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Abstract

The relativistic description is an inevitable choice to study heavy atoms and ions
as it is the simplified model within the fundamental description given by quantum
electrodynamics (QED). The precision of atomic experiments have reached a
stage where it is possible to test the theory of QED precisely in small atomic
systems. Recent progress in the study of highly charged ions motivates us to
investigate the QED effects in heavy atoms and ions. It is a challenging problem
to take into account the QED effects and electron correlation simultaneously.
The QED effects are studied in great detail in hydrogen like systems and it is
important to mention that the present CODATA recommended value of the fine
structure constant originates from such a system.

The simplified description of a many electron atom in the framework of rel-
ativistic quantum mechanics is through the Dirac-Coulomb Hamiltonian, HP°.
G. Breit derived a more appropriate Hamiltonian to incorporate the relativis-
tic corrections to the static Coulomb interaction. For heavy atoms and ions,
the Dirac-Coulomb-Breit Hamiltonian (HP“B) is an appropriate choice. How-

HPCB. Brown and Ravenhall

ever, there are complications associated with the
showed that the HPC as well as HP°P are not bounded from below, and these
lead to variational collapse and continuum dissolution. Later, Sucher [1] showed
that this catastrophe can be avoided by using projection operators and proposed
a no-virtual-pair approximation (NVPA). In this approximation, one projects
out the negative energy part of the spectrum. In this way we can treat the
Coulomb and Breit interactions on the same footing. According to Lindgren [2],

the effects which are not considered in the NVPA approximation are the QED

effects. These are the radiative effects and the non-radiative effects. Breit inter-

vil
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action is considered as the QED effects as it can be derived from the lowest order
one photon exchange between electrons. The radiative effects include vacuum
polarization and self-energy corrections, which are known as the Lamb-Shift in

many electron atoms. In this thesis we consider the HP¢B

along with the vacuum
polarization correction.

The coupled-cluster theory (CCT) [3, 4] which was initially developed to
study many body problems in nuclear physics, is a powerful and elegant method
to solve the atomic many body problem as well. In the CCT the electron-electron
correlation effects are taken to all order. Most of the relativistic coupled-cluster
(RCC) calculations take into account the single and double excitations to all or-
der and hence, in literature they are widely known as the RCCSD methods. Due
to the complex angular momentum algebra and computational cost, the genuine
triple excitations are difficult to incorporate in the RCC calculation. Several
groups use the approximate triple excitations to estimate the correction from
the triple excitations. In the present thesis we consider the triple excitations
up to all order in the RCC theory. In the present work we also develop per-
turbed relativistic coupled-cluster (PRCC) theory to calculate different atomic
properties. The PRCC theory is different from the previous RCC-based theo-
ries in a number of ways. The most important one is the representation of the
cluster operators in the PRCC theory. The cluster operator can be a rank-1
tensor operator and it has the advantage of incorporating multiple perturbations
of different ranks in the electronic sector. With the RCC wave-function which
incoporates the vacuum polarization correction and the Breit interaction correc-
tion, we examine several important atomic properties. To mention a few, the
effect of triple excitation to the correlation energy of closed shell atoms and the
removal energies of one valence atoms. We investigate the dipole polarizability
of closed shell atoms with the PRCC theory. The influence of Breit interaction
and the QED effects in the dipole polarizability is discussed in great detail.

Keywords : Vaccum Polarization, Bound state QED, Breit interaction,
Coupled-cluster theory, Perturbed relativistic coupled-cluster theory, Triple ex-

citations, Dipole Polarizability.
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Chapter 1

Introduction

Quantum electrodynamics describes the interaction between electrons and pho-
tons at the fundamental scale. It was mainly developed by Schwinger, Tomonaga,
Feynman and Dyson [5-12] in the late 1940s. The theory is one of the most suc-
cessful one in modern physics. It has been tested to very high precision in the last
few decades. An example is the anomalous magnetic moment of the electron and
the fine structure constant. To be more precise, the anomalous magnetic moment
of the electron is determined both experimentally [13] as well as theoretically [14]
with parts-per-trillion accuracy.

The small atomic systems are suitable to study the QED effects because of
their simple atomic structure. One special advantage is that in an atom the
bound electrons always experience the presence of electric field of the nucleus,
and thus atom acts like a small laboratory to precisely determine the QED effects.
With the increase in Z, the average electric field on the bound electrons increases
with to factor of ~ 10° from Z = 1 to Z = 92 [15]. The electrons at the
innermost orbitals experience the strongest electric field. To describe such atomic
systems very precisely, one must account for the QED corrections. However,
computational complexities limit us to apply the theory to the simple atomic
systems. For one electron atom and hydrogen like ions, it is possible to treat the
QED effects analytically and presents less computational challenges than many
electron atoms and ions.

The enormous success of QED in calculating atomic properties like the tran-
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sition energies, is limited to a weak electric field. To elaborate let us take the
following example : the electric field strength at the surface of the Uranium nu-
cleus, which has a radius of 7.42 fm is E ~ 2 x 10" V/cm and the magnetic
field at the surface of the nucleus of 2 Bi is |B| &~ 10'? Gauss. Therefore, one
of the goals for near future is to describe the properties of such atoms in super
strong field. With the advent of powerful Lasers it is experimentally possible
to create such strong field in laboratory and test precisely the QED effects. To
describe such systems it is necessary to develop non-perturbative techniques in
QED. This will not only extend our understanding of the fundamental process
at the quantum scale, but also can lead to practical applications.

The theory of QED is well suited for one electron atom, but in the present con-
text we wish to study the QED effects in many electron atoms. The appropriate
point to start in relativistic atomic structure calculation is the Dirac-Coulomb
Hamiltonian. After the development of relativistic quantum mechanics in the
late 1930s, there was an effort to generalize the non-relativistic problems to the
relativistic domain. Here it is worth to mention that Dirac pointed out in his
pioneering work on quantum mechanics of many electron systems [16] that
“The general theory of quantum mechanics is now almost complete, the imperfec-
tions that still remain being in connection with the exact fitting in of the theory
with relativity ideas. These give rise to difficulties only when high-speed particles
are involved, and are therefore of no importance in the consideration of atomic
and molecular structure and ordinary chemical reactions, in which it is, indeed,
usually sufficiently accurate if one neglects relativity variation of mass with veloc-
ity and assumes only Coulomb forces between the various electrons and atomic
nuclei. The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely known,
and the difficulty is only that the exact application of these equations leads to
equations much too complicated to be soluble. It therefore becomes desirable that
approrimate practical methods of applying quantum mechanics should be devel-
oped, which can lead to an explanation of the main features of complex atomic

systems without too much computation”.
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After that, however, several developments have taken place in the field of
relativistic atomic structure calculations and it is now well established [17, 18]
that one needs the relativistic quantum mechanics for an appropriate description
of the multi-electron atoms. As we know the solution of the Dirac equation leads
to the positive and negative energy states, Dirac pointed out the existence of
negative energy solutions and proposed the idea of electron sea to prevent the
transition from the positive energy state to the negative energy state. This has
an important implications on the stability of atoms and molecules.

The Dirac Hamiltonian with the two electron Coulomb interaction is the nat-
ural choice to describe the many electron atoms. Later G. Breit [19] pointed
out the relativistic correction to the two electron Coulomb interaction. The
Dirac Hamiltonian is Lorentz invariant. So, the description of free electron in
the framework of Dirac equation is also appropriate. But when we use the two
electron Coulomb interaction along with the Dirac Hamiltonian, then it is not
Lorentz invariant. As Grant [20] pointed out that it has significant impact while
calculating the radiative transitions in atoms and it is appropriate to use the
Dirac-Coulomb-Breit Hamiltonian for a proper relativistic description. The neg-
ative energy states in the Dirac Hamiltonian motivated the development of a fun-
damental theory which consider an indefinite number of particles. The coupling
between the electron-positron field with the photon field is the basic ingredient
of QED. It correctly describes the radiative processes and collision processes by
using Feynman diagrams. The fundamental process that we consider as the QED
corrections in atoms are the vacuum polarization correction and self-energy cor-
rection [15]. These radiative corrections are shown in Fig. 1.1. Where the double
lines represents the bound electrons. The Fig. 1.1 (a) represents the self energy
part of the QED corrections in which a bound electron emits a photon and after
it reabsorbed after sometime. This self energy correction is the dominant QED
correction for hydrogen atom and hydrogen like ions because of small mass of the
electrons. Fig. 1.1 (b) is the vacuum polarization part of the QED corrections.
In this process the photon, which mediates the interaction between the nucleus

and the bound electron, creates virtual electron-positron pair. For heavy atoms



Chapter 1. Introduction 4

O

a) b)

Figure 1.1: Feynman diagram for (a) self-energy and (b) vacuum polarization of
bound electron.

and ions the vacuum polarization contribution to the orbital energies is signif-
icant and is comparable to the self energy process. For example, in hydrogen
like uranium, the combined contribution from the vacuum polarization and the
self energy to the K-shell electron energy shift is 266 eV. It is comparable to the
total 1S binding energy which is 132 KeV. The two above mentioned radiative
processes have ultraviolet divergence and requires special renormalization tech-
nique. However, we consider only the vacuum polarization process in the present
thesis work. The above discussion implies that the QED corrections in heavy
atoms and ions is important to study and have many practical consequences.

The QED corrections are considered in the perturbation expansion of the fine
structure constant, o & 1/137. Since the nuclear charge Z is important for heavy
atoms and ions, the QED perturbation expansion is considered in Z« [21].

The radiative correction in atoms was studied by Uehling [22] in his calcula-
tion of lowest order vacuum polarization correction in hydrogen like ions. After
Lamb and Retherford discovered the splitting of 2s,/; and 2p,/; states in hy-
drogen atoms [23], it is clear that the Dirac one electron theory in insufficient
for a proper description of atoms and ions. This is because the according to
Dirac theory the 251/, and 2p, , states are degenerate, but Lamb and Retherford
observed that those two states are non degenerate and the energy difference is
~ 1057 MHz. This ground breaking measurement pave the way to construct a
fundamental theory to describe the interaction between electrons and photons.

The objective of the present thesis is to study the QED effects in many elec-
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tron atoms. To be precise the initial development in QED takes up the issue
of single electron atoms and ions where the electron-electron correlation is com-
pletely absent. To take the electronic correlation it is important to start with
the Dirac-Hartree-Fock self consistent field theory. The relativistic self-consistent
field method was used by Swirles [24] in her remarkable work in the early days
of relativistic quantum mechanics. The pioneering work by Grant [25] and De-
sclaux [26] on the multiconfiguation Dirac-Fock method is the basis of relativistic
atomic structure calculations. The advantage of the MCDF method is that it can
take into account some part of the many body contributions like the correlation
energy which is neglected at the relativistic SCF method. As first pointed out
by Brown and Ravenhall [27], the use of Dirac-Hartree-Fock Hamiltonian implies
the inclusion of the negative energy solutions and it leads to the variational col-
lapse and continumm. dissolution. Later, J. Sucher [1] showed that the problem
can solved theoretically by using the projection operators technique and it can
be used to projects out the negative energy solutions. The construction of the
projection operator is purely theoretical as one need to know the complete set
of eigenstates to construct the projection operator. However, in practical calcu-
lations it is not possible to construct the complete set of eigenstates a priori. In
numerical computation with the finite basis sets, we use the kinetic balance con-
dition [28, 29] between the large and the small components of the four component
radial wave-function to avoid wvariational collapse and continuum dissolution.
Principally two techniques are used to incorporate the correlation along with
the QED effects in many electron atoms. In one approach one uses the perturba-
tion expansion in o and Za with Hyllerass [30] type relativistic wave-function.
The advantage is that the correlation is in built in the wave-function and we can
directly calculate the QED effects. This method is suitable for low-Z atoms and
ions, and has been used extensively by Drake et al. [31, 32] and Pachucki et al.
[33, 34]. In this kind of calculations the electronic correlation is taken accurately
but can not be applied to heavy atoms and ions. The second approach is based on
the finite basis set expansion of single particle relativistic wave-functions. This is

used in the present thesis. This approach is used extensively in atomic as well as
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molecular physics calculations. To mention a few by Grant et al. [35], Johnson et
al. [36] and Das et al. [37]. Here, the advantage is that as Z increases the inner
electrons are relativistic and are well described by the single particle Dirac equa-
tion. However, the effects of correlation is missing in this kind of calculation. We
can take the QED effects precisely within the description of single particle wave
function by incorporating the QED Hamiltonian along with the Dirac-Coulomb-
Breit model. To incorporate the correlation effects it is important to go beyond
the Dirac-Hartree-Fock model.

In the post Hartree-Fock period several many body methods were developed
to incorporate the electron correlation precisely. The many body perturbation
theory (MBPT) is one of the earliest approach to take into account the electron
correlation in atomic physics calculations [38]. The relativistic version of time
independent MBPT treat electron correlation to arbitrary order. But, with the
increase in the order of perturbation the complicacy of the diagrams increases
and after third order it us difficult to consider all the terms.

The coupled-cluster theory (CCT) [3, 4] is one of the most elegant many
body theory which incorporates the electron correlation to all order. The details
of the CCT and different variants are described in a recent review [39]. The
theory has been widely used for atomic [40-43], molecular[44], nuclear [45] and
condensed matter physics [46] calculations. As pointed out by Lindgren [47],
we can directly incorporate the QED effects in the wave-function and leads to a
covariant formulation. It is also important to mention that appropriate starting
point to incorporate the QED effects is to start with the S-matrix formalism as
described by Mohr et al. [15]. There are other techniques in the literature to
consider the QED corrections like the two times Green’s function by Shabaev
[48] and the covariant evolution operator technique by Lindgren et al. [49]. The
latter two techniques are appropriate choice for many electron systems because
it can treat the quasi degeneracy systematically. These techniques are relativis-
tically covariant and use Feynman gauge, and can handle more than one photon
exchange effects. In the present work we only focus on the leading order one pho-

ton exchange corrections to the Coulomb interaction. The QED effects at the
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lowest order of perturbation theory consist of the vacuum polarization correction
and the self energy effects. It is important to mention that vacuum polarization
and the self energy effects are most important for QED correction after Breit
interaction.

In the present thesis we incorporate the vacuum polarization effect and the
Breit interaction correction to the wave-function in DHF theory. We use these
DHF wave-function as the reference state wave-function for the RCC theory.
Then Breit interaction correction is then incorporated in the two electron inte-
grals in the RCC theory. Along with this we consider the triple excitations in the
RCC theory to estimate the contribution from it to the different atomic proper-
ties. We introduce perturbed relativistic coupled-cluster theory (PRCC) [50, 51]
to incorporate multiple perturbations in a many electron atom. The PRCC the-
ory has the potential to take into account different kind of perturbation in a
systematic way. We demonstrate the power of PRCC theory by evaluating the

static dipole polarizability of closed shell atoms and ions.

1.1 Thesis overview

In chapter 2, we discuss about atomic MBPT with QED effects. We introduce
the relativistic Dirac-Coulomb Hamiltonian and discuss the importance of Breit
interaction. In this chapter we derived the general expression of Breit interac-
tion from the one photon exchange process in QED. We then derive the form
of Uehling potential which is the leading order correction in vacuum polariza-
tion. We follow the convention of natural units to derive the expression. We
then, introduce the MBPT and describe how we consider the QED effects in the
framework of MBPT. We introduce the Gaussian type finite basis set which we
consider for the numerical calculation. We then explain, about the optimization
of the basis set by comparing our values of the SCF energy and the orbital ener-
gies from the GRASP92 code [52]. We present our results of the correction due
to Breit interaction and vacuum polarization to the orbital energies and SCF

energy in subsequent part. We end the chapter with a discussion on the Breit
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interaction contribution to the correlation energy of noble gas atoms.

In chapter 3, QED effects in closed shell atoms is investigated with relativis-
tic coupled-cluster theory. In this chapter we introduce the triple excitations
in the RCC theory and the diagrammatic representation of triple exciations to
calculate angular momentum diagrams. We then, discuss about the RCC am-
plitude equations with triple exciations in great detail. Next we introduce the
perturbed relativistic coupled-cluster theory to incorporate external or internal
perturbations in atomic system. For example, we discuss about the static electric
field as the external perturbation in many electron atoms in the present context.
We derive the PRCC amplitude equations and presented the details of the non-
linear PRCC diagrams. The general PRCC theory is discussed extensively in
this chapter.

In chapter 4, QED effects in open shell atoms with RCC theory is studied The
triple excitations contribution to the removal energies of ground state and low
lying excited states are discussed. We also study the electric dipole transition
amplitudes by using the RCCSDT wave-function.

In chapter 5, the static dipole polarizability of closed shell atoms and ions is
discussed. We introduce the static dipole polarizability from the time indepen-
dent perturbation theory and derive the equivalent expression in RCC theory. We
apply the PRCC theory to calculate the static dipole polarizability with Dirac-
Coulomb-Breit Hamiltonian. We begin with Neon, as it is one of the noble gas
atoms with small Z. We investigate the term wise contribution from non-linear
PRCC theory to the dipole polarizability of Neon. Next we study the other heavy
noble gas atoms and discuss about the importance of Breit interaction in heavy
atoms. We also calculate the static dipole polarizability of alkali-metal ions and
doubly ionized alkaline Earth metal ions using PRCC theory. We demonstrate
the core polarization and pair-correlation effects. We end the chapter with a
discussion on the theoretical uncertainty in our calculations.

Chapter 6 covers the conclusions and future direction of the present work.
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1.2 Units and notations

In relativistic quantum mechanics and quantum field theory, it is convenient
to use natural unit system. In this system the action, which is energy times
time is measured in A and velocity is defined in units of ¢. In natural units the
permittivity of vacuum, €, is unity, so the permeabiity of the vacuum, pyg is also
unity. Therefore, in natural units h = ¢ = ¢g = pg = 1. The fine structure

constant, « is

62

(1.1)

The natural units are convenient to use while deriving the expression of Uehling
potential and Breit interaction. However, for the numerical computation we use
the atomic units. In this unit system, m. = ¢ = h = 4mey = 1. Here, m, is
the mass of the electron. Therefore the fine structure constant in atomic unit is
simply the inverse of the velocity of light. For which we use the latest value rec-
ommended by CODATA in numerical calculation and it is o' = 137.035 999 074
[53].

For the relativistic calculation we use the following notation of metric tensor

1 0 0 0
0 -1 0 0
Guv = (12)
0O 0 -1 0
0 0 0 -1

In this thesis the Greek indices (u,v = 0, 1, 2, 3) are used to represent the
component four vectors and Latin indices (7, j, k = 1, 2, 3) are used to represent

the component of three vectors.



Chapter 2

Many Body Perturbation Theory
with QED effects

The QED effects in many electron atoms and ions are possible to test experi-
mentally with high accuracy. In many electron atoms and ions along with QED
effects, the electron correlation correction is very important. MBPT has proven
to be successful to a certain level to take into account the electron correlation in
a systematic way. The electron correlation effects in MBPT are treated pertur-
batively in order by order. For a closed shell atom the model space in MBPT
is constructed using a single Slater determinant. So the closed shell atoms and
ions are the ideal testing grounds of QED. Since the complicacy of QED calcu-
lation increases very rapidly with the order of perturbation, we treat the QED
correction in lowest order of perturbation theory, i.e, lowest order in Z«a in the
framework of relativistic MBPT.

The chapter is organized as follows: In section 2, we introduce the Dirac-
Coulomb Hamiltonian and its importance in the relativistic atomic structure
calculation. In the next part, we discuss about the Breit interaction in the frame-
work of QED. The VP correction to the many electron atom is described in great
detail in section 2.1. The Dirac-Coulomb-Breit Hamiltonian together with the
QED corrections to the nuclear potential is the starting point of the MBPT for
closed and open shell atoms in the present work. In section 2.4, we introduce

the single particle wave-functions for the SCF calculation. The matrix element

10
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of Breit interaction is discussed in section 2.5. Section 2.6 contains the detailed
description of the generalized Bloch equation with the relativistic Hamiltonian
in atomic MBPT. We introduce the diagrammatic MBPT to calculate the corre-
lation energy of closed shell atoms in section 2.7. In subsequent part we discuss
in great detail the results from Breit and QED correction to the orbital energy in
the SCF method. We also demonstrate the importance of considering the Breit
interaction in the calculation of correlation energy of closed shell atoms. Based

on the above mentioned results, we end the chapter with subsequent conclusion.

2.1 Relativistic Hamiltonian for atomic calcu-
lation

In the relativistic atomic structure calculations it is important to consider the
relativistic as well as the correlation effects simultaneously. As a starting point
Dirac Hamiltonian with the Coulomb potential, referred to as the Dirac-Coulomb
Hamiltonian, HP¢, is an appropriate choice. For a N-electron atom or ion [18]

HPC = Z[cai-pi—i—(ﬁi—l)c2—Vz(7"i)]+ziv (2.1)

i=1 i<y Y
where, a; and the f; are the Dirac matrices, Vz(r;) is the nuclear potential,
Z (Z > N) is the nuclear charge and the last term represents the electron-
electron Coulomb interaction. The Hamiltonian, HP® is not gauge invariant.
A fully gauge invariant electron-electron interaction should be ideal as it is im-
portant for radiative transitions in atoms. To circumvent the problem partially
we consider the Breit interaction term in the atomic Hamiltonian. The full
Dirac-Coulomb-Breit Hamiltonian will be then an appropriate choice for atomic

structure calculations.

2.1.1 Breit interaction

The interaction between two Dirac particles for the one photon exchange process

can be represented using the Feynman diagram [54] in Fig. 2.1. The S-matrix
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Figure 2.1: Feynman diagram for lowest order one-photon exchange.

element of this process is

= —Z/d47"1/d47"2 j](‘l) T'Q DF(Tl _7'2)]}@)(7"1) (22)

Here Dp(r; —r3) is the photon propagator and jj(:;)r represents the transition

currents

i (n)
35 ) = B e () = i (e, (2.3)
We get this after separating the time dependent part in j}?) (r) and wj(f;) = Ej(t") —
Ef") is the transition frequency. Using the form of momentum space photon
propagator in Feynman gauge, the S-matrix element can be written as

d*k 2 —4 ;
:—Z/d47“1/d47‘2/ 4 jfz) I‘g)e ;)tzieﬂk-(mfm)jﬁ)(rl)e Fi (2 4)

k2 + ie

We separate the t; dependent part in the transition current and integrate it. So
the integral reduces to three dimensional integral and for the k— space integra-
tion, we choose the spherical coordinates. After solving the integral using the

techniques of complex analysis we obtain

(1)
wy; (t=Ir1—r2|)
=—i[|d dt §1( /d3 (L —6 . 2.5
Z/ TQ/ ]fz 1'27 T ]fl (I' ) ‘1‘1 —1‘2’ ( )

A(l) (ra2,t)

So the transition current j( )<I'2, t) interacts with the electromagnetic potential
A( )(rQ, t) arising from the other particle at an earlier time. And the time differ-

ence is |r; — ro| = |r; —ra|/c. So, the potential can be written as the retarded
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potential and for small velocity i.e. v < ¢ we can write the S-matrix element as
Sfi ~ —271'2(5(00]% —I—wﬁ))/d37‘2/d?’rlib?”(rg)dzﬁfﬁ(rl)(l -1 — A C¥2)

(g 12— i el ()0l r0) 26)

|r; — rof c 2
Here we consider only the lowest order term in the Taylor series expansion of
frequency dependent part.
The initial and final state wave-functions are assumed to be the stationary

eigenstate of the Dirac Hamiltonian.
HY = caW . p® 4+ g0 4 gl (2.7)
H, (Xt is the external potential present in the system. So we can write
HO () = EN¢ (),
HOYO () = B (). (2.8)

Similarly, there is an equivalent expression for H®. Now with the assumption

wj(c? = w](cz) we can get the following identity in terms of the Dirac Hamiltonian.

—whfry —wo| = [HO, [H®, o, — ]| (2.9)

The momentum operator does not commute with |r; — ro|. Using [p, f(x)] =

—iV f(x), we can rewrite

O . a® a.r —r,MHa® v —r
_w]%i|r1—r2|:02[a o | Ikclil B 2}] (2.10)
1 — 1o v — 12
Combining the above result, the S-matrix element can be written as
1-1
S = —2mid(w /d3 /d?’rwmrgdj ( Dy ——— —
[T — 1o
oy oz +{a;-nj{as-n
1 Q2 { 1-DH{on }}1/)(2)( W )(1‘1) (2.11)
2‘1‘1-1‘2’

Here n = (r; — rg)/|ry — | is the direction vector. The Eq. (2.11) represents
the interaction of two particles through an effective interaction U(x —y), which
is of the form

1 o - Oy + {al . ﬁ}{az . fl}
’I‘l—I‘Q‘ 2|I‘1—I'2’
= UC(I'l — I'Q) + UBr(rl - I'Q). (212)

U(ry —rg)

Y
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The first term in the above equation is the Coulomb interaction between two
particles and along with that we get a correction term Ug,; which is known as
the Breit interaction. This correction term to the electron-electron interaction
represents the magnetic interaction and the retardation. With the inclusion of
the Ug,, the Hamiltonian includes the lowest order one photon exchange process.
In Dirac theory the velocity operator is v; = cay;, so Ug, is quadratic in velocity.
In classical electrodynamics this correction to the Coulomb potential is known
as the Darwin term [55].

With the Breit interaction the total atomic Hamiltonian is

HPP = Z[Cai pit (B — 1) = Viv(r)] + Z[Tl” +g%(riy)l,  (213)

Where the last two terms, 1/r;; and g®(r;;), are the Coulomb and Breit interac-

tions, respectively. We can rewrite the Breit interaction as

1 . .
9" (r12) = o {041 TOp + (e I'12)2(062 Plz)] : (2.14)
T12 T1o

The Hamiltonian, HPP is the starting point of our relativistic atomic calcula-
tions and we shall discuss about the matrix element of Breit interaction and its

implementation in section 2.5.

2.1.2 Vacuum polarization

The photon which mediates the interaction between the bound electrons and the
nucleus in an atom can generate virtual electron-positron pairs. This polarizes
the vacuum and the effect is known as the vacuum polarization. In the lowest
order of coupling constant Zc, the photon propagates freely, but the creation
of e”e™ pair modifies the Coulomb field and effectively shifts the orbital energy
levels of many electron atoms. The Feynman diagram corresponding to the
first-order vacuum polarization process is shown in Fig. 2.2. The lowest order
non-vanishing contribution in VP correction comes from the Uehling potential
[22]. The Feynman diagram of the Uehling potential correction [56] is shown in

Fig. 2.3. To derive the functional form of Uehling potential we start with a point
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A

A

Figure 2.2: Feynman diagram for vacuum polarization.

charge —Ze. The charge density is

Ju(r) = —Z653(r)5#0. (2.15)

Fig. 2.3 represents the modified photon propagator by
—iGu . [ —i }2/ d4k:T i (—ie) i

T —(—ey) |,
¢ +ic q? +ie (2m)* F—m+ie W}é—g—m—i—ig

B [qu:is} L (9) [qz_jw} (2.16)

Here 1I,,,(q) is the polarization tensor and }é,ﬁ represents the four momentum.

(—ievu)

Figure 2.3: Feynman diagram for Uehling Potential Correction.

The momentum integral has two electron propagators which contains two k in
the denominator and therefore it diverges quadratically in k. Since the gauge

transformation does not physically shift the energy levels, one can write

¢"L,, = 0. (2.17)
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Using the Pauli-Villars regularization [57], the regularized polarization tensor,II,,

1s written as
ﬁuu(qam ) MU Q» + ZC I»W quQ) (218)

The use of the regularized polarization tensor, I_TW avoids the divergence. Here
C; and M; are the auxiliary functions chosen such that the integral converge. We
follow the treatment of ref.[54] to evaluate the VP potential. To calculate the
functional form of the potential we start with the modified photon propagator

D’.. The potential in the momentum space assumes the form

0) = [ e D) (o). (219)

After renormalization the polarization function is

62 2

(¢%) = 371nm7+HR( 7). (2.20)

Here A is the cut-off momentum. The first term in the above regularized vac-
uum polarization tensor consists of a constant term and a momentum dependent
part [1%(¢?). Using the renormalized vacuum polarization function, the modified

photon propagator is

Dl (g) = — 9 11 R 2] (2.21)

¢

and the momentum dependent regularized polarization tensor is of following form

2

i) =2 [assa-pw i+ Ssa-p] )

Therefore the modified potential of Eq. (2.19) is

A;L(r) = / (;ZW(§4 et [1 + HR(QQ)]AM((]). (2.23)

In the momentum space, the unmodified potential can be written as, A,(q) =
Dpuj¥(q). As mentioned earlier, we consider stationary charge in the present

case, thus j,(r) = j,(r). So the modified potential becomes

Ai(r) = / (;l;(§36iq'r[1 + HR(—qQ)]AO(q). (2.24)
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With the renormalized photon polarization function

Ag(r):/(;lzgeiqrg{l Za/ d33(1 — B)In [1+§;5(1—5)}}. (2.25)

The Fourier transform of the first term gives the ordinary Coulomb potential.
Along with the Coulomb potential we have the correction term. We eliminate the
logarithm using the techniques of partial integration and with the substitution
of v =28 — 1, the photon polarization function is

2 1 2 1 1,2
M7 (—q?) = O‘q/ do—- = 5% (2.26)
mdm? Jo 14 L (1 - 0?)

Using the techniques of complex analysis the potential is

_Z 1 2 1 — l 2 2m
Ab(r) = TG[HO‘/ a5V g )} (2.27)
0

T 1—902

With a transformation ¢t = /(1 — v2?) the modified potential is

S E— T za/ a1+ )Y L] (22)

r T 2t2 t2

The first term in Eq. (2.28) is the Coulomb potential and the second term is
the correction to the Coulomb potential. It is known as the Uehling potential
and this form of potential is suitable for numerical integration. So far we have
used the natural system of units, where 4 = ¢ = 1. For atomic calculations we
converted the above system of units to atomic units, i.e, m, = h = e = 4dngg = 1.
So for atomic calculations the Uehling potetial is

VUe(T)_—ZaZ/ dtW( 2t4) p[—%} (2.29)

3mr J;

The Eq. (2.29) represents the leading order VP correction to the electron nucleus
interaction for a point like nucleus. For heavy atoms nuclei are often modeled as
spherical distribution of charge. So, a finite size Fermi charge distribution model

of the nucleus is more appropriate [58] and it is defined as

Po

T (2.30)

PnuC(T) =

here a = t41n(3). The parameter c is the half charge radius so that puc(c) = po/2

and t is the skin thickness. For a consistent treatment of the nucleus-electron
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interaction, Vi (r) must be modified to account for the finite nuclear size. This
can be achieved by folding Vije(r) with the pyuc(r) [59]. Then the modified form
of the Uehling potential is [60]

Ve(r) :—E Ooodxxp(x)/l dt\/ﬁi(

o )(672ct|(r7m)\ _ 672ct(r+z))_

25
(2.31)

We implement Eq. (2.31) in the SCF calculation while generating the electron

orbitals.

2.2 Dirac-Coulomb-Breit Hamiltonian with Uehling
potential

Along with the Vie(r), the total atomic Hamiltonian of a many electron atom is

N

HPB = Z [cai- pi+ (Bi — 1) — Vi (ry) } + Z [ B(ry } (2.32)

=1 1<j
The first part of the HPCE consists of one-body operators. The V}(r;) is the
modified nuclear potential due to VP correction. The modified nuclear potential

has the form

Vi (ri) = Vz(ri) + Vue(r:). (2.33)

The second term in Eq. (2.32) consists of the two body operators which includes
the Breit interaction. The HPCP is an ideal starting point of relativistic atomic
structure and properties calculations. However, there are complications associ-
ated with HP®B. Brown and Ravenhall [27] have shown that the HPC as well as
HPCB are not bounded from below and these lead to variational collapse and con-
tinuum dissolution. Later, Sucher [1] showed that this catastrophe can be avoided

by using projection operators. Sucher proposed a no-virtual-pair approximation

(NVPA) Hamiltonian. In the NVPA approximation the total Hamiltonian is

N
FDCB _ +{ Z ca; - p; + — 1)t = Vi (ry) —1—2 [ r” ] }A++.

=1 1<j

(2.34)
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Where A, is an operator which projects to the positive energy solutions. Pro-
jecting the Hamiltonian with A, ensures that the effects of the negative energy
continuum states are neglected in the calculations. The NVPA Hamiltonian
incorporates the Breit interaction and represents the first order relativistic cor-
rection to the electron-electron interaction. In a other words, the NVPA Hamil-
tonian incorporate the magnetic interactions and the retardation effects to the
Coulomb interaction. From the QED point of view the Breit interaction takes
into account all the effects of order o and it is valid in the Coulomb gauge. On
the other hand the VP correction, which is a part of the Lamb shift incorporates
the effects of a® in QED perturbation theory.

2.3 Dirac-Hartree-Fock theory with QED effects

For many electron atoms and ions the eigen-value equation with the HPP is
HPB W) = B|1,). (2.35)

HPCB consists of the electron-electron interaction and be-

The two body part in
cause of this term the above eigenvalue equation is not exactly solvable. To solve
the eigen-value equation, the independent particle with central field approxima-
tion is a good starting point. In this model, the total wave-function of many
electron atoms is constructed from the anti-symmetrized single particle wave-
functions. This is the simplest model to describe many electron atoms [18, 61].

In this model we separate the HPB in to two parts, one is the solvable part or

zeroth order, Hpgr and the residual interaction part, V.

HDbCB { Z[Cai pi+ (Bi — 1) — Va(ry) + UDHF(Ti)]} +

i=1
N 1 N
{ Z[ﬁ + %) = UDHF(Ti)},
i<j Y i=1
= Hpur + Vies. (2.36)

Here, Uppr(r;) is the Dirac-Hartree-Fock (DHF) potential,

occ

Upie(re) = 3 [{alg(rylia) — {alg(ri)lai)]. (2.37)

a
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Here, g(r;;) = & + ¢®(ry;) is the two body part of HPE.
ij

a represents core
orbital and ¢ represents any orbital (core, valence or virtual). The Hpgr is the
solvable part of the Hamiltonian and this is further expressed as the sum of N
single particle operators.

Hpur = ZhDHF(Tz‘)~ (2.38)

i=1
The single particle DHF Hamiltonian is
z
hDHF(Ti) = ;- P; + (ﬁl — 1)02 — 7”7 — VUe(Ti) + UDHF(Ti) (239)
In this model the residual interaction part of the Hamiltonian is ignored at the
first step of calculation. Different many body methods like MBPT, CI, CCT

have been developed to account this term as accurately as possible.

2.4 Single particle wave-functions
The eigen-value equation with the single particle Hamiltonian, hpyg(r;) is

hDHF(ri)W)i> = 6i\¢z‘>- (2-40)

Here |1);) is the single particle wave-function and ¢; is the single particle energy.
To begin the calculation in the frame work of Dirac theory, the relativistic orbitals

are described by Dirac bi-spinors and in the central field model it is [62]

Unwm(T) = = (2.41)

1 PnR(T)Xﬂm(f‘)
" \iQnx (T)X—nm (f')

where, P,. and @,, are the large and small components of the radial wave-
function. The X, () is the Dirac spinor and it can be expanded in terms of

spherical harmonics,

1
Xem(T) = (Im — o, 50\jm>Ylm_"(9, ). (2.42)
o=+

[N

Where (Im—o, o[jm) is the Clebsch-Gordan coefficient, Y;™(0, ¢) is the spherical

harmonics and ¢ is the two-component spinor. An approximate method which
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can avoid the negative energy is the finite basis set and we consider the GTO’s
where radial part of the wave-function is defined as the linear combination terms

of Gaussian type functions [37, 63].

Pou(r) = Zcﬁpgnp()

Qui(r) = ZCpg,@p (2.43)

Where C,fp and C’,fp are the coefficients of the expansion, the index p runs over the
number of basis functions considered for each symmetry. The large component

of the Gaussian type functions is

gry(r) = Nfyree, (2.44)
where
n, = K+ 1fork>0;
= —kfor k <0. (2.45)

The Gaussian type functions of the small components are defined through the
kinetic balance condition [28].

d k
95,1) = N3y (5= + =) gk (r), (2:46)

Where N KLP and N,fp are the normalization factor for large and small component
of the radial wave-function. The exponents «a; depends on two parameters o
and f.

ap,=apBft, p=1,--- N, (2.47)

where the parameters o and § depend on the nuclear charge Z and number of
electrons N. We will discuss in detail how to choose these two parameters for
different atoms.

The finite basis approach to solve DHF equations numerically is well estab-
lished technique [37] and widely used for heavy atoms. Though we initially
discussed about the projection operator to circumvent the problem of negative

energy continuum, in reality it is only a theoretical and formal construction
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motivated from field theory. The use of kinetic balance condition [28, 29] be-
tween the large and the small components of the radial wave-function with the
proper boundary condition in the basis set is the essential ingredient of finite
basis calculation. In this thesis we use the GTO finite basis set method for all

computations.

2.5 Matrix element of the Breit interaction

To solve the DHF equation self-consistently we need to construct the matrix
element of the Breit interaction. There are two different approaches reported
in previous works to calculate the matrix element of Breit interaction, ¢” (r12).
The first approach [64] couples the angular parts of the orbitals with Dirac ma-
trices to give a linear combination of vector spherical harmonics. This is then
combined with the angular part of the orbitals. In the second approach [65, 66],
gB(r12) is expanded as a linear combination of irreducible tensor operators. In
the present work we use the latter and employ the expressions given in Ref. [63]
to incorporate ¢gZ(ry2) in the GTO calculations.

Coulomb and Breit interactions are scalar operators. These operators can be

written as the product of two tensor operators [18]

g(ri,ra) = ge(ry, r2) TH(R) - TH(R), (2.48)

Where g (71, 72) depends only on the radial coordinates and the tensor operator
T*(7) acts on the angular part. To calculate the matrix element of g(ry,72) we
use the Wigner-Eckart theorem

ja k jc jb k jd

(ablg(ri,ra)|ed) =) X*(abed), (2.49)

kg \Ma q Mg my g My

where X*(abed) is the effective interaction strength. For the frequency indepen-
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dent Breit interaction the effective interaction strength is defined as

Xb(abed) = (=" GallCH1lie) Gl ICH b { G 3o } { s ja )

v+1 4
X Z 7°(Ka, ke, K)T° (Kb, Ka, k Zr Y (abed) Rk (abed)
k=v—1 p=1
8
+7(Ka, Koy k — 1)7° (Kp, Ka, k Z st (abed) Sk abcd)}Q 50)
pn=1

The interaction strength for g”(ri5) is expressed in terms of the parity and
angular momentum selection rule and the reduced matrix elements of the C
o

tensor operators along with the radial integrals. The parity selection rule w

shows that it is odd parity. The reduced matrix element is

Ja ko Je

(GallCHlje) = (= 1) 2 ju, g 2 : (2.51)
1/2 0 —1/2
The radial integrals R};(abed) and S} (abed) are
R*(abed) = / drz/ Adr1Pac(11)Us(71,72) pra(r2) (2.52)
0 0
S*(abed) = / dTQ/ Ar1pac(r1)Wie(r1, r2) ppa(ra). (2.53)
0 0
In the above equation pu(r) = Pu(r)Qu(r),
1 _ _
Wi(ri,72) = =5 W Uea(r1,72) = O (0, 72). (2.54)

The U, is defined as

B /7"]Hl if <o
Uk(r1,m2) = (2.55)

0 if ry > 7.

So we can write

Ui(r1,m2) = Ug(r1,79) + Ug(ra, r1). (2.56)

The coefficients r Y and s are given in ref. [18, 66]. These coefficients are further
combined to calculate the matrix element of Breit interaction in the DHF theory.

We give the details of the Breit integrals in appendix A.
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The model space of a closed shell atom consist of a single Slater determinant.

For a closed shell atom the SCF energy is

occ

Eppr = Z {(a|hDHF|a> + %Z[(ab|g|ab> — (ba|g|ab)], (2.57)

a=1 b
Where the first term is the matrix element of the one-body part of the DHF

Hamiltonian. The second term is the matrix element of the two-body operators.
In the present work we will concentrate on the matrix element of the Breit

operator which is a two body operator.

2.6 Atomic MBPT

Various many body methods have been developed to incorporate the residual

HPCB. The many body perturbation theory (MBPT) systematically

part of
incorporates the V,es to higher orders. In the DHF theory we solve the the
Hpur self-consistently to obtain the single particle state |¢;). With the HPCB

we consider the eigenvalue equation
HPOBg = By, (2.58)

where a = 1,2,--- ,d, forms a subspace of the total Hilbert space constructed
from the HP“B. Let us assume that for each of the d solutions there exist a
corresponding zeroth order or model function W§. This model space is spanned
by the solutions of Hpyp. In this process, we split up the total Hilbert space into
two parts, the model space and the orthogonal space and we define the projection
operators for the model space and the complementary space as

P =3 [¢a){@al: Q=D ds) (5], (2.59)

B#a
where P+ (Q = 1. The zeroth-order wave functions are the projections of the

exact eigenfunctions on the model space, that is
Ui = PUe. (2.60)

We define a wave operator, {2 which plays the key role in MBPT. It transforms

the model space wave functions, ¥§ into the corresponding exact eigenfunctions,

e = QU (2.61)
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The wave operator can be determined from the Brillouin-Wigner perturbation
theory (BWPT) or Rayleigh-Schrédinger perturbation theory (RSPT). Ref. [61,
67] give a detailed overview of these perturbation techniques. We will follow the
latter approach to calculate the wave operator. To find an equation for the wave

operator we operate P from the left on Eq. (2.58),

PHY® = E*Vg,
PHQUG = EVg. (2.62)
This can be rewritten as
HgVy = B0, (2.63)

where, Hyg = PHQP is the effective atomic Hamiltonian. The above equation
implies that when H.g operate on zeroth order wave function, it produces the
exact energy eigenstates. Now if we operate Q on Eq. (2.63) from left then we

obtain
QPHQU{ = E*V) = BV = HQUg. (2.64)
From the expression of H.g , we get
QHeg = HQ. (2.65)

This is an important expression in terms of operators which does not depend on
energy explicitly. Since the zeroth order Hamiltonian, Hy, commutes with the
P operator. Here by zeroth order Hamiltonian we mean the solvable part of the

atomic Hamiltonian and in our case it is Hpgr. Then we can rewrite
[Q, Ho)P = (VQ — QPVQ)P. (2.66)

This is the generalized Bloch equation and was first formulated by Lindgren [68].

In perturbation theory we expand the wave operator as
Q=004+ 00 4+ 0® 4 ... (2.67)
With this, the generalized Bloch equation can be written as

QM) H|P = (VQ — QVig) ™ P, (2.68)
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Where Vg = PVQ. The above equation generates the Rayleigh-Schrodinger
perturbation expansion. This expansion contains unlinked diagrams. Based
on the linked cluster expansion, the unlinked diagrams are eliminated in the
Bruekner-Goldstone diagrammatic expansion [61, 69]. Therefore the generalized

Bloch equation takes the form
[ HolP = (VQ — QVig) ) P. (2.69)

This is an order by order expansion and the diagrammatic approach is simpler
to handle the perturbation theory. More conveniently Eq. (2.69) can be written
as

[€2, Ho|P = (V2 — QVegt )tinkea P (2.70)

The last term in Eq. (2.70) corresponds to the folded diagram that arise only in

open-shell atoms. For closed-shell atom the generalized Bloch equation is

QM Hy|P = [VQ(”‘”]hnkedP. (2.71)

In the perturbative expansion of €2, we write it as one-, two- , three,--- body
terms by using the second quantization method. For this we explicitly write the

first order Eq. (2.71) as
(Y, Ho) = [V]inkea = V1 + Va. (2.72)

Here [V]jinkea = Vi + Vo consists of only one and two body terms, as the atomic
Hamiltonian consists of only one and two body terms. In the second quantized

form, the operators are expressed as

Vio= Y alailuilj),
ij
Vo = Z aIa}alak@j\vﬂkl). (2.73)
ijkl
Where a! (a) are the particle-hole creation (annihilation) operators. In the DHF
theory v1 = upgr which is defined in Eq. (2.39). The first order wave operator,
can be separated in two parts, one consists of the one body part and the other

is the two body part, that is

o = oV 4 . (2.74)
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Using the time independent Wick’s theorem we evaluate the commutator in Eq.

(2.72) and the wave operators are

I e 2| Cl))
1 Z dpta €a— 6
ap
b
QP = alalayaq (pglvjab) (2.75)

e €q+ €p — €p — eq'
The indices, a,b,---(p,q,---) represent the core (virtual) orbitals. Since we
are using the DHF orbital as our reference state, v represents the two electron

interaction part and this gives the most dominant contribution to the correlation

energy of atoms.

2.7 Correlation energy of closed-shell atoms

In this section, we calculate the correlation energy of closed-shell atom using
MBPT. With HPCB the eigen-value equation is
HPP|0,) = E|0;). (2.76)
Here |¥;) are the exact eigenstates of the HP“B. In terms of  in MBPT
HPOBQ|D,) = E,Q|®;). (2.77)

Here the eigenstates, |®;)’s are the reference states and as discussed in the earlier
section it is equivalent to |Wg), which belong to the model space. For a closed
shell atom it consist of a single Slater determinant and |¥}) = |®;). In the model

space Eq. (2.77) is written as
Heg|®:) = Ei|®;). (2.78)

Recall H.g = PHoP + PVQP, is the effective Hamiltonian. The construction of
the H.g is very important and depends on the . H.g acts on the reference state
of the system and gives the exact energy eigenvalue of the many electron atom.

So, we can write

E; = (®;|Heg|®;).
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The first term in Eq. (2.79) refers to the self-consistent field (SCF) energy of the
atom. The second term gives the correction due to V,e and it is known as the
correlation energy of the atom. In terms of wave operator the n-th order energy

correction is

E™ = (0,|{Vi Q™ V}|0,). (2.80)

Accordingly, the second order correlation energy correction

E® = (&,[ViQW|,). (2.81)

corr

Separating the perturbation and the wave-operator in one and two body terms,

the correlation energy becomes

B® = (0,150 ;). (2.82)

corr

Here the one body term does not contribute to the second order correlation
energy. The contraction between the two body interaction, V5 and le) gives two

closed diagrams which are shown in Fig. 2.4. Here the dotted line represents V5.

Figure 2.4: MBPT diagrams corresponding to the Eé?}r

To evaluate the diagrams we use the Coulomb as well as Breit interaction in our

calculations for Ec(?)ﬁr of closed shell atoms.

2.8 Results and discussions

In this section we discuss the results of the Breit interaction correction to the
orbital energies of the noble gas atoms. Then we discuss the VP correction to

the orbital energies of the doubly ionized alkaline Earth-metal ions.
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2.8.1 Basis set

The first step of any atomic theory calculations is to generate an orbital ba-
sis set. For the present work, we use the Dirac-Hartree-Fock Hamiltonian and
even-tempered Gaussian type orbitals (GTOs) [29]. As we mention earlier, the
radial part of the spin-orbitals are linear combinations of the Gaussian type
functions. The small components of the spin-orbitals are linear combination of
gfp(r), which are generated from g,fp(r) through the kinetic balance condition
[28]. We calculate the GTOs on a grid [37] and optimize the values of g and
for individual atoms to match the spin-orbital energies and self consistent field
(SCF) energy obtained from GRASP92 code [52], which numerically solves the

Dirac-Hartree-Fock integro-differential equations.

Noble gas atoms

Among the noble gas atoms Ne is the ideal candidate to start the DHF calcula-
tions. Since it is a low-Z atom, it is appropriate to consider the HP€ to generate
the orbital basis set. The values of oy and f for Ne are unique for each symme-
try of spin-orbitals. The symmetry-wise values of the optimized parameters are

listed in Table. 2.1. Here we have listed the parameters for the virtual orbital

Symmetry  s1 P12 D32 dsz /2 ds /2 I5/2
Qg 0.0925 0.1951 0.1917 0.0070 0.0070 0.0069
I} 1.45 2.71 2.71 2.70 2.70 2.69

Symmetry  f7/2 g7/2 99/2
Qg 0.0069 0.0069 0.0069
3 260 269  2.69

Table 2.1: The ag and § parameters of the even tempered GTO basis used in

the present calculations.

along with the core orbitals for Ne. Although, in principle, a complete set of
orbitals are required, it is nearly impossible to go beyond a few hundred GTO’s.

Even at a few hundred, the computational requirements are very high. Another
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practical consideration is, with further increase of the basis set size the gain in
accuracy is marginal or non-existent after the basis set converges. The basis pa-
rameters are optimized such that the core orbital energies are in good agreement
with the results of GRASP92 code. For information, the orbital energies are
listed in Table. 2.2. With GTO, we are able to reproduce the numerical results
of the orbital energies very well. The largest difference is observed in 1s;/,, for

which the GTO orbital energy is lower by 0.0032 a.u.

Orbital 181/2 281/2 2]91/2 2p3/2
GTO —32.8177 —1.9357 —0.8526 —0.8480
GRASP92  —32.8145 —1.9387 —0.8528 —0.8482

Table 2.2: Orbital energies of Ne obtained from GRASP92 and GTO (in a.u).

For Ar, Kr, Xe and Rn the symmetry-wise values of the optimized oy and

are listed in Table. 2.3. In the table we have listed the core orbital parameters for

Atom s P d
ap B Qg B ap B
Ar 0.00055  1.620  0.00515  2.405 0.00570  2.850
Kr 0.00015  2.015 0.00945 2.975 0.00635  2.845
Xe 0.00012  2.215 0.00495 2.995 0.00745  2.460
Rn 0.00010  2.280 0.00671  2.980  0.00715  2.720

Table 2.3: The g and § parameters of the even tempered GTO basis used in

the present calculations.

the noble gas atoms. The comparison of the SCF energies are given in Table. 2.4.
Except for Rn, there is excellent agreement between the SCF energies obtained

from GTO and GRASP92.
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Atom GTO GRASP92
Ar —528.6837 —528.6837
Kr —2789.8605 —2788.8605
Xe —7446.8976 —7446.8976
Rn —23602.0202 —23602.0232

Table 2.4: Comparison between GTO and GRASP92 (in a.u).

Alkali metal ions

For the alkali metal ions we use the Vjy_; nuclear potential. So for a singly
charged ion of N electrons the atomic Hamiltonian is
al 1
HDCB = A++ Z [Cai -Ppi + (61 — 1)62 — VN+1(ri):| —+ Z |: + gB(T’z]):| A++.
i=1

e
i<j - Y

(2.83)

Vi1(r;) is the electrostatic potential arising from the Z = (N + 1) nucleus. For

the alkali ions the optimized value of o and [ are listed in Table. 2.5.

Atom s D d
Qo B Qo g Qo p
Na®  0.0025 2210 0.00955 2.125 0.00700  2.750
K* 0.0055  2.250  0.00995 2.155  0.00690  2.550
Rb*  0.0052 2.300 0.00855 2.205 0.00750  2.145
Cs*t 0.0097  2.050  0.00975  2.005 0.00995  1.705
Frt 0.0068  2.110  0.00645  2.050  0.00985 1.915

Table 2.5: The oy and [ parameters of the even tempered GTO basis used in

for alkali metal ions.

For comparison, the spin-orbital energies of Cs™ obtained from the GTO and
GRASP92 are listed in Table 2.6. In the table, the deviation of the GTO results
from the GRASP92 is ~ 1073, which is quite small. We obtain similar level of

deviations for the other alkali metal ions as well.
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Orbital DC GRASP92 [52] Orbital DC GRASP92 [52]
1s1/2 —1330.1173 —1330.1129 4512 —9.5128 —9.5106
2512 —212.5643 —212.5673 4p1 /o —7.4463 —7.4437
2p1/2 —199.4294 —199.4288 4p3 /o —6.9209 —6.9188
2p3/2 —186.4366 —186.4358 4ds /o —3.4856 —3.4921
3s1/2 —45.9697 —45.9695 4ds /o —3.3969 —3.4038
3p1/2 —40.4483 —40.4455 551/2 —1.4898 —1.4933
3p3/2 —37.8943 —37.8917 op1/2 —0.9079 —0.9139
3d3 /2 —28.3096 —28.3030 op3/2 —0.8403 —0.8459

Table 2.6: Core orbital energies of Cs™ in atomic units.

Alkaline Earth-metal ions

For doubly ionized alkaline earth-metal atoms, we use the Vyy_s nuclear potential.
Here the atomic Hamiltonian is

1
,

N N
HPCB — A, Z[Cai i+ (B; = 1) = Vo ()] + Z[ —+ 9 (ri) ] A1
i=1 Y

i<j

(2.84)
Where Vi yo(r;) is the nuclear potential arising from the Z = (N + 2) nucleus.
The symmetry wise values of the optimized oy and S for doubly ionized alkaline
earth-metal atoms are listed in Table. 2.7 The comparison of the SCF energies

for the doubly ionized alkaline atoms are given in Table. 2.8.

2.8.2 Breit interaction correction

To assess the relative importance of Breit interaction, we calculate the first order

energy correction

(HP)pr = (D] > g% (rij)| o), (2.85)

i<j
where, |®,) is the ground state reference function generated from the Dirac-
Hartree-Fock spin-orbitals and H® = >~ < g®(rij) represents the many-electron

form of the Breit interaction. The (HB)pp of the rare gas atoms Ar, Kr, Xe and
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Atom s D d

Qo B Qo B Qo g
Mg®t  0.00825 2.310 0.00715 2.365 0.00700  2.700
Ca?t  0.00895 2.110  0.00815 2.150  0.00750  2.500
Sr**  0.00975  2.100  0.00915 2.010  0.00900  2.030
Ba?t  0.00985 2.150 0.00975 2.070  0.00995  2.010
Ra’™  0.00995 2.110  0.00925 2.090 0.00850  2.010

Table 2.7: The ag and § parameters of the even tempered GTO basis for different

ions used in the present calculations.

Atom GTO GRASP92
Mg** —199.1500 —199.1501
Ca?* —679.1038 —679.1038
St —3177.5211 —3177.5218
Ba?t  —8135.1404 —8135.1421
Ra’t  —26027.5632  —26027.5634

Table 2.8: Comparison between the ground state SCF energies obtained from

the computations with GTO and GRASP92. The energies are in atomic units.

Rn are listed in Table. 2.9. For each atom we calculated the SCF energy with

Atom ERS, EDSB (HB)pp Ref. [70]

Ar —528.6837 —528.5511 0.1326 0.1324
Kr —2788.8605 —2787.4310 1.4295 1.4268
Xe —7446.8976 —7441.1248 5.7728 5.7753
Rn —23602.0202 —23572.8480 29.1722 29.3968

Table 2.9: SCF Energies for noble gas atoms

HPC and HPCB. Here

Ege = (Po| HP| Do)

(2.86)
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and

Egcy = (Pol HPP|®o). (2.87)

Here, HP® = HPCB — HB is the atomic Hamiltonian without the Breit interac-
tion. From the table, it is evident that our results are in very good agreement
with the previous results [70]. The largest deviation from the previous results
is observed in Rn, our result of (H®)pr is 0.8% lower than the previous result.
However, as the Breit interaction contribution to ELSP is a mere 0.12% in Rn,

in absolute terms, the deviation is & 0.001%. Our results are also in good agree-

ment with the results of another previous study [71].

2.8.3 Vacuum polarization correction

We calculated the vacuum polarization (VP) correction to the orbital energies
of doubly ionized alkaline Earth-metal ions. To study the VP corrections arising
from Vi, we compute the orbital energy corrections in the self consistent field
(SCF) calculations. We also compute the first order correction using the many-
body perturbation theory. In the former case, SCF calculations, the VP potential
is considered along with the DHF potential, Upgr. The single particle eigen-value
equation is then
[ho + Viue(r) + Upnr (r)] [¢7) = €[¢7),

where, hg = ca - p + (B — 1)c? — Va_a(r) is the single particle part of HPCB

Upnr(r) is the Dirac-Hartree-Fock potential, |¢}) is a four component orbital
and €, is the corresponding eigenvalue. Similarly, we use unprimed states, |¢),

to represent orbitals which are eigenfunctions of the DHF Hamiltonian, that is
[0 + Upnr (r)] ) = €ilti),
where ¢; is the DHF energy of the orbital. To quantify the VP effect we define
Ae; =€, — ¢, (2.88)

as the change in the orbital energy due to Ve (r). Following the time-independent

many-body perturbation theory, the first order energy correction associated with
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Ve(r) is
(Vue)i = (Wi Vue(r) [¥s).

Since the VP potential is attractive and short range in nature, it has larger
effect on the orbitals which have finite probability density within the nucleus.
So, at the first order (Vi) is negative for orbitals, but only the sy, orbitals have
negative Ae for all the ions. A similar pattern is reported in ref. [72] for the
orbitals energies of Cs™. For the Ra?* ion, in addition to s; /2 the pi/o orbitals
also have negative Ae. More details of the A¢; and (Vie); for the core orbitals of

the Ca?", Sr*", Ba®" and Ra®", and are discussed in the following paras.

Ca2+

We calculate the VP correction to the orbital energy with a series of SCF calcu-
lations and results are listed in Table. 2.10. As to be expected, the first order
correction (Vi) is negative for all the core orbitals. But the values of Ae are
negative only for the s;/o orbitals. Another important observation is, for s;
orbitals (Vie); and Ag; are similar in value. But, for the other orbitals, besides
the change in sign, the values of (Vie); and Ae¢; are different by several orders of

magnitude.

Orbital Ae (Vige)

15y —4.204[—3] —4.435[—3]
2512 —3.531[—4] —3.790[—A4]
21/ 4.884[—5] —1.511[—6]
23/ 4.938[—5] —2.732[—7]
351/ —4.391[—5] —4.500[—5]
3p1/a 6.817[—6] —1.619[—7]
33/ 6.880[—6] —2.931[—8§]

Table 2.10: VP Corrections to the orbital energies of Ca®*. Here [x] represents

multiplication by 10*.
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Sr2+

The VP corrections to the orbital energies arising from Vi () are listed in Table.
2.11. From the table it is evident that Ae,, ,» 1s an order of magnitude larger
than in Ca?*. In addition, we also observe a four orders of magnitude difference
between the (Viy.); and Ag; of the 3d orbitals. This is not surprising as the short
range Vio(r) have little effect on the electrons in the higher angular momentum

orbitals like d.

Orbital Ae (Vie)

151/ —5.721[—2] —5.904[—2]
2512 —5.968[—3] —6.231[—3]
21/ 3.604[—4] —1.144[—4]
2ps/2 4.354[—4] —1.636[—5]
351/ —1.003[—3] —1.045[—3]
3p1/ 8.281[—5] —1.995[—5]
3ps/2 9.664[—5] —2.865[—0]
3ds 8.145[—5] —4.341[—9]
3ds 8.048[—5] —1.123[-9]
451y —1.301[—4] —1.320[—4]
Apy s 1.592[—5] —2.086[—6]
Aps)s 1.747[—5] —2.984[—7]

Table 2.11: VP Corrections to the orbital energies of Sr*". Here [x] represents

multiplication by 10*.

Ba2+

In Ba®", the orbital energy corrections arising from the VP are listed in Table
2.12 and here we find an important change in the pattern of Ae. The Ae of py /o
and ps/» continue to be positive, but Aey,, P is & 72% smaller than Aey, Ja- For
the remaining np,/; and nps/,, although the difference is not so dramatic, the

differences are still large.
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Orbital Ae (Vue) Orbital Ae (Vue)
151/ —2.952[—1] —3.025[-1]  4sy/ —1.531[-3] —1.599[—3]
251 2 —3.493[2] ~3.623(-2]  4py 8.513[—5] —7.689]—5]
21/ 5.074[—4] —1.669[—3]  4pss 1.476[—4] —8.242[6]
23 1.786[—3] —1.748[—4]  4dy)s 1.272[—4) —4.004[—8]
3512 —7.084[—3] —7.391[-3]  4ds, 1.245[—4] ~9.185[—§]
312 1.984[—4] —3.725[—4]  Bsyss —2.449[—14] —2.473[—4]
3ps/2 4.926[—4] —3.981[<5]  5pyj 2.295(—5] ~1.071[-5]
3ds2 4.856[—4] —2.047[~7]  5psy 3.230[—5] —1.066—6]
3ds 2 4.737[—4] —4.712[~§]

Table 2.12: VP Corrections to the orbital energies of Ba®*. Here [x] represents

multiplication by 10*.

Ra*"
Orbital Ae (Vue) Orbital Ae (Vue)
1515 —2.560 —2.614 Ady) 1.350[3] —3.943[6]
2512 —3.881[—1] ~3.999[-1]  4ds, 1.282[~3] —7.062[~7]
212 ~3.802[2] ~5.753(-2]  Afs 1.015[3] ~1.647[9]
2p3/2 1.211[-2] —2.707[-3]  Afs/ 9.928[—4] —4.229[—10]
3512 ~8.999[-2] ~9.315(-2]  5sy ~5.378]-3] —5.633[3]
3p1)2 —9.620[—3] ~1.504[-2]  5ps) 4.845(—4] —4.200[—5]
3ps)2 3.728]-3)] —7.545(—4]  Bds 4.074]—4] —6.735[—7]
3ds2 4.213[-3] ~1.330(-5]  5ds 3.850—4] ~1.187[-7]
3ds 2 3.953[—3)] ~2.385[—6] 651, —9.883[—4] —9.951[—4]
4515 —2.362[—2) —2451[-2]  6pyj ~1.613[-5] —1.290[—4]
4p1 2 —2.238[3] ~3.938(-3]  6ps)s 1.211[—4] —5.949[6]
4ps) 1.315[-3] —1.999[—4]

Table 2.13: VP Corrections to the orbital energies of Ra*". Here [x] represents

multiplication by 10*.

Coming to the orbital energy correction arising from VP, listed in Table. 2.13,

there is a key difference from the other ions. The values of Aeyy, ,, in addition
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to Aemm are negative.

2.8.4 Correlation energy with Breit interaction

To investigate in detail we calculate the Breit interaction correction to the cor-
relation energy of some closed shell atoms using MBPT. Here we include up
to i-symmetry to calculate the correlation energy. The calculation of EQ). from
MBPT is discussed in great detail by Mani et al. [40, 73]. In the present work we
incorporated the Breit interaction to the residual part of the atomic Hamiltonian.

Our results are in good agreement with Ishikawa et al. [74].

Atom E, AEgr) Other Work|[74]
Ne —0.3843 —0.0013 —0.3853
Ar —0.7004 —0.0051 —0.7060
Kr —1.8696 —0.0270 —1.8879
Xe —3.0504 —0.0737 —3.0674

Table 2.14: Second-order correlation energies of closed shell atoms.

Here we list the total Elck as defined in Eq. (2.82) including the Breit part

in the first column. Our results for Ne is very close to the previous result after
taking into account the Breit interaction. For Ne the contribution from the
Breit interaction is =~ 0.3%. For Ar, Kr and Xe we found a similar pattern.
As the atomic number Z increases the contribution from the Breit interaction
to the correlation energy increases. For Ar, Kr and Xe the Breit interaction
contribution is ~ 0.7%, 1.5%, 2.5% to the EQ.. For Ne, Ar, Kr and Xe, our
result are on the lower side than ref. [74]. Here we must emphasize that the

HDCB

previous result is also with Hamiltonian.



Chapter 3

QED effects in closed-shell atoms

using coupled-cluster theory

The coupled-cluster theory is proved to be one of the most powerful and reliable
many body theories. In the previous chapter we discussed about the MBPT,
which is the starting point of coupled-cluster theory. The relativistic coupled
cluster theory is the relativistic version of the well known coupled-cluster theory.
In the present work, the HP®® is used as the starting point of our calculations.
We introduce the triple excitation in the RCC theory as it is important to go be-
yond coupled-cluster single and double (CCSD) approximation. This is because
the CCSD approximation misses several important many body diagrams starting
from second order of MBPT. The triple excitations at the linearized RCC theory
will pave the way for high precision results for atomic structure calculations.
Because of computational cost and other complications associated with angular
integration, selection rules, cluster storage scheme etc. most of the physicist use
approximate triple excitations in RCC theory in the past. But with the advent
of powerful computational facilities, we can incorporate the triple excitations in
the RCC theory. This chapter deals with the formulation of RCCSDT theory.
Along with this we develop perturbed relativistic coupled-cluster (PRCC) the-
ory. PRCC theory can be used to incorporate multiple perturbations in many
electron atoms. The formulation of the PRCC operator is general and we use

CCSD approximation in this context. It means that the PRCC operators can

39
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take into account external perturbations like static electric field or internal per-
turbations like hyperfine interaction etc. It is important to mention that it can
also be used to study nuclear spin-dependent parity non-conservation effects in
atoms.

The chapter is organized as follows: we discuss about the closed-shell RCC
theory in section 3.1. Here we introduce the triple excitation cluster operator
in the RCC theory. We also discuss about the linearized RCCSDT amplitude
equations in this part. We end the section with a discussion on the angular
momentum diagram representation and evaluation of triple excitation operator.
In section 3.2 we introduce the PRCC theory. We then, discuss about the tensor
structure of PRCC operators. We discuss in detail about the PRCC amplitude
equations. In addition we discuss about all the single and double excitation
diagrams in PRCC theory in detail. We end the chapter with a discussion on
the intermediate diagrams. Here we focus on how to reduce the computational

cost using the intermediate diagrams.

3.1 Relativistic coupled-cluster theory of closed-
shell atoms

For a closed-shell atom the eigen-value equation with the Dirac-Coulomb-Breit
Hamiltonian is

HPCB|W,) = Eo| W), (3.1)

Where |¥y) is the exact eigen function and Ej is the corresponding exact eigen-
value. In coupled-cluster theory (CCT) we write the exact ground state of many
electron atom as

W) = 7 |®y), (3.2)

Where T(© is the cluster operator and |®) is the reference state wave-function.

For N-electron atom the cluster operator consists of N- number of excitation
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operators and it is written as

N

7O =31 (3.3)

i=1
Here the superscript (0) is introduced to distinguish between the residual Coulomb
interaction, Ve and an additional perturbation in atoms. The CCSD approxi-
mation provides a good starting point for atomic many body calculations, And
it is described in great detail by Mani et al. [40, 73]. As mentioned earlier, we
shall concentrate on the salient features of triple excitations in the present work.

In the CCSDT approximation the cluster operator for a closed-shell atom is
70 =7 + 7, + 14" (3.4)

In the second quantized form the excitation operators are written as

Tl(o) = Zt G,

0 _
T,” = ZZtﬁga; alayaq,

pqr

0 T
T?,() = 122#;;; 1T> fl T acaya,. (3.5)

abc

The indices a, b, ¢, - - - (p, q,r, - - - ) represent core (virtual) orbitals. In the CCSDT
approximation, we fully incorporate the effects of single, double and triple exci-

tations to all order.
a’\ f p a\ f p b§ 14 a\\%) E\//q C\\//l"
(a) (b) (c)

Figure 3.1: Diagrammatic representation of T; 1(0), TQ(O) and TB(O) operators.

With the coupled-cluster wave-function, the eigenvalue Eq. (3.2) assumes the

form

HPBT @) = Eoe™™”|Dy). (3.6)
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Using the normal ordered form of the Hamiltonian, Hy = HPCB — (| HPCB|dy),
one can write
Hy|e"" @) = AE™" @), (3.7)

Where AF is the correlation energy of the closed-shell atom. Operating e~T

from the left side on the above equation and projecting on the single excited,
|®2), double excited, |®V]) and triple excited, |®"['), we obtain the coupled-

abc

cluster amplitude equations in the RCCSDT theory.

(®2|Hx|®o) = 0, (3.82)
(@3 Hx|Po) = 0, (3.8b)
<(D§ZZ|HN|¢O> =0. (38C)

Here Hy = e T HNeT(O) is the similarity transformed Hamiltonian. Using the
time independent Wick’s theorem for the product of operators and the fact that

the Hy contains at most two body operators, we can write
_ — 1 S 1 e— 1
Ax — Hy+ {HNT<0>} + 5{HNT<0>T(O>} + 5{HNT<°>T<°>T<O>} +
1
@{HNT(O)T(O)T 07 } (3.9)

Thus, Hy can at the most be quartic in 7®). However, the most dominant term

is {ﬁ (0)} and it subsumes all the important many body effects.

3.1.1 Linearized RCC theory with triple excitations

As a starting point we choose the linearized RCC theory with triple excitations.

In this linearized RCCSDT theory the coupled-cluster amplitude equations are
@ { T} + {0} + {ENT© o) = —(@21 o), (3.100)
@I { NGO} 4+ { T )+ { HNT5® b @o) = — (2] Hx|@o),  (3.10b)
@ { NGO} 4+ { IO ) + { N3 ® }j@g) = 0. (3.10¢)

The above set of equation forms the single, double and triple excitation ampli-

tude equations. Here we notice, (®P1"| Hy|®g) is zero as Hy consists of one and

abc
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two body operators. The details of linearized RCCSD diagrams are discussed
in ref. [73]. Here we will focus mainly on the T?,(O) part of the RCC theory.
After incorporating the Tg(o) in the RCCSDT theory, the main challenge is the
evaluation of the diagrams arising from contracting Hy with the T?fo) operator.
Here, we must emphasize that along with the single and double diagrams from
the RCCSD approximation we also have single and double excitation diagram
from the T. 3(0) operator. To be more precise, we obtain two single excitation di-
agrams from the contraction between the Hy and T. 3(0) and they contribute to

Eq. (3.10a). The corresponding diagrams are shown in Fig. 3.2. There are total

(a) (b)

Figure 3.2: Diagrams of Tl(o) arising from {ﬁ“ 3(0)} :

four T, 2(0) diagrams which arise from the contraction of Hy with T 3(0) and they

contribute to Eq. (3.10b). The TQ(O) diagrams are shown in Fig. 3.3. The T?fo)

Figure 3.3: Diagrams of TQ(O) arising from {ﬁ 3(0)} .

diagrams which contribute to Eq. (3.10c) are shown in Fig. 3.4. Among the
eight diagrams in Fig. 3.4, diagram (a) and (b) arise from {ﬁg(o)} and the
remaining six diagrams arise {ﬁ 3(0)}. In order to solve the set of RCCSDT
Eq. (3.10a), (3.10b) and (3.10c), we write these in the matrix form

Hy, Hyy Hi 74 B,
Hy  Hiy Hys Ml =—|B|- (3.11)
Hsy Hsy Hsg i 0
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A

(©)

VOV N VN V

(e) (h)

Figure 3.4: Diagrams of T;O) arising from {ﬁg(o)} and {ﬁg(o)} .

The above equations form a set of coupled linear algebraic equations and it is

solved using the Jacobi method as it is easy to parallelize.

3.2 Angular momentum representation of T3(O>

In the previous section we presented the coupled-cluster amplitude equations
including T?,(O) and the technique to solve the RCCSDT equations. To solve the
RCCSDT equations a basic step is to map TB(O) diagram to an angular momentum
diagram which is inevitable to solve the angular part of the matrix elements.
Now the basic rules of angular momentum algebra can not be applied directly
to the diagrams involving TS(O) . The reason is, the diagrammatic representation
of T 3(0) has four lines associated with one of the vertices. This does not have
an equivalent angular momentum diagram. So to apply the rules of angular
momentum algebra we construct the simplest possible representation of Téo) and
it is shown in Fig. 3.5. Here jq, jb, Je(Jps Jg, Jr) are the total angular momentum of
core (virtual) orbitals. While drawing the diagrams and arrows, we follow the sign
and arrow convention of Lindgren and Morrison [61]. In this angular momentum
representation, we obtain a multipole line by coupling two angular momentum
lines. For example, the coupling between j, and j, gives the multipole /; . The
three multipoles, [y, I3, and I3 should further follow the triangular condition.

Along with the triangular conditions, the orbitals must follow parity selection
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Figure 3.5: Angular momentum representation of Tgfo) operator.

rule. Since the parity of the excited state |®P") = T |®y) must be same as
|@o), (—1)Uatlotlotlatletls) = 1 Here, l,, 1y, l.(Iy, 1y, 1,) are the orbital angular
momentum of core (virtual) orbitals. So, the orbitals and the multipoles must

satisfy the following triangular and parity selection rules

lJa = Jpl <l < (Ja + ),
176 — Jgl <o < (b +Jg),
e = drl <5 < (e + ),
[ — 1| <3 < (L + 1),

(_1)(la+lp+lb+lq+lc+lr) — 1 (3.12)

3.2.1 Angular momentum diagram evaluation with Tg(o)

In this section we give the details of evaluating the angular momentum diagrams
associated with T3(0). The diagrams that will arise after considering the TS(O)
operator are shown in Fig. 3.2, 3.3 and 3.4. Let us consider the diagram in
Fig. 3.2(a). The corresponding angular momentum diagram is shown in Fig.
3.6, where jq, Jb, Je(Jps Jq» Jr) are the total angular momentum of core (virtual)
orbitals and ki corresponds to the multipole line of two body interaction term
and [; are the multipole lines. To evaluate the above angular momentum diagram

we use the JLV theorems [61] as these give a diagrammatic treatment to represent

the tensor operator product of the coupled angular momentum states. Finally
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Figure 3.6: Angular momentum diagram contribute to the T 1(0) excitation am-
plitude.

we obtain the following result after evaluating the diagram in Fig. 3.6.

=6(l 0)5(k1’l3) 5(12’l3)(_1)(jb+jq+jc+jr)x Ja\ Aip
R LY RRVATAY -

As we can see the final form contains Kronecker delta function, phase factor
and the free part corresponds to the angular momentum diagram of Tl(o) operator.
Similarly, angular momentum diagram corresponding to the diagram in Fig.

3.3(a) is shown in Fig. 3.7. Here also the we apply the JLV theorems to evaluate

Figure 3.7: Angular momentum contribute to the TQ(O) excitation amplitude.

the diagram. The final expression after evaluation is
0(ky, l2) (—1)(dtiarticti) Je Jr s % Ja\ o I\ [Jq

(k1] b L Jjs "
1

Similar to T1(0)7 the angular part consist of the the Kronecker delta function,

— (5([7 ll)

phase factor. Along with this we have a 6-j symbol and the free part corresponds
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to angular momentum diagram of TQ(O) operator. The T: ?Eo) diagram arising from
TQ(O) and T3(O) operator are shown in Fig. 3.4. The angular momentum diagram

of diagram in Fig. 3.4(c) is shown in Fig. 3.8.

Figure 3.8: Angular momentum diagram contribute to the T. 350) excitation am-
plitude.

After applying JLV theorems in the above diagrams we obtain the following
form

_ 5(k1’l1)(_1)(*jd+js+k1)x

[kl

In this case along with the phase factor we have the free part which corresponds
to the Tg(o) operator. Here we presented three simplest coupled-cluster diagram
and their angular factor evaluation. In a systematic way we calculate all the
angular factor corresponding to the diagrams which arises after incorporating
Tgfo) exitations. So to conclude this section, we consider the full triple excitation
in the linearized RCC theory. The coupled-cluster wave-function generated in

the RCCSDT theory is further used to calculate atomic properties.

3.3 Perturbed relativistic coupled-cluster the-
ory

To incorporate an additional perturbation Hamiltonian Hj,., we introduce the

perturbed coupled-cluster operator T, This implies, Hiy is applied once and
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Vies to all order in all possible sequences. In general, T is a tensor operator and
the multipole structure depends on the properties of Hi,,. With the perturbation,

the modified eigenvalue equation is

(HPB + \Hin)|Wo) = E|Wy), (3.13)

where, A is the perturbation parameter. Consider the case where H;,; represents
the interaction with an external static electric field E. The interaction Hamilto-
nian is then Hy, = — ), r; - E = D - E, where D is the many electron electric

dipole operator. The perturbed atomic state in PRCC theory is
|\ijz> — BT(O)+)\T(1)'E’(I)0> _ 6T(O) [1 + /\T(l) . E} ‘(I)0> (3'14)

This approach has the advantage of taking into account the effect of multiple
perturbations systematically. Other than E, H;,, could be one of the interactions

internal to the atom like Breit interaction, hyperfine interaction, etc. For the

(a) (b)

Figure 3.9: Diagrammatic representation of Tgl) and T(Ql).

present work, we examine T(®) arising from E which is a odd parity vector
operator in the electronic space. The perturbed wave-function can be used in
the properties calculation and using it we can avoid the sum over complete set

of intermediate states.

3.3.1 Tensor structure of PRCC operator

For the present case, E as the perturbation, we can write the perturbed single

excitation cluster operator as

T =3 77Cy(7)afaa. (3.15)
a’7p
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Here, Tgl) is a vector operator in the electronic space and the C-tensor, C; (')
represents the vector nature of T, The key difference between T{" and 7
is the parity condition, For T(® the total orbital parity must be odd, in other
words (—1)+» = —1. Diagrammatically, the T\" operator is represented as
shown in Fig. 3.9(a). It is similar to the conventional representation of Tl(o) but
the interaction line is replaced by a wavy line.

The tensor structure of Tg) , on the other hand, has additional complica-
tions as it consists of two vertices. After due consideration of the Hyy and 7
multipole structure, it is represented as

TV = Y N 1L k){Ci(#1) Crl(a) afalapag. (3.16)
abp,g Lk
Like in Tgl), Cy are the C-tensor operators and, two C-tensor operators of rank

[ and k are coupled to a rank one tensor operator, Tgl).

At the two vertices,
the orbital angular momenta must satisfy the triangular conditions |j, — j,| <
[ < (Jo+ Jp) and |jp — Jg| < k < (Jb + Jg)- In addition, the two tensor operators
must be such that [l — k| < 1 < (I + k). These selection rules arise from the
triangular conditions at the vertices. The other selection rule follows from the
parity condition, as Hiy is parity odd, the orbitals must satisfy the condition
(—1)latls) = —(—1)+a) The diagrammatic representation of T(Zl) is shown in
Fig. 3.9(b), where the vertical line on the interaction line is to represent the rank

of the operator. Further more, this representation, at a later stage, simplifies the

angular integration using diagrammatic technique.

3.3.2 PRCC equations
The ground state eigenvalue equation with H;,; is
(HDCB + )\Hint)e[T(O)Jr)\T(l)-E]‘(I)O> _ Eoe[T(O)+)\T(1)-E]’q)O>. (3.17)

When H;, is parity odd, like in the present case, there is no first order pertur-
bative correction to energy, so Ey = Ey. In the CCSD approximation we define

the perturbed cluster operator T() as

TO =1 4 7. (3.18)
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In this approximation the PRCC equations are derived from Eq. (3.17). As we
mentioned earlier, the derivation associated with coupled-cluster theory involves
several operator contractions and these are more transparent with the normal
ordered Hamiltonian Hy = HPB — (®;|HP“B|®;). The eigenvalue equation then

has the form
[Hx + M| [Wo) = [Eo — (Dol HPB|D0)] Vo). (3.19)
A more convenient form of the eigenvalue equation is
(Hx + MHin) Vo) = AE|¥y), (3.20)

where, AEy = Ey — (®o|HPCB|®y) is the ground state correlation energy. Fol-

lowing the definition in Eq. (3.18), the PRCC eigen-value equation is
(Hy + AHipg) e TV B 1§y = AF el TV E @y (3.21)
Applying e T from the left, we get

[Hx + AHin] 7% 100) = AET B| D), (3.22)

= _7) 1y T
where, H = e 7" He”

is the similarity transformed Hamiltonian. Multiply
Eq. (3.22) from left by e T and consider terms linear in A, we get the PRCC
equation

[Hx, TV] - E + Hiy|®o) = 0. (3.23)

Here, the similarity transformed interaction Hamiltonian H;,, terminates at sec-
ond order as Hy, is a one-body interaction Hamiltonian. Expanding Hin, the

PRCC equation takes the form

(1R, 0] 4 - Bjag) = {D + D, 7] + %[[D, TOL,TO1} - Ela).
(3.24)

Here after, for simplicity, we drop E from the equations and for compact notation.
The cluster equations of Tgl) are obtained after projecting the equation on singly
excited states (®?|. These excited states, however, must be opposite in parity to

|®g). Similarly, the Tgl) equations are obtained after projecting on the doubly
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excited states (®PY]. After the application of Wick’s theorem, the T 1) equations

are
— =1 1 = 1 1
(7] [HN + HNTO 4+ HNTOT 4 ST OTOTO } |By) =

— ]_ [
(D7 [DT(O) + mDT(O)T(O)} ),  (3.25a)

— = 1 1 = 1 1
(23] {HN + HYTO + HTOTY 4 S HTOTOTO - } |@0)
— 1 [
= ("] [DT@ + 2|DT<0>T<0>] |®o), (3.25b)

where A'_|B represents all possible contractions between the two operators A and
B. The Eq. (3.25a) and (3.25b) form a set of coupled nonlinear algebraic equa-
tions. However, T©) are solved first as these are independent of T(!), the PRCC
equations are then reduced to coupled linear algebraic equations. An approxima-
tion which incorporates all the important many-body effects like random phase
approximation (RPA) is the linearized PRCC (LPRCC) theory. In this approx-
imation, only the terms linear in 7', equivalent to retaining only m(l) and

DT in Eq. (3.25a) and (3.25b), are considered.

3.3.3 Nonlinear terms in PRCC

The calculations with the LPRCC approximation involves ten single excitation
and ten double excitation many-body diagrams, and it is computationally less
complex and hence faster. In our calculations, the LPRCC equations are solved
first and we use the solutions as the initial guess to solve the full PRCC equations.
To describe the PRCC equations in detail, we examine each of the nonlinear terms
in Eq. (3.25a) and (3.25b). These involve more contractions and are larger in
number than the linear terms. To begin with consider the second term on the left
hand side of Eq. (3.25a) and (3.25b), second order in 7', in CCSD approximation

it expands to

= =1 =<1 P !
HTOTO = HTOTY 1 AT OTY + HTOTY + Ay OTS.

(3.26)
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All the terms contribute to both Tgl) and Tgl). Similarly, the third term on the
left hand side of Eq. (3.25a) and (3.25b), third order in T', expands to

1 1 = =
HNT(O)T(O)T(l) — HNTl(O)Tl(O)Tgl)+HNT1(O)T2(0)T§1)+HNT1(0)T1(O)T§1)+
1
HyTOTO T, (3.27)

In this equation, out of the four terms, only the first one contributes to Tgl),
but, all the terms contribute to Tgl). At the fourth order there is only one term
and it contributes to only Tgl). The terms on the right hand side of Eq. (3.25a)
and (3.25b) expand to

D7® = D7+ DTV, (3.28a)
=1 =1 =1
DTOTO = DTOTY 4 DTOTY. (3.28D)

Here, D'_|Tl(0) and IE}T)]‘}(O) are nonzero only for Tgl) and T§1)7 respectively. Each
of the terms, after contraction, generate several topologically unique Goldstone
diagrams. The diagrammatic treatment is preferred for further analysis as it
simplifies the calculations and is well suited to represent contractions between
the operators. In the next few sub-sections we discuss the Tgl) and Tgl) diagrams

and their algebraic expressions.

T(ll) diagrams

In this sub-section we describe the Tgl) diagrams arising from the non-linear
terms. The many-body diagrams or the Goldstone diagrams are drawn and
evaluated as described in ref. [61]. Consider the first term on the right hand side
O)m (1) ., . . .
of Eq. (3.26), HNT} Ty, it is equivalent to ten diagrams and these are shown
in Fig. 3.10. Algebraically, we can write it as
1
NTTY)e = Gbean (275 + 170) + Y Giper (17 + (7). (3.29)
beqa bpgr

where g = (i|1/r12+¢"(r12)|kl) is the matrix element of the electron-electron
interactions and gijxi = Gijk — gijur 1S the antisymmetrized matrix element. We

have used (---)? to represent the matrix element (®?|-.-|Pq). The diagrams
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1
Figure 3.10: Diagrams of Tgl) arising from HNTl(O)Tgl).

in Fig. 3.10(i-j), arising from the one-body part of Hy, evaluate to zero when
orbitals are calculated with Dirac-Hartree-Fock-Breit potential. The next term
. (0) (1) . . N

in Eq. (3.26), HNT;'T5’, generates eight diagrams and these are shown in Fig.
3.11. It is to be noted here, the contractions with only gu,, type of two-body

1
Figure 3.11: The Tgl) diagrams arising from the contraction HNTl(O) Tgl).

interaction are non-zero. The algebraic expression of the diagrams is

= <1
(HNTOTOV = 7 Gurg (15750 + 2770 4+ t0r? + 10777

a'pq c'ab
beqr

1
We next consider the term HNTQ(O)Tgl) in Eq. (3.26), this is the last term among

the second order terms. Like the previous term, after contraction it generates
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eight diagrams and these are shown in Fig. 3.12. The topological structure of

1
Figure 3.12: The T(ll) diagrams arising from the contraction HNTéo)Tgl).

the diagrams are very similar to those of Fig. 3.11 and the algebraic expression

of the diagrams is

=,
(INTY TN = N Googr (078 + P70 + 2l +4270) . (3.30)

ba'p be'a
beqr

: : : (0)2(0) (1) :
At the third order, as mentioned earlier, only HxT} 17T}’ contributes to the
Tgl) diagrams. This term generates six Goldstone diagrams and these are shown

in Fig. 3.13. The algebraic expression of the diagrams is

1
(T TOTI = > Guegr (154272 + 8077 + 11077 .

begr

() (f)

: M 1 o . (0)(0) (1)
Figure 3.13: The Ty’ diagrams arising from the contraction HxT} 17 T, ".

In total, the nonlinear terms in the T(ll) equation generate 30 Goldstone

diagrams. Considering that T2(0) and Tgl) are the dominant cluster operators, in
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terms of amplitudes, in the unperturbed RCC and PRCC, respectively, we can
: (0)(1)
expect the magnitude of HNT, 'T;’ to be the largest.

T(Ql) diagrams

In this sub-section we discuss the Goldstone diagrams of Tél) arising from the
non-linear terms on the left hand side of Eq. (3.25b). Consider the second order
term, after expansion there are four terms as given in Eq. (3.26) and all have

1
nonzero contribution to Tél). The first term, HNTI(O)Tgl), has six diagrams and

1
Figure 3.14: The Tgl) diagrams arising from the contraction HNTfO)Tgl).

these are shown in Fig. 3.14. The equivalent algebraic expression is
0 1 ]
<HNT1( )Tg )>ZZ = ngqrstaTb + chdabtgﬁi] -
TS cd
D Gpers [, + )78 — 827y + 7). (3.31)
where, we have used (--- )" to represent the matrix element (®”7|---|®). The
. (0 (1) : .
next term in Eq. (3.26), HNT; 'T5’, has sixteen diagrams and these are shown
in Fig. 3.15. However, the last two diagrams in Fig. 3.15(o-p) are zero, like

in the present work, Dirac-Hartree-Fock-Breit orbitals are used. The equivalent

algebraic expression is

a'ch c

[
(ENTY" TSN = D gears (Tl — iyl + G707 — 70 — 7l — thm3) +

> Gears (—HLTE + LT — t4FP 4277 4407 (3.32)

a'cd
cdr
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(k) U]

() (p)

1
Figure 3.15: The Tél) diagrams arising from the contraction HNTl(O) Tgl) .

(m) (n)

where, 7;7 = 777 — 777 is the antisymmetrised amplitude of Tél) . Interchanging

- T T Op(1)
the order of excitations of the cluster operators, we get the next term Hx7, Ty .
As in the previous term there are sixteen diagrams and these are shown in Fig,.

3.16. The equivalent algebraic expression is

=1 ~ X
(NI TV = 3 Gears (B — U275 — 3070+ 577 — 072 — U377 +

c bc'a
crs

E pr 4 _ 4PT q qr..p _ 4Pq,.T pq T Pq, 7y
Yedrb (tcaTd tadTC + tdaTc tach + tach + tchaO3‘33>
cdr

where, tP7 = tP" — 177 is the antisymmetrised amplitude of TQ(O) . The last second
1
order term is HNTQ(O)TS) in Eq. (3.26). we have a large number of diagrams as

both of the cluster operators are double excitation. There are eighteen diagrams
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O\
.

(1) () (k) 1)
(m) (n) () (p)

1
Figure 3.16: The T;l) diagrams arising from the contraction HNT§°)T§1).

and these are shown in Fig. 3.17. The algebraic expression for the diagrams is

(0)m(D\pg E : Tprasq _ 7ps _Tq qr pr_ Frs_pq _ 7rp_sq
_ pr~ ps ps sq TS
<HNT2 T2 >ab - Gedrs (tachb - tachb + tachb + tachb - 2(;caTdb ~ ledTab
cdrs
_ 4ps_qr Pr_qs _ 1pqzrs rs,_pq pq_rs
tabTade T tapTae — UoaTpd + tapTed + tedTap) - (3.34)

Collecting all the diagrams which are second order in T™!, there are 56 Goldstone

diagrams in the Tgl) equation after contraction of the cluster operators with Hy.

At the third order, all the terms in Eq. (3.27) have non-zero contributions
(1) : : (0)(0) (1)
to Ty . There are six Goldstone diagrams from the first term HNT} T} 7T,

and these are shown in Fig. 3.18. The equivalent algebraic expression of the
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1

Figure 3.17: The Tgl) diagrams arising from the contraction HNTQ(O)Tgl).

diagrams is

1 1
(HNTOTOTOV = 37 gogrs [ ththrs — (277 — th72)t;)

Ccrs

+ 57 Gears [E1(t073 + 7282) + 2778 . (3.35)

cdr

The overall contribution from these diagrams is expected to be small as these are
i s m(0) : (0)2(0) (1)

quadratic in 77 . The next term in Eq. (3.27), HyT; "1} 'T5 ", has ten Gold-

stone diagrams and these are shown in Fig. 3.19. and the equivalent algebraic

expression of the diagrams is

1 1

(ST T TS = N7 gears (080700 + ththrsd + totyrld + (67 + 10777
cdrs
—(tt5 — t3)Th — (808 — ttP) 7). (3.36)

R . : F=1(0) H(0) mh(1)
Contributions from these diagrams will be lower than HxT, 717’ T; " as these
depend on Tgl), which is smaller in magnitude than Tgl). The contributions from

the two terms are expected to be small as these are second order in Tl(o). The last
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(b) (c) (d)

. . - ion HeT OO m (D
Figure 3.19: Diagrams arising from the contraction HnxT7 17Ty .

. P 0) i (0) (1) . . .
third order term, HnxT} 7’1, Ty, has eighteen diagrams and these are shown in

Fig. 3.20. The algebraic equivalent of these diagrams is

(0)r(0) (1) \ pg S4PT__ 4ryps) g T4Pq TP\ S | 4T (4PS 4 _ FSA_p | 450D
(EHNT T, T ) gy = chdrs[(tctab — telop)Tq — (telaq — tatee) T + Loty 7y — e + 147y

d"ac
cdrs

__4Pq,__s Pq,._s rq,.s p(4+74 -8 __ 7847 Tq s _ 4Tq_s sq, r rs,q
taTy Ftome +thamy) (AT — taTa +taTe =t +taTy + tapTi)]-

(3.37)

Among the third order terms in the Tgl) equation this will be the leading order
term as it depends on TQ(O) and T(ll), the dominant cluster operators among
the unperturbed and perturbed cluster operators, respectively. There are two

Goldstone diagrams from the fourth order term and these are shown in Fig. 3.21
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(a) (r)

. . o ion HeT OO m(
Figure 3.20: Diagrams arising from the contraction HnxT7 15Ty .

and the algebraic expression is

(a) (b)

7 1
Figure 3.21: Diagrams arising from the contraction HNTl(O)Tl(O)Tl(O)Tgl).

=T
(INTOTOTOTE =N guanstht2 (657 + t573).

cdrs
Among all the diagrams considered so far these two diagrams will have the lowest
contributions as these are third order in Tl(o). However, for completeness we

include these in the calculations.
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— =
DT and DTWT© diagrams

Another group of PRCC diagrams arise from the contraction of D and T, these
contribute to the right hand side of Eq. (3.25a) and (3.25b). In this group, there

are five Goldstone diagrams of T(!) and these are shown in Fig. 3.22. Among

(e)

Figure 3.22: Singles diagrams arising from the contraction Hi, 7' and
1
Ho TOTO),

the diagrams only the last one is nonlinear in 7). The algebraic expression of

the diagrams is
— 1
(DTOY 4 (DTOTONE =N "rpotd = “roat? + ) 1y (K — 8 — 1941 (3.38)
q c bq

where, r;; = (i|r|j) is the electronic part of the single particle matrix element.
For Tg), there are four diagrams and these are shown in Fig. 3.23 and last two

are nonlinear in 7(®) . The algebraic expression of the diagrams is

(a) (b) (c) (d)

Figure 3.23: Doubles diagrams arising from the contraction Hi,T(® and
1
Ho TOTO),
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— 1
(DT 4 (DTOTOWE =N "rg it = g thd + > ro(—tth — t241113.39)

This completes the diagrammatic and algebraic analysis of the nonlinear terms
in the TM equations. To obtain the linear algebraic equations of the cluster
amplitudes, each of the diagrams or terms in the algebraic expression requires
further simplification to radial and angular components. The angular part is
evaluated diagrammatically, however the diagrams are different from the Gold-

stone diagrams.

3.3.4 Intermediate diagrams

The PRCC diagrams corresponding to the nonlinear terms are numerous and
topologically complex. Further more, in these diagrams, the number of the spin-
orbitals involved is large and in general, the diagrams with the largest number
of spin-orbitals are associated with the terms H NTQ(O)TS)7 H NTl(O)Tl(O)Tél) and
HNT; fO)TfO)Tl(O)Tgl). All of these terms have a common feature: the presence of
the two electron integral (ab|g(r12)|pg). Returning to the number of spin-orbitals,
the TQ(O) diagrams arising from any of the three terms mentioned earlier consist
of four core and virtual spin-orbitals each. Accordingly, the number of times a
diagram is evaluated, Ny, scales as nnl and this sets the scale of computational
requirements. Here, n, and n, are the number of core and virtual spin-orbitals,
respectively. In the present work, for lighter atoms and moderate sized basis sets
ne ~ 10 and n, ~ 100, even then Ny ~ 10'2. This is a large number and puts a
huge constraint on the computational resources.

To mitigate the computational constraints arising from the nin? scaling, we
separate the diagrams into two parts. One of the parts scales at the most n2n?
and the total diagram is equivalent to the product of the parts. The part of the
diagram which is calculated first is referred to as the intermediate diagram. Dur-
ing computations, all the intermediate diagrams are calculated first and stored.
Later, these are combined with the remaining part of the PRCC diagram and the

total diagram is calculated. The scaling still remains at n?n? and compared to

the nin scaling, this improves the performance by several orders of magnitudes.
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Figure 3.24: Example diagrams of H NT2(O)T2(O) which contribute to the Tél) equa-
tions. The portion of the diagrams within the rectangles with rounded corners
are examples of the one body (a) and two-body (b) intermediate diagrams.

To examine in more detail, consider the term H NTQ(O)TS), the algebraic ex-

pression for one of the terms contributing to the Tgo) is

Prq Tt o rs,cd_pq, t 1
(Tab)3_24aapaqabaa— E toeUrs Ty Q) GG, (3.40)

resd
and it is diagrammatically equivalent to Fig. 3.24(a). However, while evaluating
the diagram, the part within the dashed round rectangle or the intermediate

diagram can be separated and computed first. Eq. (3.40) can then be written as
(7o) 3 94a a;;a:gabaa = Z (ﬁfj@%) (Tgfa:)a;abad) (3.41)
d

where n? = 5~ 75y is the amplitude of the effective one-body operator corre-

sponding to the intermediate diagram. The computation of n¢ scales as n2n? and

when contracted with Tél), the computation still scales as n2n?. This is much

less than the nin? scaling. Consider another term

Pq T _ rs,.cd,_pq T .t
(Tab)3‘24bapaqabaaf g g Ura Tog G0y bQa, (3.42)

resd
and it is diagrammatically equivalent to Fig. 3.24(b). Like in the previous case,
the intermediate diagram ( part within the dashed round-rectangle ) can be
calculated first and the equation can be rewritten as
(T20) 3 0an, a;rga:;abaa = Z <ngzaia2abaa) <Tf§ala£adac). (3.43)
C
Here, the intermediate diagram corresponds to a two-body effective operator

with amplitude 7 = > #75v¢¢ and scales as nin2. The scaling remains the



Chapter 3. QED effects in closed-shell atoms using coupled-cluster theory 64

same when the total diagram is evaluated. Extending the method to other dia-
grams, there are other forms of one-body and two-body intermediate diagrams
depending on the topology.

In conclusion, this chapter deals with the theoretical foundation of RCCSDT
and PRCC theory for closed shell atoms. We introduce the angular momentum
representation of the triple excitation operator and this representation is conve-
nient to calculate complicated angular momentum diagrams that arise after con-
sidering the T3(0) in the RCC theory. In the next part we introduce PRCC theory.
This takes into account multiple perturbations in many electron atoms. We for-
mulated the theory and introduce the tensor structure of the PRCC operators.
While evaluating the topologically complex diagrams we introduce intermediate
diagrams. It simplifies the Goldstone diagrams and reduce the computational
cost. Most importantly these, Tgfo) and PRCC theory, when combined with the
vacuum polarization potential and Breit interaction provides a test of QED cor-

rections in closed-shell atoms and ions.



Chapter 4

QED effects in open-shell atoms

using coupled-cluster theory

One valence atoms and ions are ideal testing ground for different many body
techniques because of the simple electronic structure. It has one electron in
the valence shell and it is essentially the simplest atomic system to study core-
valence correlation effects. Different atomic many body theories have been used
to study one valence atom and ions. However, these techniques are essentially
an extension of closed shell many body theories. We will particularly focus
on the QED effects on one valence properties using coupled-cluster theory. As
we mentioned earlier, in many electron atoms, along with the electron-electron
correlation it is important to take into account the QED effects. Though the
highly charged ions like hydrogen like ions are ideal to test QED effects precisely,
QED effects are also important to precisely determine properties like the nuclear
spin-dependent PNC effects in atoms. In the present work we employ coupled-
cluster theory of one valence atoms with the HP“B. Here we emphasize that to
determine the electronic correlations precisely we Incorporated the T?,(O) at the
linearized RCC theory. The RCC theory with Téo) and QED corrections is the
ideal platform to study the interplay of electronic correlation and QED effects in
many electron atoms and ions.

The chapter is organized as follows: we first introduce the RCC theory for

one valence atoms in section 4.1. Here we will introduce the triple excitation in

65
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the RCC theory and the RCCSDT amplitude equations for one valence atoms.
In section 4.2 we discuss the electric dipole transition amplitudes in one valence
atoms. In the results and discussions part we focus on the excitation energy and

the electric dipole transitions of several states in one valence atoms.

4.1 RCC theory for one valence atoms
For one valence atom the eigenvalue equation is
HPB\w,)) = E,|T,). (4.1)

Here |¥,) is the eigen state and E,, is the corresponding eigen value for one valence
atom or ion. For these system we have an additional complication. Along with
the core and virtual orbitals we have a valence sector. As Lindgren [61] pointed
out, that a valence orbital can be treated both as core and virtual, and we can
then apply the general formalism of particle-hole states for the valence sector.
For one valence atom or ion we introduce another set of cluster operator S
along with the T operator. This separation between the two sets of cluster
operators simplify the problem of solving the eigen-value equation. Essentially,
we first solve the closed-shell part of the system to obtain the 7© amplitudes,
and then we solve for the valence part to obtain the S amplitudes.

In RCC theory the ground state wave-function of a one valence atom is defined

as

0,) =5 |p,). (4.2)

Here |®,) is the reference state wave-function of the one valence atom and it is
obtained as |®,) = af |®,). Here |®¢) is the reference state wave function of the

closed-shell part of the one valence system. For a one valence system,
S =14 50 (4.3)

This is because, we can excite at most one electron from the valence orbital to
the virtual. So, the contribution form the higher order terms in S are zero.

With this definition we can write the ground state wave function of a one valence
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system as

0,) =" (1+ 5©)|,). (4.4)
Using the above definition of ground state wave-function the eigen-value equa-
tion, Eq. (4.1) is

HPBT (14 80)@,) = E,e™ (1 + S©)|,). (4.5)

In the CCSDT approximation along with the closed-shell cluster operator, the

open shell cluster operator are expanded as
7 = 70+ 1"+ 1%,
SO = g0 g0 g (4.6)

Like the T© operators the S operators can be diagrammatically represented

as shown in Fig. 4.1. In the figure a,b,c,---(p,q,7,---) represents the core

JRVEY

(a) (b) (c)

Figure 4.1: Diagrammatic representation of open shell coupled-cluster opera-
tor : (a) Single excitation operator, (b) Double excitations operator, (¢) Triple
excitations operator.

(virtual) orbitals and v denotes the valence orbital. Using the normal ordered

Hamiltonian, Hy we can rewrite the eigen-value equation as
Hx|V,) = AE,|®,), (4.7)

Where AE, is the correlation energy of the one valence system. Now to obtain the

coupled-cluster amplitude equations we operate by e~ T

from left and project it
on the single, double and triple excited determinants. The RCCSDT amplitude

equations for one valence system are

(©2|Hy + HyS\" + AySY + AxSP|0,) = AE (9257 |9,),  (4.8a)



Chapter 4. QED effects in open-shell atoms using coupled-cluster theory 68

(®¥1| Ay + HyS” + HxSY + AxSY|®,) = AE, (9225 |®,),  (4.8b)

(@P" Hy + HyS\” + HySY + HyS|®,) = AE (@750 |9,).  (4.8¢)

In these equations Hy = e‘T(O)HNeT(O) is the dressed Hamiltonian. The RCCSDT
amplitude equations are obtained using the orthogonality condition of ground
and excited state determinants. After applying the Wick’s theorem for the prod-

uct of operators we obtain the cluster amplitude equations.
(@i + { IS} + { 9@} + { 1385 o) = B2(@1] 517 |@0), (4.92)

(@p| A+ { Hx i b+-{ xS b+ { 83} @o) = B2(@22] 517 |), (4.9D)

(@ + { S @ |+ { SO} + { H S0 o) = B2t (@21] 517 |@0).
(4.9¢)
Here E? represents the attachment energy of the valence electron. It means we
need E* to remove the valence electron from a neutral atom. In the present
work we will emphasize about the theoretical details of attachment energy from
triple excitation. The attachment energy from RCCSD theory is discussed in
great detail by B. K. Mani [73]. The attachment energy diagrams that will arise

after incorporating the triple excitation is shown in Fig. 4.2. Along with the

00

(a) (b)

Figure 4.2: Attachment energy diagrams arising at the triple excitation level.

diagrams that arise at the RCCSD theory we incorporate two diagrams which

are shown in Fig. 4.2 to estimate the contribution from triple excitations to E2**.
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4.2 Electric dipole transition from RCCSDT the-
ory

The main objective of developing different many body theories is to calculate
different atomic properties. It is also important to mention that the precision of
experimental data have improved in past few decades and this implies the need for
better theoretical methods. The wave-function generated in the RCCSDT theory
can be used to calculate different atomic properties and one of the very basic
properties is to evaluate the electric dipole transition matrix element. Here we
shall discuss calculation of the electric dipole matrix element in the framework of
RCC theory. A radiative transition occurs when a photon is absorbed or emitted
by the atom. The dominant contributions to the radiative transitions comes
from the electric dipole transition. In order to derive the expression of dipole
matrix element, we start with the reduced matrix element of the dipole operator
between initial state |¥;) and final state |Us). The form of the reduced matrix
element is
(Wy|DI[Ws)

Dy = ) 4.10
) (U (+10)

Since the dipole operator, D is an odd parity operator, for a nonzero contribution

the parity of the |¥;) and |¥;) should be opposite. The details of the matrix
element of the dipole operator is discussed in appendix B. To calculate Dy; from

CCT, we substitute the CC wave-function in Eq. (4.10), then

Dy = (9,|[D+TYD 4+ DT + 7ODTO® 4 SOTD 4+ DSO

+5SOTDSO|®,). (4.11)

Here, we consider only the terms up to to second orders in cluster amplitudes.

OF © . : L
TTDeT™ is a major constraint in RCC theory.

The non-terminating series, €
But based on earlier calculation [75], which studied an all order method to eval-
uate the reduced dipole matrix elements of singly ionized group II elements, we
can safely neglect the the higher order terms which has three or more cluster

operators. The diagrams are topologically same as the diagrams to evaluate
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hyperfine interaction in ref. [73]. Here we focus on the diagrams which arise
from incorporating the TB(O) at the properties level. Since the contribution from
the closed-shell cluster operator is negligible, we concentrate on the properties
diagram that arise after due consideration of the S(® operator. At minimum we
need two cluster operators to start with. Following the rule of level of excitation
(l.o.e) we can construct the properties diagram from SéO)TDS?EO) contraction. The

(0)
diagrams arising from {S,("*DS;"”} are shown in Fig. 4.3.
o 3 ]
gols=rlo o sl
A } X r
(a) (b) (c) (d)

. . . .. . 0 (0)
Figure 4.3: Leading diagrams arising from the contraction {S5»TDS;”} con-
tribute to the reduced dipole matrix element. Dashed line represent the dipole
operator.

4.3 Results and Discussions

In this section we discuss in detail the properties of one valence atoms. As we
mentioned earlier, we particularly focus on the E?** of one valence atoms after
incorporating the Téo) and Séo) in the RCC theory. Along with this we also
discuss about the results of Dy; for one valence atoms. Like in the closed-shell
atoms, we first introduce the basis set parameters for the one valence atoms.
We first compare DHF SCF energy and orbital energy obtained from GRASP
[52]. Here again we use GTOs with even tempered basis set parameters. Before
starting the discussion on the properties of one valence atom, we must mention
that we use the same basis set parameters as we have use to calculate the Breit
correction and VP correction in the second chapter. This is because, with the
VN1 potential we can construct a complete set of basis for the neutral atom. It
must be mentioned that it is true for a general basis set like the GTO’s as well

as B-spline basis sets.
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4.3.1 Properties of one valence atoms

In this subsection we discuss about the excitation energy, and Dy; of one valence
atoms and compare these with the previous theoretical and experimental values.
The present numerical calculations are based on the RCCSDT code and triple
excitations is considered at the wave-function level. For the Dy; calculation
and for excitation energy we consider (Tg(o) + S:go)) at the wave-function as well
as at the properties level. The main difficulty in computations with the triple
excitations is the number of triples amplitude. It is very large compare to the
single and double excitation cluster amplitudes. For example, in the case of Li,
the number of single excitation amplitude ~ 10? and double excitation amplitude
~ 10%, but the number of triple excitation amplitude is ~ 108. So to calculate
triple excitations we truncate the number of core and virtual orbitals in the RCC
computation. Now in the numerical implementation of the triple excitation we
choose the cut off energy such that at the initial guess value from MBPT is
not very small. To do this we consider the energy denominator part of the
approximate triples. The energy denominator is

AE = ! . (4.12)
(ep+egt+er—ea—ep—ec)

This is very important while considering the triple excitation. The AE for differ-
ent combination of core and virtual orbitals should never be very small. Other-
wise it is very difficult to obtain converged RCC wave-function. So, we introduce
a cut-off to the core and virtual orbital energies. There is one important con-
sideration associated with the triple excitations in RCC theory. In the sy, and
p1/2 orbitals we can have at the most two electrons, however, the triples cluster
amplitude takes into account all possible triple excitations. So we have to put
constraints for s;/; and p;p orbitals. Following the Pauli’s exclusion principle
we set the cluster amplitudes to zero when more than two core or virtual orbital
belong to the same s/, or p;/; symmetry. Another issue related to numerical
implementation of the triples amplitude is to consider only unique cluster ampli-
tudes. To do that we impose the condition p > ¢ > r and a > b > ¢. This plays

an important role while storing the amplitudes during computations.
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4.3.2 Excitation energies

The excitation energy and the ionization potential (I.P) of the group I elements
are discussed here. The energies of the different excited states are evaluated in
the RCC theory, and compared with the previous theoretical value and the NIST
recommended value. The results for "Li are listed in Table. 4.1. In the literature
it is also referred to as the removal energy. We follow these nomenclature and
our results of the removal energies of 2s; /5 to 4ds/, are listed in Table. 4.1. As we
can see, the result of 2s, /5 state deviated by from the NIST recommended value
by 5.5 em~!. This could be due to several reasons. As pointed out by Johnson
et al. [76] in his remarkable work on several atomic properties of “Li, the recoil
correction contribution to the removal energy is 3.59 cm™!. However, the recoil
correction which is due to reduced mass correction and mass polarization, are
not considered in the present work. The other contribution is the Lamb shift
correction, which is not completely accounted in the present work. Here we
consider only the vacuum polarization correction to the orbital energies. In
the present calculation of I.P and excitation energies we consider only up to h
symmetry. But it has been pointed out in ref. [76] that the contribution from i
and j symmetry is ~ 1 cm™*.

Coming to the highly excited states, our results are in very good agreement
with the NIST recommended values. This is because the highly excited states,
which are far from the nucleus, are less affected by recoil correction. The same
pattern was observed by Johnson and his coworkers in ref. [76]. So to sum up, if
we add all these corrections to the present work in the framework of RCC theory
the result is within 0.1% of the NIST recommended value.

For Na we calculate the removal energies of 3sy/5, 3p1/2 and 3ps/, orbitals.

The results for Na are listed in Table 4.2.
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Orbital This Work Exist [77] Previous Work|[76]
25172 —43481.7 —43487.2 —43487.5
2p1)2 —28570.5 —28583.5 —28581.9
2p3/2 —28570.1 —28583.2 —28581.5
3s1/2 —16256.1 —16281.0 —16281.0
3p1/2 —12548.5 —12561.8 —12561.2
3p3/2 —12548.3 —12561.8 —12561.0
3d3 /2 —12203.6 —12204.1 —12204.0
3ds 2 —12203.6 —12204.0 —12204.0
4s1/0 —8152.9 —8475.1 —8475.1
4p1 /2 —7011.9 —7017.6 —7017.2
4p3 /2 —7011.8 —7017.6 —7017.2
4ds /o —6863.6 —6863.8 —6863.8
4ds /o —6863.5 —6863.8 —6863.8

Table 4.1: Removal Energies of several excited states of "Li in cm™!.

Orbital This Work Exist [77] Previous Work[42]
35172 —41373 —41449 —41376
3p1/2 —24469 —24493 —24472
3p3/2 —24437 —24476 —24453

Table 4.2: Removal Energies of ground and excited states of Na in cm ™.
The results show good agreement with the NIST recommended values as well
as with previous RCCSD [42] results. Here again we observe the same trend like
Li, our values are on the lower side from that of the NIST recommended values.
The discrepancy may be due to choice of basis set as well as neglecting the recoil
correction in the present work. In Table. 4.3 we listed the contribution from

different terms to the removal energy.
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Orbital DHF RCCSD RCCSDT Total

351/2 —39944 —1428 —1429 —41373
3p1/2 —24032 —438 —437 —24469
3p3/2 —24010 —428 —427 —24437

Table 4.3: Contribution to the removal Energies **Na in cm™!.

As expected the DHF contribution, the first column in Table. 4.3, gives the

dominant contribution. The column labeled RCCSDT gives the contribution to

the removal energy after incorporating the triple excitations in RCC theory. The

inclusion of the triples improve the result of the ground state, 3s;/2. On the

other hand, for 3p;,, and 3p3/, excited state the inclusion of triples deteriorates

the result. There is one important point to be noticed, the contribution from the

triple excitations is very small and it is ~ lem™! for ground as well as excited

states.

For K the result of removal energies are listed in Table. 4.4.

Orbital This Work Exist [77] Previous Work[42]
4512 —35117 —35010 —35080
4p1 /2 —22047 —22025 —22044
4p3 /2 —21988 —21967 —21984

Table 4.4: Removal Energies of ground and excited states of 3°K in cm™!.

1

Here the values of removal energies exhibit a trend opposite to Li and Na.

In this case our results are higher than the NIST recommended value. However,

our results follows the same pattern as that of the previous RCCSD work [42].

The term wise contribution to the removal energy is listed in Table. 4.5.
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Orbital DHF RCCSD RCCSDT Total

4512 —32372 —2743 —2745 —35117
4p1/2 —21003 —1031 —1044 —22047
4p3 /2 —20959 —1009 —1029 —21988

Table 4.5: Contribution to the removal energies *K in cm™!.

One interesting point is the contribution from triples to the removal energies.
Although the contribution to the ground state, 4s;/2, is small, for the excited
states it is significant. For 4p,/, and 4ps/s, the contributions from triple excita-
tions are 13 em™! and 20 cm™? respectively.

The results for removal energies of ground state and excited states of Rb are

listed in Table 4.6.

Orbital This Work Exist [77] Previous Work[42]
281/2 —33777 —33691 —33762
op1/2 —21123 —21112 —21130
op3/2 —20883 —20874 —20888

Table 4.6: Removal Energies of ground and excited states of ®*Rb in cm™!.

In case of Rb the trend is very similar to K, our results are higher than
the NIST recommended values. Here, we must mention that as we go to the
high-Z atoms the deviations from the NIST recommended values increases. This
could be due to several reasons. One major reason is the contribution from
higher symmetry, like ¢, j are neglected in the present work. Along with this
the nuclear recoil correction may be important. Our result for the 4s;/, state
deviates from NIST value by an amount of 86 cm™!, which is ~ 0.3%. The

different contributions to the removal energies are listed in Table. 4.7.
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Orbital DHF RCCSD RCCSDT Total

5512 —30572 —3230 —3205 —=33777
Sp1/2 —19928 —1199 —1195 —21123
5p3 /2 —19730 —1134 —1153 —20883

Table 4.7: Contribution to the removal energies 8°Rb in cm™1.

The dominant contribution arises from the DHF term. But, there is a different
trend in the contributions from the triple excitations. The third column of Table
4.7 shows that there is a negative contribution from the triple excitations. The
same pattern is observed in both the ground as well as excited states. Here the
contribution to the ground state, 5sy /o, from the triple excitation is 25 cm L

Cs is an important atom to study. In this case as well we calculate the removal

energies for ground state and excited states, and compared it with the previous

results. The results of Cs are listed in Table 4.8.

Orbital This Work Exist [77] Previous Work[42]
6s1/2 —31539 —31407 —31529
6p1/2 —20209 —20228 —20258
6p3 /2 —19675 —19674 —19695

Table 4.8: Removal Energies of ground and excited states of 133Cs in cm™!.

The ground state removal energy deviates from NIST value by 132 cm™!, but
it is in good agreement with the previous theoretical value. Our result for the
other two low lying excited states shows a reverse trend. The result for 6p;  is
lower than the NIST recommended value but for the 6ps/, state it is larger by 1
cm~!. In Table 4.9 we listed the DHF, RCCSD and RCCSDT contributions to

the removal energy.
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Orbital DHF RCCSD RCCSDT Total

6512 —27961 —3585 —3578 —31539
6p1/2 —18787 —1449 —1422 —20209
6p3/2 —18391 —1280 —1284 —19675

Table 4.9: Contribution to the removal energies *3Cs in cm™!.

It is important to mention that the inclusion of the triple excitations improves
the result. Although our result for ground state deviates by 0.4% from NIST
value, overall it is in good agreement with the previous work based on RCC

theory.

4.3.3 Electric dipole transition amplitudes

We evaluate the Dy; of various allowed transitions for one valence atoms. This
is calculated using the CC wave-function with triple excitations. The results for

Li are listed in Table 4.10

This Work Expt.[78] RCCSD[42]
28172 — 2p12 3.3175 3.317(4) 3.3173
25172 — 2p3)2 4.6918 4.689(5) 4.6914

Table 4.10: Reduced electric dipole matrix element of “Li in a.u

and our results are excellent. The values are within the uncertainty limit of
the experimental value. Our results for the 251/, — 2p,/, transition as well as
2512 — 2p3/2 agrees well with the previous RCCSD work by Pal et al. [42]. Here
we incorporate the triple excitations in the CC wave-function and find that the
contribution is negligible, it is ~ 107% a.u. For Na we presented the result of

electric dipole transition in Table 4.11
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This Work Expt.[78] RCCSD[42]
35172 — 3p1y2 3.5358 3.5246(23) 3.5380
35172 — 3p3/2 5.0003 4.9838(34) 5.0030

Table 4.11: Reduced electric dipole matrix element of **Na in a.u

and are in good agreement with the previous RCCSD values. Our value
deviates from the experimental value by 0.3% for 3sy/, — 3py/ transition and
3512 — 3p3/2 transition. One important point to notice is, the results from our
as well as from the previous work are higher than the experimental value. The

result of Dy; for K are listed in Table 4.12.

This Work Expt.[78] RCCSD[42]
4s1/2 — 4Ap1y2 4.0839 4.102(5) 4.1274
4s1/2 — 4p3/2 5.7840 5.800(8) 0.8314

Table 4.12: Reduced electric dipole matrix element of *°K in a.u

Our result for 4s;/; — 4p; /5 transition deviates from the experimental value
by 0.4% and for 45/, — 4pz/, transition it is 0.3%. Here we observe an opposite
trend while comparing our results with the previous RCCSD work. The previous
RCCSD result is higher than the experimental value.

The results for Rb are listed in Table 4.13.

This Work Expt.[78] RCCSDI[42]
58172 — 9p1/2 4.2133 4.231(3) 4.2611
DS1/2 — Op3/2 9.9617 5.977(4) 6.0132

Table 4.13: Reduced electric dipole matrix element of *Rb in a.u

In this case our result is 0.4% lower than the experimental value for 5s; /2 —
5p1/2 transition and it is 0.3% for 5512 — 5ps/ transition. On the other hand
we observe a similar pattern while comparing with previous RCCSD work: the

previous RCCSD results are 0.7% and 0.6% higher than the experimental value
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of 551/ — 5p1/2 and 5s1/5 — Sp3/2 experimental data, respectively. For Cs we list

our results of Dy; in Table 4.14.

This Work Expt.[78] RCCSD[42]
6s1/2 — 6p3/2 6.2953 6.3238(73) 6.3919

Table 4.14: Reduced electric dipole matrix element of *3Cs in a.u

And our result of 651/, —6py /2 transition is 0.8% lower than the experimental
data. For the 6s1/; — 6p3/2 transition our result is 0.5% lower than the exper-
imental data. The previous RCCSD result is on the higher side, and for the
6s1/2 — 6p1/2 transition it is 1.2% higher than the experimental value. For the
65172 — 6ps/o transition also the previous RCCSD value is 1% higher than the
experimental value. So we observe that, overall our results are within 1% of the
experimental data.

To conclude this chapter, we discussed the issue of including the triple excita-
tions in the framework of RCC theory. We derived the RCC amplitude equations
and define the RCC wave-functions including the triple excitations. After which
we discussed the calculation of removal energy and Dy; with the RCC wave-
function. We presented our result for the removal energies of ground and excited
states of Li, Na, K, Rb and Cs. Overall our results are in very good agreement
with the NIST recommended values. We then discussed the results of Dy; for
Li, Na, K, Rb and Cs. It is also important to mention that the precise value
of Dy; encourages us to calculate the scalar and tensor polarizability with high

precision.



Chapter 5

Some Applications

The electric dipole polarizability, «, is the lowest order linear response property
relevant to a wide range of physical phenomena related to microscopic and macro-
scopic properties. Among the macroscopic properties, the dielectric constant and
refractive index of gas are the important ones. In the case of microscopic proper-
ties, the parity non-conservation in atoms [79], optical atomic clocks [80, 81] and
physics with the condensates of dilute atomic gases [82-84] are of current inter-
est. For accurate theoretical calculation of «, a precise treatment of the electron
correlation effects is very important. In the past, a wide variety of atomic many
body theories were used to calculate a. The recent review by Mitroy et al. [85]
gives a detailed overview of the atomic and ionic polarizabilities. We apply the
PRCC theory to calculate « of closed-shell atoms and ions.

The chapter is organized as follows : we introduce the expression of the static
« in the frame work of time independent perturbation theory. The expression of
a in PRCC theory is then discussed. We then discuss the dipole polarizability
diagrams in the PRCC theory. In section 5.2 we discuss about the a of Ne from
PRCC theory in great detail. To test the power of PRCC theory we investigated
the term wise contribution to . In section 5.4 we provide the detailed description
of the «a of noble gas atoms. We also discuss about the core polarization effects
and pair correlation effects. Similarly, we study « of alkali metal ions using PRCC
theory in section 5.5. In section 5.6 we discuss the « of alkaline-Earth metal ions.

For both, alkali metal ions and alkaline-Earth metal ions, we investigate the core

80
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polarization pair correlation effects. Then we end the chapter with conclusion.

5.1 Theory of dipole polarizability

From the second order time-independent perturbation theory, the ground state

dipole polarizability of a closed-shell atom is

(Wo| D) (T, |D| o)
)
Z Ey— E; ’

(5.1)

where |U;) are the intermediate atomic states and Ej is the energy of the atomic
state. As D is an odd parity operator, |¥;) must be opposite in parity to |¥y).
In the PRCC theory we can write

o = _<¢'O|D|\ijo> (5 2)
(Dol To) '

From the definition of |¥) in Eq. (3.14) and based on the parity selection rules,

only the terms linear in A are nonzero. That is,

Y (| TWTD + DTW D) (5.3)
(Wo|Wo) 7 .

= (O 1y T
where, D = ¢ ' De”

, represents the unitary transformed electric dipole op-
erator and (V,|¥y) is the normalization factor. From here on, it is implicit that
expressions with more than one operator involves contraction and for compact
notation, we drop the notation to represent operator contractions. Retaining the

the leading order terms, we obtain

Q
Q

N@OyTg”TD +DT + TV D + 7" DT + T'DT”
+ DT + VDL + VDT + TV DT 4+ 77D T @),

(5.4)

where N = (@] exp[T O] exp[T®]|®) is the normalization factor, which in-
volves a non-terminating series of contractions between 7O and 7O, However,
in the present work we use N' ~ ((I>0|T1(O)TT1(O) + TQ(O)TTQ(O)|CI>0>. From the above
expression of «, an evident advantage of calculation using PRCC theory is the

absence of summation over |¥;). The summation is subsumed in the evaluation
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of the T in a natural way. This is one of the key advantage of using PRCC
theory.

D K

(w) (v)

Figure 5.1: Diagrams of the a in the PRCC theory. The single excitation oper-
ators with a wavy line represent Tgl). Similarly, the double excitation diagrams
with an extra vertical line represent T;l).

For further analysis and evaluation of the different terms in Eq. (5.4), we
use many-body diagrams or Goldstone diagrams. To evaluate the diagrams we
follow the notations and conventions given in ref. [61]. However, as described
in the previous chapters, there is an additional feature in the diagrams of «, we
employ a wavy interaction line to represent the diagrams of Tgl), so that it is

different from the diagrams of Tl(o). Similarly, to represent Tgl) we introduce a
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vertical line to the interaction line. After due consideration of the equivalent
diagrams, the terms in Eq. (5.4) correspond to 22 unique Goldstone diagrams

and these are shown in Fig. 5.1. The equivalent algebraic expression is

a = Y (T + dytE) Y [T dpy + T8y )+ T T | +

ap abpq

D (W dpgmh A T dpgth) = > (0 da7E + 7 dapth) + Y (Fo gt + di ) +

apq abp abpg
=Tgx g 4pa ek g (72 179+ 79
Z(Tab d b+t prTab + Z deql b+tb deqT, b)
abpqr abcpg
where dgp, = (a|d|b), and 7% = 75! — 7% and 7] = 21 — % are the antysym-

metrised cluster amplitudes. In the figure, the first two diagrams, Fig. 5.1(a)
and 5.1(b), are the most important ones. These represent Tgl)TD and DTgl),
respectively, and subsume DF and the effects of random phase approximation
(RPA). The next two diagrams in the figure, Fig.5.1(c-d), arise from the term
Tgl)TDTQ(O), and the diagrams in Fig.5.1(e-f) correspond to the hermitian con-
jugate, TQ(O)TDT?). These are the two leading order terms among the second
order contributions, in terms of the cluster amplitudes, to a. The reason is,
both the terms consist of dominant RCC and PRCC amplitudes, T2(O) and Tgl),
respectively.

Among the second order contributions, the next to leading order terms are
Tgl)TDTQ(O) and TQ(O)TDTS). Each of these terms generate four diagrams, Fig.5.1(o-
r) and Fig.5.1(s-v) correspond to TS”DT,}O) and TZ(O)TDTS) , respectively. The
remaining second order terms, T(ll)TDTl(O) , Tgl) TDTl(O) and their hermitian con-
jugates, have marginal contributions to a. However, for completeness, these are

included in the computations.

5.2 Results and discussions

5.2.1 Dipole polarizability of Neon from PRCC theory

To study PRCC we first consider the linearized version, which we refer to as

the linearized PRCC (LPRCC). In this case, there are then 10 diagrams each

(5.5)
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in Tgl) and Tgl) cluster equations. However, only 6 of the Tgl) diagrams but
all the Tgl) diagrams contribute when Dirac-Hartree-Fock orbitals are used. A
detailed descriptions of the diagrammatic calculations are given in ref. [86].
After examining the results from the LPRCC we systematically incorporate other
terms, nonlinear in cluster amplitudes, in the PRCC calculations. To optimize
the basis set chosen for the calculations, we examine the convergence of o with
the size of basis set. Consider the case of Ne, we start with a basis set of 50 GTOs
and do a series of calculations by increasing the basis size in steps. The value of
a converges to 2.6695 when the basis set size is 124. However, for confirmation

we increase the basis set size upto 171 and the results are listed in Table. 5.1.

No. of orbitals Basis size o

50 (10s,6p, 6d,4f,4g) 2.7279
60 (12s,7p,7d,5f,59) 2.7087
75 (13s,9p,9d,7f,69) 2.6849
91 (15s,11p, 11d,8f,8g)  2.6712
108 (20s,13p, 11d,11f,9g)  2.6696
124 (22s, 14p, 14d,13f,10g) 2.6695
145 (27s,17p, 16d,14f,12g) 2.6695
163 (29s,21p, 17d,16f,13g) 2.6695
171 (31s,23p,18d,16f,13g) 2.6695

Table 5.1: Convergence pattern of a (Ne) as a function of the basis set size.

In the properties calculations the CC expression of the «, eTmTDeT(0> +
eTw)TDeT(l), is a non-terminating series. However, as described earlier, in the
present calculations we consider upto second order in 1. The contributions
from the higher order terms, based on previous studies with an iterative all
order method [75], is negligible. The result from the LPRCC theory, along with
previous and experimental values, are given in Table. 5.2. It shows that our

results agrees very well with the experimental data and indicates that the PRCC

theory, even at the linear level, gives accurate results for a single reference system
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This work CCSDT[87] RCCSDT[88] MBPT[89] Expt.[90]
2.6695 2.6648 2.697 2.665  2.670(5)

Table 5.2: The static dipole polarizability, «, of Ne from linearized PRCC and

comparison with previous results.

like Ne. The contributions from different terms in Eq. (5.4) are listed in Table.

5.3. As evident from the table, the dominant contribution arises from {TEI)TD}

Contributions from o'

(TYD} + hec, 2.6610
(T,ODTO} + he.  —0.0478
(T,ODTOY 1 e 0.0644
(T,ODTOY £ he.  —0.0062
(T,ODTOY £ he. 00961
Normalization 1.0367
Total 2.6695

Table 5.3: Contribution to a of Ne from different terms of the dressed dipole

operator in the linearized PRCC theory.

and its hermitian conjugate. This is not surprising as these terms subsume the
DF contribution and core-polarization effects. The general trend is, for closed-
shell atoms, the DF and core-polarization effects are the leading order and next
to leading order, respectively. Coming to the pair correlation effects, the leading
contribution arise from {TyMDT, 2(0)} and its hermitian conjugate. This is along
the expected lines as the TQ(O) amplitude is larger, compared to Tl(o), on account
of pair-correlations. The contributions from the remaining terms are small and
cancellations reduce the combined contribution even further.

The next level of calculation is to consider all the terms in the non-linear
PRCC theory. The term wise contributions are listed in Table. 5.4 and the net
result of 2.7383 is 2.6% larger than the LPRCC result. As evident from the
table, most of the change is attributed to {']W[')} and hermitian conjugate.
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CC terms Q

(TYD} + he. 2.7344
(T.ODTOY £ e —0.0492
(T,ODTOY £ he. 00670
(T,ODTOY £ he.  —0.0058
(T,ODTY} + hee. 0.0924
Normalization 1.0367
Total 2.7383

Table 5.4: Contribution to « of Ne from different terms of the dressed dipole

operator in the nonlinear PRCC theory.

Contribution from this term is 2.7% larger in the nonlinear PRCC, which is
comparable to the change in the value of «. This is one of the case where higher
order calculations does not translate to improved accuracy. A similar situation,
but in a different context, was observed in a detailed analysis of contributions
from nonlinear terms in the CCSD and dressing to calculate the magnetic dipole
hyperfine constant of Li [91]. As mentioned in the work referred, the contribu-
tions from higher order cluster operators, T: ?Eo) and T4(0) , could be of different

phase and bring « closer to experimental data.

Contributions {11'[E|1 Q(O)TI‘?)} {h'TNET 1(0)7'11(0),1"51)}
(TYDY 4 hee 2.7456 2.6628
(T,ODTO) +he.  —0.0492 —0.0478
(T,ODTO) 1 he. 0.0674 0.0642
(T,ODTO) 1 he. —0.0058 —0.0058
(T,ODTO) + he. 0.0933 0.0922
Normalization 1.0367 1.0367
Total 2.7503 2.6677

Table 5.5: Two of the leading order terms in the nonlinear PRCC Theory.

Through a series of rigorous calculations, we examine the changes in a, and
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associate it with a nonlinear term in PRCC theory. At the second order, there
. L O )y oy
is an anomalously large contribution from {Hx7, T} "}, it induces a changes of
0.0808 a.u. to the net result of a. This term accounts for the large change of
« in the nonlinear PRCC calculations. Compared to this term, the contribution
from the other terms at this order are marginal. The next largest contribution
1
arises from {HNTl(O)Tgl)}, it contributes 0.0086 a.u. The other contributions are
(0)m(1) (0) (1) .
0.0004 and 0.0034 a.u. from {HxT,'T;’} and {HxT, 'T5 "}, respectively.
: (0) (0) (1) (0) (0) (1) :
At the third order { HNT, T, T, } and { HNT} T, 'Ts’ } contribute equally,
. . O Op()
0.0077 a.u. each. The contribution from the last term at this order, { HNT7 17 " Ts '},
is —0.0018 a.u. To illustrate the relative changes arising from the third order
terms, we list the contributions from the leading order terms in the second and
third order in Table. 5.5. It is evident from the table that the difference be-
tween the second and third order contributions arises from the {Tgl)TD} and its
hermitian conjugate.
="

At the fourth order there is only one term {HNTl(O)Tl(O)Tl(O)Tgl)} and con-
tributes 0.0077 a.u. This detailed study implies that the higher order terms in
the PRCC equations, third and fourth order, have negligible effect on a. Since
the effect of the higher terms are tightly coupled to the electron correlation ef-

fects, a similar trend may occur in other properties as well. To estimate the

7
Contributions From {HNTI(O)TI(O)T I(O)T(ll)}

{T{""D} + h.c. 2.6638
F D7

{T,V"DT} + hee. -0.0478
F D7

{T,VDTV} + hee 0.0645
i

{T,VDTV} + hee -0.0062
TS

{T,ODTO} + he 0.0962

Normalization 1.0367

Total 2.6772

Table 5.6: The contribution to « from the fourth order term in nonlinear PRCC

theory.
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uncertainty in our calculations, we have identified two sources in the calculations
using PRCC with CCSD approximation. First type of error is associated with the
orbital basis set truncation and the termination of iteration while solving the Tgl)
and Tgl) equations. Based on the basis set convergence, as described earlier, the
uncertainty from the basis set truncation is negligible. Similarly, the uncertainty
from the termination of cluster amplitude calculation is negligible as we set 107
as the convergence criterion. The second type of error arises from the truncation
of the CC theory at T2(0) and the truncation of eT" ' DeT + 7 D™ Based
on other detailed studies, the contributions from the triples and quadruple ex-
citations could be in the range of &~ -2.6%. So that it balances the larger error
arising from the inclusion of the nonlinear terms in the PRCC theory. Based our
earlier studies with iterative method [75], to incorporate higher order terms in
the properties calculations with CC theory, the contributions from the third or
higher order in eTmTDeT(O) + eTm)TDeT(l) is negligibly small. The contribution
from Breit and QED corrections could be another source of error. However, as
Za < 1 for Ne, the uncertainty from excluding Breit and QED correction could
easily be &~ 0.01%. Here, « is the fine structure constant and is not to be con-
fused with the dipole polarizability. The estimated uncertainty is consistent with
the estimates of the contribution from the Breit interaction to correlation energy
[74]. Combining all the sources of error, the uncertainty for the calculations with
nonlinear PRCC is ~ 2.6%. But the uncertainty with linearized PRCC calcula-
tions is below 0.1%. The lower uncertainty associated with the linearized theory

is due to the different trends in the contributions from higher order terms.

5.2.2 Dipole polarizability of Ar, Kr, Xe and Rn

The « of the Ar, Kr, Xe and Rn is discussed in this section. To optimize the
basis set size, we examine the convergence of o using the LPRCC theory. We
start with a basis set of 50 GTOs and increase the basis set size in steps through
a series of calculations. As an example the results for the case of Kr is listed in
Table. 5.7. The value of o changes by only 7 x 10~ when the number of basis

states is increased from 117 to 131. So, we can use the former for our calculations
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without compromising the desired accuracy.

No. of orbitals Basis size o

79 (15s,9p,9d,7f,7¢g) 16.8759
97 (17s,11p,11d,9f,99)  16.7507
117 (21s,13p,13d,11f,11g) 16.7403
131 (25s, 15p, 14d,13f,11g)  16.7396
139 (25s,16p, 15d,13f,13g) 16.7394
155 (29s,17p, 16d,15f, 15g) 16.7394

Table 5.7: Convergence pattern of a (Kr) as a function of the basis set size.

In this set of calculations we use HP°B. With the introduction of the Breit
interaction in the total atomic Hamiltonian, the number of two electron integrals
becomes large and we need large memory to store these integrals. At the first
order MBPT, which we use as the initial guess, there is an important change
with the inclusion of H®. With only the Coulomb interaction, at the first order
MBPT, the wave operator follows the Coulomb parity selection rule and only
selected multipoles of the Coulomb interaction contributes. However, with H®,
which has opposite parity selection rule compared to Coulomb interaction, all
multipoles of the two-electron interaction which satisfy the triangular conditions
are allowed. In Table 5.8, we list the values of « calculated using the LPRCC
theory. For comparison we have also included the results from previous theo-
retical studies and experimental data. There are no discernible trends in the
previous theoretical results and present work. For Kr and Xe, the results from
the many-body perturbation theory (MBPT) [89] is higher than the experimen-
tal data, but with RCCSD triples (RCCSDT) approximations [88], Ar and Kr
have higher values. For Ar our result is 1% higher than the experimental data
and this is consistent with the RCCSDT result reported in a previous work. It
must, however, be mentioned that the previous work is based on third-order
Douglas-Kroll [92] method. Our result for Kr is in excellent agreement with the

experimental data. This could be a coincidence arising from well chosen basis
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set parameters and inherent property of PRCC to incorporate correlation effects

more completely within a basis set. In the case of Xe our result is 3.4% lower

Method Ar Kr Xe Rn
RCCSDT|[88] 11.22 16.80 27.06 33.18
CCSDT [87] 11.084 16.839 27293 3443
MBPT[89] 11.062 17.214 28.223

This work 11.213 16.736 26.432  35.391
Expt.[93] 11.001 16.740 27.340

Expt.[94] 11.081(5) 16.766(8)

Table 5.8: The static dipole polarizability, o (atomic units), from linearized

PRCC and comparison with previous results.

than the experimental data and 2.4 % lower than the RCCSDT result. The
later, difference from the the RCCSDT result, can be partly attributed to the
triple excitations. There is no experimental data of « for Rn, the highest Z atom
among the noble gases. In ref. [88], the o of Rn is computed using RCCSDT
and their result is 6.2% lower than our result.

To estimate the importance of Breit interaction, we exclude H® in the PRCC
calculations and then calculate a. The results are 11.202, 16.728, 26.404, 35.266
a.u. for Ar, Kr, Xe and Rn respectively. These represent a decrease of 0.010,
0.012, 0.021 and 0.133 a.u. from the results with the inclusion of H®. Except for
Rn, the change in « is below 0.1%. This implies that to obtain accurate results
for Rn, it is desirable to include Breit interaction in the calculations.

To examine the results in more detail, the contributions from the terms in
the expression of o given in Eq. (5.4) are listed in Table 5.9. It is evident that
Tgl)TD and it’s hermitian conjugate are the leading order terms. This is to be
expected as these terms include the Dirac-Hartree-Fock-Breit contribution and
RPA effects, which have the dominant contributions. In all the cases, the result
from Tgl)TD is larger than the total value of a and shows dependence on Z: the

results of Ar, Kr, Xe and Rn from this term are 8.7%, 11.2%, 16.7% and 17.7%
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Contributions from Ar Kr Xe Rn

T'D + hec. 12.191  18.613  30.855  41.641
T ODT® + he. —0545 —0888 —1.677 —2.328
T,ODT + hec. 0510  0.748  1.352  1.862
T, ODT® + he.  —0.057 —0.118 —0.357 —0.301
T,ODT + he. 0022 0038 0092 0073
Normalization 1.081  1.099 1145  1.157
Total 11.213  16.736 26432  35.391

Table 5.9: Contribution to « from different terms of the dressed dipole operator

in the linearized PRCC theory

higher than the total values of «, respectively. The next to leading order terms
are Tl(l)TDTQ(O) and its hermitian conjugate. Contributions from these terms
are, approximately, a factor of twenty smaller than the leading order terms and
opposite in phase. On a closer inspection, it is natural that Tl(l)TDTQ(O) and it’s
hermitian conjugate are the next to leading order terms. At the second order,
these are the terms which have T;® and TZ(O), the dominant cluster amplitudes in
the perturbed and unperturbed relativistic coupled-cluster theories. The results
from Tl(l)TDTZ(O) have large cancellations with the term T2(1)TDT2(O)7 which is
almost the same in magnitude but opposite in sign. Interestingly, a similar
pattern occurs with the TOTDTL” terms. Namely, the results from T, OTDTL"
are negative and opposite in sign to Tg(l)TDTZ(O) .

The results from the full PRCC, including the terms nonlinear in cluster
amplitudes are given in table 5.10. From the table, it is clear that the nonlinear
terms tend to increase the deviations from the experimental data. For Ar, the
non-linear PRCC theory result is 5.4% larger than the result from linearized
PRCC and it is 6.5% larger than the experimental result. Similarly, for Xe
the nonlinear PRCC result is 6.3% larger than the linearized PRCC result. On
the other hand for Kr, the non-linear PRCC results are marginally larger than
the linearized PRCC results. The larger values of « in the non-linear PRCC
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Contributions from Ar Kr Xe
TV'D + hec. 12.950  18.622  33.108
T, VDT + he.  —0579 —0899  —1.7964
T,ODTV} + hec. 0.488 0.769 1.278
T, ODT® + he.  —0061 —0.096  —0.392
T,ODT + he. 0.022  0.035 0.095
Normalization 1.081  1.099 1.145
Total 11.859  16.771  28.203

Table 5.10: Contribution to « from different terms of the dressed dipole operator
in the non-linear PRCC theory.

can almost entirely be attributed to higher value of Tgl)TD and it’s hermitian
conjugate. It means that the non-linear terms tend to increase the RPA effects.
This is an example where inclusion of higher order terms enhance the uncertainty.
It is possible that triple excitations, higher order excitation not considered in the
present work, may balance the deviations and bring the results closer to the

experimental data.

Ar Kr Xe Rn
8.152 (3psj2) 12.872 (4psj) 22292 (5ps)s
3.914 (3p1j2)  5.572 (4p1s2)  8.120 (5py2
0.100 (3s1/2)  0.058 (4s15)  0.222 (4ds)s
0.012 (2p32)  0.056 (3ds52)  0.140 (4ds)

34.524 (6ps)s
6.502 (6p12
(5ds /2
(

)
)
)
) 0.214 (5dss

)
)
)
)

Table 5.11: Core orbital contribution from Tgl)TD to a.

For a more detailed analysis of the contributions from the RPA effects, we
consider contributions from each of the core orbitals in Tgl)TD. In terms of
orbital indices the expression is

Tgl)TD +He = Z (rapTl + TP rp0) (5.6)
ap

where, r is the single particle electric dipole operator. The values of the four
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leading core orbitals (a) for each of the atoms are listed in Table. 5.11. In all
the cases, the result from the outermost nps/, valence orbitals are the largest.
This is not surprising as these are the orbitals which have the largest spatial
extent. In addition, as the matrix elements in the expression of o has a quadratic
dependence on radial distance, orbitals with larger radial extent have higher
contributions. The next largest values arise from the np,; valence orbitals. Here
we notice an interesting pattern in the results, with higher Z the ratio of the
contribution from nps/, to np; , increases. For Ar, Kr and Xe the ratios are 2.1,
2.3 and 2.7, respectively. However, the ratio for Rn is much larger, it is 5.3. The
reason for the trend in the ratios is the contraction of the np; /5 core orbitals due
to relativistic corrections. Hence, the np;/» valence orbitals of higher Z atoms
show larger contraction and accounts for the higher ratio. The third largest
contributions in Ar and Kr arise from the 3s;/, and 4s,/, orbitals, respectively.
This is expected as these are the orbitals which are energetically just below the
np orbitals and spatially as well. On the contrary, for Xe and Rn, the third
largest contributions must be from the 5s;/5 and 65,/ orbitals, respectively, but
this is not case as these orbitals are contracted because of relativistic corrections.
So, the diffused nds,, orbitals have the third largest values. From the trends in
the results of the RPA effects, it is obvious that the relativistic corrections are

important for Xe and Rn.

Ar Kr

0124 (
—0.118  (3pa/2, 3ps2
—0.027  (3p12,3p1/2
—0.006 (

—0.205 ( )
—0.193  (4ps3/2, 4p3/2)
—0.038  (4p1/2, 4p1)2)
—0.008 ( )

3173/27 3]71/2) 4173/2, 4]91/2
)

)
3p3/2, 351/2) 4ps /2, 3ds 2

Table 5.12: Core orbitals contribution from Tl(l)TDTQ(O) to a of Argon and Kryp-

ton.

Next, we examine the pair-correlation effects, which manifest through the

next to leading order terms, Tl(l)TDTQ(O) and it’s hermitian conjugate. In terms
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of orbital indices

Tl(l)TDTQ(O) +Hec = Z (TP oy — T8 0p) t00 + 007 (TP, — Tgrpb)} . (5.7
abpq

The values of the four leading terms, listed in terms of the pairs of the core
orbitals (ab), for Ar and Kr are given in Table. 5.12. From the table we can
identify (nps/2, np1/2) as the most dominant pairing of the core-orbitals among
the double excitations. Considering that the pairing is between different orbitals,
the number of cluster amplitudes is large and this explains the large contribu-
tion. The second and third dominant contributions, from the (nps/,, nps/2) and
(np1/2,np1/2) pairs, are also on account of number of cluster amplitudes. Since
nps/2 and np;/; each accommodate four and two electrons each, respectively, the
former has a larger number of cluster amplitudes. There is a small but important
change in the results of Xe and Rn listed in Table. 5.13. The most dominant
pair for these atoms is (nps/2, nps/2) and the next dominant pair is (nps /2, npy /2)-
This is in contrast to the sequence observed in Ar and Kr. The reason is, al-
though the later pair has more cluster amplitudes, the np;/, is contracted due
to relativistic corrections. So, the contributions to « from TQ(O) involving npi /2
is smaller. The difference between the results from the two pairs is even more
dramatic in Rn. There are other changes in the case of Rn. The (6ps/2, 5ds/2)
pair, involving the diffused 5ds /9, is now the third largest contribution. And the
(6p1/2,6p1/2), which has the contracted 6p; o orbital, is the fourth largest con-
tribution. This difference in the sequence of leading contributions for Rn arises
from the larger relativistic corrections. Here also we estimate the uncertainty
in the calculation of ov. As mentioned in the uncertainty estimation of Ne, here
also we have identified few important sources of uncertainty. The first one is the
truncation of orbital basis sets. Although we start with 9 symmetry for all the
calculations, we increase the number of symmetries upto 13 in steps. The basis
set chosen for the results given are after the value of o converges to 1074, So,
the uncertainty from the basis set truncation is negligible. The second source of
uncertainty is the truncation of CC theory at the single and double excitation for

both the unperturbed and perturbed RCC theory. Based on earlier studies, the
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Xe Rn
—0.361 ( ) —0.591 ( )
—0.359  (5ps/2,5p1j2)  —0.387  (6ps/2, 6p1/2)
—0.054  (5p1/2,5p172)  —0.071  (6ps/2, 5ds/2)
( ) ( )

dP3/2, OP3/2 6p3/2, 6p3/2

—0.035 5])3/2, 4d5/2 —0.036 6]91/2, 6]?1/2

Table 5.13: Core orbitals contribution from T,V DT, 2(0)} to a of Xenon and
Radon.

contributions from the triples and quadruple excitations could be at the most
~3.3%. This is also consistent with the deviations from the experimental data.
Finally, the truncation of TV DT + T DeT s another source of uncer-
tainty. From our earlier studies with iterative method [75] to incorporate higher
order terms in the properties calculations with CC theory, the contributions from
the third or higher order is negligibly small. Quantum electrodynamical (QED)
corrections in this set of calculations is another source of uncertainty. However,
it is expected to be smaller than the correction from the Breit interaction. As
the largest Breit correction, in the case of Rn, is 0.1%, we can assume the correc-
tions from QED effects to be at the most 0.1%. So, adding this, the maximum
uncertainty in our calculations is 3.4%. However, it must be emphasized that,

for Ar and Kr, the uncertainty is much smaller than this bound.

5.2.3 Dipole Polarizability of Alkali Metal Ions

For the case of alkali metal ions, we consider terms up to second order in the
cluster operators. We have, however, studied terms which are third order in
cluster operators and examined the contributions from the leading order terms.
But the contributions are negligible and this validates our choice of considering
terms only up to second order in cluster operators. To begin with, we compute
« using the cluster amplitude obtained from the LPRCC and results are pre-
sented in Table 5.14. In the table we have listed, for systematic comparison, the

experimental data and results from previous theoretical computations.
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Atom LPRCC + Breit RCCSDT  RRPA [95] Expt.

Na* 1.009 1.00(4)[96]  0.9457  0.9980(33) [97]

K+ 5.521 5.52(4)[96] 5.457 5.47(5) [98]

Rb* 8.986 9.11(4)[96] 9.076 9.0 [99]
9.11(4)[100]

Cst 14.924 15.8(1)[96] 15.81  15.644(5) [101]

Frt 19.506 20.4(2)[96]

Table 5.14: Static dipole polarizability of alkali ions.

For Na* and K™, our values of « are higher than the experimental values by
1% and 0.9%, respectively. However, for Rb* and Cs™ our results are lower than
the experimental values by 0.15% and 4.8%, respectively. In comparison to the
previous theoretical results, our results of Na* and KT are in excellent agreement
with the previous work which used the RCCSDT method for computation. But,
for Rb™ and Cs™, like in the experimental data, our results are lower than the
RCCSDT results. One possible reason for the deviations in the heavier ions could
be the exclusion of triple excitation cluster operators in the present work. Our
result of Fr™ seems to bear out this reasoning as the same trend ( our result is
4.4% lower than the RCSSDT result) is observed in this case as well. However,
in absence of experimental data for Frt, it is difficult to arrive at a definite
conclusion.

To investigate the importance of Breit interaction, Hg, in computing o of
the alkali ions, we exclude Hg in the Hamiltonian and do a set of systematic
calculations. Our results for the values of a are then 1.008, 5.514, 8.973 and
14.908 for Nat, K+, Rb" and Cs™, respectively. These values are 0.001, 0.007,
0.013 and 0.016 a.u lower than the results computed using the Dirac-Coulomb-
Breit Hamiltonian. This indicates that the correction from the Breit interaction
is larger in heavier ions and this is as expected since the stronger nuclear potential
in heavier ions translates to larger Breit correction. However, the largest change

is ~ 0.001% and shows that the contribution from Breit interaction to o can be



Chapter 5. Some Applications 97

neglected.
For a more detailed study, we examine the contributions from each of the

terms in the Eq. (5.4) and these are listed in Table. 5.21. The leading order

Terms + h.c. Na™ K+ Rb* Cs™ Frt
TV'D 1.018  6.043  10.029 17472  22.926
T,WDT” —0.018 —0299 —0519 —1.023 —1.326
T,WtDT 0012 —0.038 —0.072 —0.188 —0.126
T,WDT —0.001  0.008  0.016 0039  0.026
T, DT 0.023 0204 0332  0.654  0.834
Normalization ~ 1.025  1.072  1.089  1.136  1.145
Total 1.009 5521 8986  14.924  19.506

Table 5.15: Contribution to « from different terms and their hermitian conjugates

in the linearized PRCC theory.

contribution arises from T(ll)TD + h.c and diagrammatically, it corresponds to
the first two diagrams in Fig. 5.1. These are also the lowest order terms and
are the dominant terms since these subsume the contributions from the Dirac-
Fock and RPA effects. For all the ions, the results from the dominant terms
exceeds the final results and similar trend is observed in the results of noble
gas atoms as well [50, 51]. The next to leading order (NLO) contributions arise
from the Tl(l)TDTéo) + h.c. The contributions from these terms are an order of
magnitude smaller then Tgl)TD + h.c but more importantly, the contributions are
opposite in phase. Interestingly, the next important terms Tg(l)TDTQ(O) + h.c have
contributions which nearly cancels the NLO contributions. Continuing further,
among the second order terms, the smallest contribution arise from Tg(l)TDTl(O)
+ h.c., which is perhaps not surprising since To™T and Tl(o) are the cluster
operators with smaller amplitudes in PRCC and RCC theories, respectively.
Collecting the results, the net contributions from the second order terms are
0.016, —0.117, —0.223, —0.456 and —0.517 for Na*, K*, Rb", Cst and Fr™,

respectively.
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Next, we consider all the terms in the PRCC theory, including the terms
which are non-linear in cluster operators. The results of a are presented in the

Table 5.16.

Terms + h.c. Na* K+ Rb™ Cs*
T"'D 1.034 6.302 10438  18.376
T,WDT” —0.018  —0.316 —0.544 —1.084
T, WD 0.012  —0.040 —0.076 —0.198
T,VDT —0.0008  0.008  0.016  0.038
T, DT 0.024 0194 0308  0.596
Normalization 1.026 1.072 1.090 1.136
Total 1.025 5735 9.305  15.606

Table 5.16: Contribution to « from different terms and their conjugate in the

PRCC theory after including the terms nonlinear in cluster operators.

For Na™ the result of « is 2.6% higher than the experimental value. Similarly,
for KT and Rb" the results are 4.6% and 3.3% higher than the experimental
values. For Cs™ the nonlinear PRCC theory gives a much improved result than
the LPRCC results and the deviation from the experimental value is reduced
to 0.24%. On a closer examination, most of the change associated with the
nonlinear PRCC can be attributed to the increased contribution from Tgl)TD +
h.c. As these terms subsume RPA effects, the increased contributions indicate
that RPA effects are larger in the nonlinear PRCC.

To investigate the RPA effects in detail, we isolate the contributions from
each of the core spin-orbitals to Tgl)TD + h.c. and The dominant contributions
are presented in Table. 5.22.

It is to be noted that « has a quadratic dependence on the radial distance,
so the orbitals with larger spatial extent contribute dominantly. The effect of
this is discernible in the results, for all the alkali ions the leading contribution
to a arises from the outermost nps/, orbital, which is the occupied orbital with

largest radial extent. The next leading contribution arise from the np,, orbital.
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Na™* K+ Rb* Cs* Frt
0.652 (2p32) 4.016 (3pyjs) 6.858 (4pyjs) 12375 (5paja) 18.287 (6ps)s)
0.322 (2p1)s) 1.938 (3p1js) 3.038 (dpijs) 4735 (prj)  4.073 (6p1)s)
0.044 (2512) 0.076 (351/2) 0.058 (4s1s)  0.192 (4dsjn)  0.376 (5ds)2)
0.0004 (Is1/2) 0.008 (2psjs) 0.044 (3dsja)  0.121 (ddsjp)  0.211 (5ds0)

Table 5.17: Four leading contributions to {T(ll)TD + h.c} to a in terms of the

core spin-orbitals.

An important observation is, as we proceed from from lower Z to higher Z, the
ratio of contribution of nps/2 to the npy e increases. It is 1.8, 2.1, 2.3, 2.6 and
4.5 for Nat, K*, Rb", Cs* and Fr™ respectively. The ratio is much larger in
the case Fr™ and without any ambiguity it can be attributed to the relativistic

contraction of the np;/, orbital. The third leading contribution for Na®, K*,
Rb™ arise from the 2512, 35172 and 45/ orbital respectively. But, for Cs' and
Fr™ the third leading contribution arise from 4ds /2 and 5ds 5 orbital respectively.
This is because the 551/, and 651/, orbital are contracted due to large relativistic

effects. From the above analysis of RPA effects, the trend in the contributions

demonstrates the importance of relativistic corrections in Cs* and Fr*.
Na™ K+
—0.0040  (2p3/2,2ps/2) —0.0646  (3ps/2, 3ps/2)
—0.0021  (2p3/2,2p1/2) —0.0367  (3ps/2, 3p1/2)
—0.0021  (2p1/2,2ps/2) —0.0360  (3p1/2,3ps/2)
—0.0010  (2p1/2,2p1/2) —0.0148  (3p1/2,3p1/2)

Table 5.18: Core orbitals contribution from T;MDTL” to a of Na* and K*.

To study the pair-correlation effects, we identify the pairs of core spin-orbitals
in the next leading order terms Tl(l)TDTQ(O) + h.c. The four leading order pairs
for Na* and K*, and Rb", Cs™ and Fr™ are listed in table 5.18 and 5.19 respec-
tively. The dominant contribution, for all the ions, arise from the combination

(nps/2, nps /) orbital pairing. To illustrate the relative values, the contributions
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from the pairs of the five outermost core spin-orbitals of Rb* is shown as a

barchart in Fig. 5.2.

Rb* Cs™ Frt
—01113  (psjn.dpsjs)  —0.2126  (5psjo,5psn)  —0.3078  (6psya, 6ps)e)
—0.0601  (4ps3/2, 4p1/2) —0.1073  (5ps3/2, 5p1/2) —0.1266  (6ps/2, 6p1/2)
—0.0565 (4pyo dpsp)  —0.0930 (5piss.5pss)  —0.0828  (6pise, 6pse)
—0.0223 (dpuodprp)  —0.0347 (5pu.Sprn)  —0.0489  (6pss, 5dsys)

Table 5.19: Core orbitals contribution from Tl(l)TDTQ(O) to a of Rb™, Cs* and
Frt.

0.0001

0.00001
4p3/2

Figure 5.2: Contributions to the next to leading order terms Tl(l)TDTQ(O) + h.c.
in terms of the pairs of core spin-orbitals.

Comparing the results of all the ions, there is a major difference in the results
of Fr™. For Fr™ the fourth largest contribution is from the (6ps/2,5ds/2) pair,
whereas for the other ions it is (np1 /2, np1/2). This is again a consequence of the
contraction of the 65/, spin-orbital in Fr™ due to relativistic effects.

Coming to the uncertainty estimates of the results of alkali ions, we have
identified the following important sources and based on these we calculate the

uncertainty in our results. The truncation of the spin-orbital basis sets is one of
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the possible source. For all the ions we start the computations with 9 symme-
tries and increase up to 13 symmetries. Along with it, we also vary the number
of the spin-orbitals till o converges to ~ 107*. So, we can safely neglect this
uncertainty for our calculations. Another source of uncertainty is the truncation
of the CC theory at the single and double excitation for both unperturbed and
the perturbed RCC theories. The truncation of eTmTDeT(O) + eT(O)TDeT(1> at
the second order in cluster operator is also a source of uncertainty. However,
from our earlier studies [75] and our studies on the contribution from third order
terms, the contribution from higher orders is negligibly small. The quantum
electrodynamical(QED) corrections is another source of uncertainty in our cal-
culations and based on our previous studies, we estimate it at 0.1%. In total,
we estimate the maximum uncertainty in our results as ~3.4%. For lighter ions,

the uncertainty is much lower.

5.2.4 Dipole Polarizability of Alkaline-Earth Metal Ions

As mentioned earlier, for the case of alkaline-Earth metal ions also we consider
up to second order in cluster amplitudes. However, considering that the cluster
operators T2(0) and Tg) accounts for more than 95% of the many-body effects in
RCC and PRCC, the terms considered in Eq. (5.4) give very accurate results.
To verify, we have examined the leading terms which are third order in cluster
amplitudes and find the contributions are ~ 10™%. So, for the present work, as we
consider « upto third decimal place, it is appropriate to neglect the contributions
from terms which are third and higher order in cluster operators.

In table 5.20 we list the « of alkaline-Earth metal ions Mg?*, Ca%*, Sr?*,
Ba?" and Ra?" computed using Eq. (5.4). The results are based on two sets
of calculations: one is based on the cluster amplitudes obtained from LPRCC
and the other is based on PRCC. For a systematic comparison we also list the
previous theoretical and experimental results. The results of « along with the
orbital energy corrections arising from Vi (r) for each of the ions are discussed

in the subsequent sections.
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Atom This Work  Method  Previous Works  Method

Mg** 0.489  (LPRCQ) 0.469" RRPA
0.495  (PRCCQ) 0.489(5)>  Expt.

Ca®" 3.284 (LPRCC) 3.262° RCCSDT
3.387  (PRCCQ) 3.254! RRPA

3.26(3)? Expt.

Sr* 5.748  (LPRCC) 5.7923 RCCSDT
5913  (PRCCQ) 5.813 RRPA

Ba®* 10.043  (LPRCC) 10.4913 RCCSDT
10.426  (PRCCQ) 10.61" RRPA

Ra*" 12.908  (LPRCC) 13.361° RCCSDT

13.402  (PRCC)

Table 5.20: Static dipole polarizability of doubly ionized alkaline-Earth-metal

ions and the values are in atomic units.

Mg2+

The o of Mg*" computed with LPRCC is in excellent agreement with the exper-
imental data. However, the PRCC result is 1.2% higher than the LPRCC result
and experimental data. This may be due to a part of the additional many-body
effects arising from the nonlinear terms in the cluster amplitude equations, but
which may ultimately cancel with the contributions from the cluster amplitudes
of higher excitations like TS(O) and Tgl). The RRPA result is 4.1% lower than the
experimental data and it is also lower than both the LPRCC and PRCC results.
It must be added that a similar trend is observed for the Na* ion [103], which
is isoelectronic with Mg?*, the RRPA result of « is lower than the experimental

data [95]. This trend may be on account of the inherent strength and limitation
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of RRPA, the potential to incorporate core-polarization effects very accurately
and weakness to account for pair correlation effects. To estimate the contri-
bution from the Breit interaction we consider the Dirac-Coulomb Hamiltonian
with the VP potential. The contribution from the Breit interaction can be safely

neglected for this ion as the contribution is less than 0.02%.

Ca2+

For Ca?", the LPRCC result of o is within the experimental uncertainty and
it is in good agreement with the result from a previous work, which is based
on the RCCSDT theory. The PRCC result is 3.1% larger than the LPRCC
result and deviates from the experimental data by 3.7%. On the other hand, the
result from the RRPA [95], like in Mg?", is lower than the experimental data.
Based on another set of calculations with the Dirac-Coulomb Hamiltonian, the
contribution from the Breit interaction is estimated to be 0.004, which is a mere

~0.1% of the total value.

Sr2+

For Sr*" it is important to have accurate theoretical results as there are no
experimental data of av. From the Table 5.20 the LPRCC result of 5.748 is in very
good agreement with the previous work using RCCSDT. And, like in the previous
cases, the PRCC result of 5.913 is larger than the LPRCC result. Comparing
the results from different theoretical methods, we observe the emergence of two
important changes in the relative patterns when compared with the results results
of Mg+ and Ca?*. First, the RRPA result is higher than both the LPRCC and
RCCSDT results, and second, the RCCSDT result is larger than the LPRCC
result. This may be on account of the filled 3d shell in Sr?*. As it is of higher
angular momentum, it has larger polarization effects as well as pair correlation
effects. A method like RRPA incorporates the core-polarization effects very
accurately but could potentially under estimate the pair correlation effects. Not
surprisingly, the same trends are observed in the heavier ions Ba?T and Ra?*

with filled d and f shells. Based on a comparison with the calculations using the
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Dirac-Coulomb Hamiltonian, we estimate the Breit contribution as 0.005. This

is negligibly small and similar in magnitude to the case of Ca?".

Ba2+

Like in Sr?T, there are no experimental data of o for Ba?*. Hence, it is important
to have accurate theoretical results and in this regard, it is pertinent to calculate
a with a reliable method like RCC. Here, computing with the relativistic version
coupled-cluster is essential as the high Z implies that the relativistic corrections
are important. From Table. 5.20, it is evident that our LPRCC result of 10.043 is
4.3% lower than the RCCSDT result. However, our PRCC result is in very good
agreement with the RCCSDT result, it is just 0.6% less. Examining the results
discussed so far, there is a discernible trend when we compare the PRCC and
RCCSDT results. The difference between the two results narrows with increasing
7. This may be due to the the basic property of the CCT, the inclusion of selected
electron correlation effects to all order. So, with higher Z the importance of the
correlation effects grows and the two coupled-cluster based methods incorporate
the correlation effects to similar accuracy. The other theoretical result from
the RRPA theory is larger than the other results. Following the computations
described earlier, we estimate the Breit contribution as 0.007, which is similar to

the previous cases.

Ra2+

Our PRCC result of a for Ra?" is ~3.7% larger than the LPRCC result. This
trend is similar to the case of Ba?* and may be attributed to better accounting
of correlation effects in PRCC. To be more precise, the importance of the corre-
lation effects grows with increasing number of electrons, but, LPRCC theory is
insufficient to incorporate the correlation effects as it considers only the linear
terms. The PRCC theory, which includes the nonlinear terms, provides a better
description of the electron correlations. This is borne by the fact that the PRCC
results are in good agreement with the RCCSDT results, the difference between

the two results is just =0.3%. Like in the previous cases, the contribution from
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the Breit interaction is small and the value is 0.008.

Terms + h.c. Mg** Ca’" Sr?t Ba’" Ra?**
LPRCC results
T"'D 0.496 3594 6400 11.708  15.160
T,WDT” —0.008  —0.180 —0.330 —0.676 —0.864
T, WD 0.001  —0.022 —0.044 —0.114 —0.108
T,WDT —0.0001  0.004  0.008  0.020  0.018
T,VDT 0.008 0.098 0174 0370  0.470
Normalization 1.019 1.064 1080 1126  1.137
Total 0.489 3284 5748 10.043  12.908
PRCC results
TV'D 0.502 3718 6.606 12.214  15.820
T,WDTY —0.008  —0.188 —0.344 —0.710  —0.908
T, DT 0.002  —0.022 —0.046 —0.120 —0.114
T,WiDTY —0.0001  —0.004  0.008  0.018  0.016
T,ODTY 0.008 0.092  0.162 0338  0.424
Normalization 1.019 1.064 1080 1126  1.137
Total 0.495 3387 5913 10426  13.402

Table 5.21: Contribution to « from different terms and their hermitian conjugates

in the LPRCC and PRCC theory.

Core-polarization and pair correlation effects

In the previous sections we discussed the comparison between the results from

different theories, general trends and orbital energy corrections from VP. To ex-

amine and investigate the contributions from various many-body effects, which

are encapsulated in different terms of LPRCC and PRCC, we isolate the contri-

butions from different terms through a series of computations. The results are

listed in Table. 5.21. From the table it is evident that the leading term in the
LPRCC as well as PRCC theory is {Tgl)TD + h.c}. This is not surprising as it
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is the term which subsumes the DF contribution and the RPA effects. Now to
understand and quantify the RPA effects in these systems, we separate the core

orbital contribution to «.

Mg** Ca*" Sr?+
0.312 (2p3j2) 2378 (3psj2)  4.344 (4pss)
0.154 (2p1j2) 1148 (3p1j2)  1.940 (4, o)
0.028 (251/5)  0.056 (351,) 0.048 (4s12)
0.0002(1s1/)  0.006 (2ps/2) 0.034 (3ds2)

BaZt RaZ*

8.182 (5psj) 11.766 (6pss)
3.188 (5pijs)  2.822 (6p )
0.162 (4ds2)  0.338 (5ds2)
0.102 (4ds2)  0.192 (5ds2)

Table 5.22: Four leading contributions to {T(ll)TD + h.c} to « in terms of the

core spin-orbitals.

The four dominant contributions from the core orbitals to {T(ll)TD + h.c}
are listed in table 5.22. For all the ions, the outermost p3/, orbital is the most
dominant and this because of the larger radial extent of the ps/, orbitals. The
next important contribution arises from the outermost p; /2. A prominent feature
that we observe in the results is the ratio between the contribution from the
outermost ps/ to the p;/o orbitals. The ratio are 2.03, 2.07, 2.24, 2.57 and
4.17 for Mg®™, Ca®", Sr*", Ba®" and Ra’", respectively. The ratio increase
with increasing Z but for Ra®" it is 1.6 times higher than the Ba®'. This is
an important feature arising from the contraction of p;/, orbitals due to the
relativistic effects, which is more prominent in the heavier atoms and ions. The
third largest contribution arise from ns;/; orbital in the case of Mg*", Ca?" and
Sr?**. This is because the ns; /2 orbital is energetically lower than the np;/, and
relativistic corrections are not large. However, for Ba?" and Ra?", due to the

relativistic contraction, the contribution from the outermost ns/; is suppressed.
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And, the third largest contribution arises from the more diffused outer nds,
orbital.

The next leading contribution arises from {Tl(l)TDTQ(O) + h.c}. The con-
tribution from this term is much smaller and opposite in phase to the leading
order term. A similar trend is observed in case of the noble gas atoms and
was reported in one of our previous works [51]. Among the various terms the
{Tl(l)TDTl(O) + h.c} has the smallest contribution. This is because of the fact
that Tl(o) and Ty have smaller amplitudes in the RCC and PRCC theories,
respectively. As can be seen from the table 5.21, the overall contribution from
the second order terms are 0.0009, -0.100, -0.192, -0.400, -0.484 for Mg®", Ca®",
Sr*T, Ba®" and Ra®", respectively. Except for Mg®", the higher order terms
gives a negative contribution to the «.

To study the pair-correlation effects we examine the next to leading order
term, Tl(l)TDTQ(O) in more detail. In Table 5.23, 5.24 we list the four leading order
core-orbital pairs which contribute to . The (nps/2, nps/2) orbital pairing gives
the most dominant contribution. The next leading order contribution arises from
the (nps/2, np1/2) orbital pairing. The same pattern is observed for all the doubly
charged ions. For Ra®" the fourth largest contribution arise from (6p3/2, 5d5/2)
orbital pairing, but for other ions it is from (np; /2, np1/2) orbital pairing. This is
because of the relativistic effects, which contracts the outer s/, orbital in Ra%t
more than the other ions. One important point to notice here is the higher order

terms does not translate to higher accuracy as observed in the case of Mg®™ and

Ca2+

Mg?* CaZt

—0.002  (2p3/2,2p3/2)  —0.038  (3ps/2,3ps/2)
—0.001  (2p3/2,2p12) —0.022  (3ps/2,3p1/2)
—0.001  (2p1j22ps2)  —0.022  (3py/a, 3ps2)
—0.0004 (2291/2, 2p1/2) —0.009 (3171/2, 3]91/2)

Table 5.23: Core orbitals contribution from Tl(l)TDTQ(O) to o of Mg*" and Ca*".
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Sr?t Ba*" Ra**
_0.069 ( ) —0.132 ) —0.186 ( )
—0.038  (4ps/2,4p12)  —0.070  (5p3/2,5p12)  —0.077  (6ps)2, 6p1/2)
—0.036  (4p1oAps;s)  —0.061 (5pijm5psn)  —0.052  (6pie, 6ps)s)

( ) ) ( )

4p3 /2, 4p3 2 dP3/2, OP3/2 6p3/2, 6p3/2

(
(
(
~0.014 —0.022 ( ~0.039

4p1/2,4p1/2 dp1/2, 5]?1/2 6p3/2, 5d5/2

Table 5.24: Core orbitals contribution from Tl(l)TDTQ(O) to a of Sr*", Ba®" and

Ra2+

Theoretical Uncertainty

The sources of uncertainty are similar to the earlier cases. Based on a series of test
calculations, we estimate the contribution from triple excited cluster amplitudes
to less than 0.2% of the total value. So, we can consider the upper bound on
the uncertainty from the truncation of the RCC and PRCC theories as 0.4% for
the heavier ions Sr?*, Ba?* and Ra?'. Examining the trend in the results of
Mg?* and Ca?", the uncertainty is likely to be higher for the PRCC results of
these ions. But, the LPRCC results could have an uncertainty less than ~0.4%.
The other source of error is the truncation of the non-terminating series of a.
We terminate eT(l)TDeT(O) + eT(O)TDeT<1> at the second order in cluster operator.
However, based on our earlier study [75], where we reported an iterative technique
to calculate properties to all order, the contribution from the third and higher
order terms is negligible. So, the uncertainty arising from the truncation in the
expression of « can be neglected. Quantum electrodynamic (QED) corrections
is another source of uncertainty in the present calculation. We include the VP
potential in the present work but the self-energy part of the radiative corrections
is neglected. The self-energy correction is important for the heavy atoms [15].
We can, however, safely neglect it from the error estimates as the contribution
is less than the correction from Breit interaction, which accounts for at the most
0.1% of the total value. So, considering all the sources, the upper bound on the
uncertainty of the present calculations is ~0.4% for the LPRCC results of Mg?*

and Ca?*, and PRCC results of Sr?*, Ba?* and Ra?* ions.



Chapter 6

Future Directions and

Discussions

The present thesis examines the QED corrections in atoms and ions. In this
work we develop the RCCSDT theory with HP®B as the atomic Hamiltonian.
Along with this we consider the vacuum polarization correction to the orbital
energies. This approach provides a platform to study the relativistic, correlation
and QED effects in heavy atoms. To test the effect of T?fo) we study the corre-
lation and excitation energies, electric dipole transition amplitudes. Our results
are compatible with the previous RCCSD works. We must emphasize that there
is scope to improve on the present work. As we mentioned earlier, we have only
considered the vacuum polarization part of the QED corrections in the present
work. In future we will focus on incorporating the self energy and the vertex
correction to obtain a lowest order QED corrections in atoms.

There is tremendous progress in the field of highly charged ions in the past
decades [104]. Tt is worth to mention that RCC theory can be used to verify the
precision experimental results of highly charged ions. It has been pointed out
that atomic clocks with exceptional high accuracy can be build using the highly
charged ions [105]. For this it is important to develop high precision atomic
many body methods and essentially, coupled-cluster theory is one of the leading
candidate to test it.

The PRCC theory is a general extension of the RCC method to incorporate an
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additional perturbation. The present thesis demonstrates that it is suitable for
properties calculations for closed-shell atoms and ions. Although, in the present
thesis we have used PRCC theory to calculate electric dipole polarizability, the
method can be extended to calculate other atomic properties as well. The nu-
clear spin dependent parity non-conservation (NSD PNC), which provides an
important window to test the physics beyond standard model, can be studied
using the PRCC theory [86, 106]. In future we would like to incorporate the
QED effects to study the NSD PNC in atoms.

Time dependent coupled-cluster theory is another emerging field that can be
studied in future. It is always important to study the dynamics of electrons in
many electron atoms. Now with the advent of high power Lasers, experimentally
it is possible to study the dynamics of electrons. There is certainly a scope to go
beyond the time dependent Hartree-Fock theory to incorporate the correlation
effects precisely using the time dependent CCT. The time dependent CCT is
studied in the nuclear physics [107] as well as in quantum chemistry [108]. A
future possibility is to study the dynamics of the electrons in the framework of

time dependent coupled-cluster theory.



Appendix A

Matrix Element of Breit

Interaction

The matrix element of the Breit interaction is necessary to consider the Breit
Hamiltonian at the DHF SCF method as well as in the RCC theory. Here we
will follow the treatment of Grant and his coworkers [18, 63, 65, 66].

The interaction strength for the Breit interaction is

Xg,(abed) = (- 1)k<]aH(7kHjc><ij(7kde>{jajck}{jbjdk} X

k+
( (K, Ke, V) (Kp, kg, v Z%t a,b,c,d)R;(a,b,c,d) +

=k—1

8
(Ka, ke, k — DI (Kp, kg, k — 1) Z sﬁ(a, b, c, d)SZf(a, b,c,d) ) .

p=1

~

-~

(A1)
Let us consider the first term in Eq. (A.1). So for v =k — 1 it is

[XE(abed)yr—1 = (=1)*(Gal|C*[]7e) Gl |C* [ {Gadeh } {bak}
(g, ties b = DTG, 0, k= D 71 0,0, ) RE(a,b,¢.d) +
7"5 1k(a,b, c,d)RE(a,b, ¢, d) —i—r]; 1k(a,b, c,d)RE(a, b, ¢, d) +
¥ (a,b, e, d)RE(a, b, c, d)} (A.2)

Let us consider the term in the under-brace, i.e, ¥ *(a,b, ¢, d)R¥ " (a,b, ¢, d).
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Using the coefficients from Grant’s work [18] we can write the term as follows :

k41
k(2k — 1)(2k + 1)}

Awmaﬁmdm&&ﬁQﬁﬂUkﬂmyﬁg@ﬁQdm)

A b e DR (b ed) = {(ke = ka) + Rk = k) + £}

Similarly the other terms can expressed in terms of the large and small compo-
nents of the radial wave-function. For completeness we give here all the integrals

with the coefficients.

vy (e b e, )RS0 b,¢,d) = {(ke = k) = K}H{(Ka — ) k}{k 2% — : j;(;k: n 1)}
/0 d?“g/o dr1Qa(r1) P(r1)U—_1(r1,79)Qp(12) Py(r2),
ry Mabe )BT a e d) = {(ke— ha) + KH(ka = ) - k}{ k(2k —li)r(;k - 1)}

/Ooo drs /00" driPy(11)Qe(r1)Up—1 (11, 72)Qp(12) Pa(r2),

k41
k(2k — 1)(2k + 1)}

/000 drs /OOO dr1Qa(r1) Pa(r1) Up—1(r1,72) Py(r2) Qa(rs).

R b e, RV (a,b, e d) = {(Ke — ko) — kM{(kg — k) + k:}{

For v = k the integrals and the coefficients has the following form :

(Ke + Ka)(Ka + Kbp) }
kE(k+1)

/OOO dry /OOO dry P, (1) Qe (1) Up (71, 72) Py(12) Qa(72),

¥ (a,b, ¢, d)R¥(a,b,c,d) = {

(Ke + Ha)(/fd + Kyp) }

(e b R bed) = PR

/drg/ dr1Qa(r1) Pe(r1) Uy (11, 72)Qp(12) Pa(r2),

Ke + Kq)(Ka + Kp) }
k(k+1)

/O " dr, / A Pa(r)Qu(r)Un(r1, 72) Qo (1) Pa(ra),

r?’k(a, b, c, d)R’;(a, bc,d) = {

(Ke + Ka)(Ka + Kbp) }
Kk + 1)

/OOO drs /OOO dr1Qa(r1) Pe(r1)Ux(r1,72) Po(r2)Qa(r2)-

Tf’k(m b, c, d)RZ(a, b,c,d) = {
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For v = k + 1 the integrals and the coefficients are

R a, b, e, )R (a, b, e, d) = — Kq) — (]f + D H(ka = mp) = (F+ 1)} x

{(k: n 1)(% 1)(2k + 3)}

/ dry dry Py(r1)Qc(r1) U1 (11, r2) Po(12) Qa(r2),
0 0

AR (b, e, dRET (a,b,e,d) = {(ke — k) + (k + D) H(ka = mp) + (E+ 1)} x

{( k+ 1)(2k + 1 )(21<;+3)}><

/0 dry / drlQa(Tl) ( 1)Uk+1(7“177’2)Qb(7"2)Pd(7’2)>
T, b, e, dYRET (0, b, e, d) = {(Ke — Ka) — ( + D H(ka — ko) + (K + 1)} x

{( k+1)(2k + )(2k+3)}
/0 dry [ drPa(r)Qu(r)Usir (1, 72)Qy(ra) Pa(r2),

i ()b, e, d)RET @, b, e, d) = {(Ke — ko) + (b + D H{(ka — ko) — (k+ 1)} x

{ 2k+1)(2k+3)}x
/ dm/ dr1Qa(11) Pe(r1)Upg1 (11, 72) Py (12) Qa(12).

Now coming to the under braced term in Eq. (A.1). After expanding it is

8
(Kq, e, b — 1)Ky, kg, k — 1)Zsﬁ(a b, c, d)S (a,b,¢,d) =
p=1

(Kay Key k — D) (Kp, kg, k — 1) X {s’f(a, b,c, d)Sf(a, bc,d)+ -+
st(a,b,c,d)S§(a, b, c, d)}

Here we give the details of the integrals and the coefficients in the above expres-

sion that we use in our code.

1
_m{(f@c — Ka) + kH(Ka — ko) — (K + 1)} X

[/OOO drs /000 dr1 Py(r1)Qe(r1) Up—1 (1, 72) Po(12) Qu(r2) —

s¥(a,b,c,d)S¥(a,b,c,d) =

/OOO dry /OOO drlPa(m)Qc(m)UkH(rl,rQ)Pb(TQ)Qd(TQ)}’
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Sg(aa b, c, d)Sg(a, b, c, d) =

s(a,b,c,d)S(a,b,c,d) =

SZ(CL, ba ¢, d)Sf(a, b, C, d) =

S}g(av ba ¢, d)SéC(a, b7 C, d) =

S}g(av ba ¢, d)SéC(a, b7 c, d) =

8’;(&, ba ¢, d)S?((I, b7 C, d) =

SISC(CL’ ba &) d)Sg((l, b7 C, d) =

sy — ) = 6 DR )+ )

[/OOO drs /Ooo dry Py(r1)Qa(r1) Up—_1(11,72) Pa(r9) Qu(r2) —

/OOO drs /Ooo anb(h)Qd(m)UkH(rl,rQ)Pa(rQ)QC(rQ)}7

1
RECTESY

[/OOO dry /Ooo dr1Qa(r1) Pe(r1)Up—1(r1, r2)Qu(r2) Pa(ra) —

/Ooo dry /OOO dTlQ(z(Tl)Pc(Tl)Uk+1 (7”1, T’Q)Qb(TQ)Pd(T'Q)} ,

1
RECTESY

[/OOO dry /OOO driQu(r1) Py(r1)Up—1(r1,72)Qu(r2) Pu(rs) —

/OOO drsy /Ooo dTlQb(Tl)Pd(7“1)Uk+1(T1, TQ)QG(T'Q)PC(T'Q)} ,

_2(2k1+1){(/€c — #ia) + kH{(Ka — ko) + (k+ 1)} x

[/OOO dry /Ooo driPa(r1)Qc(r1)Up—1(r1,72)Qp(r2) Pa(ra) —

/OOO drsy /Ooo dTlpa(Tl)Qc(Tl)Uk+1(7"1, TQ)Qb(TQ)Pd(T'Q)} ,

1
_m{(

[/OOO r: /OOO dr1@y(r1) Pa(r) U1 (r1,72) Pa(r2) Qc(r2) —

/OOO drs /OOO d'f'lQb(Tl)Pd(Tl)Uk-l-l(?"hTQ)PG(TQ)QC(TQ)}’

1
_m{(

[/(;OO dry /OOO dr1Qa(r1) Pe(r1)Up—1(r1,72) Py(12)Qalr2) —

/00o dry /OOO dTlQa(Tl)Pc(rl)Uk-‘rl(Tla 7’2)Pb(r2)Qd(r2)} 7

1
_m{(

[/(;oo dro /OOO drle(rl)Qd(rl)kal(rlaTQ)QQ(TQ)PC(TQ) -

OOO drs /OOO drlpb(rl)Qd(Tl)Uk-l-l(rlvTQ)QG(TQ)PC(TQ)} :

{(Ke = Ka) — kH{(ka — Kp) + (K + 1)} x

{(Ke — #a) + (k + D }H{(ka — ko) — k} %

Ke — Ka) — (K + D) H(kqg — Kp) — k} X

Ke = Ka) — k}H{(ka — k) — (k + 1)} x

o — ko) + (k + D}{(ka — k) + k) x



Appendix B

Matrix Element of Dipole
Operator

The matrix element of the dipole operator is extremely useful to calculate the
electric dipole transition amplitude as well as for static dipole polarizability cal-
culation. Here we will briefly discuss about the matrix element of the dipole
operator.

Using Wigner-Eckart theorem the matrix element of the dipole operator be-

tween two configuration state function can be written as

(WD) = (y(JI)PFMy|D|y/(J'T'\PF M)

F 1 F
= (=nFMp | UDED (ST E)
/ F 1 F
— (_1)(F—MF)(_1)J+I+F+15([7I/)[F’F1] >
—Mp q Mf?
F 1 F .
P (vJ|[DI|y"J"). (B.1)

In terms of spin-orbital decomposition the reduced matrix element is written as
(WIDIWT) = di* () alld][y ). (B.2)

Here d$ are the angular factors. Therefore the reduced matrix elements of the
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dipole operator in terms of Dirac spin-orbital can be written as

Ol sadialldl (o) = = [ il wronto)

& Pa Kagm 3 0
:—/ dr/dQ Xramal1) ) (10
0

1QaX—ram, (F) 0 r

PyX sy, (T) (B.3)
1QbX—rym, (T)
If z-axis is the axis of quantization, then the component of the dipole operator d
along the axis of quantization is d, cosf. Therefore the reduced matrix element
is
(0l o)l 1 o)) = = [ drr (PP Qi) [ AN, () 08 O ).
’ (B.4)
Here we use the relations o - TX_y,m, = Xwym, and (o - )2 = 1. For convenient
we express the dipole operator in terms of the C tensor operator. Then the

expression is
d=rC. (B.5)
The components of the C tensor operators are

Ch(0,0) =\ 5 VH0,0). (B.6)

Thus the reduced matrix element of the dipole operator in terms of C tensor can

be written as

(V(las 8a)Jalld=A1Y (I, 56)6) = —/ drr(Py Py + Qi Qu)(kal|C|Ks).  (B.7)
0
Here the last term in the reduced matrix element is
1 Jat1/2 . - Ja b1
(Kal|CM|lKo) = (=1)*F2\/(2ja + 1)(2j + 1) (I, + 1y +1).
-1/2 1/2 0

(B.8)

Here the parity condition is

1 if I, +1l,+1 iseven;
O, +l+1) = (B.9)

0 otherwise.
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In the present work we consistently use the expression B.8 to evaluate the reduced

matrix element of the dipole operator.
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Perturbed coupled-cluster theory to calculate dipole polarizabilities of closed-shell systems:
Application to Ar, Kr, Xe, and Rn
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We use perturbed relativistic coupled-cluster (PRCC) theory to calculate the electric dipole polarizability of
the noble-gas atoms Ar, Kr, Xe, and Rn. We also provide a detailed description of the nonlinear terms in the
PRCC theory and consider the Dirac-Coulomb-Breit atomic Hamiltonian for the calculations. We find that the
largest contribution from the Breit interaction to the electric dipole polarizability is 0.1%, in the case of Rn. As
we go from Ar to Rn, based on the pattern in the random-phase-approximation effects, the contraction of the
outermost py, orbitals due to relativistic corrections is discernible without any ambiguity.

DOI: 10.1103/PhysRevA.86.062508

I. INTRODUCTION

The electric dipole polarizability o« is the lowest-order
linear-response property and relevant to a wide range of
physical phenomena related to properties from the microscopic
to the macroscopic. Among the macroscopic properties, the
dielectric constant and refractive index of the gas are the
important ones. In the case of microscopic properties, parity
nonconservation in atoms [1], optical atomic clocks [2,3], and
physics of the condensates of dilute atomic gases [4—6] are
of current interest. For accurate theoretical calculation of «,
a precise treatment of the electron correlation effects is very
important. In the past, a wide range of atomic many-body
theories were used to calculate . The recent review by Mitroy
et al. [7] gives a detailed overview of the atomic and ionic
polarizabilities.

In the present work we use the perturbed relativistic
coupled-cluster (PRCC) theory to calculate « of the noble-gas
atoms. It is a theory we have developed to incorporate a
perturbation in the conventional relativistic coupled-cluster
(RCC) theory. In general, the coupled-cluster theory (CCT)
[8,9] is one of the most elegant many-body theories which
incorporates the electron correlation to all orders. The details of
the CCT and different variants are described in a recent review
[10]. The theory has been widely used for atomic [11-14],
molecular [15], nuclear [16], and condensed matter physics
[17] calculations. The PRCC theory is different from the
previous RCC-based theories in a number of ways. The most
important one is the representation of the cluster operators
in the PRCC theory. The cluster operator can be a rank-1
tensor operator and it has the advantage of incorporating
multiple perturbations of different ranks in the electronic
sector. One basic advantage of PRCC theory is that it does away
with the summation over intermediate states in the first-order
time-independent perturbation theory. The summation over all
the possible intermediate states within the chosen basis set is
subsumed in the perturbed cluster amplitudes.

For the calculations we use the no-virtual-pair Dirac-
Coulomb-Breit Hamiltonian. However, to assess the impor-
tance of the Breit interaction we also carry out another
series of calculations with the no-virtual-pair Dirac-Coulomb
Hamiltonian. We isolate the changes arising from the Breit
interaction by comparing the results from the two sets of

1050-2947/2012/86(6)/062508(12)

062508-1

PACS number(s): 31.15.bw, 31.15.ap, 31.15.ve

calculations. For the present work, we have chosen the
noble-gas atoms to study as these systems are ideal for testing
the closed-shell PRCC theory. In previous works, o« values
for the noble-gas atoms were calculated in the framework of
many-body perturbation theory [18], nonrelativistic coupled-
cluster theory with single, double, and triple (CCSDT) ex-
citations [19], and the RCCSDT approximation [20]. In the
last work, using the RCCSDT, the third-order Douglas-Kroll
method [21] was used. It is an alternative to the Foldy-
Wouthuysen transformation and a quasirelativistic treatment.
For the single-particle wave functions, we use kinetically bal-
anced Gaussian-type Dirac-Hartree-Fock orbitals. The results
from our PRCC theory calculations are in good agreement
with the experimental data and consistent with previous
calculations.

The paper is organized as follows. In Sec. II, for com-
pleteness and easy reference we briefly describe the RCC
theory with the Breit interaction. In Sec. III we introduce
the PRCC theory and provide a detailed description of the
tensor structure of the PRCC operators. In Sec. III B we
give the analytical structure of the PRCC equations. In
Sec. III C we present a diagrammatic and algebraic description
of the the nonlinear terms in the PRCC theory. In Sec. IV we
introduce the formal expression of the dipole polarizability
and its representation in the PRCC theory. In subsequent
sections we describe the details of the methods of calculation
and present the results and discussion. We then end with
conclusions. All the results presented in this work and related
calculations are in atomic units (i = m, = e = 4mwep = 1). In
this system of units the velocity of light is ™!, the inverse
of the fine-structure constant, for which we use the value of
a~! =137.035999 074 [22].

II. RCC THEORY

For high-Z atoms and ions, the Dirac-Coulomb-Breit
Hamiltonian, denoted by HP®B, is an appropriate choice to in-
clude the relativistic effects. However, there are complications
associated with the negative-energy continuum states of HP¢B.
These lead to variational collapse and continuum dissolution
[23]. A formal approach to avoid these complications is to use
the no-virtual-pair approximation. In this approximation, for a

©2012 American Physical Society
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neutral atom of N electrons [24]

DB _

N
Ay Y ea; - pi + (B — De® = V()]

i=1

+Z|: +g (rlj):| A++v (1)

i<j

where o and B are the Dirac matrices, A, is an operator
which projects to the positive-energy solutions and Vy(r;) is
the nuclear potential. Sandwiching the Hamiltonian with A,
ensures that the effects of the negative-energy continuum states
are neglected in the calculations. The last two terms 1/r;; and
gB(r;;) are the Coulomb and Breit interactions, respectively.
The latter, Breit, interaction, represents the interelectron
magnetic interactions and is given by

1 . .
P =~ |y ey ¢ ST T )
2}’12 Y

The Hamiltonian satisfies the eigenvalue equation
HPP W) = Ei|W), 3)

where |W;) is the exact atomic state and E; is the energy of
the atomic state. In CCT the exact atomic state is given by the
ansatz

1w,) = |®;), (4)

where |®;) is the reference-state wave function and T is
the unperturbed cluster operator. In the case of closed-shell
atoms the model space of the ground state consists of a single
Slater determinant |®q). For an N-electron closed-shell atom
TO =N T© where i is the order of excitation. In the
coupled-cluster single and double (CCSD) approximation,

TO = 7O 4 70, 5)

The CCSD approximation is a good starting point for structure
and property calculations of closed-shell atoms and ions. In
the second quantized representation

7 = Zt”a da, (6a)
(0) Z tah apaqabaa, (6b)
'abpq

where ¢ are cluster amplitudes, a;[ (a;) are single-particle
creation (annihilation) operators, and abc... (pgr ...) rep-
resent core (virtual) single-particle states or orbitals. The
eigenvalue equation of the closed-shell ground state in the
CCT approximation is

0 0)
H BT |dg) = Ege”|@y). (7)

Following a similar procedure, the CC eigenvalue equation of
closed-shell excited states may be defined as well.

III. PRCC THEORY

To incorporate an additional interaction Hamiltonian Hiy,
perturbatively, we introduce the perturbed coupled-cluster
operator T, This means that H, is applied once and the
residual Coulomb interaction is applied to all orders in all
possible sequences. In general, T is a tensor operator and
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the multipole structure depends on the properties of H;,,. With
the perturbation, the modified eigenvalue equation is

(HP® + A Hin)|0) = E|Wy), ®)

where A is the perturbation parameter. Consider the case
where Hj, represents the interaction with an external static
electric field E. The interaction Hamiltonian is then H, =
— Zi r;-E =D :E, where D is the many-electron electric
dipole operator. The perturbed atomic state in PRCC theory is

1B,) = TPV ElR)= " IHTOE g ) 9)
This approach has the advantage of taking into account the
effect of multiple perturbations systematically. Other than E,
H,,: could be one of the interactions internal to the atom,
such as the Breit interaction, hyperfine interaction, etc. For the
present work, we examine T arising from E, which is parity
odd and a vector operator in the electronic space.

A. Tensor structure of PRCC operator

For the present case, with E as the perturbation, we can
write the perturbed single-excitation cluster operator as

T = ZTPC (F)a)aq. (10)

a,p

Note that T(]l) is a vector operator in the electronic space and
the C tensor C(#) represents the vector nature of T, The key
difference of T(ll) from Tl(o) is the parity condition, the total
orbital parity must be odd; in other words (—1)«*/» = —1.
Here, I, (I,) is the orbital angular momentum of the core
(virtual) orbital a (p). Diagrammatically, the T(ll) operator
is represented as shown in Fig. 1(a). It is similar to the
conventional representation of Tl(o) but the interaction line is
replaced by a wavy line.

The tensor structure of T(zl), on the other hand, has
additional complications as it consists of two vertices. After
due consideration of the Hi, and 7*) multipole structure, it is
represented as

Ty = Z ZT {, k){Cl(Vl)Ck(rz)}la;afabaa (11

a,b,p,q Lk

As in T(ll), C; are the C-tensor operators and two C-tensor
operators of rank / and k are coupled to arank-1 tensor operator
T(zl). At the two vertices, the orbital angular momenta must
satisfy the triangular conditions | j, — j,| <! < (j, + Jj,) and
ljo — Jq| < k < (jp + jg). In addition, the two tensor opera-
tors must be such that || — k| < 1 < (I 4 k). These selection
rules arise from the triangular conditions at the vertices. The
other selection rule follows from the parity condition and
H,y is parity odd; therefore (—1)0«*») = —(—1)@+) The

FIG. 1. Diagrammatic representation of Tﬁl) and T(2])~

062508-2
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diagrammatic representation of T(ZO) is as shown in Fig. 1(b),
where the vertical bar on the interaction line is to represent
the rank of the operator. Furthermore, this representation,
at a later stage, simplifies the angular integration using the
diagrammatic technique.

B. PRCC equations

The ground-state eigenvalue equation with Hjy is

(HDCB + )\,Him)e[T(O)J’_}\T(“.E]|<D0> — Eoe[T(U)_'_)LT(l),E]'q)O)'
(12)
When Hy, is parity odd, as in the present case, thgre is no
first-order perturbative correction to the energy so Eyg = Ej.
In the CCSD approximation we define the perturbed cluster
operator TV as
T =71 + 1. (13)

Using this, the PRCC equations are derived from Eq. (12).
The derivation involves several operator contractions and these
are more transparent with the normal-ordered Hamiltonian
HRB = HPCB — (;|HPCB|d;). The eigenvalue equation
then assumes the form
[HR® + AHin]1W0) = [Eo — (Po| HP|®o)][Wo).  (14)
A more convenient form of the eigenvalue equation is
(HY®® + A Hin) Vo) = AEo|Wp), (15)

where AEy = Ey — (®o| HPB|dy) is the ground-state corre-
lation energy. Following the definition in Eq. (13), the PRCC
eigenvalue equation is
(HE® + 1Hi)e " 17 F|0g) = AEge” T F|@y).
(16)

Applying ¢~ T from the left, we get
(AR + 2 Hin]e'™ " |00) = AE!™ " F|dg),  (17)

where H = ¢ 7" He™"” is the similarity-transformed Hamil-
tonian. Using the Campbell-Baker-Hausdorff expansion for
the Dirac-Coulomb-Breit Hamiltonian

- 1

DCB __ 7yDCB DCB (0) DCB 7(0) 0)

H =H>" +[H™".T ]+—2![[H , T, T™]
+—31 ALHPE. TOLTOLTO)

1
+ o UHPE, 7O T T O, T, (18)
The commutations represent contractions and as HP°B consist
of one- and two-body interactions, the expansion terminates at
the fourth order. Multiplying Eq. (17) from the left by e T
and considering terms linear in A, we get the PRCC equation

[A2B, TV] - E + Hiu|bo) = 0. (19)

Here, the similarity-transformed interaction Hamiltonian Hiy
terminates at second order as Hj, is a one-body interaction
Hamiltonian.
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Expanding Hiy, the PRCC equation assumes the form

([AYE. 1]+ - El@p)
=D+ [D, 791+ 3D, 701, T]) - E[dg).  (20)

Hereafter, for simplicity, we drop E from the equations and
for compact notation, we use Hy to denote HY®. The cluster

equations of T(ll) are obtained after projecting the equation on
singly excited states (7. These excited states, however, must
be opposite in parity to | D). Similarly, the T(zl) equations are
obtained after projecting on the doubly excited states (P]].
After the application of Wick’s theorem, the T equations are

(@7 [HN + HTO 4 HyTOTO 4 %Wﬂ | Do)
o9+ L5 o, o

(@ |:HN + BT + B TOTO 4 %HNT(O)T(O)T(I)
e .}@0) _ (o] [D?«» + %D'_T‘_(O)]‘"@)} (@), (22)

where AB represents all possible contractions between the
two operators A and B. Equations (21) and (22) form
a set of coupled nonlinear algebraic equations. However,
T© are solved for first as these are independent of T(;
the PRCC equations are then reduced to coupled linear
algebraic equations. An approximation which incorporates
all the important many-body effects like the random-phase
approximation (RPA) is the linearized PRCC (LPRCC). In
this approximati,%‘ only the terms linear in T, equivalent to
retaining only HxT" and DT© in Eqgs. (21) and (22), are
considered in the equations. Hereafter we use T as the general
representation of both the 7® and T(" operators.

C. Nonlinear terms in the PRCC

The calculation with the LPRCC approximation involves
few many-body diagrams, and it is computationally less
complex and hence faster. In our calculations, the LPRCC
equations are solved first and we use the solutions as the initial
guess to solve the PRCC equations. To describe the PRCC
equations in detail, we examine each of the nonlinear terms.
These involve more contractions and are larger in number
than the linear terms. To begin with, consider the second term
on the left-hand sides of Eqgs. (21) and (22), second order in
T. In the CCSD approximation it expands to

= 1 = 1 = 1
A TOTO = BTOTY 4 B 70T

+ENTLOTY + INTOTS). (23)

All the terms contribute to both T(]l) and T(zl) . Similarly, the
third term on the left-hand sides of Eqs. (21) and (22), third
order in T, expands to

= 1 1 = 1 1 = 1 1
HNT(O)T(O)T(l) — HNTl(O)Tl(O)T(ll) + HNTl(O)TQ(O)T(ll)

= 1 1 = 1 1
+HNTOTOTY + BNTOTOTY . (24)
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(i) §)

= 1
FIG. 2. Diagrams of T(ll) arising from HNTI(O)T(,I).

In this equation, of the four terms, only the first one contributes
to T(ll). But all the terms contribute to T(Zl) . At the fourth order

there is only one term and it contributes to only T(zl). The terms
on the right-hand sides of Egs. (21) and (22) expand to

p7® = D7 + DT, (25)
=1 1 [P
p7O7® = D771 4+ DT{"1,". (26)

— =1

Here, DTI(O) and DTI(O) TZ(O) are nonzero for only T(ll) and T(zl),
respectively. Each of the terms, after contraction, generates
several topologically unique Goldstone diagrams. The dia-
grammatic treatment is the preferred mode of further analysis
and calculation as it simplifies the calculations and is well
suited to represent contractions between the operators. In the
next few sections we discuss the T(ll) and T(zl) diagrams and
their algebraic expressions.

1. T(ll) diagrams

In this section we describe the single-excitation diagrams
arising from the nonlinear terms. The many-body diagrams or
the Goldstone diagrams are drawn and evaluated as described
in Ref. [25]. Consider the first term on the right-hand side of

Oy (1) -, - . .
Eq. (23), HNT, " T, itis equivalent to ten diagrams and these
are shown in Fig. 2. Algebraically, we can write it as

(ENTOT) =3 pega (127 + 1]77)
bega
+ Zgbpqr(tarfg + IZT;)’
bpgr

where g = (ij|1/ri2 + gB(rlz)lkl) is the matrix element
of the electron-electron interactions and g;jx = gijki — &ijik
is the antisymmtrized matrix element. We have used (- -- )%
to represent the matrix element (®%| - - - |®q). The diagrams
in Figs. 2(i) and 2(j), arising from the one-body part of Hy,
evaluate to zero when the orbitals are calculated with the Dirac-

Hartree-Fock potential. The next term, HNT](O) T(zl), generates
eight diagrams and these are shown in Fig. 3.
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(©)rp(1)
FIG. 3. Diagrams arising from the contraction Hx7,T,".

It is to be noted that here, contractions with only the
8abpq type of two-body interaction are nonzero. The algebraic
expression of the diagrams is

O (l) b
(INTYOTS ), = Boor (1750 + 10705 + 10750+ 1]77).
begr

= 1
Among these terms, we next consider Hy TZ(O)T(]D, the last of
the second-order terms. Like the previous term, after contrac-
tion it generates eight diagrams and these are shown in Fig. 4.
The topological structures of the diagrams are very similar
to those of Fig. 3 and the algebraic expression of the diagrams is

0)mpa(1
(H T( )T() Zgbcqr that +tbc a +tfljl Tc +tc:ffb)

begr

L
At the third order, as mentioned earlier, only HxT, 1(0) T1<0) T(ll)
contributes to the T(ll) diagrams. This term generates six
Goldstone diagrams and these are shown in Fig. 5. The
algebraic expression of the diagrams is
e 1
(ENTOTOTVY =" goeqr (1270 + 111570 + 11107)).
begr

In total, the nonlinear terms in the T(ll) equation generate 30

Goldstone diagrams. Considering that TZ(O) and T(ll) are the
dominant cluster operators, in terms of amplitudes, in the
unperturbed RCC and PRCC approximations, respectively, we

O)(D)
can expect the magnitude of HNT, "T| " to be the largest.

2. T diagrams

In this section we discuss the Goldstone diagrams of T(ZD
arising from the nonlinear terms on the left-hand side of Eq.
(22). Consider the second-order term; after expansion there
are four terms as given in Eq. (23) and all have nonzero
contributions to T(zl).

O
FIG. 4. Diagrams arising from the contraction Hy7T, ' T,
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() (f)

, i, AT
FIG. 5. Diagrams arising from the contraction ANT, T, T,".

O)pn(1)
The first term, HyT; T, has six diagrams and these are
shown in Fig. 6. The equivalent algebraic expression is

= 1
(HNTl(O)T(ll)>SZ = ngqrstéfg + chdabtffg - ngcrb
rs cd cr
x[( + 1)t = (2 + )],

where we have used (---) 52 to represent the matrix element
O)p(1) :
(®F1]---|®g). The next term, HxT, T,’, has 16 diagrams
and these are shown in Fig. 7.
However, the last two diagrams in Figs. 7(o) and 7(p) are
zero when Dirac-Hartree-Fock-Breit orbitals are used, as in
the present work. The equivalent algebraic expression is

= 1
©O)y(D\Pg __ r._sp s_Trp s=rp r_sp
(HNTI T2 )ub - chqrs (tc Tpa — [c Tpa + lbrca - lb Tea

crs
r._ps P TS r.qp
1Ty — L Tab) + E gcdrb( — 1. Ty,
cdr

r_qp __ 44=rp P4 r_prq
+tdrca td Tca + tc Tad + ta Tcd )’

where .7 = 1.} — 1,7 is the antisymmetrized amplitude of

T(zl). Interchanging the order of excitations of the cluster

O)n(D)
operators, we get the next term HnT, "T, . As in the previous
term there are 16 diagrams; these are shown in Fig. 8 and the
equivalent algebraic expression is

O)ymp(D\Pq Zpr_s ps 1 Sp_r ps_r
<HNT2 T1 >ab = Zg“i” (tac T — tac: T — Z‘bc Ta + Z‘szb T

crs

_4Pros _ urs_p zor .4
ab Te abTe ) + 2 :gt'drb (tca Td

cdr
_+Pr__q qr_p _ +P9._r Pq T pq _r
tad Te + tda Te tad Tc + tac Ta + tcd Ta)’

. . o 7O
FIG. 6. Diagrams arising from the contraction Hy7, 'T;".
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(m) (n) (0) ()
= 1
FIG. 7. Diagrams arising from the contraction Hy TI(O)T(;).

where 7h, =tl} — 1, is the antisymmetrized amplitude of

1
TZ(O). The last second-order term is Hy TZ(O)T(ZI) and we can
expect a large number of diagrams as both of the cluster
operators are double excitation. There are 18 diagrams and
these are shown in Fig. 9.
The algebraic expression for the diagrams is

[y
O)p(D\PG _ *pr=Sq __ zps_rq ps_qr
(HNTZ T2 )ab - Z 8cdrs (tac Tap ~ Lac Tap + Lac Tap

cdrs

sq . .Pr__ zrs_Pq _ {#P_Sq _ . pS_qr
+ tac Tab tca Tab tcd Tab ab Tdc

rs_prq Pq._rs

pr_4qs _ .pq=rs
gy tie — 12T+ Tl il

(m) (n) (0) (»)

: . O
FIG. 8. Diagrams arising from the contraction Hy7, 'T;".
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_ . on T OTO
FIG. 9. Diagrams arising from the contraction Hy7, 'T, .

Collecting all the diagrams which are second order in T,
there are 56 Goldstone diagrams in the T(zl) equation after
contraction of the cluster operators with Hy.

At the third order, all the terms in Eq. (24) have nonzero
contributions to T(zl). There are six Goldstone diagrams from

(0) = (0)(1) PR
the first term Hyx7, 7, T;" and these are shown in Fig. 10.
The equivalent algebraic expression of the diagrams is

1 1
(ENTOTOTVN =3 gegns| — 5127 — (07 — 120)13)

crs

+ Z 8cdrb [t; (Q’-lfg + TJ)Z‘Z) + tcl')‘[(jtg]'

cdr

The overall contribution from these diagrams is expected
to be small as these are quadratic in Tl(o). The next term,

(0) = () (1) .
HNT, 7T, T, ", has ten Goldstone diagrams; these are shown
in Fig. 11 and the equivalent algebraic expression of the
diagrams is

1
0 0 \rq ~S .
(ENTOTOTOVE =" gears[15t2 508 + 1515 T+t
cdrs

q (41 - PS P rs r.s s.r\.Pq
+1, (ta Tep T1c Tab) - (tc Iy — 1 Z‘a)‘[aib

= (6] = 130 )Tap ]

. L : (0) 7 (0) (1)
FIG. 10. Diagrams arising from the contraction AHNT; T, T;".
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(b) (d)
() (f) (8) (h)

. iy T O 2O
FIG. 11. Diagrams arising from the contraction ANT; T, T, .

Contributions from these diagrams will be lower than

(0) 7 (0)rp(1) (1) ioh i ;
HNT, 7T, T, as these depend on T, ”, which is smaller in
magnitude than T(ll). The contributions from the two terms are
expected to be small as these are second order in Tl(o). The last

: (0)  (0) (1) ;
third-order term Hx7, T, "T| " has 18 diagrams and these are
shown in Fig. 12.
The algebraic equivalent of these diagrams is

(ENTOT T = D gears[ (1210 — 1l00y) 7 — (00
cdrs
—gthd) oy + 1 (el wd — Tpl + 1Ty
— )ty e il )+l (T
— T Ty gy Ty — LTy 15Ty
+i5td)]-

Among the third-order terms in the T(zl) equation this will be
the leading term as it depends on TZ(O) and T(ll), the dominant
cluster operators among the unperturbed and perturbed cluster
operators, respectively. There are two Goldstone diagrams

(a) (r)

, . ion AT O OO
FIG. 12. Diagrams arising from the contraction ANT; T, "T;".
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(a) (b)
= 1 ]
FIG. 13. Diagrams arising from the contraction HxT\” T\ T,'T'".

from the fourth-order term; these are shown in Fig. 13 and
the algebraic expression is

o 1 1
(H T(O)T(O)T(O)T(l) pq

Z gcdrs

cdrs

Lyl +177).

Among all the diagrams considered so far these two diagrams
will have the lowest contributions as these are third order
in Tl(o). However, for completeness we include these in the
calculations.

— =
3. DT and DTOT© diagrams

Another group of PRCC diagrams arise from the contrac-
tion of D and T'?; these contribute to the right-hand side of
Egs. (21) and (22). In this group, there are five Goldstone
diagrams of TV and these are shown in Fig. 14.

Among the diagrams only the last one is nonlinear in 7.
The algebraic expression of the diagrams is

Z reat?

qr
x Zrbq tba - tab

(DTO)? 4 (DTOTO)? = erq ¢

1),

where r;; = (i|r|j) is the electronic part of the single-particle
matrix element. For T(zl), there are four diagrams; these are
shown in Fig. 15 and the last two are nonlinear in 7®.

The algebraic expression of the diagrams is

E rqr E rebtpq
pPq rq
X Y re (=l =ity
cr

This completes the diagrammatic and algebraic analysis of the
nonlinear terms in the T equations. To obtain the linear

NN IRV

--—e

37 () Pg SFO 7 Oy
(DT™),, +(DTVT

(e)

FIG. 14. Singles diagrams arising from the contraction H, T
1
and Hy, TOTO.
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Ny

(a) (b) (c) (d)

FIG. 15. Doubles diagrams arising from the contraction I-ImT“ ©
1
and Hy, TOTO.

algebraic equations of the cluster amplitudes, each of the
diagrams or terms in the algebraic expression requires further
simplification to radial and angular components. The angular
part is evaluated diagrammatically; however, the diagrams are
different from the Goldstone diagrams.

IV. DIPOLE POLARIZABILITY

From the second-order time-independent perturbation the-
ory, the ground-state dipole polarizability of a closed-shell
atom is

v=—2Y (‘I’olDI‘I’1><‘I’1|D|‘I’o>, 27

7 Ey— E;

where |\¥,) are the intermediate atomic states and E; is the
energy of the atomic state. As D is an odd-parity operator, |\V;)
must be opposite in parity to |Wy). In the PRCC theory we can
write

_ (To|D W)

— 28
(Wo|Wo) 8

From the definition of |¥,) in Eq. (9) and based on the parity
selection rules, only the terms linear in A are nonzero. That is,

(<I>0|T(1)Tl_) + I_)T(l)|CI>0)
(Wo|Wo)

) (29)

where D = ¢7"'De”” represents the unitary transformed
electric dipole operator and (Wo|Wy) is the normalization
factor. From here on, it is implicit that expressions with more
than one operator involve contraction and for compactness, we
drop the notation representing operator contractions. Retaining
the the leading-order terms, we obtain

1
o~ /T/(<D0|T(11)TD +01\" + 1"'D7” + 7" DT{"

+13 D7 + 7'DT + T{'D T
+10 DTV + 1D + 17T |@p),  (30)

where N = (@] exp[T(O)T] exp[T(O)]|<bo) is the normalization
factor, which involves a nonterminating series of contractions
between T©' and T©. However, in the present work we use
N~ (Do T'TO + TV T | d0). From the above expres-
sion for o, an evident advantage of calculation using PRCC
theory is the absence of summation over |W;). The summation
is subsumed in the evaluation of T" in a natural way. This is
one of the key advantages of using PRCC theory.
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TABLE I. Comparison between GTO and GRASP92 results.

Atom GTO GRASP92
Ar —528.6837 —528.6837
Kr —2789.8605 —2788.8605
Xe —7446.8976 —7446.8976
Rn —23602.0202 —23602.0232

V. CALCULATIONAL DETAILS

A. Basis set and nuclear density

The first step of our calculations, which is also true of any
atomic and molecular calculation, is to generate an orbital
basis set. For the present work, we use the Dirac-Hartree-
Fock Hamiltonian and even-tempered Gaussian-type orbitals
(GTOs) [26]. The radial parts of the spin orbitals are linear
combinations of the Gaussian-type functions

ghy(r) = Chire™", (31)

where p is the GTO index and CKLI- is the normalization
constant. The exponent ¢, depends on two parameters oy and
B; these are related as a), = otO,BP’l, where p =0,1,...,m
and m is the number of Gaussian-type functions. The small
components of the spin orbitals are linear combinations of
g2,(r), which are generated from g/ (r) through the kinetic
balance condition [27]. We calculate the GTOs on a grid [28]
and optimize the values of ¢y and g for individual atoms to
match the spin-orbital energies and self-consistent-field (SCF)
energy of GRASPY92 [29], which solves Dirac-Hartree-Fock
equations numerically. The comparison of the SCF energies is
given in Table I. Except for Rn, there is excellent agreement
between the SCF energies obtained from the GTOs and
GRASP92. The symmetrywise values of the optimized oy and
B are listed in Table II.

To optimize the basis set size, we examine the convergence
of o using the LPRCC theory. We start with a basis set of
50 GTOs and increase the basis set size in steps through a
series of calculations. As an example, the results for the case
of Kr are listed in Table III. The value of « changes by only
7 x 10~* when the number of basis states is increased from
117 to 131. So we can use the former for our calculations
without compromising the desired accuracy.

In the present work we have considered a finite-size Fermi
density distribution of the nucleus,

£0

T+ etor” .

pnuc(r) =

TABLE II. The «y and B parameters of the even-tempered GTO
basis used in the present calculations.
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TABLE III. Convergence pattern of «(Kr) as a function of the
basis set size.

No. of orbitals Basis size o

79 (155,9p,9d,7f,7g) 16.8759
97 (17s,11p,11d,9£,9¢) 16.7507
117 (215,13p,13d,11 f,11g) 16.7403
131 (255,15p,14d, 13 f,11g) 16.7396
139 (25s,16p,15d,13 f,13¢) 16.7394
155 (29s,17p,16d,15f,15g) 16.7394

where a = t41n(3). The parameter c is the half charge radius
so that pnuc(c) = po/2, and # is the skin thickness. The PRCC
equations are solved iteratively using the Jacobi method; we
have chosen this method as it is easily parallelizable. The
method, however, is slow to converge. So we use direct inver-
sion in the iterated subspace [30] to accelerate the convergence.

B. Breit interaction

There are two different but equivalent approaches, reported
in previous works, to calculate the matrix elements of gB(ry5).
The first approach [31] is to couple the angular parts of the
orbitals with Dirac matrices to give a linear combination of
vector spherical harmonics. This is then combined with the
angular part of 1/r, for integration. In the second approach
[32], gB(r12) is expanded as a linear combination of irreducible
tensor operators. In the present work we use the latter and
employ the expressions given in Ref. [33] to incorporate
gB(r12) in the GTO and RCC calculations. For the GTO
calculation, Refs. [34,35] provide a very good description for
inclusion of gB(r|,) in finite-basis-set calculations. To assess
the relative importance of the Breit interaction, we calculate
the first-order energy correction

(H)pr = (®o] Y gB(rij)|®o). (33)
i<j
where |®,) is the ground-state reference function gener-
ated from the Dirac-Hartree-Fock spin orbitals and HB =
D e i gB(r;;) represents the many-particle form of the Breit
interaction. The (HB)pr values for the rare-gas atoms Ar, Kr,
Xe, and Rn are listed in Table IV.

For each atom we calculated the SCF energy with HPC¢
and HPB; these are ELG. = (®o|HPC|dp) and ELGP =
(®g|HPCB|dy). Here, HP® = HP®B _ HB is the atomic
Hamiltonian without the Breit interaction. From the table, it
is evident that our results are in very good agreement with the
previous results [36]. The largest deviation from the previous
results is observed in Rn; our result for(H®)pg is 0.8% lower
than the previous result. However, as the Breit-interaction

TABLE IV. SCF energies for noble-gas atoms.

s p d
Atom o B o B o B Atom ESS: Eg (H®)pe  Ref. [36]
Ar 0.00055 1.620 0.00515 2405 0.00570 2.850  Ar —528.6837 —528.5511 0.1326  0.1324
Kr 0.00015 2.015 0.00945 2975 000635 2.845  Kr —2788.8605 ~ —2787.4310 14295 1.4268
Xe 000012 2215 000495 2995 000745 2460  Xe —7446.8976  —7441.1248 57728  5.7753
Rn 000010 2280 000671 2980 0.00715 2720 Rn —23602.0202  —23572.8480  29.1722  29.3968
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contribution to ELGP is a mere 0.12% in Rn, in absolute
terms, the deviation is ~0.001%. Our results are also in good
agreement with the results of another previous study [37]. In
the PRCC calculations, as described earlier, we treat H® at par
with the residual Coulomb interaction. However, to examine
the relative importance of the Breit interaction, we calculate o
with and without HB.

VI. RESULTS AND DISCUSSION

The expression of o in PRCC theory, as mentioned earlier,
is a nonterminating series. However, the terms of order higher
than quadratic in 7 have negligible contributions. For this
reason, in the present work, we consider up to second order
in the cluster operator. With the introduction of the Breit
interaction in the total atomic Hamiltonian, the number of two-
electron integrals becomes large and we need large memory
to store these integrals. In first-order many-body perturbation
theory (MBPT), which we use as the initial guess, there is
an important change with the inclusion of HB. With only
the Coulomb interaction, at the first-order MBPT, the wave
operator follows the parity selection rule and only selected
multipoles of the Coulomb interaction contribute. However,
with HB, which has the opposite parity selection rule compared
to the Coulomb interaction, all multipoles of the two-electron
interaction which satisfy the triangular conditions are allowed.
In Table V, we list the values of « calculated using the LPRCC
theory. For comparison we have also included the results from
previous theoretical studies and experimental data. There are
no discernible trends in the previous theoretical results and
present work. For Kr and Xe, the results from the many-body
perturbation theory [18] are higher than the experimental data,
but with RCCSDT approximations [20], Ar and Kr have higher
values. For Ar our result is 1% higher than the experimental
data and this is consistent with the RCCSDT result reported
in a previous work. It must, however, be mentioned that the
previous work is based on the third-order Douglas-Kroll [21]
method. Our result for Kr is in excellent agreement with the
experimental data. This could be a coincidence arising from
well-chosen basis set parameters and the inherent property
of the PRCC theory to incorporate correlation effects more
completely within a basis set.

In the case of Xe our result is 3.4% lower than the
experimental data and 2.4% lower than the RCCSDT result.
The latter difference from the the RCCSDT result can be partly
attributed to the triple excitations. There is no experimental
data for o for Rn, the highest-Z atom among the noble gases.
In Ref. [20], the o for Rn is computed using the RCCSDT
approximation and their result is 6.2% lower than our result.

TABLE V. The static dipole polarizability « (atomic units) from
linearized PRCC calculations and comparison with previous results.

Method Ar Kr Xe Rn
RCCSDT [20] 11.22 16.80 27.06 33.18
CCSDT [19] 11.084 16.839 27.293 34.43
MBPT [18] 11.062 17.214 28.223

This work 11.213 16.736 26.432 35.391
Expt. [38] 11.091 16.740 27.340

Expt. [39] 11.081(5) 16.766(8)
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TABLE VI. Contribution to « from different terms of the dressed
dipole operator in the linearized PRCC theory.

Contributions from Ar Kr Xe Rn

T"'D + Hec. 12191  18.613  30.855  41.641
T, V'DT” + He.  —0545  —0.888  —1.677  —2.328
T,"'DT” + H.c. 0.510 0.748 1352 1.862
T,O'D7” + He.  —0057  —0.118  —0357  —0.301
T, DT 4 H.c. 0.022 0.038 0.092 0.073
Normalization 1.081 1.099 1.145 1.157
Total 11213 16736 26432 35391

To estimate the importance of the Breit interaction, we
exclude H® in the PRCC calculations and then calculate «.
The results are 11.202, 16.728, 26.404, and 35.266 for Ar, K,
Xe, and Rn, respectively. These represent a decrease of 0.010,
0.012, 0.021, and 0.133 from the results with the inclusion
of HB. Except for Rn, the change in « is below 0.1%. This
implies that to obtain accurate results for Rn, it is desirable to
include the Breit interaction in the calculations.

To examine the results in more detail, the contributions
from the terms in the expression for « given in Eq. (30) are
listed in Table VI. It is evident that T(ll)TD and its Hermitian
conjugate are the leading-order terms. This is to be expected as
these terms include the Dirac-Hartree-Fock-Breit contribution
and RPA effects, which have the dominant contributions. In
all the cases, the result from T(lmD is larger than the total
value of o and shows dependence on Z: the results for Ar,
Kr, Xe, and Rn from this term are 8.7%, 11.2%, 16.7%, and
17.7% higher than the total values of «, respectively. The
next-to-leading-order terms are Tl(”TDTz(O) and its Hermitian
conjugate. Contributions from these terms are, approximately,
afactor of 20 smaller than the leading-order terms and opposite
in phase. On a closer inspection, it is natural that Tl(l)TDTéo)
and its Hermitian conjugate are the next-to-leading-order
terms. At the second order, these are the terms which have
T, and 7, the dominant cluster amplitudes in the perturbed
and unperturbed relativistic coupled-cluster theories. The
results from Tl(mDTz(O) have large cancellations with the

term Tz(l)TDTZ(O), which is almost the same in magnitude but
opposite in sign. Interestingly, a similar pattern occurs with
the T(l)TDTZ(O) terms. Namely, the results from T (I)TDTZ(O) are
negative and opposite in sign to T,V'D7,".

The results from the full PRCC, including the terms
nonlinear in cluster amplitudes are given in Table VII. From

TABLE VII. Contribution to « from different terms of the dressed
dipole operator in the nonlinear PRCC theory.

Contributions from Ar Kr Xe
T"'D + Hec. 12.950 18.622 33.108
T,V'DT” 4 H.c. —0.579 —0.899 —1.7964
T,"'DT"} + H.c. 0.488 0.769 1.278
T,"'D7” + H.c. —0.061 —0.096 —-0.392
T, DT 4 H.c. 0.022 0.035 0.095
Normalization 1.081 1.099 1.145
Total 11.859 16.771 28.203
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TABLE VIII. Core-orbital contribution from T(II)TD +Hctoo.

Ar Kr Xe Rn
3914 (3[71/2) 5.572 (4]71/2) 8.120 (Spl/z) 6.502 (6[71/2)
0.100 (3s1/2) 0.058 (4s1,2) 0.222 (4ds ) 0.382 (5ds)
0.012(2ps)  0.056 3ds;y)  0.140 (4ds;) 0214 (5ds0)

the table, it is clear that the nonlinear terms tend to increase
the deviations from the experimental data. A similar trend
was reported in our previous work on Ne [40]. For Ar,
the nonlinear PRCC theory result is 5.4% larger than the
result from linearized PRCC and it is 6.5% larger than the
experimental result. Similarly, for Xe the nonlinear PRCC
result is 6.3% larger than the linearized PRCC result. On the
other hand for K, the nonlinear PRCC results are marginally
larger than the linearized PRCC results. The larger values of o
in the nonlinear PRCC can almost entirely be attributed to the
higher value of T(II)TD and its Hermitian conjugate. This means
that the nonlinear terms tend to increase the RPA effects. This is
an example where inclusion of higher-order terms enhances the
uncertainty. It is possible that triple excitations, higher-order
excitations not considered in the present work, may balance
the deviations and bring the results closer to the experimental
data.

For a more detailed analysis of the contributions from the
RPA effects, we consider contributions from each of the core
orbitals in T(lmD. In terms of orbital indices the expression is

T(ll)TD +H.c. = Z (raptap + ‘[é’*l‘pa)’ (34)
ap

where r is the single-particle electric dipole operator. The
values of the four leading core orbitals (a) for each of the
atoms are listed in Table VIII. In all the cases, the result
from the outermost nps3,, valence orbitals are the largest.
This is not surprising as these are the orbitals which have the
largest spatial extent. In addition, as the matrix elements in the
expression of & have a quadratic dependence on radial distance,
orbitals with larger radial extent have higher contributions. The
next largest values arise from the np;, valence orbitals. Here
we notice an interesting pattern in the results; with higher Z
the ratio of the contribution from np3, to np;, increases. For
Ar, Kr, and Xe the ratios are 2.1, 2.3, and 2.7, respectively.
However, the ratio for Rn is much larger; it is 5.3. The reason
for the trend in the ratios is the contraction of the np;,, core
orbitals due to relativistic corrections. Hence, the np » valence
orbitals of higher-Z atoms show larger contraction and account
for the higher ratio. The third largest contributions in Ar and
Kr arise from the 35y, and 4s,, orbitals, respectively. This is
expected as these are the orbitals which are energetically just
below the np orbitals, and spatially as well. On the contrary,
for Xe and Rn, the third largest contributions should be from
the 5s1,2 and 65, orbitals, respectively, but this is not case as
these orbitals are contracted because of relativistic corrections.
So the diffused nds,, orbitals have the third largest values.
From the trends in the results of the RPA effects, it is obvious
that the relativistic corrections are important for Xe and Rn.

PHYSICAL REVIEW A 86, 062508 (2012)

TABLE IX. Core-orbital contributions from T;V'DT,” to « of
argon and krypton.

Ar Kr
—0.124 Bp3/2,3p172) —0.205 4p3/2,4p172)
—0.118 (3p3/2,3p3/2) —0.193 (4p3/2,4p32)
—0.027 (3171/2,3171/2) —0.038 (41’1/2,4171/2)
—0.006 (3p3/2,351/2) —0.008 (4p3/2,3d5/2)

Next, we examine the pair-correlation effects, which are
manifest through the next-to-leading-order term T, VDT,
and its Hermitian conjugate. In terms of orbital indices

T ODL + He = Y [(27rsg — 1070,)1
abpq
i (2 — tirp)]. (35)

The values of the four leading terms, listed in terms of
the pairs of core orbitals (ab), for Ar and Kr are given in
Table IX. From the table we can identify (np3/,>,np1,2) as the
most dominant pairing of the core orbitals among the double
excitations. Considering that the pairing is between different
orbitals, the number of cluster amplitudes is large and this
explains the large contribution. The second and third dominant
contributions, from the (np3;2,np3/2) and (npy,2,np1/2) pairs,
are also on account of the number of cluster amplitudes.
Since nps;; and np;; accommodate four and two electrons
each, respectively, the former has a larger number of cluster
amplitudes. There is a small but important change in the results
for Xe and Rn listed in Table X. The most dominant pair for
these atoms is (np3;2,np3/2) and the next dominant pair is
(np32,npi1,2). This is in contrast to the sequence observed
in Ar and Kr. The reason is that, although the latter pair
has more cluster amplitudes, the np;,, is contracted due to

relativistic corrections. So the contribution to « from T2(O)
involving npy,, is smaller. The difference between the results
from the two pairs is even more dramatic in Rn. There are other
changes in the case of Rn. The (6p3/2,5ds,,) pair, involving
the diffused 5ds, orbital, is now the third largest contribution,
and the (6p1/2,6p1,2) pair, which has the contracted 6p,,
orbital, is the fourth largest contribution. This difference in the
sequence of leading contributions for Rn arises from the larger
relativistic corrections.

To estimate the uncertainty in our calculations, we have
identified a few important sources of uncertainty. The first
one is the truncation of the orbital basis sets. Although we
start with nine symmetries for all the calculations, we increase
the number of symmetries up to 13 in steps. The basis sets

TABLE X. Core-orbital contributions from T,"'DT,”} to a of
xenon and radon.

Xe Rn
—0.361 (5p32:5p372) —0.591 (6p3/2,6p3)2)
0359 (5p32,5P172) —0.387 (6p3/2,6p1)2)
—0.054 (5p1/2.5p12) —0.071 (6p3/2,5ds)2)
—0.035 (5p32,4ds)2) —0.036 (6p1/2,6p172)
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chosen for the results given are taken after the value of «
converges to 107*. So the uncertainty from the basis set
truncation is negligible. The second source of uncertainty is the
truncation of CC theory at the single and double excitations for
both the unperturbed and perturbed RCC theories. Based on
earlier studies, the contributions from the triple and quadruple
excitations could be at the most ~3.3%. This is also consistent
with the deviations from the experimental data. Finally, the

truncation of ™" De’” + ¢7”'De™ is another source of
uncertainty. From our earlier studies with an iterative method
[41] to incorporate higher-order terms in the calculations of
properties with CC theory, the contributions from the third or
higher orders are negligibly small. Quantum electrodynamical
corrections in this set of calculations are another source of
uncertainty. However, they are expected to be smaller than
the correction from the Breit interaction. As the largest Breit
correction, in the case of Rn, is 0.1%, we can assume the
corrections from QED effects to be at the most 0.1%. So,
adding this, the maximum uncertainty in our calculations is
3.4%. However, it must be emphasized that, for Ar and K, the
uncertainty is much smaller than this bound.

VII. CONCLUSION

The PRCC theory is a general extension of the RCC
method to incorporate an additional perturbation. The present
work demonstrates that it is suitable for property calculations
for closed-shell atoms. Although, in the present work we

PHYSICAL REVIEW A 86, 062508 (2012)

have used the PRCC theory to calculate the electric dipole
polarizability, the method can be extended to calculate other
atomic properties as well.

The present study indicates, through a detailed analysis
and identification of the dominant contributions, a discernible
pattern in the relativistic corrections to « arising from the
contraction of the outermost p1 /, orbital. The notable impact of
this is the larger fractional contribution from the outermost p3 >
orbitals to the terms which subsume RPA effects in the PRCC
calculations, T(ll)TD and its Hermitian conjugate, as we proceed
from Ar to Rn. For Rn, the effect of relativistic corrections is
also identifiable without any ambiguity in the pair-correlation
effects; the (6p1/2,6p1,2) pair is below the (6p3/2,5ds,2) pair
for the term T, VDT, in the PRCC calculations.

We have also examined the importance of the Breit
interaction in the calculation of «. The largest change of 0.1%
is associated with Rn, the heaviest noble-gas atom. So, when
the required uncertainty of the calculations is below 1%, the
inclusion of the Breit interaction is desirable for higher-Z
closed-shell atoms like Rn.
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Electric dipole polarizabilities of doubly ionized alkaline-earth-metal ions from perturbed
relativistic coupled-cluster theory
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Using perturbed relativistic coupled-cluster (PRCC) theory we compute the ground-state electric dipole
polarizability, o, of doubly ionized alkaline earth metal ions Mg®", Ca?", Sr*", Ba>", and Ra*". In the present
work we use the Dirac-Coulomb-Breit atomic Hamiltonian and we also include the Uehling potential, which is
the leading-order term in the vacuum polarization corrections. We examine the correction to the orbital energies
arising from the Uehling potential in the self-consistent field calculations as well as perturbatively. Our results
for « are in very good agreement with the experimental data, and we observe a change in the nature of the orbital
energy corrections arising from the vacuum polarization as we go from Mg>* to Ra®*.

DOI: 10.1103/PhysRevA.87.062504

I. INTRODUCTION

The static electric dipole polarizability, «, of an atom or ion
is a measure of the first-order response to an external electric
field. It is an essential parameter to determine any property
associated with atom-field or ion-field interactions as well as
atom-atom and atom-ion interactions. The properties include
the refractive indexes, dielectric constants, ion mobility in
gases, and van der Waal’s constants [1] and o has been
measured using a wide variety of experimental techniques [2].
For closed-shell ions, like the doubly ionized alkaline-earth-
metal ions, « is a good representative of the core-polarization
effects.

Theoretically, o of the many electron atoms and ions have
been calculated using different many-body methods. A recent
review on atomic and ionic polarizabilities [3] provides a
description of the theoretical methods used in the calculation
of «. However, among the various theoretical methods, the
ones based on coupled-cluster theory (CCT) [4,5] are ideal
for atoms and ions which are closed shell or with few valence
electrons. The CCT is, among the many-body theories, one of
the most reliable and powerful. It takes into account the
electron correlation to all order. A detailed discussion on the
CCT and different variants is given in a recent review [6], and
very good descriptions of the application of nonrelativistic
CCT to atomic and molecular systems are given in Refs. [7,8].
The CCT has been used with great success in atomic [9—-14],
molecular [15], nuclear [16], and condensed-matter physics
[17] calculations. For the theoretical calculations of «, the
CCT-based methods which have given very precise results are
the finite field [18], sum over states [19,20], and perturbed
relativistic coupled-cluster (PRCC) theory [21-23].

In a previous work, the CCT-based finite-field method with
the Douglas-Kroll Hamiltonian [24] was used to compute the «
of the alkaline-earth-metal ions [25]. In this work we compute
the o of doubly ionized alkaline-earth-metal ions using the
PRCC theory. The method was used in our previous works to
calculate the « of noble gas atoms [21,22] and alkaline-earth
metal ions [23]. The theory is the conventional relativistic
coupled-cluster (RCC) theory with an additional perturbation.
To account for the additional perturbation, we introduce a new
set of cluster operators and accordingly define a second set

1050-2947/2013/87(6)/062504(9)
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of cluster equations. The equations, however, are linear in the
cluster operators and the new operators obey the same selection
rules as the perturbation Hamiltonian. In the calculation of «
the perturbation is the external electric field E. In the present
work we use the Dirac-Coulomb-Breit atomic Hamiltonian
along with the vacuum polarization (VP) potential. The VP
potential is treated self-consistently as well as perturbatively.
The paper is organized as follows. In Sec. II we give a
brief discussion on RCC and PRCC theory along with the VP
correction. The theoretical formulation of « in the framework
of PRCC theory is discussed in Sec. III. In Sec. IV we give
the details of our calculational methodology. Next we discuss
about the VP correction to the orbital energies of doubly
ionized alkaline-earth-metal ions. In the subsequent sections
we give the results of static polarizability and discuss it in
great detail. Then we end with the conclusion. All the results
presented in this work and related calculations are in atomic
units(h = m, = e = 4mwep = 1). In this system of units the
velocity of light is ™', the inverse of fine structure constant,
for which we use the value of ¢! = 137.035 999 074 [26].

II. THEORETICAL METHODS

A detailed description of the RCC theory for closed-shell
atoms is given in Ref. [13] and similarly a detailed account
of PRCC theory is given in our previous works [21-23].
However, for completeness and easy reference we provide
a brief overview in this section.

A. RCC and PRCC theory

In the present work we use the Dirac-Coulomb-Breit no-
virtual-pair Hamiltonian, HP¢B, to incorporate the relativistic
effects and avoid the difficulties associated with the negative
continuum states [27]. For a doubly ionized atom with N
electrons [28]

N
HPB = A, Z[coti pi + (B — De® — Viya(r)]

i=1

N,N 1
+Z [;+g3(r,-,-)}A++, (1)
i<j

tj
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where o and g are the Dirac matrices, A4, is an operator
which projects to the positive energy solutions, and Vi 1»(r;)
is the nuclear potential arising from the Z = (N + 2) nucleus.
Projecting the Hamiltonian with Ay, ensures that the ill
effects of the negative-energy continuum states are removed
from the calculations. An elegant alternative to the projection
operators, better suited for numerical computations, is to use
the kinetically balanced finite basis sets [29-32]. This is the
method adopted in the present work to generate the orbital
basis sets. Returning to HPCB | the last two terms, 1 /rij and
gB(ri ), are the Coulomb and Breit interactions, respectively.
The latter, Breit interaction, represents the transverse photon
interaction and is given by
2B(r) = b [OH o (o1 1‘12)2(062 1'12)]. 2)
2r 12 r 12
The general trends in the observables arising from the inclusion
of Breit interaction in RCC and PRCC are discussed in our
previous work on noble gas atoms [22]. For a closed-shell ion,
the ground-state eigenvalue equation is

HP®B|Wy) = Eo|Wy), 3)

where |Wy) is the ground state of the ion. In the presence of
a perturbation Hamiltonian, H;,, the eigenvalue equation is
modified to

(HP® + 3 Hin) | Vo) = Eo|Wy), “4)

where A is the perturbation parameter, | W) is the perturbed
ground state, and Ej is the corresponding eigenenergy. The
origin of Hj, could be internal to the ion, like the hyperfine
interaction, or external, like the interaction with an external
electromagnetic field E.

In the RCC and PRCC theories, we define two sets of
coupled-cluster operators T and TV, which we refer to
as the unperturbed and perturbed coupled-cluster operators,
respectively. The former is equivalent to the conventional
cluster operators, and the latter is an additional set of cluster
operators introduced in our recent works [21-23]. It accounts
for the electron correlation effects arising from H;,, and follows
the same selection rules as Hi,.. To calculate «, consider the
interaction of the ion with an electrostatic electric field E. The
interaction Hamiltonian is then

Hy=—) r,-E=D-E, 5)

where D is the many-electron electric dipole operator. The
cluster operators TV are then rank one tensor operators in the
electronic space and follows the same parity selection rule as
H;,. Consequently, as Hjy is parity odd, there is no first-order
perturbative correction to the energy, so to first order in A we get
Ey = E,. Using the cluster operators 7® and T, the atomic
states of unperturbed and perturbed atomic Hamiltonians are

(0)
|Wo) = e" | D), (6a)
TO4ATV.E
(W) = el HTTE ), (6b)
where |®() is the reference-state wave function. The clus-
ter operators involve all possible excitations; however, a

simplified but accurate representation is the coupled-cluster
single and double (CCSD) excitation approximation. With this

PHYSICAL REVIEW A 87, 062504 (2013)

approximation
T(O) T(O) + T(O), (73.)
T =T + T3, (7b)

where the subscripts represent the level of excitation. In the
second quantized notations

TV = Z thala,, (8a)
7V = Z thialalaya,, (8b)
a,b,p.q

where ¢ are cluster amplitudes, g; (a ) are single-particle cre-
ation (annihilation) operators, and abc ... (pgqr ...) represent
core (virtual) states. Similarly, the perturbed cluster operators
are represented as

Z 7 Cy (r)a ag,

M
Tl

M
T2

Z 3 T RCIFNC(E)Y aba] apa,.

a,b,p,q Lk

Here, C,(#), a C tensor, is used to represent the vector nature
of T(ll). On the other hand, two C tensor operators of rank /
and k are coupled together to form a rank one tensor operator,
T(zl). For a more rigorous description of the tensor structure of
the PRCC operators we refer to our previous work [22].

B. Linearized PRCC theory

In this section we describe in brief the linearized form of the
PRCC (LPRCC) theory. It is much simpler than the complete
PRCC but encompasses all the important many-body effects.
To derive the LPRCC equations, as discussed earlier, consider
E as the perturbation. The eigenvalue equation is then

[T“"HT(” E| |Dg).

9)
By using the normal ordered form of the Hamiltonian, the
eigenvalue equation may be written as

(HDCB + AHi)e [T‘°’+AT<"E]|¢ ) =

(HY® + AHw) [Wo) = AEo|¥y), (10)

where AE) = Ey — (®o| HP®B|d,) is the ground-state cor-
relation energy of the many-electron ion. Using the PRCC
wavefunction in Eq. (6b), we write the ground state as

[To) ~ T [1 + ATD . E]|dp). (11)

Using this expression, the PRCC eigenvalue equation assumes
the form

(HEC® 4 2 Hin) ™" [(1 + 2T - E)]| Do)
= AEoe™ " [(1 + ATV . E)]| D). (12)

Following the standard coupled-cluster ansatz, as the initial

step to derive the cluster amplitude equations, we apply e T
from the left and get

[AR + 3 Hi ] T E|@g) = AE T Eldg),  (13)
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where H =e¢ T"He™ is the similarity transformed
Hamiltonian. After applying e from the left and con-

sidering the terms linear in A, we obtain the PRCC equation

([AXS. TV] - E + Hin) Do) = 0. (14)

The linearized PRCC is the approximation where we
take [H2C, TV] ~ [HYC, TV] and Hip ~ D + [D,T®]. The
eigenvalue equation is then reduced to

[H£CB:T(1)]|¢O> =D+ [D7T(0)])|d>0). (15)

For simplicity, we have dropped E from the equation. The
equations of the cluster amplitudes T(ll) and T(Zl) are obtained
by projecting the above equation to singly and doubly excited
states (@} | and (®"7|, respectively. These states, however,
must be opposite in parity to the reference state |®¢). The
equations so obtained form a set of linear algebraic equations
and are solved using standard linear algebraic methods.

The other method of calculating o which avoids summation
over the intermediate states is the finite-field method [18].
The method, however, requires evaluation of the energy for
different values of E and this implies computing the cluster
amplitudes multiple times. In the PRCC theory, however, the
computations of the cluster amplitudes are limited to one time
evaluation of 7 and T™. Although the equations of T
are linear, the tensor nature translates into angular factors
consisting of a large number of 6 symbols and 9 symbols.
So, for our present work we resort to a symmetry-adapted
storing of these angular factors.

C. Vacuum polarization

In the present work we incorporate the vacuum polarization
(VP) corrections to the electron-nucleus interactions. It modi-
fies the Coulomb potential between the nucleus and electrons.
For a point nucleus, to the order of Zu, it is given by the
Uehling potential [33]

27 [ 1 1 2rt
VUe(r)Z—g : dt\/t2—1<t—2+ﬁ)exp|:—71|,
where Z is the nuclear charge and «, in this case, is the fine
structure constant. The latter is not to be confused with the
dipole polarizability. In heavy atoms a finite-size Fermi charge
distribution model of the nucleus is more appropriate [34] and
it is defined as

£0

T (16)

Pnuc(r) =
where a = r41n(3). The parameter c is the half charge radius so
that pnuc(c) = po/2 and ¢ is the skin thickness. For a consistent
treatment of the nucleus-electron electrostatic interaction,
Vue(r) must be modified to account for the finite nuclear size.
This is done by folding Vy.(r) with the pn,(r) [35]. The
modified form of the Uehling potential is [36]

20[2 0 oo
Vie(r) = _3_r/ dx x,o(x)f deviz —1
0 1

U b -2atle—vl _ 2040
X(t_3+ﬁ>(e ¢ — e Ty,
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We add this to the electron-nucleus Coulomb interaction
potential in the self-consistent field computations to generate
the single-particle states. The Uehling potential is the leading
order term in VP correction and it accounts for more than 90%
of the VP correction in hydrogen-like ions, so we identify it as
the VP correction in the subsequent sections.

III. DIPOLE POLARIZABILITY

In the present calculation of « we use the PRCC expression
discussed and described in our previous works [21,22].
Accordingly, the o of the ground state of a doubly ionized
alkaline atom is

(®o|TVTD + DTV | D)

= — , 17
(Wol|Wo) (1n

= (0)f ©) . . . . .
where D = ¢7" 'Del" isa nonterminating series, we consider
only the leading-order terms in this expression and we get

1 .
@ = — (@ TVD + DT + TV'DT” + 7,7 DT}

+T(11)TDT1(0) + TI(O)TDT(II) + T(ZI)TDTI(O)
+17" D1 + 1D + 1,7'DT|0),  (18)

where N = (®g| exp[T O] exp[T @] D) is the normalization
factor, which involves a nonterminating series of contractions

between T(O)T and T©. However, in the present work we
use N~ (Dol 4+ T T + TV 7|dg). In the PRCC
expression of ¢, the summation over intermediate states is
subsumed within T"" in a natural way and eliminates the need
for a complete set of intermediate states. This is, however, with
the condition of solving an additional set of cluster equations.

IV. CALCULATIONAL DETAILS

A. Basis set

To get accurate results the first step is to generate an
appropriate basis set of orbitals. Here we use the Gaussian-type
orbitals (GTO’s), in which the orbitals are expressed as a linear
combination of Gaussian-type functions [30]. In particular, the
large component of the orbitals are the linear combination of
the Gaussian-type functions of the form

8ep(r) = Clr™ e, (19)

where p = 0,1, ... ,misthe GTO index and m is the number of
Gaussian-type functions. The exponent &, = apB”~!, where
o and B are two independent parameters. The small compo-
nents are constructed from the large component through the
kinetic balance condition [29-32]. The GTOs are calculated
on a grid [37] and we optimize the values of «y and 8 for
individual atoms to reproduce the orbital energies of the core
orbitals and self-consistent field (SCF) energy from GRASP92
[38] code. The comparison of the SCF energies for the doubly
ionized alkaline atoms are given in Table .

From the table it is evident that the results of the SCF
energies from the GTOs are in agreement with the GRASP92
results to the accuracy of at least 1073 hartree. The symmetry-
wise values of the optimized « and B are listed in Table II.

The number of Gaussian-type functions with the optimized
basis set parameters is large and not all the GTOs generated
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TABLE I. Comparison between the ground-state SCF energies
obtained from the computations with GTO and GRASP92. The energies
are in atomic units.

Atom GTO GRASP92

Mgt —199.1500 —199.1501
Ca’t —679.1038 —679.1038
St —3177.5211 —3177.5218
Ba** —8135.1404 —8135.1421
Ra** —26027.5632 —26027.5634

are important for the calculations. For the PRCC calculation
we select the number of GTO’s for each symmetry such that
the electron correlation is accounted accurately. In order to
investigate this, we examine the convergence pattern of the o
by varying the basis set size. Here we present the result for
Sr’*. We start with a basis set size of 95 GTOs and increase it
in steps up to 155 GTO’s. For this the computations are done
with the Dirac-Coulomb Hamiltonian and the results are listed
in Table III. Based on the table the optimal basis size to get
converged result accurate up to 1073 is 127.

To solve the PRCC equations for single and double
excitations, we use the Jacobi method. We chose this method
as it can be parallelized without any difficulty. However,
there is a major drawback of the method or performance
penalty: slow convergence. To accelerate the convergence we
use direct inversion of the iterated subspace (DIIS) [39], and
this improves the convergence significantly.

B. VP corrections to the orbital energies

To study the VP corrections arising from Vy,, we compute
the orbital energy corrections in the self-consistent field
(SCF) calculations. We also compute the first-order correction
using the many-body perturbation theory. In the former case,
SCF calculations, the VP potential is considered along with
the Dirac-Hartree-Fock (DHF) potential, Upyp. The orbital
eigenvalue equation is then

[ho + Vue(r) + Upne(M)] 1¥]) = €/1¥/),

where hog=ca-p+ (B — 1)c? — Vn_o(r) is the single-
particle part of Dirac-Coulomb Hamiltonian, Upgg(r) is the
DHEF potential, [1;) is a four-component orbital, and €/ is the
corresponding eigenvalue. Similarly, we use unprimed states,
|1;), to represent orbitals which are eigenfunctions of the DHF
Hamiltonian, that is,

[0 + Upur(M)] 1Y) = €1¥i),

TABLE II. The «y and B parameters of the even-tempered GTO
basis for different ions used in the present calculations.

s p d
Atom oo ,3 (o)) /3 (e1h) /3
Mg*t  0.00825 2310 0.00715 2365 0.00700 2.700
Ca’™  0.00895 2.110 0.00815 2.150 0.00750 2.500
Sr*t 0.00975 2.100 0.00915 2.010 0.00900 2.030
Ba’™  0.00985 2.150 0.00975 2.070 0.00995 2.010
Ra’™  0.00995 2.110 0.00925 2.090 0.00850 2.010
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TABLE III. Convergence pattern of « of Sr** ion as a function
of the basis set size. For this set of calculations we consider the
Dirac-Coulomb Hamiltonian and result is in atomic units.

No. of orbitals Basis size o

95 (15s,11p,11d,9£,9¢) 5.762
113 (17s,13p,13d,11f,11g) 5.745
127 (19s,15p,15d,13 f,11g) 5.743
137 21s5,17p,17d,13 f,11g) 5.743
155 (235,19p,19d,15 f,13g) 5.743

where ¢; is the DHF energy of the orbital. To quantify the VP
effect we define

Ae; =€ — €, (20)

as the change in the orbital energy due to Vy.(r). Following
the time-independent many-body perturbation theory, the first-
order energy correction associated with Vy.(r) is

(Vue)i = (Wil Vue(N)|¥i).

Since the VP potential is attractive and short range in nature,
it has larger effect on the orbitals which have finite-probability
density within the nucleus. So, at the first order (Vye) is
negative for orbitals, but only the s/, orbitals have negative
Ace for all the ions. A similar pattern is reported in Ref. [40]
for the orbitals energies of Cs™. For the Ra2* ion, in addition
to 51,2 the py,, orbitals also have negative Ae. More details
of the Ae; and (Vie); for the core orbitals of the Ca’*, Sr*™,
Ba’*, and Ra’>" are presented in the next section.

V. RESULTS AND DISCUSSION

As mentioned earlier, the expression of the o in PRCC
theory is a nonterminating series of the cluster amplitudes.
However, considering that the cluster operators TZ(O) and T(ll)
account for more than 95% of the many-body effects in RCC
and PRCC, the terms considered in Eq. (18) give very accurate
results. To verify, we have examined the leading terms which
are third order in cluster amplitudes and find the contributions
are ~10~*. So, for the present work, as we consider o up
to the third decimal place, it is appropriate to neglect the
contributions from terms which are third and higher order
in cluster operators.

In Table IV we list the « of alkaline-earth metal ions Mg2+,
Ca?*, Sr**, Ba?*, and Ra’t computed using Eq. (18). The
results are based on two sets of calculations: One is based on
the cluster amplitudes obtained from LPRCC and the other is
based on PRCC. For a systematic comparison we also list the
previous theoretical and experimental results. The results of «
along with the orbital energy corrections arising from Vi (r)
for each of the ions are discussed in the subsequent sections.

A. Mg

The a of Mg*" computed with LPRCC is in excellent
agreement with the experimental data. However, the PRCC
result is 1.2% higher than the LPRCC result and experimental
data. This may be due to a part of the additional many-
body effects arising from the nonlinear terms in the cluster
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TABLEIV. Static dipole polarizability of doubly ionized alkaline-
earth-metal ions and the values are in atomic units.

PHYSICAL REVIEW A 87, 062504 (2013)

TABLE V. VP Corrections to the orbital energies of Ca**. Here
[x] represents multiplication by 10*.

Atom This work Method Previous works Method
Mg>* 0.489 (LPRCC) 0.469" RRPA
0.495 (PRCC) 0.489(5)° Expt.
Ca’t 3.284 (LPRCC) 3.262¢ RCCSDT
3.387 (PRCC) 3.254% RRPA
3.26(3)" Expt.
N 5.748 (LPRCC) 5.792¢ RCCSDT
5.913 (PRCC) 5.813* RRPA
Ba>* 10.043 (LPRCC) 10.491¢ RCCSDT
10.426 (PRCC) 10.61* RRPA
Ra’* 12.908 (LPRCC) 13.361¢ RCCSDT
13.402 (PRCC)

2Reference [41].
PReference [42].
‘Reference [25].

amplitude equations but which may ultimately cancel with the
contributions from the cluster amplitudes of higher excitations
like T3(0) and Tgl). The RRPA result is 4.1% lower than the
experimental data and it is also lower than both the LPRCC
and PRCC results. It must be added that a similar trend is
observed for the Na™ ion [23], which is isoelectronic with
Mg?*, and the RRPA result of « is lower than the experimental
data [41]. This trend may be on account of the inherent
strength and limitation of RRPA, the potential to incorporate
core-polarization effects very accurately, and the weakness to
account for pair correlation effects.

To estimate the contribution from the Breit interaction
we consider the Dirac-Coulomb Hamiltonian with the VP
potential. The contribution from the Breit interaction can be
safely neglected for this ion as the contribution is less than
0.02%. Not surprisingly, the orbital energy corrections Ag;
and (Vy.); are very small and can be neglected. For this reason
we have not listed the values of Ae¢; and (Vy.); for Mg2+.

B. Ca*t

For Ca**, the LPRCC result of « is within the experimental
uncertainty and it is in good agreement with the result from
a previous work, which is based on the RCCSDT theory. The
PRCC resultis 3.1% larger than the LPRCC result and deviates
from the experimental data by 3.7%. On the other hand, the
result from the RRPA [41], like in Mg2+, is lower than the
experimental data.

Based on another set of calculations with the Dirac-
Coulomb Hamiltonian, the contribution from the Breit interac-
tion is estimated to be 0.004, which is a mere ~0.1% of the total
value. Similarly, we calculate the VP correction to the orbital
energy with a series of SCF calculations and results are listed
in Table V. As is to be expected, the first-order correction (Vi)
is negative for all the core orbitals, but the values of Ae are
negative only for the s/, orbitals. Another important observa-
tion is that for sy, orbitals (Vye); and Ag; are similar in value,
but for the other orbitals, besides the change in sign, the values
of (Vue); and Ag; are different by several orders of magnitude.

Orbital Ae (Vue)

Lsi/2 —4.204[ —3] —4.435[ -3]
2512 —3.531[ —4] —3.790[ —4]
2pip 4.884[ —5] —1.511[ —6]
2p3p 4.938[ 5] —2.732[ —7]
3512 —4.391[ -5] —4.500[ —5]
3pip 6.817[ —6] —1.619[ —7]
3p3p 6.880[ —6] —2.931[ -8]

C. Sr*t

For Sr** it is important to have accurate theoretical results
as there are no experimental data of «. From Table IV the
LPRCC result of 5.748 is in very good agreement with the
previous work using RCCSDT. And, like in the previous cases,
the PRCC result of 5.913 is larger than the LPRCC result.
Comparing the results from different theoretical methods,
we observe the emergence of two important changes in the
relative patterns when compared with the results results of
Mg?* and Ca**. First, the RRPA result is higher than both
the LPRCC and RCCSDT results, and second, the RCCSDT
result is larger than the LPRCC result. This may be on account
of the filled 3d shell in Sr>*. As it is of higher angular
momentum, it has larger polarization effects as well as pair
correlation effects. A method like RRPA incorporates the
core-polarization effects very accurately but could potentially
under estimate the pair correlation effects. Not surprisingly,
the same trends are observed in the heavier ions Ba’>* and
Ra?* with filled d and f shells.

Based on a comparison with the calculations using the
Dirac-Coulomb Hamiltonian, we estimate the Breit contribu-
tion as 0.005. This is negligibly small and similar in magnitude
to the case of Ca®>*. The VP corrections to the orbital energies
arising from Vye(r) are listed in Table VI. From the table it
is evident that Aeyy,, is an order of magnitude larger than in
Ca?*. In addition, we also observe a difference of four orders
of magnitude between the (Vy.); and Aeg; of the 3d orbitals.
This is not surprising as the short-range Vye(r) have little

TABLE VI. VP Corrections to the orbital energies of Sr>*. Here
[x] represents multiplication by 10*.

Orbital Ae (Vue)

Ls1/2 —5.721[ 2] —5.904[ —2]
2512 —5.968[ —3] —6.231[ —3]
2pip 3.604[ —4] —1.144[ —4]
2p3p 4.354[ —4] —1.636[ —5]
3512 —1.003[ 3] —1.045[ -3]
3pin 8.281[ —5] —1.995[ —5]
3p3p 9.664[ —5] —2.865[ —6]
3ds), 8.145[ 5] —4.341] 9]
3ds), 8.048[ —5] —1.123[ -9]
4S1/2 —130][—4] —1320[ —4]
4py)s 1.592[ 5] —2.086[ 6]
4ps)s 1.747[ —5] —2.984[ —7]
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TABLE VII. VP Corrections to the orbital energies of Ba>*. Here
[x] represents multiplication by 10*.

PHYSICAL REVIEW A 87, 062504 (2013)

TABLE VIIIL. VP Corrections to the orbital energies of Ra>*. Here
[x] represents multiplication by 10*.

Orbital Ae (Ve) Orbital Ae (Ve)
Ls1)2 —2.952[ 1] —3.025[ —1] 112 —2.560 —2.614
2512 —3.493[ 2] —3.623[ —2] 2512 —3.881[ —1] —3.999[ —1]
2pip 5.074[ —4] —1.669[ —3] 2pip —3.802[ -2] —5.753[ 2]
2psp 1.786[ —3] —1.748[ —4] 2psp 1.211[ 2] —2.707[ -3]
3512 —7.084[ —3] —7.391[ -3] 3512 —8.999[ -2] —9.315[ 2]
3pip 1.984[ —4] —3.725[ —4] 3pip —9.620[ —3] —1.504[ -2]
3p3p 4.926[ —4] —3.981[ -5] 3psp 3.728[ 3] —7.545[ —4]
3ds), 4.856[ —4] —2.047[ —17] 3ds), 4.213[ -3] —1.330[ —5]
3ds) 4.737[ —4] —4.712[ 8] 3ds 3.953[ -3] —2.385[ —6]
451, —1.531[ 3] —1.599[ 3] 451/ —2.362[ 2] —2.451[ 2]
4pi ) 8.513[ =53] ~7.689[ 5]  4pip —2.238[ -3] —3.938] —3]
4psp 1.476[ —4] —8.242[ —6] 4psp 1.315[ -3] —1.999[ —4]
4ds) 1.272[ —4] —4.004[ —8] 4ds), 1.350[ —3] —3.943[ —6]
4ds;, 1.245[ —4] —9.185[ —8] 4ds;, 1.282[ —3] —7.062[ —7]
551/ —2.449[ —4] —2.473[ —4] 4fsp 1.015[ —-3] —1.647[ —9]
5pi 2.295[ —5] —1.071[ -5] 4 f1)2 9.928[ —4] —4.229[ —10]
5pap 3.230[ =5] —1.066[ —6] 551, —5.378[ -3] —5.633[ =3]
5pip —3.002[ —4] —8.438[ —4]
5p3p 4.845[ —4] —4.200[ —5]
effect on the electrons in the higher angular momentum orbitals 5ds) 4.074[ —4] —6.735[ —7]
like d. 5ds) 3.859[ —4] —1.187[ -7]
6512 —9.883[ —4] —9.951[ —4]
D. Ba* 6p1,2 —1.613[ —5] —1.290[ —4]
632 1.211] —4] —5.949[ —6]

Like in Sr?*, there are no experimental data of « for Ba**.
Hence, it is important to have accurate theoretical results, and
in this regard, it is pertinent to calculate « with a reliable
method like RCC. Here, computing with the relativistic version
of coupled-cluster theory is essential as the high Z implies that
the relativistic corrections are important. From Table 1V, it is
evident that our LPRCC result of 10.043 is 4.3% lower than
the RCCSDT result. However, our PRCC result is in very
good agreement with the RCCSDT result; it is just 0.6% less.
Examining the results discussed so far, there is a discernible
trend when we compare the PRCC and RCCSDT results. The
difference between the two results narrows with increasing Z.
This maybe due to the basic property of the CCT and which is
to include selected electron correlation effects to all order. So,
with higher Z the importance of the correlation effects grows
and the two coupled-cluster-based methods incorporate the
correlation effects to similar accuracy. The other theoretical
result from the RRPA theory is larger than the other results.

Following the computations described earlier, we estimate
the Breit contribution as 0.007, which is similar to the previous
cases. Coming to the orbital energy corrections arising from
the VP, listed in Table VII, we find an important change in the
pattern of Ae. The Ae of py/, and p3,, continue to be positive,
but A€y, , is X72% smaller than Ae;,,,. For the remaining
npi,2 and np;3,, although the difference is not so dramatic, the
differences are still large.

E. Ra**

Our PRCC result of a for Ra*" is 3.7% larger than the
LPRCC result. This trend is similar to the case of Ba>* and
may be attributed to better accounting of correlation effects in
PRCC. To be more precise, the importance of the correlation

effects grows with increasing number of electrons, but LPRCC
theory is insufficient to incorporate the correlation effects as
it considers only the linear terms. The PRCC theory, which
includes the nonlinear terms, provides a better description of
the electron correlations. This is borne by the fact that the
PRCC results are in good agreement with the RCCSDT results;
the difference between the two results is just ~0.3%.

Like in the previous cases, the contribution from the Breit
interaction is small and the value is 0.008. In regards to the
orbital energy correction arising from VP, listed in Table VIII,
there is a key difference from the other ions. The values of
Aé€yp, ,, in addition to Aeyy, , are negative.

F. Core-polarization and pair correlation effects

In the previous sections we discussed the comparison
between the results from different theories, general trends, and
orbital energy corrections from VP. To examine and investigate
the contributions from various many-body effects, which are
encapsulated in different terms of LPRCC and PRCC, we
isolate the contributions from different terms through a series
of computations. The results are listed in Table IX. From the
table it is evident that the leading term in the LPRCC as well
as PRCC theory is {T(II)TD + H.c}. This is not surprising as it
is the term which subsumes the DF contribution and the RPA
effects. Now to understand and quantify the RPA effects in
these systems, we separate the core orbital contribution to «.

The four dominant contributions from the core orbitals
to {T(II)TD + H.c} are listed in Table X. For all the ions,
the outermost p3,, orbital is the most dominant and this
because of the larger radial extent of the p3, orbitals. The
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TABLE IX. Contribution to « from different terms and their
Hermitian conjugates in the LPRCC and PRCC theory.

PHYSICAL REVIEW A 87, 062504 (2013)

TABLE XI. Core orbitals contribution from T;V'DT,” to « of

Mg and Ca**.

Terms + H.c. Mg>* Ca** Sr** Ba*" Ra®*
LPRCC results
T"'D 0.496 3594 6400 11.708  15.160
T,V'D7,” —0.008  —0.180 —0.330 —0.676 —0.864
T, VD1 0.001  —0.022 -0.044 —0.114 —0.108
T,'DT1” —-0.0001  0.004  0.008  0.020 0.018
T,'DT,” 0.008 0.098  0.174 0370  0.470
Normalization ~ 1.019 1.064  1.080  1.126  1.137
Total 0.489 3284 5748 10.043 12908
PRCC results
T"'D 0.502 3718  6.606 12214  15.820
T, VD7 —0.008 —0.188 —0.344 —0.710 —0.908
T,V DT, 0.002  —0.022 —0.046 —0.120 —0.114
T, V'D7,” —0.0001 —0.004  0.008 0018  0.016
T,V'DT1” 0.008 0.092 0162 0338 0424
Normalization ~ 1.019 1.064  1.080  1.126  1.137
Total 0.495 3387 5913 10426  13.402

next important contribution arises from the outermost pj ;.
A prominent feature that we observe in the results is the
ratio between the contribution from the outermost p;, to
the pi,, orbitals. The ratios are 2.03, 2.07, 2.24, 2.57, and
4.17 for Mg**, Ca?*, Sr**, Ba®*, and Ra", respectively. The
ratio increase with increasing Z but for Ra’" it is 1.6 times
higher than for Ba’>". This is an important feature arising
from the contraction of p;,, orbitals due to the relativistic
effects, which are more prominent in the heavier atoms and
ions. The third largest contribution arises from sy, orbital in
the cases of Mg”*, Ca®", and Sr*". This is because the ns;
orbital is energetically lower than the np;,, and relativistic
corrections are not large. However, for Ba®t and Ra**, due to
the relativistic contraction, the contribution from the outermost
nsy2 is suppressed. The third largest contribution arises from
the more diffused outer nds, orbital.

The next leading contribution arises from {TI(I)J‘DTZ(O) +
H.c}. The contribution from this term is much smaller and
opposite in phase to the leading order term. A similar trend
is observed in case of the noble gas atoms and was reported
in one of our previous works [22]. Among the various terms

TABLE X. Four leading contributions to {T(,mD 4+ H.c} to « in
terms of the core spin orbitals.

Mg2+ Ca2+ Sr2+

0.312 (2p3)2)
0.154 21 2)
0.028 (2S|/2) 0.056 (3S|/2)
0.0002(151/2) 0.006 (2p3/2)

Ba2+ Ra2+
8.182 (5p3/2) 11.766 (6p3/2)
3.188 (5p1)2) 2.822 (6p12)
0.162 (4ds)2) 0.338 (5ds/2)
0.102 (4ds) 0.192 (5d3,)

2.378 (3p3/2)
1.148 (3])1/2)

0.048 (451/2)
0.034 (3ds,»)

Mg2+

C 32+

—0.002 (2173/2,2193/2)
—0.001 (2p3/2,2p1/2)
—0.001 (Zp1/2,2p3/2)
—0.0004 (2[71/2,2[)1/2)

—0.038 (3p32,3p3/2)
—0.022 3p3/2.3p1/2)
—0.022 (3p1/2,3p32)
—0.009 (3p1/2,3p1,2)

the {T;VIDT” + H.c} has the smallest contribution. This is
because of the fact that 7\ and T,V have smaller amplitudes
in the RCC and PRCC theories, respectively. As can be seen
from Table IX, the overall contribution from the second order
terms are 0.0009, —0.100, —0.192, —0.400, and —0.484 for
Mg?t, Ca**, Sr?*, Ba®t, and Ra®", respectively. Except for
Mg?*, the higher order terms gives a negative contribution to
the «.

To study the pair-correlation effects we examine the next-
to-leading-order term, T (I)TDT;O), in more detail. In Tables XI
and XII we list the four leading-order core-orbital pairs which
contribute to . The (np3/2,np3/2) orbital pairing gives the most
dominant contribution. The next leading-order contribution
arises from the (np3/2,np1 /) orbital pairing. The same pattern
is observed for all the doubly charged ions. For Ra** the fourth
largest contribution arises from (6 p3/»,5ds,,) orbital pairing,
but for other ions itis from (np, 2,np1 ) orbital pairing. This is
because of the relativistic effects, which contract the outer s>
orbital in Ra*" more than the other ions. One important point
to notice here is that the higher order terms do not translate to
higher accuracy as observed in the cases of Mg>™ and Ca*".

G. Theoretical uncertainty

We have isolated the following sources of uncertainty in
the present calculations. The first is the truncation of the
numerical basis set. We start our calculations with 9 symmetry
and increase up to 13 symmetry. Along with this we also
increase the number of orbitals per symmetry and we observe
that our values of @ converge for all the doubly charged ions,
so we can neglect this error safely. The second source of error
is associated with the truncation of RCC theory at the single
and double excitation in both the unperturbed and perturbed

TABLE XII. Core orbitals contribution from T,"'D7,” to & of
Sr’*, Ba’*, and Ra’*.

S r2+ B a2+

—0.132 (5p3/2,5p3/2)
—0.070 (5P3/2,5P1/2)
—0.061 (5P1/2,5P3/2)
—0.022 (5]71/275171/2)

—0.069 (4p3/2,4p3/2)
—0.038 (4P3/2,4P1/2)
—0.036 (4p1/2,4p3/2)
—0.014 (4171/2,4171/2)
RaZ*

—0.186 (6[73/2,6173/2)
—=0.077 (6173/2,6171/2)
—0.052 (6171/2,6173/2)
—0.039 (6p3/2,5d5/2)
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levels. Based on a series of test calculations, we estimate
the contribution from triple excited cluster amplitudes to be
less than 0.2% of the total value. So, we can consider the
upper bound on the uncertainty from the truncation of the
RCC and PRCC theories as 0.4% for the heavier ions Sr2t,
Ba?*, and Ra’*. By examining the trend in the results of
Mg?* and Ca®*, we conclude that the uncertainty is likely to
be higher for the PRCC resuls of these ions, but the LPRCC
results could have an uncertainty less than ~0.4%. The third
source of error is the truncation of the nonterminating series

of a. We terminate ™" ' De”” + ™" De™ at the second
order in cluster operator. However, based on our earlier study
[43], where we reported an iterative technique to calculate
properties to all order, the contribution from the third and
higher order terms is negligible. So, the uncertainty arising
from the truncation in the expression of « can be neglected.
Quantum electrodynamic (QED) corrections is another source
of uncertainty in the present calculation. We include the VP
potential in the present work but the self-energy part of the
radiative corrections is neglected. The self-energy correction
is important for the heavy atoms [44]. We can, however, safely
neglect it from the error estimates as the contribution is less
than the correction from Breit interaction, which accounts for
at the most 0.1% of the total value. So, considering all the
sources, the upper bound on the uncertainty of the present
calculations is ~0.4% for the LPRCC results of Mg>* and
Ca?*t and PRCC results of Sr*t, Ba2™, and Ra?" ions.

PHYSICAL REVIEW A 87, 062504 (2013)

VI. CONCLUSION

The electric dipole polarizabilities of doubly ionized
alkaline-earth-metal ions calculated using the PRCC theory are
in very good agreement with the previous theoretical results
and experimental data. An important observation is that for
the lighter ions Mg?* and Sr’* the inclusion of nonlinear
terms in PRCC does not translate to better agreement with
the experimental data. However, for the heavier ions, the
nonlinear terms are essential to obtain results which are in
agreement with the other results based on relativistic coupled-
cluster theory. The correction from the Breit interaction shows
marginal increase with atomic number and this may be due to
the radial dependence of the «.

The changes in orbital energies, SCF, and first-order
correction with the VP potential reflect the short-range nature
of this potential. Furthermore, there is an important change in
the SCF energy correction Ae with increasing Z. For lighter
atoms only the Ae of the core nsy ), are negative, but for Ra**
in addition to the core nsy», the core np;, orbitals also have
negative Ae.
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