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STATEMENT

In the immensely complex system such as a nucleus, a large amount
of informétion regarding general properties, can be extracted by an understanding
~ of the symmetries manifested vﬁthin sﬁch a system., The consequences of having
a symmetry are far reaching. Besides giving rise to conservation laws, selection
iﬁﬂes, and simple relationships between varioué observables, they brovide an
approximation schem.e for the detailed study of the s.ystem. The study of group

symmetry in nuclear structure is therefore of great importance,

Historically it was in nuclear physics that dynamical symmetr_ies
-~i.e. those not associated with space-time invariance were first considered.
In 1932 Heisenberg suggested that the neutron and proton m-a‘y be regarded as the
two char;ge-states of a nucleoﬁ. Later it was found that nuclear forces are
charge independent and this led to thé very important notion of isospin. Wigner
in 1937 extended the idea and introduced the group SU (4) in connection with
the spin-isospin independence of the nuclear interaction. Later on various other
groups, symplectic symmetry group Sp(N) for the study of pairing effects and
SU (3) which cleécribeé rqtational behaviour in nuclei were suggested. However,
for a long time the real status of group symmetries was not clear in the sense
that although one knew that some of these symmetries were not exact, one did
not know to what extent they were "good" or "broliéll". Microscopic métrix
methods, for studying tiﬂs question though applicable in principle, become very
difficult to handlg in lai'ge vector spaces formed by the distribution of m

nucleons in N gingle particle orbits. The advent of Spectral Distribution Methods,



illti'oduced by French, paved the way for a systematic study of group

symmetries jn nuclei, and one now knows a good deal more about them.

The thesis describes an application of distribution methods to the
 study of symmert_p_ieb_s_jn‘,x_lluclei. We have considered symmetries associated
with finite dimensional vector spaces, these being related to the unitary group

in N dimensions U) and its subgroups.

Spectral averages of the nuclear interaction over states defined by
the irreducible repx"esentation of varioﬁs relevant groups have been evaluated.
These have been gsed to determine ground state energies, low energy spectra
and fractional occupancy of single particle orbits for nuclei in the (sd) and
(fp)-shells. Results are compgred with microscopic calculations and experi—
ment and .the agreement is good. It is found that the distribution method is

able to predict binding energies and spectra in fairly large vector spaces

(fp-shell) with remarkable accuracy.

The "goodness" of space symmetry for light (sd-shell) and heavier
(fp-shell) nuclei has been investigated. When Wigner proposed the group
SU(4), it was generally éxpected that the supermultiplet scheme would be
confined to light nuclei, It was 1_1.owever, shown later by Franzini and
Radicati that a mass formula, as derived from this symmetry model, seems
to improve in validity with increasing mass number. We however find, that
SU(4) symmetry in nuclei, is strongly mixed. It appears then, that this
particular consequence arising out of s‘pace 'symmetry is not affected by strong

mixing in the wave functicns., Of course by the same argument the mass



relationship does not say anything s'ignificant about the goodness of
symmetry either. The usefulness of SU (4) partial level densities in

alpha transfer reactions has been briefly indicated.

The distributioﬁ methods have been used to investigate the
average deformation (quadrupole moment) as a function of the excitation
energy in a nucleus. We describe, how by defining a sujtable ‘configura~ -
tion space and 'using these methods, one can obtain the energy variation
of the average deformation. The average moment is of interest in
heavy ion reac.tion processes where compound nuclear fc;rmation takes
place. The configuration space used in the study of average deformatipn
also enables one to calculate fixed angular momentum ‘J averages.

These have been used to determine binding energies and low lying

spectra of nuclei.

Finally, some of the formal aspects regarding group averaging
ha\}e been discussed. The spectral distribution method requires
evaluation of the low moments of the Hamiltonian operator H over
statés belonging to an irreducible representation of a group. From the
definition of these moments, it follows that for each moment only the
g’rouplscalar part of the appropriate power of H would contribute. For
evaluating these moments it is sometimes possible to construct new
operafors, one for each momendt, v'vhich.are group scalars and have the
correct particle rank. Morcover these new operators reproduce.the

" moments correctly and are much simpler to work with, It is therefore
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very v'essential to extend this procedure for evaluating moments to as
many groups as possible. We have described a way of evaluating
moments over states defined by SU(4) symmetry and isospin, and also
for the Elliott SU(3) group. Furthér, expressions for the calculation

of spectral averages over states defined by the canonical chain of

Unitary groups have been derived.

g{)ﬁ/‘«_» e C ~€»MY/Q\ P\éww.wk l-i\-cq

Jitendra C. Parikh : Rizwan ul Haq

(Professor-in-Charge) (Author)



ACKNOWLEDGEMENTS

The author expresses his deep gratiﬁade to Pfofessor
Jitendra C. Parikh for introducing him to the subject of
group theory and its application to nuclear physics; and
acknowledges having learnt a great deal from him. He is
indebted to him for his valuable guidance, inspiratibn and

‘constant encouragement throughout the course of this work.

‘The author is indebted to Professor K.H. Bhatt for
many stlmulatlng discussions and ‘is grateful to hlm fbr
reading the manuscript and making many suggestions for-;ts
improvement. It is a pleasure to thank Professor S.P. Paﬁdya
for his keen interest and encouragement shown in this work.
Special thanks are due to Dr. S.B. Khadkikar and Dr. D.R.
Kulkarni for the innumerable discussionsvthevauthor has had

with them.

‘ During ﬁhe course of his‘workg the author has benefi-
tted a great deal from the expert advice of Dr. Rao 5. Koneru
in computation and is immensely grateful to him. Help in
computer programming pfovided by Mr. H.B. Shah and liberal
computer facilities given by Dr. Dinesh Patel are recorded

with a deep sense of gratitude.



The task in preparing the manuscript was substantially
lightened by the unfailing cheerfulness and patiente with
which a number of people have helped the author. Sincere |
thanks are due to Mr. V. Sahadevan for his excellent typing
of the manuscript with remarkable speed, to the library staff

!

and to the photographic and drafting section.

The author records his deep gratitude to his parents
for their congtant support andlencouragement. Einally,
between the lines lies thq unstated yet implicit gratitude
of the author to a host of others who have Helped him dire-

ctly ér indirectly.



IT

CONTENTS

INTRODUCTION

Te1
1.2
1.2.1
1.2.2
142.3

1.2.4

1.3
1.4

SPACE
2.1
2.2
2+ 241

2e2.2

2.3
2.3.#
2.
2,41
2.2
2.4.3

Symmetries and Statistics
Spectral Distribution Methods
Moments and Distributions
VEWaluation of Sbectral Moments
Normality of Distributions

Application of the Spectral Distribution
Method to Nuclear Spectroscopy

' The Unitary Group and its Subgroups

Scope of the Thesis

SYMMETRY IN LIGHT NUCLEIL

Introduction

The Supermultiplet Theory

Bvidence of Space Symmetry in Nuclei

Study of SU(4) Symmetry using Distribution
Method

U(N) and the Direct Product Subgroup U(N/U)xU()
Representations of U(N/4) and U(l)

The Supermultiplet Group SU(L)

Representations of SU(L)

Casimir Invariants of SU(W)

The Charge-Spin Structure of the Supermultiplet

.32

35

37
38
39
41

h3

45
47
50
51



IIT

2.5
2.5.1
2.5.2
2.5.3
2.5
2.5+5
2.5.6

2.6

SU(4)-Isospin-spin Averages

Evaluation of Spectral Moments

SU(4)=-T-3 Momeﬁts in the 2s~1d Shéll
Ground State Energies and Low BEnergy Spectra
Goodness of SU(4) Symmetry

Binding Energy Relationship for Heavy‘Nudlei

SU(Y4) Partial Level Densities and 4Alpha Transfer
Reactions

Concluding Remarks

SPECTRAL DISTRIBUTION STUDY OF NUCLEI IN 2p-1f SHELL

3.1
3.2

3.201

3,242

3.3
3.k

3.1
3.2

3‘.4.3

3.5

Introduction

Averaging over States defined by Subgroups of
U(N)

Scalar Averaging

EinervAveraging

Spectral Moments in 2p-1f Shell -
Application of Spectral Moments

Ground State Energies and Loy'lying Spectra

Configuration Intensities and Fractional
Occupancy of Single Particle Orbits

SU(4) Symmetry Mixing and Franzini-Radicati
Mass Formula T

Conclusion

53

5L
61
73
79
90

91

oL

Y

97
100

112

129
129
146

1 58

178



Iv

VI

FIXED ANGULAR MOMENTUM AVERAGES AND SPECTRAL
DISTRIBUTION APPROACH TO DEFORMATION ENERGY

CURVES

4.1  Introduction

L.o TFixed Angular Momentum (J) Moments

4.2.1 Evaluation of Spectral Moments with Fixed-J
4.2.2 Spectra of States with fixed-J

L, 3 Average Deformation Energy Curves

4.4 Energy vs Average Deformatlon in Elllott SU(3)
Scheme

4.5  Conclusion

FOEMAL ASPECTS REGARDING GROUP AVERAGING

5.1 Introduction

5.2 8U(4)-Isospin Averaging
5.3 Averaging for SU(3) Group

5.4 A Projection Operator Approach for Bvalua-
ting Averages

5L 1 SU(3) averaging

5.4.2 Averaging over the Canonical Chain of Unitary
Groups

55 Conclusion
SUMMARY AND FUTURE PROSPECTS
References

Appendix

181
183
186
201
205
209 -

210

212
21k
227
233
234
o422

248

253
256



INTRODUCTION

4.1 Symmetries and Statistics

A large nmount of information regarding the behaviour
”bf a many particle system can be obtained by a consideration of
the underlying symmetries and an application of statistical
ideas. The detailed study of a complex gystem such as a nucleus,
being often too difficult, the relevance of these two general
approaches, which provide an understanding of some broad
features can be immediately appreciated. The characterization
of & nuclear system in termg of its symmetry properties‘and
statistical behaviour is important in the analysis of nuclear

phenomena.

The existence of a symmetry has profound consequenées.
Occurrence of symmetries implies that the eigenstates of a system
can be characterized by additional quantum numbers corresponding
to the symmetry labels. Again, symmetry congiderations are |
useful in finding conserved qnantities which lead to selection
rules, telling us that certain processes would not occur while
others would be strongly favoured. Degeneracies in mass or
energy and relationship between energies and transition proba-
bilities are some of the obvious implications. Further, a symmetry

may supply a starting point for constructing an approximation



'scheme for the detailed study of a system.

Trans formations which leavé the Hamiltonian governing
a quantﬁm’mechanical system invariant, lead to symmetfy
groups. Besides, the exact sbace—time gsymmetries of angular
momentum and parity, arising out of the invariance under rota-
tions and reflections in a three dimensional space; there are
other symmetries which depend upon the specific nature of the
Hamiltonian and act in abstract spaces. These are called
'dynamical' symmetries -and Qere first applied in nuclear

physics.

Heisenberg (1932) suggested that the neutron and proton
may be regarded as the two charge states of a nucleon. Hé
introduced a new variable later named by Wigner (1937) as
isotopic spin. The uéefulness of isotopic spin for describing
charge independeﬁce of nuclear forces, first suggested by
Guggenheim (1934%) and Young (1935), was demonstrated by Cassen
and Condon (1936). vFeenberg and Wigner}(1937) gave strong
evidence of this charge independencé which gives rise to
isospin symmétry. This marked the beginning of the application
of dynamical symmetries to nuclear physics. Wigner (1937)
motivated by the idea of spin-isospin independence of the
nuplear interaction; extended the isospin gymmetry and intro-

duced the group SU(4). The symplectic symmetry Sp(N), introduced



by Re.cah (1949) in the theory of complex spectra is related
to the pairing effects in nucleij and Elliott (1958) showed
that the rotational behaviour in light nuclei is related to

 the group SU(3).

However, although these groups have been with us for
s6 many years and have played an important role in the develop-
ment of nuclear physics, the real status of group symmetries
has not been clear. Except for the fact that some of these
were not exact, one did not know to what extent they were
.'gdod' or 'broken'. O0f éourse, in princirple, it 1s always
possiblé to carry out matrix’calculations by setting up the
Hemiltonian matrix and diagonalizing it to obtain the elgen-
values and eigenfunctions. The eigenfunctiohs then provide
information about the symmetry breaking. However, the vector
spaces encountered in nuclear spectroscopy are often very
large, end hence it is difficult to carry out such a.programme.
For these reasons symmetrieé in nuclel have by and large been
studied in the past by truncating the many particle vector
spaces according to some symmetry principle. Although this
has been of considerable help in simplifying the problem, the
vaiidity of ﬁrqncation has been éxamined only for sjstems.
involving few nucleons. In any case, it seems neceésary to

develop simple tests for the goodnéss of nuclear symmetriles
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which can’ give a measure of symmetry bresking to be expected
before a detailed decompogition of a cqmplicated many particle
wave function into differént symmetry types is carried out.

It is equally necessary to know a priori the extent of breaking
that can be tolerated before the symmetry itself ceases to be

of any importance.

Historically, statistical considerations have also been
employed in nuclear physicsg, parﬁicularly~in the random matrix .
theory ddveloped by Wigner (1957), Dyson (1963), Mehta (1967)
and othefs. Random matrices, first encountered in mathematical
statistics by Wishart (1928), Hsu (1939) and others found their
application in nuclear physics when Wigner proposed that the
local statistical behaviour of energy levels can be simulated

by the eigenvalues of a random matrix.

In this very elegant formulation, the statistical
element is introduced by considering an ensemble of Hamilto-
niang. All members of the ensemble are such that apart from
being hermitian and time reversal invariant, the wmatrix clements
'are randomly distributced. Some general properties of nuclear
spectra like distribution of eigenvalues and thelr spacings
- are then obtained by averaging over this ensemble. It is well
known that at high excitation energids, because of the extre-

mely high density of nuclear states, it would be impossible



to determine and expiain the characteristics of every indivi=
dual state. In such a situation one can talk about the average
| properties,vthese‘being much simpler to determine using the
random matrix theory. This average behaviour is important in
the study of nuclear reactions and this theory has ‘been exten-
'51vely applied in the ana1y51s of neutron resonance reactions

data.

Inspite of the-success of this theory in descfibing the
statistical properties of nuclear states like level spacings
etc., it has one feature which is not in agreement with what
one has learnt from spectroscopy in the ground.state region
of nuclei. Thé low lying 1evelsAin a nucleus can be@understood
by means of interactions which are only-two—body and may be
three-body in character. One does not need many-body inter-
actions. On the othér hand, the random matrix theory as usually
applied to a complex nucleus involves predominantly many-body

A

interactions.

Tt seems therefore that the application of group theory
and statistics to nuclear physicé in the past has not been
completely satisfactory. The introduction of Spectral Digtri-
bution methods by French (1967) has pfovided a way of over-

coming these difficulties. In this approach, one decomposes



the many particle spectroscopic space which can be arbitrarily
large but finite, into subspaces defined by some symmetry(SU(&)
for example) and one simultaneously considers statistical
-properties of states in the subspaces. The remarkable feature
ig that the operation of a Central Limit Theoremvleads to a
great statistical simplicity in the behaviour .of the system.
The density of states in a subspace'defined by some symmetry

is nearly normal (Gaussian). Thus the two broad underlying
principles, that of symmetry and of statistics get combined

and the close relationship between the two is demonstrated.

The merit of this method lies in the fact that one can
now consider large spectroscopic spaces without making simple
agsulnptions about the nature of the interaction. Simplicity
in description arises from statistics; and further, this method
makes explicit use of the fact that one has a many particle
system with interactions of low particle rank. The spectral
distribution method besides linking statistics and symmetry
is free from the objections earlier encoﬁntered while applying

symmetry and statistical ideas to nuclear systems.

In this thesis, the spectral distribution methods have
been applied to the study of symmetries. Although statistical
elements are indigpensable for the success of the method and

full use is made of them, the focus will be mainly on symnetries.



The Spectral distribution methods are reviewed in Sec.
(1.2). Bvaluation of low-order moments of a dynamical operator
ig described. Normality of distribution is discussed briefly.
‘Application of these methods to the determination of binding
'enérgy, low-energy spectra of a hucleus, symmetry mixing etc

ig described in Sec.(1.2.4).

In the study of nuclear symmetries using distribution
methods, we would be mainly dealing with symmetries assoclated
with finite dimensional vector spaces. These are related té the
unitary group in N dimensions U(N) and its subgroups. In Sec.
(1.3), we discuss the difect—sdm and direct-product subgroups

of U(N).

Finally, in Sec.(1.4) the scope of this thesis 1s

outlined.

1.2 - Spectral Distribution Method

The main problem in quantum mechanics is the determina-
tion of the eigenvalues dnd eigenfunctions of a Hamiltonian
éperator which describes the system under congideration. In
nuclear physics, often the matrix is set up in a finite vector
space and is then diagonalized to obtain the energiles aﬁd wave
functions. Unfortunately, except for the simplest systems, an
exact solution of such a model wmany body problém is out of

gquestion because of the computational limitation involved in



}conétrucfion andhdiagahalization of very large matricies. For
example, in the ds-shell which conéists of 24 single particle
states, thé size of the largest matrix (JT) for (ds)LF is 69,
for (ds)8 ig 2268 and for (ds)12 ig 6706. - The dimensionality -
of the Hamiltonian matrix indreases very rapidly as the vector
space is enlarged by increasing the number of singie particle
states or particles. In the fp-shell consisting of Lo single
particle states, the largest (JT) matrix for (fp)LF is 300,

for (fp)8 is about ‘IO5 and for (fp)12 is of the order of 4X106.

One way of overcoming this difficulty is to choosé an
appropriate basis space such that the dimensionality of the
Hamiltonian matrix is appreciably reduced. The vector space
has usually been truncated by invoking symmetry arguments.
However, this procedure is not entirely satisfactory because
it assumes the goodness of symmetry. Secondly, it may so
happen that severe truncations might lead to erroneous conclu-

siong.

. The spectral distribution methods introduced by French
(1967) have proved to ba a powerful alternative to this
conventional approach. These methods are well suited for
studying general aspects of nuclear structure like distribution
df levels and goodness of certain group symmetries. They also

enable us to study details about the low lying levels in a




nuéleus. Further, a knowledge obtained from such a study‘is

nelpful in suggesting good approximation methods'for detailed

problems.

Tn this method, instead of considering the detailed
spectrum of various quantities, one deals_with moments of their
distribution in energy, configuration, isospin, SU(%) symmetry
otc. The usefulness of the distribution method stems from
the fact that due to a statistical simpliclty oné needs only
the low order moments to describe systems with reasonable accu-
‘racy. This statistical éimplicity in the behaviour of many
particle systems where only low-order moments are most signi-
ficant is attributed to the.Central Limit Theorem. It 1s
sbserved that the digtribution of levels and various other
quantities tends to a normal form as particle number increases.
The reasons for normaiity of distributions will be discussed

later.

In the next section, we discuss the distribution method
formally. The moments of a distribution are defined and souwe
comments regarding the spaces over which spectral averages

can be easily evaluated are made.

1.2.1 ° Moments and Distributions

In spectroscopy we are interested in the solution of

the eigenvalue problem
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HY = BY | (1.2.1)
wnere H is the Hamiltonian operator and ¥ and By denote the
eigenfunctions and eigenvalues respectively.

The functions Y are expanded in terms of a set of basis’

states Q@Q.

Ly

G, e 'E) .
Jr“ é;“ ‘d'_tgbd\ | (1.2.2)

The eigenvalue problem given in eq.(1.2.1) then reduces to
the usual matrix problem. Let us consider‘the.inverse problem

where the ¢psare expanded in terms of the eigenfunctions Y's.

b, = ZCW‘VI';. (1.2.3)
T

A plot Of'rChJIVSvEE defines a distribution which can be
studied via its energy moments, the pth moment being defined

as

SN S 2P
MD(:L., | Cial Ei‘ - (1.2.%)

1

R
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4

Instead of considering the distribution of a single state ol ,
lét us choose a set of states oL and define the average

moments for the set « as:i

Mo D<)

o 7o) oL ek

(1.2.5)

where d(#) denotes the number of states (dlmen51onallty) in
the set « » The first moment p = 1 defines the centr01d energy

b

B (d,)— . In terms of the centroid energy the central

[
~

moments LL are dEflnLd as:

- \ N7 ) ’ . B ‘ \P ) »
'MF,”C*‘”:,)_J(%:;Q%‘W"M;U KA (1.2.6)

——

The second central moment J¢2:: (Tg(f) given by

5

o () =M§ - (Mi)2 | (1.2.7)
igs called the energy variance and describes the spreading of
states about the centroid energy. In terms of the centroid
energy and variance, a normal distribution is defined by the

frequency function £(E) as:

ﬁ(ﬁj = =) exp t CE-E(2)) 1 (1.2.8)

V%j((%) v l(oﬁ,) “{

"~
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For a gaussian distribution the half width at half maximum
is 1.18(T and one needs only two moments, the shape being
unique.

Departures from normality (defined by the first and second
lmoment only) can be studied by evaluating higher moments (p* 2)

and defining shape parameters, the skewness ‘f and excess Yf

f = j’“’> ‘( ,l.u_, - | |
\{, /}Azz | j,\:_ 3 (.1 .2.9)

In terms of these four moments, a frequency function for a

distribution which ig close to a gaussian is:

' - ‘ ‘—. i \( - 3__ 2 . ._L.Y LL 2 3 ] ——:X_l .
;?(1) :;t4é_ - (x 51)+2L4 2 (x G )}»exp( /)
(1.2.10)

where X% = (E-B /o

Tt should be mentioned here that far away from the
centroid this form is not positive definitc and thus fails in
one of the sssential requirements for a frequency function.
Therefore in using eq.(1.2.10) one must be certain that one is
not in_the negative domain.

Tn fig.(1.1) taken from Ratcliff (1971) four frequency

functions which illustrate the meaning of YA and Y’2 are dis-

played. For a gaussian distribution“‘(’1 = 3‘2 = 0. ,YYH measures
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the asymmetry of the distribution around the centroid and
vanishes for a symmetrical distribution. Negative values of

indicate a sharper central peak.

indicate a flatbtened distribution. Positive values of Vé

We can rewrite the variance 5'2(%) given in eq.(1.2.7)

by making an intermediate state expansion, asi

2 ! S |
G (n) T 2 SHIRIB>E pIHIay - E () (1.2.11)
T d#)wex

~

By grouping the intermediate stateja into sets /3 we get,
‘_m_'.Z . s 4 2 '
TUa) = Tt 2)F 2] T (A p) (1.2.12)

| O PFE -

where

N ‘ : 2
T, i) E A P Loyt D> AR - E. ()

ny= L D ZeIRPYCPIRID

pef (1.2.13)
The quantitytrz(ﬁ,i) called the internal variance arilses
because states in the representation % are not all degenecrate.
The quantity‘ﬂ“@u&) called the external width describes the
average r.m.s. matrix elements conﬁecting,representation A and

the representaﬁion /} .

"~
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From eq.(1.2.12) we observe that the width of one subset
depends on interactions with the others. Hence to determine
the width of a subspace, one needs to consider states outside

this subspace also. We shall see later that these kinds of

"digtributions in which the space is divided into subspaces are

of mwajor importance.

We next discuss questions regarding the spaces over
which moments should be evaluated. The evaluation of widths
for ahf arbitfary spéce A would involve a large number of
matrix elements of complicated operators and is therefore extre-
mely difficult. If however the space o is selected with-symmetry
consideration in mind; o defining irreducible representation |
(irrep) of some group, we shall find that these methods which
rely upon the invariance properties of traces would become
available for the evaluation of momeﬁts. In such a case the
moments caﬁ be evaluated without having recourse to matrix
meﬁhods. Obviously then,no restitictions regarding thé\size N
of 31ng1e particle states and the number of active nuclcons
m need be imposed. Also for such invariant subspaces the dig-

trlbutlons are close to normal and therbforp one needs a small

number of moments to characterize them.

It is important that distributions be describable
via their low mdments and it is for subspaces defined by group

symmetries that nearly gaussian distributions are expected.
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It should be mentioned here that in choosing ¢ which defines
a certain symmetry, no assumptions regarding the goodness of
this symmetry are made. Ugsing symmeﬁry subspaces to define
diétributions does not imply ignoring interactions which
connect different subspaces. ~ This 1is in contrast to earlier
work where the spectroscopic space was truncated on the basis
of symmetry being good. The choice ofhﬁ.helps us in learning
about the goodness of group symrﬁetries9 broad distributions
immediately telling us that such a symmetry is of no interest.
Thus the distribution method combined with group theory seems

a good way of investigating the goodness of group symmetries.

In the next section we describe how spectral moments.

can be evaluated.

1.2.2 Evaluation of Spectral Moments

The spectral distribution method seeksé direct way of
calculating moments without evaiuating the many-body matrix
elements. In this section we derive an expression for the
moment of a k-body operator in m-particle statés belonging to
the symmetry =< |

Following French (1967) we introduce the creation
operators Ai and annihilatidn operators Bi for each single
particle state ( i = 19.°,.N). These satisfy the anticommu-

tation relations
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] N
[ o1 =[b ,B] =o0 (1.2.1%)
L. i? JJ+ i' j__,+> T

‘The creation and destruction operators for m-particle states in

. i) A
state « are represented as 2Z_ (m) and Zd'(m) We shall take

.T
to be a determinantal state so that Z, (m) and % (m) are
product states of m A-operators and m B—operators respectively.
An arbitrary m-particle state is then a 1linear combination of
T.

such determinantal'statés. The operator %x(k) ZM,(R) is a

k-body operator whose matrix element between the k-particle

states f§ and_/e'is given by

<kplZ (WZ) (MH\D Spburpy (1.2.15)

In terms of the state operators Z9 a k-body operator O(k) can

be written -as:

O(r = L< sfotlkp' DZ, (b)é (k) (1.2.16)
PP |

The average of 0(k) in m-particle states belonging to ¢ 1s

defined as:

<O”h); 2~<”‘°‘30”2””’°‘> (1.2.17)

(m )fo(-w(
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where d(m«) is the total number of states over which the sum
is taken. Instead of dealing with'the average, let us consider

the trace of O(R) defined as:

Mot.

<< Q<p)>> = o (md) <QC;;<)>
ST e (R me>

oAE o (1.2.18)

Using eq.(1.2.16) we write the trace of O(R) as:

'\<O(“>> 2 eploge RO 1Z (M7 w}mo‘>

o{(-o(

/../a ‘
(1.2.19)

Now under a particle &= hole (p<~.h) transformation; A, vﬁwB

and for the state operators we have the following correspon-

denCe: )
_ P;_:—'*&-\ :;, m(m~1l/y +
4“(m)*~"~‘>¢;&(m):(' ) Zm(m)
f\J*r m(m-)/;
Z(m) ——-—~>.¢w (M)= (-1} Zd(m) (1.2.20)

Further, the p=—h transformatlon establishes a relationship
between the state (m) and the complementary state (N-mef)

such that for the matrix element of O one has the equalitys:



18

<‘(\'\.ol. )O-(R}} mct'> = <N— m X \ 2}@1; N 17 qx:; >
(1.2.21)

where
_ pT=h
0 -3 0

Eq.(1.2.19)'can be rewritten as:

<<0(R3>> L(Rﬁlo(h)l kp' <o)z <‘n>Z<k)Z{h)Z (m)| O

Xe & P
PR

AN v t ot

= ) Lrplo(mirpr<Z "‘(m)zlg h)zﬁ(w Zd (-m>>_@
*eX |
pp )

(1.2.22)

where {0 is the particle vacuum and ( 7 denotes the vacuum

‘expectation value (vev). Using eq.(1.2.21) we get,"

Lol k)>> Z(kp}o{m kﬁ)(Z (N- m>z<k>ZC!-<)Z<N )
A € %
Making use o?lzhe result that
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ot bt ;
' 2 = {Z (RYZ A -)Z_(m_)/_(ih)
<Z&<m>/_/3(mngu.:_(’(m)>o (zmzmZmZ, >

the trace of 0(R) becomes

mx

Loy =) <kplo R kp> <zm{ j;z,cf myzm m)}z);m%
pp
(1.2.23)
We now define a density operator ,f(m;f)given by
7T ,
§(m0‘ x(m)Z‘i(M) (1.2.24)

o(eﬁ

‘53 (mﬁ) is an m—particle operator and therefore gives zero
on all R -particle states with R<m. Further, ¢(ms) gives
unity when acting on m-particle states b_elonging to a’f: , and
zero for all other m-particle states. It therefore acts as
a projection operator. Assumlng that the matrix elements
_of 0(k) are real or considering the hermitian nature of 9

and uging eq.(1.2.24) we obtain for the trace of o(k)s

\
o e T <& Fonmg o>
/’)
. ”

=3 L Fe-mg) 0D 7
P ' | (1.2.25)
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where the W -particle states have been divided into sets 2
ond summed over all [5 .
TIf we consider some subspace decomposition of the many

nucleon states where the density operator ¢ for each subspace

is diagonal and its matrix element a multiple of unity, for

‘such cases eq.(1.2.25) can be written as:

, fnf <7 | r : k[3 ) A‘kjS
Ko = 2. g nma )y Kory

/3 (1.2.26)

Tq.(1.2.26) relates the trace of a k~body operator in various
k.particle spaces (R ) to the trace of 0(R) in the space
(mﬁ). Since a k-body operator igs completely specified by

its matrix clements in k-particle states (defining space),
we see that the trace in the defining space 'propagates' to
other spaces by mecans of the density operator €

~

Using the ldentity:

™ o

| ~ kp &
d(rp) g (N-md)> "= A(rma) LSRR

and eq.(1.2.26) the average of 0(k) is given by

3,3

18
— . DR
Jo(® > = %<m‘§.’ |g(rpimg ><OMR> = (q.2.27)

r

. For the purpose of cvaluating averages, the operator 0(k) is
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A
then eguivalent to an operator 0(k) defined as:

A o _ _ta;g
O(RY = % 3’("%/-{?;)<0(|’~)> (1.2.28)

%(k) is called the linear trace equivalent of 0(k). Whenever
f;(h[})A arc diagonal with respect to subspaces [% ‘and‘behave
1ike a multiple of unity in each subSpace; then these project-
ion operators .y(h )are scalars under the transformatlons

of the group over which the average ig carried out. Thus O(k)
is a group scalar and only the group scalar part of any opera-

"tor 0(k) contributes to the average.

" If the operator whose average wé‘wish to evaluate
does not have a definite particle rank, one couid decompose
it into operators of definite rank, each of which would then
propagate according to eq.(1.2.27). Instead of proceeding
this way, French and Ratcliff_(1971) have given an alternate

method of evaluating averages of such operators.

Having derived the formal result for evaluating
averages, we illustrate the aﬁeragiﬁg method by an example.
Let us consider a vector space S(N,m) obtalned by distributing
m fermions over N single particle states. The dimensionalilty
of this space is (g}, Let us consider the case of averaging

for the k-body operator 0(k) over all m~particle states. This
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aﬁeragé over all m—parﬁicle states called 'Scdlar! averaging
can be congidered to be an average‘ovar the irreducible

representation T1%} or U(W). 1In this case French (1967) has
_ shown that the dénsity operator S’(k) ::(;Z): where n is the

i

number operator and for the average we get

- 0 o
- <T?)<O(M> (1.2.29)

2%

s
Lok .)>

The binomial coefficientﬁvi)‘propagates the average of 0(k)
in the defining space to the rest of the space. This result
can be generaliZed to operators of mixed particle rank. Consim
der the dperator 0 with mixed particle rank going from 0 to a

maximum - . The average is given by,

AR AR

m ~Yv Y T -
<U> - ,_)’" (V~t )( .k)<0> | (1.2.30)
’ L 20 . ‘,
Eq.(1.2.30) can be rewritten as: : '

Y

RAD e N | . t—- .
<O> = ;>~ §E(m)<0> : (1.2.31)

=
W
“§t<m) are the density operators and possesg the following

properties:

N
1 g“(nq) is a v degree polynomial in m
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N - :
- g*c(rﬁ): gh'\\f \ ©

(N

Y

| ,
which means thai;’gﬁnqact as projection operators for various

states in the defining representation of the operators.

The propagation formula for scalar averaging requires
input information (4}3)?) for t = 0 —» v particles. The input
space can be regarded as a net where information at some points
on the net 1is féd in. The propagation net discussed above 1is
éalied an 'elementary net' and is not the mdst convenient net
to use. Ihere are two.reasons for this. Firstly, one needs
v-body averages and these might be difficuit to evaluate and
secondly, the averages in the defining space need to be calcula-
ted very accurately in order that the averages near the closed
shell are produced correctly. It is, therefore, better to replace
some of the points in the elementary net by hole representations.

This is called the ‘optimum net'.

Averaging over all m-particle states is egsy, the density
operators being simple to construct. While dealing with finer
averages (i.e.\over states defined by subgroups of U(N)) the
density operators might be harder to construct but the principle
essentially remains the same as in scalar averaging. The
.advantage of averaging over states defined by,ﬁhe irreps ofla

group arises from the fact that the density;operators in such
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cases are gfoup scalars and hence can often be expressad as
'polynomials in the various Casimir invariants. The explicit
constructioh of these polynomials involves inversion of a set
of linear equations and this béing simple, one can in these

cases entirely get away from the tedious matrix method.

Bssentially then9 given the Hamiltonian H which describes
ihtéractions of particles, the distribution method alms at
calaulating moments‘of'H which define the distribution. The
moments of operators in m-particle space g(N,m) are evaluated
by expressing them as linear combinations of averagés over
gimpler subspaces involving only few particles. Let H poésess
no 3-body or more complicated partsf Then the matrix elements
of H in the (0+1+2) particle space called the 'input' space
completely specify the operator. Knowledge about H in the
input space 1s expressed in terms of traces over basis subsets
‘of this space and propagatlon 1aws for the traces in terms of
density'Operators are derived giving moments for many particle

states.

From the definition of these moments eq.(1.2.27) 1t
follows that for each moment only the group sealar part of the
approprldte power of H would contribute. ' For evaluating these

averages, it 1s somatimes possible to construct new operators9

one for each moment, which are group scalars and have the correct-
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particle rank. Moreover, these new operators reproduce the

moments correctly and are much simpler to work with.

It is essentlal that one should be able to descrihe
distributions in terms of low-moments. Higher moments of
operators might be dlfflcult to evaluate. In the neixt section
we present evidence to show that distributions are normal,

only two moménts being then sufficient to define them.,

14243 Normality of Distributions

Anglysis of shell model calculations has shown that
the shell model spectrum is essentially gauséian.'The accuracy
with which a two-moment and a four-moment distribution repro-
‘duces the eilgen-energies in many particle spectra has been
studied by Chang and Zuker (1972). Exact shell model calcula-
tions in the (ds)-shell of dlmen81ona11tles ranging upto 1200
using a realistic interaction have been compared with moment

method results and excellent agreement is -obtained.

A detailed numerical study regarding the origin of
normality of distribution has been carried out by Freﬁch and
Wwong (1970) and by Bohigas and Flores (1971) suggesting that
the gaussian nature of the spectrum is connected with the two
body nature of the effective interaction and the direct product
nature of the m-particle states. The direot.product nature

means that if the single particle state is represented by'@f;
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the twb—body states aré quadratic in ﬁg’ and the k-particle
states are of the Kth order. French and Wong choose a finite
spectroscopic space defined by distributing a given number of
particles in a finite set of single parficle states. The
Hamiltonian matrix is set up in this épace by making random
selectiong. of the two body matrix elements. Many such matri-
cles are constructsd and the ensemble avcrage is taken to
determine the distribution of eigenvalues. The distribution
for this two body random ensemble (TBRE) is a gaussian. Fur-
ther, when three-body, four-body and many-body party are added
to TBRE one after another, the disfribution gradually departs
from a gau581an and eventually changes into a semi-circular
type as predicted by the random matrix theory. In their study,
FTench and Wong have also shown that just by setting to zero
the matrix elements between many partlcle states which cannot
be connected by a two-body interaction and making random sele-
ctiong according to some probability law for the rest, does
ﬁot lead to a gaussian distribution of the level density.
The normality is a consegquence of the two-body character of
the interaction giving rise to strong correlations between
matrix clements, and the nature of the spectroscopic space.
'The normality of distribution is now quite rigorously
Proved (for states belonging to a fixed cxact symmetry) using

two body Gaussian orthogonal ensembles Dy Mon (1973). It is
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expected that extensions of the central limit theorem give
rise to the normality of distributions over states of fixed

" unitary symmetry'which is not exact.

1.2.4 Application Of the Spectral Distribution Method _to
Nuclear Spectroscopy

The spectral distribution method which deals with the
averages of H and powers of H over various subspaces of the
complete space can be used for the study of quantities of
physical interest like binding cnergles, low lying spectra
and questions related to group symmetries. Having pointed out
that distributicns are described via their low—moments, and
having'indicated now one may in some Ccases evaluate these
momentss we show in this section how a knowledge of centroid
energiss, variances and the dimensionalities of irreps of some
group can provide detailed informaﬁion about nuclear spectro-

SCOPY «

The method is based on making a continuous approxi-
mation to the discrete eilgenvalue spectrum of a given Hamilto-

nisn by defining a frequency function f(mE) given by,

F(mE) Z fimeg) =2 202 wpf (e-E(m2) ]

JEC(D) 26’2(1%33) .l

(1.2.32)
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The centroid energy Ec(mﬁ) and variance crg(nlﬁ) for m-

| particle states belonging to the symmetry X have been defined
through egs. (1.2.5 to 1.2.7) and the frequency function for
‘a gaussian distribution was given in eq.(1.2.8). f(nEs) is

s normal distribution with area under the curve equal to

the dimensionality d (m=).  f(mB) which is obtained by
summing over all subspaces for a given m desgcribes the nuﬁber

of states per unit energy interval.

4

IntmmsofscﬂarwmawsEém)ami4Tkm,wecm1

define a gaussian frequency function fo(mE) as:

| fc(m&‘) = d () e%P[' (E'Ec(m))l
{27 G (™)

2 G *m)
(1.2.33)

‘It is obscrved that f(mE) which is a sum of gaussians defined
by f(mE%) corresponding to the symmetry subspace ot ig itself
very close to being a gaussian fo(mE) given in eq.(1.2.33).
This stability under addition of gaussians is not yet under-

stood.
Tn terms of the frequency function f(mE), we define

2 distribution function F(mE) as:
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.
F(mE) = U;(-W\E’)C;E’
e
€
:2,_., :.!2?,2." Cxp }: (E: Ec,(“"?f,))w, AE’
o« A2 TR S (mey o (102.3W)

The distribution function F(mE) gives the area under the curve
upto energy E. With these definitionsof the frequency function
and the distribution function we now show how one can deter-

mine various quantities of interest in nuclear structure.

8. Binding Fnergies and lLow Energy Spectra

To determine the ground state energy of a nucleus we
follow the procedure suggested by Ratcliff (1971). Since F(mE)
essentially gives the area snd therefore the number of states
upto energy E, the ground state (non-degenerate) will be détér—
mined at an energy Eg where F(mE) jumps discontinuously from
zero to one. Now the degeneracy go‘of a ground state with

angular momentum Jo and isospin TO is given by

gy = (2JO+¢>"(3TO+1) (1.2.39)

The position of the ground state 1s then estimated at an

energy Eg such that
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»F(mEg) = go/2 _ (1.2.36)

“this belng a natural way to define the value at the disconti-
nuity. In a similar way knowiﬁg the (JT) sequence of levels

the ith excited state can be located, this being giVen by,

t-1
F(m B, )= L(Z T4 (2T, ) +)i (2T ) (2T +)
h=t ‘
(1.2.37)

Often it is advisable, first to locate an exclted state which
lies higher up in the spectrum. This state is used as a
reference state and the binding enérgy of a nucieus is then
obtained by subtracting from the energy of the reference state
the observed experimental cnergy difference between this and
the ground state. For tﬁe low lying levels, comparison with

states below the reference state is left aside.

This way of doing things hasitwo advantages. Firstly, one
escapes from the ground state region where uncertainties might
exist. Whereas a gaussian has tails going to infinity, the exact
distribution has no tail as it is .cut off at the lowest and
highest cigenstate of the system. Secondly, by moving closer
to the centroid one makes less stringent demands on the distri-

bution.
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b. Symmetry Mixing

In locating the ground state using the distribution fun-
ction F(mE), one simultaneously gets information about the
relative contribution of the various symmetfies & to the total
area under the curve. Accordingly we define intensities

I(m% E) given by

T !

E
i[mg{:E): —_ }(x-ni{\E'.')c:lE'/

c—n

— R (1.2.38)

with the normalization condition

oy ity

IL(mag)= ]

rd

N

i

oanal
S
A\

The intensities I(mﬁEg) may be interpreted as relative mixing

(‘

intensities of the different symmetries in the ground state
region, ignoring the possibility of interweaving of pure
symmetries, anrasspmption which may often be reasonable on
physical grounds.

Begides prOVidiﬁg-iﬁfbfﬁaﬁion about mixing of symmetries,
the relative intensities can also be used to study the energy
deperidence of the expectation value of some operator 0. Assu-
ming that O doss not connect two repfesentations and the

expectation value of O docs not vary much over the width of



32

the representation, the encrey variation can be written as:

) \fn » UL ~
<O/E = )__} __L(MO{ E)<O> (1.2.39)

These considerations have been used by French and Chang (1971
to determine the spin cut-off factor in the level density
theory, and also for calculating occupancies of spherical orbits
for various nuclel as a function of energye

We intend using the distribution method to study symme-
tries iﬁ'nuclei. Since our interest here isiﬁnitary symmetries,
in the next éection we discuss briefly the unitary’gfoup and

its subgroups.

Te3e The Unitary Group and its Subgroups

The starting point in nuclear spectroscopy ig the
cénsideration of a finite number N of single particle states.
The group U(N), which describes unitary. transformations
amongst these N single particle states, underlies the whole
discussién. Averaging over all m-particle states is essenti-
ally an average over the irrep]lim:}of U(N). This 1s because
the Pauli FPrinciple allows only the completely antisyumetric
representation [iim'] for m partiéles. The nuclear states
desceribed in terms of a restricted set of N gingle particle

states, then have a definite U(N) symmetry. The goodness
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of this symmetry implies'that the model space sO constructed
is indeed reasonable. A large amount of discussion of group
symmetries in nuclear physics deals with the group U(N) and

its subgroups which correspond to partitions of N into subsets.

Instead of considering the N sﬂdgle pafticle states
as a single set, one can divide this space into 1 subspacecs,
the ith subspace having a dimensionality Ni° The partition 1s

given by,

Q .
N = ;Z: N (1.3.1)

L=t
The sot of all unitary transformations which operate in each
subspace independently also fdrm a group This direct-sum group
is a subgroup of U(N) and egch subset N, may be thought of as
defining an orbit. This subgroup decompoéition ig given by

]
U(n) = ) UNY) (1.3.2)

3

L=

. Having partitioned N into orbits Ni’ one can assign ms parti-

cles to each of these. The configuration.(m1 m2.....mi my )

with the constraint

(1.3.3)

M 4 M Feeeneens * =
4 T .

- U(Ni).

|

SN

defines an irrep for the subgroup

-
i
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Besides this direct-sum group, one can aléo deal with
direct-product subgroups of U(N). A decomposition of the N
basgis states distinguishing between the spin-orbital subspace
and isospin subspace corresponds to the subgroup U(N/2) x
U(2) of U(N). One can also consider the direct-product sub-
group U(N/4) x U(W) where the decomposition is according to
the N/4 spatial orbits and the four spin-isospin states of

a single nucleon.

The various subgroups of U(N) for which the distribu-
tion method has been applied to study general features of
nuclei are listed below. Spectral averages have also in soﬁe
cases been used to study the goodness of»symmetries defined

by these decompositions.

a) Configuration; 4,
U DU, ) + UN,) + e Uy = 2,._, u()
Lz

b) Isosping

(M) > U(N/2) x u(2)

c) Configuration—lospin;

W) > u(N:/2) x U(2)
. I(‘_:. )
d) Wigner Supermultiplet.

U(N) ™ U(N/%) x UH)
CU(N) D U(N/4) X[SUS(Q? X SUT_(2)}
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The configuration averages have becn obtained by French
and Ratcliff (1971) and by Chang, French and Thio (1971).
These are very important in shell model calculations where
the effects of high lying shell model orbits on effective
interactions need to be investigated. Also in the.formation
of a compound nucleus one needs to know the importance of
various configurations at different excitation energies.
Isospin distributions in nuclei have been studied by French
,(1969) and configuration-isospin distributions by Chang,

French and Thio (1971).

1okt Scope of the Thesis

The elegence of the distribution method arising éut of
a combination of group theory and statistics will become
apparent when we deal with specific aﬁplications in the sub-~
sequent chapters.

Tn the next two chapters the Wigner SU(L) symmetry

will be considered. Spectral averages of the nuclear inter-
action over states defined by the irrep of SU(W) (Parikh,
1973) and SU(%)-Isospin (Haq and Parikh, 1974) are used to
determine ground state energles and low-lying spectra of nuclel.
The goodness of spacc symmetry 1s investigated and the useful-
ness of SU(4) partial level densitiesvin alpha transfer reacti-

ons is briefly indicated.
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In Chapter IV, spectral distribution methods are used to
study the average deformation (quadrupoie moment) of a nucleus
és a function of exclitation energy. This average deformation
may be of interestvin heavy,ioﬁ reaction processcs where
compound nuclear formation takes plac@.The configuration
space chosen for tbe'above study enables one to calcﬁlate
fixed angular momentum J-averages (Jacquemin, 1973) which are

used to determine the binding energies and spectra of nuclei.

In Chgpter V, soume Qf the formal aspects regarding
group avefaging are discussed. A way of evaluating moments
over states defined b§ sU(Y4) symmetry and isospin and for
the Elliott SU(3) group is described. Further, expressions
for the calculation of spectral averages OVer states defined
by the canonical chain of unitary groups are derived. Conclu-

ding remarks and scope for future work 1s giVen in Chatper vI.'
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CHAPTER 11

SPACE SYMMETRY IN LIGHT NUCLEL

2.7 Introduction

Speoti*al distribution methods which deal with low
order moments of dynamical operators have been dJscussed in
‘haﬁier I. These methods are well sulted for studylng symme-
tries in nuclei and in this chapter we use them to study SU(L)
symmetry. The Supermultiplet theory is introduced in section
(2.2) and eyidences of space symmetry in nuclei.are discussed.
Barlier work regarding the study of space éymmetry using the

distribution method is briefly reviewed.

In section (2.3) we discuss forﬁally tﬁe group U(N)
~ and its direct product subgroup U(N/4) X U(W). A brief discuss-
~ion about the representations of U(N/4) and U(4) is given. The
supermultiplet group sU(4) is introduced in section (2.4) and
we discuss in detail its ihfiniteéimal generatofs, representa-
tions and Casimir invariants. Some remarks regarding the

charge-spin (TS)-structure of the supermultiplet are made.

Section (2.5) deals with SU(#) isospin-spin averages.
Evaluatlon of gpectral moments is discussed and expressions
for centrold energy and varlance are derived. These are used
to calculate (SU(M)TS) moments in the 2s~1d shell for some
interactions. Having obtained these moments, we use them to

determine ground state energies and low energy spectra of nuclel
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in this shell. Goodness of SU(4) symmetry is investigated and
g preliminary application of SU(L4) partial level densities to
alpha transfer reactions is made. Concluding remarks are

presented in section (2.6).

Pe 2 'The Supermultiplet Theory

It was suggested by Wigner (1937) that in addition.tb
charge independence of nuclear forces, it may be a usefgl appro-
ximation to neglect the forces involving ordinary spin. The
Hamiltonian whichvdesdribes the interaction between nucleons,
is then a function of only the space coordinates. Under this
assumption, nuclear states can be clagssified according té
irreducible representations (irreps)*of‘the group SU(4) which
describes unitary ﬁnimodular transformations among the four
,chargé—spin states of a single nucleon. In this case the four
single nucleon states are completely equivalent and irreps of
SU(Y4) which contain several spin-isospin multiplets (a super-

multiplet) are eigenstates of the system.

The supermultiplet theory 1s based on the assumption'
that spin-isospin independent interactions between nucleons can
provide a reasonable wavé function of the nucleus. Both the
total gpin 8 .and isotopic spin T are good guantum numbers. The
validity of 8 and T implies that the (28+1) (2T+1) states of a
set of isobars‘are degenerate in energy; S, and TZ values of

these states range independently from -S to 8 and from -T to T
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respectively.

2,241 Evidences of space symmetry in nuclel

SU(L) symmetry'has many interesting manifestations in
nuclei. For the low-lying states of Li6 (Lauritsen and Ajzenberg-
gelove, 1966) which are assumed to afise due to the two active
nucleons in the p orbit ((1s)h(1p) ), all space symmetrlc (s,D)
states are known and all the space antisymmetric (P) states lie
much higher in energy. Such a situation indicates that the
effective interaction has a sizeabie Majorana part, an inter-
action which is attractive in space symmetric states and repulsive

in space antisymmetric states.

Tn a many particle system the assumption that the two
body interaction favours space symmetric‘states over space'anti—
symmetric states leads to pronounced energy effects. Consider a |
set of levels such that each le&el can accomodate only two |
protons and two neutrons (Blatt and Weisskopfs 1952, Chapter VI).
The wave function for a four particle system in this case is
symmetric in space part and antisymmetric in spin-isosgpin. Now
for an mrpartlcle system, the binding bnergy would be max1m1zed
if one has a maximum number of symmetric palrs consistent with
the Pauli Exclusion Principle. Thereforeﬁnucleons would tend to
occupy the single particle levels in such a way that one has a
maximum number of symmetric pairs. This has the consequences that

- a) for m particles there would be a four structure with k fully
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saturated levels and h <Y nucleons in an unsaturated level. The
space symmetry can be written a.s[lrkﬁ r] and b) nuclel with

fully saturated levels would be tightly bound. An examination

of binding énergies of various nuclei confirms this four periodi-
city which can be easlily interpreted in térms‘bf space symmetry

considerations.

It is also observed that the difference AE( AT = 1) in
ehergy between the ground state of a nucleus assuming its isospin
Tg = (N~Z)/2 and the lowest state with isospin Tg + 1 is large
for nuclei with A=bm, km+1, bm+3 particles but small for A=lm+2
nuclei. The supermultiplet scheme provides an: easy explanation
for this "um+2" effect. For A=hm, bm+1 and bm+3 nuclei, fhe most -
space symmetric representation allows only one value of isospin |
and therefore AR corresponds to the difference in energy between
two different space symmetries. On the other hand for Lm+2 nuclei,
the space symmetric repreéentation allows two valués of lsospin
namely T=0 and T=1 and hence AE in this case 1is comparatively

smaller.

When Wigner proposed the group SU(W), it was generally
expected that the supermultiplet scheme would be confined to light
nuclei. This was based on the argument that for heavy nuclei,
the two body interaction cannot be assumed to bé independent of
the spin and isoépin of two nucleons. However, Franzini and

Radicati (1963) later derived from this symmetry model; a relation-
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ship between binding energleu of isobars which seems to be valid
throughout the periodic table and appears to improve in validity

with increasing mags number.

p.0.2 Study of SU(Y) symmetry using distribution method

Although the supermultiplet scheme has very striking
consequences, the sSU(L) symmetry model cannot be exact because
nuclear forces do depend on spin and isospin (Elliotts 1966)
. It is thercfore necessary to understand how this symmetry mani-
fests ibself in nuclei. Parikh (1973) has studied space symmetry
in light nuclei using spectral distribution methods. Averages
of the Hamiltonian H and H2 over states belonging to a deflnlte
SU(4) symmetry are evaluated. These spectral averages are used
to determine ground state energiles and low-lying spectra of nuclei
in the 2s-1d shell using Ratcliff's procedure (cof. secal:2).
Goodness of SU(L) symmetry was'investigated by determining the
mixing intensities of various SU(L4) representations in the ground

state region.

Application of SU(L) distributions to the determination
of ground state energies and spectra has been.Very successful.
Al.though discrepancies with experimental results as well as exact
calculations do exist, it is expected that a fiﬁer averaging over
definite SU(L) symmetry, spin and isogpin would improve the resulte‘
As far as goodness of space symmetry is concerned, Parikh has

observed that there is a subgstantial admixture of SU(L4) represen-
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tationé in the ground State Results of . calbulations for nuclel
with T = T ~(N—Z)/2 have shown that with realistic interactions,
there is an almost equal mixture of the lowest two symmetrles
"However, it 1s surprlslng that the strong manlfestatlon and use=-
fulness of the symmetry arising as a consequence of the relation~
ship predicted by the Wigner model hold good to a much greater

extent than would be expected on the basis of symmetry breaking.

In view of this and the fact that SU(H) moments>enable
one to study only states of lowest isospin for a given maés
number A, in this and the nextvchapter,-we study space symmetry
injnuélei with neutron excess i.e. T™ (N-Z)/2. This is done by
first decomposing the group SU(L) into a direct-product subgroup
SUT(Q) X SUS(Q); where SUi(E) and SUS(2) describe special unitary
. transformations in isospin and spin spaces regpectively. Spectral
averages are then evaluated for states having a definite_SU(H)
symmetry * , isogpin T and spln Se This way one hopes to study
goodness of space symmetry in the wave function fbr neutron excess
‘nuclei and also the validity of the Franzini—Badlcatl mass

formula.

Besides the interest arising out of such physical consi-
derations, there is also a technical reason for carrying out
averages over states belonging to irreducible representations in

the following chain decomposition:
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U(N) 2 U(N/W)XU(L) = U(N/A)X(SUT(z)XSUS(z))

This is because it would be one of the first examples of the
group averaging procedure where the subgroup is one step further
removed from U{N) than in earlier cases. One hopes to learn more

about the averaging method from this example.

In the study by Parikh, the SU(M) distribution is assumed
to be a Gaussian. Further, there is'a'stability under addition
in the sdnse that the sum of all SU(Y4) frequency functions for a
given particle number is itself nearly a Caussian and quite
similar to the 'normal! frequency function obtained in scalar
averaging. By.carrying out this finer averaging one will also be

able to investigate the Gaussian nature of SU(h) dlstrlbutlon.

2.3 U(N) and the dlrect Droduct subErouD U(N/H) X u(h)

As pointed out before (sec.1.3) the group U(N) enters quite
naturally in the discussion of a system with m particles distri-
buted over N gingle particle states. The creation;Ai and annihi-
lation operator B, (1 = 1,.....N) for these single pafticle states
'are fermion operators and obey the following antlcommutatlon

relations:

1
(@]
f 1
t
‘—J.
toy)
()
[ D
+
1
O

[Aiv“{-jj,,b
[A“BJJ+

I
o

(2.3.1)
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~Qut of these operators A and Bi one can construct 1-body
operators Uij where

13 = A B, i,] = Tgeeoesy, N - (2.3.2)

‘Theset of N2 such operators Uij is closed under commubation;

"

LU‘J X UHJ = gﬂv\ul} - E‘LQU).&:} (2.3.3)

These are the infinitesmial generators of U(N). One can consider
a subset of unitary transformations of U(N), For the study'of
space symmetry (SU(4) symmetry) one is interested in the direct-

product subgroup given Dby,
u(N) » uy/4) X Ulh) | (2.3.4)

The subgroup is defined by the requirement that the infinitesimal

generators of U(N/4) commute with those of U(h).

For the study of this direct-product subgroup, a convenient
notation is to introduce creation Ami and destruction operators

B where o refers to space guantum numbers (nlm) of the single

%L
particle states and i stands for the four charge-spin states of-
a single nucleon. These operators being fermion operators'obey

the anticommutation rules, i.e.
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(2.3:5)
In terms of these opefators; one can as before:construct 1-body

operators ivgfa and U..; specifically,

L)d/% zzu /\dt’“ys« | wxygazl;/f.'sw[q

&

NI . - (2.3.6)

lej’ = /\wthﬁd, .‘1‘>> LWJJ R - by
. 0( l 1.".

The (N/L)° operators in the set { A } and the sixteen operators
in the setv.{ J} are the inflnlte31mal generators of U(N/L)

and U(L) respectlvely.‘ They satlsfy the following relations,

RUTAE ”‘Spvk&gﬁ*gngYF

-

| LU'L;; > Uy J = Oy Ui - Sig Vg,

and

Tu,,uyl=0 (237

2.3.1 Representations of U(N/L) and Ul

The irreducible representations of U(N) are labelled by
Young diagrams f = [f1f2....fN-} with utmost N rows such that

ey
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f1;;-"f2>/ f3 s e s 0 s ‘>/’fN>//O

and
I;'.'.B' = - . .8
f1+f2+f3+ + fy = m - (2.3.8)
The dimensionality of the irrep f of U(N) is given by,
“
Kl - T . g
[;hwl§( = “ (4 LJ) ~
where ’

Ql - TEL + N =L (2.3.9)

According to Pauli Exclusion Principle an m-particle state
pas to be completely antisymmetric., It can therefore belong only
}to the irrep [imj = E11 PR 1] of U(N). This condition places
certain restrictions on irreps of U(N/k) and}U(h) that can be
allowed. Denoting the irrep of U(W) by‘f =‘[f1f2f3ful , the
only allowed irrep of U(N/4) is that which is obtained by changing
rows into colums in f. This is called a conjugate representation
denoted ﬁy E . The consequence of this is that an irrep of U(l)
cannot have more than N/4 columns and the irrep of U(N/4) not

more than four columns. JFor such a direct-product subgroup then,

one needs to specify the irrep of either U(N/4) or U(l).

Tn terms of the representations of U(N/4) one can under-

stand the four periodicity in the binding energy of nuclel
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mentioned in section (2.1). For an antisymmetric spin-isospin
wave function, because of Péuli Principle, the space part of the
wave function has to be completely symmetric. However,as mentioned
before there are certain restrictions on the irreps of U(N/4) and
U(4), Therefore, for m = Yk+r (r¢ W) particles the most space

symmetric representation is [ Hk,r] .

2.k The Supermultiplet group SU(W)

Mollowing the notation of Hecht and Pang (1969), the four

spin-isospin } ms'mt> states of a single nucleon can be written as:

)i> = Wz ‘f2> )1>: ‘“2~'/2>

(2.%.1)

The infinitesimal operators which generate unitary trans-
formations in this four dimensional space can be built from the

creation 4_; and annihilation operators B defined as
N = TaN = B, |t |
}.O(L>‘" Ao(g §Q> b/ ‘O> = Dy ).O( > (2.%4.2)
Instead of the sixteen one-body operators Uij defined as

th - Tv«AxiTij (2.4.3)

-y
Lot

A,



it is convenient to take linear combinations and use these more
physical operators as generators of the group U(4). These new

operators are defined as:

N =0y Ty Ugy Ty,

Sy = (U11 + Uy, = Uy - Uhu)/2
T, = (U11 - U22 + U33 - Unu)/g
Bo = (Uyq = Uy = Uyg + Un0/2
S+ Sy U

s =gy U42>/E

Tt = (W, + U/ 5

I = (U, + U303

A R A

B g = U3 - Wl/in

By, = U - U)Ays

Bpr = Wy = U/

By = U

E = Uy
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B,y 7 U3

. —_ (2o)+')“,')
B 7 U32
Here N is the number operator, §,, S, are the three spin

operators and Tz, TZ are the three igsospin operators. The nine

components of the operator E are given by,

LT
i
1

LU gl iy Ay By (2.4.5)

—_—
—

where (T and T are the usual Paulil operators for spin and
isospin. These are the sixteen generators of the group U(kH)
which is a Lie group of rank four. The operators ;N?,qézg TZ
and Eoo commute with each other. The fifteen operators S, T
and E are generators of the group SU(Y4) which has a rank three.
In this case the thrée operators S TZ and Eoo commute with
each other and the single nucleon states | are eigenstates of
these operators. The remaining twelve operators act.as step-up

or.step-down operators and transform one single particle gtate

into another.

The eigenvalues of the three simultaneously commuting

operators SZ’TZ and Eoo are used to label the gtatés within a
representation. Let the eigenvalues be m132 and m3 respectively-

m, ) is called the weight of a state. A weight

Then (m“m29 3
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(m1,m2,m3) is said to be higher than the welght (m;,mé;m’) if
the first non zero number in the sequence (m ;, 2, 13 é)

ig positive. The state of highest weight labels the irrep.

2.4 Representation of sU(L)

The irreps Of U(4) are labelled by the Young‘diagram

T -
£ £

f1 2f3 L

are. the same as those of U(%) but representations differing only

f = with utmost four rows. The irreps of Su(kL)
~

in completed columns are identical with respect to 8U(L). Thus
irreps of SU(4) are characterized by the set of three numbers

,‘ . “ : N . o .
u, f2 f)+ 3 4 IR With respect to U(k), representations

dlfferlng in completed columns are digtinguished by the number
operator jﬂ’. In the state of the highest -weight for the

symetry 1f1f2f3f4j there are f1 particles in the spin-isospin

state |1 £, particles in 12y £ partlcles in {3> and

f), particles in }%,, Wigner has used the three numbers (PP'P'!')
for the highest welghts for gu(4) and these are related to
<f1f2f3f4) in the following wmamner:

!

= (f1 + £, - £y - fu)/z

= (f1 - £, ¢ f3 - fy)/2 (2.%.6)
P"‘:(f1 - £, = £y ¥ fu)‘/z

where P gives the maximum value of SZ and therefore S contained
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in the irrep, P' is the maximum value of TZ and therefore T
in the irrep consistent with S, = S and P'' ig the maximum
value of & 50 for a state with SZ = S and TZ = T, Wigner

1abels the irrep of SU(4) by the three quantum numbers (PP'P!'').

2.4, 2  Cagimir Invariants of SUCH)

The group SU(W) is a semi-simple Lie group of rank three

’ and has therefore three Casimir invariants. 4 Cagimir invariant
is deflned to be a polynomial function of generators of the group
such that it commutes with all the generators. The three Casimir

operators for SU(L) are,

Gy= 2. UL
¥
(20“’67)

Gy = 2L Uy UVl
L)k

Z LUUJPL h"UQl
js\l

which are quadratic, cublc and gquartic in the generators. These

operators commute with the generators, il.e.,

o, U N
[ G, sy 23 0d  (2.4.8)
= 1,2,3 and & '

i
©)
R
¥

.
.
{
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The eigenvalues of these operators completely specify an irrep
“and all states in a given representation are eigenstates of these
dperators. The eigenvalue of a Casimir operator is determined by
letting it act on the highest weight state. All stepéup operators-
wheﬁ acting on such a state give zero and this fact is exploited
by'using the commutation relation giveh in eqg.(2.3.7) to bring
all step up operators to the right. Finally, only the diagonal
operators survive. 8ince in the state of highest weight for the
irrep E‘there are fi particles in the state ‘k>> the eigenvalue of

the Casimir operator can be immediately obtained. Explicitly,

<c,>% )_th + 340+ 5,0 15 -3,
131 =
<Ga>,t:

R E SR ZH v a4 - §,-545- 34,

A "‘24_,~‘\—;‘7 :(,f"

<k}“/§ - %— +C1§‘%'5}2'*§ 35@ 2ﬁ.}(~1 4;; T
~ 1<) <y

L_::I
=

£

M

.}r

bandid

2T § 5 5 540 3y - RESa- ¢y L

S N 24y H 2T 4 -, 1'5:?3-'3-}14

(2.%.9)
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2.4.3 The charge-gpin structure of the supérmultiplet

 The spin-isospin group U(4) can be decomposed into a
dirsct-product subgroup SUT(2) X SUS(Q). The generators of
SUL(2) and SU4(2) are the three isospin and the three spin

~operators respectively.

A representation f of U(4) will give rise to many 1rreps
of the direct-product sub;roup. Thé irreps of this subgroup

are labelled by the total igospin T and spin S of the states.
These (T8) multiplets occuring for a given symmetry 5 are deter-
mined usging a chain process. Starting from avknown structure and
using Littlewood's rules and adding the isospin and spin vectori-

ally, one can obtain the multiplets for any other symmetry f’.

Dcbails of this method with tables are given in the appendix.

2.5 sU(4) isospin-spin averages

A straight forward way of studying space symmetry in
nuclei would be to diagonalize the Hamiltonian operator H in a
space gymmetry representation. However, this can only Dbe done
for a féw nucleons in a reasonably small vector space since the
matrix dimensionalities increase very rapidly. In order to
study SU(H) éymmetry without putting any restrictions on the
number of active nuéleons m or the size of the vector space
formed by distributing these into N single particle states, we

use the spectral distribution methods.
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2.9 Bvaluation of spectral mouments

a) Centroid energies

Averéges of the Hamiltonian operator H and H? over states
belonging to a definite 8SU(Y) symmetrytf, igsospin T and spin S
are evaluated. If we assume the normality of distribution of
states belonging to (f,T,S) the following two moments (c.fieqs

(1.2.5)) characterize the spectral distribution,

miTs ' > . _
3T Ty
_ A(m§Ts) LefTs (2:51)
| miTg — L
D S SO h s
Ct(h"*.:gTS) b (“5_1“5 o §2-'5'92>

where 4(mfT8) is the total number of states over which the sum

is taken.

angTs) = (2T+1)(28+1) x alub)y(y ) | (2.543)

- v
Here f is the conjugate representation of f and a(mf) is the
v : : o~ ~
dimensionality of U(N/%)., The first moment is the centroid
energylEC(meS) and the second moment determines the variance
e

(cof. eq.(1.2.7)) defined as:
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) miTS 2
T(miTs)= LMD - EMITS)
0 (m;: 7S ) = AP A (2.5.4)

To determine these averages using the propagation technigue
mentioned in Chapter I (c.f. sec.(1.2.2); eq. (1.2.27 - 1.2.28))
one needs to congtruct density operators which propagate informa-
tion from the input space to the rest of the space. The density
operators are scalars under trans formations of the group. and they
may be written as polynomial functions of the Casimir operators of
the group, provided there are sufficient number of scalar operators.
In otherwords one should be able to construct density operators
_in terms of the Casimir operators of the group for all irreps in
the defining space. For SU(4) averaging one is able to construct

density operators in terms of the scalar operators n, G29G3 and Gh'

However, instead of evaluating the expectation values of
the density operators,which are expressible in terms of eigenvalues
of the Casimir operators of U(4) in irreps of U(4); it is often
advantageous to follow a different procedure. In the averaging.
process it is clear that only the group scalar part of an
operator survives which means that only the grdup gcalar part of
the operator is relevant for evaluating averages. Therefore, if
one can construct a new scalar operator %9 the linear trace

equivalent of H with the correct maximum particle rank and which
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reproduces the averages of H in the defining space, it will

reproduce them in all representations.

Now for averaging over states defined by (£,T,S), one can
write down the average of H in terms of the number operator and
various other operators which are scalar w1th respect to the
group SU(H), isospin and spin. The operator H called the linear
trace equivalent of H (valid for evaluating centroid energies)

‘\éan be'written as
% = p (n) + P (n) G,+P_(n) 7° + P (n) 52 (24545)
2 o 270 0 '

where B (n) is a polynomial of degree k in the number 6perator

n and G ig the bilinear Casimir operator of SU(4). Purther,.

~ for the equlvalence to be faithful there should be as many (f T ,8)
representations in the (0,1,2)-particle space (defining space) as
there are unknown parameters in eq.(2.9.5). We see from table
(II.1) that this is in faect the case. The unknown parameters in
eq. (2.5.5) can be evaluated by using as inputs averages in the

defining space which are listed in table (II.1).

The expression for centroid energy can be written as:
= (miTs) = (m3m+2) E (0 Qoo)- m(m-2)E (VL")
—e A 2 ' ’

F LHﬂ-+2nw+«\L;)+2J(THJ)+25(&+J}E¢(13i})

nig

e

i._.

E?)rn +m /(13> ZT(TH)%—?.D(S“Hﬂ (2)&0\)

(A3
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’é" [5 wm a-rr\1—<{_u2>+2‘T(T.\,a)—15(5-+\)iE(_(2 o)

L mw+<fg1>-«;\(T#0 25¢( *\ﬂF‘(zzoO)

 Thig polynomial expregsion propagates the input information
given by the average energy over 1, 2 particles with different

spin and igospin to the rest of the space.

It turns out however that we cannot define an equlvalent

2

operator for H2 in terms of n, G29 G3 and Gug S~ and T (G and

¢ are the cubic and quartic Casimir operators of SU(M))._Thls

N
is because the most general polynomial operator with particle

rank < 4 constructed from the operators 1, n, G,» G39 G49 82,

2
T2 has 23 unknown parameters whereas the number of input 1rreps
in the defining space ig 28. It is therefore not possible to
construct an expression for variance 51m11ar to the one for
the centroid. In principle, one cah durlve an expre551on for
the variance by including so called tmixed'! operators but this
will be discussed separately. Some comments, however, on

(me) averaging are given at the end. TFor the present we have

‘defined and evaluated what can be termed an tequivalent' width.
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b) Equivalent width

Let us assume that for a gilven particle number m andI£
all widths for various (TS) multiplets are equal. Such an
approx1matlon seems reasonable in view of the fact that we have
observed s near constancy of w1dths (Parlkh 1973) belonging to
different 1rreps’£ for a glven m. Further 1f the dlstrlbutlon

is assumed to be a Gaussian, this constant width can be

' determined from the condition that the sum of K Gausslens, one

for each (TiSi) having its centre at E (meisi) and width O
c ~ _
should add upto a Gaussian having an SU(Y) centroid and width.

. BExplicitly, then we require that the equation

ﬂ(mi o [(&— - (m ) )1—}'

Vo @ (m) cHmiy -
K |
= ) g [@ o) gl
=1 \am & | |

| (2.5.7)
be satisfied at B = B, (mf) where B (mf)v CT(mf) and d(mf) are
the SU(4) centroid, width and dlmen51ona11ty respectively. The
only unknown gquantity @ in eq.(2.5-7) is then determined numeri-
cally by using an iterative procedure. Bxamples are shown in

figures (IL.T) and (II.2).
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Another way of evaluating an eguivalent width is to

agsume that for a given m, all representations with the game
igospin T have a constant width. This constant width G (mfTs).

a4
can be determined Dby requiring that

~ l_-. Py '1‘ et
ﬂmgj?”~z Cxxiﬁi;” (ITw EQ(NWT)) }

\/—TT G T) , 5 Qﬂﬁ'{(mﬂ

L
K
2 d(rm({&) ) exp (F k., (m)(fS) )) “
'Ex \‘,gﬂ;“}(mi‘rs) 20 (m{ -

(2.5.8)

" be satisfied at E = EC(mT)“Where a(mT), EC(mT) and G (mT) are
the dimensionality, centroid and width for risospin distribution
(Chang, French and Thio, 1971), Once againiah iterative proce-

dure ig adopted to determine G (mfT8).

Tn order to test the cquivalent width approximation, the
following method has been used. The SU(4)~isospin§spin width
\‘(meS) ig first determined using eq. (2.5.8). Now by averaging
over the isospin and spin quantum numbers, the SU(H) width
\f—(ﬁi) ;s evaluated. CT(mE) ig related to fm(mETS) by the

following equations:
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. zﬂmiTS
HD me )+‘E(mi’\5) |
m MiTS

KRBT = T st L
s

ST @T+1) (254))

TS

E;ﬁ“\i).- 5%567\+l)'25+§}w¢“ﬂ§75)/6112 T4 (2544)

Pl . Y -
T(mi )= 4\—-} > - Ec (m)
-~ ~ R ~
| (2s5.9)
The numbers so obtained are then cOmpared in tables (II.2) and
(II.3) with exact calculation of Cr(mf) oy Parikh (1973).
agreement is excellent. '

In the next section, we use the expre351on for centroid
energy and width obtained here to evaluate these moments in the

~ 2s-1d shell.

2.5.2 SU(4) TS moments in Js-1d shell

The expressions (2.5. 6) - (2.5.8) are used to determine
centroid energies and equivalent widths in 2s-1d shell. Input
traces for propagation are evaluated by means of explicilt shell
model calculations upto two particles in this shell. The Oak

Ridge Rochester Shell model program (J.B. French, E.C. Halbert,
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Table (II.2)

Comparison of the exact and equivalent width for 4 and 12
particles in 2s-1d shell. '

%;rtlcle 1 SU(Y) symme- 0 Rosenfeld Interactlon ki KB(12,5) Interactlon

o, 0 try Q 0
m % w:E % Y (mf) ‘e’xag%f) % (J (mf) ex;f:niz)
) [ Looo] 5.06 5.06 4,97 4,98
T 3100} 5,00 1,88 5.27 5.20
[ 2200] 5.09 4.90 545 5.35
[ 2110] 4.96 4.88 5,43 5.49
T1111] 5.30 5.32 5. 7% 6.12
12 [ 6600] 10.8% 10,77 10,01 10.19
' [ 65107 9.30 9.12 9.40 9.34
[ 6420 8.26 8.04 9.01 8.83
{6411 8.13 7.94 9,13 9.00
[.6330] 7.73 7.51 8.82 8.60
[ 6321] 747 7.33 - 8.9% 8.79
{ 6222] 7.07 7.02 8.93 8.82
[5520] 8.13 7.95 9.13 9.02
55111 8.06 7.92 9,8 9.22
[ 5430] 7,47 7.3k 8.9k 8.82
[ su21] 7.38 7.34 9. 1% 9.11
[ 5331) 7.07 7.09 9.08 9.09
{ 5322] 7.05 7.15 9.19 9,28
[ 1ko] 7,07 7.03 8.93 8.88
[ uh31] 7.05 - 7.15 9.19 9.29
L Wop) 7.10 7,28 9,33 9.53
[ u4332] 7.02 7.29 9.37 9,6k

—~ - {
-.-.-—...--..—.———-.-—._._....-.-..—.._...—_.-—...—--._.—...-...—..—...._-—....-.—....._.-———---,_———-——_.—.——.—-——-.4—..._..—_...___:
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Table (II.3)

Exact and equivalent sU(4) widths for 4 holes using KB(12.9)

interaction

~ Number of holes gu(4) symuetry KB(12.5) Interaction
' g~ (mf
" ,5 Gd(@£> Jexact ~>

lt | %000 ] 6.77 6.92

I 3100] 7.16 7.15

| 2200) 7.38 7.30

[ 2110] 7.45 7.45

-—-—-—.——....-—_—____.——..————._—-,.——.—-—--—-—-—.—-——-.—-——-—-—-—.——"————.—m—w——ﬂ—w—-m.——-
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J.B. McGrofy and S.8.M. Wong, 1969) calculates matrix elements
in jj representation. In order to obtain wave functions in a
space symmetry (SU(6)) representation one congtructs a transfor-

mation eperator 0(T) (Parikh and Wong (1972)):
. — ) : . -
O(T) = - 10P - 2G,(SUR)) +3557+ 0" 3L

where PX is the space exchange operator, G2(SU(3)) is the Casimir

2 are the squares

operator of the Elliott SU(3) group and §° and L
of the total spin and orbital angular momen tum operatérs, Al though
for the present purpose, one is not interested in SU(3) and R(3)
(L) symmetries, the Casimir operators for these groups are inclu-
ded in the transformation operator to eliminate some of the
degeneracies in the eigenvélues. The paraméters in 0(T) are
chosen such that after diagonalizing it in an (mJT ) space, its
eigenvalues are ordered according to space symmetry (SU(6)), with
the states of highest symmetry being lowest in energy. The eigen
functions of 0(T) are then used as transformation matrices U to
. transform H into the space'symmetry representation

g H= UgD
By taking suitable partial traces in H, one can obtain the

necessary input informstion for the propagating equations.
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, The Hamiltonian H = H(1) + H(?> where H(1> is the
one body part and H(g) the two body part. H(2 = >;A \/;:J and

for Vij three different choices have been made.

i) A éentral Rosenfeld exchange mixture - The Rosenfeld
1nter%ctlon Yas a strength of 40 MeV and a Yukawa radisl shabe
'with range a :-1.37 fm. The harmonic oscillator length parameter

T 2
1>=°(“‘“%/Fﬁf1 ig taken to be 0.370 fm~ -2 so that the dimension-
. - ‘ : .

less parameter A = cx(lul)lz- = 0.589. The single particle
energles used with this interactions are taken from 017. These

G = 4,15 MeV; & = - Me S = 0.
are d5/2 )+ 15 IeV7 81/2 3. 28 eV and d3/2 93
MeV. '

ii) Bffective interaction matrix elements of Kuo and Brown

CKB(12.5) (Kuo and Brown, 1966) w1tﬂ the following single particle

energles;

e _ - _ - - '
dg /p = 4. 14928, ,L»d3/2 0.93070, sS4/ 3.28063

iii) Modified surface delta interaction MgDT - The MSDXL

interaction (Wildenthal, McGrory, Halbert and Graber, 1971) is

expressed as

\/T(L” - L”“ A_? rg(‘h\"‘?\-\) )‘&[Jﬂ— i3
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where AT and BT are strengths depending only on isospih T and
fi. is an operator such that the integral over radial wave
J n_+n, 4 +n -
functions is equal to (-1) 2 C d | mor the present calcula-
‘tions the following va ues of AT’ BT and single particle énergies

were chosen;

Apg = 0.646; Ay, = 0.906
= =l 3 Br= = 0'77
Bro 1473 T=1
5 = - o G - - ° E: = ... P

The input centroids for various interactions are shown in table
(11.1). Tor the caleulation of equivelent width, SU(4) and (mT)
widths were taken from Parikh (1973) and Thio (1970) respectively.
Averagés for four particles and four holes using various inter-
actions are shown in table (IT.4 - II.5). Centroid energies and
widths for twelve particles belonging to a particular symmetry

£ are shown in table (II.6). In table (II.7) these averages for

12 particles and isospin 1 are listed.

For a fixed SU(M) symmetry f, we see from table (II.6)
that the centroid span for various (T8) multiplets contained in
f ig about 30 and 15 MeV for Rosenfeld and KB(12.5) interactions.
~

The width for the latter case is about 2 MeV larger than the



67

969+ 6gL* g 59 €L- 80+ 8456"H e tl- L4 S foozz]
959" H +©90* G CHeLL- HQO*H - AGRR HO4°OL- €ég {00LE]
9594 088N .CTH" 9~ HEOh 92t GGhtG- ) foooyd
9et*§ WA +H6E " gL~ L6L clg'H 6L9° gL~ cée roLiel
CTARE Lt G 06 /L= L 64+ 2Lg'H 0g5* 9l - L¢¢ rotriel
ST 6gL* 4 049 L= 6L H A% 9G6°CL- €ee fooezl
STARE +90° 6 AN L6/ *H 4G H LAE €L~ Gfe r0oLE)
STA TR +90° & GoE L= N LSHH zéC 6~ cie foot€l
AR +H90" § Lgg oL- L64,°H LGhH A L€ 1ooLEd
92 €6 098+ 9CE R~ L64 *H 492 *H 9£0"0- cec LoooH 1
ond* 6 Hll*9 AR A G6e* 6 +He2E ¢ Loc 4c- Ly [LLLL3
v YA WAe Hah gL- G626 zLg L6 L~ €fl (otiel
S oR4t S 6g8L* 6 AU [45AR o6+ SANARY Gt roocel
Ol S 6gL*¢ 9t Qg Cl- G6e* g LG 6oc L= Ll fooce
LT 790*S - gER°LL- Gée'S  LShH 695" g- €L tooLe?
o VAN 088'H téct- Gé6c S 492 *H c.g°c L {000 X
J o

(s1FudL, imyTs (szim’m P m
K> (SIim)” o (SIju) ® Amawsv Amamagtl.AmeEv g (L+8¢° L+Ic)
uotlorIequUl (§°ClL)gay UOT10BJIS1UT PTeJUesSoy -

%Hmbﬁpom@mmg mgpﬁﬁz (Im)

pue (k)nS fursn pejenTeae SBA UIPTH pswawbaﬁvm 8yl 1BY1 e310Usp JI PuUE H SUOT3OB
-requtr (G° ermx pue @Hmmqmmam gursn seToTaJIed 4 JOF SU3PTM pue sprogjued S (H)NS

(R i1y eTaz=L



68

el " goe- ogl*4 grO* G0C - 146  [ooee |

~ LdLeloe- | ¢%0*4 - LE9rcoe- €¢s fooie]

ggL ¢ 660 *+H0Z - €679 N eolde! olg l6lL- ¢ts  [ooon]

HRGQEle- EeER L 98/ 602 - gfc [orie]

8.0 Hle- €¢xr/4  hg9°goe- L' [oiiz]

gesele- ogh*4  €42°902- €¢¢ [ooez)

ehstole- GG0%4  996°H0S- ¢f¢ [oolg}

L6l tig- GG0*/4 66/ 202 - ~gfe Joolg]

Hinobie= | ggots  S59°Loe- b'e  fool€ ]

046¢ /et goe- bREL 168" 9 0ts*S6L- gee m@@@jw

LG gle- LL0'g 4L Gle- bbbt

£og*Gle- Eehs ghg® 60— g1 [otie]

g0 Hie- oo0gkts LnSTeoe- ¢t [ooee]

96/ *Hle- | ogL*s o€e*soe- L1 [ooez |

oo €le- : GG0°"4 6Lg*coc~ €L [oole]
L1g°€ Lot ole- 9L8"4 L68*9 489 Hbh- L foooH] #
Ama%auHHﬂ, (s’ Amamav (513 evHLu (s13m)° (L+g2fl+Ic) I w

UOT398I81UT TASKH gOHpomH@qu (Grel)ay

SUOT] ORIDIUT
Hmnz pue Am ZL)gy fursn saToy.k JOF SUIPTM DPUB SPTOIIUSH

(&7II) °TdL




69

 Table (II.6)

The centroi_ds and widths for 12 particles belonging to the symm-
etry'[6510J'using the Rosenfeld and KB(12.5) interactions.

Rosenfeld  Int. - KB(12.5) Int.
- f dim(f) (§§+15 E (mfTs &(mfTS) E (mfTS)  (mfTs)-
' ~ +1 C Lad ~ C o~ ~ -
{6510 105 1,3 ~42,73 6. 24 ~60.23  8.16

105 351 -41.39 -59.07

175 1,5 ~46.80 ~6o. 4

175 51 ~142,80 -58.95

L5 1,7 -52,92 ~65 .75

ols 741 ~4h.92 -58.76
315" 1,9 -61.08 ~70,16

315 9y 1 ~47,74 -53.52
385 11,1 =51.28 -58.22

315 3,3 -43.43 ~60.17

315 3,43 -43.43 ~60.17

525 3,5 ~h7,.51 -62.38

525 543 -4 8L -60.05

525 3,5 -47.51 -62.38
5259, 5,3 ~Lh 8 ~60,05

| 735 3,7 ~53.63 -65.69
735 743 -46.96 -59.87

735 3,7 -53.63 ~65.69

735 743 -46,96 ~59.87

L5 3,9 ~61.79 ~70.10

U5 9,3 ~-49.73 ~-59.62

oLy 3,9 ~61.79 -70.10

9L5 9,3 -49.,78 ~59,62
1155 3,11 =71.98 -75.62
1155 11,3 -53.32 ~59.32
875 545 -13.92 - -62.26

875 545 ~-48.,92 -62.26
1225 57 -55.0k% -65.57
1225 745 ~51,0k4 -62.07
1225 5,7 -55.04 . ~65.57
1225 749 -51.04 -62.07
1575 549 -62.20 -69.98
1575 995 "53-86 —61-83
1715 797 -57.16 ~65.39

T T N T e e em s i i e W e st e e e e S otk St 2 e e s e G P e P MY e At Bt e S d Hat Sne et ot e o e P ot e Aat 4 o et o e et
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cormer. From our results in table (II.7) we observe that for 12

_ pafticles having isoSpin 1, the centroid span for the two inter

" sctions is about 60 and 45 MeV’respéctively. The widths in the
t@o'éases being 6.92 and 9.30 MeV, one would, on this basis

gxpect that the realistic interaction of Kuo and Brown would

give rise to greater mixing as compared with the central Rosenfeld

interaction.

2.5.3 Ground state energles and low energy spectra

| As mentioned in Chapter I(sec 1.2.}4) spectrél moments can
be used to determine ground state energiés foilowing the procedure

suggested by Ratcliff. The ground state for the nucleus with
isospin T is located at an energy nghere the cumulafive distribut-

ion F(E,T) (c.f. eq.(1.2.34)) written as:

of (m T($9)) | ( )
\r‘:},. (rm(fS)) KZG‘Z(mT(_i—S‘)}:‘)

FeT)=)
L

(2.5:10)
satisfies the relation

F(Eg,TQ) = (27 + 1) (a1 + t)/2 (2.5.11)
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wnere Jo‘aﬁd TO denote the angular momentum and isospin of the

ground state.

We can also locate the excited states (c.f.cq.(1.2.37)), the

ith excited state being given by,

FET)= (2‘“**){;:(27% )+ (27, +\)/2]

(2.5.12)
Tn view of the diécussion in Chapter I (sec.1:2) for locating the
ground state, we shall as far as- p0551ble make uSe of a reference
 state. A comparison with empirical energies (Garvey, Gerace,
Jaffe, Talmi and Kelson, 1969) (after making Coulomb correction)
is given in tablb (I1.8) and table (II.9). EXCépt for a few
cases, predlctlons of ground state energiles differ from observed
binding energies byzx/h—S MeV. A part of the larger disagreement
as we go higher in igospin can be attributed to the lack of
obséerved excited reference states. Also for very high isospin,
the interaction used may be inadequate. Small differences could
also arise due to the approximation of an equivaleht width and
questions relating to the determihafion of an exact width have
been- investigated in Chapter V. On the whole, however; it
appears that we are able to determine ground state eneérgiecs for
nuclei far away from the stability line nearly as well as in the

stable region. In order to do better one needs distribution
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Table (II.8)
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ative to O16 ) for 4¢mg12 in the

2s-1d shell.
A T Rosenfeld . Kuo~Brown B.B.
I II I II

20 0 ~-37.05 -37.39 -37.85 -37.86 -%0,70
: 1 -30.17 -30.1k -31.63 ~31.38 -30.30
' 2 -23.49 ~22.79 -24.97 24,19 -23.90
o1 1/2 -43,.78 -4, 01 ~46.01 -45.69 ~47.56
‘ 3/2 -38.22  -27.79 -41.19 ~40. 11 -38.40
5/2 -27.,94 -26.40 -30.83 -29,06 -24. 9L
22 0 54,35 = =54.77 -57.99 -57.70 -58.40
1 —iﬁ.eo -53.89 -57.9L _27.3u ~57.96
2 -4, 0 -43,11 -48,138 -47.09 -41.80
3 -35.5 -32.78 -39.99 -36.78 -29.95
23 1/2 -65.32 64,73 -70.34% -69.75 ~70.82
) 3Z2- "60-15 had 9010 "'661105 "6 08)+ "63.22
5/2 ~49.71 48,31 - 5.62 -53.43 -43.70
‘ 7/2 ~33. -34.9L -43.7 -39.6k -31.96
2k 0 ~78.50 -77.69 ~8L. 47 -83.89 -87.40
1 ”‘7211)’" -71028 "78’97 -78116 -77-93
2 -69.30 -67.37 ~77.53 7542 =~71.9¢
3 -54,07 -52.32 -61.23 -58.29 =52.56
L -43.21 -38.20 -49.62 -43.75 -36.57
25 1/2 -86.19 -85.14 -94.33 -93.60 ~QL. 7l
' 3/2 -81.71 - =80.26 -91.04 -89.63 -86.91
5/2 —73.25 -71.21 -83.30 ~80. 4% -76.06
7/2 . -58 .45 -56.12 -66.89 ~-62.71 ~57. 1441
9/2 -4, 61 -38.68 =511 -4k, 65 _-37.68
26 ) -95.95 -92.9%  -107.81 -105.07 2106.00
1 _9702‘7 "95-93 "‘107.72 "‘106-67 —105-93
2 ~-87.63 -85.75 -98,75 -95.80 --93,22
3 ~79.42 -76.72 -90.96 -86.88 -83.13
Ly ~63.10 -59.76 -72.88 -67.09 -60.73
5 -47.96 ~40.73 =55 Lk 47,0k -42.23
3/2 ~102.32 =100.99 ~114. 46 ~113.20 ~1124.
5/2 -93.32 -99.93 =106.05 ~103. 42 -100.32
7/2 "'81005 “"780)"’8 "“‘93031 "“88-)'"8 "86.L|'8
9/2 -64,29 =60.40 -74,38 -67.88 -65.33

11/2 -43.20 -39.13 -49.43 =4, 74 -
28 0 ~122.52 -121.67 ~=135.27 -134.8% -136.20
1 -115.53  -11%.3%  -129.53 -128.75 -126.89
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Table‘(II)8) (contd)

A T Rogsenfeld Kuo-Brown B. E.
I IT I IT
28 2 =112.52 -110.18 -126.47 -124.49 -1 20.83
3 -98.99 ~96.143 -113.86  -109.86  -105.12
L -86.87 -83.34 -100.80 ~93.99 ~92.52
Z -65,16 -60.48 -75.06 ~68,27 -66.40

-41.52 o =k1.52 -L7.31 -47.31 -1l 34

—_-_——--—.——_—.—.———._——...--n--—-—-——_-.-‘...-.u————-————-——-—————.——————n—_———_—.—.———
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Table (I1.9)

' ' ' : 16 _
Ground state energies(relative 400 ) uging KB(12.5) inter-
action for 12< m £ 20 in the 7s-id shell

A T  KBI KBII 3.E.

29 - 1/2 -1#5.é7 -144.90 | W79
, - 3/2 -141.43 -140.00 -136.23
5/2 -132.11 -129.26 ~126. 42

7/2 -118 .42 -113.21 -111.96

9/2 -100.28 -92.95 ~-9L4,39

’ 11/2 ‘ _71J1O —67.72 . —69059

30 . O -156c97 _“156082 "156.00
1 ~15743% -157.49 : -135.u7

2 ’ —1 098 ) ,“1 -96_ “1 3-17

3 -141.12 -136.81 -134.60

L ~120.54 11447 ~119.17

, 5 -10%. 76 -95. 14 -98.93

31 1/2 ~169.76 216k, 36 -168.31
3/2 1671k -165.89 - =161.96

5/2 -156.89 -154.03 -150.91

7/2 -1k, k2 -137.37 -137.37

/2 -123.36 -116.04 ‘ -129.26

32 0 ~186.07 ~185.8% ~183.50
1 "180052 -179b95 "176‘31

) ~177.98 -175.75 -171.20

3 —161067 "1 7080 "’155018

pr -148.94 - 141 e 11 -142.96

33 ‘g¢5 ~195.78 ~195 .66 ~192.26
~ -193.13 ~192.02 -186.31
5/2 - -180.99 -178.11 ~171.20

7/2 —165;77 -160.61 ~161.54

34 0 -207.60 -207.81 ~203.80
1 . =207.00 ~ -206.63 ~203.74%

2 -199,22 -197.48 -192.82

3 ~-188.83 —18h128 ~-184.07

35 1/2 -219.37 -219.52 ~216 Lkt
3/2 ~215.19 214 42 -210.65

5/2 -203.15 ~200.42 -201.07

36 0 ~237.49 ~237.61 -231.90

1 -230.22 -230.11 225,04
2 -225,16 ~-222.96 ~220.58

—___,_____________ﬁ_______nw_______éﬁ____w__—____-_—_ﬂ____—___
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with higher moments.

Using Ratcliff's procedure one can compare the spectra

" (low lying 1evels) obtained by using dlstrlbutions with either
shell model results (where available) or with the experimentally
Vobserved level seguence. For reasons outlined earlier, the
ground state which comes at a substantially lower energy should
be ignored in the comparison. Tn figures (II.3), (II.%) and
(II.5) we compare the low lying levels of some nuclei in the

first half of the 2s-1d shell obtained using various interactions.

There 1s a remarkably good agreement, particularly since
' the two moment dlstrlbutlon would not pe expected to predict
close lying levels in the low energy reglon,' For such cases

one needs higher moments or fixed J gistributions to make detailed

comparisons.

- For the second half of the shell we use the M3DI
interaction to obtain spectra of nuclei. Comparison wiﬁh shell
model calculations of Wildenthal et al (1971) has been made in
figures (11.6), (IL.7), (I1.8) and (1I.9). 4Again, apart from the
ground state which bccurs very much lower, agreement between
the two ig Teasonably good. Whereas in the calculations of
Wildenthal et al the vector space was truncated by requiring
that the number of nucleons occupying the d5/2 orbit is greater

than or equal to 10, the spectral di.stribution method places ne

!
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guch constraint. The fact that spectra of nuclel predicted by
the two methods shows very good agreement, supports the approxi~

- mation made by them for determining the energy levels.

It seems therefore from the successes of the method that
a large part of the spectral information is indeed contained in

low moments of H,

2,5.4 'Goodness' of SU(L) symmetry

The dimensionalities, centroids and widths.are used to
éonstruct a Gaussian approximation to the intensity distribution
of individual representations. We therefore evaluate the
intensities of various irreps at the ground state (c.f. eg.(1.2.38)),
According to the arguments given earlier (c.f. sec.1.2) the
relative intensities can be interpreted as mixing intensities
(French and Parlkh, 1971) which provide us with a measure of
symmetry breaking. Intbn31tles near the ground state for h—<m.(20

particles in the 2s-1d shell are given in tables (II.10) and (II.11).

{
We observe that the KB(12.5) interaction gives much

larger mixing as compared to the Rosenfeld interaction. Apart
from this? the admixturé of various symmetries shows some
unexpected behaviour. We see from tables (II.10) and (II.11)
tﬁat for some odd-A nuclei the extent of admixture is more as
compared to neighbouring even-A nuclei. Further, in several

cases (e.g. A=26) the symmetry mixing alternately varies



Table (II.10)

80

Percentage inteﬁsities of various irreps of SU(4) at the ground
state for various nuclei in the first half of the 2s-1d shell

ot o ot vt At MY 00 Mt sl et it o St it (o W e P W S WA by (ks St Bl (e s G s it e el A e bt Lt O e Gw G e G e en et . o

- . S W) S Bn ey b Y W et W G G O S S B W S e W W W By v em W\ S Gme Gv M v SN s Wev S Y e R SR AW SUY MW e e e S W e WP A T Bad e e e St Ve

21

22

23

k4

%5

26

D —
WP 2O NN =2 o

N

Rogsenfeld
T I1 . .
98-1 92-5-3
99-1 96~2~2
68-32 69-31
93~7 83-16
68-32 62-37
96-1 96-L4
99 98
67-22-9-2 56-24=1k4-5
961 9h-6
70-30 71-29
8L4-15 76-23
81-16=2 70~ 25~ 3~1
62-37 57-42
97-3 97-3
93-5-2 87-8-5
86-12 92-3-2
63-22-10-5 51-23-14=12
95-5 91-7 «
68-32 73-27
85-13 7622
68-30 60-36-2
79-18~2 67-27-3-3
63-27 58-L2
961 98-2
98-1
61=20~16-3 51-22-19=8
9l-2-3 90-4=5
61-21=12=6 L4I-21-15-1k
97-3 95-5
67-33 C83-17

o 91~9_

Kuo=-Brown
KBI KBII
93~7 79~15-5
95-3-2 920-5-3
59-141 59~
86-13 73=023-2~1
6L4-34-2 59-38-2
92-8 92-8
96-~2 91-1-2-4
56-28-12-3 L45-28-16-11
93-6 91=7
57-42 59-40
71-28-1 59~36-2-2
C 76-19-31  63=-27-5-2=2
59~40 53-U46
93-7
73-20-7 56-29-1k
88-bmli=2  B0-7-7-L4
51=29-13-5 39-29-18-12
91-8 90-9 '
5h-L6 60-139
70=27-2 56-35-4-3
61-34-2-3 51-38-3-4-3
70~ 2l=bimq]  60-31-5-3
5h-L5 53-L6
90-10 95-5
91=2-2~4  82-3-3-10
46-24-20-10 34-21-24-18
90-3-5 83-5-7
45~ 28-17~10 37-28-19-1k
93-7 93-6
59-45 69-31
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A T Rogenfeld
I 1T
27 1/2 83-17 73-25
5 eSSt
2 -32-1 -37m 2
7/2 74=23-2 64=31-2~3
9/2 68-32 65-35
11/2 100 100
B 0 93-5-2 8Lm9-7
. 1 95~ 2=1-1 90-3-3-3
2 59-17-17-7 46-19-19-15
3 95-2-2 91-Luly
L 62-16-16=6 53-17-17-12
5 100 100
6 100 100

100

Kuo-Brown
KBI KBIT

65~31-2-1 51 39=1=3
60-32~4~3-2  49-35.5-L.L
57—31—3;8 494D~ 3~ 3
62=32=1~2 58-34-1-3
56-43 61-39
100 100
66~ 25~9 47-33-18
84— 7L by 74-8-7-7
41-24-23-10  31-2h-24=1h4-3
90-5-1 86-6-6
4p-23-23-12  L2-22-22-13
100 ' 100

100
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Table (II.11)

. Mixing intensities for various nuclel in the second half of thé
2s~-1d shell using KB(12.5)

e a o - . oot T pe T et T v e v it Sn ber e Pd Wa e b b v o A Pt ot M it St G um e S WY bA e L Y Gl S e e et e S T S R e e e
-

A T KBI KBII

29 1/2 . 66-25-9 50~39~ 3-3
3/2 61-31-2-3~2 51 35-4-5-3
5/2 57-28-3~2 L49-Lonh3
7/2 60-33-4-2 57—35 5-3
9/2 56~ Ll 62-38

A 11/2 100 100 .

39 0 99l 2 81-12-3-3
1 Lh—25-20-11 32-24-21-21
2 88-3-6 81-5-9 -
3 L41-29-17-12 ' 35-28-19-16
L 99-10 93-6
5 53-L47 69-31

31 1/2 86-8-14 83-8-4 -
3/2 58-36-2-3  48-39-3=k-2
5/2 6L-27-6-2 55-33-7-3
7/2 51-43 5913
9/2 87-13 93-7

32 0 67-24-8 48-32-17
1 85-7-L-2 76-8-9-5
2 LL.31-15-9 3430~ 18- 142
3 88-10 38-12
L : 49-51-1 561y

33 1/2 67-24-8 51-41-3-2
3/2 71=21-5 50-28-6-3
5/2 51-147 49-49
7/2 86-14% - 89-11

34 Q 93-1-3-3 85-3~2-9
1 46-31-14=9 36-29-16-18
2 90-8 88~10-1
3 49~50-1 5 0~ 147



83

Table (II.11) (contd)

e v o S e oo i e o A otk A e A S e o o Gt ot ot e B o 0 o Sl 8 SRR

A T KBI. KBII
35 1/2 75-21=2 61=31=4=3

3/2 56-40-2 5Ll

5/2 86-14 87-13

0 84-13-3 65-24-10

1 90-5-1 85-7-8

2 Sh-L5 53-L6
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(either decreases or increases) with isospin. This behaviour
in our calculation appears because of dimensionality factors

and this feature needs to be exdmined with mach more care. In
- general, one may conclude that the relative intensities |

involving three or four lowest lying irreps indicate large

- admixings, the extent of which femains the same for both low

T and high T nuclei.

The external width (c.f. sec.(1.2)) would provide a more
precise measure of symmetry breaking. Hecht and Draayer (1974)
have evaluated SU(4) partial widths for 4=25 nuclei for various
moaifications of the Kuo-Brown interaction and have given a

simple mcasure of symmectry breaking. The ratio

(2,5.13)

where 7 (mff') is the partial width, provides a measure of
symmetry breaking..They find that the symmetry is violated more
for realistic interactions than for the central interaction,
However, it is possible that the intensities as shown in tables

(II.10) and (II.11) over cstimate the mixing for realistic
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N

interactiong. Thils may be due tb the fact that ground state
cnergies as well as the intensities may be in error because of
the two moment distribution.uihis also needs to be investigated

+4in detail.

In the absence of a knowledge about the partial widths
one can use a different way of estimating symmetry mixing which

je described here.

As mentioned earlier (c.f. eg.(1.2.12)) the total variance

(lemf) is a sum of two terms, the internal variance f'lnt(qg)
and the external variance szgt(gf). The former gives rise to
épreading of states within an irrep whereas the latter leads to
syﬁmetry mixing. One now tries to determine the ground state
energies and the mixing of SU(L) symmetry in terms of k)ilt(mf)
and l-ZXt(qf). In this two step process one flrst determines
energy of states, one from each symmetry (having the same ahgular
momentum J and isospin T) using Ratcliff's procedure separately
for each symmetry and taking u (mf) = R, G;(mi’) (0&RkR €Y )
Next these pure symmetry states are allowed to mix by -1) setting
up a matrix in this basis and taking for the symmetry mixing

matrix elements 3, (mf) = l*(mf) (k +k, = 1) and ii) diagona-

lizing the matrix.

As an illustration consider the case of 12 particles in

the 2s-1d shell, considering only the three lowest SU(L)
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symmetries namely T333§] ,}rh332] and {;4#22} and uging the
' sU(L) variances as obtained by Parikh (1973) the matrices for
various values of R, are set up and diagonalized. Results are

shown in table (II.12).

Table (II.12)

Ground state energies and symmetry mixing obtalned for
a decomposltlon of total width into an dnternal and
external width

..—-_..-—--—.._._—_—-—...*—.-.<.....——..-_—-_--—_.—.-—.—-—--.-..-—_.-_——-——-—_————-———-——‘—--——-——-——

| Ratcliff's 2 2 > ags
Interaction ) method ° Cftm;: CT/LL Gzh% 19 7o
B.E. Mixing B.E. Mixing B.E. Mixing

KB(12.5) =140.26 L7-48-5 -136.82 58-41-4 -138.8 50-49
Rosenfeld =-125.12 82-17 -122.77 78-19-2 -124.3 82-16-2

---——..-.....-—_-_..-......-__v-_..-_.....—_-._.‘—..——..-._-———...—_-—————_.-_.—.-—-_———__—-...

From the table one observes that as the value of ﬁ‘ is
increased the ground state energy tends tow&rds the value
obtalned before using @ (mf) Also there are small fluctuatlons
in the amount of symmetry mixing, the exte nt of m1x1ng increasing

for KB(12.5) and decreasing for Rosenfeld interaction.

2.5.5 Binding energy relationship for heavy rivel el

Tt has been shown by Franzini and Radicati (1963) that

for a nucleus with mass number A having the SU(4) symmetry



87

2
plet scheme can be written in the form

T = (P, P', P'') the ground state energy in the supermulti-

E(a,85)=am)+ bt [’sz Pt ars Pt
(2.5.14)

Here a(4) and b(A) are constants which depend on the nuclear
interaction and mass number. The possible{valueé of (P,P', P'')
for a given 4, calculated by Wigner, have been tabulated by
Wigner and Fecnberg (1937) and are related to‘g = [f1f2f3f#]'

through equation (2.4.6).

The polynomial expression involving (P,P',P'!') is the
eigenvalue of the bilinear Casimir operator for the SU(H)

symmetry‘g .

Franzini and Redicati have calculated binding energy
differences betwéen isobars using eq.(2.5.14). For each isobar,
‘; the numbers (P, P', P'') have been assigﬁed an the basis that
P=|T | = 1/2 } 82| and P' and P'' are taken to have the
minimum value consistent with P and A. This corresponds to
the most space symmetric state one can cohstruct under these

conditions.

With these assignments of the symmetries a ratio E

involving binding energieés of three isobars defined as:
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R(To):: E(Ayg(.‘m"))' E,:CAa'.%(.TO"z))'

E(A,5(T.n)- E (A, 5CT-2)

(2.5.19)
ig calculated.

It can easily be chacked that R(TO) is‘independent of 4
in the SU(Y) scheme. The ratios R(T ) for 4=2m+1, m and Lm+2
nuclei have been calculated by these authors using empirical
values for binding energies and the agreement with theoretical

values predicted by Wigner model is found to be good.

In our work, we have evaluated the ratio R using the
binding energies obtained from the distribution method by choosing
the appropriaté isobars from tebles (iIP8) and (II.9). The values
obtained using different interactions are'compared with the
theoretical SU(L) modei ones RWig in table (II.13).-The appropriate

experimental values Bexp are also tabulated.

For a fixed isospin TO, the number of sets of isobars
available to calculate R was small. 4lthough the values calculated
seem to be scattered around the theoretical values, agreement
in general is reasonable. It should be notéd that the empirical

values of the ratio obtained also deviate from the theoretical
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numbers . Tt is interesting to observe that deviation of R, ;
and Rexp from BWig are étrongly correlated. In-view.of this we
may conclude that the general trend supports the SU(L4) model.
However, the Validity of the mass formula does not imply good
SU(L) symmetry for the wave function. This is because the ratio
R which involves differeﬁces of energies may be insensitive to

 symmetry mlx1ng.

2.5.6 SU(4) Partial level: densities and alpha transfer
reactions

The intensities of various irreps of SU(L) in the grouﬁd
state reglon provide a measure of symmetry mixing. One can also
determine these 1nten31tles at higher excitation energies and

thereby study their energy dependence. In figures (II.10 -

II.11), the energy variation for 4 and 8 particlesfis shown.

These partial lefel densities of SU(W) irreps can be
used in the study of alpha transfér reactions (Arima et al;1972;
Ichimura et al, 1973). In this section a véry elémentary account
is given. Fbr'a detailed investigation, one needs the cfp's for
the decomposition of a totally antlsymmetrle m nucleon wave fun-
ctlon into totally antlsymmetrlc functlons for SpelelC sets of
m, and m, nucleons. Some of these coefficients for the SU(h) part
of the wavefunction have beén given by Hecht and Paﬁg(1969)'while

those corresponding to the space part -are to be investigated.
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- Also, since the relative phases between éomponents having
gifferent symmetries are not known,.in this preliminary applica-
tion it has been assumed that the dominant symmetries are

coherent and the remaining occur with random sign.

With the assumption that the energy varlatlon of the
scatterlng Cross sectlon for alpha transfer depends largely on
the energy dependence of these intensities (c.f. sec.1.2. 4) the
overlaps are calculated; first by assuming that only one
symuetry is dominant and then by including others (since SU(L)

symmetry is broken).

As an illustration two reactions are considered.

R VI wg 2

o. Mg2”-+m'-7 512

- and the results shown in figures (II.12) and (II.13).

One observes that when only the dominanp symmetry is
considered the overlap varies more OI less lingarly with energy.
When the next symmetry is included the trend changes, the over-

" lap increases near the ground state to a maximum value and then
decreases slowly. Also the overall rate of decrease in the first

case is faster as compared to the second.

2.6 Concluding Remarks

We have examined the. SU(H) structufe of 2s~1d shell nuclei
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in finer details using spectral Qistribution methods. An
gyeraging of the SU(4) states, over fixed T and fixed S, has
béen carfied out to obtain ground state cnergies and low energy
spectra of several nuclei. Results of our calculations agree
reasonably well with known experimental or shell model results.
The reasons for disagreement observed for ground state energy

" have also been discussed.

Results of our calculationslof relative intengities of
arious irreps in ground states indicate that in this shell,
both for low T and high T values (for a given m), SU(H) symmetry
is broken often nearly maximally. Thus in heavier nuclel, iﬁ
is ohiviolls that the symmetry cannot be violated to any greater’
extent. Hence it is not any more surprising to find energy
systematics which are conseguences of this symmetry in hegvier
(4 £110) nuclei as in the lighter ones. It appears therefore
that symmetry mixing apparently does not significantly affect
energy rélationships, and in fact such relationships are rather
sucoeésful in concealing the strong violations of the symmetryfv
Thig is not a new feabure in nuclear physics where one hag over
vand over come across "Pseudonium" nuclel (Cohen, Lawson and
Soper, 1966). While such a conclusion seems reasonable, it would
still be necessary to do explicit calculations for heavier nuclel
to confirm the validity of this reasoning;‘This is done in the

next chapter.
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As regards the exact evaluation of the widths we just
qant to mention that while it has not Dbeen possible to construct
3 polynomial expression for G‘(meS) we have succeeded in
congtructing one for U“(mgT) or @ (me) In these cases
we are elther sveraging over spin states for fixed (pgT) or
#11 isospin states for fixed (qgs). These‘polynqmial expregssions
involve the operators 1, I, G2, G3, Gh’ Tg.and one extra
gperator (Gng)g_b or(G2 Szjz_b:depending upon whether we
want to evaluate O}(mfﬁ) or cfz(qgs). The subscript 2-b
on the opegrators implies that we take only tﬁe (1+2)-body parts
of the new operator although it has 3 and L-body parts ds well.,
Fbr physical applications we clearly want to evaluate (T'(me)

‘Details regarding this are mentioned in Chapter V.
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CHAPTER ITI

SPECTRAL DISTRIBUTION STUDY OF NUCLEI IN 2p-1f SHELL

3.1 Introduction

’Spectral distribution methods were used in Chapter II to
study properties of nuclei in 2s-1d shell. Besides SU(4) Isospin-
spin averages, spectral moments of the Hamiltonian for states

.defined by some other subgroups of U(N) have been evaluated by
French and Ratcliff (1971) and by Chang, French and Thio (1971).
vThey have used these moments to study properties of nuclel in
2s-1d and upper 2p-1f shells; In the application of distribution
methods to nuclear energies, level densitles and excltation
strengths, Chang,French and Thio find that the method worké very
well and there is no indication of any systematic error'depen-
ding upon the dimensionalities of the vector spaces which

range upto 35000.

In this chapter we have studied systematics of nucleil
in 2p-1f shell using these methods. There are séveral reasons for
this. Firstly, we would be dealing with spaces which are much
larger than those encountered earlief and hope to gain some
ingight into how these methods work in large spaces, a major
concern being the accuracy of the method. Secondly, the Qimen—
sionality of vector spaces being a major constraint on conventi-

- onal matrix methods, nuclei in this shell have not been extensively
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studied in the shell-model. Truncation of space on the basils

of physicél arguments, though often Quite fruitful may not
always be sufficient. One then takes recourse to other apprcxi-
mate methods and recently deformed configuration mixing calcula-
tions (DCM) in the Hartree-Fock framework by Dhar, Kulkarni and
.Bhatt (1975) have been successful in describing properties of

some nuclel in this shell.

It has been observed (Parikh, 1973; and Haq and Parikh,
1974) that SU(4) symmetry in light nuclel (2s-1d shell) is
broken for both low and high isospin, often nearly maximally.
Also previous results surprisingly indicate that symmetry mixing
does not significantly affect energy relationships deduced on
the assumption that the symmétry is good. In view of this it
is not surpriging to find energy systematics which appear to
be consequences of SU(4) symmetry in heavier nuclei (Franzini
and Radicati, 1963). We therefore wish to investigate the vali-

dity of the Wigner supermultiplet scheme in heavy nuclel.

In our study, we have considered a decomposition of the
overall spectroscopic space (m particles in 2p-1f shell) in
terms of; spherical orbit configurations (%), isospin (ml),
configuration-isospin (WT) and SU(4)-isospin (ET). Centroid
energies and widths for these distributions are evaluated and
used to determine ground state energies, low energy spectra

and fractional occupancy of single particle orbits for ground
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states of nuclei. The 'goodness' of Wigner SU(4) symmetry is
investigated using (£fT) moments.
g

In Section (3.2) we briefly review how one can average
ovér states defined by these subgroups of U(N). We first con-
 gider averaging over all m-particle states (Scalar averaging)
and then deal with finer averages. This involves configuration
averaging with and without isospin and sU(L) isospin-spin
averages. Spectral moments are evaluated and results presented
in Sec.(3.3). Application of spectral moments to study proper-
ties of nuclel is discussed in Sec.(3.4). Results are compared
with shell wodel and other microscopic calculations where

available. Concluding remarks are made in Sec.(3.5).

3.2  Averaging over states defined by U(N) and its subgroups

Tn Sec.(1.4) we discussed the unitary group U(N) and its
subgroups. Rather than averaging over states definedAby U(N)
which is the simplest form of averaging, it 1s much more profi-
table to deal with subgroups of U(N) which correspond to

~ partititions of N into subsets.

One can i?rry out a decomposition of U(N) via the direct-
sum group j{: U(Ni) where the N single particle states are

L) S
partitioned into L orbits with dimensionalities Ni(i = 1,e.0d).

th

By assigning m, particles to the 1’ orbit one gets a configu-

ration (W) = (m1, mxf‘mx) and moments of H over (%) can be
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evaluated. One can also specify isospin and deal with configura-
‘tion-isospin averages. By carrying out a direct-product subgroup
: decomposition, one can gverage over states defined by SU(%)

| symmetry or those defined by SU(L) gymmétry, spin and isospin.

" These subgroup decompositions of U(N) nave been discussed in

" gec. (1.1).

In this section we consider these various types of
, averaging. Scalar averaging is discussed in detail and some
- comments regarding finer averaging are made. We show how spéctral

cmoments for these distributions can be evaluated.

S 3.2.1 Scalar averaging

| In Sec.(1.2) we discussed how an operator with a definité
j particle rank propagates through the rest of the particle space.
This result was then extended to propagate operators of mixed
partiqle rank. The basic principle is to construct density
Operators of the system which are polynomisgls in the number
operator m and in more complex cases involve Cagimir operators

- of the group. For the Hamiltonian H which is a (0+1+2)-body

i Operator and H2 which is a (O+1+2+3+4)-body operator, one can
derive expressions fdr<¢entroids and widths. These have been

given by French (1967).

A 3 _ | (N-m)m m(m-~1)
B (w) = _\Q\T mNzgm__;L) E_(0) + oy B (1) + W}S— E (1) (3.2._.1)



The centroids for m particles ie written in terms of the

centroids in the defining space nalely O-particle EC(O>9

1-particle EC(1) and O-hole EC(N) spaces. Normally for scalar

averaging the elementary net would consist of O-particle,

1-particle and 2-particle representations. As mentioned before

fhis is not the most profitable way of looking at things because

of the complexity in obtaining the necessary input traces. One

then uses the optimﬁm net by including hole representations in

the defining space. The variance cYg(m) can bec written as:

g “(m) =

The input information is expressed in terms of centroids

and variances for certain particle and hole representations. It

alme1) (po2) (em) (eg=1){ &~ A1) -
T (- M-2)(N-3) } (Nem=1)

(3.2.2)

(-3) g-2(1)  + N1 G A2}
(m-1)

is convenient to rewrite eq.(3.2.1 = 3,2.2) in terms of single

particle energies and 2-body matrix elements. The Hamiltonian

H can be written as:

_ .2,
H = Hy + H +H, (3.2.3)

‘where H H and H. are the O-body, 1-body and 2-body parts

0’ 1
respectively,

2
The centroid energy is given by

,;|i
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o | 1 o
B (m) :<H>m :HO+(?)<H,>‘» +<‘§)<H2> (3.2.4)

. " | \j> 2 :
(my . . . P
where (1) etc are binomial coefficients amd.<:ﬁ1 and<<H;> are

the centroids in 1 and 2-particle spaces. In terms of the single

particle energies &.. and 2-body matrix elements WiJlJ, these can
L
be written as:
) N
. — ™
<wp = &=L 2; €

N {=1

(3.2.5)

2 — R _
2 ) i< i J

The final expression for centroid energy and the variance (Chang,

1970) can be written as:

i

H +u€ + mo-1) W (3.2.6)

EC(m) 5

| 2m(m-1) (N-m)
o () :—’éi%;—)lﬂé * RN T Ew

m(m-1)(m-2) (W-m) A’ -
ROET) (E3) (13 ) = w (3.2.7)

m(m=1) (N-m) (N-m-1)
W= (N-2)(N=3) A

Here [&Q_is the variance of H1 in single particle states defined

as
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A X7 .
D= %ﬁ»elwulj
¥

4 e | _
A, =2 W W, - N-(N-))l\::\;'z :
w ki R T | (3.2.8)

J .

‘ - /N m’*"—v pa —
B (2) ‘%s (W) = (W)
Re L

1&‘M is the variance of the H,. in 2-particle states.

2
Using equations (3.2.5) and (3.2.6) one can calculate
scalar eentroids and variances for any particle number m.
Scalar moments have been used by Ratcliff (1971) to estimate
the trend in theoretical binding energies for 2s-1d shell -
nuclei. Although these moments.are casy to evaluate, they
tell us nothing about structure of nuclei. There are maﬁy
finer averages which yield information regarding nuclear stru-

cture and we discuss them next.

3.2.3 Finer averaging

By partiﬁioning the N single particle states into
orbits with dimensionalities Ni(i = 1..... L) and distributing
m; particles in the 1™ §rbit we obtain a configuration (m).

. . L'
In order to evaluate moments over configuration subspaces (m)
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'one can follow French and Ratcliff (1971).'Howevef, their
expression for the variance g 2(®) is quite involved. Chang,
French and Thio (1971) have later derived an expression by
considering the behaviour of operaﬁors with respect to the-
group EE:U(Ni). This method gives a compact form for configu- .
~ration centroids and variances in which each term is expressed

in terms of physically significant quantities.

A hatural extension of scalar (m) and configuration (i)
averaging would be to deal with isospin (mT) and configuration-
isospin (WT) averages. Specification of isospin is important
because firétly, one schieves a finer decomposition of the space
than before; and secondly, one can study nuclei with a given
mass number A but having different number of neutrons (N) and

protons (Z) such that N + Z = A.

The technical aspects df evaluating averages in the

- lsospin subspace héve been discussed by ETench.§1969) and by
Thio (1970). From the group theoretical point of view, as
mentioned earlier, one is dealing here with the,direct—prdduct
subgroup U(N/2) x U(2) of U(N) (c.f. Sec.1.4), As discussed

ih Soc.(1.2), the method consists in constructing an equivalent
operator E for the Hemiltonian H which is a (0+1+2)-body operator.
The equivalent operatorAﬁ (valid only for calculating centroid

energies) is written as a polynomial expression in terms of
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the number operator n and isospin operator T2.
B =P (n) +P (n) T° | (3.2.9)

2 o

The four unknown parameters in eq.(3.2.9) can be obtained in
‘terms of averages of H (<:H)ka) in the defining space which
consists of the four representations (0,0), (1,1/2),(2,0) and
(2,1). In terms of the single particle energies €., and two-
body matrix elements wfsrs’ the final expression for the centroid

energy EC(mT) can be written as (Thio, 1970):

B (nT) =H +m& +1/4 (Pauly (B) /2 (-1 )%

| L3
) T(T+1) - L‘Lm} (3.2.10)
where E_ = ,Lq N, € ig the average single particle energy
h\ - hRR

and A%

o — e

¢ 0 T4l =01

\/\{ S {k":._.———-——*--—‘ Z”"’”“" <:2 N ) }LS}\,S (_/(—O} )

(3.2.{1)

Thio (1970) has derived expressions for the variance G’g(mT)
in terms of the density operators and avérages in the input
space both for the 'elementary' and 'optimum' nets. For the
optimum net, the input points and density operators Q(i,mT) are

iven in table (III.1).



103

Table (IIT.1)

Input points and density‘operatOrs for isospin (mT) éveraging

_—-—-——-....-————————....——————..——-—.-—-...—_.—-..—-—.———_——....--u———_——-—.-—.—_..--—._.-—.

Input point ‘ Dengity operator
i Q(i,mT)
: o]
0,0 . T @-2) (-1 (3+6) (1w

(PN 12) m+N(N2-4{}

+ 8m.{(N2+3NA6)m

- N(NZ4N-6)F T (T+1)

+16N(N2=2) T(T+1)

#16(1-2) (8-3)T2(T+1) % ] /R(+2)N7(N-2]]

141/2 {:(N+2jm(m—2)(N;m)4£(N+3)m
St 2N -6)} +im{ W(2N"+9N-10)
- 2n (N6 )} T(T+1)
- =8 (N+2)N(2N-3)T(T+1)
~16(8-2) (-3)72(7+1)°] / [(2)(-2) (-1}

2,0 | (@+2)m-br(T+1 )Y L(-m)
(N-m+2)-40(T+1)] /[ 8N(N-2) ]



N,0

N""]’ 1/2
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Table (T1T.1)(contd)

E3(N+H)(N+2)m(m—2)(1\7~m)
(Netti= 2 )=8 (N+4) (5M-6 )m
(N-m)T(T+1)+4(N+12) (N+2)
N(N-2)T(T+1)+16 N1l
+22)T2(1+1)°] / [ 8(I+2)N(H-1) (3-6) |

[:m(m+2)~hT(T+1i}[:(m—2)
{ (N+3)m—(N+2)N} +(N-3)
7(1+1)] / [ (2)N%(1-2) ]

[ m(n+2)-¥0(T+1)]
[ (w+2)(m-2) (N-m) |
S(N-2)T(T+1) ]/ ()N 2) (-1 ]
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Table (III.1){contd)

-

N/2,N/% T3(N+2)m(N—m)(N~m—2)
(e 2)- (P46 =1 2)m( et
(741 )48 (N+2)N(N-2)T(T+1)
16(1-2) (1-3)12(1+1)2 ] / }:(N+2)N2<N~2)<N~u>],

B2 k2 2[3m(m-2)(M-n) | (3W2)n-2
(+2) (1-1) } +Mm{jN(2N2
+11N-18)-m(3N"+4N-12) }
T(T+1)-8N(N+2) (2N-3)
T(T+1)=~16(N-2)(N-3). |
r2(1+1) 2]/ [(+2)N(F-2) (3-2) (3-6) ] |

N+2,N-2 2im(m+2)-4T(T+1 )] _ ],

2 L . .
~3(m-2) (N-m) +4(N=3)

(T+1) ] /[}N+2)N(N~2)(N~Mi}

—

. - —— - ——
e e o —— 4t ot e ru o o o Pon et e A oy ot Nt o Yy nd O o PN bt v St Ted M S P S e ST R g i S S RS T —
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Expressions for (mT) variances in the input space are

given below:
(1) ﬁ“g(0,0) =

' o - 2
(2) Qﬁ“g(n %) = ((:2~ @,2) +'11\‘rZr,s Ni;(ers)

T£S

__LM 2 .o 16 J. NN(E -€0
(3) o (2 0) ) ‘(C. - &) N g rr ss
r{s

[s)

: ':_:' 0 ~ 0 5 0,27
X-{-('érr““rf) ~(€gg* Sgs) }ﬂjw - (W)

< - |
s N, {2@“2 _(_1é__)_C Lugo(r,s;u)}
I‘7£S rs

ZIA

Gy g-Boyn = W (2 g?y L e 2w (€ - €

i ~

X {(err+6rr>‘_-<e ve )b o }



5) &

(6)

(7)

(8)

(9)

4
P
OZ
O
~
|
O

o
—~
7
-
o=
~
I
~

o=
Fl=
~
I
o

= (2 €60 D) s

P

@ e

P 4

12,
N Irs

T#s

12
N s

| T#S
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= (4132
Nr(érs(mﬁ

P N
NI‘ (GI‘S(ID) )
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where the various average energies and variances are expre-
i
ggible in terms of the igsospin average energles and induced

splitting energies defined as follows:

o~ :

:.ers(‘x) = 'érs - % 2...1:61(1,’8;1:)

~ e T

< rsv(P) =t rs +thTLT? 1 € (rs;t)

Koo 8 PR w’T

N 43\t
N(N+2( -1)%) rasd Tsrs
ris
.
2 8 ~ T dT 2
W)~ = N(N+2(=1)% ) —rstu:d [Jl(éstu)
rs&s, téu

v——— -1 <
X = = N X

N . T IT
-§ - 1> N 2
= = NLT No(x,.)

s

~4 ~ ~
with x =&, € or € (&), € (P) as appropriate.
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Finally>we write
g
cf;?“2<mT) = 2 Q(i,mT) o 2(1) (3.2.12)
=14 : -

The dimensionality of an (mT) subspace is given by

d(mT> - (I‘T“i"Z) v - [ vy (302.13)
\%~T / \\J}.j + T4t
where L= N/2.

It is obvious that (mT) formalism will not be convenient
where protons and neutrons arc filling different shell modeéel
orbits. Onc then needs to evaluate configuration-isospin averages
\ where one considers the Subgroup decomposition as:

[

~—
B v d

NS 2 U)oz U(2)

[

In this case one can proceed to determine the density
operators for the propagation of traces of H and-H2 calculated
in thae defining space. However, complications arise because
one is now dealing with a direct-product as well as a direct-
sum subgroup decomposition. One way of avoiding this domplexity
is tc use a p-n formalism in which the proton and neutron orbits
ara considered separately. The p-n formalism for evaluating

(mT) averages is to proceed via an analogous chain of groups,
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u(n) D { vtwy/2) ) + vy2), 1D { vty /2) + 3 vy,

In this case the forms derived for configuration averaging
are applicable and isospin is finaliy recovered by the ele-
mentary subtraction procedure. Details of this method and
expressions for the centroid energy EC(ﬁT) and variance

C72(ET) have beenrworked out by Thio (1970).

Configuration-isospin averages are important for
several reasons. An isospin subépace can be decomposed into
several (uT) subspaces. Therefore, (mT) distributions reveal
finer details of the isospin subspace. As we shall sec later,
they enable us to calculate the occupancy of shell model
orbits in the ground states of nuclel. They also tell us which
configurations are significent in the low lying states of, a '
nucleus, thereby providing a means of truncating large shell

model matrices to a reasonable size.

We end this section on finer gveraging with some
remarks on SU(4)-isospin spin averages. We are interested
(in the 2p-1f shell) in carrying out averages over states‘
belonging to irreducible representations in the following

chain decompositions
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0(50) D U(10) x U(4) 3 U(10) x (8U4(2) x SU(2))

7 The spectral averages are evaluated for states having
: rixed SU(L) symmetry f, isospin T and spin S by using the
-~y

expressions derived in Chapter IL.

Having discussed distributions, one might be tempted to
cohélude that the finef the averages the better would be the
dgistribution curves. Usually it is true that by‘doing a finer
| éveraging one takes into account more information of the vector
space and should therefore expect better results than otherJI
wise. However, it should be kept in mind that the larger the
dimensionality, the closer the distribution might be to a
gaussian, in which case a very fine averaging might not be a
wise thing to do. It therefore appears that for large spaces
one should proceed to finer averages keeping in mind that the’
dimensionality of the subspaces is not too small. 4lso for
the lowest and the highest lying irreps it may often be necessary

“to evaluate more. than 2 moments. We have not done this.

In the next section we evaluate the dimensionalities,
centroids and widths for the various distributions discussed
here. These are then used to study properties of nuclei in

. 2p~1f shell.
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3.3 Spectral moments in the 2p-1f shell

Te spectral moments in the 2p-1f shell have been calcu-
lated using the Kuo-Brown interéction (KB) as modified by McGrory,
VWildenthal and Halbert (1970). In this modified interaction
labelled MWH2, some of the T=1 matrix elements of KB interaction
have been replaced by the ones obtained by McGrory et al to
optimize agreement with the experiméntal spectra of Ca isotopes.
In MWH2, the centre of gravity of interaction between two nucleons
in the 1f, ,, states has been lowered and the centroid emergy of
interaction of a nucleon in 1f7/2 state with a nucleon in 2p3/2,
2p1/2 and 1f5/2 states has been raised as compared o KB-inter-
aétion.'The Ca 1 single particle snergies have been used. Thesc

are & £ = ;-8.36; ef = -1.86; € . = «6.26 and
7/2 5/2 ; - F3/e

s = -l k6,

" P2
In table (III.2) we 1list the dimensionalities d(m), centroid

energies Ec(m) and width @G (m) obtained bnycalar'averaging for

,h—éfm.g 36 particles. This table gives an idea'of the dimensi-~

onalities involved.

In table (III.3) we give the Isospin (mT) averages using
MWH2 interaction for m = 4, 13, 20, 27 and 36 nucleons. We
observe that the relative cnergy separation between two adjacent

centroids increases linearly with isospin and the width decreqses

£
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Table (IIT.2) -
The dimensionality d(m),centroid energy %ém) and width ¢ (m)

obtained by scalar averaging for 4 &mg£36 particles in the
fp-shell. MWH2 interaction with Ca L single particle energiles
was used. &11 energies are in MeV.

o " s o st o o 8 7 o T " T 0 S e Sy Y A S e v e AR e S

m d(m) E (m) g (m)
L 91390 -24.37 6.06
5 658008 ~31.29 6:92
6 3838380 -38.5% 7:72
7 18643560 -L46.11 8.45
8 76904685 -54%.02 9.12
9 273438880° - -62.25 9. 74
10 8476605 28 -70.81 10.30
11 2311801440 -79.70 10.82
12 5586853480 - -88.92 11.28
13 12033222880 -98 .47 11.69
14 23206929840 -108.35 12.05
15 440225345056 -118.56 12.36
16 62852101650 ~129.10 12.63:
17 - 88732378300 -139.96 12.84
18 113380261800 -151.16 13.01

19 131282408400  ~162:69+ 13.13
20 137846528820 ~ 174 U 13.19
21 13128 2408400 -186.72 13.21
22 113380261800 -199.23" 13.18
23 88732378800 -212.08" 13411
o2k 62852101650 -225.25. . 12.98
25  L0225345056 -238.7% 12.80

26 23206929840 - -252.58 12.57
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Table (III.2)(contd)

o o VAT b - oS W S W ot Tor W MY M e A N e A Gt G Wt e M A Aot M G MOV U S v v G bt Wl M et bt T G Bt e T R S e 4 e o ad ae

m d(m) Ec(m) 5 (m)
27 12033222880 . -266.73 12.29
28 5586853480 ~a281.22 11.95
29 2311801440 ~296.03 11.56
30 8476605 28 -311.18 : 11.12
31 273438880 ~-326.66 10.62
32 76904685 -3k2.46 10.06
33 18643560 -358.59 9.3
3. 3838380 -375.05 8.73
35 \ 658008 -391.85 . 7.95

36 91390 -408.97 7.08

- o ——— ot . s - e - - b . B Wan . Pt Ak e T At S e " St S om M TeW T W e W A Rt Ak G M B T e e e e M e
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Table (ITT.3)

 pimensionalities, centroid energies and widths for (mT) averaging
using MWH?2 interaction. The fifth and seventh columns refer to
the values obtained for corresponding number of holes.

- ooy e T T et ot N T Swe W T M BN NS W M b el i d S St Nl G e R S S ey et et S S = e At Y A T A . A et D b o B e s e et B S ot ek S bt

m T a(mT) c G (mT)
L 0 13300 -26.04% =~410.63 6.32 7.36
1 53865 -24.84% -h409,42 6.04 7.08
2 oL225 ~22.43 -L407.02 545 6.49
13 1/2 2103272640  =402.08 -270.34 11.75 12.37
3/2 4557090720 -100.28 -268.54 1147 12.09
5/2 3618866160 - 97.27 =-265.53  11.01  11.63
7/2 14296755 20 ~93.06 -261.32 10.35 10,97
9/2 293930000 ~87.64 -255.90 9.49 10. 10
11/2 29302560 ~-81.03 -249.29 8.40 9.00
to13/2 1085280  ~73.21 -241.46 7,0% 7,63
20 0 5924217936  -179.17 13.29
1 37026362100  ~177.96 13.11
2 49295452500 ~175.56 12.76
3 31549089600  -171.95 12. 24
b 11357672256  -167.13 11.53
5 2385899901  -161.12 10.64%
6 288267525  -153.90 9.5k
7 18952500 ~-145.48 < 8.22
8 606900  -135.85 6.61
9 7581  =125.02 k.55
10

21 ~112.99 0

- - 5
TV AT Mt e gt s St b Bt G St e e Ored Y TR Y DR M TR A B M e e Ml G Bt et TP WG et ot e O el St Pl W e S S BOT e b W VR N bW G WS SN e M wam o f
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~with increasing isospin.

Configuration centroids Ec(ﬁ) and widths ¢ (i) are listed
in table (III.4). The centroid span for Y particlés is about
27 MeV and the widths have more or less a constant value of

- 3.0 MeV.

Configuratioh—isospin averages (WT) for 4 particles are
given in table (III.5). The general features of (ﬁT) distribu-
tions are similar to (mT) distributions. The centroid span for
- all values of isospin is nearly equal and for L particles is
about 27 MeV. The widths decrease with increasing isospin and
for a given.value of T are nearly constant. For a given confi;
guration the centroid energies increase and widths decrease with

isospin.

We have seen that for a given particle number m, the:
widths for wvarious configurationS'ﬁfare more or less constant.
This feature is also observed for (WT) averages where for a
fixed m and T, the widths are nearly equal. Again the widths
corresponding to different irreps of SU(L) for fixed m have the
same value (Parikh, 1973). This constanéy of widths is a
striking freature for the above mentioned distributions. There
1s at present no clear understanding of this curious fact which

" needs .to be investigated in detail.
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Table (III.A)

Configuration centroids and widthg for 4 particles in the fp-
shell. Configurations are ordered as f7/29f5/2op3/27p1/2 .

it St - ot " e i G B P e Tt s e e e v - A T S . v - S0 foat Mt ey ) e W ol s ot Pt M M e Mas Mt M Ve B T R e Ve e YA A med e e e

it a (i) E (%) G (i)
0004 1 -21.81 3.26
0013 32 -23.99 2.82
0022 168 -26.12 2.72
0031 22k -28.19 2.70
0040 70 -30.19 2.79
0103 L3 -17.65 2.88
0112 576 ~19.81 2.69
0121 1344 | -21.91 2.6L4
0130 672 j -23.95 2.67
0202 396 -14%,13 ) 2.76
0211 2112 -16.27 2.67
0220 1848 -18.35 2469
0301 | 880 ~11 427 2,77
0310 1760 -13.38 2.77
0400 Loy ~9,06 2.94
1003 6L -24, 28 2.90
1012 768 -26. 24 2.75
1021 1792 -28.13 2.71
1030 896 -29.96 2.72
1102 1152 -20.84 2.76
1111 614k ~22.77 2.70
1120 5376 -2k4.6k 2.71
1201 ool ~18.06 2.76
1210 8448 , ~-19.96 2.77
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Table (IIT.4)(contd)

e t N P e SR S o W R W B07 WS B B W MMS MG G it S it e Wt MO M eS¢ e i U AR At ot AP P et Wt et et i Mve o e e W e e e o em Wt s bt

~ a(a) Ec(ﬁ) g~ (m)
1300 3520 -15.92 2.91
2002 720 -27.53 2.80
2011 3840 -29.25 2.76
2020 3360 -30.91 2.77
2101 5760 -24.82 2.78
2110 11520 -26.52 2.80
2200 7920 -22.75 2.92
3001 2240 -31.59 2.81
3010 . L4480 -33.04 2.85
3100 | 6720 -~ =29.56 2.9k

4000 1820 -36.35 2.95

MRS S A RS R S SRS L BT A e! G TS e v S Gt et Y e W W T S Mgkt e e e e e e e G e G Al G P NS, M W i St Mt o s o e b et S0E A o S W e
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Table (IIT.5)

Spectral averages for configuration-isospin averaging for
Y4 particles in fp-shell

—— o - - - b A" ot . S St S8 s S Mt Ao T L M W W S e e Rt o ST M G S o 4 T A S EE b M m pms e SO WA M e

g T d () E (RT) D)
4000 0 336 -37.50 9.48
3100 1008 -31.38 9.47
3010 672 ~34.50 8.80
3001 336 ~33.01 8.85
2200 1176 ~24,59 9.42
2110 1536 -28.29 8.89
2101 768 ~26.56 8.85
2020 528 -32.33 8.28
2011 512 ~31.06 8.45
2002 136 -28.73 7.80
1300 560 -17.71 9.07
1210 1152 -21.69 8.56
1201 576 -19.74 8.39
1120 768 -26.31 8.45
1111 768 ~24.63 8.70
1102 192 -22.38 8.03
1030 160 ~31.26 8.42
1021 256 -29.89 8.42
1012 128 -27.75 8.22
1003 16 ~25.16 9.83
0L00 105 ~10, 1% 8.71
0310 280 14,61 8.35
0301 140 -12.43 8.08

it e o o 4 S8 o o o et P OB bt head T ot D iy o TS A Gt T e At v P et o ey O et B B G G e S Gt Mt Bk P s s e oy e O Sem €04 n mwm e o evmet N
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Table (ITI.5)(contd)

W T a(mT) E () & 2(%T)
0211 0 288 -17.82 8.19
0202 78 - 14,27 7.03
0130 120 ~25.,05 8.37
0121 192 -23. Lk 8.18
0112 96 -21.09 7.90
0103 12 -18.26 9.16
0040 20 -31.02 8.71
0031 40 ~29.85 9.21
0022 36 -27. 41 8.26
0013 8 ~25.25 110 1l
0004 1 -21.81 10.61
4000 1 378 -36.54 8.09
3100 1344 -29.98 7.59
3010 896 -33.40 7.38
3001 - ©o4h8 -31.92 7.21
2200 | 1548 -23.31 7.2k
2110 2208 ~27.,08 6499
2101 ‘ 1104 -25.38 6.90
2020 66L - ~31.29 6.95
201 | ‘ 736 -29.78 C6.73
2002 148 ~27.75 7.08
1300 720 -16.27 7.23
1210 1632 ~20.18 6.90
1201 816 © _18.56 6.86
1120 1056 ~25.,06 6.66

1111 152 -23.39 6.16
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Table (III,S)(contd)

2614
120
12
15
13
34

70
336
22k
112
420
672
336
168

~1L. 27
-2%.12
~22.38
~20.09
~17. 040
-30.06
-28.36
-26.38

. =23.58

-34.63
-27.46
~-31.29
~29.81

-20.49

-24.57
-22.91
“'29.09

5.75
3.91
4.80
L, 26
3.27
3433
3,12
o1k

121
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Table.(III.S)(contd)

il T a(mT) E_(WmT) g 2(%T)
2011 2 22k -27.36 3.31
2002 28 -25.65 5.25
1300 160 ~13.72 4. 02
1210 L80 - -18.06 3.26
1201 o240 215,21 3.37
1120 : 288 -22.83 3.2
1111 3BL ~-20.92 2,68
1102 L8 -19.02 4.91
1030 32 -28.05 3.62
1021 96 -26.06 2.3%
1012 32 | ~2k, 10 3.40
0400 15 -7.15 6.6k
0310 80 - ~11. 7k 14,87
0301 ‘ 40 -9.70 5.32
0220 90 - ~16.77 4,00
0211 120 -14.67 3.69
0202 15 -12.59 6.32
0130 2k ~22.24 3.54
0121 72 -20.07 2.47
0112 ‘ 2L ~17.92 3.8%
0040 1 -28.1k4 3.82
0031 8 25491 1.8k

0022 ' 6 ~23.69 2.39

-—.—-—.—...—-.......-_....-.-—-_..._..-.-....._..—.-—-.-—.——-....—....—_.-—--—-.—-.—-....————.-—--—-——-—--—“————--—"'""
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However, the near constancy of widths 1s an important

" requirement for stability of Gaussians under addition. The repre-
{Esentations with small dimensionalities are situated at the epds
ivand those having larger dimensionalities in the centre. Sincé

. the widths are nearly the same, addition of these distributions
leads .to a gaussian whose width is almost equal to the width

of an individual representation. This. has been shown by FTeﬂch
and Ratcliff (1971) for configuration distributions, by Parikh
(1973) for SU(Y4) distributions and by Hag and Parikh (1974) for
SU(M);T distributions. : .

Next we consider averages of H over states defined by
SU(Y4) symmetry f, isospin/T and spin S. The centroid energies
Ec(pi?s) are dé;;rmined using eq.(2.516) and as before the
'equivalent width is calculated using (mT) widths. Input centroids

and variances are shown in table (III.6).

:Having determined Eo(quS) and 6“2(m£TS) we average
over the spin.quantum number S obta@n QgT) averages denoted
by Ec(mgT) and G‘a(miT). Regults for h-pérticles (holes) are
Presented in table (III.7) and for 20 particles in table (IIL.8).

In the next section the spectral moments are used to

study structure of nuclei.
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Table (IIT.6)

Input centroids and widths for (SU(4)TS) averaging using MWH2
interaction with Ca 1 gsingle particle energies.

o o e o g e P s (o o = e o e ke v ettt e o " i o+ e ot e 2o e o S o et G B i o e i M e e o

For particles Fbr“holeé
m L T S Ec(msTs) G (mfTs) Ec<m£ﬂ:s) G (mfTs)
1 [1] 12 /2 -5.6 2.73 ~462.30  3.43
2 [ 2] 0 0 ~10.29 4,13 -4l2.96  5.05
1 1 -10.79 3.83 ~443.46 L7k
[11] o 1 12,98 4,13 445,65  5.05

1 0 -12.21 3.83 ~ 44,88 L, 74

- i
TS S et v e mm e ot oy v i 4 it Heh e g e Pt N TR SGR e B S0 tam e s S M TR M e YT ur e st Ane ST Sma MR e S B v et Mo e T bt P Bt et beme vttt 4
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Table (III.7)

sU(4)-T moments for L particles (holes) in 2p-1f shell.

129

All
energies are in MeV.
T T T T T harticles . Holes
B,(nf1) G (nfT) B (wfl) G (ufl)
-18.45 5.95 -403.0% 7.04
-23.21 5.95 240780  7.0%
~26.21 5.99 =410.82  7.08
-27.32 5.95 -1411.93 7.0k
-30.80 | 5.95 =115 41 7.0k
~18.96 5.73 ~403.55  6.81
~23.71 5477 ~408. 31 6.85
~25.13 5.73 -409.73  6.81
~27.03 5.73 -A11;63 6.81
-19.96 5.27 -Lo4,55 6.34
~22.80 5.27 -407.%0 6.3k
5.27° ~-408.83 6. 34

T et ot e o vt e e (o St 2y St g Ul oy Mt o Sy S e vy o e o ot el S e T g St S S ot ot Ay St i M Sam e e e P St e Gkt e e M S e s St v
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"Tgble (III.8)

SU(L4)-Isospin averages for 20 particles in 2p-1f shell. MWH2

interaction was used and energies are in MeV. Centroids and

widths of only those irreps which are dominant in the ground
state region are given.

S e bt ot Mk B et et Mnb e Pt e e v S St WS R NS ey o S U M Gt Mai B G ey S S Mt B et e e e Ml S G S Fme Se WA St e Bew YER S S e v S

f T E (mfT) G (mfT)
~NF aY; [ad
‘[5555} 0 -192.32 11.82
{655%] | ~188.8% 11.82
L6641 ] ~187.74 11.8L
751k ] ~ 181,72 | 11.82
[ 6653] ' -18L4.72 11.82
L7553 | ~183.62 11.84
L 7643] ~182.52 11.89
- L655%) 1 -188.55 - 11.69
{e6uk) ' ~186.65 11.68
[751k4] ~185. 23 11,71
166531 -185.23 11471
[ 7553} ~133.11 11.70
[ 7643 ] ~181.91 19,76
{66uL] 2 ~185.74 1141
| 7504 ~1814.32 11141
[6653) ~18%.32 114141
[7553] | ~182.90 11,1
L7643] - ~180.69 11,43
(Bl ] ~181.48 11141
6662} -181.48 1141



Table ‘III.8)(contd)
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- — T T - Tttt S T

[ 7643]
{8633]
18543)
(7652}
1.8552]
L77u2]
[ 86k2]

[ 77331
[8633]
L7742])
[86k2]
[8732]
[9533]
L7751]
[o5ka]
18651)

[8822]
18840

[10622)

18331]
(9722}
(9731}

— - — - —

17
.02

1

11
11.
11
.02
07

11

11

09

02
02
29

AN
i
il

L6

.52
.52

.8k
.8k
.8k
.8k
.8k
.87

e e o e ot ey ot ot o T e G W o T S S e
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Table (I1I.3)

(contd)
T T T ey e

"""""‘--——-—:’_.________”—"i["- ————— n (mf]T) G—(me) —————————

SRR

[9%]j ° - -152.96 8.93

T99111 -

[ 19811] ’ ~138.11 6.38

{99221 | = 136,79 6.38

[ 10320} | ~136.70 6.33

[ 101000] 10

-112.99
0.0
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‘3,u Application of Spectral Moments

In this section we use the spectral moments obtained for
various distributions to study properties of nucleil in the ground
state region. Binding energies and low energy spectra of nuclel

are determined using Ratcliff's (1971) procedure.

Configuration—iéospin distributions are used to_calculate
fractional occupancy of shell model orbits in the ground sﬁates
of nuclei. Relative contributions of various configurations are
eﬁaluated in the ground state region. The (EF) distributions are

used to determine mixing of SU(Y) symmetry.

3.1 Ground state energies and gspectra

The estimate of binding energy of a nucleus from a spectral
- disﬁribution was described in detail in section (1.3). Bssenti-
ally, the ground state is loc%ted at an energy Eg where the
distribution function F(mE) defined in eq.(1.3.3) is equali o
half the degeneracy {((2J+1)(2T+1)) of the ground state. Similarly,
one locates excited states of nuclei. However, for the determi-
nation of the energy spectra one needs to know the ordering
(J-sequence) of the spectrum since our distributions do not

correspond to a fixed angular momentum.

As mentioned earlier it is advisable to determine the

- ground state energy by first locating a low lying excited state
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and then using the experimental energy to fix the ground state.

This shows a substantial imprdvemeht in the accuracy which 1s

not surprising because in doing so one moves away from the

"éxtreme tail of the distribution to a region where better

accuracy is expected. The accuracy with which the distribution
mefhod predicts binding energies.of nuclei in comparatively
smaller spaces (ds-shell (Ratcliff, 1971) and three orbit fp-
shell (Chang, French and Thio, 1971) ) has been very good. It

is expected that even in such large spaces we should be able to do

equally well.

Table (III1.9) shoﬁs the binding energies of nuglei as
‘obtained by scalar and configurétion momen ts . For a given
mass number A we have to'kestrictAto~nﬁclei wifh lowest isoépih,
since T in this sort of averaging is not specified; A compari=
son\with empiriCal energies aftér makiﬁg Coulomb correction is
made. The empirical energies were taken from the calculations
of Garvey, Gerace, Jaffe and Talmi and Kelson (1969) and
Coulomly correction was made by making use of the Coulomb displace-

ment energies tabulated by Janecke (1969).

It is expected'thét the binding energy determined uging
distributions should be lower than either shell model or empiri-
cal energies. This is due to the fact that the ground state is

Jocated in the tail of the“distribution where uncertainties
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Table (I1L.9)

Binding energies of nuclei as determined from Scalar and confi-

guration moments - compared with empirical energies (B.E). Energies

are in MeV with respect to Caqo.

- T T —— a0 1ot T S St e Ev Fm - S S St S e ot oy St v A Smat b ARG Sl G L W P SN T S P W e e W S e St et At Mt i o A e

-t e e v S v T e W T O S P et Svw W S Pw Wi el T T v S G e et S e e N Gy e MR Gar et Tt RS D M MNS Sed R A Ty M S wm e b vmw v e 4 e e e

Tl 51,02 46.56 49.16 W%/  220.93  219.16
73" 5842 56.57 58.60 w?® 237.86  231.70
Yald 85.72 82.80  84.65  Cw’  246.45 24473
or®® 103.43 99.79 101. 16 2n°° 26%.95  259.32
cr? 11372 110,55 11145 @®! 273,16 269.70
Mn51 142.88 | 137.58 137.99 éa63. 297,03, 295.07
Fe” 2 158. 20 Bhak 1522 GO 312,70 309.85
 ReI3 169.35 165.58 16197  Ge®?  300.17 320,20
Co”? 196.26 193.3% | 192.47 g5e8 357.45  360.44

Ni56 212.32 209,42 208 .66 Kr72 399.63  L419.43
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exist (c.f. Sec.1.2.k).

Tn the first half of the shell, the maximum difference
between energigs obtained from scalar moments and empirical
energies is about 5 MeV. In the second half, differences are
rather large. Reasons for this would be discussed later.
Ehergies predicted by configuration moments are closer to empi—
.fical énergies which is understandable since one has done a

finer averaging of the space.

In table (III.40) binding energies of nuclel in the first
half of 2p-1f shell as determined by (mT), (WT) and (fT) distri-
bﬁtions are compared with microscopic calculations like shell
model (McGrory et al, 1970), deformed configuration mixing (Dhar
et al, 1975) and empirical energies. For the range of nuclei from
mass number A = L4 to A= 60, agreement with empirical energies
is amazingly good. Except for those nuclei where an cxcited refer-
ence state was not available due to lack of data, agreement
is within 3 MeV. All other cases diffef b& about 5 MeV. This
makes it evident that the accuracy with which one can determine
ground state energies of nuclei using distributions is inde&d
quite good. A éomparative study of energles as obtained by various
distributiong shows that finer averaginé (mTsmT) significantly
improves thq results.

A crucial test of the accuracy of the method is that

it should be able to determine the binding energies of Ca
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Table (I11.10)

d state energilies of nuclei in first half of 2p-1f shell as predicted
Bosopln, configuration-~isospin and SU(4)-isospin distributions. In cols.
1d9 the binding energles as obtained from microscopic calculations
empirical binding energies are given. MWH2 interaction with CaLH single
icle energles was used. Energies are in Mev with respect to Caho. An
rix denotes lack of excited reference state. (T) denotes spin is assu-

(a) refers to configuration mixing HF calculations and (b) refers to
1 model calculations.

.-—————_—-._—.—..———_-—-——_...—-.—-..—--——--n_———--—_—.——_-‘—————p-—-v_..—..._-...—.A-_.-.-._—..-...-.

1 Nucleus J T, mT 0T £T MC 8. &
o Ti 0 0 51.05  45.h2 47,98 45 > 49.16
%Sc 2 1 46,78 43.62 46.56 - 42,76
Ca O > 40.10  39.12 %40. 11 38,56° 39.11

i 7/2 1/2  61.09 55.90 58.59 55,092 58,60

*¥Sc 7/2  3/2  57.1%  5h.39 56.75 - 53.96
Ca 7/2 5/2  48.95  u7.52 47,62 46, 27° R

v 0 1 76.83 72.26 76.03 - 7159

i 0 1 73.68  70.53 73.17 66.8L% 71.1%9

*3c L 2 67.33 64.95 66.75 - 62.95

Ca 0 3 60.94 53.93 58.38 56.70 56,79

v 3/2 1/2  86.26  B82.85 85,54 78.88% 84.65

Ti 5/2 3/2 82.57 79.88 81.86 75 .69 80.66

*Se 7/2 5/2 77421 7517 76 Lkt 69.07 73.51

Ca 7/2 7/2 66.30 66.18 65.95 63.96 63.86

Cr 0 0 102.92 98.99 101.88 93.38% 101.16

v L 1 98.76 96.36 97.73 88.20 I, 9l

Ti 0 2 95 .91 93.08 94,86 - 92.3k4

Sc 6 3 82.97 81.56 82.18 - 81.71

Ca O l 76.78  76.72 75,86 73.90P 73,814

—
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Table (IIT.10)(contd)

| e o 0SS S D S S on o S R R S 0 e et 00 et et e o ettt 4 Yt e G et (e Gm o o o e At e ek R Gan s Gt 4 S A 08 e Sme Aon ot e T o s oo

e B R P TS S0 S S M bk W vt e WL L e el e Sin ST M e i b bt By v ym v S ¢ TEm Be (W S TS T M S e Gvw e M Y W M W e e S e B M e G A e Pvw S M G e et T

¢ 5/2 1/2 11431 110.55 112.99 103.50% 11145
v 7/2  3/2 109.90  106.57  108.58 99.37% 106.59
‘i 7/2 §/2 104.86 102,20  103.59 9k.16% 100.53

*Sc 7/2 7/2 oL . L6 92.96 93.39 - 91.68
Ca  3/2  9/2 81.80  82.19  80.25 78.69"° 79. Ok
Win 0 1 131.96 127.29 129.96 - 124,28
cr 0 1 129.25  125.15  127.%5 114,957 124,28
v 6 2 120,30  117.07 - 118.66 107.90%  115.93
T 0 3 115 .08 112.55 113.2% 10444 111,65
Sc 5 L +100. 10 98.92 99.06 - 98.0k%
Ca 0 6 87.5%  88.10  86.95 85.87° 86,16

Mn 5/0 1/2 141, 4 137,49 139.53 127.80% 137.99

Cr 7/2 3/2 138.70 134.86 136.72 - 133.5%
v 7/2  5/2 131.0%  127.78 129.23 118.10%  126.97
i 3/2  7/2 123,13 120.51 121.%9  110.34%  117.92
8 7/2 9/2 108.03 . 106.90  106.93 . - 105 .07
*¥a  5/2  11/2 92.23 92.88 91.72 - 89.47
Fe 0 0 157.43  153.18  155.15 141.68% 15,22
Mn 6 1 152.82 148.88 150.65 - 143, 41
Cr 0 2 150.7%  146.25 148.53  134.58% 145,63
v 3 3 141.86  138.23  139.71 - 134, 29
1 0 i 131.10  127.37  129.52 117.92%  126.02
Sc 6 5 113.99 112.87 112.86 - 109,43
*Ca 0 6 99.87 100.61 99.33 - 95.13

il
——
. vt Mt et e e - o ot B et e — —— -
e e e A an s - - " W Y e U ey o oo oor et ot topd i vt . i At b e ot s st Paog



Table (ITT.10)(contd)

135

48 ettt Wt bt o . " . e g on —
- — - - S e b Mt e e T — et BAd et Mt b St o B G an M A T e o -

Nucleus

o o o e e TR b et i ety . - — e A ra o - . e Mt v e o e T
- — - e e Tt e o e e S e 4 e T m . —

- *Ca

w U w
NN N N
NP

OV O OWw O & O

-
~
no

3/2
5/2

3
~N
no

3O Fw a0

165.49
161. 1k
155.25
146,04
134,26
119.00
103.60
176435
179.12
172.62
164, 45
142,18
123.40
107.92
192.15
137.85

179.95

173.10
207.29
201,41
198.63
138.05
180.18
152.08
133.27
112.03

203.13
201 o Wt
139,84

182.04%

153.54%
130.26
111,59

164.97
160.93

153.39
142,82
130.81

115.53

97.48
17354
178,514
169. 74

162,97

137.95

. 113.92

192.47
187,92
179.89
169.38

203.66
202.72

198 .93

177.96
143, 26
126.95
103 . 141

S
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P e et v ot et M e ey L e s b, e e
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Table (IIT.10)(contd)

o = 7 o ke SR i B ot gy - S e s Bt A S P bt o ) Ame Gmas B S e b M e G0 Wt PO e St e S s P G ol ek bed Aek M R in e e e

m Nucleus JO TO mT T BERE

17 Ni 3/2 1/2 221.95 218.68  219.16
Co 7/2  3/2 213.02 214,32 213.99
Fe 1/2  5/2 210.99 205,35  206.L47
#Mn 5/2 7/2 203.06 200,05  196.00,

Ca 1/2 17/2 111.95 111.87  109.10

18 *Cu . 0 236.81  233.32 231.70
Ni 0 1 234,47 231.14  231.50

Co 2 2 227.07 223.30 222.60

Fe 0 3 221.71 216.84%  216.33

#Cr 0 5 193 . 47 195.92  190.70

*T1. 0 7 161.02 160.00  156.77

*Ca, 0 9 113.46 “113.43 112.70

19 Cu 3/2  1/2 246,34 ohp, 73 244,73

Ni 3/2  3/2 242.90 233.62  240.55
Co 7/2 5/2 237,04 232.26  232.95
Fe 3/2 7/2 226.73 221.44 222.98

o ot e o W e e o ot ot Pt ot o o A% Syt Gt oA o4 i e e P24 et o e O PNt e Y o, b o ¢ G Sa WS by o g T o e P M o S o Sy e et
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Table (ITI.10) (contd)

e s ot T ST A B W e G S -y W At e S ot g Sed s hdn s M M St W S gy TR e e e e P ad Y e S S e e e WS G G 8 e

m Nucleus J T mT nT T BE
0 0 ~

20 *in 0 0  26%.03 257.80 260.33 259.32
*Cu 2 1 259.95 254,00 '256.35 254,73
Ni 0 2 255,57 249,80 253.40 251.8L4
*Co 5 3 244,97 239.57 241.73 240.49
*Fo 0 i 233,03 232.32 234%.3L4 232,01
*Cr 0 6 206,09 201.43 204,20 202.10
*T4 0 3  163.5% 159.73 163.13 163.95
*Ca 0

10 112.99 112.99 112.99 115.77

et v o S s Y s fhe Wen S MEA Gt e S e e G Mt e Py T B T Sve b ey ey e oo o M Lp o e OV b 0 S S S ey e St et TS T e e e TS S 08 e e



138

isotopes very accurately since the interaction used has been
fitted to do. so. Comparison with shell model calculations
shows that we are indeed able to do very well. Further
comnents on the accuracy of distribution methods will be made

later.

Results of our calculations in the second half of 2p-1f

shell are presented in table (III.11).

We observe that for nuclei upto 4 = 6l, agreement between
binding energies is good, deviations being not more than 5 MeV.
"Beyond this there are large disagreements. This brings us to
the question regarding the accuraoyvof the method and the in*
adequacy of the interaction. Since results in the first half
- of the shell indicate that the method determines ground state
energies of nuclei very accurétely, disagreements here could be
attributed to the inadequacy of the interaction. §trong evidence
of this inadequacy.is the fact that whereas in'general the
grdund state obtained using distributions should be lower than
the actual energy, for nuclei with Aﬁ>'64 we find the reverse
trend. This suggesﬁs that MWH2 interaction is underbinding
these nuclei. The effect of underbinding ig also seen in table
(III.9) where agreement for nuclei beyond Cu59 is good. This is
due to the fact that the two effects ~ overbinding of the
method and underbinding of interaction cancel each other,

Agreement in enhergy may sometimes be misleading and comparisons
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Table (III.11)

cround state energies of nuclel in the second half of 2p-1f
 shell. Bnergies are in MeV with respect to Ca 0,

___._..—.__...-...__....._...,..._,.,._._..........._.......__.__.._._._._.__...__._.._......__.__._.__....,_.___._.._._...._._..._
-

m Nucleus JO TO mT £T B.R
21 Zn 3/2 1/2  273.69 270,46 269.70
Cu 3/2 3/2 263 .42 265.35 266.39
Ni 3/2 5/2 260.61 257141 259.76
Co v/2 7/2 251.64 249.05 249,90
*Fe 3/2 9/2 240.75 238.20 237.68
20 Zn 0 1 o8L4. 45 281.19 282.37
‘ *Cu 1 2 280.18 276,81 275.33
Ni 0 3 270,07 268 .23 270.18
Too TN 258,05 ©  255.43 256.57
23  *Ga 3/2 1/2 297.59 29k, 1 295.07
*Zn 3/2 3/2 294, 143 291. 21 291.5%
Cu 3/2 5/2 286.43 283,48 285.98
AN 1/2 7/2 278.89  275.98 277,10
too 5/2 9/2 263.68 261,37 262.25
oL *Ge 0 0 311.85 308.72 309.85
*Ga, 0 1 310.98 307.72 305.37
Zn 0 2 302.98 300.02 303.32
*Cu 1 3 295.15 292.29 294,02
Ni 0 L. 283.21 280.82 286.90
#Co 1 5 268 .79 266.83 271.16
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(contd)
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26

27

28

29

*Ge
®(0g,

Cu
Ni

*Ge
*Ga,

Cu

*Ge
Ga

®Cu

O - O O O

3/2
5/2
3/2

- O = O O

5/2
3/2
1/2
3/2

VM Fw o O

5/2
7/2
9/2
11/2

320.77
317.57
©307.56
298.69
28L4.48

333.75
328.52
317.16
305.94
292.97

332.99
319.70
309. 14

356.81
350.48
339.60
327.00
312.15

353.75
342,53
331.26
312.43

320.20

317. 21

311.42
303.88

333.08

326.35
322.33
310.89
301.68

337.58
329.86

- 320.04

360. L4k
354,73
345.86
339.76
326.20

363.37
356,32
346.28
334.67
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Tabl IIT.
(contd)
m Nucleus J- T mT T B.E
o O ~e
30 *Se 0 1 385424 384,06 -
31 *Se 5/2 3/2 381.95 380.73 394,39
As 5/2 5/2 372.82 37147 389, L1
32 Kr 0 0 399.23 398.27 419,43
Se 0 2 392.25 391.21 406.79

33 *As 3/2  7/2 383.52 383.2Q 408 .57

34 R 0 1 418, 21 417,69 Ll 4k
*#Brp 0 2 412,10 411.56 A30.38
#Se 0 3 401.81 L01.52 Yo7

35 *Br 3/2  5/2 423.06 41k, 28 42,36

36 *ST 0 0 439.77 439.71 -
* p 0 2 431.12 431.01 467.18

T S At T e Gt - T B e Avs Bop S PN Y P G S S B S S G e e e ey e M ey e e (e O e Ge BAW et G T b 8 [ M e Mem Bt S P S G e e ST e e S
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should be made keeping in mind the adeguacy (inadequacy) of the
interaction. Unfortunately no microscopic calculationg for these

‘nuclei with this interaction are available.

" Usually calculations in the second half of 2p—1f shell
56 .

are done by assuming Ni’~ as core and allowing the valence

- nucleons to occupy the three orbits p3/2, p1/2 and f5/2' Chang,
French and Thio (1971) have studied nuclei in this region using

distribution methods. All nuclel are treated as §p3/2.p1/2

e,
5/2° ° |
shell model calculations by Wong (1970) are available. They

f They have used Kuo-Brown (KB) interaction for which
find that for all- the nuclei considered the average error in
locating the ground state is about 700 keV, the'iargest errors
arising for cases where no excited reférence'state waé available.
In table (III.12) we compare the binding'eneréiés'of nuclei

obtained by (f£T) distributions with thelr calculations.
L ,

We observe that although there is reasonable agreement,
energies calculated using MWH2 are higher than those obtained
from KB and the difference increases with increasing maés number.
This oncé again suggests that MWH2 is underbinding nuclei in the
upper 2p-1f shell.

In the end wé would liké to say that the overall agree-

ment between binding energies as predicted by distribution

method and empirical energies 1is good. For some casesand
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Table (III.12)

Ground state energies obtained from SU(L) isospin distribu-
tions in the full (fp)=shell using MWH2 interaction compared
“with conf_iguration—isospin results in three orbit (fp)-shell
using KB Vinteraction.Enei‘gies are in MeV with respect to Ni

e e e o Tt e S S o T (o o o i i e St e W Y By T o P e S M S e G Py e e e T (M Bl ey e e e e o S S S SR e

Nucleus E:T mT
wi” AHgH %0.8
Cu6O L7, 4 45.9
N8 43 4 59.9
Cu61 ' 56,4 572
zn® 61.5 69.3
Ni02 59.2 | 61.8
cut? 67.8  66.3
zn°? 7.2 73.2
3163 67.9 68.8
ou®3 75 77.5
an®3 82.2 - 83.7
Gal> 85. 1 86.9
w1 71.8 8.6
bt 83.2 86.0
Zn6LF 91.0. 4.8

6l

Ga®t 98.7 98.9

s et yore oo ot oo e o T e Y A o e ke s ot bt b W ok ot e T o oy oyt et P ot St SV o Mt oy W et P et M ok S PV v s TP S M W aRS e oSS
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especially for the second half of the shell there are disagree-
ments between the two. & possible source of this is that the

E V - . 3 i 3 . ' . -b
MWH?2 interaction is underbinding p3/2, f5/2 and p1/2 orbits by
about an MeV or a little more. Also it may be necessary to

include g9/2 orbit in the calculations.

We next discuss spectra of nuclei. Knowing the level
sequence (JT) values of low lying states of a nucleus either
from experiment or microscopic calculations, one can determine

the energy of these states using the distribution method. We

" have obtained the low energy spectra of a few nuclel and

discusg them individually.

In figures (III.1) and (III.2) we compare the spectra
of 03”8 and CaSO with shell modél calculations. Agreement
between the two is very good. In Cah8, because of certain
levels lying cloée together there are small differences in
thg energies of these as predicted by the two methods. However,
 the levels of caBO are reproducéd almost exactly. This is
expected because all thevlevels of (fp)%:q and (@@3%25 are

caloulated and the interaction is known to be right.

In figure (ITI.3) the spectrum of Tih7 determined using
(ET) and (WT) distributions is compared with the one obtained
by Dhar et al. The J = 3/2 level is matched, it being under-

stood that levels below this should be left out in the comparison.
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We observe that whereas (E?) and (MT) distributions pfedict
almost the same energy of levels, agrecment With deformed
configuration mixing calculations is not very good. There are
several reasons for this. The moment method will not predict
very close lying levels and therefore the bunching of levels
in Tih7 cannot be accounted for. A detailed agreement can only
be expected when there is a certain smoothness in the observed
spectrum. Further, we have assumed that the interaction is
right and the DCM calculations give all the low-lying negative
parity levels of (f®)7 configuration. If some of these are‘not

predicted, the comparison is not very meaningful.

We conclude this section with a few general remarks. From
the calculations of binding energies of nuclel we observe that
alfhough‘scalar averages produée results wbich are in reasonable
agreement with’empirical energies, a finer decomposition of the
space improves the results significantly. Agreement between
ground state energies of nuclel as obtained from distribution
method and shell model calculations in small gpaces, 1ls very
good. With increasing number of nucleons filling the single
particle orbits we encounter larger spaces where comparisons
with experimental energies is excellent. Our results for low-
energy spectra of nuclei indicate that from the nature of the
observed spectrum of a nucleus 6ne can say whether it would

be produced well using moment method. Disagreement for those



nuclel whose spectra show bunching of levels may,thedbe regarded

as a limitation of the method.

3.2 Configuration intensities and fractional occupancy of b

gsingle particle orbits

The method of estimating the ground state energy by
using a distribution which is a sum of several partial distri-
- butions for specified symmetries, guite naturally provides
details about the ground state wave function in the form of
relative intensities'of different distributions. We use ()
- distributions to calculate relative-intensities 1(aT) of various
configurations in the ground state. Details of estimating |
relative intensities of various distributions have.-been.
discussed in Sec. (1.2). These intensities I(ﬁf)‘are then used
to calculate the fractional occupancy of each shell model orbit,

which’is defined as

i 3o I(RT) -

e T P ~
_1(Lkgq) M

ﬁi ig simply an average measure of the number of particles in
a shell model orbit in the ground state. These occupancies

satisfy the relation

3 Y N (g = ™ (3.1.2)
2l
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where m is the total number of active nucleons. Results of

“our calculations are presented in table (III.13).

The configuration intensities I(WT) give a rough idea
as to which configurations are important in the ground state
thereby providing information about which configurations need
to be considered in detailed shell model calculations. The
fractional occupancy'reSUlt is significant since it enables
one to predict the sum rule limit for single nucleon transfer
strength for those cases where detailed spectroscopic.calcular
tions are formidable. Occupancies are also important parameters
in the combinatorial theory of level density and in the B.C.S.

treatment of pairing effects.

We remark here that to determine the configuration
intensitles, one should first remove those configurations which
are not compatible with the ground state angular momen tumn.

This point has been investigated by Thio (1970) and it is found
that the correction does not make any significant change in

the result. Further the numbers for configdration intensitieé
should not be regarded as referring to a single state since

in many cases there are rapid fluctuations from state to state.
They should be regarded as average intensities over a finite
energy domain which includes a few sfatesi No such difficulty

exists with the occupancies since an average igs already built
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Table (III.13)

Q(bnfiguration intensities and fractional occupancy of single
;:particle orbits as determined using configuration-isospin
- gistributions. The configuration is defined as (f7/2,f5/2,p3/2w

'p1/2)' Numbers in paranthesis are those obtained by McGrory et
- al(1970).
s T S m T T 0RE0REASY 5T 51ngTe particle
Nucleus ngglgu;aplon peney orbi%; _
ensities ¥ T D D
rﬁl/ I(’I‘II’T) 7/2 5/2 ' 3/2 ' 1/2 )
Tlhu 4+ 000 95 oL .7 0.0 0.6 0.1
3010 L
L .
Sc L 00O 97 o4.8 0.0 0.4 0.0
3010 3
Ly _ 4
Ca L0oOO0OO 98(87) 24.9 0.0 0.2 0.0
3010 2
45 )
Ti 5000 85 30.3 0.1 1.6 0.4
010 11 '
8c”5 000 92 30.7 0.0 1.0 0.1
L 010 7
L5
Ca 5000 86(88)  30.3 0.0 1.7 - 0.2
4010 13
v”6 -6 000 92 37.0 0.0 0,9 0.2
5010 7
46 |
T4 6 000 88 36.7 0.1 1o 0.3
5010 10
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Sc

Ca

Cr

Ti

Sc

Ca

Crl+9

~3 O O w3
O O O O
O N O o

Ul O

(&)

AN

~N Oy @~
o O O O
C v O -

@ O

O

@]
C

~A

o O

- O O O

- O O O

8l
1

8L4(8Y)
15

69
18

5

66
21
5

68
23

4o

29
11
8

52

28(86)
10
8

53
23
9

364
36.5

47.8

47,5

L7.7

L. 3

4y, 7

52.6

0.0

0,0

0.5

0.2

0.4

0.0

0.9

1.9

2.0

3e1

3.6

3+7

48

0.k

1.2

1’)—*-

1.2

3.4

2.4
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‘Table (IIT.13)(contd)

2.7

5.9

OI8»

52,0

e oRale)

O~ OO0
OO O v
(@ eeNooYeoo]

6.8 2-7

0.

51.8

M apInSa

OO ~—0O
Ov—0OdW
OO0

ONOD OO O

L9.2 0. 11 4.3

18
16

QOO
— O
OO0

o0 ONES

6.4

16.9

0.5

45.8

OO
O v~ +—
OO C
oo -

1

59.2 0. 4.5 2.

57
23

5ok 2.6

0.9

H8.5

4.3

1.1 8.8

56. 1

30
28
10

OO
— O
OOCO
ONO 0
—

Lol

104 4.

55.7 0.6

38
22
1y

9

OXORBE o
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oXelele)

ONO o O
—

Py
0
QV]
L ]
0
=
—
-
o
AEQN
(G)
R po
O «—O
Al — —mM
OO OO
00 ON O O
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2k, 3

0.9

46.9

OO
00O~
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(contd)

III.

4.3

7.7

62.4 1.9

31
23
13

7

oo~
O—~OO
ool o]
— QOO0

— ™ —

4.7

8.7

1.5

62.1

6.5

12. 4

1.5

59.8

8.1

16.9

Te1

574

o¥olelole
OO
h ol h

1

24,7

Tolt

52.3

OO~ vC
AU MN —
OO ™

ONEDCO ONON

16.9

390.9

1.9

47.6

4.9

8.3

2.3

67.9

6.3

10-6

2.5

66.3

COOOO T
OO N
DO~ O«~C
—N—~0OO0QC

A S i euadih el el
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Table (IIT.13) (contd)

6.6

11.8

1.7

66,1

OO0 v
T ONO~—O
OO0 «™OC
—~—QNO ~—O v

Lol el 2 2ut sl o

Cr52

9.l

1 17.5

62.6

OO+~ OOv
A v — — N
COO—0OO0
O~ OO OO

b umih S i

P2

1 jo) FRRI 1252A

58.7

2k
16

1
1

OO0 —
e — QN
o000
OoOonNC o
-

7172

31.6 1743

2.3

— OO
o enenT
OO0 0
ONONCO OO

8052

21

38.1

1.9

49.1

39
1L
1
12

—CCoOodl
nNd Nl
OO —0O
Qo0 CO 0

¢l
|

6.9

10.9

29

7149

onT O

h S S

SO C 0O
— OO N
QOO v
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i a2
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8.5
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70.1
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Table (ITT.13)(contd)
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Table (ITT.13)(contd)
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Teble (IIT.13)(contd)

“Fes6 '

5.2 26.0 18.0

78.6

OO0 OO

OO
NN~
OO v~

NN e

YTy T v

32.1 22.0

5.9

4.0

ONONDINDNO

Ak e YoR
Ul oY eaYaViqV:
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Table (III.13) (contd)
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in and they can indeed be interpretéd as applying to a single

state.

3.%.3 sU(W) gymmetry Mixing and Franzini-Radicatd Mass
formulg

Goodness of Wigner Supermultiplet Scheme is investigated
using SU(4)-T moments. The intensities I(mf?) of various SU(W)
irreps in the ground state region provide a measure of symmetry
breaking. These relative intensities I(m{?) in the ground state
region for 4hgm £ 20 particles are given in tables (IIT.14 -
II1.30). Results show that‘SU(H) symmetry is badly mixed.When
the single particle energies are set to zero, the symmetry is
siénificantly restored indicating that a large part of the
breaking is due to single ﬁarticle spin orbit coupling. Further
the extent of mixing is the same both for low and high isospin
nuclei. One may conclude that the relative intensities involving
three or féur low lying irreps indicate large admixing of SU(W)

symmetry for ground states of 2p~1f shell nuclel.

Following Franzini gnd Radicati we have eﬁaluated the
ratio R defined in eq.<2.2.1) using binding energies obtained
from QET) distributions by choosing appropriate isobars from
tables (III.10) and (III.11). These are compared with the
values obtained from SU(L) model(Rth) in table (III.31). The

appropriate values obtained using empirical binding energies are

also given.
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Table (IIT.14)

- Mixing of SU(L4) symmetry in the ground state region for nucleid
in 2p-1f shell using MWH2 Interaction with and without single
particle energies

I(mfT)
Nucleus £ with s.p.e. s.p.e.=0
Ty 1119 42 %
2110 -35 |
2200 21
st 2110 78 - 99
2200 9
3100 13
Ca”“ 2200 40 96
3100 57 . L
4000 | 3 |
Sr76 1111 % 97
2110 35 2
2200 23
Ky /0 2200. 39 86
' 3100 58 4

4000 3

St St Had i P S ey A e Y o n S s L o o M Syt St e Vot S T TER T T S e e ot g s SA Su (Y e S Gt ot St A} Gt Ot B My v OUD W  ve Ay Gma M
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I(mfT)
Nucleus ‘5 with s.p.e. S.p.e. =0
. Tihs 2111 46 90
2210 36 10
3110 10
3200 8
ScLFS 2210 L0 77
3110 39 23
2300 9
4100 3
Ca&s 3110 76 100
3200 23
Br/? 3200 o5 98
4100 25

._.-———v.-.—.-———--..-—-.......—-.._._—._-.-—_.—_...,_—_.._-—---—.—-_-—_.—....——-.————_—e.——_—-——-———
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T(mfT)
Nucleus T with s.pe.e. s.p.e. =0
7o 2011 27 69
3111 29 90
2220 15 10
3210 26 5
,Til*6 2011 25 69
3111 28 19
2220 15 10
3210 29 2
Sc46 3210 76 97
4110 18 29
3300 2
L4200 - I
ca”6 3300 35 91
4200 60 9
54100 5
Kr7LF 2211 23 63
3111 27 22
2220 14 12
3210 31 3
B/ " 3210 75 97
%110 19 3
e 3300 © 3k 77
4200 61 23
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Table (III.17)

T(mfT)
Nucleus £ with s.p.e. "s.p.ee. =0
7 0001 33 81
3211 L8 18
3220 7
Ti*7 3211 L1 78
3220 29 18
4111 10 3
3310 7
L210 13
et 3310 35 67
4210 58 33
5110 i
cat” 4300 i 98
5200 25 2
as’3 4300 71 97
5200 28 3

6100 1

......_._.—-_.-_--—----.—-.——_.._-—....—.-.—.--——...-—--—-—-—-—.—-...——-_-—........_.-.._.....—_——4-——-——-———-
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_. T(mfT)
Nucleus bl with s.p.e S.p.e.=0
Cr“8 2022 26 87
3221 38 9
3311 28
L4211 3
VAB 3221 57 92
3311 10 3
211 17 3
3320 9 1
4310 i
710 3311 19 55
4211 31 ol
3320 16 12
4220 22 8
4310 7
Sch8 4310 70 95
5210 27
cah8 L4400 35 79
5300 60 21
6200 5
Kr/ 2 2222 oy 82
3221 ' 38 . 12
3311 29 6
4211 3
se’? 3311 18 50
4211 30 27
3320 15 14
L4220 23 9
4310 38

e e e e m vy v e . — o o o vy P T s (e S ot i e ke Tam bt et und S ot s w FU fam B e AW e A G S M Gl bt SN g T b e e n e Py e e et
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Table (IIT.19)
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T(mfT)
Nucleus f with s.p.e. SePe €™
Cr”9 3222 32 77
3321 39 20
021 12 1
4311 12
79 3321 29 - 61
L2021 L1 35
4311 10 2
3330 3 1
11320 10
719 4311 38 70
4320 33 23
5211 12 I
- 5220 10
st ' 1410 32 62
: 5310 61 38
ca? 51400 72 98
o 6300 27 2
se’ 3321 o8 58
: L2021 40 37
4311 11 2
. - k320 11 1
As71 v 4311 34 66
4320 33 26
5211 13 5
5220 11 3
ce’ ! 1410 29 vi
5310 | 61 2
Ga’ 5400 67 95
' 6300 -3 5

it ma mon e b b Tt e o e oy e i v gt ot i ih i o et P B B PO At BNE R Sa St ey bt Nt e S Gt b R v e S P T e S v e S e e e en o
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Table (III.20)

-t an bt e o ot i et o o ot St M O bt S oy o S e bt W e G e g P Wt o ot S il At Gl G Wt Mt SmA N S v e e ba el i RS M S 04 S mas R e

T(mfT)
Nucleus f with s.p.e. S.p.es =0
SR
MnSO 3322 18 50
Lpoo 21 ol
3331 16 18
4321 37 8
20 3322 17 50
Looo 21 24
3331 16 18
321 38 8
0 4321 59 89
5221 17 7
%4330 8 3
5311 5
5320 5
7170 L4 1 17 50
5311 31 26
oo . 15 ' 13
‘ 5320 28 11
'SCSO 5410 70 93
6310 29 7
Caso 5500 32 ',76

6400 61 2k

. "ot s —_ ion e n byt Bt Aot ot et b G St ok Bt A ey et o e T Yy e v S W Sy Pt et Oute Gt Gt St M htd e G S 4 M A G S e e e S e e
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Table (IIL.21)

_—-——-—-—.———...--—,_—————-.—_...._..-_.._-—...—-,—.—....—_..-..-————————_—_—————-—-—,.—-—___

I(mfT)
Nucleus £’ with sp.e S.p.e. =0
i | 3332 26 67
4322 Ll 30
14331 11 2
INIE 12 1
5321 5
o ! 4322 30 61
4331 32 30
5222 8 L
L0 9 2
5321 17 2
o W01 06 3
5321 49 2
L4430 2
5330 7 2
715 51111 36 69
5420 35 2L
6311 13 Ly
6320 13 3
8051 5510 30 61
6410 61 38
7310 7
o’ | 6500 72 98
7400 27 2
Ge?? o1 25 52
5321 43 43
330 7 3
430 L 2
6221 5
6a®? 5L11 3 63
- 5400 3 27
6311 14 6
6320 15 L
z2n%? 5510 30 59
6410 62 41
7310 8
a?? 6590 69 97

o R e e e e - e o T . T o = e e B e S
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Table (III.23)

e e e et 0 o et ot o s e i S Gt e St M S e o o bam G G S S e A 0 e ek R e B e e S A R e e

I (mfT)
Nucleus b with s.p.e Sspee = 0
_______________ e e e et o e o o ot o o e e o
Feo 3 4333 25 6l
432 39 30
5332 - 13 3
5hp2 14 3
Mp? 3 4432 23 53
5332 35 38
Lhliq 5 3
5h22 11 3
o3 51400 27 56
5431 38 34
6322 10 g
6331 12
v53 5521 26 1
6421 50 3
5530 5 2
6430 9 3
T153 6511 - 35 66
6520 35 26
7411 13 Z
7420 15
8¢23 6610 31 | gg
7510 61 1
Ca?3 7600 | 75 98

3590 25 2

ot e o os v vn e et e e o S B vt e e by i S0 o Vo T WA Y e N WA Y G SO o oAS Ah R W T ST T G e S04 I R R e S e —
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Table (III.24)

W rum s PR it Gt e damt da S R PO il Ao e A W St ay v R G SN M GAR em e S Gmd R M e B et e s e ey M S T o v e W o S o e S e b B A v

I (mfT)
Nucleus T with s.p.e SePeee = 0
Ve
005LF Lh33 12 3
5333 17 2
Lo 1L 21
5432 4o 19
F\,SLF L33 12 3
5333 17 2
Lo 15 21
5432 4o 19
M gh32 53 8L
6332 15 8
541 11 6
crot 5500 11 8
: 6422 22 27
5531 17 20
6431 3L 23
47 6611 16 ' 46
7511 30 27
6620 16 1h
7520 31 13
SCSLF 7619 92 93
8510 27 7
ca? 7790 37 3y

ST USSP S e bt s et ot ey b o ey Wt e St Snes S Y o 0 t d Veid et v Sd e Y VS PR B WV A S0 AW e e Gof S h Sveh At Ve i ik b S T e v
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Table (IIT.25)

""""""""""""""""""""""""""""""""" T TnfTy~ """
Nucleus f with s.p.e. S«p.c. = 0
00?7 4l 20 52

5433 40 - 38
5hlo 13 : Z

5532 15
Fe55 5433 24 50
5Lk 31 36
6333 7 5
6432 20 g

5532 10

55

Mn 5532 22 Ly
6432 L3 Ll
7332 . L 11
6441 11 5
5541 . 6 5
cr?? 6522 27 53
7422 19 59
6531 40 36
7431 16 6
1399 7611 36 67
- 8511 12 39
7620 36 26
8520 14 3
5c7° 7710 33 61
3610 61 39
ca’? 8700 77 29

9600 22 1

T SR e s ey T Ae e v e B s e o d Bam Wre et et Dt Al s St s ot bt St St o Pt Gt Al b e Mt Poas v o -y aa e e o
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Table (III.26)

e et P Ao S A Ge M e M e At M G M M WS S A At e M M S i M s A Bie S Pap Wy Aem b e WM e b e e G e e el W A M M8 M8 S Gw e e e b

T(mfT)
Nucleus E with S.PsCo SePeBe =
176 ARAN , 43
5443 3 30
5533 31 20
00”2 © 5LL3 41 73
5533 9 6
6433 17 7
5542 15 6
6532 10 1
Feo© 5533 10 26
6433 19 25
5542 17 22
6LL42 27 22
6532 13 3
1?0 6532 51 79
7432 20 11
6541 15 3
74l 5 2
Cr56 6622 11 30
7522 22 26
6631 18 20
7531 36 22
T156 7711 17 Iy
7720 17 15
8611 29 25
8620 31 13
Es‘c56 8710 75 95
9610 24
Ca56 3300 L1 93

ST e e o e oot Mt oy St St et 0 o et ik Jow Mot BN N At St A e ey e Tt ot Wt At O R e et Bt Gvee e A G S M A B T e W Y e v G e e e -
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Table (III.27)

e e et e e rane ot v b P o it B W e T At Bam ¢t i 4 e s S e P B e G S S S e S 0SS S S e
—— i ——

I(mfT)
Nucleus f with s.p.c. SePe€i = 0
wi” 7 5Ly 21 55

5343 38 36
6443 13 Z
6533 15 ,
00”7 5543 21 46
65443 32 39
6533 11 5
5552 5 L
6542 19 5
Fe? / 6533 23 46
6542 39 40
7433 5
Thl2 13 6
Mn? 7 6632 23 L7
6641 7 L
75 41 14 5
cr?’ 7620 o7 5y
7631 L2 36
8522 10 N
3531 16 5
7427 8711 37 67
3720 39 26
9611 11 3
9620 13 3
se? 3310 38 67
9710 59 33
ca’’ 9800 36 99
10700 1L 1
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Table (ITI.23)

..-——._..---_._—..-...-_..._.,.._.__.._...__........._........_..--..——.——-.—_-‘.._...._.-—....-_--——-_—_—._..._...

- I(me)
Nucleus ,g with s.p.e. .ps€e =0
cu”” L 8

A ' 7
5553 L 2
6543 33 8
6633 7 1
N128 S5LY 10 8
6L T 23
5553 14 22
6543 43 26
53
Co 6543 L3 79
713 14 9
6552 13 3
7540 10 1
fe?O 6633 10 o9
7533 20 24
6642 18 22
542 3k ok
cro? 7722 13 3
3622 23 23
7731 - 19 20
8631 35 19
747° 3811 20 TS

: 9711 23 22

3820 19 19
720 30 11

58

Ca 9900 33 100
10800 7 -

—— .- .-.-..-...—-..-_—_...—...._--....-—...——.—-..d—---—-——-_—.—-—-m..q._-—--.-—-.---—--—--—-.-_.._.__.____,____



 Table (ITIT.29)

s vy o— o — T T B it ke A A . TSt S’ WOT Tve S et St e A Bt St B e b M S et e T Ve et Memd et SUS Mo M M S Y SR e S e e e e = e

o I(mfT)
Nucleus f with s.p.e S.Pece = 0
ow? 5 20 53
O
6613 15 | i
Ni2? 65L4k 22 L3
6%8 31 37
ynnn 6 5
7543 20 5
6643 10 i
0?9 6643 02 L5
7543 40 Yo
6652 7 5
7552 12 5
Fe”? 7633 ol 50
7642 43 L0
3542 16 6
85933 9 I

e e e e e e e o v " P o St o o o S Wt W S et ot St T W S FwT P P G M BT R TS S Mt TSRS TS O e e
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Table (III.30)

-._.-_—.-~_____—___...-...—..__..__—.__..._.——_—.——_—--———...._...._.._...._—_-,——-——_.—_....._.

_ I(mfT)
Nucleus f with s.p.e. SePes = O
2n° 555 15 57
655 35 26
6644 31 16
60
Cu 6554 L 73
661 9 6
75 L 16 7
6653 16 7
7643 9 1
N0 ann 10 o7
754 18 . 23
6653 18 23
7553 27 21
7643 13 3
6020 T 50 73
8543 18 10
765 2 18 10
3552 6 2
7e” 7733 11 31
8633 20 22
7742 20 02
3642 36 22
e 3822 15 k1
3831 22 21
9722 ) 21
9731 35 16
7169 9911 26 6
10311 ol 15
3929 ol 15

.—_.—.__._...._..._.._...-.—.._..._---...—..——_——.—.——-.--._....._...—_-——........._—....—--————-.._..__..._._.....—
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Table (III.31)

values of R as predicted by.thé binding energies obtained from
. gU(4)-Isospin moments for various isobars compared with the
theoretical value of R glven by the Wigner model. Rexp is obta-

ined using empirical energies.

____a‘.-.—--——-.-.-—_.-.._..-..........—--......—_.........._....._—_———.————_.—.—_..._.-_._—.___.-.—................

_——.——--—-—-————-_—————-———————-—t—n———————-———-————————-l-a-.d-———-.._—-—————-———-—-——

5/2 2.33  2.47,2.13,3.67,2.32, 2.79,2.25,2.48,2.87
2.90,3.32,2.53,2.59 2.76,2.45,2.82,3.00
3.%42,3.98. 2.58,2.9%

7/2 2,25  2.94%,3.04,2.03,2.58, 0.35,2.46,2.38,2.50,
1.83,1.65,2.70,2.05, 2,31,2.31,2.31,2.49,
1.97,1.89 2.60,2.30

9/2 2.20 2.29,2.31,2.84,2.30, 2.43,2.1u,2.2u,2;2ui
‘ 2.95,2.60,1.80,2.00 2.67,2.46,2.27,2.42'

11/2 2.167 2.05,2.32,2.66 2.21,2.27,2.16
13/2 2.143  2.03 - 2.18
A= ln _
2 1.5 1.69,1.47,1.29,1.7% 1.42,1.48,1.6%,1.63
3 4.0 5.42,5.16,7.86,4.96 5.09,5.08,4. 10,1493
L 1,66 1.50,2.16,1.67,1.59, 1.7%,1.73,1.78,1.75,
2.148,2.09 | 1.77,1.69

-5 3.0 2,64,1.23,2.40 3.071,3.21,3.22

6 1.79  1.81 1.86
A = n+2

.6 1.62,1.38,1.95,2.98  1.51,1.77,1.70,1.73
.33 1.42,2.49,2.00 %, 418,3.6%,3.85

.71 2.1k . 1.81

.78 1.81 1.87

d—-_.__..-.—......._..—-—-—n—-——.-.—--.-—.-._—_—-_-.-...—.._..——-—-

~3 VU F W
RGN (S S
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Al though the values calculated seem to be scattered around
the theoretical value as shown in figure (III.Y), agreement in
general is reasonable. The ratio R 1s very sensitive to small
changes in binding .energies of the isobars. Some of the points
which 1lie far away from Rth correspond to those casés which
contain s nucleus for which no excited reference state was
available to determine the binding energy. These points should

be ignored in the comparisorm.

However, the small spread in values of R should not be
regarded as indicating the goodness of SU(L4) symmetry because
the ratio between thé difference in energy of isobars may be
insengitive to symmetry’mixing. It appears that symmetry mixing
does not significantly affect energy relationships. There is
one very interesting feature which emerges from this studyvof’
SU(4) symmetry . From tables (III.14 - III.30) we observed

from the mixing intensities that
1) For 4 = Ln nuclei, symmetry mixing is more for nuclei
with even isospin as compared with those having odd
isospin. »
2) Tor & = 2n+1 nuclei, the extent of bresking is more

or less independent of isospin.

3) TFor A = Yn+2 nuclel, intensities of various irreps

of SU(L) indicate that the symmetry is mixed more for
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odd T as compared to even T.
There is some sort of anticorrelation between this and
the results of Franzini-Radicati. From their plot of R we

observe that -

1) For A = 4n nuclei, the scatter of points as compared

to R,, is more for odd isospins

th

2) Tor A& = 2n+1 nuclei, scatter is independent of isos-
pin |

3) For A = Ln+2 nuclei, deviations from Rth are larger

for even T as compared to odd T.

3.5 Conclugion

We have studied the structure of 2p-~1f shell nuclel using
the spectral distribution method. Averages of H and powers of
H over states defined by the irrep of various subgroups of U(N)
have been evaluated. The spectral moments for various distri-
butions like configuration-isospin and SU(4)-Isospin have
been used to study properties of nuclel from L & A £ 76,

‘Binding energies of nuclel as obtained from distributions
agree remarkably well with microscopic calculations and empiri-
gal energies. This is very significant considering the fact

that one is dealing with vector spaceswhose dimensionalities

are as large as 1011 states. This makes us feel confident that

the accuracy in determining ground state energles is maintained
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in large vector spaces and we can determine absolute energles
in gpaces of arbitrarily large size. One can carry out calcula-
tions by including d3/2~hole and g9/2—particle excitations to

study nucleli where these may be important.

A systematic study of various effective interactions
may also be possible using the moment method. The tremendous
advantage is that whereas shell model calculations canube per-
formed in relatively small spaces, the distribution method does
not suffer from such a restfiction. Our results indicate that
MWH2 interaction works very well upto A = 60, after which it
starts underbinding nuclei. Certain modifications need to be

incorporated if one wants to use it in full 2p-1f shell space.

Spectra of nuclei as obtained from distributions agréé
fairly well with other caléulations. It must be borne in
mind that the level sequence is taken from either experiment
or microscopic calculationg since fixed.angular momen tum ‘
averages have not been evaluated. Determination of fixed J

distributions will be discussed in the next chapter.

Intensities of various configurations ﬁfobtained-using
(WT) averages are important parameters; These eﬁable.one to
decide upon the trurication of the vector space for sheli model
calculatiqns. While fractional occupancy of single particle

orbits are useful in single nucleon transfer strengths and in
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the theory of level densities, to get more precise information

it would be neéessary to calculate the occupancies of neutrons
.and protons respectively.

Relative intensities of SU(4) irreps in the ground state
region of nuclei indicate that the symmetry in'genera;fbadly
broken. Agreement of our results of the ratio R with theoreti-
cal values Rth as predicted by the supermultiplet scheme

indicates that this ratio may be insensitive to symmetry mixing.



181

CHAPTER IV

FIXED ANGULAR MOMENTUM AVERAGES AND SPECTRAL DISTRIBUIION
APPROACH TO DEFORMATION ENERGY CURVES

L. Introduction

In Chapters II and III, spectral distribution methods

. were used to study general properties of nuclel. Averages of
. the Hamiltonian H and H2 over states defined by the irreduci-
ble representation of the group'U(N) and its subgroup decompo—’
sitions were evaluaﬁed. Spectrai moments for configurations,
configuration—isospin andﬁSU(M)fisospin distributions were

used to determine ground state. energiles, low energy Spectra7
‘occupancies of single particle orbits and SU(4) symmetry mixing

etc, for nuclei.

In the appllcatlon of dlstrlbutlons to the determina-
tion of low 1y1ng levels of a nucleus using Rateliff's (1971)
procedure, a ‘knowledge of the degeneracy and therefore the
angular.momentum J and isospin T of each level 1is nécéssary;
For even-even nuclel, one may assule the ground state spin to
be 0F and perhaps the (0-2-4) sequence. In other @ésés one
proceeds on the assumption that the interaction_ﬁould give the

observed spectrum.

Evaluation of moments of H for fixed angular momentum

will enable one to determine the low-energy spectra of a nucleus
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nambigously. At higher excitation energies, fixed-J moments
':_oan be used to determine the level den51ty at a given energy and
one can study the decomposltlon of states according to angular

momentum.

| In Sec.(4.2) of this chapter, fixed-J momentshave been
cvaluated following the procedure suggested by Jacquemin (1973)
. The method is based on making a suitable choice of configurations
and. using the configuration averaging method of French (1967).
" These moments are ueed to determine spectra of some nuclei in

the 2s-1d shell.

In the second part of this chapter we use spectral dlstrl—
bution methods to study the average deformatlon (quadrupole
moment) of a nuclous as a functlon of exc1tatlon energy. Such
averages may .be of 1nterest in heavy ion reactlon processes
.where compound nuclear formation takes place. It should be.
emphasiéed that the average deformation eﬁergy curves do not
describe the "response" of .the nucleus to an exterﬁal guadrupole
fleld Therefore these curves cannot be 1nterpreted,as potential

nergy curves for collectlve quadrupole motion. We do indicate
later how such potential cnergy curves can be obtained using the
spectral distributioﬁ method.
Tn Sec.(%.3) the method of Jacquemin (1973) is described.
Centroids and variances of eonfiguratiens (to be defined later)
are calculated and these are then used to determine the,

intengities of various configurations .at a fixed energy.
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Averege'quadrupole moment for these configurations is calcula-
ted and its energy variation is'studied., |

In Sec.(4.4), variation of average guadrupole moment
with excitation energy is studied within the frame-work of
Elliott SU(3) model (1958). Some comments on the results

obtained are made in' Sec.(4.5).

L,2 Fixed Angular Momentum J-moments

The technical problems encountered in the evaluation
ofefixed—J moments cannot be handled by any straight-forward
extension of the methods used for other distributions. In
~order to caleulate averages of H and pewers of H over states
 defined by the irrep of a group, One constructs new operators,
one for cach moment, in terms of the scalar operators of £he
group. For calculatlng ‘averages over states with fixed-dJ, one
does not have enough scalar operators.

Jacquemin (1973) has proposed a different way by which

fixed~J averages can be eValuated In this method one starts

by con31der1ng a finite set N of single particle states. This

space S{N) may be made up of p shells J sJ,e .jp and for the

sake of convenience it is assumed that j1;; j’2 -5g=~;>jlf

- Distribution of m particles in these N single pa;ﬁicle-states

generates the space S(N,m). This space can be decomposed accor-

ding to the eigenvalue K of the operator JZ giving rise to the
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subspace S(N,m,K). One can also decompose S(N,m) according
to the eigenvalue of 72 to obtain the subspace S(N,m,J). It
is clear that any state in S(N,m,J) is an eigenstate of 3°
with eigenvalue J(J+1).

Tn order to define configurations the space S(N) is

decomposed into subspaces SEN) (L = 1geeeey d = 2%+1) such

that every state in Sl(N) ig an eigenstate of JZ with eligen-

value Ki" A configuration W= (m1;.. oo m,t) is obtained by dis-
tributing m, particles in st (), w, in 52(N) and so on such -
that

m:m1 +m2+oo-no- mi (4.2-1)

Any state in m will be an eligenstate of'JZ with the eigenvalue

K given by
3
K = .m0k
- K
1 - S
‘L:‘ ;(’*-202)‘
Let LT be the dimensionality of sT(N). Then
1.
_ N \L ‘ (4.2.3)
N= 2o b .

-

s
The average of an operator O in the space S(N,m,J) is defined

as

| S(-\’\\‘)m__ffu) Z" R

7) XES(Nm,T)

- (4. 2. 14)
d{Nm

I
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where d(N,m,J) is the number of states over which the average

is teken. In order to determine this average one proceeds

in the fbilowing manner. In the first step the average of 0

over states defihed by the configuration'ﬁfis evaluated. This
can be written as:

o > plojpp e
{0 = 4@ pe 2

where the dimensionality d(f) is given by

(L)peing the binomial coefficient.
In the next step,‘the average of 0 in the subspace

g(N,m,K) is determined by summing over appropriate configura-

tions.

<05§)m,»<) _ 7 d(ﬁn)"<-c>>m

<l (Nm K) Z "
mi K¢

(4.2.7)

(%.2.6)
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Flnally, the average over S(N,m,J) is obtalned by taking the

11near comblnatlon of O S(N m K> as glvon below.

S(N,m,J) S(an <)

<o) = d(umi) i k=7) (O
-CWWWKW“)<O§WHWK)]

(4.2.8)

421 Evaluation of Spectral Moments with fixed=J

The centroid energy Ec(ﬁ) and variance (rg(ﬁ) of a

. , .
configuration m is defined as:

E‘(ﬁ’j):’ L<o<M > ;u.z;§>'

d(m)”‘em
2 L. o( i

To determine these averages, new operators H and i (c.f.Sec.

1.2) are constructed w1th the correct maximum particle rank

.2

and which reproduce the traces of H and H® in ‘the defining

These riew operators can be written as polynomlal expre-
L) where

space.

ssiong in terms of the number operators ni(i = 1.
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ng counts® the number of particles in the space Sl(N).

L
HMQ’.*Z-*’D i +2._Acuﬁ N C (%2.11)

{<}~!
)
A2 X *
H o= or 2oqumir 20 hajnand
l . Lej=| |
T? ey FL ¢ LN . M ()4'02-12>
+ 2o é,*}hr\..th R+ D tL‘Jvku”thﬂk&U—
tejeR=1 LR L

Here a,b, CyPyQyT,S and t are parameters to be determined from. a
knowledge of averages in the gafining space. The method that we
have indicated for evaluating E () and crg(ﬁ) is a "brute-
force™ method. Chang et al (1971) and Jacquemin (1973) use a
more elegant method where they decompose H according to tensors
with respect to the group ‘EZZU(N ) and make a detailed exami-
nation of the nature of these tensor operators to gimplify the

evaluation of moments.

Equations (4.2.11 and 4.2.12) are used to determine confi-
guration centroids and variances in 2s-1d shell. The space 8(24)
A mposed
consisting of three orblts d5/2’ 3/2 and s 1/2 s decomposec
into six subspaces S (24) (K = -5/2 to 5/2), the dimensionali-
i i - jond - = = CL:L:6-.AI1
ties of which are L, L6 2, L, L5 b and L L y

wnﬁgﬁaﬂm1m5&ﬂ&ﬁm;ﬂwcmmumpnwnH<2, 2\ < by, iy L6,

L 6, m < 4% and m X 2.

m, § 6y My S
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Configurations upto 4 particles are listed in

Table (IV.1).

N
i

For the calculations.we have used (K+122 fp interaction
(Halbert, McGrory, Wildenthal and Pandya, 1971). This inter-
action has been derived from Kuo's (1967) interaction by
}adjusting 12 parameters, namely the three single particle
energies and the nine two—body'matrix elements involving only
the dg,p and sy, orbits. All other two-body matrix elements are
the same as in Kuo's interaction. The single particle energies

Care € dg, = -2 €dy/, =151 and €5/ = 23,34,

The input averages were determined by first obtaining
all the states jllﬁg, calculating the determinantal energieé,
‘setting up the matrices of H and H® and finally taking éuitable
traces. These are given in Table (IV.1). These averages are
then propagated by means of eq.(k.2.11) to (4.2.12) to obtain
moments for all configurations belonging to a given particle

number m. Results for 12 particles are given in Table (IV.2).

It should be mentiohed that while determining Crg(ﬁ),'
if one uses the élementary net consisting of configurétions
upto 4 particles, numerical inaccuracies creep in. The elemen-
tary net is therefore modified by rcplacing all 1-partidlé

configurations by corresponding hole configurations.
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Table (IV.1)

Configuration centroids and variances for m 4 4 particles
in 2s-1d shell. The average quadrupole moment is given in
the fifth column(see text for details)

.—.-—-._---.-__——_———_——.—_-—....-...-...———.——.—.————.—‘—_n—-‘——.——-.—__-——.--—.—..

o s o <>

1 000001 L. 2ok 0.0 -2.0
000010 ~1.36 8.26 ~0.5

000100 : -2.02 6.37 1.0
001000 . -2.02 C6.37 1.0

010000 -1.36 . 8.26 -0.5

100000 L. ok 0.0 - -2.0

2 000002 -12.20 0.0 4.0
000011 -7.12 - 7.86 ~2.5
000020 -4.58 1511 -1.0

000101 -6.85 9.03 -1.0

000110 -1.38 20.03 0.5

000200 -5433 15 .48 2.0

001001 -6.96 19,81 -1.0

001010 -4.12 19.85 0.5

001100 ~5.22 19.52 2.0

002000 ~5.33 15.18 2.0

010001 -6.71 13.03 ~2.5

010010 ~3.54 24.16 -1.0

010100 SR Ty 19.85 0.5

011000 -14.38 20.03 0.5
020000 ~1.58 15,11 -1.0
100001 ~9.73 7.96 ~1y.0

100012 -6.71 13.03 -2.5

100100 -6.96 9.81 -1.0

101000 -6.85 9.03 -1.90

110000 -7.12 7.86 -2.5

200000 -12.20 . 0.0 -4.0

..—-..._—_.....-.._..—.—..—............—..........—.—.-.-—-.——.-—-.-_.—_—.—..-...-——.—-———-—.————._.—.—_._._..—....._—.
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Table (IV.1)(contd)

-u—-——--———-————.——————————-————————--——-————————————-————m—-———.-_—

w L B, (&) 7 © ()
3 000012 ~16.61 5.80
000021 -11.87 13.81
000030 ~9.65 16,29
000102 -15.40 7.19
000111 -10.73 - 20,17
000120 -8.59 29.36
000201 =10.74% 19.80
000210 -8.68 33.34
000300 ~-9.92 23.82
001002 -15.63 11.15
001011 ~10.58 21.25
001020 ~-8.07 29.80
001101 - = =10.7% 24.55
001110 -8.31 37.11
001200 ~9.70 33.60
002001 -10.97 22.10
002010 -8.16 32.98
002100 -9.70 33.60
003000 -9.92 23.82
010002 -15.79 12,43
010020 -~7.58 36. 74
010101 ~10.05 26.88
010110 -7.29 40.62
010200 -8.16 32.98
011001 ~10.43 27.79
011010 ~7.29 L0.62

010011 =102 . . 2229

.._—-—..4—..—-—-—-—.——_._’_....._.....‘——..——-
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Table (IV.1) (contd) '

-.-._...-_...._..._....—_-——_—-———-—_—-.—_.—_—.—_-———-—__—._.__._._.___.—-____——...-—-_

m W EC('ﬁ'D - g2
3 011100 -8.31 37.11
‘ 012000 -8.68 33.34%
020007 ~11.04 23.60

020010 ~7.58 36.74

020100 -8.07 29.80

021000 ~8.59 29.36

030700 ~9.65 S 16.29

100002 -18.94 15.89

100011 -13.37 19.98

100020 -11.04 23.60

100101 -13.04 20.19

100119 ~10.43 27.75

100200 ~10.97 - 22.10

101001 -13.04 20,19

101010 -10.05 26.88

101100 -10. 7% o4.55

102000 -10. 74 19.80

110001 =13.73 19.98

110010 ~-10.42 27.29

110199 ~10.58 21.25

111000 -10.73 20.17

120000 -11.87 - 13.81

200001 ~18.94 15 .89

200010 -15.79 12.43

200100 ~15.63 11.45

201000 ~15.40 ' 7.19

210000 ~16.61 5.80
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Table (IV.1) (contd)

S ot st v T e e T . At el S st M ot B At =t v o ettt M S A R e Mt TS e At e Wi M St ey P R e b T e e e e e e mew e

m & E_(%) - 2(5)
L 000022 -22.88 10,29
000031 ~18 .46 12.67
000040 ~16.58. 16.50
000112 -20.81 14.15
000121 -16.46 27.55
000130 -14.66 30.35
000202 -19.88 16.93
000211 ~15.62 32.93
000220 -13.88 L, 37
000301 -15.92 28.99
000310 -14, 27 Wk, 6L
00040D . -15.80 30.10
001012 -20.77 19,20
001021 -16.05 29.05
001030 -13.87 32.13
001102 -20.00 23.29
001111 -15.36 - 38.26
001120 ~13.25 ' L8.16
001207 -15.82 39.38
001210 -13.79 5L 141
201300 ~15.48 45,08
002002 -20.33 25.84
002011 ~15.32 35.91
002020 -12,84% C b5
002101 -15.93 40.78
002110 -13.53 53.97
002200 -154.37 51.29

003001 ~16.26 33.48

ST e et et o et v e e Al et oy e ot o ot ot it S b o At S A W Pt o Pt Py SR Y Gty S e S P et PP Mt Y by et T i ot oy Tt A o o
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Table (IV.1) (contd)

_.__._....—..—_..___._..____...._...__._...._._._____.-._.._._._‘..___....__,...._._..._.—---_—._._

m m E (m) o~ (m)

L 003010 -13.48 W22
003100 -15.48 45 .08
004000 -15.80 30.10
010012 -21.02 23. 41
010221 -15.98 37.80
010030 -13.48 1. 74
010102 -19.72 24.03
010111 -14.75 %3.90 -
010120 -12.33 55.15
010201 -14.68 41.38
010210 -12.33 57.39
210300 -13.48 Wy, 22
011002 -20.21 28.31
011011 ~14.87 45,23
011020 -12.06 55 .78
011101 - 14,95 46.03
011110 ~12.22 61.46
011209 ~13.53 53.97
012001 ~-15.43 43.76
012010 ~12.33 57.39
012100 ~-13.79 5. 141
013000 14,27 .64
020092 -21.23 24.93
020011 ~15.57 42.38
020022 ~12.4 5\ 27
020101 -15.12 40.23

020110 -12.06 55.78

e et e o ot o 4 o an Pt ot ot B Gt Son e P e e b e o e v T o AT e R e SRS TE T o e m e
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Table (IV.1)(contd)

.1._—-..-—.—....—-———-—.--—-——-——-——--—-------..---—-----———-—--————————————-——--——--——'

- e £ (%) G A(®)
L 020200 -12.84 45 .41
021001 -15.75 40,45
021010 -12.33 55+15
021100 ~13.25 48,16
022000 -13.88 bl 37
030001 -17.23 27,25
030010 -13.48 41,74
030100 -13.87 32.13
- 031000 -14.66 . 30.35
0L0000 ~16.58 16.50
100012 - 24,47 25.22

100021 ~19.58 28.5%
100030 -17.23 27.25
100102 -22.8L 26.02
100111 -18.03 34.99
100120 -15.75 40,45
100201 -17.63 33,82
100210 -15.43 43,76
100309 -16.26 33.48
101002 -22.95 29.50
101011 =17.77 35.38
1019020 -15.12 40,23
101101 ~-17.52 37.19
101110 ~14.95 - 46.03
101200 -15.93 40.78
102001 -17.63 33.82
102010 -1, 68 41.38

102100 -15.82 39.38

_.—._.--._.......----.——_—.—_.-._—......——-—._-—.—_—--o---—-—--——-‘-""""-"""‘ . S e e
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Table (IV.1)(contd)

....u._———_———.—-——--—‘———_....--—..————_-—.—-——_—_——_.——m_—u——-..._..—m-a—_—-...—

m i B (%) 5 2 ()

L 103000 ~15.92 28.95
110002 -24.06 26.69
110011 -18.54 37.84
110020 -15.57 42.38
110101 -17.77 35.38
110110 -14.87 45,23
110200 -15.32 35.91
111001 ~18.03 34.99
111010 ~ 1. 75 43.90
111100 -15.36 38.26
112000 ~-15.62 32.93
120001 -19.58 28.54
120010 ~-15.98 . 37.80
120100 -16.,05 29.09
121000 -16.46 27.55
130000 ~18.46 12.67
200002 -29.141 31.78
200011 -2L.06 26.69
290020 ~21.23  24.93
200101 -22.95 29.50
200110 -20.21 28. 31
200200 -20.33 25.84
201001 ~22.84 26.02
201010 -19.72 24,03
201100 -20.00 23.29
202000 -19.88 16.93
210001 - 24147 25,22

210010 -21,02 23.141

—.-...-...—...-—,_..-,..———-—-—-—.—-—-_..,_—._—.—...—..-..—._....———..——.—-—-———--——-—'———'—"—‘-—""'"'"——'---
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Table (IV.1)(contd)

..-__....-....—-.---——_—..._._—-.—_--—_.__-—._,_—._.——_._—-———-————.—_—_———_—————_.——_

m o Ec(m) ()

" 210100 ~20.07 19.20
2110920 -20.81 14,15
220000 -22.88 10..29

23 - 2h46641 -308.03 0.2
246632 -310.93 8.40
246542 -311.77 7.01
L5642 -311.77 7.01
236642 -310.93 8.40

146642 ~-308.03 0.0

_..-_.——...-—_...._.——..-.-—..-—-...-._g-..._——...-—.—.-..—.—_-.—..-....___...-——-,......—._.——-.——-—-_
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Table (IV.2)

gonfiguration centrolids and variances for 12 particles using
K+12 fp Interaction , '

-~ ~ 2, A

m d () Ec(m) o (m) (Q20>
006600 1 -105.21 - 73.11 12,0
015510 576 -06.17 - 142.85 9.0
016320 130 -93.02 145.06 7.5
016401 120 -07.62 120,61 7.5
023610 430 -93.02 145,06 7.5
024420 3100 -90.49 171.09 6.0

024501 1030 ~9h.36 127.01 6.0
025230 2160 -39.03 151.81 L.5
025311 - 5760 -92.35 149.39 4.5
026040 6 -33.63 132,20 3.0
026121 432 -91.140 133.67 3.0
026202 90 -97.70 122.23 3.0
032520 2160 -39.03 151,31 4.5
032601 120 =92.16 103 .53 .5
033330 6400 -33.19 159.76 3.0
033411 9600 -90.77 142,29 3.0
034140 360 ~33 .11 137.80 1.5
034221 10300 -9, Lk 143.13 1.5
034302 1200 -96.01 117.07 1.5
035231 192 ~91.18 121.58 0.9
035112 576 -96.20  114.99 0.0
040620 6 .33.63 132,20 3.0
okL30 360 -33.41  137.8D 1.5
1.5

041511 283 ~90.26 . 11kL6

_._..—_........_.—_._—-....—.._...-.__.._.__.._....—........_._—.——-._.,.,.—-—..——._———-—-—--———..——.—......_._.._......_._
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Table (IV.2) (contd)

___,_._.._._.—.__—.--_——--—————-—.—.———-———_—.——_—_—-.—-..—.-___——m——————————————..—_".—

W & (@) E_(f) 2@ Oy
042240 225 -89.26 137.86 0.0
ok2321 3600 -90.55 132.82 0.9
oO42L02 225 -95.:39 102,13 2.0
043131 960 -91.91 125.05 ~1.5
ok3212 1200 -96.19 109. 36 -1.5

_ouyn22 920 -93.07 106.76 -3.0
104610 120 ~97.62 120.61 7.5
105420 1030 - -9L.36 127.01. 6.0
105501 14k -97.96 104, 24 6.0
106230 120 -92.16 108.58 L.5
106311 3290 ~95.21 113.63 .5
113520 ' 5760 -92.35 149.89 4.5
113607 320 -95.21 113.63 4.5
114330 9600 -90.77 142.93 ' 3.0
11441 1 14400 ~93.08 142,66 3.0
115140 233 ~90.26 114, 46 1.9

115221 3640 - -92.02 135,46 1.5
115302 260 ’ -97.32 119,99 1.5
116031 6L ~92.02 109,99 0.0
116112 - 192 -96.77 111,07 0.0 -
121620 132 -91.40 133.67 3.0
122430 10809 ~90. Lkt C148.13 1.5
122511 8640 ~92.02 135,46 1.5
123240 3600 -90.55 132.82 0.0
123321 57600 -91.58 156. 45 0.0
123402 3620 96 . 14 121.5% 0.0
124131 3640 -92.20 132.17 ~1.5

"‘""-—.-—.—..—.—.—-.——-—-—_-..‘—_..._...._...._._.._—-—---——-_._...._-...._—.——--——--—-—.—-—--———-—-.—-—---—-_..__..._..—
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Table (IV.2) ( contd )

._—-————.—_-——.—.-.._.....—.............._.-4.-..._..._—._——.......___—._-_..__.__.._..-.._——..._....—.._._.__-—..._.——-.-

W d{3) B (f) oo Lay
124212 10800 -96.22 128.19 -1.5
125022 - L32 -97.35 111.00 -3.0
130530 192 -91.18 . 121.98 0.0
130611 6L -92.02 109.99 0.0
131340 960 -91.91 125.05 -1.5
131421 3640 -~92.20 132.17 ~1.5
131502 283 -96.03 103.00 -1.5
132231 14400 -93,45 136.02 -3.0
132312 9609 -96.73 119.53 -3.0
133041 320 -95.76 110. 35 k4.5
133122 5760 -93 .49 120,42 -4.5
140331 320 -95.76 110,35 - -4.5
140412 120 -98.30 ol L5 4,5
141141 14 -93.69 104, 1h -6.0
141222 1080 -100.63 103.43 6.0
142032 120 -104.12 100,15 ~7.5
202620 20 -97.70  122.28 3.0
203430 1200 ~96.01  117.07 1.5
203511 967 -97.32 119.99 1.5
204240 225 -95.39 102.13 0.0
204321 3600 -96.1k4 121.54 0.0
204402 225 100 bt 122.36 0.9
205131 . 288 -96.03 103.00 -1.5

- 205212 360 -99.78 112.86 -1.5
206022 6 -100.18 109.79 ~3.0
211530 576 ~96.20 11%.99 0.0
211611 | 192 ~96.77  111.07 0.9

e ot o — T s o T Bn " A S Py e e e n Gt G e S S T A N S ok e M Pt S S SR TR S M S RS0 S84 TS e e e o e e e
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Table (IV.2) (contd)

——— e A -

1 a (i) E (%) TA® Lo
212340 1200 -96.19 109.36 -1¢5
212421 10800 ~96.22 128.19 ~-145
212502 360 -99.78 112.86 -1.9
213231 9600 -96.73 119.53 -3.0
213312 6400 - =99.74 118.90 -3.0
2140W 120 -98.30 L. 45 4.5
214122 2160 ~-100.76 106.92 4.5
220440 90 -98.07 106.76 -3.0.
220521 432 -97.35 111.00 ~3.0
200602 6 -100.18 109.79 ~3.0
221331 : 5760 -98.49 120. 42 -4.5
221412 2160 ~100.76 106,92 5,5
222141 1080 -100.68 103.43 -6.0
202222 - 8100 -102.40 115.57 -6.0
223032 480 -105.11  97.52 ~7.5
230241 120 -104%.12 100.15 -7.5
230322 430 -105.11 97.52 ~7.5
231132 576 -108 . 1t 96.57 -9.0

oLOoL2 1 ~117.85 78 o 41 ~12.0

...----_...—..-........—-..—.——--—_..............-".-_.—._-——__-,-.-.--‘n..‘_—-.-—..._:-—__.—-w..-._...—np-»--—.—-——w—------—_—
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| Conversion of‘Efmoments to fixed—J moments is easily
accompllshed using eqs.(4.2.7) and (4+.2.8). Results for m = L4,
8, 9, 10, 11 and 12 are shown in Table (IV.3). One observes
that the centroid energy EC(mJ) and width ¢ (mJ) decrease with
increasing angular momentum. Thig inversion of the ceﬁtroid
spectrum appeafs strange because we hight normally expect the

low angular momentum state to have a lower centroid energys.

h.2.2 Spectra of States with fixed=J

Having determined fixed-J momehts, the low lying
Sﬁates of fixed-J in a nucleus are located using Ratcliff's
procedure. Since igospin T for the distribution is not specified,
one has to restrict to nuclel with T = T, = 1/2 (N-2).

Tn Ratcliff's procedure since one ig trying to deter-
mine a set of discrete energy levels from a continuous distri-
bution, it is expected that one would obtain only the most
probable position. The fluctuation of a shell model state from

this most probable position 1s defined as:

= B, (8M) - Ei' (JT)

and this fluctuation ig upto one local level spacing
(Leughced and Wong, 1975). Therefore in comparison one can
only expect the level position to be accurate utmost to the

fluctuation limit.
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Table (IV.3)

Centroids and variances. for fixed-J moments in the 2s-1d

shell using (K+12) fp interaction. HEnergies are in MeV

with respect to 016,

m J a(md) EC(mJ) e “(mJ )

Ly 0 114 -13.21 9.01

1 253 ~13.16 7.82

2 359 ~13.71 777

3 327 -14,02 7.16

L 269 -14.67 6.74%

5 156 ~15 .6 5.9k

6 80 -16.90 5.47

7 26 ~19.61 3.72

8 6 -22.89 3.21

8 0 3697 -4k, 18 11.91

1 9928 -, 26 11.61

2 14328 -4, 52 11.55

3 15640 44,89 11.25

L 14636 -45. 40 10.99

5 11677 -L46.06 10.49

6 8255 -46.91 9.96

7 5004 ~47.89 9.22

8 2652 ~49.08 8. 47

9 1151 -50.38 7.51

10 413 -51.98 6.53

11 101 -53.73 5.26

12 15 -56.60 3.94%

9 1/2 11630 ~5%.63 12.26

3/2 2065k -54.77 12.17
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5/2
7/2
9/2
11 /2
13 /2

15 /2

17 /2
19 /2
21/ 2
23/ 2
25/ 2
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N o= O N

N
(@S]

1/2

32

5/2
7/2

Table (IV.3)(contd)

25746
26178
23068
1770k
12032
7102
3654
1550
546
130
20

8629

23575

34272
38236
36624
30368
22449
14523
8312
LOL8
1681
539
129
s

20452
36716
46092
47556

~55.09

'=55.52
- =56.07 -

-56.79
~57.63

~ =58.61

=597k

"“61 001
. "62. 1+3

-64.28
-66.35

-66.05
-66.16
~66 .1t
~66.76
~67. 2k
-67.83
-68.55
~69.37
-70.36
~71.11
~72.68
~7%.02
-75.82
~77+37

-78.65
~78.8k%
~79.12
-79.52

11.99
11.70
11.37

10.85

10.28
9.5k
8.76
779

. 6.85
5.49

.32

12.85
12.60
12.53
12.26
11.98
11.53
11.06
10.1+1
9.70
8.8k
7.96
6.82
5.70
L. 0k

12.97
12.84

12.67"

12.37
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11/2
13/2
15/2
17/2

19/2

21/2
23/2
25/2
27/2

12
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Table (IV.3)(contd)

Lo652

33620
23598
14546
7906
3634
1408
12
88

6

11434

31332 -

45640
51267
4oLl
L1456
3106%
20461
11975
6027
2597
337
237

-80.02

-80.63
~81.34
-82.17
-83.08
841k
-85.34
~86.73
~-88.30
-89.68

-92.25
-92.38
-92.61
~-92.92
~93.35
-93.85
oL, 146
~95 .1k

=959k

~96.79
~97.39
-99.02
-100. 47
~101.83
-103.28

204

ey o g B oy b S At i M Ot B Boww Sy S
v—-—-u-—»——-p——--——v—.———-q-—‘—-—c—c——n‘u—;—‘————l—————h_———



205

In fig.(IV.1) we compare the low lying levels of a
fixed-dJ for some cases with shell model and experimental obser-
- vetions. The spacings between the first few levels of fixed-dJ
mateh well with the experimental difference in energies. Tﬁis
shows that given the energy of the first level for ény J, one
can predict accurately the energies of other levelé with the
same J. Tt should be mentioned that the ordering of levels
as determined from fixed-J averages may not be the same as

the observed level seguence.

Evaluation of moments having fixed-J and T wouid yield
more precise information. Loughesd and Wong (197%) have
_obtained fixed-JT averages and used them to determine the
level densities and level positions for nuclei in 2s-1d shell.
They find that there is a pronounced systematic energy diff-
erence between shell model and fixed-JT level positions measured

in local energy units. Large deviations occur in a region

where the level density is high and therefore the local spacingy

unit is very small in terms of energy. In general the low
1lying level positions from JT averaging compare favourably with

those given by shell model.

4.3 Average Deformation Energy Curves

In this section the average deformation of a nucleus

as a function of excitation energy is invegtigated using the



L &

diutie

" ,i m ﬁ“*’l‘

R gt

 §?

Ly,

= .u'ih'ﬁ;i‘_
E

é Mﬁw ﬁ AM ,:m

| NOHWLIOKE

u;,'
1 afisp

.”517‘,: B

ey

f" ;&

“*!Nf .
.
: é*;’]&.

.,,srwmu o

wak

T

‘ul?% i

. d‘“ T'il,
. nxmn
aith

né?}

e oo
< g
-

e

th shel] rnedel resulis and experiment.

s

&

Tirst few levels of o given J as obtained from fixed-J moments comparad

o

Fig. IV.1




206

gspectral distribution method.

According to the arguments of French (1971), the energy

variation of an operator O can be written as:

<O>,. > :E("‘ ) <O> (4.3.1)

where 1 CX) represents the normalized intensity of the repre-
sentation at energy E. The agsumption in writing eq. (4.3.1)
ig that the operator O must not comnect two different

representations and further, the expectation value of O does

‘not vary strongly over the ‘width of the representations.

For average deformation energy curves, one starts by

determining the average quadrupole moment for the configura-

tion m. This is achieved quite simply because Q,q =,f%g.%?f¥io

ig a 1-body operator and its propagation is gimple. For any
configuration.ﬁfin 2g-1d shell, the average quadrupole moment

can be written as:

ooy
<Q20> = -2m, -’ /2 + m +mLF 5/2 2mg (%.3.2)

The energy variation 1s given by,
TY¥™ o 28

(QQ‘Q‘\/ = XIE(mNm‘)(QM> (4.3.3)
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av4
where Ip (m o) is the relatlve intensity of configuration m

at energy E. These intensities are determlnbd by first
function f(mE) which is a sum of the

defining a frequency
(c.f. SGCa1e2)e

individual frequency functions f (mmE)

L(me)= Z{(mmt:) ) 2] e t-(eﬂr;c(m))’“

;% LG (™) 2T M)
(4. 3.14)

The functlons £(umE) for m = 4 and K(<:J :>) = 0 are shown

in figure (IV.2). 4 distribution function F(umE) is then

defined as:i

F(mE) = 5 J(CmE/)dE (4.3.5)

The relative contributions IE(am) of each configurationlﬁfto

F(mB) is gilven by

. E
—M~UW%):‘”L’" ff(m%EBdEl
F(mE)
—D (’—%.3.6)

The quantity I (mm) corresponds to the relative contributions

of various configurations T to the total area under the curve

at energy B and is called mixing intensity.
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 Using equations (k.3.3) and (4.3.6) the energy variation
of average quadrupole moment is obtained. In eq. (% 3,3) summation
ig restricted to all m having a fixed K value. Results are shown
iﬁ.fig.(IV.3'— IV.8). For m = 4, the deformation first increases,
then shows a dip and finally saturates. For m = 8, 9, 10 and 11,
the general characteristics are the same, deformation first
decreasing with excitation energy, then increasing and finally
becoming constant. For m = 12, the trend is different and the
average quadrupole moment after a small increase, decreases

almost linearly with excitation energy.

In order to obtain the “"response" of a nucleus to an
external guadrupole field we can follow a procedure which is
similar to the one used in constrained Hartree-Fock method
(Jacquemin and Parikh, 1975).

We definc an operator H(A)

\ = H+:
where H is the usual nuclear Hamiltonian, @, ig the Mexternal®
quadrupole field and A a Lagrange multiplier.

Using the method describod carlier in this section we

; > ;1 ™~ r '
- s » m : m . o )
cmlmmhmanH(A»- md<<H()J> wﬂobmu1%}mﬁ)
- M '
and G‘g(m;}%)- Further by Ratcliff's procedure we can locate

!
.~ the lowest energy state Eg of the operator H(A ) and also
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evaluate the expectation value . €(» in this state. It is
simple then to obtain the "true" energy Eg()\) of this ground

state. We have
1

Thus by taking different values of A we can obtain Eg‘()»?—~§
& (™) curve which may then be compared with the constrained

ﬁF results. It would be very interesting to carry out such

caloulations and study the differences (if any) with the HF

results. .

bl Energy vs Average Deformation using Elliott SU(3) Scheme

One can also study the variation of average quadrupole
momént within the SU(3) frame-work. Matrix elements of Q-zO
betyeen SU(3) states (Al KIM) are given by Elliott (1958).

’<<:<j\;ﬁ)‘K.L.Vq \'QQQAJ]?<r)\14/) K:L_y«;>>

_ {3k 2 (g} 3L +»)1Lm 2a+3]

L(_L'H)(ZL“I)(ZL“*B) 2k 3“ (Lol 1)

where the upper value in the box bracket applies to the. case
/\>,b\, and the lower value for )((,‘4, For a given (AR the

average quadrupole moment for a fixed value of M. lS dc,tormlned.
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The energy variation can be obtained as:

\mm T e T RGN
_<@10/,;: = 2. IO ) {8507
| = )
(4.4 2)

PO

The relative intensities IE{“PKhQ Mj} can be determined
using the distribution method. For the present an approximate
way of determining these has been used. Parikh (1972) has
applied the distribution method to the group SU(3) and deter-
mined the dimensionalities, centroids and variances of SU(3)
representations (M a) . Using these centroids and variances but
changing the dimensionalities appropriately (since one 1s
here restricting to a fixed M), the intensities IE}:G§LOMW

have been evaluated.

Results for m = 4, 8 and 12 using KB Tnteration (1966)
are shown in figures (IV.9 - IV,41). Whereas for m = 4 and
8 the curves are of a similar nature, the m = 12 curve shows

o different trend.

4,5 Conclusion

In the first part of this chapter fixed angular momentum

averages were evaluated and used to determine spectra of nuclei.
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+ Results show that‘the level sequence as obtained using
fixcd-J distributions is 4ifferent from the observed spectrum.
However, the method estimates the spacings of levels of same
J quite accurately. In order to do better one needs to evaluate
fixed J and T moments. It has been shown by Lougheed and Wong
(1975) using fixed-JT averages that the low-lying energy levels
can be calculated with good aécuracy and that the level densi-

ties arc very close to the exact shell model results.

Tn the second part of this chapter, we have obtalned the

V "averagd‘deformation energy curves. A way of evaluating defor-

mation energy curves has been described and using this method
one would be able to study how the deformation of a nucieus

would change as it is exclted.
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CHAPTER V

FORMAL ASPECTS RECARDING GROUP AVERAGING

51 Introduction

The spectral distribution methods have provided a way
'féf the study of nuclear structure in large vector spaces.
'_Since these meﬁhods deal with the averages of H and powels

of H over gtates defined by the irrep of a group, one can

under certain reasonable physical agsumptions study the good~
ness of the symmetry defined by the relevant group. Bven in
cases where the validity of symmetry is approximatef?o puré
symmetry states which are intermingled in the low energy‘regiod%
the distribution method provides information regarding general

i

properties of nuclei.

Tt is clear then, that these methods are going to be
very useful for a systematic study of nuclear symmetries.
Therefore, it is essentilal that one shouid be able to use these
methods for as many groups as possible.

In the distribution method, since the average of
H and powers of H over an irrep 95 of a group involveé a sum
with egual weight for gll states in 9& , only the group -'scalar
part of the appropriate power of H would contribute (c.f. Sec.
1.2). The evaluation of averages ig sgimple when there are

enough scalsT operators of the group to reproduce ﬁhe moments
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of H. Bxplicitly then, for the opefators H and 72 which have
‘lpartlcle rank £ 2 and £ H respectlvely, these being completely
‘speoified in the (0—2) and (0-4) particle spaces (defining
spgce) respectively, one tries to construct'equivalent operators
ﬁ and ﬁ2 with the correct particle rank in terms of the scalar
‘operators of the group. If these operators reproduce the
average of HbandIH2 in the defining space,.they will dé so in
: all representations. ﬁ,and ﬁ2 then serve to propagate informa-
‘tlon from the defining space to many particle spaces. For the

equlvalence to be faithful the number of irreps in the defining

' space should be equal to the number of 1ndependent scalar opera-

tors.

For those cases where the number of scalar operators are
not sufficient one needs extension of the averaging procedure.
AIn this chapter a method by which éverages in such cases can be
determined is discussed. We will be discussing here only the
formal aspects of averaglng and no calculations for nuclel are
given. As an application of the method, three specific cases
are treated and expressions fof centroid enérgy and variance
derived. |
| The methods used Here are guite general and could be
casily extended when similar cases of averaging over other

groups are encountered.
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5.2  8U(W)-Isospin Averaging

For evaluating the average of H over states defined
by SU(L) symmetry £ and isospin T, one observes that there
are six representétions in-the defining space (upto 2 partiw
clos) and only five scalar operators. These are 1, n, n2,

G, and 72 where n, G2'and T° are the number operator, the

bilinear Casimir operator of SU(L) and the isosgpin operaior

réspectively; In order to construct an equivalent operator

% of H, a search for other scalar operators is made. By defi-

ning a mixed operator %;:(G2T2)2_b where the subscript 2-b

indicates that only thé/(0+1+2> body part of G2T2 should be
~

considered, H can be written as a polynomial expression in

terms of these operators. Explicitly, one can write
S 2P (n) + P (n) G, +P () 7%+ P () (5.2.1)
= P (n + Ln 5 + o n + P(n ﬁf' 5e2.7

where Pén) is a polynomial of degree k in the number operator

n. Similarly the equivalent operator for H2 can be written

as,
no o . |
o = Pq(n)+P2(n) G2+P1(n) G3 + Po(n) qn
+ B (n) 62 + P (n) T2 (n) T”+p2<n>gg (5.2.2)

+ Po(n) ‘(;fg + Pé(n) G% + Po(n) Tg%
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‘where G, and Gr)+ are the cubic and quartic Casimir operators

3
of SU(4). If we know the centroids for all irreps with m£2

and variances for all irreps with m£4 and the eigenvalues of
the various operators we can solve eq.(5.2.1 - 5.2.2) for the

unknown parameters. The expression for the centroid then

becomes
f!} [ ~ T

EmIn=Hi>"=np 7
=5 [=3m+2]E (0g0)=m(m-2)E (11 a)

o

13m+ %@l+ ET(T+1)+ 246G, ‘<%>j F(229)

-+
on I___
- f t

+_4_.[ - 3 (T (T41)+ <%>]/E

O

+
|

¢ I?,.

w,_.):anwf an ”,m\(w) ..<J(d>]F (201)
(5.2.3)

where EC(OOO), Ec(1 11/2) .... etc are the input centroids.
o ~

Bquation (5.2.3) can be rewritten as
& _
Ec(me) = L Q(i,£T> Ec(i) (5.2.4%)
L=

where 1 = 1,...., 6 denotes the six input representations for

ng bm O T(T+1)- 2(69*—(%)%-?@“0)
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~ the centroid energies. The quantity Q (i,fT) has the property
- iy
that if T is taken to be any one of the representation (] )

in the defining space, then
QLD =8 (Lizh 8 .o

Using eq.(5.2.2) the variance (5~ 2(me), is given by the follow-

ing expressions:

~ L5 : 2
(ﬂ _Jri) 2‘7:‘1’\ jbm j)w . 0‘7“10‘"(000)
W 5 2 3 Py
Flhm -3 3m - j{ o (Vi)

3 2 G

-+ L_‘s"‘-}m+ I >3 R ~‘7b m5+ 7 m + 3 LG,y
A ;r’ 22 32 2—

~Tm G+ Lm <ol>+6+ T2 - 2‘m<T >

) 2
F I/ T 3200+ mde)
z LT Z&%> n <%

-0 2 > Q)
=ty Ja(220)
TG 32 32

42$m<~rl>u8m<’r <‘€j>

8

#Lﬂm»l%c‘ml+z/ m> 3mt T2y
L | 2
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In order to use these equations to determine the moments

one needs to know the eigenvalue ofﬁ%;in any representation
-

§

?ﬁ f:{g?. While 1t should be possible to write down an analytic
expression for<§%;>in terms Of,£7 T and S starting from first
 principles, a different method is indicated. The procedure

used here ig very specific in that iﬁ is based on the propaga-
tion method used for evaluating (E,SgT) averages. One writes
down an equivalent operator for G2T2 in terms of scalar
operators with particle rank £ 2. This automatically eliminates
the (3+4) body parts of G Tg, The operator constructed for

2 .
evaluating Ec(meS) in chapter II can be used to determine

ey

the expectation value of .Y Using eq.(2.4.2) we determine

\5%/} and the results for mih- are given in table (V.1).

| The essential point is that for cases where one does
not have enough scalar operators, one can use mixed operators
constructed out of the given scalar‘operators provided one uses
the correct particle rank of‘these mixed operators. We would
like to mention here that the method is quite general and

can be used to evaluate higher moments also provided we know

the eigenvalues of the "mixed" operators.

5.3 Averaging for SU(3) Group

In‘the study of SU(3) symmetry for 2s-1d shell using

distribution methods by Parikh (19%2) the notion of an equi-~
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Eigenvalues of {, in the representation (£T)
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valent width was used. This ié because one does not have
enough scalar operators having particle rank { 4 to determine
the variance o 2(m(a ) of m particle states belonging to the

irrep (Af4) of SU(3).

| The scalar operators for the groups of interest are the
numher operator n of U(24), the bilinear G,(6), cublc G3(6)
and quartic GH(6> Casimir operators of U(6), and the bilinear
62 and cublc C3Casimir operators of SU(3). Thé total number of
scalar operators with particle rank k4 LW that can be formed

from thesc operators is 19 whereas there arc 33 represbntatlons

in the defining space as can be seen from table (V.2).
As before one looks for mixed operators and one possible
set is given in table (V.3).

The equivalent operator for He ig then written as

- R 3 o2 L
HS = a +a 07+ ... 853 202 (5.3.1)

From a knowledge of the inputs in the defining space
and the eigenvalues of the operators, the coefficients a;(i=1,
+e..+,33) can be determined. Denoting the inputs by b;= Q”g(i),
one has to solve a system of simultaneous linear equations.

Schematically this can be written as

Aa = Db i‘ (5.332)

whore A is the matrix formed out of the eigenvalues of the
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Table (V.2)

. Representations of SU(3) centained in an irrep f of U(6)
el :
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Table (V.3)

Set of operators used invconstructing a net for propagation

of the variance Crg(mf(Ab))

-~ 1,53,n",62(6),6,,(6),n3c,n%e,,(6)C,,

2

2 2 2 L 2 2
n G2(6)C2, G3(6)C29 n C5, n C2G3‘6)s

Ly 2
n Cy,n G,(6) Cy, G3(6) Cyp 1 G3(6) Cys

n3 3 3
c3 G (6) 6,(6) 03, G,(6) G,

27

)
62, n cLF ndc, n'*c g, 6, (6) clF

Y 2 L 4 k3
n G2(6) 02, n G2(6) CQ’ G3(6) C2-9 n ng

2 3w 4 2 ok
n G2(6) 3y Cyy m 63(6) Cos 64(6) 02, Go(6) Y5

e e . ot o oo et e e e et et e s e ot P o o e e o Lo e ot o o et ot o Gt S e g L S WA TSSO 6 S e s e S e e e
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operators in the defining space, a and b are the column

vectors of the unknown coefficients and the input averages
respectively.

Solving eq.(5.3}2) for a and collecting terms together

the variance G*g(m (Al)) can be written as:

5 33

GO = PUL (M) T (L)
L=t (5.3.3)

where P(i, (Afd)) are the density operators.

In the expression for P(i, (AJi)) there are a number
of mixed operators with k » 4. A knowledge of the eigenvalues
of the (0-4) body part of these mixed operators would then

‘enable one to determine aﬁ“g(m (M)

It should bec mentioned here that the choice of operators
is not unigue and one could usé a different set. The only

condition 1s that these should be linearly independent.

5ok A Projection Operator approach for evaluating averages

In this gection a method of evaluating moments of

operators over states defined by a chain of subgroups 1s given.

Thigs method makes use of the fact that - a) one can determine
moments by uging higher rank operators and b) the density

operators act as projection operators in the defining space.
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We do not digcuss the method in general but give two specific

‘applications.

5.4.1 SU(3) Averaging -

As a first application we discuss averaging for the

chain defined as:

U(6) 2 - 8U(3) o (5.4.1)

One starts by constructing expression for the centroid energy

and variance for U(6).

The equivalent operators can be constructed in terms
of the number operator n and the Casimir operators G2(6)9
G3(6) and Guﬁé) of U(6). Denoting an irrep of U(6) byfglthe
final expression for the centroid Eb(qg) and, ‘3”2(m£) can be

written as:

C_L(””f)-— o (m 3m+2)E (0Y)

- o {m -2 ) B O ,L)

{rﬁ_.!)-}* Q\(.,l}((’}‘? ( 2‘;,,}

*”“”%

J.
i

i

— , o — (54.2)
ok f_:;m (m+5) -y (7| E L)
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.2 o
{i" (mf) is written as
o\l .

. e |
Sy = 2, ROGE)S (] (5elea)

where the density operator R(i,f) have been defined in eq.
(5.%.3). The variance ﬁ”g(mgﬁhm)) for SU(3) averaging can be

written as

33

N S e R
T(wf (ara) = 2 S S W) T (L)

Lot

2 .
where ¢ “(i) are the input variances.

In order to determine Qrg(mfﬁab))g one observes that the
density operators S(itfﬁkb)) for any representation j in the

defining space should satisfy the relation

s(i,i) = ‘\J | | (5.%.5)
One now makes uses of the Casimir operators'02 and Cy of
SU(3) to construct S out of R. Ag an illustraction of the
method consider f = r2000OO" which contains the irreps (40)
and (02) of 8U(3). The eigenvalues of C2 and C3 in a repre-

sentation (AAx) is given by

</{ . 2* > - (f M /f)) ( A Lo ?.») - A he

"{)‘\ 14, }
(5.4.6)
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(C > = i(x'i ,{R’)ﬂ)\h(x ) +AOA2) (M)
(5.54.7)

For(40) and (02), the~eigenvaiue3'of C, are 28 and 10 respecti-
vely. If one constructs the ﬁfojection operators P{ = (45C§;10)/
‘18 and P2 = (28— 5(02)>>/18 for (40) and (02) respectively, it
is clear that for the representation « = (2 (40)), P, =1 and
P,=0 and for f3 = (g_(og)), P,=0 and P, =1.

Thus P1 and P2 satisfy the‘necessary requirements.
In this case the projection operators could be constructed in
terms of C2 only because the eigenvalue éf C2 is sufficient to
distinguish the irreps. For other cases we may need C3q Using

this method for all irreps listed in table (V.2), the final

expression for gy“z(mf(ﬁh)) can be written as:

.._..:2“; - ~‘ | \ 3 s ‘_wz Oy
7 (M (M) = REVT (oo (o) +R(2) T (Y] (20))

+R(3){<GY 10} 67y 2 (bo)

PURTEERET—— w

PR
PR U ‘
4 R(é){ 28 -2y 0“'2’(.2. 2 (02))
| &
L RIG) O (2 (21))

e 4 e Sk

o 4 fx 20

;«;\m} <>Gf > - zu)}m (3 ) (¢0)
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Thus one can evaluate au(3) widths in 2s-1d shell by

using the oxpre551on of eq.(5.4.8).

5.4.2 Averaging over the canonical chaln of unitarv 2Toups

In this section, averaging over states defined by the

canonical chain of unitary groups

TCN) =D U(N1)D wvenes. > U(N-k); 0L kS N-1
" is considéred. A specific case, U(6)2 U(5) => U(4) is dis-

cussed in detail from which one may generallze.

The starﬁing point 1s to determine the irreps in the
defining space and see whether the groups in question,furnish
a sufficient number of scalar operators. Given an 1rrepv?
of U(N), one can determine the representations‘£: of U(N-1)
contained inrf (Weyl, 1931). These should satisfy the inequa-

1lity

~

i?. ’

fixt>fhorh

Qf
W
e
O

]
4
i
-

(5.4.9)

Representations for the decomposgition
Ue) o u(5) = ulh)

for m 4l particles are listed in table (V.10

Tn the next section expressions for the ceﬁtroid energy

and variance are derived.
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TabA:'L e ( V..'Lkl

Representations for m¢ 4 in the reduction U(6) -

= U(5) = U(k)

2 21, L149I 0}
{11?

PN o -

{21],[2], 1117, (1]

1111, 117
[+, 3%, (2), 117, (0]

EJBEIREIARIREIRER

[22],[210, 2]

[211} {211}, 1o}, 117], (1]

'[1111] [‘1111'},1;1'11]

-
S et e o ovn et o o St T o e et e ey T Ay Vet = Sam G T Y v o v e e ey ey

{2, {17,103,113,005,L00

), LD o]
[3},{239I13,£03,i2§,€13,20§911},£03,
{07

(217,21, L1} 11,020, U] Lo, {111,
Ltblﬂ)a O:E

T_‘l 1 'l] 9 11 ﬂ ’ U 1] 9 gj ]

T30 023,13 003, 33, 23, 1,

Lo}, 121,111,101, 11 Lo;,{o}
[31] 13) L2i (11,1 21] L11,,L3j {21,
{11107 (21, {1207 L1x ol,[21],{2],

[11] ,u} L”! (1]
21? (2} 121] »[23, 113, 013,27

-,'{ 2111,1 2 I ] 11),{ 21,23, [11
L M 1] '
) 117)

1111},811@,,111"%

—— —— s ot Tt ot oty Pret > Svm Yoy e vn e e o o g W et won bam boeb .t - ——
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Te Centroid energy

a. U6)DDUGB)

The centroid energy E’(mf) for the group U(6) is given in

eq.(5.4.2). In order to determine E, (mfg) where g denotes the

At

representatlon of U(5), we first determine the scalar operators
with rank & 2. Denoting by n' the number operator for U(s)

such that /’n'>~: m' where
\\
<
oo e .
‘T“ e .Z..a d‘L (SOL"./IO)
and by G2(5)9 G3(5) and, G4(5> the Casimir operators of U(5)

one can use the following 8 operators:

1, 0y n29 G2(6)9 n', m', 1’1'2, G2(5)
. A
to construct the eguivalent operator H written as

A ' .
H = a1+a2n+a3n2+ahG2(6)+a5n'+a6nn'+a7n'2+ a8G2(5) (5.%.11)

In terms of the averages in the defining space the expression

for Ec(mfg) is given by,

et

- s .~y - i Py e
(i d o)z - b J“:. ey () | AP0 ~TTen } (i) o)
ha(jf‘i é ) ;NI ?% ¥~%£_ Fleo ) +'L f d q( 1)

s

+ ’é‘, - Zy-ﬁg.%. ('ﬁw;i‘)_ }‘< (1 1o } »}-g - Hn ~; m
] » " v ) S XY

et ‘

v e

4+ 7}, (G;;,(_en)} B (222)
. . s

o I A . ot S S ey
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|

2o R L LGyl - =y L LG
Ly 2. ey Li |

1

(5.4.12)
This expression contains no qperator with particle_rank‘>-2.
A different expression.for the centroid energy can be derived
using the'projection operator formalism; ﬁsing n' to‘distin~
guish representations of U(5) contained inﬂg, the_density

operators are constructed. Rewriting eq.(5.4.2) as:

A . . '
= NN DN .
Ec(mf) - ;id £4% T )§W£(Li) - (513)
| ’
the final centroid energy B (mfg) is given by

e

= (M g)=Y0) ~<« a0y Yy m E L))
+ \{(lf)(\ - BV o)+ Y(3 ) i (“"~ F (222)

Y (L)) B (m Y ) 2 VB2 1 1e )
(5.4, 14)
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This expression involves operators wiﬁh'rank > 2. It should
be emphasised here that these expressions'are not unique and-
one could in general derive many more by using'other combinag-
tions of the given group scalars. However, when higher rank
operators are included, things get complicated because one
has to extract the relevant body part of these operators. In

some cases this might. be quite difficult.

b, U(6) -2 U(5) -3 Uuh)
Let n'!' be the number opefator and h‘denote any represen-

tation of U(4). Then the expectation value of n'' is given by

A‘..iif.f\‘ o - ”M‘ o ‘(..,r )
< 4,0 T >k C(5.%15)

In order Eo determine fhe centroia energy We first

- observe that the number of scalar operators with rank £ 2 is
13 whereas there are 14 representations in the defining space.
One has thercfore to include highér rank operators and then
determine a‘linearly independént set. Rather than doing this
we proceed to determine Ec(mfgh) by constructing the density

TR U S

operators directly using n''.

First eq.(5.%.12) is rewritten in the form

T
~~
-3
oy
{
[N
N
P
e
}‘__f}

. . 3 {'{} . 2. - _ ‘
h 1 - (5.4.16)
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The projection operators U are determined and the final
expression is:
f"w o ?:@.)nZ(v)Eﬂ(J; O +Z {20 E (v )

e e Ay e s

e

@7 _(";1.,”)_ (; " JECGLLONEZ(B)E ( 11 oQ)

o Aot

3,‘} o' ff: e F(2222)+7 (W) pl(a-m ) E (221 1)

FL (e =002 5 0 0 Z(SIM B (22 42)
P

FZ(S) et B (22 L Q) FL(6)E (222 8)

FE(TH I ) Ec {2 il )

b2 (1) (e B 10,

?’"Z(&} f\!” - (2, i !‘..J iu.)'ahfm)(‘ ”“h)’m (,\ '_i, i\"fgfj
(5.4.17)

By straight forward extensions one can proceed to derive expre-

~ssions for the centroid energy for further decompositions.

2. Varianceb

bxpression for the Varianoe can be derived in a way similar
fo the onc used for centroid enefgy, For the decomposition
U(6) 2 U(5), one has.38 I@preSGntétions in the defining space

and only 37 scalar operatorswith'particle rank'ﬁyh. One has



therefore to include one higher rank operator and proceed
to determine CTg(mfg) as was done in Sec.(5.2) for the SU(4)-

Isospin case.

In the projection method formalism we start with eq.
(5.4.4) and construct the dengity operators. In this case
the number operator n' is not sufficient to determine the
projection operators. The bilinear Casimif operator G2(5)
of U(Y) is then included. The projection operators are given

in table (V.5).

The final expression can be written as

3%
\)(\';\J‘!J) Lf(f \J (L)

[  (5.%.18)

where T(i)'s are combinations of R(i)'s and P(i)'s.

We do not derive the expression for the variance
(mfgg) corresponding to the decomposition U(6)x U(5)D

U(W). This can be obtained, quite simply, by an application

of the projection method to eg.(5.%.18).

5.5 Conclusion

Ve

In this chapter a method of group averaging for some

cases where the Casimir operators are not sufficient to reproduce
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Tapble (V.5)

s e i (e G e e T e

Projection operators for variance rj‘z(mfg) corresponding
. BRY 2

to the decomposition U(6) 3. (U5)

—__—.._.___..._...___.—.—.._—-_..——.—._._—._.._._..__-__..._____.__._.—_..._—__——..--—.—_._—.__—._.__._..

£y & P
fol jo]l :
1] {1l n'
1 o] (1-n')
] 2] [ 2] wniad)
[ 1] n'(2-n')
io] * (n'—lé(n'—Z)
{11] [ 11] (n'-1)
;:10_} (2-n')
12] L3] n'(n'g1>(n'-2>‘
2] n'(3-n')(n'-1)
< | -
1'4'1} nt(3-n')(g-n")
5
[_o] © (1-n")(2-n")(3-n")
‘ B
j21] [ 21] (n'-2)(n'-1)
2
(2] (5nn)@-1)(6y(5)>-8)
Z
Dlj (3-n')(n'-1) (12-<6,(5)>)

4
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i
I
L)

(311

(Table (V.5) contd,)

e Liia s B e oy s i e Mo e T s e A ke i Mk s A

{10 (3-n')(2-n')
2
111§ n! (ﬁ_rsl'-». ).
| 110 | (3-n') |
(47  a(sad(ean)(n'-1)
24
5] n'<e_n'><é-n.*><4-n'>
L2] o (4zn') (30 (n'=1).
L 1] n'(4-n')(3-n")(2-n')/ g
Lol  (4n")(3-n')(2-n') (1-n')
24
Ky (n7-3) (n1-2) (-1
%i30 } (n'-4) (n'—2) (n'-1) (16-<G,(5)>)
12
fe1y (n'-4) (n'-2) (n'-1) (<C,(5)>-21)
12 | .
[ 2] (n'-4) (n'-5) (n'=1) (G, (5) >-8)
8
11j (n'-4) (n"'—'?;) (n'-1) ‘(‘1'-2_. <G, (5)>)
B3
(07 (n'-2)(@'-8) (2-n")

6
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‘Table (V.5 (contd)

| ?:.22J L22J '(_n‘—ég(n'—z)
[21] (arod)(2ent)
] 20:31 (nu_ug(ﬁ,;_w ,
[211?@ %;2“3 (n'=3)(n'=2)
| | .
| }“210} (4=-n! )(n'-—2)(‘<G2(5)> -9
{111] (4-n')(n'-2)(15- LG (50 )
g %
[110] (iont) (iont)
D”} [111] (n'-3)

?[1110] {(4-n')

et " P T s A bt T b e BV Tt s e o e -
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the averaées_ova and H? has beeﬁ given. The essential point
is that one gan use mixed operators with correct particle
rank constructed out of the given set of group scalars.
Although it should be possible to derive analytical expre-
ssions for the eigenvalue of the p< k body part of ramk k

- operator in the ifrepgi., a different method (applicable

in our case only) to evaluate this eigenvalue has been

indicated.

Using this method it would - be possible to apply the
distribution method to'many more groups of interest where
one might be interested in studying the goodness of syume-
tries definedbby thdse groups. It being now pdssiblo to
average over a chain of subgroups, onc may hope to learn

more regarding normality of distributions.
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CHAPTER VT

SUMMARY 4ND FUTURE PROSPECTS

This thesis had dealt mainly with the application of

~ spectral distribution methods to symmetries in nuclei.

The Wigner Supermultiplét scheme was investigated for
nuclei in the 2s-1d and 2p-1f shells. It is found that SU(W)
symuetry in the ground state region of~these nuclel is strongly
mixed, the extent of breaking being more or less the sane for
light and heavier nuclei. In view of this, it is no longer
surprising to find energy systematics which are consequences
of tﬁis symmetry in heavier (A§J10) huclei, than in lighter
ones. It appears that symmetry mixing does nof significantly
affect energy relationships and in fact such relationships
are rather successful in concealing the strong violations of

the symmetry.

The external widths would provide.ih general a more
precise measure of symmetry breaking. With the work of Hecht
and Draayer (1974) who have given a general formula for the
partial widths for the direct product subgroup U(N/k) x U(k)
of the full unitary group U(N), it wouldbbe interesting to
determine how the symmetry mixing resultgiobtained here are

affected.
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A preliminary application of Sﬁ(%) level densities to
‘alpha transfer reactlons has been given. Much more work
needs to. be .done in order to determine how the cross section
for alpha transfer changes when one includes the dominant
irreps.

SU(L)-Isospin qistributions' along with other distributi-
'bns arising out of the decomposition of the spectroscopic
space according to -subgroups of U(N) have been quite success-
ful in determining binding energies and spectra of nuclei.
Results in the 2p~1f shell indicate that one can use these

methods in arbitrarily large but finite spaces.

The average deformation of a nucleus as a function of
exciﬁation energy needs to be examined in greater detail.
By adding an external quadrupole field, one can study the
response of the nucleus to the field, and the method can be
used in the study of collective motion of nuclei. Also the
average moment is of interest in heavy ion reaction processes

where compound nuclear formation takes place.

It has been éhown how to evaluate aﬁerages for groups
when the number of scalar operators are.nbt sufficient to
provide propagation laws. A projection operator approach to
construct the density operators has been developed. Using

the expression for variance in the case of SU(L4)-isospin
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averaging derived using thése methods, it would be worth-
while calculating the exact widths and comparing.with the
equivalent width approximation. Further, it would be possible
to apply the distribution methods. to many more groups where
one might be interested in studying the goodness of symmetries

defined by these groups.

In the end we would like to'ment%on that this is only
thevbeginning of a systematic study of nuclear symmetries.
It is hopéd that such a study would reveal what goes on in
complex nuclei and provide a much clearer understanding of

the structure of a nucleus.
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APPENDIX
The charge-spin (TS) multiplets contained in a Wigner

Supermultiplet are obtained for all possible U(L) representations

for 114mg20 particles.

The structure of the Wigner Supermultiplet is given by
a reduction of the corresponding U(M).representation
’£:EWf1,f2,f3,f;] into irreps of U(2) x U(2). This reduction
has been carried out by Jahn (1950), where starting from a
known structure and using Littlewood's rules (1940) and adding
the isospin and spin vectorially (vector addition), one can
obtain the (TS) multiplets contained in a given.Young shape.

4s an illustration of thé method, the (TS)-structure

for 3 particles is obtained. The charge-spin multiplets for

m%& 2 are given below:

(2T+1, 1S8+1)

B\
-

£y
[ (22
[ 2] (11)(33)
-
L.

11 (13)(31)
Using Littlewood's rules and coupling the isospin and
spin, the representations and (TS) structure for 3 particles can

be written as:



I
o

3 3 .
o

‘ M1 } [3 i o+ Lﬁ21j
(11)(33) (22) (22) (24)(&2)(&4)
1] x =Ter) + | 111\

(13)(31) (22) (22) (24)(42)

Now the representatlon f

-—f 4

is (22). Therefore the (TS) multiplets contained in r2{§are
(22), (24) and (h2).

1, f 'fhj is equlval ent to

§ f The (TS) multlplet contained in [ﬂ1{]

Finally we obtain

£ (27+1, 25+1)
[3] (22) (k)
[ 21) (22)(24) (42)
L111] (22)

Jahn has tabulated the structure of all charge-spin

multiplets for m$ 10. Further, for some special classes of SU(L)
representatlons where the multiplicities in (TS) values are not

greater than one, Hecht and Pang (1969) have gi&en the branching

formula which gives the possible (TS) values belonging to f
In tables (1-10) the various charge-spin multiplets
for all possible Young shapes for 114 m£ 20 are enumérateda Since

the multiplet (ST) for ST occurs with (TS), in the tables (ST)

is not explicitly mentiohed, it being understood. Also for a given

m, the (T8) structure of those f ‘not included in the tables
’ ¥



A-3

can be obtained from the equivalence of the Youhg diagram.
Besides the'equivalehce mentioned beforeé one also has
ISR AR Ef1-fm £, £3-50 oj . The

dimensionality (dim) of f is also listed.
. Ll .
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