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Chapter 1

Physics Of Quark Gluon Plasma

1.1 Introduction

We very briefly review some basic aspects! of QCD and QGP in this chapter. Par-
ticle physicists today believe Quantum Chromodynamics (QCD) to be the candidate
theory of strong interaction. It is the theory of particles that constitute the observed
hadronic world. The evidence that the hadrons are made up of point like constituents,
called quarks, came from deep inelastic scattering experiments of leptons on hadrons.
These quarks come with different flavours, up(u), down (d), strange (s), charm (c),
bottom (b) and another one (though not observed yet but have strong reasons to
exist) top (t).

The deep inelastic scattering data also suggested that these quarks are Dirac
particles and carry non-integer electric charge. For u, ¢, t it is % and for d, s, b it
is 5+ in units of proton charge. Quarks of different flavours differ from each other
through their flavour quantum number and mass. Current algebra techniques have

suggested the typical values for the current quark masses to be

m, = 5 Mev my = 10 Mev m, = 150 Mev
m, = 1500 Mev my = 5000 Mev m; 2> 140G ev

The existence of resonances like ATt A~ and Q. to be consistent with



Paﬁ-li‘p'ri‘nciple, suggested, within the quark model, the existence of another quan-
tum number called color. From the ratio of cross sections of et e~ — hadrons to
ete- — ptp” it has been established that the number of colors N, = 3.

We believe that color degree of freedom is like electric charge, is exactly con-
served and is a source of long range interaction. The theory of color interactions,
QCD is derived from the principle of local gauge invariance in color space.

The Lagrangian that describes QCD is given by

T . ama s 1 a v
Locp = Si Pyt (8, — igALT) by — mibyiby — TP FY (1.1)

Here Lorentz index p varies from 0 to 3, f is the flavour index with maximum

value N; and a varies from 1 to 8.

The color field tensor F,, is given by

Fu = 0,A, — 0,A, +19 (AL, A (1.2)

It can be expressed as F,, = F;, T° with T as the generator of SU(3) color
group. They obey the commutation relation

[TaaTb] = Zlfabc T, (13)
where f.p. are the structure constants of the group.

Under a local gauge transformation U, the fields ¢ and A, transform as

v, = Uy A (1.4)
Ag = U‘IA“U——;—U”(’)MU (1.5)

such that
F"w = U”lFu,,U (1.6)

From the structure of the Lagrangian, it is clear that though this theory looks
like Quantum Electrodynamics(QED),but due to the presence of the non-abelian



-te:r,m‘s it differs significantly from QED. For instance, this difference can be seen from
the expression of running coupling constant, at one loop level,

Bon(@) = o L0) o
aco L+ 502 (33 — 2Ny) in (%)

where p? is a scale parameter to be deduced from experiments.

We can see that, for Ny < 16, as Q* the momentum transfer — oo, g?(Q?)QCD —
0. The running coupling constant in QED shows exactly opposite behaviour. i.e.
94sp — o0 as Q* — oo. This particular behaviour of the non-abelian coupling
constant, termed asymptotic freedom, tells us that at high momentum transfer one
has essentially free particles, and hence perturbation theory is applicable.’

So far we have considered momentum scales Q? larger than x2. The important
question is what happens to the running coupling constant at a scale Q? < o It is
worth mentioning that at this scale analytical studies are difficult and it is believed
that ¢ increases with decrease in Q2 and lattice results imply the same type of
behaviour. Hence it is difficult for the quarks to separate themselves from each other
beyond a distance of the order of one fermi. This particular phenomenon, called
confinement, though not proved rigorously, confirms with our experience that no free
quarks have been observed in experiments.

So these two properties, namely asymptotic freedom and confinement are the
cornerstones of strong interactions and have profound consequences on the properties
of hadronic matter subjected to high temperature or density or both.

1.2 QCD at High Density and Temparature

QCD predicts that in nuclear matter at densities ten to twenty times the
nuclear density (~ 0.15 GeV/fm?) or at very high temperature (kT > 200MeV),
quarks and gluons will be liberated over a volume greater than a typical hadronic
volume forming, a soup of quark gluon plasma.

QCD thermodynamics? is studied in the imaginary time formalism by com-
pactifying the time direction, and putting a periodic boundary condition for the
gauge fields in that direction. In this formalism one can define an order parameter,



< L(z) >, where |

: L
L(z) = N~ 'tr Pexp (z /'T Ay(z,t) dt)
0

and P denotes path ordeéring.L(x) is called the polyakov loop. This quantity has
been shown® to be related to the free energy of static quark in a gluonic bath at
temperature T: < L(z) >= e~ At low temperature one expects the free energy
of the quark to be infinite and hence < L(z) >= 0 but at high temperature, if
deconfinement of color occurs, then the free energy of the system will become finite
and hence < L(z) ># 0. Numerical lattice studies of this quantity has suggested
that the phase transition is of first order, and the critical temperature for such a
transition to occur, is T, > 200MeV.

In view of these considerations, it appears that, the possible places in nature
where such a phase may occur are (i) early universe?, (ii) inside a neutron star, (iii)

Relativistic Heavy Ion Collisions(RHIC).

In this thesis we will concentrate mostly on the RHIC. In RHIC, the plasma
is expected to be produced when two heavy nuclei collide against each other at an
energy of & 200 GeV/nucleon. Once produced this plasma evolves in phase space
to attain a state of thermal equilibrium following which it hadronises and particles
stream out to the detectors. This whole process of formation to hadronisation of the
plasma is supposed to take place within 5 to 10 fm/c.

The purpose of this thesis is to examine production and pre-equlibrium evo-
lution of the plasma. Usually, as the plasma is produced it undergoes a simultaneous
space time evolution, making it necessary to take these processes into account self-
consistently. Since it is difficult to study these processes in entirety, we have studied
some specific aspects of production and evolution of the plasma separately, with spe-
cial emphasis on the non-abelian features of the underlying theory. We must mention
that in the last few years extensive work has been done to study the production and
equilibration of the plasma using parton cascade model®="), however we would not
discuss it here. '

The plan of this document is as follows. In chapter two we discuss the pro-
duction mechanism of the plasma at zero temperature, in the color flux tube model®
of Casher et.al. In contrast to the earlier studies we have done this analysis in the
presence of a time varying external electric field and have tried to justify it, from the
vacuum solutions of Yang-Mills equations. Results of our analysis show that, because .
of the presence of time varying chromo-electric field, the pair production rate instead



~ of being exponentially suppressed (as in the constant field case of Schwinger?), fol-
lows a power law behaviour. Since the number of produced particles increases the
probablity of producing a thermalised plasma also increases. Moreover the analysis®
also shows that, a time varying field is capable of producing pairs even if the field
strength is less than the critical field strength required to produce particles in the
Schwinger model.

In chapter three we have examined the relevance of pair production at finite
temperature in the presence of an external chromo electric field. Following which
we have actually computed the pair production rate at finite temperature and have
shown that because of screening the pair production rate becomes a space dependent
quantity and it increases at high temperature'!.

In the following two chapters we have concentrated on the evolution of the
plasma in phase space. In chapter five, we discuss the kinetic equation for gluons and
suggest a simple model which shows that, color degrees of freedom can also give rise
to new a mechanism for equilibration of the f)lasma. Chapter 6 contains a derivation -
of hydrodynamic equations for quarks and gluons starting from the kinetic equations.
We also show that the non-abelian nonlinearities in the pre-equilibrium phase of the
system lead to chaotic oscillations, that in turn tend to bring the system to thermal
equilibrium. In the concluding chapter we have summarised our result and give a
futuristic plan for further investigation along the same direction.

[ab1
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Chapter 2

QQProduction In Presence Of

Oscillating External Field

2.1 Introduction

In this chapter, we will discuss the process of formation of Quark Gluon Plasma in
Relativistic Heavy Ion Collision (RHIC). In particular we will concentrate on the
mechanism by which the initial beam energy in RHIC gets deposited in a small vol-
ume in the speculated form of quark gluon plasma through the production of quark
* anti-quark pairs. The process of quark anti-quark production in RHIC has attracted
the attention of many workers for over a decade.

This complex process of pair production, inspite of being visited many a time
by many workers taking into account different physical conditions, till today, stands
as one of the most elegant model whose potential is far from being exhausted. The
production of ¢ pairs from vacuum in the flux tube model !, basically owes its ex-
istence to the classic paper of Schwinger?, where in the context of Quantum Electro -
Dynamics (QED), it was shown that in the presence of very strong external electric
field, QED vacuum becomes unstable and it starts emitting ete™ pairs at the expense
of the electric field till the field strength falls bellow a critical value comparable to
the square of the mass of the produced particles.

Along the same line, the ¢§ pair production in RHIC is also assumed to take



place by the decay of the flux tubes formed between the two receding nuclei due to
the multiple exchange of soft gluons. This process continues till the energy stored in
the chromo-electric field/unit length becomes less than the mass of the produced ¢g
pairs. In addition to extending Schwinger’s QED calculation to the QCD case, efforts
have also been made to include effects such as, the screening of the external electric
field3, finite size of the nuclei!, moving boundary conditions®, radial confinement® etc.
It is worth noting that in all these works the external chromo-electric field has always
been considered to be constant in both space and time.,

In this chapter we will contest the validity of this assumption and in fact argue
that the basic nature of QCD lagrangian demands the electric field to be time depen-
dent. The actual evaluation of ¢ pair production rate by us however has been carried
out for an external field which is homogeneous in space but osc1llat1ng sinusoidally in
time.

The organisation of this chapter is as follows. In section two we will review
briefly the Schwinger mechanism followed by the physical picture of flux tube forma-
tion in relativistic heavy ion collisions. In section three we justify, from exact solutions
of the classical SU(2) Yang-Mills equations, why the external chromo-electric field has
to be time dependent rather than constant. This is followed by section four where we
will try to give an order of magnitude estimate of the field strength and the frequency
of oscillation attainable in relativistic heavy ion collision. In section five we compute
the pair production rate in a time varying field with different values of field strength
and frequency of oscillation. Lastly we conclyde by statmg the scope of further im-
provement of our results.

2.2 Schwinger Mechanism: A Brief Outline

The production of particle antiparticle pairs by a classical external field via
Schwinger mechanism is a general phenomenon that reflects a much broader physi-
cal reality, i.e instability of vacuum under external perturbations. This idea has been
used in a variety of theories in different contexts, ranging from QED, QCD, Transport
theory”, Relativistic Heavy Ton Collision, Gravitation®, Early Universe® and even in
String theory'®.In the following passage, we will elaborate on the physics!! of this
process for the simple case of QED.



' ‘Let us consider a system to consist of vacuum ( including virtual particle antiparticle
pairs ) subjected to an external electric field. In order to create an on-shell particle
antiparticle pair from the vacuum, the virtual particle antiparticle have to be moved
away from each other over a distance d > the compton wave length of the particles,
with a corresponding energy loss (of the system) ~ 2m. Now in the presence of an
external electric field (with assumed strength E > E, ~ m?), because of vacuum
polarisation,if the virtual particle-antiparticle are moved apart by a distance d the
energy gained by the system, at the expense of the external field, will be gEd. If
the distance d > Compton wave length of the particles, the energy gained by the
system in putting the pairs on shell becomes more than 2m. Since it is energetically
always favourable for a system (i.e vacuum) to go to its lowest energy state, pairs will
be emitted from vacuum till the field strength falls below the critical field strength E,.

The production of ¢ pairs in RHIC has also been explained by the same
principle via the flux tube model. This model was introduced independently by Low!:
and by Nussinov! to account for the observed scaling behaviour of scattering cross-
sections in hadron hadron collisions.In nucleus nucleus collisions, it assumes that at
high energy, when the two highly Lorentz contracted nuclei pass through each other,
the partons of one nucleus interact with the partons of the other nucleus by the
exchange of soft ( color octet ) gluons. If the fly by time of the nuclei is less than
the time scale of interaction of the partons, the receding nuclei get randomly color
charged by exchange of soft gluons. Since a colored object cannot exist free in nature
the color octet partons in the receding nuclei get connected to each other by means
of color flux tubes with color electric fields inside them. This color flux tube decays
producing ¢¢ pairs in the same way as described previously for the QED case of
Schwinger.

With this picture in mind, the dynamical evolution of the plasma produced in
RHIC, including ¢¢ pair creation, has been studied?=7 by many others. We however
will be content to examine the effect of oscillating external chromo-electric field on
the pair production rate, since this has not been investigated before.

2.3 Some Exact Solutions of Yang Mills Equa-
tions

In this section we will establish that, because of the presence of the nonlinear



. "-"te‘:r_m'S in the Lagrangian, the gluons produced in RHIC, polarise the medium between

the two receding nuclei, generating an electric field that undergoes, characteristic
non-linear, non-abelian oscillations in time. For this purpose we will make certain
assumptions based on the geometry of the problem. These assumptions however do
not change the qualitative nature of our observation.

The first assumption is that each of the color charged nucleus has a uniform
distribution of color charge in the plane transverse to the direction of motion so that
there exists no gradient of the fields in this direction. Qur second assumption is that
these color charges produce a chromo-electric field such that Ag and A, are the only
nonzero potentials. Although in principle a magnetic field can also be present, we
will not consider it here since it cannot transfer energy to the system to create pairs.
Our third assumption is that the region between the two nuclei can be treated as
vacuum and we will neglect the curvature effects near the boundaries. With these.
simplifying assumptions, the dynamics of the gluon fields can essentially be described
in (1+1) dimensions rather than (341) dimensions. Therefore in order to get infor-
mation about the nature of the classical gluon fields one needs to solve the classical
Yang-Mills field equations in (1+1) dimensions.

2.3.1 Solution of Yang Mills equatiohs in (1+41) dimensions.

We next show that in (141) dimensions the Yang-Mills equations have a so-
lution with a sinusoidally time varying component whose frequency depends on the
amplitude. We first write the sourceless Yang Mills equation in (141) dimensions

D" =0 (2.1)

where the Greek indices y and v take values 0 and 1 only. The covariant derivative
is defined as '
Dy = aﬁt -+ ig [A;n] (22)
with g as the coupling constant and g[Ay,] as the commutator bracket. Since we are
working with an SU(2) color symmetry, A, is defined as A, = A,°7, where 7, are the
generators obeying the commutation rules |

[T“, Tb] = 1€qpcTC (2.3)

The indices a,b,c takes values from one to three. Further, the only non zero com-
ponents of the vector field in this case are Ag and A,, and we have chosen the axial

i
4

10



: z_gauge A, = 0. With this choice of the gatlge we get from equation (2.1) for v = 0,
9,4, =0 | (2.4)

whose solution is

AL (t) = ao (t) 2+ fa (2.5)

Here o, and f, are arbitrary integration constants. In order to find out an exact
solution of this equation we take o, to depend on time and B, to be a constant.
Equation (2.1) for v = 1 gives

00: As® + geape AL, AL = 0 (2.6)
Substituting the solution (2.5) in equation (2.6) we arrive at
A (t) + geacacfy = 0 ' (2.7)
One can derive a conservation law from thi.s equation namely |
aq(t)ae(t) = constant (2.8)

A summation over repeated indices is implied.

We solve this set of coupled first order linear differential equations by Euler’s
method; i.e we choose a solution of the form

G (t) = age” (2.9)

Substituting equation (2.9) in equation (2.7), we obtain a set of coupled algebraic
equations whose solution is of the form '

a1 =P+ Pifs [ e + eT Y — iwfy [ et — emiv (2.10)
ay = [y + 5255 [ elwt + e—iwt] + iwph, [ etwt _ e—iwt] (211)
Qg = 133 + ﬂ32[ eiwt + e-—iwt} . w2[ eiwt + e—-iwt] (212)

ST

Here w = [(81)* + (82)* + (8s)?]7.

11



Oncé the a’s are known, one gets the solution for the Ay’s by substituting
equations (2.10), (2.11) and (2.12) in equation (2.5). Without giving the unnecessary
mathematical details, the final expression is

Ay = [Bi + BiBa e + é"'“] —iwh [ =Mk p (213)
AS =B+ Pos[ € + e iwpy [ e — e £ 4 B, (2.14)
A2 = [133 + B[ et + =it —w?[ eiwt 4 e—iwt]J PR A (2.15)

Thus from the solution it is clear that the electric field 1inside a chromo-electric

flux tube oscillates with frequency w = [(6;)? + (£,)? + (B3)?)?, which depends on the
amplitude of oscillation.

It may be pointed out that there also exists an exact time dependent vacuum
solution of (SU(2)) Yang-Mills equations of the type!?

A% = (0, HES, HES, HES) (2.16)

~where

H= %cn [\/%B (t - to)J (2.17)

In eq.(2.16), p (=0,1,2,3) is the Lorentz index « (=1,2,3) is the color index and 62 is
the Kronecker delta. In eq. (2.17) cn represents the Jacobi elliptic function and B is
a constant determining the amplitude of the oscillating field. Physically, this solution
represents a non-linear collective oscillation of gluons with a characteristic ampli-

tude dependent time period ~ (\/2g3> , which is a manifestation of the intrinsic
nonlinearity present in the system. v

As we will see this time varying nature of the field changes the pair production
rate quite significantly over that due to the constant field i.e the Schwinger estimate.

2.4 Estimating The Parameters

Having established the fact, that the chromo-electric field inside the flux tube
(because of the sell-interaction of the fields) should be oscillating in time, we next
explore its consequences on the rate of spontancous pair production from vacuum.

12.



iFv‘or :this purpose, one can in principle take either of the exact solutions and compute

the rate of pair production. But considering the computational difficulties associated
in working with such exact solutions, we will content ourselves with a spatially homo-
geneous chromo-electric field that oscillates sinusoidally in time. We take the vector

potential to be

Asfz) = (0,0,0, A(t) and Ay(t) = —LeCoswel (2.18)

Wo

and for of SU(3) color symmetry a goes over (=1, 2,..8)

Here E,’s are constants and wy is the characteristic collective frequency for the
gauge fields. Now to determine the pair production rate one has to give an estimate of
the frequency and amplitude of the external chromo-electric field produced in RHIC.
For this purpose, we make use of the solution of Yang-Mills field equations given by
équations(?.l(i)- (2.17).From this solution taking each A® = A one can write the r.m.s
chromo-electric field strength as

£ = (V5) (VagB) (£) = 457 (2.19)

apart from an uninteresting constant.
Since wg = (\/ﬁgB), and replacing B in terms of E from the equations above, we get

the expression for frequency

wo = /L ‘ (220

in terms of a gauge invariant chromo-electric field defined as

E=[SufBl (2.21)

Once wy is known in terms of the chromo-electric field strength, one is left with the
determination of the strength of the external field attainable in RHIC. In order to
estimate it, one has to first make an estimate of the color charge deposited on each of
the receding nuclei after the collision. Following Kerman, Matsui and Svetitsky®3, it
is usually assumed that at very high energy in a nucleon nucleus interaction multiple
gluons are exchanged. In each interaction, with the exchange of each gluon there is
an exchange of color charge ¢, ( where {, is the matrix in the adjoint representation of
the symmetry group ). Thus after v such exchanges of gluons, the total color charge

13



~' thrét.:géts‘accumdlatéd on the target nucleus is

R

~,
Il

(2.22)

If the color orientations amongst these exchanged gluons are uncorrelated, one can

. assume, after v such interactions, that the r.m.s color charge deposited on the target

~ nucleus is

(1) = i) )

~ From this relation one can say that, after v interactions, the amount of color charge
deposited on the target nucleus is proportional to the square root of the number of

Q x Vv : (2.24)

One can relate (see ref.13) the number of pairs produced to the number of interactions
or the total color charge as

interactions i.e

dN air
d; x Vv (2.25)
Here N,qi- is the number of pairs produced and y is the rapidity. Moreover if one
- assumes the number of hadrons produced to be proportional to the number of pairs

produced then _
N
R -
Y7 pa pp ‘

dy
i.e the multiplicity for proton nucleus collision scales as the square root of the num-
ber of interactions times the multiplicity in proton proton collisions. So, from the
multiplicities of the produced particles one can compute the number of collision that
each nucleon undergoes in a p-A collision.
If o,_, and 0,_4 be the cross sections for proton proton and proton nucleus
collisions then one can write phenomenologically that

= A (2.27)

apA
(where A is the mass number of the target nuclous) From simple geometucal consid-
erations one can show that -13’— scales as A3 and hence the number of collisions from

p-p to p-A should scale as As . This implies that the amount of color charge deposited
in p-A collision on the target nucleus scales as As times that in the p-p collision,
In high energy central collision of two heavy nuclei, the individual constituent
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nucleons of each nuclei can be thought of scattering through the other nuclei. So in
the light of the foregoing dislcussilon, total number of interactions, compared to p-p
collision, should scale as A3 Ap® , where Ar and Ap are the target and projectile
mass numbers respectively. This implies, that the amount of color charge deposited
should scale as A78 Ap$ from P-p to A-A collision, The earlier relation implies that

the chromo-electric field strength, should scale from P-p to A-A collision as AT% Apé.

After establishing the scaling behaviour of the chromo-electric field from p-p to
A-A collision, the only task one is left with is to evaluate the strength of the chromo-
electric field produced in p-p collisions. If the flux tube produced in p-p collision
generates a string tension o then the field energy stored per unit length of the tube
is

2
B = 22 (2.28)
area
From Gauss law one can write!4
I area = 9,  where g is the coupling constant. (2.29)
On using the equations (2.28) and (2.29) one can derive that
9E = 20 (2.30)

The quantity o is usually evaluated from the Regge slope parameter and its value
has been estimated to be around 0.2GeV?", Because of the final state interactions!®
( basically screening effect ), the effective field strength generated initially in p-p
collision, gets reduced to around 2 GeV?. Once we know that the field strength
produced in p-p collision is 0.2 GeV? one can compute the value of the field produced
in A-A collision, from the scaling law

Epp—pp ~ Ag$ ApiE,_ (2.31)

Following Pavel and Brink® the magnitude of the field strength produced in the col-
lision of $32 on §32 has been estimated to be, gF < 0.6GeV? and for U - U collisions
1t is gF < 1.2GeV?, These values of gE imply a variation of wo between 0.32 GeV
to 0.87 GeV,a number obviously not close to zero. This nonzero value of wy certainly
implies that caution should be exercised before estimating, the number of particles

produced in RHIC, using Schwinger’s expression?.
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25 Estimation Of Pair Production Rate

Having obtained estimates of the field strengths and the frequencies of oscil-
lation of the fields broduced in RHIC, we will concentrate next on the computation
of the pair production rate of spin zero bosons with SU(2) color symmetry, in the
presence of a sinusoidally oscillating background chromo-electric field. For fermions
the final result will get modified by numerical factors only. In the discussion of our
calculation we will not provide derivation of the standard field theory results, instead
we will refer to the sources where they could be found.
~The probability that the vacuum remains vacuum, in the presence of an external field,
can be written in terms of the S matrix as

1{0] 51 0) =] So(A) = exp [-. / d‘*xW(;)J - (2.32)

where (0 | S| 0) is the vacuum expectation value of S-matrix in the presence of the
color potential A% and W (z) is the pair creation probability per unit volume per unit
time. The quantity Sy can be shown !6 to be equal to

'Sg = Det (G*IGO) = expT'r [ln (G"IGO)} (2.33)

where G and G are the free propagator and the propagator in presence of the external
_field respectively, defined as

1 1
Gy = P i and G =P gAY i e (2.34)

The trace in equation (2.33) is defined over spinor, color and coordinate spaces.
In terms of scattering operators T and T defined as

LI

T=V+VP'2_m2+z,€T and T:V+VP2—7n2——z'a (2.35)
(2.36)
with T' = 0710 and V = G,™" — G, one can show that
| So(A) > = exp [Trln (1 - Tp+T+p_)J (2.37)
W) = —trie|in(1- TpiT*p_) | ) (2.38)

Here py are the projectors over positive and negative energy states defined as
Pt =270y (1)2) ) (1)2 - mz)
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: It should be noted that the operators T'(T") as well as p; are matriceg in col
, spinor and coordinate space. In equation (2.37)the symbol T'r stands for i
over the continuous.variables and trace over the color and spinor indices
equation (2.38) tr stands for trace over-color and spinor indices only.
On expanding the logarithm in equation ( 2.38 ) and retaining the firs, term
neglecting the production probability of 2 ;3 or more pairs ) one gets

S 1 1 & 2
w_%%T[_Tdt.ﬁ;/WH—wlleH (2.39)

Here w = (p* + 777.2)1/2 and m is the mass of the spin zero colored Particle  The
backward “scattering” amplitude (—w | T'| w) is then evaluated by solving ¢} color

or,
Ntegration
' Whereas in

(Le

coupled Klein Gordon equations in external color potential. For the color SU(Q) group
the equations to be solved are (7, , @ = 1,2, 3 are Pauli matrices).
02 = V?) + 2igAatads + g (Aa)? +m2] [ P+ ) =0
(22 - v7) + 2igar 3+,9_( ) +m?) o (2.40)
with appropriate asymptotic conditions in time.
More precisely, we look for solutions of eq. (2.40) having the form!?
t— —o0 <p+(tv) = et | p, elwt
(p_ (t) - e—iwt + b_eiwt :
t— 400 @u(t) = ape ! ' (2.41)
p-(t) = a.e™™!

Since a negative energy particle at ¢ — —oo is equivalent to a positive energy antipa-
ticle at ¢ — 400, the backward “scattering” amplitude (~w | T' | w) and hence the
pair creation probability, can be determined from the coefficients b, and b_. Act wally

one has b '2 ' , ,2
+ |7+ | o
W 5 , (2‘42)

In order to proceed with the solution of equation (2.40), it is easy to show that the
above equations can be decoupled by a unitary transformation in color space dei’"med

by,
ut = ( (Es+E) /Ny, (B —iEy) /[N,
(B3 — E) [Ny, (Ey ~iEy) /N, (2.43)
Where I* = B} + B} + E3, Nf = 2E% 4 2E835,N? = 2E? — 2F,F. The (column

vector) wave function in turn transforms into

U+ ( o ) - < o ) | (2.44)
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. For the spatially homogeneous system that we are considering (note that this ignores
the confinement effect discussed by some earlier workers®), the decoupled equations

are,

/E BN, v,
92+ m*+p’ T 2gps (;}——) Coswot + g (;}:) cos” wyt v )= 0 (2.45)

(4]

with p* = p{ + pj + pd = pi + pi.
Following Brezin and Itzykson'?, these decoupled equations are solved using the
boundary conditions

Ae~‘iwi + Beiwt

\I/_(t) — Ce—iwt+Deiwt
Lo oo Ue(t) = Ee—iv (2.46)
V_(t) = Fe vt

After finding the coefficients 4, B, G, D we finally express them in terms of
by and b_ respectively. We have solved for the coefficients A, B, C, D from equation
(2.45) by W.K.B method, choosing a solution of the form -

Vi(t) = ag(t)em() 4 g (t)exe® 247
U_(t) = ab(t)e"iXb(t)+ﬂb(t)eix::(¢) .

where

Xolt) = [(dion) and () = [ diwn(@® (2.48)

and assuming Hm—fj < 1 along with the conditions () < 1 and 24 <« 1 where

wa?(t) wp? (t)

1
213 272
we(t) = [7712 + (pg, - L% ) r and wy(t) = [mz + (Pa + w_}it) Jz. One assumes here
that the external field is switched on and off adiabatically.
From equation (2.46), we obtain an order of magnitude estimate of pair creation

probability, in the case w, < m,

W ~

o, B? 1 [ m }
exp |— gy 249
2 g(y) +379'(7) gE () (2:49)

where
4 r1 1—y2 12
o) = fhdy |

and (2.50)



:A;shbwn by Brezin and Itzyksonlﬁ‘, one can recover the static Schwinger limit from
_ equations (2.49) and (2.50) by taking w, — 0 independently of gE in such a way that

" y="2% 0 In this case, one obtains the Schwinger result

2

a,E? ™m .
W, ~ 5 eTP [—— 7 J (2.51)

To consider the case of oscillating non-abelian fields we must take w, to be dependent
on E in the manner discussed after equation (2.20) i.e. that w, = \/gE/2. Equations’
(2.49) and (2.50) now show that v = Die = Sy = %wﬂo > 1 and that the pair
creation probability W takes the form of ‘multigluon’ production, viz.,

2m
: o, B [ *E* 1 Wo [gF
W, ~ g [—5;2;7} [wo = JT < mj' | (2.52)

where 22 is the minimum number of gluons requifed to produce a pair. Incidentally
following Sakurai'?, one can also compute the pair production rate using ordinary
perturbation theory, when wy > m. Here the transition amplitude is given by the S

matrix element

Spi==glaq| [deT (1), ¥ pasrt [0)  (259)

Here W are the quark fields operator, A,* are the classical external fields and 7,
are the pauli matrices respectively. The square of this amplitude will give us the
probability of transition from vacuum to ¢ pairs. An integration over the available
phase space gives the total pair production probability. On taking the external field
as sinusoidally oscillating in time and carrying out the integration one arrives at the
pair production rate

. 2 22 4 2
W, ~ 22 <1+ "2) (1- "2) (2.54)

6 w§ w

If one considers the strong field limit i.e & > m? then one can see that the
perturbative formula for pair production reduces to

W, ~ a,E? (2.55)

(ignoring the numerical factors). This result also follows from Schwinger’s expression,
since in the limit m?/gE < 1 we can expand the exponential in powers of oF and
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retain only the first term ignoring the others to arrive at the same expression. Next
. K . . . . - m? . 2m
we consider the various limits, by defining z = 5 and n = o=, One can then see

 that the ratio between Schwinger and the multigluon production rate is

W,

. W,

Since an exponential dominates over any finite order polynomial this expression shows
that for n ~ 2 > 1 the multigluon ionisation process of vacuum dominates over the

~ (zn)*e™m (2.56)

- Schwinger process. 7 |

Before we obtain the numerical estimate of the pair production rate , we
would like to comment on the numerical value of the particle mass to be used in the
computation. In the literature the numerical estimate of the pair production rate has
been carried out using constituent as well as current quark masses. .In our view, since-
the flux tube model takes into account the localisation of color flux and the effect of -
confinement, it is more appropriate to consider constituent quark mass for numerical
estimation. Moreover as has been discussed earlier, in order to produce an on shell ¢g
pair from vacuum, the external field has to move them over a distance, of the order
of compton wavelength (~ %c) of the particles. For current quark mass this distance
is around ~ 20fm, which appears unreasonable for A — A collisions. We therefore
propose that for pair creation via flux tube model ;’:—C < 1fmiemg > 200MeV.

In any case we have numerically evaluated the pair production rate using the
expressions in the three limits i.e perturbative, multigluon ionisation and Schwinger,
with different values of the chromo-electric field and mass. The results are shown in
Table-I. They show the following features:

LIf m = 10 MeV, then for values of gE ranging from 0.05 GeV? to 1.5 GeV?, the
pair creation probability W, = Wy & W,. For m, = 150M ¢V, W, is larger in p-p
collisions and W, is significant in A - A collisions.

2.For the production of ua, dd, s3, pairs with constituent quark masses and field
strength g £ < 0.5GeV? the pair creation probability W, dominates in p-p and in A-
A collisions. For gF > 0.5GeV? the multigluon ionisation of pairs from the vacuum
is larger in A-A collisions.
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Table Caption

Table 1. Pair creation probability W,, W, and W, (in units (fm)~*) for different values

of mass m (GeV) and field strength gF ((GeV) )-

Table 1
m gE W, W, W,
0.01 |0.05 0.021 0.015 | 0.022
0.1 0.083 0.076 | 0.087
0.2 0.334 0.331 | 0.350
0.5 2.09 2.12 | 2.19
1.0 8.35 8.35 | 8.75
1.5 18.8 18.5 | 19.7
0.15 [ 0.05 0.005 | ~2x10-7]0.022
0.1 0.041 | ~4 x 10-* | 0.087
0.2 0.235 0.051 | 0.350
0.5 1.81 3.03| 2.19
1.0 7.78 24.5 | 8.75
1.5 18.0 65.9 | 19.7
0.300 { 0.05 { 7x 1075 | ~2x 10-'% [ 0.029
0.1 5x1073] ~6x10-8|0.087
0.2 0.081 7x 1074 ] 0.350
0.5 1.19 1.06 | 2.19
1.0 6.30 28.1( 8.75
1.5 15.6 112.5 | 19.7
0.500 { 0.05 [ 3x 107 3 x10-25]0.022
0.13x10"° 6 x 1014 | 0.087
0.2|7x%x1073 5x 10771 0.350
0.5 0.434 0.103| 2.19
1.0 3.81 17.5 | 8.75
1.5 11.1 133.9 | 19.7
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Chapter 3

Pair Production at Finite
Temperature

3.1 Introduction

Following the discussion in the last chapter on pair production from vacuum in the
presence of an oscillating external chromo-electric field , in this chapter we will discuss
the effect of heat bath on such a process. '

Before going into the details of the calculation we will elaborate, on the phys-
ical situation relevant for this computation. In particular we will try to show that
;whether the time scale of reduction of the external field due to pair creation process
is long enough for the system to come to thermal equilibrium.

It is worth emphasising here that, though in the earlier chapter , the vacuum
chromo-electric field in the flux tube was taken to be oscillating in time, ( since it
followed from the solutions of the vacuum Yang-Mills ( YM ) equations), one need
not assume the same, in the presence of a heat bath. To determine the nature of the
chromo-electric field in the presence of the plasma, one has to solve the YM equations
with a plasma source term. Although for a realistic study, one should compute the
spontaneous pair production rate in the presence of such a field, as an approximation
to the more realistic case we will restrict ourselves to a constant external chromo-
electric field, as a proper investigation of this process has not been performed before,

Estimation Of The Characteristic Time Scales
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_ In this section we.ﬁ_rst estimate the time scale for the production of pairs. If
we recall, the expression for the spontaneous pair production rate from vacuum / unit
time /unit volume is given by
a,,E'z oo 1 —nwm?

W, = o anl ;;276 =
From this expression, one can crudely estimate the time scale of production of ¢g
pairs in an unit volume, and it comes out as ‘

7['2 wm?2

a,E2e g S (3.1)

t, ~

In the above expression we have assumed that just one pair is being produced |
so we have neglected the sum over n in equation (3.1). After estimating the time
scale of production of pairs, we will estimate next, the time scale of depletion of the
external field. Tt is worth mentioning here that this time scale has been estimated by
Gyulassy et.al' and Gatoff et.al? before. Gyulassy had estimated it assuming abelian
dominance approximation for pair production rate and Gatoff et.al had estimated it
using hydrodynamic equations. We will however estimate the same, from the principle
of energy conservation , essentially following the argument of reference (3), assuming
Schwinger picture for pair production to hold good.

- Since in this model pairs are produced with zero longitudinal momentum but all
possible values of the transverse momentum, p,, the amount energy loss with the
production of a pair, where each one of the produced particles is having average

energy (vm?+p ?), is 2(v/m?+p.?), so after producing n such pairs, the total
_ energy lost by the external field is 2n(v/m? + p,?). Since the production probability

for a pair is given by ﬁ;-f'—?e_;;‘n ; the associated energy loss by the field can be written

as
de(t QsEz —nmm?
a,’(t) = —2(y/m? +p,?) pral L (3.2)
E2

where e(t) = £ is the field energy. From the solution of this differential equation,
one arrives at the time required for the electric field to decay to 1 th of its original
value as

tyg=C [El (yma:c) - El (ymm)]
w2 . _mm? ” — Iy — ; e
Here ¢ = m; Ymaz = 9Fmaz? gEmaz - gE(t - 0) - gE, and Ymin =

(3.3)

s

3(7972;5 and [y represents the exponential integral. So one needs to know the average

value of /m?  p, 2, for the proper estimation of the depletion time.The distribution
of particles in the momentum interval pL to py +dp, can be computed from the
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solution of the Dirac equation in presence of the external field and it is (Ref Kerman®,
Nussinov®); ' ’

dN ~(m?4p,?)
xIn|l—e &
dp_L2 .
From this equation one can compute the average energy of each produced particle to
be
VgFE
(Ym?+p?) ~ k"%"
where
k=0(1)
Hence
B E 3.4)
tg = ——s= |E az) — L& mi .
d kas\/g_ﬁ? [ 1 (ym ) 1 (y n)] . ( )

- Finally from these relations one arrives at the ratio of depletion time to production

time as
2

“z’f = <m—7lr—c;-3_)> (.‘]E)Qe__;rgﬁ [El (yﬁax) - E; (ymin)] (3'5)

With m = 0.2 GeV, a, = 0.3 and gE = 1 GeV? we get t4 >~ 5fm/c and f;i ~ 30

One can see from these relationships that, as the ratio of field strength to mass
square increases the time scale of reduction of the electric field also increases. Since
the strength of the electric field is proportional to the mass number( AP%AT% ) of
the colliding nuclei, for heavier nuclei, one can expect the external field to last for a
time longer than the production time of the pairs. -

Since these produced pairs come almost with a Boltzmann like distribution
in momentum space? , (both in the case of constant as well as the time varying
external field), they will come close to thermal equilibrium very fast through collision
with each other. Moreover, other than the collisional processes, the joule heating of
the plasma generated because of the conduction current produced by the external
chromo-electric field will also contribute towards the thermalisation of the system. A
quantitative estimate of momentum equlibration time, in a parton cascade model, has
been obtained by Biro et. al.!s who get a value of 0.31 fm/c. This value is essentially
the same as the thermalization time ~ 0.3 fm/c for gluons at RHIC energies estimated
by Shuryak'®. For quarks the thermalization time ~ 1-2 fm/c. In brief, since the
depletion time ¢4 is greater than the production time Ly and the thermalisation time -
is smaller than the depletion time, one might be justified in assuming the existence
of the external field in the thermally equilibrated plasma.
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- Though it is not very clear whether, initially the temperature of the system
will be the same everywhere, but if the time scale of thermalisation is faster than the
speed of separation of the two color charged, Lorentz contracted receding nuclei , one
can expect the temperature to remain constant in the space, between them. Thus, in
our view, it is pertinent to study the process of pair production at finite temperature,

in RHIC.

As we go along we will see that because of the presence of heat bath, the rate
of spontaneous creation of ¢g pairs in the presence of external field, is no more homo-
geneous in space ;rather it decreases towards the center.As a result of this differential
rate of pair production, after all the field energy is exhausted in producing pairs,
there will be an _anisotropy in the temperature (global) distribution of the produced
plasma.In our view, the following hydrodynamic evolution of the plasma will bear a
signature of this anisotropic temperature distribution.

Having motivated the physical situation, we discuss the organisation of the
chapter.In section 2 we will review the basics of finite temperature field theory .In _
section 3 we will be computing the finite temperature pair production rate in presence
of external electric field following which we will conclude the chapter by discussing
possible extension of our work to improve of our result.

3.2 Introduction To Thermal Effective Action:

In this section we will be introducing thermal field theory and the concept of thermal
effective action.It is a well known fact that there are two different ways of intro-
ducing temperature in Quantum field theory.One of them being the imaginary time
formalism® of Matsubara and the other is the real time’ finite temperature field the-
ory or thermo field dynamics.The real time formalism has distinct advantages over
the former, in terms of computation of dynamical quantities.However as far the ther-
modynamic quantities are concerned the two formalisms give identical results.
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The objective of the present work is to find out the rate of qq production at
finite temperature in the presence of a static external chromo-electric field.One can
compute this quantity cither by evaluating the ( reference(8) ) thermal S matrix in
presence of the external field or computing the imaginary part of the effective po-
tential which is essentially the free energy® density of the system.In our work, we
calculate the free energy density or the effective Lagrangian of the system.

3.3 Effective Action

Now let us recall that the expression for the partition function Z is given as

Z=Tre " =35 (¢, | P | ba) (3.6)
The first task in finite temperature studies of field theory is to write down the par-
tition function in field theory as a functional integral involving Lagrangian density
expressed in terms of the dynamical fields present in the theory. More precisely, given
a theory, defined in Minkowski space, how does one compute the partition function
Z, in relativistic quantum field theory. In order to illustrate the basic ideas , for the
moment, we consider the case of a scalar quantum field theory with field operators
(in Heisenberg picture), ¢ (¢, z) with momenta 7 (t,z) the Lagrangian density L and
Hamiltonian density H.

If ¢(Z,0) is the Schrodinger-picture field operator having eigen states | ¢,)
and| ¢;), with eigenvalues ¢a(z) and ¢y(z) then the transition amplitude for the
system to go from the state ¢,(z) at t=0, to the state ¢o(z) at t =t is

(s | il | ¢a) = N,/,,s ¢b[d¢]exp (—/OtldT/d333L (qS, ¢)) (3.7)

a

Here N’ as a normalisation constant, and the functjonal integral is defined over clas-

sical fields (¢, z).

As it has been shown in number of places (see reference(6) and the references
therein ) one can use functional integral form of equation (3.7) to obtain a functional
integral form for Z by a series of steps. (i) Choose the initial state and the final state
to be the same,(ii) change the time coordinate t over to a variable defined as 7 = it
with the limits of integration varying between 0 to f and (iii) lastly as a consequence
of the trace operation, perform the functional integration over the fields ¢(7,z) with
a periodic boundary conditions in 7 i.e $(0,2) = ¢(8, x). '
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For a system with no conserved charge one can equivalen‘tly show that,

2o o ([ 2109 55

For a Lagrangian that is quadratic in the field variables, one can compute the partition
function 7 exactly by expanding the field variables ¢(t,z) as

1 d3p —i(wnT~p.x -
¢(ﬂ,$) = E;/ (27!')38 ( )¢(wnap) R (39)

and performing the Gaussian integration over the field variables. Here Wy = 2-;’—‘(71 =

—oo to co) are the (Matsubara) frequencies for bosons and have been defined to agree
with the periodic boundary conditions of the field variables. The finite temperature
Green functions defined as

_ Tre=PH(T¢(z,)....¢ (3;))

Gp (%1, Z3....%;) Tro—BH (3.10)
can be shown to be coming from
s oL §7 (J)
Gp (21, %y....7;) = 575 6J(§:1)|J=0 (3.11)
where .
Jyeriotic [DYleap (Ji dr | PxL (¢, 9,9) + J4) (5.12)

brerioaic [D$leap (fPdr [ 2L (4,0,9))

The generating functional for the connected Green function is defined through

WP(J)=nZP(J) (3.13)

An effective action T (¢,) is defined in terms of the Legendre transform'® of W4 (J)
as

T'(¢) = W)~ [ dzg. (@) J (=) (3.14)

where ¢, (Z) is the classical field defined as
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3

and the source J(z) is given by ,

T =55

Here the vector = (—ir, 7).

6T [¢c]

(3.16)

The quantity T'(4.), evaluated semiclassically about some field configuration
¢ (Z), gives the free energy of the system in that configuration. Usually Vers (@),
the effective potential, the first term in a derivative expansion of T'(4) , is just the
free energy density in a background constant field configuration. The quantity ef-
fective lagrangian Leysys, is defined"! to be, Les; = - Vess This quantity is used for
determining not only the thermal ground state energy of the system but also for de-
termining the phase transition, symmetry breaking etc. In the case of a first order
phase transition, a system can be trapped temporarily in a meta stable state leading
to non-equilibrium phenomena. The rate of decay for such a system is determined '
from the imaginary part of its free energy (reference (9): Affleck, Langer). Though
we have outlined the formalism for scalar bosons, it has been generalised for the case

of fermions and gauge bosons too.
boundary condition because of anti
For vector bosons, other than period

For fermions one has to take the anti-periodic

commutation relation satisfied by the fermions.
ic boundary conditions one also has to take care

of the extra degrees of freedom carr
elaborate on this point any further he

ied by the gauge bosons. We are not going to
re. All the details can be found in reference (12).

3.4 Computation of Effective Lagrangian From
The Fermionic Determinant ‘

In this section we compute the effective action for a system of fermions with
SU(2) color symmetry, in an external chromo-electric field.In our calculation we as-
sume the plasma to consist of equal number of quarks and antiquarks, so the net
baryon number as well as the chemical potential are zero. Further we do not include
the dynamics of the gluon fields, though in a more realistic case one ought to do so.

It is also worth mentioning, that this problem has been studied earlier, in the

- context of quantum electrodynamics U(1) symmetry, by Loewe and Rojas® using real

time thermal field theory and also by Cox, Helmann and Yildiz!3, Unfortunately
there is no agreement between the results obtained by them. Cox et al find no effect
of temperature on pair production rate, whereas the authors of reference(8) do find
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a finite temperature contribution to pair production rate. In fact their result also
shows that it increases dramatically with temperature, Qyup calculation, when per-
formed with an U(1) symmetry, agrees qualitatively with the findings of reference(8)
but it disagrees in other aspects. '

For instance, in contrast to the result of Loewe and Rojas, we find that the
finite temperature pair production rate has two distinct, pieces in it, one being the
vacuum contribution and the other the finite temperature contribution having a sign
difference. The finite temperature contribution,unlike the vacuum contribution is a
space dependent quantity implying that the pair production rate as well as all the
thermodynamic quantities vary in space, in particular along the longitudinal direction.
In fact, this striking result is due to shielding of the electric field by the polarised
plasma in between. Consequently, as one moves away from the source. the field
strength decreases, giving rise to a differential rate in pair production. Sinc,e the rate
of pair production varies in space, the number density of produced particles will also
vary in space leading to a similar behaviour of the thermodynamic quantities like
pressure, entropy, temperature etc. Since we are interested ip investigating the pair
production rate, we will not discuss the thermodynamic quantities here.

3.4.1 Computation of Effective Lagrangian

We start from the “partition function” in Minkowgk; space defined by

_ fDI/-)D}/)e‘.de‘”
I D/‘Z)Dl/)eifLod‘z

Z14 (3.17)

where L = 9 (17,0" — g7, Aa"7a)  —mpp is the fermionic Lagrangian in the presence

of external vector field A,%, 7,’s are the Pauli matrices ap( Lo =1 (i7,0" — m) 1 is

the free fermionic Lagrangian, such that Z[0] = 1. : #

Since we are interested in evaluating the effective action, iy the presence‘ ;)f external

chromo-electric field only, we choose Ap* = —E®z and other components of A to

be equal to zero. Following standard prescriptions ( see reference(6) and (10) ), we '
obtain the finite temperature partition function in terms of the Euclidean actioxi Sg

defined as,

Sy = 1 i /z/_)n(z) [(wn’)’o + {/AaoTa’YO) + i7jaj - mJ Yu(z)d’z (3.18)

B =
ﬂ? n=-—00
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and compactify the time direction by putting antiperiodic boundary condition to get’

1% o J Do Dipre”
1% _. [ Dby Dip,e=5os (3.19)

Here 1 s are the fumlon fields in the fundamental representation of SU( ) defined

as P(z) = 35, f LEe 2 (1, p) and

aﬁ = ﬂ? Zn..-—oof"’/; ( )[UJ"’)’ + ryJ@ - m] ¢n( ) .
It should be noted that in Eq(3.19) 4° and Ay® are quantities in Euchdean space. On
integrating over the fermion fields one arrives at

o (1wn + g7°A487°) + i470; — m
= t . , .
Z[Al= ][] De [ (or0 + 1770, —m) (3.20)

- Z[Al=

n=-—=00

This determinant is defined over color, spinor as well as the coordinate space.

Using well known techniques(**) one can further write it as

3 ' 1/2
o (wn +gA2ZT?)* — g ( 23 g ) Etr, — 0} +m?
I Det g | (3.21)

n=—oo

The determinant in Eq.(3.21) can further be diagonalised in color space using an
unitary matrix of the form.

e ( (Bs + B) [Ny (5~ iBa) /Ny )
(Es+ E) /Ny, (Ey —iEy) [N,

with E = \/E? + E? + E2; N} = 2E? + 2E3E, N? = 2E? — 2B, F.

After diagonalising Eq(3.21) in color space and using the identity DetO =
and the integral representation InQ = L d: =10 one arrives at

(3.22)

6!1’1710

~Sepf = InZ = —4ir [}:z"__oo o d; [cosh(gﬂs) [wn-{-A V242 4m?]

_ e—a[w?,}+p,‘+m?]” (3.23)

with A, = —Ez. The trace is now defined only over coordinate space. We note that
since A, is an external field, no Legendre transformation is required to go from the
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connected vacuum functional to the effective action .
After doing some lengthy algebra one arrives at the expression for free energy density

‘ | ; ] 2
-F o= -n [Eg’:_oo("l)" [G‘"ﬁgEz 55 f%(gE)coth(gEs)e*smz“"zEiggcofh(gES)
- 000 %6_‘""’2“"_?9&3]J

(3.24)
Expanding coth z in the asymptotic form 1 + 1/z, we get after separating the n = 0
term from the other n # 0 terms

;o= 4—1%7\[000 L,132(gES)COUL(gE’S)e-—sm?_*_
4 242
571?2“ Loz (=1)" [cos (ngﬁAo) o0 %(gES)COth(gE‘S)C—"”‘2~—4§—e—n2,32gg/4

2,52
foo ds —st—-E—p—]
—3—6 4s

o 3

(3.25)
Since E in Eq.(3.25) is the Euclidean electric field we need to rotate the electric field
back to Minkowski space i.e. E — —iE to obtain the expression for the thermal
effective action

F o= gk [ e [(gEs)col(gEs) — 1] + T2 (~1)" [ 4%

_ - 242 (3.26)
[cosh (ng',BAo) (gEs)coth(gEs)e="F9E/4 _ 1] e—st——;?_] ~

This is the main result of our work. We can clearly see that n = 0 provides the
vacuum contribution to the effective action and n # 0 provides the finite temperature
correction to it.

The spontaneous pair production rate is given by the imaginary part of the
effective action given above.
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On carrying out the integration in Eq.(3.26), by choosing a contour as shown
in figure-I with poles at s = (Ir/gE) ;we get for the imaginary part of the L,

x Y2 m21rn 0 oo} d
Im[L. ] = ;‘%Zi%%)—e'"ﬁ" — 55 Y " (=1)"cosh(nBgA,) [P.V./(; s_j gEcot gEs
n=1 =

n=1

2 42 0 ~m?nl_n?p29E 242
L on2p2gE _gm?_nf _ § gE)? BT n’BigF
Stn ) € 4 T i(1—7‘,‘)21"8 9 n coS 1
=1

(3.27)
Here P.V means principal value. Although we have not evaluated the real part of
the effective lagrangian, it will provide one with expressions for the thermodynamic
quantities like pressure, entropy etc. '

Analysis of Our Result

One can see from Eq. (3.27) that there is a sign difference between the zero
temperature and the finite temperature part of the effective lagrangian. Depending
on the temperature and field strength one or the other term will dominate. We have
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tried to evaluate the expression numerically for z = (

s 2 st 2,42
1 95'2 _m*nn T _nfpcqk n2 2 E
Im[L,_,H]—mZ —~—e  9F [1+226 ol cogLPE
n=1 =1

4
| 3.28)
oo n % ds . n2B%gE Y. ( .
— 5 7;2::1(_1) P-V-/O 2 gE cot gEs sin——r—e m?— 2ol

For z = 0 (See eq.(3.28)) we find a dramatic increment in the pair production
rate at high temperature over that of vacuum, though at some intermediate temper-
atures the rate decreases.

Potential Energy

z
distance
-2m B
gE=z
Fig-1I

Potential well for quarks submitied to an external chromo-electric field gE

It is possible to understand these phenomena, in terms of a simple potential
well model, where the pair creation is viewed as tunnelling of pairs from vacuum
through an energy barrier in the configuration space with maximum height 2m and
width is %%.In the presence of finite temperature the same picture still holds good.
Due to thermal effects, the particles are lifted up from the bottom of the well, and as
a consequence the effective barrier width, as seen by them becomes less, hence making
it easier for them to tunnel out of the vacuum. This might be an explanation of the
temperature corrected Schwinger expression i.e. the first term in Iq.(3.28).Moreover,
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Figure 3.1: Pair Production Rate with Temperature/mass.

other than the temperature induced tunneling, at high temperature, the thermal exci-
tations also push the particles over the barrier resulting in a significant increase in the
pair production rate at high temperature. At low and intermediate temperatures, for
some value of the external chromo-electric field, we find a decrease in pair production
rate with respect to Schwinger’s result. This effect probably reflects an increase in
the width of the barrier due to thermal excitations, ‘

From equation (3.26), we find that, at extremely high temperature the pair
production rate goes as

ET?
Im (L] ~ 3—6-“ (3.29)
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At z # 0 (eqn (3.27)), because of the presence of the cosine hyperbolic term, the pair
production rate increases with increase in z [Figure].The reason behind this is that, in
the presence of an electric field charged particles do not stay at rest. They move to-
wards the source and try to cancel the electric field in the region in between. Thus, as
one moves towards the source of the chromo-electric field, the field intensity increases,
and hence one would expect a reasonable increment in the pair production rate as
one approaches the color charged nuclear plates. In the context of heavy ion collision
this would mean that if the flux tube model is correct then production rate of ¢g will
be more as one moves away from the reaction plane. Considering the complexity of
the underlying process and the successive phases that the plasma undergoes, it might
be a difficult task at this stage to give a quantitative description about the signature
of this phase but we believe, early signals like dilepton or direct photon might be an
ideal candidate that might carry the information of this phase. From a simple minded
approach to the problem, if one assumes the fluid to undergo Bjorken hydrodynamic
expansion, in the following stage of its evolution, the effect of this phase may show
up in the observed angular multiplicity distribution of the particles.

In summary, we have computed the pair production rate at finite temperature
in the imaginary time formalism starting from the thermal partition function for a
system of fermions with SU(2) color symmetry in the presence of a non-abelian ex-
ternal chromoelectric field.

Our results show the presence of two distinct pieces i.e. the vacuum contribu-
tion and the thermal correction to it. In the case of a U(1) gauge symmetry it reduces
to that of Loewe and Rojas but with a sign difference between the thermal and the
vacuum contribution. It also clearly shows the spatial dependence of the temperature
corrected part of the effective Lagrangian,

We have also tried to give a physical picture of the whole process in terms of
particles in a simple potential well. We see that tlie pair production rate increases
away from the plane at z = 0 and we expect that this effect might show up in future
relativistic heavy ion collision experiments.
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Chapter 4

Evolution In Phase Space

4.1 Introduction

In the previous two chapters color flux tube model was studied to understand the
process of plasma formation in A-A collision. In this chapter we examine how the
plasma will evolve before it reaches color and thermal equilibrium.

The study of this phase is crucial because, it will give information about the
dynamic processes that are important for reaching equilibrium and also the time it
would take to reach the equilibrium. Furthermore the signals for detecting QGP
might get modified depending on the pre-equilibrium evolution of the system, Since
we are interested in the pre-equilibrium phase of the plasma , we will study the real
time phase space evolution of the plasma through kinetic! theory followed by hydro-
dynamic equations.

As the number of degrees of freedom for gluons are more than the same for
quarks and moreover since they are massless, the production rate of the gluons will
be more than that for the quarks. This has already been evaluated in reference?. One
can also get them, (approximately) apart from the numerical constants coming from
color and spin degrees of freedom, from the rate expressions obtained by us for quarks
by setting the, mass for the quarks equal to zero. Due to the color factors the g-g
cross section is larger than gq and qq cross sections and as a result of this the gluons
will equilibrate® faster than the quarks. So in this chapter we will concentrate on the
the pre-equilibrium evolution of the gluons.
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In the pre-equilibrium phase, right after the nuclear collision, the quarks and
gluons will interact by means of binary (perhaps 3 body, 4 body) collisions and also
through collective interactions to bring the system to a state of thermal equilibrium.
The pre-equilibrium description of plasma has been studied by many authors? using
kinetic description, by putting a collision term on the right hand side of Boltzman-
Vlasov equation for the plasma.

For quarks a binary collision term is justified to some extent if one assumes
the number density of quarks to be very small. For gluons this kind of assumption
is not justified because of the presence of 3 body, 4 body interaction term in the
Lagrangian. Therefore instead of using the Boltzman-Vlasov equation we will use
the Vlasov kinetic equation, with the underlying assumption that collective effects
arising out of mean fields are more important than the collision terms. This would
be the case when a typlcdl time scale for collective behavior (1/w,) is much shorter
than the collision time - i.e. w, >> v,. Further more there must be enough number
of particles in a Debye sphele, i.en A% > 1, so that the collective effects dominate.
We follow the phase space evolution of the gluonic plasma, starting from the gauge
covariant operator valued quantum kinetic equations of gluons given by Elze,Gyulassy
and Vasak and taking its classical limit. The classical description of the gluonic
plasma is obtained as we take the ensemble average of this equation and then set
terms proportional to h to zero. This is Justlﬁed for studying those collective effects
where the waves with wave length A > £ Tt is also worth recalling that classical
approaches reproduce many of the collective phenomena in quantal systems

.'{ RRE

The organisation of this chapter is as follows. In section two we start with
the gauge covariant distribution function® for gluons described by Elze, Gyulassy and
Vasak and discuss how to obtain a classical kinetic description for gluons from there.
In the following section we study a simple model to examine whether non-abelian
color dynamics can provide a new equilibration mechanism. Finally we conclude by
discussing the scop« of further improvement of our result.
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4.2 Kinetic Equatibns

In RHIC when the plasma is produced, the particles will have a character-
istic. momentum distribution. For the purpose of separating collective effects from
the non-collective ones we assume that there are two types of gluons present in the
system. The ones with very high four momentum (i.e short scale lengths) describe
particle like properties , whereas those with low four momentum, i.e those generated
by the interaction amongst the high frequency gluons, describe the collective i.e wave
like properties. Therefore, as a result of this assumption the low four momentum
gluons are described by the Yang Mills field equations with a source term (4-current)
on the right hand side , generated by the high momenta gluons.

We are going to describe here the dynamics of these high momentum gluon
fields which will interact among themselves to bring the system close to color and
thermal equilibrium. Presently we take only the interaction of these high momentum
gluons among themselves, which will be described by a Boltzman-Vlasov like equation
for the gluons.

To describe the dynamics of these gluons, following Elze, Gyalassy and Vasak
(EGV) (Ref. EGV!, Elze®) one starts with the gauge covariant distribution function
for the gluons defined as ’

dty  _; . ‘ . t
Gu(z,p) = /(27rh)“e 1p.y/h [.e-l/2y.D(x)\ Fp\(m)] [61/2y.D(z) F,\u(w)] (4.1)

which is an 3 x 3 matrix for SU(2) case, expressed as a dyadic product of a 3 com-
ponent vector (color) and its adjoint. In the component notation it can be written
as ‘

d'y
(2mh)4

—

_' | o e b
elp.y/h[e-l/Zy.D(a:) Fj(m)] [el/zy-D(r) FAU(-’B)} (4.2)

Gula,p) = [

Here y.D = y°Dg + y' Dy + y? Dy + y® D5 and

D,=0,-1ig[A,] (4.3)
. _[DwDy]
P, = 7 (4.4)
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p and v go from 0 to 3 and @ and b go from 1 to 3.

Now operating with p*.D, term, on the distribution function one arrives at
the kinetic equation of gluons (see ref. 1). Since we are interested in the classical
description we set terms of the order of equal to zero as in ref. (5) and from there
arrive at the following expression. /

P"DyuGlu +9/2P 0 | For, G |y = g(FraGom G F) (4.5)

Here [,], means anti-commutator, and

Duzau“ig[Am] ' . (4.6).

where

Aﬁb = —tfabe Al
Fro = ~tfabeFly
fabe is the antisymmetric structure constant for SU(2)
and g is the coupling constant.

In general, with regard to Lorentz indices, G, has a symmetric part=5 ag
well as an antisymmetric part. We neglect the antisymmetric part by taking a spin
equlibration ansatz, i.e.

Guu(va) = pupuG(a:vp)
where G(z,p) is a Lorentz scalar function,

So with this ansatz the r.h.s of equation(4.5) vanishes and, the gluon kinetic
equation in color component notation takes the form
PAOLG™" + gp* AC [ femaG™ — G™ fean ] + i-‘gp"c");
[ femaG®™" + JeanG™ ] F7 =0 (4.7)

All repeated indices are to be summed over.

The assumption of spin equilibration i.e Guv(2,p) = pup,G(z,p) leads to the
following expression for the gluon current ref(4,5)
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Jf =19 f Gabfa,bcp#d4p (48)

To study the collective behavior of the system, we solve the YM field equations with
the current ( equation(4.8) ) on the right hand side. The basic idea here, as explained
before, is that because of the self interaction the high momentum gluons generate a
low momentum long wavelength mean field which in turn acts as a source term for
a mean Yang-Mills field equations. For studying the collective properties one has to
solve these equations self consistently,i.e

D, F* = Jv " (4.9).
along with the gluon kinetic equations (equation(4.5)).

4.3 A New Mechanism For Equilibration

As mentioned earlier, in this section, we propose to analyse a simple model
which exhibits mechanisms for equilibration arising entirely from the non-abelian na-
ture of the color dynamics. In this model we assume that the equilibrium distribution

function has the form
eq _ nab

A (4.10)

Here ng’s are the elements of a matrix in color space p, is the zeroth component
of the four momentum and B is the temperature of the system and the important
point is that, the off-diagonal elements of the distribution function are nonzero. In
equilibrium, we have chosen the distribution o have a simple Bose-Einstein form, so
as to avoid momentum space contribution to collectjve effects. The important point,
that we would like to bring home, is the hitherto unconsidered role of the color de-
grees of freedom as a source of free energy. Further we take, the classical fields F
and A in the kinetic equations (4.8) - (4.9) to be diagonal in color space(i.e abelian
dominance!® approximation) and the zeroth component of the vector field to be finite
and other components are zero. '

We then carry out a stability analysis of the resulting system of equations
about the equilibrium distribution function G?;’ On linearising the equations about
the aforementioned equilibrium distribution, one arrives at

( o
k,upuéGmk = 'é‘é—,'ppFeuo [femanak - fbeknmb} COSh2 (%) (411)



“Using equations (4.8) and (4!11) we have solved for the current produced by

the fluctuations and it is

J = (e7)" [-iln| wth | 9] A", (k) (4.12)
o T T UM w-E ° &

On using relation (4.9) we next get
KA (k) = C (w, k) [2nAo® — At (nap + 14a)| (4.13)

Here the repeated indices are summed up and

C (w, k) = (9? [iim] 2tk | - 2] (4.14)

From equation (4.13) the matrix dispersion relation comes out to be

2(nga +na3) —(ni2+nn) —(niz+na)
k2 - C(w, k) — (7112 + n21) 2 (n33 + 'Il]]) — (7232 + n23) =0 (415)
~(n1z +na1) —(ns2+n) 2(na+ ni1)

If we set 1111 = Ngg = T3z = E and N1z = N21 == N3 = N3z = N33 — N3 — 8§
then ,in the long wavelength limit one gets the followmg dispersion relation ( for the

long wavelength gluons), .
s 3k (n-—s)
w =TT Tn (4.16)
From equation (4.16) we see that if s > n there will be an instability in the system.
Clearly the instability is related to the color degrees of freedom and would then drive
the system towards a distribution which is diagonal in color space. This mechanism
may provide us with some insight about the manner in which an arbitrary distribution

function in color space becomes color diagonal and attains color equilibration.

4.4 Conclusion

In this chapter we have looked for the plasma oscillations in QGP through
the semiclassical kinetic equations for gluons, derived by Elze, Gyulassy and Vasak.
Though the dispersion relation has been derived under the approximations that the
mean fields are basically abelian in nature and of them only A, is finite, but these
simplifying assumptions still carry some nontrivial nonabelian dynamical signatures
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~init. In particular the existence of the off-diagonal (in color space) components of
the distribution function, is the signature of gluon gluon interactions , a purely non-
abelian effect and is seen to be responsible for damping or instability. Incidentally on
performing the same analysis with an equilibrium distribution function i.e diagonal
in color space no such signature of instability or damping is found?,

Usually, the damping, can originate from three different kinds of Sources; for
instance, it can be collisional relaxation damping, decay of plasmons into particle
antiparticle pairs or gluon gluon pairs. Production of quark antiquark pairs from.
vacuum is similar to electron positron pair production through plasmon decay as
encountered in high T QED plasma. On the the other hand gluon going to two
gluons is a typical non-abelian effect, typical of QCD plasma. Since the physical
situation we are considering here does not have any collisional relaxation process in
it, and neither have we considered the presence of quarks and antiquarks here, so
the existence of instability or damping corresponds to the last process. This damping
signifies passage of energy from wave mode to particle mode, Conversely an instability
would signify the passage of energy from particle mode to wave mode.

In our view, the non-abelian interactions amongst the gluons, try to take
the system, with strong initial color fluctuations, to a stable equilibrium. To get a
correct picture, of the physics of this process, one ought to solve these coupled partial
non linear set of differential equations. Instead we will try to explore some special
solutions numerically and some more of their collective properties under different
approximation schemes.
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Chapter 5

Hydrodynamic Evolution Of The
Plasma

In the last chapter we have tried to study the preequilibrium evolution of the plasma
in phase space through kinetic description.But the kinetic equations are not always
very convenient to the study the collective processes, because of their complicated
structure. On the other hand, under appropriate conditions it is possible to study
non-equilibrium plasma, with a little lesser difficulty , with the help of hydrodynamic
equations. There have been efforts! to obtain such a description of pre-equilibrium
phase from the Boltzman-Vlasov kinetic equations. It is worth noting here that
though the usual hydrodynamic description is applicable when the mean free path is
much less than the scale length of the system and as a consequence the system reaches
local thermodynamic equilibrium. On the other hand, if one assumes that the plasma
is cold? i.e Vpp >> Vikermar (such that one can define a fluid element over which the
particles can have a coherent velocity) and particle density inside the Debye sphere
is >> 1, then one can factorize in the cold collisionless limit the distribution function
as f(z,p,t) = g(z,t)6(p — P) and obtain a closed hydrodynamic description even in
the collisionless limit.

In view of this, we proceed to formulate a classical hydrodynamic description
for gluons in the cold collisionless limit, starting from the gauge covariant kinetic
equation given by Elze, Gyulassy and Vasak (EGV?) neglecting all the terms of the
order of i and higher. This may be justified because the collective effects we consider
have length scales much greater than the compton wavelength, so that quantal cor-
rections may not be very important.
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~ We take the moments of the EGV equation, as described in the last chapter
to get a most general hydrodynamic description for the gluons. This involves a set
of 48 coupled nonlinear partial differential equations and would be difficult to solve
even numerically. ’

The organisation of this chapter is as follows. In section two we start from
the gluon kinetic equation of chapter 4 and take the momentum moments of this
equation to generate a set of hydrodynamic equations for gluons under certain ap-
proximations. In section three we start from the classical kinetic equation for quarks,
take the momentum moment of those equations to generate a set of chromo hydro-
dynamical equations to describe the space-time evolution of pre-equilibrium quark
matter. In section four we show the formal similarity between the gluon hydrody-
namic equations and the quark hydrodynamic equations.

In section five we study the collective oscillations of the plasma. We show
the existence of certain conservation laws following from the hydrodynamic equations
and try to solve these equations numerically obeying these conservation laws. The
numerical solutions x show the existence of chaotic oscillations.

5.1 Towards Hydrodynamics Of Quarks And Glu-
ons |

In this section starting from the gluon kinetic equations we derive the gluon
hydrodynamic equations. To derive the gluon hydrodynamic equations one essen-
tially starts from the gluon kinetic equations of chapter 4. The kinetic equation can
be written in terms of the combinations of different components of the distribution
function that get coupled to each other (as a consequence of the nonabelian nature
of the fields) to describe the evolution of the plasma.

From equation (4.7) we define diagonal components,

Gl = oG
G2 = 23 (5.1)
G® = 2G°
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the symmetric combinations,
281 = OGB4 G
252 G +G" (5.2)
251 —_ Glz + G21

1

and lastly the antisymmetric combinations,

21‘@1 — G23 _ G32
2%Q? = G -G8 (5.3)
22‘@3 — Glz . G21

Since gluons belong to the adjoint representation of the appropriate unitary
group, the distribution function for the gluons, for the SU(2) case can have three
distinct irreducible representations i.e scalar, vector and second rank symmetric ten-
sor in color space. It is worth recalling that for the quarks the distribution function
can have only the scalar and vector representations. In the equations above S corre-
sponds to the symmetric rank two tensor , Q corresponds to the vector representation
and tr (G) corresponds to the scalar representation in color space. Hence the hydro-
dynamic equations for quarks and gluons in general would not be the same. It is
difficult to make much progress with the most general distribution, because of lack
of knowledge about the ‘d’ coefficients arising out of anticommutation relations of
the generators in the adjoint representations of the unitary group. In order to make
some progress, in the next step, we will make an assumption, that all the symmetric
combinations of the distribution function are zero. With this assumption one can
show that the equations (4.7) reduce to

pu0Q' — gp* |A2Qs — A2Qs| + 9/2p,0," [2F1 (G 4+ G®)| =
puO*Q? — gp* |A3Q1 — ALQs| + 9/2p,0," |2F,2 (GM + GP?)| = 0 (5.4)
pu0*Q® — gp* |ALQ2 — A2Q| + 9/2pu0," |2F,° (GM 4+ G?)| =

and
P0G + g/2p,0," |2F,,°Q° + F.'Q% =
Puay’Gz + g/2p,,5p" 2F#VSQ3 + F#VIQI

(5.5
puauGS_*_g/zp”apu 2F[_LU1Q1 +Fpu2Q2 )

The space time and color evolution of the macroscopic observables will be
described by quantities obtained after taking moments of the one particle distribution
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function. For instance, the 4rcolbr.current flow in-space will be gi\.ren by
[7Qa(@,p)d'p = Qu* (2) (5.6)
and the general four rnornevntum flow is given by
[P Ga(ap) d'p =6 (2) (5.7)
a=1
This flow tensors can further be decomposed (following Stewart?) as |
Q." =n,U*E  and G* =nU"E (5.8)

Here n, is the color triplet number density of gluons, E is their energy and U*(z) is
the four velocity, with »

[ P*Qa (=, p)d'p |
EU* = oS = )
0. (@,p) diP and U*U,=0 | (5.9)
In fact following equation (5.8) one can decompose any higher order tensm For
example a second rank tensor can be written as,

Qauu = naU#UVEZ . (510)

To derive the hydrodynamic equation from the kinetic equations (5.4) and (5.5) we
take the zeroth (and the first) momentum moments of those equations. In the next
stage we assume G} = G = Gz = (/3 and add all the components of equations (5.5)
to get

J, G*=90

0, Q" — geabcAubQ“c =0 (5.11)

In the following step, as was shown in equation (5.8) we decompose the 4-
vectors in equation (5.11) to arrive at '

Oy [naU"] — geapeA L U* =0
# (U] = 0 # (5.12)
From equation (5.12), one can show by defining a quantity called color charge,
as [, = ==, that
Oy [nU* =0
and

Uﬂaﬂ [Ia] - gfabcAﬂb]cU” = 0 (5'13)
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Simildrly from the first momentum moment equation one can get, the force equation
or conservation of energy momentum relation

U9, U" = %Faﬂ“Um (5.14)
For studying the collective behaviour of the system one needs to solve the equation
d,[nU*] =0
UrOUY = LFMU, I
0, [naU*] — geapeAn U* =0 (5.15)

and

- DFM = J = gnl , U*

self consistently. The first two equations above are the usual continuity and force
balance equations respectively. The third equation, characteristic of non-abelian dy-
namics, is the color evolution equation. In the next section we will show that the
quark hydrodynamic equations also take the same form but without any such approx-
imation.

5.2 Towards Quark Hydrodynamics

In this section we try to arrive at the hydrodynamic equations for quarks as.
obtained by Kajantie and Montonen®, starting from the kinetic equations of quarks
as gotten by EGV. To derive the equations for classical quark matter, we proceed as
follows. We start from the gauge covariant kinetic equations of Elze, Gyulassy and
Vasak, setting the terms of the order of fi = 0.

p“DuW(w,p) +g/2p“ pu [F;waW(l',p)]_*_ = () (516)

Here [,]; means anticommutator. The distribution function W(x,p) apart from its
spin structure, is a hermitian matrix in color space. It can be written in terms of a
color singlet and triplet components for SU(2) as

W (2,8) = 5(G)1 + 5 °Au(G) (5.17)

a=1

Here (G) = TrW (z,p) and (G,) = Tr[AW (z,p)]. Using equation (5.17) one can
write equation(5.16) in terms of a set of coupled partial differential equations. The
coupling is between the singlet and triplet distribution function for quarks. They are
as follows,

PuO*(G) + 9p.0," [F,°(G?)

L (a b c v a a] B (518)
plia/ (G ) + geabcp“A u(G > + gp,ﬁp [QF,“, (G )] =

o
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As it has been shown in the earlier section, one can take the momentum
moments of these equations to generate the hydrodynamic equations. Before we go
for generating the hydrodynamic equations it is worth noting that since the quarks
are massive particles the 4-velocities for quarks obey

_ [p*Gy(z,p)d'p _ [p*G(x,p)d'p

UrU, =1 and mU* = = 5.19
“ GG dp ~ [Gpdp O
On taking the zeroth moment of equation (5.18) we arrive at
9G¥ =0
and- (5.20)
0y [Ga] + gabc AL G =0
Decomposing 4-vectors G* = mnU* and Go* = mn,U* we get,
| 8, [nU*] = 0
and (5.21)

0, [UFng] — geabcA#bncU“ =0

Defining I* = 22 and using the two equations one can obtain the color evolu-
tion equation, namely
U8, (1] — geapc AL LLUP =0 (5.22)
Similarly on taking the first momentum moment of equation (5.18) and using similar
decomposition as before we arrive at

U*9,UY = -%Fa’“’UpI“ | (5.23)

Here repeated indices are summed up. If one multiplies equation (5.23) by U* one
can show that the condition U#U, = 1 is satisfied. One can rewrite equation (5.23)
as '

U*8,U" = -g—zFa“”Ju“ with J*, = nU,I* (5.24)

One can derive an identical set of hydrodynamic equations as Kajantie and Montonen,
provided one considers a multicomponent distribution function, G4 (z,p) where the
label A stands for different species of quarks and one decomposes the color singlet
and color triplet 4-vectors and Lorentz tensors as

Gq4 = manaUx”

GuA” = mAnaAUA“ (5 25)
G = manUg"Uy” )
Gaa™ = munaUs"Uy”
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The repeated indices A are not summed. Starting from gauge covariant kinetic equa-
tions of EGV, we have derived at the Kajantie Montonen hydrodynamic equations for
both quarks and gluons. In the next section we will study their collective behaviour
non perturbatively, by numerically solving the equations.

5.3 Study of Coliective Oscillation of the Plasma

In the earlier section we have obtained the quark hydrodynamic equations.
These equations for different species of quarks can be written as,

On4 1V (naVa) = 0
(5% + VAV) Vi = ZIx*[Ba+Vax Bl (5.26)

[_gf + VAV]» I4* = gé€abe [Abo - VAAb] Iye

1

To study the collective oscillations of the system one has to solve these equa-
tions along with the Yang-Mills equations self-consistently. In order to extract the
essential non-abelian physics, we have simplified the equations by removing most of
the non-essential complications by assuming that in the x and y directions the plasma
is homogeneous so that the fluid variables have zero gradient in x and y direction, ie
8, = 0, = 0. Next we will look for special solutions (ref Coleman®) where the fluid
as well as the field variables are functions of a single variable denoted by

r=1f+z2 (5.27)

In this stationary frame ansatz, 8 is the frame velocity. We also assume that of the
two species of quarks, one is much heavier than the other, such that the second species
is relatively at rest compared to the first and it acts as a (neutralising) background.
So with these assumptions one can solve the fluid equations analytically to get

nof
ng = 5.28
Va+p (5:28)
Here n,; = Moz = N, is the equilibrium density. Note that for V, = 0 we get ny = n,.
For the velocities we have assumed Vi and V;, to be nonzero, so that on solving the
respective equations we get Vig and Vi,

(91.A%)

m
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Vo=Vem i [0 - 1) (47— A7) + 82 (47 - 46).7)]
~gUV—-er4A.vav — ¢ [(Az4p)* - Any)uﬂAm}
—gla0A%anof

€abe 2 : 2 4z A A*
Io= =22 (6 = 1) (45) (A=) + Az e ] - =

Thus we have expressed ny, V4 and I4 in terms of the color potentials and their
derivatives. The Yang Mills equations are

(AZAF — ASAD) + I (5.31)

2 . z Am T Az 2 4z (AT Az 2 AT\ _ gn.PBI.V,
(ﬂ _ 1) Aa _}_.geabc [2A bA c + A cA b] +g A b (A aA b — A a,A b) = (W)
- (5.32)

(ﬁz) A — geuse [AmbA'xc] — GRAT, (AT AT — AT A7) = — (%ﬂf—ﬂ%) (5.33)

From the geometry that we have chosen, one can see that there is no force in
the x direction. However in the x direction there exists a canonical momentum which
is obviously conserved from equation (5.29). From these sets of equations (i.e (5.29)
to (5.33) ) one gets two conserved quantities

I+ I,? + I* = constant (5.34)

(8 =) [4" - A7 (0)]
+p? [AZ — A7 (0)]
+g? A% AT, (A% AT, — A7 ATy)
+nom [V, + V7] =
where € can be termed as energy. The first equation is the color conservation equation
and the second equation is the energy conservation equation. These quantities depend
on the initial value of the variables and the given parameters and they remain constant
throughout the evolution of the system. We next scale the variables to bring the
equations to dimensionless form. We choose
A® = a,A®
" =1,1,"°

(5.35)

(5.36)
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Whei‘e, a, and I, have dimension of length and charge. Next we redefine our inde-
pendent variable as

(= wpT (5.37)
where 7 is like time and w, is abelian plasma frequency parameter.
2, 272
(g no Lo )
wy? = — (5.38)

We also introduce two more dimensionless parameter
= (=
— (48
r= (Wp )
One can check that r ¢ = ¢ is the non abelian parameter defined in (ref:7). The
scaled equations then take the form

(5.39)

V. = (I.A%) | (5.40)

Vo= |- (A7 - 4.7 + 6 (4 - A7)
5 (B = 1) €une (A% A% A7) — 54 [(ATAD) = (4347) (4z47)]  (B:4D)
— A7,

grit A%,
p

rteabc

I, =
p

[(8* — 1) (A7) (A=) + B2 A7 Az - (AZAf — ATA7) +1 (5.42)

The Yang Mills equations are

ﬂjav:v
)
(5.43)

(87 = 1) A™ o reane [2A7 A%, + AP A% 4 1247 (A%, A7) — A7 A7) = — (

BL.V,
tV, + 8

(ﬂz) Aaz — T€gbe [Alezc] - 'I‘ZAIb (AzaAzb - Azanb) = - ( ) (544)
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 We will now solve these equation numerically with the help of 4th order Runge
Kutta iteration scheme, as the analytical solution is beyond our reach. Before describ-
ing the numerical results we would like to show that in the absence of any nonlinearity
parameter the equations for the potentials take the uncoupled form

(:82 - 1) A;:a + 2321 Aax = 0
Lo T L . 5.45
(ﬁz) Az, + 22:1 A =0 ( )
which indicates that in absence of all the nonlinearity the modes execute a
simple harmonic oscillation with frequency %—3 when 3 is large.

Next we choose the initial conditions as in reference (7), and Fig(5.1) shows
the same earphone like oscillation obtained in ref:7 fig(2). Here the A%, and A%, are
all zero throughout the course of integration.

In our plots we show the momentum profiles. To see the effect of a small trans-
verse perturbation on longitudinal oscillation we keep all A* = 0, and A® ~ 1075,
One can see from the figures(5.2) and (5.3) that till t little beyond 600w, the velocity
profiles execute the same mode, when there is a catastrophic jump in the velocity pro-
file in x direction and correspondingly the coherent oscillation in z direction breaks
up into a chaotic one.

One interesting thing has been observed in all the oscillation that they try to
execute a coherent mode for couple of periods, even if the profile is globally chaotic.
We have carried out an extensive numerical analysis of the above hydrodynamic
equations’, namely taking different initial conditions for both the field variables and
their first derivatives, varying the parameters of the equations such as non-abelian
nonlinearity parameter, plasma nonlinearity parameter and the frame velocity 8. The
central observation of all the numerical experiment is that, except for a very few points
in the parameter space, for most of the other points the system tends to go to a state
of chaotic oscillation. On carrying out the FFT (fast fourier transform) analysis of
the numerical solutions we have seen that the most dominant frequency for both V,
and V, components are the same, implying energy equilibration.

5.4 Conclusion

The fundamental conclusion we reach, in addition to the conclusion of Bhatt
et. al, is that, other than the non linearity parameters, even the presence of a small
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Longitudinal Oscillation
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Transverse Oscillation
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transverse field can also produce chaos in the otherwise regular 1ongitudindl oscilla-
tion. Even though these transverse fields are orders of magnitude less,to begin with,
but given sufficient enough time they become comparable to that of longitudinal os-
cillations. This onset of chaos is related to energy being equilibrated between the
two components A, and A, . From the autocorrelation function one can find out the
time taken by the system to reach a chaotic state of oscillation or the state of energy
equilibrium. Secondly there exists some kind of a memory in the system that drives it
to behave in the same way after a regular interval of time. Thirdly we have seen that
the nonabelian nonlinearity is capable of setting the system into chaos. The factor on
which the growth rate of oscillation in the z direction of the velocity depends, seems
to be the quantity B3, i.e the frame velocity. Totally chaotic regime shows that the
energy transfer takes place around the most dominant frequency of oscillation and
V, component drives the V, oscillation. Though We have not exhausted the space of
all possible parameters and initial values for these system of equations, but we think
we have been successful in showing a class of solutions where all the specialities as
mentioned above, are all present.
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Chapter 6

Summary

A

In this chapter we will summarise our observation and achievements reported in the
earlier chapters of the thesis. We started out with an objective to investigate the
process of production and evolution of QGP, with a particular emphasis on the un-
derlying ‘nonperturbative’ non-abelian dynamics. Studying non-abelian dynamics
non perturbatively is by itself a tremendous task.:

We started our investigation, ‘the production of QGP’ in the color flux tube
model. Tt was observed that the chromo electric field inside the flux tube was taken to
be constant and essentially abelian in all the previous investigations. Moreover most
of the studies were done with an electric field existing in one particular direction in
color space. We have argued in chapter two that due to non-abelian dynamics the
chromo electric field is time dependent, and hence one has to take this fact into ac-
count in calculating the pair production rate. We have computed the pair production
rate by taking the external field to be varying sinusoidally in time and have shown
how this increases, relative to the constant field case, the pair production rate from
vacuum, for A-A collisions. In chapter three, we have taken an unconsidered scenario
of how the production rate gets modified in the presence of a heat bath and have
shown a rise in the production rate in the presence of a bath.

Chapter four contains suggestions of a new mechanism for color equilibration
of plasma. In chapter five we have considered the evolution of the plasma in phase
space through kinetic and hydrodynamic equations. The thing that is worth men-
tioning here is that the non-perturbative studies reveal the existence of chaotic modes
of oscillation, that can bring about thermalisation of the plasma. '
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As regards the future work it would be interesting and worthwhile to include
some of the effects not considered by us. To name a couple of them, in our computa-
tion of pair production at zero and finite temperature we have (almost) ignored the
effect of dynamical gluons. In some of the recent studies the effect of dynamical glu-
ons has been taken into account but these are essentially abelian in nature and at zero
tempefature. In our view one ought to do the pair-production problem at zero and fi-
nite temperature, taking the non-abelian nature of the dynamical gluons into account.

So far as the evolution of the plasma is concerned we think one should in-
corporate the production and evolution of the plasma simultaneously using quantum
kinetic theory. '
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