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Chapter 1

INTRODUCTION

The electroweak interaction of leptons and quarks are described by a unified
model of the weak and the electromagnetic interactions developed by Glashow,
Weinberg and Salam [1]. This model, together with Quantum chromodynamics
(QCD), gives the correct description of all the fundamental interactions in nature
except gravity and is reffered to as the Standard model. We restrict ourselves to
the electroweak sector of this theory. The internal consistency of the standard
model has been verified in various experiments to a high degree of precision.
However certain aspects of this model are unsatisfactory. The fermions that take
part in the electroweak interactions are classified into three distinct sets called
families. These families of fermions form three identical representations of the
standard model. These families are identical in all respects except for an hierarchy
in their masses. The fermions from different families mix with each other to form
physical mass states. The pure weak states and the mass states are connected
by mixing matrices determined by mixing angles and the relative phases of the
states. The masses of the fermions enter as parameters in the standard model.

Along with the mixing angles and the phases of these mixing matrices, the num-
ber of parameters in the model becomes too large. Symmetries that connect the
families can produce relationships between masses and mixing and reduce the
arbitrariness in this sector. Such symmetries are known as horizontal symme-
tries. This thesm studies the simplest of such symmetries, namely the abelian one
and mvestlgates physics beyond the standard model implied by them.



| In this chavpter we give a brief account Qf the study of weak interactions, the con-
siderations that lead to development of the standard model and the need to go
beyond. Section 1.1 introduces the weak interaction phenomenon. Sectiqn 1.2
gives the essential ideas involved in the standard model. Section 1.3 discusses
the problem of fermion masses within the Standard model. In section 1.4 we dis-
cuss the fermion mixing. Section 1.5 gives an account of the problems with Stan-
dard modicl and discusses possible ways to go beyond. Section 1.6 discusses phe-
nomenological ansatz that restricts fermion masses and mixing. Section 1.7 intro-
"duces the idea of Horizontal symmetries that can generate the required structure
for the mass matrices. Section 1.8 gives a brief summary of this chapter and a

plan of the thesis.

1.17 The weak interaction Phenomena

The study of weak interaction begins with the discovery of beta decay. In this a
neutron inside the nucleus of an atom decays to a proton and emits an electron.
The energy of the emitted electron in such a scattering is expected to be unique.
However it was found that they are emitted with continuous spectrum of energy.
Also the spin of all the particles involved, the neutron, the proton and the emitted
electron is half. This is impossible, since if two final state particles have spin
half then the initial single particle state should be spin 0 or spin 1, whereas the
neutron is a spin half particle. It was suggested by Pauli that the beta decay
must be accompanied by a spin 1 particle with a very small or zero mass. This
particle called neutrino is chargeless and evades detecti_on.‘ Such a hypothesis
by Pauli remedied the above mentioned problems in beta decay. In the line of
Qauntum electrodynamics (QED), Fermi suggested the current-current form of
weak interaction [2]. In Fermi’s theory the interaction Lagrangian for beta decay

is given by
G

L= — 7—5_/,3::.161/(:’

Where the two interacting currents are

Jpn =80ty
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Jeve - = Y I/I(,/'I/C

However there are certain essential differences in the case of beta decay. Firstly
the two currents that interact have to be charged current. This is because the
neutrino is chargeless while the electron is negatively charged. The proton is
positively charged whereas the neutron is chargeless. Secondly this interaction
must be a point interaction. This is because the weak interaction is a very short

range interaction.

In Fermi theory weak interaction cross section are proportional to center of mass
| energy and blow up at high energies. It was felt that such a difficulty can be
overcome if the interaction can be induced by a gauge symmetry in analogy with
quantum electrodynamics. In such theories interaction between currents are me-
diated by bosons called gauge bosons. These gauge bosons appear automati-
cally in the theory when one demands local symmetry. Such local symmetries
are reffered to as gauge symmetries. We shall discuss this in section 2. However
such a gauge symmetry as in the Yang Mills [3] theory would introduce massless
gauge bosons that mediate the interaction. Weak interactions being extremely
short range must be mediated by massive gauge bosons and not massless ones
as necessitated by the gauge symmetries. A massive gauge boson being essential
the intermediate vector boson hypothesis was introduced where mass terms for
gauge bosons were explicitly written. This breaks the gauge symmetry explicitly.
But such a theory being non-renormalizable ran into difficulties with infinite cross
sections at higher orders. Thus one needs a theory where the gauge symmetries
are broken at low energies but are restored at sufficiently high energies giving
a renormalized theory. Such a phenomenon is called as spontaneous symmetry
breaking. The mass terms of the gauge bosons are not explicitly introduced. They
get masses by interaction with scalar fields at low energies. It was shown by G.

t'Hooft [4] that spontaneously broken gauge theories are renormalizable.

As weak interactions involve charged current, the gauge group was taken to be
SU(2). It was found that weak interaction violates parity maximally [5, 6]. Hence
the gauge group has to operate only on left handed fields. The particles that take
part in weak i;lnteractions are called the leptons and quarks. Quarks form the con-

stituents of hadrons like the protons and the neutrons. The left handed leptons
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and quarks behave as doublets under the gauge transformations of weak inter-
action. The lepton doublet consists of a charged lepton like the electron and a
chargeless one, the neutrino. The quark doublet consists of an up quark and a
down quark.. The required gauge group is denoted as ST7(2),. It was felt that
QED which is an U(1) gauge theory should be also incorporated in the same
gauge theory. However QED conserves parity. Moreover, the electric charge of
the members of a doublet are not same. So the U'(1) of electromagnetic theory
cannot be directly incorporated as a gauge group of the so called electroweak in-
teraction. So a new charge, namely hypercharge, 17, was introduced. The [7(1)
symmetry generated by ¥ is denoted as U(1)y. Members of the multiplets of
SU(2);, are assigned the same hypercharge. A combination of U'(1)y with the
subgroup of SU(2),, generated by its diagonal generator is the U/(1 )o of electro-

magnetic interaction. This combination is specified by the definition of the elec-
tromagnetic charge

v
Q=T+ Py (1.1)

1.2 The Standard model

The electroweak sector of the standard model is a gauge theory based on the
gauge group SU(2), x U(1)y. The fermions that take part in electroweak inter-
actions are classified as the leptons and the quarks. The leptons consists of the
electron, the muon and the tau lepton which are negatively charged and their
neutral counterparts, the neutrinos. There are six quarks arranged in the up sec-
tor and the down sector. The up sector consists of the up, the charm and the top
quarks, while the down sector consists of the down, the strange and the bottom
quarks. These fermions form three families of the representation of the standard



~ model gauge group. These families of leptons and quarks are as follows:

left handed leptons: < " > < 2 ) < e )
. C . // | - ,

left handed quarks: u ¢ "
“ ), S b/,

right handed leptons: n [ o

right handed quarks:  wg. dp Cr.e Sp tr. bp

The left handed fermions transform as doublets under SU7(2), while the right
handed fields transform as singlets. Hypercharge assignments are such that the
left handed and the right handed components of a field has the same charge Q.
Right handed neutrinos are not introduced in the model. This, as we will see,
leads to massless neutrinos in the model. There are four gauge bosons in the
model. Three corresponding to the gauge symmetry SU(2),, viz. W+, -
and 17 and one corresponding to the U(1)y- of hypercharge, 3. It also contains a
complex scalar doublet  called the Hig‘gs boson.

‘The interaction of the fermions with gauge bosons comes about automatically by

demanding the local gauge invariance of the free fermionic Lagrangian.
L= (iy"d, — m): (1.2)

Under the gauge transformation

U U where [7 = ¢/ (1.3)
du = 0, (L)
= U+ (9, (14

Here 7¢ are the generators of the gauge group. In case of the Standard model,
7¢ are the three Pauli matrices generating the ST(2),, which acts only on the left
handed fields. 77 is identity when it generates the [7(1)," which acts on both,
the left and the right handed fields. The presence of the second term in eq.(1.4)

above spoils the gauge invariance of the Lagrangian. In order to restore the gauge
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invariance, the ordinary differentials d,+ are replaced by what is known as the
covariant differentials D,y which transform in the same way as ¢ under gauge

transformations. The covariant differentials are given as follows:
D,y = (Op — ,'g;’)- e (1.5)

11, are gauge fields which transform in such a way so as to make D, covariant.
Under the gauge transformation D,y transforms as follows

Dyw = Udyy+(0,U)e — '/'gj; A

4

. <0,, FUB) gt H',,L') ; (1.6)
Under infinitesimal t1‘ansforﬁ1ation |
| ) ~ '% D0
We have from (1.6) and (1.2)
Dy — U (a,, + 1% Do — ;ng*% - H',,L') 0 (1.7)
Covariance of D, ' demands
D, — UD,
where
Dir = (0 = igg - W) (1.8)

117, is the transformation of the gauge field ¥, under the gauge transformation.
From eq.(1.7) and (1.8) we have

1 .
W, = —=r Qa+Ulr WU (1.9)
g
= —lrgatron” (1.10)
p _ ,

~where W)/ = ¢T*T},. T are the generators of the adjoint representation of the
gauge group. Thus

8 1 o
W, = —=0,a+ T,
g

1
= W, —>d,0—ax T,
J 7 /(\ a X /
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b' ; .The gauge boéons W, are massive. But the explicit mass terms, namely, L2117, 117
would break the gauge symmetry. Higgs mechanism provides a way to generate
the gauge boson masses through the spontaneous gauge symmetry breaking. In
this, a scalar field known as Higgs field ® is introduced into the model. The
potential of this field is such that its minimum has a non-zero vacuum expecta-
tion value. The minimal coupling of the gauge bosons to the Higgs field, as in
eq.(1.5) above, generates the masses of the gauge bosons. The Higgs field chosen
for the Standard model is a doublet of ST (2);, with a hypercharge ¥” = 1. The
SU(2), x U(1)y invariant Lagrangian for ¢ is

¥ L
L= ’(0,, - 'f'mg W —igam BT — V(D)

The doublet ¢ is conveniently represented with the electric charges as

_ Pt . Pt = (D, + /‘I’z)/\/§ o
O = ( (I)O ) with (I)U — ((I)..‘ + "(I’J)/\/'E (111)

V() is the Higgs potential given by
1(0) = /12(:[)7(1) + ,\((I)T(I))z

V(@) has non-zero vacuum expectation value (vev) for y? < 0 and A > 0. The

minimum occurs when , )
v -
PIp = — = f

2 2

The vacuum expectation value of ® which breaks the ST(2); x (1) symmetry

-5 (!

The masses of the gauge bosons come from the following:

T . .g‘z. 0
! ~1917-T'Tf‘,—zj-B,) < v )
;( 2 ! 2 ! 73

but retain the U(1)g is

2

(1.12)
— 1,' 291 1. 207773 !/i‘) —J192 [
= (GUa W 4 2oV, By — 0192 @3 B
(1.13)
Thus My = jvg, is the mass of the charged gauge boson. The neutral gauge

bosons, W and B*, don’t have a well defined mass. The physical or mass states
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. al.‘e'Obtaixxéd by a linear combination of these neutral fields as follows,
-3 | A 1 bt} M

Z, = (gﬁf‘.f“ — _q-zB,,)~—2-——2— = COS§ HH'H»“ — sty I,

,_ Vi +Yi

4, = (o U’lf 4+ g-zB,,)—«—' = sl 9”'”/'? + cos by B,
gi + 93

where ;LI’ = tan fy.

1 . )
My = 5-('\/gf +gs. and M, =0

My g

= = cos fyy
Mz gt + g2

fiv, the mixing angle between IV and B, is called the Weinberg angle.

~ Thus

The strong interaction of the quarks are described by a gauge group SU(3)¢
of color. The quarks are assigned color charges denoted as red(R), blue(B) and
green(G). We do not discuss the strong interactions in this thess.

1.3 Fermion Masses

The free fermions are described by the Dirac Lagrangian given in eq.(1.2)
Lp=¢(@—m)

The term m ¢y is called the Dirac mass term of the fermion v and can be written
as follows: '
myy = m(yde +Pryey)

This is because the terms 7y, and Ypi'p vanish.

InStandard model the left and the right handed fields transform differently under
its gauge symmetry. The left handed fields transform as doublets while the right
handed fields transform as singlets. Hence explicit fermion mass terms miny are
not invarjant under the gauge group of the standard model. However the mass
terms can be generated in a gauge invariant way through the interaction terms of

8



the fermions with the Higgs scalar after spontaneous symmetry breaking. These

_ interactions are generated through the Yukawa couplings given by the following

‘Lagrangian
- ' L= =G0 Py

Here 11, is a doublet while ¢ is a singlet of SU(2). « stands for leptons or quarks.

These terms give mass only to the electrons and the down quarks. To give mass

to the up quark one considers the Higgs field &€ = i, &,

Though all the charged fermions get mass through the vacuum expectation value
of the same Higgs, their coupling with the Higgs is still arbitrary and hence there

is no prediction of fermion masses in the standard model.

Dirac mass terms cannot be written for neutrinos in standard model as right
handed neutrinos are not introduced. However for chargeless fermions like neu-
trinos the Dirac mass terms, as discussed above, is not the only way to generate

mass. One can write the Majorana mass terms given by
Ay + H.C.

Where ¢ is the charge conjugate of ' given by v = i~ Obviously such a
mass term cannot be written for charged fermions as it would break the [7 (1o
symmetry and lead to the violation of charge conservation. In terms of the left
and the right handed fields the Majorana mass term can be written as

—Lyr = M0y + 0hun) + H.C _

N o

As right handed neutrinos are not introduced in the Standard model, the Majo-
rana mass term for neutrinos may be written as '

~La = ~1\[(1/E'1./L) + H.C

1
2
However it may be noted that left handed neutrinos are part of SU(2),, doublets.
Ty isospin of v, and v} are +1/2 and —1/2 respectively. The Majorana mass term
for neutrinos thus violates the SU/(2), symmetry. To preserve the SU(2),, sym-
metry the Majorana mass term has to couple to a triplet Higgs. Thus neutrinos

can neither have Dirac mass nor Majorana mass within the Standard model.
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| ,71‘.4 Mixing of fermions

As mentioned in section 1.2 the fermions form three identical families of repre-
sentation of Standard model. Such a classification of the fermions into different

families is possible because weak interactions do not generally transform them

from one family to another. However decays of certain hadrons and mesons

showed that such a strict distinction is not true. In order to understand these
decays one had to consider charged transitions amongst members of different
families of quark. In the case of two flavors, the strength of flavor conserving
charged transitions to the strength of flavor violating ones was parameterized
with an angle called the Cabbibo angle [7]. The mass states of down quarks is a
linear combination of flavor states. In the two family case if we denote the flavor
states with a prime viz. d' and +/, then the mixing can be parameterized with an

angle ¢ as follows [8]:

d" = cosbod + sin b, s

s = —sibed + cos s

fc is called the Cabbibo mixing angle. The mixing can involve complex phases.
The unitarity of the mixing restricts the number of phases to three in two dimen-
sional case. All the three phases can be absorbed in the arbitrary phases of the
individual quark states. However, as we will see below; if there are N families in

general, all the phases ina V x .\ unitary matrix cannot be removed.

To get flavor changing currents amongst N families of quarks, one can consider
mixing between the families of quarks. The up quark and the down quark can
mix in different way but due to the fact that only flavor changing charged current
are observed and not the neutral current, only a relative mixing between the up
and the down quarks is observable. In such a case one can consider only an
effective mixing in the down quarks and no mixing in the up quarks. Suppose
the up sector of the quark mixing is given by a Unitary matrix [” and the down
sector mixing is given by D. Let-an up and a down quark of /" family be denoted

as «; and d; respectively. Let the mass states be represented by v; and d;. Then we

10



w, = Uiju;

Charged weak current is possible only between pure flavor states. Thus a pure

weak current is flavor conserving and would look like
Ji = wild; (1.15)

where I' is an operator in the spinor space. I' depends upon the nature of the
current and is not important here. From (1.14) and (1.15) we get the charged

current in terms of the mass states « and

;:l = IZY'I‘C"},‘FD,‘/([/
Kt

where j; = u;I'd; are the flavor changing charged current for j # [ and K =
U''D. The amplitude of the flavor changing charged current is given by the non
diagonal elements of X'. ‘K’ is the relative mixing matrix between the up and the
down sectors. It is called the Cabbibo Kobayashi Maskawa (CKM) matrix [9]. It
is obvious from the above discussion that the amplitude for the flavor changing
neutral current (FCNC) is zero. This is because in this case the matrix similar to

the CKM matrix will be given by I''l” or DD which are identity.

The CKM matrix, being an unitary matrix has M independent phases. But as
the 2.V quarks can have 2N arbitrary phase, the mixing matrix has 2\ redundant
phases . An overall phase in the whole quark spectrum will not show up at all
in the mixing matrix. So the redundant phases are (2\" — 1). The number of

meaningful phases left in the CKM matrix is thus

N(N+1)

<

| =

— (2N = 1) = =(N = 1)(.\ — 2)

B

A

For three families the number of arbitrary phase is one.

Within standard model an equivalent of CKM matrix does not exist in the lepton

sector. This is because the neutrinos are massless in Standard model. This makes
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them degenerate in mass. Thus the flavor states or any mixing of them are always

simultaneous mass eigenstates. Hence one can consider the same mixing in the
neutrino sector as in the charged lepton sector. There will be no relative mixing
between the charged leptons and the neutrinos. However experimental observa-

tions do not rule out a small mass for neutrinos and mixing amongst them [10]. In

models beyond Standard model one can consider massive neutrinos and mixing

between them.

The mass term for a fermion ¢ in the standard model Lagrangian is written in

terms of ¥, and 1r. Here one can have different rotation in the left and the right

handed sectors. Thus

1,""/")'/) I») l,f"/’g‘ = b‘l‘lL l)I‘l;”;(

where
'l/‘;; = U];I;’“D (,‘;? = URl,r’,l‘n and mp = U,T'IIIU]?

. The weak states 1, and 1z are rotated in such a way that the mass matrix

is diagonal. Such a diagonalisation of the mass matrix is known as biunitary
diagonalisation. 4y, and 1 are the left and the right handed mass states. As the
weak charged current operates only in the left handed sector, the CKM matrix is
defined as U/ ,f Dy, The complex phase in the CKM matrix is a measure of the CP
violation observed in certain weak processes. We discuss this in chapter 3.

1.5 Problems with Standard Model

Standard model has been very successful in describing the strong and the elec-
troweak interactions. It accounts for all the known physics below TeV scale [11].
The internal consistency of this model has been tested in various experiments.
However there are a large number of arbitrary parameters in the model. These
are three coupling constants for the three gauge groups, six masses of quarks,
three mixing angles and one phase in the CKM matrix, the strong CP violating
parameter 6 p, the three charged lepton masses, the Higgs vacuum expectation
value ¢ and the Higgs mass. These make for 19. If one allows for right handed
neutrinos, they increase to 26 with the addition of three neutrino masses, three

12



m1xmg angles and a phase in the lepton sector. Unlike other fermions, the neu-

0 trinos can have Majorana masscs which increases the number of parameters to

"“mme than 26.

The gauge group of standard model is-a direct product of three distinct gauge
- groups. Attempts have been made to embed the gauge symmetries of the stan-
dard model into a single larger gauge group with one coupling constant. The
standard model would then be the low energy manifestation of such a gauge
group. Such theories are called grand unified theories (GUT) [12]. The coupling
strength of the strong, weak and electromagnetic interactions which are widely
‘ different at low scales may merge to form a single coupling constant at some
high scale called the grand unification scale. In general one will have additional
gauge bosons in such a theory, such as the .Y and the ¥ bosons in the $U7(5) GUT.
- These bosons couple to the leptoquark current and bring about proton decay. The
present lower bound on the lifetime of proton is about 10™ years. This gives the
lower bound on the mass of X' bosons to be 10*GeV which is taken as the typical
‘grand unification scale.- Alternatively grand unification scale is identified with

unification of three couplings. This is about 10'%GeV,

Even the GUT fail to provide an understanding of some of the problems men-
tioned above. Standard model and GUT operate within a single family of fermions.
The three families of fermions exist totally independent of each other in these
theories. Though the present knowledge indicates that there are three-families
there is no reason why there should be only three. Therc is no relation between
the masses and the mixing between the families. The mass matrices are com-
pletely arbitrary within standard model. CP is expected to be violated in Stan-
dard model due to the the presence of a complex phase in the CKM matrix. How-
ever, this phase being arbitrary, thCIC is no relation of the CP violation to the

fermion masses and mlxmg

In order to get any relation between the masses and mixing angles, the arbitrari-
ness of the fermion mass matrices need to be reduced. Some phenomenological
ansatz have been proposed that restrict the structure of the fermion mass matri-

ces in order to have successful relations between masses and mixing angles. We
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éh’.c:hére a brief discussion of the Fritzsch [13] ansatz.

1.6 T'he;Fritzsch Structure

r the up and the down quark mass matrices A/, 4:

With this one gets the following approximate relations

Co = my,. 4, =~ Jm,m., DB,
C([ XMy, _-1(/ ~

ey
vManig, By &\ Jigny

The orthogonal matrices which diagonalizes A/, and A, are

1 NN 1
mg my
me Hig
~ 1 N and D Vs
my  _fme ' — i
ny 0y my,

&
~

0 4, 0 /0 Ay 0
A, = 4, 0 B, |. My=P| 4, 0 B, | Pt
0 B, C, N0 By Cy

~ Here 4,4, Bya, Cuqarerealand P is a diagonal phase matrix,P = diag(¢ . ¢/
 The eigenvalues of A/, and M are diag(im,,, —m.., 1) and diag(mig. —imy, my)

M

my

this ansatz the mass matrices are taken to be hermitian. They are restricted to
have non-zero entries corresponding to the nearest neighbor interaction between

amilies. In an appropriate basis one could obtain the following Fritzsch structure

(1.16)

. C

(1.17)

Hiy
my,

my,

(1.18)

The CKM matrix K, = 't D gives a prediction of the Cabbibo angle 6. One gets

()(' - ’/\ul

ny Mg\ Gy
Ky = — =
e e

where

The experimental value of 6 is consistent with this prediction. The other offdi-

agonal elements of the CKM matrix are

o M Me\ g o Md o i
Ky = — = e Ky = K iy =i}
: my 1y 1 .
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ffhé'éxp_erimental upper bound on K’y along with the bounds on 1, iy, and i,
"“[14] giVés ,thevbound on top quark mass 1, < 50GeV. With the discovery of top

[15] with mi, 22 170GeV one obviously needs modification of Fritzsch structure.

1.7 Horizontal Symmetries

\ 1‘115\\1\1énomenological ansatz like the Fritzsch structure are reasonably successful in
giving relations between quark masses and mixing. However, one would like to
explain the reasons for having such structure rather than having them ad-hoc. It
_is natural to expect symmetries that operate on the family space of the fermions to
restrict the structure of mass matrices. These symmetries are popularly known as
horizontal symmetries. In the simplest case one can take the horizontal symmetry
to be U(1)y. As an example consider the fermions to transform as

’(,f‘; - (f'l(‘ilf';

The quark mass matrices now is no more arbitrary. In order to preserve the hor-
izontal symmetry only diagonal terms like gittiriin®y are allowed if a; # «; for
i # j. Here @y is the standard model Higgs doublet. However this does not allow
any miXing. Consider an additional doublet Higgs ®, with horizontal charge
such that o = a; — ;. Now one can have non-diagonal entries in the mass matrix

' position through the Yukawa coupling gi;¢'i;.¢j®,. Such non diag-

in the (7, )
onal mass matrices leads to quark mixing. Suitable choice of horizontal charges

and Higgs fields give Fritzsch like structures for mass matrices.

The horizontal symmetry U/(1);, can be either global or local. Global U(1)y can
be used to implement a multigenerational Peccei-Quinn [16] symmetry that rotate
away the strong C' P problem [17]. Such a global horizontal symmetry preserves
the features of single generational Grand Unified theories (GUT)while pi'oducing
the required structure of masses and mixing [17]. In these models CP violation
only comes from Higgs boson exchange and not from gauge boson exchange. In
a local U(1)y the horizontal charge assignments are restricted by anomaly can-
cellation. In such theories C P is violated through gauge boson exchange but its

strength is not constrained to be small [18].
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We will discuss a scheme in which horizontal symmetry plays a crucial role in
bbtainihg a CP conserving theory and breaking of horizontal symmetry at high

‘scale naturally leads to small C' P violation in low energy theory.

Horizontal symmetries are also used to constrain neutrino masses [19]. It has
been studied to obtain large mixing of neutrinos to solve the solar neutrino prob-
lem [10, 20]. We shall present a model in chapter 2 where horizontal symmetry

gives degenerate neutrino masses in Seesaw scheme.

If (1) is local and is broken near the weak interaction scales, then its effect can
be seen in known processes. It was shown [21] that a class of models are possi-
ble if one demands anomaly cancellations. The bounds on the extra gauge boson
mass and coupling constant were obtained through the forward backward asym-
metry and FCNC in certain leptonic processes. The extremely stringent limits on
such processes in the charged leptonic sector are phenomenologically very useful
in constraining the masses, the mixing and the coupling of the extra gauge boson
and any extra Higgs that are introduced. In certain cases these bounds are more

stringent than the precision tests. We discuss these in chapter four.

H 1.8 Outline of the thesis

The observed hierarchy in the fermion masses and its relation to the mixing an-
gles indicates structures in the mass matrices. Such structure must also give an
understanding of the smallness of the CP violation in the quark sector. The neu-
trino sector needs hierarchical mass scales. Large mixing is necessary for the so-
lution of the atmospheric neutrino problem. In this thesis, horizontal symmetries
are introduced to obtain the above desirable features. The thesis is arranged as
follows:

Chapter 2: This discusses the problem of neutrino masses. The possibility of
Dirac and Majorana masses are discussed. The smallness of neutrino masses
through Seesaw mechanism is shown. The need to have Pseudo Dirac structure in

neutrino masses is discussed. A model where the Majorana mass matrix takes the
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_ TFritzsch structure by the imposition of horizontal symmetry is presented. Such a
model generates a pair of Pseudo Dirac neutrinos while having the possibility of

neutrinos as hot dark matter component.

Chapter 3: This discusses C'P violation in the charged current sector. CKM ma-
trix is introduced. The ¢ parameter that measures C I’ violation in neutral kaon
system is introduced. The problem of small C'P violation related to the spon-
taneous symmetry breaking is discussed. A specific model based on left-right
symmetric theory with a horizontal symmetry is presented. The smallness of the
C P violation here is shown to be connected with the scale at which the horizontal

symmetry breaks.

Chapter 4: This discusses the case where the horizontal symmetry is broken at
low scales. Physics beyond the standard model and leptonic flavor changing pro-
cesses due to the presence of an extra Z is discussed. The constraints come from
the precision tests of standard model, the leptonic and hadronic widths and the
rare flavor changing neutral current processes. A specific example is presented

where U(1)y chargeis L, — L,,.

Chapter 5: Presents the summary and conclusions.
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Chapter 2
Neutrino Masses

This chapter discusses neutrino masses. The possibility of both Dirac and Ma-
jorana types of mass terms beyond Standard model are considered. The seesaw
mechanism is introduced which gives a very small mass to the neutrinos com-
pared to other fermions. The need to have pseudo-Dirac structure in neutrino
masses is emphasized. A model is presented where one gets such a structure by

imposing a horizontal symmetry.

2.1 General mass terms

We have seen in section 1.3 that neutrinos can neither have Dirac mass nor Ma-
jorana mass within Standard model. Dirac and Majorana mass generation needs
right handed neutrinos and a SU(2) triplet Higgs respectively. These fields are
not included in the Standard model. However in certain extensions of Standard
model, where both of these fields are included like the left right symmetric model
[1], both Dirac and Majorana type mass terms are possible for neutrinos. In the
left right model right handed neutrinos are present and the Higgs sector contains
anadditional triplet Higgs which is necessary to generate Majorana mass for neu-
trinos. Let us consider a general mass Lagrangian for neutrinos which consists of
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a Dirac and a Majorana mass term.

- - — b ' - ( ‘ ( g (
—Lp_nm = mp(Vrve + vprr) + 3;\[/‘(1./54 v, L)+ 33—[/?(1’/\- Vig A i)

Z

Consider the following basis for neutrinos

v, >
V= c s
R
In such a basis the above mass term can be written as

1 -
—Lp-y = 51/(',’\/(1./ + H.C

| . .-\[/( nep
i\/{ h < mp .\[R >

where

2.2  Structure of neutrino masses

The upper bounds on neutrino masses in most experiments are very low. Hence
even if neutrinos are massive, they have to be very light compared to their char ged

partners. The following are the upper bounds on the masses of Voo vy and v, [2]

mv ) < 15 ¢V (2.2)
m(r,) < 170 Kel” (2.3)
m(e) < 24 Melo (2.4)

Observations on neutrino mixing and oscillations suggest hierarchical scales in
their mass square differences. The solution to the solar neutrino problem through
the MSW mechanism demands oscillation between a pair of neutrinos with mass
squared difference , \in* of the order of 10~ 1"2, The solution to the atmospheric
neutrino problem requires Nin? ~ 1072¢ 172, If the mass of electron neutrino is of
the order of eV then the solution to the solar neutrino problem demands a pair of

neutrinos which are almost degenerate in mass.
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Though neutrinos can be massive, the mass of the neutrinos are expected to be
about 3 to 4 orders of magnitude smaller than their charged counterpart. The
most natural explanation so far for the smallness of neutrino masses is the seesaw

mechanism. We discuss it in the following section.

2.3 The Seesaw mechanism

Here one considers both the Majorana and the Dirac mass terms for the neutrinos
as in eq. (2.1). In reality M of eq.(2.1) is a matrix of dimension 2n where n is
the numbier of fermion generation in the model. As there are three generation of

fermions M is 6 x 6. Each entry in M is a 3 x 3 matrix. In the basis 1! = (1. V),

v = < M;, mp ) (2.5)

‘171}1)‘ ."\f]}

“we have

Mp is generally much larger compared to mp and A/,. This happens naturally
in most theories beyond standard model like left-right symmetric model or the
grand unified theories. For example, in left-right symmetric theory A/, is related
to the scale of SU7(2), breaking which is of the order of A/; ~ 10'° — 10"2GeV.
In $O(10) grand unified theory, Alp is of the scale of Aly or AM,. mp is taken to
be at the scale of the charged lepton or quark masses. The scale of 1/, is much

smaller than mp and A/p. Usually it is taken to be zero. In this approximation .\

we(Bom)

m,]_, Mp

becomes

Itis possible to transform .M to a block diagonal form by an appropriate unitary
transformation [3]. The unitary matrix U7 which is used for this transformation is
of the following form '

L= Lot .
U= < ) 3PP (l) - L/)'/'/) ) . where p = 1/1,;)"\[,?
5P

After block diagonalisation we get

—mpMp'md, 0 merp 0
PM : = .
! lers < 0 Mp 0 My (2.6)
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The eigenvalues of 1, ;; are the observed masses of neutrinos. They are expected
to be very small. If there is no mixing in mpy and 1/, is proportional to identity

then . is diagonal and the neutrino masses can be read off directly as

’”7/

Mp

My, =

where my; is the mass of the charged lepton or the quarks. We see that the hier-
archy in the generations of the neutrino masses is proportional to the hierarchy
in the square of the charged lepton or quark masses. In such a case the two mass

squared differences are

047 . a9yt
my —in, - iy

2 2
Ny =m’. —m

v vt = My MR
and 5 . omi=md o
St =y, —m,, = Mg TR
These give [4] ' .
Ay e\ .
(M) 08 27
Ay Mo

The above ratio of two mass square differences is incompatible with what is re-
quired for the simultaneous solution of the solar neutrino problem through MSW
mechanism and the atmospheric neutrino problem as mentioned in section 2.2.
The above result is model dependent and can change if one assumes some hier-
archy in the elements of diagonal A/j;. For example if one takes the Wierarchy in

AR to be the same as 1 ;, then

miyy
My = I —

Mp

where i is a proportionality constant with a mass dimension. Here we get the
neutrinos with the same hierarchy as that of 11 ;. The ratio %LT ~ 10", This is com-
patible with the required mass squared differences in solar and the atmospheric
neutrino problems. However with such hierarchical patterns in neutrino masses
the mass of the heaviest neutrino cannot be more than 0.1 eV, if the maximum
mass squared difference has to be of the order of 10~2¢ 1", Such a small mass will
be unobservable in the present laboratory experiments. If one assumes the hier-
archy in A/ as the square of m ; then all the neutrino masses turn out to be of the
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same order. Such a structure would be compatible with the small mass square
differences giving a set of almost degenerate neutrinos. The individual neutrino
masses are now not restricted to be small. But such hierarchy in the structure
of AMlpisa Véry unnatural assumption. One can avoid such hierarchical entries
in Al if one takes a non-diagonal structure. Such structures in Ay can be ob-
tained through horizontal symmetries. We present an example of such a model

in section 2.6.

2.4 Pseudo Dirac neutrinos

In this section we discuss models that describe the possibilities of pseudo Dirac
structure in neutrinos. Let us first introduce the Pseudo-Dirac structure with
two flavors of left handed Majorana neutrinos [5, 6, 7]. The Majorana mass La-

grangian in the basis 1] = (v, 1,1 is given as follows:

1 - . _
- , C . ¢ v ( c
—Ly = 5{171“1./6,41/&[‘ + 0y VL + eV vl 4+ HC

L

1 -,
= ;l/g' Mpvp + HC (2.8)

where

M, = < Mee My ) .> (2.9)
=

Mep My

The mass eigenvalues are given as

1 : _ .
g =5 (/u”, + oy, \/(m“ + 10 y0)t = Aoy, — Illfll)> (2.10)
[t can be seen that if M, is traceless then we get a pair of equal but opposite mass
eigenvalues given by
Mg =&\ /my + g, (2.11)
The states which diagonalize .M, are a pair of degenerate Majorana mass eigen-
state. Let us denote them by Ny, and N, We have
Ny cosf  sinf 1, m
r = . ‘ ol where tan2§ = —L (2.12)
Nyp —sinfd cos#d Yy,
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In this basis the Majorana mass Lagrangian takes the form

1 - ,
—Lay = (NN = NG Vo) (2.13)

Here m is the absolute value of the equal and opposite mass eigenvalues 11, , in

eq.(2.11) Let us define the states

o= N+ A
o= Ny — N, (2.14)
It is clear that \{' = \, and \§ = —\,. Hence these are Majorana states with

opposite C' phases. In the basis \; and \, the mass term becomes

al 1 - - ’
—La = 5‘"”(\1\1* \2\2) (2.15)
IfU = —\}72-( \1 + \2) then the mass term becomes
—Ly=m VA (2.16)

This along with the fact that “ # ¥ suggests that the mass term describes a
‘Dirac particle with- mass m. Hence we see that two Majorana neutrinos with op-
posite C'P phases and degenerate mass m behave as a Dirac particle of the same
mass. The Dirac mass Lagrang an is invariant under a global gauge transforma-
tion ¥ — ¢/ ¥, Hence the Dirac neutrino given by ¥ has a definite lePtOFI/I;Lllﬂbel
The flavor states 1, and 1/, can be written as a combination of ¥ and U which
have opposite lepton numbers. Thus the charged current glven by J, = €L,
will not conserve the lepton number symmetry satisfied by the Dirac mass La-
grangian in eq.(2.16). The lepton number is conserved only in the special case
when the mixing between ¥ and 7“ is maximal. This non-conservation of the
lepton number lead to a correction in the mass of the Dirac neutrinos ¥ and ¥
A split in the degenerate mass is generated. Such pairs of neutrinos are known
as Pseudo Dirac neutrinos [5]. Wolfenstein [5] showed that such neutrinos con-
tribute to the rate of double beta decay with opposite signs and hence tend to
cancel each other. If the mixing between the weak states and mass states is max-
imal, these contributions cancel completely and the neutrinos behave exactly as
expected of a Dirac neutrino [5].
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Zeldovich, Koponinsky and Mahmoud (ZKM) [7] showed that a Dirac mass term
for a neutrino can be constructed if one combines the left handed neutrino of one
flavor with the right handed antineutrino of another. The four component Dirac

field for ZKM neutrinos are

[ o= v 17
I = < ’/;()L > I ( ’/4(14 ) . (2 )

The Dirac mass terms for these neutrinos are

L (TP + ¢C \11(")

—m
2

e C ¢ e
= ey, v vy, i)

1

—m
2

(Vo ver, + 5 m0) + HC . (2.18)

This is exactly the mass Lagrangian of eq.(2.8) with m,, and i, equal to zero.
Thus the Majorana mass matrix .M, of eq.(2.9) takes the form

M, = < 0 "”Ot" ) (2.19)

My

The mixing matrix that diagonalize this is the maximal mixing matrix given by
# = I in eq.(2.12). The lepton number conserved in the mass Lagrangian here
is L. — L,. In this special case this lepton number is not broken in the chs rged
current interaction of the neutrinos. This is as noted earlier due to the maximal

rotation nceded for diagonalizing M,

2.5 Horizontal Symmetries

To get pseudo Dirac structure in neutrino masses one has to get a suitable struc-
ture in neutrino mass matrices. Such structure may come from horizontal symme-
tries rather than being ad hoc. Horizontal {7(1) symmetries have been used long
ago in order to constrain the quark [8] as well as neutrino [9] masses. The horizon-
tal symmetries have also been studied [10] with a view of obtaining large mixing

among neutrinos required in order to solve the atmospheric neutrino problem
(11, 12].
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While the horizontal symmetries can give the required pseudo Dirac structure to
the neutrino masses, it would be interesting to see how it can be incorporated
within the Seesaw mechanism introduced above in section 2.3. This is because
in most models beyond standard model with right handed neutrinos, Seesaw
mechanism is the most natural way to get a very small mass for the neutrinos.

We study such a model in the next section.

2.6 Pseudo Dirac Neutrino in Seesaw model

2.6.1 The Model

The horizontal symmetries can give structure to A/;, 1 and A, of the neutrino
mass matrix of eq.(2.5). Let us consider an SU(2);, x ['(1)y model containing right
handed neutrinos and a singlet Higgs 1. A horizontal {7(1) is imposed in addition
to SU(2) x U(1)y [13].

' generation of leptons

We shall require U/(1) to be vectorial and assume that the
carry the U(1) charge X; and that no two .\ are identical. The ordinary Higgs
doublet @ is assumed to be neutral under the /(1) symmetry. As an immef{i—
ate consequence, both the charged leptons as well as Dirac mass matrix mp'in
eq.(2.5) are forced to be diagonal. The Majorana mass term can still have texture.
. We are interested in the Fritzsch type [14] of structures for A/;. The successful
predictions of the Fritzsch type of structures for quark masses are discussed in
chapter 1. Such structures can be easily obtained here by assigning a non-trivial

U(1) charge X to ). The My receives contributions from the following terms:
1.
—Lp= ;l//‘,i(."\f,'.,‘ + F,'J‘I/ + F;J-I]X)C'I//“ + . (220)
All the three terms are possible if total lepton number is not assumed to be con-

served [15].

Now consider the specific assignment

Xy o= —iNy = X .
*\rl —i \r.‘; (221)
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with X3 # 0. Then A/; in eq.(2.20) are zero for all / and j: Moreover only 'y =
Ly, Iy and T, = I, are allowed to be non-zero. This leads to the following

texture for Ap:

, 0 0 A,
' A,[[g == O ,\_[;; .\[2 . (222)
Ay M, 0

A, = Fi:_;(‘)}),ﬂ’[:} = [y(y) and AL, = T, (y7). If we denote the elements of the
diagonal matrix n:p by m;(i = 1,2.3) then the effective mass matrix for the light

neutrinos is given by:

Meyp = —)711)4\[1—;1)'11';)‘
Illf;\[; —;\[|‘\[-glll‘|l/l) .‘.[|A\_[;;/II|III;; 1
= — ~;‘\[1.~“\[27/1|'n/2 ;\[fmﬁ » ,f\,[f-;\[;, (2.23)
MMy g () 0

We shall assume parameters 1/, , 4 to be similar in magnitude (often we will take
them identical for some of the numerical estimates). In addition we will also
assume hierarchy in the Dirac masses 1, << i, << my. Both the above as-
sumptions are natural assumptions made in the usual seesaw picture [12, 16].
But since Ay is different from identity, the resulting pattern of neutrino masses is
completely different from the usual seesaw predictions. The eigenvalues of ;.
are given as follows:

NNy {1 + 1 ¢ } )
m, = - —— ‘
! M, 26 -1 a

ms {1 L€ }
m, ~ ——= —_—
’ ALy 1 —4?

MmN {1 4 1 € } (2.24)
My, ~ — = )
s .\[1 2 0 + 1
where
_ (ml )2 (A[-z)z
e = | — S
1y A

. mpiny My

)y = o 25

( ms (.\[l) (2:25)

The parameter ¢ << 1 with the above stated assumptions while § could be O(1).
In the e — 0 limit, two of the neutrinos are exactly degenerate while the presence
of the ¢ term introduces small splitting with the (mass)* difference

N AL 2 el
A"” ~ 2 ( A[| ) 52 - l . (226)
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Hence for e << 1, these neutrinos form a pair of pseudo Dirac particles [5].

The conventional Seesaw mechanism gives a hierarchical spectrum in the neu-
trino masses as discussed in section 2.3. To remove such a hierarchical structure
one had to assume hierarchical structure in the eigenvalues of the Majorana mass
matrix Mp. Such an assumption is rather unnatural. In contrast one could obtain
non-hierarchical structure here without postulating any hierarchy in elements of
.\[]g

The occurrence of a pseudo Dirac neutrino here is somewhat of a surprise. One
would have expected it [6] if both mp and A possessed some approximate
global symmetry. For example, if A/, is taken to be small, A/, is approximately
invariant under L, — L, and one could have expected a pseudo Dirac neutrino.
But Ay in eq.(2.22) does not possess any approximate global symmetry as long
as M, ~ M, ~ M. Despite this, the hierarchy in m; (combined with specific
texture for AR) makes 1.y approximately invariant under L, — L, symmetry
resulting in a pseudo Dirac neutrino. In practice ¢ could be quite small, e.g. if
my(my) is identified with m, (1) then e ~ 107" for M, ~ A/;. Thus degeneracy of
two neutrinos is expected to be quite good.

The mixing among neutrinos implied by eq.(2.23) can be easily worked out for
€ << 1. In general, the eigen vectors of m,;, are given by

U, = N; | vy
7
with
1,0 .
N, — Iy,
vy = B Yi
L0
m
5= =2y (2.27)
My,
where )
: My m. oy AL
L0 jmy IR
m, = - = —m&; -m:'j,, =—% and B= —222,
.‘\[1» ! * ."\[;; ."\[] .\[;
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 With My, given in eq.(2.24), one could determine ¥ i and hence the mixing angles.
The three wave functions are approximately given by
1 1 0 | 1
Uy~ —1 0 U, =~ 1 and ¥y & —= () (2.28)
V2 0 V2|
T, and ¥, are maximally mixed to form a pseudo Dirac neutrino. Deviation of
this mixing angle from 45° is very small. Using eqs.(2.27) and (2.24), we see that

1 ¢
H( H '\11_”‘
tan 13 3_1

(2.29)

The angle 6, represents mixing among 1, and 1/, states produced in association
with ¢ and 7 respectively if the charged lepton mass matrix is diagonal as is the

case here. This has important implications for the solar neutrino ploblem as we
will see in the next section.

A of eq.(2.22) possesses a generalized Fritzsch type [14] structure with one pair
of off-diagonal and two diagonal elements being zero. Other similar structures

with this feature are as follows.

[0 x 0] 0 x 0] [0 0 x 7,
(Mpl)=| x 0 x (Mp2)= | x 0 x |: (Mp3)=1 0 x x
' L 0 x x| L 0 x x| L X x 0]
[0 x x] [ x x 0] [x 0 x|
(Mpd)=| x x 0 |: (Mpd)=| x 0 x (Mp6)=1| 0 0
L x 0 0 | L0 x 0] L X x 0 |

Here x denotes a non-zero entry. Any of these structures can be obtained by im-
posing a U/(1) symmetry similar to the one considered in the text. If all the entries.
in a given Mp are assumed to be identical (and denoted by Af) then eigenvalues
Ai(i =1,2.3) of m, ;. satisfy the following characteristic equations:

771';-31717171.',2‘.
Ay = i (2.30)
ming _
/\1/\2+/\|/\:_;+/\2/\:§ = d[,z (231)
—m?—m?
e 232)
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with i # j # k and p either j or k. In the absence of $# ‘, in eq.(2.32), the above
eqs. are solved by the elgenvalueb, ik Rk and ——L Hence as long as m,
term represents a small correction, one would get a Pseudo Dirac neutrino. This
naturally depends upon the exact value of the masses n 3. [f 11,3 are identified
with my ¢, (or m, .), the 'm.f) term amounts to a small corrections and one would
obtain Pseudo Dirac neutrino in all cases except (1/;;4) and (A/;5). Note that the

example studied here have the Majorana mass matrix A/;; in eq.(2.22) like M3

2.6.2 Phenomenological Implications

We shall now investigate the implications of the specific structures for the neu-
trino masses and mixing derived in the previous subsection. These clearly de-
pend upon the unknown values of the Dirac masses 11;, To be specific, we shall
assume these masses to coincide with the up-quark masses. Moreover, we shall
assume M, = M, = Al and denote them by a common scale A/. The parameters

¢, d and A then determine neutrino masses and mixing. It follows from eq.(2.25)

that
. M1y 3[;;) m,, .
Yy = — ] = ~ =~ ().4-0.8
‘ < m? ) <J[l m,,

2
¢~ <’—’-’—> ~d x 1077

1,

where we have chosen m, = 10A¢V, my = 100-200G eV and . = L.OGeV . Also
from eq.(2.24), we have

m,, | ~ |, |. Hence independent of the numerical value
of 1/, all three neutrino masses are expected to be of the same order. This has to

be contrasted with the conventional seesaw prediction
My, 2 My 10y, = "”f: : mf : mf

obtained with similar assumptions on parameters but with 1/ proportional to
identity. The common mass of all three neutrinos would lie in the range (107"~
1¢17) for the Majorana mass scale A/ ~ (10'8-10%)Ge V7. Hence for values of A in
the intermediate range ~ 10”Gel”, all three neutrinos would have masses in the

eV range. These neutrinos can together provide the necessary hot component of
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the dark matter [17] which réquires Y m, = Tel’. Moreover, such neutrino spec-
trum could have observable consequences for laboratory experiments as well.
Note that two of the neutrinos are highly degenerate. Their (mass)® difference is
given by eq.(2.26)

o, €l

Ay 2 2(m,, )15—2—:—1 (2.33)

It follows that if m,, ~ m,, ~ O(cV) then their (mass)’ difference is naturally
expected to be around ~ 107"¢17. This value falls.in the range required to solve
the solar neutrino problem through Mikheyev-Smirnov-Wolfenstein [18] mecha-
nism. Thus one can solve the solar neutrino problem and at the same time obtain
an electron neutrino with mass in the observable range unlike in the seesaw mod-

els considered so far in the literature [12, 16].

The detailed analysis of the four solar neutrino experiments constrain the mixing
angle as well [19]. The mixing angle between 1, is predicted to be large in
our case. It turns out in fact to be too large to be consistent with observations if
charged leptons do not mix among themselves. If the vacuum mixing angle is
close to m/4 then the survival probability for i is independent of energy. Such
an energy independent survival probability is not favored when the results of all
four experiments are combined. They do allow large angle solution but sin’ 26 (in

our case § = f,3) is required to be [19]
sin® 26y < 0.85

This constrain is not satisfied by the angle #,; of eq.(2.29). 8, represents the mix-
ing between physical v,-v, states if the charged lepton mass matrix is diagonal
as is the case in subsection 2.6.1. The correction to f,, = 6,3 is proportional to
¢ ~ 107" and is too small to cause significant deviation from 7 /4. Hence, one
must have contribution from the charged lepton mixing in order to obtain MSW
solution consistently. This needs enlargement of the model. For example, con-’
sider adding two more Higgs doublets @, with U/(1)y charges 0 and —%X_-; re-
spectively to the model presented in the last section. With a suitable discrete

symmetry (&}, = —®/ ); eg = —cp), |, can be made to contribute only to the



charged lepton masses. These are now described by a mass matrix

1 mee 0 Mer ‘
M=, 0 m, 0 ' (2.34)
0 0 m,; :

The neutrino mass matrix m; and hence Mgy remains the same as before. Be-
cause of the structure for 1/ in eq.(2.34), the effective mixing angle describing

ve-1/r MiXing is now given by
' . 9(1’ ~ 91»’.& -

with
20, p

tan 2d =
. 2 D2 a2
) me, + me.—imz_

Due to contribution from ¢, 8., need not be very close to 7 /4. The large angle
MSW solution typically needs [18] sin®26., =~ 0.65-0.85. With Bz ~ 45", this
translates to ¢ ~ 10-20°,

The present model makes a definite prediction for the neutrinoless J4decay. The
amplitude for this process is related to the (11) element of the neutrino mass ma-
trix in the basis in which charged lepton mass matrix is diagonal [12]. It follows
therefore from eq.(2.23) that in the model of the earlier section, neutrinoless 3
decay amplitude is proportional to

L”i <J—-[£>Z = €m
.‘_[3 _-’\.[[ "2

Hence unless m,, is very large ~ 10%¢1, the 1-less 44 decay is not observable.
If the charged lepton mass matrix is non-diagonal as is required here in order to
obtain the right amount of mixing for the MSW solution to work then the 1-less
171 decay amplitude also changes and is now proportional to

2 a ; ; ’
cos (.-’)F.’I')I,,,_, — 2sin @ Cos am,,

with i, and m,, given by eqs.(2.24). For ¢ ~ 10-20 and My, ~ n, this corre-
sponds to ~ (0.3¥().G)-1)z,,,1. Hence, the 1, mass ~ 2¢1" could lead to an observable
signal in the w-less /74 decay [20]. With my, ~ i, ~ i, ~ 2¢17, one can also
obtain the ~ 7¢V needed for ob taining hot component in the dark matter [17]. We
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have concentrated here on a specific structure among various possibilities (A/,1
to Mg6) that lead to pseudo Dirac neutrinos. The quantitative consequences of
other structures could be c:onsid»e'rably different. Moreover, within the specific
texture, ‘;ve l{ave assumed ;5 to coincide with Mycq. Such an identification
‘need not hold [21]. But the qualitative conclusions, namely the occurrence of
- pseudo Dirac neutrino due to approximate I, — . symmetry of ., is more
general and holds as long as m; << 1y, << my and My~ A, ~ ALy, This is a
naturally expected pattern even if m, , 4 do not exactly coincide with ., . Inter-
esting predictions discussed above still remain true if 1 1,23 are chosen to coincide
with the corresponding charged lepton masses instead of the up-quark masses.
Now € ~ (m, /m,)? and § ~ m, m,/m?. Hence Ay, given in eq.(2.33) now becomes

Ay~ %(m,,,,)" x 107"

o

Hence form,, ~ 1¢1”, one can still solve the solar neu trino problem through MSW

mechanism. m,, ~ %= falls in the eV range if A/ ~ 102 Gel,

2.7 Conclusions

Experiments indicate that neutrinos are possibly not massless. However the up-
per bounds on their masses are three to four orders of magnitude lower than the
corresponding charged lepton masses. As right handed neutrinos are not intro-
duced in the standard model, the Dirac mass term cannot be written for them.
Majorana mass cannot be introduced as it needs a triplet Higgs. If one goes be-
yond standard model then both Dirac and Majorana mass terms can be written
for neutrinos. In such models the most na tural way to understand the smallness
of neutrino mass is through the Seesaw mechanism.

The solution to the solar neutrino problem through MSW mechanism suggests
a mass square difference between two flavors of neutrinos to be 107"¢172, The
solution to the atmospheric neutrino problem require the presence of a pair of
neutrinos with a mass square difference of 10-* (12, [f neutrino masses are in
the range of eV or above then the required mass squared differences restricts
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the neutrinos to be approximately degenerate in mass. Thus one would need a
Pseudo Dirac structure in the neutrino masses.

Wolfenstein [5] showed the possibility that two Majorana neutrinos that are de-
generate in mass but have opposite C phases can combine to form a Dirac particle
and may cancel their contributions to double beta decay rates. The lepton num-
ber which is conserved in such a Dirac mass term in the Lagrangian is not in
general conserved in the charged weak interaction terms. The degeneracy in the
Majorana neutrino masses is thus lifted at higher orders giving a pair of Pseudo

Dirac neutrinos.

Seesaw model as conventionally analyzed generally lead to hierarchical neutrino
masses. In particular, if the Majorana masses of the right handed neutrinos are
large (> 10°Gel’) then at most 1, could have mass around eV range and v, is not
expected to have mass near its laboratory limit. Such hierarchical pattern along
with the aforementioned small mass squared differences would constrain all the
neutrinos to have masses below 0.1 eV. However certain textures for neutrine
masses lead to very different predictions. A particular model analyzed in detail
has all three neutrino masses in the eV range. Two of the neutrinos are nearly
degenerate constituting a pair of pseudo Dirac neutrinos. Their (mass)?® differ-
ence could naturally be in the range required to solve the solar neutrino problem.
Interesting aspect of the model worth reemphasizing here is the fact that (near)
degeneracy of two of the neutrinos result here in spite of the fact that 1/; does
not possess any global symmetry. The hierarchy in eigenvalues of 1), and tex-
ture of Afy; conspire to make i, ;. approximately invariant under a global /(1)
symmetry resulting in almost degenerate pseudo Dirac neutrinos. This feature is
shown to follow if 1), is diagonal and 1/, has a generalized Fritzsch structure.
Both these can be enforced by a global {'(1) symmetry. The study made here
highlights the fact that the seesaw model can accommodate a completely differ-
ent pattern of neutrino masses which is not thought to be among the conventional

predictions of the scheme.
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Chapter 3

CP Violation

Weak Interactions violate parity maximaﬂy. It was not known whether charge
conjugation and parity together is violated. The CPT theorem [1] states that ev-
ery relativistically invariant local quantum field theory is automatically invariant
under the combined operation of charge conjugation(C), parity(P), and time re-
versal(T). But there is no such restriction on CP. A violation of CP indicates a
violation of T. In this chapter we discuss processes that give indications of CP
violations though very small. We also discuss theoretical models to explain the

small CP violation.

3.1 Neutral Kaons and CP violations

Consider the neutral kaons A" and LI which are charge cbnj ugates of each other.
They are strange mesons with the strangeness quantum number +1 and -1. The
states |\'¥) and | %) denotes the neutral kaon states at rest. Thus we will have
CP|KY) = —|KY)
CP|LY) = —|Lh"Y) (3.1)

The negative sign is taken as a convention. The CP eigen states are given by

&)
)
"

S0y 1 () 0
A7) = E(IA )+ 1)) (
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) = )

\/— ’ [‘ “)

W1th CP eigenvalues -1 and +1 lespectlvely

The strong and the electrbmagnetic interactions conserve strangeness but the
weak interactions do not. Thus A and L do not have definite lifetimes for
weak decays nor definite mass. The states with definite mass and lifetimes are
denoted by the short lived |1Y) and the long lived |A7). They are combinations
of [K%) and |LK70). |IY) decays into two significant modes 7+7~ and 797 while
|A}) predominantly decays into 7+7~ 7Y . The decay products of | ') have a CP
of +1 whereas that of A'Y have CP of -1. If CP is a good symmetry of nature then
one can identify I} with K'Y and K'Y with A2,

It was found [2] that A} decays into 7+7~ though one part in thousand. Such
a decay indicates that CP is violated in weak decays however small. LY and
I’y cannot be identified with the CP elgenstates L' and K. However as the
observed CP violation is small A? and A* s can be written as

IBE) = (1+]af)s IK“’> + et K2%))
B5) = (1+]af') 5 (IK%) + &|K')
where ¢ and € are small parameters. In terms of strange states i’V and K we
have
0 l"f‘ ,61' _% . S ‘
-0 _ 0
|K?) = T[Hel)m )+ (1 =€) R)]
o (14 lea|?) %
I‘AS> ~——‘ "—T [ 1+ €9 II\ ) 1 - €3 l[&“) J (33)
Let us denote Hyy - in the A® — 0 basis as
Hl] Hl‘l
Hy = 4
! < Hy ) B4
Under CPT
Hyy = (K| Hy|LKY) = (K9 Hy |[R0) = H,, (3.5)

When Hyy acts on |I) and |Ns) we get
f{u-' l[xv;)) = .’\[/ l[\_;’>
CHyw|[Ky) = Ag|hY) (3.6)
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From eq.(3.3) and (3.6) we get
Hiy(l+ea)+ Holl —e) =A(1+¢) _
Hy(L+ ) + Hyp(1 — ;) = Ap(1 =€) (3.7)

With the CPT condition eq(3.5) and eq(3.7) we get
1 —¢ Hy,

l4+e  \ Hpy (3:8)
Similarly
‘ l—e  [Hy (3.9)
T+e Hy,y .
Thus under CPT we have
: 4 L—e  1—e (3.10)

14 e _1+62

e VHi, — VHy
I : VHi;+ VHy

€ is the CP violating parameter in (A — ') oscillation. From eq.(3.3) we see that

giving

|1;) and | K's) are not orthogonal states
(NL|Ns) = € + €; = 2Re(¢)

The decay modes Ay and A7 into two pions can be expressed in terms of the
decay amplitudes of 1'* and A" into two pions. The final state pions are bosons
and hence have to be symmetric. Thus the final pion states can have isospin I = 2
or 0

Let
Ao = (mm, I =0|Hyw|L")
Ay = (mm, I =2[Hy|L")
Given 4y and A, one can obtain the amplitudes of K} — atn=, K'Y — atr— It
can be shown that the ratio of these amplitudes is '
gt = 2:1:::52::2%; = ¢+ € ‘ (3.11)

where €' is proportional to the phase difference between 4, and Ay, € is a new

C'P violating parameter. Even if A and LY are orthogonal, one can have CP

violating decay A'Y — #t7~ if ¢ is nonzero.
L
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3.2 Fermion mass structure

The lepton and the quark masses show hierarchical structure. For e, g in the quark

sector
my ~ ()(/\l) : Q_I_li ~ ()(/\'\‘)
Me "y
=00 5 Mo
iy my
In the charged lepton sector
M N ()(/\‘;) : e ~ ()(/\l) (312)

my, Mme

Here the value of \ is equal to the Cabbibo angle ¢ ~ 0.21 Such hierarchical
structure indicates specific texture in the quark and the lepton mass matrices. The
quark mixing angles are also determined from these textures, Frogatt and Niel-
son [3] investigated whether such textures at low scales can be obtained through
renormalisation group evolution of the Yukawa couplings at high scales where all.
the entries in the Yukawa matrix are of the same order. But they found that such
hierarchical structure cannot be obtained just from evolution through renormali-
sation group equations. One has to impose specific selection rules to get suitable
- textures. Such selection rules can be obtained by imposing discrete symmetries
[4]. However Frogatt and Nielson employed continuous family symmetries to
obtain such textures [3, 5]. Most of the fermions that we know today are mass-
less to start with. This can be achieved by imposing a singlet Higgs scalar 1, in
the model with zero horizontal charge R. The vacuum expectation value of o
is very high and generates only super heavy fermion masses which have vecto-
‘rial assignment of R-charge. These fermions attain very high mass and are not
observed at the presently attainable energies. The light fermions are assigned
different charges for left and right handed components. They are massless in the
limit of the exact conservation of the horizontal symmetry. However if an ad-
ditional singlet Higgs 1, is introduced with one unit of horizontal charge (R=1)
then the light fermions can get mass through coupling with ;. The following

non-renormalizable terms give mass to the light fermions.

. ~ ) nij
—Ly = gijir )P <<T:l—>> (3.13)
]
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®y is the usual Higgs doublet of Standard model with zero horizontal charge R. ‘
gi; are the Yukawa couplings and are complex numbers of order one. This term
gives a non-zero entry in the (i, ])’ " position of the mass matrix if the R-charge of
i1, and ¢ differ by ;. The mass matrix in this way gets hierarchical entries in

terms of a small parameter ¢ = L,) § given by
1‘[,'_,' ~ (/,‘J;F”"j

Let the R-charge of the right handed fermions be «; and that of left handed fermions
be b;. Then n;; = b; — «;. With this the mass ratio of two fermions is given as [3]

i — e(b,'—u,-)—(le—uj) = (C(l),'—(rj)—(u;—nj) (314) )
m;
If the charge assignments are such that

bi >b; and «; < «a; fori < (3.15)

then the fermion masses get a hierarchical pattern as ¢ is a small parameter. The
elements of the unitary matrix 7 which diagonalize the mass squared matrices

MM are given by[3]

S\ G
Uij = wijeli =% ~ (i> (3.16)
?71-J'
where B
Cij = (1 - b':;}“) (3.17)
J

and w;; are complex quantities related to g;; and is expected to be of O(1). With
the charge assignments in eq.(3.15) we have

In particular L—‘lji = —1leads to Cj; = 5 and from eq.(3.16)

ny
U~ [— ' , (3.18)
my
This is what is needed to give the correct Cabbibo mixing angle f; in the down
quark sector 8¢ & | /14,

e
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The breaking of the U/(1)y symmetry by non renormalizable terms give a hierar-
chical texture of fermion mass matrices in terms of powers of the small parameter
e. This texture then gives the correct hierarchical pattern in the masses. The mix-
ing angles are also consistent with the experimental observations. However this
mechanism does not give any restrictions on the C'P violation. Thus from this
model one cannot understand the smallness of the C'P violation. We discuss in
detail a similar model in section 3.4 which in addition to giving right hierarchies

and mixing also conserves C'P. The inclusion of non renormalizable terms then

violate C'P by the desired amount.

3.3 Origin of C'P violation

Various models exist to explain the C'P violation. We will discuss sources of ¢ P
violation in gauge theories. There are two sectors from which C P violation can.
come. The weak charged current sector violates CP due to the complex phase
in the CKM matrix. Also, C'P can be spontaneously violated in models with
extended Higgs sector.

The CP violating parameter ¢ measured from the A0 — {7 decays can be ex-
pressed completely in terms of the mixing parameters and the phase in the CKM
matrix [6]. As a result it is expected to be small. The final state phase shifts in the
LK% — 27 decays were calculated taking into account the CKM matrix [7,8]. Thus
€' in eq(3.11) is also shown to be related to the CKM matrix and is expected to be
“small.

Even if the complex phase in the CKM matrix is zero there can be CP violation
provided one extends the Higgs sector. In a model with two Higgs doublets,
Lee [9] showed that even though CP can be arranged to be conserved by the

Lagrangian it is spontaneously violated by the ground state. Let us consider this
model in some detail. The most general potential for two Higgs doublet in a
gauged SU(2) x U(1) theory can be written as

V(0L 05) = —m2eld, — nldlo, + A (D10 + ayy(B1D,)?
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+ay5(B1 D, J(DIdD,) +,b12(q){'(]}z)((pgq)l )
+ (@1 @2) {dia( @] Dy) + din( D)) + dyy(BLD,)) + H.c.] (3.19)

The Vacuum has a degeneracy due to the SU/(2) symmetry. One can choose the

vacuum such that the vacuum expectation value of ®, and &, is the following

(B) = ( . 00 ) (D) = ( ((‘) ) (3.20)

1¢ 2

where e o
cos @ = — vt ity (3.21)
4([12'(’1'1’2
Under CP let ®; transform as follows
(CP)B(CP)™" = ¢, - (3.22)
From (3.19) it is clear that if ¥'(®,, ®,) is invariant under CP then
oy —ay =0 (3.23)
Under CP the vacuum transforms as
CP|0) =0 A , (3.24)
As CP is antiunitary
{0 (CPYB(CP) M0 = (0]@;]0)~ (3.25)

For a vacuum invariant under CP we have |0') = |0). Thus we get from (3.25) and
(3.22)
€4(01%;(0) = (0]&;]0)" ‘ (3.26)

From (3.20) we get
o ' . ’ ap=-20 and o, =0 (3.27)

We see that these values of a; and a; are incompatible with eq(3.23) unless § = (.
Thus one can have a suitable range of parameters in the Higgs potential for which
CP is spontaneously broken by any choice of the ground state. The two Higgs
doublet model naturally generates mixing in the fermions and gives flavor chang-
ing neutral Higgs current (FCNH). The experimental bounds on flavor changing
neutral processes then give the lower bound on the Higgs mass to be O(TeV) in
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order to sufficiently suppress these processes. Such a heavy Higgs would gener-
ate a very small CP violation and this would not contribute significantly to the
observed amount of CP violation. The problem of FCNH is eliminated in a class
of model prdposed by Weinberg [10]. In these models with two generations of
quarks and with one Higgs or two Higgé doublets CP is conserved in all sec-
tors of the theory. CP conservation here results from a careful choice of discrete
symmetries that eliminates certain terms in the Higgs potential and the Yukawa
couplings with the fermions[10, 11]. For e.g. consider the following discrete sym-
metry 4
Py = =Py, Py = Oy dpi = —dpi Ui = up; (3.28)
Such a symmetry ensures that only ®; couples to the down quark while ¢, cou-
ples to the up quark. Thus flavor changing neutral current is naturally eliminated
in this model. This discrete symmetry would also require ¢, = fi, = 0 in the
Higgs potential in eq(3.19). The condition on the CP phases of ¢, and ¢, given in
eq.(3.23) also changes to
' ap—Qy =N (3.29)

From eq.(3.21) we see that now # = (2m +4 1) /2 Thus from (3.27) we see that it
is possible to have a CP conserviﬁg ground state if n = 2m 4 1. Thus there is no
spontaneous CP violation in this case. However if there are three Higgs fields in
the model then CP is spontaneously violated [10]. Even if there are more than
two generations of quarks, one can have CP conservation in the gauge vector
boson sector if one imposes ‘Natural flavor conservation” (NFC) in the model
[12]. Consider the Yukawa interaction in the Lagrangian given by

—Ly = 'ez’iz,PE}‘I’a"l/’jre (3.30)
The CP invariance imposes I'{; to be real. NFC restricts I'* in such a way that
all of them can be diagonalized simultaneously by biorthogonal transformation.
After spontaneous symmetry breaking the neutral component of ¢ acquires a

vacuum expectation value
{ ) <(I)OC\> = @

“where v® canbe complex in general. But due to the property of NFC the mass
matrix given by I'"v* can be diagonalized by the above mentioned biorthogonal

transformations through the matrices O, and OpP where P is a diagonal phase
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matrix [12,.11]. This happens for both the up and the down sectors. This ensures
that the‘CKM matrix given by (0})"0f is real where superscript « and  stand

for up and down sector.

NFC can be achieved by suitable set of discrete symmetries. In these class of
models spontaneous CP violation can only come from the Higgs sector if one has
more than two Higgs doublet in the model [12, 11]. CP is violated here by the
charged Higgs boson exchange. The contribution of the charged Higgs mediated
process to the neutron electric dipole moment (e.d.m) was found to be in excess
of the experimental bound [10]. However if one considers the contribution from
the neutral Higgs exchange processes [13], then the neutron e.d.m was shown
to be possible within the experimental bound. Liu and Wolfenstein [14] studied
a two Higgs doublet model where the discrete symmetries necessary for NFC
is broken explicitly in the Lagrangian by a small amount. The discrete symme-
try is also broken by another small parameter that makes ¢, and f;, zero in the
Higgs potential (3.19). This gives spontaneous CP violation as discussed above.
As NFC is broken by a small parameter FCNH is suppressed and the Higgs now
can be light O(100GeV). This gives CP violation in the flavor changing neutral
Higgs current(FCNH). In another two Higgs doublet model [15] discrete symme-
tries are introduced so that they don’t completely eliminate FCNH but gives a
suppressed and hierarchical nature to it. As a consequence Higgs as light as 10
GeV is consistent with the observed A'; — 'y mass difference. CP is violated both
in the charged and the neutral Higgs sector.

The approximate conservation of C'P can be naturally understood if it arises as
an automatic symmetry of the renormalizable Lagrangian, We studied [16] a spe-
cific model with this feature. In this model the horizontal symmetry gives the
necessary hierarchical pattern and the mixing in the mass matrices as discussed
in section 3.2. CP turns out to be an automatic symmetry of the renormalizable
Lagrangian. The violation of CP is due to non-renormalizable interactions and
is related to the breaking of U/(1); at a high scale making it naturally small. The
model is discussed in detail in the next section.
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3.4 Automatic CP‘ invariance

In this model we impose a horizontal symmetry on the Lagrangian that gives
Fritzsch structure [17] for the quark mass matrices and also leads automatically
to a C'P invariant Lagrangian. In realistic case, one needs C P violation as well
as deviations from the Fritzsch structure [18]. Both these occur through non-
renormalizable interactions when the horizontal symmetry is broken at very high
scale. The smallness of C P violation in this case is thus intimately linked to the

scale of horizontal symmetry breaking.

We consider an extension of SU(3)©5U(2)»U(1) toa left-right symmetric theory
[19]. In addition to the GLr = STU(3) © SU(2) o SU(2)p 2 U(L)(p-r) group we
need to impose a horizontal symmetry U(1)y and the Peccei-Quinn [20] (PQ)
symmetry U(1)pq in order to geta fully C P invariant theory.

The U(1l)y is a gauged horizontal symmetry which is chosen to obtain texture
zeroes in the quark mass matrices. The choice of U(1) is constrained by the re-
quirement of anomaly cancellation. Anomalies are seen to cancel if one chooses
the U(1)y charges (1, 0, -1) for the left handed quark fields denoted in the weak
basis by ¢i. The corresponding right handed fields are chosen to have opposite
U(1)y values. We need to introduce three bi-doublet Higgs fields &, wiith the
U(1)g charges (1, -1, -2). These Higgs fields are needed in order to obtain essen-

tially real but non-trivial quark mass matrices with non-vanishing masses and

mixing angles.

The U(1)pq is a global Peccei Quinn symmetry which serves dual purpose here.
It allows rotation of the strong C P violating angle ¢ [20] and it also forbids some
crucial couplings in the Yukawa and Higgs sectors. Under the PQ symmetry,
dp — €Pqlp and O, — e P®,. Rest of the fields remain invariant. Given this
choice, the most general G = Grr © U(1)pq U(1)y invariant Yukawa couplings
can be written as

~Ly = TaPaqr + H.C. (3.31)

47



with , : ' ,
0 a O /0 0 0 0 0 0

Dy=]a 00 |50y=]0 0 b [y=|000|; (3.32)
0 00 0 b 0 00 ¢

We have imposed here the conventional discrete parity [19] ¢ ¢ ¢}, and O, &
®!. CP is not imposed as a symmetry and hence the couplings «, b appearing
in I'y are complex in general. But their phases can be rotated away leaving a
C'P invariant Lagrangian. In order to show this, we first concentrate on the G

invariant scalar potential for the fields ¢, and ¢, = 7 ®* 7, :

Vi(®) = pltr(®f D)+ A {ti(D! D,)}°
+/\](\./3f']'((l)l\\_(]jd)/})?L’I'(‘T)I\(I)/_;)
01t (PaPLDa D] ) + poatr (DL D, DD ,) + paatr(D, O D, D)

57 Lt (D) (DBL) + Aot (D] B )tr(B],D)
a#3 : . )

_|_($]0‘/3f7-( (I)I\‘ (I)/j (I)L O, ) - ()”m/jf»,-( (I)L (I)/j (I)i D, )

+0saptr (@] DBl D) + 6 st (BB, D)

+ a0t (Pa DD Pl ) + 8, pt1(Dadl D))} (3.33)

The combined requirement of hermiticity and /(1) < U7(1) po symmetry forces
all the parameters of 1{(®) to be real [21]. As a consequence, C'P appears as
a symmetry of V(@) although this was not imposed. One could choose a C P

conserving minimum for a suitable range of parameters:

(D) = [ e 0 } (3.34)

Rad

where rq, and rqq are real. Eqs.(3.32) and (3.34) imply the following quark mass

matrices:
0 UKy 0
A{u,d = ((*H-lu,r/ 0 b/\"z”‘rl (335)
0 [)*H'Zu,d CR3u,d '

Note that the A, and 4/, allow for general up and down quark masses in spite of
the correlated structures. However because of this correlation, A/, and A, can be
simultaneously made real with a diagonal phase matrix P :

N 0 |kt ua 0

Myg=PM P" = | lalkia 0 |blrgug (3.36)

0 ]()l/\fz,,’([ IC"/\'v.‘}u.d
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Phases in P can be easily related to that'in « and ). ﬂl,,(, are diagonalized by
orthogonal matrices ‘ _
Ou,dﬂfu,(l();[,:(] - diag("niu.(/)

Let us now discuss the C'P properties of the model. Because of the fact that
both M, and M, can be made real by the same phase matrix P, the Kobayashi
Maskawa matrices in the left as well as the right handed sectors are real. The
reality of rq,q also imply that the 117, — 11 mixing is real. Hence gauge inter-
actions are C'P conserving. Moreover the matrix P appearing in eq.(3.36) in fact
make the individual Yukawa couplings real, i.e.

PT,P' =T,| (3.37)

for every a. This has the consequence that the couplings of the neutral and
charged Higgses to the mass eigenstates of quarks also become real. As a re-
sﬁlt, the Higgs interactions would also conserve C'P as long as mixing among the
Higgs fields is C'P conserving. This is assured by the C' P invariance of 1 () and
reality of (®,). It follows from the above arguments that the model presented so
far is in fact C'P conserving although one did not impose it anywhere.

We have not yet introduced fields needed to break SU2)pe:U(L)pg 3 U(1) . This
can be done without spoiling the automatic C'P invariance obtained above. As
a concrete example let us introduce the conventional [19] SU(2) triplet Higgses
Ap,r with zero U(1)y and U7(1) rg charges. The breaking of the P() symmetry
by (®.) generates a weak scale.axion. We need to introduce a Gy, = SC7(2),
ST(2)p o U(1) -y, singlet o in order to make this axion invisible [22]. o is taken
to transform under P() symmetry as ¢ — ¢~ "o and remains invariant under
U(1)y. Finally, we introduce a G, p, singlet field v, with /(1) charge -2 and
transforming under the PQ symmetry as i, — ¢=2%)),;. The most general Higgs
potential involving these fields and their couplings to ¢ fields can be written as:

"'Zg = }LQQIL?'((I)Q(T)E )I];[ + (&2157‘(@1&’&)0*2 + H.C
FV(A) + V(AD) + V(nr-0-A)

where
VIA) = [t (AL AL) + tr(AlAg)]
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o [[er(atan)” [tr(ahan)]’]
Hoatr(ALAL)(ARAR)
+pa [tr(ALAL)" +tr(AkAR)?]
+pa [tr(ALALE(ALAL) + tr (_\,e_\”)n (AnAnp)]
+ps5 [t7'(ALALAl)AL) + 1f""(AnAnL\RAR)}
V(A-®) = {Alg,tr(q)jgbd+,\2(‘,t1-(&>jﬁ>ﬂ}[tr(A*LAL)+n-(;\f,_?AR,)]
P [t (D] R ARAR) + (BB ALAL)]
+hua [tr(DL8aARAR) )+ (BBl ALAL)]
Fsa [tr(AL 2o ARDL) + tr(ARRLAL P )]
Fhoa [tr(A}BaAp®]) + tr(AREIALDA) )
V(ng-o-A) = /\\:;('711’11) + N (nine” o)
F(niu + pgo"o) [1 ot ALAL) + \2*"(—3;;‘—\13)]

It can be shown that the parts V(4), V(A-D) and V' (yy-0-2) contain only real
couplings. The only complex couplings possible are i, and 312 But their phases
can be absorbed into redefining ¢ and 1 without effecting reality of other pa-
rameters in 15, Thus the above V; is automatically C P conserving just like 1 of
eq.(3.33). V) and V; together constitute the complete scalar potential of the model.

Now we consider nonrenormalizable Yukawa couplings in the Lagrangian. As
discussed in section 2 they can give an understanding of the textures of the fermion
masses. In the present context, such terms would also induce naturally small C'P
violation. In fact the model presented above allows the following general dim-5
“terms resulting in fermion masses:

1 ~ i
—Lyr = j\—[q}ff, o gy + HC. (3.38)

Here M is some heavy mass scale which we take to be the Planck scale Afp. The
textures for I, are dictated by the U(1), symmetry. The contribution of Lyp to

- - H
quark masses depends upon the parameter ¢ = -
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" The M, énd My following from eqs. (3.35) and (3.38) can be written as [23] :

. .. . ’
0 . AR yd ff\:id,u(]-_‘:_l)llj
. / . . /
Afu,d = (l*""lu,cl 6h’ﬁ3r1,tl(r:3)22 {)’\-Qu.d + en 'zd.u(rz )2.’3
' ) . / . . . AT .
5“3(1,11(]:‘3_) I;} b*h‘.lu,d + Eh'Zf/.tl(Pz )'3;3 CR3u.d

The n011~fe11orma1izabl_e contribution signified by ¢ works in a dual way here.
' Firstly the presence of ¢ no longer makes it possible to rotate away the phase
“from M, 4 and hence from the KM matrix. Secondly it also modifies the Fritzsch
 texture obtained in the above example. This is a welcome feature in view of the .
fact that the Fritzsch ansatz is found to be inconsistent [18] with the large top
mass. The texture of A, 4. obtained above retains the successful predictions of the
original ansatz and is also consistent phenomenologically.

Note that the original Fritzsch ansatz implies that in the limit ¢ — 0,
larye| ~ /mgm, ; Doy ~ /ey : lersu| ~ my
larig] ~ /mgm, : [Driga] ~ \/rgny [craa| ~ 1y,

It follows the'refore that .,h',g,;;}([, < |k234]- Hence the presence of € terms alters the

structure of Af; more significantly than that of A/,. To a good approximation one
may take A/, as in eq.(3.36) and A/, as follows

0 lalrig  €ryud,e®
Ay~ la|riry engudy  |blrog (3.39)
€3 01T |b]ragy CRag

As before, we have redefined the quark fields and absorbed the phases of (12)
and (23) elements. But this now leaves phases in terms involving e

Since the matrix diagonalising A, is completely fixed in terms of up-quark masses

7

we can express 41, of eq.(3.39) in terms of the known parameters as
My = OLKdiag(mg. —my. m)K10,

where X" is the KM matrix in the Wolfenstein parameterization [24]. Comparing
above My with the RH.S of eq.(3.39) implies the successful relation

ny my,
N M,
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Moreover the other parameters also get fixed in terms of the masses and mixing

angles. Specifically,

kg & — /Mgty 3 bRog = —pA? (-& -+ Xl'-"' /:—;')—() COCRag Ry
' N2
€hauds & —g(1 — A2) -+ my, (/\2:1 + \/’—“——> :

my

. iy C i 3,
€r3,01 COS O & My AN? (p — %, /%) ey sina &y AN
€

where A, p and 7 are parameters in Wolfenstein matrix [24]. The exact value of ¢
depends upon other parameters. If one chooses Yukawa couplings ¢, d, ~ O(1)
then e ~ 2« ~ 107%. Consistency then requires d, ~ 10~% in this case. Fore ~ 107%,

the /(1) symmetry breaking scale is required to be of the order of 10" GeV [25]
- if the scale of the non-renormalizable terms is set by the Planck mass.

3.5 Conclusion

In this chapter we addressed the problem of CP violation in weak interactions.
CP is violated in nature and is most significantly observable in the i LY decays.
Two parameters e and ¢ are identified which measure the amount of CP violation
in these systems. The observed values of e and ¢ are extremely small O(107%). We
discussed models that relate these parameters to the parameters in the CKM ma-
trix and gives an understanding of their smallness. CP can be violated through
the Higgs exchange reactions. Here the magnitude of CP violation is related to
the scale of spontaneous symmetry breaking and hence it is small. However in
these models CP is imposed on the Lagrangian through Natural flavor conser-
vation. We presented a model where the horizontal symmetry which gives the
required Fritzsch structure to the quark mass matrices also gives a CP’ conserving
theory. The horizontal symmetry is broken at a very high scale. The nonrenor-
malizable terms which are introduced in the theory generates the right structure
of fermion masses at low scales due to the spontaneous breaking of the horizontal
symmetry. The CP violation here also comes from the non renormalizable terms

and its smallness is closely linked to the scale of horizontal symmetry breaking,
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Chapter 4

Confrontation of Horizontal
Symmetry with Experiments

In chapters 2 and 3 we discussed the role of horizontal symmetry in giving struc-
ture to the fermion masses and mixing. Gauged horizontal symmetries need ad-
ditional gauge bosons to be introduced. The extended ga_'uge symmetry we study
is the simplest one i.e U/(1). The extra gauge boson in the model is thus charge-
less and is reffered to as an extra Z or Z'. Such an extrai‘ U/(1) can be embedded

.in Grand unified theories like SO(10) or Es [1]. The phfénomenology of extra Z
depends upoh the model considered.

Standard model accommodates quark mixing through the CKM matrix. How-
ever the CKM matrix is completely arbitrary. The horizontal symmetries acting
on the quark sector gives a structure to the quark mass matrices and hence to the
CKM matrix. As we have seen in chapter three one can \‘g.et hierarchy in masses,
relations between the masses and mixing and the smallness of CP violation all
related to the horizontal symmetry. The situation is different in the lepton sec-
tor. The neutrinos are massless in the Standard model. Hence there cannot be
any relative flavor mixing between the charged leptons and the neutrinos. This
has the effect of lepton flavors being globally conserved. The bounds on lep-
ton flavor violation are very stringent. Gauged horizontal symmetry that acts on
leptons and cause flavor mixing are heavily constrained by these bounds. This
chapter discusses the phenomenology of extended gauge models that act on lep-
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tons. Bounds are obtained on Z’ mass which mediates flavor violating processes.
Section 4.1 discusses flavor mixing and flavor changing neutral current(FCNC).
Section 4.2 discusses the mixing between Z and Z’. Section 4.3 discusses an ex-
tended gauge model with and without additional scalar doublets. In section 4.4
the expressions for flavor changing neutral processes are obtained with a specific
choice of horizontal symmetry. Section 4.5 discusses a detailed phenomenology
of the model discussed in section 4.4. Section 4.6 presents results and conclusions.

41 Rare processes

Flavor violating processes or rare processes are of interest since a long time. In
this section we will discuss rare processes induced by horizontal gauge bosons in
the leptonic sector.

The horizontal symmetry can be vector like or flavor chiral type [2]. In a fla-
vor vector theory both the right and the left handed fields are assigned the same
horizontal charge whereas in a flavor chiral theory they are opposite. Let the

left handed component of the i'"

generation of fermion get a horizontal charge
x;. Let us denote it as a diagonal matrix X;, = diag(xy,xy,v3). The right handed
charges are denoted by a similar diagonal matrix X . With additional Higgs dou-
blets transforming non-trivially under the horizontal symmetry, the mass matrix

assumes a non-diagonal structure which leads to fermion mixing.

Few obscrvations can be made about the general structure of the mass matrices
in a flavor vector and flavor chiral theories. In a flavor vector theory, the diago-
‘nal entries in the miass matrix come from a single Higgs doublet with horizontal
charge 0. The offdiagonal entries m;; and mj; necessarily has to come from two
different Higgs with different horizontal charges. viz «; — a; and «; — x,;. This
makes the mass matrices necessarily non-hermitian. However in a flavor chiral
theory X, = —Xp. A single Higgs doublet is not sufficient to give all the diag-
onal entries in the mass matrix. Moreover my; and'm‘,-,' get contribution from the
same Higgs. With a further restriction x; # a; for i # j, the mass matrix one gets

has the canonical structure or the Fritzsch structure [2]. In general one can have a
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combination of flavor vector-and flavor chiral charges. In such cases X, and \'p;

are arbitrary.

As mentioned earlier there is an extra gauge boson Z’ in the theory. As we are
interested in the flavor violation in the leptonic sector, let us look at the leptonic

current coupling to Z' in the following Lagrangian.

, _
v g -1 r i —f r N 7 1
Loy = p—y {eLX0yuer + ErNinuert Z,, (4.1)

where ¢/,  are column vectors in generation space and # is the weak mixing an-
gle, introduced here purely for notational convenience. The coupling of the phys-
ical (i.e. mass eigenstate) fermions to Z’ depends upon the structure of the mass
matrix M, which is non-diagonal as discussed above. .M, is non-hermitian in

general and can be diagonalized by bi-unitary transformation
UL/\/([U}? = diag.(me, my, ;) (4.2)
cor = Uppepp (4.3)

L', then assumes the following form in terms of the mass eigenstates:

/

ad g = -, o -,
Ly = =—(rrij€ir 7L + KRij€irIp i) 2" (4.4)
cost
where
ke = U XU a=L.R. (4.5)

Eq.(4.4) represents the general form of the Z' interactions in all the SU(2);
U(1)y © U(1)x models under study. «, are in general non-diagonal and hence 2’
mediated interactions are flavor changing. The structure of x, depends upon the
choice of the Higgs field in the model. Consider a model with only the Standard
" model Higgs with U(1)x charge zero and vectorial assignment of X' to the lep-
tons. As discussed above [2] we will only have a diagonal mass matrix M; and
hence there will be no lepton mixing here. The only way to have non-diagonal
M, with the standard Higgs is to assign non-vectorial X' charges to the leptons.
Suppose the charge assignments are w; and ap;. Let the charge matrix be given
by

Qij =i — TRj
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To have a non-zero determinant of th_e mass matrix M; we must have (;; = 0 in
at least three appropriate positions (7, 7). This restrictions demands xp; to be a
permutation of x7;. An inverse permutation or redefinition of right handed fields
would diagonalize the mass matrix /M, and make the charge assignments on the
physical leptons vectorial. We have in this case U, = 1 and Uy corresponding to
a permutation to give xy = rr = X, in eq.(4.5). The Z’ coupling to leptons thus
become like the coupling of Standard model Z and there will be no flavor mixing.
However when an additional doublet with nonzero U7(1)y charge is introduced
the structure of the mass matrix will become more complex. The bi-unitary diag-
onalization in this case does not in general correspond to simple permutation as
above and hence we will have flavor mixing in general. The additional doublet
also causes the Z and the Z’ to mix. We will discuss the important role played by
the additional doublet Higgs in bringing out flavor changing processes in section
4.3,

Different models are specified by the choice of X and the Higgs fields which de-

termine M; and hence Uy, p.

42 7 — 7' Mixing

In the presence of an additional Higgs doublet &, with non-zero horizonta] charge,
-, the Z’ will mix with the Standard model Z to produce two physical mass eigen-

states Z, and Z;. The photon does not mix with Z’ [3]. We show this in the

following. The part of the Lagrangian for the Higgs scalar relevant here ig

2

*C'Ht'ggs = ‘(au + (JIT ' H"rll + gQY.B/I)) (I)l

2

l\)i ~. DN =

4 K@+

(gir - W, + ¥ By + gt\'B;,)> P, (4.6)

Here B, is the gauge field corresponding to U(1)y. Afte1 spontaneous symme-
try breaking the mass terms for neutral gauge bosons can be obtained from the
following

a2l
Linass =

(92 + @B, + e B) (0,02 (4)

=
e R

2 .
(902 + g2 B,) " (1) +



The mass matrix for the neutral gauge bosons 1>, B;, and B}, , is thus

mu

. gr((®1)* + (‘I ) 919((@10)* +(D2)?) gig e (Do)
ME= 5| g2 + (@) G + (@) gafn(t) (4.8)
g19'w(®2)* 929'4(®a)? gt (Dy)?
The above mass matrix can be diagonalized by the following orthogonal trans-
formation ,
Maiag = OT MEO (4.9)
where
cost sinf 0 1 0 0
O=| —sinf cosd 0 0 cos¢ . sing (4.10)
0 0 1 0 —sing cosg

The first factor of O is the same as the one occurring in Standard model mixing
the photon and the standard model Z. The aﬁgle ¢ called the weak mixing angle
is given by tan 8 = ¢,/g,. After block diagonalization by the first factor of O the
massless photon gets decoupled from the Z and Z' and the transformed mass

7 0 0 0
Me=| 0 ML M

0 §M? A2,

matrix is of the form

where 5
. 1, 5 . , g .
My = I!/“K‘I’l)z +(D2)°); M = (ﬂ%) [(D2)°]
SAL? 2ug 9 | . ((:[).2>3
Yy J sin®, W1€1e. sin” (B (D)) (4.11)
Here
9= \9i+gi
The mixing angle ¢ between Z and Z' is then given by
. M2 — M?
tan 2 — Z 1
R yr v (4.12)
In addition, one has
9 . PO M2, YAL?
AI(WOSZ ¢+ ‘Mf sin® ¢ = —C—B-;%‘—{; and i ¢ cos ¢ = %ﬁ (4.13)

(M) being the Weihberg angle (W-mass) at the tree level.
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In standard model one defines a parameter called the p parameter as
Mg
~ MPcos?d

With the choice of the Higgs in the standard model, the p parameter is equal to 1.

P

However due to the presence of an additional gauge boson that mixes with the
standard model Z the p parameter differs from 1 and is given by
ME
) =
pai M2 cos® 0

9 A2
14 tan® ¢33
= — M (4.14)
1+ tan? o

One can see from (4.14) that in the absence of the extra Z or its mixing py; = 1.

4.3 Gauging lepton numbers

43.1 Without additional doublet Higgs

In the minimal standard model, right handed neutrinos are not introduced. Thus
neutrinos are massless and lepton numbers corresponding to each generation are
globally conserved. The conserved lepton numbers correspond to global symme-
tries U(1)1.,.1,.1.- However these global symmetries cannot be gauged aS it would
introduce anomalies in the theory. Introduction of right handed neutrinos how-
ever allow neutrinos to be massive and give possibility to gauge family lepton
number symmetry. It was shown in ref.[4] that though individual lepton num-
bers cannot be gauged without'expanding the fermionic content of the standard
model, a linear combination X' = o L, + 3L, +~L, can be gauged . The condition
of anomaly cancellation restricts the values of a. 4 and - through the following
equation

a+id+49 = 0
st = 0 (4.15)

It may be noted that in this model U7(1)y acts vectorially on the leptons. This

is a very simple gauged horizontal symmetry as it does not require additional
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fermions to be introduced in order to cancel the anomalies. The only solution to

the set of equations.above give the following possibilities for X.
Li=Li=Ly Ly=L =L, Ly=L,-1L, . (4.16)

However only one of L; can be gauged at a time as L7 L; anomalies are necessarily
non-zero for i # j. The U(1l)y symmetry is broken by a singlet Higgs 1. No
additional doublet scalars are added to the theory. Hence there will be no Z — Z'
mixing as can be seen from eqs. (4.11-4.13). There is no flavor mixing and flavor
violating rare processes in this model though the usual leptonic processes gets
modified. The bounds on the coupling constants of [7(1)y, ¢’ and the Z’ mass M/
were obtained from forward backward asymmetry A;5 of the neutral leptonic
processes ¢Te™ — ptp~. 77~ and the cross sections of these processes relative

to QED given by
olete™ — 1H7)

I = - :
: 0Q/3[)(("+(-'" — /+/")

[ =y, 1 (4.17)

Bounds are also obtained from 1 — ¢ scattering experiments. The results for the
two models with X = L, and X' = L, are as follows [4]:

For L, the best fit values occur at ¢ = 0and My — oc. Thus the L, model
does not give any improved agreement between theory and experiments. For L,
model the best fit parameters are ¢’ = 0.0005¢g and A/, = 58GeV. The Z’ resonance
in Arp and R, shows a very narrow lineshape. The energy interval affected by 2’
is rather small and there is possibility that such a narrow peak could be skipped
without disturbing standard model prediction in the TRISTAN LEP window.

4.3.2 With additional doublet Higgs

In this subsection we discuss models where the horizontal symmetries are lin-
ear combination of lepton numbers like in ref[4]. The fermionic content is also
same as in the standard model. We introduce an additional Higgs doublet. This’
changes the phenomenology of model in subsection 4.3.1 significantly [3]. To be
general, we consider non-vectorial assignment of horizontal charges to fermions

although the X assignment of members of a given S5U7(2);, doublet have to be
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identical. However we will show that any non-vectorial assignment is equivalent
to a vectorial one in this case. For notational convenience let us write X' -charges
in terms of diagonal matrices in the gerieration space.

Xpr = diag(ar, az, a3),.n

X', determine the U(1)y assignment of the leptonic doublet while X that of the
charged right-handed leptons. Like in eq.(4.15) the possible choices of ajy, and
air are restricted due to anomaly cancellation which require:

> i = Yoo = 0 '
Tiol, = Lioig (4.18)
2% af, = Yiaip '

These constraints can be satisfied by taking any two of aj;, and aj; to be +1
and the third to be zero. Such non-vectorial assignments reduce to vectorial as-
signments under permutation of leptonic flavors amongst right handed or left
handed fields. This redefinition can be always done since the initial choice of
basis is arbitrary. The physical charge assignment reduce to simple vectorial
one N, = \p = X. In this case the restrictions in eq.(4.18) reduces to those in
eq.(4.15). The allowed X is restricted as in ref[4] either to L, — L,. L, — L, or
L, — L,. The current coupled to U(1)y boson Z' is vectorial when expressed in
the weak basis in this case. But the structure of physical current coupled to mass
eigenstates of fermions depends upon the choice of Higgs fields. In the event of
only one Higgs doublet neutral under U(1) y, the charged leptonic mass matrix is
diagonal and the physical current coupled to Z' is vectorial. When one introduces
more Higgs fields transforming non-trivially under {7(1)y, the {'(1)y no-longer

remains vectorial.

The structure of the current associated with the new Z’ can be written as,

/
¢ , - B
Lo = =T (¢ Xy + N W} 2" (4.19)

cos
The coupling of the physical (i.e. mass eigenstate) fermions to Z’ depend upon -

the structure of the mass matrix M, for the charged leptons. This is dictated by
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the charge matrix @ whose (7, j)'" element correspond to the .Y -charge of bilinear

¢tp¢' . For example, we have in case of L, — L,

0 —1 —2
Q=1 0 -1 (4.20)
2 1 0

The possible structures of mass matrices follow from that of (). In particular, a
Higgs field with charge —(@);; would contribute to the (7. )" element of the mass
matrix M,. Note that the two different fields contribute to the (M,);; and (M)
Hence M, is necessarily non-hermitian except when it is diagonal with only one

Ji

Higgs doublet carrying zero charge under U/(1) . In this case, the weak basis ¢/, ,
coincide with the mass basis ¢/, z and Z’ couples to a vector current correspond-
ing to X'. When one introduces one or more additional doublets transforming
non-trivially under U(1)y then M, is necessarily non-hermitian and can.be diag-
onalized by a bi-unitary transformation as shown in eq(4.3). However now the
charge assignment being vectorial , in eq.(4.5) is given as

Ry = LT“_\,CIJ._ a = L, R (421)

The current coupled to Z' is non-vectorial as xy, # rp. To prove this explicitly ,
we write U'p = U, V7, 1" being a unitary matrix different from I. Then U,,_\'U,‘t =
Up XU only if "X = X'V, This is not possible because of the restricted structure

of X.

44 SU2),® U(1)y ® U(1)1, -1, Model

We choose X' = L, — L, as an example and study the consequences in detail.
The fermion content is like standard model while two Higgs doublets @, , and an
SU(2), & U(1)y singlet n are introduced. X charges of ¢, and ¢, are chosen to be
0 and +2 respectively. The field 1 is assumed to carry some non-zero charge under
U'(1)x and it is solely introduced to provide a different mass scale characteristic
of the U/(1)y breaking.
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The quark sector of the model remains the same as in the SM model while lepton
couplings to the neutral Higgs fields are given by the following;
—Ly = hadeipd) + e e, (4.22)

mi

‘ ) .
! ;6 - ! 0]
&l b —=" o e
o\ HLYIRY 0 (WA Y I ]
(®F) (#3)

This leads to the following mass matrix M;:

my 04
M, = 0 my 0 (4.23)
0 0 my '

Let U}, diagonalize My, i.e.
'UL,-‘\/(/C-";?. = diag(me, my, niy)

where

a2
m = my

. 1 A g . ). ; L
m: = 5 {mf +md 4+ 8% 4 [(m.f — )t 28 4 }

|
J
m? = 3{1}11 —!—m;+c)“ [(m‘l2 — 3 28Rt 4l + O }

cosfr 0 siby p

Upp= 0 1 0 (4.24)
—sinf,p 0 cosbip
The mixing angles ¢, ;; are given by:
. 28y ) 28
sin2f; = -—— sin2fpy = ——
m2 —m? mi—n?
As we will soon see, the 8, are constrained to be quite small. It is therefore
appropriate to work in the approximation & < ny. 1. In this limit,

) 28m, ) 248
sin28p ~ — - sin 26, ~ — (4.25)
me 1y

The parameters n,;; (« = L, ) determining the couplings of Z’ to leptons through
eq.(4.21) are explicitly given in the present case by

gy = CO3 23(: = —hysy
Kalty = —sin2d,
Naeiw = () [ =1.2.3 (4.26)
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The quark sector of the model remains the same as in the SM. model while lepton

couplings to the neutral Higgs fields are given by the following:

) -1 0 -1 T
—Ly = hicieipey + hacipeg (4.22)
My

e - ot} 10 .
(V) CiLCin &g Cyphy + D
1

U
@) +

0
(%)

This leads to the following mass matrix M;:

my 0 0
M, = 0 my 0 (4.23)
0 0 my :

Let Uy,  diagonalize M, i.e.
U, M Up, = diag(me, my,, nir)
where

my;o=m;

' L
ml o= = {mf +omi 43+ [(mf — )2 282 (md 4 md) + A"‘] "’}
g

mi = {mf +mi 8% - [(mf — 3 28t 4 my) + 5"]

cosf; p O smmfyp . ,
Upn = 0 10 (4.24)
—sinf,p 0 costrnp
The mixing angles 4, ;; are given by:
sin 26, = _____“20771.;5 , sin 26, = ~———"20m| ,
m2 —imn? mi —an?
As we will soon see, the ¢,z are constrained to be quite small. It is therefore
appropriafe to work in the approximation ¢ < . /5. In this limit,
28m, 28

5 sin26; ~ —
me e

sin26p ~ —

(4.25)

The parameters r,,; (« = L, R) determining the couplings of Z’ to leptons through

eq.(4.21) are explicitly given in the present case by

Rarp = €08 20, = —Rams
Ky = — si 26(,
Nagi = j=1.2.3 (4.26)
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Since one of the doublets carry non-zero ['(1)y charge, the Z’ will mix with the

conventional Z boson to produce two mass eigenstates Z .

7 = cos 2y +sing Z, ‘
7' = —sing Z, +coso Zy ' (4.27)

The couplings of the neutral gauge boson Z, , to the leptons are now given by

£Z (,_) Z Fl miy €il, Tu€jL Z,” +L &R (428)
Cos m=1,2
where
1 . 2 .
Frii = cosd(—=+sin®8)8;; — sinp=nyp;;
11} 4 9 J / (/ J
. (// h
Fru; = cososin® 08 — sind>npi;
J } J g "1
. . ) 1 o N (//
Fryij = sin (/)(——3 + sin® 0)5;; + cos Pk
. 5 T F : g
g/
Froij = sing sin®#;; + cos (,."’);f\'/g,-j

As would be expected, eqs.(4.23) and (4.26) show that the muon number is ex-
actly conserved in the model. This is a consequence of the fact that both the Z’
interactions as well as the mass matrix, eq.(4.23), respect this symmetry. When
§ << ., the flavor violations and departure from vectorial symmetry are very
small. Moreover, these departures are more supplebsed in the right-handed sec-
tor compaled to the left- handed sector.

The generalization to other models in this category is obvious. One could con-
struct another model with additional Higgs carrying L, — L, charge —2 instead of
+2. In this case (M;);, will be non-zero instead of (M) 3 as in eq.(4.23). All the
couplings of this model are then obtained by interchange of 8, §;; in eq.(4.26).
[n addition to these two models with L, — L, symmetry; one could construct pair
of models each with symmetry L. — L, and L, — L,. These are respectively char-

acterized by an unbroken L, and L,.

[n addition to the flavor violations induced by Z’, there exists other flavor viola-

tions associated with the Higgs fields. These arise in a well-known [5] manner
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whenever the fermions with the same charge obtain their masses from two dif-
ferent Higgses as in eq.(4.23). Using eqns.(4.23-4.24) it follows that

L o (I)‘l’ ([)3

—Lpone = 0 "(@-)“ — ((I)‘)f)

It follows from eq.(4.25) that these flavor violations are of <<\""/mr < oy, >> and

hence would be suppressed in the limit § << 1, compared to Z' induced flavor

) {cos ), sinb e+ cos O sind) 76 nt A+ e

violations unless the associated Higgs is much lighter than Z’. We shall therefore

concentrate on the Z’ induced flavor violations in the next section.

4.5 Phenomenology of SU(2); @ U(1)y @ U(1)r, -1,

We shall now explore the phenomenological consequences of the SU(2);, x U (1)) x
U(1)y models. The extra Z-boson associated with {’(1) y change the phenomenol-
ogy of the SM in two ways. The Z’ contribute to the known processes induced
by the Z boson. In addition, in the present case, Z' induce new flavor violating
processes. The detailed phehomeﬁology will depend upon the model. We shall
take the model presented in the last section as an illustrative example and work

out consequences within that model.

In the absence of additional Higgs, the Z’ induced flavor violation disappears.
Moreover the Z' does not mix with the ordinary Z. In this case Z’ makes its
effect felt by contributing to known processes like « F¢= — it~ scattering. The
detailed restrictions on the relevant parameters by LEP results have been worked
out in ref. [4] for this case. These restrictions continue to hold in the present case.
But additionally one gets more stringent restrictions due to flavor violations and

Z-Z' mixing. We shall concentrate on these in the following,.

The phenomenology of models with extra Z boson is extensi\/ely discussed in the
literature [5, 6]. The present class of models have characteristic differences arising
due to the fact that Z’ couples only to leptons. In other models, an important
restriction on the Z’ mass arises from the direct experimental observations at the

hadronic colliders. These restrictions though model depéendent strongly constrain
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the Z' mass. For example in the left-right symmetric model [7], the search in jip
collisions imply [8] Ay, , > 310 GeV. Similar restrictions are not applicable here
since Z' couples only to leptons. Its production at the hadronic colliders arise only
through mixing with the ordinary Z and is therefore highly suppressed. The Z’
mass as well as its mixing with Z is constrained in the present case by (a) the
observations at LEP and (b) the observed limits on the leptonic flavor violations.

We discuss them in turn.

4.51 Constraints from the LEP data

We closely follow the analysis of ref. [5] in deriving constraints on the relevant
parameters from observations at LEP. These constraints have been derived in two
different ways. The observations of the ratio ./\IH.-/A[" and the Z-mass A[,, at CDF
and LEP respectively, constrain the p parameter and lead to restrictions on A,
and tan ¢. Other method is to use the fact that the extra Z induce changes in
observables like width to fermions, peak cross section in ¢Te™ collisions etc. One

could then make a detailed fit to the LEP data and derive constraints on AL, and

o.

The mixing between Z and Z' change the tree level relation between the 11" and

the Z mass. Specifically,
' ' ME

L2
~ = cos”f
/)‘v\[[\ff

§ being the tree level weak mixing angle. The parameter py is given by eq.(4.14).

One could eliminate cos? § in favor of G-, o and A/ to obtain

(4.29)

where

mQ
t =/ = (37.280GeV
/ \/72'(1,/;‘ (37 )

These restrictions are valid at the tree level. Since the extra Z induced effects

are comparable to the radiative corrections in the standard model, one must in-

corporate the later. This has been done in ref. [5], assuming that the radiative
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corrections induced by Z, are negligible. The radiative corrections of SM are in-

cluded -Lising the improved Born approximation which changes eq.(4.29) to the

\[f‘ , 1 1 Ji?
- = | = = ———— 4.30
pE (2 + J 4 pAF (L = Aa) ( )

where the p parameter is now

following:

with

- 40) A (GeV
g and Ao = 0.0602 + _9““2 b %

Apr ~ 3 +0.0009

' S22

The determination of 1/, from the data is fairly insensitive to the presence of Z'.
Hence the CDF result on A\L)}L = (.779 together with the LEP result on the Z-mass
M, can be used to obtain p = 1.005 £ 0.003 in eq.(4.30). This implies at 1o

m,(GeV))’ ' (4.31)'

Apay = par — 1 <0.008 = 0.003
par= o= S = ( 7100

In addition to this restriction, Ap,; can also be constrained [5, 6] by the other ob-
servables at LEP. Specifically, the presence of Z’ would change the three leptonic
widths I, - as well as the hadronic wi{dth ', of the Z,. These changes can be

parameterized [5] in terms of Ap,; and mixing angle ¢:

dl; = .-L‘;\/),\/ + Bio (4.32)
In our case
. . . dsin? @, cos® d .
A = 4Ny {(T:}Li —sin®0,Q;) + T} + = "/‘;/;H LA Tri — sin? 0,Q)
' : cos 26,

B = 8Nepy |(Tovi = sin® 6,Q0) g1 — Tavag]

~

(//,

(KLii + Kpii)i G = ';(/f-/.,u — N Rii);

s

I ——
Gvi =

@ |

P £ in? g ! '
= — sl = - — - ‘
L= o F7 0 TN T a1 = A




Ne = 3(1 + oe) for quarks and 1 for leptons. Fermionic width I'; of Z, have been
extracted from the LEP data in a model independent way. We use the values

derived in ref. [9] to constrain Ap,; and ¢. Specifically,

=

« = 82.6+0.7MeV
p = 83.64 1.1MeV [y = 1741 + 0.0156MeV
» = 83.1+1.2MeV

=

We use these values and determine the best values for \p,; and o appearing in

eq.(4.32) through a least square fit. This gives (for i, :'15()G€V) at lo:

Apar = —0.0018 + 0.004 & = 0.0094 + 0.012 (4.33)

The value of Ap); as determined by eq.(4.33) is less stringent than following from
eq.(4.31) derived on the basis of the CDF result on —‘—"% We shall therefore use the
values given by eq.(4.31) for \p,, in the next section to constrain the parameters
of the model.

4.5.2  Constraints from the rare processes

As already discussed, the model of section 4.4 contains flavor violations involvin g
7 and ¢. The muon number is exactly conserved in the model. As a consequence
one expects the following rare processes to occur in the model:

9 Zl,z — CT
@ T — (¢

@ T — ¢t

The branching ratios for these processes can be easily worked out and are given
by:

[(r — ece) , . ¢ ow L 0 O
(5 ) L6AL} {(.(/z,i.,))' +(ghen)? + B <(.(/I,I?)Z + (!//e/,)z>}
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(1 — epp) PP " o
T(r— 1/;/,, ¢) =AM (0] )+ (dhn)® + (90 + (g5 )P}

GrAL}

NZ — T¢) = Jﬁ FOERS

where
. FpiFpm  FRSEp . FLER!"  FLER"
YV M} LIt NE AL2

m = ¢.pt. grrr and gpy, are obtained by L « R interchange in above equation. The
difference in the rates for the 7 — c¢ee¢ and 7 — ¢jyr arise due to both the s and ¢
channel Z, , exchanges contributing to the former. In addition to constraints from
the LEP discussed earlier the rare decays also provide important constraints on

the model. The specific constraints are [8] given by the following:

Bir(Z — ¢tp™) < 24x107°
Br(Z — ¢tr7) < 34x 1077
Br(Z — //+““) < 4.8 x 107"
Br(t — c¢ce) < 27 x 1070
Br(r — cpp) < 27 x 1077
Br(t =) < LTx107°

The basic parameters of models are mixing angles 4, ;, Z, mass A,, Z-Z' mixing
angle ¢ and the U(1)y gauge coupling ¢'. Both the Z -z’ mixing and the flavor
violation arise in the model from the presence of the additional doublet s Thus
both are related to the parameter tan/J = (¢,)/{¢). Relation between ¢ and /4
follows from eq.(4.11) and (4.12)

AN L,
siu (_)~4C( > sin” J : : (4.34)
/‘fz

where

. —1
q M}
cad (12} o

g < AL ot)

The 6,z also goes to zero when /# — 0. If one assumes that the flavor violating
“Yukawa coupling /5 in eq.(4.23) is of the same order as flavor conserving one
(namely /133) then § &~ m, tan 4 and hence from eq.(4.4)

sin 20, ~ —2tan /3  (4.35)
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The existing limits on the Br(t — cec)aswellas Z — ¢7 imply restrictions on
the parameters [ and Ad,. These are displayevd in fig.1 assuming /iy = las. Anal-
ogous constraints also follow from the process T — ¢jit. This process is compara-
tively suppréssed in the present case and hence imply much weaker constraints.
This is not displayed in the figure for simplicity. The same parameters are also

constrained by Apy and ¢( see eqs.(4.14) and (4.34)).
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Fig. 1 Fig. 2

Fig. 1: The allowed region in the Al,-tan § plane implied by various constraints:
Curve(A) is a contour for Br(r — cee) = 2.7 X 10-%; (B) for Br(Z — ¢T) =
3.4 % 107%; (C) for Apy = 0.00125; and (D) for ¢ = 0.021. These curves are for
ls = hay (see text). Region to the left of the curves is allowed.

Fig. 2: Same as figure 1 except that g3 = 1072 haa.

[t follows that the strongest constraints on the parameters are implied by the rare
decay 7 — cee. Hence the process 7 — cce 18 allowed by the LEP data to occur 3
at a rate consistent with the present experiméntal precision. Improvement in the
limits for this process would either imply more stringent restrictions on /4 and
M, or one should be able to see this decay in future. Fig.l was based on the
assumption of equal Yukawa couplings, hyy = las, in eq.(4.23)., For comparison
we also display in fig.2 limits on 4 and M, in case of iy = 10~%h4;. Reduction in
the value of his strongly suppresses the flavor violating couplings of 7. Apa and
¢ remain unchanged. As a result, now the LEP data imply stronger restrictions
on tan 3 and M,. In this case, the LEP observations already rule out possibility

of seeing flavor violation in future experiments which are expected to provide
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improved limits on 7 — eee.

It is clear from fig.1 and 2 that as lbng as My < O(Te¢V), tan /4 is restricted to be
< 0(0.1-0.5). Hence the vacuum expectation value of the field ¢, responsible for
flavor violations is strongly constrained in the model. Likewise, low values of A/,
(e.g. 400GeV) are possible only if tan / is chosen small (0.03 in case of /13 = I,

and 0.3 in case of k3 = 107 %Nyy).

Although we restricted ourselves to the L, — L. model, the analogous constraints
would follow in models with X' = L. — L, or L,, — L. In particular, one would
expect very severe constraint if L, — L,, is gauged since 1 — ¢e¢ is much severely

constrained experimentally.

4.6 Summary

Gauged horizontal symmetries /(1) y can give suitable structures to the fermion
mass matrices that generate correct hierarchical structure and mixing. The choice
of U(1)x to be gauged are restricted by the requirement of anomaly cancellation
without extending the fermionic sector of the standard model. These are thus the
simplest gauge extension of the standard model. These models are prototypes of
more general horizontal symmetries [10].

In a specific case where U(1)y couples only to leptons all possible choices are
categorized. Constraints on additional gauge bosons are obtained. In a model
by He et. al.[4] no additional doublet Higgs is introduced. In this model flavor
mixing and Z — Z’ mixing is absent. The only restriction on Z’ mass comes from
forward backward asymmetry of leptonic processes and the total cross sections
of ete™ — [T~ relative to QED contributions. In the case where N = [, — L "
there is no improvement in fits with experiment, compared to standard Model.
For X = L.~ L., however the best fit is obtained at A/ = 58Gel for a reasonable
strength of U(1)x coupling, ¢’ = 0.0005g.

‘However when additional Higgs doublets are introduced with non-zero U/(1)y
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charges sﬁitable_ restrictions are obtained on'mixing matrices. Moreover, they also
- give rise to interesting flavor violations thus providing window into the existence
of such symmetry. The mixing of the U(1)x gauge boson Z’ with the ordinary Z is
correlated in these models to the flavor violation. In fact both these features orig-
inate from the existence of the Higgs doublet carrying non-zero (1) y charge. As
a result the observations at LEP could indirectly provide important constraints
on flavor violations. Detailed study presented here shows that under reasonable
assumptions on relevant Yukawa couplings, the LEP observations do allow size-
able flavor violations and it is possible to obtain rate for 7 — cec near its present
experimental limit. In contrast, the lepton flavor violating decays of Z are con-
siderably suppressed in these models.

We presented here models in which U7(1)y acts only on leptons. Models with
U(1)x acting on quarks [11] or both can be analogously studied. A systematic
study of these horizontal models and restrictions on flavor violations in these

models in the light of LEP observations would be interesting in its own right.
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Chapter 5

Conclusions

The Standard Model of the Strong and electroweak interaction has been very suc-
cessful in describing physics around and below the scale of O(A/y-). The internal
consistency of this model has been verified in various experiments to a high de-
gree of precision. Grand Unified Theory attempts to embed the three distinct
gauge groups of Standard model into a single large gauge group with a single
coupling constant. There exists three identical families of fermions that form rep-
resentation of Standard Model. Fermions from different families can mix in prin-
ciple. This happens because the physical or mass states of fermions are in general
not the same as the weak states which form the families. As Standard Model and
GUT operates identically on all the families it does not give any restrictions on

fermion masses and mixing.

Fermions exhibit specific pattern in their masses. Quarks and charged lepton
masses show hierarchical patterns. Experiments allow neutrinos to be massive
though very small. However unlike other fermions they may be required to be
nearly degenerate. The mixing in fermions is related to the hierarchy in their
masses. Phenomenological ansatz for mass matrices like the Fritzsch ansatz are
quite successful in generating these patterns. These ansatz basically try to mini-
mize the number of arbitrary parameters in the general mass matrices and then
obtain relation between them. However it is desirable to have ar underlying

symmetry that would constrain the Lagrangian to produce Fritzsch like structure
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for mass matrices. These symmetries operate on family space of fermions and are
reffered to as Horizontal symmetries. In this thesis we have studied the effect of

an abelian horizontal symmetry on various sectors of the standard model.

Though neutrinos are massless within Standard Model one can generate net-
trino masses in certain extensions of standard model like the left-right symmetric
models. In these models both Dirac and Majorana mass terms for neutrinos can
be generated. In such a case Seesaw mechanism makes the effective mass of the
neutrinos very small while assuming the existence of very heavy right handed
neutrinos in the theory. The usual Seesaw scheme display the same hierarchy in
neutrino masses as that of other fermions. The solution to the solar and the atmo-
'spheric neutrino problem require (mass)* difference between two neutrino fla-
vors to be ~ 0(10“2-10“‘6\»’2). The hierarchies along with the constraints of such
small (mass)? differences ~ 10-2-10-%¢1? make the masses of even the heaviest
neutrinos unobservably small 0(0.1eV). Itis found that the hierarchy in neutrino
masses is sensitive to the structure of the heavy right handed neutrino mass ma-
trix M . Obvious way to remove hierarchy in neutrino mass matrix is to consider
a diagonal Mp as in usual Seesaw but impose suitable hierarchy in its diagonal
entries. This is however very unnatural assumption. We have shown that such
unnatural hierarchy can be avoided by considering non-diagonal structure for
Mp. Such non-diagonal structure is obtained by imposing horizontal symme-
tries. In a specific model as an example we have shown that for the entries of
elements of My in the intermediate scale ~ 10°GeV all the neutrino masses turn
out to be in the eV range. These neutrinos can together provide the hot com-
ponent of the Dark matter which requires 3 nu, < TeV. The (mass)? difference
between the two of the neutrinos is around ~ 10-"eV*. This falls in the range
required to solve the solar neutrino problem through the MSW mechanism. The
mixing of neutrinos with such small (mass)? difference is nearly maximal. How-
ever the horizontal symmetry also causes mixing in the charged lepton sector.
The relative mixing of the neutrinos with respect to that in the charged leptons
need not be too large . The large angle solution for solar neutrino problem needs
sin? 26,, ~ 0.65-0.85. This would require the mixing in the charged leptonic sector
to be ¢ = 10-20°. This amount of lepton mixing leads to an observable signal for
neutrinoless double beta decay for m,, ~ O(eV).

76



We also studied the possibility of horizontal symmetry being related to the small-
ness of CP violation in weak decays. Violation of CP is observed in AV-1" os-
cillation. *'Two parameters € and ¢ are identified as measures of CP violation in
LY-RY system. These parameters are related to the complex phase in the CKM
matrix which describes the quark mixing. The quark mixing angles are approx-
imately given by the square root of the ratio of their masses. Due to hierarchy
in quark masses these mixing angles are small. Frogatt and Nielsen found that
such hierarchies in the mass matrix at low energies cannot be generated by the
renormalisation group evolution of Yukawa couplings at high scales where all the
entries are of the same order. Some kind of selection rule or horizontal symmetry
is imperative. They introduced two singlet Higgses y and 1, in addition to the
Standard model doublets. 5, has very high v.e.v and generates only superheavy
fermion masses. 1, generates the masses of the ordinary fermions fhrough non-
renormalisable Yukawa couplings.The hierarchies in quark masses are obtained
in terms of powers of a small parameter e = (1;)/(1js). CP is not a symmetry of

the model and hence CP violation is not restricted to be small.

The smallness of CP violation indicates a link with spontaneous symmetry break-
ing mechanism. In a two Higgs doublet model Lee showed that CP can be ar-
ranged to be conserved by the Lagrangian. But the choice of the ground state
spontaneously violates CP. However these models contain flavor changing neu-
tral Higgs (FCNH) current which constraints the Higgs mass to be O(TeV). This
suppresses the CP violation far too smaller than the observed amount. It was
shown by several authors that in Lee type model if FCNH are either eliminated
or suppressed by discrete symmetries then CP violation obtained can be of the
desired amount.

We studied a model where CP is arranged to be conserved by renormalisable
.-Lagrangian. We considered the left-right symmetric extension of the Standard
model with a horizontal symmetry (1) and a Peccei Quinn symmetfy U(L)po.
Three bidoublet Higgs are introduced in addition to the triplet Higgses, -\, and
Ap of the left right symmetric model. The quark mass matrices generated by the
bi-doublet Higgses have the required Fritzsch structure. The horizontal symme-
try is broken by a singlet Higgs, 1. With all these fields CP is arranged to be
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conserved by the renormalisable Lagrangian. The breaking of horizont.al symme-
try at a high scale generates at low scales nond‘eno1'1nal"15able effective Yukawa
couplings. These terms contribufe to the mass matrices in terms of a small pa-
rameter ¢ = (g )/M. Here M is taken to be the Planck scale. The modification
of the mass matrices by ¢ also generates a complex phase in the CKM matrix.
Thus in this theory the strength of CP violation is linked to the horizontal sym-
metry bréaking scale. With the Yukawa couplings of O(1), €18 predicted to be
€[y & 10~3. This requires U(1)y symmetry breaking scale to be 10'9GeV.

Gauged horizontal symmetry requires additional gauge bosons . The masses
of these gauge bosons reffered to as Z' depends upon the horizontal symmetry
breaking scale. If this scale is not very high then the offects of Z’ can be obtained
in various processes. We studied horizontal symmetry that acts only on the lep-
tonic sector. The fermionic content of the model is not extended. This restricts
the U/(1)y to be generated by L. — L., L.—L: and L, — L, due to the restriction
of anomaly cancellation. We showed the role of additional doublet Higgs with
non-zero U'(1)y charge in bringing out flavor mixing and the Z-Z' nﬁixing. Thus
flavor changing neutral currents are possible in this model and mediated by Z".
In a similar model considered by He et Al without additional Higgs doublet,
neither flavor mixing nor Z-Z' mixing is possible. They constrain the gauge cou-
pling ¢' and the 7' mass My through forward backward asymmetry, Aps and the

relative cross section It of leptonic processes given by

g ot 2 )
o O‘Ql"fl_')((t"}'(ﬁ— — ]+l")‘ Sy

For U(1)y, -z, they obtain the following best fit values for parameters
¢ = 0.0005¢ and My = 58G V.

In our model the major constraint comes from rare processes. Due to the pres-
ence of an extra Z the p parameter is different from 1. The deviation, \pay, of
p from 1 lead to restriction on the 7' mass M, and tan o where o is the mixing
angle between 7 and Z'. With the CDF and LEP measurement of ALy /M) and A,

‘respectively the constraint obtained is
Apa < 0.00125 for m, = 100GeV
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They are also constlamtd by the Chanbes in the Z width to fummns Forn, = 150

GeV at 1o the Constl aints are _
Apar < 0.0022 and ; o < 0,021

The restrictions on Apy; and ¢ gives restrictions on 1/,-tan § parameter space

where tan /3 is the ratio of v.e.v of the two doublet Higgses.

The constraint on rare processes 7 — cc¢c, 7 — (/I and Z = 7 also limit the
allowed region in A/,- tan ;3 parameter space. These constraints are shown in fig.
1 and fig. 2 of chapter 4 with the Yukawa couplings /1y3 = liyy and liyy = 10740y,
It is found that for /1,3 = hyy the strongest constraint is given by the rare decay
+ — ¢ce. Thus the LEP data allows the rare process 7 — ¢« to occur at the present
prenmental precision. For Iy = 107%hyy the LEP data is found to suppress all
rare processes. This is expected as /3 is a off diagonal Yukawa muplmg due to
which flavor mixing occurs. The allowed parameter space shows that if AL, <

O(TeV) then tan 4 < 0(0.1-0.5). Thus the v.e.v. of the additional Higgs doublet
is constrained to be smaller than that of the Standard model Higgs if A, is not

allowed to be unobservably large.

All our considerations throughout the thesis have been in the context of Stan-
dard model or its generalization to the left-right symmetric theory. Butit is well-
known that horizontal symmetries can be defined even at the GUT scale where
they can restrict the structure of fermion masses and mixing. Such generaliza-
tion is quite natural within the Frogatt-Nielson mechanism adopted in chapter 3
since breaking of /(1) is required to take around the GUT scale. Likewise neu-
trino masses and Seesaw mechanism also become more natural in the context of
SO(10) theory. Many of the considerations in chapters 2 and 3 can be generalized
to include GUT such as SO(10). In contrast the content of chapter 4 is based on
the assumption of relatively low breaking of horizontal symmetry. Moreover the
purely lepton number like symmetries discussed there are also not easy to incor-
_ porate in GUT which treat quarks and leptons on similar footing. In contrast, the
horizontal symmetries of the type considered in chapter 4 are more amenable to
experimental tests through rare processes and ultimately through discovery of
horizontal gauge bosons if they exist. Experiments will have the final say as in

most phenomenological studies.
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