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| Synopsis

The standard model of particle physics, though immensely successful in terms of experimen-
tal agreement, leaves many questions unanswered. Not the least of which is the problem of
fermion masses which are not predicted by the minimal model and are only phenomenolog-
ically determined. In principle, a study of this problem can enlighten us about the possible
extensions of the standard model that could resolve many of the puzzling issues. In the
case of the quark masses and mixings, various aesthetic but partial solutions have been
offered. These involve imposing on the quark mass matrices different ansitze motivated
by particular models with higher gauge symmetry and /or experimental observations. With
‘neutrinos the situation is even more fluid. While there is hardly any direct evidence for
nonzero neutrino masses, yet the potentially rich phenomenology and the dramatic conse-
quences in astrophysical and terrestrial laboratories that their existence would imply has

spurred many studies.

The present thesis is divided into two distinct but connected parts that look at some
of the questions raised above. The first part deals with the study of quallk mass matrices.
The most popular ansitze discussed in the literature are those due to Stech and Fritzsch
and certain modifications thereof and are examined here for concurrence with constraints
coming from three sets of experimentzzl observations. These are the measurement of ex,
the parameter describing the indirect C'P violation in the neutral K-system or, in other
words, the C'P violation in interactions changing strangeness by two units (AS = 2), and
the more recent measurements of the B(‘}——B_S mixing parameter ¢4 (which gives the time—
integrated probability of a E?E appearing in a B beam) and the direct (AS = 1) cp
violation parameter €, i.e. the one relevant in K —decays. It is found that while the Stech
ansatz can be made consistent with e¢x and 2, for low top quark mass (m; ~ 45GeV, an

eXperimentaHy consistent value when the work was done but ruled out since) it is completely
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ruled out by €% /ex [35]. As a corollary, all schemes incorporating the Stech assumptions are
proved to be inconsistent. On the other hand the Fritzsch and other Fritzsch-like schemes
still do admit many solutions (albeit with a much restricted parameter space) but with

different characteristics for different rahges of my [35].

These observations naturally led to a model independent analysis of the most general
quark mass matrices for three families [38]. It was shown how phenomenological consid-
erations resfrict the parameter space to different disjoint sectors. The constraints on the
general form that lead to various ansitze were examined and it was shown that all the
popular models lie in a particular one of the aforementioned sectors [38]. The analysis also

points out the alternative directions future model-building efforts could adopt.

The second part of the thesis deals with the problem of neutrino masses and some related
topics. The relation between the Major‘ana masses of the neutrinos and neutrinoless double
beta decay [(66)o. ] was reexamined and it was argued that, contrary to naive expectations,
the (80)o, rate does not distinguish between the Dirac and Majorana mass of the physical
electron neutrino (v, ) [63]. It had been held that if the tritium S~-decay experiments indicate
a neutrino mass larger than that predicted by (80)o. , then v, has to be a Dirac particle
and models were constructed to incorporate such an eventuality. Based on our analysis,
we propose a new scenario wherein the physical v, can naturally be a Majorana neutrino
without any (88)o, . Some supersymmetric grand unified theories were shown to yield such
scenarios naturally [53]. These models turn out to be much simpler and more economical

than existing ones predicting light Dirac neutrinos.

A related question is that of the neutrino magnetic moments, a large value of which
would offer a solution to the solar neutrino problem (the longstanding discrepancy between
the v, absorption rates in the Davis experiment and that predicted by the standard solar
model) and has the added advantage of explaining the apparent anticorrelation between
the solar neutrino flux and the sunspot activity. A model — based on a gauged S0(3) hori-
zontal symmetry — that decouples the magnetic transition moment of the neutrino from its
Majorana mass was constructed, thus allowing large magnetic moments for nearly massless
neutrinos [66]. The present scheme is most strikingly different from all the others of its genre
in that not only does it not depend upon an intact SU(2), symmetry between neutrinos to

suppress their mass while allowing a large magnetic moment (Voloshin mechanism), rather
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in this case the appearance of the last-mentioned actually hinges on the brea,king of the
symmetry in qﬁestion. The model, while treating all fermions on par, also avoids observable
Goldstone bosons, excessive fine tuning and extra fermions, embarassments which plagued

earlier efforts.

We next study the problem of the gravitational helicity flip of a massive neutrino. If
the neutrinos be massive, then interactions that flip their helicities could have dramatic
implications for the cooling of hot neutron matter during stellar collapse. With a central
core as massive and compact as a neutron star, gravitational helicity flip could play an
important role too. A semiclassical analysis of the gravitational scattering problem for
low energy neutrinos in the vvicinity of a neutron star shows that this mechanism could
in fact overwhelm all other known sources of helicity flip! From a study of cooling rates
of the supernova SN 19874, strong beunds were placed on parity violating gravitational

interaction strengths [74].

Finally, we integrate the aforementioned ideas in neutrino physics in the quest of a
natural model for the recently reported 17 keV néutrino. In the SU(2)g model that is
constructed for the purpose, the required mass scale ~ O(100 keV — 1 MeV) is generated
radiatively. The crippled see-saw mechanism then naturally leads to a pseando-Dirac v,
that is identified with the new find. Thig particle can hence be used as a very good probe
for gravitational helicity flips. The Majorana neutrinos ve and v, remain extremely light
(mass ~ O(10-% — 10-4 eV') ) but possess a relatively large transition magnetic moment
Hrvew, ~ 10712 5. The (88)g, amplitude is extremely small and is consistent with all bounds.
The spontaneous lepton number violation in the theory results in a SU (2) . singlet~doublet
Majoron unconstrained either by the LEP results on the Z~decay width or the astrophysical
bounds. The v, in the model is very short-lived and primarily decays into v, and the

-

Majoron.

To summarise, during the course of this work we have looked at various aspects of
fermion magses and mixings and examined some of their observable consequences. On the
hadronic front, certain well-discussed forms for the quark mass matrices were examined
in the context of new experimental results, either to rule them out or to severely curtail
the limits of their validity. A general model-independent analysis of the problem provides

insights into the assumptions involved in the existing models and brings into p erspective the
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course future model-building should adopt. In the leptonic sector, the study of neutrino
masses exhibited'the‘ independence of the (BB)o. rate and the Majorana or Dirac masé
of the v,. An economical model that naturally led to light Majorana neutrinos with no
(B8)or was constructed. A novel mech;misin was also proposed to generate large magnetic
moments for neutrinos while keeping their masses gmall. The scheme avoided the pitfalls
faced by earlier efforts in this direction. An examination of astroﬁhysical consequences of
s non-zero neutrino mass exhibited the dominance of gravifational effects in the helicity
flipping transitions of low energy neutrinos in the vicinity of a massive dense object. This
also led to imposition of a very strict bound on possible parity—violating effects in gravity.
Last but not the least, a model that can naturally accomodate the exciting new find of
a 17 keV neutrino as well as a relatively large fvw, is presented. As phenomenological
viability demands consistency of the predictions for neﬁtrino oscillation and (88)o, rates
with the experimental bounds, this study brings into focus the interrelationships of all the

issues in neutrino physics discussed here.
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Chapter 1

Introduction

While the V — A [1] current-current form of the universal weak-interaction Lagrangiah had
successfully supplanted the earlier general ‘four-fermi theory’ [2], it still failed to answer
many questions. The very ‘weakness’ of the interaction strength as reflected by Gr =
1.16 x 10-°GeV~? in

Ly = CF

Grot o
\/i‘]ul‘]%

where

J;,L = wp’ylt(l - 75)wn) "/)c')’“(]. - ’)’5)1/1,, etc.

is puzzling. The coupling constant has mass dimension —2 and closely parallels % for
the electromagnetic interactions (g, being the momentum of the internal photon). Ilj fact
Fermi was tempted to carry on the analogy with Q ED and describe the weak interaction;
as being mediated by some vector boson, but he did not pursue the idea any further.
However this very structure of the Lagrangian ensures bad high energy behaviour for the
cross sections. Clearly for a point interaction as above, just from dimensional arguments
one has for the cross section, o ~ Ghswhere s is the invariant energy. But this being the
¢ = 0 mode of a partial wave expansion, one has ¢ = const/s. Thus for s > G7', one
runs into contradiction with unitarity requirements. The cure for this problem has er’eady
been hinted at: to formulate the weak interactions so as to be mediated by Intermediate
Vector Bosons (IVB). With [,;J“gJ,jW It and g a dimensionless coupling constant, one
has for the amplitude M ~ 927\7}“7‘7_—{15 and hence for a large My, the low energy interaction

would adequately be parametrized by Gp ~ ¢’
y bep y Gr ML whereas at large energy transfers, the

cross—section falls off as required.



But even this would fail to please‘ the purist. For, like the original theory, the massive
- TVB theory too is non-renormalizable. In fact, the only renormalizable theories involving
vector bosons as fundamental constituents are those with a local gauge symmetry. But
then is there a gauge symmetry associated with the weak interactions, and even if there is,
how does one get the IVB’s to be massive? These éuestions were answered by Glashow,
Salam and Weinbe'rg [3] and while the crux of their arguments shall be presented in the

next chapter, the rest of this chapter is concerned with motivating their solution.

The near equality of the muon decay constant and the vector coupling constants for
neutron and pion f-decay, inspite of only the latter receiving strong interation corrections,
gives an indication of the symmetry one is looking for. Drawing an analogy from electro-
dynamics where the equality of the proton and the positron charges is explained by an
assumption of equal bare charges and.the current conservation law 9,A4"(z) = 0, it was
proposed that the AY =0 (¥ being the hyp ercharge) vector currents be part of the diver-
genceless isospin current of the strong interactions. According to this ‘Conserved Vector
Current’ hypothesis then, the vector current strength would not be renormalized. This also
implies that the AY = 0 semileptonic weak interactions and the electromagnetic interac-
tions involving hadrons are related. This is because the electromagnetic current contains

the third component of the isospin current. To wit,

Viz) = Jihe(e)

To(z) = J§(2)+ Jy(2)

where J{ (z) denotes the isoscalar hypercharge current [4].

Thus one is led to consider a SU(2) group as the gauge symmetry for the weak interac-
tions with the associated charged gaugebosons identified with the IVB’s. Phenomenological
Teasons dictate that only the left-handed fermion fields transform nontrivially under this
group. Hence any attempt to identify the neutral gauge boson with the photon is bound
to fail as the electromagnetic interaction is vectorial. The next most economical way is to
consider a direct product of the SU(2) with a U(1) and let the photon be a combination
of the two neutral gauge bosons. This scheme has the added advantage of suggesting a

common origin for the electromagnetic and the weak interactions and is the one favoured

_&xp erimentally.



Thus was born the electroweak theory, a renormalizable gauge field theory chosen from
amongst the many competing ones for better experimental agreement. Alongwith Quantum
Chromodynamics (QC D), believed to be the theory explaining the strong nuclear force,
this forms the so-called Standard Model (SM) of elementary particle physics, a model
expected to explain very well physical processes that involve interaction energies upto at

least ~ O(100 GeV).

However all activities (fortunately) do not cease with the choice and even establishment
of a model. Apart from testing its consequences in hitherto uncharted areas, one must
also identify its limitations and especially so in the context of delineating questions that
it cannot presume to address. One such question of prime importance is that of fermion
masses, the resolution to which promises insights into physics beyond the Standard Model.
Apart from prescribing a method to obtain the masses, the model is absolutely silent about
their relative magnitudes and the strength of their consequences. Although experiments do
give you the numbers, yet one strives for a theoretical understanding, the first step to which
is the act of model building with certain assumptions. Of course, before one takes any of
these models seriously, their validity must be checked vis. a. vis. experimental agreement.

The first part of this thesis aims to do just that for the case of the quarks.

The scenario for the leptons is even more challenging. Whereas Pauli [5] had proposed
the neutrinos to be absolutely massless néutral particles reacting only to the weak nuclear
force, the modern attitude is to view them not to be strictly massless but rather lacking
any mass in the observationally discernible range. In fact, certain experimental puzzles
can be resolved if one does postulate a very small but non-zero mass for the neutrinos.
But doing this would open up a plethora of new interactions with perhaps rather startling

tonsequences, and some of these issues we examine in the second part of the current work.

The plan of the rest of this document is as follows. In Chapter 2, we give a brief dis-
cussion of the essential features of the SM, followed by an account of the formal aspects
of determination of quark masses, mixing in the neutral meson systems and C'P violation .
Chapter 3 deals with the examination of various ansitze for the quark mass matrices and
 their Phenomenologicai implications. A model-independent analysis of the problem is also
presented. The focus in Chapter 4 is on the question of neutrino masses and their exper-

ir i a ' . . . . .
Imental signatures. The extent of neutrinoless double beta decay is estimated for various

[95)
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configurations. It is established that contrary to expectations, this rate is not governed by
the Majorana mass of v, and models zire constructed to demonstrate the naturalness of such
scenarios. Chapter b deals with some aspects of neuti‘ino physics related to the neutrino
mass namely a large magnetic moment on the one hand and the gravitational interactions of
fermions on the other. To correlate these results, we propose a model for massive neutrinos
to accomodate the new finding of a 17 keV 11eutr‘ino‘ as well as large transition magnetic
moment for the v,. We also comment on the gravitational interaction of the new particle.

Finally, in the concluding chapter, we summarise the results of the investigations conducted.




Chapter 2

The Standard Model: Some Issues
Revisited

In this chaptér we first present a short discussion of the standard model — rather its
electroweak part only — and some of its prime features. We discuss at some length the
problem of the fermion masses in general and subsequently the quark masses in particular.
A general account of quark mixing is given and is followed by the specific form for the case

of three fermion generations. The experimental limits on these mixings are also presented.

Since color confinement makes it impossible to observe free quarks, a direct measurement
of their masses is not possible. However estimates can be made using different and rather
involved techniques and the result of such computations are presented without attempting

any kind of discussion of the methods.

Finally we move on to a discussion of the neutral meson mixings and C'P violation. The
general form of the two independent parameters (viz. ex and €y ) giving a measure of C'P
violation in the K0-K0 system are derived and the expression for these in the standard
model calculated. A similar exercise is performed for the extent of mixing in the BS—E—g

system. N

2.1 The Standard Model

As has been pointed out in the last section, the electroweak gauge group to be considered

- 18 SU(2), ® U(1)y, such that the left handed fermions transform as doublets of the SU(2)z



and that the generator for U (1), be given as a combination of the two diagonal generators.

Hence we have for the charge operator,
Q =aTs; +Y. (2.1.1)

Considering either the lepton doublet (7)), or the quark doublet (%), , one immediately has
a = 1. Keeping in mind the fact that the right handed fermions do not participate in the
weak interactions and hence should be singlets under SU(2)z, one gets for the fermions’

transformation under the full symmetry group SU(3). ® SU(2), ® U(1)y to be

vl
gL = < ’ (1:2,_1/2)
€ L

e::R (1717_]—)
- !
% = (d,) (3,2,1/6) (2.1.2)
2L
UiR (3,1,2/3)
iR (3)1) '—1/3)

where 7 denotes the fermion generation.

As the low energy symmetry evinced in nature is only SU(3). ® U(1)erm, we must break
SU(2)r ® U(L)y down to U(1)en,. The simplest way to do this is to take recourse to
spontaneous symmetry breaking involving a complex scalar field ¢ which transforms as

(1,2,1/2). Then the Lagrangian piece involving ¢ is

Ly = (D) (D 9) - V(9) . (2.1.3)
where
D¢ = (811 —igW, — ig'B,L)qzﬁ,
5 V(e) = w2ele+r(oTe)?, (2.1.4)
and W,,,, = W ;jfr”'

Wy and B, being the gauge fields corresponding to SU(2);, and U(1)y and g and ¢’ the
respective couplings. The only restrictions imposed on V(¢) are the requirements of renor-

malizability and gauge invariance.

For p* < 0, V(¢) is minimized at |¢|¢)| = —4& = v®. Such a non-zero vacuum expec-

tation value (v.e.v. ) (¢) = (“/(3/5) leads to a spontaneous breaking of both the SU(2)




and the U(1)y symmetry. However a different U(1) symmetry — which we shall identify

as electromagnetism — generated by the combination of the diagonal generators
Q=T +Y (2.1.5)

is still preserved. The three Goldstone bosons due to symmetry breaking [6] are absorbed by
three of the massless gauge bosons to appear as their longitudinal component thus rendering
the latter massive. The essence of this Higgs [7] mechanism is encapsulated in the following

brief discussion.

We reparametrize the scalar field ¢, writing its four real components in terms of four

¢ = U(g) <v-(l)-1]>
. V2

where U(¢) = e~%T/2% with T; being any three independent generators of the gauge group

new ones & and 7 by

that do not annihilate the vacuum.

Now taking advantage of the local gauge invariance of the theory one might as well work

with the gauge transformed field
¢ = ¢ =UO= (ymva)
W, — W, =U"'W,U +-U"8,0,
g
B“ — B,’l = Bll, + gU‘18/LU7
and similarly transformed fermion fields.

Then (dropping the primes on the fields),

1 L1 v+ 7)?
Ed) - “2‘ ,ﬂ?al n+ Z¢T(QIB;1. + gVV,;)2¢ -V ('(—'—277—)) )

.
-

and the gauge boson mass term reads
1
50 (9Bt g Wi + (W) + (W)

Defining

+ 1 ; P )
Wit = L whEaw?],
A4, = W’,‘} sinfw + B,, cos O,



where

Oy = tan~*(9'/9), (2.1.7)

we get
mw = 39v,
mz = sgvsecfy and (2.1.8)
my = 0.

Thus with this special gauge choice (known as the unitary gauge), the bosonic spectrum
of the theory consists of a massless and three massive gauge bosons and the single neutral
scalar 77. The other three degrees of freedom of the ¢—field have been absorbed by the vector

bosons only to appear as the corresponding longitudinal polarizations.

Writing the quark (and similarly for the other fermions) gauge boson coupling term in

the new fields, we have

T (VEW ST VIW o W o (T + TV a) B

= Sy AW + Ty W) + g cos O gy (ban® 0w Y = T)gy - (219)

+g sin HI/V A;L&E’Y“ Q qIL .

We then see that the massless vector field A couples vectorially with the fermion current
and hence can be identified with the photon leading to the identification gsinfy = e. The
massive gauge bosons, on the other hand, couple only to the chiral currents leading to the

left handed weak interactions.

Looking now at the fermion masses, it is immediately apparent that we cannot write

bare terms as

Yy = Pryr + YrYL
is not SU(2);, ® U(1)y invariant on account of ¢y, being a SU(2) doublet and ¢ a singlet.
This is not a problem though as we can use the same mechanism to generate fermion masses
as for the gauge bosons i.e. spontaneous symmetry breaking. Recognising that the Yukawa

term ¢} d ¢ is gauge invariant and of dimension (mass)?*, we have



where ¢ = T9¢* and 4,7 run over the fermion generations i.e. dy =d, dy = 8, d3 = b etc. In

the‘ unitary gauge we then have
Lyyr = <~MWULZUPJ + M'”uLzuRJn + H. c> +(u = d)+ (v - ¢€), (2.1.11)
where M = vf¥ is the mass matrix for the up-quarks and similarly for the others.

The theory does not specify fj; and hence the mass matrices in any way. All struc-
tures for fj; satisfy the symmetry requirements and these have to be determined only from
experiments. In fact, the matrices do not even need to be hermitian and hence cannot
be diagonalized by a unitary transformation. All is not lost though. As the left— and
right-handed fermions have different SU(2);, and U(1)y quantum numbers, one can define
distinct unitary transformation for each. This is equivalent to treating the mass term as
an hermitian operator in a 2n dimensional space (for n fermion generations) with a block

oft-diagonal representation and defining a unitary transformation in U(2n) that is block

diagonal in the left— and right-handed subspaces.

Now using a result in elementary linear algebra that any nonsingular matrix can be
polar decomposed into a product of a positive definite Hermitian matrix and an isometric

maftrix, we can define

ur, = Upuy, and up = Urupg, (2.1.12)
such that
UgMu Up = M, = diagonal and positive definite. (2.1.13)

Thus Uy, and Ug diagonalize the hermitian matrices A, MML and ]léf.,j,‘ M, respectively. Defin-

ing similar transformations Dy, i for the d-type quarks, we get

Lonass = TEMyup, + dp Mydp + eg M,er + H.c., (2.1.14)
and
']/;l- = ﬂf7/1,I(dL + e_L_')’;l.VL; (2115)
where
K =vlpg (2.1.16)

is the Cabibbo-Kobayashi-Maskawa (C K M) matrix [8].



At this stage an interpretation of the results is called for. The original primed fields
were the eigenstates of therweak hamiltonian (H,;) but not of the full hamiltonian as
H,r does not commute with H, + Hep,. The unprimed states are the eigenstates of the
total hamiltonian and hence have well-defined masses. The CK M matrix then represents
the modification of the charged current vertices for the physical quarks induced by quark
mixing. It should be noted that the corresponding matrix for the leptonic sector is but
unity. This is due to the absence of the vy and hence a mass term for the neutrinos, as a
consequence of which the diagonalization matrix for M, can be absorbed into the definition

of the vy,.

The mixing matrix K lies in U(n) and hence is described by n® real parameters. Rec-
ognizing that ™Cj, of these are nothing but the Euler angles for a real rotation, we find
that the complexity is due to the rest of the "+1Cy parameters. But of these, (2n — 1) are
of no physical significance as they can be absorbed by redefining the relative phases of the
quark wavefunctions. So at the end of the day we are left with 2n quark masses, "C real

rotations and ™~1Cy phases in the mixing matrix.

Henceforth we shall specialize to three generations (unless otherwise stated) as most
current experimental results favour such a scenario. Then the CK M matrix is 3 X 3 and
parametrized by three angles 6;; and a phase § which, in this model, is responsible for C'P
violation. For explicit calculations involving the C K M matrix, we choose the parametriza-

tion due to Maiani [9]:

C12€C13 512€13 513
= i i i
K = | —s13c05 — c12823513¢€" C12Ca3 — S12523813€"  S23C13€" ) (2.1.17)
_i§ . _i§
S12823 " — Cc19C23813  —Ci2823€ "0 — S12€23813  C23C13

where ¢;; = cos0;;; s;; = sinb;;.
While 615 is very accurately determined from K 3 and hyperon decays [10]
s12 = 0.221 4 0.002, (2.1.18)

023 and 613 are rather poorly determined. The value of sp3 may be extracted from a
determination of Vy, (since 823 ~ |Vip| to a very good approximation) from the semileptonic

B-meson partial width, under the assumption that it is given by the W-mediated process

10



2 5
Gymy

19273

where F(z) =1 — 8z + 82% — z* — 122%In(z) is a phase space factor. Thus

to be -

(b clpy) = F(m?2/md)|Vip |2, (2.1.19)

E 19278 Br(b — cly))
23 — 5
G mmj F(m?/m)

(2.1.20)

Using the experimental results for the branching ratio and the B-meson lifetime [11]
Br(b — cl7)) = 0121 £ 0.008 75 = (1.16 £ 0.16) x 1072 sec, (2.1.21)
and the estimates for the quark masses (see section 2.2):
me = (1.35 + 0.05)-GeV my = (6.3 £0.1) GeV,
we get [12]*

0.035 < 593 < 0.07 (2.1.22)

The charmless B-meson decay width puts a limit [14]2

0.07 < 813/523 < 0.22. (2.1.23)

The C'P-violating phase § is allowed to adopt any value in the range [0,7] by the.current

experimental results.

2.2 Quark Masses

In a renormalizable field theoretic treatment, the coupling constant and masses lose their
absolute meaning and become dependent on the momentum scale one is addressing the
problem at. This dependence arises from two sources, though the two cannot be demarcated

easily.

In quantum field theoretical calculations infinities creep up quite often and are taken
care of by what is called a ‘regularization’ prescription. Though there is nothing ad hoc

about this program, there do exist different inequivalent schema for this procedure, the

1 . - . . . .
The experimental numbers quoted in this chapter are those used in [35,38]. Since then many of these

have been revised. For example, now one has a9y = O.OKLStg‘ggg [13].
2 . . 00
Current limits [13] are 0.05 < 913 /303 < 0.13.
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difference lying in the amount of the finite part to be subtracted alongwith the divergent
piece. Thus it creates a dependence on the momentum scale introduced, that is different in

different schemes.

However this implies that the physical quaﬁtities would depend on the renormalization
scheme adopted and the scale at which it is being performed, a situation clearly unacceptable
as starting from a unique Lagrangian, all measurables ought to have a unique value. This
then leads to the requirement that under a finite renormalization transformation, physical
predictions be invariant. Expressed in a different language, this implies that all renormalized
quantities should change with a change of the scale (equivalent to a finite renormalization
transformation) in a well-defined fashion and that the functional dependence of measurables
on these should change such that their (measurables’) value remains the same. These finite
renormalizations form a transformation group and the functional relations determining the
changes can be expressed as differential equations of evolution known as the Renormalization

Group (RG) equations.

When talking of quarks, the relevant theory of course is @QCD and the RG equations
important in our study are those governing the evolution of the quark masses and the strong

coupling constant with the renormalization scale p:

d
[La*g— = ﬂ(g):
H (2.2.1)
L—dmi = —m;(g)mi
/~ d,u - 7711,‘ g 7

In the modified minimal subtraction (M S) scheme, the beta function and the anomalous

dimension are respectively given by [15]

Blg) = - (4?)293 - (457:)495 +0(g"), (2.2.2)
and

| nlo) = 550 + st + 06°) (23
- with

Bo = (11Cq —4TRrNy)/3,

B = [,BZ’LC% —45Cq + 3CF)TRNf)] /3, (2.2.4)
Yo = 6CFa

T = Cpl9Cp+97Cq — 20TRrN{]/3,
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where Ny = number of quark flavours, Tg is given by the normalization of the generators
[TT(T“T”) = NfTR] and Cg and Cp are the values of the quadratic Casimir operator
on the gluons and the quarks respectively. For SU(3), by convention, Tr = 1/2, and
Cg =3, Cp =4/3 and hence

fo = 11-§Ny,
1 = 102 - BN,
Yo = 8, .
no= 4(101- 2w,
The solutions to the differential equations are
2 ; 2
9°(1) 47 BiInL <1n L>
o(p) = - —1-E—=to0((—= , 2.2.5
and
L ~0/2o Bivol+1InL Y1 InL\?
; =7m; | = 1 — O |—— , 2.2.6
mi(k) m(z) [ 280 I amL (L) (2.26)

where L = In(u?/A?). Here A and T; are the RG-invariant scale parameter and masses,

respectively defined through

B1/63

e—Pog*(0) %2,(1117’}2;) by
—v0/28
and m;(0) = ™y (111%;) v 0,

) being the momentum cutoff. This then takes care of the perturbation theory induced
cutoff-dependence of the bare couplings. The arbitrary coupling constant g(0) is thus
replaced through ‘dimensional transmutation’ by a dimensionful parameter A, which along
with the quark masses are the only arbitrary parameters in @C'D and would be fixed by

-

experimental data.

In all the above formulae the value of Ny to be used is determined by the energy scale of

~ the problem at hand, with the assumption that all heavier degrees of freedom can be taken

~ to be frozen. The physical mass of a quark is then its value calculated at the same scale.

Thus to one loop order, the physical mass of the #'th quark is given by

. 4
mi™* = my(m;) [1 + é—%a,,(m.,;)] : (2.2.7)
While non-observation of the top-quark puts a lower limit [16] to its mass

mPY52 45 GeV, (2.2.8)

3
Current bound [17] is mP"¥*289 GeV .
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experimental éonsistency with thc? mdiative correctiogs in the standard model requires [18]
<180 GeV. (2.2.9)
Substituting Ny = 6 and Agep = IOOM eV, we have for the above range of interest
mP™® ~ 0.6my(1 GeV),

which gives

75 GeV Smy(1 GeV)S300 GeV. (2.2.10)

-

The physical masses of the charm and bottom quarks can be calculated to a great degree
of accuracy from ete~ data by using QC D sum rules for the vacuum polarization amplitude. -

We have then
me(1 GeV) = (1.354+0.05) GeV

my(l GeV) = (56.3£0.1) GeV. (2:2.11)

The determination of the lighter quark masses involves larger errors. These are best
evaluated using chiral perturbation theory and meson and baryon spectroscopy. Though the

individual errors are large, restrictions on the ratio of the masses reduce the indeterminacy

somewhat:
m, = (51+15)MeV
mg = (89+2.6)MeV
my = (1754 565)MeV
my/mg = (19.6 £ 1.6) (2.2.12)
ma/m, = (1.76+0.13)
my/m, = (34.5+5.1)
M —Td (.28 £ 0.03).
My + mg

2.3 CP Violation and Neﬁtral Meson Systems

Apart from the usual continuous (gauge) symmetries that lead to conserved Nother’s cur-
rents, physical theories most often respect certain discrete symmetries as well. The most

_ tommon of these are:-

Parity (P): this implies an equivalence of ‘left’ and ‘right’ 7.e. a mirror image
- of an experiment would yield the same result in the reflected frame of reference

as the original would in the initial frame.

.J. é]



Charge conjugation (C): implies invariance under replacing each particle by
its antiparticle (i.e. reversing all additive quantum numbers).
Time reversal(T): referring to ‘a formal reversal of time flow, this implies

invariance under reversal of all momenta, angular momenta etc.

Though a theorem due to Liiders and Pauli [19] guarantees that any Lorentz-invariant
unitary local field theory is invariant under the combined action CPT (in any order), the
individual symmetries are not assured by any deep principle. In fact though gravitational,
electromagnetic and the strong interaction seem to respect each of these to a very great
degree (for a discussion of possible discrete symmetry violations in gravity, see section
5.2), it was established quite early on that the weak interactions violated both C' and P
conservation almost maximally. However even they seemed to respect C P and consequently
T symmetry. In fact till date the only evidence of C' P violation has been seen in the neutral
kaon system and there too to a very small extent only. Thus any study of CP violation
would demand as a prerequisite a thorough understanding of the K 0_K0 gystem. Also the
heavier meson systems are exactly similar and most of the results obtained for the kaon
system can easily be extended in a straightforward manner. As for the leptonic sector, C P
violation is identically zero in the minimal standard model, but could arise if one were to
include massive neutrinos (Chapter 4). Though the issues involved are somewhat different,

most of the analysis here trivially followé through.
2.3.1 The K°-K0 system:

The neutral K-mesons K and K0 are characterised by definite strangeness values § = 1
and —1 respectively and hence are good basis states when one is talking about either the
strong or the electromagnetic interactions. This is so because both these interactions do

respect strangeness conservation and hence
(KO\H, + H.|KO) = 0. (2.3.1)

However weak interactions do not preserve strangeness and thus can mix K O and K9. This
results in these particles not having well defined masses or weak decay rates. Rather there
_ &x1st two independent linear combinations of these states namely Ky, and Kg that do have

Precise masses and decay rates. These new states are characterized by the difference in

15



their decay modes and hence their lifetimes. While Kg decays primarily through the 27
mode (a state with CP eigenvalue +1), Ky, has many decay channels mostly going to final
states with CP = —1 e.g. 37 or w1 P, Obviously the two new states do not have well

defined strangeness.
Working with a choice of basis such that
CP|K®) = —|KO) and CP|KO) = —|K?), (2.3.2)

if we define two new states as

0o,_ L 0\ 1 (70
82 = [15°) & [K9)], (2.3.3)
then obviously
CPIKYY = —|KY) and CPIKY) = |KY). ~ (2.3.4)

So if C P were an exact symmetry, this would imply that
|Kp) = |K9) and |Ks)=|K3). (2.3.5)

However in 1964, Cronin et al. [20] observed that K, does decay into the w7~ channel
(i.e. a CP = +1 state) with a branching ratio of 2 x 107, Hence the identification in

eqn.(2.3.5) is wrong and we should rather have
K1s5) = Nps [|K°) & e05]K)] (2.3.6)

where £, are complex numbers and N s the wavefunction normalizations. Since K©
and KO both mix and decay, their time evolution is governed by an effective hamiltonian
H = H, 4+ Hgy + Hyy, such that

S ) = H1), | (2.3.7)

_ 1{{3))
v (WO) (2.3.8)

and H = M - iT,

where

with M and T being 2 x 2 hermitian matrices called the mass and decay matrices respec-

tively. Now C PT invariance demands that
Hyy = (KYH|KYY = (K°(CPT)'H(CPT)K°)

= (KO\H|KO) = Hyy (2.3.9)
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or M1y = Mgy and T'y; = T'33. On the other hand CP conservation would require

Il

Hyy = (KO H|KO) = (K°|(CP)™ H(CP)|KD)
= (KO H|K%) = Hy (2.3.10)

and hence M1y = My and T'yy = I'21. Now, the eigenvalues of H are

: 1 1
Prs = mus = s = 5 [Hu o+ Hyp (s~ Byt 4 ol (2311)

and the difference is given by

Ep— Eg=Am— %A*y = /(Hi1 — Hyp)? + 4H1y Hyy, (2.3.12)

If K1, 5 are to be the eigenvectors then we must have

, — H . H
et = -———-EL u and eits = T2

Hy, Eg — Hay

Invariance under CPT then demands that
7 Hz;l)
== = = __—_1 —
‘L= 2" (H 12/
and C'P invariance would guarantee that
et =1, (2.3.13)

However the last relation is phase convention dependent as can be seen by redefining the

meson wavefunctions by _
K0 | K0 = i g0,
|KO) — [KOy = e~i|K0),

Under this change of basis the diagonal matrix elements of any operator O remain invariant

(2.3.14)

whereas the off-diagonal elements pick up phases
012 — 012 — 6_‘21'(‘2012 and 021 — 0'31 — e2iczO21
and hence

Thus the basis invariant condition for C' P conservation is that ¢ be real [21]. An often used
meagure of C'P violation is given by

1 — e
€ = -
L+ ek

(2.3.16)
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but this clearly is a phase convention dependent quantity.

“We turn next to a discussion of the two pion decays of the neutral K-mesons. Bose
statistics demands that the 27 state be in either total isospin 7 = 0 or I = 2 state. Hence
defining the amplitudes

—)
(n|Ho| K°) =3, e,  n=0,2 (2.3.17)
where |n) = |27; ] = n) and §, is the 2% s—wave phése shift for the I = n state, we have

*

CPT invariance == @, = —aj,

. 2.3.18
and CP invariance == aa/ag is real. ( )
Under the phase rotation as described by equation (2.3.14),
an — a), = ae® | (2.3.19)
and hence the following combinations are phase choice independent
. (O|Hui|Kz)  ao— aje®
0 <O|}I'u1lr.|](5> B ag + aaeif
Y o= L 2lHulKL) _ 1 as - aze’ gi(82-50) (2.3.20)
V2 (0] Hyr| Ks) V2 ap + ajeit
Yy = (2|Hyi|Ks) — ay—aje®
B <Olfjwl.:|-[(5> B ag + 01667:'5 .
The experimentally measurable quantities are
pte = (7~ |Huwi| K1) _ _Gte  _ e+ ¢
<7r+7r—|Hwk|4KS> 1 +UJ/\/§ 1 +LU/\/§ (2'3-21)
and n® = (n°7°| Hoio| K1) _ -2 _ - 2
(WOWOIHu:}.t’I(S) 1- \/iw 1 - \/5(4)
where
weg
d =6y — —. 2.3.22
2= s ( )

In terms of the matrix elements of M and T then

Im(Myga?) — iIm(Ty9a2

0= e m(; 12&03 : mfa(ﬁf il (2.3.23)

Re(a?Myz) — + Re(adls) + “S5(Am — £A7)
I'm(agzal)(Am — %Av)ei(ﬁg_su)

/
V2 Rela}Miz) - § Re(afT12) + B4E(Am — £47)

(2.3.24)



Al analyéis till now has been the most general possible. No particular reference to the
kaons have been made and all the results would hold equally well for any other neutral
meson system. At this stage we would like to specialise to the KO- K0 system and use some

experimental results to obtain some approximate but easy to handle relations.

Now experimentlly we have [13]

mg = 0.498 GeV, Amp = 3.5 x 107 GeV,

e 2.3.2
Ay = -7k, = —T7.3 x 10715.GQeV. (2:3.25)

The AI =1/2 rule for K-decays manifests itself in the form of a small suppression factor
[22]
w = 0.045. (2.3.26)

The dominant contribution to I'ys comes from the 27 intermediate states and more specifi-

cally the I = 0 state. Thus

T1p ~ (K| HE5=0) (0| HAS=1KO) (2.3.27)

wh wk

and hence
Imlyy Im(aj)?
ReP12 - RG(CLSP.

Using the experimental values of 7t~ and 7%, alongwith (2.3.26) we then get [13]

(2.3.28)

leg| = 2.3 x 1073, (2.3.29)

-

and the phase of € is nearly /4. Such a small value of the C'P violating effect can be best

understood as resulting from
Iml'y « Rel'ys and ImMiy < RelMys.
Under this approximation eqn.(2.3.12) reduces to
Ampg ~2ReMyy and Ay~ 2Relqs. ' (2.3.30)
In the SM, K° — 27 decays proceed through the “box diagram” (see section 2.3.2) and

with a certain phase choice known as the ‘quark phase convention’, one can rotate away the
I q I ) )

phase of ay to have

ag = |agle™ and ay = +ay). (2.3.31)



Then using (2.3.25 - '2.3.31) in (2.3.23, 2.3.24) we get

e /4 [ Im My,

= o~ an 2.3.32

€K = €0 7 B + tan ( )
1 (S .

€x =€ = ;FE;Z—S{ sin fge(F2—d0+/2), (2.3.33)

To determine the parameter ¢ one needs to measure 77~ and 7% to a great degree of
accuracy, a task of considerable difficulty. However recently such measurements have been
made to yield [23]*

-

lex/ex| = (8.3 £1.1) x 1073, (2.3.34)
2.3.2 Sources of CP Violation

The main thrust of the current chapter and the next is to establish a link between the C'P
violation in the K- K0 system and the quark mass matrices. But before jumping onto any
conclusion, we would rather like to have a quick look at the various possible sources and

only then point out the essential simplicity of the C KX M picture.

CP violation in a theory satisfying the Liiders—Pauli criteria [19] can be categorised as

those

a) violating each of C, P and T,
b) violating P and T but conserving C;

c) violating C' and T but conserving P.

As parity violating effects in strong and electromagnetic interactibns have been experimen-
tally constrained to less than O(10~°) [25,26], such theories obviously cannot explain eg.
Thus if C'P violation were to come from these sectors, then they must be of category (c). On
the other hand, C'P violating effects in the weak interactions are most likely to be of type
(a), though H,,, might as well have small admixtures of categories (b) and (c). Keeping

such considerations in mind, the candidate theories can be classified into four types. Of

these, the millistrong and the electromagnetic models require an adequately small part of

the corresponding hadronic interaction to be of type (c). The C'P violationin K — 2x

‘Tt must be remembered though that a later experiment [24] gives a value (=0.5 4 1.4) x 1079 i.e
consistent with zero.



Figure 2.1: “Box"~diagram generating K°-K0 mixing and ex in the SM

(which is supposed to occur through an intermediate state with one of the decays being
driven by the C'P conserving H,,,) then arises as a result of an interference of amplitudes.

However, experimentally such models are not favoured [26].

Milliweak models require a part (~ O(107%)) of H,; be CP violating, resulting in
single-shot K7, — 2, and hence similar effects should be observable elsewhere, say in the
B-decays. On the other hand superweak models predict a CP violating AS = 2 piece
in Hyp, with K7, — 27 occuring through an intermediate Kg state. In such a case CP
violation occurs only in the K%-K0 system. Consistency with the observed value of Amg,

which arises now as a first order effect requires gy, ~ 1078 and hence the name. The

distinguishing feature of this model is that €% is identically zero.

In the 3-generation SM, which, for a complex C K M matrix, is.a milliweak theory, K-
KO mixing and Kz — 27 come about because of the 1-loop Feynman diagrams in Figures
(2.1) and (2.2) respectively, giving rise to

G% .
ImMyy = Ié‘%f[z(mf(m%vBK {/\37715(21(:) + AP2S (ye) + AeXims S (e, Z/r,)} , (2.3.35)

and
813823 . 150M eV r _
tan g = 81 5[—-————— T, 2.3.36
o sz my(1 GeV') ( )
where
L= R R )
')\7' - I(:L(l[(” ] Y = ]77'1, /Tn'I/V (2.3.37)
fx = 0.16 GeV mw = 81.8GeV.
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Figure 2.2: “Penguin”-diagram responsible for ey in the SM

Whereas fx is the pion decay constant, the bag parameter Bx reflects our ignorance of the
hadronic matrix elements. If vacuum saturation approximation were correct then one would
have Bx = 1, but theoretical estimates only put the rather loose bound of 1/3 < Bx < 1.

The functions S(z) and S(z,y) arise from the loop integral and are given by

S(z) = @ H + 4(19_3,-) - 2(1_3,3,)-2J +% [.il]glnm
S(z,y) = wy H% + 4(1:.3.3,) T II—a)? } .

The quantities 7; represent QC D corrections [27]. While 7; does not depend on m; and is
evaluated to be 0.85, 7, is essentially independent of m, for 40 GeV SmP¥*<130 GeV and
ny = 0.61. 3 and H are slowly varying functions of m; and are approximately 0.25 and

0.37 respectively [28]). However we shall allow for their full variation in our calculations.
2.3.3 The Bg—ﬁg system

The analysis for the BS—B_g system proceeds exactly as for the K°~K0 system. But unlike
the latter, no trace of C'P violation has yet been found here. Instead, we shall concentrate
solely on the issue of particle-antiparticle mixing. Defining the time-integrated mixing
parameters

|(BY) BY)|?d

v

il

Td

v

|{(BY|BY)|2dt (2.3.38)

2 (Amp)? + (ATg)*/4
2I'y + (Amp)? + (AT'p)?/4

-

ein
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(where in the second line we have dropped the subscript d ) -and siinilarly for 74, we see
that C'P conservation demands that 'Tq = rq. Experimentally however one cannot directly
measure either r, or 7, as generally the mesons are created as pairs. Rather one looks at
the dilepton decay modes and defines parameters Ry and A,; which measure mixing and
decay asymmetry (and thus C'P violation ) respectively:

Nt+ L y—- A N+t _N--
Nty N+ T NH N N RN

Ry = (2.3.39)

where N’s denote the number of dilepton pairs with the associated charges. For the ete™ —

T(45) — BS—B:? process these relations reduce to

1 71(1““7_;(5
Rg= - d Td), A= —————.
I 2(7’z+7‘1) R S

For the 3-generation SM with a relatively heavy top, the dominant contribution to T4
comes from the corresponding box-diagram with the top flowing in it. With this simplifying

assumption we have

Amg  2G2 ;
ta= 4 L= #TBUBBf§7n39n§VS(yt)lf(t'df(tb[g (2.3.40)

where 7p is the BY lifetime, fB the decay constant, By the bag parameter and 5 a QCD

correction factor. Experimentally we have [11]

rq =021+£008, ==  2,=073+0.18 (2.3.41)
and
mp = 5.28GeV 8 = (1.164+0.16) x 107125 (2.3.42)
n = 0.85 0.1 GeV < fgv/By < 0.2@GeV. -

Armed with the resources of this chapter, we can now attack the problem of quark mass
matrices and the various ansitze for them. The three experimental inputs discussed here
viz. €x, €, and z4 shall be used in the next chapter to check for the phenomenological

validity of various models for quark masses.
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Chapter 3

Quark Masses And Mixings

As we have seen in the last chapter, the standard model does not provide one with any
guideline as to what the fermion masses and the mixings should be, the only criterion for
determining these being experim.éntal consistency. But this situation is aesthetically not
a very pleasing one and there have been many efforts to formulate models that remove
the arbitrariness to some degree. The methodology is quite simple. One imposes certain
symmetries on the quark mass matrices to relate at least some of the ten parameters in this
sector. Mainly motivated by phenomenological considerations, some of these models can no

doubt be looked upon as having arisen from theories with higher gauge symmetries.

In this chapter we start with a brief discussion of some of these models and the moti-
vation behind each. Once the predictions due to each are identified, the next logical step
is obviously to check their validity in the light of the current experimental results. Finally
we end with a model independent study of the three generation quark mass matrices and

identify the various models as special cases.

3.1 Models for Quark Masses and Mixings

3.1.1 Stech Model:

This model [29] was motivated by grand unified theories where the gauge group has a SU(5)
subgroup and all the fermions of a generation are contained in an irreducible representation.

The fermion masses arise from non-zero vacuum expectation value of Higgs fields transform.-



ing under different repreéentations. The assumption was that the mass contributions due to
the syrm'n‘et.ri'c Higgs representationé,domina,te and that the antisymmetric representations
do not contribute to the up-sector. Such a scenario was to be ensured by suitable discrete
symmetries and a proper choice of. the higgs couplings. A further choice of hermiticity of

the mass matrices restrict their form to

. My 0O 0
]V[u(S) = ]‘{[u = 0 me 0 (311)
0 0 my
and ‘
My(sy = ald, + 4, (3.1.2)

where « is a constant and A4 is an antisymmetric matrix.

M(s) can be brought into a diagonal form by an orthogonal transformation. In this
basis 4 is still hermitian and antisymmetric. It should however be noticed that choosing a
particular basis for the C K M matrix would necessitate a unitary transformation by a phase
matrix. While this would leave A invariant, A would lose its antisymmetry and would be a
hermitian matrix with all diagonal elements zero. In fact the basis independent statement

is that det(A) = 0.

As shall be shown in section 3.3.4 , this model is characterised by seven parameters and
hence we expect three relations between the quark sector parameters. These can be read

off from the matrix equation
KMy K = T, = diag(mg, my, my) (3.1.3)

The analysis is exactly similar to that employed for the model independent case [section 3.3

] and shall not be presented here. The relations one is looking for are

, -1
2 (md mu> (1 mum,1>
) d _ Ml
! m, M, My M ’

l

! -1
My Mg MM
E @;__Q<L_*f> , (3.1.4)
m,  my MMy
My
geosd =~ ——gq,,
my

There is indeed a fourth relation claimed by Stech:

9 My o
813 = 833, (3.1.5)
M

25



but in section 3:3.2 it shall be shown to be not a consequence of the model but to have

arisen from a flaw in the analysis.

Though the ansatz looks simple enough, it is very difficult to ensure such a form in
viable models. The first such scheme was presented in the context of left—right models [30],
but in these the tree level derivations of the Stech model were somewhat spoiled by infinite
corrections at higher loops. An alternative model [31] based on a supersymmetric S0O(10)
theory with softly broken supersymmetry is probably the best candidate available in the
literature. The symmetric parts of the mass matrices are unaltered at the one-loop level
and the antisymmetric part for the down quarks arises as a one-loop correction and is hence
smaller than the tree level terms. The relevant diagrams involve charged color triplet scalars
and because of the choice for their quantum numbers give a net antisymmetric contribution.
The cornerstone of the model is the proportionality of such corrections with the Ma jorana
mass of the v (for a definition of Majorana neutrinos, see Chapter 4) and hence there are

no corresponding diagrams for the up-sector.

3.1.2 The Fritzsch Model:

The Fritzsch model [32] envisages a scenario where, to begin with, only the heaviest quarks
in either sector are massive and all others gain mass successively through charged current
mixings with the next higher generation. This model was first obtained [32] for a field
theory with SU(2);, ® SU(2)r ® U(L)p-r as the electroweak gauge group and two Higgs
fields, on imposition of a certain digerete symmetry. The simplest such construction is given
by a scenario where one considers only the matter fields g;r, (2,1, 2, ar (1,2, §) (i being
the generation index) and two Higgs fields $12(2,2,0). The number in the parentheses
here represent the transformation properties of the field under the gauge group. The most

general Yukawa term then reads

Lyur = TLajr (hijdr + g9i509) + H.c. (3.1.6)
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Parity invariance obviously requ‘ires that the matrices h;; and g;; be hermitian. If we further

demand that the Lagrangian should respect the discrete symmetry

G —  —iqr iR — QR
Qor, — iqQar @2r — —ig2R (3.1.7)
gL — 431 . 43R — Q3R
b - b2 — i,

the only non-zero Yukawa couplings would be
hor = hiy, gs3, hs1=hig and hgy = hja,

and one obtains the desired form for the mass matrices.

In a basis where the up-quark mass matrix is real, one then has

0 a, O ‘
Mypy=| au 0 by (3.1.8)
0 by ¢y
and .
0 aqe*P! 0
Mypy = | aqe™™ 0 bae™ |, (3.1.9)
0 bye—4P2 Cg

The quark sector is thus characterized by eight parameters and hence two relations between
the masses and the C K M matrix parameters are predicted. The form of the mass matrices
also imply that the middle (in magnitude) eigenvalue of both M, ry and Myry would have

a sign opposite to the other two.

Mgy can be brought into real form by performing a phase rotation on both the left—

and the right-handed down quark fields

Moy = PTM(Q(F)P, : (3.1.10)
where
P = diag (1,6"“"",@“‘““””) (3.1.11)
and
0 (19} 0
Mypm =1 az 0 by |. (3.1.12)
0 bd Cd

M@ and Alc/l( ) being real symmetric matrices, can now be diagonalized by orthogonal

transformations. For example

OEMU(F) Ou = M, = diag (M, M, M) (3.1.13)
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with

1 ‘ 1 1
Ny N, Ny
O, = UL - Me iy : (3.1.14)
N 10y N 20y N 30y,
— 1My bu — MM bu "mtbu

Nl Qy, (mc + mt) N2 Qy, (7nu + 7nt) NS Ay, (7nu + my )

The eigenvalues m; can be obtained by inverting the relations

a, = (_mun’llcmt/cu)l/z
by = [=(muy + me)(my, + m,)(m, + my)/en ] (3.1.15)
Cy = (mu + M + m,g) N

and N; are the normalizations for the eigenvectors of Mypy

ng — me — my, [1 (772( + mu)"nuJ
c (m¢ + m.)m,
N oo o me [1 N (m, — L)maJ (3.1.16)
My (mt + mu)
) m mg 4+ memy, +mi  myme(m, + M)
N3 = - 2 + 3
mumc(m(: + 7nu) 777’t m,
The weak mixing matrix being given by
K =0Tplo, (3.1.17)

we have

%

812 )

l Md i, M,
Voom, Me
[T B [
So93  ~ ! 4 e 1<,02 ,
my 71
51y A My [Ma it ( My i e, >I
13 R = — ——
my \ my, my me )|’
sin § sin ¢y
B e e ~ .
512823 7 S
813 m

The first two of these equations can be used to determine the phases ¢y and 9 and then

(3.1.18)

the last two represent the predictions of the model.



3.1.8 Fritzsch-Shin Model:

The two phéses (1,2 in the Fritzsch mass matrix are not determined by the imposed discrete
symmetry and hence are quite arbitrary. If these could be fixed by some means, the arbi-
trariness could be reduced somewhat and further r.elations between the parameters would
be predicted. To this end, Shin [33] inade a choice for the two phases namely ¢; = 90°
and @y = 0, the hope being that this could be achieved on imposition of further discrete
symmetries. Thus the model is now characterised by six parameters and this results in two
further constraints on the system over and above those obtained for the general Fritzsch

case. For example, all of equations (3.1.18) are now predictions of the model.

3.1.4 Fritzsch-Stech model:

That the Stech and the Fritzsch ansitz® are not inconsistent with each other is easy to see.
Exploiting this freedom, Gronau, Johnson and Schechter [34] proposed a scenario in which
both these sets of assumptions are incorporated. (However no realistic model to achieve

this has been constructed.) In a suitable basis the mass matrices are thus given by

0 a, O
]\{['u,(FS) = Gu 0 by (3119)
0 by ¢y
and
0 ia 0
Myrs)y = aMypgy+ | —ia 0 b | . (3.1.20)
0 -4 0

Like the Fritzsch~Shin model, this also results in a six parameter family and the predic-
tions over and above either the Stech or the Fritzsch scheme can easily be obtained. (For a

detailed account of the same, see Section 3.3.4.)

3.2 Validity of Models

In the last section we had a brief overview of the more popular models to explain the
quark masses and mixings. All these ansitze predict some relations between the otherwise
free parameters in this sector and hence the most obvious check for the validity of such

models would be the comparison of their respective predictions with experimental data. A
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detailed analysis was performed by Harari & Nir and by Nir [36] where they compared the
relations with the restrictions imposed by the €' P-violation parameter ex and the BS-_J;’:?
mixing extent r4 to conclude that while the Stech ansatz was ruled out, the Fritzsch scheme
barely survived. However it was pointed out in the literature [12,37] that these authors
had put unnecessarily severe constraints on some ill-determined parameters involved in the
calculations. In the light of this, we redid the exercise to obtain results quite different
from that in ref.[36]. For example, the Stech ansatz was not yet ruled out and the Fritzsch
model had much more freedom than claimed [35]. However the newer result on the AS = 1
CP-violating parameter €} proved to be a very useful constraint to check models by. In
the rest of this section 'we shall describe the method of comparison adopted and the results

thereof.2

3.2.1 The Stech Model : Consistency Check

As we have seen earlier, the Stech ansatz results in three predictions viz. eqns.(3.1.4). The
first of the three relations is obviously consistent with the experimental values, while the
second, on scanning through the entire range allowed to the masses gives m;(1 GeV) <
82.4 GeV thus implying that we need to examine only the range 45 GeV < mP™* <
51.5 GeV. An examination of the overlap of ex and z4 bounds in the ¢-§ plane (where ¢ =
813/ s23) for various choices of Bpf3 and By indicates q ~ 0.1 thus requiring § to be nearly
90° for the Stech scheme to be valid. This indicates a near ‘maximal’ C' P violation in the
neutral kaon system as expected from the choice for M, and M,;. A thorough examination
shows that the Stech ansatz agrees with the ex— and z4-values only for mphy *~ 515 GeV,
s23 ~ 0.07, Bx ~ 0.33 and BBfg, ~ 0.04. This overlap was absent in the analyses in
refs.[36] as they had limited 523 t0 be below 0.05. But even this tenuous agreement is
destroyed by the ¢ observation. Noting that my(1 GeV) ~ 82 GeV and ss3 ~ 0.07
implies m,(1 GeV') ~ 120MeV, a substitution of all relevant variables in equation(2.3.33)
predicts |ej /ex| 29 x 107 which is considerably higher than the experimental upper limit

of 4.4 x 103,

1'11115 section is based on the work in rof. [35]
*It must be noted that independent of the contents of this sec tion, the recent improved bounds [17] on

the top quark mass (nuNSO GeV) effectively rules out all the models under discussion
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3.2.2 The Fritzsch Model; Consistency Check

As far as this model goes, equation (3.1.18) gives m; < e/ (/s [Ty, ~ $23)? and using the
entire range for the other parameters, one gets m;(1 GeV') < 223 GeV thus requiring us to
look only at the interval 45 GeV < M’hys < 127 GeV'. To check the validity of the model,
we select a combination of my, My, S23, Brx and Bp fé and look for any overlap in the ¢—§
plane of the z4- and ex— bands and the region allowed by the model. Note that equation
(3.1.18) gives rise to two bands (corresponding to the two different relative signs between
p1 and @y, as yet undetermined) independent of §, whose widths are determined by the
error bars on m; and s15 and which may, in some cases, coalesce into one. Furthermore

these selections are to be checked for consistency with the e} /ex results.
y K

Our analysis shows that unlike in ref. [36] one does obtain a large number of solutions for
this ansatz. Though most of the solutions obtained are for 823 ~ 0.07, a significant number
do exist for s93 ~ 0.059, an upper bound many authors have quoted. More important the
extremal conditions required in the earlier analyses [36] are released. We divide the solution

into three broad categories

Large my:

For 95 GeV < mP™* < 197 GeV, the requirement of Bp f and z, being respec-
tively at the top and the bottom of their individual given ranges is relaxed with
their ratio being allowed to take central values. But Bx < 0.6 and s93 > 0.06
are slowly pushed to their respective minimum and maximum as m; increases.
Also m,,, my and m, need to assume almost the lowest values allowed. Small
g(~ 0.035-0.06) is favoured while § is allowed over a considerable range (40°-

120°) with progressively higher values for lower M.

But this solution is in contradiction with g 2 0.07, a limit imposed by observed
levels of charmless b-decay. So for this range the Fritzsch scheme is effectively

ruled out.

Low my:
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* For 70 GeV > mP™* > 45 GeV, on the other hand zq¢/BpfE needs to be
constrained near the lowest value. While By, my and consequently m, and m,
have the freedom to assume values close to or slightly below the centre of the
range, sp3 again needs to be larger and larger as one progresses to lower m,’s. ¢
takes on a typically a larger value (0.08 — 0.1) than allowed for large m; and §

is constrained between 110° and 130°.

Middle my:

In this range (70 GeV < mP™* < 95 GeV') the results are similar to those in ref.
[36] and though many more solutions are obtained, we are not detailing them

here.

It is to be noted that €% results hardly constrain the Fritzsch model solution domains.

One of the very few examples where this result did rule out this model is

Bx = 0.85 Bpfi = 0.02 $23 = 0.06
ma(l GeV) = 6.3MeV  mP™ = 90 GeV

-

The other contraints agreed for § ~ 113°~123°, and ¢ ~ 0.067 which would have required

lehe/€x] < 2.09 x 103,
3.2.3 Fritzsch—Shin Model: Consistency Check

Since this ansatz is but a special case of the Fritzsch scheme, it stands to reason that the
agreement would be narrower. Indeed our check shows that of the three zones we demarcate,
the Shin choice is invalid in both the high m; and the low m; regions. Even for the middle
my region, the agreement is very marginal as in ref.[36] and not much improved by relaxing
the upper bound on sg3. It is however noted that s = 0 alone has much better agreement

than the Shin ansatz.
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3.2.4 Fritzs.c'h~Ste(':hvm0del: Gonsistency Check

That the experimental agreement of such models would be narrower than that of either
the Fritzsch or the Stech model is obvious on account of its incorporating the assumptions
of both the latter ones. Of particular relevance.is the Stech lineage. Hence even with-
out bothering to examine we could safely conclude that this ansatz is phenomenologically

inconsistent.

3.2.5 Conclusions

Our analysis has shown that if one takes into consideration the entire range allowed [12]
experimentally to K., a much wider range of solutions is allowed to the Fritzsch ansatz
predictions than claimed hitherto. The necessity of a heap of theoretically and experimen-
tally ill-determined parameters assuming extreme values allowed is removed. But the model
fails to take advantage of one concession that a higher value of s33 gives it, 7.e. agreeing
for high m;. As we have seen earlier, mP™* > 95 GeV is ruled out as it entails a value of
g smaller than the experimentally allowed minimum. If the limit mfhys < 55 GeV [37] is
taken seriously, the Fritzsch model would still be in the running. But in that case the Shin
modification is totally ruled out. On the other hand, the Stech scheme which was allowed a
marginal agreement with the earlier data for sa3 ~ 0.07, is totally ruled out by the €% /ex|
results. As a corollary, other models incorporating the Stech ansatz like the Fritzsch-Stech

model of Gronau, Johnson and Schechter are automatically invalidated.

3.3 A Model Independent Analysis

The results of the last section demonstrate that none of the current models for quark mass
matrices do the job efliciently: This naturally prompts a model independent study 3 of the
problem in the hope that such an act;i;rity would help us in gaining some insight into the
matter at hand and possibly indicate fertile but as yet untapped territory for future model

Building.

To begin with, we start with the most general mass matrices for three generations. The

IThis section is based on the work in ref. [38]
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arguments of section 2.1 show that by making a phase transformation on the right handed

quark fields alone we can make these matrices into hermitian ones with all their eigenvalues

to be positive. However such a choice for the basis would, in general, not be consistent with |

the particular form of the C K M matrix that we have chosen to work with. Hence we shall
only demand hermiticity and allow the eigenvalues to take either sign. This need not cause
any alarm as in the standard model the sign of the Ierm_lon mass has no significance and

can be changed by a chiral transformation.

In the basis in which M, is diagonal, we then have for the most general case

My = ald, + A (3.3.1)
where ‘ ‘
0 Rign  Ryein
A=| Rie7  f  Rgeim | (3.3.2)

Rge_if'? Rgewip"’ d

Thus the mass matrices are a ten parameter family determined by the values of My, Me,
me, a, f, d, Ry 5 3 and the invariant phase (p1+p3 —p2). That the other phase combinations
are unphysical can easily be seen by maklng the most general phase redefinitions of the quark
wavefunctions. This then leads to A q — PTA{[(]PQ where P; 5 are some arbitrary phase
matrices. While the magnitudes of the individual elements are invariant under this change
of basis, their phases are not. The simplest nontrivial combinations resisting change are
given by [39] the “cycles” arg [(A/[d).;j(Mj)j;ﬁ(A/[d);i,l(Mj)liJ (no summation) and this in the

present case simplifies to the expression given earlier.

Though on the face of it this parametrization has no predictive power as we are using
ten parameters to relate ten others, in our analysis we would not be using all of them and

most of our conclusions would be drawn by considering only the diagonal elements.
On diagonalizing M, we have
EMuEY = My = aM, + A

where

M, = dzag(m(/, My, My,).

The diagonal elements of the matrix equation give three relations, of which one is the trace
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|4+59]

condition '
o= M +my+my - f—-d (3.3.3)
m'u, + mc '.i_ mt V

and the others are
2.2 L o2
AMy = Mg + ci3875(My — Mqa)+ si5(my — mq) (3.3.4)
12 -9
and ame+ f = my+ ’012623 - 5128233136‘5l + 6%3353(’”51) —myg).

3.3.1 The two generation limit:

As a first approximation we assume that the third generation essentially decouples from
the first two — a not too strong assumption as experimentally both S93 and sq3 are small

compared t0 s12. In this limit (3.3.4) reduces to

am, = mg+ siy(m, — maq) (3 3.5)
ame 4 f = mat Sam, - ma).
Eliminating « from above, we obtain
f (1 L
, (-f)m-m (3.3.6)

S19 =
(3) (1~ )
Using eqns.(2.1.18) and (2.2.12) in (3.3.6) gives an allowed range for f for a given my
which has been plotted in Figure 3.1. It is seen that for mg/my < 0, f assumes small values

irrespective of the sign of m,, /m., and is consistent with zero. While for mq/ms > 0, f is

comparatively larger and its sign is opposite to that of My /M.

3.3.2 Back to three generations:

Assuming the two generation limit for s;5 and using it as an input in eqn. (3.3.4), we have
(for 13 =~ 1),

2 m,, (m — d)(me + my) + mu(f — my — my) (3.3.7)
Mg+ e+ my (e + ) — (mame + myme + frmy,)

d ) [ U 0] / K m. -
__[353{2?'_<1+ﬂ) _ <1+11+.mu_>}+_.:< __f_> +1J
my mq me my mqm, My Mg

- (1 _ _711_) <1 . m) my
Me Me /) My

2 . My, my (. My, My fmu ) }
SPTON S LT I UL — (11
523 ( * mc> {md < " mc) ( g T Mg,
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Figure 3.1: The allowed region for f (shaded region) as a function of my (see eqn.3.3.6).

a) T2>0, x>0 b) =2 >0, Dr<Q

g e T ™me
Ty Ty ) Ty ™My
C) L] < O’ e > 0 d T < 07 The < 0

All values are calculated at g = 1 GeV. my has been assumed to be positive. For

myg < 0, f—> —f.
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Thus for a givén 823 we have a linear relation between d and m; with the 310pe and intercept
depending on the signs of the various mass ratios. In Stech model, for example, d was
required to be zero, thus fixing m; upto error bars due to the experimental uncertainties. A
non-zero value of d would unfreeze this restriction and allow for better agreements with the
experiments. The allowed regions for d for a fixed m; has been given in Table 3.1. Similar
to the case for f, d takes ‘small’ values about zero for mg/m, < 0 while for a positive

value of this ratio it is considerably larger and a vanishing value is not consistent with the

observations.
Sign(t, 77":,[1 Me) Limits on d(1 GeV) (in GeVs)
(+,+,+) —3.43m; +5.19 < d < —3.27m; + 5.39
(+,+,-) —3.4Tmy 4+ 5.19 < d < —3.29m; + 5.39
(+—-+) —0.15m; + 5.19 < d < +0.19m; + 5.19
(+,—,-) —0.18m; + 5.19 < d < +0.15m; + 5.19
(= +,+) —3.46my+5.21 < d < —3.35m; + 5.21
(=+,-) —3.44m; +5.21 < d < —3.26m, + 5.41
(==, +) —0.18m; + 5.12 < d < +0.16m; + 5.21
(—,—, -) —0.16m; + 5.21 < d < +0.18m, + 5.21

Table 3.1: Limits on d(1 GeV) in terms of my(1 GeV) as imposed by eqn. (3.3.7). The

limits are calculated for positive My, My, and my. For my < 0, d — —d.

Taking the two generation result to be exact and substituting in eqn.(3.3.4) one obtains

9 M, (me + muy)(my — d) — my(my + mg — f)
S13 =
me + Me + My (M + mu)my — mu(m, + ma — f) ﬁ (3.3.8)
m m
~ U 1— oy 9
m < ml)) %23

This implies that m,/m, > 0. The analysis and the result are similar to Stech’s (Section
3.1.1). An attempt to obtain a better approximation by an iterative procedure (4.e. substi-
tuting the current expressions for ss3 and s1g in equs. (3.3.5) and (3.3.6), instead of taking
them to be zero and then redoing the same analysis) yields an extra term much smaller in

magnitude.

But this result is in direct contradiction to the Fritzsch model (Section 3.1.2 ) wherein al-

ternate generations have masses of opposite signs. Indeed, if equations (3.1.18) are squared,

-
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one obtains an equation similar to (3.3.8), but with an extra term typically larger than the

right hand side.

The inconsistency lies in the analysis where one is aiming to solve for three angles
from two equations. The relation (8.3.8) is thus shown not to be an outcome of the Stech
ansatz but rather arising from an overkill of the equations (3.3.5) and (3.3.6). The best one
can achieve without using the oﬂ'"-diagqnal terms is an expression for s;5 in terms of three
unknowns my, f and d, the measured parameters 812 and the other five quark masses:

2 _ My — [mg + (m, — my)sts]

— 3.3.9
513 My — [771(1 + (ms - 77%1)5%3] ( )

3.3.3 The off-diagonal terms:

Till now we have used only the diagonal terms of the matrix equation (3.3.1), ignoring the
off diagonal terms, inclusion of which would give exact but contentless results. We continue
in the same vein but would nevertheless like to look at these relations so as to get an idea

of the relative magnitudes of these terms. We have

i1 , P P —i§
Rie®' = cigeagcig81a(my, — Ma) -+ c13813823(mp — c3yco3my — s79Mmy)e"
; 2 9 is
Rye'™ = cogerzsig(my — s2ymy, — C1aMa) + C1ac13512823 (Mg — my e’
(3.3.10)
i D ) 2 92§
Rae's = C12812813(my — M) (c23 — S§5qe )

Feaasaae™ [ehymy o (chysty — s35)ma — (sys2y — c2y)m]

The complex phases p; and p2 are relatively small and lie in the same quadrant as can
be seen from the fact that tan py tan py ~ 533 . While sin py attains its maximum of 0.12
when m, and s15 assume the lowest allowed values and 813, 823, My the highest and § ~ 83°,
$in pg is maximized to 0.15 by giving “ﬁ—‘,'" and my, their lowest values, My, S12 their highest

and putting § ~ 81.5°. On the other hand p3 ~ §. Hence this dominates the invariant

phase p1 — py + ps and most of the C P-violating contribution comes from this term.
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3.3.4 Models as special cases of the general form:

In this section we revert to a discussion of the models mentioned earlier. We demonstrate
how these models could be obtained from the general mass-matrix on imposing suitable con-
straints. This would exhibit the restrictions one is pre-imposing on the various parameters

and hopefully afford a better understanding of the implications of an ansatz,

Stech ansatz

A straightforward comparison of equations (3.1.2) and (3.3.2) gives the constraints to be

- f = 0
d = 0 (3.3.11)
PL—p2+p3 = 90°
Using (3.3.11) in (3.3.10) one gets
318 056~ 0 (3.3.12)

823

This could be directly seen in the light of the discussion following equation (3.3.10). The
Stech ansatz thus restricts the mass matrices to a seven parameter family which predicts near
‘maximal’ C'P violation. One of the three promised predictions is then equation (3.3.12) or
equivalently the last of of equations (3.1.4) and the others can be obtained from equations

(3.3.6) and (3.3.7) by substituting f = 0 and d = 0 in them respectively.

The first two conditiong obviously restrict the mass matrices to the negative m,/my

sector. Also a lower limit on the mass of the d-quark is set:

mq(1GeV) > TMeV for my/m, > 0

3.1
ma(1GeV) >- 85MeV  for My /M < 0 (3:3.13)

There exist in the literature certain modifications of the Stech scheme as for example a
non-zero d or an invariant phase P1=p2-+pg different from 90°. Such models have reasonable

agreement with experiments at the cost of loss of predictive power.



Fritzsch model

The simplest way to find the constraints to be put on the general form to obtain the Fritzsch

form is to rotate My with O, and compare the resultant with My
Myery = 0uM407

gives the two required constraints:

amy ame+f amy+d  2Rycosp; 2R, cos P2 2Rgcospy

0 = - -
AR W7 NI, Ny s N3
QMmy o  ame+ f o ami+d
0 = —-N,—lz—mu 4 Tmc + "‘—]T/.:—}f—mt (3'3'14)
2R; cos p;y 2Ry cos py 2R3 cos p3
m—mumc g —TV—{TVE——,,numt + "‘N—ﬂ\rTmcmt

Using equations (3.1.16) and (3.3.10) in the above, any two of the ten parameters can be
eliminated. For example if  and d are evaluated in terms of the masses and the CKM
parameters, then substituting the expressions for them in (3.3.6) and (3.3.7) would give us,

say s13 and my in terms of the others and these would be the predictions of the model.

Fritsch-Shin scheme

Shin’s choice for the phases in the Fritzsch mass matrix reduces the parameters by a further
two and now we have four predictions. The choice is equivalent to imposing two additional

constraints on the general form over and above eqns. (3.3.14):

0 = (m?- 7712)7N V, “ Ry sin pl + (m? — m! )7]7\;:?:: R, Sinbz
+(mE — m?) == R3 sin ps
Nﬁ#, va om (3.3.15)
Qamy, m, amy 1COS py
0 = le My + N22 Me + Ng‘f me + N1 N2 (m'u, + mc)
2R4 cos 21ty cos
]\2/1 Ns/)z( w )+ —ﬁ;jﬂpﬁ(mc + my)

Proceeding in a manner similar to that for the general Fritzsch form, eqns.(3.3.15) give

two more relations between the masses, the weak mixing angles and the C' P-violating phase.



Fritzsch- Stech matrix

The simplest way to write the two additioﬁal constraints that take the general Fritzsch form

to the one of interest is to demand that

Re(ay) = —Ou
" 3.3.16
Cd ;. ( )
R@(bd) = ———-bu
In our language this would look
(M + me)(my + mg)(m, + m) amd . 2m,,me R cos py
(M + me + my)? NE(me +me)? " Ny Ny(my + me)(me + my)
(ame + f)m? 2m,,my R cos py
sz(mu + my 2 NINS(mu + 7nc)(mc + mt)
(am; + d)m} 2memy R3 cos pg
N22(777/u + mc)2 N2N3(777'u + mc)(mu + m,,)
_ QM. am, + f amy +d 2Ry cos p;
I [ ng my, + NQQ me N32 my + N1N2 (mu 5 mc)
2y cos py 2R3 cos p3 }
+*7V1—N-3———(mu +my) + ‘W(ma + mye)
am? ame + fim?  (ame + d)m?  mume(ma + me + 2m, R1cos py
— 3 c 3

NE(me +my) * N(m, +my) | N2(m, + me)  (Mu+me)(me +me)  NiN,
Meme(2my 4 me + my) Ry cos ps Mty (1M + 2me + mye) Ry cos ps
(mu + mc)(mu + m't) N2 NS (7nu -+ m::)(777'c + mt) Nl N3

(3.3.17)

3.3.5 Conclusions

Our analysis has shown that the param'eters involved in the general three-generation quark
mass matrix are not fixed by the current experimental data but are allowed a continuous
range. However this range is limited to different sectors depending on the relative signs of
the mass terms. Most of the large width of these sectors arise due to the large indeterminacy
in the masses of the lighter quarks and only to a lesser degree from the inaccuracy of the

knowledge of the ¢-b mixing strength.

From the expressions in Section 3.3.3 we see that the off-diagonal terms in M, are

relatively small. In fact ,%—} < 0(0.1) and ‘%’ < O(1). In the light of this, if one
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demands that ’#{:‘ not be too large either, then from Plg 3.1 and Table 3.1 we

are limited to the < O sector. All the specific models that we have encountered so far

lie in this category.

This implies that future model building could take two different courses. The more
conservative course, given the moderate success of the current models would be to reexamine
the present constraints and offer slight modifications that would alter or extend the models
to a degree without drastically changing the basic structure. All these would be expected
to lie in the %L—;i < 0 sector. The other and more radical approach would be to consider an
entirely different class of models. This would entail J and d assuming much larger values
'compared to the other parameters in M, and would demand 2 theoretical Justlﬂcatlon for

such a behaviour.
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Chapter 4

Neutrino Masses and some
Consequences

As opposed to the last two chapters, we shall concentrate here solely on certain aspects of
neutrino physics. To begin with, we discuss the different types of mass terms possible for
neutrinos and go on to give an outline of the most general case. A short discussion on the
non-trivial consequences of neutrino mixing and oscillations follows next. The question of
distinguishability of Dirac and Majorana particles leads us to the feature of neutrinoless

double beta decay.

In the second part of the current chapter we present a new discussion on the connection
between the Majorana mass of the neutrino and the neutrinoless double beta decay [(66)o. ]
rate. It is argued that contrary to conventional wisdom, the latter does not distinguish
between the Dirac and Majorana mass of the physical electron neutrino (). Building
on this observation, we also identify scenarios where Ve can naturally be a light Majorana
neutrino with no (88)o, , and construct supersymmetric grand unified models that admit

such possibilities.

4.1 Neutrino Masses
The question of neutrino masses is on & somewhat different footing than that of quark or

charged lepton masses. For one, in the standard model the neutrinos are assumed to be

strictly massless. This is forced upon us not by some theoretical constraint but rather by
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our failure so far to conclusively detect any non-zero mass for the neutrinos. However any
negative experimental result is only as good as the resolution limits of the apparatus and

in this case a lot of room is still left.

To achieve a symmetry between the leptonic and the hadronic sectors, one would like
to consider the case where the neutrino does have a small (but non-zero) mass and look for

consequences thereof. In this chapter we would venture to do the same.

As soon as one postulates a non-zero My, one has to go beyond the minimal standard
model as the lack of both vp’s as well ag triplet scalars in the SM prevents such a mass term.
The simplest way then is to introduce one or more vr and as these are gauge singlets, the
anomaly cancellation is not affected. One can then have m,, through the usual method of
Yukawa couplings and spontaneous symmetry breaking. However there is more to neutrino
mass than just this and rather than duplicate the analysis in Chapter 2, we would take a

different track.

To begin with, we digress somewhat to have a quick look at the charge conjugation
properties of a spinor field:

C:p— ye=cy”, (4.1.1)

where C' is a matrix in the Dirac space satisfying
Cyfc™t =y, clc=1, 7= _¢ (4.1.2)

A look at the Dirac equation then shows that
c ~—T el .
C: ¥~ (¥n)° = Cir = Pry (4.1.3)
C: Yn— (Y1) =CY%y = Ppye,
where Py, i are the left— and right-projection operators respectively. This is to say that
the charge conjugation operator takes the state vector of a given particle to that of its

antiparticle while preserving the momentum and helicity.

For a neutral left-handed particle we can then write a mass term of the form

[

m(vr) by,

where m is either a bare mass term or arises from a v.e.v. of some scalar as the case

may be. Such a mass term is different from the usual Dirac term as it involves a field of
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only one helicity and is obviously absent for charged particles as that would violate charge

conservation.
In the general case where one has n vy, flelds and m vp, fields, the most general neutrino

mass term in the Lagrangian would read
(4.1.4)

1 .1 ,
- Ly mass = "VI]V[LVIf + ‘Q‘D?\JWRV]% + WJM-DVR + H.c. ,

where My, Mg and Mp are matrices of dimension n X n, m X m and n X m respectively.

Now given any two fields ¥ and y,

PMy° = pMCY" = xMy". (4.1.5)
Hence My, and Mp are symmetric matrices. Writing
My Mp )
ny = (I/]Z> and M poss < 1_) ; ’ (416)
VR ME My
we have
1 :
~Ly mass = §WM7IIS

Like My, and Mg, M is also a complex symmetric matrix and hence can be “diagonalized”

-

by an unitary matrix U such that

UMU = M(l'iu.g )

where U diagonalizes MM (See section 2.1). Defining
(4.1.7)

x=UTng + UTnL“,

we have
1
= 'Q_ZY—M(H(LQX . (418)

- Eu mass
Obviously x5 = x» and hence these are Majorana particles [40].

If M, = 0 = Mg, then the eigenvalues of M are either zero (Jm — n| in number) or

resolve into min(m,n) pairs of the form m; ( m; are complex). In the second case,
m(X+x+ — X=x-) = m(Xpxp + H.c.), (4.1.9)

~

where '
1

Yo = —=(xs + 757 ). 4.1.10
XD ﬁ(m Fysx-) ( )
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Thus two Majorana neutrinos with equal and opposite masses but the same G P properties
(or equivalently degenerate neutrings with opposite C'P phases ) combine to give a Dirac

neutrino of the same mass. The number of degrees of freedom obviously remains the same.

At this stage one might ask whether the differences between a Majorana and a Dirac
neutrino are limited only to their abstract vector space properties or if there exists any
measurable quantity that distinguishes them. A more general question is that regarding
the observational consequences of the neutrino mass matrix. We attempt to answer the
last question first, not only because it closely parallels the discussion in Chapter 2, but also

because the first problem, in a sense, is only a subset of the second.

4.1.1 Neutrino Mixing and Oscillations

Proceeding in a faghion analogous to that for the quarks, we define the charged lepton mass
basis by
lr, = LLZ/L and (p = Lnlh, (4.1.11)

where Ly, p diagonalize the lepton mass matrix M through the biunitary transformation
LiMlLR = M. (4.1.12)

Assuming now that all the left handed neutrinos are part of SU(2);, doublets with hyper-
charge ¥ = —%, and all right handed neutrinos are gauge singlets, we have then, for the
relevant charged current

o nd-m

i,j=1 a=1
leading to an effective neutrino mixing matrix (analogous to the C K M matrix) K given
by

Th

(K = 3 (L) (U e (4.1.14)

i=1
Notice that unlike in the hadronic case, we not only have the neutrino-C' X M to be non—

unitary, but it is rectangular [n x (n +m)] to boot. One has

(KB )y = 6y bur (ko K¥)ap = 3 UL UL,

k=1

46



The non—orthogonah'ty also manifests itself in the neutral current interactions, the relevant

isotriplet part of which is given by

7 LTI
I3 = > Ty = > (k1 K¥)apXalXpL
=1 ' o a,f=1 .

Parameter counting in this case is slightly different from that in the hadronic sector. KV
is best recognized as being a rectangular part of a (n+m) x (n + m) unitary matrix and
hence, in the most general case is given by "™(, angles and "*™+1C, phases. However,
we can’t proceed as for the quarks and eliminate 2(n + m) — 1 phases by redefinition of
wavefunctions, for the Majorana neutrinos obviously cannot absorb phase transformations.
At most n phases can be eliminated by redefining only the charged lepton wavefunctions
and thus we are left with "Cy + 1'-'(—2752'”““) C'P violating phases. It seems quite logical then
that this difference can be exploited to distinguish a Majorana neutrino from a Dirac one,
but Schechter and Valle [41] have shown that these extra CP violating effects are always
suppressed by an additional factor of (my/E,)?, where m,, and B, respectively are the mass
and energy of the Majorana neutrino taking part in the process. The suppression is easily
understood by appreciating that a process dependent on the Majorana mass must have an
amplitude proportional to the latter and hence for dimensional reasons there has to be a

suppression factor given by the relevant energy scale in the problem.

As in the case of the KO- K0 system, we have, iﬁ the general case, a number of neutrinos
with possibly all different masses mixing with each other. While the interaction terms in the
Lagrangian conserve the individual lepton numbers (for a definition of lepton numbers, see
section 4.1.2), the mass terms do not, and in the case of Majorana neutrinos even the total
lepton number is not preserved. As a neutrino with definite interaction properties evolves
in time, each of its massive modes propagates differently resulting in a periodic variation
in their relative proportions in the generic neutrino ‘beam’. Analogous to strangeness
oscillations for the neutral kaons, we have then the possibility of lepton number oscillations

42,

To start with, we take a quick look at the oscillation of neutrinos in vacuum. In this
section we shall adopt a slightly different and unorthodox notation. We extend the definition
of flavour eigenstates to include the right-handed neutrinos as well, and shall denote them

by |v) (where ¢ = 1..N(=n + m)). Identifying the mass eigenstates as Ix) as before, we
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have
N ) ]
pi(t=10)) = Y Uslxa(t = 0)) and lx = 0)) Z vt =0)) (4.1.15)
=1

where U is a N x N unitary matrix for N neutrino species. Then

N _
li(t)) = > Uye Pt

k=1
N

> Ui —'Ek’Z Slvi(t = 0)) (4.1.16)

X/,«,(t = 0))

l

and thus

N 2
P (8) = [(vi(t = 0)|ws(1)))° = Z UikU;l‘:e_lEkt (4.1.17)
. k=1
Assuming the neutrinos do not decay,
N
> P (t) = 1. (4.1.18)
J=1
Now
CPT theorem == Py, p,(t) = Py_,(t) (4.1.19)
while CP conservation == Py, p,(t) = Py, (2). (4.1.20)

It is easy to see that in the case of two neutrino species, (4.1.18) and (4.1.19) together imply
(4.1.20) and thus to detect C P violation in neutrino oscillations, one requires at least three
neutrinos to mix (a not unexpected conclusion). However, henceforth we shall, for the sake
of simplicity, assume that leptonic C' P violation is absent and hence the matrix U shall be

treated to be an orthogonal one.

Although a general study of the neutrino oscillation problem is ciuite a straightforward
one, the physics issues involved are more transparent if one restricts oneself to the simplest

possible case, namely that of only two neutrinos, say v, and v,,. The mixing matrix U then

cosf sind
U = .
—sinfd cosd

If we further assume that each neutrino is light enough so that we can write for its energy,

simplifies to

2 . :
E~p+ ’—%}—, where p is the momentum, we have

1 2R
Prosy(R) = 5 sin20 [1 ~ ¢os JH : (4.1.21)
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where R is the detector distance and

_ dmp e p(MeV)
Am2 T T Am? (eV?)

meters (4.1.22)
is the oscillation length. Here Am? = p? — m3 s the difference in neutrino mass squares.
Thus for oscillations to be visible, one not only needs a non-zero mixing angle 4, but also
RZL. In practice however, it is not easy to recognize oscillation employing a single detector
as one must average over the uncertainties in the zone of beam formation and detection
etc., leading to

(Puprv,) & %—Sillz 20 and (P,,_,)~1- %sin?‘ 24.

One of the prime motives behind the study of neutrino oscillations was the possibility
of a resolution of the solar neutrino problem. The problem (real or imaginary, depending
on the prejudices of the person concerned) lies in the low solar neutrino count in the Davis
experiment [43] as compared to the predictions of the standard solar model [44]. An in-
teresting solution would be to invoke transformation of the solar Ve t0o v, or v, (which the
Davis experiment cannot detect) while traversing the distance to earth. But the restrictions
imposed by the terrestrial experiments’on the sin 26-Am? plane rules out a dominant role
for vacuum oscillations in this context. A more practical solution lay in considering the
effect of matter on neutrino oscillations [45]. While v, travelling in matter suffers both
charged current (c.c.) and neutral current (n.c.) interactions, the other species have only
the n.c. interactions. This induces an additional potential term proportional to the electron
density for the v, or, equivalently, an extra term in the (mass)® matrix. With a matter
density gradient, as is there in the Sun, this results in an quantum mechanical eigenvalue
cross—over problem and consequently, in the adiabatic approximation, in a resonant conver-
sion of v, to say, v, [46]. This mechanism could magnify the oscillation effects due to even
a small vacuum mixing angle sufficiently enough to explain the rather large discrepancy.
But even this mechanism cannot explain the reported anticorrelation [47] between the solar
magnetic activity and the observed neutrino flux. An explanation for such a behaviour is
found if one ascribes a non-zero magnetic dipole moment to the neutrino thus enabling the

solar magnetic field to rotate V. to some sterile (in the Davis context) species.
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4.1.2 Neutrinoless Double Beta Decay

The most distinguishing feature of g Majorana mass term is the explicit breaking of a
symmetry of the Lagrangian that its ‘existence implies. In the absence of such terms, the

Lagrangian is invariant under the global transformation

/ T; / 260 1 / 161
Ly, — ey, ep — e &R, Vip — e"“vlp. (4.1.23)

This obviously leads to an exactly conserved charge Z (the lepton number, with values +1
for (anti-)leptons and zero for all other particles) with the consequence that the electroweak
interactions (and trivially the strong interactions too ) preserve the relative abundance of
leptons over antileptons. However the individual flavour numbers are not conserved, leading
to possible decays like

H=ety, p—3e, K- qpe. (4.1.24)

On the other hand, if both the neutrino and the electron mass matrices be simultaneously
diagonalizable, or in other words, if the neutrino mixing matrix is but a phase matrix, then

the Lagrangian is invariant under independent global transformations

lip, — €%l ein — eielp, Vip — eiylp. (4.1.25)

2

This leads to individually conserved lepton flavour numbers L; (the corresponding invari-
ances in the hadronic case are explicitly broken down to a conserved total baryon number
by the non-zero quark mixings). In such a case, the interactions as in (4.1.24) are obviously

absent,.

With the introduction of the Majorana mass term (either My or MRg), even the total
lepton number no longer remains a Symmetry. In fact, a non-zero Majorana mass implies
the existence of a bropagator of the form (ex ™), leading to Z violation by two units. This
effect manifests itself mogt dramatically in neutrinoless double beta decay. It is to be noted,
however, that existence of Majorana mass terms need not mean absence of any conserved
lepton charge. For it might so happen that a certain (or more) combination(s) of I, may
still be a good symmetry. A particularly simple case is that of two left~handed neutrinos

Ver, and v, such that the mass matrix reads

0 m
A/[y =
m 0
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The Lagrangian then has a U(1) invariance under which the two leptonic generations being
considered have opposite charges, 4.e., v

26,1
Ver,

/ —i8 ,,1 ! —18,,/
Brp — € "HLpr VY.L =€ VL

G eie?lzﬁn Vo, = €
We have then a Dirac neutrino mass term of the form mov where v = v.r, + (v,r,)°. The
conserved charge in this case is given by I = L. — L, and was introduced by Zeldovich,

Konopinsky and Mahmoud [48].

In 1937, Racah [49] pointed out that if the neutrino emitted by a neutron is a Majorana
particle, then it can stimulate the decay of a second neutron. Furry [50] then pointed out
that this neutrino can be a virtual one thus inventing the process of neutrinoless double
beta decay [(88)o, ]. We now expect that the (88)o, experiment will give us the physical
Majorana mass of the neutrino. Since a Dirac particle can be thought of as two Majorana
particles with opposite C'P properties, their contributions to (608)o, cancel [51,52]. Thus
we also expect that (88)o, experiments will allow us to distinguish between a Dirac and a

Majorana particle.

4.2 Naturally Light Majorana Neutrinos with no Neutrino-
less Double Beta Decay

In this section !, from a general analysis of the neutrino mass matrix, we argue that the
(B88)o, amplitude does not depend on the physical Dirac or Majorana mass of the electron
neutrino. We discuss the situation in which v, is a Majorana neutrino (and may even be the
only light one) and yet there is no (88)p, . Conversely we also know of situations wherein
there is (808)o. inspite of the v, being a Dirac particle. We then proceed to construct
certain supersymmetric grand unified theories that naturally have a light Majorana v, with
no (B8)o. or, on the contrary, a massless v, with considerable (8B)o - Thus experimental

signature or otherwise of (88)o. gives very little information about the neutrino masses.

As is evident from the discussion in the last section, a mass matrix of the form in

eqn.(4.1.6) in general induces (88)o. . It has been shown [54] that the amplitude for this

'Based on the work in ref. [53]



event goes as

A((ﬂﬁ)ou ) & (777’> = Z (Uf:/':)zm/‘l.:F(ml.:; N) (4.2.1)

where F(my,, N) = (e7™" /r) (1/r)~! | the average being done over the nucleus N in ques-
tion. (In this section we would, for the sake of simplicity, assume that the charged lepton
mass matrix is diagonal and hence L, is the identity matrix.) For neutrinos lighter than a

few MeV the suppression factor F is nearly one and then one has

N4

<’l77,) ~ Z (Uck)Q’nZk = Mcc (422)
k=1

the last equality following from the definition of 7. Thus for light neutrinos, (88)o, level
depends only on M,,. (Although this result was obtained by Wolfenstein [51] in 1981, its
significance was not quite appreciated.) It is quite independent of whether v, is massless or

if massive, whether it is of the Dirac or Majorana type.

However if one or more of the v-species are too heavy to be kinematically produced
inside the nucleus, then the effective mass (m) gets modified to
(m) =" (Uer)® my, F (rmy, N) = > (Uar)? my. (4.2.3)
light v light »
The last approximate equality fo]lowslmder the assumption that the neutrinos are either
- too heavy to be of kinematic importance or quite light, 7.e. their masses do not lie in the

MeV region. In this case M., is no longer a measure of (BB)ow -

To consider a concrete case, assume the mass matrix to be of the form

/T
we e 20) | 45

where M 3 are real symmetric matrices and one hag a hierarchy M7 < My <« Mgy such that

My~ O(MZMS_IM:}"). M can then be approximately block diagonalized by an orthogonal

matrix
— i, T
vt p (4.2.5)
=p L= gpp”
where p = M; ' MT. Then one has
Mpp =VT MV = ( 7(7)1 AO[ ) + O(p*My) (4.2.6)
where
=M — Myp and M = My + = (pM2 + MFpTy. (4.2.7)
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- Let Ky 3 be orthogonal matrices such that X = diag(K+, K3) diagona,]jzes Mpp. Then
1- 15T p) Ky pT Ky '
U=VEK = | ( 2 : 4.2.8
( ~pkK;y (1 $ppT)Ks (4.2.8)
diagonalizes the mass matrix M. If we.assume the eigenvalues of M to be very large, then
the effective mass (m) for (88)o, is given by

(m> = Z (Ue/\:)27nk = 7;77/11 V (429)
kem :

Thus if we block diagonalize the mass matrix M into two blocks 7 and M, such that
the eigenvalues of M are much larger than 1MeV while those of 7 are not, then the
(880, amplitude depends only upon the element (7)1, and not on the actual eigenvalues
of 7. We are here working in the basis (v, v, v - - -) where v, v, . .. can either be of different

generations or sterile.

Let us now consider a few special cases. If M = 73& 77:, ) where m' > 1MeV > m,

then we get a light Majorana neutrino of mass m?/m/. In this case Mi; = 0, yet we do
get a nonzero contribution to (80)o, . This is the well-known see-saw mechanism [55].
On the other hand, if in the same mass matrix we have m,m'S1MeV, then M itself
describes low energy v—phenomena and we do not have to take recourse to constructing m.
In this case though we have two Majorana particles of masses (m' 4 \/m) /2, yet
A((BB)ov) =0 as My = 0.

We have demonstrated two situations. In both the cases Mi; = 0, but while (BB)ow is
present in one, it is absent in the other. In either case the physical neutrino is a Majorana
particle. Let us now consider the case when it is a Dirac particle, at least at the tree level.

Since our analysis does not depend on the radiative corrections, we shall not talk about loop
m' m
mo —m

effects. Consider the mass matrix M = ;|- This corresponds to two Majorana

particles of equal masses v/m/2 + m? with opposite C P properties, and hence they combine
to give a two helicity state Dirac neutrino. Both the eigenvalues being equal we can ignore
the factor F' and write (m) o m/. Now we can have two scenarios : m = 0 or m # 0.
Each will predict a Dirac neutrino [56] but in the first there isn’t any (88)o, whereas in the

-

second it does appear.
Although in the simplest example cited above, if the physical neutrino is a Dirac particle,
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then the contribution to (BB)ov is given by (m) = ‘Mny, this is not the case in general.

Consider for example

0 O 0 m
0 0 m 0
M =
-0 0 m m. 0
m 0 0 —m

where m’ > m. This mass matrix predicts one light Dirac neutrino of mass m? /m' and

also gives nonzero (68)q, ((m) = m?/m') although My, = 0.

The question we attempt to answer next is the one regarding the naturalness of the
above arguments. We have demonstrated many scenarios which, in principle, can exist.
But if we cannot get them naturally from any realistic theory, then it does not make much

sense.

Models [657,58] were constructed to predict light Dirac neutrinos naturally, which give
10 (0)or . The most popular versions start with three additional sterile neutrinos per gen-
eration. Then using some symmetry of the theory one gets a mass matrix in the (Ve vavpve)

basis of the form [57]

M =

[T N W )
Qoo
o oW
oo Qo

where B > A, C. This predicts a light Dirac neutrino of mass AC/B ~ afew eV, so that
this can explain the ITEP result [59] of m,, ~ 20eV, as well as the absence of (BB)ow [60].

We shall proceed in a similar fashion to demonstrate a scenario where we have a light
Majorana neutrino with m, ~ 20eV but no (BB)o, . The model can also accomodate a
17 keV Majorana v with a small mixing with v, (similar to that seen by Simpson [62,63]
albeit with a smaller mixing). The numbers are not very special to the model. What we
would like to emphasize is that one can obtain light Majorana neutrinos from realistic GUT's
naturally which do not admit (BB)on . We also start with three sterile neutrinos alongwith

ve and seek to get in the (Ve va vy V) basis a mass matrix of the form

a 0 0 a
M = 8 ; ’5 CO; (4.2.10)
a 0 G B

where G > k£, B > a > a. In fact a can even be zero. This mass matrix can be block
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diagonalized to Mpp = diag(f, M) with
_ a  —ak/G — /0 G)
m (—ak/G kQB/G2> and M (G B ( 1)

Then if aG < kB, we have four Ma jorana neutrinos with masses

m =a-d’/B, my=kB/C2, mg4 = B+ G/2 (4.2.12)

With a suitable choice for the 5 parameters appearing in M we can obtain two light neutrinos
and two superheavy ones. The v-less double beta decay amplitude is proportional to
(m)11 ="a as two of the neutrinos are too heavy to be kinematically produced at the

ordinary decay energies.

The most interesting aspect of this exer cise is the relation between o and my . As has
been mentloned earlier, o is a parameter in the mass matrix much smaller than the others.
In the explicit models to be considered later, it turns out to be of the order of a?/B or

smaller. Thus we have three possibilities:

a) a of the same order as /m; : This gives the usual picture of (44)g, being
proportional to the Majorana mass of Ve,

b) a ~ 0: then we get a light Majorana v without appreciable (80)q, .

¢) @ ~ a?/B: this leads to awery small Majorana mass but a rather large

amount of (49)o, .

We now proceed to present a model based on a supersymmetric 50(10) grand unified
theory in which the hierarchy of the parameters that we require appears naturally. We do
not aim to construct a complete gauge theory; rather we give an illustration of how we can
get light Majorana neutrinos, with no (88)g, . This model is on the same footing as those
which predict light Dirac neutrinos. In particular, we require one U(1) global symmetry
to get the required form of the mass matrix as compared to the three [J (1) symmetries

required for a light Dirac neutrino in a similar model.

We shall focus our attention on a single family assuming intergeneration mixing to be
small. We start with a S0(10) model with two fermion singlet superfields S and S’ in

addition to the usual 16-plet matter superfield X- The symmetry breaking chain being
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considered ig

50(10) — Mour SU(3). ® SU(2)1, ® SU2)n ® U(1)5_,
Mir SU(3). ® SU(2), ® U(1)y

" SUG) e V(1)

To give masses to the fermion fields as well as to prompt the last two stages of the
above symmetry breaking chain, we inroduce four Higgs superfields x(16), $(10), A(126)
and o(1) where the numbers in parentheseg denote their transformation properties under

SO(10). The most general Yukawa coupling allowed then is
Ly = yp(AT + fA) + VX(fsS + 125") + (£595' + 658 + f5'5")0.

We impose an additional U(1) global Symmetry, the non-trivial transformations under it
being
x — ey c— ey S —e g S — e%ifg (4.2.13)

This eliminates the Yukawa couplings given by J4, fo and f; as well the bare mass terms
for § and S’. Then in the basis (v .5 S v¢), the mass matrix reads as in eqn(4.2.10), and

with a particular hierarchy of v.e,4. [64]:

G = flx) ~ O(10°GeV), B = fA) ~ O(10 TeV),
E o= filo) ~ O(10 Tev), a = fi(®) ~ O(10 MeV) and
a ~ O(l0eV). .

While the value of @ is self-evident, the others need some explanation. The scales of
k and B, proportional to Msysy, appear naturally in a certain class of supersymmetric
models where the corresponding scalars remain massless at the tree level, only to gain mass
through radiative corrections. a reflects the electroweak breaking scale, assuming a value
comparable to the light quark magses. A small value of a (proportional to (®)%/(A)) is

generated due to the features of potential minimization in a left-right symmetric model.
*

An SU(5) analog of this model can easily be constructed using three singlet fermions
(S1,2,3) apart from the usual 10 (x) and 5 (¥) superfields. The Higgs sector is enlarged to
accomodate two singlets (o1 and o) and a 5-plet & alongwith the usual 24-plet ¥ and the
5-plet . Then the imposition of an U(1) symmetry:

51 - 67'951 52 - 63'952 53 - 827'953
o1 = e My oy ey, § -0

-

(4.2.14)
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will give us the Yukawa coupling

Ly = (AUX + fxxX)® + 919538 + 9455550 + (925152 + 9353530

This gives a neutrino mass matrix Sf the form of eqn.(4.2.10) with

G = guo), k= ga(oy
B gs(o1), a = gi(3)

Il

with @ € k,B < G. It is to be noted that in this case a = 0. With a suitable choice
(depending on the details of the model concerned) of a, k, B and & we obtain naturally

light Majorana neutrinos with no (BB)ow -

As an aside we point out that in these scenarios with a careful, but not too unnatural,
choice of the Yukawa couplings one could simultaneously accomodate a 25 eV Majorana
neutrino with very low (BB)o. rate alongwith a 17 keV neutrino with a small mixing. Also
the cosmological constraint on the masses of stable light neutrinos would not pose much of

a problem as the kel mass neutrino could be made to decay through Majorons [65].

In summary we argue that the widely held belief that the neutrinoless double beta decay
experiments would give us the Majorana mass of the physical electron neutrino is tenable
if and only if there is just a single species of ultralight neutrino per generation ( as for
example in a minimal extension of the standard model with the inclusion of right-handed
neutrino singlets ) and if the inter-family mixing is non-existent. But in a generic grand
unified theory, where there are more than one type of neutrino per generation, it fails to go
through. While the absence of (BB)o, cannot say anything about the mass matrix except
that 71 = 0, its presence only confirms the existence of lepton number violation in nature
and hence the presence of a Majorana mass term but does not distinguish between a pseudo-
Dirac and a Majorana particle. This is exploited in the construction of a supersymmetric
grand unified theory in which a Majorana particle that can explain the ITEP results while

not succumbing to the (B8)o, constraints is naturally generated.
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Chapter 5

On Some Exotic Neutrino
Phenomenology

In the previous chapter we have contémplated the changes that need to be made in the
minimal standard model so as to incorporate a non-zero neutrino mass. We have also looked
at one of the consequences of a possible breakdown of a global lepton number symmetry that
a Majorana mass for the neutrino might induce. At this stage one question begs to be asked.
Why need we consider a mass for the neutrino at all? Apart from the rhetorical answer
“Well, why not? Nothing prevents it anyway.”, there is the deeper and more practical reason
of its potential to answer many ill-understood problems. Neutrinos being very light (7)
and weakly interacting particles, do not manifest themselves too dramatically at ordinary.
interaction energies, but at the astrophysical scales, they are expected to play a very crucial
role. Moreover, in view of the recent spate of results, both experimental and. theoretical,
in neutrino physics, it is quite conceivable that this field might afford the most accessible

testing ground for new physics beyond the standard model.

In this chapter we look at different aspects of “non-standard” neutrino physics. To begin
with, we examine the question of a siza‘,ble magnetic moment for a very light neutrino. We
propose a new mechanism that decouples the question of neutrino masses and magnetic
moments and based on this, develop a model which generates a large transition magnetic
moment for an ultralight v, in a natural way. Next we take a look at the consequences of a
non-zero neutrino mass in the context of gravitational interactions. We find that contrary

to expectations, for a low-energy neutrino at the vicinity of a supernova the gravitational
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interaction cobu‘ld be the dominant one. We use this result to put very strong bounds
on parity~viOIatixlg effects in gravify. F'inallvy we move on .to present a pheﬁomenologicaﬂy
consistent model for Simpson’s 17keV neutrino that naturally accomodates a large magnetic
moment for the v,. We also look at the grtavitationdl interaction of this neutrino as well
as its effect on (808)o, rates. It is here that the results of the previous exercises are used as

inputs to achieve a coherent picture of the problem in its entirety.

5.1 Large Magnetic Moment for Nearly Massless Neutri-
nos

The question of the compatibility of a large magnetic moment and a very small mass for
the neutrinos, apart from being very interesting in itself, is of much importdnce as a way
out of the solar neutrino puzzle [67]. For, the neutrino spin rotation (flavour-changing
or otherwise) in conjunction with the matter oscillation effects could lead to a substantial
reduction in the v.-flux — irrespective of the validity of the adiabatic approximation — thus
" explaining the discrepancy between the standard solar model prediction [44] and the Davis
and Kamiokande results [43]. Moreover-a substantial neutrino magnetic moment could play

a crucial role in supernova dynamics [68].

That the problem is a non-trivial one is not difficult to appreciate. The magnetic
moment term being a non-renormalizable one, cannot occur in the bare Lagrangian and
may appear only at the one-loop level or higher. But the very same diagram that gives
rise to a non-zero u, also, when the photon line is removed, gives a mass correction. This
leads to a proportionality between p, and m, with the result that normally one cannot be
enhanced while the other is being suppressed. For example, in a minimal extension of the

standard model, one gets
19 Mo

by = 107 ,
‘ 1ev!?

and hence it is impossible to generate 1, 210" 2up (needed for this mechanism to play any
meaningful role in the solar context) without being saddled with an unaccepatably large

mass for the v,.

-

It was first noticed by Voloshin [69] that if v, and v transform as a doublet under

some SU(2), symmetry, then while the magnetic moment term is invariant, the mass term
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behaves as a triplet. This was in.corporated in SU(3)r, ® U(1)y electroweak models [70]. A
variant in which SU(2), was some kind of a horizontal symmetry with (v, V,IL) as a doublet
was also considered [71]. In the limit of exact SU(2), symmetry then, there exists no mass
term but only a nonzero magnetic (transition) moment. The breaking of this symmetry
however genarates masses, the proportionality (ﬁ' which to the magnetic moments can be

kept down only by imposing certain naturalness conditions.

In this section ! we aim to generalize Voloshin’s argument and see if we can have sce-
narios wherein the neutrino magnetic moment can exist independent of its mass even after
the symmetry breaking, thus 1‘@11(1@1'1115 the naturalness conditions redundant. We extend
the standard model to include a hdrizontal symmetry that treats all fermions on an equal
footing. The lepton number violating higgs (o) is also responsible for breaking the hori-
zontal symmetry. Thus in the exact symmetry limit, both the Majorana masses and the
transition moments vanish. This is so because vev; and v%0,,v; F*™ both violate lepton
number. Since we do not have tree level Majorana or Dirac mass terms for the neutrinos,
the origin of both the transition moments and the v,~mass lie in the radiative corrections.
To one loop order they can be parametrized in terms of dimension five operators with the
mass suppression scale being decided by the internal higgs particles in the relevant dia-
grams. Thus if the couplings and the v.e.v.s in the theory could be so chosen that only
the antisymmetric terms get any contribution from the diagrams containing (o), then the
vs would acquire a transition moment while keeping the mass correction zero. In the case
where one of the internal higgs flowing in the diagram happens to be a horizontal group
singlet, this can be ensured simply by seeing to it that the effective v.e.v. structure couples

only to antisymmetric combination of the fermions.

The gauge group we consider is SU(3). ® SU(2);, ® U(1)y ® O(3)x with the particle
representations as under (for the scalars the super and subscripts denote the electric charge

and the Thy quantum numbers respectively):

'Based on the work in ref. [66]
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Fermions

. v v .
YL = . (1,2,-1/2,3) L=1
L

e p T
v; = (e KL, TL) (1,1,1,3) L=-1
v oc 1 '
QL = ( ) (3,2,1/6,3) L=0 (5.1.1)
d s b/,
Up = (uf ¢ )  (3,1,-2/3,3) L=0
Dy = (df s§ 05)  (3,1,-1/3,3) L=0
Higgs:
o = (df of %)) (1,1,0,3) L=2
o= (59 28 %9)) (1,1,0,3) L=0
0
¢, = ( > (1,2,-1/2,1) L=0
| 06 6,
d = ( ‘) (1,2,-1/2,3) L=0
o1 o 9,
(hy Ay RS RO, RO
7 <2 1 g 1 2) (1,2,-1/2,5) L=0 (5.1.2)
hy hy hy hZ, h,
N ROROR R, RO,
H =" 7 7 ) (1,2,-1/2,5) L=0
hy hy hg hZ, hZ,
/3 1/3  1/3 5
no= (m" om” el (3,1,1/3,3) L=-1
2/
XY = < > (3,2,1/6,1) L =-1
/'“1/3 ’
X
Here L denotes the lepton number.
On imposition of a further discrete symmetry
Vi - ¥ Up o -
I - 3, H — - (5:13)
the most general Yukawa term in the Lagrangian would look like
Ly = JLQun+ f'Divux + ¥ivn(o5® + g3 H) (5.1.4)

+ UEQu(95® + g4 ) + D5Qu(gfs + gfH)
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The globél lepton‘ number symmetry will also ensure baryon number conservation, so
that even after o dcquires a v.e.v‘.. , althoﬁgh lepton number is violated there is no proton
decay. Since there is no direct coupling of the fermjon_s wich o, the coupling of the Goldstone
boson (Majoron) corresponding to the global lepton number symmetry breaking with the
fermions is suppressed by the horizontal scale and thus remains invisible. The strictest

bounds [72] on 7 and x come from rare K -decay rates leading to

£2 2
/fg,f S10- 40 (5.1.5)
my mx

The O(3)g symmetry can be used to assure that of the three components of ¢ only
o_1 acquires a non-zero v.e.v. The assiunption that of the five neutral A9, only the Ty =
—2 component acquires a v.e.v. is consistent with this. To break the remaining O(2)y
symmetry we choose (Zo) # 0. The scale for the horizontal symmetry breaking we choose

to be of the order of 103GeV. The v.e.v.5 are then
(@) = (0 0 (02;))

(0 () 0)

)
(6s) = < 0 )

) 0
o - (o 0 0 0 (h_Q)).

Y
I

(5.1.6)

0 00 0 ©

We have refrained from specifying ($) and (H) as these give masses only to the up-
quark and the charged lepton sectors” Assuming the Yukawa couplings to be unity the

most general form of mass matrices is then

(h) ~d (B () L (RS) + (4D)
—(R) + (¢9) (k) — (1)~ (92 | (BLT)
To(R8) — (80)  —(R2.) + (42) (R,)

Thus there is a wide freedom to choose the Higgs couplings so as to obtain a v.e.v. structure
amenable to giving phenomenologically consistent mass matrices in these sectors. We shall

not discuss this sector any further.
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Figure 5.1: One-loop diagrams leading to possible neutrino mass corrections and transition

magnetic moment g, ,,-

The down-quark mass matrix reads
0 0 gf(¢9)
Mg=| 0  —gf(¢?) 0 (5.1.8)
gl (ed) 0 gd(n%,)
For the eigenvalues one then gets the interesting hierarchy

mﬁ = Mgy (5.1.9)

a relation consistent with experimental data.

Of the multitude of terms in the Higgs potential, the one that interests us the most is

K¢ynxo, where & is a dimensionless constant. (Such a coupling for ¥ is ruled out by lepton
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number conservation.) This gives rise to one loop diagrams as in Figure 5.1 that result in

a non-zero transition moment of the form

I s(g0(0%)
Hoev,, = 2e- —5 Ty (5110)
! 162" m2_ m>2<‘/3 '

while the mass correction vanishes since the contribution from the two diagrams cancel

exactly.

Assuming £ ~ 1, (¢]) ~ 100GeV, my ~ 50GeV and m,, ~ 107GeV and taking f2/m2,

f"/m2 to be at the top of the allowed range one obtains a transition magnetic moment

Py =107 . (5.1.11)

It should be noted that in the limit of exact O(3)y symmetry, P, vanishes. But while
it appears as a consequence of spontaneous breaking of O(3)x, the mass term still remains
zero on account of the absence of either a singlet or a 5-plet term in the effective v.e.u.
structure. The naturalness condition required in refs.[70,71] to suppress the contribution
of the Higgs mass splitting to the v-masses, is redundant as because of X being a O(3)y

singlet only one set of scalars appear in the relevant diagrams.

It is easy to see that there are no diagrams giving rise to a mass to v, or transition
moments involving it. We have thus obtained a model in which the spontaneous breaking of
the horizontal symmetry gives rise to a sole transition moment thvw, ~ 10215 while keeping
all the neutrinos massless to 1-loop order without invoking any naturalness condition. In
fact, the lepton number violating part of the relevant effective v.e.v. structure being a
O(3) triplet, there would be no radiative corrections to the neutrino mass. Thus the only
source of amass is the introduction of a tree level term as for example through a see-saw like
mechanism induced by introduction of singlets. This analysis can easily be extended to the
case of more than three genarations or higher symumetry gro’ups. Care need only be taken
that the effective lepton number violating higgs v.e.v. couples only to the antisymmetric

combination(s) of the neutrinos.

Though such a small p,,,,, while consistent with the bounds from supernova neutrino
data might seem to be too uninteresting in the solar context, actually it is not so. For, cou-
pled with a very small neutrino mass difference (10-8e¢V? < Am? < 107%¢V?) as is natural

here, this could play a significant role in a moderately nonadiabatic evolution scenario [73].
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Also one does not need to introdiice extra higgs to suppress the influence of p,,,, during a

supernova explosion.

5.2 Gravitational Helicity Flip of Neutrinos

If neutrinos did possess a small mass, they could, in principle, make a transition from a
helicity state in which they would be doh)jnantly participating in the electroweak process
to one where they would have practically no interaction with matter. Such helicity flip
mechanisms could drastically affect the evolution of astrophysical systems like neutron stars
born in supernova explosions. Features most vulnerable to such helicity mechanisms are the
cooling rate and the deleptonisation of the neutron star core. Normally one would expect
the electromagnetic interactions of the neutrino (through u, generated at the one-loop
level) to give the dominant contribution to such effects. Gaemers et al. [75] have however

argued that the Z-mediated process could be the more important one.

In this section ? we wish to concentrate on a different mechanism for flipping the helicity
of massive neutrinos that can be potentially important, namely that due to gravitational
interactions. Neutron stars appear to be the most favourable candidates to look for such
effects. The value of GM/Rc? for a typical neutron star of mass M and radius R, is around
0.1 and this is an important quantity which will lead to a sizeable helicity flip due to gravity
as we shall see. In what follows, we shall treat the gravitational field in the so-called weak-
field limit (also called the linearized approximation). It would however be desirable to

formulate the contents of this section within the framework of general relativity.

The coupling of neutrinos to the gravitational field, strictly speaking, requires the intro-
duction of tetrads (vierbeins). However in the weak-field limit the coupling can be described

by an external field metric of the form

GU(Py) [y, Py + 70 P S (PR (Py — Py) (5.2.1)

1
where  P= (Pt FPy) g =a Y. (5.2.2)

Here Py and P, denote the initial and final neutrino momenta and G is the gravitational

coupling strength.

*Based on the work in ref. [74]
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For the moment, we shall assume that only the diagonal components of the stress tensor

of the neutron star are important. This yields

R0 = GM/¢* and AY = §49po0 (6.2.3)

where ¢ = [Py — Py|. At first sight this appears to be different from the Schwarzschild
metric

2 :
(Td—;'m - 7’2[Si112 g d¢)2 + dﬁz] N (5.2.4)
— 'y

(where r, is the Schwarzschild radius) but the metric (5.2.3) is indeed the Schwarzschild

ds? = [1 - T(—’J de? —
7

metric expressed in the isotropic spherical coordinates [76]:
1 —p,/dr)? 7y 1? , .

ds? = (L= Ta/4r)” dtg—[l——iJ 172 4 7°d6% + % sin® 9 dg?). 5.2.5
’ (14 rg/4r)? o) 47+ Frisint0dgt). o (52.5)
The S-matrix element for the scattering of a massive neutrino of mass m is then given by
L2

i m

S 7 =
TV EE,

21_1,(1)2, /\‘Q)PI,,’)’,,U(Pl R /\1)271‘5(EQ - Fy )hlw(q). (5.2.6)

The differential cross section for helicity flip is given by

do 1 (GMm)?
where E(P) denote the initial neutrino energy (momentum). We have removed the sub-
scripts since in the absence of recoil By = Ey = E and |P1] = [Py = P. The angle of

scattering is denoted by @ . The total cross section for helicity flip is then given by

G]Vj—, 2 E2 maoxn
a:%——( ™) R P L

™ ']34 QTII.’I:’!L (5 ' 2 .8)

where gmaq is equal to 2P. g} determines in some sense the maximurm impact parameter
of the neutrinos. Since we want to determine what happens to the cooling rate and other
aspects of the neutron star, we must restrict q,j.,,}” < R. Thus the relevant total cross section
is .

E*(MeV)

—— T -2, 2.
P(MeV) GeV (5.2.9)

2 E? .
o= ;(GMm)zjﬂ In(2PR) ~ 0.7 x 10% In(2P R)m? (ke V)

This is a very large number compared to the typical cross sections one encounters, namely

the total cross section for helicity flip due to neutral current interactions [75]:

ol ~ 1.6 x 1072 (keV) GeV 2. (5.2.10)
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However what is physma]ly relevant is noL the cross section itself but the product Ngeat O,
where 7., is the number dellslty of scattelels For the gravitational scattering this is
(volume of the star)~!. Thus the inter esting ratio is

" OTscat _ g
No,

where N is the total number of nucleons ~ 1057 x 1.4 (for a 1.4 solar mass neutron star).

Then,

~¢ (5.2.11)

Oz nsc&b

1, B MeV). | BY(MeV)
= = —_— 1y 4 ] >~ 0.] ==L, 2.12
£ 7% 107° x PT(MeV) 10" P(MeV)R(km)] 0 1P4(MeV) (5 )

Thus for low-energy neutrinos (< O(1 MeV)) this can indeed become larger than the stan-
dard model effect. Although this mechanism is not of much interest for the cooling rate of
newly born neutron stars where the average neutrino energy is ~ 10 MeV or more, it could
be of potential interest when the neutrino temperature drops to 0.5 MeV or so. It should
of course be kept in mind that at such temp eratures the opacity due to weak interactions is
also low. Only detailed investigations can tell whether the gravitational mechanisms play

any observable role in late-time neutron star cooling.

By virtue of the fact that

“L(Pz)’rowu,\(PQ =0 forA# N, (5.2.13)

one sees that the rotation of the neutron star, manifested as a non-vanishing g% in the

leading approximation, does not contribute to the effect.

In connection with the phenomenon of helicity flip due to magnetic moment in a mag-
netic field, Voloshin [79] has proposed the novel idea of a resonant helicity flip. We now
demonstrate a similar effect for gravitational helicity flip. In the weak-field approximation
the coupling of the neutrino spin S to the gravitational field is given by

3GM

57 (R xv)-8S. (5.2.14)

This can be thought of as if a magnetic moment w were interacting with a magnetic field

H, such that

3GM
2R? ( )
Thus the requirement for an adiabatic resonant helicity flip due to gravity becomes [79]
GM R 1 . . o
25— > 2 X 107 em ™ p/ (10" g em=)]*/2[80 km/ R )M/ (5.2.16)
R Ry Ry

67



where Ry is the resonant radius at which the density of nucleons is .

Intereﬁingly, gravitational heliéit;y flip mechanisms combined with our understanding
of the cooling rates of newly born neutron stars can severely constrain the possible discrete
symmetry violations in gravitatidn. The implications of the gravitational interactions not
conserving discrete symmetries has been studied by Hari Dass [77]. He had also proposed a
laboratory experiment based on ultra-cold neutron spin precession that could probe for such
effects [78]. In a non-relativistic system interacting with a static non-rotating gravitational
object of mass M such discrete symmetry breaking effects can be parametrised by the
potential

GM GM
V(T) = a1 ; S.r+as 2

S.v. (5.2.17)

The first term violates parity and time reversal while the second term violates parity and,
through the C PT theorem (the status of this theorem in the context of gravitational inter-
actions is not understood very well), charge conjugation invariance. The existing limits on
the parameters are ay < 107° but a3 < 10%. The experiment proposed by Hari Dass[77] is

capable of probing a; ~ 1 but technically is very hard to perform.

Before calculating the cross sections for helicity flip due to these interactions we present
a (special) relativistic generalisation of the above potential. There are many such choices
that reduce to the above form in the non-relativistic limit, but the choice is restricted if we

demand smoothness in the zero fermion mass limit. Then the only possible term is

a1%(P2, A2 )75[7.00a 0 + Y000 q™u(P1, M )R (Py — Py). (5.2.18)

In fact it is not possible to write a C violating term that contributes to helicity flip
scattering. One need not be alarmed that the stress tensor in equation (5.2.18) does not
appear to be conserved. It has been argued on general grounds that discrete symmetry
violations in gravitation imply the breakdown of local Lorentz invariance [78] and hence
the stress tensor is no longer synnnet.r‘ic. Even though the stress tensor is conserved, its
symmetric part is not. It should be stressed that the asymmetry vanishes in the classical
(as opposed to the quantum mechanical) limit so there is no conflict with the classical tests
of general relativity. The total cross section for helicity flip due to the parity violating
interaction is given by

8 - b 1 e
oV = af;(GMm)zﬁlanR). (5.2.19)
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Numerically the total contribution to nsmdfrom the standard model effect as well as from
gravitational interactiong (both parity conserving and parity violating) is

4 o wel. fli
10%m? (keV’) [2<,7+ Lt Ao J: hel fip

. - -2
m 0y m GCV (5220)

assuming F ~ P > m. The cooling rates of newly born neutron stars appear to limit this
quantity by < 3.2 x 1037 GeV~2, leading to the constraint

1+ 4a?

2(1, 1
™ (keV) [ T 8B (aden)

J < 1.2 x 10°, (5.2.21)

As noted by Gaemers et. gl [75], a limit of 40 keV is obtained for the neutrino mass,
independent of the considerations of this section. If the actual mass of the tau neutrino
saturates this bound, there will be no room for any parity violations in gravitdtion. Even
if the tau neutrino mass turns out to be as small as as 1 keV, a; will be constrained to
be smaller than 300 which is already two orders of magnitude better than the existing
limits. We have seen that cosmological bounds on the stable neutrino masses require that
those neutrinos with masses in the keV range be unstable on a cosmological scale [80]. If,
however, the neutrino is stable with amass of approximately 50V , the limit imposed on the
parity violating parameter a1 will be similar to the existing limit. On the other hand if the
neutrinos are found to be massless no limit on the parity violating gravitational interaction

will obtain,

5.3 Model for the 17 keV Neutrino

Signatures of a 17 keV neutrino that mixes with roughly 1% strength with the electron
neutrino have recently been reported [62,63]). The observations, if corroborated, seem to
call for the tau neutrino to be a L7 keV Dirac one (unless, of course, the new particle is
an exotic one altogether) as an identification of the new neutrino with v, is Tuled out by
the present experimental limits on mixings and the Majorana option negated by the non-
observation of neutrinoless double beta decay. But even with this, further problems like the
cosmological limit [80] of 100 eV for the masses of stable neutrino species and the aesthetic
one of such a bizarre mass hierarchy persist. Various models to accomo date the new find in a
phenomenologically viable way have been proposed [81,82] with different degrees of success

but none of these address the issue of the reported anticorrelation of the solar neutrino flux
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with the sunspoﬁ activity [47]. As we have seen in the section 5.1, perhaps the only natural
way to explain such a phenomenon is the assumption of a non-zero magnetic moment for

the neutrino [67].

Thus the problem on hand is to realize a sclieme that not only produces the required
hierarchy for the neutrino masses consistent with the mixing and decay constraints, but
can also account for a substantial (transition) magnetic moment for the nearly massless v,.
While doing so, care must be taken to ensure that the result is not dependent on a severe
fine-tuning of parameters. A particularly appealing solution for the first part of the problem
has been proposed by Glashow [81]. The idea is to extend the S/ fermion spectrum to
include three gauge singlet right handed neutrinos and employ the singlet Majoron scheme

[83] to break the global B — L symmetry. The neutrino mass matrix, in the (z/j; vR) basis,

0 m
M= ( ) , (5.3.1)

m? M

then reads

where m gives the Dirac masses and M = M7 is the Majorana mass term. Assuming that
M is of rank two (i.e. it has one zero eigenvalue), the see-saw mechanism [55] generates
the lighter masses to give a spectrum comprising of four Majorana neutrinos, two heavy
ones of masses ~ O(M), two light ones of masses ~ O(m?/M) and a nearly Dirac one of
intermediate mass ~ O(m). Taking m ~ 17 keV and M ~ 300 GeV, one then identifies
the Simpson neutrino with the pseudo-Dirac particle — comprised mainly of v,7, and the
massless vgp — and has m(v.),m(v,) ~ 0(107% eV'), values that can explain the solar
neutrino puzzle via the MSW mechanism [46]. There however is one catch to this beautiful
ansatz, for obtaining a 17 keV Dirac mass term necessitates Yukawa couplings of the order

of 1077, a none-too-pleasing choice.

In this section ® we marry the concepts outlined above and in Section 5.1 to construct a
model with all the required features namely that the neutrino mass matrix should be such
that it should accomodate a 17 kel Dirac v, with a 1% mixing with v, and be consistent
with the (88)o, and neutrino oscillation experiments. Moreover a relatively large Povewy
should be present. However, unlike in Glashow’s case [81], the neutrino mass matrix is a
5 X 5 one with M now a 2 x 2 matrix of rank one. This results in one of the neutrino

being exactly massless at the tree level. Further, the Dirac terms for the neutrinos arise as

*Based on the work in ref. (84]
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a consequence of radiative corrections and are hence naturally kept small.

The g@uge group we choose is a slight modification of that in section 5.1 viz. SU (3)e®
SUR)L e U(l)y @ SU(2)g with the SM fermions Y, Y%, Qr, U§ and D¢ transform-
ing as triplets under the horizontal group. In ‘addition, we include a singlet neutrino field
N7 [(1,1,0,1);] with a hon-conventional lepton number denoted by the subscript. The
scalar sector consists of the SM higgs ¢, and in addition the fields @ [(1,2,—1/2,3)0],
H,H [(1,.2, ~1/2,5)0] to give masses to the charged fermions; o [(1,1,0,3),], (1, 1,0,2)g]
to break the SU(2)y and lepton number. The neutrino Dirac masses [~ O(10keV)] are gen-
erated by 5[( 1,2,-1/2,2),], which acquires v.e.v. only through radiative correction through
a diagram involving the fields 1((1,2,-3/2,1)_4], & [(1,1,~1,3)0], &3[(1, 2, =3/2,1)s] and
€a[(1,1,-1,1)4]. We also need two color triplet fields n [(3,1, 1/3,3)-1], x [(3,2, 1/6,1)_4]
to radiatively generate the magnetic n;oment. The model thus offers charge quantization

as there is no gaugeable (4.e. anomaly—free ) global U(1) symmetry [85].

We impose a further discrete symmetry (to be broken softly in the higgs sector), under

which (¢§,U¢, @, ﬁ,fg) — —(v§,U§, @, ﬁ,gg). The most general Yukawa term is then

v = FURQUI I'DEYoX + UYL (5% + g8 IT) + US Qo938 + g21T)

. (5.3.2)
TDEQL(930s + 9{H) + 9o Niyrd + guNENgot,

Instead of writing down the full scalar potential, we rather focus on the terms that
are responsible for the physics we seek, namely a radiative v.e.y, generation and a one—
loop magnetic moment. These are /\1(/521.54511‘, Uf]f;r(/\gffr + qubj), Uggf;(A4ﬁ +A53),
05351(/\6}} +A72) and nyo(kg, + k' H). |

A proper choice (always possible) of the higgs couplings along with the SU(2)g sym-
metry can be exploited to ensure that ‘only the T3y = —~1 component of o and Tyy = —2
component of H acquire v.e.v. and d: does not acquire any tree level vacuum expectation
values. The rest of the scalars may assume any v.e.v. consistent with charge conservation.
For phenomenological consistency we demand that (7), () ~ 0(10° GeV ) and that any
other v.e.v. be of the order of the electroweak scale or less. The v.e.v. of q? is however not

protected by any Symmetry and at one-loop level the diagram in Figure 5.2 contributes.
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Figure 5.2: One-loop diagram responsible for radiative generation of (gg)

Written symbolically,

4 4 3
~ A rn’H{)r'iz o
1672 mim?

L2

() ~ 100 keV -1 MeV, (5.3.3)

on assuming that me ~ mgrop,, Mg ~ My, and Ay ~ O(1071),

The neutrino mass matrix is then a 5 x 5 one of a form similar to that in eqn.(5.3.1)

(with M now a 2 x 2 matrix of rank one) and can be written as

My My
M = (5.3.4)
M§ 4 :
where
0 0 0 ay bl
0 0 0 a by
My = and My = (5.3.5)
0 0 0 ay bs
ar ay as 0 0

Here A = gp1(0?,) and the elements @i, b; are of the order of gp (@) (the differences arising
on account of the Clebsch-Gordon coefficients). As M is of rank 4, we have one exactly
massless neutrino. M can be approximately block-diagonalized (for details, see Section

4.2) to the form

% ) +0(p*My), where p = A= MT, i = My — Myp and A=

;
0
A+ F(pMy + MTpT).
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The rest of the spectrum then consists of a light Majorana neﬁtrino of the order of
b2/ A ~ O(107° GeV), a pseudo-Ditac particle with mass. /202 = 17 keV (the mass
splitting ~ 57/A) and a superheavy Majorana one with mass ~ A ~ 10* GeV (we have

assumed Yukawa couplings gp, gar ~ 0(1072) ):

The neutrino mixing angles are giv'en essentially by the ratios of a; and b; apart from
the contribution from the electron mixing matrix and can easily be chosen to satisfy the
experimental constraints. The contribution to neutrinoless double beta decay amplitude is
very small and assuming a diagonal form for the charged lepton mass matrix, is given by

[51,53] (77)11. However the v, and v, masses are very small.

The Majoron (9) in our model is mainly comprised of Im(c) and I'm(%) with a small ad-
mixture of T m(qg) of the order of (gg) /Mprori. and contributions from other SU (2)1, doublets
further suppressed by a factor of ( (é[;) [Mui)?. The coupling of the charged fermions with
¥ is then very small and hence consistent with all astrophysical constraints [86]. Looking
at the Dirac terms in the fourth row and column, we see that these arise due to the v.e.v.
s of different components of ¢. As these scalars do not have identical contributions to ¥
even to the leading order, the neutrino mass and the Majoron coupling matrices are not
diagonalized simultaneously. This 1'esu'lts in the light nentrinos having a substantial non—
diagonal coupling with ¥ (of the order of m,, /Mproriz) and hence affords a decay channel
to the tau neutrino of the form Vr = Vye + 9. The v, is then comparatively short-lived,
with a lifetime ~ 10° sec and cosmological requirements are easily satisfied[80]. As is easily

recognised, this feature is a consequence of the Majoron having contributions both from

SU(2)r, doublets and singlets and is absent for the usual singlet Majoron models.

It is curious to note that the results of Section 5.2 can be sharpened in the context of
the 17 keV neutrino. For, if it is actually comprised mainly of the SU (2)r, doublet v, as
is being hypothesised, then it satisfies all the criteria to be considered as a probe for the
physics in the interior of a neutron star. This would result in the very strong bound (see

equations 5.2.17 and 5.2.21) of a150(10) on parity violating effects in gravity.

The first set of criteria having been satisfied, we now turn to the problem of the magnetic
moments. In fact, it is easy to see that the results of Section 5.1 are carried through without

any modifications. We have thus obtained a model that naturally incorporates a 17 keV v,
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as well as a sole (neglecting lepton mixing) transition magnetic moment f,,,,, ~ 10~1%yp
for nearly massless neutrinos. The lattje'r effect obviously vanishes exactly in the limit
of SU(2), symmetry only to appear when the symmetry is broken. Yet the mass term
remains identically zero, for the effective v.e.v. is antisymmetric in the family space. This
effect allows us, unlike many earlier models [70,71], to totally dispense with any naturalness
condition to suppress mass generation. Thus to this order, the only contribution to the
light neutrino masses come from the see-saw terms which are very small anyway. However,
as there is no conserved lepton number, one expects there to be radiative mass generation
and the two-loop contribution would typically be of the order of 104-10~% ¢V. That this
is so is easily seen from the fact that diagrams similar to those in Fig. 5.1 but with the
coupling &' Hyye, contributes to the Majorana mass once the Ts = 0, —1 componentsA of
H get v.e.v.s radiatively. The 17 kel v, in the present model decays dominantly into a v,

and a doublet-singlet Majoron.
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Chapter 6

Summary

In this concluding chapter we take stock of the achievements catalogued in the earlier parts.
We had started out with the objective of understanding the generation of fermion masses
in the standard model and its extensions made popular by the possibility of answering
questions that the former cannot even deign to ask. As with the case of the objects of
our study, the thesis is also divided into two parts. The first half deals with the strongly
interacting particles, namely the quarkg, whereas the second half is devoted to the study of

leptons, or without any loss of generality, aspects of neutrino physics.

To circumvent the the lack of any predictive power of the standard model as far as the
quark sector parameters are concerned, various models that go beyond the SM have been
proposed in the literature. Based as these are on higher symmetries, they give specific forms
of the quark mass matrices resulting in relations between the ten parameters viz. the six
masses, the three mixing angles and the C' P-violating phase. In the first part of this thesis
we have looked at the predictions of these models and compared them with the results of
some recent experiments. It was found that, contrary to previous claims, the BS——EE mixing
extent z4 and the AS = 2 C'P violationparameter ¢y do not rule out either the Stech or the
Fritzsch model or for that matter even their derivatives. Regions of validity, though narrow,
could still be found. However once the U A1 result for the direct C' P violation parameter ¢
came into the picture, the situation changed completely. The Stech model and all others
incorporating the ansatz were ruled out emphatically. While the Fritzsch scheme did survive,
the parameter space available to it was curtailed significantly with experimental agreement

limited to the case of a none-too-heavy top quark (m,S90 GeV'). Later experiments have



shown that such a top quark is not allowed in the context of the minimal standard model,

thus ringing the death-knell for such models as candidates for low energy physics.

The failure of the existing ansétze for qua,ﬂ( magses and mixings led to a model-
independent analysis of the problem. Looking at the most gengral form for such matrices,
we found that observational data do not constrain them to a great degree but rather allow
them a continuous range that is divided into four disjoint sectors associated with the rel-
ative signs of the mass terms. The lafge width afforded to these parameters is traced to
the indeterminacy in the masses of the light quarks and owes comparatively little to the
lack of knowledge about the mixings involving the third generation. Surprisingly (?), all
the models discussed in the literature lie in the same sector. This could provide a clue to

the direction that efficient model-building could adopt in the future.

The first question that we address in our effort to understand the wide field that neutrino
physics is, relates to neutrinoless double beta decay [(ﬁﬁ)OV ]. Conventional wisdom had
it that the extent of (88)o, is specified by the Majorana mass of the electron neutrino ve.
A reexamination of the problem showed us that this need not be the case and that many
different possibilities do exist. In fact the (88)o, amplitude is determined primarily by only
one element of the effective low—energy neutrino mass matrix. This then means that one
could have a scenario where the physical v, is a Dirac particle but the (86)o. rate is quite
high and conversely a case of a light Majorana v, with identically zero (8B)ov rate. Thus
the numerous ongoing (88)on experhncj)nts cannot differentiate between a (pseudo—)Dirac
and a Majorana v, except in the simplest of cases. The only comment they can make about
is that regarding the magnitude of the particular term mentioned before and hence the
extent of lepton number violation that could be visible at low energies. We further go on to
construct supersymmetric grand unified theories (both SO(10) and SU (5) ) that naturally

accomodate the scenarios that we talk about.

The longstanding discrepancy between the observed levels of solar neutrino flux and the
theoretically calculated rates have been a source of embarassment. A possible explanation
that has the added advantage of a’ccounting for the reported anticorrelation of the observed
flux with the solar magnetic activity is that of a non-zero neutrino magnetic moment (g,,).
However it is very difficult to generate a large enough u, while keeping the neutrino mass

within acceptable limits. Though some models had been proposed in the literature, they all
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suffered from one weakness or the other. We have proposed a novel mechanism to achieve
the same goal. The bornerstone of the ansatz is that to a given order in perturbation theory,
the only effective higgs v.e.v. term coﬁpling to fermion currents violating lepton number
by two units is antisymmetric in the generation space. Tilis leads to a non-zero transition
moment while keeping the mass term identically zero. The O(3)x model that we construct,
unlike the others of itg genre, neither needs extra fermions nor does it treat the standard’
model fermions unequally. Moreover, it has the added advantage of avoiding the pitfalls of

earlier efforts, namely severe fine tuning of parameters or an unwanted Goldstone boson.

Neutrinos, though seemingly insignificant on account of their very weak interactions
and very low mass, are actually of great importance, especially in the astrophysical and
the cosmological context. A non-zero mass for the neutrino would lead to interactions
flipping its helicity, and as a consequence allow neutron stars to loge energy at a very high
rate. Normally one would expect the electroweak interactions to dominate, but we find
that gravity could be g strong contender for Supremacy in the case of low energy neutrino
scattering! Though at the initial stages of stellar collapse the neutrino energy is probably
too high for such an eventuality, at the iate stages of supernova evolution these effects could
be of great importance. Proceeding with the study, we also look at the possible discrete
Symmetry violations in gravity that a deviation from the geometric theory would allow.
It is found that there ig only one discrete symmetry (in this case, parity) violating term
consistent with special relativity that could lead to helicity flip. Comparing the scattering
Cross—sections with the limits put by the observed neutrino bursts from the supernova

SN 19874, very strong bounds are put on such interactions.

The aspects of neutrino physics discussed hitherto might seem to be bit disjointed to the
casual reader. That this is not 80, is brought out by the last topic that we consider. A lot
of interest has been generated recently by independent claims of the experimental signature
of a 17 keV neutrino that mixes with the Ve L0 as great an extent as 1%. The study of
(BB)ow clearly demonstrates that it cannot be a Majorana particle unless there are other
such particles with exactly the right mixing with v, so that the individual contributiong
to (AB)o. cancel giving an acceptably low level. Accomodating such a (pseudo-)Dirac
neutrino quite often leads to problems either with their decay or with unaesthetically small

Yukawa couplings. We present a model that avoids these difficulties. The 100 keV scale
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is generated r'adiatively and hence there is no need to suppress lthe Yukawa couplings.
The see—saw mechanism assures a superheavy Majorana neutrino, a pseudo-Dirac 17 keV
vr and extremely light Majorana v, and Vy. The v, evades the cosmological problem
by decaying very fast into a lighter neutrino and a singlet-doublet Majoron that is not
constrained significantly by either the Z—decay width or the various astrophysical bounds.
The resolution of the solar neutrino problem is achieved through the radiative generation
of a large transition magnetic moment connecting the two ultralight neutrinos. As for the
vr, its relatively large mass can be used to better the previous bounds on parity violation

in gravitational interactions by as much as three orders of magnitude.
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