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ABSTRACT

This thesis deals with the phenomenological studies of hot and dense matter

created in relativistic heavy ion collision experiments (HICs). Quantum chromo-

dynamics (QCD) is perturbative at high energies due to phenomenon of asymp-

totic freedom, but the strong coupling constant is no more a small parameter at

the energy scale (∼ 0.2 GeV) involved in HICs. Thus, perturbative QCD fails

due to lack of any small parameter which would be used to exploit full strength of

quantum field theory. First principle lattice quantum chromodynamics (LQCD),

which is non-perturbative formulation of QCD has been used to study such mat-

ter. Albeit successful at zero baryon density, LQCD suffers from so called the

sign problem at finite baryon density especially in the hadronic phase where the

non-perturbative effects are very strong. There has been attempt to solve this

problem by using various mathematical tricks, but these methods have their own

limitations and the results are not quite reliable except at small chemical poten-

tial. In this thesis, we study the thermodyamics of hadronic matter at zero as

well as finite baryon density using hadron resonance gas model (HRG) as an ef-

fective theory of QCD describing hadronic matter. We confront HRG estimates

with the lattice QCD simulations at zero baryon density as well as available fi-

nite baryon density simulations. In ideal HRG the properties of hadrons enter

through mass spectrum which can either be taken as a sum over discrete states

which are experimentally well established or continuum mass spectrum which is

consistent with discrete spectrum and also take into account heavier mass states

which are not experimentally established but make contribution to the thermo-

dynamics of HRG. We observe that the ideal HRG model with only discrete mass

spectrum with finite upper mass cut-off agrees with the LQCD simulations up to

temperature (T) ∼ 0.140 GeV, while HRG with continuum mass spectrum agrees

with the LQCD up to T∼ 0.160 GeV. We further extend the ideal HRG with

the discrete mass spectrum up to mass cut-off ∼ 2 GeV and continuum mass

spectrum all the way up to infinity but with lower limit ∼ 2 GeV. We study

such hybrid HRG model at zero as well as finite baryon density and confront the
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thermodynamics with the LQCD simulations. We observe that the hybrid HRG

model agrees with the LQCD up to T∼ 0.160 GeV as opposed to the ideal HRG

with only discrete mass spectrum which agrees with the LQCD up to T∼ 0.140

GeV within error bars, while at finite baryon density, we observe that the ideal

HRG with the discrete mass spectrum is sufficient to describe LQCD simulations.

Further, we make possible improvements in non-interacting HRG model so

as to explain certain other aspects of hadronic matter that has been produced

during the evolution of the matter created in HICs. These include hadron multi-

plicities, the nuclear liquid-gas phase transition and the effects of chiral symmetry

of QCD. First couple of aspects can be explained by accounting repulsive interac-

tion between the hadrons which can be accommodated in the ideal HRG model

by Van-der-Waals inspired excluded volume correction. Such interacting HRG

model termed as an excluded volume HRG model (EHRG) not only accounts

for the hadron multiplicities observed in HICs and the nuclear liquid-gas phase

transition but also agrees with the LQCD data quite well. Further, EHRG get

rid of implicit assumption of the dilute gas approximation in the ideal HRG

model which is quit erroneous around the QCD transition temperature where

gas is quite dense. We further extend EHRG model to incorporate the effects

of chiral symmetry of QCD. We achieve this by including medium dependent

hadron masses which is upshot of the chiral symmetry . We use 2 + 1 flavor

Nambu-Jona-Lasinio model to compute medium dependent masses of approxi-

mate Goldstone modes as well as that of constituent quarks. For other hadrons

we use linear scaling rule based on constituent quark model. We observe that

EHRG with medium dependent hadron masses is in agreement with the LQCD

simulation up to T∼0.170 GeV.

We estimate transport properties like shear (η) and bulk (ζ) viscosities of

hadronic matter at finite temperature and density using two formalisms, viz.,

the Kubo’s formalism and the relativistic kinetic theory. We estimate these coef-

ficient within ambit of HRG model and its extensions. We observe that the bulk

viscosity to entropy density ratio (ζ/s) computed using Kubo’s formalism rises

very rapidly with temperature. Further, the ratio is higher at higher baryon den-
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sity. Unlike Kubo’s formalism, ratio ζ/s estimated using kinetic theory decreases

with temperature and vanishes at higher temperature. The shear viscosity to en-

tropy density ratio η/s also decreases in kinetic theory and approaches perfect

fluid limit (= 1
4π

) called Kovtun-Son-Starinets bound (KSS). Thus, hadronic

matter created in the evolution of matter created in HICs itself behave close

to perfect fluid. This result is consistent with the estimations based on other

approaches like Chapman-Enskog theory. Further, at finite baryon density, ratio

η/s approaches more closer to KSS bound.

Finally, we estimate the transport properties, viz., shear (η) and bulk (ζ) as

well as thermal conductivity (λ), of hot and dense quark matter by solving the

Boltzmann kinetic equation within relaxation time approximation. The ther-

modynamical quantities as well as medium dependent quark and meson masses

are estimated within two flavor NJL model. To estimate the relaxation time

we have consider the quark-antiquark two body scatterings through exchange

of pion and sigma resonances. Since the meson masses are minimum at the

Mott transition temperatures beyond which they are degenerate and increase

linearly with temperature, we find that the meson propagator occurring in the

transition amplitude leads to a large contribution to the cross section for the

quark-antiquark scattering at the Mott transition temperature for the pions.

This eventually leads to a smaller relaxation time which, in turn, lead to a min-

imum in the temperature dependence of the relaxation time. This behavior of

relaxation time is reflected in all the transport coefficients, η/s, ζ/s and λ/T 2

which shows minimum at Mott temperature.

Keywords : Heavy ion collisions, Hadron resonance gas model, Nambu-

Jona-Lasinio model, shear viscosity, bulk viscosity
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Chapter 1

Introduction

Among the four fundamental interactions governing the physics of elementary

particles the strong nuclear force is of prime importance due to its rich struc-

ture. The theory that describes the strong interaction between the elementary

particles at a fundamental level is quantum chromodynamics (QCD) where the

fundamental degrees of freedom are quarks and gluons. There are six known

flavors of quarks, namely, up (u), down (d), strange (s), charm (c), bottom (b)

and top (t), and eight kinds of (bi-)colored gluons. The QCD is an example of

a quantum field theory based on so called gauge principle [4, 5]. It is a remark-

able theory and has been successfully used to explain wide range of phenomena;

from the hadron mass spectrum [6] to the deep inelastic scattering (DIS) ex-

periments [7, 8]. One peculiar feature of QCD is the asymptotic freedom [9, 10].

Because of the non-abelian nature of the fundamental gauge group, the behavior

of the coupling constant of QCD is exactly opposite to that of quantum elec-

trodynamics (QED); the QCD coupling constant is small at high energies (short

distance) while it becomes large at small energies (large distance). In fact it can

be shown that, at one loop, the strong coupling constant runs with the energy

scale as

g2(q2) =
16π2

b log( q2

Λ2
QCD

)
; b =

11Nc

3
− 2Nf

2
(1.0.1)

1
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where Nc and Nf represents number colors and flavors in the theory. ΛQCD is

the scale at which the strong coupling constant becomes non-perturbative and

q2 is the four momentum exchange. Thus we note that at large energies (large

momentum transfer) it is possible to use perturbative technique with the coupling

constant as a small parameter together with the full strength of quantum field

theory to derive the observable quantities. The prime example of the success

of perturbative QCD lies in its application to explain DIS experiments. At low

energy (low momentum transfer), however, perturbative QCD cannot produce

reliable results since the coupling constant is large and it cannot be used as

a perturbative expansion parameter. Apart from small quark masses, it has

no numerically small parameter and the only intrinsic scale is the dynamically

generated confinement scale ΛQCD ∼ 200 MeV. So, for low energy processes

one needs to construct non-perturbative technique which does not depend on

small parameter expansion. Lattice QCD is one of the known first principle

non-perturbative technique of QCD [11].

1.1 Phases of QCD

1.1.1 QCD vacuum

QCD vacuum is the example of non-perturbative vacuum characterized by non-

vanishing condensates of quarks (and gluons). In 2+1 flavor QCD∗, these conden-

sates are formed when the chiral symmetry (SUL(3)×SUR(3)) is spontaneously

broken to SUV (3) flavor symmetry. The value of these condensates defined by

the quantity q̄q† turns out to be −230 MeV3 which can be interpreted as number

of such pairs per unit volume. The Goldstone’s theorem [12] implies that spon-

taneous breakdown of the chiral symmetry is associated with the appearance of

octet of approximately massless pseudo-scalar Goldstone bosons.

This spontaneous chiral symmetry breaking has an important effect on the

∗2+1 flavor QCD consist of three quark flavors qa = (u, d, s) such that u and d are light
flavors while s is heavy flavor.
†q = (qL, qR) and qL,R = 1

2 (1∓ γ5)q.
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Figure 1.1: Proposed phase diagram of QCD.

dynamics of QCD at low energies. Since 〈q̄q〉 = 〈q̄LqR + q̄RqL〉 6= 0, a left handed

quark propagating through such vacuum can flip its helicity‡ and becomes right

handed quark. Thus quark behaves as if it has mass. Thus the interaction of

quark with vacuum condensates leads to generation of mass. This dynamically

generated mass is called constituent quark mass (Mq) as opposed to current

quark mass (mq). For light quark flavors (u,d),Mq ∼ 350 MeV and mq ∼ 5 MeV

while for the strange quark Mq ∼ 550 MeV and mq ∼ 140 MeV. Thus, most of

the mass of the quark (whence the hadron) is due to dynamical breaking of the

chiral symmetry.

1.1.2 QCD at finite temperature and density

In order to understand the astrophysical compact objects like compact stars and

the matter created in the heavy ion collision experiments (HICs), the study of

thermodynamics of QCD is essential. The thermodynamical information about

a system is often represented in the form of a phase diagram which is just a plot

‡Helicity is defined as the projection of spin (~S) in the direction of momentum (~p) i.e

h =
~S.~p
|~p| .
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of external control parameters, for instance, in case of water, the control param-

eters are pressure (P) and temperature (T). Depending on these thermodynamic

parameters, matter can exhibit different manifestations called phases. In the

case of strongly interacting matter described by QCD, the control parameters

are temperature (T) and baryon chemical potential (µ) and the proposed phase

diagram is as shown in Fig. (1.1). Each point in this phase diagram corresponds

to stable thermodynamic state characterized by thermodynamical functions like

pressure (P) and energy density (ε). It can be noted from Fig. (1.1) that the

QCD phase diagram can be broadly divided into two main phases, viz., con-

fined hadronic phase and deconfined quark-gluon matter phase§. The confining

hadronic phase exist at low temperature and low baryon density where the funda-

mental degrees of freedom are composite hadrons, while the quark-gluon matter

exist at high temperature, T∼ 200 MeV which is of order of intrinsic QCD scale.

Since the hadrons are composite objects (made up of quarks and gluons) and

QCD is asymptotically free, it is legitimate to anticipate that the QCD matter

at high temperature (whence at high energy density) undergo phase transition

from the confined hadronic phase to the deconfined quark-gluon matter phase.

It is possible to make very crude estimates of temperature (Tc) and energy

density (εc) at which hadron to quark-gluon-plasma (QGP) phase transition

would take place. For this purpose we use simplest model of hadron which ac-

commodate two important features of QCD, viz., asymptotic freedom and color

confinement. In this so called MIT bag model [13, 14] the massless quarks are

assumed to move freely inside the bag of radius R, but are confined inside due

to inward pressure of the bulk vacuum. It turns out that this inward pressure

is Pin = −Λ4
bag, where Λbag is the bag constant and is of order of intrinsic QCD

scale, i.e 200 MeV. At zero baryon chemical potential and at low temperature,

thermal medium of hadrons is mostly dominated by pions (π±, π0). At moderate

temperature (> 100MeV ), the pressure due to gas of pions is approximately

§There are some exotic QCD phases conjectured to exist at high baryon density, but these
phases are not relevant to the study carried out in this thesis.
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given by blackbody radiation pressure,

Pπ = gπ ×
π4

90
T 4 (1.1.1)

where gπ is the degeneracy factor of pion (= 3). For the gas of deconfined quarks

and gluons (in 2 flavor QCD),

Pqq̄ = gq ×
7

4
× π2

90
T 4;Pg = gg ×

π2

90
T 4 (1.1.2)

where, factor 7/4 arises due Fermi-Dirac statistics of quarks. The degeneracy

factors for quarks and gluons are 12 and 16 respectively. At the deconfinement,

pressure of the gas of pions and that of quark-gluon matter must be equal. Thus,

3× π4

90
T 4
c = 37× π4

90
T 4
c − Λ4

bag (1.1.3)

where, we have subtracted the negative pressure of the bulk vacuum (in MIT

bag model) to take into account deconfinement. Thus, one obtain the transition

temperature Tc ∼ 145 MeV and corresponding energy density turns out to be

εc = 850 MeV/fm3. This estimation is rather crude, but one gets a rough idea

about the order of magnitudes involved in hadron-QGP phase transition. Lat-

est first principle lattice QCD (LQCD) simulations tells us that the transition

temperature is in range 150− 160 MeV [15].

Phase transition from hadronic phase to quark gluon plasma phase is usually

referred as deconfinement phase transition because there is a release of quark

and gluon degrees of freedom above Tc. There is no well defined order parameter

which characterize this phase transition but it is believed that in the massless

limit (mq → 0) it is the Z(3) center symmetry which is broken in high temper-

ature quark-gluon-matter phase and corresponding order parameter is Polyakov

loop [16]. It can be shown that the natural consequence of confinement is dy-

namical breaking of chiral symmetry [17]. Thus it is legitimate to conclude that

the deconfinement should be accompanied by chiral symmetry restoration. In

this chiral restoration phase transition the chiral condensate melts away whence
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quarks loose their dynamically generated (constituent) mass. The correspond-

ing order parameter in this case is 〈q̄q〉. The study of deconfinement as well as

chiral restoration phase transition are of immense importance. Both the phase

transitions, deconfinement as well as chiral symmetry restoration, occur at fi-

nite temperature and baryon density and since the the LQCD simulations gives

reliable results at zero baryon density only, one has to invoke effective model

scenarios which are in conformity with the LQCD simulations at µ = 0. Hadron

resonance gas model is tremendously successful in this respect whence the cause

of motivation to study the hadronic matter in this thesis.

1.2 Heavy-ion collisions

Establishing the fact that the strongly interacting matter can manifest itself

in at least two phases, viz., the hadronic phase and the quark-gluon-plasma

(QGP) phase, it is natural to look for the physical systems where these forms

of matter would exist. Our observable universe is dominated by stable hadronic

matter (protons and neutrons) while quark-gluon matter cannot be observed

directly due to confinement. According to standard cosmological scenario, the

quark-gluon-plasma might have existed during the short period of 10−5 − 10−4

seconds after the big bang. But the physicist across the world are focusing their

attention in an attempt to re-create such matter in laboratories under controlled

conditions. For this purpose two heavy nuclei (e.g Sulfur (S), Lead (Pb) and

gold (Au) etc.) are accelerated to high energies in giant accelerators and then

they are allowed to collide with each other. Alternating Gradient Synchrotron

(AGS) and Relativistic Heavy Ion Collider (RHIC), both in Brookhavan, Super

Proton Synchrotron (SPS) and A Large Ion Collider Experiments (ALICE), both

at CERN are the experiments where the physicists are attempting to recreate

strongly interacting matter under extreme conditions of high temperature and

density. Each experiment is aimed to probe the specific region of the QCD phase

diagram as shown in Fig. (1.1) and it depends upon the highest energy achieved

(or the center of mass energy).
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Figure 1.2: Evolution of the matter created in heavy ion collision experiments.

The schematic representation of the evolution of the matter created in HICs

is shown in Fig. (1.2). The heavy ion collision scenario can be broadly divided to

three temporal regions, viz., the pre-equilibrium phase, the QGP phase and the

hadronic phase (chemical and thermal freeze-out). Two colliding nuclei can be

imagined as spherical objects in their rest frame but due to Lorentz contraction

in the direction of motion in the center of mass frame, they can be imagined

as colliding pancake shaped objects as show in left part of Fig. (1.2). When

two nuclei collide, many partons are liberated due to inelastic collisions between

the nucleons. These partons which are produced in very dense medium (∼ n0 i.e

nuclear matter density) re-scatter many times so as to deposit substantial amount

of initial energy in mid-rapidity region (y ' 0¶) to produce hot and dense fireball.

This fireball thermalize‖ after certain time (τ0 ∼ 1 fm). In the next stage, this

thermalized QGP undergoes an expansion due to excess pressure with respect to

vacuum. The thermalised plasma is in local equilibrium whence the evolution of

which can be described by relativistic hydrodynamics. After certain time, as the

¶Rapidity is a convenient variable used in the relativistic collisions. For a particle of four

momentum (E, ~p) it can be defined as y = 1
2 ln

(
E+pz
E−pz

)
.

‖The actual mechanism behind this thermalization is still not understood due to non-
Abelian nature of theory describing strongly interacting matter. Certain models like color
glass condensate (CGC) [18] attempt to describe this initial thermalization of QGP but with
certain drawbacks.
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fireball expand and cool, the temperature eventually drops down to the transition

temperature (Tc) at which the quarks and gluons start reorganizing themselves

into hadrons. Below Tc the hadronization takes place where the abundance of

various hadronic species is fixed (akin to nucleosynthesis era in the standard big

bang theory). This is known as chemical freeze-out. At this stage the hadronic

matter is still in local thermal equilibrium and hydrodynamical theory is still

valid. As this chemically freezed hadronic medium further expand and cool

the interaction rate become insufficient to maintain the local equilibrium. At

this stage, so called thermal freeze-out, the mean free path of hadrons becomes

larger than the system size so that the hydrodynamic description breaks down

and hadrons fly away freely to be detected in detectors.

1.3 Transport properties of strongly interacting

matter

Having established the rough physical picture of the phases of the strongly in-

teracting matter and its description in the context of heavy-ion collisions, the

natural next step is to give this picture a firm theoretical basis. Matter created

in the heavy-ion collision has been successfully described using the hydrody-

namics which is the long wavelength and low frequency limit of the microscopic

dynamics of multi-particle system that is close to the local equilibrium. In the

formulation of the fluid dynamics the identification of the scales involved is very

important. System created in heavy-ion collision experiments involve four char-

acteristic length scales, viz., the system size (L), the inhomogeneity length scale

(h), the mean free path (λmfp) and the range of interaction (R), typically a

scattering length. These length scales are typically distinguished as follows. A

particle suffers collision with the other particle with the typical length scale which

is of order of R. After the collision particle travel freely without suffering another

collision over the distance which is of order of λmfp. Inside the region which is

of order of h, particle suffers many collisions so that the distribution function

becomes approximately equilibrium distribution function characterized by local
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variables (hydrodynamical fields), namely, temperature (T), chemical potential

(µ) and fluid velocity (u). These local variables are functions of space-time and

over the larger time interval smooth out across the whole system (L) to reach

the global equilibrium. This hierarchy of scales can be written as

R� λmfp � h� L (1.3.1)

There are two prominent time scales involved which governs the evolution of

the fluid from its initial non-equilibrium state. First, there is fast relaxation

from initial non-equilibrium state to local equilibrium state which occur over

length scale of h. This regime is governed by kinetic theory. Second, there is

slow relaxation from local equilibrium to the global equilibrium which occur over

region of several h. This regime is governed by hydrodynamics.

1.3.1 Relativistic hydrodynamics

In fluid dynamics the response of a fluid to the external perturbations which are

slowly varying is governed by conservation laws. The non-relativistic fluids can

be described by the fluid velocity (~v(~x, t)), the pressure (P(~x, t)) and the mass

density ρ(~x, t). For non-relativistic fluids, the mass density cannot be correct

degree of freedom because it does not account for kinetic energy which certainly

becomes comparable to the rest mass energy close to speed of light [19,20]. Thus,

for relativistic fluids mass density is replaced by energy density ε(~x, t). Similarly,

velocity (~v(~x, t)) is replaced by four velocity uµ defined as

uµ =
dxµ

dτ
(1.3.2)

where, τ is the proper time and µ is the Lorentz index. In natural units∗∗,

uµ = 1√
(1−~v2)

(1, ~v) satisfying the condition uµuµ = 1.

∗∗} = c = κB = 1
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1.3.1.1 Ideal hydrodynamics

The equations governing the dynamics of relativistic fluid can be obtained from

the energy-momentum tensor, T µν . The energy-momentum tensor for the ideal

relativistic fluid can be defined as

T µν0 = (ε+ P )uµuν − Pgµν (1.3.3)

where, gµν is the Minkowski metric††. In the local rest frame (uµ = (1,~0))

energy-momentum tensor takes the form

T µν0 = diag(ε, P, P, P ) (1.3.4)

In the absence of external sources the energy-momentum tensor is conserved,

∂µT
µν
0 = 0 (1.3.5)

One can rewrite Eq. (1.3.3) by defining a projection operator ∆µν = gµν −
uµuν ,

T µν(0) = ε uµuν − p ∆µν . (1.3.6)

Projecting Eq. (1.3.5) parallel to uµ we get

uν∂µT
µν
(0) = (ε+ p)∂µu

µ + uµ∂µε = 0 (1.3.7)

and projecting the same equation perpendicular to uµ we get

∆α
ν∂µT

µν
(0) = (ε+ p)uµ∂µu

α −∆µα∂µp = 0 (1.3.8)

One can recast Eqs. (1.3.7) and (1.3.8) as

Dε+ (ε+ p)∂µu
µ = 0 (1.3.9)

(ε+ p)Duα −∇αp = 0 . (1.3.10)

††gµν = diag(1,−1,−1,−1)
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where we have defined D ≡ uµ∂µ and ∇α ≡ ∆µα∂µ. Eq. (1.3.9) is the relativistic

generalization of fluid continuity equation, while Eq. (1.3.10) is the relativistic

generalization of Euler fluid equation.

1.3.1.2 Viscous hydrodynamics

The fluids found in nature do not respond to the external perturbations equally.

There are fluids which support complicated flow patterns which dissipate over the

time. The dissipation may occur very quickly or very slowly. If the dissipation

occur slowly we call it good fluid as opposed to poor fluid where the dissipation

occur so quickly that they do not support patterns like waves or eddies. The

physical quantity which distinguishes good fluid from poor fluid is the viscosity.

Viscosity causes the dissipation which convert part of the kinetic energy of the

flow into heat. The dissipative effects of the viscosity can be incorporated in the

hydrodynamics by defining the energy-momentum tensor of the form

T µν = T µν(0) + Πµν , (1.3.11)

where T µν(0) is our old ideal energy-momentum tensor and Πµν incorporate effects

of viscous dissipation. Taking appropriate projections of conservation equations

as discussed in the case of ideal hydrodynamics, one can obtain fundamental

equations for relativistic viscous hydrodynamics as [19]

Dε+ (ε+ p)∂µu
µ − Πµν∇(µuν) = 0 ,

(ε+ p)Duα −∇αp+ ∆α
ν∂µΠµν = 0 . (1.3.12)

Now, the entropy current in equilibrium can be defined as

sµ = suµ (1.3.13)

The covariant form of second law of thermodynamics is

∂µs
µ ≥ 0 (1.3.14)
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Using thermodynamical relation (at zero chemical potential) ε + P = Ts, Eq.

(1.3.14) can be written as

∂µs
µ = Ds+ s∂µu

µ =
1

T
Dε+

ε+ p

T
∂µu

µ =
1

T
Πµν∇(µuν) ≥ 0 , (1.3.15)

One can separate traceless part from Πµν to write

Πµν = πµν + ∆µνΠ (1.3.16)

Thus, the entropy conservation law becomes

∂µs
µ =

1

2T
πµν∇<µuν> +

1

T
Π∇αu

α ≥ 0 . (1.3.17)

where, ∇<µuν> ≡ 2∇(µuν) − 2
3
∆µν∇αu

α . Above inequality can be satisfied if

traceless part πµν is proportional to ∇<µuν> and non-vanishing trace part is

proportional to ∇αu
α. Thus,

πµν = η∇<µuν> , Π = ζ∇αu
α , (1.3.18)

with η ≥ 0 and ζ ≥ 0. In the non-relativistic limit, spatial part of viscous stress

tensor can be written as

Πki = −η
(
∂vi

∂xk
+
∂vk

∂xi
− 2

3
δki
∂vl

∂xl

)
− ζ δik ∂v

l

∂xl
(1.3.19)

where, (i, k, l) are the spatial indices and η, ζ are the shear and bulk viscosity

coefficients respectively.

1.3.2 Transport coefficients: Shear and bulk viscosities

1.3.2.1 Physics of shear and bulk viscosities

In the fluid dynamics the shear and bulk viscosities govern the dissipative effects

where a part of initial kinetic energy of flow converts into heat energy. Conver-

sion of mechanical energy into heat (whence generation of entropy) is directly
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Figure 1.3: Origin of shear and bulk viscosities.

proportional to these viscosity coefficients [21]

dEmech
dt

= −η
2

∫
dx(

∂vi

∂xk
+
∂vk

∂xi
− 2

3
δik∇v)2 − ζ

∫
dx(∇v)2 (1.3.20)

It is not difficult to understand the mechanism of dissipations in the systems

as a response to external perturbations. Fig. (1.3) shows the response of the

system when subjected to shear stress and uniform compression (or rarefaction).

When the fluid is subjected to tangential force the velocity gradients sets up

in the fluid. If we imagine a fluid to be composed of parallel layers as shown

by blue arrows in the left part of Fig. (1.3) where the direction of the arrows

indicate the fluid flow (velocity), while the length of arrows indicate the velocity

gradient. Thus, there exist a frictional force (F ) between adjacent layers of the

fluid which turns out to be proportional to velocity gradients (∇iu
j, i 6= j)

where the proportionality constant is independent of velocities and is a measure

of dissipation in the fluid and hence fluidity. This is the coefficient of shear

viscosity (η).

Now if the external perturbations are of the form which do not change the

shape of the fluid, e.g uniform compression or rarefaction, then the mechanism of

the energy dissipation is quite different. If the system is uniformly compressed it

leaves equilibrium where the energy density rises but pressure rises by an amount

larger than that predicted by equation of state (P (ε)). This non-equilibrium

pressure is given by

P = Pequi − ζ∇.u (1.3.21)
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where u is flow velocity and Pequi is equilibrium pressure. ζ, also called as the

bulk viscosity, quantifies (time integral of) extra shift in the pressure. Since ζ

raises or lowers the pressure in the radial direction, it affects the radial flow in

the fluid (right part of Fig. (1.3)).

It may be tempting to conclude that these viscosity coefficients can be mea-

sure of fluidity. But the experimental values of viscosity coefficients of water,

liquid helium, cold atomic gases and quark-gluon matter vary by order of mag-

nitudes in spite of fact that all of them are termed as good fluids. In order to

establish true measure of fluidity we need to invoke hydrodynamical description of

the fluid governed by Navier-Stokes equations. In hydrodynamics, the Raynolds

number, which is ratio of inertial to viscous force, determines the behavior of the

solution of Navier-Stokes equations. This dimensionless number actually char-

acterize the fluidity and large Raynolds number corresponds to good fluids. The

Raynolds number is defined as

Re =

(
mn

η

)
uL (1.3.22)

where, n is the number density, u is characteristic velocity and L is characteristic

length scale of flow. Since Re is dimensionless ratio η/n should have dimension

of muL, i.e angular momentum, which can be measured in units of }. Thus

for non-relativistic fluids ratio η/(}n) is the measure of fluidity. For relativistic

fluids where the particle number is not conserved, measure of fluidity is ratio η/s,

where s is the entropy density. In this thesis we will focus on the computation

and estimation of ratios η/s and ζ/s of strongly interacting matter at finite

temperature as well as baryon density.

1.3.2.2 The status of transport coefficients in the context of heavy-

ion collisions

Transport properties like shear and bulk viscosities enter in the hydrodynamical

evolution governed by hydrodynamical equations (Eqs. 1.3.12) and therefore

essential for studying the near equilibrium evolution of a thermodynamic system.
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Figure 1.4: Collision or beam axis is perpendicular to the plane of the figure.
Impact parameter b =length AB. z is the longitudinal direction, xy is the trans-
verse or azimuthal plane, xz is the reaction plane, and φ is the azimuthal angle
of one of the outgoing particles and ΦR is reaction plane angle. Figure has been
taken from Ref. [1].

In the context of heavy ion collisions, the coefficient of shear viscosity perhaps has

been the mostly studied transport coefficient. The spatial anisotropy in a nuclear

collision gets converted to a momentum anisotropy through a hydrodynamic

evolution. As we have discussed earlier, in non-central heavy ion collision the

geometry of initial thermalised plasma is almond shaped but the momentum

distribution of the particle is almost uniform. This initial spatial anisotropy

can potentially affect the momentum anisotropy of final state particles. For this

purpose, it is customary to Fourier decompose the triple differential invariant

distribution of the particles in the final state as [22]

E
d3N

d3p
=

d3N

pTdpTdydφ
=

d2N

pTdpTdy

1

2π

{
1 +

∞∑
1

2vncos n(φ− ΦR)

}
(1.3.23)

where φ is the azimuthal angle and ΦR is reaction plane angle as shown in Fig.1.4.

The first two harmonic coefficients v1 and v2 are called directed and elliptic flow

coefficients. It is these coefficients that carry information regarding momentum

anisotropy of final state particles and the equilibration of momentum anisotropy

is mainly controlled by shear viscosity coefficient.

The elliptic flow measurement at RHIC led to η/s, the ratio of shear viscos-

ity (η) to the entropy density s, close to 1/(4π) which is the smallest for any
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known liquid in nature [23]. Indeed, arguments based on ADS/CFT correspon-

dence suggest that the ratio η/s cannot be lower than this ’Kovtun-Son-Starinets’

(KSS) bound [24]. Thus the quark gluon plasma (QGP) formed in the heavy ion

collision is the most perfect fluid.

In the context of HICs the transport coefficient that relates the momen-

tum flux with a velocity gradient is the bulk viscosity. Generally, it was earlier

believed that the bulk viscosity does not play any significant role in the hydro-

dynamic evolution of the matter produced in heavy ion collision experiments.

The argument being that the bulk viscosity ζ scales like ε − 3p and therefore

will not play any significant role as the matter might be following the ideal gas

equation of state. However, in the course of the expansion of the fire ball the

temperature can be near the critical temperature Tc where ε − 3p can be large

as expected from the lattice QCD simulations [15, 25] leading to a large value

for the bulk viscosity. This, in turn, can give rise to phenomenon of cavitation

when the pressure vanishes and the hydrodynamic description for the evolution

breaks down [26]. Indeed, during last couple of years, there have been quite a

few attempts to investigate the effects of the bulk viscosity on the hydrodynamic

evolution of hot matter following a heavy ion collision and have found effects on

particle spectra as well as flow coefficients [27–29]. The interplay of shear and

bulk viscosity on the elliptic flow has also been looked into in Ref. [30] as well

as more recently in Ref [31, 32]. Bulk viscosity effects from the hadronic phase

on the transverse momentum spectra and elliptic flow has been investigated in

Ref [33]. Further, a large bulk viscosity appear to be essential to explain the flow

harmonics in ultra central collisions [34].

There have been various attempts to estimate coefficients of bulk viscosity

(ζ) for strongly interacting matter. The rise of bulk viscosity coefficient near the

transition temperature has been observed in various effective models of strong

interaction. These include chiral perturbation theory [35], quasi particle models

[36] as well as Nambu-Jona-Lasinio model [37]. One of the interesting ways to

extract this coefficient is using symmetry properties of QCD once one realizes

that the bulk viscosity characterizes the response to conformal transformation.
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According to Kubo’s formula bulk viscosity can be expressed as bi-local correlator

of the trace of energy momentum tensor. Since trace vanishes for conformally

symmetric systems non-zero bulk viscosity implies violation of the conformal

symmetry. This was attempted in Ref. [38]. Based on Kubo formula for ζ and

the low energy theorems [39], the coefficients of bulk viscosity gets related to

thermodynamic properties of strongly interacting system.

It may be noted that it is also of both practical and fundamental importance

to know the transport coefficients in the hadron phase to distinguish the signa-

tures of QGP matter and hadronic matter. The computation of the transport

coefficient of the hadronic mixture is not an easy task. There have been various

attempt on this field over last few years involving various approximations like re-

laxation time approximation, Chapman-Enscog as well as Green Kubo approach

to estimate the shear viscosity to entropy ratio using different effective models

for hadronic interactions [35,37,40–43]. This apart, there have been attempts to

estimate the transport coefficients using transport codes. The shear viscosity to

entropy ratio in the hadronic phase has been estimated using UrQMD transport

code in Ref. [44]. Both the bulk as well as the shear viscosity to entropy ratio

has also been estimated using parton hadron string dynamics (PHSD) transport

code within a relaxation time approximation [45].

In a different approach, η/s has also been calculated within a hadron res-

onance gas model in an excluded volume approximation [46] with a molecular

kinetic theory approach to relate shear viscosity coefficient to the average mo-

mentum transfer. This was used later to include the effects of rapidly rising

hadronic density of states near the critical temperature modeled by Hagedorn

type exponential rise of density of states [47]. Such a description could describe

the lattice data and indicated that the hadronic matter could become almost a

perfect fluid where η/s could approach the KSS bound. Later lattice data which,

however, indicated a lower pseudo-critical temperature about 160 MeV led to the

assertion that the hot hadronic matter described through hadron resonance gas

is far from being a perfect fluid [48]. All these studies have been done at zero

baryon density.
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It has been also known that the basic features of hadronization in heavy ion

collisions are well described by the hadron resonance gas models. The multiplic-

ities of particle abundances of various hadrons in these experiments show good

agreement with the corresponding thermal abundances calculated in HRG with

appropriately chosen values for the temperature and the chemical potentials [49].

In present thesis work we have attempted to studying viscosity coefficients within

the ambit of hadron resonance gas model to include finite chemical potential

effects. This can possibly have some relevance on the current and planned ex-

periments with heavy ion collisions at beam energy scan at RHIC, Facility for

Antiproton and Ion Research (FAIR) and Nuclotron-based Ion Collider fAcility

(NICA) at Dubna.

The shear viscosity to entropy ratio at finite baryon density has been es-

timated using relativistic Boltzmann equations for pion nucleon system using

phenomenological scattering amplitude [50]. This leads to the ratio as a decreas-

ing function of chemical potential in the T-µ plane. Further, this ratio as a

function of chemical potential shows a valley structure at low temperature which

was interpreted as a signature of liquid gas phase transition [50]. This has also

been studied using an effective nucleon pion system for nuclear matter [51]. Here,

the ratio seem to reduce both with temperature as well as chemical potential.

The bulk viscosity at finite chemical potential using low energy theorems of

QCD has been studied in Ref. [52]. This was estimated using a Schwinger-Dyson

approach to calculate the dressed quark propagator at finite chemical potential

to use it for calculation of thermo dynamical quantities needed to estimate bulk

viscosity.

1.4 Organization of the thesis

The thesis is organized as follows:

After brief introduction in Chapter 1, we introduce the hadron resonance gas

model (HRG) in Chapter 2 as an effective model describing the hadronic phase

of QCD. We discuss the equation of state of HRG model and its reliability to
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describe the hot and dense hadronic matter by confronting it with existing first

principle lattice QCD simulations. Because the non-interacting HRG model has

certain limitations when certain aspects of strongly interacting matter are con-

cerned, we make possible improvements in ideal HRG model so as to incorporate

these aspects without loosing simplicity and success of HRG model.

In Chapter 3 we discuss the transport properties of hadronic matter using

two formalisms, viz., Kubo’s formalism and the relativistic kinetic theory. After

deriving basic formulas for transport coefficients in these formalisms we estimate

them within ambit of HRG model and its extensions. Further, we make connec-

tion of these transport coefficients with the heavy-ion collision experiments.

In Chapter 4 we discuss the the transport properties of quark matter using

relativistic kinetic theory within ambit of Nambu-Jona-Lasinio model.

Finally, in Chapter 5, we summarize the results and also discuss the scope

for further studies.





Chapter 2

Thermodynamics of hadron

resonance gas model

2.1 Hadron resonance gas model

2.1.1 Non interacting hadron resonance gas model

The hadronic phase of quantum chromodyanamics at low temperature (T) and

zero baryon density (µB) is essentially consist of pions (π0, π±), while at higher

temperature and baryon density, it consist other light mesons (K, η, η′) and heavy

baryons apart from pions which interact with each other via residual strong

force. So, any effective model of the strong interaction describing hadronic mat-

ter should account for all the mesonic and baryonic degrees of freedom with

appropriate form of interactions. The hadron resonance gas model (HRG) is the

simplest effective model of QCD describing the hadronic matter. It rests on the

premise that the interacting hadron resonance matter can be approximated by

that of non-interacting gas of hadrons and all the resonances [53]. Thus, the

hadron resonance gas model can be defined by summed partition function

lnZ(T, µ, V ) =

∫
dm[ρM(m)lnZM(m,V, T, µ) + ρB(m)lnZB(m,V, T, µ)] (2.1.1)

21
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where the gas of hadrons is contained within volume V, at a temperature T

and chemical potential µ. ZM and ZB are the partition functions of mesons

and baryons respectively with mass m. Further, ρM and ρB are corresponding

spectral densities and lnZM,B is the partition functions corresponding to mesons

and baryons,

lnZM,B(m,V, T, µ) = ± 1

V

∫
d3p

2π3
ln(1± exp[−(E − µ)/T ]) (2.1.2)

Before one is able to use the partition function (2.1.1) to compute the ther-

modynamical quantities, it is necessary to know the form of spectral densities

which contain the properties of hadrons. One accustomed approach in an ideal

HRG model is to take all the hadrons and their resonances up to a mass cutoff

Λ such that

ρB/M(m) =
Ma<Λ∑
a

gaδ(m−Ma) (2.1.3)

where the sum is over all the hadrons and resonances states up to a mass cut

off Λ. Ma are the masses of all the experimentally established hadrons and ga is

corresponding degeneracy factor (spin, isospin etc.).

Using partition function given by Eq. (2.1.1) together with discrete mass

spectrum defined by Eq. (2.1.3), it is straightforward to compute all the ther-

modynamical quantities. Pressure (P), baryon number density (nB), entropy

density (s), energy density (ε) and speed of sound (C2
s ) are calculated as:

P (T, µ) = lim
V→∞

T

V
lnZ(T, µ, V )

=
∑
a

ga
6π2

∫ ∞
0

dp
p4

Ea

1

exp[(Ea − µ)/T ]± 1
(2.1.4)

nB(T, µ) =
∂P (T, µ)

∂µ

∣∣∣∣
T

=
∑
a

ga
2π2

∫ ∞
0

dp
p2

exp[(Ea − µ)/T ] + 1
(2.1.5)
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s(T, µ) =
∂P (T, µ)

∂T

∣∣∣∣
µ

=
∑
a

ga
2π2

∫ ∞
0

dp p2

{
ln(1± exp[−(Ea − µ)/T ])

± (Ea − µ)

T (exp[(Ea − µ)/T ] + 1)

}
(2.1.6)

ε(T, µ) = Ts− P + µnB

=
∑
a

ga
2π2

∫ ∞
0

dp Ea
p2

exp[(Ea − µ)/T ]± 1
(2.1.7)

C2
s =

dP (T, µ)

dε(T, µ)
(2.1.8)

where, Ea =
√
p2 +M2

a is the free particle dispersion relation. For relativistic

gas of hadrons there will be contribution of antiparticles also.

LQCD which acts as a benchmark for any effective model of QCD also con-

strain the equation of state predicted by it. It has been observed that the HRG

model with only hadrons and resonances up to certain mass cut-off can describe

the lattice data up to T∼0.140 GeV. But, if one extend the HRG model by

including exponentially increasing mass spectrum above 2 GeV, this extended

HRG agrees with LQCD up to T∼0.155 GeV [54]. Such exponentially rising

mass spectrum of form ρ(m) = m−
5
2 e

m
TH was first proposed by Hagedorn back

in 1965 [55] to explain the experimental data of multi-particle production in

proton-proton collisions. In (2+1) flavor QCD one can take all the hadrons and

resonances up to 2 GeV. One can then extend this model by taking continuum

mass spectrum. Such hybrid HRG model can be defined by the spectral density

of the form

ρ(m) = ρB/M(m) + ρconti(m) (2.1.9)

where ρB/M(m) is the discrete part of spectral density given by Eq. (2.1.3) and
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ρconti(m) is the continuum part. We shall consider two forms for the continuum

part of the spectral density given as

ρexpconti(m) =
A1

(m2 +m2
0)

5
2

e
m
TH (2.1.10)

and

ρpowerconti (m) =
A2

TH

(
m

TH

)α
(2.1.11)

The exponential density of states satisfy statistical bootstrap condition∗ and

reflects the underlying string picture of hadrons, while the power law spectrum do

not satisfy bootstrap condition but provides an alternative to describe the rapid

rise of density of states at high temperature. The parameters in Eqs. (2.1.10)

and (2.1.11) are specified so as to reproduce the lattice QCD results.

With the spectral density defined by Eq. (2.1.9) pressure of the gas of mesons

and baryons can be obtained as:

PM =
1

2π2

[
−
∑
a

ga

∫
p2dp ln (1− exp(−Ea/T ))

+

∫ ∞
Λ

ρconti(m)dmm2T 2K2(m/T )

]
, (2.1.12)

PB =
1

2π2

[
−
∑
a

ga

∫
p2dp

(
ln
(
1− exp(−(Ea − µ)/T )

)
+ ln (1− exp(−(Ea − µ)/T ))

)
+ 2

∫ ∞
Λ

ρconti(m)dmm2T 2K2(m/T ) cosh(µ/T )

]
. (2.1.13)

Other thermodynamical quantities can be obtained using thermodynamical

relations (2.1.4)-(2.1.8).

To estimate different thermodynamic quantities using HRG model, for the

discrete part of the spectral density in Eq. (2.1.9), we take all the hadrons and

their resonances with mass up to the cutoff 2 GeV [56]. Specifically, for baryons

∗In the statistical bootstrap model hadron is considered to be made of 2 or 3 constituent
which freely roam within volume V. Density of states of each hadron should be consistent with
that of constituent which themselves are hadrons.
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the mass cut-off is 2.252 GeV while for mesons it is 2.011 GeV. The parameters

defining the continuum part of the spectral density are given in Table 2.1.

ρ TH(GeV ) A1 A2 m0(GeV ) α

ρexp 0.210 0.63 (GeV3/2) - 0.5 -
ρpower 0.180 - 0.51 - 3

Table 2.1: Parameters defining continuum density of states.

Fig. (2.1) shows scaled pressure as a function of temperature at two different

values of baryonic chemical potential, µ = 0 and µ = 0.3 GeV. The lattice points

with the error bars have been taken from Table 4 of Ref. [57] corresponding to

the continuum extrapolation. The dotted lines in Fig. (2.1) correspond to con-

sidering only the discrete part of the spectral density in Eq. (2.1.9). Left panel

corresponds to exponential form of spectral density for continuum part while

right panel corresponds to power law form of spectral density. As can be noted

in this figure, at µ = 0, the discrete spectrum coupled with continuum spectrum

describes the lattice data quite well up to T = 170 MeV with the parameteri-

zation given in Table 2.1 within the error bars of the lattice simulations, while

at finite µ, HRG with only discrete spectrum is sufficient to describe the lattice

data over wide range of temperatures.

In Fig. 2.2 we have plotted the dimensionless scale anomaly (ε − 3p)/T 4 as

a function of temperature at two different chemical potentials. As can be noted

from both the Figs. (2a) and (2b), the discrete part of the spectral density

does not give a good fit to the lattice data beyond 0.140 GeV for zero chemical

potential, but when coupled with continuum part as in Eq.(2.1.10) gives good

fit to lattice data up to 0.150 GeV. It is also observed that, for higher chemical

potential, the range of the trace anomaly that can be described including the

Hagedorn states diminishes. The lattice data for the trace anomaly for µ=0.3

GeV could be described by the hadron gas alone up to T= 0.160 GeV while

including the Hagedorn states, the same could be described up to T= 0.150

GeV within the error bars of the lattice calculations. This could be an artifact

of the assumption of having the same spectral density for mesons and baryons.
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Figure 2.1: Thermodynamics of hadron resonance gas. Left panel (a) shows
scaled pressure as a function of temperature for µ = 0 (blue) and µ = 0.3 GeV
(green) with the exponential Hagedorn spectrum given by Eq. (2.1.10). The
dotted line corresponds to discrete spectrum for hadron resonance gas. The
right panel shows the same quantities but with the power law spectrum as given
in Eq. (2.1.11).

However, while making this observation, it ought to be kept in mind that the

lattice data of Ref. [57] is estimated at order µ2. We have taken a higher TH

value compared to Ref. [48] that was required to fit the lattice data [57]. This

is because, in Ref. [48], the lattice data was taken for Nt = 10 lattice data of

Ref. [58] while we have fitted with the continuum extrapolation of for µ = 0 the

lattice data in Ref. [57].

Fig 2.3 shows speed of sound squared (C2
s ) as a function of temperature at

fixed values of chemical potential along with the lattice simulation results. As

can be noted from the figure, keeping only the discrete part of the spectral den-

sity, does not fit the lattice results although the same could fit the lattice result

for pressure and the scale anomaly results. On the other hand the power law pa-

rameterization for the continuum part of spectral density along with the discrete

part leads to a reasonable fit to lattice data up to 0.150 GeV both at µ = 0 and
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Figure 2.2: Trace anomaly of HRG with and without inclusion of Hagedorn
density of states at two different chemical potentials.
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Figure 2.3: Speed of sound in HRG with and without inclusion of Hagedorn
density of states at two different chemical potentials.
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µ = 0.3 GeV. The initial rise in sound velocity with temperature is reflection of

the fact that the light degrees of freedom are excited easily at low temperature

and contribute to pressure and energy. But at larger temperatures when baryons

are excited, they contribute significantly to energy density but almost nothing

to pressure. This leads to decrease of sound velocity with temperature seen at

higher temperatures (T> 0.08 GeV). As chemical potential increases, heavier

baryonic channels opens up at low temperature and contribute to energy density

significantly but nothing to pressure. This leads to lower values of C2
s as the

chemical potential is increased.

2.1.2 Excluded volume hadron resonance gas model

Albeit non-interacting HRG model agrees with LQCD for wide range of tem-

peratures, it misses one important feature of hadronic interactions; the repulsive

interactions. It has been conformed experimentally that the nucleons undergo

short-range repulsive interactions and hence one can attribute them with small

hard-core radius based on N-N scattering data. Further necessity to include

short range repulsive interaction comes from heavy ion collision experiments. It

has been observed that the chemical freeze-out parameters (Tfreezeout, µfreezeout)

obtained from fitting the particle number ratios at AGS and SPS energies lead to

large values of total particle number densities. The total particle number density

at the chemical freeze-out within non-interacting HRG is n ≈ 4n0 for the AGS

and 8n0 for the SPS, n0 being the normal nuclear density. To suppress large

values of particle number densities, Van-der-Waals inspired excluded volume

procedure is used, which is elegant way to account for short range repulsive in

interactions. While there are many ways in which one can introduce the volume

corrections in non-interacting HRG model, we will describe the thermodynami-

cally consistent excluded volume formulation [59].

Consider a gas of (single species of) hadrons at temperature (T) and baryon

chemical potential (µ). The pressure is related to grand partition function by
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Eq. (2.1.4). The grand partition function for an ideal gas can be defined as

Z(T, µ, V ) =
∞∑
N=0

e
µN
T Z(T,N, V ) (2.1.14)

If the hadrons are assumed to be hard spheres of radius rh, the available volume

for hadrons is just a reduced volume V − vN . Here, v is the parameter which fix

the volume excluded by pair of hadrons. Thus, the partition function (2.1.14)

becomes

ZEV (T, µ, V ) =
∞∑
N=0

e
µN
T Z(T,N, V − vN)θ(V − vN) (2.1.15)

Since the available volume is depends on varying number of particles the sum

is difficult to compute. This difficulty can be overcame by taking Laplace’s

transform of Eq. (2.1.15).

Z̃EV (T, µ, y) =

∫ ∞
0

dV e−yVZEV (T, µ, V )

=
∞∑
N=0

∫ ∞
0

dV e−yV e
µN
T Z(T,N, V − vN)

=
∞∑
N=0

∫ ∞
0

dṼ e−yṼ e
µ̃N
T Z(T,N, Ṽ )

=

∫ ∞
0

dṼ e−yṼZ(T, µ̃, Ṽ ) (2.1.16)

where, we have used Eq. (2.1.15). Further, we have defined new variables,

µ̃ = µ− vTy and Ṽ = V − vN . From the definition of pressure (Eq. (2.1.4)) Z

approaches (in the limit V →∞)

Z(T, µ, V )
V→∞−−−→ exp

[
P (T, µ)V

T

]
(2.1.17)

Thus, the integrand in Eq. (2.1.16) diverge at its upper limit if y < P
T

. Thus,

Z̃EV has an extreme right singularity at some point y∗. This extreme right
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singularity gives system pressure,

PEV (T, µ) = Ty∗(T, µ) (2.1.18)

Since Z̃EV has has only one singular point, i.e when integral over y in Eq.

(2.1.16) diverge at its upper limit, we get

y∗ = lim
y→∞

lnZ(T, µ̃∗, y)

y
(2.1.19)

where, µ̃∗ = µ − vTy∗. Finally, using Eqs. (2.1.4) and (2.1.19) to eliminate

y∗ from Eq. (2.1.18) to get transcendental equation for pressure,

P (T, µ) = Pideal(T, µ̃) (2.1.20)

Once the pressure is known all the thermodynamical quantities can be readily

obtained. The number density, energy density and entropy density are

nEV (T, µ) =
∑
a

nida (T, µ̃)

1 +
∑

a van
id
a (T, µ̃)

(2.1.21)

εEV (T, µ) =
∑
a

εida (T, µ̃)

1 +
∑

a van
id
a (T, µ̃)

(2.1.22)

sEV (T, µ) =
∑
a

sida (T, µ̃)

1 +
∑

a van
id
a (T, µ̃

(2.1.23)

The quantity (Γ−1 = 1 +
∑

a van
id
a (T, µ̃B)) is the suppression factor typical

of any excluded volume model and is always less than one. Thus, any thermody-

namical quantity computed within so called excluded volume hadron resonance

gas model (EHRG) is always less than that of non interacting HRG model. For

the temperature range in which we are interested, the Boltzmann approximation

is rather a good approximation. In classical Boltzmann approximation this pre-

scription is equivalent to additional factor of exp(−vP/T ) to the pressure. Thus,

the pressure in excluded volume hadron resonance gas in Boltzmann approxima-

tion is
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P (T, µ) = exp(−vP (T, µB)/T )Pideal(T, µ) (2.1.24)

where Pideal in Boltzmann approximation can be written as

Pideal(T, µ) =
∑
a

ga
2π2

M2
aT

2K2(
Ma

T
) cosh(

µ

T
) (2.1.25)

where ga is degeneracy of ath hadron species and K2 is the modified Bessel’s

function [60].

2.1.3 Hadron resonance gas model with medium depen-

dent hadron masses

Since HRG is a statistical model, the essential starting point is to find the par-

tition function which in this case is just the partition function of an ideal gas

summed over all the hadronic states and their resonances. While calculating

the partition function it is the zero temperature (and baryon chemical potential)

hadron masses (Mh) that enters the Boltzmann factor, Exp(-Mh/T). It is well

established fact that the chiral symmetry is an essential feature of QCD, the

spontaneous breaking of which is responsible for the large part of the quark mass

called constituent quark mass, whence the hadrons. Further, LQCD as well as

other effective model calculations at finite temperature shows that this symmetry

is restored above so called chiral transition temperature (Tc) which renders all

the Goldstone modes massless. Thus, since hadrons are made of quarks whose

mass depends on temperature and chemical potential, it is T (and µ) dependent

hadron mass that should enter the partition function of HRG before computing

any thermodynamical quantity. As we will see, taking into account this effect

drastically changes the thermodynamics of hadronic matter at moderately high

temperature. Since the HRG model has been used to calculate the transport

properties as well, they are also non trivially affected. Thus, it is possible to fur-

ther improve HRG model further by including temperature and baryon density

dependent hadron masses in the partition function. Since it is rather difficult to
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obtain T and µ dependent masses of all the hadrons and their resonances except

for light mesons, we use the linear scaling rule for mesons and baryons in terms

of their constituent quarks [61,62]. Since hadrons are made of either two or three

quarks, we write the scaling rule for hadron masses as

Mh(T, µ) = (Nq −Ns)Mq(T, µ) +NsMs(T, µ) + κh (2.1.26)

Here, M is the constituent quark mass, Nq is the number of light quarks in a

given hadron and Ns is the measure of strangeness content of the hadron. κh is

the constant depends on the state but not on the current quark masses.

We further separate zero temperature and zero density part M(T = 0, µ = 0)

in Eq. (2.1.26) and absorb κh in it to get

Mh(T, µ) = Mh(T = 0, µ = 0) + (Nq −Ns)M
′

q(T, µ) +NsM
′

s(T, µ) (2.1.27)

where M′
q,s is only medium (T and µ) dependent part of the constituent quark

mass. The scaling rule given by Eq.(2.1.27) is used for all the hadrons but

Goldstone mesons. The T and µ dependence of (approximate) Goldstone mesons

as well as that of constituent quarks (u,d,s) can obtained using Nambu-Jona-

Lasinio (NJL) formalism at finite temperature and density. For general reviews

on NJL model, see [63,64].

Above discussion may tempts us to conclude that the non-interacting HRG

model is sufficient to describe the hadronic phase of QCD since it is in good

agreement with LQCD over wide range of temperatures. But as we discussed in

subsection 2.1.3, it is logical necessity to include repulsive interactions as well

as temperature and density dependent hadron masses in non-interacting HRG

model. It is now interesting to see how the results of ideal HRG model are mod-

ified if we include these effects. For that purpose we use the parameter set of

Ref. [63] to compute the masses of constituent quarks and light mesons using

NJL model which enters in Eq. (2.1.27) to compute T and µB dependent hadron

masses. The parameter which fixes the excluded volume HRG is the hardcore

radius rh or the proper volume parameter v. It is customary in the literature
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Figure 2.4: Results for thermodynamical quantities at µ = 0 GeV in EHRG-I
and EHRG-II models with the mass dependent excluded volume parametrization.
Black dashed curve corresponds to non-interacting hadron resonance gas model.

to use uniform values of hardcore radius for all the hadrons [65, 66]. Baryonic

hard core radius can be extracted from the short range repulsive interactions

in nucleon-nucleon scattering processes. While it is legitimate to set hard core
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Figure 2.5: Scaled pressure as a function of temperature at two different chem-
ical potentials in EHRG-I and EHRG-II with mass dependent excluded volume
parametrization.

radius of all the baryons equal, detailed information regarding short range in-

teraction between mesons is absent. Nevertheless, one can set same hard core

radius to all mesons as that of baryons since meson charge radii are similar to the

baryons [67]. But for our purpose we use the mass dependent hardcore radius

as in Ref. [68]. In this scheme of parametrization, v is chosen to be proportional

to the mass of each hadron; v =M/ε0, ε0 is a constant which we fix to the value

0.9 GeVfm−3. We further generalize this scheme by taking into account T and

µ dependent hadron masses.

Results of the thermodynamical quantities are shown in Fig. (2.4). We call

EHRG without T, µ dependent hadron masses as EHRG-I and that with T,

µ dependent hadron masses as EHRG-II. We note that the thermodynamical

quantities computed within EHRG-II start deviating from EHRG-I at T∼ 0.11

GeV and this deviation is more pronounced above T∼ 0.14 GeV. All the ther-

modynamical quantities are numerically larger in EHRG-II than in EHRG-I.

This observation can be explained by simply considering Boltzmann factor Exp(-
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Mh(T, µ)/T ). This factor is a measure of probability that the specific hadronic

species of mass M is thermally excited at given temperature whence making a

contribution to the thermodynamical quantities. Since masses of all the hadrons

but pions, kaons and eta mesons decreases with temperature, they can be ther-

mally excited abundantly with ease. The masses of the (approximately) Gold-

stone bosons do not change much around Tc, but the constituent quark masses

do change significantly at this temperature. In fact it drops down to its current

quark mass at Tc. Since we expressed the heavy mesons and baryons masses

in terms of constituent quarks [Eq. (2.1.27)] which contribute significantly at

higher temperatures, we see the effect of T (and µ) dependent hadron masses

on the thermodynamics only at higher temperatures especially around transition

temperature, while this effect is small at low temperatures where the pions and

kaons are the dominating degrees of freedom.

We note from Fig. 2.4 that the thermodynamical quantities computed within

conventional non-interacting hadron resonance gas (HRG) model better fits the

lattice data than EHRG-I model. Such non-interacting HRG model corresponds

to v = 0. Thus, the lattice data seems to prefer zero excluded volume parameter,

whence the point particle picture of hadrons. But this observation does not

invalidate EHRG-I model altogether. It has been shown in Ref. [65] that non-

interacting HRG model is problematic since the thermodynamical quantities rises

very rapidly with temperature and ultimately shows sigh of Hagedorn divergence

around Tc, while in EHRG-I thermodynamical quantities rise less steeply that

that in free HRG. Further, the better agreement of HRG model over EHRG-I

with the LQCD may be mere coincidence since we know from the experiments

that nucleons, at least, are not point particles but they do have finite spatial

extension [67]. There is another experimental evidence that goes in favor of

EHRG-I model. The analysis of the data for particle number ratios of Au+Au

(AGS) and Pb+Pb (SPS) collisions suggest necessity to include excluded volume

corrections in free HRG model [69]. By including repulsive interactions via.

excluded volume corrections in free HRG model and with the proper choice of

excluded volume parameter, it is observed that EHRG-I agrees with lattice data
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up to T∼ 0.14 GeV [65]. Inclusion of medium modification of hadron masses

in the excluded volume models, the agreement of EHRG-I model with LQCD is

observed at higher temperatures too as may be noted from Fig. 2.4(a) where the

pressure (normalized by T4) computed with medium dependent hadron masses

agrees with lattice data up to T∼ 0.2 GeV. Fig. (2.5) shows scaled pressure at

finite chemical potential. Pressure rises more rapidly even at finite µ in EHRG-II

than in EHRG-I.

Fig. 2.4(b) shows trace anomaly (interaction measure) computed within

EHRG-I and EHRG-II. We note that the trace anomaly rises rapidly in EHRG-II

as compared to EHRG-I at high temperatures. Trace anomaly in EHRG-I shows

decreasing behavior at high temperatures. The reason behind this is twofold.

First, the suppression factor 1
1+vn(T,µ)

which decreases as temperature and chem-

ical potential increases and hence all the thermodynamical quantities in EHRG-I

are numerically smaller than that in ideal HRG. Since there is no such suppression

factor in HRG trace anomaly rises monotonically. Further, due to finite size of

hadrons the pressure of hadron gas rises more rapidly as compare to energy den-

sity whence the interaction measure decreases at high temperature in EHRG-I.

Strong suppression of thermodynamical quantities has also been observed earlier

in Ref. [70] where the authors studied EHRG with uniform hard core radius for

all the hadrons. Although we have used different scheme of parametrization for

hard core radius, suppression effect is still there. But in case of EHRG-II, since

hard core radius is itself depend on temperature, the suppression effect is some-

how diluted. Rapid rise of trace anomaly has also been observed in HRG model

as well as extended HRG model which include continuum spectrum of hadrons

(Hagedorn states) along with discrete spectrum [48].

Although our main purpose of this study is not to fit the lattice data, this

observation is rather crucial because as mentioned earlier, EHRG-I fails to explain

the lattice data above T∼ 0.14 GeV [65]. In our previous work in Ref. [71], we

studied the extension of HRG model by including the Hagedorn density of states

at finite temperature and density. We found rather good agreement with the

lattice data of Ref. [57] below T= 0.15 GeV. In Ref. [70] authors studied the
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two extensions of HRG model, viz., HRG model with excluded volume effects

(EHRG) and HRG with continuum mass spectrum (Hagedorn states) along with

discrete mass spectrum of the hadrons. They observed that two models are

not in agreement with the lattice QCD results of Ref. [25] when considered

separately. But when considered together, the suppression effects in EHRG and

the enhancement effects due to Hagedorn states in HRG leads to better agreement

with LQCD. From our observation that merely including the medium effects of

hadrons in EHRG fit the LQCD quit well, it may be tempting to conclude that

the effects of Hagedorn states can be alternatively simulated by including T and

µ dependent hadron masses in EHRG.

Fig. 2.4(d) shows behavior of speed of sound in EHRG-I and EHRG-II. We

note that the sound velocity computed within EHRG-II agrees with the lattice

quantum chromodynamics quit well over wide range of temperatures. We further

note that although the general behavior of Cs
2 is same in two models at low tem-

peratures, it differs quit significantly at high temperatures. In EHRG-I sound

velocity rises very rapidly while it flattens out in EHRG-II at high temperatures.

As it has been pointed out in Ref. [72], such large and steady rise in sound ve-

locity is sufficient to indicate the acausal behavior typical of all excluded volume

models. This acausal behavior of sound speed in excluded volume is not diffi-

cult to understand. Physically, the speed of sound is a measure of the efficiency

of the medium to propagate the small disturbances as a longitudinal wave. In

excluded volume models at low temperatures and low density where the system

is dominated by light mesons, gas of hadrons can be treated as an compress-

ible fluid which renders small and finite value of the speed of sound. While at

high temperatures and baryon densities, huge number of hadrons are thermally

excited which tends to occupy the system volume more due to their finite size.

Thus, at high temperatures and densities the gas of hadrons approach towards its

incompressible liquid phase where the compressibility of the gas of hadrons ap-

proaches close to zero due to their close packing. Since speed of sound is inversely

proportional to the compressibility, it rises very rapidly with temperature and

even exceeds the speed of light whence violating causality. In contrast, although
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the hadrons are abundantly excited thermally in IEHRG model, their hardcore

radius decreases with temperature due to our mass dependent parametrization

of the proper volume. Whence, at high temperatures the gas of hadrons still re-

mains compressible thus avoiding liquid-gas phase transition which renders small

and finite value of sound speed.

2.1.4 Hadron resonance gas model in magnetic field

It is rather straightforward to extend non-interacting HRG model in presence

of external magnetic field. The thermodynamic potential of hadronic matter in

presence of external magnetic field (B) is

Ω

V
= ε− Ts−BmB − µnB (2.1.28)

Where mB is magnetization density. In thermodynamic limit, V −→ ∞, ther-

modynamic pressure can be written as

P = −Ω

V
= −f = −(fvacuum + fthermal) (2.1.29)

Where fvacuum is vacuum contribution (T, µ = 0, B 6= 0) to free energy. Hence

energy density can be written as

ε = Ts+BmB + µnB − P (2.1.30)

For the ideal gas of hadrons, free energy for charged component of the gas can

be written as

fc = ±
∑
h

∑
sz

∞∑
k=0

eB

4π2

∫
dpz

(
E(pz, k, sz)

2
+ T log(1± e−E(pz ,k,sz)/T )

)
(2.1.31)

where E =
√
p2
z +m2 + 2eB(k + 1/2− sz) is the energy of charged particle

moving freely under external magnetic field pointing in z direction.

Free energy for neutral component of the gas is
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fn = ±
∑
h

∫
d3p

(
E0

2
+ T log(1± e−E0/T )

)
(2.1.32)

where E0 =
√

p2 +m2.

Vacuum terms in Eq. (2.1.31) and (2.1.32) are UV divergent and can be

regularized by dimensional regularization and renormalization of B > 0 free

energy can be carried out by subtracting B = 0 part. Renormalized vacuum free

energies for different spin channels in magnetic field are given by [73]

∆f vac,r(spin0) =
(eB)2

8π2

[
ς
′
(−1, x+1/2)+x2/4−x

2

2
log(x)+

log(x) + 1

24

]
(2.1.33)

∆f vac,r(spin1/2) = −(eB)2

4π2

[
ς
′
(−1, x)+

x

2
log(x)+x2/4− x

2

2
log(x)− log(x) + 1

12

]
(2.1.34)

∆f vac,r(spin 1) =
3(eB)2

8π2

[
ς
′
(−1, x− 1/2) +

1

3
(x+ 1/2)log(x+ 1/2)

+
2

3
(x− 1/2)log(x− 1/2) + x2/4− x2

2
log(x)

− 7(log(x) + 1)

24

]
(2.1.35)

where x =
m2
h

2eB
and ς(−1, x) is Hurwitz zeta function [60] whose asymptotic

(x� 1) expression is given by

ς
′
(−1, x) =

1

12
− x2

4
−
(

1

12
− x

2
+
x2

2

)
(2.1.36)

To see the behavior of thermodynamical quantities of HRG model in presence

of magnetic field we need to know the gyromagnetic ratios of charged hadrons

apart from their masses and other quantum numbers. Since experimental gyro-

magnetic ratios (gh) are known with small error bars only for lightest hadrons,

we take, gh = 2qh/e where qh is the charge of given hadron species. We take all

the hadrons up to mass cut-off λ = 1.2 GeV. Fig. (2.6) shows the thermody-
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namical quantities estimated using HRG model in presence of external magnetic

field. Note that we do not plot scaled thermodynamical quantities since pressure

is non-zero at T= 0, and thus scales thermodynamical quantities diverges. From

Fig. (2.6a) we note that pressure is increased by magnetic field. At zero tem-

perature this increase is attributed to the vacuum term in Eq. (2.1.29) which is

proportional to magnetic field, while at finite temperature it may be attributed

to the value of effective mass M eff
h = Mh + eB(1− 2s) which is larger for pions

(π±, π0), smaller for ρ± and remain unchanged for spin half baryons. Accord-

ingly, the Boltzmann factor ( e−
M
eff
h
T ) is smaller for pions, larger for ρ± and

remain unchanged for baryons.

Fig. (2.6c) shows that entropy is practically unaffected by presence of mag-

netic field. At zero temperature there is no vacuum contribution to the entropy

density, while at finite temperature the effects of magnetic field are small due to

range of magnetic fields under consideration. Further, from Fig. (2.6d) we note

that magnetization is positive indicating that the hadronic matter is paramag-

netic.

From Fig. (2.7) we note that the dip in the plot of speed of sound against

temperature is more pronounced and shifts towards lower temperature. Such dip

has been interpreted as deconfinement phase transition from hadronic to quark

matter. Decrease in transition temperature Tc in presence of magnetic field has

also been observed in LQCD simulations [74].
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Figure 2.6: Results of thermodynamical estimated using HRG model at different
chemical potential and magnetic field.
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2.2 Conclusion

In this chapter we discussed the hadron resonance gas model and its extensions,

namely excluded volume HRG and HRG with medium dependent hadron masses.

HRG model is the simplest effective model of QCD describing the hadronic phase

of strongly interacting matter. Although HRG model is in good agreement with

LQCD simulations of Ref. [57] at low temperature and zero baryonic chemical

potential, inclusion of continuum mass spectrum (Hagedorn states) along with

discrete mass spectrum in HRG leads to good agreement with LQCD up to T=

0.150 GeV. Further, the speed of sound estimated within HRG with Hagedorn

states agrees with LQCD over wide range of temperatures.

Further, we motivated the necessity to include the repulsive interactions be-

tween hadrons as well as medium dependent hadron masses. Repulsive inter-

actions can be included in non-interacting HRG model via excluded volume

corrections, while medium dependent hadron masses can be computed using

Nambu-Jona-Lasinio model. Including these effects in HRG model can simulate
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the effects of Hagedorn density of states whence leads to better agreement with

LQCD up to T= 0.180 GeV. Further, sound velocity computed within this im-

proved HRG does not rise rapidly at high temperature. Since this rapid rise of

sound speed, observed in all excluded volume HRG models, indicates acausal be-

havior, inclusion of medium dependent hadron masses in excluded volume models

suggest possibility of curing such acausal behavior.

Finally, we explored the HRG model in presence of magnetic field. Pressure

picks up non-zero contribution from vacuum term whence it is non-zero at zero

temperature, while entropy density is not affected much by presence small and

moderate magnetic fields. Magnetization of hadronic matter is positive indicating

the paramagnetic behavior. Another interesting result is that the dip in the curve

of sound speed as a function of temperature shifts towards low temperature with

increasing magnetic field; a result consistent with LQCD simulations in magnetic

field.

.





Chapter 3

Transport properties of hot and

dense hadronic matter

3.1 Transport coefficients in kinetic theory

3.1.1 Relativistic Boltzmann equation

In the kinetic theory the system consisting huge number of particles can be

described by the phase-space distribution function f(~x, ~p, t) defined such that

dN(t) = d3~x(t)d3~p(t)f(~x, ~p, t) (3.1.1)

gives number of particles in phase-space volume element d3~xd3~p at time t. Boltz-

mann equation is the fundamental equation of kinetic theory which describe the

evolution of this distribution function in phase-space. This number is same for

any observer in an arbitrary inertial reference frame. Further, this number do

not change if there are no collision among the particles and if there is no external

unbalanced force. But if either of these two is present, number of particles in

a given phase-space volume will change. This change is reflected in change in

phase-space volume element as well as the distribution function. So, after an

infinitesimal time interval dt, we have

dN(t+ dt) = d3~x(t+ dt)d3~p(t+ dt)f(~x(t+ dt), ~p(t+ dt), t+ dt) (3.1.2)

45
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The change in distribution function can be readily obtained using rules of partial

differentiation as

dfp =

(
∂fp
∂t

+
d~x

dt
.
∂fp
∂~x

+
d~p

dt
.
∂fp
∂~p

)
dt (3.1.3)

The phase space volume element at t + dt can be expressed in terms of that at

time t with the help of Jacobian as

d3~x(t+dt)d3~p(t+dt) = det

(
∂(~x(t+ dt), ~p(t+ dt), t+ dt)

∂(~x(t), ~p(t), t)

)
d3~x(t)d3~p(t) (3.1.4)

Thus, the change in number of particles in a given phase-space volume element

due to collisions is

dN(t+ dt)− dN(t) = d3~x(t)d3~p(t)dt

(
∂fp
∂t

+
~p

Ep
.
∂fp
∂~x

+
∂(fp ~F )

∂~p

)
(3.1.5)

where we have used the fact that for particle moving in external force ~F , d~x
dt

= ~p
Ep

and ~F = d~p
dt

. Since the left hand side of above equation is Lorentz invariant, so

do the right hand side. In fact, one can shed the whole equation in manifestly

covariant form as

d

dt
dN =

d

dt
(dNgain − dNloss) =

d3~xd3~p

Ep

[
pµ
∂fp
∂xµ

+m
∂(Kµfp)

∂pµ

]
(3.1.6)

where pµ is four-momentum-vector and Kµ is Minkowski four-force-vector. If

there is no interaction among the particles, for arbitrary phase-space volume

element, the term inside square bracket vanishes and we get the Boltzmann

equation in the absence of collisions.

pµ
∂fp
∂xµ

+m
∂(Kµfp)

∂pµ
= 0 (3.1.7)

If there exist interaction among the particles, at position ~x, within infinitesimal

time interval dt there is certain number of particles which scatter off from initial

momentum ~p to some other final momentum ~p′, while there is also certain amount

of particles which scatter from initial momentum ~p′ into the final momentum ~p.

Former is called the “loss term” while later is called the “gain term”. To calculate
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these two terms one needs to consider following postulates known as Boltzmann’s

Stoßzahlansatz∗.

I. The gas is assumed to be dilute enough so that only binary collisions are

relevant. The tertiary collisions are assumed to be extremely rare.

II. Two incoming particles with momenta ~p1 and ~p2 are uncorrelated. The

number of particles at instant t in a given volume element d3~x with momenta ~p1

and ~p2 are then

dN = d3~xd3~p1f(~x, ~p1)d3~xd3~p2f(~x, ~p2) (3.1.8)

Same is assumed to be true for two outgoing particles with momenta ~p′1 and ~p′2.

This is known as postulate of molecular chaos.

III. The interaction between the particles is short range. This assumption

implies that the phase-space distribution function varies very slowly over the

time interval which is small compared to time interval between two successive

collisions but large compared to collision time. Now, consider binary scattering

process a(p1) + b(p2) −→ c(p′1) + d(p′2) where the argument represent the four

momentum of respective particle. The four momentum conservation is

p1 + p2 = p′1 + p′2 (3.1.9)

The number of elastic collisions happening in infinitesimal time interval dt con-

strained by above four momentum conservation is

dNcoll = d4x
d3~p1

Ep1

d3~p2

Ep2

d3~p′1
Ep′1

d3~p′2
Ep′2

fp1fp2W (p′1 + p′2 ← p1 + p2) (3.1.10)

where W represent the transition rate per unite volume which captures the dy-

namics of the particles. Thus, the gain term is

d

dt
dNgain = d3~x

d3~p

Ep

∫
R3

d3~p2

Ep2

∫
R3

d3~p′1
Ep′1

∫
R3

d3~p′2
Ep′2

fp′1fp′2W (p+ p2 ← p′1 + p′2)

(3.1.11)

∗Stoßzahlansatz is a German word which means ”collision number assumption”.
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and the loss term is

d

dt
dNloss = d3~x

d3~p

Ep

∫
R3

d3~p2

Ep2

∫
R3

d3~p′1
Ep′1

∫
R3

d3~p′2
Ep′2

fpfp2W (p′1+p′2 ← p+p2) (3.1.12)

Here, we have redefined the momentum variable p1 → p. Substituting Eqs.

(3.1.11) and (3.1.12) in Eq. (3.1.6) we get

pµ
∂fp
∂xµ

+m
∂(Kµfp)

∂pµ
=

∫
R3

d3~p2

Ep2

∫
R3

d3~p′1
Ep′1

∫
R3

d3~p′2
Ep′2

[fp′1fp′2W (p+ p2 ← p′1 + p′2)

− fpfp2W (p′1 + p′2 ← p+ p2)] (3.1.13)

Using the principle of detailed balance in above equation

W (p+ p2 ← p′1 + p′2) = W (p′1 + p′2 ← p+ p2) (3.1.14)

we finally get the relativistic Boltzmann equation.

pµ
∂fp
∂xµ

+m
∂(Kµfp)

∂pµ
=

1

2

∫
R3

d3~p2

Ep2

∫
R3

d3~p′1
Ep′1

∫
R3

d3~p′2
Ep′2

W (p+p2 ← p′1+p′2)[fp′1fp′2−fpfp2 ]
(3.1.15)

where the factor 1/2 is due to indistinguishability of the particles. The right

hand side of Eq. (3.1.15) is called collision term which we denote by C[fp] for

brevity. Thus, the relativistic Boltzmann equation can be written as

pµ
∂fp
∂xµ

+m
∂(Kµfp)

∂pµ
= C[fp] (3.1.16)

The Boltzmann equation is complicated integro-differential equation and it is

rather very difficult to solve exactly especially when dealing with the collision

term. Nevertheless, based on some legitimate assumptions pertaining to the

system under study one can make simplest approximation of this collision term

for the purpose of extracting the transport properties.
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3.1.2 Boltzmann equation in relaxation time approxima-

tion

When the system is perturbed from the equilibrium state characterized by single

particle distribution function f 0
p , the particles in the system undergo collisions

taking the system out of equilibrium leading to the transport of conserved quan-

tities, viz., energy and momentum. The single particle distribution function fp

in such non-equilibrium state will in general be different from f 0
p . We assume

that the effect of collision is always to bring the system towards local equilibrium

state. Further, we assume that this equilibration occurs exponentially with time

τ , called relaxation time which is of order of time interval between successive

collisions. Thus, in this approximation Boltzmann equation can be written as

pµ
∂fp
∂xµ

+m
∂(Kµfp)

∂pµ
' −(fp − f 0

p )

τ(Ep)
(3.1.17)

This approximation is valid only if the departure from the equilibrium is small

such that

fp = f 0
p + δfp (3.1.18)

and δfp � f 0
p . Mathematically, in this so called relaxation time approximation

(RTA), all the non-zero eigenvalues of the collision term C[fp] are taken to have

common eigenvalue equal to −1/τ(Ep). Thus, substituting Eq. (3.1.18) in Eq.

(3.1.17) and neglecting the space-time derivatives of δfp which is very small, we

finally get the Boltzmann equation in relaxation time approximation.

pµ
∂f 0

p

∂xµ
+m

∂(Kµf 0
p )

∂pµ
' − δfp

τ(Ep)
(3.1.19)

Few points are to be noted here:

I) Negative sign on the r.h.s of Eq. (3.1.19) ensures that the system in non-

equilibrium state decays down to the equilibrium state.

II) The relaxation time τ is in general energy dependent. But for the sake of

simplicity, it is also customary to use energy independent as well as averaged

partial relaxation time as will be discussed in next sub-section.
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3.1.3 Transport coefficients in relaxation time approxi-

mation

The energy-momentum tensor is the 2nd moment of the distribution function.

T µν =

∫
d3p

Ep
pµpνfp (3.1.20)

The spatial part (momentum flow or pressure tensor) is

T ij =

∫
d3p

Ep
pipjfp (3.1.21)

From Eq. (3.1.18) above equation can be written as

T ij = T0 +

∫
d3p

Ep
pipjδfp (3.1.22)

The second term on the r.h.s of above equation governs the dissipation in the

system.

T ijdissi =

∫
d3p

Ep
pipjδfp (3.1.23)

where T0 is the ideal part of energy-momentum tensor. In the absence of

external force Eq. (3.1.17) can be written as

δfp = −τ(Ep)

(
∂

∂t
+ vip

∂

∂xi

)
f 0
p (3.1.24)

Thus, Eq. (3.1.23) can be written in terms of equilibrium distribution function

as

T ijdissi = −
∫
d3p

Ep
pipjτ(Ep)

(
∂

∂t
+ vip

∂

∂xi

)
f 0
p (3.1.25)

In the hydrodynamics, shear and bulk viscosities enters in the dissipative part

(T µνdissi) of stress energy tensor.

T µν = T µν0 + T µνdissi (3.1.26)

where T µν0 is ideal part of stress tensor. In the local Lorentz frame in which the
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momentum density T i0 is small, dissipative part of stress energy tensor can be

written as

T ijdissi = −η
(
∂ui

∂xj
+
∂uj

∂xi

)
− (ζ − 2

3
η)
∂ui

∂xj
δij (3.1.27)

Assuming steady flow of the form ui = (ux(y), 0, 0) above equation simplifies to

T xy = −η∂ux
∂y

(3.1.28)

Also for such flow Eq. (3.1.25) can be written as

T xy =

{
− 1

T

∫
d3p

(2π)3
τ(Ep)

(
pxpy
Ep

)2

f 0
p

}
∂ux
∂y

(3.1.29)

Thus, comparing the coefficient ∂ux/∂y in Eqs. (3.1.28) and (3.1.29) we get

the shear viscosity coefficient for a single component of hadronic matter.

η =
1

15T

∫
d3p

(2π)3
τ(Ep)

p4

E2
p

f 0
p (3.1.30)

For multicomponent hadronic matter the shear viscosity coefficient is just a

sum of contribution from each hadronic species [75]

η =
1

15T

∑
a

∫
d3p

(2π)3

p4

E2
a

(τaf
0
a + τ̄af̄

0
a ) (3.1.31)

Similarly, the bulk viscosity coefficient of the hadronic matter is [75]

ζ =
1

T

∑
a

∫
d3p

(2π)3

{
τaf

0
a

[
EaC

2
nB

+

(
∂P

∂nB

)
ε

− p2

3Ea

]2

+ τ̄af̄
0
a

[
EaC

2
nB
−
(
∂P

∂nB

)
ε

− p2

3Ea

]2}
(3.1.32)

where E2
a = p2 + m2

a and (∂P/∂nB)ε = nB/(∂nB/∂µ) + C2
nB
T 2∂(µ/T )/∂T .

In above expressions bar stands for contribution of antiparticles.
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Energy dependent relaxation time is defined by expression

τ−1(Ea) =
∑
bcd

∫
d3pb
(2π)3

d3pc
(2π)3

d3pd
(2π)3

W (a, b→ c, d)f 0
b (3.1.33)

where the transition rate W (a, b→ c, d) is defined by

W (a, b→ c, d) =
(2π)4δ(pa + pb − pc − pd)

2Ea2Eb2Ec2Ed
| M |2 (3.1.34)

with | M | being transition amplitude. In the center of mass frame Eq. (3.1.33)

can be simplified as

τ−1(Ea) =
∑
b

∫
d3pb
(2π)3

σab

√
S − 4m2

2Ea2Eb
f 0
b ≡

∑
b

∫
d3pb
(2π)3

σabvabf
0
b (3.1.35)

where vab is relative velocity and
√
S is center of mass energy. σab is the total

scattering cross section for the process, a(pa) + b(pb)→ a(pc) + b(pd).

For the simplicity we can use averaged relaxation time (τ̃) which is rather a

good approximation as energy dependent relaxation time [76]. One can obtain

τ̃ as follows. Averaging over f 0
a Eq. (3.1.35) becomes

∫
d3pa
(2π)3

τ−1(Ea)f
0
a∫

d3pa
(2π)3

f 0
a

=
∑
b

∫
d3pa
(2π)3

d3pb
(2π)3

σabvabf
0
af

0
b∫

d3pa
(2π)3

f 0
a

(3.1.36)

Thus averaged partial relaxation time is given by

τ̃−1
a =

∑
b

nb〈σabvab〉 (3.1.37)

where nb =
∫

d3pb
(2π)3

f 0
b is the number density of bth hadronic species.

In this work we will use equilibrium Maxwell-Boltzmann distribution (in the

local rest frame) given by

f 0
a = exp

(
− Ea − µ

T

)
(3.1.38)

The thermal average of total cross section times relative velocity i.e 〈σv〉 for
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the scattering of hard sphere particles (having constant cross section, σ) of the

same species at zero baryon density can be calculated as follows [77, 78]. With

Maxwell-Boltzmann distribution f 0(E) = exp(−E/T ), the thermal average 〈σv〉
for the process a(pa) + a(pb)→ a(pc) + a(pd) can be written as

〈σabvab〉 =
σ
∫
d3pad

3pbvabe
−Ea/T e−Eb/T∫

d3pad3pbe−Ea/T e−Eb/T
(3.1.39)

Momentum space volume elements d3pad
3pb can be written in terms of scattering

angle θ as

d3pad
3pb = (4π)2papbEadEaEbdEb

1

2
dcosθ (3.1.40)

Changing integration variables from Ea, Eb, θ to E−, E+, S we gets

d3pad
3pb = 2π2EaEbdE−dE+dS (3.1.41)

where S = (pa+pb)
2 is usual Mandelstam variable and E± = Ea±Eb. With this

change in variables the integration region transform as

E− ≤
√

1− 4m2

S

√
E2

+ − S (3.1.42)

with E+ >
√
S and S > 4m2. Thus numerator in Eq. (3.1.39) becomes

∫
d3pad

3pbvabe
−Ea/T e−Eb/T = 2π2T

∫
dS
√
S(S − 4m2)K1(

√
S/T ) (3.1.43)

Similarly denominator of Eq. (3.1.39) can be evaluated as

∫
d3pad

3pbe
−Ea/T e−Eb/T = [4πm2TK2(m/T )]2 (3.1.44)

where Kn is modified Bessel function of order n. Thus the thermal average

becomes

〈σabvab〉 =
σ

8m4TK2
2(m/T )

∫ ∞
4m2

dS
√
S(S − 4m2)K1(

√
S/T ) (3.1.45)

For scattering between different species of the particles (a(pa) + b(pb)→ a(pc) +
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b(pd)) one can generalize above equation to get

〈σabvab〉 =
σ

8Tm2
am

2
bK2(ma

T
)K2(mb

T
)

∫ ∞
ma+mb

dS
[S − (ma −mb)

2]√
S

[S−(ma+mb)
2]K1(

√
S/T )

(3.1.46)

Computing the thermal averaged cross section as above, one can relate it to the

relaxation time in Eq. (3.1.37). The viscosities can then be calculated using

Eq. (3.1.31) and Eq. (3.1.32) once the thermodynamic quantities are estimated

using EHRG model. It is very difficult or rather tedious task to compute all the

cross section in hadronic matter. Further, since we will be using HRG model

to estimate the thermodynamical quantities, there is no direct way to compute

these cross sections. For simplicity, we introduce interactions among hadrons

through hard sphere repulsion. The non-relativistic expression for hard sphere

scattering cross section is simply 4πr2
h. Thus, taking phenomenological values for

hard-sphere radius of hadrons, one can readily estimate the viscosity coefficients.

3.2 Transport coefficients in Kubo’s formalism

3.2.1 Kubo’s formula for bulk viscosity

Bulk viscosity corresponds to the response of the system to conformal transfor-

mations. According to Kubo’s formula it can be written as a bilocal correlation

function of energy-momentum tensor [38]

ζ = lim
ω→0

1

9ω

∫ ∞
0

dt

∫
dx exp(iωt)

[
θµµ(x), θµµ(0)

]
≡
∫
d4x iGR(x) (3.2.1)

with GR(x) being the retarded function for the trace of energy momentum tensor.

One can introduce a spectral function which is related to the retarded Green’s

function by relation, ρ(ω,p) = −(1/π)ImG(ω,p). Assuming Lorentzian ansatz

for the spectral function at low energy [38] as

ρ(ω, 0)/ω = (9ζ/π)(ω2
0/(ω

2
0 + ω2), (3.2.2)
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where, ω0 is a scale above which perturbation theory becomes valid. Thus, the

bulk viscosity can be written as

9ζω0 = 2

∫ ∞
0

du
ρ(u, 0)

u
du =

∫
d4x〈θµµ(x)θµµ(0)〉 ≡ Π (3.2.3)

The trace of stress-energy tensor for massless QCD at tree level vanishes due to

conformal symmetry. But for QCD with non-zero current quark mass confor-

mal symmetry is explicitly broken. This breaking is further assisted by higher

order quantum corrections to energy-momentum tensor. Thus, trace of energy

momentum tensor for massive QCD with quantum corrections is

θµµ = mq̄q +
β(g)

2g
Ga
µνG

aµν ≡ θq + θg (3.2.4)

In the above g is the strong coupling and β(g) is the QCD beta function that

decides the running of the QCD coupling. Thus, the evaluation of the bulk

viscosity boils down to evaluation of the energy-momentum correlator. This is

done by using the low energy theorems of QCD generalized to finite temperature

and density. The lowest in the chain of relations is [39]

∫
d4x〈θg(x)Ô)〉 = (D̂ − d)〈Ô〉(T, µ), (3.2.5)

where, D̂ = T∂/∂T + µ∂/∂µ, and with d being the canonical dimension of the

operator Ô. LET for gluon and quark fields can be written as

∫
d4x〈θgµµ(x)θgµµ(0)〉 = (D̂ − 4)〈θgµµ〉 (3.2.6)

∫
d4x〈θgµµ(x)θqµµ(0)〉 = (D̂ − 2)〈θqµµ〉 (3.2.7)
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Using Eqs.(3.2.6) and (3.2.7) in Eq.(3.2.3) we get

9ζω0 = (D̂ − 4)〈θµµ〉+ (D̂ − 2)〈θqµµ〉

= 16|εgvac|+ 6(f 2
πm

2
π + f 2

km
2
k)

+ Ts(
1

c2
s

− 3) + (µ
∂

∂µ
− 4)(ε∗ − 3P ∗) + (D̂ − 2)mq〈q̄q〉∗ (3.2.8)

In the above we have used 〈θµµ〉 = ε − 3P and the thermodynamic relations

cv = ∂ε/∂T , ∂P/∂T = s and c2
s = s/cv for the velocity of sound of the medium.

We have also separated the contributions to the correlators in terms of the vac-

uum and the medium. In Eq.(3.2.8) we have neglected terms quadratic in the

current quark masses and have used PCAC relations† to express vacuum con-

densates (〈mq̄q〉0) to the masses and decay widths of pions (mπ, fπ) and kaons

(mK , fK).

3.2.2 Anisotropic bulk viscosity in presence of strong mag-

netic field

In presence of strong magnetic field, the rotational symmetry breaks down and

hence the transport properties become anisotropic. In this sub-section, we again

use Kubo’s formalism to obtain the bulk viscosity in presence of strong magnetic

field. QCD low energy theorems given by Eq. (3.2.5) can be generalized in

presence of magnetic field as [79]

∫
d4x〈θg(x)Ô)〉 = (D̃ − d)〈Ô〉(T, µ), (3.2.9)

where, D̃ = T∂/∂T + µ∂/∂µ + 2B ∂
∂B

. In presence of magnetic field, SO(3) ro-

tational symmetry is broken and pressure in the direction perpendicular to the

magnetic field may be different from that of pressure in longitudinal direction.

For the thermodynamic system at finite T , µ and B, longitudinal thermody-

namic pressure in limit V −→ ∞ can be written in terms of energy density (ε),

†〈mq̄q〉0 = −mπfπ −mKfK
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magnetization (M), baryon density (%b) and entropy density (s) as

P∗ = Ts+BM + µ%b − ε (3.2.10)

Also the trace of stress tensor in longitudinal direction is

〈θµµ〉 = 4εv + (ε− 3P )∗ +BM∗ (3.2.11)

Thus, using Eqs. (3.2.9), (3.2.10) and (3.2.11) in Eq. (3.2.3) we get

2

∫ ∞
0

du
ρ(u, 0)

u
du = −16εv − 2

∑
q

mq〈q̄q〉0 +

(
T
∂

∂T
+
∑
q

µq
∂

∂µq
+ 2B

∂

∂B
− 2

)∑
q

mq〈q̄q〉∗

+ Ts

(
1

C2
s

− 3

)
+

(∑
q

µq
∂

∂µq
− 4

)
(ε− 3P )∗ + 2B2χ− 4BM

+ B

(
T
∂

∂T
+
∑
q

µq
∂

∂µq

)
M (3.2.12)

where χ = ∂M/∂B is magnetic susceptibility and C2
s = ∂P/∂ε is sound velocity

at constant magnetic field and chemical potential. Note that we haven’t used

any specific form of spectral density to compute bulk viscosity yet. Instead of

Lorentzian form of spectral density (3.2.2) we use Gaussian ansatz of the form

ρ(ω,0)

ω
=

9ζ

π
e
−( ω

πω0
)2

(3.2.13)

This ansatz satisfy the definition of bulk viscosity in terms of spectral function.

ζ =
π

9
lim
ω→0

ρ(ω,0)

ω
(3.2.14)

Further, it is odd under parity as required by parity properties of retarded Greens

function, whence of spectral function. Apart from this, Gaussian ansatz reduces

to Lorentzian form in small frequency limit. Because the large frequency modes

are suppressed in Gaussian form of spectral function, ζ/s will have lower value

as compared to that with Lorentz form of spectral function. Thus, using spectral

function (3.2.13) in Eq. (3.2.12) we get the expression for the bulk viscosity in
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longitudinal direction as

9
√
πζω0 = −16εv − 2

∑
q

mq〈q̄q〉0 +

(
T
∂

∂T
+
∑
q

µq
∂

∂µq
+ 2B

∂

∂B
− 2

)∑
q

mq〈q̄q〉∗

+ Ts(
1

C2
s

− 3) +

(∑
q

µq
∂

∂µq
− 4

)
(ε− 3P )∗ + 2B2χ− 4BM

+ B

(
T
∂

∂T
+
∑
q

µq
∂

∂µq

)
M (3.2.15)

Thus, once the thermodynamical quantities are estimated the bulk viscosity

coefficient can be easily estimated using Eq. (3.2.15.)

3.3 Results and discussion

Viscosity coefficients can be readily estimated using formulas derived in the pre-

vious section once the thermodynamical quantities are estimated for the hadronic

phase. For this purpose we use hadron resonance gas model and its extended

versions discussed in chapter 2. We use non-interacting HRG model to estimate

the viscosity coefficients obtained using Kubo’s formalism, while we use EHRG

model to estimate the viscosity coefficients obtained using relativistic kinetic

theory.

Results for shear viscosity coefficient estimated using relativistic kinetic the-

ory are shown in Fig. (3.1). The general behavior of η/s is similar to that

observed in Ref. [46] where the authors considered EHRG within relativistic

molecular kinetic theory unlike relaxation time approximation scheme used in

this work. We also compare our results of η/s with other model calculations

like Chapman-Enscog theory [2], scaling hadron masses and couplings (SHMC)

model [3] and chiral perturbation theory [80] at zero baryon chemical potential

as shown in Fig. (3.1). We note that the general behavior of η/s is in conformity

with these models. We also note that at low temperature (∼ 0.120GeV) where

the pions are dominating degrees of freedom, our results matches with Ref. [80]

where the authors estimates η/s for the gas of pions using chiral perturbation

theory while at high temperature (above 0.120 GeV) our results matches with
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Figure 3.1: Comparison of shear viscosity to entropy density ratio estimated
within various other models with our model.
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Figure 3.2: Left panel: Shear viscosity to entropy density (η/s) ratio of temper-
ature for different chemical potentials for rh = 0.3 fm. Middle panel: η/s for
rh =0.5 fm. Right panel: Shear viscosity coefficient for rh =0.5 fm.

Ref. [3] where the authors estimated this ratio in SHMC model for hadronic mat-

ter. Further we observe that at finite chemical potential, although the general

behavior of the ratio is similar as a function of temperature, ratio is smaller than

that at µ = 0GeV and approaches closer to KSS bound. Thus finite baryon

chemical potential significantly affect η/s. Although the shear viscosity itself

increases with µ as shown in Fig. 3.2(c), decrease in ratio η/s at finite µ is solely
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Figure 3.3: Comparison of fluidity measures in our model with Ref. [2] at two
different chemical potentials.

due to rapid increase in entropy density. This behavior of η/s at finite baryon

density is consistent with Ref. [2] where the authors have estimated η/s using

Chapman-Enskog theory within hadron resonance gas model. We compare our

results with the results of Ref. [2] at zero and finite µ as shown in Fig. 3.3(a).

We note that the general behavior of η/s is similar except the fact that the value

approaches closer to KSS bound in Chapman-Enskog theory.

It is important to note that at finite chemical potential, η/s cannot be inferred

as a measure of fluidity [81]. Also this ratio can be shown to violate KSS bound

in kinetic theory. Based on crude kinetic theory argument one can show that

η ≈ 1
3

∑
a(n〈p〉λ)a, where n is number density, 〈p〉 is thermal momentum and

λ is mean free path. Kinetic theory is valid only for those gases for which

mean free path is much smaller than the typical size of the system (L) i.e, λ�
L and for those gases for which λ must be larger than inter particle spacing.

Then uncertainty relation λ〈p〉 ≥ 1 implies that there is a lower bound to shear

viscosity, η & 2T 3 [82]. Further, in the non-relativistic limit one can show

that the shear viscosity of the gas of hard spheres is independent of number of

particle species [41]. On the other hand, entropy density of the gas consisting
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multiple hadronic species (which also goes as T 3) can be made very large so that

ratio η/s can be made arbitrarily small. In fact at sufficiently high chemical

potential mixing entropy of multicomponent hadron gas overwhelms and hence

ratio η/s can go below KSS bound. This fact has been used in Ref. [83] to give

counterexample to KSS bound.
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Figure 3.4: Fluidity measure ηT
(ε+P )

at different chemical potentials for rh = 0.3
fm and 0.5 fm.

At finite µ, it is the ratio ηT/(ε + P ) which is correct measure of fluidity

[81]. Quantity ε + P is called enthalpy and as per thermodynamical relation,

ε+ P = Ts+ µnB, we note that at µ = 0 we get back η/s as a fluidity measure.

From Fig. (3.4) we note that effect of finite chemical potential is more pronounced

in ratio ηT/(ε + P ). This can again be attributed to rapid rise in enthalpy at

finite µ. The general behavior of the ratio ηT/(ε+P ) is again in conformity with

Ref. [2] as shown if Fig. 3.3(b) except the fact that for given chemical potential

the ratio is smaller in Chapman-Enskog theory.

Fig.(3.5) shows results for the bulk viscosity. We note that ratio ζ/s decreases

with temperature at zero chemical potential. As shown in Fig.(3.6), the general

behavior of ζ/s is similar to that observed in Ref. [3] where the authors estimated

the bulk viscosity using SHMC model. At finite chemical potential although
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Figure 3.5: Left panel: Bulk viscosity to entropy density (ζ/s) ratio of temper-
ature for different chemical potentials for rh = 0.3 fm. Middle panel: ζ/s for
rh =0.5 fm. Right panel: Bulk viscosity coefficient for rh =0.5 fm.
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Figure 3.6: Comparison of bulk viscosity to entropy density ratio estimated
within SHMC model [3] with our model.

the ratio ζ/s decreases at low temperature, it increases in the window T =

0.120− 0.160 GeV. This is because bulk viscosity itself increases very rapidly in

this window as shown in Fig.(3.5c). This rise may be attributed to the explicit

scale symmetry violation by finite chemical potential and hence the massive

nucleon excitations which contribute more at finite baryon chemical potential

[71]. We might mention here that although the inelastic scattering processes



3.3. Results and discussion 63

needs to be taken into account for the precise estimation of the bulk viscosity [84],

authors in Ref. [85] showed that inelastic processes are irrelevant in the bulk

viscosity computation at low and moderate temperatures. In Fig. (3.6) we

compare ζ/s estimated in our model with SHMC model [3]. We note that our

ζ/s curve vanishes faster at high temperature.
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Figure 3.7: Viscosity coefficients along the chemical freeze-out curve.

One can make connection with heavy ion collision experiments by finding the

beam energy (
√
S) dependence of the temperature and chemical potential. This

is extracted from a statistical thermal model description of the particle yield at

various
√
S [86]. The freeze out curve T (µ) is parametrized by T (µ) = a− bµ2−

cµ4, where, a = 0.166±0.002 GeV, b = 0.139±0.016 GeV−1 and c = 0.053±0.021

GeV−3. The energy dependence of the baryon chemical potential is given as µ =

d/(1 + e
√
S), with, d = 1.308± 0.028 GeV, and e = 0.273± 0.008 GeV−1. From

Fig. 3.7(a) we observe that ratio η/s is well above KSS bound at low center of

mass energy and increases monotonically to become constant at higher
√
S along

freeze-out curve. This is legitimate since low
√
S corresponds to low temperature

and high chemical potential along freeze-out curve at which shear viscosity is

smaller. Fig. 3.7(b) shows ratio ηT/(ε+P ) along chemical freeze-out. We observe

that this ratio again remains constant apart from initial rise. Since ratio ηT/(ε+

P ) is a true measure of fluidity at finite baryon chemical potential, we conclude

that in chemical freeze-out transition the fluid behavior of hadron gas does not

change. Further, along freeze-out curve ratio ζ/s decreases monotonically first
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and then becomes independent at higher center of mass energies as shown in Fig.

3.7(c).
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Figure 3.8: Left panel shows shear viscosity coefficient estimated within EHRG-I
and EHRG-II models. Right panel shows shear viscosity to entropy density ratio.

Fig. 3.8(b) shows shear viscosity to entropy density ratio estimated in two

models, EHRG-I and EHRG-II. We note that the effect T (and µ) dependent

hadron masses is also reflected in transport properties. Shear viscosity is propor-

tional to average thermal momentum which is certainly affected by temperature

dependent hadronic species in the system. Nevertheless, the shear viscosity itself

does not change much [Fig. 3.8(a)], but the ratio η/s is smaller in EHRG-II

model than in EHRG-I due to more rapid increase in the entropy density in for-

mer. This effect is more important around transition temperature since the shear

viscosity shows peculiar behavior around this temperature. It may be interesting

to compare these results with the results of Ref. [47] where the authors estimated

η/s within EHRG model extended by inclusion of exponentially rising Hagedorn

density of states. They observed that the inclusion of Hagedorn density of states

significantly lowers η/s and this ratio approaches close to the KSS bound near

Tc. Thus, they argued that the inclusion of Hagedorn states could explain the

low value of shear viscosity in the hadronic phase. Since we observed the same
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behavior of η/s near Tc but with the inclusion of medium dependent hadronic

states, it may be again tempting to conclude that the effects of Hagedorn states

can be alternatively simulated by including T and µ dependent hadron masses

in EHRG.
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Figure 3.9: Bulk viscosity to entropy density in Kubo’s formalism (Eq. 3.2.8)
at different chemical potentials estimated within HRG model with discrete and
exponential mass spectrum.

Fig. (3.9) shows bulk viscosity to entropy density ratio in Kubo’s formalism

estimated within HRG model which include discrete as well as continuum ex-

ponential mass spectrum. We note that the ratio decrease with temperature at

low temperature followed by a sharp increase and finally flattens out at tempera-

tures around 160 MeV. This behavior is connected with the behavior of velocity

of sound with temperature through Eq.(3.2.8). The initial decrease of ζ/s with

temperature is due to increase of sound velocity at low temperature due to exci-

tation of light hadrons. At temperature T > 60MeV, the sharp rise is related to

the decrease of velocity of sound with excitations of heavier hadrons leading to

decrease of sound velocity which finally flattens out at temperatures around 155

MeV (see Fig. 2.3). The larger bulk viscosity to entropy ratio at higher chem-
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ical potential is again related to decrease of velocity of sound due to excitation

of heavier baryons. Such a behavior of rising of ζ/s with temperature on the

hadronic side is in contrast to decreasing behavior of the same within the PHSD

transport code. On the other hand, in Ref. [87], the increasing behavior of ζ/s

with temperature was observed on the hadronic side.
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Figure 3.10: Left panel: Bulk viscosity in Kubo’s formalism (Eq. 3.2.15) at
different magnetic field and chemical potentials. Right panel: Bulk viscosity to
entropy density in Kubo’s formalism at different magnetic fields.

Fig. 3.10(a) shows bulk viscosity as a function of temperature at two different

magnetic fields and chemical potentials. We note that vacuum contribution due

to finite magnetic field dominates the bulk viscosity up to 0.1 GeV. This behavior

may be interpreted as follows. The effective mass of the charged particle in

magnetic field is given by

m2
∗ = m2 +B(1− 2s) (3.3.1)

where s is total spin of the particle. This effective mass increases with magnetic

field for spin 0 channel but decreases for spin 1 channel and remains same for spin

1/2 channel. Thus statistical weight factor, exp(−βm∗) is larger for spin 1 chan-
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nel than for spin 0 channel. At low temperature where the system is dominated

by pions, thermal contribution to thermodynamic quantities (pressure, energy

density, magnetization, susceptibility) is very small. Hence these quantities are

dominated by vacuum part due to finite magnetic field. At finite magnetic field,

as the bulk viscosity is proportional to magnetic susceptibility, bulk viscosity has

dominant contribution from vacuum susceptibility. Above T w 0.1 GeV, due to

thermal excitation of ρ± mesons and other heavier hadrons, bulk viscosity rises.

Also at finite chemical potential we note that bulk viscosity rises more rapidly

as compared to µ = 0 case and thermal contribution to the bulk viscosity starts

at lower temperature. This is due to thermal excitation of baryons at lower

temperature.

Fig. 3.10(b) shows bulk viscosity in units of entropy density at finite magnetic

field (eB). We note that behavior of ζ/s in magnetic field is opposite to that of

eB = 0 case. This is a reflection of the fact that bulk viscosity is non-zero even at

T = 0 while entropy density is zero so that ratio ζ/s blows up. As temperature

increases, entropy density increases while bulk viscosity remains constant to its

vacuum value, whence ζ/s decreases.
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3.4 Conclusion

In this chapter we estimated the bulk and shear viscosities of hadronic matter.

To estimate bulk viscosity coefficient we used two different formalisms, viz.,

Kubo formalism and relativistic kinetic theory. The thermodynamical quantities

were estimated using HRG and its extensions. Shear viscosity coefficient was

estimated using kinetic theory only.

The bulk viscosity to entropy density ratio (ζ/s) estimated using Kubo’s

formalism rises with temperature, while at finite chemical potential, the ζ/s

become higher as compared to µ = 0 and is related to the fact that the ve-

locity of sound becomes smaller due to finite chemical potential with excitation

of heavier baryons contributing more to the energy density as compared to the

pressure. Unlike Kubo formalism, ratio ζ/s estimated using relativistic kinetic

theory decreases with temperature and almost vanishes near transition temper-

ature temperature.

The shear viscosity to entropy density ratio estimated using relativistic kinetic

theory shows decreasing behavior with temperature. Further, at finite chemical

potential η/s shows same behavior as a function of temperature but ratio is

smaller as compared to µ = 0. This decrease is solely due to rapid increase in

entropy density at finite µ. At finite baryon density ηT/(ε+P ) is correct measure

of fluidity. We find that effect of finite µ is more pronounced for ηT/(ε+P ) and

this is again attributed to rapid rise in enthalpy.

In order to make connection with heavy ion collision experiments we com-

puted both η/s and ζ/s along chemical freeze-out line. Along chemical freeze-out

curve both the ratios η/s and ηT/(ε+P ) remains constant apart from initial rise.

This suggest that fluid behavior of hadron gas does not change along chemical

freeze-out transition. Further, the ratio ζ/s decreases monotonically and then

becomes independent of center-of-mass energy along freeze-out.



Chapter 4

Transport properties of hot and

dense quark matter

4.1 Thermodynamics of two flavor NJL model

and meson masses

We summarize here the thermodynamics of the simplest NJL model with two

flavors with a four point interaction in the scalar and pseudo scalar channels with

Lagrangian given as

L = ψ̄(iγµ∂
µ −m0)ψ −G

(
(ψ̄ψ)2 + (ψ̄iγ5taψ)2

)
. (4.1.1)

Here, ψ is the doublet of u and d quarks. We also have assumed isospin symmetry

and have taken the same (current)mass m0 for both the flavors. Using the stan-

dard methods of thermal field theory, one can write down the thermodynamic

potential within a mean field approximation corresponding to the Lagrangian

69
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Eq.(4.1.1) as [88]

Ω(β, µ) = −2NcNf

(2π)3

∫ √
k2 +M2dk

− 2NcNf

(2π)3β

∫
dk (ln(1 + exp(−β(E − µ)) + ln(1 + exp(−β(E + µ)))

+
(M −m0)2

4G
,

(4.1.2)

where, β is inverse of temperature and µ is the quark chemical potential and

E(k) =
√

k2 +M2 is the on shell single particle energy with ’constituent’ quark

mass M∗. The constituent quark mass satisfies the self consistent gap equation

M = m0 − 2Gρs = m0 +
2NcNf

(2π)3

∫
M

E(k)
(1− f−(k, β, µ)− f+(k, β, µ)) dk

(4.1.3)

where, we have introduced the scalar density ρs given as

ρs = 〈ψ̄ψ〉 = −2NcNf

(2π)3

∫
dk

M

E(k)
(1− f−(k)− f+(k)) . (4.1.4)

In the above f∓(k, β, µ) = (exp(β(E ∓ µ)) + 1)−1 is the fermion distribution

function for quarks and anti-quarks respectively with a constituent mass M that

are related to the quark number density in the standard way

ρ =
2NcNf

(2π)3

∫
dk [f−(k, β, µ)− f+(k, β, µ)] (4.1.5)

Within random phase approximation (RPA), the meson propagator can be cal-

culated as

DM(ω,p) =
2iG

1− 2GΠM(ω,p)
(4.1.6)

where, M = σ, π for scalar and pseudo scalar channel mesons respectively and

ΠM is the corresponding polarization function. The mass of the meson is given

by the pole position of the meson propagator at zero momentum specified by the

∗Notations in this chapter will be quite different from that in Chapter 2 in the context of
NJL model.
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equation

1− 2GΠM(mM , 0) = 0 (4.1.7)

Explicitly,

Ππ(mπ,0) = I1 −m2
πI2(mπ, 0) (4.1.8)

Πσ(mσ,0) = I1 − (m2
σ − 2M2)I2(mσ) (4.1.9)

where,

I1 =
2NcNf

(2π)3

∫
dq

q

Eq
(1− f−(q, β, µ)− f+(q, β, µ)) (4.1.10)

and,

I2(mπ/σ) =
2NcNf

(2π)3

∫
dq

q

Eq
(1− f−(q, β, µ)− f+(q, β, µ))

1

m2
π/σ − 4E(q)2

(4.1.11)

so that the masses of the pion and sigma mesons are given, using the gap equation

Eq.(4.1.3) by
m0

M
+ 2Gm2

πI2(mπ) = 0 (4.1.12)

for pions and
m0

M
+ 2G(m2

σ − 4M2)I2(mσ) = 0 (4.1.13)

for the mass of the sigma meson. The medium dependent masses of these mesons,

so obtained, will be used later to estimate the relaxation time of from the scat-

tering of quarks and anti quarks through exchange of mesons. In the following

we look into the Boltzmann equation to derive the transport coefficients in terms

of the relaxation time.
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4.2 Boltzmann equation in relaxation time ap-

proximation and transport coefficients re-

visited

Within a quasi particle approximation, a kinetic theory treatment for calculation

of transport coefficient can be a reasonable approximation that we shall be fol-

lowing similar to as done in Refs. [3, 36, 43]†. The plasma can be described by a

phase space density for for each species of particle. Near equilibrium, the distri-

bution function can be expanded about a local equilibrium distribution function

for the quarks as,

f(x,p, t) = f 0(x,p, t) + f 1(x,p, t)

where, the local equilibrium distribution function f 0 is given as

f 0(x,p, t) = [exp (β(x) (uν(x)pν ∓ µ(x))) + 1]−1 (4.2.1)

Here, u is the flow velocity, µ is the chemical potential associated with a con-

served charge like baryon number. ∓µ corresponds to particle and antiparticle

distribution functions. Further, E =
√

p2 +M2 with a mass M which in general

is medium dependent. The departure from the equilibrium is described by the

Boltzmann equation

dfa
dt

=
∂fa
∂t

+ va · ∇fa −∇Ea · ∇pfa = −Ca[f ] (4.2.2)

where, we have introduced the species index ’a’ on the distribution function.

With a medium dependent mass, the last term on the left hand side can be

written as (M/Ea)(∂m/∂x
i)(∂fa/∂pi) and the Eq. (4.2.2) can be rewritten as

dfa
dt

=
pµ

Ea
∂µf

a − M

Ea

∂m

∂xi
∂fa

∂pi
= −Ca[f ] (4.2.3)

†In this chapter we will use slightly different method as well as notations to derive transport
coefficients.
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To study the transport coefficients, one is interested in small departure from

equilibrium in the hydrodynamic limit of slow spatial and temporal variations.

In the collision term on the right hand side we shall be limiting ourselves to 2→ 2

scatterings only. Within the relaxation time approximation, in the collision term

for species, all the distribution functions are given by the equilibrium distribution

function except the distribution function for particle ’a’. The collision term, to

first order in the deviation from equilibrium function will be then proportional

to f1 , realizing the fact that Ca[feq] = 0 by local detailed balance. In that case,

the collision term is given by

C[f ] = −f 1
a/τa (4.2.4)

τa, the relaxation time for particle ’a’, in general is a function of energy but one

can define a mean relaxation time taking a thermal average of the scattering

cross sections which we shall spell out in the following subsection.

We shall next use the Boltzmann equation to calculate the transport coef-

ficients in this relaxation time approximation. The departure from equilibrium

for the distribution function is used to estimate the departure of the equilibrium

energy momentum tensor to define the transport coefficients. Let us consider

now the structure of the energy momentum tensor T µν and of the quark current

Jµ. T µν and Jµ can be written in terms of chemical potential, temperature and

the four velocity uµ as

T µν = −Pgµν + wuµuν + ∆T µν , (4.2.5)

and,

Jµ = nuµ + ∆Jµ, (4.2.6)

where, P (T, µ) is the pressure, ε is the energy density, w = ε+P is the enthalpy,

uµ is the four velocity of the fluid. The dissipative parts are given by

∆T µν = η

(
Dµuν +Dνuµ +

2

3
∆µν∂αu

α

)
− ζ∂αuα, (4.2.7)
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and,

∆Jµ = λ(
nT

w
)2Dµ

(µ
T

)
(4.2.8)

with η, ζ and λ are the coefficients of shear viscosity, bulk viscosity and ther-

mal conductivity respectively. Further, in the above, Dµ = ∂µ − uµuα∂α is the

derivative normal to uµ. It is useful to note that, in the fluid rest frame, which

will be used to calculate the transport coefficients, D0 = 0 and Di = ∂i. We also

would like to note that for system without any conserved current, the thermal

conductivity is zero [80,82].

The energy momentum tensor, T µν and the current Jµ can also be written in

terms of the distribution functions as,

T µν =
∑
a

∫
dΓa

pµpν

Ea
fa + gµνV, (4.2.9)

and,

Jµ =

∫ ∑
a

ta

∫
dΓa

pµ
Ea
fa, (4.2.10)

where, we have introduced the notations dΓa = ga
d3p

(2π)3
, ga being the degeneracy

for species a; pµ = (Ea,p), with Ea =
√

p2 +m2
a. Further, V is the mean field

or the ‘vacuum’ energy density contribution in terms of the mean field giving a

medium dependent mass and ta = ±1 for particles and antiparticles respectively.

The non equilibrium part of the distribution function is used to calculate the

departure from equilibrium of the energy momentum tensor. The variation of

the spatial part of Eq.(4.2.9) is given as

δT ij =
∑
a

∫
dΓa

pipj

Ea

(
δfa − f 0

a

δEa
Ea

)
− δijδV, (4.2.11)

where, the variation of the quasi particle energy is also included to take into

account the medium dependence of the mass. The deviation of the distribution

function,in general, will have departure from the equilibrium form. In addition it

can also change from the change in the single particle energy from its equilibrium

value. Defining the equilibrium values of T , µ and E with a superscript ’0’, we
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can write

δfa = fa(Ea, T, µ)− f 0
a (E0

a, T
0, µ0) = δf̃a −

δEa
T

(f 0
a (1− f 0

a )), (4.2.12)

where, we have defined δf̃a = fa(Ea, T, µ)−fa(Ea, T0, µ0) and have retained up to

the linear term in δEa. Let us note that it is δf̃a which determines the transport

coefficient as it is defined with the non equilibrium energy, which enters in the

energy momentum conservation in the collision term of the Boltzmann equation.

Similarly, using the gap equation, the deviations in the ’vacuum’ energy term

in Eq.(4.2.9) is given by

δV =
∑
a

∫
dΓa

M

Ea
faδM. (4.2.13)

This leads to

δT ij =
∑
a

∫
dΓa

pipj

Ea
δf̃ −

∑
a

∫
dΓa

M

Ea
fa
(

1 +
p2(1− fa)

3EaT
+

p2

3E2
a

)
δM,

(4.2.14)

where, we have replaced pipj ∼ 1/3(p2) and for the terms involving δEa, we have

used δEa = (M/Ea)δM . The terms involving δM in Eq.(4.2.14) can be shown

to vanish by doing an integration by parts leading to

∆T ij =
∑
a

∫
dΓa

pipj

Ea
δf̃. (4.2.15)

In a similar manner, it can be shown that the departure of the quark current

due to the non equilibrium part of the distribution function can be written as

∆J i =
∑
a

ta

∫
dΓa

pi

Ea
δf̃ (4.2.16)

Next, we compute δf̃a ≡ f 1(x, p) using the Boltzmann equation, Eq.(4.2.3), in

the relaxation time approximation. This is then used to calculate non equilibrium

parts of energy momentum tensor and the quark current to finally relate them to

the transport equations using Eqs. (4.2.7) and (4.2.8). To do so, it is convenient
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to analyze in a local region choosing an appropriate rest frame. We further note

that we shall be working with first order hydrodynamics and hence will keep up

to first order in space time gradients only. The left hand side of the Boltzmann

equation Eq.(4.2.3), is explicitly small because of the gradients and we therefore

may replace fa by fa0 . In the local rest frame uµ = (1, 0, 0, 0), but, the gradients of

the velocities are nonzero. Further, in the local equilibrium distribution function

f 0
a in Eq.(4.2.1), the flow velocity, temperature and chemical potential all depend

upon x. In addition, the four momentum pa also depends upon the coordinate x

through the dependence of mass on the same. We give here some details of the

calculations of the left hand side of the Boltzmann equation. To do so, let us

calculate the derivative of the equilibrium distribution function Eq.(4.2.1) given

as

∂µf
0
a = −f 0

a (1− f 0
a )

[
− 1

T 2
(Ea − µa) +

1

T
∂µ(pνu

ν − µa)
]

(4.2.17)

Noting the fact the Ea also has spatial dependence through is mass dependence,

one obtains for the first term in the L.H.S. of Eq.(4.2.3)

pµ

Ea
∂µf

0
a =

f 0
a (1− f 0

a )

Ea

[
Ea

T 2
pµ∂µT + pµ∂µ

(
µa

T

)
− 1

T
(pµ∂µE

a + pµpν∂µuν)

]
(4.2.18)

while, the second term is given as

∂f 0
a

∂pi
= −f 0

a (1− f 0
a )

pi
EaT

(4.2.19)

Next using the fact that uνuν = 1, one can show that, in the local rest frame,

∂νu
0 = 0. This can be used to expand the term with gradient of flow velocity

Eq.(4.2.18) in terms of spatial and temporal derivatives of the flow velocity ui.

Combining both Eq.(4.2.18) and Eq.(4.2.19), LHS of Eq.(4.2.3), is given as,

f 0
a (1− f 0

a )

Ea

[
−Ea∂0

(
Ea − µa

T

)
Eapi

T

(
∂iT

T
− ∂0ui

)
+ pi∂i

(
µa

T

)
− pipj∂jui

]
= −f

1
a

τ
.

(4.2.20)

Next, we can use the conservation equation ∂µT
µν = 0 to write ∂0ui = ∂iP in

the rest frame . Using thermodynamic relations ∂iP = s∂iT + n∂iµ to write
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(∂iT )/T − ∂0ui = −(nT/w)∂i(µ/T ). Further, the spatial derivative of the flow

velocity can be decomposed in to a traceless part and a divergence part in the

flow velocity. This leads to

df 0
a

dt
=
f 0
a (1− f 0

a )

T
qa(β, µ) = −δf̃a

τa
(4.2.21)

where, we have defined,

qa(T, µ) = −
[
∂T

∂t

(
Ea − µa

T
− ∂Ea

∂T

)
− ∂µ

∂t

(
∂Ea

∂µ
− ta

)
+

T

Ea

(
ta − Ean

w

)
pi∂i

(µ
T

)
− pipj

2Ea
Wij +

p2

3Ea
∂ku

k

]
(4.2.22)

The Boltzmann equation Eq.(4.2.21) thus relates the non equilibrium part of

the distribution functions to the variation in fluid velocity,the temperature and

the chemical potential. This will be used to calculate the dissipative part of the

energy momentum tensor.

Using stress energy conservation ∂µT
µν = 0; the baryon number conservation

equation ∂µJ
µ = 0, as well as standard thermodynamic relations, one can relate

the temporal derivatives of temperature and chemical potentials with the velocity

of sound at constant baryon density and constant entropy density respectively

as

∂0T = −v2
nT∇ · u (4.2.23)

and

∂0µ = −v2
sµ∇ · u. (4.2.24)

The velocity of sound at constant density(n) can be calculated using Jacobian

methods as follows.



78 Chapter 4. Transport properties of hot and dense quark matter

v2
n =

(
∂P

∂ε

)
n

=

∂P
∂T

∂P
∂µ

+ ∂P
∂µ

dµ
dT

∂ε
∂T

∂ε
∂µ

+ ∂ε
∂µ

dµ
dT

(4.2.25)

Since baryon density has been kept constant we write

dn(T, µ) =
∂n

∂T
dT +

∂n

∂µ
dµ = 0 (4.2.26)

Thus we get
dµ

dT
= −∂n/∂T

∂n/∂µ
(4.2.27)

Using Eqs. (4.2.25) and (4.2.27) we get

v2
n =

∂(P, n)

∂(ε, n)
=

sχµµ − nχµT
∂ε
∂T
χµµ − ∂ε

∂µ
χµT

(4.2.28)

where we have defined χxy = ∂2P
∂x∂y

and have used standard thermodynamical

relations. Similarly we can obtain speed of sound at constant entropy density s

as,

v2
s =

(
∂P

∂ε

)
s

=
∂(P, s)

∂(ε, s)
=

sχµT − nχTT
∂ε
∂T
χµT − ∂ε

∂µ
χTT

(4.2.29)

In the NJL model one can explicitly calculate the derivatives of the energy den-

sity with temperature or chemical potential. On the other hand, using thermo-

dynamic relations one can also rewrite Eq.(4.2.28) and Eq.(4.2.29) as

v2
n =

sχµµ − nχµT
T (χµµχTT − χ2

µT )
(4.2.30)

v2
s =

nχTT − sχµT
µ(χµµχTT − χ2

µT )
(4.2.31)

Thus, we can have from Eq.(4.2.23) and Eq.(4.2.24), the variation for the distri-
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bution function n the relaxation time approximation,

δf̃a
τa

= −f
0
a (1− f 0

a )

T
qa(T, µ), (4.2.32)

with qa(T, µ) given as

qa(T, µ) = −Qa(T, µ,p
2)∇ · u +

T

Ea
pi∂i

(µ
T

)(
ta −

Ean

w

)
+
pipj

2T
Wij (4.2.33)

In the above, the coefficient of the divergence in flow velocity part, Qa, is given

by

−Qa(T, µ,p
2) =

[
v2
n

(
−Ea + T

∂Ea
∂T

+ µ
∂Ea
∂µ

)
+

(
∂P

∂n

)
ε

(
∂E

∂µ
− ta

)
+

p2
a

3Ea

]
(4.2.34)

Substituting the expression for δf̃ from Eq.(4.2.32) in Eq.(4.2.15), in the local

rest frame,

δT ij =
∑
a

∫
dΓ
piap

j
a

TEa
τaf

0
a (1− f 0

a )qa(p, β, µ). (4.2.35)

The contribution of the the term proportional to gradient of (µ/T ) term in

Eq.(4.2.33) vanishes because of symmetry. On comparison of the resulting ex-

pression with the tensor structure of the dissipative part of ∆T µν of Eq.(4.2.15),

we have the expressions for the shear viscosity coefficient η as

η =
1

15T

∑
a

∫
dΓa

p4
a

E2
a

(
τaf

0
a (1− f 0

a ))
)
. (4.2.36)

Similarly, the bulk viscosity coefficient ζ is given as

ζ = − 1

3T

∑
a

∫
dΓa

p2
a

Ea

(
τaf

0
a (1− f 0

a )Qa

)
(4.2.37)

In a similar manner, one can substitute δf̃ in Eq.(4.2.16)to obtain

∆Ji =
∑
a

∫
dΓap

iτaf 0
a (1− f 0

a )qa(t, µ). (4.2.38)

In the above, on the other hand, the term in qa that results in a nonzero contri-
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bution is the term with gradient in (µ/T ). Comparing this with Eq.(4.2.8), we

have the thermal conductivity given as

λ =
( w
nT

)2∑
a

∫
dΓa

p2τa
3E2

a

(
1− tanEa

w

)
(4.2.39)

However, the solutions for Qa as given in Eq.(4.2.34) for the bulk viscosity is

to be supplemented by Landau-Lifshitz matching conditions i.e. the variations of

the distribution function should be such that they satisfy the conditions uµ∆Jµ =

0 and uµ∆T µνuν = 0. In the local rest frame these conditions reduce to

∆J0 =
∑
a

∫
dΓat

aδfa = 0 (4.2.40)

∆T 00 =
∑
a

∫
dΓaEaδfa = 0. (4.2.41)

Using Eq.(4.2.12) relating δfa and δf̃ one can write the Landau Lifshitz condi-

tions in the relaxation time approximation as

∆J0 = 〈τaQa(T, µ)taga(T, µ)〉 = 0 (4.2.42)

∆T00 = 〈τaQa(T, µ)Eaga(T, µ)〉 = 0 (4.2.43)

with,

ga(T, µ) = 1−
T
(
∂Ea

∂T

)
σ

Ea − µa + T
(
∂µa

∂T

)
σ

(4.2.44)

where, we have defined the derivative with respect to temperature at fixed en-

tropy per quark as [89]

(
∂Ea

∂T

)
σ

=

(
∂Ea

∂T

)
µ

+

(
∂Ea

∂µ

)
T

(
∂µ

∂T

)
σ

(4.2.45)

and (
∂µ

∂T

)
σ

=
1

T

[
µ+

1

v2
n

(
∂P

∂n

)
ε

]
(4.2.46)

The above arises due to to the fact that the variations of temperature and chem-
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ical potential are not independent variations. They and are related by the hy-

drodynamic flow of the matter which occurs at constant entropy per baryon

σ = s/n [89]. Further, we have introduced the notation [3]

〈φa(p)〉 =

∫
dΓa[φa(p)f

0
a (1− f 0

a )].

If the variations as in Eq.(4.2.32) do not satisfy the the Landau-Lifshitz

conditions Eq.(4.2.42) and Eq.(4.2.43), one may still fulfill them performing a

shift [3, 89]

τaQa → τaQa − αnta − αeEa (4.2.47)

where, αn and αe are the Lagrange multipliers associated with conservation

of baryon number and energy. Performing the substitution Eq.(4.2.47) in Eq.

(4.2.42) and Eq.(4.2.43) we have the Landau-Lifshitz conditions given as

∑
a

ta〈τaQa〉 − αn
∑
a

〈ga〉 − αe
∑
a

〈taEaga〉 = 0, (4.2.48)

∑
a

〈EaτaQa〉 − αn
∑
a

〈taEaga〉 − αe
∑
a

〈E2
ag

a〉 = 0. (4.2.49)

One can solve these two equations for the coefficients αe and αn and calculate

the bulk viscosity coefficient ζ after performing the replacement Eq.(4.2.47) in

Eq.(4.2.37). This leads to

ζ = − 1

3T

∑
a

∫
dΓa

p2
a

Ea

(
τaf

0
a (1− f 0

a )Qa

)
− αew − αnn. (4.2.50)

On the other hand, it is convenient to use Eq.(4.2.48) and Eq.(4.2.49) to obtain

αew + αnn = −
∑
a

〈τaQa

(
Ea − T ∂E

a

∂T
− µ∂E

a

∂µ

)
+

(
∂P

∂n

)
ε

(
∂Ea

∂µ
− ta

)
〉.

(4.2.51)



82 Chapter 4. Transport properties of hot and dense quark matter

Substituting this back in Eq.(4.2.50), we have

ζ =
1

9T

∑
a

∫
dΓaτaf 0

a (1− f 0
a )

×
[

p2

Ea
− 3v2

n

(
Ea − T ∂E

a

∂T
− µ∂E

a

∂µ

)
+ 3

(
∂P

∂n

)
ε

(
∂Ea

∂µ
− ta

)]2

(4.2.52)

In a similar manner, putting the constraint ∆T 0i = 0 in the rest frame yields,

the expression for thermal conductivity as [89]

λ =
1

3

( w
nT

)2∑
a

∫
dΓ

p2

E2
a

τa
(
ta − nEa

w

)2

f 0
a (1− f 0

a ) (4.2.53)

In passing, we would like to comment here that the expression for thermal con-

ductivity is identical to as derived in Ref. [80] discussed for a hot pion gas within

chiral perturbation theory, when one replaces the rate by inverse of the width and

fermion distribution functions for the quarks by the bose distribution functions

for pions.

Thus all the dissipative coefficients are explicitly positive definite within the

relaxation time approximation. The expression for the bulk viscosity reduces to

the expression for the same in the limit of vanishing density to that of Ref. [43].

Further, the expression also reduces to the expression for bulk viscosity in Ref [75]

when medium dependence of the single particle energy is taken into account

. Eq.(4.2.36), Eq.(4.2.52) and Eq.(4.2.53) for the dissipation coefficients shall

be the focus of our the discussion in what follows. Let us note that in these

equations so far, the unknown quantity is the estimation of the relaxation time

τa. As mentioned earlier, τa, in general, will be energy dependent but we shall

be taking energy averaged estimation of the relaxation time by taking thermal

averaging of the scattering cross section.
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4.2.1 Transition rates and thermal averaging

The key quantity in estimating the transport coefficient within the relaxation

time approximation is the thermal averaged transition rate W̄ . The same e.g.

for a general fermion fermion scattering process a, b→ c, d is given as

W̄ab =
1

nanb

∫
dπadπbf

a(pa)f
b(pb)Wab(s) (4.2.54)

In the above, fi are the distribution functions for the fermions and dπi =

(1/(2π)3)dpi/2Ei, ni = (gi/(2π)3)
∫
dpif(pi) is the number density of i-th species

with degeneracy gi. Further, the quantity Wab(s) is dimensionless, Lorentz in-

variant and is dependent only on the mandelstam variable s and is given as

Wab(s) =
1

1 + δab

∫
dπcdπd(2π)4δ4(pa +pb−pc−pd)|M̄ |2(1−fc(pc))(1−fd(pd)).

(4.2.55)

Here, we have included the Pauli blocking factors. The quantity Wab(s) can

be related to the cross section by noting that

dσ

dt
=

1

64πs

1

pab
|M̄ |2 (4.2.56)

where pab =
√

(s− 4m2)/2 is the magnitude of the three momentum of the

incoming particles in the center of mass (CM) frame if the masses of the particles

are the same. Thus in the CM frame,we have, using the delta function and

integrating over the final momenta

Wab(s) =
2
√
s(s− 4m2)

1 + δab

∫ 0

tmin

dt(
dσ

dt
)(1− fc(

√
s

2
, µ))(1− fd(

√
s

2
, µ)) (4.2.57)

where, we have tmin = −(s − 4m2) for non identical particle case and tmin =

−1/2(s− 4m2) for identical particles in the final state.

Once Wab is calculated as a function of s, one has to do the thermal averaging

of the transition rate using Eq.(4.2.54) . To perform the integration over dπadπb
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in Eq.(4.2.54), we note that the volume element dpadpb is given by

dpadpb = 4π|pa|EadEa4π|pb|EbdEb
1

2
d(cos θ) (4.2.58)

where, θ is the angle between the three momenta pa and pb It is somewhat

convenient to change the integration variables from Ea, Eb, θ to E+, E−, s given

by

E+ = Ea + Eb, E− = Ea − Eb

s = 2m2 + 2EaEb − 2|pa||pb| cos θ

so that the volume element becomes

dpadpb = 2π2EaEbdE+dE−ds (4.2.59)

The integration region (E1 > m,E2 > m, | cos θ| ≤ 1) transforms into

|E−| < X, E+ ≥
√
s, s ≥ 4m2

. where, X =
√

1− 4m2

s

√
E2

+ − s. It is then possible to perform the integration

over the variable E− analytically when the distribution functions in Eq.(4.2.54)

are fermionic distribution functions f(x) = (1+exp(βx−µ))−1. Thus the thermal

averaged transition rate is given by

W̄ab =
1

nanb

gagb
(2π)4

1

8

∫ ∞
4m2

ds

∫ ∞
√
s

dE+

∫ x

−X
dE−f

a(
Ea + Eb

2
, µ, β)f b((Ea−Eb), µ, β)Wab(s)

(4.2.60)

The thermal relaxation time for each species is then given as

τ−1
a =

∑
b

nbW̄ab (4.2.61)

where, the summation runs over all species of quarks and W̄ab is the sum of the

transition rates of all processes with a, b as the initial states. In the present case
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of two flavors we consider the following possible scattering.

uū→ uū, ud̄→ ud̄, uū→ dd̄,

uu→ uu, ud→ ud, ūū→ ūū,

ūd̄→ ūd̄, dd̄→ dd̄, dd̄→ uū,

dū→ dū, dd→ dd, d̄d̄→ d̄d̄,

One can use i-spin symmetry, charge conjugation symmetry as well as the crossing

symmetry to relate the matrix element square for the above 12 processes to

get related to each other and one has to evaluate only two independent matrix

elements to evaluate all these 12 processes. We can choose as in Ref. [90]) these

to be the processes uū → uū and ud̄ → ud̄ and use the symmetry conditions to

calculate the rest. We note however that while the matrix elements are related

the thermal averaged rates are not as they involve also the thermal distribution

functions for the initial states as well as the Pauli blocking factors for the final

states. The corresponding matrix element square are written down in Ref. [91]

which we do not repeat here.

4.3 Results and discussion

The 2 flavor NJL model as given in Eq.(4.1.1), within which we shall be dis-

cussing the results, has there parameters– namely, the four point coupling G,

the three momentum cutoff Λ to regularize the integrals appearing in the mass

gap equation, and, the integrals involving meson masses and the current quark

mass m which we take to be the same for u and di quarks. Within the mean

field approximation for the thermodynamic potential, and the RPA approxi-

mation for the meson masses, these three parameters are fixed by fitting the

pion mass , the pion decay constant and the quark condensate. While the

pion mass mπ = 135 MeV [92] and pion decay constant fπ = 92.4a MeV [93]

are known somewhat accurately, the uncertainties in the quark condensates are
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Figure 4.1: Temperature dependence of the constituent quark mass M , and
pion and sigma meson masses at µ = 0 [Fig. (1a)] and temperature derivative of
the constituent quark mass for µ = 0 MeV and µ = 100 MeV [Fig. (1b)].

rather large. Whereas, extraction from QCD sum rules turn out to be in the

range 190 MeV< −〈ūu〉1/3 < 260 MeV ( at renormalization scale of 1GeV) [94],

extraction from lattice simulation turns out to be −〈ūu〉1/3 ∼ 231 MeV. We have

used the parameter set here m = 5.6 MeV, Λ=587.9 MeV and GΛ2 = 2.44. This

leads to the vacuum value of the constituent quark mass to be M ' 400 MeV,

while the condensate value as −〈ūu〉1/3 = 241 MeV.

Let us first discuss the thermodynamics of the two flavor NJL model as rele-

vant for the calculation of the transport coefficients.

With the parameters as above, the gap equation is first solved using Eq.(4.1.3)

for a given temperature and chemical potential. This is then used to solve for the

masses of the pion and sigma masses using Eq.(4.1.12) and Eq.(4.1.13) within the

random phase approximation. In Fig.(1a), we have plotted the constituent quark

mass, and the meson masses so derived as a function of temperature for µ = 0.

There is a crossover from low temperature region where there is a large differ-

ence between the pion and sigma meson masses while at high temperature, they

become degenerate. and increase linearly with temperature. The constituent



4.3. Results and discussion 87

0.05

0.1

0.15

0.2

0.25

0.3

0.35

100 150 200 250 300

T (MeV)

c2 s
µ = 0MeV
µ = 100MeV

10

20

30

40

50

60

70

120 140 160 180 200 220 240

T (MeV)

C
V

T
3

µ = 0MeV
µ = 100MeV

(2a) (2b)

Figure 4.2: Temperature dependence of square of the velocity of sound [Fig.
(2a)] and Cv/T

2 [Fig. (2b)] for µ = 0 MeV and µ = 100 MeV and temperature
derivative of the constituent quark mass for µ = 0 MeV and µ = 100 MeV.

quark mass decrease to a small values but never vanishes.a The chiral crossover

transition Tχ turns out to be about 188 MeV for µ = 0 and about 180 MeV for

µ = 100 MeV. These are defined by the peak in the derivative of the constituent

mass (dM/dT ) which we have shown in Fig.(1b). Let us note here that the

constituent mass at Tχ turns out to be about 145 MeV. On the other hand, one

can have the other characteristic temperature namely, the Mott temperature TM

defined through the mπ(TM) = 2M(TM) i.e. the temperature when the twice

the constituent quark mass become equal to that of the pion mass. As may be

observed in Fig.1-a the Mott temperature for pions is about 197 MeV. This tem-

perature is relevant in the present case where we estimate the relaxation time

using quark scattering involving meson exchange.

Next, we show, in Fig 2-a, the temperature dependence of the square of the

velocity of sound v2
n = (dp/de)n at constant quark number density as defined

in Eq.(4.2.28). The velocity of sound do not show any dip around the critical

temperature Tχ, but rises around the critical temperature and approaches the

value of 1
3

at high temperatures. In Fig. 2-b , we show the dependence of specific
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Figure 4.3: Fig. (3a) shows relaxation time as a function of temperature for
µ = 0 MeV and for µ = 100 MeV. In Fig. (3b), shear viscosity to entropy
density ratio is shown for µ = 0 MeV and µ = 100 MeV.

heat cV ≡ (dε/dT )µ scaled by T 3. This quantity shows a peak at TC and which

occurs at lower temperature as the density is increased. At high temperature

however, CV /T
3 approaches a constant at small chemical potential. We would

like to mention that the behavior of velocity of sound shows different behavior

as compared to lattice simulations [15] where it shows a minimum and then rises

to a value little less than the ideal gas limit of 1/3 . The present results for the

sound velocity is similar in nature to linear sigma model calculations of Ref. [43]

with a lighter sigma meson of mass about 600 MeV. The behavior of specific

heat is also similar to as observed in Ref [43]. This behavior, as we shall observe

later, gets reflected in the results for the bulk viscosity.

Next, we discuss the estimation of averaged relaxation time as a function of

temperature. Let us recall that this quantity is inversely related to the transition

rate W̄abnb as in Eq.(4.2.61) with Wabis the transition rate of all processes with

species a,b in the the initial states and is related to the corresponding scatter-

ing cross section as in Eq.(4.2.57). In general, the dominant contribution here

comes from quark anti-quark scattering from s channel through propagation of
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Figure 4.4: Ratio of bulk viscosity to entropy density for µ = 0 MeV and for
µ = 100 MeV.

the resonance states, the pions and the sigma. The mass of sigma meson de-

crease with increase in temperature becoming a minimum at the Mott transition

temperature TM leading to an enhancement of the cross section. This, in turn,

leads to a minimum in the relaxation time. Beyond the transition temperature

the resonance masses increase with temperature linearly leading to a smaller

cross section and hence an increase in the relaxation time beyond the critical

temperature. This generic feature is observed in Fig.3-a.

Let us note the τ depends both on the transition rate and the density of

the particles of the initial state other than the species ‘a′. It turns out that

the transition rate is dominant for the process ud̄ → ud̄. At finite chemical

potential, for temperatures greater than the transition temperature, quark den-

sity is larger compared to the anti quarks. As there are fewer anti quarks to

scatter off , the cross section for quark-antiquary scattering decreases leading to

τ(µ) > τ(µ = 0). On the other hand, for anti-quarks, there are more quarks to

scatter off at nonzero µ as compared to at µ = 0. This leads to a lower value

for relaxation time for the anti quark at finite µ as compared to µ = 0 case.

On the other hand, for temperatures below the critical temperature, while the

quark-anti quark transition rate is dominant, the density of anti quark is sup-
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Figure 4.5: the violation of conformality measure C11 − 3V 2
n [Fig. (5a)] and

C2 = M2 − TM dM
dT

[Fig. (5b)] as a function of temperature for µ = 0 MeV and
for µ = 100 MeV.

pressed very much by the constituent quark mass for µ 6= 0. The quark number

density however is enhanced contribution from quark quark scattering becomes

more important resulting in a smaller value for the relaxation time at finite µ

compared to µ = 0 case. In Fig(3-b) we have plotted the shear viscosity to en-

tropy ratio ( eta
s

) as a function of temperature for µ = 0MeV and µ = 100MeV

. As expected from the τ behavior with temperature, η/s has a minimum at the

critical temperature beyond which it increase slowly. At finite µ η/s is larger

as compared to vanishing µ. This is due to two reasons. Firstly, τ at finiteµ

is larger and, further, the quark density is also larger as compared to the anti

quarks at finite density.

In Fig. (4) we show the ratio of bulk viscosity to entropy density ( ζ
s
) as a

function of temperature. The bulk viscosity increases rapidly near the critical

temperature as temperature decrease from high temperature beyond the critical

temperature to temperatures below it. However, it is not a maximum at the

critical temperature. After the rapid rise near critical temperature it increases
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Figure 4.6: Thermal conductivity in units of T 2 for µ = 100 MeV.

slowly. Let us note that one can rewrite the expression for the bulk viscosity as

ζ =
1

9T

∑
a

∫
dΓa

τa

E2
a

[
p2(1− 3v2

n) + 3v2
n

(
M2 − TM dM

dT
− µM dM

dT

)
+ 3

(
∂P

∂n

)
ε

(
M
dM

∂µ
− Eata

)]2

f 0
a (1− f 0

a ) (4.3.1)

At zero baryon density, bulk viscosity depends quadratically upon the viola-

tion of conformality measures C1 = 1 − 3V 2
0 and C2 = M2 − TM dM

dT
[43]. The

behavior of these two parameters are plotted as a function of temperature in Fig

(5). For comparison, we have also plotted the corresponding quantities at non

zero µ. As may be observed, ζ/s is largest when the violation of conformality is

large. At finite baryon density, (1− v2
n) does not vanish nor the factor (∂P/∂n)ε

as a result of which the ratio ζ/s does not vanish unlike µ = 0 case. The behavior

of bulk viscosity is similar qualitatively to that of linear sigma model of Ref. [43].

Our results regarding the ration η/s qualitatively look similar as compared to

that of Ref. [37]. However, the bulk viscosity to entropy ratio look different as

we have implemented the Landau Lifshitz matching conditions explicitly leading

to different expression for ζ. This apart, while estimating the average relaxation

time we have used the transition rate calculated in a covariant manner similar
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to Ref. [91] where as Ref. [37] uses a probability distribution to calculate the

thermal averaged cross section similar to [90].

Finally, in Fig. (6) we have plotted thermal conductivity of quark matter

at µ = 100MeV in units of T 2. As may be noted, the ratio λ/T 2 shows a non

monotonic behavior with a minimum at the critical temperature. The origin of

this again is related to the minimum of the relaxation time at the critical tem-

perature. The present behavior is in contrast to the same obtained in Ref. [95]

where the same ratio shows a monotonically decreasing function of temperature.

The behavior of λ/T 2 was also studied in Ref. [96] where, the ratio showed a

increasing behavior with temperature with however a slower rise with tempera-

ture as compared to the results shown in Fig. 6. Thermal conductivity was also

estimated for within chiral perturbation theory for hot pion gas in Ref. [80]. The

variation of thermal conductivity here is also non monotonic with temperature.

Within the Green Kubo approach, thermal conductivity was estimated for two

flavors in Ref. [97] within the instanton liquid model where however the thermal

conductivity saturates beyond T=150 MeV in contrast to the present calculation.

4.4 Conclusion

In this chapter we estimated the transport properties of hot and dense quark

matter by solving the Boltzmann kinetic equation within relaxation time approx-

imation. The thermodynamical quantities as well as medium dependent quark

and meson masses are estimated within two flavor NJL model. To estimate the

relaxation time we have considered the quark-antiquark two body scatterings

through exchange of pion and sigma resonances. Since the meson masses are

minimum at the transition temperatures beyond which they are degenerate and

increase linear with temperature, the meson propagator occurring in the transi-

tion amplitude lead to a large contribution to the cross section for the quark, anti

quark scattering. This eventually leads to a smaller relaxation time which, in

turn, lead to a minimum in the temperature dependence of the relaxation time.

While computing the averaged relaxation time we have performed the procedure
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in a manifestly covariant manner, rather than multiplying an ad hoc probabil-

ity function to estimate the thermal averaged cross section. We have used the

expressions for the transport coefficients that are manifestly positive definite as

they should be. The expression for shear viscosity only depends on the relax-

ation time and the distribution functions. However, both the expressions for the

coefficients of bulk viscosity and thermal conductivity involve equation of state.

The expressions for the transport coefficients are direct generalization of their

counterparts at zero chemical potential. All the three transport coefficients are

minimum at the Mott temperature.





Chapter 5

Summary and outlook

In this thesis we studied the phenomenological aspects of strongly interacting

matter under extreme conditions of temperature and density. We were espe-

cially interested in the phenomenology of matter created in heavy-ion collision

experiments regarding its thermodynamics and transport properties. In Chapter

1 we briefly discussed the phase diagram of quantum chromodynamics with spe-

cial emphasize on the hadronic and the quark-gluon-plasma phase which were

phases of interest in this thesis. We discussed the evolution of matter created

in HICs from thermalized quark-gluon matter to freely streaming hadrons which

are finally detected in detectors. We discussed the relativistic hydrodynamics

as an effective theory valid for long wavelength and small frequencies. We saw

that apart from ideal hydrodynamics viscous effects are also very important to

describe the evolution of matter created in HICs. Computing these viscosity co-

efficients, namely, shear viscosity (η), bulk viscosity (ζ) and thermal conductivity

(λ), was the central theme of our thesis.

To carry out the study of hadronic phase it is necessary to determine the

correct equation of state of hadronic matter consisting pions, kaons, η mesons,

baryons and other heavy resonances. At vanishing chemical potential the LQCD

simulations gives the equation of state of hadronic matter with reasonably good

accuracy. However, it fails to do so at finite µ. In Chapter 2 we discussed

the hadron resonance gas model as an effective model successfully describing

the hadronic phase of QCD at µ = 0 as well as µ 6= 0. The success of ideal
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HRG is attributed to the fact that it reproduces LQCD results quit well at low

temperature. We further discussed the possible improvements in ideal HRG

model in order to account for the short range repulsive interactions and the

chiral symmetry of QCD. Former aspect of QCD can be accounted by excluded

volume corrections in the ideal HRG model where we attribute finite hardcore

radius to each hadron whereas the later aspect can be accounted by including

medium dependent hadron masses in the partition function of ideal HRG model.

We found that with these improvements the HRG model agrees with the LQCD

even at higher temperature (T ∼ 170 MeV).

In Chapter 1 we discussed the importance of studying the transport coeffi-

cients of strongly interacting matter. In Chapter 3 we discussed the estimation of

transport coefficients of hadronic matter. The thermodynamics of hadronic mat-

ter was estimated using HRG model and its various improvements. We used two

different formalisms, viz., Kubo’s formalism and relativistic kinetic theory. We

derived bulk viscosity coefficient in terms of thermodynamical quantities using

Kubo’s formula together with the QCD low energy theorems at finite temper-

ature and density. We found that the bulk viscosity to entropy density ratio

(ζ/s) increases with the temperature while at finite chemical potential, ζ/s be-

come higher as compared to µ = 0 and is related to the fact that the velocity

of sound becomes smaller due to finite chemical potential with the excitation of

heavier baryons contributing more to the energy density as compared to the pres-

sure. Unlike the Kubo formalism, ratio ζ/s estimated using relativistic kinetic

theory decreases with the temperature and almost vanishes near the transition

temperature (Tc).

The shear viscosity to entropy density ratio estimated using the relativistic

kinetic theory shows decreasing behavior with temperature. Further, at finite

chemical potential η/s shows same behavior as a function of temperature but

ratio is smaller as compared to µ = 0. This decrease is solely due to rapid increase

in entropy density at finite µ. At finite baryon density ηT/(ε + P ) is correct

measure of fluidity. We found that the effect of finite µ is more pronounced for

ηT/(ε+ P ) and this is again attributed to the rapid rise in enthalpy.
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To complete this analysis we made the connection of viscosity coefficients

with the heavy ion collision experiments by computing both η/s and ζ/s along

chemical freeze-out line where we found that along chemical freeze-out curve both

the ratios, η/s and ηT/(ε + P ), remains constant apart from initial rise. This

suggest that the fluid behavior of the hadron gas does not change along chemical

freeze-out curve. Further we found that the ratio ζ/s decreases monotonically

and then becomes independent of center-of-mass energy along freeze-out.

Finally in Chapter 4 we estimated the transport coefficients, shear (η) and

bulk viscosity (ζ) as well as thermal conductivity (λ) of hot and dense quark

matter again using relativistic Boltzmann equation in relaxation time approxi-

mation within ambit of two flavor NJL model. To estimate the relaxation time we

have considered the quark-antiquark two body scatterings through exchange of

pion and sigma resonances. We found that since the meson masses are minimum

at the transition temperatures beyond which they are degenerate and increase

linear with temperature, the meson propagator occurring in the transition am-

plitude lead to a large contribution to the cross section for the quark-antiquark

scattering. This leads to a smaller relaxation time which, in turn, lead to a

minimum in the temperature dependence of the relaxation time. This behavior

of the relaxation time is reflected in all the transport coefficients, η/s, ζ/s and

λ/T 2, which showed the minimum at the Mott temperature.

In this thesis we pursued our goal to understand the strongly interacting mat-

ter where we tried to address many questions starting from finding the correct

equation of state for hadronic matter using HRG model and for quark mat-

ter using NJL model and finally estimated the transport coefficients of both

hadronic as well as quark matter realizing their importance in the evolution of

matter created in heavy ion collision. In this endeavor we further raised many

question which needs to be explored. In the early stages of off central heavy-

ion collisions very strong, although transient, magnetic field is generated. Such

magnetic field breaks the rotational symmetry in the system and stress tensor

becomes anisotropic. Thus all the transport coefficients become anisotropic in

presence of magnetic field. Thus detailed study of the transport properties of
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strongly interacting matter in presence of magnetic filed would be very interest-

ing. Also in the phase diagram of QCD, it is still not well settle issue how the

transport coefficients might behave at or very close to the critical point. These

might be the interesting avenues that needs further examination.
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