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Abstract

The exploration of the quantum phases of ultracold quantum gases have emerged

as one of the contemporary pursuits in the realm of condensed matter physics. This is

motivated by the emergence of novel phases of matter at these extreme conditions. For

bosonic quantum gases, the remarkable phenomenon of Bose-Einstein condensation

occurs when cooled to quantum degeneracy. This phenomenon is characterized by the

macroscopic occupation of the lowest energy single-particle state. More importantly,

the physics of strongly interacting regime can be probed when the ultracold atoms

are confined in optical lattices. These engineered systems are clean, have minimal

interaction with the surroundings, and allows unprecedented control over the system

parameters in experiments. In particular, the experimental progress and control in

introducing artificial gauge fields have made these systems ideal candidates for probing

certain topological quantum phases. An example is the fractional quantum Hall (FQH)

effect. These phases are of interest for potential applications in quantum technologies.

In this thesis, we present an exact diagonalization method we have developed and

is well suited to study ultracold atoms in optical lattices. The method is apt for soft-

core bosons, and to implement constraints for reducing the basis set size. In addition,

with minimal changes, it can be modified to cluster mean-field method. In this the-

sis, we have investigated and characterized the FQH states using these methods. We

model the system using the Bose-Hubbard model (BHM) with appropriate complex

hopping terms. We show that the ν = 1/2 FQH state emerges as the ground state. We

identify the state using the two-point correlation function, and the topological order is

verified by calculating the many-body Chern number. In addition, we find that the spa-

tial bipartite entanglement entropy follows the area law, and calculate the topological

entanglement entropy. We find that the long-range interaction preserves the FQH state

and stabilizes it from the competing metastable phases.

We also investigate the non-equilibrium dynamics that ensue when a parameter of

the Hamiltonian is quenched across a quantum phase transition (QPT). We, in partic-

ular, focus on the quench dynamics across the Mott-insulator to superfluid QPT of the

BHM by quenching the hopping strength for constant chemical potential at the tip of

the Mott lobe and below it. Using this, we study the validity of Kibble-Zurek mecha-
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nism (KZM). It is related to the critical slowing down near the critical point of a contin-

uous phase transitions, leading to the breakdown of adiabaticity. The KZM predicts a

universal power-law nature of specific quantities, such as the correlation length and the

number of defects generated in the quench across the spontaneous symmetry-breaking

transition. We have studied the quench dynamics with the single-site Gutzwiller mean-

field and cluster Gutzwiller mean-field methods and calculate the exponents of the

power-law scalings. We notice that the critical exponents obtained from these studies

are close to the equilibrium values. The critical exponent associated with the diver-

gence of the system’s characteristic time approaches the equilibrium value with larger

cluster sizes.
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Chapter 1

Introduction

The novel experimental advances in laser cooling and trapping techniques have led to

the experimental achievement of Bose-Einstein condensation in dilute atomic gas of

bosonic alkali atoms in 1995 [1–3]. This remarkable milestone was honored with the

2001 Nobel Prize in physics and led to other experiments for realizing Bose-Einstein

condensates (BECs) with different atoms [4–6]. The BEC is a state of matter arising

from the macroscopic occupation of the bosonic particles in the lowest single-particle

state of the system. The realization of BECs in experiments has opened a new frontier

for investigating the quantum many-body physics at a macroscopic scale in the lab-

oratories [7–12]. The BECs are created in experiments by cooling the dilute atomic

gases close to zero temperature with a typical density of 1013 − 1015 atoms per cm−3.

The ultralow density suppresses three-body collisions and prevents solidification of the

gas. The low density, however, also implies weak inter-atomic interactions and lim-

its the experimental investigations to the weakly-interacting regime. Nevertheless, the

strongly interacting regime is accessible when BECs are loaded in the optical lattices.

The optical lattices are periodic potentials of light formed by interference of counter-

propagating laser beams. This allows for the study of strongly interacting quantum

many-body phases like the Mott-insulator [13, 14]. These quantum phases and the

associated quantum phase transitions have been observed in the experiments with op-

tical lattices [15]. The ultracold atoms trapped in optical lattice resemble the quantum

many-body system of electrons in a periodic lattice potential or condensed matter sys-

tems. In addition, these systems are clean, free from defects and allow superb control

1
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over several system parameters. This makes these systems excellent proxies to study

various phenomena in condensed matter systems. They have been used to study novel

quantum phases like the supersolid phase [16–19], the physics of phase separation in

binary mixtures [20–22], and collective excitations [23, 24], to name a few. Ultracold

atoms are, however, charge neutral and hence lack the effect of Lorentz force arising

from external electromagnetic fields. This shortcoming can be remedied with the im-

plementation of artificial gauge fields in optical lattices [25, 26]. With this, the physics

emerging from the Lorentz force can be simulated, and topological states like quantum

Hall (QH) can be explored with ultracold atoms in optical lattices. The QH states are

of immense importance due to the robustness of the state protected by symmetry. Ob-

serving these states require very low temperatures and high magnetic fields, making it

difficult to observe the QH states associated with high flux in condensed matter sys-

tems. High magnetic flux can be realized with the optical lattices, which makes them

good candidates to observe novel QH states. Recently, ν = 1/2 bosonic fractional

quantum Hall state has been experimentally realized with ultracold atoms in the opti-

cal lattice [27]. This remarkable realization opens the door to the creation of other QH

states.

In this chapter, we begin with a brief discussion of the classical and quantum Hall

effects. This is followed by studies of bosonic QH states with ultracold atoms in op-

tical lattices. Finally, towards the end of the chapter, we discuss the non-equilibrium

dynamics following a parameter change in the Hamiltonian, which drives these sys-

tems across the Mott insulator to superfluid QPT.

1.1 Classical Hall effect

The Hall effect is a phenomenon which occurs when a two-dimensional (2D) electron

gas is placed in a perpendicular magnetic field, and a current flows along the plane.

This results in the development of a transverse voltage, called the Hall voltage, per-

pendicular to both the magnetic field and the current. The Hall resistivity, defined as

the Hall voltage per unit longitudinal current, varies linearly with the strength of the

magnetic field, while the diagonal resistivity is zero. This behaviour was first discov-
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Figure 1.1: A schematic illustration of the classical Hall effect for electrons confined

in a 2D xy− plane. The current J flowing along x direction, under a perpendicular

magnetic field B, generates transverse electric field Ey and the Hall voltage Vy.

ered by Edwin Hall in 1879 and is known as the classical Hall effect [28]. The classical

physics explains this effect as a consequence of the cyclotronic motion of the electrons

under the Lorentz force.

Consider an electron gas restricted in the 2D xy− plane and subjected to an external

magnetic field B = Bẑ perpendicular to the plane. Let a constant current I = Ix̂

flow along the longitudinal direction, then the magnetic field induces a voltage along

the transverse y direction. A schematic illustration of this phenomenon is shown in

Fig. 1.1. This phenomenon or the Hall effect, can be explained using classical physics

with the electronic motion governed by the Lorentz force

m
d

dt
v = −e(E + v ×B). (1.1)

Here m, e are the mass and charge of the electron, respectively, and v and E represent

the electron velocity and the electric field, respectively. The steady state solution cor-

responding to v̇ = 0 gives a constraint E = −v ×B. Assuming ρ0 as the equilibrium

density of electrons, the current density defined by J = −eρ0v for the steady state

becomes

Jx = −eρ0

B
Ey, and Jy =

eρ0

B
Ex. (1.2)

Thus, a current along the x-direction is deflected and bends along the y-direction due to

the magnetic field. This results in the piling up of electrons along the edges in the finite

y-direction with an electric field Ey. The electric field Ey keeps growing till it cancels
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the bending due to the magnetic field. The associated voltage along the y-direction is

the Hall voltage. The Hall resistivity is defined as

ρxy ≡
Ey
Jx

=
B

eρ0

, (1.3)

is linearly proportional to the external magnetic field B. The longitudinal resistivity

ρxx ≡ Ex/Jx = 0 in the above calculations. Considering the effects of electronic col-

lisions with the lattice or impurities as described by the Drude model with a scattering

term, the Hall resistivity is still given by Eq. (1.3). However, the longitudinal resistivity

is now modified as ρxx = m/(e2ρ0τ), with τ being the mean free time.

A century later, in the year 1980, the experiments by Klitzing, Dorda and Pepper

led to the discovery of plateaus in the plot of Hall resistivity against the magnetic field

[29]. The Hall resistivity at these plateaus corresponded to the integer multiples of

e2/h. The integral quantization of the Hall resistivity can be explained by treating

the electrons as quantum objects described by quantum mechanics. This effect was

subsequently known as the integer quantum Hall (IQH) effect. Soon after, in 1982

Tsui, Stormer, and Gossard discovered the quantization of Hall resistivity at fractional

multiples of e2/h [30]. This effect is known as the fractional quantum Hall (FQH)

effect. The basic requirement to explain the FQH effect is the electronic correlations,

which is not required to explain the IQH effect. Fig. 1.2 shows the plateaus in Hall

resistivity for various integer and fractional quantum Hall states.

1.2 Quantum Hall effect

The quantum Hall (QH) effect is the quantization of the Hall resistivity with strong

magnetic fields at very low temperatures. At such temperatures, the quantum effects

become prominent, and the electrons can’t be treated as classical particles. Thus, a

quantum mechanical treatment of the electrons is essential. The Hamiltonian for a free

electron moving in a 2D plane under an external perpendicular magnetic field is given

by

H =
1

2m
(p + eA)2. (1.4)

Here, p = −i~∇ is the momentum operator, and A is the vector potential satisfying

∇ × A = Bẑ. In the Landau gauge, A = Bxŷ, the translation symmetry along y-
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Figure 1.2: The Hall resistivity ρxy shows plateaus at various integer and fractional

filling factors ν, with simultaneous vanishing of the diagonal resistivity ρxx. Plateaus at

integer and fractional values of ν correspond to the integer quantum Hall and fractional

quantum Hall states, respectively. Reprinted figure from [Willett et al., PRL 59, 1776

(1987).] Copyright © 1987, American Physical Society.

direction is respected. So along y, the plane waves are the required solutions. We thus

consider the eigenfunctions of Hamiltonian in Eq. (1.4) of form Ψk(x, y) = eikyψk(x)

with

HΨk(x, y) =
1

2m

[
p2
x + (~k + eBx)2

]
Ψk(x, y) ≡ HkΨk(x, y). (1.5)

The Hamiltonian Hk resembles the Hamiltonian of a 1D harmonic oscillator, but with

a shifted centre

Hk =
p2
x

2m
+
mω2

c

2
(x+ kl2B)2. (1.6)

Here, ωc = eB/m is the cyclotron frequency, and lB =
√

~/(eB) represents a charac-

teristic length scale, called the magnetic length. The energy eigenvalues of the system,

referred to as Landau levels, is given by

En =

(
n+

1

2

)
~ωc, n ∈ {0, 1, 2, · · · }. (1.7)
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The Landau levels are highly degenerate. Each state is BA/ΦD fold degenerate; here,

ΦD = 2π~/e is the Dirac flux quanta, and A is the area of the system. The degeneracy

is thus equal to the total number of flux quanta in the system. With this concept of

Landau levels, let us see how the integer quantization of Hall resistivity can be under-

stood.

1.2.1 Integer quantum Hall effect

Experimentally, the IQH effect is observed at quantized values of Hall resistivity [29],

given by

ρxy =
1

ν

2π~
e2

, ν ∈ {1, 2, 3, · · · }. (1.8)

Comparing this with the classical Hall resistivity in Eq. (1.3), we get ρ0 = νB/ΦD,

which suggests completely filled ν Landau levels. The quantity ν = ρ0ΦD/B repre-

sents the filling factor of the state. Thus, the IQH effect at filling ν is observed when ν

Landau levels are completely filled. At fixed electron density, this will occur at special

values of magnetic field. In experiments, the IQH is observed as plateaus for a range

of magnetic field values [29]. The origin of these plateaus is ascribed to the role of

impurities in the system. The weak disorder effects broaden the Landau levels and

turn many of the states at the far edge of the bands to localized states. The IQH effect

corresponds to the plateaus in the Hall resistivity at integer values of filling factor ν.

However, in the experiments, various plateaus are observed for the Hall resistivity with

vanishing longitudinal resistivity at fractional values of ν as shown in Fig. 1.2. This is

the FQH effect which arises due to the electronic correlations.

1.2.2 Fractional quantum Hall effect

The FQH plateaus for ν = 1/3 and 2/3 were the first ones to be observed in ex-

periments. Later, various other plateaus were observed for ν = 1/5, 2/5, 3/7, 4/9,

· · · , 4/3, 5/3, 7/5, 5/2, 12/5, · · · in the lowest and higher Landau levels [31]. In

the presence of the inter-electron electrostatic interaction, the macroscopic degener-

acy of the Landau levels is lifted and also broadens the levels. It can, then, open

spectral gaps at fractional values of ν [32, 33]. Weak disorder effects can then in-
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troduce localized states in the gap, which is responsible for the observed plateaus in

Hall resistivity. Thus, for the FQH effect, the various energy scales follow the hier-

archy ~ωc � ECoulomb � Vdisorder. Although a complete theoretical understanding

of the FQH effect is lacking, various theories which capture the relevant physics of

the FQH effect have been proposed. The first theoretical explanation of the FQH ef-

fect at ν = 1/m for odd m was given by Laughlin in 1983 based on the many-body

wavefunction proposed based on physical insights [32]. Another theory based on the

concept of composite fermions was proposed by Jainendra Jain in 1989 [33]. With

this, the FQH effect of electrons can be understood as the IQH effect for composite

fermions. The excitations of FQH states are anyons and possess fractional electronic

charge. The quantum statistics for anyons is different from the Bose-Einstein statistics

obeyed by bosons or the Fermi-Dirac statistics obeyed by fermions.

This covers a brief theoretical background on the quantum Hall effect. As previ-

ously discussed, the observation of QH states requires very low temperatures, and a

very high magnetic flux is required for the ν < 1 FQH states. Because of this and

various other advantages, ultracold atoms in optical lattices are excellent systems for

studying the QH effect. Various theoretical studies exist for the realization of bosonic

IQH states with the optical flux lattice [34], with correlated hopping on honeycomb

lattice [35] and with interacting two-component bosons [36]. The investigations on

realization of bosonic FQH states have gained wider attention. In the next section, we

describe the ultracold atoms in optical lattice and discuss some of the previous studies

of FQH states in these systems.

1.3 Ultracold atoms in optical lattice

Optical lattices are periodic potentials of light synthesized by the interference of counter-

propagating lasers. Due to the atom-light interaction, the ultracold gas exposed to

lasers develops an induced dipole moment, leading to a periodic potential due to the

AC-Stark shift. The lasers are chosen to be red-tuned, thus avoiding the dissipations

arising from the absorption of photons by the condensed atoms. In this setting, the

atoms occupy the minima of the potential. The depth of the potential well is propor-



8 Chapter 1. Introduction

tional to the intensity of the laser. The atoms are trapped around the potential well,

thus forming a lattice with the lattice constant proportional to the wavelength of the

laser. Various lattice geometries like the honeycomb, triangular, kagome lattices can

be synthesized by tuning the angle between the counter-propagating lasers [37–42].

Additionally, by employing an additional set of lasers in orthogonal directions, the di-

mensionality of the lattice can be changed. The ability to control the inter-atomic inter-

actions, number of atoms and systematic introduction of defects in an otherwise clean

environment offers great experimental tunability. As discussed earlier, the strongly

interacting regime can be accessed by reducing the itinerancy of the atoms. This is

possible by increasing the depth of the potential well, leading to a localized Mott in-

sulator (MI) phase. In the opposite limit, a completely delocalized coherent superfluid

(SF) phase exists. These two quantum phases are separated by a QPT and have been

observed in the experiments [15, 43]. Theoretically, the system can be described by

the Bose-Hubbard model [13, 14], a bosonic analogue of the Hubbard model [44]. The

model describes the competition between the hopping tendency and the on-site interac-

tions, which determines the quantum phases. The recent experimental advancements

have allowed the realization of BECs of dipolar atoms like chromium, dysprosium,

erbium and europium [45–52]. These dipolar atoms interact with a long-range dipole-

dipole interaction. The BHM can be extended with an additional term corresponding

to dipolar interactions. The extended BHM (eBHM) supports quantum phases with

periodic modulation in density, like the incompressible density-wave and the novel su-

persolid phase [53–55]. Chapter 2 provides a description of the BHM and its quantum

phases. In this chapter, we also discuss some of the numerical mean-field methods used

in this thesis to obtain the ground state quantum phases of BHM and its extensions.

Being charge neutral, ultracold atoms trapped in optical lattices cannot experience

a Lorentz force necessary for observing topological phases like quantum Hall, spin

Hall effect and a multitude of other effects. However, the effect of magnetic field

on the ultracold atoms can be simulated with the realization of artificial gauge fields

due to development of novel experimental techniques like the laser-assisted tunnelling

[25, 26] and dynamical shaking [56]. In addition, with optical lattices the magnetic

flux piercing a unit cell can be tuned to significantly large values owing to the larger
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lattice constant≈ 1µm. This helps in realizing several FQH states which are otherwise

difficult to observe in condensed matter systems due to the requirement of very high

magnetic fields ≈ 100T. Theoretically, with the implementation of artificial gauge

fields in optical lattices, nearest neighbour hopping of atoms leads to the development

of a phase. In other words, the hopping strength picks up a phase ei2πα via Peierls

substitution [57, 58], with α being the magnetic flux piercing the unit cell. The gauge

fields also affect other quantum phases of ultracold atoms. For instance, the parameter

regimes of localized phases are enhanced owing to the cyclotronic motion of atoms

[59, 60]. The single-particle spectrum in the presence of a magnetic field, given by

the Landau levels in the continuum, are modified in the optical lattice. This is due to

the discreteness of the lattice. The energy spectrum has a fractal structure known as

the Hofstadter butterfly [58]. Thus, the FQH physics is different in the optical lattice,

particularly for large α limit where the discreteness of the lattice compared to the

magnetic unit cell becomes more apparent.

1.3.1 Exact diagonalization for bosons in optical lattice

The mean-field description does not capture the correlation effects in a quantum many-

body systems accurately and are not suitable to study strongly correlated states. In

addition, for strongly correlated quantum phases like the FQH states with large α, re-

specting the magnetic translational symmetry requires exact calculations within the

magnetic unit cell. The use of exact diagonalization (ED) for ultracold atoms in opti-

cal lattices is possible for small sized lattices, owing to the exponential growth of the

Hilbert space with the lattice size. This can be understood as follows. The hopping

of particles in the lattice can be described by coupled occupation number basis of the

form |n1, n2, · · ·nNs〉, where, ni represents the particle occupancy at the ith lattice site

amongst the total Ns lattice sites. If we restrict the maximum allowed single-site oc-

cupancy to Nb, the total number of distinct basis states is NNs
b . Thus, it can be seen

that the number of basis states grows exponentially with the lattice size. Although,

the Hamiltonian conserves the total particle number, for fixed particle sectors the size

of Hilbert space can still be quite large. The ED method involves the construction of

the basis states and evaluating the Hamiltonian matrix with this basis set. A numeri-
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cal diagonalization then gives the eigenvalues and eigenstates of the system. For most

of the studies at low temperatures, the knowledge of few low-energy states is suffi-

cient. This simplification allows for relatively fast numerical diagonalization using the

well-known Lanczos algorithm. There exist several tutorials and reviews on the ED

technique [61–63], and it has been extensively studied for the spin-systems [64, 65].

In Chapter 3, we discuss our implementation of ED based on a hierarchy of states. This

implementation allows for easy imposition of additional constraints to filter the basis

states. This can lead to a significant reduction in the size of Hilbert space in certain

cases. In this thesis, we use the ED method for characterizing the topological order in

bosonic FQH states and studying the bi-partite entanglement of these states. The clus-

ter Gutzwiller mean-field (CGMF) method, which we implement as an extension of

the ED method, is used to identify the FQH states as the ground state in optical lattice

against other competing quantum phases. With this brief description of the numeri-

cal ED method, let us discuss some of the previous works on bosonic FQH in optical

lattices.

1.3.2 FQH states with ultracold atoms

Early works on FQH states used rotating BECs to mimic the effects of Lorentz force

[66, 67]. This was motivated by the study showing that the FQH state with filling

factor ν = 1/2 is the ground state for a bosonic gas with N particles rotating at very

high total angular momentum L = N(N − 1) in isotropic parabolic trap [68]. In the

rotating frame, the effects of the Coriolis force are analogous to the Lorentz force.

However, with rotating BECs, the energy gap between the ground state and excited

states is small and can affect the stability of the state. As discussed earlier, with optical

lattices, the strongly interacting regime is accessible with higher energy gap. And with

the implementation of artificial gauge fields, these systems are better candidates for

studying QH states. This has led to various proposals to realize bosonic analogues

of FQH states in optical lattice and the details are covered in some of the excellent

reviews [69–72].

A theoretical proposal for realizing bosonic FQH state by melting a Mott-insulator

phase in a superlattice potential was put forward in Ref. [73]. In this work, ED study
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shows the ground state as FQH state with an excellent overlap with the Laughlin wave-

function for α . 0.3. For larger α, the ground state may still be FQH but different from

Laughlin wavefunction. This ambiguity is resolved with the identification of the FQH

state through many-body Chern number, which is non-zero for topological phases like

FQH, as reported in Ref. [74]. For ν = 1/2 filling, the ground state is observed to

be FQH state till α < 0.4, suggesting the FQH physics to be different in a lattice

compared to the continuum. Bilayer FQH states at high synthetic magnetic fields have

been theorized in Ref. [75]. For BHM, the FQH states are predicted to emerge in the

vicinity of the Mott lobes [76, 77]. Several numerical studies exist on the bosonic FQH

states in optical lattices [78–82]. Most recently, the ν = 1/2 bosonic FQH state was

realized experimentally for the first time with ultracold 87Rb atoms in an optical lattice

[27]. This remarkable achievement shall boost the realization of FQH states at other

fillings in optical lattices.

It is interesting to investigate the bosonic FQH states in optical lattice with the dipo-

lar interactions. With dipolar interactions truncated to nearest-neighbor (NN) interac-

tion, bosonic FQH states have been explored in the vicinity of Mott lobes in Ref. [59],

with the effective Hamiltonian for the excess particle in the single-site Gutzwiller

mean-field prescription. With the mean-field theory, a vortex solid state is obtained

in the absence of NN interactions. And finite NN interactions destabilize the vor-

tex solid state by favouring a featureless homogeneous state, termed as Bose metal.

Using the Chern-Simons theory, the authors propose a Chern-Simons wavefunction

that describes the FQH state and is preferred as the strength of NN interactions is in-

creased. In Ref. [74], ED study reveals that the energy gap between the ground state

and excited state increases with the strength of dipolar interactions. And, the topo-

logical order of ground state survives with dipolar interactions. The larger energy gap

is beneficial in experimental realization of FQH states. Motivated by this, Chapter 4

investigates the possibility of obtaining FQH states as ground states in optical lattices.

With the CGMF method, the parameter regimes are explored where FQH state appears

as ground state against the competing superfluid state. The topological order of the

FQH state is identified by calculating the many-body Chern number. And, the effect

of dipolar interactions is studied on the stability of the FQH state.
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1.4 Quantum quench dynamics

The ability to control and manipulate the behaviour of quantum systems is at the

core of developing quantum technologies and exploring novel quantum phenomena.

These manipulations allow us to prepare particular states of the system by adiabati-

cally changing the parameters of an initial state. In other words, the dynamics and

out-of-equilibrium phenomenon becomes important. The out-of-equilibrium dynamics

of quantum systems and their response under changes in the underlying Hamiltonians

have been extensively studied. And, important questions pertaining to the thermal-

ization and equilibriation of isolated quantum systems are addressed. The quantum

systems can be driven out of their equilibrium states by coupling to an external envi-

ronment, thus allowing for exchange of energy and particles. The dynamics of the sys-

tem is governed by a non-unitary evolution due to the open system condition. Another

way to induce the non-equilibrium behaviour is by a quantum quench, which involves

changing the parameters of the Hamiltonian and allows studying the closed system

unitary dynamics. The non-equilibrium dynamics with quantum quenches across con-

tinuous quantum phase transition have been linked to the Kibble-Zurek mechanism.

It describes the formation of defects during symmetry-breaking phase transitions [83–

86]. Ultracold atoms trapped in optical lattices provide an excellent experimental plat-

form for investigating non-equilibrium dynamics in controlled settings. The precise

control over the parameters of the system allows for the creation of a variety of quan-

tum states and their evolution under a quantum quench. Moreover, these systems ex-

hibit remarkable isolation from their environment, making them ideal for studying the

closed system dynamics and exploring fundamental quantum phenomena. This has

been demonstrated with the experimental observation of MI-SF QPT in these systems

[15, 43]. The quench dynamics of quantum systems have been studied for understand-

ing the thermalization and relaxation of quantum systems [87, 88], phase ordering ki-

netics and domain growth laws [89–91], and entanglement growth following a quench

[92, 93].
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1.4.1 Kibble-Zurek mechanism

KZM is an important theoretical framework describing the universality of the non-

equilibrium dynamics under a slow quench across the continuous phase transition.

KZM predicts that the spontaneous symmetry breaking when the system crosses the

critical point during the dynamics leads to the formation of topological defects. For

most transitions, the defect density follows a universal power law behaviour with the

quench rate. It is governed by the equilibrium critical exponents [85, 86]. The central

idea of KZM is that near the critical point, the relaxation time diverges, and the adi-

abaticity in the evolution breaks down, however slow the quench. This is referred to

as critical slowing down. KZM draws its inspiration from the works of Tom Kibble in

the context of cosmology [83]. In the early universe after the Big Bang, the universe

went through various stages of thermal phase transitions. Due to the spontaneous sym-

metry breaking across the continuous phase transition, an order parameter develops

in the symmetry broken state. However, the local choices of the order parameter are

correlated on a length scale determined by the relativistic causality, and would form

domains. The uncorrelated order parameter across different domains will thus con-

stitute topological defects at the meeting point of these domains. Zurek extended the

Kibble’s idea to non-relativistic condensed matter systems like He4 by identifying that

the critical slowing down near phase transitions can play a role similar to the relativis-

tic causality [84, 94]. Using the power-law divergence of the equilibrium correlation

length and relaxation time near the critical point, Zurek predicted universal scaling

laws for the size of correlated domains and the defect density as a function of the

quench rate. These constitute the Kibble-Zurek (KZ) scaling laws and the predictions

have been experimentally tested for thermal phase transitions in superfluid He [95–97]

and various other condensed matter systems [98–107].

Originally, KZM was developed to describe the continuous symmetry breaking in

thermal phase transitions. Subsequently, KZM was extended to describe the dynamics

across QPTs [108]. The extension of KZM to QPTs is not trivial, the nature of fluctua-

tions driving the phase transition being quantum in nature compared to the dissipative

thermal fluctuations. For the quantum systems, the energy gap between the ground

state and the first excited state vanishes at the quantum critical point leading to the
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breakdown of adiabaticity during the evolution. This is in close resemblance to the

critical slowing down for the thermal phase transitions. The predictions of KZM were

tested for the 1D quantum Ising model in Ref. [108]. The applicability of KZM theory

in describing the dynamics of the simplest quantum two-level model, the Landau-Zener

model was shown in Ref. [109]. Several other theoretical [109–125] and experimental

[126–131] works have emerged in recent times on the KZM.

1.4.2 Quench dynamics of ultracold atoms

Early investigations on the non-equilibrium dynamics of ultracold atoms were studied

in the weakly interacting regime for BECs trapped in harmonic potential traps [126,

132–136]. And the predictions of KZM have been tested for quenches across the BEC

transition [137–140]. The quench dynamics across QPT with ultracold atoms have

been investigated in various theoretical [94, 108, 110, 112, 141–144] and experimental

works [129–131, 145–148]. The experiment in Ref. [145], investigated the quench

across the MI-SF QPT for inhomogeneous BHM in 3D optical lattice. The quench

was performed by continuous tuning of the ratio of hopping strength to interaction

energy, driving an initial MI phase into SF phase across the generic phase transition.

The quench rate was carefully chosen to be slow to avoid excitation of atoms into

higher vibrational states of the lattice potential. Using the time-of-flight imaging, the

excitation density in the post-quenched state was measured. The excitation density and

energy produced from quench was found to have a power law dependence on quench

rate suggesting a KZM mechanism for the defect generation. However, the power

law exponents differ significantly from the KZM prediction. The disagreement was

attributed to a number of factors like the inhomogeneous nature of the gas, different

nature of excitations or due to thermal effects at low but finite temperatures. Another

experiment [146] explored the dynamics across MI-SF QPT in 1D optical lattice using
39K atoms. The initial MI phase was quenched into SF phase by linearly decreasing

the lattice depth. The ramp times or the quench rate is chosen to ensure no mass

transport, leading to the QPT at fixed density. The coherence length of the atoms

was determined from the width of the interference peaks obtained from time-of-flight

absorption images. It was observed that coherence length follows a power-law only
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for intermediate range of the quench rate. And the power-law exponent deviates from

the KZM prediction and infact is dependent on the final value of U/J at which the

quench is terminated. Even on the theoretical front, the discrepancy in the power

law exponents for MI-SF QPT is still unresolved [142, 144]. Motivated by this, we

have investigated the quench dynamics across the MI-SF QPT in BHM for generic

transition (away from the tip of Mott lobe) and at the multicritical point. Chapter 5

reports the results obtained from the single-site Gutzwiller mean-field (SGMF) and

CGMF methods.

1.5 Highlights of the thesis

The highlights of research work presented in this thesis are as follows:

• We have presented a novel implementation of the exact diagonalization tech-

nique for solving the ground state of bosonic particles in lattice models. The ED

technique can be easily extended for the CGMF studies.

• The described implementation of ED allows for filtering of the basis states ac-

cording to some clever constraints. These constraints are based on some apriori

expectations from the ground state. Depending upon the constraints, a signif-

icant reduction in the Fock-space is possible. This is quite important for ED

studies, where the Fock-space grows exponentially with the system size.

• We have extended the developed ED technique for calculating the reduced den-

sity matrix for spatial bi-partitioning of the lattice. Using this, we have investi-

gated the area law for the entanglement entropy and also studied the topological

entanglement entropy in the FQH states.

• We have studied the bosonic FQH effect in optical lattice. With CGMF, we have

investigated the parameter regimes where FQH states can exist as the ground

state against the competing superfluid state. The two-point correlation function

revealed signatures of a gapped bulk and gapless edges, which are consistent

with the FQH state. The topological order of FQH state is investigated by calcu-

lating the many-body Chern number.
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• We have explored the effect of dipolar interactions on the stability of bosonic

FQH states in optical lattice. We find that the dipolar interactions stabilize the

FQH state against the competing SF state.

• We have examined the quantum quench dynamics across the MI-SF QPT at the

multicritical point and for a generic transition below the tip of the Mott-1 lobe

with SGMF. We have obtained the KZ scaling laws for the impulse-adiabatic

crossover time and the vortex density. The dynamically obtained critical expo-

nents differs from their equilibrium counterparts.

• With CGMF method, we revisited the quench across the MI-SF QPT. In contrast

to the SGMF, the CGMF captures the evolution of the quenched state in the

“impulse” regime of KZM. The mismatch between the dynamically obtained

critical exponent z and its equilibrium value decreases with increase in the size

of clusters used in CGMF.

1.6 Overview of the chapters

The overview of the chapters in the rest of the thesis is as follows.

• Chapter 2 describes the BHM, and its ground-state quantum phases. We then

describe the numerical mean-field methods, SGMF and CGMF, that are used

in this thesis for obtaining the ground state quantum phases of BHM and its

extension. Towards the end, we discuss the time-dependent Gutzwiller equations

used for studying the dynamical evolution of the quantum state.

• Chapter 3 discusses a novel implementation of the exact-diagonalization tech-

nique for solving the ground state for the system of bosonic particles in a lattice.

The proposed technique allows for significant reduction in the Fock-space with

the ability to impose some clever constraints for filtering out the basis states.

Towards the end, we demonstrate the technique for studying the entanglement

properties of the bosonic FQH states.

• Chapter 4 discusses the FQH effect in optical lattice. We have investigated the

parameter regimes where FQH states occur as the ground state. We have charac-
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terized the FQH state by studying the two-point correlation function. The topo-

logical order in the state is demonstrated by calculating the many-body Chern

number. Afterwards, the effect of dipolar interactions on FQH states is dis-

cussed. We find that it preserves the topological order and stabilizes the FQH

states against the competing superfluid states.

• Chapter 5 discusses the quantum quench dynamics across the MI-SF QPT of

the BHM. The quenches are performed for the generic transition and across the

multi-critical point. We have investigated the validity of KZM and obtained the

KZ scaling relations with the SGMF and CGMF methods. The CGMF method

captures the evolution of the quenched state in the “impulse” regime of KZM

which is otherwise absent in the SGMF theory. The obtained power law expo-

nents have a mismatch compared to the KZM predictions. However, the mis-

match between the dynamically obtained critical exponent z and its equilibrium

value decreases with the increase in the size of clusters used in CGMF.

• Chapter 6 states the conclusions of the thesis and the future research directions

that can be pursued.





Chapter 2

Theoretical and Numerical methods

The experimental realization of BECs of dilute atomic gases at ultracold temperatures

(≈ 10−9 K) has initiated a new era in the field of atomic and molecular physics [149].

In general, cooling of gases to ultracold temperatures leads to the formation of solid

phase. To overcome solidification and achieve BECs, atomic gases need to be dilute.

Very low densities (1013−1015 atoms per cm−3) imply that the inter-atomic interaction

is weak. The system of such a weakly interacting Bose gases is well described by the

Gross-Pitaevskii (GP) equation [150, 151]. However, the GP framework is not appli-

cable to the strongly-interacting systems. By trapping the ultracold gases in optical

lattices, the itinerancy of the atoms can be reduced by increasing the depth of potential

wells. This effectively drives the system to the strong-interaction regime [15]. These

systems are versatile finite quantum many-body systems and offer a very good control

over various system parameters. Using these systems, it is thus possible to explore var-

ious phenomena associated with quantum many-body systems at a macroscopic scale

in the laboratories [149, 152, 153]. Many such advantages offered by these systems

make them an excellent choice as quantum simulators to explore quantum many-body

physics. These systems can be described theoretically by the Bose-Hubbard model and

its variants.

The BHM describes the system of interacting ultracold gas of bosonic atoms in a

lattice. This is a minimal model with a nearest neighbor hopping term to represent

the kinetic energy, and an on-site potential term arising from the interatomic contact

interaction potential [13, 154]. The latter is because of the fact that at low densities

19
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and temperatures, the interatomic interaction is well described by contact interaction.

The BHM supports two quantum phases as the ground state of the system, the Mott-

insulator and the superfluid phases, in various parameter regimes. These phases are

separated by a quantum phase transition, which has been demonstrated experimentally

[15, 43]. The BHM can be modified and extended with appropriate terms according

to the system of study, and this may lead to the emergence of new quantum phases.

The system of ultracold gases in optical lattices is versatile and allows the engineering

of a variety of exotic and novel quantum phases [149, 154–156]. For example, in the

case of dipolar atoms, approximation with nearest-neighbour interaction leads to the

emergence of two new quantum phases. These are the density wave and supersolid

phases [157]. The BHM can also be adapted to model the effect of magnetic fields on

the atoms for the investigation of the Hall effect. The hopping amplitudes in the BHM

are then modified by an appropriate lattice-site dependent phase factor. With this, the

extended model can support the quantum Hall states.

In this chapter, we shall first derive the BHM from a second-quantized Hamilto-

nian with a general two-body interaction, which describes interacting bosonic gases

in optical lattice. We shall discuss the ground-state quantum phases supported by the

BHM and the numerical methods employed for obtaining the ground-state of the sys-

tem. These include the mean-field methods based on the Gutzwiller ansatz, namely the

single-site Gutzwiller mean-field (SGMF) and the cluster-Gutzwiller mean-field meth-

ods. At the end, we shall discuss the phase diagram of BHM. Finally, we discuss the

time-dependent Gutzwiller equations used for studying the time evolution of quantum

phases.

2.1 Bose-Hubbard model

The second-quantized Hamiltonian which described neutral bosonic atoms in a lattice

potential with a general two-body interaction can be written as

Ĥ =

∫
drΨ̂†(r)

(
− ~2

2m
∇2 + V latt(r) + V trap(r)

)
Ψ̂(r)

+
1

2

∫
drdr′Ψ̂†(r)Ψ̂†(r′)Uint(r− r′)Ψ̂(r′)Ψ̂(r). (2.1)
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Here, Ψ̂†(r) and Ψ̂(r) are the bosonic creation and annihilation field operators, re-

spectively, which satisfy the canonical commutation relations. The lattice potential

due to the sinusoidal standing wave formed by counter-propagating lasers is of form

V latt(r) = Vo sin2(2πx/λ) along the spatial degrees of freedom, with λ being the

wavelength of the laser and Vo is the measure of the AC Stark effect, which depends

on the laser intensity and the polarizability of the atoms [132, 155]. The additional

trapping potential V trap(r) is applied to limit the spatial extent of the condensate atoms

within the optical lattice. Otherwise, the atoms shall tunnel across the lattice sites and

escape from the optical lattice. For ultracold dilute gases, the interatomic interaction

can be approximated as a contact potential given by [155]

Uint(r− r′) =
4π~2as
m

δ(r− r′), (2.2)

where, m is the mass of the atoms and as is the s-wave scattering length. It is useful to

expand the field operators in the Wannier basis, formed by the wavefunctions centred

around the lattice sites. Assuming the tight-binding limit for the case of deep lattice

potential, the Wannier functions are localized at the lattice sites. The depth of the lattice

potential also ensures that the energy band gap between the lowest and higher Bloch

bands is large compared to the other relevant energy scales of the system. Thus, for

deep lattices and at ultracold temperatures, the dynamics of the system is approximated

to be frozen to the lowest band only. In the lowest-band approximation, we can thus

expand the field operators in terms of the Wannier functions of the lowest Bloch band

as [14, 149, 158]

Ψ̂(r) =
∑
i

w0(r−Ri) b̂i, (2.3)

where, i is the lattice site index, b̂i is the bosonic annihilation operator at the ith lattice

site, and w0(r−Ri) is the lowest band Wannier function centered at the ith lattice

site whose spatial coordinates are given by Ri. The bosonic creation (annihilation)

operators b̂†i (b̂i) satisfy the usual canonical commutation relations[
b̂i, b̂

†
j

]
= δi,j,

[
b̂†i , b̂

†
j

]
=
[
b̂i, b̂j

]
= 0. (2.4)

The vanishing overlap between the Wannier functions of distant lattice sites allows the

hopping to be restricted to the NN sites (denoted by 〈i, j〉) with the hopping strength

Jij = −
∫

drw∗0(r−Ri)

(
−~2∇2

2m
+ V latt(r) + V trap(r)

)
w0(r−Rj), (2.5)
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Figure 2.1: A schematic illustration of the NN hopping and onsite interaction terms in

BHM for a 2D lattice.

and similarly, εi = Jii is the on-site one body potential which represents the potential

offset for the case of a non-uniform lattice. The two-body inter-atomic interaction

potential term can be considered as a local or onsite and its strength is

U =
4π~2as

m

∫
dr|w0(r−Ri)|4. (2.6)

Thus, in the tight-binding limit and with the lowest-band approximation, the Hamilto-

nian in Eq. (2.1) in terms of the Wannier basis gives the BHM Hamiltonian

ĤBHM = −
∑
〈i,j〉

Jij b̂
†
i b̂j +

U

2

∑
i

n̂i(n̂i − 1) +
∑
i

εin̂i, (2.7)

where, n̂i = b̂†i b̂i is the occupation number operator. In the grand-canonical ensemble,

a term corresponding to the chemical potential (µ) of the gas is added to the Hamilto-

nian in Eq. (2.7) to fix the total number of atoms in the lattice. The BHM Hamiltonian

is then given by

ĤBHM = −J
∑
〈i,j〉

b̂†i b̂j +
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i. (2.8)

where, we have replaced the NN hopping strength Jij by J for a homogeneous lat-

tice and have dropped the term corresponding to the potential offset in a non-uniform

lattice.

The different terms of the BHM Hamiltonian for a 2D square lattice considered

in this thesis are schematically shown in Fig. 2.1. The lattice site index i then refers

to the spatial coordinates (p, q) and the NN site corresponding to the (p, q)th site now
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represents an element of the set {(p + 1, q), (p − 1, q), (p, q + 1), (p, q − 1)}. In the

schematic diagram, the hopping strengths along the x and y directions are assumed to

be different, and this corresponds to anisotropic hopping strengths. Unless otherwise

specified, we shall always assume isotropic and homogeneous hopping strengths J and

drop any redundant subscripts throughout this thesis.

To understand the ground state quantum phases of the BHM, let us consider two ex-

treme regimes of the system parameters. In the strongly interacting parameter regime

J/U → 0, we can neglect the hopping term in the BHM Hamiltonian. Since the

Hamiltonian has only occupation number operators, the ground state is of the form

|ΨJ=0〉 =
∏
i

|n〉i . (2.9)

This describes the MI phase with n atoms at each lattice site. The integer commen-

surate density is fixed by the chemical potential of the gas. In the opposite regime

U/J → 0 which corresponds to the weakly interacting regime, the ground state corre-

sponds to a superfluid where all the Np particles occupy the zero momentum state of

the lowest Bloch band. This superfluid state has the wavefunction [149, 158]

|ΨU=0〉 =
1√
Np!

(
1√
Ns

∑
i

b̂†i

)Np

|0〉i , (2.10)

where, Ns is the number of lattice sites. Thus, at the extreme values of the parameter

J/U , BHM supports a localized MI phase and a delocalized SF phase. And, there

exists a quantum phase transition between the two phases at some critical value of

J/U . To explore the ground-state quantum phases of the BHM, we need to solve for

the ground state of the Hamiltonian.

Theoretical exploration of BHM includes various theoretical methods, for instance,

the Bogoliubov techniques for the case of weak interactions [159], perturbative meth-

ods for strongly interactions systems [160, 161], Gutzwiller mean-field approaches

[14, 162], field-theoretic investigations [163–165], among others. The ground state

properties of such systems have also been examined through various numerical tech-

niques such as the Density Matrix Renormalization Group methods [166, 167] and

Quantum Monte-Carlo methods [168]. Now, we shall describe some numerical meth-

ods used in this thesis for studying these systems.
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2.2 Numerical methods to solve BHM

The Hamiltonian in Eq. (2.8) couples NN sites through the hopping term consisting

of bilinear operators. Therefore, a natural basis for expressing the Hamiltonian matrix

is provided by coupled Fock-state basis, which is the direct product of the single-site

Fock-state basis and corresponds to the configuration of lattice occupancies. For a

K × L system, the basis state has the form∏
p,q
|n〉p,q ≡ |n1,1, · · ·np,q, · · ·nK,L〉 . (2.11)

The wavefunction of the system in the coupled Fock-state basis is then expressed as

the linear combination

|Ψ〉 =
∑
n1,1···
np,q···
nK,L

Cn1,1,···np,q ,···nK,L |n1,1, · · ·np,q, · · ·nK,L〉 . (2.12)

The ground-state wavefunction is obtained by diagonalizing the Hamiltonian matrix.

This method of obtaining the eigenspectrum from the one-time diagonalization of the

Hamiltonian matrix is called the exact-diagonalization method. However, the Fock-

space spanned by the coupled basis states grows exponentially with the size of the

lattice. Thus, the techniques like ED demands heavy computational resources [61, 62].

In Chapter 3, we discuss in detail the numerical implementation of an ED method we

have developed. Alternatively, an approximate description of the ground state phases

can be obtained using the mean-field descriptions. In this approach, the bilinear opera-

tors are approximated by a single site operator times the mean-field of the NN site. The

mean-field approximation leads to a drastic reduction in the Fock-space and simplifies

the calculations.

2.2.1 Single-site Gutzwiller mean-field theory

In the SGMF theory, the bosonic operators are decomposed in terms of a mean-field

and a fluctuation as [162, 169]

b̂i = φi + δb̂i, (2.13a)

b̂†i = φ∗i + δb̂†i . (2.13b)
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Here, φi = 〈b̂i〉 and φ∗i = 〈b̂†i〉 are the mean fields at the ith lattice site and are the

expectation values of the bosonic operators taken with respect to the ground state.

The residual fluctuations are represented by the operators δb̂i and δb̂†i . With these

decompositions, the bilinear operator in the hopping term can be rewritten as

b̂†i b̂j = b̂†iφj + φ∗i b̂j − φ∗iφj, (2.14)

where we have neglected the term which is second order in the fluctuation operators.

The mean-field BHM Hamiltonian can now be written as a sum of single site Hamil-

tonians, ĤMF =
∑
p,q

ĥp,q with the single site Hamiltonian given by

ĥp,q = −J
(
φ∗p+1,q b̂p,q + φp−1,q b̂

†
p,q −

1

2
φ∗p+1,qφp,q −

1

2
φp−1,qφ

∗
p,q + H.c.

)
−J
(
φ∗p,q+1b̂p,q + φp,q−1b̂

†
p,q −

1

2
φ∗p,q+1φp,q −

1

2
φp,q−1φ

∗
p,q + H.c.

)
+
U

2
n̂p,q(n̂p,q − 1)− µn̂p,q. (2.15)

The mean-filed Hamiltonian is a direct sum of the single site Hamiltonians coupled

through the mean-fields of the NN sites. Following the Gutzwiller ansatz, the total

wavefunction of the system can be written as a product of single site wavefunctions

expanded in terms of the Fock-state basis [170]

|ΨGW〉 =
∏
p,q

|ψ〉p,q =
∏
p,q

Nb−1∑
n=0

c(p,q)
n |n〉p,q . (2.16)

For the occupation number np,q at lattice site (p, q), the corresponding state |n〉p,q con-

stitutes the Fock-state basis and c(p,q)
n represent the coefficients. The total number of

Fock-state basis used in the expansion of the single-site wavefunction is set by the

cut-off value Nb. It should be noted that the Gutzwiller ansatz is followed excep-

tionally well by the localized phases in the strongly interacting regime and provides

a reasonable description of the non-localized phase near the MI-SF phase bound-

ary. The two quantum phases of BHM are distinguished by the SF order parameter

φ = (1/Ns)
∑
p,q

φp,q. It is zero in the MI phase since, at each site, only one Fock-state

contributes. However, in the SF phase φ is non-zero as many Fock-states contribute.

From the ground state wavefunction, the mean-field is

φp,q = 〈ΨGW|b̂p,q|ΨGW〉 =

Nb−1∑
n=1

√
nc

(p,q)
n−1

∗
c(p,q)
n . (2.17)
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Similarly, one can obtain other observables like the average occupancy at any lattice

site by calculating 〈n̂p,q〉.
The Hamiltonian in Eq. (2.15) depends on three parameters, namely, J , U and µ,

and can be rescaled by any one of these. After rescaling the Hamiltonian by the on-site

interaction strength, the parameters which determine the ground state of the system are

J/U and µ/U . To obtain the ground-state of the Hamiltonian for chosen values of J/U

and µ/U , we start with an appropriate initial guess for the unknown mean-field φp,q

and construct the Hamiltonian matrix in the Fock-state basis. The matrix is tri-diagonal

of size Nb×Nb. The Hamiltonian matrix is then diagonalized using the standard linear

algebra package LAPACK [171], to obtain the ground state eigenvector. From this, we

can calculate an improved estimate for the mean-field φp,q. This procedure is repeated

for all the lattice sites. The calculated mean-field is used as an improved guess for the

mean-field in the next iteration. The iterations are continued till the mean-field con-

verges upto a desired accuracy. For this, we consider the average in the difference of

φp,q between two successive iterations ∆φi
p,q =

∑
p,q

(|φi
p,q − φi+1

p,q |)/Ns as the conver-

gence parameter and condition for convergence is set as ∆φi
p,q 6 10−9. Here, Ns is

the total number of lattice sites, and the superscripts i and i + 1 indicate the iteration

step. The Fock-space cutoff Nb is chosen as a sufficiently large value (∼ 10) such that

the computed results are unchanged for any larger choice of the cutoff. To minimize

the finite-size effects and obtain the results in the thermodynamic limit correspond-

ing to an infinite lattice, periodic boundary conditions (PBC) are employed along the

two spatial directions. The SGMF method gives qualitative features of the quantum

phases of BHM and the MI-SF phase boundary. However, it has a shortcoming asso-

ciated with the poor accounting of the inter-site correlations because of the mean-field

approximation.

2.2.2 Cluster Gutzwiller mean-field theory

In the CGMF theory, the mean-field decomposition of the hopping terms is applied

only at selective bonds, while at the other bonds, the hopping term is treated exactly.

This improves the description of the inter-site correlations in the state [172]. In this

method, a 2D lattice with spatial dimensions K × L is tiled with small clusters of
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Figure 2.2: Schematic of a 4 × 4 lattice tiled up by clusters of size 2 × 2. The solid

(dashed) yellow colored arrows represent the exact hopping term (hermitian conjugate)

within the cluster. The solid (dashed) red arrows represent the inter-cluster hopping

term (hermitian conjugate).

dimensionsM×N . The hopping between the sites within the cluster is treated exactly,

while for the sites at the boundary, the inter-cluster hopping is treated within the mean-

field prescription. This is shown schematically in Fig. 2.2, where a 4×4 lattice is titled

using 2×2 clusters. The NN hoppings for the bottom-leftmost cluster are marked with

solid arrows and the dashed arrows represent the hermitian conjugate hopping. The

yellow colored arrows represent intra-cluster hopping, which is treated exactly. The

inter-cluster hoppings, shown with red colored arrows, are represented with the mean-

field approximations. With this prescription, the total Hamiltonian can be written as a

sum over the cluster Hamiltonians ĤCGMF =
∑
C

ĤC with the cluster Hamiltonian

ĤC =
′∑

p,q∈C
−J
[
b̂†p+1,q b̂p,q + H.c.

]
+

′∑
p,q∈C

−J
[
b̂†p,q+1b̂p,q + H.c.

]
+
∑
p,q∈δC

−J
[
φ∗p±1,q

(
b̂p,q −

1

2
φp,q

)
+ H.c.

]
+
∑
p,q∈δC

−J
[
φ∗p,q±1

(
b̂p,q −

1

2
φp,q

)
+ H.c.

]
+
∑
p,q∈C

[U
2
n̂p,q (n̂p,q − 1)− µn̂p,q

]
. (2.18)

Here, the prime over the summations denotes a restricted sum over the bulk sites (p, q)

of cluster C such that its NN site (p + 1, q) in the first summation or (p, q + 1) in the
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second summation belong to the same clusterC. The summation over sites (p, q) ∈ δC
indicates the sites at the boundary of the cluster such that its NN site lies outside the

cluster. The NN of site (p, q) ∈ δC corresponds to the site (p − 1, q) and (p + 1, q)

on the left and right boundary, respectively. Similarly, the site (p, q− 1) and (p, q + 1)

correspond to the bottom and top boundaries, respectively. In the hopping term, the

operators of these NN sites are replaced by the mean-field φ.

The Hamiltonian matrix corresponding to ĤC can be constructed in the coupled

Fock-state basis
∏

p,q∈C
|n〉p,q ≡ |n1n2 · · ·nMN〉, where the lattice sites within the

cluster are labelled by indices 1, 2, · · · MN . Since at each lattice site, the occu-

pancy can take any value from the Nb possible choices, the coupled Fock-state basis

are NM×N
b in number. This exponential scaling of the coupled Fock-state basis with

the cluster size limits the use of larger sized clusters, which can improve the descrip-

tion of the inter-site correlations. However, with some information about the expected

ground state, some constraints can be imposed, and the coupled Fock-state basis can be

filtered. This process of state-reduction can significantly reduce the dimension of the

coupled Fock-state basis and the computational load in the estimation of the ground-

state. Using the Gutzwiller ansatz, the ground state of the entire system can be written

as

|ΨGW〉 =
W∏
α=1

∣∣ψCα 〉 =
W∏
α=1

∑
n1n2···nMN

c(α)
n1n2···nMN

|n1n2 · · ·nMN〉 . (2.19)

Here, α labels the different clusters with total number of cluster used in tiling the lattice

being (K × L)/(M × N) and c(α)
n0n1...nm′ are the complex coefficients of the coupled

Fock-states.

Similar to the SGMF, the matrix diagonalization is done self-consistently. With an

initial guess for the mean-field φp,q the cluster Hamiltonian matrix is constructed for

each cluster. This matrix is a sparse matrix as for a given Ket state, the total number

of Bra states related by the hopping terms are bounded by the total number of bonds

in the cluster. With such a large number of zero elements in the matrix, the Lanczos

algorithm [173–175] (offered by packages like ARPACK [176]) can be employed for

diagonalization to obtain the ground state. The local SF order parameter φp,q = 〈b̂p,q〉
is obtained from the ground-state wavefunction and serves as an improvement over

the initial guess of the mean-field in the next iteration. The iterations are continued
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till the mean-field converges upto a desired level of accuracy (∼ 10−9). The finite-

size effects are reduced by taking the PBC along both the spatial dimensions, thereby

mimicking the thermodynamic limit. More details about the CGMF can be found in

[82, 177]. The results obtained from the CGMF provide significant improvements over

the SGMF results and approach the quantum Monte-Carlo (QMC) results with clusters

of large sizes [172, 177].

2.3 Phase Diagram of BHM

To benchmark the numerical techniques used in this Thesis, we obtain the ground-state

phase diagram of BHM using SGMF and CGMF methods. As mentioned earlier, the

BHM Hamiltonian can be scaled with the on-site interaction strength U . Then, the

Hamiltonian has two free parameters, µ/U and J/U . The competition between these

two energies determines the ground state quantum phase of the system. The plot in

Fig. 2.3 shows the zero temperature phase diagram of BHM in the µ/U vs J/U plane.

As expected, the MI phase appears in the strongly interacting regime J/U � 1. In

the MI(1) phase, all lattice sites have exactly unit occupancy of bosons. This phase

appears for 0 6 µ/U 6 1, and forms a lobe in the phase diagram. The MI phases with

higher integer commensurate occupancy exists for higher values of µ/U . In Fig. 2.3,

the MI-SF phase boundary has been obtained for the SGMF (blue curve) and CGMF

with 2× 2 cluster (green curve), and 2× 3 cluster (red curve). With larger clusters, the

MI-SF phase boundary shifts to higher J/U , particularly near the tip of the Mott lobe.

With the improvement in the description of the correlation effects in the quantum phase

using larger clusters in the CGMF calculations, the quantum critical point approaches

the QMC values as can be seen for MI(1) lobe shown in Fig. 2.3. The QMC data for

MI(1) lobe, used in Ref.[178], is obtained from personal communication with Prof.

Barbara Capogrosso-Sansone.

This advantage of CGMF over SGMF, however, comes at the cost of larger sized

Fock-space. The size grows exponentially with the cluster size and demands more

computational resources. The SGMF and CGMF with appropriate cluster sizes are

used depending on the quantum phase of interest. The MI-SF phase boundary is ob-
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Figure 2.3: Phase diagram of BHM in µ/U vs J/U plane. Blue colored phase bound-

ary is obtained with SGMF method (labelled as 1 × 1). The MI-SF phase boundary

increases with CGMF, as shown with green and red colors for calculations with 2× 2

and 2 × 3 clusters, respectively. Orange colored line represents phase boundary cal-

culated using 3 × 3 cluster with exact hopping along x-direction. Black open circles

are QMC results from Ref [178]. (The data is obtained from personal communication

with Prof. Barbara Capogrosso-Sansone.)

tained using the SF order parameter φ = 〈b̂〉, which can distinguish the two quantum

phases. It is zero in the Mott phase, while in the SF phase φ is non-zero. At the tip of

the Mott lobe, the MI-SF QPT occurs at fixed integer number density in the two phases

in the vicinity of the phase boundary and lies in the equivalence class of 3D XY model

[13]. The quantum fluctuations are large near the tip of the Mott lobes, because of

which the SGMF method cannot describe the phase boundary accurately. And, away

from the tip, the QPT occurs at varying number density.

2.4 Non-equilibrium dynamics

The methods we have discussed so far are to obtain the equilibrium quantum phases.

Let us now discuss the physics governing the non-equilibrium dynamics of these quan-

tum phases. We shall assume the closed system dynamics with no couplings to the ex-
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ternal surroundings or dissipations. Thus, the dynamics of the quantum phase follow

a unitary evolution. Using the variational principle, we derive the equations of state

corresponding to the single-site mean-field Hamiltonian ĥp,q [179], the generalization

for CGMF follows in a similar way. The Lagrangian at the site (p, q) is

Lp,q = i p,q〈Ψ(t)|∂t |Ψ(t)〉p,q − p,q〈Ψ(t)|ĥp,q |Ψ(t)〉p,q . (2.20)

Using Gutzwiller ansatz, |Ψ(t)〉p,q =
∑
n

c(p,q)
n (t) |n〉p,q, the first term on the right-hand

side of Eq. (2.20) assumes the expression

i p,q〈Ψ(t)|∂t |Ψ(t)〉p,q = i
∑
m,n

c(p,q)∗
m ∂tc

(p,q)
n p,q〈m|n〉p,q

= i
∑
n

c(p,q)∗
n ∂tc

(p,q)
n . (2.21)

And the second term on the right-hand side of Eq. (2.20) is given by

p,q〈Ψ(t)|ĥp,q |Ψ(t)〉p,q

=
∑
n

−J
[

φ∗p+1,q

√
nc

(p,q)∗
n−1 c(p,q)

n + φp+1,q

√
n+ 1c

(p,q)∗
n+1 c(p,q)

n

+ φp−1,q

√
n+ 1c

(p,q)∗
n+1 c(p,q)

n + φ∗p−1,q

√
nc

(p,q)∗
n−1 c(p,q)

n

+ φ∗p,q+1

√
nc

(p,q)∗
n−1 c(p,q)

n + φp,q+1

√
n+ 1c

(p,q)∗
n+1 c(p,q)

n

+ φp,q−1

√
n+ 1c

(p,q)∗
n+1 c(p,q)

n + φ∗p,q−1

√
nc

(p,q)∗
n−1 c(p,q)

n

]

+
∑
n

[
J

2

(
φ∗p+1,qφp,q + φ∗p−1,qφp,q + φ∗p,q+1φp,q

+φ∗p,q−1φp,q + h.c.
)

+
U

2
n(n− 1)− µn

]
c(p,q)∗
n c(p,q)

n .

(2.22)

The Lagrange equations of motion

∂t
∂L

∂(∂tc
(p,q)
n )

=
∂L

∂c
(p,q)
n

, (2.23)

gives a set of coupled differential equations in terms of the coefficients c(p,q)
n as

−i∂tc(p,q)
n = −J (φp+1,q + φp−1,q + φp,q+1 + φp,q−1)

√
nc

(p,q)
n−1

−J
(
φ∗p−1,q + φ∗p+1,q + φ∗p,q+1 + φ∗p,q−1

)√
n+ 1c

(p,q)
n+1
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+

[
J

2

(
φp+1,qφ

∗
p,q + φp−1,qφ

∗
p,q + φp,q+1φ

∗
p,q

+φp,q−1φ
∗
p,q + h.c.

)
+
U

2
n(n− 1)− µn

]
c(p,q)
n . (2.24)

It is to be noted that the coefficients of the wavefunction at site (p, q) are coupled to the

coefficients of the same lattice site only but of different Fock-states. The coupling to

the neighbouring lattice sites is due to the mean-field φ. The dynamical wavefunction

can be obtained by solving the set of coupled differential equations. In our studies

related to the dynamical evolution of the state, we use the fourth-order Runge-Kutta

(RK4) method to solve the set of coupled differential equations. In a similar way, the

equations of motion for the dynamical wavefunction described using CGMF can be

obtained by working with the Lagrangian corresponding to the cluster Hamiltonian

and deriving the equations of motion.

2.5 Summary of the chapter

To summarize, we have discussed the BHM Hamiltonian, which describes the sys-

tem of ultracold bosonic atoms in optical lattices. We then discussed the numerical

methods for obtaining the equilibrium ground states of the system. This includes the

mean-field methods, namely the SGMF and CGMF methods. We have presented the

phase diagram of BHM with SGMF and CGMF methods. Towards the end, we have

discussed the time dependent Gutzwiller equations for studying the dynamical evo-

lution of a quantum phase. We have utilized these methods in studies related to the

ultracold atoms in optical lattices described in this thesis.



Chapter 3

Exact diagonalization technique for

bosons on a lattice

Only a handful of quantum many-body system problems can be solved analytically,

necessitating the frequent utilization of numerical approaches to gain some insights

into these systems. While the numerical mean-field techniques are relatively simple

to apply [180], they fall short in capturing the correlation effects and entanglement

inherent to the many-body quantum systems. Going beyond the mean-field theory,

Quantum Monte Carlo based methods like the stochastic series expansion have proven

to be powerful numerical tools [181, 182]. The QMC method is often employed to

investigate the systems’ approximate properties in the thermodynamic limit. How-

ever, it encounters challenges known as “sign problems” for fermionic systems like

frustrated quantum spins QMC [183]. Other numerical techniques include the density

matrix renormalization group, tensor network methods, to name a few. While various

techniques can effectively capture the ground state properties of these systems, solving

for the entire Hamiltonian, including the complete eigenspectrum and eigenstates, is

a formidable challenge with these methods. The exact diagonalization methods the-

oretically offer a route to solving the full problem with remarkable precision. In this

chapter, we provide an overview of the fundamental components of the ED method

and delve into the processes of enumerating basis states, constructing the Hamilto-

nian matrix, and obtaining the eigenvalues of the Hamiltonian matrix through iterative

solvers.

33
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We discuss the ED method for studying the system of cold bosons trapped in a

lattice potential. Ultracold atoms trapped in optical lattices serve as excellent prox-

ies to study various condensed matter systems, as they offer superb control and easy

tunability over their parameters in the experiments [15, 155, 158]. The ED method

offers the advantage of providing a precise solution and access to the full spectrum

for these systems, however, it requires heavy computational resources. This imposes

severe limitations, and is appropriate for relatively small quantum many-body systems

[184]. For example, when dealing with a system of spins arranged on a lattice, the size

of the Hilbert space for the system grows exponentially with the lattice size. In the

literature, extensive ED investigations of systems such as the spin 1/2 kagome Heisen-

berg antiferromagnet exist with approximately 40 to 50 spins [64, 65], as well as the

bosonic fractional quantum Hall effect on a 12 × 4 lattice [82]. For comprehensive

insights into the ED technique, valuable references include reviews [61–63, 185, 186].

In this chapter, we present a novel implementation of ED in numerical computa-

tions. This method is well-suited for modelling cold bosons confined within optical

lattices, where multiple bosons may occupy a single lattice site. In this method, we

construct the basis set by systematically building upon single-site Fock states, ulti-

mately forming a hierarchy of wavefunctions consisting of “row-states” and “multi-

row states”. The Fock states represent the occupation number basis for the lattice site.

This hierarchical structure streamlines the implementation of possible constraints to

reduce the size of the associated Fock-space, and facilitates the efficient calculation of

the Hamiltonian matrix. Furthermore, each stage of our method can be parallelized,

thereby significantly enhancing computational speed. While we primarily showcase

the application of this method to the Bose-Hubbard model, which describes the ul-

tracold bosons in optical lattices, the proposed method possesses broad applicability

across various lattice models. Towards the end of this chapter, we demonstrate the

application of the proposed technique for studying the fractional quantum Hall states

in optical lattice. We have also discussed how the proposed algorithm can be extended

to obtain the reduced density matrix following a spatial bipartitioning of the lattice

and study the bipartite entanglement entropy in these states. These symmetry pro-

tected topological phases are robust and are of high interest for potential applications
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in quantum technologies. We now begin with an overview of the ED procedure.

3.1 Overview

The starting point of the ED method is enumerating a complete set of basis states

for the Hamiltonian of the system. For describing the Hamiltonian of lattice models,

given in terms of the bosonic creation and annihilation operators, the basis states {|ψi〉}
constructed from the Fock-states are the natural choice of basis. Each basis state is then

tagged with a sequential index i using techniques such as Lin tables [187], hash [188],

or binary search [61]. The next step is to calculate the Hamiltonian matrix elements in

terms of the basis states. For the lattice models with restricted itinerancy of the atoms,

the Hamiltonian matrix is a sparse matrix with most of the matrix elements equal to

zero. Thus, instead of calculating all matrix elements, we only calculate the non-

zero elements. The matrix element, Hij ≡ 〈ψi| Ĥ |ψj〉 can be effectively calculated

by operating each of the terms in the Hamiltonian on the ket state. The result then

identifies the corresponding bra state, which gives a non-zero matrix element. After

calculating the Hamiltonian matrix, the last step of the ED method is diagonalizing the

Hamiltonian matrix to obtain the eigenvalues and eigenvectors of the Hamiltonian.

For most of the studies on quantum-mechanical systems at low temperatures, the

low energy spectrum, namely, the ground state and few excited states, are sufficient to

describe the properties of the system. This simplicity allows the usage of well-known

Lanczos algorithm for faster numerical diagonalization [173–175]. The Lanczos algo-

rithm is particularly efficient for finding a small subset of eigenvalues and eigenvectors

of large, sparse, and symmetric matrices. It avoids the need for explicitly diagonaliz-

ing the entire matrix, which can be computationally expensive. Instead, it constructs

a smaller tridiagonal matrix whose eigenvalues provide good approximations to those

of the original matrix. To understand the main idea of the Lanczos algorithm, let us

consider a n-dimensional real symmetric matrix H with a minimal eigenvalue λmin.

Using a random initial vector x, λmin can be evaluated variationally as

λmin = min
x

x†Hx

x†x
. (3.1)

To achieve faster minimization, x should be varied in the direction opposite to the gra-
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dient of x†Hx/x†x. This direction is spanned by vectors x andHx. Thus, the minimal

solution vector needs to be searched in the space spanned by vectors ∈ {x, Hx}. After

k iterations, the best minimal solution lives in the Krylov space spanned by vectors

∈ {x, Hx, H2x · · ·Hk−1x}. Constructing an orthonormal basis in this space, can be

used to recast the Hamiltonian matrix into a tri-diagonal matrix. With increasing iter-

ations, less than n, the Krylov space approaches an invariant subspace of H, and the

eigenvalues determined from the orthonormal basis approach the minimal eigenvalue

of H . We shall now discuss the implementation of ED in the context of BHM.

3.2 Implementation

Let us now discuss the construction of the basis set. Starting from the single-site Fock

states, we define the basis states in terms of a hierarchy of states with multiple lattice

sites along multiple rows of the lattice.

3.2.1 Construction of the row-states

We start with the single-site Fock state |np,q〉, corresponding to the occupancy np,q at

lattice site (p, q). For bosons, np,q can, in principle, assume any non-negative integer

value. However, we choose a cutoff on the single-site occupancy such that 0 ≤ np,q <

NB. Utilizing the single-site Fock states, we construct “row-states” which represent

the configuration of particles along a row. The row-states construction is useful as they

can be utilized to represent the configuration of particles in multiple rows or the entire

lattice. The row-state is defined as the tensor product over the single-site Fock states,

given by

|φm〉 ≡ |n1, n2, · · ·np, · · ·nK〉 =
K∏
p=1

|np〉 , (3.2)

where, the lattice has dimension K×L. For simplicity, we have omitted the lattice site

index along the y direction of the occupancies, as this index is same for all the lattice

sites constituting the row. Each row-state |φm〉 is uniquely identified by a correspond-

ing “quantum number” m, defined as

m =
K∑
p=1

npN
p−1
B . (3.3)
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Since 0 6 np 6 NB − 1, thus the total number of distinct row-state configurations

is given by α = (NB)K , with the row-state identifier m ∈ {0, 1, 2, · · ·α − 1}. It

can be easily verified that Eq. (3.3) represents an invertible map, thus allowing the

extraction of the configuration of occupancies along the row from the quantum number

m of the row-state. The numerical enumeration of row-state configurations involves

computing the occupancies np corresponding to the quantum number m which can

take all possible non-negative integer value less than α. From this, various properties,

such as the total number of particles Nm in the row-state |φm〉 can be computed as

Nm =
K∑
p=1

np. (3.4)

3.2.2 Hierarchical multi-row states

Using the row-states as the fundamental building blocks, we construct the “multi-row

states”, which represent the configuration of occupancies within a cluster consisting of

multiple rows. For instance, multi-row states consisting of two rows, represented as∣∣Φ2
〉
, is obtained from the tensor-product of the row-states, given by

∣∣Φ2
M

〉
= |φm1〉 ⊗ |φm2〉 . (3.5)

Here, the two-row state labelM corresponds to a two-dimensional vector M = (m1,m2),

which contains quantum numbers of the constituting row-states. The two-row state la-

bel is uniquely identified by M = α×m1 +m2 and can take values 0 ≤M < α2− 1.

Similarly, a hierarchy of multi-row states of higher ranks, corresponding to higher

number of rows can be constructed out of lower-rank multi-row states together with

the row-states

∣∣Φ3
M ′

〉
=
∣∣Φ2

M

〉
⊗ |φm〉 ,∣∣Φ4

M ′

〉
=
∣∣Φ2

M1

〉
⊗
∣∣Φ2

M2

〉
. (3.6)

The multi-row states with q rows, represented as |Φq
M〉, is thus identified by a vector

M = (m1,m2, · · ·mq) in a q dimensional hyperspace. The components of the vector

are the row-state quantum numbers and each axes of the hyperspace correspond to one

of the constituting row-states. As mentioned earlier, various q-row multi-row states
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are uniquely identified by the multi-row state index M , corresponding to the vector

M. The index M and the number of particles in the multi-row state NM are given by

M =

q∑
j=1

N
K(L−j)
B mj, and NM =

K∑
p=1

q∑
j=1

np,j. (3.7)

Expanding upon the concept of the multi-row states, we construct the basis states

for the lattice with L rows and K columns by taking a direct product of two appropri-

ately chosen states, given by ∣∣ΦL
M

〉
=
∣∣ΦL1

M1

〉
⊗
∣∣ΦL2

M2

〉
, (3.8)

such that, L1 + L2 = L. Similar to the previous cases of multi-row states, each basis

state
∣∣ΦL

M

〉
is identified by a unique index M , given by Eq. (3.7), and a corresponding

L dimensional vector M = (m1,m2, · · ·mL). Thus, the total number of distinct basis

states is αL. Fig. 3.1 shows schematically a L-dimensional hyper-space, spanned by

the row-states |φ〉m along the L rows of the lattice and each point in this hyper-space

corresponds to a possible basis state representing a configuration of particles on a 2D

lattice. The basis construction procedure can be summarized as: the configuration of

occupancies over the entire lattice, which constitutes a basis state, is identified with a

vector with row-state quantum numbers as its constituents. This vector is further iden-

tified by the basis index M . The essence of this scheme is shown in the representation

shown below.

n1,L n2,L · · · np,L · · · nK,L
...

...
...

...

n1,q n2,q · · · np,q · · · nK,q
...

...
...

...

n1,2 n2,2 · · · np,2 · · · nK,2

n1,1 n2,1 · · · np,1 · · · nK,1


≡



mL

...

mq

...

m2

m1


≡M

Thus, any state of the system can be expressed as a linear combination of these basis

states with complex coefficients CM , given by

|ψ〉 =
αL−1∑
M=0

CM
∣∣ΦL

M

〉
. (3.9)

After constructing the basis states, the next step is the calculation of the Hamiltonian

matrix.
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m1

m2

mi

mα

m2 m3 mα

m2

m3

m4

Figure 3.1: Schematic showing the basis states identified by a point in the 3-

dimensional space spanned by row-states, for a lattice with 3 rows.

3.2.3 Construction of the Hamiltonian matrix

Let us consider the BHM as the model Hamiltonian for which we shall discuss the

matrix construction procedure. The BHM Hamiltonian is given by [13, 14, 44]

ĤBHM =
∑
p,q

[
−J
(
b̂†p+1,q b̂p,q + b̂†p,q+1b̂p,q + H.c.

)
+
U

2
n̂p,q(n̂p,q− 1)−µn̂p,q

]
(3.10)

where p, q are lattice site coordinates along the x and y directions. Due to the re-

stricted hopping to nearest neighboring lattice sites only, the BHM Hamiltonian matrix

is sparse with a lots of zero. Thus, instead of naively calculating the matrix element

by looping over all bra and ket states, we only compute the non-zero elements which

saves a lot of computational time.

Let us first consider the action of the x-hopping term −Jb̂†p+1,q b̂p,q on the basis

state
∣∣ΦL

M

〉
. The x-hopping affects the occupancies at only two lattice sites (p, q)

and (p, q + 1) along the qth row. This hopping results in a non-zero action, if the

occupancies in the ket state is such that np,q > 1 and np+1,q 6 NB − 1, with the action

on qth row occupancies given by

b̂†p+1,q b̂p,q |n1,q, · · ·np,q, np+1,q · · ·nK,q〉

=
√
np,q (np+1,q + 1) |n1,q, · · · (np,q − 1), (np+1,q + 1) · · ·nK,q〉 .(3.11)
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Thus, this hopping term only modifies the row-state |φ〉mq at the qth row of the basis

state to a different row-state |φ〉m′
q
. And, the quantum numbers of the two row-states

are related as

m′q −mq =
K∑
j=1

(n′j,q − nj,q)N j−1
B ,

= (n′p+1,q − np+1,q)N
p
B + (n′p,q − np,q)Np−1

B ,

= Np
B −Np−1

B = Np−1
B

(
NB − 1

)
, (3.12)

since n′p+1,q = np+1,q + 1 and n′p,q = np,q − 1 for the x-hopping along the qth row in

the +ve direction. Thus, for an allowed x-hopping in the +ve direction along the qth

row, the matrix element has the value

(−Jb̂†p+1,q b̂p,q)M ′M ≡ M ′
〈
ΦL
∣∣− Jb̂†p+1,q b̂p,q

∣∣ΦL
M

〉
= −J

√
np,q (np+1,q + 1). (3.13)

where the vectors M = (m1,m2, · · ·mL) and M′ = (m′1,m
′
2, · · ·m′L) are related as

m′j =

mj if j 6= q,

mq +Np−1
B (NB − 1) if j = q.

(3.14)

This follows from the fact that x-hopping along the qth row modifies the occupancies

and hence changes only the row-state quantum number of the qth row as given by

Eq. (3.14).

Similarly, the y-hopping term −Jb̂†p,q+1b̂p,q modifies the row-states at q and q + 1

rows of the basis state, the row-state quantum numbers satisfy the relations

m′q −mq = (n′p,q − np,q)Np−1
B = −Np−1

B

m′q+1 −mq+1 = (n′p,q+1 − np,q+1)Np−1
B = Np−1

B (3.15)

For a possible y-hopping, along the pth column in the +ve direction, the non-zero

matrix element is given by

(−Jb̂†p,q+1b̂p,q)M ′M = −J
√
np,q (np,q+1 + 1) , (3.16)

where,

m′j =


mj if j 6= q, j 6= q + 1,

mq −Np−1
B if j = q,

mq+1 +Np−1
B if j = q + 1.

(3.17)
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In a similar manner, the hermitian conjugate of the hopping terms in the Hamiltonian

can be evaluated. The on-site interaction term and chemical potential term depend on

the number operator only. These terms thus contribute to the diagonal elements of

the Hamiltonian matrix and are straightforward to compute. Using these schemes, we

can complete the calculation of the Hamiltonian matrix and diagonalizing it gives the

required eigenspectrum. However, it should be emphasized that in certain cases, it is

possible to filter out some of the basis states by imposition of constraints. We refer to

this filtering process, as the “state reduction”, and it can significantly reduce the Fock-

space dimension, thereby reducing the demand for heavy computational resources.

In the next section, we shall discuss the basis construction and Hamiltonian matrix

construction procedures with state reduction.

3.3 Exact Diagonalization with State Reduction

So far, we have only imposed the constraint on the single-site occupancies np,q so that

it can be atmost equal to NB − 1. Thus, the basis states constructed in terms of the

row-states and multi-row states include all possible values for total number of particles

in the lattice N , varying in the range 0 6 N 6 (NB − 1)KL. For BHM like Hamilto-

nians, which preserve the total number of particles, micro-canonical studies with fixed

N can be done by filtering out the basis states appropriately. This also implies that

0 6 np,q 6 min(N,NB − 1). Additional constraints for filtering the basis states can

also be imposed depending upon the system of interest. For instance, at unit filling

(N = K×L) and strong contact interactions, the average occupancy≈ 1. Thus, basis

states with large fluctuations in occupancies away from np,q ≈ 1 may contribute to

higher excitations and can be filtered out, leading to a reduction in Fock-space dimen-

sion. These state reduction considerations, however, require some modifications in the

earlier discussed procedures for basis construction and Hamiltonian matrix calculation,

as discussed in upcoming sections.
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3.3.1 Row-states with constraints

The state reduction process starts at the level of the single-site Fock states, with the

single site occupancies np,q, constrained as

η 6 np,q 6 NB − 1. (3.18)

This constraint modifies the lowest possible occupancy to η and redefines the total

choices for the single-site occupancies to NB − η. This type of constraint is suitable

for describing the quantum states with higher average occupancies. It should be noted

that this constraint also puts a lower bound on the total number of particles in the row

as Nm > η K and in the entire lattice by N > η K × L. In a similar way, the total

number of particles in any row of the basis states can be constrained within the range

σ 6
K∑
p=1

np,q 6 σ + δ. (3.19)

Here, σ > ηK represents the minimum number of particles along any row and sets

the number fluctuations to δ 6 (NB − 1 − η)K. This type of constraint is suitable

to study quantum phases with lower number fluctuations. The lower (upper) bound σ

(σ+ δ) on Nm should be appropriately chosen according to the number fluctuations in

the quantum phase of interest.

For constructing the row-states, we can still use Eq. (3.2) together with the con-

straints in Eq. (3.18) and (3.19), and the row-state quantum number can be obtained

using Eq. (3.3). However, to avoid large values of m which may result in integer over-

flow in defining the multi-row quantum numbers, it is suitable to shift the occupancies

by η while calculating the row-state quantum number, as given by

m =
K∑
p=1

(np − η) (NB − η)p−1. (3.20)

It should be noted that with the constraints, the quantum number m doesn’t vary uni-

formly and may not assume consecutive integer values. This can be observed from

Table A.1 in Appendix A, where we illustrate the construction of row-states with an ex-

ample. Thus, for the purpose of book keeping,m is unsuitable as an index for labelling.

So, let us consider the set formed by quantum numbersm, arranged in ascending order,

for the possible row-states which are β in number: S = {mi : mi < mi+1 and i, i+1 ∈
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S ′}. Here, the sequence label i which forms the index set S ′ = {1, 2, · · · β} can be

used for indexing the row-states as |φ〉i ≡ |φmi〉. In this way, the row-state with lowest

value of m is assigned the index i = 1 and the state with second lowest value of m

is assigned i = 2 and so on. Thus, the ordering in the row-states is ensured by the

quantum numbers m. As described earlier, we construct the basis states in terms of a

hierarchy of states with multiple rows using these constrained row-states as the funda-

mental building blocks. This procedure, modified appropriately due to constraints, is

described in the next section.

3.3.2 Multi-row states with constraints

Similar to the constraints applied at the level of single-site and row-states, given in

Eq. (3.18) and (3.19), respectively, the total number of particles in the entire lattice N

can be constrained as

Σ 6
K∑
p=1

L∑
q=1

np,q ,6 Σ + ∆, (3.21)

Here, Σ > ηKL sets a lower limit on the number of particles in the basis states and

∆ sets the range of N . This type of constraint is suitable for the studies where total

number of particles in the lattice is not fixed. However, for micro-canonical studies

with fixed N , ∆ is set to 0. The constraints in Eq. (3.18), (3.19) and (3.21), chosen

appropriately to describe the quantum phase of interest, can reduce the basis set to an

optimal size.

Similar to the previous case, the q-rows states are denoted by |Φq
M〉, with a vector

M identifying the row-states configurations in the constituting q rows. The two-row

states is constructed out of tensor product of two row-states as∣∣Φ2
M

〉
≡ |φm1〉 ⊗ |φm2〉 : NM 6 Σ + ∆ (3.22)

Here, M = (m1,m2) contains the row-state quantum numbers of the two contribut-

ing row-states satisfying the global constraint on maximum number of particles in the

lattice to be atmost Σ + ∆. It should be noted that the number of two-row states can

be additionally reduced with the imposition of more complex constraints on NM , how-

ever, these constraints should be appropriate to the quantum phase of interest. Thus,

each two-row state
∣∣Φ2

M

〉
is uniquely identified by the vector label M which can be
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mapped to a integer label M = ‖M‖ =
∑2

j=1
mj(NB − η)K(L−j). This mapping is

similar to Eq. (3.7) except for a shift in NB by η done to avoid large integer values.

Similar to the row-state quantum number, the integer label M of the two-row states

may not assume consecutive integer values due to the state-reduction constraints and

is thus unsuitable as an index for these states. So, we use the strategy adopted in the

case of row-states for indexing the two-row states. Consider the set formed by the

two-row state quantum numbers, β(2) in number, arranged in an ascending sequence:

S = {MI : MI < MI+1, and I, I + 1 ∈ S ′}. Here, the sequence label I , which

forms the index set S ′ = {1, 2, · · · β(2)} is used for indexing the two-row states. In

this way, the Ith two-row state, represented as
∣∣Φ2
〉
I
≡
∣∣Φ2

MI

〉
, is uniquely identified

by MI , which inturn identifies the pair of the constituent row-states (m1,m2). In other

words, each two-row state is identified with a integer index I , sequenced according to

the quantum number of the two contributing row-states. The sequence is defined in

terms of the ordered pair (m1,m2), with the left quantum number m1 as slower vary-

ing with I . And, the two-row state with the lowest possible values of m1 followed

by the lowest possible values of m2 is assigned the index I = 1. This definition is

also consistent with the previous ordering scheme defined by Eq. (3.7). Table A.2 in

Appendix A illustrates as an example the ordering for the two-row states. It should be

noted that the number of possible two-row states β(2) 6 (β)2. Following similar steps,

multi-row states with larger number of rows can be constructed using multi-row states

with lower number of rows and the row-states.

Continuing in a similar fashion, the basis states for entire lattice are generated. For

this purpose, we can utilize atmost two appropriate multi-row states and/or row-states,

satisfying the constraints on total number of particles in the lattice, given in Eq. (3.21).

For instance, the basis states for lattice with L = 3 are selected from the set {
∣∣Φ3

M

〉
}

as

∣∣Φ3
〉
I
∈ {
∣∣Φ3

M

〉
} : Σ 6 NM ′ 6 Σ + ∆. (3.23)

Similar to the previous cases, each basis state is assigned with a unique integer index

I ∈ {1, 2, · · ·Γ}, with Γ 6 β(3) being the total number of possible basis states for the

entire lattice. Similarly, for a larger lattice of dimension K × L, multi-row states of
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lower ranks are utilized for basis construction as∣∣ΦL
〉
I

=
∣∣ΦL1

M1

〉
⊗
∣∣ΦL2

M2

〉
: Σ 6 NI = NM1 +NM2 6 Σ + ∆, (3.24)

where, L = L1 + L2. With the set of basis states {
∣∣ΦL
〉
I
} , any state of the system

can be expressed as a linear combination |Ψ〉 =
∑Γ

I=1
CI
∣∣ΦL
〉
I
, with CI being the

coefficient of the basis state
∣∣ΦL
〉
I
.

3.3.3 Calculation of Hamiltonian matrix

Let us again consider the BHM Hamiltonian given in Eq. (5.8), and discuss the oper-

ation of x−hopping term −Jb̂†p+1,q b̂p,q on the basis states. It’s action can be evaluated

in a similar way as given in the expressions in Eq. (3.11-3.12). Thus, for any Ith ba-

sis state with vector R containing the information of row-state components, a valid

x-hopping results in

− Jb̂†p+1,q b̂p,q
∣∣ΦL

R

〉
= −J

√
np,q (np+1,q + 1)

∣∣ΦL
R′

〉
. (3.25)

The action of hopping term has transformed the ket basis state
∣∣ΦL

R

〉
into

∣∣ΦL
R′

〉
. As pre-

viously calculated, the corresponding vectors of the two basis states R = (r1, r2, · · · rL)

and R′ = (r′1, r
′
2, · · · r′L) are related by r′j = rj for j 6= q and r′q = rq+Np−1

B

(
NB−1

)
.

Thus, we have uniquely identified the bra state with vector R′ that gives a non-zero

matrix element for the considered hopping on the chosen ket state. However, the

basis index of corresponding to
∣∣ΦL

R′

〉
is yet unknown. Once the corresponding ba-

sis index is identified, we have the knowledge of the Hamiltonian matrix element

HII′ =
〈
ΦL
R′

∣∣H BHM
∣∣ΦL

R

〉
. This process continued for all the terms in the Hamiltonian

generates the Hamiltonian matrix. Let us now discuss the much needed identification

scheme for locating the basis index I from the corresponding vector label of the basis

state.

As previously mentioned, the Ith basis state
∣∣ΦL
〉
I

is tagged with a corresponding

vector label M = (m1,m2, · · · ,mL) containing the row-state quantum number infor-

mation of the constituent rows. This constitutes a forward map from the basis state

index j to the row-state quantum numbers contained in the vector label M∣∣ΦL
〉
j
→ |φm1〉 ⊗ |φm2〉 · · · ⊗ |φmL〉 ≡ |φ〉i1 ⊗ |φ〉i2 · · · ⊗ |φ〉iL . (3.26)
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In order to resolve the inverse map, let us recall the structure adopted in the basis set

construction process. The row-states, total β in number, are identified with a positive

integer index i and the corresponding quantum number m. And the basis states
∣∣ΦL
〉
I
,

are identified with vector M = (m1,m2, · · ·mL) and corresponding row-state indexes

(i1, i2, · · · iL), together with the convention that the left component iq varies slower

than iq+1 with the basis index I . As an example, we illustrate the ordering in the basis

state index with the row-state indexes in Table 3.1.

I (i1, i2, · · · iL−1, iL)

1 (1, 1, · · · 1, 1)

2 (1, 1, · · · 1, 2)
...

...
...

...
...

I1 (1, 1, · · · 1, β)

I1 + 1 (1, 1, · · · 2, 1)
...

...
...

...
...

I2 (1, 1, · · · 2, β)
...

...
...

...
...

I3 (1, 1, · · · β, β)
...

...
...

...
...

I4 (1, β, · · · β, β)

I4 + 1 (2, 1, · · · 1, 1)
...

...
...

...
...

I5 (2, β, · · · β, β)
...

...
...

...
...

Γ (β, β, · · · β, β)

Table 3.1: Table showing sequentially ordered all possible basis-states and the row-

state indexes iq.

Let us suppose that we want to locate the basis index I corresponding to the basis

state with row-state configuration R′ = (i′1, i
′
2, · · · , i′L). For this purpose, we perform

bisection search in the interval I ∈ [1,Γ]. Since the leftmost component i1 is the
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Figure 3.2: Dependence of the computation time Tmat involved in matrix construction

as a function of the size of the basis set.

slowest varying and thus increase monotonically with I , we use the bisection method

to locate the range of basis index I ∈ [I1
min, I

1
max] for which the leftmost row-state

index satisfy i1 = i′1. Now, within this range of I , the row-state index i2 increases

monotonically with I . Hence, a bisection search can be employed in this range to

locate the range [I2
min, I

2
max] for which i2 = i′2 At this stage, all the basis states

∣∣ΦL
〉
I

with I in the range [I2
min, I

2
max] have the desired row-states configurations in two rows

with q = 1 and q = 2. Continuing in a similar manner, we keep on bisecting the

previously obtained interval [Iymin, I
y
max] to obtain a smaller interval [Iy+1

min , I
y+1
max] with

desired configuration of row-state in the row q = y + 1. Finally, the required basis

state index I is obtained in the Lth bisection step. Thus, the inverse map that locates

the basis index, from a given row-state configurations of the basis state, is obtained

through a sequence of L bisection searches. And, each bisection search requires atmost

ln2(Γ) comparisons of the quantum numbers.

With this identification scheme, we can construct the full Hamiltonian matrix.

Starting with a ket state
∣∣ΦL
〉
I
, we identify the corresponding bra states I′

〈
ΦL
∣∣ and

the non-zero matrix element for all the terms in the Hamiltonian. The full Hamiltonian

matrix is constructed by looping over all possible ket states.

Fig. 3.2 shows the scaling of the computation time elapsed in the matrix con-

struction Tmat, as a function of the basis set dimension Γ. It is expected that Tmat

should depend on the number of hopping terms, which is proportional to the num-
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Figure 3.3: Comparison of our ED code, based on hierarchical wavefunctions and

bisection searches, with an open source ED package: “quantum basis” which is a C

language based ED library for general models and is available at github [189]. Along

y-axis, total time elapsed in computing the ground state is plotted for a system of

hardcore bosons at density = 1/4 on a lattice of dimension K × 4, for which the total

basis states are Γ in number. The error bars represents the time difference based on

several runs.

ber of lattice sites Ns. For Γ possible ket states, and together with the identification

of the bra state with non-zero matrix element in L ln(Γ) number of steps, it is ex-

pected that Tmat/Ns should scale ∼ Γln(Γ)L. For the BHM matrix with hardcore

bosons at fixed number density N/Ns = 1/8 on a 2D lattice of dimension 8 × L,

with L ∈ {2, 3, 4, 5, 6, 7}, Fig. 3.2 shows the computational time as a function of Γ.

We note that Tmat/Ns ∝ Γ0.97±0.03 L ln(Γ) which is quite close to the expected de-

pendence. This is drastically lower than the quadratic dependence with Γ, if we have

resorted to calculating all the matrix elements by looping over all possible ket and bra

states.

To benchmark the proposed ED technique based on hierarchical wavefunctions

for basis construction and bisection searches to calculate the Hamiltonian matrix ele-

ments, we compare it with a standard ED library named “quantum basis” available at

github [189]. The “quantum basis” ED library is written in C language and utilizes the
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concept of “Lin Tables” for basis identification. In addition, it has the advantage of uti-

lizing all the cpu threads available in a cpu core. For benchmarking the two methods,

we compare the total time elapsed in obtaining the ground state wave-function. We ran

the two ED codes on a single cpu node of a HPC cluster which have 256GB memory,

with each cpu capable of hosting two threads. Fig. 3.3 shows the comparison of the

total time (TED) elapsed for the two codes as a function of the lattice size and corre-

sponding basis set dimension Γ. For this study, we have chosen a system of hardcore

bosons at fixed density of 1/4 bosons across various lattices with dimensions 2 × 4,

3 × 4, · · · , and 9 × 4. For matrix diagonalization, both the codes use the ARPACK

library based on implicitly restarted Arnoldi method with same set of parameter values

and takes similar amount of time. However, the basis construction procedure using

hierarchical wavefunctions offers advantages and is superior, particularly for larger

lattice dimensions as can be seen from Fig. 3.3.

After obtaining the ground state wavefunction, we can investigate the entanglement

characteristics of the state. The entanglement between the spatial parts of the system,

referred to as the spatial bi-partite entanglement, can be studied by bipartitioning the

lattice wavefunction in terms of the degrees of freedom associated with the two halves

of the lattice. The structure employed in the basis state construction using hierarchical

wavefunctions or the multi-row states is useful in this regard. We shall discuss this in

detail in the next section.

3.4 Entanglement in the quantum phase

The entanglement characteristics of a system provide valuable insights into its topo-

logical properties. This is particularly useful for distinguishing the topologically or-

dered phases, such as the quantum Hall phase, from normal phases, like the superfluid.

Among the various measures of entanglement within a system, the bipartite entangle-

ment entropy is robust. The bipartitioning in real-space is achieved by dividing the

lattice system into two subsystems, denoted as A and B. The many-body wavefunction

of the system can then be expressed in a Schmidt-decomposed form [190]

|Ψ〉 =
∑
i

√
λi |ΨA〉 ⊗ |ΨB〉 , (3.27)
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where, λi are the Schmidt coefficients that contain the entanglement characteristics be-

tween the two sub-systems. These coefficients are identically equivalent to the eigen-

values of the reduced density matrix of the sub-system. The reduced density matrix for

sub-system A is given by the density matrix of the full system traced over the degrees

of freedom associated with sub-system B, ρA = TrB |Ψ〉 〈Ψ|. The eigen-spectrum

λi of the reduced density matrix gives the entanglement spectra. And the bi-partite

entanglement entropy can be inferred from the Von Neumann entropy, given by

SE = −Tr[ρA log ρA] = −
∑
i

λi log λi. (3.28)

For topological phases such as quantum Hall, the entanglement entropy SE follows the

area law and scales with the length (L) of the boundary between the two sub-systems

as [191, 192]

SE = αL− γ +O(L−ν) , ν > 0. (3.29)

The Area-law scaling of the entanglement is typical of ground states for gapped sys-

tems [193]. The constant term −γ, called the topological entanglement entropy, is a

universal property of the state and depends on the topological order. For example, the

topologically ordered ν = 1/m fractional quantum Hall state has γ = 1/2 log(m). It

is also a measure of the quantum dimension of the quasiparticle excitations in the FQH

states. Now, we shall discuss the procedure for spatial bipartitioning for studying the

bipartite entanglement.

3.4.1 Constructing bipartite reduced density matrix

The methodology utilized in constructing the basis set can be optimally applied to

compute the bipartite reduced density matrix. To do this, let’s consider dividing a

lattice system with L rows into two subsystems, where subsystem A encompasses the

lowerL1 rows, while subsystem B comprises the upperL2 = L−L1 rows, as illustrated

in Fig. 3.4. Following Eq. (3.24), each basis state comprising of L row states can be

expressed as ∣∣ΦL
M

〉
≡
∣∣ΦL1

M1

〉
⊗
∣∣ΦL2

M2

〉
: Σ 6 NM1 +NM2 6 Σ + ∆. (3.30)

Thus, each basis state
∣∣ΦL

M

〉
, labelled with the index I , can be thought of as a direct

product of multi-row states
∣∣ΦL1

M1

〉
and

∣∣ΦL2
M2

〉
with multi-row state index I1 and I2,
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Figure 3.4: Schematic illustration of spatial bipartitioning of the lattice. For partition-

ing the lattice into sub-system F and the rest, we follow a stepwise process. Initially,

the lattice is split along the y-axis into sub-systems, A and B. Next, sub-system A

is further divided into sub-systems C and D. Ultimately, sub-system D is partitioned

along the x-axis, resulting in the sub-system F. The boundaries of these sub-systems are

distinguishable by their respective color-coded labels. Sub-system E, which surrounds

sub-system F, is represented by the lattice sites colored in black.

respectively. The reduced density matrix of subsystem A, ρA, of dimension β(L1) is

obtained from the density matrix of the entire lattice, ρ = |Ψ〉〈Ψ|, after tracing over

the degrees of freedom associated with multi-row state of subsystem B, identified by

I2,

ρA(k, l) =
Γ∑
I=1

Γ∑
I′=1

C∗I CI′ δI2 ,I′2 δI1 ,k δI′1 ,l

=
Γ∑
I=1

Γ∑
I′=1

ρ(I, I ′) δI2 ,I′2 δI1 ,k δI′1 ,l. (3.31)

Similarly, sub-system A can be further subdivided into sub-systems C and D, where

sub-system C consists of lower L3 rows and subsystem D comprises of upper L4 =

L1 − L3 rows. Consequently, the sub-system A state
∣∣ΦL1

M

〉
, labelled with index I for

1 6 I 6 β(L1), can be written as a direct product of states of these two subsystems.

The states of sub-systems C,
∣∣ΦL3

〉
M3

, are identified with the index 1 6 I3 6 β(L3).

And for sub-system D, the states,
∣∣ΦL4

〉
M4

, are identified with index 1 6 I4 6 β(L4).
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Thus, the reduced density matrix of sub-system D, ρD which is a β(L4) dimensional

matrix, can be obtained as

ρD(k, l) =

β(L1)∑
I=1

β(L1)∑
I′=1

ρA(I, I ′) δI3 ,I′3 δI4 ,k δI′4 ,l . (3.32)

The previous discussions on bi-partitioning of the system have focused on sepa-

ration along the rows, as illustrated by the sublattices A and B in Fig. 3.4. However,

in accordance with the approach outlined in Ref. [191], calculating entanglement en-

tropy necessitates bi-partitioning the system into an isolated part and the surrounding

domain. This is illustrated in Fig. 3.4 by the isolated subsystem F and the remaining

part E. In this figure, the subsystem F is constituted by orange colored lattice sites,

while the rest of the lattice sites in black colors form the subsystem E. The orange col-

ored boundary separates the subsystems F and E. In this scenario, partitioning occurs

both along rows and columns. To compute the reduced density matrix of the subsys-

tem F, we follow a two-step process. First the subsystems B and C can be traced out

using the method discussed earlier. Subsequently, the sub-system D is partitioned into

sub-system F and the remaining lattice sites which forms a part of the sub-system E

as shown in Fig. 3.4. The surrounding of subsystem F corresponds to black-colored

lattice sites which constitutes the subsystem E. This partitioning involves tracing out

columns on both the left and right sides of the subsystem F. The lattice sites (p, q) with

L3 + 1 6 q 6 L1 and p ∈ {K1, K1 + 1, · · · p, · · ·K2} belong to sub-system F , while

the remaining sites are a part of sub-system E which are subject to tracing out. For

this purpose, it becomes necessary to introduce of a unique label corresponding to the

various configuration of occupancies in the sub-system F. For relatively lesser number

of sites in the subsystem F, we can adopt the following approach for assigning a unique

label m̃ to each configuration, given by

m̃ =

L1∑
q=L3+1

K2∑
p=K1

(np,q − η)N
(p−K1)+(L1−q)(K2−K1+1)
B . (3.33)

Now, corresponding to each multi-row state I of sub-system D, the configuration of

particles in the sub-system F is assigned a label m̃ given by Eq. (3.33). Thus, the

reduced density matrix of sub-system F is given by

ρF(k, l) =

β(L4)∑
I=1

β(L4)∑
I′=1

ρD(I, I ′)δm̃,kδm̃′,l

′∏
p,q

δnp,q ,n′
p,q
, (3.34)
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where np,q and n′p,q are the occupancies at lattice site (p, q) corresponding to the multi-

row states with indexes I and I ′, respectively. And, the prime over the product signifies

restriction on the lattice sites with coordinates given by p ∈ {1, 2, · · ·K1 − 1, K2 +

1, · · ·K} and q ∈ {L3 + 1, L3 + 2, · · ·L1}.

It should be noted that if the total number of lattice sites in sub-system F is large,

then assigning a label to the configurations using Eq. (3.33) is not manageable. In-

stead, we can then construct the multi-row states using newly constructed row-states

with K2 − K1 sites along the row. Now, each configuration of occupancies in sub-

system F can then be uniquely identified with the multi-row index described earlier. It

should be mentioned that reduced density matrix is not a sparse matrix in comparison

to the Hamiltonian matrix. Thus, Lanczos algorithm is not suitable anymore for the

diagonalization purpose and extraction of the eigenvalues. In this case, standard linear

algebra packages like LAPACK [171] and ScaLAPACK [194] can be used for matrix

diagonalization.

Now, we discuss the application of the proposed technique for studying the bipar-

tite entanglement in fractional quantum Hall states. These topological phases can be

experimentally realized in optical lattices with synthetic gauge fields, and are described

in more detail in Chapter 4. Here, we study the entanglement characteristics in these

phases to demonstrate the application of the bipartition scheme developed in previous

sections.

3.4.2 Fractional quantum Hall effect in optical lattice

The topological entanglement entropy, γ, serves as a suitable property for discern-

ing quantum Hall states from other non-topological states. As an application of the

methodology we have devised, we examine the fractional quantum Hall state on a

square lattice. FQH states can be realized in optical lattices with the introduction

of synthetic magnetic fields [25, 26, 195]. Consequently, the hopping term in the

tight-binding model such as the Bose-Hubbard model acquires a lattice-site-dependent

Peierls phase [57], and the Hamiltonian of the system is given by the bosonic Harper-
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Figure 3.5: Schematic illustration for spatial bi-partitioning of the lattice into a iso-

lated subsystem S, with lattice sites within the circle (teal colored) forming a part of

the sub-system S.

Hofstadter Hamiltonian [58, 196, 197]

Ĥ =
∑
p,q

[(
− Jeiφxp,q b̂†p+1,q b̂p,q − Jeiφ

y
p,q b̂†p,q+1b̂p,q + H.c.

)
+
U

2
n̂p,q(n̂p,q − 1)

]
.(3.35)

Here, φxp,q, φ
y
p,q are the complex phases acquired while hopping in the presence of a

magnetic field. Appendix B gives the derivation of the Harper-Hofstadter Hamiltonian.

The complex phases are dependent on the strength of the magnetic field, with the

magnetic flux per unit cell given by α = (φxp,q + φyp+1,q − φxp,q+1 − φyp,q)/2π. These

complex phases can be engineered in experiments with the artificial gauge fields, and

is discussed in more details in Section 4.1.

We choose Landau gauge, where φxp,q = 2πα q and φyp,q = 0, with the magnetic

field strength α = 1/8 for a 8 × 8 lattice with periodic boundary conditions along

both the spatial directions. With ED, we obtain the ground state with 4 hardcore

bosons, which corresponds to the occupation density ρ = 1/16 and a filling factor

ν = ρ/α = 1/2. The filling factor measures the ratio of number of particles to the

number of magnetic flux quanta in the system. We find that the ground state of the

system is ν = 1/2 FQH state and observe that the ground state manifold is two-fold

degenerate, a key characteristic property of the ν = 1/2 FQH state on a torus geometry



3.4. Entanglement in the quantum phase 55

0 5 10 15 20
2πR

-1

0

1

2

3

S E
Figure 3.6: Scaling of the entanglement entropy (SE) of the sub-system S as a func-

tion of the boundary length 2πR of the circular boundary separating the isolated sub-

system S from the rest of the lattice. The x-error bars represent the ambiguity in the

definition of boundary length.

[198]. We have successfully verified the topological nature of this state by calculating

the many-body Chern number employing the prescription of Hatsugai [199]. For ex-

tracting the topological entanglement entropy for this state, we bi-partition the lattice

system as shown by the schematic in Fig. 3.5. Subsequently, we calculate the entan-

glement entropy between the subsystem S and the rest of the lattice. However, due

to the discrete nature of the lattice geometry, bi-partitioning with a circular geometry

introduces ambiguity in defining the boundary, as illustrated in Fig. 3.5. Thus, for a

given configuration of lattice sites within the subsystem S, we consider the boundary

of the circle enclosing encompassing S to lie within the minimum and maximum radii

(Rmin, Rmax). The scaling of the entanglement entropy, SE with the boundary length

L, as depicted in Fig. 3.6, is bounded by two lines. The lower and upper lines corre-

spond to the least square fits of data for circles with radii Rmin and Rmax, respectively.

In the figure, the middle line represents the least square fit utilizing the average of the

two radii. We note that the y-intercept, which represents γ, is dependent on the chosen

definition of the boundary length and exhibits a range of variation from 0.08 to −0.77.

However, considering the average radius (Rmin +Rmax)/2, we obtain γ = 0.33± 0.17

which is consistent with the theoretical estimate of γ = ln
√

2 ≈ 0.347 for the ν = 1/2

abelian FQH state. It is worth noting that the numerical estimates can be further re-

fined by incorporating entropy calculations with larger values of L, necessitating larger
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Figure 3.7: Schematic representation showing spatial bi-partitioning of the subsystem

in three slices, forming the plural areas A, B and C. The lattice sites in each subsystem

are color-coded corresponding to the color of the sub-system label.

lattice dimensions. However, the ambiguity in the definition of L would still persist

and can be neglected only for very large lattices.

By adopting the Kitaev and Preskill’s approach for computing γ in terms of the plu-

ral areas, it becomes feasible to calculate γ without the inherent ambiguity associated

with the boundary length. In their approach, γ is expressed by a suitable combination

of the entanglement entropies of the plural areas within the subsystem S, as illustrated

in Fig. 3.7. It is calculated according to the relation SABC − SAB − SBC − SAC +

SA + SB + SC = −γ [191]. Employing this formulation, we have calculated γ for

various choices of size for the sub-system S and the results are presented in Fig. 3.8.

We note that the numerical estimates of the γ differs from the theoretical estimate of

−0.35. Nevertheless, we observe an improvement in the calculated γ as the size of the

sub-system S increases. We also note that the trend appears to be saturating towards

a finite value for Rmin > 3, suggesting it may not increase indefinitely with increase

in subsystem size. This improvement can be attributed to the necessity of having a

smooth, large-sized boundary compared to the correlation length ξ � R. The calcula-

tions with larger subsystem size are however bounded by the constraint Rmin < 3.5 on

a 8 × 8 lattice. Although, further improvements in the estimates of γ can be achieved
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Figure 3.8: Topological entanglement entropy (−γ) for ν = 1/2 FQH state. The x

axis represents the radius Rmin for various choices of the circular subsystem S. The

filled blue circles corresponds to the subsystem S, centered at the center of the 8 × 8

lattice system, while the filled red circles corresponds to the subsystem S centered at

grid point (3.85, 3.85) of the lattice. The blue dashed-line is a visual guide to the eye.

with a larger-sized subsystem on a larger lattice, the computational resources required

for such an endeavour exceed the accessible computational capacity.

3.5 Summary of the Chapter

In this chapter, we have introduced a novel method for exact diagonalization, which

relies on a hierarchical approach for defining the basis states for lattice systems. The

starting point is the single-site Fock states, which are utilized to construct the row-

states, through their tensor products. Subsequently, the tensor product of the row-states

generates the multi-row states. This approach offers a high degree of flexibility and is

particularly well-suited for studying bosonic optical lattice systems. In such systems,

there are no restrictions on the lattice site occupancy, and the number of basis states

grows exponentially fast with the system size and number of particles. This multi-step

and hierarchical approach allows us to impose various constraints, effectively reducing

the dimension of basis set and the Hamiltonian matrix. Furthermore, the construction

of the Hamiltonian matrix is optimized with the identification of the pairs of states

that contributes to a non-zero matrix element. For the case of state reduction, we em-

ploy the bisection method to expedite the identification and calculation of the non-zero
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Hamiltonian matrix elements. Each of the constituent steps in our implementation is

parallelizable. We have parallelized both the generation of basis set and the calculation

of the Hamiltonian matrix elements. Additionally, we parallelize the diagonalization

of the Hamiltonian matrix using PARPACK [200]. Using the proposed method, we

show how to spatially partition a lattice system, compute the reduced density matrix

and calculate the topological entanglement entropy. Specifically, we have applied this

methodology to investigate the ν = 1/2 FQH state in the bosonic Harper-Hofstadter

Hamiltonian.



Chapter 4

Fractional quantum Hall effect in

optical lattice

The phenomena of quantum Hall effect is observed at low temperatures in 2D electron

gas subjected to a strong magnetic field in the perpendicular direction. Then, the off-

diagonal resistivity forms plateaus as a function of magnetic field, and at these plateaus,

the resistivity is quantized Rxy = (2π~/e2)/ν. For fractional values of the filling

factor ν, defined as the ratio of the number of electrons to the number of available

states, this phenomena is called the fractional quantum Hall effect. The FQH states are

long-range entangled and topologically protected phases with robust quantized edge

transport. Their excitations obey anyonic statistics with fractional charges. Various

such fascinating properties exhibited by these phases have attracted attention to these

phases and their experimental realization for applications in quantum technologies.

Ultracold atoms in optical lattices are excellent systems for investigating the FQH

effect due to the possibility of simulating very high magnetic flux per unit cell of

the lattice. In addition, the strongly interacting regime is accessible and it helps in

stabilizing the ground state quantum phases. In the lattice models, the FQH states are

also referred to as the fractional Chern insulators and conceptually originate from the

flat Chern bands which play the role of the Landau levels in the continuum [201, 202].

In chapter 3, we discussed the bipartite entanglement entropy for the ν = 1/2 FQH

state for a fixed number of bosons with exact diagonalization. The experimental real-

ization of the FQH phase depends upon the outcome of the competition, for existence

59
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as the ground state of the system among different phases supported by the system. In

this regard, this chapter investigates the bosonic FQH states in the system of ultracold

bosons in optical lattice. These systems, described by the BHM, support the Mott-

insulator and SF phases as ground state phases. However, with the implementation

of artificial gauge fields, experimentally realized using lasers [26, 195, 203–205], the

topological FQH phase can emerge as the ground state of the system at appropriate

values of the system parameters. In this chapter, we shall focus on the ν = 1/2 FQH

state, and explore the occurrence of this topological phase as the ground state against

the competing phases using the CGMF method. The CGMF method is used to study

the ground state properties of the system in various parameter regimes and identify

the parameter regimes where the quantum Hall states can exist. But, the wavefunc-

tion obtained from the CGMF method is not exact because of the mean-field coupling.

Thus, for topological characterization of the system, we use exact diagonalization, and

the exact wavefunction is used for calculating the many-body Chern number and other

topological properties. With CGMF, we obtain the compressibility plot and consider

the location of the plateaus in the plot as potential candidates for the FQH state. The

characterization of the FQH state is done using ED by studying the properties which

are characteristic of quantum Hall states. For instance, the two-point correlation func-

tion is calculated to investigate the signatures of the gapped bulk and gapless edges.

The topological order of the state is identified by calculating the many-body Chern

number. Furthermore, we study the robustness of the FQH state against the dipolar

interactions. The repulsive long-range dipolar interactions increase the energy gap be-

tween the ground and the excited state. This increases the robustness of the ground

state by stabilizing it against perturbations. However, its effect on the long-range en-

tanglements and the topological order in the FQH state should be investigated. This

study adds to the literature on FQH states by investigating the effect of dipolar inter-

actions on the stability of FQH states as the ground state quantum phases in optical

lattice. We begin the chapter by describing the system and the model Hamiltonian.
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4.1 Artificial gauge fields

Consider a system of ultracold neutral bosons trapped in a 2D square optical lattice

described by the BHM. To simulate the effects of magnetic field on the charge neu-

tral atoms and to study the topological FQH phases, artificial gauge field is imple-

mented. Experimentally, the gauge fields can be synthesized using the technique of

laser-assisted tunneling [70]. It involves creating a staggered superlattice potential

along one of the spatial direction (x) with an energy offset ∆, while along the other

direction (y) there is no energy offset, and the lattice is simple. This is schematically

shown in Fig. 4.1 with grey colored sites corresponding to high-energy sites, while

the black-colored sites are lower energy sites. For the energy offset much larger than

the hopping strength along the x ( ∆ >> J), the dynamics along the x is frozen.

By creating a running-wave potential using another set of lasers (ω1,k1) along x and

(ω2,k2) along y, the resonant tunnelling along x is restored for ~(ω1 − ω2) = ∆. The

running-wave beams with wavevectors |k1| ≈ |k2| ≈ kR imparts the hopping term

with a lattice-site dependent phase δk.R = kRa(p− q). This complex phase, referred

to as the Peierls phase, can be tuned by appropriately choosing the lattice geometry

and the wavevector kR. The modified Hamiltonian with complex hoppings is given by

the bosonic Harper-Hofstadter model.

4.1.1 Harper-Hofstadter model

In the presence of an artificial gauge field, the ultracold atoms trapped in optical lattices

are described by the bosonic analogue of Harper-Hofstadter Hamiltonian [58, 196].

The Hamiltonian is similar to the BHM Hamiltonian except that the hopping term now

acquires a lattice-site dependent complex Peierls phase [57, 58]. In the Landau gauge

A = 2παy x̂ with corresponding magnetic field in the −z direction, the Hamiltonian

of the system is given by

Ĥ = −
∑
p,q

(
Je2iπαq b̂†p+1,q b̂p,q + Jb̂†p,q+1b̂p,q + H.c.

)
+
∑
p,q

[
U

2
(n̂p,qn̂p,q − 1)− µn̂p,q

]
. (4.1)
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Figure 4.1: Schematic illustration of the complex hopping terms in the Harper-

Hofstadter model. The artificial gauge field is implemented by creating a superlattice

potential along x with an energy offset among black and grey colored sites. The res-

onant tunnelling along x is achieved with additional lasers depicted with red color. In

the Landau gauge, the hopping along x direction occurs with a lattice-site dependent

phase factor, while the hopping along y direction occurs with no additional phase. The

total phase accumulated while traversing the unit cell of the lattice is Φ = 2πα and is

uniform throughout the lattice.

Here, p (q) is the lattice site index along the x(y) direction, J is the NN hopping

strength, U is the onsite interaction strength, µ is the chemical potential, and α repre-

sents the total number of flux quanta per unit cell of the lattice. The artificial gauge

field results in a phase accumulation of Φ = 2πα while traversing around a unit cell

of the lattice, as shown in Fig. 4.1. This simulates the Aharonov-Bohm phase accumu-

lated while traversing a closed loop in a perpendicular homogeneous magnetic field.

The artificial gauge field breaks the translational invariance of the lattice in terms of

displacement by integer multiples of the lattice vectors. Instead, the Hamiltonian is

invariant under translation by the magnetic unit cell. For the choice of Landau gauge

considered here and for the artificial gauge field with α = p/q, the magnetic unit cell

comprises 1 × q lattice sites. In this study, we consider α = 1/4, a relatively large

value of magnetic field which is experimentally realizable [25]. The magnetic unit cell

comprises 1× 4 lattice sites and total flux enclosed within the magnetic unit cell is 2π.

The FQH effect in the Harper-Hofstadter model has been extensively studied in
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various theoretical studies [34, 59, 73–75]. On the experimental aspects, very recently

the FQH state has been observed for the first time with ultracold 87Rb atoms in optical

lattices [27]. In the experiment, the ν = 1/2 FQH state is prepared from an initial

state of 2 particles localized in a 4× 4 driven optical lattice. The driven optical lattice

with Raman-assisted tunnelling allows the synthesis of gauge field with independent

controls over the magnetic flux per unit cell and the tunnelling rates Jx (Jy) along the

x (y)-directions. The asymmetry in the tunnelling along the x and y directions has

been utilized to follow an adiabatic path connecting the initially localized state in the

absence of any tunnelling and the final FQH state at Jx = Jy. The observed Hall

conductivity σH/σ0 = 0.6 ± 0.2 agrees well with the expected value of 0.5 for the

ν = 1/2 FQH state. Now, we shall discuss the investigation of the topological FQH

phases as the ground state quantum phases in the Harper-Hofstadter model with the

CGMF method.

4.1.2 Ground state quantum phases

With the CGMF method, we obtain the ground state quantum phases of the system.

Similar to BHM, we find the Mott insulator and superfluid phases but with an en-

hancement in the MI-SF phase boundary. The enhancement can be attributed to the

localizing effects arising from the cyclotronic motion arising from the artificial gauge

fields. Following previous studies, predicting the formation of bosonic FQH states

out of excitations on top of the Mott insulating phase [76, 77], we search for the FQH

states in the vicinity of the Mott lobe for various values of the chemical potential. FQH

are incompressible states, and correspond to the plateaus in the compressibility curve,

which is the plot of average bosonic density ρ as a function of µ/U . To investigate the

FQH states, we have chosen α = 1/4 and have used 4 × 4 clusters to tile the 12 × 12

lattice. This choice of cluster and lattice size is consistent with the magnetic transla-

tional symmetry for chosen value of α. To mimic the thermodynamic limit, we use

periodic boundary conditions along both the spatial directions. We further consider

the bosonic atoms as hardcore bosons, which means the single-site occupancies can be

either 0 or 1. The hardcore assumption is justified near the ρ = 0 state and at low J/U ,

since the probability of double occupancies at a site is negligible. With this and a fixed
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Figure 4.2: Compressibility plot: The ground state density ρ as a function of µ/U for

hardcore bosons at J = 0.01 and α = 1/4. The density of the incompressible ground

states are identified with green colored dots while that of superfluid ground states are

identified with blue colored dots. The dashed gray line separates the incompressible

states and the superfluid state regimes.

J = 0.01U , we obtain the ground state of the system at different values of chemical

potential.

The average bosonic density as a function of the chemical potential is shown in

Fig. 4.2. As shown in the compressibility plot, the SF states with continuously vary-

ing number density against µ/U are obtained as the ground state in various parameter

regimes. These compressible ground states are shown with blue color. However, for

some values of µ/U , the number density does not change with variations in µ/U and

appears as plateaus in the compressibility curve. The incompressible states appear with

the number density ρ = 1/16, 1/8, 3/16, · · · which corresponds to the filling factors

ν = ρ/α = 1/4, 1/2, 3/4, · · · , respectively. The parameter domain of the incompress-

ible ground states is shown in green color. In these regimes, the incompressible states

are the ground states, while the SF states are the competing metastable states. For in-

stance, at µ = −0.020U , the incompressible state with ρ = 1/8 is lower in energy and

is nearly degenerate in energy with the competing SF state which is metastable. The

energy per particle for the incompressible state is−0.00456U , while the competing SF

state exists as a metastable state, featuring a higher particle density and an energy per

particle of −0.00446U . The difference in energy per particle between the two states
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Figure 4.3: Density distribution for ν = 1/2 filling incompressible state at µ =

−0.020U , J = 0.01U and α = 1/4.

is very small, approximately 0.0001U ∼ J/100. These states corresponding to the

plateaus in the compressibility plot are candidates for quantum Hall states and confir-

mation can be done by studying other properties of the state. To investigate the finite

size effects, we have investigated for ρ = 1/8 plateau with system sizes of 8 × 8 and

16 × 16 for a range of µ/U values around this plateau. We note that this plateau is

intact, and robust against the finite size of the lattice.

After studying the average bosonic densities, we investigate the density distribution

of ν = 1/2 incompressible states corresponding to the plateau in the compressibility

plot. The image in Fig. 4.3 shows the density distribution for such a state at µ =

−0.020U corresponding to ρ = 1/8 and ν = 1/2. In this figure, we notice that the

bosonic density is maximum at the centre of the 4× 4 cluster, and it decreases radially

within each of the clusters. The density distribution among the clusters is identical.

This is expected as the coupling between different clusters is incorporated through the

mean field, which is zero in the incompressible state. Further characterization of the

ν = 1/2 incompressible state is discussed in the remaining part of the chapter.

4.2 Characterization of ν = 1/2 FQH state

In the previous section, we used the CGMF method to identify the ground state quan-

tum phases. For characterizing the incompressible states, which correspond to the

plateaus in the compressibility curve, we use ED with a fixed number of particles at
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the required filling factors. Here, we shall discuss a few properties of the FQH state

which can be used to characterize the state.

4.2.1 Two point correlation function

The quantum Hall states are gapped in the bulk and possess gapless edges at the bound-

ary of the system. This characteristic property can be studied using the two-point

correlation (TPC) function defined by 〈b̂†(x′, y′)b̂(x, y)〉, where the expectation is cal-

culated with respect to the ground state wavefunction. For the QH states, the TPC

function exhibits a power-law decay at the edges, whereas in the bulk, it follows an

initial exponential decay and a power-law tail towards the end of the bulk row [80]

〈b̂†(x, y)b̂(0, y)〉 ∝


1/xα, y ∼ 0,

e−x/ξ, y ∼M/2, x < M,

1/(x+ 2y)α, y ∼M/2, x ∼M.

(4.2)

We investigate the decay of TPC function for the ν = 1/2 state for sufficiently large

lattice systems. In order to distinguish the edge row from the bulk of the lattice, we use

open boundary conditions. This is shown in Fig. 4.4, where we have plotted the TPC

for the system of 4, 5 and 6 bosons on 8 × 4, 10 × 4, and 12 × 4 lattices respectively.

With the artificial gauge field α = 1/4, these choices of bosonic density correspond to

the filling factor ν = ρ/α = 1/2.

In Fig. 4.4, the TPC function for the bulk row y = 1 is shown with different shades

of red color for different lattices. And, for the y = 0 row at the edge, TPC function for

different lattices is shown with different shades of blue color. From the figure, we can

see an initial exponential decay in the bulk row. However, for the y = 0 row at the edge,

decay is not exponential but more like a power-law decay. Owing to a smaller extent of

the system along the y− direction, the power-law decay is not clearly discernible. This

can be improved by increasing the lattice dimension along the y direction, then the

distinction between the bulk and edge would be more prominent. However, to respect

the magnetic unit cell, the lattice should consist of 8 rows, which would require very

high computational resources. In view of this, we infer few observations from Fig. 4.4

only. From the figure, in y = 0 row at the edge, we observe an initial power law decay

followed by a non-monotonic trend and followed by a power law decay. The power
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Figure 4.4: Two-point correlation function for ν = 1/2 filling state using open bound-

ary conditions in (a) log-linear scale and (b) log-log scale. Different shades of the red

and blue colors correspond to the row in bulk (y = 1) and at the edge (y = 0) respec-

tively. Dotted, dashed, and solid lines correspond to system sizes 8 × 4, 10 × 4, and

12× 4 respectively. The yellow line shows the fitted curve.

law exponents are −0.99± 0.18 for 1 . x . 5 and −5.4± 1.1 for 5 . x . 7. While

in the bulk row y = 1, we find an initial exponential decay, 〈b̂†(x′, y)b̂(x, y)〉 ∝ e−x/ξ

with correlation length ξ = 0.93± 0.04. This trend persists till x . 4 and is followed

by a non-monotonic behaviour. Finally, towards the end of this row, a power law decay

with exponent −2.1± 0.34 is observed for 9 . x . 11. The non-monotonicity in the

middle of the bulk and edge rows is evident for the larger lattices. However, near the

end of the two rows, it is a decaying function. These trends of the TPC function for the

rows in bulk and the edge are consistent with a QH state.

4.2.2 Ground state degeneracy on torus geometry

Apart from the characteristic trend in the TPC function, the FQH states also possess

characteristic degeneracy. On a torus geometry, with the implementation of periodic

boundary conditions along the two spatial dimensions of the 2D lattice, the ground
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Figure 4.5: For ν = 1/2 filling state with 4 bosons on a 8 × 4 lattice with PBC at

J = 0.01U , energies of degenerate ground states E0, E1 and of first excited state E2.

Top figure shows the variation of energies with the twist angles (θx, θy), and the bottom

figure shows energies as a function θy for fixed θx = 0.5.

state manifold corresponding to the ν = 1/2 FQH state is doubly degenerate. More

specifically, on a Riemann surface of genus g, the ground-state manifold of the ν = p/q

FQH state with p and q as co-primes is qg fold degenerate [198]. The torus geometry

corresponds to g = 1. In addition, on a torus geometry, translation of the wavefunction

by the lattice size along any of the two spatial dimensions yields the original wave-

function upto a phase factor. The generalized boundary conditions thus correspond to

the twist angles at the boundary. The twist angles represent the magnetic flux along the

axis or through the centre of the torus [74]. With the introduction of the twist angles at
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the boundary, the Hamiltonian is

Ĥ =
∑
p,q

[
−
(
Jei2παqe−i2πδxLθx b̂p+1,q b̂p,q + Je−i2πδyLθy b̂p,q+1b̂p,q + H.c.

)
+
U

2
n̂p,q(n̂p,q − 1)− µn̂p,q

]
, (4.3)

where, δxL is the Kronecker delta function and θx (θy) is the twist angle at the boundary

of the lattice along x (y) direction. The ground state manifold is thus a function of the

twist angles. For the ν = 1/2 filling, corresponding to 4 bosons on a 8× 4 lattice with

PBC, we investigate the energy spectrum at J = 0.01U with exact diagonalization for

a few low-lying states on a grid of twist angles (θx, θy). We find a slight variation in the

ground-state energy with the twist angles, however, the two-fold degeneracy persists

throughout the range of twist angles 0 6 θx, θy 6 1. The ground-state energy of the

doubly degenerate manifold and energy of the first excited state is shown in Fig. 4.5,

where we can see that the energy gap is ≈ J/4. The double degeneracy of the ground

state manifold is also observed for a system of 2 bosons on a 4 × 4 lattice with PBC.

Thus, the double degeneracy of the ν = 1/2 state satisfies another important property

for its characterization as the FQH state.

4.2.3 Many body Chern number

FQH states are topological phases, and in order to characterize the topological order

of the state, we calculate the many body Chern number (MBCN) utilizing the method

outlined in [199]. For the FQH state with filling factor ν = 1/2, the ground state

manifold is doubly degenerate on a torus geometry. Thus, the ground state manifold

projector at twist angles (θx, θy) is given by

P (θx, θy) = |Ψ0(θx, θy)〉 〈Ψ0(θx, θy)|+ |Ψ1(θx, θy)〉 〈Ψ1(θx, θy)| . (4.4)

Here, Ψ0(θx, θy) and Ψ1(θx, θy), are the two orthogonal states from the degenerate

ground state manifold at twists (θx, θy) for the Hamiltonian defined in Eq. (4.3). In or-

der to fix the gauge for the ground state manifold, we choose two reference multiplets

from the ground state manifold at two distinct values of the twist angles. These ref-

erence states are denoted as Φj(θ
1
x, θ

1
y) and Φ′k(θ

2
x, θ

2
y), where the indices j and k take

values 1 or 2 for the two degenerate states. This allows the definition of two distinct
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Figure 4.6: (Left) Gauge fields ΛΦ and ΛΦ′ in the (θx, θy) plane. The gauge fields

are well defined in complementary regions of the plane. (Right) Argument field Ω in

the (θx, θy) plane. In the region, with ΛΦ = 0 and ΛΦ′ 6= 0, we see a vortex in the

Ω field with phase accumulation of 2π around it and unit vorticity. Similarly, in the

complementary region, we find a unit vorticity, which signifies the MBCN = 1.

gauge references with corresponding scalar fields ΛΦ = det〈Φj|P (θx, θy)|Φk〉 and

ΛΦ′ = det〈Φ′j|P (θx, θy)|Φ′k〉. It is important to note that the gauge fields associated

with Φ and Φ′ are not well defined across the entire grid spanned by 0 6 θx, θy 6 1.

The region where one of the gauge reference is not well-defined, the other gauge ref-

erence can be used. The MBCN is then given by the number of branch vortices in the

argument field Ω, defined by

Ω = arg
(

det〈Φ′j|P (θx, θy)|Φk〉
)
, (4.5)

in either of the regions where one of the reference field ΛΦ or ΛΦ′ vanish. The counting

of the number of branch vortices is done by summing the vortices and anti-vortices

with appropriate signs according to their vorticity [74, 81].

To identify the topological order in the ν = 1/2 filled state, we calculate the MBCN

of this state. For the system of 4 bosons on a 8 × 4 lattice with PBC and α = 1/4,

we calculate the argument field Ω and obtain MBCN equal to 1. The image and plot

in Fig. 4.6 show gauge references and the argument field as a function of the twist

angles. We observe that Ω has a vortex in the region where ΛΦ vanishes. Thus, we

get a unit vorticity amounting to the MBCN equal to 1. We have also calculated the
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MBCN for the ν = 1/2 filling on 4×4 lattice and found it to be 1. Thus, the state with

ν = 1/2 filling is topologically ordered and is identified as the FQH state. Combined

with the CGMF results, we can conclude that ν = 1/2 FQH can occur as the ground

state against the competing SF state in optical lattices. Next, we investigate the effect

of dipolar interactions on the robustness of this state.

4.3 FQH with dipolar interactions

In this section, we shall discuss the effect of dipolar interactions on the stability of

the FQH states in optical lattice. As mentioned earlier, the quantum Hall states are

separated from the excited states by an energy gap, and a larger gap ensures the ro-

bustness of the state against perturbations. In Ref. [74], using ED for a system with a

fixed number of particles, it was shown that the energy gap increases with the dipolar

interactions, and it preserve the topological order of the state. Further, in Ref. [206],

it was shown that with the introduction of a long-range interaction to the rapidly rotat-

ing bosons, the ν = 3/2 FQH state emerges as the ground state of the system. Here,

using the CGMF method, where the particle number depends upon the chemical po-

tential, we first investigate if the FQH states occur as the ground state quantum phases

of the system with dipolar interactions. Here, the ground state could be either of the

competing states, the compressible superfluid or the incompressible state. In case the

incompressible emerges as the ground state, we use ED to characterize it and check if it

is the FQH state. With the dipolar interactions of strength V , and truncated to nearest-

neighbor, the Hamiltonian in Eq. (4.1) is modified with an additional interaction term

corresponding to the NN interactions

Ĥ = −
∑
p,q

(
Je2iπαq b̂†p+1,q b̂p,q + b̂†p,q+1b̂p,q + H.c.

)
+
∑
p,q

[
U

2
(n̂p,qn̂p,q − 1)− µn̂p,q + V n̂p,q (n̂p+1,q + n̂p,q+1)

]
. (4.6)

With the CGMF method, using 4× 4 clusters on a 12× 12 lattice, we obtain the com-

pressibility plot for hardcore dipolar bosons with NN strengths V = 2J and V = 5J

at J = 0.01U and α = 1/4. For V = 2J , as shown in Fig. 4.7 (a), we find plateaus

corresponding to incompressible states at densities ρ = 1/16, 1/8, and 3/16 in the
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Figure 4.7: Compressibility plot: The ground state density ρ as a function of µ for

hardcore bosons at J = 0.01U and α = 1/4 for NN interaction strengths (a) V = 2J

and (b) V = 5J . The incompressible ground states are identified with green colored

dots, while the superfluid ground states are identified with blue colored dots. The

dashed gray line separates the incompressible states and the superfluid state regimes.

specified range of µ/U . It can be seen that with NN interaction, the plateaus have

shifted to higher µ/U values compared to the case when V = 0. This is due to the re-

pulsive nature of dipolar interactions, which favor a state with lower density at a given

value of µ/U , in order to reduce the repulsive interaction energy. The incompressible

state with ρ = 1/8 corresponds to the filling factor ν = ρ/α = 1/2 and may corre-

spond to the ν = 1/2 FQH state. This incompressible state at µ/U = −0.015, has

energy per particle −0.0084U , while the competing SF state at this value of chemical

potential has energy per particle −0.0079U . The energy gap between the two states is

0.0005U ∼ J/20.

For V = 5J , as shown in Fig. 4.7 (b), we observe the plateaus in the compressibil-

ity plot at density ρ = 1/16 and 1/8 in the specified range of chemical potential. The

incompressible plateaus have shifted to higher µ/U values compared to lower values

of V. At µ = 0.01U , ρ = 1/8 incompressible state with filling ν = 1/2 have energy per

particle −0.0121U , while the competing SF state with higher density has energy per

particle −0.0111U . Thus, the energy gap separating the incompressible ground state
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from the SF state is 0.001U ∼ J/10. Additionally, it is noted that the plateaus in the

compressibility plot now extend across a broader parameter range within the ground

state phase diagram. Hence, the repulsive dipolar interactions serve to enhance the

energy gap between the incompressible ground state and the compressible metastable

states. These observations strongly imply that the dipolar interactions play a stabi-

lizing role for the incompressible state against the competing compressible SF phase.

Although in this study, we have truncated the dipolar interactions to nearest neighbors,

this qualitatively captures the effects of long-range interactions. With the inclusion of

the next-nearest neighbor interactions, we have examined the effect on ρ = 1/8 plateau

and found it to be robust.

4.3.1 Characterization of ν = 1/2 state

As mentioned earlier, the characterization of the ρ = 1/8 incompressible state at ν =

1/2 filling as the FQH state is done by studying the decay in two-point correlation

function, the ground state degeneracy on a torus geometry and the many-body Chern

number. We shall examine these properties for the ρ = 1/8 incompressible state at

V = 2J at J = 0.01U and α = 1/4.

We first discuss about the TPC function obtained with the ED method on a square

lattice with open boundary conditions. For ρ = 1/8 state on 8× 4 and 10× 4 lattices,

the TPC function is shown in Fig. 4.8. We find that in the bulk row y = 0, it decays

exponentially 〈b̂†(x′, y′)b̂(x, y)〉 ∝ e−x/ξ for x . 3 with correlation length ξ = 0.83±
0.02. Afterwards, it shows a non-monotonic trend. While in the row y = 0, which lies

at the edge, the TPC has a power law decay with exponent −1.2± 0.3 for 1 . x . 5.

This trend of the TPC function is consistent with that of a quantum Hall state. It

should be noted that ξ in the bulk is now smaller than the case with V = 0. Thus,

the dipolar interactions can affect the long-range entanglements in the FQH state, and

it is interesting to see whether it affects the topological order in the state. We have

investigated the ground-state degeneracy on a torus geometry and found that the ground

state manifold is doubly degenerate, which is consistent with the ν = 1/2 FQH state.

The topological order of the ν = 1/2 state is investigated by calculating the MBCN

on a 4× 4 and 8× 4 lattice. We find that the MBCN is equal to 1, which confirms the
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Figure 4.8: Two-point correlation function for ν = 1/2 filling state at V = 2J in

(a) log-linear scale, and (b) log-log scale. Different shades of the red and blue colors

correspond to the row in bulk (y = 1) and at the edge (y = 0) respectively. The yellow

line shows the fitted curve.

topological order. For V = 2J and for ν = 1/2 state on a 4 × 4 lattice, the argument

field is shown in Fig. 4.9, where a single branch-vortex in either of the complementary

regions signifies the MBCN equal to 1. We have also verified the topological nature of

ν = 1/2 state at V = 5J and identify it as FQH state by calculating the MBCN. We

thus find that the BHM with dipolar atoms supports the FQH states as ground states

and is more robust. With the recent experimental realization of ν = 1/2 FQH states for

the ultracold gas of 87Rb atoms in optical lattice [27], our study suggests the possibility

of observing this state with dipolar condensates in optical lattices in near future.

In our study, we have focused the investigations exclusively on closed systems.

Nevertheless, in the pursuit of realizing topologically ordered phases in the experi-

ments, it is important to consider the impact of dissipations arising from interactions

with the surrounding environment. The dissipations via two-body loss, explored within

the framework of Markovian dynamics, have been studied in [207, 208]. The find-

ings indicates the preservation of the topological order, however, the state has a finite
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Figure 4.9: (Left) Gauge fields ΛΦ and ΛΦ′ in the (θx, θy) plane. The gauge fields

are well defined in complementary regions of the plane. (Right) Argument field Ω in

the (θx, θy) plane. In the region, with ΛΦ = 0 and ΛΦ′ 6= 0, we see a vortex in the

Ω field with phase accumulation of 2π around it and unit vorticity. Similarly, in the

complementary region, we find a unit vorticity, which signifies the MBCN = 1.

lifetime. In a related work ref. [209] discusses the state preparation of FQH states

through dissipative pumping of particles from higher to lower bands. The effect of

non-Markovian environments has been studied in the context of atom-cavity systems

and has been discussed in [210–213]. However, the effect on topologically ordered

phases needs further exploration.

4.4 Summary of the Chapter

In this chapter, we have explored the FQH states in the bosonic Harper-Hofstadter

Hamiltonian. This specific Hamiltonian can be effectively realized in the experimental

setups with ultracold atoms confined in optical lattices. We find the incompressible

states with filling factors similar to the FQH states as the ground state of the system

for various parameter regimes. The ground state quantum phases are obtained with the

CGMF method, suitable for capturing the quantum correlations in the state. To estab-

lish these incompressible states as FQH state, we focused on the ν = 1/2 filling state

and demonstrated the topological order in the state by calculating the MBCN. For the
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case of dipolar atoms, we have introduced the dipolar interactions truncated to NN and

have shown that ν = 1/2 FQH state is the ground state of the extended Hamiltonian

in certain parameter regimes. We have observed that the dipolar interactions stabilize

the FQH state against the competing SF phase. Additionally, we have also verified the

robustness of the ν = 1/2 FQH state against finite size effects associated with the finite

lattice. Also, we have verified by incorporating the next-nearest neighbor interactions,

the ν = 1/2 FQH state is robust against the tail of the dipolar interactions.



Chapter 5

Quench dynamics across the MI-SF

phase transition

In previous chapters, we have discussed the bosonic fractional quantum Hall states in

optical lattice. We considered these systems as closed systems with a minimal cou-

pling with the surroundings and examined the ground state quantum phases at equilib-

rium. However, the quantum systems engineered in experiments are subject to various

non-equilibrium effects. For example, the dissipation effects in systems coupled to a

surrounding or the non-adiabatic effects setup in response to a external control signal.

The advancements in quantum technologies revolve around the dynamical manipula-

tion of quantum states, thus necessitating understanding of dynamics associated with

quantum state engineering. The dynamical evolution of these systems depends upon

the low-lying energy levels accessible to the system and can shed light on to vari-

ous equilibrium properties, referred to as quench spectroscopy. In regard to the rich

physics associated with the out-of-equilibrium dynamics, this chapter discusses the

non-equilibrium dynamics of quantum systems under a quantum quench, which refers

to a change in the parameters of the underlying Hamiltonian.

Understanding the non-equilibrium aspects is crucial for the development of quan-

tum states in the laboratory. For example, it has significance in the state-preparation

procedures, where a desired state is obtained by systematically adjusting parameters,

commencing from an initially manageable state. The non-adiabatic effects linked with

the quench process can lead to unwanted excitations in the final state. However, such

77



78 Chapter 5. Quench dynamics across the MI-SF phase transition

excitations can be minimized by controlling the quench with an optimal protocol. The

quench process can occur as a sudden quench, involving an abrupt change in one of the

system parameters, followed by an evolution of the system with new Hamiltonian. The

other possibility is slow quench, where the parameter is changed over a finite time du-

ration. Quenches provide a versatile experimental and theoretical framework to probe

the rich dynamics and phenomena in quantum systems. The many-body localization,

thermalization, and entanglement dynamics following the quench are various research

pursuits [85, 214]. This chapter focuses on the slow quenches in the system of ul-

tracold atoms in optical lattice across the Mott-insulator to superfluid quantum phase

transition of Bose-Hubbard model.

Ultracold atoms confined in optical lattices provide an exceptional platform to ex-

plore the dynamics of quantum many-body systems. The ability to readily control the

system parameters and minimal interaction with the surrounding environment make

these systems better candidates to study quantum quench dynamics. These systems

are described by the BHM and supports the MI and SF quantum phases. A gradual

quench from the symmetric MI phase to symmetry-broken SF phase results in the cre-

ation of vortices in the quenched SF state. This is attributed to the non-adiabatic or

impulse regime during the evolution, which sets in as the system approaches the quan-

tum critical point as described by the Kibble-Zurek mechanism (KZM). The KZM

demonstrates the universality in the dynamics across phase transitions and predicts

scaling laws for various properties of dynamical state [86, 108]. In this chapter, we

shall study the quench dynamics across the MI-SF QPT from the perspective of KZM.

We shall obtain the Kibble-Zurek scaling laws using the single-site Gutzwiller mean-

field and cluster Gutzwiller mean-field theory. We begin by first discussing the KZM

for thermal phase transitions and subsequently derive the KZ scaling laws which are

also applicable for QPTs.

5.1 Kibble-Zurek Mechanism

For continuous thermal phase transitions, the relaxation time τ and the correlation

length ξ diverge near the critical point of the phase transition. This divergence en-
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Figure 5.1: Relaxation time (blue) and the inverse transition rate (red) for a linear

quench, as a function of the reduced distance from the critical point. The crossover

from adiabatic to impulse happens at −ε̂ and ε̂ when relaxation time equals the inverse

transition rate. The impulse region is shown as the shaded region, where relaxation

time is greater than inverse transition rate.

capsulates the universality near the critical point, whereby the microscopic details of

the system do not matter much and different systems exhibit similar behaviour [215].

In terms of the reduced distance from the critical point ε = (χ − χc)/χc, where χ is

the system’s parameter governing the phase transition, the correlation length and the

relaxation time have power law divergences

ξ ∝ |ε|−ν , and τ ∝ |ξ|z = |ε|−νz. (5.1)

Here, ν and z are the power law exponents and these are referred to as the critical

exponents of the phase transition. Under a quench of the system parameter, the adi-

abaticity during the evolution depends upon the competition between the relaxation

time and the inverse transition rate |ε/ε̇|, which measures the time from the critical

point of the phase transition. Near the critical point, the relaxation time diverges, and

the system can not adapt to any changes in the parameter being quenched, resulting

in a loss of adiabaticity in the evolution. However, far away from the critical point,

the relaxation time is small, τ � |ε/ε̇|, leading to an adiabatic evolution. The KZM

approximates the dynamical evolution of the quenched state as adiabatic for τ < |ε/ε̇|
and as impulse for τ > |ε/ε̇|. In the impulse domain, the state is assumed to be frozen.

The crossover between adiabatic and impulse occurs at ±ε̂, which is obtained from
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the relation τ(ε̂) = |ε̂/ ˙̂ε|. Assuming a linear quench protocol, ε(t) = t/τQ, with τQ

being the quench rate, the impulse regime of KZM is shown in Fig. 5.1. In the impulse

regime, in which the quenched state evolves trivially with a phase only, the correlation

length at the end of the impulse ε̂ is the same as at −ε̂. This determines the size of the

correlated domains, with different choices of the symmetry breaking, formed after the

phase transition. The meeting points of these uncorrelated domains constitute defects

in the post-quenched state. The average size of the domains and the defect density

vary with the quench rate as a power law with exponents given in terms of the equilib-

rium critical exponents ν and z. This power law scaling behaviour constitutes the KZ

scaling laws and forms the key verifiable predictions of KZM.

5.1.1 Kibble-Zurek scaling laws

Adopting a linear quench protocol of the system parameter χ across the critical point

χc, we have

χ(t) = χi + (χc − χi)
(

1 +
t

τQ

)
. (5.2)

Here, we assume that the quench starts at t = −τQ with χi < χc in the symmetric

phase and is continued till χf > χc in the symmetry broken phase. The critical point

χc is reached at t = 0 and the adiabaticity of the quench is controlled by the quench

rate τQ. Without loss of generality, let us assume χi = 0. With this, the reduced

distance is

ε(t) =
χ(t)− χc

χc
=

t

τQ
. (5.3)

As the critical point is approached, the relaxation time of the system diverges near the

phase transition, which results in loss of adiabaticity. The adiabaticity of the quench

depends upon the competition between the system relaxation time and the inverse tran-

sition rate |ε/ε̇|. In Fig. 5.2, these two timescales are shown as a function of the quench

parameter χ for two different quench rates. The KZM categorizes the dynamical evo-

lution as adiabatic, away from the critical point for τ < |ε/ε̇|, and as impulse near the

critical point for τ > |ε/ε̇|. The crossover between adiabatic and impulse evolution

occurs at ∣∣∣∣ ε̂˙̂ε
∣∣∣∣ = τ(ε̂). (5.4)
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Figure 5.2: Schematic illustration of the relaxation time curve (blue) and the inverse

transition rate curve (red) as a function of quench parameter χ, for two quench rates

τQ1 > τQ2 . The crossover between adiabatic and impulse regimes happens at time t̂

with corresponding value of quench parameter χ̂.

Using the power law divergence of relaxation time given in Eq. (5.1) and the quench

protocol given in Eq. (5.2), we get

τQ|ε̂| ∝ |ε̂|−νz,

|ε̂| ∝ τ
−1/(1+νz)
Q ,

|t̂| ∝ τ
νz/(1+νz)
Q = τ b zQ , (5.5)

where, b = ν/(1 + νz). In Fig. 5.2, the crossover between adiabatic and impulse

evolution happens when the relaxation time curve (blue) and the inverse transition rate

curve (red) intersects. It should be noted that for slower quenches (larger τQ), the width

of the impulse region is smaller. However, due to the divergence of the relaxation time

near the critical point, the impulse region can’t be eliminated, howsoever slow the

quench.

The critical slowing down of the system near the critical point is responsible for

the generation of topological defects in the quenched state when it exits the impulse

domain and enters the symmetry broken state. The KZM assumes that the dynamical

state is frozen in the impulse domain −t̂ < t < t̂. The correlation length doesn’t

vary during the impulse duration, thus, ξ(t̂) = ξ(−t̂) = ξ̂ [84, 216]. The spontaneous

symmetry breaking at χ(t̂), leads to the formation of correlated domains of size ξ̂
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with non-zero order parameter. The meeting point of these domains, with independent

choices of the order parameter, constitutes topological defects in the quenched state.

The correlation length and the topological defect density depends on the quench rate.

The scaling relations can be obtained using Eq. (5.1) and Eq. (5.5) as

ξ̂ ∝ | ε̂ |−ν ,

ξ̂ ∝ τ
ν/(1+νz)
Q = τ bQ. (5.6)

If def is the dimension of the topological defect and D is the spatial dimension, then

the topological defect density N̂ at time t̂ is given by

N̂ ∝ ξ̂def/(ξ̂)D,

N̂ ∝ τ
(def−D)ν/(1+νz)
Q = τ−dQ , (5.7)

where, d = (D − def)ν/(1 + νz). The scaling relations, described by Eq. (5.5) - (5.7)

forms the key testable predictions of the KZM.

5.1.2 Quantum Kibble-Zurek mechanism

The KZM was originally formulated for the thermal phase transitions and subsequently

extended to accommodate QPTs [108, 217]. In isolated quantum systems at zero tem-

perature, the inverse of the energy gap ∆ between the ground state and the first excited

state sets the natural time scale. And, it plays a role analogous to the relaxation time

in thermal phase transitions. For the case of QPTs, the adiabatic evolution of the

quenched state is followed if the instantaneous energy gap separating the excitations is

larger than the relative change in the energy gap with the quench. Thus, the adiabatic

evolution halts near the critical point where the energy gap vanishes with a power law

divergence ∆ ∝ |ε|ν z. The breakdown of the adiabaticity occurs in the regime where

d(log ∆)/dt > ∆. Thus, the time instant demarking the adiabatic and non-adiabatic

evolution is

d

dt
log ∆̂ ∼ ∆̂,

d

dt
log |ε̂|ν z ∼ |ε̂|ν z,

d

dt
log

( |t̂|
τQ

)ν z
∼

( |t̂|
τQ

)ν z
,
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|t̂| ∼ (τQ)ν z/(1+ ν z).

This is similar to the KZM scaling relation in Eq. (5.5), obtained for thermal phase

transitions. A relation similar to Eq. (5.7) for the defect density in QPTs can also be

obtained [110].

In this work, we study the quench dynamics across the MI-SF QPT in BHM. We

observe the validity of the KZ power law scaling relations, however, there are devia-

tions from the key assumption of KZM on the frozen state dynamics in the impulse

regime. This assumption also been critically explored in previous works [218–220].

5.2 Quantum quench in BHM

In this section, we shall discuss the dynamics of ultracold atoms trapped in optical

lattices, described by the BHM Hamiltonian, under a quantum quench. These novel

systems offer precise control over system parameters and are ideal for studying the dy-

namics of the system under a quench. Furthermore, these systems allow investigations

on quantum phases in the strongly interacting regimes. For ultracold atoms in a 2D

optical lattice, the BHM Hamiltonian is given by

ĤBHM =
∑
p,q

[
− J

(
b̂†p+1,q b̂p,q + b̂†p,q+1b̂p,q + H.c.

)
+
U

2
n̂p,q(n̂p,q − 1)−µn̂p,q

]
, (5.8)

where p, q are lattice site coordinates along the x and y directions, respectively. The

system parameters, hopping strength J and chemical potential µ are scaled by the on-

site interaction energy U , which is set unity. The competition between J and µ, gives

MI and SF quantum phases in various parameter regimes with a QPT between the two.

In this Chapter, we shall examine the quench dynamics across the MI-SF QPT. This

is achieved by varying J at constant µ, and we consider two cases. First, for the QPT

across the multicritical point located at the tip of the MI lobe, and second, for a generic

QPT located below the tip of the MI lobe. There exist few experimental investiga-

tions on KZ scaling laws for quench across the MI-SF QPT [145, 146]. Theoretical

investigations with numerical techniques like truncated Wigner approximation[221],

variational wavefunction [114], time-dependent Gutzwiller [142, 222–225] have been

done to study KZ scaling laws in BHM and its extensions. In this study, we have em-
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ployed time-dependent single-site Gutzwiller and cluster-Gutzwiller mean-field meth-

ods to investigate the KZ scaling laws for QPTs separating the MI and SF phases of

BHM Hamiltonian. In the phase diagram of BHM in J/U - µ/U plane, the MI phase

exists as a lobe, separated from the SF phase by a QPT. At the tip of the lobe, the

QPT is continuous and belongs to the universality class of 3D XY model with critical

exponents ν = 2/3 and z = 1. Away from the tip, the QPT occurs with the critical

exponents ν = 1/2 and z = 2 [13]. To investigate this change in the nature of the

critical exponents, we have studied the quench dynamics at the tip and below the tip

of the Mott lobe. Below the tip of the Mott lobe, the excitations are predominantly of

hole type which is computationally favourable as it helps in putting a lower cut-off for

the single-site Fock space basis in CGMF calculations. To begin with, we first discuss

the quench protocol and some properties of the quenched state.

5.2.1 Quench Protocol

The quench across the MI-SF QPT is studied by choosing a linear quench protocol for

dynamical variation in the hopping strength, which as discussed earlier in Eq. (5.2), is

given by

J(t) = Ji + (Jc − Ji)
t+ τQ
τQ

. (5.9)

Here, Ji corresponds to the value of the hopping strength at the beginning of the

quench, which commences at t = −τQ. The initial value Ji is chosen so that the

system is in the MI state. And, the critical value for the QPT Jc, obtained from equi-

librium studies, is attained at t = 0. The hopping strength is linearly quenched with

time and is terminated only after the quenched state has transformed to the superfluid

state. The parameter τQ determines the rate at which the parameter is quenched, thus

controlling the adiabaticity of the process.

5.2.2 Quenched state in MI and SF regimes

The superfluid phase is distinguished from the MI phase using the average SF order

parameter

φ =
1

Ns

∑
p,q

|φp,q|, (5.10)
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where Ns is the total number of lattice sites. The quenched state in the superfluid

regime is populated with the topological defects, vortices and anti-vortices generated

by spontaneous symmetry breaking at the QPT. The number of topological defects in

the quenched state can be counted as the absolute sum of the vorticity summed over all

lattice sites, given by

Nv =
∑
p,q

|Ωp,q|. (5.11)

The vorticity Ωp,q at site (p, q) is given by the phase winding in the SF order parameter

for a closed loop around site (p, q), given by

Ωp,q =
1

4

[
sin(θp+1,q − θp,q) + sin(θp+1,q+1 − θp+1,q)

− sin(θp+1,q+1 − θp,q+1)− sin(θp,q+1 − θp,q)
]
,

(5.12)

where, θp,q is the phase of local SF order parameter φp,q. Now, we start with discussions

on the quench across the generic phase transition, below the tip of the Mott lobe, with

SGMF methodology.

5.3 Quench across MI-SF QPT at µ = 0.3

Let us start the discussion with the initial state preparation scheme. The initial state

is the equilibrium state for µ = 0.3 and J = 0 on a 96 × 96 square lattice. For the

parameters chosen, the equilibrium state corresponds to the MI phase with unit occu-

pancy on all the sites. To the wavefunction of the state, we add random fluctuations.

This is crucial as it mimics the quantum fluctuations necessary to drive the QPT. In

this regard, we choose entirely random uni-variate phase fluctuation in the range 0 to

2π and is added to the phase of the coefficient of dominating basis state in the equilib-

rium wavefunction. Furthermore, we introduce a density fluctuation of the order 10−3,

chosen from a random univariate distribution, and is then added to all the coefficients.

We note that the magnitude of the density fluctuations added to the initial wavefunc-

tion affects the cross-over time t̂. A larger magnitude of the fluctuations shifts t̂ closer

to the critical point Jc and this can be seen from Fig. 5.3. We, however, find that this
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Figure 5.3: Plot showing the effect of density noise, introduced in the initial wavefunc-

tion as a part of the state-preparation protocol, on the dynamical state under quench for

τQ = 100. The magnitude of the density noise is chosen across a range of values for

which the dynamical quantities are plotted with different colors for different magni-

tudes of noise. As evident from red colored lines, the dynamical state remains in the

same phase if the density fluctuations are not introduced.

doesn’t affect the power law scalings of the cross-over time and defect density. Further-

more, the magnitude of the density fluctuations introduced can be estimated following

a detailed analysis of the quantum and thermal fluctuations using the Bogoliubov-de

Gennes analysis of the collective modes [223]. This dressed state is then used as the

initial state, which is then evolved in time by varying J as per the quench protocol. The

dynamical state at a later time is obtained by solving the time-dependent Gutzwiller

equations using the RK4 method till the quench is terminated in the SF regime. For

solving the coupled Gutzwiller equations using RK4 method, we choose ∆t = 0.005

as the time step. Calculations done with a smaller time step, ∆t = 0.001, suggest no

effect on the dynamical state in the region of study. It should be emphasized that ow-

ing to the random fluctuations in the initial state, the dynamical properties of the state

should be sample averaged. For this purpose, we choose a 40 different realizations of

the initial state. Additionally, we have chosen a large lattice of dimension 96 × 96,

with periodic boundary conditions along the two spatial dimensions, in order to have a

good statistics over the defects generated in the quench process. The lattice dimension

of 96 × 96 is cleverly chosen so that it can be tiled using 2 × 2 and 2 × 3 clusters for

CGMF studies, discussed in later part of this Chapter.
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Figure 5.4: Dynamical evolution of the absolute magnitude of some dominating Fock

state coefficients using SGMF methodology for τQ = 100. For studying the trend, we

choose the state at the middle of the lattice, with wavefunction given by |ΨGW〉(p,q) =∑
n

c(p,q)
n |n〉p,q. The green colored curve corresponds to the coefficient of the state

|n = 1〉 and red curve corresponds to that of |n = 0〉 state. The blue and yellow curves

represent the coefficients for the basis states |n = 2〉 and |n = 3〉 respectively.

5.3.1 Quench dynamics using single-site Gutzwiller mean-field

Using equilibrium SGMF code, we generate the initial MI(1) state with a sufficiently

large cutoff Nb = 6 on the single-site occupancies. The temporal evolution of the

dressed state (one realization) under a quench in J is shown in Fig. 5.4 for some dom-

inating basis states. In the figure, the temporal dependence of the coefficient of most

dominant |n = 1〉p,q Fock state basis is shown in green color. And the red, blue and

yellow colored curves correspond to the Fock states with 0, 2 and 3 occupancies, re-

spectively. As seen from the figure, away from the critical point, the quenched state

follows adiabatic evolution and remains the MI(1) state. However, the quenched state

retains MI(1) character till some time after crossing the criticality at t = 0. On care-

ful inspection, the quenched state has fluctuations of the order of the density noise

introduced in the initial dressed state. This is shown in the inset of the figure. Thus,

the state is frozen with respect to time near the critical point, which agrees with the

assumption of the “impulse” regime in KZM. Afterwards, the evolution starts when J

is sufficiently away from Jc, and the quenched state exhibits characteristics of the SF

phase, which can be seen from the SF order parameter.
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Figure 5.5: Temporal evolution of the SF order parameter φ (blue) and defect density

Nv (red) τQ = 100. The quenched is terminated at t = 100, following which free

evolution starts. The crossover time t̂ is marked with dashed grey line, identified using

the overlap measure O, shown in the inset.

5.3.1.1 Temporal evolution of φ and Nv

Fig. 5.5 shows the temporal evolution of averaged SF order parameter φ (blue col-

ored curve) of quenched state for quench rate τQ = 100. The quench is terminated at

t = τQ, corresponding to J = 2Jc, and afterwards, the state is allowed to evolve freely.

In the figure, φ is initially zero (of order 10−3), signifying a MI state. This small value

of φ originates from the density fluctuations introduced in the dressed initial state. It

shows a delayed growth till t = t̂ > 0, after which φ rises exponentially. This is due to

the formation of uncorrelated SF domains inside which the order parameter continues

to grow. This is followed by some oscillatory behavior as a result of the phase order-

ing process. These oscillation decays with time with a global phase coherence in the

system. After t = τQ, the free evolution starts and φ shows a saturation.

In Fig. 5.5, the red colored curve shows the temporal evolution of the defect density

Nv. As a result of the completely random phase fluctuations added to the initial dressed

state, the quenched state has a large number of defects, which denotes the phase wind-

ings. Near criticality, Nv starts decaying rapidly and these phase windings disappear

with the phase redistribution. After t̂, uncorrelated domains of SF phase starts grow-

ing in the system, with annihilation of vortex- anti-vortex pairs, Nv keeps decreasing

with the time as the system becomes phase coherent. The KZM predicts the number
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of defects at the crossover time t̂ to follow a power law scaling with τQ.

5.3.1.2 Overlap measure for locating t̂

To locate the crossover time t̂, we utilize the KZM assumption that dynamical evolution

stops and the state is frozen in the impulse regime, where the wavefunction changes by

only a phase factor. Backed by the observation shown in Fig. 5.4, we use the overlap

measure to locate t̂. This is defined as the inner product of the dynamical wavefunction

at any time with the wavefunction at time t = 0, given by

O(t) = |〈ψ(0)|ψ(t)〉|. (5.13)

The deviation of the overlap from unity signals the crossover time t̂. In our calcula-

tions, we find the overlap starts varying rapidly at the value of overlap around 0.99999.

This value is observed to be dependent on the magnitude of the density fluctuations in

the dressed state. Subsequently, we choose a threshold value for overlap to be 0.99999

as a locator for t̂. The overlap measure is shown in the inset of the Fig. 5.5.

To show the distribution of the SF order parameter at various times, we plot the

amplitude and phase of φp,q at various times in Fig. 5.6 for one sample realization. The

amplitude profile is shown in Fig. 5.6 (a-c) while Fig. 5.6 (d-f) shows the phase profile

at times t = 0, t̂, and τQ. The initial dressed state, with φ ∼ 10−3, is seeded with a

large number of defects. This persists till t = 0, as shown in Fig. 5.6 (a,d). Towards the

end of the impulse at t = t̂, uncorrelated domains of SF with small amplitudes of order

parameter appear, as shown in Fig. 5.6 (b,e). These SF domains continue to grow with

the annihilation of vortex- anti-vortex in pairs and the system moves towards a global

phase coherence with time. This can be seen at time t = τQ, shown in Fig. 5.6 (c,e).

5.3.2 Kibble-Zurek scalings

Now we discuss the results for scaling behaviour of the crossover time and defect

density N̂v, with the quench rate in the range τQ ∈ {10, 1000}. As shown in left panel

of Fig. 5.7, we observe a power-law scaling for t̂ and N̂v , however, it shows a slight

deviation at the extreme values of the quench rate. The deviation is more pronounced

for defect density in the case of extremely fast quench. However, with extremely slow
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Figure 5.6: Panels (a-c) show snapshots of |φp,q| while panels (d-f) show the phase

profile of φp,q at various time instants t = 0, t̂, and τQ during the quench for τQ = 100.

quenches (large τQ), the variation in defect density across the sample is large. From

the power law fit of the data, in the regime τQ ∈ [25, 300], we observe t̂ ∝ τ 0.496±0.004
Q

and N̂v ∝ τ−0.348±0.038
Q . A comparison of these exponents with Eq. (5.5) and Eq. (5.7)

gives bz = 0.496± 0.004 and d = 0.348± 0.038.

It’s important to mention that there exist various works where the crossover time t̂

is defined as the instant when the average SF order parameter reaches twice its value

at criticality, that is φ(t̂) = 2φ(0) [142, 144]. In the vicinity of this time instant, there

is a rapid increase in φ, however, this choice of the growth factor of 2 is somewhat

arbitrary. So, we investigate the power law scaling with the identification of t̂ with

various choices of the growth factor, defined as φ(t̂)/φ(0). We observe the power

law scalings for t̂ and N̂v. However, the obtained exponents exhibit large variations

depending on the choice of the growth factor. This is shown in the right panel of

Fig. 5.7. It can be seen that the variation with the choice of growth factor goes away

only for very large values∼ 20. This happens because, near this time, the rate at which

φ grows is quite large and different choices of growth factor correspond to neighboring

time instants. A comparison of the obtained results with the scaling exponents obtained
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Figure 5.7: The left panel shows the power law scaling of t̂ and N̂v as a function of

τQ, using overlap measure for locating t̂. The power law fit is done for τQ ∈ [25, 300].

The Right panel shows the dependence of the power law exponents of t̂ (bz), with blue

curve, and of N̂v (d), with red curve, on φ(t̂)/φ(0) which is used for locating t̂.

using overlap criteria agrees with a growth factor ∼ 7.

We consider that the defect produced in the quench corresponds to def = 1. This is

because, the topological defects are always produced in the form of vortex-anti-vortex

pairs, thereby constituting a 1D defect. Fig. 5.8 shows the temporal dependence of

the number of defects with positive and negative vorticity. In the figure, it can be

seen that they are almost equal in number. The large number of defects at t = −τQ,

corresponds to phase windings in the initial state dressed with entirely random phase

fluctuations. And as the quench progresses, these defects are created and annihilated

in pairs. With this, we obtain the critical exponents ν = 0.69 ± 0.11 and z = 1.42 ±
0.17. These dynamically obtained exponents should be compared with the equilibrium

values, which correspond to the mean-field exponents ν = 1/2 and z = 2. Next, we

discuss the results obtained for the dynamics with the CGMF methodology.
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Figure 5.8: Temporal evolution of the topological defects in the quenched state. Blue

curve shows the number of vortices with a vorticity Ωp,q > 0.5, while the green curve

shows the number of anti-vortices with a vorticity Ωp,q < −0.5. The blue and green

curves are almost identical, implying a equal number of vortex and anti-vortex in the

quenched state.

5.3.3 Quench dynamics with CGMF

With the CGMF method, we revisit the dynamics of the quenched state and study its

properties. For this, we have chosen 2× 2 and 2× 3 clusters to tile the 96× 96 lattice.

Since the Fock-space size increases with the cluster dimension, we allow the single-

site occupancy to be atmost 2. The basis state dimension now becomes 81 for the

2× 2 cluster, and 729 for the 2× 3. Thus, choosing large sized clusters is difficult. To

circumvent this problem, state reduction can be done where the basis states are filtered

out. However, in a quench near the critical point of the phase transition, excitations are

seeded in the state, which renders the process of state reduction unfeasible. We have

checked that the extra energy due to these excitations depends upon the quench rate.

Furthermore, compared to the SGMF method, we observe the intra-cluster dynam-

ics near the critical point. This can be seen in Fig. 5.9, where we have plotted the

absolute value for some of the basis state coefficients with 2 × 2 cluster CGMF. The

strength of the uniform unit filling basis state with 4 particles, shown with green curve,

decreases with time. While, other 4 particle basis state, shown with red curve, increases

with time. The CGMF method, thus, captures the evolution of the dynamical state in



5.3. Quench across MI-SF QPT at µ = 0.3 93

-100 -50 0 50
t

0

0.5

1

|C
n|

15 25 35
t

0.005

0.015

|C
n|

Figure 5.9: Temporal evolution of the absolute magnitude of the coefficients of

the basis states with 2 × 2 cluster CGMF for τQ = 100. For studying the trend,

we choose the cluster state at the middle of the lattice, with the state given by

|ψα〉 =
∑

n1n2n3n4

c(α)
n1n2n3n4

|n1n2n3n4〉. The green curve corresponds to c
(α)
1111, while

red curve corresponds to coefficient of states such as |0211〉 and its permutations. The

coefficients of the basis states with extra particle/hole, with respect to the unit filling,

like |0111〉, |2111〉 and their permutations are plotted as blue curve.

the “impulse” regime of the KZM. This is due to the better accounting of correlations

captured by the exact treatment of intra-cluster hopping terms. Since the impulse re-

gion is absent, the overlap measure, defined earlier, deviates quite early from unity and

is not suitable for identifying t̂. This is shown in Fig. 5.10. The crossover time t̂ marks

the development of the SF order parameter and inter-cluster dynamics. In Fig. 5.9, this

time instant corresponds to t ∼ 30 where the coefficient of the basis states with ex-

tra particle/hole on top of uniform unit filling, shown with blue curve, starts growing.

The SF order parameter at this instant starts rapidly growing, as seen from the inset of

Fig. 5.10.

As mentioned earlier, with SGMF, the power law exponents obtained from the

overlap measure are quite close to that obtained by the criteria φ(t̂) = 7φ(0). Motivated

by this, we use this definition of the 7-fold growth in φ for locating t̂ in CGMF studies.

We note that the crossover time and N̂v follow a power-law scaling with τQ. This is

shown in the left panels of Fig. 5.11 and Fig. 5.12 for the CGMF case with 2 × 2 and

2×3 clusters, respectively. Similar to the SGMF case, it is observed that the power-law
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Figure 5.10: Overlap measure with CGMF using 2× 2 clusters at τQ = 100. Overlap

measure is not suitable for locating t̂, as it starts deviating quite early and doesn’t show

a sharp decay. The average SF order parameter is shown in the inset.

behaviour show deviations for extreme of τQ. Thus, in order to obtain the exponents

of the power-law, we have fitted the data in the range τQ ∈ [25, 300]. As the previous

case, we find that different choices for φ(t̂)/φ(0), gives different scaling exponents.

This is shown in the right panels of Fig. 5.11 and Fig. 5.12 for 2× 2 and 2× 3 clusters,

respectively. We extract the critical exponents ν and z using KZ scalings t̂ ∝ (τQ)
νz

1+νz ,

and N̂v ∝ (τQ)
ν

1+νz . Table 5.1 shows the comparison of critical exponents dynamically

obtained using the SGMF and CGMF methods and with the definition φ(t̂) = 7φ(0).

Here, 1 × 1 refers to the SGMF case. We find that the critical exponent ν, which

characterizes the divergence of the correlation length, show a marginal change without

any specific trend with the SGMF and CGMF methods. However, the critical exponent

z, which characterizes the divergence of the system’s characteristic time, shows an

increasing trend with the larger cluster sizes. These dynamically obtained exponents

can be compared with the equilibrium mean-field exponents ν = 1/2 and z = 2.

5.4 Quench across the tip of MI(1) lobe

The QPT at the tip of the Mott lobe is a continuous phase transition and belongs to

the universality class of the 3D XY model. In the parameter space, the tip of the

MI(1) lobe occurs at the value of chemical potential, µ ≈ 0.4. Like in the earlier
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Figure 5.11: Left panel shows the power law scaling of t̂ and N̂v as a function of

τQ, using CGMF with 2 × 2 clusters. The crossover time is identified by the relation

φ(t̂) = 7φ(0). The power law fit is done for τQ ∈ [25, 300]. Right panel shows the

dependence of the power law exponents of t̂ (bz), with blue curve, and of N̂v (d), with

red curve, on φ(t̂)/φ(0) which is used for locating t̂.

cluster 1× 1 2× 2 2× 3 equilibrium
νz

1 + νz
0.484± 0.003 0.470± 0.004 0.508± 0.005 0.5

ν

1 + νz
0.347± 0.034 0.313± 0.033 0.319± 0.037 0.25

z 1.39± 0.15 1.50± 0.17 1.59± 0.20 2

ν 0.67± 0.09 0.59± 0.09 0.65± 0.11 0.5

Table 5.1: Comparison of dynamically obtained critical exponent against various clus-

ter sizes, for QPT at µ = 0.3.

case of quench below the tip, here too, we study the properties of the dynamical state

under a quench across the multi-critical point at the tip of the MI(1) lobe (µ = 0.4).

As discussed previously, we start with an equilibrium MI(1) state and dress it with

the appropriate fluctuations in the density and the phase. This dressed state is then

allowed to evolve under a linear quench in the hopping strength across the QPT into

the SF regime. We study the averaged SF order parameter and the defect density

in the quenched state with time. As observed previously, the symmetry breaking is

observed at t = t̂ > 0, after which the quenched state possess characteristics of the

superfluid state. The multicritical point at J = Jc is reached at time t = 0. In addition,

topological defects are generated in the quenched state and destroyed near the critical
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Figure 5.12: Left panel shows the power law scaling of t̂ and N̂v as a function of

τQ, using CGMF with 2 × 3 clusters. The crossover time is identified by the relation

φ(t̂) = 7φ(0). The power law fit is done for τQ ∈ [25, 300]. Right panel shows the

dependence of the power law exponents of t̂ (bz), with blue curve, and of N̂v (d), with

red curve, on φ(t̂)/φ(0) which is used for locating t̂.

point through vortex- anti-vortex pair annihilations. We note the crossover time at

which the quenched state becomes SF, and the defect density at this time instant for a

range of values for quench rate τQ ∈ [10, 1000].

Studying the evolution of the quenched state with the SGMF method, we observe

an impulse regime near the criticality at t = 0. This allows usage of the overlap

protocol, defined earlier, to locate t̂. Noting t̂ and N̂v for various quench rates, we find

these have power-law dependence on the quench rate. This trend is evident from the

plots shown in Fig. 5.13. The power law fitting of the data for τQ ∈ [25, 300], gives

t̂ ∝ τ 0.421±0.004
Q and N̂v ∝ τ−0.325±0.036

Q . We find similar power-law exponents for the

case of locating the crossover using the relation φ(t̂) = 7φ(0), similar to the previously

discussed case of the quench at µ = 0.3. The power-law exponents obtained at µ = 0.4

are different from the values obtained earlier with SGMF for quench at µ = 0.3. This

is expected as the QPT at the tip is special and belongs to the universality class of

3D XY model. Using these power-law scalings, we extract ν = 0.56 ± 0.09 and

z = 1.30 ± 0.16. These dynamically obtained critical exponents are to be compared

with the critical exponents of the 3D XY model, ν = 2/3 and z = 1.

Next, we study the quench dynamics with CGMF using 2 × 2 and 2 × 3 clusters

and track the evolution of the dynamical state. Similar to the previous observation for
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Figure 5.13: Power law scaling of t̂ and N̂v at the tip of the MI(1) lobe (µ = 0.4),

using the SGMF method. The crossover time is located using the overlap measure.
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Figure 5.14: Power law scaling of t̂ and N̂v, with 2 × 2 (left panel) and 2 × 3 (right

panel) clusters.

QPT at µ = 0.3U , we observe the “impulse regime” is absent and the dynamical state

evolves near the criticality. Thus, the overlap measure is not suitable for locating t̂.

So, we use the definition φ(t̂) = 7φ(0) for identifying the crossover time for various

quench rates. As a function of the quench rate, the crossover time and the defect

density N̂v shows a power-law behavior as shown in Fig. 5.14. A comparison of the

power-law exponents obtained with the SGMF and CGMF methods, with t̂ identified

by the definition φ(t̂) = 7φ(0), is shown in Table 5.2. We find that from the dynamics,

ν ∼ 1/2 and z ∼ 1 which can be compared with the critical exponents of the 3D XY

model, ν = 2/3 and z = 1.
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cluster 1× 1 2× 2 2× 3 equilibrium
νz

1 + νz
0.407± 0.004 0.390± 0.005 0.343± 0.007 0.4

ν

1 + νz
0.335± 0.032 0.308± 0.034 0.335± 0.036 0.4

z 1.21± 0.13 1.27± 0.16 1.02± 0.13 1

ν 0.57± 0.08 0.50± 0.09 0.51± 0.10 2/3

Table 5.2: Critical exponent for t̂ and N̂v for various cluster sizes, for QPT at tip of

MI(1) lobe µ = 0.4.

5.5 Summary of the chapter

In this chapter, we have studied the quench dynamics across the MI-SF quantum phase

transition of BHM. For a linear quench in J and at fixed µ = 0.3, and 0.4, we have stud-

ied the properties of the quenched state. We find power-law scalings for the crossover

time and the defect density, with the quench rate, as predicted by KZM. However, the

power-law behavior deviates at extreme values of the quench rate. We have used the

SGMF and CGMF methodologies for our studies. With the CGMF method, we note

the evolution of the dynamical state in the “impulse” regime of KZM. The critical

exponents obtained from the quench dynamics study are close to their equilibrium val-

ues. We note that, with larger cluster sizes, the critical exponent z improves towards

equilibrium value. This is expected as z, which is the dynamical critical exponent, is

associated with the divergence of the system’s characteristic time. And, a larger sized

cluster with a large number of basis states allows better study of the dynamics through

redistribution of initial state population amongst various low-lying states.
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Summary and future scope

In summary, this thesis focuses on the exploration of the FQH states in a system of

ultracold bosonic atoms confined in a 2D square optical lattice. We have modeled the

system with the bosonic Harper-Hofstadter model in the presence of artificial gauge

fields. We present the ground-state compressibility plot and discuss the parameter do-

mains of the incompressible states that have filling factors similar to that of the FQH

states. We use the CGMF method, with appropriate cluster sizes, to obtain the ground

state quantum phases. The CGMF method is good at capturing the quantum correla-

tions within the state, making it well-suited for studying the FQH state. To characterize

these incompressible states, we use the ED method with a fixed number of particles

corresponding to ν = 1/2 filling. The study of two-point correlation function shows

signatures of a gapped bulk and gapless edges. With the calculation of the MBCN,

we demonstrate the topological order of the ν = 1/2 state. For the case of dipolar

atoms with long-range interactions, we extend the model with the interactions trun-

cated to NN. We demonstrate that within certain parameter regimes, the ν = 1/2 FQH

state emerges as the ground state of the extended Hamiltonian. The dipolar interac-

tions preserve the topological order of the FQH state and ensure its stability against

the competing SF phase.

In addition, in this thesis, we have introduced a novel implementation of the exact

diagonalization method suitable for bosonic optical lattice systems. This implementa-

tion utilizes a hierarchical approach for generating the basis states of the lattice sys-

tems. The hierarchical construction generates the single-site Fock states, row-states,

99
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multi-row states, and finally, the basis states for the entire lattice. This multi-step ap-

proach allows the “state-reduction”, where some basis states are filtered out to reduce

the dimension of the Hamiltonian matrix. This implementation efficiently constructs

the matrix with the identification and calculation of only non-zero matrix elements.

With theoretical arguments and backed by numerics, we show that the time required in

the matrix construction almost scales linearly with the dimension of the matrix and the

number of lattice sites. Furthermore, each step of the implementation is parallelizable

over multiple nodes for faster computations. We use this ED procedure for studying

the bipartite entanglement entropy in the ν = 1/2 FQH state on a large lattice. The

extraction of topological entanglement entropy (TEE) from the area law is ambiguous

due to the definition of the boundary length on lattice system. This ambiguity can be

neglected for larger sized lattices. The TEE calculated with subdivision of lattice in

terms of “plural areas” [191], shows a mismatch between the calculated value and the

theoretical estimates. However, our calculations suggest it can approach the theoretical

estimate with a larger choice of lattice dimension.

In addition to equilibrium investigations, we have explored the quench dynamics

of ultracold bosonic atoms confined in optical lattices. In particular, we have focused

on quench in hopping strength J , at constant µ, across the MI-SF quantum phase tran-

sition. In our study, we have chosen a linear quench protocol for quench across the

multicritical point at the tip of the Mott(1) lobe and for a generic QPT at µ = 0.3.

With SGMF, we find the dynamical state doesn’t evolve near the critical point of QPT,

in accordance with the “impulse” region approximation of KZM. This allows the use

of the overlap measure for identifying the impulse to adiabatic crossover time t̂. We

demonstrate the KZM predictions of power law scalings for t̂ and defect density as a

function of quench rate. However, with CGMF, the “impulse” region is absent. So, we

locate t̂ based on the rise in averaged SF order parameter. We note a power law behav-

ior similar to the SGMF, but with slightly different exponents. The critical exponents

obtained in our study are close to their equilibrium counterparts. It is noteworthy that

the deviation of the critical exponent z from the equilibrium value decreases with larger

cluster sizes. This may be due to the better capturing of dynamics with the availability

of more accessible basis states.
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Scope for future works

This thesis opens up new avenues for future research, which include the following key

areas of focus:

• Using the spatial bipartite entanglement to identify minimal entangled states, the

modular matrix and corresponding quasiparticle statistics can be extracted for

topologically nontrivial systems. We wish to study this for non-Abelian FQH

states in future works.

• Our studies on bipartite entanglement in FQH state in chapter 3 suggest im-

provement in the calculated TEE with larger lattice size. With larger lattices, the

area law can be examined to study the sub-leading corrections arising from the

geometry of the boundary. We wish to study this in future works.

• With the advancements in technology, very recently the ν = 1/2 FQH state was

experimentally realized for 87Rb atoms in optical lattice. Our study in chapter 4

suggests the possibility of observing this topological state with dipolar conden-

sates in the near future.

• In our study on FQH phases, we have limited ourselves to closed systems. In the

pursuit of realizing these phases in the experiments, the effects of dissipations

arising from the interactions with the surroundings should be investigated. There

are some investigations within the framework of Markovian dynamics, however,

the effect of non-Markovian environment should be explored.

• The quench dynamics study in chapter 5 can be extended to examine the domain

growth, phase ordering kinetics, and entanglement growth following the quench.

We wish to study these in future works.





Appendix A

An example of hierarchical

wavefunction

As an example, let us focus on describing a quantum phase corresponding to a hole

fluctuation over a commensurate filling of 2 bosons per site on a 3 × 3 lattice. As

mentioned earlier, we generate the basis states of 3× 3 lattice using hierarchical wave-

functions: row-states and multi-row states. Now, in the row-state construction, we can

constrain the single-site occupancies so that it can assume values as 1 or 2 only. Fur-

thermore, since we are interested in a quantum phase with 1 less particle over uniform

filling of 2 bosons per site, we filter the possible row-state configurations by imposing

the constraint that within a row, comprising of only 3 lattice sites, the total number of

bosons can be either 5 or 6. With these constraints, η = 1, NB = 3, and σ = 5 and

σ + δ = 6, the possible row-state configurations, totalling to β = 4 in number are

listed in Table A.1. From this Table, it can be observed that the row-state configura-

tions |φm〉 ≡ |n1, n2, n3〉, are uniquely identified by corresponding row-state quantum

number m and by the state index i assigned according to the ordering in m.

Next, in the hierarchical order, we consider the multi-row state comprising of two

rows corresponding to a 3 × 2 lattice. We construct the two-row states
∣∣Φ2

M

〉
from

the direct product of row-states |φm〉, chosen from Table A.1 with some appropriate

constraints on the total number of particles in the state. Recalling that we are interested

in representing a quantum phase with hole fluctuation over uniform filling of 2 bosons

per site, we constrain the two-row states such that total number of bosons in the two
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|φm〉 ≡∣∣n1 n2 n3

〉 ∣∣1 2 2
〉 ∣∣2 1 2

〉 ∣∣2 2 1
〉 ∣∣2 2 2

〉
m 3 5 6 7

i 1 2 3 β = 4

Table A.1: Table showing all possible row-state configurations together with the cor-

responding values of the row-state quantum number m and state index i. The possible

row-states are constrained by η = 1, NB = 3, σ = 5 and δ = 1.

rows can be either 11 or 12. With this constraint, possible two-row states, β(2) = 7 in

number, are shown in Table A.2. Finally, the basis states corresponding to the system

of N = 17 particles on a 3 × 3 lattice can be constructed from direct product of

rowstates and two-row states, constructed earlier in Table A.1 and A.2. This is done by

constraining the total number of particles in the basis state to be equal to 17. Table A.3

lists all such possible basis states, which are Γ = 9 in number.
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∣∣Φ2
M

〉
=

|φm2〉
⊗
|φm1〉

M = (m1,m2) M = ‖M‖ I

∣∣∣∣ 2 2 2

1 2 2

〉
(3, 7) 31 1

∣∣∣∣ 2 2 2

2 1 2

〉
(5, 7) 47 2

∣∣∣∣ 2 2 2

2 2 1

〉
(6, 7) 55 3

∣∣∣∣ 1 2 2

2 2 2

〉
(7, 3) 59 4

∣∣∣∣ 2 1 2

2 2 2

〉
(7, 5) 61 5

∣∣∣∣ 2 2 1

2 2 2

〉
(7, 6) 62 6

∣∣∣∣ 2 2 2

2 2 2

〉
(7, 7) 63 β(2) = 7

Table A.2: Table illustrating all possible two-row states
∣∣Φ2

M

〉
, together with the vector

label M containing the contributing row-state configurations. The two-row states are

constrained by allowing the total particles within two rows to vary as either 11 or 12

only. The state index I is sequenced according to M .
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∣∣Φ3
M

〉
=

|φm3〉
⊗
|φm2〉
⊗
|φm1〉

M = (m1,m2,m3) M = ‖M‖ I

∣∣∣∣∣
2 2 2

2 2 2

1 2 2

〉
(3, 7, 7) 255 1

∣∣∣∣∣
2 2 2

2 2 2

2 1 2

〉
(5, 7, 7) 383 2

∣∣∣∣∣
2 2 2

2 2 2

2 2 1

〉
(6, 7, 7) 447 3

∣∣∣∣∣
2 2 2

1 2 2

2 2 2

〉
(7, 3, 7) 479 4

∣∣∣∣∣
2 2 2

2 1 2

2 2 2

〉
(7, 5, 7) 495 5

∣∣∣∣∣
2 2 2

2 2 1

2 2 2

〉
(7, 6, 7) 503 6

∣∣∣∣∣
1 2 2

2 2 2

2 2 2

〉
(7, 7, 3) 507 7

∣∣∣∣∣
2 1 2

2 2 2

2 2 2

〉
(7, 7, 5) 509 8

∣∣∣∣∣
2 2 1

2 2 2

2 2 2

〉
(7, 7, 6) 510 Γ = 9

Table A.3: Table illustrating all possible basis-states identified by the corresponding

vector label M for a system of 17 particles on a 3× 3 lattice.



Appendix B

Harper-Hofstadter Hamiltonian

Let us consider the kinetic part of the second-quantized Hamiltonian introduced in

Eq. (2.1) of Chapter 2, which describes neutral bosonic atoms in a lattice potential.

The effect of a homogeneous magnetic field B = ∇×A, can be incorporated with the

minimal coupling p→ p− eA. The kinetic part of the Hamiltonian is then given by

Ĥkin =

∫
drΨ̂†(r)

(−i~∇− eA)2

2m
Ψ̂(r) (B.1)

Assuming tight-binding limit and lowest-band approximation, we can expand the

field operators in terms of the Wannier functions of the lowest Bloch band, with an

appropriate phase factor to account the effect of magnetic field as

Ψ̂(r) =
∑
i

e
i e~

∫ r
Ri

A.dr′
w0(r−Ri) b̂i, (B.2)

Using Eq. (B.2) in Eq. (B.1) and assuming vanishing overlap between the Wannier

functions of distant lattice, we get

Ĥkin =
∑
〈i,j〉

b̂†i b̂j

∫
dre

−i e~
∫ r
Ri

A.dr′
w∗0(r−Ri)

(−i~∇− eA)2

2m
e
i e~

∫ r
Rj

A.dr′

w0(r−Rj)

=
∑
〈i,j〉

b̂†i b̂j
1

2m

∫
dre

−i e~
∫ r
Ri

A.dr′
e
i e~

∫ r
Rj

A.dr′

w∗0(r−Ri)
−~2∇2

2m
w0(r−Rj)

=
∑
〈i,j〉

b̂†i b̂j e
i e~

∫Ri
Rj

A.dr′ 1

2m

∫
dre−i

e
~
∮
A.dr′ w∗0(r−Ri)

−~2∇2

2m
w0(r−Rj)

(B.3)

where,
∮

A.dr′ is over the closed path Ri → r→ Rj → Ri. This integral is non-zero

for r farther from R and R′ where the overlap of Wannier function vanishes. Thus, we
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get

Ĥkin =
∑
〈i,j〉

e
i e~

∫Ri
Rj

A.dr′
(∫

drw∗0(r−Ri)
~2∇2

2m
w0(r−Rj)

)
b̂†i b̂j. (B.4)

Considering the remaining interaction terms of Eq. (2.1), similarly as done in Chap-

ter 2, we obtain the bosonic analogue of the Harper-Hofstadter Hamiltonian

Ĥ =
∑
〈i,j〉

eiφij Jij b̂
†
i b̂j +

U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i, (B.5)

where, φij =
e

~

∫ Ri

Rj

A.dr′ is the complex phase factor associated with the hopping

term and Jij , U are given by Eq. (2.5) and Eq. (2.6) respectively.
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[78] G. Möller and N. R. Cooper, Composite fermion theory for bosonic quantum

hall states on lattices, Phys. Rev. Lett. 103, 105303 (2009).

[79] S. S. Natu, E. J. Mueller, and S. Das Sarma, Competing ground states of

strongly correlated bosons in the Harper-Hofstadter-Mott model, Phys. Rev.

A 93, 063610 (2016).

[80] Y.-C. He, F. Grusdt, A. Kaufman, M. Greiner, and A. Vishwanath, Realizing

and adiabatically preparing bosonic integer and fractional quantum Hall states

in optical lattices, Phys. Rev. B 96, 201103 (2017).

[81] M. Gerster, M. Rizzi, P. Silvi, M. Dalmonte, and S. Montangero, Fractional

quantum hall effect in the interacting hofstadter model via tensor networks,

Phys. Rev. B 96, 195123 (2017).



BIBLIOGRAPHY 117

[82] R. Bai, S. Bandyopadhyay, S. Pal, K. Suthar, and D. Angom, Bosonic quantum

Hall states in single-layer two-dimensional optical lattices, Phys. Rev. A 98,

023606 (2018).

[83] T. W. B. Kibble, Topology of cosmic domains and strings, Journal of Physics A:

Mathematical and General 9, 1387 (1976).

[84] W. H. Zurek, Cosmological experiments in superfluid helium? Nature 317, 505

(1985).

[85] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Colloquium:

Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod.

Phys. 83, 863–883 (2011).

[86] A. del Campo and W. H. Zurek, Universality of phase transition dynamics:

Topological defects from symmetry breaking, International Journal of Modern

Physics A 29, 1430018 (2014).

[87] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for

generic isolated quantum systems, Nature 452, 854–858 (2008).

[88] R. Nandkishore and D. A. Huse, Many-body localization and thermalization in

quantum statistical mechanics, Annual Review of Condensed Matter Physics 6,

15–38 (2015).

[89] K. Damle, S. N. Majumdar, and S. Sachdev, Phase ordering kinetics of the bose

gas, Phys. Rev. A 54, 5037–5041 (1996).

[90] A. J. Bray, Theory of phase-ordering kinetics, Advances in Physics 51, 481–587

(2002).

[91] S. Puri, Kinetics of phase transitions (CRC press, 2009).

[92] L. Pastori, S. Barbarino, and J. C. Budich, Signatures of topology in quantum

quench dynamics and their interrelation, Phys. Rev. Res. 2, 033259 (2020).



118 BIBLIOGRAPHY

[93] D. Kagamihara, R. Kaneko, S. Yamashika, K. Sugiyama, R. Yoshii, S. Tsuchiya,
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and M. D. Lukin, Quantum kibble–zurek mechanism and critical dynamics on a

programmable rydberg simulator, Nature 568, 207–211 (2019).

[130] P. Weinberg, M. Tylutki, J. M. Rönkkö, J. Westerholm, J. A. Åström, P. Man-
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