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ABSTRACT

In this thesis we study some aspects of parametric
processes in a plasma with a view to apphcatmn in thermo-'
f\r\nuclear fusion devices. The possibility of stabilization of the

 : fkmk instability, a dangerous mode in the toro1da1 confmement
fschemes,, by parametric coupling to damped ion acoustic waves
’rhas been mvest1g_ated. ‘We have also/mvesh’gated the linear
saturation of some well khdwu-'SCatferiﬁg'instab'ilitie's namely

- ;_stlmulated Raman. and Br1110u1n scattermg due to the presence

7 of background turbulence multlple ion spemes and nonresonant
‘~',contr1but10ns in an 1nhomogeneous plasma. These factors would
“ normally be pre sent in actual expemmental condltxons for laser
vfusmn F1na11y we have studied the evolutlon of the modulatlonal

‘mstabxhty,, which is known to s1gmf1cant1y mod1fy the corona of

an expandmg pellet plasma, in the presence of Langmun‘ Turbu?'
"'lence The relevance of these studies to practlcal schemes has

been discussed.
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CHAPTER 1

INTRODUCTION

 Brief History:

In recent years the study of parametric mteractlons in a
la j'ma has been an active field of research, primarily because

,_of 1ts diverse applications in such areas like ionospheric modifica-

‘gtlon schemes 1abora’cory heating devices and laser fusion. The

:c‘oncept of parametric amplification is an old one and has been

; known since the time of Lord R u,ayler*h( )., To electrical englneers

s known for a long tlme from their expemments on parametmc

- amphflcatmn in travelling wave tubes

; Parametrlc ‘excitations can be simply deﬁned as the
amp11f1cat10n of an osc111at10n by a periodic var1at10n of some

arame’cer whlch is characteristic of the system. The amphf1ca—

L n howevexj occurs for some speclflc relationship between the



mod:ﬁiatin'g—'frequency and the natural freéuency' of the oscillator.

n general an oscﬂlator whose natural frequency is{l , when
odulated weakly at a frequency)ﬂ /T becomes unstable if 07T =TT

} (m bemg an integer).

In a more cornphcated system hke a plasrna Wthh has
many elementary states of ex01tat1ons the above deflmtlon can be
e\nded. In this case the modulatlon wave (very often called
he pump w’é»}e) 'acts in conjunction with a normal mode to exmte

:another elementary state. The excited collective sfate' then eo¥

‘:operates with the pump to enhance the amplitude of the first mode°

;Sﬂu‘c_hra‘ process is most efficient when the following conditions are ]

T edeefs e (1)

‘where the (j; and ki refer to the frequencies and wave numbers ;

f‘ the three modes 1rvolved The subscript zero refers to the

mp Wave. Alternahvely if one speaks in terms of quant1sed

statesl assocmted with the elementary excitations, cond1t1ons (1)

, fvexpress the 1aw of conservation of energy and mome ntum for the
.'s:nrocess, We can in passing mentmn that both the collectwe states
fv'f:k‘ whlc’q are excited need not be normal modes of the system under

. cons1derat1on .

Parametrm 1nteract10ns 1n plasmas, magnetxzed or -
'1unmagnet1zed can be broadly categomsed 1nto two distinct classes°
In the first class of 1nteract10ns the electromagnetlc pump decays
’ '1nto two electrostatic modes. Thus the energy of the pump wave
gets transferred to these electrostatic modes sustained by the
plasma. Subsequently this wave energy can get converted into

thermal energy of the particles due to the damping of the waves.



decay process therefore prov1des an eff1c1ent channel (since

s a’ resonant proces s) of energy transfer to the plasma and leads

anomalous heatlng ~ On the other hand there are those processes :
iforywhmh one of the decay products is electrostatxc and the other
'lectromagne tic. These processes act asfrequency conversmn

‘ chamsms for the electromagneuc mode with a minimal of energy

1’c1on in the plasma. These are termed as the stimulated
at ermg processes. The linear theory of all these processes and
their 1nterre1at1onsh1ps 1s very well developed and has been reviewed
;by several authors(? 3), ' ’

_ Some of the earliest apphcahons of parametrlc mteractlons
"",":"’were in the field of 1onospherlc research.: The fabrication of h1gh
ipowers high frequency transmﬂ:tmg antennae,» made the terrestrial
plasrna susceptible to parametric instabilities and ais‘oprOvided a

(4) and

| testing ground for the linear theory developed by Silin
Dubois and Goldman(s). ‘It further provoked theoretical investi-
gfgafionsvinto the nonlinea'r saturated state of these ins‘ca'b'ili‘c"ies° A
_ review of the linear and nonlinear parametric instabilities and their
relevance to ionospheric modification by Perkins et. -al( ) very
neatly summarises the ’th’eore'ticalstatus and its agreement with
experimental findings. The essential emphasis has been on the

anomalous absorption effects.

Following the advancement of I'aSer technology and the
installation of high powerwrf generators, laboratory experiments
for the study of parametrm 1nstab111t1es have also been carried

(7)

out. The experimental studies''’ involve devices rangmg from S
band waveguides containing one centimetre diameter plasma
c\olumnsﬁo @ machines which produce plasmas of 5 cm. diameter,
DP devices with source of 30 cm. diameter to plasma columns of

2 metre diameter and four metres length. The: larger devices are




fabrlcated Wl’ch a view to accommodatmg a 1arge number of wave -
1ékngths of the :mcmlent electromagnetm wave so as to reduce boun-
dary effects. Hence they can be more favourable for compar1son
W1th the theor1es derived for un1form and homogeneous plasmas.’
;Agam the basic motivation for these experlments has been to

‘ tudy the anomalous absorptlon of the elef‘tromagnetlc as well

v ctrostatlc pumps.

In the field of laser fusion(g). the part“ played by par_a—

metmc processes cannot be overemphasnsed It is well recog-

. ’msed that the classical heating of plasmas by the method of
51nverse bremsstrahlung or for that matter by multlphoton |
ﬁmverse bremsstrahlung, becomes more and more 1neffect1ve
’,"i’*’:,iat higher temperatures. and h1gher 1nc1dent powers of the laser :
f_;racha’mon° As a consequence an alternatlve method had to be
"f'env1saged which could lead to efflclent couplmg of the laser

' 'radlatlon to the plasma. The anomalous absorp’clon method

! 1scussed above appeared to be a very promlsmg cand1date.
'his 'stlmulated concentrated effort on the c}_e,termmatlon of the
nonlinear saturation le'ffect in the regime of strong turbulence
f"due to direct trapping of partlcles or by transfer of energy to

3 )

“f""‘1ower phase velocity modes whlch are Landau damped

On the other hand there was a grovvmg apprehension,

(9)

due to early theoretical 1nvest1gat1ons aided by computer

, 's'imu‘lations( % that the sCatteringzparametrlc instabilities

‘ Would inhibit anomalous absorption. Since the laser plasm
was expected to be inhomogeneous these scattermg instabili-
: ‘tles in the underdense region of the plasma would thereby
lncrease hhe opacity and prevent penetratlon of the laser light
up to the critical layer where anomalous absorptlon could be
(11)

 effective. Most experimental evidence however failed to



show any 51gn1f1cant scattermg Th1s dlscrepancy has led to
‘ rious speculatlons about the posmble mechamsms of 1nh1b1t10n of
v};atterlﬂp* 5 ome of the effects studled are those arising from
,, jkdensfcy gradlents and their mod1f1cat10ns, ve1001ty gradients, finite

bandvvldth and background turbulence. :

‘Besides the effect of anomalous absorption, parametric

roc/’sses have been studled for other apphcatlons. Ohebf”"’
more interesting apphcatlons is to explmt it for dynamm stab1112a~

(12, 13)

'?tion of plasmas . The idea is to prov1de a parametrlc

~,coup11ng between the growmg mode and a naturally damped mode
"of the system which thereby prevents the 1nstab111ty from develop-
"V"1ng The advantage such a method would have over linear dynamlc
(or feedback) stabilization techmques(M) lies in the fact that the

' parametrlc procLss is a resonant 1nteract1on and would therefore
 require far less energy. It would therefore prov1de an act1ve

means of suppressing instabilities in thermonuclear devices.

1.2 Scope of the thesis:

In the present thesis we have studied a few parametric
processe‘s which are relevant to the problem of thermonuclear
fusion. = At present the two schemes which seem most promising
for achieving this goal and other,efor’e encourage_ muoh activity are
(i) the toroidal confinement scheme for plasmes (e.g. the tokamak) f
~and (ii) laser fusion. Som_ea‘sp'e‘cts;’of both these schemes have |
been investigated and it is convenient'tor broedly 'divide the thesis
into two sections. In the first part; Which' is esseﬁt’iiel‘iy the |
~second chapter, the p0551b111ty of inducing stability to a cyhndm-
cal plasma column by exploﬂ:mg the phenornenon of parametrlc i
coupllng between three linear modes of the system»has been

inve stiga‘ced .



Most of the conventlonal dynamlc stabﬂlzatmn schemes

onsuier oscﬂla‘tlng fields Wlth frequenmes much larger than the
1on' acous‘uc frequency However, as shown in th1s Work if the

";OS’Cﬂlatmg frequency is ad;usted closer to that of the ion acoustic
wavethe efficiency of stabilization increases becaus’e of the

. resonant enhancement of the mode coupling coeff1c1ents. Ina

ma W1th nearly equal electron and ion temperatures,i ion
Waves are heavily damped and couplmg to such damped
modes can be usefully employed to reduce the growth rate of
1nk modes. We have 1nvest1gated such a couphng process.
,_Because the kink mode in the presence of the pump wave is no
":onger purely growing, we have cons1dered ‘che poqs1b111ty of |

,':':Landau dampmg of this mode by 1ncorporat1ng a phenomenological '

: d’ampmg term in the equatlon of motmn. We demonetrat'e the
possﬂ)lhty of existence of low frequency stable modes and also

reductlon in the growth rate of the kink modes.

In the second part of the thesis a number of problems
,felatmg to laser fusion have been studied. It is Well recogmzed
,"'that for utrong heatmg the process of anomalous absorptlon
'iff_‘yywhlch occurs when the frequency of the mcommg light matches
,the local plasma frequency is highly effective. Thus in an inho-
o ,*nogeneous plasma the incident radiation should penetrate the
plasma up to this critical layer. ~However.there are well known
nonlinear scattering processes that c:m occur in the underdense
xfeygion of the plasma and work against the radiatiyon‘ ‘penetration
or greatly modify it. Stimulated Raman and Brillouin S‘c’a’tt_ering
(i.e. scattering of electromagnetic waves from electron olasma
”"\wnves and ion acoustic waves respectively) are the three Wave
p rametrlc processes which can work against efficient coupling
between the laser 11ght and the inhomogeneous plusmn

by preventing the required light penetration,whilst



'modulatlonal instability (which can be looked upon as a parame=-
trlc process involving four waves) can channelize the radiation
'~f'1nto;f11aments and thereby significantly modify the laser light
- andf"pias'ma coupling. However in a laser pellet experiment
ther"e can be various extraneous factors which can significantly
influence the evolution of these instabilities. The problems

” ’inveshgated in this section dehneate such effects.

o Ih chapter III we have investigated the e:ffect' of random
denglty fluctuﬂtlons on the process of stlmulated Raman Scat- |
termg In view of the fact that the plasma productlon mechanism
:’1s vmlent and also because of the ex1stence of various instabilities,
it is natural to expect the laser produced plasma to be in a tur-

~ bulent state, and hence it is impor“tant to investi'gate the inﬂuenee
of random density fluctuations. We consider fhe turbuleﬁce to be
characterised by ‘1ong wavelength, slow freqUency waves (coxrl-'-
pared to the scale length and time scale associated with the
interacting waves) so as to justify the use of the Eikonal or

W.K. B. approximation. A general integro different’i'al equa-
‘tion for the ensemble average of the amplitude of one of the
modes is derived. The effect of turbulence upto the order }éz\
is retained where |¢€| 2 | n(28) - ngl/ 0 (1l We then
consider the case of a homogeneous plasma with a stetistically
homogeneous turbulence, and evaluete the modified thr‘e‘sh’olds
and 'growt‘h' lengths. We compare our results with those of

(15)

: Thomson who has considered the effect of fmlte bandW1dth and
‘show the similarity between these two effects. Next we cons1der
the convective amphflca’uon of the backscatter m the presence of
qua31stat1c turbulence and show that if the homogeneous threshold
is exceeded;nhe convective threshold is very nearly the_ same as
the inhomogeneous quiescent threshold, so that the "p‘resence‘ of

turbulence does not greatly influence the inhomogeneity‘ampiification;




Chapter IV deals ‘with certam problems associated wrth

‘_stlmulated Brllloum scattermg It cons1sts of three small
k yisectmns in which some new processes which can affect the

'::"threshold for the instability have been discussed.

In the first section we study the effect of two ion species
on SBS in an inhomogeneous plasma bince in the majorlty of the
v kexperlments the pellets have two species of 1ons we 1nvest1gate
'thye effect they would have on the inhomogeneity threshold if the

, scale length for the two spec1e<* is dlfferent Such a situation is
to be expected because of the dlfferent ve10c1ty of expansion for
the two species brought abou’c by the amb1polar field. The new

_ threshold is found to be 81gn1flca"1t1y rnodlfled dependmg on the

ratio of the masses of the two spec1es.,

In the second section we look into the problem of thres-
hold modifications for SBS bro'ﬁght about by Langmuir Turbulence,
In contrast to the work bfesenfed in chapter III, we are here |
: \ considering the effect of a high-frequency short -wavelength
turbulence on the three wave process. We assess the modifi~
cation brought about in the dispersion relation of the ion acoustic
wave due to the Langmuir turbulence in an inhomogeneous medium.
The adiabatic approximation is used 0 that the resonant wave-
wave and wave-particle interactiong can be neglected We find
that the level of backscatter can be slgmﬁcantly reduced even in
the case of weak turbulence. The results obtained may explain

the low level of backscattered radigtion observed experimentally.

In the final section of this chapter we consider the
problem of side scatter. Present experimental evidence does not
show appreciable side scatter belying theoretical predlctlons to

the contrary. A calculatmn is carried out by incorporating the



| g nonfesonant effects of the pump wave on the ion acoustic mode
fand it is found that the side scatter threshold is 51gn1f1cant1y
1ncreased and is hlgher than the correspondmg threshold for

backscatter,

In the fifth chapter the modula‘tlonal 1nstab111ty of a
’ Iarge amplltude electromagnetm wave in the presence of
o \L\angmmr Turbulence is investigated. It is well known that an

electromagnetic wave of sufficienﬂy large émp}llitude, when

perturbed along the tranév’erse direction (i.e. perpendicular to

the propagation vec’cor)‘tends to break up fhe plasmé into filaments.

It is found that short wavelength, high frequency turbulence propa-

gating essentially in the transverse direction tends to reduce the

threshold for filamentation provided &jlue|hin ¢ A" }\25

where (il  is the energy density of the turbulent waves,

ki the energy density of the particles, 7\;, the electron
Debye wave length and £ the width in k-/space of the turbulent
waves. However under strong turbulence conditions, i.e. |

Eflue [ Ekim D A 7\; the modulational instability gets

totally quenched. We should however remark that ’ghe amplitude
of the pump wave in our analysis is restricted by the condition
Vof¢ L1 where V, is the velocity of the electron in the
pump field. In another case we have examined the dispersion
relation when the turbulent waves 'p’ropagate parallel to the electro-
magnetic mode and have discovered a new mode which is purely

- growing, the growth rate being determined by the level of

turbulence.

summarizing, the work presented aims at providing a
stabilizing mechanism for a well known instability (the kink

instability) and explaining some experimental data in laser plasma
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;”/’:f'é‘xjp'er:_imehts which are of primary.irri’pqrtance to the scheme
o 1aseif fusion.' ‘The basic motivation has been to study

‘ "probiems that have a beéring on the present experimental
status in thermonuclear fusion"research: and to provide a
 better understanding of various effects (such as background
turbulence, multiion composition, nonresorian'f éontfibutions)
'on\some.three wave and four wave interactions iﬁ,an unmagne-’

tized plasma.
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CHAPTER II

PARAMETRIC EXCITATION AND SUPPRESSION OF THE
KINK MODE | R

2.1 Intrt:d‘uct’idn: e

The problem of magnetic confinement of a plasma is
an old one and has been extensively investigated for controlled
fusion devices. Some of the cﬁrrently active areas of research
in this direction involve such well known configt‘irat"ions as the
mirror machine, the theta-pinch and the Tbkafnalc. Of these,
the Tdkoxnakﬂh"olds much promise;and' the stability of the '

plasma column in such a devite is /an“irrip'ort_an’c problem.

~ Oneof the earliest works in this regard is due to
Krushkal and Schwarzchild ') who considered the stability of

a uniform plasma colurhff v;‘:"o'nfined by the self még’néti'c field
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arising from a surface current.’ They found that for the m-= 1
perturbation, (where ™ /1»;. is the azimuthal wavenumber, ""o

is the radius of the column) the initial equilibrium is unstable.
The physical mechanism leading to such an instability is evident
from the nature of the perturbation. When the plasma column

is distorted into a wavy structure, the azimuthal magnetic lines
of force are separated from each other at the convex 81de of the |
cylinder and pressed together at the concave side. Due to th1s "
imbalance in the local magnetic pressure, the per"turbathg;gets

enhanced and thus leads to a purely growing instabiklity.y

(2)

Later Shafranov'‘’ examined the stablhty of a plasma
column in the presence of a longitudinal field and surrounded k
by a coaxial conductor. He consgidered the case for all m and
established that in the presence of a longitudinal field and con-
dueting walls all perturbations With wave number Ry _M‘”-_ are
unstable. For m=0 and m=1, ] = O so that all the myod'e:s_, e_re‘
unstable. This agrees with Krushkal and Schwarzchild's reSuljc\’.f
Secondly in the case of the m=1 mode and a frozen-in‘longitﬁdiﬁe]‘
magnetic field (and no external magnetic field or conductor) the

stabﬂlty criterion 1s of the form

BZ’ }Xh

B3 K ,

On the other hand if both external and ~internal longitudinal
fieylds‘,.are present the etabﬂity condition deteriorates owing fo ,
the ;faet that the column can now exhibit perturbations which are
parallel to the spiralling lines of force and these can grow
readi‘lky because they do not have to distort the lines of foree,
The stability criterion assumes the form o

Bz 5 M&

Be M Yo



(Whére L is the length of the column and hence the upper limit
“on the scale length Qf'the perturbation) proVided the internal and
external fields are equal. It is convenient to write this stability
criterion in terms of a d1mens1on1ess quantity %_ N ﬂfg 152

so that now the criterion becomes : : L Bg
(i/ > om

Physicvally this tells us that when the perturbation, for the
maximum scale length L, becomes more tightly spirailing

(this is measured by the pitch 2Tt Jval ) than the lines of
force (e[ B, ). stability isbenSuréd. For a toroidal geometry,
the scale length along the toroidal axis will be quantized i.e.

!;;2 = &N /L where is an integer. Hence for any general

mode v , the stability criterion takes the form

TLCL >
This further tells us tha’c if the longest Wavelength perturbatlon

is stable,then the shorter wavelengths are necessarily stable.

Therefore the presence of the magnetic field introduces
stability to the plasma column and one can find some wavelengths
for which the column is stable. The next question that arises
concerns the part played by the conduoting Wall Shafranov(z)
hag shown that the regwn of 1nstab111ty gwen by . CL <{m gets
reduced becayse of the presence of the Wall The 1nsta’b11’1ty,

condition becomes
2

™ 7 Mg, y - ( Tf)

<a

| Where P\c is the radius of the conducting cylinder. This
result 1s valid provided the scale length of the perturbations

exceedsfthe radii +, and R, . Physmally the stabilization
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is brought about because the conductor plays the role of g ’
paeswe feedback element It g1ves rise to a stablllzmg field due
to the currents 1nduced on it because of the dlsplacement of the
plasma column. The long wavelength perturbatmns (i.e. ysrnall
" ) are more affected than the short wavelength. Hence the

region of unstable k (wave vectors) is feduced.

The discussion so far cérisidered only a surface current.
However it has been shown by Shafranov(3’ 4) that for an incom-
pressible plasmabcolumn"\‘vith a uniform volume current the
stability criterion remains the same. The parameter which
characterises the current distribution along the cross-section
of this column does not enter the stablllty criterion, thereby
showing that the instability is brought about by the surface current ’
and the field configuration at the surface and its immediate
neighbourhood. This has also been shown by Lowder and
(8)
they derive the general stability criterion in the presence of
feedback. '

Thomassen™™’ in their calculation from first principles where

It is worth mentioning that the analysis for the cylin-
drical column for the general kink instability with a free boundary
can be readily applied to the toroidal geometry, because the cor-
rections due to the toroidal effects are of the order ' 3@} 3;
compared tc the helical instability. Hence as far as the stability

of the kink mode with a free boundary is concerned, the discus-
sions for the cylindrical geometry are readily applicable to

toroidal configurations.

The important aspect of the stabﬂlty restriction C{/ );, 1
(for m=1) is that it imposes a limit on the operating current

of the Tok"«mwk This in turn 11m1ts the heatmg that can be



achieved by claséical ohmic processes). 'Hencekmuch effort has
been directed towards relaxing the stability criterion by means

(1)

of external stabilizing agencies. Berge' ' has given an excellent
review of such dynamic stabilization schemes involving the use
of oscillating magnetic fields in the axial (or toroidal) and or
poloidal directions. However the papers reviewe’d by Berge
consider oscillating fields with frequencies much larger t‘han‘
the ion acoustic frequency. In this case there is hardly any
coupling to the ion acdustic waves in the plasma.' If the oscilla-
tion frequency is adjustgd close to the ion acoustic‘frequency._; |
one can effectivelyincrease the efficiency of dynamic stabiliza-
tion by resonant enhancement of the mode coupling coefficients.
This frequency range is, however avoided in generaL because
of the possibility of parametﬁc excitation of undesirable modes.
In a plasma with nearly equal electron and ion temperatures ion
acoustic waves ai‘e strongly damped. In tokamak-like plasmas,
such damped waves exist even in the presence of strong longi-

(8). Coupling

tudinal currents because of trapped particle effects
to such damped modes can therefore be useful_]_j/ empldyed to re-
duce the growth rate of kink modes, with the additional advantage
that there is an accompanying heating of the ions. It is therefore
of considerable interest to examine the effects of coupling kink

modes to ion acoustic waves by external oscillating fields.

In this chapter, we will discuss the effect of an oscil-
lating azimuthal magnetic field with a frequency close to the
typical frequency of the ion acoustic wave on the dispersion
relation for kink modes in a cylindrical plasmas column with

surface current.
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2.2 Derivation of DispersionVRela"tion:‘
2.2.1 Basic Equations and Equilibrium :

We consider a linear plasma column in the pinch
configuration with a longitudinal magnetic field inside and
outside the column together with an azimuthal field on the
outside which is produced by a surface current. For simplicity
we shall assume infinite conductivity and choose a scalar preS—
sure. The use of infinite conductivity can be justified because
we wish to study small wave number (or long wavelength) per-
turbations,which are the unstable ones. Hence the use of inifinite
conductivity is not a bad one in the regime considered. The use

(9)

of a scalar pressure can be juétified by recalling' ™ that from ah
energy principle analysis of the magnetohydrodynamic stability
it has been shown that the potential energy associated with an
MHD fluid coluiﬁn is less than that of a C.G. L. fluid (i.e. a
plasma représented by the Chew, Goldberger, Low equations or
the double adiabatic equations which use a pressure tensor) so

that if stability is established for an MHD fluid then the C.G.L

fluid is invariably stable.

Our basic MHD equations are

N = Y - T}xg (2.1)
75 | Pt

 Ly(gvy =0 (2. 2)
at

s % -
E 4+ vxb = 0O
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j:L S)\S/ . :
UxB = 4T | (2.5)
'VXE = ~;é§5 , (2.6)

In equations (1) - (8) we use cbvious symbols for the fluids and
field quantities. We next write down the necessary boundary con- '

ditions to supplement the above equations.

[ p+B]=0 (2.7)

a0
(8], =0 (2.8)

The square bracket implies the difference in the enclcsed quantityy
across the sharp plaSma—vacuum boundary and the suffix 1.
refers to the normal component (i.e. normal to the surface).
In equilibrium the plasma has a homogeneous density \?f !
. ) ~—7 (@) , i
pressure b, and an axial magnetic field 3, = (O, O, Ba)
: & *_"‘7 u) L ».'
In the vacuum the field configuration is given by B‘O = (Q Bo > Be ).
The discontinuity in the magnetic field inside and outside the plasma
. . . I'M}(u) : .
1s maintained by a surface current Jo = (0, teo )JST) . Hence

the zero order equilibrium conditions can be written as
] -~ C eI
Jg(: - — E\: L)Q B(’. " (2° 9)

o= ¢ Be | (2.10)
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- I
The next step is to calculate the perturbed quantities

associated with a normal mode existing in the plasma column which

gives the dynamic equilibrium state of the coiumn. This is done

by linearizing the basic‘equations and solving for E’f?’ . the

amplitude of the perturbing field. The smallness parameter used

in this expansibn is ¢ = B ? | B, . the relative strength of the

~ pump field to the ambient field. Fr»om equétions (2.1), (2 3)

and (2.86) we obtain

P O

§od¥ = ) xB - (2.12)
gt c
(o) Ty e

0By - VX<V‘“Xb°)
Tt (2.13)

where the subscript (1) denotes the perturbed quantities.

In equation (12) we have not retained the pressure gradient term
which vanishes at a later stage because we identify this mode as
the shear Alfven mode. Differentiating Eq. (2.13) with respect

to time and taking the @ component, we obtain

2 PR (o :
e 0By = - o 9n ; | (2.14)
at* © at -
‘3)*( is evaluated from the cbmpOnent of Eq. (2.4).
07
. (o) 5 2 (v}
0 Ber = Ca aj @l |
‘C‘;{L 37 (2.15)

y

3, 2. )
where Cp = (Bo /4'\T3’o> is the Alfven speed. Eqn. (15) gives a
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plane wave solution

;\(U) - {\:O% L Lwot
oy = My B '
(2.16)

The vacuum field satisfies the Laplace equation and can be solved
to yield
(0 ext b \
Bor = AgReIo(Rat) 2517)
where 1, (Rot) is the modified Bessel function of zeroeth order.
We have not considered any external conducting wall enclosing the
plasma, and hence the vacuum fields vanish at infinity. The

linearized forms of the boundary conditions can next be written

as
j o) 7()) ,""(o) 7 (a)

\B, .| = (B

inside

@ |

o oulsice

~2(6)
“".’u) f {

) 2.18
< €y D; . - ( €r - B‘ /(](,\LS\C{Q« ( ‘ )
L.-'nSLcie

N .
where €+ is a unit vector in the radial direction. Use of

condition (18) yields Ay = 0 and hence absence of an external
field. This mode can be identified as the torsional Alfven mode
whose azimuthal field \’:‘:é‘;) has an associated velocity \/g:) leading
to relative shear between adjacent (along the z akis) layers. The

() s pe ,
motion due to Vg, across the magnetic field [, = also leads
to a polarization current j‘(lw . As a result we have a surface

(o)

charge on which the radial electric field Ey, terminates. We

refer to this as the state of dynamic equilibrium.

$2.2.2 | Coupled Equations for the kink and Ion Acoustic Modes

We now study the behaviour of the kink mode and the ion

acoustic modes arising out of the perturbation imposed on the
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equilibrium derived in the previous section. The presence of

the Alfven wave causes a coupling betweeh the kink mode and the
ion acoustic modes ahd our aim is to derive such a coupled set

of equations. This can be échieved by carrying out a further
ex’pansion in the parameter Q ‘ » where g is a measure of
the strength of the perturbed field compared to the ambient field.
It is assumed that ¢2 an (¢ and terms of order €n ~are
retained. The nonlinear coupling terms appear through the terms

of order ¢« %’t (10)

Our equations now become

’ (o)
~#{0} u /"‘*(\) \\
) ’)(3:\1 {0 + 5} W\/ }‘ ‘) <\I (;) ‘7) /( ) -+ j'jo \V \1 /
C\’}T L —{l) "’c’;?)ﬁ
. { ‘ P L 5 B\
V0 1 L9 (B HE VB (BB (905 xE]
Paml (2.19)
N \.” ' 5o V - ' |
COS v U’OV"J " y”@f"’} =0 (2.20)
T 2 G r v ‘ o
d [P -Gy J =0  where (5 = §Pe (2.21)
dt " '
RO N o SO ,
B . Vi ,r\/‘”x( B, BgJ)} ] (2.22)
ot | |
We Fourier analyse the perturbed quantities in the and z

directions and write the perturbed quantities as

NO St (dﬂ. t @ m Z) ¢ (@t tmd +kz)
> T | fﬁ Q, | (2.23)
oy
where C«J+ = {5 Y'w,e and ‘«{ K+ ko . The quantlty &
denotes any one of the perturbed quantities ( v ) ‘ » B, yh) ).
The texjms \ zjlt are the ;on acoustic modes arising as side bands

due to the coupling of the Alfven wave with the kink mode. We

choose the pump wave such that
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Vi = 2 Los (oot =+ R-—;l)‘

k.2) = B (2. 24)

2

B(ﬂ) = 2_:;_‘_(;! L’,: CgSl\\'&"oﬂ\

Using equations (23) and (24), we can write the equatmns for the

kink mode as

LN - O - 3 BizBo) 4k BieBo (2. 25)
o y ‘

N yu\’i{-} = -L_‘Q’lt3; _uu"n 81/& J—Lf .,iebL

! Toan AT ) (2. 26)
- L#\b )’O(V!Z — \/‘ % )Vo +L (&)0\/0 <‘S‘] -~ 53 )

J -y

))r\/l/:—-{_‘(} ~—:n.ﬁ3(v,7 __\/‘7>\/0 (2.27)
AR T) = i v (gter) (2-28)

rf

- LA -y “
e ‘ . () + _
LBy = LkB, Ve - Lk By, (Viz +Vy7 ) 5 50

In éQuation (27) we have included a phenomenblbgical damping term
‘)," to account for possible collisionless dampmg of the kink mode.
Such a 51tuat10n is possible because the kink mode acquires a sm"\ll

real frequency from the coupling of ion acoustic waves and hence

can suffer Landau damping on the ions(u).

The equ"mtlons for the ion agoustic modes can sumlftrly be

wr1t‘ren down ag
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s L LT P
4~ fe L o

A r 4r
‘l’ + ' ' L
“'\) 5 L}Q Y Vi = ——Lm ))\/ ‘ (2.33)
1 2.t v _
Pro= o | | C(2.39)

It is possible now to reduce the set of equations (2"5) to (34) to
- just three coupied'equatigns for the ion acoustic variable \/,Zi
and a variable‘ Fl for the kink mode. The quantity »\3\ =

¢ £, /fa + C; Bz [ Bs ‘is a measure of the perturbed
pressure (both particle and magnetic) and enters the boundary
conditions in an intrinsic manner. Carrying out the eliniination
in the equation (25) to (34), we write down the three final

equations as

Rl g) [ c. ) —('.“L*A -+ "f)f ~ Tri \/u (I VIL + [ Vu)
T L - 1 = (
T ol

where , 2 i AR

) Y C\ (,\) [ '{‘ “_"f-.)_ @’ h ‘m ,}_:'.—.t_.:~ l‘/

R €52 CA T =t e (2.35)
(kK=" - @)
CSJ CAZ.

— .
and (o = W(W-LV ) p (N: = -y

~}éc§] N (e =) I‘C’\U#%p
T (Rt -574) o

U&Hw)/ U"“/} s ,ﬂ (2.36)
((

with .,2- ([\ (,Q/'()( (Q/Q\)I(L»w/(s »L,x/(,/_\)
where 7/' is the measure of the Landau damping of ion
acoustic wavés. Equations (35) and (36) are the set of coupléd
equations represériting the interaction of the kink mode and the

ion acoustic mode through the pump wave. The terms on the
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right hand side aré the driving terms which can in general
‘modify the spring cd_nstant of the coupled mbdes. We ignore

the effect of the pump de pietion, assuming a constant external
energy input to maintain the p . ump' amplitude. In equation (36)
it will be noticed that in the absence of the pump, the dispersion
relation of the ion acoustic wave corresponds to Lry = t"\-r Cs
(if we neglect the damping). This expression is valid for a strong
mangnetic field so that 0); 3> ke Cs and KMy L1 where
the quantlty LL! 1is the ion gyrofrequency and /\jD is the Debye
wavelength. Combining equations (35) and (36) we obtain a modi-

fied equation for the kink mode.

~

_ e T VS NS »1 =
1 CLr(‘r "J-L-J"‘ > ~ _5 ;); l | \Z,»:‘,gl(d+ 'i’o(_..)J +(5 § F\ C

T gy (2.37)
’)\/\l = \(1,_\’.“ [(i !{) T \’Aii_}ﬁ:\ - W -+ L:Eif -—E ,-_ |~ (.k_‘_i{:)jk A
Ry G5 Ca LE oy ) e bxts
- k"\ - {2 /LA
X LU= Rakpd) o & (SR~ >J/ | U’)
- i }\x ", ‘
This can be readily solved to give e
o~ '- _ E ’ 5 P ,-1 '«'I
o= R l1\> ( 73v) where )> = \ml\ L= (ol o)
{ { C/_\L -

This solution is valid for K. P>o . NThe second solution is
rejected by imposing boundedness on rs for v =0 . We note
that the effect of nonlinearity enters through the order of the
Bessel function and one must retain terms of order Vo / Cji to
account for any modifications in the linear eigenvalues of the
mdde_. It is easily seen that because the equations (24) and (31)
are not directly affected by the nonlinearity and because of the

azimuthal character of the pump wave,the nonlinearity has
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manifested itself ’chrcu’gh’ the ‘1“1"{2‘/ +* tefms. The second point to
‘be no_t"’iééd is ’chét,fbr_,,}tﬁe._,casegm_, = 0, the pump does not in any
| Way lead to a coupli'hg._wi‘c_h the ion acoustic wave. This is
easily understood by eﬁ_camining the equations (24) to (31) fqr
'm=0. For the pinch m=0, \,, = 3,4 =0 , and the effect of the
pump only appears in the Vio , B,y equation so that it does

not in any way modify the dispersion relation for the pinch.,'
2.2.3 Boundary Conditions and Dispersion Relation

To apply the boundary conditions we have to first
ascertain the perturbation brought about to the normal unit
vector to the boundary. The equation for the imperturbed

boundary is

wAr) =TT =0

V(1) T 7o O (2. 40)
where is the radius of the plasma column. -
In the presence of the kink and the ion acoustic modes, the
equation for the perturbed boundary can be written as

~y s) D) ) = NN

oy o (W) A )Y = o -

ot (2.41)

. + P ( + B

where /\,’/()- = A+ Yo V= v ey
.
the quentities ( "\, , v, ) pertain to the kink mode and (U, V)

to the ion acoustic modes.

Separating the above equation into three coupled equations for

the three modes we determine xp‘ as
Vo= W ~ Wi (2.42)

wi - \/’ fiow) o
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we choose to neglect the srna_llznonresonént éffect arising from

the term '\qu/ *(“,,,1 (,uf‘
The normal to the perturbed boundary is now

~

Vi + 1, = V"\,’{' = (-1,0,0) + (O;fl-'m"ﬂ ;bk’“\), = We

N
The perturbed magnetic field in the vacuum region
outside the plasma column is given by
Pt ! " Ve '
B = kG km(ke) +k Gl (ko) (2.44)(2)
r . ‘
Ble = L K (k)G + LG T (k) (2.44)(b)
T
\r L e T [
Bz = kG ken (RT) =+ d\_‘vz T (f?) (2. 44)(c)
The boundary conditions now give
. i - \r
Y v Rbe) T By = Bi | (2.45)
6]
\ z . . L }" X '
SR
¥ A
Using the expressions derived for B,m,;ﬁ and i?o and
eliminating ¢ , { and (; we get the dispersion

relation

b, (b b0 ] T () = ks, Hlkebet]keofhe)
R W) (e ki (ki)

where bi= \""OIBG ) be = B/ By and C; =0 inthe absence

of a conducting wall.
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2.3 Stability of the Kink Mode

The stability of the kinf: mode may be examined by
solving equation (47) for m=1. Wershall examine the stability
in the long wavelength limit i.e. p Vo (LA so as to justify
a small argument expansion of the Bessel functions. Such an
analysis is required because the unstable modes correspond to

ki, 41 ‘and for the max1mally growmg modes /3 = #’ ~ / 4_,\

(prov1ded v T /[;.‘ <1 ) ’{3 o {?\m Cf\u' 3 e where
2 : RPN ‘ :
Cpg = f.)ﬁ /LH, To™ (A

The dlspersmn relahon then su:nphfles to

bi[é‘j’“ﬁf = - dob (M' *f‘ t*’) (2.48)

In the absence of an external pump Pz: 1 and for CA > (g

equatmn (48) can be solved to gwe(lz)
whs __';_/_\ ( b by + 2be ) -
L R (2.49)
Instablhty results 1f Zbe [Rr, > ] l:;" . This readily

reduces for br = by to the Krushkal - Shafranov cond1t1on
dlscussed earlier, The destabﬂlzmg term /, be /LY arises
because of the negatwe gradient of the ammuthal field in the

rad1a1 d1rect ion.

The presence of the pump wave no 1onger perrmts a
purely growing solutlon Hence in this case the 1nstab111t1es
which will develop will be charactemstlcally overstable'(lg)° A
similar feature appears for the case of a rotatmg p1nr‘h( ). The
pump wave in our case therefore leads to overstability by pro:x}id~
ing a state of motlon of lower order than the perturbed quanhtles.

This therefore raises the interesting possxblhty of Landau
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dampirig of the modified kink modes whben their parailei phase
'vellocity is cdmparable to the ion thermal _speed. We have in-
cbrporated such an effect by a phenomenological damping para-
meter ’ (see _equation' 27). We now examine equation (48)

in two limits.

hy W g
ke RCa

For this case, equation (48) can be simplfied to

b ¥ R

RN P o :
we R (b b+ 2l o oy
P is in general a complex quantity whose real part would con-

tl'f'ibute to the instability. As is clear from the above equation,
the destabilizing term is 2 b Re 5‘/ kt, (for k< )and itis
possible to effect stabilization by choosmg Re p -= 0 . This

can be achieved by introducing a proper frequency m1sfnatch
between the pump and, the ienacoustic wave. We retain one of
the rgsonances ( (3, ~ kg ¢g ). The expression for }‘:3; can

be written as

g - wk
Lo ((,5—3-8-' L )

where \, A Y L;..T Cq is the frequency mismatch. Introducing

(2.51)

this in equation (50) and after proper rearrangement, we get

(- o)l +o=-VL) = LA  (2.52)
; 22 < . .
where = . K e < b+ by +abe) (2.53)
s e =9 |
and /\ : ‘ R\ Ca \/l ( L (2. 54)
, 5
2bEV Ko

Equation (52) gives the roots
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LN
oo
i
-
o
[
P
}
-
\‘5
\_/
Py
/

(& ek 0) »/—z-i)] (2.55)
Here
(‘J,,‘ :::’ L (. 'K - L /\é . — (»Llf‘-‘ -—\%)7\ (2. 56)
8 (o) § 4 (LY

where we have expanded the term within the radical. Since we
wish to study the effect of the coupling on unstable kink mode

sk (&, N<0 . We readily see that there is a stabilizing
effect for ¢ >@ . The maximum stabilizing effect can be.
obtained for that ¢ for which the quantity né) l & ek - y/)

when differentiated with respect to S gives zero and the

second derivative becomes negative, i.e. &= (G- %)

‘The second root is

Wy = WY s L% -5+ )\(‘dk"\'}/’a,)
: LRI 5. 8T
A 5‘ + (L\‘k /2 ) 8—L+ ((uku\{/?) - ‘ ( ' )

In this case for ,'1\ {{) we get a stabilizing ef%ect to add to the
damping of the ion acoustic mode. This mode does not exist in
the absence of ’che'coupling.

R w Sy 4 L‘\B 1

el
L RG bea

The dispersion relation in this case becomes

"$,_..

E (. “ U e }:' }: \2: “‘}‘ Qb&/( { e v (2-58)

n

I
z

| s,A
2. i

where o~ Vo ke |20

Again for the small pump wave amplitude we can expand the last

term and rewrite (58) as

(6™ 3 c._-,;f")(‘ T oo Wy Y= L (2. 59)
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R A ( b b 2be ) = 2
= L b

b

Since we are studyingvunstable modes we have written the term

t

b ()0

Wheré &)i y:.', )
wlt

with a negative sign.
Writing (J = -L(,JK + ¥ where W' K Wy

we get

‘\d/ - L‘¥ (g _ K ((:\3 i + }/2 )

LTI N2 —
2 Wy {}5#(@'.«, 4%) _J 2 * & —.»L((,o‘,.-‘—;'v/)‘)_\;

o |

Here once again for é) 9] we get a stabilizing effect on the
original kink mode due to coupling. Hence we see that there is

no complete stabilization of the mode.
2.4 Discussion

We have investigated the possibility of applying dynamic

stabilization methods at frequencies close tb the ion acoustic fre-
quency for reducing the growth rate of hydrodynamic kink modes.
The principle advantage we wanted to exploit was the parametric
coupling of kink modes to damped ion acoustic waves, thereby
increasing the efficiency of the stabilization scheme. Our calcula-
tions show that w / ke, | w/hc,\ ! there exist low-frequency
damped modes and that the original kink mode gets dramatically
modified if we take into account the possibility of Landau damping
of the mode because of the small real part to the frequency induced
by the pump. This overstability present in the system is to be
expected because of the lower order dynamic equilibrium state
existing in the column prior to the perturbations corresponding to

the kink and ion acoustic waves. In general for low pump amplitudes
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we obtain a cubic equation in «r  which on numerjiéal solution
supports the énalytic; expressions derived by us, ‘shbWing the
existence of a low frequency stable mode together with a weak

stabilizing effect on the original kink mode.
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CHAPTER III

STIMULATED RAMAN SCATTERING

2.1 " Introduction:

When an electromagnetic radiation travels through
matter, various scattering processes can occur. In each case
the light is scattered by fluctuations in the refractive index which
are caused by well defined elementary excitations of the medium.
If the amplitude level of the incident beam is not very large so as
not to disturb the scéttering me dium, the scattered radiation is

| referred to as the spotaneous radiation. However, when the
inéident rédiation exceeds a certain threshold, then the scattered
radiation is no longer maintained at a negligible level and in fact
exponentiates to amplitudes comparable to the incident wave. At
the same time the elementary excitations, or collective states of

the medium also suffer drastic modification. Such a process is
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called stimulated scattering. In crystals, the process of scat-
tering from phcaions (optical), electronic states, spin Waves'and
plasmons is referre’d to as Raman Scattering. In unmagnetized
plasmas the collective state involved in the process of Ramén
scattering is the electron plavsma wave. Bloembergén has review-
ed stimulated Raman scattering in certain solids and liquids.(l)_(z).
In plasmas the study of stimulated scattering of electro-
magnetic waves from collective states received attention with the

(3)

advent of the laser. Goldman and Dubois' ™’ calculated the gain

or spatial growth rate for the scattered radiation from a classical

plasma by utilizing the differential cross section for thermally

(4)

excited electron density fluctuations. Comisar

(5)

used the coupled
mode analysis described by BlOémbErgen td evaluate the .gain
and obtained an agreement with the work of Goldman and Dubcis
in the case of small damping for the plasma wave. At aboﬁt the

(6)

same time Bloembergen and Shen investigated the optical
nonlinearities of an unmagnetized plasma. They studied the pro-
blem of stimulated Raman Scattering by using the screéned,
Cdulbmb potential, the screening being pro‘duced by the self
consistent field and appropriately introduced through the self-
consistent linear dielectric function. They also demonstrated,
that the quantum mechanical treatment used by them is closely
cbﬁnnected to the classical coupled mode approach so that the

Raman effect can be viewed as a parametric interaction between

two light waves and an electron plasma wave.

It is worth mentioning that the process of beat heating
of a plasma, by two oppositely propagating laser beams (W, }zo }
; e

X -
“and ( &, Ry ) which resonantly excite a plasma wave (W, k1)

¥ - —
" (provided oz Wty , E., z 'k_iﬂ- R,) involves the same



phy51C:11 coupling between the three waves as SRS The former

(7 )

‘process had been first exammed by Kroll, Eon and Rootoker -

(8) ()

Subsequent work by Rosenbluth and Liu and Schmidt esta~

blished conclusively the inefficacy of this method as a heating
mechanism. ©On the contrary there was a growing apprehension
that SES may prove very undesirable for laser fusion and laser

heating of magnetically confined plasmas.

The interest in scattering instabilities was revived with
a view to studying the saturated level of ’fhe‘backécatter radiation
under conditions which were less idealized. Since in the case of
laser fusion (or for that matter also in ionospheric problems) the
plasma would he far,from_homogeneous, Rosenbluth(lo) investi-
gated the development of a three wave ihteractiom in an inhomo-
geneous plasma (by using model coupled equations). The inhomao-
geneity was assumed to be either linear or quadratic. He shoWed
that for a 1inear density profile, the three-wave interaction becomes 1
a convective instability provided K'{(x) = 4( ko -k, ~12,) fde +0
Where K (574) ig the measure of the R vector mismatch intro-
duced by the inhomogeneity. For quadratic density pfofile the
absolute nature of the instability was restored with a modified
inhomogeneity threshold. A subsequent detailed calcultion for
scattering instabilities in inhomogeneous quiescent plaSmas was

given by Liu, Rosenbluth and White(ll).

Another effect which can te of importance to the three

(12), (13) of the incident

wave interaction is the finite band width
radiation. Valeo and Oberman considered such a problem where
they treated the pump to be monochromatic but with a random
phase. They were able to obtain analytic results which showed

that the growth rate can be drastically reduced for _D_,/ Yo 71



36
where ‘7‘{‘1 is .the »I growth rate in the case of a monochromatic
puinp and D is the dif_fusion'qoefﬁc:iént for the randorh variation
of the phase. J.J. Thomsbn has recenﬂy ma de a dire.ct calcula~
tion of the effect of finite bandvvvidth' VAT He finds that the
instability threshold increases and the growthrates get lowered.
Physically this is because the power of the pump is dispersed
over a frequency range Avr y‘ while only that within the reso-
nance range-is available to drive the instabili’c‘y° kThus the effec-

tive power is reduced by a factor ¥/A w(assumed << 1 ).

Finally attention has been focussed on the effect of ran-

dom background turbulence in plasmas on the three-wave interac-
tion (14)(15)(16)

is likely to be turbulent (e.g. due to the violent mechanism of

. Since ‘in many practical situations the plasma

production, presence of instabilities etc.) it is important to inves-
tigate the influence of turbulent fluctuations on parametric coupl-
ing prdcessés, For stimulated Raman Scattering the most signi-
ficant influence would arise from density fluctuations since they

modify the propagation characteristics of the plasma wave.

~ In the present chaptér we shall carry out a detailed inves-
tigation of the influence of background random density ﬂuctuatiion’
on stimulated Raman Scattering in a plasma. We investigate a
one dimensional problem of stimulated scattering in a plasma in
which the background density is an irregular function of the posi—
tion variable as well as fluctuates in time. Welassume a 1ongr
wavelength, low frequency turbulence (compared to the wave-
1engths and time scales associated with the interacting waves).
The assumption allows us té use the W.K.B. or eikonal approxi-
mation Whereby the linear dispersion relation of each of the

interacting modes is valid locally. Under these circumstances



3 f

the coupled set of second order partlal dlfferenhal( )equatmns
reduce to first order equations which can be readily reduced to

a second order stochastlc mtegro dlffm'enhal equation The
solution of this equation is ,attempted by usmg the method develop-
ed by Keller and o'thers(le) forvth'e Wave propagation in random
media. Assuming the random inhomogeneity to be small we
retain térms of order ‘| where [&] = {{n (;-:y,t},— Vo) /'m-, \ Al
and obtain an equation for the ensemble average of the unknown
variable. Assuming a Gaussian corpelation function for the tur-
bulent waves we evaluate the modified growth rates in the case of

homogeneous plasma and also find the inhomogeneous threshold.

3.2 Bagic Equations:

We consider a plasma in which the zero order plasma

density is given by

ﬁﬂa(’\xgt) = Mo ( I+ 2+ él(x}i),), - o (3.1)

v

where Yi, represents the densityat x = in the quiescent
plasma L. the scalelength associated with the inhomogeneity
and &(x,%) the random density fluctuations over the background

inhomogeneity. The fundamental set of equations are

I o — N .
‘57[_““ + V. [Nu Vg ) =0 | (3.2)
3\}:/\ VN v .
ot TV Y = - _\/_td ~+ ( E+VuxBy 33
v iy Nix Yy T 4
_— . 3.4)
VE = 4T 2 €4 Vi e
K
VAB = 2 4 TS el e
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i R T i L '(3.6)1

The subscripts -~/  denotes the species.

We will assume from the ouféét that the turbulence does not
affect the electromagnetm waves ‘(the pump as well as the scat—
tered mode). This is well Justiﬁed if T, and CC'g CJ\D@ :
The nonlinear terms in equation (3.3) arise from the electro-

AR

magnetic waves £ b O, ] . We take the perturbed
,; ) J . , :

quantities agsociated with the e.m. waves to go as

< J C.C. (3-7)

A2
.

N s
—

o

where 1 S

Since we are dealing w1th the one d1men51ona1 case, we W111

treat the problem of backscatter specifically. For these e.m.

waves, Ti;=0 . Vje= -¢ /w«.quj » VxVjes e /’mc,where Vie
is the electron fluid velocity, the ion response bemg neglected

at these high frequencies.

As a consequence the equation of motion for the electro-
static mode ( J = % ) may be written as |

i

oC e N

Taking the divergence of (3.8) and using equations (3.2) and

(3.4) we get .
NV s 3 s 2 .
‘ Qj‘ ( (xt) - Ve :; ) { '(?t' + f.&.u(-;.‘b(_xﬁ.)) e — LQ‘%(X,’L}(,JI;@ ne
N Ix* - .

e ( \' -{—(‘1) (?‘;{\)ho‘%l{)\/ <\]0 ) (3.9)



o

We 'have used T(_ = ) since we are interested in a nonisothermal
plasma with Tp »> ¢ . By virtue of the assumption of long
wavelength and slow time‘_dependence of the vt_ur\bulen’ce,; together
with the weak spatial background ihhomogeneity, equation (3.9)
is the same as that for a homogeneous plasma except for the fact

that the coefficients now have a slow space and time dependence.

Taking the perturbations of the electrostatic mode to
go as

ikax - Gl .,
i - &, ¢ 4+ CG (3.10)

Y

S

the equation, (3.9) reduces to

Yy g '}2 \ .\1*\7 .,(E,(ch{ +S§I’.Cﬁ_i
Py o AN N ,
£o-Vp 8 Yle = Ry ol T L
<r.t}'t- ax ) 2 on (3.11)
where we have used the local resonance condition LAL =
wtjf (xst)+ K, (0t Ve to be valid. Also K : Rg-+R;
il “2 Ly ;1. = L-.);j ~ (,O‘ - U.):
Similarly the scattered electromagnetic wave. .
is governed by the equation
v -1 SE (v;(m JE ATE )
e -2 ol =R YT R = — gl 2 (e 3.12
c* ot® et 5 O rﬁ-v(‘ ( )
which subsequently reduces to
N HMX + f,QnLJ
2 Vi 2VE = 4TeNe Vo S
(.’}t ax/ ! 2 (3.13)

Equations (3.11) and (3.13) are the coupled equations which

repfesen’c stimulated Raman Scattering in a random medium.



40

Ina homogeneous medlum the exponent1a1 factor would be zero
for perfect matching cond1t1ons or some constant value if perfect
resonance was not feasible. In this case the turbulent fluctuations
in the density give rise to fluctuations in the i% vector of the
electrostatic mode and thereby aﬁects the strength of the coupling

in a stochastic manner.

Although the coupled equations readily depict the pa&-ae
metric process, the interaotion matrix dlement i.e. the coefficient
of the term on the R.H.S. is not the same for both the waves and
this apparent asymmetry is due to the choice of the dependent
variables. Using the action amplitude G where |&; \ =Ny =¢ J]m
& , being the energy density of the J'%h mode the equatiorns (3 11)

and (3.13) can be recast into a more symmetric form by putting

a2 W ~ N
Yig = Q’k‘ = ( L{QFW") 5‘{2 nd I ,&r) ‘e Gy /.y.\4\(A). = (\*LLJ’)L v,

LM l

R [ fkebn s 2241 ]
(-‘\ + Y D)“‘\ Yoz e | (3.14)

oy lﬁ S Kelw + 51 ’“]
(3.15)

One readily sees the symne try of the coupling coefficients which
represent the growth rate Yo  of the three wave process in a
homogeneous medium, These two sets of stochastic coupled equa-
tions in general represent any parametric process in an unmagne-
tized turbulent plasma under the restricted conditions of long -
Wavelength low-frequency turbulence. We have ignored the slow

space and time dependence of the couplmg coefficient,
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T111 now we have not determmed the expllmt manner in

which the turbulence or- 1nhomogene1ty affects the propagatmn

vector and frequency of the electrostatic mode. Since the eikonal
N _

5 equals -k, x- {0, where W, = W ( ., xL) is the
dispersion relation of the mode(17), we have
cl k,; - u W, _ (3.186)
Ci{.wz = a\/\iz ¢ (3. 17)
A ot

where the total derizative ig )/ 21 ~ Vo o/ox i.e. the equation to
the characteristics m a homogeneous quiescent medium is given by
Axfdb = - Y, . These Hamiltons eqtiétidns determine the varia-
tionof |3, and (;, by the explicit spatial and temporal depen-
dence of the properties of the medium brought in thr ough the dis-
persion relétion associ}ated with the mode. Usmg the plasma Wave‘
dispersion relation L, = LJJ;GZ i} 4+ X +( (%, t) + \\ 7\1,
where Ap is the electron Debye length. Equatlons (3.16) and

(3.17) can be formally solved to give

4
. oL ;o
R(x.t)~k(o,0) = Ghe (- de(xt’) 11 "
b= kfpo) = e § | KORIL 0 (5194
| LN
W, (x, 1) = 3,(0,0) = 7t” ) ot (T At (3.18 D)

by ‘

We adopt the conyention that the phase mismatch is zero at the
origin and at ft=,0. However to eliminate the initial value of the

turbulence level we put the lower limit of the integral as }( ==l
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- Bliminating &, from equations (3.14) and (3. 15) we

get
FoooSx et T ax O 0202 4V, 2 Yoy = B &
A »ivg ox ST T ' (3.19)
with
s Lt V 1 'l’)
= = L0V J I CIAI N, SEETATIC &
2 o ox' 2;; (3.20 2a)
0. = Lo (U )t |
7 o 3y (3.20 b)

Equation (3.19) is our basic differential equation with coefficients
which are random functions of X and t . In the following
sections we shall solve this equations in various limits by applying

Keller's method for the solution of stochastic differential equations.

3.3 Keller's Method:

Let us briefly outline Keller's method for solving a linear

stochastic differential equation of the type

(M+V)o = O with ;V‘P =0 (3. 21)
where M is the nonrandom operator. Ve define the Green's function

G(ry) and G (1,v) by

M =+ v G = §(-r) (3. 22)

and

M) ()(if/ - §(v-1) (3.23)



43
We can readily convert (3.22) into an integral equation

a8 " N \ - E . ‘,..
klry) = G, (v ﬁﬁe (T mv(nr)( (i) by (3.29)
This is the Dyson equation

Iterating once we get

. N i , GOV -
(J: (i”{“ft’} = (.}t(>(‘"'1""!“’) R j ‘Cio (*; f\)\,(“l.)(fo\‘()? ) ‘3L1f

Y, ([ﬁ’b ?.
\uo(* ) V(1) on Crim) V(e >C‘(“’f )(3 25)

| Taking fhe enéeinb’ie a\;er‘age”jof this equation we obtain -
<&(‘i‘,x")> - ,_ (m r')
Sg (I (VY\{ ) \,(r)(,\"(jz ’Y)v(fl \-\(‘{L k) CI‘Y’“‘v

‘ (3 26)

4+

where the anguvlarvbrackets denote the process of averaging.

Operating by ™M {/T) on equation (3.25) we arrive at the equation

MG)Z(R(T)(‘:»‘ - J/\j/r)G (.1 )\f(\’ (v )f{u ~c((3t 2?7)

Till now there has been no approximation involved, 'If we now
invoke the agsumption of local statistical independence(ls) of

Bourret

i \V(T (a\t( ‘l t) L&(Tl) )/ <\}(‘"§<M O T\)\’(f)> <(K 1‘)

e

then equation (3. 27) becomes an integro-differential equation for

<< (ir,\‘"')} This result was derived by Keller 1®) in a ditferent
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way. The equation is also referred to as the bilocal approxima-
tion to the Dyson equation.. The term bilocal refers to the fact
that (< (¥, ¥') is dependent on the two point correlation of the

random field.

Dence and Spence(lg)vhave shown that if the infinite

Neumann expansion is made from the Dyson equation (3. 25) then

by assurriing the random function to represent a centeredmultb :
variate normal process (so that the odd ordevrk 4correlatiton functions
afe zero and all even correlation functions can be expressed in-
terms of two point correlations) then a rather simple diagramatic
scheme can be evolved and that the bilocal approximation then cor-
responds to summing an infinite subset of the Neumann expansioh
in a closed form. Physically this approximation represents the

singly scattered mean wave.

Hence the equation we shall use for our problem is

MG ) - Jk\-‘( €) G, (r X)) VNG (rot )3 AT g og)
= &(v-x")

3.4 Homogeneous Time Dependent Turbulence:

Forthes case of astatistically homogeneous plasma, from

equation (3.19) we have

M o= r\ ;J( +Y ¢ \( 2.\, Q\ (3. 29)

o -t -
ax" vt

( \ B (3. 3k9)

%

iy At , el .
E\;E(x,i ) ”lt( B J c:]_f‘(’&';t') Jt )(% +V, 2

ax

)
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Under these circumstances the renormalized equation for the

average amplitude of mode (i,  is
% ) d ; 3
(2t 2N 8 -V 9 ey — | O, (2 A+ o, (x A € Ve
‘ot FJ"‘xf( ot ox/ N J LG 0y ><cﬁ7 niﬂ\

(3.31) -
where (x,(x,x, t.t") is the Green's function for the deter-
ministic operator M. We shall resort to Fourier transforms and
thereby convert the integro-differential equatidh into an algebraic
one. This is possible because of the assumption of statistical
homogeneity of the medium. Assuming Lo (% j-{')>' o~ ex) ((,i:;;x{- (f‘l ( J

the equation now becomes

M(pig) Carlpigiy -+ O 1€714o (P (i + Vi )
4
@) “ w P(p-k q-0) G ( >B\N)(3 32)
O
where
P( ; &) - - L{"/~(\_‘) ,}i‘\/] <‘P’k> 5. 33)
RU‘“‘);_‘{'F'\‘L(( V;) v )+az‘—ﬁ
e 1/ '/\ l’+ ‘zf [ . (3 34)
and o o ‘_t |
e Bk w) = /” de S e L Le (xtyexly,
&n)
-
y i o -1 ! thld—t
| \ p B(x-x' {4 )dxdt (3.3

What we have essentially done is to Fourier analysis the quantities

-~ . [T IR g ; y . . . -
(e (X, X ,t,t !) s (x- x', 11 ) so that the integration for ’\ 0, OJ.;;
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can be readily carried out over the Spécified trajectory. The
four terms correspondmg to the varlous combinations of
U“ x; 10; (x,t") > L Jo=1,2 readily combme to give the

expression in (3.32) (See Appendix).

So far we have not specified the relationship that existsw
between the space and time part of the fluctuating field, i.e. how
the coherence length is related to the coherence time. We assume
that the turbulence is due to a set of modes satlsfymg a linear |
dlupersmn relatlon of the type o3 { h) k\l Under such a choice -
the Fourier transform of the correlatlon function can be written
as

i~

B{kw = 2n B alutw®) (3. 36)

The dispersion relation in this case therefore becomes

Qﬂ\/ )H EVL) + X, 2»;,0 il (N - o @331
s (Vg w\/)
where we have used a Gaussian spectral density

[ },‘;. - X [& - !“T erb { - |:) ]_2
L) (2m)" i 7 | )

i . J v . -
and have made the assumption ¥, L7 j'(\/, \/2)" { 1 1i.e. the scale
length of the turbulence is shorter than the homogeneous growth

length.

We can rewrite the dispersion relation as

“_,-q-ﬁ, )(r I) - L)th( V\/‘l) = O (‘3.38)
Ve Vi Y:\)z ‘V/

where i L
Veffa = n 'zt 1€ Lr [87 (v V)]



417

Here "y ’H'l s the effective dampm;f brought about on the three
wave process due to the random walk that the phase suffers due to
the turbulent fluctuations. It is to be borne in mind that this
effective collisional frequency does not in any way lead to the
heating of the plasma. On the séale sizes and frequencies we are
interésted in, the effect of the turbulence is to merely weaken the

strength of the coupling between the waves.

(8)

If we compare our equation to that derived by Thomson
we can readily appreciate the similarity between the finite band-

width and turbulent effects.

Solving for ’[3 we get

oo [(3-9) o] £ (59 PN E RPN
e G e e LG ) G )

The merging of the two roots for some imaginary positive value of

. ,L ensures the existence of an absolute inStabilify.

For this we require

Vs {;:\/l {3.40)

Hence for V V,, we have an absolute instability. We may
recall that as we had started out with the decay waves propagating
in opposite‘directions the condition we get is the reverse of what

Thomson has derived. The threshold is

, \ A .
/- ;
h“‘ = :‘ ) “ ©(8.41)



If we had derived an eqﬁation for (G..)y thenour -
dispersion relation would have been the same as (3.37) with

\ s L and V. laced by V...
(VR [ an !ﬂl replaced by ')LH/,'

(1) i€ G
v (V.-v) "

Hence the effective damping is greater for the electrostatic

where

k 3 {2z

plasma wave and the threshold would become

X.—’_}. - _l ( YI«;\’/I
Vel s v,/ (3.42)

The important parameter, for determining the threshold

7
~a

is the intensity and not the amplitude so that the required threshold

as discussed by Thomson is,

\/'.. i
- B P, “, '\/I{’ :}ll (V‘ \\ P S <\I,2 /-J
fo = 5 mo { HAS,) ", Yoy V,> (3.43)
so that in our case it is the electromagnetic backscattered mode

which will determine the necessary intensity requirements.

The effect of the time dependence is a slight reduction

_ in the ‘véloci’cy of the electrostaticb mode, so that the bagsic feature
 for the modification in the dispersion relation is the same as that
for quasi-state turbulence. It is easily seen that for the convective -

(15)

case (i.e. q/ = 0 ) the result reduces to that derived by us for
the quasistatic turbulence using the more general fourth order
equations and then taking the limit for long wavelength turbulence.

The modified inverse growth length becomes

/o s s \a- pa V |
I T ] 3 -
? K'j_",’ g —”:- .—7
| 0 s V1 Ly (3.‘44) “

In this case the turbulence acts like a series of weak inhomogeneiticg
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which introduce random phase mismatchd in the three interacting
waves. On encountering a typical density fluctuation the charac-
teristic diffusion coefficient for the phase change can be written

as

é ‘\/" g |.«\' ) > L-'I' g‘ where (\-\\ ((, o \'7'\:0'-\“ h o ]‘“:/

TN

P
f5 o=

(1)

Hence the modified inverse growth length is given by

HER A VR

Using the dispersion relation for plasma waves we can retrieve

equation (3.44) from the above expression.

3.5 Inhomogeneous Plasma with Quasistatic Turbulence:

In this section we examine the role played by inhomo-
geneity on the three wave interaction. We shall only consider
quasistatic turbulence because as we have seen in the previous
section, the time dependent and quasistatic turbulence effects
are identical except for the relative shift in the group velocities.

of the decay waves.

In this case

w(m Fx + c(x) L‘i O, = U

Laplace transforming the time variable we get

O, =

figz . }‘,K(.v\)'" (f -2 3]| é’}‘»l B ‘ltk-@c)g — 8 + 5 0 = O
dx® i Ve dx - Vi Voo (3.48)

We write Kk (x) = R, (x) -+ Kz (x)

Ky (1) = k'Le&x)  and K= W

H
=
¥

where <, 0‘)
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. b K ( , (5 5 ) K

Putting a, = A > ,'.,-J %) e x ll\"\”iz q,);)

Equation (3.45) becomes
3 . - L ﬂ/ )Y ~ig (e N L {_é’/'x‘ 4 5-,.2' . k;(x)cl
LTz 4k GO - \y, V2>.-' bR ) - T A

Lo s (g Hg ) FeOIRG) A = O

(3.46)

I
-

We can identify the deterministic and stochastic operators as

- + L k() ~isfd +.- Ik L \K) *‘“C‘
™M cu(‘ v-’ﬁf[ ‘ ‘ ) T3 O (3.47)
and
Voo ko) [l o+ sl e (k) |

We shall use the Green's functlon for the homogeneou.; case in
evaluating the terms \V C(c\( / + 'The assumption that goes into
the approximation is that the scale length of the turbulence is shor'-'
ter than the inhomogeneity scale height so that on the spatial scale
sizes of the order of L-,- (the coherence length of the turbulent
waves) the inhomogeneity effects will not be discernible. Such a
prescription facilitates the evaluation of the integrals in a closed
form. We further demand that C!,‘?L_!_ O] . that is the growth
length be larger than the coherence length of the waves so that in
the distance bver which the coupled waves exponentiate they suffer
a large number of phase random changes. Since the equation is an
integro-differential one, we Fourier transform it to get a second

order ordinary differential equation

2 - 2
J ».‘;t i [,{S (4 o+ ) - 24 &L + ‘3?2 ()4 ) 40
{ dp2 KOAVE Yo, o | dp AN v o
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where of = o(( | * 'f:_l:‘ ), o =(4T) /?‘ k’ | f(—zy‘-A Ly

We can now transform away the 1st order term by writing

o

&) = AGY Op L2970 %Y dp
Jl 2 K/

Vi (3.50)
We get
Lo e [pap 8180 = o
if k - (3.51)

We observe that this equation does not contain terms containing
S, the Laplace transform variable and hence we can only get

convective modes.

The W.K.B. solution for this equation is

: P b Y, /
4 j NG /‘CLF
e

LY “ | (3.52)

~. ‘

where \( l[' = 4 L ¢ - r Tky ; }

The amplitude is therefore written as
—— Jr\ \’ s ! 40 l"
SO f“S L‘((r/- O}) ' :
Glx) = € -
(3.53)

v 7 ‘ £ .
where we have neglected the term | V (F )] /4 in the denomi-
nator as it has a small contribution (except at the turning points,

where of course the solution itself is not valid).



Evalua’clng t‘xe integral by the saddle point method

(Where E)c -t +_l (X are the saddle pomts if terms of

K]

order &* are neglected) the 1ntegra1 becomes
. i é:’/ ¢+ .‘.c& * ™o
o .\- ) . \ J‘y_‘
o(x) ~ g F - , Ti(3.54)

where we have used the requirement &y« /2 (see Thomson).
This wanvective threshold due to the damping effects is the same
as the absnlute 1nstab111ty threshold (3. 41) as has been discussed

by Thomson. A.lso ,

,,/7
Xmax =2 Yo /K (MV2)

Hence the ﬁuhomogeneity_threshold becomes

2 \
L
' 5::7‘-1'1\/1 (\\’ Vi)

Since we have already demanded that © > o fz the second term

&34

(3.55)

onthe LL.H.5. is a very small contribution near the threshold .

""" 7ot , (3. 56)

Hence if we consider o ~ « [z , to the lowest order le*l  in the
turbulence, there would be no modification in the inhomogeﬁeity

threshold.
3.6 Discussion:

We have investigated the effeet of background low fre-
quency, long wavelength turbulence on the process of Raman
Scattering. Though we have specifically considered the |« to be
for the Raman process, the set of equations are general and can

be considered for any three wave process.



vVe fmd that in the homogeneous case, the turbulence
1r1troduces a threshold for the absolute mstablllty This thresQ

hold is given by

Yoo o (3‘ > ety LT
\/Q NZ’) Q.)P Ce —*:'—""'; T

For stimulated Raman Scattering With a2 {JF‘L , the growth

rate is maximum. Hence for T, = |keV o Rk, Ly =10
ko= oxio'  we find that Ve [ve ~ L J(e] ~ 1072
which is indeed a very low level of turbulence. Therefore the
Raman scattering in a homogeneoﬁs plasma can be effectively

suppfessed by the presence of background density fluctuations.

In the case of an inhomogeneous plasma the convective
amplification factor virtually remain unaltered. This is of course
derived on ’the assumption that the damping threshold which is
identical to the absolute instabilify threshold is overcome. There-
forge it is apparent that the damping threshold in the case of the |
turbulent plasma is the more important one. A similar result
was obtained by Thomson for the case of the finite bandwidth
effects so that we see that finite bandwidth and turbulent effects

manifest themselves in a similar manner.
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APPENDIX

e

Evaluation of
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where v (v‘)l{-?,) = Lut e \/;}3.-



Now we integrate over the trajectories

Kex = = ()
W e v, (1=T)
and demand that at t=0 there is no.turbulence so that the initial | :
value does not enter the discussion. After that we can perform
the integrafions over 'P’ ) %" , X '! , 4('/_ remembering that
k(X —\x')

S(x-a) = 4 g.&lx%

21 .

Performing these straight forward manipulations we get

i) { Vi,V > <(A W/ d)\ df PERETA f: l(.“ | \':‘ (4) i ) - ﬁﬂf C\ \3 A( (;\ k d (,r'<"c,\‘(‘!,ﬂ>(

«4
Q’“\/‘\/IT’) txi - Lt I(\J k) w,u. ] Q\ Q; +. tﬂ/ (L;L)
(w+kY >
Similarly | ‘ ,
,,~/ ) . N T T
” L'\_\/GQVZZ -+ <\/(,(0\./7Z F; «.,\.% th = L-L:‘If—{( \Vz‘ﬁUd;x )V“LL 13T
4 g
i) (4 v,f“ Uos ”tP [Pk 9 ‘*’JL\ (in_@l} (ko) <Py
kl« 1k \/z,)

and finally

P

(q-v, P Preighop (b= Go(p- w) & (ke )
G{\/ tis)” |

Hence

(b *t‘”“dﬁ*/@‘ﬁ ok w&yl

Th1s is then used in equatzon {3.32)
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CHAPTER IV
STIMULATED BRILLOUIN SCATTERING

4,1 Introduction:

In the last chapter, we have dissc::ussed the stimulated
scattering of electromagnetic waves from a high frequency
electrostatic mode of the electron gas with a neut1~aliiing ion :
b\éc_kgraund, In this chapter we will study the scattering of the
‘éie\ycfr(”)’rna\.g’\netic wave from the low frequency ion acoustic mode
which involves density perturbations maintaining approximate
charge neutrality so that the ions participate in the process.

Hence the fundamental difference in Raman and Brillouin sCattel~ing
depends on the collective mode involved. In solids and liquids thé |
Raman précess involves scattering from internal degrees of
freedom and therefore reflects the internal structure of the con-

stituents whilst Brillouin processes involve density perturbations



of the medn in wh1ch the basic constituents collectwely p?rt11
'pate For a mechamcal system, an alterncfuve way of statm
the difference is saylng that Raman processes involve optical
bran‘ches and Brillouin scattering the acoustical branch of the .

mechanical dispersion relation.

In a plesn, the linear theory for stimulated Brillouin
scattering has been dealt with quite exhaustively by Gorbunov( )(2)
and Drake( ) et al. Bemg essenhally a three-wave parametric
couplmg between an ion acoustlc wave and two electromagnetlc
4)

Waves the coupled mode analysis given byBloembergen

used by bomlsar(s) for SRS can be readily apphed to SBS.

With the advent of~high powered lasers and the Subsequent
experiments in laser pellet interactions(S)(T)_‘. the studies in stimu—
lated scattering received an impetus more so because of the large

~discrepancy between the calculated levels of backsca’cter and the

levels obtained experimentally.

Theoretmal findings and computer s1mulat10ns by
Forslund et. al. (8)(9)(10) have shown that exceedmgly large
levels of backs‘catter (as high as ninety per cent) can take place
whilst experimentally, (11)(12)1eVe1 not exceeding twenty per cent

of the incident pump has been observed.

The theoretical investigations were then oriented to the
study of parametric processes in less idealized conditions and
" the emphasis was on finding both linear as well as nonlinear
stabilizing mechanisms for the backscatter 1nstab111tlos(13).;
Although Raman scattering has a higher growth rate it is not

considered to be as dangerous as Brillouin scattermg because

of the strong saturation mechamsm( 4) brought about by electron
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heating by nonlinear ’processes and by the modulational iﬁStability

- of plasmons Hence it is congectured that SBS is the more 1mport—_\;'\, ‘

ant nonlinear process for preventing the absorptloﬂ. of 1aser light
by a plasma, We shall therefore concentrate on some 1111ear and
nonlinear processes which have been proposed for saturé.ting

stimulated Brillouin Scattering.

In an mhomogeneousp qulescent plasma of infinite extent
the exponentlal amplification of a parametrlc mstablhty has been
calculated by Rosenbluth( )to be X(‘, / v‘ Y., k where :\:, isk
the growth rate 1n the case of a homogeneoué plasma, v ;sz are.
the group velocrcles of the scattered electromagnetlc wave and
ion acoustlc wave (for SBS) respectively and W= d ()*0 - K “b;[, elx
is a measure of the dev1at10n of the phase matching condltlon
brought about by the density gradient. This does not turn out to
be a very stringent requirement because in the under—dense ’
region of the p‘lasma | LT W > wr so that the e. m. waves are .
Weakly affected by the density grad1ent and the ion acoustm wave
for which e, /\o << 1 does not suffer any change due to the weak
densny Varlatlons A velocity gradient however increases the
threshold by a factor of L /Ly (W ,;2-/ (,\yoz )('16)(17), In
addition, if a steady state supersomc expansion of the underdense

plasma occurs, the threshold can be increased in proportion to the

Mach number if it is greater than 2.

Another linear stabil 1zat10n mechamsm Wh1ch has been

intensively studied is the finite bandw1dth effect(lg)(lg)(zm

20
Thomson( : ) has shown that the reﬂect1v1ty drops off exponentlally
with the increase in the band w1dth which 1s in agreement with the
computer simulation of Kruer(lg) et. al Furthermore Thomson

(2

et. al 1) hqve also estabhshed by comparmg theu‘ result to that
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~of Bodner(zz) that the basic effect is insensitive to the laser
| , bandwidth mechanism, be ’ifc phase or amplitude modulatioriu
However the necessary bandwidths required for substantial ;
increase in the damping facto_r’ancl hence the threshold is quite

large.

Another means of stab111zat1on involves the presence of

either short or long wave 1ength ion wave turbulence(ls)., For

the long wave 1ength case ,the level of turbulence requ1red is very
large.. Short wave length turbulence Wh1ch can be generated by
the ambipolar electric f1e1d in the expandmg corona can effectlvely
enhance the damping ) f§ { on the st1mula’ced -1on waves as well
as the damping ))Q g on the electromagnetic waves. Hence
the gpatial gain length can be increased and the instability P‘roaght
below the threshold for sufﬁmently large turbulence levels c1ven by
\BL 3 )‘e_fs, Ve H . By calculatmg VLH -, the non- " -
linear Landau dampmg of 11ght waves on ion waves from the weak

turbulence theory and Ve es , the Landau damping of ion waves

on the tail of the ions due to the background ion wave turbulence

it is found that the energy density of the,turbulence éf& has to
oo ! '

exceed E¢ M™[ $T " which is absurdly high.

» The ncnlinear saturation mechanisms, due to effecti\?e‘

- damping of the linearly excited waves by direct formation of \eﬁ\\er—
getic ion end electron tails or by the nonlinear wave -wave inter- ‘
action have also been considered., The tail fofmation requii-es
small scale fluctuation. However the 1on sound Wave steepening
mechanism cannot create scales smaller than 'Z 5 = “H /V‘O e
because of the balance on the steepening brought about by the '
disper'eion effects. Hence the only acceptable nonlinear mecha-

nism is the outflow of ion sound wave energy into shorter scales.



with the glven restrlchon Gorbunov( %) has considered the
.spec1f1c problem of generation of the gsecond harmonic of the ion
acoustic wave. However he finds that SBES can be cons1derab1e

even for small increment over the ‘instability threshold.

In general the influence of ion sound wave steepemng
does not reduce the amplification. Also the multiple scattering
model by which the side scattered 11ght degrades into smaller
frequenc1es does not prove to be very effective in increasing the
absorption and thereby reducing the backscatter(ls).

So %far: we have been focussing our attention on back scat-
ter instability. = Since the velocity gradient is considered to be
perhaps the most effective mechanism the problem of side scatter
in an inhomogeneous expanding plasma has also been considered
exhaustively by Liu(4) is his review article. Although the side
scatter has a lower growth rate, i’t is expected to amplify to higher
levels in an inhomogeneous plasma, because of the fact that it |
stays in the interaction reglon for longer times. Klem et. al( %)
have investigated the problem by simulations and have shown that
for steep density gradients for which backscatter can be suppres-
sed side scatter is very efficient and that only onef1ftn of the inci-
dent wave can penetrate the plasma. Furthermore Liu et. al(”)
have shown the existence of temporally growing instabilities at

t
various angles for which K = O . However there has yet been

no observation(s)(?) of significant side scatter.

‘ In this chapter we have made an attempt to examine some
new processes which can enhance the inhomogeneity threshold for

the backscatter and side scatter for stimulated Brillouin Scattering.
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4.2. = Effect of Two Ton Species on uumula‘ced Brillouin ucatte 1V1g,_y,',

We wish to discuss in this section the effect of the ex’i‘s"-(‘ L

tence of two ion species in a laser-pellet interaction. Wheﬁ a
plasma is produced by a nanosecond pulse and if the pl'asma con-
sists of ions of two or more types With different :/l /“mJ (as

. g. the thermonuclear fuel consmtmg of deuterium and tritium
or other combinations 11ke LiD, CH2, C36D74( )) then the ambi-
polar electric field E = (Tq,,e) g fnne will accelerate the
ions uneven1y<26), In the regions of the rarefied corona where
the eollisional friction between the two spemesv cannot equalize
the velocities, the lighter ions will run ahead of the hea'_vief one.
Hence the two ions can set up different scale lengths in the inhomo-
geneous blasmas In this model, the bplasma corona consists \of
an 1nhomogeneous medlum in which the two ion species m) (J ‘)4)
have two different scale lengths .\‘_:}' . We cons1der the density
profiles to be linear so that 'T‘<;3(x) = h";\ (0) ( {4+ x| Lj) .
electron density also assumes a linear inhomogeneity given by
Tog (X)) = Mee(v) (I+ %X/Ln) We further demand that the inhomo-

geneity scale factors L‘i , L are much larger than the scale

£
length of the interacting waves so that we can resort to the W. K. B.

approximation discussed in the previous chapter.

Using the material equations

-

mﬂ%}:: +\7}m~;)5 q?,({~i+ \/)x{;> @

Ong LU (i) = ¢
My 4 Vo (mypyy) = O A )




the electron equation of motion gives

O = - & ’22, A Uhez - e \/(Vo V: : (43)

where the inertia term has been neglected. We follow the same
notations as used in the previoﬁs chapter so that the nonlinear

terms are due to the two electromagnetic modes.

The ion equations are written as

Ujj} S ‘Y\,} q\/J‘ =0 (4.4)
ot ¢ g
Y“j %{l SN ?,7} V(/_‘,?w where Ez z "V¢z , (4.5)

Combining these equations we get

g s P : . .
Lf’ ot Z ZJF“J VQL'Q_ = 0 : (4.6)
at : | '\mj'
with ;11 = ?“f‘J
Now using the quasineutrality condition together with equation

(4. 3) we obtain the equation

Z lmJ v ) m Z No | |
(()‘L Sy e F 2 L0V <V" \/;) (4 7).
; W\J ‘Iu
we have used the condition | ‘2 Z L>l _ 1n de‘ri‘ving the equation
Writing 11, =1, (%) <x tz (- ij Rodx - {,hﬁ}’ we get

R | Ly d
(\si‘dc(ﬂ)“z 5 ‘““"“'k (W V7)€ L )

' Atf&’ TC




where the dispersion relation for ion acoustic WaVes.bé‘c¢me

;‘ }{2 T ’ -
AR T ' S S
PR S~ ’.L'L \— 2} Ce = L 5 I\_GJTQ
Y‘flj' Mo ] }'\.’\j Yie
We remark here that in view of the fact that Wnj(x)  are

linear functions of the space variable, the wave vector ?5’\2_ is
also a function of X . Again using equation (3. 13) for the

electromagnetic wave

(4.8)

Hence we see\that the equation (4.7) and (4.8) are the coupled set
of equations describing stimulated Brillouin scattering. Compared
to the equations for the one ion species, (which can be readily
obtained) we see that the subtle difference lies in the R vector
of the ion acoustic wave which has developed a spatial dependence

even in the case of long scale inhomogeneity.

The homogeneous growth rate in this case becomes

P
&

e 2

, 2 E 2
EC)N = LO'PL hZ,\!C,

24 (s (D) . i
— % ' (4.9)

<1

Wi = 4T PSR fm)
Using the expression for the amplification factor given
by Rosenbluth(lﬁ) which is readily obtained by solving the coupled
equations, inthe W.K.B. approximation, the new inhomdgeneity

threshold becomes

A — N . {
¥aon / et K/ i ( (4.10)



66
Here we will essentially consider the contribution to K from
‘the ion acoustic wave and compare it with the </ due tothe

electromagnetic waves.

Lju?‘? L) 2 ;':LL‘L’ ) P
% . - ~_~WJ~\:J o
2oty (4.11)

so that the threshold condition can be readily evaluated as

=] o ke [ ZEM
Vi, Lo-t;L L ‘\"Y\A:\ ‘j L
R 4.12
S Zjnej ( )
Comparing this with the density inhomogeneity threshold for back-
gscatter W =N /ve) = 2 /.k'c.'L we get
) A | S Zivs -
WRRCER I L R
| S 7 (4.13)
vy bn,

assuming the existence of macroscopic charge neutrality, which
means that the ambipolar field is not very large we can obtain a
relation between the scale lengths for the three species by different -

iating the neutrality condition 7. o / L.‘, - o / L

For the case in which the two ion species have the same
concentration, which is often realized in practice, we can write

Mgy = Mer = Mo // % so that
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(4.14)

.As has been pointed out earlier, the difference in the scale
lengths arises from the uneven acceleration of the ions, by the
ambipolar electric field. Therefore we shall assume that the scale

i

length ., and {A are inversely propbrtional to the respective

masses m, and 1, of the fcv'vo'ions, With this assumption, we get

. 2 ,

Hw‘ o W T 4y -1 %

W SPT R (myrma) (4.15)
We see that for n, = 1, » the ratio becomes zero which is to.

be physically expected. When there is only one species the wave

vector of the ion acoustic wave is independent of ' X and hence
k., = ¢ . For v,z e, }3 (e deuterium and tritium)
we get
v L
\\—/\l‘ - 2[ {'ﬁ\?
s ~ w}»f : (4.16)

Hence we see that in the under dense region of the plasma, the |
,thresholds can be much higher than the usual dens1ty 1nhomogene1ty
vthreshold for SBS. However a more appropmate comparison should
be with the velocity mhomogenelty threshold Wh1ch is more dominant.

We recall that the exponent1a1 amphﬁcatmn factor for SBS with a

(13)

blow off velocity is glven by

}(l ()‘(w) ) koL, SinBe / ( 5w, (o0
\/‘\{ ‘ } VQ, {ade e )

it

+ "Y l“’»((ﬁﬁ ‘)) g

. Wet b
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For backscatter @ = Ti . the threshold condition becomes
\’\["; = T',) - ‘"*-L.m—- . 4018 o
“ L‘/%A’g (d.{zL\,L, . . R ( : )

get
(i z) : (4.19)

Since Lw » L Vi (27) again we see that the two ion spe'ciers thres-

hold exceeds the blow-off velocity gradient threshold.

In the case of side scatter it is readily seen fhat the two
1on spe01es effect is absent. This is of course based on the assump-,
tion that the pellet expans:mn occurs only along one preferred .
direction. In the more general sphemcally symmetric case for
which there is a radial expansiqn,, the side scatter effects will be

identical to backscatter.

Hence to conclude this section we can summarize our
results. We have seen that if the two ion species can establish
different scale lengths by virtue of the differential acceleration in
the ambipolar field, then the density inhomogeneity threshold in
| the presence of the two ions can be significantly different from that
i for a smgle ion because of the spat1a1 dependence of the b vector
brought about by the different scale lengths. It is quite plaumble
that in the underdense region of the plasma, such a state may

prevail and thereby suppress stimulated Brillouin scattering.

4.3 Effect of Langmuir Turbulence on Stimulated Brillouin

Backscattering

In chapter three we had 1nvest1gated the effect of long-

wavelength, low -frequency turbnlence on SRS. The method could



have been utilized for study of SRS also where the effect of turbu-" '

lence Would ‘enter through the wave vectors of the electromagnetm"f .
modeé. In fhis section we will investigate the effect of h1gh .
. frequency short wavelength Langmuir Turbulence on SBu. Before ‘
we delve into the mathematical aspect of the problem let us get a
physical picture of how the short wavelength turbulence will atfect
the propagation characteristics of an ion acoustic wave. The |
presence of a high frequency field will give rise to rapid oscilla-
tions of the electrons. The ions on the other haﬁd do not ekperience
the high frequency electric field directly. but are affected by the |
time averaged pressure of the hlg‘l frequency mode sO th‘atv,besides
the thermal pressure of the electrons the ions ‘feel' an additional
pressure Y \/2 /™M where V. = ¢ E. fmw ' . ‘being the
high frequency oscillating field. Inthe case of turbulence Wthh
egsentially constitutes a conglomera'fion of waves with a certain

bandwidth in K space, this ponderomotlve force as it is called,

becomes additive and each wave contributes to the pressureu'
1¢ we look at the expression for the pressure, it depends on the
square of the fluctuating velce ity so that for a whole set of waves

it can be written as yn SN vy / M . Now each wave con-

, K/
tributes its own pressure’ if ko= K and this essentially the
random phase aaproxunatmn(zg) so that now we can characterise

the turbqlence in terms of its energy Qen51ty or action.

' The basic equation describing the stationary, hig}\'r'frequéricy’_v
short-wavelength, electron-plasma-wave turbulence is wave kinetic

equation in the adiabatic approximation.

El\l .

S g M — W INk =0 (4. 20)
ot =



Wheré MNi = [ Ek l / 4T e is the plasmon distribution fu'_n'ctio_n'

- j ~

' or actlon and \/ } o/ ol is the group velocity of the plasfh
waves. We vv1sh to ascertam the effect a long wavelength slow
frequency ion acoustm wave has on the plasmon distribution and
the reaction of the plasmons on this large scale perturbatiQn.,
Hence we can readily adop’c the 'adiabatic' formalism developed’
by Vedenov et. a1(29’ to study the required effect. The last term
in this equation (which very closely i'esembles a Vlasov eQuatio’n)
is the effectlve force term. Due to the modulatmn of the plasmon
distribution by the ion acous’nc Wave, the local frequency of the
high frequency electrostahc mode-'suffers a change in its valuré
and heﬁce in the group v'évlbécity. This can be looked u’po’n as an
effectiﬁr"e“ force which retards or accelerates the plasmon

propagation.

The electron equation of motion gives

O = .‘_ V'ﬁg,'}_ + '\:‘_\71@53‘ - ¥V < NG, v \i~7 ~ ., \7(\/{)-‘\/!) (4:° 21)

where once again we have utilized the same notations. The only
new term is that for the electron plas‘ma wave turbulence for which
Vo= 2, B [ . Using the ion equation of motion, continuity

i<
’ equation and the quasmeutrality condition, we get -

£ .
Z < 2 = \;-';__ .
(\ TH2 ~L5 ':D )»’)) = Y_‘f_’f Z d : E”K “+ Mg o (\{h \/,}
et ox* 2Mm KX Wi Mook
< N e ‘:7‘ 3 ;
= L 52 MNiew o (Vi)
LMK KT MOX :
(4.22)

Equations (4.20) and (4. 22) completely determine the mutual




. interaction between the ion acous’uc wave and the turbulent
inhomogeneous bplasma.' We first determme the steady state
solution for (4.20) and treat the ion acoustic modulation as a

perturbation.

In 2 weakly inhomogeneous plasma T,y = M (1"“ XfLV\)

a steady state solution of equation (4. _20) can be written as

() ()

\ e B i . ‘
N o= N ‘:,L ) . (4.23)
" \
| (&) "N ) L
where 12°( o) = k54 % / L.~Np isthe constant of integration

obtained by solvmg the characteristic of the time independent
equation (4.20). Here k represents the local wave vector.

This equation essentially tells us that the plasmons have a a tendency
to bunch up in regions of lower density because of their lower group
'velocity in weak density regions compared to high density regidns,’
so that in an inhomogeneous plasma, the plasmons W111 be dlstrl—
buted nonuniformly with a scale length given by SN 7‘ ) .

We calculate the perturbation in the plasmbn density N K due

to the long wavelength ion acoustic wave propagating as

‘;l(ﬁ) | ‘~P ~ Lot - \J”’ z ol x

s ~
-~y N 7 3 - - LR 1\
Since (% = Qw;.;('*g.z ) ‘“ i (4.24)
DA OX 2% Ao o
~ .~ | SN (0)
™ — Lo - y .
Ne = Wpkame Lk . (4.25)
- Yw (.)2’%" 2, N c> oK.

© " \ ~ z - kY3 — r(:k &X
(é S Jre = barn (VW) ¢ b (4. 26)

Mtz
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‘ S ‘ . {o)
L’\:‘L - R 5 (,Z'f) 'f" J? "‘J’ j "> ,\! K C'\,k =
. e
, 4 Mg /O (4.27)
o (A);' T "\ L“/(i"

The modified dispersion relation for the ion acoustic wave is
valid for R [ 3 (ane) Lo

Again equation (4. 26) together with equation (4.82) con-
stitute the coupled equations for SBS with the modification due to
the turbulence introducéd through the dispersion relation for the

ion acoustic wave.

Solving (4. 27) for real ’?2 one gets

TN

'\37__. L\J?,

T N Bl VAT a») (4. 28)
4 oo M k

where P denotes the principal part. In ge;léral we should also
consider the resonance (, T]—.;:, N, = (0 whose pole contribution
would give an imaginary contribution. The physical process involved
is  the absorption of the acoustic waves by the plasmons and this
would be the damping due to the turbulent spectrum. We however
wish to investigate how the modification in the real part of the
frequency can contribute to the convective saturation of SBS,HAlsQ
we are justified in neglecting the resonance because a vefy simple
calcuhtlon shows that for resonance to occur, the \:1 vector
should either be very small in which case the gradient ¢ }") / [k~
(provided the adiabatic approx1mat1on is still valid) or the densfcy
should be very large so that the resonance condition would be
difficult to satisfy in the underdense region of the plasma. To
gauge the effectiveness of the turbulence we shall comﬁpare;

h; - (-:i,tﬁi-;; / r)lﬁ with K" due to the velocity blowoff.



Introducmg a dlmens:lonle.as parameter { Q'm /M).\" / A\ N;

orie fmds
ko o S FOPIR
i 4 | (4.29)
(/l\\‘li ké‘,\f\\) L > ‘
with ‘ e (4.30)
~/;__ {
F(p) = @)™ Jydye Yty
and é;fw { 5)(‘\ P N (AJ]> /Z-‘Y\O
One can get an order of ‘magm'cude estimate of C/L-k';_ [ o x
by evaluating the integral approximately for (§<’ 1
: % fo L l
“2 4 (4.31)
Consequently
Ry o1 e be
— - 7/
K A Epin (an) e (4.32)

If we consider a spectrum for which ( 2 Ap ):2 ~ 3x10 /

and take L. ~ {0Ln we find that for &fbue IEK\\*‘ PRV k. [k = 3
| For a broader spectrum the level of fluctuations has to be t igher
but can still be within the realm of weak Turbulence Theory 9)(3@).

Therefore we have shown that by incorporatiﬁg the effect

of high-frequency, shortwavelength turbulence in a Weakly inhomo-
geneous plasma, the threshold for SBS can be quite mgmfmantly
modified and therefore may be responsible for the low level of |

backscatter observed in laser-pellet experiments.



4.4 Nonresonant Pump Modlﬁca’uon on the Slde

| ocatter Thre shold

_ In the previous sections we have ihvestigated two new
physical processes which may'affect the backscattering. In the ’
s_ingle beam(ﬁ)m) 1ase’riexperi‘ment‘sz,, ‘t'he‘ plasmai is seen to
expand in the anti beam direction so that the inhomogeneity
effect may necessarily be confined to that direction. Under
those circur_nstancés the direction transverse to that of the beam
may be uniform énd theréfore side scatter should take place quite
efficiently as has been prediéted(l'?)(zs); However experiments

have failed to register such an effect.

In this sec’uon we calculate the modification in the eude
scatter threshold brought about by nonresonant effects due to the
pumpfield. One can readily see that for the process of side
scatter, the electric vector of the pump field has a component
in the dlrectlon of the 1on acoustic Wave wh1ch is not so in the
case of backscatter. It is the contrlbutlon of this effect in an

inhomogeneous plagma that we wish to investigate.

‘The basic equations are-

T(9E) - TE+L 25 +405 28 =40 due (483
O, = SpE
/ot R G O B RV :
(2, V) = Ml y*(Ni) (4.34)
L ot N ,
where o~ is the linear conductivity and T, = ~V2¢No

Taking the curl and div. of (4.33) we get .

(9%l o i VURE, =

«(— \/‘/JN L. ’ &
i C-——{a_tr‘” - ,‘\,t C:/' {) ; (4n30)



~and e
(lv_ a v huo ) JE, = —4T 3 - .
e b £ —— Y L — o l‘:‘
< g\ot > (H / c*- 2’7‘ N:L.‘ . (41 36)

Hence we have separated the longitudinal and transverse parts of

the h.f. field.

Assuming the perturbations to go as

R S x‘;.(_.~ ¢ fk o dx +::L. wt) ks kke s wz s

ol
Mg = W (x) el fRdx - ot

\Y \? Q(P (L l% X +l.w,-i. ) +¢.c with Ve = el /ﬁyy\(/)u
O v CAP LRHoer s :

—

we define Eq, = }':ﬂ'x\?l/‘kw! and B, =(k-.Ey) “Ll
Under these conditions equations (4.35) and (4.36) become

- ‘ ’(Ku\x

A "j \T _Ame (oaw Y e o ~ o
(5-{: Pt ) Ep, =4me (v )mee ™ aany
, o o )\ 1 ;‘k—\ :
and
(- ( k V“ / W’
= /\n k\’:
k.’ (4.38)
Whé\re we have used the resonance conditicn
2
ey 2 o~ o
with & (K, ¢3) = (14 ﬂ_@ ) ’ : (4.39)
Ly :
The electrostatic field L, is a nonresonant correction due to

the component of the pump wave in the dlrectlon of the acoustic

mode, For backscatter ! - \/L =0 so that such an effect:

is absent.
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The ion acoustic wave equation (4.34) can Be‘written as

(' (*) ' B CI::. ~ Z o - . - -

T B e e T B

) co-

| oa EA T AR A =

i i;.(' S - (:5 \) - l’-\/ /J!) 4(7‘) (k \I*J) '{\ LY\ e (

ot | ><4 40).

*’Q»‘ Ll o - ‘ “’Q
and hence

(2 C:\ 7)Y - knae L kd x '
2L :
with

kZ W’
as the new dispersion relation for the ion acoustic waves.

wio kred 4k /«:ﬁ H(x) (h ) =0

Once again equations (4.37) and (4.41) are the coupled
equations for the process of 5BS. The modification is now a function
of the inhomogeneity of the system. Let us consider the basic

inhomogeneity to be along the X direction so that

Fols) = mo(o) {14 x/Ln ]
To get a feel for the change in the threshold we compare the value
of k/ with k! due to the velocity blow off for large mach
number (The Mach number M is defined a3 the ratio of the blow-off
velocity to the ion acoustic speed). If the incident wave is propa-
pgating along the density gradient and the scattering is at an angle

£ , then



Ll

: Comparing’ this with

2

‘ igi = "«2}&\_\ i 9//,.

L .
we see that

J o 2
l”(;,_ = __(' { !;(’. !.L (\I )

_i::l 2. (/)\L LY\

N\ N ‘ :
P La > ¢y, Ly we have a strong reductlon in th

rd

Hence for &}

side scatter even 1f Vo f\/L ~ 1. For hlgher powers, 51de scatter
gets suppressed even at lower dens1t1es. T‘lerefore we see that
such nonresonant effects Wthh in homogeneous cases can be
neglected Jdo play an important role in inhomogeneous plasulas
andcan contribute to the overall development of the instability

and its linear saturation.

4.5 ’ Discuesion:

In this chapter we have discussed three new processes
which can affect stimulated Brillouin scattering and modify the

threshold requirements.

In the first case we have considered the possibility of
enhancement of the threshold power requirement by considering a
two ion species in-homogeneous plasma for which the scale len‘gth ,
associated with the inhomogeneity is different for the two s’pec‘:ies\.u
Such a situation is plausible because of the differential acceleration
of the two ion species by the ambipolar electric field. Wé find that
in the underdense region of the plasma, the threshold can be quite

drastically enhanced.

In the next section the effect of highﬁfrequency short-wave

length turbulence on the inhomogeneity threshold for SBS is
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' - investig_ated'..: ’I‘hebp_resenc'e of such a turbulence in’c‘rod‘uc\es a
spatial dependence into the wave vector of the modifiéd diéperéibn \
re_latioﬁ of the ion acoustic wave which,when utilized for evaluating
the inhomogeneity threshold ,g_ives rise to an in’teresting enhance-

ment even in the regime of weak turbulence.

, In the last section, we have looked into the problem of .
side scatter. If one examines the orientation of the pump wave

electric field in reiation to that of the ion acoustic wave, one sees
that there is an overlap between the two which is absent in the case “
of backscatter. Using this as our starting point we iriveStigaté the
non resonant modifications brought about by the above mentioned
effect and have shown that for \@ |ve. 2.1 . the side scatter will

be very small compared to backscatter.
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CHAPTER V

MODULATIONAL INSTABILITY IN THE PRESENCE OF
LANGMUIR TURBULENCE

5.1 Introduction:

- The study of some exact nonlmear forms of waves and
their envelopes, brought about by the balance of nonlmearlty
Hand d1sperswe effects (1n the collisionless plasma) is a toplc
: of much interest. A knowledge of these nonlme ar states can
prov1de an appropriate dlscrlptlon for the plasma in the turbu— ‘
lent state. The underlying phllosophy of such a representatlon
is to look upon these 10ca11zed entities as forming the 'basis!
states of the systern with a Weak residual mteractlon between

them.

ay

" It has been shown by Vedenov, Gorde ev and Rudakov

that a cold‘ plasmon gas (i.e. a plasmon gas for Wthh the



mean square of the spread in the group ve1001t1es is zero) fend
"to bfeak up mto blobs prov1ded the Wave number (*1/ of the 1
turbation exceeds the wave number of the plasmon In ’che case
of a 'warm'’ plasmon distribution of width /. in K—space there‘ .
is a threshold for this break up given by vjtk / ckm > Pa) 7\0 .
Where 8 .}{, is the energy dens1ty of the turbulent waves, ¢ k”h

is the kmetlc energy density of the parhcles and A » is the
electron DeLye lenc:th The- appllcablhty of Weak turbulence theory
breaks down when C.J.{ { i > (k /\\\ This is because the chara- -
cteristic rate of nonlinear interactions S w o~ L&\F él& I Tk m |
becomes greater than the frequency spread due to thermal effects ’

,rsh ~o b (kM)) (2) por the case A./}a &1, this ’
\mstabﬂlty is identified with the decay instability or at higher ampli-
tudes with the osc111at1ng - two stream instability. In the oppos:ite‘
case Afl ~ ”l since the resonant condition cannot be satisfied
for the entire set of }9 , only the modulatlonal 1nstab111ty can

exist. We shall be interested more in the latter case

, Another modulational instability lhat has attracted much
attention is tnat of an electromagnetlc mode due to transverse -
perturbatmns Kaw, Schmidt and Wi 1lcox( )y have 1nvest1gated the
stab111ty of a large amplitude electroma gnetic mode in an unmag~ |
netlzed plasma to transverse perturbations. The nonlmear:xty o
respons1ble for the ex1stence of this instability is prov1ded by the
penderomotwe force exerted on the plasma by the electromagnetm
ane, It is shown that a plane electromagnehc wave is unstable |
agamst modulation in a d1rect10n perpenchcular to the dlrectwn of
propagation. Furthermore due to the satura’cmg nature of the non-
lmearlty the final steady state cons1sts of light f1laments from
which the plasma has been expelled in equ111br1um W1th the sur-

rounding plasma pressure.



_ n alternatwe Way of looking at the fﬂamentanon in
stal ﬂuy is ,es coherent four-wave 1nteractlon. Drake(ll')’
al have syntnes1sed the electromagnetlc mstablhtles (Raman
scattering and f11amentat1on, Brillouin scattermgg Compton ‘scat-
tering and modulational instability) by deriving a general d1sper- |
s1on relation in terms of the susceptibility functions of the unmag—
net1zed plasma and studying it in various lnmts. We shall

approach the problem along the same 11nes

 Itis recogmzed that the modulatxonal and f11amentat1on ;
1nstab111t1es may play an 1mportant role in laser plasmas. These ;
mstab111t1es may drastlcally modify the backscattermg 1nstab111t1es
1n the underden e region of the plasma by modulatmg the plesma
densz.ty It may also facilitate the decay of the electroma gnetlc '
mode to electrostanc modes. It has been shown by Langdon and
Lasmskx( ) that as a result of self focusmg or f11amentatlon of
| the 11ght beam .strong plasma heatmg can occur in a wider range
of denS1t1es than is usually expected Prevmusly the anomalous .
hea’cmg mechamsm was cons 1dered to oceur near the critical .
density surface where the local electr’on plasma frequency matches

the 1aqer frequency However in a plasma which has under-

Lo
gone filamentation, the dens1ty changes are s1gn1f1cant and this
leads to an extension of the region in which frequency ma’cchmg

‘ for parametmc processes can occur. The authors( ) have spec1~

\ficelly*conmdered the 2 Wl instability, a decay of the 1a ser-
wave 1nto two Langmulr plasmons at the quarter critical density,
When a filament forms in a higher clen51ty region, the density
depression estabhshes the frequency matching conditions necessqry

for the 2 (o, instability. These localized conversions lead to
sffohgc'plasm'\ heating. Therefore it is expected that f11amentat1 on

may mtroduce such mod1f1cat1ons in the plasma density so as to

facﬂltate he'x’cmg by parametmc processes.°



The probl@m 1nvest1g1ted by us mvolves both these ‘
,1nf—u1b111t1es W e W1sh to study how the presence of angmmr‘
plasmons affec’rs the filamentation 1nstab111ty of the electromag-’_\
. netic wave and vice-versa. The plasmons are assumed. to be
governed by the wave kinetic equation in the adlabatlc apnrox1~
mation i.e. in the absence of resonant wave- wave and wave-
particle 1ntefact1ons The wave vector of the perturbatlon has
to be less than that of the plasmons to ]us’ufy the use of the
adiabatic behaviour. The background plasma in general can be
inhomogeneous (as we have d1scussed for the cases of Raman and
Brillouin scatterlng) However, it is known that the ex1stence
of an 1nhomogene1ty does not affect the absolute nature of the
four -wave mteractlon( ) Therefore we will restrict our ana-

1ys1s to the case of a homogeneous turbulent plasma.

5.2  Basic Equ’ations and General Digpersion Relation:

The basic set of equations rrepréSehting the turbulent

plasma are gi'ven by

30 + V. (VW\M) i 4.1y
ujk‘ -
a N — o o = o (4.2
Yﬂ.;—( CJ" Vg VVa-) = {éﬁfx L+ ¢y \’ x & \ (4-2)
A &t s : L
IaE .-t 2B G g
¢ogt
VxR - +1 2E + 477 (4.4)
. ¢ At ¢ o
A o 2 - B S
VB o= 4T 9 D Ng=&- A ERL L aUB)
where &= 24 NGV &g Com-Ce =1




‘ ~rebt of the notatlons are standard

Here ¢~ denotes the species (electrons and ions) and the .

In the equilibrium state we assume the existence of a

large amplitude electromagnetic wave (plane polarized)

- =D S . I N : : s :
E«D A [-x(_; Ct.? (i:;‘g ( ho X o~ LQKJ") = i (_,r .¥. L” (4- 6)
propagating in a homogeneous turbulent medium. We assume

( Loy =P | ) satisfy the usual linear'dispérSion relation
L@ p & 9, . ,
R A S - e | %

Physicaliy one would expect the shortwavelength turbulence to
affect the dispersion relation of the electromagnetic wave. How-
ever it is obvious that these enter thrdugh the thermal correction
which is indeed very small The validity of the use of the linear
dispersion relation is (= & Ea[ T Wet L L sc that the relatlvx—

stic mass corrections can be neglected.

The equ111br1um is now perturbed by considering a den-
sity perturbahon going as X} (1 k X ~ iy wl)  and this perturbation
may be due to some normal electrostatic mode of the system
Due to the time and space dependent equﬂlbrlum state, currents
Cat W A, end kE A ke will be induced in the system

(here A]} is an irtége;-,). These side band modes (wh;ch may

be mixed e.s. and e.m modc's in general) interact wiffl"the‘ pump
wave field and shape out an effective potentlal through the pondero-
motive force which leads to the amphﬁcatmn of the initial pertur—
bation. This in turn enhances the 51de band amplitude and thls .
' bootstrap effect leads to the smultaneous ampllflcatmn of the side

‘bands ”Lnd the initial perturbatlon,‘
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For the case r>/ 143_ it is only necessary to cons1der ’che'
1owast order couphng The Fourier transformed wave equatlon

for the side band modes Wy = WT (s, Ry = RE k. may be written as

2 .2 —— . - :
¢ !? Wi )] R, Lij By = Alitlord (4.8)
L (.,'2 - e : CZZ ha
ky* — . ‘
here II denotes the unit dyadic and E+  represents E (4 ,R;t)$

The total curren’c can be writtén as

: . iy

J = Jy; + Towdinear = \'&lt‘% + %c(k;u)a\i})—y_ (4'5 9)

Loy eon nevneay —

where o =it (€4-1) /4w is the linear conductivity and <
is the 11near dielectric function, Vo =+ e Epy [we, and “w(’.‘f/“’)

is the perturbed electron density. n view of the fact that the side
bands are high frequency modes ( (u‘j} pa ) the contribution
to the current comes only from the electrons because the ions fail
to respondfo high frequency fields{due to their inertia.l Inverting

—

the expres'sivon for the side bands E; after plugging in the expres-

sion for the current T, we get
t—t = {. ‘&}‘ Y%—g;\,ld) } (ﬂ - l&%!<_‘.\ \_" . l‘,‘t k-‘- ‘, E+
o Pt AYCT N T (4.10)

where

g - 3

s . & ,A- L
Py = }"1 ¢t = ke 2k kub T AWy A (4.11)

The equation of motion for the electrons in the presence of Lang-

muir Turbulence becomes
MNe & Vpr 4+t =TV - ) V2 Ny, (4.12)
At e wi Zr Ve % ;
where, as discussed in the last chapter, the plasmon'clensity Nq is

conserved in phase space SO that




41L: ~ {,“- l‘(‘L )L\,, o ‘ L o
;& = o :& ““““ ’;;\V ‘e (4.14) .

Since the plasmon density is modulated by a long scale 1ength .

density perturbation, the perturbed dlstmbutmn is given by

» ci," - LJ};‘I_\; < 3.,‘.';6\/ ’ \_1_ S \/e:s
ave  O% Op (4.15)
(L3~ k'\"} )
H'ence

L e [Te- b (F 2943 | qn s oF - 90

Gng? 8 (4.186)

Therefore we see that the turbulence prov1des on effective pres—
‘sure which modifies the thermal pressure exerted by the electrons
on the ions. In fact under the present 01rcumstances we can have

a negative temperature system when the plasmon pressure exyceeds ;

the thermal pressure.

Hence the equation of motion becomes

% P T T e Y% W) C@an
e ™ : ;
where ‘ |
T<I = Te (‘ - éif&‘* Sl S l’i__ 1/ N do\/ \1
(2m) ™ RN T, (4.18)
where & [ o = S/ ln T defines Sipme i

plasmon energy density to the particle energy density and

o 2 <~«>‘J»\F/livef“Ca56 NV (Vk /w;-s: £ W
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denoctes the spectral bandwid’t:h’/_ -

“denotes the direction and /,5

of the turbulence.

Using Equations (4.1), (4.2) and (4.5) we get

/ AL)':)- l(? \’ D et s :
Ty +0% Jhe - Woetii = Mo V (%) (4.19
k o5 P ) i’ ; | oV { ) ;
and :
(2 - Tovop )i - whine = O
; C‘)t M (4° 20)
Eliminating Y1, between equatlons (4.19) and (4, 20) we get
T <
H Tr o Ik , )
L[ V + 4 ley +w)‘ SR Tie,
_{ | ”‘ ’ )( lL N }l ) t7\ ‘
- (3, - (\7 +WFL)\7 (ivi)  (4.21)
Taking e -
o~ L i( )\ "{ (_dt
i4 ¢ = Tie © . " e ' A
U T L’~“+—t N koox -t 0ot
Vl = V(' € + Yt - , 1
— ke - Lt B T e Lt
VC o \IIU e + \lt- [4

Hence equation (4.21) becomes

Tief—-kzvé"“ ) ﬁz‘\/(’"—fﬁ}ﬁ-’—- W e -

ho
'2 ':-. 5 - . Wy A . e
KIJ - \2 Vi T Wy /l'{}:,;)'li_*_-‘.' E._,k._) (4-22)
»mo.v ‘ . :

,.,.,'.;',_'. .:-9 )
- where we have used \, =1 F—'—EO/immu and > & s

—_—

Substituting the expressions L, and E_ we get the required.

dispersion relation
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1 ot ek, xv, S ez T2 2
o - } i Y S S R v
Xl - REhL EL T pEn  ESTE 4(4. 23)
v Ry D Ry &y G k- D- R &l d
where

(4. 24)
This is the general dispersibzi’ relation E{eriv.e'd‘by Drake et al.
‘usmg the Vlasov equatwn This d1sperswn relatmn descrlbes

the parametric coupling of a low frequency electrostatlc wave at -
( w,k . ) and two high frequency mixed electromagnetic -
electrostatic side bands at ( (vt g;‘m \w(;g k. ). The éffeét of
‘turbulence enters through the electron susceptibility function and

it is the effect of this turbulence that we wish to investigate.,

5.3 Dispersion Relation for Modulational Instability

in Presence of Langmuir Turbulence:

For the case of modulational instability the coupling
terms involving D, T will be considered and the electrostatic
contributions from ¢, and €.  will be neglected. We inves-

tigate the excitation of long wavelength instabilities with k{ 2 b (eB

Since 1y & &)F; and W <& ke equation (4.23) can be written
. as '
T SRt LR :
| . ‘l = T I)é I {(d—l{»\/ﬂ )A‘A, g }
Ae (X’H‘j ook 7 r - (4. 25)
— ~ o 2z ‘2, o
where AV cj’C = C Ro /(A)l j & T < k‘ //d {Jo
Hence ’ .
v.Z . -.7 (with, "Dc -
W = 30 T é [ |- <Y = Debye wave-
C (3 = ““{"MC >J number)

o :
Eran P (4. 26)
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'"where we have assumed Co D -i.e. the turbulence 1s L
essennally perpendlcular to the dlrectlon of the 1ncom1ng wave end

therefore almost parallel to the ‘modulat;on wave vector.
» We have used an equilibrium plasmon diStribution given

o -
“% s AT )

In this case the condition for the modulational instability becomes

“

2ukpe 5 (1= GHle ) (429
REc? (Sk,x“ﬁ Ay ST i
Therefore, for (_“M,c lqm e /\17\ \32‘ we see that the

effect of the turbulence is to reduce the threshold. Physmally
th1s can be understood as follows. If the dampmg of the electro?
magnetlc wave can be neglected (as we have done) then it is the
parncle pressure of the plasma which tends to inhibit modulahonal
1nsta‘b111ty This therefore determlnes ‘the threshold for the insta-
bility. In the presence of turbulence the effectwe temperature of

" the electrons is reduced and this _facﬂltates.the instability.

In eveluatmg the integral for the effective temperature

we have neglected the pole contribution. For the case of ‘t; \/jc =0,
this is justified because there is no real part to the frequency For |

k. . \/(-26 + O the approximation is valid as long as k. \’ ) / \~ My Ve Gosd LB

The other limit, i.e. {fler [&an &Ny s the
( )

condition for strong turbulence'”’. Such a high level of turbulence 2
can build up in the absence of any d1551pat1ve mechanism. We see
t’qat the modulational instability gets totally quenched We know that
under these c1rcumst'mces the plasma breaks up 1n’co blobs localized

in space and having random position. One such 1ocal1sed
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. “vstate 1s the envelope sohton Therefore the 'blobs' by 1nteract1“1g |
- amongst themselves can give rise to a steady state turbulent spectrum
as has been shown by Kmsep, Rudakov and Sudan( 1) Ttis the pre-
sence of»the, randomly distributed blobs Wthh prevents the el‘ectro—~
magnetic wave from fﬁrfher modulating the piasma.‘ We musf hDW’—'
ever remark that in our case the strength of the electromagnetlc |

wave is restrlc’ced by the condition ¢k, /mmc <1 . For

stronger pump waves the above result‘ls,niot valid.

We next solve e"quat'lic/)‘n/ in th"elrli.mit Cabg for which
® > ¢ and also assume that k. vac = G . The dispersion rela-

e = O

‘tion in this case simplifies to

R R N T o :
(w +V()(u)-é ) = —opY » (4.29)
‘ L e
Where V/ — éﬁ/’ka t" Z (,U’-’ i (r = /d\i:j:%&p(,
Cnf‘uv\- S
Hence : . LY
oo -t (- §0-P) T (n- 80 ans’ ] "
W)= 7 f SR ZL . ‘
(4.30)
Considering 1) ¢ a( we get

G w‘- \i (’q, § (’:_,(3))'-_ " 51 ; G ‘\(\4,‘31\)\,.3\
(qaéf“ﬁa .
W = (i-p) ‘(4'“ -
~ The first ﬁair of roots ig that for the usual modulational instability
if 'f{ is neglected and requires the usual threshold (j >
The second g1ves new roots for (g, <1, ie. below the usual thres-
hold for the electromagnetlc modulatlonal mstabxhty - We may

recall that Vedenov et. al( ) had obtalnecl a cond1t1on for the
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modulanonal 1nstab111ty of ‘plasmons and the growth rate above
the threshold vvould depend on ( £ e )5. S1m11ar1y in our case
although this is a newroot the growth rate goes as 1) Y e

a11d1ty of thls root requlres 4 ,) & which gives

A4

G p : : :
< C".u.u { _& ; i e
0 Enr s E e R : ‘ : o
: T A - (4.33)
San AN (1~(o) 23] ;
Hence even if f(;',“ w.{; n <Ql?\ti we can now sa’usfy this requir ement
so that even in the case of weak turbulence a- condensation of the

plasmons can take place with the help of the electromagnetic field,

4 Discussion:
Zlscussion:

In this chapter we have investigated the effect of high-
frequency short~wave1ength turbulence on the modulatlonal insta-
b111ty The turbulent spectra we have chosen are hlghly amsotro—
pic. Such situations may arise in laser fusion experlments Where
if the prepulse produces the turbulence, the plasma wave turbulence
due to the decay mstablhty will be almost perpendicular to the wave .
vector of the incident wave and if due to the linear conversion at the
critical density followed by the decay into eleétfbstatic modes, the
turbulent waves will propagate essenti‘all'y ‘alon‘g the direction of the

wave vector of the incoming light.

We have therefore mvestlgated the effect of such aniso-
tropic turbulence on the modulational 1nstab111ty and have shown
that if the cllrectlon of the turbulent waves is perpendlcular to the
1ncom1ng light, under the case of weak turbulence, the threshold
for the electromagnetlc Wave modulatlonal instability gets reduced
whilst for the cage of strong turbulence the instability is quenched

On the other hand if the turbulent s pectrurr 1s confmed toa small
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angle in the direction of the incident pin%np} then a new mode
exists whose grovvth-‘rate depends on th’e{ squerei_r'oot of thev
energy density of the turbulent inodes. This mode is in a
way reminiscent of the modulatlonal instability of plasmons,
hovvever Wlth the d1fference that it may occur even 1n the case

of weak turbulence bec'xuse of the presence of the pump.



.94

References

1. " A.A. Vedenov, A.V.Gordeev and L.I. Rudakov,
Plasma Physics § 719 (1967)

2. A.S. Kinsep, L.I. Rudakov and R.N. Sudan, Phys.
Rev. Letts. 31, 1482 (1973)

3. P. Kaw, G. Schmidt and T. Wilcox, Phys. Fluids
16, 1522 (1973) , |

4. J.P. Drake, P.X. Kaw, Y.C. Lee, G. Schmidt,
C.8. Liu and M. N. Rosenbluth, Phys. Fluids 17,
778 (1974) ‘ '

5. | A. Bruce Langdon and Barbara F. Lasinski, Phys.
Rev. Letts. 34, 934 (1975)

6. P. Kaw, R. White, D. Pesme, M. Rosenbluth,
G. Laval, R. Varma and G Huff, Comments on
Plasma Physics and Controlled Fusion II, 11 (1974)

T, L.IL. Rudakov and B. N, Sudang Cbmme‘n’ts on Plasma
Physics and Controlled fusion, 2, 21 (1974)



