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Preface

The main aim of the thesis is to understand the role of general relativity, particularly

of the significant characteristics like inertial frame dragging and centrifugal force re-

versal in the context of ultra compact fluid distributions and their magneto-spheres.

With the discovery of quasars, pulsars and x-ray binaries in the sixties and seventies,

it was realized that gravity needs to be discussed in the framework of general relativ-

ity for describing high energy astrophysical phenomena. Apart from the dynamics of

these systems, general relativistic effects become more important in the understanding

of equilibrium configurations and their stability.

Pulsars are modeled after rotating magnetized neutron stars. Even though much ef-

fort that had gone into the study of the structure and dynamics of electromagnetic

fields in the above context, it is not sufficient for a full understanding. Most of the

studies have restricted themselves either to the Newtonian formalism or have at best

considered the static spacetime metric (Schwarzschild geometry), which represents a

non-rotating body, thus missing the information which can be obtained by consider-

ing metric which includes rotational effects. Due to the non-linearity of Einstein's

field equations, it is difficult to get exact analytical solutions in general. Whereas it

is well known that black-hole physics has to be discussed using the [(err-geometry,

for rotating compact objects like neutron stars, one needs to look for appropriate so-

lutions describing the interior as well as the exterior. One of the ways is to solve

111



Einstein's field equations numerically, and the other method is to get analytical solu-

tions with some approximations. Hartle, in 1967, developed a formalism to calculate

the equilibrium configuration of slowly rotating relativistic bodies treating the rotation

upto second order in angular velocity. In that formalism, rotation was considered as

the perturbation on a non-rotating body. Later, it was extended by Hartle & Thorne

(1968) for considering equilibrium models with different equations of state. The ad-

vantage of this formalism compared to the numerical method which demands a lot of

computational power, is that despite approximations it can be used for discussions on

pulsars as the observed angular velocity of various pulsars is within the range where

slow rotation approximation is valid. In other words, if the angular velocity is less

than the Keplerian angular velocity then the Hartle- Thorne procedure can be used.

The composition and distribution of matter in neutron stars are not yet understood

clearly. Several equations of state are considered as representative models for the

neutron star's matter distribution and their interaction. Considering a few of these

realisticequations of state and using the Hartle- Thorne formalism, we have attempted

to study the consequent effects of rotation and matter distribution on the structure of

electro-magneticfields, centrifugal force, motion of particles and related phenomena,

some of which arise only due to relativistic effects and have no analogies in Newtonian

physics.

We have found that rotation does have an important bearing upon the magnetic field
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topologyas well as on the behaviour of ellipticity of the fluid distribution. The tra-

jectories of charged particles in a dipole magnetic field and quadrupole electric field

superposed on the external spacetime of a very slowly rotating mass (represented by

a first order correction to the Schwarzschild geometry) show distinction of the or-

bits for co- and contra-rotating particles as compared to the particle orbits around a

non-rotating body. Further, we found that for very stiff equations of state there is

substantial increment (';:::j25%) in the field strength near the center of the body due

to rotation. Ellipticity and centrifugal force of a slowly rotating contracting system

show extrema as a result of relativistic effects. Whereas the centrifugal force shows

maxima for both homogeneous and inhomogeneous distributions, the ellipticity shows

a negative behaviour in the case of inhomogeneous distributions indicating that the

system gets prolate and not oblate.
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Chapter 1

Introduction

The importance of the studies of compact objects endowed with magnetic field and

rotationwas realized after the discovery of pulsars by Hewish and his group (Hewish

et al. 1968),when Gold (1968) suggested that the observed pulsars could be rotating

neutronstars with surface magnetic field of around 1012G. The idea for the existence

of neutron star was proposed by Baade & Zwicky (1934), indicating these objects to

be highlydense, small in size and very strongly bounded gravitationally. They also

suggestedthe formation of such objects in supernova explosions,when the core of the

star collapsesunder its own weight till the neutron degeneracy pressure can overcome

gravitythus leading to an equilibrium compact object. Oppenheimer & Volkoff(1939)

did the first calculation for these stable equilibrium objects assuming the matter

compositionto be an ideal gas of free neutrons at very high density. Though in the

next 25-30years very few studies were devoted in this direction with Harrison et a1.

(1958),Cameron (1959) discussing the equations of state of such objects while Hoyle
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et al. (1964) suggested that the neutron star produced in supernova explosion to

be a rapidly rotating object, (see Tsuruta & Cameron 1966 also) possessing strong

magneticfields (Woltzer 1964). The discoveries of x-ray sources by Giacconi et aI.

(1962)and quasars by Sandage (1961) and Schmidt (1963), generated lot of interest in

thestudiesof compact objects like neutron stars and black holes. But the confirmation

of the existence of such objects was only accepted with the observation of pulsars

whichpossibly are rotating neutron stars. As the gravitational potential of these

compactobjects can be very large M/ R ~ 0.4 - 0.5, it has been suggested time and

againthat one needs to bring in the framework of general relativity for describing the

gravitationalfield of these compact objects. Despite the amount of work gone into

the studies of equilibrium structure, composition and emission mechanism of these

objectswhich we will be briefly discussing in the following sections of this chapter,

there still exist a number of unresolved problems.

Inthis thesis wehave basically studied the role of general relativity, particularly of the

significantcharacteristics like inertial frame dragging and centrifugal force reversal in

the context of ultra compact fluid distributions and their magnetospheres. In other

words we have attempted to study the consequent effects of rotation and matter

distribution on the structure of electromagnetic fields, centrifugal force, motion of

particleand related phenomena, some of which arise only due to relativistic effects

and have no analogies in the framework of Newtonian physics.

2



We present in this chapter a brief outline of the discussion of electromagnetic fields

on curved spacetime, inertial forces in general relativity and of slowly rotating fluid

configurations in the framework of general relativity, which indeed forms the basis of

the studies made and presented in the following chapters.

1.1 Electromagnetic fields and compact objects

Almostall the celestial bodies possess magnetic fields and electric fields within and

around them. Puzzles regarding the origin, evolution and their effects on the dynam-

ical and physical processes are not yet resolved. Various theories exist connecting

their generation and evolution with thermal instabilities, heating mechanisms etc. A

review by Doglinov (1988) discusses it in detail for various celestial bodies. Further,

in the case of massive compact objects like pulsars and quasars, the interactions be-

tweenelectromagnetic field and strong gravitational field also become very important.

Besides,the motivation to understand the dynamics of these objects, the studies of

electromagneticinteractions with strong gravitational field is a subject of theoretical

interest in its own right.

Accordingto Einstein's mass-energy relationship, E = mc2, any form of energy is

::l/mj~~~~~~~~.~~

eral relativity gravitational field is manifested in the form of curvature of spacetim
/'

Hence, in the presence of an electromagnetic field around a massive body, the geom-
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etry of spacetime is not only affected by matter distribution but also due to electro-

magnetic fields. Similarly, electromagnetic fields also get influenced by the massive

body. This interaction between the fields is studied by solving the Einstein's field

equationsalongwith the Maxwell's equations in curved spacetime. Solution of these

coupledset of the Einstein - Maxwell equation should in principle give the metric

potential gij of the background geometry of spacetime and the vector potential Ai

electromagnetic field.

In general, analytical solutions to the Einstein-Maxwell equations are not always

possible. Instead it is rather simpler to get solutions if the Einstein field equations

are decoupled from the Maxwell equations, which means that curvature of spacetime

is assumed to be affected only by the distribution of matter. This could be so, if the

energy due to electromagnetic field is very small as compared to the gravitational

potential energy. In most of the astrophysical situations, one can work with this

assumptionsince, for magnetic field as high as 1012G, the corresponding energy is

~ 1024 ergs which is very small as compared to the gravitational potential energy

~ 1040ergs due to IM0 object.

With such basic assumption, Cohen & Wald (1971) and Hanni & Ruffini (1973) cal-

culated the quasi-static electric field of a point charge in a static background both

insideand outside the radius at which the source was located. Whereas, Ginzburg &

Ozernoi(1965)obtained the solution with a dipole magnetic field, multi pole moments
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of quasi-static magnetic field outside the spherically symmetric static body were de-

rived by Anderson & Cohen (1970). All these solutions were asymptotically flat.

Further, Petterson (1974) also obtained the multipole expansion of the magnetic field

by solving the Maxwell's equations in curved spacetime which he used to derive the

magnetic field inside and outside a quasi-static current loop around a Schwarzschild

black hole.

Cohen et al. (1974), Chitre & Vishveshwara (1975) and Petterson (1974, 1975) dis-

cussed the solution of electromagnetic field in the Kerr geometry which basically

represents the rotating black hole and has very important relevance in the studies of

quasar emission mechanism of quasars. Studies of electromagnetic field due to a sta-

tionary charge in the source free region (Cohen et al. 1974) and due to an uncharged

current loop in the equatorial plane (Chitre & Vishveshwara 1975) were extended

by Petterson (1975). He first obtained the stationary axisymmetric electromagnetic

fields around a rotating black hole using NP formalism (Newman & Penrose 1962)

as described by Teukolsky (1973) and calculated the field of a loop in the equatorial

plane which has both current and a net charge. Further, he used it for obtaining the

minimum energy configuration of a black hole surrounded by a current loop. Once

the black hole reaches that state, no charge accretion will occur.

Though these studies laid the basic foundation for the studies of electromagnetic

interaction in static and stationary spacetime geometries and are also useful in the
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studies of black hole physics, they do not contribute substantially to the analysis of

pulsar emission mechanism. The reason for this is, the pulsars are rotating objects

and there does not exist any exact solution which describes the geometry of spacetime

around a rotating object. Though Kerr metric is an exact solution for a rotating

system, it is only valid for a rotating black hole. Black hole represents that state of

a body when the whole dynamics cease, thus the solution representing that stage is

not applicable to study the stellar structures like neutron stars and pulsars.

Just before the discovery of pulsars, Pacini (1967) proposed a magnetic dipole model

in which the rotational energy of neutron star was converted into the electromagnetic

radiation and in that field the particle motion was discussed. Later Ostriker & Gunn

(1969), Goldreich & Julian (1969) and Ruderman & Sutherland (1975), gave some

models for the pulsar emission mechanism and the formation of magnetosphere but

they did not consider a.nyrela.tivistic effects in their studies. In the last decade, effects

of spacetime curvature are included in the studies of pulsar beam width (Kapoor &

Datta 1985; Kapoor 1991), effect of light bending in x-ray pulsars and x-ray bursts

(Meszaros & Riffert 1987, 1988; Riffert & Meszaros 1988), pair production atten-

uation of gamma rays (Riffert et a1. 1989; Meszaros et a1. 1989) and gamma ray

emission from radio pulsars (Gontheir & Harding 1994), but all these studies con-

sidered only the dipole magnetic field in the static background. Recently, Sengupta

(1995) has discussed the effects of induced quadruple electric field due to a rotating
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dipole magnetic field. However, in his studies though the rotation was considered,

the dragging of inertial frame which is one of the important general relativistic effects

arising due to the rotation of the source, was neglected.

Since particle motion in any of the fields reflects the structure of that field, it is useful

to study the particle trajectories in the given field. There have been a large number of

studies of charged particle trajectories in electromagnetic fields on curved spacetime

(Prasanna & Varma 1977; Prasanna & Vishveshwara 1978; Chakraborty & Prasanna

1982; Stuchlik 1983; Balek et al. 1989 ) using Schwarzschild, Kerr, Ernst etc. as the

background geometries. Prasanna (1980) provides an excellent review on this topic

of charged particle motion in electromagnetic fields on curved spacetime. Further,

Stuchlik (1983) discussed the particle trajectories considering the non-zero cosmolog-

ical constant. In the Kerr-de Sitter spacetime mainly latitudinal motion is studied

whereas properties of purely radial trajectories are studied in Schwarzschild-de Sitter

background, besides analyzing the existence and stability of circular orbits. Circular

orbits of ultra-relativistic particles with high specific charge are discussed by Balek et

al. (1989). More recently, Prasanna & Sengupta (1994), have discussed the particle

motion on Schwarzschild background in the presence of a toroidal magnetic field. As

our interest in the pres'ent study is to look at the effects of inertial frame dragging on

the magnetosphere of a compact object, we first consider the solution of Maxwell's

equations in the exterior spacetime of a slowly rotating massive object represented
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by linearizedKerr geometry and then study the charged particle trajectories in that

field.It is found that the trapped bound orbits exist both for co- and contra-rotating

particlesfor various combination of the physical parameters.

1.2 Inertial forces in general theory of relativity

For the understanding of an equilibrium configuration and its stability, the role of

forcesacting on the system is very important. In Newtonian formalism a spherically

symmetric fluid distribution attains equilibrium when the gravitational force balances

the pressure gradient force (Chandrasekhar 1967),

dp GM(r)
dr = - r2 p (1.1)

(p is the total pressure, M(r) is the mass enclosed in the shell of radius rand p is

the density) and a test particle orbiting around a central object remains in a circular

orbit when the centrifugal force generated due to its rotation cancels the effect of

the gravitational force. In case of general theory of relativity, description of the

particle motion and the equilibrium configuration are in the language of curvature

of spacetime, which is basically represented in terms of metric component 9ij and its

derivatives. Particle trajectories are nothing but the geodesic equations given as

cPXi

ds2 + r~kujuk = 0 (1.2)
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in tha.t curved spacetime, which expresses the total acceleration in terms of connection

coefficients (qk) but separate terms do not represent the forces analogous to their

Newtoniancounterparts. The familiarity of Newtonian approach to understand the

dynamics of a system in terms of the forces acting on the system is often simpler and

helps to get a clearer picture of the physical process in comparison to the geometrical

quantities of general relativity. Abramowicz et al. (1988) (hereafter ACL) have

shownthat it is possible to introduce the concept of inertial forces within the realm

of general theory of relativity. They showed that in a conform ally p~ojected 3-space of

the 4-dimensional spacetime, the total force can be split in such a way that different

terms correspond to centrifugal, gravitational and Coriolis force like in Newtonian

mechanics.This specific frame is called optical reference geometry (ORG) as it was

found that null-lines of 4-spacetime are geodesics in such a projected 3-space.

Sincethen many of the dynamical studies are being carried out in optical reference ge-

ometrywhichhave not only shown many new or counterintuitive features (Abramow-

icz & Prasanna 1990 (hereafter AP) ; Prasanna & Chakrabarti 1990; Chakrabarti

& Prasanna 1990; lyer & Prasanna 1993) but have also helped to understand the

behaviour of certain other processes which were already found in the earlier studies

and were not in the agreement with their Newtonian interpretation (Seguin 1975;

Anderson& Lemos 1988; Chandrasekhar & Miller 1974; Miller 1977).
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One of the surprising features which had been noticed with this approach was the

behaviour of centrifugal force. It was found that a test particle orbiting in a circular

orbit at r $ 3m (m is the mass of the body in geometrized units) around a static

and spherically symmetric body experiences the centrifugal force acting towards the

center [AP], which was a very unexpected result, as in Newtonian physics it is well

established that the centrifugal force on a particle always acts radially outward irre-

spective of its distance from the central body. They also found that as a consequence

of reversal in the direction of centrifugal force, 1. the reversal of Rayleigh criterion

for local stability with respect to' infinitesimal, axially symmetric, quasi-stationary

perturbations, and 2. the inward transport of angular momentum by the viscous

torque around a black hole, which was found by Anderson & Lemos (1988) could be

explained.

Simultaneously, studies by Prasanna & Chakrabarti (1990), Chakrabarti & Prasanna

(1990) were devoted for stationary and axisymmetric case by considering Kerr space-

time in optical reference geometry. They found that the centrifugal force and Coriolis

force depend upon the angular momentum of the source and the test particle, and the

reversal of sign for these forces occur at several locations. These studies were done

by considering the Boyer-Lindquist coordinates which has the restriction of the ergo-

surface being the static limit surface, and hence the behaviour of these forces could

be analyzed only beyond the ergosurface and not from the event horizon onwards as

10



in the Schwarzschild case. This was rectified by Iyer & Prasanna (1993), using the

locallynon-rotating frame (LNRF) (Bardeen et al. 1972), which is one of the most

suitablecoordinate frames for discussing the dynamics of rotating configurations in

generalrelativity. It was found that, though the centrifugal force reverses its sign

twice below r = 2m which is of no consequence to any outside observer, it also re-

verses the direction once between 2m ~ r ~ 3m i.e. between the ergosurface and

the surface of the centrifugal force reversal in the case of a non-rotating body. The

shift of location is inwards from r = 3m, as the angular momentum of the black hole

increasesfrom 0 to m. Stuchlik (1990) studied the Schwarzschild-de Sitter spacetime

usingORG and discussed about the circular photon orbits, whereas Vokrouhlicky &

Karas (1991), Prasanna (1991),Prasanna & Iyer (1991), Aguirregabiria et al. (1995,

1996a, b) discussed charged particle motion in the presence of electric and magnetic

fields adopting this approach. Further, Nayak & Vishveshwara (1996 a, b) studied the.

inertial forces in various other spacetimes like Kerr Newmann, Reissner-Nordstorm

and Ernst using the covariant definition of inertial forces and the generalization of op-

tical reference geometry for stationary and axially symmetric spacetime (Abramowicz

et al. 1993, 1995). They also discussed about the connection of centrifugal force and

gyroscopic precession with the circular photon orbits.

While the above studies were made to see the dynamical behaviour around a rotating

and/or charged black hole, Abramowicz & Miller (1990) explained the change in be-
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haviour of ellipticity of a contracting body using optical reference geometry as found

by Chandrasekhar & Miller (1974). While studying the structure of a slowly rotating,

contracting body with homogeneous matter distribution in general relativistic frame-

work, Chandrasekhar and Miller found that around R ~ 2.3R, (where RII = 2m is

the Schwarzschild radius) ellipticity attains a peak instead of monotonic increase in

contradiction with the Newtonian physics. They speculated this effect to be one of

the consequencesof dragging of inertial frame arising due to the rotation of the body.

Abramowiczand Miller used the Newtonian force balance equation for a slowly rotat-

ing spheroid and by substituting the centrifugal force as obtained in [AP] for static

spacetime found the maximum of ellipticity. Since they found the peak of ellipticity

without even considering the background geometry of a rotating body it was apparent

that this behaviour was not due to dragging of inertial frame and could be explained

in terms of the modified form of the centrifugal force. A number of groups (de Felice

1991a,b, 1994; Barrabes et al. 1995) attempted to understand these anomalies with

different viewpoints, like analyzing the concepts of local and global outward and in-

ward directions. Sonego & Massar (1996) presented an assessment of the split of these

inertial forces and showed that the centrifugal force expression can also be derived by

separating the variables in the Hamilton-Jacobi and Klein-Gordon equations.

In our studies we have adopted [AP] approach and have studied the ellipticity and

the centrifugal force of a contracting system. Abramowicz and Miller had used the
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metric representing a non-rotating body while discussing a slowly rotating contract-

ing body, thus missing out the corrections due to rotation. We have considered the

Hartle-metric(Hartle 1967;Hartle & Thorne 1968), which represents a rotating body

and made the studies for homogeneous distribution (chapter 4) as well as for inho-

mogeneousmatter distribution (chapter 5).

1.3 Equilibrium structure of compact objects

As was mentioned in the beginning of this chapter, the necessity of general theory

of relativity in astrophysical studies was realized with the discovery of quasars and

x-ray sources. One of the initial steps in this direction needed was to obtain the

equilibrium structure of these compact objects, in the framework of general relativ-

ity. The solution of Einstien's field equations describe the equilibrium structure of a

fluid distribution in terms of the geometry of spacetime as expressed by the metric

components and its derivatives.

One of the simplest systems to be solved is, spherically symmetric static fluid dis-

tribution. Tolman (1939) obtained a number of exact solutions for such distribution

which not only included the then existing solutions: Einstien's cosmological solution,

Schwarzchild's exterior and interior solution and de-Sitter solution, but had few new

solutions which were relevant in the studies of stellar structure. The field equations

were written in such a way that it was somewhat easier to obtain the solution by
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taking an ansatz for one of the metric potential. At the same time Oppenheimer &

Volkoff(1939) studied the equilibrium configuration consisting of neutrons, using the

equation of state for a cold Fermi gas and compared their results with suitably chosen

special cases of analytical solutions obtained by Tolman. This was the beginning of

the studies of stellar structure considering the effects of strong gravitational field. In

the subsequent period of time, Tsuruta & Cameron (1967), Tooper (1966), Fowler

(1964, 1966) also studied the non-rotating stellar structure described by the static

and spherical symmetric distribution. An extensive review on the theory of stellar

structure for spherical symmetric static body is given by Thorne (1967).

Around the same time, importance of rotation was also noticed in most of the as-

trophysical objects. Meltzer & Thorne (1966), Wheeler (1966) discussed the role

of rotation in the damping of neutron star's oscillations and the possible source of

energy in supernova remnant, whereas Fowler (1966) indicated its importance in con-

nection with the existence of supermassive objects. Objects having higher masses

than the non-rotating configuration which can be stable against the gravitational col-

lapse, come in the category of supermassive objects. Due to the stability criterion,

it was realized that such strongly gravitating bodies could not remain in equilibrium

unless there existed a force to counterbalance the gravity. Rotation of supermassive

stars was considered as one of the possible mechanism. It was calculated by Fowler

that a non-rotating supermassive star was gravitationally unstable if its mass was
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greater than 106M0, whereas, including the effects of rotation in the post Newtonian

approximation, the upper mass limit was found to be 108M0' Thus to 'understand

theseobjects more accurately, it was required to develop the theory of rotating stellar

objects.

A non-rotating body is described by spherically symmetric and static configuration,

thus all the quantities are only functions of the coordinate r and there are three

independent field equations with four unknowns: pressure p, energy density p and

two metric components, one of which is connected with mass m(r) (Oppenheimer

& Volkoff1939). Considering an equation of state, this set of ordinary differential

equations is either solved analytically or numerically. As the rotation is introduced,

the spherical symmetry breaks down and the system acquires an axisymmetry and

stationary state, and the quantities no more remain () - independent, hence the field

equations become partial differential and non-linear. Getting the exact solution for

such equations is very cumbersome and tedious (Butterworth & Ipser 1976) and not

always possible too. In that case, there are two ways to study these rotating objects in

the framework of general relativity: approximation method and numerical method.

In the later case, the whole set of field equations can be solved numerically, and a

number of works in recent years have adopted this approach (Shapiro & Teukolsky

1985;Friedman et al. 1986; Bonazzola et al. 1993; Eriguchi et al. 1994; Cook et al.

1994 and the references therein ), but the numerical calculations require enormous
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amount of computational power. On the other hand there exists an approximation

scheme which was formulated by Hartle (1967) and was used to give models for white

dwarfs and neutron stars (Hartle & Thorne 1968). Hartle adopted a perturbation

technique (Chapter 2 contains the formalism of this method), in which he considered

the rotation of the object to be slow such that it could be considered as the pertur-

bation over a non-rotating body. This approximation is valid for values of angular

velocity which are below the Keplerian velocity. Despite its limitations for being an

approximate solution, it is an appropriate tool to study the neutron star models. A

typical neutron star of mass M ~ IM(!) and radius R ~ 10 km, has the critical an-

gular velocity as Ocrit. ~ 1/10km in geometrised units equivalent to ~ 3 X 104 cycles

per second. Whereas, even the millisecond pulsar with the period as small as 0.001

second corresponds to an angular velocity ~ 103 cycles per second, which is still an

order less than the Ocrit..

Using Hartle method Datta & Ray (1983) and Ray & Datta (1984), obtained the

lower limits on the neutron star's mass and moment of inertia and upper limits on

the radius for a stable configuration. Further Datta et al. (1992, 1995a, b) studied the

effects of rotation on the eigenfrequencies of radial pulsation, on the disk luminosity

and stellar angular momentum and in the studies of crustal density profile for the

various neutron star models. Chandrasekhar & Miller (1974) and Miller (1977) stud-

ied quasi-stationary semi-adiabatic contraction of slowly rotating bodies considering

16



this formalism for homogeneous and inhomogeneous matter distribution respectively.

In recent years Weber & Glendenning (1992), have also used this to check several

models represented by various equations of state with the data on pulsar periods and

found that the minimum periods achieved by pulsars can be easily calculated by this

approximation scheme even after putting the stringent limit on the upper value of the

angular frequency. Our studies are basically made using Hartle metric, and numerical

integration procedure for various parameters.

1.4 Composition of compact objects

To understand the structure of a compact object, the knowledge about its matter

distribution is very much essential. One of the simplest but ideal case is when it

is an incompressible fluid distribution. In that case density is constant throughout

the configuration. It is useful to study such distribution for getting some general

understanding about the objects, but to apply it in the real astrophysical situations,

studies of more realistic fluid distributions are required. There have been a large

number of studies in this regard starting from the pioneering work by Oppenheimer

& Volkoff (1939) to the recently discussed equations of state by Glendenning (1985),

Wiringa et a1. (1988) etc.

A compact object like neutron star is usually divided into, the following four density

regIons:
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. Near the surface of the star the density is upto 106 gm cm-3 and the matter

distribution is like a lattice of bare nuclei immersed in a gas of relativistic

and degenerate electron gas. The equation of state which basically relates the

pressure with energy density Le. p = p(p),is influenced by temperature and

magnetic fields but does not contribute much to the mass and the radius of the

star.

. The next region has the density range 106 gm cm-3 ~ p ~ 4.3 x 101lgm cm-3,

where the protons inside the nuclei undergo inverse beta-decay: C +p -+ n + v

(e- , p, n & v are electron, proton, neutron and neutrino respectively) providing

the neutron rich region.

. The third density region begins at about 4.3 X 101lgm cm-3 and is called the

neutron drip point. At such densities, some of the neutrons get detached from

the parent nucleus. These neutrons are unbound and stable.

. The fourth region has the density> 2.8 x 1014gm cm-3, which corresponds

to the density regions above the nuclear matter density. Hence, the individual

nuclei merge into each other and the resulting effect of such a process is a fluid

of neutrons alongwith the other elementary particles protons, electrons and

possibly muons, pions, hyperons etc.

The first three regions mentioned above are reasonably well understood. Comprehen-
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sive account of the physics of these regions are given by Baym & Pethick (1975, 1979)

and Canuto (1974, 1975). These regions form the crust of the star (2.8 x 1014gm

c.m-3is the density a.t the bottom of the crust whereas lower density regions than

this represent upper crust and surface) which is a small fraction (~ 10%) of the total

radius of the star. The fourth region which is above the nuclear matter density consti-

tutes the major part of the neutron star interior, hence the main contribution to the

mass and the ta.dius of the sta.t comes due to this te~ion. Irvine (1978) and Sha.piro

& Teukolsky (1983) provide the required background about the structure of neutron

stars and the physics of compact objects, respectively. The equations of state corre-

"
sponning to tnis nensity range ana aDove1Snot yet unaerstooa c1ear1y.'Though It IS

well known, that the main constituent at such high density is neutron, the presence

of other elementary particles are also not ruled out. Then the main problem in de-

termining equations of state at such high density is regarding the interactions among

these particles. Lack of proper many-body techniques to describe these interactions

add up further uncertainty about the actual equation of state of these objects. Since

systems with such high densities are only available in the astrophysical situations and

cannot be studied in the laboratories, reliable experimental information is also not

available. Thus, all the calculations involve either extrapolations from known nuclear

matter properties or field theoretical approaches.

In our studies, rather than looking into these aspects of the problem, we have selected
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few of the currently accepted equations of state representing the neutron star matter

distribution and have studied the behaviour of ellipticity, centrifugal force and the

structure of the magnetic field inside these bodies.

1.5 Plan of thesis

In this thesis we have basically studied the general relativistic effects of rotation and

fluid distribution of a compact body on the structure of electromagnetic fields and on

its equilibrium configuration. All the studies are carried for a slowly rotating com-

pact body which is represented by the Hartle-Thorne metric. In chapter 2 we have

described the formulation of this metric giving the set of equations required to be

solvedfor the equilibrium configuration. Chapter 3 deals with obtaining the electro-

magnetic fields around the slowly rotating body and the charged particle motion in

that field is analyzed. Chapter 4 contains the derivation of 4-force in optical reference

geometry and using that the eccentricity is derived for axisymmetric and stationary

metric. As a special case, behaviour of centrifugal force and ellipticity is analyzed

for a sequence of slowly rotating contracting homogeneous matter distribution. In

chapter 5 with the brief discussion of few equations of state, their effects on structure

of electromagnetic fields and on centrifugal force and ellipticity are pointed out. We

have summarized the results and conclusions of our works in chapter 6.
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Chapter 2

Equations of structure for slowly
rotating relativistic star:
Hartle-metric

2.1 Notation and Signature

In this thesis, we are using +2 signature for the 4-dimensional spacetime. The Latin

letters (i,j, k etc.) run from 0 to 3, where 0 represents time-component and 1,2,3

express space-components. The Greek alphabets (a, /3etc.) denote space-components

only. The components in a local inertial frame are expressed within a parenthesis O.

All the quantities are in geometrised units i.e. G = c = 1, unless specified otherwise.

G is the gravitational constant and c is the speed of light.
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2.2 Introduction

An equilibrium fluid distribution in the framework of general relativity is given by

Einstein's field equation (Schutz 1985; Misner et al. 1973)

, 1. .
R', - -Rb', = 81rT'.

J 2 J J
(2.1)

where T~ is the energy-momentum tensor describing the distribution of matter and

energy whereas R'j and R are Ricci tensor and its trace, the contracted form of

Riemman curvature tensor R~j k and specify the curvature of spacetime. These are

functions of the metric component 9ij and its first and second derivatives. The line

element of such a curved spacetime is

ds~ =9ijdxidxj. (2.2)

For a perfect fluid distribution, the energy-momentum tensor is given as

T~ = (p + p)uiUj + p8ij (2.3)

where p is energy density, p is pressure and ui is the four-velocity of the fluid distri-

bution.
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An axisymmetric and stationary metric which represents the spacetime geometry of

a rotating body has the most general form:

ds2 = 9ttdt2 + 29t,pdtd4> + 9,p~d4>2+ 9rrdr2 + 999dfj2 + 9r9drdO (2.4)

where the metric components 9ij are functions of r and 0 only as 4>and t are cyclic

co-ordinates due to axisymmetry and stationarity of the metric. The components

gtr, gt9, g,prand 9,p9vanish due to the geometric symmetries of spacetime which demand

the invariance of line element under the inversion of 4>-+ -4> and t -+ -t. With

suitable choice of co-ordinate transformation r -+ f(r), 9r9 can be made zero and the

metric (2.4) can be rewritten as (Chandrasekhar & Friedman 1972)

ds2 = -e2"'dt2 + e2).dr2 + e2#d02 + e2"'(d4>- UJdt)2, (2.5)

where v, A,Il,.,p and UJare functions of rand O. UJrepresents the dragging of inertial

frame, which appears due to the rotation of the gravitating body. This effect can

be noticed by calculating the angular velocity d4>/dtof a particle falling freely from

infinity with its angular momentum P,p= O. In this case it is found, that, though the

particle's angular momentum remains zero, it acquires angular velocity due to the

spacetime geometry surrounding the rotating body as given by

d4> p,p g,pt - g,ptUJ- - - - = - - --
- dt - pt gtt 9,p,p

(2.6)
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When the star is not rotating gc~ is zero, thus implying no dragging of inertial frames

in the absence of rotation. This effect is also known as Lense- Thirring effect (Thirring

& Lense 1918). Due to this effect the angular velocity (liJ) of the fluid observed by a

localinertial observersituated at a point (r,6) is liJ= n - "', where n is the angular

velocity of the fluid relative to the distant observer. This fluid velocity '" is more

important in determining the rota.tional effects like centrifugal force instead of the

angularvelocityn.

2.3 Hartle-metric

Hartle metric is an approximate metric representing the geometry of spacetime both

in the interior and exterior of a slowly rotating star. The rotation is treated to the

second order in the angular velocity n. The procedure to obtain the metric is as

follows:

1. The matter distribution of the rotating star is specified by an equation of state

p = p(p) which gives the relation between the pressure and mass-energy density of

the system.

2. The equilibrium configuration for a non-rotating body is obtained. The metric

that describes the spherically symmetric geometry of the non-rotating star has the
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Schwarzschild form

ds2 = -ellOdt2 + [1 - 2m/rt1dr2 + r2(dfJ2+ sin20d4>2), (2.7)

and the energy-momentum tensor T~ is diag(-p,p,p,p). Integrating the Tolman-

Oppenheimer- Volkoffequations of hydrostatic equilibrium

dp = -( + p)(m+ 41r-r3p)
dr p r(r - 2m)

(2.8)

dm = 411'r2p.dr (2.9)

and

-ldp
dvo = -2(p + p) drdr (2.10)

from the center (r = 0) to the point where the pressure goes to zero (r = R), one

gets the pressure, mass and metric coefficient Vodescribing the complete structure of

the non-rotating body. Initial conditions are m =0 and p = Pc,wherePc,the central

pressure is obtained for a given central density Pc, using the equation of state. Vois

matched with Schwarzschild exterior solution at the boundary R having the form

(ellO)r=R = (1 - 2;{). (2.11)

where, M represents the total mass-energy of the non-rotating body whereas m is the

mass inside a shell of radius r in geometrised units when G = c = 1.
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3. Slow rotation is introduced as the perturbation on the non-rotating body such

that the fractional changes in metric coefficients remain small. If the angular velocity

0 ~ (M/ R;3)(1/2),then the slow rotation approximation is valid. This condition also

implies that RO <: c, indicating that the particles have non-relativistic velocity.

Metric coefficients for the slowly rotating body are expressed as corrections on the

metric components of the non-rotating system and compared with the general form

of the axisymmetric stationary metric (equation (2.4)),

where, h, m'P'k represent the perturbations expressed in powers of angular velocity

O. Since the line element should remain invariant under the reversal of direction of

rotation, diagonal components of the metric have expansion only in even powers of 0,

whereas9tt/> is expressed in odd powers of angular velocity. In Hartle-metric, correc-

tions are considered upto second order in n due to the slow rotation approximation.

Hence h, m'P'k are of the order 02 and dragging of inertial frame w is linear in n.
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e211 = ello[1+ 2h], (2.12)

2,x - [1+ 2m'P/(r - 2m)]
(2.13)

e = [1 - 2m/r] ,

e2JJ = r2[1 + 2k], (2.14)

e2t/J = r2sin20[1+ 2k] (2.15)



Further, h, mp, k are expanded in terms of spherical harmonics as

00

a(r,O) = E a,(r)P,(O)
'=0

(2.16)

where P,(O) is the Legendre polynomial. As a consequence of slow rotation except

I = 0 and I = 2, all the other terms of the spherical harmonics expansion vanish

leavingthe form to be

h(r,O) = ho(r)+ h2(r)P2(O), (2.17)

mp(r,O) = mo(r) + m2(r)P2(0), (2.18)

k(r,O) = ko(r)+ k2(r)P2(0). (2.19)

ko(r) =0 is an additional condition obtained by an appropriate co-ordinate transfor-

ma~ionof the kind r -+ f(r) such that the form of the metric doesn't change. Thus

the Hartle metric is expressed as

ds2 = 2M -1
[-eVO(1 + 2(ho + h2P2»]dt2 + (1--;-)

[1 + 2(7; = ;;/;2)] dr2 + r2 [1+ 2k2P2]

[d02 + sin2 O(d</J- ~dt)2] + 0 (03) .

(2.20)

The stress-energy tensor for the fluid in the rotating star gets modified as

T~ = (p + ~p + p + ~p)u'Uj + (p + ~p)[j~, (2.21)

27



where

t::..p = (p +p)(Po.+ P2.P2(O)]

t::..p = (p+p)~;(PO.+P2.P2(O)]

(2.22)

(2.23)

are the changes in pressure and density in the interior of the star at a given (r,O)

in a reference frame that is momentarily moving with the fluid. Po' and P2. are

dimensionless functions of r proportional to SV, describing the pressure perturbation.

The components of four velocity are

ut = (-gft - 2ngt.p- g.p",n2t1/2 (2.24)

1
= e-IIO/2[1+ -r2sin2(}[;J2e-v- ho - h2P2],2 (2.25)

u'" = nut, uT = ufJ = O. (2.26)

4. Using the above mentioned equations and keeping the terms upto second order in

angular velocity in Einstien field equations and hydrodynamical equation of rotating

fluid configuration, the functions w, ho, mo, Po', h2, m2, k2 andp2. are calculated. The

required set of equations are given in the following subsection.

2.3.1 Evaluation of rotational perturbations

(a) Dragging of inertial frame:

The angular velocity of fluid (w), relative to the local inertial frame is found by
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integrating the differential equation

1 d

(.. .diiJ) 4 dj-- r;- + --CIJ= 0,r4 dr dr r dr (2.27)

from the center (r =0) to the boundary (r = R) with the initial conditions wr=o = (.j)c

and (Jiij/dr)r=o = 0, where

j = e-vo/2[1- 2m/rJl/2. (2.28)

Outside the star (r ;::: R), the dragging of the inertial frame is 2J/r3, hence

CIJ= n - 2J/r3. (2.29)

where, J is the angular momentum of the star. To integrate equation (2.27) the value

of (.j)cis chosen arbitrarily and correspondingly the angular momentum J and angular

velocity n are determined from

(

Jiij

)
-!~ -

J - 6 dr r=R
(2.30)

and

2J
n = (.j)(R)+ R3' (2.31)
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If a different value of n is desired then the function ~ can be resealed as

ZJnew= ZJold(Onew/Oold) (2.32)

and the resealed angular momentum is calculated from the relation

J= In (2.33)

where I is the moment of inertia of the star which depends only on the ratio of angular

momentum and angular velocity.

(b) The spherical deformation of the star:

The spherical part of the rotational deformation is obtained by integrating the set of

equations corresponding to 1=O. The differential equations are in mo and Po.. ho is

calculated using an algebraic relation obtained from the hydrodynamic equation, and

expressed as

h . 1 2 -vo-2 h
0 = -Po +:iT e U) + OC' (2.34)

With the initial conditions as mo = Po.= 0, the equations

dmo 2dp . 1 -2 4

(
dr;J

)
2 1 3dP-2- = 411T -(p + p)Po + -J r - - -r -U) ,

dr dp 12 dr 3 dr
(2.35)
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dpo* =
dr

mo(1 + 811"r2p)- 411"(p+ p)r2 * + ~ r4j2
(

drJi
)

2

(r - 2m)2 (r - 2m) Po 12(r - 2m) dr

1 d

(
r3j2u;2

)
+ --3dr r - 2m ' (2.36)

are integrated from the center to the surface of the star. These initial conditions

enforce the central density of the rotating star to be equal to the density of the

non-rotating star at the center. Outside the star, mo and ho, have the form

mo = 8M - J2 /r3 , (2.37)

ho =
8M '2
-+ J

r - 2m r3(r - 2m)'
(2.38)

where 8M is a constant representing the change in the total mass-energy of the

rotating system as M + 8M.

(c) The quadrupole deformations of the rotating star:

The quadrupole deformations due to rotation, are calculated from the equations for

1= 2, as given by

dV2 dVo
h

(
1 1dVo

) [

1 3dj2-2 1'2 4

(
drJ

)

2

]
- = -- 2 + - + -- --r -u; + -J r - ,dr dr r 2 dr 3 dr 6 dr (2.39)

dh2 -- -
dr

[ ( )

-1

]

dvo r dvo 4m-- + - (811"(p+p) - - ) h2
dr r - 2m dr r3

(d )

-1

[

d

(d )

-1

] (

..r--:

)

2
4V2 Vo 1 1 Vo 1 Vo 3'2 uU;

- r( r - 2m) dr + 6" 2 dr r - r - 2m dr r J dr
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1

[

1 dvo 1 (
dVO

)

-1

]
2dP-2- - --r + - r -I.J)3 2 dr r - 2m dr dr' (2.40)

where V2 = h2 + k2.

Outside the star h2 and V2have the analytic form, obtained as a sum of complementary

solution and a particular solution given by,

2 (
1 1

) 2 (
r

)h2 = J M r3 + r4 + KQ2 M - 1 , (2.41)

J2 2M 1 (
r

)V2 = -r4 + Krr(r-2M)]1/2Q2 M-1 . (2.42)

where, K is a constant and Q::" is the Legendre polynomial of the second kind,

Q22(~) = ~(e -1) log(
~+ 1

)
- 3e - 5~

2 ~ - 1 ;') l'
(2.43)

Ql(O = (e - 1)1/2
[
3e - 2 - ~Oo (

~+ 1
)]~2- 1 2 g ~ - 1 ' (2.44)

where ~ = riM - 1.

Inside the star the general. solution is expressed as
...

..

h2 = Ah2H+ hi, A H P
V2 = V2 + V2 (2.45)

where, superscript H denotes the homogeneous solution and P, the particular so-

lution. A is a constant which is calculated alongwith K by matching the interior

solution to the exterior solution at the surface of the star. The particular solution is
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found by integrating equation (2.39) (2.40) from the center with initial conditions as

V2 -+ 211"[~(Pc+ Pc)(jc(;)c)2- (~Pc + Pc)]r4, (2.46)

h2 -+ r2 (2.47)

The homogeneous solution is obtained by integrating equations

dV2 = - dllO h2
dr dr' (2.48)

dh2 -- -
dr [

dllO r

(
dllo

)

-1

(
4m

)]
-- + - 811"(p+ p) - - h2dr r - 2m dr r3

4V2 (dIlO

)

-1

r(r - 2m) dr
(2.49)

when

V2 -+ 211"(~Pc + Pc) r" (2.50)

h2 -+ r2 (2.51 )

at the center. Using the values of h2 and V2, non-radial perturbation factors m2 and

P2*are determined from the algebraic relations

tp

)
[

1 3

(
dP

)
-2 1 4'2

(
dW

)

2

]m2 = (r - 2m -h2 - 3'r dr W + 6r J dr ' (2.52)

P2* = -h2 - ~r2e-Vw2. (2.53)

Thus all the 'quantities describing the perturbation of the metric are calculated. De-

viation from spherical configuration is clearly understood by studying the displace-
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ment of constant density surfaces. Due to rotation these spherical surfaces change to

spheroidal ones whose radius is given by

r + ~o(r) + 6(r)P2(lJ), (2.54)

where

~o= -Po.(p + p)f(dpfdr), 6 = -P2.(P+ p)f(dpfdr) (2.55)

are corrections of order 112.

These constant density surfaces are in a particular co-ordinate system. An invariant

parametrisation of these surfaces can be obtained by embedding them in a three-

dimensional flat spacetime such that the intrinsic geometry of these surfaces is similar

to the constant density surface of the rotating system. Thus the obtained spheroid

in 3-dimensional flat space has the radius

r + {o(r) + (6(r) + r[v2(r)- h2(r))) P2(lJ), (2.56)

and the eccentricity

[1 2 f 2 ]1/2
e = - r(po/e)r(equator) (2.57)

= [_3(6 + V2 - h2)P/2.r (2.58)
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Further the change in the binding energy and star's quadrupole moment can be also

derived using the above set of equations, but we have only given those equations

which are required in our studies. The details and derivation of these equations are

given in the original paper by Hartle (1967) and are summarized in Hartle & Thorne

(1968). Thorne (1971), Chandrasekhar & Miller (1974) and Demianski (1985) also

discuss these sets of equations with slight variations.

2.4 Numerical procedure

The above sets of differential equations are solved numerically using the Runge-Kutta-

Verner fifth-order and sixth-order method. The subroutine 'divprk' of IMSL package

is used for this purpose, which is based on a code designed by Hull et al. (1976).

As main inputs, the number of differential equations (N), independent variable (t)

and a subroutine to calculate the derivative of dependent variable 'y' at value It' are

supplied. By providing a value for tolerance, the subroutine controls the norm of the

local error such that the global error is proportional. to the given value of tolerance.

In our programs we set error norms as the absolute error and with the appropriate

choice of step size run the program. To evaluate any function at the intermediate

values of any given data set, we use the Akima cubic spline interpolation scheme with

the help of IMSL subroutine 'dcsakm'. This routine is based on a method by Akima

(1970) to combat wiggles in the interpolant.
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To test our program, we have reproduced the results obtained by Hartle & Thorne

(1968) using the Harrison and Wheeler equation of state (see Harrison et al. 1965,

chapter 8). We also checked our result with Chandrasekhar & Miller (1974) for

homogeneous slowly rotating contracting body.
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Chapter 3

Structure of External
Electromagnetic Field around a
Slowly Rotating Compact Object
and Charged Particle Trajectories
Therein

3.1 Introduction

The structure of the electromagneticfield - the flux and the topology of electric

and magnetic fields outside a rotating compact object plays a very important role in

the understanding of the radiation emission from astrophysical objects like pulsars

and quasars. With the discovery of pulsars, the very first model proposed (known

in literature as the aligned rotator as given by Goldreich & Julian (1969)) adopted

the geometry of a dipole magnetic field and an induced electric field alongwith a

co-rotating magnetosphere for accelerating the charges pulled out from within the
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neutron star surface and producing the emission. Since then there have been several

discussions on the structure of the magnetosphere of compact objects (for a review see

Michel 1982) including that of black holes (Thorne 1983). Subsequently, though there

have been critics of these models (Punsley & Coroniti 1990) no completely understood

picture of the magnetosphere of compact objects has emerged yet. More recently there

has been a renewed interest, wherein modelists have tried to bring in the general

relativistic effects with the hope that it could contribute some more understanding

into the structure (Gonthier & Harding 1994;Sengupta 1995). However, these authors

continue to use the electromagnetic field structure in curved spacetime as given by

that for a static geometry without considering the possible effects that rotation might

bring in.

It is indeed important to use the appropriate metric, like the one given by Hartle &

Thorne (1968) for the exterior gravitational field of a slowly rotating star and then

look at the structure of the magnetic and electric fields in this geometry.In the fol-

lowing, we have presented a part of the possible solution restricting ourselves to look

for the solution for the electric field arising out of rotation, while the magnetic field

is assumed as given by Ginzburg & Ozernoi (1965).Though a fully appropriate treat-

ment should use all the effects of rotation in the gravitational potentials, we as a first

approximation consider only the effects of linear term in rotation which effectively

gives a minimal extension of the Schwarz schild field that includes the effect of 'frame
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dragging' upto linear order in the rotation parameter. Writing Maxwell's equations in

this geometry and assuming an ansatz for the electric field and the charge density one

can solve for both the fields,with the magnetic field solution being as given earlier.

While we appreciate fully the limitations of the so obtained solution,our main aim is

to look for the structure of possible trajectories for charged particles in a geometry

wherein some linear effects of frame dragging has been incorporated. There is always

the doubt that what changes could occur if in addition one considers the radiation re-

action terms in the discussion of trajectories. However, as the orbits obtained are for

the case of conserved energy and angular momentum of the particles, it is implicitly

assumed that the particle if radiating, gets supplied with energy and angular mo-

mentum from the background fields and thus could keep their trajectories (Prasanna

1984).The discussion of the trajectories even for this restricted geometry,would give

some idea of the magnetosphere of compact objects with magnetic fields.

3.2 Formalism

3.2.1 Maxwell's equations in curved spacetime

In the curved spacetime, which is represented by the line element

ds2 =9ijdxidxj (3.1)
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in a coordinate frame (xi), the Maxwell's equations have the form

Fi{j = ji, F(ij,k)= 0, (3.2)

First of the equations can be rewritten as

1
~ g

(V-gFij ) . - .i
V-:J ,J-)'

(3.3)

where Fij is the electromagnetic field tensor, ji is the current 4-vector and 9 is the

determinant of gij.

Electric and magnetic fields are defined as

Eo = F(o)(a)' Bo = fa fJ-yF(fJ)(-r), (3.4)

where F(a) (b)is the field tensor in local Lorentz frame and is connected to components

in the co-ordinate frame through the tetrad A(~):

F(a) (b) = A(~)A({)Fi j (3.5)

For the metric of an axisymmetric and stationary spacetime as expressed in equation

(2.5), with the tetrad

[

eV 0 0 0

]

~(a)= 0 eA 0 0
I 0 0 e~ 0

-l.&Je'" 0 0 e'"

(3.6)
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the components of field tensor have the form

Contravariant components (Fij) are obtained, using

Fij = i' gjmF'm (3.8)

If electromagnetic field is assumed to be axisymmetric and stationary then the electric

and magnetic fields will be independent of <p and t, hence from equations F(rt,t/J)= 0

and F(et.t/J)= 0, it is clear that the azimuthal component of electric field Et/Jis zero.

Further, assuming the fields to be poloidal in nature, the Maxwell equations (3.2 and

3.3) on an axisymmetric and stationary spacetime (equation 2.5), take the form as

-8r [e(v+/J) Er] + -Bn [e(v+>')Ee] - ev+v+>'+/Jp

a [e(II+/J)B ]- a
[e(v+>')B

]
- a""' ev+/JE - a"", ev+>' Eor e on r or r au 8 = ell+v+>'+/Jjt/J

--8r [e(II+/J)Ee]+ -Bn[e(II+>')Er]- ~ev+/JBr - WeV+>'Bo =

(3.9)
0

-8r [e(V+/J)Br] + -Bn [e(V+>')Bo]
= 0
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Ftbr -
eV+>'F(",) (r) = eV+>'Be

Ft/Je =
-ev+1J F(",) (e)

- -ev+/JBr

Fre -
ell+>' F(r) (9) - ell+>'Bt;

ell+V F(t) (t/J)

(3.7)
Ftt; - - ell+vEt/J

Ftr -
ell+>' F(t) (r) - "",ev+>'F(t/!) (r) - ell+>'Er-"",ev+>'Be

Fte -
ell+/J F(t) (9) + "",eV+/J F(t/!) (e)

= eV+/J Ee + "",eV+/J Br.



3.2.2 Equations of motion in axisymmetric and stationary
field

In general relativity, the trajectories of a charged particle of charge e, expressed in

the units of its rest mass me in an electromagnetic field are given by the covariant

Lorentz equations

ti; juj =eF~uj, (3.10)

where ui is the 4-velocity.

Since in an axisymmetric and stationary electromagnetic field the quantities are in-

dependent of the time co-ordinate t and the azimuthal co-ordinate </>, using the La-

grangian formalism two constants of motion associated with the energy E and the

specific angular momentum f, are obtained as

8£ - -E,--r -
8t

8£ - l--r -
8</>

(3.11)

(3.12)

where

fO 1 'i' )
'

A 'i

J., = 29ijX x + e iX, (3.13)

is the Lagrangian of motion and Ai is the electromagnetic potential related to field

tensor as Fij = Aj,i - Ai,j. In the background geometry specified by the metric (2.4),
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equations (3.11) and (3.12) are written as

9ttut+ 9t"'U'"= -(E + eAt) (3.14)

9"'tut+ 9"''''U'''= l - eA"" (3.15)

which on simplification give two first integrals of motion

ut = - [g",,,,(E + eAt) + 9t",(l- eA",)] / (9"''''9tt - 9~",) (3.16)

u'" = [gt'"(E + eAt) + 9ft(l- eA",)]/ (9"''''9tt- 9;",) (3.17)

3.2.3 Effective potential

Apart from the first integrals of motion obtained above, the metric itself provides one

more first integral through the normalization condition

9ijUiuj = -1 (3.18)

which gives the equation for radial velocity ur for the particle orbiting in the equatorial

plan~ e = 1r/2 and u(} = 0 by substituting equations (3.16) and (3.17) in equation

(3.18) as

(ur)2 = -1 2
9rr(9"''''9tt - 9l", \ [(9"''''9tt - 9t"') + 9tt(l- eA",)2 + 9<t><t>(E+ eAt)2

+ 29t",(E+ eAt)(l- eA<t»] (3.19)
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If the radial component of the velocity is zero at a point, it corresponds to the turning

point for the particle in its orbit. At those points where ur = 0, the particle is in

equilibrium under the interacting gravitational, electromagnetic and centrifugal forces

and hence has the minimum energy. The energy corresponding to the state where

ur = 0 is denoted as the effective potential energy (~J J)for the 'particle in its r-

motion. Studying the structure of ~JJ provides the insight to the boundedness and

stability of the particle orbits. This approach to analyze the particle trajectories

has been adopted in many earlier works (de Felice (1968), Wilkins (1972) used it in

connection with the studies of geodesics, whereas Prasanna & Varma (1977), Prasanna

& Vishveshwara,Chakraborty & Prasanna (1982) and others have used this approach

to study the charged particle trajectories in electromagnetic fields on Schwarzschild,

Kerr and Ernst spacetime).

Substituting ur = 0 in equation (3.19), one gets

~JJ = E-J; = -eAt - (9t~/9~~(l- eA~):i:(1/9~~)

((9</></>9tt- 9:</>)[9</></> + (i - eA</»2])1/2. (3.20)
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3.3 Field Structure

In the above section the general form of Maxwell's equations and equations of motion

are given. As it is apparent from looking at the form of the Maxwell equations (3.9),

finding analytical solution for such equations is a tedious task. For simplicity, we

have made certain assumptions which make their derivation simpler yet gives insight

about the importance of general relativistic effects of rotation.

As an exercise, we consider the case with the spacetime metric

(
2M

) (
2M

)
-1

~S2 = - 1 --;:- dt2 + 1 - -;:- dr2 + r2d02+ r2 sin2O(d4>-lNdt)2 (3.21)

with IN= 2J Ir3 ,

representing the linearized Kerr metric which is equivalent to an approximated form

of the Hartle metric including the corrections due to rotation only upto first order in

n. As it can be noticed, except for the 9t</>component, other metric coefficients are

same as the Schwarzschild exterior solution. Further, by calculating the Ricci tensor

it is found that, this represents the vacuum solution upto the first order in n.
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Thecomponents of connection qk and curvature R~k are given as

r91 = 1 - 6.1:!(1 - 2M )-t sin:!0
r91 r 7 r ,

rt = (1 - 2M )
-t

(M + 6J2 sin20) r'" = - 2J cot 0
rt r?" 7 ' Ot 7'

r4> - J (1 - 2M )
-t

(1 + 12J2 sin20) r'" - cot 0
rt - r:r r -;:r , /I'" - ,

rr - M (1- 2M ) + 8J2 (1- 2M) sin20 r/l - 1
tt -?" r 7 r , rO - r'

r:", = - sin 0cos0, (3.22)

an'd

ROr/l= _Mr , R;tr =
J sin:!0

[
3 - 4M + ~ sin2 0

]
,r3 r r

R/I 2M . 2 0
4>/14> = --r- sm , R;tr

- (1 - 2M )
-t

[

2M + 21]2 sin20
]- r 7 -;:r ,

Rt - 3J. 2 0
/1/14> - -r sm ,

t 12]2 ( 2M )
-1.

RrtO = --=r 1 - - smOcosOr. r '

R:tr
- 6J . 0 0- -::rsm cosr ' R~tr

6J2
( 2M )

-1
= -~ 1- - sinOcosOr r '

~t/l = 3J (1- 2M)sin207 ~ ' Rt - 3J ( 2M )
-1 .

/lr'" - -"?" 1 - --r- SID 0cos0, (3.23)

R~t/l = - (~ + 6~2sin20) ,
Rt - 6J ( 2M )

-1 .
r04>- -"?" 1 - --r- SID() COS(),

R t 3J ( 2M )-1. 2
rr4>= 7 1 - --r- SID (),

R t - 3J ( 2M )
-1.

4>rO - "?" 1 - --r- SID()COS(),
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rt = y. sin0cos0, r;t -
--> (1- 2) sin20,r

r;9I = - (1- 2¥-)-t sin20, r:t - - sin0cos0,r

rO/l r;",/ sin:!0 = (-r + 2M), rr M ( 2M)-t= - --:2" 1 - -r r'

Rt4>
= - ( + 92 sin2 ()) sin2 (), RUt4>

= - (1 - 2) sin ()cos(),

R;r4> =
- (M + 9J2 sin2()) sin20 R;t/l = (1- 2) sin () cos O.r '



The tetrad has the form for metric (3.21), as

A~a)-I -
(1 - 2~) 1!2

0
0

-lNr sin 0

0 0 0

(
2 U

)
-1!2

1-~ 0 0r
0 r 0
0 0 r sin 0

(3.24)

Assuming the electromagnetic field to be poloidal in character with non-zero charge

density p, the Maxwell'sequations take the form as

a 1 a
[ (

2M
)

-1!'1.

]ar [r'1.Br] + sin 0 ao r 1 - -;:- sin 0B6 = 0
(3.25)

a
[ (

2M
)

I!'1.

]

aE duJ- r 1 - - E6 - !:. = --r'1. sinOBrar r ao dr (3.26)

a
[ 2E ]

1 a
[ (

2M
)

-1!'1..
OE

]

'1..t
ar r r + sin0 ao r 1 - -;:- sm 6 = -r J

(3.27)

a
[ (

2M
)

1!'1.

B]
aBr duJ 2. BE 2 . O.t- r 1 - - 6 - - = -r sm r - wr sm Jar r ao dr

(3.28)

If there was to be no rotation (IN= 0) then the electric field E would not be present

and the equations (3.26) and (3.28) are of the same form as in the case of a static

non-rotating body ,solved by Ginzburg & Ozernoi (1965) for a poloidal magnetic field

on the Schwarzschild background; the solution for which is given explicitly in the form

(Prasanna & Varma 1977)

Br = 3JlcosO{In (1- 2~) + 2~ (1 + ~)} (3.29)
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31lsinO

{(
2M

)
-1 r

(
2M

) } (
2M

)
1/2

B() = 4M2r 1--;:- + M'n 1--;:- +1 1-7 (3.30)

where Il is the asymptotic dipole moment as defined through the field structure of

infinity

21l
Br ~ 3 cos 0r

(3.31)

B() ~ E- sinO
r3

(3.32)

Regarding the electric field, instead of assuming it to be simply an induced field (as

is familiarly considered), we shall take an ansatz and solve the equations, keeping the

magnetic field components in the same format as above. As a consequence of this we

find that the charge density is a linear function of radial component of electric field

glven as

Id""
.t --Er

J = "" dr
(3.33)

With this, using

Er = 2 ft(r)P2(coSO), and E()= 91(r) sin 20 (3.34)

and Bn B() as given by equation (3.29) and (3.30) in the set of equations (3.25)

to (3.28), one finds that ft and 91 have to satisfy the set of ordinary differential
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equations:

~
(

11

)
+ 291(1 - 2M)-1!2 =0

dr r r2 r
(3.35)

d

[ (
2M

)
I!2

]dr r 1 - -;:- 91 +31t =
9J

{ (
2M

)
2M

(
M

)}4M3r2 In 1 - -;:- + -;:- 1+ -; (3.36)

Instead of looking for an exact solution of this set we shall restrict ourselves to finding

a solution of the linear order in J and Af as given by

2Jp. (
3M

) 2Jp. (
5M

)It = --;;:s 1+ - ,91= --r 1+ -3r r r 2r (3.37)

With these one has an exact dipole magnetic field and an approximate quadrupole

electric field to linear order in U)as given by

B6 =

Br = - 3~~~0{In (1- 2~) + 2~ (1+ Af)}

3p.sinO
{(

1- 2M)-1 + r In (1- 2M) + 1
} (1 - 2M )

I!2

4M2r r M r r

-~~ P2(cosO) (1 + 3~)

(3.38)

Er =

E6 = -~ sin 20 (1+ 52~)r

and the charge density

p = ~f PdcosO)(1+ 3~) (3.39)
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which brings out the effect of 'frame dragging' on the magnetic fields, inducing electric

field and an effective charge density.

3.4 Charged Particle Trajectories

Though we have the exact solution of the magnetic field, we have studied the particle

trajectories keeping the contributions upto first order in M /rand I.A). Hence, the

electromagnetic four-potential Ai has the form

3p.sin2()
{

2

(
2M

) (
M

)}A,p= - n113 r In 1- -;:- + 2Mr 1 + -; (3.40)

At = - Jp. (1 + 12M)3r4 5r
(3.41)

which is obtained using the field tensor components

(
2M

)
-1/2

Fr,p = -r 1 --;:- Bosin(), Fo,p = r2 sin ()Br (3.42)

4J p. (
3M

)Frt = 3r5 1+ -;:- , FOt= 0 (3.43)

The effective potential for 'r-motion' in the equatorial plane () = 7r/2 is given by

(Prasanna 1980)

v = .~ (i+ $) + ;l [~ + ~ {In (1 - ~) + ~ (1 + ~)} ]

'" [(1 - ~) { 1 + [~ + ~ {In (1 - ~) + ~ (1+ m nr (3.44)
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where p = if, A = ;2' L = -iI, j = ~2 are the dimensionlessquantities.The

constants of motion take the form as

uT = ~ = (1- %)-1[(E-~) - ~{i

tp + ¥ [In(1- %) + ~ (1 + ~)] sin20}]

(3.45)
+

and

urP= d4>= ~ + 3A
[
In

(
1 - ~)+ ~

(
1 + !

)]
+ 2j uT

du p2 sm 20 8 p p P p3
(3.46)

where T = tlM and u = 81M are other dimensionless quantities. Equations of motion

in rand 0 directions are

f?= (1- ~) [- (~l + psin20 (u~r + ~ sin2 OuTurP + p (u8r]

+(l-~)-IJ~/ +j~(1+~)uT-iA(1-~)sin20

[pIn (1-~) + (1- ~)-1 + 1] urP

(3.47)

Pd20 = sinOcosO
[ (urP)2 - ~uTurP - iA{In (1-~) + ~ (1+~)} urP]

u p (3.48)
_Zupu8p

It is quite clear from the equations that if initially the particle is on the equatorial

plane 0 = 11"12and has no velocity in the O-direction (u6) 0 = 0, then it gathers

no acceleration in the 0 direction and remains confined to the same plane. This is

infact significant as one can see that, though in the locally non-rotating frame both
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components of the electric field are non-zero, (3.38) in the coordinate frame, where

the particle motion is being studied, F8t turns out to be zero (3.43) and thus in the

expression for O-acceleration (3.48) the particle at rest on the equatorial plane sees

no force acting on it in the O-direction. In general, in order to integrate the set

of equations (3.46) to (3.48) one needs five initial conditions viz., the position and

velocity. From (3.19) we have

(UP)2 = (1- ~) [-1 + (1 - ~) (uT)2

_p2 (u9r - p2sin20(u'"- ~uTr]

(3.49)

Starting from the initial position of the particle at (Po,7r/2,0), one can find out (uT)o

and (u"')o from (3.45) and (3.46) by stipulating the physical parameters E, L,'\ and

j. Using these values of (uT)o and (u"')o and any assumed value of (ul1)o constrained

by the condition:

[

- 2

]

1/2

Po(u9)0$ -1 + (1- :0) (uT)~- p~ ((u"')o - * (UT)O)
(3.50)

one can calculate (uP)o, the initial velocity in the r-direction from (3.49) and thus

get the entire initial data set for the orbits. However, in order to ensure physically

plausible trajectories it becomes necessary to ensure that

(1 - ~) (uT)~- pi ((UP)o- ~i (UT)O)' ~ 1
(3.51)
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3.5 Results and Discussions

The study of the 'effective potential' for r-motion for a particle confined to the equato-

rial plane would give basically the nature of possible orbits, particularly distinguishing

the bound and the unbound orbits, as the curves represent ~II as a function of r,

for the turning points. The three free parameters of the system L, A and j, would

naturally give a large number of possible configurations within their individual do-

mains and thus one can have sets of effective potential curves for different values of

these three parameters. Figures (3.1)-(3.9) represent some of the possible configura-

tions indicating the trends for bound and unbound orbits. Figures (3.1a) and (3.1b)

represent the cases for a fixed value of j, how the potential changes with changing L

for fixed A and vice versa, respectively. It is clear from these two that the two arms

of the potential well are made up of the two maxima, the inner one representing the

magnetic field barrier and the outer one, the centrifugal barrier. For a fixed L, as A

increasesthe potential minimum shifts outwards in r, whereas for a fixed A, it moves

inw!rds with increasing L. If both L and A are high then as shown in figure (3.1c)

the potential well appears quite far from the central object indicating the trapping

of particles far outside objects like neutron stars (p = 20,30). Fig. (3.2) shows an

example of the projection of the actual trajectories for a given j but with different

E, L and Avalues.
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Figure 3.1: Plot for effective potential (~JJ) vs. P (= ~). (a) shows change in L for
A = 100, j = 0.310, L = 40 (1), L = 70 (2), L = 100 (3), L = 130 (4), where (1)
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A= 250 (4). (c) is plotted with large valuesof A and L. j = -0.310, A = 3.e10 for
L = 1.e9 (1), L = 1.25e9 (2), L = 1.5e9 (3), L = 1.75e9 (4).
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As seen from figures (3.2b) and (3.2c) a particle with higher energy at the same initial

location cannot have a bound orbit as compared to the one with lower energy.

As our main interest in this is to look for the effects of 'frame dragging' (J), figure

(3.3a) shows the variation in the structure of potential for varying values of J for the

same L and ~. Whereas for J =0 the particles get bounced away even upto energies

'" E = 20,because of the ~ barrier, they would plunge onto the central star if it

has non-zero J and the barrier continues to decrease with increasing J. Since U) is

related to the angular momentum, it becomes clear from the expression (eqn. 3.38)

for the electric field that the sign of J determines the direction of the electric field

with J > 0 yielding the electric field inwards. Hence changing J one could expect to

reverse the situation and this is exactly the picture as presented in fig. (3.3b) with

j > 0, zero and < 0 for fixed L and ~. The potential maximum gets larger for J < 0

from j = 0, while it is lower for j > O. As also depicted in the same figure, if one

looks at the centrifugal barrier, it is larger for J > 0 as compared to the cases J = 0

and < O. This clearly shows that while particles within certain energy could be bound

in a potential well when J = 0 (fig. 3.4a), they could get unbound and move away if

j < 0 (fig. 3.4b) and can be pulled in by the compact object if J > 0 (fig. 3.4c) due

to the fact that the electric field acts outwards when J < 0 and inwards when J > o.
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Figure 3.2: Trajectories of particle projected in x-y plane.
(a): j = 0.311, .x = 100,L = 70.78,E = 6, Po = 3.
(b): j = 0.311, .x = 250, L = 70.78,E = 3,po= 5.5.
(c): Same as in (b) but E =5.
The turning points of the gyrating orbits in (a) are pmin = 2.56, pmax= 4.29 and in
(b) are pmin= 4.39, pmax= 6.72. In (c) it turns at pmin= 3.94 and shoots out.
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Figure 3.3: (a) shows change in ~ff curves for various values of j, i.e. j = 0.0 (1),
j = 0.271 (2), j = 0.541 (3), j = 0.813(4), where .x= 100 and L = 70.78. In (b)
dashed curve represents two sets of J, L and .xi.e. j = -0.31, L = 130,.x= 100and
j = 0.31, L = -130, .x= -100. Similarly,dotted curve representsother two sets i.e.
j = 0.31, L = 130, .x = 100and j = -0.31, L = -130, .x = -100. The solid line
is for j = 0, when both .x and L are positive or negative with the same values as in
other two curves.
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Figure 3.4: This indicates the distinction of kind of the trajectories for zero and
nonzero j and the trapped orbit. (a) is j = 0, ,\ = 100, L = 130, E = 15.5, Po = 3
then Pmin = 2.085 and pmaz = 3.81. (b) for same input values as of (a), but j = -0.31
shows the turning of the particle at pmin = 2.147 and then going away. (c) shows that
particle falls inside for same values of L and ~ as in (a) and (b), but with j = 0.31,
E = 14.0, po = 2.5. Its turning point is Pmaz= 3.269.
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As the structu're of the potential well does depend upon Land A(::: eJ1./m2), it is

necessary to see whether trapped orbits can exist when either one of these parameters

is negative. Figs. (3.5) and (3.6) show the nature of potential curves for A > 0, L < 0

and for the case L > 0 and A < 0, for j ~ 0, depicting no possible potential well.

In either case particles seems to have either plunge orbits if they are sufficiently

energetic or escape away having only one turning point. As A involves e the charge of

the particle and J1.the dipole moment (which also characterizes the direction of the

dipole) in order to have stable bound orbits, e and J1.should have the same sign, if Lis

positive, and be of opposite sign (A > 0) if L is negative. The structure of the potential

well remains the same for the sets L > 0, A > 0, j > 0 and L < 0, A < 0, j < 0 on

the one hand and for the sets L > 0, A > 0, j < 0 and L < 0, A < 0, j > 0 on the

other (fig. 3.3b). From the figures it is clear that the co-rotating particles (L and

j same sign) have a much smaller potential well as compared to the ones that are

counter rotating (L and j opposite sign) irrespective of the sign of the charge and

consequently the counter rotating particles see a much higher magnetic field barrier

than the co-rotating ones.

So far we addressed ourselves to the case of particles confined to the equatorial plane

having initial conditions ()o= 7r/2, (tl) 0 = O. On the other hand if (tl) 0 =I- 0 then as

the equations show the particle would have acceleration in the () direction and thus

it leaves the equatorial plane.
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However, if the particle's initial radial position was inside the potential well, it could

continue to have stable bound orbit moving both in r and () directions but confined

within an annulus rt, r2 and ()t, ()2, as is evidenced by the projection of these orbits

on XY and XZ planes (Figs. 3.7 and 3.8). As (ul1)o increases to its limiting value

the particle's gyro-radius increases indicating that the potential well is broader for

any trapped particle if it is not confined to the equatorial plane. When the particle

is outside the potential well, the particle gets bounced away by one of the barriers

depending upon the energy of the particle as shown in fig. (3.9) even when (u6)o =I O.

One of the main contentions in the case of pulsar emission mechanism has been

the location of the emission region. As it is the accelerated charged particles that

emit radiation, it becomes necessary to get a clear picture of the particle trajectories

which would show the trapped and unbound orbits. As seen above, the existence

and appearance of the desired magnetosphere would be a consequence of trapped

particles, which depend upon various combinations of energy, angular momentum

and the rotational period of the central compact object. However, the qualitative

picture which has emerged from the above analysis shows that both co-rotating and

contra-rotating trapped orbits exist over a wide range of physical parameters. The

example shown in (Fig. 3.1c) matches with the poloidal field strength of the order

of 1011 to 1012 gauss and in such a case the specific angular momentum needs to be

sufficiently large to acquire trapped orbits for low energy particles.
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lapter 4

antrifugal Force and Ellipticity
~haviour of a slowly rotating
tra compact object

L Introd uction

~ of the enigmatic problems in the context of pulsars is still the understanding

;he internal structure of rotating compact objects. In this regard, it is essential

~tudy the effects of rotation like centrifugal force and ellipticity in the context of

leral relativity. It is generally believed that for a rotating fluid configuration if

~ considers the 'force balance', in the purely Newtonian physics one encounters no

ange behaviour irrespective of the size of the compact object as the two traditional

'als the gravitation vis-a-vis the centrifugal force acting on a fluid element would

,.,ays be opposing each other. However, as mentioned in section (1.3), in the context

general relativity Abramowicz & Prasanna (1990) showed that for a sufficiently
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small size object, the centrifugal force acting on a test particle of mass mo in circular

orbit outside the object with mass M is given by

F: mov2 3McJg= -(1- - )r r' (4.1)

where v is the speed of the particle as seen in the conformally projected 3-space of the

optical reference geometry (ACL) . As seen from the above expression the centrifugal

force would not oppose gravity if the particle is situated at a distance r :::;3M. As

there could exist ultra compact bodies (Iyer et al. 1985) of size 2M :::;R :::; 3M, it

would become relevant to consider the effect of such a centrifugal force reversal on a

fluid element of a possible ultra compact rotating configuration.

Another important manifestation of the same result viz, introducing Newtonian forces

in general relativity is the explanation of ellipticity maximum for a rotating configu-

ration given by Abramowicz & Miller (1990), an effect discovered by Chandrasekhar

& Miller (1974). Though the explanation given by Abramowicz and Miller is qual-

itatively viable, quantitatively there appears a difference in the location of the el-

lipticity maximum, which perhaps is due to the fact that they considered only the

Schwarzschild background geometry, which does not take into account the influence

of rotation of the central body inherently.

We have re-examined the scenario by studying the possible centrifugal reversal and

the ensuing ellipticity maximum for a slowly rotating fluid configuration by adopting
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the Hartle - Thorne solution.

We start with a general axisymmetric, stationary fluid configuration and introduce

a formalism to treat the 'four-force' on a fluid element in the 3+ 1 conformal split-

ting and then adopting Hartle's solution as a specific example consider the centrifugal

force. Using the Newtonian principle of force balance equation for a rotating spheroid

we then derive a general expression for the ellipticity and again study its behaviour

for the Hartle solution. We find that the result matches closer to that of the Chan-

drasekhar and Miller result thus validating the more general expression derived.

. 4.2 Formalism

4.2.1 Equation of motion

The equation of motion for a perfect fluid distribution on a general curved space time

ds2 = gijdxidxj, (4.2)

is given by

(p + p)(u~uj) =-hijp,j (4.3)

where p is the matter density, p the pressure, ui the four velocity and hij the projection

tensor (gij+uiuj) with i and j taking values from 0 to 3. This may indeed be expressed
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as the 'four-force' acting on a fluid element

Ii := (p + p)(Ui;jUj)+ h{p,j (4.4)

. 1. .
= (p + p)[uJOjUj- '2UmUJOj9jm]+ hip.j , (4.5)

which when p =0 and p = mo, reduces to the well known four-force expression acting

on a particle (ACL)

. 1.
mo/" = PJ!:1. p,. - _pJpmo. g .

I - UJ I 2 I Jm,
(4.6)

where Pi is the 4-momentum of the particle.

4.2.2 3 + 1 splitting of spacetime

A general four-dimensional curved spacetime (equation( 4.2)) can be written as

ds2 = 9oo(dxO)2 + 290adxOdxa + 9a{3dxadx{3 (4.7)

which can be further split in terms of a positive definite metric specifying an absolute

3-space, with metric components /a{3 and terms associated with the time co-ordinate

as

ds2 = dl2 - 4.>(dt + 2c...JodxO)2 (4.8)
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where

dl~ = ;afJdxadxfJ,

900 = -C), 9ClfJ= ;afJ - 4C)""a""fJ'90a = -2C)""a,

Then the covariant components of 4-velocity can be expressed as

Uo = -~(UO+ 2waua),

Ua = 1apr/3 + 2uJaUo,

and using equation (4.5), four-force is rewritten in the form

/i == #-~:f£J~4~ +~

1

fa = (p + p)[ufJ8pua - 2{ u~uP8a(;~p - 4c)""~",,p)

+ 2uOufJ8a(,-:-2c)""p)+ (uO)~8a(-C)?}] + h!p.fJ

i.2.3 Optical reference geometry

[n a conformally transformed absolute 3-space

d12 = gafJdxa dxP

where gap = ;ap/C) and dI2 = C)df2, the 3-velocity is defined as

fia = C)ua,
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such that the contravariant components of 3-velocity in this conform ally transformed

reference frame are obtained using the metric 90/3as

- --/3
Uo = 90/3U . (4.17)

Then, equation (4.13) and (4.14) take the form:

fo = ~-1(p + p)u~8~uo+ h~p.~ (4.18)

f ..T.-1 ( )
[

-won- 2 0-~ + M;~ ..T.

]Jo = '¥ P +p u y ~uo + U U l.V~a 2~ Ua'¥

+2I.Vofo + (h~ - 2I.Voh~)p,~ (4.19)

where

M 2 2 - -~-v
0 = Uo - 9~v U U (4.20)

1.V~0 = 8~1.V0 -' 801.V~ (4.21)

'" -a ~ - 1-vO'-
(
- - -

)
y ~U = u~Uo- "29 Uv 9~0'. a + 900', ~ - 9~0. 0' . (4.22)

For an axisymmetric and stationary spacetime (equation(2.5)),

ds2 = -e2Vdt2 + e2>'dr2+ e2~d(P + e2"'(d<jJ- I.Vdt)2, (4.23)
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adopting the 3 + 1 conformal slicing on the locally non-rotating frame (LNRF)

(Bardeen et al. 1972), the 3-components of the forces ((4.19)) simplify to

101= ~-l(p + p) [UI"{7~UOI+ ~! OOl~] + h~p,~
(4.24)

which in fact, when zero, gives the equation of hydrodynamic equilibrium for a ra-

tating fluid configuration. The terms u~V~ua and (MJ /2~ )oa~ correspond to the

'centrifugal acceleration' and the 'gravitational acceleration' respectively. The radial

components of these forces for metric (4.23) are

Fe! = e2tP+2I1(O-w)2(t/J' - v') [e211- e2tP(O-w)2r1 (4.25)

Fg = e2I1v',

where prime denotes differentiation with respect to r.

4.2.4 Ellipticity

It is well known that a rotating fluid configuration deviates from spherical symmetry

and depending upon the degree of rotation the equatorial diameter expands whereas

the polar diameter contracts thereby producing a change in shape. The various equi-

librium configurations of rotating fluids have been well discussed in the literature, and

the sequence goes through Maclaurin spheroids to Jacobi ellipsoids (Chandrasekhar

1969). For slowly rotating configuration one can consider the Maclaurin spheroid
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the ellipticity defined through the usual definition of

f = 1 - (1 - e2)1/2
(1 - e2)1/6 ' (4.26)

ng the eccentricity defined as e = (1 - b2/a2)l/2, where b and a are polar and

Gorial radii respectively.

aurin had shown (Chandrasekhar 1969) that the acceleration due to gravity at

quat or and pole has the values

2 G (1 - e2)t [ . 1 2 1
gequator = 7r pa 3 szn-e-e(l-e)2]e

9po/e
(1 - e2)l [ 2 1 . -1

]- 47rGpa 3 e-(I-e)2szn e,e

(4.27)

~in he had considered the possible effects that could arise due to the internal

es in the body. However, as we are looking for a solution in general relativity,

~in the gravitational field inside the body is described through a metric which

)lution of Einstein's equations for a perfect fluid distribution, the gravitational

tials 9ij would be incorporating the effects of all characteristics of the fluid

bution . With this proviso, in the new language of optical reference geometry it

icient to consider the modified expression for the gravitational and centrifugal

~rations as given by (4.25) and use the Newtonian force balance equation to relate

:centricity with the acceleration. Thus generalizing the Newtonian equation

gequator - a02 = 9po/e(1- e2)t. (4.28)
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with the ellipticity defined through the usual definition of

f = 1 - (1 - e2)1/2
(1 - e2)1/6 '

(4.26)

e being the eccentricity defined as e = (1 - b2/ a2)1/2, where b and a are polar and

equatorial radii respectively.

Maclaurin had shown (Chandrasekhar 1969) that the acceleration due to gravity at

the equator and pole has the values

( 2 12 G 1 - e )2 [
. 1 2 1

gequafor = 1r pa 3 szn- e - e(1 - e )2]e

gpo/e = 41rGpa(1 - :2)t [e- (1 - e2)t sin-Ie],e

(4.27)

wherein he had considered the possible effects that could arise due to the internal

stresses in the body. However, as we are looking for a solution in general relativity,

wherein the gravitational field inside the body is described through a metric which

is a solution of Einstein's equations for a perfect fluid distribution, the gravitational

potentials gij would be incorporating the effects of all characteristics of the fluid

distribution. With this proviso, in the new language of optical reference geometry it

is sufficient to consider the modified expression for the gravitational and centrifugal

accelerations as given by (4.25) and use the Newtonian force balance equation to relate

the eccentricity with the acceleration. Thus generalizing the Newtonian equation

gequator - a02 = gpo/e(1- e2)!. (4.28)
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to

Fge - Fel = Fgp(1- e2)1/2 (4.29)

and using the force expression as given by

(0 = 1r/2) : File = e211O(",1(/2)1I~(r,1r/2), (4.30)

(0 = 0) : FliP = e211O(",O)II~(r,0), (4.31)

and Fel as in (4.25), the eccentricity of the configuration would be given by

.' = (1 - [Fo/;'pFgo n (4.32)

and the ellipticity in the limit of slow rotation e « 1, is

1
t:= '2e2. (4.33)

4.3 Hartle potentials and optical reference geom-
etry

In the previous section we have described the forces on an axisymmetric and sta-

tionary spacetime considering the optical reference geometry and then generalized

the Newtonian force balance equation to derive the ellipticity for a slowly rotating

spheroid. As the Hartle metric represents a slowly rotating body, expressing the forces
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as obtained above in terms of the Hartle- Thorne potentials upto second order in 0,

one gets

Fc! = r'JCj;'J(ljr- l/~j2), (4.34)

Fge = ~eVO[I/~(1+ 2ho - h'J) + 2h~- h~],
(4.35)

Fgp = ~eVO[I/~(1+ 2ho + 2h'J)+ 2h~ + 2h~],
(4.36)

yielding for the ellipticity

'J-'J

f = 3(h'J+ h~jl/~)+ ~ (2jrl/~ - 1)
eVO

(4.37)

in optical reference geometry.

4.4 Quasi-stationary and semi-adiabatic contrac-
tion

As described in chapter 2, for a given central density and angular velocity, we can

obtain all quantities describing the structure of a slowly rotating body. A sequence

of such configurations with decreasing radii R can approximately indicate the quasi-

statio~ary and semi-adiabatic collapse of the body if mass M and angular momentum

J are conserved throughout the sequence (Chandrasekhar & Miller 1974, Miller 1977).

This is so because, for an axisymmetric gravitational contraction, the gravitational

radiation does not carry away angular momentum and the change in mass due to
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energy liberated through radiation is of the fourth order in O. Since we are keeping

corrections upto 02, J and M are constant in this approximation. While studying

the homogeneous distribution numerically, we can fix mass and angular momentum

separately for the whole sequence, as pressure is not related to energy density. In that

case, for a fixed value of M and varying radius R, we can calculate the correspond-

ing values of energy density thus describing the structure of the non-rotating body.

Further, using equations (2.31) and (2.32), for a fixed value of angular momentum J,

we calculate the angular velocity and dragging of inertial frame, which are used to

obtain all other rotational perturbations.

4.5 Results and Discussion

As a first attempt we have studied the behaviour of centrifugal force and ellipticity

in optical reference geometry for a slowly rotating, contracting homogeneous fluid

distribution and have compared the results with the ellipticity

3

[

6(r)

]fH-T(r) = -2 -;:- + v2(r)- h2(r) , (4.38)

which is derived using equations (2.57) and (4.33), and has been studied by Chan-

drasekhar & Miller (1974).
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For the homogeneous distribution, the non-rotating structure is described by the

Schwarzschild interior solution. Hence, using the analytical forms of pressure, mass

and metric function 110,the rotational corrections are computed by integrating the set

of differential equations (equations 2.27 to 2.49) with the specified initial conditions,

using Runge-Kutta method. Then the centrifugal force and ellipticity are obtained

by substituting these quantities in equations (4.34) and (4.37).

Writing the expressions in dimensionless units

- Fc!
Fc! = ,-y.;""Tru \ ,

- f

f = (J2/R~)' (4.39)

where R.( = 2M) is the Schwarzschild radius, we have evaluated these quantities for a

sequence of homogeneous slowly rotating configurations with decreasing radii keeping

M and J conserved.

A comparison of Fig (4.1) and Fig (4.2) demonstrates the correspondence in the

general behaviour of the ellipticity and the centrifugal force, which supports the

conjecture of Abramowicz & Miller (1990) that the main cause of the reversal in the

behaviour of ellipticity is not associated with dragging of inertial frames, but instead,

can be connected to the general change in behaviour of centrifugal effects in general

relativistic situations i.e., in strong fields.
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However, comparing our present result with that of Abramowicz and Miller, who

had obtained the maximum at R/ R, = 3, using pure Schwarzschild geometry, we

see that incorporating the effects of rotation in the geometry (even approximately)

improves the result as the maximum R/ R, ~ 2.75 shifts closer to that obtained by

Chandrasekhar and Miller (1974) R/R, ~ 2.3 (Fig 4.2, Table 4.1).

Regarding the centrifugal force, the general expression obtained above does show the

reversal at R/R, ~ 1.45 and a maximum at R/RII ~ 2.1 (Fig 4.1). It is interesting

to note that even after including the effects of fluid distribution in the space time

geometry, the centrifugal force reversal seems to occur closer to the value as was

known in the Schwarzschild geometry. However, as the ellipticity maximum indicates

a possible change in shape of the configuration, it is to be noted that our expression

shows that for a collapsing configuration, the change occurs earlier (R/ RII ~ 2.75)

than what had been obtained by Chandrasekhar and Miller (R/ RII ~ 2.3). As the

shape of the body does depend upon the ellipticity as its value starts decreasing after

reaching a maximum, the body would in principle tend towards a different shape

from that of a spheroid. In fact, it is interesting to note here that while discussing

the "induction of correct centrifugal force in a rotating mass shell" Pfister & Braun

(1985) have also observed that the ellipticity function shows a behaviour of reaching

a maximum, while the function itself is negative indicating the shape of the shell to

be prolate. However, as the inside of the shell is considered to be flat, one cannot
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compare our result exactly with this. But the fact that introduction of the correct

centrifugal force in the kinematics does lead to a change in the shape of the body is

indeed interesting and needs further analysis. This deformation might have interesting

consequences for the generation of gravitational radiation.
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R/R. fH-T f Fc!

1.125 5.604732E+0 9.135673E+0 -1.105476E+0
1.150 6.090158E+0 9.419599E+0 -1. 111393E+0
1.200 6.728176E+0 9.973936E+0 -1.006851E+0
1.300 7.970848E+0 1.121079E+l -6.367954E-l
1.400 9.033281E+0 1.249040E+l -2.781407E-l
1.500 9.893101E+0 1.370501E+l 1.036231E-4
1.600 1.056893E+ 1 1.479904E+1 1.982318E-1
1.700 1.108810E+1 1.575131E+1 3.318464E-1
1.800 1.147746E+1 1.656041E+ 1 4.172701E-1
1.900 1.176069E+l 1.7234 71E+ 1 4.679588E-1
2.000 1.195771E+1 1.778676E+ 1 4.941394E-1
2.100 1.208496E+ 1 1.823045E+ 1 5.033122E-1
2.200 1.215588E+l 1.857943E+l 5.008806E-l
2.300 1.218139E+1 1.884639E+ 1 4.906997E-1
2.400 1.217034E+ 1 1.904277E+l 4.755023E-l
2.500 1.212995E+l 1.917867E+ 1 4.572160E-l
2.600 1.206606E+ 1 1.926295E+1 4.371926E-1
2.700 1.198343E+ 1 1.930324E+1 4.163726E-1
2.750 1.193634E+1 1.930894E+1 4.058754E-1
2.800 1.188595E+1 1.930607E+ 1 3.954040E-l
2.900 1.177679E+ 1 1.927725E+1 3.747254E-l
3.000 1.165855E+l 1.922168E+ 1 3.546271E-1
4.000 1.029998E+ 1 1.788030E+ 1 2.021015E-1
5.000 9.029724E+0 1.615380E+ 1 1.209157E-1
10.000 5.351696E+0 1.014123E+1 1.982923E-2
20.000 2.896627E+0 5.641617E+0 2.794844E-3
35.000 1.710614E+0 3.370030E+0 5.475721E-4
50.000 1.213098E+0 2.400532E+0 1.914418E-4
80.000 7.668072E-l 1.523602E+0 4.751822E-5
100.000 6.157617E-l 1.224927E+0 2.446291E-5

Table 4.1: It shows the ellipticity {(equation 4.37), {H-T (equation 4.38) and the cen-
trifugal force Fc! (equation 4.34) (units of these quantities are described in equation
4.39) for a sequence of decreasing radius with conserved mass and angular momentum
for a homogeneous distribution.



Chapter 5

Effects of equations of state
electr~magnetic fields and
equilibrium structure

on

5.1 Introduction

As mentioned in the chapter 1, the structure and dynamics of neutron star depend

sensitively on the equations of state (EOS) at high densities p > 2.8 X 1014gm cm-3.

Due to lack of exact theory for the interactions among the particles at such high den-

sities, a number of equations of state exist which are considered to be good candidates

to model neutron star's interior. Each of these equations of state are in agreement

with some of the observational facts. Though a number of studies (Sabbadini &

Hartle 1973; Chitre & Hartle 1976; Iyer et al. 1985 etc.) are devoted to estimate

the maximum and minimum stable masses, radius etc. of these objects based on

some general assumptions, these quantities are sensitive to the choice of equation of
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state. Cook et al. (1994) and Salgado et al. (1994a, b) studied general properties

of a rapidly rotating neutron star for a large number of (~ 10 - 15) equations of

state. Weber & Glendenning (1992) studied and tabulated the properties of rotating

neutron star for 17 EOS considering the Hartle metric. Further Datta et a1. (1995a )

and Bhattacharya & Datta (1996) discussed neutron star crustal density profiles and

the magnetic field evolution inside the star for several EOS models. They found that

the stiffer the equation of state, larger the crust thickness for a given neutron star

mass, leading to the larger time scales for field decay.

Since centrifugal force and ellipticity become important to understand the shape and

the deformation of a rotating body, we have studied their behaviour for slowlyrotating

contracting system for four equations of state, and further extended the analysis of

electromagnetic field structure inside the star for these equations of state. Though

the choice of these equations of state is not very exhaustive, it serves to illustrate

the role of equations of state (especially dependence on the softness and stiffness) in

deciding the shape and magnetic fields of these objects. A brief description of these

equations of state models is given in the following section. In section 3 their effects

on centrifugal force and ellipticity are discussed, whereas description of the form of

magnetic field inside the star and its dependence on equations of state and rotation

is given in section 4 and 5.
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5.2 Equations of state

Model A : Pandharipande (1971a, b) studied the behaviour of dense neutron

matter and hyperon matter respectively using a many-body theory based upon the

variational approach suggested by Jastrow (1955). To describe the nuclear interac-

tions, the Reid nucleon-nucleon potential was used (Reid 1968) which was suitably

altered to represent the different isospin states of the hyperonic matter (A, E%). The

suggestion that hyperons may be additional baryonic constituent of neutron star in-

teriors was first made by Ambartsumyan & Saakyan (1960). There have been several

theoretical attempts aimed at deriving the equations of state of baryonic liquid made

up of neutrons, protons and hyperons. However, this still remains an open problem as

knowledge of hyperon-nucleon and hyperon-hyperon interactions and their coupling

constants have large uncertainties. In our studies we are considering the Pandhari-

pande (1971 b) equation of state representing the hyperonic matter.

Model B : Wiringa et a1. (1988) proposed a model for dense nuclear and neu-

tron matter which is firmly based on available nuclear data. This is a non-relativistic

model based on the variational method and includes three-nucleon interactions. The

nuclear matter is in beta equilibrium with electrons, protons and muons. The three-

body potential considered by the authors, includes long-range repulsive parts that

are adjusted to give light nuclei binding energies and nuclear matter saturation prop-
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erties, alongwith the intermediate and short-range parts coming from exchange of

pions, heavier mesons or overlaps of composite quark systems. The model is an im-

provement over the calculations of Friedman & Pandharipande (1981) regarding the

long-range attraction term in the Hamilton. These authors gave three models denoted

as: AVI4+UVII, UVI4+UVII and UVI4+TNI, the first term in each of it expresses

the two-body potential whereas second term in each of this model denotes the phe-

nomenological three-nucleon interaction. We are considering the model, UVI4+UVII,

and will be referred in our studies as Model B.

Model C : Walecka (1974) gave an EOS for pure neutron matter at high densities

based on a relativistic approach, using scalar and vector meson exchange interactions.

The exchange of these mesons among nucleons is known to provide the short-range

repulsion and intermediate-range attraction in the nucleon-nucleon potential. The

effective interaction is characterized by the meson parameters such as their masses

and coupling constants, which are adjusted to reproduce the saturation property of

equilibrium nuclear matter.

Model D : Sahu et al. (1993) gave a field theoretical EOS for high density mat-

ter, assuming the composition to be neutron rich matter in beta equilibrium based

on the chiral sigma model. The model includes an isoscalar vector field generated

dynamically and reproduces the empirical values of the saturation density and bind-

ing energy of equilibrium nuclear matter. It also gives the right isospin symmetry
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coefficient for asymmetric nuclear matter by incorporating the interactions due to the

isospin triplet p meson. The energy per nucleon of nuclear matter is in good agree-

ment upto about four times the equilibrium nuclear matter density with estimates

inferred from heavy-ion collision experimental data.

An equation of state is said to be stiff, if for a given density it has larger net pressure

which comes due to more repulsion among the constituent particles. In the case of

soft EOS it will mean higher attraction. Model A and B are relatively soft EOS

whereas Model C and D represent very stiff EOS. Fig (5.1), show logarithmic plot

(p vs p) for these four EOS. These EOS are joined with EOS Negele & Vautherin

(1973), Baym et aI. (1971) and Feynman et a1. (1949) for density 1014 to 5 X 1010

gm cm-3, till ~ loa gm cm-3 and below 103gm cm-3 respectively, to give the entire

span of neutron star densities.

5.3 Centrifugal force and ellipticity

In the case of non-homogeneous distribution, while computing the set of equations, it .

is not possible to keep M and J conserved independently, but since all the quantities

expressing deformation can be determined as functions of r/ R in the units of R/ Ra

and J /M'J, the sequence of equilibrium configurations with fixed J /M2 can be used

to describe approximately, the contraction of slowly rotating body.
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The equations and procedure used are similar as discussed in chapter 4. Table 5.1

shows the location of extrema for the centrifugal force as well as for the ellipticity and

their respective values for both the Hartle-Thorne definition (fH-T) and our definition

(l). Figures (5.2)-(5.4) give the plots of centrifugal force Fel and the two ellipticities

(expressed in dimensionless units J'l /M4 and J'l /M" respectively)as a function of

R/ RII, RII being the Schwarzschild radius.

As is seen, the centrifugal force keeps increasing as the configuration size gets smaller

and then attains a maximum somewhere between Rj RII = 2.1 and 2.3, for different

equations of state. However, unlike in the case of a homogeneous spheroid where

the centrifugal force reverses sign at R = 1.45R., with these differentequations of

state the reversal is seen only in the case of Wiringa et al. (1988) model (B), at

R ~ 1.454 R.. In other cases the equilibrium configuration becomes unstable before

reaching the value R = 1.5R., which in fact is the radius of the orbit of the particle

for which the centrifugal force is zero in the Schwarzschild space time.

Considering the nature of ellipticity it appears that the behaviour is different for

the inhomogeneous distribution than in the case of homogeneous distribution. As

seen from Fig. 5.3, the ellipticity (l) keep reducing as the configuration gets smaller,

becomes zero (meaning that the shape becomes spherical) and further on gets to a

negative value. However, the negative value attains a minimum and then again the

ellipticity starts increasing.
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The fact that the ellipticity starts decreasing and further becomes negative, could be

due to the reason that the force balance equation used in defining the ellipticity is

perhaps true only for a homogeneous distribution of the fluid, whereas we have in the

above varying density configurations. However, a point that needs to be checked care-

fully is that when Pfister & Braun (1985) used the correct centrifugal force expression

for obtaining the solution for the interior of a mass shell, they found that a proper

boundary fit of the exterior and the interior solutions for the shell, was possible only

if the configuration is prolate rather than oblate. Here, in our approach also we start

from the equilibration of the forces within the framework of general relativity and get

prolate configuration for distributions with inhomogeneous density.

It is also worth noting that for the same configurations, when ellipticity is defined

.
I

~

I

in terms of the radii of the object with constant surface density embedded in a 3-

dimensional flat space (Hartle & Thorne 1968), one gets the ellipticity maximum as

was in the case of a purely homogeneous configuration. In this case, the location

of the maxima changes with the equation of state, shifting inwards as the equation

of state gets stiffer. As the equation of state of any configuration describes the

pressure-density relation, the equilibrium of the configuration in a sense depicts the

balancing of the various forces like gravity, material binding and the centrifugal force.

As the equations of state gets stiffer the intra-nucleonic forces, which are effectively

repulsive at very short range become larger, thus requiring the configuration to get
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I EOS I fH-T ~ f ~el ~Rlm'l

Table 5.1: Location of extrema for the centrifugal force (Fe/) and ellipticity (l) (col-
umn 7, 5) and their values (column 6,4) for the equations of state: Models A, B, C
and D, as well as for the homogeneous distribution. Column 8 gives the location of
reversal in l. The radius is expressed in terms of Schwarzschild radius R.( = 2M),
whereas the ellipticity and the centrifugal force are expressed in the dimensionless
units of J2 /M5 and J2 /M4, respectively.

more compact before similar behaviour of ellipticity extrema is attained. However, a

matter of concern is the result showing the difference in behaviour of the ellipticity

function in the two different treatments, for the inhomogeneous distribution while

the conventional Hartle-Thorne way of defining it via embedding in a 3-flat geometry

shows the function to be positive, defining it through the balancing of inertial forces

a la Maclaurin and Newton, shows it to be negative. It is important to look deeper

into this question to ascertain whether the treatment of defining inertial forces for

a fluid configuration has to be different from the approach used for a single particle

dynamics, particularly for inhomogeneous distributions.
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A 0.953 3.278 -0.257 1.603 0.0335 2.234 2.297

B 0.849 2.948 -0.403 1.610 0.0271 2.204 3.301

C 0.832 2.857 -0.395 1.769 0.0261 2.180 3.631

D 0.813 2.625 -0.388 2.014 0.0252 2.112 4.343

Homo. 0.761 2.3 1.207 2.75 0.0157 2.1



5.4 Electromagnetic fields

The studies of electromagnetic fields inside the neutron stars become important in

connection with understanding the mechanisms of pulsar glitches, superfluidity, ther-

mal evolution etc. Apart from that, the evolution and origin of these fields also affect

the field strength on the surface. In recent years number of works (Thompson & Dun-

can 1993; Urpin & Ray 1994; Wiebicke & Geppert 1995; Urpin & Shalybkov 1995;

Bhattacharya & Datta 1996) have discussed the generation and evolution of internal

magnetic fields in the non-relativistic approach. As for relativistic effects in study-

ing the structure of magnetic field inside a rotating neutron star, one of the studies

made is, by Bocquet et al. (1995). They solved numerically the coupled Einstein-
~~
""i'
""IIIi:"
,,'

Maxwell equations in full general relativistic framework considering magnetic field
'II'
~:."
01"

to be axisymmetric and poloidal in nature. Further they studied its effects on the

structure of neutron star employing different equations of state. Rather than solving

the complete set of coupled equations numerically, we have extended our studies of

the electromagnetic fields (as discussed in chapter 3) inside the slowly rotating body,

in the same approach as was done for the external field.

5.4.1 Maxwell's equations for inside the star

Interior of neutron star is considered to be a perfect conductor. Hence the electric

field inside the star is zero, but due to the rotation the magnetic field gets modified
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as

Br = Bro+ 6Br, Be = Beo + 6Be (5.1)

where Bro and Beo are the fields for the body when it is not rotating and 8Br and

6Be are the corrections due to the rotation of the order {}2.The Maxwell's equations

inside the star, using the corrections of angular velocity for 1= 0 are written as

:r [rello/2(1+ ho)Bo]

{)

[ (
2m

)
-1/2

(
m

) ]
-- ello/2 1 - - 1 + ho + 0 Br = 0~ r r-2m (5.2)

:r [r2sinOBr]+ :0 [r sin0(1- 2mrfl/2 (1 - r ~;m )Bo] = 0 (5.3)

Assuming the magnetic field to be dipolar in nature, the field components can be

wri t ten as

Br = f(r) cos0, Bo = g(r) sin 0 (5.4)

then the equations (5.2) and (5.3), reduce to ordinary differential equations

dg

[ (
1 dllo

)
dho

]r(1 + ho)dr + g (1 + ho) 1 + 2"rdr + r dr

(
2m

)
-1/2

(
m

)+ 1- -;- 1 + ho+ r - ~m f = 0

df (
2m

)
-1/2

(
mo

)r- + 2f + 2 1- - 1 - g = O.dr r r - 2m

(5.5)

(5.6)

96



5.4.2 Initial conditions

Further taking the fields to be continuous at the surface of the star, the inside fields

are integrated from boundary to the center. The form of the fields at boundary is

obtained to be

BO ( )
- . 31l

[ (
2M

)
2M 2M2

]r R - - 4M3 In 1 - If + If + R2 cos0 (5.7)

° 31l
[(

2M
)

-1 R
(

2M
) ]Bo (R) = 4M2 R 1 - If + M In 1 - If + 1

(1 - 2M )
1/2 .

R sm () (5.8)

121l

[ (
14M

)
J2

(
1 3M

)]
hB (R) = - hM -+-- -- -+-- cosO,. R" 4 5 R R3 14 10R (5.9)

Il

[ (
1 37 M

)
. J2

(
8 163M

)]
.

hBo(R) = - hM - +-- - - - +-- sm ()R4 2 5 R R3 7 35 R (5.10)

which we have derived by taking an ansatz and keeping the terms linear in M /Rand

sv.

5.5 Results and Discussions

Taking initial conditions as equations (5.7 to 5.10) and using the HartIe metric for

the above mentioned equations of state, we have integrated equations (5.5 and 5.6)

thus obtaining the Br and Be components inside the star from equation (5.4).
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We have plotted field lines for different configurations and studied the field line topol-

ogy which represents the constant magnetic flux and can be found by rotating a given

filed line about the polar co-ordinate O. The flux from 0 = 0 to any 0 is given by

.
b(0) = 19 B .da = 19 Br r2 sin 0 dO d4>.

(5.11)

For the dipole field as given by equation (5.4), the field lines are

b(O) = 7rr2f(r) sin2 0 = constant. (5.12)

Transforming these field lines to cartesian co-ordinate system with the magnetic dipole

aligned about the z-axis, we have plotted them in the x-z plane (Fig 5.5) for the

configurations with varying potential mlr, As the potential increases the field lines

get denser.

For a given central density the field strength is higher for softer equation of state

(Model A) (Fig 5.6), as well as for a given equation of state change in the field

strength with respect to increase in central density is larger for softer equations of

state. This shows that for the stiffer equations of state the field strength does not

change substantially but it is comparatively more sensitive to the central density in

the case of softer equations of state.

98



.

N 0 N 0

5 5

-5 -5

-10
0 5 10

X
15 20

-10
0 5 10

X
15 20

Figure 5.5: Field lines are plotted in x-z plane. Field strength is weaker for small
gravitational potential (fig (a): M/ R = 0.039) as compared to higher gravitational
potential (fig (d): M/R = 0.282). Fig (b) has M/R = 0.177 and fig (c) has M/R =
0.266.

10 10

(8) F - (b)

5 5

N 0 N 0

-5 -5

-10 -10
0 5 10 15 20 0 5 10 15 20

X X

10 I I , I I I ' I , I I I I , , I I I I I I 10



.

0.005

0.004

-
~
........

..c::
+J

~ 0.003
Q)
r..

+J
fI)

"0
.....
Q)

....-
() 0.002....+J
Q)
d
bD
a1

:::e

0.001

0

0

,,' ...
" /'

" /'
" /'

" /', /'

",/ /' /' /' (C)
" /'

" /'
" /'

"" "" ,..
;<'

;r

,~' /'
;r' ...

,,' ~~

i

'"

~--------
~~--

...' /.
"""" (B)

*
~\..
""
""I",.,,I'

(D)

10 20
Central Density (Pc/lOI4)

30

Figure 5,6: Shows change in the field strength with respect to increase in central
density for a given EOS. Density is in gm cm-3 and B is in geometrized units.



Rotation also modifies the field strength, Fig 5.7 shows the increase in the field

strength from the surface to the center for the considered equations of state. If B

and Bnon-rotare the field strength for the rotating and non-rotating configurations

respectively, then increase in field strength due to rotation in percentage is calculated

as (B - Bnon-rot)x lOO/Bnon-ro,.As it is clear from the Fig 5.7 the field strength

gets increased up to ~ 25% in the case of rotation as one approaches towards the core

for very stiff EOS ( Walecka, SBD), whereas near the surface the increment is up to

3 - 5%, only.
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Chapter 6

Summary and Conclusions

In general, most of the astrophysical objects are endowed with rotation and magnetic

fields and in particular, pulsars are rotating, magnetized compact objects. In this

thesis, we have attempted to analyses briefly the impact of rotation on the structure of

ultra compact fluid configuration and on magnetic fields associated with such objects.

The study has been carried out in general relativistic formalism for homogeneous as

well as for inhomogeneous fluid distributions by considering few equations of state.

We have found that rotation does have important bearing upon the magnetic field

topology as well as on the behaviour of ellipticity of the fluid distribution. Outside a

slowly rotating body, the structure of electromagnetic field is obtained (Prasanna &

Gupta 1997) taking an ansatz and then the charged particle trajectories are studied.

We find that for high values of L and ~ the potential well appears far away from the

body indicati_ng the possible trapping of particles far outside the objects like neutron
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stars (r = 20m, 30m). Trapping of particles far away from the star indicates the

possible formation of magnetospheres. The study of potential curves for varying j

shows that for increasing j, the first maximum decreases whereas the second maxi-

mum increases, implying that increase in the dragging of inertial frame increases the

centrifugal barrier while lowering the magnetic field barrier. This feature indicates

that as a consequence of the rotational effect on spacetime, more particles can get

either trapped or pulled in by the gravitational field. This may also lead to the escape

of particles not having sufficient energy to overcome the enhanced centrifugal barrier.

Further, the field structure inside the star is analyses (Gupta & Prasanna 1997) for a

number of equations of state. We find that the increase in the field strength is larger

for the softer EOS as compared to the stiffer EOS. Also, in the case of stiff EGS,

field strength gets increased up to ~ 25% in the case of rotation as one approaches

towards the core, whereas near the surface the increment is up to 3 - 5%.

To understand the structure and shape of the compact objects, we have studied the

ellipticity and the centrifugal force of a slowly rotating contracting body in optical

reference geometry. After generalizing the Newtonian force balance equation by us-

ing the inertial forces as obtained in optical reference geometry, we have derived the

expression for ellipticity and then compared it with ellipticity derived by Hartle &

Thorne (1968). In the case of homogeneous matter distribution(Gupta et al. 1996a),

comparison of general behavior of the ellipticity and centrifugal force support the con-
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jecture of Abramowicz & Miller (1990) that the main cause of the reversal in behavior

of ellipticity is not associated with dragging of inertial frames, but instead, can. be
\

connected to the general change in behavior of centrifugal effects in general relativis-

tic situations i.e., in strong gravitational fields. Further, comparing our present result

with that of Abramowicz and Miller, who had obtained the maximum at R/ Rs = 3,

using pure Schwarzschild geometry, we see that incorporating the effects of rotation in

the geometry (even approximately) improves the result as the maximum R/ Rs ~ 2.75

shifts closer to that obtained by Chandrasekhar & Miller (1974) R/ Rs ~ 2.3, which

indeed is more exact.

In the case of inhomogeneous distributions, the behaviour of ellipticity is not similar

as it is in the case of homogeneous case(Gupta et al. 1996b). Ellipticity keeps reducing

as the configuration contracts and becomes negative, implying that it acquires the

prolate shape in the later stages of contraction. The negative ellipticity could be

due to the reason that the force balance equation used in defining the ellipticity is

perhaps true only for a homogeneous distribution of the fluid, and further analysis

is needed to understand this aspect fully. The behaviour of centrifugal force and

ellipticity as defined by Hartle & Thorne (1968) show similar behaviour as in the case

of homogeneous distribution. In both the cases, maxima occur which shifts inward

as the equation of state gets stiffer.

As this is only a beginning of the investigation we have found results of sufficient
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interest, which clearly show that further, more detailed analysis would perhaps give

better insights into the structure and stability of rotating magnetized ultra compact
...

objects, particularly within the framework of general relativity.
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