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ABSTRACT

Plasmas, more often than not, have more than one

”pec1es of electrons and ions, Some examples of such

,—species pPlasmas are the beam Plasma systems, turbu-

lent plasmas of thermonuclear 1nterest, Solar wind near
1 AU fusion plasmas with impurities, magnetospheric
'Elasmas, etc. But most of the theoretical work dealing

“Wlth these Systems consider the Plasma to have one spec1es

. of electrons and one species‘of ions only. However, some

 recent theoretical investigations have shown that the

_ Presence of more than two species of particles can



isperSiVe properties of the medium rather

vFor example, only conpressive ion acoustlc
_es (SOlltonS or denS;Lty humps) exist in a
ect onwcomponent plasma, whereas, rarefactory'ion

tary waves. (holes or denSLty dips) also can

,,acoustlc S0

yéxlst whe :the presence of a qecond electron species is
.Hcccunt.,.81mllarly, electron acoustic (EA)
can occur, in addition to the EA Solitons, if

lasma consists of more than one species of ions. So,

?dé;‘to'obtain correct information about the processes
6éé@rihg in such multiw-species-plasmas, it is only proper

é;:all'thé particle species be taken into account.

In this thesis we have considered the multispecies
plaémas and have investigated the existence and propagat-
ion of solitary ion acoustic waves, solitary ion cyclotfbn
waves, EA waves, ion-ion-hybrid-resonance (ITIHR) waves,

‘;?thejdrift instability of EA and IIHR waves and the

‘/po§Sibility of mode conversion between the EA and IIHR

waves, AS regards the ion acoustic waves, in a two

electron component plasma both solitons and holes can occur
even when the ions are cold. However when the finite
temperature of the ions is appropriately accounted for,

we find that the maximum amplitude of solitons as well as
holes is reduced significantly, Finite ion temperature

also reduces the allowed regions (regions in parameter



solitons and holes occur); in some cases the

e&en fdfbidden.whenytwb species of electrons are

in addition to the rarefactory
 jéyéi0troh Sdiitary'aneS, which exist in
S “ht-pléSma; a new type of solitary

ompressive solitary wave can also occur,

1 w;vesiafé greatly affected by anylchange in the ion temper-
 {§§ﬁfe‘énd the ratio of density and temperature of the hot
i!ér'id warm electron components. The formation of the paired
“pérpendicukar electrostatic shocks observed in the auroral
' *piésmaS at an altitude of ~ 1 RE can be nicely explained
vfin terms of thése BIC solitary waves only if the presence
!'Hgﬁfthe.second electron species is taken into account., An
\  ;¢n acoustic envelope soliton propagating in a two-electron-
’3§pecies inhomogeneous plasma, with the density gradient
Scalelength of the order of‘the width of the envelope soliton,
is found to split into two solitary waves, However, the
$plitting time is longer compared to the one in a single
‘élect:on Species plasma, Furthermore, the splitting of the
envelope holes in a two-electron-component plasma is found
to be delayed so much that splitting does ﬁot occur within

a pracdtical length of time,



In a magnetised plasma with ions more energetic

than the electrons, eléctron acoustic waves can pro@egaﬁe
ik_in,a’direction’almost perpendicular to the magneticrfield.
If more than,oné species of ions are present in the plasma,
F;the 1on—lon-hybr1d resonance mode also is excited. The
” effect of any change in the relatlve concentration, mass
‘lfand temperature,of the two ion species on the characteristic

frequencies of the electron acoustic and the ion-jon-

:hYbridjresohance,modas_in the magnetospheric plasmas and@ the

'w‘mirrcr?machine is studied, The presence of weak

gradlents perpendlcular to the magnetic field and

,on°of wave prqpagatlon, gives rise to drift

Jqupllng of these drift waves with the electron

coust qllon—ion-hybrld resonance waves can give rise to

:ﬁhé corrwséondlng drlft 1nstabllltles The range, over
‘tffwhich these drift 1nstab111t1es occur is larger when the
medlum has stronger inhomogeneities, The presence of
bdGQSity gradient$! in principle, can lead to mode conver-
Sion‘between the EAvand ITHR waves, But within the
’approximation of fluid theory and in the limit of weak

inhomogeneities, it is found that mode conversion between

the EA and IIHR waves does not occur in the magnetospheric

plasmas or in the 2XIIB mirror machine.



CHAPTER 1

INTRODUCTION

Recent measurements have shown the Presence of
more than one species of ions and electrons in the labora-
tory as well as in the space Plasmas, Electrons having
two distinct velocity distributions are commdn in hot
cathode discharge plasmas (Oleson and Found, 1949),
turbulent plasmas of thermonuclear interest (Krall and
Trivielpiece, 1973)., 1IMP-8 Satellite data have shown a

double Maxwellian distribution for electrons in the solar



wind near 1 AU (Feldman et al., 1975). Auroral plasmas
also contain two types of electrons (Garret, 1979),
Several theoretical investigations have shown that the
éecond electron component can change the nature of the
waves significantly. For example, the ion acoustic
solitary wave is compressive in a single electron species
Plasma (Sagdeev, 1966), whereas, when a se&ond electron
species is present, rarefactory ion acoustic solitary
wave (hole) can also exist (Buti, 1980), Lisak (1980) had
shown that the range of wavenumbers corresponding to
modulational instability of electrostatic ion cyclotron
waves 1s significantly changed by the presence of the
second electron species, It has also been found that

the second electron species affects the nature of the
Langmuir solitons (Buti and Yu, 1981), In addition to the
solitary Langmuir waves where the density scales as the
square of the electric field amplitude, similar to those
in a single electron species pPlasma, new type of solitons
can also exist where the density and the field amplitude

have the same scaling,

Data from the polar orbiting satellite ISIS2

show that at an 'altitude of 1400 Km, H+ is the dominant

ion species, followed by_0+} He+; N+ and O++ in concent-

ration level (dHoffman, 1974), Johnson et al, (1977) had



reported the presence of heavy ions like Hé+, He++ and O+

in the ring current at a distance of 3 to 10 earth radii
(Rﬁ). ISEELl,2 measurements indicate that besides protons,
ﬂé+, H§%+ and O+ ions are dlso present in the magnetotail
region around 19 Rﬁ (Williams et al.,, 1979; Peterson et al.,
1g81; Horwitz, 1985)° From these observations one can see
that more than one species of ions are present in the
plasmasphere, ring current and magnetotail of the terrestrial
magnetosphere, Moreover, these ions are more energetic

than the local electrons, For example, in the ring

40 KeV, whereas, eiectrons have enérgies of the order of 1lx4
KeV only (Russel and Thorne, 1970; Frank, 1971)., It is
known that magnetised plasmas with ions hotter than the
electrons can support electron acoustic (EA) waves
(Lashmore~Davies and Martin, 1973). The existence of
supersonic compressive EA waves had been estaklished by
Buti et al. (19807). Furthermore, it has been shown by
Buti (1980a&) that if more than one species of ions are
present in the plasma, electron acoustic holes can also

occur,

Presence of impurity ions is not uncommon in the
tokamaks and mirror machlnes (Takahashi et al., 1977, Hosea

et al., 1979). These minority ions can have a profound



effect on the dispersion properties of the plasmas.
Buchsbaum (1960) had shown that if two species of ions are
Present in the system, there exists a plasma resonance
involving the two ion cyclotron freaquencies. This mode

is known as the ion-ion-hybrid resonance (IIHR).

Considering these ¢bservational facts and noting
that an additional electron or ion species can affect the
nature of the waves significantly, in order to have a
realistic model, it is only proper that all the particle
species be taken into account. In this thesis, we have
investigated some problems relating to the existence and
propagation of nohlinear ion acoustic waves, nonlinear ion .
cyclotron waves, electron acoustic waves, ion-ion hybrid
resonance waves and the drift instability of the EA and
ITHR waves in a multispecies dispersive medium with and
without inhomogeneities. A brief summary of each of the

investigations is given below.

fn chapter 2, we have investigated the ion acoustic
solitary waves in a strongly nonlinear two electron |
species plasma with hot ions (Ti # 0, but Ti'4~T1' T2,-
where Ti' 'I‘1 and.T2 are the ion and electron temperatures
respectively). Since we Are considering a strongly non-

linear plasma, the perturbation techniques are no longer



valid and we have to treat the governing eguations exactly
by retaining all the nonlinear terms. Handling such situ-
ations can be difficult but sometimes a great deal of
information can be obtained about the solution without
actually solving the nonlinear equations, Usually this
procedure is used to find out the existence of localised
stationary solitary wave solutions for a set of nonlinear
differential equations, This method éan be briefly out-

lined as follows:

Let us consider a system which is governed by the

set of equations of the form

LL(QS( ;¢27 o C/ji’/\/ )::07 =2, N

where L; are functions of differential operators with
respect to X and t, To obtain stationary solutions, the
equations (1,1) are transformed to the frame of reference
§==;<-Mt. On eliminating all the variables except one, say
the potential@,one finds that the governing equation is of

the form,

i(%%i)z +¥(P) o (1.2)

Eq.(1.2) resembles the energy integral of a classical
bParticle of unlt mass moving in an effective Potential

Avj(gé); E:playing the role of the time, Integrating (1,2)



over ‘é once, we obtain

-] .
s=fEavep] AP s - s

For real values of 'g ' ’\}/(ﬁ) must be negative,
Expanding /\)V (#) around g = 0, we get

V=R LE L P TE [ o

“O
If “,V(o) = 0 and BW/3¢:O but 82“‘-{’/3(]5 -?:O at
% = 0, then from Egs, (1,3) and (1.4), we observe that the
points (0,0) in the & - Y plane can be mapped to the
points (+ o® , 0) in the € ,«;25 plane, For a single-
valued potential with an extremum. at g = #ys we can
expand Y (@) in the neighbourhood of # = g, as

VCPI=YW(P, )+(P-% )aq?”/ + 4 (P 3?"/+ + (1.16)
/q)M :

For W (d4,) =0 but d¥/IP  and > "4 /0P%  finite

at & = '%’l' from Eq, (1,3) one can see that the point

(ﬁMoO) in the g - W plane is niapped to ( -go ’ ﬂM)

in the g - £ plane., Thus the quasiparticle_ri,n the



pPotential 'BD » Moves from c75= 0 to Qﬁil géw and back
in a single transit and //?§> corresponds to a stat-

ionary wave solutien, Hence the conditions for the exist-

ence of solitary wave solutions are as follows:

V(P=0) =0 = vig=,) , -ao

%“: O ax q_ﬁ:O. 7 (1.8)

% to = T, .9

and

%gf ‘#O af P=0 and §Z5M 5 S (1.10)
_wikth, ’?’f@?) <:C7 in the range C)‘{~§ﬁ <:<é% e In ommi
othaer wards qb:: Q being a double root ensures the existence

of solitary waved,

Following the above mentioned method, we have
found that in the system considered in chapter 2, ion
acoustic solitons (density humps) as well as holes (density
depressions) can exist and even an extremely small but

finite T, can modify these solitons and holes significantly



(Dash and Buti, 1981). When T, is finite the maximum
amplitude of solitons and holes gets drastically reduced,

The permissible regions (regions where solitons and holes

can occur) are smaller for Ti # 0 compared to the ones for

T, = 0, The hotter the ions, more drastic are these effects,

s0 much so that in some cases the holes are even forbidden.

Having investigated the solitary ion acoustic waves

(IAW) in a two electron component plasma in the absence of
a magnetic field in ahapter 2,.we have extended our study
of nonlinear waves to magnetoplasmas in chapter 3, In
addition to the IAW propagating parallel to the magnetic 7
field, another mgdesnamely, the electrostatic ion cyclotron
(BEIC) mode arises. EIC wave Propagates almost perpendicular
to the magnetic field, Accounting for the full nonline-
arities in the plasma with hot and relatively cold electrons
components, the wave equation for EIC wave is derivéd.
Unlike in a single electron species plasma, which allows
only rarefactory EIC solitary waves (Yu, 1977), our numerical

computations show that in a two electron component plasma,
there is a possibility of the existence of compressive
EIC solitary waves (Dash and Buti, 1983a)., The allowed
regions for theexistence of rarefactory (compressive)

solitary waves decrease (increase) with increase in the



ratio of density and temperature bf the hot and cold
cqmponents. However, an increage in the ratio of ion to
hot electron temperature increases the allowed regions for
both the rarefactory as well as the compressive solitary
waves, An analytic solution for the solitary wavés is
obtained in the small amplitude limit and it is shown that
even in this limit, under certain conditions compressive
solitary waves are more favourable than the rarefactory
solitary waves, The observed paired electrostatic shock
structures in the auroral plasma (MozZer et al., 1977) can
be very nicely explained in terms of these EIC solitary
waves, Implications of our model to auroral kilometric

radiation (Benson and Calvert, 1979) are di scussed,

When the plasma is strongly dispersive, the wave
broadens quickly and one has to study the behaviour of the
wave envelope. In such systems, by using reductive pertur-
bation technique, Tanjuti (1974) had shown that the non-
linear Schrodinger equation (NSE) governs the IAW envelope.
In this method, the scaling of the space and time variables
are decided apriori, An alternative pefturbation scheme
(Bogo liubov and Mitropolsky, 1961) which uses the multiple
Space~time scales and requires no apriori scaling of the

Space~time variables can also be used to derive the NSE
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governing the wave envelope (Kakutani and Sutimoto, 1974),
The KBM method which we have used in chapter 4, is briefly

outlined below.

The wave motion in general can be described by a

sct of nonlinear partial differential equations given by

6':E .B ,JB
FAg 2T (A stz )]o=0 ,  aa
&

where gﬁ is a column vector with components gé;?é"““ Y,

representing various physical quantities of the system and

L
SA, Ho, Kf

ions of gﬁ (Taniuti and Wei, 1968)., 1In the limit of weak

are n x n matrices, whose elements are funct-

)
nonlinearity, Cﬁ S can be expanded as
1

%“ - Cé“w)ji“ fé(g}:’lézé’li)f L. , (1.12)

where £- is the smallness paramecter. Let us consider

a monochromatic plane wave solution for one of the variables
Cﬁ 1) o
. l".
7

u) . — _
¢ = a exp( 7Y)+ & exp (-t¥)
(1,13)
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where ”1}/:‘: /Z?ﬁ’"@t is the phase and'a'is the complex

amplitude which varies sjowly with time and space as

0% = e @a)tER@EIF T

(1,14)

%%;681(695) FEB (@) 4 2

‘with a as the complex conjugate of 'a, The unknown functions
A14BysABy.. ... etc, are determined from the requirements
that the solutions of (1,12) to all orders be free of any
secularities., %o order & , the Egs, (1.11) to (1.14) give

the linear dispersion relation

/W)/{):’:O . (1.15)

From Egs,(1.11) to (1.14), to order él , the secularity

removal condition ;s

A +¥%B, =0, | (1.16)

where Vg is the group velocity of the plane waves, Similarly

the condition for the removal of the secularity,to order g™,

can be shown to bHe

Tt Vo ) FPCB 25 1 B 0B ) 5

1

2.
Alalc +Ra o | (1.17)
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where P,Q and R are functions of 'a) and k., The Eqs.—(1.16)
“and (1,17) describe the variation of 'a' with respect to space
and time, These conditions can be converted into partial
differential equatjions governing the evolution of tal by
introducing multiple space and time scales., Let ué define
the new space and time variables as t, =é?§", t, =€t ,

Xy = ffxl, %y = £ x, then Eq, (1,16) can be written as,
) Ayl

O% 1w o —O. 1

This equation indicates that in the slower scale Xl'tl’ the

amplitude 'a' propagates with the group velocity Vg without

- any change of form, Similarly Eq, (1;17) can be written as

i.@%+7>d§0«+ lala 4Ra =o, (1.19)

where T = é?‘{f and = — € (=x - \{7{),

Qv

This is the nonlinesr Schrddinger equation,

In chapter 4, with the help of KMB scheme, we have
investigated the time evolution of nonlinear IAW in a highly
dispersive and weakly dinhomogeneous two electron species
Plasma with nonunifomm temperatures, The electron temper-

ature inhomogeneities ate taken to be much weaker than



13

the density inhomogeneities because the heat conductivity
(mwafg, where Tl,Z are the electron temperatures) is very
large at high temperatures and in that case it is difficult
to maintain large temperature gradients. IAW are found to
be governed by the modified NSE, Since it is difficult

to solve the modified nonlinear Schrodinger equation (MNSE)
analytically, we have computed the time evolution of the
envelope solitons and hdles numerically, OQur computations
show that the width and maximum amplitude of the envelope
soliton decrease because of the second electron component,
An envelope soliton propagating towards higher density and
temperature, splits into two solitary waves, however) the
splitting time is longer compared to the one in a. single
electron component plasma, The effect of the second
electron species on the envelope holes is more drastic in
the sense that splitting either does not take pPlace or if
it does, it happens after a very long time which may not

be practical.

In all our previous investigations, we have
cons idered Plasmas where electrons are hotter than the ions,
But the satellite measurements in the earth's magnetosphere
have indicated that in the ring current around 7 RE
(RuSSel and Thorne, 1970), at geocentric radial distances

of 23-46 RE in the magnetotall (Prank et al,, 1976), ions
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are hotter than the electrons. Magnetised plasmas with
hot ions and relatively colder electrons also occur in
some fusion plasma devices like the 2 X II B mirror
méchine (Coensgen et al., 1976), neutral beam injected
tokamak (Eubank et al,, 1979), etc, In plasmas where

ions are hotter than the electrons, for oscillations
‘across the magnetic field, the electrons are more tightly
bound to the magnetic field than the ions and the effective
mass of the electrons can be greater than ion mass. Under
these conditions, electron acoustic waves (BAW) are
generated, EAW are similar to the IAW, with the role of

ionsand electrons interchanged,

The plasma which contains two species of magnetised
ions, can sustain a new resonance branch which depends on
the motion of the ions only. This branch is known as ion-
ion—hYbrid resonance (IIHR) mode., Thus in a multi-ion-
Species magnetoplasma with ions hotter than the electrons,
both EA and IIHR modes can exist, Since EAW arises due
to the balance between the ion thermal pressure and electron
inertia, the wave characteristics will strongly depend on
the temperature of both species of ions and their relative
concentration, The motion of two species of magnetised

ions result in ITHR mode and hence their properties will
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be modified by any change in the maSS, temperature and
relative concentration of the two ion components, In
chapter 5, we have investigated the effect of the relative
concentration, mass and temperature of the second ion
species on the EA and ITHR waves (Dash, Sharma andAButi,

1983).

One of the most challenging problems in the field
of plasma physics is to find a method to heat the plasma to
a thermonuclear temperature, The process of mode convers-
ion provides an excellent tool for achieving this goal,
Since the pioneering work of Stix (1965), this process has
received increased attention., The process of mode conver-
sion can bedescribhed as follows. Plasmas in presence of a‘
magnetic field can support a number of modes at nearly
equal frequencies. 1In general, these modes can have
different wave numbers but for certain wvalue qf the
Parameters of the system the wavenumbers may coalesce,

For example, when inhomogeneity in different physical
quantities (like density, temperature, magnetic field
etc,) is present, there may exist certain localised
regions where the wave numbers corresponding to two modes
at same frequency are equal, If one of these modes,

while propagating in the medium approaches the region
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where its wavenumber will coalesée with that of the other
mode at the same frequency, the incident wave may be
reflected or refracted in the same mode, or sbsorbed or
converted into the other, or even may undergo some combi -
nation of all these, When the wave accessible frém Plasma
pPeriphery is thus converted to another mode which in turn
can be Qamped by cyclotron damping, landau damping etc.,
the electrons and the ions can be heated, Recent experi-
mental results suggest that mode conversion plays an
important role in heating of the plasmas near the ion
cyclotron frequency (Hosea, 1979)., Near the ion cyclotron
frequency, node conversion may take place between the fast
magnetosonic wave and the ion Bermstein wave at the second
and higher ior cyclotron harmonics (Weynants, 1974; Swanson
and Ngan, 1975., Stix (1965) had shown that if a fast
electromagnetic wave is excited in the Plasma by shining
electromagnetic radigion on it, the wave will travel
inward and at the lower hybrid critical layer it is
reflected and converted into the slow ion plasma mode.
While travelling gut, this mode slows down further and its
velocity and waveiength become comparable to the ion
thermal velocity and electron larmour radius. If the
frequency of this slow wave is close to the harmonics

of ion cyclotron frequency, the wave energy will be
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absorbed via collisionless ion cYclotron damping and the
ions can be heated, When a few percent of impurity ions
like hydrogen or 3He in deuteron plasma are present, mode
conversion can occur near ion-ion hybrid resonance, Swanson
(1976) had investigated the mode conversion of fast Alfven
waves to ion Bermstein waves near the ITHR layer and found
that fast alfven waves incident from the high magnetic
field side will experience mode conversion whereas, those
Alfven waves incident from the low field side will be

reflected back in the same mode,

When inhomogeneity is present in a plasma in a
direction Perpendicular to the magnetic field, drift.waves
may be excited with a pPhase velocity, across the magnetic
field, of the order nf drift velocity of the particles,
These drift waves can couple with the electron acoustic
waves giving rise tg electron acoustic drift instability

(Sharma et al.,1982).

Sinceg a magnetoplasma in presence of inhomogeneity,
can sustain more than one type of wave, there is a
Possibility of mode conversion between them; coupling with
the drift wavg, they can also become drift unstable, In
chapter 6, we have studied the propagation characteristics

of EA and IIHR waves in a multi ion species PlasmasTwith
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ions hotter than electrons and with density gradients
perpendicular to the magnetic field and the direction of
wave propagation, We have also examined the drift insta-
bilities of EA and IIHR waves and the possibility of mode
conversion between them, Numerical analysis of the disper-
sion relation shows that the coupling between the drift
wave and EA and IIHR waves can give rise to instabilities
when the strength of inhomogenecity L_l(z n;idne/dx,

where n,,1is the equilibrium electron density) exceeds a
certain threshold value (Dash, Shrfma and Buti, 1983). The
threshold value of L"l for EA~drift instability is féund to
be lower than the threshold value of L™' for ITHR drift
instability, It is noted that the region of instability

for both the modes increase with an increase in inhomogeneity,
We have also found that for weakly inhomogeneous plasmas with
density gradients perpendicular to the magnetic field as

well as the direction of wave pPropagation, within the frame
work of fluid theory, there is no Possibility of mode
conversion between the EA and the ITHR waves in the systems

we have studied, ji.e. the 2XIIB mirror machine: and the

earth's magnetosphere,



2.1

" CHAPTER 2

EFFECT OF HOT IONS ON ION ACQUSTIC SOLITONS AND HOLES

Introduction

The coexistence of relatively cold electrons in
the bulk of hot electrons is not uncommon in the laboratory
as well as in space, Examples of such plasmas can be found
in hot cathode discharge plasmas (Oleson and Found, 1949),
in the ELMO confinement device (Krall and Trivielpiece,
1973) etc, Turbulent plasmas of thermonuclear interest have

high energy tails in the electron distributiony these super-
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thermal electrons are produced due to the interaction of
localised high frequency fields with the charged particles
(Morales and Lee, 1974), IMP 7 and 8 Satellite data have
also shown the existence of double Maxwellian eledtron
distribution in the solar wind near 1 AU (Feldman et al.,

1975),

When the plasma contains two species of electrons
with different temperatures, the system is governed by the
effective temperature which depends on the temperature and
fractional densities of the two electron components (Jones
et al,, 19758), Théy had shown that as the difference of
temperature, between the two components, increases, the
éfféctive temperature and hence the Propagation character-
istics of the ion acoustic wave (IAW) is dominantly governed
by the colder temperature, In a weakly nonlinear system
with two electron components, Gstami and Buti (1976) had
shown that the ion acoustic solitary wave has a larger
amplitude for a given width compared to the one in a plasma
with single electron species, Investigating the exact
localised nonlinear TAW in a two electron component plasma
with cold ions, Buti (1980) has shown the possible
existence of ion acoustic solitons (density humps) as well

as holes (density dips).
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In a weakly nonlinear plasma the IAW is governed
by KdVv equation: (Washimi and Taniuti, 1966) which predicts
the relationship between velocity and amplitude of the KAV
Soliton., But the experimental value of velocity was found
to be larger than the value predicted theoretically (Ikezi
et al,, 1970). This discrepancy in theoretical and
experimental results suggests that finite ion temperature
effects should be 1ncorporated into the theory,Tappert
(1972) had modified the KAV equation by taking the finite
ion temperature into account but the velocity increased
only slightly, Iﬁstead,of restricting the analysis to
weakly nonlinear systems, Sakanaka had worked with strongly
nonlinear plasmas and had shown that the inclusion of finite
ion temperature could predict a more realistic wvalue for
velocity. By retaiﬁing the full nonlinearities, in this
chapter, we have investigated the effect of hot ions (Ti #
0, but T, & T,+T5: the subscripts 1 and 2 refer to the hot
and warm electron components respectively) on the ion
acoustic solitary waves, From the original set of equat-
ions a single equation is obtained, This equation is
similar to the energy integral of a classical particle
of unit mass moving in an effective potential. Our
analysis shows that even an extremely small ion temperature

can drastically reduce the maximum amplitude for solitons
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as well as holes (Dash and Buti, 1981),

2.2 BEnergy Integral

Let us consider a Plasma with ions and two Species
of electrons with densities N0 g and 54 respectively,
The basic equations governing such a system are the ion
continuity equation, the momentum transfer equation for jions

and both types of electrons and the Poisson equation,

namely,

%Z”ZE + (V) =0, (3.4)
m{,(@?}g Iy a’&)g) ,ea¢ T DY (2,2)
> v> 5% X - 3k ? )
e i}__?g,, :(; %_?2’.. :O 9 (2.3)
3L N BT )

3P _ T on, _
€ 6% sz CC9 e
and
"?fibz = -ATE (N -y =g )
25;1: (2.5)
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In writing Egs,(2,3) and (2,4), electron inertia isdneglect-
ed and we have assumed that both the electron components are
separately in equilibrium with the potential #, This
assumption is justified provided the phase velocity of the‘
wave is much smaller than the thermal velocity of both the
electron components separately, i.e, Teff/hg'<3:’rl'2/mef
where T, f(~ n,T,T 2(n1T2 + n,T ) ) is the effective
temperature of the electrons, Since Ti‘<<'Tl,2' we have
neglected the effect of Landau damping, Furthermore, the
Plasma is treated as collisionless; this assumption is
valid for the solar wind plasma at 1 AU.

N Normalising the densities to By =D+ ny4 € to
anf + X to Véff/ﬁq?;A, vV to Ve and ¢ to Teff/e,
where Véff = (Teff/mi)172, the equations (2.1) to (2.5) can

be written as,

gzl 2 (NV) = o, .<2.6>
a’v AV _ _ > Te ln 2
+v(ax acﬁ »Tc'g 555 S (2.7)

KYL_,:Z d\@x\o("%‘i‘ic’)) > (2.8)
\
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7@g:d%éﬁzp(wgﬁxb> 7 (2.9)
and T’Z
2z _ _
— : vl € ol Teee .
%5?’2- — -7 -+ o(,cx,UC %_&Qp)-m(gxp(%q;) 5 (2,10)

where n,cﬁ ; and.ﬂ&,2 denote the normalised ion and. electron
densities Tespectively. Transforming to a frame of refer-
ence ‘g = X - Mt, which moves with a constant velocity M
with respect to the x-t coordinate frame, and eliminating

v from equations (2.5) and (2,7), we can write
~lr2
M=MLM-2P-2(Te[Tegg Y ] . 2y

Eliminating @ between (2,10) and (2,11), we obtain
2
| (dn - _
z(GE) + WM =o, e

where :

_ B - 2 2 -
Wn,M)= (M 2 AT ) E” Cl=ns
A=)Te/ Tets + X (T Tege) [1- exp S (Teg /T, )
[ (/T YT + L P i ﬂﬂ + o0y (T Tegg )

~exp T CTae/ T ) [=C T2 [ Tege ) m+_'5M2c fm’z)jﬂ

(2,13)
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Eq.(2,12) is the energy integral of a classical particle
of unit mass moving in the effective rotential /yU‘(n,M)
(more commonly known as the Sagdeev potential) with the
kinetic energy 1/2(dn/ﬂ§02. In deriving the energy
integral, the boundary conditions n = 1 and dn/afg = 0 at

E? = + o0 have been used,

Solitary Waves

To ascertain the existence of solitary waves, we
have analysed the Sagdeev potential, Expanding Q+) around

n =1, we obtain

. ’ ' 2, 2 - 2 D
WLW,'L’};M)Z*%}(T}*’)(M ’_‘72/76;{;{—> ?I\‘/I '("f"t /Té‘f'f‘)j-(‘?.l4)

From Eq,(2,12) it is evident that "VJ (n,M) £ 0 for real
solutiuns, So n\*/’(ng_/ll,M) has to be negative and hence
Eq.(2,14) demands that eithgr M2 > (1 Ti/Teff) or

M% ¢ T, /T fe. But if M L Ti/T ggr the IAW will travel
with a velocity smeller that the ion thermal speed which

is not physical. So such small values of M2 are not allowed.
Hence only the supersonic ion acoustic solitary waves are
allowed in the system. Further analysis of ’HJ shows

that n =N is an extremum Provided the Mach number M
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satisfies the relation.

2 | |
ORIV BI2 oy M2y

M (/UL »H)?‘ 2“/
M2
1 (Pt Ml [ M2y N
'(,1,:*,2,)2— €<p %/b‘-ﬂ/L fret
A > 2/ (M)
S v - g ]f =0, e

This equation gives the relationship between M and the maxi-
mum amplitude N of the nonlinear wave, In Eqg, (2.15),
M=K/ Kye DS = Tl/T2 and | iy" =T,/Ty. For T, =0,
Ed.(2.15) reduces to that obtained by Buti (1980). The
critical Mach number Mc (corresponding to the maxinmum
bPotential) can be calculated easily from Eq.(2,15), The
results are shown in table 1, Unlike the cold ion case,

N has an upper limit given by

-1/2 /2 -
Ny=MV L) )] (2.16)

N, for different values of M, 72/ and Y7 are tabulated in

table 2,
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Expanding "y) around n =N, from Eq, (2,13) we

obtain

Y ((NeN,M)=(n-N) M‘“(

e A 3
~ ‘&r;hp_) F—"(N,M) ] (2.17)
where h
5 s 2
(N, M) = N - NY Vv ALy N
MM 2) M /U*Q’/V/ﬂi\/
Trror hen dexp U T
My L
+ LM (- L 1)}3 [N (N+,)2~ [+ '/
S UMD M | N ) L 5
ST M2 [ M+ [ + ¢ )J

°(2,18)

From Eq,(2.14) one can see that n = 1 is a double root of
the equation ’%p’(n, M) = 0 which implies that both ’yv
and d‘yv/dn vanish bug dzﬂ%//dn2 is finite at n = 1, Again
from Egs, (2.15) and (2.17) it can be seen that "97 (n,M)
vanishes but d’y//ﬁn is finite at n = N. Hence the
necessary conditions for the existence of Solitary waves

(as discussed in chapter 1) are satisfied. Since W has
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to be negative, Eq.(2,16) requires that F(N,M) £ 0 for
holes (N £ 1) and F(N,M) > O for solitons (N > 1), Hence
in the system ﬁnder consideration, ion acoustic holes are

2 .
assured if and only if F(N,M) 41 0 and M1;§(1“+>Ti/TQ£f?,

where M = M, satisfies Eq, (2,15),

I an one electron component plasma, i,e, for

L/=1, Bq.(2.17) can be written as

FN,M 2= 1) 2 (- N T T monnS—To o a2 |
UARID! ( ML%>[N QJCPE ﬁiﬂ/\/‘r%(l‘f%z)ﬂg'lg)'

Therefore, for N ¢ 1, ¥(N,M) > 0 and the condition for the
existence of holes is not satisfied., So hole solutions

are not possible in a plasma having one electron species.
The presence of the secohd electron species is essential

- for the existence of holes,

By solving equations (2,15) and (2.18), the
allowed regions for theexistence of solitons and holes
can in principle be obtained, But since these equations

are complicated transcendental equations, it is not

- Possible to solve them analytically, So we have solved

them numerically, . Beforg discussing the numerical results,
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let us first consider the small amplitude case where

analytical solutions can be obtained,

2,4 Small Anmplitude Limit

In the small amplitude limit the S agdeev potential
is simplified and it is possible to have an analytic
Solution., On taking n = 1 + &n, vhere Sn 1, and

retaining terms upto % n3, Eq. (2,11) can be written as

- )
2 S
A2+ Kions xyon® | (2.20)

where

' < -l . _
9(’ :MQL,(M’T‘:/T&H> [Ml-* ("*"TL’/EH—):] 5 (2,21)

— | ‘
Fa = EME T T )[4 (ME LTy ) (1

—1
Te/ Tegs ) *3<'MZ~1%~E/E“>"édCM%TC/EH ).zj
7 (2.22)
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and

, 2 2 -
A= (KX /T %2 /T, ) Tess . (2.23)
Eq.(2.20) has the solution

! /2
SM= (X, /X2) é@c;hzﬂéj(,/z) 4‘_{,] . (2.24)

Since . is always negative, depending on whether
1 °)
7(27 0 or X2 £ 0, soliton or hole solutions are
, 2 . .
obtained, For M° - Ti/'l‘eff 2z 1, we f£ind that 7, 4; 0

if
A 7 (B+2Te /Teqt ) - (2.25)

Here Ti appears as a correction factor only, but it is not

s0 in the finite amplitude case as can be seen from the numeri-
cal computations, In a single electron component plasma,

2 =1 and so the condition (2,25) can never be satisfied,
Hence holes do not occur in a single electron component

pPlasma, From Eq,(2,25), it is apparent that the condition

for the existence of holes becomes more stringent for

finite Ti'
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2.5 Numerical Results

IMP 7 satellite data had shown that in the solar
wind around the orbit of the earth, two species of Qlect-
Tons, a relatively dense component (Nlr\/ZO cm"3) at
temperature Tl'“v 2 X 1OSK and a relatively cold component

3) at Tzzhv 1O4K are present, In the experiment

(N ~5 cm™
of Jones et al., (1975), two species of electrons are present.
at temperatures 3 x 1O4K and 1 x lO%K with densities betweeﬁ
108 and 109 cm-B, For typical values of Y = 0.02 and

0,05, we have computed the allowed regions for the existence
of solitons and holes, Let M = M* be the root of the
equation ¥(N,M) = 0., From numerical computations, we find
that for M ¢ M*, F(N,M) £ 0 for Ng 1 and F(N,M) > 0 for

N %> 1, 8o the allowed regions for the existence of holes
as well as:solitqns would be between the lines M2 = M*2

and M2 = Mi where ME = (1 + Ti/Toff> with the comdition

2, k2
that M7 £ M “,

The critical Mach number Mi is calculated for
different values of A4 , 2/ and Y and is tabulated in
table 1 which shows that Mi decreases as 7” increases,
another interesting result due to the finite temperature
of ions is that thery exists an upper limit on the

maximum value of N, whereas, N —» o in the case of cold
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ions, 1In table 2, we have listed the values of Nu for
different values of M . 2/ and Y, From this table,

it is apparent that Nu decreases as ¥ increases. So
increase in 7Y causes Mi and N, to decrease. Hence the
allowed regions for Solitons are decreased by the limits
set by Mi and Nu' In £ig.1 we have ploted M2 versus N

for M =3, 2/ = 5 and Y = 0.0, 0.02 and 0,05, Tt is
clearly seen that the allowed regions for colitons decrease
as 7f increases from 0,0 to 0,05. From fig.2 it is
apparent that the allowed regions for solitons decrease as ¢/
increases. However, fig,3 shows that the allowed reglons
for solitons increase as ;. increases., This last result
is in contradiction with the results obtained in a plasma
having cold ions, 1In such a plasma, with two electron
species, the allowed reglion for solitons decrease as M
increases (Buti, 1980). This discrepancy can be explained
as follows. Due to the Ffinite ion temperature, there
exists an upper limit for N which is larger for larger A4 ,
So, even though Mg is smaller for larger fL0, Mgiis also
Smaller and together with larger Nu' the allowed region

for solitons increases as /4, increases.

Let us now discyss about the holes, 1In fig.4
M2 is plotted against N for ﬂzf: 3, 2/ =20 and jf = 0,02

which shows that as 7f increases from 0.0 to 0,02, the
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allowed region for holes is drastically reduced, Moreover,

as Y increases to 0,05, holes are destroyed., From

£ig.5 it can be seen that for A4 = 3 and ¥ = 0,02, Toles
exist when 7/ = 20. But when 2/ is reduced to 18.0, il
holes are forbidden. as a matter of fact, there exist a2
critical value of = (= ZJC)’ below which holes do not
occur, For AL = 3 and ’y‘= 0.02, P is found to be 19,
Fig.6 illustrates allowed regions for holes for different

values.ofkﬂ4 » &8 is seen, for 2/ .= 20,0 and 7’ O 02,

*holes are forbidden for M= 1 but ‘when /LL increases to 3

there exists an allowed region for the occurrence of holes

Conclusions -

From the numerical results, we find that for the -

flnlte amplitude ion acoustic solitary waves, the: allowsd

- regicns for the existence of solitons and holes decrease

as the ion temperature increases, The hotter the ians, -
more drastic are these effects, so much so that in some
cases’ holes are even forbidden, Finite ion temperature

also reduces the critical Mach number, Furthermore, finite

~laon temperature imposes an upper limit on N which is

inversely proportional to the square root of 7/



TABLE 1

5 | -
M for various values of A4, 2/and 7".

V= 0.02 V = 0.05
A:}QE{ 1 5 10 1 5
0.1° 2,121 1,900  1.364 0.1 1.9997 1.879
1,0 2,121 1,760  1.664 1.0 1.9997  1.732
3,0 2,121 1.633 1,432 3.0 1.9997  1.609
5,0 2,121 1,55 1,322 5,0 1,9997 1.571
10.0 2,121 1,588 1,207 10.0 1.9997 1,561
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TABLE 2

for various values of [L.t, 2/ and 7’ .

7’: 0.02

'yf= 0.05

;>Kt/ 1 5 10 2/ 1 5
[+
0.1 10.29 4,52 3,185 0.1 6,32 2,84
1.0 10,29 5.4 3.88 1.0 6.32 3.39
3.0 10.29 6,38 4,69 3.0 6.32 4,01
5.0 10.29 6,92 5,14 5.0 6.32 4.34
10.0 10,29 7.63 5,76 10,0 6.32 4,78

12296



Fig.1l : Mz versus N(N » 1) for Moo= 3, 2 =5 and Y = 0,00,
0.02 and 0,05, The upper allowsd value of M is given by

*
either Mc or M , whichever is the smaller, The region

bounded by the

(V= 0,05 are the allowed regions for soclitons,
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Fig, 2 : M° versus N for Al= 3, Y =0.02 and 2 = 5,10

and 20. The upper allowed value of M is given by either

*
MC or M , whichever is the smaller, 7The region bounded
by the lines —0-o— (V= 5), —xx—

(2= 20) are the allowed regions for solitons,



Fig,3 : Mz

versus N for >/ = 5, 7)Y = 0,02 andvﬂim 0.1, =

t

and 10, The upper allowed value of M is given by eith

*
Mc or M ,whichever is the smaller,
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Fig.,4 : Mz versus N (N/ 1) for /Lé = 3, L/ =20, V= 0,0

k4
and 0.02. The region betwesen the curves M = Ml and M = M
e

bounded by the lines 00— ()= 0) and A~ (V= 0,02}

are the allowed regions for holes.
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Fig.,5 : M wversus N for it = 3, 7 = 0,02 and 2/ = 18 and 20.
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the lines —\-(2/= 20) is the allowed region for holes

Holes are forbidden for V= 18,



v=20.0
Y =0.02

0.8 0.9 1.0
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and 3,0. The region between the curves M = 1. and M

bounded by the 1i

gl (ju= 3) is &

for holes, Holes are forbidden for /LL = 1,



CHAPTER 3

COMPRESST VE AND RAREFACTORY ELECTROSTATIC ION CYCLOTRON

SOLITARY WAVES IN MULTISPECIES MAGNETOPLASMAS

Introduction

The existence of electrostatic ion cyclotron (EIC)
waves in magnetised plasmas is well known, These EIC waves
were first observed by Motley and D'aAngelo (1963). Recently
the interest in EIC waves have been revived due to their
importance in heating of the plasmas (Edgley et al,, 1975;
Bohmer et al,, 1976; Colestock and Kashuba, 1982)., Kelley
et al. (1975) had observed electric field oscillations

near the local ion gyrofrequency and the presence of an



35

intense beam of plasma ions at the edge of an auroral arc.
They had also detected large amplitude EIC waves at the
equatorial edge of an auroral arc. The satellite S3-3
measurements have confirmed the presence of EIC waves in

the auroral plasma between the altitudes of 5000 and 8000

km (Hudson et al,, 1978; Temerin et al.,, 1979)., Yu (1977)
had investigated the nonlinear EIC waves in a single electron
species plasma and had shown that solitary EIC waves do

exist in the plasma, These solitary waves were found to be

rarefactory waves,

As we have mentioned in the earlier chapters, there
exist situations, both in the laboratory as well as in Space,
where the plasma contains two species of electrons at
different temperatures, The presence of EIC waves have
been detected in many such plasmas, As an example, the
auroral plasmas have two components of electrons (Garret,
1979) and EIC waves are observed in this region (Hudson et.
al., 1978; etc.). Previous studies had shown that the
nature of wave propagation is significantly modifiéd in a
multi-component plasma (Jones et al,, 1975; Goswami and
Buti, 1976; Lisak, 1980; Buti, 1980; Buti and Yu, 1981).
Lisak (1980) had investigated the modulational instability

of plane EIC waves in a plasma consisting of cold ions and
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two species of electrons at different temperatures and had
shown that the range of wavenumbers correspcnding to the
instability is substantially affected by the presence of the
second electron component, Investigations on nonlihear IAW
in a multi-component plasma by Buti (1980) indicate that
because of the second electron species it is possible to
have rarefactory solitons besides compressive solitons,

It would be interesting to see if the presence of the second
electron component can introduce compressive EIC solitary

waves,

Recently Witt and Lotko (1983) have studied the
obliquely propagating ion acoustic solitary waves in a
two-electron~component magnetoplasma, Using quasineutrality,
they have obtained an exact, time-stationary nonlinear
squation relating the ion density to the electrostatic
éotential. This equation describes ion acoustic solitary
waves in the limit M 77, Cos © and EIC solitary waves in
the limit M < 1, where M is the Mach number and & is
the éngle between the magnetic field and the direction of

wave propagation. However, Wite and Lotko (1983) have

confined their studies to the ion acoustic solitary waves,

In this chapter, we present our investigations

relating to the existence and nature of EIC solitary waves
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in a two electron component magnetoplasma, Taking into
account the complete ion nonlinearities, we obtain an
equation governing the waves in such a plasma, In the
limit of zero magnetic field, this equation governs the
ion acoustic solitary waves, whereas, it governs EIC
solitary waves when the condition of charge neutrality is
imposed, Our analysis have revealed that besides the
rarefactory EIC solitary waves, which exists in a single
electron species plasma, a new type of solitary wave,
namely, the compressive solitary wave can also arise
because of the second electron species, Under certain
restricted conditions both rarefactory and compressive
solitary waves can even coexist, We also show that the
presence of the second electron component‘in the auroral
plasma can explain the formation of perpendicular shocks

observed by Mozer et al., (1977).

Basic BEguations

Let us consider a two-electron-component plasma
with hot ions in an external magnetic field By Further,
let the densities and the temperatures of electrons and

ions be Dy g HZO' nio and Tl’ T2, Ti respectively with
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Ti<G(T1,Ié. For B, along th.e z-direction and kz/k }§>
<me/mi)1/2, the electrons can move along the field lines
and have Boltzmann distribution. However, the ions move
essentially in a plane_perpendicular to the magnetic field
and their motion along the magnetic field can be neglected
i.e., Ky (@:kx. Thus the relevant set of f£luid equations

for the system under consideration are,

gm*fiC”LW> 2 " C(3.1)

@,
XY oVx | Ux Sk P : AL

N

Ca

v

it L ————

- £
>t oxX T TiTeax m @

+ L1y,

R

(3.2)
%J«Ux a,zﬁ = - SulUx
' ax (3.3)
T, = 7o EXP (€¢/77)’
(3.9
M, = Wzo exp (€¢/?j’2 )
(3.5)

and

PP ATe (T - )
% | -- (3.6
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where v is the ion fluid velocity. 95 is the potential,
and ”£7"i = eBo/mic is the ion cyclotron frequency, To
obtain the localized stationary solutions, let us go‘to the
frame of reference §1 = x=-Vt; Egs. (3.,1) to (3.3) can

then be written as

U 14 e dP 1 L it

-/—QQF: RS

(3.7)

where UX = V-V, With the help of Egs,(3.4) and (3,5), we

can write Eq. (3.6) as

Ur &y €20 (€B/T V4V ¢ )

(3.8)

where dil,z = nl,ZO/nO. In deriving Edq, (3.8), we have
used the boundary conditions, v, =0 ,at ¥ =4 o0 . Eliminat-

ing U between Egs, (3.7) and (3.8), we obtain
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| -()«-é}f?f?s ) d2¢

AP 3 L jz € Do A2, Ay

ACP) -1

L1

(3.9)
In Ed.(3.9), QS = ef/T g0 Cg = (T pe/my )1/2 = V/ci,
Ry = cg/ e with Topp =TTy (o) Ty + KT A g =
(T f/47*§n Y% anaa (9) = K, e § (T /T B+
K , exp Z g (T ff/T )Z In an one electron component
plasma, W1th cold ions, Eq.(3.9) reduces to that obtained
by Yu (1977). In the limit B, = 0, Eq. (3, 9) can be written

as

dz 2 [PF Z)\G’ff gk "A“‘ﬁ)f’i

dg? dz?
T S A 2¢> A
-’7;3-;]& % CHF c/ (¢) f

(3.10)

Integrating Eq. (3,10) thrice and using the boundary conditions

namely, # = 0 and dg/d € =0 at § = + o, we obtain the
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relation,

§ 2 , A |
é—(g&? ) -+ ¥ /(ﬁ) M):: O) | (3.11)‘

«zfzg eip(;;f;,m)f*’” f**““’”“

=
gh T g ettt ]

(3.12)

Eqg.(3.,11) is the energy integral of a classical particle of

unit mass moving in the effgctive potential' fy/(QQM), which
when written in terms of idn density n, with the help of the
relation (2.11),is identical to ¥/ (n,M) given by Eq.(2,13),

So in the limit B = 0, Bqg. (3.9) governs the solitary IAW,
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3,3 Electrostatic_Ion Cyclotron Solitary Waves

To invesStigate the existence of EIC solita»ry waves,'
let us impose the condition of quaSJ. chqrge neutrallty, i e.

ny +n, =n,. In this limit, Eq.(3 9) reduces o >

dz [¢+ A/¢) + /%A/Qﬁ)j

dn® | /re‘ff
— A(P) -

(3,13)
- = : ' '
where 7Z = g /Rs' Iptegratlng Eq,(3,13) over 7Z
using the boundary conditions, @& = 0 and dﬂ/d?z = 0 at
’7Z =+ o) , we obtain the energy integral as
( 2) s TCEM) =
(3.14)

vhere
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}D/@M):P—Qf ‘ex,p( ¢)*“pr;a

(@ffgﬁ)}ﬁ(@} f/ﬁf(d?)l - —Z—(( f]L 9<, 5i-ex

eff

(%‘iQﬁ)f%fjj fl-exp( €€F¢a)f+ f"”’

Tesf
' ‘T .,
‘A”(@)f = f/*A(¢)+/w.A[¢)j+¢j__. SV
<12

To obtain informations about the EIC solitary waves, we
analyse the effective potehtialf(ﬂ,M); From Eq. (3.1';5‘)', it
can be seen that ZD' (#,M) becomes infinite at @ = gb, where

gb is the root of the equation

| s
b= 7;:%{ ii;iexp( ~7/€~i£~"(;'1’/‘/*%€xp( e’f"¢)§x

Af¢) IR -0 .
A/¢/ eH«' (3,.16)

Let @ = 0 and gM be the extremum points where Zﬁ"(ﬂ,M)

vanishes, Expanding Eﬂ( around # = 0, we obtain

Yipxom)= ’é’¢22M2"' (1+ 7/ Tegg Uf{

(3.17)
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Equation (3,14) demands i%bm(ﬁﬁﬂ)<< 0 for real solutions;

according to Bqg,(2,17) this inequality can be satisfied only -
5 ' -

if M <;(1 + Ti/Teff). Further analysis of :?9’(%}M) reveals

that & = %ﬂ is an extremum provided the Mach number M satis-

fies the relation

/L (e +2) e 5
(/«+f; [1-ep (G "’)]7#57

Lr-exp 7= ()25 ] + 2 [ pes F
o AR, )

+ 1V =00 AB) ) S AR, |
sl T 7}’?"7;";’7"‘ f]

'f"qu :OD

where ) (3.18)

AlGu) = peexpf (et g g,

with M = o /Ky 5 20 = T /7, aa 7= T/T .

Once again, from Ed, (3,15) we find that
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P BBy M) (- % )Dit, 1) i, mr)

7 (3.19)

where

DIk, M) =1~ 2! A2 (i) [/WZ(N%-/)i
R AlD)  AFeq,)

v ) I o

M+

and

Fogy m)y= M 5, Ml 7 A(%,)
My 4,/?\,/){/4(¢M)

1 (
T LA ) 71228 )51 f}; ﬁ]v“j

(3,21)

w;'Lth

2(@’5) /uexp(/u )+ 81/9/”“*/45)

From Egs.(3.17) to (3.19), it can be seen that both ’QZF

and d’ép/d¢ vanish at = 0, however, at g = ﬁ ?’

vanishes but of JZ?/C/¢ is finite, Hence the conditions
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for the existence of EIC soiitary waves are satisfied,

" Since y has to be negative, Ed.(2.19) guaran-

tees the existence of raref actory solitary waves if

|
F ¢ Ay <O 22
and compressive solitary waves if

F/%,M) > O . | - (3.33)

In a single electron component plasma, i,e, for 2/=1, Eq.
(3.,21) gives

F/%)M):/# 6*%

- % 2
/e M;M%//+7f)e %f) which

Since the last factor is negative, - ... shows that
F(QM,M) 'i 0 for QM >0, and hence the condition (3,23) is
not satisfied., So compressive solitary waves can not

exist in a single electron species plasma.

3.4 Small Amplitude Sonic Ion Cyclotron Solitary Waves

The effectiwve potential }'E’(Q’,z M) is a complicated
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function of Z and it is not >ossible to obtain an exact
solution of Eq, (3.14) analytica lly. However, in the small
amplitude limit i.e., @ << 1, an analytical solution is
possible, On taking both g and (1 + Ti/Teff"Mz) of order
{f .({;<Kﬁ), and retaining termms of order ﬁ3, Eq.(3.15)

gives

Wip)=-1” o+ 5 KaP

: . 'v > b (3.24)
<t):,“f ;K;qu/)
where
LT 2 ‘
KXy= I+ T - M7 (3.25)
X, = 2+ 2L -D , (3.26)
les¢ |
and _
= /% arh -
D, (mz + 7;1 Eﬁ . (3.27)
i 2.

So BEq.(3.14) can be written as

(7(,7‘—%7(4§b):o . (3.28)

ks ﬁ, P>
a1/ (K P)?
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Using the boundary conditiors, namely ¢ = 0 at ’Q = + &,
Eq.(3.2°) can casily be integrated once to give the relat-
ion
/2 ~ | o Vo
Imlz 2% sech (-2 X2 p ) T
Z X,
1/2
X+ 2 Kap)
3 ( ! = 7<2<#’ . (3.29)
From this equation, it can be seen that gmax = - 3_}6,/;}3{2.
. 2 : o :
since M° L (1+Ti/Teff), ;K% is positive, So the solitary

wave will be rarefactory if X, :7 0 and compressive if

”3% <i0. Hence compressive solitary waves can exist if
D, 7> 5+2 i /Eg (3.30)

We may point out that Eq, (3.30) is identical to Eq.(2.25), the
requirement for thz occurrence of rarefactory ion acoustic
solitery waves, In an one electron component plasma,.

e

D, = 1 and hence the inequality (3.30) can never be satis-
fied. So compressive small amplitude EIC solitary waves

do not exist in a single electron species plasma.

Tf the temperature and relative concentration of

the two electron components are such that D1»»13 o 2Ti/'Teff
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or in other words, X 2<<<1, the next higher order term
in @ becomes important in the expansion for '}?’(Q) in
Eq, (3.24) and it can not be neglected. So in the limit

:X‘Z«i>o,vK,(3,14) can be written as

2. 2 \
<d¢ )_, ?2"2 (7(,""7(3¢2) — O , (3.31)

—T '
a7 X,
where
2 ,
L= L $2n-D224D +36-T (16D-30)
3(5 4%51. )~ 249D, ;r—“« ! f) (3.32)
ess
with
— 3
= =< <o J .
|
The solution of Eq.(3.31) iz of the form
qs:;}‘;(/"z_’_> sec h (5—(/77472 ) (3.34)
3 !

Xz

This is a new type of solution, the form of this is similar
to the ion acoustic soliton obtained in the limit fD1~3{<<<l
(Krokhin and Eibenko, 1981), We note here that this solution
does not occur in a single electron component plasma because

in that' case D, = 1 and so the condition Dl-w3+2 Ti/Teff
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can not?be éatisfied, Frorm Eq.(3,34) we see that under
certain conditions, the two electron component plasma can
sustain both rarefactory and compressive sol;tary waves

simultaneously.

Numerical Results

'Aslmegtioned in chapter 2, the density and temper-
ature ?atié of” the two eiectron:domponents in the experiment
of Jonés‘ét al, (1975) vary between ;/6 to 3 and 2 to 5
respectively., In the auroral plaémé} hot and cold electrons
have energies —~ 1-10 KeV and 10~500 ev and ions have
energies~ 1-10 ev (Garret, 1979). The density of the colder

4 times larger than the

electron component 1s about 102 to, 10
density of ,the hotter component (Bénks and Kockarts, 1973)

at an altitude of.~3000 km. S3-3 satellite data shows that

" the plasma density in this region is 10-100 cm™ 3 (Hudson

et al., 1978).

In’fig.l; the plot of ‘vy(g) against g, for the
labofatory:plasma, shows that the magnitude of the maximum
amplitudeﬁh in a two electron Comﬁonent plasma is larger
than‘that_in an one electron speciés plasma, It is also

seen that in both types of plasmas, tg}’goes to infinity
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at 7 = ﬂb. Magnitude of ﬂb in an one.electron species
plasma is found to be - 0.2, whereas, in a two electron

species plasma with =3, 2=25 g =-0.9,.
‘ b

The profile of the EIC solitary wave (in thé small
amplitude limit)is plotted in figs. 2 and 3. From f£ig.2,
it can be seen that the amplitude of the rarefactory solitary
wave is larger in a two electron species plasma than in a
single electron species plasma. This can be explained by
analysing Edq, (3.29); from this equation, we cbserwve that the
amplitude of the solitary wave 1is ’3/2 ('761//3(é) /,
When the second electron species is introduced, 2/ increases
from 1 (in this particular case 22/ = 5). This in turn
increases . 'E%and_so :(2 (as given by Eg.(3,26))
decreases, This results in an increasé in the magnitude
of amplitude of the solitary wave profile in a two electron
species plasma, As shown earlier, compreséive solitary
waves do not exist in a single electron component plasmé

(Dash and Buti, 1983a),

BEgs., (3.,18) and (3,21) are transcéndental in nature
and it is not possible to solve them analytically. So we have
obtained the ronots of these two equations numerically for
different values of AL , O/ and 7/\ . Let M, and M" be

the roots of Eqg,(3.18) and (3.21) respectively, From our
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numerical .computations, we find that F (QM,M) 22 0 for

') f; 0 pro§£déd sz> sz, So the allowed regions for the

existence bffbéth types of solitary waves would lie between
, 2 %2 2 2 _

the lines M~ = M and M” = M; (=1 + Ti/T ff) with the

e
2

. . _
condition that Mi > M 7, In figs. 4 to 6, we have plotted M2

versus Qﬁ f@r the rarefactory solitafy waves for differentl
values ofiﬁ4§, 2/ and if", From these figures, we Ssee
that thelallowed regions for solitary waves decrease when
/M or 2 increases, However, the allowed regions
increase Whén YV  increases. We have plotted M2 versus QM‘
for the CQmpressiveAsolitary waves iﬁ figs., 7 to 9. In fig.
7. wevéee that for /¥—= 1, both Mi én@iM*Z are larger than
MS and.sg-thpressiQé solitary waves do not exist, But when
M incrééses to 5, there exists é region where compressive
solitéry Waves can occur, When /bL is increased further
(béydnd 5}, we see that the allowed.region Lor compressive
‘waves increases. ‘loreover, £ig.8 shows that the allowed
regionsffdr‘the compressive solitary waves increase as 2/
incféa&és( We also note that for ,AA_;’S and ’}rz 0,
compressive solitary waves do not exist for /= 10, but
theyéappear whén ffL/goes up'to 20. So.there must exist
a criﬁical value df 2 (= ]/E§, above which compressive

solitary waves can exist, From our numefrical results, we
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have found that for ﬁ4.= 5, and‘}fs o, 2/, =12, Fig. 9
shows that an increase in 7Y1increases the allowed regions

for the solitary waves,

3,6 Discussion

In the auroral plasma, at altitudes between 2000 km
and 8000 km, paired electrostatic shock structures with
opposite polarities, in directions perpendicular to the
magnetic field had been observed (Mozer et al,, 1977).
Simultaneous observation of these shocks and EIC waves have
been reported by several authors indicating a possible
correlation between these two phenomena (Mozer et al,, 1977;
Kintner et al,, 1978; Hudson et al,, 1978; Temerin et al,,
1979; etc.). These EIC waves travel with & phase velocity

of the order of 50 km/sec (Kintner et al,, 1978),

In the auroral plasma, /“4- varies from 10—2 to 10”4

(Banks and Kockarts, 1973) and 2/ varies from 10 to 100
(Garret, 1979). For these parameters, D, ranges between
1.00008 and 1,001, Hence the condition Dl‘>'3+Q Ti/Teff
can not be satisfied. So the solitary waves in this region

are rarefactory. TIsotropic flow of electrons with energies

around 170 ev in the auroral plasma had earlier been
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detected by Mizera and Fennecl (1977) and Mozer et al. (1977).
Such electrons, flowing from the magnetosphere towards the
ionosphere, in a direction perpendicular to the magnetic
field, can get reflected from the rarefactory EIC solitary
waves, thereby giving rise to the observed shock structures,
However, the formation of shocks is.pmssible only if the
energy of the incident electrons is less than the potential
energy of the solitary waves., For the electrons and the
ions at energies ~~ 5 keV, 250 ev and 10 ev respectively,
and the density of the colder electron component 103 times
larger than the density of the hot electron component,
maximum amplitude /ﬁM} of the rarefactory solitary wave

is 0.8, whereas, | 2y |~0.6 if the hotter electron
component is absent. These wvalues of / %%/ correspond to
the potential well with energy 200 ev and 150 ev respectively,
So the streaming electrons with energies of the order of 170
ev will be reflected from the potential well only if the
Plasma contains two electron species, Hence the presence

of the second electron component in the auroral plasma is
pertinent to explain the observed perpendicular shocks,

The thickness of the shocks thus formed should be of the
order of the width of the rarefactory EIC solitary waves,
Corresponding to the observed values of 2/ i.e. between

10 and 100, width of the solitary waves turns out to be
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~~ 148 m - 469 m; this is in agreemént with the observed
shock thickness which is about 200 m - 10 km (Tobert and
Mozer, 1978). Witt and Lotko (1983) have tried to explain
these shocks in terms of obligquely propagating IAW, But
these obliquely propagating IAW in the auroral regioﬁ should
have phase velocity of the order of 5 km/sec, whereas, the
observed valuesof phase velocity of the waves travelling
almost perpendicular to the magnetic field is of the order
of 50 km/sec (Kintner et al., 1978) which is nearly equal to
the EIC phase velocity, ©So it is more appropriate to
interprete the paired electrostatic shock structures with

the help of EIC waves,

Auroral kilometric radiation (AKR) is a high density
radiation observed in the frequency range 50 - 750 kHz,
Observations from ISIS 1 reveal that AKR is generated in
the extraordinary electromagnetic mode which propagates
almost perpendicular to the background magnetic field. It
was found to be.generated within the density depleted
regions wiﬁh Peak density such that‘1)€<(L2 ﬁflé, with
'gle ~~— 520 kHz (<;%pe and _Clé being the plasma and the
cyclotron frequencies for the electrons). Most intense
kilometric radiation is found to be emitted from the auroral
zone at a distance of 1.5 -~ 2,5 RE (earth radii) from the

earth (Gummett, 1974; Benson and Calvert, 1979). Coherent
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EIC waves have been observed in this region, travelling
with velocities -~ 50 km/sec (Kintner et al,, 1978), Density
fluctuations associated with these waves are less than 0.5

(Kelley et al,, 1975).

Quite a few models have been proposed to explain the
AKR, One such modél, which is in good agreement with obser-
vations, is proposed .by Grabbe et al, (1980), According to
this model, the low amplitude electromagnetic wave interacts
with the coherent EIC waves to give rise to a beat wave, In
presence of a high energy electron beam, the beat wave
absorbs energy from the beam, This beat wave then interacts
With the EIC wave giving rise to the electromagnetic wave,
which in turn gets amplified, An important assumption of
this model is that low frequency density fluctuations
(assumed to be produced by coherent EIC waves like those
seen by Temerin et al, (1980)) play an ilmportant role in
AKR, Our present calculations confimm the.rresence of
coherent EIC waves in the auroral plasma., Further, accord—
ing to our model, the amplitude of the coherent EIC waves
is larger due to the presence of the second electron
componeﬁt. For example, in the presence of about 0.1% of
the hotter electron component (at ~5 keV) in the bulk
electron population (at ~ 50 ev) the calculated density

fluctuation of the EIC wave is -~ 0,25, whereas, it would
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have be«n O.2fif'the hotter electron componzant was not
present . Now; th~ growth rate (K) of the electromagnetic
wave is ﬁroportlonﬁl to the square of the density fluctuat- :
ions assoc1ated w1th the coherent EIC waves (Grabbo et al.,
'1980). So the increase, in density fluctuations, increases -

the growth rate,

: Tf the source region for the AKR is modelled to be
a cylinder of radius 100 km and length 2000 km, the radiated
power'per_unif,érea (8) is ~u 153W/m2, whereas, the power .
per unit area (89) associgted with the electromagnetic wave
is 10_1:5W/m2 (Gurnett, 1974). So the path length ( 4 )
required to amplify the electromagnetic wave to the obServedv
AKR level is given by the reletion:S/Sn = exp (ZRQQ) “41012
We have'caloulated gaccording to this formula and found
that en increase in the density flqctuatioo %rom 0.2 to 0.25
reduces the path length from 140 km to 110 km. Hence the
preseoce of the second election species is more favourable

for observation of AKR,

Density fluctuations associated with EIC waves
travelling with velocity ~~ 50 km/Sec are calculated to be
0.4 and 0,45 in an one electron component and a two electron
component plasma respectively., These are in good agreement

with the observations which demand.. that they should be less
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3.7 Conclusions

In summary, we conclude that in a plasma with two
electron components, rarefactory as well as compressive EIC
solitary waves can exist. The compressive EIC solitary
waves are forbidden in an one electron component plasma,
"The amplitude.of the raref actory solitary BEIC wave increases
due to the presence of the second electron species, For
certain composition of the two electron components, these
rarefactory and compressive EIC solitary waves coexist.
Solitary EIC waves, in a two-eclectron species plasma, can
be a source for the observed perpendicular shocks in the

auroral plasma.
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. CHAPTER 4

EVOLUTION OF NONLINEAR TON_ ACOUSTIC WAVES IN AN

I NHOMOG ENEQUS TWO -ELECTRON TEMPERATURE PLASMA

4,1 Introduction

The problem of nonlinear wave propagation in
dispersive medium is of general interest (Kadomtsev aﬁd
Karpman, 1971). 1In a weakly dispersive homogeneous
plasma, nonlinear ion acoustic waves (IAW) are governed

by Korteweg-de Vries (KAV) equation (Washimi and Taniuti,
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1966; Taniuti énd Wei, 1968; Davidson, 1972), But when
the plasma is strongly dispersive, the wave broadens
quickly and the KAV equation cannot describe the system
correctly, In such plasmas, by using reductive perturbation
technique, Taniuti and Yajima (1969) had shown that the
nonlinear Schrodinger equation (NSE) governs the wave
envelope., In this method, stretched space time variables
are used; their scaling is decided apriori, To avoid the
apriori scaling of space and time variables, one can
follow the Krylov-Bogoliubov-Mitropolsky (KBM) perturbat-
ion scheme (Bogoliubov and Mitrobolsky, 1961) to derive
the NSE (Kakutani and Sugimoto, 1974; Buti, 1976, 1977;

Sharma and Buti, 1976, 1977; Mohan and Buti, 1979),

In reality, plasmas are far from being perfectly
homogeneous, In such plasmas, interaction of the waves
with the inhomogeneities present in the system can bécome
important and can modify the propagation characteristics
of these waves, In presence of an extremely weak inhomo-
geneity (inhomogeneity scalelength L very large compared
to the width of the envelope solitons), Karpman (1979) had
shown that a perturbed NSE governs . - . the IAW gnvelope,
Solving the perturbed NSE by inverse scattering method,

Karpman (1979) had shown that the perturbation acting on the
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envelope soliton does not lead to the formation of a tail,
which is a small amplitude wave packet with growing length,
The perturbation results in some deformation of the soliton
shape,when the inhomogeneity is weak but not so weak that

it can be considered as a perturbation as in the case of
Karpman (1979), Chen and Liu (1978) had shown that in
presence of a linear density gradient, the envelope

solitons are accelerated uniformly, whereas, the acceler-~
ation is nonuniform for arbitrary density gradients, However,
if the inhomogeneity scalelength is comparable to the

width of the envelope solitons, a modified nonlinear
Schrodinger equation (MNSE) governs the IAW envelope and

an analytical solution is not possible (Mohan and Buti,
1979). Their numerical computations showed that an envelope
soliton, while propagating towards increasing density,

splits into two solitary waves,

In this chapter, we have investigated the non-
linear IAW in a highly dispersive inhomogeneous two-
electron-temperature plasma with nonuniform temperatures,
The density inhomogeneity scalelengths are assumed to be
comparaple to the wavelengths of the envelope solitons
whereas temperature inhomogeneity scalelengths are much

5/2

larger, This is because the heat conductivity (n/Tl o
’



where T1,2 ére the electron temperatures) is too large

at high electron temperatures to maintain large gradients,
We have derived the MNSE by using the RBM method, MNSE

is solved nmumerically to study the time evolution of enve-
lope solitons and envelope holes, It is seen that an
envelope soliton propagating in the direction of increas-
ing density splits into two solitary waves, Time required
for splitting of the envelope soliton is found to depend
on the wave mumber and initial amplitude as well as the
ratios of the density and temperature of both the electron
components, For an envelope hole, the effect of the
‘second electron species is more prominent and unlike the
one electron component plasma, splitting of the snvelope
hole does not take place within a reasonable length of

time (Dash and Buti, 1983).

4,2 Modified Nonlinear Schrodinger BEcuation

Let us consider a collisionless, highly dispersive
plasma with cold inns and hot electrons with two distinct
velocity distributions, The medium has inhomogeneities
both in densities and temperatures, The forces due to

these gradients are balanced by the presence of a zero
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order electric field EO and an external force F due to
gravitational field. The basicAfluid equations governing
the system are the ion continuity equation, . momentum
equation for the ions and hboth the electron components and

the poisson's equation; namely

DL o (n v)=0O
ort 4 . 5
>t oF

(4.1)

U, v oV - eE 4+ £ (0.

€ > X me M

eNE +~5@5CCN'T;>:O>’ (4.3)
eNyE AT%CCNQ_TQ):O) (4.4)
and

%%c +ANE (N—=N, =N, ) =0 | (4.5)

where N and N, , are the ion and electron densities, 1V is
4

the ion fluid velocity and E is the electric field. In

writing equations (4,3) and (4.4), we have assumed that

both the electron components are separately in equilibrium



64

with the electric field E, This is justified provided
the phease velﬁcity of the wave is much smaller than the
thermal velocities of both the electron components

separately, i.e. eff/m <(<'T1 ,/m, where T _co = T T,

-4
(NloTZ o+ Nz@Tl)(Bmti, 1980), For the sake of convenience,

let us normalise the densities, fluid velocity, electric

field and the space and time variables to the local

equilibrium values of ion density NO =Ny + NZO' ion

acoustic speed (T f/m /2, characteristic electric field

Teff/e )‘D ., effective Debye length >\D, and ion
Teff eff

plasma period c;)_l respectively, ( . =
Py Pett

(T eff/4 7<N'e )1/2 . Then Eq,(4.1) to (4.5) can be written

as

5
XV L e . iy 9 U7 mal el
Y 4L R TtV -E-F =0

N TegE +(+BINT + fa'iMO)

F\32:12396EE:~+ (C<'+'F§j)r\JQ:T2_‘f‘T% EDr\JZ._, O

Sx 7

(4.6)

(4.7)

(4.8)

(4,9)
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and

Q—E;—F-'—(O(*Beff)E’N*N/""N?_:O 5 (4,10
S * | L
where o — 7/)(;!0' NO/O')C/ 0(} 77:;_ m‘fzoc}/\//lzo /GJI}

.y
@1:‘D/200/~ﬂ,2/d.x and /‘2{%'—: /?*/32_‘}'0(;”/0—}‘

2 2(n, T, +M, T -
X N20 ZHIGTZO_(dl"’ﬁa.)'*‘sz/G (AR, )}( o257 2o O>

are the inhomogeneity scalelengths. In Egs.(4.6) to (4,10),

)
the terms containing o{/‘;g and ﬁ § are due to the normali-
sation with respect to the local equilibrium parameters

whose space dependence has been assumed to be of the form:

Nd: V\OU+0< x ) PR (4.11)
’\tI,QO: ml,zo(‘+0<',2-jc)/ i
_ T, pa
T{,’/_ = (’,lo ( l”l" )2 >) (4.13)
and )
- ~ 3 X ) .
legr = \Q’rfoc T e (4.14)
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For weak nonlinearities, we can expand E,N,N, 5 and v
- - L4

about their unperturbed uniform states as follows:

- T — — — — = -
E /\EO Elrz B,
Ny 1 Ny N,
N = N + &N + €2 N + (4,15)
1 1of €| 11 12 AL
Ny M50 No1 Noo
as . 0 vy | Vo

where )ﬂ is a small parameter defining the strength of
the zero order electric field arising due to inhomogeneit-
ies in densities and temperatures. As outlined in chapter 1,

we choose a monochromatic plane wave solution of the form

E = expley) +a exp 2wy, (4.16)

where . r\}/ = kx -~ CJt i1s the phase factor and 'a' is the
complex amplitude which varies slowly with space and time
according to Eq,(1,14)., Substituting Egs.(4.15) and (4.16)
in Egs,(4.6) - (4.10), writing 0(/1’2 = £ f1,2’ “

2 o - 2
.= € L), 5 and Porr = (€ Fopp + €22 ),

where § 1,2 feff’ ‘),/1,2, 2/ pe are of order unity,
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the & - order equations give the following solutions:

(W iy

N,:Za@z_ (ae -ae ),

: Y LY
Ny =z NeTew (ae -ae ),

’ '\'QJ/._Z,.'LP}
N4 = & DNag Tert (ae —ae %
22~ % ¥

#

and .

. VY -
U':;CQQ —a € ) ¢

Moreover the linear dispersion relation is given by.

- 2
(kW) = w-K+wk =0

The zero order electric field required to bkalance the

gradients is simply given by

EO: ——CP“&”GCL))

(4,17)

(4.18)

where P: ( ?, Nlo T, + 302 NZO TZ)/Teff' g = ( *ul NlO T, +

1)2 N 54 T2)/’I‘eff and )\ turns out to be of order & ,

To order ezz, the set of equations (4.6) to (4.10) give the

following equation for E2:



5o,
Cw™kR*)Ey '"CO’Q&E“ +Zf’4 &w ’%ilz@

2y ™
2 5 o o
+AW § P(4+K7)-2PY 45 ¢ [+ia x
2k "*;%f yY
3 2 20
(-2 +2Yy)e +c.C =0, (4.19)
o
where
Nig Nzo Y T
= + € £+
by (""—fi 722) L

-1
= ﬁN,O‘f‘ ?'Nﬂ.oc(f),N:oT2+ ZO XNl T*Nzoi)

The resonant secularity in the solution for E, can be

removed by putting
A,""\/jB; tha O, (4.20)

where Vg = (ZL73/1<3 is the group velocity of IAW end

= (0¥a?) 5 P and) -2yt §ope ¢ . e
last term on the left hand side of Eq.(4.20) arises due
to inhomogeneities in the system., For single electron
species i,e,, for Tl = T2, the expression for h agrees with
that obtained by Mohan and Buti (1979). On replacing Ay

and B, by O a/@t1 and & a/<9x1 respectively, where



69

ty =¢t and X = & x, and substituting a = Ae'ht, Eq.

(4,20) can be written as,

BA.\/@,&\_ =0 .
R CED

Hence A is constant in a frame of reference moving with the
velocity Vé and so the wave amplitude 'a', as a whole damps

with a damping rate h, On using the relation (4,20), the

second order quantities are given by

. 4 o 20 iy
F,=z2 (SR~ >aze b c.C,
3 kgc‘ua The T
N :_,%5}2263&32+!>~w435 - Z'W
g & k20
_ "L}/
(EZ’N’ ;5/_5_;_5_\37»—.....&}’7(1)43 +(’C+g
2. w = V>

N N.o e (2R oty v 3K e Ter /T) 22
T ékq&)

(a pT a+zb 152>€ §+CC+5N

T, e

‘&’l



and (5 depend on a and a only 6 5 N
1 2

are determlned from the conditions for removal of secula-
rltles arlslng from constants of integration, from the

third order solutions. They are found to be

> (4,21)
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-‘)\\_7)/2~ ""‘

R S A I Nt RS

P

Q,}
|

v

F -—F-»E/ 2 / | | |
+gj,€3 |CI{O*§—-<F-;Q>N+JQWN>)<(4.22)
— o0

Feg ke = 2
e E’L e ’a]dgj'?'(%\/ﬁ—kl)({-\@z) o

S =N, (4.23)
!
and
8 — Nzo TQ% SN - T‘ 9 (4,24)
PJQ. T
with § = € (X-—Vgt) and {; as an arbitrary absolute

constant which is “hosen to be zero to make SN finite,
The other quantities appearing in Egs, (4.21) and (4,22)

are defined as follows:

Qb - FCRr%2) ('f +1) - I~<+’“)%fj(k

)% qu
1) - (R T+ L SR 201+
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/‘(

} - : 2
= S (RE2)(2KHER T TRTE) + 4P

(Kr2)+ £ § kY 206 ] - 48 (32 2) $1y
T
eff

%2y (kb kA 2) -+ K)Z 2 208 (K
TR 16K TR +e) - Qifeff %zj( =rY
et

LR y2) — (\+¥27'>§(R +2) ?

2

G 3
G = 28 (k2] 2P (K+2) 529 -O+K) [+
| Tee | |

2 E]
,§;§§ ti k -+-2.C\4’E?) jz 5

Yo 0(}Q+2)(k+6)+2§§ (2R +7i€+er

N
+6)- {jfmﬂhﬂiH(R+4)dﬂ+P)E+
eff
2
QH %l‘i’+2(l+?") {+4Pj(k+2)— )Cife” ( R+

\Qf( ety

2)%24- (+K) Z¢
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d= 2 k(R4 2R%2) [ 0 kR*2) —r%’i {(sz)g
Rt

+43!CE1 DE+ - eﬁ(lﬂl'kz)Bﬂ- 2ES (kv 2)(1- 29) 4
Texs

?jf;&(\:z-rl)fb%# SR )—ﬂjf j

and pff

-4‘ | é 4 2
:izk%ﬂé&a%ﬁs{fLj[f(2?+6?+5k'4

SE ST 2E v LS (R ]
Tets

(+€7) /2%2 R(K'+3K+3)¥ DLJ

- 9
While determining & and SV, it is assumed that |a| “

is bounded and all its derivatives tend to zero as
T = O

Removal of resonant secularities from the third

order solutions then yields the rel ation,

z(A +\/q752)+zh a.+ h, 24 +P<3Cl —+
: (JE _ °E?
alaialg,e (e afus

_-ooo

a3
Q_-e gg e aldg 1-Ra -0

(4.25) |
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where .

h// = (Qé,/ékgjfﬂaﬁ +2‘('2J.'\*><$/77 + 24, Nao /I To )Eﬁ
:dq/‘j /Téﬂ‘—}7 |

h, = Q—-'( w¥/4K2) 5 O R 10) + Seps (2R-1D/R™
A.('F:/ /"Teﬁ.) (4R +e) kz )
P- ~ swg/ 2T, |

@w-;"‘“ Z;zzq Bk—rg)f [Bk—réb ~(q-2y) K"
- f%%—rég CM Y )Kg (30~’rl’“u; C?j~ 34 )P'
—(q+Qg~ 23 34°) '.f |
K= (w5/»er<’*) | § (”I2+?>f’~)’?’§(eg§( FSERSE S'>’)/*’
wﬂ@%ﬁ/ﬁg><aﬂ@szywywwf/ww)er
eyt e ]

[ o .
g2 (Nio/ T %5 Nao /T,3) Terg”
- D
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and
4 2 = 2 "
Ry =5 AR (R'+3K+2)d § [(Lf D +(F /% ) D,
+ £ Pz + (Pl /Tope ) Dy + Fegg D5 + (.rf/‘@f)D§
3 -
PO+ HTak (R 3k32) §d ]
4,
with
2 -_ .

D= (R%2)5K'S (lo-qy)K+(34-59) K +(5¢-
Cf}f>'k4—r(4o~%5) R+ (12-44) § ,

2 14 2 o
D, = (R~+ l)%gz)q +(22-84)k 4 (32-50y)R-(22+
IS4y+ay YRE( 26+283y+284 ) R+ (17- 207y
~ 60y YR (dom 1 eay- ey )R (12-28 F BYT)
| 1S AN )
Dz= "% k35K 3—~33')R' — (76*qu)k'°_

L),
(134-544)R°-(335-804)K"- (192- SEYIR -
(16-169)K —(8I-24) } i
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Dy= KCK%2) G 4k'% (30~ 690k G (a6 - 35y K%+
(168~98_&f)l<6+(_|68«1523)}{% (q2~;503)>qz+
(20-434) 3

Dg = 5 %k‘%r CCf*j')R'%i—(?;l*—éj')’?\i(7O-—léj’)}r\;g

*C’é’"z’*’g)&%(é+8~\5:{')kq+(q-‘éj) } ,
De = R*(K*2) § (4-29)R% (lo- 5y K+
(24-12y + 244 4y> ) A4 (1e- 10+ 505

124K+ (4-1og+zeg=12y®) §

and

H= 20Ck%2) § kS okt arr2-3 § + ZECR 2K
‘ ess 4

+(&- 53)&2%— (12~qj) ;\f*ﬂ*_ (iC’*";j)?‘{%r(?v' 7:1{

2Y7) 5+ Sogp JRRETUIZT 2R (25-64) R T4

(25-737}22~}= (6«1)5 .

with the help of Egs, (1.14) and (1,18), Eqg.(4.42) can be
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written as

3 yiha+ h,dXx P2
oT 85 ajr‘-

O\_[Qf@ +® eféf e s al'dg'-

/

Fz 5 g

— oD 2 (4,26)

where ( = E t and h) = (L/e)h + hl. This iz the MNSE
governing the IAW, The additional nonlinear nonlocal term
arises due to the constant terms in the second order
solutions and is governed by the effective inhomogeneity
scalelengths of the system. In a single electron temper-
ature plasma, i.e. when T, = Ty, Ed. (4.26) reduceSto the
MNSE obtained by Mohan and Buti (1979). The last term in
Ed.(4,26) can be removed by a simple transformst ion

a ~ aexp (-iR7T).
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4,3 Linear Stability

To study the linear stability, let us consider a

small amplitude plane wave solution for Eqg.(4,26), namely,

a= Q, exp [é(kg-1T) I,
where a is a constant amplitude and K and £L are the wave-
number and frequericy of the iAW envelope'réspectively. So

the linear disparsion relation becomes

2 Ca e
Q- px ,(Q,%+§€>!q; -2 (Ch+Khy ). (a.27)

Thus one'immediately gets the growth rate as

V= - (2)7?3> (?;* Sa ’i% 3 ) (4.28)

where

S, tK(4+R%) -2€ by /Teﬁ + € Sere
) | ] 2 B 2
S5 2 (BN o /T +PaMNao /To Megr— € Y/ Tere € 2

- 2 s
Sz T (ki) + €<P3/Teg€) //J—%g" + € ?eff :2% ?

p .
and XK' = & K ( k) is theenvelope wave number as seen
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in the (x.t) coordinate frame.

In Bq.(4.28) the last two terms are smaller than
the first term, Hence temperature gradients and envelope
wavenumber K~ donot affect the growth rate very much,
Since growth rate is negative for propagation antiparailel
to density gradientsg, in the small amplitude limit TIAW

damps as it propagates towards increasing density.

Nonlinear Analvysis

The linear theory helps us to study only the initial
stages of the evolution of the waves. But to study the long
time behaviour of the finite amplitude waves, Eq, (4.,26) has
to be solved., In Eq, (4,26) also, terms containing density
gradients are much larger than the terms containing temper-
ature gradients. So the behaviour of finite amplitude IAW,
like the small amplitude case, is mostly affected by density
gradients, Unlike the perturbed NSE, whose analytical.
solutions-can be obtained by inverse scattering method,
(Karpman, 1979), our Eq, (4.26) cannot be solved analyti-
cally. Hence we have solved it mimerically. For this we
follow the Dufort-Frankel scheme (Richtmyer and Morton,

1967; Smith, 1969) with asymptotic boundary condi tions for
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the solutions. The accuracy of the results is checked by

varying the time and space step sizes.

We start with an initial waveform which corresponds
to the stationary soliton solution of the N3E in a homogene-
ous plasma given by a = a_ Sech (la/2 Pﬂégg). To demonst-
rate the effect of the second electron component explicitly,
we have first determined the time evolution of this envelope
soliton in an one electron component plasma for constant
initial amplitude a, but for different values of wave
number k, From figure 1, we f£ind that the threshold time
for splitting ('Cﬁ) for envelope solitons with k = 1.6
and 1,8 are 0,5 and 0,55 respectively. We have chosen the
sequence of time T in all the figures in such a mammer
that the onset of splitting for different envelope solitons
can be shown clearly. However, for plasmas with two
electron components, with temperature ratio D(= Tl/Tz) = 5
and density ratio /&( (= Nl/NZ) = 3, fig.2 shows that the
threshold time for splitting of envelope solitons increases
from 0,65 to 0.8 as k increases from 1,6 to 2,0. Maximum
amplitude of the.2nvédlope soliton just before it starts
splitting (AO), corresponding width (W) and fc_* for Aiff-
erent values of k in an one electron species as well as

in a two electron species plasma are shown in table 1,
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L.

~From this table, it is apparent that 1f i in a two electron
species plasma is larger compared to that in an one electron
species plasma for a given wavenunber k. However, in both the
casés, 7?* increases with an increase in k. This can be explained
as follows: When the wavenumber increases, energy of the
envelope soliton increases, The effect of a given inhomogeneity
on the envelope soliton of lower energy is stronger than that

of higher energy. Hence splitting occurs earlier for solitons
with lower wavenumbers. In otherwords, as k increases, magnitude
of the nonlinear nonlocal term decreases, Since this term is
responsible for splitting, when its magnitude decreases, it

becomes less effective and splitting occurs after a longer

duration.

We have also determined the effect of a given inhomo-

geneity on the envelope solitons with different a, - Fig.3 shows

that as 2 increases from 1,6 to 2.0, ‘{? decreases from
0.6 to 0.55 in an one electron component plasma, Similarly,
fig.4 shows that in a two electron component plasma with

D =5 and /LL: 3, ’Z% decreases from 0.7 to 0.65 as a,
increases from 1.6 to 2.0. In table 2, we have compared
the values of A_, W and ’Cﬁ for different values

of a, in an one electron species and a two electron species

plasma for a given k. As in the previous case,
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here also splitting of an envelo?e soliton is delayed when
the secohd electron species is introduced, From table 2,
we find that 1f* in both types of plasmas decreases as a,
increases, The reason for this is: the nonlinear nonlocal
term depends on |[a| 2 which in turn depends on {aov 2,
So as‘aO increases, magnitude of the nonlinear nénlocal

' term increases and hence the threshold time for splitting

decreases,

From tablesl and 2 we £ind that the width and the
maximum amplitude of envelope solit;ns in a two electron
species plasma are sméller than the corresponding values in
an one eleétron specigs plasma., This shows that as the
second éleétrbn‘component is introduced, the width and the
maximum amplitude of the enveiop@ solitons decrease., The
reason for this decrease in the width and the maximum
amplitude of the énvélope solitons is ‘as foilows: As the
second electron component is introduced, effective
temperature;of.the'system decreases and consequently the
strength;of the dispersion also decreases, To balance
this smaller dispersibn, strength of noﬁlinearity and hence

the amplitude must decrease (Goswami and Buti, 1976).

In laboratory plasma, D can be varied from less

than 2 to about 5 while A4 can be varied from about 1/6
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to 3 (Jones et al.,, 1975). Time evolution of the envelope
solitons with different D are plotted in fig.5. Here we
find that as D increases, width of the envelope soliton
decreases and it takes a longer time for the envelope
soliton to split into two solitary waves. Fig.6 also

shows similar behaviour i.e. as /{ increases width of

*

the envelope soliton decreases and T increases. This
increase in the magnitude of "(* can be GXplainéd by the
fact that when width of the envelope soliton decreases,
effective inhomogeneity becomes weaker. Hence Spliﬁting

occurs comparatively at a later time. Figs.7 and 8 show
the variation of 'Z" with D andf/u‘reSpectively, keeping:

the other fixed., These two figures show that ¢ increases

with increase of D or ﬂL .

For investigating the time evolution of the
envelope hole, which is the stationary solution of the NSE
when PQ < 0, we consider the initial waveform,a = a x

(o}
~ 2 . 2 : 1//2 ~ ? 1//2 .
Z} - a Sech (‘}Q/zp / ag af? )f . The density
and temperature ratio of both the electron components
are varied between 1/6 to 3 and 2 to 5 respectively, as
in the case of envelope solitons. But contrary to the

case of envelope solitons, envelope holes do not split

into two envelope holes for quite a long time as they

o
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propagate towards increasing density. However, for D =1,
which corresponds to one electron species plasma, the
envelope hole splits into two envelope holes as found
earlier (Mohan and Buti, 1979). Time evolution of envelope
holes is plotted in f£ig.9 which shows that 7:* for a
single electron species plasma is 0,25, whereas, for a two
electron species plaSma with /= 1 and D = 5, splitting
does not occur till T = 1.2, Since real time t = é?zii
and in our calculation =Z€= 0.1, we f£ind that even though
an envelope hole splits into two envelope holes in an one
electron component plasma at t = 25(1)éj, when the second
electron species is introduced, the envelope hole does not

-

split till t = 120 CQ%} . Nonoccurrence‘of splitting of
envelope holes in a two electron component plasma within
practical length of time can be explained as follows: when
the second electron species is introduced, magnitude of

the nonlinear nonlocal term is significantly reduced and

is not strong enough to cause splitting within;a reasonable
length of time, As a typical example, magnitude of non-
linear nonlocal term for k = 1.0, a, = 1.5 andeJz 0.8 for

an one electron component plasma is 2,85, whereas the

same is reduced to 1,25 in a two electron component plasma
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with D = 5 and/LL,z 1. Hence the second eleactron component
is responsible for ths quonching of splitting of the envelop=a

holes for the range of parameters we have chosen,

4.5 Conclusions

from the above studies, it can be concluded that the
width and maximun amplitude of the envelope soliton become
smaller when it propagates in a two electron species plasma,
Besides, it takes longer time for the envelope soliton to
split intortwo solitary waves in a two electron component
plasma. The effect of the second electron species on the
envelope holes is found to be much more drastic, so much so
that it can even annul the splitting of the envelope holes

propagating towards increasing densitye.



Table 1

* .
Aj, W and T for various values of k for aj = 2.0

One Electron Component Two Electron Component

Plasma ' Plasma
N 3 .w (<
AO W T AO
1.6 2,09 0.7 0.50 1,005 1.20 0.65
1.8 1,018 0,725 0.55 0.697 0.69 0,65

2.0 0,561 0.9 0,775 0.605 .0.,7 0.80




Table 2

*
Aj. W and T for various values of a, fork =1,8

One Electron Component Two Electron Component

a Plasma Pl asma

° W * W T
Ao T Ao

1.6 0.663 0.875 0.6 0,4657 0,76 0e7

1.8 0.832 0.75 0,575 0.577 0.71 0,675
2,0 1,018 o725 0.55 0.697 0,689 0.65
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CHAPTER 5

ELECTRON ACOUSTIC AND ION-TON-HYBRID RESONANCE WAVES

IN MULTI—ION—SPECIES»MAGNETOPLASMAS

5.1 Introdqction

The presence of more than one species of ions
iS not uncommon in-space as well as in laboratory plasmas;
The polar orbitting satellite ISISAZ had measured ion
composition in the plasmasphere (Hoffman eﬁ al,, 1974).
Even thoﬁgh_hydrogen is the majép constitﬁent, Small

fractions of 07, #E, o™ and N are also present, oOn the
basis of the results from the GECS 1 and 2, Balsiger et al,

(1980) had concluded that the ring current has ions like
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H+, HE, Hﬁ?,0+ and O++, Johnson et al, (1977) had also

reported the presence of Hz,and o*

current, besides HY, The direct identification of ions

ions in.the ring

in the magnetotail had been accomplished with the mass
spectfometer aboard the ISEE 1 satellite which confirms
the presence of O+*Streams (Hardy et al,, 1977; Frank et
al., 1977); ISEE 1,2 measurements also indicate the
presence of Hg; Hg+ ions in the magnetotail (Williams et.
al,, 1979; Peterson et al,, 1981),

In £he fusion plasma devices, ;mpurityﬁions are
frequentLy present, Besides deuterong, which Constitute
the bulk of ions‘in the 2xIIB mirror machiﬁe,}Z;S% of
protons are also present (Bardet et al., 1975). 4 few
07-%-’ oot o4+

percent of impurity ions like H+, , C etc, are

Present in the deuteron plasma in ATC experiment (Takahashi
] o + o 3+
et al,, 1977). Small quantities of T, H', He can be

present even in the PLT tokamak (Hosea. et al.,, 1979).

Several authors have shown that the preSence of
more than one species of ions cén have a profOund effect
on the dispersion prqperties of the,piasma. fn case of
two species of ions, Bgéhsbaum (196OX.had Shown that a
new mode, khown as the Idh»Ion—Hybrid Resonance (IIHR)

mode, can €xist 1n a cold magnetoplasma; The ITHAR is alow

frequency mode, arising due to the resonance between the
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motion of two species of magnetised ions, This mode
Plays an important role in the rf heating of the fusion
Plasmas (Swanson, 1976; Janzen, 1980), The ions and the
electrons in these systems have finite temperature, So
to have a better understanding of rf heating of rlasmas,
it is necessary to investigate the characteristics of the

ITHR wave in a warm plasma,

In the previous chapters we have confined our
Studies to plasmas where electrons are more energetic than
the ions, Bﬁt this may not necessarily be true everywhere,
There are many situations where ioﬁs are hotter than the
electrons, For example, ions in the terrestrial ring
current around 7R§ (Russel and Thorne,. 1970), at distances
of 23-40 Rg'in the magnetotail (Johnson et al,, 1974;
Frank et ai., 1976), etc, are of kev range, whereas, the
electrons have energies of the order of f£=2w ev, The ions
in the fusion devices like the 2XIIB mirror machine, PLT
tokamak are also hotter than the electrons (Coensgen

et al.,, 1976; Eubrnk et al.,, 1979).

When the ions are hotter than the el ectrons, the
Plasma can support electron acoustic (EA) waves which
propagate almcst perpendicular to the magnetic field, with
frequencies lying between the ion and electron gyrofrequencies

(Arefev, 1970). These waves have the phase velocity,
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@ /k = (Ti Cos%f? /me>1/2. In a weakly nonlinear system,
with single ion species, the EZ waves are governed by the
KdV equation (Pokroev and Stepanov, 1973; Mohan and Buti,
1980), wherceas, the dynamics of these waves can be repre-
sented in terms of an energy integral of a classical particle
if complete ion and electron nonlinearities are taken into
account (Buti, et al,, 1980). Furthermore, Buti (1980a)
had investigated the exact nonlinear EA waves in a multi-
ion-component plasma and had shown that the presence of
the second ion species gives rise to supersonic holes
(density depressions) for Sufficiently’large pertu rbations.
In all these studies, ions were assumed to be unmagnetised,
However, for low frequency wave propagation (CL)Aﬂfk,,fLC
being the ion cyclotron freguency), ions must be considered

as magnetised,

The EA waves arise due to balance between ion
thermal pressure and the electron inertia, Hence their
properties strongly depend on the ion tempefature. If
more than one species of ions with different temperatures
are present, the system is governed by the effective

temperature, which is a function of the temperatuvre and
relative concentration of the indiwidual ion components (Buti,

198Caj), So the dispersion characteristics of the EA waves
will be modified when the temperature and relative

concentration of the two species of ions are varied.
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Since magnetised plasmas with multi-ion-species,
with ion temperature larger than the electron temperature,
can sustain both EA and IIHR waves, some regions in the
earth's magnetosphere (ring current, magnetotail, etg,)
and the 2XIIR mirror machine can support EA and IIHR waves,
In this chapter, we study the propagation characteristics
of the ITHR and EA waves in a warm plasma with two species

of ions which are consjdered to be magnetised,

Dispersion Relation

Let us consider a plasma containing two Speciés

of icns which are magnetiSed and are more energetic than
= o S 1 : =S -
the electrons i.e, T1’2:>~ T, £ 0 (T1,2,e being the
temperatures of the two species of ions and el ectrons
respectively). The magnetic field B is along the
~S

z~direction and we consider wave propagation almost per.-
pendicular to the magnetic field so that 0k, / k <

1/2 L y . . i
(me/mi) . The basic equations governing such a system
are the continuity equation and momentum cequation for the
electrons and both species of ions and the poisson's

cquation, namely,
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In equations (5.1) to (5.5), m,n and v, are the mass,

density and velocity; the subscripts e and QK; =
refer to the electrons and two species of ions.
have charges zie and Z,e. We have neglected the

of the finite larmour radius and used the scalar

(5.1)
- (5.2)
(5.3)
B+
(5.4)
(5.5)
1,2
The ions
effect
pressure
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in writing Eq. (5,4); neglect of finite larmour radius
effect is justified later, We are interested in investi-
gating the nature of the EA and ITIHR waves., So we focus
our attention to the frequency regime k V. ¥( (J (K:k 3
(Vj = (Tj/mj) 1/2 is the thermal ve10C1ty of the j th. species,
where j = e,1 and 2) in which these two modes propagate,
Let us consider electrostatic perturbations of the form

(f) ~  exp %i (k% + k2 - CJt) JZ . Linearising Egs.

(5.,1) to (5.5), we obtain

_ edng [ \QCL)-k D -
R .
and
" = ZK(‘BC}PVL(O t lr\ cu — Q (5.7)
e C\\Z p \'Z\/: 2

! A
VYL<QJ

where n,e Do, are the electron and ion equilibrium densities

) - ,ﬂ fed Z
and Sfle ( = bBo/meC) and < éq:eBo/m,Q C) are the
electron and ion gyrofrequencies respectively. In obtaining

Egs, (5.6) and (5,7) we have neglected kgyi with respect

to W 2, Substituting Egs,(5.6) and (5,7) in Bq, (5.5), we

get the dispersion relation,

G
(o°- Peo Q- Rwic 2o )
' (5.8)
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where

P }J: (,O +k’ \/ +CJ6 ) ,

Q = 'J‘Z’)/?// ( 2’*}? )(/2 '%‘}24\//)
JiFJ+/N

. 2 5
T (COP.z‘f @6;2) (Qj// + k/‘z\/j// ) :] —+

k< j‘ 5
_ oy £ - ; | ~ sz 2
R=11 (kY )tk R
J —)?))--’/
EIET
TRk ) K (".,.Q?l%
o2 J
2 2 2 2 2
kj Vj )(«L).J/ Q)fo)/ -+ ,>11JA// LA.)D}J//) j ,
and .
- . 2 7 VAN 7 2 2
- L *2% & AQ"(Q‘%*’:‘ V’/)(_Q /;'H? V/r)
g T2 w\*;:z JZ‘./.)// Fj J J / /
2 J
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In the above equations CL)pj is the plasma freqguency of
the jth species and the summations and multiplication are
carried over all the species j, i.e., the electrons and the

two species of ions,

z
In the limit of loy frequency waves with Ck)ﬁ«j:%,flv
and neglecting terms of the order of me/mo< , Eq.(5.8)

reduces to
@@)L” Rew™+ S =0 D (5.9)

which has two roots namely,

/2 |
Q)z: [}2 iog?: 4R5S) ,7/2461 : (5.10)

. 2, - v .
If R7 is assumed to be much larger than 408 (tnlsfaswumptlon
holds good in the magnetospheric plasmas and also the 2XIIB
mirror machine), the two roots of Eq. (5.9) can be simpli-

fied to,
2 ,
“r = R/a (5.11)
and
:2 ] ’
g ~ S/K . (5.12)

In the limit of cold plasmas and k, =0, Bg, (5,11) reduces

to
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2 ﬁflz 57‘ <‘4Z L Cil7'+ “ VW;“‘Sj—l 7

o = o Ve —~ . (5.13)
) — Y —_— 'Z g P e
< \ \(|\’) AN 2 | ’f '2 LS L 2
C LRS!

This is the ITHR (Buchsbaum, 1960) and hence the mode given
by Eq.(5,11) can be identified with the IIZR wave. The
IIHR wave given by Eq,(5.11) is modified due to the finite

temperature of the plasma and finite kz.

When the ions are unmagnetised and electrons are

]
e

2 _ -— /o
taken to be cold, Eq.(5.12) slmply gives &2 = R, fef;/fne

}
i

/Vf') “T ¥ 7C)V:v 7; > is the

Vi T, 1o
o b a2, 7,

-
where / (.f-?sr —
effective ion temperature, This is similar to the disper~ -
sion relation of the usual EA wave in a single ion species
plasma, with the ion temperature Ti replaced by the effect-
ive ion temperature Teff" Hence from Eqg, (5.12) we find
that the characteristic frequency of the EA wave is
modified by the presence of the second ion species and also

due to the fact that the ions are magnetised,

Discussion

The wnwlyLlc expressions for the EA and ITIHR waves
given by Egs, (5.11) and (5.12) are not exact solutions of

the dispersion relation (5,9). To obtain exact solutions
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of Eq.(5.9) for some physical systems like the magneto-
Sphere and the 2XIIB mirror machine, we have solved it

numerically,

ISISZ2 satellite data show that at an altitude of
1400 km in the plasmasphere, ut is the dominant ion species
with 07 and Hé constituting 2-3% of the ion population
(Hoffman, 1974), These ions are in the 1-12 keV energy

range, whereas, the electrons have 100 eV energy, In the

ring current around 7 RE' O+ and Hz form less than 10%
and H§+ forms less than 3% of the total ion pPopul ation

(Johnson, 1979). H' is the bulk ion species in this region

also. These ions have energies of the order of 40 keVv and

the electrons have energies around 1-4 keV only.

In the 2XIIB mirror machine, impurity ions like
carbon, proton etc, are present in the deuteron plasma,
These ions have energies around 14 keV, while the electron

energy is ~ 100 eV (Coensgen et al,, 1976).

We have studied the nature of the BEA and IIHR waves
and investigated the effect of the variation of concentrate
ion, temperature and mass of the second ion Species on
these modes in the magnetoépheric Plasmas and the 2XIIB
mirror machine (Dash, Sharma and Buti, 1983). For comput-
ations we have taken the major ion species to be protons

f-

and the minority species could be 32 or 0" in the
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Magnetosphere, whereas, in the 2XIIB mirror machine
deuteron is the major ion species with carben or oxXygen

ions forming the other component,

We have computed the contribution due to the finite
larmour radius for the magnetospheric plasmas and the 2XTIIB
mirror machine and found that it forms only 1-3% of the
Scalar pressure, So the error introduced in our calculat.-
ions by neglecting the effect of finite larmour radius is

not significant,

We have plotted the ¢ j -k diagram for different
values of the ratios of the temperature and mass of the two
species of ions, () and k are normalised with respect to

( Qe QN2 g €

f

=1

(= L2,/ 1963 ) respectively,

The following observations are made from these diagrams,

Figs.l and 2 show the G -k diagram for the EA and
ITHR waves in the magnetospheric plasmas (B = 0,31 gauss)
for different 72/ (= Tl/TZ) and D (= mz/ml); the subscripts
1 and 2 refer to the majority and minority ion sSpecies
respectively, From Fig,1l, we can see that the EA and TITHR
wave frequencies increasc when ) decreases from 4 to.O.4,
i.e., temperature of the minority ion species (O+) increases,

This happens because when oxygen ions become hotter,
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effective temperature of the ions increase, consequently
their contribution to the characteristic frequencies in-
creases, which results in the increase in EA and IIrHR
'frequencies, Fig,?2 shows.that as D increases from 4 to 16,
the BA and ITIHR wave frequencies decrease, When D increases
i.e. the minority ion species becomes heavier, corresponding
thermal velocity and cyclotron frequency decrease and so the
EA and ITHR wave frequencies also decrease, We have also
computed the EA and IIHR wave frequencies for different
concentrations of the minority ion species, Our calculations
indicate that the EA frequency decreases and IIHR frequency
increases when the concentration of the oxygen ion increases,
Since the second ion species forms a very small percentage
(,~ 2 -~ 5%4) of the total ion population, change in the
frequencies corresponding to the variation in their concent—
ration is very small, For this reason we have not plotted
the W=k diagram for this case, Figs., 3 and 4 show the dJ-k
diagram for the EA and II=ZR waves in the 2XIIB mirror
machine (B = 5600 gauss). From Fig.3, it can be seen that
the EA and IIHR frequencies increase as 2/ decreases from
4 to 1, Fig.4 shows that as D increases from 1 to 8, the

BA and IIHR wave frequencies decrease, Calculations of the
EAa and ITIHR wave frequencies for different compositions of
‘the two ion species in the 2XIIB mirror machine shows that

the former decreases while the later increases when the
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concentration of the impurity ions increases, The change
in the characteristic frequencies are very small for the
variation in the concentration of the impurity ion species

and so the corresponding G. -k diagram is not shown.:

5,4 Summary

The dispersion relaﬁion for the EA and ITIHR waves in
a two-ion-species magnetoplasma in the low frequency regime
( Cb)ﬁu-f%{) is derived, This equation is solved numeric-
ally to obtain the characteristic frequencies of the EA and
ITHR waves for different values of the ratios of the temper-
ature, mass and density of the two ion species, In the
magnetosphere and the 2XIIB mirror machine, it has been
found that the frequencies of the BA and ITIHR waves increase
 when temperature of the minority ion species increases, but
decrecase when the minority ion species becomes heavier,
However, incrcase in the minority ion density decreases the

Ex4 frequency but increases the ITHR frequency,
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LECTRON ACQUSTIC AND TON-ION~-HYBRID RESONANCE

— DRIFT INSTABILITY IN INHOMOGZENZ 50US MULTT = TON

SPECIES MAGNETOPLASMAS

6.1 Introduction

One of the most interesting characteristics of plaémas
is their ability to sustain a large variety of waves, The
presence of an external magnetic field further increases the
number of waves which can be supported by the plasma. Some
of these waves can propagate at nearly edqual frequencies.

In general, these waves can have different wavenunbers, but



101

for some critical set of plasma parameters, the wavenumbers
can coalesce, Consicdering the case of a wave propagating
through an inhomogeneous plasma and approaching a region
where local plasma parameters correspond to such a coales-
cence, the incident wave may be reflected or refracted in

the same mode or absorbed or converted into the complementary
mode, or even may undergo some combination of all these,

The theory of mode conversion attempts to find out as to

what happens to the incident wave when it passes through the

coalescence region.

While propagating across a wzakly inhomogeneous plasma,
a fast electromagnetic plasma wave can be mode converted into
a slow ion plasma mode at the lowar hybrid critical layer
and is reflected back (Stix, 1965). Travelling outwards,
this new mode slows down further and its velocity and wave-
lenth become comparable to the ion thermal velocity and the
electron larmour radius. If the wave frequency is close to
the harmonics of the ion cyclotron frequency, this slow
wave can undergo ion cyclotron damping and the ions can get
heated. In this way the process of mode conversion can

lead to particle heating in plasma.
\

Since the earlier experiments of TFR (TFR Group, 1977),

ATC (Takahashi et.al. 1977) etc. it has been realised that
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the presence of & small concentration of minority ions can

('1_)

have a profound effect on the dispersion properties of the
plasma. Due to the presence of two or more distinct ion
species, & new ressonance, theat i8, the ion—ion—hybrid—
resonance (IIHR) is excited. Within this ITIHR layer
mode. conversion between different waves may take place.

~

Theoretical analvsis of mode conversion o

h

the launched fast
Alfven wave into the ion-Bernsteiw wave near this ITHR layer
had been carried out by several authors (Swanson, 1976;
Jacquinot et al, 1977; Perkins, 1977; Stix and Swanson,1982).
When magnetised plasmas have gradients in density or
temperature in a direction perpendicular to the magnetic field
and ths direction of wave propagation, drift waves are

excited (Kadomtsev, 1965; Krall and Trivelpiece, 1973). The

H fed

phase velocity of these waves, across the magnetic field,

' ol

f tho order of the drift velocity of the pa

s
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drift waves can coupls with the lower hybrid and the electron
acoustic (BA) modes resulting in the corresponding drift

instabilities (Mohan and ¥u, 1983; Sharma ot al, 1983).

Mode conversion between two modes with frecuencies
aﬁ andédz occurs when for a given value of wavenumber k,
becomes egual to QJQ. In a homogeneonus mediun, this

condition can not bz satisfioed unless thae two waves have
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equal frequencies initially. Howevsr, if the medium has

inhomoccneities along the diraction of propagation, say the

y-axis, k is a function of v. In that cas2, there may exist
some k = k(y_ ) for which ¢J, and &) are ecual and mode con-
version can occur between them, For this reason, mode

conversion is usually studied in inhomogsneous plasmas whare

gradients are along the diraction of propagation (Stix,

Ui

1965; Swanson, 1976: Perkins, 1977; Colestock and Kashuba,

1982), However, if the gradients are perpendicular to the
magnetic field and the direction of wave propagation,
k #£ k(yé), But the drifts, which arise due to the density
gradiznts, are along the y-dirzsction and can couple with the
waves propagating along that direction. This can modify the
frequencies so that le =<g)2 may occur at some S :(jw Leading
to mode conversion between them, Hence the gradients in

the parpendicular direction can act as effactive inhomogenaity

.

along the propagation direction so far as the process of mode
conversion is concerned. Keeping this in mind, in this
chapter, we investigate the possibility of moda conversion
between the BEA and IIHR waves when the density gradients are
perpendicular to the magnetic field and the direction of

wave propagation., We also study the drift instability of the

BEA and IIHR waves,
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We consider a two-ion-species magnetoplasma where the

N

sl ectrons, Numerical analysis of the

ions are hotter than the

@©

dispersion relation shows that the coupling between the

)_:.
‘":5

to insta-

O.

ift wave and the #A and ITHR waves can give rise

pilities when the inhomogeneity scalelenth L (= n_ (dhe/dx)_l,
o)
where n is the eguilibriwn electron density) is smaller
o)
than a certain threshold wvalue., It is noted that the region

of instability, for both the modes, increases with a
decrease in the inhomogeneity scalelenth., We have also found

that for weakly inhomogeneous plasmas, drift waves are not
atrong enough to modify the frequencies and in the framework
of fluid theory, mode conversion does not occur between the
EA and ITHR waves in the terrestrial magnetosphere and the

7%ITB Mirror machine (Dash et al., 1983).

6.2 Dispersion Relation

Let us consider a two-ion-species inhomogeneous magneto-
plasma where the ions arg more encergetic than the electrons,
e assume a slab model of the plasma with the constant

~
magnetic field B along the Z-direction (EJ: B Z) and
the density gradisnts along the X- direction. The waves are

assumed to propagate almost perpendicular to the magneatic

field so that O(}\ /k <<(m /m ) /“. The electrons and ions
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ara govarnad by the continuity and momentum eduations given by

VY V. (H L > = (6.1)

ot 7

and

m. (2L Uy ) - zoen, (B
JU =1 L)) J(,\;"‘

ot

qux; T -
c o~ 3) > Jo~J (6.2)

In ecuations (6,1) and (6.2), z,, n,, T,, n. and 10, are
J J J J J

the charge, mass, temperature, density and valeocity of the

R

,th ‘ ;
J component, where j=e, 1 and 2 corressponds to the slact-
rons and the two species of ions. The spaca dcabndcn<e o
denszities are assumed to be of the form n, = D (1 +0§j30;
where the strength of inhomogzneitiecs arc defined as

q& = -n_. dBy /d x. In writing £q,(6.2), we have neglected

Jo
the effect of finite larmour radius in the pressure torm, as

was dong in chapter 5. The Poisson's cguation closas the

system of equations (4,1) and (6,2) and is given by

-VEP = 4ie T,
J
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where the summation is carried over all the spacies pirésent
in the system. Let us consider electrostatic perturbations
of the form
< X }
- ~ e - _ _— j-{: ) -
~exp §5(kytk,z-cot) .
¢ | N d Tt e (6.4)
The perturbations are such that the parallel phase veloci-
ties are much larger than the electron and ion thermal velo-

cities, i.e., W)Wk_

1/2 ,
z :5>>‘L4j; (Tj/mj) / . Due to the inho-

mogeneities in the system, the electrons and ions have a
diamagnetic drift Zjd = ~ C Tj 9(j/ ﬁj ¢ B, Linearising

equations (6.1) and (6.2) and climinating perturbed veloci-

ties, we obtain the perturbed densities

o

=]

2 —
\ - 2 L 2
— O g W - Rk, ZL
](“)63 . (_e C¢ Y’—}D ]'2 L - Ae < €
: B A y 2 b " s d (6.L )
: Yo o2 R 0 ~ B 2
and
2 2 22
A= Z12€ P, Reo-ALW-R,Q
4 —_— /“(:,7
1,21 _ - — - 5
YY\.} ZC()‘ Ct) - '&{ ,'27:?(,&_) — ..),"2_

(6.6)
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where
——— /)p \‘—\
Ag = R, Wex + R, Xg e (6.7)
.l -
Alo= RpGoe = RyXin Chia s (.8)
pl 2. 2 2.
) - 9
B = Cle +R Uk Wen ~H e W | (6.9)

and

T= ?’12 };;2--62 (= 4o
}DI,Z:'L 2" l”%;,{ 12 l,zﬁhlvct:,z 5 (6.10)

[0y

as the drift freguency of the th species
Substituting Bgs. (6.5) and (6.6) in
(6.3) and simplifying, we get the dispersion relation

@ 7 6 5 4 E

2.
LGQD'fQ7&)“ng::C>; (6.11

where
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When the plasma is homogeneous, 2q.(6,12) reduces to 3g.(5.22)

which has two roots corresionding to the BA and ITIHR modes,
Whenxinhomogeneities are prasent in the system, Ec, (6,12)
shows that theszse two modes get coupled. This means that the
drift waves, arising due to the inhomogeneities in the

system, coupla with the BA and IIHR modes, and modify their

frequencies,

6.3  EA and ITHR Drift Instebilities

In chapter 5, we snowed that both £A and IIHR modes
can exist in some regions of the terrestrial magnetosphere

and the 25IIB mirror machine, While studying the dispersion
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relation for the EA and ITHR modes, in chapter 5, we had
assumed the plasma to be homogeneous, But in reality, these
plasmas are not homogeneous., They are, as a matter of fact,

weakly inhomogeneous so that the inhomogeneity scalelenth L

-

is larger than the larmour radius S’l 5 Of the ions, where
4

B 1/2
fl,z = (T , ™ o)

geneous plasmas, the EA and IIHR waves are governed by Eq.

/ Z1 5 eB. In such weakly inhomo-
2

(6.12). Since it is not possible to solve Eq,(6,12) analy-
tically, we have computed its roots numerically for parame-
ters relevant to the magnetosphere and the 2XIIB mirror

machine,

We have plotted the w-k diagram for the EA and ITHR
waves for different values of L“:. The fréquency, wave=
number and the inhomogeneity swalelengtly are normalised
with respect to (J{Leﬁﬁl)l/z,‘&~? and 'fil respectively.
Fig.l shows the w-k diagram corresponding to the magneto-
spheric plasma (B = 0.31 gauss). In fig.1l(a), L =00,

i.e. the plasma is homogeneous and the two branches of EA
and ITHR modes arce found to be symmetric. When L decreases,
the two branches of each of the modes afe no longer symme-
tric, as shown in figs.l(b). As L decreases further and

becomes equal to a certain critical value, say Lcw(z 1.8557),
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fig.1(c) shows that the two branches of the EA mode couple to
each other giving rise to complex frequencies, which resultdg
in the drift instability., The growth rate for the EA=drift
instability (¥;) is found to be 0.8 x 1073 (L2 £11)1/2

for kX = 0.8 fIl. It is also noted that, for EA-drift insta-
bility, Y is of the same order as that of the real part of
the frequency (CpﬁE). The two branches of the ITHR wave ars
also modified by the inhomogeneities in the system, but

they are still independent of each other, Further decreasec
in L maintains the EA-drift instability and for L:LCI(zl.ZSfl),
two branches of the ITHR mode couple with each other giving
rise to the ITHR-drift instebility for wavenumbers lying
between 0.6 ,g;l and 0.8 f;l; growth rate 7& is found to
be 1.7 x 10~3(—f)_e ,511)1/2 for Xk = 0.7 f;ls However,
unliké the case of BA-drift instability, growth rate of
ITHR-drift instability is much smaller compared to the

real part of its fregquency (CJRI), i.e. ”Ki L < !Cdk?I}‘
Fig.2 shows the W~k diagram corresponding to the 2XIIB
mirror machine for which typically B is 5600 gauss. Fig,2(a)
which corressponds to the homogeneous case shows that the

two branches of EA and ITHR modes are symmetric, whereas
fig.2(b) shows that their symmetry is broken when L decrea-

ses to 2‘?1. For L = 1.56'?1, EA mode becomas drift
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unstable with a growth rate WWE = 0.6 x 1073 ( §Ze_fll)l/2

1
(fig.2(c)). wWhen L decreases further, fig.

for k = 0.8 JQI
- 2(d) shows that for L = 1.4 fl’ ITHR mode becomes drift
unstable within the wavenumber range 0.4 9;1 and 0.6 f?;la
The growth rate of this instability ('Y;) is found to be

- 1 -1
1,6 x 10 3 ( Ile_fll) /2 for k = 0,5 fl . In this case also

Ving | gl wherens ¥ << o] |

6.4 Discussion and Conclusions

From figs.l and 2, we sse that the inhomogeneities in
the system modify the EA and ITHR modes and for the inhomo-
geneity scalelength L smaller than the critical scélelength
L 5, the ER wave becomes drift unstable, whereas, the
IIHR wave becomes drift unstable only when L is smaller than

L The magnitude of LCE and LCI are obtained numerically

cr*®
for plaémas in the magnetosphere and also the 2XIIB mirror
machine and it is found that LCI is smaller than LCE in
both the cases. The reason for this is the following: As

we can see in figs.1(a) and 2(a), the separation between the
two branches of IIHR mode is larger than the separation
between the two branches of the EA mode. So a larger

density gradient is required for the two branches of the

IIHR mode to couple with each other and become drift unstable
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than for the EA mode.

From figs.(1) and (2), i£ is noted that the region of
instability and also the growth rates for both the modes
increase with an increase in the strength of inhomogenéity.
As the strength of inhomogeneity increases, the drift
frequency increases and hence the coupling between the drift
mode and the EA and ITHR modes becomes more effective., This
is the reason for the increase in the region of EA and ITHR
drift instabilities and the growth rates when the inhomo-

geneities are stronger.

When we increase the strength of inhomogeneities
further (but still within the limit of our approximation,
i.e,. 117’51'2), we find that both EA and ITHR modes are drift
unstable, but contrary to our expectations, mode conversion
between the EA and IIHER does not occur, The absence of mode
conversion between these waves can be due to the fact that
we have considered weak inhomogeneities for which the drift
frequencies are not large enough to modify the EA and IIHR
frequencies to such an extent that mode conversion may be
possible. For thié, we are planning to look into the case
of stronger inhomogeneities appropriately including the

kinetic effects,
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