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ABSTRACT

Polarization and orbital angular momentum are two independent discrete degrees of free-

dom of light. Both of these properties can be extensively used in quantum information and

communications. Photons entangled in polarization are widely used for quantum commu-

nications. Orbital angular momentum (OAM) of photon is recently getting much attention

as it can be used along with polarization and thereby increasing the information carrying

capacity of photons. Moreover, entanglement between polarization and OAM have many

advantages in many of the quantum protocols. The classical counterpart of this polarization

and OAM entanglement, non-separability in vector vortices, is getting a lot attention due to

its ability to simulate many quantum protocols.

We study the classical and quantum aspects of polarization and OAM entanglement.

In classical system we study the non-separability of OAM and polarization with the Bell’s

inequality measurement and study its properties under scattering. In the quantum system,

where we have entangled pair of photons, we conceptualise new measurement systems for

OAM entanglement and introduce novel three particle hyper-entangled state which we apply

for many interesting quantum protocols.

We generate the non-separable state of polarization and orbital angular momentum

(OAM) using a laser beam. The generated state undergoes a cyclic polarization evolution

which introduces a Pancharatnam geometric phase to the polarization state and in turn a

relative phase in the non-separable state. We experimentally study the violation of Bell -

CHSH inequality for different Pancharatnam phases introduced by various cyclic polarization

evolutions with linear and circular states as measurement bases. While measuring in linear

bases, the Bell-CHSH parameter oscillates with Pancharatnam phase. One can get rid of

this dependence by introducing a relative phase in one of the projecting state. However,

for measurement in circular bases, the Pancharatnam phase does not affect the Bell-CHSH

violation.

We experimentally show that the non-separability of polarization and orbital angular

momentum present in a light beam remains preserved under scattering through a random

medium like rotating ground glass. We verify this by measuring the degree of polarization

and observing the intensity distribution of the beam when projected to different polarization

states, before as well as after the scattering. We extend our study to the non-maximally

non-separable states also.

In quantum systems, we address the possibility of using even/odd states of orbital angular
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momentum (OAM) of photons for the quatum information tasks. Single photon qubit states

and two photon entangled states in even/odd basis of OAM are considered. We present a

method for the tomography and general projective measurement in even/odd basis. With

the general projective measurement, we show the Bell violation and quantum quantum cryp-

tography with Bell’s inequality as a safeguard against breach of security. We also describe

hyper and hybrid entanglement of even/odd OAM states with polarization and apply this

for the implementation of superdense coding.

We also present a scheme to generate three particle hyper-entanglement utilizing polar-

ization and orbital angular momentum (OAM) of a photon. We show that the generated

state can be used to teleport a two-qubit state described by the polarization and the OAM.

Apart from teleportation, the proposed quantum system has been used to describe a new

efficient quantum key distribution (QKD) protocol. We give a sketch of the experimental

arrangement to realize the proposed teleportation and the QKD.

Keywords : Orbital angular momentum, Polarization, Entanglement, Bell’s inequality,

Teleportation, Non-separability, Hyper-entanglement, Hybrid-entanglement.
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Poincaré sphere with LG modes as basis vectors in {l,−l} subspace (right). . 36

2.15 Generated points represented on the Poincaré sphere. . . . . . . . . . . . . . 37
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Chapter 1

Introduction

Entanglement is one of the most interesting and exciting phenomena in the quantum theory

right from its inception in 1935. In their historical paper, Albert Einstein, Boris Podolsky

and Nathan Rosan (EPR) considered a joint non-separable quantum mechanical system and

proved that the quantum mechanical wave function is an incomplete description since it vi-

olates local realism [1]. This discussion followed by the famous EPR paper, is of the highest

importance in the philosophical development of quantum mechanics [2, 3]. However, this

debate gave rise to the birth of a vast field of quantum information and quantum commu-

nication [4]. These non-separable states or entangled states were experimentally generated

in several systems which form a resource for quantum information processing. The basic

fact that the quantum information cannot be cloned [5], made them useful for generating

keys of data encryption. Entanglement arises due to the non-separability of the state of two

particles. In this thesis, we consider entanglement in optical systems. Polarization (or spin

angular momentum) and orbital angular momentum (OAM) are the two properties of light

that we study in the context of entanglement. Classical beams, can have non-separability

and exhibits entanglement-like features which are coined as non-quantum or classical entan-

glement. With OAM and polarization entanglement, we propose new efficient protocols for

quantum communication and cryptography. In this chapter, I will give a brief introduction

to entanglement and quantum information and their implementation in optical systems.

1
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1.1 EPR Paradox, Hidden Variable Theory and Bell’s

Inequality

Here we give a brief introduction to the philosophical development of entanglement which

led to the quantum revolution in information processing and communication. EPR poses a

question on quantum mechanics which is evident in the title of the paper “Can quantum

mechanical description of physical reality be considered completely ?”. They gave the condi-

tion for completeness that every element of physical reality must have a counter part in the

physical theory. They explain the term physical reality as follows

“ If, without in any way disturbing the system, we can predict with certainty (i. e.

probability equal to unity) the value of physical quantity, then there exists an element of

physical reality corresponding to the physical quantity.”

From the non-commutative nature of two observable such as momentum and position it

is shown that the precise knowledge of one precludes such a knowledge. In other words any

attempt to precisely measure one of the quantity will alter the system in such a way that the

knowledge about the other quantity is destroyed. This could be explained in two ways.

Either,

1 quantum mechanical description of reality given by wave function is not complete

or,

2 when the operators corresponding to two physical quantities do not commute the two

quantities cannot have simultaneous reality.

They have considered a composite non-separable system, which we now call as entangled

system, where they have proved that with different projections on one system one can change

the wave function of the second. In other words it is possible to assign different wave functions

to the same reality. Furthermore, they have shown that with such a system, one can measure

the values of two quantities which are non-commuting. Thus they have negated the second

possibility as the two quantities have simultaneous reality. With negation of the second

argument EPR concluded that quantum mechanical description of reality given by wave

function is not complete.

Thus many believed that there exist some variables, that are hidden, which affect the

measurement results [3]. These hidden variables along with the state vector will determine
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precisely the result of individual measurements. This theory was ruled out by John S Bell in

1965 by his famous inequality which cannot be violated using local hidden variable theory[6,

7].

Consider an ensemble of pair of correlated particles each of them entering to different

measurement devices Ia and Πb, where a and b are the adjustable parameters. The parti-

cles are in singlet spin state, generally known as EPR state. The measurement results are

dichotomous variables A(a) and B(b) which can take values either +1 or −1. According

to local hidden variable theory the statistical correlation between A(a) and B(b) is due to

some variable λ with a probability distribution ρ(λ). The results of the measurement are

deterministic functions of the adjustable parameter and the hidden variable as A(a, λ) and

B(b, λ). The locality condition restricts A(a, λ) from having any dependence on b and B(b, λ)

on a. Also, the probability distribution of λ (ρ(λ)) which is defined during the emission of

the correlated particles is independent of the adjustable parameters a and b. We have∫
Γ
ρ(λ)dλ = 1 (1.1)

The correlation is defined as

P (a, b) =

∫
Γ
ρ(λ)A(a, λ)B(b, λ)dλ (1.2)

Where Γ is the total λ space. For the singlet state we have P (a, a) = −1 which leads to

A(a, λ) = −B(a, λ) (1.3)

P (a, b)− P (a, c) =

∫
ρ(λ) [A(a, λ)B(b, λ)−A(a, λ)B(c, λ)] dλ

=

∫
ρ(λ) [B(b, λ)−B(c, λ)]A(a, λ)dλ

(1.4)

Using [B(b, λ)]2 = 1 we get

P (a, b)− P (a, c) =

∫
ρ(λ) [1−B(b, λ)B(c, λ)]B(b, λ)A(a, λ)dλ (1.5)

Taking modulus

|P (a, b)− P (a, c)| =
∣∣ ∫ ρ(λ) [1−B(b, λ)B(c, λ)]B(b, λ)A(a, λ)dλ

∣∣
≤
∫
ρ(λ) [1−B(b, λ)B(c, λ)] |B(b, λ)A(a, λ)|dλ

=

∫
ρ(λ) [1−B(b, λ)B(c, λ)] dλ

=1−
∫
ρ(λ)B(b, λ)B(c, λ)dλ = 1 + P (b, c)

(1.6)
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We have used Eq. 1.2 and Eq. 1.3 for the final simplification. Hence the inequality is given

as

|P (a, b)− P (a, c)| ≤ 1 + P (b, c) (1.7)

For the singlet state, this inequality is getting violated and thus Bell ruled out the possi-

bilities for the existence of local hidden variables. Thus, entanglement and non-locality are

considered to be an inherent quantum nature. Later on, Clauser, Horne, Shimony and Holt

(CHSH) formulated a variant of Bell’s inequality which is experimentally more realizable [8].

1.2 Quantum Information and Entanglement

Quantum information had its origin in the fundamental questions on the quantum nature of

a system and now it is an emerging field in physics with great technological applications.

1.2.1 What is Quantum Information ?

Before moving to this question, we need to address the question “what is information?”. We

live in an era where information is omnipresent. It is so common that we are often unable

to define it. Many people will think of information as a phone call or a written transcript

that describe about something. Information can be any sequential arrangement of alphabets

which can be conveyed with a set of rules that defines a language. Thus a video or a picture

one sees in a television are also information. Historically, the development of battery and

understanding of static electricity in the late 18th century led to the development of electrical

communication. In 1837, Samual Morese demonstrated electrical telegraph in which the

alphabets are represented by sequences of dots and dashes. The length of the sequence

was designed considering the redundancy of the letters. Frequently occurring letters were

assigned to shorter sequences there by decreasing the total length of the coded information.

These codes are called “Morse codes”. By the end of 19th century, telegraph could connect

all the continents.

The wireless revolution of the communication was initiated by Maxwell’s studies on elec-

tromagnetic waves. In the late 19th century, Jagadish Bose and Guglielmo Marconi indepen-

dently developed radio which used electromagnetic waves to transmit the information. The

digitalization of information was followed by Claude Shannon’s phenomenal paper “Math-

ematical theory of communication” in 1948 [9]. The invention of electronics revolutionized

the information technology. Here the information is coded in bits. A bit is a variable that
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can take only two values: 0 or 1. Almost all present day communication and computation

systems use the information as series of bits. In a vector space a bit represents only two

points.

A quantum bit, shortly qubit, is a fundamental unit of quantum information. From the

fundamentals of quantum mechanics, we know that particles can be in complex superposition

of states. This opens up a huge space for the information storage and possibility for faster

computing. Like bits, qubits have two orthogonal states say |0〉 and |1〉. However, the state

of the particle is a linear complex superposition of these orthogonal states. Thus it can

span a two dimensional complex vector space |0〉, |1〉. All the possible pure states can be

geometrically represented on a sphere called Bloch sphere.

|ψ〉 = α|0〉+ β|1〉 (1.8)

α and β are complex numbers. For the normalization

|α|2 + |β|2 = 1 (1.9)

|α|2 - Probability that system is in |0〉; |β|2 - Probability that system is in |1〉

Thus a qubit can exist in any of the continuum of states between |0〉 and |1〉 until it is

observed. When a measurement is done, it will fall to one of its (operator’s) eigenstates.

Now, {|0〉, |1〉} forms an orthonormal vector space so that any vector can be expressed in

terms of the two independent base vectors as a linear combination. Example of qubit states

are photon polarization states, electron spin states, two level energy states etc.

1.2.1.1 Bloch Sphere

Bloch sphere provides a useful means of visualizing the state of a single qubit. Expressing

the state given in Eq. 1.8 in polar form as α = rαe
iφα and β = rβe

iφβ the state becomes

|ψ〉 = rαe
iφα |0〉+ rβe

iφβ |1〉 (1.10)

where rα, rβ, φα and φβ are real parameters.

Since the measurable quantities are the probabilities |α|2 and |β|2, multiplying with a factor

eiγ has no observable consequences on the state (|eiγα|2 = |α|2). Thus we can multiply e−iφα

to Eq. (1.10)

|ψ′〉 = rα|0〉+ rβe
i(φβ−φα)|1〉 (1.11)

|ψ′〉 = rα|0〉+ rβe
iφ|1〉 (1.12)
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where φ = φβ − φα. We can write Eq. 1.12 as

Figure 1.1: Geometrical representation of qubits on Bloch sphere

|ψ′〉 = rα|0〉+ (x+ iy)|1〉 (1.13)

The normalization condition 〈ψ′|ψ′〉 = 1 gives

r2
α + x2 + y2 = 1 (1.14)

Eq. 1.14 is an equation of sphere in real 3D space with Cartesian coordinates (x, y, rα). We

replace rα with z.

|ψ′〉 = z|0〉+ (x+ iy)|1〉 (1.15)

In spherical polar coordinates,

|ψ′〉 = rcos(θ)|0〉+ (rsin(θ)cos(φ) + irsin(θ)sin(φ))|1〉 (1.16)

where r =
√
x2 + y2 + z2 = 1. Thus

|ψ′〉 = cos(θ)|0〉+ sin(θ)(cos(φ) + isin(φ))|1〉, (1.17)

|ψ′〉 = cos(θ)|0〉+ sin(θ)eiφ|1〉. (1.18)

We rewrite Eq. (1.18) as

|ψ〉 = cos(θ′)|0〉+ eiθsin(θ′)|1〉. (1.19)

When θ′ = 0; |ψ〉 = |0〉 and when θ′ = π/2; |ψ〉 = eiφ|1〉 ≡ |1〉 by neglecting the global phase.

This suggests that 0 ≤ θ′ ≤ π/2 may generate all points on the Bloch sphere.
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Consider a state |ψ′〉 corresponding to the opposite point of |ψ〉 with coordinates (1, π −

θ′, π + φ). [Note:- when (x, y, z)→ (−x,−y,−z); (r, θ, φ)→ (1, π − θ, π + φ)]

|ψ′〉 = cos(π − θ′)|0〉+ ei(φ+π)sin(π − θ′)|1〉,

= −cos(θ′)|0〉+ eiφeiπsin(θ′)|1〉,

= −cos(θ′)|0〉 − eiφsin(θ′)|1〉,

= −|ψ〉. (1.20)

So it is only necessary to consider the upper hemisphere 0 ≤ θ′ ≤ π/2, as opposite points

differ only by a phase factor of -1 and so are equivalent in the Bloch sphere representation.

Thus we map points on the upper hemisphere onto points on a sphere defining θ = 2θ′ →

θ′ = θ/2, with

|ψ〉 = cos(θ/2)|0〉+ eiφsin(θ/2)|1〉 (1.21)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π are the coordinates of points on the Bloch sphere.

1.2.2 Multiple Qubits and Qudits

If we have two classical bits, we can have four states as 00, 01, 10, 11. Similarly, with two

qubits we can form |00〉, |01〉, |10〉, |11〉. The pair of qubits can also exist in superposition

state as

|ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 (1.22)

with normalization condition ∑
i,j

α2
ij = 1 (1.23)

If we have “n” number of qubits, we need 2n coefficients to describe the system completely.

A qudit is a d -dimensional quantum state which can be expressed as

|ψd〉 =

d−1∑
i=0

ci|i〉 (1.24)

with
∑d−1

i=0 |ci|2 = 1.

1.2.3 Measurement Bases for a Qubit

Since it is a quantum state we can measure it in different bases. However, the measurement

operators have eigenvalues ±1 only. Thus each measurement will have only two possible

outcomes. We list some common measurement bases:
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• Computational basis {|0〉, |1〉}: In this basis, measurement on a general qubit α|0〉+β|1〉

will give result +1 with probability |α|2 and -1 with probability |β|2.

• Diagonal basis {|+〉, |−〉} where

|±〉 =
1√
2

(|0〉 ± |1〉) (1.25)

A general qubit when measured in diagonal basis will give result ±1 with probability

|α± β|2/2.

• Circular basis {| �〉, | 	〉}: Here

| �〉 =
1√
2

(|0〉+ i|1〉)

| 	〉 =
1√
2

(|0〉 − i|1〉)
(1.26)

The measurement in circular basis will give result ±1 with probability |α ± iβ|2/2.

Note that to get the complete state of the qubit, or in other words to obtain the Bloch

vector, we need to do measurements in these bases.

• General linear basis {|θ〉, |θ⊥〉}

|θ〉 =cos(θ)|0〉+ sin(θ)|1〉

|θ⊥〉 =sin(θ)|0〉 − cos(θ)|1〉
(1.27)

These states define a complete equatorial circle. This is very important measurement

since it used to check the Bell’s inequality.

• General circular basis {|φ〉, |φ⊥〉}

|φ〉 =
1√
2

(
|0〉+ eiφ|1〉

)
|φ⊥〉 =

1√
2

(
|0〉 − eiφ|1〉

) (1.28)

• General qubit basis {|ψ(θ, φ)〉, |ψ⊥(θ, φ)〉}: These are general qubit basis. We can arrive

at the other basis by fixing specific values from θ and φ. In terms of the computational

basis we can define them as

|ψ(θ, φ)〉 =cos(θ)|0〉+ eiφsin(θ)|1〉

|ψ)⊥(θ, φ〉 =sin(θ)|0〉 − eiφ cos(θ)|1〉
(1.29)
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1.2.4 Quantum Register

Collection of N qubits is called a quantum register of size N. Let N = 2

|ψ〉 = C00|00〉+ C01|01〉+ C10|10〉+ C11|11〉 (1.30)

|ij〉 implies that qubit 1 is in state i and qubit 2 is in state j.

N -qubit register is described by a 2N dimensional wave function with amplitudes Cijk...

The quantum information is stored in these amplitudes which are complex numbers with

modulus between 0 and 1.

The amount of information grows exponentially with register size, but information is hid-

den and large number of it is lost when measurements are made. We only manipulate qubits

and let them interact coherently without making measurements, then all the information are

preserved. This is the basis of huge quantum parallelism that makes quantum computation

efficient.

1.2.5 Entangled Qubits and Bell States

If two systems are entangled, the total state cannot be written as product states of two

individual systems.

Ψ12 6= ψ1 ⊗ ψ2 (1.31)

In two dimensions, two particles, each of them carrying a qubit, can be entangled as

|Ψ〉 =
1√
2

(α|0〉|0〉+ β|1〉|1〉) . (1.32)

Here one cannot write Ψ as the product of two individual qubits unless α, β 6= 0. Maximally

entangled states of two qubits are called Bell states, which are defined as

|Ψ±〉 =
1√
2

(|0〉|1〉 ± |1〉|0〉) (1.33)

|Φ±〉 =
1√
2

(|0〉|0〉 ± |1〉|1〉) . (1.34)

Quantum entanglement provides new protocols for quantum information eg. quantum cryp-

tography [10], quantum teleportation [11] and superdense coding [12].
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1.2.6 Quantum Gates

Like logic gates in electronics, quantum gates are basic units of a quantum circuit. Here are

some basic quantum gates.

• NOT gate {X}:- This is similar to the computational logic gate NOT. It converts

X (α|0〉+ β|1〉) → α|1〉+ β|0〉 (1.35)

• Hadamard gate {H}

H (α|0〉+ β|1〉) → α
|0〉+ |1〉√

2
+ β
|0〉 − |1〉√

2
(1.36)

• Z gate

Z (α|0〉+ β|1〉) → α|0〉 − β|1〉 (1.37)

• CNOT gate :- Controlled NOT gate or CNOT gate is a two qubit gate. It flips the

second qubit (target) only if the first qubit (control) is |1〉. When the control qubit

is in state |0〉 the CNOT gate leaves the target qubit unaltered. It is similar to XOR

|A,B〉 → |A,B ⊕A〉

• Controlled unitary gate:- This two qubit gate does a unitary transformation on the

second qubit only when the control qubit is in state |1〉.

X H Z

U

(a) (b) (c)

(d) (e)

Figure 1.2: Representation of quantum gates a) NOT gate b) Hadamard gate c) Pauli

Z gate d) Controlled NOT gate e) Controlled unitary gate

1.3 Entanglement Based Quantum Protocols

Entanglement serves as a basic resource for many quantum information protocols. Some of

the popular protocols are discussed below.
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1.3.1 Superdense Coding

Superdense coding [12] is a transfer of classical information through a quantum channel.

Information is classical since they code bits in quantum entangled states. Consider a Bell state

where one particle is with Alice and another with Bob. Alice encodes two bits of information

by applying one of four unitary transformations which will transform the combined state

from one Bell state to another. Then Alice sends her particle to Bob and he does a Bell state

analysis to decode the message. It is advantageous over classical communication using bits,

since here by action on one qubit, we can code two classical bits.

1.3.2 Teleportation

Quantum teleportation [11] is a non classical transfer of an unknown quantum state using

entanglement and classical communication. This can be seen as the distribution of quantum

information through quantum and classical channels.

• Alice and Bob initially share a pair of entangled particles (say particle 2 & particle 3).

• Alice receives the particle with an unknown state (say particle 1) .

• Alice does a joint Bell operator measurement on the particle with unknown state and

her entangled particle. Particles 1 & 2 gets destroyed due to the measurement.

• Alice sends the outcome of her measurement to Bob through a classical channel.

• Bob does a unitary transformation on his particle (particle 3) with respect to Alice’s

measurement results to recover the quantum state of the particle 1.

Initially, the unknown state and the entangled pair are given by

|φ1〉 = α|0〉+ β|1〉 ; |Ψ−23〉 =
1√
2

(|01〉 − |10〉) (1.38)

Total wave function

|Ψ123〉 = 1√
2

(α|0〉1 + β|1〉1)⊗ (|01〉23 − |10〉23) (1.39)

It can be written as

|Ψ123〉 = 1√
2
(α|00〉12|1〉3 − α|01〉12|0〉3 +

β|10〉12|1〉3 − β|11〉12|0〉3) (1.40)
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Outcome Unitary operator

Ψ− σ̂0

Ψ+ σ̂3

Φ− σ̂1

Φ+ σ̂3 σ̂1

Table 1.1: Alice’s measurement outcomes and corresponding unitary transformations

that Bob does to complete the teleportation

From the Bell states (Eq. 1.33 & Eq. 1.34), we can have

|00〉 = |Φ+〉+|Φ−〉√
2

; |11〉 = |Φ+〉−|Φ−〉√
2

(1.41)

|01〉 = |Ψ+〉+|Ψ−〉√
2

; |10〉 = |Ψ+〉−|Ψ−〉√
2

(1.42)

Substituting in Eq. 1.40 and rearranging the terms

|Ψ123〉 =
1

2
{|Ψ−12〉(−α|0〉3 − β|1〉3)+

|Ψ+
12〉(−α|0〉3 + β|1〉3)+

|Φ−12〉(α|1〉3 + β|0〉3) +

|Φ+
12〉(α|1〉3 − β|0〉3)}

(1.43)

Depending on Bell measurement by Alice, Bob applies the unitary operation on his entangled

particle to recover the quantum state of the particle 1. The unitary transformations for

different measurement outcomes are given in table 1.1.

1.3.3 Quantum Cryptography

As entanglement provides perfectly correlated or anti correlated photons, we can use them

to distribute a secret key between two parties, say Alice and Bob [10]. In this scheme Alice

and Bob shares an entangled pair of particles. Both of them measure their entangled photon

in different projection angles. They choose one of the three (or four) predefined angles

randomly. After sufficient measurements they disclose the angles used in each measurement.

When angles are matched, they used the data to generate the key. With mismatched angle

data they calculate the Bell parameter. Thus the Bell’s inequality provides the security and

the non-local correlation provides the key.
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1.4 Photons for Quantum Information

Photons are natural choice for any quantum information or communication protocols because

of the ease of handling. They are often called as “flying qubits” and are an irreplaceable part

of communication. Development of efficient single photon detectors made the photonic quan-

tum information easier [13]. Single photon sources were developed in the past decades using

controlled excitation of atomic vapor, solid state color centres or quantum dots. Parametric

down conversion of photons were shown to generate entangled photons which can essentially

be used for any quantum communication. Almost all quantum information protocols were

initially demonstrated using photons. One can use many degrees of freedom of photon such

as polarization, orbital angular momentum, path, position, momentum, time or frequency for

carrying the information. We study two discrete degrees of freedom polarization and orbital

angular momentum of photons.

1.4.1 Polarization

Polarization of light field is being studied since the birth of the theory of electromagnetic

fields by James Clerk Maxwell. Polarization is associated with the spin angular momentum

of photons which was experimentally proved independently by C V Raman [14] and Beth[15].

Thus it is considered to be an intrinsic property of light. The basic two dimensional polar-

ization state is equivalent to a qubit state. Hence it is a good choice for communication

protocols.

2D Polarization State

Any plane wave propagating in ẑ direction has its components in x̂ and ŷ directions.

~E = ~E0e
ikz−ωt (1.44)

Now ~E0 is a two dimensional vector which does not evolve with time. This defines the

amplitude and direction of the electric field at a given instant of time.

~E0 =Exx̂ + Eyŷ

=E0 (αx̂ + βŷ)
(1.45)

where α = Ex/
√
E2
x + E2

y and β = Ey/
√
E2
x + E2

y . By discarding the common amplitude

term we get a normalized wave function which defines the polarization state of light. We can
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use the ket notation for the vectors. So a polarization state is defined as

|ψ〉 = α|H〉+ β|V 〉 (1.46)

|H〉 and |V 〉 represent horizontal and vertical polarization respectively. Note that the state

is normalized as |α|2 + |β|2 = 1.

Measurements and Operations

All the single qubit operations can be done using wave plates. A NOT gate is a half wave

plate with fast axis orientation θ = 45◦. The half wave plate oriented at θ = 22.5◦ acts as

a Hadamard gate. Any transformation of the polarization qubit on its Bloch sphere can be

done with combinations of quarter wave plates and half wave plates. Also, any projections

onto linear bases can be done with a polarizer or using combination of a half wave plate

and a polarizing beam splitter (PBS). For projections onto circular bases, we need to use a

quarter wave plate and a PBS.

The ease of transformation and measurement make the polarization qubit as the best

choice for quantum information. However, two qubit states don’t have straight forward im-

plementations. CNOT gate operations are not that trivial and many experimental realizations

are probabilistic.

Polarization Entanglement

Polarization entangled photons are one of the earliest realization of quantum entanglement.

Initially it was realized with the emission from atomic cascade system and latter on with

parametric down conversion of light in a non-linear crystal. Now bright entangled photons

can be generated using type 2 second order non-linear crystal, cascaded type I crystals or type

0 periodically poled crystals. One can easily transform one Bell state to another by the action

of wave plates. They were used to perform quantum protocols such as teleportation [16], super

dense coding [17] and quantum cryptography [18]. However, a complete deterministic Bell

state analysis for polarization entangled pairs is is yet to be implemented effectively.

1.4.2 Orbital Angular Momentum

Light beams such as Laguerre Gaussian (LG) modes with a phase singularity are known

to possess an orbital angular momentum (OAM) [19]. These beams are also called optical

vortices. OAM is associated with the helical phase of the light beam and is given as ±m~.
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Here m is the order of the vortex which is defined as the number of helical windings in one

wavelength. The electric field of an optical vortex is given as

E = r|m|eimφe−r
2/ω2

(1.47)

where φ = tan−1(y/x) is the azimuthal angle and ω is the beam width. Poynting vector

of electromagnetic field, which is always parallel to the surface normal of the phase fronts,

has an azimuthal component that results in the orbital angular momentum along the beam

axis. This OAM can be transferred to colloidal particles in an optical trap [20]. Thus it

can be used as an “optical spanner” in fields like biophysics [21, 22] and micromechanics

[23]. Optical vortices has interesting properties and has many applications in data storage,

imaging, metrology and free space communication [24–30]. OAM states can be generated

using diffraction holograms [31–33], mode converters [34] or spiral phase plates [35].

OAM has infinite dimensions in which information can be encoded, and this can be

used as a new degree of freedom for quantum information [36, 37]. The OAM state of

a photon spans an infinite dimensional Hilbet space {.., | − m〉, .., | − 1〉, |0〉, | + 1〉, .., | +

m〉, ..}. In general, OAM and spin cannot be considered independently. However, in the

paraxial approximation spin (polarization) and OAM can be measured and manipulated

separately. Thus, one can essentially use OAM along with polarization. OAM states find

exciting applications in quantum information protocols [38–40].

OAM Entanglement

Orbital angular momentum is a conserved quantity in non-linear processes like second har-

monic generation [41, 42] and sum frequency generation [43, 44], but it was experimentally

shown that the classical beam generated by spontaneous parametric down conversion will

not conserve the OAM [45]. However it was later shown that spin, orbital and total angular

momentums are conserved in SPDC as the angular momentum of the pump is shared between

the down conversion medium and the down converted photons [46–48]. In 2002 Mair et. al.

experimentally demonstrated the quantum correlations between OAM states of twin photons

generated by SPDC [49]. They have used a Gaussian beam with zero OAM as pump beam

for SPDC. The OAM of the signal and idler photons produced by SPDC should add up to

zero for the OAM conservation. Thus, either of the photon can take any value of OAM or be

in state |m〉 where m can take any integer value from −∞ to +∞ with a condition that its

twin pair should have equal OAM value with opposite sign to be in state | −m〉. The state
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can be written as

|Ψ〉12 = c0|0〉1|0〉2 +
∞∑
m=1

cm(|m〉1| −m〉2 + | −m〉1|m〉2) (1.48)

where c0, cm are the complex amplitudes. In such cases, OAM states with opposite sign, for

example |1〉1/2 and | − 1〉2/1, will have perfect correlation while that of same sign (except

the |0〉1, |0〉2) will have perfect anti correlation. The measurement of OAM states were

done by a computer generated hologram and a single mode fibre. This OAM entanglement

opened a great possibility for quantum correlations in higher dimensions. Higher dimensional

entanglement was demonstrated using OAM of photon [50–55]. This has huge application in

quantum cryptography [56] and quantum teleportation [57].

1.4.3 Photons Entangled in Polarization and OAM

As we discussed in previous subsection, OAM and polarization can be treated as independent

degrees of freedom (DOFs) and two photons can be entangled in both. This is called hyper-

entanglement. Note that in this case there is no correlation between polarization and OAM.

A hyper entangled photon pair can be expressed as

|Ψp〉12 ⊗ |ψo〉12 =
1

2
(|HH〉12 + |V V 〉12)⊗ (|l,−l〉12 + | − l, l〉12) (1.49)

These states can be generated by cascaded SPDC [58]. These states have received great

deal of attention as they are applied in efficient dense coding [59, 60], teleportation of states

in multiple DOF of a single photon [57] , remote state preparation [61], joining of quantum

states [62] and quantum error correction [63].

Now we consider the correlations between polarization and OAM of photons. In the larger

Hilbert space of polarization and OAM, it is possible to have non separable states of them.

The non-separability can be between the two DOFs of single particle or between DOF1 of

first and DOF2 of the second. These states are called hybrid entangled states [64, 65]. Single

photon hybrid entangled states are used in the hyperentanglement assisted polarization Bell

state analysis [66]. A single photon hybrid entangled states are given as

|ψ〉 =
1√
2

(|Hl〉+ |V − l〉) . (1.50)

In case of biphoton hybrid-entanglement, the polarization state will correspond to first photon

and OAM state will correspond to the second. Such states are often used to demonstrate

many quantum properties such as complementarity and non-local steering [67, 68]. These

states also violate the Bell’s inequality [69] Hybrid entangled photons have lot of applications

such as implementation of quantum algorithms [70] quantum cryptography [71] etc.
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1.5 Non-separable States and Entanglement

Right from its initial formulation, entanglement was considered as a unique quantum feature

with no classical counterpart. It appears to be true for the non-local multiparty entanglement.

However, this non-locality is not a necessary condition for the violation of Bell’s inequality.

Any non-separable states can violate Bell’s inequality. Non-separability is not unique to

the quantum world. One can have non-separable wave functions in classical electromagnetic

fields too. And one can have classical analogy of quantum entanglement using laser beams.

This is due to the fact that we can construct a Hilbert space for discrete degrees of freedoms

of light such as polarization and OAM.

Radially and azimuthally polarized beams are examples of such non-separable states [72].

In such beams the polarization is correlated with the spatial mode of the beam. For example,

radially polarized beams are represented in Hermite Gaussian as

~E = HG01x̂ +HG10ŷ. (1.51)

HG Modes are given as

HGmn = ξ0Hm(ax)Hn(by)e(−(x2 + y2)/ω2
z) (1.52)

where Hn and Hm are hermite polynomial of order n and m, ξ0 is the complex amplitude, a

and b are complex numbers and ωz is the radius at which the field amplitudes falls to 1/e of

their axial values, at the plane z along the beam. Here selecting any particular polarization

will change the spatial structure of the beam which is analogous to the steering of quantum

entanglement.

In 1998, R Spreeuw formulated the “classical” Hilbert space of polarization and spatial

modes [73] . He called the polarization and spatial mode states as cebits, which are analogous

to qubits. Here, polarization and the spatial modes of a beam can be considered as a bipartite

system. States {|H〉, |V 〉} forms a polarization Hilbert space Hp and the spatial mode states

{|a〉, |b〉} forms Hilbert space of the spatial mode Hs. Thus in the combined Hilbert space

Hp ⊗Hs we can have non-separable bipartite states which are mathematically equivalent to

entangled states. The state is given as

|ψ〉p,s =
1√
2I0

(|H〉|a〉+ |V 〉|b〉) (1.53)

Many use symbol |..) for the cebit states. However, we are sticking to the traditional ket

notation. Also the normalization of I0 is omitted in the further discussions for a compact

representation. This state is similar to the hybrid entangled state given in Eq. 1.50.
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There were many important works which studied the classical non-separability in the

context of entanglement [74–82]. Many people call these states as nonquantum entanglement

or classical entanglement. However there were some serious criticism for the use of the word

entanglement for these classical states [83]. We prefer to call it as non-separability.

Various classical non-separable states are shown to violate Bell like inequalities [84–88].

They have been used to demonstrate classical analogue of many quantum protocols such as

teleportation [89], state transfer [90], quantum walks [91] and quantum algorithms [92, 93].

The non-seperable states have also found applications in coherence studies [94], metrology

[95], communication [96, 97] and kinematic sensors and ultra sensitive measurements [98, 99].

Now the question is that how does the classical non-separability differ from quantum

entanglement. Answer lies in the non-locality and no-cloning nature of quantum systems.

With classical wave field one cannot achieve non-local steering of a state. Thus the non-

local correlations must be considered distinctively quantum in nature. The classical non-

separability cannot replace the quantum entanglement. No cloning nature of quantum state

cannot be applied to any classical wave fields.

1.6 Objective of the thesis

Polarization and orbital angular momentum are two independent and discrete degrees of

freedom of light. Both DOFs can be extensively used in quantum information and commu-

nications. Photons entangled in polarization are widely used for quantum communications.

OAM of photon is recently getting much attention as it can be used along with polarization.

Also entanglement between polarization and OAM have many advantages in many of the

quantum protocols. The classical counterpart of this polarization and OAM entanglement,

non-separability in vector vortices, is getting a lot attention due to its ability to simulate

many quantum protocols.

We wish to study the non-separability of polarization and OAM of a laser beam with

Bell’s parameter as a measure under cyclic polarization evolution. This has implications in

the experimental generation of these states for the applications as well as the generation and

measurement of entangled photons which follows the same mathematics. As an application

of classical non-separable state, we can use it for generating arbitrary 2 dimensional OAM

states on the OAM Poincaré sphere. The Poincaré sphere for OAM states proposed earlier

[100] is applicable for the OAM quantum number ±1 only. So it is necessary to describe a

general OAM Poincaré sphere which can represent 2D OAM states in the {|l〉, | − l〉} Hilbert
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space. Non-separable states are used in free space communication and hence studying its

properties under scattering is of great importance. Also reviving the non-separable states

from a completely scattered field can have applications in public broadcasting.

Most of the quantum protocols using OAM uses the {|l〉, | − l〉} subspace of the infinite

dimensional OAM Hilbert space. This restriction causes huge loss of photons and reduces

the efficiency of the protocol. We address the possibility of using the even and odd states

of OAM for quantum information protocols along with polarization. We try to develop new

protocols using even/odd states of OAM and polarization statesm for teleportation, quantum

cryptography and super dense coding.

1.7 Overview of the thesis

Chapter 1 gives a general overview of entanglement in the context of quantum informa-

tion. We briefly describe optical ralization of quantum information along with the discussion

of quantum entanglement-like classical non-separability. In chapter 2, we study the non-

separable state of polarization and OAM generated using a simple interferometer. We study

violation of Bell-like inequality for such a state. We show the effect of Pancharatnam phase

induced cyclic polarization evolution on the non-separability and the Bell’s measure. We

conceptualize a general OAM Poincaré sphere with the use of non-separable sates.

In chapter 3, we study the scattering of non-separable states of OAM and polarization. We

study the revival of non-separable state after it gets completely scattered off by a rotating

ground glass. We also demonstrate the generation and scattering of non-maximally non-

separable states.

Chapter 4 discusses the possibility of using even/odd states of OAM as a basic qubit which

has great advantages over the present OAM schemes. We describe the single photon states

and entangled states of even-odd OAM qubit and define the operators for its measurement.

Using these operators we give experimental schematics for tomography and Bell’s inequality.

We discuss hyper entanglement and hybrid entanglement of even-odd qubits with polarization

as another DOF. We give the setup for spin orbit Bell state analysis and apply it for super

dense coding.

In chapter 5, we propose a three particle hyper entangled state, which can teleport two

simultaneous qubits and can also be used for an efficient key distribution protocols. We

discuss the single photon hybrid gates and Bell projections with experimental schematics.

Finally we conclude in chapter 6.





Chapter 2

Evaluation of Non-separability through

Bell’s Inequality: Effect of Pancharat-

nam Phase

Non-separability in classical light fields has been studied recently in the context of quantum

information and entanglement[73–77]. This arises due to the vector nature of electromag-

netic fields. The intrinsic angular momentum, or spin, of light is related to its polarization.

Polarization is defines the direction of the electric field vector at a given point. In gen-

eral, the laser beams produced in a cavity have uniform polarization. But one can generate

beams with non-uniform polarizations in which case the polarization will vary according to

the position. Polarization singular beams and vector vortices are some examples [101]. The

state of these beams are mathematically non-separable in polarization and its spatial mode.

This non-separability is analogous to intra-system entanglement involving different degrees

of freedom of a light beam. In the conventional entanglement, two particles are entangled in

a particular degree of freedom. But as explained in the first chapter, hybrid-entanglement

is the entanglement between two degrees of freedom (DOF) of a single particle. The state

of the particle is expressed in combined Hilbert space of two degrees of freedom and the

operators in DOF-1 and DOF-2 are commuting. However, the term ”classical entanglement”

has received some serious criticism recently [83]. They argue that the distinctive nature

of entanglement is the non-locality which is absent in the classical non-separable states.

Quoting them “Ascribing a new meaning to a term that has been in wide use in quantum

physics for more than 80 years can only lead to confusion. But more deeply, these new

situations lack the key feature nonlocality that led to the concept of entanglement in the

21
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first place”. We follow the terminology “non-separability” instead of classical entanglement

although both are mathematically equivalent. One can construct classical equivalent of many

exotic quantum states using polarization and spatial modes of light. These non separable

states are used to mimic many quantum protocols [102–104]. Apart from the basic interest

of demonstrating quantum protocols using classical light beams, they also find applications

in various fields such as polarization metrology, ultra sensitive angular measurements and

optical communication.[94–96, 99].

Bell’s inequality is one of the most important tool for verifying the presence of entan-

glement and the maximum value of the Bell parameter (BMAX) can be considered as a

measure of entanglement. In single particle non-separable states (hybrid entanglement), Bell

inequality is shown to violate and that is accounted for the contextuality of the state, the

measurement result in one DOF depends on the measurement in other. The non-separability

can exist in between continuous or discrete variables, for which the classical light beams are

shown to violate the corresponding form of the Bell’s inequality [85, 86, 105, 106].

We consider non-separable state of OAM and polarization which has spatially non-

uniform polarization as that of the vector vortex beams. If we measure OAM and polar-

ization, individually, we will get completely mixed state. So for measure any properties of

the state we must perform joint measurements involving both DOFs. Since the OAM and

polarization are coupled to each other, projection on different polarization state yield differ-

ent states of OAM. Thus for checking the Bell’s inequality violation, we need to measure the

state by projecting on different polarization and OAM states.

When light fields undergo a cyclic polarization evolution, they acquire a geometric phase

which is known as Pancharatnam phase [107]. The phase acquired by the light depends on

the path taken by the polarization state upon its evolution on the Poincaré sphere. The

geometric phase is generalized to any quantum system under cyclic evolution by a time

dependent Hamiltonian and called as the Berry phase[108]. Entangled states, when generated

experimentally, may possess a relative phase due to the phase delays in the generating process.

One can nullify this relative phase by introducing a geometric phase in one of the subsystem.

In such cases, we need to see the Bell violation, as a measure of entanglement, to optimize

the state corresponding to different relative phases. There were many studies regarding

the geometric and topological phase with classical non-separable states and entangled states

[109, 110]. The effect of Berry phase in entangled systems and their violation of Bell’s

inequality were studied for spin-1
2 particles [111, 112]. The measurement in two degrees of

freedom of a non-separable state, be it classical or quantum, is very important for various
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protocols. Any relative phase will change the measurement outcome which will affect the

efficiency of the protocol. Thus, optimizing the measurements in two degrees of freedom,

when the state acquires a relative phase is very important for efficient implementation of

such protocols.

We generate a classical non-separable Bell-like state of polarization and orbital angular

momentum (OAM) of light using a polarizing Sagnac interferometer. We demonstrate the

presence of non-separability by violating Bell’s inequality for the generated state. Next, we

study the effect of Pancharatnam phase introduced by the polarization subsystem, through its

cyclic evolution on the Poincaré sphere, on the violation of Bell’s inequality. The maximum

violation BMAX varies sinusoidally according to the Pancharatnam phase when maximized

over the set of linear bases. We experimentally show that the Bell parameter can reach its

maximum value of 2
√

2 irrespective of the Pancharatnam phase if we introduce a correspond-

ing relative phase in the projecting basis. We also investigate the effect of Pancharatnam

phase on the spatially varying polarization structure of these non-separable beams. The

results give insight to the measurement optimization of Bell CHSH inequality for a non-

separable state under different relative phases.

The geometrical representation of 2D OAM state, a Poincaré sphere equivalent for OAM,

was described[100, 113] by taking Hermite-Gaussian modes as the basis vectors. But this will

hold only for the OAM state in thge Hilbert space |1〉, | − 1〉. We conceptualise a general OAM

Poincaré sphere for |l〉, | − l〉 basis from the non-separable state of OAM and polarization.

The mixed state of OAM in the {l,−l} subspace is visualized as a non-separable state for

which the partial trace in the other DOF, say polarization, will cause the mixedness in OAM.

We also demonstrate the experimental generation of all the points on the surface of the OAM

Poincaré sphere using a non-separable state.

2.1 Violation of Bells Inequality for Non-separable

states

2.1.1 Non-seperable State and Projective Measurements

We start with a maximally non-separable Bell-like state of polarization and OAM that can

be written as

|ψ〉 =
1√
2

(|H〉|l〉+ |V 〉| − l〉) (2.1)
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where |H〉, |V 〉 and |l〉, |−l〉 are basis vectors for 2D complex vector spaces of polarization and

OAM respectively. The combined state is a vector in 4 dimensional product Hilbert space.

We need to project this state to polarization and OAM states for combined measurement.

We define the set of linear bases corresponding to polarization and OAM as

|θ〉 = cos(θ)|H〉+ sin(θ)|V 〉; |θ⊥〉 = −sin(θ)|H〉+ cos(θ)|V 〉;

|χ〉 = sin(χ)|l〉+ cos(χ)| − l〉; |χ⊥〉 = −cos(χ)|l〉+ sin(χ)| − l〉; (2.2)

This set of bases defines a circle in the Poincaré sphere of polarization and OAM. We

define Poincaré sphere of OAM by taking |l〉 and | − l〉 as basis vectors (0, 1)T and (1, 0)T

respectively. The orthogonal states |θ〉 and |θ⊥〉 are two opposite points of the circle on the

Poincaré sphere. Similarly |χ〉 and |χ⊥〉 are the two opposite points of the circle pn the

OAM Poincaré sphere. The linear states of polarization and OAM are represented on the

respective Poincaré sphere as shown in Fig. 2.1.

Figure 2.1: Linear bases of polarization (left) and OAM(right) states. H, V, D, A, R

and L represents the horizontal, verticlal, diagonal, antidiagonal, right circular and left

circular polarization. |2〉 and | − 2〉 are OAM states corresponding to the topological

charge +2 and -2 respectively. Also |2〉D = 1√
2
(|2〉+|−2〉), |2〉A = 1√

2
(|2〉−|−2〉), |2〉R =

1√
2
(|2〉+ i| − 2〉) and |2〉L = 1√

2
(|2〉 − i| − 2〉) analogous to polarization.

When we project the state given in Eq.2.1, to a general linear polarization state , we get

|ψl〉 = 〈θ|ψ〉 = cos(θ)|l〉+ sin(θ)| − l〉. (2.3)

Thus one can control the OAM state using polarization projection. The polarization

projection can be done using a half wave plate, a quarter wave plate and a horizontal polarizer.

θ should be the twice of the angle of the fast axis orientation of the half wave plate. To

complete the measurement we need to project this state |ψl〉 to a general linear OAM state

|χ〉 as
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〈χ|ψl〉 = 〈χ|〈θ|ψ〉 = cos(χ)sin(θ) + sin(χ)cos(θ) = cos(χ− θ) (2.4)

The OAM projections are done by diffraction holograms using spatial light modulators.

Defining probability of the state |ψ〉 being in the state |θ〉|χ〉 is given as

c(θ, χ) = |〈χ|〈θ|ψ〉|2 = cos2(χ− θ) (2.5)

Similarly one can define circles in the respective Poincaé spheres which are perpendicular

to the plane of the linear bases circle. It intersects the linear bases circle at diagonal and

anti-diagonal states of polarization and OAM as shown in the Fig. 2.2.

Figure 2.2: Circular bases for polarization (left) and OAM(right) states.

The general states in this set of basis for polarization and OAM are given as

|θ〉 = e−iθ|H〉+ eiθ|V 〉; |χ〉 = e−iχ|l〉+ eiχ| − l〉. (2.6)

Now the joint detection probability for the projection of the state |ψ〉 to state |θ〉|χ〉 is

given as

|〈θ|χ|ψ〉|2 = cos2(θ − χ) (2.7)

This is the essential measurement for checking the Bell’s inequality for the state.

2.1.2 Experimental Generation of Non-separable State and

Implementation of Projective Measurements

We have used a diode pumped solid state green laser (Verdi 10) of wavelength 532nm with

vertical polarization for our study. The laser beam passes through a half wave plate oriented

at −22.5o with the horizontal that changes the polarization from vertical to diagonal. Then

it passes through a polarizing Sagnac interferometer [114] containing a spiral phase plate
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Figure 2.3: Experimental setup for the state preparation, measurement and spatial

polarization profile of the non-separable beam. L - laser, H - half wave plate, PBS -

polarizing beam splitter, SPP - spiral phase plate, Q - quarter wave plate, BS - beam

splitter, SLM - spatial light modulator, CCD - charge coupled device (camera), P -

polarizer, PH - pin hole, SMF - single mode fiber, PMT - photo multiplier tube.

(SPP) to generate a light beam with non-separable polarization and OAM. Two orthogonally

polarized (H and V) counter propagating Gaussian beams are converted into optical vortices

of orders l (for H) and −l (for V) by the SPP designed for order |l| = 2. These orthogonally

polarized and oppositely charged vortices superpose at the same PBS to form the non-

separable state. The experimental set up for the generation and measurement of the non-

separable state is given in Fig. 2.3.

χ = 0 χ = 22.5 χ = 45 χ = 67.5

χ = 90 χ = 112.5 χ = 135 χ = 157.5

Figure 2.4: Holograms for different values of χ for the measurements of OAM states

in linear bases
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The measurement in polarization is done by a quarter wave plate (at 0◦ or 45◦ for linear

and circular projections respectively), half wave plate (at θ
2) and a polariser oriented at 0◦.

For OAM measurements we use a spatial light modulator (SLM) along with a single mode

fibre and a photo multiplier tube for the detection. The holograms for the SLM are made in

such a way that they converts the particular OAM state |χ〉 into Gaussian. The conversion

happens in a projective manner. If the OAM state is |χ′〉, then the hologram converts |〈χ|χ′〉|2

of the total power into the Gaussian. The remaining intensity will form an outer ring to the

Gaussian pattern. The Gaussian part can be easily separated from the rest by using a single

mode fibre (SMF). The Holograms for the projection in liner OAM bases for different value

of χ are given in Fig. 2.4. The circular projection of OAM at χ = 0, correspond to the

χ = 45◦ hologram shown in Fig. 2.4. For other values of χ the same hologram is used with

a rotation χ
2 .

To study the spatially varying polarization structure and its evolution with the introduced

geometric phase, we have carried out the Stokes polarimetric imaging of the beam. For this we

have imaged the beam after the polarizer (P) using a CCD camera for projections to three

sets of orthogonal polarization states. Spatially varying Stokes parameters are calculated

from the images corresponding to different polarization projections. The spatial polarization

profile is also given in Fig. 2.3.

2.1.3 Violation of Bell’s Inequality

Measurements on a light beam with non-separable state of polarization and OAM give raise

to contextual results. The measurements are similar to two photon correlation experiments in

entangled photon pairs. Instead of measuring one quantity, say polarization, of two spatially

separated photons, here we are performing a measurement in two independent degrees of

freedom, namely polarization and OAM, of the same beam. The measurement in polarization

affects the measurement outcome in OAM. We measure the power coupled to the single

mode fibre after the polarization projection and OAM projections. We vary the value θ by

changing HWP orientation for different values of OAM projection angle χ. The the projective

measurement results for the state given in Eq. 2.5, are given in Fig. 2.5. The theoretical curves

which follow the Eq. 2.5 are also given for comparison.

The Bell-CHSH inequality is defined as

B(θ, θ′, χ, χ′) = |E(θ, χ)− E(θ, χ′) + E(θ′, χ) + E(θ′, χ′)| ≤ 2 (2.8)
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Figure 2.5: Joint polarization-OAM measurement results for a non-seperable state.

The half wave plate angle θ/2 is varried for different holograms defined by χ. The

theoretical curves follows the Eq. 2.5.

where

E(θ, χ) =
C(θ, χ) + C(θ⊥, χ⊥)− C(θ⊥, χ)− C(θ, χ⊥)

C(θ, χ) + C(θ⊥, χ⊥) + C(θ⊥, χ) + C(θ, χ⊥)
.

C(θ, χ) is the probability amplitude of a state for being in |θ〉|χ〉.
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Figure 2.6: Bell-CHSH parameter for different measurement angles (χ).

To find the optimum angles corresponding to the maximum violation of Bell-CHSH in-

equality, we vary the projecting angle from 0◦ to 45◦ fixing χ′ = χ+ 45◦, θ = 0◦ and θ′ = 45◦

. For the generated non-separable state, we have carried out the measurements in linear

(black squares) and circular bases (red circles) and the results are given in Fig. 2.6. For
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comparing the experimental results, the corresponding theoretical curve is also given.. With

(θ = 0◦, θ′ = 45◦, χ = 22.5◦, χ′ = 67.5◦) we experimentally obtain BMAX = 2.69 ± 0.036

corresponding to φ = 0◦ when measurement is carried out in linear bases. Measurement in

circular bases with the angles mentioned yields a value of BMAX = 2.79± 0.029. These are

close to the theoretical maximum value of 2
√

2. The violation of Bell-CHSH inequality indi-

cates the presence of non-separability between polarization and OAM in the light beam. This

accounts for the contextuality in measuring these two properties of light. The imperfections

in projecting to the linear bases of OAM while using SLM and single mode fiber result in the

lesser violation of Bell CHSH inequality. When projecting the input OAM state (after the

polarization projections) by the holograms given in Fig. 2.4, the centre of the Gaussian mode

at the fiber coupler slightly gets shifted for different projections which affects the coupling to

the single mode fiber. In the case of projections to circular bases, the centres of the projected

Gaussian mode are comparatively stable due to the circular symmetry of different holograms.

2.2 Pancharatnam Phase in Non-separable States

of Light

We consider a cyclic evolution of polarization for the state given in Eq. 2.1. This cyclic

polarization evolution is done using Simon-Mukunda (SM) gadget [115, 116], a combination

of two quarter wave plates (Q) and a half wave plate (H). We have used the gadget in Q-

H-Q order. The setup and the corresponding polarization evolution are given in Fig. 2.7. A

quarter wave plate with fast axis oriented at 45◦ with the horizontal convert the horizontal

and vertical polarizations into right and left circular polarizations respectively. Now a half

wave plate, irrespective of its fast axis orientation, will convert right circular polarization to

left circular polarization and vice-versa. The second quarter wave plate at 45◦ will convert

the circular polarization to the initial linear polarization state. However, the evolution on

the Poincaré sphere takes different path according to the fast axis orientation angle (φ′) of

the half wave plate. Here, the two orthogonal polarization states evolve as |H〉 → e2iφ′ |H〉

and |V 〉 → −e−2iφ′ |V 〉. If considered separately it is a global phase and has no effect in the

measurement of polarization or OAM. However, here in the case of non-separable state, the

orthogonal polarizations will introduce phase of opposite signs which effectively will introduce

a relative phase. The state after the polarization evolution is becomes

|ψ′〉 =
1√
2

(
e2iφ′ |H〉| − l〉 − e−2iφ′ |V 〉| − l〉

)
(2.9)
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|ψ′〉 =
1√
2

(
|H〉|+ l〉+ e−iφ|V 〉| − l〉

)
(2.10)

where φ = π + 4φ′. Global phase of e2iφ′ is omitted since it does not change polarization or

OAM measurement outcomes.

Q(450)

H(߶′ሻ
Q(450)|߰〉 |߰′〉

Figure 2.7: Setup for the polarization evolution and its representation on the Poincaré

sphere.

2.2.1 Effect of Pancharatnam Phase in the Violation of Bell’s

Inequality

The measurement on state given in Eq. 2.10 will yield different outcome. The joint measure-

ment probability becomes

C(θ, χ, φ) = cos2(θ)sin2(χ) + sin(2θ)sin(2χ)cos(φ) + cos2(χ)sin2(θ) (2.11)

which is a function of φ also. Thus the BMAX will also be a function of φ along with θ, θ′, χ

and χ′. Changing φ will affect the angles corresponding to BMAX as well as its value. For

BMAX with θ = 0◦, θ′ = 90◦, χ and χ′ are varied as

χ =
1

2
arct−1(cos φ); χ′ =

π

2
− χ. (2.12)

The BMAX varies periodically with the relative phase φ. Theoretical curves for the variation

of the measurement angle χ and BMAX with φ are given in Fig.2.8

We have changed the relative phase φ using the SM gadget and obtained BMAX using

conditions given in Eq. 2.12. Experimental curve for the BMAX with the phase φ is given

in Fig.2.9. At φ = 90 the value of BMAX drops to zero, and there is no violation of Bell

inequality.
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Figure 2.8: Theoretical curves for the variation of χ and BMAX as a function of φ.
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Figure 2.9: Variation of BMAX with the relative phase when maximized over the linear

bases

2.2.2 Optimized Measurement and Phase Independent BMAX

in Linear and Circular bases

However, the state given in Eq. 2.10 is always maximally non-separable/ entangled as the

other entanglement measures like concurrence or von Neumann entropy are independent of φ.

To get back the maximum Bell violation, one need to use different bases for the maximization

of the Bell parameter. We redefine the OAM projecting state as

|χ′〉 = cos(χ)|l〉+ e−iφsin(χ)| − l〉 (2.13)

that gives

C(θ, χ′) ∝ |〈θ|〈χ′|ψ′〉|2 = cos2(θ − χ) (2.14)

One can obtain the same by introducing a relative phase in polarization state |θ〉 too. Now

the Bell-CHSH parameter BMAX is independent of the relative phase φ. The different OAM

measurement bases for different φ are given in Fig. 2.10.
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Figure 2.10: Choice of measurment bases for OAM in order to obtain maximum

violation for Bell-CHSH parameter for φ = 22.5◦, 45◦, 67.5◦ and 90◦

χ = 22.5 χ = 45 χ = 67.5 χ = 135

Figure 2.11: Holograms for optimizing the measurements of OAM states in linear bases

with relative phase φ = 45◦ as given in Eq.2.13 and χ = 22.5, 45, 67.5, 135

Next we check the Bell-CHSH parameter by projecting the state |ψ′〉 in circular basis of

polarization and OAM. The states are given as

|θ〉 = e−iθ|H〉+ eiθ|V 〉; |χ〉 = eiχ|l〉+ e−iχ| − l〉. (2.15)

These measurement bases are given as red circles in Fig.2.2. Measuring the state |ψ〉 will

result the same outcome as given in Eq. 2.5. Now the joint detection probability for the

projection of the state |ψ′〉 to state |θ〉|χ〉 is given as

|〈θ|χ|ψ′〉|2 = cos2(θ − χ− φ

2
) (2.16)

Thus with θ = 0◦, θ′ = 45◦, χ = 22.5◦ + φ
2 and χ′ = 67.5◦ + φ

2 we can obtain the Bell-CHSH

parameter as 2
√

2.

We have carried out the Bell parameter measurement with the introduction of relative

phase in |χ〉 to transform it to |χ′〉 as given in Eq. 2.14. The holograms for optimizing the

measurements of OAM states in linear bases with relative phase φ = 45◦ are given in Fig. 2.11.

We also measure in circular basis for which projecting states are described by Eq. 2.6. With

the change in measurement angles as mentioned above Bell - CHSH parameter is found to be

constant with the relative phase φ. The results are given in Fig. 2.12. Here we don’t have to

change the measurement basis, as we have done in the linear case, to maximize B. So, when
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Figure 2.12: Measured values of phase independent BMAX by introducing phase com-

pensation in linear bases (black squares) and changing χ in circular bases (red circles)

projecting in circular basis, one can easily compensate the effect of Pancharatnam phase in

the Bell-CHSH inequality measurement.

2.2.3 Stokes Imaging of Non-separable State with Pancharat-

nam Phase

We have analyzed the spatially varying polarization structure with the cyclic polarization

evolution. The results are given in Fig. 2.13. The magenta and cyan circles show right and left

circular polarizations. Two black lines are drawn corresponding to the diagonal polarization.

It is found that the total polarization structure rotates with the relative phase introduced. We

also give the images corresponding to different polarization projections for different φ. One

can see that the images corresponding to diagonal and anti-diagonal projections are rotated

with the relative phase φ. However, it doesn’t affect the mode structure corresponding to

horizontal or vertical projection. For the projection in any other linear state, the mode rotates

with the relative phase. Thus a hologram that is supposed to convert the diagonal OAM

state 1√
2
(|l〉 + | − l〉) to Gaussian, will not effectively convert the state 1√

2
(|l〉 + eiφ| − l〉).

By introducing a phase in the OAM projecting bases as given in Eq. 2.14, which gives a

rotation for the hologram corresponding to the projection onto χ other than 0◦& 90◦ , one

can compensate this effect and achieve the maximum violation of Bell CHSH inequality as

given in Fig. 2.12. The optimized holograms are given in Fig. 2.11 for φ = 45◦.
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Figure 2.13: Polarization structure and the intensity profile corresponding to different

polarization projections for different relative phase φ

2.3 A General OAM Poincaré Sphere from Non-

separable States of Light

In an information theoretical point of view, it is favorable to consider a 2-D subspace of

the infinite dimensional OAM space for simple construction of qubits [117]. Thus, a general

superposition of {l,−l} OAM states are similar to the polarization states. The geometrical

representation of polarization, which spans a 2-D complex vector space, as points on the

Poincaré sphere is known for many years. It is constructed using the real and measurable

Stokes parameters that are derived from the complex Jones vectors [118]. A similar construc-

tion has been made for light beams carrying orbital angular momentum by considering it as a

complex superposition of Hermite Gaussian (HG) spatial modes[100, 113]. This construction

is valid only for a Laguerre Gaussian (LG) beam of azimuthal index |l| = 1. In spite of

this many quantum information experiments are demonstrated with superposition state in

{l,−l} Hilbert space for higher value of |l| [119]. In those cases the Hermite sphere will not

act as an OAM Poincarés sphere. Here, we construct a Poincaré sphere for 2-D OAM states

of arbitrary {l,−l} Hilbert space. We generate all the points on this Poincaré experimentally

using a non separable light beam of polarization and OAM. The mixed states of OAM are
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thus visualized and represented as points inside the Poincaré sphere.

2.3.1 Hermite Gaussian Sphere as OAM Poincaré Sphere

Orbital angular momentum Poincaré sphere is constructed based on the transformations

between Laguerre-Gaussian (LG) and Hermite-Gausian modes of a laser beam [100]. A

general LG mode of zero radial index and azimuthal index of “l” represents an optical vortex

of order “l” and can be expressed in terms of HG modes as

LGl0 =
1

2l

l∑
s=0

(
l

s

)
isHGl−s,s (2.17)

where
(
l
s

)
is the binomial coefficient. For l = 1,

LG1
0 =

1

2
(HG0,1 + iHG1,0); LG−1

0 =
1

2
(HG0,1 − iHG1,0). (2.18)

This is in the similar to the relation between circularly and linearly polarized light. All the

polarization states can be represented on the Poincaré sphere geometrically with horizontal

and vertical polarizations as basis vectors. Similar Poincaré sphere has been constructed for

OAM too with HG01 and HG10 modes as basis vectors. The Stokes vectors for these states

are defined as

o1 =
IHG0o

10
− IHG90o

10

IHG0o
10

+ IHG90o
10

o2 =
IHG45o

10
− IHG135o

10

IHG45o
10

+ IHG135o
10

o3 =
ILG1

0
− ILG−1

0

ILG1
0

+ ILG−1
0

(2.19)

where IHGαmn , is the intensity of the Hermite Gaussian mode HGmn at an angle α. The unit

sphere constructed by these Stokes parameters is considered to be an OAM Poincaré sphere.

Surface of the sphere represents the pure OAM superposition states. HG01 and HG10 states

form [X,-X] axes of the Poincaré sphere and LG1
0, LG−1

0 are represented at the poles. On this

Poincaré sphere one can represent all the superposition states of HG01 and HG10 modes.

Nevertheless, one cannot use this HG basis Poincaré sphere for OAM when l > 1. For

l = 2, the expression for the LG mode is given by (Eq.2.17)

LG2
0 =

1

4
(HG0,2 + 2iHG1,1 −HG2,0). (2.20)

This transformation includes the extra term of 2iHG1,1 and hence cannot be used to construct

a Poincaré sphere with HG02 and HG20 modes as basis vectors. In general, one cannot
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represent all the pure OAM states on the Poincaré sphere. For representing all the OAM

states and their superposition, we generalize the previous Poincaré sphere by replacing the

HG basis vectors with LG±l0 modes.

2.3.2 An Alternate OAM Poinceré Sphere

We have considered a 2-D subspace of OAM for constructing this sphere. The Stokes param-

eters can be rewritten as

o1 =
ILGl0

− ILG−l0

ILGl0
+ ILG−l0

o2 =
I
LG

lD
0

− I
LG

lA
0

I
LG

lD
0

+ I
LG

lA
0

o3 =
I
LG

lR
0

− I
LG

lL
0

I
LG

lR
0

+ I
LG

lL
0

(2.21)

where

LG
lD/A
0 = LGl0 ± LG−l0 ; LG

lR/L
0 = LGl0 ± iLG−l0 . (2.22)

The two OAM modes form the [X,-X] axes and their complex superposition can be repre-

sented at the poles. With this, one can realize all possible pure states of OAM geometrically

on the surface of Poincaré sphere. We have shown the previous and present Poincaré spheres

in Fig. 2.14.

Figure 2.14: OAM Poincaré sphere with HG modes as basis vectors (left) and the

present Poincaré sphere with LG modes as basis vectors in {l,−l} subspace (right).
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2.3.3 Generation of all points on the Surface of OAM Poincaré

sphere

A non-separable state of polarization and OAM can be written as

|ψ〉 =
1√
2

(|H〉|l〉+ |V 〉| − l〉) (2.23)

where |H〉, |V 〉 and |l〉, | − l〉 are basis vectors of two dimensional complex vector spaces of

Figure 2.15: Generated points represented on the Poincaré sphere.

polarization and OAM respectively. The intensity distribution of this non-separable beam is

similar to an optical vortex of order l.

Allow this beam pass through a Simon Mukunda gadget arranged in Q-H-Q manner.

We use the similar configuration as in the section 2.2.1 where the orthogonal polarizations

acquire Pancharatnam phase of opposite signs. The state becomes as given in Eq. 2.10

|ψ′〉 =
1√
2

(
|H〉|l〉+ e−iφ|V 〉| − l〉

)
(2.24)

where φ = π+4φ′. Now project this state to a linear polarization state using a half wave plate

at angle θ
2 and a polarizing beam splitter which transmit only the horizontal polarization .

The state will be

|ψo〉 = cos(θ)|l〉+ e−iφsin(θ)| − l〉 (2.25)
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Figure 2.16: Generated states and its intensity distributions.

By varying θ and φ we can generate all points on the Poincaré sphere. To demonstrate

the same we generate 10 points lying on a great circle of the OAM Poincaré sphere. The

points are shown in Fig. 2.15. The intensity distribution of the generated states are given in

Fig.2.16

2.3.4 Points inside the sphere, centre and mixed states of

OAM

The points inside the Poinceré shpere, by construction, constitutes the mixed states of polar-

ization whose degree of polarization is s2
1 +s2

2 +s2
3 < 1. The centre corresponds to completely

mixed/unpolarized light state. All natural sources of light give this mixed state of polar-

ization which has a 2-D basis. OAM has infinite dimensional basis and to the best of our

knowledge, no natural source gives the mixed state of OAM in 2-D OAM space. To obtain

this, we need to couple the OAM of a light beam to the other degree of freedom such as
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polarization that prevents their superposition. For example, the hybrid entangled state of

OAM and polarization gives the mixed state in 2-D OAM state. Now, one can represent all

the hybrid entangled states of OAM and another degree of freedom inside the OAM Poinacré

sphere. The centre gives the maximally entangled states while the others give non-maximally

entangled states with decreased amount of mixedness. The degree of entanglement increases

from 0 to 1 if we move from the surface to the centre where as the purity of the OAM states

decreases from 1 to 0. The purity of the OAM states and the degree of entanglement can be

measured from radial distance.

»LGl>

»LG-l>

1,
2

H»LGl>+‰»LG-l>L

1,
2

H»LGl>-‰»LG-l>L

1,
2

H»LGl>+»LG-l>L

1,
2

H»LGl>-»LG-l>L

Figure 2.17: All the OAM state defined by Eq.2.27 are given in blue.

Consider the state given

|ψ〉 = cos(ξ)|Hl〉+ sin(ξ)|V − l〉 (2.26)

Its density matrix is given as ρ = |ψ〉〈ψ|. Taking a partial trace over polarization we get

ρo = Trp{|ψ〉〈ψ|} = cos2(ξ)|l〉〈l|+ sin2(ξ)| − l〉〈−l| (2.27)

Degree of purity is defined as

D =

√
o2

1 + o2
2 + o2

3

so
(2.28)

From the density matrix, we can have

D2 = 2

(
Tr{ρ2

o} −
1

2

)
= 2

(
cos4(ξ) + sin4(ξ)− 1

2

)
(2.29)
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Thus when ξ = π/4 the state given in Eq. 2.26 will be maximally non separable which

correspond to zero degree of purity. In the OAM subspace, the state is maximally mixed and

can be represented as the centre of the OAM Poincaré sphere. When ξ = 2nπ, (2n+ 1)π/2,

D = 1 and state is represented on the surface of OAM Poincaré sphere. The state given

in Eq. 2.27 can be obtained from the same set up used to generate the non-separable state

Fig.2.3. In this case the half wave plate before the beam splitter has to be aligned at an

angle ξ
2 −

π
4 .
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q

f

» rl >

Figure 2.18: OAM states with degree of purity = 0.7 is represented as a sphere inside

the Poincaré sphere with radius r=0.7.

However, The state defined in Eq. 2.27 doesn’t represent a general mixed state. By

varying ξ one can generate points lying on the X-axis, including the centre, only. These

points are given in Fig.2.17.

A general state can be defined as

|ψg〉 = cos(ξ)|HΨl〉+ sin(ξ)|VΨ⊥l 〉 (2.30)
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where

Ψl = cos(θ)|+ l〉+ e−iφsin(θ)| − l〉

Ψ⊥l = sin(θ)|+ l〉 − e−iφcos(θ)| − l〉 (2.31)

The general OAM state is obtained by taking a partial trace of the density matrix corre-

sponding to the state given in Eq. 2.30

ρo = Trp{|ψg〉〈ψg|} = cos2(ξ)|ψl〉〈ψl|+ sin2(ξ)|ψ⊥l 〉〈ψ⊥l | (2.32)

For a particular value of D , which define the radial distance, θ and φ can be varied to form a

sphere inside the unit OAM Poincaré sphere. Fig.2.18 represents all the points with D = 0.7.

2.4 Conclusion

We have generated non-separable state of polarization and OAM using a polarizing Sagnac

interferometer. We have studied the effect of Pancharatnam geometric phase in a non-

separable state of polarization and OAM. The non-separability is confirmed by the violation

of Bell-CHSH inequality. The geometric phase introduced in the polarization subsystem

induces a relative phase in the Bell like state of OAM and polarization. The maximum value

of the Bell parameter, BMAX , maximized over the measurement angles, varies sinusoidally

according to the relative phase. We obtain a constant BMAX for different geometric phase

by introducing a relative phase in the projected OAM state. We also show that the Bell

CHSH inequality measurement in circular bases can remove the phase dependence of the

BMAX by shifting the measurement angle. We have analyzed the polarization structure of

the non-separable state for different Pancharatnam phases that gives a rotation to it. This

physically explain the effect of Pancharatnam phase in the joint measurement of polarization

and OAM.

We have described an OAM Poincaré sphere which can represent all OAM superposition

states in {l,−l} subspace even for |l| ≥ 1. We also have presented an experimental method

for the generation of all such states using a non-separable state of OAM and polarization. We

have also described the representation of OAM mixed states as non-separable states inside

the Poincaré sphere.





Chapter 3

Scattering of Non-separable States

of Light

In the previous chapter we have studied the properties of non-separable states of polarization

and orbital angular momentum (OAM) along with its violation of Bell-CHSH inequality.

These non-separable stats have application in optical communications and its interesting

to study the nature of them under scattering. As the non-separable states can be coded

with more information, its desirable to revive the state after scattering for decoding the

information. In this chapter, we study the effect of scattering on a non-separable state of

light.

Scattering of structured light beams such as optical vortices has been studied for their

coherence properties and applications [120–124]. It has been shown that one can generate

ring shaped beams from the scattering of coherent optical vortices [125]. Here, we generate

light beams with non-separable OAM and polarization and verify the preservation of non-

separability under scattering through a rotating ground glass (RGG). These non-separable

beams can be generated using q-plates [126, 127] or interferometers [85, 114] . In our set

up, we use a modified polarizing Sagnac interferometer [114] containing a spiral phase plate

(SPP) to generate these non-separable beams. The generated beams scatter through a RGG

and the scattered light is collected by a plano-convex lens to measure their polarization and

intensity distributions at the focus. We measure the degree of polarization of the beam, as

a measure of non-separability [128–130], before and after scattering which should be 0 for a

maximally non-separable state and 1 for a completely separable state. We also project the

scattered as well as coherent light to different polarizations and record their corresponding

intensity distributions which confirm the non-separability. Using the same experimental

43
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setup, we vary the degree of non-separability by controlling the intensities in the two arms

of the interferometer. These recovered partially coherent non-separable states can be used

to generate any arbitrary superposition of partially coherent OAM states.

3.1 Preservation of Non-separability Under Scat-

tering

We generate beams with non-separable polarization and OAM states and experimentally

verify the preservation of non-separability under scattering. Preservation is confirmed by

measuring degree of polarization and contextual imaging.

In subsection 3.1.1 we give a theoretical introduction to the OAM-polarization non-

separable state and describe the methods we use to witness the non-separability. Experi-

mental setup to generate the described states is given in subsection 3.1.2. The results and

discussion are given in subsection 3.1.3. For simplicity, we use the Dirac notation to describe

the states even though we are using classical light beams.

3.1.1 Theoretical Background

A maximally entangled/non-separable state of polarization and OAM can be written as

|ψ〉 =
1√
2

(|H〉|+ l〉+ |V 〉| − l〉) (3.1)

where |H〉, |V 〉 and |+l〉, |−l〉 are basis vectors of 2D complex vector spaces of polarization and

OAM subspace respectively. This state is formed simply by superposing two orthogonally

polarized optical vortices of equal intensities and with equal and opposite charges. The

density matrix for the non-separable state |ψ〉 is given by ρns = |ψ〉〈ψ|. One can obtain the

reduced density matrix corresponding to the polarization by taking a partial trace over OAM

states on this density matrix,

ρp = Trl{ρns} =
∑
i=H,V

〈i|ψ〉〈ψ|i〉 =
Ip
2

here, IP is a 2×2 identity matrix. For a given density matrix ρ one can define linear entropy

(SL) [131]

SL =
d

d− 1
(1− Tr(ρ2)). (3.2)

SL characterizes the amount of mixedness for a given density matrix. It is known that for an

entangled/non-separable state, the subsystems will be in a mixed state. Stronger the non-

separability, larger the amount of mixedness present in the subsystems. Thus by measuring
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SL of the subsystem, one can measure the degree of entanglement or the non-separability.

For the maximally non-separable state given in Eq. 3.1, one can find the linear entropy of

polarization,

SL = 2(1− Tr(ρ2
p)) = 1. (3.3)

This corresponds to a completely mixed polarization state in contrast to a completely polar-

ized state with SL = 0. We know, the state of polarization represented by a Poincare sphere

can be completely described by

ρp =
1

2

3∑
i=0

σi.si (3.4)

where σi’s and si’s are the Pauli matrices and normalized Stokes parameters respectively.

The trace of square of this density matrix is given by

Tr{ρ2
p} =

1

2

(
1 + s2

1 + s2
2 + s2

3

)
=

1

2
(1 +DOP 2) (3.5)

where DOP is the degree of polarization which is measured as the magnitude of the Stokes

vector
√
s2

1 + s2
2 + s2

3. Using Eq. 3.3 and Eq. 3.5 one can relate DOP to linear entropy as

SL = 1−DOP 2. (3.6)

Thus for a maximally non-separable state of polarization and OAM, for which SL = 1, the

degree of polarization should be zero. One can easily determine the degree of polarization

experimentally by measuring the Stokes parameters [118].

Another characteristic of the non-separable state is contexuality. For a separable state,

measurement on one degree of freedom doesn’t affect the measurement outcome of the other.

However, in the case of a non-separable state, measurement outcome in one degree of freedom

will depend on the context of measurement in the other. In our experiment the OAM state

of the beam varies according to the projections to different polarization states due to their

non-separability. Consider a general polarization state defined as

|ξ〉 = cos(θ)|H〉+ eiφsin(θ)|V 〉 (3.7)

where θ and φ are the Euler angles corresponding to the state |ξ〉 on the Poincaré sphere.

Projecting |ψ〉 given in Eq. 3.1 to |ξ〉, we obtain the OAM state as

|ψo〉θ,φ = 〈ξ|ψ〉 = cos(θ)|l〉+ e−iφsin(θ)| − l〉. (3.8)

This is a pure OAM superposition state. The transverse profile of the beam will correspond to

superposition of two equal and oppositely charged vortices with different relative amplitudes

and phase. So according to θ and φ defined by polarization projection, the intensity profile of
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the beam will vary. For demonstration we take (θ, φ) = (0, 0), (90, 0), (45, 0), (−45, 0), (45, 90)

and (−45, 90) which correspond to |H〉, |V 〉, |D〉 = |H〉+|V 〉, |A〉 = |H〉−|V 〉, |R〉 = |H〉+i|V 〉

and |L〉 = |H〉 − i|V 〉 polarization states.

2H 2V 22
2

1D

22
2

1A 22
2

1 iR 22
2

1 iL

Figure 3.1: Theoretical images for the transverse intensity profile of a non-separable

state described by Eq. 3.1 with |l| = 2 for projections to different polarization states.

H-Horizontal, V- vertical, D-diagonal, A-anit-diagonal, R-rightcircular, L-leftcircular

Figure 3.1 shows the theoretical intensity distributions corresponding to different polar-

ization projections for |l| = 2. The projection on H (V) polarization gives a vortex of order

2(−2). The projections of the state on diagonal (D), anti-diagonal (A), left circular (L) and

right circular (R) gives superposition of two vortices that contain 2l (in our case |l| = 2)

number of lobes with different orientations. The number of lobes confirms the order or the

azimuthal index of the vortex and the change in their orientation confirms the presence of

non-separability in a light beam.

3.1.2 Experiment

The experimental set up used to generate the non-separable state and to study its properties

is shown in Fig. 3.2. We have used a diode pumped solid state green laser (Verdi 10) with

vertical polarization for our study. The laser beam passes through a half wave plate, whose

fast axis is oriented at −22.5o with the horizontal that changes beam polarization from

vertical to diagonal. Then it passes through a polarizing Sagnac interferometer containing a

spiral phase plate (SPP) to generate a light beam which is non-separable in polarization and

OAM.

Two orthogonally polarized (H and V) counter propagating Gaussian beams are converted
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Figure 3.2: Experimental setup for the generation and scattering of non-separable

state of polarization and OAM. HWP- half wave plate, QWP- quarter wave plate,

P- polarizer, L- lens with focal length 15 cm, CCD- charge coupled device (camera),

PM-power meter, PBS- polarizing beam splitter

into optical vortices of orders l (for H) and −l (for V) by the SPP designed for order |l| = 2.

These orthogonally polarized and oppositely charged vortices superpose at the same PBS

to form the described non-separable state. This non-separable state is generated only in

the presence of SPP otherwise two orthogonally polarized Gaussian beams will superpose

resulting in a diagonally polarized light beam. The doughnut shaped non-separable beam

forms a random speckle distribution after scattering through the ground glass. A part of the

scattered light collected with a lens of focal length 15 cm placed at a distance of 22 cm from

the ground glass plate. The ground glass plate is rotating at ≈ 930 revolutions per minute

to average out the speckles. We have measured the Stokes parameters using a quarter wave

plate and a polarizer. The power measurements for determining Stokes parameters were done

with an optical power meter (Thorlab) of sensitivity 1 nW. We have recorded the intensity

distributions corresponding to the different polarization projections with an Evolution VF

color cooled camera (pixel size 4.65µm) kept at the focus of the lens.
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Before scattering After scattering

State Stokes

Vectors

DOP Stokes

Vectors

DOP

Separable state s1 0.044 s1 0.056

(without SPP) s2 0.956 0.957 s2 0.922 0.924

s3 -0.02 s3 -0.026

Non-separable s1 -0.03 s1 0.01

state(with SPP) s2 -0.01 0.001 s2 -0.02 0.001

s3 0.02 s3 -0.02

Table 3.1: Stokes vectors and the degree of polarization corresponding to separable

and non-separable states of light before and after scattering.

3.1.3 Results and Discussion

We have measured the Stokes parameters (s0, s1, s2, s3) of coherent and scattered light beams

for both separable (without SPP) and non-separable states (with SPP). We compare the

degree of polarization of beams before and after scattering and the results are given in

table 3.1. From the table, it is clear that the separable light beam is completely polarized

(diagonal) while the non-separable state is completely unpolarized. The deviations in degree

of polarization may be due to uncertainties in the orientation of the wave plates and small

misalignment of the interferometer. However, our experimental findings are very close to

theoretical predictions.

We also generate non-maximally entangled states simply by controlling intensities in the

two arms of the interferometer. This can be easily done by rotating the fast axis of the HWP.

Then the state will be

|ψ〉 =
1√

I1 + I2

(√
I1|H〉|+ 2〉+

√
I2|V 〉| − 2〉

)
(3.9)

By varying I1 from 0 to I and correspondingly I2 from I to 0, we have generated different

states given in Eq. 3.9. Note that the total intensity, I1 + I2 = I is always constant. For the

state described in Eq. 3.9, we can check the mixedness of the subsystem (here polarization)

by calculating SL which also indicates the degree of non-separability. It reduces to a simple

analytic expression,
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Figure 3.3: Linear entropy vs. normalized intensity I1
I1+I2

plot for coherent and scat-

tered non-separable states of light along with theoretical curve given by Eq. 3.10.

SL =
4I1I2

(I1 + I2)2 . (3.10)

Line curve in Fig. 3.3 shows the variation of linear entropy SL of polarization with the

normalized intensity in one arm of the interferometer as given in Eq. 3.10. The linear entropy

becomes zero when for I1 = 0 or I2 = 0, for which the state become |H〉|l〉 and |V 〉| − l〉

respectively. When two intensities are same (I1 = I2), the state becomes completely non-

separable for which SL = 1.

We measure the Stokes parameters and calculate the degree of polarization and linear

entropy experimentally corresponding to each value of I1 for coherent and scattered light

beams. The results are shown in Fig. 3.3. One can clearly see that the SL vs. normalized

intensity curve for both the coherent and scattered light are matching well and in good

agreement with the theoretical curve. The results of polarization measurements given in

table 3.1 and Fig. 3.3 which confirm the preservation of non-separability in polarization and

OAM under scattering by the RGG.

Figure 3.4 shows the intensity distributions for a coherent and a scattered light beam

with non-separable state projected to the different polarizations. Our results show the similar

behavior for both coherent and scattered light beams and are in good agreement with the

theoretical images shown in Fig. 3.1 that confirm the preservation of non-separability.

We also observe that the amount of scattered light collected by the lens is irrelevant

regarding the non-separable properties. In fact, one can use multiple number of lenses and

collimate again to form several copies of a partially coherent non-separable beam. This
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Figure 3.4: Experimental images of coherent and scattered non-separable states of light

with l = 2 for different polarization projections. OAM states corresponding to each

intensity distribution are also given.

property can be used in public communication systems.

3.2 Polarization Controlled Generation of Partially

Coherent OAM States

There are a number of studies dealing with partially coherent vortex beams for the identifica-

tion of charge [132], propagation [133] and spatial correlation studies [134]. Thus, generation

of an arbitrary super position of partially coherent OAM beams is of high importance. We

have already shown in the previous section that, one can revive the non-separable beam after

the scattering by collection it using a lens. This can be used to generate arbitrary partially

coherent OAM states too. One can project the regenerated partially coherent non-separable

states for different polarization giving different OAM states. One can see the states in Fig.

3.4 as the scattered beam represent the partially coherent ones. The temporal coherence

can be decreased of increased by increasing or decreasing the speed of the RGG. The spatial
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coherence can be increased by introducing a lens before the scattering plate and focusing to

a tighter spot.

3.3 Conclusion

We have produced a light beam with non-separable polarization and orbital angular mo-

mentum states using a simple interferometer and experimentally verified the preservation of

non-separability under scattering through a rotating ground glass. The polarization measure-

ments and the images of the beam projected to different polarizations show the presence of

non-separability for coherent and scattered light. We have also demonstrated the generation

of non-maximally non-separable states of light and studied their behaviour under scattering

by measuring the degree of polarization. This recovered partially coherent non-separable

states can be used to generate arbitrary superposition states of OAM by polarization selec-

tion. Our results can have application in public broadcasting systems.





Chapter 4

Quantum Information With Even and

Odd Orbital Angular Momentum States

of Light

In the previous chapters we have studied the properties of OAM-polarization non-separability

for classical laser beams. In this chapter we describe the quantum states of OAM and

its applications. We use OAM and polarization entanglement for implementing different

quantum protocols. Here we give a brief introduction for quantum protocols with OAM

and polarization states and give a rationale behind the intention of using even/odd states of

OAM.

Quantum information protocols mainly rely on the fact that particle can be in a complex

superposition of states. Polarization state of photons is used extensively to implement many

quantum protocols. The polarization of a photon spans in a two dimensional Hilbert space.

So the polarization state of a photon is considered as a qubit. Also, one can generate photons

entangled in polarization using spontaneous parametric down conversion (SPDC) of a laser

beam. All four maximally entangled states, Bell states, can be achieved in the polarization

degree of freedom (DOF).

Orbital angular momentum (OAM) is another degree of freedom of photon that can

be used in quantum protocols along with polarization so that the information carried per

photon can be increased [36]. OAM entanglement can also be achieved by SPDC and many

quantum protocols were demonstrated using the same [49–56]. The basis states of OAM

span an infinite dimensional Hilbert space. This higher dimensionality is really useful for the

denser coding of information in single photons [135]. One can achieve OAM entanglement in

53
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higher dimensions which can be used for many quantum protocols. However, we often need to

use two dimensional OAM states for the ease of measurements. Also for many protocols using

hybrid-entanglement, entanglement between polarization and OAM of photons, we need the

2 dimensional OAM sub-space[64, 65].

Experimentally the restriction of OAM states to 2D is done by post selection using

diffractive holograms and a single mode fibre [49]. This results in the loss of photons which

reduces efficiency of the protocol. We investigate the possibility of using a 2D OAM space

without any photon loss. This is possible since any infinite set of integers can be grouped into

two natural categories: even and odd. In the case of OAM, this becomes possible because

of an effective even/odd OAM sorter, an optical set up designed to separate even and odd

states of OAM. However, the even/odd states of OAM have not been extensively explored

for quantum information tasks. For that, we need to develop projective measurement in

even/odd basis. We propose simple interferometric method for the projective measurements.

We demonstrate the tomography of the even/odd states with projective measurement

in Pauli’s operator bases. We also describe hyper-entanglement and hybrid-entanglement

with polarization as another DOF and propose interferometric set up for the spin orbit Bell

state analysis (SOBA). Measurements for checking the Bell’s inequality in even/odd OAM

entanglement is discussed for the first time. This can be applied in entanglement based

cryptographic protocol. It is theoretically impossible to distinguish all Bell states using local

operations and classical communications (LOCC) [136]. However, with hyper-entanglement

and SOBA, one can distinguish all the Bell states of polarization using LOCC. Using the

same, we describe efficient super dense coding.

4.1 From Infinite Dimensional OAM Space to Two

Dimensional Even/odd OAM Space

The general infinite dimensional OAM space is spanned by the OAM values from −∞, .. −

1, 0,+1, ...+∞. A general state in this infinite dimensional basis can be written as

|ψ〉 =

+∞∑
m=−∞

cm|m〉 (4.1)

with
∑+∞

m=−∞ |cm|2 = 1. However, many quantum experiments were realized using the OAM

qubits in the reduced Hilbert space {m,−m}. In such cases OAM encoding or measurements

were performed using diffraction through holograms and the mode filtering. Basically here
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one neglects the photons generated with OAM l 6= m,−m which result in photon loss.

Moreover, the efficiency of mode filtering is also a limiting factor for quantum experiments

with OAM. Thus to make an equivalent qubit state, Eq. 4.1 can be re written as

|ψ〉 =
∑
k

(c2k|2k〉+ c2k+1|2k + 1〉) . (4.2)

We define the appropriate operators in order to perform the measurements in the even/odd

basis. The general projection operator is

P (θ, φ) =
∑
k

(
cos(θ)|2k〉+ eiφsin(θ)|2k + 1〉

)(
cos(θ)〈2k|+ e−iφsin(θ)〈2k + 1|

)
. (4.3)

With these projective measurements we can consider the whole OAM state as a qubit state

and use for quantum protocols.

In the case of OAM entanglement, when we work with {m,−m} basis, photons corre-

sponding to other modes are lost in the measurement. For example, when we pump a non-

linear crystal for SPDC using a Gaussian beam, the signal and idler photons are entangled

in OAM. The two photon state is given as

|Ψ〉12 = c0|0〉|0〉+
+∞∑
m=1

cm (|m〉| −m〉+ | −m〉|m〉) (4.4)

with
∑+∞

m=0 |cm|2 = 1 In many of the OAM entanglement experiments, this state is projected

in {+1,−1} basis for treating it as a two qubit entangled state. In such cases, the probability

of getting photons entangled in {+1,−1} OAM states is |c1|2 � 1. Thus most of the down

converted photons remain unused.

For even/odd OAM entanglement, we consider the parametric down conversion of an

optical vortex of order 1 and having vertical polarization in a type I second order non-linear

crystal. The state corresponding to the pair of photons produced by SPDC of this beam is

given by

|Ψ〉12 =

+∞∑
m=−∞

cm|m〉1|1−m〉2 ⊗ |H〉1|H〉2 (4.5)

By grouping all even and odd OAM states, one can rewrite the expression for the OAM state

in Eq. 4.5 as

+∞∑
m=−∞

cm(|m〉1|1−m〉2) =
+∞∑

k=−∞
c2k(|2k〉1|1− 2k〉2) +

+∞∑
k=−∞

c1−2k(|1− 2k〉1|2k〉2).

Thus

|Ψ〉12 =

(
+∞∑

k=−∞
c2k(|2k〉1|1− 2k〉2) +

+∞∑
k=−∞

c1−2k(|1− 2k〉1|2k〉2)

)
⊗ |H〉1|H〉2 (4.6)
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From the conservation of OAM, we have

+∞∑
k=−∞

(c2k)
2 =

+∞∑
k=−∞

(c1−2k)
2 =

1

2

+∞∑
m=−∞

(cm)2 =
1

2
. (4.7)

Thus one can arrive at an operational expression for even/odd OAM entanglement as

|Ψ〉12 =
1√
2

(|E〉1|O〉2 + |O〉1|E〉2)⊗ |H〉1|H〉2. (4.8)

Here |E〉 and |O〉 correspond to the even/odd states on detection. Thus, we get a two qubit

entanglement in OAM without loosing any photons.

4.2 State tomography for OAM states in even/odd

basis

Similar to polarization, we need to find the Stokes vector for the super position state given

in Eq. 4.2 by projective operators which are

P0 =
∑
k

(|2k〉〈2k|+ |2k + 1〉〈2k + 1|)

P1 =
∑
k

(|2k〉〈2k| − |2k + 1〉〈2k + 1|)

P2 =
∑
k

(|2k〉〈2k + 1|+ |2k + 1〉〈2k|)

P3 =
∑
k

i(|2k〉〈2k + 1| − |2k + 1〉〈2k|)

(4.9)

Now, we define the Stokes parameters as

s0 = 〈ψ|P0|ψ〉 ≡
∑
k

(
c2kc

∗
2k + c2k+1c

∗
2k+1

)
s1 = 〈ψ|P1|ψ〉 ≡

∑
k

(
c2kc

∗
2k − c2k+1c

∗
2k+1

)
s2 = 〈ψ|P2|ψ〉 ≡

∑
k

(
c∗2kc2k+1 + c2kc

∗
2k+1

)
s3 = 〈ψ|P3|ψ〉 ≡ i

∑
k

(
c∗2kc2k+1 − c2kc

∗
2k+1

)
(4.10)

4.2.1 Measurements in Linear Even/odd Basis for s0 and s1

We consider an OAM sorter for the measurement of s0 and s1. The setup is given in Fig. 4.1

Consider a general even/odd OAM superposition state given in Eq. 4.2. Applying beam split-

ter operation, the state evolves through two arms of the interferometer with a π
2 phase. In the
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2I

1I

Figure 4.1: Even/odd OAM sorter

reflected arm, a dove prism is inserted which is rotated by an angle α
2 . The dove prism angle

can be calibrated using an Hermite Gaussian beamHG01 passing through it, as the rotation of

the dove prism will result in rotation of the two lobes. Dove prism introduces an OAM depen-

dent phase exp(imα), where m correspond to OAM state |m〉. When α = π, the even states

will acquire a phase of exp(i2kπ) which leaves the state unchanged. However, odd states ac-

quire a phase of exp(i(2k+1)π) which brings a negative sign to all odd states. Thus the state

|ψ2〉 = i√
2

∑
k

(c2k|2k〉+ c2k+1|2k + 1〉) transforms to |ψ2〉′ = i√
2

∑
k

(c2k|2k〉 − c2k+1|2k + 1〉).

The state |ψ1〉 = 1√
2

∑
k

(c2k|2k〉+ c2k+1|2k + 1〉) of the other arm remains unchanged since

the dove prism angle is 0◦. These states combines at the second beam splitter. The phase

due to reflections on both the beams are same and therefore neglected in the calculation.

One port of the second beam splitter gives

|ψ3〉 =
i

2

∑
k

(c2k|2k〉 − c2k+1|2k + 1〉) +
i

2

∑
k

(c2k|2k〉+ c2k+1|2k + 1〉) = i
∑
k

c2k|2k〉

(4.11)

Thus the detection (refer Fig. 4.1) yields

I1 =
∑
k

|c2k|2 (4.12)

Similarly the other port gives

|ψ4〉 =
1

2

∑
k

(−c2k|2k〉+ c2k+1|2k + 1〉) +
1

2

∑
k

(c2k|2k〉+ c2k+1|2k + 1〉)

=
∑
k

c2k+1|2k + 1〉
(4.13)

which gives I2 =
∑
k

|c2k+1|2 on detection (refer Fig. 4.1) . Thus we can calculate the stokes

parameters s0 = I1 + I2 and s1 = I1 − I2 from this setup.
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4.2.2 Measurements in Diagonal Basis for the Estimation of

s2

For measuring s2, a modified Mach-Zhender interferometer is introduced which contains a spi-

ral phase plate in one arm and the first beam splitter is replaced by an OAM sorter. The setup

is given in Fig. 4.2. As described earlier, a general OAM state
∑
k

(c2k|2k〉+ c2k+1|2k + 1〉)

is split into i
∑
k

c2k|2k〉 and
∑
k

c2k+1|2k + 1〉 in both ports. A spiral phase plate (SPP) of

order m = ±1 is introduced in one arm of the interferometer. This will act as a ladder

operator in {..| −m〉.., | − 1〉, |0〉, |1〉, .., |m〉} basis. However in the even/odd basis, SPP with

m = ±1 works as NOT gate. So the state
∑
k

c2k+1|2k+ 1〉 will convert to
∑
k

c2k+1|2k〉 . This

is combined with state i
∑
k

c2k|2k〉 on another 50:50 beam splitter. One port of the beam

splitter yields the state

S

2I

1I

SPP

Figure 4.2: Setup for measuring stoke’s parameter s2

|ψ3〉 =
1√
2

∑
k

(c2k+1 − c2k) |2k〉 (4.14)
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On detection (refer Fig. 4.2) it gives

I1 = | 1√
2

∑
k

(c2k+1 − c2k) |2k〉|2

=
1

2

(∑
l

(
c∗2l+1 − c∗2l

)
〈2l|

)
.

(∑
k

(c2k+1 − c2k) |2k〉

)

=
1

2

∑
k,l

(
c∗2l+1 − c∗2l

)
(c2k+1 − c2k) 〈2l|2k〉

=
1

2

∑
k

(
c∗2k+1 − c∗2k

)
(c2k+1 − c2k)

I1 =
1

2

∑
k

(c∗2k+1c2k+1 − c∗2kc2k+1 − c2kc
∗
2k+1 + c∗2kc2k) (4.15)

Similarly the other port of the BS (refer Fig. 4.2) gives

|ψ4〉 =
i√
2

∑
k

(c2k+1 + c2k) |2k〉 (4.16)

which gives

I2 =
1

2

∑
k

(c∗2k+1c2k+1 + c∗2kc2k+1 + c2kc
∗
2k+1 + c∗2kc2k) (4.17)

Thus we obtain Stokes parameter s2 by simply subtracting the intensities as

I2 − I1 =
∑
k

(c2kc
∗
2k+1 + c∗2kc2k+1) = s2. (4.18)

4.2.3 Measurement in Circular Basis for the Estimation of s3

For the measurement of s3, an extra phase delay of exp(iπ/2) is inserted after the spiral

phase plate as shown in Fig. 4.3. Thus the states combining at the BS are ic2|E〉 and ic1|E〉.

In this case one port of the BS (refer Fig. 4.3) gives

|ψ3| =
1√
2

∑
k

(ic2k+1 − c2k) |2k〉 (4.19)

so that

I1 =
1

2

∑
k

(c∗2k+1c2k+1 − ic∗2kc2k+1 + ic2kc
∗
2k+1 + c∗2kc2k) (4.20)

The other port of the BS (refer Fig. 4.3) gives

|ψ4〉 =
1√
2

∑
k

(ic2k − c2k+1) |2k〉 (4.21)

which gives

I2 =
1

2

∑
k

(c∗2k+1c2k+1 + ic∗2kc2k+1 − ic2kc
∗
2k+1 + c∗2kc2k) (4.22)
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Figure 4.3: Setup for measuring stoke’s parameter s3. PD - phase delay

To obtain s3 the intensities are subtracted as

I2 − I1 = i
∑
k

(c2kc
∗
2k+1 − c∗2kc2k+1) = s3. (4.23)

Thus, once can do the complete state tomography in even/odd OAM states.

4.2.4 General Linear Basis Projection

A general linear projection is essential for the measurement of Bell’s inequality and quantum

cryptography. The general linear projections are given as

Pθ =
∑
k

(cos2(θ)|2k〉〈2k|+ sin(θ)cos(θ)|2k〉〈2k + 1|+

sin(θ)cos(θ)|2k + 1〉〈2k|+ sin2(θ)|2k + 1〉〈2k + 1|) (4.24)

Pθ⊥ =
∑
k

(cos2(θ)|2k〉〈2k| − sin(θ)cos(θ)|2k〉〈2k + 1|−

sin(θ)cos(θ)|2k + 1〉〈2k|+ sin2(θ)|2k + 1〉〈2k + 1|) (4.25)

These operators acting on |ψ〉 will give

C(θ) = 〈ψ|Pθ|ψ〉 =
∑
k

|(cos(θ)c2k + sin(θ)c2k+1)|2 (4.26)

C(θ⊥) = 〈ψ|Pθ⊥ |ψ〉 =
∑
k

|(sin(θ)c2k − cos(θ)c2k+1)|2 (4.27)

Consider the setup given in Fig. 4.2. In the case of measurement of s2 we used a 50:50 beam

splitter. Now consider a beam splitter with transmission coefficient cos(θ) and reflection
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coefficient sin(θ) instead of 50:50 beam splitter. Thus the states after the beam splitter

becomes,

ψ4 =
∑
k

(cos(θ)c2k + sin(θ)c2k+1)|2k〉 (4.28)

ψ5 = i
∑
k

(sin(θ)c2k − cos(θ)c2k+1|2k〉 (4.29)

On detection, we get

I1 =
∑
k

|(cos(θ)c2k + sin(θ)c2k+1)|2 (4.30)

I2 =
∑
k

|(sin(θ)c2k − cos(θ)c2k+1)|2 (4.31)

Thus we achieve the general linear projections on a given state.

Alternatively, one can also implement the same measurement with polarization as an

additional degree of freedom. We consider the initial photons with OAM state ψ1 as hor-

izontally polarized. In both arms of the interferometer, a half wave plates at angle θ/2 is

introduced which will convert the horizontal polarization to any other linear polarization

along θ̂. The beam splitter is replaced by a polarizing beam splitter. It will transmit hori-

zontal polarization and reflect vertical polarization. Thus by changing the HWP’s angle (θ/2)

we can tune the transmission and reflection function as sin(θ) and cos(θ). The polarization

assisted projection is easy to implement. However, when we consider OAM and polarization

together for quantum protocols, for example hyper-entanglement, this cannot be used since

the polarization operations affect the entanglement.

4.3 Polarizing Sagnac Interferometer for Even/odd

OAM Sorting

Here, for even/odd OAM sorting, we give an alternative measurement technique using po-

larization as an additional degree of freedom. We use polarizing Sagnac ineterferometer

containing a dove prism at an angle π/4 . Since we use a common path interferometer, the

OAM sorter is more stable and robust against small misalignments. The experimental setup

is given in Fig.4.4. We start with an OAM state with horizontal polarization.

|ψ〉|H〉 =
∑
k

(c2k|2k〉+ c2k+1|2k + 1〉) |H〉 (4.32)

This state passes through a half wave plate oriented at π/8 which will convert horizontal

polarization to diagonal (|ψ〉|H〉 → |ψ〉|D〉). A polarizing beam splitter splits the beam
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Figure 4.4: Setup for polarization assisted even/odd OAM sorter

into two paths where each of them will be orthogonally polarized. In one arm, the horizontal

polarization component passes through a dove prism oriented at an angle π/4. In this case all

the individual OAM states will acquire a phase of eikπ/2, where k is the integer corresponding

to OAM state |m〉 and the state is given as

|ψ′〉|H〉 =
∑
k

(
ei2kπ/2c2k|2k〉+ ei(2k+1)π/2c2k+1|2k + 1〉

)
|H〉 (4.33)

In the other arm with vertical polarization, on passing through the dove prism in the opposite

direction, the OAM state will acquire a phase of e−imπ/2 and the state is denoted as

|ψ′′〉|V 〉 = i
∑
k

(
e−i2kπ/2c2k|2k〉+ e−i(2k+1)π/2c2k+1|2k + 1〉

)
|V 〉. (4.34)

Both the beams superpose at the same PBS and the state becomes

|ψ〉NS =
1√
2

(
|ψ′〉|H〉 − |ψ′′〉|V 〉

)
(4.35)

Writing this in diagonal basis by transforming |H〉 = 1√
2

(|D〉+ |A〉) and |V 〉 = 1√
2

(|D〉 − |A〉),

we get

|ψ〉NS =
1√
2

(
(|ψ′〉 − |ψ′′〉)√

2
|D〉+

(|ψ′〉+ |ψ′′〉)√
2

|A〉
)

(4.36)

The relative phase between even states of |ψ′〉 and |ψ′′〉 is e−i2kπ = 1 for all integer k.

Similarly the relative states between the odd states of |ψ′〉 and |ψ′′〉 is e−i(2k+1)π = −1. We
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calculate

|ψ′〉 − |ψ′′〉 =
∑
k

(
ei2kπ/2c2k|2k〉+ ei(2k+1)π/2c2k+1|2k + 1〉

)
−

∑
k

(
e−i2kπ/2c2k|2k〉+ e−i(2k+1)π/2c2k+1|2k + 1〉

)
=

∑
k

ei2kπ/2
(
c2k − e−i2kπc2k)

)
|2k〉+

∑
k

ei(2k+1)π/2
(
c2k+1 − e−i(2k+1)πc2k+1

)
|2k + 1〉

= 2
∑
k

i2k+1c2k+1|2k + 1〉. (4.37)

Similarly

|ψ′〉+ |ψ′′〉 = 2
∑
k

c2k|2k〉. (4.38)

Thus Results

chithrabhanu@prl.res.in

Even port Odd portInput order

0

1

2

3

Figure 4.5: Images corresponding to the even and odd ports of the OAM sorter with

the individual OAM states as input

|ψ〉NS =
∑
k

i2k+1c2k+1|2k + 1〉|D〉+
∑
k

c2k|2k〉|A〉 (4.39)

This is a non separable state of polarization and OAM. This state passing through a half

wave plate oriented at an angle of π/8 will convert into

|ψ〉NS =
∑
k

i2k+1c2k+1|2k + 1〉|H〉+
∑
k

c2k|2k〉|V 〉 (4.40)

This state, when passing through a PBS will decompose to the states
∑
k

c2k|2k〉 at one port

and
∑
k

i2k+1c2k+1|2k + 1〉 on the other. We demonstrate the OAM sorting experimentally
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Figure 4.6: Images corresponding to the even and odd ports of the OAM sorter along

with the input port images. Here input state is a superposition state of different OAM

values.

with the setup given in Fig. 4.4. Separation of individual even-odd OAM states are given in

Fig. 4.5. Here we have sent the different orders to the sorter and imaged the beams coming

out of each ports using a CCD camera.

Now we introduce superposition states to the OAM sorter. We use the states |1〉 + | −

1〉+ |2〉+ | − 2〉 and |3〉+ | − 3〉+ |2〉+ | − 2〉 in the input port. The even port yield the state

|2〉 + | − 2〉 in both case wile odd port gives states |1〉 + | − 1〉 and |3〉 + | − 3〉 respectively.

The input and output ports’ images are given in Fig. 4.6

4.4 Hyper-entanglement, hybrid entanglement and

SOBA

Along with the OAM entanglement in even/odd states one can have polarization entangle-

ment between the two photons. For this, one needs to use a cascaded type I non linear

crystals with optics axis perpendicular to each other for the parametric down conversion of

a light beam of azimuthal index 1. The generated state will be

|ψ〉12 =
1

2
(|H〉1|H〉2 + |V 〉1|V 〉2)⊗ (|E〉1|O〉2 + |O〉1|E〉2) (4.41)
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Figure 4.7: Modified OAM controlled polarization CNOT gate.

This state has many applications including hyper entangled assisted Bell state analysis

(HBSA) and super dense coding. Note that in hyper-entanglement, the polarization and

OAM states are always separable. In other words, there is no entanglement between polar-

ization and OAM.

Hybrid entanglement, as the name suggests, is the entanglement between two independent

properties of light. The state of a single particle or two particles in two degrees of freedom are

non-separable in the case of hybrid entanglement. In the biphoton systems, the polarization

of one photon and orbital angular momentum of other, can be made non-separable. To

generate this state, we consider two photons entangled in OAM even/odd states but separable

in polarization, Eq. 4.8. We consider a modified OAM controlled polarization CNOT gate

(oCp) [137] with an extra spiral phase plate as given in Fig. 4.7. This CNOT gate will do

a NOT operation on both control and target. This modified oCp is introduced to the first

photon of the state, given in Eq. 4.5. Thus the two photon state will become

|ψ〉HE =
1√
2

(|H〉1|O〉2 + |V 〉1|E〉2) |E〉1|H〉2 (4.42)

This is an interesting case, since there is no OAM-OAM entanglement or polarization polar-

ization entanglement between the photons. However, the polarization state of photon 1 and

OAM state of photon 2 are non-separable. With this state one can steer the OAM state of

photon 2 by polarization measurements in photon 1.

Single photon non-separable state also considered as a hybrid entangled state is the one in

which the OAM and polarization of a single photon are inseparable. However, this won’t give

rise to any non-local effects and hence there are objections to call such states as entangled.

We consider the state given in Eq. 4.5 where state is post selected to state |O〉2|H〉2

|ψ〉′1 = |E〉1|H〉1. (4.43)
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Here |ψ〉′ corresponds to the state of photon 1 upon the post selection of photon 2 to the

state |O〉2|H〉2. Now, we apply a Hadamard operation in polarization using a half wave plate

at 22.5◦ and a polarization controlled OAM CNOT gate pCo, we obtain

|ψ〉′1 =
1√
2

(|E〉1|H〉1 + |O〉1|V 〉1) . (4.44)

Here the polarization and OAM of a single photon are non-separable. One can construct a

complete Bell basis as

ψ+ =
1√
2

(|E〉1|H〉1 + |O〉1|V 〉1)

ψ− =
1√
2

(|E〉1|H〉1 − |O〉1|V 〉1)

φ+ =
1√
2

(|O〉1|H〉1 + |E〉1|V 〉1)

φ− =
1√
2

(|O〉1|H〉1 − |E〉1|V 〉1)

(4.45)

A spin orbit Bell state analyser (SOBA) is a set up which distinguishes all the single photon

spin orbit Bell states given above. Fig. 4.8 describes the proposed setup for the SOBA.

Consider the above four Bell states as inputs of the SOBA set up. Initially an even/odd

sorter sorts according to the OAM state. Lets first consider |ψ±〉 as the input states. The

port 1 & 2 will be

port 1→ ± 1√
2
|O〉1|V 〉1, port 2→ i√

2
|E〉1|H〉1 (4.46)

A half wave plate is introduced in port 2 which will convert |H〉1 to |V 〉1 which will be the

input of PBS 2. The PBS 2 will reflect the state since it is vertically polarized. In the

reflected port a spiral phase plate of order 1 is introduced which will convert |E〉1 to |O〉1.

At the same time, PBS 1 reflects the state in port 1. Thus at input ports 3 and 4 of the BS

1 we get

port 3→ i√
2
|O〉1|V 〉1

port 4→ ∓ 1√
2
|O〉1|V 〉1

(4.47)

Two output ports of the BS 1 gives

ψa = −1

2
(|O〉1|V 〉1 ± |O〉1|V 〉1)

ψb = i
1

2
(|O〉1|V 〉1 ∓ |O〉1|V 〉1)

(4.48)

So |ψ+〉 will go to detector D1 and |ψ−〉 will go to detector D2.

Now if the input states are |φ±〉 ports 1 and 2 will have states

port 1→ 1√
2
|O〉1|H〉1port 2→ ± i√

2
|E〉1|V 〉1 (4.49)
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Figure 4.8: Set up for spin orbit Bell state analysis

In port 2 after the HWP the polarization will convert to |H〉1, and in both ports the state

will be transmitted by the PBS1 and PBS2. In port 2, after PBS2, a SPP is inserted. Hence

at the input ports 5 and 6 of the BS 2 the states will be

port 5→ ± i√
2
|E〉1|H〉1

port 6→ 1√
2
|E〉1|H〉1

(4.50)

Now two output ports of the BS 2 gives

ψc = −1

2
(|E〉1|H〉1 ∓ |E〉1|H〉1)

ψd =
1

2
(|E〉1|H〉1 ± |E〉1|H〉1)

(4.51)

So |φ−〉 will go to detector D3 and |φ+〉 will go to detector D4. Hence we can have complete

deterministic unambiguous Bell state analysis.

4.5 Quantum Information Protocols Using Even/odd

OAM States

Our final aim is to implement quantum information protocols using even/odd state of OAM.

This could increase the efficiency of quantum communication with photons since we can have

a high bright source of OAM entanglement equivalent to the polarization entanglement. We

show that the even/odd entangled states violate Bell’s inequality which has direct application

in Ekert protocol. With hyper-entanglement we show it can be used in super densecoding.
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4.5.1 Violation of Bell’s Inequality and Ekert Protocol

As explained in section 4.2.4, one can do projections to general linear states. Now consider

a two photon state entangled in even/odd OAM state produced by the parametric down

conversion of an optical vortex of order one [138]. The state is given as

|Ψ〉12 =
1√
2

(|E〉1|O〉2 + |O〉1|E〉2) . (4.52)

Consider the photon 1 with Alice and photon 2 with Bob. Alice does Pθ and Pθ⊥ mea-

surements on her photon and Bob does Pχ and Pχ⊥ measurements on his photon. Eq. 4.24

and 4.25 describes |θ〉, |θ⊥〉 and |χ〉, |χ⊥〉 with replacing θ by χ. The measurement is given in

section 4.2.4, θ and χ correspond to sin−1(t) where t is the transmissivity of the beam split-

ter. In the case of polarization assisted projection as given in Fig. 4.4, θ and χ correspond

to twice of the angle of the HWP . The schematic of this experiment is given in Fig. 4.9

Instead of intensity/photon counting output, which is described in 4.2.4, here we consider

the coincidence between Alice’s and Bob’s detectors.

θP

D1

D2

D3

D4

θP


P


P

M1

M2

Figure 4.9: Setup for checking Bell’s inequality and quantum cryptography. M1 and

M2 are two measurements explained in Section 4.2.4 with angles θ and χ respectively.

Coincidence between D1 and D3 will give the measurement result 12〈Ψ|Pθ ⊗ Pχ|Ψ〉12,

where Pθ and Pχ are defined by Eq. 4.25 with angle θ and χ that act on photon 1 and 2

respectively.

D13 = c(θ, χ) = 12〈Ψ|Pθ ⊗ Pχ|Ψ〉12 (4.53)
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Similarly

D14 =c(θ, χ⊥) =12 〈Ψ|Pθ ⊗ Pχ⊥ |Ψ〉12 (4.54)

D23 =c(θ⊥, χ) =12 〈Ψ|Pθ⊥ ⊗ Pχ|Ψ〉12 (4.55)

D23 =c(θ⊥, χ⊥) =12 〈Ψ|Pθ⊥ ⊗ Pχ⊥ |Ψ〉12 (4.56)

The operator is defined as

Pθ ⊗ Pχ ≡
∑
k

(cos2(θ)|2k〉〈2k|+ sin(θ)cos(θ)|2k〉〈1− 2k|+

sin(θ)cos(θ)|1− 2k〉〈2k|+ sin2(θ)|1− 2k〉〈1− 2k|)⊗∑
l

(cos2(χ)|2l〉〈2l|+ sin(χ)cos(χ)|2l〉〈1− 2l|+

sin(χ)cos(χ)|1− 2l〉〈2l|+ sin2(χ)|1− 2l〉〈1− 2l|) (4.57)

Operating this on Eq. 4.6

12〈Ψ|Pθ ⊗ Pχ|ψ〉12 =
1

2

(
+∞∑

m=−∞
c∗2m(1〈2m|2〈1− 2m|) +

+∞∑
m=−∞

c∗1−2m(1〈1− 2m|2〈2m|)

)

Pθ ⊗ Pχ

(
+∞∑

n=−∞
c2n(|2n〉1|1− 2n〉2) +

+∞∑
n=−∞

c1−2n(|1− 2n〉1|2n〉2)

)
(4.58)

gives

C(θ, χ) =

+∞∑
m,n,k,l=−∞

[
cos2(θ)sin2(χ)c∗2mc1−2n〈2m|2k〉〈2k|2n〉〈1− 2m|1− 2l〉

〈1− 2l|1− 2n〉+ cos(θ)sin(θ)cos(χ)sin(χ)c∗2mc2n〈2m|2k〉

〈1− 2k|1− 2n〉〈1− 2m|1− 2l〉〈2l|2n〉+ cos(θ)sin(θ)

cos(χ)sin(χ)c∗1−2mc2n〈1− 2m|1− 2k〉〈2k|2n〉〈2m|2l〉

〈1− 2l|1− 2n〉+ c∗1−2mc1−2nsin2(θ)cos2(χ)〈1− 2m|1− 2k〉

〈1− 2k|1− 2n〉〈2m|2l〉〈2l|2n〉
]

(4.59)

Now using the inner product

C(θ, χ) =
+∞∑

k=−∞

[
c∗2kc1−2kcos2(θ)sin2(χ)+

cos(θ)sin(θ)cos(χ)sin(χ)(c∗2kc2k + c∗1−2kc2k)+

c∗1−2kc1−2ksin
2(θ)cos2(χ)

] (4.60)
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With Eq.4.7 we can argue that |c2k| = |c1−2k|. Also we consider there is no phase between

the states |2k〉1|1− 2k〉2 and |1− 2k〉1|2k〉2. Thus the joint probability reduces to

C(θ, χ) =

+∞∑
k=−∞

|c2k|2[cos2(θ)sin2(χ) + 2cos(θ)sin(θ)cos(χ)sin(χ) + sin2(θ)cos2(χ)]

=cos2(θ − χ). (4.61)

We can have a parameter

E(θ, χ) =
C(θ, χ) + C(θ⊥, χ⊥)− C(θ⊥, χ)− C(θ, χ⊥)

C(θ, χ) + C(θ⊥, χ⊥) + C(θ⊥, χ) + C(θ, χ⊥)
(4.62)

and the Bell’s inequality can be calculated as

B(θ, θ′, χ, χ′) = |E(θ, χ)− E(θ, χ′) + E(θ′, χ) + E(θ′, χ′)| ≤ 2 (4.63)

With θ = 0◦, χ = 22.5◦ in Eq. 4.61 give a maximum Bell’s inequality violation of 2
√

2.

One can check the Bell inequality for a two photon state in even/odd OAM basis with the

setup given in Fig. 4.4. Thus Ekert protocol [10] can be implemented by choosing proper

measurement settings.

4.5.2 Superdense coding

In super dense coding, Alice and Bob share entangled pair of photons. Alice encodes two bits

of classical information by applying unitary operation on her entangled photon changing the

combined state from one Bell state to another. Thus, by acting on one particle she can encode

2 bits of information. Alice sends her entangled particle to Bob and he does a complete Bell

state analysis on both the photons, which discriminate all the Bell states. But, the efficiency

of the experimental Bell state analysis is very low. In polarization entanglement, all the Bell

states has not been distinguished efficiently and deterministically. At the same time if we

use entanglement in another degree of freedom, one can distinguish all the Bell states. This

is known as hyper-entanglement assisted Bell state analysis (HBSA).

We describe hyper-entanglement assisted super dense coding protocol with even/odd

OAM entanglement. Consider a two photon state which is entangled both in polarization

and OAM.

|Ψ〉12 = |βp〉 ⊗ |Ψo〉 (4.64)

where |βp〉 is one of the polarization Bell states and

|Ψo〉 =

+∞∑
k=−∞

ck(|2k〉1|1− 2k〉2 + |2k + 1〉1| − 2k〉2)

≡ 1√
2

(|E〉1|O〉2 + |O〉1|E〉2)

(4.65)
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Alice encodes her two bits of information in the polarization Bell states. The final states will

be

|Ψp〉± ⊗ |Ψo〉 =
1

2
(|H〉1|V 〉2 ± |V 〉1|H〉2)⊗ (|E〉1|O〉2 + |O〉1|E〉2) ,

|Φp〉± ⊗ |Ψo〉 =
1

2
(|H〉1|H〉2 ± |V 〉1|V 〉2)⊗ (|E〉1|O〉2 + |O〉1|E〉2) .

(4.66)

Expanding

|Ψp〉± ⊗ |Ψo〉 =
1

2
(|H〉1|E〉1|V 〉2|O〉2 + |H〉1|O〉1|V 〉2|E〉2±

|V 〉1|E〉1|H〉2|O〉2 ± |V 〉1|O〉1|H〉2|E〉2) (4.67)

|Φp〉± ⊗ |Ψo〉 =
1

2
(|H〉1|E〉1|H〉2|O〉2 + |H〉1|O〉1|H〉2|E〉2±

|V 〉1|E〉1|V 〉2|O〉2 ± |V 〉1|O〉1|V 〉2|E〉2) (4.68)

Single particle two qubit Bell states are defined as

ψ± =
1√
2

(|H〉|E〉 ± |V 〉|O〉) ,

φ± =
1√
2

(|H〉|O〉 ± |V 〉|E〉) .
(4.69)

Using Eq.4.69 in Eq.4.67 and Eq.4.68 we get

|Ψp〉± ⊗ |Ψo〉 =
1

4
((ψ+

1 + ψ−1 )(ψ+
2 − ψ

−
2 ) + (φ+

1 + φ−1 )(φ+
2 − φ

−
2 )±

(φ+
1 − φ

−
1 )(φ+

2 + φ−2 )± (ψ+
1 − ψ

−
1 )(ψ+

2 + ψ−2 )) (4.70)

|Φp〉± ⊗ |Ψo〉 =
1

2
((ψ+

1 + ψ−1 )(φ+
2 + φ−2 ) + (φ+

1 + φ−1 )(ψ+
2 + ψ−2 )±

(φ+
1 − φ

−
1 )(ψ+

2 − ψ
−
2 )± (ψ+

1 − ψ
−
1 )(φ+

2 − φ
−
2 )) (4.71)

giving

|Ψp〉+ ⊗ |Ψo〉 =
1

2
(ψ+

1 ψ
+
2 − ψ

−
1 ψ
−
2 + φ+

1 φ
+
2 − φ

−
1 φ
−
2 )

|Ψp〉− ⊗ |Ψo〉 =
1

2
(ψ−1 ψ

+
2 − ψ

+
1 ψ
−
2 + φ−1 φ

+
2 − φ

+
1 φ
−
2 )

|Φp〉+ ⊗ |Ψo〉 =
1

2
(ψ+

1 φ
+
2 − ψ

−
1 φ
−
2 + φ+

1 ψ
+
2 − φ

−
1 ψ
−
2 )

|Φp〉− ⊗ |Ψo〉 =
1

2
(ψ−1 φ

+
2 − ψ

+
1 φ
−
2 + φ−1 ψ

+
2 − φ

+
1 ψ
−
2 )

(4.72)

The individual single photon spin-orbit Bell state can be distinguished using SOBA which

is given in Fig. 4.8. Thus one can achieve efficient dense coding using hyper-entanglement

assisted Bell state analysis. This Bell state analysis is interesting since it can be done with

LOCC. A schematic for super dense coding with hyper entanglement is given in Fig. 4.10.
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States of Light
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Figure 4.10: Setup for hyper entanglement assisted super sense coding. SHEP - source

of hyper-entangled photons.

4.6 Conclusion

We have described the possibility of using even/odd OAM states for quantum information.

We formulate appropriate measurement system for the even/odd OAM state based quan-

tum information. Since even-odd OAM entanglement can be implemented like two qubit

polarization entanglement, we describe the measurement and violation of Bell’s inequality

for such states. We have described hyper-entanglement and hybrid entanglement with OAM

and polarization degrees of freedom. We have proposed an experimental scheme for spin

orbit Bell state analysis to distinguish all the spin-orbit Bell states. This is applied in hyper

entanglement assisted polarization Bell state analysis for efficient dense coding.



Chapter 5

Three Particle Hyper-Entanglement

and Its Applications

In the last chapter we have seen the applicability of even/odd OAM states for quantum

information. In this chapter, we describe a novel three particle hyper-entangled states which

find application in telaportation and quantum cryptography.

With entanglement between two quantum bits, protocols have been demonstrated for

teleporting an unknown quantum state [11], super dense coding of information [12] and secure

communication [10]. An arbitrary qubit can be teleported from one particle to another with

the use of an entangled pair of particles, which had been experimentally verified in different

quantum systems [16, 139]. However, distinguishing all the four Bell states of the photonic

qubits has remained a fundamental difficulty in achieving 100% teleportation. In the first

demonstration of teleportation with photons [16], only one of the four Bell states could be

distinguished from others. Thus, the efficiency of teleportation was limited to 25% only.

Later on, a complete Bell state measurement was demonstrated with non-linear interaction

of photons [140]. Even though they could separate all the four Bell states, the efficiency was

reduced because of the non-linear process involved.

In recent years, complete Bell state analysis has been proposed with the use of hyper-

entanglement [141], where the two photons are entangled in an additional degree of freedom

(DOF) along with polarization. This method was utilized to increase the channel capacity

of super dense coding [59]. This was done by projecting each hyper-entangled photon to

four single particle two-qubit Bell states. Nevertheless, hyper-entanglement assisted Bell

state analysis is not of much use in teleportation since it requires projecting the unknown

state and one of the EPR particle state to any of the four Bell states. On the other hand,

73
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1 2 3
Entangled in OAM Entangled in Polarization

Unknown Polarization Unknown OAM

Figure 5.1: A pictorial representation of the three particle hyper-entangled state.

a hyper-entangled pair of particles can teleport a higher dimensional quantum state using

hyper-entangled-Bell-state analysis which was described using Kerr non-linearity [142]. There

had been a number of studies which use spin-orbit states of light for quantum information

processing [85, 143–146]. Khoury and Milman [147] proposed a spin to orbit teleportation

scheme with 100% efficiency that uses the OAM entanglement between the two photons and

a spin-orbit Bell state analysis (SOBA).

In this article, we describe a three particle entangled state which finds applications in

teleporting two qubits simultaneously and implementing an efficient key distribution proto-

col. In Section 5.1 we give a description of the proposed state. Along with the mathematical

form of the state we give a schematic for the state preparation. The experimental procedure

for the generation of the proposed state is given in Section 5.2. The state can be utilized to

teleport two qubits using two SOBAs and 16 unitary transformations as given in Section 5.3.

Experimental schemes for realizing the CNOT gates and SOBA have also been given in Sec-

tion 5.3.1. In Section 5.4 we describe a new QKD protocol using the new state, which is

more efficient than the traditional Ekert protocol. Finally, we conclude in Section 5.5.

5.1 Description of the proposed state

We describe a system of particles in such a way that one particle is entangled to all other

particles in different degrees of freedom. Let us consider a system consisting of three photons

where photon 2 is entangled with photons 1 and 3 in different degrees of freedom namely

OAM and polarization respectively. The polarization state of the photon 1 and the OAM

state of the photon 3 are arbitrary or unknown. A pictorial representation of the state is

given in Fig. 5.1.

Since the OAM of a photon is expressed in infinite dimensional Hilbert space, one can

have higher dimensional entangled states. We take an arbitrary two dimensional subspace of

the infinite dimensional OAM basis as {|l〉, |l′〉}.
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1

2

3

123
 

Polarization

OAM

Figure 5.2: Schematic diagram for preparation of the initial state. Box named “OAM”

contains a Hadamard gate (Ho) and a CNOT gate acting on OAM basis and “polar-

ization” box contains a Hadamard (Hp) and CNOT gates acting on polarization basis.

The described state can be prepared using a pair of Hadamard and CNOT gates in different

DOFs which correspond to the polarization and the OAM. The initial states of three particles

can be written as

|1〉 = |ξp〉1|l〉1 ; |2〉 = |H〉2|l〉2 ; |3〉 = |H〉3|χo〉3, (5.1)

where |ξp〉 is the unknown state of polarization of the photon 1, |χo〉 is the unknown OAM

state of the photon 3, |H〉 represents horizontal and |V 〉 represents vertical polarization states

of a photon. The schematic diagram for preparation of the initial state is given in Fig. 5.2.

To entangle photons 1 and 2 in OAM, a Hadamard gate (Ho) on photon 1 and subsequent

CNOT gate on photon 1 and 2 are applied. Both gates act in the OAM degree of freedom.

Similarly, another Hadamard (Hp) acting on photon 2 and a CNOT between photons 2 and

3 entangle them in polarization. Here, both the gates are acting on the polarization states

of photons. After performing the gate operations mentioned above, the final state becomes,

|Ψ〉123 = |ξp〉1 ⊗ (|l, l′〉12 + |l′, l〉12)⊗ (|HV 〉23 + |V H〉23)|χo〉3. (5.2)

5.2 Experimental scheme for state preparation

We are proposing a method in which initially two photons are entangled in the OAM and

third photon is in a pure state of OAM and polarization. By polarization gate operations on

one of the entangled photons and the independent photon, one can arrive at the described

state. Experimental scheme for the generation of the state is given in Fig. 5.3.
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Figure 5.3: Schematic experimental set up for the state preparation. SM- Simon-

Mukunda gadget, HWP- half wave plate, BBO- second order nonlinear crystal (Beta

Barium Borate).

To generate the described state, we start with a Type I spontaneous parametric down

conversion (SPDC) of light in a second order nonlinear crystal that gives a pair of photons

entangled in the OAM [48]. A vertically polarized optical vortex beam of azimuthal index 1

has been considered as the pump. The state corresponding to the pair of photons produced

by the SPDC of this beam is given by

|Ψ〉12 =
+∞∑

m=−∞
cm|m〉1|1−m〉2 ⊗ |H〉1|H〉2 (5.3)

Note that the experimental realization of the quantum gates in the OAM basis { |0〉,±|1〉±

|2〉... } are not straightforward. Moreover, in the teleportation, it is easier to project the state

of a photon to one of its four spin-orbit Bell state if we use even/odd basis. Thus for the ease

of experimental realization, we reduce the infinite dimensional entangled state to a simple

two-qubit entangled state by grouping all the even and the odd OAM states and rewrite the

expression for the OAM state in Eq. (5.3) as

+∞∑
m=−∞

cm(|m〉1|1−m〉2) =

+∞∑
k=−∞

c2k(|2k〉1|1− 2k〉2) +

+∞∑
k=−∞

c2k+1(|2k + 1〉1| − 2k〉2).

We define a transformation from the general OAM space to the even-odd OAM space as

g(|u〉1|v〉2) = f(|u〉1)f(|v〉2), where

f(|x〉) =

 |E〉, for even x;

|O〉, for odd x.
(5.4)

Applying g on the left-hand-side of Eq. (5.4) yields 1√
2
(|E〉1|O〉2 + |O〉1|E〉2).

As explained in the previous chapter, from the conservation of OAM, we have
∑+∞

k=−∞(c2k)
2 =∑+∞

k=−∞(c2k+1)2 = 1
2

∑+∞
m=−∞(cm)2 = 1

2 .
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Thus, we can rewrite Eq. (5.3) as

|Ψ〉12 =
1√
2

(|E〉1|O〉2 + |O〉1|E〉2)⊗ |H〉1|H〉2. (5.5)

Note that the photons are entangled in the even/odd OAM states. Experimentally,

this transformation can be implemented by post selection in the even/odd OAM basis. All

the OAM operations or measurements must be performed in even/odd basis using OAM

sorter [148]. This maps the general OAM state to even/odd basis which is mathematically

represented by operator g. Let the photon 1 pass through a Simon-Mukunda polarization

gadget which can convert its polarization to any arbitrary state [115, 116] and the photon 2

pass through a half wave plate at π
8 . Thus polarization state of the photon 1 is encoded as

the unknown state a|H〉1 +b|V 〉1 and the state of the photon 2 is encoded as 1√
2
(|H〉2 +|V 〉2).

Action of HWP on the photon 2 is a Hadamard operation. Thus, the state becomes

|Ψ〉12 =
1√
2

(|E〉1|O〉2 + |O〉1|E〉2) (a|H〉1 + b|V 〉1)⊗

1√
2

(|H〉2 + |V 〉2). (5.6)

Now, consider the photon 3 with unknown superposition state of OAM in the even/odd basis

and with definite state polarization. Its state can be expressed as,

|Ψ〉3 = (α|E〉3 + β|O〉3)⊗ |V 〉3. (5.7)

A polarization CNOT gate is applied on photon 2 (control) and 3 (target). This operation

leads to a polarization entanglement between photons 2 and 3. Thus, the three particle

state becomes

|Ψ〉123 =
1

2
(a|H〉1 + b|V 〉1) (|E〉1|O〉2 + |O〉1|E〉2) (|HV 〉23 + |V H〉23)(α|E〉3 +β|O〉3). (5.8)

This is in the same form as the proposed three particle entangled state described in Section 2,

Eq. (5.2).

5.3 Simultaneous teleportation of two qubits using

the new state

Teleportation of N qubits, in general, needs N pairs of entangled photons. On the other

hand, teleportation of d-dimensional quantum state needs d-dimensional entanglement and

one has to do a joint measurement in d2 dimensional Bell basis [149]. However, teleportation
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Figure 5.4: Schematic for the teleportation of spin-orbit qubits shared by photons 1

and 3. HWPs - half wave plates.

schemes were proposed for a d dimensional OAM state using Bell filter and quantum scissors

[150–152].

With the entangled state presented above, we propose an efficient scheme for teleporting

a two-qubit state distributed in different DOFs. The schematic diagram is given in Fig. 5.4.

The polarization state of photon 1 and the OAM state of photon 3 form a four dimensional

unknown two-qubit state

|Ψ〉u = (a|H〉1 + b|V 〉1)⊗ (α|E〉3 + β|O〉3), (5.9)

which needs to be teleported. We can teleport the combined state to a single particle, photon

2.

The unknown polarization (spin angular momentum) and the entangled OAM state of

photon 1 and entangled polarization and the unknown OAM state of photon 3 in Eq. (5.8),

can be projected to individual spin-orbit Bell states by SOBA. Alice performs the SOBA on

the photons 1 and 3 and projects the state of both the particles to the corresponding spin-

orbit Bell states. The SOBA, for which the OAM is in the even/odd basis, can be achieved by

Mach-Zehnder interferometers involving an OAM sorter and polarizing beam splitters [147].

The states can be defined as

ψ± = 1√
2

(|H,E〉 ± |V,O〉) ,

φ± = 1√
2

(|H,O〉 ± |V,E〉) . (5.10)

The SOBA operation for photon 1 can be represented by a polarization controlled OAM

CNOT (pCo) gate and a polarization Hadamard (Hp) gate operation with subsequent detec-

tion. Similarly, the SOBA for photon 3 is an OAM controlled polarization CNOT (oCp) gate

and OAM Hadamard (Ho) gate operation with subsequent detection. Experimental schemes

for these single particle two-qubit CNOT gates and SOBA are given in Section 5.3.1.

By substituting the single particle spin-orbit Bell states into a three particle wave function
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in Eq. (5.8), we get

|Ψ〉123 =
1

4

1∑
x,y=0

1∑
x′,y′=0

|Φxy〉1|Φx′y′
q 〉3 ⊗ Γx,y,x′,y′ (α|H〉2 + β|V 〉2) (a|E〉2 + b|O〉2),

where |Φxy〉1 and |Φx′y′
q 〉3 are single particle spin-orbit Bell states corresponding to the

photons 1 & 3 respectively. Γx,y,x′,y′ is a transformation matrix for the spin-orbit state of

photon 2. It has been introduced for the compact representation of the 16 states of photon

2 given in Table 5.1. After the SOBA measurements on the photons 1 and 3, state of the

photon 2 becomes

|Ψ(D|Φxy〉1|Φx
′y′
q 〉3

)〉2 =
1

4
Γx,y,x′,y′ (α|H〉2 + β|V 〉2) (a|E〉2 + b|O〉2), (5.11)

the state corresponding to a detection of |Φxy〉1|Φx′y′
q 〉3 in SOBAs.

The states corresponding to all possible SOBA outcomes are given in the first and the

second columns of the Table 5.1. Note that the information encoded in the polarization

state of the photon 1 is transferred to the OAM state of the photon 2 and the information

encoded in the OAM state of the photon 3 is transferred to the polarization state of the

photon 2. So, to get the initial state, Bob has to do a swapping (USWAP ) between the OAM

and the polarization along with other unitary transformations which use only polarization

operations. These operations can be implemented with the standard wave plates which makes

the experimental realization of this method more feasible.

1

3

2

Alice

pCo

oCp123
 

Hp

Ho

Bob

Û

Figure 5.5: Circuit diagram for proposed teleportation scheme. Single/double lines -

quantum/classical communication channels, arrow - measurement. Û - unitary trans-

formation given in Table 5.1

There are 16 possible outcomes for Alice measurements which demand 16 different uni-

tary operations by Bob to complete the teleportation protocol. Alice communicates her

measurement outcome (|Φxy〉1|Φx′y′
q 〉3) classically to Bob. Bob does the corresponding uni-

tary transformation Û (given in the third column of Table 5.1) on state of photon 2 to
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Measurement Outcome State of Bob’s Photon Unitary Transformations (Û)

|φ+φ+〉 (α|V 〉+ β|H〉) (a|O〉+ b|E〉) [Io ⊗ σp1] ∗ USWAP ∗ [σp1 ⊗ Io]

|φ+φ−〉 (α|V 〉 − β|H〉) (a|O〉+ b|E〉) [Io ⊗ σp1] ∗ USWAP ∗ [iσp2 ⊗ Io]

|φ−φ+〉 (α|V 〉+ β|H〉) (a|O〉 − b|E〉) [Io ⊗ iσp2] ∗ USWAP ∗ [σp1 ⊗ Io]

|φ−φ−〉 (α|V 〉 − β|H〉) (a|O〉 − b|E〉) [Io ⊗ iσp2] ∗ USWAP ∗ [iσp2 ⊗ Io]

|ψ+ψ+〉 (α|H〉+ β|V 〉) (a|E〉+ b|O〉) [Io ⊗ Ip] ∗ USWAP ∗ [Ip ⊗ Io]

|ψ+ψ−〉 (−α|H〉+ β|V 〉) (a|E〉+ b|O〉) [Io ⊗ Ip] ∗ USWAP ∗ [σp3 ⊗ Io]

|ψ−ψ+〉 (α|H〉+ β|V 〉) (a|E〉 − b|O〉) [Io ⊗ σp3] ∗ USWAP ∗ [Ip ⊗ Io]

|ψ−ψ−〉 (−α|H〉+ β|V 〉) (a|E〉 − b|O〉) [Io ⊗ σp3] ∗ USWAP ∗ [σp3 ⊗ Io]

|φ+ψ+〉 (α|H〉+ β|V 〉) (a|O〉+ b|E〉) [Io ⊗ σp1] ∗ USWAP ∗ [Ip ⊗ Io]

|φ+ψ−〉 (−α|H〉+ β|V 〉) (a|O〉+ b|E〉) [Io ⊗ σp1] ∗ USWAP ∗ [σp3 ⊗ Io]

|φ−ψ+〉 (α|H〉+ β|V 〉) (a|O〉 − b|E〉) [Io ⊗ iσp2] ∗ USWAP ∗ [Ip ⊗ Io]

|φ−ψ−〉 (−α|H〉+ β|V 〉) (a|O〉 − b|E〉) [Io ⊗ iσp2] ∗ USWAP ∗ [σp3 ⊗ Io]

|ψ+φ+〉 (α|V 〉+ β|H〉) (a|E〉+ b|O〉) [Io ⊗ Ip] ∗ USWAP ∗ [σp1 ⊗ Io]

|ψ+φ−〉 (α|V 〉 − β|H〉) (a|E〉+ b|O〉) [Io ⊗ Ip] ∗ USWAP ∗ [iσp2 ⊗ Io]

|ψ−φ+〉 (α|V 〉+ β|H〉) (a|E〉 − b|O〉) [Io ⊗ Ip] ∗ USWAP ∗ [iσp2 ⊗ Io]

|ψ−φ−〉 (α|V 〉 − β|H〉) (a|E〉 − b|O〉) [Io ⊗ σp3] ∗ USWAP ∗ [iσp2 ⊗ Io]

Table 5.1: Wave function corresponding to Bob’s photon and the required unitary

transformation corresponding to Alice’s measurement outcome.σp1, σ
p
2, σ

p
3 are Pauli ma-

trices for polarization, Ip and Io are identity matrices for polarization and OAM.

get

|Ψ〉2 = (a|H〉2 + b|V 〉2) (α|E〉2 + β|O〉2). (5.12)

which completes the teleportation of unknown state given in Eq. (5.9).

A SWAP operation is equivalent to consecutive pCo,
oCp and pCo gate operations. Since

the operation done in polarization will be transferred to the OAM after the SWAP operation,

one can perform all the operations in polarization which are well known. Two half wave plates

before and after the SWAP gate can perform 16 unitary operations which is required for the

teleportation. A circuit diagram of the proposed scheme is given in Fig. 5.5.
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5.3.1 Experimental realization of pCo,
oCp gates and SOBA

A Polarization controlled OAM CNOT gate can be implemented using a modified Mach-

Zehnder interferometer where the normal beam splitter is replaced by a polarizing beam

splitter (PBS) as shown in Fig. 5.6. The arm of interferometer, through which the vertically

polarized photons travel, contains a spiral phase plate (SPP) of order 1 which will convert

the even OAM state to odd and vice versa. On the other arm with horizontally polarized

photons, the OAM state remains unchanged. These states superpose at the second PBS and

emerges as a single pCo gate output. A glass block is introduced to compensate the extra

phase introduced by the SPP.

SPP (l=1)

PBS

PBS
GB

Figure 5.6: Experimental scheme for the implementation of polarization controlled

OAM CNOT gate (pCo). PBS - polarizing beam splitter, SPP - spiral phase plate, GB

- glass block.

We pursue a similar method to construct the OAM controlled polarization CNOT gate.

For that, we need to use a beam splitter which transmits the photons with even OAM state

and reflects the photons with odd OAM state. This can be achieved by an OAM sorter [148].

We replace the two PBSs in the previous setup with OAM sorters and instead of the SPP

we use a half wave plate at 450 in one arm that transforms the polarization state to its

orthogonal state. The schematic of the setup is given in Fig. 5.7. The OAM sorter is another

Mach-Zehnder interferometer containing dove prisms in each arm with a relative angle of

900.

The spin-orbit Bell state analysis with OAM in the even/odd states is explained by

Khoury and Milman [147]. However, in the present protocol, the SOBA in photon 1 and

photon 3 differ slightly in their implementation. As shown in the Fig. 5.8, two Mach-Zehnder

interferometers with OAM sorters (OS) and polarizing beam splitters with photon detectors

can implement SOBA. For the photon 1, the block 1 the Fig. 5.8 is an OAM sorter and the
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DP @ 900

DP @ 00

DP @ 900

DP @ 00

HWP@450

BS

BS

BS

BS

OAM sorter 1

OAM sorter 2

HWP@00

Figure 5.7: Experimental scheme for the implementation of OAM controlled polar-

ization CNOT gate (oCp). DP - dove prism, BS - 50:50 beam splitter, HWP - half wave

plate

blocks 2 and 3 are polarizing beam splitters. For SOBA in photon 3, the block 1 is a PBS

while the blocks 2 and 3 are OAM sorters. Detection on each of the detector will indicate

the corresponding spin-orbit Bell state of the photon.

BS

OS/PBS

3

21

PBS/OS

PBS/OS

BS

D2

D1

D3

D4

Figure 5.8: Experimental scheme for the implementation of SOBA in photon 1/3. OS

- OAM sorter, PBS - polarizing beam splitter, BS - 50:50 beam splitter

Here are the advantages of the described teleportation scheme

(i) As evident from the scheme, the number of particles required to teleport two indepen-

dent qubits are reduced by 25% by taking advantage of an extra DOF per photon.
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(ii) We use single particle two-qubit Bell measurement instead of two particle joint Bell

measurements. Its implementation is experimentally simple and one can achieve 100%

efficient Bell sate measurement and hence the teleportation.

(iii) In our scheme Bob need not to do unitary transformations on the OAM, since the same

can be implemented by operations on the polarization before and after the SWAP.

(iv) The described three particle hyper-entangled states can be utilized for a multi-party

teleportation scheme with two senders and a common receiver. Here Alice, and Charlie,

with no entanglement channel between them, share photons 1 and 3. The combined

polarization-OAM quantum state of Alice’s and Charlie’s photons will be teleported

to Bob who carries photon 2.

5.4 Quantum Key Distribution

Theoretically, the entanglement based QKD protocols are equivalent to the single photon

based ones (such as BB84). However, in practice, due to the strong quantum correlation

and non-locality [18, 153–156], the entanglement based protocols are regarded more useful

(for example, they have intrinsic randomness of the distributed key and extremely low prob-

ability of double photons). In recent years, entanglement in two degrees of freedom such as

polarization and OAM has led to interesting applications in cryptography [56, 157].

Here we are proposing a QKD protocol using the entangled system described in sec-

tion 5.1. We take a similar state as in Eq. (5.2) given by

|Ψ〉123 = |ξp〉1 ⊗ (|00〉12 + |1− 1〉12 + | − 11〉12)⊗ (|HH〉23 + |V V 〉23)|χo〉3,

where |0〉, |1〉 and |−1〉 are the OAM states of photons. Here we take a three dimensional sub-

space of infinite dimensional OAM entangled state produced by SPDC process with Gaussian

beam as pump instead of even/odd entangled state.

The experimental implementation of the protocol is shown in Fig. 5.9. Alice will receive

photon 2 and Bob will receive photons 1 and 3 respectively. Photon 2 is entangled with

photon 3 in polarization and it is entangled with photon 1 in OAM. The photons 1 and 3

do not have any correlation. Alice will measure both OAM and Polarization states, Bob will

measure polarization of photon 3 and OAM of photon 1.

Alice and Bob randomly measure polarization states of their respective photons in the

following set of basis (γi = 0◦, 22.5◦, 45◦, 67.5◦), (δi = 22.5◦, 45◦, 67.5◦, 180◦) respectively.

These measurements can be done by a half wave plate and polarizing beam splitter. Note
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Figure 5.9: Schematic diagram for quantum key distribution between Alice and Bob.

Photons 1-2 have polarization entanglement and 1-3 have OAM entanglement. Di -

detectors, HWP - half wave plate, PBS - polarizing beam splitter.

that γi/2 and δi/2 are the fast axis orientation angles of the half wave plates. Each angle

represents a basis which is used for measurement and corresponding to each of them, there

are two measurement outcomes. The pairs of angles used by Alice and Bob for which the sum

is 0◦ and 180◦ will give perfect correlation between them. The data corresponding to these

correlated photons have same bits and can be used for the key. Alice and Bob will compare

their polarization measurement basis for the key distribution as well as for the security of the

key. After sufficient number of measurements 4/16 of the data are useful for key, two sets of

4/16 of the data are used to check CHSH inequalities (S and S′) and the remaining 4/16 are

discarded due to unmatched bases.

For the OAM correlation of entangled photons, we follow the key sharing scheme used

in [158]. In this scheme, Alice and Bob measure the OAM state of their photons in three

different randomly chosen bases A1, A2, A3 and B1, B2, B3 respectively. This is done by

a pair of shifted holograms and an OAM sorter. The set of bases (A3 and B3) has perfect

correlation and the coincidence corresponding to it can be used to generate the key. Alice
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Alice γ1 γ2 γ3 γ4

Bob

δ1 S Key S ×

δ2 × S′ Key S′

δ3 S × S Key

δ4 Key S′ × S′

Table 5.2: Description of data usage corresponding to Alice’s and Bob’s measurement

angles. Here S and S′ are used for security check through CHSH inequality and × is

the discarded data.

and Bob will compare their hologram settings for QKD and security check. In total, there

are 9 possible measurements. After taking sufficient number of measurements, 1/9 of the

produced data can be used for the key. For Bell-type inequality check, 4/9 of the data will be

used which confirms the security of the key and the remaining 4/9 of the data are redundant.

The security of the protocol is mainly checked by the violation of Bell’s inequality test.

All the three parties should check Bell like inequality with their data in order to check

eavesdropping. If there is a violation of inequality, entanglement is preserved and there is no

eavesdropping in the channel. The CHSH parameters S and S′ for photons entangled in the

polarization DOF are given by [8]

S = E(γ1, δ1)− E(γ1, δ3) + E(γ3, δ1) + E(γ3, δ3) (5.13)

S′ = E(γ2, δ2) + E(γ2, δ4) + E(γ4, δ2)− E(γ4, δ4) (5.14)

with

E(γi, δj) =
R12(γi, δj) +R1′2′(γi, δj)−R12′(γi, δj)−R1′2(γi, δj)

R12(γi, δj) +R1′2′(γi, δj) +R12′(γi, δj) +R1′2(γi, δj)
(5.15)

where R12, R1′2′ , R12′ and R1′2 are the coincidences P (D11, D9 + D8 + D7), P (D10, D4 +

D5 +D6), P (D11, D4 +D5 +D6) and P (D10, D9 +D8 +D7) respectively.

For any local realistic theory, the CHSH parameters S, S′ ≤ 2. Non-local nature of the

entanglement will violate any of these inequalities and this violation can be used for checking

the security of the key shared by Alice and Bob. The combination of γ and δ for Bell’s

inequality test and for the key distribution is given in Table 5.2.

Photons 1 and 2 have OAM correlation, so it will violate the following Bell’s inequality
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for 3 dimensional case [158, 159]

S = P (A1 = B1) + P (A2 = B1 − 1) + P (A2 = B2) + P (A1 = B2)

−P (A1 = B1 − 1)− P (A2 = B1) + P (A2 = B2 − 1) + P (A1 = B2 + 1) (5.16)

≤ 2, (5.17)

where

P (Aa = Bb + k) =

2∑
j=0

P (Aa = j, Bb = (j + k)Mod 3). (5.18)

The shifts of holograms are chosen in such a way that they maximally violate the Bell-

type inequality. j=0,1,2 corresponds to the detection of OAM states 0, 1 and -1 respectively.

The coincidence measurements with the combinations of P (D1, D6 +D9), P (D1, D5 +D8),

P (D2, D4 + D7), P (D2, D6 + D9), P (D2, D5 + D8), P (D2, D4 + D7), P (D3, D6 + D9),

P (D3, D5 +D8) and P (D3, D4 +D7) are required for the key distribution and to check the

security of the key using Eq. (5.16) and (5.18).

Our protocol has three advantages compared to traditional Ekert protocol [10].

(i) If Ekert protocol is used, then around 4n pairs of photons, i.e., 8n photons (in practice,

little more than 8n) are required to establish a secret key of length n between Alice

and Bob. In our approach, around 6n photons would be required for the same purpose.

Hence, in terms of number of photons required, Ekert’s protocol is 33% less efficient

than ours.

(ii) On the other hand, if the same number of photons are used in Ekert and our protocol

and if the target key length is also the same, then because of more entanglement

resource, our protocol would have more redundancy and hence can tolerate more noise.

It is easy to see that the security in each degree of freedom is equivalent to that of the

Ekert protocol.

(iii) Further, this state can be used for multi-party QKD. Photons 1, 2 and 3 can be

distributed amongst Alice, Bob and Charlie respectively. Now, two sets of independent

keys can be generated, one for Alice-Bob and another for Alice-Charlie.

5.5 Conclusion

Possibility of a new entangled state and its application in teleporting a two-qubit OAM-

polarization quantum state and in the QKD have been discussed. The new teleportation
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method overcomes the difficulty of measuring in two particle polarization Bell basis, by im-

plementing independent single particle two-qubit Bell measurements. The method critically

depends on the experimental realizations of polarization CNOT gate as well as single particle

two-qubit CNOT gates. All the 16 unitary transformations which are required for this telepor-

tation scheme can be realized with linear optical components along with a SWAP gate. Once

the state given in Eq. (5.8) is achieved, one can have a 100% efficient teleportation of two

simultaneous qubits. Extending this to higher dimensions is mathematically trivial though

creating entanglement in different DOFs has experimental limitations. With the new QKD

protocol, the sender and the receiver need to use less resource than traditional Ekert protocol

to share the secret key of the same length. Multi-party schemes also can be developed for

the teleportation and the QKD using the described protocols.





Chapter 6

Summary and Scope for Future Work

Entanglement is the basic resource for quantum communication and photons are the most

suitable candidate for implementing them. Polarization and OAM are the two discrete de-

grees of freedom of photons for quantum information processing and it is important to study

entanglement in such systems. In the classical systems the non-separable states which mimic

the properties of entanglement are receiving much attention in the recent years. This thesis

studies quantum and classical aspects of polarization and orbital angular momentum (OAM)

entanglement.

In chapter 1, we have given a general introduction to entanglement and its conceptual

developmental in the past 80 years. Basics of quantum information and entanglement based

protocols such as superdense coding, teleportation and cryptography were briefly discussed.

We have also explained briefly the elements of photonic quantum information based on dis-

crete degrees of freedom of light i.e. polarization and OAM.In addition, we have discussed

about the entanglement in polarization and OAM, its experimental implications, inter and

intra system entanglement and its applications. In short, we have provided an introduction

to the classical non-separable states of OAM and polarization, which mimic the entanglement

and many quantum protocols, their nature and applications.

In chapter 2 and 3, we have studied the classical counterpart of hybrid entanglement

between OAM and polarization. The system of interest is a laser beam for which the polar-

ization and its spatial mode are entangled. This beam has non-uniform polarization in the

transverse plane. We can implement quantum inspired measurements on this state which

will lead to the violation of Bell’s inequality and steering. Unlike the quantum entanglement,

there is no non-locality in this case. The non-separability between two degrees of freedom,

which are in general separable, makes it possible to steer the state in one DOF by performing

89
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measurement in the other.

In chapter 2 we have studied the non-separable states of OAM and polarization, its

local polarization structure, its violation of Bell’s inequality and its behaviour under a cyclic

evolution of polarization. We have generated non-separable state of polarization and OAM

using a polarizing Sagnac interferometer and studied the effect of Pancharatnam geometric

phase in the non-separable state. The non-separability is confirmed by the violation of Bell-

CHSH inequality. The geometric phase introduced in the polarization subsystem induces a

relative phase in the Bell like state of OAM and polarization. The maximum value of the Bell

parameter, BMAX , maximized over the measurement angles, varies sinusoidally according to

the relative phase. We obtain a constant BMAX for different geometric phases by introducing

a relative phase in the projected OAM state. It was also shown that the Bell CHSH inequality

measurement in circular bases can remove the phase dependence of the BMAX by shifting

the measurement angle. We have analyzed the polarization structure of the non-separable

state for different Pancharatnam phases that gives a rotation to it. This physically explains

the effect of Pancharatnam phase in the joint measurement of polarization and OAM. We

have also described an OAM Poincaré sphere which can represent all the OAM superposition

states in {l,−l} subspace even for |l| ≥ 1. We also have presented an experimental method

for the generation of all such states using a non-separable state of OAM and polarization.

Finally, we have described the representation of OAM mixed states as non-separable states

inside the Poincaré sphere.

In Chapter 3 we have studied the effect of scattering on a non-separable state. We found

that the non-separability is preserved under scattering and can be retrieved using a lens.

We have produced a light beam with non-separable polarization and orbital angular mo-

mentum states using a simple interferometer and experimentally verified the preservation of

non-separability under scattering through a rotating ground glass. The polarization measure-

ments and the images of the beam projected to different polarizations show the presence of

non-separability for coherent and scattered light. We have also demonstrated the generation

of non-maximally non-separable states of light and studied their behaviour under scattering

by measuring the degree of polarization. This recovered partially coherent non-separable

states can be used to generate arbitrary superposition states of OAM by polarization selec-

tion. Our results can have application in public broadcasting systems.

In chapters 4 and 5 we have conceptualised new multi-photon states of OAM and polar-

ization, defined proper measurements with experimental schematics to used them for imple-

menting various quantum protocols.
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In chapter 4, we have described the possibility of using even/odd OAM states for quantum

information. The motivation was to use OAM as a qubit like polarization without any photon

loss due to the restriction of the Hilbert space. We have formulated appropriate measurement

system for the even/odd OAM state based quantum information. Since even-odd OAM

entanglement can be implemented like two qubit polarization entanglement, we describe the

measurement and violation of Bell’s inequality for such states. We have described hyper-

entanglement and hybrid entanglement with OAM and polarization degrees of freedom. We

have proposed an experimental scheme for spin orbit Bell state analysis to distinguish all the

spin-orbit Bell states. This is applied in hyper entanglement assisted polarization Bell state

analysis for efficient dense coding.

In Chapter 5 we have introduced a new three particle entangled state and their appli-

cation in teleporting a two-qubit OAM-polarization quantum state and in the QKD. The

new teleportation method overcomes the difficulty of measuring in two particle polarization

Bell basis, by implementing independent single particle two-qubit Bell measurements. It was

shown that all the 16 unitary transformations which are required for this teleportation scheme

can be realized with linear optical components. With the new QKD protocol, the sender and

the receiver need to use less resource than traditional Ekert protocol to share the secret key

of the same length. Multi-party schemes also can be developed for the teleportation and the

QKD using the described protocols.

6.1 Scope for future work

We have studied the cyclic evolution of polarization in a non-separable states and its effect

on Bell’s inequality. In future we intend to study the properties with non-cyclic Pancharat-

nam phase. In principle one can measure the Pancharatnam-Berry phase due to a non-cyclic

polarization evolution using the non-separable state without any interferometric measure-

ments. Study of scattering of non-separable states opens up many questions that need to

be addressed. We intend to study the spatial and temporal correlations of the scattered

non-separable light field. Here we can control the global degree of polarization by making

non-maximally non-separable states and study its effect on the coherence properties of the

scattered field. We also intend to do the photon statistics of the non-separable states.

We believe that the even/odd OAM states and its measurement realizations could be a

whistle blower for more efficient OAM entanglement based quantum protocols. We will be

experimentally verifying the even/odd entanglement and its Bell’s inequality violation. The
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implementation of all the quantum gates mentioned will be interesting for its application to

many new quantum protocols. It will be interesting to revisit Hong-Ou-Mandel experiments

with photons entangled in even/odd OAM states.

The experimental realization of the three particle state could be a great step in achieving

multi-party quantum communications. Simultaneous and deterministic teleportation of two

qubits can be implemented for the first time using this state.
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[77] A. Aiello, F. Töppel, C. Marquardt, E. Giacobino, and G. Leuchs, Quantumlike non-

separable structures in optical beams, New J. Phys. 17, 043024 (2015).

[78] D. Collins and S. Popescu, Classical analog of entanglement, Phys. Rev. A 65, 032321

(2002).

[79] R. J. C. Spreeuw, Classical wave-optics analogy of quantum-information processing,

Phys. Rev. A 63, 062302 (2001).

[80] S. J. van Enk, Entanglement of electromagnetic fields, Phys. Rev. A 67, 022303 (2003).

[81] A. Luis, Coherence, polarization, and entanglement for classical light fields, Opt. Com-

mun. 282, 3665 – 3670 (2009).

[82] K. F. Lee and J. E. Thomas, Entanglement with classical fields, Phys. Rev. A 69,

052311 (2004).

[83] E. Karimi and R. W. Boyd, Classical entanglement? Science 350, 1172–1173 (2015).

[84] L. J. Pereira, A. Z. Khoury, and K. Dechoum, Quantum and classical separability of

spin-orbit laser modes, Phys. Rev. A 90, 053842 (2014).

[85] C. V. S. Borges, M. Hor-Meyll, J. A. O. Huguenin, and A. Z. Khoury, Bell-like inequality

for the spin-orbit separability of a laser beam, Phys. Rev. A 82, 033833 (2010).

[86] E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She,

S. Franke-Arnold, M. J. Padgett, and E. Santamato, Spin-orbit hybrid entanglement of

photons and quantum contextuality, Phys. Rev. A 82, 022115 (2010).

[87] M. A. Goldin, D. Francisco, and S. Ledesma, Simulating bell inequality violations with

classical optics encoded qubits, J. Opt. Soc. Am. B 27, 779–786 (2010).



100 BIBLIOGRAPHY

[88] M. McLaren, T. Konrad, and A. Forbes, Measuring the nonseparability of vector vortex

beams, Phys. Rev. A 92, 023833 (2015).

[89] D. Francisco and S. Ledesma, Classical optics analogy of quantum teleportation, J. Opt.

Soc. Am. B 25, 383–390 (2008).

[90] S. M. Hashemi Rafsanjani, M. Mirhosseini, O. S. Magaña Loaiza, and R. W. Boyd,

State transfer based on classical nonseparability, Phys. Rev. A 92, 023827 (2015).

[91] D. Francisco, C. Iemmi, J. P. Paz, and S. Ledesma, Simulating a quantum walk with

classical optics, Phys. Rev. A 74, 052327 (2006).

[92] N. Bhattacharya, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, Implemen-

tation of quantum search algorithm using classical fourier optics, Phys. Rev. Lett. 88,

137901 (2002).

[93] X. Song, Y. Sun, P. Li, H. Qin, and X. Zhang, Bell’s measure and implementing

quantum fourier transform with orbital angular momentum of classical light, Sci. Rep.

5, 14113 (2015).

[94] K. H. Kagalwala, G. Di Giuseppe, A. F. Abouraddy, and B. E. Saleh, Bell’s measure

in classical optical coherence, Nat. Photon. 7, 72–78 (2013).

[95] F. Töppel, A. Aiello, C. Marquardt, E. Giacobino, and G. Leuchs, Classical entangle-

ment in polarization metrology, New J. Phys. 16, 073019 (2014).

[96] G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, Using the nonsep-

arability of vector beams to encode information for optical communication, Opt. Lett.

40, 4887–4890 (2015).

[97] G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and

P. Villoresi, Free-space quantum key distribution by rotation-invariant twisted photons,

Phys. Rev. Lett. 113, 060503 (2014).
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We experimentally show that the non-separability of polarization and orbital angular momentum pre-
sent in a light beam remains preserved under scattering through a random medium like rotating ground
glass. We verify this by measuring the degree of polarization and observing the intensity distribution of
the beamwhen projected to different polarization states, before as well as after the scattering. We extend
our study to the non-maximally non-separable states also.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

A combined system is said to be entangled when its state
cannot be expressed as a product of states corresponding to the
individual sub systems [1]. The entangled systems have interesting
properties such as non-locality and contextuality which make
them a great resource for various quantum protocols [2]. One
generally uses the entanglement between two spatially separated
particles in the same degree of freedom such as spin or polariza-
tion. However, one can also have hybrid entanglement in which
two degrees of freedom of a single particle or two particles are
entangled [3]. This arises due to the non-separability of two de-
grees of freedom. However, it is not an exclusive property of a
quantum system. Similar kind of non-separability can be seen in
classical optics, for example radially polarized light beams [4]. This
quantum like classical entanglement has been receiving a lot of
attention in recent years [5–9]. These non-separable states of light
are shown to violate Bell like inequality [10,11]. Furthermore, they
find applications in polarization metrology and ultra sensitive
angular measurements [12,13].

Recently, it has been shown that phase singular beams or op-
tical vortices also violate Bell's inequality for continuous variables
such as position and momentum [14]. These optical vortices carry
an orbital angular momentum (OAM) of l± per photon, l± being
the azimuthal index or order of the vortex [15,16]. This OAM can
be used as an additional degree of freedom along with the
angatt).
polarization to form a hybrid entangled state that violates Bell's
inequality for discrete variables [11].

Scattering of structured light beams such as optical vortices has
been studied for their coherence properties and applications [17–
21]. It has been shown that one can generate partially coherent
ring shaped beams from the scattering of coherent optical vortices
[22]. Here, we generate light beams with non-separable OAM and
polarization and verify the preservation of non-separability under
scattering through a rotating ground glass (RGG). These non-se-
parable beams can be generated using q-plates [23,24] or inter-
ferometers [10,25]. In our set up, we modify a polarizing Sagnac
interferometer [25] to generate the non-separable beams by re-
placing dove prism with a spiral phase plate (SPP). The generated
beams scatter through a RGG and the scattered light is collected by
a plano-convex lens to measure their polarization and intensity
distributions at the focus. We measure the degree of polarization
of the beam, as a measure of non-separability [26–28], before and
after scattering which should be 0 for a maximally non-separable
state and 1 for a completely separable state. We also project the
scattered as well as coherent light to different polarizations and
record the corresponding intensity distributions which confirm
the non-separability. Using the same experimental setup, we vary
the degree of non-separability by controlling the intensities in the
two arms of the interferometer.

In Section 2 we give a theoretical background to the OAM-po-
larization non-separable state and describe the methods we used
to witness the non-separability. Experimental setup to generate
the described states is given in Section 3. The results and discus-
sion are given in Section 4 and finally we conclude in Section 5. For
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simplicity, we use the Dirac notation to describe the states even
though we are using classical light beams.
Fig. 1. Theoretical images for the transverse intensity profile of a non-separable
state described by Eq. (1) with l 2| | = for projections to different polarization states.
H – Horizontal, V – vertical, D – diagonal, A – anit-diagonal, R – right circular, L –

Left circular.
2. Theoretical background

A maximally entangled/non-separable state of polarization and
OAM can be written as

⎛
⎝⎜

⎞
⎠⎟H l V l

1
2 1

ψ| 〉 = | 〉| + 〉 + | 〉| − 〉
( )

where H V,| 〉 | 〉 and l l,| + 〉 | − 〉 are basis vectors of 2D complex
vector spaces corresponding to the polarization and the OAM
subspace respectively. We work in the paraxial domain with linear
optics, where polarization and OAM are independent. Thus

H V,{| 〉 | 〉} and l l,{| + 〉 | − 〉} form two mutually independent com-
plex vector spaces. The density matrix for the non-separable state
ψ| 〉 is given by nsρ ψ ψ= | 〉〈 |. One can obtain the reduced density
matrix corresponding to the polarization ρp by taking a partial
trace of this density matrix over OAM states,

i i
I

Tr
2

.
2

p l ns
i l l

p

,

∑ρ ρ ψ ψ= { } = 〈 | 〉〈 | 〉 =
( )= −

Here, IP is a 2�2 identity matrix. For a given density matrix ρ
describing a state in d dimensional Hilbert space, one can define
linear entropy [29]

S
d

d 1
1 Tr . 3L

2ρ=
−

( − ( )) ( )

SL characterizes the amount of mixedness for a given density
matrix. It is known that for an entangled/non-separable state, the
subsystems will be in a mixed state. Stronger the non-separability,
larger the amount of mixedness present in the subsystems. Thus
by measuring linear entropy SL of the subsystem, one can measure
the degree of entanglement or the non-separability. For the
maximally non-separable state given in Eq. (1), one can find the
linear entropy of polarization,

S 2 1 Tr 1. 4L p
2ρ= ( − ( )) = ( )

This corresponds to a completely mixed polarization state in
contrast to a completely polarized state with SL¼0. We know, the
state of polarization represented by a Poincare sphere can be
completely described by

s
1
2

.
5

p
i

i i
0

3

∑ρ σ=
( )=

where si's and si's are the Pauli matrices and normalized Stokes
parameters respectively. The trace of square of this density matrix
is given by

s s s DOPTr 1 1 6p
2 1

2 1
2

2
2

3
2 1

2
2( )ρ{ } = + + + = ( + ) ( )

where DOP is the degree of polarization which is measured as the

magnitude of the Stokes vector s s s1
2

2
2

3
2+ + . Using Eqs. (4) and

(6) one can relate DOP to the linear entropy,

S DOP1 . 7L
2= − ( )

Thus for a maximally non-separable state of polarization and OAM,
for which SL¼1, the degree of polarization should be zero. One can
easily determine the DOP experimentally by measuring the Stokes
parameters [30].

Another characteristic of the non-separable state is the con-
texuality. For a separable state, measurement on one degree of
freedom does not affect the measurement outcome of the other.
However, in the case of a non-separable state, measurement out-
come in one degree of freedom will depend on the context of
measurement in the other. In our experiment the OAM state of the
beam varies according to the projections to different polarization
states due to their non-separability. Consider a general polariza-
tion state defined as

H e VCos Sin 8iξ θ θ| 〉 = ( )| 〉 + ( )| 〉 ( )ϕ

where θ and ϕ are the Euler angles corresponding to the state ξ| 〉
on the Poincaré sphere. Projecting ψ| 〉 given in Eq. (1) to ξ| 〉, we
obtain the OAM state as

l e lCos Sin . 9o
i

,ψ ξ ψ θ θ| 〉 = 〈 | 〉 = ( )| 〉 + ( )| − 〉 ( )θ ϕ
ϕ−

This is a pure OAM superposition state. The transverse profile of the
beamwill correspond to the superposition of two equal and oppositely
charged vortices with different relative amplitudes and phase. There-
fore, the intensity profile of the beam varies according to the polar-
ization projections defined by θ and ϕ. For demonstration we take

, 0, 0 , 90, 0 , 45, 0 , 45, 0 ,θ ϕ( ) = ( ) ( ) ( ) ( − ) 45, 90( ) and 45, 90( − )
which correspond to H V D H V A H V R H i V, , , ,| 〉 | 〉 | 〉 = | 〉 + | 〉 | 〉 = | 〉 − | 〉 | 〉 = | 〉 + | 〉
and L H i V| 〉 = | 〉 − | 〉 polarization states.

Fig. 1 shows the theoretical intensity distributions corre-
sponding to different polarization projections for l 2| | = . The pro-
jection on H (V) polarization gives a vortex of order 2 2( − ). The
projections of the state on diagonal (D), anti-diagonal (A), left
circular (L) and right circular (R) give superposition of two vortices
that contain l2 (in our case l 2| | = ) number of lobes with different
orientations. The number of lobes confirms the order or the azi-
muthal index of the vortex and the change in their orientation
confirms the presence of non-separability in a light beam.
3. Experiment

The experimental set up used to generate the non-separable
state and to study its properties is shown in Fig. 2. We have used a
diode pumped solid state green laser (Verdi 10) with vertical po-
larization for our study. The laser beam passes through a half wave
plate, whose fast axis is oriented at 22.5− ° with the horizontal that



Fig. 2. Experimental setup for the generation and scattering of non-separable state
of polarization and OAM. HWP – half wave plate, QWP – quarter wave plate, P –

polarizer, L – lens with focal length 15 cm, CCD – charge coupled device (camera),
PM – power meter, PBS – polarizing beam splitter.

Table 1
Stokes vectors and the degree of polarization corresponding to separable and non-
separable states of light before and after scattering.

State Before scattering After scattering

Stokes
vectors

DOP Stoke's
vectors

DOP

Separable state (without SPP) s1 0.044 0.957 s1 0.056 0.924
s2 0.956 s2 0.922
s3 �0.02 s3 �0.026

Non-separable state (with SPP) s1 �0.03 0.001 s1 0.01 0.001
s2 �0.01 s2 �0.02
s3 0.02 s3 �0.02
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changes beam polarization from vertical to diagonal. Then it pas-
ses through a polarizing Sagnac interferometer containing a spiral
phase plate (SPP) to generate a light beam which is non-separable
in polarization and OAM.

Two orthogonally polarized (H and V) counter propagating
Gaussian beams are converted into optical vortices of orders l (for
H) and l− (for V) by the SPP designed for order l 2| | = . These or-
thogonally polarized and oppositely charged vortices superpose at
the same PBS to form the described non-separable state. This non-
separable state is generated only in the presence of SPP otherwise
the superposition of two orthogonally polarized Gaussian beams
results in a diagonally polarized Gaussian light beam. The doughnut
shaped non-separable beam forms a random speckle distribution
after scattering through the ground glass. A part of the scattered
light collected with a lens of focal length 15 cm placed at a distance
of 22 cm from the ground glass plate. The ground glass plate is
rotating at E930 revolutions per minute to average out the
speckles. The intensity distributions corresponding to the different
polarization projections are recorded with an Evolution VF color
cooled camera (pixel size 4.65 μm) kept at the focus of the lens.

The Stokes parameters are measured using a quarter wave plate
and a polarizer. We project the beam to horizontal (H), vertical (V),
diagonal (D), anti-diagonal (D), right circular (R) and left circular
(L) polarizations and measure the intensity. The intensity mea-
surements for determining the Stokes parameters were performed
with an optical power meter (Thorlab) of sensitivity 1 nW. One can
find out the Stokes parameters as

s
I I

I

s
I I

I

s
I I

I

;

;

10

H V

D A

R L

1

2

3

=
−

=
−

=
−

( )
where I is the total intensity of the beam and Ix is the intensity
corresponding to x-polarization.
4. Results and discussion

We have measured the Stokes parameters s s s, ,1 2 3( ) of coherent
and scattered light beams for both separable (without SPP) and
non-separable states (with SPP). We compare the degree of po-
larization of beams before and after scattering and the results are
given in Table 1. From the table, it is clear that the separable light
beam is completely polarized (diagonal) while the non-separable
state is completely unpolarized. The deviations in degree of po-
larization may be due to uncertainties in the orientation of the
wave plates, small misalignment of the interferometer and the
measurement uncertainty of the power meter. However, our ex-
perimental findings are very close to theoretical predictions given
in Section 2.

We also generate non-maximally entangled states simply by
controlling intensities in the two arms of the interferometer. This
can be done easily by rotating the fast axis of the HWP. Then the
state becomes

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟I I

I H I V
1

2 2
111 2

1 2ψ| 〉 =
+

| 〉| + 〉 + | 〉| − 〉
( )

By varying I1 from 0 to I and correspondingly I2 from I to 0, we
have generated different states given in Eq. (11). Note that the total
intensity, I I I1 2+ = is always constant. For the state described in
Eq. (11), we can check the mixedness of the subsystem (here po-
larization) by calculating SL which also indicates the degree of
non-separability. It reduces to a simple analytic expression,

S
I I

I I

4
.

12
L

1 2

1 2
2( )

=
+ ( )

Line curve in Fig. 3 shows the variation of linear entropy SL of
polarization with the normalized intensity in one arm of the in-
terferometer as given in Eq. (12). The linear entropy becomes zero
when I 01 = or I 02 = , for which the state become H l| 〉| 〉 and V l| 〉| − 〉
respectively. When the two intensities are same (I I1 2= ), the state
becomes completely non-separable for which SL¼1.

We measure the Stokes parameters and calculate the degree of
polarization and linear entropy experimentally corresponding to
each value of I1 for coherent and scattered light beams. The results
are shown in Fig. 3. One can clearly see that the SL vs. normalized
intensity curve for both the coherent and scattered light are in
good agreement with the theoretical curve. The results of polar-
ization measurements given in Table 1 and Fig. 3 which confirm
the preservation of non-separability in polarization and OAM un-
der scattering by the RGG.

Fig. 4 shows the intensity distributions for a coherent and a
scattered light beam with non-separable state projected to the
different polarizations. Our results show the similar behavior for
both coherent and scattered light beams and are in good



Fig. 3. Linear entropy vs. normalized intensity I I I/1 1 2( + ) plot for coherent and
scattered non-separable states of light along with theoretical curve given by Eq.
(12).

Fig. 4. Experimental images of coherent and scattered non-separable states of light
with l¼2 for different polarization projections. OAM states corresponding to each
intensity distribution are also given.
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agreement with the theoretical images shown in Fig. 1 that again
confirm the preservation of non-separability.

We also observe that the amount of scattered light collected by
the lens is irrelevant regarding the non-separable properties. In
fact, one can use multiple number of lenses and collimate the
scattered light again to form several copies of a partially coherent
non-separable beam. This property can be used in public com-
munication systems.
5. Conclusions

In conclusion, we have produced a light beam with non-se-
parable polarization and orbital angular momentum states using a
simple interferometer and experimentally verified the preserva-
tion of the non-separability under scattering through a rotating
ground glass. The polarization measurements and the images of
the beam projected to different polarizations show the presence of
non-separability for coherent and scattered light. We have also
demonstrated the generation of non-maximally non-separable
states of light and studied their behavior under scattering by
measuring the degree of polarization.
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Abstract We present a scheme to generate three-particle hyper-entanglement utiliz-
ing polarization and orbital angular momentum (OAM) of photons. We show that the
generated state can be used to teleport a two-qubit state described by the polarization
and the OAM. The proposed quantum system has also been used to describe a new effi-
cient quantum key distribution (QKD) protocol. We give a sketch of the experimental
arrangement to realize the proposed teleportation and the QKD.

Keywords Teleportation · Spin–orbit Bell states · Orbital angular momentum ·
Hyper-entanglement · Quantum key distribution

1 Introduction

With entanglement between two quantum bits, protocols have been demonstrated for
teleporting an unknown quantum state [1], super dense coding of information [2] and
secure communication [3]. An arbitrary qubit can be teleported from one particle to
another with the use of an entangled pair of particles, which had been experimentally
verified in different quantum systems [4,5]. However, distinguishing all the four Bell
states of the photonic qubits has remained a fundamental difficulty in achieving 100%
teleportation. In the first demonstration of the teleportation with photons [4], only one
of the four Bell states was able to distinguish from the others. Thus, the efficiency
of teleportation was limited to 25%. Later on, a complete Bell state measurement
was demonstrated with nonlinear interaction of photons[6]. Even though they could
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separate all the four Bell states, the efficiency was reduced because of the nonlinear
process involved.

In recent years, complete Bell state analysis has been proposed with the use of
hyper-entanglement [7], where the two photons are entangled in an additional degree
of freedom (DOF) along with polarization. This method was utilized to increase the
channel capacity of super dense coding [8]. This was done by projecting each hyper-
entangled photon to four single-particle two-qubit Bell states. Nevertheless, hyper-
entanglement-assisted Bell state analysis is not of much use in teleportation since it
requires projecting the unknown state and one of the EPR particle state to any of the
four Bell states. On the other hand, a hyper-entangled pair of particles can teleport
a higher-dimensional quantum state using hyper-entangled Bell state analysis which
was described using Kerr nonlinearity [9]. There had been a number of studies which
use spin–orbit states of light for quantum information processing [10–14]. Khoury
and Milman [15] proposed a spin to orbit teleportation scheme with 100% efficiency
that uses the OAM entanglement between the two photons and a spin–orbit Bell state
analysis (SOBA).

In this article,wedescribe a three-particle entangled statewhichfinds applications in
teleporting two qubits simultaneously and implementing an efficient key distribution
protocol. In Sect. 2, we give a description of the proposed state. Along with the
mathematical form of the state, we give a schematic for the state preparation. The
experimental procedure for the generation of the proposed state is given in Sect. 3.
The state can be utilized to teleport two qubits using two SOBAs and 16 unitary
transformations as given in Sect. 4. Experimental schemes for realizing the CNOT
gates and SOBA have also been given in Sect. 4.1. In Sect. 5, we describe a new
QKD protocol using the new state, which is more efficient than the traditional Ekert
protocol. Finally, we conclude in Sect. 6.

2 Description of the proposed state

We describe a system of particles in such a way that one particle is entangled to all
other particles in different degrees of freedom. Let us consider a system consisting of
three photons where photon 2 is entangled with photons 1 and 3 in different degrees
of freedom, namely OAM and polarization, respectively. The polarization state of the
photon 1 and the OAM state of the photon 3 are arbitrary or unknown.

Since the OAM of a photon is expressed in infinite-dimensional Hilbert space, one
can have higher-dimensional entangled states. We take an arbitrary two-dimensional
subspace of the infinite-dimensional OAM basis as {|l〉, |l ′〉}.

The described state can be prepared using a pair of Hadamard and CNOT gates in
different DOFs which correspond to the polarization and the OAM.

The initial states of three particles can be written as

|1〉 = |ξp〉1|l〉1; |2〉 = |H〉2|l〉2; |3〉 = |H〉3|χo〉3, (1)

where |ξp〉 is the unknown state of polarization of the photon 1, |χo〉 is the unknown
OAM state of the photon 3, |H〉 represents horizontal, and |V 〉 represents vertical
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Fig. 1 Schematic diagram for
preparation of the initial state.
Box named “OAM” contains a
Hadamard gate (Ho) and a
CNOT gate acting on OAM
basis, and “polarization” box
contains a Hadamard (Ho) and
CNOT gates acting on
polarization basis

Fig. 2 Schematic experimental
set up for the state preparation.
SM Simon–Mukunda gadget,
HWP half-wave plate, BBO
second-order nonlinear crystal
(Beta Barium Borate)

polarization states of a photon. The schematic diagram for preparation of the initial
state is given in Fig. 1. To entangle photons 1 and 2 in OAM, a Hadamard gate (Ho)

on photon 1 and subsequent CNOT gate on photon 1 and 2 are applied. Both gates act
in the OAM degree of freedom. Similarly, another Hadamard (Ho) acting on photon
2 and a CNOT between photons 2 and 3 entangle them in polarization. Here, both
the gates are acting on the polarization states of photons. After performing the gate
operations mentioned above, the final state becomes,

|Ψ 〉123 = |ξp〉1 ⊗ (|l, l ′〉12 + |l ′, l〉12) ⊗ (|HV 〉23 + |V H〉23)|χo〉3. (2)

3 Experimental scheme for state preparation

We are proposing a method in which initially two photons are entangled in the OAM
and third photon is in a pure state of OAM and polarization. By polarization gate
operations on one of the entangled photons and the independent photon, one can
arrive at the described state. Experimental scheme for the generation of the state is
given in Fig. 2.

To generate the described state, we start with a Type I spontaneous parametric
down conversion (SPDC) of light in a second-order nonlinear crystal that gives a pair
of photons entangled in the OAM [16]. A vertically polarized optical vortex beam of
azimuthal index 1 has been considered as the pump. The state corresponding to the
pair of photons produced by the SPDC of this beam is given by

|Ψ 〉12 =
+∞∑

m=−∞
cm |m〉1|1 − m〉2 ⊗ |H〉1|H〉2 (3)
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Note that the experimental realization of the quantum gates in the OAM basis
{|0〉,±|1〉 ± |2〉...} are not straightforward. Moreover, in the teleportation, it is easier
to project the state of a photon to one of its four spin–orbit Bell state if we use even/odd
basis. Thus for the ease of experimental realization, we reduce the infinite-dimensional
entangled state to a simple two-qubit entangled state by grouping all the even and the
odd OAM states and rewrite the expression for the OAM state in Eq. (3) as

+∞∑

m=−∞
cm(|m〉1|1−m〉2) =

+∞∑

k=−∞
c2k(|2k〉1|1−2k〉2)+

+∞∑

k=−∞
c2k+1(|2k+1〉1|−2k〉2).

We define a transformation from the general OAM space to the even/odd OAM
space as

g(|u〉1|v〉2) = f (|u〉1) f (|v〉2), where

f (|x〉) =
{ |E〉, for even x;

|O〉, for odd x .
(4)

Applying g on the left-hand side of Eq. (4) yields 1√
2
(|E〉1|O〉2 + |O〉1|E〉2).

From the conservation of OAM, we have
∑+∞

k=−∞(c2k)2 = ∑+∞
k=−∞(c2k+1)

2 =
1
2

∑+∞
m=−∞(cm)2 = 1

2 .
Thus, we can rewrite Eq. (3) as

|Ψ 〉12 = 1√
2

(|E〉1|O〉2 + |O〉1|E〉2) ⊗ |H〉1|H〉2. (5)

Note that the photons are entangled in the even/odd OAM states. Experimentally,
this transformation can be implemented by post-selection in the even/odd OAM basis.
All the OAM operations or measurements must be performed in even/odd basis using
OAM sorter [17]. This maps the general OAM state to even/odd basis which is mathe-
matically represented by operator g. Let the photon 1 pass through a Simon–Mukunda
polarization gadget which can convert its polarization to any arbitrary state [18,19]
and the photon 2 pass through a half-wave plate at π

8 . Thus, polarization state of the
photon 1 is encoded as the unknown state a|H〉1 + b|V 〉1, and the state of the photon
2 is encoded as 1√

2
(|H〉2 + |V 〉2). Action of HWP on the photon 2 is a Hadamard

operation. Thus, the state becomes

|Ψ 〉12 = 1√
2

(|E〉1|O〉2 + |O〉1|E〉2) (a|H〉1 + b|V 〉1)

⊗ 1√
2
(|H〉2 + |V 〉2). (6)

Now, consider the photon 3with unknown superposition state of OAM in the even/odd
basis and with definite state polarization. Its state can be expressed as,

|Ψ 〉3 = (α|E〉3 + β|O〉3) ⊗ |V 〉3. (7)
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Fig. 3 Schematic for the teleportation of spin–orbit qubits shared by photons 1 and 3. HWPs half-wave
plates

A polarizationCNOT gate is applied on photon 2 (control) and 3 (target). This operation
leads to a polarization entanglement between photons 2 and 3. Thus, the three-particle
state becomes

|Ψ 〉123 = 1

2
(a|H〉1 + b|V 〉1) (|E〉1|O〉2 + |O〉1|E〉2) (|HV 〉23 + |V H〉23) (α|E〉3

+β|O〉3) . (8)

This is in the same form as the proposed three-particle entangled state described in
Sect. 2, Eq. (2).

4 Simultaneous teleportation of two qubits using the new state

Teleportation of N qubits, in general, needs N pairs of entangled photons. On the other
hand, teleportation ofd-dimensional quantumstate needsd-dimensional entanglement
and one has to do a joint measurement in d2-dimensional Bell basis [20]. However,
teleportation schemes were proposed for a d-dimensional OAM state using Bell filter
and quantum scissors [21–23].

With the entangled state presented above, we propose an efficient scheme for tele-
porting a two-qubit state distributed in different DOFs. The schematic diagram is given
in Fig. 3. The polarization state of photon 1 and the OAM state of photon 3 form a
four-dimensional unknown two-qubit state

|Ψ 〉u = (a|H〉1 + b|V 〉1) ⊗ (α|E〉3 + β|O〉3), (9)

which needs to be teleported. We can teleport the combined state to a single particle,
photon 2.

The unknown polarization (spin angular momentum) and the entangled OAM state
of photon 1 and entangled polarization and the unknown OAM state of photon 3 in
Eq. (8) can be projected to individual spin–orbit Bell states by SOBA. Alice performs
the SOBA on the photons 1 and 3 and projects the state of both the particles to the
corresponding spin–orbit Bell states. The SOBA, forwhich theOAM is in the even/odd
basis, can be achieved by Mach–Zehnder interferometers involving an OAM sorter
and polarizing beam splitters [15].
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The states can be defined as

ψ± = 1√
2

(|H, E〉 ± |V, O〉) ,

φ± = 1√
2

(|H, O〉 ± |V, E〉) . (10)

The SOBA operation for photon 1 can be represented by a polarization-controlled
OAM CNOT (pCrmo) gate and a polarization Hadamard (Ho) gate operation with sub-
sequent detection. Similarly, theSOBAfor photon 3 is anOAM-controlled polarization
CNOT (oCp) gate and OAMHadamard (Ho) gate operation with subsequent detection.
Experimental schemes for these single-particle two-qubit CNOT gates and SOBA are
given in Sect. 4.1.

By substituting the single-particle spin–orbit Bell states into a three-particle wave
function in Eq. (8), we get

|Ψ 〉123 = 1

4

1∑

x,y=0

1∑

x ′,y′=0

|Φxy〉1|Φx ′y′
q 〉3⊗Γx,y,x ′,y′ (α|H〉2 + β|V 〉2) (a|E〉2+b|O〉2),

where |Φxy〉1 and |Φx ′y′
q 〉3 are single-particle spin–orbit Bell states corresponding to

the photons 1& 3, respectively. Γx,y,x ′,y′ is a transformation matrix for the spin–orbit
state of photon 2. It has been introduced for the compact representation of the 16 states
of photon 2 given in Table 1. After the SOBA measurements on the photons 1 and 3,
state of the photon 2 becomes

|Ψ (D|Φxy〉1|Φx ′ y′
q 〉3)〉2 = 1

4
Γx,y,x ′,y′ (α|H〉2 + β|V 〉2) (a|E〉2 + b|O〉2), (11)

the state corresponding to a detection of |Φxy〉1|Φx ′y′
q 〉3 in SOBAs.

The states corresponding to all possible SOBA outcomes are given in the first and
the second columns of Table 1. Note that the information encoded in the polarization
state of the photon 1 is transferred to theOAMstate of the photon 2 and the information
encoded in the OAM state of the photon 3 is transferred to the polarization state of the
photon 2. So, to get the initial state, Bob has to do a swapping (USWAP) between the
OAM and the polarization along with other unitary transformations which use only
polarization operations. These operations can be implemented with the standard wave
plates which makes the experimental realization of this method more feasible.

There are 16 possible outcomes for Alicemeasurements which demand 16 different
unitary operations by Bob to complete the teleportation protocol. Alice communicates

her measurement outcome (|Φxy〉1|Φx ′y′
q 〉3) classically to Bob. Bob does the corre-

sponding unitary transformation Û (given in the third column of Table 1) on state of
photon 2 to get

|Ψ 〉2 = (a|H〉2 + b|V 〉2) (α|E〉2 + β|O〉2). (12)

which completes the teleportation of unknown state given in Eq. (9).
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Table 1 Wave function corresponding to Bob’s photon and the required unitary transformation correspond-
ing to Alice’s measurement outcome

Measurement outcome State of Bob’s photon Unitary transformations (Û )

|φ+φ+〉 (α|V 〉 + β|H〉) (a|O〉 + b|E〉)
[
I o ⊗ σ

p
1

]
∗USWAP ∗

[
σ
p
1 ⊗ I o

]

|φ+φ−〉 (α|V 〉 − β|H〉) (a|O〉 + b|E〉)
[
I o ⊗ σ

p
1

]
∗USWAP ∗

[
iσ

p
2 ⊗ I o

]

|φ−φ+〉 (α|V 〉 + β|H〉) (a|O〉 − b|E〉)
[
I o ⊗ iσ

p
2

]
∗USWAP ∗

[
σ
p
1 ⊗ I o

]

|φ−φ−〉 (α|V 〉 − β|H〉) (a|O〉 − b|E〉)
[
I o ⊗ iσ

p
2

]
∗USWAP ∗

[
iσ

p
2 ⊗ I o

]

|ψ+ψ+〉 (α|H〉 + β|V 〉) (a|E〉 + b|O〉) [
I o ⊗ I p

] ∗USWAP ∗ [
I p ⊗ I o

]

|ψ+ψ−〉 (−α|H〉 + β|V 〉) (a|E〉 + b|O〉) [
I o ⊗ I p

] ∗USWAP ∗
[
σ
p
3 ⊗ I o

]

|ψ−ψ+〉 (α|H〉 + β|V 〉) (a|E〉 − b|O〉)
[
I o ⊗ σ

p
3

]
∗USWAP ∗ [

I p ⊗ I o
]

|ψ−ψ−〉 (−α|H〉 + β|V 〉) (a|E〉 − b|O〉)
[
I o ⊗ σ

p
3

]
∗USWAP ∗

[
σ
p
3 ⊗ I o

]

|φ+ψ+〉 (α|H〉 + β|V 〉) (a|O〉 + b|E〉)
[
I o ⊗ σ

p
1

]
∗USWAP ∗ [

I p ⊗ I o
]

|φ+ψ−〉 (−α|H〉 + β|V 〉) (a|O〉 + b|E〉)
[
I o ⊗ σ

p
1

]
∗USWAP ∗

[
σ
p
3 ⊗ I o

]

|φ−ψ+〉 (α|H〉 + β|V 〉) (a|O〉 − b|E〉)
[
I o ⊗ iσ

p
2

]
∗USWAP ∗ [

I p ⊗ I o
]

|φ−ψ−〉 (−α|H〉 + β|V 〉) (a|O〉 − b|E〉)
[
I o ⊗ iσ

p
2

]
∗USWAP ∗

[
σ
p
3 ⊗ I o

]

|ψ+φ+〉 (α|V 〉 + β|H〉) (a|E〉 + b|O〉) [
I o ⊗ I p

] ∗USWAP ∗
[
σ
p
1 ⊗ I o

]

|ψ+φ−〉 (α|V 〉 − β|H〉) (a|E〉 + b|O〉) [
I o ⊗ I p

] ∗USWAP ∗
[
iσ

p
2 ⊗ I o

]

|ψ−φ+〉 (α|V 〉 + β|H〉) (a|E〉 − b|O〉) [
I o ⊗ I p

] ∗USWAP ∗
[
iσ

p
2 ⊗ I o

]

|ψ−φ−〉 (α|V 〉 − β|H〉) (a|E〉 − b|O〉)
[
I o ⊗ σ

p
3

]
∗USWAP ∗

[
iσ

p
2 ⊗ I o

]

σ
p
1 , σ

p
2 , σ

p
3 are Pauli matrices for polarization, I p and I o are identity matrices for polarization and OAM

A SWAP operation is equivalent to consecutive pCo, oCp and pCo gate operations.
Since the operation done in polarization will be transferred to the OAM after the
SWAP operation, one can perform all the operations in polarization which are well
known. Two half-wave plates before and after the SWAP gate can perform 16 unitary
operations which is required for the teleportation. A circuit diagram of the proposed
scheme is given in Fig. 4.

4.1 Experimental realization of pCo, oCp gates and SOBA

A polarization-controlled OAM CNOT gate can be implemented using a modified
Mach–Zehnder interferometer where the normal beam splitter is replaced by a polar-
izing beam splitter (PBS) as shown in Fig. 5. The reflected arm of the interferometer,
through which the vertically polarized photons travel, contains a spiral phase plate
(SPP) of order 1 which will convert the even OAM state to odd and vice versa. On
the other arm with horizontally polarized photons, the OAM state remains unchanged.
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Fig. 4 Circuit diagram for proposed teleportation scheme. Single/double lines quantum/classical commu-
nication channels, arrow measurement. Û—unitary transformation given in Table 1

Fig. 5 Experimental scheme for
the implementation of
polarization-controlled OAM
CNOT gate (pCo). PBS
polarizing beam splitter, SPP
spiral phase plate, GB glass
block

These states superpose at the second PBS and emerges as a single pCo gate output. A
glass block is introduced to compensate the extra phase introduced by the SPP.

We pursue a similar method to construct the OAM-controlled polarization CNOT
gate. For that, we need to use a beam splitter which transmits the photons with even
OAM state and reflects the photons with odd OAM state. This can be achieved by an
OAM sorter [17]. We replace the two PBSs in the previous setup with OAM sorters,
and instead of the SPP, we use a half-wave plate at 45◦ in one arm that transforms the
polarization state to its orthogonal state. The schematic of the setup is given in Fig. 6.
The OAM sorter is another Mach–Zehnder interferometer containing dove prisms in
each arm with a relative angle of 90◦.

The spin–orbit Bell state analysis with OAM in the even/odd states is explained by
Khoury and Milman [15]. However, in the present protocol, the SOBA in photon 1
and photon 3 differ slightly in their implementation. As shown in Fig. 7, two Mach–
Zehnder interferometers with OAM sorters (OS) and polarizing beam splitters with
photon detectors can implement SOBA. For the photon 1, the block 1, Fig. 7, is an
OAM sorter and the blocks 2 and 3 are polarizing beam splitters. For SOBA in photon
3, the block 1 is a PBS, while the blocks 2 and 3 are OAM sorters. Detection on each
of the detector will indicate the corresponding spin–orbit Bell state of the photon.

Here are the advantages of the described teleportation scheme

(i) As evident from the scheme, the number of particles required to teleport two
independent qubits are reduced by 25% by taking advantage of an extra DOF
per photon.
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Fig. 6 Experimental scheme for the implementation of OAM-controlled polarization CNOT gate (oCp).
DP dove prism, BS 50:50 beam splitter, HWP half-wave plate

Fig. 7 Experimental scheme for
the implementation of SOBA in
photon 1/3. OS OAM sorter,
PBS polarizing beam splitter, BS
50:50 beam splitter

(ii) We use single-particle two-qubit Bell measurement instead of two-particle joint
Bell measurements. Its implementation is experimentally simple, and one can
achieve 100% efficient Bell state measurement and hence the teleportation.

(iii) In our scheme, Bob need not to do unitary transformations on the OAM, since
the same can be implemented by operations on the polarization before and after
the SWAP.

(iv) The described three-particle hyper-entangled states can be utilized for a multi-
party teleportation scheme with two senders and a common receiver. Here Alice
and Charlie, with no entanglement channel between them, share photons 1 and 3.
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The combined polarization–OAMquantum state ofAlice’s andCharlie’s photons
will be teleported to Bob who carries photon 2.

5 Quantum key distribution

Theoretically, the entanglement-based QKD protocols are equivalent to the non-
entanglement-based ones (such as BB84). However, in practice, due to the strong
quantum correlation and non-locality [24–28], the entanglement-based protocols are
regarded more useful (for example, they have intrinsic randomness of the distributed
key and extremely low probability of double photons). In recent years, entanglement
in two degrees of freedom such as polarization and OAM has led to interesting appli-
cations in cryptography [29,30].

Here we are proposing a QKD protocol using the entangled system described in
Sect. 2. We take a similar state as in Eq. (2) given by

|Ψ 〉123 = |ξp〉1 ⊗ (|00〉12 + |1 − 1〉12 + | − 11〉12)
⊗ (|HH〉23 + |VV 〉23) |χo〉3,

where |0〉, |1〉 and | − 1〉 are the OAM states of photons. Here we take a three-
dimensional subspace of infinite-dimensional OAM entangled state produced by
SPDC process with Gaussian beam as pump instead of even/odd entangled state.

The experimental implementation of the protocol is shown in Fig. 8. Alice will
receive photon 2 and Bob will receive photons 1 and 3, respectively. Photon 2 is
entangled with photon 3 in polarization, and it is entangled with photon 1 in OAM.
The photons 1 and 3 do not have any correlation. Alice will measure both OAM and
polarization states, Bob will measure polarization of photon 3 and OAM of photon 1.

Alice and Bob randomly measure polarization states of their respective photons
in the following set of basis (γi = 0◦, 22.5◦, 45◦, 67.5◦), (δi = 22.5◦, 45◦, 67.5◦,
180◦), respectively. These measurements can be done by a half-wave plate and polar-
izing beam splitter. Note that γi/2 and δi/2 are the fast axis orientation angles of the
half-wave plates. Each angle represents a basis which is used for measurement, and
corresponding to each of them, there are two measurement outcomes. The pairs of
angles used by Alice and Bob for which the sum is 0◦, and 180◦ will give perfect
correlation between them. The data corresponding to these correlated photons have
same bits and can be used for the key. Alice and Bob will compare their polarization
measurement basis for the key distribution as well as for the security of the key. After
sufficient number of measurements, 4/16 of the data are useful for key, two sets of
4/16 of the data are used to check CHSH inequalities (S and S′), and the remaining
4/16 are discarded due to unmatched bases.

For the OAM correlation of entangled photons, we follow the key sharing scheme
used in [31]. In this scheme, Alice and Bob measure the OAM state of their photons in
three different randomly chosen bases A1, A2, A3 and B1, B2, B3, respectively. This
is done by a pair of shifted holograms and an OAM sorter. The set of bases (A3 and
B3) has perfect correlation, and the coincidence corresponding to it can be used to
generate the key. Alice and Bob will compare their hologram settings for QKD and
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Fig. 8 Schematic diagram for quantum key distribution between Alice and Bob. Photons 1–2 have OAM
entanglement, and 1–3 have polarization entanglement. Di detectors,HWP half-wave plate, PBS polarizing
beam splitter

security check. In total, there are nine possible measurements. After taking sufficient
number of measurements, 1/9 of the produced data can be used for the key. For Bell-
type inequality check, 4/9 of the data will be used which confirms the security of the
key and the remaining 4/9 of the data are redundant.

The security of the protocol is mainly checked by the violation of Bell’s inequality
test. All the three parties should check Bell-like inequality with their data in order to
check eavesdropping. If there is a violation of inequality, entanglement is preserved
and there is no eavesdropping in the channel. The CHSH parameters S and S′ for
photons entangled in the polarization DOF are given by Clauser et al. [32]

S = E(γ1, δ1) − E(γ1, δ3) + E(γ3, δ1) + E(γ3, δ3) (13)

S′ = E(γ2, δ2) + E(γ2, δ4) + E(γ4, δ2) − E(γ4, δ4) (14)

with
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Table 2 Description of data
usage corresponding to Alice’s
and Bob’s measurement angles

Here S and S′ are used for
security check through CHSH
inequality, and × is the
discarded data

Alice γ1 γ2 γ3 γ4

Bob

δ1 S Key S ×
δ2 × S′ Key S′
δ3 S × S Key

δ4 Key S′ × S′

E(γi , δ j ) = R12(γi , δ j ) + R1′2′(γi , δ j ) − R12′(γi , δ j ) − R1′2(γi , δ j )

R12(γi , δ j ) + R1′2′(γi , δ j ) + R12′(γi , δ j ) + R1′2(γi , δ j )
(15)

where R12, R1′2′, R12′ and R1′2 are the coincidences P(D11, D9 + D8 + D7),
P(D10, D4 + D5 + D6), P(D11, D4 + D5 + D6) and P(D10, D9 + D8 + D7),
respectively.

For any local realistic theory, the CHSH parameters S, S′ ≤ 2. Non-local nature of
the entanglement will violate any of these inequalities, and this violation can be used
for checking the security of the key shared by Alice and Bob. The combination of γ

and δ for Bell’s inequality test and for the key distribution is given in Table 2.
Photons 1 and 2 have OAM correlation, so it will violate the following Bell’s

inequality for three-dimensional case [31,33]

S = P(A1 = B1) + P(A2 = B1 − 1) + P(A2 = B2) + P(A1 = B2)

−P(A1 = B1 − 1) − P(A2 = B1) + P(A2 = B2 − 1) + P(A1 = B2 + 1)

(16)

≤ 2, (17)

where

P(Aa = Bb + k) =
2∑

j=0

P(Aa = j, Bb = ( j + k)Mod 3). (18)

The shifts of holograms are chosen in such a way that they maximally violate the
Bell-type inequality. j = 0, 1, 2 corresponds to the detection ofOAMstates 0, 1 and−1,
respectively. The coincidence measurements with the combinations of P(D1, D6 +
D9), P(D1, D5 + D8), P(D2, D4 + D7), P(D2, D6 + D9), P(D2, D5 + D8),
P(D2, D4 + D7), P(D3, D6 + D9), P(D3, D5 + D8) and P(D3, D4 + D7) are
required for the key distribution and to check the security of the key using Eq. (16)
and (18).

Our protocol has three advantages compared to traditional Ekert protocol [3].

(i) If Ekert protocol is used, then around 4n pairs of photons, i.e., 8n photons (in
practice, little more than 8n), are required to establish a secret key of length n
between Alice and Bob. In our approach, around 6n photons would be required for
the same purpose. Hence, in terms of number of photons required, Ekert’s protocol
is 33% less efficient than ours.
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(ii) On the other hand, if the same number of photons are used in Ekert and our protocol
and if the target key length is also the same, then because of more entanglement
resource, our protocol would have more redundancy and hence can tolerate more
noise. It is easy to see that the security in each degree of freedom is equivalent to
that of the Ekert protocol.

(iii) Further, this state can be used for multi-party QKD. Photons 1, 2 and 3 can be dis-
tributed among Alice, Bob and Charlie, respectively. Now, two sets of independent
keys can be generated, one for Alice–Bob and another for Alice–Charlie.

6 Conclusion

Possibility of a new entangled state and its application in teleporting a two-qubit
OAM–polarization quantum state and in the QKD have been discussed. The new
teleportationmethodovercomes thedifficulty ofmeasuring in two-particle polarization
Bell basis, by implementing independent single-particle two-qubit Bellmeasurements.
The method critically depends on the experimental realizations of polarization CNOT
gate aswell as single-particle two-qubitCNOT gates. All the 16 unitary transformations
which are required for this teleportation scheme can be realized with linear optical
components along with a SWAP gate. Once the state given in Eq. (8) is achieved, one
can have a 100% efficient teleportation of two simultaneous qubits. Extending this to
higher dimensions is mathematically trivial though creating entanglement in different
DOFs has experimental limitations. With the new QKD protocol, the sender and the
receiver need to use less resource than traditional Ekert protocol to share the secret key
of the same length. Multi-party schemes also can be developed for the teleportation
and the QKD using the described protocols.

Acknowledgments Authors wish to acknowledge Prof. Anirban Pathak, JIIT, Noida, for fruitful discus-
sions and suggestions.
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