STUDIED ON THILIPIT

AND

ATTODITEDATE OZONE

Presented by

J. V. DAVE, M. Sc.

for the degree of

DOCTOR OF PHILOGOPHY

of

THE GUARAT UNIVERSITY

043

B1663

September 1957

PARTICA

The problem of the scattering of sunlight by the carth's atmosphere and the allied problem of determining the vertical distribution of ozone in the atmosphere have been engaging the attention of workers in the Physical Research baboratory, Ahmedabad, working under the guidance of Professor R.R. Remanathan. The author has been associated with this work for the last several years and the results reported in this thesis, form part of the work done by him. The thesis contains the following sections:

Section 1 Studies on twilling

The study of the scattering of sunlight by the earth's atmosphere during twilight is one of great interest because as the sun goes down, the lower layers of the atmosphere are gradually removed out of direct illumination by the sun and there is possibility of detecting and measuring phenomena characteristic of the higher layers of the atmosphere.

Twilight emission of Sodium is well-known. Considering the occattering of the continuous part of the solar spectrum during twilight, the question arises as to the relative importance of the light primarily scattered by the upper part of the atmosphere directly lit by the sun's rays, and the

secondary and multiple scattering from the denser lower layers not directly illuminated by the sun. Observations of the zenith sky intensity and polarisation taken during twilight at Mt. Abu with a photomultiplier and narrow-band filters revealed the following features:

- the further of the zenith scattered light followed the curve of the pressure at the base of illuminated layer for solar depressions upto 6°. For higher depressions of the sun, the measured intensity were found to be several times greater than what would be expected from primary scattering alone.
- 2. Observed zenith sky polarisation curve during twillight showed remarkable discontinuities at 6° , 12° and 18° solar depressions.

observations taken by independent workers in different parts of the world. This showed the necessity of calculating the amount of primary and secondary scattered radiations received by an observer from the zenith at different stages during twilight. For this purpose, the theory developed by Chapman and Hammad for a plane-parallel atmosphere was modified so as to suit the twilight problem.

Calculations were made of the intensity and polarisation of the light received from the zenith sky for different values of solar depression from 9° to 17° and for a radiation for which the optical thickness of the atmosphere.

is 0.2. The following results were obtained:

For 0° to 5° solar depression, the primary scattered radiation is predominant; as the angle increases, the secondary scattered light becomes more and more important and when the sun's depression is 8° to 12°, it is the principal contributing factor. Afterwards, the night air-glow becomes comparable in intensity and when the solar depression is 17° to 18°, only the air-glow radiation remains. The discontinuities in the polarisation curve can be explained from this. The results were published in the Proceedings of the Indian Academy of Sciences (Vol. 43, 1956 A, pp.336-358). A reprint of this paper is given in this section.

The section ends with the tables of equivalent optical path for different heights in the atmosphere and when solar zenith angle is greater than 50°. These were prepared from the formula given in the above paper and were used in the calculations of twilight intensities. The values of the equivalent optical paths for solar angles below horizon, are generally not available in the current literature for sufficiently small intervals of solar zenith distance (2).

Beetion II Vertical distribution of ogone

This section deals with the determination of the vertical distribution of ozone from the unkehr curves obtained with Dobson Spectrophotometer. After reviewing in brief the present status of the problem, a pre-print of the paper "The calculation of the vertical distribution of ozone by the Sotz

unkehr-effect Method (B)" by K.A.Amanathan and J.V.Dave, is presented. The method described in this paper will be in use at different ozone stations over the world during the International Geophysical Tear whenever a complete unkehr curve is available. It has been shown with solved examples, that with the help of this modified Method B, it is possible to follow the day-to-day changes in the vertical distribution of ozone in the entire atmosphere. A small sub-section is added on the effect of second and higher orders of scattering on the observed unkehr curve.

Section III Measurement of surface ocone

In this section, the results of surface ozone measurements made at Abmedabad by the author during June 1954 to May 1955 are presented. The daily and seasonal variations have been analysed. This work is important as it proves the existence of measurable quantities of surface ozone in low latitudes. The work though not directly related to the scattering problem, is a problem allied to the vertical distribution of ozone.

dection IV A review of work on scattering of light by the earth's atmosphere

In this section, theoretical contributions made to problem of scattering of sunlight in the earth's atmosphere, by Rayleigh, King, Chapman & Hammad, and Chandrasekhar have been reviewed in brief.

A part of the first paper, presented in Section I (article 1.1) was submitted by the author for his M.Sc. thesis to the University of Bombay in 1952. It has been given here for ready reference and continuity and not as a part of the work submitted for Ph.D. thesis. The remaining work is original and has not been submitted proviously for any degree. References to work done by others in the field of this subject have been given at the appropriate places in the text.

The computational work involved in obtaining the results of Sections I and II was carried out by the author using a desk calculator with the help of a computational assistant for part of the work.

The author was the recipient of a Senior Research Assistantahip from the Council of Scientific and Industrial Research, Government of India, when this work was in progress. I wish to acknowledge my sincers thanks to the Council for the help given by them.

In the end, I wish to express my grateful thanks to Professor M.A. Mamanathan without whose valuable guidance and keen interest, this work would not have materialised.

Date: August 19, 1957.

KNow an alta

--tu. v. Dave)

	CONTRACTOR AND ASSESSMENT			
			ag os	
i'rofa c	o		1.	
Conten	ita	•	vi.	
	SECTION I	in en en		
	Studios on twilisht			
4 4	"On the intensity and polarisation of			
<u>.</u>	the light from the sky during twilight"			
	A reprint.	67 -	78	
1.2	"On the intensity and polarisation of			
# 925 5 107	the light from the sky during twilight			
	- Part II" A reprint.	336	- 358	j j
1.3	fables of the equivalent optical path			
· -	from the sun to a point P in the			
	observer's semith for values of semith			
	angle of the sun greater than 90°.		n di	. 3
	SECTION II			
	Vertical distribution of CHONE			

The problem of distribution of osone with 2.1 height in the earth's atmosphere

11.1

2.2	"The calculation of vertical distribution	
	of ozone by the Was unkehr effect	
	(Method B)" A roneoed pre-print.	1 a 1.
2.3	Importance of modified Method B in	
	coulying the vertical distribution of	
	onome in the lower atmosphere.	
24	Secondary and multiple scattered light	
	corrections to the observed unkell curve	11.10
	2.41 Effect of the curvature of the	
	ausospinere.	11.10
	2.42 Effect of distributing total ozone	•
	content of the atmosphere into	
	three thin leyers.	11.14
	2.43 Effect of multiple scattering.	11.17
2.5	Gonolusion.	11.19
2.6	leferonces.	
	SECTION III	
	Measurement of bucking oxone	
3.1	Introduction.	III.1
3.2	Presentation of the observed data and	
	discussion.	
3.3	Summy.	111.15

J.A	. Aleman	ebemik da zeulev enose eserras bev	bad
	in Cara	June 1954 - May 1955.	111,15
3.5	rolon	21 003.	111,26
		SECULON IV	
	avien oë	nori on seamerine of licht by th	e earth's atmosphere
4.1	MACO C	of curvature of the earth on the	•
	aquiye	dent optical path.	IV.1
4.2	600 66 0	ring of light by a plane-parallel	
	4111011	iles e ·	IV.3
	4.21 W	rk of Hayleigh, King and	
	150 A	chanowsky.	14.3
	4,22 11	eory of Chapman and Hammad.	17.6
	4.43 00	andresokher's theory of radiative	
	OQ		IV.13
	4.23a	Stokes paramoters.	11.13
	4.020	Kayleigh's law in terms of a	
		phase metrix.	14.15
,	4.4230	Absorption coefficient.	IV. 16
	4.234	Smisolon coofficient.	24.17
	4.230	Jource Eurotion.	IV. 18
	हें अपूर्व करते. केंद्रेस क्रिकेट करते करते हैं	Equation of transfer.	1 13

		anisotropy.			11.23
	4.23h	Solution of the equation of transfer.			
	4.631	The offect of reflection by		·	11.27
100	lecere	11000	24	4	IV.29

STURING ON THINKING

1.1 "On the intensity and polarisation of the light from the sky during twilight". This was published as a paper by J.V.Dave and K.W.Ramanathan in the Proceedings of the Indian Academy of Sciences.

Vol. 43 A, 1956. pp. 67-78.

ON THE INTENSITY AND POLARISATION OF THE LIGHT FROM THE SKY DURING TWILIGHT

 $\label{eq:By} \textbf{J. V. Dave and } \textbf{K. R. Ramanathan}$

ON THE INTENSITY AND POLARISATION OF THE LIGHT FROM THE SKY DURING TWILIGHT

By J. V. DAVE AND K. R. RAMANATHAN, F.A.Sc.

Received December 24, 1955

Introduction

THE object of this paper is to present the results of some new homogeneous measurements of the brightness of the clear zenith sky taken at Mt. Abu (24° 26' N; 72° 43' E) with a photon multiplier and six narrow band filters for different values of solar depression from 0° to 20° together with some measurements of polarisation, discuss the results in the light of our present knowledge of the upper atmosphere and attempt on broad lines an explanation of the optical phenomena observed during the transition between day and night.

EXPERIMENTAL ARRANGEMENTS

An R.C.A. photomultiplier 931-A, selected for small dark current, was used with an A.C. operated D.C. power-supply stabilised by a degenerative type of electronic regulation. The photomultiplier output current was amplified by a balanced-bridge stabilised D.C. amplifier. The sensitivity of the amplifier could be changed successively by factors of about 10 by introducing different resistances varying from 10³ to 10⁸ ohms in its grid circuit. The exact scaling factor from one stage to the next was determined by illuminating the photocathode by a beam of constant intensity and noting the reading in each successive stage. No attempt was made to measure the absolute values of the intensities; only relative intensities were determined. values of output current less than 400 microamperes, the current was found to be proportional to the intensity of light falling on the photocathode. For higher outputs, the correction due to the non-linearity of the variation of output against input voltage was measured and applied. The effect of varying the orientation of the plane of polarisation of the incident beam on the sensitivity of the photomultiplier was tested and found to be negligible.

Suitable optical filters were used to transmit different parts of the spec-The components and characteristics of the filters are shown in Table I. The figures take into account the spectral sensitivity of the photomultiplier. It will be noted that with the green, yellow and red filters, the effective transmissions are about 200 A centred approximately at the respective lines of the airglow spectrum,

67

Table I

Components and effective transmissions of optical filters when used with RCA Photomultiplier 931 A

Components		Half band-width of transmission	Maximum transmission
ce OX 1		. 3300–3850	3700–32%
ce OV 1		. 3640–4050	3850–44%
ce OY 18 and OB 1	10	. 4350–4800	$4600-9\frac{1}{2}\%$
plus ON 16 plus Pl	astic Yellow	5530–5750	$5600 - 3\frac{1}{2}\%$
olus Chance OY 1		. 5800–6000	5870-2%
olus Plastic Red		. 6150–6400	6300–1%
oid	.,	. 4000–5500	4600–40%
	ce OX 1 ce OV 1 ce OY 18 and OB plus ON 16 plus Plus Chance OY 1 clus Plastic Red	ce OX 1	of transmission ce OX 1

I.F. stands for interference filter obtained from Messrs. Barr and Stroud.

For the measurement of polarisation, a polaroid of type J was placed in the path of the radiation so as to measure (1) the intensity I_R of the component perpendicular to the sun's meridian and (2) the intensity I_L of the component parallel to it. Both the intensities were measured within a time interval of 5 seconds. The percentage polarisation was calculated from the formula,

$$P = \frac{I_R - I_L}{I_R + I_L} \times 100.$$

Results

(a) Intensity.—Observations were made only on cloudless clear skies. Only one narrow-band filter was used on any particular morning or evening. Meter readings were noted at regular intervals of half a minute except during late twilight when the rate of change of intensity was very small. Frequent check was made on the zero reading and photomultiplier voltage. After applying linearity and zero shift corrections, the corrected meter readings were multiplied by appropriate scaling factors so that the final values were proportional to the intensity of the light falling on the photocathode.

The readings taken on different clear days with the same filter were found to agree well when the photomultiplier voltage was kept very steady.

The actual readings for the same solar depression were found to differ in certain ranges on some days. This might have been due to small changes in photomultiplier voltage, changes in the scattering and absorption of light by dust and haze in the atmosphere and changes in the emission of the air-

Fig. 1. Intensity of the light from the zenith sky in evening twilight in defined regions of the spectrum.

glow lines. For comparing the course of the variation on different days and in different wave-lengths, the readings were reduced to a common standard by multiplying the values on a particular morning or evening by a factor which would make the readings on all the occasions have the same value at a solar depression of 5°. The means of the intensities observed on different days with the same filter and for the same solar depressions, were calculated.

The average values of the observed intensities of the zenith sky in arbitrary units during evening twilight in different portions of the spectrum are plotted against solar depression in Fig. 1. The intensity scale is logarithmic. The following are the main features of zenith sky brightness during twilight:

(1) The curves for the different wave-lengths from the near ultraviolet to red are *generally* similar from D=0 to $D=12^{\circ}$, but in the shorter wave-lengths, the rate of decrease of intensity with increasing solar depression becomes markedly less when D is about 8° .

Fig. 2. Comparison of twilight zenith sky intensities as measured in different places. ABU 4600 A.

CAL. 4400 A. Ashburn (Cactus Peak, California).

Composite. Ljunghall (Helwan and other places).

O Visual including green. Chiplonkar and Ranade (Sinhagad, Poona).

Fig. 3. Intensity of parallel and perpendicular components of zenith sky light during morning twilight (4000-5700 A). A, Parallel component, B. Perpendicular component.

- (2) While the intensities of the ultraviolet, violet and blue flatten out when the sun's depression is 16° to 18°, the intensities of the green, yellow and red which include bright lines in the night airglow flatten out when D is 13° to 14° at a higher level of relative intensity.
- (3) In the green and the red, there were observed on many days a reduction in the rate of fall of intensity when D was about 12° suggesting a temporary brightening near the boundary of earth's shadow. This requires further examination.

For comparison, the values of zenith sky intensities observed during twilight by other observers are plotted side by side with the Abu values. Ashburn's measurements in California were made with a phototube and filters and come closest to Abu values. The observations of Chiplonkar and Ranade were made at Sinhagad near Poona with a visual photometer including the oxygen green line. Ljunghall's curve is composite being made up of his own observations at Helwan with a photocell and filter and of the old visual observations of Dufay and others.

(b) Polarisation.—Observations of I_L and I_R for studying the polarisation of the sky were taken on a number of mornings and evenings: (1) with the polaroid alone (which transmits the violet, the blue and the green including an appreciable fraction of the green line 5577 A) and (2) with polaroid and blue filter.

In Fig. 3 are plotted the values of I_L and I_R for different solar depressions during morning twilight with polaroid alone. The corresponding curves for evening twilight taken with polaroid and blue filter for the spectral region 4350–4850 A, are essentially similar.

The values of the percentage polarisation as calculated from the values of I_L and I_R are plotted in Fig. 4. Curves B and C represent the values obtained in the effective spectral region 4350–4850 A for evening and morning twilight respectively, while the curves D and E are for the spectral region 4000–5700 A.

The curves showing zenith sky polarisation against solar depression are in general agreement with those obtained by Robley⁴ visually at Pic du Midi. His observations extended to 16° and are also shown in Fig. 4, curve A. From Fig. 4, the following points are clear. When observations were taken with a blue filter, the zenith sky polarisation remained more or less steady at about 70% till D was 5° , and then showed a pronounced fall till D was $8\frac{1}{2}^{\circ}$. Between $8\frac{1}{2}^{\circ}$ and 12° solar depression, the polarisation again showed a plateau at 45% to 50%, after which it declined rapidly so that when D was greater than 18° , the zenith sky was practically unpolarised.

Fig. 4. Percentage polarisation of the light from the zenith sky during twilight.

A. Robley, Visual. Pic du Midi (1950)

B. 4350-4850 Evening. Mt. Abu.

C. 4350-4850 Morning. Mt. Abu.

E. 4000-5700 Morning. Mt. Abu.

Robley's curve shows similar variations, but the initial polarisation at low values of solar depression is higher, due no doubt to the clearer skies over Pic du Midi.

The curves obtained with the polaroid alone without the blue filter show similar features but the changes of polarisation are less sharp.

The polarisations at points 30° from the zenith in the vertical plane through the sun were measured both towards the sun and away from the sun

Fig. 5. Percentage polarisation of skylight in morning twilight (4350-4850).

- 30° from the zenith away from the sun.
- At zenith.
- 30° from the zenith towards the sun,

on different days during morning twilight. The values of the polarisation calculated from the observed values of I_L and I_R are plotted in Fig. 5. Curves B, A and C represent the variations of polarisation with solar depression at zenith, 30° from the zenith towards the sun and at 30° from the zenith on the anti-sunside respectively.

It will be observed that the changes in sky polarisation 30° away from the zenith but towards the sun are sharper than those at the same angular distance from the zenith on the anti-sunside. The corresponding changes occur as may be expected, first on the anti-sunside, then at the zenith, and lastly on the sunside; the flattening out of the polarisation curve occurs at 9.5° on the sunside, at 9° at the zenith and at 8.5° on the anti-sunside.

To explain the humps in the polarisation curves requires further analysis of secondary scattered light.

4. DISCUSSION

When the sun is a few degrees below the horizon, the upper part of the atmosphere is directly illuminated by the sun's rays, while the lower part lies in the shadow of the earth. The shadow region is however illuminated by scattered radiation from the sky all round, particularly from the hemisphere towards the sun. The light from the zenith sky is therefore made up of the primary scattered light from the upper-part of the atmosphere and secondary (and multiple) scattered light. Owing to the greater air density in the lower part of the atmosphere, however, the main secondary scattered light would come from layers lower down in the atmosphere than the primary scattered light would decrease at a much faster rate than the secondary scattered light.

The observed variation of the brightness of the zenith sky with the depression D of the sun below the horizon agrees with the view that the sky illumination during twilight is only in part due to primary scattered light P. If it were due mainly to P, the variation of the sky brightness with D would be similar to the variation of the amount of air above the lower boundary of the directly illuminated upper atmosphere, that is, of the pressure at the shadow boundary. In Fig. 6 are drawn the curves of brightness RR and BB, of the zenith sky observed at Abu in the red (6300 A) and the blue (4600 A) and also the curve of pressure PP at the shadow limit. The height of the earth's shadow above the ground (for 4500 A) corresponding to different values of D are taken from Ljunghall's paper. Ljunghall assumes that above 6 km., the attenuation of light in the atmosphere is due only to molecular scattering while at lower levels, the coefficient increases, becoming at ground

level 2-2.5 times the value for molecular scattering. The refraction due to the atmosphere has been neglected. It will be seen from Fig. 6 that while the curves of BB and RR follow approximately the curve of PP down to a

Fig. 6. Comparison of the observed zenith sky intensity with pressure at the bare of the illuminated layer.

-RR Observed intensity at 6300 A.

Observed intensity at 4600 A. BB

Pressure at the base of illuminated layer. PP

Height of base as given by Ljunghall.

SS Integrated illumination at ground level due to scattered light from the whole sky during twilight.

solar depression of about 6°, they deviate more and more from it at greater values of D.

At solar depressions of 12° and 15°, the values of BB are more than a thousand times greater. Many years ago, it was suggested by Hulburt⁵ that secondary scattering plays an important part in twilight illumination. He showed that when the solar depression exceeds 8°, the light scattered from the zenith sky from the lower part of the atmosphere lying within the shadow of the earth but illuminated secondarily by the twilight glow is comparable in amount to the light scattered by the upper part of the atmosphere directly lit by the sun's rays. We now find that the discrepancy is enormous; can all this be explained by multiple scattering? From observations now available, it is possible to make an estimate of the relative contributions of primary and multiply scattered light to the brightness of the zenith sky during twilight.

Koomen⁶ and others have given values of sky brightness measured in different azimuths and altitudes at Sacramento Peak in New Mexico (2800 m. above sea-level) for different values of sun's depression down to 15° below horizon. From these measurements, one can by numerical integration estimate the illumination due to scattered light from the whole sky at the point of observation on the earth's surface. This has been done and the following are the results.

Sun's depression below horizon	Illumination due to skylight at ground	
Oc.	180 candles/ft.²	·
3°	22.6	
6°	0.76	
9°	0.031	
12°	0.0017	
15°	0.00027	
 · ·		

The values in column 2 are plotted in Fig. 6 as curve SS.

We may assume as a first approximation that the scattered light incident after sunset or before sunrise on a vertical column of the atmosphere above the observer will vary similarly to the integrated illumination at ground as

given in column 2 above. PP and SS will then represent respectively the relative variations of primary and secondary scattered light from the atmosphere during twilight. It is known that when the sun is on the horizon, i.e., at D=0, the secondary scattered light from the zenith for 4500 A is nearly 0.25 of the primary scattered light, but we do not know how this ratio will change when D increases. In what proportions the primary and secondary should be combined at different times after sunset is a matter for investigation.

5. Polarisation of Light from Zenith Sky during Twilight

The view that secondary scattering is the main factor responsible for extending the twilight period is borne out by the measurements of polarisation of the sky during twilight. Robley first showed from his observations at Pic du Midi that the polarisation of the clear zenith sky during twilight fell rapidly when D increased to more than 6° but that it later attained a steady value of 50% to 55% when the sun's depression was between 9° and 12°. These observations have been corroborated by our Abu observations (Fig. 4). When the secondary scattering also becomes insignificant, the light from the zenith sky is only scattered starlight and light from the airglow and is practically unpolarised. This happens when D is 16° to 18° for blue light. Robley found that with red light for which the secondary scattering would be much smaller, the first dip in polarisation and the plateau between $D=9^{\circ}$ and $D=12^{\circ}$ were inconspicuous. It may be observed that the sky illumination during evening twilight, especially in its later half, is markedly anisotropic, the light coming from the direction of the sun being much greater than from other directions. This light, when secondarily scattered downward by the atmosphere above the observer, will naturally have a large polarisation.

Quantitative checking of these ideas with observation requires the calculation of the intensity and polarisation of secondary scattered light by the spherical atmosphere when the sun is below the horizon. The calculations have been made and will be the subject of communication of Part II.

REFERENCES

1. Ashburn, E. V.

2. Chiplonkar, M. W. and Ranade, J. D.

3. Ljunghall Arvid

4. Robley, R.

5. Hulburt, E. O.

 Koomen, Lock, Packer Scolnik, Tousey and Hulburt Jour. Geophy. Res., 1952, 57, 85. Proc. Ind. Acad. Sci., 1953, 18 A, 121.

The Intensity of the Twilight and Its Connection with the Density of the Atmosphere, Meddelande fran Lunds Astronomiska Observatorium, Ser. II, Nr. 125, 1949,

......

.. Annale de Geophysique, 1950, 6, 191.

Journ. Opt. Soc. America, 1938, 28, 227,

Ibid., 1952, 42, 353.

•

. .

1.2 "On the intensity and relation of the light from the sky during trillion." Park II". This was published as a paper by J. V. Dave in the Proceedings of the Indian Academy of Sciences.
Vol. 43 A, 1956. pp. 336-358.

ON THE INTENSITY AND POLARISATION OF THE LIGHT FROM THE SKY DURING TWILIGHT—PART II

Вұ

J. V. DAVE

ON THE INTENSITY AND POLARISATION OF THE LIGHT FROM THE SKY DURING TWILIGHT—PART II

By J. V. DAVE

(Physical Research Laboratory, Ahmedabad-9)

Received April 12, 1956

(Communicated by Professor K. R. Ramanathan, F.A.sc.)

I. Introduction

In a recent paper,¹ observations of the intensity and polarisation of the light from the sky during twilight taken at Mount Abu during 1951 were presented and briefly discussed. It was shown that for depressions of the sun exceeding 7° or 8°, the zenith sky was much brighter than would be expected if primary scattering alone were responsible for the light and that in the treatment of twilight problems, due account should be taken of the contributions from secondary scattering, as has been shown by Hulburt.² Marked discontinuities in the polarisation of the light from the zenith sky at solar depressions of 5°, 8°, 12° and 17° support the presence in twilight of other contributions in addition to primary scattered light.

1.1. Summary of previous work

Robley³ has recently given a method of calculating the intensity and polarisation of the secondary (multiply) scattered light during twilight. His work is based on the work of Dr. S. Chandrasekhar⁴ for an infinite plane-parallel atmosphere of defined optical thickness. To compute the secondary scattered radiation for the zenith sky for a solar depression D, Robley extends the atmospheric path traversed by the solar rays to a vertical plane in the atmosphere passing through the centre of the earth and making an angle D/2 with the observer's vertical. He then calculates the scattered light emanating from this plane in a direction parallel to the observer's horizon, with certain simplifying assumptions which lead to a constant value of 50% for the polarisation of the secondary scattered light from the zenith sky throughout the period of twilight. *Prima facie*, this does not appear to be correct, because observation shows that with increasing values of solar depression, the brightness of the sky becomes more and more concentrated towards the horizon in the sun's meridian plane.

1.2. General outline of the method adopted in this paper

The method adopted in this paper for the calculation of secondary scattering is based on the work of Chapman and Hammad.^{5,6} The following assumptions were made:—

- (1) The earth was taken to be a uniform sphere of radius 6370 km., surrounded by an exponential atmosphere of equivalent scale height 7 km.
 - (2) The atmosphere was arbitrarily divided into a number of concentric shells of 4 km. thickness, for computing the intensities of primary and secondary scattered radiations.
 - (3) The solar radiation falling on the top of the atmosphere was assumed to be unpolarised and its intensity taken to be unity.
 - (4) The depolarisation factor d of air due to molecular anisotropy was taken to be 0.04.
 - (5) Higher orders of scattering than secondary were neglected.
 - (6) No correction was made for the absorption or scattering of light by dust or haze.
 - (7) Atmospheric refraction was neglected.
 - (8) No correction was made for reflection by the ground.

THEORY II.

In Fig. 1, ABC represents a section of the earth; O is its centre and a its radius. R₀ is the position of the observer on the surface of the earth. OR₀ represents the direction of the observer's zenith. Q is a point in the atmosphere in the direction of observation R₀Q. The Z-axis is chosen to lie along the observer's zenith OR_0 . The X-axis lies in the plane of the paper such that the XOZ plane is parallel to the incident solar radiation. The Y-axis is perpendicular to the plane of paper passing through O. The polar co-ordinates (θ, ϕ) of a given direction are such that θ is the angle which the direction makes with the Z-axis, and ϕ is the azimuth with XOZ as the reference plane. With this convention, the polar co-ordinates of the incident solar radiation SP are (Z₀, O). If the direction of observation is the zenith or R_0Q , its θ , ϕ are (O, O). PQ the direction of primary scattered radiation is given by (θ', ϕ') . The unit vectors along SP, QR₀ and PQ are denoted respectively by s, k and k'.

2.1. Intensity of primary scattered radiation

Consider a solar beam of intensity I_{∞} travelling along SP. I_{∞} denotes the intensity of solar radiation outside the earth's atmosphere in a specified narrow wave band, being the energy received per unit time on unit area normal to the vector s. Let σ denote the mass coefficient of scattering and ρ the density of air at a distance s from P along PS.

Fig. 1. The incident light is primarily scattered at P (where the local zenith angle of the sun is Z, and the height $R_1P=c_m$). The direction PQ is defined by (θ', ϕ') . The direction of observation towards the observer's zenith is defined by $\theta=0$, $\phi=0$. The primary scattered light travelling along PQ gets recentered at Q along QR₀ towards the observer. QR₀ = b_n .

Then

$$\int_{-\infty}^{P} \sigma \cdot \rho \cdot ds = \tau_{SP} \tag{1}$$

is the equivalent optical path which the solar radiation has to travel in the earth's atmosphere before reaching P. It will be shown later that $\tau_{\rm SP}$ is a function of the vertical height c_m of P above the surface of the earth and of the local zenith angle (Z) of the sun at P. The intensity of the solar radiation at P is then given by

$$I = I_{\infty} e^{-\tau_{SP}} \tag{2}$$

Let PQ (θ', ϕ') be a direction along which the incident solar radiation s scattered from P according to the Rayleigh law of scattering. The energy

Intensity and Polarisation of Light from Sky during Twilight—II 339 scattered from P in a cone of small solid angle dk' with apex at P is given by

$$E_1 dk' = \frac{3\sigma I_{\infty}}{16\pi (1 + \frac{1}{2}d)} e^{-\tau_{SP}} (1 + \cos^2 \psi' + d \sin^2 \psi') dk'$$
 (3)

where d is the depolarisation factor due to molecular anisotropy and ψ' the angle between s and k' given by

$$\cos \psi' = \cos Z_0 \cos \theta' + \sin Z_0 \sin \theta' \cos \phi' \tag{4}$$

This scattered radiation is polarised and can be resolved into two beams of plane polarised light at right angles to each other. If $E_{1n'}$ represents the primary scattered emission from P in the direction of k' with its electric vibration along the vector n' perpendicular to the plane sk' at P, and $E_{1t'}$, the intensity of the radiation with its electric vector along t' perpendicular to n', we have

$$E_{1n'} = \frac{3\sigma I_{\infty}}{16\pi (1 + \frac{1}{2}d)} e^{-\tau_{SP}}$$
 (5)

and

$$E_{1t'} = KE_{1n'} \tag{6}$$

where

$$K = d + (1 - d)\cos^2\psi' \tag{7}$$

Consider a small surface area dS at Q perpendicular to PQ. The amount of primary scattered radiation from P passing through dS per second is given by

$$\mathrm{E}_{1n'}(1+\mathrm{K})~e^{-\tau_{\mathrm{PQ}}}\times\frac{d\mathrm{S}}{s^2}$$

where dS/s^2 is the solid angle subtended by dS at P and τ_{PQ} the equivalent optical path from P to Q. It will be later shown that τ_{PQ} which is given by

$$au_{PQ} = \int\limits_{P}^{Q} \sigma \cdot \rho \cdot ds$$

is a function of θ' , c_m and b_n . If dV is a small volume element surrounding P and subtending a small solid angle dk' at dS, and if ρ' is the density at P, then the amount of primary scattered radiation passing through dS per second from a mass element $\rho' \cdot dV$ surrounding P is given by

$$E_{1n'}(1 + K) e^{-\tau_{PQ}} \frac{dS}{s^2} \rho' . dV$$

and the intensities $R_{1n'}$ and $R_{1t'}$ of the normal and transverse components of primary scattered radiation passing normally through unit area at Q through unit solid angle along k' is given by

$$\mathbf{R}_{1n'} = \int\limits_{\mathbf{O}}^{\infty} \mathbf{\tilde{E}}_{1n'} \; e^{-\tau_{PQ}} \, \frac{d\mathbf{S}}{s^2} \times \frac{\rho' \cdot d\mathbf{V}}{d\mathbf{S} \cdot dk'}$$

and

$$\mathbf{R}_{1t'} = \mathbf{K}\mathbf{R}_{1n'}$$

the integration extending from ∞ to Q when the whole path is illuminated by solar rays, or upto the shadow limit when a part of PQ lies in the shadow region of the earth.

Substituting the values of $E_{1n'}$ and of $dV = s^2 \cdot ds \cdot dk'$ in $R_{1n'}$, we have

$$R_{1n'} = \frac{3\sigma I_{\infty}}{16\pi (1 + \frac{1}{2}d)} \int_{0}^{\infty} e^{-\tau_{SP}} e^{-\tau_{PQ}} \rho' \cdot ds$$
 (8)

and

$$R_{1t'} = KR_{1n'} \tag{9}$$

It must be noted that unlike the plane-parallel atmosphere, $\cos Z$ on the actual earth changes along QP and also with ϕ' . Hence $\tau_{\rm SP}$ is not independent of ϕ' . Thus the integration formulæ developed by Chapman and Hammad for $R_{1n'}$ are not applicable in this and we have adopted numerical integration.

2.2. Intensity of secondary scattered radiation

Having obtained the values of $R_{1n'}$ and $R_{1t'}$ for different values of θ' and ϕ' at Q, the next problem is to consider the effective contribution by the volume element at Q towards the secondary scattered radiation travelling along QR_0 . Let n be the unit vector perpendicular to the k'k plane at Q. If E_{2n} and E_{2t} are defined as the energy of the secondary emission for normal and transverse components emitted at Q respectively, then as shown by Hammad, we have

$$E_{2n} = \frac{3\sigma}{16\pi (1 + \frac{1}{2}d)} \int \{A_1 + KA_2\} R_{1n'} dk'$$

and

$${\rm E}_{2t} = rac{3\sigma}{16\pi\,(1\,+\,rac{1}{2}d)}\,\int\,\{{\rm B}_1 + {
m K}{
m B}_2\}\,{
m R}_{1n'}\,dk'$$

where

$$A_{1} = d + 2 (1 - d) \cos^{2} \chi_{nn'}$$

$$A_{2} = d + 2 (1 - d) \cos^{2} \chi_{nt'}$$

$$B_{1} = d + 2 (1 - d) \cos^{2} \chi_{tn'}$$

$$B_{2} = d + 2 (1 - d) \cos^{2} \chi_{tt'}$$
(10)

 $\chi_{nn'}$, $\chi_{nt'}$, $\chi_{tn'}$ and $\chi_{tt'}$ are respectively the angles between the vectors n and n', n and t', t and n' and t and t' and the formulæ for obtaining their values are as given by Hammad.

$$\cos \chi_{nn'} = \cos (\xi - \xi')$$

$$\cos \chi_{nt'} = \cos \psi' \sin (\xi - \xi')$$
(11)

$$\cos \chi_{mt'} = \cos \psi' \sin (\xi - \xi') \tag{12}$$

$$\cos \chi_{tn'} = \cos \psi \sin \left(\xi' - \xi \right) \tag{13}$$

$$\cos \chi_{tt'} = \sin \psi \sin \psi' + \cos \psi \cos \psi' \cos (\xi' - \xi) \qquad (14)$$

where ψ , ψ' , ξ and ξ' are defined by the equations

$$\cos \psi = \cos Z_0 \cos \theta + \sin Z_0 \sin \theta \cos \phi \tag{15}$$

and

$$\sin \xi = \frac{\sin \theta \sin \phi}{\sin \psi} \tag{16}$$

Since $dk' = \sin \theta' \cdot d\theta' \cdot d\phi'$, the equations for E_{2n} and E_{2t} can be rewritten as

$$E_{2n} = \frac{3\sigma}{16\pi (1 + \frac{1}{2}d)} \int \int \{A_1 + KA_2\} R_{1n'} \sin \theta' \cdot d\theta' \cdot d\phi'$$
 (17)

and

$$E_{2t} = \frac{3\sigma}{16\pi (1 + \frac{1}{2}d)} \int \int \{B_1 + KB_2\} R_{1n'} \sin \theta' \cdot d\theta' \cdot d\phi'$$
 (18)

Knowing E_{2n} and E_{2t} for a number of points along QR_0 , the tota secondary scattered radiation received at R₀ along QR₀, can be integrated. Its normal and transverse components R_{2n} and R_{2t} are given by

$$R_{2n} = \int_{R_a}^{\infty} E_{2n} e^{-\tau_{QR_0}} \rho \cdot ds$$
 (19)

and

$$\mathbf{R}_{2t} = \int_{\mathbf{R}}^{\infty} \mathbf{E}_{2t} \, e^{-\tau_{\mathbf{QR}_0}} \, \rho \cdot ds \tag{20}$$

where ρ is the density of air at Q and τ_{QR_0} is the equivalent optical path from Q to R_0 . It is a function of b_n as well as of θ .

III. TABLES FOR COMPUTING THE SECONDARY SCATTERED RADIATION

The quantities required for computing $R_{1n'}$ by the summation method such as s, Δs , τ_{SP} , have been tabulated by many workers such as Sekera, Chapman^{8,9} and others. However, their tabulation could not easily fit into our system, and all the quantities required for this work were therefore tabulated from the formulæ given below.

As already mentioned in 1.2, the atmosphere is arbitrarily divided into a number of concentric layers of 4 km. thickness. The base of the nth layer is at a height of 4(n-1) km. while its centre is at (4n-2) km. The positions of Q are selected at the base of the different layers, and of P at the centres of the successive layers. On replacing the integral of Equation (8) by a sum, we have

$$R_{1n'} = \frac{3\sigma\rho_0 I_{\infty}}{16\pi (1 + \frac{1}{2}d)} \sum_{e^{-\tau_{SP}}} e^{-\tau_{PQ}} e^{-c_{m'P}} \Delta_{S}$$
 (21)

 $\rho' = \rho_0 e^{-c_m/H}$ for an exponential atmosphere and H the equivalent scale height is assumed to have a uniform value of 7 km.

If the values of $\tau_{\rm SP}$, $\tau_{\rm PQ}$ at the centres of the different layers and also of Δs the thickness of the layers for any θ' are known, $R_{1n'}$ can be calculated. Since $\tau_{\rm SP}$ is a function of Z and c_m , we have to calculate for a given position of Q and a fixed value of Z_0 , the local zenith angle Z of the sun at the centres of the successive layers along QP. For this, it is necessary to tabulate a shown in Fig. 1 for different values of c_m .

3.1. s, the distance of the centre of the layer from the base of another layer in any direction

From Fig. 1, we have

$$(a + c_m)^2 = s^2 + (a + b_n)^2 + 2s(a + b_n)\cos\theta'$$

On neglecting c_m^2 and b_n^2 in comparison with the other terms,

$$s^{2} + 2s(a + b_{n})\cos\theta' - 2a(c_{m} - b_{n}) = 0$$
 (22)

With the help of Equation (22), the values of s were tabulated for different values of c_m and $\theta' = 0^\circ$, 15°, 30°, 45°, 60°, 75°, 80°, 85°, 88° and 90° when the position of Q is at b_1 , the ground level. From this table, it is easy to obtain the values of s corresponding to any b_n and θ' between 0° and 90° with sufficient accuracy. For positions of Q above the ground, when θ' can take values greater than 90°, QP can intercept some of the lower layers twice. This was appropriately allowed for in computing the path lengths for θ' between 90° and 180° at similar intervals. It is expected that the

Intensity and Polarisation of Light from Sky during Twilight—II 343 tabulated values of s are correct within 1 km. when s is small and within 2 km. when it is large.

3.2. As, thickness of the layer in any direction

Equation (22) was used to calculate the distance Δs between the bases of two consecutive layers for all the above-mentioned values of θ' . Log_e Δs was tabulated for all values of c_m , b_n and θ' required in the calculation.

3.3. Z, the local zenith distance of the sun for any position of P for a given Z_0

In Fig. 1, the vertical through $P(PR_1O)$ makes an angle α with the Z-axis. It can be represented by (α, ϕ') and Z is given by

$$\cos Z = \cos Z_0 \cos \alpha + \sin Z_0 \sin \alpha \cos \phi' \tag{23}$$

a can be determined from the relation

$$\sin a = \frac{s}{a + c_m} \sin \theta' \tag{24}$$

The values of $\sin \alpha$ and $\cos \alpha$ were tabulated for all the positions mentioned in 3.1 and used for the other similar positions as necessary.

When Z is greater than 90°, there is a limit below which P would not be illuminated by direct sunlight. Limiting values of $\cos Z$ for different values of c_m can be obtained from

$$\sin Z_s = \frac{a}{a + c_m} \tag{25}$$

With the help of Equation (24) tables of cos Z were prepared for Z_0 corresponding to 90°, 94°, 98°, 102° and 106° for all the values of θ' and b_n and at intervals of 15° for ϕ' .

3.4. τ_{SP} , the equivalent optical path from outside the atmosphere to the point P which is at a height c_m above ground and for different values of $\cos Z$

Consider a point P situated at a height c_m in its vertical above the surface of the earth. Let the incident solar radiation make an angle Z with OP (Fig. 2). Let P' be any point in SP, at a distance s from P and at a vertical height h from the ground. The density at P' is given by

$$\rho = \rho_0 e^{-h/H}$$

and the equivalent optical path $\tau_{\rm SP}(\cos Z, c_m)$ as defined by (1) is given by

$$\tau_{\rm SP}\left(\cos Z,\,c_m\right) = \sigma\rho_0 \int\limits_{-\infty}^{\rm P} e^{-h/{\rm H}}\,ds \tag{26}$$

$$\sigma \rho_0 = \frac{8\pi^3}{3\lambda^4} \times \frac{(n_0^2 - 1)^2}{N_0} \times \frac{6(1+d)}{6-7d}$$
 (27)

where

 $\lambda =$ wave-length of the incident radiation $n_0 =$ refractive index of the air

 N_0 = number of molecules per c.c. at the ground ρ_0 = density of the air in gm. per c.c. at the ground.

From Fig. 2, we have,

$$(a + h)^2 = s^2 + (a + c_m)^2 + 2s(a + c_m)\cos Z$$

and neglecting c_{m^2} and h^2 compared to the other terms, we have,

$$h = \frac{s^2}{2a} + \frac{(a+c_m)\cos Z}{a}s + c_m$$

On substituting this in Equation (26) and carrying out the integration, we have

$$\tau_{\rm SP}\left(\cos Z, c_{m}\right) = \sigma \rho_{0} \sqrt{\frac{\pi a \overline{H}}{2}} e^{-c_{m}/H} \times e^{\frac{(a+c_{m})^{2}\cos^{2}Z}{2aH}}$$

$$\left[1 - \operatorname{Erf}\left\{\frac{(a+c_{m})\cos Z}{\sqrt{2aH}}\right\}\right] \tag{28}$$

The function $\mathrm{Er} f(y)$ is tabulated in books of *Mathematical Tables* at regular intervals between 0 and 3 while for y>3, we can use the standard expansion formula. It can be shown that for $\cos Z=1$ and $c_m=0$, Equation (28) reduces to

$$\tau_{\rm SP}(1, 0) = \sigma \rho_0 H = \tau_1$$
= the vertical optical path (29)

After substituting $\sigma \rho_0$ by τ_1/H in Equation (28), the equation was used to tabulate τ_{SP} (cos Z, O)/ τ_1 for a number of intervals of cos Z between 0 and 1. From this, we can calculate τ_{SP} for any wave-length by selecting τ_1 . The intervals are sufficiently numerous to obtain τ_{SP}/τ_1 for any cos Z within the accuracy required. For positive values of cos Z and c_m , $e^{-c_m/H}$ is the most important factor and

$$\tau_{\rm SP}(\cos Z, c_m)/\tau_1 = \tau_{\rm SP}(\cos Z, O) e^{-c_m/H}/\tau_1$$
 (30)

For negative values of cos Z, the following method is used. From Fig. 3,

$$\frac{a+h_0}{a+c_m}=\sin Z$$

from which h_0 can be calculated for a given Z and c_m . Then

$$\frac{\tau_{\rm SP} (\cos Z, c_m)}{\tau_1} = \frac{2\tau_{\rm SP} (\rm O, O)}{\tau_1} e^{-h/H} - \frac{\tau_{\rm SP} \{\cos (180 - Z), c_m\}}{\tau_1}$$
(31)

Fig. 4

Using Equation (31), $\tau_{\rm SP}$ (cos Z, c_m)/ τ_1 were tabulated at regular intervals from zero to the shadow limit for different values of c_m from c_1 to c_{18} . For higher values of c_m the calculations were carried out whenever necessary.

3.5. au_{PQ} , equivalent optical path between any two points in the atmosphere

From Figs. 4 A and B, we can write

$$\frac{\tau_{PQ}\left(\cos\theta', c_m \text{ to } b_n\right)}{\tau_1} = \frac{\tau_{SP}\left(\cos\theta', b_n\right)}{\tau_1}$$

$$-\frac{\tau_{SP}\left\{\cos\left(\theta' - a\right), c_m\right\}}{\tau_1}$$
(32)

For negative values of θ' , for which PQ intersects the surface of the earth, the calculation of τ_{PQ} is similar to that indicated in Fig. 4 C.

IV. INTENSITY AND POLARISATION OF THE ZENITH SKY

In this section the results of the computation of the intensity and polarisation of the primary and secondary radiations from the zenith sky during twilight for $\tau_1 = 0.2$ corresponding to $\lambda = 4350$ A are given. The effect of adding a fixed intensity of night air-glow radiation with a polarisation of 4% as obtained from twilight observations is then discussed.

4.1. $R_{1n'}$, primary scattered radiation received from any direction for different values of Z_0

 $R_{1n'}$ was calculated with the help of Equation (21). The summation extends over all the layers which lie in the sunlit part of the atmosphere. I_{∞} was taken to be equal to unity, and $\sigma\rho_0=\tau_1/H$ from Equation (29). Equation (21) shows that the part $e^{-\tau_{PQ}}\,e^{-c_{m'}H}\,\Delta s$ is independent of ϕ' and Z_0 . An auxiliary table of $\{-\tau_{PQ}-c_m/H+\log_e\Delta s\}$ for different values of b_n and $\tau_1=0.2$ was prepared to reduce the work of computation.

When $R_{1n'}$ was computed for different values of θ' and ϕ' , for $Z_0 = 90^\circ$ and $b_n = b_1$ or b_2 , it was noticed that for a fixed θ' , the graph of $R_{1n'}$ against $\cos \phi'$ was nearly a straight line for values of θ' between 0° to 75° and between 100° to 180° (Fig. 5). It was slightly curved when θ' lay between 75° and 95° . Therefore, $R_{1n'}$ was obtained by linear interpolation after computing its value for $\cos \phi' = 1 \cdot 0$, $0 \cdot 5$, $0 \cdot 0$, $-0 \cdot 5$ and $-1 \cdot 0$ for a given b_n . This procedure was adopted when Z_0 was 90° and 94° and the whole sky more or less illuminated by direct solar radiation. For higher values of Z_0 , $R_{1n'}$ was calculated individually for each ϕ' and θ' as only a small portion of the sky could then get direct sunshine.

Fig. 5. Variation of the normal component of primary scattered light, (R_{1n}) with solar azimuth (cos ϕ) for different zenith angles of the sky from 15° to 90° as seen by an observer at ground level ($b_1 = 0$ km.). The sun is assumed to be on the observer's horizon ($Z_0 = 90^\circ$).

The variation of the normal component of primary scattered radiation as received by the observer at the ground from different parts of the sky for Z_0 from 90° to 102° is shown in Fig. 6.

4.2. E_{2n} and E_{2t} : Secondary emission from any point in the direction of observation

Equation (17) can be rewritten as

$$\rho_0 \mathcal{E}_{2n} = \frac{3\sigma\rho_0}{16\pi (1 + \frac{1}{2}d)} \sum \sum \left[\{ \mathcal{A}_1 + \mathcal{K} \mathcal{A}_2 \} \ \mathcal{R}_{1n'} d\phi' \right] \sin \theta' \cdot d\theta'$$

Fig. 6. Distribution of the normal component of primary scattered radiation received at the ground from different parts of the sky.

Knowing the values of $\{A_1 + KA_2\}$ and $R_{1n'}$ at definite intervals of θ' and ϕ' for different values of b_n and Z_0 , further calculation was carried out in the following manner:

First, summation was carried out over ϕ' , keeping θ' constant. was multiplied by the corresponding {A₁ + KA₂}, the arithmetic means of the consecutive products were then added and the sum multiplied by $d\phi'$ = 0.5237 radians corresponding to 30° interval. Symmetry about the principal plane gives the value for 30° from the tabulated values for 15° intervals.

For summation over θ' , $\mathcal{E}\left[\left\{A_1+KA_2\right\}R_{1n}d\phi'\right]$ was multiplied by the corresponding value of $\sin \theta'$, and the arithmetic means of consecutive terms were taken. $R_{\text{In}'}$ includes the exponential exp (- τ_{SP} - τ_{PQ}). These were then multiplied by corresponding intervals of $d\theta'$ in radians. mation of the product multiplied by $3\sigma \rho_0/16\pi (1+\frac{1}{2}d)$ gave the value of ho_0 E_{2n} for the particular level b_n and Z_0 under consideration. The values of $\rho_0 \to E_{2n}$ and $\rho_0 \to E_{2t}$ so obtained are given in Table I for different values of b_n and Z_0 .

TABLE I $ho_0 \mathrel{E_{2n}}$ for the observer's zenith for different values of b_n and Z_0

					c_n with z_0
b_n Z_0	90°	94°	98°	102°	106°
$b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \\ b_8$	0·245×10 ⁻⁴ 0·339 0·445 0·535 0·584 0·587	0·143×10 ⁻⁵ 0·199 0·262 0·326 0·406 0·491	0·015×10 ⁻⁶ 0·032 0·062 0·101 0·162 0·237 0·295 0·311	0·013×10 ⁻⁸ 0·051 0·133 0·287 0·605 1·040 1·389 1·507	0.000×10^{-10} 0.025 0.117 0.383 1.037 1.994 2.769 3.048
	$ \rho_0 \mathbf{E}_{2t} $ for the c	bserver's zeni	th for differer	it values of b_n a	and Z_0
$egin{array}{c} b_1 \ b_2 \ b_3 \ b_4 \end{array}$	0.077×10^{-4} 0.113 0.156 0.193	0.044×10^{-5} 0.062 0.082 0.105			0.000×10^{-10} 0.003 0.013 0.045
b ₅ b ₆ b ₇ b ₈	0·214 0·216	0·132 0·162	0·036 0·053 0·066 0·071	0·096 0·167 0·225 0·247	0·125 0·244 0·340 0·383

Fig. 7. Vertical distribution of primary and secondary scattered light from the zenith sky during twilight for solar zenith angles from 90° to 106°.

It will be seen from Table I that the computation has been stopped at b_6 for 90° and 94°. For heights greater than b_6 , the value corresponding to b_6 has been used. A similar remark applies to heights greater than b_8 for 98°, 102° and 106°. This is justifiable because at these heights, the density becomes relatively small and the effective contribution to the light received by the observer becomes negligible (see Fig. 7).

4.3. R_{2n} and R_{2t} : Normal and transverse components of the total secondary scattered light as received by the observer at the ground from his zenith

Equation (19) can be rewritten as

$$R_{2n} = \sum p_0 E_{2n} e^{-\tau_{OR_0}} e^{-c_m/H} \Delta_S$$
 (33)

the summation extending over all the layers above the point of observation. $\Delta s = 4$ km. for $\theta = 0^{\circ}$, $\phi = 0^{\circ}$. τ_{QR_0} is the same as τ_{PQ} for $\theta' = 0^{\circ}$ and $b_n = b_1$ when the observer is situated at ground level and the direction of observation is along his zenith. The value of $\rho_0 E_{2n}$ is the arithmetic mean of two successive values of b_n given in Table I. The vertical distribution of primary and secondary scattered radiation from the zenith sky for different solar angles are plotted in Fig. 7.

The values of R_{2n} and R_{2t} are given in Table II along with R_{1n} , R_{1t} , P₁ and P₂ where P₁, P₂ are the percentage polarisations of primary and secondary scattered light. P is defined by

$$P = \frac{R_n - R_t}{R_n + R_t} \times 100 \tag{34}$$

TABLE II Intensity and polarisation of the primary and secondary scattered radiations from the zenith sky

Z_0	R_{1n}	R_{1t}	P ₁ %	R_{2n}	R_{2t}	$P_2\%$
90	1·30×10 ⁻³	0.052×10^{-3}	92 · 3	2·43×10 ⁻⁴	0.84×10^{-4}	49
94	6.93×10^{-5}	0.31×10^{-5}	91 · 4	1.52×10^{-5}	0.48×10^{-5}	52
98	9.0×10^{-8}	0.5×10^{-8}	89	$4 \cdot 13 \times 10^{-7}$	0.94×10^{-7}	63
102	•			1.26×10^{-8}	0.20×10^{-8}	72
106	• •			1.95×10^{-10}	0.24×10^{-10}	78

Fig. 8. Variation of the normal and transverse components of primary and secondary scattered light from the zenith sky during twilight.

4.4. Variation of the intensity and polarisation of the zenith sky during twilight

Figure 8 gives the variation of R_{1n} , R_{1t} , R_{2n} and R_{2t} with Z_0 . Smooth curves were drawn from the values given in Table II and from them, the values were read out at each 1° interval to calculate the intensities and polarisations of the zenith sky at different zenith angles of the sun.

Figure 9 shows the variation with Z_0 , of (a) the primary scattered radiation R_1 , (b) the primary and secondary scattered radiations together, $R_1 + R_2$, (c) $R_1 + R_2 + R_0$ when R_0 is the background night air-glow radiation assumed to be constant at 1.92×10^{-9} and (d) the observed intensity

Fig. 9. Variation of the intensity of the zenith sky during twilight.

R₁ .. Primary scattering alone.

 $R_1 + R_2$.. Primary plus secondary scattering.

 $R_1 + R_2 + R_0$. $R_1 + R_2$ plus background night air-glow of constant

of the zenith sky for $\lambda=4,500\,\mathrm{A}$ during evening twilight as observed at Mount Abu. The magnitude of R_0 was fixed from observations of the zenith sky when the sun was more than 18° below the horizon.

It can be seen from the figure that the secondary scattered radiation becomes more and more important after 95°. Between 98° and 102°, the light received by the observer is mainly secondary scattered radiation. Afterwards, the night air-glow becomes comparable in intensity to secondary scattered light, and by 106°, practically only night sky emission remains as the factor contributing to the zenith sky intensity.

In Fig. 10 are given the curves of polarisation of the zenith sky when the different contributions are considered singly or jointly. The curve giving the polarisation of the primary scattered light shows that it is 92% at sunset and decreases to 88% at 100° . On the contrary, S representing the polarisation of the secondary scattered light shows an increase from 48% at sunset to 79% at 106° . Adding the normal and transverse components of the two radiations from the zenith sky and calculating the effective polarisation, the polarisation gets reduced to 84% at sunset. After 94° , the secondary scattered radiation becomes relatively more important and the polarisation shows a rapid fall; after 98° , P becomes unimportant and P+S follows S.

If night sky radiation of intensities $R_{0n}=1\cdot00\times10^{-9}$ and $R_{0t}=0\cdot92\times10^{-9}$ be added to $R_{1n}+R_{2n}$ and $R_{1t}+R_{2t}$ respectively, and the polarisation recalculated (Curve P+S+N), the curve gradually changes its course when the zenith distance of the sun increases beyond 99°, and the change becomes rapid after 102°. When Z is greater than 108°, night conditions get fully established.

When the calculated polarisation curve is compared with that obtained by observation, it is seen that while there is agreement in general features, there are some important differences. The observed values of polarisation are markedly smaller. The transitions are sharper in the observed curve than in the calculated one.*

This is probably due to the following causes:-

- (1) The effect of dust in the atmosphere and of tertiary and higher orders of scattering have been neglected. Inclusion of these in the calculation will decrease the polarisation.
- (2) The density of the atmosphere has been assumed to decrease exponentially with height with a scale height of 7 km. Actually, there are well marked stratifications in the atmosphere and the decrease of density with height is not a simple exponential. The difference

^{*} Recent observations of polarisation at Mount Abu with a better type of polaroid have shown 80% polarisation at sunset and 55 to 60% between 8 and 12° solar depression,

Polarisation of the zenith sky during twilight for different zenith distances of the sun.

P Percentage polarisation of primary scattered light. S Percentage polarisation of secondary scattered light.

P + SEffective percentage polarisation of primary plus secondary scattered light.

P + S + NTotal effective polarisation when night air-glow of constant intensity and 4% polarisation is added to primary plus secondary scattered light.

Observed zenith sky polarisation at Mount Abu. Observed

> between the courses of the observed and calculated curves between 94° and 98° can be related to the existence of the warm ozone layer between 30 and 60 km. An attempt is being made to remedy these defects in the theory.

V. Polarisation of the Sky at Points 30° from the Zenith and in the Principal Plane of the Sun

In Part I, we also presented the observations of polarisation during twilight from two directions in the sky other than zenith, (1) at 30° from the zenith on the sunside $\theta=30^\circ$, $\phi=0^\circ$ and (2) at 30° from the zenith on the anti-sunside, $\theta=30^\circ$, $\phi=180^\circ$. These curves while showing the general features of the zenith polarisation curve, show some differences. In order to understand this, calculations have also been made of the polarisation in these two directions. They are plotted in Fig. 11.

The polarisation curves for the sunside show that the polarisation of primary scattered light (P) increases with Z_0 and so also the polarisation of secondary scattered light (S). However, the secondary scattered radiation is polarised to a much smaller extent than the primary and hence the resultant polarisation P + S, increases with Z_0 in the beginning when the primary scattered radiation is prominent and decreases afterwards when $Z_0 = 94 \cdot 5^\circ$. For $Z_0 = 100^\circ$, the primary scattered radiation is negligible and P + S practically coincides with S. On adding the night sky radiation, the P + S curve deviates from the S curve at 100° , and by 102° a sharp fall occurs.

On the anti-sun side, the polarisation of P shows a fall with Z_0 and the rate of increase of S is much smaller than on the side of the sun. This causes a slight fall of polarisation in the beginning and a comparative flat region between 98° and 102° .

VI. SUMMARY

The formulæ for the intensity of the secondary scattered light from the sky as developed by Chapman and Hammad for a plane-parallel infinite atmosphere of defined optical thickness have been modified so as to deal with the twilight problem in which the curvature of the atmosphere is of fundamental importance. Calculations have been made of the intensity and polarisation of the light received from the zenith sky for different values of the sun's zenith distance from 90° to 107° and for a radiation for which the optical thickness of the atmosphere is 0·2. For 0° to 5° solar depression, the primary scattering is predominant; as the angle increases, the secondary scattered light becomes more and more important and when the sun's depression is 8° to 12°, it is the principal contributing factor. Afterwards, the night air-glow becomes comparable in intensity and when the solar depression is 17° to 18°, only the air-glow radiation remains. The calculated values of intensity and polarisation are compared with the observational data collected at Mount Abu.

Fig. 11. Polarisation of the sky at points 30° from the zenith in the principal plane of the sun.

Percentage polarisation of primary scattered light.
Percentage polarisation of secondary scattered light.
Effective percentage polarisation of primary plus secondary scattered light.
Total effective percentage polarisation when night air-glow of constant intensity and 4% polarisation is added to primary plus secondary scattered light. S P P $+\tilde{s}+N$

tered light. Observed Observed sky polarisation at Mount Abu.

The author is grateful to the Council of Scientific and Industrial Research for the award of a Research Assistantship during the course of this study. He acknowledges with pleasure the help given by Shri V. L. Bhatt, M.Sc., in preparing some of the diagrams. Finally, the author takes this opportunity to express his indebtedness to Prof. K. R. Ramanathan, for suggesting the problem and valuable guidance.

REFERENCES

1.	Dave, J. V. and Ramanathan,	Proc. Ind. Acad. Sci., 1956, 43 A, 67.
	K. R.	1
2.	Hulburt, E. O	Journ. Opt. Soc. America, 1938, 28, 227.
3.		Annales de Geophysique, 1952, 8, 1.
	Chandrasekhar, S.	Radiative Transfer, The International Series of Monographs on Physics, Clarendon Press, Oxford, 1950.
5.	Hammad, A. and Chapman, S	Phil. Mag., 1939, 28, 99.
	Hammad, A.	Astrophys. Journ., 1948, 108, 338.
7.	Link, F. and Sekera, Z	Publ. Obs. Nat., Prague, 1940, 14, 1.
		Proc. Phys. Soc., 1931, 43, 483.
^	-	Ibid., 1953, 66 B, 710,

1950.

1.3 Indica of the solivations oppied pack from the sun in a 1940. I in the observer's senich for values of anith ancle of the sun erestor than 92.

Values of T_{SF} (cos Z, G_{m}), T_{1} are calculated for different negative values of Gos Z for a point F situated at different heights in the observer's zenith. Corresponding to a given height G_{m} , there is a limiting value of Z beyond while the ray will intersect the earth. The computation of T_{SF} is the vertice equivalent optical path.

	بر بر	100	2	M 0 0	2 2	8	7	3	2/12	
		900°0•	20.00			900		5	× 500	
	100 mg		tag o		0				80	
		300		9		800	16.34	M T	5	
			2000				48.00			
3						S				
	•			**************************************	3					
							S. C.		ş	
800							o a		7	
80	A STATE OF THE STA		Co Co	7000				9	N. S. S.	
7000	Sun Sun Sun			2000	5000	5000	3		S. S.	
		200	000	0.03	300	So o		to.	2	
0,000		66000			A STATE OF THE PROPERTY OF THE	500	Contraction		C d	
	STORES		A STATE OF THE STA			A CO	5		8	
				2000		500	5			
9		900		NO		9000				

	2	8	2	8	7	3	2/15/2	800	2 162
300	100 Cd Ch	0		a constant	S	5000	S S	O)	3.5
700		400	W	So o	9	\$0.0°	S	80.0	S A
2000		5000	ST CO	1200	3	0000	2000	500	30.00
	300	900	3	000		0*00*0	33.34	300	100 100 100 100
	C.	15.01	14.40	800	en e	きつ	8 7	S	5
33.0	o o			800	N. S.		7.	40.01	85.3
2000	000	5100	#m. F.J. 6 6 6	<u></u>	2	かさっ	5	50	8
80000	Arres	9000	137 137	850°01	So to	770"0"	70.00	3000	200
6 2000		S S	2	6000	20.02	3	41.60		
	The state of the s	なって	0	200	5	2000	3.64		
Ç		600	\$1000 \$1000 \$1000	500		700	S. S.		
7		200	3	200	100 100 100	9	25.03		

				tase	# 1				
S3 800	بر ر	8	2	8	2	200	2	7	2
	7.5	50.07	50.	\$20°C	2	Storage Storage	TO TO	750.0	0
0,002		0.0	**************************************	05070	5	7000	24. A. C.	0.058	4 2 6 4
3		1000	40 6	500	0	Tes or	S. C.	0.050	さらなった。
750	5	810.0	P.	\$0.00°	3.	340.0	5.5	090.0	2
889	8	6100	00	6.63	diene diene diene diene	170°C	8	190.04	24.20
90000	S	020	3	\$CO.0	2		23.53	0.062	57.36
1900		\$ 5.22 2.22	ត្	500	3.3	の言う。	10	000	\$.09
2000	N	70.0	ů,	0000	N.	300	S. S.	\$0°0	64.63
880	5	6800	\$ \$0 \$0	500	16.60	700	31.15	590.0	\$ 00 00 00 00 00 00 00 00 00 00 00 00 00
010.0	S	ない。	0.00	0.038	4-	900	3	0.066	200
	A Control of the Cont	5000	1 2	000		900	S	1	
25		800	000	0110	O .	なっ	7.9		
9	7		don don fad fad	ton	3	9			
45.0	~*	80.0	-	2000	**	800	505		٠

				*i#					
5 3	7	8	2	9	N. P.		S. S	65 89	2
	8		04.4			STO CH		9	
2000	~~ (3)				00	100 Cm	Access of the second	2000	***************************************
2000	ing.	900		MO O		870	**	190.0	ST. ST.
70000		5000	No.	700	200	5000		1000	32.35
5000		SCO		and of	30.00	3000		9	
3000	42.4 4.0 5.00				8			900	
	\$ 5 ° \$ 0 °	300	in the second	ROO		No.			
	Ä	n o	N	and of		200	2		
5000		कें		800	() b	TO OF		3	
		N N N	3	0100	0	no or	8	2200	ON CO
	14.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	ならい	State of the state		Share Same Canal Caper Canal	2000	a m		**
N S	5.20 C.20		3	CARO CA	Special Specia	2000			2
			0	できられ		or or		200	3
***		2000	3			And of		Apple of the second sec	750
	7		San Anna				100	S	

				*****	G * 22 G	53			
S 000	2	20 m	الغ	8	7	89	No.	:3 S S	2
19:0		820.0		200	5	800	5	250	3
3		0.039	10 10	300	***	500	8	500	200
50000	en Car		S S	さ う		0000	1. So	ROTO	S. A.
	in on	200	W	50.01	\$ \$\sqrt{1}\$	್ಟಿಂ ೧೩೮	S. S	20.0	٠٠٠ د
000		20.0	*	0.05		0900	0	#10°0	39,39
	2.7.5 Marie Ma Marie Marie Marie Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma	0.033	4m 17	ささい	W W	193.0	S	0.073	42.26
600	Alleran Consultations	100	9	970	\$ \$	35.0	A SO	2000	8.3
		3000	***	570.0	8	200	in the second	20.01	\$ 50°
200	0	0.00	*3	200	8	190.0	300	2200	Si
	2	0.00	8	500	0	89	8	800	500
	A. S.	9000	in in	S	R 2	2000	200	800	200
000	Served Se	8000	3.	3	diene ge	0.00	\$.		in in
670.01		250	5	1000	Ame Ame E E E E E	9	\$ 100 P		70.26
787.0		75°01	\$0 \$7 \$0	MAC C	N	999	23.26		

						ra.				
	h h	8	الم الم		ングラン	8 862	7	9 9 9	الع الع	
		200	N	0.00	100 mg		त्रं	5	8	
5	9		Š	350°0		1330	TO.	800	N N N	
		300	en en	700	1000	25.01	10 3c			
	dense dense conf	a constant	e e e		3.	900	8	o o	C. C.	
	Sauce States	300	of of	of S	•	700	9	850	700	
	6.17 5.47 5.47	500	2	Ropo		9899		第0 つ		
	diane.		0	n		35.0				
500	Menore Constitution of the Constitution of the	~	8		000			a a	25	
Acres de la constitución de la c				and of	8	999	On Ca	899		
	\$ 17 m		ST.	A CONTRACTOR		590.0		なっつ	3	
		770				2000		9	80 08	• '
	•		w.	250-01	7	500		90.0	の大	
800				500		Sol		500		
	50° 2			80.0		20.0	S	の の の の の の の の の の の の の の の の の の の	3	
S S	() () () () () () () () () ()	70.0	3		0	\$5.0	or Oi	0.080	3.59	
									3,5	

				'ਦਪੁ <i>ਰ</i> ੋ		ė. ·		*	
M 0 0	2	es e	ب ر	000	2	9000	2 2	8 8	2 2
	Single Si		store Care	NO of		500,00	ैं		S. S.
			Q, Q		and a second a second and a second a second and a second	2000		800	m W
0100	C • • • • • • • • • • • • • • • • • • •		CV W		The state of the s		5000	9	\$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50
Ö		470 C	O.	and of	200		4		3
0.020	C)				7	200		500	
SH CO		240	to the state of th	0.000	Section of the sectio				es es
			S N				100 m		10 00 00
	dian dian dian dian		A STATE OF THE STA	3			0	OS OF	nt of
8800	diana di diana		8		0		1.3° % 2.5° % 2.5° %	500	Spring Sp
800	70	200	30%		0			35.0	700
	(1) (1)		Section of the sectio	no o		Son		000	され
					Section Sectio	800		ASO. O	
800			es de la companya de	300			35.0%	5000	30
	Processis and the second	A COLOR		2000	7	2000		850	20.02

				*1.3 <u>2</u> \$					
60 00 00 01	2	e e e	7	3 9 9	2/2	83 85	2	8	N
			A Property of the Property of			\$10°04	n es	5	9.9
5050				250		2200		300	N T T N
5	N. O.	\$*to*o-	duin i leat Euron	60*0	CV CV CV	0000	2000	60.0	
	Service Control		The second secon	ならって		620.04		300	S. S
800							o o	300	
MO O	80	2000	Service Servic	9000			Anny Anny Anne	30.0	41.04
S	Service Control		Acad Q Aug	TO ST		2000	es.	500	
	TO STATE OF THE PARTY OF THE PA	and	Section 1	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		中	300	
		in a	CA CA	590.0	\$ 10°	800	10	9	8
			ri ev		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9		3	25.25
	Q	A Solo	9		11.00 17.00 16.00	80.7	S. C.	្	00
					A STATE OF THE STA			200	30
	esere deren	ST ST	00 00 100			and of	es es		
				70.01					
The second secon	Ann And And And Ann Ann Ann Ann Ann Ann	19000		NO ST			0		

				TEVAN					
20 20 13	り と か	8	7	es es es	N	5 2 2	2	3	2 2
	0	TO O	Special Section 1	0.00	Service Servic	3000	2	950.9	Control
0		N O O		90.0		\$5.00 \$0.00 \$0.00	Secretary of the secret	So o	O
		300	4	20.03		To or	1 Set	30.0	0
200			Stano Stano	20.0		600		800	N. S.
		SO O		or or		50°0°0°	(V)	20,00	S
		0000	AS Y	200	and a				10, 10,
o o		200			0		*	0,00	50
450		3000	Marine Species	S	A STATE OF THE STA	TO TO	em en		7
	°	2000		300		SO		3	57-14
2700	**************************************	000	(Q) (C) •	200	d o	5		9	N. C.
		190.01	學學	0.00	14 143 143	250		3	S. C.
5	O O	500	A CO	200		88.9	Acres to the second sec	50.0	0.0
TO.			W.		0	さら	8	45	200
	Anna Carlo	290.0	式	The state of the s	5	S	20.00		

				a a				
2	8	٢.	60	7		7 To	**************************************	2
0	MOS OF	American Service Cal				ST OF	0	in on
		0	2000			And And And And And And And And And And		S. C.
•		-	200			S. S.	6.40	
		in on	900		150	4		38.85
3			0000		ST CO	***	ろうで	
0		13.000 12.000 12.000	2000				村田 東京	10-04
	SS SI	To the state of th			Coo o	A STATE OF THE STA	Section of the sectio	S
		erings Menen Menen Menen Menen		H.	300			
		***		Series Series Series	5000		400	ते क
Sec.		****		1000 1000 1000 1000				
0	M.C.							
	R S S				80.0	はなってい		,
	SOOT				9	なった。		
- Paren			8000			R		

Cos Z V_{SP}/V_{q} V_{SP}/V_{q						9				
0.05 -0.071 1.05 -0.084 2.69 -0.097 7.96 -0.111 0.07 -0.072 1.12 -0.035 2.91 -0.092 7.95 -0.111 0.10 -0.073 1.20 -0.086 3.15 -0.092 7.956 -0.111 0.13 -0.074 1.29 -0.067 3.41 -0.092 7.956 -0.113 0.20 -0.075 1.38 -0.083 3.70 -0.106 10.46 -0.113 0.31 -0.076 1.48 -0.089 4.01 -0.102 11.49 -0.115 0.40 -0.076 1.48 -0.089 4.01 -0.102 12.61 -0.115 0.50 -0.079 4.36 -0.103 13.87 -0.116 0.50 -0.079 4.74 -0.103 15.24 -0.116 0.50 -0.079 5.16 -0.105 16.50 -0.116 0.75 -0.086 1.58 -0.094 5.12 -0.106 <th>202</th> <th>2 2</th> <th>9 9</th> <th>7</th> <th></th> <th>لع الع</th> <th></th> <th>بر بر</th> <th></th> <th>と</th>	202	2 2	9 9	7		لع الع		بر بر		と
0.072 1.12 -0.035 2.91 -0.093 1,8.72 -0.111 0.10 -0.073 1.20 -0.036 3.15 -0.099 1,8.75 -0.112 0.13 -0.074 1.29 -0.036 3.41 -0.100 10.46 -0.113 0.20 -0.075 1.38 -0.036 4.01 -0.100 11.49 -0.114 0.31 -0.076 1.48 -0.039 4.01 -0.102 12.61 -0.115 0.40 -0.076 1.48 -0.039 4.74 -0.102 13.87 -0.115 0.40 -0.079 1.71 -0.091 4.74 -0.102 13.87 -0.115 0.40 -0.079 1.84 -0.092 5.16 -0.105 15.24 -0.116 0.40 -0.06 1.98 -0.093 5.62 -0.105 18.51 -0.116 0.75 -0.08 2.39 -0.09 7.29 -0.106 22.55 -0.119 0.98 -0.08 7.29 -0.109 24.92 -0.119 -0.119 -0.119 <td>8</td> <td>9</td> <td>500</td> <td>0</td> <td>****************</td> <td>\$ \$</td> <td>6000</td> <td></td> <td>0.10</td> <td>8</td>	8	9	500	0	****************	\$ \$	6000		0.10	8
0.10 -0.073 1.20 -0.086 3.15 -0.099 9.56 -0.112 0.13 -0.074 1.29 -0.087 3.41 -0.100 10.46 -0.113 0.20 -0.075 1.38 -0.089 4.01 -0.102 12.61 -0.114 0.31 -0.076 1.48 -0.089 4.01 -0.102 12.61 -0.115 0.40 -0.077 1.59 -0.089 4.74 -0.102 13.87 -0.116 0.53 -0.078 1.71 -0.091 4.74 -0.104 15.24 -0.116 0.50 -0.078 1.84 -0.092 5.16 -0.105 16.50 -0.116 0.57 -0.080 1.98 -0.093 5.62 -0.106 18.51 -0.119 0.76 -0.081 2.13 -0.095 5.62 -0.106 20.42 0.98 -0.083 2.49 -0.106 22.55 -0.119 -0.119 0.98 -0.08 -0.09 7.29 -0.109 24.92 -0.109		5	2007	**** **** (/}	1800	O,	8000			Š.
0.13 -0.074 1.29 -0.067 3.41 -0.100 10.46 -0.113 0.20 -0.075 1.38 -0.088 3.70 -0.101 11.49 -0.114 0.31 -0.076 1.48 -0.089 4.01 -0.102 12.61 -0.115 0.40 -0.077 1.59 -0.090 4.36 -0.103 13.87 -0.116 0.60 -0.078 1.71 -0.091 4.74 -0.103 13.87 -0.116 0.60 -0.078 1.84 -0.092 5.16 -0.105 16.80 -0.118 0.67 -0.080 1.98 -0.092 5.62 -0.105 18.51 -0.119 0.76 -0.081 2.13 -0.093 5.62 -0.106 18.51 -0.119 0.86 -0.082 2.30 -0.095 6.68 -0.106 20.42 0.98 -0.083 2.49 -0.096 7.29 -0.109 24.92	8	0	6.073	Q *	800			9.36	250	W. 100
0.20 -0.075 1.38 -0.058 3.70 -0.102 11.49 -0.115 0.31 -0.076 1.48 -0.089 4.01 -0.102 12.61 -0.115 0.40 -0.077 1.59 -0.090 4.36 -0.103 13.87 -0.116 0.53 -0.078 1.71 -0.091 4.74 -0.104 15.24 -0.116 0.60 -0.079 1.84 -0.092 5.16 -0.105 16.60 -0.118 0.67 -0.080 1.98 -0.093 5.62 -0.105 18.51 -0.119 0.76 -0.081 2.13 -0.094 6.68 -0.107 20.42 0.86 -0.083 2.49 -0.109 24.92	8	And the second s	2000	o o	Por of		8.0	\$0.40	9	22.23
0.31	of	3	200	**	****	2	o o	₩ ••••••••••••••••••••••••••••••••••••	41.0	₩ •
0.40	S	5	200	-	0000	Ö	3	C. C		3
0.53	Š		200	(A)	060.0	8	\$ \$	13. Q		25
0.60	3	0	0/000				to o	17		5
0.67	8	3	50.0	**	2000	2	9	3.0	×	3
0.76 -0.081 2.13 -0.094 6.12 -0.107 0.86 -0.082 2.30 -0.095 6.68 -0.108 0.98 -0.083 2.49 -0.096 7.29 -0.109	ð	Secretary Secretary	30.0	O C	5000	3	S		0.110	07.12
0.86 -0.082 2.30 -0.095 6.68 -0.108	30	2	5		さらず	~	6	N C		
60.00 22.7 360.00 24.5 60.00 86.0	9	8	80.9		NO O	0		and		
	S	3 3	80.0	()) ~				N.		

		-							
8 8	الم الم	9	الع الع	8	7	200	N	N 0 0	کی
3		2000	0		The state of the s	5	5		
	ð	800	5	300	E M	3:0	o to		To Charles
	n o		ene don else	950.0	10 mm		5	9	8.8
900	5	80.0	8	50.0		, 200 c		5	3
ono o		\$ °	*** ***	900	8	5	Service Servic	8	おくな
800	0	% 000000000000000000000000000000000000	*	3		25	\$ 050 \$ 050 \$ 050	្	8.5
96.51	3	8000	50.2	300	N.			200	8.53
\$ 500 M	÷	260-07	3	5	2	5 5	0	e e	63.22
200	3		000	80.0	1		N N	77	26.02
		899	S	5	10	***	200 CO		
***	200	8			9	5	% 78 %		

	·				X I	der eige Territori Territori Territori			
3 6 6 6	2 2	9	2002	80	2	10 10 10 10	2 2 2	80 80 80	2
	300	20.01	******	960.0	The state of the s		10.87	2	\$ 000 000 000 000 000 000 000 000 000 00
000	800	800	उँ	850	8		S	0.122	S
80.0	్ర	30°0	R.	001	8	****	5.40	9	35.00
0000	70.	\$0.0°	6	\$ 5°	5	9	200	70.0	40.28
0300	900	380.0		101	9	9.0	5	9	in in
809	6	8000	() ***	30.0	M O	0.11	7	\$	Z R
2000		260.0		0		\$ C	8	10,127	SI
3		So o	3		**	2	8	TO TO	ささ
800	0	\$ o			3	2.5	\$ \$ \$	0.00	72.23

The state of the s

	r F	8	2	9	2		2	2 202	2
850	500	ने विद्या	0	7000		2113	5.5		
	0	800		32.0	A	91.0			N A
0000		900	50	300	O		W.	्र	\$ · 5
800	0	20.02	2.0	ç	S	25.0	1	3	3
0.400		No.	3		3		2000	7	
800		\$0.0	diene Anne Anne		2	÷	(N	of the second	
30.01		950	4. 6. 6.4		8.0		700		3.8
S	# NO.	48	S. S	710	8	***	ST.	10.13%	4
		20.0	3	0.00	4				
No.	7	3	on or		3		CX CX		

					3	K			
77 79 9	2 Comments	8	2	9	2	2000		9 9	2 2
35	0	2600	A	-	(V)	No.	3	6.13	3
3	() ()	हैं व	50	9	9	0.00	4		25
0,00		980-0	S	9	80	Ş	**	5	3
0,000	3	800	8	47.0	8	7.0	7000	3	25
80.0	5	3	to C			0	3	0.133	2
0,000	30	300	2	5	M	0.126	6.3	21.0	200
0.030			10		8	0.127	60	0.0	62.47
	8	3.3	dings () j. j. danca	0	0	9	30.03	9	25.52
	9	0.103	9	े ११०		0.13	8		
	un di	5	die of	37.0	in N	2	8		

	2/17/2	7	5	なった	ないの	7	2	32.16	24.2	7.5
	8	To the state of th	in the second	2	10:33	800	ろう	04.01		77.0
	2	तं	18	3	-			300	3	7
erit Port	9000	9	3	なって				500	20.0	9
3 1 5	2		2	o co	w			3	*	2
462									9	*
	2	8	S 5	8	0	3	e C	2	ton LA	Am.
	94 9	độ c	899	8000	3.0		701 0	AL O	0	
	2/2	3	5			9	3	0		
	61 6 63		्र		SOS		200		860.0	760.0

				Po-Jake	ar of a of				
13 19 3	2	8	2	9	2	77 19	2	3	N.
35.5		30.0	तं		•	?	0	0.13	S
20.07	000	8000	S S		· (1)	\$?	0	्र	(A)
800	5	0000	5	2,0	o o o	1	100		500
800		3	N O		8		S. S.		33.74
90.0	3	10.0	R	000	No.	3.0	\$ · \$	142	\$7. \$2.
2000		92.7		0			₩. • • •	52.0	43.95
		000		Ž o		6.13	13,80	137.0	
20.01			0	2	20	0.	3	0	さん
3		9	Anna Anna (A	6.18		5.1%	T C	37.5	3
300		\$ 100 m	60	q			S	3	in the

SECTION II

VESTICAL DISTRIBUTION OF OXONE

2.1 The problem of distribution of ozone with height in the earth's atmosphere

The ozone content of the atmosphere in different parts of the earth, is found to vary between 0.15 to 0.40 cm at W.T.P. Because of the very high absorption coefficient of caone in the ultra-violet, this small amount of ozone present in the atmosphere has important effects (1) by causing a rise of temperature with height above 30 km in the stratosphere and (2) protecting plant and animal life on the surface of the earth against photochemically active radiation. The study of total ozone amount and its distribution with height, is also of importance on account of its variability associated with day-to-day changes in weather. The work done by different workers on different aspects of atmospheric ezone studies has been reviewed by Fabry (1950) in "L' Gzone Atmosphérique", by Götz (1951) in the "Compendium of Meteorology" and by Prof. K.R.Ramanathan (1954) in his Presidential Address to the meeting of the International Meteorological Association.

Laboratory experiments have established several absorption bands of ezone out of which the following ones are important for the study of atmospheric ezone.

- 1. Hartley Band: Between 2000 Å and 3200 Å with maximum at 2553 Å. This is a very strong absorption band and is independent of temperature.
- 2. inggins Band: Weak absorption bands in the region
 3200 Å to 3690 Å. The absorption maxima are influenced
 by temperature.

3. Chappius Band: Weak absorption bands in the region?
4500 Å to 7500 Å. Maximum between 5500 Å to 6200 Å.
The Chappius bands are not suitable for study of atmospheric ozone because of vapour bands in the solar spectrum in this region. Taking various factors into consideration, it is found that the region
3000 Å to 3400 Å is most suitable for the studies of atmospheric ozone.

Ozone distribution with height has been studied by sonding spectrographs with stratespheric balloons by Regener (1934) and recently in V-2 rocket explorations by Johnson, Furcell and Tousey (1951). These direct methods give a good picture of the variation of ozone concentration with height. However, it is practically impossible at present to adopt these methods for routine measurement of vertical distribution of ozone and one has to rely mostly on the indirect methods such as the inversion-effect of the zenith scattered light, discovered by Götz (1931).

Figure 1 is some strongly absorbed by ozone than the other. With the increase of solar zenith distance (Z), because of rise in the effective height of scattering for λ , goes above the region

of maximum ozone, its intensity (I) decreases at a rate smaller than that of I'. This leads to an inversion in L - II curve which is known as Götz umkehr curve. Chapman (1934-35) theoretically derived a number of umkehr curves for different assumed ozone distributions and taking into consideration only primary scattering.

different methods of determing vertical distribution of exone from the observed unkels curve. In the analytical method referred to as Method A, the atmosphere is divided in the following layers:

1.02.11.10	Czone uszmi
Above 50 Km	O, but scattering not sero
50 - 35 km	To the second se
35 - 20 Km	
20 - 5 Am	$x - (x_1 + x_2 + u)$
5 - 0 Km	12

x is the total one amount obtained from direct sun measurements and u is taken as a fixed percentage of x from the knowledge of exone content in the surface layers. The equation of $\log (I/I)$ can be obtained on the basis of primary scattering for different values of Z such as 0°, 80° and 90° in terms of x_1 and x_2 . The solution is obtained graphically by plotting x_2 as a function of x_1 and determining the intersection of the curves for $Z = 80^{\circ}$ and 90° .

The synthetic method or the Pethod B consists of starting with an assumed vertical exone distribution and

varying it till the calculated and measured unkehr curves are in tolerably good agreement at several points. In the original method, the atmosphere was divided into a number of horizontal sections such that the mass of air in any section was 1/ 10 that of the section below it. The whole of the air and ozone in any section were supposed to be concentrated in a very thin layer at a suitable height above the bottom of the section. This means that in any section, ozone decreases exponentially with height. The Method B was modified by Karandikar and amendment (1949). They divided the atmosphere into 9 km layers and the center of mass of a layer was assumed to be cituated at a height of 3 km above the base of the layer. It was assumed that no ozone is present above 54 km and there is uniform ozone distribution within the layer.

The offect of secondary scattering was considered on the experimental basis by Assanathan, Moorthy and Kulkarni (1952) and on the theoretical grounds by Malton (1953). They showed that the effect of applying correction was to bring down some ozone to the lower part of the atmosphere. Walton (1955) has extended the theory so as to include tertiary scattering.

2.2 "The Calculation of vertical distribution of ozone by the Gota miseix effect (Method 8)" by K.d. Lamanathan and J.V. Dave. Communicated to the International Ozone Commission for publication and regular use during the International Geophysical Tear.

The values of \propto , \propto and β , β given in Table 3 have been changed by the International Osone Commission Circular No. 0.4 dated 5th July, 1957 and the values of \propto , \propto found by Vigroux (1953) have been adopted. It has been decided that all ozone stations should adopt these new values simultaneously from the 1st July 1957. The new values of (\propto - \propto) are approximately 1.36 times lower than those adopted previously. Because of the fact that what we measure by the Dobson spectrophotometer is (\propto - \propto)x, the effect of adopting the new values of (\propto - \propto) is to increase the total ozone by about 36 %.

It is recommended that the present tables for calculating vertical distribution continue to be used, but if the total ozone amounts are calculated with the new (< < < ') values as given in the above Circular, the calculated ozone amount should first be divided by 1.36 before using the tables. At the end of the calculation, all the ozone values, both total as well as the amount in each layer, should be multiplied by 1.36.

THE CALCULATION OF THE VERTICAL DISTRIBUTION OF OZONE BY THE GÖTZ UMKEHR-EFFECT (METHOD B).

By

K.R. RAMANATHAN & J.V. DAVE

Fhysical Research Laboratory, Ahmedabad 9. India.

The present note gives the details of Method B for calculating the vertical distribution of ozone in the atmosphere from observations on the umkehr-effect. The method was originally due to Götz, Meetham and Bobson (1).

although the method is not free from objection, it gives information of value about the changes in the vertical distribution of ozone associated with day-to-day changes in weather; it is also comparatively easy to use in clear weather at all stations equipped with a Dobson Spectrophotometer.

The measurements required are the ratios of the intensities of light of two wave-lengths from the clear zenith sky, one of which is much more absorbed by ozone than the other, for zenith distances Z of the sun varying from 40° or 60° to 90° . Considering for example, the light of two wave-lengths 3112 Å and 3323 Å (for which the decimal absorption coefficients of ozone are 1.23 and 0.08 respectively), it is found that the ratio $L = \log \left[\frac{I_{(3112)}}{I_{(3323)}} \right]$ in the light from the zenith

sky decreases as Z increases until a value of about $86^{\circ}.5$ is reached, and then increases as Z increases to $90^{\circ}.$

Instead of L, one can plot N = 100(L_0 - L) where L_0 is the value of L extrapolated for a point outside the atmosphere. It is the general practice to plot L or N against Z^4 so as to give an open scale when the sun is near the horizon.

Sample curves of N against Z 4 for λ λ 3112/3323 and λ λ 3054/3253 are shown in Fig. 1. (Curves C and A respectively).

The light reaching the observer from the sky in any direction is sunlight scattered by the whole column of atmosphere in that direction. It includes primary as well as multiple scattered light. If only primary scattered light from molecules is considered, it is easy to obtain an expression for the light of any wave-length reaching the observer from the zenith.

In Part I, the method is described of calculating the vertical distribution of ozone, first on the assumption that the light from the zenith sky is only primary scattered light. A short section is added explaining the effect of secondary scattered light and a method of correcting for it. A fully worked out example follows.

In Part II, supplementary tables applicable to stations at or near two higher levels, 912 mb and 810 mb are provided.

FIG.I. UMKEHR CURVES WITH DOBSON SPECTROPHOTOMETER.

FIG. 2. DIVISION OF THE

FIG. 3. DIAGRAM EXPLAINING AS AND AL

I. Calculation of primary scattered light received from the zenith sky at the ground.

For calculating the light scattered vertically downward, the atmosphere is divided into layers (2). The first layer is from the ground (1013 mb level) to 6 km. The second layer is from 6 km to 12 km. The other layers are each 6 km thick up to 54 km, above 54 km the whole atmosphere is treated as one layer.

 p_0

- 1013 mb.

p

- Pressure at height h taken from rocket panel data. (Table 1.)

△ m_n

Mass of air in the nth layer expressed as a fraction of the total mass of air in a standard atmosphere which exerts a pressure of 1013 mb at its base. The air in each 6 km layer is supposed to be concentrated at a height of 2 km above the base of the layer. These assumptions are not free from objection, but are simple and reasonably accurate.

B. B

Decimal scattering coefficients for light of wave-lengths λ . λ' by a standard atmosphere.

 ∞ , ∞

- Decimal absorption coefficients of ozone for λ , λ (per cm of ozone at S.T.P.) (Table 3).

Fh

The table includes data for all the four pairs of wave-lengths normally used for ozone determination with the Ozone Spectrophotometer.

Integrated air-path from the top of the atmosphere to h (expressed as multiple of air-mass in one standard atmosphere), and from h vertically downward to the observer (Table 4). For an observer at pressure-level po = 1013 mb,

 $F_h = 1 + \frac{p}{p_0} \left[Ch(Z) - 1 \right]$ where Ch(Z) is the

Chapman Function for a spherical atmosphere for zenith angle Z with the vertical through the observer. The values of Ch(Z) have been tabulated by M.V.Wilkes (3). While considering air-mass in the slant path above a particular height h, it is to be noted that the temperature of the air in the first few kilometers above h exerts a dominant influence. The mean temperatures in the atmosphere as shown by rocket ascents have been taken as a guide in preparing Table 1A.

If the observer is located at a pressure-level kp_{0} instead of at $p_{0}\,,$ the values of Fh in

all rows in Table 4 except the first row (corresponding to 2 km) should be changed to

 $k+\frac{p}{p_0}$ [Ch(Z) - 1]. Supplementary Table 4X has been prepared for k=0.9 and 0.8 corresponding to pressure levels 912 and 810 mb respectively. These will hold for stations at 1 km and 2 km respectively above sea level. For the lowest layer, in Table 4X, h has been taken to be 3 km above 1013 mb level. This is sufficiently accurate.

△s - Total geometrical slant path of light in each layer.

△h - Corresponding vertical path in the layer.

 Δ s - Δ h - have been tabulated in Table 6 for all those layers in which there is a slant path. A constant value of the radius a = 6370 km has been used. See Fig. 3. For layers in which there is only a vertical path, Δ s - Δ h = 0.

 y_1 , y_2 , y_3 etc. upto y_9 are the ozone amounts in 10^{-3} cm/km in successive layers as we go up; it is assumed that the ozone amount above 54 km is negligible so that the total

ozone amount $x = 6y_1 + 6(y_2 + y_3 + " " + y_9)$. The factor 6 in the first term on the right will require a small adjustment if the station is above the 1013 mb level.

The total ozone Y in the path of the light when the zenith distance of the sun is Z and the light is scattered from the nth layer is given by the sum of the ozone amounts in the slant path and in the vertical path. In the nth layer, part of the path is vertical and part slant.

$$Y = \sum_{n}^{q} y_{r} \triangle s_{r} + \sum_{r}^{n} y_{r} \triangle h_{r}$$

$$= \sum_{n}^{q} y_{r} (\triangle s_{r} - \triangle h_{r}) + \sum_{r}^{q} y_{r} \triangle h_{r}$$

$$= Y_{n} + x$$

Tables 6 provide the values of Δs - Δh for calculating Y_n for the light scattered from each layer and for different zenith distances of the sun ranging from 37° to 90°. In example of the calculation of Y is given in Table 8.

The intensities of the primary scattered light of wave-length λ for the nth layer at the ground is given by $\Delta \, I_n = K \cdot \beta \cdot \Delta \, m_n \, \times \, 10^{-\beta \, F} - \frac{\omega \, Y}{} \, \text{where } K \text{ is a constant depending on the value of Z. and I the total intensity from all the layers is given by$

$$I = \sum \Delta I_n = K. B. \sum \left[\Delta m_n \times 10^{-BF} - \times Y \right]$$

The ratio of the intensities of the primary scattered light of two wave-lengths λ and λ' from the zenith sky is given by

$$\frac{I}{I'} = \frac{\beta}{\beta'} = \frac{[\Delta m_n \times 10^{-\beta} F - \propto Y]}{[\Delta m_n \times 10^{-\beta} F - \propto' Y]}$$

The values of Log \triangle m_n - β F for different layers and Z required in the computation of Log(I'/I) are given in Tables 5A, B, G and D corresponding to different pairs of wave-lengths.

Forms I, II and III are for computing Log(I'/I) for any assumed ozone distribution and for making changes in it corresponding to small changes in the distribution. These are given at the end.

By the method of successive approximation, the ozone amounts in the different layers are so adjusted that the calculated values of $Log(I^{\dagger}/I)$ agree with the calculated values at four or five points of the umkehr curve within the limits of experimental error. In practice, a constant is added to the calculated value of $Log(I^{\dagger}/I)$ so that the calculated and the observed values coincide at some fixed zenith distance like 60° ,

where the intensity is determined mainly by the <u>total</u> amount of ozone and not by its distribution. 70° , 75° , 80° , 84° , 86° 5, 88° and 90° are convenient points to choose for fitting the curves.

Correction for Secondary Scattering

In the above, account is taken only of the primary scattered light from the molecules of the atmosphere. But the air is illuminated not only by direct sunlight but also by light scattered once or more by the rest of the atmosphere and by the ground. Neglect of the illumination of the air column by diffused light would be justified if the ratio of the intensities of light of two different wave-lengths (which is the quantity actually measured) gave with sufficient accuracy the ratio of the primary scattered light only of the same two radiations for different zenith distances of the sun.

A little consideration shows that this assumption is not justified. Of the light of two wave-lenths under comparison, one is much more absorbed by ozone than the other, and consequently, the contributions from the different layers of the atmosphere to the total primary-scattered light from the zenith are different, and vary differently with the zenith

distance of the sun. The multiple scattering which is dependent on the distribution in height of the primary scattered light will naturally differ for the two wave-lengths.

Let P, P' be the intensities of primary scattered light of the two wave-lengths λ , λ' from the zenith, and M, M' the intensities of the multiple scattered light.

What we measure with the spectrophotometer is Log I/I^{\prime} for different solar zenith distances.

Now
$$I = P + M = P (1 + M/P)$$

 $I^{\dagger} = P^{\dagger} + M^{\dagger} = P^{\dagger} (1 + M^{\dagger}/P^{\dagger})$

We could correct the I/I' curve to give the P/P' curve if We knew the values of M/P and M'/P' for different zenith distances of the sun.

G.F.Walton (4) has calculated the intensities of primary (P) and secondary (S) scattered light from the zenith sky for different altitudes of the sun. After evaluating S/P for appropriate values of \(\times\) and \(\beta\) for a few simple distributions of ozone with total ozone amounts of 0.30 and 0.18 cm, he has calculated the corrections to be applied to the observed intensity-ratios to convert them to what they would be if there were only primary scattering. He found that the corrections

varied with the zenith distance of the sun, but were nearly constant when sec Z was between 5 and 20. The effect of correcting for the secondary scattering was to lower the C.C. of the ozone by 2 to 3 km.

mamanathan, Moorty and Mulkarni⁽⁵⁾ obtained similar results by deriving umkehr curves for I(3112)/I(3075) from the observed umkehr curves of I(3112)/I(3323) and I(3075)/I(3278). The object of using the derived curve was to compare the intensities of two wave-lengths both of which are pretty strongly absorbed by ozone; in that case, the assumption I/I' = P/P' would be more nearly correct. They came to the same conclusion as walton viz., that the effect of taking multiple scattering into account was to increase the ozone amount in the layers below the maximum of ozone and to reduce it at higher levels.

Although there are still a few unsolved questions about the correction required for multiple scattering, it is believed that Table 7 provides for different solar zenith distances, reasonable corrections when the ozone amount is between 0.18 and 0.30 cm.

Fressure at different heights above sea-level (From rocket panel data)

				-				4	
]	leight	lcm	Pressure	mb .	(-7.	Height	km	Pressure	mb
	0		1013	and the same and		44		1.90	
	2	العدم	803.5		•	48		1,15	
	_\ 6		487.5	•		50		0,902	.*
	8		372.4	•		54	¥ -	0.547	
•	12	į	206.5	-		56	v.	0,426	
	14		150.7			60		0.254	
	18		78.5			62		0.194	
	20		56.9			66		0.111	
	24	:	30.5		ile.	68.		0.082	
	26		22.5	<u>\</u>		72		0.045	
	30		12.5		ž ,	74		0.033	
	32		9.31			78		0.017	
•	36		5.32	2		80		0.012	
	38		4.07	1		84		0.007	
	42		2.43	}					
									

Pable 1 A

Values of $\mathrm{Ch}(Z)$ adopted for different values of $\mathrm{h}(\mathrm{km})$ and of $\mathrm{Z}(\mathrm{degrees})$. The rocket temperatures at h to h + 10(km) have been taken into consideration in tabulating these.

				: : !		1 1 1 1 1				1
E I	37	90	70	. 75	08	78	5.00	10 10	8	,
2,3	25.	1.993	2.90	3.80	5.55	6.73	13.3	18.7	35.5	Ţ
to.	()	£	8	ω. Φ.	5.5	3.84	13.6	19.5	38.7	
14,20	\$3.00 , an	Own Up-a	5	3.05	5.59	8.87	13.7	19.7	39.7	
26,32	On- ton	Çêni Lane	(pre- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	3.84	5.57	φ. Φ	13.5	. 0,		
38,44,50	(-	\$100 1 000	- (-		5.55		13.3	18.7	35.5	
56	:=	&	Char Char	3,80	5.56	8.77	13.4	1.9.0	36.6	
. 62	<u></u>	£2.	; <u>-</u>	ص بي	5.57		13.5	19.2	37.6	
, O	; ;=	: ::::::::::::::::::::::::::::::::::::	Cres	3.81	5.59	8.87	13.7	19.7	39.7	
	, and	•			•					

Table 2

Logarithm of the mass of air in different layers expressed as fraction of the mass in a vertical column of the std. atmosphere.

	Layer	Log Δ m _n	Layer	Log Δ m _n
	0-6	7.715	42-48	3.100
	6-12	1.443	48-54	4. 778
	12-18	7,101	54-60	4.461
	18-24	2.676	60-66	4.149
	24-30	2,250	66-72	5,820
	30-36	3.848	72-78	5.431
** ** ** ***	36-42	3.455	78-84	5.000

Table 3

Decimal absorption coefficients of ozone and scattering coefficients of atmosphere for light of different pairs of wave-lengths.

~ 1 TO BE					2	• • • • • • • • • • • • • • • • • • • •
	λ/λ'	\propto		В	79'	Log(/3//3/)
	3054/3253 3085/3291	2.58 1.77	0.16	0.503	, -	0.1173
and the second	3112/3323	1.23	0.08	.0.464	-0.350	0.1224
D 	3175/3399	0.54	0.02	0,425	0.318	0.1260

Table 4

Values of \mathbb{F}_{h} - Integrated air path (expressed as multiple of one standard

	370	009	700	750	\$00	07/8	8605	ဝ တ တ	006
2	1.199	1.788	2.505	3.221	4.610	7.133	10.748	15,032	28.342
₩	1,092	1.365	1.699	2,033	2.684	3.882	5.635	7.786	14,859
7	1.037	1.148	1,283	1.418	1.683	2.171	2,887	3.778	6.751
20	1.014	1.056	1.107	1.158	1,258	1.441	1.713	2.049	3.172
26	1.006	1,022	1,042	1.062	1.101	1.173	1.278	1.404	1.813
32	1.002	1,009	1.017	1.026	1.042	1.072	1.115	1.167	1.337
ж М	1.001	1,004	1.008	1.011	1,018	1.031	1.0.19	1.071	1.139
77	1,000	1,002	1.004	1.005	1,009	1.015	1.023	1.033	1.065
50	1,000	1,001	1.002	1.002	1.004	1.007	1,011	1.016	1.031,
56	1.000	1,000	1.001	1.001	1,002	1.003	1.005	1,008	1.015
62	1,000	1.000	1.000	1,001	1.001	1.001	1.002	1.003	1.007
89	1,000	1.000	1.000	1.000	1.000	1.001	1.001	1.001	1.003
1 74	1.000	1,000	1.000	1,000	1,000	1,000	1.000	1.001	1.001
9	1.000	1,000	1,000	1.000	1.000	1.000	1,000	1,000	1.000

	10		4.228			4.22	1-7	4.225	4.225	4.22	4.223	1 1 1 1 1 1 1
	0		7 14.275	4.274			4.273	4.271	4.269	12.5	4.259	
503	∞		4.597	4.596	4.595	4.594	4.592	4.589	4.585	4.580	4.564	1
4) = 0.	7		4.951	4.950	876.7	976.7		4.936	4.927	4.916	4.832	1
(3054)	9	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	3.344	3.340	3.336	3,332	3.324	3.309	3.287	3.261	3.175	[
	5		3.744	3.736	3.726	3.716	3.696	3.660	3.607	3.544	3.338	
*.	-4		2.166	2.145	2.11.9	2.094	2.043	3.951	3.814	3.645	3.080	
[II]	σ,		2.579	2.524	2.456	2,388	2.254	2.009	3.649	3.201	5.705	
Omn - 3	2	:	2.894	2.756	2.588	2.420	2.093	3.490	4.609	5.527	9,969	
Log Q	- I		1.112	2.816	2.455	2.095	3.356				15.459	
1 1 1 1			37	09	70	75	08	\$77	86.5	්භ භ	96	•

)					1		! ! ! !	1 1 1 1 1	1 1 1
N N	\ \	CZ.	n	-7	7	9		700	6	0
1	1 1 1 1] 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1				! ! ! !		
37	1.255	1.024	2.703	2.287	3.864	3.463	3.071	4.716	7.36	4.346
9	1.028	2.919	2.660	2.270	3.858	3.461	3.069	4.75	4.394	4.346
70	2.753	2.791	2.608	2,251	3.850	3.457	3.068	417.4	4.393	4.346
75	2.478	2.662	lus.	2.231	3.842	3.454	3.067	4:1.4	4.393	4.346
. 08	3.945	2,412		2.193	3.827	3.448	3.064	4.713	4.39	4.346
78	4.976	3.952	2.267	2,123	3,800	3.436	3.059	4.710	4.391	4.346
86.5	5.588	3.279	Im	2.018	3.759	3.420	3.052	4.707	7.390	4.346
100 100	7.943	4.453	3.650	3.889	3.711	3.400	3.044	4.703	4.383	4.346
06	12,832	7.737	4.509	3.458	3.554	3.335	3.018	4.651	4.382	4.344

Table 5A (contd)

-) [1
201
~ ₹
- 1
- 1
ani
$\mathbf{v}_{\mathbf{i}}$
15
\sim
ايسخم
αď
Œ
_''
-11
ij

B (3085) = 0.481

	1			ż		٠,				
10	1	4.255	4.255	4.255	4.255	· (CV)	4.253	4.250	4.250	4.248
O)		14.297	4.297	4.296	4.296	4.295		\sim	4.289	4.282
€0		4.619	4.618	4.617	4.617	•	•	7.608		4.588
7		4.974	4.972		4.969					
9	 	3.366	3.363	3.359	3.354	3.347	3.332	3.312	3.287	3.205
٢0		3.766	3.758	3.749	3.739	3.720	3.686	3.635	3.575	3.378
4		2.7	2,168	2.144	2.119	2.071	3.983	3.852	3.690	3.150
C		2.602	2.549	2.484	2.419	2.291	2.057	3.712	3.284	5.854
2		2.918	2.786	2.626	2.465	2.152	3.576	4.733	5.698	8.296
· · · · · · · · · · · · · · · · · · ·		1.138	2.855	2.510	2.106	3.498	4.234	5.545	8.485	14.082
2		37	20	0	52	0:0	÷	36.5	το το	Q.

(contd.)	
Table 5B	

	!	i i	89	9,0	99	99	369	60	25	23	35	
	10	1	4.369	4.369	4.369	4.369	4.36	4.36	4.367	4.367	4.362	
			4.735/ 4.413	4.413	4.412	4.412	4.412	4.410	4.409	4.407	4.402	
0.365	***		4.735	4.734	4.734	4.733	4.732	4.730	4.727	4.723	4.711	
91) = 0.		1 1 1 1 1	3.090	3.089	3.087	3.086	3.083	3.079	3.072	3.064	3.039	
(3291) =	9		3.487	3.480	3.477	3.474	3.468	3.457	3.441	3.422	3.360	
	7.		3.883	3.877	3.870	3.862	3.848	3.822	3.734	3.738	3.588	
	77		2,306	2,291	2.272	2.253	2.217	2.150	2.051	3.928	3.518	
[#4]	σ,		2.722	2.632	2.633	2.583	2.487	2.309	2.047	3.722	4.637	
J mu C	€ 1		1.044	2.945	2.823	2.701	2.463	2.026	3.386	4.601	6.0.9	
Log Am _n	-		1.277	1.062	2,801	2.539	2.032	w. 11.	5.792	6.228	11.370	
! ! ! ! !	N Z			09			80			රා ර ා	06	

·	Log	, 면 명	Œ.			(3 (3112)	li .	797.0		
Z	~~	~	[] []	7		9		100	0	0
		 	1 1 1		! ! ! !	1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
37	1.159	2.936	2.620	2.206	3.783	3.383	4.991	4.636.	4.314	4.267
. 09	2.885	2.810	2.568	2.186	3.776	3.380	686.4	4.635	4.314	4.267
. 02	2.553	2.655	2.506	2,162	3.767	3.376	4.987	4.634	4.313	4.267
75	2,220	2.500	2.443	2.139	3.757	3.372	986.4	4.634	4.313	4.267
80	3.576	2.198	2,320	2.092	3.739	3.365	4.983	4.632	4.312	4.267
48	4.405	3.642	2.094	2.007	3.706	3.351	4.977	4.629	4.311	4.267
36.5	6.728	4.828	3.761	3.881	3.657	3.331	4.968	4.625	4.309	4.267
50 60	3.740	5.830	3.348	3.725	3.599	3.307	4.958	4.621	4.307	4.265
06	14.564	543	5.969	3.204	3.409	3.228	4.927	909.4	4.300	4.265

Table 50

(contd.)
2C
Table

	Log Am	1	E.			(3 (3323) =	3) = 0.	0.350		
2	 	· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1	! ! ! !	1 20	9		; ; (00 ; t		0
1 1 1 1	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1			; ; ; ; ; ;		
37	1.295	1.061	2.738	2,321	3.898	3.497	3.105	4.750,	4.750, 4.428	4.382
09	1.089	2.965	2.699	2.306	3.892	3.495	3.104	4.749	4.428	4.382
70	2.838	2.848	2,652	2,289	3.885	3.492	3.102	4.749	4.427	7.382
75	25.00	2.731	2,605	2.271	3.878	3,489	3.101	4.748	4.427	4.382
80	2.101	2.504	2.512	2.236	3.865	3.483	3.099	4.747	4.427	4.382
72	3.218	2.034	2.341	2.172	3.839	3.473	3.094	4-745	4.426	4.382
36.5	5.953	3.471	2.091	2.076	3.803	3.458	3.088	4.742	4.424	4.382
රා රා	454.9	4.718	3.779	3.959	3.759	3.440	3.080	4.738	4.422	4.380
06	11.795	5.242	4.738	3.566	3.615	3.380	3.056	4.727	4.417	4.378

	•						:	1		
	0,	! (4.37.2	4.312	4.312	4.310	4.310	4.310	4.310	4.308
	0\	7 676 7 563	4.353	4.352	4.352	4.351	4.350		4.346	4.340
425	700	7. 675	4.674		4.673	4.671	699.4		4.661	17.647
(3 (3175) = 0.425		3 030	3.028		3.025	3.022	3.017	3.009	3.000	4.971
(3 (31)	VO	3.1.22	3.419	3.416	3.412	3.405	3.392	3.375	3,352	3.280
	72	3.822	3.846	3.807	3.799	3.782	3.751	3.707	3.653	3.479
 	4	2.245	2,227	2.206	2.184	2141	2.064	3.948	3.805	3.328
(X)	9	2,660	2.613	2.556	2.498	2,386	2.178	3.874	3.495	4.232
1 1	N	2.979	103	2,721			3.793	3.048	4.134	7.128
Log $\Delta m_{\rm n}$		1.205	2.955	2.650	2.346	3.756	4.633	5.147	7.326	13.670
	u Z	37	09	70	75	° 08	48	86.5	100 100	06

Table 5 D

			ч	Table 5	5D (contd.	d.)	:			
	Log A	u u	<u></u>			(338)	(3, (3399) = 0,3 kg	\$ 100 m		
Z	₩.	23	3	† †		9	7	100	0	10
				 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 	1	***
37	1.334	1.096	2.771	2.354	3.930	3.529	3.137	4.782	7,400	4.417
09	7.146	1.009	2.736	2,340	3.925	3.527	3.136	4.781	7.460	4-417
70	2.918	2.903	2.693	2.324	3.919	3.525	3.134	4.781	4.459	4.417
75	2.691	2.797	2.650	2,308	3.912	3.522	3.134	4.786	4.459	4.417
\$ 08	2.249	2.589	2,566	2.276	3.900	3.517	3.131	4.779	4.459	4.417
78	3.447	2.209	2.411	2,218	3.877	3.507	3.127	4.777	4.458	714.4
86.5	4.297	3.651	2.183	2,131	3.844	3.493	3.121	4.775	4.457	4.415
	6.935	7.967	3.900	2.024	3.804	3.477	3.114	4.772	4.455	4.415
06	10.702	6.718	4.954	3.667	3.673	3.423	3.093	4.761	4.450	4.412

 $\triangle s - \triangle h \quad \text{for different Z and h}$ $\frac{Z = 37^{\circ}}{2}$

	9 Mar 244 Mar 244 Mar	•	, ,					**		
Layer	1	2	3	4	5	6	7	8	9	v_n in 10^{-3} cm/km
12- 6	1.4 1.5 1.5 1.5 1.5 1.5	1.5	1.5 1.5 1.5 1.5	1.5 1.5	1.5 // 1.5 // 1.0	1.5 1.5 1.5 1.0	1.5	1.5	1.0	y ₉ = y ₈ = y ₇ = y ₆ = y ₅ = y ₄ = y ₃ = y ₂ = y ₁ =
title often stan man jake ingen		e man and the man and	P 1000 Pine , right white salper seque	tion step vigit late upon va	Z = 60		S AME TANK MAN AND THE BUT	TO STORE THAT WHE SING SUIN NAME		na na ma na
54-48 48-42 42-36 36-30 30-24 24-18 18-12 12-6 6-0	5.7 5.7 5.8 5.8 5.9 5.9 5.9	5.7 5.8 5.8 5.9 5.9 5.9	5.7 5.8 5.8 5.9 5.9 4.0	5.8 5.9 5.9 5.9 4.0	5.8 5.9 5.9 5.9 4.0	5.9 5.9 5.9 4.0	5.9 5.9 4.0 -	5.9	4.0	y ₉ = y ₈ = y ₇ = y ₄ = y ₂ = y ₁ =

Table 6 (contd.)

$Z = 70^{\circ}$

$\binom{n}{n}$	1	2	3	4	5	6	7	8	9	$y_n in 10^{-3}$
Layer										cm/km
54-48	10.5	10.6	10.7	10.9	11.0	11.1	11.3	11.4	7.6	у _о =
48-42	10.6	10.7	10.9	11.0	11.1	11.3			. 	y ₈ =
42-36	10.7	10.9	11.0	11.1	11.3	11.4	7.6	_		y ₇ =
36-30	10.9	11.0	11.1	11.3	11.4	7.6		-	- ,	y ₆ =
30-24	11.0	11.1	11.3	11.4	7.6		-	Name of	, ~~	y ₅ =
24-18	11.1	11.3	11.4	7.6		•		-		y ₄ =
18-12	11.3	11.4	7.6	_	. · . <u>-</u> .	-	-	. -	· -	$y_3 =$
12- 6	11.4	7.6	1	· , = ·	-		-	<u></u> .		y ₂ =
6- 0	7.6		re .	. 🕶			****	- And		y ₁ =
		NOT then Pills who and more								the former divine your street water states states states
Now your some days man some p	ger and the good was	arest series based series states a	ein vin ten hin ena min	Man pain man hope and was	Z = 75	O			ert 1937 and ava de	
54-48	14.9	15.2	15.4	15.6		16.2	16.5	16 . 8	11.4	y ₀ =
	14.9 15.2	15.2 15.4	15.4 15.6		16.0					1 2
1				15.6	16.0	16.2	16.8			yg =
48-42 42-36	15.2	15.4	15.6	15.6 16.0 16.2	16.0 16.2 16.5	16.2 16.5	16.8			y ₈ =
48-42 42-36	15.2 15.4	15.4 15.6	15.6 16.0 16.2	15.6 16.0 16.2 16.5	16.0 16.2 16.5	16.2 16.5 16.8	16.8			y ₈ = y ₇ = y ₆ = y
48-42 42-36 36-30	15.2 15.4 15.6 16.0 16.2	15.4 15.6 16.0	15.6 16.0 16.2 16.5	15.6 16.0 16.2 16.5	16.0 16.2 16.5 16.8	16.2 16.5 16.8	16.8		Majora Majora	y ₈ = y ₇ = y ₆ = y ₅ =
48-42 42-36 36-30 30-24 24-18 18-12	15.2 15.4 15.6 16.0 16.2 16.5	15.4 15.6 16.0 16.2	15.6 16.0 16.2 16.5	15.6 16.0 16.2 16.5 16.8	16.0 16.2 16.5 16.8 11.4	16.2 16.5 16.8	16.8		Majora Majora	y ₈ = y ₇ = y ₆ = y ₅
48-42 42-36 36-30 30-24 24-18 18-12	15.2 15.4 15.6 16.0 16.2	15.4 15.6 16.0 16.2 16.5	15.6 16.0 16.2 16.5 16.8	15.6 16.0 16.2 16.5 16.8 11.4	16.0 16.2 16.5 16.8 11.4	16.2 16.5 16.8	16.8		Majora Majora	y ₈ = y ₇ = y ₆ = y ₅ = y ₄ =

Table 6 (contd.)

<u>Z = 80°</u>

era – a mengamanas										
Lyer	1	2	3	4	5	6	7	8	9 🚺	in 10 ⁻³
5 -40 4 -36 3 -30 2 -24 2 -18 11 -12 11 - 6 (- 0	į	25.6 26.5 27.3 18.8	24.0 24.8	24.0 24.8 25.6 26.5 27.3 18.8	25.6 26.5 27.3	25.6 26.5 27.3 18.8	•	27.3	18.8	y ₉ = y ₈ = y ₇ = y ₆ = y ₄ = y ₂ = y ₁ =
S. S		and the rest out state open	ander some store garde proop		Z = 34	0				
54 8 6- 2 36-10 30-14 31- 3 15- 2 12- 6 6- 0	31.0 32.4 34.0 35.8 37.8 40.2 43.0 46.4 33.2	46.4 33.2	34.0 35.8 37.8 40.2 43.0 46.4 33.2	35.8 37.8 40.2 43.0 46.4 33.2	37.8 40.2 43.0 46.4 33.2	40.2 43.0 46.4 33.2	43.0 46.4 33.2	46.4	33.2	y ₉ = y ₈ = y ₇ = y ₆ = y ₄ = y ₃ = y ₂ = y ₂ = y ₂ = y ₂ = y ₃ = y ₂ = y ₃ = y ₂ = y ₃ = y
	1				****				[y ₁ =

Table 6 (contd.) $Z = 86^{\circ}.5$

				-						THE RES LESS THE END AND AND AND AND ALLE
ayer	1 \	2	3	4	5	6	7	8	7 1	y_n in 10-3 cm/km
54-48 48-42 42-36 36-30 30-24 24-18 18-12 12-6	37 40 42 46 50 55 62 72	40 42 46 50 55 62 72 57	42 46 50 55 62 72 57	46 50 55 62 72 57	50 55 62 72 57	55 62 72 57	62 72 57 -	72 57 -	57	y ₉ = y ₈ = y ₇ = y ₆ = y ₅ = y ₄ = y ₃ =
6- 0	57					• • • • • • • • • • • • • • • • • • •	and a			y ₂ = y ₁ =
					2 =	<u>880</u>			"	
54-48 -8-42 -2-36 -36-30 -30-24 -24-18 -12-6 -6-0	41 44 47 51 57 65 77 98 91	44 47 51 57 65 77 98 91	47 51 57 65 77 98 91	51 57 65 77 98 91	57 65 77 98 91	65 77 98 91 - -	77 98 91	98 91	91	y ₉ = y ₈ = y ₇ = y ₄ = y ₂ = y ₁ =

Table 6 (contd.)

Z = 90°

par was trackled bligg or	M PM 1111 PM	e take peri ficial little house date form		180 800 800 800			in has said pur sum pay tod	MAR AND THE MICE MAD IN THE		
Layer	1	Z u kan aka mbu tan bak shak ka	3	<u></u>		6	7	8	9	y _n in 10 ⁻³ cm/km
54-43	42	46	50	55 55	62	72	89	125	222	y ₉ .=
48-42	46	50	55	62	72	89	125	222		. A8 =
42-36	50	55	62	72	89	125	222		·	У7
36-30	55	62	72	' 89	125	222	•	~	-	y ₆ =
30-24	62	72	89	125	222					У ₅ =
24-18	72	89	125	.555	, ma .	-	~~			У4 =
18-12	89	125	222		pos	. 	.	-		y ₃ =
12- 6	125	222	¥	•••		***	· java ·	-	_	y ₂ =
6- 0	222	_		· .		***		-		y ₁ = .
	<u> </u>	- 100 104 100 100 100 100 100			1860 1418 1414 1514 1514		La Ami 640 Mad Mak Peri 813	F 1986 APPR CON SUA 444 APR ARES SE	, <u></u>	that is the solutional and the size with the size great

Table 7

Correction for second by scattering (Provisional). Amount to be	subtracted from values of $\mathbb{R}(Z) = \mathbb{N}(60^{\circ})$ when observations are made with $\mathbb{C}(X,X)$.	60 70 75 80 84 86.5 88 90	0.0 1.0 2.0 4.5 6.0 6.0 6.0 6.0
y scattering (Provisio	of M(Z) - N(60°) when	60 70 75 80	0.0 1.0 2.0 4.
Correction for second	subtracted from values with C \ \ \.	Z Z	Subtract to correct for secondary scattering.

An example showing the calculation of Log(I'/I) is given below: It relates to an umkehr curve obtained at Ahmedabad on 16-10-56 with C pair of wave-lengths. The total ozone amount was 0.192 cm. The values of N observed on light scattered from the clear zenith sky are given in Table 9B.

A trial distribution was assumed to start with; this was based on a general knowledge of average distribution corresponding to 0.192 cm. The values of y (in 10^{-3} cm/km) assumed to exist in layers 1 to 9, were

0, 0.5, 0.5, 5.5, 12.0, 8.0, 3.8, 1.4, 0.3.

In Table 8, is shown an example of calculating $Y = Y_n + x$, the total ozone in the path of the light when the zenith distance of the sun was 86.5.

Using these values of Y and Form I, the values of $Log(I^*/I) = -L$ were computed for different values of Z. An example is shown for Z = 86.5. As we are interested only in the relative values of L, or of N which is equal to $100(L_0 - L)$ when Z changes, the computed value of $100 Log(I^*/I)$ at 60° has a correction added to it so that it becomes identical with the observed values of N at 60° . The same correction term is added

100
9
ab.
E-1

の は 日 日 日 日 日 日 日	Example showi	ក្ល	calculati	on of	ozone path	≽ı	for : = 8	86.5; x	= 0.192	cm.
Trial ozone distn.	8	¥2 0•5	¥3 0.5	y 4, 5.5	y5 12.0	y6 8.0	\$ m	y y 1	y ₉	1:
Layer		2	ω,	4	5	9		100	6	10
0\	0	.0120	.0126	.0138	.0150	.0165	.0186	.0216	:0171	0000
හ	0360.	て) て, と, と,	7500.	0020	0270	,0868	,1008	\$620°	000	0000
7	.1596	.1748	.1900	.2090	.2356	.2736	.2166	0000	000.	0000
9	.3680	4000	0077	0967.	.5760	.4560	0000	0000	0000	0000.
īΌ	0009*	0099.	0447.	0498.	0789.	0000	0000	0000	0000.	0000
7	,3025	.3410	.3960	.3135	0000	0000	0000.	0000	0.00.	0000
Μ.	,0310	.0360	.0285	0000	0000	0000	0000	0000	000°	0000
€	0360	.0285	0000	0000	0000	0000	0000	0000	ಾಂಂ•	0000
←	0000	0000	0000.	0000	0000	0000	0000	0000.	0000	0000
Yn	1.5642	1.7111	1.8755	1.9663	1.5876 0	8329 (0.3360	0.101 0	0.0171 0	0.000.0
7=7 11 12	1.756	1,503	2.067	2,158 1	1.780 1.	1.025	0.528	0.293 0	,209	192

Similar calculations of Y_n and Y are to be made for other $oldsymbol{val}$ ues of $Z_oldsymbol{.}$

Table 9 A.

Trial distribution and	changes	in	trial	distribution.	The	y's are
in units of 10^{-3} cm/km.						J

		·								
Layer	1	2 .	3	4	5	6	7	8	9	alia) wai ana eta
Trial distn.	0.0	0.5	0. 5	5.5	12,0	8.0	3.8	1.4	0.3	ágpa dasa atau atau
,y(a)		· ·	in the second se			V 1	-0.1		0.1	Can bear seed 67.1
y(b)	0.5	0.5	2.0	-2.0	-1.0		-0.1	and the season	0.1	
y(c)	0.5	1.5	1.0	-2.0	-1.0	* * * * * * * * * * * * * * * * * * *	-0.1	19. d = 48. g	0.1	
Final distn.	0.5	-2.0	1.5	3.5	11.0	8.0	3.7	1.4	0.4	
	Trial distr. (y(a) (y(b) y(c) Final	Final (0.5) (y(a) (0.5) (y(c) (0.5) (y(a) (0.5)	Final Cistn. 0.0 0.5 (y(a) 0.5 (y(b) 0.5 0.5 (y(c) 0.5 1.5) Final	Final Cistn. 0.0 0.5 0.5 (y(a) 0.5 0.5 (y(b) 0.5 0.5 2.0 (y(c) 0.5 1.5 1.0 Final	Final cistn. 0.0 0.5 0.5 5.5 (y(a) 0.5 0.5 2.0 -2.0 y(c) 0.5 1.5 1.0 -2.0 Final	Final cistn. 0.0 0.5 0.5 5.5 12.0 (y(a) 0.5 0.5 2.0 -2.0 -1.0 y(c) 0.5 1.5 1.0 -2.0 -1.0 Final	Trial cistn. 0.0 0.5 0.5 5.5 12.0 8.0 (y(a) 0.5 0.5 2.0 -2.0 -1.0 y(c) 0.5 1.5 1.0 -2.0 -1.0 Final	Trial distr. 0.0 0.5 0.5 5.5 12.0 8.0 3.8 (y(a) -0.1 (y(b) 0.5 0.5 2.0 -2.0 -1.0 -0.1 (y(c) 0.5 1.5 1.0 -2.0 -1.0 -0.1 Final	Trial cistn. 0.0 0.5 0.5 5.5 12.0 8.0 3.8 1.4 (y(a) -0.1 (y(b) 0.5 0.5 2.0 -2.0 -1.0 -0.1 (y(c) 0.5 1.5 1.0 -2.0 -1.0 -0.1 Final	Trial distn. 0.0 0.5 0.5 5.5 12.0 8.0 3.8 1.4 0.3 (y(a) -0.1 0.1 0.1 (y(b) 0.5 0.5 2.0 -2.0 -1.0 -0.1 0.1 (y(c) 0.5 1.5 1.0 -2.0 -1.0 -0.1 0.1

Table 9 B.

Observed and calculated values of N for different values of Z and for various ozone distributions.

4(degrees)	60-	70	75	80	84	86.5	88	90
$z^4 \times 10^{-7}$	1.30	2.40	3.16	4.10	4.98	5.60	6.00	6.56
Observed N	32.0	51.0	67.5	92.2	119.3	126.3	124.5	113.0
N accord- ing to trial distn.	32.0	52.7	70.4	96.5	120.6	127.0	123.2	108.9
△ y(a)	32.0	v en e e			120.7	127.2	123.8	110.3
∆ y(b)	32.0	51.8	69.0	93.9	118.3	127.0	124.9	112,2
A y(c)	32.0	51.8	68.6	93.5	117.9	126.9	124.7	112.4

Table 9 C

Layer 1 2 3 4 5 6 7 8 9

yn 2.0 2.0 3.0 3.7 10.0 7.0 3.2 0.9 0.2

Z 60 70 75 80 84 86.5 88 90

Observed N corrected for Sec. 32.0 50.0 65.5 87.7 113.3 120.3 118.5 107.0 scattering

Galculated N 32.0 51.0 66.5 89.0 111.6 120.5 119.2 106.5

Form I for computing Log(I'/I) for given ozone distribution

Jate: 10-10-56	Stati	on: Ahmede	y Da	= \$6.5	X / X	ాథ ల	1.23	<= 0.08	 	92 cm
n n		1	~	4	5	9 .	7	11 60	6	
Y D====================================	0.0	0.5	0.5	5.5	12.0	8.0	3.8	1.4	0.3	
Ϋ́				[] [] [] []	# !!	41 1 1 1	 	 	11	
X				* * * * * * * * * * * * * * * * * * * *			**********		1	1
$Y = Y_D + X_{DD}$	1.756	1.903	2.067	2.158	1	1.025	0.528	0.293	0.209	0.192
Log Am - PF	\$	• 828	3.761	3.881	9	3.33	%. <u>7</u>	4.62	4.30	4.26
X Y	160	2.341	2.543	2,654	2,189	1.261	649,10	0,360	0.257	0.236
0	8,568	6.487	5.217	.22.	5.468	4.07	319	4.265	4.05	4.03
Antilog D	030		30	0301	0302	03118	.03208	03.1	031	3.1
D = Log Am _n	H (-)	× Y.					nti	og D =	.03795	· C
Log Am - PF		3.471	0 1	920.	3.803	3.458	3.088	14	4.42	. W.
	0.140	0.152	0.165	0.173	0	18	101	0.023	0.017	
	5.813	3.319	ON 1	.903	3,661	.376	970	4.719	407	
	.02007	.02208	٥	50	024	22	.02111	$\mathbf{I} \bigcirc$	10	10
D' 😜 Log 🛆 m _n			 				An An	0 =	0277 K B	11
Log I = 4.900	+ Log K	3		Log	= 2	+ Log	K A'.		1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\text{Log } (\text{I}^{\text{f}}/\text{I}) = 1$	1.543 - I	- Log (3/B	[3'). =	1.421	4		100	Los (I'	I) = 11,2	

Form II for computing $Log(I^{1}/I)$ for a changed initial distribution ate: 16-10-56 Station: Ahmedabad $Z = 86.95 \ \lambda/\ \lambda' = 0 \ \kappa = 1.23 \ \kappa' = 0.08$

ate: 16-10-56 Sta	Station:	Ahmedabad	Z = 86.95	· / /	y 0 =	= 1.23	0.0 = 3	₩ 20	0.192 cm	
I I I I I I I	900	2	£.			9.			5 -	10
lange in Y _n			i i i i i i i i i i i i i i i i i i i		i i i		-0.1		+0-1	1 1
	. Sur siener	700°.0+	700	404	0.00	9	900.0+	40.007	900*0+	
Z \	jo ≃tost.	500.0-	Ç	00.0	900.0-	1 1	900.0-]] []	1	1 1
		-0.001	9	0	00.0	0	000	+0.007	+0.006	00000
1	, 	184.9	5.217	5.227	5.468	4.070	T.319	4.265	0.47	.03
X 2 Y		-0,001			•	9	10	÷0.009	+0.007	00.00
- × 0 Y		284.9	218	5.228	5.469	4.071	4.319	7-1	0.4	.031
ltilog(D - < (\text{\tin}\text{\te}\tint{\text{\text{\text{\text{\text{\text{\ti}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	000 60.	000 0.3003	3017	.03017	0.	0311	.03208	0318	03111	.031
$=\sum_{n} \triangle I_{n} = \mathbb{K} \nearrow \mathbb{Z}$ Antilog		Antilog (D -	$ \times$ \wedge $_{ m I}$	= 0.0379	M	1) }	T GO	4.898	Log K	
' (from Form I)	Cation becomes] 		 		.719		E # # + -
4	-1	000.0	000 0	0000	00000	000.0	000.0	1 ~-		000.0
Y 0 Y					i i			1		 } }
itilog(D'- < AY)			1					02052		
	7	1 50 I	ΔY)	0.027	, C] - 	Log	• 443	M	
			100 Log	Log(I'/I)	= 142.3					1 1 1 1

to the computed values for all other angles also. We thus get a computed (constant-L) or N curve which can be compared with the observed curve. A sample calculation is shown in Tables 9A and 9B and Forms I and II.

The values of N calculated according to the trial distribution and adjusted so that the observed and calculated values coincide at 60°, are entered in row 4 of Table 9B. It will be noticed that the computed values are significantly lower at 90° and significantly higher at 75° and 80°. The first defect can be remedied by adding a small amount of ozone at the top. To remedy the second defect, some ozone has to be brought down from the middle layers to the bottom layers. These changes in distribution are made in successive approximation. Form II is used for computing changed Log(I'/I).

Considering the scatter of values in the observed umkehr curve, it was considered that the values in the last row of Table 9B were sufficiently satisfactory and that the distribution given in the last row of Table 9A accepted as the distribution, provided the zenith skylight was assumed to be due only to primary scattering.

The observed values given in row 3 of Table 9B were corrected for secondary scattering according to Table 7. The

new distribution to fit the corrected observed curve and the corresponding calculated values of N are given in Table 9C.

The following hints may be of some help in making the changes in distribution.

- (1) With an assumed trial distribution, calculate $Log(I^*/I)$ at $Z = 60^{\circ}$. Add an appropriate constant to this so as to make it equal to the observed value of N/100 at 60° .
- (2) Galculate $Log(I^{\circ}/I)$ for 90° and 88° , and apply the same correction. If the calculated value is too high, remove a little ozone from the top layer to layer 6 or 7. If it is too low, add some ozone to the top. A small change at the top will make a large difference in $N(90^{\circ})$ and $N(88^{\circ})$. Get agreement at 88° and 90° to within 2 units of N.
- (3) Calculate Log(I'/I) for 86.5, 84° and 75° and add the same correction to each. Adjust ozone in the middle and lower layers so as to get satisfactory agreement at all the points.

II Supplementary Tables for use at stations situated at about 912-mb level and at 810-mb level.

The main modifications in the tables for a station at 0.9 p_0 (= 912 mb) and at 0.8 p_0 (= 810 mb) are given below. It is assumed that the values of \underline{h} in both these cases may be taken to be 3 km instead of 2 km. This is sufficiently accurate for the present purpose. The air mass in the first layer (ground to 6 km) should be changed as given in Table 2%.

If the pressure at the station-level is $k\rho_{0}\text{,}$ the value of F is given by

$$F = k + \frac{p}{p_0} \qquad \left[Ch(Z) - 1 \right]$$

The first row of Table 4 for F_h corresponding to the lowest layer is changed as shown in Table 4X. The values of F_h in all the other rows are decreased by 0.100 when the station is at or near 912 mb, and by 0.200 when it is at or near 810 mb.

For stations at or near 912 mb and 810 mb respectively, the values of $\text{Log } \triangle \text{ m}_n$ - \bigcap F in the second columns of tables 5A to 5D (corresponding to the lowest layer) require the changes given in Tables 5A (X) to 5D (X). For stations upto a height of 2.5 km, the tables for the nearest pressure-level may be used without appreciable error.

For the succeeding layers 2, 3, 4 etc., the values of $\log \Delta m_n - \beta F$ tabulated in Table 35A to 5D should be increased by $(1-k)\beta$ for a station at pressure level kp₀. Thus, for a station at 912 mb level, all the values in the third column of Table 5A should be increased by 0.100 β , and for a station at the 810 mb level, by 0.200 β . An example is given in Table 5A(\mathbb{R}) for the second and third layers.

The values of \triangle s - \triangle h in the second column of Table 6 corresponding to the first layer requires a small and rather insignificant change, due to the raising of the centre of the layer from 2 to 3 km. These changes for each value of Z are tabulated in Table 6%.

It is recommended that each station should modify tables for regular use at the station.

Table 2X

Po	$\log \Delta$ m _n
1013 mb	7.715
912 mb	7.622
810 mb	7.503

The Δ ms in the other layers remain the same as in Table 2.

न्स ०	N	370	009	002 009	750	008	078	840 8695	0 8 8 	006
1013	€2	1.199	1.788	2.505	3.221	4.610	7.133	19 1.788 2.505 3.221 4.610 7.133 10.748 15.032 28.342	15.032	28.342
912	<u>ω</u>	1.076	1.597	2.232	2,866	7.095	6.329	76 1.597 2.232 2.866 4.095 6.329 9.529 13.320 25.101	13.320	25,101
810	m	0.976	1.497	0.976 1.497 2.132 2.766 3.995 6.229	2.766	3,995	6.229	9.429	9.429 13.220 25.001	25,001
1	 						1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 5A(X) Log Δm_n - 3F for the lowest layer

(7		入= 3054	tions gand stem with some poor steep your time say		$\lambda' = 3253$	print print print were note that which was bond
Z 	1013 mb	912 mb	810 mb	1013 mb	912 mb	810 mb
37	7.112	7.081	7.012	7,255	7.209	7.128
60 .	2,816	2.819	2.750	7.028	7,009	2,928
70	2.455	2.499	2.431	2.753	2.765	2.684
75	2.095	2.180	2.112	2.478	2.521	2.441
80	3.396	3.562	3.494	3.945	2.050	3,969
84	4.127	4.439	4.370	4.976	3.192	3.111-
86.5	ॅ ट. ३७७	T.829	5. 760	5 .588	5.96 3	5,882
83	8.154	₹.922	ੋਂ.653	7.943	6.507	6.4 27
90	15.459	14.995	14.927	12.832	11.983	11.903
	Table 5	R(Y) Log	Λ _m Di	for the le		~
	+01010	7/W/ 108	一一一 12m	for the lo	west raye	.
177		BAR 650 had \$100 day 120 WELL BAR BAR 1				
and the section Z	ACCO ACCO MANY MANY MANY MANY MANY MANY MANY MANY	BAR 650 had \$100 day 120 WELL BAR BAR 1	ners arm seem seem seem seem seem seem seem se		$\chi = 3291$	gage tree need sond pool year read stage with sond policies. Any solid high solid give read solid Mini Anni Sirm Solid.
Z 37	ACCO ACCO MANY MANY MANY MANY MANY MANY MANY MANY	3085	810 mb	a pour term managete, qu'e com avec bene tien trat, sous a per term mana este pour une une pape une min este	$\chi = 3291$	810 mb
. Cold Else area dismb bond	1013 mb	$\lambda = 3085$ 912 mb	810 mb	1013 mb	$\lambda' = 3291$ 912 mb	810 mb
37	1013 mb	$\lambda = 3085$ 912 mb 7.104	610 mb 1.034 2.783	1013 mb	$\lambda' = 3291$ 912 mb	810 mb 1.147 2.957
37 60	1013 mb 1.138 2.855	λ = 3085 912 mb 7.104 2.854	610 mb 1.034 2.783	1013 mb 1,277 1.062	\(\chi = 3291 \) 912 mb \(\tau_229 \) \(\tau_1039 \)	810 mb 1.147 2.957
37 60 70	1013 mb 1.138 2.855 2.510	$\lambda = 3085$ 912 mb 7.104 2.854 2.548	810 mb 1.034 2.783 2.478	1013 mb 1,277 1.062 2.801	$\lambda' = 3291$ 912 mb 1.229 1.039 2.807	810 mb 1,147 2,957 2,725
37 60 70 75	1013 mb 1.138 2.855 2.510 2.166	\(\lambda = 3085\) 912 mb \(\bar{1.104}\) \(\bar{2.854}\) \(\bar{2.548}\) \(\bar{2.243}\)	810 mb 1.034 2.783 2.478 2.173	1013 mb 1.277 1.062 2.801 2.539	\(\chi = 3291 \) 912 mb \(\bar{1}.229 \) \(\bar{1}.039 \) \(\bar{2}.807 \) \(\bar{2}.576 \)	810 mb 1.147 2.957 2.725 2.493
37 60 70 75 80	1013 mb 1.138 2.355 2.510 2.166 3.498 4.284	\(\lambda = 3085\) 912 mb \(\bar{1.104}\) \(\bar{2.854}\) \(\bar{2.548}\) \(\bar{2.243}\) \(\bar{3.652}\)	810 mb 1.034 2.783 2.478 2.173 3.581 4.507	1013 mb 1,277 1.062 2.601 2.539 2.032	\(\chi = 3291 \) 912 mb \(\bar{1}, 229 \) \(\bar{2}, 807 \) \(\bar{2}, 576 \) \(\bar{2}, 127 \)	810 mb 1.147 2.957 2.725 2.493 2.045
37 60 70 75 80 84	1013 mb 1.138 2.355 2.510 2.166 3.498 4.284	\(\lambda = 30\frac{30}{5}\) \(\frac{912}{912} \text{ mb}\) \(\bar{1.104}\) \(\bar{2.854}\) \(\bar{2.548}\) \(\bar{2.548}\) \(\bar{3.652}\) \(\bar{4.578}\)	810 mb 1.034 2.783 2.478 2.173 3.581 4.507	1013 mb 1.277 T.062 2.601 2.539 2.032 3.111	\(\chi = 3291 \) 912 mb \(\bar{1}.229 \) \(\bar{2}.039 \) \(\bar{2}.807 \) \(\bar{2}.576 \) \(\bar{2}.127 \) \(\bar{3}.312 \)	810 mb 1.147 2.957 2.725 2.493 2.045 3.229

T-1-7 - 10/31	T	'A\	10. 30		¥		,
Table 5C(X)	Log	$\sim 10^{10}$	 13世	for	the	lowest	lawer
		11			9		June 19 4 1

2		$\lambda = 3112$)		$\overline{\chi}$ = 3323	
	1013 mb		810 mb			
3.7.	7.159	7,123	7.050	7.295	7.245	T.161
60 .	2.885	2.881	2.808	7.089	₹.063	2.979
70	2,553	2.586	2.514	2.838	2.841	2.757
75	2,220	2.292	2.220	2.588	2 ,619	2.535
80	3.576	3.722	3.649	2.101	2.189	2.105
84	4.405	4.685	4 ,613	3.218	3.407	3.323
86,5	6.728	5.201	5 .128	5.953	4.287	T.203
පිපි	8.740	7.442	7.369	6.454	6.960	6.876
90	14.564	-13 .975	13.903	11.795	10.837	10.753
	<u>Table 5</u>			for the lov	vest laye	
Z			the risk has the test the tip and why were the		\(\) = 3399	
COT STATE STATE SLATE PARK (1013 mb	912 mb	810 mb	1013 mb	912 mb	810 mb
37	7.205	7.165	7.088	7.334	7,280	7.193
60	2.955	2.943	2.867	T.146	7.114	7.027
70	2 .650	2.673	2. 597	2.918	2,912	2.825
75	2.346	2.404	2 ,327	2.691	2.711	2.623
80	3.756	3,882	3.805	2,249	2.320	2,233
84	4.683	4.932	4 .856	3.447	3,609	3.522
86.5	5.147	5.572	5,496	4.297	4.592	4.505
88	7.326	7.961	7.884	7. 935	5 .386	5 .299
90	13.670	12,954	12.878	10.702	9 .640	9.553

Table 5A(Y)

Log △m _n	$-\beta$ F for second and higher	r layers for a station at \$10 mb.
•	$\lambda = 3054 0.200 \beta = 0.101$	$ \lambda = 3253 0.200 \beta = 0.077 $
n Z	2 etc.	2 3 etc
	and the second s	belt with griffed that fourly regs, again used large steen need gave your need you have upon trace these gave you give most you can you again.
37	₹. 995 ₹. 680	7,101 2,780
60	2.857 2.625	2.996 2.737
70	$\overline{2}.689$ $\overline{2}.557$	2.868 - 2.685
75	2.521 2.489	$\overline{2}.739$ $\overline{2}.633$
30	2.194 2.355	2 ,489 2 ,532
34	3.591 2.110	2.029 2.344
- 86.5	4. 710 3. 750	3,356 2.069
ප්රේ ු	5,628 3,302	4.530 3.727
90 .	₹,070 ₹.806	7.814 4.586

Table 6X $\triangle s - \triangle h$ for the first layer when the centre is at 3 km.

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	of the pro one can ma			عال فيان يعدد جمع عمد عمد مناه مناه عدد			4 14 to 10 to 10	
Layer	Z 37	50	70	75	80	84	86.5	88	90
54-48	1.4	5.7	10.5	14.9	22.1	31.1	37	42	43
46-42	1.4	5.7	10.6	15.2	22.7	32.6	40	45	47
42-36	1.4	5.8	10.7	15.4	23.4	34.2	43	48	51
3630-	1.4	5.8	10.9	15.7	24.2	36.1	46	52	56
30-24	1.5	5.8	11.0	16.0	24.9	38.2	51	58	63
24-18	1.5	5.9	11,1	16.3	25.8	40.6	56	67	74
18-12	1.5	5.9	11.3	16.5	26.6	43.6	63	79	93
12- 6	1.5	5.9	11.5	16.9	27.5	47.0	75	103	137
6- 0	0.8	3.0	5.7	8.5	14.1	25.1	43	71	193

REFERENCES

- 1. Götz, F.W.P., Meetham, A.R. and Dobson, G.M.B., Proc. Roy. Soc., A, 1934, 145, p. 416.
- 2. Karandikar, R.V. and Ramanathan, K.R.,
 Proc. Ind. Acad. Sci., A, 1949, 29, p. 330.
- 3. Wilkes, M.V.,
 Proc. Phys. Soc., B, 1954, <u>67</u>, p. 304.
- 4. Walton, G.F.,

 I.U.G.G. General Assembly, Bruxelles 1953,

 Proces-Verbaux IAM, p. 316.
- 5. Ramanathan, K.R., Moorty, Bh.V.R. and Kulkarni, R.N., Quart. Journ. Roy. Met. Soc., 1952, 78, p. 625.

0000000000

2.3 Importance of modified Nethod B in studying the Vertical distribution of ozone in the lower atmosphere

Shile working out a few vertical distributions of ozone by Method B as described in article 2.2, it was observed that the ozone content of the first four or five layers could be fixed within 0.5 unit (one unit = 10⁻³ cm/km) and that of the upper layers within 0.1 to 0.2 of a unit. Again, it was found necessary to put a smaller ozone amount in 12 - 18 km layer than in 6-12 km in order to have a tolerable fit at 70°, 75° and 80°. Hence it was considered worthwhile to study this minimum in Agreater detail for a few instances.

Before taking the vertical distribution obtained by Method B as granted, it is necessary to keep the following points in mind:-

- over a period of three to four hours and neither the total ozone nor its vertical distribution can be expected to remain unchanged.
- 2. The effect of forward scattering by large particles of dust and haze is likely to be more pronounced for solar senith angles up to 60° or 70°, specially for low level stations and hazy skies.
- J. The assumptions involved in Method B.
- 4. Neglect of the effect of higher orders of scattering and scattering by large particles of dust and haze.

dence it is desirable to have the vertical distribution of ozone obtained by this indirect method tested by direct measurements in a few instances.

Two sets of observations were selected and analysed to study the variation in the vertical distribution of ozone. (1) during different parts of the year and (2) during the period when there were large changes in total ozone amount.

The first set was selected from the observations taken by Mr. M.M.Kulkarni, M.Sc., during the year 1952. Since Mr. Kulkarni selected 70° as the starting point for analysis, the observed wakehr curves were extrapolated to 60° in some cases. The second set was selected from the observations taken by Mr. J.J.Degaonkar, M.Sc., during the period 1954-55. All the observations were taken at Mt. Abu with Dobson Jpectrophotometer Mo. 39.

The vertical distributions of ozone for four different months during 1952 as obtained by Mr. Kulkarni using the old 9 Km method, are presented in Table 10 A and those obtained by the modified method are given in Table 10 B. Unly the primary scattered radiation is taken into consideration in both the cases.

From Table 10 A, it can be seen that there is no appreciable change in the ozone content of the layers between 0 and 18 km, and 27 and 54 km. Any change in the ozone content is due to the changes in the layer 18 - 27 km. On the other hand, the results given in Table 10 5 bring forward the following points:-

Table 10

Vertical distribution of exone in different months during 1952 (A) as analysed by Mr. Mulkarni - 9 Km steps. (M.Sc. thesis submitted by him to Gujarat University in 1953) and (B) by the modified method B (6 Km steps). Observations by Mr. Kulkarni.

	25-3-52	13-4-52	24m 9m 52	5-11-52						
kayer	AND IN STREET	0.183	0.162	0.158						
	L.	(A) 9 Km st	teps							
54-45 Km	0.410.047	2.2		0.3)						
5−3 6 Km	1.5	0.2	1.4	1.4						
36-27 Km	7.2]	7.2	7.4	7.2						
27-18 Xm	9.1)	10.3	7.8	7.7						
8-9 Km	1.0	0.009	1.0	1.0						
9-0 Km	0.0	0.0	0.0]	0.0						
54-48 km	0.27	0.2)	0.2)	0.1)						
es specific	0.8 0.022	0.2	0.8 0.019	0.8 0.019						
2-36 Km	2.7	2.6	2.2	2.3						
16-30 Km	6.37	5.27	6.37	6.07						
10-24 Km	9.5 0.128	5.2 14.2 7.3 0.160	9.2 0.129	8.5 0.116						
4-18 Km		İ	3	<u> </u>						
6-12 Km	2.0)	0.0	0.57	0.07						
12-6 Km	1.0 0.023	0.0 0.000	1.0 0.014	2.1 0.023						
6- 1 Am	1.0	0.01	1.0	2.11						

- 1. The exemp content between 36 54 km is slightly bigher in the summer months of March and April then that for the months of Moptember and Movember.
- 2. The ozone content between 18 36 Km and specifically between 24 30 Km shows an increase with increase in total ozone amount. This is in confirmity of the results given in Table 10 A.
- J. Unlike the results seen in Table 10 A, the ozone enount from the ground to 18 km, shows large variations from day-to-day. The ozone content of the surface layer (1 to 6 km) is minimum in April and maximum in November. Again the height distribution of ozone below 18 km is found to vary considerably. This would be expected if there is occasional transfer of stratospheric ozone into the troposphere followed by turbulent diffusion.

A sudden increase in total ozone amount was observed at Mt. Abu, Abmedabad and New Delhi on 2nd March 1955. At Mt. Abu, it shot up from 0.180 cm on the 1st to 0.210 cm on 2nd March. Afterwards, it showed a gradual fall and attained a value of 0.175 cm on the 6th March. The umkehr observations at Abu during this period as analysed by Mr. Degaonkar using the old 9 Km method are given in Table 11 A. The distribution as obtained from the modified method, is presented in Table 11 B. The secondary scattering corrections have been applied in both the cases (Malton, Table 7, Section II).

Vertical distribution of exeme at Mt. Abu during the period 2 to 6th March 1955. (A) analysed by Mr. Degmonker with 9 Km steps. (M.Sc. thesis submitted by him to the Sujerat University in 1955) and (B) by the modified method (6 Km steps). Observations by Mr. Degmonker.

CARCAN CO. MENTANCE CHARACTER	Contraction of the Contraction o	3-3-55	Lan 3m 55	Çer jer 55
x 10 Geo		0.194	0.186	0.175
	and the second s	(A) 9 Ka st	eps	Promited to the state of the st
5 4-4 5 Km 4 5-3 6 Km	0.2 0.011	0.43	0.2	0.2 0.011
36•127 Km 2 7•1 8 Km	5.7 9.4 0.136	5.4 0.137	6.0 8.2 0.128	6.2 8.0 0.128
70- 9 Km 9- 0 Km	3.5 3.5 0.063	3.0 0.045	3.5 1.5 0.045	2.5 1.5 0.036
		121 6 20 954		
54-46 Km 18-42 Km 12-36 Km	0.1 0.5 2.1	0.27 0.019	0.3 0.6 1.9 0.017	0.2 0.016
36-30 Km 30-24 Km 24-18 Km	4.1 9.5 7.0	6.1 6.5 6.5 0.126	4.4 10.0 6.0 0.122	4.9 9.6 0.5
13-12 Km 12-6 Km 6-1 Km	3.5 3.5 3.5 3.5	3.5] 0.049	3.0 0.045	2.0 2.0 3.0

The results of computation presented in Tables 11 A and B are in good agreement for heights above 18 km. The sudden increase of the total ozone arount on 2nd March, can be attributed to a large influx of ozone into the troposphere. The gradual decrease observed on the following days, is presumably due to destruction of ozone at ground and downward transport from upper troposphere. A gradual decrease of ozone in 12 - 13 km layer can be seen clearly from Table 11 B. A gradual increase in the afternoon surface ozone at Ahmedabad was observed during this period (Flease see Section III).

2.4 Secondary and multiple scattered light corrections to the observed unknhr curve

Secondary scattering corrections to be applied to the observed wakehr curve given in Table 7 (Section II) were calculated by Welton for a plane-parallel infinite atmosphere of finite optical thickness and on the assumption that ozone is concentrated in one or two thin layers. Since a good part of the unkehr curve is related to very low altitudes of the sun, it was considered desirable to study the effect of the curvature of the atmosphere and of the actual distribution of ozone, on the ratio R_2/R_1 of secondary and primary scattered radiations.

2.17 SIZER OF THE CHITTENESS OF THE AUTOSCHERE

The method of computing secondary scattered radiation for a curved atmosphere has been described in article 1.2 while treating the problem of the intensity and polarisation of the sky during twilight. For computing the secondary scattered

radiation \mathbb{R}_2 (1.0. \mathbb{R}_{2n} * \mathbb{R}_{20}) received by an observer at the ground, it is necessary to compute the secondary emission \mathbb{R}_2 (1.0. \mathbb{R}_{2n} * \mathbb{R}_{20}) at different points in the direction of observation. Meglecting the anisotropy of the molecules, the equation of \mathbb{R}_2 can be written down from Eqs. 10 to 16 (article 1.2) as follows:

$$\frac{36}{1671} \int \int \left\{ \left(\cos^2 x_{nn'} + \cos^2 x_{tn'} \right) + \cos^2 \psi' \left(\cos^2 x_{nt'} + \cos^2 x_{tt'} \right) \right\}$$

$$= \frac{36}{1671} \int \int \left\{ \left(\cos^2 x_{nn'} + \cos^2 x_{tn'} \right) + \cos^2 \psi' \left(\cos^2 x_{nt'} + \cos^2 x_{tt'} \right) \right\}$$

for a given solur semith angle \mathbb{Z}_0 and the height (b_n) of the point \mathbb{Q} above the observer for which \mathbb{Z}_2 is to be calculated.

For the curved earth, the variation of n_{10} , with $\cos \phi'$ (shown in Fig. 5, article 1.2) will be much more pronounced and non-linear for shorter wave-lengths and in the presence of a strong absorbing layer. On the other hand, for a plane-parallel atmosphere, n_{10} , is constant and its value may be taken as that for $\phi' = 90^\circ$ (plane perpendicular to the principal plane through the sun). The integral

 $\int_{0}^{2\pi} \left\{ \left(\cos^{2} X_{nn'} + \cos^{2} X_{tn'} \right) + \cos^{2} Y_{n}^{2} \left(\cos^{2} X_{nt'} + \cos^{2} X_{tt'} \right) \right\} R_{nn'} dp'$ was calculated (A) by taking into consideration the variation of R_{1n} , with ϕ' , corresponding to the case of the actual earth and (B) taking R_{1n} , as constant over ϕ' and taking its value as that for $\phi' = 90^{\circ}$ which corresponds to the case of a plane-parallel earth. The method of computation used was similar to that adopted for twilight work, but in this case the accesphere was divided into 9 km layers and the centre of gravity of the layer taken at a height of 3 km above the

base of the Layer.

The results of computation by both the methods are presented in Table 12, for λ = 3112 Å and Z_0 = 88°. The effect of a thin layer of ozone containing 0.180 cm of ozone at N.T.P. and situated at a height of 27 km above sea-level, was also considered. Proper allowances were made for reduction in intensity whenever the direct or the scattered light travelled through the ozone layer. The decimal scattering coefficient (X_0) of the atmosphere was taken as 0.455 and the decimal absorption coefficient (X_0) of one cm of ozone at N.T.P. was taken as 1.23.

From Table 12, it can be seen that when the point of secondary emission \mathbb{Q} , is situated at the ground, no appreciable error is introduced even if variation of \mathbb{R}_{1n} , with \not is neglected. This is because in this case, most of the contribution to the integral comes from a cone having a semi-angle less than 75° .

On the other hand, if the point is situated at 15 km, there is a little over estimation. But as can be seen from Table 13, most of the secondary scattered radiation is obtained from the first 9 km and hence no appreciable error is introduced even if a plane-parallel earth is assumed.

1010.12

$$\int_{2}^{2\pi} \left\{ \frac{\cos^{2} x_{nn'} + \cos^{2} x_{tn'} + \cos^{2} x_{tn'} + \cos^{2} x_{tt'}}{\cos^{2} x_{nn'} + \cos^{2} x_{tn'} + \cos^{2} x_{tn'}} \right\} R \ln d \phi'$$

$$\lambda = 3112 \text{ Å} \qquad Z_{0} = 320 \qquad \beta = 0.455 \qquad \Delta = 1.23$$

Nor C situated at 6 km

6 in degrees	No.	Q20Ng	9 .18 cm 05	1.03.31.27.1m
	4		Ä	
30	1.38 2 10-3	1.39 x 10 ⁻²	2.91 × 10-3	2.92 x 10-3
60	0.75	0.77	1.07	1.03
75	0.18	0.18	0.07	0.07
(\$\)	0.04	0.04	0.00	0.00
				0.00

For Q situated at 18 Am

30,150	4.04 %	10-2 4.07 x 10-2	0.89 x 10 ⁻²	0.89 x 10 ⁻²
60,120	4.38	5.00	0.68	0.70
75,105	6.57	6.30	0.35	0.36
30,100	3.07	8 .3 8	0.18	7 . 5
05, 95	11.12	11.52	0.02	0.03
70	5.00	5.56	0.00	0.00

<u>Table 13</u>

Distribution of secontary scattered light in the atmosphere

ea yor		No oxone	0.18 on of O3 at 27 Km
0- 9 Km	ncialeuropices a piecenso faini proces minimumbros per a collecti.	0.52 x 10-3	0.77 × 10 m/z
9-18 Km		0.24	0.27
18-27 Km	N. Comments	0.09	0.09
27-36 Km	, * • • • • • • • • • • • • • • • • • •	0.03	0.07
16-45 Km		0.01	0.02
		0.00	0.01

2.42 Effect of distributing total ozone content of the atmosphere into three thin layers

In the previous sub-section, 0.18 cm of onone was assumed to be concentrated in one thin layer situated at a height of 27 km. However, ozone is actually distributed from the ground to 54 km, the maximum being at about 25 km. The distribution of secondary scattered radiation as shown by Table 13 (Section II) for $Z_0 = 86^\circ$ suggests that if ozone amount be divided in more than one thin layer, keeping in mind its vertical distribution, the ratio $\frac{1}{2}/\frac{1}{12}$ is likely to be affected. For this purpose, computations were carried out by assuming total ozone content of the atmosphere distributed in three thin layers:

- (A) 0.02 cm at 9 Am
- (3) 0.05 cm at 18 km
- and (0) 0.11 cm at 27 km.

The calculations were carried out for two different wave-lengths 3112 Å and 3323 Å having \times = 1.23 and 0.07, and β = 0.462 and 0.350 respectively. The following changes were made in the method described in article 1.2.

- 1. Resping in mind the results of article 2.41, variation of n_{1n} with ϕ' was neglected. n_{1n} , was assumed to be constant over ϕ' and its value taken as that for $\phi' = 90^\circ$.
- 2. Wilkes tables were used to compute equivalent air-paths for different 2 and 8° corresponding to H=7 km and the radius of the earth 6400 km.
- 3. The atmosphere was divided into 3 km is yers and the centre of a layer was taken at a height of 1 km above the base of the layer.
- 4. Actual air-mass in a layer was taken instead of the term ρ' dh where ρ' is the density at the control of the layer.
- 5. Propor allowances were made for the reduction in intensity whenever the direct or the scattered light crossed any one of the oxone layers.

The ratio \$2/81 for different values of Z and two different distributions of exone is given in Table 14 along with walton's results for an exone amount of \$\tilde{\tau}\$.16 cm situated

at 24 km. It can be seen that the effect of distributing ozone in three thin layers is to reduce R_2/R_1 by a small amount in the range C^0 to C^0 and to increase by a small amount in the range C^0 to C^0 . The ratios obtained by walten are alightly higher than ours.

Fig. 2, for 3112 and 3323 Å for different values of Z

THE PROPERTY OF THE PROPERTY O	er mangamak nakala anggan pangan dang pangka da angga kanala kanala kanala kanala kanala kanala kanala kanala k		建筑的现在形式的建筑的基础是是是是不是多多年的比较级的,不	大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	encorpered and the second
a in Aogrees	So ozone	0.18 cm at 24 Km	0.18 cm in three layers	Welton 0.18 on at 24 Am	
THE RESERVE OF THE PROPERTY OF	· · · · · · · · · · · · · · · · · · ·	3112		等等的时间,我们就是我们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们	
	0.49	0.47	0.46	0.52	
60	0.59	0.50	0.54	0.59	
73	0.66	0.59	0.57	0.60	
50	0.70	0.52	0.54	0.52	
90	0.67	1.4	0.4	0.45	
					METERIOR ES
0	0.43	0.42	0.12	0.48	
60	0.50	0.50	0.50	0.54	
75	C. 50	0.56	0.55	0.61	
40	0.58	0.53	0.57	0.63	
90	0.58	0.54	0 .5 5	0.60	

The secondary scattering corrections to be applied to the Observed uskehr curve are given in Table 15. It can be seen that there is no appreciable difference in corrections obtained by different methods.

energian generaling colorations of the discretions. The colorations of the colorations.

我这种人就是此种的,我们是不是一种,我们就是这种人,我们就是这种人,我们就是这种人,我们就是这种人,我们就是这种人,我们是这种人,我们就是这种人,我们就是这种人, 我们就是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个				
Z in degrees	0.18 cm at 24 km	0.18 cm in three Layors	Walton 0.18 cm at 24 Km	
本はおいるなどのできるないないないできない。	· · · · · · · · · · · · · · · · · · ·	in the second section of the second s	項目本面目以本文字是可以可以在其实的可以可以有数字的。	erritaristi en partico
	0.10	0.00	0.00	: · : 170
(ii)	0.00	J.00	0.00	6 6 S
		0.01	0.02	∴ . (·
	0.03	0.02		6 - 14
50	0.05	0.05	0.06	C112

2.4) Effect of miltiple scartering

The problem of scattering of light by the atmosphere taking into account all the orders of scattering was solved by Chandranekhar. The functions necessary for calculating the intensity and polarisation of any part of the sunlit sky have been tabulated by Chandrasekhar and Elbert for a number of values of T₁. (For details, please refer to Section IV). The theory is still to be extended to the case when one or more absorbing layers are present.

A general idea about the effect of multiple scattered light on the observed unsehr curve can be obtained in the following momer. In column 3 of Table 16, are given the ratios of multiple scattered light (5) to the primary scattered light (7) for $T_1 = 1.0$ for different values of $\mu_0 = \cos 2$ calculated from the tables supplied by Chendrasekhar and Elbert. These

ore the ratios when no absorption layer is present. For obtaining the ratio M/F when an absorbing layer is present.

We shall make the following assumptions which may be considered as correct to the first approximation.

- is present and for 3112 when it is absent. The ratios \$\frac{1}{12} \text{ (or MVP)}\$ for 3112 and 3323 without ozone differ by a small amount as can be seen from Table 14, column 2. However, this difference can be neglected because while calculating the corrections to the observed unkehr curve, it becomes trivial.
- 2. Since most of the secondary scattered radiation is obtained from the space below the oxone layer, it has not to travel through the oxone layer while giving rise to third and higher orders of scattering. It can be expected that the ratios M/P or S/P are affected by the same amount by oxone.

The ratio 3/P without and with 0.15 cm of caone at 24 Km as obtained by walton, are given in columns 4 and 5 respectively (Table 16). The amounts by which the ratio 3/P decreases due to caone are given in column 6. The column 7 gives 3/P for 3112 as expected from the assumptions stated above. The corrections given by

are shown in column 8. It can be seen that the correction is appreciably affected when all the orders of scattering are taken

Correction to be applied to the observed unkell curve when

	μij	(#/P) ₃₃₂₃	(S/P) without ozone	(3/P) with 0.15 cm at 24 km	effect of Og on S/P	(14/9) 3112	correctio
11.5	0.98				0.982	To suite	0.00
48.7	0.66	1.40	0.60	0.571	0.952	1.42	0.01
60.0	0.50	7.65	0.652	0.591	0.906	1.49	0.03
71.3	0.32	1.35	0.710	0.608	0.856	1.59	0.04
76.1	0.24	1.99	0.734	0.573	0.781	1.52	0.07
70.0	0.18	2.01	0.745	0.522	0.701	1.41	0.10
61.9	0.14	2.04	0.749	0.488	0.652	1.33	0.12
84.2	0.10	2.03	0.748	0.466	0.615	1.25	0.13
06.5	0.06	2.49	0.733	0.455	0.621	1.30	0.13
27.7	0.04	1.95	0.715	0.455	0.636	1.24	0.12

2.5 Constraion

The method B for calculating the vertical distribution of exemption as used in India uptil new is modified in the following manner: (1) Division of the atmosphere into 6 km layers instead of 9 km ones and (2) fitting of the curve at eight different places. With the help of this modified method, it has become possible to follow the day-to-day changes in distribution of exemption with height in the entire atmosphere.

It has been shown that the effects of the durvature of the earth and of the actual distribution of exone, on the

secondary scattering corrections, are quite negligible. On the other head, the effect of higher orders of scattering on the observed unkels carve is quite considerable. A more sublished to theory and calculations are essential to obtain an idea of the proper corrections to be applied to the observed unkels curve, when all the orders of scattering are taken into consideration. It would be sufficient to treat the problem for a plane-parallel atcosphere having only one absorption layer of ozone at a proper height.

2.6 References

母	Chapman, J.	1934-35	Phil. Trans. Roy. Soc. London 234 A. F. 205
er ig	Falley, de	1950	"L'ozene atmosphérique" Astional Contre of Scientific Research, Paris.
4	ido, faller.	1931	Gerl. Beltr. 21 P. 119
Ė,	Mosthes, A.H. & Mosthes, A.H. & Motson, G.M.B.	1934	Proc. Roy. Soc. A 145 P. 416
	Götz, Palla Ra	1951	"Ozone in the Atmosphere" Compendium of Meteorology, Amer. Met. Soc. Moston, Mass.

6	Johnson, F.G.,	1951	Journ. Geophys. 103. 💆
	furgall, dollar		P. 563
	lousey, la		
7	Karendiker, 4. V. &	1949	Proc. Ind. Acad. Sci. 22
	Assastion, K. A.		Sec. A, P. 330
	Mananathan, K. M.	1954	Fresidential Address, Nome
			Assembly of the International
	N. College		Association of Meteorology,
-			Sept. 1934. Authorworths
			Scientific Publications, London
9	seconstian, K.R.,	1952	quart. Journ. Rey. Met. Sec.
	Morthy, M. Jollo &		Zā, P. 625
	Kalkaral , il de		
10	Begoner, E. &	1934	Phys. Z. 25, P. 788
	Meganer, V. fi.		
11	inlicon, delle	1953	I.V.G.G. Coneral Assembly,
			Bruxolles, Proces-Verbaux,
			I.A.M., P. 316
12	Value, G.P.	1955	Ph11. Mag. 46, P. 281
13	7111kos, 15, 75	1954	Proc. Phy. Soc. 67, 8, P. 304

SECTION III

PRESUREMENT OF SURFACE OZONE

3.1 Inbroduction

The opens contain of the curface layers of the accomplere, though small, is of great interest because of its physiological and biological importance and of its usefulness to meteorology as an indicator of air masses and their movements. Recently, it has been suggested that osone is also formed in the lower atmosphere by the action of solar radiation on patroleum "smog" and that ozone has a deleterious effect on rubber products. Systematic measurements of surface ozone are however few, perhaps because simple methods for the reliable measurements of small concentrations of evene have only been recently developed. Two different methods are available for direct determination of surface orone :-(1) Spectroscopic method and (2) Chemical method. In this section, the results of one year's measurements of osone in air near the ground lovel at Absolabad together with a brief discussion, are presented.

The spectroscopic method is based on the measurement of the absorption by a long column of air of a narrow band of wave-lengths in the ultra-violet region of the Hartley band. The determination of the intensity of light from a source at a known distance on two or three wave-lengths with a proper allowance for scattering by the molecules of air and for absorption and scattering by large particles of dust and haze, can give the total ozone amount along the path traversed by the radiation. The accurate seasurement of feeble intensities in the ultra-violet part of the spectrum is

however difficult and the method has been used mainly for special studies. Stair, Dags and Johnston (1).

The chemical method is based on the well known oxidation reaction of oxome on potagrium lodde

As the atmospheric air contains in addition to exone, other exidising agents such as N₂O and reducing agents like SO₂, what we can measure is the not equivalent of all these substances. The method used has to be specific for exone, and since the exone content of atmospheric air is small, method of titrating the exone has to be sore accurate than the standard starch indicator method. There is also the problem of the evaporation of free iodine from the solution when a large volume of air is passed through the solution.

The method of electro-chemical titration developed by Faneth and others (2) and later successfully applied by cheert (3) has been found to be quick and accurate and is applied now-s-days for the measurement of surface ozone. Howen and degener (4) and Carbenay and Vassy (5) have developed instruments for the automatic determination of ozone based on this principle.

The method of electro-chemical titration of owne as improved by Thmert (6,7) is as follows: A 2 % solution of potential in additional potential description of micrograms of sodium thiosulphate. A few cubic centimeters of this is taken in a small bottle which is fitted to a

bubiling apparatus. A known volume of air is drawn through a cintered glass disphram and a solution. At this concentration of potassium iodide, the reaction of oxone with potassium iodide is complete while that of N2O is only 5 % as effective. It has been established that the concentration of N2O in the atmospheric air near the ground is not more than that of oxone. The presence of Na₂S₂O₃ removes the free iodide

and there is therefore no change of free loads escaping with the air.

For determining the sodium thiosulphate in the solution through which air has been passed, the electrochemical method is used. Two pairs of platinum electrodes are inserted in the bottle containing the solution and this is mounted on a stand which can be rotated with uniform speed. Between one pair of electrodes, a constant small difference of potential of a few millivolts is applied. The electrodes get polarised, the cathode with hydrogen and the anode with oxygen and there is no current in the circuit. The second pair of electrodes is used to liberate icdine at a constant rate by electrolysis from the solution. This liberated icdine reacts with the Na₂S₂O₃ present in the solution, and its concentration gradually decreases as the electrolysis proceeds. Shen all the Na₂S₂O₃ present in the solution is used up, the icdine starts depolarising the fifst pair of

checkrodes and a current starts in the circuit and steadily increases. The exact time of electrolysis for completing the reaction with $8a_2 \beta_2 C_3$ is obtained from the current-time graph. The quantity of electricity passed through the solution is a essence of the amount of indine required for the reaction. If J_0 is the amount of indine required to be liberated to neutralise the $8a_2 \beta_2 C_3$ present in a given amount of stock solution through which air has not been passed and J_1 the indine to be liberated in the same amount of solution through which a litres of air has been passed, then $J_0 - J_1$ is the lodine equivalent to the example passed, then $J_0 - J_1$ is the lodine equivalent to the example present in the volume of air which has been passed through the solution. The amount of exone in microgram per cubic metre of air is then given by

chemical movined have been carried out at a mamber of places in Marope and America. However, there have been no systematic curriece ocone measurements made in India or other tropical countries. The Physical Assearch Laboratory, Amedabad, obtained an Edmart surface ocone instrument through the International Gaone Commission and systematic observations were carried out at Ahmedabad (Lat. 23°M, Long. 722°E) for a period of one year from June 1954 to May 1955. Fart of the data was presented by Professor Amamathan (3) at the dome meeting of the International Union of Geograp and Geophysics in Deptasber 1954 and appeared later in 1.8.3.G.

Fig. 1. Day-to-day surface ofone values at Ahmedabad. 6. 10. 14. 18 and 21 Hrs. Jurface ofone values in micrograms/m³. From June 54-Nov. 54.

Pig. 1. Day-to-day surface egone values at Ahmedabad. 6, 10, 14, 18 and 21 Mrs. Jurface ezone values in micrograms/m². From Dec. 54-Nay 55.

The observations were made throughout the year in a well-ventilated room on the ground floor of the Physical accords behavelory, Absedahad. Generally five observations were taken in a day: at 6 Hr, 10 Hr, 14 Hr, 18 Hr and 21 Hr. In June and July only, the night observations were made at 22 Hr. They are plotted in Fig. 1 separately for each hour. The hearly observed values for different months are given

Fig. 2. Surface ozone, temperature and winds at Ahmedabad during the period 5 to 10 June 1954.

Also upper winds at 5000 ft. on 5 and 8 June 1954

Pig. 2. Burface ozono, temperature and winds at Akmedabad during the period 5 to 10 June 1954. Also upper winds at 5000 ft on 5 and 8 June 1954.

This was accompanied by decrease of minimum temperatures and of evening des points, clearing of skies and the casabilishment of North-Wosterly wints in the lower atmosphere.

The large fluctuations observed at 10 Mr during devember and December can be attributed to very weak winds and late heating of the ground and consequent lack of mixing in the lower atmosphere on some of the days.

Fig. 3. Jurface exone, temperature and winds at Almodahed during the period 2 to 11 July 1954. Also upper winds at 5000 ft on 3 to 6 July 1954.

Fig. 4. 1730 if dew point in of, 14 if surfact ogone (micrograms/m3) value at Ahmedabad and afternoon total caone (103 cm) at Mt. Abu.

The marked decrease in afternoon surface ezone values can be connected with the setting in of regular sea-breeze in April.

In Fig. 4 are plotted the surface exone values at 14 Mr at Amedabad along with the dew point at 1730 Mr at Amedabad and afternoon total exone amount at Mt. Abu. Mt. Abu is situated about 100 miles north of Ahmedabad and the total exone at Ahmedabad and Mt. Abu have been found to run very nearly parallel. There is practically no correlation between the changes in total exone amount at Abu and the concentration of surface exone, suggesting that the changes in surface exone are due mainly to changes in the lower part of the atmosphere, while the day-to-day changes of total exone take place mainly in the upper atmosphere.

Some correlation was found (1) between surface came and minimum surface temperatures and (2) surface ozone and evening dew point; in the latter case, the correlation was found to be rather good. The correlation coefficient between 14 Mr surface ozone and 1730 Mr dew point is specially significant in the period when the air masses are getting replaced. Thus, in October 1954 at the time of the withdrawal of the monsoon, the correlation coefficient was - 0.67. Again, in April and May 1955, when sea-breeze comes more or less regularly in the afternoon or evening, the coefficient was - 0.42 and - 0.65 respectively. There is no significant correlation in the other months.

Bill in a west Sec.	
lonch	
in residence to the about the	

Correlation coefficient between 14 Ar surface came and 1736 Ar dew point at Ahmedabed.

· 有性學生活的 (1994)	我把我们的我们是我们的我们的我们的我们的我们的,我们就是我们的我们的我们的我们就是我们的我们的我们的我们的我们是不是不是一个一个一个一个一个一个一个一个一个一个
June 54	0.03
July	**
august.	~ 0.31
September	· 0.27
October	- 0.67
November	0.02
December	0.19
Jamary 55	0.17
lebraary	· (10)
E CONTRACTOR OF THE PROPERTY O	0.24
Carlo de la Carlo	- 0.42
in the state of th	• 0.65
大大大学 · · · · · · · · · · · · · · · · · ·	Constitution of the consti

In Fig. 5 are plotted the senthly mean diurnal variations for each south. The southly mean maximum (%) and minimum (%) temperatures and dow points at Ahmedabad and total occur at At. Abu are also given. It will be seen that in the monsoon period June - September, the range of the diurnal variation is small; the monthly mean concentration is the lowest in the monsoon months of august and September. The withdrawal of monsoon in the beginning of October is shown by large range of diurnal variation of surface ozone, decrease in minimum temperature and 1730 for dev point and increase in difference between maximum and minimum temperature (% - %) of the day.

Fig. 5. Seasonal and daily variation of surface exons at Ahmedebad. Also difference of maximum and minimum temperature (% - %), monthly mean maximum temperature (%), minimum temperature (%), dew point and total exone.

In Fig. 6 are given the monthly mean values of surface ocone as observed at four different stations in the world for comparison.

Fig. 6. Seasonal variation of surface ozone at Alaska, Dresden, Arosa and Abmedabed.

Saston	Hane of the observer	Period of observation
	Wilson, Guenther, Lowrey, and Cain(10)	1950
Dresden	Teichert and Warmbt(11)	1952
	Götz and Volz (12)	April 1950 - March 1951
almedebed	Savo	dune 1954 - May 1955

The sharp increase in the Alaska values in the period September - December has been explained as being due to the fact that Alaska is snow-covered after September and ozone undergoes comparative little decomposition by coming in

June 1954

Date	ó ik	10 Hr	14 Hz	18 lir	22 Br
2 2 3	15.1	23.6 22.5 27.9	26.9 25.5 28.4	26.0 21.9 24.6	12.1 16.3 19.1
5 6 7 8 9 10	16.8 14.2 14.6 20.8 23.6	20.6 21.5 40.2 41.6	23.9 25.8 58.6 51.6 43.0	21.3 28.1 51.0 36.9 35.4	17.3 35.9 36.3 35.9
12345	25.5 30.5 12.8 15.6 15.6	33.5 31.7 26.5 32.1 23.6	37.8 30.4 42.1 37.8 19.7	28.6 24.6 39.5 32.1	19.8 19.8 25.8 23.2
16	10.2 17.0 17.0	22.5 26.9 25.0 25.5	28.4 32.9 33.5 23.2	25.0 31.0 31.7 19.1	24.6 34.0 30.2
21 22 23 24 25	10.4 11.5 7.6 12.1	16.5 16.5 20.6 22.2 18.9	17.0 17.3 31.0 24.4 22.7	14.6 16.7 24.6 26.3 25.5	17.0 19.8 17.0 23.4 18.4
26 27 28 29 30	15.6 14.6 7.8 14.5 22.7	22.0 14.2 17.0 19.8 21.3	19.4 20.3 26.5 23.7 14.8	18.0 22.7 28.8 20.3 13.4	21.9 18.9 19.7 17.0 22.0
Man	15.8	24.9	29.1	26.2	22,8

海路 線	i in	10 lb	TA IIP	18 m	
2 3 4 5	15.6 11.8 19.8 21.3 50.6	15.8 26.0 21.7 25.3 61.4	17.5 28.8 32.4 37.8 55.7	26.5 20.7 35.9	20.8 24.6 34.3 55.7
6 7 8 9	43.8 40.2 33.8 30.2 18.9	30.6 35.0 36.1 32.6 25.0	34.0 32.3 38.0 37.5 26.4	35.9 33.5 27.7 30.1 24.8	22.2 26.6 35.7 21.3 22.9 *
	21.0 30.4 30.2 20.3 24.1	23.2 23.6 16.3 21.7 18.6	22.2 46.5 22.2 31.0 17.5	24.9 22.2 29.6 31.2 19.8	31.2 23.6 23.6 22.2
16 19 19 19 19 19 19 19 19 19 19 19 19 19		19.4 18.0 16.5 20.3 20.3	28.4 29.0 26.0 25.7 30.2	31.2	23.0 21.5 23.6 23.3
21 22 23 24 25	10.4 20.3 20.5	20.3 26.0 23.8 22.2	26.9 29.8 26.6 30.7	25.7 30.7 30.7	23.4
26 2 7 28 29 3 0	10.7	29.0 20.1 23.3 24.6 26.6	26.9 26.5 26.5 21.7 33.1	19.6 21.3 26.6 28.2 33.1	15.9 22.6 24.1 24.9
31			28,8	27.9	20.6
Mean .	21.6	24.9	30.0	29.2	24.8

^{*} at 2030 lt.

A11111 1954

Wato.	o Hz	10 lie	th ile	18 lir	21 lip
2	15.1 17.0 9.8 12.8	23.2 21.7 9.5 26.7 24.1	23.2 27.4 23.6 27.7 25.0	22.7 25.0 21.5 26.0 22.5	14.2 * 12.3 ** 14.6 17.5
67 89 10	9.6 7.6 6.8 20.6 9.7	18.1 14.2 21.7 17.0 11.8	23.4 26.6 28.1 21.3 16.1	25.3 23.2 12.5 *** 12.8	16.5 18.1 14.8
ATT RES	14.2 18.9 17.0 17.2 14.9	21.3 18.4 21.7 23.0 16.1	14.6 21.3 21.5 25.5 16.4	15.9 20.6 22.0 19.4	18.4 20.3 17.0
16 17 18 19 20	16.1 9.6 13.7 13.5	21.3 20.3 17.7	24.1 26.0 26.4 24.5	25.0 21.7	20.8
24 25 25 25	6.1 14.6 6.1 4.7	20.8 18.0	30.7 30.0 20.8	26.6 26.9 19.1	14.2 16.3 12.6
26 27 28 29 29	6.8 6.6 8.7 13.7	28 . 4 25 . 7	23.6 22.7 30.0 31.7 28.8	19.4 13.2 30.4 28.2	19.8 10.9 11.1 22.2
	15.6	n n n n n n n n n n n n n n n n n n n	27.4	di, s	11.3
Moan	11.9	20.0	24.8	22.1	15.8

. * 2200 lir

** 2145 lb

400 1730 Hr.

September 1954

	6 lir	10 lir	14 Hr	18 Ar	21 Hr
2 3 4 5	13.7 15.1 11.3 10.3	21.7 23.9 19.4 13.0	21.1 20.5 18.4 24.8 20.8	14.5 23.6 13.7	12.3 7.6 6.6 13.2
6 7 8 9	29.6 23.3 7.8 9.2 9.9	16.1 22.2 15.6 23.2 21.3	16.1 25.5 20.3 19.4 21.3	18.9 17.0 11.8 17.0 20.8	15.9 11.8 9.0 14.2
11 12 13 14 15	14.6 12.6 15.8 14.6	19.4 15.6 12.8	25.0 22.9 23.8 20.8	24.6 17.3 14.2 16.4	15.4 14.2 14.6 16.5
16 17 18 19 20	15.6 11.8 11.8 15.3	21.5 23.6 28.4 25.5 20.8	23.3 21.5 27.9 26.4	14.0 21.1 21.5	11.8 19.9 11.6
21 22 23 24 25	14.2 14.6 11.8 15.1 7.6	17.0 16.1 16.5 12.3 22.7	24.6 19.7 25.0 24.1 27.9	17.7 16.6 19.8 19.4 21.3	14.2 9.9 16.5 7.6 13.7
26 27 28 29 30	4.3 0.5 11.8 3.3 21.3	25.0 22.7 25.0 20.3 26.9	29.8 30.9 32.3 25.5 31.7	29.3 24.4 19.4	5.7 21.3 14.4 15.1 18.9
Zean	12.7	20.1	24.1	19.1	12.9

lataber 1994

Ja to	6 Hr	10 12	秦季 紫暮暮	18 Hr	
	16.1	20.3	26.5	18.4	18.6 16.8
3	5.5 7.6	23.6	24.3 37.8	22.2	7.6 5.2
Ć.	3.6	31.5	36°5 40°4 44°9	39.4 31.2 19.7	20.8 9.6 12.3
6 7 8 9	12.3 5.4 5.7	39•7 33•5 39•0	37.8 40.2	28.6 28.2	17.5
11 12	18.7	32.9 22.7	49.9 41.3	31.5 33.4	14.0 8.5
345	14.0 5.7 13.7	33.1 11.8 27.7	42.8 50.6 49.6	27.1 40.9	16.1
16	13.7	41.5	48.9	23.0	9.9
18 19 20	15.3 19.2 6.1	24.8 32.6 19.4	41.5 39.2 45.5	28.6	14.0 15.4 13.7
21	21.5	27.1	34.8	27.7	14.6
23 25	18.9 20.0 21.3	36.9 43.9	43.2 49.1 53.4	35.6 41.4	27.1 30.7 26.5
26 27	25.8 16.3	39.7	40.0		16.1
28 29 30	11.3	55.3 11.1 39.9	46.8 55.9 49.8	37.3	16.1 11.8 11.8
31	8.5	19.4	51. A	@	409
lo an	12.7	30.7	42.7	29.4	16.1

November 1954

Acte :	6 112	() lir	14 dr	18 Mg	21 Hr
	16.7 16.5 6.8 5.5	15.1 22.7 9.6 33.7	50.1 61.1 31.7 40.0	30.4 20.1 27.9	18.4 8.7 8.0 11.3
6 7 8 9	9.5 5.2 9.0 11.8 23.3	39.2 27.6 7.3 0.9 24.3	48.0 54.3 40.9 33.4 32.6	27.7 26.8 16.8 20.5	7.7 21.3 6.6 9.5 9.7
123,45	11.8 22.7 9.0 12.8 21.3	26.7 16.5 38.7 45.1 23.4	40.6 43.8 48.2 52.7 44.4	38.7 26.0 40.6 39.5	24.6 23.9 12.9 11.8 16.7
16 17 18 19 20	16.1 2.8 6.6 18.0	9.0 21.5 9.9	52.0 45.4 46.1 44.6	35.9 11.6	22.7 10.6 14.0
21 22 24 25	19.2 9.9 14.5 10.9	40.4 9.0 23.8 34.5 34.5	43.9 17.5 31.2 31.7 40.0	10.7 24.4 30.1 38.3	6.3 16.1 17.7 20.6
26 27 26 29 30	18.0 3.5 15.8 19.8 9.9	35.2 18.9	37.6 47.4 47.7 39.7 54.3	32.8 40.4 32.6 34.2	24.6 24.8 33.1 13.4 17.0
Moan	12.8	22.6	42.9	29.0	15.9

Documer 1934

Jacque .	6 ir	10 lig	14 12	18 ir	21 Hr
	9.0 9.0 12.3 14.5 23.4	29.3 62.8 16.5 59.3	30.7 36.7 37.3 44.6 51.7	23.0 27.9 31.7	14.2 23.8 14.9 31.2 28.4
6 7 8 9 10	18.4 14.6 14.6 14.2	47.3 31.0 35.4 5.7	44.7 54.3 68.5 37.3 46.8	32.4 45.8 37.8 36.9 39.9	29.1 17.2 33.1 29.1
	19.8 36.9 20.0 30.2 35.0	34.3 43.0 13.0 12.3	53.9 52.2 50.1 49.8 44.9	36.4 45.2 41.4 11.8	18.9 37.3 18.4 19.8
16 17 18 19 20	7.6 9.0 16.5 29.5	29.8 40.2 40.6	30.7 43.9 50.1 51.8	17.0 47.5 47.0	15.1 35.4 32.9 35.9
21 22 24 25	19.4 21.2 32.1 21.9 20.8	45.8 41.6 36.9 44.4	56.7 43.0 56.7 54.3 45.1	46.9 46.3 49.8 44.1	37.6 32.6 36.9 41.1
26 27 28 29	30.7 25.0 17.3 12.3 19.7	44.9 33.4 40.3	50.1 40.9 44.4 39.7 36.9	34.5 34.0	31.9 26.3 17.3
31	26.5	40.6	40.0	41.4	37.8
	19.6	33.7	46.3	37.3	28.1

January 1955

9.456	6 lie	10 lie		id är	ar Hr
2 3 5	29.5 28.8 29.4 30.5 25.5	35.9 37.3 44.1 43.3 43.5	48.5 41.1 51.3 46.8 42.5	39.7 34.0 43.5 36.6	30.7 31.5 34.2
6 7 8 9 1 0	25.0 17.0 11.3 19.4	18.9 21.3 45.2 44.2 41.6	50.1 47.7 54.3 53.2 46.8	39.7 53.2 49.6 43.0 36.7	25.4 25.0 28.6
Con the circumstance of th	19.2 29.3 10.4 27.7 21.5	2500	44.2 37.8 49.3 46.3 51.5	36.3 40.8 34.3 36.9	30.2 11.8 35.9
16 13 19 20	18.0 25.0 26.5 31.7 18.9	39.2 37.6 35.0 39.7	55.8 49.0 46.5 52.9 51.5	45.8 27.1 47.7 43.8 37.8	33.1 35.0 38.7 15.6 33.7
21 22 23 24 25	40.6 34.2 19.7 24.1	23.8 21.7 32.6 41.9	35.7 35.1 56.0	39.4 38.5 51.5 46.8	35.9 22.5 31.2 35.0
26 27 28 29 20	30.2 27.1 28.8 29.1 26.0	39.2 40.6 34.0 35.9 39.7	53.4 58.3 55.3 49.1	49.3 48.5 47.3 37.8	22.7 40.0 35.4 29.8
10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22.7	40,2	47.0	idade -	\$35
Moan	24.9	36.7	47.6	41.0	31.0

Pediculary 1955

	6 112	10 ikr	14 lir	18 Hr	21 Hr
1 2 3 4 5	31.2 21.7 26.3 23.6 23.6	48.2 47.1 42.1 37.3 37.8	51.3 52.0 42.8 43.2 45.4	45.4 43.0 44.7 43.9	38.3 34.8 25.5 37.6 35.6
6 7 8 9	25.0 16.7 29.8 21.3 24.1	49.6 43.5 47.4 38.7 40.6	54.6 48.7 57.4 54.5 47.3	54.2 51.5 51.0 47.4	36.4 37.8 26.8 40.2
12345	33.1 35.5 36.7 45.8	44.4 42.2 56.2 54.3 50.6	48.7 55.6 56.7 53.2 61.4	49.9 55.3 51.0 56.6 55.3	42.5 40.6 36.6 43.8
16 17 18 19 20	19.8 26.8 26.0 21.7 34.0	49.5 49.5 45.4	50.8 49.1 35.0 52.9 54.3	57.0 43.9 41.6 53.4	40.2 25.5
24 22 23 25	36.1 16.2 29.6 23.4	39.7 19.6 33.1 42.1	44.4 49.4 53.7 51.5	42.1 49.6 46.7 49.8	33.4
26 27 28	25.8 15.1 15.4	15.6 37.3 24.1	53.2 62.7 34.5	47.7 25.2	28.5 34.8 30.2
	25.9	40.7	50.5	40.4	35.4

March 1915

	ó ile		i. He	A STATE OF THE STA	21 Hr
12345	24.6 26.3 26.9 38.6 14.2	39.7 31.7 22.7	40.9 47.3 48.7 48.2 57.5	40.0 50.1 43.5 41.3 55.6	26.9 40.2 25.5 25.0
6 7 8 9	12.8 13.2 16.6 9.6 17.0	32.6 32.3 30.2 44.9 13.7	54.3 60.5 59.1 63.1 49.6	51.3 44.2 51.0 50.6	19.1 26.2 37.1
121145	29.6 \\ 23.2 10.7 40.6 26.9	43.2 40.2 48.2 37.1 26.8	59.1 60.8 62.4 70.6 66.4	38.0 60.3 57.0	28.8 46.1 37.8 51.2
16 17 18 19 20	38.7 18.4 31.2 15.6	39.2 41.1 29.6	49.1 44.9 40.2 30.7	56.5 46.3 40.6	35.9 31.2 25.5
21 22 23 24 25	6.8 2.4 13.7 9.5 12.1	22.4 37.8 24.1 31.2 30.5	34.5 50.1 66.9 40.4 35.4	34.5 33.5 38.1 31.7 30.1	14.2 21.3 18.4 21.1 24.3
26 27 28 29 30	17.5 12.8 13.2 27.7	33.1 28.4 32.1 29.8 61.9	43.9 36.9 33.3 35.3 62.1	42.1 35.0 31.8 35.9 55.3	24.6 13.6 18.6 36.7 45.5
31	37.0	53.9	34.0	38 . 3	23.2
Mann	19.9	35.3	49.6		28.7

Date:	6 lir	10 11	th liv	ts Hr	21 Hr
12345	22.2 15.4 6.0 24.6 16.8	39.4 11.8 32.8 37.8 35.0	38.3 27.2 49.6 43.7 42.7	39.7 31.0 52.6 47.3	25.0 13.2 29.6 29.3
678 89 10	16.1 19.6 28.5 21.7 23.2	23.3 33.5 25.8 34.0 39.9	46.6 45.4 57.0 42.5 42.1	47.3 43.2 43.2 43.8	30.9 37.0 19.6 33.7
12345	14.6 129.8 29.3 29.3	32.6 37.8 46.3 51.5 44.9	43.9 25.8 45.2 61.0 63.6	38.3 25.0 49.0 35.4	37.0 43.9 26.5 35.0
16 17 18 19 20	23.6 40.2 27.9 14.2 24.1	40.6 28.8 47.4 54.1 51.2	54.8 39.5 56.4 58.6 36.2	60.5 41.1 51.7 62.4 45.4	30.2 49.3 44.4 45.4
21 22 23 25	31.8 18.7 26.0	40.4 41.1 36.9 39.7	57.6 56.7 52.3 46.3	58.8 54.8 44.4 26.3	41.1 = 23.9
26 27 28 29 20 30	7.4 6.6 11.1 14.0 12.1	29.3 26.9 23.6 23.1 25.0	29.6 30.4 33.1 35.9 24.4	31.2 35.4 40.8	24.1 21.7 22.5 16.5
Mean	19.6	36.0	44.4	43.9	30.9

Hav 1935

la te	6 ir	10 lie	14 Hz	16 Ur	21 lir
* 223.45	3.3 6.8 15.1 9.5 12.3	14.8 23.4 24.6 26.5 34.5	28.4 25.7 34.0 30.7 38.6	25.2 34.7 30.0 38.7	23.6 23.1 24.6 39.2 35.2
	7.3	27.9 29.3 30.5 26.0 29.8	42.2 46.8 34.7 38.7 38.7	40.2 34.2 24.6	27.9 21.7 21.9
	21.3	38 . 0	33.2 47.3 35.6 47.1	ngine ngin ngin ngin ngin ngin ngin ngin	3
16 17 18 19 20	24.6 12.6 32.1 7.1 15.1	28.8 56.7 48.4 42.2	45.5 52.4 60.5 31.2 52.0	52.3 33.1 35.6 50.4	34.8 30.2 33.4 18.4 33.5
21 22 23 24 25	20.3 10.9 10.7 12.8 10.9	34.7 21.5 18.6 23.2 22.7	30.5 30.7 25.8 23.8 31.5	21.0 27.1 19.1 20.6 30.5	22.7 22.5 18.6 18.6
26 27 28 29 30	10.7 14.6 15.3	31.7 34.6 32.6	47.4 45.8 22.2	41.6	30.7 35.0 14.0
31	: (a)	seat-		989	420
等点点。20 位 图 安全的成果		30.5	38.5	32.9	27.0

O Complete Service Company

- 1. Stelly, L., Bess, L.C. & Johnston, L.C.
- 2. Gluckauf, E., Hoal, H.G.,
 Martin, G.A. & Paneth, F.A.
- J. Minort, A.
- 4. Morener, V. H.
- 5. Carbonay.d. & Vassy, A.
- 6. Simert, A.
- 7. Manorta he
- d. demanathan, K. A.

9. Dave, J. V.

J. Res. Nat. Bur. Std.

d. Ohen. Soc.

1944, Part I, P. 1

Za. Maturi.

1949, 42, 2, 321

Journ, Goophys, 199.

1951, 20, 7, 307

Annal. Geoghys.

1953. 2. 7. 300

Mat. Wisch.

1951, 4, 8, 64

Journ. Accos. Terr. Phys.

1972, 2, 7. 109

Presidential Address, Rome
Assembly of the International
Association of Meteorology,
September 1954. Butterworths
Scientific Publications, London.

1.0.0.0. Nows Letter 1955, No.9, P. 12 10. Allow, a.e., Quencher, I.e.,

Trans. Amor. Geophys. Union

11. Telebert, F. & Warmbt, W.

Abhandlungen des Meteor. und Mydro.

12. Gita, Fatala de Volta, Fa

1955, 5, No. 34 Z. Haturforsch.

1951, 22, 7, 634

A REVIEW OF WORK ON SCATTERING OF LIGHT BY THE EARTH'S ATMOSPHERE

a been of light travelling through the earth's atmosphere, atmosphere from the aum (3) to a point (P) in the atmosphere, authors a loss of intensity due to scattering by the molecules in the path SP. The intensity of the beam at P is given by

Intensity of the incident radiation on the top of the atmosphere

and Tap = equivalent optical path from the oun to the point P.

the angle which SP makes with the vertical through P. It also depends on the curvature of the earth, the distribution of air density in the earth's atmosphere and the wave-length of light. For a plane-parallel infinite atmosphere of finite optical thickness, $T_{\rm eff}$ is set I then the vertical optical path above P. For I = 90°, $T_{\rm eff} = \infty$.

Chapman in 1931 derived an integral expression for the equivalent optical path for different scale heights taking into account the curvature of the earth. The function which was originally denoted by the symbol f(x, X) is now generally referred to as Chapman Function Ch(x, X) in the literature. x stands for (x + h)/h where a is the radius of the earth and h, height of the point under consideration. X is the senith distance of the sun. For x = 300 which corresponds to h = 3 Km

and $Z=90^\circ$, Chix, X) has a value of 35.46. In a later paper, Chapman (1953) expressed Chiz, X) in the form $\sec(X-\Delta X)$ and tabulated the values of ΔX for different values of X and X. For X=600 and $X=90^\circ$, $\Delta X=1^\circ$ 37°. Recently, Wilkes (1954) has tabulated the Chapman Function for values of X between 50 and 1000 km in steps of 50 km up to 500 km and steps of 100 km between 500 and 1000 km and for X varying from 20° to 100° in steps of 1° when Chix, X) does not exceed 100. The values given are correct to three decimal places. These tables are of great help in computing air paths for different temperature distributions and angles of incidence. A simple but less accurate formula for the optical path was used by the present author (1956) in his calculations on the intensity and polarization of the sky during tablight.

when Resperod made his calculations in 1907, he assumed a temperature distribution with height in the atmosphere as it was then known. The values adopted by him cannot be accepted today. However, as it is the temperature of the air in the first few kilometers above the point ℓ that exerts a dominant influence on the optical path $T_{\rm SP}$, the Resperod functions may still be taken as reasonably accurate when the point is situated at heights up to 10 km above ground.

Link and Sekera (1940) have considered the effect of absorpheric refraction and calculated the equivalent optical paths for two different temperature distributions (1) corresponding to winter and (2) sugger. The density data used were based on the results of sounding balloon ascents and other atmospheric

data available at that time. The values of equivalent optical paths as given by different workers are summarised in Table 1.

i i				541. X 1	1000			1.1.111	k Jokara
4888									
0	•	1.000	7.000	1.000		1.00	1.00	1.00	1.00
áÚ	2.000	1.0772	1,993	1092	1.594	1.99	2,000	499	海 施
75	3.00%	30771	J. 140	2007	3.612	3.40	3.00	3.23	3.
	5.755	5.525	5.551	5.572	20,250	5.50	5,60	5.60	5.00
13		10.000	10014	10.257	10.332	10,20	10.39	70.jb	10.34
10		16.007	10,080	19,209	19.670	19.22	19.79	19.71	19.48
7 0	00	33.177	35.466	27.615	30.046	27.01	39.65	39.68	30.43

de lemperod.

phores in scattering electromagnetic radiation, when the linear dimensions of the particle are small compared to the mave-length of the incident radiation, the secondary radiation is proportional to $\lambda^{-\lambda}$. It was recognised by Lord Rayleigh that the blue colour of the sky and its polarisation could be explained by the scattering of smallight by the solecules in air.

According to Rayleigh's law of scattering, when the incident light is unpolarised neutral light, the intensity of light scattered at an angle θ to the incident radiation and confined in a small come of solid angle d , is proportional to

when this is integrated over all directions of $^{\odot}$, and since

$$(1 + 60s^2 + 6) + 60 = 16\pi/3$$

We have, the fraction of total inclient radiation scattered in the come d Ω , given by

where σ is the scattering coefficient of the particle and is proportional to λ^{-4} .

If we take only primary scattering into account, the light scattered at right angles to an incident beam of unpolarised radiation would be completely polarised.

Experiments show that there is a residual polarisation at right angles to the incident radiation. Lord Mayleigh explained this as being due to the anisotropy of the molecules. For pure air, laboratory experiments show a value of 0.042 for the depolarisation factor. The values of maximum polarisation observed on clear days are however significantly lower than those calculated on the basis of primary scattering by amisotropic molecules. Mence higher orders of scattering have to be taken into account as was realised by Lord Mayleigh himself.

i.V.King (1913) formulated the integral equations for the deattered radiation on the following assumptions:-

- Owing to the random motions of the molecules in a gas, contributions to the total intensity of the scattered radiation by different molecules in an element of volume may be obtained by adding the intensities of light scattered by individual molecules.
- Listed of considering the height of a point in the plane-parallel infinite atmosphere, its position is defined in terms of air density at that point. If the atmosphere is assumed to be isothermal with density decreasing experientially with height, the formulae developed can be applied to any height.
- 2. Instead of prearing the distribution of scattered radiation according to dayleigh's phase law, an average value over a spherical surface was taken.
- A. Anisotropy of the molecules, reflection by ground and refraction in the atmosphere were neglected.

The integral equation given by King consists of two parts (1) contribution to the intensity of sky light due to the sum's radiation which had been scattered once by the atmosphere and (2) contribution to "self-illumination" by higher orders of scattering. King found it difficult to evaluate the second part.

The complete solution of the problem of polarisation of any radiation requires the solution of two simultaneous integral equations in three variables and as this was considered to be an almost impossible task at that time, hing tried to calculate the polarisation on the assumption that primary scattered light was polarised according to hayleigh's law and that "self-illumination" was unpolarised.

for primary, accordary and tertiary scattered radiations in a plane-parallal stratified atmosphere taking into account the anisotropy of the molecules. The effect of loss of intensity due to scattering was neglected and hence the treatment can be assumed to apply only to weakly attenuated radiations in the red and infre-red region of the spectrum.

4.22 Theory of Chapman and Hammad

The equations for calculating the primary and secondary scattered radiations from the sky for any zenith angle of the sun above the horizon, were formulated by Chappan and Hammad (1939). The method is true for a plane-parallel atmosphere of finite optical thickness, scattering according to Rayleigh's law. The necessary functions for computing the primary and secondary scattered radiations were discussed fully in the original paper and their values were tabulated for some special cases by Hammad (1945, 1947 and 1948). The method is described in brief in this sub-section.

The height of a point is specified in terms of the

fraction of total air mass (m) of the atmosphere below it (level), or \overline{n} the fraction of the total mass above it (depth). $m + \overline{n} = 1$. A beam of incident radiation of intensity $\overline{1}_{\infty}$, falling on the top of the atmosphere in a direction \underline{a}_{i} , suffers attenuation as it comes down the atmosphere. Its intensity at $\overline{1}$ (level \underline{n}^{*} and depth \overline{n}^{*}) is given by

whore

 $e = \sigma N$ = scattering coefficient of the atmosphere

σ = acattering coefficient per unit mass of air

N - total air mass of the atmosphere

and 2 - angle which g makes with the vertical.

at P, direct sunlight gets scattered along the direction K' making an angle Y' with g. The amount of energy scattered in a small cone of solid angle d_K' is given by

In travelling from F to another point Q (level m, depth \overline{m}), the primary scattered radiation undergoes a further attenuation given by

where θ^* is the angle which χ^* makes with the vertical. The contribution to the intensity of primary scattered radiation passing from P through a surface normal to χ^* at Q is proportional to

At Q, let the primary scattered radiation given by (6) unlerge a second scattering process in the direction of observation k such that the angle between k' and k is X. The secondary emission at Q in the direction k is proportional to

Integrating over all directions around Q and the air mass of the entire atmosphere, the total secondary emission \mathbb{R}_2 at Q in the direction k is given by

 $x (1 + \cos^2 \theta') (1 + \cos^2 X) \cos \theta' \sin \theta' \sin' \theta'$

...

 ϕ' is the asimuth with respect to the vertical plane through the ann and the observer. Since the exponential terms are independent of ϕ' , the integration over ϕ' can be easily carried out taking ϕ' and ϕ' as constant. The solution of the integral

$$\int_{0}^{2\pi} \left(1 + \cos^{2} Y'\right) \left(1 + \cos^{2} X\right) d\phi'$$

can be written in the form

where λ_0 , λ_1 and λ_2 are the functions of direction of incident radiation (2, 0) and the direction of secondary scattered radiation (0, ϕ). Please see Table 2. Substituting this in eq. (8),

changing the variable from 0' to sec 0' and as

we have,

Integration in eq. (11) is replaced by L_{Ω} functions (n = 1, 3 and 5) which depend upon the scattering coefficient of the atmosphere, solar zenith angle and the position of Q. Three consecutive odd values of n occur, because of the consecutive negative odd powers of sec Z.

 L_{m} can be expressed in the form

where the first term in the bracket represents the contribution to he atmosphere below lovel m and the second term corresponds to the contribution from the part of the atmosphere above level m.

wholes

shows that the contribution $E_{\rm kn}$ is obtained by two steps: (1) integrating over sec θ ' from 1 to ∞ keeping m' constant and (2) then summing up for different levels above or below

m as the case may be. Sin functions have been tabulated by

- 1. Gold (1908) n = 1 to 3 and several values of t from O to 6
- 2. Harmad (1947) n = 1 to 5 and t = 0.00 to 1.00 at an interval of 0.01
- 2. Placek (1967) n = 1 to 20, and t = 0.00 to 2.00 at an animaryal of 0.01, and t = 2.0 to 10.0 at an interval of 0.1.

Total secondary scattered radiation (n_2) received by the observer at ground level, can be obtained by integrating n_2 over n_3 . We have,

...16

vicero

In practice, id, functions are calculated starting from the values of z_{jn} and dividing the atmosphere into a number of layers containing equal air masses.

The functions A_0 , A_1 and A_2 occuring in the above formulae as originally given by Gaspman and Hammad (1939)

assume that the primary scattered radiation is unpolarised. Eq. (7). This is not correct. This was corrected by Hamad (1948) while considering the polarisation of secondary acastered radiation and also independently by Sakihara (1951). Their values are given in Table 2 in terms of 2 for the direction of observation along the senith (6 = 0°, ϕ = 0°).

Functions A_0 , A_1 and A_2 for $A_2 = 0^{\circ}$, $\Phi = 0^{\circ}$

4 Chapten and 4 Hamad (1939)		Massad (1940)	· 治疗 治疗生物剂 1600 出版 5.20 的复数加速性流水溶液 602 等空	Jakibara (1951)		
ille						
Horselestine	nder der Germannen der Kristischer der State d	THE THE PARTY OF T		大学的 100 mm 100		
Å.		2 - 1 - 11 - 2	2 - 2 311 2	4 = 2 sin ² 2		
	i • 2 12 2	3 815 ² Z				
		2 - 3 24.7 2				

the polarisation of the scattered light and the anisotropy of the molecules. This modified theory is given briefly in the paper presented in article 1.2 of Section I. Hasmad (1953) chowed that the values of polarisation and the positions of neutral points calculated on the basis of his theory, were in close agreement with the values observed on clear skies.

4.23 Chardragelast a real of real size occilianting

The problem of sky illumination taking into consideration all orders of scattering and reflection by ground according to a definite law, has been solved by Chandrasekhar. The accessary corrections for solocular anisotropy have also been dealt with. The theory is described fully by Chardrasekhar in his book on "Madiative Transfer" (1950). The theoretical values of polarisation, and positions of neutral roints and neutral lines are presented by Chandrosekher and Albert (1951) for T, = 0.15. A brief summary with the necessary tables to compute the intensity and polarisation of the smallt sky at any point for visible and mear ultra-violet parts of the spectrum, have been given by Chandresekhar and Elbert (1954). Coulson (1954) has computed the positions of neutral points for different values of au_q such as 0.02, 0.15, 0.25 and 1.00. He has shown the existence of double areas point for large optical thicknesses. The effect of ground reflection on the positions of neutral points, has also been considered. In this sub-section, the summery of the theory is given keeping in view the orchion of der literiantich

gots polarised and for complete representation of the redistion scattered in any direction, it is essential to know its intensity, direction of polarisation and degree of

polarisation. These quantities are different in nature and two or more intependently polarised beams cannot be combined together by simple addition. This necessiates a search for a new representation and it has been observed by Ghandrasekhar that the Stokes parameters satisfy all the required conditions. An elliptically polarised beam of light can be fully represented by four parameters and a partially polarised beam of light by three. Let l and r be two directions at right angles to each other and l_1 and l_2 represent the intensity along these two directions. I (Ψ) , the intensity in a direction at an angle Ψ to l (measured clockwise) is given by

The coefficients I_1 , I_2 and V are called the Stokes parameters. In terms of these, the angle X which the direction of polarisation makes with I is given by

and the degree of polarisation by

A law of braneformation of Stokes parameters for a rotation of the axis through an angle ϕ can be easily derived and is given below in its final form. If

 $L=\{L_1,\ L_p,\ 0\}$ denote the components of a partially polarised beam of light, then the effect of rotation of the axis through an axis Φ in a clockwise direction is to subject L to the linear transformation

4.235 Andrew Law in Court of Three matrix

In order to relate the Stokes parameters of the scattered light to those of the inclient radiation, Rayleigh's law of scattering can be emmedated as follows:
If I (I, I, U) represent the inclient light, the scattered intensity in the direction 6 is given by

where

is called the phase matrix for mayleigh's scattering and the southering coefficient per particle.

a a a 22

4,23c Magazalon opolicioni

A pencil of radiation of intensity λ ν after traversing a distance ds in a modium will be weakened by

where C is the density of the medium and K_{γ} the mass absorption coefficient for radiation of frequency V . The loss $4L_{\gamma}$ may reappear partly or fully in other directions as scattered light.

Considering the case of scattering, a material is said to have a mass scattering coefficient $K\gamma$, if from a pencil of radiation incident on an element of mass of cross-section d σ and height ds, energy scattered from it at the rate of

in all the directions. But dm = (. Cos &. d f. ds, therefore, energy acattered at the rate of

On considering the angular distribution of the scattered radiation according to a phase function P (Gos 0),

gives the rate at which energy is being scattered into an element of solid angle d ω' and in a direction at an angle θ

to the direction of radiation incident on an element of mass dm.

Total loss of omergy in all the directions, from the incident beam is given by

$$\mathbb{Z}_{\mathcal{V}}$$
, $\mathbb{Z}_{\mathcal{V}}$, $\mathbb{Z}_{\mathcal{V}}$, $\mathbb{Z}_{\mathcal{V}}$, $\mathbb{Z}_{\mathcal{V}}$

For scattering according to dayleigh's law.

. . . 25

4.234 Interior coefficient

The emission coefficient j_{γ} is defined in such a way that an element of mass dm emits in the directions confined to solid angle $d \tilde{\omega}_{\gamma}$ in the frequency interval $(\gamma, \gamma + d \tilde{\gamma})$ and in time dt, an amount of radient energy given by

In the case of a medium which scatters radiation, there will be a contribution to the emission coefficient from the scattering of radiation from all the other directions into the pencil of direction considered. Thus it follows from (24) that the scattering of a pencil of radiation from the direction (6°, ϕ') contributes to a pencil in the direction (6, ϕ') energy at the rate of

where f (*, ϕ ; *', ϕ') denotes the phase function for the angle between the directions (*, ϕ) and (*', ϕ'). Hence the contribution f(*) to the emission coefficient by scattering alone is

for a scattering atmosphere,

4.230 201130 (1112:101)

The ratio of emission to the absorption coefficient which plays an important part in the theory of radiative transfer is called the source function \mathbb{Z}_{γ} . For a scattering atmosphere,

$$\frac{1}{2} \int_{0}^{\pi} \int_{0}^{2\pi} \int_$$

4,23f Louisian 21. iraniiar

with these definitions, the equation of transfer can be written down as follows: In an element of cross-section d σ and height ds, the difference in radient energy in the frequency interval (ν , $\nu + d\nu$) crossing the two faces normally, in a given time dt, and confined to an element of abid angle, is given by

This difference in energy must arise from the excess of emission over absorption. The amount of energy absorbed is

while the amount of energy emitted is

Thorofore,

or in the terms of source function 12 (article 4.23e)

This is the equation of transfer.

For a plane-parallel atmosphere, it is convenient to measure linear distances normal to the plane of stratification. If I is this vertical distance, the equation of transfer becomes, on suppressing the suffix ν ,

where \hat{r} denotes the inclination to the outward normal and ϕ the azimuth referred to suitably chosen axes. Introducing

ani

the equation of transfer for a plane-parallel atmosphere can be written as

The evaluation of the source function j (*, ϕ) can be carried out with the help of Eqs. 21 and 22. The contribution dj (*, ϕ ; *', ϕ') to the source function arising from the scattering of a pencil of radiation of solid angle d ω' in the direction (*', ϕ') will be given by

if \underline{I} (θ^* , ϕ^*) is referred to the direction parallel and perpendicular to the plane of scattering, but for a plane-parallel atmosphere, \underline{I} (θ^* , φ^*) refers to a vertical axis and a plane, therefore it becomes necessary to multiply by appropriate phase matrices for the rotation of axes at two places. The resultant source function \underline{I} (μ , ϕ) μ' , φ')

can be expressed in the form

$$2 (\mu_{0}, \phi_{0}, \mu'_{0}, \phi'_{0}) = 2 \left[2^{(1)} (\mu_{0}, \mu'_{0}) + (1 - \mu^{2}) (\mu_{0}, \psi'_{0}) $

whore

$$\begin{bmatrix} \lambda^{2} \mu^{2} & \cos 2 & (\phi^{2} - \phi) & -\lambda^{2} & \cos 2 & (\phi^{2} - \phi) \\ -\lambda^{2} & \cos 2 & (\phi^{2} - \phi) & \cos 2 & (\phi^{2} - \phi) & -\mu^{2} & \sin 2 & (\phi^{2} - \phi) \\ -\mu^{2} & \sin 2 & (\phi^{2} - \phi) & \mu & \sin 2 & (\phi^{2} - \phi) & \mu^{2} & \cos 2 & (\phi^{2} - \phi) \end{bmatrix}$$

and the equation of transfer Eq. (30) for a plane-parallel atmosphere can be written in the form

It should be noted that $I(T; \mu', \phi')$ characterises the diffused radiation but in addition there is a reduced incident flux $\Pi I e^{-T}/\mu^{\circ}$ at the level T, in the direction $(-\mu_{\circ}, \phi_{\circ})$ and hence the equation of transfer appropriate for the problem of diffused reflection and transmission has the form

Mean
$$T_{1}^{2}$$
 h_{1}^{2} h_{2}^{2} h_{3}^{2} h_{4}^{2} h_{5}^{2} h_{5}^{2}

The boundary conditions for solving this equation are

$$\frac{1}{2} (0; -\mu, \Phi) = 0$$
 $\frac{1}{2} (7; \mu, \Phi) = 0$
 $\frac{1}{2} (7; \mu, \Phi) = 0$
 $\frac{1}{2} (7; \mu, \Phi) = 0$

i.e. there is no diffused radiation falling on the top or from below the bottom of the atmosphere. The case of reflection by ground will be taken up in article 4.231.

4.238 Modification for the molecular amisotropy

The scattering of a partially plane polarised beam of light by an anisotropic particle may be regarded as equivalent to a super position of Rayleigh's scattering with a weight (1-Y)/(1+2Y) and isotropic scattering of each of the components \mathbb{I}_1 and \mathbb{I}_r with a weight 3Y/2 (1+2Y) where Y is given by d=2Y/(1+Y). This means that the following phase matrix should be used in the Eq. (37) for $\mathbb{I}^n(\mathbb{I}_1,\mathbb{I}_r,\mathbb{U})$.

4.23h Columbian of the acuation of transfer

It has been found convenient to express the intensity reflected at the top of the atmosphere in the direction (μ , ϕ) by

and the intensity transmitted below the layer au_i by

where S and T are called scattering and transmitting matrices respectively. They are functions of μ , $\bar{\phi}$, and μ_0 , $\bar{\phi}$. τ_1 is taken as a parameter. In terms of these matrices, and with the boundary conditions given in Eq. (38), the solution of equation of transfer (37) becomes easy.

The nature of \mathbb{Z} $(\mu, \phi; \mu, \phi')$ suggests that \mathbb{Z} $(\tau; \mu, \phi)$ should have three components: (1) $\mathbb{Z}^{(0)}$ $(\tau; \mu)$ independent of asimuth, (2) $\mathbb{Z}^{(1)}$ $(\tau; \mu, \phi)$ has a period of 2π in $(\phi_0 - \phi)$ and (3) $\mathbb{Z}^{(2)}$ $(\tau; \mu, \phi)$ having a period of π in $(\phi_0 - \phi)$. Thus

The solutions of $\mathbb{L}^{(1)}$ and $\mathbb{L}^{(2)}$ suggest that if transmitting function is expressed in the form

I(1) is expressible in the form

where $\chi^{(1)}$, $\chi^{(1)}$ and $\chi^{(2)}$, $\chi^{(2)}$ are defined in terms of characteristic functions

I and I functions are solved in Chapter VIII of "Radiative Transfer".

On the other hand, the solution of azimuth $\text{Independent term } \boldsymbol{\lambda}^{(0)} \text{is much more complicated and is given}$ by

$$\begin{pmatrix}
\xi(h) & 2^{2} \xi(h) & 0 \\
\xi(h) & 2^{2} \theta(h) & 0 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
\xi(h) & 2^{2} \theta(h) & 0 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
\xi(h) & 2^{2} \theta(h) & 0 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
\xi(h) & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
\xi(h) & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
\xi(h) & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
\xi(h) & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
\xi(h) & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
\xi(h) & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

where the eight functions Y, ξ , φ , γ , γ , σ , γ and e are defined in terms of X_1 , X_2 and X_3 , X_4 and X_5 , X_5 and the constants Y_1 , Y_2 , Y_3 , Y_4 , Y_3 , Y_4 , Y_5 , Y_6 and Y_6 whose values can be obtained in terms of the moments of X_1 , X_1 and X_2 , X_3 functions. These are defined in terms of the characteristic functions

$$\Psi_{2}(M) = \frac{1}{2} (1 - \mu^{2})$$
 and $\Psi_{2}(M) = \frac{1}{2} (1 - \mu^{2})$

Substituting $E = (r_1, r_2, 0) = (sr, sr, 0)$ in Eq. (41) because the incident light is natural, the equations of I_1 etc. corresponding to $(\tau_1, -\mu, \phi, \mu_0, \rho_0)$ can be written down from the Eqs. (43, 44 and 46). Using notations of Gaulson (1954),

whard

The equations of I_1 , I_2 and V given by Eq. (48) are derived on the assumption that the ground is a perfect absorber Eq. (38). In practice, however, the ground always

reflects a part of the total radiation falling on it. It can be assumed that ground reflects according to Lambert's law, i.e., the light reflected by ground is unpolarised and uniform in the outward direction independently of the state of incident flux. Further, the outward flux of the reflected light is always a certain fixed fraction λ_o (albedo) of the total inward flux of radiation falling on the surface of the earth.

The total inward flux of rediction fulling on the ground consists of three parts :

- 1. Directly transmitted light T & o
- 2. Dirinally transmitted light I (T; /, +)
- 3. The flux of radiation re-reflected by the atmosphere towards the ground.

It has been shown that the effect of ground reflection is to increase $L(T_1; -\mu, \Phi; \mu_0, \Phi_0)$ by an amount $L^2(T_1; -\mu, \Phi; \mu_0, \Phi_0)$ where

whore

1. 300000000.

- 1907 Net. Zeit. P. 306
- 2. Characteristics, 9.
- 1950 "Radiative Transfer"

 Clarendon Press, Oxford
- 3. Chandreschar, 5.4 Elbert, 8.
- 1951 Nature 162, P. 51
- 4. Chandrasethar, S. & Elbert, D. D.
- 1954 Trans. Amor. Phil. Soc.
 New Series, Ma. Part VI, P. 643

5. Chapman, C.

- 1931 Proc. Phy. Soc. 42, P. 483
- 6. Chapman, S. & Hammad, A.
- 1939 Phil. Mag. Ser. 7,

7. Ohapaa, 5.

- 1953 Proc. Phy. Soc. 66 B, F. 710
- B. Coulon, K.L.
- 1954 Investigation of polarisation of sky light, Contract No.

 AF 19 (122) 239. Report 7
- 9. Dave, J. V. & Remanathen, K. K.
- 1956 Proc. Lnd. Acad. Sci.

10. Dave, J. V.

1956 Proc. Ind. Acad. Sci.

11. Gold. S.

1908 Proc. Roy. Soc. 32, P. 62

12. Harmad, A.

1945 Phil. Mag. Ser. 7, 36, P. 434

		1947	Phil. Mas. Sor. 7, 22, F. 515
4	Hannad, Ap	1943	Phil. Mag. Ser. 7, 22, F. 956
15.	Acomoral y As	1948	Astrophys. Journ. 198, P. 338
200	Harmad, A.	1953	Journ. Opt. Soc. Amer. 42.
		1913	Phil. Trans. Roy. Sec. London 212, A, P. 375
Ť Š.	ident in the	1040	Publ. Obs. Nat. Frague.
	Sokera, Z.		
\$ D	Plogrok, G.		National Mesearch Council of Gamada, Division of Atomic Energy, Ontario. No. 1547.
200	a aka kaca a y f o	1951	Papers Not. Joophys. 2, P. 158
21.	Tichanowsky, J.J.	1927	Phys. Zeits. <u>28</u> , P. 600
10 10 10 10 10 10 10 10 10 10 10 10 10 1	Tichernusky, J. J.	1000	Phys. Zelts. 22, P. 442

00000000

1954 Proc. Phy. Soc. 97 B, P. 304

23. 11.11.03.101.