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Abstract
Normal matter (protons, neutrons, mesons) are expected to undergo a phase tran-
sition at extremely high temperature (⇠ 1012 degree Kelvin) and/or extremely
high density (⇠ 1014 gm/cc) to a state where the relevant degrees of freedom are
their constituents described in terms of quarks, antiquarks and gluons called quark
gluon plasma. Such kind of matter is believed to be there upto few tens of mi-
croseconds after the big bang. The cold quark matter is also expected to be present
in the core of ultra compact astrophysical objects for example neutron stars, hybrid
stars. In laboratory, quark gluon plasma can be produced at the collision center
by colliding heavy ions at relativistic energies and it cools through the QCD phase
diagram. In the off-central heavy ions collisions, extremely strong magnetic fields
(⇠ 1018 Gauss) is produced by the current of the relativistically moving ions in op-
posite directions. It is very interesting to study the properties of matter under such
extreme conditions of temperature, density and magnetic field.

We have worked on the two regions of the QCD phase diagram (in T � µ plane)
- (i) zero temperature and non-zero chemical potential, and (ii) non-zero tempera-
ture and zero baryon chemical potential regions.-

In the first part, we estimate the chiral susceptibility at finite temperature within
the framework of the Nambu–Jona-Lasinio (NJL) model using the Wigner func-
tion. We also estimate it in the presence of chiral chemical potential (µ5) as well
as a non-vanishing magnetic field (B). We use a medium separation regularization
scheme (MSS) in the presence of magnetic field and the chiral chemical potential
to regularise the infinities present in the chiral condensate and corresponding sus-
ceptibility. It is observed that for a fixed value of chiral chemical potential (µ5),
transition temperature increases with the magnetic field. While for the fixed value
of the magnetic field, transition temperature decreases with chiral chemical poten-
tial. For a strong magnetic field, we observe non degeneracy in susceptibility for
up and down type quarks.

We also estimate some of the transport properties of the strongly interacting
medium produced in the heavy ion collisions. A thermal gradient and/or a chem-
ical potential gradient in a conducting medium can lead to an electric field, an
effect known as thermoelectric effect or Seebeck effect. In the context of heavy-ion
collisions, we estimate the thermoelectric transport coefficients for quark matter
within the ambit of the NJL model. We estimate the thermal conductivity, electri-
cal conductivity and the Seebeck coefficient of the same. These coefficients are cal-
culated using the relativistic Boltzmann transport equation within the relaxation
time approximation. The relaxation times for the quarks are estimated from the
quark-quark and quark-antiquark scattering through meson exchange within the
NJL model. As a comparison to the NJL model estimation of the Seebeck coeffi-
cient, we also estimate the Seebeck coefficient within a quasi-particle approach.
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In the second part, in the context of the cold quark matter, we study the possi-
bility of existence of quark matter in the core of compact stars (hybrid stars) and
non-radial oscillation modes in neutron and hybrid stars. The Walecka type rela-
tivistic mean field models - (i) NL3 parametrised and (ii) with density dependent
coupling parametrised (DDB) are considered to describe the nuclear matter at low
densities and zero temperature and the NJL model is considered to describe quark
matter at high densities in the zero temperature limit. A Gibbs construct is used to
describe the hadron-quark phase transition at large densities. Within the models,
as the density increases, a mixed phase appears at density about 2.36r0 (3.93r0)
where r0 is the nuclear matter saturation density and ends at density about 5.22r0
(6.9r0) for NL3 (DDB) models and beyond which pure quark matter phase appears.
It turns out that a stable hybrid star of maximum mass, M = 2.27 M� with radius
R = 14 km, can exist with the quark matter in the core in a mixed phase only. The
hadron-quark phase transition in the core of maximum mass hybrid star occurs at
radial distance, rc = 0.27R where the equilibrium speed of sound shows a discon-
tinuity. Existence of quark matter in the core enhances the non-radial oscillation
frequencies in hybrid stars compared to neutron stars of the same mass. This en-
hancement is more for the g modes. The non-radial oscillation frequencies depend
on the vector coupling in NJL model. The values of g and f mode frequencies
decrease with increase the vector coupling in quark matter.

The non-radial oscillations of neutron stars have been suggested as an useful
tool to probe the composition of neutron star matter. With this scope in mind, we
consider a large number of equation of states (EOS) that are consistent with nu-
clear matter properties and pure neutron matter EOS based on a chiral effective
field theory calculation for the low densities and perturbative QCD (pQCD) EOS
at very high densities. This ensemble of EOSs is also consistent with astronomical
observations, gravitational waves in GW170817, mass and radius measurements
from Neutron star Interior Composition ExploreR (NICER). Apart from verifying
the robustness of universal relations (URs) among the quadrupolar f modes fre-
quencies, masses and radii with such a large number of EOSs, we find a strong
correlation between the f mode frequencies and the radii of neutron stars. Such a
correlation is very useful in accurately determining the radius from a measurement
of f mode frequencies in near future. We also show that the quadrupolar f mode
frequencies of neutron stars of masses 2.0 M� and above lie in the range 1.68 - 2.16
kHz in this ensemble of physically realistic EOSs. A two solar mass neutron stars
with a low f mode frequency may indicate the existence of non-nucleonic degrees
of freedom.
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Chapter 1

Introduction

1.1 Introduction
It has been a continuous endeavour over the years of a curious human mind to un-
derstand the basic constituents of matter and their interactions. As per our current
understanding, all matter that we observe in nature and their interactions can be
described by a few elementary particles and four types of fundamental forces or
interactions. The four fundamental forces in nature are 1) gravitational force, 2)
weak force, 3) electromagnetic force and 4) strong force. Among them two forces,
gravitational force and electromagnetic force, are long range forces. We experi-
ence them in day to day life. The gravitational force is the first fundamental force
that was discovered, it is the one which is least understood at the fundamental
level. Such force is responsible for the fall of the fruits from the tree to the motion
of planets orbiting the stars and stars orbiting the galaxies etc. The most under-
stood and common force is the electromagnetic force which manifests itself in the
macroscopic world and is used in modern technology. On the atomic level, it is
the electromagnetic interaction of the electrons in the atoms that eventually gives
rise to different chemical properties of elements. On the other hand, the weak and
strong forces are the short range forces so they are limited to the field of nuclear
and particle physics. An example of the weak force is the b radiation of a neutron
where a free neutron decays to a proton, an electron and an anti-neutrino. Finally
the strong interaction which is the strongest force among all forces binds quarks
to form nucleons and eventually nucleons to form nuclei. Apart from the gravi-
tational interaction, the remaining fundamental interactions can be described by
gauge theories. The fundamental particles constitute three generations of quarks
(u, d; c, s and t, b) which interact through strong, electromagnetic and weak inter-
actions. The other set of fundamental particles, the three generation of leptons (e,
µ and t) and corresponding neutrinos (ne, nµ and nt, respectively) which interact
through electromagnetic and weak interactions. Apart from this all of these parti-
cles interact with the Higgs field. This essentially describes the standard model of
particle physics. The fundamental particles and their interactions in the standard
model are described in Fig. 1.1.

In the present thesis we will focus on the study of strong interaction which is
described at a fundamental level by the theory called quantum chromodynamics
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FIGURE 1.1: Elementary particles: the constituents of matter.

(QCD) in terms of quark and gluons as the fundamental fields with their interac-
tions being described by a SU(3) gauge theory. It is similar to the best established
theory of electromagnetic interactions, the quantum electrodynamics (QED). The
difference is the quanta of the QCD (the gluon) interacts with another gluon but
the quanta of QED (the photon) does not interact with other photons. The con-
stituents of the atomic nuclei are the neutrons and protons, collectively nucleons,
which are the vacuum states of QCD. Nucleons are the colourless bound states of
the elementary particles, quarks, which are found with three colours: red, blue
and green, the colour is a quantum number of quarks. For example protons and
neutrons are the colour neutral bound states of up, u and down, d quarks, p(uud)
and n(udd). An account of all the observed baryons requires six quark species of
QCD namely, up (u), down (d), charm (c), strange (s), bottom (b) and top (t). In
Fig. 1.1 we collect all the elementary particles and interaction quanta which are the
fundamental building blocks of matter. The interactions between these quarks are
mediated by the emission and absorption of gluons which are the colour states. In
Table 1.1, we collect all the fundamental particles with their quantum numbers.

On the experimental side, the strong interactions at low energy can be under-
stood in two ways. One is related to probing the hadronic structure by shooting a
proton target with high energetic electron and muon beams [1–13]. The other ap-
proach is to study the QCD phase diagram in extreme conditions through the high
energy heavy-ion collisions and inside the cores of compact star (CS)s. We will
follow the second approach to study the strong interaction. There are several mo-
tivations to study QCD under extreme conditions. As we all believed, the universe
passed through a state where the temperature was of the order of QCD scale after
a few microseconds of the big bang. Later the matter condensed into stars. Some
of the stars after exhausting their fuel collapsed and underwent a supernovae ex-
plosion. The remnant can be a neutron star (NS). The density at the center of a
NS is not known precisely but it can be a few times the nuclear saturation density,
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Elementary Electric Spin Mass Baryon Lapton
Particles Charge (') Number Number

u 2/3 1/2 2.2 MeV 1/3 0
d -1/3 1/2 4.7 MeV 1/3 0
s -1/3 1/2 96.0 MeV 1/3 0
c 1/3 1/2 1.3 GeV 1/3 0
t 2/3 1/2 173 GeV 1/3 0
b -1/3 1/2 4.2 GeV 1/3 0
e -1 1/2 0.5 MeV 0 1
µ -1 1/2 106 MeV 0 1
t -1 1/2 1.8 GeV 0 1
ne 0 1/2 1.0 eV 0 1
nµ 0 1/2 0.2 MeV 0 1
nt 0 1/2 18.0 MeV 0 1
g 0 1 0 0 0
g 0 1 0 0 0
Z 0 1 91.2 GeV 0 0
W ±1 1 80.4 GeV 0 0
H 0 0 125 GeV 0 0

TABLE 1.1: Electric charge, spin, mass, baryon number and lepton
number of the elementary particles.

(r0 = 0.16 fm�3). At this extreme density, the quarks can be treated as a relevant
degree of freedom. The NSs provide an opportunity to study the matter at ultra
high density.

In this chapter, we will discuss the QCD theory in Sec. 1.2 and QCD phase
diagram in Subsec. 1.2.1. In Sec. 1.4 we shall discuss heavy-ion collisions and in
Sec. 1.6 we shall discuss the NS structure.

1.2 Strong interaction physics and QCD
In the present thesis, we will focus on the strong interaction under extreme condi-
tions. At a fundamental level the strong interaction is described by the interaction
of quarks and gluons with the interactions being dictated by a SU(3) gauge the-
ory. This means the underlying QCD Lagrangian is invariant under local SU(3)
gauge transformations with the quarks being in the fundamental and gluons being
in the adjoint representation of the color SU(3) gauge group. Thus the Lagrangian
is given by

LQCD = Â
q

⇣
ȳqigµ

h
∂µ + igA

a

µTa

i
yq � mqȳqyq

⌘
� 1

4
G

a

µnG
µn
a , (1.1)
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where G
µn
a = ∂µ

A
n
a � ∂n

A
µ
a � g f

abc
A

µ
b

A
n
c is the colour field tensor and A

µ
a is the

four-potential of the gluon field, a = 1, . . . , 8, Ta are the 3 ⇥ 3 Gell-Mann matrices.
The Gell-Mann matrices Ta (SU(3) generators) follow the Lie algebra

⇥
T

a, T
b
⇤
=

i f
abc

T
c where f

abc is the structure constant of the SU(3) gauge group, yq is the
quark field and g is the strong coupling constant. The Lagrangian, given in Eq.
(1.1), is invariant under local gauge transformation yq(x) ! U(x)ya(x) and Dµ !
U(x)DµU

†
(x). The term g f

abc
A

µ
b

A
n
c in the field strength tensor distinguishes QCD

from QED which gives the self interacting gauge bosons in this non-abelian gauge
theory.

The non-abelian gauge group structure of QCD gives rise to a running coupling
constant which is small at large momentum transfer processes. Fig. 1.2 shows the
scale dependent QCD coupling as(Q) = g

2/4p as a function of momentum trans-
fer inferred from various experiments. The smallness of QCD coupling at large
momentum transfer processes is known as asymptotic freedom. Thus, the hard pro-
cesses with large momentum transfer can be described using familiar perturba-
tive methods as in deep inelastic scattering processes. Scaling behaviour as seen
here arises naturally within a perturbative treatment of QCD. However, for the
low energy sector, the QCD coupling becomes stronger leading to breakdown of
the perturbative methods. This is indicative of the increased importance of the
nonperturbative dynamics which binds the quarks to form hadrons and it requires
infinite energy to have isolated quark or gluon. This phenomenon of not having
colour charged objects in isolation is called confinement. The other manifestation of
the non-perturbative feature of QCD is the chiral symmetry breaking through which
quarks generate their constituent mass and is related to non-trivial structure of
QCD vacuum with quark-antiquark condensates.

The Lagrangian Eq. (1.1) has space-time reflection symmetry. However, consis-
tent with gauge and Lorentz symmetry one can also have CP-violating terms, the
so called q-term given as [14]

Lq =
q

64p2 g
2
G

a

µnG̃
aµn (1.2)

where G̃
aµn

= eµnabG
aab is the dual field strength tensor. Such a term violates

charge conjugation and parity unless q is 0 or mod p. However CP is almost con-
served in vacuum. The current experimental limit on q is q < 0.7 ⇥ 10�11 [15] from
the neutron dipole moment measurement. The smallness of q or its complete ab-
sence is not understood completely although a possible explanation is given in the
spontaneous breaking of a new symmetry called Peccei–Quinn (PQ) symmetry [16]
giving rise to axions. However, while q is small for vacuum, it can be large in an
out of equilibrium system leading to a non-zero value of the chiral chemical poten-
tial (µ5). We shall explore later the consequence of finite µ5 on the chiral transition
in QCD.
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FIGURE 1.2: The strong running coupling constant, as(Q) (solid line)
and its uncertainty (yellow band) as a function of the scale Q. This
figure is taken from the Ref. [17]. All the credit of this figure goes to

the Author(s) and publishing agency.

1.2.1 QCD phase diagram
As we discussed earlier, the strong interaction binds the atomic nuclei. Although
the density in the center of heavy nuclei is extremely high (⇠ r0), the mean free
path exceeds their diameter. Thus normal nuclear matter is the diluted many body
system. If such system is compressed or heated in high-energy nuclear collisions to
even higher densities or temperatures then one could expect quarks (the building
blocks of nucleons) to be no longer confined in the nucleon rather they are able to
move over the distances much larger than the size of the nucleon. Such deconfined
state of matter is knowns as quark-gluon plasma (QGP). This state of matter is
likely to have existed in the early universe within a few microseconds after the big
bang. One of the challenging questions in nuclear physics is to identify the struc-
ture and the phases of such strongly interacting matter. In recent years extensive
effort has been made to create and understand the strongly interacting matter in
relativistic heavy-ion collision experiments e.g. at Relativistic Heavy-Ion Collider
(RHIC) and at Large Hadron Collider (LHC). There are many evidences indicat-
ing the formation of a deconfined QGP phase of QCD in the initial stages and the
formation of a confined hadronic phase (HP) in the subsequent evolution of QGP.
The ground state of QCD exhibits two main non-perturbative features, (i) color con-

finement and (ii) spontaneous breaking of chiral symmetry. The deconfined phase and
the chiral symmetric restoration phase both are defined as: in chiral symmetric re-
stored phase, the effective mass of the quark becomes approximately zero or equal
to bare quark mass due to the quark-antiquark condensate vanishes while van-
ishing of quark-antiquark condensate is not necessary in deconfined phase. The



6 Chapter 1. Introduction

dynamical chiral symmetry breaking (DCSB) characterizes the non-perturbative
nature of QCD vacuum at vanishing temperature and/or density. As we increase
temperature and/or baryon density, the QCD vacuum undergoes a transition from
a chiral symmetry breaking (CSB) phase to a chiral symmetry restored (CSR) phase.
This transition is characterized by the quark-antiquark scalar condensate, the order
parameter of chiral phase transition. Although in first order phase transition the
order parameter varies discontinuously across the transition point, in second order
phase transition or in a cross-over the order parameter across the transition point
is rather smooth.

Keeping all of that in mind we can construct the phase diagram (Fig. 1.3) of
QCD in terms of the net baryon number density (or chemical potential, µB) and
temperature (T). Following is the schematic phase diagram of QCD.
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FIGURE 1.3: Schematice phase diagram of QCD. This figure is taken
from the Ref. [18].

The horizontal axis defines net chemical potential (µB) and the vertical axis de-
fines temperature (T). The origin of the phase diagram i.e. T = 0 and µB = 0 corre-
sponds to the QCD vacuum. As temperature increases we find a cross-over nearly
T ⇠ (150 � 170) MeV (h̄ = 1 = c = kB) from HP to QGP phase where the symme-
tries of the system become the symmetries of the Lagrangian, which is called the
restoration of dynamical chiral symmetry. On the other hand as net chemical po-
tential increases (net baryon density) we encounter the densities found in the core
of NSs and even higher we find the colour superconducting phase of QCD. The
black close circle in Fig. 1.3 is the critical end point (CEP). One can perform lattice
simulations, where QCD equations are solved numerically by discretising QCD
Lagrangian on the four-dimensional space-time lattice and evaluating them statis-
tically via Monte-Carlo methods, at high temperature and zero chemical potential
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limits. The lattice simulations indicate that there is a cross-over at high tempera-
ture Tc = 154 ± 9 MeV [19] and Tc = 156 ± 9 MeV [20, 21] with different fermion
actions. Recent lattice quantum chromodynamics (LQCD) calculations also quan-
tify the small decrease of Tc with increasing µB as long as µB < 3Tc. Within this
parameter range the transition is of cross-over type. The fundamental question is
the possible existence of the CEP where a second order chiral phase transition is ex-
pected. This has been pointed out by both experiments and theory but remains one
of the outstanding questions related to our understanding of the phase structure of
hot and dense QCD matter.

On the other hand, at the low temperature and high density, many effective
models predict the possibilities of various exotic phases of quark matter. These
include pion superfluidity [22–24], various color superconducting phases like 2
flavor color superconductivity (2SC) [25–27], color flavor locked (CFL) phase [28],
Larkin-Ovchinkov-Fulde-Ferrel (LOFF) [29, 30] phase, crystalline superconductiv-
ity (CSC) phase etc. However, the signature of such phases in quark matter from
the study of NS have been rather challenging. We shall discuss hadron-quark
phase transition (HQPT) at extremely high density in the context of NS in Chapter
4.

It is very difficult to study the strong interactions from QCD equations found
from QCD Lagrangian Eq. (1.1). There are effective models which contain some
features of QCD and are easy to handle. In the following sections we discuss some
effective models relevant for the thesis.

1.3 Effective models
In this section we briefly summarize the relativistic mean field (RMF) model which
is also known as quantum hadrodynamics (QHD) to describe the nuclear matter
and the Nambu–Jona-Lasinio (NJL) model to analyze quark matter. Here the idea
is to give a brief recapitulation of models that we shall be using in later chapters.

1.3.1 Mean field model for nuclear matter
In this model the nucleons are the quasi-particles with an effective medium de-
pendent mass and chemical potential. They move in the background of the me-
son fields. The interactions between the nucleons are governed by the exchange
of different mesons. The scalar meson exchange gives an attraction force while
the vector meson exchange exerts repulsion. The isovector meson establishes the
asymmetry in the nuclear matter. The scalar mesons couple to the baryon scalar
density while vector mesons couple to the baryon vector four-current by contrac-
tion. The Lagrangian of the model is [31–33]

L = Â
b

Lb + Lint (1.3)
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where

Lb = Â
b

Ȳb(igµ∂µ � mb + gss � gwgµwµ � grgµ~Ib~r
µ
)Yb (1.4)

Lint =
1
2

∂µs∂µs � 1
2

m
2
ss2 � k

3!
(gsNs)3 � l

4!
(gsNs)4

�1
4

WµnWµn +
1
2

m
2
wwµwµ

�1
4
~Rµn~Rµn +

1
2

m
2
r~rµ~r

µ (1.5)

where Wµn = ∂µwn � ∂nwµ and ~Rµn = ∂µ~rn � ∂n~rµ are the mesonic field strength
tensors. ~Ib denotes the isospin operator. The Yb is baryon field. The s, w, r meson
fields are denoted by s, w and r, respectively. The ms, mw and mr denote the
masses of mesons. The parameters mb denote the vacuum masses for baryons.
The meson-baryon couplings gs, gw and gr are the scalar, vector and isovector
coupling constants, respectively. In RMF approximation, one replaces the meson
fields by their expectation values which then act as classical fields in which baryons
move i.e. hsi = s0, hwµi = w0dµ0, hra

µi =dµ0da

3r0
3. Hence the effective mass of

baryons get redefined as m
⇤
b
= mb � gss0 and the effective chemical potential as

µ⇤
b
= µb � gww0 � gr I3br0

3. The mesonic equations of motion can be found by the
Euler-Lagrange equations for the meson fields using the Lagrangian Eq. (4.1). We
discuss more in the following chapters, Chapters 2, 3, 4 and 5.

1.3.2 Nambu–Jona-Lasinio model for quark matter
Historically it was inspired by the Bardeen-Cooper-Schrieffer (BCS) theory of elec-
trical superconductivity when QCD and even quarks were unknown. In the origi-
nal version, the NJL model was a model of interacting nucleons and confinement.
In pre-QCD era, there were some indications of the existence of chiral symmetry.
So the problem was to find the mechanism to define the large nucleon mass with-
out disturbing the symmetry at the Lagerangian level. It was the poineer idea of
Nambu and Jona-Lasinio that the mass gap in the Dirac spectrum can be gener-
ated as the energy gap in the BCS theory of superconductors. To that end they
introduced a Lagrangian for the nucleon field y with point like, chirally symmetric
four-fermion interaction [34]

LNJL = ȳ
�
igµ∂µ � m

�
y + G

h
(ȳy)2

+ (ȳig5ty)2
i

(1.6)

where m is the nucleon bare mass, t is the Pauli matrix and G is a dimensionless
coupling constant. After development of QCD, the NJL model was reinterpreted
as a schematic quark model. Besides the lack of confinement, it explains the DCSB
and the Goldstone nature of the pion which makes the NJL model superior over
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the MIT bag model of quarks. If we replace the nucleon field y by the quark field
yq then the Lagrangian for quarks becomes

LNJL = ȳq

�
igµ∂µ � mq

�
yq + G

h
(ȳqyq)

2
+ (ȳqig5tyq)

2
i

(1.7)

where mq is the bare quark mass and G becomes the quark coupling constant. The
NJL model is a QCD inspired effective model which incorporates various aspects
of the chiral symmetry of QCD. The NJL model Lagrangian as given in Eq. (1.7)
is symmetric under the chiral symmetry group SU(2)V ⇥ SU(2)A ⇥ U(1)V . In the
mean field approximation Eq.(1.7) reduced to

LNJL = ȳq

�
igµ∂µ � Mq

�
yq � s2

G
(1.8)

where the dynamic mass Mq = mq � 2s and s = Ghȳqyqi is the chiral condensate.
The NJL model is non-renormalisable. It contains three parameters like mq, G

and the three momentum cut-off L. These parameters are fitted from the QCD
vacuum structure, pion mass, pion decay constant and the chiral condensate. We
discuss it in more detail in Chapters 2, 3 and 4.

1.4 Heavy ion collisions
The nonperturbative scale of QCD, Lqcd ⇠ 200 MeV emerges as a scale anomaly of
QCD. Near this scale, QCD interactions become very strong and as a result quarks
and gluons start confining inside the baryons or mesons. To probe this there are
two ways as we discussed earlier. One way is to shoot the target with a high en-
ergy relativistic beam of electrons and see the structure of the target, (deep inelastic
scattering (DIS)). Another way is to heat the chunk of QCD matter in heavy-ion
collisions to a temperature of the order of QCD scale (T ⇠ LQCD). It was en-
visioned in the late 1970s that a new phase of matter could be possible, ‘QGP’
at these extreme temperatures. The first principle calculations confirm the idea
and provide the full quantitative understanding of QCD thermodynamics. Heavy-
ion collisions at RHIC in Brookheaven National Laboratory (BNL) and at LHC in
European Council for Nuclear Research (CERN) offer an excellent opportunity to
explore the properties of the strongly interacting medium at extreme conditions.
In heavy-ion collision experiments one can reproduce the thermodynamic condi-
tions of the early universe. Thus heavy-ion collisions are known to little bangs or
mini universes. As two relativistically heavy ions (Au or Pb) in opposite directions
collide with each other in off-centre position they deposit their kinetic energy at
the center of the collision as a form of thermal energy, a fireball (mini universe)
is created. The expansion of this fireball shows the possible stages of the colli-
sion starting from the energy deposition by the colliding ions followed by the QGP
expansion, a hadronization phase, a kinetic freeze-out boundary and finally the
particles landing on the detectors and observations being done.
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The high temperature in the collisions liberates not only quarks and gluons
but also restores the chiral symmetry. This implies that the quarks become very
light in the QGP phase. To understand the medium produced in relativistic heavy-
ion collision, generally thermodynamic and/or hydrodynamic models have been
used, which assume local thermal equilibrium. However, the medium produced
in the heavy-ion collision is rather dynamical in nature and lives for a very short
time and non-equilibrium as well as quantum effects can affect the evolution of
the medium significantly. These effects can be considered within the framework
of non-equilibrium quantum transport theory. It is important to point out that in
the case of interacting field theory of fermions and gauge bosons, transport the-
ory should be invariant under local gauge transformation. Such a gauge covariant
quantum transport theory for QCD has been developed in [35–37]. Classical kinetic
theory is characterized by an ensemble of point-like particles with their single par-
ticle phase-space distribution function. The time evolution of the single particle
phase-space distribution function governed by the transport equation encodes the
evolution of the system. Similar to the single particle distribution in classical ki-
netic theory, the Wigner function, which is the quantum mechanical analogue of
classical distribution function, encodes quantum corrections in the transport equa-
tion [38].

1.5 Chiral transition and chiral chemical potential
The compactness of the underlying non-abelian gauge group of strong interaction
allows for non-trivial maps from gauge space to the euclidean space-time. This
in Minkowski space describes tunnelling transitions between different topological
sectors of vacuum characterized by different Chern-Simon numbers. These quan-
tum transitions between different topological vacuum sectors of QCD lead to chi-
rality violation. In non equilibrium condition this can lead to generation of chiral
asymmetry i.e. the difference between the number of left and right handed quarks
can be different. This is physically similar to baryogenesis in the electroweak the-
ory. While such transitions are small in vacuum, at finite temperature one can have
thermally assisted transitions through sphaleron configurations which, unlike in-
stanton induced transitions, are not suppressed.

In the context of heavy ion collisions, in addition to temperature and baryon
chemical potential, the effect of a strong magnetic field is also important. Indeed,
in non-central collisions of relativistic heavy ions a strong transient magnetic field
is produced whose strength could be a few times square of the pion mass (B ⇠ m

2
p).

How long this strong magnetic field stays is not clear at present as it depends upon
the electrical conductivity of the medium which is poorly known. In the presence
of strong magnetic field and with an asymmetry of the number densities of left and
right handed quarks, this results in an electric current directed along or opposite to
the direction of the magnetic field depending upon the sign of such an asymmetry
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and is given by

j =
e

2

2p2 µ5B (1.9)

In the above j, B are the electric current and magnetic field respectively. The chiral
chemical potential µ5 = µL � µR characterizes the density difference between the
left handed and right handed quarks. At a fundamental level µ5 is related to the
time derivative of the q parameter introduced in Eq. (1.2). Such a current induced
by a chirality difference in/opposite to the direction of magnetic field is called the
chiral magnetic effect.

In the presence of chiral chemical potential and magnetic field, it is interesting
to look into the phase structure of quark matter. To get an insight one can use the
NJL model for quark matter introduced earlier in Sec. 1.3.2. In the presence of
magnetic field and µ5, the NJL Lagrangian is given as

LNJL = ȳ(igµD
µ
+ µ5g0g5

)y + G

h
(ȳy)2

+ (ȳig5~ty)2
i

(1.10)

where, y is a quark doublet, the covariant derivative takes care of interaction with
the external magnetic field and µ5 couples to the chiral density operator N5 =

y†g5y = y†
R

yR � y†
L
yL. One can calculate the thermodynamic potential in the

standard way at the mean field level. The crucial ingredient is the single parti-
cle dispersion relation for the quarks in the presence of B and µ5. For constant
magnetic field in the z direction one can solve the Dirac equation to obtain the
dispersion relation

w2
k
=

h
|k|2 + sµ5Sgn(kz)

i
+ M

2
f

(1.11)

with |k|2 = k
2
z + 2nq f B with Landau quantization and q f and Mf are the flavor

dependent mass of the quarks. Once the single particle energy is known, one can
write down the thermodynamic potential W as,

W = �Nc Â
f

|q f B|
(2p)

Â
s=±

Â
n

an,s

Z
dpzwp,s +

s2

G

�TNc Â
f

|q f B|
(2p)

Â
s=±

Â
n

an,s

Z
dpz log(1 + e

�bwp,s). (1.12)

In the above an,s is a spin degeneracy factor which is unity for nonzero values of
landau level while it is ds, 1 for qB > 0 and is ds, �1 for qB < 0.

Once the thermodynamic potential is known, various thermodynamic quan-
tities can be calculated. Indeed, the condensate behaviour in the presence of a
nonvanishing chemical potential was considered in Ref. [39] in the Polyakov loop
extended Nambu–Jona-Lasinio (PNJL) model. We shall use a different approach
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using Wigner function formalism to study the effect of nonvanishing chiral chem-
ical potential on the chiral transition. We shall also use a different regularisation
scheme to deal with divergences in the presence of magnetic fields in some detail.

1.5.1 Thermoelectric transport coefficient
We focus on the thermoelectric response of the strongly interacting system pro-
duced in a heavy-ion collision. It is well known from a condensed matter system
that a temperature gradient can result in the generation of an electric current. This
is known as the Seebeck effect. Due to temperature gradient, there is a non zero
gradient of charge density leading to the generation of an electric field. A mea-
sure of the electric field produced in a conducting medium due to a temperature
gradient is the Seebeck coefficient which is defined as the ratio of an electric field
to the temperature gradient in the limit of vanishing electric current. Seebeck ef-
fect has been extensively studied in condensed matter systems such as supercon-
ductors, quantum dots, high-temperature cuprates, superconductor-ferromagnetic
tunnel junctions, low dimensional organic metals, etc [40–48]. Such a phenomenon
could also be present in the thermal medium created in heavy-ion collisions. In
condensed matter systems only a temperature gradient is required for thermoelec-
tric effect as there is only one type of dominant charge carriers in these systems.
In the strongly interacting medium produced in heavy-ion collision both positive
and negative charges contribute to transport phenomena. For vanishing baryon
chemical potential (quark chemical potential) with equal numbers of particles and
antiparticles there is no net thermoelectric effect. Thus a finite baryon chemical
potential (quark chemical potential) is required for the thermoelectric effect to be
observed. The strongly interacting matter at finite baryon density can be produced
in low energy heavy-ion collisions at finite, e.g. at Facility for Antiproton and Ion
Research (FAIR) and Nuclotron-based Ion Collider Facility (NICA). Along with the
temperature gradient, we also consider a gradient in the baryon (quark) chemical
potential to estimate the Seebeck coefficient of the partonic medium. The gradi-
ent in the chemical potential has effects similar to the temperature gradient. Using
Gibbs Duhem relation for a static medium one can express gradient in the baryon
(quark) chemical potential to a gradient in temperature. Effect of the chemical
potential gradient significantly affects the thermoelectric coefficients as has been
demonstrated in Ref.[49].

The Seebeck effect in the hadronic matter has been investigated previously
by some of us within the framework of the Hadron resonance gas model [49,
50]. However, the Hadron resonance gas model can only describe the hadronic
medium at chemical freezeout whereas one expects deconfined partonic medium
at the early stages of the heavy-ion collisions. In this investigation, we estimate
the thermoelectric behavior of the partonic medium within the framework of the
NJL model. Seebeck coefficient has also been estimated for the partonic matter
within relaxation time approximation in Ref.[51, 52]. However, this has been at-
tempted with the relaxation time estimated within perturbative QCD which may
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be valid for asymptotically high temperatures. Further, it ought to be mentioned
that, the vacuum structure of QCD remain nontrivial near the critical temperature
region with nonvanishing values for the quark-antiquark condensates associated
with chiral symmetry breaking as well as Polyakov loop condensates associated
with the physics of statistical confinement [53–56]. Indeed, within the ambit of the
NJL model, it was shown that the temperature dependence of viscosity coefficients
exhibits interesting behavior of phase transition with the shear viscosity to entropy
ratio showing a minimum while the coefficient of bulk viscosity showing a maxi-
mum at the phase transition [53, 54, 57]. The crucial reason for this behaviour was
the estimation of relaxation time using medium dependent masses for the quarks
as well as the exchanged mesons which reveal nontrivial dependence before and
after the transition temperature. This motivates us to investigate the behavior of
thermoelectric transport coefficients within the NJL model which takes into ac-
count the medium dependence of quark and meson masses. This model has been
used to study different transport properties of quark matter at high temperatures
[57–60] and high densities [61–68].

1.6 Neutron stars
NSs are the natural astrophysical laboratories emerge as the remnant of super-
novae explosions that can be used to study the low temperature and high density
(large chemical potential) region of QCD phase diagram, Fig. 1.3. They are the
second densest kind of objects in the universe after the black holes. The density
of matter in the core of a NS is a few times nuclear saturation density (r0 ⇠ 1014

gm cm3). At this ultra-high density one could expect matter with rich phases in
the core. The phase of matter in the core is still unknown. The core, in principle,
can support various possible exotic phases of QCD. While perturbative quantum
chromodynamics (pQCD) predicts deconfined quark matter at large densities, their
applicability is rather limited in the sense that these conclusions are applicable only
to very large baryon densities i.e. rB � 40r0 [69]. The most challenging region to
study theoretically is, however, at intermediate densities i.e. a few times nuclear
matter saturation density which is actually relevant for the matter in the core of
NSs. First principle LQCD calculations under these conditions are also difficult
due to sign problem that arises at finite densities. At present such calculations are
limited to low baryon densities only i.e. µB/T  3.5 [70].

From an astrophysicist point of view, we observe the macroscopic properties of
CSs like mass, radius, tidal deformability, rotating frequency, moment of inertia,
temperature etc. These macroscopic properties can be described from the micro-
scopic nature of matter inside the core of stars. It’s a big question whether matter
inside NSs is nuclear matter, or quark matter, or a mixture of nuclear and quark
matter. Let’s come to the fundamental questions about the phases of matter at high
densities coined in the previous paragraph. If we increase the baryon number den-
sity by squeezing matter then after a level of squeezing the atoms or molecules into
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FIGURE 1.4: Schematic view of matter as increasing density from left
to right (normal matter ! nuclear matter ! quark matter).

neutrons and protons where neutrons and protons emerge as the degrees of free-
dom of matter, we call it nuclear matter (see Fig. 1.4). If we continue the squeezing
of matter further then we might reach another level where neutrons and protons
lose their identity, matter becomes a soup of quarks, another degree of freedom of
matter at this stage, we call it quark matter. As we introduce the many various
exotic phases of quark matter at such high densities. However, the signature of
such phases in quark matter from the study of NSs has been rather challenging.
The GW170817 [71] event explored the constraints on the equation of state (EOS)
using tidal deformability extracted from the phase of the gravitational waveforms
during the late stage of inspiral merger [72–77]. Though not conclusive, it is quite
possible that one or both the merging NSs could be hybrid star (HS)s i.e. with a
core of quark matter or a mixed phase core of quark and hadronic matter [78, 79].

The typical mass of a canonical NS is about 1.3M� (M� denotes the mass of
the sun) and radius is about 10 km. The pressure, to support the high mass star
with a small radius, should be large enough against gravitational collapse. The
pressure increases as we go from the surface to the center of CSs. We may expect
different phases of matter at different radial distances. In Fig. 1.5 we display the
cross-section view of NS. The inner core of NS is still unknown. We discuss the
possible hadron-quark phase transition at ultra-high density in chapter Chapter
4. We consider nuclear matter described by the Walecka type RMF model and
quark matter described by the NJL model. We establish a HQPT using a Gibbs
construction mechanism.

Before going to discuss the neutron star matter (NSM) in detail, let’s discuss
the structure of CSs. The structure of CSs can be found using EOS by solving the
Tolman-Oppenheimer-Volkoff (TOV) equations,

p
0
= � (p + e)


m + 4pr

3
p

r(r � 2m)

�
(1.13)

m
0
= 4pr

2e (1.14)

where ‘prime’ denotes the derivative with respect to r. Eq.(1.13) is the hydrostatic
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FIGURE 1.5: Schematic view of different layers in neutron stars.

equilibrium equation, where e and p are the energy density and pressure func-
tion of radial distance r from the center of the star. Eq.(1.14) is the mass balance
equation. m is the total mass of the matter enclosed within the radius r. These
equations are the coupled equations. These equations should be supplemented by
EOS p = p(e). These equations constitute a close system to be solved for a given
EOS to obtain a mass-radius curve of CSs. To solve these equations we have taken
the following initial conditions.

m(r = 0) = 0 and p(r = 0) = p0

where p0 is the central pressure inside CS.
Within the current observational status, it is difficult to distinguish between a

canonical NS without a quark matter core from a HS with a core of pure quark mat-
ter or a core of quark matter in a mixed phase (MP) with hadronic matter. This calls
for exploring other observational signatures to solve this “MASQUERADE" problem
[80, 81]. In this context, it has been suggested that the study of the non-radial oscil-
lation modes of NS can have the possibility of providing the compositional infor-
mation regarding the matter in the interior of NS. This includes NS with a hyperon
core [82–84], a quark core or a MP core with quark and hadronic matter compo-
nents [81, 85–90]. The pulsating equations that describe oscillations can be obtained
by the perturbed Einstein field equations dGab = 8pdTab with Gab = Rab � 1

2 gabR
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being the Einstein tensor. Linearising these equations in the perturbation, the dif-
ferential equations can be obtained as [91]

Q
0 � 1

c2
s

h
w2

r
2
e

l�2n
Z + n0

Q

i
+ l(l + 1)el

Z = 0 (1.15)

Z
0 � 2n0

Z + e
l Q

r2 � n0
✓

1
c2

e

� 1
c2

s

◆✓
Z + n0

e
�l+2n Q

w2r2

◆
= 0 (1.16)

The two coupled first order differential equations for the perturbing functions
Q(r, t) and Z(r, t), Eqs.(1.15) and (1.16), are to be solved with appropriate bound-
ary conditions at the center and the surface. Near the center of CSs the behavior of
the functions Q(r) and Z(r) are given by [85]

Q(r) = Cr
l+1 and Z(r) = �Cr

l/l (1.17)

where C is an arbitrary constant and l is the order of the oscillation. The other
boundary condition is the vanishing of the Lagrangian perturbation pressure, i.e.
Dp = 0 at the stellar surface, which gives

h
w2

r
2
e

l�2n
Z + n0

Q

i

r=R

= 0. (1.18)

where the field functions n and l are defined as

e
�2l

= 1 � 2m

r
(1.19)

n0
=

m + 4pr
3
p

r(r � 2m)
(1.20)

The field function n can be found by integrating Eq.(1.20) from the center of the
star to radial distance r. The integration constant is determined by satisfying the
following

e
2n(R)

= 1 � 2M

R
. (1.21)

We shall discuss these pulsating equations in more detail in chapters Chapter 4
and Chapter 5 and find the non-radial oscillations.

1.7 Thesis organization
This thesis is organized as follows-

- Chapter 2: In this chapter we shall discuss the chiral phase transition and
chiral susceptibility of the strongly interacting matter produced in relativistic
heavy-ion collision in the presence of strong external magnetic field using the
Wigner function approach.
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- Chapter 3: In this chapter we shall focus our attention to the thermoelectric
transport coefficients of the strongly interacting matter in the context of elec-
trical conductivity, thermal conductivity, Seebeck coefficient and the Lorenz
number in the presence of magnetic field.

- Chapter 4: In this succinct chapter we deal with matter at high densities
and zero temperature which is relevant for CSs. In this chapter we shall dis-
cuss the non-radial oscillation modes namely, f and g modes. They are inter-
esting observations, depending on the composition of NSM. Such oscillation
modes have the possibility of detection in the planed future detectors like
advanced LIGO/VIRGO.

- Chapter 5: In this chapter we shall find the robust universal relations be-
tween f mode oscillation frequency, mass and radius of NSs. They are insen-
sitive to the equation of state of NSM.

- Chapter 6: In this chapter we give the summary and conclusion of the
results and discuss future outcomes.





Chapter 2

Chiral symmetry breaking in the
presence of a magnetic field

The DCSB is the manifestation of quark-antiquark condensation in the QCD vac-
uum. DCSB characterizes the non-perturbative nature of QCD vacuum at van-
ishing temperature and/or density. With increasing temperature and/or baryon
density, the QCD vacuum undergoes a transition from a chiral symmetry broken
phase to a chiral symmetric phase. This transition is characterized by the quark-
antiquark scalar condensate, the order parameter of the chiral phase transition.
Although for a first order phase transition the order parameter changes discon-
tinuously across the transition point, for a second order phase transition or for
a cross-over transition the variation of the order parameter across the transition
point is rather smooth. In these cases the fluctuations of the order parameter and
the associated susceptibilities are more relevant for the characterization of the ther-
modynamic properties of the system. In this chapter we shall discuss the effects of
non-zero magnetic field (magnetic catalysis) and non-zero chiral chemical potential
(chirogenesis) on QCD medium produced in heavy-ion collisions.

2.1 Introduction
The characteristics of fluctuations and correlations are intimately connected to the
phase transition dynamics, e.g. fluctuations of all length scales are relevant at the
QCD CEP where the first order quark-hadron phase transition line ends (see Fig.
1.3). The study of fluctuations and correlations are an essential phenomenological
tool for the experimental point of view for the QCD phase diagram. In the con-
text of heavy-ion collisions by studying the net electric charge fluctuation, it has
been demonstrated that net electric charges are suppressed in the QGP phase as
compared to the hadronic phase [92, 93]. It has also been pointed out that the cor-
relation between baryon number and strangeness is stronger in the QGP phase as
compared to the hadronic phase [94, 95]. The quantity of interest here is the chiral
susceptibility which measures the response of the chiral condensate to the varia-
tion of the current quark mass. Chiral susceptibility has been calculated using first
principle LQCD simulations [96–101]. These results show a pronounced peak in
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the variation of chiral susceptibility with temperature at the transition tempera-
ture, which essentially characterizes the chiral transition. Apart from these LQCD
studies which incorporates the non perturbative effects of QCD vacuum, comple-
mentary approaches e.g. NJL model [102, 103], chiral perturbation theory (CPT)
[104], Dyson-Schwinger equation (DSE) [105], hard thermal loop (HTL) approxi-
mation [106] etc. have been considered to study the chiral susceptibility.

An entirely new line of investigations have been initiated to understand the
QCD phase diagram due to the possibility of generation of extremely large mag-
netic fields in non central relativistic heavy ion collision experiments. In the early
stages the magnetic field in the QGP can be very large, at least of the order of
few m

2
p [107–115]. Such fields rapidly decay in the vacuum while in a conduct-

ing medium they can be sustained for a longer time due to induced currents [112–
115]. It has been shown that the external magnetic field acts as a catalyst for chiral
condensation. It enhances the chiral condensate and hence the constituent quark
mass. It can affect the DCSB. Magnetic catalysis has been explored extensively
in (2 + 1) and (3 + 1)- dimensional models with local four fermion interactions
[63, 64, 116–133], supersymmetric (SUSY) models [134], quark meson models [135,
136], CPT [137, 138] etc. Such a strong magnetic field can also introduce some ex-
otic phenomenon, e.g. chiral magnetic effect (CME), chiral vortical effect (CVE) etc,
in a chirally imbalanced medium [139]. Underlying physics of the chiral imbalance
is the axial anomaly and topologically non trivial vacuum of QCD, which allows
topological field configurations like instantons to exist. An asymmetry between
the number of left- and right-handed quarks can be generated by these non trivial
topological field configurations due to the Adler-Bell-Jackiw (ABJ) anomaly. Such
an imbalance can lead to observable P and CP violating effects in heavy ion col-
lisions. In the presence of a magnetic field chirally imbalanced quark matter can
give rise CME where a charge separation can be produced. Effects of a chiral im-
balance on the QCD phase diagram can be studied within the framework of grand
canonical ensemble by introducing a chiral chemical potential µ5, which enters the
QCD Lagrangian via a term µ5ȳg0g5y.

To probe the medium produced in relativistic heavy-ion collisions, generally
thermodynamic or hydrodynamic models have been used, which assume local
thermal equilibrium. However, due to the short time scales associated with the
strong interaction, the medium produced in the heavy-ion collisions is rather dy-
namical in nature and lives for a very short time and non-equilibrium as well as
quantum effects can affect the evolution of the medium significantly. These ef-
fects can be considered within the framework of non-equilibrium quantum trans-
port theory. It is important to point out that in the case of interacting field theory
of fermions and gauge bosons, transport theory should be invariant under local
gauge transformation. Such a gauge covariant quantum transport theory for the
QCD has been developed in [35–37]. Classical kinetic theory is characterized by
an ensemble of point-like particles with their single particle phase-space distribu-
tion function. The time evolution of the single particle phase-space distribution
function governed by the transport equation encodes the evolution of the system.
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Similar to the single particle distribution in classical kinetic theory, Wigner function
which is the quantum analogue of classical distribution function, encodes quantum
corrections in the transport equation [38]. An equation of motion for the Winger
function, can be derived from the equation of motion for the associated field oper-
ators, e.g. for fermions, the evolution equation of Wigner functions can be derived
using the Dirac equation [140, 141]. In the case of local gauge theories, the Wigner
function has to be defined in a gauge invariant manner [142]. The covariant Wigner
function method for spin-1/2 fermions has already been explored extensively in
the context of heavy ion collisions to study various effects including CME, CVE,
polarization vorticity coupling (PVC), hydrodynamics with spin, dynamical gen-
eration of magnetic moment etc. [143–155].

In this investigation, we study the chiral phase transition and chiral suscepti-
bility in the presence of a magnetic field and chiral chemical potential in quantum
kinetic theory framework using the NJL model [156–161]. Our work is based on
the spinor decomposition of the Wigner function using the formalism of Refs. [150,
162] and we limit ourselves to the mean field or classical level of quantum kinetic
theory, since the DCSB and generation of dynamical mass of fermions takes place
at the mean field level [162]. In the present study, we limit ourselves to using the
Wigner function for an extended system in global thermal equilibrium i.e. at con-
stant temperature and chemical potentials to calculate chiral susceptibility.

In this context some comments regarding chiral transition in the presence of
a chiral chemical potential (µ5) may be in order. In Ref. [39] this was investi-
gated within PNJL model. It was observed that the chiral transition temperature
decreases with chiral chemical potential. To eliminate artifacts of a sharp three
momentum cutoff, in Ref. [39] a smooth cutoff for the three momentum models
through a form factor was used. Further, it was observed that with increasing µ5
the chiral transition becomes a first order transition. In fact the phase diagram in
the µ5 � T plane for the chiral transition becomes similar to the same in the µ � T

plane. This was also the conclusion in Ref. [39, 163, 164]. On the contrary a non
local version of the NJL model was further analyzed in Ref. [165] with the result
that the chiral transition temperature increases with chiral chemical potential and
the chiral transition is second order. Similar conclusions were also drawn in Ref.
[166, 167] using a Schwinger Dyson approach. Further, the NJL model with chi-
ral chemical potential was analyzed in Ref. [168] with a novel medium separation
regularization scheme (MSS) for regulating divergent integrals and the conclusion
was that the chiral transition temperature increases with µ5 and such conclusions
are also in accordance with some Lattice calculations [169, 170]. However, it ought
to be mentioned here that the Lattice data has not been obtained in the chiral limit
and some of the results are for Nc = 2 QCD, e.g [170]. A further careful analysis of
NJL model was done in Ref. [171] to examine the dependence of chiral transition
temperature on different regularization schemes. It was observed that chiral tran-
sition temperature decreases with chiral chemical potential with a smooth cutoff
and shows a first order transition at large µ5. In the present investigation we use a
MSS in the presence of magnetic field and chiral chemical potential. Such a scheme
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was introduced in Ref. [168, 172, 173]. As we will see later, we also do not see a first
order transition at large chiral chemical potential as in the analysis in Ref. [165].
However, we observe that the chiral transition temperature decreases with chiral
chemical potential as in Ref. [39, 171].

We organize this chapter as follows. In Sec. 2.2, we recapitulate the results of
Ref. [162] to study the chiral condensate in the NJL model using the Wigner func-
tion approach. In Sec. 2.3 we discuss the Winger function in the presence of a
magnetic field as well as a chiral chemical potential and find the chiral condensate
for two flavour NJL model. In Sec. 2.4 we discuss the chiral susceptibility in pres-
ence of magnetic field as well as chiral chemical potential. In Sec. 3.5 we present
the results and discussions. Finally in Sec. 2.6 we conclude the investigation with
an outlook.

2.2 Wigner function and chiral condensate
In this section we first briefly discuss the salient features of the formalism of the
Wigner function in the NJL model for single flavour fermion of vanishing current
quark mass [162]. Once we get the representation of scalar condensate in terms of
Wigner function, we generalize it to the more realistic situation with non vanishing
current quark mass in following sections. For a single flavour the NJL model we
start with the following Lagrangian [162],

L = ȳi/∂y + G

⇣
(ȳy)2

+ (ȳig5y)2
⌘

, (2.1)

where y is the Dirac fermion field, G is the scalar coupling. The first term in the
RHS of Eq. (2.1) is the usual kinetic term and the second term represents the four
Fermi interactions. One can define the composite field operators ŝ and p̂ as,

ŝ = �2Gȳy, and p̂ = �2Gȳig5y. (2.2)

Using Eq. (2.2), Eq. (2.1) can be recast as [162],

L = ȳi/∂y � ŝȳy � p̂ȳig5y � ŝ2
+ p̂2

4G
. (2.3)

In the mean field approximation the operators ŝ and p̂ are replaced by their mean
field values,

ŝ ! s = hŝi = Tr(r̂ŝ), and p̂ ! p = hp̂i = Tr(r̂p̂). (2.4)

where r̂ is the density matrix operator and “Tr” denotes trace over all the physical
states of the system. In mean field approximation, for a non-equilibrium transport
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theory, the fundamental quantity is the Green function, which is defined as

G
<
ab(x, y) = hȳb(y)ya(x)i. (2.5)

The mean field values of the operators ŝ and p̂, i.e. s(x) and p(x) can be deter-
mined in terms of the Green function G

<
(x, y) as follows,

s(x) = �2GTr G
<
(x, x), and p(x) = �2GTr ig5G

<
(x, x). (2.6)

The Wigner function is defined for the fermion as [162],

Wab(X, p) =

Z
d

4
X

0

(2p)4 e
�ipµX

0µ
⌧

ȳb

✓
X +

X
0

2

◆
ya

✓
X � X

0

2

◆�

=

Z
d

4
X

0

(2p)4 e
�ipµX

0µ
G
<
ab

✓
X +

X
0

2
, X � X

0

2

◆
(2.7)

It is important to mention that there are no gluons in the NJL model, hence the
SU(3)c gauge invariance of the Wigner function does not appear in the NJL model.
Again in this case we are not considering the background magnetic field. So there
is no U(1)em gauge field in the NJL model. However in the presence of a gauge
field one has to introduce a gauge link in Wigner function for the gauge invariant
description of Wigner function [174].

Since the Wigner function W(X, p) as given in Eq. (2.7), is a composite operator
made out of the Dirac field operators y and ȳ, it can be decomposed in terms of
the generators of the Clifford algebra as,

W =
1
4


F + ig5P + gµ

Vµ + gµg5
Aµ +

1
2

sµn
Sµn

�
. (2.8)

Where 1, ig5, gµ, gµg5 and sµn are the basis of the Clifford algebra and the co-
efficients F, P, Vµ, Aµ and Sµn are the scalar, pseudo scalar, vector, axial vector
and tensor components of the Wigner function respectively, also known as Dirac-
Heisenberg-Wigner (DHW) functions. These DHW functions can be expressed in
terms of Wigner function as,

F(X, p) = TrW(X, p), (2.9)
P(X, p) = �iTrg5W(X, p), (2.10)

V
µ
(X, p) = Trgµ

W(X, p), (2.11)
A

µ
(X, p) = Trg5gµ

W(X, p), (2.12)
S

µn
(X, p) = Trsµn

W(X, p). (2.13)
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Using Eq. (2.6) and Eq. (2.7), the scalar and pseudoscalar condensates as given in
Eq. (2.9) and Eq. (2.10) can be written in terms of Wigner function as,

s(X) = �2G

Z
d4

pTr W(X, p) = �2G

Z
d4

pF(X, p), (2.14)

and,

p(X) = �2G

Z
d4

pTr ig5W(X, p) = 2G

Z
d4

pP(X, p). (2.15)

Using Eq. (2.2) and Eq. (2.14), the scalar condensate can be expressed as,

hȳyi =
Z

d
4
pF(X, p). (2.16)

In the above description we have briefly discussed the relations between the
scalar and pseudoscalar condensates with the Wigner function, W(X, p) and the
scalar condensate in terms of the Wigner function. In this chapter we rather focus
on the chiral condensate as given in Eq. (2.16) and associated chiral susceptibility
in two flavour NJL model.

The expression of the Wigner function can be found by inserting the Dirac field
operators in Eq. (2.7). The Dirac field operators in the absence of magnetic field
can be written as [175],

y(x) =
1p
V

Â
~k,s

1p
2E0k

h
a(~k, s)u(~k, s)e

�ik.x
+ b

†
(~k, s)v(~k, s)e

ik.x
i

, (2.17)

ȳ(x) =
1p
V

Â
~k,s

1p
2E0k

h
a

†
(~k, s)ū(~k, s)e

ik.x
+ b(~k, s)v̄(~k, s)e

�ik.x
i

, (2.18)

where V is the volume and s = ±1 denotes the spin states. Using the field decom-
position as given in Eqs. (2.17) and (2.18), the Wigner function of a fermion of mass
M0 can be shown to be [175],

Wab(X, p) =
1

(2p)3 d(p
2 � M2

0)


q(p

0
)Â

s

fFD(E0p � µs)ua(~p, s)ūb(~p, s)

+q(�p
0
)Â

s

(1 � fFD(E0p + µs))va(�~p, s)v̄b(�~p, s)

�
, (2.19)

where the creation and the annihilation operators of the particle satisfy,

ha
†
(~p, s)a(~p, s)i = fFD(E0p � µs).

On the other hand the creation and the annihilation operators of the anti-particle
satisfy,

hb
†
(�~p, s)b(�~p, s)i = fFD(E0p + µs).
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Where fFD(z) = 1/(1 + exp(z/T)) is the Fermi Dirac distribution function at tem-
perature T and µs is the chemical potential for the spin state s. E0p =

q
p2 + M2

0 is
the single particle energy and M0 is the mass of the Dirac fermion. It is important
to note that the space-time dependence in the Wigner function W(X, p) is hidden
in the space-time dependence of the temperature and chemical potential. How-
ever for a uniform temperature and chemical potential i.e. for a system in global
equilibrium the Wigner function is independent of space-time. Hence from now
onward we omit the space-time dependence in the Wigner function. Using Eqs.
(2.9) and (2.19) the scalar DHW function can be expressed as [175],

F(p) = M0d(p
2 � M2

0) ⇥
2

(2p)3 Â
s

✓
q(p

0
) fFD(E0p � µs) � q(�p

0
)(1 � fFD(E0p + µs))

◆
. (2.20)

Using Eq. (2.20), the scalar condensate for a single fermion of mass M0 given in
Eq. (2.16) can be expressed as,

hȳyi =
Z

d4
pM0d(p

2 � M2
0) ⇥

2
(2p)3 Â

s

✓
q(p

0
) fFD(E0p � µs) � q(�p

0
)(1 � fFD(E0p + µs))

◆
.

= � Â
s

Z d3
p

(2p)3
M0
E0p


1 � fFD(E0p � µs) � fFD(E0p + µs)

�
(2.21)

In a situation where the chemical potential is independent of the spin of the state,

hȳyi = �2Nc

Z d3
p

(2p)3
M0
E0p


1 � fFD(E0p � µ) � fFD(E0p + µ)

�
, (2.22)

with M0 = �2Ghȳyi is the mass gap equation. The factor of Nc appears in Eq.
(2.22) due to the “Tr” over all the degrees of freedom.

Next we shall consider two flavours (u, and d quarks) NJL model for vanishing
magnetic field and chiral chemical potential, with the Lagrangian given as [34],

L = L0 + L1 + L2, (2.23)

where the free part is,

L0 = ȳ(i/∂ � m)y, (2.24)

and the interaction parts are given as,

L1 = G1

3

Â
a=0


(ȳtay)2

+ (ȳig5tay)2
�

, and (2.25)



26 Chapter 2. Chiral symmetry breaking . . .

L2 = G2

h
(ȳy)2 � (ȳ~ty)2 � (ȳig5y)2

+ (ȳig5~ty)2
i

, (2.26)

where y = (yu, yd)
T is the quark doublet, m = diag(mu, md) is the current quark

mass metrix with mu = md. t0
= I2⇥2 and ~t are the Pauli matrices. The above

Lagrangian, Eq. (2.23), is invariant under SU(2)L ⇥ SU(2)R ⇥ U(1)V gauge trans-
formations. L1 has an additional U(1)A symmetry and L2 is identical with t-Hooft
determinant interaction term which breaks the U(1)A symmetry explicitly. L2 term
introduces mixing between different flavours. The value of the coupling G2 is fixed
by fitting the masses of the pseudo scalar octet [34]. It is also important to empha-
sis that since we are considering only the scalar condensates of the form ȳuyu and
ȳdyd, so we can safely ignore the pseudo scalar condensate as well as the scalar
condensates of the form ȳuyd, ȳdyu etc. Using these approximations at the mean
field level, the Lagrangian of the two flavour NJL model as given in Eq. (2.23) can
be written as,

L = ȳu(i/∂ � M0u
)yu + ȳd(i/∂ � M0d

)yd

�2G1

⇣
hȳuyui2

+ hȳdydi2
⌘

� 4G2hȳuyuihȳdydi, (2.27)

where hȳuyui and hȳdydi are the u and d quark condensates respectively. The mass
gap equations for u and d quarks are given as,

M0u
= mu � 4G1hȳuyui � 4G2hȳdydi, M0d

= md � 4G1hȳdydi � 4G2hȳuyui.
(2.28)

One can easily generalize the expression of the scalar condensate as given in Eq.
(2.22) for a single flavour NJL model to two flavour NJL model. The chiral conden-
sate in the NJL model of Nf quark flavour and Nc color can be written as,

hȳyiµ5=0
B=0 =

Nf

Â
f=1

hȳ f y f i
µ5=0
B=0 with,

hȳ f y f i
µ5=0
B=0 = �2Nc

Z
d

3
p

(2p)3

M0 f

E0p, f


1 � fFD(E0p, f � µ) � fFD(E0p, f + µ)

�
.

(2.29)

The chiral condensate for Nf flavour NJL model as given in Eq. (2.29) can also
be obtained by first calculating the thermodynamic potential using the mean field
Lagrangian as given in Eq. (2.27) and then calculating the gap equation using the
minimization of thermodynamic potential.
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2.3 Wigner function and chiral condensate in a nonva-
nishing magnetic field and chiral chemical poten-
tial

In the presence of a magnetic field (B) and chiral chemical potential (µ5), the Wigner
function has been explicitly written down in Ref. [150]. They have used the solu-
tions of the Dirac equation for fermions in presence of magnetic field and chiral
chemical potential. We shall use it to obtain the chiral condensate. For the sake
of completeness, we write the relevant expressions for the Wigner function. In the
presence of a magnetic field, the Wigner function, given in Eq. (2.7), gets modified
to a gauge invariant Wigner function as [150],

Wab(X, p) =

Z d4
X

0

(2p)4 e
(�ipµX

0µ) ⇥
⌧

ȳb

✓
X +

X
0

2

◆
U

✓
A, X +

X
0

2
, X � X

0

2

◆
ya

✓
X � X

0

2

◆�
, (2.30)

where U

⇣
A, X +

X
0

2 , X � X
0

2

⌘
is the gauge link between two space-time points

⇣
X � X

0
2

⌘

and
⇣

X +
X

0
2

⌘
for the gauge field A

µ. The gauge link has been introduced to make
the Wigner function gauge invariant. In the presence of a homogeneous external
magnetic field along the z direction, the gauge link is just a phase. In this case the
Wigner function simplifies to,

Wab(X, p) =

Z d4
X

0

(2p)4 e
(�ipµX

0µ�iqByx
0
)

⌧
ȳb

✓
X +

X
0

2

◆
⌦ ya

✓
X � X

0

2

◆�
, (2.31)

where A
µ
(X) = (0, �By, 0, 0) is a specific gauge choice of the external magnetic

field. q is the charge of the particle and it has been taken to be positive. Analogous
to the case of a vanishing magnetic field, the Wigner function can be calculated for
a non-vanishing magnetic field by using the Dirac field operator in a background
magnetic field. The Wigner function in presence of magnetic field at finite temper-
ature (T), chemical potential (µ) and finite chiral chemical potential (µ5) has been
shown to be [150],

W(p) = Â
n,s

h
fFD(E

(n)

pz,s � µ)d(p0 + µ � E
(n)

pz,s)W
(n)

+,s(~p)

+ (1 � fFD(E
(n)

pz,s + µ))d(p0 + µ + E
(n)

pz,s)W
(n)

�,s(~p)
i

, n � 0 (2.32)

where the functions W
(n)

±,s(~p) denote the contribution of fermion/antifermion in the
n-th Landau level. The single particle energy at the lowest Landau level and higher
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Landau levels are given as

E
(0)
pz

=

q
M2 + (pz � µ5)2

and

E
(n)

pz,s =

r
M2 + (

q
p2

z + 2nqB � sµ5)2

respectively. + and � in Eq. (2.32) denote contributions of positive and negative
energy solutions respectively. In the lowest Landau level fermions can only be in
a specific spin state. On the other hand for higher Landau levels (n > 0) both spin
states contribute.

The functions W
(n)

±,s(~p) in Eq. (2.32) can be expressed in terms of Dirac spinors
in the following manner [150],

W
(n)

rs (~p) ⌘ 1
(2p)3

Z
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0 exp(ipyy
0
)⇥

x
(n)†
rs

✓
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y
0
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◆
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0

2

◆
, n � 0 (2.33)

In Eq. (2.33), r = ± denotes positive energy and negative energy solutions respec-
tively. The Dirac spinors x

(0)
r and x

(n)

rs , where r = ± denotes positive and negative
energy states and s denotes the spin of the state, are defined as,

x
(0)
r (px, pz, y) =
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@r

q
E
(0)
pz

� r(pz � µ5)q
E
(0)
pz

+ r(pz � µ5)

1
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(2.35)

for (n > 0). Where the normalized eigen spinors c are

c(0)
(px, y) =

✓
1
0

◆
f0(px, y), (2.36)
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@

qp
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s
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1

A ,

(2.37)
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for n > 0. Where,

fn(px, y) =
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#
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(2.38)

for n > 0. Hn represents n-th Hermite polynomial. Inserting the explicit expression
of the Dirac spinors as given in Eq. (2.36) and Eq. (2.37) into Eq. (2.33) one can get
the explicit form of the function W

(n)

±,s(~p) [150].

For lowest Landau level,
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while for higher Landau levels (n > 0),
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where we have defined

X
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where,
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(2.42)

Here Ln(x) are the Laguerre polynomials with L�1(x) = 0. Using the Wigner
function W(p) as given in Eq. (2.32) it can be shown that the scalar DHW function
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is [150],
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where,
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⇤
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(2.46)

Once the scalar DHW function is known explicitly as given in Eq. (2.43), the chiral
condensate of single flavour fermion can be calculated using Eq. (2.16) and is given
as,

hȳyi =
Z

d
4
p F(p) =

Z
2ppT dp0 dpT dpz F(p) (2.47)

Using Eq. (2.43) and Eq. (2.47), it can be shown that (see Appendix A.1 for details),
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(2.48)

For vanishing chiral chemical potential, µ5 = 0, scalar condensate get reduced to,

hȳyiµ5=0
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(2.49)
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where we denote M0 as the mass of fermion in the absence of chiral chemical po-
tential and finite magnitude field. The single particle energy e

(n)

pz
, for vanishing

chiral chemical potential can be written as,

e
(n)

pz
=

q
M

2
0 + p2

z + 2nqB, n � 0. (2.50)

The chiral condensate for a single flavour as given in Eq. (2.48) can be easily ex-
tended to NJL model with two flavours. Most general Lagrangian for two flavour
NJL model with u and d quarks in the magnetic field including chiral chemical
potential is given as,

L = ȳ(i /D � m + µ5g0g5
)y + G1

3

Â
a=0

h
(ȳtay)2

+ (ȳig5tay)2
i

+G2

h
(ȳy)2 � (ȳ~ty)2 � (ȳig5y)2

+ (ȳig5~ty)2
i

, (2.51)

where y is the U(2) quark doublet, given as y = (yu, yd)
T. The covariant deriva-

tive is given as /D = /∂ + iq /A and the current quark mass matrix is m = diag(mu, md),
with mu = md. The first term in Eq. (2.51) is the free Dirac Lagrangian in the pres-
ence of a magnetic field. For the calculation we have considered the gauge choice
of the background magnetic field as A

µ
= (0, �By, 0, 0). The second term in Eq.

(2.51) is the four Fermi interactions and the attractive part of the quark anti-quark
channel of the Fierz transformed color current-current interaction. ta, a = 0, ..3
are the U(2) generators in the flavour space. Third term is the t-Hooft interaction
terms which introduces flavour mixing as earlier in Eq. (2.26). Since the magnetic
field couples to the electric charge of particles, in the presence of magnetic field u

quark and d quarks couple differently with the magnetic field, hence the isospin
symmetry is explicitly broken. In the mean field approximation, in the absence of
any pseudo scalar condensate, Eq. (2.51) can be recast as,

L = ȳu(i /D � Mu + µ5g0g5
)yu + ȳd(i /D � Md + µ5g0g5

)yd

�2G1

⇣
hȳuyui2

+ hȳdydi2
⌘

� 4G2hȳuyuihȳdydi, (2.52)

where u, d quark condensates are given as hȳuyui and hȳdydi respectively. The
constituent quark masses for u and d quarks in terms of the chiral condensates can
be given as,

Mu = mu � 4G1hȳuyui � 4G2hȳdydi, Md = md � 4G1hȳdydi � 4G2hȳuyui.
(2.53)
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Generalizing Eq. (2.48) for two flavour NJL model, the chiral condensate in the
presence of magnetic field and chiral chemical potential can be written as,

hȳyiµ5 6=0
B 6=0 = Â

f=u,d
hȳ f y f i

µ5 6=0
B 6=0 , (2.54)

where
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(2.55)

and the single particle energy of flavour f can be expressed as for n = 0 and n > 0
respectively,
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2
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=

r
M

2
f
+ (
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z + 2n|q f |B � sµ5)2.

(2.56)

For vanishing chiral chemical potential µ5 = 0, the chiral condensate of single
flavour can be expressed as,

hȳ f y f i
µ5=0
B 6=0 = �

Nc|q f |B
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(2.57)

and the single particle energies of flavour f can be expressed as,

e
(n)

pz, f
=

q
p2

z + M
2
0 f
+ 2n|q f |B. (2.58)

The first term of Eq. (2.57) is UV divergent and it needs to be regularized to
derive the meaningful chiral condensate. The effective models like the NJL model
which are non-renormalizable are complemented with the regularization schemes
with the constraint that the qualitative results should be independent of the reg-
ularization prescription. Generally in the NJL model at zero temperature and
zero chemical potential such divergent integrals are regularized by either a sharp
three momentum cutoff [34, 156] or a smooth cutoff [176–178]. In the presence
of magnetic fields, continuous momentum dependence in two spatial dimensions
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transverse to the direction of magnetic field, are being replaced by a sum over dis-
cretized Landau levels. Hence a sharp three momentum cutoff in the presence of
the magnetic field suffers from a cutoff artifact. Instead of a sharp cutoff a smooth
momentum cutoff was used in Ref. [39] in the context of chiral magnetic effects in
the PNJL model to avoid such sharp cutoff artifacts. To regularize the first term of
Eq. (2.57), we follow here an elegant procedure calling MSS that was followed in
Ref. [63, 130, 179] by adding and subtracting a vacuum term to the chiral conden-
sate which is also divergent. This makes the first term of Eq. (2.57) neatly separated
into a zero field vacuum term and a term that is only dependent on the field writ-
ten in terms of the Gamma function which is finite. Thus the regularized chiral
condensate in presence of magnetic field at vanishing quark chemical potential is
(see Appendix A.2, Eq. (A.25)),
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), (2.59)

where the dimensionless variable x0 f
= M

2
0 f

/2|q f |B. The scalar condensate given
in Eq. (2.59) can also be obtained by minimizing the regularized thermodynamic
potential which is obtained using the mean field Lagrangian as given in Eq. (2.52)
in case of vanishing chiral chemical potential. By solving the equation Eq. (2.53)
using Eq. (2.59) we get constituent quark masses of u and d quarks for vanishing
chiral chemical potential with finite magnetic field. These constituent quark masses
will be later used to estimate constituent quark masses at finite chiral chemical
potential and finite magnetic field. We discuss it in the following subsection.

2.3.1 Regularization of chiral condensate in the presence of a mag-
netic field and a chiral chemical potential

The chiral condensate of the quark (flavour f ), hȳ f y f i, in the presence of a mag-
netic field and a chiral chemical potential is given as,
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med,B 6=0 (2.60)
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where hȳ f y f i
µ5 6=0
vac,B 6=0 is the vanishing temperature and vanishing quark chemical

potential part of the chiral condensate and hȳ f y f i
µ5 6=0
med,B 6=0 is the medium term at

finite temperature and quark chemical potential. hȳ f y f i
µ5 6=0
vac,B 6=0 contains a diver-

gent integral which has to be regularized to obtain meaningful physical results. To
regularize the vacuum part of the chiral condensate for non vanishing magnetic
field and chiral chemical potential we have not considered the naive regulariza-
tion with finite cutoff (Traditional Regularization scheme-TRS) to remove cutoff
artifacts, rather we have considered MSS outlined in Ref. [180]. By adding and
subtracting the lowest Landau level term in the zero temperature and zero quark
chemical potential part of the chiral condensate for non vanishing magnetic field
and chiral chemical potential, we get (for details see Appendix A.3),
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where E
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=
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2
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z + 2n|q f |B � sµ5)2.

Both the integrals, I1 and I2, diverge at large momentum, these integrals need to
be regularized. We use MSS to regularize these integrals. The MSS has been ap-
plied for the case of finite chiral chemical potential and vanishing magnetic field
in Ref. [168]. In the present case we keep both the magnetic field B 6= 0 and the
chiral chemical potential µ5 6= 0. The integral I1 can be regularized by adding and
subtracting the similar term with non-zero magnetic field (B 6= 0) and µ5 = 0,
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(2.62)

where e
(n)

pz, f
=
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z + 2n|q f |B and A = M
2
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f
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5. Using the identity
given in Eq. (2.62) twice we can write the integrand of the integral I1, as given in



2.3. Wigner function and a chiral condensate B 6= 0 . . . 35

Eq. (2.61), in the following way,
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Now, let’s perform p4 integration, we obtain (for details see Appendix A.2),
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and
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The integrals I1quad and I1log are UV divergent. On the other hand I1finite1 and I1finite2

are finite.
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Similarly, the integral I2 given in Eq. (2.61) can be written as,
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Using Eqs. (2.64) and (2.69), hȳ f y f i
µ5 6=0
vac,B 6=0 can be expressed as,
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Each integral in Iquad is divergent. Using dimensional regularization, we get the
regularized Iquad (see Appendix A.2, Eq. (A.14) and Eq. (A.25)),
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Similarly the term I1log has UV divergence. The regularization of it can be done
using dimensional regularization. In the dimensional regularization scheme we
get (see Appendix A.2, Eq. (A.28)),
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here
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Hence the regularized chiral condensate of quark flavour f with non-vanishing
magnetic field and chiral chemical potential using MSS for vanishing quark chem-
ical potential is given as,
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where the regularized Iquad and I1log are given in Eqs. (2.76) and (2.73) respectively.

This makes the expression for hȳ f y f i
µ5 6=0
B 6=0 finite which we shall use later for the

calculation of constituent quark mass (Mf ) for non-vanishing magnetic field and
chiral chemical potential. Note that for the estimation of constituent quark mass
(Mf ) for non-vanishing magnetic field and chiral chemical potential one requires
constituent quark mass M0 f

for non-vanishing magnetic field and vanishing chiral
chemical potential which can be obtained from Eq. (2.59).

2.4 Chiral susceptibility
The fluctuations and the correlations are the important characteristics of any phys-
ical system. They provide the essential information about the effective degrees
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of freedom and their possible quasi-particle nature. These fluctuations and cor-
relations are connected with susceptibility. Susceptibility is the response of the
system to small external forces. The chiral susceptibility measures the response of
the chiral condensate to the infinitesimal change of the current quark mass. Chiral
susceptibility in two flavour NJL model can be defined as,

cc =
∂hȳyi

∂m

=
∂hȳuyui

∂m
+

∂hȳdydi
∂m

= ccu + ccd (2.80)

Using Eq. (2.53), we get ccu and ccd as,

ccu =
∂hȳuyui

∂m
=

∂hȳuyui
∂Mu

 
1 � 4G1
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ccd =
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∂hȳdydi
∂Md

 
1 � 4G1
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. (2.82)

By solving Eqs. (2.81) and (2.82) for ccu and ccd, we get,

ccu =
∂hȳuyui

∂Mu

1 � 4G2ccd

1 + 4G1
∂hȳuyui
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, (2.83)
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. (2.84)

and by solving Eqs. (2.83) and (2.84), we get,
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∂hȳdydi
∂Md

9
=

; ,
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Hence, to get the chiral susceptibilities for u and d quarks, we have to estimate
∂hȳ f y f i

∂Mf

. However, it is important to note that like chiral condensate, chiral sus-

ceptibility also contains a UV divergence. Hence the ∂hȳ f y f i
∂Mf

term also has to be
regularized. Using Eq. (2.59), for vanishing chemical potential (µ = 0) and vanish-
ing chiral chemical potential (µ5 = 0) in the presence of magnetic field we get,
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∂hȳ f y f i
µ5=0
B 6=0

∂M0
f

as given in Eq. (2.87) is regularized and it can be used to calculate the

individual chiral susceptibilities ccu, ccu and the total chiral susceptibility cc in
the presence of a finite magnetic field and vanishing chiral chemical potential. To
estimate the chiral susceptibility at non-vanishing magnetic field and chiral chem-
ical potential we have to estimate the regularized ∂hȳ f y f i

∂Mf

at finite B and µ5. This
regularization has been done using the MSS regularization scheme.

2.4.1 Regularization of the chiral susceptibility in the presence of
a magnetic field and a chiral chemical potential

For non-vanishing magnetic field (B) and chiral chemical potential (µ5) for µ = 0,
using Eq. (2.55) the variation of chiral condensate with constituent quark mass is
written as,
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Here the first term (the “vacuum” term) is given as,
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and the other term (the medium dependent term) is given as,
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The medium dependent term is convergent and does not need any regularization.
On the other hand the “vacuum” term is not convergent. The integrals, I1, I2, and I3
are divergent and need regularization. We perform the MSS as done for the chiral

condensate. The regularized
∂hȳ f y f i

µ5 6=0
vac,B 6=0

∂Mf

can be expressed as (see Appendix

A.4, Eq. (A.59)),
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where regularized Iquad, Ilog, I1,log can be expressed as (see Appendix A.4, Eq. (A.61),
Eq. (A.62), Eq. (A.63),
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and the convergent integrals I1,finite1, I1,finite2, I2,finite, I3,finite and Ifinite are given as
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For non-vanishing magnetic field and chiral chemical potential Eqs. (2.90) and
(2.91) along with Eqs. (2.85) and (2.86) can be used to calculate chiral susceptibility
(cc).

2.5 Results and discussion
Let us note that the Lagrangian as given in Eq. (2.51) has the following parameters,
two couplings G1, G2, the three momentum cutoff L and the current quark masses
mu and md. To study the effects of flavour mixing, the couplings G1 and G2 are
parametrized as G2 = ag, G1 = (1 � a)g [34]. The extent of flavour mixing is
controlled by a. For the numerical studies we take the parameters mu = md = 6
MeV, the three momentum cut off : L = 590 MeV and the scalar coupling: g =

2.435/L2. For these values of the parameters, pion vacuum mass is 140.2 MeV,
pion decay constant is 92.6 MeV and the quark condensates are hȳuyui = hȳdydi
= (�241.5) MeV3. This parameter set also leads to a vacuum constituent quark
mass 400 MeV. It may be relevant here to mention that in the absence of magnetic
field the two condensates hȳuyui = hȳdydi and therefore the gap equation (2.53)
depends upon the sum of the two couplings (G1 + G2) which is independent of
a. Thus the masses Mu and Md are the same and do not depend upon a, in the
absence of magnetic field.

Next we discuss about choosing the parameter a. One can fix the parameter a
from the mass of the iso-scalar pseudo scalar particle that arises in the spectrum
because of breaking of U(1)A symmetry. In a two flavour case, this meson can be
identified with the h meson. The mass of h meson can be given approximately by
[181],

m
2
h = m

2
p +

G2M
2

(G2
1 � G

2
2) f 2

p
. (2.100)
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Clearly, for a = 0.5, the h meson disappear from the spectrum. With the physical
mass of the h-meson (mh = 547.8 MeV); the above equation lead to a value of
a ' 0.09. On the other hand, a description of h-meson without strange quarks is
not realistic and therefore a better way to fix a is from the three flavour NJL model
in which case the determinant interaction become a six fermion interaction and
leads to h � h0 splitting. In such a case, e.g. the gap equation for Mu become [34],

Mu = mu � 4Ghȳuyui + 2Khȳsysihȳdydi. (2.101)

Comparing the constituent quark mass as given in Eq. (2.53), we can identify G1 =

G and G2 = � 1
2 Kfs, where fs ⌘ hȳsysi is the strange quark condensate. Thus

using the strange quark condensate we can express a as [34],

a =
� 1

2 Kfs

G � 1
2 Kfs

. (2.102)

The parameters G, K, hȳsysi are fixed from fitting the masses of the pseudo scalar
octet. In particular, the determinant interaction parameter K is fixed from the h � h0

mass difference. Even in such cases, the value of a can vary about 25% to 30 %
(i.e.from a=0.21 to a=0.16) depending upon the parametrization chosen. This wide
variation in a has to do with the different ways h0 is treated in the model. Since
NJL model does not confine and Mh0 lies above the threshold for qq̄ decay with
an unphysical imaginary part of the corresponding polarization diagram. This is
an unavoidable feature of NJL model and leaves an uncertainty that is reflected
in difference in the parameters of the determinant interaction. Further, it may be
mentioned here that, in a different context of spontaneous CP violation in strong in-
teractions, in Ref. [182, 183] it has been argued that 0  a  0.5 so that spontaneous
parity violation is not there for QCD at zero temperature and density for q = 0 in
accordance with Vafa-Witten theorem. In the present work, we have considered
the cases when a = 0 i.e. no flavour mixing, a = 0.5 when both the couplings are
same and a value for a = 0.15 between these two limits to examine the effects of
instanton induced flavour mixing interaction in the presence of magnetic field that
breaks the isospin symmetry.

In Fig. 2.1 we plot the constituent quark masses and the associated chiral sus-
ceptibility as a function of temperature (T) for different values of chiral chemi-
cal potential (µ5) at vanishing magnetic fields. At zero magnetic field hȳuyui =

hȳdydi, hence the constituent quark masses of the u and d quarks remain same.
From the left plot of Fig. 2.1 it is clear that the constituent mass decreases with
increasing chiral chemical potential. One can understand this result in the fol-
lowing way, the chiral chemical potential is a conserved number of the associated
chiral symmetry. Chiral symmetry is an exact symmetry when the fermions are
massless. Chiral symmetry tries to protect the mass of the fermion from quantum
corrections. Hence the chiral chemical potential which is the measure of the chiral
symmetry tries to reduce the mass of the fermion. This decreasing behaviour of the
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FIGURE 2.1: Constituent quark mass (Mu = Md) as a function of tem-
perature (T) at zero magnetic field and at different values of chiral
chemical potential (µ5) (left plot). It is clear from the left plot, the
constituent quark mass decreases with increasing temperature. Chi-
ral susceptibility cc as a function of temperature (T) for zero magnetic
field and with various values of chiral chemical potential (µ5) (right
plot). The peaks in the cc plot define the chiral transition tempera-
ture. From the right plot, it is clear that the transition temperature

decreases with increasing chiral chemical potential.

constituent quark mass with chiral chemical potential is in contrast with other cal-
culations [165, 171]. Further, we also observe that the chiral transition is a smooth
cross-over as in Ref. [165] and no first order phase transition is observed even for
chiral chemical potential as large as 0.4 GeV unlike in Ref. [171]. It ought to be
mentioned here that while the vacuum quark mass satisfies a gap equation with a
cutoff in the three momentum, for the thermal contribution no such cutoff was used
similar to the Ref. [171, 184], as the distribution functions make the corresponding
contribution convergent.

In the right plot of Fig. 2.1 we show the chiral susceptibility as a function of tem-
perature for vanishing quark chemical potential and magnetic field. The peak in
the chiral susceptibility plot which defines the chiral transition temperature shifts
towards the low temperature as we increase the chiral chemical potential. This
decreasing chiral transition temperature behaviour with µ5 is similar to Ref. [39].
Using Eq. (2.85) and Eq. (2.86), it can be shown that ccu = ccd for a vanishing mag-
netic field. Hence the chiral susceptibility has only one peak. Further the height of
the peak decreases with µ5 and we do not observe any sharp peak which indicates
the first order transition. It is also observed in Ref. [165]. However in the presence
of magnetic fields ccu and ccd are different, so the variation of total chiral suscep-
tibility cc with temperature can have multiple peaks. From the right plot we can



2.5. Results and discussion 45

say that the chiral transition temperature decreases with increasing chiral chemical
potential. We would like to mention here that in Ref. [171] for vanishing magnetic
field, an opposite behaviour regarding chiral transition temperature was observed
i.e. Tc increases with µ5. However, the parameters of the NJL model chosen there
were different compared to the parameters taken here or in Ref. [34]. We have also
verified that taking parameters of Ref. [171] Tc increases with µ5.

It may be relevant here to compare this behaviour of Tc with µ5, Such a decreas-
ing behaviour of Tc with µ5 was also observed in PNJL model, however, the nature
of the transition was a first order transition at some critical value of chiral chemical
potential [39]. On the other hand, a non local NJL analysis showed the critical tem-
perature to increase with µ5 [165]. A careful analysis in Ref.[171] shows different
behaviour of Tc with µ5. In Ref.[171] it has been shown that if a cutoff is given to the
thermal part also then Tc increases with µ5 while not giving any cutoff decreases Tc

with µ5. On the other hand we have applied here a medium separation scheme to
remove cutoff artefact as was done in Ref.[168, 172, 173]. However, our result for
vanishing magnetic field showed a opposite behaviour i.e. Tc decreases with µ5.
It turns out that the behaviour of Tc with µ5 depends upon the parameter chosen.
A stronger scalar coupling as we have taken leads to Tc decreasing with µ5 while
a weaker scalar coupling shows a mild increase in Tc with µ5 [168]. We therefore
feel a deeper understanding is still required to understand the opposite behaviour
of Tc with µ5 with change in the scalar coupling. With the parameters considered
here, while the behaviour of Tc decreasing with µ5 is consistent with Ref. [171],
the transition itself seems to be a smooth crossover leading to absence of a critical
point in the (µ5, T) plane of the phase diagram [165, 171].

In Fig. 2.2 we plot the variation of the constituent quark masses Mu and Md

with temperature for vanishing chiral chemical potential and with finite magnetic
field for different values of a. From this figure it is clear that at a non vanishing
magnetic field constituent quark mass increases. At the vanishing magnetic field
the constituent masses of u and d quarks are the same. Although in the presence
of magnetic field, quark condensates hȳuyui 6= hȳdydi, but for a = 0.5 the quark
masses Mu = Md. This is because for a = 0.5 constituent quark mass is Mf =

m � 2g(hȳuyui + hȳdydi), as can be seen from Eq. (2.53). On the other hand, for
a 6= 0.5 quark masses Mu and Md are not the same. The difference between Mu and
Md increases with decrease in the value of a and this difference is largest when a =

0.0. a = 0.0 corresponds to the case when there is no flavour mixing interaction,
and a = 0.5 corresponds to maximal flavour mixing. It is important to note that
for vanishing magnetic field flavour mixing interaction does not affect the quark
masses. Only in the presence of magnetic field when hȳuyui 6= hȳdydi, flavour
mixing interaction affects the constituent quark masses Mu and Md significantly.

In Fig.(2.3) we show the variation of constituent quark masses Mu and Md

and the associated total chiral susceptibility, with temperature for vanishing chi-
ral chemical potential and with different values of magnetic field for a = 0.5. It
has been already mentioned that for a = 0.5 even in the presence of magnetic field
Mu = Md. From the left plot in Fig.(2.3) it is clear that with increasing magnetic
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FIGURE 2.2: Constituent quark masses Mu and Md as a function of
temperature for vanishing chiral chemical potential (µ5) and finite
magnetic field for different values of a. Constituent quark masses
Mu and Md are the same for vanishing magnetic fields. In the pres-
ence of magnetic field and a = 0.5, although hȳuyui 6= hȳdydi, the
constituent quark masses Mu = Md and for a 6= 0.5, the constituent

quark masses Mu 6= Md.

field constituent quark mass increases. On the other hand from the right plot in
Fig.(2.3) it is clear that chiral transition temperature increases with increasing mag-
netic field.

In Fig.(2.4) we show the variation of constituent quark masses Mu and Md

and the associated total chiral susceptibility, with temperature for vanishing chi-
ral chemical potential and with different values of magnetic field for a = 0.0. For
a = 0.0 there is no flavour mixing. From the left plot it is clear that at finite mag-
netic field Mu 6= Md. This is because in the presence of magnetic field u and d

quark condensates are different and in the absence of flavour mixing for a = 0.0,
Mu is independent of hȳdydi. Similarly Md is independent of hȳuyui for a = 0.0.
From the right plot in Fig.(2.4) it is clear that chiral transition temperature increases
with increasing magnetic field. However it is important to mention that unlike the
case when a = 0.5, in this case susceptibility plot shows two distinct peaks at rel-
atively large magnetic field values. In fact these two peaks are associated with u

and d quarks, which has been shown in Fig.(2.5). In the left plot of Fig.(2.5) we
show ccu, ccd and cc for eB = 0.4GeV2 and a = 0.0. On the other hand In the right
plot of Fig.(2.5) we show ccu, ccd and cc for eB = 0.4GeV2 and a = 0.5. From the
left plot in Fig.(2.5) it is clear that for a = 0.0, i.e. in the absence of flavour mixing,
at relatively large magnetic field chiral susceptibility cc shows two distinct peaks.
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FIGURE 2.3: Constituent quark masses (Mu and Md) as the function of
temperature (T) for vanishing chiral chemical potential (µ5) at differ-
ent values of magnetic field for a = 0.5. The constituent quark masses
increase with increasing magnetic field (see left plot). The chiral sus-
ceptibility cc as a function of temperature (T) for the vanishing chiral
chemical potential µ5 at different values of magnetic field for a = 0.5
(right plot). It is clear from the right plot that the transition tempera-

ture increases with increasing magnetic field.

These two peaks are associated with u and d quarks. At relatively large magnetic
field with a = 0.0, chiral restoration of d quark happens at relatively low tempera-
ture with respect to the u quarks. This is due to the fact that at non zero magnetic
field Mu > Md, as can be seen in Fig.(2.4). On the other hand from the right plot
in Fig.(2.5) we can see that, although hȳuyui 6= hȳdydi, ccu and ccd shows peak
at same temperature. Hence for a = 0.5, at finite magnetic field chiral transition
temperature for u and d quarks are same.

In Fig. 2.5, we show the individual chiral susceptibilities ccu, ccd and the total
chiral susceptibility cc for eB = 0.4GeV2 and a = 0.0 (left plot) and a = 0.5 (right
plot) as a function of temperature. In the left plot, it is seen that the chiral suscepti-
bility cc shows two distinct peaks, which are associated to the u and d quarks, for
a = 0.0 at a relatively large magnetic field. At a relatively large magnetic field with
a = 0.0, chiral restoration of d quark happens at a relatively low temperature with
respect to the u quarks. This is because at a non-zero magnetic field Mu > Md,
as it can be seen in Fig. 2.4. On the other hand, in the right plot, we can see that
although hȳuyui 6= hȳdydi, ccu and ccd show peak at same temperature, this is
because a = 0.5 gives the maximal mixing and hence at finite magnetic field chiral
transition temperature for u and d quarks are the same.

Finally, in Fig. 2.6 we show the variation of constituent quark masses Mu and
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FIGURE 2.4: Constituent quark masses Mu and Md as the functions
with temperature T for vanishing chiral chemical potential (µ5) at fi-
nite magnetic fields for a = 0.0. The constituent quark mass increases
with increasing magnetic field (left plot). The chiral susceptibility cc

as a function of temperature (T) for vanishing chiral chemical poten-
tial (µ5) at a finite magnetic field for a = 0.5. The transition temper-
ature is different for different quarks at higher magnetic fields (right

plot).

Md and the associated susceptibilities ccu and ccd with temperature at finite mag-
netic field and finite chiral chemical potential (µ5) while a = 0.5. The variation
of constituent quark masses and associated chiral susceptibilities with tempera-
ture are the same for different values of a. Left plot of the Fig. 2.6 shows that
the constituent quark mass decreases with increasing chiral chemical potential at
finite magnetic fields. This behaviour is also manifested in the right plot of Fig.
2.6, which shows that the chiral transition temperature decreases with increasing
chiral chemical potential.

2.6 Summary and conclusion
Some of the previous studies show the chiral transition temperature decreases with
the chiral chemical potential [39] and some of them show it increases with chiral
chemical potential [171]. The behaviour depends on the regularisation schemes
used in the study. But the first principle calculation (Lattice QCD calculation)
shows that the chiral transition temperature increases which is similar to our study
where we investigated a brand new approach to study the chiral phase transition.
In this study we have seen the chiral phase transition and the associated chiral
susceptibility of the medium produced in the relativistic heavy-ion collisions at
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FIGURE 2.5: Individual chiral susceptibilities of u and d quarks ccu,
ccd and total chiral susceptibility cc as a function of temperature at
vanishing chiral chemical potential (µ5) at eB = 0.4 GeV2 and a = 0.0
(left plot). Individual chiral susceptibilities of u and d quarks ccu, ccd

and the total chiral susceptibility cc as a function of temperature at
vanishing chiral chemical potential (µ5) at eB = 0.4 GeV2 and a = 0.5.
From the left plot it is clear that chiral susceptibility shows two dis-
tinct peaks at large magnetic fields. This is due to the large magnetic
field difference between Mu and Md is large. On the other hand right
plot shows that, for a = 0.5, hȳuyui 6= hȳdydi, ccu and ccd shows peak
at same temperature. Hence for a = 0.5, at finite magnetic field chiral

transition temperature for u and d quarks are the same.

vanishing quark chemical potential using Wigner function within the framework
of two flavour NJL model. For a dynamical system like the medium produced
in relativistic heavy-ion collision, the quantum effects can be relevant. Hence the
quantum kinetic equation is a suitable formalism to understand the evolution of
these dynamical systems. The central quantity of the quantum kinetic description
is the Wigner function. Each component of the Wigner function satisfies the quan-
tum kinetic equation. However in this investigation we have constrained ourselves
to the case of global equilibrium so that T and µ5 are constant and we do not con-
sider evolution of the Wigner function.

We have looked into the behaviour of the constituent quark masses and asso-
ciated chiral susceptibilities within the two flavour NJL model with flavour mix-
ing determinant interaction. At a vanishing magnetic field, u and d quark masses
are degenerate because of isospin symmetry. However at a non-vanishing mag-
netic field, due to different electric charge of u and d quark, the constituent quark
masses Mu and Md can be different depending on the value of mixing parameter
a. For non-maximal flavour mixing (a 6= 0.5) the constituent quark masses are
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FIGURE 2.6: Constituent quark masses Mu = Md as the function of
temperature T at non-vanishing magnetic field and chiral chemical
potential (µ5) (left plot). The chiral susceptibility cc as a function of
temperature T at non-vanishing magnetic field and chiral chemical
potential µ5. It is clear that the chiral transition temperature and con-
stituent quark mass decreases with increasing chiral chemical poten-

tial.

non-degenerate in the presence of magnetic field while for maximal mixing the
magnetic field does not affect the constituent quark masses. The constituent quark
masses Mu and Md are larger for non-vanishing magnetic fields compared to their
vanishing magnetic field counterpart. With increasing magnetic field constituent
quark masses also increase. Apart from this, the chiral transition temperature is
higher for non-vanishing magnetic fields compared to the vanishing magnetic field
case. This is the manifestation of magnetic catalysis i.e. in the presence of magnetic
field the formation of chiral condensate is more probable, also the magnitude of the
chiral condensate is higher for larger magnetic fields. It is important to note that in
the presence of non-maximal flavour mixing instanton interaction, the chiral tran-
sition temperatures of u and d quarks are the same for vanishing magnetic fields.
But for larger magnetic fields, the transition temperatures of u and d quarks are dif-
ferent. The difference between the transition temperatures of u and d quarks also
increases with increasing magnetic field. We have also shown that non-vanishing
chiral chemical potential reduces constituent quark mass at vanishing as well as
non-vanishing magnetic field. Unlike magnetic catalysis, the chiral transition tem-
perature decreases with increasing the chiral chemical potential. Also note that in
the presence of magnetic field, the chiral susceptibility shows a double peak struc-
ture because the isospin symmetry breaks down in presence of magnetic field.



Chapter 3

Transport properties and Seebeck
coefficient

Heavy-ion collision experiments conducted at particle accelerators allow us to study
the properties of fundamental constituents of nature, quarks and gluons. Experi-
ments at RHIC and LHC indicate the formation of such a deconfined medium of
quarks and gluons. The partonic medium produced in heavy-ion collision behaves
like a strongly interacting liquid with a smallest value of shear viscosity (h) to en-
tropy density (s) ratio (h/s). It expands, cools down and undergoes a transition
from the strongly interacting partonic medium (QGP) to the hadronic phase and
finally free streams to the detector. One of the successful descriptions of the bulk
evolution of such strongly interacting matter has been through relativistic hydro-
dynamics. Transport coefficients are the important inputs that enter in such a dissi-
pative hydrodynamic description as well as in transport simulations that have been
used to describe the evolution of such matter produced in a heavy-ion collision. In
this chapter we shall study the transport properties of the strongly interacting par-
tonic medium produced in heavy-ion collisions like electrical conductivity, thermal
conductivity and Seebeck coefficient etc.

3.1 Introduction
Hydrodynamic studies of the heavy-ion collisions suggest that the medium pro-
duced in heavy-ion collisions has a very small ratio of shear viscosity to entropy
density (h/s) [185–187]. It is amongst the smallest of known materials suggest-
ing that the QGP is the most perfect fluid. The value of this ratio estimated from
experiments is also found to be very close to the conjectured Kovtun-Son-Starinet
(KSS) bound on the value of h/s [187]. Just like shear viscosity determines the
response to transverse momentum gradients, there are other transport coefficients
such as bulk viscosity, electrical conductivity, etc. which determine the response
of the system to other such perturbations. Bulk viscosity [60, 188–192] determines
the response to bulk stresses. It scales with the conformal anomaly ( e�3P

T4 ) and is
expected to be large near the phase transition as inferred from LQCD calculations
[193, 194]. The effects of such a large bulk viscosity to entropy ratio have been
investigated on the particle spectrum and flow coefficients [195, 196]. Electrical
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conductivity (sel) [58, 197–214] is also important as the heavy-ion collisions may
be associated with large electromagnetic fields. The magnetic field produced in
non-central collisions has been estimated to be of the order of m

2
p (⇠ 1018 Gauss)

at RHIC energy scales [107, 108, 215–220]. Such magnetic fields are amongst the
strongest magnetic fields produced in nature and can affect various properties of
the strongly interacting medium. They may also lead to interesting CP violating
effects such as CME etc [221]. In a conducting medium the evolution of the mag-
netic field depends on the electrical conductivity. Electrical conductivity modifies
the decay of the magnetic field substantially in comparison with the decay of the
magnetic field in vacuum. Hence the estimation of the electrical conductivity of
the strongly interacting medium is important regarding the decay of the magnetic
field produced at the initial stages of heavy-ion collision. These transport coeffi-
cients have been estimated in pQCD and effective models [202, 222–241]. At finite
baryon densities, the other transport coefficient that is relevant is the coefficient of
thermal conductivity and has been studied in Refs. [242, 243] both in the hadronic
matter as well as partonic matter.

In the present chapter, we investigate the thermoelectric response of the strongly
interacting matter produced in a heavy-ion collision. It is well known from a con-
densed matter system that a temperature gradient can result in the generation of
an electric current. This is known as the Seebeck effect. Due to temperature gradi-
ent, there is a non zero gradient of charge density leading to the generation of an
electric field. A measure of the electric field produced in a conducting medium due
to a temperature gradient is the Seebeck coefficient which is defined as the ratio of
an electric field to the temperature gradient in the limit of vanishing electric cur-
rent. Seebeck effect has been extensively studied in condensed matter systems such
as superconductors, quantum dots, high-temperature cuprates, superconductor-
ferromagnetic tunnel junctions, low dimensional organic metals, etc [40–48]. Such
a phenomenon could also be present in the thermal medium created in relativistic
heavy-ion collisions. In condensed matter systems, because of one type of domi-
nant charge carriers, only a temperature gradient is required for thermoelectric ef-
fect in the systems while in the strongly interacting medium produced in heavy-ion
collision both positive and negative charges contribute to transport phenomena. In
case of vanishing baryon chemical potential with equal numbers of particles and
antiparticles we do not see any thermoelectric effect. Thus a finite baryon chemical
potential is required for the thermoelectric effect. The strongly interacting matter
with finite baryon density can be produced in low energy heavy-ion collisions at
e.g. FAIR and NICA. Along with the temperature gradient, we also consider a
gradient in the baryon (quark) chemical potential to investigate the Seebeck coef-
ficient. The gradient in quark chemical potential has effects similar to the temper-
ature gradient. Using Gibbs-Duhem relation for a static medium one can express
the gradient in the baryon (quark) chemical potential to a gradient in temperature.
Effect of the gradient in chemical potential significantly affects the thermoelectric
coefficients Ref. [49].

Seebeck effect in hadronic matter has been investigated within the framework
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of the hadron resonance gas (HRG) model [49, 50]. However, the HRG model
describes only the hadronic medium at chemical freezeout whereas one expects
a deconfined partonic medium at the early stages of the heavy-ion collisions. In
this chapter, we investigate the thermoelectric behavior of the deconfined partonic
medium within the framework of the NJL model. The Seebeck coefficient has also
been estimated for the partonic matter within relaxation time approximation (RTA)
in Refs. [51, 52]. However, this has been attempted with the relaxation time esti-
mated within pQCD which may only be valid for asymptotically high tempera-
tures. Further, it ought to be mentioned that, the vacuum structure of QCD re-
mains nontrivial near the critical temperature region with nonvanishing values for
the quark-antiquark condensates associated with DCSB as well as Polyakov loop
condensates associated with the physics of statistical confinement [53–56]. Indeed,
within the NJL model, it was shown that the temperature dependence of viscos-
ity coefficients exhibits interesting behavior of phase transition with the shear vis-
cosity to entropy ratio showing a minimum while the coefficient of bulk viscosity
showing a maximum at the phase transition [53, 54, 57]. The crucial reason for this
behavior was the estimation of relaxation time using medium dependent masses
for the quarks as well as the exchanged mesons which reveal nontrivial depen-
dence before and after the transition temperature. This motivates to investigate the
behavior of thermoelectric transport coefficients within the NJL model which takes
into account the medium dependence of quark and meson masses. This model has
been used to study different transport properties of quark matter at high temper-
atures [57–60] and high densities [61–68]. Apart from the NJL model, we also use
use quasi-particle model [244–246] which provides a reasonable thermodynamic
and transport behavior of the deconfined phase.

We organize this chapter in the following manner. In Sec. 3.2, we discuss the
Boltzmann equation within RTA and find the expressions for the different thermo-
electric transport coefficients. In Sec. 3.3 we estimate the relaxation time within the
two flavor NJL model. In Sec. 3.4 we discuss the quasi-particle model approach for
the same in the absence of any quark-antiquark condensate. In Sec. 3.5 we present
the results of different transport coefficients. Finally, in Sec. 3.6 we conclude our
investigation.

3.2 Boltzmann equation in the relaxation time approx-
imation and the transport coefficients

Within a quasi-particle approximation, a kinetic theory treatment for the calcula-
tion of transport coefficient can be a reasonable approximation therefore we shall
be following similar to that in Refs. [60, 189, 225, 226, 247, 248]. The plasma can
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be described by a phase space density for each species of particle. Near the equi-
librium, the distribution function can be expanded about a local equilibrium dis-
tribution function, f

(0) for the quarks as,

f (~x,~p, t) = f
(0)

(~x,~p) + d f (~x,~p, t),

where d f (~x,~p, t) is the deviation from the local equilibrium distribution function
and

f
(0)

(~x,~p) = [exp (b(~x) (un p
n ⌥ µ(~x))) + 1]�1 . (3.1)

Here, u
µ
= gu(1,~u), is the flow four-velocity, where, gu = (1 � ~u2

)
1/2 and µ is

the quark chemical potential associated with a conserved charge, b = 1/T is the
inverse of temperature. Further, p

µ
= (E,~p) is the particle four-momenta and the

single particle energy E =
p

p2 + M2 with p = |~p|. M is the mass of the particle
which, in general, is medium dependent. The departure of the system from its
equilibrium is described by the Boltzmann equation,

d fa(~x,~p, t)

dt
=

∂ fa

∂t
+

dx
i

dt

∂ fa

∂xi
+

dp
i

dt

∂ fa

∂pi
= C

a
[ f ], (3.2)

where the index ‘a’ on the distribution function denotes the different species in the
system. The term on the right-hand side of Eq.(3.2) is the collision term C

a
[ f ] which

we shall discuss later. The left-hand side of the Eq.(3.2) involves the trajectory ~x(t)
and the momentum ~p(t). In general, this trajectory is not a straight line as the
particle is moving in a mean-field, it can be space-time dependent. The velocity of
the particle ‘a’ is defined as

dx
i

dt
=

∂Ea

∂pi
a

=
p

i
a

Ea

= v
i

a.

Next, the time derivative of momentum in presence of an electric field (~E), in pres-
ence of magnetic field (~B) of a mean field dependent mass can be defined as

dp
i

dt
= �∂Ea

∂xi
+ qa(E i

+ eijk
vjBk).

After the substitution of the time derivatives of ~x and ~p, the Boltzmann equation
Eq.(3.2) reduces to

∂ fa

∂t
+ v

i
∂ fa

∂xi
+

∂ fa

∂pi

✓
� Ma

Ea

∂Ma

∂xi
+ qa(E i

+ eijk
vjBk)

◆
= C

a
[ f ]. (3.3)

For the collision, we shall restrict ourselves to 2 ! 2 scatterings only. In RTA, the
collision term for the species a is calculated by assuming that all the distribution
functions are given by the equilibrium distribution function except the distribution
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function for particle a. The collision term, to first order in the deviation from the
equilibrium function, will then be proportional to d fa, given the fact that C

a
[ f

(0)
] =

0 by the principle of local detailed balance. In that case, the collision term is given
by

C[ f ] = �d fa

ta

, (3.4)

where, ta is the relaxation time for particle ‘a’. In general relaxation time is a func-
tion of energy. The left-hand side of the Boltzmann equation Eq.(3.3) is explicitly
small because of the gradients and we, therefore, may replace fa by f

(0)
a . While the

spatial derivative of the distribution function is given by,

∂ f
(0)
a

∂xi
= � f

(0)
a (1 � f

(0)
a )∂i(bEa � bµa)

= � f
(0)
a (1 � f

(0)
a )

✓
� Ea

T2 ∂iT + b
Ma

Ea

∂Ma

∂xi
� ∂i(bµa)

◆
, (3.5)

here µa = baµ, ba being the quark number i.e. ba = 1 for quarks and ba = �1 for
antiquarks. The momentum derivative of the equilibrium distribution function is
given by,

∂ f
(0)
a

∂pi
= � 1

T
f
(0)
a (1 � f

(0)
a )v

i

a. (3.6)

Substituting Eqs.(3.6) and (3.5) in the Boltzmann equation Eq.(3.3) for the static
case in the absence of magnetic field, we have

� f
(0)
a (1 � f

(0)
a )


v

i

a

✓
� 1

T2 ∂iTEa � ∂i(bµa)

◆
+ qabv

i

aE i

�
= �d fa

ta

. (3.7)

The spatial gradients of temperature and chemical potential can be related using
momentum conservation in the system and Gibbs-Duhem relation. Momentum
conservation in a steady-state leads to ∂iP = 0 ( P, being the pressure) [249]. Using
Gibbs-Duhem relation, the pressure gradient can be written as,

∂iP =
w

T
∂iT + Tnq∂i(µ/T) (3.8)

which vanishes in steady-state. Where w = e + P denotes the enthalpy, nq denotes
the net quark number density and e is the energy density. The above equation gives
the relation between the spatial gradient in temperature and the spatial gradients
in chemical potential and it is

∂iµ =

✓
µ � w

nq

◆
∂iT

T
. (3.9)
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Using Eqs.(3.9) and (3.7), one can find the deviation of the distribution function
from the equilibrium d fa as,

d fa =
ta f

0
a (1 � f

0
a )

T

"
qa~va · ~E �

✓
Ea � ba

w

nq

◆
~va · ~rT

T

#
. (3.10)

The non-equilibrium part of the distribution function gives rise to transport
coefficients. The electric current (~J) is given as,

~J = Â
a

ga

Z
d

3
pa

(2p)3 qa~va d fa

= Â
a

gaq
2
a

3T

Z
d

3
pa

(2p)3 v
2
ata f

0
a (1 � f

0
a )

~E

� Â
a

gaqa

3T2

Z
d

3
pa

(2p)3 ta

✓
Ea � ba

w

nq

◆
f

0
a (1 � f

0
a )v

2
a
~rT. (3.11)

Where ba = ±1 for quarks and antiquarks respectively. In Eq.(3.11), we have used
v

i
av

j

a =
1
3 v

2
adij as because the integrand only depends on the magnitude of mo-

menta. Further, the sum is over all flavors including antiparticles. The degeneracy
factor ga = 6 corresponds to color and spin degrees of freedom.

Next, we write down the heat current ~I associated with the conserved quark
number. For a relativistic system, a thermal current arises corresponding to con-
served particle number. The thermal conduction due to quarks arises when there
is energy flow relative to enthalpy [249]. Therefore the heat current is defined as
[249],

I i
= Â

a

T
0i

a � w

nq
Â

a

ba J
i

qa. (3.12)

Here, nq is the net quark number density. The energy flux is given by T
0i, the

spatio-temporal component of energy-momentum tensor (Tµn) [249],

T
0i

a = ga

Z
d

3
pa

(2p)3 p
i

a fa. (3.13)

While the quark current is given~Jq is given by

J
i

qa = ga

Z
d

3
pa

(2p)3
p

i
a

Ea

faba, (3.14)

The contribution to the energy flux and quark current vanishes, arising from the
equilibrium distribution function f

(0)
a due to symmetry consideration and it is the

only non-equilibrium part d fa which contributes to the energy flux and quark cur-
rent. Substituting the expression for d fa from Eq.(3.10) in Eq.(3.12), the heat current
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~I is given as,

~I = Â
a

ga

3T

Z
d

3
pa

(2p)3 f
0
a (1 � f

0
a ) v

2
ata ⇥


qa

✓
Ea � ba

w

nq

◆
~E �

✓
Ea � ba

w

nq

◆2 ~rT

T

�
(3.15)

The Seebeck coefficient S is defined by setting the electric current ~J = 0 in
Eq.(3.11) so that the electric field becomes proportional to the temperature gradient
i.e.

~E = S~rT. (3.16)

Therefore, the Seebeck coefficient for the quark matter in the presence of a gradient
in temperature and chemical potential can be expressed as,

S =

Âa

gaqa

3T

R
d

3
pa

(2p)3 tav
2
⇣

Ea � ba
w
nq

⌘
f
(0)
a (1 � f

(0)
a )

T Âa

ga

3T
q2

a

R
d3 pa

(2p)3 v2ta f
(0)
a (1 � f

(0)
a )

(3.17)

The denominator of the Seebeck coefficient in the above may be identified as Tsel,
where the electrical conductivity sel is given by [204, 250],

sel = Â
a

ga

3T
q

2
a

Z
d

3
pa

(2p)3

✓
pa

Ea

◆2
ta f

(0)
a (1 � f

(0)
a ) (3.18)

which may be identified from Eq.(3.11). Let us note that, while the denominator of
the Seebeck coefficient is positive definite, the numerator is not so as it is linearly
dependent on the electric charge of the species as well as on the difference (Ea �
ba

w
nq
). This makes the Seebeck coefficient not always positive definite. This is also

observed in different condensed matter systems [251].
In terms of the electrical conductivity and the Seebeck coefficient, the electric

current Eq. (3.11) can be written as

~J = sel
~E � selS

~rT. (3.19)

In a similar manner, the heat current as given in Eq.(3.15) can be written as,

~I = TselS
~E � k0~rT, (3.20)

where, k0, the thermal conductivity can be written as [249]

k0 = Â
a

ga

3T2

Z
d

3
pa

(2p)3 ta

✓
pa

Ea

◆2 ✓
Ea � ba

w

nq

◆2
f
(0)
a (1 � f

(0)
a ). (3.21)
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Using Eqs.(3.19) and (3.20), we can express the heat current (~I) in terms of electric
current (~J) in the following way,

~I = TS~J �
⇣

k0 � TselS
2
⌘
~rT. (3.22)

From Eq.(3.22) we can identify the Peltier coefficient (P) and thermal conductivity
(k) in the presence of nonvanishing Seebeck coefficient as,

P = TS, k = k0 � TselS
2. (3.23)

Note that the relation between the Peltier coefficient (P) and the Seebeck coeffi-
cient as given in Eq.(3.23) can be considered as the consistency relation. Also, note
that the thermal conductivity in the absence of any thermoelectric effect as given in
Eq. (3.21) matches with the expression of the thermal conductivity as reported in
Ref. [249]. The Seebeck coefficient (S), thermal conductivity (k0), and the electrical
conductivity (sel) depend upon, the relaxation time as well as the quark masses
that goes into the distribution functions through the single-particle energies and
are medium dependent. We estimate these quantities in the NJL model which is
described in the next section.

3.3 Estimation of the relaxation time in the NJL model
We use the two flavor NJL model to estimate the thermodynamic quantities, the
quasi particle masses in the medium and the relaxation time. The two flavour NJL
Lagrangian is given below, as discussed in Sec. 1.3.2 [34],

L = ȳ(i/∂ � mq)y + G

h
(ȳy)2

+ (ȳig5~ty)2
i

. (3.24)

Where y is the doublet of u and d quarks, mq is the current quark mass matrix
which is diagonal with elements mu and md and we assume the isospin symmetry
i.e. mu = md, ~t are the Pauli matrices in the flavor space and G is the scalar cou-
pling. The thermodynamic quantities e.g. pressure (P), energy density (e) and the
number density (nq) can be obtained once we know the thermodynamic potential
of the NJL model. In a grand canonical ensemble, the thermodynamic potential
(W) or equivalently the pressure (P) can be expressed as,

P = �W(b, µ)

and

W(b, µ) = �
2NcNf

(2p)3b

Z
d~k


log
✓

1 + e
�b(E�µ)

◆
+ log

✓
1 + e

�b(E+µ)
◆�

�
2NcNf

(2p)3

Z
d~k

q
~k2 + M2 +

(M � m0)
2

4G
.
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In the above, Nc = 3 is the number of colors and Nf = 2 is the number of flavors,

E =

p
~k2 + M2 is the single particle energy with constituent quark mass M which

satisfies the self consistent gap equation

M = m0 +
2NcNf

(2p)3

Z
d~k

Mp
k2 + M2

(1 � f
(0) � f̄

(0)
). (3.25)

In the above equations f
(0)

= (1 + exp(bw�))�1 and f̄
(0)

= (1 + exp(bw+))
�1 are

the equilibrium distribution functions for quarks and antiquarks respectively and
we have written w±(k) = E(~k) ± µ with k ⌘ |~k|. The energy density e is given by,

e = �
2NcNf

(2p)3

Z
d~kE(k)(1 � f

(0) � f̄
(0)

) +
(M � m0)

2

4G
, (3.26)

so that enthalpy w = e + P is also defined once the solution to the mass gap equa-
tion, Eq.(3.25) is known. In these calculations, we have taken a three momentum
cutoff L to regularize the UV divergence. The net quark number density nq is given
as

nq =
2NcNf

(2p)3

Z
d~k( f

(0) � f̄
(0)

). (3.27)

This completes the discussion on all the bulk thermodynamic quantities defined
in NJL model which enters in the definitions for Seebeck coefficient, electrical con-
ductivity and thermal conductivity.

Next we estimate relaxation time. For a process a + b ! c + d, the relaxation
time for the particle a i.e. ta(Ea) is given by [57],

t�1
a (Ea) ⌘ w̃(Ea) =

1
2Ea

Â
b

Z
d~pbWab f

(0)
b

(Eb), (3.28)

where the sum runs over all species other than “a”. Further, in Eq.(3.28), we have
introduced the notation d~pi =

d
3

pi

(2p)32Ei

and Wab is the dimensionless transition rate
for the processes with a, b as the initial states. Wab which is Lorentz invariant and
a function of the Mandelstam variable (s) can be written by,

Wab(s) =
1

1 + dab

Z
d~pcd~pd(2p)

4d(pa + pb � pc � pd) ⇥

|M|2
ab!cd

⇣
1 � f

(0)
c (pc)

⌘⇣
1 � f

(0)
d

(pd)

⌘
. (3.29)

In the expression of Wab, the Pauli blocking factors have been considered. The
quantity Wab can be related to the cross sections of various scattering processes.
In the present case within the NJL model, the quark-quark, quark-antiquark and
antiquark-antiquark scattering cross sections are calculated to order 1/Nc which
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occur through the p and s meson exchanges in “s” and “t” channels. The meson
propagator that enters into the scattering amplitude is calculated within the ran-
dom phase approximation and includes their masses and the widths. The mass of
the meson is estimated from the pole of the meson propagator at vanishing three
momentum i.e.,

1 � 2G RePm̃(Mm̃, 0) = 0. (3.30)

where m̃ denotes s, p for scalar and pseudoscalar channel mesons, respectively.
Polarization function in the corresponding mesonic channel is expressed as Pm̃.
The explicit expressions for RePm̃ and the imaginary part ImPm̃ is given in Ref.
[57] and we do not repeat it here.

While the relaxation time is energy dependent, one can also define an energy
independent mean relaxation time by taking a thermal average as,

w̄a ⌘ t̄�1
a =

1
na

Z
d

3
pa

(2p)3 f
(0)
a (Ea)w̃a(Ea) ⌘ Â

b

nbW̄ab, (3.31)

to get an estimate of the average relaxation time. In the above equation, the sum is
over all the particles other than ‘a’;

na =

Z
d

3
pa

(2p)3 f
(0)
a (Ea),

is the number density of the species “a” apart from the degeneracy factor. Here,
W̄ab is the thermal-averaged transition rate given as

W̄ab =
1

nanb

Z
d~pad~pb f (Ea) f (Eb)Wab. (3.32)

For the case of two flavors, there are 12 different processes but the correspond-
ing matrix elements can be related using isospin symmetry, charge conjugation and
crossing symmetries with only two independent matrix elements. We have chosen
them to be the processes uū ! uū and ud̄ ! ud̄. The explicit expressions for
the matrix elements are given in Refs. [57, 248]. It is important to mention that
while the matrix elements of different scattering processes are related, the thermal-
averaged rates are not. This is because the thermal averaged rates involve the
thermal distribution functions for the initial states along with the Pauli blocking
factors for the final states.

3.4 Quasiparticle picture of the partonic medium
In the quasiparticle description, all the quarks (anti quarks) have both the thermal
mass mth arising due to the interaction with the constituents of the medium and
the bare mass m0. Therefore, in the quasiparticle picture the total effective mass of
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the quark flavor i can be expressed as [244–246, 252],

m
2
i
= (m0 + m+(T, µ))2

+ m+(T, µ)2, (3.33)

with

2m
2
+(T, µ) =

g
2
(T, µ)T2

3

✓
1 +

µ2

p2T2

◆
. (3.34)

which is related to the asymptotic form of the gauge independent hard thermal
(dense) loop self energies. The temperature and the chemical potential dependent
strong coupling constant up to two loop order is [253, 254],
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, (3.35)

where LT is the QCD scale parameter which we consider as LT = 0.35Tc with Tc =

200 MeV [254]. The effective mass of the gluon, which depends on the temperature
and the chemical potential is given as [245, 255],

m
2
g(T) =

Nc

6
g

2
(T, µ)T2


1 +

1
6

✓
Nf +

3
p2 Â

f

µ2
f

T2

◆�
, (3.36)

where Nc and Nf represents the number of colors and flavors respectively. The
relaxation time for the quarks and antiquarks for the massless case is given by
[256],

tq(q̄) =
1

5.1Ta2
S

log
⇣

1
aS

⌘ �
1 + 0.12(2Nf + 1)

� . (3.37)

Note that for simplicity we have used the relaxation time which is applicable for
the massless case only. However, following Ref. [257] it can be argued that the
effect of the massive quark is small in the estimation of the scattering cross sections
and relaxation time. Therefore, we use the expressions of the relaxation time as
given in Eq. (3.37) even for the massive quarks. To compare our results as obtained
in the NJL model we consider two light flavors with bare mass m0 = 0.008 GeV
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FIGURE 3.1: Constituent quarks mass (M) as a function of tem-
perature at different chemical potentials (Left panel). The variation
of dM/dT with temperature for different chemical potentials (Right
panel). The nonmonotonic variation of dM/dT with a peak structure

indicates the pseudo critical temperature for the chiral transition.

[245]. The relaxation time for the gluons is given by [252, 256, 258]

tg =
1

22.5a2
s ln

⇣
1
as

⌘ �
1 + 0.06n f

� (3.38)

3.5 Results and discussion
The two flavor NJL model as given in Eq.(3.24) has three parameters: the current
quark mass m0, the four fermions coupling constant G and the three momenta cut
off (L). The values of parameters are adjusted to fit the vacuum structure of QCD
like the pion decay constant ( fp=94 MeV), the pion mass (mp=135 MeV) and the
vacuum quark condensate hūui = hd̄di = (�241 MeV)

3. Various sets of combina-
tions of G, L, m0 can be used to fix the vacuum structure of QCD but qualitatively
all these different parameterizations are equivalent. Without going into such de-
tailed parameter dependence we work with a single set of parameters. We consider
here a parameter set m0 = 5.6 MeV, L = 587.9 MeV and GL2

= 2.44 [34] which
gives rise the constituent quark mass of u and d quarks, M = 397 MeV in vacuum
(T = 0, µ = 0).

To analyze the variation of different transport coefficients with temperature and
quark chemical potential, we have first plotted in the left panel of Fig. 3.1, the con-
stituent quark masses (M) as a function of temperature (T) for different values of
the quark chemical potential (µ). The constituent quark masses of u and d quarks
are the same and are related to the quark-antiquark condensate hȳyi. In the right
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panel of Fig. 3.1, we have plotted variation of dM/dT with temperature for differ-
ent values of the quark chemical potential. For the range of temperature and quark
chemical potential considered here the chiral transition is a smooth crossover. The
chiral crossover temperature may be defined by the position of the peak in the vari-
ation of dM/dT with temperature. For µ = 0, 100 and 200 MeV, the corresponding
chiral crossover temperatures turns out to be ⇠ 188 MeV, 180 MeV and 153 MeV
respectively. It is known that with an increase in chemical potential the crossover
temperature decreases.
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FIGURE 3.2: (Left plot) Variation of s and p meson masses with tem-
perature for different values of the quark chemical potentials. The
solid lines correspond to Ms while the dashed lines correspond to
Mp. (Right plot) Variation of thermal averaged relaxation times for
quarks and antiquarks with temperature for different chemical poten-
tials. Solid lines correspond to the relaxation time for quarks while the
dotted lines correspond to relaxation time for antiquarks. For µ = 0
the thermal averaged relaxation times for the quarks and antiquarks
are the same. Difference between the relaxation times of quarks and

antiquarks appears only at finite chemical potential.

In Fig. 3.2 (left plot) We have plotted the meson masses Ms and Mp as a func-
tion of temperature for different values of quark chemical potential. Note that pi-
ons are pseudo-Goldstone modes, therefore in the chiral symmetry broken phase
pion mass varies weakly. But Ms decreases rapidly near the crossover temperature.
At higher temperatures, Ms and Mp, being chiral partners, become approximately
degenerate and increase with temperature. Further one can define a characteristic
temperature, the “Mott temperature" (TM) where the pion mass becomes twice that
of quark mass i.e. at Mott temperature Mp(TM) = 2M(TM). The Mott tempera-
tures for µ= 0, 100 and 200 MeV turns out to be ⇠ 198, 192 and 166 MeV respec-
tively. As we shall see later it is the Mott temperature that becomes relevant while
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estimating the relaxation times of the quarks using thermal scattering rates of the
quarks through meson exchange.

In Fig. 3.2 (right plot), we show the variation of average relaxation time as
defined in Eq.(3.31), for quarks (solid lines) and antiquarks (dashed lines) with
temperature for different values of the quark chemical potential. Let us note that
the relaxation time of given particle ’a’, as shown in Eq.(3.31), depends both on
the scattering rates W̄ab as well as on the number density nb of the particles other
than ’a’ in the initial state i.e. number density of scatterers. It turns out that, for the
scattering processes considered here, the process ud̄ ! ud̄ [57], through charged
pion exchange in the s-channel gives the largest contribution as compared to other
channels. As mentioned earlier, by crossing symmetry arguments, this also means
that the ud ! ud scattering rate also contribute dominantly to the thermally av-
eraged scattering rate. Let us note that, below the the Mott temperature T < TM,
the averaged scattering rate decreases mostly due to the thermal distribution with
large constituent quark masses apart from the suppression from the meson propa-
gators in the scattering amplitudes arising from sigma mesons. As one approaches
TM from lower temperature, the scattering rates become larger as the constituent
quark mass decreases as well as the s-channel propagator develop a pole in the
meson propagator for temperatures beyond TM. However, at large temperatures
there will be a suppression due to the large meson masses which increase with
temperature. This results in a maximum scattering rate at TM or a minimum in the
average relaxation time as generically seen in Fig. 3.2 (right plot).

At finite quark chemical potentials, beyond the Mott temperature, the quark-
antiquark scattering still contributes dominantly to the scattering processes. How-
ever, at finite densities, there are few antiquarks as compared to quarks so that the
quarks have fewer antiquarks to scatter off. This leads to a smaller cross-section
giving rise to a larger relaxation time for quarks compared to the µ = 0 case. Due
to the enhancement of quark densities at finite µ, the cross-section for quark-quark
scattering becomes larger resulting in a smaller relaxation time for the quarks com-
pared to the case at vanishing chemical potential below the Mott temperature. The
antiquark relaxation time, on the other hand, is always smaller compared to the
µ = 0 case as there are more quarks to scatter off at finite chemical potential.

Some discussions on the estimation of the average relaxation time are in or-
der here. Note that one of the initial calculations in the mid-1990s was done in
Ref. [259], as well as a relatively recent calculation as done in Ref. [58], where the
transport coefficients for QGP has been estimated within the framework of QCD
inspired effective models, do not incorporate the full field theoretical methods to
estimate the relaxation time. In these studies to estimate the average scattering
rates or the relaxation time, one considers “integrated cross sections", by integrat-
ing the elastic cross section over the invariant energy squared with the help of a
probability function (see Refs. [58] for a detailed discussion). Such an estimation of
the relaxation time does not incorporate a possible nonmonotonic variation across
the transition temperature/Mott temperature. On the other hand, the formalism
that we have adopted here does not consider any adhoc probability function, rather
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we use basic definitions of scattering cross section and the thermal average of re-
laxation time. Also, the estimated relaxation time as obtained here and also in
Ref. [57] clearly shows a nonmonotonic variation of the relaxation time across the
transition temperature/Mott temperature. Such nonmonotonic variation of the re-
laxation time is also reflected in the expected nonmonotonic behavior of h/s across
the transition temperature [57].
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FIGURE 3.3: The variation of normalized electrical conductivity, sel/T

(left panel) and normalized thermal conductivity, k0/T
2 (right panel)

as a function of temperature for different values of the chemical po-
tential for two flavor NJL model and the quasi particle model for the
partonic matter as considered here. For comparison, we also present
the two flavor LQCD data Refs. [260, 261] and 2+1 flavour NJL model

results Ref. [58].

Further as a validity of the Boltzmann kinetic approach within the RTA one may
look into the value of the the mean free path l f = v f tf for a given flavor f , here
the mean velocity v f can be expressed as,

v f =
2Nc

(2p)3n f

Z
d

3
p
|~p|
Ep

f (Ep). (3.39)

It can be argued that at the Mott transition temperature l f = 1.2 fm [57]. At the
same temperature, the mass of the pion and sigma meson are of the order of 200
MeV with the corresponding Compton wavelength (lC) to be of the order of a
Fermi. Therefore the value of the ratio l f /lC is about 1.2 at the Mott transition
temperature and its value increases rapidly both below and above the Mott tem-
perature. Therefore except at the Mott transition temperature l f can be signifi-
cantly larger than lC. Thus, within the NJL model, it may not be too unreliable to
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use the Boltzmann equation within the RTA except at the Mott transition tempera-
ture. Therefore we believe our analysis is not unjustified given the fact that similar
approaches have been well explored by various authors also. The novelty that we
are addressing is the thermoelectric properties of the QCD matter across the chiral
transition scale.

In the left panel of Fig. 3.3 we present the variation of normalized electrical
conductivity, sel/T as a function of temperature at different values of quark chem-
ical potential in 2 flavour NJL model as well as in the quasi particle model. For the
comparison, we also present the results obtained using LQCD for two light flavors
in Refs. [260, 261] and the results obtained by studying 2+1 flavors NJL model in
Ref. [58]. Further, for the sake of comparison, we have taken the temperature in
units of Tc of the corresponding models. For the 2 flavor NJL model we have taken
the Mott transition temperature Tc = TM=198 MeV as estimated in this study.

The left panel of the Fig. 3.3 reflects the variation of electrical conductivity
which is having a minimum at Mott transition temperature for the two flavor NJL
model shown by the solid red curve in Fig. 3.3. Apart from this, it is also observed
that sel/T increases with quark chemical potential which we have presented with
the blue dotted ( µ = 100 MeV) and black dashed (µ = 200 MeV) curves. This is
because the contribution to the sel arises dominantly from quarks rather than an-
tiquarks at finite chemical potential, as the antiquark contribution gets suppressed
due to the distribution function. This apart, there is an enhancement of the relax-
ation time at finite µ beyond the Mott transition. The dominant contribution to
the scattering process is ud̄ ! ud̄. As the d̄ density decreases with µ, this scat-
tering process gets suppressed as compared to the case of µ = 0 and leads to an
enhancement of relaxation time at finite chemical potential. Thus both the increase
of charge carriers and an increase in relaxation time with µ lead to enhancement of
electrical conductivity beyond the Mott temperature. On the other hand, below the
Mott temperature, although the relaxation time decreases with chemical potential,
the increase in quark number density makes the coefficient of electrical conduc-
tivity increasing with chemical potential. Further, in the high-temperature range
T >> M, one can assume the quarks and antiquarks to be massless. In this high
temperature or massless limit in the two flavor NJL model sel/T can be shown to
be sel/T ⇠ Tt exp(µ/T) (by considering only quark contribution as they are dom-
inant at finite µ). Therefore for a temperature range higher than the Mott transition
temperature predominantly due to the increasing behavior of t with temperature
sel/T increases. Again at a very high temperature due to the factor of exp(µ/T),
sel/T increases with chemical potential. It is clear that the order of magnitude
value of the normalized electrical conductivity as obtained in the present inves-
tigation is similar to the LQCD results. However, it should be emphasized that
LQCD calculations take into account the full dynamical nature of the QCD gauge
fields. On the other hand, gluons are not present in the NJL model. Therefore,
quantitative variation of the relaxation time and sel/T is not expected to be the
same in NJL and LQCD calculations. Further, as compared to results of Marty etal
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[58] shown by magenta dot dashed curve, the 2 flavor NJL model values are of sim-
ilar values near the transition temperature and at high temperature (T/Tc>1.4) the
two flavor NJL results are higher where as the 2+1 flavor values flatten out. This
is because of two reasons: firstly, with 2+1 flavors, the relaxation time decreases as
there are extra channels for scatterings available that reduces the relaxation time.
Further, there is a difference in the definition of relaxation time given in Ref. [58]
and the present definition for the estimation of the same [57].

We have also plotted the results for the electrical conductivity estimated from
the quasi particle model which remains almost constant compared to the NJL model
results. The reason is, in the quasi-particle models, the quasi-particle masses are
increasing functions of temperature and hence the thermal distribution functions
get suppressed at high temperature in contrast to the NJL model. Further, the
magnitude of the velocity |p|/E also becomes smaller at high temperature in the
quasi-particle model as compared to the NJL model.

Furthermore, in Ref. [262] various transport coefficients of deconfined quark
matter have been studied within a different quasi-particle model, namely the ef-
fective fugacity quasi-particle model. The crucial difference between the quasi-
particle model considered here and that in Ref. [262] lies in a different dispersion
relation between the quasi particles. This is manifested in the estimation of relax-
ation time as well as in estimation of various transport coefficients. It should be
noted that normalized electrical conductivity sel/T as obtained in the present in-
vestigation is quantitatively as well as qualitatively different from the same as ob-
tained in Ref. [262]. The presence of a background scalar condensate is the funda-
mental difference between the NJL model and the effective fugacity quasi-particle
model as discussed in Ref. [262]. Further, relaxation time plays an important role in
determining the variation of any transport coefficient with temperature and chem-
ical potential. The thermal averaged relaxation time as obtained in the effective
fugacity quasi-particle model as discussed in the Ref. [262] is different (quantita-
tively and quantitatively) from the relaxation time obtained in the NJL model as
well as the quasi-particle model considered here. For a more detailed analysis of
the estimation of electrical conductivity in the quasi-particle model as considered
here and that of the effective fugacity quasi-particle model, we refer the interested
reader to Ref. [258]. The difference stems from the difference in the single particle
energy dispersion relation as compared to NJL model or the quasi-particle model
considered here.

In the right panel of Fig. 3.3 we show the variation of the normalized thermal
conductivity (k0/T

2) with temperature both for the NJL model and for the quasi-
particle model. For the NJL model, the ratio shows a nonmonotonic variation with
temperature. The origin of such behavior again lies with the variation of relaxation
time with temperature. Beyond the Mott temperature, the thermal conductivity
increases sharply with temperature. This can be understood as follows. For large
temperatures, when quark masses can be neglected, it can be easily shown that the
enthalpy to the net quark number density ratio goes as w/nq ⇠ T coth(µ/T). Also
note that in the expression of the thermal conductivity (E � w

nq
)

2 ⇠ (
w
nq
)

2, due to
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the fact that single-particle energy (E) is negligible as compared to the enthalpy
per particle- w/nq. Therefore, the variation of the normalized thermal conductiv-
ity with temperature and chemical potential will be determined by the variation of
relaxation time, w/nq, and the distribution function. It can be shown that in the
high-temperature limit or the massless limit the normalized thermal conductiv-
ity, k0/T

2 can be approximately expressed as, k0/T
2 ⇠ Tt exp(µ/T)(coth(µ/T))

2.
Beyond the Mott transition temperature, the increasing behavior of t essentially
determines the increasing behavior of k0/T

2. On the other hand, for µ << T,
coth(µ/T) ⇠ T/µ in the leading order. Therefore in the high-temperature limit,
k0/T

2 decreases with chemical potential. For the quasi particle model, on the other
hand, the ratio k0/T

2 is of the same order near the transition temperature but rises
slowly with temperature compared to the NJL model which again is a reflection of
increasing behaviour in the masses of the quasi-particle with temperature which
reduces the thermal distribution functions. Similar to sel/T, the qualitative nature
of the normalized thermal conductivity (k0/T

2) as presented here is also differ-
ent from the same as obtained in the Ref. [262]. This difference is again due to
the different nature of the dispersion relation for the single particle energies of the
quasi-particles in the effective fugacity quasi-particle model and the NJL or the
quasi particle model considered here.
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FIGURE 3.4: The variation of the Seebeck coefficient (left panel) and
the Lorenz number, L = k0/(selT) (right panel) with temperature for
different values of the chemical potential for NJL model and for quasi

particle model.

We next show the behavior of the Seebeck coefficient as a function of tempera-
ture for different values of quark chemical potential in the left panel of Fig. 3.4 for
both in NJL model and in quasi particle model. This coefficient, which is dimen-
sionless, decreases monotonically with temperature. The variation of the Seebeck
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coefficient with temperature can be understood as follows. Note that this coeffi-
cient is a ratio of two quantities each of which is proportional to the relaxation time.
When we consider the relaxation time as the average relaxation time, the ratio be-
comes independent of the average relaxation time. Note that at finite chemical
potential quark contribution to the Seebeck coefficient is dominant with respect to
the antiquark contribution. Therefore, contrary to the nonmonotonic variation of
sel/T and k0/T

2 with temperature for NJL model, where the nonmonotonic vari-
ation has its origin stemming from the behavior of relaxation time with tempera-
ture, the variation of the Seebeck coefficient is not expected to be nonmonotonic.
Further unlike other transport coefficients, the positivity of the Seebeck coefficient
is not guaranteed. This is because in the expression of the Seebeck coefficient as
given in Eq. (3.17), the integrand in the numerator has the factor which is linear in
(Ea � baw/nq). Therefore for the quarks, this factor becomes (E � w/nq), and the
single-particle energy E is much smaller than w/nq. Therefore the term (E � w/nq)

is negative which makes the Seebeck coefficient negative. However it is important
to note that the expression of thermal conductivity also contains a term (E � w/nq),
but it comes as a square. Therefore positivity of the thermal conductivity is guaran-
teed. In the condensed matter system the Seebeck coefficient can be both positive
and negative, e.g. if for electron and holes the Seebeck coefficients are opposite to
each other. Further for a bipolar medium with multiple charge carriers the sign
of the Seebeck coefficient depends on the range of temperature considered [251].
Similar to the case of thermal conductivity, one can do an analysis regarding the
behavior of the Seebeck coefficient in the massless limit. In the massless limit, it
can be shown that S ⇠ � coth(µ/T). Therefore in the high-temperature limit, the
leading order contribution to the Seebeck coefficient is S ⇠ �T/µ. Hence with in-
creasing temperature the Seebeck coefficient decreases, on the other hand with an
increase in chemical potential Seebeck coefficient increases. In the simple analysis,
we have assumed that the dominant contributions in the sum over species arise
from quarks as the antiquark contributions are suppressed due to finite chemical
potential in the thermal distribution function. A comment regarding SU(2) flavor
symmetry of the NJL Lagrangian may be relevant here. The thermalisation of the
medium is decided by strong interaction. Thus, the relaxation time for up anda
down quarks will be same. On the otherhand, the contribution of the up quark
and down quark to the Seebeck coefficient will be different as the Seebeck coeffi-
cient depends linearly on the electrical charge of the relevant species (See e.g. the
numerator of the expression for Seebeck coefficient in Eq. (3.17)). Thus, the con-
tribution of the Seebeck coefficient of up quark will be twice in magnitude and
opposite in sign of the down quark.

Compared to the NJL model, the behaviour of the Seebeck coefficient in the
quasi particle model is qualitatively similar but quantitatively different. This can
be understood from the behaviour of the electrical conductivity in the model as
shown in Fig. 3.3. The smaller value for the electrical conductivity in quasi particle
model leads to larger magnitude for the Seebeck coefficient. Further, in the quasi
partcle models the gluons also contribute to the enthalpy which affects the Seebeck
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coefficient.
In the right panel of Fig. 3.4 we have plotted the ratio L = k0/(selT), as a

function of temperature for the NJL model as well as for the quasi particle model.
In condensed matter systems this ratio is a constant and is known as the Lorenz
number. In the present case, however, it is observed that the ratio increases mono-
tonically with temperature. Similar to the Seebeck coefficient, in the leading order
for average relaxation time the ratio L, is independent of relaxation time. Further,
in the high temperature limit or in the massless limit k0/(sT) ⇠ (coth(µ/T))

2.
Therefore, in the leading order for µ << T, k0/(sT) ⇠ T

2/µ2. Hence in the high
temperature limit the ratio L increases with temperature but decreases with quark
chemical potential. In quasi-particle model this ratio is higher compared to the
NJL model as the electrical conductivity in the quasi-particle description is smaller
compared to that in the NJL model. This ratio is also estimated within an effective
fugacity quasi particle model in Ref. [262] where this ratio approachs a constant at
high temperature. This different behaviour has its origin in the different behaviour
of the quasi particles in the effective fugacity quasi particle model as discussed
earlier.

3.6 Summary and conclusion
In the present investigation, we have estimated the Seebeck coefficient in a hot
and dense partonic medium modeled by the 2 flavor NJL model. For compari-
son, the NJL model results for the Seebeck coefficient, we have also estimated the
same within a quasiparticle model of the deconfined matter. We have considered
the thermoelectric effect arising due to the gradient in temperature as well as the
gradient in chemical potential. In addition to the Seebeck coefficient, we have also
estimated electrical conductivity (sel), thermal conductivity (k0), and Lorenz num-
ber (L) associated with the Wiedemann–Franz law. Note that sel is the response
of the medium in the presence of an external electric field and it also decides the
time evolution of a magnetic field in the conducting medium. In the context of rel-
ativistic non-central heavy-ion collisions where the high magnetic field produced,
the electrical conductivity plays a crucial role. It should be emphasized that in the
presence of a magnetic field, simple Ohm’s law gets modified and one needs to
consider the anisotropic structure of the electrical conductivity tensor. All such in-
vestigations in the presence of a magnetic field should reproduce the electrical con-
ductivity in the absence of any magnetic field, i.e. the electrical conductivity tensor
should be isotropic in the absence of any magnetic field. Therefore, the estimation
of electrical conductivity without any effect of the magnetic field should serve as
a baseline for the studies that include the effect of magnetic field in a conducting
medium.

Although electrical and thermal conductivities always remain positive and the
Seebeck coefficient is negative for the range of temperature and quark chemical
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potential considered in our study. The variations of electrical and thermal con-
ductivities with temperature and quark chemical potential are intimately related
to the variation of the relaxation time with temperature and chemical potential.
While the variations of Seebeck coefficient and the Lorenz number are insensitive
to the variation of relaxation time.

In the presence of thermoelectric effects in a conducting medium, the temper-
ature gradient can be converted into an electrical current and vice versa. Seebeck
coefficient physically represents the efficiency of any conducting medium to con-
vert a temperature gradient into an electrical current. Therefore for a nonvanish-
ing Seebeck coefficient, electrical current as well as heat current gets modified. In
presence of Seebeck effect, the electrical current becomes, ~J = sel

~E � selS
~rT. It

is important to note that the electrical conductivity is always positive due to the
constructive contributions of particles and antiparticles to the electric current. Pos-
itivity of the electrical conductivity can be shown using entropy production i.e.
second law of thermodynamics. By demanding that in the presence of electromag-
netic field T∂µs

µ � 0, here s
µ is the entropy current, it can be shown that the electri-

cal conductivity is positive [263]. For a negative Seebeck coefficient in the presence
of a positive temperature gradient the electric current enhances. Therefore the net
electric current increases if the electric current due to the thermoelectric effect and
the electric current due to the external electric field contributes constructively. On
the other hand, the thermal conductivity in the presence of the thermoelectric effect
gets modified. In the presence of a nonvanishing Seebeck coefficient, the net ther-
mal conductivity which can be given as k = k0 � TselS

2 indicates that the nonvan-
ishing value of the Seebeck coefficient reduces the thermal conductivity. It is impor-
tant to note that the thermal conductivity is required to be positive for the theory
to be consistent with the second law of thermodynamics i.e. T∂µs

µ � 0. Using the
formalism of viscous hydrodynamics and viscous magnetohydrodynamics posi-
tivity of the electrical conductivity and the thermal conductivity has been shown
explicitly [249, 263]. But the contributions to the entropy current coming from the
thermoelectric effects are not considered in these investigations. Therefore in the
context of entropy production in the viscous hydrodynamics and magnetohydro-
dynamics, it will be interesting to study the effects of thermoelectric coefficients.

Thermoelectric coefficients could also be important in the context of the spin
Hall effect (SHE). SHE is an important ingredient for the generation of spin current
and it is a key concept in spintronics. In SHE, an electric field induces a transverse
spin current perpendicular to the direction of the electric field. SHE has recently
been investigated in a hot and dense nuclear matter in the context of relativistic
heavy-ion collisions [264]. It has been argued that due to SHE, a spin current will
be produced proportional to the electric field. This also means that an external
electric field ~E will induce a local spin polarization and the spin polarization dis-
tribution function of fermions (anti fermions) in momentum space will feature the
dipole distribution. Therefore there will be a spin flow in the plane transverse to
the direction of the electric field. Observation of SHE may open a new direction in
the exploration of the many body quantum effects in hot and dense nuclear matter.
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However, the life-time of the electric field generated in heavy-ion collisions could
be small of the order 1 fm/c. Therefore, the idea of the observation of the SHE
becomes speculative. However, in the presence of nonvanishing thermoelectric co-
efficients, a temperature gradient and/or a gradient in the chemical potential can
give rise to an effective electric field which may contribute to the SHE. Therefore
a detailed analysis of the thermoelectric property of the hot and dense matter pro-
duced in a heavy-ion collision experiment could be relevant for SHE and needs
further investigation.



Chapter 4

Hadron-quark phase transition and
non-radial oscillations in neutron
stars

In the previous chapters, chapter 2 and chapter 3, we have discussed the QCD
phase diagram in the high temperature and zero baryon density. We studied the
chiral phase transition in the context of relativistic heavy ion collisions. In the
following two chapters we will study the other region of the phase diagram where
the temperature is zero and the non-zero baryon chemical potential in the context
of NSs and/or HSs.

Our main focus is to unveil the structure of matter inside the CSs. The radial
oscillation modes do not couple with the gravitational waves (GWs) and give in-
formation about the stability of a star. For example, the fundamental radial mode
gives the allowed minimum oscillation frequency for a stable star [265, 266] and
determines the maximum allowed baryon density at the center of maximum mass
star. They are also useful to determine the rotation frequency of a NS [266, 267].
While in the case of non-radial oscillation, they couple with the GWs and damp in
the GWs. So they are more suitable observable to get insight of the NSM [266, 268,
269].

NSs are exciting astrophysical laboratories to study the behaviour of matter
at extreme densities. The properties of NSs not only open up many possibilities
related to composition, structure and dynamics of cold matter in the observable
universe but also throw light on the interaction of matter at a fundamental level
[270]. Such CSs, observed as pulsars, are believed to contain matter of densities
few times nuclear saturation density (r0) in their core. To explain and understand
the properties of such stars, one needs to connect different branches of physics
like low energy nuclear physics, QCD under extreme conditions, general theory of
relativity (GTR) etc [271–275]. In this chapter we study matter at extreme densities
in the zero temperature limit in the context of NSs. We study HQPT and discuss
some of the quasi-normal mode (QNM)s in NSs and HSs. By HS, we mean CSs
with a core of quark matter or a MP core of quark and hadronic matter [78, 79].
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4.1 Introduction
The macroscopic properties of such a CS like its mass, radius, moment of inertia,
tidal deformability in a binary merging system and different modes of oscillations
etc. depend crucially on its composition that affect the variation of pressure with
energy density or EOS. The GW170817 [71] event explored the constraints on the
EOS using tidal deformability extracted from the phase of the gravitational wave-
forms during the late stage of inspiral merger [72–77]. Though not conclusive, it is
quite possible that one or both the merging NSs could be HSs. Within the current
observational status, it is difficult to distinguish between a canonical NS without a
quark matter core from a HS with a core of pure quark matter or a core of quark
matter in a MP with hadronic matter. This calls for exploring other observational
signatures to solve this “masquerade" problem [80, 81].

In this context, it has been suggested that the study of QNM of NSs can have
the possibility of providing compositional information regarding matter in the in-
terior. This includes NSs with a hyperon core [82–84], a quark core or a MP core
with quark and hadronic matter components [81, 85–90]. This is because QNMs
not only depend upon the EOS i.e. p(e) but also on the derivatives dp

de and ∂p

∂e [276].
Since the appearance of hyperons does not involve a first order phase transition,
their effects on QNMs can be milder compared to a HQPT at finite densities whose
effect can be more pronounced. These modes can be studied within the framework
of GTR [277, 278] where the fluid perturbation equations (pulsating equations) can
be decomposed into spherical harmonics leading to two classes of oscillations de-
pending upon the parity of the harmonics. The even parity oscillations produce
polar(spheroidal) deformation while the odd parity produce toroidal one. The po-
lar QNMs can further be classified into different kinds of non-radial oscillation
modes depending upon the restoring force that acts on the fluid element when it
gets displaced from its equilibrium position [279]. These oscillations couple to the
gravitational wave and can be diagnostic tools for studying the phase structure of
the matter inside the CSs. The important modes for this are the pressure (p) modes,
fundamental ( f ) modes and gravity (g) modes. The frequency of the g modes is
lower than that of p modes while the frequency of f modes lies in between. These
are the fluid modes to be distinguished from w modes which are associated with
the perturbation of the space-time metric itself.

In the present work, we focus on g and f modes oscillations arising from dense
matter from both NSM and hybrid star matter (HSM). For nuclear matter the ex-
istence of such low frequency g modes was shown earlier in Refs. [280, 281]. The
origin of g mode is related to the convective stability i.e. stable stratification of
the star. When a parcel of the fluid is displaced, the pressure equilibrium is re-
stored rapidly through sound waves while compositional equilibrium, decided by
the weak interaction, takes a longer time causing the buoyancy force to oppose
the displacement. This sets in the oscillations. The g mode oscillation frequencies
are related to the Brunt-Väisäla frequency (wBV) which depends on the difference
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between the equilibrium sound speed (c2
e ) and adiabatic or the constant composi-

tion sound speed (c2
s ) i.e. w2

BV µ (1/c
2
e � 1/c

2
s ) as well as on the local metric. Such

g modes without any phase transition have been studied earlier for the nuclear
matter, hyperonic matter, superfluidity [82, 83, 282–290].

In the present investigation, for the nuclear matter sector, we use a RMF theory
(see Sec. 1.3.1) involving nucleons interacting with scalar and vector mean fields
along with self-interactions of the mesons leading to reasonable saturation proper-
ties of nuclear matter. For the description of quark matter we use two flavor NJL
model (see Sec. 1.3.2) where the parameters of the model are fixed from the physi-
cal variables like pion mass, pion decay constant and light quark condensates that
encodes the physics of the chiral symmetry breaking. The phase transition from
hadronic matter to quark matter can be considered either through a Maxwell con-
struct or a Gibbs construct leading to a MP [291]. It ought to be noted that the kind
of phase transition depends crucially on the surface tension [292–298] of the quark
matter which, however, is poorly known. If the surface tension is large (small)
then there will be sharp (smooth) interface and one can have a Maxwell (Gibbs)
construct for HQPT, where there is a MP of nuclear and quark matter [299, 300].
We use a Gibbs construction mechanism for the construction of MP (see Sec. 4.2.3).

We organize this chapter as follows. In section 4.2.1, we discuss salient features
of the RMF model describing the nuclear matter and in section, 4.2.2 we discuss
NJL model and write down the equation of state for the quark matter. Section 4.2.3
details HQPT and MP structure using Gibbs construct with multiple chemical po-
tentials. In section 4.3, we discuss the stellar structure as well as the non-radial
oscillations of CSs. We give, here, in some detail, the derivation of the pulsation
equations. In section 4.4, we discuss the estimation of the equilibrium and adia-
batic speed of sound in different phases. In section 4.5, we discuss results of the
present investigation regarding thermodynamics of the dense matter, MP struc-
ture, HS structure and non-radial oscillations. Finally in section 4.6, we summarize
results and give an outlook for the further investigation.

4.2 Formalism

4.2.1 Equation of state of nuclear matter
We restrict our analysis for NSM consisting of baryons (neutron and proton) and
leptons (electron and muon). The relevant mesons for this purpose are s, w and r
mesons [32, 301–303]. The scalar s meson creates strong attractive interactions, the
vector w meson on the other hand is responsible for the repulsive short range inter-
actions. The neutron and proton do only differ in terms of their isospin projections
with respect to the strong force. The isovector r meson is included to distinguish
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baryons. The Lagrangian including baryons as the constituents of the nuclear mat-
ter and mesons as the carriers of the interactions is given as [304, 305]

L = Â
b

Lb + Ll + Lint, (4.1)

where,

Lb = Ȳb(igµ∂µ � qbgµ A
µ � mb + gss � gwgµwµ � grgµ~Ib~r

µ
)Yb, (4.2)

Ll = ȳl(igµ∂µ � qlgµ A
µ � ml)yl, (4.3)

Lint =
1
2

∂µs∂µs � 1
2

m
2
ss2 � V(s) � 1

4
WµnWµn +

1
2

m
2
wwµwµ,

�1
4
~Rµn~Rµn +

1
2

m
2
r~rµ~r

µ � 1
4

F
µn

Fµn, (4.4)

and,

V(s) =
k

3!
(gsNs)3

+
l

4!
(gsNs)4. (4.5)

Where Wµn = ∂µwn � ∂nwµ, ~Rµn = ∂µ~rn � ∂n~rµ and Fµn = ∂µ An � ∂n Aµ are the
mesonic and electromagnetic field strength tensors. ~Ib denotes the isospin operator.
The Yb and yl are baryon and lepton doublets. The s, w and r meson fields are
denoted by s, w and r and their masses are ms, mw and mr, respectively. The
parameters mb and ml denote the vacuum masses for baryons and leptons. The
meson-baryon couplings gs, gw and gr are scalar, vector and isovector coupling
constants, respectively. In RMF approximation, one replaces the meson fields by
their expectation values which then act as classical fields in which baryons move
i.e. hsi = s0, hwµi = w0dµ0, hra

µi =dµ0da

3r0
3. The mesonic equations of motion can be

found by Euler-Lagrange equations for meson fields using Eq. (4.1)

m
2
ss0 + V

0
(s0) = Â

i=n,p
gsn

s

i
, (4.6)

m
2
ww0 = Â

i=n,p
gwni, (4.7)

m
2
rr0

3 = Â
i=n,p

gr I3ini, (4.8)

where, I3i is the third component of the isospin of a given baryon. We have taken
I3(n,p) =

⇣
� 1

2 , 1
2

⌘
. The baryon density, nB, lepton density, nl, and scalar density, n

s,
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at zero temperature are given by

nB = Â
i=n,p

gk
3
Fi

6p2 ⌘ Â
i=n,p

ni, (4.9)

nl =
k

3
Fl

3p2 , (4.10)

and

n
s
=

g

(2p)3 Â
i=n,p

Z
kFi

0

m
⇤

E(k)
d

3
k ⌘ Â

i=n,p
n

s

i
, (4.11)

where, E(k) =
p

m⇤2 + k2 being the single particle energy for nucleons with a
medium dependent mass given as

m
⇤
= mb � gss0. (4.12)

Further, kFi =

q
µ̃2

i
� m⇤2 is the Fermi momenta of the nucleons defined through

an effective baryonic chemical potential, µ̃i given as

µ̃i = µi � gww0 � gr I3ir
0
3. (4.13)

Similarly, kFl is the leptonic Fermi momenta i.e. kFl =

q
µ2

l
� m

2
l
. Further g = 2

corresponds to the spin degeneracy factor for nucleons and leptons and µl denotes
the chemical potential for leptons.

The total energy density, eHP, within the RMF model is given by

eHP =
m

⇤4

p2 Â
i=n,p

H(kFi/m
⇤
) + Â

l=e,µ

m
4
l

p2 H(kFl/ml)

+
1
2

m
2
ss2

0 + V(s0) +
1
2

m
2
ww2

0 +
1
2

m
2
rr0

3
2. (4.14)

The pressure, pHP, can be found using the thermodynamic relation as

pHP = Â
i=n,p,l

µini � eHP. (4.15)

In Eq. (4.14) we have introduced the function H(z) which is given as

H(z) =
1
8

h
z

p
1 + z2(1 + 2z

2
) � sinh�1

z

i
, (4.16)

In the present investigation, we consider two different parameterisation for the nu-
cleonic EOS - (i) the NL3 parameterisation of RMF model as discussed in Ref. [306].
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TABLE 4.1: The nucleon masses
(mb), s meson mass (ms), w me-
son mass (mw), r meson mass
(mr) and couplings gs, gw, gr, k,
l in NL3 parameterisation [306].

Parameters Values
mb (MeV) 939
ms (MeV) 508.194
mw (MeV) 782.501
mr (MeV) 763.000
g

2
s 104.3871

g
2
w 165.5854

g
2
r 79.6

k (fm�1) 3.8599
l -0.015905

TABLE 4.2: The nucleon masses (mb),
meson masses, mi (i = s, w, r) and
coupling constants gi0, ai (i = s, w, r)
and the saturation nuclear density n0

in DDB model [307, 308].

Parameters Values
mb (MeV) 939
ms (MeV) 508.194
mw (MeV) 782.501
mr (MeV) 763.000
as 0.071467
aw 0.04641
ar 0.665711
gs0 9.690022
gw0 11.755566
gr0 8.280652
n0 (fm�3) 0.147

The corresponding parameters are listed in Table 4.1. The other parameterisation
of the RMF model is a nucleonic b� equilibrated EOS based on a relativistic de-
scription of hadrons through their density-dependent coupling with mesons con-
strained by the existing observational, theoretical and experimental data through
Bayesian analysis (DDB) [307, 308] consistent with the phenomenology of the satu-
ration properties of nuclear matter as well as the gravitational wave data regarding
tidal deformation [71]. In case of DDB, the couplings are density dependent and
defined as

gs = gs0 e
�(x

as �1), (4.17)
gw = gw0 e

�(x
aw �1), (4.18)

gr = gr0 e
�ar(x�1), (4.19)

where, x = nB/n0. The DDB parameters gi0, ai, (i = s, w, r) and n0 are given in
Table 4.2. In DDB parameterisation, the cubic and quartic terms in Eq. (4.1) are
taken to be zero so that V(s) = 0. Due to the density dependent couplings, the
effective baryon chemical potential as in Eq. (4.13) gets redefined as

µ̃i = µi � gww0 � gr I3ir
0
3 � Sr, (4.20)

where, Sr is the “rearrangement term” which is given as [309]

Sr
= Â

i=n,p

⇢
� ∂gs

∂nB
s0n

s

i
+

∂gw

∂nB
w0ni +

∂gr

∂nB
r0

3 I3ini

�
. (4.21)
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NSs are globally charge neutral as well as the matter inside the core is under
b-equilibrium. So the chemical potentials and the number densities of the con-
stituents of NSM are related by the following equations,

µi = µB + qiµE, (4.22)

Â
i=n,p,l

niqi = 0, (4.23)

where, µB and µE are the baryon and electric chemical potentials and qi is the
charge of the i

th particle.

4.2.2 Equation of state of quark matter
We note down here, for the sake of completeness, the salient features of the thermo-
dynamics of NJL model with two flavours that we use to describe the EOS of the
quark matter. The Lagrangian of the model with four point interactions is given by

L = ȳq(ig
µ∂µ � mq)yq + Gs

h
(ȳqyq)

2
+ (ȳqig5øyq)

2
i

+Gv

h
(ȳqgµyq)

2
+ (ȳqigµg5øyq)

2
i

. (4.24)

Here, yq is the doublet of u and d quarks and t is the Pauli matrices. We have also
taken here a current quark mass, mq which is same for u and d quarks. The second
term describes the four point interactions in the scalar and pseudoscalar channel.
The third term is a phenomenological vector interaction giving rise to repulsive
interaction for Gv > 0 which can make the EOS stiffer. Except for the explicit
symmetry breaking term proportional to current quark mass, the Lagrangian is
chirally symmetric. Using the standard method of thermal field theory one can
write down the the thermodynamic potential W within a mean field approximation
as a given temperature, (T = b�1) and quark chemical potential, (µq = µB/3) [34]
as

W(M, T, µ) = �2Nc Â
i=u,d

Z
dk

(2p)3 ⇥
n

Ek +
1
b

log
�
1 + exp

�
� b(Ek � µ̃i)

��

+
1
b

log
�
1 + exp

�
� b(Ek + µ̃i)

�� o
+ Gsr

2
s � Gvr2

v. (4.25)

Where, Nc = 3 is the colour degrees of freedom and Ek =
p

k2 + M2 is the on shell
single particle energy of the quark with constituent quark mass M and µ̃i being
an effective quark chemical potential in the presence of the vector interaction. The
constituent quark mass, M, satisfies the mass gap equation

M = mq � 2Gsrs, (4.26)
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and the effective quark chemical potential satisfies

µ̃i = µi � 2Gvrv. (4.27)

Here, we focus our attention to T = 0 which is applicable to the cold NSs. Using
the relation limb!•

1
b log

�
e
�bx

+ 1
�
= �xQ(�x), the thermal factors in Eq. (4.25)

go over into step functions and the mean field thermodynamic potential Eq. (4.25)
becomes in the limit T ! 0

W(M, 0, µ) = �2Nc Â
i=u,d

Z
dk

(2p)3

n
Ek + (µ̃i � Ek) Q (µ̃i � Ek)

o
+ Gsr

2
s � Gvr2

v.

(4.28)

The scalar density, rs, and vector density, rv, are given as

rs = �2Nc Â
i=u,d

Z
dk

(2p)3
M

Ek

⇣
1 � Q (µ̃i � Ek)

⌘

= � NcM
3

p2 Â
i=u,d

h
G(L/M) � G(kFi/M)

i
, (4.29)

and

rv = 2Nc Â
i=u,d

Z
dk

(2p)3 Q (µ̃i � Ek) = 2Nc Â
i=u,d

k
3
Fi

6p2 . (4.30)

In Eq. (4.29), we have introduced the function G(z) which is defined as

G(z) =
1
2


z

p
1 + z2 � tanh�1

✓
zp

1 + z2

◆�
. (4.31)

The difference of the vacuum energy densities between the non-perturbative
vacuum (characterized by the constituent quark mass, M) and energy density of
the perturbative vacuum (characterized by current quark mass, mq) is the bag con-
stant, B, i.e.

B = W(M, T = 0, µ = 0) � W(mq, T = 0, µ = 0). (4.32)

This bag constant is to be subtracted from Eq. (4.28) so that the thermodynamic
potential vanishes at vanishing temperature and density. The pressure, pNJL, i.e.
the negative of the thermodynamic potential of the quark matter in the NJL model
is given as

pNJL = pvac + pmed + B, (4.33)
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where the vacuum, pvac, and the medium, pmed, contributions to the pressure are
given by

pvac =
4Nc

(2p)3

Z

|k|L
dk
p

k2 + M2 ⌘ 2Nc

p2 M
4

H(L/M), (4.34)

and,

pmed =
2Nc

(2p)3 Â
i=u,d

Z
kFi

0
dk
hp

k2 + M2 � µ̃i

i
+ Gsr

2
s � Gvr2

v

=
Nc

p2 Â
i=u,d

h
M

4
H(kFi/M) � µ̃iri

i
+ Gsr

2
s � Gvr2

v, (4.35)

where, kFi = Q(µ̃i � M)

q
µ̃2

i
� M2 is the Fermi-momenta of i = u, d quark and L

is the three momentum cut-off. The function H(z) is already defined in Eq. (4.16).
From the thermodynamic relation, the energy density, eNJL, is given as

eNJL = Â
i=u,d

µiri � pNJL. (4.36)

where, ri =
gk

3
Fi

6p2 , (i = u, d, e) with the degeneracy factor g = 6 for quarks and
g = 2 for electron. NSM is charge neutral as well as b-equilibrated. So the chem-
ical potentials of the u and d quarks can be expressed in terms of quark chemical
potential, µq, and electric chemical potential, µE, as µi = µq + qiµE (i = u, d). qi’s
are the electric charges of u and d quarks. The condition of charge neutrality is

2
3

ru � 1
3

rd � re = 0. (4.37)

Since the typical electric charge chemical potential is of the order of MeV, one can
neglect the electron mass so that kFe = |µe|. The total pressure and the energy
density for the charge neutral quark matter are then given by

pQP = pNJL + pe, (4.38)
eQP = eNJL + ee, (4.39)

where, ee ' µ4
e

4p2 and pe ' ee/3.
We may note that the NJL model has four parameters � namely, the current

quark mass, mq, the three momentum cutoff, L, and the two coupling constants, Gs

and Gv. The values of the parameters are usually chosen by fitting the pion decay
constant, fp = 92.4 MeV, the chiral condensate, h�ȳqyqiu = h�ȳqyqid = (240.8
MeV)3 and the pion mass, mp = 135 MeV. This fixes mq = 5.6 MeV, GsL2

=

2.44 and L = 587.9 MeV. As mentioned Gv is not fitted from any other physical
constraint and we take it as a free parameter. We shall show our results for the



82 Chapter 4. Hadron-quark phase transition . . .

two values of Gv namely Gv = 0 and Gv = 0.2Gs. With this parameterisation, the
constituent quark mass, M, comes 400 MeV, the critical chemical potential, µc for
the chiral transition turns out to be µc = 1168 MeV for the vector coupling constant
Gv = 0 in NJL model.

4.2.3 Hadron-quark phase transition and a mixed phase
The number density or the quark chemical potential at which HQPT occurs is not
known precisely from the first principle calculations in QCD but it is expected from
various model calculations to occur at a density which is few times the nuclear sat-
uration density. In the context of NSs, two types of phase transitions can be possi-
ble depending upon the surface tension [292–298] of the quark matter depending
on the value of the surface tension for quark matter. It ought to be mentioned,
however, the estimated values of the surface tension for quark matter vary over a
wide range and is very much model dependent. As the value of the surface tension
is not precisely known yet both the scenarios, (Maxwell and Gibbs) are plausible.
In summary, we see the both scenarios as

1. Maxwell construction [310]

(a) The surface tension of the quark matter is large.

(b) Based on the assumption that nuclear matter EOS and quark matter EOS
both are locally charge neutral.

(c) The transition takes place at constant pressure i.e. pNM(µB) = pQM(µB).

(d) As a result, both phases are separated by a sharp interface.

2. Gibbs construction [311, 312]

(a) The surface tension is small.

(b) Charged nuclear matter and quark matter may share a common leptonic
background. Negatively (positively) charged quark matter may be neu-
tralized by a positively (negatively) charged nuclear matter.

(c) The transition takes place at constant pressure i.e. pNM(µB, µE) = pQM(µB, µE).

(d) As a consequence, we do not have a sharp interface. We have a MP,
where both phases coexist and global charge neutral hybrid matter phase
or mixed phase.

In the present study, we adopt the Gibbs construction for HQPT as nicely out-
lined in Ref. [311]. One can achieve charge neutrality with a positively charged
hadronic matter mixed with a negatively charged quark matter in necessary amounts
leading to a global charge neutrality where the pressures of the both phases are the
functions of two independent chemical potentials µB and µE. The Gibbs condition
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for the equilibrium at the zero temperature between the two phases for such a two
component system is given by [291]

pHP(µB, µE) = pQP(µB, µE) = pMP(µB, µE), (4.40)

where, the pressure for HP, pHP, is given in Eq. (4.15) and the pressure for the
quark phase (QP), pQP, is written down in Eq. (4.38). In Fig. 4.1 we illustrate this
calculation where the pressure is plotted as a function of baryon chemical potential,
µB(= µn), and electric chemical potential, �µE(= µe). The green surface denotes
the pressure in the HP estimated from the RMF model using NL3 parameters. The
purple surface denotes the pressure in the QP estimated in NJL model. The two
surfaces intersect along the curve AB satisfying the global charge neutrality condi-
tion,

c rQP
c + (1 � c) rHP

c = 0, (4.41)

where, rHP
c and rQP

c denote the total charge densities in HP and QP respectively
and c defines the volume fraction of the quark matter in MP defined as,

c =
VQP

VQP + VHP
. (4.42)

Explicitly, for a given µB, we calculate the electric charge chemical potential, µE,
such that the pressure in both the phases are equal, satisfying the Gibbs condition,
Eq. (4.40). This gives the intersection line (AB) of the two surfaces as shown in Fig.
4.1. Further imposing the global charge neutrality condition, Eq. (4.41), one obtains
the volume fraction c occupied by quark matter in MP. Thus along the line AB in
Fig. 4.1, the volume fraction occupied by quark matter increases monotonically
from c = 0 (at point A) to c = 1 (at point B). This gives pressure for the globally
charged neutral matter in MP. Below c < 0, EOS corresponds to the local charge
neutral hadronic matter EOS shown as the red dashed curve while for c > 1 EOS
corresponds to the local charge neutral quark matter EOS shown as the purple
dashed curve in Fig. 4.1. With NL3 parametrization of the RMF model for hadronic
matter and NJL model for quark matter, MP starts at

(µB, µe, p) = (1423MeV, 289.26MeV, 144.56MeV/fm3
)

and ends at

(µB, µe, p) = (1597MeV, 102.40MeV, 266.23MeV/fm3
).

This corresponds to starting of MP at baryon density rB = 2.75r0 and ending of
MP at baryon density rB = 5.72r0. For NJL model we have taken, here, Gv = 0.2Gs.
For Gv = 0, MP starts a little earlier i.e. rB = 2.36r0 and ends at rB = 5.22r0. After
MP, as baryon density increases the matter is in pure charge neutral QP. We find
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FIGURE 4.1: Pressure is plotted as a function of µn(µB) and µe(�µE)

for HP and QP. The green surface is for HP and the purple surface
is for QP. The two surfaces intersect along the curve AB. Along the
dashed portion on this curve, global charge neutrality is maintained.
Red and magenta dashed lines show the local charge neutrality in HP
and QP, respectively. The quark matter fraction c increases monoton-
ically from c = 0 (at point A) to c = 1 (at point B) along the curve
AB. Here, we have considered the NL3 parameterisation of RMF for
the description of hadronic matter and NJL model for the description

of quark matter.

energy density in the MP as follows,

eMP = ceQP + (1 � c)eHP. (4.43)

We also see the fraction of particles normalized with respect to the baryon num-
ber density in different phases which we have plotted in Fig. 4.2 for Gv = 0.2Gs.
Similar to Eq. (4.43) the baryon number density in MP

rB

MP = crB

QP + (1 � c)rB

HP. (4.44)

In MP region, nuclear matter fraction decreases while quark matter fraction in-
creases with increasing rB. As rB increases further the nuclear matter melts com-
pletely to quark matter which occurs for densities beyond rB = 5.72r0.

MP construction using the DDB parameterisation of the hadronic EOS is also
similar. MP, in this case, starts at

(µB, µe, p) = (1416.5MeV, 204.58MeV, 181.76MeV/fm3
)
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FIGURE 4.2: The particle fractions normalized with respect to baryon
density for the charge neutral matter are plotted as a function of the
baryon number density. At rB = 2.75r0, quark matter starts to appear
and at rB = 5.72r0 hadronic matter melts completely in quark matter.
HP is described by RMF model with NL3 parameterisation and QP is
described in NJL model where we took the vector interaction Gv =

0.2Gs.

where the baryon number density is rB = 3.93r0 and ends at

(µB, µe, p) = (1504MeV, 108.42MeV, 245.51MeV/fm3
)

where the baryon number density is rB = 6.98r0 beyond which we find stable QP.

4.3 Non-radial oscillation modes in compact stars
In this section, we outline the equations governing the oscillation modes of the
fluid comprising NSM. The most general metric for a spherically symmetric space-
time is given by

ds
2

= gabdx
a
dx

b

= e
2n

dt
2 � e

2l
dr

2 � r
2
(dq2

+ sin2 qdf2
), (4.45)

where, n and l are the metric functions. It is convenient to define the mass function,
m(r) in the favour of l as

e
2l

=

✓
1 � 2m

r

◆�1
. (4.46)
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Starting from the line element Eq. (4.45) one can obtain the equations governing
the structure of spherical compact objects, the TOV equations, as

dp

dr
= � (e + p)

dn

dr
, (4.47)

dm

dr
= 4pr

2e, (4.48)

dn

dr
=

m + 4pr
3
p

r(r � 2m)
. (4.49)

In the above set of equations e, p are the energy density and the pressure respec-
tively. m(r) is the mass of CS enclosed within a radius r. To solve these equations,
one has to supplement these equations with an equation relating pressure and en-
ergy density i.e. an EOS. Further, one has to set the boundary conditions at the
center and surface as

m(0) = 0 and p(0) = pc, (4.50)
p(R) = 0, (4.51)

e
2n(R)

= 1 � 2M

R
, (4.52)

where, the total mass of the compact object is given by M = m(R)
1, R being it’s

radius which is defined as the radial distance where the pressure vanishes while
integrating out Eqs. (4.47, 4.48 and 4.49) from the center to the surface of the star.
One can solve these equations along with boundary conditions Eqs. (4.50, 4.51
and 4.52) for a set of central densities ec or corresponding pressure pc to obtain the
mass-radius, (M � R) curve.

For the sake of completeness, we give below a succinct derivation of pulsating
equations in the context of NS within a relativistic setting [280, 313]. The Einstein
field equation that relates the curvature of space time to the energy momentum
tensor is given as

Rab � 1
2

gabR = 8pTab, (4.53)

with Tab being the stress energy tensor, which for a perfect fluid is given by

T
µn

= (p + e)uµ
u

n � pg
µn, (4.54)

with p and e being the pressure and energy density respectively and u
µ is the four-

velocity. Taking (covariant) divergence of the Einstein equation, Eq. (4.53), the
left hand side of Eq. (4.53) vanishes using Bianchi identity leading to covariant
conservation equation of the energy momentum tensor i.e. T

µn
;µ = 0. With T

µn

1In this section, M denotes the mass of CSs to be distinguished from the constituent quark mass
defined in Sec 4.2.2.
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given in Eq. (4.54), this reduces to

(p + e)uµ
un;µ = ∂n p � unu

µ∂µ p (4.55)

which is the relativistic Euler equation [313]. Next, to derive the equation of mo-
tion, we use the conservation of baryon number. This is similar to using continu-
ity equation in non-relativistic case which follows from mass conservation. The
baryon number conservation equation is given by

dn

dt
= �nu

µ
;µ, (4.56)

where, n is the baryon number density.
We shall derive the equations in spherical coordinates and the perturbations

will be expanded in terms of vector spherical harmonics. The position (t, r, q, f) of
a fluid element in space time as a function of proper time t is given by the position
four-vector x(t) as

x(t) =

0

BB@

xt

xr

xq

xf

1

CCA . (4.57)

Consider a fluid element located at x0 as its equilibrium position is displaced to
x(x0, t) = x0 + z(x0, t). This results perturbation in pressure p, in energy density
e and in baryon number density n as

p = p0 + dp, (4.58)
e = e0 + de, (4.59)
n = n0 + dn, (4.60)

where, the subscript ‘0’ refers to the corresponding quantities in equilibrium. To
derive the equations of motion for the perturbation, one has to linearize the Euler
equation, Eq. (4.55) in the perturbation. For this we need the four velocities of the
fluid elements u

µ
=

dxµ

dt =
dzµ

dt . Further, we shall confine ourselves to performing
the analysis for a spherical harmonic component with the azimuthal index m = 0.
For the displacement vector zµ we take the ansatz

0

BB@

zt

zr

zq

zf

1

CCA =

0

BBBBB@

t

e
�l

Q(r, t)

r2 Pl(cos q)

�Z(r, t)

r2 ∂qPl(cos q)

0

1

CCCCCA
, (4.61)

where, Q(r, t) and Z(r, t) are the perturbing functions. We choose a harmonic
time dependence for the perturbation i.e. µ e

iwt with frequency w. Further, we
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do not consider toroidal deformations here. From the normalisation condition for
the velocity uµu

µ
= 1, and keeping upto linear terms in the perturbation, we have

u
t
= dzt/dt = e

�n. The other components of the four-velocity are given as
0

BB@

u
t

u
r

u
q

u
f

1

CCA =

0

BB@

e
�n

e
�nżr

e
�nżq

0

1

CCA , (4.62)

where, the dot on the perturbed coordinate denotes the derivative with respect
to time ‘t’. Similarly, the contravariant velocity components are given using the
metric given in Eq. (4.45) and Eq. (4.62) as

0

BB@

ut

ur

uq

uf

1

CCA =

0

BB@

e
n

�e
2l�nżr

�r
2
e
�nżq

0

1

CCA . (4.63)

Now we simplify the Euler equation i.e. Eq. (4.55) by substituting the expres-
sions for pressure, energy density and the fluid four-velocity and linearizing in
terms of the perturbing functions. The n = t component of the Euler equation, Eq.
(4.55), reduces to

(p0 + e0)n
0
(r) = �p

0
0(r), (4.64)

where, the superscript ‘prime’ corresponds to the derivative with respect to ‘r’. To
obtain Eq. (4.64), we have used in the LHS of Eq. (4.55), with n = t, u

µ
ut;µ = n0żr

and in RHS we have used the fact that p0 is isotropic so that ṗ0 � utu
µ∂µ p ⇠

�żr
p

0
0(r). Let us recognise that the Eq. (4.64) is essentially a part of the TOV equa-

tions (Eq. (4.47)) relating pressure gradient and the metric function gradient. Next,
the n = r component of the Euler equation, Eq. (4.55), reduces to

w2
(e0 + p0)e

2(l�n)zr � (de + dp)n0
(r) � d

dr
(dp) = 0. (4.65)

Similarly, the n = q component of the Euler equation, Eq. (4.55), by using
u

µ
uq;µ = u

t∂tuq = �e
�2n

r
2z̈q, is given as

w2
(e0 + p0)e

�2n
r

2zq � ∂qdp = 0. (4.66)

Having written down the Euler equation to linear order in the perturbation, let
us next consider the baryon number conservation equation i.e. Eq. (4.56). With
the velocity components given in Eqs. (4.62, 4.63) and Eq. (4.61) for the perturba-
tion,the number conservation equation, Eq. (4.56) can be written in terms of the
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radial and azimuthal perturbing functions Q(r) and Z(r) as

dn

dt
= � n

r2


e
�(l+n

)
∂2

Q(r, t)

∂r∂t
+ e

�n
l(l + 1)Ż

�
Pl(cos q). (4.67)

We might note here that, since the proper time derivative is taken along the
world line of the fluid parcel, we can write dn

dt =
dDn

dt , where, Dn is the Lagrangian
perturbation. Further, using the relation ∂/∂t = e

�n∂/∂t, we can integrate Eq.
(4.67) over dt to obtain the Lagrangian perturbation in number density Dn in terms
of the perturbing functions Q and Z as

Dn

n0
= � 1

r2

h
e
�l

Q
0
+ l(l + 1)Z

i
Pl(cos q). (4.68)

To write down the equations in terms of the perturbing functions Q(r) and Z(r),
we need to express the energy density perturbation de and pressure perturbation
dp occurring in Eqs. (4.64, 4.65) in terms of the functions Q(r) and Z(r). The
strategy is to use the Euler equation Eq. (4.55) to write de in terms of dn and use
definition of bulk modulus (k = n

Dp

Dn
) to write dp in terms of dn. One can then use

the baryon number conservation equation Eq. (4.67) to write de and dp in terms of
the perturbing functions.

Thus, using the Euler equation Eq. (4.55) to eliminate u
µ
;µ in the baryon number

conservation Eq. (4.56), we have

dn

dt
=

n

p + e

∂e

∂t
, (4.69)

which leads to
De ' e0 + p0

n0
Dn. (4.70)

Further, using the relation between the Lagrangian perturbation and the Eule-

rian perturbation i.e. De = de + zr
de0
dr

and using Eq. (4.68), we have

de = �


e0 + p0
r2

n
e
�l

Q
0
+ l(l + 1)Z

o
+

e
�l

r2 Q
de0
dr

�
Pl(cos q). (4.71)

Next, let us find out the relation between dp and Dn. The Eulerian variation dp

and the Lagrangian variation Dp are related as

dp = Dp � zr
dp0
dr

. (4.72)
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Thus, using Eq. (4.61) and Eq. (4.68), we have

dp = �


k

r2

�
e
�l

Q
0
+ l(l + 1)Z

�
+

e
�l

r2
dp0
dr

Q

�
Pl(cos q). (4.73)

Further, Dp is related to Dn, through bulk modulus k i.e.

k = n
Dp

Dn
.

In the relativistic Cowling approximation, the metric perturbations are neglected.
This will mean the energy and pressure perturbations should also vanish. In the
relativistic Cowling approximation, the energy density perturbation de is set to
zero but pressure perturbation is not set to zero. As shown in Ref.[280], such an
approximation leads to qualitatively correct results which we shall also follow. Set-
ting de = 0 in Eq. (4.65), and using Eq. (4.73), we have

n0dp +
ddp

dr
= �n0kX � d(kX)

dr
� n0

(p0 + e0)l(l + 1)
Z

r2 + (p0 + e0)Q
d

dr

✓
e
�ln0

r2

◆
,

(4.74)

where, we have defined for the sake of brevity X = (e
�l

Q
0
+ l(l + 1)Z)/r

2.Using
this, the radial Euler equation, Eq. (4.65) becomes

w2
(e0 + p0)e

l�2n Q

r2+
d [kX]

dr
+ n0kX + n0

(e0 + p0)l(l + 1)
Z

r2 � (e0 + p0)
d

dr

✓
e
�ln0

r2

◆
= 0.

(4.75)

Similarly, the azimuthal component of the Euler equation Eq. (4.66) becomes

w2
(p0 + e0)e

�2n
Z � kX � p

0
0

e
�l

Q

r2 = 0. (4.76)

It can be shown that the Eq. (4.75) through a rearrangement of terms is identical
to that obtained earlier by McDermott et. al. [280] with an appropriate change of
factor 2 in the metric functions n(r) and l(r). Few more comments here may be
in order. In literature, sometimes the adiabatic index g is used instead of k and is
defined as [85]

g =

✓
∂ ln p0
∂ ln n0

◆

s

=
n0Dp

p0Dn
(4.77)

so that k = gp0. Further, the same can be related to adiabatic speed of sound as
follows. By using the definition of Jacobian and standard thermodynamic relation

✓
∂ ln p0
∂ ln n0

◆

s

=
n

2
0

p0cµµ
(4.78)
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in the zero temperature limit. The adiabatic speed of sound at zero temperature is
defined as [314]

c
2
s =

✓
∂p0
∂e0

◆

s

=
n

µcµµ

so that
g =

p0 + e0
p0

c
2
s . (4.79)

Let us note that Eq. (4.75) is a second order differential equation for the perturb-
ing function Q(r). We now use Eq. (4.76) to write down two coupled first order
equations for the perturbing functions. Using Eq. (4.76) and Eq. (4.79), we have
the equation for perturbation as

Q
0 � 1

c2
s

h
w2

r
2
e

l�2n
Z + n0

Q

i
+ l(l + 1)el

Z = 0. (4.80)

Next one can calculate the combination d[Eq.(4.76)]/dr + [Eq.(4.75)] and sub-
stitute Eq. (4.76) again which leads to the first order differential equation for Z

0

as
Z

0 � 2n0
Z + e

l Q

r2 � n0
✓

1
c2

e

� 1
c2

s

◆✓
Z + n0

e
�l+2n Q

w2r2

◆
= 0. (4.81)

In the above equation c
2
e =

dp0
de0

=
p
0
0

e0
0

is the equilibrium speed of sound. It may
be noted that Eq. (4.84) can be rewritten as

w2
e

l Q

r2 + w2
Z

0
+ A�e

lw2
Z � A+e

2n p
0
0

p0 + r0

q

r2 = 0. (4.82)

where, A+ = e
�l

(e0
0/(p0 + e0) + n0/c

2
s ) and A� = A+ � 2n0

e
�l. It is reassuring to

see that the Eq. (4.80) and Eq. (4.82) are identical to the corresponding equations
Eq.(3b) and Eq.(4a) given in Ref. [280]. The gravity mode (g mode) oscillation
frequencies are closely related to the Brunt-Väisäla frequency, wBV [280]. The rela-
tivistic generalisation of wBV is given by

w2
BV

= n02
e

2n
✓

1 � 2m

r

◆✓
1
c2

e

� 1
c2

s

◆
. (4.83)

This also reduces to the expression for the wBV in Newtonian limit [281].
The equation for the perturbation function Z(r) can be rewritten in terms of the

Brunt-Väisäla frequencies as

Z
0 � 2n0

Z + e
l Q

r2 �
w2

BV
e
�2n

n0 �1 � 2m

r

�
✓

Z + n0
e
�l+2n Q

w2r2

◆
= 0. (4.84)

The two coupled first order differential equations for the perturbing functions
Q(r, t) and Z(r, t), Eqs. (4.80),(4.84), are to be solved with appropriate boundary
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conditions at the center and the surface. Near the center of CSs the behavior of the
functions Q(r) and Z(r) are given by [85]

Q(r) = Cr
l+1 and Z(r) = �Cr

l/l (4.85)

where, C is an arbitrary constant and l is the order of the oscillation. The other
boundary condition is the vanishing of the Lagrangian perturbation pressure, i.e.
Dp = 0 at the stellar surface. Using equations Eqs. (4.72, 4.73 and 4.80), we have
the Lagrangian perturbation pressure Dp given as

Dp = � (p0 + e0)

r2

h
w2

r
2
e

l�2n
Z + n0

Q

i
e
�l. (4.86)

Thus the vanishing of Dp at the surface of the star (r = R) leads to the boundary
condition [315]

w2
r

2
e

l�2n
Z + n0

Q

���
r=R

= 0. (4.87)

Further, in case one considers stellar models with a discontinuity in the energy
density, one has to supplement additional condition at the surface of discontinuity
demanding Dp to be continuous i.e. Dp(r = rc�) = Dp(r = rc+). Where, rc is the
radial distance of the surface of energy density discontinuity from the center. This
leads to [85, 315]

Q+ = Q�, (4.88)
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e

2n
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(
e0� + p0
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w2

r
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c e

�2n
Z� + e

�ln0
Q�
⌘

� e
�ln0

Q+

)
, (4.89)

where, the �(+) subscript corresponds to the quantities before (after) the surface
of discontinuity. In case of a Maxwell construct for phase transition, there is a
discontinuity in energy density while in Gibbs construct of phase transition the
energy density is continuous at the phase boundary as considered here.

With these boundary conditions the problem becomes an eigen-value problem
for ‘w’. To calculate the eigen frequencies w, we proceed as follows. For a given
central density ec, we first solve the TOV equations, Eqs. (4.47 - 4.49), to get the
profile of the unperturbed metric functions l(r), n(r) and also mass M and radius
R of a spherically symmetric CS. For a given w, we solve the pulsating equations,
Eqs. (4.80 and 4.84), to determine the fluid perturbing functions Q(r) and Z(r) as
a function of r. To solve these equations, we take the initial values for Q and Z

consistent with Eq. (4.85). Specifically, we took C of the order 1. The solutions of
Q and Z are independent of this choice, (C = 1). We then calculate the LHS of Eq.
(4.87). The value of w is then varied such that the boundary condition, Eq. (4.87),
is satisfied. This gives the frequency, w as function of mass and radius. It may be
noted that there can be multiple solutions of w satisfying pulsating equations and
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boundary conditions corresponding to different initial trail values for w. These dif-
ferent solutions for w correspond to frequencies of different modes of oscillations
of CS.

4.4 Equilibrium and adiabatic speeds of sound
In this section we discuss both equilibrium and adiabatic sound speeds which are
needed to solve the pulsating equations Eqs. (4.80) and (4.84). We present the
expressions of both sound speeds for matter in HP, QP and MP. The equilibrium
speed of sound is given by

c
2
e =

dp

de
=

dp/dr

de/dr
. (4.90)

where, p and e are total pressure and energy density. The equilibrium sound speed
in NS can be evaluated numerically as a function of radial distance from the center
of the star while keeping the NSM in b-equilibrium. Using the above definition
(4.90), we find the equilibrium speed of sound in HP, QP and MP.

The characteristic time scale of QNM is about 10�3sec which is much smaller
than the b-equilibrium time scale. Therefore, during the oscillations the composi-
tion of the matter can be assumed to be constant. Such adiabatic approximation
means the adiabatic speed of sound corresponds to the constant composition i.e.

c
2
s =

✓
∂p

∂e

◆

yi

=

(∂p/∂nB)yi

(∂p/∂nB)yi

, (4.91)

where, yi = (ni/nB)’s are the fractions of the constituents of the matter which need
to be held fixed while taking the derivatives. Once the derivatives are taken, we
apply the b-equilibrium condition and get the adiabatic speed of sound in different
phases. In the following subsections we present the analytical expressions for the
adiabatic speeds of sound in HP, QP and MP.

4.4.1 Speed of sound in hadronic phase
In the following we estimate the adiabatic speed of sound of hadronic matter within
the RMF model as

c
2
s,HP =

⇣
∂pHP
∂nB

⌘

yi⇣
∂eHP
∂nB

⌘

yi

. (4.92)

The total energy density and total pressure of matter in HP are given in Eqs. (4.14)
and (4.15). Using these equations we find the partial derivative of pressure and
energy density with respect to baryon number density at constant composition
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Here, xi =
EFi + kFi

m⇤ . The derivatives of the meson fields at constant composition,
using Eqs. (4.6-4.8) are given as
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where, V
00
(s0) is the second derivative of Eq. (4.5) with respect to s0. The quantities

ai and bi, (i = n, p) are given by
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, (4.98)
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Eqs. (4.93 and 4.94) lead, inturn, to the derivatives of the medium dependent mass
(m⇤) and the chemical potential (µi) with respect to baryon number density at con-
stant composition is given as
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where, µ̃i =

q
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2
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+ m⇤2. Further, we have on direct evaluation, using nB =
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k

3
Fi

3p2 ,

✓
∂kFi

∂nB

◆

yi

=
kFi

3nB

. (4.102)

Thus the partial derivatives of pressure, Eq. (4.93) and energy density Eq. (4.94)
gets completely defined. This gives the adiabatic speed of sound in hadronic mat-
ter in the RMF model.

Similarly, one can determine the sound speeds in DDB model. The expressions
of the partial derivatives of pressure and energy density in DDB model are simi-
lar to Eq. (4.93) and Eq. (4.94) except that there are additional terms due to the
density dependent couplings. Here we give the expressions with the incorpora-
tion of corresponding changes arising from the density dependent couplings. The
derivatives of the meson fields in DDB model is given as follows
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where, with ai and bi as given in Eqs. (4.98 and 4.99),
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and, the derivatives of the density dependent couplings are given as
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The derivatives of the medium dependent mass and the effective chemicial poten-
tial at constant composition is defined as
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The last term on the RHS above is due to the extra ‘re-arrangement term’ in the
effective baryon chemical potential, µ̃i, given in Eq. (4.21) and can be written as
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In the above, using Eqs. (4.107-4.109) the second derivatives of the couplings are
directly given as
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Finally the derivative of the scalar condensate in Eq. (4.112) is given by, using Eq.
(4.11)
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Thus, the speed of sound in DDB is found using Eqs. (4.93-4.94) with the relevant
derivatives in the DDB model defined in Eqs. (4.103-4.116).

4.4.2 Speed of sound in quark phase
In an identical manner one can estimate the adiabatic speed of sound in QP by
taking the partial derivatives of total pressure and total energy density which are
collected in Eqs. (4.38) and (4.39). In this subsection we present the analytic ex-
pression for the adiabatic speed of sound for the quark matter in NJL model. The
partial derivatives of the pressure with respect to baryon number density using the
Eq. (4.33) is given by
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The partial derivative of the energy density using Eq. (4.36) with respect to the
baryon number density is given as
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where, zi = kFi/M and zL = L/M. The function H(z) is given in Eq. (4.16) and
H

0
(z) is its derivative with respect to z. The derivative of the constituent mass is

given by
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where
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Here i = u, d. The function G(z) is given in Eq. (4.31) and G
0
(z) is its derivative

with respect to z. Using these relations we can find the adiabatic speed of sound of
quark matter in QP as
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4.4.3 Speed of sound in mixed phase
Once we have the expressions for the different sound speeds in HP and QP then it
is state forward to get the sound speeds in MP by using the quark matter fraction c
as given in Eq. (4.42) in MP. In case of equilibrium sound speed, the total pressure
and the total energy density of the MP are calculated by using Eqs. (4.40) and
(4.43). We take the numerical derivative of pressure with respect to energy density
and get the equilibrium sound speed in MP. To estimate the adiabatic sound speed
in MP we take the corresponding quantities in HP and QP and hence c

2
s,MP is given

as [276]
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4.5 Results and discussion
In this section, we present the structural properties and non-radial oscillations of
NSs and HSs. We consider two RMF models, one with NL3 [306] parameterized
and other is DDB [307, 308] for nucleonic matter EOS (see sec. 4.2.1) and a two
flavour NJL model for the quark matter EOS (see sec. 4.2.2) with parameters,
(GsL2, L, m) = (2.24, 587.6MeV, 5.6MeV) [34]. The MP is calculated using Gibbs
construction, as outlined in sec. 4.2.3.

4.5.1 Equation of state and properties of neutron/hybrid star
We display the particle content as a function of density for charge neutral matter
for Gv = 0.2Gs in Fig. 4.2. In HP, neutron density dominates with small fractions of
proton. A small fraction of electron and muon (if available in the system) also ap-
pear(s) to get charge neutral HP. MP starts at rB ⇠ 2.76r0 from where the nucleon
fraction decreases while the quark fraction starts to increase. Finally, at densities
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rB ⇠ 5.56r0 and above, the pure QP takes over with d quark densities roughly
becoming twice that of the u quarks to maintain the charge neutrality in QP. The
smaller value of the vector coupling in the NJL model decreases the critical density
at which the MP starts. In case of Gv = 0, the MP starts at density rB ⇠ 2.36r0
and ends at densities rB ⇠ 5.22r0. The resulting EOSs with the MP are shown in
the Fig. 4.3 (left) for the two different values of vector coupling Gv = [0, 0.2] Gs in
the NJL model. As Gv increases, the EOS becomes stiffer. Further, higher Gv corre-
sponds to a larger critical energy density at which HQPT occurs. In Fig. 4.3 (right),
we show the EOS where the nuclear matter is described by the DDB model and the
quark matter is described by the NJL model with no vector coupling i.e. Gv = 0.
We have chosen zero vector coupling because the non-zero vector coupling makes
EOS stiffer In this case, MP starts at rB ⇠ 3.93r0 and ends at rB ⇠ 6.98r0. Open
and filled circles in Fig. 4.3 denote the central energy densities of the maximum
mass stars for different Gvs and nuclear matter EOSs. These circles lie in MP indi-
cating no pure quark matter core is realized. It can also be seen in Fig. 4.4, where
we show the quark matter fraction c in MP as a function of density for different
Gvs and nuclear matter EOSs. The open (filled) circle in Fig. 4.3(left) corresponds
to a maximum mass star denotes c = 0.482 (0.438) which means 48.2% (43.8%)

of the energy density is coming from quark matter and rest from nuclear matter at
the center of a maximum mass HS of NL3+NJL type with Gv = 0 (0.2Gs). While
in Fig. 4.3 (right), the open circle corresponds to a maximum mass star indicating
c = 0.506 which means 50.6% of the energy density is coming from quark matter
and rest from nuclear matter at the center of a maximum mass HS of DDB+NJL
type with Gv = 0. It realises that there is no pure quark core available in this study.

In Fig. 4.5 (left) we show the variation of square of the both speeds of sound
c

2
e and c

2
s for the hybrid matter of NL3+NJL type and in Fig. 4.5 (right) same for

the hybrid matter of DDB+NJL type, where we have taken zero vector coupling
i.e. Gv = 0. As density increases in HP, the squares of both speeds of sound in-
crease monotonically in both cases. The maximum value of the speeds of sound
(square of them) are 0.608 in NL3+NJL model and 0.564 in DDB+NJL at the criti-
cal density after which MP starts. In both cases, both square of the sound speeds
become very different in the MP. The square of the equilibrium sound speed, c

2
e ,

decreases discontinuously at the onset of MP to a value 0.08 (0.09) beyond which
it shows a continuous behaviour till the end of MP where it again discontinuously
increases from 0.06 (0.08) to 0.33 (0.33) for NL3+NJL (DDB+NJL) case. The square
of the adiabatic sound speed, on the other hand, does not show similar discontin-
uous behaviour. It has an important consequence for the g modes as we shall see
later. While the difference between both c

2
s and c

2
e is small in HP, at the onset of

MP, this difference become large leading to large Brunt-Väisäla frequency giving
rise to an enhancement of g mode frequency. We may note here that the difference
turns out to be vanishing for the present case of two flavor NJL model. This is
similar to the case of bag model EOS [81]. For massless two flavors NJL model,
the charge neutrality and b-equilibrium renders the electron density to be constant
which makes the difference between the two speeds (squares) to be vanishing. On
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FIGURE 4.3: The EOSs of the charge neutral matter including the MP
for both nuclear models in HP and the NJL model in QP. The left fig-
ure corresponds to the EOS with NL3 parameterized hadronic matter
while the right figure corresponds to DDB parameterized hadronic
matter. At high density, the NJL model is considered for the quark
matter EOS with different vector couplings. In the left figure, the
EOSs correspond to the vector couplings Gv = 0 (up) and Gv = 0.2Gs

(down) in the quark sector. In the right figure, the EOS corresponds
to the vector coupling Gv = 0. In both figures, the sky blue portion
refers to HP and the dark blue portion refers to QP while the dark red
portion corresponds to MP. The open square corresponds to the cen-
tral energy density of a NS of mass 1.4M�. The triangles denote the
starting of the MP and correspond to NSs of mass 2.17M� (Gv = 0)
and 2.50M�(Gv = 0.2Gs) for NL3+NJL and 2.18M� (Gv = 0) for the
DDB+NJL. The circles represent the maximum masses 2.27M�(Gv =

0) and 2.55M�(Gv = 0.2Gs) for NL3+NJL and 2.20M�(Gv = 0) for
the DDB+NJL HSs.

FIGURE 4.4: In the left figure, the quark fraction as a function of
baryon density for the Nl3 parameterized EOSs in HP and NJL model
in QP while in the right figure, the quark fraction as a function of
baryon density for the DDB parameterized EOS in HP and NJL model
in QP as shown in Fig. 4.3. In the left figure, the open (dark) circle in-
dicates the central density of the maximum mass star i.e. rB,max '
3.5r0(3.8r0) corresponding to Mmax = 2.27M�(2.55M�) for Gv = 0
(Gv = 0.2Gs). In the right figure, the open circle indicates the central

density of the maximum mass star i.e. rB,max ' 5.5r0
.
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FIGURE 4.5: The variation of the square of sound speeds, (equilib-
rium, c

2
e and adiabatic, c

2
s ) as a function of baryon number density

for the charge neutral matter. The brown dashed (blue dot-dashed)
curve corresponds to the equilibrium (adiabatic) sound speed in the
different phases like HP, QP and MP for the hybrid EOSs described
by NL3+NJL in the left figure and DDB+NJL in the right figure. The
vector coupling strength in NJL model is Gv = 0 in the case of both

hybrid models.

the other hand, this need not be the same for 3 quark flavors as the electron chem-
ical potential µe ⇠ m

2
s /(4µq) leading to electron density depending on quark mass

and quark chemical potential leading to a non-vanishing value for the difference
between the two speeds of sound (squares).

Apart from enhancing the g mode frequency, the existence of the sudden rise
of equilibrium sound speed has also important consequences regarding the mass
and radius relation in NS. One actually needs a rise in speed of sound in a narrow
region of densities, for an explanation of CSs to have large mass and small radius
[316]. To achieve this possibility, a quarkyonic phase [316] or a vector condensate
phase along with pion superfluidity [317] have been proposed recently. On the
other hand, such a steep rise in the speed of sound can also arise in a MP construct
within the model for hadronic matter and quark matter as used here.

In Fig. 4.6, we show the mass-radius relations for NSs. For pure nucleonic mat-
ter EOS, the maximum mass turns out to be 2.77M� (2.35M�) and radius turns
out to be 13.26 km (11.87 km) when the nuclear matter is described in NL3 (DDB)
parameterisation of RMF model. If one uses MP EOS, the maximum mass of CS
reduces to 2.27M� with radius 14.39 km for Gv = 0 and to 2.55M� with radius
14.17km for Gv = 0.2Gs in NL3+NJL while the same decreases to 2.20M� with
radius 12.71 km for Gv = 0 in DDB+NJL. This is essentially due to the fact that
the quark matter EOS is softer compared to the nuclear matter EOS. The central
energy densities for the maximum mass HSs are emax

c = 656 MeV/fm3
(Gv = 0)

and emax
c = 738 MeV/fm3

(Gv = 0.2Gs) in NL3+NJL while emax
c = 948 MeV/fm3

(Gv = 0) in DDB+NJL. As central energy density is increased further, HSs become
unstable i.e. dM/de < 0. Thus, within the present models, we do not find stable
HSs with pure quark matter core. The quark matter, if it is present in the core, is
always in MP. As Gv increases in NL3+NJL case, the MP starts at higher energy
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FIGURE 4.6: The mass-radius curves are plotted for CSs described
by the models NL3, NL3+NJL in left figure and by the models DDB
and DDB+NJL in right figure for the different values of the vector cou-
pling, Gv in NJL model. In the case of DDB and DDB+NJL models, the
vector coupling is taken to be zero. The circles denote the maximum
mass HSs having quark matter within the cores for different values
of the Gv in NJL model. While the triangles represent the maximum
mass NSs having hadronic matter inside the core. In the left figure,
the maximum mass of HSs, described by NL3+NJL hybrid model, are
2.27M� for Gv = 0 and 2.55M� for Gv = 0.2Gs. In the right figure, the
maximum mass HS, described by DDB+NJL hybrid model, is 2.20M�.

density and hence a larger fraction of hadronic matter contributes to the total mass
of the star as we see in Fig. 4.4 (left). This leads to an increase of the maximum mass
of HS. With increasing Gv further, we expect NSs without any quark matter in their
cores. The radius R1.4 for the canonical mass of 1.4M� NSs turns out to be 14.52 km
in NL3+NJL case while same turns out to be 13.21 km in DDB+NJL case. It may be
noted that the x-ray pulse analysis of Neutron star Interior Composition ExploreR
(NICER) data from PSR J0030 + 0451 by Miller et.al. found R = 13.02+1.14

�1.19 km
for M = 1.44 ± 0.15M� [318]. Such a star will not have a quark core within these
present models for the EOS of dense matter. Such a conclusion, however, should be
taken with caution as this is very much dependent upon the EOSs both in hadronic
and quark phase. In particular, more exotic phases of quark matter could also be
possible including various color superconducting phases, and various inhomoge-
neous phases for dense quark matter which have not been considered here.

In Fig. 4.7, we show the energy density and pressure profiles i.e. energy den-
sity and pressure as the functions of the radial distance from the center of the max-
imum mass HSs described by NL3+NJL (left) and DDB+NJL (right) models. As
mentioned earlier, the cores of such stars contain MP with about the 50% of quark
matter and 50% of nuclear matter (see Fig. 4.4). The radius of MP core is about
3.8 km (2.7 km) with the total radius of 14.17 km (12.71 km) for HS described
in NL3+NJL (DDB+NJL). We have taken here the vector coupling Gv = 0.2Gs0
(Gv = 0) in NL3+NJL (DDB+NJL) model. For Gv = 0, in NL3+NJL, MP core radius
slightly larger i.e. 4.2 km while the star’s radius being about 14.39 km. At r = rc,
the critical radial distance, where the matter goes from a MP to a HP or vice-versa,
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FIGURE 4.7: The energy density, e (blue dot-dashed) and pressure, p

(red dashed) profiles as a function of radial distance from the center
of the maximum mass HSs described by the hybrid models NL3+NJL
(left) and DDB+NJL (right). In case of NL3+NJL hybrid model, the
vector coupling is none-zero i.e. Gv = 0.2Gs while in case of DDB+NJL
hybrid model, the vector coupling is zero i.e. Gv = 0. The transition
from MP to HP happens at rB = 2.75r0 (rB = 3.95r0) correspond-
ing with the radial distance rc = 0.27RMax (rc = 0.21RMax) in the

NL3+NJL (DDB+NJL) model.

the energy density becomes non-differentiable while pressure shows smooth be-
haviour as may be observed in Fig. 4.7.

The behavior of both the square of the sound speeds, c
2
e and c

2
s , are shown in

Fig. 4.8 as a function of radial distance from the center of the stars for both HS as
well as NS. In Fig. 4.8 (left) we show the square of the both sound speed profiles
for the maximum mass stars described in NL3 and NL3+NJL models while in Fig.
4.8 (right) we show the same for the maximum mass stars described in DDB and
DDB+acnjl models. We choose here the zero vector coupling i.e. Gv = 0 for the
said models. The HQPT in HSs is reflected in the variation of the square of the
equilibrium sound speed, c

2
e , which changes abruptly from c

2
e = 0.08 to c

2
e = 0.608

in NL3+NJL model and from c
2
e = 0.06 to c

2
e = 0.564 at the critical radius rc. As

motioned it plays an important role in the enhancement of non-radial oscillation
frequencies which we discuss in the next subsection.

In Fig. 4.9 (left), we show the profile of Brunt-Väisäla frequency, wBV, in the
stars of maximum masses described in NL3 and NL3+NJL while in Fig. 4.9 (right),
we show the same described in DDB and DDB+NJL where the vector coupling
Gv = 0 in NJL model. The steep rise of wBV at the onset of MP may be noted.
The Brunt-Väisäla frequency, wBV, depends on both the speeds of sound, see Eq.
(4.83). In the core of maximum mass HS, the variation of the both sound speeds
are different which is reflected in the wBV profile. The onset of muons is shown by
a little kink in the figure with a slight increase in wBV.
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FIGURE 4.8: The equilibrium c
2
e and the adiabatic c

2
s sound speeds

profiles inside the maximum mass stars as a function of radial dis-
tance from the center of the stars. In the left figure, the c

2
e and c

2
s pro-

files is shown as a function of the radial distance in the stars described
by the NL3 and NL3+NJL models while in the right figure same in the
stars described by the DDB and DDB+NJL models. The black dashed
(dark blue dot-dashed) curve correspond to the c

2
e (c2

s ) profile for the
HS described by NL3+NJL (DDB+NJL) model while brown dashed
(magenta dot-dashed) curve corresponds to the c

2
e (c2

s ) profile in the
NS described by NL3(DDB) model. The discontinuity in the profile of
c

2
s in the case of HSs at rc = 0.27RMax (rc = 0.21RMax) shows the ap-

pearance of quark matter in the hybrid model NL3+NJL(DDB+NJL).

FIGURE 4.9: The Brunt-Väisäla frequency (wBV) profile in the maxi-
mum mass stars as a function of the radial distance from the center of
the star. In the left figure, the wBV profile is plotted as a function of
radial distance in the stars described by the NL3 and NL3+NJL model
while in the right we plot same in the stars described by the DDB and
DDB+NJL models. Red solid (blue dot-dashed) curve shows the wBV
profile in the NS (HS where the vector coupling is considered to be
zero i.e. Gv = 0). The little kink in the profiles near the surface of
the stars shows the threshold for the appearance of muons in all the

models.
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4.5.2 Tidal deformability
The tidal distortion of NSs in a binary system links the EOS to the gravitational
wave emissions during the inspiral [319]. Next we discuss the results for the tidal
deformability with EOS considered here. In Fig. 4.10 (left) shows the dimensionless
tidal deformability parameters L1 and L2 of the NSs involved in the binary neu-
tron star (BNS) with masses m1 and m2, respectively, for the hadronic EOSs DDB,
NL3 and corresponding mixed phase EOS with NJL model DDB+NJL, NL3+NJL.
In the GW170817 event, the chirp mass, Mchirp = (m1m2)

3/5
(m1 + m2)

�1/5, was
measured as 1.186M� [71] and these curves were calculated based on the masses
involved in the BNS merger by varying m1 in the observed range 1.365 < m1 <
1.60. We may note here that the quark matter core occurs for NSs of masses at
around 2M�. Thus the tidal deformability L1 and L2 as shown in the Fig. 4.10
(left) will correspond to hadronic phase only. We also show the constraint im-
posed on the L1 � L2 plane from the GW170817 event in the same plot. Based on
a marginalized posterior for the tidal deformability of the two binary components
of GW170817, the gray solid (dot-dashed) line represents the 90%(50%) confidence
interval for the tidal deformability of these two components. There are magenta
solid (blue dashed) lines representing 90%(50%) confidence intervals for the con-
straints from GW170817: marginalized posterior using a parametrized EOS with
a maximum mass requirement of at least 1.97M�. In this regard, it is important
to note that the NL3 model disfavors the constraints imposed by GW170817. The
DDB, however, is less stiff than NL3, so it satisfies those constraints well. The
stiffness of the EOS may be attributed to either its symmetric nuclear part or its
density-dependent symmetry energy. While NL3 and DDB exhibit similar sym-
metric nuclear matter (SNM), DDB has a softer symmetry energy than NL3. For
the models NL3 and DDB, the nuclear matter incompressibility K0 is 271 MeV, and
269 MeV and the slope of the symmetry energy L0 is 118 MeV, 32 MeV, at saturation
density respectively. Fig. 4.10 (right) shows the dimensionless tidal deformability
as a function of NS mass of our EOS model adopted here. The blue horizontal
bar indicates the 90% CI obtained for the tidal deformability of a 1.36M� or the
combined tidal deformability in the BNS for q = m1/m2 = 1 [71]. It is clear that
the NL3 is outside of the 90% CI constraint whereas DDB is within the acceptable
range. As discussed above the NSs masses below 2.18M� and 2.17M� correspond
to the only hadronic phase EOSs for DDB and NL3 mixed phases EOSs, respec-
tively. It can be seen from the figure that the tidal deformability L bifurcates from
the same NS masses for those EOSs.

4.5.3 Oscillation modes in hybrid stars
We next show, here, the results for f and g modes for NSs and HSs in different
models presented in this study. We shall focus our attention to the quadruple
mode (l = 2) only because the quadrupolar oscillations are significant enough
to observe. One can study the higher mode as well but their frequencies are very
large and difficult to observe. It may be expected from the coupled Eqs. (4.80 and
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FIGURE 4.10: Based on the hadronic NL3, DDB and their hy-
brid EOS with NJL quark matter model for a mixed phase. (left)
we show the dimensionless tidal deformability parameters L1 and
L2 of the GW170817 BNS merger, for the fixed measured chirp
mass of Mchirp = 1.186M�. A gray solid (dot-dashed) line indi-
cates a 90%(50%) confidence interval for the tidal deformability of
GW170817’s two binary components based on their marginalized pos-
teriors. In this figure, magenta solid (blue dashed) lines represent
90%(50%) confidence intervals for the constraints from GW170817 :
marginalized posterior using a parametrized EOS and a maximum
mass requirement of 1.97M�. (right) The dimensionless tidal de-
formability as a function of the NS mass. The tidal deformability con-
straint of a 1.36M� star is represented by the blue bar in the right

panel.
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4.84) for the fluid perturbation functions Q(r) and Z(r) that c
2
s and c

2
e play an im-

portant role in the determination of different solutions of these functions and hence
on the frequencies of the oscillation modes. The typical frequencies of g modes lie
in the range from a few 100 Hz up to 1 kHz while that of f modes lie in the range
1 � 3 kHz. As mentioned in Sec. 4.3, we solve Eqs. (4.80 and 4.84) in a variational
method to determine the oscillation frequencies. As this is computed using a vari-
ational method, the final solutions depend upon the initial guesses for the frequen-
cies. To get a solution of the f mode oscillation, we give the initial guess for the
frequency ( f = w/2p) of the order of a few kHz. On the other hand, to look for a
g mode we give the initial guess for the same in the range of a few hundred Hz. In
Fig. 4.11, we show the f mode frequencies as a function of mass of CSs for the both
NS and HS described by NL3 and NL3+NJL (DDB and DDB+NJL) models in the
left (right) figure. In the left figure, the blue curves refer to the f mode frequencies
for HSs with Gv = 0 (blue dotted) and with Gv = 0.2Gs (blue dot-dashed) while
the magenta curve refers to the f mode frequencies for NSs described by NL3+NJL
and NL3, respectively. In the right figure, we show the same as the left figure but
for the DDB+NJL and DDB models, respectively while considering Gv = 0. We
may observe here that there is a mild rise in the frequencies for the f modes for
stars with a quark matter core. Such a rise of non-radial oscillation frequencies due
to the quark matter core was also observed in Ref. [81, 276]. However for f modes,
the rise due to the quark matter in the core, is very small. Eg. for a HS star of
mass M = 2.27M�, described by NL3+NJL where Gv = 0, the f mode frequency
becomes 2 kHz from a value of 1.97 kHz of a NS of same mass.

In Fig. 4.12, we plot the g mode frequencies as a function of the mass of CSs
for the both NS and HS described by NL3 and NL3+NJL models in the left figure
while same as described by DDB and DDB+NJL model in the right figure. For
NSs, CSs without any quark matter core, the g mode frequencies lie in the range of
(322 � 341) Hz (139 � 148) Hz for the stars of masses larger than 2 M� described
by NL3 (DDB) model. On the other hand, in the presence of quark matter in MP,
the frequencies rise sharply to about 589 Hz (Gv = 0) and 589 Hz (Gv = 0.2Gs)
in the case of NL3+NJL model while same rises sharply to about 303 Hz (Gv = 0)
in the case of DDB+NJL. Let’s note that at the onset of the MP in case of NSs, c

2
e

decreases abruptly. This is due to the fact that the electron chemical potential falls
at the onset of the MP. This is due to the fact that the charge neutral nuclear matter
undergoes a phase transition to one component of HP which is positively charged
and the other component of QP which is negatively charged. This sudden change
in the lepton number density at MP threshold leads to sudden drop of c

2
e as shown

in Fig. 4.8. This leads to an abrupt rise of the wBV which enhances the g mode
frequency. With increasing the vector coupling Gv, MP core decreases and hence
its contribution to the g mode enhancement also decreases.

We note that the g modes that we obtained for NSs or HSs are driven by the
Brunt-Väisäla frequency which quantifies the mismatch between the mechanical
and chemical equilibrium rates of a displaced fluid parcel and is expressed by the
local equilibrium and adiabatic speeds of sound. Such core g mode solutions in
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FIGURE 4.11: The oscillation frequencies of f mode f = w/2p in
kHz as a function of the star’s masses which are described by NL3
and NL3+NJL models in the left figure and same as a function of the
star’s masses which are described by DDB and DDB+NJL models in
the right figure. The magenta dashed curve corresponds to NSs i.e.
without any quark matter core. (left) The blue dot-dashed (blue dot-
ted) curves correspond to the f mode frequencies of the HSs which are
described by NL3+NJL hybrid model for Gv = 0(Gv = 0.2Gs). (right)
The blue dotted curve corresponds to the f mode frequencies of the
HSs which are described by DDB+NJL hybrid model for Gv = 0. The
appearance of the quark matter in the core enhances the oscillation

frequencies.

sub-kHz frequency range can also arise due to a sharp discontinuity in energy
density in a first order phase transition [320, 321]. Such low frequency g modes
due to quark-hadron discontinuity has also been shown to be a feature of HSs that
distinguish hadronic stars or strange quark stars based on non-radial oscillation
modes [86]. On the other hand non-radial oscillation modes with a MP of quark-
hadron matter was explored by Sotani etal [85]. It was shown here that including
finite size effects in the mixed phase it is possible to distinguish between the exis-
tence or absence of density discontinuity in NS interior from gravitational waves
of the f mode [85]. In an interesting later work of Ranea-Sandoval etal explored
different non-radial oscillation modes ( f , p and g modes) with an interpolating
function relating hadron and quark phases unlike a Gibbs construct as has been at-
tempted here [88]. We might note that for the phase transition considered here with
NJL model, a Gibbs construct is consistent as the recent calculation using effective
models like linear sigma model [294]; Polyakov quark meson model [296] as well
as NJL model [295] suggest a lower value of surface tension ⇠ 5 � 20MeV/fm2

justifying the use of a Gibbs construct.
Next, we discuss the solution of the perturbing functions Q(r) and Z(r). In Fig.

4.13, we have plotted the functions Q(r) and Z(r) as a function of radial distance
from the center for both g and f modes. Let us first discuss the solutions of per-
turbing functions Q(r) and Z(r) for NSs. The angular function Z(r) is plotted as a
solid red line (Zf) for f mode and as a solid blue line (Zg) for g mode. For f modes,
Z(r) decreases monotonically starting from a vanishing value at r = 0 consistent
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FIGURE 4.12: The oscillation frequencies of g mode f = w/2p in
kHz as a function of the star’s masses which are described by NL3
and NL3+NJL models in the left figure and same as a function of the
star’s masses which are described by DDB and DDB+NJL models in
the right figure. The magenta dashed curve corresponds to NSs i.e.
without any quark matter core. (left) The blue dot-dashed (blue dot-
ted) curves correspond to the g mode frequencies of the HSs which are
described by NL3+NJL hybrid model for Gv = 0(Gv = 0.2Gs). (right)
The blue dotted curve corresponds to the g mode frequencies of the
HSs which are described by DDB+NJL hybrid model for Gv = 0. The
appearance of the quark matter in the core enhances the oscillation

frequencies.

with the initial condition given in Eq. (4.85). As may be clear from Eq. (4.84), for
vanishing wBV, Z

0
(r) is negative and therefore Z(r) decreases as r increases. When

the Brünt-Väisala frequency, wBV becomes significant, the forth term in Eq. (4.84)
starts to become important. However, if w is large (as in the case with f modes)
the contribution of the second term in the parenthesis of Eq. (4.84) is suppressed
so that Z(r) decreases monotonically as seen (red solid line) in Fig 4.13. On the
other hand, for the g mode with the lower w, the second term in the parenthesis
becomes dominant. This makes the forth term in Eq. (4.84) negative and signifi-
cant near the surface as wBV becomes significant here. It turns out that the overall
sign of Z

0
(r) becomes positive near the surface resulting eventually in the change

of sign of Z(r) as shown (blue solid line) in Fig. 4.13. Thus the f mode shows no
node for Z(r), the g mode solution shows a node. We have taken throughout l = 2.
The dashed lines show the behaviour of the perturbing function Q(r) as Qf and Qg
for f and g modes respectively. Both these functions start from vanishing values
and start to increase with r. Q(r) for f mode (Qf) increases monotonically while
Q(r) for g mode (Qg) starts to decrease when Z(r) changes sign and eventually
become negative near the surface consistent with the boundary condition given in
Eq. (4.87). Thus similar to Z(r), Q(r) also does not show any node for f modes
while the solutions of the Q(r) for the g modes, (Qg) has a node near the surface.

Next, we display the perturbing functions Q(r) and Z(r) for HSs in Fig. 4.14.
In the top panel, we have plotted the functions Q(r) and Z(r) for g modes and in
the bottom panel the same for f modes. Let us first discuss the g mode perturbing
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FIGURE 4.13: The solutions of the fluid perturbation functions Q(r)

and Z(r) as a function of the radial distance for the maximum mass
(M = 2.77M�) NS obtained from the NL3 parameterized EOS. The
solid (dashed) line corresponds to the angular function, Z(r) (radial
function, Q(r)). Both perturbing functions for f modes (Qf and Zf)
show monotonic behavior while for g modes these function do not

and have nodes near the surface of the NS.

functions. We first observe that the Brunt-Väisäla frequency, wBV is also significant
near the center as well as at the surface as may be seen in Fig. 4.9 in contrast to
the hadronic matter (relevant for NSs) which becomes significant only near the
surface. Thus there are additional nodes for Zg in the case of HSs in comparison
to NSs. This is also reflected in the behaviour of the functions Q(r) and Z(r) as
shown in the top panel of the Fig. 4.14. As was the case with NS, for g mode the
dominating contribution arises from the second term of the parenthesis of equation
Eq. (4.84). The quantity in the parenthesis has a cancelling effect on the other two
terms in the Eq. (4.84). This leads to a slight oscillatory behaviour for the functions
Z(r) depending upon whether Z

0
(r) is positive or negative upto rc. Beyond it, wBV

becomes significant only near the surface and the behaviour of Z(r) and Q(r) are
similar to that of NS. In the bottom panel of the Fig. 4.14, we have shown the
same functions for the f mode. The behaviour of these functions Q(r) and Z(r) are
essentially similar to NSs.

4.6 Summary and conclusion
Some previous works [86, 297] also show similar results as in the current investiga-
tion where the non-radial oscillation, (QNM), frequencies enhance as quark matter
appears in the core of neutron star. They investigated (QNM) of NSs and HSs by
considering RMF models to describe nuclear matter and modified bag model to
describe quark matter. While in our studies, we also found similar results where
we have taken more realistic EOSs for nuclear matter and quark matter. Let us
summarize the salient features of the present investigation. We have looked into
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FIGURE 4.14: The solutions for the fluid perturbation functions Q(r)

and Z(r), for the hybrid star of mass M = 2.27M� as a function of
radial distance. The NL3 parameterized EOS is taken for hadronic
matter while NJL model is taken for the quark matter EOS and Gibbs
construction to find the mixed EOS. (left) figure shows the g mode so-
lutions and (right) figure shows the f mode solutions. The oscillatory
behaviour of Z(r), (Zg) near the core may be noted in the contrast to

the Fig. 4.13

possible distinct features of HSs with quark matter and NSs without quark mat-
ter in their cores. This is investigated by looking into non-radial oscillations of
CSs. The EOS for HS is constructed using a RMF theory for nuclear matter and
the NJL model for quark matter. The Gibbs criterion for MP is used to construct
MP with two chemical potentials (µB and µE) imposing global charge neutrality
conditions. It is observed that the core of HSs can accommodate a mixture of nu-
cleonic and quark matter, the pure quark matter phase being never achieved. In
comparison to a NS without quark matter, the inclusion of MP of matter softens
EOS, resulting in lower values for the maximum masses and bigger corresponding
radii. Determining the composition of NS through observables it is necessary to
break the degeneracy between normal and hybrid stars. To this end, we looked
into non-radial oscillation modes of such CSs for this purpose. Unlike M-R curves
for which EOS is sufficient, the analysis of oscillation modes requires the speed of
sound of the charge neutral matter. Using a MP structure, it is observed that the
equilibrium speed of sound shoots up at the transition point between MP and HP
in such a construct. It may be noted that such a steep rise in the speed of sound in a
narrow region of density as one comes from the core towards the surface was also
seen in a quarkyonic to hadronic matter transition [316] as well as in an EOS with
w condensate and fluctuations in pion condensate [317]. Such a steep rise in sound
speed is generated here naturally through MP construct. This EOS is used to deter-
mine the frequencies of non-radial oscillations in NS within a relativistic Cowling
approximation that neglects the fluctuation of the space time metric and results in
a much simpler equations to solve and analyse. While this is not strictly consistent
with the fully relativistic treatment, the impact of such simplified approximation
is not severe, typically affecting the g modes at the 5 � 10% level while f modes
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are more sensitive to Cowling approximation [313]. Within the RMF model for nu-
clear matter, we estimated the f and g modes frequencies. The g mode solution for
NS arises due to wBV when it becomes significant towards the surface of NS. On
the other hand for HSs the wBV become significant near the core where the quark-
hadron phase transition occurs. Due to the quark matter core both the wBV and g

mode frequency get enhanced as compared to a normal NS.
We have focussed our attention in the present investigation to non-radial os-

cillation modes corresponding to quadrupole fundamental modes and the gravity
modes. In the presence of a quark matter in a mixed phase with charge neutral
nuclear matter, both these modes are enhanced with the effect being more for the g

modes as compared to the high frequency f modes. The g modes that we have con-
sidered here are driven by nonvanishing Brunt-Väisäla frequency resulting from a
chemical stratification and depends upon the compositional characteristics rather
than a density discontinuity. This enhancement is due to the sharp drop of the
equilibrium speed of sound at the onset of the MP and is a distinct feature of HS
as compared to a NS. In the context of gravitational wave from BNS merger, it is
known that g modes can couple to tidal forces and can draw energy and angular
momentum from the binary to the NS and cause an associated phase shift in grav-
itational wave signal. With distinct enhancement of this mode for HS as compared
to NS, one might expect a distinguishing signal from GW observations. However,
the resulting phase shifts for NSs and HSs turns out to be similar order due to the
longer merger times for the NSs [276]. Such conclusions are of course limited by the
uncertainties arising from the value of tidal coupling. When these uncertainties are
reduced through improved theoretical estimations, the high frequency g modes of
HS can possibly be distinguished from those of NSs. To observe the enhancement
in the non-radial oscillation frequencies the highly sensitive detectors are required.
The future advanced LIGO/VIRGO detector may observe these frequencies. There
is also a possibility that in future NICER observation may observe these frequen-
cies too. While the detection of g mode frequencies in BNS merger observation by
current detectors is challenging. One hopes that with the third generation detectors
like Einstein telescope or Cosmic explorer, one can possibly have direct detection
of these modes and have conclusive signatures regarding the composition of the
NS interior.

One of the novel feature of the present investigation has been the use of hadronic
EOS modeled through RMF models with their parameters determined from the nu-
clear matter properties at saturation density with the NL3 parameterisation as well
DDB parameterisation.

Unlike meta models [276], mean field model EOS are derived from a micro-
scopic model described in terms of nucleons and mesons and quite successful in
describing various properties of finite nuclei as well as NSs. The derivation for
wBV as described here is rather general and can be used for any mean field model
for nuclear/hyperonic matter. Similarly for quark matter NJL model is used which
captures the important features of chiral symmetry breaking in strong interactions.
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It may be noted that these models can be extended to include strange quark mat-
ter. The calculational method developed here can be applied to the various other
sophisticated models like 3 flavour NJL model, quark-meson model or Polyakov
loop extension of such model describing the quark matter.

We have given in some detail the derivation of the relativistic pulsating equa-
tions involving Brunt-Väisäla frequency in which such a MP EOS as derived here.
In addition we have discussed the behaviour of the fluid perturbing functions in
some details both with and without the hadron-quark phase transition which adds
an understanding of the enhancement of oscillation frequencies for HSs. In future
we would like to include the effects of the strange quarks in the quark matter sec-
tor and correspondingly hyperons in the hadronic sector. It will also be interesting
and important to include the effects of strong magnetic field for the structure of
NSs [319] and its effect on the non-radial oscillation modes. We have focused our
attention for NSM which is at zero temperature and vanishing a neutrino chemi-
cal potential. However, to study the proto-NSs we should take into account the
thermal effects on the oscillations including the effects of neutrino trapping on
the phase structure of matter. This will be relevant for studying the oscillation
modes from merging NS and detecting in future experimental facilities like ad-
vanced LIGO/Virgo and Einstein telescope.





Chapter 5

Universal relations with non-radial
oscillation modes

In this chapter we discuss some relations, so called universal relation (UR)s, among
non-radial frequency (specifically f mode frequency), radius and mass of CSs.
These relations are to some extent insensitive to the EOS. In the case of radial oscil-
lation modes (r-modes), r-modes do not couple with the gravitational wave (GW)s
and do give the information about the stability of a star. For example, the funda-
mental radial mode gives the allowed minimum oscillation frequency for a stable
star [265, 266] and determines the maximum allowed baryon density at the center
of maximum mass star. They are also useful to determine the rotation frequency
of a NS [266, 267]. While in the case of non-radial oscillation, they couple with the
GWs and dump energy in the GWs. So they are more suitable observable to get
an insight of NSM [266, 268, 269]. Here in this chapter, we consider hadronic and
hybrid EOSs sets, verify the robustness of the previously studied URs and find a
new relation.

5.1 Introduction.
In this chapter we propose two major points of interest. Firstly we estimate, within
the Cowling approximation, the f mode oscillation frequencies for NSs using a
large number of EOSs and demonstrate that the observation of f mode frequen-
cies, apart from causality c

2
s  1 and maximum mass constraints, further restrict

the EOSs. Secondly we verify the robustness of few UR among the quadrupolar f

mode frequencies, masses and radii studied earlier with limited EOSs. We consider
here a large number of EOSs and show that some of them are almost insensitive
to the EOSs. It has been earlier found that the other URs between NS properties
are strongly violated by hybrid hadron-quark EOSs [322–325] and certain exotic
phases [326]. An ensemble of EOSs that we consider here are constructed by stitch-
ing together EOSs valid for different segments in baryon densities. For the outer
crust the Bethe-Pethick-Sutherland (BPS) EOS is chosen [327]. The outer crust and
the core are joined using a polytropic form p(#) = a1 + a2#g in order to construct
the inner crust, where the parameters a1 and a2 are determined in such a way that
the EOS for the inner crust matches with the outer crust at one end (r = 10�4 fm�3)
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and with the core at the other end (r = 0.04 fm�3). The polytropic index g is taken
to be 4/3 [328]. It is important to note that the differences in NSs radii between this
treatment of the inner crust EOS and the unified inner crust description including
the pasta phases have been found to be less than 0.5 km, as discussed in [329]. The
core EOSs are considered within the two different approaches:

1. the nucleonic b-equilibrated EOSs, named DDB, obtained in [329], which sat-
isfies pure neutron matter (PNM) constraints at low densities obtained from
next-to-next-to-next-to leading order (N3LO) calculations in the chiral effec-
tive field theory (CFT) [330, 331].

2. a hybrid set of EOSs which consists of the DDB EOS at low density ( 2r0)
and the deconfined quark matter at very high densities (� 40r0) while the
region (2r0-40r0) is interpolated by piecewise polytropes (DDB-Hyb).

In the present chapter we will discuss the formalism of both ensembles of EOSs
in Sec. 5.2 subsequently. In Sec. 5.3 we discuss the non-radial oscillations as we
already discussed it in the previous chapter, Chapter 4, where we found the pulsat-
ing equations in detail. To estimate the different modes in NS with both ensembles
of EOSs, we use pulsating equations Eqs. (4.80 and 4.84). In Sec. 5.4 we discuss the
results and future aspects.

5.2 Formalism

5.2.1 Equation of state of nuclear matter
In the previous chapter, (chapter 4), we have taken one set of parameters of DDB
type. Here, in this chapter, we discuss how the parameters of DDB model are found
using the Bayesian approach (see Ref. [329]). Bayesian approach enables one to
carry out a detailed statistical analysis of the parameters of a model for a given set
of fit data [332–335]. To a good approximation, the EOS of nuclear matter can be
decomposed into two parts (i) the EOS for symmetric nuclear matter e(r, 0) and
(ii) a term involving the symmetry energy coefficient S(r) and isospin asymmetry
parameter d ( d = (rn � rp)/r),

e(r, d) ' e(r, 0) + S(r)d2, (5.1)

where e is the energy per nucleon at a given density r. We can recast the EOS in
terms of various bulk nuclear matter properties of order n at saturation density, r0:
(i) for the symmetric nuclear matter, the energy per nucleon e0 = e(r0, 0) (n = 0),
the incompressibility coefficient K0 (n = 2), the skewness Q0 (n = 3), and the
kurtosis Z0 (n = 4), respectively, given by [329]

X
(n)

0 = 3nrn

0

✓
∂ne(r, 0)

∂rn

◆

r0

, n = 2, 3, 4; (5.2)
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(ii) for the symmetry energy, the symmetry energy at saturation density Jsym,0 (n =

0),

Jsym,0 = S(r0), S(r) =
1
2

✓
∂2e(r, d)

∂d2

◆

d=0
, (5.3)

the slope Lsym,0 (n = 1), the curvature Ksym,0 (n = 2), the skewness Qsym,0 (n = 3)
and the kurtosis Zsym,0 (n = 4) are defined as

X
(n)

sym,0 = 3nrn

0

✓
∂n

S(r)

∂rn

◆

r0

n = 1, 2, 3, 4. (5.4)

In the Bayesian analysis the basic rules of probabilistic inference are used to
update the probability for a hypothesis under the available evidence according to
Bayes theorem. The posterior distributions of the model parameters q in Bayes
theorem can be written as [329]

P(q|D) =
L(D|q)P(q)

Z , (5.5)

where q and D denote the set of model parameters and the fit data. P(q) in Eq. (5.5)
is the prior for the model parameters and Z is the evidence. The type of prior can
be chosen with the preliminary knowledge of the model parameters. The P(q|D) is
the joint posterior distribution of the parameters, L(D|q) is the likelihood function.

5.2.2 Equations of state of quark matter
In the previous section Sec. 5.2.1, we introduced the nuclear matter EOS, DDB
which is consistent with nuclear saturation properties very well but in this set of
EOS there is no control at the higher densities. At asymptotically high densities,
quarks are the degrees of freedom and the relevant theory is pQCD. We use pQCD
theory to further constrain DDB EOS. In this section, for completeness, we collect
here the previous study [336–338]. The pQCD EOS which can be casted as a simple
fitting function for the pressure as a function of chemical potential (µ) given as
[338]

PpQCD(µ) =
µ4

108p2

✓
c1 � d1X

�n1

(µ/GeV) � d2X�n2

◆
(5.6)

where the parameters are c1 = 0.9008, d1 = 0.5034, d2 = 1.452, n1 = 0.3553 and
n2 = 0.9101 [338]. Here X is a dimensionless renormalization scale parameter,
X = 3L̄/µ which is allowed to vary X 2 [1, 4]. We use this pQCD EOS for densi-
ties beyond r ' 40r0 which corresponds to µpQCD = 2.6 GeV [338]. Between the
region of the validity of pQCD and DDB i.e. µDDB  µ  µpQCD, where µDDB is
the chemical potential of DDB EOS at r = 2r0, we divide the interval into two seg-
ments, (µDDB-µc) and (µc-µpQCD), and assume EOS has a polytropic form in each
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segment i.e. Pi(ri) = kir
gi

i
for the i-th segment [337]. The segments can be con-

nected to each other by requiring that pressure and energy density are continuous
at µc as well as pressure shoud be an increasing function of energy density and
EOS must be subluminal. We also ensure that there is no jump in baryon num-
ber density. This corresponds to assuming no first order phase transition between
hadronic matter and quark matter. If one wishes to include a first order phase
transition, an extra term to the number density at µc can be added [337].

To obtain EOS of the core, we proceed as follows. Below r = 2r0 till the inner
crust, we use a soft (stiff) DDB EOS as obtained in Ref. [329] within 90% CI. The
corresponding value of chemical potential at r = 2r0 is µDDB = 1.036 (1.097) GeV
for a soft (stiff) DDB EOS. We interpolate the region from µ = µDDB to µ = µc and
from µ = µc to µ = µpQCD with a piecewise polytrope. We select all those EOSs
which (i) match with pQCD at µ = µpQCD (i.e. X 2 [1, 4]) (ii) have pressure as an
increasing function of energy density, and (iii) are subluminal. We refer this EOS as
DDB-Hyb. The chemical potential µc is here chosen in such a way that it satisfies
pQCD at µ = µpQCD. We take µc 2 [1.04, 2.2] GeV and the corresponding pressure
Pc 2 [20, 1260] MeV.fm�3. For an ensemble of DDB-Hyb EOSs we choose µc, Pc

randomly in the prescribe domain by Latin-Hypercube-Sampling method [339] for
an uniform distribution. For a given µc, Pc and PDDB, the parameters of the first
polytrope, (k1, g1) get determined. Similarly for a given µc, Pc and P2 (where P2
is the pQCD pressure for a given value of X at µ = µpQCD), the parameters of the
second polytrope (k2, g2) get determined. The domains for pressure (Pc) and chem-
ical potential (µc) become Pc 2 [45, 1255] MeV·fm�3 and µc 2 [1.07, 2.09] GeV after
constrained by pQCD. These domains further squeeze to Pc 2 [53, 680] MeV.fm�3

and µc 2 [1.15, 1.88] GeV after putting constraint of Mmax � 2M� and so we find
0.38 million EOSs out of 54 million sampled EOSs satisfying these constraints. It
may be mentioned here that for an interpolation between (µDDB-µpQCD), we have
used two polytropes. There have been different interpolation functions like spec-
tral decomposition [340, 341] and speed of sound method [342, 343].

5.3 Non-radial oscillation modes in compact stars
We study non-radial oscillations in both scenarios with and without pQCD con-
straint. For the case of without pQCD constraint we use the full DDB ensemble
of EOSs while for the case of with pQCD constraint we use the ensemble of EOSs
which is found as for densities below 2r0 the 90% CI of DDB EOSs set which satis-
fies pure neutron matter constraints at low densities obtained from next-to-next-to
next-to leading order (N3 LO) calculations in chiral effective field theory (CEFT)
[330, 331] and for the high densities the NNLO pQCD ensemble of EOSs as dis-
cussed in Refs. [336, 337] and intermediate density reason is interpolated using the
two polytropes.

In this study, we find the non-radial oscillations within the Cowling approxi-
mation. The pulsating equations, which we use to get the non-radial oscillations
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FIGURE 5.1: We show pressure and energy density regions in
MeV.fm�3 of our sampled EOSs (DDB and DDB-Hyb). We consider
nucleonic b-equilibrated EOS of the 90% CIs for DDB (lightblue) as
a full range and (darkblue) upto 2r0 [329] and at very high density
⇠ 40r0 the NNLO pQCD (dark red). In the intermediate region, EOS
is evolved in thermodynamically consistent way with two polytropic

segments (see text for details).

in NS using both ensembles of EOSs (DDB and DDB-Hyb), are given in Eqs. (4.80)
and (4.84). The perturbing functions Q(r) and Z(r) in the vicinity of the stellar
center are given in Eq. (4.85) where C is an arbitrary constant. We have taken
C = 1 in our study (since it is arbitrary, so its value does not affect the result). The
other boundary condition that needs to be satisfied is the Lagrange perturbation of
pressure to vanish as pressure vanishes at the surface of the star i.e. Dp|r=R = 0,
R is the radius of the star. This boundary condition at the stellar surface is given
in Eq. (4.87). Apart from this, Eqs. (4.80) and (4.84) have to be supplemented by
extra junction conditions which are given in Eqs. (4.88 and 4.89) at the surface of
the discontinuity (where the speed of sound shows discontinuous behaviour).

With these boundary conditions the problem becomes an eigenvalue problem
for the parameter w which can be estimated numerically. We confine ourselves to
l = 2 quadrupolar modes.

5.4 Results and discussion
We now proceed to analyze the ensembles of EOSs that are consistent with nuclear
matter properties or PNM EOS based on theoretically robust CFT at low densities
and pQCD at very high densities. As mentioned earlier, we started with 54 million
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EOSs. We discarded those EOS which do not match the two end points or are su-
perluminal (square of speed of sound c

2
s > 1) as well as the condition of positive

speed of sound. This leaves us with an ensemble of 0.38 million DDB-Hyb EOSs.
This ensemble of EOSs is represented in Fig. 5.1 by the orange band. We next en-
force the Mmax � 2.0M� constraint resulting from solving the TOV equations with
this ensemble. This constraint further reduces the number of EOSs to 55,000 which
are displayed in Fig. 5.1 as the gray band, named here after DDB-Hyb set. The
polytrope indices g1 and g2 are seen to vary over an intervals g1 2 [1.67, 13.76]
and g2 2 [1.0, 1.51]. The tight constraint on g2 has its origin on the matching to
the pQCD pressure. In Fig. 5.1, the light blue band is the b-equilibrated nuclear
matter ⇡ 10K EOSs (DDB 90% CI) while the dark red band corresponds to pQCD
EOS. For comparison, we also plot the domain of EOSs obtained in Ref. [344] (red
solid curve) compatible with recent NICER and GWs observations. The red dashed
lines refers to the dense PDF (� 0.08) obtained in Ref. [343] with continuous sound
speed and consistent not only with nuclear theory and pQCD, but also with astro-
nomical observations. It is to be noted that both of DDB and DDB-Hyb sets are
compatible with them.

In Fig.5.2, we plot NS mass-radii and f mode frequency-mass regions obtained
for 90% CI for the conditional probabilities P(R|M) (left) and P( f |M) (right) from
the mass-radius clouds arising from the ensembles of EOSs of DDB-Hyb (black
dotted) and DDB (dark red). The blue horizontal bar on the left panel indicates the
90% CI radius for a 2.08M� star determined in Ref. [345] combining observational
data from GW170817 and NICER as well as nuclear data. The top and bottom gray
regions indicate, the 90% (solid) and 50% (dashed) CI of the LIGO/Virgo analysis
for each binary component from the GW170817 event [346] respectively. The 1s
(68%) credible zone of the 2-D posterior distribution in mass-radii domain from
millisecond pulsar PSR J0030+0451 (cyan and yellow) [318, 347] as well as PSR
J0740 + 6620 (violet) [345, 348] are shown for the NICER x-rays data. The horizon-
tal (radius) and vertical (mass) error bars reflect the 1s credible interval derived for
the same NICER data’s 1-D marginalized posterior distribution. The mass-radius
domain for the DDB-Hyb set sweeps a wider range than the DDB set, restricted
to nucleonic degrees of freedom. The DDB-Hyb set constrained by pQCD at high
density leads to larger radii for high mass NS. We conclude that the present obser-
vational constraints either obtained from GW170817 or NICER cannot rule out the
existence of exotic degrees of freedom. In the right panel, we see that the 90% CI
for P( f |M) f mode frequency f 2 [1.95, 2.7] kHz for both the DDB and DDB-Hyb
sets. The range is smaller for low NS mass and as the mass increases the 90% CI for
f mode frequency increases. The f mode frequency of a NS above 2M� mass is in
the range (2.1-2.7) kHz and (2.3-2.65) kHz for the DDB-Hyb and DDB sets, respec-
tively. As mentioned in the earlier sections, the solutions for f mode obtained in
this work are within the Cowling approximation (neglecting perturbations of the
background metric). It was shown that the Cowling approximation can overesti-
mate the quadrupolar f mode frequency of NSs by up to 30 to 10 % for NS masses
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FIGURE 5.2: We plot NS mass (M)-radii (R) and f mode frequency-
mass (M) region obtained from the 90% CI for the conditional proba-
bilities P(R|M) (left) and P( f |M) (right) for DDB-Hyb (black dotted)
and DDB (dark red). The blue horizontal bar on the left panel indi-
cates the 90% CI radius for a 2.08M� star determined in [345] combin-
ing observational data from GW170817 and NICER as well as nuclear
saturation properties. The top and bottom gray regions indicate, re-
spectively, the 90% (solid) and 50% (dashed) CI of the LIGO/Virgo
analysis for each binary component from the GW170817 event [346].
The 1s (68%) credible zone of the 2-D posterior distribution in mass-
radii domain from millisecond pulsar PSR J0030+0451 (cyan and yel-
low) [318, 347] as well as PSR J0740 + 6620 (violet) [345, 348] are shown
for the NICER x-rays data. The horizontal (radius) and vertical (mass)
error bars reflect the 1s credible interval derived for the same NICER

data’s 1-D marginalized posterior distribution.
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FIGURE 5.3: We plot URs obtained with our sets of EOSs, namely
DDB-Hyb and DDB. UR1 (left): The frequency of the f mode is plotted
as a function of the square root of the average density, UR2a (center):
The universality among wM and M/R and UR3 (right) the universal
linear relations among f mode frequency and radii of NS with masses

ranged from 1.6 to 2.4 M� in a step of 0.2M�.

in the range (1.0-2.5) M� compared to the frequency obtained in the linearized gen-
eral relativistic (GR) formalism [349–351]. The accurate measurement of f modes
may further constrain EOS to a narrower range. Besides, a star of 2M� with a low
f mode frequency may indicate an existence of non-nucleonic degrees of freedom.

In Fig. 5.3, we have studied two known URs involving the f mode frequency
with global properties of NS, often studied in literature with a limited EOSs. In
particular, we have named UR1 for the f mode frequency as a function of square
root of the average star density

p
M/R3, and UR2a for the wM versus the compact-

ness M/R, where w = 2p f . We have verified their robustness with our EOS sets,
DDB-Hyb and DDB. We have also obtained a new and direct relation between the
f modes frequency, f and radius, R with the help of the existing strong correlation
between them. In the left panel of the figure we show UR1:

f = a

q
(M/R3) + b. (5.7)

It has been shown in Refs. [352, 353] that the average density can be well param-
eterized via the f mode frequency. The following values of a and b have been ob-
tained: a = 22.27 ± 0.023 (26.76 ± 0.01) kHz.km, b = 1.520 ± 0.001 (1.348 ± 0.001)
kHz for DDB-Hyb (DDB). The maximum relative percentage error obtained for
UR1 within 90% CI is 6.0%(4.5%) for DDB-Hyb (DDB). In fact, the UR1 depends
on EOS, therefore the dispersion, is obtained with a 90%CI. We can note that these
uncertainties will remain for the entire valid domain of EOSs even if one solves full
the linearized GR equations. For example, at 0.4 km�1 mass density the frequency
can vary by 400 Hz.

In Andersson & Kokkotas (Benhar et al) the authors have obtained the follow-
ing parameters a = 35.9(33.0)kHz.km and b = 0.78 (0.79) kHz [349, 352, 353], the
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difference between both works being the EOS considered in the study. In those
studies the linearized GR equations were solved, and, as expected, lower frequen-
cies have been determined. In Ref. [350], the oscillations of non-rotating and fast
rotating NSs have been explored with a different set of EOSs based on microscopic
theories within the Cowling approximation. The values of the coefficients of the
UR1 obtained were a = 25.32 kHz.km and b = 1.562 kHz, which are at the 90% CI
upper limit of the relations we have obtained.

In center panel of the Fig. 5.3 we display UR2a:

wM = a

✓
M

R

◆
+ b (5.8)

obtained for both DDB-Hyb and DDB sets, with a = 0.6474 ± 4.6 ⇥ 10�5 (a =

0.6549 ± 2.6 ⇥ 10�5) and b = �0.0085 ± 1.05 ⇥ 10�5 (b = �0.0103 ± 6.18 ⇥ 10�6)
for DDB-Hyb (DDB) set. Both the coefficients are in dimensionless. The maximum
relative percentage error obtained for UR2a within 90% CI is 3.78% (2.20%) for
DDB-Hyb (DDB) set. The values of the slope and intercept for UR2a are also com-
patible with the ones obtained in Ref. [84] within Cowling approximation with a
few nucleonic and hyperonic EOSs as a = 0.65765 and b = 0.0127866, respectively.
We have also obtained a relation as UR2b for wR as wR = a

�
M

R

�2
+ b

�
M

R

�
+ c.

The coefficients are found to be a = �3.0369 ± 0.0013(�3.1844 ± 0.0020), b =

1.5829 ± 0.0005(1.6288 ± 0.0008) and c = 0.4095 ± 5 ⇥ 10�5
(0.4087 ± 7 ⇥ 10�5

) for
DDB-Hyb (DDB) set, all the coefficients are dimensionless. In this case the max-
imum relative percentage error is 2.6% (1.6%) in the set DDB-Hyb (DDB). Com-
pared with UR1, the relative maximum uncertainty is smaller for UR2a and UR2b
for both DDB-Hyb and DDB sets. Using these relations we predict f mode frequen-
cies for the PSR J0740+6620. For this pulsar, the mass and radius are determined
as 2.08 ± 0.7 M� and 12.35 ± 0.75 km in [345] combining observational data from
GW170817 and NICER as well as nuclear data. The corresponding mean values
of f mode frequency is calculated as 2.35 kHz and 2.36 kHz for UR2a and UR2b,
respectively, with a ⇠ 1 � 4% intrinsic error in the URs and additional ⇠ 10 � 12%
error due to uncertainty present in mass and radius.

In chapter 4 we have discussed f and g modes in NSs and HSs with a number
of realistic equations of states. We can see in Fig 5.4, all the equations of states
follow the universal relations derived in this chapter. The maximum absolute error,⇣

| fUR� fNum|
fNum

⌘
, is less than 11% (2.5%) for the case of NL3+NJL (DDB+NJL) model.

We have identified a strong linear correlation between the f mode frequency
and NS radius R and are naming it as UR3. The values r 2 [0.98, 0.99] of the
Pearson correlation coefficient were obtained between f and R for NS with a mass
M 2 [1.6, 2.4] with our two sets of EOSs. These results can also be traced back from
UR1 by keeping fixed NS mass while noting that the correlation is stronger for the
larger mass NS. In the right panel of Fig. 5.3, we plot the linear relations between
f and R. The values of slope m 2 [�0.2256, �0.2233, �0.2196, �0.1984, �0.1748]
and intercept are c 2 [5.1271, 5.1256, 5.0952, 4.8305, 4.5191] for NS of masses M 2
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FIGURE 5.4: wM as a function of M

R
for the different equation of state

along with the universal relation UR2a.

[1.6, 1.8, 2.0, 2.2, 2.4]. We also plot a marginalized UR3 obtained with NS masses in
the range of 1.6 to 2.4 M� with a slope, (m = �0.227) and an intercept, (c = 5.173).
This gives ⇡ 1.5% relative residual within 90% CI. We expect that the correlation
is also present if the full GR solutions are considered. Taking this correction factor
into account, the new relation (UR3) will be very useful for the upcoming future
detection in order to constrain NS radius of massive NS precisely. For example, in
order to measure a radius of a NS with ⇠ 0.2 km uncertainty, the f mode frequency
needs to be measured within ⇠ 2% uncertainty.

5.5 Summary and conclusion
The QNMs are related with the viscous properties of matter. In the future, pre-
cise measurements of them can put constraints on EOS of dense matter. We have
studied the f mode frequency among the QNMs, which is in the sensitivity band
of the future gravitational waves networks [354]. We have calculated the f mode
frequency within the Cowling approximation with a nucleonic set of 14,000 EOSs
(DDB set), obtained in Ref. [329] based on the RMF theory, constrained by existing
observational, theoretical and experimental data through Bayesian analysis. We
have also generated an ensemble of EOSs using DDB below twice saturation den-
sity (r  2r0) and pQCD at high densities (r � 40r0) as in Ref.[342]. Piecewise
polytropes have been used to interpolate region from 2r0 to 40r0. Implementing
the constraints of causality and maximum mass Mmax � 2.0M� a set of 55000
DDB-Hyb typed EOSs has obtained. The mass-radius cloud that we obtain from
the ensembles of these EOSs is consistent with the GW170817 joint probability dis-
tribution as well as the recent NICER observations of mass and radius. We have
analyzed the robustness of a few previously known universal relations and con-
firmed their dispersion with our large number of EOSs. We also found a novel
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strong correlation between the f mode frequency, ( f ) and the radius, (R) for a NS
of mass in the range (1.6-2.4) M�. These new direct relations between f and R will
allow an accurate determination of radius of NS using future f mode detection.

We show that the quadrupolar f mode frequencies obtained in Cowling ap-
proximation of NS of masses 2.0M� and above lie in the range (2.1-2.7) kHz and
(2.3-2.65) kHz for DDB-Hyb and DDB sets, respectively. We use these URs to pre-
dict the f mode frequencies of the NICER observations and obtain ⇠2.35 (1.88)
kHz in Cowling approximation (renormalized to full GR solutions) for the PSR
J0740+6620 which interestingly lies within the sensitivity band of the future grav-
itational wave detector networks [354] for the detection of gravitational waves. It
was shown that a two solar mass star with a low f mode frequency may indicate
the existence of non-nucleonic degrees of freedom. In the future, a detailed inves-
tigation of how this frequency is correlated with the individual component of the
EOS or different particle compositions in NS core will be carried out.





Chapter 6

Conclusions and future directions

In the thesis we studied the strongly interacting matter under extreme conditions,
extreme density, extreme temperature, and extreme magnetic field. In the context
of extreme temperature and extreme field, we study the matter created in relativis-
tic heavy-ion collisions in RHIC and LHC. In the context of extreme density, we
study the strongly interacting matter found in the core of CSs like NSs and HSs.

To understand the effects of the external magnetic field, chemical potential, chi-
ral chemical potential etc. we have used the Wigner function within the framework
of isospin symmetric 2 flavour NJL model with flavour mixing determinant inter-
action. We have looked at the chiral phase transition and the associated chiral sus-
ceptibilities of the medium created in relativistic heavy-ion collisions at vanishing
quark chemical potential. We have seen that the chiral phase transition occurs at
extreme temperature (150-170) MeV. The external magnetic field, non-zero chemi-
cal potential, chiral chemical potential affect the chiral phase transition. The chiral
transition temperature is decided by the chiral susceptibility. The chiral suscepti-
bility shows a peak at the chiral phase transition temperature. In the presence of
magnetic field, the constituent masses of u and d quarks can be different because
they couple differently with magnetic field due to different electric charges while
in the vanishing magnetic field the constituent masses of u and d quarks are de-
generate. In our study we have seen that the flavour mixing instanton induced
interaction does not affect the quark masses in zero magnetic field while in non-
zero magnetic field it affects the quark mass. For maximal flavour mixing, the u

and d quark masses are degenerate even with nonvanishing magnetic field while
other than maximal flavour mixing, u and d quark masses are non-degenerate. The
constituent quark masses of u and d quarks become larger for nonvanishing mag-
netic fields compared to vanishing magnetic fields. This is the sign of magnetic
catalysis which means magnetic field enhances the chiral condensate and hence
the chiral phase transition temperature increases with magnetic field.

We have also investigated the thermoelectric effects on the strongly interacting
system produced in heavy ion collision arising due to the temperature gradient as
well as the chemical potential gradient in the medium and estimated the transport
coefficients like electric conductivity, thermal conductivity, Seebeck coefficient and
Lorenz number associated with the Wiedemann–Franz law in the NJL model. We
estimate the same transport quantities in a quasi-particle model of the deconfined
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matter. We have seen that the electrical conductivity is almost constant in a quasi-
particle model while it has increasing behaviour in NJL model. This is because the
constituent quark mass increases with temperature and suppress the relaxation
time while in the NJL model the constituent quark mass decreases with tempera-
ture. We have discussed the Seebeck effect and found the Seebeck coefficient for the
system produced in heavy ion collisions. We have seen a temperature gradient can
be converted into an electric current and vice-versa in a conducting medium. The
electric and heat currents gets modified in the presence of non-vanishing Seebeck
coefficient. In the presence of temperature gradient, an electric current becomes
~J = sel

~E � selS
~rT, where S is the Seebeck coefficient. The electric conductivity, sel,

always positive due to the constructive contributions of particles and antiparticles
to the electric current. In the presence of a temperature gradient, the electric cur-
rent enhances and hence the net electric current. On the other hand in the presence
of non-vanishing Seebeck coefficient, the net thermal conductivity, k = k0 � TselS

2,
reduces.

In the context of NSs, we have looked into the non-radial oscillation modes of
CSs. We have studied CSs with and without quark matter in their cores. We have
considered realistic models to describe the nuclear matter and quark matter. For
nuclear matter we have considered a Walecka type models like NL3 parametrized
RMF model and DDB model and for quark matter we have considered the NJL
model with the vector interaction that incorporates the important feature of chiral
symmetry breaking of the strong interaction. The parameters in the NJL model
are taken in such a way that it defines low energy hadronic matter like pion mass,
pion decay constant and the vacuum expectation value of chiral condensate. To
establish the HQPT in the core of NSs we have used a Gibbs mechanism. All the
EOSs considered in this study follow the tidal deformability constraint estimated
in LIGO observation. We have found the HQPT occurs at r ⇠ 2.36r0 (r ⇠ 2.76r0)
for the vector coupling Gv = 0 (Gv = 0.2Gs). It is observed that the non-vanishing
vector coupling makes EOS stiffer with respect to vanishing vector coupling. In
case of DDB model we found the HQPT at r ⇠ 3.93r0. It is observed that the
core of HS can accommodate quark matter in a MP and we do not find HSs (first
generation) to possess the pure quark matter core. We also have found that the
HQPT softens the EOS with respect to without HQPT which reduces the maximum
masses as compared to a NS without quark matter. To determine the composition
of CSs through observable, it is necessary to break the degeneracy between NSs
and HSs. To this end we also looked non-radial oscillation modes with different
EOSs within the Cowling approximation. We found that the presence of quark
matter in the core of HSs changes sound speed dramatically. This feature is also
seen in case of HQPT [316] as well as in EOS with w condensate and fluctuations in
pion condensate [317]. Such dramatic decrease of the speed of sound is generated
naturally here through MP construction which enhances the non-radial oscillation
(g and f modes) frequencies as compare to without quark matter in the core of NSs.
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Along with this study, we have checked the robustness of the previously stud-
ied URs, the EOS insensitive relations in masses, radii and f mode oscillation fre-
quencies of the NSs and found a new UR for the f mode frequency and radius
of a NS. To this end we have considered two sets of ensembles of EOSs - (i) DDB
and (ii) DDB-Hyb. In a set of DDB, we took around 14000 EOS which are consis-
tent with the nuclear matter at saturation density and CFT at low densities. In a
set of DDB-Hyb, we have taken DDB EOS upto 2r0, pQCD at 40r0 and beyond
and the region 2r0  r  40r0 is interpolated with the piece wise polytropes. We
have selected those DDB-Hyb type EOSs which are thermodynamically consistent
and satisfy in NSs observations. With these relations we found the f mode oscilla-
tion frequency ⇠2.35 (1.88) kHz in Cowling approximation for the PSR J0740+6620
which interestingly lies within the sensitivity band of the future GWs detector net-
works [354] for the detection of GWs. It was shown that a two solar mass star
with a low f mode frequency may indicate the existence of non-nucleonic degrees
of freedom. A novel strong correlation between the f mode frequency and radius
for a NS mass in the range 1.6-2.4 M� will allow an accurate determination of the
radius of NS using future f mode detection. In the future a detailed investigation
of how this frequency is correlated with the individual component of the EOS or
different particle composition in NS core will be carried out.

In future works, we would like to study the effects of thermoelectric coefficients.
It is important to note that the thermal conductivity is required to be positive for
the theory to be consistent with the second law of thermodynamics, i.e., T∂µs

µ � 0.
Using the formalism of viscous hydrodynamics and viscous magnetohydrodynam-
ics positivity of the electrical conductivity and the thermal conductivity has been
shown explicitly [249, 263]. But the contributions to the entropy current coming
from the thermoelectric effects are not considered in these investigations. There-
fore in the context of entropy production in the viscous hydrodynamics and mag-
netohydrodynamics, it will be interesting to study the effects of thermoelectric co-
efficients. Thermoelectric coefficients could also be relevant in the context of the
SHE. SHE is an important ingredient for the generation of spin current and it is a
key concept in spintronics. In the generation of spin current SHE plays an impor-
tant role. In SHE an electric field induces a transverse spin current perpendicular
to the direction of the electric field. SHE has been investigated recently in a hot
and dense nuclear matter in the context of heavy-ion collisions [264]. It has been
argued that due to SHE, a spin current will be produced proportional to the electric
field. This also means that the external electric field ~E will induce a local spin polar-
ization and the spin polarization distribution function of fermions (anti-fermions)
in momentum space will feature a dipole distribution. Therefore there will be a
spin flow in the plane transverse to the direction of the electric field. Observation
of SHE may open a new direction in the exploration of the many body quantum
effects in hot and dense nuclear matter. However, the life-time of the electric field
originated in heavy-ion collisions could be small of the order 1 fm/c. Therefore,
the idea of the observation of the spin Hall effect becomes speculative. However,
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in the presence of non-vanishing thermoelectric coefficients any temperature gradi-
ent and/or a gradient in the chemical potential can give rise to an effective electric
field which may contribute to the spin Hall effect. Therefore a detailed analysis of
the thermoelectric property of the hot and dense matter produced in a heavy ion
collision experiment could be relevant for SHE and needs further investigation.

In the context of CSs, we would like to include effects of the strange quarks in
the quark matter sector and correspondingly hyperons in the hadronic sector. It
will also be interesting and important to include effects of a strong magnetic field
for the structure of NSs [319] and its effect on the non-radial oscillation modes. We
have focused our attention for NSM which is at zero temperature and vanishing
a neutrino chemical potential. However, to study proto-NSs we should take into
account thermal effects on oscillations including effects of neutrino trapping on the
phase structure of matter. As we have discussed in the first chapter that strongly
interacting matter at high density is rich in different phases like pion superfluidity
[22–24], various color superconducting phases like 2 flavor color superconductiv-
ity [25–27], color flavor locked phase (CFL) [28], Larkin-Ovchinkov-Fulde-Ferrel
(LOFF) [29, 30] phase, crystalline superconductivity phase etc. In the future we
would like to include the effect of these to the non-radial oscillations. It gives us
more understanding about matter in the inner core of a NS. Some studies also show
the possibility of dark matter, the study of dark matter in the core of a NS in the
context of non-radial oscillations may unveil the NS core. We are sure, the future
detection of g and/or f modes in NSs will boost our current understanding.
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Appendix A

Regularization of scalar condensate

A.1 Scalar condensate with a nonvanishing magnetic
field and chiral chemical potential

Scalar condensate in the terms of the scalar DHW function can be written as,

hȳyi =
Z

d
4

pF(p) (A.1)

Using the explicit form of scalar DHW function (F(p)) as given in Eq.(2.43), scalar condensate in the presence of mag-
netic field as given in Eq.(A.1) can be expressed as,
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Now the first term in Eq.(A.2)

I1 = 2p
ZZ

dp0dpz MV0(p0, pz)

Z
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+
(pT). (A.3)

Using the explicit form of V0(p0, pz) and L(0)
+

(pT), Eq.(A.3) can be expressed as,
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The second term in Eq.(A.2),

I2 = 2p
•

Â
n=1

ZZ
dp0dpz MVn(p0, pz)

Z
dpT pTL(n)

+
(pT). (A.5)
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Using the explicit form of L(n)

+
(pT) one can calculate the following integral,
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To get the Eq.(A.6) we use the following identity[355],
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0
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b
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Using Eq.(A.6) and the explicit form of Vn(p0, pz), I2 can be written as,
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Now let us consider the third term of Eq.(A.2)
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Using the explicit form of L(n)

� (pT), it can be shown that

Z
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Hence the third term of the Eq.(A.2),

I3 = 0. (A.11)

Hence using Eqs.(A.4), (A.8) and (A.11) the scalar condensate is
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A.2 Chiral condensate in the background magnetic field
The scalar condensate of a quark of flavour f , with Nc color degrees of freedom at finite temperature (T), chemical potential
(µ) can be expressed as,
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med,B 6=0, (A.13)

where hȳ f y f i
µ5=0
vac,B 6=0 is the T = 0, µ = 0 part or the vacuum part of the scalar condensate and hȳ f y f i

µ5=0
med,B 6=0 is the finite

temperature and finite chemical potential part or the medium part of the scalar condensate in the presence of magnetic
field. It is clear from the Eq.(A.13) the vacuum term is divergent for large momenta and however because of the distribution
functions the medium part in Eq.(A.13) is not. Hence it is important to regulate the vacuum part in Eq.(A.13).
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Let us consider the vacuum part hȳ f y f i
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vac,B 6=0 which is given as,
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Both integrals I1 and I2 are divergent at large momentum. These integrals can be regularized using dimensional regular-
ization scheme. In this regularization scheme integral I1 can be expressed as,
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Using Eq.(A.15) and Eq.(A.16), vacuum part of the scalar condensate in the presence of magnetic field as given in Eq.(A.14),
can be recasted as,
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Expanding the right hand side of Eq.(A.17) around e ! 0 and keeping only the leading order terms, we get,
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In Eq.(A.17), we have used the representation of Zeta function, which is given as [356],
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also, we have used the following identities to get Eq.(A.18),
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It is clear from Eq.(A.18), that the vacuum part has 1/e divergent part. To remove this 1/e divergence we use the following
integral,
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Using dimensional regularization method the integral in Eq.(A.21) can be recasted as,
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Expand the right hand side of Eq.(A.22) around e ! 0 and keeping only the leading order terms we get,
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Using Eq.(A.18) and Eq.(A.23) we get,
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Using Eq.(A.14) and Eq.(A.24), we have the regularized vacuum part of the scalar condensate in the presence of mag-
netic field and is given as,
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Again
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Using Eq.(A.27) we get
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A.3 Regularization of the chiral condensate in a back-
ground magnetic field and a chiral chemical po-
tential

The scalar condensate of a quark of flavour f with Nc color degrees of freedom at finite temperature (T), quark chemical
potential (µ), chiral chemical potential (µ5), electric charge (q f ) and magnetic field (B) can be expressed as,
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where hȳ f y f i
µ5 6=0
vac,B 6=0 is the T = 0, µ = 0 part or the vacuum part of the scalar condensate and hȳ f y f i

µ5 6=0
med,B 6=0 is the finite

temperature and finite chemical potential part or the medium part of the scalar condensate in the presence of magnetic
field and chiral chemical potential (µ5). It is clear from the Eq.(A.29) that the vacuum term is divergent at large momenta
and however because of the distribution functions the medium part in Eq.(A.29) is not. Hence the vacuum term has to be
regularized.

The vacuum term in the presence of magnetic field and chiral chemical potential can be expressed as,
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This can also be written as
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Using the regularization method discussed in Ref. [168] we can write the integrand of the integral I1 as given in the
Eq.(A.31) as following
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Using Eq.(A.32) twice we can write the integrand of the integral I1 in the following way

1

p
2
4 + M

2
f
+ (

q
p2

z + 2n|q f |B � sµ5)2
=

1
p

2
4 + p2

z + M
2
0 f

+ 2n|q f |B

+

A + 2sµ5

q
p2

z + 2n|q f |B
⇣

p
2
4 + p2

z + M
2
0 f

+ 2n|q f |B
⌘2 +

(A + 2sµ5

q
p2

z + 2n|q f |B)2

⇣
p

2
4 + p2

z + M
2
0 f

+ 2n|q f |B
⌘3

+

(A + 2sµ5

q
p2

z + 2n|q f |B)3

⇣
p

2
4 + p2

z + M
2
0 f

+ 2n|q f |B
⌘3 ⇣

p
2
4 + M

2
f
+ (

q
p2

z + 2n|q f |B � sµ5)2
⌘ ,

(A.33)

where A = M
2
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5. Performing p4 integration in each term of Eq.(A.33) we get
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Using Eq.(A.34), Eq.(A.35), Eq.(A.36) and Eq.(A.37), integral I1 in Eq.(A.31) can be expressed as,
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Using Eq.(A.38) and Eq.(A.43), Eq.(A.31) can be recasted as,
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In Eq.(A.45) and (A.46) we have used (A.28) and (A.25) respectively.
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Using Eq.(A.31), we get,
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Using Eq.(A.38), we can write,
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The integral I2 in Eq.(A.47) can be expressed as
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where divergence free I2,finite is,
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and the divergence term I2,log is,
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Similarly, the integral I3 can be separated into a divergent and a convergent terms as
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and
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It can be shown that the term I3,finite is finite. On the other hand the term I3,log is not convergent at large momenta.
Using Eq.(A.48), Eq.(A.53) and Eq.(A.56), Eq.(A.47) can be rearranged in the following way,
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where Ifinite is,
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with,
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We estimate here chiral susceptibility at finite temperature within the framework of the Nambu–Jona-
Lasinio model (NJL) using the Wigner function approach. We also estimate it in the presence of chiral
chemical potential (μ5) as well as a nonvanishing magnetic field (B). We use a medium separation
regularization scheme (MSS) in the precence of magnetic field to calculate the chiral condensate and
corresponding susceptibility. It is observed that for a fixed value of chiral chemical potential (μ5), transition
temperature increases with the magnetic field. While for the fixed value of the magnetic field, transition
temperature decreases with chiral chemical potential. For a strong magnetic field, we observe non-
degeneracy in susceptibility for up and down type quarks.

DOI: 10.1103/PhysRevD.100.094030

I. INTRODUCTION

In recent years, extensive efforts have been made to create
and understand strongly interacting matter in relativistic
heavy ion collision experiments, e.g., at the relativistic
heavy-ion collider and the large hadron collider. There are
mounting evidences which indicate formation of deconfined
quark gluon plasma (QGP) phase of QCD in the initial
stages of these experiments as well as the formation of
confined hadron phase in the subsequent evolution of QGP.
Ground state of QCD exhibits two main nonperturbative
features, color confinement and spontaneous breaking of
chiral symmetry. The dynamical breaking of chiral sym-
metry is the manifestation of the quark-antiquark conden-
sation in the QCD vacuum. Dynamical chiral symmetry
breaking characterizes the nonperturbative nature of QCD
vacuum at vanishing temperature and/or density. With
increase in temperature and/or baryon density, the QCD
vacuum undergoes a transition from a chiral symmetry
broken phase to a chiral symmetric phase. This transition
is characterized by the quark-antiquark scalar condensate,
the order parameter of the chiral phase transition. Although
for first order phase transition order parameter changes
discontinuously across the transition point, for second

order phase transition or for a crossover transition the
variation of order parameter across the transition point is
rather smooth. In these cases, the fluctuation of this order
parameter and the associated susceptibilities are more
relevant for the characterization of the thermodynamic
properties of the system.
The characteristics of fluctuations and correlations are

intimately connected to the phase transition dynamics, e.g.,
fluctuations of all length scales are relevant at QCD critical
point where the first order quark-hadron phase transition line
ends. The study of fluctuations and correlations are essential
phenomenological tool for the experimental exploration of
the QCD phase diagram. In the context of heavy-ion
collisions by studying the net electric charge fluctuation,
it has been demonstrated that net electric charges are
suppressed in the QGP phase as compared to the hadronic
phase [1,2]. It has also been pointed out that the correlation
between baryon number and strangeness is stronger in the
QGP phase as compared to the hadronic phase [3,4]. The
quantity of interest here is the chiral susceptibility which
measures the response of the chiral condensate to the
variation of the current quark mass. Chiral susceptibility
has been calculated using first principle lattice QCD (LQCD)
simulations [5–10]. All these lattice results show a pro-
nounced peak in the variation of chiral susceptibility with
temperature at the transition temperature, which essentially
characterizes the chiral transition. Apart from these LQCD
studies which incorporate the nonperturbative effects of
QCD vacuum, complementary approaches, e.g., Nambu–
Jona-Lasinio (NJL) model [11,12], chiral perturbation theory
[13], Dyson-Schwinger equation [14], hard thermal loop
approximation [15], etc. have been considered to study the
chiral susceptibility.
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An entirely new line of investigations has been initiated
to understand the QCD phase diagram due to the possibility
of generation of extremely large magnetic field in non-
central relativistic heavy ion collision experiments. In the
early stages, the magnetic field in QGP can be very large, at
least of the order of few m2

π [16–24]. While such fields
rapidly decay in the vacuum, in a conducting medium they
can be sustained for a longer time due to induced current
[21–24]. Strong magnetic field can affect dynamical chiral
symmetry breaking. It has been shown that external
magnetic field acts as catalysis for chiral condensation;
the value of chiral condensation or the constituent mass of
quarks is larger than vanishing magnetic field case. It is
important to mention that the effect of magnetic field on the
order parameter is not unique to QCD medium. In fact, in
condensed matter systems, e.g., superconductors magnetic
field can play a significant role. A striking contrast of
the effect of magnetic field on the chiral condensate
contrary to superconductors is that the magnetic field helps
to strengthen the chiral condensate. Naively one can
understand this in the following way. Unlike the electrically
charged superconducting condensate, chiral condensate is
an electrically neutral spin zero condensate. Hence, for the
chiral condensate, the magnetic moment of the fermion and
the antifermion point in the same direction. Hence, in the
presence of magnetic field, both magnetic moments can
align themselves along the direction of the magnetic field
without any frustration in the pair [25]. It has also been
pointed out that in the presence of magnetic field dimen-
sional reduction can play an essential role in the pairing of
fermions [26].
Magnetic catalysis has been explored extensively in

(2þ 1) and (3þ 1)-dimensional models with local four
fermion interactions [27–46], supersymmetric models [47],
quark meson models [48,49], chiral perturbation theory
[50,51], etc. Such a strong magnetic field can also introduce
some exotic phenomenon, e.g., chiral magnetic effect
(CME), chiral vortical effect (CVE), etc. in a chirally
imbalanced medium [52]. Underlying physics of the chiral
imbalance is the axial anomaly and topologically nontrivial
vacuum of QCD, which allows topological field configu-
rations like instantons to exist. An asymmetry between the
number of left- and right-handed quarks can be generated
by these nontrivial topological field configurations due
to Adler-Bell-Jackiw anomaly. Such an imbalance can lead
to observable P and CP violating effects in heavy ion
collisions. In the presence of magnetic field, chirally
imbalance quark matter can give rise to chiral magnetic
effect where a charge separation can be produced. Effects
of a chiral imbalance on the QCD phase diagram can be
studied within the framework of grand canonical ensemble
by introducing a chiral chemical potential μ5, which enters
the QCD Lagrangian via a term μ5ψ̄γ0γ5ψ . Chiral phase
transition has been discussed extensively. These studies
include NJL type models [53–59], quark linear sigma

model [53,60], lattice QCD studies [61,62], etc. Although
the effect of chiral chemical potential has been explored
extensively, contradicting results have been reported in
various literature, e.g., Refs. [53–58] predict that chiral
transition temperature decreases with chiral chemical poten-
tial. On the other hand, in Ref. [59], it has been argued that
with a specific regularization method chiral transition
temperature increases with chiral chemical potential, which
is in agreement with lattice results in Refs. [61,62]. In this
context, in a recent interesting work, the Winger function
in the presence of nonvanishing magnetic field and chiral
chemical potential has been evaluated in a nonperturbative
manner using explicit solutions of the Dirac equation in a
magnetic field and chiral chemical potential [63]. This has
been later used for pair production in the presence of
electromagnetic field [64].
To probe the medium produced in relativistic heavy ion

collisions, generally thermodynamic or hydrodynamic
model has been used, which assumes local thermal equi-
librium. However, due to the short timescales associated
with the strong interaction, the medium produced in the
heavy ion collision is rather dynamical in nature and lives
for a very short time and nonequilibrium as well as
quantum effects can affect the evolution of the medium
significantly. These effects can be considered within the
framework of nonequilibrium quantum transport theory. It
is important to point out that in the case of interacting field
theory of fermions and gauge bosons, transport theory
should be invariant under local gauge transformation. Such
a gauge covariant quantum transport theory for QCD has
been developed in [65–67]. Classical kinetic theory is
characterized by an ensemble of pointlike particles with
their single particle phase-space distribution function. The
time evolution of single particle phase-space distribution
function governed by the transport equation encodes the
evolution of the system. Similar to the single particle
distribution in classical kinetic theory, Wigner function,
which is the quantum mechanical analogue of classical
distribution function, encodes quantum corrections in the
transport equation [68]. Equation of motion of Winger
function can be derived from the equation of motion for
the associated field operators, e.g., for fermions, evolution
equation of Wigner functions can be derived using the
Dirac equation [69,70]. In the case of local gauge theories,
the Wigner function has to be defined in a gauge invariant
manner [71]. The covariant Wigner function method for
spin-1=2 fermions has already been explored extensively in
the context of heavy ion collisions to study various effects
including the CME, CVE, polarization-vorticity coupling,
hydrodynamics with spin, dynamical generation of mag-
netic moment, etc. [63,72–83].
In this investigation, we study the chiral phase transition

and chiral susceptibility in the presence of magnetic field
and chiral chemical potential in quantum kinetic theory
framework using NJL model [84–89]. Our work is based on
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the spinor decomposition of the Wigner function using
formalism of Refs. [63,90]. In this investigation, we limit
ourselves to mean field or classical level of the quantum
kinetic theory, since the chiral symmetry breaking and
generation of dynamical mass of fermions take place at
mean field level [90]. The formulation of transport theory of
NJL model has been studied in Refs. [90–93]. In this work,
we have used the formalism given in Ref. [90] to calculate
the chiral condensate and the chiral susceptibility using the
Wigner function. Wigner function in general is used for
deriving dynamical equations for the out of equilibrium
system [90]. In the present study, we limit ourselves to use
the Wigner function for an extended system in global
thermal equilibrium, i.e., at constant temperature and chemi-
cal potentials to calculate chiral susceptibility.
In this context, some comments regarding chiral tran-

sition in the presence of a of chiral chemical potential (μ5)
may be in order. In Ref. [54], this was investigated within
Polyakov loop extended NJL (PNJL) model. It was
observed that the chiral transition temperature decreases
with chiral chemical potential. To eliminate artifacts of a
sharp three momentum cutoff, in Ref. [54] a smooth cutoff
for the three momentummodeled through a form factor was
used. Further, it was observed that with increasing μ5 the
chiral transition becomes a first order transition. In fact, the
phase diagram in μ5 − T plane for the chiral transition
becomes similar to the same in μ − T plane. This was also
the conclusion in Refs. [54,60,94]. On the contrary, non-
local version of the NJL model was further analyzed in
Ref. [95] with the result that the chiral transition temper-
ature increases with chiral chemical potential and the chiral
transition is second order. Similar conclusion was also
drawn in Refs. [96,97] using a Schwinger Dyson approach.
Further, NJL model with chiral chemical potential was
analyzed in Ref. [59] with a novel “medium separation
scheme” (MSS) for regulating divergent integrals, and the
conclusion was that the chiral transition temperature
increases with μ5 and such conclusions are also in accor-
dance with some lattice calculations [61,62]. However, it
ought to be mentioned here that the lattice data have not
been obtained in the chiral limit and some of the results are
for Nc ¼ 2 QCD, e.g., [62]. A further careful analysis of
NJL model was done in Ref. [57] to examine dependence
of chiral transition temperature on different regularization
scheme. It was observed that chiral transition temperature
decreases with chiral chemical potential with a smooth
cutoff and shows a first order transition at large μ5. In
the present investigation, we use a medium separation
scheme in the presence of magnetic field and chiral
chemical potential. Such a scheme was introduced in
Refs. [59,98,99]. As we will see later, we also do not
see a first order transition at large chiral chemical potential
as in the analysis in Ref. [95]. However, we observe that
chiral transition temperature decreases with chiral chemical
potential as in Refs. [54,57].

We organize the paper in the following manner. In
Sec. II, for the sake of completeness, we recapitulate
the results of Ref. [90] to study chiral condensate in
NJL model using Wigner function approach. Then in
Sec. III we introduce the Winger function in the
presence of magnetic field as well as chiral chemical
potential and calculate the chiral condensate for two
flavor NJL model. In Sec. IV, we discuss the chiral
susceptibility for two flavor NJL model in the presence
of magnetic field (B) as well as chiral chemical
potential (μ5). In Sec. V, we present the results and
discussions. Finally, in Sec. VI, we conclude our results
with an outlook on it.

II. WARM UP: WIGNER FUNCTION AND CHIRAL
CONDENSATE IN NJL MODEL

In this section we first briefly discuss the salient features
of the formalism of Wigner function in NJL model for
single flavor fermion having vanishing current quark mass
as given in Ref. [90]. Once we get the representation of
scalar condensate in terms of Wigner function, we can
generalize it to a more realistic situation with nonvanishing
current quark mass. For a single flavor NJL model, we start
with the following Lagrangian [90]:

L ¼ ψ̄i=∂ψ þ Gððψ̄ψÞ2 þ ðψ̄iγ5ψÞ2Þ; ð1Þ

where ψ is the Dirac field, G is the scalar coupling. The
first term is the usual kinetic term, and the second term
represents the four Fermi interaction. One can define
composite field operators σ̂ and π̂ as

σ̂ ¼ −2Gψ̄ψ ; π̂ ¼ −2Gψ̄iγ5ψ : ð2Þ

Using Eq. (2), the Lagrangian given in Eq. (1) can be
recasted as [90]

L ¼ ψ̄i=∂ψ − σ̂ ψ̄ ψ − π̂ ψ̄ iγ5ψ − σ̂2 þ π̂2

4G
: ð3Þ

In the mean field approximation, the operators σ̂ and π̂
are replaced by their mean field values

σ̂ → σ ¼ hσ̂i ¼ Trðρ̂ σ̂Þ; π̂ → π ¼ hπ̂i ¼ Trðρ̂ π̂Þ; ð4Þ

where ρ̂ is the density matrix operator and “Tr” denotes
trace over all physical states of the system. For a non-
equilibrium transport theory, in mean field approximation,
the fundamental quantity is the Green function, which is
defined as

G<
αβðx; yÞ ¼ hψ̄βðyÞψαðxÞi: ð5Þ
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The mean field values of the operators σ̂ and π̂, i.e., σðxÞ
and πðxÞ can be determined in terms of the Green function
G<ðx; yÞ as follows:

σðxÞ ¼ −2GTrG<ðx; xÞ; πðxÞ ¼ −2GTriγ5G<ðx; xÞ:
ð6Þ

The Wigner function for fermion is defined as [90]

WαβðX;pÞ¼
Z

d4X0

ð2πÞ4
e−ipμX0μ

!
ψ̄β

"
XþX0

2

#
ψα

"
X−

X0

2

#$

¼
Z

d4X0

ð2πÞ4
e−ipμX0μ

G<
αβ

"
XþX0

2
;X−

X0

2

#
: ð7Þ

It is important to mention that in NJL model there are no
gluons; hence, the SUð3Þc gauge invariance of the Wigner
function does not appear in NJL model. Again, in this case,
we are not considering background magnetic field. Hence,
there is no Uð1Þem gauge field associated with the NJL
model. However, in the presence of gauge field, one has to
introduce a gauge link in Wigner function for a gauge
invariant description [100].
Since the Wigner function (WðX; pÞ), as given in Eq. (7),

is a composite operator made out of the Dirac field
operators ψ and ψ̄ , it is convenient to decompose
WðX;pÞ in terms of the generators of the Clifford algebra.
The Wigner functionWðX; pÞ, in terms of the conventional
basis of Clifford algebra 1; iγ5; γμ; γμγ5, and σμν, can be
written as

W ¼ 1

4

%
F þ iγ5Pþ γμVμ þ γμγ5Aμ þ

1

2
σμνSμν

&
: ð8Þ

Here the coefficients F;P; Vμ; Aμ, and Sμν are the
scalar, pseudoscalar, vector, axial vector, and tensor
components of the Wigner function, respectively, also
known as Dirac-Heisenberg-Wigner (DHW) functions.
The scalar, pseudoscalar, vector, axial vector, and tensor
Dirac-Heisenberg-Wigner functions can be, respectively,
expressed as

FðX; pÞ ¼ TrWðX; pÞ; ð9Þ

PðX; pÞ ¼ −iTrγ5WðX; pÞ; ð10Þ

VμðX; pÞ ¼ TrγμWðX; pÞ; ð11Þ

AμðX; pÞ ¼ Trγ5γμWðX; pÞ; ð12Þ

SμνðX; pÞ ¼ TrσμνWðX; pÞ: ð13Þ

Using Eqs. (6) and (7), the scalar and pseudoscalar
condensates as given in Eqs. (9) and (10) can be written in
terms of Wigner function in the following manner:

σðXÞ ¼ −2G
Z

d4pTrWðX; pÞ ¼ −2G
Z

d4pFðX; pÞ;

ð14Þ

and

πðXÞ ¼ −2G
Z

d4pTriγ5WðX; pÞ ¼ 2G
Z

d4pPðX; pÞ:

ð15Þ

Using Eqs. (2) and (14), one can express the scalar
condensate as

hψ̄ψi ¼
Z

d4pFðX; pÞ: ð16Þ

In the above description, we have briefly mentioned the
relation between the different mean fields with the Wigner
function. It is important to mention that by the virtue of the
Dirac equation for the field operator ψ and ψ̄ the Wigner
function, WðX; pÞ, also satisfies a quantum kinetic equa-
tion. However, in this investigation, we have not focused on
the kinetic equation of the Wigner function. For a detailed
discussion on the kinetic equation for the components of
Wigner function, kinetic equation for quark distribution
function, and related topic, see Ref. [90]. In this inves-
tigation, we rather focus on the estimation of chiral
condensate, as given in Eq. (16), and associated chiral
susceptibility in two flavor NJL model.
The Wigner function can be calculated by inserting the

Dirac field operators in Eq. (7). The Dirac field operators in
the absence of magnetic field can be written as [101]

ψðxÞ ¼ 1ffiffiffiffi
Ω

p
X

k⃗;s

1ffiffiffiffiffiffiffiffiffi
2E0k

p
h
aðk⃗; sÞuðk⃗; sÞe−ik:x

þ b†ðk⃗; sÞvðk⃗; sÞeik:x
i
; ð17Þ

ψ̄ðxÞ ¼ 1ffiffiffiffi
Ω

p
X

k⃗;s

1ffiffiffiffiffiffiffiffiffi
2E0k

p
h
a†ðk⃗; sÞūðk⃗; sÞeik:x

þ bðk⃗; sÞv̄ðk⃗; sÞe−ik:x
i
; ð18Þ

where Ω is the volume and s ¼ %1 denotes the spin states.
Using the field decomposition as given in Eqs. (17) and
(18), the Wigner function of a fermion with mass M0 can
be shown to be [101]
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WαβðX; pÞ ¼
1

ð2πÞ3
δðp2 −M2

0Þ
%
θðp0Þ

X

s

fFDðE0p − μsÞuαðp⃗; sÞūβðp⃗; sÞ

þ θð−p0Þ
X

s

ð1 − fFDðE0p þ μsÞÞvαð−p⃗; sÞv̄βð−p⃗; sÞ
&
; ð19Þ

where the creation and the annihilation operators of the
particle satisfy ha†ðp⃗; sÞaðp⃗; sÞi ¼ fFDðE0p − μsÞ. On the
other hand, the creation and the annihilation operators of
the antiparticle satisfy hb†ð−p⃗;sÞbð−p⃗;sÞi¼fFDðE0pþμsÞ.
Here fFDðzÞ ¼ 1=ð1þ expðz=TÞÞ is the Fermi Dirac dis-
tribution function at temperature T, and μs is the chemical
potential for the spin state s. E0p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

0

p
is the single

particle energy, andM0 is themass of theDirac fermion. It is
important to note that the space time dependence in the

Wigner function WðX; pÞ is hidden in the space time
dependence of the temperature and chemical potential.
However, for a uniform temperature and chemical potential,
i.e., for a system in global equilibrium theWigner function is
independent of space time. In this investigation, we con-
sidered a global thermal equilibrium. Hence, from now
onward, we will omit the space time dependence in the
Wigner function. Using Eqs. (9) and (19), the scalar DHW
function can be expressed as [101]

FðpÞ ¼ M0δðp2 −M2
0Þ
%

2

ð2πÞ3
X

s

ðθðp0ÞfFDðE0p − μsÞ − θð−p0Þð1 − fFDðE0p þ μsÞÞÞ
&
: ð20Þ

Using the scalar DHW function as given in Eq. (20), the scalar condensate for a single fermion species of massM0 given
in Eq. (16) can be recasted as

hψ̄ψi ¼
Z

d4pM0δðp2 −M2
0Þ
%

2

ð2πÞ3
X

s

ðθðp0ÞfFDðE0p − μsÞ − θð−p0Þð1 − fFDðE0p þ μsÞÞÞ
&

¼ −
X

s

Z
d3p
ð2πÞ3

M0

E0p
½1 − fFDðE0p − μsÞ − fFDðE0p þ μsÞ': ð21Þ

In a situation where the chemical potential is independent of the spin of the state,

hψ̄ψi ¼ −2Nc

Z
d3p
ð2πÞ3

M0

E0p
½1 − fFDðE0p − μÞ − fFDðE0p þ μÞ'; with M0 ¼ −2Ghψ̄ψi: ð22Þ

The factor of Nc appears in Eq. (22) due to the “Tr” over all
the degrees of freedom (d.o.f.).
Next, we shall consider two flavor (u, d quarks) NJL

model for vanishing magnetic field and chiral chemical
potential, with the Lagrangian given as [102–104], along
with a ’t Hooft determinant interaction

L ¼ L0 þ L1 þ L2; ð23Þ

where the free part is

L0 ¼ ψ̄ði=∂ −mÞψ ; ð24Þ

and the interaction parts are given as

L1 ¼ G1

X3

a¼0

½ðψ̄τaψÞ2 þ ðψ̄ iγ5τaψÞ2' ð25Þ

and

L2 ¼ G2½ðψ̄ψÞ2 − ðψ̄ τ⃗ ψÞ2 − ðψ̄iγ5ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2';
ð26Þ

where ψ ¼ ðψu;ψdÞT is the quark doublet, m ¼
diagðmu;mdÞ is the current quark mass with mu ¼ md.
τ0 ¼ I2×2 and τ⃗ are the Pauli matrices. The above
Lagrangian as given in Eq. (23) is invariant under
SUð2ÞL × SUð2ÞR ×Uð1ÞV transformations. L1 has an
additional Uð1ÞA symmetry. L2 is identical with ’t Hooft
determinant interaction term which breaks the Uð1ÞA
symmetry explicitly. L2 interaction term introduces mixing
between different flavors. It is also important to emphasize
that since we are considering only the scalar condensates of
the form hψ̄uψui and hψ̄dψdi, so we can safely ignore the
pseudoscalar condensate as well as the scalar condensates
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of the form hψ̄uψdi, hψ̄dψui etc. Using these approxima-
tions at the mean field level, the Lagrangian of the two
flavor NJL model as given in Eq. (23) can be expressed as

L ¼ ψ̄uði=∂ −M0uÞψu þ ψ̄dði=∂ −M0dÞψd

− 2G1ðhψ̄uψui2 þ hψ̄dψdi2Þ − 4G2hψ̄uψuihψ̄dψdi;
ð27Þ

where u and d quark condensates are given as hψ̄uψui and
hψ̄dψdi, respectively. The constituent quark masses of u
and d quarks in terms of the chiral condensates are given as

M0u ¼ mu − 4G1hψ̄uψui − 4G2hψ̄dψdi;
M0d ¼ md − 4G1hψ̄dψdi − 4G2hψ̄uψui: ð28Þ

One can easily generalize the scalar condensate as given
in Eq. (22) for single flavor NJL model to multiflavor NJL
model. Hence, for NJL model of Nf quark flavor and Nc

color, the chiral condensate can be written as

hψ̄ψiμ5¼0
B¼0 ¼

XNf

f¼1

hψ̄fψfi
μ5¼0
B¼0 ;

with

hψ̄fψfi
μ5¼0
B¼0 ¼ −2Nc

Z
d3p
ð2πÞ3

M0f

E0p;f
½1 − fFDðE0p;f − μÞ

− fFDðE0p;f þ μÞ': ð29Þ

The chiral condensate for Nf flavor NJL model as given in
Eq. (29) can also be obtained by first calculating the
thermodynamic potential using the mean field Lagrangian
as given in Eq. (27) and then calculating the gap equation
using the minimization of thermodynamic potential.

III. WIGNER FUNCTION AND CHIRAL
CONDENSATE IN NJL MODEL FOR

NONVANISHING MAGNETIC FIELD AND
CHIRAL CHEMICAL POTENTIAL

In the presence of magnetic field (B) and chiral chemical
potential (μ5), the Wigner function has been explicitly
written down in Ref. [63], using solutions of the Dirac
equation for fermions in magnetic field and finite chiral
chemical potential. We shall use them to calculate chiral
condensate. For the sake of completeness, we write down
the relevant expressions for the Wigner function. In the
presence of background magnetic field, the Wigner func-
tion given in Eq. (7) gets modified to a gauge invariant
Wigner function as [63]

WαβðX;pÞ¼
Z

d4X0

ð2πÞ4
eð−ipμX0μÞ

!
ψ̄β

"
XþX0

2

#

×U
"
A;XþX0

2
;X−X0

2

#
ψα

"
X−X0

2

#$
; ð30Þ

where UðA;X þ X0

2 ; X − X0

2 Þ is the gauge link between two
space time points (X − X0

2 ) and (X þ X0

2 ) for the gauge field
Aμ. The gauge link has been introduced to make the
Wigner function gauge invariant. In the presence of
homogeneous external magnetic field along the z direction,
the gauge link is just a phase. In this case, the Wigner
function simplifies to

WαβðX; pÞ ¼
Z

d4X0

ð2πÞ4
eð−ipμX0μ−iqByx0Þ

!
ψ̄β

"
X þ X0

2

#

⊗ ψα

"
X −

X0

2

#$
; ð31Þ

where AμðXÞ ¼ ð0;−By; 0; 0Þ is a specific gauge choice of
the external magnetic field. q is the charge of the particle,
and it has been taken to be positive. Analogous to the case
of vanishing magnetic field, Wigner function can be
calculated for nonvanishing magnetic field by using the
Dirac field operator in a background magnetic field. The
Wigner function in a background magnetic field at finite
temperature (T), chemical potential (μ), and finite chiral
chemical potential (μ5) has been shown to be [63]

WðpÞ ¼
X

n;s

h
fFDðE

ðnÞ
pz;s−μÞδðp0þμ−EðnÞ

pz;sÞW
ðnÞ
þ;sðp⃗Þ

þ ð1−fFDðE
ðnÞ
pz;sþμÞÞδðp0þμþEðnÞ

pz;sÞW
ðnÞ
−;sðp⃗Þ

i
;

n≥ 0; ð32Þ

where the functions WðnÞ
%;sðp⃗Þ denote the contribution of

fermion/antifermion in the nth Landau level. The single
particle energy at the lowest Landau level and higher
Landau level is given as Eð0Þ

pz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðpz − μ5Þ2

p
and

EðnÞ
pz;s¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
zþ2nqB

p
−sμ5Þ2

q
, respectively. þ and

− in Eq. (32) denote contributions of positive and negative
energy solutions, respectively. In the lowest Landau level,
fermions can only be in a specific spin state. On the other
hand, for higher Landau levels (n > 0), both spin states
contribute.
The functions WðnÞ

%;sðp⃗Þ in Eq. (32) can be expressed in
terms of Dirac spinors in the following manner [63]:

WðnÞ
rs ðp⃗Þ≡ 1

ð2πÞ3

Z
dy0 expðipyy0Þξ

ðnÞ†
rs

"
px; pz;

y0

2

#
γ0

⊗ ξðnÞrs

"
px; pz;−

y0

2

#
; n ≥ 0: ð33Þ

DAS, KUMAR, and MISHRA PHYS. REV. D 100, 094030 (2019)

094030-6



In Eq. (33), r ¼ % denotes positive energy and negative energy solutions, respectively. The Dirac spinors ξð0Þr and ξðnÞrs ,
where r ¼ % denotes positive and negative energy states and s denotes the spin of the state, are defined as

ξð0Þr ðpx; pz; yÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2Eð0Þ

pz

q

0

BB@
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð0Þ
pz − rðpz − μ5Þ

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð0Þ
pz þ rðpz − μ5Þ

q

1

CCA ⊗ χð0Þðpx; yÞ; ð34Þ

ξðnÞrs ðpx; pz; yÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
2EðnÞ

pz;s

q

0

BB@
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðnÞ
pz;s þ rμ5 − rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

pq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðnÞ
pz;s − rμ5 þ rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

pq

1

CCA ⊗ χðnÞðpx; pz; yÞ; n > 0; ð35Þ

where the normalized eigen spinors χ are

χð0Þðpx; yÞ ¼
"
1

0

#
ϕ0ðpx; yÞ; ð36Þ

and

χðnÞs ðpx; pz; yÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

pq

0

B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

p
þ spz

q
ϕnðpx; yÞ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

p
− spz

q
ϕn−1ðpx; yÞ

1

CA; n > 0; ð37Þ

where

ϕnðpx; yÞ ¼
"
qB
π

#
1=4 1ffiffiffiffiffiffiffiffiffi

2nn!
p exp

%
−
qB
2

"
yþ px

qB

#
2
&
Hn

% ffiffiffiffiffiffi
qB

p "
yþ px

qB

#&
; n ≥ 0: ð38Þ

Hn represents nth Hermite polynomial. Inserting the explicit expression of the Dirac spinors as given in Eqs. (36) and (37)
into Eq. (33), one can get the explicit form of the function WðnÞ

%;sðp⃗Þ[63]. For lowest Landau level,

Wð0Þ
r ðp⃗Þ ¼ r

4ð2πÞ3Eð0Þ
pz

Λð0ÞðpTÞ½Mð1þ σ12Þ þ rEð0Þ
pz ðγ0 − γ5γ3Þ − ðpz − μ5Þðγ3 − γ5γ0Þ'; ð39Þ

while for higher Landau levels,

WðnÞ
rs ðp⃗Þ ¼ r

1

4ð2πÞ3EðnÞ
pz;s

(%
ΛðnÞ
þ ðpTÞ þ s

pzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

p ΛðnÞ
− ðpTÞ

&%
M þ rEðnÞ

pz;sγ
0 þ

"
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

q
− μ5

#
γ5γ0

&

−
%
ΛðnÞ
− ðpTÞ þ s

pzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

p ΛðnÞ
þ ðpTÞ

&%"
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

q
− μ5

#
γ3 þ rEðnÞ

pz;sγ
5γ3 −Mσ12

&

−
2nqB

p2
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

p ΛðnÞ
þ ðpTÞ

%" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

q
− sμ5

#
ðpxγ1 þ pyγ2Þ

þ rsEðnÞ
pz;sðpxγ5γ1 þ pyγ5γ2Þ − sMðpzσ23 − pyσ13

#&)
; n > 0; ð40Þ

where

Λð0Þ
% ðpTÞ ¼ 2 exp

"
−
p2
T

qB

#
; ð41Þ

CHIRAL SUSCEPTIBILITY IN THE NAMBU–… PHYS. REV. D 100, 094030 (2019)

094030-7



ΛðnÞ
% ðpTÞ ¼ ð−1Þn

%
Ln

"
2p2

T

qB

#
∓ Ln−1

"
2p2

T

qB

#&
exp

"
−
p2
T

qB

#
; n > 0: ð42Þ

Here LnðxÞ are the Laguerre polynomials with L−1ðxÞ ¼ 0. Using the Wigner functionWðpÞ, as given in Eq. (32), it can be
shown that the scalar DWH function is [63]

FðpÞ ¼ M
%X∞

n¼0

Vnðp0; pzÞΛ
ðnÞ
þ ðpTÞ þ

X∞

n¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

p Anðp0; pzÞpzΛðnÞ
− ðpTÞ

&
; ð43Þ

where

V0ðp0; pzÞ ¼
2

ð2πÞ3
δfðp0 þ μÞ2 − jEð0Þ

pz j2gfθðp0 þ μÞfFDðp0Þ þ θð−p0 − μÞ½fFDð−p0Þ − 1'g ð44Þ

Vnðp0; pzÞ ¼
2

ð2πÞ3
X

s

δfðp0 þ μÞ2 − jEðnÞ
pz;sj2gfθðp0 þ μÞfFDðp0Þ þ θð−p0 − μÞ½fFDð−p0Þ − 1'g; n > 0 ð45Þ

Anðp0; pzÞ ¼
2

ð2πÞ3
X

s

sδfðp0 þ μÞ2 − jEðnÞ
pz;sj2gfθðp0 þ μÞfFDðp0Þ þ θð−p0 − μÞ½fFDð−p0Þ − 1'g; n > 0: ð46Þ

Once the scalar DWH function is known explicitly as given in Eq. (43), the chiral condensate of single flavor fermion can
be calculated using Eq. (16) and is given as

hψ̄ψi ¼
Z

d4pFðpÞ ¼
Z

2πpT dp0 dpT dpz FðpÞ: ð47Þ

Using Eqs. (43) and (47), it can be shown that (see Appendix A for details)

hψ̄ψiμ5≠0B≠0 ¼ −
qB

ð2πÞ2

%Z
dpz

M

Eð0Þ
pz

h
1 − fFDðE

ð0Þ
pz − μÞ − fFDðE

ð0Þ
pz þ μÞ

i

þ
X∞

n¼1

X

s

Z
dpz

M

EðnÞ
pz;s

h
1 − fFDðE

ðnÞ
pz;s − μÞ − fFDðE

ðnÞ
pz;s þ μÞ

i&
: ð48Þ

For vanishing chiral chemical potential, μ5 ¼ 0, scalar condensate gets reduced to

hψ̄ψiμ5¼0
B≠0 ¼ −

qB
ð2πÞ2

X∞

n¼0

ð2 − δn;0Þ
Z

dpz
M0

ϵðnÞpz

h
1 − fFDðϵ

ðnÞ
pz − μÞ − fFDðϵ

ðnÞ
pz þ μÞ

i
; ð49Þ

where we denoteM0 as the mass of fermion in the absence of chiral chemical potential and finite magnitude field. The single
particle energy ϵðnÞpz for vanishing chiral chemical potential can be written as

ϵðnÞpz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ p2
z þ 2nqB

q
; n ≥ 0: ð50Þ

The chiral condensate for a single flavor as given in Eq. (48) can be easily extended to NJL model with two flavors. Most
general Lagrangian for two flavor NJL model with u and d quarks in the magnetic field including chiral chemical potential
is given as

L ¼ ψ̄ði=D −mþ μ5γ0γ5Þψ þ G1

X3

a¼0

½ðψ̄τaψÞ2 þ ðψ̄iγ5τaψÞ2' þ G2½ðψ̄ψÞ2 − ðψ̄ τ⃗ ψÞ2 − ðψ̄iγ5ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2'; ð51Þ

where ψ is the Uð2Þ quark doublet, given as ψ ¼ ðψu;ψdÞT . The covariant derivative is given as =D ¼ =∂ þ iq=A, and the
current quark mass matrix ism ¼ diagðmu;mdÞ, withmu ¼ md. The first term in Eq. (51) is the free Dirac Lagrangian in the
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presence of magnetic field. For the calculation, we have
considered the gauge choice of the background magnetic
field as Aμ ¼ ð0;−By; 0; 0Þ. The second term in Eq. (51) is
the four Fermi interaction and the attractive part of the
quark-antiquark channel of the Fierz transformed color
current-current interaction. τa, a ¼ 0;…3 are the Uð2Þ
generators in the flavor space. The third term is the ’t Hooft
interaction term which introduces flavor mixing, as in
Eq. (26). Since the magnetic field couples to the electric
charge of particles, in the presence of magnetic field, u
quark and d quarks couple differently with the magnetic
field; hence, the isospin symmetry is explicitly broken. In
the mean field approximation, in the absence of any
pseudoscalar condensate, Eq. (51) can be recasted as

L¼ ψ̄uði=D−Mu þ μ5γ0γ5Þψu þ ψ̄dði=D−Md þ μ5γ0γ5Þψd

− 2G1ðhψ̄uψui2 þ hψ̄dψdi2Þ− 4G2hψ̄uψuihψ̄dψdi;
ð52Þ

where u, d quark condensates are given as hψ̄uψui and
hψ̄dψdi, respectively. The constituent quark masses for u
and d quarks in terms of the chiral condensates can be
given as

Mu ¼ mu − 4G1hψ̄uψui − 4G2hψ̄dψdi;
Md ¼ md − 4G1hψ̄dψdi − 4G2hψ̄uψui: ð53Þ

Generalizing Eq. (48) for two flavor NJL model, the
chiral condensate in the presence of magnetic field and
chiral chemical potential can be written as

hψ̄ψiμ5≠0B≠0 ¼
X

f¼u;d

hψ̄fψfi
μ5≠0
B≠0 ; ð54Þ

where

hψ̄fψfi
μ5≠0
B≠0 ¼ −

NcjqfjB
ð2πÞ2

%Z
dpz

Mf

Eð0Þ
pz;f

h
1 − fFDðE

ð0Þ
pz;f

− μÞ − fFD
*
Eð0Þ
pz;f

þ μ
+i

þ
X∞

n¼1

X

s

Z
dpz

Mf

EðnÞ
pz;s;f

h
1 − fFD

*
EðnÞ
pz;s;f

− μ
+
− fFD

*
EðnÞ
pz;s;f

þ μ
+i&

; ð55Þ

and the single particle energy of flavor f can be
expressed as

Eð0Þ
pz;f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ ðpz − μ5Þ2
q

for n ¼ 0;

EðnÞ
pz;s;f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2njqfjB

q
− sμ5

+
2

r
for n > 0:

ð56Þ

For vanishing chiral chemical potential μ5 ¼ 0, the chiral
condensate of single flavor can be expressed as

hψ̄fψfi
μ5¼0
B≠0 ¼ −

NcjqfjB
ð2πÞ2

X∞

n¼0

ð2 − δn;0Þ

×
Z

dpz
M0f

ϵðnÞpz;f

h
1 − fFD

*
ϵðnÞpz;f

− μ
+

− fFD
*
ϵðnÞpz;f

þ μ
+i

; ð57Þ

and the single particle energies of flavor f can be
expressed as

ϵðnÞpz;f
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þM2

0f
þ 2njqfjB

q
: ð58Þ

The first term of the quark condensate as given in
Eq. (57) contains divergence and needs to be regularized
to derive meaningful results. Usually, in NJL model at
vanishing temperature and chemical potential, such inte-
grals are regularized either by a sharp three momentum
cutoff [84,102] or a smooth cutoff [105–107]. Effective
models like NJL model which are nonrenormalizable have
to be complemented with a regularization scheme with the
constraint that the physically meaningful results should be
eventually independent of the regularization prescription.
In the presence of magnetic field, continuous momentum
dependence in two spatial dimensions transverse to the
direction of magnetic field is replaced by a sum over
discretized Landau levels. Hence, a sharp three momentum
cutoff in the presence of the magnetic field can suffer
from the cutoff artifacts. Instead, of a sharp cutoff, a
smooth momentum cutoff was used in Ref. [54] in the
context of chiral magnetic effects in the PNJL model to
avoid such sharp cutoff artifacts. To regularize the first
term in Eq. (57), we follow an elegant procedure that was
followed in Refs. [41,42,44,108–110] by adding and
subtracting a vacuum (zero field) term to the chiral
condensate which is also divergent. This makes the first
term of Eq. (57) neatly separated into a zero field vacuum
term and a term that is only dependent on the field written
in terms of gamma function which is finite. Thus, the
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regularized chiral condensate in the presence of magnetic field at vanishing quark chiral chemical potential is [see
Appendix B, Eq. (B13)]

hψ̄fψfi
μ5¼0
B≠0 ¼ −2Nc

Z

jp⃗j≤Λ

d3p
ð2πÞ3

M0fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

0f

q −
NcM0f jqfjB

2π2

%
x0fð1 − ln x0fÞ þ lnΓðx0fÞ þ

1

2
ln
"x0f
2π

#&

þ
NcjqfjB
2π2

X∞

n¼0

ð2 − δn;0Þ
Z

∞

−∞
dpz

M0f

ϵðnÞpz;f

fFDðϵ
ðnÞ
pz;f

Þ; ð59Þ

where the dimensionless variable x0f ¼ M2
0f
=2jqfjB. Scalar condensate as given in Eq. (59) can also be obtained by

minimizing the regularized thermodynamic potential using the mean field Lagrangian as given in Eq. (52) in the case of
vanishing chiral chemical potential. Solving Eq. (53) using Eq. (59), we get quark masses for vanishing chiral chemical
potential with finite magnetic field. This constituent mass will be later used to estimate quark masses at finite chiral
chemical potential and finite magnetic field, as discussed in the following subsection.

A. Regularization of chiral condensate in the presence of magnetic field and chiral chemical potential

Chiral condensate hψ̄fψfi of quark flavor f in the presence of magnetic field and nonzero chiral chemical potential is
given as

hψ̄fψfi
μ5≠0
B≠0 ¼ −

NcjqfjB
ð2πÞ2

%Z
dpz

Mf

Eð0Þ
pz;f

h
1 − fFDðE

ð0Þ
pz;f

− μÞ − fFDðE
ð0Þ
pz;f

þ μÞ
i

þ
X∞

n¼1

X

s

Z
dpz

Mf

EðnÞ
pz;s;f

h
1 − fFDðE

ðnÞ
pz;s;f

− μÞ − fFDðE
ðnÞ
pz;s;f

þ μÞ
i&

¼ hψ̄fψfi
μ5≠0
vac;B≠0 þ hψ̄fψfi

μ5≠0
med;B≠0; ð60Þ

where hψ̄fψfi
μ5≠0
vac;B≠0 is zero temperature and zero quark chemical potential part of the chiral condensate, and hψ̄fψfi

μ5≠0
med;B≠0

is the medium term at finite temperature and quark chemical potential. hψ̄fψfi
μ5≠0
vac;B≠0 contains divergent integral which has

to be regularized to obtain meaningful physical result. To regularize the vacuum part of the chiral condensate for
nonvanishing magnetic field and chiral chemical potential, we have not considered the naive regularization with finite cutoff
(Traditional Regularization Scheme (TRS)) to remove cutoff artifacts, rather we have considered MSS outlined in
Ref. [111]. By adding and subtracting the lowest Landau level term in the zero temperature and zero quark chemical
potential part of the chiral condensate for nonvanishing magnetic field and chiral chemical potential, we get (for details, see
Appendix C)

hψ̄fψfi
μ5≠0
vac;B≠0 ¼ −

NcjqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

Mf

EðnÞ
pz;s;f

þ
NcjqfjB
ð2πÞ2

Z
dpz

Mf

Eð0Þ
pz;f

¼ −
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

"
1

π

# Z
∞

−∞
dp4

Mf

p2
4 þ ðEðnÞ

pz;s;f
Þ2
þ
NcjqfjB
ð2πÞ2

Z
dpz

Mf

Eð0Þ
pz;f

¼ I1 þ I2; ð61Þ

where EðnÞ
pz;s;f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q
− sμ5Þ2

r
and Eð0Þ

pz;f
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ ðpz − μ5Þ2
q

. Both integrals I1 and I2 are not

convergent at large momentum; hence, these integrals have to be regularized to get physically meaningful results. In the
present investigation, we are using MSS to regularize the integrals I1 and I2. MSS method has also been applied in the case
of finite chiral chemical potential but vanishing magnetic field in Ref. [59]. In the present case, we keep both B ≠ 0 and
μ5 ≠ 0 and use the same scheme in the following. Integral I1 can be regularized by adding and subtracting the similar term
with magnetic field (B) but μ5 ¼ 0,
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1

p2
4 þ ðEðnÞ

pz;s;f
Þ2

¼ 1

p2
4 þ ðϵðnÞpz;f

Þ2
−

1

p2
4 þ ðϵðnÞpz;f

Þ2
þ 1

p2
4 þ ðEðnÞ

pz;s;f
Þ2

¼ 1

p2
4 þ ðϵðnÞpz;f

Þ2
þ

Aþ 2sμ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q

½p2
4 þ ðϵðnÞpz;f

Þ2'½p2
4 þ ðEðnÞ

pz;s;f
Þ2'

;

ð62Þ

where A¼M2
0f
−M2

f−μ25 and ϵðnÞpz;f
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0f
þp2

zþ2njqfjB
q

.

Using the identity given in Eq. (62) twice, we can write the
integrand of the integral I1, as given in Eq. (61), in the
following way:

1

p2
4þðEðnÞ

pz;s;f
Þ2
¼ 1

p2
4þðϵðnÞpz;f

Þ2
þ
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q

ðp2
4þðϵðnÞpz;f

Þ2Þ2

þ

*
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q +
2

*
p2
4þ

*
ϵðnÞpz;f

+
2
+
3

þ

*
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q +
3

*
p2
4þ

*
ϵðnÞpz;f

+
2
+
3
*
p2
4þ

*
EðnÞ
pz;s;f

+
2
+ :

ð63Þ

Performing p4 integration, we obtain (for details, see
Appendix B)

I1 ¼ I1quad −
MfðM2

0f
−M2

f þ 2μ25Þ
2

I1log þ I1finite1 þ I1finite2 ;

ð64Þ

where

I1quad ¼ −
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s

Z
dpz

Mf

ϵðnÞpz;f

; ð65Þ

I1log ¼
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s

Z
dpz

1

ðϵðnÞpz;f
Þ3
; ð66Þ

I1finite1¼−
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s

Z
dpz

"
3

8

#ðMfA2−4Mfμ25M
2
0f
Þ

ðϵðnÞpz;f
Þ5

;

ð67Þ

and

I1finite2 ¼−
NcjqfjB
ð2πÞ2

"
15

16

#X∞

n¼0

X

s

Z
dpz

×
Z

1

0
dx

ð1−xÞ2Mf

*
Aþ2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
zþ2njqfjB

q +
3

h
ðϵðnÞpz;f

Þ2−x
*
Aþ2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
zþ2njqfjB

q +i
7=2

:

ð68Þ

The integrals I1quad and I1log are divergent at large
momentum. On the other hand, I1finite1 and I1finite2 are finite.
In a similar manner, the integral I2 in Eq. (61), we obtain

I2 ¼ I2finite þ I2log ; ð69Þ

where

I2finite ¼
"
1

2

#
NcjqfjB
ð2πÞ2

Z
dpz

×
Z

1

0
dx

MfðAþ 2pzμ5Þh
ðϵð0Þpz;f

Þ2 − xðAþ 2pzμ5Þ
i
3=2 ; ð70Þ

and

I2log ¼
NcjqfjB
ð2πÞ2

Z
dpz

Mf

ϵð0Þpz;f

: ð71Þ

Using Eqs. (64) and (69), hψ̄fψfi
μ5≠0
vac;B≠0 can be

expressed as

hψ̄fψfi
μ5≠0
vac;B≠0 ¼ −

MfðM2
0f
−M2

f þ 2μ25Þ
2

I1log þ I1finite1

þ I1finite2 þ I2finite þ Iquad; ð72Þ

where

Iquad ¼ I1quad þ I2log

¼
Mf

M0f

"
−
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s

Z
dpz

M0f

ϵðnÞpz;f

þ
NcjqfjB
ð2πÞ2

Z
dpz

M0f

ϵð0Þpz;f

#

: ð73Þ

Each integral in Iquad is divergent. Using dimensional
regularization, it can be regularized to get [see Appendix B,
Eqs. (B2) and (B13)]

CHIRAL SUSCEPTIBILITY IN THE NAMBU–… PHYS. REV. D 100, 094030 (2019)

094030-11



Iquad ¼
Mf

M0f

"

−
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s

Z
dpz

M0f

ϵðnÞpz;f

þ
NcjqfjB
ð2πÞ2

Z
dpz

M0f

ϵð0Þpz;f

#

¼ Ifieldquad þ Ivacquad; ð74Þ

where

Ifieldquad ¼ −
NcMfjqfjB

2π2

%
x0fð1 − ln x0fÞ

þ lnΓðx0fÞ þ
1

2
ln
"x0f
2π

#&
ð75Þ

and,

Ivacquad ¼ −
NcMf

2π2

2

64Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0f
þ Λ2

q

−M2
0f
ln

0

B@
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

0f

q

M0f

1

CA

3

75: ð76Þ

Similarly, the term I1log is divergent at large momentum,
hence it has to be regularized. Regularization of I1log can be
done using dimensional regularization. In the dimensional
regularization scheme [see Appendix B, Eq. (B16)],

I1log ¼
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s

Z
dpz

1*
ϵðnÞpz;f

+
3

¼ Ifield1log
þ Ivac1log

: ð77Þ

Here,

Ifield1log
¼ −

Nc

2π2

%
− ln x0f þ

Γ0ðx0fÞ
Γðx0fÞ

&
; ð78Þ

and

Ivac1log
¼ Nc

π2

0

B@ln

 
Λ
M0f

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2

M2
0f

s !
− Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2 þM2
0f

q

1

CA:

ð79Þ

Hence, the regularized chiral condensate of quark flavor
f for finite magnetic field and chiral chemical potential
in MSS for vanishing quark chemical potential can be
expressed as

hψ̄fψfi
μ5≠0
B≠0 ¼ −

MfðM2
0f
−M2

f þ 2μ25Þ
2

I1log þ I1finite1

þ I1finite2 þ I2finite þ Iquad

þ
NcjqfjB
2π2

%Z
∞

−∞
dpz

Mf

Eð0Þ
pz;f

fFDðE
ð0Þ
pz;f

Þ

þ
X∞

n¼1

X

s

Z
∞

−∞
dpz

Mf

EðnÞ
pz;s;f

fFDðE
ðnÞ
pz;s;f

Þ
&
;

ð80Þ

where regularized I1log and Iquad are given in Eqs. (77)
and (74), respectively. This makes the expression for
hψ̄fψfi

μ5≠0
B≠0 finite which we shall use later for the calcu-

lation of constituent mass (Mf) for nonvanishing magnetic
field and chiral chemical potential. Note that for the
estimation of constituent mass (Mf) for nonvanishing
magnetic field and chiral chemical potential, one requires
constituent mass M0f for nonvanishing magnetic field and
vanishing chiral chemical potential, which can be obtained
from Eq. (59).

IV. CHIRAL SUSCEPTIBILITY

The fluctuations and correlations are an important
characteristics of any physical system. They provide
essential information about the effective d.o.f. and their
possible quasiparticle nature. These fluctuations and cor-
relations are connected with susceptibility. Susceptibility is
the response of the system to small external force. The
chiral susceptibility measures the response of the chiral
condensate to the infinitesimal change of the current quark
mass. Chiral susceptibility in two flavor NJL model can be
defined as

χc ¼
∂hψ̄ψi
∂m ¼ ∂hψ̄uψui

∂m þ ∂hψ̄dψdi
∂m ¼ χcu þ χcd: ð81Þ

Using Eq. (53), we get

χcu¼
∂hψ̄uψui

∂m
¼∂hψ̄uψui

∂Mu

"
1−4G1

∂hψ̄uψui
∂m −4G2

∂hψ̄dψdi
∂m

#
ð82Þ

and

χcd ¼ ∂hψ̄dψdi
∂m

¼ ∂hψ̄dψdi
∂Md

"
1 − 4G1

∂hψ̄dψdi
∂m − 4G2

∂hψ̄uψui
∂m

#
:

ð83Þ
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Using Eq. (82), Eq. (83) solving for χcu and χcd, we get

χcu ¼
∂hψ̄uψui
∂Mu

1 − 4G2χcd
1þ 4G1

∂hψ̄uψui
∂Mu

ð84Þ

and

χcd ¼
∂hψ̄dψdi
∂Md

1 − 4G2χcu
1þ 4G1

∂hψ̄dψdi
∂Md

: ð85Þ

Solving Eqs. (84) and (85), we get

χcu ¼
∂hψ̄uψui
∂Mu

0

B@
1þ 4ðG1 −G2Þ ∂hψ̄dψdi

∂Md

ð1þ 4G1
∂hψ̄uψui
∂Mu

Þð1þ 4G1
∂hψ̄dψdi
∂Md

Þ − 16G2
2
∂hψ̄uψui
∂Mu

∂hψ̄dψdi
∂Md

1

CA; ð86Þ

χcd ¼
∂hψ̄dψdi
∂Md

0

B@
1þ 4ðG1 −G2Þ ∂hψ̄uψui

∂Mu

ð1þ 4G1
∂hψ̄uψui
∂Mu

Þð1þ 4G1
∂hψ̄dψdi
∂Md

Þ − 16G2
2
∂hψ̄uψui
∂Mu

∂hψ̄dψdi
∂Md

1

CA: ð87Þ

It is clear from Eqs. (86) and (87) that to calculate chiral susceptibility for u and d quarks, we have to estimate ∂hψ̄fψfi
∂Mf

.
However, it is important to note that like chiral condensate, chiral susceptibility also contains ultraviolet divergence. Hence,
∂hψ̄fψfi
∂Mf

term also has to be regularized to get meaningful results. Using Eq. (59), for vanishing chemical potential (μ ¼ 0)
and vanishing chiral chemical potential (μ5 ¼ 0), in the presence of magnetic field, we get

∂hψ̄fψfi
μ5¼0
B≠0

∂M0f

¼ −
2Nc

ð2πÞ3

Z

jp⃗j≤Λ
d3p

2

64
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þM2
0f

q −
M2

0fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þM2

0f
Þ3

q

3

75

−
NcjqfjB
2π2

%
x0fð1 − ln x0fÞ þ lnΓðx0fÞ þ

1

2
ln
"x0f
2π

#&
−
NcM2

0f

2π2

%
− ln x0f þ

1

2x0f
þ
Γ0ðx0fÞ
Γðx0fÞ

&

þ
X∞

n¼0

NcjqfjB
π2

ð2 − δn;0Þ
Z

∞

0
dpz

"
1

ϵðnÞpz;f

fFDðϵ
ðnÞ
pz;f

Þ −
M2

0f

ðϵðnÞpz;f
Þ3
fFDðϵ

ðnÞ
pz;f

Þ

−
1

T

"M0f

ϵðnÞpz;f

#
2

fFD
*
ϵðnÞpz;f

Þð1 − fFDðϵ
ðnÞ
pz;f

Þ
+#

: ð88Þ

∂hψ̄fψfi
μ5¼0

B≠0
∂M0f

as given in Eq. (88) is regularized and it can be used to calculate χcu, χcu and chiral susceptibility χc for finite

magnetic field, but vanishing chiral chemical potential. To estimate chiral susceptibility at finite magnetic field as well as
nonvanishing chiral chemical potential, we have to estimate regularized ∂hψ̄fψfi

∂Mf
at finite B and μ5. This regularization has

been done using the MSS regularization scheme.

A. Regularization of chiral susceptibility in the presence of magnetic field and chiral chemical potential

For nonvanishing magnetic field (B) and chiral chemical potential (μ5) for μ ¼ 0, using Eq. (55), the variation of chiral
condensate with constituent quark mass can be written as

∂hψ̄fψfi
μ5≠0
B≠0

∂Mf
¼

∂hψ̄fψfi
μ5≠0
vac;B≠0

∂Mf
þ
∂hψ̄fψfi

μ5≠0
med;B≠0

∂Mf
: ð89Þ
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Here, the first term is the “vacuum” term given as

∂hψ̄fψfi
μ5≠0
vac;B≠0

∂Mf
¼ −

NcjqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

1

EðnÞ
pz;s;f

þ
NcjqfjB
ð2πÞ2

Z
dpz

1

Eð0Þ
pz;f

þ
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

M2
f

ðEðnÞ
pz;s;f

Þ3
−
NcjqfjB
ð2πÞ2

Z
dpz

M2
f

ðEð0Þ
pz;f

Þ3

¼ I1 þ I2 þ I3 þ I4; ð90Þ

and the medium dependent term is given as

∂hψ̄fψfi
μ5≠0
med;B≠0

∂Mf
¼

NcjqfjB
ð2πÞ2

Z
dpz

1

Eð0Þ
pz;f

*
2fFDðE

ð0Þ
pz;f

Þ
+
−
NcjqfjB
ð2πÞ2

Z
dpz

M2
f

ðEð0Þ
pz;f

Þ3
*
2fFDðE

ð0Þ
pz;f

Þ
+

−
NcjqfjB
ð2πÞ2

Z
dpz

M2
f

ðEð0Þ
pz;f

Þ2

"
2

T

#
fFD

*
Eð0Þ
pz;f

Þð1− fFDðE
ð0Þ
pz;f

Þ
+

þ
NcjqfjB
ð2πÞ2

X∞

n¼1

X

s¼%1

Z
dpz

1

EðnÞ
pz;s;f

*
2fFDðE

ðnÞ
pz;s;f

Þ
+
−
NcjqfjB
ð2πÞ2

X∞

n¼1

X

s¼%1

Z
dpz

M2
f

ðEðnÞ
pz;s;f

Þ3
*
2fFDðE

ðnÞ
pz;s;f

Þ
+

−
NcjqfjB
ð2πÞ2

X∞

n¼1

X

s¼%1

Z
dpz

M2
f

ðEðnÞ
pz;s;f

Þ2

"
2

T

#
fFDðE

ðnÞ
pz;s;f

Þ
*
1− fFDðE

ðnÞ
pz;s;f

Þ
+
: ð91Þ

The medium dependent term is convergent and does not need any regularization. The “vacuum” term, on the other hand, the
integrals, I1, I2, and I3 are divergent and need regularization. We perform the MSS scheme as was done for the chiral

condensate. The regularized
∂hψ̄fψfi

μ5≠0
vac;B≠0

∂Mf
can be expressed as [see Appendix D, Eq. (D13)]

∂hψ̄fψfi
μ5≠0
vac;B≠0

∂Mf
¼ −

"M2
0f
−M2

f þ 2μ25
2

#
I1;log þ I1;finite1 þ I1;finite2 þ I2;finite þ I3;finite þ Ifinite þ Iquad þ Ilog; ð92Þ

where regularized Iquad; Ilog; I1;log can be expressed as (see Appendix D, Eqs. (D15)–(D17)]

Iquad ¼ −
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

1

ϵðnÞpz;f

þ
NcjqfjB
ð2πÞ2

Z
dpz

1

ϵð0Þpz;f

¼ −
NcjqfjB
2π2

%
x0fð1 − ln x0fÞ þ lnΓðx0fÞ þ

1

2
ln
"x0f
2π

#&
−

Nc

2π2

2

64Λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

0f

q
−M2

0f
ln

0

B@
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM0f

q

M0f

1

CA

3

75;

ð93Þ

Ilog ¼
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

M2
f

ðϵðnÞpz;f
Þ3

−
NcjqfjB
ð2πÞ2

Z
dpz

M2
f

ðϵð0Þpz;f
Þ3

¼ −
NcM2

f

2π2

%
− ln x0f þ

1

2x0f
þ
Γ0ðx0fÞ
Γðx0fÞ

&
þ
NcM2

f

π2

2

64ln

0

B@
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

0f

q

M0f

1

CA −
Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2 þM2
0f

q

3

75; ð94Þ
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I1;log ¼
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

1

ðϵðnÞpz;f
Þ3

¼ −
Nc

2π2

%
− ln x0f þ

Γ0ðx0fÞ
Γðx0fÞ

&
þ Nc

π2

2

64ln

0

B@
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

0f

q

M0f

1

CA −
Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2 þM2
0f

q

3

75; ð95Þ

and the convergent integrals I1;finite1, I1;finite2, I2;finite, I3;finite, and Ifinite are given as

I1;finite1 ¼ −
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

"
3

8

#
A2 − 4μ25M

2
f

ðϵðnÞpz;f
Þ5

; ð96Þ

I1;finite2 ¼ −
NcjqfjB
ð2πÞ2

"
15

16

#X∞

n¼0

X

s¼%1

Z
dpz

Z
1

0
dx

ð1 − xÞ2
*
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q +
3

h*
ϵðnÞpz;f

+
2 − x

*
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q +i
7=2

ð97Þ

I2;finite ¼
"
1

2

#
NcjqfjB
ð2πÞ2

Z
dpz

Z
1

0
dx

Aþ 2pzμ5

½ðϵð0Þpz;f
Þ2 − xðAþ 2pzμ5Þ'3=2

; ð98Þ

I3;finite¼
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpzM2

f

"
1

ðEðnÞ
pz;s;f

Þ3
−

1

ðϵðnÞpz;f
Þ3

#
;

ð99Þ

Ifinite ¼ −
NcjqfjB
ð2πÞ2

Z
dpzM2

f

"
1

ðEð0Þ
pz;f

Þ3
−

1

ðϵð0Þpz;f
Þ3

#
:

ð100Þ

For nonvanishing magnetic field and chiral chemical
potential Eq. (91), Eq. (92) along with Eqs. (86) and (87),
can be used to calculate chiral susceptibility (χc).

V. RESULTS

Let us note that the Lagrangian as given in Eq. (51)
has the following parameters, two couplings G1, G2, the
three momentum cutoff Λ, and the current quark masses
mu and md. To study the effects of flavor mixing, the
couplings G1 and G2 are parametrized as G2 ¼ αg,
G1 ¼ ð1 − αÞg [102]. The extent of flavor mixing is
controlled by α. For the numerical studies, we take the
parameters mu ¼ md ¼ 6 MeV, the three momentum cut-
off Λ ¼ 590 MeV, and the scalar coupling g ¼ 2.435=Λ2.
For these values of the parameters, pion vacuum mass is
140.2 MeV, pion decay constant is 92.6 MeV, and the quark
condensates are hψ̄uψui¼ hψ̄dψdi¼ð−241.5ÞMeV3. This
parameter set also leads to a vacuum constituent quark
mass 400 MeV. It may be relevant here to mention that
in the absence of magnetic field the two condensates

hψ̄uψui ¼ hψ̄dψdi and therefore the gap equation (53)
depends upon the sum of the two couplings (G1 þG2)
which is independent of α. Thus, the massesMu andMd are
the same and do not depend upon α in the absence of
magnetic field.
Next, we discuss about choosing the parameter α. One

can fix the parameter α from the mass of the isoscalar
pseudoscalar particle that arises in the spectrum because of
breaking of Uð1ÞA symmetry. In a two flavor case, this
meson can be identified with the η meson. The mass of η
meson can be given approximately by [103]

m2
η ¼ m2

π þ
G2M2

ðG2
1 −G2

2Þf2π
: ð101Þ

Clearly, for α ¼ 0.5, the η meson disappears from the
spectrum. With the physical mass of the η meson
(mη ¼ 547.8 MeV), the above equation leads to a value
of α ≃ 0.09. On the other hand, a description of η meson
without strange quarks is not realistic and therefore a better
way to fix α is from the three flavor NJL model in which
case the determinant interaction becomes a six fermion
interaction and leads to η − η0 splitting. In such a case, e.g.,
the gap equation for Mu becomes [102]

Mu ¼ mu − 4Ghψ̄uψuiþ 2Khψ̄ sψ sihψ̄dψdi: ð102Þ

Comparing the constituent quark mass as given in
Eq. (53), we can identify G1 ¼ G and G2 ¼ − 1

2Kϕs,

CHIRAL SUSCEPTIBILITY IN THE NAMBU–… PHYS. REV. D 100, 094030 (2019)

094030-15



where ϕs ≡ hψ̄ sψ si is the strange quark condensate.
Thus, using the strange quark condensate, we can express
α as [102]

α ¼
− 1

2Kϕs

G − 1
2Kϕs

: ð103Þ

The parameters G;K; hψ̄ sψ si are fixed from fitting the
masses of the pseudoscalar octet. In particular, the deter-
minant interaction parameter K is fixed from the η − η0

mass difference. Even in such cases, the value of α can vary
about 25%–30% (i.e., from α ¼ 0.21 to α ¼ 0.16) depend-
ing upon the parametrization chosen. This wide variation in
α has to dowith the different ways η0 is treated in the model.
Since NJL model does not confine and Mη0 lies above, the
threshold for qq̄ decays with an unphysical imaginary part
of the corresponding polarization diagram. This is an
unavoidable feature of NJL model and leaves an uncer-
tainty that is reflected in difference in the parameters of
the determinant interaction. Further, it may be mentioned
here that, in a different context of spontaneous CP violation
in strong interactions, in Ref. [112] it has been argued that
0 ≤ α ≤ 0.5 so that spontaneous parity violation is not there
for QCD at zero temperature and density for θ ¼ 0 in
accordance with Vafa-Witten theorem. In the present work,
we have considered the cases when α ¼ 0, i.e., no flavor
mixing, α ¼ 0.5 when both the couplings are same and a
value for α ¼ 0.15 between these two limits to examine
the effects of instanton induced flavor mixing interaction
in the presence of magnetic field that breaks the isospin
symmetry.

In Fig. 1, we show the variation of constituent quark
masses and the associated chiral susceptibility as a function
of temperature (T) for different values of chiral chemical
potential (μ5) and for vanishing magnetic field. For zero
magnetic field hψ̄uψui ¼ hψ̄dψdi, hence the masses of the
u and d quarks remain same. From the left plot in Fig. 1, we
can see that the constituent mass decreases with increasing
chiral chemical potential. This decreasing behavior of the
constituent quark mass with μ5 is in contrast with other
calculations [57,95]. In contrast to Ref. [57], where the
condensates increase with μ5 at lower temperature and
decrease with μ5 at a higher temperature, we find the scalar
condensate always decreases with μ5. Further, we also
observe that the chiral transition is a smooth crossover as in
Ref. [95] and no first order phase transition is seen even for
μ5 as large as 0.4 GeV unlike in Ref. [57]. It ought to be
mentioned here that while the vacuum mass satisfies a gap
equation with a cutoff in the three momentum, for the
thermal contribution no such cutoff was used, similar to
Refs. [57,113], as the distribution functions make the
corresponding contribution convergent.
The right plot in Fig. 1 shows the chiral susceptibility

for vanishing quark chemical potential and magnetic field.
Peak in the chiral susceptibility plot shows the chiral
transition temperature. Using Eqs. (86) and (87), it can
be shown that χcu ¼ χcd for vanishing magnetic field.
Hence, the variation of total chiral susceptibility (χc) with
temperature shows only one peak. This behavior of chiral
transition temperature decreasing with μ5 is similar to
Ref. [54]. Further the height of the peak decreases with
μ5 and we do not observe any sharp peak indicative of a
first order transition. Absence of a first order transition with

FIG. 1. Left plot: variation of constituent quark massMu ¼ Md with temperature (T) for zero magnetic field but for various values of
chiral chemical potential. Right plot: variation of chiral susceptibility χc with temperature (T) for zero magnetic field but with different
values of chiral chemical potential. Prominent peak in the chiral susceptibility plot shows the chiral transition temperature. From the left
plot, it is clear that with increasing chiral chemical potential (μ5) constituent mass decreases. From the susceptibility plot, it is clear that
transition temperature decreases with chiral chemical potential.
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large μ5 was also observed in Ref. [95]. However, in the
presence of magnetic field, in general χcu can be different
from χcd and variation of total chiral susceptibility χc with
temperature can show multiple peaks. Results for non-
vanishing magnetic field will be shown later. From the right
plot in Fig. 1, it is clear that with increasing chiral chemical
potential (μ5) chiral transition temperature decreases. We
would like to mention here that in Ref. [57] for vanishing
magnetic field, an opposite behavior regarding chiral
transition temperature was observed, i.e., Tc increases with
μ5. However, the parameters of the NJL model chosen were
different compared to the parameters taken here or in
Ref. [102]. We have also verified that taking parameters of
Ref. [57] Tc increases with μ5.
It may be relevant here to compare this behavior of Tc

with μ5. Such a decreasing behavior of Tc with μ5 was also
observed in PNJL model; however, the nature of the
transition was a first order transition at some critical value
of chiral chemical potential [54]. On the other hand, a
nonlocal NJL analysis showed the critical temperature to
increase with μ5 [95]. A careful analysis in Ref. [57] shows
different behavior of Tc with μ5. In Ref. [57], it has been
shown that if a cutoff is given to the thermal part also then
Tc increases with μ5 while not giving any cutoff decreases
Tc with μ5. On the other hand, we have applied here a
medium separation scheme to remove cutoff artifact as was
done in Refs. [59,98,99]. However, our result for vanishing
magnetic field showed a opposite behavior, i.e., Tc
decreases with μ5. It turns out that the behavior of Tc
with μ5 depends upon the parameter chosen. A stronger
scalar coupling as we have taken leads to Tc decreasing
with μ5, while a weaker scalar coupling shows a mild
increase in Tc with μ5 [59]. We therefore feel a deeper
understanding is still required to understand the opposite
behavior of Tc with μ5 with change in the scalar coupling.
With the parameters considered here, while the behavior of
Tc decreasing with μ5 is consistent with Ref. [57], the
transition itself seems to be a smooth crossover leading to
the absence of a critical point in the (μ5, T) plane of the
phase diagram [57,95].
In Fig. 2, we show the variation of constituent quark

masses Mu and Md with temperature for vanishing chiral
chemical potential and with finite magnetic field for
different values of α. From this figure, it is clear that at
nonvanishing magnetic field constituent quark mass
increases. At vanishing magnetic field, constituent mass
of u and d quarks is the same. Although in the presence of
magnetic field, quark condensates hψ̄uψui ≠ hψ̄dψdi, but
for α ¼ 0.5 the quark massesMu ¼ Md. This is because for
α ¼ 0.5, constituent quark mass isMf ¼ m − 2gðhψ̄uψuiþ
hψ̄dψdiÞ, as can be seen from Eq. (53). On the other hand,
for α ≠ 0.5 quark masses,Mu andMd are not the same. The
difference between Mu and Md increases with decrease in
the value of α and this difference is largest when α ¼ 0.0.
α ¼ 0.0corresponds to the case when there is no flavor

mixing interaction, and α ¼ 0.5 corresponds to maximal
flavor mixing. It is important to note that for vanishing
magnetic field, flavor mixing interaction does not affect the
quark masses. Only in the presence of magnetic field when
hψ̄uψui ≠ hψ̄dψdi, flavor mixing interaction affects the
constituent quark masses Mu and Md significantly.
In Fig. 3, we show the variation of constituent quark

masses Mu and Md and the associated total chiral suscep-
tibility, with temperature for vanishing chiral chemical
potential and with different values of magnetic field for
α ¼ 0.5. It has been already mentioned that for α ¼ 0.5
even in the presence of magnetic fieldMu ¼ Md. From the
left plot in Fig. 3, it is clear that with increasing magnetic
field constituent quark mass increases. On the other hand,
from the right plot in Fig. 3, it is clear that chiral transition
temperature increases with increasing magnetic field.
In Fig. 4, we show the variation of constituent quark

masses Mu and Md and the associated total chiral suscep-
tibility, with temperature for vanishing chiral chemical
potential and with different values of magnetic field for
α ¼ 0.0. For α ¼ 0.0, there is no flavor mixing. From the
left plot, it is clear that at finite magnetic field Mu ≠ Md.
This is because in the presence of magnetic field u and d
quark condensates are different and in the absence of
flavor mixing for α ¼ 0.0, Mu is independent of hψ̄dψdi.
Similarly, Md is independent of hψ̄uψui for α ¼ 0.0. From
the right plot in Fig. 4, it is clear that chiral transition

FIG. 2. Variation of constituent quark masses Mu and Md with
temperature for vanishing chiral chemical potential but with finite
magnetic field for different values of α. For vanishing magnetic
field,Mu andMd are same. Note that in the presence of magnetic
field, for α ¼ 0.5, although hψ̄uψui ≠ hψ̄dψdi, but the constituent
quark masses Mu ¼ Md. However, for α ≠ 0.5, the constituent
quark masses Mu ≠ Md in the presence of magnetic field. α ¼
0.0 corresponds to the case when there is no flavor mixing
interaction, and α ¼ 0.5 corresponds to maximal flavor mixing.
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temperature increases with increasing magnetic field.
However, it is important to mention that unlike the case
when α ¼ 0.5, in this case the susceptibility plot shows two
distinct peaks at relatively large magnetic field values. In
fact, these two peaks are associated with u and d quarks,
which have been shown in Fig. 5. In the left plot of Fig. 5,
we show χcu, χcd, and χc for eB ¼ 0.4 GeV2 and α ¼ 0.0.
On the other hand, in the right plot of Fig. 5, we show χcu,

χcd, and χc for eB ¼ 0.4 GeV2 and α ¼ 0.5. From the left
plot in Fig. 5, it is clear that for α ¼ 0.0, i.e., in the absence
of flavor mixing, at relatively large magnetic field, chiral
susceptibility χc shows two distinct peaks. These two peaks
are associated with u and d quarks. At relatively large
magnetic field with α ¼ 0.0, chiral restoration of d quark
happens at relatively low temperature with respect to the u
quarks. This is due to the fact that at nonzero magnetic field

FIG. 3. Left plot: variation of constituent quark mass Mu and Md, with temperature for vanishing chiral chemical potential, but
with different values of magnetic field for α ¼ 0.5. Right plot: variation of chiral susceptibility χc with temperature (T) for vanishing
chiral chemical potential, but with different values of magnetic field for α ¼ 0.5. From the left plot, it is clear that with increasing
magnetic field constituent mass Mu ¼ Md increases. From the susceptibility plot, it is clear that transition temperature increases
with magnetic field.

FIG. 4. Left plot: variation of constituent quark mass Mu and Md, with temperature for vanishing chiral chemical potential, but with
different values of magnetic field for α ¼ 0.0. Right plot: variation of chiral susceptibility χc with temperature (T) for vanishing chiral
chemical potential, but with different values of magnetic field for α ¼ 0.0. From the left plot, it is clear that with increasing magnetic
field constituent mass increases. From the susceptibility plot, it is clear that transition temperature increases with magnetic field. In the
right plot, we can observe two distinct peaks at relatively large magnetic fields.
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Mu > Md, as can be seen in Fig. 4. On the other hand, from
the right plot in Fig. 5, we can see that, although
hψ̄uψui ≠ hψ̄dψdi, χcu and χcd show peak at same temper-
ature. Hence, for α ¼ 0.5, at finite magnetic field, chiral
transition temperature for u and d quarks is the same.
Finally, in Fig. 6, we show the variation of quark

constituent masses Mu and Md and the associated

susceptibilities with temperature for finite magnetic
field and finite chiral chemical potential for α ¼ 0.5.
Behavior of quark constituent masses and the chiral
susceptibilities with temperature are similar for other
values of α. The left plot in Fig. 6 shows that with
increasing value of chiral chemical potential and for
finite magnetic field constituent quark mass decreases.

FIG. 5. Left plot: variation of χcu, χcd, and χc with temperature at vanishing chiral chemical potential for eB ¼ 0.4 GeV2 and α ¼ 0.0.
Right plot: variation of χcu, χcd, and χc with temperature at vanishing chiral chemical potential for eB ¼ 0.4 GeV2 and α ¼ 0.5. From
the left plot, it is clear that chiral susceptibility shows two distinct peaks at large magnetic field. This is due to the fact that at large
magnetic field, difference betweenMu andMd is large. On the other hand, the right plot shows that for α ¼ 0.5, hψ̄uψui ≠ hψ̄dψdi, χcu
and χcd show peak at same temperature. Hence, for α ¼ 0.5, at finite magnetic field, chiral transition temperature for u and d quarks is
the same.

FIG. 6. Left plot: variation of constituent quark mass Mu ¼ Md, with temperature for finite magnetic field and finite chiral chemical
potential. Right plot: variation of chiral susceptibility χc with temperature for finite magnetic field and finite chiral chemical potential.
From this figure, it is clear that with increasing chiral chemical potential quark mass as well as the chiral transition temperature
decreases.
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This decrease in mass with increasing chiral chemical
potential has also manifested in the right plot of Fig. 6,
which shows that with increasing chiral chemical
potential chiral transition temperature decreases.

VI. CONCLUSION

In this investigation, we have studied chiral phase
transition and the associated chiral susceptibility of the
medium produced in ultrarelativistic heavy ion collisions at
vanishing quark chemical potential using Wigner function
approach within the framework of two flavor NJL model.
For a dynamical system, like the medium produced in
heavy ion collision, quantum effects can be relevant.
Hence, the quantum kinetic equation is a suitable formal-
ism to understand the evolution of these dynamical system.
The central quantity of the quantum kinetic description is
the Wigner function. Wigner function is the quantum
mechanical analog of classical distribution function.
Different components of Wigner function satisfies quantum
kinetic equation. However, in this investigation, we have
restricted ourselves to the case of global equilibrium so that
T, μ5 are constant and we do not consider evolution of
Wigner function. In fact, we could have done the analysis
by estimating the mean field thermodynamic potential and
minimizing the same to get the quark masses as well as the
susceptibility.
We have looked into the behavior of quark masses and

chiral susceptibility within a two flavor NJL model with
flavor mixing determinant interaction. In the absence of
magnetic field, u and d quark masses are degenerate,
due to the isospin symmetry. However, in the presence
of magnetic field, due to different electric charge of u
and d quark, constituent mass of u and d quark can be
different. Our results show that while flavor mixing
instanton induced interaction does not affect the quark
masses in the absence of magnetic field; however, in the
presence of magnetic field, this interaction can affect
quark masses. For maximal flavor mixing, i.e., α ¼ 0.5
in NJL model for a nonvanishing magnetic field, u and d
quark masses are degenerate as the mass gap equation
for Mu and Md depend upon the sum of two condensates
(hψ̄uψuiþ hψ̄dψdi). However, one has to keep in mind
that this limiting case is not consistent with large Nc
limit of G1 and G2 as G1=G2 ∼ Nc at large Nc. For
nonmaximal flavor mixing, quark masses are nondegen-
erate in the presence of magnetic field. Constituent mass
of u and d quark is larger for nonvanishing magnetic
field compared to B ¼ 0 counterpart. With increasing
magnetic field, constituent mass of u and d quark also
increases. This apart the chiral transition temperature is

higher for nonvanishing magnetic field as compared to
the case of vanishing magnetic field. This is the
manifestation of magnetic catalysis, i.e., in the presence
of magnetic field the formation of chiral condensate is
preferred even if the four Fermi coupling is below the
critical coupling [25]. Further, the magnitude of the
chiral condensate is higher for larger magnetic field. It is
interesting to note that in the presence of nonmaximal
flavor mixing instanton interaction, for vanishing mag-
netic field as well as for relatively small magnetic field,
the chiral transition temperatures of u and d quark are
the same. This is due to the fact that the mass difference
between u and d quark arises due to the magnetic field
and for weak magnetic field this difference is negligible
and leads to the similar transition temperature. Only
when this mass difference is large (due to strong enough
magnetic field), one can have different transition temper-
ature for two flavors. The difference between the
transition temperature of u and d quark also increases
with magnetic field. We have also shown that non-
vanishing chiral chemical potential (μ5) reduces quark
mass in the absence as well as in the presence of
magnetic field. Unlike magnetic catalysis, with increas-
ing chiral chemical potential (μ5), chiral transition
temperature decreases. It is further observed that in
the presence of magnetic field, the chiral susceptibility
shows a double peak structure due to isospin breaking in
the presence of magnetic field.
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APPENDIX A: DERIVATION OF SCALAR
CONDENSATE IN A BACKGROUND
MAGNETIC FIELD AND CHIRAL

CHEMICAL POTENTIAL

Scalar condensate in the terms of the scalar DHW
function can be written as

hψ̄ψi ¼
Z

d4pFðpÞ: ðA1Þ

Using the explicit form of scalar DHW function (FðpÞ),
as given in Eq. (43), scalar condensate in the presence of
magnetic field, as given in Eq. (A1), can be expressed as
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hψ̄ψi ¼
Z

2πpTdp0dpTdpzM
%X∞

n¼0

Vnðp0; pzÞΛ
ðnÞ
þ ðpTÞ þ

X∞

n¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

p Anðp0; pzÞpzΛðnÞ
− ðpTÞ

&

¼
Z

2πpTdp0dpTdpzM
%
V0ðp0; pzÞΛ

ð0Þ
þ ðpTÞ þ

X∞

n¼1

Vnðp0; pzÞΛ
ðnÞ
þ ðpTÞ

þ
X∞

n¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

p Anðp0; pzÞpzΛðnÞ
− ðpTÞ

&

¼ I1 þ I2 þ I3: ðA2Þ

Now, the first term in Eq. (A2),

I1 ¼ 2π
ZZ

dp0dpzMV0ðp0; pzÞ
Z

dpTpTΛ
ð0Þ
þ ðpTÞ: ðA3Þ

Using the explicit form of V0ðp0; pzÞ and Λð0Þ
þ ðpTÞ, Eq. (A3) can be expressed as

I1 ¼ 2π
ZZ

dp0dpz
2

ð2πÞ3
Mδ

*
ðp0 þ μÞ2 − jEð0Þ

pz j2
+
½θðp0 þ μÞfFDðp0Þ

þ θð−p0 − μÞ½fFDð−p0Þ − 1''
Z

dpTpT2 exp ½−p2
T=qB'

¼ qB
ð2πÞ2

Z
dpz

M

Eð0Þ
pz

h
fFDðE

ð0Þ
pz − μÞ þ fFDðE

ð0Þ
pz þ μÞ − 1

i
: ðA4Þ

The second term in Eq. (A2),

I2 ¼ 2π
X∞

n¼1

ZZ
dp0dpzMVnðp0; pzÞ

Z
dpTpTΛ

ðnÞ
þ ðpTÞ: ðA5Þ

Using the explicit form of ΛðnÞ
þ ðpTÞ, one can calculate the following integral:

Z
dpTpTΛ

ðnÞ
þ ðpTÞ ¼ ð−1Þn

Z
∞

0
dpTpT ½Lnð2p2

T=qBÞ − Ln−1ð2p2
T=qBÞ' expð−p2

T=qBÞ ¼ qB: ðA6Þ

To get Eq. (A6), we use the following identity [114]:

Z
∞

0
dx expð−bxÞLnðxÞ ¼ ðb − 1Þnb−n−1: ðA7Þ

Using Eq. (A6) and the explicit form of Vnðp0; pzÞ, I2 can be written as

I2 ¼ 2πðqBÞ
ZZ

dp0dpz
2

ð2πÞ3
M
X

s

δððp0 þ μÞ2 − jEðnÞ
pz;sj2Þ½θðp0 þ μÞfFDðp0Þ þ θð−p0 − μÞðfFDð−p0Þ − 1Þ'

¼ −
qB

ð2πÞ2
X∞

n¼1

X

s

Z
dpz

M

EðnÞ
pz;s

h
1 − fFDðE

ðnÞ
pz;s − μÞ − fFDðE

ðnÞ
pz;s þ μÞ

i
: ðA8Þ

Now let us consider the third term of Eq. (A2),

I3 ¼ 2π
ZZ

dp0dpzM
X∞

n¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

p Anðp0; pzÞpz

Z
dpTpTΛðnÞ

− ðpTÞ: ðA9Þ
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Using the explicit form of ΛðnÞ
− ðpTÞ, it can be shown that

Z
dpTpTΛðnÞ

− ðpTÞ ¼ 0: ðA10Þ

Hence, the third term of Eq. (A2),

I3 ¼ 0: ðA11Þ

Hence, using Eqs. (A4), (A8), and (A11), the scalar condensate is

hψ̄ψi ¼ −
qB

ð2πÞ2

Z
dpz

M

Eð0Þ
pz

h
1 − fFDðE

ð0Þ
pz − μÞ − fFDðE

ð0Þ
pz þ μÞ

i

−
qB

ð2πÞ2
X∞

n¼1

X

s

Z
dpz

M

EðnÞ
pz;s

h
1 − fFDðE

ðnÞ
pz;s − μÞ − fFDðE

ðnÞ
pz;s þ μÞ

i
: ðA12Þ

APPENDIX B: REGULARIZATION OF CHIRAL CONDENSATE
IN A BACKGROUND MAGNETIC FIELD

The scalar condensate of a quark of flavor f, with Nc color d.o.f. at finite temperature (T), chemical potential (μ) can be
expressed as

hψ̄fψfi
μ5¼0
B≠0 ¼ −

NcjqfjB
ð2πÞ2

X∞

n¼0

ð2 − δn;0Þ
Z

dpz
M0f

ϵðnÞpz;f

h
1 − fFD

*
ϵðnÞpz;f

− μ
+
− fFD

*
ϵðnÞpz;f

þ μ
+i

¼ hψ̄fψfi
μ5¼0
vac;B≠0 þ hψ̄fψfi

μ5¼0
med;B≠0; ðB1Þ

where hψ̄fψfi
μ5¼0
vac;B≠0 is the T ¼ 0, μ ¼ 0 part, or the vacuum part of the scalar condensate, and hψ̄fψfi

μ5¼0
med;B≠0 is the finite

temperature and finite chemical potential part or the medium part of the scalar condensate in the presence of magnetic field.
It is clear from Eq. (B1) the vacuum term is divergent for large momenta and however because of the distribution functions
the medium part in Eq. (B1) is not. Hence, it is important to regulate the vacuum part in Eq. (B1).
Let us consider the vacuum part hψ̄fψfi

μ5¼0
vac;B≠0, which is given as

hψ̄fψfi
μ5¼0
vac;B≠0 ¼ −

Nc

2π

X∞

n¼0

ð2 − δn;0ÞjqfjB
Z

∞

−∞

dpz

ð2πÞ
M0f

ϵðnÞpz;f

¼ −
Nc

2π

X∞

n¼0

2jqfjB
Z

∞

−∞

dpz

ð2πÞ
M0f

ϵðnÞpz;f

þ Nc

2π
jqfjB

Z
∞

−∞

dpz

ð2πÞ
M0f

ϵð0Þpz;f

¼ I1 þ I2: ðB2Þ

Both integrals I1 and I2 are divergent at large momentum. These integrals can be regularized using dimensional
regularization scheme. In this regularization scheme, integral I1 can be expressed as

I1 ¼ −
Nc

2π

X∞

n¼0

2jqfjB
Z

∞

−∞

dpz

ð2πÞ
M0f

ϵðnÞpz;f

¼ −
Nc

2π

X∞

n¼0

2jqfjB
M0fΓðϵ=2Þ

ð4πÞð1−ϵÞ=2Γð1=2Þðx0f þ nÞϵ=2
; ðB3Þ

where the dimensionless variable x0f ≡M2
0f
=2jqfjB. Similarly, the integral I2 can be expressed as
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I2 ¼
Nc

2π
jqfjB

Z
dpz

ð2πÞ
M0fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
0f
þ p2

z

q

¼
NcM0f jqfjB

ð2πÞ
Γðϵ=2Þ

ð4πÞð1−ϵÞ=2Γð1=2Þxϵ=20f

: ðB4Þ

Using Eqs. (B3) and (B4), vacuum part of the scalar condensate in the presence of magnetic field as given in Eq. (B2) can
be recasted as

I1 þ I2 ¼ −
Nc

2π
2jqfjBM0f

Γðϵ=2Þ
ð4πÞð1−ϵÞ=2Γð1=2Þ

%X∞

n¼0

1

ðx0f þ nÞϵ=2
−

1

2xϵ=20f

&

¼ −
Nc

2π
2jqfjBM0f

Γðϵ=2Þ
ð4πÞ1=2Γð1=2Þ

%
ζðϵ=2; x0fÞ −

1

2xϵ=20f

&
: ðB5Þ

Expanding the right-hand side of Eq. (B5) around ϵ → 0 and keeping only the leading order terms, we get

I1 þ I2 ¼ −
Nc

2π2
jqfjBM0f

%
−
2x0f
ϵ

þ γEx0f þ
1

2
ln x0f þ lnΓðx0fÞ −

1

2
lnð2πÞ

&
: ðB6Þ

In Eq. (B5), we have used the representation of zeta function, which is given as [115]

ζða; xÞ ¼
X∞

n¼0

1

ðxþ nÞa
: ðB7Þ

Also, we have used the following identities to get Eq. (B6):

ζð0; xÞ ¼
"
1

2
− x

#
; and; ζ0ð0; xÞ ¼ lnΓðxÞ − 1

2
lnð2πÞ; where ζ0ð0; xÞ ¼ dζða; xÞ

da

,,,,
a¼0

: ðB8Þ

It is clear from Eq. (B6) that the vacuum part has 1=ϵ divergent part. To remove this 1=ϵ divergence, we use the following
integral:

I3 ¼ −2Nc

Z
d3p
ð2πÞ3

M0fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

0f

q : ðB9Þ

Using dimensional regularization method, the integral in Eq. (B9) can be recasted as

I3 ¼
−2NcM0f

ð4πÞ3=2Γð1=2Þ
Γð−1þ ϵ=2Þ

ð2x0f jqfjBÞ
−1þϵ=2 : ðB10Þ

Expand the right-hand side of Eq. (B10) around ϵ → 0 and keeping only the leading order terms, we get

I3 ¼
−NcM0f jqfjB

2π2

%
−
2x0f
ϵ

− x0f þ x0fγE þ x0f ln x0f

&
: ðB11Þ

Using Eqs. (B6) and (B11), we get

I1 þ I2 − I3 ¼ −
NcM0f jqfjB

2π2

%
x0fð1 − ln x0fÞ þ lnΓðx0fÞ þ

1

2
ln
"x0f
2π

#&
: ðB12Þ
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Using Eqs. (B2) and (B12), we have the regularized vacuum part of the scalar condensate in the presence of magnetic
field and is given as

hψ̄fψfi
μ5¼0
vac;B≠0 ¼ I1 þ I2 − I3 þ I3

¼ −
NcM0f jqfjB

2π2

%
x0fð1 − ln x0fÞ þ lnΓðx0fÞ þ

1

2
ln
"x0f
2π

#&
− 2Nc

Z

jp⃗j≤Λ

d3p
ð2πÞ3

M0fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

0f

q : ðB13Þ

Again,

I1 ¼ I1 − I3 þ I3

¼ −
NcjqfjBM0f

2π2

%
1

ϵ
−
γE
2
þ x0fð1 − ln x0fÞ þ lnΓðx0fÞ −

1

2
lnð2πÞ

&
− 2Nc

Z
d3p
ð2πÞ3

M0fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

0f

q : ðB14Þ

Hence,

I ≡ −
NcjqfjB
ð2πÞ2

X

s¼%1

X∞

n¼0

Z
dpz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þM2

0f
þ 2njqfjB

q

¼ −
Nc

2π2
jqfjB

%
1

ϵ
−
γE
2
þ x0fð1 − ln x0fÞ þ lnΓðx0fÞ −

1

2
lnð2πÞ

&
− 2Nc

Z
d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

0f

q : ðB15Þ

Using Eq. (B15), we get

NcjqfjB
ð2πÞ2

X

s¼%1

X∞

n¼0

Z
dpz

1

ðp2
z þM2

0f
þ 2njqfjBÞ3=2

≡ 1

M0f

∂I
∂M0f

¼ − Nc

2π2

%
− ln x0f þ

Γ0ðx0fÞ
Γðx0fÞ

&
þ 2Nc

Z

jp⃗j≤Λ

d3p
ð2πÞ3

1

ðp2 þM2
0f
Þ3=2

:

ðB16Þ

APPENDIX C: REGULARIZATION OF CHIRAL CONDENSATE IN A BACKGROUND MAGNETIC
FIELD AND CHIRAL CHEMICAL POTENTIAL

The scalar condensate of a quark of flavor f with Nc color d.o.f. at finite temperature (T), quark chemical potential (μ),
chiral chemical potential (μ5), electric charge (qf), and magnetic field (B) can be expressed as

hψ̄fψfi
μ5≠0
B≠0 ¼ −

NcjqfjB
ð2πÞ2

%Z
dpz

Mf

Eð0Þ
pz;f

h
1 − fFD

*
Eð0Þ
pz;f

− μ
+
− fFD

*
Eð0Þ
pz;f

þ μ
+i

þ
X∞

n¼1

X

s

Z
dpz

Mf

EðnÞ
pz;s;f

h
1 − fFD

*
EðnÞ
pz;s;f

− μ
+
− fFD

*
EðnÞ
pz;s;f

þ μ
+i&

¼ hψ̄fψfi
μ5≠0
vac;B≠0 þ hψ̄fψfi

μ5≠0
med;B≠0; ðC1Þ

where hψ̄fψfi
μ5≠0
vac;B≠0 is the T ¼ 0, μ ¼ 0 part or the vacuum part of the scalar condensate, and hψ̄fψfi

μ5≠0
med;B≠0 is the finite

temperature and finite chemical potential part or the medium part of the scalar condensate in the presence of magnetic field
and chiral chemical potential (μ5). It is clear from Eq. (C1) that the vacuum term is divergent at large momenta and however
because of the distribution functions the medium part in Eq. (C1) is not. Hence, the vacuum term has to be regularized.
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The vacuum term in the presence of magnetic field and chiral chemical potential can be expressed as

hψ̄fψfi
μ5≠0
vac;B≠0 ¼ −Nc

jqfjB
ð2πÞ2

Z
dpz

Mfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ ðpz − μ5Þ2
q − Nc

jqfjB
ð2πÞ2

X∞

n¼1

X

s¼%1

Z
dpz

Mfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2njqfjB

q
− sμ5

+
2

r

¼ −Nc
jqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

Mfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2njqfjB

q
− sμ5

+
2

r þ Nc
jqfjB
ð2πÞ2

Z
dpz

Mfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ ðpz − μ5Þ2
q

¼ −Nc
jqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

1

π

Z
∞

−∞
dp4

Mf

p2
4 þ

*
M2

f þ
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2njqfjB

q
− sμ5

+
2
+

þ Nc
jqfjB
ð2πÞ2

Z
dpz

1

π

Z
∞

−∞
dp4

Mf

p2
4 þM2

f þ ðpz − μ5Þ2

¼ I1 þ I2: ðC2Þ

Using the regularization method discussed in Ref. [59], we can write the integrand of the integral I1 as given in the
Eq. (C2) as follows:

1

p2
4 þM2

f þ
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2njqfjB

q
− sμ5

+
2

¼ 1

p2
4 þ p2

z þM2
0f
þ 2njqfjB

−
1

p2
4 þ p2

z þM2
0f
þ 2njqfjB

þ 1

p2
4 þM2

f þ
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2njqfjB

q
− sμ5

+
2

¼ 1

p2
4 þ p2

z þM2
0f
þ 2njqfjB

þ
M2

0f
−M2

f − μ25 þ 2sμ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q

ðp2
4 þ p2

z þM2
0f
þ 2njqfjBÞ

*
p2
4 þM2

f þ
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2njqfjB

q
− sμ5

+
2
+ : ðC3Þ

Using Eq. (C3) twice, we can write the integrand of the integral I1 in the following way:

1

p2
4 þM2

f þ
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2njqfjB

q
− sμ5

+
2
¼ 1

p2
4 þ p2

z þM2
0f
þ 2njqfjB

þ
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q

ðp2
4 þ p2

z þM2
0f
þ 2njqfjBÞ2

þ

*
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q +
2

ðp2
4 þ p2

z þM2
0f
þ 2njqfjBÞ3

þ

*
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q +
3

ðp2
4 þ p2

z þM2
0f
þ 2njqfjBÞ3

*
p2
4 þM2

f þ
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2njqfjB

q
− sμ5

+
2
+ ;

ðC4Þ

where A ¼ M2
0f
−M2

f − μ25. Performing p4 integration in each term of Eq. (C4), we get

1

π

X

s

Z
dp4

1

p2
4 þ p2

z þM2
0f
þ 2njqfjB

¼
X

s

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þM2

0f
þ 2njqfjB

q ðC5Þ
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1

π

X

s

Z
dp4

Aþ 2sμ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q

ðp2
4 þ p2

z þM2
0f
þ 2njqfjBÞ2

¼
X

s

1

2

A
ðp2

z þM2
0f
þ 2njqfjBÞ3=2

ðC6Þ

1

π

X

s

Z
dp4

*
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q +
2

ðp2
4 þ p2

z þM2
0f
þ 2njqfjBÞ3

¼
X

s

%
3

8

A2

ðp2
z þM2

0f
þ 2njqfjBÞ5=2

−
3

2

μ25M
2
0f

ðp2
z þM2

0f
þ 2njqfjBÞ5=2

þ 3

2

μ25
ðp2

z þM2
0f
þ 2njqfjBÞ3=2

&
ðC7Þ

1

π

X

s

Z
dp4

*
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q +
3

ðp2
4 þ p2

z þM2
0f
þ 2njqfjBÞ3

*
p2
4 þM2

f þ
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2njqfjB

q
− sμ5

+
2
+

¼ 1

π

X

s

Z
dp4

Z
1

0
dx

3ð1 − xÞ2
*
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q +
3

h
x
*
p2
4 þM2

f þ
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2njqfjB

q
− sμ5

+
2
+
þ ð1 − xÞðp2

4 þ p2
z þM2

0f
þ 2njqfjBÞ

i
4

¼
X

s

15

16

Z
1

0
dx

ð1 − xÞ2
*
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q +
3

h
p2
z þM2

0f
þ 2njqfjB − x

*
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q +i
7=2

: ðC8Þ

Using Eqs. (C5)–(C8), integral I1 in Eq. (C2) can be expressed as

I1 ¼ −Nc
jqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

Mfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2njqfjB

q
− sμ5

+
2

r

¼ I1quad −
MfðM2

0f
−M2

f þ 2μ25Þ
2

I1log þ I1finite1 þ I1finite2 ; ðC9Þ

where

I1quad ¼ −Nc
jqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

Mfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þM2

0f
þ 2njqfjB

q ; ðC10Þ

I1log ¼ Nc
jqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

1

ðp2
z þM2

0f
þ 2njqfjBÞ3=2

; ðC11Þ

I1finite1 ¼ −Nc
jqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

"
3

8

#% MfA2 − 4MfM2
0f
μ25

ðp2
z þM2

0f
þ 2njqfjBÞ5=2

&
; ðC12Þ

I1finite2 ¼ −Nc
jqfjB
ð2πÞ2

"
15

16

#X∞

n¼0

X

s¼%1

Z
dpz

Z
1

0
dx

ð1 − xÞ2Mf

*
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q +
3

h
p2
z þM2

0f
þ 2njqfjB − x

*
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q +i
7=2

: ðC13Þ
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In a similar way, the integral I2 in Eq. (C2) can also be written as

I2 ¼ Nc
jqfjB
ð2πÞ2

Z
dpz

Mfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ ðpz − μ5Þ2
q

¼ Nc
jqfjB
ð2πÞ2

Z
dpz

Mfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ ðpz − μ5Þ2
q − Nc

jqfjB
ð2πÞ2

Z
dpz

Mfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þM2

0f

q þ Nc
jqfjB
ð2πÞ2

Z
dpz

Mfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þM2

0f

q

¼
"
1

2

#
Nc

jqfjB
ð2πÞ2

Z
dpz

Z
1

0
dx

MfðAþ 2pzμ5Þ
½p2

z þM2
0f
− xðAþ 2pzμ5Þ'3=2

þ Nc
jqfjB
ð2πÞ2

Z
dpz

Mfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þM2

0f

q

¼ I2finite þ I2log : ðC14Þ

Using Eqs. (C9) and (C14), Eq. (C2) can be recasted as

hψ̄fψfi
μ5≠0
vac;B≠0 ¼ −

MfðM2
0f
−M2

f þ 2μ25Þ
2

I1log þ I1finite1 þ I1finite2 þ I2finite þ I1quad þ I2log ; ðC15Þ

where

I1log ¼ −
Nc

2π2

%
− ln x0f þ

Γ0ðx0fÞ
Γðx0fÞ

&
þ 2Nc

Z

jp⃗j≤Λ

d3p
ð2πÞ3

1

ðp2 þM2
0f
Þ3=2

; ðC16Þ

and

I1quad þ I2log ¼ −
NcMfjqfjB

2π2

%
x0fð1 − ln x0fÞ þ lnΓðx0fÞ þ

1

2
ln
"x0f
2π

#&
− 2Nc

Z

jp⃗j≤Λ

d3p
ð2πÞ3

Mfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

0f

q : ðC17Þ

In Eqs. (C16) and (C17), we have used Eqs. (B16) and (B13), respectively.

APPENDIX D: CHIRAL SUSCEPTIBILITY AND ITS REGULARIZATION IN THE PRESENCE
OF A BACKGROUND MAGNETIC FIELD AND CHIRAL CHEMICAL POTENTIAL

Using Eq. (C2), we get

∂hψ̄fψfi
μ5≠0
vac;B≠0

∂Mf
¼ −

NcjqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2njqfjB

q
− sμ5

+
2

r

þ
NcjqfjB
ð2πÞ2

Z
dpz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ ðpz − μ5Þ2
q

þ
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

M2
f*

M2
f þ

* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q
− sμ5

+
2
+
3=2

−
NcjqfjB
ð2πÞ2

Z
dpz

M2
f

ðM2
f þ ðpz − μ5Þ2Þ3=2

¼ I1 þ I2 þ I3 þ I4: ðD1Þ
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Using Eq. (C9), we can write

I1 ¼ −Nc
jqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2njqfjB

q
− sμ5

+
2

r

¼ I1;quad −
ðM2

0f
−M2

f þ 2μ25Þ
2

I1;log þ I1;finite1 þ I1;finite2; ðD2Þ

where

I1;quad ¼ −Nc
jqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þM2

0f
þ 2njqfjB

q ; ðD3Þ

I1;log ¼ Nc
jqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

1

ðp2
z þM2

0f
þ 2njqfjBÞ3=2

; ðD4Þ

I1;finite1 ¼ −Nc
jqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

"
3

8

#% A2 − 4M2
0f
μ25

ðp2
z þM2

0f
þ 2njqfjBÞ5=2

&
; ðD5Þ

I1;finite2 ¼ −Nc
jqfjB
ð2πÞ2

"
15

16

#X∞

n¼0

X

s¼%1

Z
dpz

Z
1

0
dx

ð1 − xÞ2
*
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q +
3

h
p2
z þM2

0f
þ 2njqfjB − x

*
Aþ 2sμ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q +i
7=2

: ðD6Þ

The integral I2 in Eq. (D1) can be expressed as

I2 ¼ Nc
jqfjB
ð2πÞ2

Z
dpz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

f þ ðpz − μ5Þ2
q ¼ I2;finite þ I2;log; ðD7Þ

where divergence free I2;finite is

I2;finite ¼
"
1

2

#
Nc

jqfjB
ð2πÞ2

Z
dpz

Z
1

0
dx

ðAþ 2pzμ5Þ
½p2

z þM2
0f
− xðAþ 2pzμ5Þ'3=2

; ðD8Þ

and the divergence term I2;log is

I2;log ¼
NcjqfjB
ð2πÞ2

Z
dpz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þM2

0f

q : ðD9Þ

Similarly, the integral I3 can be separated into a divergent term and a convergent term as

I3 ¼
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

M2
f*

M2
f þ

* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqfjB

q
− sμ5

+
2
+
3=2 ¼ I3;finite þ I3;log; ðD10Þ

where

I3;finite ¼
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpzM2

f

2

64
1

*
M2

f þ
* ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
z þ 2njqfjB

q
− sμ5

+
2
+
3=2 −

1

ðM2
0f
þ p2

z þ 2njqfjBÞ3=2
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and

I3;log ¼
NcjqfjB
ð2πÞ2

X∞

n¼0

X

s¼%1

Z
dpz

M2
f

ðM2
0f
þ p2

z þ 2njqfjBÞ3=2
: ðD12Þ

It can be shown that the term I3;finite is finite. On the other hand, the term I3;log is not convergent at large momenta. Using
Eqs. (D2), (D7), and (D10), Eq. (D1) can be rearranged in the following way:

∂hψ̄fψfi
μ5≠0
vac;B≠0

∂Mf
¼ I1;quad −

M2
0f
−M2

f þ 2μ25
2

I1;log þ I1;finite1 þ I1;finite2 þ I2;finite þ I3;finite þ I4 þ I2;log þ I3;log

¼ −
M2

0f
−M2

f þ 2μ25
2

I1;log þ I1;finite1 þ I1;finite2 þ I2;finite þ I3;finite

þ
"
I4 þ

NcjqfjB
ð2πÞ2

Z
dpz

M2
f

ðM2
0f
þ p2

zÞ3=2

#
þ ðI1;quad þ I2;logÞ

þ
"
I3;log −

NcjqfjB
ð2πÞ2

Z
dpz

M2
f

ðM2
0f
þ p2

zÞ3=2

#

¼ −
M2

0f
−M2

f þ 2μ25
2

I1;log þ I1;finite1 þ I1;finite2 þ I2;finite þ I3;finite þ Ifinite þ Iquad þ Ilog; ðD13Þ

where Ifinite is

Ifinite ¼ I4 þ
NcjqfjB
ð2πÞ2

Z
dpz

M2
f

ðp2 þM2
0f
Þ3=2

; ðD14Þ

and

Iquad ¼ I1;quad þ I2;log

¼ −
NcjqfjB
2π2

%
x0fð1 − ln x0fÞ þ lnΓðx0fÞ þ

1

2
ln
"x0f
2π

#&
−

2Nc

ð2πÞ3

Z

jp⃗j≤Λ
d3p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

0f

q : ðD15Þ

Ilog ¼ I3;log −
NcjqfjB
ð2πÞ2

Z
dpz

M2
f

ðp2 þM2
0f
Þ3=2

;

¼ −
NcM2

f

2π2
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1
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d3p
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f
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with

I1;log ¼
NcjqfjB
ð2πÞ2

X
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Z
dpz

1
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Abstract A thermal gradient and/or a chemical potential
gradient in a conducting medium can lead to an electric field,
an effect known as thermoelectric effect or Seebeck effect.
In the context of heavy-ion collisions, we estimate the ther-
moelectric transport coefficients for quark matter within the
ambit of the Nambu–Jona Lasinio (NJL) model. We esti-
mate the thermal conductivity, electrical conductivity, and
the Seebeck coefficient of hot and dense quark matter. These
coefficients are calculated using the relativistic Boltzmann
transport equation within relaxation time approximation.
The relaxation times for the quarks are estimated from the
quark–quark and quark–antiquark scattering through meson
exchange within the NJL model. As a comparison to the NJL
model estimation of the Seebeck coefficient, we also estimate
the Seebeck coefficient within a quasiparticle approach.

1 Introduction

Heavy-ion collision experiments conducted at particle accel-
erators allow us to study the properties of fundamental con-
stituents of nature, such as quarks and gluons. Experiments
at relativistic heavy ion collider (RHIC) and large hadron
collider (LHC) indicate the formation of such a deconfined
medium of quarks and gluons. The partonic medium such
produced behaves like a strongly interacting liquid with a
small value of shear viscosity (η) to entropy density (s) ratio
(η/s), expands, cools down and undergoes a transition to
the hadronic phase and finally free streams to the detector.
One of the successful descriptions of the bulk evolution of
such strongly interacting matter has been through relativistic
hydrodynamics. Transport coefficients are important input
parameters that enter in such a dissipative hydrodynamic

a e-mail: aman@prl.res.in
b e-mail: arpan.das@ifj.edu.pl
c e-mail: deepakk@prl.res.in
d e-mail: hm@prl.res.in (corresponding author)

description as well as in transport simulations that have been
used to describe the evolution of such matter produced in a
heavy-ion collision.

Hydrodynamic studies of the heavy-ion collisions suggest
that the medium produced has a very small ratio of shear vis-
cosity to entropy density (η/s) [1–3]. It is amongst the small-
est of known materials suggesting the quark–gluon plasma
(QGP) formed is the most perfect fluid. The value of this ratio
estimated from experiments is also found to be close to the
conjectured KSS bound on the value of η/s [3]. Just like shear
viscosity determines the response to transverse momentum
gradients there are other transport coefficients such as bulk
viscosity, electrical conductivity, etc. which determine the
response of the system to other such perturbations. Bulk vis-
cosity [4–9] determines the response to bulk stresses. It scales
with the conformal anomaly ( ε−3P

T 4 ) and is expected to be
large near the phase transition as inferred from lattice calcu-
lations [10,11]. The effect of such a large bulk viscosity to
entropy ratio have been investigated on the particle spectrum
and flow coefficients [12,13]. Electrical conductivity (σel )
[14–32] is also important as the heavy-ion collisions may be
associated with large electromagnetic fields. The magnetic
field produced in non-central collisions has been estimated
to be of the order of ∼ m2

π at RHIC energy scales [33–40].
Such magnetic fields are amongst the strongest magnetic
fields produced in nature and can affect various properties
of the strongly interacting medium. They may also lead to
interesting CP-violating effects such as chiral magnetic effect
etc [41]. In a conducting medium, the evolution of the mag-
netic field depends on the electrical conductivity. Electrical
conductivity modifies the decay of the magnetic field sub-
stantially in comparison with the decay of the magnetic field
in vacuum. Hence the estimation of the electrical conductiv-
ity of the strongly interacting medium is important regarding
the decay of the magnetic field produced at the initial stage
of heavy ion collision. These transport coefficients have been
estimated in perturbative QCD and effective models [19,42–
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61]. At finite baryon densities, the other transport coefficient
that is relevant is the coefficient of thermal conductivity and
has been studied in [62,63] both in the hadronic matter as
well as partonic matter.

In the present investigation, we focus on the thermoelec-
tric response of the strongly interacting system produced in a
heavy-ion collision. It is well known from a condensed mat-
ter system that a temperature gradient can result in the gen-
eration of an electric current. This is known as the Seebeck
effect. Due to temperature gradient, there is a non zero gradi-
ent of charge density leading to the generation of an electric
field. A measure of the electric field produced in a conducting
medium due to a temperature gradient is the Seebeck coeffi-
cient which is defined as the ratio of an electric field to the
temperature gradient in the limit of vanishing electric current.
Seebeck effect has been extensively studied in condensed
matter systems such as superconductors, quantum dots, high-
temperature cuprates, superconductor–ferromagnetic tunnel
junctions, low dimensional organic metals, etc [64–72]. Such
a phenomenon could also be present in the thermal medium
created in heavy-ion collisions. In condensed matter systems
only a temperature gradient is required for thermoelectric
effect as there is only one type of dominant charge carriers in
these systems. In the strongly interacting medium produced
in heavy-ion collision both positive and negative charges con-
tribute to transport phenomena. For vanishing baryon chem-
ical potential (quark chemical potential) with equal numbers
of particles and antiparticles there is no net thermoelectric
effect. Thus a finite baryon chemical potential (quark chem-
ical potential) is required for the thermoelectric effect to be
observed. The strongly interacting matter at finite baryon
density can be produced in low energy heavy-ion collisions
at finite, e.g. at FAIR and NICA. Along with the temper-
ature gradient, we also consider a gradient in the baryon
(quark) chemical potential to estimate the Seebeck coeffi-
cient of the partonic medium. The gradient in the chemi-
cal potential has effects similar to the temperature gradient.
Using Gibbs Duhem relation for a static medium one can
express gradient in the baryon (quark) chemical potential to
a gradient in temperature. Effect of the chemical potential
gradient significantly affects the thermoelectric coefficients
as has been demonstrated in Ref. [73].

Seebeck effect in the hadronic matter has been investi-
gated previously by some of us within the framework of the
Hadron resonance gas model [73,74]. However, the Hadron
resonance gas model can only describe the hadronic medium
at chemical freezeout whereas one expects deconfined par-
tonic medium at the early stages of the heavy-ion collisions.
In this investigation, we estimate the thermoelectric behav-
ior of the partonic medium within the framework of the NJL
model. Seebeck coefficient has also been estimated for the
partonic matter within relaxation time approximation in Ref.
[75,76]. However, this has been attempted with the relax-

ation time estimated within perturbative QCD which may be
valid for asymptotically high temperatures. Further, it ought
to be mentioned that, the vacuum structure of QCD remain
nontrivial near the critical temperature region with nonva-
nishing values for the quark–antiquark condensates associ-
ated with chiral symmetry breaking as well as Polyakov loop
condensates associated with the physics of statistical confine-
ment [77–80]. Indeed, within the ambit of the NJL model,
it was shown that the temperature dependence of viscosity
coefficients exhibits interesting behavior of phase transition
with the shear viscosity to entropy ratio showing a minimum
while the coefficient of bulk viscosity showing a maximum
at the phase transition [77,78,81]. The crucial reason for this
behavior was the estimation of relaxation time using medium
dependent masses for the quarks as well as the exchanged
mesons which reveal nontrivial dependence before and after
the transition temperature. This motivates us to investigate
the behavior of thermoelectric transport coefficients within
the NJL model which takes into account the medium depen-
dence of quark and meson masses. This model has been used
to study different transport properties of quark matter at high
temperatures [6,31,81,82] and high densities [83–90]. Apart
from the NJL model we also use quasi-particle model [91–
97], which provides a reasonable thermodynamic and trans-
port behavior of the deconfined phase.

We organize the paper in the following manner. In Sect. 2,
we discuss the Boltzmann equation within relaxation time
approximation to have the expressions for the different ther-
moelectric transport coefficients in the presence of a conden-
sate. In Sect. 3 we discuss thermodynamics and estimation of
relaxation time within the two flavor NJL model. In Sect. 4
we discuss the quasiparticle approach in the absence of any
quark–antiquark condensate. In Sect. 5 we present the results
of different transport coefficients. Finally, we give a possible
outlook of the present investigation and conclude in Sect. 6.

2 Boltzmann equation in relaxation time
approximation and transport coefficients

Within a quasiparticle approximation, a kinetic theory treat-
ment for the calculation of transport coefficient can be a rea-
sonable approximation that we shall be following similar to
that in Refs. [5,6,45,46,98,99]. The plasma can be described
by a phase space density for each species of particle. Near
equilibrium, the distribution function can be expanded about
a local equilibrium distribution function for the quarks as,

f (x,p, t) = f (0)(x,p)+ δ f (x,p, t),

where the local equilibrium distribution function f (0) is given
as

f (0)(x,p) =
[
exp

(
β(x)

(
uν pν ∓ µ(x)

))
+ 1

]−1
. (1)
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Here, uµ = γu(1,u), is the flow four-velocity, where,
γu = (1 − u2)1/2; µ is the chemical potential associated
with a conserved charge. Here µ denotes the quark chem-
ical potential and β = 1/T is the inverse of temperature.
Further, pµ = (E,p) is the particle four momenta, single
particle energy E =

√
p2 + M2 with p = |p|. M is the

mass of the particle which in general is medium dependent.
The departure from the equilibrium is described by the Boltz-
mann equation,

d fa(x,p, t)
dt

= ∂ fa
∂t

+ dxi

dt
∂ fa
∂xi

+ dpi

dt
∂ fa
∂pi

= Ca[ f ], (2)

where we have introduced the species index ‘a’ on the dis-
tribution function. The right-hand side is the collision term
which we shall discuss later. The left-hand side of the Boltz-
mann equation involves the trajectory x(t) and the momen-
tum p(t). This trajectory, in general, not a straight line as
the particle is moving in a mean-field, which, in general, can
be space time-dependent. The velocity of the particle ‘a’ is
given by

dxi

dt
= ∂Ea

∂pia
= pia

Ea
= via .

Next, the time derivative of momentum , the force, in pres-
ence of an electric field (E), magnetic field (B) and a mean
field dependent mass can be written as

dpi

dt
= −∂Ea

∂xi
+ qa(E i + εi jkv j Bk).

The time derivatives of x and p can be substituted on the
left-hand side of the Boltzmann equation Eq. (2) and the same
reduces to

∂ fa
∂t

+ vi
∂ fa
∂xi

+ ∂ fa
∂pi

(
−Ma

Ea

∂Ma

∂xi
+ qa(E i + εi jkv j Bk)

)

= Ca[ f ]. (3)

For the collision term on the right-hand side, we shall be lim-
iting ourselves to 2 → 2 scatterings only. In the relaxation
time approximation the collision term for species a, all the
distribution functions are given by the equilibrium distribu-
tion function except the distribution function for particle a.
The collision term, to first order in the deviation from the
equilibrium function, will then be proportional to δ fa , given
the fact that Ca[ f (0)] = 0 by the principle of local detailed
balance. In that case, the collision term is given by

C[ f ] = −δ fa
τa

, (4)

where, τa , the relaxation time for particle ‘a’. In general
relaxation time is a function of energy. We shall discuss more
about it in the subsequent subsection where we estimate it

within the NJL model. As an approximation of the colli-
sion kernel in the Boltzmann equation one can also use other
collision terms, e.g. Chapmann–Enskog method apart from
the relaxation time approximation [4–6,44,45,47,99]. The
relaxation time approximation for the collision integral in
the Boltzmann equation may not be a controlled approxima-
tion scheme. The Chapmann–Enskog method which uses a
variational approach can in principle allows one to obtain
solutions with arbitrary accuracy. Nonetheless, the relax-
ation time approximation has been used more often to eval-
uate transport coefficients due to its simplicity. Although
Chapmann–Enskog method can be in satisfying agreement
with the Green–Kubo formalism, the qualitative behavior of
various transport coefficients also remains the same in the
relaxation time approximation [47]. Therefore as a first step
towards the estimation of the thermoelectric transport coeffi-
cient within the framework of an effective model of QCD, we
stick to the relaxation time approximation. Any calculation
with a more realistic collision term will be an improvement
on the present results.

Returning back to the left-hand side of Eq. (3), we keep up
to the first order in gradients in space-time. The left-hand side
of the Boltzmann equation Eq. (3), is explicitly small because
of the gradients and we, therefore, may replace fa by f (0)a .
While the spatial derivative of the distribution function is
given by,

∂ f (0)a

∂xi
= − f (0)a (1 − f (0)a )∂i (βEa − βµa)

= − f (0)a (1 − f (0)a )

(
− Ea

T 2 ∂i T + β
Ma

Ea

∂Ma

∂xi

− ∂i (βµa)

)
, (5)

here µa = baµ, ba being the quark number, i.e. ba = 1
for quarks and ba = −1 for antiquarks. The momentum
derivative of the equilibrium distribution function is given
by,

∂ f (0)a

∂pi
= − 1

T
f (0)a (1 − f (0)a )via . (6)

Substituting Eqs. (6) and (5) in the Boltzmann equation
Eq. (3) for the static case (where the distribution function is
not an explicit function of time) in the absence of magnetic
field we have

− f (0)a (1− f (0)a )

[
via

(
− 1
T 2 ∂i T Ea−∂i (βµa)

)
+qaβviaE i

]

= −δ fa
τa

. (7)
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The spatial gradients of temperature and chemical potential
can be related using momentum conservation in the system
and Gibbs Duhem relation. Momentum conservation in a
steady-state leads to ∂i P = 0 (P , being the pressure) [100].
Using Gibbs Duhem relation, the pressure gradient can be
written as, with the enthalpy ω = ε + P ,

∂i P = ω

T
∂i T + Tnq∂i (µ/T ) (8)

which vanishes in steady-state. nq denotes the net quark num-
ber density and ε is the energy density. The above equation
relates the spatial gradient of temperature to the spatial gra-
dients in chemical potential as,

∂iµ =
(
µ − ω

nq

)
∂i T
T

. (9)

Using Eqs. (9) and (7), δ fa , the deviation of the distribution
function is given as,

δ fa = τa f 0
a (1 − f 0

a )

T

[
qava · E −

(
Ea − ba

ω

nq

)
va · ∇T

T

]
.

(10)

The nonequilibrium part of the distribution function gives
rise to transport coefficients. The electric current is now given
as,

J =
∑

a
ga

∫
d3 pa
(2π)3

qava δ fa

=
∑

a

gaq2
a

3T

∫
d3 pa
(2π)3

v2
aτa f 0

a (1 − f 0
a ) E

−
∑

a

gaqa
3T 2

∫
d3 pa
(2π)3

τa

(
Ea − ba

ω

nq

)
f 0
a (1 − f 0

a )v
2
a ∇T .

(11)

In Eq. (11) we have used viav
j
a = 1

3v
2
aδ

i j as because the
integrand only depends on the magnitude of momenta. Fur-
ther, the sum is over all flavors including antiparticles. The
degeneracy factor ga = 6 corresponding to color and spin
degrees of freedom. ba is the quark number i.e. ba = ±1 for
quarks and antiquarks respectively.

Next, we write down the heat current I associated with the
conserved quark number. For a relativistic system, thermal
current arises corresponding to a conserved particle number.
The thermal conduction due to quarks arises when there is
energy flow relative to enthalpy [100]. Therefore the heat
current is defined as [100],

I i =
∑

a

T 0i
a − ω

nq

∑

a

ba J iqa . (12)

Here, nq is the net quark number density. The energy flux
is given by T 0i , the spatio-temporal component of energy-
momentum tensor (Tµν) [100],

T 0i
a = ga

∫
d3 pa
(2π)3 p

i
a fa, (13)

while, the quark current is given Jq is given by

J iqa = ga

∫
d3 pa
(2π)3

pia
Ea

faba . (14)

Clearly, the contribution to the energy flux and quark cur-
rent vanishes arising from the equilibrium distribution func-
tion f (0)a due to symmetry consideration and it is only the
nonequilibrium part δ fa that contribute to the energy flux
and quark current in Eqs. (13) and (14) respectively. Substi-
tuting the expression for δ fa from Eq. (10) in Eq. (12), the
heat current I is given as,

I =
∑

a

ga
3T

∫
d3 pa
(2π)3 f 0

a (1 − f 0
a )v

2
aτa

[
qa

(
Ea − ba

ω

nq

)
E

−
(
Ea − ba

ω

nq

)2 ∇T
T

]
(15)

The Seebeck coefficient S is defined by setting the electric
current J = 0 in Eq. (11) so that the electric field becomes
proportional to the temperature gradient i.e.

E = S∇T . (16)

Therefore the Seebeck coefficient for the quark matter in the
presence of a gradient in temperature and chemical potential
can be expressed as,

S =
∑

a
gaqa
3T

∫ d3 pa
(2π)3 τav

2
(
Ea − ba ω

nq

)
f (0)a (1 − f (0)a )

T
∑

a
ga
3T q

2
a

∫ d3 pa
(2π)3 v

2τa f
(0)
a (1 − f (0)a )

(17)

The denominator of the Seebeck coefficient in the above may
be identified as Tσel , where the electrical conductivity σel is
given by [21,101],

σel =
∑

a

ga
3T

q2
a

∫
d3 pa
(2π)3

(
pa
Ea

)2

τa f (0)a (1 − f (0)a ) (18)

which may be identified from Eq. (11). Let us note that,
while the denominator of the Seebeck coefficient is positive
definite, the numerator is not so as it is linearly dependent on
the electric charge of the species as well as on the difference
(Ea − ba ω

nq
). This makes the Seebeck coefficient not always
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positive definite. This is also observed in different condensed
matter systems [102].

In terms of the electrical conductivity and the Seebeck
coefficient, the electric current Eq. (11) can be written as

J = σelE − σel S∇T . (19)

In a similar manner, the heat current as given in Eq. (15)
can be written as,

I = Tσel SE − κ0∇T, (20)

where, κ0, the thermal conductivity can be written as [100]

κ0 =
∑

a

ga
3T 2

∫
d3 pa
(2π)3 τa

(
pa
Ea

)2 (
Ea − ba

ω

nq

)2

f (0)a (1 − f (0)a ). (21)

Using Eqs. (19) and (20), we can express the heat current (I)
in terms of electric current (J) in the following way,

I = T SJ −
(
κ0 − Tσel S2

)
∇T . (22)

From Eq. (22) we can identify the Peltier coefficient (Π )
and thermal conductivity (κ) in the presence of nonvanishing
Seebeck coefficient as,

Π = T S, κ = κ0 − Tσel S2. (23)

Note that the relation between the Peltier coefficient (Π )
and the Seebeck coefficient as given in Eq. (23) can be con-
sidered as the consistency relation. Also, note that the thermal
conductivity in the absence of any thermoelectric effect as
given in Eq. (21) matches with the expression of the thermal
conductivity as reported in [100]. The Seebeck coefficient
(S), thermal conductivity (κ0), and the electrical conductiv-
ity (σel ) depend upon, the estimation of the relaxation time as
well as the quark masses that goes into the distribution func-
tions through the single-particle energies and are medium
dependent. We estimate these quantities in the Nambu–Jona–
Lasinio model which is described in the next section.

Before we start the discussion of the relaxation time within
the framework of the NJL model we should emphasize the
key features of the formalism as discussed above. The for-
malism of the transport coefficients as presented in Ref. [81]
was developed to incorporate the effect of a nonvanishing
dynamical quark condensate. In the present manuscript, we
incorporated the effect of a dynamical condensate in the for-
malism of thermoelectric effects following Ref. [81]. On the
other hand, the formalism of thermoelectric transport coeffi-
cients as presented in Refs. [73,74] do not include the effect

of any dynamical condensate. Note that the formalism to
calculate transport coefficients using the Boltzmann equa-
tion is fundamentally different in the presence of a dynam-
ical condensate. In the presence of such a condensate, there
exists an additional effective force term (see Eq. (3)) which
is not present otherwise [73,74]. Therefore the formalism
presented here should not be considered to be the same as
the formalism presented in Refs. [73,74]. Furthermore, the
final expression of the Seebeck coefficient and the thermal
conductivity as obtained in the present investigation exactly
resembles the results as given in Refs. [73,74,81]. This is
an interesting outcome despite the fact that in the present
investigation we started with a Boltzmann kinetic equation
which is different from the same given in Refs. [73,74]. This
is because the term proportional to ∂M/∂x , which also acts
as an effective force term in the Boltzmann equation (see
Eq. (3)), gets exactly canceled by a similar term originat-
ing from ∂ f (0)/∂x . We should also point out that the con-
stituent quark mass which enters into the expressions of var-
ious transport coefficients through the single particle energy
also carries nontrivial temperature and chemical potential
dependence due to the presence of the gap equation. Such a
temperature and chemical potential dependence of the single
particle energy was not present in our earlier investigations,
e.g. Ref. [73,74]. Therefore even if the analytical expressions
presented in this investigation look similar to the expressions
presented in Ref. [73,74], the theoretical formalism and the
temperature and chemical potential dependence of various
thermoelectric transport coefficients are different.

3 Estimation of relaxation time in NJL model

We model the partonic medium using the two flavor Nambu–
Jona–Lasinio (NJL) model and estimate the thermodynamic
quantities, the quasi particle masses in the medium and the
relaxation time. The two flavour NJL model with u and d
quark, can be described by the following Lagrangian [103],

L = ψ̄(i /∂ − mq)ψ + G
[
(ψ̄ψ)2 + (ψ̄iγ 5τψ)2

]
. (24)

Here, ψ is the doublet of u and d quarks; mq is the current
quark mass matrix which is diagonal with elements mu and
md and we take them to be same as m0 assuming isospin
symmetry; τ are the Pauli matrices in the flavor space; G
is the scalar coupling. NJL model is a QCD inspired effec-
tive model which incorporates various aspects of the chi-
ral symmetry of QCD. The NJL model Lagrangian as given
in Eq. (24) is symmetric under the chiral symmetry group
SU (2)V × SU (2)A ×U (1)V . The thermodynamic quantities
e.g., pressure (P), energy density (ε) and the number den-
sity (nq) can be obtained once we know the thermodynamic
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potential of the NJL model. In a grand canonical ensemble,
the thermodynamic potential (Ω) or equivalently the pressure
(P) can be expressed as,

−P = Ω(β, µ) = (M − m0)
2

4G

− 2NcN f

(2π)3β

∫
dk

[
log

(
1 + e−β(E−µ)

)

+ log
(

1 + e−β(E+µ)

)]
− 2NcN f

(2π)3

∫
dk

√
k2 + M2.

(25)

In the above, Nc = 3 is the number of colors and N f = 2 is
the number of flavors, E =

√
k2 + M2 is the single particle

energy with ‘constituent’ quark mass M which satisfies the
self consistent gap equation

M = m0 +
2NcN f

(2π)3

∫
dk

M√
k2 + M2

(1 − f (0) − f̄ (0)).

(26)

In the above equations f (0) = (1+exp(βω−))−1 and f̄ (0) =
(1+ exp(βω+))−1 are the equilibrium distribution functions
for quarks and antiquarks respectively and we have written
ω±(k) = E(k) ± µ with k ≡ |k|. The energy density ε is
given by,

ε = −2NcN f

(2π)3

∫
dkE(k)(1 − f (0) − f̄ (0))+ (M − m0)

2

4G
,

(27)

so that enthalpy ω = ε + P is also defined once the solution
to the mass gap equation Eq. (26) is known. In these calcula-
tions, we have taken a three momentum cutoff Λ for the for
calculations of integrals not involving the Fermi distribution
functions. The net number density of quarks nq is given as

nq = 2NcN f

(2π)3

∫
dk( f (0) − f̄ (0)). (28)

This completes the discussion on the all the bulk thermo-
dynamic quantities defined for NJL model which enters in
the definitions for Seebeck coefficient, electrical conductiv-
ity and thermal conductivity.

Next we discuss the estimation of relaxation time and as
mentioned earlier we consider two particle scattering pro-
cesses only. For a process a+b → c+d, the relaxation time
for the particle a i.e. τa(Ea) is given by [81],

τ−1
a (Ea) ≡ ω̃(Ea) =

1
2Ea

∑

b

∫
dπbWab f

(0)
b (Eb), (29)

where, the summation is over all species other than the parti-
cle “a”. Further, in Eq. (29), we have introduced the notation

dπ i = d3 pi
(2π)32Ei

and Wab is the dimensionless transition rate
for the processes with a, b as the initial states. Wab which is
Lorentz invariant and a function of the Mandelstam variable
(s) can be given by,

Wab(s) =
1

1 + δab

∫
dπcdπd(2π)4δ(pa + pb − pc − pd)

× |M|2ab→cd(1 − f (0)c (pc))(1 − f (0)d (pd)). (30)

In the expression of Wab the Pauli blocking factors have been
considered. The quantity Wab can be related to the cross
sections of various scattering processes. In the present case
within the NJL model, the quark–quark, quark–antiquark
and antiquark–antiquark scattering cross sections are calcu-
lated to order 1/Nc which occur through the π and σ meson
exchanges in “s” and “t” channels. The meson propagators
that enters into the scattering amplitude is calculated within
the random phase approximation and includes their masses
and the widths. The mass of the meson is estimated from the
pole of the meson propagator at vanishing three momentum
i.e.,

1 − 2G ReΠm̃(Mm̃, 0) = 0. (31)

where m̃ denotes σ,π for scalar and pseudoscalar chan-
nel mesons, respectively. Polarization function in the corre-
sponding mesonic channel is expressed as Πm̃ . The explicit
expressions for ReΠm̃ and the imaginary part ImΠm̃ is given
in Ref. [81] and we do not repeat here.

While, the relaxation time is energy dependent, one can
also define an energy independent mean relaxation time by
taking a thermal average as,

ω̄a ≡ τ̄−1
a = 1

na

∫
d3 pa
(2π)3 f (0)a (Ea)ω̃a(Ea) ≡

∑

b

nbW̄ab,

(32)

to get an estimate of the average relaxation time. In the above
equation, the sum is over all the particles other than ‘a’;

na =
∫

d3 pa
(2π)3 f (0)a (Ea),

is the number density of the species “a” apart from the degen-
eracy factor. Here, W̄ab is the thermal-averaged transition rate
given as

W̄ab = 1
nanb

∫
dπadπb f (Ea) f (Eb)Wab. (33)

For the case of two flavors, there are 12 different processes
but the corresponding matrix elements can be related using i-
spin symmetry, charge conjugation and crossing symmetries
with only two independent matrix elements. We have chosen
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them, as in Refs. [81,99], to be the processes uū → uū and
ud̄ → ud̄ . The explicit expressions for the matrix elements
are given in Refs. [81,99]. In the meson propagators we have
kept both the mass and the width of the meson resonances
which are medium dependent. It is important to mention
that while the matrix elements of different scattering pro-
cesses are related, the thermal-averaged rates are not. This
is because the thermal averaged rates involve also the ther-
mal distribution functions for the initial states along with the
Pauli blocking factors for the final states.

4 Quasiparticle picture of the partonic medium

In the quasiparticle description, all the quarks (anti quarks)
have both the thermal mass arising due to the interaction
with the constituents of the medium and the bare mass m0.
Therefore, in the quasiparticle picture the total effective mass
of the quark flavor i can be expressed as [91–97,104],

m2
i = (m0 + m+(T, µ))2 + m+(T, µ)2, (34)

with

2m2
+(T, µ) =

g2(T, µ)T 2

3

(
1 + µ2

π2T 2

)
. (35)

which is related to the asymptotic form of the gauge indepen-
dent hard thermal (dense) loop self energies. The temper-
ature and the chemical potential dependent strong coupling
constant up to two loop order is [105,106],

αS(T, µ) =
g2(T, µ)

4π
= 6π

(33 − 2N f ) ln
(

T
ΛT

√
1 + µ2

π2T 2

)

×



1 − 3(153 − 19N f )

(33 − 2N f )2

ln
(

2 ln T
ΛT

√
1 + µ2

π2T 2

)

ln
(

T
ΛT

√
1 + µ2

π2T 2

)



 ,

(36)

where ΛT is the QCD scale parameter which we consider
as ΛT = 0.35Tc with Tc = 200 MeV [106]. The effective
mass of the gluon, which depends on the temperature and the
chemical potential is given as [96,107],

m2
g(T ) =

Nc

6
g2(T, µ)T 2

[
1 + 1

6

(
N f +

3
π2

∑

f

µ2
f

T 2

)]
,

(37)

where Nc and N f represents the number of color and flavors
respectively. The relaxation time for the quarks and anti-
quarks for the massless case is given by [108],

τq(q̄) =
1

5.1Tα2
S log

(
1
αS

) (
1 + 0.12(2N f + 1)

) . (38)

Note that for simplicity we have used the relaxation time
which is applicable for the massless case only. However, fol-
lowing Ref. [109] it can be argued that the effect of the mas-
sive quark is small in the estimation of the scattering cross
sections and relaxation time. Therefore, we use the expres-
sions of the relaxation time as given in Eq. (38) even for
the massive quarks. To compare our results as obtained in
the NJL model we consider two light flavors with bare mass
m0 = 0.008 GeV [96]. The relaxation time for the gluons is
given by [104,108,110]

τg = 1

22.5α2
s ln

(
1
αs

) (
1 + 0.06n f

) . (39)

5 Results

The two flavor NJL model as given in Eq. (24) has three
parameters, the four fermions couplingG, the three momenta
cut off (Λ) to regularize the momentum integral in vacuum
and the current quark mass m0. These values are adjusted to
fit the physical values of the pion mass (mπ = 135 MeV),
the pion decay constant ( fπ = 94 MeV) and the value of the
quark condensate in vacuum, 〈ūu〉 = 〈d̄d〉 = (−241 MeV)3.
Various combinations of G,Λ,m0 can be used to fix the pion
mass, pion decay constant, and the quark vacuum condensate.
Qualitatively all these different parameterizations are equiva-
lent. Without going into such parameter dependence we work
with a single set of parameters. We have considered here the
value of the parameters as m0 = 5.6 MeV, Λ = 587.9 MeV
and GΛ2 = 2.44 [103]. This leads to the constituent quark
mass for u and d type quarks, M = 397 MeV in vacuum
(T = 0, µ = 0).

To analyze the variation of different transport coefficients
with temperature and quark chemical potential, we have first
plotted in upper panel of Fig. 1, the constituent quark masses
(M) as a function of temperature (T ) for different values of
the quark chemical potential (µ). The constituent quark mass
(M) results as a solution to the gap equation, Eq. (26). Con-
stituent quark masses for u and d quarks are the same and
they are related to the quark–antiquark condensate 〈ψ̄ψ〉. In
the lower panel of Fig. 1, we have plotted dM/dT with tem-
perature for different values of the chemical potential. For
the range of temperature and chemical potential considered
here the chiral transition is a smooth crossover. The chiral
crossover temperature may be defined by the position of the
peak in the variation of dM/dT with temperature. For µ =
0, 100 and 200 MeV, the corresponding chiral crossover tem-
peratures turns out to be ∼ 188 MeV, 180 MeV and 153 MeV
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Fig. 1 Upper panel: temperature dependence of the masses of con-
stituent quarks (M) for different chemical potentials. Lower panel: vari-
ation of dM/dT with temperature for different chemical potentials. The
nonmonotonic variation of dM/dT with a peak structure indicate the
pseudo critical temperature for the chiral transition. Note that for the
NJL model parameter set and the range of temperature and chemical
potential considered here the chiral transition is a smooth crossover

Fig. 2 Variation of σ and π meson masses with temperature for dif-
ferent values of the chemical potentials. The solid lines correspond to
Mσ while the dashed lines correspond to pion masses, Mπ

respectively. It is expected that with an increase in chemical
potential the crossover temperature decreases. Note that we
have considered here the values of the chemical potential
which are lower than the chemical potential corresponding
to the speculated critical endpoint of the quark–hadron phase
transition in the QCD phase diagram.

In Fig. 2 we have plotted the meson masses Mπ and Mσ

as a function of temperature for different values of chemical
potential as solutions of Eq. (31). Note that pions are pseudo-
Goldstone modes, therefore in the chiral symmetry broken
phase pion mass varies weakly. But Mσ decreases rapidly
near the crossover temperature. At higher temperatures, Mπ

and Mσ , being chiral partners, become approximately degen-
erate and increase with temperature. Further one can define
a characteristic temperature, the “Mott temperature” (TM )
where the pion mass becomes twice that of quark mass i.e. at
Mott temperature Mπ (TM ) = 2M(TM ). The Mott temper-
atures for µ = 0, 100 and 200 MeV turns out to be ∼ 198
MeV, 192 MeV and 166 MeV respectively. As we shall see
later it is the Mott temperature that becomes relevant while
estimating the relaxation times of the quarks using thermal
scattering rates of the quarks through meson exchange.

In Fig. 3, we show the variation of average relaxation
time as defined in Eq. (32), for quarks (solid lines) and anti-
quarks(dashed lines) with temperature for different chemi-
cal potentials. Let us note that the relaxation time of given
particle ’a’, as shown in Eq. (32), depends both on the scat-
tering rates W̄ab as well as on the number density nb of the
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Fig. 3 Variation of thermal averaged relaxation times for quarks and
antiquarks with temperature for different chemical potentials. Solid
lines correspond to the relaxation time for quarks while the dotted lines
correspond to relaxation time for antiquarks. For µ = 0 the thermal
averaged relaxation times for the quarks and antiquarks are same. Dif-
ference between the relaxation times of quarks and antiquarks appears
only at finite chemical potential

particles other than ’a’ in the initial state i.e. number den-
sity of scatterers. It turns out that, for the scattering pro-
cesses considered here, the process ud̄ → ud̄ [81], through
charged pion exchange in the s-channel gives the largest con-
tribution as compared to other channels. As mentioned ear-
lier,by crossing symmetry arguments, this also means that the
ud → ud scattering rate also contribute dominantly to the
thermally averaged scattering rate. Let us note that, below
the the Mott temperature TM , the averaged scattering rate
decreases mostly due to thermal distribution with large con-
stituent quark masses apart from the suppression from the
meson propagators in the scattering amplitudes arising from
sigma mesons. As one approaches TM from lower temper-
ature, the scattering rates become larger as the constituent
quark mass decreases as well as the s-channel propagator
develop a pole in the meson propagator for temperatures
beyond TM . However, at large temperature there will be a
suppression due to the large meson masses which increase
with temperature. This results in a maximum scattering rate
at TM or a minimum in the average relaxation time as gener-
ically seen in Fig. 3.

At finite quark chemical potentials, beyond the Mott
temperature, the quark–antiquark scattering still contributes
dominantly to the scattering processes. However, at finite

Fig. 4 Upper panel: Variation of normalized electrical conductivity
(σel/T ) with temperature for different values of the chemical potential
for two flavor NJL model and the quasi particle model for the partonic
matter as considered here. For comparison, we also presented the two
flavor Lattice QCD (LQCD) data as given in Refs. [111,112] and 2+1
flavor NJL model results as obtained in Ref. [31]. Lower panel: Varia-
tion of normalized thermal conductivity (κ0/T 2) with temperature for
different values of the chemical potential for NJL model and for the
quasi particle model

densities, there are few antiquarks as compared to quarks
so that the quarks have fewer antiquarks to scatter off. This
leads to a smaller cross-section giving rise to a larger relax-
ation time for quarks compared to µ = 0 case. Due to
the enhancement of quark densities at finite µ, the cross-
section for quark–quark scattering becomes larger resulting
in a smaller relaxation time for the quarks compared to the
case at vanishing chemical potential below the Mott temper-
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ature. The antiquark relaxation time, on the other hand, is
always smaller compared to µ = 0 case as there are more
quarks to scatter off at finite chemical potential.

Some discussions on the estimation of the average relax-
ation time is in order here. Note that one of the initial cal-
culations in the mid-1990s as done in Ref. [113], as well as
a relatively recent calculation as done in Ref. [31], where
the transport coefficients for quark–gluon plasma has been
estimated within the framework of QCD-inspired effective
models, do not incorporate the full field theoretical methods
to estimate the relaxation time. In these studies to estimate the
average scattering rates or the relaxation time, one considers
“integrated cross sections”, by integrating the elastic cross
section over the invariant energy squared with the help of a
probability function (see Ref. [31] for a detailed discussion).
Such an estimation of the relaxation time does not incorpo-
rate a possible nonmonotonic variation across the transition
temperature/Mott temperature. On the other hand, the for-
malism that we have adopted here does not consider any
adhoc probability function, rather we use basic definitions of
scattering cross section and the thermal average of relaxation
time. Also, the estimated relaxation time as obtained here and
also in Ref. [81] clearly shows a nonmonotonic variation of
the relaxation time across the transition temperature/Mott
temperature. Such nonmonotonic variation of the relaxation
time is also reflected in the expected nonmonotonic behavior
of η/s across the transition temperature [81].

Further as a validity of the Boltzmann kinetic approach
within the relaxation time approximation one may look into
the value of the the mean free path λ f = v f τ f for a given
flavor f , here the mean velocity v f can be expressed as,

v f =
2Nc

(2π)3n f

∫
d3 p

|p|
Ep

f (Ep). (40)

It can be argued that at the Mott transition temperature
λ f = 1.2 fm [81]. At the same temperature, the mass of
the pion and sigma meson are of the order of 200 MeV with
the corresponding Compton wavelength (λC ) to be of the
order of a Fermi. Therefore the value of the ratio λ f /λC
is about 1.2 at the Mott transition temperature and its value
increases rapidly both below and above the Mott temperature.
Therefore except at the Mott transition temperature λ f can
be significantly larger than λC . Thus, within the NJL model,
it may not be too unreliable to use the Boltzmann equation
within the relaxation time approximation except at the Mott
transition temperature. Therefore we believe our analysis is
not unjustified given the fact that similar approaches have
been well explored by various authors also. The novelty that
we are addressing is the thermoelectric properties of the QCD
matter across the chiral transition scale.

In the upper panel of Fig. 4 we show the behavior of nor-
malized electrical conductivity σel/T with temperature for

different values of chemical potential for the present case
of 2 flavor NJL model as well as the quasi particle model
considered here. For comparison, we also present the results
as obtained using lattice QCD for two light flavors Refs.
[111,112] and 2+1 flavor NJL model results as obtained in
Ref. [31]. Further, for the sake of comparison, we have taken
the temperature in units of Tc of the corresponding models.
For the 2 flavor NJL model we have taken Tc = TM=198
MeV as estimated here.

As may be observed from the figure the generic behav-
ior of relaxation time of Fig. 3 is reflected in the behavior
of electrical conductivity, having a minimum at Mott transi-
tion temperature for the two flavor NJL model shown by the
solid red curve in Fig. 4. Apart from this, it is also observed
that σel/T increases with chemical potential which we have
shown by blue dotted (µ = 100 MeV) and black dashed
(µ = 200 MeV) curves. This is because the contribution
to the electrical conductivity arises dominantly from quarks
rather than antiquarks at finite chemical potential, as the anti-
quark contribution gets suppressed due to the distribution
function. This apart, there is an enhancement of the relax-
ation time at finite µ beyond the Mott transition. The dom-
inant contribution to the scattering process is ud̄ → ud̄. As
the d̄ density decrease with µ, this scattering process gets
suppressed as compared to the case of µ = 0 and leads to
an enhancement of relaxation time at finite chemical poten-
tial. Thus both the increase of charge carriers and an increase
in relaxation time with µ lead to enhancement of electri-
cal conductivity beyond the Mott temperature. On the other
hand, below the Mott temperature, although the relaxation
time decrease with chemical potential, the increase in quark
number density makes the coefficient of electrical conductiv-
ity increasing with chemical potential. Further, in the high-
temperature range T >> M , one can assume the quarks
and antiquarks to be massless. In this high temperature or
massless limit in the two flavor NJL model σel/T can be
shown to be σel/T ∼ T τ exp(µ/T ) (by considering only
quark contribution as they are dominant at finite µ). There-
fore for a temperature range higher than the Mott transition
temperature predominantly due to the increasing behavior of
τ with temperature σel/T increases. Again at a very high
temperature due to the factor of exp(µ/T ), σel/T increases
with chemical potential. It is clear that the order of magnitude
value of the normalized electrical conductivity as obtained in
the present investigation is similar to the lattice QCD (LQCD)
results. However, it should be emphasized that LQCD cal-
culations take into account the full dynamical nature of the
QCD gauge fields. On the other hand, gluons are not present
in the NJL model. Therefore, quantitative variation of the
relaxation time and σel/T is not expected to be the same in
NJL and LQCD calculations. Further, as compared to results
of Marty et al. [31] shown by magenta dot dashed curve,
the 2flavor NJL model values are of similar order near the
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transition temperature while at high temperature (T/Tc>1.4)
the two flvor NJL values are larger whereas the 2 + 1 flavor
values flatten out.This is because of two reasons: firstly, with
2 + 1 flavors, the relaxation time decreases as there are extra
channels for scatterings available that reduces the relaxation
time. Further, there is a difference in the definition of relax-
ation time given in Ref. [31] and the present definition for
the estimation of the same [81].

We have also plotted the results for the electrical conduc-
tivity estimated from the quasi particle model which remains
almost constant compared to the NJL model results. The rea-
son is , in the quasi particle models, the quasi particle masses
are increasing functions of temperature and hence the thermal
distribution functions get suppressed at high temperature in
contrast to NJL model. Further, the magnitude of the veloc-
ity |p|/E also become smaller at high temperature in quasi
particle model as compared to the NJL model.

Furthermore, in Ref. [114] various transport coefficients
of deconfined quark matter have been studied within a differ-
ent quasi particle model, namely the effective fugacity quasi-
particle model. The crucial difference between the quasi par-
ticle model considered here and that in Ref. [114] lies in a
different dispersion relation between the quasi particles. This
is manifested in the estimation of relaxation time as well as in
estimation of various transport coefficients. It should be noted
that normalized electrical conductivity σel/T as obtained in
the present investigation is quantitatively as well as quali-
tatively different from the same as obtained in Ref. [114].
The presence of a background scalar condensate is the fun-
damental difference between the NJL model and the effec-
tive fugacity quasi-particle model as discussed in Ref. [114].
Further, relaxation time plays an important role in determin-
ing the variation of any transport coefficient with temperature
and chemical potential. The thermal averaged relaxation time
as obtained in the effective fugacity quasi-particle model as
discussed in the Ref. [114] is different (quantitatively and
quantitatively) from the relaxation time obtained in the NJL
model as well as the quasi particle model considered here.
For a more detailed analysis of the estimation of electrical
conductivity in quasi particle model as considered here and
that of effective fugacity quasi particle model, we refer the
interested reader to Ref. [110]. The difference stems from
the difference in the single particle energy dispersion rela-
tion as compared to NJL model or the quasi particle model
considered here.

In the lower panel of Fig. 4 we show the variation of the
normalized thermal conductivity (κ0/T 2) with temperature
both for NJL model and for the quasi particle model. For
the NJL model, the ratio shows a nonmonotonic variation
with temperature. The origin of such behavior again lies with
the variation of relaxation time with temperature. Beyond
the Mott temperature, the thermal conductivity increases
sharply with temperature. This can be understood as fol-

lows. For large temperatures, when quark masses can be
neglected, it can be easily shown that the enthalpy to the net
quark number density ratio goes as ω/nq ∼ T coth(µ/T ).
Also note that in the expression of the thermal conductivity
(E− ω

nq
)2 ∼ ( ω

nq
)2, due to the fact that single-particle energy

(E) is negligible as compared to the enthalpy per particle-
ω/nq . Therefore, the variation of the normalized thermal
conductivity with temperature and chemical potential will
be determined by the variation of relaxation time, ω/nq ,
and the distribution function. It can be shown that in the
high-temperature limit or the massless limit the normalized
thermal conductivity, κ0/T 2 can be approximately expressed
as, κ0/T 2 ∼ T τ exp(µ/T )(coth(µ/T ))2. Beyond the Mott
transition temperature, the increasing behavior of τ essen-
tially determines the increasing behavior of κ0/T 2. On the
other hand for µ << T , coth(µ/T ) ∼ T/µ in the lead-
ing order. Therefore in the high-temperature limit, κ0/T 2

decreases with chemical potential. For the quasi particle
model, on the otherhand, the ratio κ0/T 2 is of the same
order near the transition temperature but rises slowly with
temperature compared to the NJL model which again is a
reflection of increasing behaviour in the masses of the quasi
particle with temperature which reduces the thermal distribu-
tion functions. Similar to σel/T , the qualitative nature of the
normalized thermal conductivity (κ0/T 2) as presented here
is also different from the same as obtained in the Ref. [114].
This difference is again due to different nature of the dis-
persion relation for the single particle energies of the quasi
particles in effective fugacity quasi particle model and the
NJL or the quasi particle model considered here.

We next show the behavior of the Seebeck coefficient as a
function of temperature for different values of quark chem-
ical potential in the upper panel of Fig. 5 for both in NJL
model and in quasi particle model. This coefficient, which is
dimensionless, decreases monotonically with temperature.
The variation of the Seebeck coefficient with temperature
can be understood as follows. Note that this coefficient is
a ratio of two quantities each of which is proportional to
the relaxation time. When we consider the relaxation time
as the average relaxation time, the ratio becomes indepen-
dent of the average relaxation time. Note that at finite chemi-
cal potential quark contribution to the Seebeck coefficient is
dominant with respect to the antiquark contribution. There-
fore, contrary to the nonmonotonic variation of σel/T and
κ0/T 2 with temperature for NJL model, where the nonmono-
tonic variation has its origin stemming from the behavior of
relaxation time with temperature, the variation of the See-
beck coefficient is not expected to be nonmonotonic. Fur-
ther unlike other transport coefficients, the positivity of the
Seebeck coefficient is not guaranteed. This is because in the
expression of the Seebeck coefficient as given in Eq. (17), the
integrand in the numerator has the factor which is linear in
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Fig. 5 Upper panel: variation of the Seebeck coefficient with temper-
ature for different values of the chemical potential for NJL model and
for quasi particle model. Lower panel: variation of the Lorenz number,
L = κ0/(σel T ) with temperature for different values of the chemical
potential in both NJL and quasi particle model

(Ea−baω/nq). Therefore for the quarks, this factor becomes
(E−ω/nq), and the single-particle energy E is much smaller
than ω/nq . Therefore the term (E−ω/nq) is negative which
makes the Seebeck coefficient negative. However it is impor-
tant to note that the expression of thermal conductivity also
contains a term (E −ω/nq), but it comes as a square. There-
fore positivity of the thermal conductivity is guaranteed. In
the condensed matter system the Seebeck coefficient can be
both positive and negative, e.g. if for electron and holes the
Seebeck coefficients are opposite to each other. Further for

a bipolar medium with multiple charge carriers the sign of
the Seebeck coefficient depends on the range of temperature
considered [102]. Similar to the case of thermal conductivity,
one can do an analysis regarding the behavior of the See-
beck coefficient in the massless limit. In the massless limit,
it can be shown that S ∼ − coth(µ/T ). Therefore in the
high-temperature limit, the leading order contribution to the
Seebeck coefficient is S ∼ −T/µ. Hence with increasing
temperature the Seebeck coefficient decreases, on the other
hand with an increase in chemical potential Seebeck coeffi-
cient increases. In the simple analysis, we have assumed that
the dominant contributions in the sum over species arise from
quarks as the antiquark contributions are suppressed due to
finite chemical potential in the thermal distribution function.
A comment regarding SU(2) flavor symmetry of the NJL
Lagrangian may be relevant here. The thermalisation of the
medium is decided by strong interaction. Thus, the relaxation
time for up and a down quarks will be same. On the other-
hand, the contribution of the up quark and down quark to the
Seebeck coefficient will be different as the Seebeck coeffi-
cient depend linearly on the electrical charge of the relevant
species [see e.g. the numerator of the expression for Seebeck
coefficient in Eq. (17)]. Thus, the contribution of the See-
beck coefficient of up quark will be twice in magnitude and
opposite in sign of the down quark.

Compared to the NJL model, the behaviour of the Seebeck
coefficient in the quasi particle model is qualitatively simi-
lar but quantitatively different. This can be understood from
the behaviour of the electrical conductivity in the model as
shown in Fig. 4. The smaller value for the electrical conduc-
tivity in quasi particle model leads to larger magnitude for
the Seebeck coefficient. Further, in the quasi particle models
the gluons also contribute to the enthalpy which affects the
Seebeck coefficient.

In the lower panel of Fig. 5 we have plotted the ratio
L = κ0/(σel T ), as a function of temperature for the NJL
model as well as for the quasi particle model. In condensed
matter systems this ratio is a constant and is known as the
Lorenz number. In the present case, however, it is observed
that the ratio increase monotonically with temperature. Sim-
ilar to the Seebeck coefficient, in the leading order for aver-
age relaxation time the ratio L , is independent of relaxation
time. Further, in the high temperature limit or in the massless
limit κ0/(σT ) ∼ (coth(µ/T ))2. Therefore, in the leading
order for µ << T , κ0/(σT ) ∼ T 2/µ2. Hence in the high
temperature limit the ratio L increases with temperature but
decreases with quark chemical potential. In quasi particle
model this ratio is higher compared to the NJL model as
the electrical conductivity in the quasi particle description is
smaller compared to that in NJL model. This ratio has also
been estimated within the effective fugacity quasi particle
model in Ref. [114] where, this ratio approach a constant at
high temperature. This different behaviour has its origin in
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the different behaviour of the quasi particles in the effective
fugacity quasi particle model as discussed earlier.

6 Conclusion

In the present investigation, we have estimated the Seebeck
coefficient in a hot and dense partonic medium modeled by
the Nambu–Jona–Lasinio model. To compare the NJL model
results for the Seebeck coefficient we have also estimated the
same within a quasiparticle model of the deconfined mat-
ter. We have considered thermoelectric effect arising due
to temperature gradient as well as a gradient in the chem-
ical potential. Apart from the Seebeck coefficient we have
also estimated electrical conductivity, thermal conductivity,
and Lorenz number associated with the Wiedemann- Franz
law. Note that electrical conductivity is the response of a
medium in the presence of an external electric field. σel also
decides the time evolution of a magnetic field in a conducting
medium. In the context of the effect of magnetic field on the
strongly interacting medium produced in non-central heavy-
ion collision electrical conductivity plays a crucial role. It
should be emphasized that in the presence of a magnetic field
simple Ohm’s law gets modified and one needs to consider
the anisotropic structure of the electrical conductivity tensor.
All such investigations in the presence of a magnetic field
should reproduce the electrical conductivity in the absence
of any magnetic field, i.e. the electrical conductivity tensor
should be isotropic in the absence of any magnetic field.
Therefore, the estimation of electrical conductivity without
any effect of the magnetic field should serve as a baseline
for the studies that include the effect of magnetic field in a
conducting medium.

Although electrical conductivity and thermal conductiv-
ity always remain positive, but the Seebeck coefficient is
negative for the range of temperature and chemical potential
considered in this investigation. Also the variation of electri-
cal conductivity and thermal conductivity with temperature
and quark chemical potential is intimately related to the vari-
ation of the relaxation time with temperature and chemical
potential. But the variation of the Seebeck coefficient and the
Lorenz number are not sensitive to the variation of relaxation
time with temperature and quark chemical potential.

In the presence of thermoelectric effects in a conducting
medium temperature gradient can be converted into an elec-
trical current and vice versa. Seebeck coefficient physically
represents the efficiency of any conducting medium to con-
vert a temperature gradient into an electrical current. There-
fore for a nonvanishing Seebeck coefficient electrical current
as well as heat current gets modified. The electrical current in
the presence of Seebeck effect becomes, J = σelE−σel S∇T .
It is important to note that the electrical conductivity σel is
always positive due to the constructive contributions of parti-

cles and antiparticles to the electric current. Positivity of the
electrical conductivity can be shown using entropy produc-
tion i.e. second law of thermodynamics. By demanding that
in the presence of electromagnetic field T ∂µsµ ≥ 0, here sµ

is the entropy current, it can be shown that the electrical con-
ductivity is positive [115]. For a negative Seebeck coefficient
in the presence of a positive temperature gradient the electric
current enhances. Therefore the net electric current increases
if the electric current due to the thermoelectric effect and the
electric current due to the external electric field contributes
constructively. On the other hand, the thermal conductivity
in the presence of the thermoelectric effect gets modified. In
the presence of a nonvanishing Seebeck coefficient, the net
thermal conductivity which can be given as κ = κ0 −Tσel S2

indicates that the nonvanishing value of the Seebeck coeffi-
cient reduces the thermal conductivity. It is important to note
that the thermal conductivity is required to be positive for
the theory to be consistent with the second law of thermo-
dynamics, i.e., T ∂µsµ ≥ 0. Using the formalism of viscous
hydrodynamics and viscous magnetohydrodynamics positiv-
ity of the electrical conductivity and the thermal conductivity
has been shown explicitly [100,115]. But the contributions
to the entropy current coming from the thermoelectric effects
are not considered in these investigations. Therefore in the
context of entropy production in the viscous hydrodynamics
and magnetohydrodynamics, it will be interesting to study
the effects of thermoelectric coefficients.

Thermoelectric coefficients could also be relevant in the
context of the spin Hall effect (SHE). Spin Hall effect is
an important ingredient for the generation of spin current
and it is a key concept in spintronics. In the generation of
spin current spin Hall effect plays an important role. In spin
Hall effect an electric field induces a transverse spin cur-
rent perpendicular to the direction of the electric field. Spin
Hall effect has been investigated recently in a hot and dense
nuclear matter in the context of heavy-ion collisions [116].
It has been argued that due to SHE, a spin current will be
produced proportional to the electric field. This also means
external electric field E will induce a local spin polarization
and the spin polarization distribution function of fermions
(antifermions) in momentum space will feature a dipole dis-
tribution. Therefore there will a spin flow in the plane trans-
verse to the direction of the electric field. Observation of
spin Hall effect may open a new direction in the exploration
of the many body quantum effects in hot and dense nuclear
matter. However, the life-time of the electric field originated
in heavy-ion collisions could be small of the order 1 fm/c.
Therefore, the idea of the observation of the spin Hall effect
becomes speculative. However, in the presence of nonvan-
ishing thermoelectric coefficients any temperature gradient
and/or a gradient in the chemical potential can give rise to
an effective electric field which may contribute to the spin
Hall effect. Therefore a detailed analysis of the thermoelec-
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tric property of the hot and dense matter produced in a heavy
ion collision experiment could be relevant for spin Hall effect
and needs further investigation.
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Abstract. We study the possibility of the existence of a deconfined quark matter in the core
of neutron star (NS)s and its relation to non-radial oscillation modes in NSs and hybrid
star (HS)s. We use relativistic mean field (RMF) models to describe the nuclear matter
at low densities and zero temperature. The Nambu-Jona-Lasinio (NJL) model is used to
describe the quark matter at high densities and zero temperature. A Gibbs construct is used
to describe the hadron-quark phase transition (HQPT) at large densities. Within the model,
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matter saturation density (fl0) and ends at density about 5fl0 beyond which the pure quark
matter phase appears. It turns out that a stable HS of maximum mass, M = 2.27M§ with
radius R = 14 km (for NL3 parameterisation of nuclear RMF model), can exist with the
quark matter in the core in a MP only. HQPT in the core of maximum mass HS occurs
at radial distance, rc = 0.27R where the equilibrium speed of sound shows a discontinuity.
Existence of quark matter in the core enhances the non-radial oscillation frequencies in HSs
compared to NSs of the same mass. This enhancement is significantly large for the g modes.
Such an enhancement of the g modes is also seen for a density dependent Bayesian (DDB)
parmeterisation of the nucleonic EOS. The non-radial oscillation frequencies depend on the
vector coupling in the NJL model. The values of g and f mode frequencies decrease with
increase the vector coupling in quark matter.
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1 Introduction

Neutron Star (NS)s are exciting cosmic laboratories to study the behavior of matter at extreme
densities. The properties of NSs not only open up many possibilities related to composition,
structure and dynamics of cold matter in the observable universe but also throws light on the
interaction of matter at a fundamental level [1]. Such compact stars, observed as pulsars, are
believed to contain matter of densities few times nuclear saturation density (fl0 ƒ 0.158 fm≠3)
in its core. To explain and understand the properties of such stars, one needs to connect
di�erent branches of physics like low energy nuclear physics, qunatum chromodynamics (QCD)
under extreme conditions, general theory of relativity (GTR) etc [2–6].

The macroscopic properties of such a compact star like its mass, radius, moment of
inertia, tidal deformability in a binary merging system and di�erent modes of oscillations etc.
depend crucially on its composition that a�ect the variation of pressure with energy density
or equation of state (EOS). Indeed, recent radio, x-ray and gravitational wave observations of
NSs have provided valuable insights into the EOS of dense matter [7–9]. The observations of
high mass pulsars like PSR J1614 ≠ 2230 (M = 1.928 ± 0.017M§) [10], PSR J0348 ≠ 0432
(M = 2.01± 0.04 M§) [11] and PSR J0740+6620 (M = 2.08± 0.07 M§) [12] and very recently
PSR J1810 + 1714 with a mass (M = 2.13 ± 0.04 M§) [13] have already drawn attention on
nuclear interactions at high densities with questions regarding the possible presence of exotic
matter in them. To constrain the nature of EOS more stringently, simultaneous measurements
of NS mass and radius are essential. The precise determinations of NS radii is di�cult due to
inaccurate modeling the x-ray spectra emitted by the atmosphere of a NS. The high-precision
x-ray space missions, such as the Neutron star Interior Composition ExploreR (NICER) have
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already shed some light in this direction. Of late, NICER has come up with a measurement of
the radius 12.71+1.14

≠1.19 km, for NS with mass 1.34+0.15
≠0.16 M§ [14], and other independent analyses

show that the radius is 13.02+1.24
≠1.06 km for an NS with mass 1.44+0.15

≠0.14 M§ [15]. Further, the
recent measurement of the equatorial circumferential radius of the highest mass (2.072+0.067

≠0.066
M§) pulsar PSR J0740 + 6620 is 12.39+1.30

≠0.98 km [16, 17] by NICER will play an important
role in this domain.

The core of the NS can, in principle, support various possible exotic phases of QCD.
While perturbative QCD (pQCD) predicts deconfined quark matter at large densities, their
applicability is rather limited in the sense that these conclusions are applicable only to
very large baryon densities i.e. flB Ø 40fl0 [18]. The most challenging region to study
theoretically is, however, at intermediate densities i.e. few times nuclear matter saturation
density which is actually relevant for the matter in the core of NSs. The first principle
Lattice QCD (LQCD) calculation in this connection is also di�cult due to the sign problem
in lattice simulations at finite densities. At present such calculations are limited to low
baryon densities only i.e. µB/T Æ 3.5 [19]. On the otherhand, many e�ective models predict
possibilities of various exotic phases of quark matter at such intermediate density region.
These include pion superfluidity [20–22], various colour superconducting phases like 2-flavour
colour superconductivity [23–25], colour flavour locked phase (CFL) [26], Larkin-Ovchinkov-
Fulde-Ferrel (LOFF) [27, 28] phase, crystalline superconductivity phase etc. However, the
signature of such phases in quark matter from the study of NSs have been rather challenging.
The GW170817 [9] event explored the constraints on the EOS using tidal deformability
extracted from the phase of the gravitational waveforms during the late stage of inspiral
merger [29–34]. Though not conclusive, it is quite possible that one or both the merging NSs
could be Hybrid Star (HS)s i.e. with a core of quark matter or a Mixed Phase (MP) core of
quark and hadronic matter [35, 36]. Within the current observational status, it is di�cult to
distinguish between a canonical NS without a quark matter core from a HS with a core of
pure quark matter or a core of quark matter in a MP with hadronic matter. This calls for
exploring other observational signature to solve this “masquerade” problem [37, 38].

In this context, it has been suggested that the study of the non-radial oscillation modes
of NSs can have the possibility of providing the compositional information regarding the
matter in the interior of the NSs. This includes the NSs with a hyperon core [39–41], a
quark core or a MP core with quark and hadronic matter [38, 42–47]. This is because the
non-radial oscillations not only depend upon the EOS i.e. p(‘) but also on the derivatives
dp
d‘ and ˆp

ˆ‘ [48]. Since the appearance of hyperons does not involve any phase transition, their
e�ects on the non-radial oscillation modes can be milder compared to a hadron-quark phase
transition (HQPT) at finite densities whose e�ect can be more pronounced. The non-radial
oscillation modes can be studied within the framework of GTR [49, 50]. Here, the fluid
perturbation equations can be decomposed into spherical harmonics leading to two classes
of oscillations depending upon the parity of the harmonics. The even parity oscillations
produce spheroidal (polar) deformation while the odd parity oscillations produce toroidal
deformation. The polar quasi-normal mode (QNM)s can further be classified into di�erent
kinds of modes depending upon the restoring force that acts on the fluid element when it gets
displaced from its equilibrium position [51]. These oscillations couple to the gravitational
waves and can be used as the diagnostic tools in studying the phase structure of the matter
inside NSs. The important modes for this are the pressure (p) modes, fundamental (f) modes
and gravity (g) modes. The frequency of the g modes is lower than that of p modes while the
frequency of f modes lie in between. These are the fluid oscillation modes to be distinguished
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from w modes which are associated with the perturbation of space-time metric itself [52]. In
the present work, we focus on g and f modes oscillations arising from dense matter from
both neutron star matter (NSM) and hybrid star matter (HSM). For nuclear matter, the
existence of such low frequency g modes was shown earlier in refs. [53, 54]. The origin of g

mode is related to the convective stability i.e. stable stratification of the star. When a parcel
of the fluid is displaced, the pressure equilibrium is restored rapidly through sound waves
while compositional equilibrium, decided by the weak interaction takes a longer time causing
the buoyancy force to oppose the displacement. This sets in the oscillations. The g mode
oscillation frequencies are related to the Brunt-Väisäla frequency (ÊBV) which depends on the
di�erence between the equilibrium sound speed (c2

e) and adiabatic or the constant composition
sound speed (c2

s) i.e. Ê
2
BV Ã (1/c

2
e ≠ 1/c

2
s) as well as on the local metric. Such g modes

without any phase transition have been studied earlier for the nuclear matter, hyperonic
matter, superfluidity [39, 40, 55–63].

It may be mentioned that much of the recent works on the estimation of ÊBV are based
on the parameterised form of —-equilibrated nuclear matter EOS [43, 48]. In the present work,
on the otherhand, we use Relativistic Mean Field (RMF) model to estimate the ÊBV and use
it to calculate the g modes oscillation frequencies. In the core of HSs with quark matter core
(either in a MP or in a pure quark matter phase), the ÊBV can become large enough inside
of the star at a radial distance rc from the center where HQPT takes place and drive the g

mode oscillations.
It may be noted that g modes oscillations have been studied earlier in the context of

the HQPT [38, 42–48, 64]. In most of these investigations, the hadronic matter description is
through a parameterized form of nuclear matter EOS and the quark matter description is
through a bag model or an improved version of the same. In the present investigation, for
the nuclear matter sector we use a RMF theory involving nucleons interacting with scalar
and vector meson mean fields along with self-interactions of the mesons leading to reasonable
saturation properties of nuclear matter. For the description of quark matter we use a two
flavour Nambu–Jona-Lasinio (NJL) model where the parameters of the model are fixed from
the physical variables like pion mass, pion decay constant and light quark condensate that
encodes the physics of the chiral symmetry breaking. The phase transition from hadronic
matter to quark matter can be considered either through a Maxwell construct or a Gibbs
construct leading to a MP [65]. It ought to be noted that the kind of phase transition depends
crucially on the surface tension [66–72] of the quark matter which, however, is poorly known.
Gibbs construct is relevant for smaller value of surface tension while Maxwell construct
becomes relevant for large values of surface tension [73, 74].

We organize this paper as follows. In section 2.1 we discuss salient features of RMF
models describing the nuclear matter. Specifically, we consider two di�erent RMF models —
namely, the NL3 parameterized RMF with constant couplings along with nonlinear mesonic
interactions and a RMF model with density dependent couplings of baryon meson interaction.
Such a model has been quite successful in describing nuclear matter properties and finite
nuclei [75]. Recently, using a Bayesian Inference framework in conjunction with minimal
constraints on nuclear saturation properties, the maximum mass of neutron stars exceeding
2M§, and low density equation of state (EOS) calculated using chiral e�ective theory for pure
neutron matter,the density dependent coupling parameters have been investigated [76, 77].
Such a density dependent Bayesian (DDB) model will be the other RMF model for hadronic
matter that we shall use in the analysis for the HQPT. In section 2.2, we discuss the NJL
model and write down the EOS for the quark matter. In section 2.3 we discuss the HQPT
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using Gibbs construct when there are multiple chemical potentials to describe the system. In
section 3, we discuss the stellar structure equations as well as the non-radial fluid oscillations
of the compact stars. We give here, in some detail, the derivation of the pulsation equations.
In section 4, we discuss the estimation of the equilibrium and adiabatic speed of sound in
di�erent phases of matter. In section 5 we discuss the results of the present investigation
regarding thermodynamics of the dense matter, MP construction, HS structure and the
non-radial mode oscillations. Finally in section 6, we summarize the results and give an
outlook for the further investigation. We use natural units here where ~ = c = G = 1.

2 Formalism

2.1 Equation of state for nuclear matter

We discuss briefly the general RMF framework to construct the EOS of the NSM in Hadronic
Phase (HP). In this framework, the interaction among the baryons is realized through the
exchange of mesons. We confine our analysis for the NSM constituting of baryons (neutron
and proton) and leptons (electron and muon). The relevant mesons for this purpose are the
‡, Ê and fl mesons [78–81]. The scalar ‡ mesons create a strong attractive interactions, the
vector Ê mesons on the otherhand are responsible for the repulsive short range interactions.
The neutron and proton do only di�er in terms of their isospin projections. The isovector fl

mesons are included to distinguish between baryons. The Lagrangian including baryons as
the constituents of the nuclear matter and mesons as the carriers of the interactions is given
as [82, 83]

L =
ÿ

b

Lb + Ll + Lint, (2.1)

where,

Lb =
ÿ

b

�̄b(i“µˆ
µ ≠ qb“µA

µ ≠ mb + g‡‡ ≠ gÊ“µÊ
µ ≠ gfl“µĮbfl̨

µ)�b, (2.2)

Ll = Â̄l(i“µˆ
µ ≠ ql“µA

µ ≠ ml)Âl, (2.3)

Lint = 1
2ˆµ‡ˆ

µ
‡ ≠ 1

2m
2
‡‡

2 ≠ V (‡) ≠ 1
4�µ‹�µ‹ + 1

2m
2
ÊÊµÊ

µ
,

≠1
4R̨

µ‹
R̨µ‹ + 1

2m
2
flfl̨µfl̨

µ ≠ 1
4F

µ‹
Fµ‹ , (2.4)

and,

V (‡) = Ÿ

3!(g‡N ‡)3 + ⁄

4!(g‡N ‡)4
. (2.5)

Where �µ‹ = ˆµÊ‹ ≠ ˆ‹Êµ, R̨µ‹ = ˆµfl̨‹ ≠ ˆ‹ fl̨µ and Fµ‹ = ˆµA‹ ≠ ˆ‹Aµ are the mesonic and
electromagnetic field strength tensors. Įb denotes the isospin operator. The �b and Âl are
baryon and lepton doublets. The ‡, Ê and fl meson fields are denoted by ‡, Ê and fl and their
masses are m‡, mÊ and mfl, respectively. The parameters mb and ml denote the vacuum
masses for baryons and leptons. The meson-baryon couplings g‡, gÊ and gfl are the scalar,
vector and isovector coupling constants, respectively. In RMF approximation, one replaces
the meson fields by their expectation values which then act as classical fields in which baryons
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move i.e. È‡Í = ‡0, ÈÊµÍ = Ê0”µ0, Èfla
µÍ =”µ0”

a
3fl

0
3. The mesonic equations of motion can be

found by the Euler-Lagrange equations for the meson fields using the Lagrangian eq. (2.1)

m
2
‡‡0 + V

Õ(‡0) =
ÿ

i=n,p

g‡n
s
i , (2.6)

m
2
ÊÊ0 =

ÿ

i=n,p

gÊni, (2.7)

m
2
flfl

0
3 =

ÿ

i=n,p

gflI3ini, (2.8)

where, I3i is the third component of the isospin of a given baryon. We have taken I3(n,p) =1
≠1

2 ,
1
2

2
. The baryon density, nB , lepton density, nl, and scalar density, n

s, at zero temperature
are given by

nB =
ÿ

i=n,p

“k
3
F i

6fi2 ©
ÿ

i=n,p

ni, (2.9)

nl = k
3
F l

3fi2 , (2.10)

and

n
s = “

(2fi)3

ÿ

i=n,p

⁄ kF i

0

m
ú

E(k)d
3
k ©

ÿ

i=n,p

n
s
i , (2.11)

where, E(k) =
Ô

mú2 + k2 being the single particle energy for nucleons with a medium
dependent mass given as

m
ú = mb ≠ g‡‡0. (2.12)

Further, kF i =
Ò

µ̃
2
i ≠ mú2 is the Fermi momenta of the nucleons defined through an e�ective

baryonic chemical potential, µ̃i given as

µ̃i = µi ≠ gÊÊ0 ≠ gflI3ifl
0
3. (2.13)

Similarly, kF l is the leptonic Fermi momenta i.e. kF l =
Ò

µ
2
l ≠ m

2
l . Further “ = 2 correspond

to the spin degeneracy factor for nucleons and leptons and µl denotes the chemical potential
for leptons.

The total energy density, ‘HP, within the RMF model is given by

‘HP = m
ú4

fi2

ÿ

i=n,p

H(kF i/m
ú) +

ÿ

l=e,µ

m
4
l

fi2 H(kF l/ml)

+1
2m

2
‡‡

2
0 + V (‡0) + 1

2m
2
ÊÊ

2
0 + 1

2m
2
flfl

0
3

2
. (2.14)

The pressure, pHP, can be found using the thermodynamic relation as

pHP =
ÿ

i=n,p,l

µini ≠ ‘HP. (2.15)

In eq. (2.14) we have introduced the function H(z) which is given as

H(z) = 1
8

Ë
z


1 + z2(1 + 2z

2) ≠ sinh≠1
z

È
. (2.16)
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Table 1. The nucleon masses (mb), ‡ meson
mass (m‡), Ê meson mass (mÊ), fl meson mass
(mfl) and couplings g‡, gÊ, gfl, Ÿ, ⁄ in NL3 pa-
rameterisation [84].

Parameters Values
mb (MeV) 939
m‡ (MeV) 508.194
mÊ (MeV) 782.501
mfl (MeV) 763.000
g

2
‡ 104.387

g
2
Ê 165.585

g
2
fl 79.6

Ÿ (fm≠1) 3.86
⁄ -0.0159

Table 2. The nucleon masses (mb), meson
masses, mi (i = ‡, Ê, fl) and coupling constants
gi0, ai (i = ‡, Ê, fl) and the saturation nuclear
density n0 in DDB model [76, 77].

Parameters Values
mb (MeV) 939
m‡ (MeV) 508.194
mÊ (MeV) 782.501
mfl (MeV) 763.000
a‡ 0.071
aÊ 0.046
afl 0.666
g‡0 9.690
gÊ0 11.756
gfl0 8.281
n0 (fm≠3) 0.147

In the present investigation, we consider two di�erent parameterisation for the nucleonic
EOS — (i) the NL3 parameterisation of RMF model as discussed in ref. [84]. The corresponding
parameters are listed in table 1. The other parameterisation of the RMF model is DDB [76, 77]
consistent with the phenomenology of the saturation properties of nuclear matter as well as
the gravitational wave data regarding tidal deformation [9]. In case of DDB, the couplings
are density dependent and defined as

g‡ = g‡0 e
≠(xa‡ ≠1)

, (2.17)
gÊ = gÊ0 e

≠(xaÊ ≠1)
, (2.18)

gfl = gfl0 e
≠afl(x≠1)

, (2.19)

where, x = nB/n0. The DDB parameters gi0, ai, (i = ‡, Ê, fl) and n0 are given in table 2. In
DDB parameterisation, the cubic and quartic terms in eq. (2.1) are taken to be zero so that
V (‡) = 0. We mention here that these parameter set lies within the 90 percent confidence
inference (CI) of the R1.4 of NS with mass 1.4M§ as analysed in refs. [76, 77]

Due to the density dependent couplings, the e�ective baryon chemical potential as in
eq. (2.13) gets redefined as

µ̃i = µi ≠ gÊÊ0 ≠ gflI3ifl
0
3 ≠ �r

, (2.20)

where, �r is the “rearrangement term” which is given as [75]

�r =
ÿ

i=n,p

;
≠ ˆg‡

ˆnB
‡0n

s
i + ˆgÊ

ˆnB
Ê0ni + ˆgfl

ˆnB
fl

0
3I3ini

<
. (2.21)

The NSs are globally charge neutral as well as the matter inside the core is under
—-equilibrium. So the chemical potentials and the number densities of the constituents of
NSM are related by the following equations,

µi = µB + qiµE , (2.22)
ÿ

i=n,p,l

niqi = 0, (2.23)
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where, µB and µE are the baryon and electric chemical potentials and qi is the charge of the
i
th particle.

2.2 Equation of state for quark matter
We note down here, for the sake of completeness, the salient features of the thermodynamics
of NJL model with two flavours that we use to describe the EOS of the quark matter. The
Lagrangian of the model with four point interactions is given by

L = Â̄q(i“µ
ˆµ ≠ mq)Âq + Gs

Ë
(Â̄qÂq)2 + (Â̄qi“

5
·Âq)2

È

+Gv

Ë
(Â̄q“

µ
Âq)2 + (Â̄qi“

µ
“

5
·Âq)2

È
. (2.24)

Here, Âq is the doublet of u and d quarks. We have also taken here a current quark mass,
mq which is that we have taken as same for u and d quarks. The second term describes
the four point interactions in the scalar and pseudo-scalar channel. The third term is a
phenomenological vector interaction giving rise to repulsive interaction for Gv > 0 which can
make the EOS sti�er. Except for the explicit symmetry breaking term proportional to current
quark mass, the Lagrangian is chirally symmetric. Using the standard method of thermal field
theory one can write down the thermodynamic potential � within a mean field approximation
at a given temperature, (T = —

≠1) and quark chemical potential, (µq = µB/3) [85] as

�(M, T, µ) = ≠2Nc

ÿ

i=u,d

⁄
dk

(2fi)3 ◊
Ó

Ek + 1
—

log
!
1 + exp

!
≠ —(Ek ≠ µ̃i)

""

+ 1
—

log
!
1 + exp

!
≠ —(Ek + µ̃i)

"" Ô
+ Gsfl

2
s ≠ Gvfl

2
v. (2.25)

Where, Nc = 3 is the colour degrees of freedom and Ek =
Ô

k2 + M2 is the on shell single
particle energy of the quark with constituent quark mass M and µ̃i being an e�ective quark
chemical potential in the presence of the vector interaction. The constituent quark mass, M ,
satisfies the mass gap equation

M = mq ≠ 2Gsfls, (2.26)
and the e�ective quark chemical potential satisfies

µ̃i = µi ≠ 2Gvflv. (2.27)

Here, we focus our attention to T = 0 which is applicable to the cold NSs. Using the
relation lim—æŒ

1
— log

1
e

≠—x + 1
2

= ≠x�(≠x), the thermal factors in eq. (2.25) go over into
step functions and the mean field thermodynamic potential eq. (2.25) becomes in the limit
T æ 0

�(M, 0, µ) = ≠2Nc

ÿ

i=u,d

⁄
dk

(2fi)3

Ó
Ek + (µ̃i ≠ Ek) � (µ̃i ≠ Ek)

Ô
+ Gsfl

2
s ≠ Gvfl

2
v.

(2.28)

The scalar density, fls, and vector density, flv, are given as

fls = ≠2Nc

ÿ

i=u,d

⁄
dk

(2fi)3
M

Ek

1
1 ≠ � (µ̃i ≠ Ek)

2

= ≠NcM
3

fi2

ÿ

i=u,d

Ë
G(�/M) ≠ G(kF i/M)

È
, (2.29)
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and

flv = 2Nc

ÿ

i=u,d

⁄
dk

(2fi)3 � (µ̃i ≠ Ek) = 2Nc

ÿ

i=u,d

k
3
F i

6fi2 . (2.30)

In eq. (2.29), we have introduced the function G(z) which is defined as

G(z) = 1
2

5
z


1 + z2 ≠ tanh≠1

3
zÔ

1 + z2

46
. (2.31)

The di�erence of the vacuum energy densities between the non-perturbative vacuum
(characterized by the constituent quark mass, M) and energy density of the perturbative
vacuum (characterized by current quark mass, mq) is the bag constant, B, i.e.

B = �(M, T = 0, µ = 0) ≠ �(mq, T = 0, µ = 0). (2.32)

This bag constant is to be subtracted from eq. (2.28) so that the thermodynamic potential
vanishes at vanishing temperature and density. The pressure, pNJL, i.e. the negative of the
thermodynamic potential of the quark matter in NJL model is given as

pNJL = pvac + pmed + B, (2.33)

where the vacuum, pvac, and the medium, pmed, contributions to the pressure are given by

pvac = 4Nc

(2fi)3

⁄

|k|Æ�
dk


k2 + M2 © 2Nc

fi2 M
4

H(�/M), (2.34)

and,

pmed = 2Nc

(2fi)3

ÿ

i=u,d

⁄ kF i

0
dk

Ë
k2 + M2 ≠ µ̃i

È
+ Gsfl

2
s ≠ Gvfl

2
v

= Nc

fi2

ÿ

i=u,d

M
4 [H(kF i/M) ≠ µ̃ifli] + Gsfl

2
s ≠ Gvfl

2
v, (2.35)

where, kF i = �(µ̃i ≠ M)
Ò

µ̃
2
i ≠ M2 is the fermi-momenta of i = u, d quark and � is the

three momentum cut-o�. The function H(z) is already defined in eq. (2.16). From the
thermodynamic relation, the energy density, ‘NJL, is given as

‘NJL =
ÿ

i=u,d

µifli ≠ pNJL. (2.36)

where, fli = “k3

F i
6fi2 , (i = u, d, e) with the degeneracy factor “ = 6 for quarks and “ = 2 for

electron. NSM is charge neutral as well as —-equilibrated. So the chemical potentials of the u

and d quarks can be expressed in terms of quark chemical potential, µq, and electric chemical
potential, µE , as µi = µq + qiµE (i = u, d). qi’s are the electric charges of u and d quarks.
The condition of charge neutrality is

2
3flu ≠ 1

3fld ≠ fle = 0. (2.37)

– 8 –



J
C
A
P
0
2
(
2
0
2
3
)
0
1
5

Since the typical electric charge chemical potential is of the order of MeV, one can neglect the
electron mass so that kF e = |µe|. The total pressure and the energy density for the charge
neutral quark matter are then given by

pQP = pNJL + pe, (2.38)
‘QP = ‘NJL + ‘e, (2.39)

where, ‘e ƒ µ4
e

4fi2 and pe ƒ ‘e/3.
We may note that NJL model has four parameters ≠ namely, the current quark mass,

mq, the three momentum cuto�, �, and the two coupling constants, Gs and Gv. The values
of the parameters are usually chosen by fitting the pion decay constant, ffi = 92.4 MeV, the
chiral condensate, È≠Â̄qÂqÍu = È≠Â̄qÂqÍu = (240.8 MeV)3 and the pion mass, mfi = 135 MeV.
This fixes mq = 5.6 MeV, Gs�2 = 2.44 and � = 587.9 MeV. As mentioned Gv is not fitted
from any other physical constraint and we take it as a free parameter. We shall show our
results for the two values of Gv namely Gv = 0 and Gv = 0.2Gs. With this parameterisation,
the constituent quark mass, M , comes 400 MeV, the critical chemical potential, µc for the
chiral transition turns out to be µc = 1168 MeV for the vector coupling constant Gv = 0 in
NJL model.

2.3 Hadron-quark phase transition and mixed phase
The baryon number density or the quark chemical potential at which the hadronic-quark
phase transition occurs is not known precisely from the first principle calculations in QCD
but it is expected from various model calculations to occur at a density which is few times the
nuclear matter saturation density. In the context of NSs, two types of phase transitions can
be possible depending upon the surface tension [66–72] of the quark matter. If the surface
tension is large then there will be sharp interface and one can have a Maxwell construct for
the phase transition. On the otherhand, if the surface tension is small we can have a Gibbs
construct for the phase transition, where there is a MP of nuclear and quark matter. It ought
to be mentioned, however, the estimated values of the surface tension for quark matter vary
over a wide range and is very much model dependent. As the value of the surface tension is
not precisely known yet both the scenarios, (Maxwell and Gibbs) are plausible. We adopt here
the Gibbs construct for the HQPT as nicely outlined in ref. [86]. In this case, one can achieve
the charge neutrality with a positively charged hadronic matter mixed with a negatively
charged quark matter in necessary amount leading to a global charge neutrality where the
pressures of the both phases are the functions of two independent chemical potentials µB and
µE . The Gibbs condition for the equilibrium at the zero temperature between the two phases
for such a two component system is given by [65]

pHP(µB, µE) = pQP(µB, µE) = pMP(µB, µE), (2.40)

where, the pressure for HP, pHP, is given in eq. (2.15) and the pressure for the Quark Phase
(QP), pQP, is written down in eq. (2.38). In figure 1 we illustrate this calculation, where the
pressure is plotted as a function of baryon chemical potential, µB(= µn), and the electric
chemical potential, ≠µE(= µe). The green surface denotes the pressure in the HP estimated
from the RMF model using NL3 parameters. The purple surface denotes the pressure in the
QP estimated in NJL model. The two surfaces intersect along the curve AB satisfying the
global charge neutrality condition,

‰ fl
QP
c + (1 ≠ ‰) fl

HP
c = 0, (2.41)
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Figure 1. Pressure is plotted as a function of µn(µB) and µe(≠µE) for HP and QP. The green surface
is for HP and the purple surface is for the QP. The two surfaces intersect along the curve AB. The
along the dashed portion on this line, the electrical charge neutrality is maintained. Along the red
dashed line and magenta dashed line charge neutrality is maintained in HP and QP respectively. The
quark matter fraction ‰ increases monotonically from ‰ = 0 to ‰ = 1 along the curve AB. We have
considered here the NL3 parameterisation of RMF for the description of HP matter.

where, fl
HP
c and fl

QP
c denote the total charge densities in HP and QP respectively and ‰ defines

the volume fraction of the quark matter in MP defined as,

‰ = VQP
VQP + VHP

. (2.42)

Explicitly, for a given µB, we calculate the electric charge chemical potential µE such
that the pressure in both the phases are equal satisfying the Gibbs condition eq. (2.40). This
gives the intersection line (AB) of the two surfaces as shown in figure 1. Further imposing
the global charge neutrality condition eq. (2.41) one obtains the volume fraction ‰ occupied
by the quark matter in MP. Thus along the line AB in figure 1, the volume fraction occupied
by quark matter increases monotonically from ‰ = 0 to ‰ = 1. This gives the pressure
for the charge neutral matter in MP. Below ‰ < 0, EOS corresponds to the charge neutral
hadronic matter EOS shown as the red dash curve while for ‰ > 1 EOS corresponds to
the charge neutral quark matter EOS shown as the purple dash curve in figure 1. With
the present parametrisation of the RMF model for hadronic matter and NJL model for the
quark matter, MP starts at (µB, µe, p) = (1423MeV, 289.26MeV, 144.56MeV/fm3) and ends
at (µB, µe, p) = (1597MeV, 102.40MeV, 266.23MeV/fm3). This corresponds to the starting of
MP at baryon density flB = 2.75fl0 and ending of MP at baryon density flB = 5.72fl0. For NJL
model we have taken here Gv = 0.2Gs. For Gv = 0, MP starts little earlier i.e. flB = 2.36fl0
and ends at flB = 5.22fl0. After MP, as baryon density increases the matter is in pure charge
neutral QP. We can find the energy density in the MP as follows,

‘MP = ‰‘QP + (1 ≠ ‰)‘HP. (2.43)
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Figure 2. The particle fractions normalized with respect to baryon density for the charge neutral
matter are plotted as a function of the baryon number density. The plot is for Gv = 0.2Gs. At
flB = 2.75fl0 the quark matter starts appearing and at flB = 5.72 fl0 the hadronic matter melts
completely to the quark matter. The HP is described by RMF model with NL3 parameterisation.

We display the particle content as a function of density for the charge neutral matter
for Gv = 0.2Gs in figure 2. In the HP, the neutron density dominates with a small fraction
of proton and a small fraction of electron is also appeared to get the charge neutral HP. At
flB ≥ 2.76fl0, the MP starts and the nucleon fraction decreases while quark fraction start
increasing. Finally, at densities flB ≥ 5.56fl0 and above, the pure QP takes over with d-quark
densities roughly becoming twice that of the u-quarks to maintain the global charge neutrality.

Similar to eq. (2.43) the baryon number density in MP

fl
B
MP = ‰fl

B
QP + (1 ≠ ‰)flB

HP. (2.44)

In MP region, nuclear matter fraction decreases while quark matter fraction increases with
increasing flB. As flB increases further the nuclear matter melts completely to quark matter
which occurs for densities beyond flB = 5.72fl0.

MP construction using DDB parameterisation of the hadronic EOS is also similar except
that the MP starts at (µB, µe, p, flB) = (1416.5 MeV, 204.58 MeV, 181.76 MeV/fm3

, 3.93fl0)
and ends at (µB, µe, p, flB) = (1504 MeV, 108.42 MeV, 245.51 MeV/fm3

, 6.98fl0) beyond
which we find QP as the stable phase.

3 Non-radial fluid oscillation modes of compact stars

In this section, we outline the equations governing the oscillation modes of the fluid comprising
NSM. The most general metric for a spherically symmetric space-time is given by

ds
2 = g–—dx

–
dx

—

= e
2‹

dt
2 ≠ e

2⁄
dr

2 ≠ r
2(d◊

2 + sin2
◊d„

2), (3.1)

where, ‹ and ⁄ are the metric functions. It is convenient to define the mass function, m(r) in
the favour of ⁄ as

e
2⁄ =

3
1 ≠ 2m

r

4≠1
. (3.2)
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Starting from the line element eq. (3.1) one can obtain the equations governing the structure
of spherical compact objects, the Tolman-Oppenheimer-Volko� (TOV) equations, as

dp

dr
= ≠ (‘ + p) d‹

dr
, (3.3)

dm

dr
= 4fir

2
‘, (3.4)

d‹

dr
= m + 4fir

3
p

r(r ≠ 2m) . (3.5)

In the above set of equations ‘, p are the energy density and the pressure respectively. m(r)
is the mass of the compact star enclosed within a radius r. To solve these equations, one has
to supplement these equations with an equation relating pressure and energy density i.e. an
EOS. Further, one has to set the boundary conditions at the center and surface as

m(0) = 0 and p(0) = pc, (3.6)
p(R) = 0, (3.7)

e
2‹(R) = 1 ≠ 2M

R
, (3.8)

where, the total mass of the compact object is given by M = m(R),1 R being it’s radius which
is defined as the radial distance where the pressure vanishes while integrating out eqs. (3.3),
(3.4) and (3.5) from the center to the surface of the star. One can solve these equations
along with a boundary conditions eqs. (3.6), (3.7) and (3.8) for a set of central densities ‘c or
corresponding pressure pc to obtain the mass-radius, (M ≠ R) curve.

For the sake of completeness, we give below a succinct derivation of pulsating equations
in the context of NS within a relativistic setting [53, 87]. The Einstein field equation that
relates the curvature of space time to the energy momentum tensor is given as

R–— ≠ 1
2g–—R = 8fiT–— , (3.9)

with T–— being the stress energy tensor, which for a perfect fluid is given by

T
µ‹ = (p + ‘)uµ

u
‹ ≠ pg

µ‹
, (3.10)

with p and ‘ being the pressure and energy density respectively and u
µ is the four-velocity.

Taking (covariant) divergence of the Einstein equation, eq. (3.9), the left hand side of eq. (3.9)
vanishes using Bianchi identity leading to covariant conservation equation of the energy
momentum tensor i.e. T

µ‹
;µ = 0. With T

µ‹ given in eq. (3.10), this reduces to

(p + ‘)uµ
u‹;µ = ˆ‹p ≠ u‹u

µ
ˆµp (3.11)

which is the relativistic Euler equation [87]. Next, to derive the equation of motion, we use the
conservation of baryon number. This is similar to using continuity equation in non-relativistic
case which follows from mass conservation. The baryon number conservation equation is
given by

dn

d·
= ≠nu

µ
;µ, (3.12)

where, n is the baryon number density.
1In this section, M denotes the mass of the compact stars to be distinguished from the constituent quark

mass defined in section 2.2.
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We shall derive the equations in spherical coordinates and the perturbations will be
expanded in terms of vector spherical harmonics. The position (t, r, ◊, „) of a fluid element in
space time as a function of proper time · is given by the position four-vector ›(·) as

›(·) =

Q

ccca

›
t

›
r

›
◊

›
„

R

dddb . (3.13)

Consider a fluid element located at ›0 as its equilibrium position is displaced to ›(›0, ·) =
›0 +’(›0, ·). This results perturbation in pressure p, in energy density ‘ and in baryon number
density n as

p = p0 + ”p, (3.14)
‘ = ‘0 + ”‘, (3.15)
n = n0 + ”n, (3.16)

where, the subscript ‘0’ refers to the corresponding quantities in equilibrium. To derive the
equations of motion for the perturbation, one has to linearize the Euler equation, eq. (3.11)
in the perturbation. For this we need the four velocities of the fluid elements u

µ = d›µ

d· = d’µ

d· .
Further, we shall confine ourselves to performing the analysis for spherical harmonic component
with the azimuthal index m = 0. For the displacement vector ’

µ we take the ansatz

Q

ccca

’
t

’
r

’
◊

’
„

R

dddb =

Q

cccccca

t

e
≠⁄

Q(r, t)
r2 Pl(cos ◊)

≠Z(r, t)
r2 ˆ◊Pl(cos ◊)

0

R

ddddddb
, (3.17)

where, Q(r, t) and Z(r, t) are the perturbing functions. We choose a harmonic time dependence
for the perturbation i.e. Ã e

iÊt with frequency Ê. Further, we do not consider here toroidal
deformations. From the normalisation condition for the velocity uµu

µ = 1, and keeping up to
linear terms in the perturbation, we have u

t = d’
t
/d· = e

≠‹ . The other components of the
four-velocity are given as Q

ccca

u
t

u
r

u
◊

u
„

R

dddb =

Q

ccca

e
≠‹

e
≠‹

’̇r

e
≠‹

’̇◊

0

R

dddb , (3.18)

where, the dot on the perturbed coordinate denotes the derivative with respect to time ‘t’.
Similarly, the contravarient velocity components are given using the metric given in eq. (3.1)
and eq. (3.18) as Q

ccca

ut

ur

u◊

u„

R

dddb =

Q

ccca

e
‹

≠e
2⁄≠‹

’̇r

≠r
2
e

≠‹
’̇◊

0

R

dddb . (3.19)

Now we simplify the Euler equation i.e. eq. (3.11) by substituting the expressions for
pressure, energy density and the fluid four-velocity and linearize in terms of the perturbing
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functions. The ‹ = t component of the Euler equation, eq. (3.11), reduces to

(p0 + ‘0)‹ Õ(r) = ≠p
Õ
0(r), (3.20)

where, the superscript ‘prime’ corresponds to derivative with respect to ‘r’. To obtain eq. (3.20),
we have used in the l.h.s. of eq. (3.11), with ‹ = t, u

µ
ut;µ = ‹

Õ
’̇

r and in r.h.s. we have used the
fact that p0 is isotropic so that ṗ0 ≠ utu

µ
ˆµp ≥ ≠’̇

r
p

Õ
0(r). Let us recognise that the eq. (3.20)

is essentially a part of the TOV equations (eq. (3.3)) relating pressure gradient and the metric
function gradient. Next, the ‹ = r component of the Euler equation, eq. (3.11), reduces to

Ê
2(‘0 + p0)e2(⁄≠‹)

’
r ≠ (”‘ + ”p)‹ Õ(r) ≠ d

dr
(”p) = 0. (3.21)

Similarly, the ‹ = ◊ component of the Euler equation, eq. (3.11), by using u
µ
u◊;µ =

u
t
ˆtu◊ = ≠e

≠2‹
r

2
’̈◊, is given as

Ê
2(‘0 + p0)e≠2‹

r
2
’

◊ ≠ ˆ◊”p = 0. (3.22)

Having written down the Euler equation to linear order in the perturbation, let us next
consider the baryon number conservation equation i.e. eq. (3.12). With the velocity components
given in eqs. (3.18), (3.19) and eq. (3.17) for the perturbation,the number conservation equation,
eq. (3.12) can be written in terms of the radial and azimuthal perturbing functions Q(r) and
Z(r) as

dn

d·
= ≠ n

r2

C

e
≠(⁄+‹)ˆ

2
Q(r, t)
ˆrˆt

+ e
≠‹

l(l + 1)Ż
D

Pl(cos ◊). (3.23)

We might note here that, since the proper time derivative is taken along the world
line of the fluid parcel, we can write dn

d· = d�n
d· , where, �n is the Lagrangian perturbation.

Further, using the relation ˆ/ˆt = e
≠‹

ˆ/ˆ· , we can integrate eq. (3.23) over d· to obtain the
Lagrangian perturbation in number density �n in terms of the perturbing functions Q and
Z as

�n

n0
= ≠ 1

r2

Ë
e

≠⁄
Q

Õ + l(l + 1)Z
È

Pl(cos ◊). (3.24)

To write down the equations in terms of the perturbing functions Q(r) and Z(r), we
need to express the energy density perturbation ”‘ and pressure perturbation ”p occurring in
eqs. (3.20), (3.21) in terms of the functions Q(r) and Z(r). The strategy is to use the Euler
equation eq. (3.11) to write ”‘ in terms of ”n and use definition of bulk modulus (Ÿ = n

�p
�n) to

write ”p in terms of ”n. One can then use the baryon number conservation equation eq. (3.23)
to write ”‘ and ”p in terms of the perturbing functions.

Thus, using the Euler equation eq. (3.11) to eliminate u
µ
;µ in the baryon number conser-

vation eq. (3.12), we have
dn

d·
= n

p + ‘

ˆ‘

ˆ·
, (3.25)

which leads to
�‘ ƒ ‘0 + p0

n0
�n. (3.26)

Further, using the relation between the Lagrangian perturbation and the Eulerian
perturbation i.e. �‘ = ”‘ + ’

r d‘0
dr

and using eq. (3.24), we have

”‘ = ≠
C

‘0 + p0
r2

Ó
e

≠⁄
Q

Õ + l(l + 1)Z
Ô

+ e
≠⁄

r2 Q
d‘0
dr

D

Pl(cos ◊). (3.27)
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Next, let us find out the relation between ”p and �n. The Eulerian variation ”p and the
Lagrangian variation �p are related as

”p = �p ≠ ’
r dp0

dr
. (3.28)

Thus, using eq. (3.17) and eq. (3.24), we have

”p = ≠
C

Ÿ

r2
!
e

≠⁄
Q

Õ + l(l + 1)Z
"

+ e
≠⁄

r2
dp0
dr

Q

D

Pl(cos ◊). (3.29)

Further, �p is related to �n, through bulk modulus Ÿ i.e.

Ÿ = n
�p

�n
.

In the relativistic Cowling approximation, the metric perturbations are neglected. This will
mean the energy and pressure perturbations should also vanish. In the relativistic Cowling
approximation, the energy density perturbation ”‘ is set to zero but pressure perturbation is
not set to zero. As shown in ref. [53], such an approximation leads to qualitatively correct
result which we shall also follow. Setting ”‘ = 0 in eq. (3.21), and using eq. (3.29), we have

‹
Õ
”p + d”p

dr
= ≠‹

Õ
ŸX ≠ d(ŸX)

dr
≠ ‹

Õ(p0 + ‘0)l(l + 1) Z

r2 + (p0 + ‘0)Q d

dr

A
e

≠⁄
‹

Õ

r2

B

,

(3.30)

where, we have defined for the sake of brevity X = (e≠⁄
Q

Õ + l(l + 1)Z)/r
2.Using this, the

radial Euler equation, eq. (3.21) becomes

Ê
2(‘0 + p0)e⁄≠2‹ Q

r2 +d [ŸX]
dr

+ ‹
Õ
ŸX + ‹

Õ(‘0 + p0)l(l + 1) Z

r2 ≠ (‘0 + p0) d

dr

A
e

≠⁄
‹

Õ

r2

B

= 0.

(3.31)

Similarly, the azimuthal component of the Euler equation eq. (3.22) becomes

Ê
2(p0 + ‘0)e≠2‹

Z ≠ ŸX ≠ p
Õ
0
e

≠⁄
Q

r2 = 0. (3.32)

It can be shown that the eq. (3.31) through a rearrangement of terms is identical to that
obtained earlier by McDermott et al. [53] with an appropriate change of factor 2 in the metric
functions ‹(r) and ⁄(r). Few more comments here may be in order. In literature, sometimes
the adiabatic index “ is used instead of Ÿ and is defined as [42]

“ =
3

ˆ ln p0
ˆ ln n0

4

s
= n0�p

p0�n
(3.33)

so that Ÿ = “p0. Further, the same can be related to adiabatic speed of sound as follows. By
using the definition of Jacobian and standard thermodynamic relation

3
ˆ ln p0
ˆ ln n0

4

s
= n

2
0

p0‰µµ
(3.34)
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in the zero temperature limit. The adiabatic speed of sound at zero temperature is defined
as [88]

c
2
s =

3
ˆp0
ˆ‘0

4

s
= n

µ‰µµ

so that
“ = p0 + ‘0

p0
c

2
s. (3.35)

Let us note that eq. (3.31) is a second order di�erential equation for the perturbing
function Q(r). We now use eq. (3.32) to write down two coupled first order equation for the
perturbing functions. Using eq. (3.32) and eq. (3.35), we have the equation for perturbation as

Q
Õ ≠ 1

c2
s

Ë
Ê

2
r

2
e

⁄≠2‹
Z + ‹

Õ
Q

È
+ l(l + 1)e⁄

Z = 0. (3.36)

Next one can calculate the combination d[eq. (3.32)]/dr + [eq. (3.31)] and substitute
eq. (3.32) again which leads to the first order di�erential equation for Z

Õ as

Z
Õ ≠ 2‹

Õ
Z + e

⁄ Q

r2 ≠ ‹
Õ
3 1

c2
e

≠ 1
c2

s

4 3
Z + ‹

Õ
e

≠⁄+2‹ Q

Ê2r2

4
= 0. (3.37)

In the above equation c
2
e = dp0

d‘0
= pÕ

0

‘Õ
0

is the equilibrium speed of sound. It may be noted
that eq. (3.40) can be rewritten as

Ê
2
e

⁄ Q

r2 + Ê
2
Z

Õ + A≠e
⁄
Ê

2
Z ≠ A+e

2‹ p
Õ
0

p0 + fl0

q

r2 = 0, (3.38)

where, A+ = e
≠⁄(‘Õ

0/(p0 + ‘0) + ‹
Õ
/c

2
s) and A≠ = A+ ≠ 2‹

Õ
e

≠⁄. It is reassuring to see that
the eq. (3.36) and eq. (3.38) are identical to the corresponding equations eq. (3b) and eq. (4a)
given in ref. [53]. The gravity mode (g mode) oscillation frequencies are closely related to the
Brunt-Väisäla frequency, ÊBV [53]. The relativistic generalisation of ÊBV is given by

Ê
2
BV = ‹

Õ2
e

2‹
3

1 ≠ 2m

r

4 3 1
c2

e
≠ 1

c2
s

4
. (3.39)

This also reduces to the expression for the ÊBV in Newtonian limit [54].
The equation for the perturbation function Z(r) can be rewritten in terms of the

Brunt-Väisäla frequencies as

Z
Õ ≠ 2‹

Õ
Z + e

⁄ Q

r2 ≠ Ê
2
BV e

≠2‹

‹ Õ
1
1 ≠ 2m

r

2
3

Z + ‹
Õ
e

≠⁄+2‹ Q

Ê2r2

4
= 0. (3.40)

The two coupled first order di�erential equations for the perturbing functions Q(r, t)
and Z(r, t), eqs. (3.36), (3.40), are to be solved with appropriate boundary conditions at the
center and the surface. Near the center of the compact stars the behavior of the functions
Q(r) and Z(r) are given by [42]

Q(r) = Cr
l+1 and Z(r) = ≠Cr

l
/l (3.41)

where, C is an arbitrary constant and l is the order of the oscillation. The other boundary
condition is the vanishing of the Lagrangian perturbation pressure, i.e. �p = 0 at the stellar
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surface. Using equations eqs. (3.28), (3.29) and (3.36), we have the Lagrangian perturbation
pressure �p given as

�p = ≠(p0 + ‘0)
r2

Ë
Ê

2
r

2
e

⁄≠2‹
Z + ‹

Õ
Q

È
e

≠⁄
. (3.42)

Thus the vanishing of �p at the surface of the star (r = R) leads to the boundary condition [89]

Ê
2
r

2
e

⁄≠2‹
Z + ‹

Õ
Q

---
r=R

= 0. (3.43)

Further, in case one considers stellar models with a discontinuity in the energy density,
one has to supplement additional condition at the surface of discontinuity demanding �p to
be continuous i.e. �p(r = rc≠) = �p(r = rc+). Where, rc is the radial distance of the surface
of energy density discontinuity from the center. This leads to [42, 89]

Q+ = Q≠, (3.44)

Z+ = e
2‹

Ê2rc

I
‘0≠ + p0
‘0+ + p0

1
Ê

2
r

2
c e

≠2‹
Z≠ + e

≠⁄
‹

Õ
Q≠

2
≠ e

≠⁄
‹

Õ
Q+

J

, (3.45)

where, the ≠(+) subscript corresponds to the quantities before(after) the surface of disconti-
nuity. In case of a Maxwell construct for phase transition, there is a discontinuity in energy
density while in Gibbs construct of phase transition the energy density is continuous at the
phase boundary as considered here.

With these boundary conditions the problem becomes an eigen-value problem for ‘Ê’.
To calculate the eigen frequencies Ê, we proceed as follows. For a given central density ‘c, we
first solve the TOV equations eqs. (3.3)–(3.5) to get the profile of the unperturbed metric
functions ⁄(r), ‹(r) and also the mass M and the radius R of the spherical star. For a given
Ê, we solve the pulsating equations eqs. (3.36) and (3.40) to determine the fluid perturbing
functions Q(r) and Z(r) as a function of r. To solve these equations, we take the initial values
for Q and Z consistent with eq. (3.41). Specifically we took C of the order 1. The solutions
of Q and Z are independent of this choice. We then calculate l.h.s. of eq. (3.43). The value
of Ê is then varied such that the boundary condition, eq. (3.43), is satisfied. This gives the
frequency, Ê as function of mass and radius. It may be noted that there can be multiple
solutions of Ê satisfying the pulsating equations and the boundary conditions corresponding
to di�erent initial trail values for Ê. These di�erent solutions for Ê correspond to frequencies
of di�erent modes of oscillations of the compact star.

4 Equilibrium and adiabatic sound speeds

In this section we discuss both equilibrium and adiabatic sound speeds which are needed to
solve the pulsating equations eqs. (3.36) and (3.40). We present the expressions of both sound
speeds for matter in HP, QP and MP. The equilibrium speed of sound is given by

c
2
e = dp

d‘
= dp/dr

d‘/dr
, (4.1)

where, p and ‘ are the total pressure and energy density. The equilibrium sound speed in NS
can be evaluated numerically as a function of radial distance from the center of the star while
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keeping the NSM in —-equilibrium. Using the above definition (4.1), we find the equilibrium
speed of sound in HP, QP and MP.

The characteristic time scale of the QNM is about 10≠3 sec which is much smaller than
the —-equilibrium time scale. Therefore, during the oscillations the composition of the matter
can be assumed to be constant. Such adiabatic approximation means the adiabatic speed of
sound corresponds to the constant composition i.e.

c
2
s =

3
ˆp

ˆ‘

4

yi

=
(ˆp/ˆnB)yi

(ˆp/ˆnB)yi

, (4.2)

where, yi = (ni/nB)’s are the fractions of the constituents of the matter which need to be held
fixed while taking the derivatives. Once the derivatives are taken, we apply the —-equilibrium
condition and get the adiabatic speed of sound in di�erent phases. In the following subsections
we present the analytical expressions for the adiabatic speeds of sound in HP, QP and MP.

4.1 Speed of sound in hadronic phase

In the following we estimate the adiabatic speed of sound of hadronic matter within the RMF
model as

c
2
s,HP =

1
ˆpHP

ˆnB

2

yi1
ˆ‘HP

ˆnB

2

yi

. (4.3)

The total energy density and total pressure of matter in HP are given in eqs. (2.14) and (2.15).
Using these equations we find the partial derivative of pressure and energy density with
respect to baryon number density at constant composition (fixed yi) as

3
ˆpHP
ˆnB

4

yi
=

ÿ

i=n,p,l

C

µiyi +
3

ˆµi

ˆnB

4

yi

nB

D

≠
3

ˆ‘HP
ˆnB

4

yi

, (4.4)

and,
3

ˆ‘HP
ˆnB

4

yi

= 1
2fi2

ÿ

i=n,p,e,µ

C

EF ik
2
F i

3
ˆkF i

ˆnB

4

yi

+ m
ú
1
EF ikF i ≠ m

ú2 log xi

2 3
ˆm

ú

ˆnB

4

yi

D

+(m2
‡‡0 + V

Õ(‡0))
3

ˆ‡0
ˆnB

4

yi

+ m
2
ÊÊ0

3
ˆÊ0
ˆnB

4

yi

+ m
2
flfl

0
3

A
ˆfl

0
3

ˆnB

B

yi

. (4.5)

Here, xi = EF i + kF i

mú . The derivatives of the meson fields at constant composition, using
eqs. (2.6)–(2.8) are given as

3
ˆ‡0
ˆnB

4

yi

= g‡(ap + an)
m2

‡ + V ÕÕ(‡0) ≠ g‡(bp + bn) , (4.6)
3

ˆÊ0
ˆnB

4

yi

= gÊ(yp + yn)
m2

Ê
, (4.7)

A
ˆfl

0
3

ˆnB

B

yi

= gfl(yp ≠ yn)
2m2

fl
, (4.8)
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where, V
ÕÕ(‡0) is the second derivative of eq. (2.5) with respect to ‡0. The quantities ai and

bi, (i = n, p) are given by

ai = m
ú
yi

EF i
, (4.9)

bi = g‡

2fi2

C

3m
ú2 log xi ≠ EF ikF i ≠ 2m

ú2
kF i

EF i

D

. (4.10)

Eqs. (4.4) and (4.5) lead, inturn, to the derivatives of the medium dependent mass (mú) and
the chemical potential (µi) with respect to baryon number density at constant composition is
given as

3
ˆm

ú

ˆnB

4

yi

= ≠g‡

3
ˆ‡0
ˆnB

4

yi

, (4.11)
3

ˆµi

ˆnB

4

yi

=
3

ˆµ̃i

ˆnB

4

yi

+ gÊ

3
ˆÊ0
ˆnB

4

yi

+ gflI3i

3
ˆfl30
ˆnB

4

yi

, (4.12)

where, µ̃i =
Ò

k
2
F i + mú2. Further, we have on direct evaluation, using nB =

q
i=n,p

k3

F i
3fi2 ,

3
ˆkF i

ˆnB

4

yi

= kF i

3nB
. (4.13)

Thus the partial derivatives of pressure, eq. (4.4) and energy density eq. (4.5) gets completely
defined. This gives the adiabatic speed of sound in hadronic matter in the RMF model.

Similarly, one can determine the sound speeds in DDB model. The expressions of the
partial derivatives of pressure and energy density in DDB model are similar to eq. (4.4) and
eq. (4.5) except that there are additional terms due to the density dependent couplings. Here
we give the expressions with the incorporation of corresponding changes arising from the
density dependent couplings. The derivatives of the meson fields in DDB model is given as
follows

3
ˆ‡0
ˆnB

4

yi

= 1
m2

‡ ≠ g‡(bp + bn)

A

g‡(aÕ
p + a

Õ
n) +

3
ˆg‡

ˆnB

4

yi

(ns
p + n

s
n)

B

, (4.14)
3

ˆÊ0
ˆnB

4

yi

= 1
m2

Ê

A

gÊ(yp + yn) +
3

ˆgÊ

ˆnB

4

yi

(np + nn)
B

, (4.15)
A

ˆfl
0
3

ˆnB

B

yi

= 1
2m2

fl

A

gfl(yp ≠ yn) +
3

ˆgfl

ˆnB

4

yi

(np ≠ nn)
B

, (4.16)

where, with ai and bi as given in eqs. (4.9) and (4.10),

a
Õ
i = ai + bi‡0

g‡

3
ˆg‡

ˆnB

4

yi

, (4.17)

and, the derivatives of the density dependent couplings are given as
3

ˆg‡

ˆnB

4

yi

= ≠g‡a‡

fl0
x

a‡≠1
, (4.18)

3
ˆgÊ

ˆnB

4

yi

= ≠gÊaÊ

fl0
x

aÊ≠1
, (4.19)

3
ˆgfl

ˆnB

4

yi

= ≠gflafl

fl0
. (4.20)
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The derivatives of the medium dependent mass and the e�ective chemical potential at constant
composition is defined as

3
ˆm

ú

ˆnB

4

yi

= ≠g‡

3
ˆ‡0
ˆnB

4

yi

≠
3

ˆg‡

ˆnB

4

yi

‡0, (4.21)

and,
3

ˆµi

ˆnB

4

yi

=
3

ˆµ
ú
i

ˆnB

4

yi

+
3

ˆgÊ

ˆnB

4

yi

Ê0 + gÊ

3
ˆÊ0
ˆnB

4

yi

+
3

ˆgfl

ˆnB

4

yi

I3ifl
0
3 + gflI3i

A
ˆfl

0
3

ˆnB

B

yi

+
3

ˆ�r

ˆnB

4

yi

. (4.22)

The last term on the r.h.s. above is due to the extra ‘re-arrangement term’ in the e�ective
baryon chemical potential, µ̃i, given in eq. (2.21) and can be written as

3
ˆ�r

ˆnB

4

yi

=
ÿ

i=p,n

S

U≠‡0n
s
i

A
ˆ

2
g‡

ˆn
2
B

B

yi

≠ ‡0

3
ˆn

s
i

ˆnB

4

yi

3
ˆg‡

ˆnB

4

yi

≠
3

ˆ‡0
ˆnB

4

yi

n
s
i

3
ˆg‡

ˆnB

4

yi

+Ê0ni

A
ˆ

2
gÊ

ˆn
2
B

B

yi

+ Ê0

3
ˆni

ˆnB

4

yi

3
ˆgÊ

ˆnB

4

yi

+
3

ˆÊ0
ˆnB

4

yi

ni

3
ˆgÊ

ˆnB

4

yi

+ fl
0
3I3ini

A
ˆ

2
gfl

ˆn
2
B

B

yi

+ fl
0
3I3i

3
ˆni

ˆnB

4

yi

3
ˆgfl

ˆnB

4

yi

+
A

ˆfl
0
3

ˆnB

B

yi

I3ini

3
ˆgfl

ˆnB

4

yi

T

V .

(4.23)

In the above, using eqs. (4.18)–(4.20) the second derivatives of the couplings are directly
given as

A
ˆ

2
g‡

ˆn
2
B

B

yi

= ≠
3

ˆg‡

ˆnB

4

yi

a‡x
a‡ ≠ a‡ + 1

x fl0
, (4.24)

A
ˆ

2
gÊ

ˆn
2
B

B

yi

= ≠
3

ˆgÊ

ˆnB

4

yi

aÊx
aÊ ≠ aÊ + 1

x fl0
, (4.25)

A
ˆ

2
gfl

ˆn
2
B

B

yi

= ≠
3

ˆgfl

ˆnB

4

yi

afl

fl0
. (4.26)

Finally the derivative of the scalar condensate in eq. (4.23) is given by, using eq. (2.11)
3

ˆn
s
i

ˆnB

4

yi

= a
Õ
i + bi

3
ˆ‡0
ˆnB

4

yi

. (4.27)

Thus, the speed of sound in DDB is found using eqs. (4.4)–(4.5) with the relevant derivatives
in the DDB model defined in eqs. (4.14)–(4.27).

4.2 Speed of sound in quark phase

In an identical manner one can estimate the adiabatic speed of sound in QP by taking the
partial derivatives of total pressure and total energy density which are collected in eqs. (2.38)
and (2.39). In this subsection we present the analytic expression for the adiabatic speed of
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sound for the quark matter in NJL model. The partial derivatives of the pressure with respect
to baryon number density using the eq. (2.33) is given by

A
ˆpNJL
ˆnq

B

yi

=
A

ˆpvac
ˆnq

B

yi

+
A

ˆpmed
ˆnq

B

yi

, (4.28)

where,
A

ˆpvac
ˆnq

B

yi

= ≠NcM
4

fi2

ÿ

i=u,d

S

UH(z�) 4
M

A
ˆM

ˆnq

B

yi

+ H
Õ(z�)

A
ˆz�
ˆnq

B

yi

T

V , (4.29)

and,
A

ˆpmed
ˆnq

B

yi

= NcM
4

fi2

ÿ

i=u,d

S

UH(zi)
4

M

A
ˆM

ˆnq

B

yi

+ H
Õ(zi)

A
ˆzi

ˆnq

B

yi

T

V

≠Nc

3
ÿ

i=u,d

S

Uyiµ̃i + ni

A
ˆµ̃i

ˆnq

B

yi

T

V ≠ 2gvnq + 2gsfls

A
ˆfls

ˆnq

B

yi

. (4.30)

The partial derivative of the energy density using eq. (2.36) with respect to the baryon number
density is given as

A
ˆ‘NJL
ˆnq

B

yi

=
ÿ

i=u,d

S

Uyiµi + ni

A
ˆµi

ˆnq

B

yi

T

V ≠
A

ˆpNJL
ˆnq

B

yi

, (4.31)

where, zi = kF i/M and z� = �/M . The function H(z) is given in eq. (2.16) and H
Õ(z) is its

derivative with respect to z. The derivative of the constituent mass is given by

A
ˆM

ˆnq

B

yi

= ≠

2Ncgs

fi2 M
2(Bu + Bd)

1 + 2Ncgs

fi2 M2(Au + Ad)
(4.32)

where

Ai = 3G(zi) ≠ 3G(z�) ≠ G
Õ(zi)zi + G

Õ(z�)z� (4.33)

Bi = G
Õ(zi)

ˆkF i

ˆnq
(4.34)

Here i = u, d. The function G(z) is given in eq. (2.31) and G
Õ(z) is its derivative with respect

to z. Using these relations we can find the adiabatic speed of sound of quark matter in QP as

c
2
s,QP =

1
ˆpQP

ˆnq

2

yi1
ˆ‘QP

ˆnq

2

yi

. (4.35)

4.3 Speed of sound in mixed phase

Once we have the expressions for the di�erent sound speeds in HP and QP then it is state
forward to get the sound speeds in MP by using the quark matter fraction ‰ as given in
eq. (2.42) in MP. In case of equilibrium sound speed, the total pressure and the total energy
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Figure 3. The EOSs of the charge neutral matter including the MP for both nuclear models in HP and
the NJL model in QP. The left figure corresponds to the EOS with the NL3 parameterized hadronic
matter while the right figure corresponds to the DDB parameterized hadronic matter. At high density,
the NJL model is considered for the quark matter EOS with di�erent vector couplings. In left figure,
the EOSs correspond to the vector couplings Gv = 0 (upper curve) and Gv = 0.2Gs (lower curve) in
quark sector. In the right figure, the quark matter EOS corresponds to the vector coupling Gv = 0. In
both the figures, the sky blue curve refers to the HP and the dark blue curve refers to the QP while
the red curve corresponds to the MP. The open square corresponds to the central energy density of
a NS of mass 1.4M§. The triangles denote the starting of the MP and correspond to NSs of mass
2.17M§ (Gv = 0) and 2.50M§(Gv = 0.2Gs) for NL3+NJL and 2.18M§ (Gv = 0) for the DDB+NJL.
The circles indicate the central pressure and energy density of the maximum mass stars which are
2.27M§(Gv = 0) and 2.55M§(Gv = 0.2Gs) for NL3+NJL and 2.20M§(Gv = 0) for the DDB+NJL
HSs. The pure quark matter phase is not achieved prior to the maximum mass in all the cases.

density of the MP is calculated by using the eqs. (2.40) and (2.43). We take the numerical
derivative of pressure with respect to energy density and get the equilibrium sound speed in
MP. To estimate the adiabatic sound speed in MP we take the corresponding quantities in
HP and QP and hence c

2
s,MP is given as [48]

1
c

2
s,MP

= ‰

c
2
s,HP

+ 1 ≠ ‰

c
2
s,QP

(4.36)

5 Results and discussion

In this section, we present the structural properties and non-radial oscillations of NSs and HSs.
We consider two RMF models, one with NL3 [84] parameterized and other is DDB [76, 77]
for nucleonic matter EOS (see section 2.1) and a two flavour NJL model for the quark matter
EOS (see section 2.2) with parameters, (Gs�2

, �, m) = (2.24, 587.6MeV, 5.6MeV) [85]. The
MP is calculated using Gibbs construction, as outlined in section 2.3.

5.1 Equation of state and properties of neutron/hybrid star

In figure 3 we display the EOS with a Gibbs construct for the HQPT with the NJL EOS
describing the QP. The left figure corresponds to the HP described by RMF with NL3
parametrisation while in right figure the HP is described by RMF with DDB parametrisation
for the couplings. We note here that for the QP, the vector interaction induces additional
repulsion among quarks and makes the EOS sti�er which is reflected in the left figure for
the two values of Gv. As may be seen from eq. (2.27); the e�ective chemical potential
decreases for non vanishing and positive Gv. This results in a chiral transition occurring at a
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Figure 4. In the left figure, the quark fraction as a function of baryon density for the NL3 parameterized
EOSs in HP and NJL model in QP while in the right figure, the quark fraction as a function of
baryon density for the DDB parameterized EOS in HP and NJL model in QP as shown in figure 3.
In the left figure, the open (dark) circle indicates the central density of the maximum mass star i.e.
flB,max ƒ 3.5fl0(3.8fl0) corresponding to Mmax = 2.27M§(2.55M§) for Gv = 0 (Gv = 0.2Gs). In the
right figure, the open circle indicates the central density of the maximum mass star i.e. flB,max ƒ 5.5fl0.

.

higher chemical potentials as Gv increases along with a corresponding higher critical energy
density. As a matter of fact, with DDB EOS, we get a HQPT for Gv = 0 for stable NS/HS
configuration. For Gv = 0.2Gs, the corresponding critical energy density is much too high
to have a stable star with a quark matter core. Therefore, in all the results that follow, we
consider only Gv = 0 for describing HSs when the corresponding HP is described by DDB
EOS. In the left of figure 3, we have plotted the MP EOS for two di�erent vector couplings
for the NJL model description while RMF with NL3 parametrisation for the HP. In the case
of Gv = 0, the MP starts at baryon density flB ≥ 2.36fl0 with corresponding energy density
being about 400 MeV/fm3 and ends at densities flB ≥ 5.22fl0 with the corresponding energy
density being about 1000 MeV/fm3. As mentioned, increasing Gv results in a sti�er EOS
with the higher Gv corresponding to a larger critical energy density at which the mixed phase
starts to occur. In figure 3 (right), we show the EOS where the nuclear matter is described
by the DDB model and the quark matter is described by the NJL model with Gv = 0. In this
case, the MP starts at baryon density flB ≥ 3.93fl0 density and ends at flB ≥ 6.98fl0. The
open and filled circles in the EOSs denote the central energy densities of the maximum mass
stars for the corresponding EOSs in figure 3. These circles lie in MP region indicating no
pure quark matter core is realized within the present modelling of EOS. It can also be seen
in figure 4, where we plot the quark matter fraction ‰ as a function of density for di�erent
Gvs and nuclear matter EOSs. The open (filled) circle in figure 3(left) corresponds to the
maximum mass star denotes ‰ = 0.482 (0.438) which means 48.2% (43.8%) of quark matter
fraction present in the core of HS of NL3+NJL type with Gv = 0 (0.2Gs). On the otherhand,
in figure 3 (right) the open circle correspond to the maximum mass star has ‰ = 0.506 i.e.
50.6% of quark matter present in the core of HS of DDB+NJL in a MP. It is further observed
that for the HSs considered here, there is no pure quark matter core. Quark matter is only
realised in a MP in the HSs within the models considered here for the EOSs.

In figure 5 (left) we show the variation of the squared sound speeds, c
2
e and c

2
s with the

normalised baryon density flB/fl0. On the left, we show this behaviour for the HSM described
by RMF with NL3 parametrisation and NJL model. On the right the same is shown for the
HSM described by RMF with DDB parametrisation and NJL model. As the density increases
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Figure 5. The variation of the square of sound speeds, (c2
e and c

2
s) as a function of baryon number

density for the charge neutral matter. The brown dashed (blue dot-dashed) curve corresponds to the
equilibrium (adiabatic) sound speed in the di�erent phases like HP, QP and MP for the hybrid EOSs
described by NL3+NJL in the left figure and DDB+NJL in the right figure. The vector coupling
strength in NJL model is Gv = 0 in the case of the both hybrid models.

in the HP, the squared speeds of both the sounds increase monotonically for either cases. The
maximum value of the square of speeds of sound are 0.608 in NL3+NJL model and 0.564
in DDB+NJL at the critical density after which the MP starts. In either case, the square
of two sound speeds behave very di�erently in the MP. The square of equilibrium sound
speed c

2
e decreases discontinuously at the onset of MP to a value 0.08 (0.09) beyond which

it shows a continuous behaviour till the end of MP where it again discontinuously increases
from 0.06 (0.08) to 0.33 (0.33) for NL3+NJL (DDB+NJL) case. The square of the adiabatic
sound speed c

2
s, on the otherhand does not show similar discontinuous behaviour. It has an

important consequence for the g modes as we shall see later. While the di�erence between
the squared sound speeds is small in HP, at the onset of MP, this di�erence become large
leading to large Brunt-Väisäla frequency giving rise to an enhancement of g mode frequency.
We may note here that the di�erence between the two squared sound speeds turns out to be
vanishing for the present case of two flavor NJL model. This is similar to the case of bag model
EOS [38]. For massless two flavors, the charge neutrality and —-equilibrium condition renders
the electron density to be constant which makes the di�erence between the two squared sound
speeds to be vanishing. On the otherhand, this need not be the same for 3 quark flavors
as the electron chemical potential µe ≥ m

2
s/(4µq) leading to electron density depending on

quark mass and quark chemical potential leading to a non-vanishing value for the di�erence
between the two speeds of sound.

Apart from enhancing the g mode frequency, the existence of the sudden rise of equilib-
rium sound speed has also important consequence regarding the mass and radius relation in NS.
One actually needs a rise in speed of sound in a narrow region of densities, for an explanation
of the compact stars to have large mass and small radius [90]. To achieve this possibility, a
quarkyonic phase [90] or a vector condensate phase along with pion superfluidity [91] have
been proposed recently. On the other hand, such a steep rise in the speed of sound can also
arise in a MP construct within the model for hadronic matter and quark matter as used here.

In figure 6, we show the mass-radius relations for our models. For pure nucleonic
matter the maximum mass turns out to be 2.77M§ (2.35M§) and radius turns out to be
13.26 km (11.87 km) when the nuclear matter is describes in NL3 (DDB). If one uses MP EOS
the maximum mass reduces to 2.27M§ for Gv = 0 with the corresponding radius R = 14.39 km
and to 2.55M§ for Gv = 0.2Gs with the radius being R = 14.17km in NL3+NJL case while
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Figure 6. The mass-radius curves are plotted for the compact stars described by the models NL3,
NL3+NJL in the left figure and DDB and DDB+NJL in the right figure for the di�erent values of the
vector couplings, Gv in the NJL model. In case of DDB and DDB+NJL model, the vector coupling
is taken zero i.e. Gv = 0. The circles denote the maximum mass HSs having quark matter inside
their cores for di�erent values of vector interaction in NJL model. While the triangles represents the
maximum mass NSs having hadronic matter inside the core. In the left figure, the maximum mass of
HSs described by NL3+NJL hybrid model are 2.27M§ where Gv = 0 and 2.55M§ where Gv = 0.2Gs.
In the right figure, the maximum mass HS described by DDB+NJL is 2.20M§.

the same decreases to 2.20M§ with corresponding radius 12.71 km. This is essentially due
to the fact that the quark matter EOS is softer compared to the nuclear matter EOS. The
central energy densities for the maximum mass HSs are ‘

max
c = 656 MeV/fm3 (Gv = 0) and

‘
max
c = 738 MeV/fm3 (Gv = 0.2Gs) in NL3+NJL case while ‘

max
c = 948 MeV/fm3 (Gv = 0)

in DDB+NJL. As central energy density is increased further, HSs become unstable i.e.
dM/d‘ < 0. Thus, within the present models, we do not find stable HSs with the pure quark
matter core. The quark matter, if it is present in the core, is always in MP. As Gv increases in
NL3+NJL case, the MP starts at higher energy density and hence larger fraction of hadronic
matter contributes to the total mass of the star as we have seen in figure 4 (left). This leads
to an increase of the maximum mass of HS. With increasing Gv further we might expect
NSs without any quark matter in the core. The radius R1.4 for the canonical mass of 1.4M§
NSs turns out to be 14.52 km in NL3+NJL case while same turns out to be 13.21 km in
DDB+NJL case. It may be noted that the x-ray pulse analysis of NICER data from PSR
J0030 + 0451 by Miller et al. found R = 13.02+1.14

≠1.19 km for M = 1.44 ± 0.15M§ [15]. Such a
star will not have a quark core within these present models for the EOS of dense matter. Such
a conclusion, however, should be taken with caution as this is very much dependent upon the
EOSs both in hadronic and quark phase. In particular, more exotic phases of quark matter
could also be possible including various color superconducting phases, various inhomogeneous
phases for dense quark matter which have not been considered here.

In figure 7, we show the energy density and pressure profiles i.e. energy density and
pressure as the functions of the radial distance from the center of the maximum mass HSs
described in the present models. In the left we show for the NL3+NJL model while in the
right we show for the DDB+NJL model. As mentioned earlier, the cores of the such stars are
in the MP with about the 50% of quark matter and 50% of nuclear matter (see figure 4). The
radius of the MP core is about 3.8 km (2.7 km) with the total radius of 14.17 km (12.71 km)
for the HS described in NL3+NJL (DDB+NJL). We have taken here the vector coupling
Gv = 0.2Gs in NL3+NJL model and Gv = 0 in DDB+NJL model. For Gv = 0, in NL3+NJL,
the MP core radius slightly larger i.e. 4.2 km while the star’s radius being about 14.39 km.
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Figure 7. The energy density, ‘ (blue dot-dashed) and pressure, p (red dashed) profiles as a function
of radial distance from the center of the maximum mass HSs described by the hybrid models NL3+NJL
(left) and DDB+NJL (right). In case of NL3+NJL hybrid model, the vector coupling is none-zero
i.e. Gv = 0.2Gs while in case of DDB+NJL hybrid model, the vector coupling is zero i.e. Gv = 0.
The transition from MP to HP happens at flB = 2.75fl0 (flB = 3.95fl0) corresponding with the radial
distance rc = 0.27RMax (rc = 0.21RMax) in the NL3+NJL (DDB+NJL) model.

At r = rc, the critical radial distance, where the matter goes from a MP to HP or vice-versa,
the energy density becomes non-di�erentiable while pressure shows smooth behavior as may
be observed in figure 7.

The variation of the squared sound speeds c
2
e and c

2
s are shown in figure 8 as a function

of radial distance from the center of the stars for both HS as well as NS. In figure 8 (left)
we show the profiles of both c

2
e and c

2
s for the maximum mass stars described in NL3 and

NL3+NJL models while in figure 8 (right) we display the same for the maximum mass stars
described in DDB and DDB+NJL models. In both the cases, we have taken here Gv = 0. The
HQPT in HSs is reflected in the variation of the square of the equilibrium sound speed, c

2
e

which changes abruptly from c
2
e = 0.08 to c

2
e = 0.608 in NL3+NJL model and from c

2
e = 0.06

to c
2
e = 0.564 for the DDB+NJL model at the critical radius rc where the transition from a

MP to a HP takes place. Such an abrupt change in c
2
e while a smooth behaviour of c

2
s makes

the Brunt-Väisäla frequency, (Ê2
BV ≥ (c≠2

e ≠c
≠2
s )), becoming significant at the boundary of the

MP core in the HSs. As may be observed from eq. (3.37) or eq. (3.40), a nonvanishing ÊBV

will a�ect the fluid perturbation functions Z(r) and Q(r) and hence will have its e�ect on the
oscillation frequency Ê. In particular this leads to an enhancement of g-mode frequencies for
the HSs. We discuss more of this in subsection 5.3.

In figure 9 (left), we show the profile of Brunt-Väisäla frequency, ÊBV, in the stars of
maximum masses described in NL3 and NL3+NJL while in figure 9 (right), we show the
same described in DDB and DDB+NJL where the vector coupling Gv = 0 in NJL model.
The steep rise of ÊBV at the onset of MP may be noted. The Brunt-Väisäla frequency, ÊBV,
depends on the both the speeds of sound, see eq. (3.39). In the core of maximum mass HS,
the variation of the both sound speeds are di�erent which is reflected in the ÊBV profile. The
onset of muons is shown by a little kink in the figure with a slight increase in ÊBV.

5.2 Tidal deformability

The tidal distortion of neutron stars in a binary system links the EOS to the gravitational
wave emissions during the inspiral [92]. Next we discuss the results for the tidal deformability
with the equation of state considered here. In figure 10 (left) shows the dimensionless tidal
deformability parameters �1 and �2 of the NSs involved in the Binary Neutron Star (BNS)
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Figure 8. The equilibrium c
2
e and the adiabatic c

2
s sound speeds profiles inside the maximum mass

stars as a function of radial distance from the center of the stars. In the left figure, the c
2
e and c

2
s

profiles is shown as a function of the radial distance in the stars described by the NL3 and NL3+NJL
models while in the right figure same in the stars described by the DDB and DDB+NJL models. The
black dashed (darkblue dot-dashed) curve correspond to the c

2
e (c2

s) profile for the HS described by
NL3+NJL (DDB+NJL) model while brown dashed (magenta dot-dashed) curve corresponds to the
c

2
e(c2

s) profile in the NS described by NL3(DDB) model. The discontinuity in the profile of c
2
s in the

case of HSs at rc = 0.27RMax (rc = 0.21RMax) shows the appearance of quark matter in the hybrid
model NL3+NJL(DDB+NJL).

Figure 9. The Brunt-Väisäla frequency (ÊBV) profile in the maximum mass stars as a function of the
radial distance from the center of the star. In the left figure, the ÊBV profile is plotted as a function
of radial distance in the stars described by the NL3 and NL3+NJL model while in the right we plot
same in the stars described by the DDB and DDB+NJL models. Red solid (blue dot-dashed) curve
shows the ÊBV profile in the NS (HS where the vector coupling is considered to be zero i.e. Gv = 0).
The little kink in the profiles near the surface of the stars shows the threshold for the appearance of
muons in the all the models.

with masses m1 and m2, respectively, for the hadronic EOSs DDB, NL3 and corresponding
mixed phase EOS with NJL model DDB+NJL, NL3+NJL. In the GW170817 event, the chirp
mass, Mchirp = (m1m2)3/5(m1 + m2)≠1/5, was measured as 1.186M§ [9] and these curves
were calculated based on the masses involve in the BNS merger by varying m1 in the observed
range 1.365 < m1 < 1.60. We may note here that the quark matter core occurs for NSs of
masses at around 2M§. Thus the tidal deformability �1 and �2 as shown in the figure 10
(left) will correspond to hadronic phase only. We also show the constraint imposed on �1 ≠ �2
plane from GW170817 event in the same plot. Based on a marginalized posterior for the
tidal deformability of the two binary components of GW170817, the gray solid (dot-dashed)
line represents the 90%(50%) confidence interval (CI) for the tidal deformability of these two
components. There are magenta solid (blue dashed) lines representing 90%(50%) confidence
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Figure 10. Based on the hadronic NL3, DDB and their hybrid EOS with NJL quark matter model
for a mixed phase. (left) we show the dimensionless tidal deformability parameters �1 and �2 of the
GW170817 binary neutron star merger, for the fixed measured chirp mass of Mchirp = 1.186M§. A
gray solid (dot-dashed) line indicates a 90%(50%) confidence interval for the tidal deformability of
GW170817’s two binary components based on their marginalized posteriors. In this figure, magenta
solid (blue dashed) lines represent 90%(50%) confidence intervals for the constraints from GW170817
: marginalized posterior using a parameterized EOS and a maximum mass requirement of 1.97M§.
(right) The dimensionless tidal deformability as a function of the NS mass. The tidal deformability
constraint of a 1.36M§ star is represented by the blue bar in the right panel.

intervals for the constraints from GW170817: marginalized posterior using a parameterized
EOS with a maximum mass requirement of at least 1.97M§. In this regard, GW170817 and
its electromagnetic counterpart disfavour NL3 parameterisation of the RMF model. The DDB,
however, is less sti� than NL3, so it satisfies those constraints well. The sti�ness of the EOS
may be attributed to either its symmetric nuclear part or its density-dependent symmetry
energy. While NL3 and DDB exhibit similar symmetric nuclear matter (SNM), DDB has
a softer symmetry energy than NL3. For the models NL3 and DDB, the nuclear matter
incompressibility K0 is 271 MeV, and 269 MeV and the slope of the symmetry energy L0 is
118 MeV, 32 MeV, at saturation density respectively. Figure 10 (right) shows the dimensionless
tidal deformability as a function of NS mass of the EOS models adopted here. The blue
horizontal bar indicates the 90% CI obtained for the tidal deformability of a 1.36M§ or the
combined tidal deformability in the BNS for q = m1/m2 = 1 [9]. It is clear that the NL3 is
outside of the 90% CI constraint whereas DDB is within the acceptable range. As discussed
above the NSs masses below 2.18M§ and 2.17M§ correspond to the only hadronic phase
EOSs for DDB and NL3 mixed phases EOSs, respectively. It can be seen from the figure that
the tidal deformability � bifurcate from the same NS masses for those EOSs.

5.3 Oscillation modes in hybrid stars

We next show, here, the results for f and g modes for NSs and HSs in di�erent models
presented in this study. We shall focus our attention to the quadruple mode (l = 2) only. It
may be expected from the coupled eqs. (3.36) and (3.40) for the fluid perturbation functions
Q(r) and Z(r) the two sound speeds c

2
s and c

2
e play an important role in the determination of

di�erent solutions for these functions and hence on the frequencies of the oscillation modes.
The typical frequency of g modes lies in the range from few 100 Hz up to 1 kHz while that of
f modes lies in the range 1 ≠ 3 kHz. As mentioned in section 3, we solve eqs. (3.36) and (3.40)
in a variational method to determine the oscillation frequencies. As this is computed using a
variational method, the final solutions depend upon the initial guesses for the frequencies.
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Figure 11. The oscillation frequencies of f mode f = Ê/2fi in kHz as a function of the star’s masses
which are described by NL3 and NL3+NJL models in the left figure and same as a function of the
star’s masses which are described by DDB and DDB+NJL models in the right figure. The magenta
dashed curve corresponds to NSs i.e. without any quark matter core. (left) The blue dot-dashed (blue
dotted) curves correspond to the f mode frequencies of the HSs which are described by NL3+NJL
hybrid model for Gv = 0(Gv = 0.2Gs). (right) The blue dotted curve corresponds to the f mode
frequencies of the HSs which are described by DDB+NJL hybrid model for Gv = 0. The appearance
of the quark matter in the core enhances the oscillation frequencies.

To get a solution of the f mode, we give the initial guess for the frequency (f = Ê/2fi) of
the order of few kHz. On the other hand, to look for a g mode we give the initial guess for
the same in the range of few hundred Hz. In figure 11, we show the f mode frequencies as a
function of mass of compact stars for the both NS and HS described by NL3 and NL3+NJL
models in the left figure while same as described by DDB and DDB+NJL model in the right
figure. In the left figure, the blue curves refer to the f mode frequencies for HSs with Gv = 0
(blue dotted) and with Gv = 0.2Gs (blue dot-dashed) while the magenta curve refers to the f

mode frequencies for NSs described by NL3+NJL and NL3, respectively. In the right figure,
we show same as the left figure but for the DDB+NJL and DDB model, respectively where
the vector coupling is zero i.e. Gv = 0. We may observe here that there is a mild rise in the
frequencies for the f modes for stars with a quark matter core. Such a rise of non-radial
oscillation frequencies due to the quark matter core was also observed in refs. [38, 48]. However
for f modes, the rise due to the quark matter in the core, is very small. Eg. for a HS star,
described by NL3+NJL where Gv = 0, of mass M = 2.27M§, the f mode frequency becomes
2 kHz from a value of 1.97 kHz of a NS of same mass.

In figure 12, we plot the g mode frequencies as a function of the mass of the compact
stars for the both NS and HS described by NL3 and NL3+NJL models in the left figure
while same as described by DDB and DDB+NJL model in the right figure. For NSs, the
compact stars without any quark matter core, the g mode frequencies lie in the range of
(322 ≠ 341) Hz (139 ≠ 148) Hz for the stars of masses larger than 2 M§ described by NL3
(DDB) model. On the otherhand, in the presence of quark matter in MP, the frequencies
rise sharply to about 589 Hz (Gv = 0) and 589 Hz (Gv = 0.2Gs) in the case of NL3+NJL
model while same rises sharply to about 303 Hz (Gv = 0) in the case of DDB+NJL. Let us
note that at the onset of the MP in case of NSs, c

2
e decreases abruptly. This is due to the fact

that the electron chemical potential falls at the onset of MP. This is due to the fact that the
charge neutral nuclear matter undergoes a phase transition to one component of HP which is
positively charged and the other component of QP which is negatively charged. This sudden
change in the lepton number density at MP threshold leads to sudden drop of c

2
e as shown in
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Figure 12. The oscillation frequencies of g mode f = Ê/2fi in kHz as a function of the star’s masses
which are described by NL3 and NL3+NJL models in the left figure and same as a function of the
star’s masses which are described by DDB and DDB+NJL models in the right figure. The magenta
dashed curve corresponds to NSs i.e. without any quark matter core. (left) The blue dot-dashed (blue
dotted) curves correspond to the g mode frequencies of the HSs which are described by NL3+NJL
hybrid model for Gv = 0(Gv = 0.2Gs). (right) The blue dotted curve corresponds to the g mode
frequencies of the HSs which are described by DDB+NJL hybrid model for Gv = 0. The appearance
of the quark matter in the core enhances the oscillation frequencies.

figure 8. This leads to an abrupt rise of the ÊBV which enhances the g mode frequency. As
Gv increases the MP core decreases and hence its contribution to the g mode enhancement
also decreases.

We note that the g modes that we obtained for NSs or HSs are driven by the Brunt-Väisäla
frequency which quantifies the mismatch between the mechanical and chemical equilibrium
rates of a displaced fluid parcel and is expressed by the local equilibrium and adiabatic speeds
of sound. Such core g mode solutions in sub-kHz frequency range can also arise due to a
sharp discontinuity in energy density in a first order phase transition [93, 94]. Such low
frequency g modes due to quark-hadron discontinuity has also been shown to be a feature
of HSs that distinguish hadronic stars or strange quark stars based on non-radial oscillation
modes [43]. On the otherhand non-radial oscillation modes with a MP of quark-hadron matter
was explored by Sotani et al. [42]. It was shown here that including finite size e�ects in
the mixed phase it is possible to distinguish between the existence or absence of density
discontinuity in NS interior from gravitational waves of the f mode [42]. In an interesting
later work of Ranea-Sandoval et al. explored di�erent non-radial oscillation modes (f , p and
g modes) with an interpolating function relating hadron and quark phases unlike a Gibbs
construct as has been attempted here [45]. We might note that for the phase transition
considered here with NJL model, a Gibbs construct is consistent as the recent calculation
using e�ective models like linear sigma model [68]; Polyakov quark meson model [70] as well
as NJL model [69] suggest a lower value of surface tension ≥ 5 ≠ 20MeV/fm2 justifying the
use of a Gibbs construct.

Next, we discuss the solution of the perturbing functions Q(r) and Z(r). In figure 13,
we have plotted the functions Q(r) and Z(r) as a function of radial distance from the center
for both g and f modes. Let us first discuss the solutions of perturbing functions Q(r) and
Z(r) for NSs. The angular function Z(r) is plotted as a solid red line (Zf) for f mode and as
a solid blue line (Zg) for g mode. For f modes, Z(r) decreases monotonically starting from
a vanishing value at r = 0 consistent with the initial condition given in eq. (3.41). As may
be clear from eq. (3.40), for vanishing ÊBV, Z

Õ(r) is negative and therefore Z(r) decreases as
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Figure 13. The solutions of the fluid perturbation functions Q(r) and Z(r) as a function of the radial
distance for the maximum mass (M = 2.77M§) neutron star obtained from the NL3 parameterized
EOS. The solid (dashed) line corresponds to the angular function, Z(r) (radial function, Q(r)). Both
perturbing functions for f modes (Qf and Zf) show monotonic behavior while for g modes these
function do not and have nodes near the surface of the NS.

r increases. When the Brünt-Väisala frequency, ÊBV becomes significant, the forth term in
eq. (3.40) starts to become important. However, if Ê is large (as in the case with f modes)
the contribution of the second term in the parenthesis of eq. (3.40) is suppressed so that Z(r)
decreases monotonically as seen (red solid line) in figure 13. On the otherhand, for the g mode
with the lower Ê, the second term in the parenthesis becomes dominant. This makes the
forth term in eq. (3.40) negative and significant near the surface as ÊBV becomes significant
here. It turns out that the overall sign of Z

Õ(r) becomes positive near the surface resulting
eventually in the change of sign of Z(r) as shown (blue solid line) in figure 13. Thus the f

mode shows no node for Z(r), the g mode solution shows a node. We have taken through out
l = 2. The dashed lines show the behaviour of the perturbing function Q(r) as Qf and Qg for
f and g modes respectively. Both these functions start from vanishing values and start to
increase with r. Q(r) for f mode (Qf) increases monotonically while Q(r) for g mode (Qg)
starts to decrease when Z(r) changes sign and eventually become negative near the surface
consistent with the boundary condition given in eq. (3.43). Thus similar to Z(r), Q(r) also
does not show any node for f modes while the solutions of the Q(r) for the g modes, (Qg)
has a node near the surface.

We, next, display the perturbing functions Q(r) and Z(r) for HSs in figure 14. On the
left, we show the functions Q(r) and Z(r) for g modes while on the right display the same
functions associated with the f modes. Let us first discuss the g mode perturbing functions.
We first observe that the Brunt-Väisäla frequency, ÊBV is significant near the center as well
as at the surface as may be seen in figure 9 in contrast to the hadronic matter (relevant for
NSs) for which it becomes significant only near the surface. Therefore there are additional
nodes for Zg in case of HSs as compared to NSs. This is also reflected in the behaviour of
the functions Q(r) and Z(r) as shown in the left figure. As was the case with NS, for g

mode the dominating contribution arises from the second term of the parenthesis of equation
eq. (3.40). The quantity in the parenthesis has a canceling e�ect on the other two terms in
the eq. (3.40). This leads to a slight oscillatory behaviour for the functions Z(r) depending
upon whether Z

Õ(r) is positive or negative up to rc. Beyond it, ÊBV becomes significant only
near the surface and the behaviour of Z(r) and Q(r) are similar to that of NS. In the right
figure, we have shown the same functions for the f mode. The behaviour of these functions
Q(r) and Z(r) associated to the f-modes are essentially similar to NSs.
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Figure 14. The solutions for the fluid perturbation functions Q(r) and Z(r), for the hybrid star of
mass M = 2.27M§ as a function of radial distance. The NL3 parameterized EOS is taken for hadronic
matter while NJL model is taken for the quark matter EOS and Gibbs construction to find the mixed
EOS. The left figure shows the perturbing functions associated with the g-modes while the right figure
shows the same functions corresponding to f modes. The oscillatory behavior of Zg(r) near the core
may be noted in the contrast to the figure 13.

6 Summary and conclusion

Let us summarize the salient features of the present investigation. We have looked into
possible distinct features of HSs with a quark matter in the core and a NS without a quark
matter in the core. This is investigated by looking into non-radial oscillations of compact
stars. The EOS for HS is constructed using a RMF theory for nuclear matter and NJL
model for quark matter. Gibbs criterion for MP is used to construct MP with two chemical
potentials (µB and µE) imposing global charge neutrality condition. It is observed that the
core of HSs can accommodate a mixture of nucleonic and quark matter, the pure quark matter
phase being never achieved. In comparison to a NS without quark matter, the inclusion of
MP of matter softens EOS, resulting in lower values for the maximum masses and bigger
corresponding radii. Determining the composition of NS through observables it is necessary to
break the degeneracy between normal and hybrid star. To this end, we looked into non-radial
oscillation modes of such compact stars for this purpose. Unlike M-R curves for which EOS is
su�cient, the analysis of oscillation modes requires the speed of sound of the charge neutral
matter. Using a MP structure, it is observed that the equilibrium speed of sound shoots
up at the transition between MP and HP in such a construct. It may be noted that such
a steep rise in the velocity of sound in a narrow region of density as one comes from the
core towards the surface was also seen in a quarkyonic to hadronic matter transition [90]
as well as in an EOS with Ê condensate and fluctuations in pion condensate [91]. Such a
steep rise in velocity in sound speed is generated naturally here through MP construct. This
EOS is used to determine the frequencies of non-radial oscillations in NS within a relativistic
Cowling approximation that neglects the fluctuation of the space time metric and results
in a much simpler equation to solve and analyze. While this is not strictly consistent with
the fully relativistic treatment, the impact of such simplified approximation is not severe,
typically a�ecting the g modes at the 5 ≠ 10% level while f modes are more sensitive to
Cowling approximation [87]. Within the RMF model for nuclear matter, we estimated the
f and g modes frequencies. The g mode solution for NS arises due to ÊBV when become
significant towards the surface of NS. On the otherhand for HSs the ÊBV become significant
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near the core where the HQPT occurs. Due to the quark matter core both the ÊBV and g

mode frequency get enhanced as compared to a normal NS.
We have focused our attention in the present investigation to non-radial oscillation modes

corresponding to the quadruple fundamental modes and the gravity modes. In the presence
of quark matter in a mixed phase with charge neutral nuclear matter, both these modes are
enhanced with the e�ect being more for the g modes as compared to the high frequency
f modes. The g modes that we have considered here are driven by nonvanishing Brunt-
Väisäla frequency resulting from a chemical stratification and depends upon the compositional
characteristics rather than a density discontinuity. This enhancement is due to the sharp drop
of the equilibrium speed of sound at the on onset of the MP and is a distinct feature of HS as
compared to a NS. In the context of gravitational wave from BNS merger, it is known that g

modes can couple to tidal forces and can draw energy and angular momentum from the binary
to the NS and cause an associated phase shift in gravitational wave signal [95]. With distinct
enhancement of this mode for HS as compared to NS, one might expect a distinguishing signal
from GW observations. However, the resulting phase shifts for NSs and HSs turns out to be
similar order due to the longer merger times for the NSs [48]. Such conclusions are of course
limited by the uncertainties arising from the value of tidal coupling. When these uncertainties
are reduced through improved theoretical estimations, the high frequency g modes of HS
can possibly be distinguished from those of NSs. The detection of g modes in BNS mergers
by current detectors is challenging. Nonetheless, one hopes that with the third generation
detectors like Einstein telescope or Cosmic explorer, one can possibly have direct detection of
these modes and have conclusive signatures regarding the composition of the NS interior.

One of the novel feature of the present investigation has been the use of hadronic EOS
modeled through RMF models with their parameters determined from the nuclear matter
properties at saturation density with the NL3 parameterisation as well DDB parameterisation.

Unlike meta models [48], mean field model EOS are derived from a microscopic model
described in terms of nucleons and mesons and quite successful in describing various properties
of finite nuclei as well as NSs. The derivation for ÊBV as described here is rather general
and can be used for any mean field model for nuclear/hyperonic matter. Similarly for quark
matter NJL model is used which captures the important features of chiral symmetry breaking
in strong interactions. It may be noted that these models can be extended to include strange
quark matter. The calculational method developed here can be applied to the various other
sophisticated models like 3 flavour NJL model, quark-meson model or Polyakov loop extension
of such model describing the quark matter.

We have given in some detail the derivation of the relativistic pulsating equations
involving Brunt-Väisäla frequency in which such a MP EOS as derived here. In addition
we have discussed the behavior of the fluid perturbing functions in some details both with
and without the HQPT which adds an understanding of the enhancement of oscillation
frequencies for HSs. In future we would like to include the e�ects of the strange quarks in
quark matter sector and correspondingly hyperons in the hadronic sector. It will also be
interesting and important to include the e�ects of strong magnetic field for the structure of
NSs [92] and its e�ect on the non-radial oscillation modes. We have focused our attention for
NSM which is at zero temperature and vanishing a neutrino chemical potential. However,
to study the proto-neutron stars we should take into account the thermal e�ects on the
oscillations including the e�ects of neutrino trapping on the phase structure of matter. This
will be relevant for the studying the oscillation modes from merging NS and detecting in
future experimental facilities like advanced LIGO/Virgo and Einstein telescope.
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The non-radial oscillations of the neutron stars (NSs) have been suggested as an useful tool to probe the
composition of neutron star matter (NSM). With this scope in mind, we consider a large number of equations
of states (EOSs) that are consistent with nuclear matter properties and pure neutron matter EOS based on a
chiral effective field theory (CFT) calculation for the low densities and perturbative QCD EOS at very high
densities. This ensemble of EOSs is also consistent with astronomical observations, gravitational waves in
GW170817, mass and radius measurements from Neutron star Interior Composition ExploreR (NICER). Apart
from verifying the robustness of universal relations (URs) among the quadrupolar f modes frequencies, masses
and radii with such a large number of EOSs, we find a strong correlation between the f mode frequencies and
the radii of NSs. Such a correlation is very useful in accurately determining the radius from a measurement of
f mode frequencies in near future. We also show that the quadrupolar f mode frequencies of NS of masses 2.0
M� and above lie in the range 1.68-2.16 kHz in this ensemble of physically realistic EOSs. A NS of mass 2M�
with a low f mode frequency may indicate the existence of non-nucleonic degrees of freedom.

Introduction. The neutron star (NS) observations in the
multi-messenger astronomy have piqued a lot of interest in the
field of nuclear astrophysics and strong interaction physics.
The recent radio, x-rays and gravitational waves (GWs) ob-
servations in the context of NSs have provided interesting in-
sights into the properties of matter at high density. The core
of such compact objects is believed to contain matter at few
times nuclear saturation density, ⇢0 (⇢0 ⇡ 0.16 fm�3) [1–4]
and provides an unique window to get an insight into the be-
havior of matter at these extreme densities. On the theoreti-
cal side, no controlled reliable calculations are there that can
be applicable to matter densities relevant for the NS cores.
The lattice quantum chromodynamics (lQCD) simulations are
challenging at these densities due to sign problem in monte-
carlo simulations. On the otherhand, the analytical calcula-
tions like chiral effective field theory (CFT) is valid only at
very low densities while perturbative quantum chromodynam-
ics (pQCD) is reliable at extremely high densities. In recent
approaches, the equation of state (EOS)s between these two
limits have been explored by connecting these limiting cases
using a piecewise polytropic interpolation, speed of sound in-
terpolation or spectral interpolation [5–11].

The NS properties such as mass, radius and quadrupole de-
formation of merging NSs can constrain the uncertainty in
EOS. The discovery of the massive NS with masses of the or-
der of 2M� which requires EOS to be stiff while the fact that
EOS is soft with non-nucleonic degrees of freedom at high
density, already puts a constraint on the EOS at the intermedi-
ate densities. The observations of GWs from binary neutron
star (BNS) inspiral by Advanced LIGO and Advanced Virgo
GWs observatories have opened a new window in the field of
multi-messenger astronomy and nuclear physics. The inspiral
phase of NS-NS merger leads to tidal deformation (⇤), which
is strongly sensitive to the compactness. Since ⇤ is related
to the EOS of the neutron star matter (NSM), this measure-
ment acts as another constraint on the EOS. On the other hand,

recovering the nuclear matter properties from the EOS of �-
equilibriated matter is rather non trivial. This further requires
the knowledge of the composition (for eg proton fraction) of
matter at high densities [12–15].

In the context of GWs, the non-radial oscillations of NS
are particularly interesting as they can carry information of
the internal composition of the stellar matter. These oscil-
lations in the presence of perturbations (electromagnetic or
gravitational) can emit GWs at the characteristic frequencies
of its quasi-normal mode (QNM). The frequencies of QNM
depend on the internal structure of NS and it may be an an-
other probe to get an insight regarding the composition of
NSM also known as asteroseismology. Different QNMs are
distinguished by the restoring forces that act on the fluid ele-
ment when it gets displaced from its equilibrium position. The
important fluid modes related to GWs emission include funda-
mental (f) modes, pressure (p) modes and gravity (g) modes
driven by the pressure and buoyancy respectively. The fre-
quency of p modes is higher than that of g modes while the fre-
quency of f modes lies in between. The focus of the present
investigation is on the quadrupolar f modes that are corre-
lated with the tidal deformability during the inspiral phase of
NS merger [16] and have the strongest tidal coupling among
all the oscillation modes. More importantly, these modes lie
within the sensitivity range of the current as well as upcom-
ing generation of the GWs detector networks [17]. In this
context, QNMs have been studied with various EOS mod-
els and some universal/quasi-universal behaviors for the fre-
quency and damping time which are insensitive to the EOS
models [18–25]. This needs to be explored further regarding
the robustness of these relations for a large number of EOSs
consistent with recent observational constraints.

In this letter we propose two major points of interest. Firstly
we estimate, within the Cowling approximation, the f mode
oscillation frequencies for NSs using a large number of EOSs
and demonstrate that observation of f mode frequencies, apart
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from causality c2s  1 and maximum mass constraints, further
restrict the EOSs. Secondly we verify the robustness of few
universal relation (UR) among the quadrupolar f mode fre-
quencies, masses and radii studied earlier with limited EOSs.
It has been earlier found that these URs between NS prop-
erties are strongly violated by hybrid EOSs [26–28] and cer-
tain exotic phases [29]. We consider here a large number of
EOSs and show that some of them are almost insensitive to
the EOSs.

Setup - An ensemble of EOSs that we consider here are
constructed by stitching together EOSs valid for different seg-
ments in baryon densities. For the outer crust the Bethe-
Pethick-Sutherland (BPS) EOS is chosen [30]. Outer crust
and the core are joined using a polytropic form p(") =

a1 + a2"� in order to construct the inner crust, where the
parameters a1 and a2 are determined in such a way that the
EOS for the inner crust matches with the outer crust at one
end (⇢ = 10

�4 fm�3) and with the core at the other end
(⇢ = 0.04 fm�3). The polytropic index � is taken to be 4/3
[31]. It is important to note that the differences in NSs radii
between this treatment of the inner crust EOS and the uni-
fied inner crust description including the pasta phases have
been found to be less than 0.5 km, as discussed in [32]. The
core EOSs are considered within the two different approaches:
(i) a nucleonic �� equilibritated EOS based on a relativistic
description of hadrons through their density-dependent cou-
pling with mesons constrained by the existing observational,
theoretical and experimental data through Bayesian analysis
(DDB), obtained in [32], which satisfies pure neutron mat-
ter (PNM) constraints at low densities obtained from next-to-
next-to-next-to leading order (N3LO) calculations in the CFT
[33, 34]. (ii) a hybrid set of EOSs which consists of the DDB
EOS at low density ( 2⇢0) and the deconfined quark matter
at very high densities (� 40⇢0) while the region (2⇢0-40⇢0)
is interpolated by piecewise polytropes (DDB-Hyb). For the
deconfined quark matter, we employ NNLO pQCD results of
Refs. [6, 35] which can be cast in a simple fitting function for
the pressure as a function of chemical potential (µ) given as

PpQCD(µ) =
µ4

108⇡2

✓
c1 � d1X�⌫1

(µ/GeV ) � d2X�⌫2

◆
(1)

where the parameters are c1 = 0.9008, d1 = 0.5034, d2 =

1.452, ⌫1 = 0.3553 and ⌫2 = 0.9101 [36]. Here X is a
dimensionless renormalization scale parameter, X = 3⇤̄/µ
which is allowed to vary X 2 [1, 4]. We use this pQCD
EOS for densities beyond ⇢ ' 40⇢0 which corresponds to
µpQCD = 2.6 GeV [36]. Between the region of the validity
of pQCD and DDB i.e. µDDB  µ  µpQCD, where µDDB

is the chemical potential of DDB EOS at ⇢ = 2⇢0, we divide
the interval into two segments, (µDDB-µc) and (µc-µpQCD),
and assume EOS has a polytropic form in each segment i.e.
Pi(⇢i) = i⇢

�i
i for the i-th segment [35]. The segments can

be connected to each other by requiring that pressure and en-
ergy density are continuous at µc as well as pressure shoud
be an increasing function of energy density and EOS must be
subluminal. We also ensure that there is no jump in baryon

number density. This corresponds to assuming no first order
phase transition between hadronic matter and quark matter. If
one wishes to include a first order phase transition, an extra
term to the number density at µc can be added [35].

To obtain EOS of the core, we proceed as follows. Below
⇢ = 2⇢0 till the inner crust, we use a soft (stiff) DDB EOS as
obtained in Ref. [32] within 90% CI. The corresponding value
of chemical potential at ⇢ = 2⇢0 is µDDB = 1.036 (1.097)
GeV for a soft (stiff) DDB EOS. We interpolate the region
from µ = µDDB to µ = µc and from µ = µc to µ = µpQCD

with a piecewise polytrope. We select all those EOSs which
(i) match with pQCD at µ = µpQCD (i.e. X 2 [1, 4]) (ii)
have pressure as an increasing function of energy density, and
(iii) are subluminal. We refer this EOS as DDB-Hyb. The
chemical potential µc is here chosen in such a way that it sat-
isfies pQCD at µ = µpQCD. We take µc 2 [1.04, 2.2] GeV
and the corrosponding pressure Pc 2 [20, 1260] MeV.fm�3.
For an ensemble of DDB-Hyb EOSs we choose µc, Pc ran-
domly in the prescribe domain by Latin-Hypercube-Sampling
method [37] for an uniform distribution. For a given µc, Pc

and PDDB, the parameters of the first polytrope, (1, �1) get
determined. Similarly for a given µc, Pc and P2 (where P2 is
the pQCD pressure for a given value of X at µ = µpQCD), the
parameters of the second polytrope (2, �2) get determined.
The domains for pressure (Pc) and chemical potential (µc) be-
come Pc 2 [45, 1255] MeV·fm�3 and µc 2 [1.07, 2.09] GeV
after constrained by pQCD. These domains further squeeze to
Pc 2 [53, 680] MeV.fm�3 and µc 2 [1.15, 1.88] GeV after
putting constraint of Mmax � 2M� and so we find 0.38 mil-
lion EOSs out of 54 million sampled EOSs satisfying these
constraints. It may be mentioned here that for an interpola-
tion between (µDDB-µpQCD), we have used two polytropes.
There have been different interpolation functions like spectral
decomposition [38, 39] and speed of sound method [9, 11, 40].

Pulsating equations - To estimate the specific oscillation
frequency of NSs, let us discuss the non-radial oscillation of
a spherically symmetric NS characterized by the background
space-time metric where the line element is given by

ds2 = �e2�dt2 + e2⇤dr2 + r2
�
d✓2 + sin

2 ✓d�2
�
. (2)

We shall consider the pulsating equations within the Cowl-
ing approximation so that our study is limited to the modes
related to fluid perturbations and neglect the metric perturba-
tions. The Lagrangian fluid displacement vector is given by

⇠i =
�
e�⇤W, � V @✓, � V sin

�2 ✓@�
�
r�2Ylm (3)

Where W (r, t) and V (r, t) are the perturbation functions and
Ylm are the spherical harmonic function. The perturbation
equations that describe oscillations can be obtained by the per-
turbed Einstein field equations �G↵� = 8⇡�T↵� with G↵� =

R↵� � 1
2g↵�R being the Einstein tensor. Linearizing these

equations in the perturbation, while choosing a harmonic time
dependence for the perturbation i.e. W (r, t) / W (r)ei!t and
V (r, t) / V (r)ei!t with frequency !, the differential equa-
tions further fluid perturbation functions can be obtained as
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FIG. 1. We show pressure and energy density regions in MeV.fm�3

of our sampled EOSs (DDB and DDB-Hyb). We consider nucleonic
�-equilibrated EOS of the 90% CIs for DDB (lightblue) as a full
range and (darkblue) upto 2⇢0 [32] and at very high density ⇠ 40⇢0
the NNLO pQCD (dark red). In the intermediate region, EOS is
evolved in thermodynamically consistent way with two polytropic
segments (see text for details).

[24, 41]

W 0
=

d✏

dP

⇣
!2r2e⇤�2�V +W�

0
⌘

� l(l + 1)e⇤V, (4)

V 0
= 2V �

0 � 1

r2
We⇤, (5)

here, the ‘prime’ denotes the total derivative with respect to
r. These equations are solved with appropriate boundary con-
ditions at the stellar center r = 0 and at the surface r = R.
The W and V in the vicinity of the stellar center are taken as
W (r) ⇠ Crl+1 and V (r) ⇠ �Crl/l, where C is an arbitrary
constant. The other boundary condition that needs to be full-
filled is that the Lagrangian perturbation to the pressure must
vanish at the stellar surface. This leads to [24, 41]

!2r2e⇤�2�V +W�
0��
r=R

= 0 (6)

This apart in the case of density discontinuity these equations
have to be supplemented by an extra junction condition at the
surface of discontinuity. We shall not consider here density
discontinuity. With these boundary conditions, the problem
becomes an eigenvalue problem for the parameter ! which
can be estimated numerically. We shall confine ourselves to
l = 2 quadrupolar modes.

Results - We now proceed to analyze the ensembles of
EOSs that are consistent with nuclear matter properties or
PNM EOS based on theoretically robust CFT at low densi-
ties and pQCD at very high densities. As mentioned earlier,
we started with 54 million EOSs. We discarded those EOS
which do not match the two end points or are superluminal

FIG. 2. We plot NS mass (M )-radii (R) and f mode frequency-mass
(M ) region obtained from the 90% CI for the conditional probabili-
ties P (R|M) (left) and P (f |M) (right) for DDB-Hyb (black dotted)
and DDB (dark red). The blue horizontal bar on the left panel indi-
cates the 90% CI radius for a 2.08M� star determined in [42] com-
bining observational data from GW170817 and NICER as well as nu-
clear saturation properties. The top and bottom gray regions indicate,
respectively, the 90% (solid) and 50% (dashed) CI of the LIGO/Virgo
analysis for each binary component from the GW170817 event [43].
The 1� (68%) credible zone of the 2-D posterior distribution in mass-
radii domain from millisecond pulsar PSR J0030+0451 (cyan and
yellow) [44, 45] as well as PSR J0740 + 6620 (violet) [42, 46] are
shown for the NICER x-rays data. The horizontal (radius) and ver-
tical (mass) error bars reflect the 1� credible interval derived for the
same NICER data’s 1-D marginalized posterior distribution.

(square of speed of sound c2s > 1) as well as the condition
of positive speed of sound. This leaves us with an ensemble
of 0.38 million DDB-Hyb EOSs. This ensemble of EOSs is
represented in Fig. 1 by the orange band. We next enforce
the Mmax � 2.0M� constraint resulting from solving the
Tolman-Oppenheimer-Volkoff (TOV) equations with this en-
semble. This constraint further reduces the number of EOSs
to 55,000 which are displayed in Fig. 1 as the gray band,
named here after DDB-Hyb set. The polytrope indices �1 and
�2 are seen to vary over an intervals �1 2 [1.67, 13.76] and
�2 2 [1.0, 1.51]. The tight constraint on �2 has its origin on
the matching to the pQCD pressure. In Fig. 1, the light blue
band is the �-equilibrated nuclear matter ⇡ 10K EOSs (DDB
90% CI) while the dark red band corresponds to pQCD EOS.
For comparison, we also plot the domain of EOSs obtained in
Ref. [10] (red solid curve) compatible with recent NICER and
GWs observations. The red dashed lines refers to the dense
PDF (� 0.08) obtained in Ref. [11] with continuous sound
speed and consistent not only with nuclear theory and pQCD,
but also with astronomical observations. It is to be noted that
both of DDB and DDB-Hyb sets are compatible with them.

In Fig.2, we plot NS mass-radii and f mode frequency-
mass regions obtained for 90% CI for the conditional prob-
abilities P (R|M) (left) and P (f |M) (right) from the mass-
radius clouds arising from the ensembles of EOSs of DDB-
Hyb (black dotted) and DDB (dark red). The blue horizontal
bar on the left panel indicates the 90% CI radius for a 2.08M�
star determined in Ref. [42] combining observational data
from GW170817 and NICER as well as nuclear data. The
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top and bottom gray regions indicate, the 90% (solid) and
50% (dashed) CI of the LIGO/Virgo analysis for each binary
component from the GW170817 event [43] respectively. The
1� (68%) credible zone of the 2-D posterior distribution in
mass-radii domain from millisecond pulsar PSR J0030+0451
(cyan and yellow) [44, 45] as well as PSR J0740 + 6620 (vi-
olet) [42, 46] are shown for the NICER x-rays data. The
horizontal (radius) and vertical (mass) error bars reflect the
1� credible interval derived for the same NICER data’s 1-D
marginalized posterior distribution. The mass-radius domain
for the DDB-Hyb set sweeps a wider range than the DDB set,
restricted to nucleonic degrees of freedom. The DDB-Hyb
set constrained by pQCD at high density leads to larger radii
for high mass NS. We conclude that the present observational
constraints either obtained from GW170817 or NICER can-
not rule out the existence of exotic degrees of freedom. In
the right panel, we see that the 90% CI for P (f |M) f mode
frequency f 2 [1.95, 2.7] kHz for both the DDB and DDB-
Hyb sets. The range is smaller for low NS mass and as the
mass increases the 90% CI for f mode frequency increases.
The f mode frequency of a NS above 2M� mass is in the
range (2.1-2.7) kHz and (2.3-2.65) kHz for the DDB-Hyb and
DDB sets, respectively. As mentioned in the earlier sections,
the solutions for f mode obtained in this work are within the
Cowling approximation (neglecting perturbations of the back-
ground metric). It was shown that the Cowling approximation
can overestimate the quadrupolar f mode frequency of NSs
by up to 30 to 10 % for NS masses in the range (1.0-2.5) M�
compared to the frequency obtained in the linearized general
relativistic (GR) formalism [21, 47, 48]. The accurate mea-
surement of f modes may further constrain EOS to a narrower
range. Besides, a star of 2M� with a low f mode frequency
may indicate an existence of non-nucleonic degrees of free-
dom.

In Fig. 3, we have studied two known URs involving the f
mode frequency with global properties of NS, often studied in
literature with a limited EOSs. In particular, we have named
UR1 for the f mode frequency as a function of square root
of the average star density

p
M/R3, and UR2a for the !M

versus the compactness M/R, where ! = 2⇡f . We have ver-
ified their robustness with our EOS sets, DDB-Hyb and DDB.
We have also obtained a new and direct relation between the f
modes frequency, f and radius, R with the help of the existing
strong correlation between them. In the left panel of the figure
we show UR1:

f = a
p
(M/R3) + b. (7)

It has been shown in Refs. [19, 49] that the average density
can be well parameterized via the f mode frequency. The fol-
lowing values of a and b have been obtained: a = 22.27 ±
0.023 (26.76 ± 0.01) kHz.km, b = 1.520 ± 0.001 (1.348 ±
0.001) kHz for DDB-Hyb (DDB). The maximum relative per-
centage error obtained for UR1 within 90% CI is 6.0%(4.5%)
for DDB-Hyb (DDB). In fact, the UR1 depends on EOS,
therefore the dispersion, is obtained with a 90%CI. We can
note that these uncertainties will remain for the entire valid

domain of EOSs even if one solves full the linearized GR
equations. For example, at 0.4 km�1 mass density the fre-
quency can vary by 400 Hz.

In Andersson & Kokkotas (Benhar et al) the authors have
obtained the following parameters a = 35.9(33.0)kHz.km
and b = 0.78 (0.79) kHz [19, 21, 49], the difference be-
tween both works being the EOS considered in the study.
In those studies the linearized GR equations were solved,
and, as expected, lower frequencies have been determined.
In Ref. [47], the oscillations of non-rotating and fast ro-
tating NSs have been explored with a different set of EOSs
based on microscopic theories within the Cowling approxi-
mation. The values of the coefficients of the UR1 obtained
were a = 25.32 kHz.km and b = 1.562 kHz, which are at the
90% CI upper limit of the relations we have obtained.

In center panel of the Fig. 3 we display UR2a:

!M = a

✓
M

R

◆
+ b (8)

obtained for both DDB-Hyb and DDB sets, with a =

0.6474 ± 4.6 ⇥ 10
�5 (a = 0.6549 ± 2.6 ⇥ 10

�5) and
b = �0.0085 ± 1.05 ⇥ 10

�5 (b = �0.0103 ± 6.18 ⇥ 10
�6)

for DDB-Hyb (DDB) set. Both the coefficients are in di-
mensionless. The maximum relative percentage error ob-
tained for UR2a within 90% CI is 3.78% (2.20%) for DDB-
Hyb (DDB) set. The values of the slope and intercept for
UR2a are also compatible with the ones obtained in Ref.
[50] within Cowling approximation with a few nucleonic and
hyperonic EOSs as a = 0.65765 and b = 0.0127866, re-
spectively. We have also obtained a relation as UR2b for
!R as !R = a

�
M
R

�2
+ b

�
M
R

�
+ c. The coefficients are

found to be a = �3.0369 ± 0.0013(�3.1844 ± 0.0020),
b = 1.5829 ± 0.0005(1.6288 ± 0.0008) and c = 0.4095 ±
5 ⇥ 10

�5
(0.4087 ± 7 ⇥ 10

�5
) for DDB-Hyb (DDB) set, all

the coefficients are dimensionless. In this case the maximum
relative percentage error is 2.6% (1.6%) in the set DDB-Hyb
(DDB). Compared with UR1, the relative maximum uncer-
tainty is smaller for UR2a and UR2b for both DDB-Hyb and
DDB sets. Using these relations we predict f mode frequen-
cies for the PSR J0740+6620. For this pulsar, the mass and
radius are determined as 2.08± 0.7 M� and 12.35± 0.75 km
in [42] combining observational data from GW170817 and
NICER as well as nuclear data. The corresponding mean val-
ues of f mode frequency is calculated as 2.35 kHz and 2.36
kHz for UR2a and UR2b, respectively, with a ⇠ 1 � 4% in-
trinsic error in the URs and additional ⇠ 10 � 12% error due
to uncertainty present in mass and radius.

We have identified a strong linear correlation between the
f mode frequency and NS radius R and we are naming it
as UR3. The values r 2 [0.98, 0.99] of the Pearson corre-
lation coefficient were obtained between f and R for NS with
a mass M 2 [1.6, 2.4] with our two sets of EOSs. These
results can also be traced back from UR1 by keeping fixed
NS mass while noting that the correlation is stronger only for
the NS of larger mass. In the right panel of Fig. 3, we plot
the linear relations between f and R. The values of slope
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FIG. 3. We plot URs obtained with our sets of EOSs, namely DDB-Hyb and DDB. UR1 (left): The frequency of the f mode is plotted as a
function of the square root of the average density, UR2a (center): The universality among !M and M/R and UR3 (right) the universal linear
relations among f mode frequency and radii of NS with masses ranged from 1.6 to 2.4 M� in a step of 0.2M�.

m 2 [�0.2256,�0.2233,�0.2196,�0.1984,�0.1748] and
intercept are c 2 [5.1271, 5.1256, 5.0952, 4.8305, 4.5191]
for NS mass M 2 [1.6, 1.8, 2.0, 2.2, 2.4]. We also plot a
marginalized UR3 obtained with NS masses in the range of
1.6 to 2.4 M� with a slope, (m = �0.227) and an intercept,
(c = 5.173). This gives ⇡ 1.5% relative residual within 90%
CI. We expect that the correlation is also present if the full GR
solutions are considered. Taking this correction factor into
account, the new relation (UR3) will be very useful for the
upcoming future detection in order to constrain NS radius of
massive NS precisely. For example, in order to measure a ra-
dius of a NS with ⇠ 0.2 km uncertainty, the f mode frequency
needs to be measured within ⇠ 2% uncertainty.

Summary and conclusion - The QNMs are related with the
viscous properties of matter. In the future, precise measure-
ments of them can put constraints on EOS of dense matter. We
have studied the f mode frequency among the QNMs, which
is in the sensitivity band of the future gravitational waves net-
works [17]. We have calculated the f mode frequency within
the Cowling approximation with a nucleonic set of 14,000
EOSs (DDB set), obtained in Ref. [32] based on the relativis-
tic mean field (RMF) theory, constrained by existing obser-
vational, theoretical and experimental data through Bayesian
analysis. We have also generated an ensemble of EOSs using
DDB below twice saturation density (⇢  2⇢0) and pQCD at
high densities (⇢ � ⇢0) as in Ref.[9]. Piecewise polytropes
have been used to interpolate region from 2⇢0 to 40⇢0. Im-
plementing the constraints of causality and maximum mass
Mmax � 2.0M� a set of 55000 DDB-Hyb typed EOSs has
obtained. The mass-radius cloud that we obtain from the en-
sembles of these EOSs is consistent with the GW170817 joint
probability distribution as well as the recent NICER observa-
tions of mass and radius. We have analyzed the robustness
of a few previously known universal relations and confirmed
their disperson with our large number of EOSs. We also found
a novel strong correlation between the f mode frequency, (f )
and the radius, (R) for a NS of mass in the range (1.6-2.4)
M�. These new direct relations between f and R will allow

an accurate determination of radius of NS using future f mode
detection.

We show that the quadrupolar f mode frequencies obtained
in Cowling approximation of NS of masses 2.0M� and above
lie in the range (2.1-2.7) kHz and (2.3-2.65) kHz for DDB-
Hyb and DDB sets, respectively. We use these URs to predict
the f mode frequencies of the NICER observations and obtain
⇠2.35 (1.88) kHz in Cowling approximation (renormalized to
full GR solutions) for the PSR J0740+6620 which interest-
ingly lies within the sensitivity band of the future gravitational
wave detector networks [17] for the detection of gravitational
waves. It was shown that a two solar mass star with a low f
mode frequency may indicate the existence of non-nucleonic
degrees of freedom. In the future, a detailed investigation of
how this frequency is correlated with the individual compo-
nent of the EOS or different particle compositions in NS core
will be carried out.
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Phys. Rev. D 88, 044052 (2013), arXiv:1305.7197 [astro-
ph.SR].

[48] B. K. Pradhan, D. Chatterjee, M. Lanoye, and P. Jaikumar,
(2022), arXiv:2203.03141 [astro-ph.HE].

[49] K. D. Kokkotas, T. A. Apostolatos, and N. Andersson, Mon.
Not. Roy. Astron. Soc. 320, 307 (2001), arXiv:gr-qc/9901072.

[50] B. K. Pradhan and D. Chatterjee, Phys. Rev. C 103, 035810
(2021), arXiv:2011.02204 [astro-ph.HE].


	 =Certificate
	Acknowledgements
	List of Publications
	Abstract
	Introduction
	Introduction
	Strong interaction physics and QCD
	QCD phase diagram

	Effective models
	Mean field model for nuclear matter
	Nambu–Jona-Lasinio model for quark matter

	Heavy ion collisions
	Chiral transition and chiral chemical potential
	Thermoelectric transport coefficient

	Neutron stars
	Thesis organization

	Chiral symmetry breaking in the presence of a magnetic field
	Introduction
	Wigner function and chiral condensate
	Wigner function and chiral condensate in a nonvanishing magnetic field and chiral chemical potential
	Regularization of chiral condensate in the presence of a magnetic field and a chiral chemical potential

	Chiral susceptibility
	Regularization of the chiral susceptibility in the presence of a magnetic field and a chiral chemical potential

	Results and discussion
	Summary and conclusion

	Transport properties and Seebeck coefficient
	Introduction
	Boltzmann equation in the relaxation time approximation and the transport coefficients
	Estimation of the relaxation time in the NJL model
	Quasiparticle picture of the partonic medium
	Results and discussion
	Summary and conclusion

	Hadron-quark phase transition and non-radial oscillations in neutron stars
	Introduction
	Formalism
	Equation of state of nuclear matter
	Equation of state of quark matter
	Hadron-quark phase transition and a mixed phase

	Non-radial oscillation modes in compact stars
	Equilibrium and adiabatic speeds of sound
	Speed of sound in hadronic phase
	Speed of sound in quark phase
	Speed of sound in mixed phase

	Results and discussion
	Equation of state and properties of neutron/hybrid star
	Tidal deformability
	Oscillation modes in hybrid stars

	Summary and conclusion

	Universal relations with non-radial oscillation modes
	Introduction.
	Formalism
	Equation of state of nuclear matter
	Equations of state of quark matter

	Non-radial oscillation modes in compact stars
	Results and discussion
	Summary and conclusion

	Conclusions and future directions
	Regularization of scalar condensate
	Scalar condensate with a nonvanishing magnetic field and chiral chemical potential
	Chiral condensate in the background magnetic field
	Regularization of the chiral condensate in a background magnetic field and a chiral chemical potential
	Chiral susceptibility and its regularization in the presence of a background magnetic field and chiral chemical potential

	Bibliography

