse

now civen by

- l N
A L

=

Using the fact that{f@):-—@@&)the above integral reduces to
0 | b= b

— . o e 7 rie!

- Q_L\/]—I“L X > dx e OLTC

straioht away integrated to aive

wWhich can be
. —2 Jiod b
I = L VT (TF)@ .. 6,74

can be reaadily evaluated as

Vi
Cl—+ 2 J?Ze")]

Similerly I,
6,75

-2
1., = ﬂﬁfﬁx»fdﬂ“gf?_”
wJ 133

L, expressed in terms of the error function con also be

reocdily inteqrated to aive

. — : . .
I, = luwﬂ"TLQ,CzQ@%)A) + v T, (b i)
“ 2.

oy (2cb il

2

ST
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In equation (6.76), JO and KO are the modified
Bessel funcltions of the first and second kinds respect-

ively and HO ie the Strauve function.

Substituting the values of Ii , 1, and 13 into
the exnression for the functional, we observe thet the
expression is a transcendental equation in o . Fortu-
nately a considerable amount of difficulty can be
circumvented by noting that the argument of the function
bv/iz is very small, i.e, for g%;) L& %i the arqgument
is << | . tence making a small argument expaension, for

the special functions, the expression for the functional

reduces to

S= Lo h _ &y _,[_LL + (W —ta) 1Lg/°’Jo< [~Lh(lp )
2<b <k“l Ye €4>

—"C—éé_a? )= G ~lv'bﬁzj t B [-tve (-2 52

h’\g 19 T
k u' Ye. @AL

1 \/C @,3 JQH[Vc @/5

wWhere C, is the LEuler's constant.

— L "4}, vir ol 12 4L (i ﬁiéi}d&)],}

significant detail to note 1t that the contri-

butions from the principal pert of the plasma dispersion
function in the first parenthesis of the expression in

ecustion (6.77)<}£ﬁv, overcomes the contribulion
2-

<

srising from the resonant particles to provicde stability

\ . . . P o 3
to the mode. Ve solve the simultanecus ecugtion 2=
%% = © , using the prescription of the Previous

tbl) -

analysis [14] .

[he coefficient [, ¢, d in evyuation

a5 pointed out eariicr are prooostional to (0= tag) wndch
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- ~ L L ‘ »

is of the order of ky GL and much less than unity,

Hence in solving for e¢ , the effect of the Landau term

: K - O(,“ kllIVg‘e 2

is neglected. The unperturbed value ofel= ™YeS i5 now
[2%]

substituted in the equation $=o, to obtain the dis-

persion relation,

In the presence of F the expression for the
i ,lD I§

orowth rate is given by

o ' h 3 _
[y (Rxelyt =~ WaTe T

—+L4\/‘““(k;\v¢(> /2‘[_(”:: [:\7/5;: ] b

Equation (6.78) qgives the growth rate of the drift

instability in the presence of the ecuilibrium force.

4

rh

The first term which is proportionzl to the finit
Lat . o . Lej_ o . R )

armor racius corrections, s describes the linear
shear demping effect, while the second term represents
the contribution from the parallel force. This contri-
bution has a destebilising effect on the drift instability
for values of parameters such that F > 0. In parameter

KA
. e k .
space this leads to the condition XL > Rox., . For the
Ry, ]E%*—
reverse ineguality, F“. is<{ O and therefore has a
o]

stabilising effect., This asnect could be of interest
in Alfven wave heating schemes. Comparing the two tern

in ecuation (6,78), the linear shear domning torm and the

parallel force effect, we find that for fL

%)kaC%
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the destabilising force overcomes the shear damping
effect., For laboratory plasma parameters and typical
Alfven functions Cle™ << ) , we find that the
combination of parameters are such that the inequality
is not satisfied. This indicates that the shear effects
cannot be overcome by the ponderomotive force effects.
However the latter competes significantly with the
damping effect, leading to stabilisation or des-

tabilisation depending on the combination of the parameters.

6.7  Conclusions :
In this chapter we hasve investicgated the non-

linear interaction between the kinetic Alfven waves

[—

2]
}_J
o
0
H

and 1) the collisionless tearing modes, 2) the colli
less drift modes., Ve have studied the influence of the
ponderomotive force (F.F.) generated by two kinetic
Alfven waves on these modes, The kinetic Alfven waves
are described by the two fluid model with simple cosilne
profile to represent the spatial varistions. The col-
lisionless tearing modes are described by a generalised
Chm's law and the momentum transfer ecuations., In the
presence of the ecullibrium F.F, generated by the Alfven
waves, the electron orbit equations are modified. The

Y- 1 . ~ .
perpendlculal‘(i_):uﬁ. Dopnler snitts the mode frecuency

wiidlle the parallel P,F. (F|' ) leads to a broadening of
- :

(.A.) e 3 L F: }e N

electron wave particle response Q%vﬁ L o, &= 2o Ry )

S Ye — O hj'& /
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This phenomenon 1is similar to resonance broadening
due to stochastié electron orbits studied by other
authors [lCﬂ.

The coupled equations describing the evolution
of the collisionless tearing modes are solved using
variational methods developed by Hazetline et &l [4].
It is found that on account of the complications
involved in the evaluation of the integrals containing
the conductivity profile certain approximations have
to be made., The parallel force has been treated as a
perturbation parameter and suitable expansions of the
plasma dispersion function made. With this constreint
on the amplitude of the kinetic Alfven waves, the
modification introduced by the equilibrium force in
the growth rate of the collisional and collisionless
tearing modes are obtained. In the collisionless
regime, the parallel P.F. produces a mouvification of
the crowth rate of Laval et al [lB] . It is found that
for F110> O, the growth rates are enhanced, while for
F', £ 0, the effect is stabilising. In parameter

1]

space, this translates into a relation between the

wave vectors of interacting kinetic Alfven waves.

The parallel force, F , 1 O for -~ “‘
Para orce, T ) 4 C }’L\(}‘ &Q%},L
and for the reverse inecuality I s> 0O, Fou

[

typical tokamak parameters and Alfven fluctuations
Ay L_ .
(1tﬁ) <) ) , the enhancement foctor due to the

parallel force is £ 1., Theroefore the destabilising
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effect in equation (6,41) is quite small, Howeyer
the stabilising effect could of significant interecst
in tokamak plasmas which ére plagued by the tearing
instabilities., In the collisional regime, the modi-
fications to the growth rates are found to be minimal.
The enhancement factor is of second order in FWIU and

2.
therefore proportional to El4%lLJ . This factor conse-

quently is too small to be of significance.

s

The ponderomotive force produces a similar effect
on the collisionless drift waves. To retain shear
effects, the electron response has been modelled by
the kinetic equations. As in the case of the tearing
modes, tﬁe particle orbits are considerably sltered,
The parallel P.F, accelerates the electrons alona the
field lines resulting in the broadening of the wave
particle resononce. Treating the ions by the hydrody-
namic approximation and using the quasineutrality
condition, the drift eigen mode equatidn is obtained,
In order to obtain the eicenvalues and investicgate
the effects of P.F., a variational principle analogous
to the one used by Koss et al [l4] is employed. Solving
for the eigenvalues it is found that the qrowth rate
of the drift waves is moaified, For F"j {0, the

¢
effect of the parallel force is to have a stabilising
influence. For the reverse inecuality the effect is
destabilising, TFor laboratory plasma paraemeters and

s
1@qyical.,ﬂ1fver1'flucttuytiorxc ICbo) <<il> it oo found that



229

the P,F; effect although competes significantly does

not overcome the linear shear damping effect. However
the former stabilising effect of the P,F, could bhe of
interest as a means of stabilisation of drift waves in

leboratory plasmas.
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7.1 Summary ‘:

In this thesis we have studied some non-linear

interactions involving kinetic Alfven waves. In

particular we have investigated the nonlinear inter-

actions of the kinetic Alfven waves with drift mooes

and tearing modes. Such interactions have important

applications in laboratory and astroplasmas. The moti-

vetion for the present work arose from the particuler

relevance of these interactions in Alfven wave heating

plasmas. Alfven waves are consicdered

schemes in tokamak
excellent caendidates for supnlementary r . f heating

schemes. Thoorotical considerations show that near the

waves have enhanced amplitudes

resonance recion these
and that sevoral noa-linear processes cen take place {l].
tic study of the non-lingar pro-

Therefore, a systematlc ¢

perties is necessary. In this context, we have
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investigated the non-lincar interactions of kinetic
Alfven waves with fwo important modes, namely the
drift and tearing modes.

In Chapters II and 1II, we have examined the
non-linear interactions of the kinetic Alfven waoves
with the resistive tearing mode, In Chgpter IL, we
have discussed the resonant excitation of tearing
modes through parametric interaction with the kinetic
Alfven waves, using a fluid model, The momentum
equation and Ohm's law are the basic eguetions which
describe the evolution of the T.w. The non-linea

interaction aensrates additional convective forces in

)

the former and anomalcus viscous and resistive effects
in Ohm's law., Usino variastional and asymototic matching
ethods, we find that the m = 1 and m = 2 tearing
instabilities are excited by the kinetic Alfven waves

i
. . : . . e
with their typical growth rates scaling as[¢vﬂ%1¢AﬁQ§%é

respectively These excited corowtn rates fall in the
6 4 ~1 e Y K 1o et
range 107 - 10 sec for typical tokamak parameters

(agiven in Chapter II) {2] . Several experiments which
have been conducted in Alfven wave heating have reported
enhanced transport of particles and plasma disvuptions [BJ.

dizruptions are conoed by

It may be possible that toese
excitation of tearing modes., However, so far, no ‘flvect

evidence has been obtained,

In Chapter I1I, we hove invoectiooted the non-

reconant intoraction botween kinetic AlTven woaves and
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resistive tearing modes, in which equilibrium flows
generated by the‘Alfven waves couple non-=linearly to
the tearing mode perturbations. These non-linear
drifts arise due to the interaction between the electric
and the maanetic fields of the wave (E; X g;)//ﬁf' The
drifts have components in the axial, azimuthal and
radial directions. The former Doppler shifts the mode
frecquency, while the latter components give rise to
large'gradients in the momentum equation. We find
weakly growing tearing instabilities with growth rates
proportional to the radial drift. The results of our
analysis are in agreement with the weakly unstable
modes obtained by FPollard-Taylor, Bondeson [4] . For
tokamak parameters, these instabilitios are found to
qrow on a longer time scale than the paraemetrically
excited tearing medes. In a tokamak plasma, both the
resonant and non-resonant processes could occur simult-
aneously; the former occurs when the résonant wave
matching conditions are satisfied, while the latte

is a more general phenomena.

In Alfven wave experiments, the antenna excites
several modes which have a sinogle freguency (or a small
spread in freﬁuency) simultaneously YB] . These kinetic
Alfven waves could undergo non-lineasr interactions among
themselves. Such a mechanism results in the excitation
waves alt the sum and difference frequencies due to the

presence of non-linear terms in the fluid equations. Ve



235

have considered a situation where one of the resulting'
frequency, wave vector combination corresponds to that

of the resistive T.M. and resonantly excites it (Chapter
IV): The system responds like a driven harmonic oscil-
lator wherein the non-linear interaction between the
kinetic Alfven waves act as external forces driving the
system at its natural tearing frecuency. Using a fluid
formalism, we obtaln an inhomogeneous third order
differential equation describing the evolution of the

T.ii. This problem differs from earlier investigations
(ref. Chapter II) in that the non-linear terms are
independent of the tearing mode perturbations. We have
obtained solutions in terms of orthonormal basis functions,
namely Hermite polynomials., It is found that the solutions
are very sensitive to the perity of the driven Alfven waves,
For arbitrary wavelengths, in the limit of vanishing

pump amplitudes, the earlier results of Paris {51 are
recovered., In the presence of the non-linear external
forces, the growth rate for the symmetric teering modes
with positive 'm' numbers are enhanced, while for modes
with negative 'm' numbers the effect is stablising. These
driven tearing modes (for typical tokamak parameters) are

found to grow more slowly than the parvametrically excited

.

modes . &xcitation of these learing modes could lead to
enhanced traensport through destruction of good magnetic

Surrtraces.
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Drift waves in shéared_magnetic fields have been

xtensively studied, In laboratory plasmas, they are
considered responsible for anomalous transport of
particles. In Chapter V, we have investigated the
problem of parametric excitation of drift waves by

kinetic Alfven waves, The kinetic ecuations are used
to describe the decay of a pump kinetic Alfven wave into

a side-band Alfven wave and a drift wave. The quasi-
neutrality condition and Ampere's law are used to obtain
the coupled equations for the decay process, The dispersion
relation was obtained under a local aporoximation., We
find that the calculated growth rate of the excited

drift wave is quite large and competes significantly
with the growth rate of the ion acoustic wave calculated
by Hasegawa-Chen [l] . The ratio of the growth rates of

. Lo«

the two processes is found to be E:14 —~ oW, VWe have also
demonstrated that the kinetic Alfven waves could excite
temperature gradient drift waves which have larger growth
rates. In addition, we have investigated the effects of
the back-ground inhomogeneity on the decay process, which
calls for the retention of the full differential operators
in the coupled equations. Treating the inhomogeneity
scale length as a perturbation parameter, and using WKB
methods, we have established the conditions under which

an absolute instability can occur,
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In the high temperature regime, the plasma is
basically collisionless and the collisionless version
of the tearing and drift modes are believed to play a
very significant role in the reconnection mechanism,
In Chapter VI, we have investigated two non-linear
coupling processes - (1) between the kinetic Alfven
waves and collisionless tearing modes 2) between the
kinetic Alfven Qaves and the collisionless drift waves,
We have investigated the effect of the P.F, generated
by two kinetic Alfven waves on the two modes. The
two fluid equations are used to describe the salient
features of the kinetic 4Alfven waves, A generalised
Ohm's law and the momentum eguation describe the
dynamics of the collisionless T.,M., The former describes
the electron response, while the latter describes the
ion motion. The equilibrium P.F. (qenerated by the
kinetic Alfven waves) broadens the electron wave particle
response and modifies the conductivity profile in Ohm's
law. The eigenvalues of the coupled equations have been

I

obtained using variational methods prescribed by Hazeltine
et al [6] . The modifications produced by the P.,F., in

the collisional and collisionless regimes have been
obtained, In the latter, tne parallel F.F, (FHO )
modifies the growth rate of Laval et al {71. For

EM >(L the growth rates are stronaly enhanced while

for F, {0, the effect is stabilising. In parameter
©



238

<

space the condition leads to a relation between the
wave vectors of the kinetic Alfven waves, namely
F {0 for E@ £ kib and for the reverse condition
“Q L k_y
P 2a
F(I is positive, For typical tokamak parameters and
<

. L4 2. R ) S, .
Alfven fluctuations (I1$s1°¢c ) the enhancement factor
due to the parallel force is however small., Although
the destabilising effects are small, the stabilising
effect of the P.F. could be of interest in tokamak
plasmas,

In the collisioneal regime, consistent with
expectations, the modifications to the growth rate of
Drake and Lee [8] were found to be minimum., The en-
hancemznt factor in the growth rate is however of second

F,' and this factor is too small to be of any
>

sionificance,

The dynamics of the collisionless drift waves are
delicately controlled by the inverse Landau damping of
electrons and shear effects. The electron response is
therefore modelled by kinetic equations. The parallel
P,F., @as in the case of T.M., broadens the electron
wave particle response, while the pervendicular P.F.
Dopnler shifts the mode frequency. The motion of the
ions is described by the hydrodynamic approximation.
The radial eigenmode equation is obtained from the
cuasineutrality condition and the eigenvalues are
derived .using the variational principle [9]. It ie

found that the parallel F,F, has a sionificant effect



N
(#3)
O

on the linear growth rate}of the drift wave and
competes with the shear stabilishing effect, For
F’b >0, <’%§z;>é§0the parallel force contributes to
3 {23
the shear effect and stabilises = the mode. For the
reverse inequality, F'% £ 0, and the effect is des-
tabilising. It is found that for typicel tokamak
parameters, the shear damping 1is not overcome by the
destebilising contribution from the parallel force,
However, the stabilisation of the drift modes by
external P.F, aenerated by the interacting kinetic
Alfven waves could be of interest in laboratory
plasmas, where these modes are known to have deleterious

effect on the pldsma confinement,
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7.2 DRiscussion :

It is appropriaste at this point to discuss some
of the simplifying assumptions that havé been made in
our calculations and view the results in that context.
In the investigation of the non-linear interaction of
the kinetic Alfven waves with the teering modes, we
have preserved the basic linear characteristioé of the
mode by retaining the non-linear terms only in the
'inner' region equations i.e. around k”f9—~fo . Within

this region, the non-linear terms are comparable to the

n

istive and inertial terms and play & signi-

[

1

N
o0

n

©

ar re
ficant role in governing the growth rate of the linear

“venic

-

tearing mode, Outside this region, the linear Al
terms dominate and the non-linear terms have been ignored.
This approximation has been adopted by several earlier
investigators [lO] . One further simplification is the
ssumption that the radial vaeristion of the T,M. is much
larger than the wavelength which is implicit in the
derivation of equation(z-¢)(Chapter II) ., In the collis-
ional reaime where the fluid mddel description of the
T.M. is valid, this assumption is justified. In the
collisionless regime the scale lengths woula be compar-—
able and the coupled differential ecuations for the decay
process would have to be solved. However, as shown in
ref. [lO] of Chapter II, this does not change the

qualitative asnects of the results,



241

In solving the differential equations describiﬁg
the evolution of the tearing and drift modes, we have
mainly used analytical methods. We have emplcoyed the
variational and asymptotic matching techniques to
obtezin the eigenvalues of the differential equations,
Both approsches provide approximate solutions. The
variational method provides more accurate eigenvalues
than eigenfunctions. However, the results obtained

by using the two methods agree quite well except for
the numerical factors.

In our analysis, the kinetic Alfven waves have
been modelled using a plane wave approximation.
Realistically the mode converted Alfven waves near
their resonance regions have enhanced amplitudes and
complicated radial structures (Airy functions) [1]
Therefore the equations describing the non-linear
processes have to be solved with the Airy function
profile for the pump Alfven waves, However solving
the complicated differential equation with the exact
Alry profiles calls for an extensive amount of computation.

.

7.3  Future Directions_of ¥Work :

The present work can be extended in several
directions., Within the constraints of the plane wave
approximation for the pump kinetic Alfven wave, the

elgenmode equations for the tearing modes need to be

solved numerically and the results compared with those
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obtained by analytical methods. In investigating the
problem of the parametric deéay of drift waves

(Chapter IV), the spatial inhomogeneity needs to be
appropriately considered. This requires a numerical
solution of the coupled fourth and second order dif-
ferential equations., At present, work is in proaress
in this direction. In addition, modelling the spatial
variations of the kinetic Alfven waves by the Aify
function profile renders the differential ecuation
guite complicated and acain calls for an extensive
amount of numerical work. This work will be undertaken
in the future,

In the context of astroplasmas, both tearing [Lﬂ
and drift modes [12] play significant roles. Tearing
modes are considered excellent candidétes for reconnection
processes in the maunetospheric plasmas, while the drift
waves are considered responsible for the micropulsations
in the solar wind. The non-linear excitation of these
modes through kinetic Alfven waves could have important
applications in this context and this feature must be
explored.

In laboratory plasmas, in Alfven wave exveriments,
the antenna generally excites a spectrum of waves which
are resonant at different surfaces (defined by

W= ku@JVnUQ“ The effect of this kinetic Alfven wave
turbulence on the low frequency tearing and drift modes
‘has not been investigated hitherto and is an important

problem to examine.
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Finally, the’drift and tearing instabilities
induced by the kinetic Alfven waves studied in the
presént work, will be controlled by non-linear
mechanisms such as those discussed by Rutherford [13].
In order to study the non-linear evolution of these
instabilities, we need to retain terms in the
governing equations, which are of second order in the
tearing or drift perturbations. Presumably, the rapid
growth of these modes will be slowed down by the non-

linear saturation mechanisms,



244

References :

1. Hasegawa, A, and Chén, L., Phys., Fluids 19
1924 (1976)

2. Kar, C., Sundaram, A.K, and Sen, A.

0O

to appear in Phys. Fluids (1987)

Besson, G., de Chambrier, A., Collins, GJ.A.,
Joye, B., Ltetti, A., Lister, J.B., Moret,
J.i., Nowak, S., Simm, C. ahd Weisen, H.,
Plasma Phys., and Controlled Fusion 28, 1291

(1986) .,

Pollard,R.K and Taylor, J.B., Phys, Fluids 22,

126 (1979).
Paris, R,B., Plasma Phys. 24, 1541 (1982)

Hazeltine, R.D. and Ross, D.W,, Phys. Fluids 21,
1140 (1978); Mahajan, S.M., Hazeltine, R.D.,,
strauss, H.E. and Ross, D,%., University of

Texas Report, FRCR 192 (1979):

Laval,G., Pellat, R. and Viullemin, M,, Plasma
Phys. and Controlled Nuclear Fusion Research,

IAEA, Vienna, Austria 2, 259 (1965)

Drake, J.F. and Lee, Y.C., Phys. Fluids 20,

1341 (1977)

oss, DM, and Mahajan, S.M., Phys, Rev, Lett,

op

40, 324 (1978)



10,

11.

12,

13.

245

Sundaram, ALK, and Sen, A., Phys. Fluids

24, 1303 (1981)

Spicer, D.C., Space Science Reviews 31, 351 (1982)

Coroniti, F.V, and Kennel, C.J., J. Geo. Phys,
Res.75, 1863 (1970); Hasegawa, A., J. Geo.,

Phys. Res. 85, 1773 (1980)

Rutherford, P.H., Phys. Fluids 16, 1903 (1973)



