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Through the haze of the pyre
glowed

a face, _
In'dlmist of silence he lay
with a scornful delight

His sense of happiness.,

That was JAYARAWM

had an unpredictable sense of hunor,
He died, | | |
He would never become a Lenory ,

5

dedicate,

i

To hin,
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SLTATENENT

AT A A YA

In this theSis; the author hag made a theoretical
'nstudy of some finite\amplitude low frequency long wave-
length modes in dispergive and dissipative media together
with a critical examination,of certain beam induced
collective oscillations with an emphasis on heating the
plasmas. The work presentéd can, therefore, be broadiy
divided into two parts., The first part (Chapter II « V) ig
devoted to studying the propagation of nonlincar ion acoustic
waves in collisionless plasgmas snd nonlinear drift waves in
collisiohaljplasmas;\ The seoond‘part”(Chapfer VI - VII)‘
consigts of studjing somé coll@ctive\imto?aotions induced in
a plasma either by an cxternal el@otron.beam,or by a relative
drift between the two species of the plagmas, A few introw
ductory remarksg and a brief summary of the results ig

presented in Chapter I,



L

Ion acouqtlb'gOIltnry Wav e stuli from an exact

  balaﬂcu bebwo ﬂ'ﬂQﬂLLﬂpﬂrJty qnd d151'1mlon, 'When\a\
relatively,cold component of electrons is present in an
otherwise hot plasma, the strength of dlqpo“@lon for the
system gets reduced, Hence, in such avé stém_ the ion
acoustic solitary wave hag a larger amplitude for a given
width compared to one in a plagma with single electron
component.‘ If'thﬂ differehce between.thé temperatures;of,

the two components of electrons is sufficiently large the

Ln

strength of diSynC@lOﬂ.l reduced to such an extent that e
solitary sclution isg no longer pooﬂlble (Chuptur Ii) The
Hstrength of digpersion also changés from point o point if,
t ¢ plasma is inhomogemeoug. Chapter V has been devoted to
the st uqy ox pPopﬂﬂﬂULOD,OL an lOﬂ.“COM stic solitary wave in’
an inhomogencous medium with both density and temperature
inhomogeneity. for temperature gradient scalelensths uch
larger t}»n the density gradient scalelengths, though the

amplitude oi the solitary wave is governed by the density

gradients only, the velocity of the ulluuu increases as
it propagates iorard egions of ihcreaﬁing Lemp@rbuur»,

Drift waves delVQ their importamce from their
causal TﬁlwblOHﬁhip with enhanced parbicle logscs observed
low-8 plasmas. Moceovcr the linecar dispersion relation
for the drift wavesg is similar to one Tor ion acoustic
waves under oertaiﬁ.ciroumgtances. This wotivated s to

o

look for monlinear steady state solutions for drift.waves
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in a COllid&Oﬂwl plasma, Chapter ITL and IV have be@nf
=' deVQted to such utudlus. In general, iﬁyis found that,
whenever the bmbTJlAlﬂF 1on.v1,005Lfv effects are stronger
than.the degtabilizing effects due to electron-ion collisions,
theré exlsgts a gtationary shock solutiqp.for the nonlineawr

drift waves,

Intense r@lativistio'elecﬁrﬁﬁ;beams of fer immense
potentialitieg for heating a plasma fo thermonuclear terper-
atures, Such a boam induces what 1g known ag 'return current'
ag 1t enters a plagma, A newvihﬁtability kmown.ds the "return
current instability' is supported by such induced durrehts.

We have shown that, fbcre exigls a range of wavemubers which

is wngtable ley'to return Curreﬁt iﬁstability and not to

the usual electron-~elec brnn.bwo Stfﬁ%ﬂ instability. More deP,

an estimabe has been made of the rate at which the retburn

current loosges energy as a result of decay of ion abougtic

turbulence generated by such a current, This LﬂVbMtig&tiOﬁ
is pregented i Ch“ptc? VL.

In comection with the problem of plasme heetimg,\the 
crogs-field oﬁrrenﬁs‘als play an important role, because of
the anamaloug LLUJQtLVlLy they produée in a plagna, A number
of elJ trogtatic insbabilities induced by such c@rrents have

Eal

been invoked as the basic mechanism for producing the

obgerved anomalous resistivity, However, the plasma heating

experdiments with cross [Luld currents often usce a nagnetic



"m1rror conflpur icn for cont@lnlng the plasma, The
equlllbrlum dl Lrlbutlon function for uoh a pl%uma is non-
Maxwellian, In Chapter VIL, we have tudl 4 the effects of
1oss~conu and temperature dthOblO vy in the ele ctron
distribution function on the cross-field curr QHF drlvon
@l@OthStatiCﬂiMSbublllﬂ““S. We have shoﬁn that non-

Maxwellian plagmas can support fast growing aveg even in

;__x

regions of k-gpace which 1s gtahle to a BﬂKWullldn pl”ﬁuﬂ.



Logt ovn this planet

For an unknown caunsge

Po have come to an BEnd,
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The cause to live

To be with friends,
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They were always there
- To ghare

Jtopia, my shame,

My gesture is gsilent and mute

g of deep gratitude,
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CHAPTER T

T ITTRO DUCTION

The unique feature of a plasma is the rich'variety o£ 
collective oscillations it can sustain., The study of thege
ogcillations yields a,wealth.of‘iﬁformation,about the collect-
ive‘properties‘of a plasma, Mbreover,,théSé‘Collective modes
provide channels through which energy can be deposited in a
plasma from an extermal source (eg., a powerful iaser beamn,
an intense relativistic electron beam etc. etc,) in order
that the plaswma could be heated to a high temperature, Linear
and nonlinear study of these collective modes 18 meorb nt as
Wellhas fagcinating, It is important, because the'cleaﬁ e
understanding of these basic phenomena is a step forward
Lowards achieving the final goal viz, the controlled fusion.

It is fascinating because 1t offers challenging mathenatical

problems to be solved and requires mmaLgnm

fion of knowledgze

from a large number of branches of phySiCS¢



The great stlmulus behlnd the hectic research actlv¢1y

in the field of plasma physics in the last two decands 1 tho o

| gbal of achieving Controlled Thermonuclear Réaétidn; The woxk
presented in this thesis is not”éimed;afpproviding_a“oleahﬁ
source of energy; only an_attempt.haé'beén_made in.prov;ding
some insight into certnln phenomena of nOﬂJLnear wave Dropam
gation in plasma bovebher w1th a crltlcal eXaanatlon of '
certain plasma heating meohanisms (eg; Crossmfleld current

~induced instability hcat1ng of a plaomﬂ in a mirror ma chine

and relat¢v1utlc eleobron bean heating of a plasma)

Two of the mo it important‘oharacteristic propertieﬁ
of a plabmﬁ are Lhe nonllnedrlty and the dluperﬂlon._ A
1inearfdisper ive system lS one Wthh admltalsolutlons of the

form

(§a':; (x?éég‘(ilﬂ;ijD%_); el (1;1)'

where the characteristic frequency of the wave GO = 0olk),

is a real function of the wave number k. - The fungtLondl
relablon (4ﬁ(k) is known ag the dispersion relation, TE Lhc
pha {z velocltv of the wave () (k)/k ig not a con“tant but |
Eunohlon of k, dl ffe: t modes will propagafp with def@rent
velocity and hence disperse. However5 we will consider“the‘
wave to be dispersive only if the gfc')up-.vélo‘c‘:i"oy‘ Wi {Mg(k)/al
definedffrom the Fouri@r ihtegrai~deVelOpMent of Eq (1.1), is

not congtant, i,e.



when L IT IR O

The concept of ‘”ronp veloclty! defined above ig developed
from an ag ymptotlp expaﬂ sion of the Fourier integral depict-
ing superpogition of several modes, similar to one given by

Eq. (l p viz.,

,Mf‘f“’/; ’* (L’I’“(‘—}{L /(“'{ ) £ (1.,&%

fox nonilnear wave such a Eourier aﬂalysis'may not be
appropriate and it is mnecesgary Lo develop th@v*group velocity'’
concept in an independent manner, Such an approach | huu been
developed by Wnitham (1965) uging 'variational' methods In
general, nonlinearity modifies th@.dispersion in suoh 8 way
that (L) is no more only a functioh of k but algo a funchbion

of the wave amplitude (Whitham 1965, 1974).

The waves in a plasma are generated either self
congisgtantly by the particle motiOﬂsror excited by extermally
imposed fields, The theoretical analysis 1s greatly simpli-
field 1if the field amplitude ig sufficiently smallw The
linear ( smell amplitude) theory of the plasma waves hQSVbeem
very Well developed and the methods have been dealt‘in-great
details (Stix 1962, Krall and Trievelpiece 1973, Schmidt 1966)ﬁ
But, nbre often than not, the plasma waves are nonlinear In
equilibrium, the monlinearityimight arise due to the large
amplitude nétufe of thé‘waves. On the other hand if the

gtem sustains ocrualn unstable waves given sufiicient
2 -
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";time, even a small amplitude 1n1t181 perturbation will grow
outyof linear fegime, The'noniinear plasma phenomena may be
broadly clagsifie d into two categories - turbulent plasma
phenomena and coherent plasma phenomena, By turbulent plasma
phenomena, we refer to circumstances where a large number of
random collective oscillations are excited by, say, a linear
ingtability or by a similar source, That is, there are many'
waves present in the gystem, the phases of which can be
considered as random in some sSense, JInvestigations in this
regard correspond to the study of average properties of a
"statistical ensamble' of systems, each evolving according

to a.set of basic dynamical equations, The term coherent,
however, refers to circumstences whore the 1o onl near develop-
ment 6f the system is followed with all due respect to the
phage informations carried by the wayes. Whlle we shall

o

touch upon only one problem of weakly turbulent plasmas (viz.
the quasilinear development of the return current instability
and the return current induced ién acoustic ingtability) in
ter VI, the Chapters II -~ Vvare denoted to studying some
sfeady‘éﬁate coherent nonlinear phenomena in plasmas.,

for small k the linear dispersgion relation has the
form
W =k 4 pkr - (1.3)
4
with o and B real constants, the system of mnonlinear equations
can often be reduced asympltotically to an eguation (Taniuti

Cand Wel 1968, Gardner and Su 1967):



on >N |, ¥ n
tam=; +b5=5 =o0 | (1.4)

27 TTUEE TReEE 7T

 Qhere a and b are real congtants, do.(1l.4) is known as the
'KortewegmdeVries (K-dV) equation which was first derived to
describe shallow water waves (Korteweg and deVries 1895), Iu
plasmas, in particulax, Aq,(l.@}'describes the long time
behaviour of nonlinear hydromagnetic waves propagating
perpendicular to the W“Uﬁetlc field at near Alfven velocity
(Gardner and Morikawa 1960) and algo the weakly nonlinear
propagation of io@.sound disturbances propagating mnear the

ion sound speed (Waghimi and Taniuti 1966).
If we assume that n depends on 7 and i: only through

S

o= T Ly 7 Eqa(l.é) egan be.integrated,uﬁder the boundary

conditions n, an/ax;,‘azn/aﬁgre\O:as | 2] = = to give

o S AT O T
N = (39/n) S et (_—%ﬂ(—{:’} (g-u7)] @5

The Hq.(1.5) is.known ag bthe solitary wave solution of the
K-dV equation, which shows that the pulge height, width and
speed are proportional to U, le/g and U regpectively, The-
term 'soliton' was coined by Zabusky and Kruskal (1965) for
such solitary wave golutions of the K-dV equation, which

they golved mumeriéally. Gardner, Greene, Kruskal and Miura
(1967) solved the inftidn value problem for the K-dV equation
analytically with the help of'what ig known ag ‘Inverse |

Scattering Method', Account of these pioneering works and
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the recent advances in the theory of solitons and K-aV

.

equation can be found in a number of review articles

(Jefreey and Kakubtani 1972, Scott et al,.1973).

Chapters II ~ V have been devoted to. the investigat-
ions of steady state solutions of the modified K-dV equations
describing certain nonlinear physical processes., The reduct-
ive perturbation method (Taniuti and Wei 1968, Taniuti 1974),
which is nobthing but a perturbation scheme with proper
scalingsyof the time and space variables et b, 1s made

use of in deriving these modified K-dV equations,

It has been recently found (Jones et al, 1975) that dueto
the presence of even a small fraction of relatively cold
eledtrong in an otherwise hot plasma, the phase velocity of
the ion acoustic wave as well aé’the Debye length for the
systenm are dominantly govermed by the lower electron temper-
ature. The strength of the dispersion, for the system, which
is proportional to the square of the Debye length, zgetls
congiderably reduced in thisg cagé. In Chapter IT, we have
derived a K-dV equation describing the weakly nonlinear
propagation of ion acoustic waves in such a system and have
shown that the ion acoustic solitary wave in such a system
has a larger amplitude for a given width compared to one in a
plasma with Single clectron component, It has also been shown
that, if the temp@rature differenoe between the two electron
components is sufficiently large, the Strength of disperSiQn

ig reduced to such an extent that a solitary solution is 10



~longer possible,

Inhomogeneities inlfhe physical parametefs are
unavoidable in most experiments., We recall that the ion
acoustic solitary waves regult from a balance between non-
linear steepening and dispersive effects. The strength of
dispersion being proportional to'}L%(:K% ::Te/énnoeaéwhere
Te iz the electron temperature and nD iS the equilibrium
dengity), the dispersion and hence the propagation chafacté
eristics of ion acoustic solitary waves are expedted tb‘vary
as the wave propagates in an inhomogeneous mediumA(inhomogem'
neity being in density and/or in temperature), A modified
K-dV equation describing the propagation of a wealkly nonlinear
ion acoustic wave in an inhomogeneous plasma with both demsity
and temperature gradients; has been deriﬁed‘in ChaptéraV, We
have obtained the Solitary waﬁe solution éf this equationk
and shovm that,‘for temperature gradient scalelengths large
compared to density gradient scalelengths, the velocity of
the ion acoustic solitary wave increases asg it propagates
toWards r@giong of increasing temperature, In the abgence of

temperature gradients, as a solitary wave moves towards a

decreasing dengity region its amplitude (absolute magnitude)

>
<

. . p - 9]
goes as,(m@(x) ) 1/ and velocity goes as (no(x) ) 1/".

Drift waves, like ilon acoustic waves are low frequency
waves, The linear dispersion relation for these drift waves

(Kadomtsev 1965, Krall 1968) has some similarity with that
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_ for ion acoustic Wavps. In particular, the linear dispersion

relation for the drift waves goes over to that for ion acoustic

Wavesyas the angle between bthe propagation direction and the
magnetic field direction becomes sufficiently gmall, Therefore,
one expects that, at least in some cases the propagation of
nonlinear drift waves can also bé represented by an equation
similar to the K-dV equation. In Chapter 1L, we have invesghe
igated the weakly nonlinear propagation of drift dissipative
ion acoustic mode in the presence of ion viscosity. Drift
digsipative Lom.duou stic mode which is a mode in. an inhomo-
geneous coll ional magnetized plasma (Kadomtsev 1965)
Characteriséd.by Q)~kCS >>§1j_( Q),.fli , k being the Wave
frequency, ion cyclotron frequency and wave number‘r spec -
ively and C is the ion sound speed) is Llnoar]y unstable,

From the modified K~dV equation which governs th nonilnoar
drift digsipative mode, we find that when the stabilizing ion

J.

viscositv effects are strong enough to overcome the dest

VRIS
izing effects due %o collisions, K-dV equation allows &
gstationary shock Solution, Numerical integration of the
equation reveals that it still permits solitary solutions if
the net stabilizing or destabilizing effects are not‘toq
strong., The solitons uh 18 obtained are found to either ELOW
or decay with time depending on whether the viscous effects
are weaker or stronger compared to the collisional effecta.
Having ilmvestigated the special case of drift waves
in a collisional plasma in Chapter III, we have gone & step

further to study the general problem of noglinear'drift
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 [}WévéS in a cOlliéibnal plasma in Chapter IV. By using
rﬁrédﬁdtive perturbatibn method, we have derive& a multi-
dimensional modified F»dV'equationAdesoribing»the propagat-
ion of nohlineaf drift waves in a colligional plasma where
both parallel resistivity as well as the perpendicular
viscoéity are important. In thig case too, if the ion
viscoglity effécts are stronger than the effects due to
electron ion collisions, this equation allows a statipnaty
shock golution, We have also invoétigated the dependemcé of
the structure of the shock profile on the nropuiarlon Ahglé*
For a given set of plasma parameters it is found that the“\
profile of the shock wave tends to change from an osc illa Lorr
one to a monotonic one as the angle between the prongation
direction and +the magnetic field direction incre s, When
the destabilizing effecls due to the oollisions are stronger

than the stabilizing effects due to ion viscosity, a

Q)

'

gtationary solution does not exist,

One of the challenging problem of the present day
Plasma Physics Research is to find a way to heat a plasma to

thermonuclear temperatures, It is in this respect, Lhut the

ot

r@iatiyiﬂtic'eleotron peam (REB) provides an excellent tool
; )
Tor depositing large amounﬁ of energy in a small area via ?
collective plasma iutgr”cul gl Current technological advaﬁéds
have placed at our dispogal ilntense REB with truely imposing
chaxr dCL(TLSticﬁy for Gxaﬁple5 beams are now available with

g N . '. "‘6 : -
electron energy upto 15 Mev, currents above 107A, total
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r7

energy per pulse upto G5 power upLo 101 W _jédm current
IRES | RN . ; »
density upto 5 x 10 A/cm® and pul e dur vtion oE the order of
100 ns (Yonas et al. 1975; 1974, Millar and Kuswa 1973, Korn
ot al. 1973). With the availability of thess beams and
improvements on them in sight, number of people have proposed
dramatic schemes wibth REB (Winterberg 1972, Babykin et al.
1971, McCorkle 1975) even to compete with lasers in thelr
inertial oonflnemenw scheme, Regarding the ec onomics of e
problem, the initial estimates by Yoshikawa (1971) were
discouraging, He ghowed thatl the capital inves *m&nts
necessary for REB heating are higher than any other method,
But more recent egtimates by WJuuclae o (1972) and Babjkin,
et al, (i"Vl) are more encouraging, Lhe suthors took the
Sbll magnetic flbli into account aﬂd showed thaﬁ it would
reducekthe eneréy needed to reach thermonuclear conditions by
a’faotor of 100, Apart from the fagcinating prosp@ct of ?
using o REP as a tool for heating a plasma to thermonuoleari
temperature, an intenge RBEB exhibits certaim:very peculiar
properties thdt are gorth studying for their own sake, 0Une

e

&&ss of such vexry LﬂCCl wting problens is the problems of

Q

current limitation and equilibrium stability of such beams,.

Whern an intense electron beem is injected into the vacuu,

the electrogtatic repulsive force due to the space
effects exceeds the pinching force dus to the self magnetic
field and hence such a beam in vacuwn wildl mply diverge.

The digtructive space charge electrostatic foxce oam.be
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removed by injecting Lhu botm.into a nwubraILZJn( background,
‘chn tl se ll mdcneblo leldo, bJ bhomselve@ oan‘not produce
an un1¢m1t d amount ofvcurrent. ihe current limitation in .

this case comes about because of the following reason.

As long as the current in the beam is small, the !
trajectories of the beam particles under the action of the
gself magnetic field remain sinusoidal, As soon as current
QXoe@ds certain critical value, known as the 'AlLVCﬁY“
critioél current! (Alfven 1939), the tfajectories of the outer.
most particles inathe b@am fbroe these particles to come back
to the oabhodu Lh at produccd them, The gelf magﬂetiqnfigld,
winich sbdudn as an obstacle on the way to pr@dﬁée large
curreﬂtﬁ,'eanyﬁe r@movod 1i one groduces the 5 cam in a dense
'plasma. The changing azimuthal seli magngtic field; at the
luﬂd of the beam; gives rise t0 an axial electric field which
accelerates th@ plasna clectrons in the opposite direction and
produces what ig known ags the 'reburn cﬁrrenﬁ‘. The azimuthal
megnetic field produced by the return current cancels the

elf maﬂHLLLC field of: Lhc bheam ard fapllltabeo 11Tg01 b

Odlf nb to flow Questiong yet to be ans worod are - when'y |

will ‘the total current uem"“al,uahl on takeg place ? Wifh«xt ig
the exact nature of the ‘rﬁturn Cuflbﬁt”i ? These questions
have been dealt in U<Ln¢1 by many authors (Robert and Bennott
1968, Hamer and Rosto¢ﬁv 19:0 L~ and Sudan. 1971) and we will
not go into thesge details,

T4 will guffice to mention here that total current



',‘neutralization takes P
Withln Lhe bcam if thc beam radius 'al' igs

the electromagnetic pkln depth C/U}

being the plagma

neutralization of the self magnetic field of the

ca much larger current
state., As

the

5] © el
igtic time t 2 4% a”a“/od, the
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ace with the return current flowing

much larger than

and np >> ny (n

h,b

The
beam allows
not a gteady

However, this is

, of the medium,

eventually decay with a character-

'v;cyfield builds up again

.the plasma,

wrn current provides an additional

~

B can be transferred to

gy from a Lo

detail the new
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-magnetic field, 4s a result of the quasilinear development,

in the early stages of development of the return current

ingtability, the electrons are preferentially heated, When

the electrons are sufficiently heated such that Te >> Ti

and if the return current exceceds certain thr shold, the
return current induced ion acoustic instability sets in. The

turbulence generated by this instability further heats the

plasma, Agsuming that the level of turbulence is limited

solely due to scattering of the ion sound waves by the elect-

rons, we have calculated the rate at which the return current
will loose energy, We have shown that the fastest time scale,
at which the return current looses energy, can be of the order

of Lyt 5 GD

pi being the ion plasma frequency (Goswami et

pi
al, 1974).

In connection with' the problem of plasma heating, crosgs
field currents play a special role begaﬁse ol the anomalous
registivity they wure known to produce in a plasma, A relatbive
drift, between two specics of a plasma across an externally
appiled magnetic field, has heen realized in a number of
experimental situations. The mechenisms by which such a
relative drift is produced can be different for different
experiments., lTor example, Toffe et al, (1961) and Alexeff
oh al.'(19709 1971) produce such a drift with the help of
a radial d,c. electric field, Such an electric ficld in
comhination with the axial magnetic field produces an B x B

drift in the azimuthal direction. Both electrons and ions
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tend to rotate under the influence bffﬁﬁﬁ drift, However,
the ions, which are much heavier, experience a much stronger
centrifugal foroe; he difference in the cenﬁrifugal forces

esult in a relative &rifﬁ between the two gpecies in the
azimithal dirvection, On the other hand in the experiment of
Babykin et al., (1964) such a drift was produced by the grad-
lent in the wave field of a magnetosonic wave propagating
across the magnetic field, The magnetosonic wave was
produced by setting up an oscillating magnetic field, super-

impoged on the confining magnetic field,

HModified two-gtream instability, current-~driven ion
acoustic insgtability are some of the electrostatic instabi—
lities induced by a cross field curvent, A good deai;of
theofetio .L work has been done on the gtudy of these ins L%Q

/

bilities (

et

¥

lic Bride et al, 1972, Berrett et al, 1972,

Lashmore Davies and Martin 1973). lowever, all the investi-

)
<

gatlong, so far, have been carried out on the assumption
that the equilibrium distribution is well represcented hy a

Il

Maxwellien distribution function., We mnote that, most of the

o

experiments mentioned above use a magnetic mirror configur-
ation for confining the plasma and a Maxwellian is not a
realiglic distribution function for such a system, We have
taken a more realigtic distribution function (the genoful¢n,d
digtribution Tunction) which includes both logs-cone and
temperature an’sotropy effects, The cffects of loss-conrnc and

temperctare anigotro uy ont the above mentioned insgtabilitics
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are_given in Chapter VII. We find that these cficcts are
important when A}K =-lcef’§/2 > 1 ( €, being the electron
gyroradius). It is also shown that a ndn Maxwellian plasma
can sustain fasgt growing waves even ih regions of k-space
which ig stable Ffor a Maxwellian plasma (Goswami and Buti

1975),



CHAPTER TT

LON ACOUSTIC SOLITARY WAVES TN A TWO-ELECTRON

TEMPERATURE PLASHA

IL,1 Introduction

Plasmas with electron velocity di stribution that can be
represented by the superposition of two Maxwellians are nob

i

infrequent under experimental conditions, For example, hot

turbulent plasmas of thermonuclear 1uueves“ ingerest often
have a high energy tail (Utlant and Cohen 1971, Sipler and
Biondi 1972, Kruer et al, 15709 Kruer and Dawgon 1972); gtr;ng
electron beam~plasma interactiong also result in such distri-
butions (Sudan 1970) and more often, owvdinary hot cathode
disoharge plasmas also hnave double electron~lemperature
digtribution (Jones et =l. 1974), Though the presence of a
group ol electrons with lower temperature, in an otherwise

hot plasma, was known to the experimental plasma physici$ts

for quite gome time (Oleson and Found 1949), the interest hag
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only recently beeﬂvagurred in studyihg the nropdgatJ( of
ion acousﬁic Waves ih_such'a plasma (Jdnés et al, 10? b

This study of Jémes et al; hag reveaied some new aspects of
propagation of ién acougtic waves in such a plasma namely,
when a bunch of relatively cold electrons is present in an
otherwise hot plasma, the ilon acoustic speed ig dominantly
governed by the lower temperature, This result hag some very
interesting practical implications, For example, when one

wants to utilige ion acoustic waves as a diagnostic tool for

determining plasma paramevers (eg. calculating electron

temperature from the measurement of ion acoustic speed), one
ﬁas to be very carveful if the plasma conbains & colder electron
component, Another possible interesting application suggestbed
by the above result is the utilization of the ion acoustic

1

waves to heat long in a plasma by Landau damping, By introdu-

!__I

cing a small amount of relatively cold electrons, as the ion
acoustic speed can be appreciably reduced, an otherwise

ssibly be driven damped, thereby

plasma 1018,

Linearn

ges that produce the two types

of electrons

nres, have time scales

much shorhber ion time gcale, the two
: 7

can be treated ag btwo fluides, Thus

electron components
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describing the plasma by one dimensional multispecies fluid
equationg tdgether with’the Paigsgn's equation and assuminu
that the first order quﬂnt¢b1,ﬂ g0 as exp (i(kx »(&)t))ﬁ one

obtains the linear dispersion JelaL¢01 (Jones et al, 1975),

where (4 and k are the characteristic frequency and wave
number, and AAD is the plasma frequency. Oe( 1) is the
thermal velocity for the electrons (ions). The suffixes e
and i refer to electrons and long respectively whereag 1 and

h refer to lower and highewx temperature electron components

regpectively, for ion acoustic waves
I
AL wfp Lol ol (2.2
N 4 -~ g < e £ { 3 R £«

< 1- . 4 5

in which case, Bg.(2,1) can be simplified Tto give

.
{7
I
-
'
S———]
s
i
i
;
N
3
s

e - . I . i
where {7, {77, /wi.) and )\ = o Jhin e

with

N
-

2,4 )

Bas.(2.3) and (2.4) show that the liuear dispersion relation
for the ion acoustic waves in a bwo-eleclron temperature p

to the one for a plasma with electronic

is

component, with the diiference that the lon acoustic aspeed
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) and +the Debye length (:}Deff) are now characterized by

the (effeotive temperature' (m ff) In oﬁher Words, the rest-
oring force for the ion acoustic waves, in this case, is given
by an electron pressure which hag to be defined in terms of an
‘effective temperature' given by Eq;(2.4). From Eq.(2.4), we
notice that the effective temperature is a function of both

the temperatures and the fractional densities of the two
components, It can also be seen from Eq.(EjQ) that ag the
difference of temperatures between the two components increases,
the effective temperature and hence the propagation characteri-
gtics of ion acoustic waves becomes dominantly goyerned by the

Jlower temperature, For example, for a plasma with Tehrw;ﬁfel

T — A S —_ i - = 3 i o he emperatur
( ol = lev) and Doy = 010 tepp = 1e5 eV. 4s the temperature

of the two COMDODLHLS becomes further apart, the relative

,

importance of the high temperature component becomes even
smaller, Consider a hypothetlcalroaue, where T on” @ and

N1 /0,y +5 finite, in which case T .. = (n,,/n ol) T,p- Thus,
even if the cold component make up only 10 per cent of the
total electron density, Teff can not be greater than 10 T K
no matter how hot the other 90 per cent of the electrons are.

These results have been verified in an experiment by Jones

et al, (1975).
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f5 Nonlinear Theory

'Ag'mentibhéﬁ in-Chapter‘I,.it_is well known (Washimi
&nd Taniuti 1966, Davidson 1972) that thé weakly nonlinear
propagation of ilon sound disturbances travelling near the
ion gound speed can be described by a K--dV equation. Moreover,
LHLS equation possesseg a stationufy solitary wave solution
which results due to an exact balance between nonlinear and
dispersive effects, The strength of dispersion which is
proportional to 2&%, will be quite different for a two
electron temperature pld% a compared to a plasma WLLD single
electronic component, Hence, the propagation characteristic
of an ion acoustic golitary wave is expected To get modified
in such a plasma (Goswami and Buti 1976).> To determine
quantitatively, how exactly the propagation characteris stics
of an ion acoustic solitary wave in such a plasma‘is modified,

we proceed ag follows,

The one dimengional basgic set of equations governing
the system consists of the ion continuity equation, the
momentum transfor equations for ions and the two types of

electrons and the Polsson

"
¥

s equation, namely

am ~ ,
20 2 (i) =0 e
o ~., (1\ N
2V 4, 2N L 2P = o ’ (2.6)
D i f 'B jf: 3
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,f}”.'i _..C},f« \/ ,,‘.._igﬁ ('j),\“; L E’\H’iﬁ’j‘: - O ’ (2 .8)
A A T > -
ST ~° -
e
\
) GO
and S + Ty f~”f\£ ‘. (2.9)

ooy % = 'lels
In Bgs.(2.5) - (2.9) n; and n, ars the ion and electron

densgities normalized to equilibrium value n_, vy ig the ion

fluid velocity normalized to Cﬁeff and ¢y is the potential

U

normalized to Teff/e' Moreover, lengths are normalized to

off and time ig normaelized to ion plasma period

(‘ ;1 «‘\Dl = 4nnoeg/mi). Eqs.(2.7) and (2.8) can be /

immediately integrated toc give

¥ . ‘ :
- 2 e S S 2.10)
Mg = T‘»g? € -LM‘"TT“ <« ( )
tel
-~ e ,ﬁ » ¢ lers K 9,11)
and M = Mawexpb] —5 9 | ‘ (2.11)

Now, on combining Bqs,(2,10) and (2.11) with fq.(2,9) and on

retaining terms upto ﬂbz, we get

12)

o

&= T2 M(L..Lj: N ;

PV (Ted T

(2,13)
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In wrltlna Bq. (2 12), we have made use of the charge neutra
1ity condition i.e., no = noh F‘nol' ‘Now let us lntroduoo
the stretched variables (Davidson 1972), G = 61/“ (x ~ 1) and
= Gé/at and for weak nonlinearities, use the following

perturbation expansions:

o 2 (v
¥ I"‘ . — =y B _ N R,

\, i 3 - é ’) L ‘L “\ (, (.\—Jll_ + - 9

G 7 - 2)
= €D ve P 0T ,

) \ ‘ i {',2‘

and ¢ = g.‘wqé ) A g:L i ’ ~+ - T T

,& M“‘ e { \ o o »

To the lowest order (i.e. O(”Q/P)) Bgs.(2.5), (2.6) and (2.12)

give mi<1> = {:( ) (L) This means that, in the linear

approximation, the propagation characterigtics of the ion

acougtic wave remains same as in a plasma with single electro-~

nic component, except That it is now propagating with velocity

Coorse To the next order (i.e, to order 65/2) Egs.(2.5), (2.6)

and (2.12) give

1 “H ) "‘) .~-;,,—L(‘) = )] (1) - 9 ﬂ{_;t";?i’—
‘twy p Qi o2 (v ) t 5= =0 (2.14)
DT D ST |

= @, (2.1%8)

() (1s<%> and vg’),

=i
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In deriving Bq.(2.17), we have made use of the relation

(

A1) - &
ny = O

1 1) 2 vgl). Eq.(2.17) ig the K-dV equation which
describes the weakly nonlinear propagation of ion acoustic
‘waves in a plasma with two types of clectrong having different
temperatures, Now, let us look for a solution of Eq.(2.17)

(

such that nil) depend on G and 7 only through X. =% - UT,

Eq.(2.17), can then be integrated w,r.t. 7 under the bound-
ty 4 g o)

. . . Q. 4 Yy . N . _’ - R . ;
ary condition v -, &ixi S Yo 500 as Xy 5 This
: A7 e w7 doxr ' ‘

gives ‘
p /13 -
«.)fa‘- *lt\ . - ( 1) ?‘;} __& ( ._}/\‘ ( \;) S l-
~w~»¢? o 2jG7TL{ e

it

(2.18)

iultiplying both sides of Eq.(2.18) by ;L<i Yﬁi&ixmand then

grating it again we get

' A/
RO A N €5 BN
K FYL . (i ) ~ LA -

AT 0@ (20 = 2T ) G

e V. : I AS I e .
Y (‘ ' = oz ) /‘T"_"{:";_’“ (N« i:‘,L\ LQ’Z‘} (\_‘g - U(t) J (2 .£0)
A Rt A L

Bq.(2.20) is the solitary wave solution of the K-dV Bq. 2.17).

Alternatively, using a scaling of The space co~ordinate

?;1 = ;‘%ﬁ/(ﬁ ~ A), the gtationary solitary wave solution of

Bq.(2,17) can algo be written as

I A 1/ vl ! \/ :
: . B PR /2 2N SN
o (\) —— v / C -~ L { teermrrimetsiat ) - . - o " {\ )v o }
\4' \ — 54 AN \-,. 9 Py ( ‘ g TL 4O ) |
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,4 Discugsion
Tn Bgs.(2.20) and (2.21), U and U' are the veloeities
of the soliton which in general are arbltrary hut of the oxder
~ " m m - r T g ) "” i ‘_ﬂ.'
Cyoppe  Tor Loy = Ty, from Fq.(2.13) we gebﬁix~»Al and
.(2.20) or Eq.(2.21) then represents the solitary wave

of

solubion for ion acoustic waves in a plasma with single
electronic component.

The solitary solutions of Fq.(2.17) given either by
Bg.(2.20) or Dby Eq.(2.21) are valid only for A < 3, TFor
/ o L. R A L L et
A>3, a solitary solution to ig,(2.17) does not exist, Thig

result may be understood as follows:

For /v to be > 3 one needs large ratios of Loh/”el

pes

d’l For example ! AEENE S I a == g
nd n,,/n,e For example, for Teh/lel 12 and oh/ o1 9?

Y= 3,47, When Tph/‘ﬂel ig large, the effective bempevaLuLe is

mostly goverﬁed by Tel and an appreciable reduotion in the.

strength of dispersion (which is provortional,tO»fk,%eff)
takes place. Corresponding to A& > 3, the atrength of
'dispe slon 1 so weak Lﬂat a balance between the nonllnfallby
and disper 14 om, can 110 longel take placc. Hence, no & olltqrj
S wave. |
Referring to the work of Jones et al. (1975),ywe note
that, in fheir experiment Teh/mel ranged from les than 2 o
5 while 1y /N4 ranged from about 1/6 to 3. Thig gives &a

Cyvariation of A from 1,033 to 1,870, Por example, when

il m — f— T ‘ ) R /"‘\ - ’]_.CY‘I .
leh/lel 5 and noh/no_L EPAN 1675
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Bq. (2 u&O) shows that, for a given width, as long as

bhe oolltary golutlon is malntained; the amplitude increases

 by a factor of /(5 ~/AY. In other words, for a givén émblif":h 
tude, the width of a solitary wave ‘decreases by & factér ot
((3 wax)/B)l/z (Ba.(2.21)). When a small fraction of relati-
vely. cold electrons is pregent in an otherwige hot plasma,

T . and A > 1, which implieg an increage in amplitude

Loae <
eff “eh

of a solitary wave for a given width; this can be understood

©

g follows: As Teff decreasges, the gtrength of dispersion

also decreases, lHence, a larger amplitude isg necegsary to

produce sharper gradients so that the dispersion effects are

sufficient to produce the soliton with the given width,

Lastly, we would like to emp asize that, in order to
estimate the quantitative increase in the amplitude of an ion
acousgtic soliton for a given set ol valueg of Th/Tl and noh/nol,

1

we must vtake into account the decreasge in Oseff ag well, The

amplitude of the soliton ig proportional to U which in turn is
proportional to C_ .. and thus U goes as 1/“, Since for

geff & Liﬁ
Th/Tl'> 1y, Topp € 4y and ff\ > 1 ; the amplitude of the

goliton will be;dut ;nln@d by the net bhalance be Lweua the

decreage in U and the lW“LCaSQ in the factor 2/(3 — /%), Let

i
[@N
N
.
<
fond
[
o
s}

e L g N a1 T e [T e S - BN
us take a gpecific bAWuplL Lh/il = O and Hoh/uol
et al., 1975) for which case, s = 1,875 and 2/(3 ~o) = 1,778,

Moreover, in thig cage Teff;: .0 Ty = 0.5 Th; so that,

Coopp = 0.707 G . Hence, the amplitude of the soli-
b L F f : .

~
P
@
j_J
G
[

proportional to 3Ux (L.778 x 0.707) = 3Ux (1,857
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i1s now proportionaltocg-' This shows that, for this set of
paraneters, there is a net increase of about 25 per cent in
the amplitude of the goliton compared to one in .a plasma

with single electronic component having a temperéture equal

M
to ih@

Conclusionsg

.....

bue to the presence of a relatively cold electron
oomponéﬂt in a plasma, the ion acoustic Solitary"wdve of d
given width has a larger ampliﬁude. when the teﬁperature
differences between two electibn ébmponents is sufficiently
large, the strength of4di;@efsioh:is reducéd to such aﬁ

extent that a solitary solution is no longer possible,



CHAPTER ITT

NONLINEAR DRIFT DISSIPATIVE ION ACOUSTIC WAVES»

IIT.1 Introduction

Having discussed the case of nonlinear propagation of
ion acoustic waveg in a collisgionless plasma in the last
chapter, we shall go over to study the nonlinear propagatb-

ion of a different class of low-frequency waves namely, the

drift waves in a colligional plasma in thisg and in the next

chapter. In particular, in this chapter we shall investigate
the wealdlly nonlinear propagation of the drift-dissipative

ion acoustic mode in the presence of ion viscosity.

The drift waves derive their importance from their

possible causal relation to the enhanced particle logses obser
ved in low-B plasmas. In this connection, collisional drift

waves are of s@gﬁiicantjﬂ@aqmmxabecaus& they are known to have

large insgbtability growth rates (Imki~Re6d), Barlier theoretical
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work on drift'waves in resistiVé“plaémaf was done by Hoiseev

and Smuooev (i96u) and Chen (1964) DIlfb dlSBlDab¢VD ingt-
abilitles are obs ‘lVbd? amomg other experlmentu,'in magneti-
cally confined alkali metal pLasma5 in Q-machines (Hendel et

al, 19 08 Ivanov ev al, 1968)* I1 the prbdenb onhpuer we

'ihve ulgatu Lhc propdwwflon of wuakly nonllnenr ion ncoustlo,\

.Wave‘1n\an.1nhomogeneous;and strongly colligional plasmahin\

which bothiﬁhéﬁparallél réSié%ivity,and perpendiculaf viSCoSi%y .
‘are:QXGSQnt, We consider the plagma in Which.the electrons

are magnetized'Q @ <L ) and iong are unmagnetized (W>>£2 ):
bo 82 . being the chat‘ﬂaerisﬁ;pwwave freguenoy and electron |
and ion cyclotron frequeﬂcies;;espebtively,- We also assune

that the eléctrOnvmean free path,_rg.muchmealler than the
longitudinal WaVe1ength, so that ﬁhe diffusidn approximaﬁi@ﬂ'

ig valid for the loungitudinal motion of the electrons, Sush

conditions do exist in a2 positive column with,a‘very low
neutral pressure (KadomtSev 965) and in certain Q-machine
experiments (Buch: l’nlkov@ 1968).

Agsuming the magnetlo field %o be in z-direction and

radienﬁS'in.the‘negatiVe dlrectloﬂ it hag been

dengity g

o] S A A - - ) ; (A\‘F\‘ (’j ) ST

shown (Kadombtsev 1965) that t; hlgu frequency (wy/>4»j ion

acoustic mode (&)nj?] C ) n the presgence of collisions 1is

unsvable for ky b kz (drift dissipative ingtability); this
.

is a negabtive energy mode and the ingtability is due to a “‘,3f

phase difference between the electric field and dens i/"

fluctuations introduced by the collisions and due to finite
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kZ. The lon~V15boglty and ilnlte—Larm01 radluu corrcobloao

are known to haye st Lblllalng effects on. thls ins tablliby

(Hendel et al. 1968a Goppi 1964).

In a collisionlesgs plasma, fheipropagation of a Weakly
nonlinear ion acoustic wave can be described by the K-dV
equaﬁion (Washimi and Teniuti 1966, Davidson 1972). Since
drift”d¢s31pative ion acoustic wave has a linear\disperéion
relation similar to that of ion acoustic wave itself, it is
interesting to examine ii, at lea gt upto certain gtage of
nonlinearity, this wave can also be described by a K-dv type
equation, We have taken into account the ion vis 1xy and
by using reductive perturbation method derived a set of two
coupled partial differential equations describing the DLOD &
gation of nonlinear drift dissipative ion acoustic mode. Ve
have looked for a special solution and shown that if‘a‘
perturbation has a long wave length sinusoidal variatioﬁ?ﬁﬂ‘
along the magnetic field direction, the propagation, along
a direction transverse to both mafnetlc field and density
gradients, is governed by a modified K-dV equation. When
the stabilizing effects due to ion viscosity domihates‘overk
the destabilizing effects due to the collisions, this.

equation allows a shock solution

-

In order to explore the region of interest when the
destabilizing effects due to collisiong are stronger thar the’

stabllizing effects due Lo ion viscosity, we have num@rically\'

solved the equation, It is seen that the equation still
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‘permits. solltaLy wave solutlons as 1ong as the pot S“abiliZw'

ing or destablllzlmb clfocts are Dot Loo strong (1 e. fh@
linear decay or growth rates are small compared to Lhekampliar
tude of the initial perﬁurbation),' These solitary waves are
found to cither grow or decay with fime deéen&ing on whether
thu Vlsoous offoots are weaker or sbronger compared to uhe ;Qf'

reu¢st1ve eflcob

General Theory

The basic equations governing our system are the ion
and the electron continuity equations, ilon equation of motion,

electron parallel equation of motion and the Poisson's

. equation, namely

’E)ﬂg | i e i i
S + ( Ny U } | ('5{51)‘\,;
2. . B '\.9 aéc) Y //bL : -22194:

L T ---«~——— — - R —— :
24 ' a“g ‘\ 3 C. ‘)MD}":*\,«.,YLQYI{ Bﬂa"’i 7o (3.8)

Me 1 9N, < 2% (y\ ii’i-)~<‘>
M Wi te 94 2! ﬂg %e2Y ag FE ST b

M.32z T 37 T 35 T (3.4)
and ‘\z,ﬁ
, o <P v
= o . "Y.l-é}', "‘-\3/’\\ . (310)

with
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In this set of equations, ng, ; are the electron and ion
b

den31bfeb, v, is the ion velocity, Gy = (Te/mi) / is the

sound speed and'>\D = (Te/énnoez)l/g ig the electron Debye
length, Eqs.(3.1) - (3.5) are written in terms of normaliééd»!’
guantities; dengities are normaliged to equilibrium value n o,

lengihs to Debye length, time to ion plasma period

W =L (02 = a4 ?/ PO g
pi ( pi 4nn e /mi), potential to ﬂe/e and Vi to ion

scoustic gpee Tn N dng /. ) o
acoustic gpeed, In Eq,(3.2),00 = = Eiw"ﬂo’il”e = eBo/meC?

~¢ being the electronic charge and T _ is the mean collision
time between electrons and ions, The quantity \EJ appearing

in Bg,(3.4) is a velocity potential introdﬁoed through Bq.(3.6)
Wherevvez is the g-component of electron velocity. It is to

be noted that the electron perpendicular equation of motion ig
not written down along with Eqs.(3.1) - (3.5), but use of which
has been made to write Eq.(3.3) under local approximations
(Kadomtsev,1965), Since the mode under consideration ig an
electrostatic mode and the propagation is nearly perpendicular
to the magnetic field, the motion of the ilons along the
direction of the magnetic'fiéld has been neglected, The term
on the right hand side of Eq,(z;z) represents the viscous

force Wiﬁh./%.ZWQO/B +7I1 and 71‘0 = ConiTi/))ii and

gl 'and”\iii\l

— (1 N 2 ¢ ; S b e ~ e M
= On 0V, AT, O and G being congbants and T

1 0

being ion temperature and ion-ion gollision frequency

L+
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fespectiﬁely;’ The copstanfs-as obtéined bijraginSKii‘(1965)u
are C_ = '0;95"@@ Cl - 0.3, In wfiting Bq.(3.2) the ion
pressure term is neglected’because’the ioﬁ.teﬁperature Ti is‘
aSSumed to be much smaller than tﬁe electron;témperaturé Te
andvthe.strength of the ion pressure tefm]c@mpared folthe‘

ion Vl”CDDlLy term goes as O((L /\V 3 ). TFor kyO’v03>>i/

iif y S

the strength of the ion pressure term 1s even sm@lier thaa Lhab

of ion-vigcosity term if .»11 >A'

Let us write the ignudeﬂéiﬁy n, as’. = 1 f'ﬁi wheré’ﬁ;
ig the perturbed part of ion dehsity. Now, integrating kq.
(3.4) worots Z we get n, = exp C@V—”ﬁf), the intggration
constant is put equal to unity in view of the fact.thatkthe
equilibrium value of n, is also Equal’to unity, Substituting

the expression for n_ in Eq.(3.5), we get

Yo
°

We now introduce the stretched variables T = Gl/é(ymt)

e

o i 4 { N2 :r“:_\-
= 3-0 4 4@-D - T

and ¢ = 60/2 t. The perturbed quantities can then be

expanded as

L : . in s gy
,g/h{“i:_, é}inft> L éilfwaé-f o
;LH = £ %BC\)-— 62(3'@;)—% — T T
v(\') %o ()
9. = G”Dt B e T
. () Z = (z
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The last expansion, namely that for I is rather' crucial in
Oar."{;}heory which follows from Eq.(z 4). In the absence of
collisions the electron cllensity.flu.c'bua’bions are governed only

by the potential fluctuations namely n, = exp( @5). The

colligional term gj/ax» in £q.(3.4) is treated as a correct-
ion o the potential fluctuations a@>/az .
5‘1’/@} is taken to |

bhe one order smaller than the term

Thus the term

0 /62 . Hence the above expansion for

The smallnegs parameter € is chosen in such a way bhat,
to the lowest order fg.(3. L)) gives
, -7,
5] \)'()

o 2D
5% 1.7, 9%

a7
] J :
requirement demands that, (9% /kgfie s e) - 61/ 2 ) and

(Mriefm ) (@i, ( [Q. 7,V e

(3.8

To the lowes‘t'order Eqs.(3.1), (3.2) and (

3.'7)- gi\ve_,.
»n(_l) _ V(l) %, (1) .

3 To the next higher order these equab-
ions can he wrw‘tten ag
™ - () ¢ ) . -'w*< TN ’ ()
o N Fd'\) . 9:‘&;_’ . P Y\U)U»'):Q _
e ———— ) e A BTN, __,r_, B . I~ ‘ 5 '
2% a5 oow L oom ~ v n ‘ (3.9)
219 (2 g ¢ < g () g Q)
G O I =T /e 3
- e ’.\IUL =t = =
o3 > 2% 3T T M,m. XpCe 9T X (5.10)
2T » MO :
N R &y o
e 76 1 g0, P O @
and = = b [P 2, - \P .
et g{ L) M (5. 11)
On. olllmle,J ng n E& (2

) and V(2 ) and on uwlng the rola'u_;l,on

ng*) = V’gl) = @ (J), Egs.(3.9) « (3.11) can be f‘lmpllilcd to
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BEgs.(3.8) and (3.12) oonstituté a set of two coupled different-
ial equations describing the propagation of nonlinear drift
digsipative ion acoustic mode, WeAnow look for a special
solution for this set of equations. We assumenthat the |
z~dependénce of any perturbation is ginusoidal in nature

(1)z

( Maxworthy and Redekopp 1976), namcly n ,gy‘,) = n(kaf

SinkZ:Z and \V (1 >(:4' T ) = \I)(’g,ﬁg) Sink 7. . With sucn a
o (1)

prescription Bq.(3.8) can be solved for "\ which is then

-substituted in Eq.(3.12), The z-dependence from this equation
ig Tthen removed by 1pte31atlng over dz from O %o m/k . The

resulting equation for n is

T L, ~ A A ’a:-?’““ / / 91;}‘_
2N qen 1 43 + (= )5—_—;@“0 (3.15a)
> 7C 2% 2 277 » 2

“where g' = (WQ/ZSEGQje kg) and a' = (f%/gnomi)“DGs)' If we
drop the nonlinear and viscosity terms and assume that 1~
exp(lU<r, O3} Bq.(3.13a) yleldo the linear dispersion
relation for this mode (Kadomtsev 1965). If we had Fourier
analysed Eq.(3.8), theh iﬁSteéd of Bq.(3%.13a) we would have
obtained a nonlinear integro-differential equation which o%n
not be sgolved analytically even for some special cases that we

have discussed later, By making a transformation of the space

i

. n . - e R S
co-~ordinate, =T, Eq.(%.13a) can be written ag:
. 4 ’ :
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T + Y ——— O = % + (/:5 “O(‘) =GR Q) :
PR 2T 2T ° ‘ T (3,13)°

2

where & = (1/2) (n/4)5, g = (n/4)26' and o = (n/é)ga'. Before
we give the numerical solution of Bqg.(3,13) we will qualitati.

vely discuss some special cases of Bq.(3.13).

i) When o = B = 0, Bq.(3.13) reduces to a K-dV equation and
represents the propagation of an ion acoustic wave in a
colligionless plasma;

ii) In the case when « > § , the stabilizing effects due to
ion viscosity is strong enough to overcome the destabilizihg
effects due to the colilisions. By'retaining only‘the?lo term:

in the expression for A, the condition « > B can bhe expregsed
3

as
. 4/ 4/ A lg L R
Sz SN L QN e S T /o, (5.14)
A,

where L. is the scale length of density’gradieﬁts. In this
casé BEq.(3.13) becomes a 'modified K-dV equation'. It is well
known that this equation possesses a statlonary shock golution
with either am ogcillating or a monotonic profile (Shut'ko
1970, Jhonson - 1970, Jeffrey and Kakutani 19?2, Grad and Hu
1969).

iii) When p > « , the ion viscosity effects are not strbng
enough to quench the instability and nence we canhot‘look forﬁ

a steady state solution in this case,
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I.,% Numerical Analysis and Discussions
In this section we shall discuss some results of

numerical solution of the equation,

DY oM M 2
- T = S = A

jo— e seis

XS Tzr P gr (8a9)

where ¥ = 8 - a. Now, fory > 0, Bq.(3.15) corresponds to
the case when the destabilizing effects are sfronger'while'
7f< O corresponds to.thelcase’when stabilizging viscosity
effects are stronger, Although in our case & = 1/2, by an
appropriate scaling of n and P, & can be made as small as
we like., This reduces the computer time necegsary toiobtain
the solitary solutions and only ngoessiates a change in the
normaligation of the initial pertgrbation. For all the
calculations to be presented here we have used 60 = b X 10“4,
The difference equation that approximates the modified K~dV, 
equation, i.e, Eq.(3:15), is , , : ‘

A a= oy ('y\i’ _ rmd 3@\? -w€..+ﬂf Y

R T 1G /a5y (N My D™ )

A.

]

A+

: 4 Fri i
: - 3 :
. ” N 3 / . Nz 5 . oy )
- o (at/aT > Yo PN TR H,_ ; 3

_ 99 (a[agt) (‘Y\'i. o %ﬁ " 'Y\ﬂfwu “{‘\d, | >

‘ L] s A ’
| (3.16)

where Ilg = n( i.é“g‘, A% ) and A% and AT are appropriate

step lengths, In Eq.(B.lG) we have used the Dulort and'

Frahkel’s scheme (Richtmyer and Norbton 1967) to replace the

second derivative term in Bq.(3,15) by appropriate differences,
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Integration is performed with 200 stéps ing . In order
that the numerioal,solution;ofrEq‘(3.15)‘does not become
numerically unstable, we have calculated .the amplification
métrix corregponding to Eq.(B,lG)Vand the numerically stable
region is determined for the initial perturbation having a

normalized amplitude which is less than or of order unity.

First, we have taken the initial conditiongas

0 : . C s s .
n; = Cos(imn Qg;) with periodic boundary conditions and

=

amplitude normalized to unity. In this case we have used a

mesh with Az = 0,01 and AT = 2 x 10*4. The integration is

performed With"f =0 and"? = 1‘10"4. In all the three cases
the integration is carried on till the solitons are fully
developed. In table (3,1), we have shown the amplitudes of
the solitons at T = 0.9 for these threc éases. Decreése of
amplitude when“Y < 0 and increase of amplitude when 7Y > 0, is

observed, This result can be understood as follows:

 Linearly, the second derivative term in Bq.(3.,15) with
“Y 2 0, represents a growth or damping of the initial pertur-
bation, Sinoeﬁy << 1 (the amplitude of the initial perturb-
ation being normalized to unity) this term will simply result
in an increase or decrease by a small amount compared to 
Y = 0 case:

Next interesting case is to sec the development of an

initial pulse whose amplitude is comparable to “g . Yor this,
we take n( 7T, 0) = 0,03 sech2(5j§d and observed the develop;

ment of the pulse till T = 0.3 with‘“g =+ 0,02, At = 0.3,




TABLE 3,1
Amplitudes of the solitonsg at = 0.9 obtained from the
numerical integration of Eq.(3.15) with n(g, 0) = Cos(1 )
and &6 = & x 10”4. In the spatial region of 200 space steps
6 solitong are observed and the serial numbers arc the

numbers attached to these solitons from left to right.

Arplitude of the solitons

ST

No. v 20 N =-1x10"% Y =+1x107"
1 1,723 1.662 1.785

2 2,128 | 2.042 2,174

3 2,504 2,427 2,571

4 0.351 0.317 0.387

) C.810 0.762 0.864

6 1.282 1.225 1,342
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the amplitude of the initial pulse increases to 0,0547 for
the case ?? = 0,02 and decféaséslfo 0.024 for “f = ~ 0,02,
This is shown in Fig.3.1.I%t is to be noted that the increase
in amplitude When"y = + 0.02 1s much larger than the decrease
in amplitude when’y = - 0,02, From Fig,(3,1) we also observe
that the increase in'amplitude ig associated with decrease

in width and vice versa, DBut this increase and decreaée of
amplitude do not follow the amplitude width relationship for
a soliton, This ig because of the fact that, to start with
our initial pulse itself was not a pure soliton, In Fig.S.l
we have shown the development of the initial pulse only upto
U = 0.3. Beyond?¥ = 0,3 the solution seems to be unreliable
due to accumulation of round=off efrors. The feason for this
may be the followiné: The way the sccond derivative term is
replaced by finitevdifferences in Eq.(3.16) introduces rdundé
off error proportional to (AT /4% )2 (ag/szz)n. The rate
of chenge of the solution being quite rapid in this case, the

accumulation of round-off error is also expected to be large.

We have also tried to examine the development of an
initial pulse of sufficiently large amplitude, viz,
n(T, 0) = 3.0 sechg(g + 1), so0 $hat shock structure is produced
within a reasonable amount of computer time, But in #his case
problems of numerical instability do not allow us to take
suffioi@ﬁtly 1drge values of”Y (v3)., So, we have to restrict

)

ourselves to values as small as |Y | = 107°, At any given
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time (Qbserved upto” = 1,0) the shock structure for these
two cases (with7 = & 107%) are found to be almost identical
(thé.ohanges in the ampliﬁude as well as. in the width are

found to be lesgs than 1 per cent),.

Conclusions

A modified K-dV equation governs the propagation of
the nonlinear drift dissipative ion acoustic mode in the
prescnce of iom vigcogity, in a direction perpendicular to
both magnetic field and density gradient directions When'the
propagation along‘the nagnetic field direction is Sinusoidai@
The equation allows a stationary shock solution when the
stabilizing ion viscogity eifects dominates over the destabi-
lizing effects due toxcollisioné. It has been shown from
numerical solution of the equatibn that it still permiﬁs
solitary wave solutions if the net stabilizing and destabili~
zing effects are not too strong. The solitons thus obtained
are found to either grow or decay with time depending on
whether the viscous effoects are weaker or stronger comparcd
fo the resistive effects, We would like to emphasize thatv
the actual two dimensional perturbation has to be constructed
by superimposing on this solution the sinusoidal variation
along the g-direction,

| Even though the ‘2on vigcosity effects are not spufficient

to quench the drift dissipative insgtability, the instability
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cannot make the wave grow indefinitely, Other nbnlinear 
effects become importaut‘and fihally saturates the
instability., Onc suoh effect is the ion-trapping (Karatzas
et al, 1975), Hence, one can.modify the present theory to
include this effect in order to enable one to look for a

gsteady state solution,




CHAPTER IV

FINITE AMPLITUDE DRIFT WAVES IN A COLLISIONAL PLASHA

1V.,.1 Introduction

In the lagt chapter we consideredithe nonlinear
propagation of a special kind of drift waves in a colligion-
al plasma namely, the drift dissipative ion acOustio'mode.,
This mode correspond to the case of weak maggetio fieid .
UA3>>£1i) and propagatioft almost perpendicular to the
magnetic iield (ky > kz)' In this chapter we wish to
remove both these restrictiong and consider the general case
of propagation of a finite amplitude drift wavesg in a
collisional plasma within the,ffamewofk of reductive pertur~
bation thecry. The linear theory for drift waves both in

collisionless plasmas (Kadombtsev 1965, Krall 1968) as well asg

In colligional plasmas (Kadombtsev 1965, loiseev and sagdeev

1963, Chen 1964), is very well establighed. But the atbempbs

at developing a satisfactory nonlinear theory for drift
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S waves in collisionless plasma or inicollisional plasgma have
not beeﬁ as successful., This is because of the fact that,
the propagation of the drift.ﬁavés,ign'general, is multi-
dimensional in nature and most of ﬁhé fheories developed for
finite amplitude waves, so far, are ﬁnidimensional;

In a collisionless plasma, the one dimengional propa-

gation of a weakly nonlinear ion acoustic wave can be‘desdribéd"
by the Kor*éweg~deVries (KedV) equation (Washimi andkTaniqti
1966, Davidson 1972). The linegr dispersion relation f@r%
drift waves has some characterigtics similar to the one fox
ion acoustic waves, For example, the linear dispersion
relation for drift waves reduces to that for ion acoustic
waves in a magnetic field if/thg;density grédients are
sufficiently weak, Moreover, the drift waves go over to ioﬁ
aooustic_waves,‘as the angle between the direction of propa~
gation and‘the magnetic field direction becomes sufficiemﬁi&”
small, Therefore, one expects that, at leasgt in some cases,
the propagation of nonlinear dyiftrwaves can also be represe-
nted by a nonlinear equation similar to the K-dV equation,
The usual reductive perturﬁation method for the’nonlinear
wave propagation in inhomogeneous media (Asano 1974) cannot
be used in this case because of the multidimensional mnature
of the problem, However, Nozaki and Taniuti (1974) derived

a multidimensional modified K-dV equation describing the

weakly nonlinear propagation of drift waves in a collision- |

less plasma and obtained a special solution in the form of
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a solitafy wave,

In this chapﬁéf; W& have devived & modified multi-
dimensional K-dv equation‘for fhe,prépagation of monlinear
drift waves in a collisional plasma in which both parallel
resistivity and perpendicular viscosity are important., The
method we have followed is very similar to the one used‘byﬁ
Nozaki and Taniuti (1974). In section IV,2, we have reduoed‘
the set of nonlinear fluid equations for the drift waves in
a oolllslonnl plasma to a muitldlmenplonul K-dV equation %nd
have shown that the nonlinear term in our case is essentlally
same as that for ion acoustic waves but the dispers ion is
given bJ the effect of charge Separatlon as- - well as ion
inertia, Section IV.3 has been devoted to the anaiysis of
this equation,k When the stabiliging effects due to ion
Visoositykis strongefvthan the destabilizing effects'due&tg
electron~ion collisions, the equation allows a Stationary
shock solution,. The strucuure of the shock profile dcpendb,
on the propagation angle, It ig found that'the profile_of,
thé Shbck wave tends to change from an osbillatory one to a

monotonic one as the angle between the propagation direction

and mgbnetio field direction increases.

[V.2 Ruduoblon to a Multldlmen sional lModified K~dV Equatibn

~Let us consider an inhomogeneous plasma with Te>> Ti'

(Ti and T_ being the ion and the electron temperature) and
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d magmgfl ¢ field along
wdlfoubjonw Tet th“ mqgnaulo fleld bo qulbe gtrong so that
1m.equllibrium3 we can taxe ions to be at rest and the

electrons drifting in the y-direction with a velocity

S ”{ < p
0% - TSR /e e

\ﬁheréﬂnd,’s,the_@quilibrium‘density, This drifﬁ.givgsﬂriée

o a currenﬁ which induces aymaghetic field in the z-direction.
Thisnindubed,magnetic fiéld will be negleotéd in comparison
with the applied magnetic field.;jThe basic equations govern—
ing>the systen are th@;Continuity'équation and momentum
transfer equation for ibﬁé and e;ectrth respectively and

the Poisgson's equation, namely

’;‘"\
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Eie b b el
- (4.2)
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with e A - N ( 4 »9 )
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D7 To Te
[l appearing din the above equations is the stress—~tensor. We
f‘"v . : D A
shall borzow thevexpressiohs for the components of | i from.

Braging ki¢* éétiole (Braginskii 1965). Fox exampleﬂ_

wI R & x“_p@ '%q
=0 A
L
- 2= 2ADE L
j‘( il 1@\&). —
s (2% _ 0 Y i
—— j s i i e ——
- . N ™~
T AN o7 *C?*“'%' Iz
L - '
O A9V ot Ve O _i B
- 2% 322 OHdE '%On 4 \
2k £ t = (4.10)

vlhier = . m A . 7 — moo~ o e
whexre M= 0.96 nly NGy 12 = 1.2 nl; Y ii/;Li and

Lo
JIA = T, / Lo In Hgs.(4.2) ~:(4,10), n, n, are the ion

and.eleotron dengitices 163pectivély; VX, Vy, v, are the
omp0ubmt of ion fluid velocity while u, and Cg (Ci e TQ/M)
axre the gcomponent of electron fluid‘velocity and ion acoustic
Speed resp@étivelyﬁ MDICOVGE 4> 15 bhe'electfostatio potent-
"ai while m and ij are Lhe eleotron and ion ma,ﬂ-' respect~-
ively. The quantity \U appearlng in thQQ,V) is d veloclty
pobcﬂtlwl lntxoduc a through Eq.(4.9). Ag in Ghapter IIly\the

DOrpcndLouWar uqu&tlom of motion for Lhc lectroﬂg is not

expli@itly written down in the ab ve set of equation but use
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has been mndu of it lr’vriting the electron continuity
equation (Eq-(4.6)) undér local approkimatidn (Kadomtsev
1965). Thus, Eqs.(4.2) - (4. 9) form a complebe gset. By
integrating Bg.(4. 7) and subsbituting the result in Bg.(4. 8)

we geb

o : - écP )
T r’#\ o (/— hursianand -
V@ - 47E [N, e exb = ) 41

<

We now consider a drlft wave of Ilnlb ~amplitude,
gince the drift waves reduce to ion acoustic waves as the
angle between the propagation directioh and. the magnetic
field direction apprqaches gero, we take the same type Qf
gcalings as that for an ion acougtic wave as far as the\ioﬁ’
density and ion motion along the magnetio field directions

are concerned vig,

/2 | /2
with
Y- mar!b + (‘, N)ﬂ‘(") — & }\Q—)&ﬂ L )
h‘”’gff; . (:_ -02:(".') A 623"_9;1)"?’” ’: .

Ty

D = €@ te®TET T

Where ¢ ig a parameter of cmallness which in our syS stem we
chall define in Terms of the ratio of the ion btemperature to
elecfron temperature such that Ti/Te = (. Following Nogzakl
ond Teniuti (1974), we bake the order of wavelength in

y~direction to be game as that in the z-direction and & skow
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vari "ﬂ;lOl“ in 't;he x—direot‘ion. Hence, the stretchings used
v e"% aa T = ox. inc
th v and x Cl.LI‘bC L.Lon can be Y= and ¢ = ¢x, The
str Lcth in the f~~dl1. ction is rather crucial, which means
that the density gradient approaches zero faster than the

wavenumber of perturbation does, With these stretchings,

Vo Vy and [ can be expanded as
5/2 () 572 ¢y )
1y 4 L Q T e
BT e = (' ) ~+
20 R -
Wy T € BT+ € 1}7 e
d c} o
and ’\.,/,/ gl \),/ 4~ {; '\I/ M e
o .

The expansions for v, und vy follow from qu (4, 5) and (4.4)

Ll

while that for “f_/’ followg from Eq.(z&.'?). In the absence of

collisions, Eq.(4.7) shows that :the electron density fluctua-
tion are governed only by the potent'ial fluctua‘bions, namely
n, = 1, exp( e(-ft'j/ri‘e). The introduction of the collisional
term Ny /02 in Eq.(4.7) is treated as a correction to the
potential fluctuations., Thus the term =~f-);; W is taken to be
one order smaller than the term -—-—-(e’f/‘/f )+ Hence the above

LXp{Ll’lplOlW Lor\)/ is ju .~,L1£lcd

When the electron inertia-.term is neglected, ulul Lo

lowest order Bq.(4., 6) gives

3 “£°)

> ?ﬁ" e ileﬁf.?”i L (4.2
o | '),») ) . ) ) - L ;"5.'.5" . : »
where X = - _,:{;‘? /'hm ¢ In yriting Eq.(4.12) it has been..
A Z L/ o ,

ngsumed that O e 6 .
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Eq;(é,z)'and (4;4) to order 83/2 give

MO ( .
EA— P (4.13)
6y
‘ (o _ _.:gi_‘_. < ’\p :

Simiiarly O(e) terms from Eq. (4 11) and O(Cz) terms from Eq,

(4 3) give,
p® - e ®  (s19)

, O Ce D v ok d{ hsz & qu(o
and Q. T - = = = = (4.16)
3 QO 27 o oM “3 *"

We notice that to the lowest order, the stress-tensor

terms in Bg.(4.3) and (4.4) do not contribute because they
contain sccond derivation of velocity components.,
. ~ ; g 5/2 i ) ‘ - . [__ “ P ' a 2
For terms O(€ ), from Egs.(4.1) and (4,5) and 0(€7)

from Bq.(4.11), we obtain
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<2>,

Making use of BEqgp(4.13) - (4,16) and also eliminating n

o(e)y . L2) o . S
< and v, from Bqs.(4.17) - (4.18), we finally get
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(44,20)

where 7\D = (Te/énnoez)l/z is‘the electron Debye length. Lgs.
(4,12) = (4.20) constitute the set of two coupled nonlinear
partial differential equations describing the propagation of
a finite amplitude drift wave in a collisional plasma, We
notice that Bq.(4.20) is similar to the equation obtained by
Nozaki and Taniuti (1974; Eq.(23)) but it contains three

additional terms., The term 3 © ¢ 22w comes due to finite

2 80T -
ion temperature effects, the term 50 C_ 5 appears due
080G .

to the parallel resistivity while the last term, comes from
the ion viscosity effects, Moreover, if the viscosity,

resigtivity and finite lon temperature effects are neglected
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and thenfﬂ\—dependenoe isg also:neglecﬁed, Eq.(4.20) reduces
to the K-dV equation for ion acoustic waves obtained by
Washiﬁi and Paniuti (1966). The effect of density gradients
appeaxr through the second term in Bg.(4.20), while the disper-
sion is given by the Lifth and sixth terms in Eq.(4.20). The
fifth L e results from ion inertia while the sixth térm
results from charge Separatibn effeéts. Differentiating iiq.

(4,20) once w.r.t., T and making uoe of Bq.(4.12) we get,

L) ) AN N

20 L L KT oM o A, d }’\( ’ Ce G
= o K - >a}
2T oY ) ~ C5 } “““
2T o7 L;¢,@§gﬁv 2 ‘3§A WQD
z / ‘ /[
LG iy Lo 2 : el ()
e + = CeAD N2, T > A
.&).L ayl_LB}; < Q BYL BK_'A BT;

s LT, 27 = onos 3 25
(4.21)
which is the modified K-aV equation for our gy stem,
Analyeis of the Modified K-dV Equation
. . . _ o
By making a Galilean transformatiomn, {j.:”YL_tr__;g-r?
Am ( s
2 ) B L
Bqa(4.21) can be reduced to
RS ~de (1) e !
Sy \ e O Ce > ( (1) o7
e Ao T — = (" >
DT DT ya 2T -~ Ne OF o S
/ . ’ < - L 4%
¥, o - { (_\\ y T -~ '[ » L)
N LCe 9 m . v G . P SR
AN LS o — o
KA)\)("} ’) e \ yi ~ / (‘: (IA) PIL a < (\G” 2
o - » ; s 4 Y - 5 o
Ce 'K (}"r\/\(\) ‘ a(vo D ~ 29) A7 Oy
I < —_ T Rz T v R
- . T~ 7 ST e R i
S (4,28
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where iji = (Qﬂnbez/m)l/z-is the ion ﬁlasma frequency. For
discussing Bq.(4.22),1t is more convenient to work with
dimensionless quantitics, Fbr this purpose we normalize
density to equilibrium value ngy time to ion plasma period
Oﬁ"i and lengths to Debye length.:KD. In terms of thesc

normalized varisbles Bg.(4.22) can be rewritten as

%—5} P20 2 20y A (D 0, Rl
- aiatl Ao D c)fg“/‘[
e asOnR P otees
Rilo o OB f?:.?l' Bo”lg; ’;)(;L P )”}q =9
(4.23)

Tebus now consider the propagation of the drift wave in
o particular direction such that the propagation direction.
makes an angle ¢, with the direction of the magnetic field.
Therefore, the two space variables are now related through
/N = TCosd +¢ Sine, Writing Eq.(4. 23) in terms of /\ and
integrating once with respect to /\. under the boundary
conditions mamely, 1, dn/d/N, azn/aAF; agn/a»5 tend to zexro
as N\ =+ «© , we get,

M

2 2 oM AN
Coct 20 2 0 } ,
oY L Og@a/\ P Cos®” YN
K a3l Crs'e 0 W N Dy
e 4 (ST L) 220
2Ll eTe 2 A9 ON?
.

. VZC/ C 7 Jr T L , ; . 7 . 7‘[\ .
’ :L )\ L)?(L J)(, [ g'\.’w\ - O 64‘7\ C&)})L ) o “J(\,) ? § - O
] . . 1,

o N y g
_Q »L C}\‘Si(‘\; r\)/("(, (4.24)

It may be in order here to point out the limitations
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of our,theory. The scalings in the i, Y, Z directions are
not‘independént\but r@lated thrdugh the stretchings used,
We note that ky approaches zero as fast aS~kZ does but

W = kyvo approaches zero much faster, As a result, the.
fheory is not valid in the neighbourhood of either k = O
or ky = 0, or in other words the propagation with 6 = 0 or
0 = n/2 cannot be investigated with the help of the present
model, | o | |

Now, on dLVl&Lng Lhiouéhoub by COQ@ we get

oMol ey L on c CJ W33
g "/ . ) o D N :_}
o (e MG ) ( L S +4) omn
B C - L o // . at /i‘\‘.:: ’
o n = <« Z ’zc_f)" R 5*?1) T Q_iéil(f)i‘~>@“~é %{L =0
LT GF Gesle YA
) {4.25)

By introducing a chupge of variable n = n exp (- 90/202 @)

and a transformation, M = /\ - & Cose 2’ , Eq.(4.25) can be

2
reduced to - ' = *jﬁ*_
‘a~ aﬂ' { o J{ijj = {
" e el S g Ty

L Li)k() exp( S )V~ Jr b3 R
where N

A Ca Clpy 0 2 o
o b=l (Seiie )
T 20, ! 7N QF

ﬁ/\( N jL@ ( G ))H @3 eh §L,f\ JWQ n “_C*)___C:f\_ffifh’_( \)

and d o O Tz Co¢?@ i

The following general conclusions can be drawn from
Eq.<[-l3.26> [ 3

i) When & = d =0 i,e;;'whun both vigcosity and collisional

effects are absent, Eg. (L./G) reduces to BEq.(26) of Nozaki
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and Taniuti (1974). As was shown Dby these authors, this
equation giveg the so called drift solitary wave solutions,
Of course, the initial Valué problem df this equation has
not yet been solved and one does not know how in this case

a solitary wave is formed from smooth waves

ii) When collisional ceffects are much weaker than the
viscosity effects i.e,, when we cah neglect all the.higher
order terms in the expansion of exp(d7), Bg.(4.26) glves

a stationary shock solution with either a monotonic or an
oscillatory profile (Johnson 1970, Jefreey and Kakutani 1972,
Dzhavakhishvili 1973), In order to see how the angle of

propagation influences the profile of the shock front, we

carry out the following simple minded analysis.

Going over to a wave frame moving with velocity U,
such that 7 depends on X and 7 only through ‘N = X~ UT
Ellld ll’l.b\‘}:)ra’blllg EC] [ (4: 326) once W.I‘..t » ->\ und@r 'th_e boul'ldary

i - == .
condltlons T=n=1n=0as X - - we obbain

7 Cese =2 =
'sz — ﬂ) -+ ~~—~~£ fY ] -~ U = O

3/\ ' ('/&")\ 2_' . ‘ (4-.2’7)

In the limit M\ - « , Eg.(4.27) gives
Foee No=2U0 /Cese

So, in order to look for the asymptotic behaviour of Eq.(4.27)

- . AT . . -
as Jo — + o, let us take n = N +1 . Now linearizing Iq.

—~
(4.27) we get an cquation for n , namely

‘:J (% A Y
L o e 4 U0m = O
‘7{ i
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Bq.(4,28) has a solution’ﬁ'z exp (“?Z\) where 7 is given by

(7 = — m.; + C ’}Z‘ ”U >j/l

r./:,) \> (:)

. . (4.29)

It is clear from Eq.(4.29) that the shock wave will have a

monotonic profile if d /4b > U which can be rewritten as

u)k =1
CCos e] \ o L*v»\@—u} > U

s

o A9 VW (Y
}px“(ifiihﬁﬂg@ﬁ@ Fué4a#
A 5 ‘

L TLL

(4-.30)'

For all the other parameters fixed as the angle of propagat-
ion increases, iﬁ becomeg increasingly easief to satisfy the
above inequality and hence it becomes increasingly easier to
obtain a shock wave with a monotonic profile, If the inequ-
ality (4.30) is not satisfied, the shock wave will have an
osoillatory profile, This meang that for a given setl of
plasma parameters, Lhore cAlsts a critical angle 0O, which
represents the amgle of transition of the shock profile from

an oscillatory one to a mornotonic one.

iii) As for the case when the collisional growth term is
Suffioientlv large, we camnot look for a stationary solution,
for the ulmple reagon that any initial perturbation will keep
on growing because of this effect. Waves will grow to such
an extent that the dispersion effects will no longer be ﬂblb
51
to balence the steeﬂéng due to nonlinearity and usual wave
[
breaking will take place
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IV.4 Conclusions

.The propagation'of a Small but finite ampiitude drift'\
wave in a colligional plasma can be descrlbed by means of a
modified K-dV equation, When dominant effect due to the
colligions is tae vigcous damping,»the equation allows a
stationary shock solution, The profile of the shock wave
tends to change from osoillétbry one to momotonic one as the
angle between the direction of‘propégation and the magnetié
field increases., As in the case of dfiftvdissipative
instébiiify;'if there is a growth of the wavé aﬁd i£jﬁhé
growth rate exceeds the damping rate due to the viscous

effects, a stationary solutiom.does not exist,.

‘The inltlal value ploblem.01 bhe bq \4 26), ever in
a COlllSlonlcss plasma has not bmen solved 50 far. In order
to uﬂdelstqnd how the dr1£t~solltary wave 1is formed from
arblt:axy 1n1t1dl pcrbarbablonp, it 1sresDentlal to study

the initial value problem of 1q.(4.26).




CHAPTER V

TON ACOUSTIC SOLITARY WAVES IN AN INHOMOGENEOUSKPLASMA

WLTH NONUNLTORM TEMPERATURE

V.1 Inbroduction

In Chapter II, we investigated the propagation of an
ion aéousﬁic sdlitary‘wave'iﬁ a mediﬁm;r%hosebdiSpersiQn
characteristics get’modifiéd‘by the presenée of a relati?ely
cold eléctron.odmponent. Inffhis:chapter we shall examine

the propagation of an ion acoustic solitary wave in an in-

hdmogeneousrmedium. In this case the strength of dispersion L

beéémesaa\funétidnvqf the space variable, As ménti&nédwin  3*
the previous chapters, the K-av eqﬁatioh describes the
propagation of one dimenSiohai:Weakly nonlinéar ion‘sound;
disturbances in a homogeneous‘piasma.:

In reality, however,_the piasmé is”ﬁ¢ver strictly

homogeneous, Recently Nishikawa and Kaw (1975) have derived
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au‘equation describing the propagation of a Weakly'nonlinear

ion éoou le wave in a plasma with -a density gradlcnu, \These

aubhor hdve %hown LhaL Lhe amplitude of a solitary w%vc\
(normalized to local den31ty).decreaseb as 1tifropagato

toWardslthe region of increasing_densityi:»Thls igs because
of the fact that the q‘bfength“df ',t"lrfefi/diSpéfSioﬁ, which is

it ~ 2 2 R
proportional to ’“D = /4nnoe ‘degreases Sone moves

towards regions‘of incré: ‘ﬁg{deﬁsiﬁjff}We note,thaﬁ, the
Strepnth of the dl pers 1dﬂ;geté furthéf modified if on the
top of a denSLtJ 1nhonmgenp¢ty,'d temne 1turé inhomogeneity
is also presenL _Based on thig physical grOUﬂﬂ in'thisgwn,
chapter, we investigate the propagation of am<ion.acousfiér
gsolitary wave in the rjesence of. botﬂ density and temperature

inhémogeneities.
We assume that”the~tempéraﬁgfé gradient is produced by

the presence of a finité-thérmal ¢dﬁQpctivity; Since the

oefficienﬁ'offthermal-Conductiﬁity'gﬁes“as;T5/2, (WherekTy“k
is the temperature) the helmql conduction is generally'
large for high temperature plasmas, Hence an_appreciabie
tempgraturé,giadient*is not to be expected in a high temper-
atur@'plasma; Nevertheless, for not too highutemperature
Ul&bhu& in the pre *ucé of a maﬁnotic field or in presence
of colligions, tenperaﬁure oradient‘éanfbe,sustained. Beoause
Of this réason we shall agsume. that the bemper ature gradie nb
scale~length is larger than the den81ty mradient scale-length,

In Seotion V.2 we assuue hab thc equ¢11br1um dons¢ty gradients
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B and an effect~

;are produced by a zero~ofder eleotrié field B
ivé gréVity field,'»In'the presence of a-temperature gradiepﬁﬂ
the'électfio’fiéld»neéded'to sustain the density gradients
ig smaller than the one needed in the abséﬁﬁe of temperature
gradients, Due to the presence of the colligions which
give rige to the finite thermal co&dﬁctivity, one needs a
smaller field to maintain the gradienﬁs. ‘The absence of
collisions simply shorts out the'éléotric field and hence a
highér field is required fo”maintéin'the gradients..

In Section V.2, using reductive perturbation meﬁhbd
for an inhomogeneous plasma (Asano, 1974), we have derived
a mgdified K-dV equation governing the propagation of an
ion’acouﬁticbwavebin‘the presence of both density and
temperature inhomogeneities, 'Ig:SectiOH V.3, we show that
a sdlitarwaave, of a given amplitgde, propagating towards
increaSing temperature.and-deoréaéing density has a higher
velocity compared fd the case when tem?erature gradients are
absent, |

Recently an eXpérimént was perfofmed'in Physical
 Re$éarQh2Laboratory9 Ahmedabad, India (John and‘Sakend719?6)?
whore an ion accustiquolitary wave was launched and propa-
gation was studiéd in’a'plasma-With a density gradients. In
Section V.é; we compare oui results in the absence of a
'temperaturé gradient‘With'thé experiméﬁtal results and show
that ﬁhey'are in vefy'gédd'agreeﬁent:with the”experimental

resultbs,
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V.2 Derivation of the.Modified K-dV Equation

The basic equations governing the system are the .
electron and ion momentum transfer equations, ion continuity

equation and Poisson's equation, namely

=3 gy 'a;p :
€ }/Mg E;&Z et M \;7\ C)C/.J (5.1)
o T2 9, 29 . iy
Tilsy T ta~za7c:]*+.i"i§§7 =3, (52
Ll it 9. = O - (8.3)
R Ere “‘Y\/{__L«/] | - )\

wa OB _ 4reMe ="y | (5.4)
o celme-me b

In Bgs.(5.1) = (5.4), [ is the potential, n, ; are the

¥

electron and ion densities respectively, Te(x) electron

temperature, viiis ion velocity, =-e is the electronic charge
and g is acceleration due to the gravity field, Agsuming
that the sdalemlength for the temperature gradients is LT,"
we write ik (x) =T (O) (1”+ x/Lm). Thus, Eq.(5.1) shows

taat hQ an1l1br1um density gradlents are balanced by the

zetro order electric field e ?q'o gnd partly by the tbmpc1~i
' ' 09X .
@Lure gradients, If the scale-—length for equilibriumAdeHSLty

gradleﬂks is-.hm, one can write Ne(x) = Ni(x)EsN(x) = N(O)(lmx/IN).§
Bq.(5.2) shows thalt, for ions in equilibrium the gravitational :
force is balanced by the zero oxrder electric field,

Wc'write the demsities ng ; = Wix) + ﬂ\n (x t) =
3

N(x)(1 + n (X t)), where £ (x,t) are thﬁvperturbbd
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electron and ion densities resﬁectivély, normaliﬁed to the
loCal‘equilibrium vaigos; It is oonveniént for subsequeﬁf
calculations, if we write Bgs.(5 1)~ (5:4) in dinensionless
form, TFor this reason we normalizeiqg.to Te(o)/e, lengths

to Debye Llength Ap(0) (AE(0) = 2 (0)/4ni(0)e”) at x = 0,

H

4nN(O)ez/mj)
TG(O)/mi}'nt

x = 0. In terng of these mornalized quantities the equations

tine to ion plaswa period ‘,”1(0) ((l)?i(O)

1l

and velocity to ion-sound speed C_(0) (02(0)
2

governing the perturbed quantities can be written from Eq.
(5.1) - (5.,4) as

T L
o -~ b — oy 2Ne

o2 e -

B 3 e

<J % ¢ \ )]

e 1 0 9, fiw_, EEEE*. — D
ST ? -

St 19220 (A ) e = (A4 )9 =0
(}Jf _J’ /L a*’)( +( 1 “ / a)c— &) {J(r.v)

. ((')) “D “*C...:}i.r/ i 7N '
and =S e = M- T (5.8)

N(x) o x? 2 Ty
where K = - /ﬂD(O) Al x) and T (x) = 1+ a K x with
; ST : Ny e
gana Mx) dx ,
e =”LN/LT¢ We now introduce the stretched variables (hAsano,

1974),?§'= 61/2 (x - %) and '71_= 63/2 %. The smallness
pdrameter ¢ is defincd in texrms of the soalémleﬂgth of the
density gradients such that 5%‘ = j&D(o)/LN - EB/BGC . We
shall algo assume that o = 0 (€). The‘p@rfurbed quantics can

now b expanded as
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2)

)‘z'»-( | |
no= €N, LY EMN T - T

e :ﬁ» é}‘}ﬂ A& Me T

and T 1
To the lowest order Eqs.(5.5) - (5.8) give,
ﬂi 1) = ﬂ(l) i§(l> = v§l). To the next higher order ligs.

,(5.5) - (5,6) can written as

RO I N A -
o ._.\ gi') hz/‘)_‘;';)' <\> }‘ C_{D C’;)Y\ : - “
~ < v (Y\_e ”f;'"" w CXN}? - = }o (&

o P) 3 DT DT (5.9)

'/,... W (\ .
awﬁ) aon e Tﬁ() )
M = =0, (5.10)
D v 0% X XS
- l _i;.’ i (/) . —;‘(‘} ' N (’) F 4
> 5,,|(‘ J B‘&I (:) 7l ? fy\(") d L=y /:K ,“Y}( /:)“ < v
e ALY (5.11)
O 2% 27 - o5 |
' ~ o (O () | L
[ o Rt L. . -
ona NG )~: 9% _ v € ) VA, B (5.12)
N Dx % < ‘

‘v : - - 9 - h
By @liﬂinﬂtiﬁﬁ‘ d’(z), n; 77, n%z) and vg“) from Eqg.(5.9) =

(5 1?) one obtains () ”“w.éy' ) .
A <o, N O ey
Ny . . i) : N 8 f_L " AL S < At

Q) \ 4~ ("Y\ ( + LA Yl) —— - =3 ’§ ( L> = % K Y XL' =0

where £( "“?U = 'N(O)/N(X) In writing Bq.(5.13), usc has been

node of the relation n:

ig a modified K-dV equation that governs the propagation of
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weakly nonlinear ion acoustic waves in an inhonogeneous plasiia
with both»den ity aﬁd tenpera ture inhomogeneitieS. We notice

IR o1 ani(D) ol
that the term = u7yw§~ - appears Lﬂbl;uly due to bcnpcr turo~;
gradients, We also notice that, in terms of our stretched
variables the coefficienmt of the dispersion tern becones a

function of W] only.,

Steady State Solution of Hg.(5.13) -

e

By naking a co-ordinate tlﬂn fornation of the type

S i‘§;~ 4 n /4 and 0 % WL Bq. ($ 13) can be written as
o
?Y‘ + My >i1« {X@).wiﬁ ”.idfxwff):cj.
6 - 2% - (5.14)

Now we introduce a change of" variable n = (f(@))ml/g ngl) én&
the following transformations: .

: s

=147 s

and ,\) - [6[' _,f:i-e’) ,\/ 46
For’y = 1/4 and B = - 1/4, Eg.(5.14) reduces to

o ~ - i 3*/ ‘

%;%; *“Wﬁyéiﬁl.' 75’%§7£§3 = o | \(5.15)35

lE.WLlL115 Eqn.(5.15) terns of order ﬁ3\f4wm«’ are neglected
because of smallness 5 of X[« ( Nishikawa and Raw, 1975).‘ Bq .
(5.,15) is a K-av equation and if one assunes that n depends on
/% and ™ only through VW = (M = uv), one obtains a

stationary 'soliterrnt'igolution (Davidsonm, 1972) which is given
3

by,
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- g A
Y= T)UngL\A [@%) ? (/”L — uy )J.

where u is the velocity of the soliton in (M) plane,
Since f(0) = N%g (1 +9¢0) 2 exp (K 6), Bq.(5.16) can be

rewritten as
O ac /2
M= Sexp( Z_> Seck L exp (= ?Sl)

S, A, SR
E fj(; )&XP(“,L ))}J=(5.17)

o o g

Thus, the absolute density perturbation is given as

an. = BUNCEY @,QMWW) Coe —[ (M ‘*P(iz"?“)

O S T K \‘7?
s Tl T "g}ju\’( 5 >/f | (5.18)

Conclugiong and Gormparison with Experiment

Since N(x) goes as ¢xp (53{n), we can derive the
following conclusions from fq.(5.18),
1) In the absence of temperature gradients, os a solitary
wave noves towards decrcasing density regions,vits amplitude
goes as (H( X) l/“ and velocity goes as (N(x))"l/z; The
d@cr@ase in amplitude is associated with approw riate JMLT”QSG
in width, Recently John and Saxena (1976) ed out an
experinent to study the propagation of ion acoustic solitary
waves in a plagna with a density gradient but with uniforn
temperature. Their results are shown in Fig,5.,1. The variation
of the amplitude and the width of the solitary wave as it”

propagates along decroo 1nb (or increaging) density follow
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ﬁery oloSely-ﬁhe variations‘prcdicted by the theory.

ii) Thé pfésence’of a %emperature gradient together with a
density gradient does not further modify the amplitude and the
width of the soliton., However, it modifies the propagation
characterigtics of the soliton, in the sense that it modifics
the velocity of propagation of thé soliton, As a solitary

wave of a given cmplitude and width propagates in the direction
of positive terperature gradients its velocity of propagation

increases,

fron Bgs.(5.18) we also notice that, as an ion acoustig) .
solitary wave moves towards decreasing density and inoreasing,i\
terperature regions, the modification in the amplitude and
width of the soliton tokes place due to Tthe demsity gradients
only. In the present theory, the scale-length for the
temperature gradients being much larger than that for the
density gradients, to the lowest order, the strength of
dispersion is governed by density gradients alone, Thig isg
the reason why the amplitude end the width of the goliton

are affectcd only by the density gradients,



VI

RETURIY CURRENT INSTABILLTY AND ITS BEIFECTS ON BEAM-PTLASHMA

Introduction

In Chapter T, we discussed the importance of relati-

vigtic electron beams (REB) with special reference to plasms,
heating., We also presented a discussion on some of the basic
problemg commected with the production of such beams wherein,

we explained how the return current is produced, The greatb,

promige, the relativistic electron beams offer, to heat a [

plasma“tb thermdmﬁoleaﬁ t@mp@idture has inifiat@d a laégd“f(‘
number o£ pi&gma heating experiments (Altynsteﬁ“et al; 1971}
Miller and Kugwa 1973, Tribel et al, 1973, Lkdahl et al, b
1974, Goldenbaum et ale 1974, Kapetankos and Hammer 1973,
Bréshitov et al, 1973). In this chapter we shall congider a
relativigtic beam—plasmamréturn current system and Study’

certain new collective ogcillations introduced due to the



66

.V&ly CAlBtbﬂCv of tao xbtura ourrent Mbreover, we Shall

'budv tho GfI bt ui tnv rotu“n curren? on some known collect—

ive modeg Wﬂlch exis L in such a System,

The procéa%es, that can be uscd to duPOSLL energy in
a’plasma from an Lnbpn e hLB oan.blowdly bc leldud 1nto two
clagges, First, thése bcam. can,bc usea for hEQtlﬂé solid
pellets Serounded by ﬁheils of hbwvy mwuorial in which béam:k
depositw eﬁér@y hy Cl@““lcal pwoéLS' S e ”} s pr cess 18 1ot
yery Clbleﬂb and nunerical alculupluno ot ﬂudakov and 

nnfpky (197 ) havé shown that, in oxder to fegoh fﬁefmd;‘
welear bOidlflOBS, a beam energy of 1 - 3 MJ is required to

bu delivered in a tlme 1ess th&r 10nlu\c. The most egsential

r)

requirement of the pellet fusion scheme with REB is that, the

beam be focused to the size of the pell 1«10 mm, with
IR o o

current dengity reaching a le el of 10 - 10 Afem™,  The

situation is not very dlsooulﬂglnb 5] the experiments are

not. lagging teo far behind, VitkovitSKy et al, (1973) and

A SN 7 e
lonau et al, (19?*) have achieve d‘ou“”ent densities < 10 Afems,

oV iocu sing the b am Wibblﬂ.tnb diode, The other metbkm 

transferring encrgy from the REB to the plasma takes ¢

["'”‘)

of the collcctive osclllations'gﬁnerated by guch beams in a

plasgma, OL thege, baslcally ounly two 2ro important - the eg-e

v

two gtrean instabiliﬁi%

&nd:the,return current instability.
The efficicney of - rzngacr'of energy via these colloetive

modeg ig expected to be COLuldCrablj l@LPL ag the high
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power and energy density of the beams produce very large
level of collective fluctuations,

Afgreat deal of theorebtical work has been done on the
study of Lup e—c two-stream 1nstﬂb11lby (FPainberg et al, lQbD
Rudakov 19'70,( Brédsman 'and Rywbov 1971, Thode and Sua:m 1973
Toefer and Poukey 1973). "'Z‘B"ainberg' e’b al, (1969) showed that
the quaSilin sax doveLopmunﬁ of thcse modes produo“s a spread

in the bpﬁm.blﬂanLlS@ mome ntum whlch ultimaLeJy stabilizos

(5]

these modes, In,fact, high Current beams are always ¢ uSOCLdLOd

with a transverse momentum spread, which comes about becausge

of the vch nmcure ofvproduotion of these beams, fudakov

(1970)*p01ﬂteq ut Lhat the spread in the transverse momentum

of ' the beam isg JQUOGl ted with a spread in the parallel
velocity., 1If 6E’and <8 are tao bnO“gy spread and mean.
gquare angular scatter asgsocliated With.a given.beam.distributm

ion, the spread in the parallel velocity, A, is given by

i _Z
o 7o ke ~ .
A, fo = 0540 + Y TSE

wherey o = (1 ~~v2/02)~1/2 is the relativistic factor. When

G fe <Y gl (nb/nﬁ)i/g s 1y and 1, being the beam and
plasma densities regpectively, bthe beam is said to be cold*ory
monbenergetic. On the other hand, when 0,5 < 0% > >}“Y“g 5
and &V, /c >y ;l (nb/np)l/g, the beam ig said to be scatbered.
The imporﬁant consequenge of the presence of a spread in the
parallel velocity of the beam is that, it lcads to the stabiliz-

ation of the unstable 1yuhodyndmlo phage of the longitudinal

- I

modes, 48, the initial asgumptiong used for the dominont
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nonlinear mechanism, by different authors are widely different,

the interﬁéfidﬁ lgngth calculated by these authbrs’also‘vgry l?w;
widely., - .
4 number of computer simulation experiments have also
been carried out in an attempt to clarify the sgituation,
Computer gimulations of Sudan (1973) shows that a strong
interacfion.takes place for a beam with narrow spread inx%‘.
Moreover he findg that the dominant.nonlinear effects are the
wave saturation by beam trapping and transfer of énergy from
the primary spectrum to low frequency beat waves via parame-
tric instability or nonlinear Landau damping when the primary¥% 3
spectrum is broadened. |

o

Estimates of plasma heating by the return current ingb-
ability have also been attempted by some authors (Guilloxy

and Benford 1972, Lovelace and Sudan 1971), The important

guestionsg that have to be angwered are the rate at which the

I

beam delivers energy to the plasma and the partitioning of. the

¥
/

energy between the plasma particles and the waveg., In

Section VI,3,1C we have considered the quasilinear development

f the return current instability and have shown that the rate

C

at which the electrons arc heated is larger than the rate atb
which the ilong are heated., Hence, in the initial stages of
the development of the ingbtability the electrons will be
preferentially heated and when the return current satisgfies
+tie 1Y i t S 1 ) '1‘/2 V ’ e Gl RYES { ity
the condition V. > (C_/2)7/ o, o (where V, is the velocity

= p=) B RS .

Of the return current clectrons, C_, is the ion sound speud
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and « o is the parallel thermal velocity of the plasma
elootrOn),\the'ieturﬂ.ourrent driven ion‘acoustié inﬁtdbility 
will set in, The ion acoustic turbulence decays via soatteru‘
ing of ion sound waves by electrons and estimate has been
made of" the rate at which the return current looges encrgy

ag a result of the decay of this turbulence,

VI.2 Digpersion Relation

Let us cqmsider a hot pl@sma in a uniform magnetic field
Eo which we takebalohg the zp-axis, 4 relativistic beam off
electrong of radius a is streaming with velocity U through the
plasma along the dircction of B . The beam density, 1, is
taken tc be much smaller than thé‘baokgraqnd plasma density, n_,
; / B oY
through which The becam ig moving; We further assume that the

plasma is hot but monrelativistic; this restricts the analysis

B [»]
o temperctures such that KT << mc” (m being the electron rest

mass).
~Ag the beam propagates through the plasma the changing

gsell magnetic field towards the head of the beam induces a

Ay 24

back current in the plasma which eventually neutralizes the
beam current, The effect of such a rebturn-current can be btaken
into account in an indirect way through the inclusion of a

P

return velocity Vr’ similar to the usual drift velocity, in

the equilibrium digtribution function of the plasma electrons,

Thig return velocity isg related to the beam velocity U
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L0
through the current neutr%ll thOH fbluLlOl viz Jp + J0 = 0,
where Jg andingare the,unperturbed plasnma and beam current
densities, respective ely. On assuming that the return current

is mainly due to the electrons, the return velocity ig simply

given by

\/)’ g (0/\{‘1 /‘nP) i\;}} . (Gei)
Congequently for the plasma partiolés‘wé oahttak@ the follow—

ing cquilibrium distribution LHELthH“

if' = o — _E}“XFE.U.{L/X (L()“ \/3)> /‘)(IU ] (8 '))
f

L3
AGH ‘)(\Q.Q‘L_J

where a = (2KDy L/m)l/‘ are the parallel (perpendicuiar)

o J
. . .th . - R :

th@rmal velocities for the ] species, The subscript j labels

the plasma specics, i1.¢., Jj = ¢ for electrons and 1 for ions.

Morevoer V.. = 0 and V.. = V . as given by Bq.(6.1). For the

ri : re. . r?
beam, we choouge a dc"_qutjpu distribution function, n&mely
- | o :
- e = &.\ . ’ v < > Y ') : EE
P e = .. — . s =
ﬁc‘;e‘»; 7(?ﬁYW)<tL> é \N hﬁ . (6.3)

The superscripts p and b are used to distinguisgh the plasma

end the beam parameters,

for: gmall pérturbatious,the motion of the charged\
particl pu'MOViF? with relntivigtic gpeeds 1s gav lﬂod by thc
linearized Vliasov ((Hhutluﬂ. POllOWLﬂg the urOdeurc oubLlnud
by Buti (1963) and Monbgomcry and leman_(lgbﬁ), ﬂnd on using
the full set of lax wuil quatloﬂu; WaE arrive aL the following
‘dispersion.relation

)“ ii = O ; (6.4

LA
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where . ’
~ ez 2 SR AT e o
R=(c"k-a™)I-ckk+g (65
with o~ | ;
07 = q:> Z@ UQ ngP‘(d Gl
e . *;v J rJJ CP
‘\;,r:: ) . -_—FO() . (6,6)
9§ i RX, t>><(‘3wL VED ‘j
B? ) (YY\J (J\)f\? 2
nGl@)= + ';(“;r"“ {(ku H m @Y ) CCP QP ) .
y .

+;? B (S e S“(,,ch .>."

\PJ-(inn e /m )l/“ and iz. = (ejBO/ij'? j) are the plaémaf

.t . :
and cyclotron.frequenoles of the j h species, The label 8
appearing in Bq.(6.6) implieg that the summation is over the

beam as well as the plasma parameters. Moreover, the upper

[}

ign in Eq.(6,6) corregponds to the ion and the lower one
corresponds to the electrons., The rest of the symbols have
their usunl meaning and are defined in the above mentioned

references (Buti 19673 Montgomery and Tidman 1964 .
? o

The various components of 6 for the plasma and the

[

characterigzed by the distributions given by Bq.(6.2) and BEa,

(6.5),'r@8peotively, are given in Appendix 4, From Ldgs,
(6 .l), (6.5) and (u~l) to (u»ld) we observe that for a Juncrql

k“(k,,O,k“),iH mecm@mmmuofwa@nmmwuamw

f
S

and to analyse the dlup“rwlOH.rOlqthD.lP this case ig a
formidable JOb. Instead we hﬂll restrict ourselveg to the

speclal caoges kj.” O, 1 b., p%rallel pIOanﬂLLOH ox k% = Q,



VI3 Parallel Propagation

vI.

i.e,, perpendicular propagation only.

In this case, on putting k =0 in Bqs,(6~5)-(6~6) and
(4-1) ~ (A-14), we £ind that the elements L Ryz and Rzy
vanish and the dispersion relation reduces to

~}~A N = O
g,<RxL~ {{:«;’.“a‘) ' : (6.8)

The mode corresponding to Rzz = 0 1is a purely electrostatic
mode, whereag (RXX + 1L R__) = 0 correspond to the right handed

and left handed circularly polarized electromagnetic modes,

espectively, We sholl investigate first the electrostatic:

mode,

3.1 ILlectrogtatic Mode and Return Current Instability

Fox k, = 0, the mode RZZ = 0 leads to the following

relation:
) 2
(a2 \L,, () /’ P —(_)P /y
e ;J\Jk < ";\“ e i /(( 4 L 5 Z /b't,;‘ = l ) ;

wherey/%;ez (O - er)/ka“ o1 o= L/ kay and

: N 47 ) - , .
Vo = (1L - U%/C%)"¥ %, In the absence of return currents i.e,,

for Vr = 0 Eq.(6.9) represents the usual dis pLLJLOD relation
for the electrostatic wave in a cold-beam~hot plasma system,
On the other hand if we treat Vf as some- soxrt of relative

VClUClby between the . qu 1. electrons and the iong and neglect
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the beam term, then Hq.(6.9) reduces to the dispersion

relation for the current carrying plasmas (Stringer 1964).

erigtices of the beam plasma gystem or the current carrying‘
plasmas under appropriate conditions. Since for arbitrary
values of Mg and.'/Q{the above equation cannot be solved
analytically, we shall now congider a few cases where 1t 1s
possible to extract some information regarding the stability

of the electrogtatic waves.,

Via3ela, Cold Plasna (./Qﬁg o o Sy 1T),

Under this approximation, Eq.(6.9) simplifies to

2 N 4 P
. { ("{_) s (’QDE L,L)‘::(_‘ . j
Flew,k)s —e—obe 4 ”f".,,\,?_i 5= -
| A (c.-\)%z‘u)?— (Lo +Rivil) W (6.10)

The instability occurs whenever minimum of function I' becomes

3]

@

o

greater i.an one i,.e,, for I _. 1 The case P . =
G te min ° . °Y “min
defines the boundary between the stable and the unstable

regions (cf, Fig,6.1),

From the schematic plot of Eq.(6.,10) shown in Fig.(6,1),

we obgerve that in the absence of return currehﬁ the i‘st~;
ability can occur for Cx)r > 0 which ig the usual e-e type
ingbability (Briggs 1964, Nezlin 1971), However, when V., # 0
even the frequencics O)r < 0 can support instability. The

latter ingtability arises because of retburn currents and is

egsentially an e~i type instability which can occur in current

Hence Eq.(6.9), as one would have expected, has the characte
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cerrying plasmas (Nezlin_l971; Stringer 1964). Ve shall now
‘ dluCUuS the COﬂdlLlOﬂu under WﬂlCh the return current ins ta~

bility buoowo im )lbuht

From Bq (6,10), we obverve.that for (W< 0 and for
] < k| v, |, the beam term is wpprox1m%telyL0 /k“U v
which for relativistic Velooities is << 1 and hence can be
neglected fox the freQuencieS'of interest. In such a cade,

Emin occursg at

| TS 1/ S
. ; L. :
where € = (m/M) is the electron to ion mass ratio, On.subeQ
ituting Bq.(6.11) in Bq.(6.10), we find that the critical

plagna dengity is given by

Sop i e e N L i/fs -3
Lleer ( qne” )R Vi (t+e ) (6.122)

and hence for the critical return currvent and congsequently for

critical beam current, we have

bR
XC,Y:ICT = 7(@%{ + Vy
. o z {/,'v..'?
W O\_, , f ‘ e / z
— —';I‘é >u< U (\M”> \i + € ) . (6.12b)

l
The superscript R stands for return~current,
In writing Eq. (u.lad) we have made uge of Eq.(6.1). From
Bgs.(6.10) and (6.,11) we find that the instability exists only

. : o R SR
in the range of wave mumbers 0 < k < k o where

R L \2 Groranas
k‘(:;«r = “?(t“ ) (3«3“@ (14 /4 >3-/2" - (6.1%0)
i
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ig the critical value of k. The maximum growth rate of this
Cingtability is given by ‘

- - iy ) ._... fd 4 Iy ‘I ‘:?.

R g kv

s . Z , T (6.124)

the wave number and the frequency corresponding to the maxim-
o - R - . ; R
ally gr.wing wave are given by k

L\ R(llrl}s.)/\‘ 2""1/3 Gl/B {(’J\)pb

: :v (&pb/l I and |

For W, > 0 and W~ kU we can again start with dg.(6.10)
and find out critical condition for ingtability (beam plasma e-e

insﬁability) from the relation E

= 1, The'critical beam
min ‘

current neoussary to ex bLtb this 1notﬂbllluy ig given by

T Z?L@z) }iﬂf?la L+ (ny] ﬂr> }, 1 (HM /u)

Y N 4e 6,13a)
Phe range of wave numbers ungtable to this ingtability is
Vo'<‘k < kcr’ where
‘ ) s /5 / -l
. . e [4,4” ~ d/ j *. )
= TS AL, Yy, ]
¢ i \(““/:‘3 ( ! (6.13b)
Cy
The meximum growth rate of thig instability is given by
- - /} (/ ' . ' L
-~ ) . »3 L 3 *.1_ 4 / \ R
?/,W-\ ‘LLX‘,( & (Y\ /Y{F) Lo k U (i + 2\/“{‘5/;}:))(6\'1\56> . |

which will occur for 1r(QULﬂCJ and wave nu.bcr 001resoond1ng

to ik;r(qu)Pv EWX/O NJ T (:n,b/n)l/5 kU (1 + |V, | /U) and

“may““(JB /U rbupbutjvely. Fron Eqs.(6.13a), (6.1%b) and

S (6.13c), it is C]C“r that the effect of return currents on

I & or ”y is of the order of V U and hence
cr ? “¢r o max "~ © | /0 =

negligible,
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In order to ascertain the oonﬂiﬁion.ﬁnder Which'the
return.curfenb instability plays a dominant role, let us
oombare'ﬁhe Critiéal currents, critical wave numbers and
growth rates of thig in h@bllltj with the COIlOSpOHdlDI
quantities for c-e inSULDllltJ. ' From Bgs.(6.12a) - (6.124)

and Egs.(6.1%a) - (6.13c) we find that

B am G, (e
s .
i{?.‘j «( _/ F? e DL | (f“f‘\ }G/ | 4 [ ;\) | | Lo 14:}))
and ~ ~ A ¢ V7 (g W  (6.140)
A Ty LK ERRE .

From Bgs.(6.14a) ~ (6.14c), it is obvious that the return

current instability will be important when the beam-plagma e~

instability is absent i,e,, either for I < I, or for wave

; . . R R
numbers lying in the rang@.kor <k K kcr' The effect of Lfinite
tenperature on the RC ingtability is considered in the next

gection,

VI.3.1lb Hot Flectron and Cold Tons

Under this approximation, i,c., for A¢ << 1 and f&L)) 1

the diSpGIDlUD.LLlabluDA(Lq (9)) simplifies to_

s ' ' : (D,

CL) B o l/f-« ( A‘ ’ :7 (.U P .Q . -m.:-:.1,_...,-
=B _gax AP (4 klyy) =Y s T 5EIGe
bt : R7( Ve e ¢ (5.15)

™ ! - . oo - X P - N
Let us write (0 = I ot LY (v > 0 for ingtab ility) and apriori
-~ 2 o : ; ) ,
assume that | f“l << [Q)E |, Then on separatbing the real and

the imaginary parts of Hq.(6.15) and on solving for () . and Y ,



7
we get

. A | o
(/.\)T — -+ (.e/@ / }QO(“{{% (6.16)

and
I A R
’\()::(7('(:/%) }{({\/\{*1~\16/ﬁ“o{{\2%> , (6.17)
P / 9. . 2 -4 /9
with i X/n}<o<\\? 2N O(Hg } /:':4
E T (J5e o yEgzd T (6.18)

6 -

From Eq,(G;iV), we notice that‘}f will be positive only When

the return velocity exceeds a critical value i.e,, if

Vel > J\ﬂz).% ‘34,\1e<€/2,>i/9" : <‘6-19>.

50 the critical rebturn current or the beﬂm current is given by

J\o+ M /2 Z
(GL Qﬂp\/ ( GV><€/L> CIp S HQ(G 20)

Y
On comparing bq (6. 20) W1Lh Eq.(6, 13a), we find that

T2t . A
R ACEDICOUNICON

a-r

6,21)

The general dispersion relation (£q,(69)) has been solved
numerically; the results are shovn in Pips.(6, 2) and (6.3).
From thésé”figures we obsgerve that the pregenoe of roturn 
curreht.foroes the dampéd waves to grow imstead; ‘Thé‘effGCts o
of increcasing (nb/mb) ig bto increase the ﬂrowth rates. Aé
“!}e/

a“(:\/cc”i but then get saburdtcd £01 1@Lgor v“lqu.,

o is increased, the yrowwh ratcs fLrSL 1ngrem5u with
(i
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VI.3.1lc Egtimates of Plasma Heating

It is well known that growth.af the beam plasma instabi-
1lity is limited by the trapping of the beam electrons in the
potential of the growing wave, Following the simple model
given by Drummond, ¢t al.(1970) we can calculate the final
gaturation level of the return-current instability which

according to Eq;(G.lEd) is given by
L )
e 4/? Z
‘Hﬂ«-f;ﬁi\w-MM% ARV (1 €7

SR LLTv T “(6.22)

In order to have an order-of-magnitude estimate of how
much heating can be achieved by the return current instability,

we define an average kinetic energy per particle relatively

<t

R 115} .
to the mean for the j species as

4 : . )
4 R : r S o L “ s
= 5y [ Lo -V @ T 4,
where Vj(t) ig the mean velocity defined by
Wk = (4866 )
.th .

and T (v t) is the distribution function for the j species,

t

The quaSLllnear cvolution of the distribution function is
governcd by the equation (Drummond and Pines 1962, Vedenov et

al. 1961)
| (” t) = b\rl D: (V1) 55 )m) § (U'+)]  (6.23)

where the diffugion co—efficient is defined by

g STe”
D%”ﬁ>?*“?as

J ALK
J

Wﬁq
C k é \< (Cﬁ)\@\ U'\)';L,_ ’\[[ﬂ- (().»?L)

In Eg.(24) Ql(b) is the spectral cnergy density of the wave
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and “yk‘is the iinear’grOWth rate corresponding to the k&

| mode."Taking appropriate velocity moment of Lq,(6.23), it
can be eagily shown that

", f Kj (+) = u;;‘ dl 2 "\/‘ Gr) (d& QJC /m;%)

(e RV ) e RECo- V)T

- S 9 A 2
L(w =R+ ¥ ]

(6.25)

In obtaining Eq.(6.25), %q.(6.24) has been used, From an order-
of-magnitude estimate of the integrand in,Eq.(G.BS), it can be -

shown (Davidgon 1972a) that the electron and the ion heating

rateg are approximately given by,

~ (3( " L‘X
Ne — K (Y 2 /o | |
_ (U TEe®) (6.26)

CW=d A ‘
and Y. j& K Qw-) ~ & ;H_E,(_(ﬁ;) y (6.27)

where Ef(t) :vjakE,(t), is the total field energy density in
the unstable modes, From Bg.(6.26) and (6,27) it is clear that
it is the electrons that get preferentially heated, This fact
1s important in the sense that after the initial development

of the ruturn—-current instability, the electrons will be
buflLPJlely heated so as to make 1on~toouotlo ingtability to

take over,

dnother inportant conclusion that can be drawn from the
order-of-magnitude estimate of the integrand of BEq.(6.25) is

jmlatlﬁj will contimie to increase until (D%Vldocn.197kLJ

%

:}:):, N CJ\JT</{J .--\/) —-\— ( /R . (b,a 8)

J
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Thus the- uaxlmuu tumpﬁrbturc of the electron. that can be

achieved by th re burn currcnt Lﬂbbablllty is mivehvby

| ‘ - . 3 K 27 |
1 >~ Z m [<wm«x/kj¥max —Vy ) + (‘{?{rhm‘/{am“‘>j(6'29> |

For n?mlloléom'zg'n /n ~ 0,05 and U/CA«O 99, which correéponds
to an intense bean with peak current density ~ 20 Ki cmg, the
maximun Lenpbfubulps to which the ele ctronﬁ will be heated by
the roburn—currcni 1n.bablilty ig ~ 5Kev, Thig is in gdod:

agreement with the estimate made by Suillory and Benford (197@).

e

Ls was mentioned earlier, the electrons will be prefere
tlmlly heated 1n.thu\c irly stages of the development of thc
return-current lﬂ&tmblllty. When the electrons are sufficieﬁtly
heated so that Te >> Ti and the return current satiSfies the
condition given by fig,.(6, 19), the return-current induced ion
acoustic instability sets in. The turbulence generated by

this ingtability will further heat the bl asmea,
o

“We ghall make g rough estimate of the eleotron.heaﬁing on
the as$umption that the level of turbulence (i,c., the Qn@rgy
1n.thc ngWLHa vave)\ig limited solely due to s¢aﬁtering_offtﬁé“»
ion sound wave by the éledtrons. Following Sisonerko and
Stepanov/(1969) and Krall and Book (1969), we can immediately
show thaﬁ the result of the above mentioned process is ta
1imit the final level of turbulent energy W, to a value given

by

[}
i
HON]
Y
D)
~r



0
=

where O = T /M is the ion sound speed,
. Iniorder‘to make an estimate of the electron heating, we
shall firgt calculate the effective collision frequency ‘y?eff,

for the electrons, In the resonant region of veloclty space,

the space-averaged distribution function for the electrons,

£,(v,%) evolves accomling %o

“§.1° +) s o’ C{ / > : “L
ww';..;-:..... - .-E:‘..._ T Ll :;, - y T ‘- , P \
ot h{r\‘l*“ 3? (z\)/) k“«k)a( ,1,, ,‘3 ) 4(7’7‘“‘

(6.51)

On taking the firvegt moment of Bq,(6.01) we obtain,

C‘Q A \ /7"'% 5’(3,L7 — \"
T (%)= -Npve %Jcp- - R TER Bl Sk D) 26

S (ZR) 7 ~
g Ga)h o (f_ ﬁ' ‘ Cuﬁ;
o S (2,\):”' Lam Tk CO‘f“ (6.32)

On substituting Egs,(6.16) aﬁd (6,17) in Eq.(6.32) we get,

s ' Z e )
= 4%Zzi£}ﬁi;_, \F \ v S ?Q/ ]
€5 4/“4W‘L <F>dﬁ<l—“ Vol o (6.33)

On tLO%Lll% thege 'effcetive collisions! as an isotropic

Joule-heating mechanism, we can obtain the rate of heating of

the electrons as

, / | |
z - e F—
[ At RN /\_./ : :
= e % e (6.34)
where Vl ig the resigbtivity defined by '7\_= 4n™ " J:/U, e ..

Bgs.(6.33) and (6,34) immediately give

AT Sy ijs INEE 2 '.", Gl
e A (L) copelmv )L -0 ]

Z A L R /

whiclhh can be rewritten ag




82

. C% | ; | ; | o »
e M) e A (fm v, (o0

where

/ /z_
Zbﬁ\tﬁlxzi>

Ny l T LX
A= }3’ . >‘*‘»‘PC§}””{"{7L.| 1 eso)

Eq,.(6.35) tells us that the rate which the return-current ig
dellvellng energy to the plasma electrons is given by the
quantity 4, Since X~ 1 and for the unstable modes undor
consideration 6 { Vr’ the time ooale of delivery of encrgy

s A 1 o -
can be (L) = Pi when Vr:« (/11) /2 C cand < ko> ,&Dﬂv 1.

V1,3.2 Electromasnetic Modes

Az mentioned earlier, two c,m, moues, of right handcd
and left handed circular polarization, cin propagate along the
direction of the magnetic field, Here we shall discuss only
the right handed mode which i given by RXX + iRXy =0, 4
sinilar treatmont can be applied to the left handed mode in a
straight forward manncr, On using the results of Lpperdix A in
bq (6.5), the dispersion rclation for the iight handed mode

oqn.bc written as
@ 92 cuba(w_ku) —

~0) +CR T+ < A :[+-_WJ )
J A >"2; ‘/[ ket (%

P Y, _ (6. r/)
272 ()] =0
. N ’
N 1 2ol J
where -Xl% &70/’2 (}(e = (0 -0, ~ kv )/ka, , and

?l (/':+«L )/ka i
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For'frequencies; G << L) jyon solvjfng Bq.(6.37), we
find that the r*eturn curre‘nt'.effécts are negligible, We
shall, therefore,lcave out this Llrdllterestihg cagse and discuss
here the frequency rangc, Q*i S S,Qes where the return
current effects are expected to be important, Let us
congider the follrjv\fing case:

Y v o 2‘ o f,L_) o .
VI.5.00 1 o <C 1 and o~ 0 oy o o> 1

Under these restrictions Bq.(6.37) reduces to

A 2y L ('OL, - 5 SN PR ' N S

- ¥ C . i‘l + ",:;LM - (\ ‘*"l\\(&)l}a "‘" QawP(? ’>\ CU\) Mﬂeﬁk‘\/ﬁ‘/)/f%?\/m{{ .
' ° /ZF, - /N) :
~ LT ><(**’Pu”‘rmlf” - (6.38)

where (ﬁ*‘ :

2 2 , .
= cziﬁ. /o o and

;

(@o~k\/) ~(M=-1YQe ]/

On separating Bq.(6.38) into real and imaginory parts by .

}?\04”»5 . (6.39)

er tli’]g) y ‘._\l = (Jc)r -+ l\& , and assunl ng +th l ~ | < i (Qr 1 ,
we obtain o
e '2“2: - N o N .
Wy = \['-1) = = — — kvl )
1 " T "kl ™ ! (6.20)
and : :
— 2 ) 9.
YF“ E.‘i‘lf L(/l’ﬂ f;)('f Ly bi g > (_p*l )LQ\< L~
g e 1\ T - T T T = - T
T /; i k é(-!:g B | (' U)I_g T
~ 1 ) 2 y C Z“ sm, Y e
2(\“1“’ ) ]K,\\/‘VJ‘S“L? '/i -2 = ‘\2 5 e
N G (A o (6.41)
i S WA

&Je may point out L]nb the agsunptions ") < 9 and
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fﬁkc = Ug'"g;é +,klvr'>/ka“ o <1 impiy that |V, | << ay .
Therefore, Bq.(6.41) simply shows the tehﬂéncy of these modes
towards sgtabilization due td,thé presehge of the return
currents, In fact, the influence of these currents is
expected to become appreciable when IV I/z Wi gr Le€uy for
qzemfl, a case.Whioh is difficult to handlc analytically.
Edwevor, if W@ consider the case when

no= (k*j f’£1~Qf¥ ﬁj\ﬁ{‘>//kF<ue;C¥"””7;‘ >v 4

and‘y[i >> 1 asg before; from £q.(6.38) we obtain the following

4

Egg.(6.5), (6.6) and (4-l)

elements of

dispersion relation:

lz\\/\
which shows no instability,., Hence we conclude that the
influence of the return currents on this mode is to suppress

the growlh rates,

Transverse Propagation (k, = 0)

A . .
In thig case we have k = k e, and on putting k¢ = 0 in

(4~14) we notice that all the

P

are nomvinishing and involve infinite sunmation

g=s

over Beggel funotions'lqpﬁ\). For any arbitrary value of X
L

it is impossible to oblain scofic analytical results, We shall,

therefore restrict oursclves to the case where A = 1 1 o/ L o
“i,e, no magnetic field case and when M\ << 1 i,e,, o strong

magnetic ficld case,
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‘VI.4.1 Zero Magnetic Ficld (B, =0)

In the limit of £,,ﬁ 0 the vao rlous LlHHan of R are

~

-

given by

‘\,)

2 W 2 2.0 T 7(% :
‘PXx::*w&Jf+ %“iw.gg“\ =4 (44‘¥ AR G=Y >~1(6 45)Hy
: ; ,",) -/——— \'-’-.3( e :
e TR
2 = w(,(-;}‘"—ﬁ» (}T}QZ“ 4 iﬂ‘;ﬂ N -’L.?T 7/  (6.44)
k\YY . 4;_?(¥U‘3jé‘k:ﬁ ) )
. SR R R —_
Rua=Ro = St o5 R[4 4 2(g)), ()
X2 £X 7, “”4ﬂ R%27 - J e
fen n ) ez v
Rae= =0y ®™y (2 "W M, us) 7
. 2.0 _ \/ - B ,
4> @p: 4\]4 "}41‘) (i f)\ (; >M<6 16)

and

The dispersion relation in this case is simply given by

(6.4:)?)

The mode Ryy;: 0 isyinﬂependent of Vf and hence we will not
discuss it here, The other mode, R R, - Rg,3 = 0, 1is

affected by the streaning velocity and we will study thisg in
detall. The dispersion relation for this mode, on usimg bgs.

E @ :
(6.43) - (6.46) and on neglecting ion contribution, can bo L

written (after dropping the subscript e which ig now not

needed) ag




For the Cﬂbb, é >> 1 and (a2 / Y@ >> 1 Eq.(6, d) ruduocg to

+: _\/v J Lof k> 3, RaZolE m, L,?—*
(U = “ >+ C (L )‘”32 - 2. "”Pf:~ Y@ Z 4\4*),.’-‘— R z\r"\/c;)f:i
‘m. 'a E

is k a,/u)d << 1, we can solve Biq.(6,51) by an iterative
procedure. To meroth order Bq.(6.51) reduces to a bi-quadratic

‘equation which yields the solution

r e RDA2 4y T * .
: iy (:: tZ/KJ PJ’> [ L=+ 2V Y 2 “] (6.52)

The other root of +4he bi-quadratic cquation is not consistent

B . £ 2 2
with our assumptlonwx)p > e,
On using Eg.(6.52), the first order solution of fig.(6.51)

ig siuply given by

}2_2‘{{' 1+ kal ,J e l/)\ +(m sy, )L’ -

) =~ ~

e et e et et e

(P Y[~ ) e J

(6.53)

The effect of return currents, as secen fron Eq.(6.53),

increase the growth ratc slightly,

We have solved the dispersion relation (Eq.(6,48))
I ;
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VI.,4,.2 Strong Magnetic 11@1JN k _d“/\w

!
!

)

RIS

Under the ApProXidn, A << 1 the elenents of h a@t\
simplified but all arc lanie shing

(see Appendix B)

&on.rei ation

and we

1 , . N

I (R R TR LR

i, - R

(k o T i’ ) P A— ("7 ’
P Y . = o
T4z d g s

given lendix B,

i Com comtTibuL A
(neglecting fon comtribung g

HOW 2V Q_q; if we

assune
tn“m " o T S e YT
SeL =T LA, o —L{_ t{ll’hl f) . J ~ 47
Xy Uya twp VY Txg ’j -
dﬁ and hence can be’neglect@d, Lt
the dlmp.relution.(6.54) reduccy to ,B7)

LCpping the subscript oree




oot s e sy

rowth Tes 4o~ N
Growth ﬁ“Sv)} “Dpe (in units or 10 )

w\ al/“u 1 1.0 ’
U/é\\\\\ 6 = 1 5 =0 6.imi. ! & = q;w
4 24,06 23,09 | 4544 [”14,99
5 25.36 25,29 N |
.6 26.65 26,55 I 19.96 19.79 f
.7 ST 2ris9 | o1 as [ 21.48 5
.8 28.28 | og.1g I €2.54 | o 35 f
.9 RT.78 | 27,66 / 21.80 21,62 f
.91 27 .61 27.50 | o156 21,57 f
.92 27.42 27431 I 21,26 21;08 g
g3 718 2r.07 | po.gg 20,78 ?
.94 £6.90 26.80 20,44 20,20
95 26,56 26,46 19,89 19,75
.96 26.14 26.04 19.19 19,04
}97' 1 e5.61 25,52 18,28 18,13
.08 24.91 | 2484 17,00 | 14,86
.99 23.93 23,83 14,94 14,89
995 23,10 £3.06 13,08 | 12,98
' R SN i; S N
LABLE 6,1: Variatiolrowth rate of the qunov0100 e,
;;:;m in the absenubgopotlo field for o< 2/;)11 = 0.1, 557)
and n_/n = 0.01. Tmuwtor 6 decides whether valueg |
Corl@upond to the castpg return current! (8=0) or
twith return cuirgnbt 1) Lespectively, The waveg are

purely growing.




, ' ’ ﬁ, o /:\?’\ . J | y ' v _ﬁi - "1 g
o7~ wz’c:‘"&a‘ﬂ(i *fib )(’?“?1—5(5)+ 1+ (T=1)Wp /oy

R e o

/.
902, 2. cubu (L+CQ/< ) Vv, o

2T L i
Wk CRT=3) - —=——— :
+ e ‘ - (QQ, C/”,
. ?__ v...v \ é‘ . o _ ‘»"\‘J \( -
+ (fC’—-”"JB/CLB;;-,-/QlM]+ (T “‘)%/Q‘ | —— RS &
AR ' _,_;____ S T e A 4
4 A o~ I i ' e L { 2') ’\)
( .J— ,{_‘ (UT;’—/QZ_) - (_~.. -+ CUP /.Al ) 60
(8.55
here L, -
W . e ‘ . . ] : — 1 l')(” Ussi;‘ </{ _+ I ,.:l/ji_. > g
. _ . I . N .' ra 5 L) -~ f,{ ’) : .:_ —— ﬁ <. s / 2. -
7 ,__(1*‘L)I,/ J M\. 4 2 2 Q7 XKy (6.56)
. = P ’—v . i X / v 2 ; ) H L
Slnce Bg.(6.55) is a cubic equa tion in &) with coeffi-
client of congtant turm poslblve it will always ive one
T I N o s, »C rn I [ ?
negative goot for (3 ®. However, for (&)U/li > 1 we find
a6 N . : B 2, .9
that U7 ferm in Eq.(5.55) is O((A)g/ﬁya? or GO /Lk)ﬁ) ag
compared to other torms, So,neglecting this term (which
anounts to suppressing the root G~ 3) or C&lp which, in
any case ig an invelid root) in Bq.(6.55), the resulting
N o >
quadratic equabtion in (W%, for the growth rate, yields
o, S VA N L2
'"‘fl“ e o (v ey, k22 |
DT e oD v TN T et
[ +§1~E~ j G2V ) My Gy Pl 4 (v %;i)tﬂﬁ/jlz]mij
“"3‘; 20% C’. el 13 ngl/gi :

(6.57)

From Bg.(6.57), we can irmediat bely conclude that the zrowth

rates will imcroase.with Vr'
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Once again we have solved the general disper.ion
relation (Eq,(6.54)) numerically.‘ Some of the results obtained
are shown in seble 6,2, which shows that the effect of return
current is importaut when QQ;\AKLG. For () deviating too

-

e h)
much from S o0 the erfect of return current on the srowth
o

[]

rate ig very guall,

‘A brief comient on the heating produced by - lise trang-—
verse e, ingtabilities is‘in.order here, Computer simulation
experinents (Davidson et al., 1971, Davidson et al, 1972b)
have shown that the bulk response of the plasnma, such as heat-
ing, is in very good agreenent with the predictions of spacc

-averaged qu%glllnonr thcorJ in the initial stages of the
| nstablllty. The conputer simulation experlnent also show
théﬁ the magnetic field Lluctuatlons get saturated via magﬁeﬁio

trapping governed by the equation

a )
| Mo (5.58)
: A ‘x 4/2_
where C&% :;\,_Blékmkw
Y L g ’
ampiltudb and V, is the characteristic particle velooity

(By. being the magnetic field

perpendicular to the direction of propavationJ is the bounce
frequency of the clectrons in the potential of the wagnetic
fluctuations, 4 rough egtinate of rate of heating due to such\\
an ingtability whoen LM)AJSQG pJGJ:pe (the region,‘whére the
effect of return‘currents~according to Table 6.2 is most
significant) was nade by using quasilinear equations ZOTCT T
ing the rate of @hunfu of kinetic encrg gy (Davidson et al,

1972b). It is found that the rate of heating achieved due - to
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such an electromagnetic instability is extrenely small
compared to the rates obtained due to ¢.gs, instabilitiecs

(ef. section VI,3,1c),

VI.5 Conclusion

The return currents, ari: ing because of the notion of

U)

a relativistic beam of clectrons through a nonrelativistic
plasna affect the stability of the waves excited by the bean-

plasna interaction in a mumber of ways. Thesge currents

destabilize the electrosgtatic waﬁes by exciting a return
current instability which requireé snaller bean ourrenﬁs than
the one required for exciting the usual bean plasma e~e_w'
ingtability, The,electro -nagnetic waves propagating alon
the direction of Lho magnetic field arc stabilized by thes
currents, The gro wth rates of c.m wayes propagating 1n4the
trangverse direction are, however slightly increascd by the
pregence of thesc curre ents, The return current ingte wbility
can heat the plasma to Kev iudpbrutufu Moreover, when the
ionssound turbulgmbe generated by the return current decays
via oCdLLLIlD@ of ion-sound waves by electrons the return
current delivers energy to the plasma at the rate of

e (/) /R (V./C) G ..

pi
In this study the return velocitics were taken to bhe
nonrelativistic as the analysis was restricted to bean

densities much smaller than the plasma density. It would be
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of interest to extend the analysis for relativistic return
velocities and also for the cage where the plasma temperat-

ures arce high i,e, KT~ n 02 .
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MJPENDIX A

The elenents ofry defined by Eq.(6,6) can be evaluated .
by doing the 1111,%1‘&«,13113 as indicated by Mon‘tgomery and | k
Tidman (1964) and Berngtein (1956) For the cage of plasis
characteriged by the dig tribution function as glven by Iig
(6.2) "the vaxious G‘“l j elements turn out to haye the i’olioxw-;

ing form

S i P ~ A
' R NN -
C;;:T7j> Gy, M 43?(5;>£9, miLy

G - ! - - o3
, o [T 2k, )
"";"""’" F !-—/-;...,_! A L \Hq“\) ( \/
v Y = - ©
o /-
cjj)\ . Ve
— 7 {4
*‘zdlﬂg C/“)>7 :
i) = (4=1)
- . o \
o o~ N2 T”UA‘F:(AJ) v ML
Yg‘““ ‘/\gx — e {“‘~f); o T } 1 *‘ T 7 if_\ )\J)
- T ! - R TN
Y = — & ’
X l 7 \ (I“"“”’)
L - CAL TN I
A 04\\)' . -
r , =0 . 3 ‘>\J I
Sr= gk =5 S M In(Pi) eV,
' z X £ TP ya SN b i
. e L ) :
2 J “3"')-‘-__‘\_;1
—_— 4;)<“ C / ~)~— ; 2. \\\'/\ i U
] A N Ky £ i / ‘1
i<,f71 4‘T;77f =) == A () -7 2
Lo "’"‘J_ N I i J ) ; ’ ()( . —
J “J J
(4m3)
P 13*\-*1 ‘:,\i)?“ 2
» \\ ' Ty L iy // \
Ty W ¢ (/\3] (ﬁ m+»~~_L Z (o )/






and

qi/L

,_,.(/‘*‘i)m \XE /(><-/“)

ig the plagna digpersion function (ifried and Conte 1961} and

00

-
. . o . ~ . th '
Inﬂh) is the modified Bessel function of n"" order,

The elements of o for the bean characterized by the
r/
distribution fumction as given by Eq.(6.3) have been evaluated
by Montgomery and Tidmen (1964)., These are given “below for

the sake of completeness:

b G ; < :
f"")m( = - bg/(ﬁ S FHU> ,//\_s ) (1m8)

b — e ‘ Ll \f 2‘. i | t-‘ . . :
Tay T 7Ok = 2 Wi (W RN
b L 3 ) o
sz O = P\HU (UI%Q (‘“ o -+ i<tﬁ’>/\ (A-10)
b ) .
Gy = — Wiy (& +kU)A s
. ]-J S,, . DL— e XI
H . T -5 T "o Al /)
6,5 oy, = ={ kU (Do S2e/\ (i
’ d \Q" - — e} | |
Lo Wil 2 ‘ (o F } QQ “RUMA
dmomy — T N - D, N
Y37 Q. °opPL r\( (- ngs) (A-13)
: a7 O ]
where N;Le/w- "”Q/?G
Y =
— AN A ] N L -
wi A=y [ Cor k)]
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- APPENDIX -~ B

Elenents of R for trangverge bropagation in the limit
\ g 2 R
~o= ke, o ) K 1:
J lJ/ J <«

N
R = —w” Wee W* ey (s
Rk ™ - (o7 E o 4 >

- 9 2. ~ 1 }
) 2 S 9 — L.
o k“x e~ %) /\ : (_«} i g

\ oy S 2.. ! Ny #
’\>< T — Ty J LT (".J’)
Yy IXT AT 9 N2 N2 e
% [ 4 Do z
’ P — )> — }i (,} Cg._:' C\)b e Yt»« J{ \/\f C/’\) LQJ P\)l -
\X:z"f \;..X“’ o /T2 5 + 7 = ~z (B~3)
7 lYO &—29 -——(..:J ) i_’____, u) T A L_)
B 2,2
=—W ek KW W
Ny GO oK T Y 7 1} R .Q‘“{ (B"LU
VS ~w) L WE O
J
| ) - ™ 4
- o~ /{ ! i\! / (f\)‘ Daaas] A ? \/ A ~ (JK)": N
Ryo ==R. = - m_;fiii € ke R LR (Bus)
12 LY ) ) i { y* 2
~/ ”(;\“\)T 3 &)?«‘) o L — S
e o ~ J
)

) 3 - ~ "" ~ ¥ i:w“z. + ’i o ;c\.i
Y [ (SLE =w?) ]
LT 2NN b u’j"' :
~ "-Z s U\)[D_J' 1 ’:{7‘ P o & (B=6)




CHAPTER VIT

CROSS~FIELD-CURRENI-DRIVEN ELECIROSTATTC INSTABILITING TN

PLASMAS WITH GENERALIZED DISTRIBUTION I'UNCTION

VII,1 Introduction

There are various kinds of plagma instabilities which
can arise in beam plasma systems, The return-current ingta..
bility and its impact on plasma heating was discussed in the
Last chapter (Chapter VI). Now, we shall go over o study
another class of beam induced instabilities namely, the cross-
fieldfcurrent driven electrogtatic instabilities, which ﬁiay
a special role in certain turbulent héating experiments,
Crosg~-field—current driven electrostatie instabilities have
been invoked as the basic mechanism of prbduetion of ahdmalous
resisfivity observed in a number of turbulent heating experimr
ments (Alexeff et al, 1970, 1971; Babykin et al, 1964). In

Chapter I,we degcribed the physical mechanisms by which crozs
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fiéld‘ourreﬁﬁs were pfodﬁced_in.a’éoupie‘of exp@fimenﬁS.
However, there are other physical,situations too, where crosg-
field currents pley an important role, For example, the |
anomalous resistance obsgerved in a number of collisionless

shock experiments (Daughney et al, 1970, Keilhacker and

Steuer 1971) is interpreted to be due to such cross field

£

currents within the shdék profile,
Cross field currents can give rise to a hogt bf

electrostatic ingtabilities. However, we shall cdncemtrate
on only three of them namely, the ion acoustic instability,
the modified-two-gtream instability and the electron cyclotron
drift instability; these have :ather Lx@@r groulrates(lﬁiw>jfé)
asgociated with them, The physical nature, of these electrost-
atic instebilities, allows us to classify them into two,cLassés;\*
"dissipative instabilities! and 'reactive ingtabilitieg’

(Hasegawa 1968, Taylor and Lashmore-Davies1970), A dissipative.
ingtability is one in which energy flows from the plasma to
the wave or vice versa, depending on whether the wave’oarries
negative or positive energy. On the other hand, a reactive
ingtability can be considered as due to coupling between two
waves carrying energiesg of opposite signs. Thus, a reactive
ingtability involves more than one waves and there ig no
transfer of enecrgy between the wave and the plasma, The
~digsipative instability involves ornly a small fraction of
resonant particles whereas the reactive ingtability involvesg

e

o]

all the particlesg in the plasma., Therefore it ig casler




stabilize a dissipative ingtability than a reaotivefone;?_

The oross»field—cufremt driven ion acoustic ihs%ability:
is a dissipative mode, Thig mode has beeﬂ.studiéd by many
authors (Gary 1970, Arefev 1969, Barrett wve). The‘depehdehdé;'
of this mode on the external magnetic field nag also been |
extensively studied (Laghmorewbavies‘1975). As the anglé 
between the iirection_of'propagation.of the mode and the

magnetic field direotion.increages, this mode changes from &

dissipative one to a reachive one,

lodifiea two#stream instability, on the other hand, is
a reactive mode which arises as a result of coupling betWeen
the lower hybrid mode (Q)xﬂ#)LH, (w1 being the lower hybria
frequency) and the Doppler shifted electron mode »
ijaﬁgyU ~ (kz/k) (mi/me)l/ngiLH, where U is the'fél&ti#a
drift between the two species of the plasma, kZ and Ey are
the components of the wave vector parallel and perpendicular
to the magnetic field direction respectively). Fori@jpe <42€,
the Doppler shifted electron mode ig nothing but the Doppler
shifted electron plasma osgcilletions propagating almogat
perpendicular fto the masnetic Ficld., The modificd two-stream
instability has been sgtudica quite éxtenﬁively beth in the
linear regime (Stepanov 1965, Ashby and Paton 1967, Krall ahd"
Liewer 19713,Aref@v*1969)3aﬁ\wellhas in the nonlinear regime
(McBride et al, 1972).  This instability derives its mname
from the fact thot, in the fluid limit, the form of +the

dispersion relation is similar to the one for Bunemann two




stream instibilify (bunemapn.lOSl) However, tne magnetic
field introduceg importanb aiffnrgnceu The thresholqg for
thigs instability is U > ay wherua that for the Bunemann

two trudm inotabiliby e,

U > Gy (« bOlﬂy the elec bron”w,
and the iQnﬁthurmai vclOCitiu ) lhlS lh“bdblllby ig a |
nonresonant iﬂptﬂjlllﬁyé tho nouliuuar saturation of which
§L0s5ly changeg the bParticle distribution,functions. MOréover,
the growth rate Tor thig instability is comparaple to the |
Teal part of 4he fquuency, Another inﬁeresting feature that
comes out of the computer simulatioh eXperimentg (McBride et

al. 1972) ig the comparap]e electron ang ion.heauinp asg a-

Tesult of nomlinegr saturation of thig instability,

The electron\cyclotron drift ingta ability is als

g

reactive inqtabiliiy which re ulus due to the coupling of an
ion acougtic mode and a gloy Doppler ghifge cd Berng Leim,mode.
This mode weg discussed by Wong (1970) ana Gary and Sandergon
(1970). 4 good desl of work on the nonlinear developm@nt of
thig instability and a number of computer imul ation LXQ@erdﬂL°
have algo been reporteg fecently (Forslung et al..1970, 1971,
197g: Lamp et al, 1972). It ig ohserved from thege studicg
that, +thig imgtability gives vige o diffusion across the

magnetic field ang Coallses subgtantial electron ang lon heating,

Valuabl@, a8 thege iﬂVOﬁLigations are, they are gll
carried out on the assumption that the Cquilibrium distribuyt.
ion.funotion.ig vell representeq by a Maxwellian distribution

Tunction, However, We note that g number of crogg..fd eld
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current heating experiments (Aléxéff.et al, 1970, 1971,
Babykin et al, 1964), Use of magnetic mirror configuration
to confine the plasma and for such a system, we know that a
Maxwellian ig not a realistio digtribution function, Therefore,
in this chapter, we shall use a ’generalized digtribution
function' (Dory et al, 1965) to study the effects of logg-
cone and temperature anis sotropy on the above mentioned
ingtabilities, Crogs~Tield--current driven\electrostatic
instabilities being often imvoked as the basic mechanism in
explaining the results of the turbulent heating experiments
mentioned above, it ig of importance to see if the character..
istics of these instabilities are significantly altercd by

th L temperature anigsotropy and loss conc effects.

[

presence

Q

; - 2 i g
From our analysis, we find that , for » = l? /N <KL

these effects appear as small corrections, On the other hand

5

important modifications occure for A1, Algebraic

U

complexities of the dispersion relation, in the region X~ 1,
make it difficult to draw analytic conclusions over the entire
range of parsmeter space, For this rea \s0n, we have humerio&lly
solved the genecral dicg spersion relation over a wide range of
paramefer Spacc, Lesults of these numerical c¢lcuL¢ulonﬁ are

pre “cnﬁod in Section VII,4,

Lon

Snebepion

Let us consgider the waves for which ]QJI >>£QTL and

]{ij >> 1, where (L) and k are the characterisgtic wave
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fquuency and wave ﬁumbpr pen sumygi are the ion~cyclotron
ffGQULﬂLV and the ion gyro-radius., . Under these conditions
the iODﬂ are effectively urmmagnetized, We choose the axis
of the magnetic mirror along the z~direction,

since the iong are essentially ummagnetized, they are

governed by a Maxwellian.distribution namcly

Ie L ax\:fw(@ ~)* ('wvr }L.

)(34:“ _ﬂ L/:ZO\/\; L oL, :- 04% ( ¥ l>

where &i = (ZKTi/M)l/g is the ion thermal velocity; K, T and
M being the Boltzman constant, ion temperature and ion mass
respectively, U in Bq.(7.1) is the relative streaming
velocity between tlie two species of the plasma which we have
taken to be in the y-direction, For clectrons we toke =
gencraliged distribution of DOH type (Dory et al, 1965, Buti

1974, Lakhina et al, 1974), namely

5 — 9
—_— i e £ _ ~pn a2
ﬁ. e T~ SVl R I L gt K
/r/. 2 A = | o 5 X
O 3/*b( (T ) | e @LHP OL!E 4 (r.d)
Le W = - -
)
where J = 0, 1, 2, ..,. ig the distribution index, “7}@ =
- P o -1 .
DI =hale / —_ o I SO, o
LKflle/m and o= 2(J + 1)7 KT 1o/ e And o being

electron perpendicular (parallel ) temperature and electron

J

oe B0€s over to a Maxwellian

mass respectively, PFor J = 0,

distribution and for J - e, it behaves like v, -4 qLe)
W - . dJo.

(6~being a Dirac dolta function)., MNoreover foe 18 peaked

) . ] . ~-1/2
about Jl/ﬁa ~oand has a half width, A v ~J /Pa .
dle J L le

For small OLLLLTO tatic perturbations,the perturbed
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distribution function for the electrons, fl@ is governed by

the linearized Vliasov e equation, o

o . | €
S?C" SIS v G LUxL 1, = —F N\fna

~ 1.2 '}n/ mn_? e MW

while that for the iongs, fi5s i® governed by

) ‘gi ’ r i E ’
RN - ,. — -
—t (9 ?4 —_——— V4 f
'b { + f\: V . : /\/'l i 9 Iy ( 7 .4:)
T T ' ~ “ L L
where B ig the external magz llc ille These equations are

solved by following usual method of characteristics and on

using these golutions in the Poigson's equation,

?E - /{T'taﬂ (Ifaedg - ﬁﬂ”" 1 , (7.5)

[

we get the following dispersion relation for the electrostatic.

waves:

. g e S o ()
1 4 < Xe oy . ( 7( \> ~ /[ W= Lie}
20k T/ LA <
Fe Kne™ Ko Sue
) m :.._’:}_:-‘)
C){} ,2.4 —_ e &h-% ( ) *“’Y ) e
o - T N 3 .—.I. ol Ao
STZE 00 — en 0| e “)
+ J “““’;’“z - ,1\/_\l \ ) TNy A X;' \}{‘ y f\ ”'C
PATERIN '>\\ - ' e {
f) [ Rt gy -
Sy L L aw—Ry
P &) e\ wk* / D [ 3 . f':? .
G (‘,\" o (2 !\ P A S . ( Y,") . 6)
where (0 ang &?__ are the electron plasma freaguency and
1)1 Y 6] l -

electron.oyclotron.frequéncy regpectively; Iy, W ig the

component of wave vector parallel (perpendicular) to the

axial magnetic field and 7 is the plasma dispers 1on4funotjom
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(Fried and C‘onte 1961). In obtaining ©q. (7.6), we have

4

talken uhc wave propa L:Lon in the y-z plane, The functions
Cn( A) wd Uj( ) are (lfu ined by
N q co 2
et 1 - 9. S
{ (\ S Q—”« l\,l L_‘: 19 o X -1, O(]_g]
\v,)q /) ”’(7+i)w C’QLL T ( e) br_ F - (7.7)
e
and
: Y 27
— 1 -~ g G 5 (
L\‘) "\ e '](\2 - J‘ﬂ,ULB - Y — NG \ ﬂli
AN — T A L, | Lo
- /.\\ "\ C}( 4{_, ] ,.L. \,/),\ ( 5!2—6 / l C\,\” 2z .-L }
Le Kel e =

where Jn are the Bessel functions of order n, from Bas.(7.7)
and (7.8), we immediately see that Clcfl( A) = ‘DZ( MN) = exp (=X )I'n(/\:'

We can also easily show that they obey the following recurrence

relationg: R . -+
I U IR AN S G O
T T, oA T
— () = = DI (N
and d«\<A) RN | J‘"""f\ ( ) T+ 1 =N n- > i

where In(‘,\)v are the Bessgel functions with imaginary argument,

Moreover from fgs,(7.7) and (7.8), we note that

STy L _
!—,:M(Ln( ) = 1 for J =0
YV R0
= 0 foz J # 0,
e
and ) (\—'y"\o') = 1 for all J's,
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Iﬁ.writinb theue results, Wo have made use of the Beggel

{“‘”” : . . - . o
identiby, } JP(X> = For Maxwellian distribution for
o f\/\ - “\30 — ) ‘ .
electrons, i.8., for J =0 dhd Cig = @y o = O Eg.(7.6)

oes over to the usual diopeiﬁﬁon.rejition_iov the crossfield
ourrent driven electrostatic instabilities (Barrett et als,
1972). Since it is not possible to solve BEq.(7,6) for .}
analytically, we have to solve it numerically., Howéver,

before we do that we sghall discuss some special casecsg,

VII.QA Stabilibv AndLyulS. Low Erequencv Wavegs

o *ﬁOr(A)d << S g and nz—ll-g >> kc“ a%le(mA£ 1)
Y;"‘ o g (~> ) Z L -1 RSP ) P R i

7 s LA ¥ R “""——:wm—-.—— ;\‘: A \ . J——

'Y",:-“‘“(') X ( ’\><15€ ( ) . ( L(lt‘j‘/} ie 3 )

since Z vryg,c/kud“(_,i — 4.~ﬂil /@:g%( Consequehbjy kg, (7 6)

can be written ag

, —
o N N Te , -1 ;5//_&,}42\_.@
= G2 (T v == e ) 2 (5
SR .!{ - NN
0 ¢ | Rl 7 (e |
—1 _;> ZQ‘(/\) (w OA D “j (V«;EL - RiXie 4y
Kl
(7.10)

where >\D = (KT@/4nneB)i/d is the electron Debye 1ength‘amd

— l"'l m
v 4 io/ll e’
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i) Modified "bwo—-stream I-nstability

Whpn 1on5 are oold (T - o) and ‘~3“/k‘lQ2 ‘ >> 1,
Dq (7 10) yleldo o : Ca o
< p /‘3.)_ Co
o 2. » N )
3 Cpe \24 £~7( ) OJPQ(NQ(x)ﬂgz P . =0
L —Ty TR A) T . ) — N ~
_g]_; P\'L - (5] C Ri\U) (7.11)
herc L e i N //
W < {~0<A> — 1 123<)>1 A

and EJU’C%D = [}’:E%E(Xi)/éx' | for Ji% O ' (7.12)

For J = 0, Bg.(7.11) feduces to the dispersion.relation for,thé
modified-two-gtrean instability obtained by MMcBride et al;\(1§72>
and Lashmore Davieg and Martin (1973),.

For ,)‘<< 1;’CJ(%\);$ DJ()\)ﬁj 1 and hence the dl Lr;babu
, L0 oM\ 7 0" R
ion index has no effeot at aﬂ..,ipne!éxpects significant modi-
fication only in the region ‘A-v1, In this case Bq.(7.11) can
be golved only under very special ciroumstancgs. For a givgﬂ
k ?e(i.e., 2 ) near unity,let us ghoose the orientation of the

wave vector such thatl
T R N = M /M 4 , S
( ku\/GQ. \(‘*—':(’}\> o (7.13)

In this case Eq.(7.11) can be solved exactly and the uolution.

i o
18 t: V LJ . o . ‘ N - A /h‘"
/ C.’L / < (]- I\_(_ \ 'ni “ R_‘ L -
W= Ot s T (AT 7 h
Pk “IH - (7.14)
/ ) ' : . ) " R L. —j- puEgra i
: i . - o . & e d‘—)‘:"'f'f s Vi "[
Yy i A ar T/ SN B S [ R S e .
where (1) = (xxmkkLU/g5LRLA,LH-LJPiL1‘+' iz f;Q& )J
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Thusg tﬁe wave hav1no wave vector and itg OflenIWLiOn.bhﬂt

satisfy Iq, (7._0) bGCOMbS uﬁboable if the fﬂlaulvo streaming

veloclty satisfies Lup fQLubLOH

Ut RG] (7.15)
L . e L H, ) L ;
in which case, thes growih rate is given by
e ;o LAy i RETE Ly
VAR 7o ‘ . 'f\_g L \ /A AR
¢ = .y O R o ORI ) ( A+ e
N .‘_: (,\:i . ) / ( ..\'l pERy
“ S - S —
e 7 [y
PAEE )
- ' / s P - n‘/ ‘\ B
o Y i s, A,
7 Lﬂ_i/ /. if kﬂlhf 4: S .
’ ( )/“ 016)

Lon Acoustic Instubllltv

Let ug congider the regime where the ions are cold,so
that we can still use an aﬁym&obl forn fo the funculon
=2 ) but the electrons are hot such that T /1. >> 1

1, which would allow us to use a power

—_— o o
series expansion for the function ff(uig/ki, a® @)' Pho’fh

. o
CA)E/k I afi- ) << 1, we shall assume (H.AQ,?/P n “;sc> >> 1

for n > 1, On writing O = .+ 1Y and assumine a priori
AT T e T e ‘ g ™ i, (&S] b
B "1. :

fhat’y BN (G, - kLU)Z, Bq.(7.10) can be solved to give

L Av ; ] N‘{*/ﬁ' 4/ ‘ ‘
C \‘ = K L - (i( :—' o ,"\*"j ! N ""‘/?‘-' ; (i
X, ¥ P_L L'-‘ '*(:J‘-- Z-.' (J N -( _,{:\ - J | K 2ol /)
and i T
U

1 (7.18)

where
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ﬁ\TW xd(k)%)\(&m A (;)«}.i\ /\D U ”r/&UJrQ ]i

('7.19)

and C, = (Te/M)l/g is the sound specd. It can be easgily

varified from Bq,(7,17) and (7.18) tha: the apriori assumption,
- kLU)R, is Satisfied for sufficiently large amglé
of orientation for the wave vector such that (hg /L“)(J/ 1) >> 1.

For J =0 and o, = q = «

e i these results go over to the
) D N

(19
results obtained by Barrett et al, (107P) To see how the
growth rate varies with J, we agssume that the temperature
b A e L /\ PO SN .
anisotropy, A, is large, so that we can write /) AJLO(/x), G
In this case, the ratio between the growth rates for a non-
Maxwellian plasma (J # 0) and that for a Maxwellian plasma
(J = O) goes ag
(‘J" A . /
~ 2 N, .‘ {3 — e U
1% 7-+.; Co (X) LL“G- ’\ﬂ S
S TeonT § L2 )]
L7 ]T.'l’:: o ()_(\ (\A) 1 i ﬁ( -C /&

i T . - . J o
sSince, in the region A~ 1, Go(xx) decreases much faster for

(7.20)

J 2 1 than for J = ¢, it is clear from Bg.(7.20) that the
gr vth rates for o non-Maxwellian plasma are higher than that

for a LdXWGllldh Plasma,

Vil.3B Stability Analygig: High Irequency Waveg

i) Blectron Cyclotron Ins gtability

Since for k/i> 0 the celectron cyclotron waves are

damped, we shall study only the case kjp » 0. MNoreover, if
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the Ill’ll te ion iunpe,r(_wurb effcots are ncglohtod Eq.(7.6)
can b sz.mpllfled to ob tain the d_‘LC‘I\el’.‘SlOI’l relatlon for these
high frequency (CU/Z«_B) electron cyclotron waves; thisg is

given by,

5 & 2‘ o0 .
4+ R o Ty GO ke (T4 ot
T @mwron e
e PQ Y= AN e VA L /
' o0 ‘ : v
P —f - T N,
i . PR I
* > ’L( DA DY “‘Oﬂ (0O -msy
Nz 00 - (7.21)

40 | |
For (U |n| (2 o and Y P (Cdr - I&U')d, the frequency and :

o Th . , . i
growth rate for the n'* harmonic cyclotron wave are given by

Gy~ RU= =+ ELCS% 1+ A(T+1) )3 ,/

o vk ) T
(7.22)
and
™ 2::; i Qe (7 4) A * ‘T( by < (o ,— R.U ) 4
v e 5 \_‘&:,hi V:}r «"'"._
: Lﬂ.. -+ }\7« >\L Lj -+ /A\('T—\— 1:; 7{ — («A’y\ <)‘3 J

(7.23)

Fox Y <y O, depending on the sign of J)j, we have to choose
the appropriate root for (J‘)r as given by Bq.(7.22). IFrom Eq.
('7 23) it is clear that the prowth rate direclly depends on
_L) (>\) whose variation ig shown in Fig.7.1. We also obhsorve

from this figure that for n = 1 and k ¢. > 1 tlhough 1) ( A)

e

1g alweys posivive, D"1( M) for J > 1, becomeg negcu,lve ELJ:"GG]’."
g Z .
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some critioal value of ke . For J = O:'“;(e =a; = %e
and X > |n|, the results given by Eqs.(7.19) and (7.20) g

over to thoge obtained by Wong (1970).

Thig ingtabilivy is due o the resonant coupling of a
Doppler shifted ion-mode and the electron cyclotron mode, As
Wong (1970) has shown that this instability needs the following

condition to be gatigfied,

'(/‘)P'i‘, i‘z ) f’ > \ r%\‘ \
Ll de

VIL.4 Resulte of Numerical Calculations

In an attempt to,stgdy the effect of J on modified two-
stream insgtability and ion acoustic lﬂ.tubL ity over a wide
range of parameters, we have solved Eq.(7.6) mumerically. Ag
was shown by Lashmore-Davies and Martin (1973), the modified
two stream instability and ilon~acoustic ins ;ability are often
not separable, In fact with the Variationnof certain
paraméters (e.o. k;s/k) the instability changes from one to
the obhtr What we follow in the numerical calculations ig:
wloo a oumblwmtlon of these two instabilities, lor oarrying
out numerical computations, for Conveniﬁncefs sake, we will

introduce the dimensionless variables, namely x = G /0

= (k, /k) (M/m)l/g, 7= po/i" and T = U/ay.

pd

The selection of the initial parameters is made in such

a way theat the maximum growbth rate for o Maxwellian plasma (J =
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occurs for k:gerle.- In Fig,7,2 variations of frequency and

growth.?ate with k:?e»haye been shown for J = 0, 1, 2. It is
iﬂt@résting to note that, while a Maxwellian plasma (J = 0)
is stable for k¢ > 1.25, a non-Maxwellian plasma (J = 1,2)
is not omly unstable but it also sustains higher growth rates
for kg’e > 1.25. The growth rates for k&fe > 2 are{not shown
because the range k:ge i}l is the one which is interesting
from practical point of view, In the case of J = 1, the

increase in the growth rate for ksje > 1,4 scems to be because

of the fact that iin this region the root hag changed fron

modified two stréam to ion acoustic mode, Moreover an

examination of Eq.(7.18) shows that the growth rate for the

. i . ’ J;,o. :

ion acoustic instability goes inversely as Co(>\) because

/\ ’ J al e - I Nl 2 fa (J A 3 . PERAR.o ey,
(3 ;~CJ for large values of A. Since CO(>\):deoleL;~w with

-

"?e, there is corresponding increage in the growih ratc, as

ot
b
o
e

depicted LnAﬁlj.?.°. from this ifigurc, we also note tha

J > 1, tiue growth rates are > 0.2 &) . whicir for the

purﬂmeuurs used correspond to N

I“\u,

>+ 1, and hence we conclude
that in the range of k-space under consideration, the system

can subt61n fast growing modes,

and growth rate with the angle of orientation of the wave
vector for a fixed k(k??e = 1,2). it is obgserved that tho
growth rates are higher for higher J values when 0 is small,
but they erc smaller for higher J values as 0 increases,

However, the real part of the frequency decreases with an
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increase in J., It is well known that, as (k, /k) increases,

the electrOﬂ_L ndau ddmplﬂb becomes gtronger and stronger and
Ilnally it stabilizes tne wave, The above results seem to

indicate that the electron Landau damping play a more vital

role for a loss-conec plasma than for a Maxwellian plasma, As
was indicuted in the beginninﬁ of this section, this figure
alego shows a trax tlon from MOdlled two stream to ion
acoustic instability as 0 increases. IV is easy To vbrlfy

that the»left hand gide oi the flnure represents modified two

stream lﬂbbﬂbLLLty while thc right hqnd side rcpresents ian-

acoustic instability.

Fig.7.4 shows plots of frequency and growth rate versus

temperaturc anisotrony. A 51¢n1110 ﬂi increase in the growth
rate ig observed with an increase in anigotropy. Thig figure

also shows that for an amisotropic plasma the growith rates

=

J = 0, lIrom fig,7.5 it

are higher for J > 1 than those fo &
wenetic fie 1L nas o destabili-
sing cffect on.th@ ; me.‘ Fig.?.G’shdws,that the threshold
for T /l for ldutUbLlliJ decreasges og J 1ncr\ascs and th@‘

ez mun growth rate (maximized over TO'Ti) ig higher foxr.

higher J valueg,

In.order to sec the variation with the streaming

elocity we determined the maximum growth rate, which occurg
: * }
at k =k, for a number of streaming velocitics., These
results arc shown in Table 7.1, Tor reasons stated carlice,

we have IPSLlLCLPd ou‘”olvo to values of kg’e only upto 3.0,
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same as in Fig.7.2, The growth ratens foxr J = 2
Are Tot shovwn, because with the soales used in this

figure they mvexlﬁp with thege for J = 4,
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2.

We“observe %hat “f% as well as k. increase as the streaming
‘velobity déoreaées, Another inﬁeresting thing to be noted

ig that, there are certain values of Sfreamiﬂg velocities

( for example U/cci < 1z.0, for the get of parameters

considered in Table 7.1) for which the growth rate maximizes

for k§36v1.o in the “aséqof J z-o while 1t goes on,iﬁcreas~

-

ing even upto k€ = 3,0 in the case of J = 1.
(@ i Al 3] N . -

ViI.B ‘Qonclusiohs

We have showﬁ that the 1bss~cone and temperature
anisotropy in the eleotron.velopity distribution hag profound
effects on the modified two-gstream instability~and ion
acoustic instability When_)\ = kgffg/zrxfl, We‘also find‘
that, non-Maxwellian plasmas with distribution under J 204,
can sustain fast growing waves (Im(&J>,§li) even 1n regions
of k-space which is stable for a Maxwellian plasma, Moreover,
when A\~ 1 the temperature anisotropy is found to have a
destabilizing effect on the modified two-stream ingtability
and on the ion.aoouﬁtio ingtability,

In this chapter we have not attempted to ascertaiﬁ‘
quantitatively the modifications in the mon~linear theory of
these ingtabilitics due to the modifications introduced by
the logs—cone and the anisotropy effects; however, we “would

qualitatively discuss the evolution of the disgtribution
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funotion.duc to these nOﬂllnLarltles., The\rc sult of

L.

numerlcai 1mulatlon expcrlmentd periormed by Mo rxd"ev
1..(1972) indicate that the nonlinéar stabilive:¢01 of the
modified ﬁwb stream ingtabiiity takes placekdué to particle
' trappiné lﬂ.Lh“‘pObbﬂLlJl well, They have algo shown Ghat
the éleotrons preuomlnantly get heated along the direction
of the magne ic field while ‘the ions pre domwnanLlJ get heated
along the dll CblOﬁ.purp(DdlCulaL to the lagnxtlo iield
such that the £inal parallel temperature of the elegtrbns is
3oomparéble‘to thg,perpehdicular:ionftemperature; In»omr,\
case the consequence of such an effect will be that, the
prédominant parallél heating of the electrons due to modified
.two;sfream instability Wiil evéntually isotrdpize*thé
digtribution function even if the equilibrium diétribution
funcﬁion for the electrons wag sufficilently anisotro@ic tb

start with.
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