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ABSTRACT OF THE THESIS

The low pressure systems which form over north

‘Bay ~f Bengal during monsonn months are the main produc-

"ipg systems of the monsoon, These disturbances, to a
 ~v1afge extent, contrnl the rainfall over the central parts
of India. The importance of monsoon rainfall and hence

@t of monsoon disturbances in agriculture is well kn§WpJ
Astéientific problems in atmospheric physics, the |
_mechanisms of formation and growth of these disturbances
,-afe’at once fascinating and challenging. We propose to
" $tudy these as problems of stability of the mean ﬁonsoon
‘lew.

‘A number of investigations have been conducted

_ on the stapbility of monsonn zonal flow, Instability

studies of Mak (1975), Shukla (1977, 1978), Brode and Mak

1978), Keshavamurty et al, (1978), Keshavamurty et al.
’(19&05, Satyan et al, (1980), Goswami et al, (1980) and
’MiShra and Salvekar (1980) are a few to mention, For
mathematical simplicity in all these studies the basic
' state is idealized to be zonally uniform (independent of
lbngitﬁ@é), But the observed monsoon flow varies with
longitude. Tt is our main nbjective tn consider a more
' _ré?li5tinmOnSOon flow by including the zonal non-uniformity

in the stability analysis and tn examine whether it



fﬁégpiéihs any hitherto’unexplained phenomenon. This study
' fgivés‘the clue as to why the mnnsonn cyclogenesis is
  ibéé1ised sver eastern India.vWe consider a zonally non-
’ﬁﬁifdrmvflow by superposing a finite amplitude stationxry

Rossby wave on the monsoon zonal flow,

We have alsn conducted systematic studies on the

s ébility of monsoon zonal flow incorporating Ekman layer
ﬁri&tidn and latent heating., The method of analysis is-
'qulte different from earlier stability analyses. The’ﬁbnal
;w1nda and the meridional dependence of geopotential pert-
 f urbation are expressed by simple trigonometric series, By
'-ﬁhis approach to the stability analysis one does not have
 “ to depend on numerical techniques and the time taken on

~ the computer is also reduced.

Stability analyses of the monsoon zonal flow:

Since the monsonn zonal flow has appreciable
' hdrizdntal shear, a perturbation may grow by draw1ng on
‘the kinetic energy of the basic flow, We have examinedl
_ the role of barotropic instability in the growth of
'  ’anSOOn disturbances in Chapter 2 by conducting such

~ Analysis of July mean monsoon flow at 700 mb and 200 mb

along 80°E longitude, A channel from 59N to 30°N is



v;hqééﬁ‘W1th the béta-glan@ centred at the mlddle The
ngCrvci winds are accurat(ly represented by Fourier
 5@ries, The meridional dependence of the geopotential
ééétﬁrbétian is expressed by trigonometric scries satisfy.

ng'appropriate boundary conditions,

From the barotropic stability analysis it is found
that the zonal currents at 700 mb and 200 mb yield slowly
/roW1nq modes, The fastest growing mode at 700 mb has a
riéontal scale of 2300 km, a doubliny time of 8 days and

—1. The slow growth

aanveéstward phase speed of 2.5 m s
 rates are perhaps due to small horizontal wind shears, They
may grow much faster during strong monsoon epnchs, At both

"the levels the amplitudes of dlsturbances are maximum

;arOund 21°N latitude,

In addition to the horizontal shear the zonal wind
S‘dbsérved to have vertical shear, Thus the available
péﬁéntial eénergy of the basic flow can also be a source for
}éﬁurbances_ In Chapter 3 both the wind shears are
v_igélﬁded while doing the stability analysis. Cumulus
vheéting is also included in the model and the analysis is

_extended to five level model,

We start the combined barotropic-barnclinic
tébility Analysis with a two-level quasi-geostrophic model,

ing the linearised potential vorticity equations at 200 mb



  55éf70o mb and expreésiﬁg fhe nbserved winds and the meri-
Tf éignal denenlence of the-jempotential perturbation by
“;grigonometric series the problem is reduced to an eigen-
' §§iue problem; This analysis vyields no lower tropospheric

rowing mode with appreciable growth rate, However, pertur-

»3£4nns at 200 mb _grow slowly with doubling time of 9 days
rféﬁd with westward phase speed of 17 m s™t. These rapidly
propagatinq disturbances possibly correspond to easterly
. QWavés one observes in the upper tropogphere, When Ekman

layer friction is not included in the model, the growth

  rate is found to increase to 5 days at 200 mb.

We have also studied the effect of inclusion of
‘~ ‘¢umulus heating into the two-level model, It is not our
iintention to carry out detailed parameterisation of cumulus
teéting, It is our object to study the effect of inclusion
’éf’a,simple form of heating on the growth of these distur-
' bances. Following Charney and Eliassen (1964) we have
f épecified the convective heating only at the mid-
;iﬁrO?OSpheric level, So far as the upper tropospheric
:7ﬁiSturbances are concerned, their characteristics are hardly
' éffected by the cumulus heating. However, with the inclu-
éion of heating into the model, lower tropospheric growing
fﬁ?des appear, Stability analyses are done with two

ifferent values of heating co-efficient, The amplitude



bia

aiétributions show that the disturkances are mainly conf ined
ﬁo,the lower tropnsphere, The fastest growing disturbance
 5rscaLé length of 2400 km, doubling time of 2 days and

. 1

éaStward phase speed of 2,5 m s ~. When the frictional

dissipation is neglected the growth rates of disturbances

= o

_are increased,but there is no preferred scale-for—the

fastest growing disturbance, Thus combined barotropic-
barnclinic stability analysis of monsoon zonal flow incor-
_@oratinq a simple form of cumulus heating yields growing

modes which resemble monsonn disturbances,

The stability analysis is also extended to a five-
_eﬁél quasi-geostrophic model in order to have greater’
]fvertical resolution, In the absence of actual vertical
distribution of heating we have experimented with three
different types of distribution function. The total heating
in each case is the same. As tﬁe level of maximum heating
18 raised the fastest growing disturbance is found to occur
gﬁ‘higher levels, The fastest growing disturbance is
:éonfined to the lower troposphere when the heating is maximum
At 600 mb or at 500 mb, These disturbances have Aoubling
:ﬁime of 1.5 daysand they mnve eastward with phase speed of
;2»m s”l. Unlike in the two-level model the Aoubling time

' hardly changes with the horizontal scale of the

Tdisturbance.
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ability of a stationary Rossby wave embedded in the

onsoon zonal flow:

In the earlier stability analysés the basic flow

Was assumed to be zonally uniform, The stabllity of a flow
”péttern which varies with longitude can be carried out by
superimposing 4 finite amplitude Rossby wave on the zonal

;iaw (Lorenz, 1972)., The purpose of Chapter 4 is to

véétigate the stability of monsoon zonal flow (with
;éftical shear) with a finite amplitude stationary baro-
dlihic'Rossby wave embedded in it., A two-level quasi-
éégstrophic model is used with’a‘béﬁa—plane centred at 18°N
,:i;éﬁit'ude. Calculations show that the realistic winds in
/Eé monsonn atmosphere can sustain a finite amplitude
Lbardcliﬁic Stationary Rossby wave of wavelength about 30°
longitude and the amplitude of theiRossby wave i1s mainly
:'anined tn the lower troposphere with a very small value
';ﬁithe upper troposphere, Such a statilonary wave is observed
Qéf Bay of Bengal. These stationary waves can probably
iBé;induced-by nrographic influences, like the presence of
Western Ghats over perninsular India. Gadgil (1977) has
shown that the stationary wave over Bay of Bengal may be

@duced by the topography of peninsular India,

We studied stability of the above mentioned

‘StationarY[Rossby wave embedded in the monsoon zonal flow



éﬁéll:pérturbatioﬂé, Our analysis shows that the
atiohary Rossby wave is unstable., Tne growth rates of

£urbances increase with the meridional velocity (amplitude),

‘;iéach value of amplitude there is a minimum value of

'dOublinq time. When the amplitude is less than 9 m s™ ' no

disturbance qrows, The doubling time of about 3 days
JééﬁfeSponding to meridinnal velocity of 10 m g1 ié a
éééonable doubling time for monsoon disﬁurbances,* Energy
:culatlons show that the disturbance gets maximum energy
m'th& kinetic energy of the kLasdc wave. These growing
odes are Rossby modes and they are almost stationary. Thus
iisrfound from the analysis that the disturbances are
éﬁationary and grow with doubling time of 3 days., This may
éxplain as to why the monsoon cyclogenesis is localised over

éstern India, We have thus found a new mechanism for the

,formatlon of monsoon disturbances,

With a view to examine the role of barnclinicity
*Ehe Jgrowth of perturbations the Stability analysis is

conducted in Chapter 5 by making the vertical wind

$h¢dr zero. The qrowth rates of disturbances are found to

LnCrease in the absence of vertical wind Shear,

In Chapter 6 we have re-examined the Stability of

he”above mentioned stationary Rossby wave superposed on

he monsoon zonal flow by retaining the dlvergtnce terms in




'the bﬂSiC equations, HénC@; we use the two-level primitive

 equation model, In this system of equations the sound wave
" soiutions are filtered, but the inertia-gravity waves are
,jStilllthere, This analysis yields two distinct types of

'growing modes, The Rossby modes, with frequencies much

less than the corinlis parameter grow wWith almost the S ame
 aoubling time as in the case of the earlier quasi-
vqeostrophic model, These growing mndes are almost stationary
’Fand the fastest mode has doubling time of about 3 days. Thus
’héfcharacteristics of the Rossby mndes do not change very
n;much when we go to the primitive equation model. Tn addit-—
’ion to Rossby modes we find inertia-gravity modes whose
fréquencies are higher than or comparable to the coriolis
 parameter, The ineftia—gravity modes also grow, but there
 is nn preferred scale wi£h maximum growth rate, The growth
flgrate increases with the wavelength of the disturbance, This
v findinq is of ihtriquing Siqni%icance for numerical weather

brediction where we generally try to eliminate gravity

aves,

In Chapters 4,5 and 6 the zonal wave numbers of
”  £hé perturbation fields were restricted to be the multiples
of the zonal wave number kQ) of the basic Rossbvaave by
gitéking k, = 0. 1In Chapter 7 we‘intend to have a more
;general perturbation zonal wave number, We take h;ii""k%/zh

S0 that the condition for resonant interaction is satisfied.



formation regarding the Rossby modes, - Hence we confine

‘It is found that the Rossby mndes grow, but the

rowth rate is slowed down compared to the case *Q =0

i?o the value of meridinnal velocity required for the

g:6Wth- of perturbation is more than in the previous case,

This is also a significant finding,

By these studies of stability analyses of monsoon

;lbws with horizontal and vertical shear, with cumulus

/éating and with a superposed stationary Rossby wave we
,éve_foUnd out the dominant mechanisms of formation of

onsoon disturbances, These are;

(1) combined barotropic-baroclinic.instébility of
the zonal flow in the presence of cumulus heating
and |
(i1) inStability of stationary Rosshby wave superpnsed

on the zonal flow,

e studies of previdus three chapters reveal that the twoe

i‘primitive cquation mndel does not yield any additional

present study to twn-level quasi-geostrophic model only.
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CHAPTER ONE

INTRODUCTION

The normal monsoon wWind isAobserved to be westerly
‘ iﬁ the lower troposphere (Fig,1). and easterly in the upper
'iztroposﬁhere (Fig.2). These winds are accompanied by
 cyc1onic disturbances which form aver north Bay of Bengal
and move westnorthwestwards over central and narth India.
»The pronounced rainfall sver India is aﬁtributed to these
~‘,ﬁonsoon disturbances. The mechanisms of farmation and
growth of these systems are among the most impertant
 °Scientific problems in atmospheric physics, We propose

 to Study these as problems of stability of the mean
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Before going into the detailed study of the
38 abiiity andlysis we will discuss in this chapter some
£ the important observed characteristics of the monsoon

styrbances, We shall also give a brief account of the

th délogy of stability analysis of atmospheric flows

d some earlier important results,

A, MONSOON DISTURBANCES

During monsoon months cyclonic disturbances of
Vérious degrees of intensity form mainly over north Bay
”f Behgal. Low pressure systems are referred to as
/pbéical depressions' when the surface winds in the

yclonic circulation range from 17 to 33 knots, When the

'm§Ximum wind speed is between 34 and 47 knots the systems
ife known as 'moderate tropical storms' and those with
;Stiil more speeds are termed as 'severe tropical storms’',
Wéaker systems with wind speeds less than 17 knots are
féferred to as 'lows', These definitions are also used
in the India Meteorological Department, Monsoon depress-
ybﬁs rarely attain the intensity of tropical storms. In
éfﬁre and post monsoon seasons tropical storms form

€r the Indian seas,



egion and frequency of formation of monsoon disturbances;

The data published by India Meteorological Depart-
,ﬁ reveals that monsoon disturbances form mainly over

,é;Bay of Bengal, Arabian Sea and even over land, But

maximum number of cyclonic disturbances, about 75

T gént of the total, form over the Bay of Bengal and

only 15 per cent of the total form over the Arabian

Sea (Table 1).

In June, July and August depressions and storms
éually form over the Bay of Bengal, north of 18°N
atitude and west of 92°E latitude, 1In September,
deever,the formation extends southwards, upto 14°N
 a£itude. In Arabian sea the region of formation is within
éﬁdut 5° of the coasg north of 12°N latitude, These

;géems normally form in June (I.M.D., 1979). Mére often
“midtropospheric cyclones form over northeastern Arabian
Séa, Depressions that develop over land areas are
confined mostly to northwest India. Apart from depressions
énd Storms, weaker lows appear in all the areas mentioned
lébcve, but mostly north of 20°N latitude, Only a few of
fﬁhe lows intensify into depressions and still fewer into

Storms and severe Storms,

Regarding interannual variability of monsoon

lsturbances there appears to be no regularity in the



Table 1

of cyclonic disturbances (1891-1970). oOriginating over Bay

Bengal, Arabian Sea and over land.

June July August September

cC D S C ‘D S cC D S C D 5

106 47 35 145 84 38 158 106 26 173 109 32

33 12 15 12 6 3 4 1 2 14 6 5

13 5 1 40 26 1 42 24 0 22 16 1

C - Total number of Cyclonic Disturbances

D - Depressiors

S - Cyclonic Storms

(Tracks of Storms and Depressions in the Bay of Bengal

and the Arabian Sea, India Meteorological Department,

1979)



umber of cyclonic disturbances, The number has a wide

héé 6fV8'in 1957 to 23 in 1927, The number of cyclonic

torms has varied from a minimum of 1 in 1949 to a maximum
10 in each of the years 1893, 1926 and 1930, The
jage’nuﬁber of cyclonic disturbances and storms per

3r is about 16 and 6 respectively (I.M,D.,, 1979). Marked

variations in the decade frequencies of the cyclonic

diéturbances are observed, though no cycles are apparent,

A majority of depressions last for about 2 to 5

ays and very few exist beyond 6 days (Table 2), Cyclonic
:fbfms usually weaken on coming over land and the cyclonic
visturbances moving across the country are mainly depress-

1S, When depressions weaken, the remnant lows remain

or a day or two before filling up completely,

Iracks of depressions and cycloness:

Most of the depressions and storms forming over

#he Bay of Bengal follow almost a well defined track

towards westnorthwest, Systems developing in July move

fmainly westnorthwestwar.ls over the Bay and across the

phtry (Figs, 3 and 4). The August depressions move more

"Orthwestwards, In relatively higher latitudes the move-

ent is more towards north, The tracks of the disturbances

L these two months are usually confined to a narrow belt,



Table 2

period of Bay depressions and storms (1901-1960)

leWperiod Percentage of depressions and storms

Nd. of days

July August September
1 9 7 4
2 11 17 11
3 37 17 18
4 16 21 20
5 13 17 18
6 7 10 10
7 5 6 Y
8 2 1 8
9 0 4 4

(Srinivasén, Raman and Mukherji, 1971)
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ﬁ£ in June and September the tracks are more spread out
(I;M.D., 1979). One af the interesting observations is
fhé,recurvature-of the course of the disturbances forming

in June and September. Some of these systems, usually

forming At lower latitudes (even at 20°N) start with a

inortherly course and then recurve to have north to north-
east course., Disturbances developing in the Arabian Sea

in June maintain a northwestward and northward course,

In the formative stage over the Bay the depressionS'

_may move slowly, but coming over the central parts of

1

:peninsular India they may have speeds upto 30 km hr”~ -, The

iiavérage speed of July depressions is 5 to 10 km hr—t or
~about 1.5 to 3.0 m s—1 to the east of 85°E longitude, but
_more (about 10 to 20 km hr—l) to the west, 1In other months
rthe speeds of depressions are less, but the general
fcharacteristics are more or less the same., The Arabian Sea.
1

Systems of June have almost same speeds of 5 to 10 km hr™

(Rao, 1976),

The basic monsoon current in the lower troposphere
~ 1is westerly, but the monsoon disturbances propagate gener-
ally in the westnorth-west direction, This westward
propagation of monsoon depressions can be explained
‘(Krishnamurti et al., 1975) recognising that a pronounced

field of low level convergence lies to the west of the



510n This was examined by Krishnamurti et al.
,6)“1n 3 number o1C 51mple numerical prediction experi-
ntS;o The barotroplc non-divergent model and quasi-

strophic model were found inadequate to account for the

stward phase speed. Using a multi-level primitive

ation model and considering features like air-sea

teraction, parameterization of cumulus convection, large

oe condensation, heat balance of the earth's surface
d smoothed orography, they carried out a somewhat reason-

ble 48 hour real data forecast,

tructure of monsoon depressions:

On the synoptic charts the closed isobars of monsoon
dépressions are not circular, but nearly elliptic with
élongation in westnorthwest direction (Fig. 5). This
bp;;es that the pressure gradient to south of the depress-~

don centre is more than to the west (Rao, 1976).

Many case studies are done on the vertical and

,,orlzontal structure of monsoon deprusolons The studies

‘Of Sharma and Srinivasan (1971), Keshavamurty (1972),
fKrishnamurti et al. (1975), Sikka and Paul (1975), Godbole
(1977) are a few to mention. Studies of Krishnamurti ct.
él; (1975) suggest that the horizontal scale of depress-

ion is about 2000 km and the vertical scale is about 10 km,
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y,fbuﬁd‘thﬁt a narrow vertical tube of cyclonic vorticity
ﬁﬁ?éﬁﬁoriéontal scale bf about 1000 km and extending upto
k%€i$ a characteristic feature of this circulation. The
r£¢3jhas a very well defined cold cnre in the lower
fopdSpheré and a warm core above 500 mb, To the west of

he cold core there exists a very intense warm core in the

wer troposphere, Vertical motions show rising motion

s£ bf‘i.e. ahead of the trough line and descending motion

‘che\rear, Studies of Keshavamurty (19729 show that the
eptession centre is either nearly vertical or has a small

estward tilt with height,

ainfall associated with monsoon disturbances:

A considerable proportion of monsoon rainfall over

eninsular india is intimately associated with the movement
fﬁkgyclonic disturbances from the Bay of Bengal, The
'égion between 20°N and 30°N latitudes is characterised

? large scale cyclonic vorticity, moisture convergence and
Ward motion, Hence rainfall due to depressions is

ximum in this region,

Monsoon rainfall has its own characteristics. It

S known to occur in spells, It is observed that after



pgssage of a depression the monsoon usually weakens

efé is period of lull for a few days. Thereafter

monsoon revives, another depression forms and the preced-

ng pattern of rainfall is roughly repeated. This type of
1pulsation'’ in the monsoon rainfall is probably due to the

”y to‘day variations of the position of the 'monsoon

The rainfall around a depression centre is usually
:hgaVy and continuous over a well defined aréa and almost
,gligible beyond thls area, Pisharoty and Asnani (1957)
1$tudied the extent of this maximum rainfall area,
_Y”BQQe found that falls of heavy rain are confined to
hfarea lying to therlefthand side of the track. On any
 rticular morning for instance, the heavy rainfall area
exteknds to about 480 km ahead and to about 480 km behind
tﬁeycentre of the depression on that morning, measured
réspectively along the expected and past track of the
depreSSion. The width of the area is about 400 km and
'ktends to the left of the track, Out of this belt, about
Mipér cent of the area is almost the maximum over which

here may be heavy rainfall in 24 hours.

Another rain belt often develops far to the west
and outside the depression field, which is faikly distinct
from that in the southwest sector, Its origin is mainly

_ﬁe to the convergence between northwest flow, northeast/



ﬁefiy flOW around the depression and westerlies to

, 'in the lower troposphere (Raman and Baner jee, 1970).

Sometimes a depression in the Bay of Bengal is

;ébservéd to trigger another low pressure area or mid-

fbpospheric cyclone (Miller and Keshavamurty, 1968) along

-he west coast of India,

Considerable amount of rainfall also occurs in
;SSociation with low pressure areas which marginally

fiiffer from the definition of depressions.

Format ion of depressions:

Although the formation of depressions and storms
fiS not yet fully understood, in general depressions
 dévelop out of the following situations. In most cases, a
fdiffuse pressure field develops over north Bay of Bengal
énd’nearby areas, befure a cyclonic disturbance forms,

,Thé pressure gradient to the south of the trough becomes
fairly strong and the monsoon trough shifts southwards to
~the head Bay. Sometimes appearance of an upper air
 ¢yclonic circulation at any level upto mid-troposphere leads
'ﬂfo depression formation. Diffuse lows that travel across
, Burma into north and adjoining central Bay may develop

’infoydepressions. Ramanna (1969) finds that more than
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” cén£ of the depressions can be regarded as having
iéut of the remnants of typhoons of China Seas

r across Burma,

Basing on synoptic studies several possible mech-

of intensification of low pressure systems into

oy and Roy (1930), Ramanathan and Ramkrishnan (1933) and

Si’énd Koteswaram (1951) applied frontal models in order
'}ekéiain the formation and intensification of depressions.
fté£athe introduction of upper air soundings in India
oubts were raised about the existence of fronts and this

nCept was dropped,

Koteswaram and George (1958) examined the role of
fupper tropospheric perturbations in the formation of mon-
3sopn depressions in the Bay of Bengal. They hypothesised
 §t cyclonic development at sea level occurs when and
 fe\an area of positive vorticity advection in the upper
tpbposphere becomes superimposed upon a pre-existing
trough at sea level, This mechanism has similarity with
ﬁﬁét,fdund by Petterssen (1955) for extra-tropical cyclo-
 §enesis_ However, there are cases of intensification with-
Qﬁt any of these concepts being accepted. Thus, the
‘mééhanism may be true in few individual cases, O0f late,

 $atellite photographs and radiation data have also been
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. drfthe'study of formation of deprestions., However,

dynamics of the formation of monsoon disturbances is

not completely understood,

B, STABILITY ANALYSIS OF.ATMOSPHERIC FLOWS

The monsoon disturbances can be treated as fluct-
ions in the basic monsoon flows and can . be understood
terms of small amplitude stability analysis of an

dealised flow. This notion is dum to the early pioneering

rks/such as those of Charney (1947) and Eady (1949).
twsﬁability theories idealize the basic state as zonally
fprm;flow, These studies can reveal the mechanisms of
ability and the general character of the observed fluct-
tidns. On these lines the development of monsoon

sturbances has also been studied by many workers,

A number of studies have been undertaken on the
nstability of atmospheric flows in mid-latitudes. A few
fimPOrtant model results are briefly mentioned in the
dilqwing paragraphs, These studies have immense bearing

n the stability analysis of monsoon flows.
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fow note-worthy models:

",:The pioneérihg studies of Charney (1947)‘and

ady (1949) showed that the atmospheric disturbances in
_‘d_latitudes could be explained as a manifestation of the
aroclinic instability of the zonal winds, Both consid-

rééfcontinuously stratified atmosphere, where the basic

ind U is independent of 'y', the vertical shear is

constant and the viscosity is neglected, Due to the
ndluéion of beta-cffect, Charney's model is considered

o be more realistic model of baroclinic instability; The
?hase speeds of the unstable modes in Charnev's model are
Qery ¢lose to the minimum value of zonal wind whereas those
inEady's model are close to the mean zonal wind, However,
he energy conversion mechanism is identical in both

the models,

Kuo (1949) studied the dynamic instability of two-
?dimensionalynondivergent flow in a barotropic atmosphere.
He included the variatinn of westerly wind with latitude
qahd took two different types of symmetric (with respect

to Some central latitude) wind profiles. In the first
72@ﬁéi wind profile the disturbances disappear at the
:boundaries of a limited channel and in the second prbfile
,ﬁh? belt is extended to infinity in both directions. He

.ﬁnd that the degree of instability depends on the



13

:pﬁess'of the velocity profile, His study reveals the

esséfy conditinn for the instability of a zonal flow,
gjééndition states that for neutral and amplified waves
tﬁrphase velocities between the maximum and the minimum
”ﬁa §eloéity in the belt there must be critical points

héfEfthe'abSOlut@ vorticity has aﬁ extreme value., Without

%xistence of these critical pnints the perturbations
fﬁamped. If the abovevéEndition is satisfied and the
ferturbation phase velocity 1s equal to the current
:élbcity at the critical point, then the disturbance is
,néutral. On the other hand 1f the above condition is
tisfied and the perturbation phasé velocity is less than

e critical velocity and greater than the minimum zonak

wind, then the disturbances are amplified,

A simple two-level baroclinic model was used by
hillips (1954) to study the kinematic features of the
\;féble barnclinic waves in mid-latitudes, His basic
winds at the two levels were independent of '¢', but he
‘iﬁCluded the latitudinal variation of the perturbations,
 His‘study reveals that the quasi-geostrophic baroclinic
fwéyes are associlated with weak meridional circulations
 which, in combination with the horizontal eddy flux of
 mOmentum, prescribes the main features of the observed

_Surface gzonal wind ditribution,
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"Thevstabilityranalysis of z¢nal.flow with both
hor;z¢ntél and vertidal'shear was conducted by Charney
3 37Stérn (1962), They developed stability criteria for
case of an internal jet, Aécording to their study the
rnal jet is stable if the gradient of potential

oritcity in isentropic surfaces does not vanish. The

ent condition for stability and a necessary condition

- instability,

The stability with respect to quasi-geostrophic
,isﬁurbances of atmospheric and oceanic currents containing
oth horizontal and vertical shear was investigated by,
diésky (1964) for both a continuously stratified layer
/ndfa‘two—layer model, He derived certain necessary
ditions for instability. According to his study the
Qtehtial vorticity gradient of the basic flow must be
ot@zpositive and negative in the domain of interest for

hStability'to occur in the twn-layer model

Some instability studies of the monsoon flow:

In the last decade a large number of theoretical
udiés have been conducted with a view to understand the

echanisms »f the growth of monsnon disturbances, A
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'riﬁy-of reSearchers have cnonsidered a»zonally_uniform
;@afiow‘(independent‘of.lbngitude) for the stability
nal?SiS- The characteristics of growing perturbatibns
ré;COmpared with thoée of observed monsoon disturbances,
,ﬁée the nbserved mean monsoon flow has appreciable
yﬁiZdntal and vertical wind shears there are possibilit-
Qrwawpemtumbat¢@nwt@mg£@w_bywdpawingwgnmzgna}mkinetic

energy as well as zonal available potential energy.

Keshavamurty (1972) has shown that the monsonn

depressions do not have the eastward tilt with height
héCessary for baroclinic growth, His studies (Keshavamurty,
1971) on momentum transport by the disturbances show that
hé latter may deri&e energy from the kinetic energy of the

,ésic flow, This suggests that barotropic instability may

~

é@ﬁﬁzof'the mechanisms for the initial formation of

nsoon depressions, In fact Keshavamurty et al, (1978)
,?om their study of composite monsoon depressions have
obtained north-north-east to south-south-west tilt in the
:ménsoon depressions in the lower levels, Thus disturbances
hay draw upon zonal kinetic energy for their growth, A
'ﬁulti-level baroclinic stability analysis of monsoon zonal
ﬁiow (Keshavamurty et al,, 1978) showed that the flow
isfstdale, Shukla (1977) from energy calculations has

i A

Shown that the conversion from zonal available
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fiai~energy to perturbation available potential
nefgy is small and hence the baroclinic'instability

chénism is not important. Studies of Goswami et al.

;égg) show that barodlinicity'has very little effect on
ie'qrowth of disturbances, Howevef, Mishra and Salvekar
iad&\have shown that growth due to baroclinic insta-

"i&iﬁ&%playswanwimportantwnolef_atwieastwin the—format ive

tage of a monsoon depression,

Shukla (1977) studied the barotropic-baroclinic
instability of the monsoon flow field using a ten-layer

qﬁasi-geostrophic model, He found only an upper tropo-

spheric growing mode at 150 mb. This was essentially a

_arotropic mode, Shukla (1978) also performed CISK-

”Qtropic—baroclinic instability analysis of the monsoon

,W\by numerically integrating the linearized perturbat-
fihn‘équations for a three-layer quasi-geostrophic model,
jHé‘found that the maximum growth rate occurs for the
sméilest scale. The mechanism for scale selection was
 £herefore not clear. Satyan et al., (1980) concluded that
the inclusion of cumulus heating into combined barotropic-
‘barnclinic Sstability analysis of the mean zonal flow can
ﬂinduce cyclogenesis., They have got growing modes in the
;i Wer troposphere which compare reasonably well with
‘Qerved monsoon disturbances in horizontal scale length,

growth rate, phase speed and horizontal structure,



their studies, the basic meridional wind component is

jﬁOﬁsible for the relatively large amplitude of the mid-

obtained monsnon-like disturbances, In another study
atyan et al. (1980) have found that with the inclusion
jf[both cumulus heating and meridional wind into the

del the instability of the monsoon zonal flow is much

10re pronounced,

Stability of a stationary Rossby wave embedded in a

zonal flow:

The stability analysis of a flow pattern which
Varies with longitude can be carried out by super-
imposing a finite amplitude Rossby wave on the zonal

\Wﬁ Lorenz (1972) investigated the barotropic insta-

bility of zonal flow with a superposed Rossby wave,
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‘12(1974) generalized Lorenz's findings and identified
yylelgh instabililty and r@Sonant triad regimes. Duffy
1975) reexamined the, bjrotroplc 1nstab111ty of statinnary
\sby'Wave and found additional modes corresponding to
tabié inertia-gravity modes, Merkine and Israeli (1978)

conducted the stability analysis of a stationary baro-

Cllnic~Rossby wave embedded in a baroclinic zonal £low

éﬁd applied the results to mountain induced cyclogenesis,
yLiﬁ (1980) carried out a detalled parameter study of the
stablllty of Rossby waves in a baroclinic zonal flow
ahd;applied the results to planetary scale waves that
ﬁranSport heat, All these studies are confined to the
idlatitudes. We iptend to study stability of a stationary

Xossby wave superposed on the monsoon zonal flow,



CHAPTER TWO

BAROTROPIC INSTABILITY

The monsoon zonal wind (Fig,6) is observed to

 have'appreciable horizontal and vertical shears, For a
'pepturbation to grow on this basic flow there are mainly
tWo sources of energy. From the quasi-geostrophic energy

equations it can be shown that kinetic energy of the mean

DU
tlow, represented by its horizontal shear et is

Y

 Converted to the perturbation kinetic energy through the
; .
Reynopld's stress (~th') . ©Similarly available poten-

tial enérgy of the basic flow represented by its vertical

. D
Shear -ji is converted to the perturbation available

-,
L0

_ potential energy through the eddy flow of heat,
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Initialiy, in this chaptérvwe will conduct the
argﬁfﬁpic stability analysis of the mean flow by consi-
,efiﬁg the horizontal wind shear only, Thus a pertur-
béﬁidn may grow by drawing on kinetic energy of the zonal

flow. To include the vertical wind shear in the model

”£”1east two levels are necessary and that will be

discussed in Chapter 3.

Studies of Keshavamurty (1971), Shukla (1977),
eshévamurty et al, (1978) and Goswami et al, (1980) show
_he iﬁportance of barotropic instability in the monsoon
’yclogenesis, We intend to reexamine the role of baro-
ﬁfépic instability in the growth »f monsoon disturbances
-by éonductinq the stability analysis in a different way,.
‘in‘our study the mean wind and the meridional dependence
:éf the geopotential perturbation are expressed by Fourier
,éeries,

We have used the July mean zonal wind (Fig, 6)
\igng 80°E longitude as the basic wind and a channel from
5°N'to 30°N latitude is selected with a beta-plane centred

at the middle,
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inearisation of vorticity equation:

In a barotropic model, pressure and temperature
rfaces coincide, Hence all pressure surfaces will be
parallel and the wind does not have vertical shear,

According to scale analysis, to a first approximation the

_flow in a barotropic atmonsphere is governed by the
ffkvorticity equation

5+ Ve v(3+f) = o. e
With beta-plane approximation the above equation can be

rewritten as

(- :i -+ U 3—” =+ -‘a* } K 1; 29 = )
N Ry 6V/‘>' ﬁ 2= O (2.2)
 where \/ = %.Lt 4~/??7 .

The abnve equatinn is to be linearized before conducting
the stability analysis. The linearisation is done by

perturbation method as follows.,

Each field variable is expressed as summation of a

basic part (zonal and time mean) and a perturbation

X = (X7 4 ¥ (2. 3)

_ Where ;«~ww
|



e square bracket and the bar represent gzonal average

0 ' 7 ;o :’. A (\
nd time mean respectively, Thus T><1 T e N A
= . - - ; O] FASRE S
}? L ] o
‘ T Xdt
is!

-

] /

€ — ~+ D
Shdc 5 =[31+717,

To linearise the vorticity equation first the above

The vorticity equation in basic state variables is

(& +U23[3] =0

vot o T oo/ e )

fied to get the perturbation vorticity equation, While

;Simplifying it is to be noted that the zonal wind is

ing the product of the perturbation terms we get the

following perturbation vorticity equation.

22

5

(ol o V?( = *’/\4»/j)gi:j; o
4 (] r%‘ I A

(2.4)

?aSSumed to be independent of longitude, Finally neglect-

L]

The above equation is deducted from (2,4) and then simpli-
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The wind is assumed to be geonstrophic. Hence
o
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Jes ’d i
/ g 2y
and ¢ = =N D
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instability,.

he model

We have expressed the zonal wind (Fig. 6) at each

level by the Fourier series

b ) e ,
Q“J(V> - !%« + #u Cos } Y

et ‘. } r‘,,(

5 j= 1 |
N7 < - 2N

+ C%, S ) s (2.7)
L. j ;\’1:
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ere M is the number of points where the wind is given,

~The co- efficients ﬁ’ ; %ﬁ and %, are obtained by

y

:harmonlc analysis and the wind is accurately represented

j(
by the series (2,7). Using (2,7) f/ﬁ.w —“$é> is

3'calculated and it is found that this term changes 1ts sign

’"someWhere near 21°N latitude at both 700 mb and 200 mb,

- Thus the necessary condition (Kuo, 1949) of barotropic
l,instability'is satisfied by the lower and upper tropo-
:spheric zonal winds, We use normal mode analysis to reduce
-fhe problem to an eigenvalue problem and assume solution of
 of the type
' J

\ *\ .
4y = ok VAN V)

i - £ o) -
(il i; (H) t'x.'iﬁz‘\(f( Cft}g (2,8)
for the geopotential perturbation, We look for modes
characterised by a wavenumber k& for which 'c' is complex,

1 C = ¢y

’{ then the disturbance will grow when

C: >0 . Substituting (2.8) in (2.6) one gets

1 | ) \ - YU R

N

: \ 7 S
Gy o= )0 A, Sin L (j-\j) ,

rf_.‘.} (2- 10)

. / :
This satisfies the boundary conditions, O = O at

H
H
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. - | | | o | /
- Y¢ , the southern boundary of the channél and (ﬁ

, the northern boundary. The width of

O at N ooy
' J <N
the channel T == 4y —Y ., Substituting (2.10) in (2,9),

~“ N R

= 2 =
+ (ﬁ - %"Cié’) Y;f”""“,!l A W (3.11)
where Y, = S5 Dg_ (Y= Ys) -
N = = 28 Sin (Yo )

fand/the:subscript 'm' is put to identify a particular
/1atitude in the channel. Eq, (2,11) is true at each
latitudé in the channel i,e, for each integral value of
'm!, Tﬁe channel is divided into ‘*m!' equal parts and we .
have an équation of the type (2,11) for‘each part, Thus
ﬂfm' number of homogeneous algebraic equations are obtained

 and these can be rewritten in the matrix form

(B-<D) (A) =0 -

~ e e /

The elements b and d of matrices B and D
o m,n m,n ~ -~

respectively, appearing in the above equation are defined

éS;follows,



26

. : L2 N

A is a column matrix with elements An. B and D are real,

Gt A may becomplex,  To convert—theabove matrix-equat-

ion into eigenvalue form

—

. -mq,, Y/n —_—
(g-0'-eD(28) =0 g

ig and D should be square matrices, This is accomplished
be making m = N, Here I is the unit matrix., Solutions of
‘ (2.13 ) give the eigenvalues 'c' and the eigenvectors
(Q;é). The real part of 'c' gives the phase speed of the
‘disturbance and its doubling time i,e. the time in which
fhe amplitude becomes double of initial value is calculated

from the relation ZQ o iﬁ_é . (

ke,
We have increased N and hence the sizes of the

Square matrices and solved (2.13) for each value of N,
When N is sufficiently large the solutions obtained are
close to the 'true' solutions, N and the corresponding
doubling times are plotted in Fig. (7). Tt is evident
that the doubling time remains constant for N > 30. Hence

We have truncated the series (2.10) at N = 30. From the
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,F‘Figure 73 Variation of doubling time ( E; in days)

 ;With the maximum number of terms (N) in series (2,10)
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genVectors,'the coefficients An and hence the meridional

tructures of the disturbances are obtained using (2,10),

Results and Conclusions:

From the analysis it is found that the zonal
currents at 700 mb and 200 mb (Fig.6) yield slow growing
modes, The fastest growing mode at 700 mb has a.horizontal
scale of 2300 km, a doubling time of 8 days (Fig.8) and an
}eastWard phase speed of 2,5 m s~1 (Table 3), At 200 mb

the scale length vs, doubling time curve is seen to be

‘almOSt flat. The fastest growing disturbance has a doubling

Etlme of 6.5 days and a westward phase speed of 17 m s -1

_‘(Table 4). Its scale length lies between 2000 km and
2800 km,

The slow growth rates are perhaps due to small

horiznntal wind shears, They may grow much faster during

strong monsoon epochs, These results agree with those of

bgKeshavamurty et al, (1978), Since we have considered a

- non-divergent barotropic model; the perturbations ride on
;the basic: current, The amplitude structure (Fig.9)
Shows that at both the levels the amplitudes are maximuam

at 21.22°N latitudes, which is observed to be the region

of substantial cyclogenesis,
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Table 3

Barotropic instabilitys Characteristics of growing modes

_ at 700 mb.

Horizontal Phase speed Doubling timé Maximum Positiop
scale length Cﬁ—~1_ (@ of ma%%mum&P
(km) (m s %) (days) SN

1800 2.7 12.7 180 21

 ?\2ooo | 2.6 8.7 200 21
,2200 2.5 7.9 210 21
2400 2,3 8.0 230 21
2600 : 2,2 9.4 250 721
2800 , 1.7 10.0 320 21

3000 1.5 10.5 320 21




Table 4

Phase speed Doubling

Maximum

Position of

Time maximum CF
Cy Z, c}b
(m s™1) (days) (°w)
- 17.4 7.1 130 22
- 17.4 6.7 140 22
- 17.3 6.6 140 22
- 17,3 6.7 150 22
- 17.3 6.8 150 22
- 17.3 6.9 150 22
- 17.3 7.2 160 22
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CHAPTER THREE

COMBINED BAROTROPIC-BARQOCLINIC STABILITY ANALYSIS

In the barotropic model discussed in Chapter 2,
pe;tqrbations could grow by feeding on zmnal kinetic
energy. = But the zonal wind (Fig, 6) is observed to have
‘Vertical shear alsn, Thus there is available potential
energy of the basic flow, which can also be a source
for the disturbances, So it is reasonable to consider
the horizontal as well as the vertical wind shear while

oing stability analysis,

Shukla (1977, 1978), Satyan et al. (1980) and

Goswami et al, (1980) have considered both the horizontal
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aﬂd@%ertical wind shears in their stability analyses of
%dﬁSOOH zonal flow, Since the monsoén atmosphere is
énditionally unstable and there is always cyclonic
 v§rticity present in the lower layers, Keshavamurty

(1971) stressed the ronle of CISK in the growth of monsonn

fdiSturbances, Krishnamurty et al, (1975), from their

1study of the structure of monsoon depression have also
/ﬁggésted that CISK mechanism may be important. Shukla
lé?é) and Satyan et al. (1980) included cumulus heating
in ﬁﬁéir models and the characteristics of the computed
disturbances agreed reasonably with those of the monsonn

disturbances,

In this chapter we have conducted the combined
 barotropic—baroclinic,stability analysis of the monsoon
zonal flow reoresented by the July mean zonal wind along
;80°E longitude, As in the case of barotropic-stability
'aﬁalysis we.express the zonal winds and the meridional
'de§6ndence of the geopotential perturbation'by trigono-

metic series, We alsn consider the same channel from

5°N to 30°N and a beta-plane centred at the middle,

Section 3.2 deals with combined barntropic-
baroclinic stability analysis with a two-level quasi-
_geostrophic model. The cumulus heating is included in

this model in Sectinn 3,3, Finally in Sectinn 3.4 we
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avefeXtended the‘anélysis'to a five-level quasi-

geosfrdphic mode] ,

;Twoglevel quasi-~geonstrophic model:

In this section wWe will conduct the stability
,anaiysis of the zonal flow (Fig, 6) having horizontal
1and vertical wind shears, using a two-level quasi-

géostrophic model .,

;ﬁinearisation of potential vorticity equations:

To include baroclinicity in the model thermodynamic
energy equation will be used in addition to the vorticity
equation, Using the quasi-geostrophic vorticity and

thermodynamic energy equations

SN~ A

2 = VY ( T —xf) + 1 99— (3.1)
>t RO 5]=

and

™ r’% ’\ ’(\ S
22 (9 e - RE
[ " 7 — RS .
ot hap/ P bCp

-€spectively the quasi~-geostrophic potential vorticity

equatinn can be derived, Using beta-plane approximation



he above egquatinns can be rewritten as

i
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i

' (3.3)

<

R e
P Cp

(3.4)

reépectively where the symbols have their

In two-level model one writes the
§Quations (3.3) at levels 1 and 3 and the
énergy equation (3,4) at level 2 and then
eliminated to get the potential vorticity

levels 1 and 3.

difference approximat

- (O
9 0
\ J] 1 1
L=
- 3 Ny
(A)q - Ck}{ 4

usual meaning,

vorticity
thermodYnamiC
CO 2 18

equations at

N

|

l, — B00mb

|
i

J

- are evaluated by finite



32
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vop /i Al AP
ob)2 T TAF T Tap

\st)2 T TAE

where the vertical boundary conditions used are G = C
n= C

1 and 3 are

D P A {.
i e W IS Ny _émn\ o, - e - O
N }-t J E}),(’ ¢ 1 t)\’/ //' ?) + /"’ ’2,1 /\ ):) (J\ "), L
'aqg ) ' (3.5)
\\ - ~
——————— O Ny \ \—v' "y e
Uy o 0, £ 29, — (W~ ) = O
L C ax o Tty §o [ O Z\!f( -y = O
(3.6)

\\' ) Wy - I}
f»"W’aJ[-—{ Ve ‘% + 0\ s i\; e NISE
: e - /" p P T ’_) -~ )r* - —— e L3
Aot aX v/ - o Gy = -
OJ/ L\ g-) 4 -’2) (_,:,
(3.7)

We use the identities
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& ; {,2, (‘ e | (;JL:\' - \“‘]/
[EE )= = . o L/Z-’ L AW, ! ,Il
VD ey T T Ve Ve

AP - = A S (3.8)

- \ ;
N | \ ~
. AN\ @ - 23
+ Ly 25 49, kel 'z, C(L, S, = = Bly
BAY Y ] N7, ’::; po— _~
on Y/ £ ’L ‘ P, Ck
(3.9)
TR 5>dh“¢” Y
Tz ST T U T 105 Wy =
o Ay AR TEWe T T,
(3.10)

.5) to eliminate Wo . Similarly (3.10) is multiplied

Y -J[.O /(6”9 L\(&\ and substracted from (3,6). Hence we get the

1asi-genstrophic potential vorticity equations at levels

- 2 )C) / :"_: - ~-—-.~....___~_*__“___( .
e foFocp S (3.11)

| ! R abs, .
+RYz j—\} Wy = j——-wi'—i a,
” J b f“ N L"
o P2 Ch (3.12)
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' : e 0 /j__,,, , '_“ﬂhr
SPectivelY, “where. 5. = T, .f"‘t"?(.i\—‘!“i’./'“éfhe above equat-

J (oS _2,/ / /
rara - ) i, { L & e, L )
%03 (5, - &)
e * -,1:' ,-)'- . ) TQI /\);’ 5 i
SN R TN R ﬁ.:;_w~
: QUT )k./“ Byz Sy ([ U "/f — "z‘ QLJ (3.13)
~ “
0 D AT / ‘ - /
9y 2N/ . \ Jo ..
ot " J”" A3 ﬁi V QL)Z ‘)Z(‘,/% - ! ’ﬂ‘ o Zﬁ; ("3[
o > () | \ RAb <, .
5 AP~ S e (e = DR S
’ L[ =3 R B b G

fﬁe model:

In this two-level quasi-geonstrophic mndel we have

 Considered the . Ekman layer friction by assuming th at
~ the vertical velocity at the lower boundary is due only

,,to frictional pumping through the mkman layer (Charney
and Eliassen, 1949)., Thus

T 2 !
. A i - p . 7o
= — 08 f9 ,!,_: 1 (‘-,( "o <><~\ VA, (315

{
WM
~
N

J

{

/I

A

4



he pottom boundary is 0,8 times its value at level 3.
1ere K is the eddy diffusivity and <x ¢ 1is the angle
bétWeen the isobars and the surface wind,

/
The upper boundary condition is (0, = O at p=

fbut we have conducted the stability analysis with two

‘ctor O 8 15 there so that the geostrophic vorticity at

35

(with

and N

S ALERY D

; /\;1
"For convenience we have used the same sSvmbol A, with

different subscripts (N+n) for the co-efficients of the
second series, 2Zonal winds LJv and LJS are accurately

represented by Fourier series (2.7).

- i 7 /
 Substituting for Cb7 and 43w in (3.13) and (3,14)
. { &
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As in Chapter 2, wavelike solutions of geopotent -

ial perturbation are considered at both the levels, Thus

N | R
©, . =@ (W) exp J?} (x—cT )% (3.1
i E by 2
Whére N
T e
< Ad \
= - STy T4 H=Us)
FW(J) ] / " D (
no="1
N

6)

o, VTV (3.17)
fi\ (v) — VoA Sin QZY ( Y "'U&) -
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nd using (3.15) we get the following equations for the

uﬁper and lower level respéctively,

=~ ; U 2 o
T 11 o o 7‘( B = K 8 Uz m\' }'W‘)""“‘{' A,
£ L. : d - (jf[j“ ) :

(Siﬂ USM \.F'/w‘.,r“'. /A n e \"’Y" AL A S {“J?E " f" i,
. .
’,-u (.,,'Zrn z | AN % /\ _:C_«-i::
(B S R U5 U am) Vi [ Anan ™
G2 . | \ \ (Kf‘ — ‘;‘2’ / . ‘} —ed 3. 1.9)
(}\ Yoon =71, m)'/x‘\rwwfv‘-.h < i Lo (k+s,) }M)V"EAN*MW((
}ﬁg)ﬁ and n~rﬁ)n are defined in (2,12) and
S O .
- °-8f9 (K4, (3.20)
; P f\‘ !:_' \]‘ *"2‘;' TN {2 >(5>
CRER :

AS in Sectinn 2,2 we put the subscript '‘m' to identify

 a particular latitude in the channel and folldwing the

. Justification given there we consider N number of equat-
vions from each level and then arrange the tefms of the

j%N number of resulting algebréic equations to get a matrix

€quation like (2,13). But here B is a complex matrix,

[
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'Deﬁoting its real and imaginary parts by-g? and‘B%

‘resApéctively, we get the eigenvalue equation

(85 ‘EJ_}' cL){D-A) =

" o \" (3021)

speed and the growthrate of the disturbances, whereas the

eigenfumctions are used tn calculate the amplitudes,

»

, 4
The non zero elements bm ry 2 Jm vy Aand iw» LN
N P
. -7 7 .
of matrices [{ | R and [ respectively appearing in
(3.21) are defined as fnllows.
¥
i ~y
b o 3 U(W‘ 2 \ -
=mon T U“’V‘ Lm N 4('(! } 2 k Uq w29 UE ey )m N
O y - / 2
. —_— N
brw) Ny = 1:3 Li} wi fov Ra
Y .
N--l ! . 52 {w)?‘) Fvy }r\"V'i‘,‘/\
m ¥

~ , <2 y :
Y { y
— ] s am 2
bf\! Ay, N4y ™ \“,3MV)Vm,r\+'O"' E\ 2 -k U, 32 LMM>7:” "

~.

O~

NAw Nan —

21 . N\
( L’ Y‘m N q, YV'!)V\’,)

2 "
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oy y 2 WY,
;de+m;N+ﬂ - 1m);'(<+$&YWMA

. It is to be noted

that wherever U appears with two subscripts, the first one

fers to the level and the second to the latitude.

Results:

"The analysis yields no lower tropospheric mode
iiﬁh appreciable growth rate, However, perturbations at
00 mb grow slowly with doubling time of 9 days and with
esfward phase speed of about 17 m s~1 (Table 5). These
;apidly propagating disturbances possibly correspond to
¢§38terly waves one observes in the upper troposphere,
When surface friction is nnt included in the model, the
growth rate is.found to increase. TIn the absence of

_cumulus heating and surface friction the doubling time

of the fastest growing disturbance at 200 mb is 5 days.



Table 5

:Vél models

;ﬁéristics of growing modes with maximum amplitude at 200 mb

Phase Doubling 200 mb | 700 mb

‘speed time
'\.\C: Z- Maximum Position Maximum Position
\gy-‘¥ - <¢> of maximum of maximunu#)

(m s™h) (days) " Beew) dPg (eny 3
=17.4 10,7 130 22 1.2 22

~17.3 9.6 130 22 1.5 22

-17.3 9,2 130 22 1.7 22

~17,3 9.0 140 22 2.0 21

-17.3 9.1 140 22 2.3 21

-3 Q.2 140 22 2.6 21
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nclusinn of cumulus heating:

- The purpose of this section is to study the effect
é inclusion of cumulus heating into the twn-level model,
tfmay be noted that we do not intend to carry out detailed
‘afaﬁeterisation of cumulus heating. It is our object to

study the effect of inclusinn of a simple form of heating

on the growth of disturbances. We have specified the
’éonvective heating only at mid-tropospheric level,
ollowing Charney and Eliassen (1964) the rate of heating

per unit mass can be written as

@ = Hm b)Y 20

o h,/ SP ]L (3.22)
efef‘ F[i(fﬂ is the vertical distribution function for
eéfing and it-is a measure of the rate of condenséfion ot
water vapour at the pressure level ﬁs . Using (3.15),
(3.20) and (3.22), we can simplify the heating terms on

the richt hand side of (3.13) and (3.14) as

F‘ Ak S /

/
— Q, = FH V', (3.23)
Fz Cp B -

) .

In the two-level model PJ{ (P) is prescribed at 500 mb
Simply by a number. Following Ogura (1964) we have taken

To examine the effect of heating we have

T
,._ :
I
w
A
(]

alsn done the analysis by reducing FLf by half,
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Using (3.23) we can get matrix equation (3,21)
fbﬁf{3,13) and (3.14) as in Section 3,1,2. The elements
 métrices Ef andlg are same as defined in Section 3,1.2.
uﬁythe elements of hatrix E%‘areﬁdifferent and its non-

zéro!eléments are defined below,

Etm S N+n = '—}L F H:& < kz Ym)“ a ‘q‘i“‘;’i}
r'<- (L \vn N q WLYD

LWHere m and n vary from 1 to N,

N44w) N+ n

/\,

So far as the upper tropospheric disturbances are
fbhcerned, their characteristics are hardly affected
ffables 5 and 6) by the cumulus heating. However, with
the inclusinn of heating into the model lower tropospheric
ering modes are found, When ﬂf} = 3,0, the fastest grbw—‘
\gfﬁisturbance has doubling time ¥ 1.7 days and horizontal
scéle length of 2400 km (Fig. 10, Qh;m£gf) It has east-
 ward phase speed of 2.5 m s ! and the amplitude is

maximum at 21°N (Table 7). The ampiitude distribution
‘(Fig.ll) shows that the disturbance is mainly confined
”téythe lower troposphere, When the Heating is reduced by

}hﬂlf; the doubling time of the fastest growing mode is

. N
ﬁ;noreased to 5 days (Fig. 12, L04 Qﬁ. )., but other
,harwcnarlstlcs like the horizontal scale length, »hase

Péed and the amplitude distribution are not affected
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Figure 12; Scale dependence of the growth of unstable

__modes in two-level model when Hj- = 1,5, ((02, =CO;
indicates the inclusion of Ekman layer friction into

the model).
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(Table 7)),
To see what happeﬁs when the frictinnal dissipat-
ion is neglected we have also done the Stability analysis

/
by using the surface boundary condition QJQ = 0, It is

found that the growth rates ofvthe disturbances - are

. ) o
increased compared to the previous case when OJQ s Q)L,

8 1 4
When }4{ = 3,0 the doubling time is about 1 day and for
}{f‘ = 1,5, 211:: 2 days (FPigs. 1C and 12). We find

ﬁthat there is nn preferred scale for the fastest growing
disturbance when the surface friction term is. dropped, In
this case the doubling time hardly changes with the
xwhorizantal scale of the disturbance., The phase speed

_ and the amplitude distribution remain same in both the

_cases (Tables 7 and 8),

Five-level quasi-geostrophic model:

The model:

We have extended the Stability analysis of
monsoon zonal flow tn a five-level quasi~geostrophic
.model in order to have greater vertical resnlution. The
atmosphere is divided into five layers and the different

Parameters to be prescribed at different levels are
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shown below,

o/
e = O
O mlb o — 0
{J
100 L o 1
570
200 SE 2 2
]
300 Uz 3
e C.k:l
O ]
o . o
e ’
500 - 5 Nb=z00
[ ' { mb
\.:,1 & { ) . i
600 : 2 Ve 6 v
[)o
700 7 7
C.A. ~ I
g ) g
800 22 8 8
e
3900 ~ 9 . 9
W'
1000 ¢ 10

Static stability parameter & at different levels are
Same as used by Keshavamurty et al., (1978). The quasi-
geostrophic vorticity equations (3.3) at levels 1,3,5,7
and 9 and the thermndynamic energyv equations (3.4) at

levels 2,4,6 and 8 are considered and the potential
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“vort1c1ty equathns at levels 1,3 5,7 and 9 are derived
5as in Sectinn 3.1,1 and then these equations are linear-
ized as dascrlbed before, Thgs we get the following

perturb ation potential vorticity equations,

Level 1:

3 3 / c Y

(5 +U 5&.){3« g <¢:*%«>}

N U RAbS, ./
\ﬁ f’/’g - = Sn z } _.,LMM..Z o~

Levels 3,5 and 7:

) ( O+ S(-
*F U} { + (4L+2 ﬂBL - )(qt’ CtL z\)}
. T 'BZLJ ’
v, +UL {/3 - ng ’"’SL+1 ( UH 2 "'UL) +SL-—'! ( Ut‘ UL~2>}
N .R ﬂ, L St-1 A’
- 4.Ch ( Plys &LM T’LL-"r QL-'D 229

~ Where {‘z 3,5, and 7 respectively,
Level 9:
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kAsAbefore we assume wavelike solutinn for the perturbat-

"ion'geﬁpotential field at each level,

/ ! ’ 3
Cb{ - ch(“f) exp {1 k (x‘*c‘t)} (3.27)
!where rq.
‘ \" / , i N
C?i(”) 2; \<{;mﬂw—+n> D (ﬁ 35> (3.28)
_ 2 '
n =1
and [ =1,3,5,7 and o,
Also the zonal winds (Fig, 13) at levels 1,3,5,7 ahd 9

are accurately represented by Fourier series (2,7).

~ The rate of heating per unit maiss and Fkman layer frict-

inn are given by (3.22) and (3.15) respectively, In the

absence of actual vertical distribution of heating we
_have experimented with three different types of distribut-
ion functions F44;(FO as shown in Yig,14. For type (b)

 the distribution is parabolic with maximum heating at

500 mb, In case of (a) the heating is maximum at 600 mb

and in type (c) the maximum release of latent heat is

at a higher level, 400 mb. The total heating in each case

is the same., Using (3.15), (3.20) and (3.22) one can

Simplify the heating terms on the right hand side of

equatinns

(3.24) to (3.26) and write
e T T
'P(44 Cp Rt f g (+L+2 (3.2¢
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where L =1,3,5 and 7. Using (3.15),(3.27);(3.28) and
f;,”<3,29)- b'in perturbat‘ion*potential vorticity é‘gqjuations
(3.24) to (3.26) and Simplifying we get the following

_algebraic equerions for levels 1,3,5,7 and 9 respectively.

(—? ‘I%ﬂ)w o ”1,_,(\/;3 f) qu Kk Upyn =52 U 3m>}m ,;2/4\ﬂ

Q ‘1

+ Sy Upim Youon Anan H{ FU? For ™" ﬂ) AI\H--W

— C {Qm ,,]"'(h+-o) m y1§ n —C Sd,ﬁn n AN«H’\ =

(3.30)
: L Us,, 2
Z [ 3m & 3 A” ! { Im V\m V"\+(’5_ Y ;m'”k' Us‘m
- oYe

=5g Uy oy = 54 5M>Ym “j /“\N+h = U“’M /\ e
- LWy F(f i = M ) A

lk; HJLL' F(}?Z Y;\q,v'\ - qm,n> A2N+Y\
=S Tmn Ay —C {[ " ~ (K 45, + 54) V. ?{AN%
e Sy Ymn A ZN-H’] =

(3.31)
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Ly | |
N sy U Yorn A ,, 2 s
= S5y e v /7 + U - | - oM
n>; ' L 4 s hmn / N+n { )‘Jm lm_,n’* (}3 54j2
'2 -
~ Kk Us ”—Shtjg """ len }W)flg /x?IV4 "
o ] Y- 5 o

o Usm T /—‘\3\\«4—)\ T ‘E’ HJCL }~ ( K Y)Av;)ﬂ o V} W!)’\} /\T‘ZN+y*
u TR . !
7 — 2

o Hy, F (lq Fan — )’h

- C {Vz m.,r\mG;{Z " Sy, + Jg, Vm m§
6 Y;MJVI /’\3‘\,_{;]:: IS

<, ¥
2N -1

(3.32)

‘_../l - lJ ay \ —’?rm

- VTI ~C‘ : - “ 2
| L‘ L Wl n /—\?I\H-w + {)7) ™ Vl W o +</? - .........7“’) JQ()

Y):n} " Al[ NN

) |
mle .ﬁ} Agnint S U

= A F (K Yo =N A gy = C eV A

2 N-+n

7 . -
TR Hf‘g F ( k Y;"‘)"‘- -1 m,‘)A bri+n ~ € % \!"m)_n AI" NN

\leh?/“lf’f,'\ " = O
J ,I\I+J

(3.33)
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N{ R | o | | -
N ' —
/ fs Uam ‘m n / N+n4~4 b -0 Q[ oYy?

- C e/
-.*I?Uqu ?M)Ym n} Al AN-+N +~T’:r(’MH§S>

749w

2\ N ‘
(’? }’m,‘a’\, - !}Lm:‘n> A%N —h —C 55 wa‘)n /)\ INAA=N

*C{ YVT-nL“\”( +S) AQI\H»ﬁj = ©

(3.34)

Egs. (3.30) to (3.34) are true for each latitude denoted
by subscript 'm', For mathematical conveneience we make
=N as diSCuésed in Section 2.2, We truncate the series
23.28) for N = 12 and thus we have 60 algebraic equations
from the above sets of equatinns. For computational
iiimitations we could not increase N mnre than 12. Finally
?érranging the terms we can get an eigenvalue equation in
matrix form (3,21). It is evident that E/ E} and’g are
Square matrices of size 60 x 60 and A is a cplumn matrix
:With 60 elements. Characteristics of qgrowing modes are

obtained by solving the eigenvalue equations by numerical

algorithms.
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o r i -
he nonzero elements b .. b d of matrices
T . m,n’ °m,n’ m, n ’ *

r 1 . . - )
+B,D respectively are defined below where m and n

e

"*‘both vary from 1 to M,

o 52
P ] ~ ) - ‘2. ~ !
bm)n o U1 m VL m,n + < /3 - %,lj;) - R (Jf M 2% U3 m,) Ym Rt

{DmJN-& N Sy U?m }‘;h)ﬂ
Y -
bN+m)w = 5, Uy, Fon
|
Y oL P, )
— N o HEm e —s. U
bN+m, Nr ™ =zm i.m rj“(J oY2 A U‘éfﬂ “2m
‘ -

- SL} L}SIY‘)}M i

N4 2 N=an Sl; Uzm N
>

T. - .
b AN+ N+n Sl{ U: " Ym) n

; 2
L)Z‘\S—Hﬂ , ZN+N — U;m qm ﬂ+</2 - %J:’Sm . }?k [)

— Sy US m S [J _

.
D ZN4m ) BEN4n = Se US ™ Ym’r;
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~Results:

When the cumulus heating is maximum at 600 mb
the fastest growing mode has maximum amplitude at 700 mb.
These disturbances gfow to double their amplitudes in
_about 1.5 days and they move eastwards with phase speed

of about 2 m 57!, As shown in Table 9, at 700 mb the

—amplitudes—are maximum at 22°N.

When the level of maximum heating is raised to
500 mb the fastest growing mode has maximum amplitude
somewhere hetween 500 mb and 700 mb. These perturbations
have the Sameé phase speed and almost the same Jrowth
rate as in the previous case, 8o far as the meridional
_ distribution of amplitude is concerned the Jdisturbances

have maximum amplitude in the region 19°N to 22° latitudes

(Table 10).

Finally the level of maximum cumualus heating is

raised to 400 mb, The analysis yields +that the fastest
growing mode has maximum amplitude at 500 mb. They
have eastward phase speed less than 1 m 5+ and their
growth rates are same as in the previous two cases, At
500 mb the magnitudes of these disturbances are maximum

-at 19-20°N latitudes (Table 11).

In all the above three cases the doubling times ar->

almost independent of the horizontal scales of the
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_disturbahces. " There is no preferred scale for the fastust

growing mode,

Summary and Conclusions:

zonal flow over 80°E are conducted by expressing the basic

winds and the meridional dependence of the genpotential
perturbation by trigonometric series, The two-level
combined barotropic-baroclinic stability analysis gives
no lower tropospheric mode with appreciable growth rate.
Perturbations at 200 mb grow slowly and propagate west-
wards rapidly (17 m s-l), and possibly correspond to
observed easterly waves in the upper troposphere; When a
simple form of cumulus heating is included in the two-level
model the fastest growing disturbance has dounling time

of 1,7 days and horizontal scale of 2400 km. This
disturbance is mainly confined to the lower troposphere,
These characteristics agree well with those of the monsonon
depressions, When the surface frictinn is neglected the

growth rates of disturbances increase and there is no

preferred scale f-r the fastest growing disturbance,

In the five-level mndel as the level »f maximum
heating 1s raised the fastest growing disturbaice is found to

ndcur at higher levels., The fastest growing disturbance is



Ut
IiR)

 ‘cbnfinéd to the lower troposphere when the heatiny is
maximum at 600 mb or at 500 mb, Unlike in the two-~level
model the .doubling time hardly changes with the horizontal

scale of disturbance,




CHAPTER FOUR

STABILITY OF A STATIONARY ROSSBY WAVE EMBEDDED

IN THE MONSOON ZONAL FLOW: TWO-LEVEL

QUASTI-GEOSTROPHIC MODEL

Monsnon zonal flow with horizontal and vertical
wind shears 1is fdund to be unstable under the inflaence
of €onditional Instability of the Secnrd Kind (CISK). In
these studies (conducted in the earlier chapters) thie
basic flow is assumed to be zonally uniform. In this
Chapter we intend ton investigate the stability of
monsoon flow which is not zonally uniform. The stability
analysis of such a flow pattern which varies with long-

itude can be carried out by superposing a finite
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 amplitude Rnssby wave  on the zonal flow, Loreng (1972)

investiqated the barotropic instability of zonal flow in

middle lﬂtltudLS with a superposed Rossby wave, Subseka?qt

studies by G1ll (1974), Duffy (1975), Merklne and Israeli

\(1978) and Lin (1980) in thie regard are also confined to

the midlatitudes, In this Chapter we will eonduct the

stability

analysis of monsonn zZonal flow (Wwith vertical

shear) with a finite amplitude sta“ionary barnclinic

Rossby wave embedded in it,

In f&ection 4.1 we calculate the wavelength and

the relative amplitudes at lower and upper levels of g

stationary Rossby wave which chn be supported by the

6bserved monsoon zonal winds. TIn section 4.2 the Stability

Jana1y51s is conducted using a two-level quasi-geostrophic

model with a beta-plane centred at 18°N latitude, Later,

in Chapter 6 the Analysis is extended using a primitive

€quation model, Energy calculations are done in Section

4.3 to find out the sources of energy for perturbationc

to graow,

S;ationary Rnssby waves

We consider a two-level Quasi-geostrophic model aaa

Galculate the wavelength and the relative amplitudes at
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| the 1owef and upper levels of a stationary Rossby wave
whidh.éan be supported'by the observed monsSonn zonal
winds, For>convenience the potential vorticity equations
‘(3.i1) and (3,12) at 250 mb and 750 mb respectively can

be rewritten as

where the diabatic heating is not considered. The subscripts
1,2 and 3 correspond to pressure levels 250 mb, 500 mb and
750 mb respectively. The other symbols have their usual

- meaning. The basic flow is given by

é’l - Jco U!y + ’go A Sin }20}(‘
) _ (4.3)

where Uq and {JB are the realistic zonally averaged winds

representing the upper and lower layers; A and B are the
Rossby wave amplitudes and ko is the wave number of the

- stationary Rossby wave,

The basic flow (4,.3) is geostrophic., Hence using
the geostrophic relations we can express the wind compo-

nents and the vertical component of relative vorticity
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in terms‘ of A,B and k(‘) as g.iVen'below_ :

1 E} CE) ‘

Y }j |
U, — — J O | g 1 9%y o
| fo oY T (_/ .)‘1_ g = ry S = EAA Cos ko
: /( O »3 y \ (’5 _ ‘
. uz'f - 77 jg - }J z ) 9, — ‘ - ?___:':3 — h{\B COS, -‘}QOX
| ° B/‘\j ” K 7Co N

1 _ar 2 . 1 2"“}'2735’}
(1 = ?—;\7 éﬂ = — Ry A Senkn ; Kz = ;[:V c}g == Ra 5 StnRX

Substituting these in (4,1) and collecting the coefficients

" of A and B we get

(P5U-KU)A+5UB = o

(4.4)
:similarly frbm,(4.2) we get the following equation
U A 4+ (Bos, Uy — B U R=
52 37 , \FJ SZ ST R '3/ = O ° (4.5)
For nontrivial solutions of Eqs, (4.4) and (4.5)
A-s Uy — kU 5, 1
|
1} O
B
| s, Us B S, Uy —k, U
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This is a quadratic eqpation in hg, which can be solved

to get | , ,
k — Ei{th +—U3)”” Sz (Lh"+‘U3>
| 2 Lﬁl{jg 142
4 {{B(UﬁUS)“Sz(U?*U;)& G Us F{B Sp(UrtL 2>} {1.6)
S 2 Ur Uy

In order to have an expression for the ratio of the relat-
ive amplitudesof Rossby waves one can use ejther of the
equations (4.4) and (4.5). From (4,4) we get
lq Uy+s,Us =3

32[J1 | (4.7)

> |
\

Thus (4,3) will be solutions of (4,1) and (4.2) provided
(4.6) and (4,7) are satjisfied, Considering the mean zonal
wind for July over 18° latitude we have taken LM = -14m st
and {Jz = 7.5 ms™L, From (4.6) we calculated

ko = 1.84 x 10-'6 m_l. Since we have taken the beta-plane

centred at 18°N latitude, the wavelength in terms of

longitude can be written as

L~ ' 360

\ S (8]

> T ak, Cos (187

where "a' is the radius of the earth. We get wa‘ 32°

longitude, but to satisfy cyclic boundary g¢onditions, we

~ have assumed the wavelength of stationary wave to be 30°
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 longitude, Using this value of'ho in (4,7) we get

B~ 29,

These calculations show that the realistic winds.
in the monsoon atmosphere c¢an sustain a finite amplitude

baroclinic stationary Rossby wave of wavelength about 30°

confined to the lower troposphere with a very small value
in the upper troposphere. Such a stationary wave is in
fact observed over Bay of Bengal, These stationary waves
can probably be induced by orographic influences, like the
presence of Western Ghats. Gadgil (1977) has shown that
the stationary wave over the Bay of Bengal may be induced

by the topography of peninsular India,

The stability analysis:

The purpose of this section is to examine whether
the basic flow given by (4,3) is stable to small pertur-
bations. In this ghapter the Stability analysis will be

carried nut with a two-level quasi-geastrophic model,

As usual the perturbation potential vorticity
€quations at levels 1 and 3 can be obtained from (4.1)

and (4,2) respectively hy linearising these equations by
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perturbation method,  Let us write a field var;j__avbvle as

X /

/ v p ] . :
where the transient eddy }{/:: P SZ and the
stationary eddy ::’Z ¥ e X f;< 1. The bar and

respectively, Thus the field variables A , U and d)

are written as

where fG] = L

b= (BB

Noting that U and "13*are independent of ‘fj the
- potential vorticity equations (4.1) and (4.2) are linear-.
ised as in Section 1.1 to get the followdng quasi-geostro-

phic ‘perturbation potential vorticity equations,

f So [ I\ Pl T =% —x
”[“’! {Ti + “Sc‘; (4)3“5#7 >I[ + Uy {%37 + Sg (193 "19';*)}

i ~ - , P :
+ 19, .{/3 = So Ug*Uz;)} = 0 (4.9)

at level 1 and
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at leVVEl‘ 3. S \ a :
== ~ ( U . i =
”"BT ﬂ"w} afo 7.58 i = 1,3..

The basic flow is geostrophic, As is evident from (4, 3)

o0

Hére ~ﬁhe operator ‘Aff

’ Similarly -
- "X" )‘I b &‘?’/I ]
19 el R /,\ Co,g,J;z oY
TS o T P (a1
- ¥ 1 5 : .
and Vo = WC:}}Z' — k, B Cos kyx

One can replace kOA and kOB by {§1 and 123 which
represent the amplitudes of the meridional wind. We have
also calculated in Sectinn 4,1 that g v 22 for the

Stationary Rossby wave, Hence

B Vs
— T e - 50
A E% — AL (4.12)

We propose to do normal mode analysis and following
Lorenz (1972) assume solutions of the type

dr: = E Ct’ ” (ko + ko +Ly )]

e T

and (4.13)

& = J A explf(hacrkatly 1))
n :A’ o< .

o
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where ko,k and [ are real and ) may.be realv or
complex. The bracketed supérscript denotes the level,
Should the imaginary part of f\ be negative, (4,13)
will possess solutions Which amplify with time. For side
boundary conditions we impose cyclic continuity. It is

to be noted that the wavelength of the stationary Rossby

wave 1is 30° longitude and it satisfies the cyclic boundary
- condition., In this chapter the results discussed are

1
for ¥ = 0,

Upon substituting (4,11) and (4,13) in (4.9) and
(4.10) and collecting the co-efficients of
exp rz (h }20')(. +1 v o+ A*{ ):) we cjet the equations

L .=y () ;
- "‘“ {. { 1‘()’1 ( !:; ne-t ko ) A 32\93)2 #::ﬂ -~ 1 + Oun (/j - bm U1
| (1 Ve K Y4 2 v "

N L) )
"ﬂ{(b”grﬁ Fo -2 4 } '''' 7 (4.14)
| 4,14
and
/i —_— (/f) (”) ‘ = ‘\(/‘)
“’é‘:{ 52 93 ¢n 1 + 59 oy {J—:; “1 -+~ 'j?“ l 521,‘) 4;),1_1_/,
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. ' | . 2,2 2
where (j,= [\l ka and b n =N .LZC+ L.

Varying n from - co to cx;.one gets an infinite system of
linear, homogeneous algebraic equations, Generally one
is able to obtailn a good approximation by summing the
series (4,13) upto a finite number, N, thus obtaining

2(2N 4+ 1) number of equations in 2(2N <+ 1) number of

unknowns, When N is large enough such that )Ud,whas
converged, a good approximation to the 'true' solution
will have been obtained, By this process progressively
decreasing zonal scales are included in the series and
convergence is obtained when the smallest scale has been
resolved. Since these equations are homogeneous, they
result in an eigenvalue problem., The truncated system
of Egs. (4.14) and (4.15) can be rewritten in matrix

notation as

(2-78)¢ =o

°r (P @j}“ﬁz\<@;gf}\ —_— O (4.16)

where I is a unit. matrix, Matrix{TD-Q§*,) is real, but
the eigenvalues ;K and eigenfunctions (’(\ Ct > are
in general complex, If A = A %-Z,Z ;then the frequency
of the disturbance is given by ;Nr and the time in which
the disturbance grows to double its initial amplitude

is given by Zd — Ly)z//ﬂi . FYrom the eigenfunctions
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the amplitudes of different Fourier components d)m ¢can

_pe ohtained,

of matrices Ii
and (3 are shown in Figs., 15 and 16. Cb

matrix of the form

- The nongero elements 'b];}< 5 C}J‘k
> . 2

is a column

|

)
i
o
z
4+

CFLKI+V i

|
. J
\ CFQNL+2/

The nonzero elements ’3. ; and qﬂ of ‘P and.GL
J)t< ,JJI( o~ ™

For convenience let us write
n o= m — (N=+1)

when m varies from 1 to (2Nf+“1)”we define

B = ap (B =bn U, =5, Uy)

-are defined as follows,

Fo
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Figure 15; Nonzero elements of matrix P  appearing

in Eq, (4.16), The cross marks denote the nonzero

elements,
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Figure 16:'Nonzero elements of matrix él appearing in’

’Eq} (4.16). The cross marks denote the nonzero elements,
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F,?_.N Avvy ] , 2N+ rm 4+

ﬂ' M, — bh + S?..

Cvm, 2N 4+ - 52,
OVZN-@-- M1 m = T3
> . —
= b, +Ss
?2N+W\+1)2N,+m+1 N2

When m varies from 1 to 2N we have

= — ! | i -
hﬂ) g — “’,2" L { (5’7 (bm-ﬂw ki) +- S?..E }

7

bmp?_l\i +m42 — o { 5, Uy
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P =t

P2NAm T 2 <

> ' R l g‘(b ) +§ w,,
P2NAn 1 2 N4 42 2 P

Similarly when m varies from 2

) 1 fs |
ot = = Byl ) 45,5, |

1 2N — —_
2 =3 {(b, k)T, +5,5
EN4M+1 ) 2N 4 2 ( ney o)

The elements C‘D of Cb are defined below, If
T

~

N =— m — (N +/}> and m varies from 1 to (2N + 1)
\We have

— (1)
CPW) - C#

N
‘and

b
CP —
2N+ 41 n
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»Ih our analysis we have truncated the series
'(4.13):ét N = 10. Gradﬁally increasing the value of N we
found that for N > 4 there is no appreciable change in
the eigenvalues and eigenfunctiéns. Figs, 19 and 20 show
_the eigeﬁfunctions for different harmonics., It is seen

that at both the levels the Fourier components of geo-

potential prerturbation are large forthe first few lower
’order harmonics and become very small as 'n' increases,
Hence the truncation of series (4.13) at N = 10 is
reasonable,

Stability analysis is done fur different amplitudes

of the basic Rossby wave by varying 151 from 5 m Sﬁl to

20 m s”l. For each value of iﬁz the corresponding valu&
of i% is calculated from (4,12), For each amplitude of
Rossby wave meridional wave number '{_' is varied from
/ﬁO/IZ to ko’ satisfying the cyclic boundary conditions.
For convenience we put L == .%%-&20 and vary J from

1 to 12. by steps of 1. 1In terms éf wavelength L”%-:;iéglasu
‘where L3 is the meridional scale length of disturéance. [

ard [JS is the wavelength of the stationary Rossby wave,

Characteristics of growing modes for different
~amplitudes of Rossby wave are reported in Tables 12 to 18.
In all these tables the meridional scale length of

S 12,
disturbance 4s to be taken as —f}u times the wavelength
)



Table 12

Characteristics of growing modes in quasi-geostrophic model

——ha

for '\95 =9ms! (Meridional scale length of perturbat-

iton—is 1J times-wavelength—of—the—stationary Rossby wave)

R

12 t Frequency Doubling time
o (s™h (days)
3 1.9 x 100 8.5 x 1044
4 3.4 x 107%1 12.5
5 5.0 x 1071 6.5
6 1.0 x 10~°1 6.8
23 18




Table 13

Characteristics of growing modes in quasi-geostrophic

model forﬁ:s-—” 10 m s~ 1 (Ly = —15,2 LS)
J = lgl’ Frequency Doubling time
k—o \AT\ Zd

(S—l) (days)
2 1.5 x 107° 2.6 x 1013

3 5.2 x 1021 22.9

4 1.1 % 10721 4.7

5 5.3 x 10721 3.5

6 1.5 x 10721 3.2

7 8.5 x 10722 3.5

8 2.3 x 10720 6.0
-21 16




Table 14

Characteristics of growing modes in quasi-geostrophic

model for E} = 12 m s~1 <Ly = -lj% Ls) o
Frequency Doubling time
J = 12l | Ay ] 7y
k‘o (s—l) (days)
2 | 2.8 x 107%° 6.6 x 101°
3 5.1 x 107%2 4,4
4 9.9 x 107%% 2.7
5 1.3 x 10721 2.2
6 6.2 x 10°° 1.9
7 3.8 x 1072° 1.9
8 1.2 x 10721 2.0
9 9.9 x 10"22 2.4
10 2.1 x 10717 5.4
-24 16

11 5.4 x 10 5.5 x 10




Table 15

Characteristics of growing modes in quasi-genstrophic
o 1 12

model for 195:= 14 m s (LY == Lg).
) Frequency Doubling time
g =28 [Ar] 7
ko (s™1) (days)

1 1.7 x 1078 2.3 x 101%

2 1.1 x 10721 9.1

3 4,8 x 10722 3,0

4 7.0 x 10722 2.1

5 5.2 x 10722 1.6

6 9.7 x 10742 1.5

7 9,7 = 10_22 1.4

8 1.4 x 10741 1,4

9 2.3 x 10741 1.5

10 6.3 x 10722 1.9

11 9.1 x 10™%2 4,0

12 5.1 x 10 2.1 x 107




Table 16

‘Characteristics of growing modes in quasiegeostrophic

. ——— _ _1 _ -]—_2-
model for 193 = 16 m s .‘(LY = =5 LS).
124 Frequency Doubling time
J =
|Qo | Ar] _ [
(s"l) (days)
1 5.8 x 10“22 5.4 x 1017
2 6.6’x-10—22 4,9
3 8.0 x-1o“22 2.4
4 1.2 x 10721 1.7
5 3,2 x 10722 1.4
6 1,3 x 10720 1.2
7 2.7 x 10~21 1.1
22
8 7.1 x 10 1.1
9 1.5 x 10722 1.2
10 5.1 x 10'22 1.4
11 5.1 x 15’22 1.4

12 5.5 x 10 3.1 x 10




Table 17

Characteristics of growing modes in quasi-geostrophic

: - -1 12
model fpr ']_95= 18 ms —, (Ly == LS) .
. J
12 | . .
J = == Frequency Doubling time
lQo | Avl Zd
(s™h (days)
1 1.7 x 10723 2.4 x 1019
2 5.6 x 1022 3,7
3 lel x 10“22 2.0
4 1.5 x 10™%0 1.4
5 8.9 x 10~%? 1.2
6 3.1 x 10722 1.0
7 3.1 % 10‘22 1.0
8 6.2 x 10722 0.9
9 1.3 x 10~41 1.0
10 2.2 x 10721 1.1
11 3.2 x 10722 1.5
-23 16




Table 18

Characteristics of growing modes in quasi-geostrophic

model for @5= 20 m s~ L (Ly = -j:jg LS).
J. = a2l Frequency Doubling time
R | Ar | 79
(s™h) (days)
1 1.1 x 107° 4.2 x 10%7
2 6.0 x 10722 3.0
3 3.3 x 1072 1.7
4 1.1 x 10722 1.2
5 4.2 x 10722 1.0
6 2.7 x 10722 0.9
7 3.9 x 107%% 0.8
8 8.9 x 10723 0.8
9 6.8 x 10720 0.9
10 1.9 x 10722 1.0
11 6.2 x 10721 1.3

12 3.1 x 10 4.1 x 101
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of the stationéry Rossby wave. The frequencies of the
abové éomputed disturbénces are found to be far less than
the coriolis parameter, This suggests that these growing
modes are Rossby modes, Also these disturbances are
stationary. For each value of {§3 the growing disturb-

ances have maximum amplitude in the lower troposphere

(Figs. 19 and 20, note the log scale), We see that the
perturbation does not grow for lower tropospheric meridional

velocity 19, less than 9 m s™0 (Fig. 17).

The doubling time of the disturbance depends very
much on the Rossby wave amplitude (Fig. 18). The growth
rate increases with the meridional velocity (amplitude).
For each value of {EBrthere is a minimum value of doubling
time and the minimum seems to shift towards higher L as
153 increases (Fig.17). In all these cases the growth rate
is maximum for small values of '[! (‘L < ho/z > which
corresponds to the results of barotropic stability analy-
sis of Lorenz (1972). The doubling time of about 3 days

1

corresponding to the value of i§z»= 10 m 8~ ~ 1s a reason-

able doubling time for monsoon disturbances,
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Figure 17:; Meridional wavenumbe
dependence of the growth of Ros

quasi~geostrophic model,
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Figure 18:; Meridional wind‘(amplitude)vdependence
of the growth of Rossby modes in Quasi-geostrophic

model,
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Energy conversions:

In this study the zbnal wind is assumed to be
independent of latitude, but has vertical shear, Hence
the possible sources of energy for the perturbation to
grow are, available potential energy of the zonal flow,

and kinetic energy and available potential energy associa--

ted with the basic Rossby wave, We have calculated the
rates of energy conversions to see which of the above

energies contribute the most to the growth of perturbations,

The rate of éonversion among the different forms
of energy can be calculated as follows. First we will
derive the equation for the rate of change of the pertur-
\bation kinetic energy. Let us consider the x-component

of the momentum equation and the continuity equation

respectively,

S U JU .o du AU .

U___Lf - — WU .C\J,j_ — 19 — W — +‘:5:L9 . Bd)

ot O, Y OP - D% (4.17)

du o N I
OX >y ' dp

- O (4.18)
Multiplying (4.18) by (A and adding to (4,17) we get

QU JuE a D dcb
T %(uw)#wmg;?{. e
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Similarly let us consider the y-component of the momentum:

equation,
QY _, 20y, O 20
“5"3[" — DK oY b oM 20

Multiplying (4.18) by 19 and adding to (4.20), we get

O . d o) o 02 f't_»‘éfé
ST = 5-i<u.l)) é—g(b) b(uv) Yy (4.21)

Equations (4.19) and (4.21) are linearised as in

Section 4.2 to get

u 0 /! 35
T — 2 (2Uu!) = E(v'+u
ot 0¥ [ - ( / )
Je) N L 0P
- = (1) ¥
: C\)ﬁ( ) ) a"},{
(4.22)
/ v
?}9 _ o (w9 4+ !_,!19’) pl (219*19’>
ot oA
/
*-Qw(m/ﬁ*)—3fuf,ﬁgfﬁ
5}3 B‘j (4.23)

To get the equation for the rate of change of kinetic
energy of perturbation, (4.22) and (4.23) are nultiplied
by uf and 19/ respectively and then added, Terms

Containing {- wWill cancel each other and we get
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The right hand side of the above equation can be simpli--

fied by taking note of the following facts,

We have assumed the zonal wind (V} to be independent
of x and y. Also i;*his independent of y, Also terms
containing vertical wind shear do not contribute to the
kinetic energy. Again using the continuity equation and
hydrostatic approximation one can show that

/ ~ !

b(b ot Ad e

— U L = V.yd

A oY

. /g \ / ) _./ N4
- \/g(\/ ,%R).}. L (C!“ ) > 4+ W X
-~ ; aﬁ> !

Integrating the above equation over one wavelength in

both x and y directions and over the depth of the atmos-
phere the flux terms will vanish. Thus the rate of

change of perturbation kinetic energy is given by

9 %(LA/Z#L@/Z)JZ _ JF w1 i;ﬁ {f)wo( oz
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In (x @j )tp) co-ordinates the above equation can be
J

rewritten as

_,/.L U f.\::_ﬂ ( u/ Z,Jr..\é 2 ) R G\y OUD

. i f‘ff'U{ ' 09 0\7" Aﬁ&b B % jf&w( o 0)’3 OH

— j 574 (4,2 4)

The integrations are over the domain (O 4 A £ ZW/[QC _

oLy £ 27‘"/1 and O L P £ f’o

The perturbation equation for the change of
available potential energy will be derived by considering
the quasi-geostrophic thermodynamic energ equatidn (3.2)
in the absence of heating. As in Section 4.2 this equat-

ion 1is linearised to get

30(./ + Q,OS b a&.%+3% D-f—?(—_/
Zyt “— oMU oA 7537
—,L19/ ?__[_?H B le = O . (4,.25)

0Y

Multiplying (4,25) by c{ﬁﬁg~and integrating over a complete
wavelength in x and y, the flux terms vanish, Finally we

get the equation for the rate of change of perturbation



73

available'potential energy as follows,

((fdef?
j },’jM d dny o[’:?

1 ﬁ/BVj oo O 1odud

L /H
!?j

e T

(4.26)

The integration is over the same domain as in case of

(4.24), Adding (4.24) and (4,26) we get the equation

for the rate of change of total energy of the perturbation,
The last terms on the right hand side of (4.24) and (4.26)
cancel each other, as they represent conversioﬁ from eddy
available potential energy to eddy kinetic energy. We have
not calculated this conversion in the present study. From

(4.24) and (4.26) we get

/9.
! 2 1 o &
?+‘U¥N) L 1 ar\

N r-
?W( e e S fdwndydp

On the right hénd side of (4.27), the first term represents

the rate of conversion of kinetic energy of the basic wave
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_ to.perturbation kinetiq enerqgy C( 1<N)E<Jv) through the
Reynold stress (_MLU}9’§ ,' The secnnd term representé
the rate of conﬁersion from the available potential
energy of the zonal flow C( /\z s /\/ ) and the last term
is the'conversion from the available potential energy of

the stationary baroclinic Rossby wave C (A, A’ Y. The

2.

relative magnitudes of these different conversion rates

are calculated by using the following relatinns.

C (K, ,K') = ~~-~ﬂ u v’ 519 dmawj Osz

e, )= i B

O (/_\Z ) A/) _ ( f{fw/cx’ ‘a:;[:g(]dxclyd}j(ala:;o)

96 ) oM

i

Conversion from kinetic energy of the basic wave:

In two-level model we calculate the rate of
~ conversion from kinetic energy of the basic wave to
pertufbation kinetic energy by considering both the levels
1 and 3., Hence (4,28) is rewritten as |

Il YR 9.
C(Ky, K= L g (( ! Q01 ! 955 ) aaydp
) DK 3 0N

(4.31)
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where the integration over _;3 ~1s from Q to Zlb,
Using'geostrophic wind relations and (4.11), the above
relation can be expressed'in terms of geopotential pertur-

bations as follows,

C(kg K =

2942 ) L7 0y o

4.-'*3__53 éﬁg Bdr); {(@ (ke "Lk“ > d+ dy

ko A {r 2&,

(4.32)

For stability analysis in Section 4.2 we had not
used the complex conjugate terms in (4.13), because finally
we collected the co—efflcients of Qx}vfi Gnkox +- Ly +5A{‘]
to get (4.14) and (4.15). The inclusion of complex conjug-
ate terms in (4,13) couldpot ha&e changed (4.14) and (4,15) .
But for calculating the rate of energy conversion we will |
have t» integrate over ceitain volume and hence the complex

conjugate terms are to be considefedw

Hence we write

)
C N S EN TR byt gt
C'IP,] o 21 X q‘\m € +- C,i>n1 e (Rt A )}

— D
(4.33)

/ F 5,5(3 z (nky **Uﬂfi &’(z)é—z(nk@%—r y+5\“'t)} |

N —
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where (;:) and )\ are complex and (t) and A are the
T - N n

respective complex Canugaties i.e C}D

\a .7

7 Lo A — ¢m+z d}n

r~ ¥ , i ' . o~
an - Ar\'nfz C!Dﬂ A AT A ana A

Let us consider the first integral on the right hand side
of (4,32)

= quq”xi

/
substituting for dﬁ from (4.33) we get

ﬂ ‘)¢ 5¢7 ( tk’?( Th%)o{udy

oY
ﬂ 2 { n gk tly+at) g@)aa(n@w@m‘@}
€

N= -~

Z {CFU Fmkgrtly+at) Cf—“ni‘ ) o Uk 4y +?§~t>}

m — _oo

(eﬁ”‘ SR o dy
— 2,\ tJ} [ 1)(})1) 1 (n+m)k7(+2a -t}[zwé{hj

A nmo g ~ Ij

"4/ 4 ‘L(ﬂ m)hc’)(qu CtDH)CP 1(m DLE ij/(

| dy
TOTH) ~ m L) 2R @
4"‘.’%1 d)n(;) o "c{(n-r 7’%7(—&2/%{? A/}ZZM
] e vy
.ng —i o .
x(gl 3 fé;k,;?{) dv .

The first and last integrals on the right hand side vanish
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after integration over y so that

ﬂ ?ff_; %; (e{"\loﬁéiwjax d_g

— 27k, e j 4 fm{ "’(1) {e‘i (n-msa) ke

r-.l.

:, - *YY‘)—— ,;j - ya - — /\ 1 . ‘
—p ( ')kfmj N C}D(”C’JU) {e“é (m 1+ I) }’\’OX

> r) i

t{m-n-1k %
ot ) ks ﬂ dn
While integrating over x it can be shown that terms W.‘Lth
"M =N from the first series; with mi —n-1 from
the second; withwm = N —1 from the third and with

™ = n-}_’(‘/from the last series contribute. Other terms

vanish, Hence we get
[ 28 0 (¢4 g )y = gt {wo

{1)

m~ ) (g ( ‘
A Cib)n Cb:‘ﬂ —(n-1) q& 7)n 1+( )CID“C#)n—? —(n+1) dbr?) rw?ﬂi
m-t N Tm T
— Zf ! Z[ (ﬂ+1) (Cj)n ,'\:.1 'C#Y\?) r{?_?)
O wm T4 L )
— (Y\ A"') C#)n yslz', - n(’) 4%21 j ’

Similarly the second integral on the right hand side

of (4.32) can be evaluated as
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[128 28 g )any

— L7 EZAJCZ{Y\ 1) dg%)(i%ﬂ 4’n f—)m)

Y\-—_»OG

(2) (= T ‘
o) EE - )

Substituting for these integrals in (4.32) we get

2
C(K, ,K) =1 27 thk>€—znit

L[ {(Wr")(ﬁﬁn (1) -Nm) r(121>

+Bz. {( N 4+1) (4 /L}(z; “g;(g} C}){S) )
T n

N+1
N - (2} ~i2) Y(z) (3
— N — = Z J)
< ) (Ll)ﬁ CPnJ B ¢ﬁ,1> . (4.34)

Expressing d)y\ and ({)n in terms of the real and imaginry
2 Y v

parts Ct)n and of the eigenfunctions we can get

C(Ky,K') = Qhéitw o™ 2T

) [B o (6l - del)
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—(n-1 (CF'TC#? <f>n [br:—r1>}
+19 {(nﬂ) (d% Cbmw 4{’1 j‘““)

ESRICE R =T

Conversion from available potential energy of basic wave:

Now we will consider (4,29) to calculate the rate

of conversion from available potential energy of the basic
wave to that of perturbation,

_ 5\ (0P
We have 0 X _ :@._(—~5¢> — Bb(7£§>

2N X ”575
4 BU* .
») ‘5b

Using finite difference approximation

(5&"*)2' _ #fo ”\‘9 5 (w )( 1@( ~ik;p’c)

PRSI
RSN

X Y 2 AP

Similarly . BC;)/ - Cb/ _ /
% “’—(S‘F) - “1 Zp%
=L o2y

f5 Y S 2f, 0

Hence from (4.29), after integration over f:v from ©

-
L\’}\

to '90 we get
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. | o ] _ wh)(iﬁ'—i%>
{A, LA ) = 0N 73
C( g ) 46((3‘ (O {9)2'

ﬂ(a%i b<i>¢1 54’4#
c)>)(1k"x 21?7()017((}%

Let us-consider—the thirdmlntegral—on the right hand side :

(4.36)

of (4.36). Substituting for g[)1 and ql) from (4.33) we
| 3

H

3 ﬂy{% < (mhx+ly+at) L g g - (mw*{-gm)}.

{#32) < (nkoc+1 34-/\*\”#:)%3 e—z (nkgoe + 1y 4—3&’*5){
( 7'?’)( 2h07<> ol dy

Integrating over ’\j the right hand side can be simplified

to get

ﬂ 54)1 ei kot | ‘%"‘) dx dy
o 54?\ 4 Jz /)va2 { qt(, ch ( 7 (n—n+1)k,x

© h

Z(m~n -1 ~ C(n=-m 1) R,
+ e ( )kby:> — Ckiw<#éfi<€f’( A

o+ e{(n~—m-1)hovc> § A
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While integrating over X , terms with ™ — N —1 from
the first series; with ™ = N+ frm the second, With
M = N+1 from the third and with " — N—1 from the

last series contribute and others vanish,

Hence, 5 /
J a\j (% /
(%]
. Lx? «2AT W (1)~
=1 — L {3) T
. L ¢M Fn + B, D

-G A Y, 4

Similarly we can evaluate the other integrals,

_ / . .
/) %?3 G §T%) dn
g2 -2A JCE 2) T3 7(3)
= 1 }‘{0 e C{) CP th—}»’l Y\z
n= w<><>

e 3 76 [ 3)
- 4)“ +1 C#m R A P Cf;‘n § y

. «-.>o
- 7 éf\f é-p,’\? (3) (1) C}LJ(B) T )
ko V"-l N+1 CF”‘
, r\ ey

= (2) U)' () ()
= P & - ’ L &, }
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e ik s |
j ¢1 >, 2{+ezhg)dxdy
) [>e]
- ‘T‘e - Z 7\ 4)“"7 ql:»n +C}>n+’1 C.-bn
N = —30 .

T T4 Ci% Mo 4%1

Substituting for all these integrals in (4. 36) and

rearranging the terms we get

C:(AN)/\) = 7 2h>(&5 ;) - ,?)-t

§ gk, (ap)* |
L (B E2H B (40~
N=—oco
— <f<?31—p1 n~+4 “f”Ct%?jq e > ( (1) é}; <2J“

(4.37)

Expressing the right hand side in terms c® the eigenfunct-

, Y 7
Lons CF and 43 we can get
1 N

C(Au,A) = ~ 27 R(B-B) 2xit
&g R, (Ap)2

X0

X Z’ E»_(C#:;Lﬁi)(qb:;ﬁ* > 45”-\
.w(d%*’* CbiY)(CF;;? Ch%M ‘ C;>“ )})

(4,38)



Conversion from available potential energy of zonal flow

Let us consider (4,30) to calculate the rate of

change of available potential energy of zonal flow

We have

olo(] AL _ D [ 2P U
“‘37?:1 (ij> ~ Sk ( %wf,) JC

et

© o
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Using finite difference approximation

(557 = %

oY Ju T o }o ~Us)
and O(/ . . (B 4\ ) d:
2 5)',
2 A }D
' /
and v, =L (v ) = L (%34,@7)
202 2,V T T
Substituting for ( ?L?)z , O{Z/ and }92’ in (4,30) and
integrating over Ij ’

Cla, A = Fo (U3—~U7)

2X
BCPf / B‘/ /
+ 28 Cbzwgqb?)olxd\j

(4.39)
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‘Substituting for 431 and Cﬁz from (4,33) the second

integral on the right hand side of (4.39) becomes
_[f 5¢3 ¢ cbcclﬂj - *Z)Q f/\; m{ (m1\09c+mjm_)
’"'Chf e~2(mbn')(+l;\}+)f ? \ ﬁ( (T) ‘L(ﬂk?(*l*yﬂﬂﬂ
>,

~ . n,..co
+d>r§1) e»t(nho'w({{y +2%‘{d‘7< dy

JB% Ci>1 ol C\qj — 2:%”1’? “2/\-;JC

X 1 z m- -¥\ ~< —~ Lg) ( 1 ; zN-m 07(.
. Zm{ n € — <, 4 € j)

Integrating over %j from O to ;lﬂ'/{, we get

m N

While integrating over ) , terms with v, =1, contribute

and others vanish, So we can simplify the right hand

side to get

N

Nl

_([od o 2at )
i 085 gy day = - Z ﬁb” &4 )
N =0

Similarly the third integral on the right hand side of

(4.39) can be evaluated to get

SO

f/a i ) dxdy = ’LT *2”2““
n=

( (o d)(s ZE:Q??)\)
O

——
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Tt can be shown ﬁhat the first and the last integrals on

the right'hand nide of (4,39) vanish, Substituting for

these integrals in (4.39) we get

C(As ;A/) . 4TZP (Uz-Uy) e*ZAif
{6“% (np)?

[
] 123\
§ Z ( CF(") C#(a d,;) 453) “’. 4)(5) t;l )

_—00 (4o40/

I~
Expressing CPH and q% in terms of the real and imaginary
- 1 .

parts Cﬁ: and ch:' respectively one gets
| 2 ~ -2 9.
C(A, ,A) = 874 b, (s ‘J)Q,Z/Wzt
leg (ap)?

&0

1 u} »r- . ' ] :

N 37 1T, 3T

X Ei n ( 4%ﬁ Cﬁ% -—<#% Ct% ’> - (4.41)
Nz —o2

Calculating the energy conversions from (4.35), (4.38) and

(4.41), we found the foliowing ratios for the fastest

growing mode when 'fa = 10 m s~t

C (K, K) — 1.2 x 107
C (A, A)
Cf(/%w;/Av - 26

C (A, A)
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Here, (C (!<h!)’<j) stands for conversion from the kinetic
energy of basic wave, Cj(/*%y;/¥jfor that from the available
potential energy of basic wave and C:(/%2-’/A/) for the
change of available potential energy of the zonal flow,
These ratios have been calculated for the disturbance with

the maximum growth rate CereSpbnding to the doubling time

of 3.2 days U TE Was found that far other rowing. disturbances
.the ratios do not change very much, From the above ratios
it is evident that the disturbances grow mainly by drawing

on kinetic energy of the stationary wave,

Summary and Conclusions;

Calculations show that the realistic zonal winds
in the monsoon atmosphere can sustain a finite amplitude
baroclinic Stationary Rossby wave of wWavelength about 30°
longitude, The amplitude of the stationary Rossby wave
in the lower troposphere>is more than 20 times its ampli;
tude in the upper troposphere, Such a Stationary wave
is in fact observed over Bay of Bengal (Gadgil, 1977).
These Stationary waves can probably be induced by
orographic influences, like the presehce of Western

Ghats over peninsular India,
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By carrying out stability analysis using a two-
level quasi-geostrophic model it is seen that. the
stationary Rossby wave embedded in the monsoon zonal

current is unstable to perturbations.

The growth rate of perturbation depends on the

amplitude of the Rossby wave as _well as_on. the meridional

scale of thé perturbation, It is seénfthat the: deubling
time decreases as the amplitude:of_stationary'Rossby wave
increases but there is a minimum value of. i§5vwmichmcan;
induce the growth. In the present study the mindimurm:
value 1s 9 m s"l. For each value of;iﬁé_ the: growth

rate attains a maximum value for a particular value of the
meridional wavenumber ' | ', which lies between‘§§ho/72
and 7‘20//12. - In other words the maximum growth rate

of a disturbance occurs for meridional scalelength lYing

between 5000 and 7000 km.

The amplitudes of the growing modes are mainly
confined to the lower troposphere,

The doubling time of about 3 days corresponding

1

to the value of ‘EL = 10 m 8"~ is a reasonable dnubling

time for monsoon disturbances,

The growing modes are Rossby modes and they are

almost stationary.
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Energy calculations for the fastest growing mode

reveals that pe: curbations grow mainly by drawing on

kinetic energy of the basic wave, This is in confirmity
with the result that growth rate increases with the

amplitude of the stationary Rossby wave,

From this study we conclude that the monsoon _zonal

flow can sustain a finite amplitude stationary Rossby
wave of wavelength about 30° longitude, This stationary
wave 1s unstable to perturbations, Instability of such

a stationary Rossby wave is perhaps one of the mechanisms
of formation and growth of monsoon disturbances, This
will also explain the confinement of monsoon cyclogenesis

to eastern India,



CHAPTER FIVE

STABILITY OF A STATIONARY ROSSBY WAVE EMBEDDED

IN BAROTROPIC ZONAL FLOW

In the stability analysis of thelprevious
chapter we had considered the monsoon zonal flow having
vertical wind shear. The meridional component of wind
had also vertical shear, To examine the role of baro-
clinicity in the growth of perturbations we intend to
conduct the stability analysis by éuperposing a stationar:-
Rossby wave of wavelength 30° longitude on the baro-

tropic basic flow,
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 Barotropic zonal flow sustaining a stationary Rossby wave:

First we will calculate the barotropic =zonal wind
which can sustain a stationary Rossby wave of wavelength
30° longitude along the zonal direction. For that we

consider the Rossby wave speed formula

— | P (5.1

(..' p— LJS RQ’ )

° 6 1

As calculated in Sectinn 4.1 we take kb = 1,84 x 10 m -,

corresponding to a stationary Rossby wave of wavelength 30°
longitude, Considering a beta-plane centred at 18°N

latitude from (5,.1) we calculate

:5 R
Usg ’[“Z ~ 5.5 m g’

e -
Thus a zonal wind (JQ = 55ms 1 can sustain a stationary

Rossby wave of wavelength 30° longitude.

Stability analysis:

The stability analysis is conducted as in
Sectinn 4.2 by putting the vertical shear LJS’iJQ::(D.

We use the basic flow

CiD - otjs'ff ,#.f; A Sn kéx | (5.2)

and the Rossby wave amplitude

B = kA =10 m <




The‘stability analysis reveals that the stationar-
Rossby wave embedded in the barotropic basic flow is also
unstable, The growth rate depends on the meridinnal scal.
of the perturbation and the fastést growing mode has a
| doubling time of about 1.5 days (Fig.21). The growth

rate is maximum for (_fg }QO/Z,which agrees with the
/

results of barotropic stability analysis of Lorénz (1972).
The frequencies of growing disturbances are small

compared to the corinlis parameter (Table ig) which
suggest that these are Rossby modes, The meridional scale
length of the fastest growing perturbation is the same as
in the earlier stability analysis with vertical wind shear
The Fourier co-efficients of geopotential perturbation

- corresponding to the fastest growing mode are shown in

Fig.22. As in the case of two-level quasi-geostrophic
model the amplitudes are mainly confined to the first few

low order harmonics.

Energy conversion:

As there are no vertical wind shears, the only
source of energy for a perturbation to grow is the
kinetic energy of the basic wave, The rate of conver-

sion from kinetic energy of the basic wave to perturbation



Table 19

Characteristics of growing modes in case of barotropic

e

basic flow and 19 = 10 m s~ ' (Meridional scale length of

perturbation is 23 times wavelength of the stationary

Rossby wave) »

J = igl . Frequency'LAYl Doubling time
Re Z4
(s~ - (days)
1 2.2 x 10721 7.0
2 3.5 x 10723 3.6
3 3.3 x 10 22 2.5
4 3.3 % 10"22 2.0
5 2.6 X 10722 1.7
6 1.0 x 10722 1.6
7 8.3 x 10722 1.6
8 1,6 x 10720 1.6
9 2.9 x 10722 1.8
10 8.7 x 10%1 2.2
11 2.8 x 10723 3.8

12 8.5 x 10 2.1 % 1O1




'DOUBLING TIME (DAYS)

Figure 21: Meridional wavenumber ( L = 3‘k0/12)
dependence of the growth of: Rossby modes in case

of barotropic zonal flow for 3§ = 10 (m s
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’ R - - /
kinetic energy, (_ (I<¢4 ))< ) is calculated from (4, 35).
Calculations show that the perturbation grows by drawing

on kinetic energy of the stationary Rossby wave,

Summary:

To examine the role of baroclinicity in the growth
of perturbations, the stapility analysis is conducted by
Superposing A Stationary Rossby wave of wavelength 30°
longitude on the znnal flow without vertical shear, 1t

is found that a stationary Rossby wave embedded in a

barotropic zonal flow is also unstable to perturbations,
The growing modes are R.ossby modes and their growth rates
depend on the meridional Scales. The fastest growing
mode has a doubling time of 1.5 days for ig = 10 m s_l.
Perturbations grow by drawing on kinetic energy of the

stationary Rossby wave,




CHAPTER SIX

STABILITY QF A STATIONARY’ROSSBY’WAVE EMBEDDED

IN THE MONSQON ZONAL FLOW:

TWO-LEVEL PRIMITIVE EQUATION MODEL

i

In Chapter 4 stability analysis of the stationary
Rossby wave embedded in the monsoon zonal flow was conducted
using a two-level quasi-geostrophic model, It is the intent-
ion of this chapter to-reexamine the stability of the finite
amplitude stationary Rossby wave superposed on the monsoon
zonal flow by using the primitive equation model with a

beta-plane centred at 18°N latitude.

The stationary Rossby wave used is the same as

that superposed on the monsoon zonal flow inVChapter 4
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It has a wavelength of 30° longitude and its amplitude is
maximumn vin the lower tro}SOSphere. The ratio of the
relative amplitudes at lower and upper troposphere is

given by (4,12),

Basic equations:

In the primitive equation model we use the follow-
ing vorticity, divergence and thermodynamic energy

equations respectively,

el op o (6.2)

(6.3)

where T)= Y/.\/ and we do not include heating in the
model, Expanding the vector +erms in the abovel emmations,

we Lget,
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RO SRR S-S SPN-i

}% - — U Bl ,..79 W /3]9 BQJN
oU dw QY 2w

D oF o0y  op ox

(6.4)
9D _ 2y 0D _q 9D [ Uy
E;E R i E)A ' 2}}% \OA)

50U du (B@)AH oV _rou
0% oy |0y, 3 DY
~BU — D U ow
b ob o
_ 2% dw
op B'\j | (6. 5)
0 [0y _ D oy 2 b
ot (—SE> - #ug—)‘(%ﬁ};> th(%/fﬁ | 6&)'(6.6)

In addition to the above three equations we will have to
use another equation where the surface boundary condition
for (1) 1is incorporated., We have the geopotential
tendency Old>
dt

where ||  is the vertical velocity, Expanding

%}N

dé
dt

isobaric co-ordinates and using hydrostatic approximation

in

we get

STHV-VP — X = gl
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when applied to a level 1QWer'boundary) VJ =0, Also

at the surface

T

o _ 206 _mbd* GR
zﬁt- — Eﬁ)( 1 ,7 -+ . ﬁb oy

Hence

(6.7)

Linearisatinn of the basic equations:

The set of equations (6.4) - (6,7) after linear-
isation will be used for the stability analysis. The
linearisation is done as in Section 4,2 and we get the
folloWing perturkation vorticity, divergence, thermo-
dynamic energy equations and bottom boundary condition

respectively.

L3 wd %l +FU+ (I + 4 )D +o O3

b
+ QU™ C)L ?5l‘m — 0
5!; B'X ?JP ay - (6.8)

o[D'"JCI + pu +§7c1‘ «Il)j 9w’
+ TR, VX °

>S)

b ,E\‘j + 2 > 3% 3y ol | (6.9)
5(13/ S \Uha r ol
Ly fu SF (&9 Bf“+ sw =0 (6.10)
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/ - ,._\;’ W o= .0 (6.11)

<&

where the operator

) - P)’% g —)( 'a\j ”

The model:

As is customary, the vorticity, divergence and the
thermodynamic energy equations at levels 1 and 3 and the

bottom boundary condition are written down,

100 mb Po oy We= O 0
325 o, X )
550 | (TE:';;'E > Wo )
775 N, Wy | ;
1000 Ay, Wy .

The perturbation vorticity, divergence and thermodynamic

energy equations at level 1 can be written as
x* — x
L, —ﬁ + U ? 1 : /1T
e ?9 + + 41D, +w, =
o TP (37 ) TSE
0T owp  olUs Doy

op 0% B}: DY =0 (6.12)
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4 00T 20y au,, (6.13)
2 Y ay 2y |
and
¢ D /289, ol /
S st +f U >b w4§gﬁmwlzo (6.14)

Similarly the perturbation vorticity, divergence and thermo-

dynamic energy equations at level 3 are

' / A S

Jo. U_
B >k

- h)g

X

=¥ /
+ (33 + J(o‘ Ds
_ dUs 2wy

9y

Y _ -2 ! ¢
‘L.é'l’ES “f T pUz Y P+ %}3 éﬂ?
£ 005 Qs o DUL JuUs _ o
dp DY % Y
5@'?’/ / Dlﬁ’ s ol
S T (R A 9, <o +6, Wy =0
IM  {,u 3& 03 b 3 w2

The bottom boundary condition is

(6.15)

(6.16)

(6.17)

(6.18)
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As defined earlier,

+ U

- \
‘f"‘ ‘“" \Jr ¢ b?

Unlike in the quasigentrophic mndel the horizontal diver-
gence is not neglected (compared to the vorticity) in the

~primitive equation ..model, - Hence we-have

-/
ED/ = :72)></ T e EZB& '
| 519 | . (6.19)

and

where the perturbation wind components are expressed by

T ?’\ L 9/ JX

and BV X (6.20)
U/ - .Q:}: 4 ?Z~ .
0% QY

o /
Here '%ﬁ and D( are the stream function and the
velocity potential respectively. For the perturbation

/ o/ /
fields “F , X and (ﬁ» we assume solutions of the form

’€)Xbﬁf (nk?(—”’?’ﬂf jj‘f“}‘%) (6.21)
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For simplicity we take k = 0 aé in case :o'f the quasi-
geostr‘o}‘_ohic model, S‘ubS.;citllting (6.19), (6.20) and
(6,21) in the set of Egs., (6. 12) to 7(6 18) and collect‘ing
the co-efficients of exp {1 ? K+ {Lj + /\—t ){ we get
the following set of linear algebraic equations., after

considerable algebra,

(1)

LBy (K~ bom) Yooy + 0 pelon ) Ho

+~HE(§‘ er) ’\j(n;';; HOK (* }ioﬁm')_“bn—%)

4 by (By=5) (Rt an_ ,yj !

o { > ,-;L;,, (Ug~ J) Ay +{z K By by ke Q”WL’D
4 Bran (8,-5) (ana— k) { Xp,

. (4) (1)
+ T . by X — A b‘n h = O (6.22)

R (1) ) R ()
kot Y %4 ~ &}J Yo Ry 0y /\;jn—r-- )

’ V.~ — /a0
+{i“ L bnq (E%—:-JG -—-Ea“‘ l !}Qo'w’l C‘-m—")? Xn'-’; L
- .2 .
' [ U=Uo ) VA0 S 5T
+ O {/3 + k r Q e U;){ Cn T { ’({T L bﬂJﬂ (%(
‘\\
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4 P "" ‘ | (
- 5 L5y (5,-T )“H‘,')..,: — in Sq (L,-U) Y
'(31 (Uﬂ ()\ r\)/h+'1 + Qn 1“’ )? UO) X” L

1 ! = T

~ S g ans )y e LD
-1

v, )
5 -1 T -
“ T . JL\ r'\ 2 ]CO T

“Tho T /1 q{f’ , V1ly4 dD
A‘lro 5. "o Vi1

(6.24)
= 7,2 o (2
Loy (k= 4 o ( Bk, \ N + LD, (K
) , -
”’bn+ﬂ>n+n+1 +"l bﬂ»i(wéﬁ) )<ka13n )jX:)1

~L b, {!.JL-,~'L_JP) ‘)(}_:.]' + 1'2— o4 1 (UL -0y ) (anﬂ’hp{m

4+

+ {“j;“ K(,E; (ko Qg —lon )+ ;’ b (sz ‘B)) (ke

1 —1

i — . 19, =19, ) [ Oy
1 ('l P“nl“qf (Ljf)—f..f) - )‘30 Ay l> + ; Ler-’l ()'91 L2)( i

L2
~kq SK V\Aq*'g{bbr) Jnf\}/r\ —

(6.25)
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] (%) T
5%}“ - {( e T A+ Lo OB X
(1)
+ ap o Jz; ' )XU 7’ bn 1(@’10) Xh+1

P UL J5 D) AR Ky
«i_.ﬂcm{/i -+ br\ < Ji_, — UZ>§ )(h «ZS 0 L 41 ( ﬁz) 2>

t93< N+ “‘Z "M+'>§ Xf’%}ﬂ { 3CLJ r\k”

R (2) 1 (h) (3
+5 b, Ch.‘ + 5 b, th ; — 2 by, X,,\ = O (6.26)
) (7> e TEN (3)
_”'12: ! 9 ( /4 Ug) /\{/nz g = Cpn S (“l] U >r\}/ —;—,(‘ 55(7’0//"192) N+l

o 3 A (2) . 0o
+"12‘O»n-_,4 (1-9/.;"1927 53 ’Xn A l_S_, (ULFUZ) XV\ + 3 3 Sz ng (D‘{’

Ty (2) _ LSZ'E{Z] (2) Cky‘, > / (2) 5 L" ' (2)
2)2») X n-1 "E‘—:‘) be\ 1 b . '——‘E* 'ﬂ‘}‘/f
sy ) eys, Usg gt
4 tozl3 Oy S ({) l,, A1)
Q]CO (‘)b?.)__q '+ —:FO d‘ Ci'n’f ,!'Jf—z {”'Jﬁo -(f:}n/’(ﬂ .
L Y9 55 )
2 jto“ﬂxm Jé /lz\jto C;D CLW Z - (6.27)
{;tg-(l@/”[ C‘L/\(l’) L (an Jo! ,Z{ + .{0'1?/ (L})
2BCA)’J h- B, L\»]r’ 5 B,- A}QCF"\‘H
s Ly | 4
b () (B 49 =
o BC /—\}D (6.28)
L (E’@/_{
where _L P -




103

- The bracketed superscripts in the above equations denote
the levels, As in ehapﬁer 4 truncating (6.21) at n =N
one gets 7X(2N + 1) number of algebraic equations from
Egs. (6.22) to (6.28). Rearranging the terms we get
matrixrequation of the form (4,16). But here the matrix
7  is complex. If ?{f and E?i denote the real and

I~ )

imaginary parts of 7:' respectively, the eilgenvalue

~equation can be written as

(P-a

PN ~| ‘
Herezb , k’ and Q&f are real matrices of size 7(2N+1) x

1, 7 - .

2 \ (.f\ N ) ——
PG @R =0 e
7(2N%+1) each, Due tn computational limit we could go wup
to N = 4, However, from our experience with the cquasi- =
geonstrophic model in Chaper 4 we know that the Fourier
series (6,21) converges very fast, Hence the eigenvalues

and eigenvectors are probably not very much different from

the true values, With N = 4, we have matrices of size

63 x 63 each,
Ei B
The nonzero elements Ty ;3¢ and -y, of
O | jk > J)< C&JL

LY — )
the matrices P , I and Gl, respectively are shown in

~ ~

Figs. 23, 24 and 25,
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Figure 24:; Nonzero elements of matrix 'F) appearing in

Eq. (6.29), The cross marks denote the nonzero elements,
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R is a column matrix of the form
| T, \

é

e S et e

R .
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Y T ' '
The nonzero elements %k xgk and %J Kk are defined.
‘ 9 J F .

- below., For conveneince let n =m - (N + 1),

When m varies from 1 to (2N + 1)
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The elements rj of E’aré defined as follows, ILet

‘m = m =~ (N + 1) and m varies from 1 to (2N + 1).
Then |

. — (1)
! m) no ,\;/”}
(z)

TZ N ~+m —}--r n

TZ;N +—m+2,:; N

- — v (3)
Té\; N+m+3 Xﬂ

(0]
Y, = ¢

SNAm+l  Tn

N )
t‘K)’i\)wkm—}—gm C.;I/Tf'\
. ol

12N+m+g N
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The eigenvalue.equaﬁinn (6.29) 1is solved by étandard}
numerical algorithms. The imaginary)parts of these eigen-
values give the growth rates and the real parts give the
frequencies of the disturbances. The amplitudes of
disturbances corresponding to different harmonics are

obtained from the eigenfunctions,

We have conducted the stability analysis for a

typical value of the Rossby wave amplitude ]}2 = 10 m s'l.

The corresponding amplitude in the upper troposphere TB{

is calculated from (4.12). We also need the meridional
winds at levels 2 and 4. 199 is calculated by numerical
interpolation using the values of i§7 and 15% whereas

7§Q is assumed to be equal to i§5 . The latter assumption

is made with a view to neglect the effect of friction at

the boundary layer, Similarly the zonal wind at level 4

is made equal to that at level 3 i.e. UL{ e U3 . Also
sz is interpolated from the values of Lh and L}S ,

which are the same realistic winds used in the quasi-

geostrophic model in Chapter 4.

With the above values of zonal and meridional winds
at different levels the Characteristics of perturbations
are obtained for different values of meridional perturbat-
ion wave number ! L'. AS deséribed in the previous

Chapter, to satisfy cyclic boundary conditions both in
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X and %j directions we write t»:: :%-)QO and vary ]
12,

from 1 tn 12 by steps of one,

Results;

Unlike in the quasi-geostrophic model we get two
distinct types of growing modes in the primitive equation
model. The characteristics of growing modes are réported
in Table 20, There are growing mndes with frequencies
much less than the coriolis parameter which are Rnssby
modes.  In addition to these modes we also find inertia-
gravity modes whose frequencies are either comparable
to the corinles parameter or greater, The classification
of these separate growing modes will be further justified

later »n,

The Rosshy modes grow with almost the same doubling
time as in the case of quasi-geostrophic model, These
growing modes are almost Stationary and the fastest mode

corresponds to {_g;kokvdth doubling time of 3,1 days

(Fig, 26). Comparing/the characteristics of these Rossby
modes with those of the quasi-geostrophic model we do not
find marked difference, Amplitudes of stream functions
sﬂy} £or different harmonics shown in Figs. 28 and 29

(note the log scale) indicate that these Rossby modes




Table 20

Characteristics of growing modes in primitive equation model for

{§ = 10 m s_l (Meridional scale length of perturbation is %%

times Wwavelength of the stationary Rossby wave)

12{ Rossby modes | Inertia-gravity modes
’ R Mr‘ (s~ (cggff"s) l-ﬁr‘“(s—l) (d%m
1 1.1 x 107° 31.3 4.8 x 1077 0.1
2 6.9 x 10~/ 7.5 - 4.6 x 107> 0.1
3 6.5 x 10/ 6,2 1.4 x 1074 0.6
4 9.8 x 107/ 4.6 1.9 x 107% 1.0
5 1.2 x 1078 3.6 2.4 x 107% 1.6
6 1.3 x 107° 3.1 2.9 x 1074 2.3
7 1.4 x 107° 3.1 3.7 x 1074 3.2
8 1.5 x 107° 3.7 3.8 x 1074 4,1
9 2,0 x 107° 5.9 4.3 x 107% L 5.2
10 3.1 x 107° 12, 3 4.8 x 1074 6.5
11 6.4 x 1070 16.0 5.2 x 107% 7.8
6 ~4

12 5.4 x 10~ 51.3 5.7 x 10 9.3
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Figure 27:; Meridional wavenumber ('L = Tko/12)

dependence of the growth of inertia-gravity modes

in primitive-equation model for —133 = 10 (m S—l)
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haVevg:eater magnitude in the lower troposphere than in

the upper troposphere,

The inertia-gravity modes also grow (Table 20),
but there is no preferred scale for maximum growth rate,

The growth rate increases with the meridional scale

---------------- length-of the-disturbance—(F4g;27)—Fiqures 30 and 31

(note the log scale) show that the magnitudes of velocity
potentials \3{‘ in the lower troposphere 1s also

greater than that at the upper troposphere.

Looking at Figs., 32 and 33, the identification of
Rossby and inertia-gravity modes are further Jjustified,
In ¥ig. 32 the stream function }“Pl is larger than
the velocity potential ’:{} . This shows that the contri-
bution due to divergence is less and these are Rossby
modes. Similarly from Fig,33 it is clear that the diver-

gence componeént 1s greater than the rotational component

and these are inertia-gravity modes.

Both in Rossby and inertia—gfavity modes the
Fourier components of stream functions and velocity
potentialé decreasevery fast with the order of harmonics
(Figs, 28 to 31). The magnitudes are mainly confined
to the first few lower order harmonics. Thus the trunce-

ation of the series (6.21) at N = 4 seems reasonable,




e °H b= !
S ke TRraur (W) 7/ ] 037 spouw
A3Taeab-eTaI8uUT JO (q) TeTausiod A3To0Tea pue (e) ucT3zouny wWesiazs

uoT3ieqamazed oTasydsodorl IsmOT IO sijusuodwoo IsTINOg 0 oaanbr g

o () (e)




LZ DT
Ut (W) /Yy = |1 X3 spow A3Tarab-eT3IABUT O (q)

TetTausizod £3TO0TsA DUR (B) UOT3OUNT WesIqs uor3eqmmyaad
i

‘oTasydsodoay xaddn 3C sausuoduos ISTINOg tT¢ sanbr g

S (a) (e)

SIS

T

B

|'x| B0




‘gz °Bbtg utr epow Agssoy Hurmoab 3seazsey syz 3o sxsydsodoan
(a) umaoﬁ pue (e) gaddn 3e ﬁmﬂucmpog,muﬂuon> pue uoT3oung

|
ue axls SOHumAuﬁuuwm JO s3jusuodwod IJTINOJ JO SOT3eY iz 2INET g

(a) . (e)

u

ey

7

7

R e e B




* b T ; .
Le "Braur (pLw) ¢/ %y =)
I03 spou A3Tseab-eT3I0uT 3O sxaydsodors (q) asmoT
pue (e) xaddn 3o uorjoung WesI3s pue TeTiusizod Z3To0TsaA

uorieqiniagsd 3o giyusuodwoon I9TINOg JO sOT3ey fgg aanblg

(a) . (®)

R R

l
e




116

Summary and gonclusions:

In this chapter we have studied the stability of a
stationary Rossby wave superposed on the monsoon zonal
flow using‘a primitive equation model, The stationary

Rossby wave used is the same as used in the quasi-

geostrophic model. It has a wavelength of 30° longitude
and its amplitude in the lower troposphere is much larger

than that at the upper tropnsphere,

As 1in quasi-genstrophic model, in primitive equation
model also the stationary Rossby wave is unstable to pertur-
bations, But unlike in the former model here two different
types of growing modes are identified, The classification
is done by considering the frequency and the relative

magnitudes of stream functions and velocity potentials.

Growing modes with fréqgencies less than the corilis
parameter are Rossby modes, ®hese have stream functions
with greater magnitudes than the velocity potentials. The
Characteristics of these Rossby modes are almost the same
as those found in the gqguasi-geostrophic model. The
maximum growth rate occurs for the meridional wavenumber
[méé kb/z . It has maximum amplitude in the lower
troposphere,

There are growing modes whose frequencies are

either comparable to or greater than the coriolis
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parameﬁer. Tﬁese'mddes haVe velocity potenﬁials gfeater
than the magnitudes of streaﬁ functions. Thus the
divergence components are more dominant than the rotat-
ional components and these are inertia-gravity modes. It
is found that there is no preferred scale for the maximum

growth, The growth rate increases with the meridional

scalé length of the disturbance,

The finding that inertia—gravity.modes can grow
by drawing on the energy of a basic Rossby wave superposed
on a zonal shear flow is of intriguing significance for
numerical weather prediction whefe we generally try to

eliminate gravity waves,



CHAPTER SEVEN

STABILITY OF A STATIONARY ROSSBY WAYE‘EMBEDDED

IN THE MONSOON ZONAL FLOW:'WITHMA‘GENERAL

PERTURBATION WAVE NUMBER

In Chapters 4,5 and 6 the zonal wave'number df
the perturbation fields were taken to be:multiples of
zonal wavenumber of the basic Rossby Wavé by assuming
h = 0 in-(4.13). In this chapter we'inténd to take a
more general perturbation'zonai Wavenﬁmber by allowing
nonéero values of }Q . The stapility analysis uéing a
two-level primitive equation model in Chapter 6 does not

give any additional information regarding‘the Rossby modes,
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The characteristics of grow1ng Rossby modes obtained from
the qua81 geostrophic model in Chapter 4 ére not changed
considerably when we extend the study to primitive
equation model. Hence in this chapter we will consider

a two-level quasi-geostrophic model witﬁ a beta-plane

centred at 18°N, The basic zonal flow and the stationary

Rossby wave are the same as used in Chapter 4., The
stationary Rossby wave has a wavelength of 30° longitude
and its amplitude is predominantly large in the lower

troposphere,

Conditions for resonant interactions:

Before conducting the stability analysis we will
mention about the conditions for resonant interaction.‘It
is known that the basic wave and perturbation can be
regarded as weakly interacting waves and perturbation can
grow when the éondition for resonant interaction is
satisfied or nearly satisfied. Essentially two waves
combine to force a third wave to form a 'triad' for
resonance, Longuet-Higgins and Gili (1967) have shown
that all wave vectors can participate in a resonant triad
with a family of wave vectors. In this case there is

nonlinear coupling and strong energy transfer between the
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waves. However, two waves of either the same wavelength
or parallel wave vectors will not resonate as in that case
the interaction co-efficient vanishes. 1In order for

resonance to occur the triad must satisfy the condition

é}} ¥%~€)ﬂq—+~égﬁ = (7.1)

where the mth and nth waves combine to produce a phase;
( C;nqﬁ” Q;n ) which is equal to the phase angle of a third

freemode Qi T Oy = Rex+UY 4+t

then the resonance condltlons can be given by

Ry + Ry Ry =0
LJ + by +1L, = 0 | (7.2)

2L+ 2 Ry )t 2l )= 0

We are considering the basic Rossby wave to be directed
eastward i,e, k. «*-LQ and L = . In Chapters 4,5
~and 6 we had taken k (-— r&) = ¢ . This implies that
the basic Rossby wave and the perturbation wave vectors

are parallel and hence there’should not be any instability,
However, for small '{;', this perturbation can be as close

as desired to satisfying a_resonance:condition (Gil1l, 1974),

Under present circumstances it can be shown
(Pedlosky, 1979) that the two wavevectors }Q and ’Qm
m

lie on the locus at opposite ends of the line passing
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through"LQ::-»—kqﬂgand:interSecting the ioéus, Hence we
assume the zonal wavenumber éf a perturbatinn to be equal
to ( r]ho'f‘y? ) i.e. multiples of the basic wavenumber LQO
pPlus a constant wave number, ' kz ', which is constrained

to satisfy a resonant condition is taken to be equal to

Stability analysis:

The linearised potential vorticity equations at
levels 1 and 3 are given by (4,9) and (4,10). The basic
flow for the stability analysis is the same as in Chapter
4 given by (4.3). We assume solutions (4.13) for the
perturbation geopotential fields, In previous three
chapters we had limited the stability analysis to the case

k = 0. But here we put “2 ;:;.._}QO/Z . Using (4.11)} (4.12)

and (4,13) equations (4,9) and (4.10) can be simplified.
Finally collecting the con-efficients of

exp[—i(nho‘x +}?X+{H '?A‘t )_] | we get algebraic
equations identical to (4.14) ;;d (4.15), but here the

parameters a  and b ~are redefined as follows,

Qn — ﬂ’?o—%-)’% and IDV) = (nho+h)2+lz

Truncating the series (4,13) at n = N and rearranging the
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the terms we get eigenvélue equatidn(4.16) as in Chapter 4,

Here also we truncate the series (4,13) dt N = 10,

For different values of 135 the corresponding
values of 'i§1 are calculated from (4.12). For each set
of wvalues of i?} and :E% , doubling times, frequencies

and amplitudes of disturbances are obtained by varying the

meridional wavenumber of pérturbation. As explained in

s
Chapter 4, we write L ::Lr ¥QQ and vary _J from 1 to

12 by steps of one to satié%y cyelic boundary conditions
both in Y and E/ directions, The characteristics of
growing mndes are reported in Tables 21 to 24, It is seen
that the frequencies of growing mndes are smaller than the
corionlis parameter and hence they are Rossby modes. For
each value of i;g there is a meridional scale length of
the disturbance for which the growth rate is maximum
(Fig.34). 1In agreement with Gill (1974), and Duffy (1975)
the most unstable mnde has a growth rate less than that

of the case h = 0, This is evident by comparing Figs,17
and 34f Alsn, disturbances do not grow unless

— 1 —

U3 = 15 m s -, as compared to ]95 = 9 m s“1 when h = 0,

The growing modes are almost statinnary (Tables
21 to 24)., But for each growing mode there are two

frequencies,

The eigenfunctions corresponding to different



DOUBLING TIME

Figu&:e 34; Meridional wavenumber (l_ =T‘%/12)
dependence of the growth of Rossby modes in

quasi-geostrophic model when }2 - ”‘}?0/2.




Table 21

Characteristics of growing modes in quasi-geostrophic

39 1

model for }Q =-}§3/2 and E%;= 15 m s - (Meridional

12

scale length of perturbation is times wavelength of

the stationary Rossby wave),

J = 12L Frequency ’AY iDoubling time
e (5—1) (days)
1 - 1.4 x 107° 6.8 x 10°°
Z + 1.3 x 107° 18.2
3 + 1.3 x 107° 7.4
4 + 1.2 x 107° 5.2
5 + 1.1 x 107° 4.6
6 + 9.4 x 107° 5.2
6 13




Table 22

Characteristics of growing modes in Quasi—geostrophic

- { } T
model for R,::-vi?o/g‘ and ]}3: 16 m s

Frequency

1+ 1+ 1+ 1+

4

10~
107
10~
10

107
107

10"6

1076

Doubling time



Table 23

Characteristics of growing modes in quasi-geostrophic

model for k = _‘20/2 and F%: 18 m st (Ly = -13% L-S).
; Freqguency Doubling time
ozl 3 :
Re (s~ 1) (days)

1 - 1.4 x 107 1.3 x 10°°

2 + 1.3 x 107> 15.7

3 + 1.3 x 1077 5.5

4 + 1.2 x 107> 3.5

5 + 1.1 x 107° 2.7

6 + 9.4 x 107° 2.5

7 + 8.1 x 1076 2.5

8 + 6.9 x 107° 3.1

9 5.7 x 10°° 310

10 7.9 x 107° 2.2 x 101®




Table 24

Characteristics of growing modes in quasi-geostrophic
1 12

model for }Q =-—IQD/Z and @5.—. 20 m s (Ly = == Lg).
Frequency Doubling time
5=l Ay [&
Ro (s™1) . (aays)
1 - 1.4 x 107° 5.7 x 101°
2 + 1.3 x 107°  14.9
3 + 1.3 x 107 4.8
4 + 1.2 x 107° 3.0
5 + 1.1 x 107 2.3
6 + 9.3 x 107°° 2,0
7 + 7.9 x 1070 1.9
8 + 6.6 x 1070 2.1
9 + 5.3 x 107° 3.0
10 - 2.2 x 107° 2.8 x 101°
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harmonics are shown in ﬁigﬁres 35 and 36, Comparing these
tWo fi&nfeq it is eviden£ that the disturbances are mainly
confined to the lower troposphere, Also the amplitude
has considerable magnitude for the first few lower
harmonics only, Thus it is reasonable to truncate the

series (4.,13) at N = 10,

Energy conversionss

The rates of conversion from kinetic energy of the
basic wave, available potential energies of_the basic wave
and zonal flow are same as given by (4.28), (4.29) and
(4,30) respectively. However, here the perturbation fields

are redeflned as

¢/ _ S—?{ o) < (kR +ly-+ At )
=) {4
n:..oo +C}> ~ (nk, +h7<+(y+/1f)}

>0 (7.3)

43; Z{C%Dn ez (nhbx+h%+ly+ﬂt)

CHZ‘) — (nk, ‘X+-bx +ly 40t

where kg — ko/2,'

Hence the rates of conversion from different energies
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ing

35; Fourier cbmponents of lower tropospher

Fi&are

geopotential perturbation of the fastest grow

Rossby mode in Fig, 34,
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may be different from those obtained in Chapter 4 where

.3.1 Conversion from kinetic energy of the basic wave:

From (4.32) we can calculate the rate of conversion

from kinetic energy of the basic wave to perturbation

kinetic.energy We have

<3(H,K)~' o ‘ﬂ{w é% gf

— 5¢ 5¢ j(e% ’%'{_é‘Zk‘OX)d% 53

35% DX -

Let us consider the first integral on the right hand side

of (7.4). Using (7.3) we can write

09 O 7k, z'ko‘
HB;) 53()[ = | X)dv(dzj

ﬁg {451 ¢ [k X+kot 41 y+at)

— b.%r\
()Cz(nhx+ki+ Y /T)ZZ ok k)

m

{ 4 (mk) N+-Rx+] Y +/‘\f) $(1 E z(mkox+k9<+ly HEJ%)?
y < P e R é-»z }%I'J) dx dy | -
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Integrating over y we get

bcﬁ @Cb; 7"-;%7‘5 —1 ‘Qo?< ax d
g e

(27%0
B ot / (N0 [7 (n=m+1) k>
E=Tme S(m’/ﬁ@‘@% CFL,% ) .
J L .
o n,m

While integrating over 7(, terms with m # n + 1 from the
first series, with m = n -~ 1 from the second, with
m =n - 1 from the third and terms with m = n + 1 from

the last series contribute. Other terms vanish,
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Hence

H Bjﬂf %/ (p”___ gfk‘é") dx dy

2t o | .
k., e 2 Z E{IQJF(HAH) ho? (an)(bm

_ %(\1)#}2& | 4)}%} (49)42
N a;r(j) 5Pn 1 )]

Similarly the second integral on the right hand side of
(7.4) can be evaluated.

f| 2 28 (ko gtk v

47?2 —ﬂzﬁl

A P (R )

1+ 1/
N=—o0o

{\ws t)koj (Cﬁm n(i)q CFM Cf><3) B



Expressing (b and (i) in terms of (ib and (i) and
o n n . n ri

substituting for the above integrals in (7.4) we get

C(KN )‘1</> B lj 7 A}D o -2t

g ?jU | 191[{1?+[n+ I)l?} |

Jo
n-«,m

(s % Lh'v:—?\/ {k+tr-ke }(gb e
- ¢r; lefi: f\w +2 v {{ )k, (<€r¢ﬂ‘ﬁ
L) flr WS

For h::‘w~ko/2

’ / 2 IQG"""
C (K, K') = {’-%éﬁ- g2 At

§ Bl D - )

N — 00

m(nai ( \W Cipnc}z 1 ;+19 {(n—#—;’i-)(qbimgé,

N1
T T Cbnﬂ) n-— :3 ( n Z(7 5)
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Conversion from available potential energy of the basic

waves

Using (4.36) we can calculate the rate of conver-
sion from available potential energy of the basic wave to
perturbation availlable pntential energy, We have

b ()9
L

p I o ([
ClALLA) = 22227V ?_ﬁ* 5@,
( / 463(4\#)2]}(5% - 3y L

2y ¢)(e”“‘+§‘kﬂ) e dy

(7.6)

As in Section 4,3,2 the integrals on the right hand side

of (7.6) can be evaluated to get

C(A],\y)/-\)) _ 27Y}9 U 791) éZ}[J[

; 9K, (ap)?
i o )
- <C}( § £r)(4?»+1 m~1+4jl +d” WB

(77)

This is identical to (4.38).
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Conversion from avallable potentlal enerqy of the

zonal flow-

potential energy of zonal flow can be calculated, We have

FAAY ID()(UB
(A, LA ) = ‘
C 1A 26 g (AP)° ﬂ

BCPZC# BCﬁ C#)c]?(c

D7 '3

(7.8)

Let us consider the second integrai on the right hand side
/

of (7.8), Substituting for <bi and Cﬁ) from (7.,3) first

’ /]

we integrate over y . Then 1ntLgrat1ng over X, terms

with m = n contribute,

Thus

o 55 4 anes
__ %7{ o 3N tz(k"k k0>(4>(3)q‘)(/) (3)4))

N—— 0o
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R=—hyfz,

/‘f ?\A\ L/

” (ﬁ c:bcc
_ anz 2At2¥h DEPEH L)
Similarly “ N=-~60 #

Jf ey

It ¢an be shown that first and last integrals on the right

hand side of (7,8) vanish,
Hence | , - .,“Z-
C(A;,A) = 7 *"0( =) &t
| g (4p)*

o0
) (-4) (q%?bfid%%bi’”) a
Nz —do
(7.9)

The rates of convVersion from the kinet ic energy
and available potential ehergy of the basic wave and

rate of change of available potential energy of the zonal
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flow are calculated from (7.5), (7.7) and (7.9)

30 -1
respectively, for a typical case 'Ug =20 m s 7, The ‘rate

of conversion from kinetic energy of the basic wave
to perturbation kinetic energy is the maximum as in
Chapter 4 where LQ = 0. F¥ollowing ratios give some idea

about the magnitudes.of different-energy conversion rates.

C (K )J</)
C (A, A)
)

2 x 102
C (K, K
(AN,A)

J;fifii!fij = 0.3
C(A A')

Comparing these reSults with those of the case ;q = 0 in

2.
- ? % 10

Chapter 4, it is seen that the rate of change of available
potential energy of the zonal flow is more in case of

b — ”’ho/ZJ than in the case h = 0,

Summary and Conclusions:

In this chapter the stability analysis is extended
to the case where the perturbation has a znnal wavenumber
equal to ( ﬂ}ao‘+~h\ ) and }Q :;_,k%/z Satisfying condit-

ions for resonant interactinn, In other words we have
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studieﬁ the Stability of a stationéry‘RoSsby wave of zonal
Wavenuhﬁer ’20 (correSp6ndiﬁg to waveléngth of 30° longi-
tude) superposed on the monsoon zonal flow to a perturbat-
ion having a zonal wavenumber equal to the sum of the

multiples of the basic wavenumber and a constant wave-

number i,e, r)ho‘F4Q where ;Q — “‘ko/é'

The Stability analysis is conducted for different
values of meridional velocity at lower and upper tropo -
sphere Satisfying the relation U3: 22 ET . Yor each pair

of values of V9, and lﬁ the meridional wavenumber of the

-

perturbationiis varied uslnq the equality L — .%z ko

and varying J from 1 to 12 by steps of one,

It is found that as in the previous case of k = 0,
here for each value of Rossby amplitude there is a
meridional wavenumber for which the growth rate of perturb-
ation 1s maximum, Tt is also seen that the maximum shifts

towards higher value Qﬁ it « The maxima lie in the range

Bk < L < L Re.

There is a threshold value of Rossby amplitude
for which perturbations grow. Increasing i§3 from 5 m st
to 20 m s_'1 it is seen that perturbations do not grow
unless. igg = 15 m S-i‘ In comparison with }2 = 0 case,
it is found that the minimum value of {igfor the growth

of perturbations is more in case of R ::-£?g/z .



- The magnitudes of disturbances are more in the

lower troposphere than in the upper troposphere,

For the same value of Rossby wave amplitude the
growth rate is found to decrease because of the introduct-
ion of nonzero value of k{, Thus the fastest growth rate

occurs for jQ = 0 case, This is in confirmity with the

results of Gill (1974) and Duffy (1975).

Enérgy*calculations show that the perturbations
grow mainly by drawing on kinetic energy of the basic

wave,
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