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Abstract

In chapter 1.1, the basic theory of revival and fractional revival phenomena of a wave

packet and the autocorrelation function are described. In 1.2, Rydberg atomic sys-

tem and the diatomic molecular systems are introduced. Next, we have discussed the

coherent state in section 1.3. In chapter 1.4, explanation of phase space Wigner dis-

tribution, Schr̈odinger cat states and the definition of sub-Planck scale structure are

given. The basic idea of two time scale revival and fractional revival phenomena are

described in section 1.5. We end the chapter with definitions of Fourier transform,

short-time Fourier transform and the wavelet transform.

In chapter 2, we demonstrate the possibility of realizing sub-Planck scale structures

in the mesoscopic superposition of molecular wave packets involving vibrational lev-

els. The time evolution of the wave packet, taken here as the SU(2) coherent state

of the Morse potential describing hydrogen iodide molecule, produces cat-like states.

Interference of these cat-like states produces sub-Planck structures in phase space. We

investigate the phase space dynamics of the coherent state through the Wigner func-

tion approach and identify the interference phenomena behind the sub-Planck scale

structures. The optimal parameter ranges are specified for observing these features.

In chapter 3, we study the revival and fractional revivals of a diatomic molecular wave

packet of circular states whose weighting coefficients are peaked about a vibrational

quantum numberν and a rotational quantum numberj. Furthermore, we show that the

interplay between the rotational and vibrational motion is determined by a parameter

γ =
√

D/C whereD is the dissociation energy andC is inversely proportional to

the reduced mass of the two nuclei. UsingI2 andH2 as examples, we show, both

analytically and visually, that forγ À ν, j, the rotational and vibrational time scales

are so far apart that the ro-vibrational motion gets decoupled and the revival dynamics

ix



depends essentially on one time scale. Forγ ∼ ν, j, on the other hand, the evolution

of the wave packet depends crucially on both the rotational and vibrational time scales

of revival. In the latter case, an interesting rotational vibrational fractional revival is

predicted and explained.

In chapter 4, we show that the time frequency analysis of the autocorrelation function

is, in many ways, a more appropriate tool to resolve fractional revivals of a wave packet

than the usual time domain analysis. This advantage is crucial in reconstructing the

initial state of the wave packet when its coherent structure is short-lived and decays

before it is fully revived. Our calculations are based on the model example of fractional

revivals in a Rydberg wave packet of circular states. We end by providing an analytical

investigation which fully agrees with our numerical observations on the utility of time-

frequency analysis in the study of wave packet fractional revivals.
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Chapter 1

Introduction

1.1 Introduction

In 1926, Schr̈odinger proposed a new kind of mechanics known as wave mechanics. In

his approach, motion of a particle is described by an equation known as the Scrödinger

equation.

A wave function or a quantum stateΨ(x, t), is a solution of wave equation, plays the

role of probability amplitude. The quantityΨ∗(x, t)Ψ(x, t) dx gives the probability of

finding the particle in the regiondx of configuration space at timet. A wave packet of a

quantum system is a superposition of some of its eigenstates. In certain nonlinear quantum

systems, a suitably prepared wave packet will, in the course of its evolution, regain its initial

form periodically. This is known as the revival of the wave packet [1]. At some intermedi-

ate times, the evolving wave packet will break up into a set of replicas of its original form.

This is known as the fractional revivals of the wave packet [2]. The phenomena of revival

and fractional revivals have been predicted and observed in the wave packet dynamics of

various atomic, molecular and optical systems [3, 4]. Rich structures have emerged in the

space-time behavior of the probability density for a particle in some exactly solvable poten-

tials [5, 6, 7]. The advent of short-pulsed laser has made it possible to produce and detect

coherent superpositions of quantum mechanical states for a variety of physical systems.

In this thesis, we will study fractional revivals in quantum systems that have not been

explored yet. Various applications of fractional revivals will also be found.

1



Introduction 2

1.1.1 Revival and fractional revivals

Revivals and fractional revivals [1, 2, 3, 4] occur in the time evolution of a suitably pre-

pared wave packet. Revival closely follows the phrase ‘history repeats itself’. If a system,

evolving in time, comes back to its initial state at some time, then we will say that the

system has undergone a ‘revival’. Classical systems such as a pendulum or a planet in Ke-

pler orbit revive after their classical time periods. Quantum mechanically, if the system is

described by a wave function|Ψ(t)〉 at an instantt, then the system will have revived if the

absolute square of the overlap between|Ψ(t)〉 and|Ψ(0)〉 is unity. This overlap is known

as the auto-correlation function of the system and, in Dirac’s bra-ket notation, is written as

〈Ψ(t)|Ψ(0)〉.
Consider a quantum system whose eigenvalues and eigenfunctions are{En} and{ψn}

respectively (we use~ = 1). Let the system att = 0 be described by a wave packet

|Ψ(0)〉 =
∑

n

cn|ψn〉. (1.1)

Then the time dependent wave packet,

|Ψ(t)〉 =
∑

n

cne
−iEnt|ψn〉. (1.2)

If En is equi-spaced, i.e., of the formEn = αn, as in the case of a simple harmonic

oscillator, then revival takes place at the classical periodTcl = 2π/α sinceexp(−iEnTcl) =

exp(−2πin) = 1 for all vales ofn.

If En is quadratic inn, En = αn + βn2, then aroundTrev = 2π/β, the excess phases

caused by the quadratic term will be exact multiples of2π and the system will again behave

‘classically’.

Let us then consider a fictitious wave packet which evolves ‘classically’ in the sense

that the corresponding energy spectrum is linear:

|Ψcl(t)〉 =
∑

n

cn|ψn〉 exp[−2πint/Tcl]. (1.3)

This wave packet is identically equal to the initial wave packet att = 0, i.e., |Ψcl(0)〉 =

|Ψ(0)〉 . Fractional revivals occur for the original wave packet|Ψ(t)〉 at t = r
s
Trev where
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r ands are mutually prime integers. At such times, the phase factor due to the quadratic

termexp(−iβn2t) will have the valueexp(−2πirn2/s). We expand this nonlinear phase

in terms of linear phases by means of a discrete Fourier transform:

exp(−2πirn2/s) =
l−1∑
p=0

ap exp(−2πipn/l) (1.4)

wherel = s/2 whens is an integer multiple of4 andl = s in all other cases. Substituting

in Eq. (1.2) and simplifying, we obtain

|Ψ(rTrev/s)〉 =
l−1∑
p=0

ap|Ψcl(rTrev/s + pTcl/l)〉. (1.5)

where,

ap =
1

l

l−1∑
m=0

exp
[
−2πi(m2 r

s
−m

p

l
)
]
. (1.6)

Thus, the initial wave packet splits into a set of classical wave packets evaluated at a

shifted time. This is known as fractional revivals.

In general, the energy eigenvalues do not have a quadratic form. However, if the weight-

ing probabilities|cn|2 are strongly centered around a mean valuen̄ with the condition

∆n = |n̄ − n| << n̄, then it is appropriate to expand the energy in a Taylor series in

n around the valuēn,

En ' En̄ + E
′
n̄(n− n̄) +

1

2
E
′′
n̄(n− n̄)2 + .... (1.7)

Neglecting the overall time dependent phase and considering up to second order term, we

may write Eq. (1.2) as

|Ψ(t)〉 =
∑

n

cn|ψn〉 exp

[
−2πi

(
(n− n̄)

Tcl

+
(n− n̄)2

Trev

)
t

]
(1.8)

where each term in the expansion defines an important characteristic time scale that de-

pends on̄n:

Tcl =
2π

E
′
n̄

, Trev =
4π

E
′′
n̄

. (1.9)
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A classical analogy or picture of the time dependence of the quantum state or the fea-

tures of the revival and fractional revivals can be given by an ensemble of runners on a

circular track. At the beginning of the race, the runners are bunched together, i.e.; they

form a well localized initial wave packet. After a few circuits, the runners begin to spread

around the track. It is simply that the wave packet consists of a collection of waves of

varying frequencies–a group of runners moving at different speeds. The quantum features

begin to appear when the racers start to clump–i.e., when the fastest runner catches up to

the slowest runner or the quicker runners overtake the slower runners. After many more

circuits, they clump back into a single group, corresponding to a full revival or can return,

including smaller ‘packs’ of racers, clumped together, which model fractional revival.

1.1.2 Specific cases of fractional revivals

(i) Consider the wave packet at timeTrev/2, i. e,r = 1, s = 2, l = s = 2. Eq. (1.5) yields

Ψ(t =
1

2
Trev) =

1∑
p=0

ap Ψcl(
1

2
Trev +

1

2
Tcl)

= a0Ψcl(
1

2
Trev) + a1Ψcl(

1

2
Trev +

1

2
Tcl). (1.10)

Using Eq. (1.6), one getsa0 = 0 anda1 = 1, i.e, att = 1
2
Trev,

Ψ(t) = Ψcl(t +
1

2
Tcl). (1.11)

It is the initial wave packet shifted by half a classical period.

(ii) When t = 1
4
Trev, r = 1, s = 4, l = s/2 = 2, Eq. (1.5) and Eq. (1.6) give

Ψ(t =
1

4
Trev) =

1√
2

[
e−iπ/4Ψcl(t) + eiπ/4Ψcl(t +

1

2
Tcl)

]
. (1.12)

So the initial wave packet will split up into two macroscopically distinct wave packets.

This splitting is essentially a non-classical behavior.

(iii) Similarly, at t = 1
8
Trev (r = 1, s = 8, l = s/2 = 4), one can find

Ψ(t =
1

8
Trev) =

1√
2
e−iπ/4

[(
Ψcl(t)−Ψcl(t +

1

2
Tcl)

)

+ eiπ/4

(
Ψcl(t +

1

4
Tcl) + Ψcl(t +

3

4
Tcl)

)]
. (1.13)
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Thus, att = 1
8
Trev, there will be four-way break up of the initial wavepacket. For other

cases att = r
s
Trev (wherer, s are mutually prime), the initial wave packet breaks up

accordingly and shows the signature of fractional revivals.

1.1.3 Autocorrelation function

The revival dynamics of wave packets has mostly been studied through the autocorrelation

function as it relates directly to the observable signal in the pump-probe type experiments

for studying the wave packet dynamics [8, 9, 10, 11]. Furthermore, the ionization signal

in a pump-probe type experiment should show the same periodicity in the autocorrelation

function. This function for an evolving wave packetΨ(r , t) is given by the overlap integral

A(t) = 〈Ψ(r , t)|Ψ(r , 0)〉. It is, by now, well understood how the prominent features of

revival and fractional revivals can be gauged from a plot of|A(t)|2 as a function of time.

System will revive if the absolute square of the overlap between〈Ψ(r , t)| and |Ψ(r , 0)〉
is unity. Fractional revivals appear as periodic peaks in the autocorrelation function. The

absolute square of the autocorrelation function can be written as

|A(t)|2 =

∣∣∣∣∣
∑

n

|cn|2e−iEnt

∣∣∣∣∣

2

(1.14)

where|cn|2 gives the weighting probabilities. The above expression can well describe, in

detail, the time dependence of a generic wave packet, even in the absence of any other

information of the system. The general structure of|A(t)|2 is given by

|A(t)|2 =

∣∣∣∣∣
∑

n

|cn|2e−iEnt

∣∣∣∣∣

2

=
∑

n

|cn|4 + 2
∑

n6=m

|cn|2|cm|2cos
(

(En − Em)t

~

)
. (1.15)

The second (oscillatory) term in Eq. (1.15) remains highly correlated and reproduces

the approximate periodicity for smaller time scales. For larger time scales, this oscillatory

term becomes gradually out of phase. Thus, it can lead to high frequency oscillation around

the constant value given by the first term in Eq. (1.15).

In our work, we have chosen atomic and molecular systems to see the specific applica-

tions of fractional revivals in (i) Rydberg atom and (ii) diatomic molecular system.
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1.2 Atomic and molecular systems

1.2.1 Rydberg atom

A Rydberg atom is an excited atom whose outer electron has been excited to very high

energy states, far from the nucleus. A Rydberg wave packet is formed by a coherent super-

position of highly excited states or Rydberg states. These wave packets play a fundamental

role in our understanding of the bridge between quantum and classical concepts of the tra-

jectory of a particle. When a Rydberg atom is excited by a short laser pulse, a state is

created that has classical behavior for a limited time [1]. Short laser pulses (pump pulses)

are used to excite a wide range of states simultaneously. For the purpose of detection, an-

other pulse, called probe pulse is used as a function of the delay time from the first pulse. In

experiments, initially one-electron-like atoms such as potassium and rubidium have been

used. They have ionization potential of order4eV , requiring laser wave length of order

2858Å, which produces the Rydberg wave packet aroundn = 65.

Depending on the excitation scheme, either a radially localized wave packet [1, 12, 13]

or a packet localized in the angular co-ordinate is produced [14]. In 1990, Geataet al. [15]

studied another type of wave packet which is the circular wave packet. These are localized

in both radial and angular co-ordinates.

Here we discuss circular Rydberg wave packets, which consist of a sum of fully aligned

eigenstates withl = m = n − 1, wherel, m andn are orbital, azimuthal and principle

quantum numbers, respectively. These states have been widely used in the literature be-

cause of their largest magnetic moment, smallest Stark effect and longest radiative lifetime.

Two methods have been studied to produce these states, (i) the adiabatic microwave trans-

fer method and (ii) the use of crossed electric and magnetic fields [16]. We restrict our

analysis here to wave packets for hydrogen, having energiesE = − 1
2n2 (in a.u.).

1.2.2 Diatomic molecular system

Why study the revival dynamics of molecular wave packets?

A new field of molecular optics is emerging where lasers are used to manipulate the
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internal and external degrees of freedom of molecules, to deflect beams of molecules, to

control molecular dynamics, and to align molecules. However, our abilities are limited

by time scales. Chemical reactions can be extremely fast, with durations of less than a

picosecond. In the absence of suitable tools we would only uncover the initial and final

states of reactions, and then the knowledge of any intermediate state could be obtained

only indirectly (possible side products, fluorescence during the reaction etc.). Furthermore,

without the tools, the steering of fast processes would not be easy, because if it required

a careful sequence of external manipulations or events, the interval between the events

would necessarily have to be less than the duration of the reaction. However, the recent

development of ultra short laser pulses with durations down to a few femtoseconds has

opened a door into the world of fast chemical reactions so that they can be studied and

perhaps even be controlled. Much of the early work in understanding bond breaking and

making on these time scales was undertaken by Ahmed H. Zewail [17], who received the

Nobel prize in 1999, for ’showing that it is possible with rapid laser technique to see how

atoms in a molecule move during a chemical reaction’.

The idea of ultra short pulses sounds like a nightmare for a high precision spectro-

scopist. As we make pulses shorter and shorter, we enlarge the pulse bandwidth, and thus

instead of interacting with a small, and very selected, group of molecular states we involve

a very large number of states. Typically a femtosecond pulse interacting with a molecule

excites several vibrational states simultaneously. As we gain localization in time, we lose

localization in energy. As a result it becomes more meaningful to consider not single quan-

tum states, but their superposition. In other words, we enter the world of wave packets and

their time resolved dynamics.

As mentioned above, an important motivation for femtochemistry is the possibility to

manipulate chemical reactions. However we prefer to take another view of the situation.

Femtosecond pulses have given us a method to create and observe quantum mechanical

superposition. The study of the time evolution of these superposition is a fascinating part

of fundamental research in molecular physics (and chemistry), and other areas of physics

too. Just as the invention of lasers quickly made it possible to discover a wealth of explicitly

time dependent quantum phenomena in atomic systems, femtosecond pulses open up a new
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regime in molecular dynamics.

Morse potential

The well known convenient model for describing the diatomic molecular system was first

introduced by Morse [18] in 1929. There are a number of empirical functions in closed

form that can be used to give potential energy curves that offer adequate approximations for

many purposes. One of the best known model of these is the Morse potential. It is a better

approximation for the vibrational structure of the molecule than the quantum harmonic

oscillator because it explicitly includes the effects of bond breaking, such as the existence

of unbound states. The potential describing the vibrational motion of a diatomic molecule

has the form

V (x) = D(e−2βx − 2e−βx), (1.16)

wherex = r/r0 − 1, r0 is the equilibrium value of the inter-nuclear distancer, D is the

dissociation energy andβ is a range parameter. The Morse potential, as a model, has a

range of applicability for real systems. It is much used in spectroscopic applications as it

is possible to solve Schrödinger equation for this system.

Solving Schr̈odinger equation for the Morse oscillator

Schr̈odinger equation for the Morse potential is given by

−~2

2µr2
0

d2ψ

dx2
+ D(e−2βx − 2e−βx)ψ = Eψ, (1.17)

whereµ is the reduced mass,µ = m1m2

m1+m2
.

Then we get
d2ψ

dx2
+ (−δ2 + 2γ2e−βx − γ2e−2βx)ψ = 0, (1.18)

where

δ2 = −2µEr2
0

~2
; γ2 =

2µDr2
0

~2
. (1.19)

Changing the variable withξ = 2λe−βx, Eq. (1.17) becomes

d2ψ

dξ2
+

1

ξ

dψ

dξ
+

λ2

ξ2

[
E/D −

(
ξ

2λ

(
ξ

2λ
− 2

))]
ψ = 0, (1.20)
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where

λ =

√
2µDr2

0

β2~2
; 0 < ξ < ∞. (1.21)

ψ must be finite, single valued and continuous over this range. Assumingψ = e−ξ/2ξs/2F (ξ),

Eq. (1.20) gives

ξ
d2F

dξ2
+ (s− ξ + 1)

dF

dξ
+

[
s2

4ξ
+

λ2E

ξD
+ (λ− s/2− 1/2)

]
= 0. (1.22)

The solution will be a finite polynomial if(λ− s/2− 1/2) = n, is an integer. The quantity

s is given by

s =

√
−8µr2

0

β2~2
E, (1.23)

and the correspondingF (ξ) = Ls
n(ξ), is the associate Laguerre Polynomials. Eigen func-

tions of the Morse potential can be written as

ψλ
n(ξ) = Ne−ξ/2ξs/2Ls

n(ξ), (1.24)

whereN is the normalization constant. Normalization condition gives

r0|N |2
β

∫ ∞

0

[ψλ
n]2(ξ)

ξ
dξ = 1. (1.25)

It yields

N =

[
β(2λ− 2n− 1)Γ(n + 1)

Γ(2λ− n)

]1/2

. (1.26)

Rotational correction of Morse formula

In the above section, we omitted the rotational energy term which is much smaller than that

of vibration. In the study of many fields, e.g. astrophysical work, it becomes necessary to

examine the effect of the rotational motion on the vibrational levels of a diatomic molecule

in which the Morse potential plays the role of the internuclear potential. This rotational

correction has been included by Pekeris in 1934 [19].
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Solving Schr̈odinger equation for the Pekeris Model

A rotational correction term has to be added in the Schrödinger radial equation. If the

rotational quantum numberj is non-zero, the centrifugal potential is

V
′
=
~2j(j + 1)

2µr2
. (1.27)

Usingr/r0 − 1 = x and the expression ofγ from Eq. (1.19), we get

V
′
=

j(j + 1)

γ2
D

1

(1 + x)2
. (1.28)

The nuclear distancer will not fluctuate very far from the equilibrium position atr0 even

for higher vibrational levels. We expand aboutr = r0 in a power series and keep upto

quadratic term:

V
′
=

j(j + 1)

γ2
D(1− 2x + 3x2). (1.29)

As an alternative potentialV ′ can be replaced as

Ṽ
′
=

j(j + 1)

γ2
D(C0 + C1e

−βx + C2e
−2βx), (1.30)

where

C0 = 1− 3

β
+

3

β2
; C1 =

4

β
− 6

β2
; C2 = − 1

β
+

3

β2
. (1.31)

With this rotational correction term the radial part of Scrödinger equation becomes

d2Rνj

dx2
+ (−δ2

1 + 2γ2
1e
−βx − γ2

2e
−2βx)Rνj = 0, (1.32)

where

β2
1 = β2 + j(j + 1)C0; γ2

1 = γ2 − 1

2
j(j + 1)C1; γ2

2 = γ2 + j(j + 1)C2 (1.33)

andν andj are vibrational and rotational quantum numbers. Solving the above equation

with the scaled variabley, one obtains

Rνj(y) = Nνj exp(−y/2)yb/2Lb
ν(y) (1.34)

where

b = (2/β)[γ2
1/γ2 − β(ν + 1/2)],

y = (2γ2/β) exp(−βx),

Nνj = [βbν!/Γ(b + ν + 1)]1/2. (1.35)
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The complete wave functionψνjm(r), including both rotation and vibration, is given by

ψνjm(r) = r−1Rνj(y)Yjm(θ, φ), (1.36)

whereYjm(θ, φ) are the spherical harmonics. Here,Lb
ν(y) is a generalized Laguerre poly-

nomial andNνj is the normalization constant. The corresponding energy eigenvalues can

be written in the form of a Dunham series:

Eνj = C
∑

ik

(−1)i+k+1βik(ν + 1/2)ijk(j + 1)k, (1.37)

whereC = ~2/(2Mr2
0) andM is the reduced mass of the two nuclei. The coefficientsβik

are positive real quantities that depend onβ andγ =
√

D/C only,

β00 = γ2, β01 = 1, β02 = 9(β − 1)2/(4β4γ2), (1.38)

β10 = 2βγ, β20 = β2, β11 = 3(β − 1)/(βγ). (1.39)

In chap. 2, we will discuss the Morse coherent state involving vibrational levels and its

time evolution in both co-ordinate space and phase space. We will study the well known

Wigner phase space distribution to find the sub Planck scale structure.

1.3 Coherent state

In 1926, Schrdinger first introduced the coherent states to describe non-spreading wave

packets for harmonic oscillators [20]. Harmonic oscillator coherent states arise in sys-

tems whose dynamical symmetry group is the Heisenberg-Weyl group. Coherent states

of other symmetry groups, e.g., SU(1, 1), SU(2) have also found physical applications

[21]. Two important properties of the coherent states are i) resolution of unity and ii) over-

completeness. Coherent states are defined in three different ways:

(i) These are displaced vacuum states:

|α〉 = D(α)|0〉. (1.40)

The displacement operatorD(α), operating on the vacuum state, is given by

D(α) = e−|α|
2/2eαa†e−α∗a. (1.41)
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(ii) These are eigenstates of the annihilation operator:

a|α〉 = α|α〉. (1.42)

Since light is, in general, detected by absorption, coherent states have the nice property

that they remain coherent even after detection.

(iii) Harmonic oscillator coherent states are states of minimum uncertainty:∆p∆x =

~/2, and thus are most classical within the quantum framework.

These three definitions are equivalent for the harmonic oscillator coherent state. It is

not the case for coherent states in general. Output from a well stabilised laser is a coherent

state.

It was found that under the action of a Hamiltonian which is a non-linear function of the

photon operator(s) only, an initial coherent state loses its coherent structure quickly due to

quantum dephasing induced by the nonlinearity of the Hamiltonian; then regains it (revival)

after an interval. At fractions of this time interval, the initial coherent state breaks up into a

superposition of two or more coherent states which also can have a coherent structure [22].

This is an example of the quantum phenomenon of fractional revivals, or, the formation

of Schr̈odinger cat and cat-like states [23, 24] which, unlike a coherent state, have many

non-classical properties.

1.4 Phase space and Quasi-probability distribution

In classical physics, a particle has a definite positionx and momentump. It is common to

build a6N dimensional space, where N is the number of particles constituting the system.

This space is called the phase space. Hence, it is possible to represent the state of the system

by a point in phase space. For an ensemble or a collection of particles, the probability of

finding a particle at(x, p) in phase space is given by a probability distribution, statistically.

The average of any functionf(x, p) is expressed as

〈f〉C =

∫ ∫
f(x, p)P (x, p)dxdp, (1.43)
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where,P (x, p) gives the probability distribution. In quantum physics, this is not possible

because of Heisenberg’s uncertainty principle. A joint probability distribution of both these

variables can be defined but simultaneous probability distribution for position and momen-

tum cannot be interpreted i.e., one cannot define a true phase space probability distribution.

For this reason, these distributions are named as quasi probability distribution. Similar to

classical physics, the average value of any quantum mechanical operator can be defined as

〈f〉Q =

∫ ∫
f(x, p)PQ(x, p)dxdp, (1.44)

wherePQ(x, p) gives the quasi-probability distribution or phase space distribution. Thus

this distributions provide closest quantum analogy of the classical phase space distribution

and have proven to be a useful tool for studying many quantum systems.

1.4.1 Wigner distribution

The most widely used phase space distribution is Wigner distribution [25]. The Wigner

functionW (x, p; t) is the joint probability distribution for measuring both the quadratures.

In terms of position space wave functions, it can be defined as

W (x, p; t) =
1

π~

∫ ∞

−∞
ψ∗(x− z, t)ψ(x + z, t)e−2ipz/~dz, (1.45)

whereas in momentum space:

W (x, p; t) =
1

π~

∫ ∞

−∞
φ∗(p− z′, t)φ(p + z′, t)e−2ixz′/~dz′. (1.46)

This Wigner function is a useful tool to visualize the correlated position-momentum behav-

ior of quantum eigen states and wavepackets.

Important properties

(i) Wigner fuction is always real:

The definition of the Wigner function is given by

W (x, p; t) =
1

π~

∫ ∞

−∞
ψ∗(x− z, t)ψ(x + z, t)e−2ipz/~dz. (1.47)
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Now, we write

W ∗(x, p; t) =
1

π~

∫ ∞

−∞
ψ(x− z, t)ψ∗(x + z, t)e2ipz/~dz. (1.48)

Changing variable byz = −z̄, above relation becomes

W ∗(x, p; t) =
1

π~

∫ ∞

−∞
ψ∗(x− z̄, t)ψ(x + z̄, t)e−2ipz̄/~dz̄

= W (x, p; t). (1.49)

Of course, it is one of the desired properties of probability distributions.

(ii) Probability density in one variable can be obtained by integratingW (x, p; t) over

the another variable. Making use of Diracδ function, one can find
∫ ∞

−∞
W (x, p; t)dp = |ψ(x, t)|2

∫ ∞

−∞
W (x, p; t)dx = |ψ(p, t)|2. (1.50)

This is another necessary condition for a joint probability distribution.

(iii) The Wigner function of a state can have negative values which indicates that the

state has nonclassical nature. Two distinct quantum states,ψ(x, t) andχ(x, t), satisfy the

relation: ∫ ∞

−∞
dx

∫ ∞

−∞
dpW (x, p; t)ψW (x, p; t)χ =

2

π~
|〈ψ|χ〉|2. (1.51)

If ψ andχ are orthogonal states, then〈ψ|χ〉 = 0.

Wigner functions have been studied under several physical conditions. It can be mea-

sured by tomography. Wigner function of molecular vibrational state can be reconstructed

from the time-resolved fluorescence spectra via inverse random transform . This is known

as emission tomography [26, 27, 28]. It employs time-resolved spectroscopic data, which

can be inverted to obtain phase space quasi probability distribution that contain all the infor-

mation about the vibrational states. The Wigner function of a Schrödinger cat state exhibits

typical Gaussian-like probabilities located at two different regions of phase-space, with an

additional interference term that takes negative values.
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Figure 1.1: Scr̈odinger cat states.

1.4.2 Mesoscopic superposition

Schrödinger cat states

Mesoscopic superpositions of states has attracted a great deal of attention. They lie in be-

tween the macroscopic and microscopic world or at the interface of classical and quantum

worlds. These superpositions exhibit very important interference effects [29, 30, 31]. The

simplest superposition gives the well known Schrödinger cat states giving rise to the so-

called ”Cat paradox” of Scrödinger [20]. Such superposition is closely connected to the oc-

currence of fractional revivals in the non linear dynamics of quantum systems [32, 33, 34].

Quantum superposition of classically distinguishable state of a molecule can create such

Scr̈odinger cat states. A fractional revival at one-fourth or three-fourth of revival time can

produce such a superposition of two coherent states as shown in Fig. 1.4.1. The optical

Scr̈odinger cat states are superposition of coherent states and are eigenstates of the opera-

tor a2 [23, 31, 35, 36]. A vibrational analog of such states can be realized in an experiment

of double pulse or chirped pulse excitation [37].
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Figure 1.2: Sub-Planck scale structures produced in a superposition of four optical coherent
states in phase space.

1.4.3 Sub-Planck scale structure and Decoherence

An unexpected sign of quantum interference in phase space can play a surprisingly im-

portant role in the distinguishbility of quantum states. A phase space structure associated

with sub-Planck scale (<< ~) can exit in non-local quantum superpositions or Scrödinger

cat states. Zurek [38] showed that appropriate superposition of some of these states with

a classical action A can lead to sub-Planck-scale structures in phase space. These sub-

Planck-scale structures in phase space are characterized by an area~2/A. Apart from their

counterintuitive nature and theoretical significance, the above scale has been shown to con-

trol the effectiveness of decoherence [35, 39, 40, 41], a subject of tremendous current in-

terest in the area of quantum computation and information [42]. Zurek’s realization made

use of dynamical systems which exhibit chaotic behavior in the classical domain. Recently

a cavity QED realization involving the mesoscopic superposition of the compass states has

been given [43, 44] (see Fig. 1.4.1). In principle, one could also use superpositions of

cat-like states arising in quantum optical systems with large Kerr nonlinearity. In practice,

such a large nonlinearity in not available though some proposals for the enhancement of

the kerr nonlinearity exist [45]. The existence of such superpositions is closely connected

to the occurrence of fractional revivals in the nonlinear dynamics of quantum systems

[13, 32, 33, 34]. We demonstrate the possibility of realizing sub-Planck-scale structures
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in the mesoscopic superposition of molecular coherent state wave packets, which involve

vibrational levels. We study the spatiotemporal structure of these states, paying special

attention to the fractional revival, which gives rise to four coherent states required for the

observation of the sub-Planck structure. Very recently, sub Planck scale structures were

also found in phase space using the Kirkwood-Rihaczek distribution [46]. It is also found

[47] in two entangled cat states which are most robust against decoherence.

Two typical problems of small quantum parameter estimation are (i) high precision

phase measurement and (ii) weak force measurement. These structures in the Wigner func-

tion can be used to achieve Heisenberg-limited sensitivity in weak force measurement [48].

Sensitivity of quantum states to small rotation or displacement is related to the smallest

structure present in phase space—–sub Planck scale structure.

It also determines the sensitivity of a quantum system to perturbation or decoherence.

Decoherence occurs because of the interaction of the system with its surroudings. Any

system, in reality, no matter how isolated it is, interacts with the environment. This interac-

tion destroys the coherent structure of quantum superposition and leaves it as an incoherent

mixture of those states. This is known as decoherence [41]. This process is almost instan-

tenuous for open, macroscopic systems as they are always interacting with the environment

e.g., air molecules or photons. In other words, the effect of decoherence on density matrix

is essentially the decay or rapid vanishing of the off-diagonal elements of the partial trace

of the joint system’s density matrix. The main source of decoherence in vibrational molec-

ular wavepacket is the coupling between the vibational and rotational modes which can be

minimized by making use of close control method [49].

In chap. 3, we discuss the revival dynamics of the system whose energy spectrum

depends on two quantum numbers.

1.5 Two time scales: revival and fractional revivals

In the literature, most of the calculations explored the revival dynamics of a system whose

energy spectrum depends on a single quantum number. But there are many systems for

which the energy spectrum depends on more than one quantum number. A practical ex-
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ample in this category is the ro-vibrational motion of diatomic molecules. The energy

spectrum, in this case, depends on both the vibrational quantum numberν and the rota-

tional quantum numberj. The revival dynamics of wave packets depending on two quan-

tum numbers is complicated [50, 51, 52] and thus one often resorts to simplified models

or special cases. For example, most authors considered either the vibrational dynamics

in an anharmonic model [9, 53, 54] or the rotational dynamics in a rigid rotator model

[55, 56, 57]. We should note that this practice of treating vibration and rotation separately

was quite common even in the earlier literature spanning over many decades. However,

as noted by Tennyson et al [58], there was no apriori reason behind this practice except

that it simplifies computation and also spectroscopic data suggested that the ro-vibrational

coupling is small for many diatomic molecules.

1.5.1 Generalization of one time scale to two time scales

Consider a system whose energyEn1n2 depends on two quantum numbersn1 andn2. A

wave packetΨ(t) is formed as a coherent superposition of statesΦn1n2 with energiesEn1n2:

Ψ(t) =
∑
n1n2

cn1n2Φn1n2exp(−iEn1n2t). (1.52)

We assume that the weighting coefficientscn1n2 are strongly peaked aroundn1 = n̄1 and

n2 = n̄2 and that the wave packet consists of only those states for which|n1−n̄1| ¿ n̄1 and

|n2 − n̄2| ¿ n̄2. These conditions allow us to expandEn1n2 aboutEn̄1n̄2 in a Taylor series

and retain a finite number of terms in the expansion. The energy can then be expanded in a

Taylor series as

En1n2 ' En̄1n̄2 +

(
∂E

∂n1

)

n̄1,n̄2

(n1 − n̄1) +

(
∂E

∂n2

)

n̄1,n̄2

(n2 − n̄2)

+
1

2

(
∂2E

∂n2
1

)

n̄1,n̄2

(n1 − n̄1)
2 +

1

2

(
∂2E

∂n2
2

)

n̄1,n̄2

(n2 − n̄2)
2

+

(
∂2E

∂n1∂n2

)

n̄1,n̄2

(n1 − n̄1)(n2 − n̄2) + ..... (1.53)
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Keeping terms to second order and neglecting an overall phase due toEn̄1n̄2, we rewrite

Ψ(t) as a double sum in shifted indicesµ = n1 − n̄1 andk = n2 − n̄2:

Ψ(t) =
∑

µk

c̃µkΦ̃µk exp

[
−2πit

(
µ

T
(n1)
cl

+
k

T
(n2)
cl

− µ2

T
(n1)
rev

+
k2

T
(n2)
rev

− µk

T
(n1n2)
rev

)]
, (1.54)

wherec̃µk = cµ+n̄1,k+n̄2, Ψ̃µk = Ψµ+n1,k+n2. For each quantum number, there is a classical

period and a revival time scale. The third time scaleT
(n1n2)
rev , is the cross revival time. These

are defined as

T
(n1)
cl = 2π

(
∂En1n2

∂n1

)−1

n̄1n̄2

, T
(n2)
cl = 2π

(
∂En1n2

∂n2

)−1

n̄1n̄2

,

T (n1)
rev = −4π

(
∂2En1n2

∂n2
1

)−1

n̄1n̄2

, T (n2)
rev = 4π

(
∂2En1n2

∂n2
2

)−1

n̄1n̄2

,

T (n1n2)
rev = −2π

(
∂2En1n2

∂n1∂n2

)−1

n̄1n̄2

. (1.55)

Whent is small, the dominant phase terms in Eq. (1.54) are the first two. They produce

beating between the classical periodsT
(n1)
cl andT

(n2)
cl . The two classical periods are com-

mensurate with each other if

T
(n1)
cl =

a

b
T

(n2)
cl (1.56)

wherea andb are mutually prime integers. In that case, the wave packet displays a period

on short time scales given by

Tcl = bT
(n1)
cl = aT

(n2)
cl . (1.57)

When the two classical periods are incommensurate, the initial motion ofΨ(t) is not exactly

periodic. On a longer time scale, the full revivals appear if the three revival timesT
(n1)
rev ,

T
(n2)
rev andT

(n1n2)
rev are commensurate and satisfy

T (n1)
rev =

c

d
T (n2)

rev =
e

f
T (n1n2)

rev (1.58)

wherec, d ande, f are pairs of mutually prime integers. When Eq. (1.58) is satisfied, all

three second-order terms in the phase become integer multiples of2π. At this time, a full

revival occurs and the phase is governed once more by the classical periods.
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Fractional revivals will appear att = tfrac, given by

tfrac =
p1

q1

T (n1)
rev =

p2

q2

T (n2)
rev =

p12

q12

T (n1n2)
rev , (1.59)

where the integer pairs(p1, q1), (p2, q2) and(p12, q12) are mutually prime. To explain frac-

tional revival phenomena, we define a doubly-periodic function in the following way:

Ψcl(t1, t2) =
∑

µk

c̃µkΦ̃µk exp

[
−2πi

(
µt1

T
(n1)
cl

+
kt2

T
(n2)
cl

)]
, (1.60)

whereΨcl(t1, t2) is periodic int1 andt2 with periodsT (n1)
cl andT

(n2)
cl respectively andt1, t2

are dummy variables. Also it satisfies

Ψcl(t1 + T (n1)
rev , t2) = Ψcl(t1, t2)

Ψcl(t1, t2 + T (n2)
rev ) = Ψcl(t1, t2). (1.61)

At t = 0, Ψ(0) = Ψcl(0, 0). So when time is small,Ψ(t) behaves in approximately the

same way asΨcl(t, t). Following Bluhmet.al [50], we will show that at fractional revival

timest ≈ tfrac, Ψ(t) can be written as a sum of doubly periodic classical wave packets.

To explore the cyclic properties inµ andk of the second-order contributions to the

time-dependent phase inΨ(t) at t = tfrac, we write these contributions asexp(−2πiθµ,k),

where

θµ,k =
p1

q1

µ2 +
p2

q2

k2 +
p12

q12

µk (1.62)

Let us assume that minimum periods arel1 andl2, such that

θµ+l1,k = θµ,k, θµ,k+l2 = θµ,k. (1.63)

The revival time scales are

T n1
rev =

r1

s1

T n12
rev , T n2

rev =
r2

s2

T n12
rev , (1.64)

which follow from Eq. (1.59) with the conditions

r1

s1

=
q1p12

p1q12

,
r2

s2

=
q2p12

p2q12

. (1.65)



Introduction 21

The periodsl1 andl2 must then satisfy

p1

q1

l21 +
2p1

q1

l1µ +
p1r1

q1s1

l1k = 0 (mod 1),
p2

q2

l22 +
2p2

q2

l2k +
p2r2

q2s2

l2µ = 0 (mod 1). (1.66)

These relations can be satisfied by choosingl1 = q1s1 andl2 = q2s2, where the second-

order contributionsθµ,k are cyclic inµ andk with periodsl1 andl2. The functionΨcl(t +

s1T
n1
cl /l1, t + s2T

n2
cl /l2) with shifted arguments have the same periodicities inµ andk,

whereΨcl is defined in Eq. (1.60). Finally, the wave packet at timest ≈ tfrac can be written

as

Ψ(t) =

l1−1∑
s1=0

l2−1∑
s2=0

as1s2Ψcl(t + s1T
n1
cl /l1, t + s2T

n2
cl /l2), (1.67)

where the coefficientsas1s2 are given by

as1s2 =
1

l1l2

l1−1∑
s1=0

l2−1∑
s2=0

as1s2 exp(−2πiθµ,k) exp(2πi
s1

l1
µ) exp(2πi

s2

l2
k). (1.68)

Eq. (1.67) shows that att ≈ tfrac, the wave packet can be written as a sum of subsidiary

wave functions which have distinct shifts in two arguments.

In chap. 4, we study the wavelet based time-frequency analysis of revival dynamics of

Rydberg atomic wave packets and molecular vibrational wave packets.

1.6 Non stationary signal analysis

Signal processing is a fast growing area today and a desired effectiveness in utilization of

bandwidth and energy makes the progress even faster. Signals for which the properties or

the frequency content do not change in time, are called stationary signals. Most signals

observed in nature are typically non-stationary. Autocorrelation function relates directly

to the observable signal in the pump-probe type experiments for studying the wave packet

dynamics. This observed signal is a time series, which is non-stationary and it requires

suitable transformation to find the information contained in it.
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1.6.1 Fourier Transform:

The Fourier Transform (FT) [59] provides a representation of functions defined over an

infinite interval and having no particular periodicity. We define FT off(t) as

f̃(ω) =
1√
2π

∫ ∞

−∞
f(t)e−iωtdt, (1.69)

and the inverse transform follows

f(t) =
1√
2π

∫ ∞

−∞
f̃(ω)eiωtdt. (1.70)

Its utility lies in its ability to analyze a signal in the time domain for its frequency

content. The transform works by first translating a function in the time domain into a

function in the frequency domain. The signal can then be analyzed for its frequency content

because the Fourier coefficients of the transformed function represent the contribution of

each sine and cosine function at each frequency. It can be used for non-stationary signals,

if we are only interested in what spectral components exist in the signal, but not interested

in the time of their occurrence. Non-stationarity is often the most important part of the

signal, and Fourier analysis is not suited for detecting it. It was proved insufficient due to

the non-localized nature of the transform.

1.6.2 Short Time Fourier Transform:

For the purpose of time-frequency analysis of a signal, short-time Fourier transform (STFT)

[60] has often been used in the literature. It is defined as

X(ω, t) =

∫ ∞

−∞
x(τ)w(τ − t)e−iωτdτ. (1.71)

The functionw(t) is the window function. This method divides the whole time series in

several windows, each of certain fixed width. Then the FT is performed in each window

for obtaining the frequency information. The STFT can be considered as sliding the win-

dow along the signalx(t) and then for each shift of the window, computing the Fourier

transform. The plot of|X(ω, t)|2 or spectrograms for all shifts of the total signal duration

gives us the time-frequency distribution as required. Unfortunately, the time-frequency in-

formation obtained by this method has not always been satisfactory as its fixed window
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length does compromise on the frequency resolution. The method of wavelet transform

overcomes the preset resolution problem of STFT by using a variable length window.

What sets wavelets apart, is that the wavelets were designed from first principles to

study how the signal changes over time. Whereas Fourier methods usually involve ana-

lyzing the entire signal at once, wavelet analysis assumes that the signals may be of finite

duration. So it is designed to study the spectrum of variability as a function of time.

1.6.3 Wavelet Transform

The wavelet transform [61, 62], by design provides good localisation in both time and fre-

quency. The subject area of wavelets, developed mostly over the last fifteen years, is at

the forefront of much current research in pure and applied mathematics, physics, computer

science and engineering. It really began in the mid 1980s where it was developed to inter-

rogate seismic signals (Goupillaud et al 1984) [63]. The application of wavelet transform

analysis in science and engineering really began to take off at the beginning of the 1990s.

This transform has emerged over recent years as a powerful time-frequency analysis. Now

it is worthwhile asking”What is a wavelet”? A wavelet is a waveform of effectively limited

duration that has an average value of zero.

Wavelet transforms, as they are in use today, come in essentially two distinct ways or

classes: the continuous wavelet transform and the discrete wavelet transform. Here we

discuss the continuous wavelet transform.

Continuous Wavelet Transform (CWT): Time-frequency analysis

The continuous wavelet transform (CWT) [60, 61, 62, 63, 64, 65, 66] is gaining wide

acceptance as a convenient tool for time-frequency analysis that separates individual sig-

nal components more effectively than the traditional short time Fourier transform (STFT).

CWT of a signalf(t) is defined as

T (s, τ) =
1√
s

∫
f(t)φ∗

(
t− τ

s

)
dt (1.72)

This transformed signal is a function of two variables,s andτ that are used respectively

to scale and translate the wavelet window whereasφ∗ is the complex conjugate of the
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transforming function known as the mother wavelet for the CWT. The mother wavelet used

here is the Morlet wavelet. The Morlet wavelet is the most popular complex wavelet used

in practice and it is defined as

φ(t) = π−1/4eiω0te−t2/2, (1.73)

whereω0 is the central frequency of the Morlet wavelet. The transform can be related to the

time-frequency representation with low scale corresponding to compressed mother wavelet

and high scale corresponding to dilated mother wavelet. The effect of scaling is to change

the area of the time-frequency plane with the value of the frequency related to the scale

value. The square of the modulus of the transform plotted on a time-scale plane is called

thescalogram[60, 62]. This transform overcomes the frequency resolution problem of the

STFT by allowing variable length windows. Another important distinction from the STFT

is that the CWT is not limited to using sinusoidal analysing functions.

In chap. 4, we choose the most widely used transform (CWT) to find the time-frequency

information of a signal in the pump-probe type experiments or autocorrelation function of

Rydberg atomic wavepacket and molecular vibrational wavepacket.



Chapter 2

Mesoscopic superposition and sub-Planck

scale structure in molecular wave packets

2.1 Introduction

Mesoscopic states are lying at the interface between the classical and the quantum world

i.e. macroscopic and microscopic world. Mesoscopic superposition of coherent states and

their generalizations, such as cat-like states, have attracted considerable attention in the

recent literature [23, 29, 30, 31, 36, 67], since they show a host of non-classical behaviors.

Zurek [38] demonstrated that appropriate superposition of some of these states with a clas-

sical actionA can lead to sub-Planck scale structures in phase space. These structures are

characterized by an area~2/A. Apart from their counter intuitive nature and theoretical

significance, the above scale has been shown to control the effectiveness of decoherence,

a subject of tremendous current interest in the area of quantum computation and informa-

tion. Zurek’s realization made use of dynamical systems which exhibit chaotic behavior in

the classical domain. Recently a cavity QED realization involving the mesoscopic super-

position of the so-called compass states have been given [43, 44]. In principle, one could

also use superpositions of cat-like states arising in quantum optical systems with large Kerr

non-linearity [23].

In this chapter, we demonstrate the possibility of realizing sub-Planck scale structures in

the mesoscopic superposition of molecular wave packets, which involves vibrational levels.

25



Sub-Planck scale structure 26

The time evolution of an initial wave packet, taken here as the SU(2) coherent state (CS) of

the Morse potential, produces cat-like states. These arise due to the quadratic dependence

of the energy on the vibrational quantum number. The superposition of these states is

responsible for the above phenomena. We study the spatio-temporal structure of these

states, paying special attention to the fractional revival, which gives rise to four coherent

states required for the observation of the sub-Planck structure. This structure can be clearly

explained through the interference phenomena in phase space. For this, we investigate

the phase space dynamics of the coherent state through the Wigner function approach and

identify the optimal parameter ranges for a clear observation of these features.

The Morse potential is well-known to capture the vibrational dynamics of a number of

diatomic molecules [9, 18, 68, 69, 70]. It is worth mentioning that the phenomena of revival

and fractional revival [2, 4, 71] have been experimentally observed in wave packets involv-

ing vibrational levels [72]. Creation of the wave packets and observation of their dynamics

are carried out through pump-probe method [73]. The control and analysis of molecular

dynamics is achieved through ultrashort femto-second laser pulses [53]. Fractional revival

can be probed by random-phase fluorescence interferometry [74]. Recently, cat-like states,

arising in the temporal evolution of the Morse system, have been proposed for use in the

quantum logic operations [75].

2.2 Symmetry generation and Perelomov coherent state of

the Morse potential

2.2.1 Morse potential

The Morse potential describing the vibrational motion of a diatomic molecule has the form

V (x) = D(e−2βx − 2e−βx) (2.1)

wherex = r/r0 − 1, r0 is the equilibrium value of the inter-nuclear distancer, D is

the dissociation energy andβ is a range parameter. We will be considering the hydrogen

iodide molecule, as an example, which has30 bound states, withβ = 2.07932, reduced
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Figure 2.1: Morse potential of HI molecule.β = 2.07932, µ = 1819.99 a.u., r0 =
3.04159 a.u. andD = 0.1125 a.u.

massµ = 1819.99 a.u., r0 = 3.04159 a.u. andD = 0.1125 a.u. Morse potential of

hydrogen iodide molecule is shown in Fig. 2.1. Defining

λ =

√
2µDr2

0

β2~2
and s =

√
−8µr2

0

β2~2
E, (2.2)

eigen functions of the Morse potential can be written as

ψλ
n(ξ) = Ne−ξ/2ξs/2Ls

n(ξ), (2.3)

whereξ = 2λe−βx; 0 < ξ < ∞, andn = 0, 1, ..., [λ− 1/2], with [ρ] denoting the largest

integer smaller thanρ, so that the total number of bound states is[λ−1/2]. The parameters

λ ands satisfy the constraint conditions + 2n = 2λ− 1.

Note thatλ is potential dependent,s is related to energyE and, by definition,λ >

0, s > 0. In Eq. (2.3),Ls
n(y) is the associated Laguerre polynomial and N is the normal-

ization constant:

N =

[
β(2λ− 2n− 1)Γ(n + 1)

Γ(2λ− n)r0

]1/2

. (2.4)
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Figure 2.2: |dm|2 plotted as a function ofm for the Morse potential of HI molecule for
different values ofα.

2.2.2 Morse Perelomov coherent state

Quite some time back, Nieto and Simmons gave a minimum uncertainty coherent state

for the Morse oscillator considering suitable conjugate variables [76]. Later, Benedict and

Molnár [77] also found the same coherent state through super symmetric quantum me-

chanical method. This was used to describe the cat states of the NO molecule [78]. This

coherent state involves infinite number of bound states, not belonging to the same potential

[7]. Morse potential has a finite number of bound states. Hence it is natural to expect an

underlying SU(2) algebra. Recently, Donget al., [79] have obtained the SU(2) generators

Ĵ+, Ĵ− andĴ0 as follows

Ĵ− = −
[

d

dξ
(s + 1)− 1

ξ

s

2
(s + 1) +

2λ

2

] √
s + 2

s

Ĵ+ =

[
d

dξ
(s− 1) +

1

ξ

s

2
(s− 1)− 2λ

2

] √
s− 2

s

Ĵ0 =

[
ξ

ξ2

dξ2
+

d

dξ
− s2

4ξ
− ξ

4
+ n +

1

2

]
. (2.5)

They satisfy the algebra at the level of wave function as
[
Ĵ+, Ĵ−

]
ψλ

n(ξ) = 2Ĵ0ψ
λ
n(ξ). (2.6)

Definition of the Perelomov coherent state [21] is given in section 1.3. The SU(2) Perelo-

mov coherent state of the Morse system is obtained by operating the displacement operator
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Figure 2.3: (a),(b) and (c) gives the wave packets att = 0 for different values ofα (b)
α = 0.2, m̄ = 29 , (c) α = 1.3, m̄ = 7, (d) α = 2.5, m̄ = 2, m̄ is the value of m when
|dm|2 is maximum.

eαĴ+−α∗Ĵ− on the highest bound staten′, defined byĴ+ψλ
n′(ξ) = 0. Using disentanglement

theorem [21], the coherent state (modulo normalization) becomes

χ(ξ) = e−αĴ−ψλ
n′(ξ)

=

[
ψλ

n′ − α
√

n′(s + n′ + 1) ψλ
n′−1 + ..... +

(−α)n′

(n′)!

×
√

n′!(s + n′ + 1)(s + n′ + 2)....(s + 2n′) ψλ
0

]
. (2.7)

As is explicitly seen, the above coherent state involves only the bound states, which are

finite in number. This is due to the fact that the underlying group here is a compact group

[21]. For the purpose of our analysis, we consider this wave packet. We have checked that,

superposition of Morse eigen states with suitable Gaussian weight factors, also reproduces

the sub-Planck scale structure.

Simplifying the above expression, we can write it in a compact form:

χ(ξ) =
n′∑

m=0

dm ψλ
m(ξ), (2.8)

where

dm =
(−α)n′−m

(n′ −m)!

[
n′!Γ(2λ−m)

m!Γ(2λ− n′)

] 1
2

. (2.9)

Fig. 2.2 shows|dm|2 distribution of HI molecule for various values ofα and Fig. 2.3

show the probability distribution of the corresponding coherent state wave packet at time

t = 0. For smaller values ofα, |dm|2 is peaked at higher values ofm, where the anhar-
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monicity is larger. The corresponding initial coherent state wave packet is not well local-

ized and has an oscillatory tail. With the increase ofα, |dm|2 distribution moves towards

the lower levels and the wave packet’s oscillatory tail gradually disappears. For larger val-

ues ofα, only the lower levels contribute to form the coherent state wave packet, where the

effect of anharmonicity is rather small. Hence, it is clear that the choice of the distribution

is quite crucial in the wave packet localization and its subsequent dynamics.

2.3 Coherent state wave packet time evolution in different

representation

Temporal evolution of the coherent state state wave packet is given by

χ(ξ, t) =
∑
m

dmψλ
m(ξ) exp[−iEmt] (2.10)

with Em = −(D/λ2)(λ − m − 1/2)2. This quadratic energy spectrum yields the revival

times asTcl = Trev/(2λ− 1) andTrev = 2πλ2/D respectively.

2.3.1 Autocorrelation function

0 0.2 0.4 0.6 0.8 1
t
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1

ÈAHtLÈ2

Figure 2.4: Plot of the auto correlation function|A(t)|2 as a function of time, scaled by
Trev. Hereβ = 2.81603, α = 1.4.

The autocorrelation function in Fig. 2.4 gives a striking illustration of revival and frac-

tional revival phenomena. When|A(t)|2 = 1, the wave packet revives and the fractional
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revival appears as periodic peaks in the auto correlation function. The oscillations occur

initially at the orbital periodTcl. After some damping, the oscillations double in frequency.

This doubling in frequency is characteristic of a one-half fractional revival.

2.3.2 Quantum carpet structure
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Figure 2.5: Quantum carpet structure of Morse coherent state with parameter valuesβ =
2.81603, α = 1.4. Here time is scaled byTrev.
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Figure 2.6: Space-time contour plots describes (a) time evolution of fictitious coherent state
wave packet, having only linear dependence in phase argument and (b) time evolution of
coherent state wave packet considering the full energy expression. Here time is scaled by
Tcl, with β = 2.81603, α = 1.4.

The first striking example of a quantum carpet emerged from numerical simulations

performed on a particle confined to an infinite potential well [80]. It describes the space-

time structure of the modulus of a quantum mechanical wave packet. Similar structures

appear in many fields of wave physics ranging from quantum mechanics, with applications

in nuclear physics [81] and Bose−Einstein condensation [82], to electromagnetic waves



Sub-Planck scale structure 32

−0.5 0 0.5 1
x

0

2

4
|χ

(ξ
,t

)|
2

−0.5 0 0.5 1
x

0

1

−0.5 0 0.5 1
x

0

1

−0.5 0 0.5 1
x

0

1(a) (b) (c) (d)

Figure 2.7: Wave packet distribution in coordinate space for HI molecule, whereα =
1.4, β = 2.07932. Plotted here is|χ(ξ, t)|2 as a function ofx (whereξ = 2λ exp[−βx])
for (a) t=0, (b)t = Trev/8, (c) t = Trev/4 and (d)t = Trev/2.

propagating in self-imaging waveguides. In Fig. 2.5, quantum carpets, i.e. plots of prob-

ability density, for the propagation of a Morse coherent state wavepacket is depicted. In

Fig. 2.6(a), two classical periods (upto2Tcl) of a ’fictitious’ or classical coherent state wave

packet is shown i.e, we have considered here only the linear energy dependence whereas,

Fig. 2.6(b) shows the same when we considered the full expression for the energy. Nonlin-

ear dependence is clearly seen at the beginning of the second classical period.

2.3.3 Co-ordinate representation

More interestingly, when t takes the valuesr
q
Trev, wherer, q are mutually prime integers,

the original wave packet splits into several number of small copies or mini-packets, with

well defined phase relationship. To explain fractional revival phenomena [2], we consider

a ’fictitious’ or classical coherent state wave packet,

χcl(ξ, t) =
∑
m

dmψλ
m(ξ) exp[−2πimt/Tcl]. (2.11)

which revives att = Tcl = 2πλ2

D(2λ−1)
. At fractional revival, using discrete Fourier transform

(DFT) and changing the quadratic term into linear terms, the original coherent state wave

packet can be written as a linear combination of fictitious coherent state wave packets as

follows

χ(ξ, t) =
l−1∑
p

ap χcl[ξ, (r/q Trev − p/l Tcl)], (2.12)
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The amplitudes are determined by

ap =
1

l

l−1∑
m

exp
[
2πi(m2r/q −mp/l)

]
, (2.13)

wherel = q/2 whenq is an integer multiple of4 andl = q, in all other cases.

Fig. 2.7 shows the coherent state wave packet in the co-ordinate representation, where

the revival behaviors atTrev/4 andTrev/8 are not transparent. We will now clarify the phase

space picture of the wave packet at fractional revival times by using the Wigner function

approach. We will also show that the interference phenomenon in phase space involving

the cat-like states gives rise to the sub-Planck scale structure.

2.4 Wigner distribution of coherent state wave packet at

different times

The Wigner function [25] can be written as

W (x, p, t) =
r0

π~

∫ +∞

−∞
χ̄∗(x− x′, t)χ̄(x + x′, t)e−2ipx′/~dx′ , (2.14)

wherex is the scaled co-ordinate andp is the corresponding scaled momentum and also

χ̄(x) = χ(ξ).

Phase space pictures at these times are depicted in Fig. 2.8 which gives more clear idea

compared to the co-ordinate space representation. At timet = 1
4
Trev, it is quite clear from

the phase space picture (Fig. 2.8(b)) that the individual wave packets are well separated

producing a cat like state which has very important quantum mechanical properties like

sub-Poissonian statistics, squeezing, etc. At1
8
Trev, the wave packets are not equispaced

and the superposition structure gives a complicated structure.

At t = 0, the Wigner function of the Morse coherent state is on the left side of the

Morse potential.

At t = Trev/2, we use Eq. (2.10) to write

χ(ξ, t = Trev/2) =
∑
m

dmψλ
m(ξ)e

−2πim t
Tcl eπim2

(2.15)
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Figure 2.8: Wigner function plots of the coherent state wave packet at different times in
x, p space for HI molecule, whereα = 1.4, β = 2.81603. (a) t=0, (b)t = 1

4
Trev, (c)

t = 1
2
Trev and (d)t = 1

8
Trev.

Making use of the classical coherent state wave packets, we get

χcl(ξ, t− Tcl/2) =
∑
m

dmψλ
m(ξ)e−2πim(t−Tcl/2)/Tcl

=
∑
m

dmψλ
m(ξ)e

−2πim t
Tcl eimπ. (2.16)

Note that

eπim2

= (−1)m2

= (−1)m = eπim. (2.17)

Finally, we obtain

χ(ξ, t = Trev/2) = χcl(ξ, t− Tcl/2). (2.18)

Fig. 2.8(c) shows that it is shifted from the position of the initial wave packet.
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Figure 2.9: The Wigner functionW (x, p, t) as a function ofx andp for (a)α = 1.4 and (b)
α = 2.5, at time1

4
Trev.

2.4.1 Schr̈odinger cat states

At Trev/4, we get

χ(ξ, t = Trev/4) =
1√
2

[
eiπ/4χcl(ξ,

1

4
Trev) + e−iπ/4χcl(ξ,

1

4
Trev − 1

2
Tcl)

]
, (2.19)

which is similar to a Scr̈odinger cat state, simulated by a superposition of two coherent state

wave packets that are separated by one-half of a vibrational period as shown in Fig. 2.7(c).

Wigner functions at various times, can also be explained by making use of the classical

coherent state wave packets. For example at1
4
Trev, the Wigner function becomes

W (x, p,
1

4
Trev) =

r0

π~

∫ +∞

−∞
χ̄∗(x− x′,

1

4
Trev)χ̄(x + x′,

1

4
Trev)e

−2ipx′/~dx′. (2.20)

The coherent state wave packetχ̄(x + x′, 1
4
Trev) can be written in terms of the classical

coherent state wave packets as follows

χ̄(x+x′,
1

4
Trev) =

1√
2
[eiπ/4χ̄cl(x+x′,

1

4
Trev)+ e−iπ/4χ̄cl(x+x′,

1

4
Trev− 1

2
Tcl)] (2.21)

and the Wigner function at1
4
Trev can be divided into three parts:

W (x, p,
1

4
Trev) = W1 + W2 + W3, (2.22)
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whereW1, W2 andW3 are

W1 =
r0

π~

∫ +∞

−∞
χ̄∗cl(x− x′,

1

4
Trev)χ̄cl(x + x′,

1

4
Trev)e

−2ipx′/~dx′, (2.23)

W2 =
r0

π~

∫ +∞

−∞
χ̄∗cl(x− x′,

1

4
Trev +

1

2
Tcl)χ̄cl(x + x′,

1

4
Trev +

1

2
Tcl)e

−2ipx′/~dx′, (2.24)

and

W3 =
r0

π~

∫ +∞

−∞
eiπ/2χ̄∗cl(x− x′,

1

4
Trev)χ̄cl(x + x′,

1

4
Trev +

1

2
Tcl)

+e−iπ/2χ̄∗cl(x− x′,
1

4
Trev +

1

2
Tcl)χ̄cl(x + x′,

1

4
Trev)e

−2ipx′/~dx′. (2.25)

W1 and W2 give two distinct peaks at the two opposite ends of the orbit as shown in

Fig. 2.8(b). W3 gives the result of quantum interference between them. Fig. 2.9 shows

Scr̈odinger cat states with their interference structure for different values ofα. For larger

values ofα, the distribution|dm|2 starts including lower levels of Morse potential and the

number of ripples decreases as the distance between the two coherent state get decreased.

The ridges and valleys of such interference pattern are always parallel to the line joining

them.

2.4.2 Sub-Planck scale structure

At t = Trev/8, the coherent state wave packet splits into four classical wave packets:

χ(ξ,
Trev

8
) =

1

2
[eiπ/4χcl(ξ,

Trev

8
) + χcl(ξ,

Trev

8
− Tcl

4
)

− eiπ/4χcl(ξ,
Trev

8
− Tcl

2
) + χcl(ξ,

Trev

8
− 3Tcl

4
)]. (2.26)

Defining

χ
(even,odd)
cl (ξ, t) =

∑
meven,odd

dmψλ
m(ξ) exp[−2πim

t

Tcl

] (2.27)
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expression Eq. (2.26) can be rewritten in a simpler form:

χ(ξ,
Trev

8
) = χeven

cl (ξ,
Trev

8
− Tcl

4
) + eiπ/4χodd

cl (ξ,
Trev

8
). (2.28)

Figure 2.10: The Wigner functionW (x, p, t) and its constituent parts att = Trev/8 as a
function ofx andp for α = 1.4 (top row) andα = 2.5 (bottom row). Shown here are the
contour plots of (a)W (even); (b)W (odd); (c)W (int) and (d)W (x, p, t).

The above expression plays a crucial role in the explanation of the phase space behavior

at Trev/8. Substituting this in Eq. (2.14), the Wigner function att = Trev/8 can be written

down as a sum of three terms:W (x, p, Trev/8) = W (even) +W (odd) +W (int), whereW (even)

andW (odd) are the Wigner functions corresponding to the first and second terms on the right

hand side of Eq. (2.28) andW (int) is the contribution from the interference between these

two terms. In Fig. 2.10, we have plottedW (x, p, Trev/8) and its constituent parts for two

values ofα. Note that bothW (even) andW (odd) are Wigner functions of cat-like states.

Each consists of two distinct peaks corresponding to two mesoscopic wave packets, and an

oscillatory structure at the middle due to quantum interference between them. Furthermore,

W (even) is along the east-west direction whereasW (odd) is along the north-south. This is

because the time arguments ofχeven
cl andχodd

cl differ by Tcl/4 in Eq. (2.28). The superposi-

tion of the interference regions ofW (even) andW (odd) gives rise to the sub-Planck structure
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in Fig. 2.10(d). It is worth pointing out thatW int, as plotted in Fig. 2.10(c), gives the off

diagonal interferences of compass-like states produced atTrev/8.

As seen in Fig. 2.2, for higher values ofα, the initial wave packet involves lower vi-

brational levels for which the turning points are nearer, resulting in a decrease in the span

of the phase space variables. In this case, the area of overlap between the two interference

structure increases and the number of ripples become less. As a consequence, the sub-

Planck scale structure at the middle becomes more prominent as shown in the bottom array

of Fig. 2.10. The four mini-wave packets, produced atTrev/8, are not equi-spaced and not

of same size. The asymmetrical nature of the Morse potential is the main reason behind

this. We also analyze numerically the expectation values of position and momentum at

t = Trev/8 for different values ofα. The uncertainty product(4x4p), obtained from this

analysis, is5.5914 for α = 1.4 and2.56404 for α = 2.5 in the unit of~ = 1. The classical

action is defined byA ≈ 4x4p and the corresponding dimension of the sub-Planck scale

structure isa ≈ ~2/A [38], which easily comes out to be0.179 for α = 1.4 and0.39 for

α = 2.5 respectively, implying the sub-Planck scale structure. Note that for smaller values

of α the area becomes more sub-Planck.

It is worth pointing out that, the vibrational wave packets are prone to decoherence

through coupling to rotational and other vibrational levels. To minimize docoherence, dif-

ferent methods were proposed: (i) error correcting code [83, 84, 85, 86], (ii) decoherence

free subspace [87, 88] and (iii) open-loop control scheme [89, 90]. But all these meth-

ods have their own drawbacks. Recently, methods like closed-loop control [49] have been

devised to minimize the decoherence effect.

On the experimental front, the quantum state of a one-dimensional molecular vibration

can be reconstructed via molecular emission tomography (MET) even in the case of an

anharmonic potential [26]. In MET, the time-frequency resolved fluorescence spectrum of

the molecule is the quantity that yields information on the quantum state [27, 28, 91, 92,

93]. Phase space quasi probability distribution or Wigner function of moecular vibrational

states can be reconstructed from the time-resolved fluorescence spectra via inverse randon

transform. An interference technique, which is based on quantum state holography, has

been treated for molecular system [94]. In [95], a heterodyne measurement of vibrational
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wave packets of diatomic molecules has been studied.



Chapter 3

The role of ro-vibrational coupling in the

revival dynamics of diatomic molecular

wave packets

3.1 Introduction

In this chapter, we treat rotational and vibrational motions simultaneously and present an in-

depth analysis of the revival dynamics for a diatomic molecular wave packet. Furthermore,

we provide a simple, quantitative criterion that determines if and when the rotational and

vibrational motions can be decoupled.

The chapter is organized as follows. In section3.2, we present the theory for the

ro-vibrational dynamics of a diatomic molecular wave packet of circular states using the

Morse-Pekeris model [19, 96] and extract all the relevant revival time scales.

In section3.3, we use I2 and H2 as examples of heavy and light molecules and show

that the interplay between the rotational and vibrational motions is governed by a parameter

γ =
√

2DMr2
0/~2, whereD is the dissociation energy,M is the reduced mass of the

two nuclei andr0 is the equilibrium distance between them. Specifically, if the weighing

coefficients of the wave packet are peaked aboutν = ν andj = j, then, forγ À ν, j,

the rotational and vibrational time scales are so far apart that the ro-vibrational motion gets

decoupled and the revival dynamics depends essentially on one time scale. Forγ ∼ ν, j,

40
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on the other hand, rotational vibrational coupling cannot be ignored. In the latter case, an

interesting rotational vibrational fractional revival is predicted and explained. We explained

the above for two different values ofν̄ andj̄.

We confirm our analytical results visually by means of pictures showing the probability

density as a function of time when the initial wave packet is a superposition of circular

states (i.e. states for which the quantum numberm corresponding to the z-component of

angular momentum is equal toj).

In section 3.4, we obtain further confirmation of our results from an analysis based on

the autocorrelation function for both the cases. In the concluding section, we present a brief

summary followed by a discussion on the validity of our model and its extension to wave

packets of non-circular states. We also outline how the initial wave packet can be prepared

and how its evolution can be studied by various existing techniques. We end by mentioning

some possible applications of our work.

3.2 Theory

We assume a single electronic state of the diatomic molecule and consider only its nuclear

motion. The vibrational motion of the two nuclei about their center of mass is modelled by

the Morse potential

V (r) = D(e−2αx − 2e−αx) (3.1)

wherex = r/r0 − 1, r0 is the equilibrium inter-nuclear distance,D is the dissociation

energy andα is a range parameter. When rotational corrections are included [19, 96], the

eigenstates of a particle in the Morse potential are given as

ψνjm(r) = r−1Rνj(y)Yjm(θ, φ), (3.2)

whereYjm(θ, φ) are the spherical harmonics and

Rνj(y) = N exp(−y/2)yb/2Lb
ν(y) (3.3)

is the radial part in a scaled variabley. Here,Lb
ν(y) is a generalized Laguerre polynomial

andN is the normalization constant. Defining [96]
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γ2
1 = γ2 − j(j + 1)(2/α− 3/α2),

γ2
2 = γ2 + j(j + 1)(−1/α + 3/α2), (3.4)

one obtains

b = (2/α)[γ2
1/γ2 − α(ν + 1/2)],

y = (2γ2/α) exp(−αx),

N = [αbν!/Γ(b + ν + 1)]1/2. (3.5)

The corresponding energy eigenvalues can be written in the form of a Dunham series:

Eνj = C
∑

ik

(−1)i+k+1αik(ν + 1/2)ijk(j + 1)k, (3.6)

whereC = ~2/(2Mr2
0) andM is the reduced mass of the two nuclei. The coefficients

αik are positive real quantities that depend onα andγ =
√

D/C only:

α00 = γ2, α01 = 1, α02 = 9(α− 1)2/(4α4γ2),

α10 = 2αγ, α20 = α2, α11 = 3(α− 1)/(αγ).
(3.7)

Let us now consider the evolution of a ro-vibrational wave packetΨ(r, t) =
∑

νj cνj

ψνjj(r) exp(−iEνjt) formed of circular statesψνjj. We assume that the weighting coeffi-

cientscνj = c
(1)
ν c

(2)
j are strongly peaked aboutν = ν andj = j and that the wave packet

consists of only those states for which|ν − ν| ¿ ν and |j − j| ¿ j. These conditions

allow us to expandEνj aboutEνj in a Taylor series and retain a finite number of terms in

the expansion. Keeping terms to second order and neglecting an overall phase due toEνj,

we rewriteΨ(r, t) as a double sum in shifted indicesµ = ν − ν andk = j − j :

Ψ(r, t) =
∑

µk

c̃µkψ̃µk(r) exp

[
−2πit

(
µ

T
(V)
cl

+
k

T
(R)
cl

− µ2

T
(V)
rev

+
k2

T
(R)
rev

− µk

T
(VR)
rev

)]
. (3.8)
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Here,c̃µk = cµ+ν,k+j, ψ̃µk = ψµ+ν,k+j and the notationT (Y )
X is used to describe various

time scales of evolution. The superscriptsV, R andV R correspond to the vibrational,

rotational and vibrational-rotational time scales whereas the subscriptscl andrev refer to

the classical and revival time periods in standard nomenclature. These time periods are

defined as

T
(V)
cl = 2π

(
∂Eνj

∂ν

)

νj

−1

, T
(R)
cl = 2π

(
∂Eνj

∂j

)

νj

−1

,

T (V)
rev = −4π

(
∂2Eνj

∂ν2

)

νj

−1

, T (R)
rev = 4π

(
∂2Eνj

∂j2

)

νj

−1

, T (VR)
rev = −2π

(
∂2Eνj

∂ν∂j

)

νj

−1

.

(3.9)

Initially, the wave packet motion is governed by the classical periodsT
(V)
cl andT

(R)
cl .

If these periods are commensurate, i.e., ifT
(V)
cl = (a/b)T

(R)
cl , wherea andb are mutually

prime, then the wave packet motion has a periodTcl = bT
(V)
cl = aT

(R)
cl .

On a longer time scale, the wave packet will revive if the three revival timesT
(V)
rev , T

(R)
rev

andT
(VR)
rev are such thatT (V)

rev = (c/d)T
(R)
rev = (e/f)T

(VR)
rev , wherec, d ande, f are pairs of

mutually prime integers. Fractional revivals will occur at timest = tfrac provided that

tfrac =
p1

q1

T (V)
rev =

p2

q2

T (R)
rev =

p3

q3

T (VR)
rev , (3.10)

where the pairs of integers(pi, qi), i = 1..3, are relatively prime. In general, these con-

ditions for revival and fractional revival are too restrictive to be obeyed exactly. However,

since the time scales are simple functions ofν and j for a given molecule, it is easy to

check through a numerical program if these conditions are satisfied, at least approximately.

In a system whose energy spectrum is a function of two quantum numbers, the ratios of

the associated time scales play a major role in the wave packet dynamics [52]. Defining

β1(ν, j) = 1− α(v + 1/2)/γ − 3(α− 1)j(j + 1)/(2α2γ2),

β2(ν, j) = 1− 3(α− 1)(v + 1/2)/(αγ)− 9(α− 1)2j(j + 1)/(2α4γ2),

β3(ν, j) = β2(ν, j)− 9(α− 1)2(2j + 1)2/(4α4γ2), (3.11)

we write the ratios of various time scales as follows:
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T
(R)
cl /T

(V)
cl =

2αγ

(2j + 1)

β1(ν, j)

β2(ν, j)

T (VR)
rev /T (R)

rev =
αγ

(2j + 1)

β3(ν, j)

3(α− 1)

T (VR)
rev /T (V)

rev =
αγ

(2j + 1)

α2

3(α− 1)

T (R)
rev /T (V)

rev = α2/β3(ν, j)

T (R)
rev /T

(R)
cl = (2j + 1)β2(ν, j)/β3(ν, j). (3.12)

Note thatT (VR)
rev /T

(V)
rev is independent ofν. In what follows, we consider the wave packet

dynamics for two limiting cases: (i)α > 1, γ À j, v and (ii)α > 1, γ ∼ j, v.

3.3 Results and Discussion

3.3.1 Wave packet dynamics forα > 1, γ À j, ν

A good example of this case is theI2 molecule for whichα = 4.954 andγ = 577.43 [96]

so thatα2 = 24.54 andαγ = 2860.59. In Table 3.1, we present some typical time scale

ratios ofI2 for moderate values ofν andj.

Table 3.1: Some typical time scale ratios forI2.

ν j T
(R)
cl /T

(V)
cl T

(VR)
rev /T

(R)
rev T

(R)
rev /T

(V)
rev T

(R)
rev /T

(R)
cl

7 14 190.50 8.06 25.33 29.00
8 8 323.39 13.68 25.44 17.00
10 10 259.17 10.98 25.66 21.00
13 9 282.02 11.98 26.00 19.00
15 9 278.99 11.88 26.23 19.00

These ratios can be explained by noting that forαγ À 2j + 1 andαγ À ν + 1/2,

βi(ν, j) = 1+O(γ−1). Thus, from Eq. (3.12), one obtainsT
(R)
cl À T

(V)
cl , T (VR)

rev À T
(R)
rev À

T
(V)
rev . Also,T (R)

rev /T
(V)
rev is slightly greater thanα2 andT

(R)
rev /T

(R)
cl ≈ 2j + 1.
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Case I : I2 molecule, ν = 7, j = 14; ν − 1 ≤ ν ≤ ν + 1, j − 3 ≤ j ≤ j + 3

In the first case, we consider the values ofν andj, given in the first row in Table3.1. When

the rotational and the vibrational time scales are not of the same order of magnitude, the

corresponding motions become decoupled and the overall wave packet dynamics depends

essentially on one time scale only. For a wave packet ofI2, this is visually demonstrated in

Fig. 3.1 where we have plotted|Ψ(r, t)|2 at various times for two different cases. In case

(a), we have used the original wave packet of the form Eq. (3.8). The initial wave packet is

a superposition of states for whichν = 7, j = 14, ν−1 ≤ ν ≤ ν+1 andj−3 ≤ j ≤ j+3.

The weighing factors|c(1)
ν |2 and |c(2)

j |2 are taken as Gaussian functions of unit width. In

case (b), we have setν = ν (i.e. µ = 0) in the time dependence of the wave function.

Figure 3.1: The wave packet evolution forI2. Shown here is a plot of|Ψ(r, t)|2 at different
times for two cases: In case (a), the wave packet is of the form Eq. (3.8). The initial wave
packet is a superposition of states for whichν = 7, j = 14, ν − 1 ≤ ν ≤ ν + 1 and
j− 3 ≤ j ≤ j + 3. The annular ring extends from0.9r0 to 1.2r0; in case (b), we have fixed
ν at ν (i.e. setµ = 0) in the time dependence of the wave function. The wave packet is
then of the form Eq. (3.13) as shown below.
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With the z-axis perpendicular to the molecular axis, the wave packet rotates and vibrates

on thez = 0 plane. The rotational motion takes place in a circular orbit about the center

of mass of the two nuclei with a periodT (R)
cl whereas the vibrational motion is confined

along the radial direction with a periodT (V)
cl . However, withT

(R)
cl À T

(V)
cl , details of the

vibrational motion are averaged out within one classical rotational period. This is a case of

’slow-fast dynamics’ in nonlinear physics. Thus the prominent features of the wave packet

dynamics can be recovered (see case (b)) by freezingν atν (i.e. settingµ = 0) in the time

dependence of the wave function. In that case, Eq. (3.8) will reduce to

Ψ(r, t) ≈
∑

µk

c̃µkψ̃µk(r) exp[−2πit(k/T
(R)
cl + k2/T (R)

rev )]. (3.13)

The dynamics of such a wave packet is well understood [2] in terms of fictitious classical

wave packets

ψcl(r, t) =
∑

µk

c̃µkψ̃µk(r) exp(−2πikt/T
(R)
cl ). (3.14)

For example, att = T
(R)
rev /4, the full wave function can be written as

Ψ(r, t) = a+ψcl(r, t+T
(R)
cl /2)+a−ψcl(r, t), a± = exp(±iπ/4)/

√
2, t = T(R)

rev /4.

(3.15)

Since the time arguments in the classical wave packets differ byT
(R)
cl /2, the packets lie at

opposite ends of the orbit.

Case II : I2 molecule, ν = 10, j = 10; ν − 2 ≤ ν ≤ ν + 2, j − 2 ≤ j ≤ j + 3

In the second case, we have chosenν = 10 andj = 10 as given in third row of Table3.1.

The weighing factors are taken as Gaussian functions of unit width and the initial wave

packet is a superposition of states for whichν−2 ≤ ν ≤ ν+2 andj−2 ≤ j ≤ j+2. Time

scales are far apart and gives the results similar to the previous case forI2. Fig. 3.2 shows

the time evolution ofI2 (a) for the original wave packet and (b) whenν = ν̄ (i.e.,µ = 0)

in the time dependence of the wave function. At specific times of fractional revivals, same
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Figure 3.2: The wave packet evolution forI2. Shown here is a plot of|Ψ(r, t)|2 at different
times for two cases: In case (a), the wave packet is of the form Eq. (3.8). The initial wave
packet is a superposition of states for whichν = 10, j = 10, ν − 2 ≤ ν ≤ ν + 2 and
j− 2 ≤ j ≤ j + 2. In case (b), we have fixedν atν (i.e. setµ = 0) in the time dependence
of the wave function. The wave packet is then of the form Eq. (3.13) as shown below.

explanations can be provided as described in the case-I. Here also, overall time evolution

of wave packet depends essentially on one time scale.

3.3.2 Wave packet dynamics forα > 1, γ ∼ j, ν

For H2, α = 1.44, γ = 25.09, α2 = 2.07 andαγ = 36.1 [96]. In this case,αγ is compa-

rable to2j + 1 andν + 1/2 even for moderate values ofν andj. Thus the approximations

and the subsequent conclusions of the previous paragraph are not applicable here. For

example, the classical time scales will now be of the same order of magnitude. Thus the vi-

brational and rotational motions cannot be decoupled from each other. Similarly, the revival

time scales will be comparable to one another and it is even possible to satisfy conditions

Eq. (3.10) for small values ofpi andqi. Some such cases in the range(pi, qi) ≤ 5, i = 1..3,
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and7 ≤ ν, j ≤ 15 are shown in Table 3.2.

Table 3.2: Some typical time scale ratios forH2 satisfying conditions Eq. (3.10) approxi-
mately.

ν j p1/q1 p2/q2 p3/q3 T
(R)
cl /T

(V)
cl T

(VR)
rev /T

(R)
rev T

(R)
rev /T

(V)
rev T

(R)
rev /T

(R)
cl

7 14 4 1 2 1.75 0.49 3.96 36.5
8 8 2 3/5 3/5 3.03 1.00 3.35 18.28
10 10 2 1/2 3/4 2.02 0.66 4.07 23.92
13 9 1 1/5 1/3 1.43 0.60 4.94 21.63
15 9 3 1/2 1 0.61 0.50 5.98 22.18

Case I :H2 molecule, ν = 7, j = 14; ν − 1 ≤ ν ≤ ν + 1, j − 3 ≤ j ≤ j + 3

In the first case, we have taken the values given in the first row in Table3.2.

We now consider the wave packet evolution forH2. In Fig. 3.3, we show the time

evolution at the initial stage. Although the initial wave packet is constructed in exactly

the same way as forI2, in case-I, its subsequent evolution is very different. SinceT
(V)
cl ∼

T
(R)
cl , the radial spreading of the wave packet due to its vibrational motion will be quite

conspicuous even during one classical period of rotational motion. The effect is further

enhanced by the fact that the range of the potential increases as the parameterα decreases.

Thus the excursion range along the radial direction is more forH2 (α = 1.44) than forI2

(α = 4.954).

In Fig. 3.4, we show the time evolution on longer time scales. Revivals of the initial

wave packet take place att = T
(R)
rev /2 ≈ 2T

(V)
rev ≈ T

(VR)
rev and also att = T

(R)
rev ≈ 4T

(V)
rev ≈

2T
(VR)
rev . But sinceT

(R)
rev /T

(R)
cl = 36.5, the revived wave packet is shifted from its initial

position by one quarter of the orbit fort = T
(R)
rev /2 and by half an orbit fort = T

(R)
rev . Full

revival at the initial position will take place att = 2T
(R)
rev .

Three-way fractional revivals occur att = T
(R)
rev /6 and att = T

(R)
rev /3. But they are not

well separated due to the spread in the initial wave packet. In what follows, we analyze

a more clear case of rotational-vibrational fractional revival that occurs att = T
(R)
rev /4 ≈

T
(V)
rev ≈ T

(VR)
rev /2.
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Figure 3.3: The wave packet evolution forH2 at the initial stage. Shown here is a plot of
|Ψ(r, t)|2 at different times for a wave packet of the form Eq. (3.8). The initial wave packet
is constructed in exactly the same way as forI2, but the annular ring extends from0.9r0 to
3.5r0.

In terms of a doubly periodic function

ψcl(t1, t2) =
∑

µ k

c̃µkψ̃µk exp[−2πi(µt1/T
(V)
cl + kt2/T

(R)
cl )], (3.16)

the full wave function att = T
(R)
rev /4 can be written as

Ψ(r, t) =
1

2
[ψcl(t, t)− iψcl(t + T

(V)
cl /2, t)] +

+
1

2
[ψcl(t, t + T

(R)
cl /2) + iψcl(t + T

(V)
cl /2, t + T

(R)
cl /2)], t = T (R)

rev /4. (3.17)
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Figure 3.4: The wave packet evolution forH2 on longer time scales. Shown here is a plot
of |Ψ(r, t)|2 at different times for a wave packet of the form Eq. (3.8). The initial wave
packet is constructed in exactly the same way as forI2, but the annular ring extends from
0.9r0 to 3.5r0.

Note that the second argument in the bottom line on the right of Eq. (3.17) is advanced

by an amountT (R)
cl /2 with respect to the top. With reference to the plot att = T

(R)
rev /4 in

Fig. 3.4, this means that the top and bottom lines on the right of Eq. (3.17) correspond to

the wave packet on the right and left respectively. Using a pair of doubly periodic functions

ψ
(odd, even)
cl (r, t1, t2) =

∑
µ

∑

k odd, even

c̃µkψ̃µk(r) exp[−2πi(µt1/T
(V)
cl + kt2/T

(R)
cl )], (3.18)

it is easy to show that

2ψ
(even)
cl (t, t) = ψcl(t, t) + ψcl(t, t + T

(R)
cl /2)

2ψ
(odd)
cl (tT

(V)
cl /2, t) = ψcl(t + T

(V)
cl /2, t)− ψcl(t + T

(V)
cl /2, t + T

(R)
cl /2). (3.19)

Substituting in Eq. (3.17), the full wave function att = T
(R)
rev /4 can also be written as

Ψ(t) = ψ
(even)
cl (t, t)− iψ

(odd)
cl (t + T

(V)
cl /2, t), t = T (R)

rev /4. (3.20)
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In this form,ψ(even)
cl (t, t) produces the outer peaks att = T

(R)
rev /4 while ψ

(odd)
cl (t+T

(V)
cl /2, t)

produces the inner peaks. Note that the latter is squeezed because of its proximity to the

steep repulsive wall of the Morse potential.

Case II : H2 molecule, ν = 10, j = 10; ν − 2 ≤ ν ≤ ν + 2, j − 2 ≤ j ≤ j + 2

Figure 3.5: The wave packet evolution forH2 on longer time scales. Shown here is a plot
of |Ψ(r, t)|2 at different times for a wave packet of the form Eq. (3.8). The initial wave
packet is constructed in exactly the same way as forI2, but the annular ring extends from
0.9r0 to 3.5r0.

In this second case, we have chosenν = 10 and j = 10 as given in third row of

Table3.2. Here also time scale ratios are very close to each other similar to the case I.

Revival of the initial wave packet takes place att = T
(R)
rev /2 ≈ 2T

(V)
rev ≈ 3

4
T

(VR)
rev i.e., at

t = T
(R)
rev ≈ 4T

(V)
rev ≈ 3

2
T

(VR)
rev . At this time,T (V)

rev andT
(R)
rev are reviving butT (VR)

rev is not.

Therefore, att = T
(R)
rev , complete revival is not possible as shown in Fig. 3.5. Full revival

will take place att = 2T
(R)
rev i.e., at t = 2T

(R)
rev ≈ 8T

(V)
rev ≈ 3T

(VR)
rev , where all revival

time scales will revive simultaneously. But since2T
(R)
rev /T

(R)
cl = 47.84, not an integer, the

revived wave packet is slightly shifted from the initial position (see Fig. 3.6). Note that, at

t = T
(R)
rev , there is a two-way ro-vibrational fractional revivals that can be analyzed in the
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same way as in Case I.

Figure 3.6: The wave packet evolution forH2 at some specific times. Time is scaled by
T

(R)
rev where the last one shows the complete revival but slightly shifted in its orbit from the

initial position.

We end this section by noting that for the relatively small values ofν andj as used in

this paper, the nuclear wave packet for I2 rotates on a narrow ring about the center of mass

and bears striking similarities with the electronic wave packet evolution of Rydberg atoms

[15]. For H2, however, the wave packet evolution is like the ’unfolding of the petals of a

flower’ due to the presence of competing time scales.

3.4 Analysis by autocorrelation function

0.00 0.25 0.50 0.75 1.00
t/T

(R)

rev

0.0

0.5

1.0

|A(t)|
2

Figure 3.7: Plot of|A(t)|2 as a function of time for the wave packet of the iodine molecule
using the full energy spectrum (solid line) and the approximate energy spectrum withν = ν
(dotted line).
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Figure 3.8: Plot of|A(t)|2 as a function of time for the wave packet of the hydrogen
molecule using the full energy spectrum (solid line) and the approximate energy spectrum
with ν = ν (dotted line).

A widely used method for probing the revival dynamics of diatomic molecular wave

packets has been through the autocorrelation function [9, 11] as it relates directly to the

observable signal in the pump-probe type experiments for studying the wave packet dy-

namics. The autocorrelation function for an evolving wave packetΨ(r, t) is given by the

overlap integralA(t) = 〈Ψ(r, t)|Ψ(r, 0)〉. It is, by now, well understood how the prominent

features of revival and fractional revivals can be gauged from a plot of|A(t)|2 as a function

of time.

In this section, we plot|A(t)|2 for the wave packets of I2 and H2 with ν = 7, j = 14;

andν − 1 ≤ ν ≤ ν + 1, j − 3 ≤ j ≤ j + 3. In each case, we have also plotted|A(t)|2 by

freezing the vibrational motion, that is, by settingν = ν in the energy spectrum.

Fig. 3.7 shows the results for I2. It is clear that the macroscopic or coarse-grained

features of|A(t)|2 are obtained, to a good approximation, even when the vibrational motion

is neglected. More precisely, the positions of the prominent peaks are predicted correctly

by rotational motion alone. The role of the vibrational motion is to provide densely packed

subsidiary peaks under each of these prominent peaks.

The situation is very different in the case of H2 as shown in Fig. 3.8. In this case, the

vibrational and rotational motions are so strongly coupled that the neglect of one or the

other will drastically alter the shape of|A(t)|2. Because the time scales of the two motions

are comparable,|A(t)|2 is a rather complicated function of time. Furthermore, as Fig. 3.9
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Figure 3.9: Plot of|A(t)|2 as a function of time for the wave packet of the hydrogen
molecule using the full energy spectrum for a narrow window aboutt = T

(R)
rev /4.

shows, the ro-vibrational fractional revival att = T
(R)
rev /4 that was shown in Fig. 3.4 and

analytically explained in the previous section, is not at all obvious from the autocorrelation

plot.

To make the scenario more transparent, we have shown plots of autocorrelation function

in which the terms appearing in the argument of the exponential factor in Eq. (3.8) have

been included progressively. Fig. 3.10(a) shows a plot of|A(t)|2 where the phase term has

only linear dependence i.e., contains only the first two terms in the phase argument. Here

competitive time scales areT (R)
cl andT

(V)
cl . Next, we show plots of|A(t)|2 in which the

quadratic terms in phase are added successively to emphasize the role of different revival

time scales. Figs. 3.10(b), (c) and (d) are plotted by considering respectively the first three

terms, the first four terms and all the terms in the phase argument of Eq. (3.8). Thus, in

Fig. 3.10(d), all time scales are present. Note that att = T
(R)
rev i.e., t = T

(R)
rev ≈ 4T

(V)
rev ≈

2T
(VR)
rev , complete revival will not appear asT (R)

rev /T
(R)
cl = 36.5. When time ist = 2T

(R)
rev ,

all time scales revive simultaneously and the full revival takes place (see Fig. 3.10(e)).

Similar explanation can be given for case II with the valuesν = 10, j = 10; ν − 2 ≤
ν ≤ ν + 2, j − 2 ≤ j ≤ j + 2.
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Figure 3.10: Plot of|A(t)|2 as a function of time for the wave packet of the hydrogen
molecule withν = 7, j = 14; andν − 1 ≤ ν ≤ ν + 1, j − 3 ≤ j ≤ j + 3. Time is
scaled byT (R)

rev . (a) Phase term contains only the linear terms. Next, we have added upto
third term in (b), upto forth term in (c) of Eq. (3.8). (d) Phase term contains all time scales
as given in Eq. (3.8). (e) Full revival appear att = 2T

(R)
rev .



Ro-vibrational dynamics of diatomic molecular wave packets 56

3.5 Conclusion and applications

Our detailed analysis was based on the Morse-Pekeris model [96] which is sufficiently

accurate for both I2 [97] and H2 [98] for the values ofν and j used in this work. For

higher values ofν and j, our predictions can be used as a crude indicator and, ideally,

more accurate inter-nucleon potentials should be used. However, as long as the energy

eigenvalues can be written as a Dunham series and the initial wave packet is formed with

sharply peaked weighing coefficients, our procedure will remain valid.

The choice of a circular state wave packet was to draw parallels with the evolution

of a Rydberg electronic wave packet of circular states [15]. As shown above, our results

depend on the various time scales which are derived from the energy spectrum. Since the

energy eigenvalues are independent ofm, the z-component of the angular momentum, our

conclusions are equally as valid for non-circular states.

Exciting non-circular ro-vibrational wave packets is now a routine exercise [99, 100].

In principle, it should also be possible to generate circular state wave packets by spin-

ning the molecule in an optical centrifuge [101, 102]. Finally, the revival dynamics of

the ro-vibrational wave packet can be probed by a variety of existing techniques such as

direct imaging [103], photo-ionization [104], fluorescence in time delayed pump-probe

spectroscopy [105] or even by sub-laser cycle electron pulses [106]. Separation of time

scales can be measured by femtosecond wavepacket spectroscopy [99].

The revival dynamics, ro-vibrational separability condition and the detailed spatial

structure of the evolving wave packet as described above, should be relevant and useful

in the emerging areas of molecular wave packet dynamics [53, 107], molecules in laser

fields [108], laser-assisted molecular engineering [109], isotope separation [110] and quan-

tum computation [111]. As molecules are nowadays being probed and imaged with un-

precedented temporal precision [106, 112, 113], it may even be possible, in near future, to

confirm experimentally the ro-vibrational fractional revival predicted in this work.



Chapter 4

A time frequency analysis of wave packet

fractional revivals

4.1 Introduction

Quantum systems, with nonlinear energy spectra, show some interesting phenomena in the

time evolution of a wave packet, called the revival and fractional revivals [2, 4]. It has

been shown that the phenomena of revival and fractional revival occur in the wave packet

dynamics of various atomic, molecular and optical systems such as Rydberg atoms [1,

8, 13, 14, 15, 114, 115, 116, 117], optical parametric oscillators [118, 119, 120], the

Jaynes-Cummings model [121, 122, 123], transient signals from multilevel quantum sys-

tems [124], potential wells [7, 125, 126, 127] and molecular vibrational states [9, 10, 72,

128]. Extensions to systems for which the energy spectrum depends on two quantum num-

bers, have also been made in recent years [33, 34, 50, 51, 129, 130]. These phenomena

have been experimentally observed in both atomic [13, 14, 115, 117] and molecular sys-

tems [72].

A widely used method for probing the revival dynamics of wave packets is based on

a study of the autocorrelation function [8, 10, 131]. This method is directly related to

the observable signal in the pump-probe type experiments for studying the wave packet

dynamics. The autocorrelation function for an evolving wave packetΨ(r, t) is given by the

overlap integralA(t) = 〈Ψ(r, t)|Ψ(r, 0)〉.

57
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The autocorrelation function is a time series whose Fourier transform (FT) will reveal

all the frequencies, but will be unable to provide any information on when a particular fre-

quency appears. This is important in the present context as the frequencies are time varying.

In other words, fractional revivals of a particular order occur at particular instants of time.

What is really desirable is a time-frequency analysis of the autocorrelation function such

that we not only know all the frequencies, but also get information on when a particular

frequency occurs. This is the objective of the present work.

For the purpose of time-frequency analysis, short-time Fourier transform (STFT) has

often been used in the literature. This method divides the whole time series in several

windows, each of certain fixed width. Then the FT is performed in each window for ob-

taining the frequency information. Unfortunately, the time-frequency information obtained

by this method has not always been satisfactory as its fixed window length does compro-

mise on the frequency resolution. The method of continuous wavelet transform (CWT)

[61, 62, 64, 65, 132, 133, 134] overcomes the preset resolution problem of STFT by us-

ing a variable length window. This transform, by design, provides good localisation in

both time and frequency. The subject area of wavelets, developed mostly over the last fif-

teen years, is at the forefront of much current research in pure and applied mathematics,

physics, computer science and engineering. This transform has emerged over recent years

as a powerful time-frequency analysis. A narrow window is used for the analysis of the

high frequencies and gives a better time resolution. A wider window is used for the anal-

ysis of low frequencies and gives a better frequency resolution. The continuous wavelet

transform (CWT) of a signalf(t) is defined as

T (s, τ) =
1√
s

∫
f(t)φ∗

(
t− τ

s

)
dt (4.1)

This transformed signal is a function of two variables,s andτ , that are used respectively

to scale and translate the wavelet window whereasφ∗ is the complex conjugate of the

transforming function known as the mother wavelet for the CWT. In our study we have

used the Morlet wavelet as the mother wavelet. The contribution to the signal energy at

the specific scales and locationτ is given by the two-dimensional wavelet energy density
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function known as the scalogram:

E(s, τ) = |T (s, τ)|2. (4.2)

The frequencies are inversely proportional to the scale parameter, and thuss andτ together

help provide information in the time-frequency plane. In this work, we present a case

study to show that a wavelet-based time-frequency analysis is superior in many ways to the

standard time-domain analysis of the auto-correlation function.

4.2 Fractional Revivals of a Rydberg wave packet

We consider a Rydberg wave packet which is a superposition of circular hydrogenic states

having l = m = n − 1 [114]. The time-dependent wave function for a localized wave

packet formed as a superposition of eigenstates may be written as

ψ(~r, t) =
∑

n

cnψn(~r)e−iEnt (4.3)

As a pre-requisite for obtaining fractional revivals, we assume that the weighting proba-

bilities |cn|2 are strongly peaked around a mean valuen̄ with a spread∆n = nmax−nmin ¿
n̄. This allows us to expand the energy eigenvaluesEn = −(2n2)−1 (in atomic unit) in a

Taylor series in n as follows

En = En̄ + E ′
n̄(n− n̄) +

1

2
E ′′

n̄(n− n̄)2 +
1

6
En̄(n− n̄)3 + .... (4.4)

Neglecting the overall time-dependent phase and considering up to the second order

term, we may writeEn as

En = 2π

{
(n− n̄)

Tcl

− (n− n̄)2

Trev

}
, (4.5)

where each term in the expansion defines important characteristic time scale that depend

on n̄ ;

Tcl =
2π

|E ′̄
n|

, Trev =
2π

1
2
|E ′′̄

n|
. (4.6)
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Figure 4.1: Autocorrelation function of a Rydberg wave packet withn̄ = 320, ∆n = 40
andσ = 2.5. Time t is in a.u. (in the unit of1010).

Since the energy spectrum is known in this case, one obtains

Tcl = 2πn̄3, Trev = 2Tcln̄/3. (4.7)

The absolute square of autocorrelation function is

f(t) = |A(t)|2 =
∑
n,m

|cn|2|cm|2e−iEnmt/~, (4.8)

whereEnm = En − Em.

Fig. 4.1 shows a plot of|A(t)|2 as a function of time. This plot was generated by

choosing|cn|2 as a Gaussian distribution with̄n = 320, ∆n = 40 and a FWHM given by

σ = 2.5.

Peaks appearing in Fig. 4.1, are the signature of revivals and fractional revivals. Fast

Fourier transform (FFT) of this time series data gives the individual spectral components

in the frequency plane as shown in Fig. 4.2. Although we can get complete frequency

information in this way, we do not have any idea on which frequency appears at what time.

On the other hand, the autocorrelation time series can be recovered by using the inverse

FFT, but the frequency information goes away completely.

Our goal is to acquire some frequency information in some particular times of interest.

In the next section, we make use of continuous wavelet transform to investigate how one is

able to resolve time and frequency in a better way.
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Figure 4.2: (Color online) Spectral components present in the autocorrelation function of
the Rydberg wave packet. Frequency is in a.u (in the unit of10−8).

4.3 Time-Frequency Analysis

Wavelet based time-frequency representation or scalogram of the time series dataf(t) =

|A(t)|2 is shown in Fig. 4.3. The scalogram was computed by using theTime-Frequency

Tool Box (TFTB) for MatLab[135]. Here, we have used the Morlet wavelet, described as a

complex exponential modulated by a Gaussian envelope. It is a function of time and given

by ϕ(t) = π−1/4eiω0te−t2/2, with the central frequencyω0. Let ∆t and∆ω be the RMS

duration and bandwidth respectively of the mother waveletϕ(t), where∆t is given by

∆t ≡
√∫∞

−∞(t− t0)2|ϕ(t)|2dt∫∞
−∞ |ϕ(t)|2dt

, (4.9)

The term inside the square root is the second moment of the wavelet centered att0. Simi-

larly the bandwidth of the wavelet is

∆ω ≡
√∫∞

−∞(ω − ω0)2|ϕ(ω)|2dω∫∞
−∞ |ϕ(ω)|2dω

. (4.10)

This mother wavelet is then used to build a set of daughter wavelets by translatingϕ(t) in

time, and by dilating or contractingϕ(t), which not only adjusts the mean frequency but

also the spread of the daughter wavelet.

Consider the case when the mother wavelet is scaled bys. The Fourier transform of

ϕ(t/s) is |s|ϕ(sω). The RMS duration becomes∆t(s) = |s|∆t and the corresponding
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RMS bandwidth is∆ω(s) = ∆ω/s. It implies∆t(s)∆ω(s) = ∆t∆ω, which is indepen-

dent of the scaling parameters. It is easy to show that the translation parameterτ merely

affects the location of the wavelet and not the RMS duration. Similarly, the RMS band-

width is also not affected byτ as translating a function does not affect the magnitude of

its Fourier transform. Thus, it suffices to consider the RMS duration and bandwidth of the

mother wavelet only.

Ability of the CWT to resolve events closely spaced in time increases with smaller

values of∆t. Similarly, the smaller the value of∆ω, better is the ability of the CWT

to resolve events closely spaced in frequency. However, it is not possible to reduce the

uncertainty in both dimensions simultaneously as the time-frequency resolution is governed

by the uncertainty relation∆ω∆t ≥ 1/2 [62]. A wavelet with a smaller value of∆ω∆t

provides better simultaneous localization in the time frequency plane than one with a larger

value. For our chosen mother waveletϕ(t), Eqs. (4.9) and (4.10) can be used to show that

the time bandwidth product reaches its minimum value of 1/2.

Referring to Fig. 4.3, we note that several patches appear in a rectangular array on the

time-frequency plane. Each patch is centered about a particular frequency and a particular

time. To help us understand the occurrence of these patches, we undertake an analytical

approach as described below. Recall that the absolute square of the autocorrelation function

is given by Eq. (4.8). Writingy = (t− τ)/s, the CWT off(t) can be written as

T (τ, s) =
√

s

∫ ∞

−∞
f(ys + τ)φ∗(y)dy. (4.11)

whereφ(y) is the Morlet wavelet with shifted timeτ and scaled bys:

φ(y) = π−1/4eiω0ye−y2/2. (4.12)

Substituting in Eq. (4.11) and performing the integration overy, we get

T (τ, s) =
√

2πs
∑
n,m

|cn|2|cm|2π−1/4e−iEnmτ/~e−(ω0+sEnm/~)2/2. (4.13)

Maximum values ofT (τ, s) corresponding to a particular scale parameters should occur

whenever the factore−(ω0+sEnm/~)2/2 approaches unity. This gives rise to a constraint:

ω0 = −sEnm/~. (4.14)
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Figure 4.3: Time-frequency representation of the autocorrelation function of Rydberg
atom. Timet (in the unit of1010) and frequency (in the unit of10−8) are in a.u.

Since the distribution functions|cn|2 and|cm|2 are peaked about̄n, the central frequency of

each frequency band in Fig. 4.1(b) can be obtained by settingn = n̄ andm = n̄+ p, where

p is an integer. Sinceω0 is positive, we must insist thatp is apositiveinteger. Substituting

in Eq. (4.14) and using the quadratic approximation (4.5) for the energy eigenvalues, we

immediately get

ω0 =
2πsp

Tcl

(
1− p

Tcl

Trev

)
(4.15)

Since the scale parameters is related to frequencyf by the relations = ω0/(2πf) and

Tcl ¿ Trev, we finally obtain the simple formulae

fp =
p

Tcl

, s =
ω0

2πfp

. (4.16)

The above formula correctly predicts the central frequencies around which the spectral

components are clustered in the frequency plane as was shown earlier in Fig. 4.1(b). Note

that each horizontal band in Fig. 4.3 has a spread about its central frequency. We will now

show that the terms corresponding to these frequencies add up coherently in the expression

for T (τ, s) at a particular timeτ given by

τ/Trev =
k

2p
(4.17)

wherek is an integer.
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Coherent addition of terms would require that the phase factorexp(−iEnmτ/~) be the

same for these terms. That is, for arbitrary values ofn andn′, one should be able to satisfy

the condition

τEn,n+p = τEn′,n′+p + 2πN (4.18)

whereN is an integer number. Using the approximation (4.5), it is now easy to show that

τ is indeed given by the expression Eq. (4.17). An equivalent and simpler way of deriving

this result is to insist that the phase factorexp(−iτEn,n+p) is independent ofn.

The expression Eq. (4.17) gives us the time instants at which|A(t)|2 is peaked. Specif-

ically, it tells us which frequency beats occur at what times. The lowest frequency beatf1

occurs forp = 1 at timest/Trev = 1/2, 1, 3/2, 2,.... Similarly, the frequency beatf2 cor-

responding top = 2, occurs att/Trev = 1/4, 1/2, 3/4, 1,.... Thus the patches appearing in

the bottom row give the transition frequency between any two consecutive levels (p = 1);

the ones on the next row are the transition frequencies corresponding top = 2 and so on.

Thus interestingly, in time-frequency plane, one can find both time and frequency infor-

mation from the two time scalesTcl andTrev by using the expressions (4.17) and (4.16).

In fact, these two expressions provide the location of each patch in the time-frequency

plane. As an example, let us consider the fourth maximum or patch in the third har-

monic appearing in Fig. 4.3. Here, the third harmonic corresponds top = 3, so the fre-

quency information corresponding to this patch can be obtained from Eq. (4.16), which is

f3 = 3/Tcl = 1.457 × 10−8 a.u., as shown in Fig. 4.3. The corresponding value for time

can be obtained from Eq. (4.17). In this case,k = 4, andp = 3, so the patch will appear at

t = 2
3
Trev = 2.928× 1010 a.u.

How do these time-frequency patches relate to fractional revivals? Fractional revivals

occur whenever

τ/Trev =
r

q
(mod q), (4.19)

wherer andq are mutually prime integers [2]. By expressing Eq. (4.17) in the form (4.19),

one can obtain the correspondence between a particular patch in the time-frequency plane

and the fractional revival it contributes to. In this way, frequency bands, depicted in Fig. 4.3,

trace out the signature of fractional revivals and determine the different harmonics that are

expected to appear in fractional revivals of a given order.
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We end this section by noting that a time-frequency analysis of fractional revivals has

also been made previously for a different system, the vibrational wave packet of a diatomic

molecule [72]. The authors used a spectrogram rather than a scalogram. A spectrogram

is based on the short-time Fourier transform (STFT) whereas a scalogram is based on the

continuous wavelet transform (CWT). Notwithstanding the shortcomings of STFT as out-

lined in Introduction, we found that for the present system, results from both methods are

in reasonable agreement provided an appropriate window length is chosen for the spec-

trogram. The agreement probably stems from the fact that in both methods, as applied

to fractional revivals, we have so far only been concerned with the location of the centre

of time-frequency patches and not with the way each patch extends in the horizontal and

vertical directions.

4.4 Fractional Revivals of a diatomic molecular system

For a diatomic molecular system, the vibrational energy spectrum [128] can be expressed

as
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Figure 4.4: Autocorrelation function ofI2 molecular wave packet with a Gaussian distri-
bution. n̄ = 56, ∆n = 30 andσ = 3. Time t is in a.u. (in the unit of106).

En = −(D/λ2)(λ− n− 1/2)2, (4.20)
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whereD is the dissociation energy. This quadratic energy spectrum yields the revival times

given by Tcl = Trev/(2λ − 1) and Trev = 2πλ2/D respectively, whereλ =
√

2µDr2
0

β2~2 .

We will be considering theI2 molecule, as an example, withβ = 4.954, reduced mass

µ = 11.56 × 104 a.u., equilibrium distancer0 = 5.03 a.u. andD = 0.057 a.u. The

autocorrelation function ofI2 molecular wave packet of vibrational states is depicted in

Fig. 4.4 where the width of the Gaussian distribution isσ = 3. It includes30 bound states

aroundn = 56 whereTcl = 6.5 × 103a.u. andTrev = 1.5 × 106a.u. respectively. Similar

analysis can be done forI2 molecule in the time-frequency plane. In Fig. 4.5, we show the

time frequency representation of the same autocorrelation function. The harmonics pull

out information of both time and frequency that was not obvious in the time domain. As

Tcl << Trev, similar results can be acquired for timeτ and frequencyfp, as obtained in the

case of Rydberg atom. For the fourth harmonics, frequency patches appeared att = 1
8
Trev,

1
4
Trev, 3

8
Trev, 1

2
Trev etc. This wavelet analysis, made it possible to find the clear signature

of higher order fractional revivals.
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Figure 4.5: Time-frequency representation of the autocorrelation function ofI2 molecule.
Time t (in the unit of106) and frequency (in the unit of10−4) are in a.u.

4.5 Advantages of the time-frequency representation

It is seen that the wavelet-based time-frequency representation provides localisation in both

time and frequency. Higher order fractional revivals and their localisation in time are
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Figure 4.6: (a)Autocorrelation function of Rydberg atomic system withσ = 2.5, (b), (c),
(d) and (e) show|T (τ, s)|2 for s = 1.96, 0.97, 0.65 and0.48 (in unit of 108) respectively.
Times are scaled by revival time and|T (τ, s)|2 is scaled by106.
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Figure 4.7: (a) A short-lived time series of autocorrelation function and (b) its wavelet
based time-frequency representation. Time (in the unit of105) and frequency (in the unit
of 10−4) are in a.u.

clearly manifest in the time-frequency plane. We showed howTrev andTcl are themselves

sufficient to explain the time-frequency plane completely.

Note also that the square of the autocorrelation function, plotted as a time series, does

not resolve fractional revivals unambiguously. More precisely, the order of the fractional

revival cannot always be determined. In contrast, the time-frequency representation intro-

duces a parameterp through Eqs. (4.16) and (4.17) that clearly separates out the fractional

revivals in a rectangular array on the time-frequency plane. In Fig. 4.6, we show how the

correspondings values filter out fractional revivals from the complicated plot of the auto-

correlation function. Forp = 1, one can finds using Eq. (4.16). This specifics value can

filter out the signature of fractional revivals as shown in Fig. 4.6(b). This is also true for

the higher order harmonics as shown in Fig. 4.6(c), (d) and (e) forp = 2, p = 3 andp = 4,

respectively. These specific values ofs filter out the signature of the corresponding higher

order fractional revivals.

The time-frequency representation can be useful for a wave packet that decays before

its revival time. Although the short-time evolution of|A(t)|2 can still be used to estimate

Tcl [115], no information can be gained aboutTrev if the energy spectrum of the system is

notknown. However, as long as the wave packet survives long enough for some patches to

occur in the scalogram (see Fig. 4.7), one can use Eq. (4.17) to estimateTrev.

For example, let us consider the first patch appearing in the sixth harmonics in Fig. 4.7
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(b). Here,k = 1 and p = 6. Eq. (4.17) predicts that this patch should occur around

τ = Trev/12. A close view of this patch in Fig. 4.8 shows that the patch is centered around

τ = 1.25×105 a.u. Equating these two values ofτ one immediately obtainsTrev = 15×105

a.u. What makes this possible is the better resolution available in the time-frequency plane

for the detection of fractional revivals.
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Figure 4.8: A close view of first patch appearing in the sixth harmonics in Fig. 4.7(b). Time
t (in the unit of105) and frequency (in the unit of10−4) are in a.u.

Experimental observation reveals that the main source of decoherence of the vibrational

molecular wave packets is the coupling between the vibrational and rotational modes. It

causes dephasing and destroys the coherent structure of the wave packets. The characteris-

tic time of dephasing process isγ−1. It is comparable to the vibrational periodsTcl which

appears in general∼ 300 − 500 fs. For the potassium dimer at400◦C, γ−1 ' 8.6 Tcl for

the ground state andγ−1 ' 6.7 Tcl for the first excited electronic state respectively [49].

For longer time scales, the ratio of revival timeTrev and the characteristic dephasing time

γ−1 is of order of102. Thus, the first revival would appear only after many cycles of their

vibrational periods. This situation is practically irrelevant in most experimental realiza-

tion. In such a case, this wave-based time-frequency method will be useful and can extract

information about the revival time scales of such short lived signal.

4.6 Conclusion

In conclusion, we demonstrate the time-frequency representation of autocorrelation func-

tion for the wave packet dynamics of Rydberg atom and a diatomic molecular system.
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Frequency information at different fractional revivals times are found. We showed that the

analytical results fully interpret our numerical results. In practice, decoherence causes de-

phasing in coherent structures which produces a short-lived output signal in pump-probe

type experiments. In such a case, this analysis can extract information about the revival

dynamics of a short-lived system even if the system decays before reaching its revival time.



Conclusions and Future Outlook

In conclusion the present thesis reports several new and interesting results in the area of

different application of fractional revivals of a wave packet. Here we have taken both the

atomic and diatomic molecular systems. Let us summarise the thesis in the following way:

In Chap. 2, we demonstrate that the interesting sub-Planck structure in mesoscopic

quantum systems can indeed be realized in the temporal evolution of vibrational wave

packets. This is clearly present, where four wave packets are produced in the temporal

evolution. The coherence parameterα plays a crucial role in the formation of this structure.

For smaller values ofα, |dm|2 includes the higher vibrational levels of the Morse potential,

where the anharmonicity is larger. With the increase ofα, |dm|2 distribution moves towards

the lower levels and the initial wave packet becomes well localized. Thus, one needs the

low-lying states for a clear observation of this structure. The sub-Planck scale has been

shown to control the effectiveness of decoherence, a subject of tremendous current interest

in the area of quantum computation and information.

In Chap. 3, we have studied the time evolution of a ro-vibrational diatomic molecular

wave packet of circular states. This is an example of a quantum system whose energy spec-

trum depends on two quantum numbers and whose revival structure will depend on two

time scales. UsingI2 as an example of heavy molecules, we show that the rotational and

vibrational time scales are so far apart that the ro-vibrational motion gets decoupled and

the revival dynamics depends essentially on one time scale. For lightest molecules,H2, on

the other hand, the evolution of the wave packet depends crucially on both the rotational

and vibrational time scales of revival. In the latter case, an interesting rotational vibra-

tional fractional revival is predicted and explained. We also obtain further confirmation of

our result from an analysis based on the auto-correlation function. The revival dynamics,

71



Conclusions and Future Outlook 72

ro-vibrational separability condition and the detailed spatial structure of the evolving wave

packet should be relevant and useful in the emerging areas of molecular wave packet dy-

namics, molecules in lasers fields, laser-assisted molecular engineering, isotope separation

and quantum computation.

In Chap. 4, we have made use of the continuous wavelet transform to demonstrate the

time-frequency representation of autocorrelation function for the wave packet dynamics of

a Rydberg wave packet. An analytical approach is provided to interpret the time-frequency

plane and explain our numerical observations. We have shown that the time-frequency

representation not only provides a complementary method of analyzing fractional revivals,

it is a better tool in resolving fractional revivals. Finally, it is shown that the time-frequency

representation may be able to extract information about the revival dynamics of a short-

lived system even if the system decays before reaching its revival time.
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