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Abstract

The relativistic description is an inevitable choice to study heavy atoms and ions

as it is the simplified model within the fundamental description given by quantum

electrodynamics (QED). The precision of atomic experiments have reached a

stage where it is possible to test the theory of QED precisely in small atomic

systems. Recent progress in the study of highly charged ions motivates us to

investigate the QED effects in heavy atoms and ions. It is a challenging problem

to take into account the QED effects and electron correlation simultaneously.

The QED effects are studied in great detail in hydrogen like systems and it is

important to mention that the present CODATA recommended value of the fine

structure constant originates from such a system.

The simplified description of a many electron atom in the framework of rel-

ativistic quantum mechanics is through the Dirac-Coulomb Hamiltonian, HDC.

G. Breit derived a more appropriate Hamiltonian to incorporate the relativis-

tic corrections to the static Coulomb interaction. For heavy atoms and ions,

the Dirac-Coulomb-Breit Hamiltonian (HDCB) is an appropriate choice. How-

ever, there are complications associated with the HDCB. Brown and Ravenhall

showed that the HDC as well as HDCB are not bounded from below, and these

lead to variational collapse and continuum dissolution. Later, Sucher [1] showed

that this catastrophe can be avoided by using projection operators and proposed

a no-virtual-pair approximation (NVPA). In this approximation, one projects

out the negative energy part of the spectrum. In this way we can treat the

Coulomb and Breit interactions on the same footing. According to Lindgren [2],

the effects which are not considered in the NVPA approximation are the QED

effects. These are the radiative effects and the non-radiative effects. Breit inter-
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ABSTRACT viii

action is considered as the QED effects as it can be derived from the lowest order

one photon exchange between electrons. The radiative effects include vacuum

polarization and self-energy corrections, which are known as the Lamb-Shift in

many electron atoms. In this thesis we consider the HDCB along with the vacuum

polarization correction.

The coupled-cluster theory (CCT) [3, 4] which was initially developed to

study many body problems in nuclear physics, is a powerful and elegant method

to solve the atomic many body problem as well. In the CCT the electron-electron

correlation effects are taken to all order. Most of the relativistic coupled-cluster

(RCC) calculations take into account the single and double excitations to all or-

der and hence, in literature they are widely known as the RCCSD methods. Due

to the complex angular momentum algebra and computational cost, the genuine

triple excitations are difficult to incorporate in the RCC calculation. Several

groups use the approximate triple excitations to estimate the correction from

the triple excitations. In the present thesis we consider the triple excitations

up to all order in the RCC theory. In the present work we also develop per-

turbed relativistic coupled-cluster (PRCC) theory to calculate different atomic

properties. The PRCC theory is different from the previous RCC-based theo-

ries in a number of ways. The most important one is the representation of the

cluster operators in the PRCC theory. The cluster operator can be a rank-1

tensor operator and it has the advantage of incorporating multiple perturbations

of different ranks in the electronic sector. With the RCC wave-function which

incoporates the vacuum polarization correction and the Breit interaction correc-

tion, we examine several important atomic properties. To mention a few, the

effect of triple excitation to the correlation energy of closed shell atoms and the

removal energies of one valence atoms. We investigate the dipole polarizability

of closed shell atoms with the PRCC theory. The influence of Breit interaction

and the QED effects in the dipole polarizability is discussed in great detail.

Keywords : Vaccum Polarization, Bound state QED, Breit interaction,

Coupled-cluster theory, Perturbed relativistic coupled-cluster theory, Triple ex-

citations, Dipole Polarizability.
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Chapter 1

Introduction

Quantum electrodynamics describes the interaction between electrons and pho-

tons at the fundamental scale. It was mainly developed by Schwinger, Tomonaga,

Feynman and Dyson [5–12] in the late 1940s. The theory is one of the most suc-

cessful one in modern physics. It has been tested to very high precision in the last

few decades. An example is the anomalous magnetic moment of the electron and

the fine structure constant. To be more precise, the anomalous magnetic moment

of the electron is determined both experimentally [13] as well as theoretically [14]

with parts-per-trillion accuracy.

The small atomic systems are suitable to study the QED effects because of

their simple atomic structure. One special advantage is that in an atom the

bound electrons always experience the presence of electric field of the nucleus,

and thus atom acts like a small laboratory to precisely determine the QED effects.

With the increase in Z, the average electric field on the bound electrons increases

with to factor of ≈ 106 from Z = 1 to Z = 92 [15]. The electrons at the

innermost orbitals experience the strongest electric field. To describe such atomic

systems very precisely, one must account for the QED corrections. However,

computational complexities limit us to apply the theory to the simple atomic

systems. For one electron atom and hydrogen like ions, it is possible to treat the

QED effects analytically and presents less computational challenges than many

electron atoms and ions.

The enormous success of QED in calculating atomic properties like the tran-

1



Chapter 1. Introduction 2

sition energies, is limited to a weak electric field. To elaborate let us take the

following example : the electric field strength at the surface of the Uranium nu-

cleus, which has a radius of 7.42 fm is E ≈ 2 × 1019 V/cm and the magnetic

field at the surface of the nucleus of 209Bi is |B| ≈ 1012 Gauss. Therefore, one

of the goals for near future is to describe the properties of such atoms in super

strong field. With the advent of powerful Lasers it is experimentally possible

to create such strong field in laboratory and test precisely the QED effects. To

describe such systems it is necessary to develop non-perturbative techniques in

QED. This will not only extend our understanding of the fundamental process

at the quantum scale, but also can lead to practical applications.

The theory of QED is well suited for one electron atom, but in the present con-

text we wish to study the QED effects in many electron atoms. The appropriate

point to start in relativistic atomic structure calculation is the Dirac-Coulomb

Hamiltonian. After the development of relativistic quantum mechanics in the

late 1930s, there was an effort to generalize the non-relativistic problems to the

relativistic domain. Here it is worth to mention that Dirac pointed out in his

pioneering work on quantum mechanics of many electron systems [16] that

“The general theory of quantum mechanics is now almost complete, the imperfec-

tions that still remain being in connection with the exact fitting in of the theory

with relativity ideas. These give rise to difficulties only when high-speed particles

are involved, and are therefore of no importance in the consideration of atomic

and molecular structure and ordinary chemical reactions, in which it is, indeed,

usually sufficiently accurate if one neglects relativity variation of mass with veloc-

ity and assumes only Coulomb forces between the various electrons and atomic

nuclei. The underlying physical laws necessary for the mathematical theory of

a large part of physics and the whole of chemistry are thus completely known,

and the difficulty is only that the exact application of these equations leads to

equations much too complicated to be soluble. It therefore becomes desirable that

approximate practical methods of applying quantum mechanics should be devel-

oped, which can lead to an explanation of the main features of complex atomic

systems without too much computation”.
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After that, however, several developments have taken place in the field of

relativistic atomic structure calculations and it is now well established [17, 18]

that one needs the relativistic quantum mechanics for an appropriate description

of the multi-electron atoms. As we know the solution of the Dirac equation leads

to the positive and negative energy states, Dirac pointed out the existence of

negative energy solutions and proposed the idea of electron sea to prevent the

transition from the positive energy state to the negative energy state. This has

an important implications on the stability of atoms and molecules.

The Dirac Hamiltonian with the two electron Coulomb interaction is the nat-

ural choice to describe the many electron atoms. Later G. Breit [19] pointed

out the relativistic correction to the two electron Coulomb interaction. The

Dirac Hamiltonian is Lorentz invariant. So, the description of free electron in

the framework of Dirac equation is also appropriate. But when we use the two

electron Coulomb interaction along with the Dirac Hamiltonian, then it is not

Lorentz invariant. As Grant [20] pointed out that it has significant impact while

calculating the radiative transitions in atoms and it is appropriate to use the

Dirac-Coulomb-Breit Hamiltonian for a proper relativistic description. The neg-

ative energy states in the Dirac Hamiltonian motivated the development of a fun-

damental theory which consider an indefinite number of particles. The coupling

between the electron-positron field with the photon field is the basic ingredient

of QED. It correctly describes the radiative processes and collision processes by

using Feynman diagrams. The fundamental process that we consider as the QED

corrections in atoms are the vacuum polarization correction and self-energy cor-

rection [15]. These radiative corrections are shown in Fig. 1.1. Where the double

lines represents the bound electrons. The Fig. 1.1 (a) represents the self energy

part of the QED corrections in which a bound electron emits a photon and after

it reabsorbed after sometime. This self energy correction is the dominant QED

correction for hydrogen atom and hydrogen like ions because of small mass of the

electrons. Fig. 1.1 (b) is the vacuum polarization part of the QED corrections.

In this process the photon, which mediates the interaction between the nucleus

and the bound electron, creates virtual electron-positron pair. For heavy atoms
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Figure 1.1: Feynman diagram for (a) self-energy and (b) vacuum polarization of
bound electron.

and ions the vacuum polarization contribution to the orbital energies is signif-

icant and is comparable to the self energy process. For example, in hydrogen

like uranium, the combined contribution from the vacuum polarization and the

self energy to the K-shell electron energy shift is 266 eV. It is comparable to the

total 1S binding energy which is 132 KeV. The two above mentioned radiative

processes have ultraviolet divergence and requires special renormalization tech-

nique. However, we consider only the vacuum polarization process in the present

thesis work. The above discussion implies that the QED corrections in heavy

atoms and ions is important to study and have many practical consequences.

The QED corrections are considered in the perturbation expansion of the fine

structure constant, α ≈ 1/137. Since the nuclear charge Z is important for heavy

atoms and ions, the QED perturbation expansion is considered in Zα [21].

The radiative correction in atoms was studied by Uehling [22] in his calcula-

tion of lowest order vacuum polarization correction in hydrogen like ions. After

Lamb and Retherford discovered the splitting of 2s1/2 and 2p1/2 states in hy-

drogen atoms [23], it is clear that the Dirac one electron theory in insufficient

for a proper description of atoms and ions. This is because the according to

Dirac theory the 2s1/2 and 2p1/2 states are degenerate, but Lamb and Retherford

observed that those two states are non degenerate and the energy difference is

≈ 1057 MHz. This ground breaking measurement pave the way to construct a

fundamental theory to describe the interaction between electrons and photons.

The objective of the present thesis is to study the QED effects in many elec-
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tron atoms. To be precise the initial development in QED takes up the issue

of single electron atoms and ions where the electron-electron correlation is com-

pletely absent. To take the electronic correlation it is important to start with

the Dirac-Hartree-Fock self consistent field theory. The relativistic self-consistent

field method was used by Swirles [24] in her remarkable work in the early days

of relativistic quantum mechanics. The pioneering work by Grant [25] and De-

sclaux [26] on the multiconfiguation Dirac-Fock method is the basis of relativistic

atomic structure calculations. The advantage of the MCDF method is that it can

take into account some part of the many body contributions like the correlation

energy which is neglected at the relativistic SCF method. As first pointed out

by Brown and Ravenhall [27], the use of Dirac-Hartree-Fock Hamiltonian implies

the inclusion of the negative energy solutions and it leads to the variational col-

lapse and continumm dissolution. Later, J. Sucher [1] showed that the problem

can solved theoretically by using the projection operators technique and it can

be used to projects out the negative energy solutions. The construction of the

projection operator is purely theoretical as one need to know the complete set

of eigenstates to construct the projection operator. However, in practical calcu-

lations it is not possible to construct the complete set of eigenstates a priori. In

numerical computation with the finite basis sets, we use the kinetic balance con-

dition [28, 29] between the large and the small components of the four component

radial wave-function to avoid variational collapse and continuum dissolution.

Principally two techniques are used to incorporate the correlation along with

the QED effects in many electron atoms. In one approach one uses the perturba-

tion expansion in α and Zα with Hyllerass [30] type relativistic wave-function.

The advantage is that the correlation is in built in the wave-function and we can

directly calculate the QED effects. This method is suitable for low-Z atoms and

ions, and has been used extensively by Drake et al. [31, 32] and Pachucki et al.

[33, 34]. In this kind of calculations the electronic correlation is taken accurately

but can not be applied to heavy atoms and ions. The second approach is based on

the finite basis set expansion of single particle relativistic wave-functions. This is

used in the present thesis. This approach is used extensively in atomic as well as
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molecular physics calculations. To mention a few by Grant et al. [35], Johnson et

al. [36] and Das et al. [37]. Here, the advantage is that as Z increases the inner

electrons are relativistic and are well described by the single particle Dirac equa-

tion. However, the effects of correlation is missing in this kind of calculation. We

can take the QED effects precisely within the description of single particle wave

function by incorporating the QED Hamiltonian along with the Dirac-Coulomb-

Breit model. To incorporate the correlation effects it is important to go beyond

the Dirac-Hartree-Fock model.

In the post Hartree-Fock period several many body methods were developed

to incorporate the electron correlation precisely. The many body perturbation

theory (MBPT) is one of the earliest approach to take into account the electron

correlation in atomic physics calculations [38]. The relativistic version of time

independent MBPT treat electron correlation to arbitrary order. But, with the

increase in the order of perturbation the complicacy of the diagrams increases

and after third order it us difficult to consider all the terms.

The coupled-cluster theory (CCT) [3, 4] is one of the most elegant many

body theory which incorporates the electron correlation to all order. The details

of the CCT and different variants are described in a recent review [39]. The

theory has been widely used for atomic [40–43], molecular[44], nuclear [45] and

condensed matter physics [46] calculations. As pointed out by Lindgren [47],

we can directly incorporate the QED effects in the wave-function and leads to a

covariant formulation. It is also important to mention that appropriate starting

point to incorporate the QED effects is to start with the S-matrix formalism as

described by Mohr et al. [15]. There are other techniques in the literature to

consider the QED corrections like the two times Green’s function by Shabaev

[48] and the covariant evolution operator technique by Lindgren et al. [49]. The

latter two techniques are appropriate choice for many electron systems because

it can treat the quasi degeneracy systematically. These techniques are relativis-

tically covariant and use Feynman gauge, and can handle more than one photon

exchange effects. In the present work we only focus on the leading order one pho-

ton exchange corrections to the Coulomb interaction. The QED effects at the
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lowest order of perturbation theory consist of the vacuum polarization correction

and the self energy effects. It is important to mention that vacuum polarization

and the self energy effects are most important for QED correction after Breit

interaction.

In the present thesis we incorporate the vacuum polarization effect and the

Breit interaction correction to the wave-function in DHF theory. We use these

DHF wave-function as the reference state wave-function for the RCC theory.

Then Breit interaction correction is then incorporated in the two electron inte-

grals in the RCC theory. Along with this we consider the triple excitations in the

RCC theory to estimate the contribution from it to the different atomic proper-

ties. We introduce perturbed relativistic coupled-cluster theory (PRCC) [50, 51]

to incorporate multiple perturbations in a many electron atom. The PRCC the-

ory has the potential to take into account different kind of perturbation in a

systematic way. We demonstrate the power of PRCC theory by evaluating the

static dipole polarizability of closed shell atoms and ions.

1.1 Thesis overview

In chapter 2, we discuss about atomic MBPT with QED effects. We introduce

the relativistic Dirac-Coulomb Hamiltonian and discuss the importance of Breit

interaction. In this chapter we derived the general expression of Breit interac-

tion from the one photon exchange process in QED. We then derive the form

of Uehling potential which is the leading order correction in vacuum polariza-

tion. We follow the convention of natural units to derive the expression. We

then, introduce the MBPT and describe how we consider the QED effects in the

framework of MBPT. We introduce the Gaussian type finite basis set which we

consider for the numerical calculation. We then explain, about the optimization

of the basis set by comparing our values of the SCF energy and the orbital ener-

gies from the GRASP92 code [52]. We present our results of the correction due

to Breit interaction and vacuum polarization to the orbital energies and SCF

energy in subsequent part. We end the chapter with a discussion on the Breit
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interaction contribution to the correlation energy of noble gas atoms.

In chapter 3, QED effects in closed shell atoms is investigated with relativis-

tic coupled-cluster theory. In this chapter we introduce the triple excitations

in the RCC theory and the diagrammatic representation of triple exciations to

calculate angular momentum diagrams. We then, discuss about the RCC am-

plitude equations with triple exciations in great detail. Next we introduce the

perturbed relativistic coupled-cluster theory to incorporate external or internal

perturbations in atomic system. For example, we discuss about the static electric

field as the external perturbation in many electron atoms in the present context.

We derive the PRCC amplitude equations and presented the details of the non-

linear PRCC diagrams. The general PRCC theory is discussed extensively in

this chapter.

In chapter 4, QED effects in open shell atoms with RCC theory is studied The

triple excitations contribution to the removal energies of ground state and low

lying excited states are discussed. We also study the electric dipole transition

amplitudes by using the RCCSDT wave-function.

In chapter 5, the static dipole polarizability of closed shell atoms and ions is

discussed. We introduce the static dipole polarizability from the time indepen-

dent perturbation theory and derive the equivalent expression in RCC theory. We

apply the PRCC theory to calculate the static dipole polarizability with Dirac-

Coulomb-Breit Hamiltonian. We begin with Neon, as it is one of the noble gas

atoms with small Z. We investigate the term wise contribution from non-linear

PRCC theory to the dipole polarizability of Neon. Next we study the other heavy

noble gas atoms and discuss about the importance of Breit interaction in heavy

atoms. We also calculate the static dipole polarizability of alkali-metal ions and

doubly ionized alkaline Earth metal ions using PRCC theory. We demonstrate

the core polarization and pair-correlation effects. We end the chapter with a

discussion on the theoretical uncertainty in our calculations.

Chapter 6 covers the conclusions and future direction of the present work.
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1.2 Units and notations

In relativistic quantum mechanics and quantum field theory, it is convenient

to use natural unit system. In this system the action, which is energy times

time is measured in � and velocity is defined in units of c. In natural units the

permittivity of vacuum, �0 is unity, so the permeabiity of the vacuum, µ0 is also

unity. Therefore, in natural units � = c = �0 = µ0 = 1. The fine structure

constant, α is

α =
e2

4π
. (1.1)

The natural units are convenient to use while deriving the expression of Uehling

potential and Breit interaction. However, for the numerical computation we use

the atomic units. In this unit system, me = e = � = 4π�0 = 1. Here, me is

the mass of the electron. Therefore the fine structure constant in atomic unit is

simply the inverse of the velocity of light. For which we use the latest value rec-

ommended by CODATA in numerical calculation and it is α−1 = 137.035 999 074

[53].

For the relativistic calculation we use the following notation of metric tensor

gµν =











1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1











(1.2)

In this thesis the Greek indices (µ, ν = 0, 1, 2, 3) are used to represent the

component four vectors and Latin indices (i, j, k = 1, 2, 3) are used to represent

the component of three vectors.



Chapter 2

Many Body Perturbation Theory

with QED effects

The QED effects in many electron atoms and ions are possible to test experi-

mentally with high accuracy. In many electron atoms and ions along with QED

effects, the electron correlation correction is very important. MBPT has proven

to be successful to a certain level to take into account the electron correlation in

a systematic way. The electron correlation effects in MBPT are treated pertur-

batively in order by order. For a closed shell atom the model space in MBPT

is constructed using a single Slater determinant. So the closed shell atoms and

ions are the ideal testing grounds of QED. Since the complicacy of QED calcu-

lation increases very rapidly with the order of perturbation, we treat the QED

correction in lowest order of perturbation theory, i.e, lowest order in Zα in the

framework of relativistic MBPT.

The chapter is organized as follows: In section 2, we introduce the Dirac-

Coulomb Hamiltonian and its importance in the relativistic atomic structure

calculation. In the next part, we discuss about the Breit interaction in the frame-

work of QED. The VP correction to the many electron atom is described in great

detail in section 2.1. The Dirac-Coulomb-Breit Hamiltonian together with the

QED corrections to the nuclear potential is the starting point of the MBPT for

closed and open shell atoms in the present work. In section 2.4, we introduce

the single particle wave-functions for the SCF calculation. The matrix element

10
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of Breit interaction is discussed in section 2.5. Section 2.6 contains the detailed

description of the generalized Bloch equation with the relativistic Hamiltonian

in atomic MBPT. We introduce the diagrammatic MBPT to calculate the corre-

lation energy of closed shell atoms in section 2.7. In subsequent part we discuss

in great detail the results from Breit and QED correction to the orbital energy in

the SCF method. We also demonstrate the importance of considering the Breit

interaction in the calculation of correlation energy of closed shell atoms. Based

on the above mentioned results, we end the chapter with subsequent conclusion.

2.1 Relativistic Hamiltonian for atomic calcu-

lation

In the relativistic atomic structure calculations it is important to consider the

relativistic as well as the correlation effects simultaneously. As a starting point

Dirac Hamiltonian with the Coulomb potential, referred to as the Dirac-Coulomb

Hamiltonian, HDC, is an appropriate choice. For a N-electron atom or ion [18]

HDC =
N�

i=1

[cαi · pi + (βi − 1)c2 − VZ(ri)] +
�

i<j

1

rij
, (2.1)

where, αi and the βi are the Dirac matrices, VZ(ri) is the nuclear potential,

Z (Z ≥ N) is the nuclear charge and the last term represents the electron-

electron Coulomb interaction. The Hamiltonian, HDC is not gauge invariant.

A fully gauge invariant electron-electron interaction should be ideal as it is im-

portant for radiative transitions in atoms. To circumvent the problem partially

we consider the Breit interaction term in the atomic Hamiltonian. The full

Dirac-Coulomb-Breit Hamiltonian will be then an appropriate choice for atomic

structure calculations.

2.1.1 Breit interaction

The interaction between two Dirac particles for the one photon exchange process

can be represented using the Feynman diagram [54] in Fig. 2.1. The S-matrix
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ψ
(1)
i

ψ
(1)
f

r1

ψ
(2)
i

ψ
(2)
f

r2

Figure 2.1: Feynman diagram for lowest order one-photon exchange.

element of this process is

Sfi = −i

�

d4r1

�

d4r2 j
(2)
fi (r2)DF (r1 − r2)j

(1)
fi (r1). (2.2)

Here DF (r1 − r2) is the photon propagator and j
(n)
fi r represents the transition

currents

j
(n)
fi (r) = ψ̄

(n)
f (r)γµψ

(n)
i (r) = j

(n)
fi (r)e

iω
(n)
fi t. (2.3)

We get this after separating the time dependent part in j
(n)
fi (r) and ω

(n)
fi = E

(n)
f −

E
(n)
i is the transition frequency. Using the form of momentum space photon

propagator in Feynman gauge, the S-matrix element can be written as

Sfi = −i

�

d4r1

�

d4r2

�
d4k

(2π)4
j
(2)
fi (r2)e

iω
(2)
fi t2 −4π

k2 + i�
e−ik·(r1−r2)j

(1)
fi (r1)e

iω
(1)
fi t1 .(2.4)

We separate the t1 dependent part in the transition current and integrate it. So

the integral reduces to three dimensional integral and for the k− space integra-

tion, we choose the spherical coordinates. After solving the integral using the

techniques of complex analysis we obtain

Sfi = −i

�

d3r2

�

dt j
(2)
fi (r2, t)

�

d3r1 j
(1)
fi (r1)

eiω
(1)
fi (t−|r1−r2|)

|r1 − r2|
� �� �

A
(1)
fi (r2,t)

. (2.5)

So the transition current j
(2)
fi (r2, t) interacts with the electromagnetic potential

A
(1)
fi (r2, t) arising from the other particle at an earlier time. And the time differ-

ence is |r1 − r2| ≡ |r1 − r2|/c. So, the potential can be written as the retarded
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potential and for small velocity i.e. v � c we can write the S-matrix element as

Sfi ≈ −2πiδ(ω
(1)
fi + ω

(2)
fi )

�

d3r2

�

d3r1ψ
(2)†
f (r2)ψ

(1)†
f (r1)(� · �−α1 ·α2)

� 1

|r1 − r2|
+ i

ωfi

c
− 1

2c2
ω2
fi|r1 − r2|

�

ψ
(2)
i (r2)ψ

(1)
i (r1). (2.6)

Here we consider only the lowest order term in the Taylor series expansion of

frequency dependent part.

The initial and final state wave-functions are assumed to be the stationary

eigenstate of the Dirac Hamiltonian.

H(1) = cα(1) · p(1) + β(1)c2 +H
(1)
ext, (2.7)

H
(1)
ext is the external potential present in the system. So we can write

H(1)ψ
(1)
i (r1) = E

(1)
i ψ

(1)
i (r1),

H(1)ψ
(1)
f (r1) = E

(1)
f ψ

(1)
f (r1). (2.8)

Similarly, there is an equivalent expression for H(2). Now with the assumption

ω
(1)
fi = −ω

(2)
fi we can get the following identity in terms of the Dirac Hamiltonian.

−ω2
fi|r1 − r2| =

�

H(1),
�
H(2), |r1 − r2|

��

. (2.9)

The momentum operator does not commute with |r1 − r2|. Using [p, f(x)] =

−i∇f(x), we can rewrite

−ω2
fi|r1 − r2| = c2

�
α

(1) ·α(2)

|r1 − r2|
−
�
α

(1) · r1 − r2
��

α
(2) · r1 − r2

�

|r1 − r2|
3

�

. (2.10)

Combining the above result, the S-matrix element can be written as

Sfi = −2πiδ(ω
(1)
fi + ω

(2)
fi )

�

d3r2

�

d3r1ψ
(2)†
f (r2)ψ

(1)†
f (r1)

�
� · �

|r1 − r2|
−

α1 ·α2 + {α1 · n̂}{α2 · n̂
�

2|r1 − r2|

�

ψ
(2)
i (r2)ψ

(1)
i (r1). (2.11)

Here n̂ = (r1 − r2)/|r1 − r2| is the direction vector. The Eq. (2.11) represents

the interaction of two particles through an effective interaction U(x− y), which

is of the form

U(r1 − r2) =
1

|r1 − r2|
− α1 ·α2 + {α1 · n̂}{α2 · n̂

�

2|r1 − r2|
,

= UC(r1 − r2) + UBr(r1 − r2). (2.12)
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The first term in the above equation is the Coulomb interaction between two

particles and along with that we get a correction term UBr; which is known as

the Breit interaction. This correction term to the electron-electron interaction

represents the magnetic interaction and the retardation. With the inclusion of

the UBr, the Hamiltonian includes the lowest order one photon exchange process.

In Dirac theory the velocity operator is vi = cαi, so UBr is quadratic in velocity.

In classical electrodynamics this correction to the Coulomb potential is known

as the Darwin term [55].

With the Breit interaction the total atomic Hamiltonian is

HDCB =
N�

i=1

[cαi · pi + (βi − 1)c2 − VN(ri)] +
N�

i<j

[
1

rij
+ gB(rij)], (2.13)

Where the last two terms, 1/rij and gB(rij), are the Coulomb and Breit interac-

tions, respectively. We can rewrite the Breit interaction as

gB(r12) = − 1

2r12

�

α1 ·α2 +
(α1 · r12)(α2 · r12)

r212

�

. (2.14)

The Hamiltonian, HDCB is the starting point of our relativistic atomic calcula-

tions and we shall discuss about the matrix element of Breit interaction and its

implementation in section 2.5.

2.1.2 Vacuum polarization

The photon which mediates the interaction between the bound electrons and the

nucleus in an atom can generate virtual electron-positron pairs. This polarizes

the vacuum and the effect is known as the vacuum polarization. In the lowest

order of coupling constant Zα, the photon propagates freely, but the creation

of e−e+ pair modifies the Coulomb field and effectively shifts the orbital energy

levels of many electron atoms. The Feynman diagram corresponding to the

first-order vacuum polarization process is shown in Fig. 2.2. The lowest order

non-vanishing contribution in VP correction comes from the Uehling potential

[22]. The Feynman diagram of the Uehling potential correction [56] is shown in

Fig. 2.3. To derive the functional form of Uehling potential we start with a point
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� �

Figure 2.2: Feynman diagram for vacuum polarization.

charge −Ze. The charge density is

jµ(r) = −Zeδ3(r)δµ0. (2.15)

Fig. 2.3 represents the modified photon propagator by

−igµν
q2 + iε

→
� −i

q2 + iε

�2
�

d4k

(2π)4
Tr

�

(−ieγµ)
i

/k −m+ iε
(−ieγµ)

i

/k − /q −m+ iε

�

,

=
� −i

q2 + iε

�

Πµν(q)
� −i

q2 + iε

�

. (2.16)

Here Πµν(q) is the polarization tensor and /k, /q represents the four momentum.

� � �

Figure 2.3: Feynman diagram for Uehling Potential Correction.

The momentum integral has two electron propagators which contains two k in

the denominator and therefore it diverges quadratically in k. Since the gauge

transformation does not physically shift the energy levels, one can write

qµΠµν = 0. (2.17)
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Using the Pauli-Villars regularization [57], the regularized polarization tensor,Π̄µν

is written as

Π̄µν(q,m
2) = Πµν(q,m

2) +
�

i

Ci(M
2
i )Πµν(q,M

2
i ), (2.18)

The use of the regularized polarization tensor, Π̄µν avoids the divergence. Here

Ci and Mi are the auxiliary functions chosen such that the integral converge. We

follow the treatment of ref.[54] to evaluate the VP potential. To calculate the

functional form of the potential we start with the modified photon propagator

D�
F . The potential in the momentum space assumes the form

A�
µ(r) =

�
d4q

(2π)4
e−iq·rD�

Fµν(q)j
ν(q). (2.19)

After renormalization the polarization function is

Π̄(q2) ≡ − e2

3π
ln

Λ
2

m2
+ Π

R(q2). (2.20)

Here Λ is the cut-off momentum. The first term in the above regularized vac-

uum polarization tensor consists of a constant term and a momentum dependent

part ΠR(q2). Using the renormalized vacuum polarization function, the modified

photon propagator is

D�
Fµν(q) =

−4πgµν
q2

�
1 + Π

R(q2)
�
. (2.21)

and the momentum dependent regularized polarization tensor is of following form

Π
R(q2) =

2α

π

� 1

0

dββ(1− β) ln
�

1 +
q2

m2
β(1− β)

�

. (2.22)

Therefore the modified potential of Eq. (2.19) is

A�
µ(r) =

�
d4q

(2π)4
e−iq·r

�
1 + Π

R(q2)
�
Aµ(q). (2.23)

In the momentum space, the unmodified potential can be written as, Aµ(q) =

DFµνj
ν(q). As mentioned earlier, we consider stationary charge in the present

case, thus jµ(r) = jµ(r). So the modified potential becomes

A�
0(r) =

�
d3q

(2π)3
eiq·r
�
1 + Π

R(−q2)
�
A0(q). (2.24)
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With the renormalized photon polarization function

A�
0(r) =

�
d3q

(2π)3
eiq·r

4π

q2

�

1 +
2α

π

� 1

0

dββ(1− β) ln
�

1 +
q2

m2
β(1− β)

�
�

. (2.25)

The Fourier transform of the first term gives the ordinary Coulomb potential.

Along with the Coulomb potential we have the correction term. We eliminate the

logarithm using the techniques of partial integration and with the substitution

of v = 2β − 1, the photon polarization function is

Π
R(−q2) =

α

π

q2

4m2

� 1

0

dv
v2(1− 1

3
v2)

1 + q2

4m2 (1− v2)
(2.26)

Using the techniques of complex analysis the potential is

A�
0(r) =

−Ze

r

�

1 +
α

π

� 1

0

dv
v2(1− 1

3
v2)

1− v2
e
(− 2m√

1−v2
r)
�

. (2.27)

With a transformation t =
�

(1− v2) the modified potential is

A�
0(r) =

−Ze

r

�

1 +
2α

3π

� ∞

1

dt(1 +
1

2t2
)

√
t2 − 1

t2
e−2mtr

�

. (2.28)

The first term in Eq. (2.28) is the Coulomb potential and the second term is

the correction to the Coulomb potential. It is known as the Uehling potential

and this form of potential is suitable for numerical integration. So far we have

used the natural system of units, where � = c = 1. For atomic calculations we

converted the above system of units to atomic units, i.e, me = � = e = 4πε0 = 1.

So for atomic calculations the Uehling potetial is

VUe(r) = −2αZ

3πr

� ∞

1

dt
√
t2 − 1

� 1

t2
+

1

2t4

�

exp
�

− 2rt

α

�

. (2.29)

The Eq. (2.29) represents the leading order VP correction to the electron nucleus

interaction for a point like nucleus. For heavy atoms nuclei are often modeled as

spherical distribution of charge. So, a finite size Fermi charge distribution model

of the nucleus is more appropriate [58] and it is defined as

ρnuc(r) =
ρ0

1 + e(r−c)/a
, (2.30)

here a = t4 ln(3). The parameter c is the half charge radius so that ρnuc(c) = ρ0/2

and t is the skin thickness. For a consistent treatment of the nucleus-electron
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interaction, VUe(r) must be modified to account for the finite nuclear size. This

can be achieved by folding VUe(r) with the ρnuc(r) [59]. Then the modified form

of the Uehling potential is [60]

VUe(r) = −2α2

3r

� ∞

0

dx xρ(x)

� ∞

1

dt
√
t2 − 1

� 1

t3
+

1

2t5

�

(e−2ct|(r−x)| − e−2ct(r+x)).

(2.31)

We implement Eq. (2.31) in the SCF calculation while generating the electron

orbitals.

2.2 Dirac-Coulomb-Breit Hamiltonian with Uehling

potential

Along with the VUe(r), the total atomic Hamiltonian of a many electron atom is

HDCB =
N�

i=1

�

cαi · pi + (βi − 1)c2 − V �
N(ri)

�

+
N�

i<j

� 1

rij
+ gB(rij)

�

. (2.32)

The first part of the HDCB consists of one-body operators. The V �
N(ri) is the

modified nuclear potential due to VP correction. The modified nuclear potential

has the form

V �
N(ri) = VZ(ri) + VUe(ri). (2.33)

The second term in Eq. (2.32) consists of the two body operators which includes

the Breit interaction. The HDCB is an ideal starting point of relativistic atomic

structure and properties calculations. However, there are complications associ-

ated with HDCB. Brown and Ravenhall [27] have shown that the HDC as well as

HDCB are not bounded from below and these lead to variational collapse and con-

tinuum dissolution. Later, Sucher [1] showed that this catastrophe can be avoided

by using projection operators. Sucher proposed a no-virtual-pair approximation

(NVPA) Hamiltonian. In the NVPA approximation the total Hamiltonian is

HDCB = Λ++

�
N�

i=1

�
cαi · pi + (βi − 1)c2 − V �

N(ri)
�
+
�

i<j

�
1

rij
+ gB(rij)

��

Λ++.

(2.34)
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Where Λ++ is an operator which projects to the positive energy solutions. Pro-

jecting the Hamiltonian with Λ++ ensures that the effects of the negative energy

continuum states are neglected in the calculations. The NVPA Hamiltonian

incorporates the Breit interaction and represents the first order relativistic cor-

rection to the electron-electron interaction. In a other words, the NVPA Hamil-

tonian incorporate the magnetic interactions and the retardation effects to the

Coulomb interaction. From the QED point of view the Breit interaction takes

into account all the effects of order α2 and it is valid in the Coulomb gauge. On

the other hand the VP correction, which is a part of the Lamb shift incorporates

the effects of α3 in QED perturbation theory.

2.3 Dirac-Hartree-Fock theory with QED effects

For many electron atoms and ions the eigen-value equation with the HDCB is

HDCB|Ψi� = Ei|Ψi�. (2.35)

The two body part in HDCB consists of the electron-electron interaction and be-

cause of this term the above eigenvalue equation is not exactly solvable. To solve

the eigen-value equation, the independent particle with central field approxima-

tion is a good starting point. In this model, the total wave-function of many

electron atoms is constructed from the anti-symmetrized single particle wave-

functions. This is the simplest model to describe many electron atoms [18, 61].

In this model we separate the HDCB in to two parts, one is the solvable part or

zeroth order, HDHF and the residual interaction part, Vres.

HDCB =

�
N�

i=1

[cαi · pi + (βi − 1)c2 − VN(ri) + UDHF(ri)]

�

+

�
N�

i<j

[
1

rij
+ gB(rij)]−

N�

i=1

UDHF(ri)

�

,

= HDHF + Vres. (2.36)

Here, UDHF(ri) is the Dirac-Hartree-Fock (DHF) potential,

UDHF(ri) =
occ�

a

�

�a|g(rij)|ia� − �a|g(rij)|ai�
�

. (2.37)



Chapter 2. Many Body Perturbation Theory with QED effects 20

Here, g(rij) = 1
rij

+ gB(rij) is the two body part of HDCB. a represents core

orbital and i represents any orbital (core, valence or virtual). The HDHF is the

solvable part of the Hamiltonian and this is further expressed as the sum of N

single particle operators.

HDHF =
N�

i=1

hDHF(ri). (2.38)

The single particle DHF Hamiltonian is

hDHF(ri) = cαi · pi + (βi − 1)c2 − z

ri
− VUe(ri) + uDHF(ri) (2.39)

In this model the residual interaction part of the Hamiltonian is ignored at the

first step of calculation. Different many body methods like MBPT, CI, CCT

have been developed to account this term as accurately as possible.

2.4 Single particle wave-functions

The eigen-value equation with the single particle Hamiltonian, hDHF(ri) is

hDHF(ri)|ψi� = �i|ψi�. (2.40)

Here |ψi� is the single particle wave-function and �i is the single particle energy.

To begin the calculation in the frame work of Dirac theory, the relativistic orbitals

are described by Dirac bi-spinors and in the central field model it is [62]

ψnκm(r) =
1

r




Pnκ(r)χκm(r̂)

iQnκ(r)χ−κm(r̂)



 (2.41)

where, Pnκ and Qnκ are the large and small components of the radial wave-

function. The χκm(r̂) is the Dirac spinor and it can be expanded in terms of

spherical harmonics,

χκm(r̂) =
�

σ=± 1
2

�lm− σ,
1

2
σ|jm�Y m−σ

l (θ,φ)φσ. (2.42)

Where �lm−σ, 1
2
σ|jm� is the Clebsch-Gordan coefficient, Y m

l (θ,φ) is the spherical

harmonics and φσ is the two-component spinor. An approximate method which
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can avoid the negative energy is the finite basis set and we consider the GTO’s

where radial part of the wave-function is defined as the linear combination terms

of Gaussian type functions [37, 63].

Pnκ(r) =
�

p

CL
κpg

L
κp(r),

Qnκ(r) =
�

p

CS
κpg

S
κp(r). (2.43)

Where CL
κp and CS

κp are the coefficients of the expansion, the index p runs over the

number of basis functions considered for each symmetry. The large component

of the Gaussian type functions is

gLκp(r) = NL
κpr

nκe−αpr2 , (2.44)

where

nκ = κ+ 1 for κ > 0;

= −κ for κ < 0. (2.45)

The Gaussian type functions of the small components are defined through the

kinetic balance condition [28].

gSκp(r) = NS
κp

� d

dr
+

κ

r

�

gLκp(r), (2.46)

Where NL
κp and NS

κp are the normalization factor for large and small component

of the radial wave-function. The exponents αp depends on two parameters α0

and β.

αp = α0β
p−1, p = 1, · · · , N, (2.47)

where the parameters α0 and β depend on the nuclear charge Z and number of

electrons N . We will discuss in detail how to choose these two parameters for

different atoms.

The finite basis approach to solve DHF equations numerically is well estab-

lished technique [37] and widely used for heavy atoms. Though we initially

discussed about the projection operator to circumvent the problem of negative

energy continuum, in reality it is only a theoretical and formal construction
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motivated from field theory. The use of kinetic balance condition [28, 29] be-

tween the large and the small components of the radial wave-function with the

proper boundary condition in the basis set is the essential ingredient of finite

basis calculation. In this thesis we use the GTO finite basis set method for all

computations.

2.5 Matrix element of the Breit interaction

To solve the DHF equation self-consistently we need to construct the matrix

element of the Breit interaction. There are two different approaches reported

in previous works to calculate the matrix element of Breit interaction, gB(r12).

The first approach [64] couples the angular parts of the orbitals with Dirac ma-

trices to give a linear combination of vector spherical harmonics. This is then

combined with the angular part of the orbitals. In the second approach [65, 66],

gB(r12) is expanded as a linear combination of irreducible tensor operators. In

the present work we use the latter and employ the expressions given in Ref. [63]

to incorporate gB(r12) in the GTO calculations.

Coulomb and Breit interactions are scalar operators. These operators can be

written as the product of two tensor operators [18]

g(r1, r2) =
�

k

gk(r1, r2)T
k(r̂1) ·T

k(r̂2), (2.48)

Where gk(r1, r2) depends only on the radial coordinates and the tensor operator

Tk(r̂) acts on the angular part. To calculate the matrix element of g(r1, r2) we

use the Wigner-Eckart theorem

�ab|g(r1, r2)|cd� =
�

k,q




ja k jc

ma q mc








jb k jd

mb q md



Xk(abcd), (2.49)

where Xk(abcd) is the effective interaction strength. For the frequency indepen-



Chapter 2. Many Body Perturbation Theory with QED effects 23

dent Breit interaction the effective interaction strength is defined as

Xk
Br(abcd) = (−1)k�ja||Ck||jc��jb||Ck||jd�

�

ja jc k
��

jb jd k
�

×

�
ν+1�

k=ν−1

πo(κa,κc, k)π
o(κb,κd, k)

4�

µ=1

rkνµ (abcd)Rk
µ(abcd)

+πo(κa,κc, k − 1)πo(κb,κd, k − 1)
8�

µ=1

skµ(abcd)S
k
µ(abcd)

�

.(2.50)

The interaction strength for gB(r12) is expressed in terms of the parity and

angular momentum selection rule and the reduced matrix elements of the C

tensor operators along with the radial integrals. The parity selection rule πo

shows that it is odd parity. The reduced matrix element is

�ja||Ck||jc� = (−1)ja+1/2[ja, jc]
1/2




ja k jc

1/2 0 −1/2



 . (2.51)

The radial integrals Rk
µ(abcd) and Sk

µ(abcd) are

Rk(abcd) =

� ∞

0

dr2

� ∞

0

dr1ρac(r1)Uk(r1, r2)ρbd(r2) (2.52)

Sk(abcd) =

� ∞

0

dr2

� ∞

0

dr1ρac(r1)Wk(r1, r2)ρbd(r2). (2.53)

In the above equation ρab(r) = Pa(r)Qb(r),

Wk(r1, r2) = −1

2
[k]
�

Ūk−1(r1, r2)− Ūk+1(r1, r2). (2.54)

The Ūk is defined as

Ūk(r1, r2) =







rk1/r
k+1
2 if r1 < r2;

0 if r1 > r2.

(2.55)

So we can write

Uk(r1, r2) = Ūk(r1, r2) + Ūk(r2, r1). (2.56)

The coefficients rkνµ and skµ are given in ref. [18, 66]. These coefficients are further

combined to calculate the matrix element of Breit interaction in the DHF theory.

We give the details of the Breit integrals in appendix A.
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The model space of a closed shell atom consist of a single Slater determinant.

For a closed shell atom the SCF energy is

EDHF =
occ�

a=1

�

�a|hDHF|a�+
1

2

�

b

[�ab|g|ab� − �ba|g|ab�], (2.57)

Where the first term is the matrix element of the one-body part of the DHF

Hamiltonian. The second term is the matrix element of the two-body operators.

In the present work we will concentrate on the matrix element of the Breit

operator which is a two body operator.

2.6 Atomic MBPT

Various many body methods have been developed to incorporate the residual

part of HDCB. The many body perturbation theory (MBPT) systematically

incorporates the Vres to higher orders. In the DHF theory we solve the the

HDHF self-consistently to obtain the single particle state |φi�. With the HDCB

we consider the eigenvalue equation

HDCB
Ψ

a = Ea
Ψa, (2.58)

where a = 1, 2, · · · , d, forms a subspace of the total Hilbert space constructed

from the HDCB. Let us assume that for each of the d solutions there exist a

corresponding zeroth order or model function Ψ
a
0. This model space is spanned

by the solutions of HDHF. In this process, we split up the total Hilbert space into

two parts, the model space and the orthogonal space and we define the projection

operators for the model space and the complementary space as

P =
�

α

|φα��φα|, Q =
�

β �=α

|φβ��φβ|, (2.59)

where P +Q = 1. The zeroth-order wave functions are the projections of the

exact eigenfunctions on the model space, that is

Ψ
a
0 = PΨ

a. (2.60)

We define a wave operator, Ω which plays the key role in MBPT. It transforms

the model space wave functions, Ψa
0 into the corresponding exact eigenfunctions,

Ψ
a = ΩΨ

a
0. (2.61)
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The wave operator can be determined from the Brillouin-Wigner perturbation

theory (BWPT) or Rayleigh-Schrödinger perturbation theory (RSPT). Ref. [61,

67] give a detailed overview of these perturbation techniques. We will follow the

latter approach to calculate the wave operator. To find an equation for the wave

operator we operate P from the left on Eq. (2.58),

PHΨ
a = Ea

Ψ
a
0,

PHΩΨ
a
0 = Ea

Ψ
a
0. (2.62)

This can be rewritten as

HeffΨ
a
0 = Ea

Ψ
a
0, (2.63)

where, Heff = PHΩP is the effective atomic Hamiltonian. The above equation

implies that when Heff operate on zeroth order wave function, it produces the

exact energy eigenstates. Now if we operate Ω on Eq. (2.63) from left then we

obtain

ΩPHΩΨ
a
0 = Ea

Ψ
a
0 = Ea

Ψ
a = HΩΨ

a
0. (2.64)

From the expression of Heff , we get

ΩHeff = HΩ. (2.65)

This is an important expression in terms of operators which does not depend on

energy explicitly. Since the zeroth order Hamiltonian, H0, commutes with the

P operator. Here by zeroth order Hamiltonian we mean the solvable part of the

atomic Hamiltonian and in our case it is HDHF. Then we can rewrite

[Ω, H0]P = (V Ω− ΩPV Ω)P. (2.66)

This is the generalized Bloch equation and was first formulated by Lindgren [68].

In perturbation theory we expand the wave operator as

Ω = Ω
(0) + Ω

(1) + Ω
(2) + · · · (2.67)

With this, the generalized Bloch equation can be written as

[Ω(n), H0]P = (V Ω− ΩVeff)
(n)P. (2.68)
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Where Veff = PV Ω. The above equation generates the Rayleigh-Schrödinger

perturbation expansion. This expansion contains unlinked diagrams. Based

on the linked cluster expansion, the unlinked diagrams are eliminated in the

Bruekner-Goldstone diagrammatic expansion [61, 69]. Therefore the generalized

Bloch equation takes the form

[Ω(n), H0]P = (V Ω− ΩVeff)
(n)
linkedP. (2.69)

This is an order by order expansion and the diagrammatic approach is simpler

to handle the perturbation theory. More conveniently Eq. (2.69) can be written

as

[Ω, H0]P = (V Ω− ΩVeff)linkedP. (2.70)

The last term in Eq. (2.70) corresponds to the folded diagram that arise only in

open-shell atoms. For closed-shell atom the generalized Bloch equation is

[Ω(n), H0]P =
�
V Ω

(n−1)
�

linked
P. (2.71)

In the perturbative expansion of Ω, we write it as one-, two- , three,· · · body

terms by using the second quantization method. For this we explicitly write the

first order Eq. (2.71) as

[Ω(1), H0] = [V ]linked = V1 + V2. (2.72)

Here [V ]linked = V1 + V2 consists of only one and two body terms, as the atomic

Hamiltonian consists of only one and two body terms. In the second quantized

form, the operators are expressed as

V1 =
�

ij

a†iaj�i|v1|j�,

V2 =
�

ijkl

a†ia
†
jalak�ij|v2|kl�. (2.73)

Where a†i (a) are the particle-hole creation (annihilation) operators. In the DHF

theory v1 = uDHF which is defined in Eq. (2.39). The first order wave operator,

can be separated in two parts, one consists of the one body part and the other

is the two body part, that is

Ω
(1) = Ω

(1)
1 + Ω

(2)
2 . (2.74)
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Using the time independent Wick’s theorem we evaluate the commutator in Eq.

(2.72) and the wave operators are

Ω
(1)
1 =

�

ap

a†paa
�p|v|a�
�a − �p

,

Ω
(2)
2 =

�

abpq

a†pa
†
qabaa

�pq|v|ab�
�a + �b − �p − �q

. (2.75)

The indices, a, b, · · · (p, q, · · · ) represent the core (virtual) orbitals. Since we

are using the DHF orbital as our reference state, v represents the two electron

interaction part and this gives the most dominant contribution to the correlation

energy of atoms.

2.7 Correlation energy of closed-shell atoms

In this section, we calculate the correlation energy of closed-shell atom using

MBPT. With HDCB the eigen-value equation is

HDCB|Ψi� = Ei|Ψi�. (2.76)

Here |Ψi� are the exact eigenstates of the HDCB. In terms of Ω in MBPT

HDCB
Ω|Φi� = EiΩ|Φi�. (2.77)

Here the eigenstates, |Φi�’s are the reference states and as discussed in the earlier

section it is equivalent to |Ψa
0�, which belong to the model space. For a closed

shell atom it consist of a single Slater determinant and |Ψa
0� ≡ |Φi�. In the model

space Eq. (2.77) is written as

Heff |Φi� = Ei|Φi�. (2.78)

Recall Heff = PH0P + PV ΩP, is the effective Hamiltonian. The construction of

the Heff is very important and depends on the Ω. Heff acts on the reference state

of the system and gives the exact energy eigenvalue of the many electron atom.

So, we can write

Ei = �Φi|Heff |Φi�.

= �Φi|PH0P + PV ΩP |Φi�. (2.79)
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The first term in Eq. (2.79) refers to the self-consistent field (SCF) energy of the

atom. The second term gives the correction due to Vres and it is known as the

correlation energy of the atom. In terms of wave operator the n-th order energy

correction is

E
(n)
i = �Φi|{VresΩ

(n−1)}|Φi�. (2.80)

Accordingly, the second order correlation energy correction

E(2)
corr = �Φi|VresΩ

(1)|Φi�. (2.81)

Separating the perturbation and the wave-operator in one and two body terms,

the correlation energy becomes

E(2)
corr = �Φi|V2Ω

(1)
2 |Φi�. (2.82)

Here the one body term does not contribute to the second order correlation

energy. The contraction between the two body interaction, V2 and Ω
(1)
2 gives two

closed diagrams which are shown in Fig. 2.4. Here the dotted line represents V2.

(a) (b)

Figure 2.4: MBPT diagrams corresponding to the E
(2)
corr.

To evaluate the diagrams we use the Coulomb as well as Breit interaction in our

calculations for E
(2)
corr of closed shell atoms.

2.8 Results and discussions

In this section we discuss the results of the Breit interaction correction to the

orbital energies of the noble gas atoms. Then we discuss the VP correction to

the orbital energies of the doubly ionized alkaline Earth-metal ions.
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2.8.1 Basis set

The first step of any atomic theory calculations is to generate an orbital ba-

sis set. For the present work, we use the Dirac-Hartree-Fock Hamiltonian and

even-tempered Gaussian type orbitals (GTOs) [29]. As we mention earlier, the

radial part of the spin-orbitals are linear combinations of the Gaussian type

functions. The small components of the spin-orbitals are linear combination of

gSκp(r), which are generated from gLκp(r) through the kinetic balance condition

[28]. We calculate the GTOs on a grid [37] and optimize the values of α0 and β

for individual atoms to match the spin-orbital energies and self consistent field

(SCF) energy obtained from GRASP92 code [52], which numerically solves the

Dirac-Hartree-Fock integro-differential equations.

Noble gas atoms

Among the noble gas atoms Ne is the ideal candidate to start the DHF calcula-

tions. Since it is a low-Z atom, it is appropriate to consider the HDC to generate

the orbital basis set. The values of α0 and β for Ne are unique for each symme-

try of spin-orbitals. The symmetry-wise values of the optimized parameters are

listed in Table. 2.1. Here we have listed the parameters for the virtual orbital

Symmetry s1/2 p1/2 p3/2 d3/2 d5/2 f5/2

α0 0.0925 0.1951 0.1917 0.0070 0.0070 0.0069

β 1.45 2.71 2.71 2.70 2.70 2.69

Symmetry f7/2 g7/2 g9/2

α0 0.0069 0.0069 0.0069

β 2.69 2.69 2.69

Table 2.1: The α0 and β parameters of the even tempered GTO basis used in

the present calculations.

along with the core orbitals for Ne. Although, in principle, a complete set of

orbitals are required, it is nearly impossible to go beyond a few hundred GTO’s.

Even at a few hundred, the computational requirements are very high. Another
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practical consideration is, with further increase of the basis set size the gain in

accuracy is marginal or non-existent after the basis set converges. The basis pa-

rameters are optimized such that the core orbital energies are in good agreement

with the results of GRASP92 code. For information, the orbital energies are

listed in Table. 2.2. With GTO, we are able to reproduce the numerical results

of the orbital energies very well. The largest difference is observed in 1s1/2, for

which the GTO orbital energy is lower by 0.0032 a.u.

Orbital 1s1/2 2s1/2 2p1/2 2p3/2

GTO −32.8177 −1.9357 −0.8526 −0.8480

GRASP92 −32.8145 −1.9387 −0.8528 −0.8482

Table 2.2: Orbital energies of Ne obtained from GRASP92 and GTO (in a.u).

For Ar, Kr, Xe and Rn the symmetry-wise values of the optimized α0 and β

are listed in Table. 2.3. In the table we have listed the core orbital parameters for

Atom s p d

α0 β α0 β α0 β

Ar 0.00055 1.620 0.00515 2.405 0.00570 2.850

Kr 0.00015 2.015 0.00945 2.975 0.00635 2.845

Xe 0.00012 2.215 0.00495 2.995 0.00745 2.460

Rn 0.00010 2.280 0.00671 2.980 0.00715 2.720

Table 2.3: The α0 and β parameters of the even tempered GTO basis used in

the present calculations.

the noble gas atoms. The comparison of the SCF energies are given in Table. 2.4.

Except for Rn, there is excellent agreement between the SCF energies obtained

from GTO and GRASP92.
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Atom GTO GRASP92

Ar −528.6837 −528.6837

Kr −2789.8605 −2788.8605

Xe −7446.8976 −7446.8976

Rn −23602.0202 −23602.0232

Table 2.4: Comparison between GTO and GRASP92 (in a.u).

Alkali metal ions

For the alkali metal ions we use the VN−1 nuclear potential. So for a singly

charged ion of N electrons the atomic Hamiltonian is

HDCB = Λ++

N�

i=1

�
cαi · pi + (βi − 1)c2 − VN+1(ri)

�
+
�

i<j

�
1

rij
+ gB(rij)

�

Λ++.

(2.83)

VN+1(ri) is the electrostatic potential arising from the Z = (N +1) nucleus. For

the alkali ions the optimized value of α0 and β are listed in Table. 2.5.

Atom s p d

α0 β α0 β α0 β

Na+ 0.0025 2.210 0.00955 2.125 0.00700 2.750

K+ 0.0055 2.250 0.00995 2.155 0.00690 2.550

Rb+ 0.0052 2.300 0.00855 2.205 0.00750 2.145

Cs+ 0.0097 2.050 0.00975 2.005 0.00995 1.705

Fr+ 0.0068 2.110 0.00645 2.050 0.00985 1.915

Table 2.5: The α0 and β parameters of the even tempered GTO basis used in

for alkali metal ions.

For comparison, the spin-orbital energies of Cs+ obtained from the GTO and

GRASP92 are listed in Table 2.6. In the table, the deviation of the GTO results

from the GRASP92 is ∼ 10−3, which is quite small. We obtain similar level of

deviations for the other alkali metal ions as well.
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Orbital DC GRASP92 [52] Orbital DC GRASP92 [52]

1s1/2 −1330.1173 −1330.1129 4s1/2 −9.5128 −9.5106

2s1/2 −212.5643 −212.5673 4p1/2 −7.4463 −7.4437

2p1/2 −199.4294 −199.4288 4p3/2 −6.9209 −6.9188

2p3/2 −186.4366 −186.4358 4d3/2 −3.4856 −3.4921

3s1/2 −45.9697 −45.9695 4d5/2 −3.3969 −3.4038

3p1/2 −40.4483 −40.4455 5s1/2 −1.4898 −1.4933

3p3/2 −37.8943 −37.8917 5p1/2 −0.9079 −0.9139

3d3/2 −28.3096 −28.3030 5p3/2 −0.8403 −0.8459

Table 2.6: Core orbital energies of Cs+ in atomic units.

Alkaline Earth-metal ions

For doubly ionized alkaline earth-metal atoms, we use the VN−2 nuclear potential.

Here the atomic Hamiltonian is

HDCB = Λ++

N�

i=1

[cαi · pi + (βi − 1)c2 − VN+2(ri)] +
N�

i<j

[
1

rij
+ gB(rij)]Λ++.

(2.84)

Where VN+2(ri) is the nuclear potential arising from the Z = (N + 2) nucleus.

The symmetry wise values of the optimized α0 and β for doubly ionized alkaline

earth-metal atoms are listed in Table. 2.7 The comparison of the SCF energies

for the doubly ionized alkaline atoms are given in Table. 2.8.

2.8.2 Breit interaction correction

To assess the relative importance of Breit interaction, we calculate the first order

energy correction

�HB�DF = �Φ0|
�

i<j

gB(rij)|Φ0�, (2.85)

where, |Φo� is the ground state reference function generated from the Dirac-

Hartree-Fock spin-orbitals and HB =
�

i<j g
B(rij) represents the many-electron

form of the Breit interaction. The �HB�DF of the rare gas atoms Ar, Kr, Xe and
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Atom s p d

α0 β α0 β α0 β

Mg2+ 0.00825 2.310 0.00715 2.365 0.00700 2.700

Ca2+ 0.00895 2.110 0.00815 2.150 0.00750 2.500

Sr2+ 0.00975 2.100 0.00915 2.010 0.00900 2.030

Ba2+ 0.00985 2.150 0.00975 2.070 0.00995 2.010

Ra2+ 0.00995 2.110 0.00925 2.090 0.00850 2.010

Table 2.7: The α0 and β parameters of the even tempered GTO basis for different

ions used in the present calculations.

Atom GTO GRASP92

Mg2+ −199.1500 −199.1501

Ca2+ −679.1038 −679.1038

Sr2+ −3177.5211 −3177.5218

Ba2+ −8135.1404 −8135.1421

Ra2+ −26027.5632 −26027.5634

Table 2.8: Comparison between the ground state SCF energies obtained from

the computations with GTO and GRASP92. The energies are in atomic units.

Rn are listed in Table. 2.9. For each atom we calculated the SCF energy with

Atom EDC
SCF EDCB

SCF �HB�DF Ref. [70]

Ar −528.6837 −528.5511 0.1326 0.1324

Kr −2788.8605 −2787.4310 1.4295 1.4268

Xe −7446.8976 −7441.1248 5.7728 5.7753

Rn −23602.0202 −23572.8480 29.1722 29.3968

Table 2.9: SCF Energies for noble gas atoms

HDC and HDCB. Here

EDC
SCF = �Φ0|H

DC|Φ0� (2.86)
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and

EDCB
SCF = �Φ0|H

DCB|Φ0�. (2.87)

Here, HDC = HDCB −HB, is the atomic Hamiltonian without the Breit interac-

tion. From the table, it is evident that our results are in very good agreement

with the previous results [70]. The largest deviation from the previous results

is observed in Rn, our result of �HB�DF is 0.8% lower than the previous result.

However, as the Breit interaction contribution to EDCB
SCF is a mere 0.12% in Rn,

in absolute terms, the deviation is ≈ 0.001%. Our results are also in good agree-

ment with the results of another previous study [71].

2.8.3 Vacuum polarization correction

We calculated the vacuum polarization (VP) correction to the orbital energies

of doubly ionized alkaline Earth-metal ions. To study the VP corrections arising

from VUe, we compute the orbital energy corrections in the self consistent field

(SCF) calculations. We also compute the first order correction using the many-

body perturbation theory. In the former case, SCF calculations, the VP potential

is considered along with the DHF potential, UDHF. The single particle eigen-value

equation is then

[h0 + VUe(r) + UDHF(r)] |ψ
�
i� = ��i|ψ

�
i�,

where, h0 = cα · p + (β − 1)c2 − VN−2(r) is the single particle part of HDCB,

UDHF(r) is the Dirac-Hartree-Fock potential, |ψ�
i� is a four component orbital

and ��i is the corresponding eigenvalue. Similarly, we use unprimed states, |ψi�,
to represent orbitals which are eigenfunctions of the DHF Hamiltonian, that is

[h0 + UDHF(r)] |ψi� = �i|ψi�,

where �i is the DHF energy of the orbital. To quantify the VP effect we define

Δ�i = ��i − �i, (2.88)

as the change in the orbital energy due to VUe(r). Following the time-independent

many-body perturbation theory, the first order energy correction associated with
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VUe(r) is

�VUe�i = �ψi|VUe(r)|ψi�.

Since the VP potential is attractive and short range in nature, it has larger

effect on the orbitals which have finite probability density within the nucleus.

So, at the first order �VUe� is negative for orbitals, but only the s1/2 orbitals have

negative Δ� for all the ions. A similar pattern is reported in ref. [72] for the

orbitals energies of Cs+. For the Ra2+ ion, in addition to s1/2 the p1/2 orbitals

also have negative Δ�. More details of the Δ�i and �VUe�i for the core orbitals of
the Ca2+, Sr2+, Ba2+ and Ra2+, and are discussed in the following paras.

Ca2+

We calculate the VP correction to the orbital energy with a series of SCF calcu-

lations and results are listed in Table. 2.10. As to be expected, the first order

correction �VUe� is negative for all the core orbitals. But the values of Δ� are

negative only for the s1/2 orbitals. Another important observation is, for s1/2

orbitals �VUe�i and Δ�i are similar in value. But, for the other orbitals, besides

the change in sign, the values of �VUe�i and Δ�i are different by several orders of

magnitude.

Orbital Δ� �VUe�
1s1/2 −4.204[−3] −4.435[−3]

2s1/2 −3.531[−4] −3.790[−4]

2p1/2 4.884[−5] −1.511[−6]

2p3/2 4.938[−5] −2.732[−7]

3s1/2 −4.391[−5] −4.500[−5]

3p1/2 6.817[−6] −1.619[−7]

3p3/2 6.880[−6] −2.931[−8]

Table 2.10: VP Corrections to the orbital energies of Ca2+. Here [x] represents

multiplication by 10x.
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Sr2+

The VP corrections to the orbital energies arising from VUe(r) are listed in Table.

2.11. From the table it is evident that Δ�1s1/2 is an order of magnitude larger

than in Ca2+. In addition, we also observe a four orders of magnitude difference

between the �VUe�i and Δ�i of the 3d orbitals. This is not surprising as the short

range VUe(r) have little effect on the electrons in the higher angular momentum

orbitals like d.

Orbital Δ� �VUe�
1s1/2 −5.721[−2] −5.904[−2]

2s1/2 −5.968[−3] −6.231[−3]

2p1/2 3.604[−4] −1.144[−4]

2p3/2 4.354[−4] −1.636[−5]

3s1/2 −1.003[−3] −1.045[−3]

3p1/2 8.281[−5] −1.995[−5]

3p3/2 9.664[−5] −2.865[−6]

3d3/2 8.145[−5] −4.341[−9]

3d5/2 8.048[−5] −1.123[−9]

4s1/2 −1.301[−4] −1.320[−4]

4p1/2 1.592[−5] −2.086[−6]

4p3/2 1.747[−5] −2.984[−7]

Table 2.11: VP Corrections to the orbital energies of Sr2+. Here [x] represents

multiplication by 10x.

Ba2+

In Ba2+, the orbital energy corrections arising from the VP are listed in Table

2.12 and here we find an important change in the pattern of Δ�. The Δ� of p1/2

and p3/2 continue to be positive, but Δ�2p1/2 is ≈ 72% smaller than Δ�2p3/2 . For

the remaining np1/2 and np3/2, although the difference is not so dramatic, the

differences are still large.
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Orbital ∆� �VUe� Orbital ∆� �VUe�
1s1/2 −2.952[−1] −3.025[−1] 4s1/2 −1.531[−3] −1.599[−3]

2s1/2 −3.493[−2] −3.623[−2] 4p1/2 8.513[−5] −7.689[−5]

2p1/2 5.074[−4] −1.669[−3] 4p3/2 1.476[−4] −8.242[−6]

2p3/2 1.786[−3] −1.748[−4] 4d3/2 1.272[−4] −4.004[−8]

3s1/2 −7.084[−3] −7.391[−3] 4d5/2 1.245[−4] −9.185[−8]

3p1/2 1.984[−4] −3.725[−4] 5s1/2 −2.449[−4] −2.473[−4]

3p3/2 4.926[−4] −3.981[−5] 5p1/2 2.295[−5] −1.071[−5]

3d3/2 4.856[−4] −2.047[−7] 5p3/2 3.230[−5] −1.066[−6]

3d5/2 4.737[−4] −4.712[−8]

Table 2.12: VP Corrections to the orbital energies of Ba2+. Here [x] represents

multiplication by 10x.

Ra2+

Orbital ∆� �VUe� Orbital ∆� �VUe�
1s1/2 −2.560 −2.614 4d3/2 1.350[−3] −3.943[−6]

2s1/2 −3.881[−1] −3.999[−1] 4d5/2 1.282[−3] −7.062[−7]

2p1/2 −3.802[−2] −5.753[−2] 4f5/2 1.015[−3] −1.647[−9]

2p3/2 1.211[−2] −2.707[−3] 4f7/2 9.928[−4] −4.229[−10]

3s1/2 −8.999[−2] −9.315[−2] 5s1/2 −5.378[−3] −5.633[−3]

3p1/2 −9.620[−3] −1.504[−2] 5p3/2 4.845[−4] −4.200[−5]

3p3/2 3.728[−3] −7.545[−4] 5d3/2 4.074[−4] −6.735[−7]

3d3/2 4.213[−3] −1.330[−5] 5d5/2 3.859[−4] −1.187[−7]

3d5/2 3.953[−3] −2.385[−6] 6s1/2 −9.883[−4] −9.951[−4]

4s1/2 −2.362[−2] −2.451[−2] 6p1/2 −1.613[−5] −1.290[−4]

4p1/2 −2.238[−3] −3.938[−3] 6p3/2 1.211[−4] −5.949[−6]

4p3/2 1.315[−3] −1.999[−4]

Table 2.13: VP Corrections to the orbital energies of Ra2+. Here [x] represents

multiplication by 10x.

Coming to the orbital energy correction arising from VP, listed in Table. 2.13,

there is a key difference from the other ions. The values of Δ�np1/2 , in addition
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to Δ�ns1/2 are negative.

2.8.4 Correlation energy with Breit interaction

To investigate in detail we calculate the Breit interaction correction to the cor-

relation energy of some closed shell atoms using MBPT. Here we include up

to i-symmetry to calculate the correlation energy. The calculation of E
(2)
corr from

MBPT is discussed in great detail by Mani et al. [40, 73]. In the present work we

incorporated the Breit interaction to the residual part of the atomic Hamiltonian.

Our results are in good agreement with Ishikawa et al. [74].

Atom E
(2)
corr ΔE

(2)
Br Other Work[74]

Ne −0.3843 −0.0013 −0.3853

Ar −0.7004 −0.0051 −0.7060

Kr −1.8696 −0.0270 −1.8879

Xe −3.0504 −0.0737 −3.0674

Table 2.14: Second-order correlation energies of closed shell atoms.

Here we list the total E
(2)
corr as defined in Eq. (2.82) including the Breit part

in the first column. Our results for Ne is very close to the previous result after

taking into account the Breit interaction. For Ne the contribution from the

Breit interaction is ≈ 0.3%. For Ar, Kr and Xe we found a similar pattern.

As the atomic number Z increases the contribution from the Breit interaction

to the correlation energy increases. For Ar, Kr and Xe the Breit interaction

contribution is ≈ 0.7%, 1.5%, 2.5% to the E
(2)
corr. For Ne, Ar, Kr and Xe, our

result are on the lower side than ref. [74]. Here we must emphasize that the

previous result is also with HDCB Hamiltonian.



Chapter 3

QED effects in closed-shell atoms

using coupled-cluster theory

The coupled-cluster theory is proved to be one of the most powerful and reliable

many body theories. In the previous chapter we discussed about the MBPT,

which is the starting point of coupled-cluster theory. The relativistic coupled

cluster theory is the relativistic version of the well known coupled-cluster theory.

In the present work, the HDCB is used as the starting point of our calculations.

We introduce the triple excitation in the RCC theory as it is important to go be-

yond coupled-cluster single and double (CCSD) approximation. This is because

the CCSD approximation misses several important many body diagrams starting

from second order of MBPT. The triple excitations at the linearized RCC theory

will pave the way for high precision results for atomic structure calculations.

Because of computational cost and other complications associated with angular

integration, selection rules, cluster storage scheme etc. most of the physicist use

approximate triple excitations in RCC theory in the past. But with the advent

of powerful computational facilities, we can incorporate the triple excitations in

the RCC theory. This chapter deals with the formulation of RCCSDT theory.

Along with this we develop perturbed relativistic coupled-cluster (PRCC) the-

ory. PRCC theory can be used to incorporate multiple perturbations in many

electron atoms. The formulation of the PRCC operator is general and we use

CCSD approximation in this context. It means that the PRCC operators can

39
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take into account external perturbations like static electric field or internal per-

turbations like hyperfine interaction etc. It is important to mention that it can

also be used to study nuclear spin-dependent parity non-conservation effects in

atoms.

The chapter is organized as follows: we discuss about the closed-shell RCC

theory in section 3.1. Here we introduce the triple excitation cluster operator

in the RCC theory. We also discuss about the linearized RCCSDT amplitude

equations in this part. We end the section with a discussion on the angular

momentum diagram representation and evaluation of triple excitation operator.

In section 3.2 we introduce the PRCC theory. We then, discuss about the tensor

structure of PRCC operators. We discuss in detail about the PRCC amplitude

equations. In addition we discuss about all the single and double excitation

diagrams in PRCC theory in detail. We end the chapter with a discussion on

the intermediate diagrams. Here we focus on how to reduce the computational

cost using the intermediate diagrams.

3.1 Relativistic coupled-cluster theory of closed-

shell atoms

For a closed-shell atom the eigen-value equation with the Dirac-Coulomb-Breit

Hamiltonian is

HDCB|Ψ0� = E0|Ψ0�, (3.1)

Where |Ψ0� is the exact eigen function and E0 is the corresponding exact eigen-

value. In coupled-cluster theory (CCT) we write the exact ground state of many

electron atom as

|Ψ0� = eT
(0)

|Φ0�, (3.2)

Where T (0) is the cluster operator and |Φ0� is the reference state wave-function.

For N -electron atom the cluster operator consists of N - number of excitation
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operators and it is written as

T (0) =
N�

i=1

T
(0)
i . (3.3)

Here the superscript (0) is introduced to distinguish between the residual Coulomb

interaction, Vres and an additional perturbation in atoms. The CCSD approxi-

mation provides a good starting point for atomic many body calculations, And

it is described in great detail by Mani et al. [40, 73]. As mentioned earlier, we

shall concentrate on the salient features of triple excitations in the present work.

In the CCSDT approximation the cluster operator for a closed-shell atom is

T (0) = T
(0)
1 + T

(0)
2 + T

(0)
3 . (3.4)

In the second quantized form the excitation operators are written as

T
(0)
1 =

p
�

a

tpaa
†
paa,

T
(0)
2 =

1

4

pq
�

ab

tpqaba
†
pa

†
qabaa,

T
(0)
3 =

1

12

pqr
�

abc

tpqrabca
†
pa

†
qa

†
racabaa. (3.5)

The indices a, b, c, · · · (p, q, r, · · · ) represent core (virtual) orbitals. In the CCSDT

approximation, we fully incorporate the effects of single, double and triple exci-

tations to all order.

a p

(a)

a p b q

(b)

a p b q c r

(c)

Figure 3.1: Diagrammatic representation of T
(0)
1 , T

(0)
2 and T

(0)
3 operators.

With the coupled-cluster wave-function, the eigenvalue Eq. (3.2) assumes the

form

HDCBeT
(0)

|Φ0� = E0e
T (0)

|Φ0�. (3.6)
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Using the normal ordered form of the Hamiltonian, HN = HDCB−�Φ0|H
DCB|Φ0�,

one can write

HN|e
T (0)

|Φ0� = ΔEeT
(0)

|Φ0�, (3.7)

Where ΔE is the correlation energy of the closed-shell atom. Operating e−T (0)

from the left side on the above equation and projecting on the single excited,

|Φp
a�, double excited, |Φpq

ab� and triple excited, |Φpqr
abc�, we obtain the coupled-

cluster amplitude equations in the RCCSDT theory.

�Φp
a|H̄N|Φ0� = 0, (3.8a)

�Φpq
ab|H̄N|Φ0� = 0, (3.8b)

�Φpqr
abc |H̄N|Φ0� = 0. (3.8c)

Here H̄N = e−T (0)
HNe

T (0)
is the similarity transformed Hamiltonian. Using the

time independent Wick’s theorem for the product of operators and the fact that

the HN contains at most two body operators, we can write

H̄N = HN +
�

HNT
(0)
�

+
1

2!

�

HNT
(0)T (0)

�

+
1

3!

�

HNT
(0)T (0)T (0)

�

+

1

4!

�

HNT
(0)T (0)T (0)T (0)

�

. (3.9)

Thus, H̄N can at the most be quartic in T (0). However, the most dominant term

is
�

HNT
(0)
�

and it subsumes all the important many body effects.

3.1.1 Linearized RCC theory with triple excitations

As a starting point we choose the linearized RCC theory with triple excitations.

In this linearized RCCSDT theory the coupled-cluster amplitude equations are

�Φp
a|
�

HNT1
(0)
�

+
�

HNT2
(0)
�

+
�

HNT3
(0)
�

|Φ0� = −�Φp
a|HN|Φ0�, (3.10a)

�Φpq
ab|
�

HNT1
(0)
�

+
�

HNT2
(0)
�

+
�

HNT3
(0)
�

|Φ0� = −�Φpq
ab|HN|Φ0�, (3.10b)

�Φpqr
abc |
�

HNT1
(0)
�

+
�

HNT2
(0)
�

+
�

HNT3
(0)
�

|Φ0� = 0. (3.10c)

The above set of equation forms the single, double and triple excitation ampli-

tude equations. Here we notice, �Φpqr
abc |HN|Φ0� is zero as HN consists of one and
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two body operators. The details of linearized RCCSD diagrams are discussed

in ref. [73]. Here we will focus mainly on the T
(0)
3 part of the RCC theory.

After incorporating the T
(0)
3 in the RCCSDT theory, the main challenge is the

evaluation of the diagrams arising from contracting HN with the T
(0)
3 operator.

Here, we must emphasize that along with the single and double diagrams from

the RCCSD approximation we also have single and double excitation diagram

from the T
(0)
3 operator. To be more precise, we obtain two single excitation di-

agrams from the contraction between the HN and T
(0)
3 and they contribute to

Eq. (3.10a). The corresponding diagrams are shown in Fig. 3.2. There are total

(a) (b)

Figure 3.2: Diagrams of T
(0)
1 arising from

�

HNT3
(0)
�

.

four T
(0)
2 diagrams which arise from the contraction of HN with T

(0)
3 and they

contribute to Eq. (3.10b). The T
(0)
2 diagrams are shown in Fig. 3.3. The T

(0)
3

(a) (b) (c) (d)

Figure 3.3: Diagrams of T
(0)
2 arising from

�

HNT3
(0)
�

.

diagrams which contribute to Eq. (3.10c) are shown in Fig. 3.4. Among the

eight diagrams in Fig. 3.4, diagram (a) and (b) arise from
�

HNT2
(0)
�

and the

remaining six diagrams arise
�

HNT3
(0)
�

. In order to solve the set of RCCSDT

Eq. (3.10a), (3.10b) and (3.10c), we write these in the matrix form







H11 H12 H13

H21 H22 H23

H31 H32 H33















tpa

tpqab

tpqrabc








= −








B1

B2

0








. (3.11)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: Diagrams of T
(0)
3 arising from

�

HNT2
(0)
�

and
�

HNT3
(0)
�

.

The above equations form a set of coupled linear algebraic equations and it is

solved using the Jacobi method as it is easy to parallelize.

3.2 Angular momentum representation of T
(0)
3

In the previous section we presented the coupled-cluster amplitude equations

including T
(0)
3 and the technique to solve the RCCSDT equations. To solve the

RCCSDT equations a basic step is to map T
(0)
3 diagram to an angular momentum

diagram which is inevitable to solve the angular part of the matrix elements.

Now the basic rules of angular momentum algebra can not be applied directly

to the diagrams involving T
(0)
3 . The reason is, the diagrammatic representation

of T
(0)
3 has four lines associated with one of the vertices. This does not have

an equivalent angular momentum diagram. So to apply the rules of angular

momentum algebra we construct the simplest possible representation of T
(0)
3 and

it is shown in Fig. 3.5. Here ja, jb, jc(jp, jq, jr) are the total angular momentum of

core (virtual) orbitals. While drawing the diagrams and arrows, we follow the sign

and arrow convention of Lindgren and Morrison [61]. In this angular momentum

representation, we obtain a multipole line by coupling two angular momentum

lines. For example, the coupling between ja and jp gives the multipole l1 . The

three multipoles, l1, l2, and l3 should further follow the triangular condition.

Along with the triangular conditions, the orbitals must follow parity selection
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ja jp jb jq jc jr

l1 l2 l3

+

− − −

Figure 3.5: Angular momentum representation of T
(0)
3 operator.

rule. Since the parity of the excited state |Φpqr
abc� = T

(0)
3 |Φ0� must be same as

|Φ0�, (−1)(la+lp+lb+lq+lc+lr) = 1. Here, la, lb, lc(lp, lq, lr) are the orbital angular

momentum of core (virtual) orbitals. So, the orbitals and the multipoles must

satisfy the following triangular and parity selection rules

|ja − jp| � l1 � (ja + jp),

|jb − jq| � l2 � (jb + jq),

|jc − jr| � l3 � (jc + jr),

|l1 − l2| � l3 � (l1 + l2),

(−1)(la+lp+lb+lq+lc+lr) = 1. (3.12)

3.2.1 Angular momentum diagram evaluation with T
(0)
3

In this section we give the details of evaluating the angular momentum diagrams

associated with T
(0)
3 . The diagrams that will arise after considering the T

(0)
3

operator are shown in Fig. 3.2, 3.3 and 3.4. Let us consider the diagram in

Fig. 3.2(a). The corresponding angular momentum diagram is shown in Fig.

3.6, where ja, jb, jc(jp, jq, jr) are the total angular momentum of core (virtual)

orbitals and k1 corresponds to the multipole line of two body interaction term

and li are the multipole lines. To evaluate the above angular momentum diagram

we use the JLV theorems [61] as these give a diagrammatic treatment to represent

the tensor operator product of the coupled angular momentum states. Finally
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ja jpjb jq jc jr

l1

l2
l3

k1

+

−

−

−

−

−

Figure 3.6: Angular momentum diagram contribute to the T
(0)
1 excitation am-

plitude.

we obtain the following result after evaluating the diagram in Fig. 3.6.

= δ(l1, 0)
δ(k1, l3)

[k1]

δ(l2, l3)
�

[l1]
(−1)(jb+jq+jc+jr)× ja jp

−

As we can see the final form contains Kronecker delta function, phase factor

and the free part corresponds to the angular momentum diagram of T
(0)
1 operator.

Similarly, angular momentum diagram corresponding to the diagram in Fig.

3.3(a) is shown in Fig. 3.7. Here also the we apply the JLV theorems to evaluate

ja jp jb jq jcjr

jsk1

l1
l2

l3

+

− −

−

−

−

Figure 3.7: Angular momentum contribute to the T
(0)
2 excitation amplitude.

the diagram. The final expression after evaluation is

= δ(l, l1)
δ(k1, l2)

[k1]
(−1)(−jb+jq+jc+js)







jc jr l3

l2 l1 js






× ja jp jb jq

l1
− −

Similar to T
(0)
1 , the angular part consist of the the Kronecker delta function,

phase factor. Along with this we have a 6-j symbol and the free part corresponds
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to angular momentum diagram of T
(0)
2 operator. The T

(0)
3 diagram arising from

T
(0)
2 and T

(0)
3 operator are shown in Fig. 3.4. The angular momentum diagram

of diagram in Fig. 3.4(c) is shown in Fig. 3.8.

jd js

ja jp
jb jq jc jr

l1

l2
l3

k1

+

− −

− − −

Figure 3.8: Angular momentum diagram contribute to the T
(0)
3 excitation am-

plitude.

After applying JLV theorems in the above diagrams we obtain the following

form

=
δ(k1, l1)

[k1]
(−1)(−jd+js+k1)×

ja jp jb jq jc jr

l1 l2 l3

+

− − −

In this case along with the phase factor we have the free part which corresponds

to the T
(0)
3 operator. Here we presented three simplest coupled-cluster diagram

and their angular factor evaluation. In a systematic way we calculate all the

angular factor corresponding to the diagrams which arises after incorporating

T
(0)
3 exitations. So to conclude this section, we consider the full triple excitation

in the linearized RCC theory. The coupled-cluster wave-function generated in

the RCCSDT theory is further used to calculate atomic properties.

3.3 Perturbed relativistic coupled-cluster the-

ory

To incorporate an additional perturbation Hamiltonian Hint, we introduce the

perturbed coupled-cluster operator T(1). This implies, Hint is applied once and
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Vres to all order in all possible sequences. In general, T(1) is a tensor operator and

the multipole structure depends on the properties ofHint. With the perturbation,

the modified eigenvalue equation is

(HDCB + λHint)|Ψ̃0� = Ẽ|Ψ̃0�, (3.13)

where, λ is the perturbation parameter. Consider the case where Hint represents

the interaction with an external static electric field E. The interaction Hamilto-

nian is then Hint = −�i ri · E = D · E, where D is the many electron electric

dipole operator. The perturbed atomic state in PRCC theory is

|Ψ̃i� = eT
(0)+λT(1)·E|Φ0� = eT

(0) �
1 + λT(1) · E

�
|Φ0�. (3.14)

This approach has the advantage of taking into account the effect of multiple

perturbations systematically. Other than E, Hint could be one of the interactions

internal to the atom like Breit interaction, hyperfine interaction, etc. For the

a p

(a)

a p b q

(b)

Figure 3.9: Diagrammatic representation of T
(1)
1 and T

(1)
2 .

present work, we examine T(1) arising from E which is a odd parity vector

operator in the electronic space. The perturbed wave-function can be used in

the properties calculation and using it we can avoid the sum over complete set

of intermediate states.

3.3.1 Tensor structure of PRCC operator

For the present case, E as the perturbation, we can write the perturbed single

excitation cluster operator as

T
(1)
1 =

�

a,p

τ paC1(r̂)a
†
paa. (3.15)
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Here, T
(1)
1 is a vector operator in the electronic space and the C-tensor, C1(r̂)

represents the vector nature of T(1). The key difference between T
(1)
1 and T (0)

is the parity condition, For T (0) the total orbital parity must be odd, in other

words (−1)la+lp = −1. Diagrammatically, the T
(1)
1 operator is represented as

shown in Fig. 3.9(a). It is similar to the conventional representation of T
(0)
1 but

the interaction line is replaced by a wavy line.

The tensor structure of T
(1)
2 , on the other hand, has additional complica-

tions as it consists of two vertices. After due consideration of the Hint and T (0)

multipole structure, it is represented as

T
(1)
2 =

�

a,b,p,q

�

l,k

τ
pq
ab (l, k){Cl(r̂1)Ck(r̂2)}

1a†pa
†
qabaa. (3.16)

Like in T
(1)
1 , Ck are the C-tensor operators and, two C-tensor operators of rank

l and k are coupled to a rank one tensor operator, T
(1)
2 . At the two vertices,

the orbital angular momenta must satisfy the triangular conditions |ja − jp| �

l � (ja + jp) and |jb − jq| � k � (jb + jq). In addition, the two tensor operators

must be such that |l − k| � 1 � (l + k). These selection rules arise from the

triangular conditions at the vertices. The other selection rule follows from the

parity condition, as Hint is parity odd, the orbitals must satisfy the condition

(−1)(la+lp) = −(−1)(lb+lq). The diagrammatic representation of T
(1)
2 is shown in

Fig. 3.9(b), where the vertical line on the interaction line is to represent the rank

of the operator. Further more, this representation, at a later stage, simplifies the

angular integration using diagrammatic technique.

3.3.2 PRCC equations

The ground state eigenvalue equation with Hint is

(HDCB + λHint)e
[T (0)+λT(1)·E]|Φ0� = Ẽ0e

[T (0)+λT(1)·E]|Φ0�. (3.17)

When Hint is parity odd, like in the present case, there is no first order pertur-

bative correction to energy, so Ẽ0 = E0. In the CCSD approximation we define

the perturbed cluster operator T(1) as

T(1) = T
(1)
1 +T

(1)
2 . (3.18)
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In this approximation the PRCC equations are derived from Eq. (3.17). As we

mentioned earlier, the derivation associated with coupled-cluster theory involves

several operator contractions and these are more transparent with the normal

ordered Hamiltonian HN = HDCB−�Φi|H
DCB|Φi�. The eigenvalue equation then

has the form

[HN + λHint] |Ψ̃0� =
�
E0 − �Φ0|H

DCB|Φ0�
�
|Ψ̃0�. (3.19)

A more convenient form of the eigenvalue equation is

(HN + λHint) |Ψ̃0� = ΔE0|Ψ̃0�, (3.20)

where, ΔE0 = E0 − �Φ0|H
DCB|Φ0� is the ground state correlation energy. Fol-

lowing the definition in Eq. (3.18), the PRCC eigen-value equation is

(HN + λHint) e
T (0)+λT(1)·E|Φ0� = ΔE0e

T (0)+λT(1)·E|Φ0�. (3.21)

Applying e−T (0)
from the left, we get

�
H̄N + λH̄int

�
eλT

(1)·E

|Φ0� = ΔE0e
λT(1)·E|Φ0�, (3.22)

where, H̄ = e−T (0)
HeT

(0)
is the similarity transformed Hamiltonian. Multiply

Eq. (3.22) from left by e−λT(1)
and consider terms linear in λ, we get the PRCC

equation
�
H̄N,T

(1)
�
· E+ H̄int|Φ0� = 0. (3.23)

Here, the similarity transformed interaction Hamiltonian H̄int terminates at sec-

ond order as Hint is a one-body interaction Hamiltonian. Expanding H̄int, the

PRCC equation takes the form

�

[H̄DCB
N ,T(1)] + · · ·

�

· E|Φ0� =
�

D+ [D, T (0)] +
1

2
[[D, T (0)], T (0)]

�

· E|Φ0�.

(3.24)

Here after, for simplicity, we drop E from the equations and for compact notation.

The cluster equations of T
(1)
1 are obtained after projecting the equation on singly

excited states �Φp
a|. These excited states, however, must be opposite in parity to

|Φ0�. Similarly, the T
(1)
2 equations are obtained after projecting on the doubly
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excited states �Φpq
ab|. After the application of Wick’s theorem, the T(1) equations

are

�Φp
a|

�

HN +HNT
(1) +HNT

(0)T(1) +
1

2!
HNT

(0)T (0)T(1)

�

|Φ0� =

�Φp
a|

�

DT (0) +
1

2!
DT (0)T (0)

�

|Φ0�, (3.25a)

�Φpq
ab|

�

HN +HNT
(1) +HNT

(0)T(1) +
1

2!
HNT

(0)T (0)T(1) + · · ·

�

|Φ0�

= �Φpq
ab|

�

DT (0) +
1

2!
DT (0)T (0)

�

|Φ0�, (3.25b)

where AB represents all possible contractions between the two operators A and

B. The Eq. (3.25a) and (3.25b) form a set of coupled nonlinear algebraic equa-

tions. However, T (0) are solved first as these are independent of T(1), the PRCC

equations are then reduced to coupled linear algebraic equations. An approxima-

tion which incorporates all the important many-body effects like random phase

approximation (RPA) is the linearized PRCC (LPRCC) theory. In this approx-

imation, only the terms linear in T , equivalent to retaining only HNT
(1) and

DT (0) in Eq. (3.25a) and (3.25b), are considered.

3.3.3 Nonlinear terms in PRCC

The calculations with the LPRCC approximation involves ten single excitation

and ten double excitation many-body diagrams, and it is computationally less

complex and hence faster. In our calculations, the LPRCC equations are solved

first and we use the solutions as the initial guess to solve the full PRCC equations.

To describe the PRCC equations in detail, we examine each of the nonlinear terms

in Eq. (3.25a) and (3.25b). These involve more contractions and are larger in

number than the linear terms. To begin with consider the second term on the left

hand side of Eq. (3.25a) and (3.25b), second order in T , in CCSD approximation

it expands to

HNT
(0)T(1) = HNT

(0)
1 T

(1)
1 +HNT

(0)
1 T

(1)
2 +HNT

(0)
2 T

(1)
1 +HNT

(0)
2 T

(1)
2 .

(3.26)
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All the terms contribute to both T
(1)
1 and T

(1)
2 . Similarly, the third term on the

left hand side of Eq. (3.25a) and (3.25b), third order in T , expands to

HNT
(0)T (0)T(1) = HNT

(0)
1 T

(0)
1 T

(1)
1 +HNT

(0)
1 T

(0)
2 T

(1)
1 +HNT

(0)
1 T

(0)
1 T

(1)
2 +

HNT
(0)
1 T

(0)
2 T

(1)
2 . (3.27)

In this equation, out of the four terms, only the first one contributes to T
(1)
1 ,

but, all the terms contribute to T
(1)
2 . At the fourth order there is only one term

and it contributes to only T
(1)
2 . The terms on the right hand side of Eq. (3.25a)

and (3.25b) expand to

DT (0) = DT
(0)
1 +DT

(0)
2 , (3.28a)

DT (0)T (0) = DT
(0)
1 T

(0)
1 +DT

(0)
1 T

(0)
2 . (3.28b)

Here, DT
(0)
1 and DT

(0)
1 T

(0)
2 are nonzero only for T

(1)
1 and T

(1)
2 , respectively. Each

of the terms, after contraction, generate several topologically unique Goldstone

diagrams. The diagrammatic treatment is preferred for further analysis as it

simplifies the calculations and is well suited to represent contractions between

the operators. In the next few sub-sections we discuss the T
(1)
1 and T

(1)
2 diagrams

and their algebraic expressions.

T
(1)
1 diagrams

In this sub-section we describe the T
(1)
1 diagrams arising from the non-linear

terms. The many-body diagrams or the Goldstone diagrams are drawn and

evaluated as described in ref. [61]. Consider the first term on the right hand side

of Eq. (3.26), HNT
(0)
1 T

(1)
1 , it is equivalent to ten diagrams and these are shown

in Fig. 3.10. Algebraically, we can write it as

�HNT
(0)
1 T

(1)
1 �pa =

�

bcqa

g̃bcqa (t
p
cτ

q
b + tqbτ

p
c ) +

�

bpqr

g̃bpqr (t
r
aτ

q
b + tqbτ

r
a ) . (3.29)

where gijkl = �ij|1/r12+gB(r12)|kl� is the matrix element of the electron-electron

interactions and g̃ijkl = gijkl − gijlk is the antisymmetrized matrix element. We

have used �· · · �pa to represent the matrix element �Φp
a| · · · |Φ0�. The diagrams
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(i) (j)

(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 3.10: Diagrams of T
(1)
1 arising from HNT

(0)
1 T

(1)
1 .

in Fig. 3.10(i-j), arising from the one-body part of HN , evaluate to zero when

orbitals are calculated with Dirac-Hartree-Fock-Breit potential. The next term

in Eq. (3.26), HNT
(0)
1 T

(1)
2 , generates eight diagrams and these are shown in Fig.

3.11. It is to be noted here, the contractions with only gabpq type of two-body

(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 3.11: The T
(1)
1 diagrams arising from the contraction HNT

(0)
1 T

(1)
2 .

interaction are non-zero. The algebraic expression of the diagrams is

�HNT
(0)
1 T

(1)
2 �pa =

�

bcqr

g̃cbrq
�
traτ

cb
pq + tpcτ

rq
ab + trcτ

qp
ba + tqbτ

rp
ac

�
.

We next consider the term HNT
(0)
2 T

(1)
1 in Eq. (3.26), this is the last term among

the second order terms. Like the previous term, after contraction it generates
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eight diagrams and these are shown in Fig. 3.12. The topological structure of

(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 3.12: The T
(1)
1 diagrams arising from the contraction HNT

(0)
2 T

(1)
1 .

the diagrams are very similar to those of Fig. 3.11 and the algebraic expression

of the diagrams is

�HNT
(0)
2 T

(1)
1 �pa =

�

bcqr

g̃bcqr
�
tqrbaτ

c
p + tqpbc τ

r
a + tpqabτ

r
c + trpacτ

q
b

�
. (3.30)

At the third order, as mentioned earlier, only HNT
(0)
1 T

(0)
1 T

(1)
1 contributes to the

T
(1)
1 diagrams. This term generates six Goldstone diagrams and these are shown

in Fig. 3.13. The algebraic expression of the diagrams is

�HNT
(0)
1 T

(0)
1 T

(1)
1 �pa =

�

bcqr

g̃bcqr
�
trat

p
cτ

b
q + tqbt

r
aτ

p
c + tqbt

p
cτ

r
a

�
.

(a) (b) (c) (d)

(e) (f)

Figure 3.13: The T
(1)
1 diagrams arising from the contraction HNT

(0)
1 T

(0)
1 T

(1)
1 .

In total, the nonlinear terms in the T
(1)
1 equation generate 30 Goldstone

diagrams. Considering that T
(0)
2 and T

(1)
1 are the dominant cluster operators, in
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terms of amplitudes, in the unperturbed RCC and PRCC, respectively, we can

expect the magnitude of HNT
(0)
2 T

(1)
1 to be the largest.

T
(1)
2 diagrams

In this sub-section we discuss the Goldstone diagrams of T
(1)
2 arising from the

non-linear terms on the left hand side of Eq. (3.25b). Consider the second order

term, after expansion there are four terms as given in Eq. (3.26) and all have

nonzero contribution to T
(1)
2 . The first term, HNT

(0)
1 T

(1)
1 , has six diagrams and

(a) (b) (c) (d)

(e) (f)

Figure 3.14: The T
(1)
2 diagrams arising from the contraction HNT

(0)
1 T

(1)
1 .

these are shown in Fig. 3.14. The equivalent algebraic expression is

�HNT
(0)
1 T

(1)
1 �pqab =

�

rs

gpqrst
r
aτ

s
b +
�

cd

gcdabt
p
cτ

q
d −

�

cr

gpcrb [(t
r
a + trb)τ

q
c − tqc(τ

r
a + τ rb )] . (3.31)

where, we have used �· · · �pqab to represent the matrix element �Φpq
ab| · · · |Φ0�. The

next term in Eq. (3.26), HNT
(0)
1 T

(1)
2 , has sixteen diagrams and these are shown

in Fig. 3.15. However, the last two diagrams in Fig. 3.15(o-p) are zero, like

in the present work, Dirac-Hartree-Fock-Breit orbitals are used. The equivalent

algebraic expression is

�HNT
(0)
1 T

(1)
2 �pqab =

�

crs

gcqrs (t
r
cτ

sp
ba − tscτ

rp
ba + tsb τ̃

rp
ca − trbτ

sp
ca .− traτ

ps
cb − tpcτ

rs
ab ) +

�

cdr

gcdrb (−trcτ
qp
da + trdτ

qp
ca − tqdτ̃

rp
ca + tpcτ

rq
ad + traτ

pq
cd ) . (3.32)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.15: The T
(1)
2 diagrams arising from the contraction HNT

(0)
1 T

(1)
2 .

where, τ̃ rpca = τ rpca − τ rpac is the antisymmetrised amplitude of T
(1)
2 . Interchanging

the order of excitations of the cluster operators, we get the next term HNT
(0)
2 T

(1)
1 .

As in the previous term there are sixteen diagrams and these are shown in Fig.

3.16. The equivalent algebraic expression is

�HNT
(0)
2 T

(1)
1 �pqab =

�

crs

gcqrs
�
t̃pracτ

s
b − tpsacτ

r
b − tspbcτ

r
a + tpsabτ

r
c − tprabτ

s
c − trsabτ

p
c

�
+

�

cdr

gcdrb
�
t̃prcaτ

q
d − tpradτ

q
c + tqrdaτ

p
c − tpqadτ

r
c + tpqacτ

r
d + tpqcdτ

r
a

�
.(3.33)

where, t̃prac = tprac − trpac is the antisymmetrised amplitude of T
(0)
2 . The last second

order term is HNT
(0)
2 T

(1)
2 in Eq. (3.26). we have a large number of diagrams as

both of the cluster operators are double excitation. There are eighteen diagrams
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.16: The T
(1)
2 diagrams arising from the contraction HNT

(0)
2 T

(1)
1 .

and these are shown in Fig. 3.17. The algebraic expression for the diagrams is

�HNT
(0)
2 T

(1)
2 �pqab =

�

cdrs

gcdrs
�
t̃pracτ̃

sq
db − t̃psacτ

rq
db + tpsacτ

qr
db + tsqacτ

pr
db − t̃rscaτ

pq
db − t̃rpcdτ

sq
ab

−tpsabτ
qr
dc + tprabτ

qs
dc − tpqacτ̃

rs
bd + trsabτ

pq
cd + tpqcdτ

rs
ab ) . (3.34)

Collecting all the diagrams which are second order in T(1), there are 56 Goldstone

diagrams in the T
(1)
2 equation after contraction of the cluster operators with HN .

At the third order, all the terms in Eq. (3.27) have non-zero contributions

to T
(1)
2 . There are six Goldstone diagrams from the first term HNT

(0)
1 T

(0)
1 T

(1)
1

and these are shown in Fig. 3.18. The equivalent algebraic expression of the
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

Figure 3.17: The T
(1)
2 diagrams arising from the contraction HNT

(0)
2 T

(1)
2 .

diagrams is

�HNT
(0)
1 T

(0)
1 T

(1)
1 �pqab =

�

crs

gcqrs [−trat
p
cτ

s
b − (tpcτ

r
a − traτ

p
c )t

s
b]

+
�

cdr

gcdrb [t
r
a(t

p
cτ

q
d + τ pc t

q
d) + tpcτ

r
a t

q
d] . (3.35)

The overall contribution from these diagrams is expected to be small as these are

quadratic in T
(0)
1 . The next term in Eq. (3.27), HNT

(0)
1 T

(0)
1 T

(1)
2 , has ten Gold-

stone diagrams and these are shown in Fig. 3.19. and the equivalent algebraic

expression of the diagrams is

�HNT
(0)
1 T

(0)
1 T

(1)
2 �pqab =

�

cdrs

gcdrs [t
r
at

p
c τ̃

sq
bd + trat

p
dτ

sq
cb + trat

s
bτ

pq
cd + tqd(t

r
aτ

ps
cb + tpcτ

rs
ab )

−(trct
s
a − tsct

r
a)τ

pq
db − (trct

p
d − trdt

p
c)τ

sq
ab ]. (3.36)

Contributions from these diagrams will be lower than HNT
(0)
1 T

(0)
1 T

(1)
1 as these

depend on T
(1)
2 , which is smaller in magnitude than T

(1)
1 . The contributions from

the two terms are expected to be small as these are second order in T
(0)
1 . The last
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(a) (b) (c) (d)

(e) (f)

Figure 3.18: Diagrams arising from the contraction HNT
(0)
1 T

(0)
1 T

(1)
1 .

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3.19: Diagrams arising from the contraction HNT
(0)
1 T

(0)
1 T

(1)
2 .

third order term, HNT
(0)
1 T

(0)
2 T

(1)
1 , has eighteen diagrams and these are shown in

Fig. 3.20. The algebraic equivalent of these diagrams is

�HNT
(0)
1 T

(0)
2 T

(1)
1 �pqab =

�

cdrs

gcdrs[(t
s
ct

pr
ab − trct

ps
ab)τ
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d − (trct

pq
ad − trdt

pq
ac)τ

s
b + tra(t

ps
cbτ

q
d − t̃sqdbτ

p
c + tsqcbτ

p
d

−tpqcb τ
s
d + tpqdbτ

s
c + tpqcdτ

s
b ) + tpc(t
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adτ

s
b − t̃sqdbτ

r
a + trqdbτ

s
a − trqabτ

s
d + tsqabτ

r
d + trsabτ

q
d )].

(3.37)

Among the third order terms in the T
(1)
2 equation this will be the leading order

term as it depends on T
(0)
2 and T

(1)
1 , the dominant cluster operators among

the unperturbed and perturbed cluster operators, respectively. There are two

Goldstone diagrams from the fourth order term and these are shown in Fig. 3.21
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

Figure 3.20: Diagrams arising from the contraction HNT
(0)
1 T

(0)
2 T

(1)
1 .

and the algebraic expression is

(a) (b)

Figure 3.21: Diagrams arising from the contraction HNT
(0)
1 T

(0)
1 T

(0)
1 T

(1)
1 .

�HNT
(0)
1 T

(0)
1 T

(0)
1 T

(1)
1 �pqab =

�

cdrs

gcdrst
r
at

p
c(t

s
bτ

q
d + tqdτ

s
b ).

Among all the diagrams considered so far these two diagrams will have the lowest

contributions as these are third order in T
(0)
1 . However, for completeness we

include these in the calculations.
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DT (0) and DT (0)T (0) diagrams

Another group of PRCC diagrams arise from the contraction of D and T (0), these

contribute to the right hand side of Eq. (3.25a) and (3.25b). In this group, there

are five Goldstone diagrams of T(1) and these are shown in Fig. 3.22. Among

(a) (b) (c) (d)

(e)

Figure 3.22: Singles diagrams arising from the contraction HintT
(0) and

HintT
(0)T (0).

the diagrams only the last one is nonlinear in T (0). The algebraic expression of

the diagrams is

�DT (0)�pa + �DT (0)T (0)�pa =
�

q

rpqt
q
a −
�

c

rcat
p
c +
�

bq

rbq (t
qp
ba − tqpab − tqat

q
b) .(3.38)

where, rij = �i|r|j� is the electronic part of the single particle matrix element.

For T
(1)
2 , there are four diagrams and these are shown in Fig. 3.23 and last two

are nonlinear in T (0) . The algebraic expression of the diagrams is

(a) (b) (c) (d)

Figure 3.23: Doubles diagrams arising from the contraction HintT
(0) and

HintT
(0)T (0).
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�DT (0)�pqab + �DT (0)T (0)�pqab =
�

r

rqrt
pr
ab −

�

c

rcbt
pq
ac +

�

cr

rcr(−trat
pq
cb − tpct

rq
ab).(3.39)

This completes the diagrammatic and algebraic analysis of the nonlinear terms

in the T(1) equations. To obtain the linear algebraic equations of the cluster

amplitudes, each of the diagrams or terms in the algebraic expression requires

further simplification to radial and angular components. The angular part is

evaluated diagrammatically, however the diagrams are different from the Gold-

stone diagrams.

3.3.4 Intermediate diagrams

The PRCC diagrams corresponding to the nonlinear terms are numerous and

topologically complex. Further more, in these diagrams, the number of the spin-

orbitals involved is large and in general, the diagrams with the largest number

of spin-orbitals are associated with the terms HNT
(0)
2 T

(1)
2 , HNT

(0)
1 T

(0)
1 T

(1)
2 and

HNT
(0)
1 T

(0)
1 T

(0)
1 T

(1)
1 . All of these terms have a common feature: the presence of

the two electron integral �ab|g(r12)|pq�. Returning to the number of spin-orbitals,

the T
(0)
2 diagrams arising from any of the three terms mentioned earlier consist

of four core and virtual spin-orbitals each. Accordingly, the number of times a

diagram is evaluated, Nd, scales as n
4
on

4
v and this sets the scale of computational

requirements. Here, no and nv are the number of core and virtual spin-orbitals,

respectively. In the present work, for lighter atoms and moderate sized basis sets

no ∼ 10 and nv ∼ 100, even then Nd ∼ 1012. This is a large number and puts a

huge constraint on the computational resources.

To mitigate the computational constraints arising from the n4
on

4
v scaling, we

separate the diagrams into two parts. One of the parts scales at the most n2
on

4
v

and the total diagram is equivalent to the product of the parts. The part of the

diagram which is calculated first is referred to as the intermediate diagram. Dur-

ing computations, all the intermediate diagrams are calculated first and stored.

Later, these are combined with the remaining part of the PRCC diagram and the

total diagram is calculated. The scaling still remains at n2
on

4
v and compared to

the n4
on

4
v scaling, this improves the performance by several orders of magnitudes.
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a

r c
s

d

p b q

(a)

a

r

c

pb

s

d q

(b)

Figure 3.24: Example diagrams of HNT
(0)
2 T

(0)
2 which contribute to the T

(1)
2 equa-

tions. The portion of the diagrams within the rectangles with rounded corners
are examples of the one body (a) and two-body (b) intermediate diagrams.

To examine in more detail, consider the term HNT
(0)
2 T

(1)
2 , the algebraic ex-

pression for one of the terms contributing to the T
(0)
2 is

(τ pqab )3.24a a
†
pa

†
qabaa =

�

rcsd

trsacv
cd
rsτ

pq
db a

†
pa

†
qabaa, (3.40)

and it is diagrammatically equivalent to Fig. 3.24(a). However, while evaluating

the diagram, the part within the dashed round rectangle or the intermediate

diagram can be separated and computed first. Eq. (3.40) can then be written as

(τ pqab )3.24a a
†
pa

†
qabaa =

�

d

�

ηdaa
†
daa

��

τ
pq
db a

†
pa

†
qabad

�

, (3.41)

where ηda =
�

rcs t
rs
acv

cd
rs is the amplitude of the effective one-body operator corre-

sponding to the intermediate diagram. The computation of ηda scales as n
3
on

2
v and

when contracted with T
(1)
2 , the computation still scales as n3

on
2
v. This is much

less than the n4
on

4
v scaling. Consider another term

(τ pqab )3.24b a
†
pa

†
qabaa =

�

rcsd

trsabv
cd
rsτ

pq
cd a

†
pa

†
qabaa, (3.42)

and it is diagrammatically equivalent to Fig. 3.24(b). Like in the previous case,

the intermediate diagram ( part within the dashed round-rectangle ) can be

calculated first and the equation can be rewritten as

(τ pqab )3.24b a
†
pa

†
qabaa =

�

cd

�

ηcdaba
†
ca

†
dabaa

��

τ
pq
cd a

†
pa

†
qadac

�

. (3.43)

Here, the intermediate diagram corresponds to a two-body effective operator

with amplitude ηcdab =
�

rs t
rs
abv

cd
rs and scales as n4

on
2
v. The scaling remains the
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same when the total diagram is evaluated. Extending the method to other dia-

grams, there are other forms of one-body and two-body intermediate diagrams

depending on the topology.

In conclusion, this chapter deals with the theoretical foundation of RCCSDT

and PRCC theory for closed shell atoms. We introduce the angular momentum

representation of the triple excitation operator and this representation is conve-

nient to calculate complicated angular momentum diagrams that arise after con-

sidering the T
(0)
3 in the RCC theory. In the next part we introduce PRCC theory.

This takes into account multiple perturbations in many electron atoms. We for-

mulated the theory and introduce the tensor structure of the PRCC operators.

While evaluating the topologically complex diagrams we introduce intermediate

diagrams. It simplifies the Goldstone diagrams and reduce the computational

cost. Most importantly these, T
(0)
3 and PRCC theory, when combined with the

vacuum polarization potential and Breit interaction provides a test of QED cor-

rections in closed-shell atoms and ions.



Chapter 4

QED effects in open-shell atoms

using coupled-cluster theory

One valence atoms and ions are ideal testing ground for different many body

techniques because of the simple electronic structure. It has one electron in

the valence shell and it is essentially the simplest atomic system to study core-

valence correlation effects. Different atomic many body theories have been used

to study one valence atom and ions. However, these techniques are essentially

an extension of closed shell many body theories. We will particularly focus

on the QED effects on one valence properties using coupled-cluster theory. As

we mentioned earlier, in many electron atoms, along with the electron-electron

correlation it is important to take into account the QED effects. Though the

highly charged ions like hydrogen like ions are ideal to test QED effects precisely,

QED effects are also important to precisely determine properties like the nuclear

spin-dependent PNC effects in atoms. In the present work we employ coupled-

cluster theory of one valence atoms with the HDCB. Here we emphasize that to

determine the electronic correlations precisely we Incorporated the T
(0)
3 at the

linearized RCC theory. The RCC theory with T
(0)
3 and QED corrections is the

ideal platform to study the interplay of electronic correlation and QED effects in

many electron atoms and ions.

The chapter is organized as follows: we first introduce the RCC theory for

one valence atoms in section 4.1. Here we will introduce the triple excitation in

65
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the RCC theory and the RCCSDT amplitude equations for one valence atoms.

In section 4.2 we discuss the electric dipole transition amplitudes in one valence

atoms. In the results and discussions part we focus on the excitation energy and

the electric dipole transitions of several states in one valence atoms.

4.1 RCC theory for one valence atoms

For one valence atom the eigenvalue equation is

HDCB|Ψv� = Ev|Ψv�. (4.1)

Here |Ψv� is the eigen state and Ev is the corresponding eigen value for one valence

atom or ion. For these system we have an additional complication. Along with

the core and virtual orbitals we have a valence sector. As Lindgren [61] pointed

out, that a valence orbital can be treated both as core and virtual, and we can

then apply the general formalism of particle-hole states for the valence sector.

For one valence atom or ion we introduce another set of cluster operator S(0)

along with the T (0) operator. This separation between the two sets of cluster

operators simplify the problem of solving the eigen-value equation. Essentially,

we first solve the closed-shell part of the system to obtain the T (0) amplitudes,

and then we solve for the valence part to obtain the S(0) amplitudes.

In RCC theory the ground state wave-function of a one valence atom is defined

as

|Ψv� = eT
(0)+S(0)

|Φv�. (4.2)

Here |Φv� is the reference state wave-function of the one valence atom and it is

obtained as |Φv� = a†v|Φ0�. Here |Φ0� is the reference state wave function of the

closed-shell part of the one valence system. For a one valence system,

eS
(0)

= 1 + S(0). (4.3)

This is because, we can excite at most one electron from the valence orbital to

the virtual. So, the contribution form the higher order terms in S(0) are zero.

With this definition we can write the ground state wave function of a one valence
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system as

|Ψv� = eT
(0)

(1 + S(0))|Φv�. (4.4)

Using the above definition of ground state wave-function the eigen-value equa-

tion, Eq. (4.1) is

HDCBeT
(0)

(1 + S(0))|Φv� = Eve
T (0)

(1 + S(0))|Φv�. (4.5)

In the CCSDT approximation along with the closed-shell cluster operator, the

open shell cluster operator are expanded as

T (0) = T
(0)
1 + T

(0)
2 + T

(0)
3 ,

S(0) = S
(0)
1 + S

(0)
2 + S

(0)
3 . (4.6)

Like the T (0) operators the S(0) operators can be diagrammatically represented

as shown in Fig. 4.1. In the figure a, b, c, · · · (p, q, r, · · · ) represents the core

v

p

(a)

v

q a p

(b)

v

r b q a p

(c)

Figure 4.1: Diagrammatic representation of open shell coupled-cluster opera-
tor : (a) Single excitation operator, (b) Double excitations operator, (c) Triple
excitations operator.

(virtual) orbitals and v denotes the valence orbital. Using the normal ordered

Hamiltonian, HN we can rewrite the eigen-value equation as

HN|Ψv� = ΔEv|Φv�, (4.7)

WhereΔEv is the correlation energy of the one valence system. Now to obtain the

coupled-cluster amplitude equations we operate by e−T (0)
from left and project it

on the single, double and triple excited determinants. The RCCSDT amplitude

equations for one valence system are

�Φp
v|H̄N + H̄NS

(0)
1 + H̄NS

(0)
2 + H̄NS

(0)
3 |Φv� = ΔEv�Φp

v|S
(0)
1 |Φv�, (4.8a)
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�Φpq
va|H̄N + H̄NS

(0)
1 + H̄NS

(0)
2 + H̄NS

(0)
3 |Φv� = ΔEv�Φpq

va|S
(0)
2 |Φv�, (4.8b)

�Φpqr
vab|H̄N + H̄NS

(0)
1 + H̄NS

(0)
2 + H̄NS

(0)
3 |Φv� = ΔEv�Φpqr

vab|S
(0)
3 |Φv�. (4.8c)

In these equations H̄N = e−T (0)
HNe

T (0)
is the dressed Hamiltonian. The RCCSDT

amplitude equations are obtained using the orthogonality condition of ground

and excited state determinants. After applying the Wick’s theorem for the prod-

uct of operators we obtain the cluster amplitude equations.

�Φp
v|H̄N+

�

HNS1
(0)
�

+
�

HNS2
(0)
�

+
�

HNS3
(0)
�

|Φ0� = Eatt
v �Φp

v|S
(0)
1 |Φ0�, (4.9a)

�Φpq
va|H̄N+

�

HNS1
(0)
�

+
�

HNS2
(0)
�

+
�

HNS3
(0)
�

|Φ0� = Eatt
v �Φpq

va|S
(0)
2 |Φ0�, (4.9b)

�Φpqr
vab|H̄N +

�

HNS1
(0)
�

+
�

HNS2
(0)
�

+
�

HNS3
(0)
�

|Φ0� = Eatt
v �Φpq

va|S
(0)
3 |Φ0�.

(4.9c)

Here Eatt
v represents the attachment energy of the valence electron. It means we

need Eatt
v to remove the valence electron from a neutral atom. In the present

work we will emphasize about the theoretical details of attachment energy from

triple excitation. The attachment energy from RCCSD theory is discussed in

great detail by B. K. Mani [73]. The attachment energy diagrams that will arise

after incorporating the triple excitation is shown in Fig. 4.2. Along with the

(a) (b)

Figure 4.2: Attachment energy diagrams arising at the triple excitation level.

diagrams that arise at the RCCSD theory we incorporate two diagrams which

are shown in Fig. 4.2 to estimate the contribution from triple excitations to Eatt
v .
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4.2 Electric dipole transition from RCCSDT the-

ory

The main objective of developing different many body theories is to calculate

different atomic properties. It is also important to mention that the precision of

experimental data have improved in past few decades and this implies the need for

better theoretical methods. The wave-function generated in the RCCSDT theory

can be used to calculate different atomic properties and one of the very basic

properties is to evaluate the electric dipole transition matrix element. Here we

shall discuss calculation of the electric dipole matrix element in the framework of

RCC theory. A radiative transition occurs when a photon is absorbed or emitted

by the atom. The dominant contributions to the radiative transitions comes

from the electric dipole transition. In order to derive the expression of dipole

matrix element, we start with the reduced matrix element of the dipole operator

between initial state |Ψi� and final state |Ψf�. The form of the reduced matrix

element is

Dfi =
�Ψf ||D||Ψi�

�

�Ψf |Ψf��Ψi|Ψi�
. (4.10)

Since the dipole operator, D is an odd parity operator, for a nonzero contribution

the parity of the |Ψi� and |Ψf� should be opposite. The details of the matrix

element of the dipole operator is discussed in appendix B. To calculate Dfi from

CCT, we substitute the CC wave-function in Eq. (4.10), then

Dfi = �Φw||D+ T (0)†D+DT (0) + T (0)†DT (0) + S(0)†D+DS(0)

+S(0)†DS(0)||Φv�. (4.11)

Here, we consider only the terms up to to second orders in cluster amplitudes.

The non-terminating series, eT
(0)†

DeT
(0)

is a major constraint in RCC theory.

But based on earlier calculation [75], which studied an all order method to eval-

uate the reduced dipole matrix elements of singly ionized group II elements, we

can safely neglect the the higher order terms which has three or more cluster

operators. The diagrams are topologically same as the diagrams to evaluate



Chapter 4. QED effects in open-shell atoms using coupled-cluster theory 70

hyperfine interaction in ref. [73]. Here we focus on the diagrams which arise

from incorporating the T
(0)
3 at the properties level. Since the contribution from

the closed-shell cluster operator is negligible, we concentrate on the properties

diagram that arise after due consideration of the S(0) operator. At minimum we

need two cluster operators to start with. Following the rule of level of excitation

(l.o.e) we can construct the properties diagram from S
(0)†
2 DS

(0)
3 contraction. The

diagrams arising from {S2
(0)†DS

(0)
3 } are shown in Fig. 4.3.

(a) (b) (c) (d)

Figure 4.3: Leading diagrams arising from the contraction {S2
(0)†DS

(0)
3 } con-

tribute to the reduced dipole matrix element. Dashed line represent the dipole
operator.

4.3 Results and Discussions

In this section we discuss in detail the properties of one valence atoms. As we

mentioned earlier, we particularly focus on the Eatt
v of one valence atoms after

incorporating the T
(0)
3 and S

(0)
3 in the RCC theory. Along with this we also

discuss about the results of Dfi for one valence atoms. Like in the closed-shell

atoms, we first introduce the basis set parameters for the one valence atoms.

We first compare DHF SCF energy and orbital energy obtained from GRASP

[52]. Here again we use GTOs with even tempered basis set parameters. Before

starting the discussion on the properties of one valence atom, we must mention

that we use the same basis set parameters as we have use to calculate the Breit

correction and VP correction in the second chapter. This is because, with the

V N−1 potential we can construct a complete set of basis for the neutral atom. It

must be mentioned that it is true for a general basis set like the GTO’s as well

as B-spline basis sets.
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4.3.1 Properties of one valence atoms

In this subsection we discuss about the excitation energy, and Dfi of one valence

atoms and compare these with the previous theoretical and experimental values.

The present numerical calculations are based on the RCCSDT code and triple

excitations is considered at the wave-function level. For the Dfi calculation

and for excitation energy we consider (T
(0)
3 + S

(0)
3 ) at the wave-function as well

as at the properties level. The main difficulty in computations with the triple

excitations is the number of triples amplitude. It is very large compare to the

single and double excitation cluster amplitudes. For example, in the case of Li,

the number of single excitation amplitude ≈ 102 and double excitation amplitude

≈ 104, but the number of triple excitation amplitude is ≈ 108. So to calculate

triple excitations we truncate the number of core and virtual orbitals in the RCC

computation. Now in the numerical implementation of the triple excitation we

choose the cut off energy such that at the initial guess value from MBPT is

not very small. To do this we consider the energy denominator part of the

approximate triples. The energy denominator is

ΔE =
1

(εp + εq + εr − εa − εb − εc)
. (4.12)

This is very important while considering the triple excitation. The ΔE for differ-

ent combination of core and virtual orbitals should never be very small. Other-

wise it is very difficult to obtain converged RCC wave-function. So, we introduce

a cut-off to the core and virtual orbital energies. There is one important con-

sideration associated with the triple excitations in RCC theory. In the s1/2 and

p1/2 orbitals we can have at the most two electrons, however, the triples cluster

amplitude takes into account all possible triple excitations. So we have to put

constraints for s1/2 and p1/2 orbitals. Following the Pauli’s exclusion principle

we set the cluster amplitudes to zero when more than two core or virtual orbital

belong to the same s1/2 or p1/2 symmetry. Another issue related to numerical

implementation of the triples amplitude is to consider only unique cluster ampli-

tudes. To do that we impose the condition p > q > r and a > b > c. This plays

an important role while storing the amplitudes during computations.
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4.3.2 Excitation energies

The excitation energy and the ionization potential (I.P) of the group I elements

are discussed here. The energies of the different excited states are evaluated in

the RCC theory, and compared with the previous theoretical value and the NIST

recommended value. The results for 7Li are listed in Table. 4.1. In the literature

it is also referred to as the removal energy. We follow these nomenclature and

our results of the removal energies of 2s1/2 to 4d5/2 are listed in Table. 4.1. As we

can see, the result of 2s1/2 state deviated by from the NIST recommended value

by 5.5 cm−1. This could be due to several reasons. As pointed out by Johnson

et al. [76] in his remarkable work on several atomic properties of 7Li, the recoil

correction contribution to the removal energy is 3.59 cm−1. However, the recoil

correction which is due to reduced mass correction and mass polarization, are

not considered in the present work. The other contribution is the Lamb shift

correction, which is not completely accounted in the present work. Here we

consider only the vacuum polarization correction to the orbital energies. In

the present calculation of I.P and excitation energies we consider only up to h

symmetry. But it has been pointed out in ref. [76] that the contribution from i

and j symmetry is ≈ 1 cm−1.

Coming to the highly excited states, our results are in very good agreement

with the NIST recommended values. This is because the highly excited states,

which are far from the nucleus, are less affected by recoil correction. The same

pattern was observed by Johnson and his coworkers in ref. [76]. So to sum up, if

we add all these corrections to the present work in the framework of RCC theory

the result is within 0.1% of the NIST recommended value.

For Na we calculate the removal energies of 3s1/2, 3p1/2 and 3p3/2 orbitals.

The results for Na are listed in Table 4.2.
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Orbital This Work ENIST [77] Previous Work[76]

2s1/2 −43481.7 −43487.2 −43487.5

2p1/2 −28570.5 −28583.5 −28581.9

2p3/2 −28570.1 −28583.2 −28581.5

3s1/2 −16256.1 −16281.0 −16281.0

3p1/2 −12548.5 −12561.8 −12561.2

3p3/2 −12548.3 −12561.8 −12561.0

3d3/2 −12203.6 −12204.1 −12204.0

3d5/2 −12203.6 −12204.0 −12204.0

4s1/2 −8152.9 −8475.1 −8475.1

4p1/2 −7011.9 −7017.6 −7017.2

4p3/2 −7011.8 −7017.6 −7017.2

4d3/2 −6863.6 −6863.8 −6863.8

4d5/2 −6863.5 −6863.8 −6863.8

Table 4.1: Removal Energies of several excited states of 7Li in cm−1.

Orbital This Work ENIST [77] Previous Work[42]

3s1/2 −41373 −41449 −41376

3p1/2 −24469 −24493 −24472

3p3/2 −24437 −24476 −24453

Table 4.2: Removal Energies of ground and excited states of 23Na in cm−1.

The results show good agreement with the NIST recommended values as well

as with previous RCCSD [42] results. Here again we observe the same trend like

Li, our values are on the lower side from that of the NIST recommended values.

The discrepancy may be due to choice of basis set as well as neglecting the recoil

correction in the present work. In Table. 4.3 we listed the contribution from

different terms to the removal energy.
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Orbital DHF RCCSD RCCSDT Total

3s1/2 −39944 −1428 −1429 −41373

3p1/2 −24032 −438 −437 −24469

3p3/2 −24010 −428 −427 −24437

Table 4.3: Contribution to the removal Energies 23Na in cm−1.

As expected the DHF contribution, the first column in Table. 4.3, gives the

dominant contribution. The column labeled RCCSDT gives the contribution to

the removal energy after incorporating the triple excitations in RCC theory. The

inclusion of the triples improve the result of the ground state, 3s1/2. On the

other hand, for 3p1/2 and 3p3/2 excited state the inclusion of triples deteriorates

the result. There is one important point to be noticed, the contribution from the

triple excitations is very small and it is ≈ 1cm−1 for ground as well as excited

states.

For K the result of removal energies are listed in Table. 4.4.

Orbital This Work ENIST [77] Previous Work[42]

4s1/2 −35117 −35010 −35080

4p1/2 −22047 −22025 −22044

4p3/2 −21988 −21967 −21984

Table 4.4: Removal Energies of ground and excited states of 39K in cm−1.

Here the values of removal energies exhibit a trend opposite to Li and Na.

In this case our results are higher than the NIST recommended value. However,

our results follows the same pattern as that of the previous RCCSD work [42].

The term wise contribution to the removal energy is listed in Table. 4.5.
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Orbital DHF RCCSD RCCSDT Total

4s1/2 −32372 −2743 −2745 −35117

4p1/2 −21003 −1031 −1044 −22047

4p3/2 −20959 −1009 −1029 −21988

Table 4.5: Contribution to the removal energies 39K in cm−1.

One interesting point is the contribution from triples to the removal energies.

Although the contribution to the ground state, 4s1/2, is small, for the excited

states it is significant. For 4p1/2 and 4p3/2, the contributions from triple excita-

tions are 13 cm−1 and 20 cm−1 respectively.

The results for removal energies of ground state and excited states of Rb are

listed in Table 4.6.

Orbital This Work ENIST [77] Previous Work[42]

5s1/2 −33777 −33691 −33762

5p1/2 −21123 −21112 −21130

5p3/2 −20883 −20874 −20888

Table 4.6: Removal Energies of ground and excited states of 85Rb in cm−1.

In case of Rb the trend is very similar to K, our results are higher than

the NIST recommended values. Here, we must mention that as we go to the

high-Z atoms the deviations from the NIST recommended values increases. This

could be due to several reasons. One major reason is the contribution from

higher symmetry, like i, j are neglected in the present work. Along with this

the nuclear recoil correction may be important. Our result for the 4s1/2 state

deviates from NIST value by an amount of 86 cm−1, which is ≈ 0.3%. The

different contributions to the removal energies are listed in Table. 4.7.



Chapter 4. QED effects in open-shell atoms using coupled-cluster theory 76

Orbital DHF RCCSD RCCSDT Total

5s1/2 −30572 −3230 −3205 −33777

5p1/2 −19928 −1199 −1195 −21123

5p3/2 −19730 −1134 −1153 −20883

Table 4.7: Contribution to the removal energies 85Rb in cm−1.

The dominant contribution arises from the DHF term. But, there is a different

trend in the contributions from the triple excitations. The third column of Table

4.7 shows that there is a negative contribution from the triple excitations. The

same pattern is observed in both the ground as well as excited states. Here the

contribution to the ground state, 5s1/2, from the triple excitation is 25 cm−1.

Cs is an important atom to study. In this case as well we calculate the removal

energies for ground state and excited states, and compared it with the previous

results. The results of Cs are listed in Table 4.8.

Orbital This Work ENIST [77] Previous Work[42]

6s1/2 −31539 −31407 −31529

6p1/2 −20209 −20228 −20258

6p3/2 −19675 −19674 −19695

Table 4.8: Removal Energies of ground and excited states of 133Cs in cm−1.

The ground state removal energy deviates from NIST value by 132 cm−1, but

it is in good agreement with the previous theoretical value. Our result for the

other two low lying excited states shows a reverse trend. The result for 6p1/2 is

lower than the NIST recommended value but for the 6p3/2 state it is larger by 1

cm−1. In Table 4.9 we listed the DHF, RCCSD and RCCSDT contributions to

the removal energy.
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Orbital DHF RCCSD RCCSDT Total

6s1/2 −27961 −3585 −3578 −31539

6p1/2 −18787 −1449 −1422 −20209

6p3/2 −18391 −1280 −1284 −19675

Table 4.9: Contribution to the removal energies 133Cs in cm−1.

It is important to mention that the inclusion of the triple excitations improves

the result. Although our result for ground state deviates by 0.4% from NIST

value, overall it is in good agreement with the previous work based on RCC

theory.

4.3.3 Electric dipole transition amplitudes

We evaluate the Dfi of various allowed transitions for one valence atoms. This

is calculated using the CC wave-function with triple excitations. The results for

Li are listed in Table 4.10

This Work Expt.[78] RCCSD[42]

2s1/2 − 2p1/2 3.3175 3.317(4) 3.3173

2s1/2 − 2p3/2 4.6918 4.689(5) 4.6914

Table 4.10: Reduced electric dipole matrix element of 7Li in a.u

and our results are excellent. The values are within the uncertainty limit of

the experimental value. Our results for the 2s1/2 − 2p1/2 transition as well as

2s1/2 − 2p3/2 agrees well with the previous RCCSD work by Pal et al. [42]. Here

we incorporate the triple excitations in the CC wave-function and find that the

contribution is negligible, it is ≈ 10−6 a.u. For Na we presented the result of

electric dipole transition in Table 4.11
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This Work Expt.[78] RCCSD[42]

3s1/2 − 3p1/2 3.5358 3.5246(23) 3.5380

3s1/2 − 3p3/2 5.0003 4.9838(34) 5.0030

Table 4.11: Reduced electric dipole matrix element of 23Na in a.u

and are in good agreement with the previous RCCSD values. Our value

deviates from the experimental value by 0.3% for 3s1/2 − 3p1/2 transition and

3s1/2 − 3p3/2 transition. One important point to notice is, the results from our

as well as from the previous work are higher than the experimental value. The

result of Dfi for K are listed in Table 4.12.

This Work Expt.[78] RCCSD[42]

4s1/2 − 4p1/2 4.0839 4.102(5) 4.1274

4s1/2 − 4p3/2 5.7840 5.800(8) 5.8314

Table 4.12: Reduced electric dipole matrix element of 39K in a.u

Our result for 4s1/2 − 4p1/2 transition deviates from the experimental value

by 0.4% and for 4s1/2 − 4p3/2 transition it is 0.3%. Here we observe an opposite

trend while comparing our results with the previous RCCSD work. The previous

RCCSD result is higher than the experimental value.

The results for Rb are listed in Table 4.13.

This Work Expt.[78] RCCSD[42]

5s1/2 − 5p1/2 4.2133 4.231(3) 4.2611

5s1/2 − 5p3/2 5.9617 5.977(4) 6.0132

Table 4.13: Reduced electric dipole matrix element of 85Rb in a.u

In this case our result is 0.4% lower than the experimental value for 5s1/2 −
5p1/2 transition and it is 0.3% for 5s1/2 − 5p3/2 transition. On the other hand

we observe a similar pattern while comparing with previous RCCSD work: the

previous RCCSD results are 0.7% and 0.6% higher than the experimental value
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of 5s1/2 − 5p1/2 and 5s1/2 − 5p3/2 experimental data, respectively. For Cs we list

our results of Dfi in Table 4.14.

This Work Expt.[78] RCCSD[42]

6s1/2 − 6p1/2 4.4520 4.4890(65) 4.5443

6s1/2 − 6p3/2 6.2953 6.3238(73) 6.3919

Table 4.14: Reduced electric dipole matrix element of 133Cs in a.u

And our result of 6s1/2−6p1/2 transition is 0.8% lower than the experimental

data. For the 6s1/2 − 6p3/2 transition our result is 0.5% lower than the exper-

imental data. The previous RCCSD result is on the higher side, and for the

6s1/2 − 6p1/2 transition it is 1.2% higher than the experimental value. For the

6s1/2 − 6p3/2 transition also the previous RCCSD value is 1% higher than the

experimental value. So we observe that, overall our results are within 1% of the

experimental data.

To conclude this chapter, we discussed the issue of including the triple excita-

tions in the framework of RCC theory. We derived the RCC amplitude equations

and define the RCC wave-functions including the triple excitations. After which

we discussed the calculation of removal energy and Dfi with the RCC wave-

function. We presented our result for the removal energies of ground and excited

states of Li, Na, K, Rb and Cs. Overall our results are in very good agreement

with the NIST recommended values. We then discussed the results of Dfi for

Li, Na, K, Rb and Cs. It is also important to mention that the precise value

of Dfi encourages us to calculate the scalar and tensor polarizability with high

precision.



Chapter 5

Some Applications

The electric dipole polarizability, α, is the lowest order linear response property

relevant to a wide range of physical phenomena related to microscopic and macro-

scopic properties. Among the macroscopic properties, the dielectric constant and

refractive index of gas are the important ones. In the case of microscopic proper-

ties, the parity non-conservation in atoms [79], optical atomic clocks [80, 81] and

physics with the condensates of dilute atomic gases [82–84] are of current inter-

est. For accurate theoretical calculation of α, a precise treatment of the electron

correlation effects is very important. In the past, a wide variety of atomic many

body theories were used to calculate α. The recent review by Mitroy et al. [85]

gives a detailed overview of the atomic and ionic polarizabilities. We apply the

PRCC theory to calculate α of closed-shell atoms and ions.

The chapter is organized as follows : we introduce the expression of the static

α in the frame work of time independent perturbation theory. The expression of

α in PRCC theory is then discussed. We then discuss the dipole polarizability

diagrams in the PRCC theory. In section 5.2 we discuss about the α of Ne from

PRCC theory in great detail. To test the power of PRCC theory we investigated

the term wise contribution to α. In section 5.4 we provide the detailed description

of the α of noble gas atoms. We also discuss about the core polarization effects

and pair correlation effects. Similarly, we study α of alkali metal ions using PRCC

theory in section 5.5. In section 5.6 we discuss the α of alkaline-Earth metal ions.

For both, alkali metal ions and alkaline-Earth metal ions, we investigate the core

80
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polarization pair correlation effects. Then we end the chapter with conclusion.

5.1 Theory of dipole polarizability

From the second order time-independent perturbation theory, the ground state

dipole polarizability of a closed-shell atom is

α = −2
�

I

�Ψ0|D|ΨI��ΨI |D|Ψ0�
E0 − EI

, (5.1)

where |ΨI� are the intermediate atomic states and EI is the energy of the atomic

state. As D is an odd parity operator, |ΨI� must be opposite in parity to |Ψ0�.
In the PRCC theory we can write

α = −�Ψ̃0|D|Ψ̃0�
�Ψ̃0|Ψ̃0�

. (5.2)

From the definition of |Ψ̃0� in Eq. (3.14) and based on the parity selection rules,

only the terms linear in λ are nonzero. That is,

α = −�Φ0|T
(1)†D̄+ D̄T(1)|Φ0�
�Ψ0|Ψ0�

, (5.3)

where, D̄ = eT
(0)†

DeT
(0)
, represents the unitary transformed electric dipole op-

erator and �Ψ0|Ψ0� is the normalization factor. From here on, it is implicit that

expressions with more than one operator involves contraction and for compact

notation, we drop the notation to represent operator contractions. Retaining the

the leading order terms, we obtain

α ≈ 1

N
�Φ0|T

(1)†
1 D+DT

(1)
1 +T

(1)†
1 DT

(0)
1 + T

(0)†
1 DT

(1)
1 +T

(1)†
2 DT

(0)
1

+T
(0)†
1 DT

(1)
2 +T

(1)†
1 DT

(0)
2 + T

(0)†
2 DT

(1)
1 +T

(1)†
2 DT

(0)
2 + T

(0)†
2 DT

(1)
2 |Φ0�,

(5.4)

where N = �Φ0| exp[T
(0)†] exp[T (0)]|Φ0� is the normalization factor, which in-

volves a non-terminating series of contractions between T (0)† and T (0). However,

in the present work we use N ≈ �Φ0|T
(0)†
1 T

(0)
1 + T

(0)†
2 T

(0)
2 |Φ0�. From the above

expression of α, an evident advantage of calculation using PRCC theory is the

absence of summation over |ΨI�. The summation is subsumed in the evaluation
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of the T(1) in a natural way. This is one of the key advantage of using PRCC

theory.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v)

Figure 5.1: Diagrams of the α in the PRCC theory. The single excitation oper-
ators with a wavy line represent T

(1)
1 . Similarly, the double excitation diagrams

with an extra vertical line represent T
(1)
2 .

For further analysis and evaluation of the different terms in Eq. (5.4), we

use many-body diagrams or Goldstone diagrams. To evaluate the diagrams we

follow the notations and conventions given in ref. [61]. However, as described

in the previous chapters, there is an additional feature in the diagrams of α, we

employ a wavy interaction line to represent the diagrams of T
(1)
1 , so that it is

different from the diagrams of T
(0)
1 . Similarly, to represent T

(1)
2 we introduce a
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vertical line to the interaction line. After due consideration of the equivalent

diagrams, the terms in Eq. (5.4) correspond to 22 unique Goldstone diagrams

and these are shown in Fig. 5.1. The equivalent algebraic expression is

α =
�

ap

�
τ pa

∗dap + d∗apτ
p
a

�
+
�

abpq

�
(τ pa

∗d∗bq + τ qa
∗d∗bp)t

pq
ab + t̃pq∗ab dapτ

q
b

�
+

�

apq

(tqa
∗dpqτ

p
a + τ qa

∗dpqt
p
a)−

�

abp

(tpb
∗dabτ

p
a + τ

p
b
∗dabt

p
a) +

�

abpq

(τ̃ pq∗ab dbqt
q
b + d∗bqt

q∗
b τ̃

pq
ab ) +

�

abpqr

(τ̃ rq∗ab dprt
pq
ab + t̃rq∗ab dprτ

pq
ab ) +

�

abcpq

(τ̃ pq∗cb dcat
pq
ab + t̃pq∗cb dcaτ

pq
ab ), (5.5)

where dab = �a|d|b�, and τ̃
pq
ab = τ

pq
ab − τ

qp
ab and t̃pqab = tpqab − tqpab are the antysym-

metrised cluster amplitudes. In the figure, the first two diagrams, Fig. 5.1(a)

and 5.1(b), are the most important ones. These represent T
(1)†
1 D and DT

(1)
1 ,

respectively, and subsume DF and the effects of random phase approximation

(RPA). The next two diagrams in the figure, Fig.5.1(c-d), arise from the term

T
(1)†
1 DT

(0)
2 , and the diagrams in Fig.5.1(e-f) correspond to the hermitian con-

jugate, T
(0)†
2 DT

(1)
1 . These are the two leading order terms among the second

order contributions, in terms of the cluster amplitudes, to α. The reason is,

both the terms consist of dominant RCC and PRCC amplitudes, T
(0)
2 and T

(1)
1 ,

respectively.

Among the second order contributions, the next to leading order terms are

T
(1)†
2 DT

(0)
2 and T

(0)†
2 DT

(1)
2 . Each of these terms generate four diagrams, Fig.5.1(o-

r) and Fig.5.1(s-v) correspond to T
(1)†
2 DT

(0)
2 and T

(0)†
2 DT

(1)
2 , respectively. The

remaining second order terms, T
(1)†
1 DT

(0)
1 , T

(1)†
2 DT

(0)
1 and their hermitian con-

jugates, have marginal contributions to α. However, for completeness, these are

included in the computations.

5.2 Results and discussions

5.2.1 Dipole polarizability of Neon from PRCC theory

To study PRCC we first consider the linearized version, which we refer to as

the linearized PRCC (LPRCC). In this case, there are then 10 diagrams each
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in T
(1)
1 and T

(1)
2 cluster equations. However, only 6 of the T

(1)
1 diagrams but

all the T
(1)
2 diagrams contribute when Dirac-Hartree-Fock orbitals are used. A

detailed descriptions of the diagrammatic calculations are given in ref. [86].

After examining the results from the LPRCC we systematically incorporate other

terms, nonlinear in cluster amplitudes, in the PRCC calculations. To optimize

the basis set chosen for the calculations, we examine the convergence of α with

the size of basis set. Consider the case of Ne, we start with a basis set of 50 GTOs

and do a series of calculations by increasing the basis size in steps. The value of

α converges to 2.6695 when the basis set size is 124. However, for confirmation

we increase the basis set size upto 171 and the results are listed in Table. 5.1.

No. of orbitals Basis size α

50 (10s, 6p, 6d, 4f, 4g) 2.7279

60 (12s, 7p, 7d, 5f, 5g) 2.7087

75 (13s, 9p, 9d, 7f, 6g) 2.6849

91 (15s, 11p, 11d, 8f, 8g) 2.6712

108 (20s, 13p, 11d, 11f, 9g) 2.6696

124 (22s, 14p, 14d, 13f, 10g) 2.6695

145 (27s, 17p, 16d, 14f, 12g) 2.6695

163 (29s, 21p, 17d, 16f, 13g) 2.6695

171 (31s, 23p, 18d, 16f, 13g) 2.6695

Table 5.1: Convergence pattern of α (Ne) as a function of the basis set size.

In the properties calculations the CC expression of the α, eT
(1)†

DeT
(0)

+

eT
(0)†

DeT
(1)
, is a non-terminating series. However, as described earlier, in the

present calculations we consider upto second order in T . The contributions

from the higher order terms, based on previous studies with an iterative all

order method [75], is negligible. The result from the LPRCC theory, along with

previous and experimental values, are given in Table. 5.2. It shows that our

results agrees very well with the experimental data and indicates that the PRCC

theory, even at the linear level, gives accurate results for a single reference system
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This work CCSDT[87] RCCSDT[88] MBPT[89] Expt.[90]

2.6695 2.6648 2.697 2.665 2.670(5)

Table 5.2: The static dipole polarizability, α, of Ne from linearized PRCC and

comparison with previous results.

like Ne. The contributions from different terms in Eq. (5.4) are listed in Table.

5.3. As evident from the table, the dominant contribution arises from {T(1)†
1 D}

Contributions from α

{T(1)†
1 D} + h.c. 2.6610

{T1
(1)†DT

(0)
2 } + h.c. −0.0478

{T1
(1)†DT

(0)
1 } + h.c. 0.0644

{T2
(1)†DT

(0)
1 } + h.c. −0.0062

{T2
(1)†DT

(0)
2 } + h.c. 0.0961

Normalization 1.0367

Total 2.6695

Table 5.3: Contribution to α of Ne from different terms of the dressed dipole

operator in the linearized PRCC theory.

and its hermitian conjugate. This is not surprising as these terms subsume the

DF contribution and core-polarization effects. The general trend is, for closed-

shell atoms, the DF and core-polarization effects are the leading order and next

to leading order, respectively. Coming to the pair correlation effects, the leading

contribution arise from {T2
(1)†DT

(0)
2 } and its hermitian conjugate. This is along

the expected lines as the T
(0)
2 amplitude is larger, compared to T

(0)
1 , on account

of pair-correlations. The contributions from the remaining terms are small and

cancellations reduce the combined contribution even further.

The next level of calculation is to consider all the terms in the non-linear

PRCC theory. The term wise contributions are listed in Table. 5.4 and the net

result of 2.7383 is 2.6% larger than the LPRCC result. As evident from the

table, most of the change is attributed to {T(1)†
1 D} and hermitian conjugate.
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CC terms α

{T(1)†
1 D} + h.c. 2.7344

{T1
(1)†DT

(0)
2 } + h.c. −0.0492

{T1
(1)†DT

(0)
1 } + h.c. 0.0670

{T2
(1)†DT

(0)
1 } + h.c. −0.0058

{T2
(1)†DT

(0)
2 } + h.c. 0.0924

Normalization 1.0367

Total 2.7383

Table 5.4: Contribution to α of Ne from different terms of the dressed dipole

operator in the nonlinear PRCC theory.

Contribution from this term is 2.7% larger in the nonlinear PRCC, which is

comparable to the change in the value of α. This is one of the case where higher

order calculations does not translate to improved accuracy. A similar situation,

but in a different context, was observed in a detailed analysis of contributions

from nonlinear terms in the CCSD and dressing to calculate the magnetic dipole

hyperfine constant of Li [91]. As mentioned in the work referred, the contribu-

tions from higher order cluster operators, T
(0)
3 and T

(0)
4 , could be of different

phase and bring α closer to experimental data.

Contributions {HNT
(0)
2 T

(1)
1 } {HNT

(0)
1 T

(0)
1 T

(1)
2 }

{T(1)†
1 D}+ h.c 2.7456 2.6628

{T1
(1)†DT

(0)
2 }+ h.c. −0.0492 −0.0478

{T1
(1)†DT

(0)
1 }+ h.c. 0.0674 0.0642

{T2
(1)†DT

(0)
1 }+ h.c. −0.0058 −0.0058

{T2
(1)†DT

(0)
2 }+ h.c. 0.0933 0.0922

Normalization 1.0367 1.0367

Total 2.7503 2.6677

Table 5.5: Two of the leading order terms in the nonlinear PRCC Theory.

Through a series of rigorous calculations, we examine the changes in α, and
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associate it with a nonlinear term in PRCC theory. At the second order, there

is an anomalously large contribution from {HNT
(0)
2 T

(1)
1 }, it induces a changes of

0.0808 a.u. to the net result of α. This term accounts for the large change of

α in the nonlinear PRCC calculations. Compared to this term, the contribution

from the other terms at this order are marginal. The next largest contribution

arises from {HNT
(0)
1 T

(1)
2 }, it contributes 0.0086 a.u. The other contributions are

0.0004 and 0.0034 a.u. from {HNT
(0)
1 T

(1)
1 } and {HNT

(0)
2 T

(1)
2 }, respectively.

At the third order {HNT
(0)
1 T

(0)
1 T

(1)
1 } and {HNT

(0)
1 T

(0)
2 T

(1)
2 } contribute equally,

0.0077 a.u. each. The contribution from the last term at this order, {HNT
(0)
1 T

(0)
1 T

(1)
2 },

is −0.0018 a.u. To illustrate the relative changes arising from the third order

terms, we list the contributions from the leading order terms in the second and

third order in Table. 5.5. It is evident from the table that the difference be-

tween the second and third order contributions arises from the {T(1)†
1 D} and its

hermitian conjugate.

At the fourth order there is only one term {HNT
(0)
1 T

(0)
1 T

(0)
1 T

(1)
1 } and con-

tributes 0.0077 a.u. This detailed study implies that the higher order terms in

the PRCC equations, third and fourth order, have negligible effect on α. Since

the effect of the higher terms are tightly coupled to the electron correlation ef-

fects, a similar trend may occur in other properties as well. To estimate the

Contributions From {HNT
(0)
1 T

(0)
1 T

(0)
1 T

(1)
1 }

{T(1)†
1 D}+ h.c. 2.6688

{T1
(1)†DT

(0)
2 }+ h.c. -0.0478

{T1
(1)†DT

(0)
1 }+ h.c 0.0645

{T2
(1)†DT

(0)
1 }+ h.c -0.0062

{T2
(1)†DT

(0)
2 }+ h.c 0.0962

Normalization 1.0367

Total 2.6772

Table 5.6: The contribution to α from the fourth order term in nonlinear PRCC

theory.
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uncertainty in our calculations, we have identified two sources in the calculations

using PRCC with CCSD approximation. First type of error is associated with the

orbital basis set truncation and the termination of iteration while solving the T
(1)
1

and T
(1)
2 equations. Based on the basis set convergence, as described earlier, the

uncertainty from the basis set truncation is negligible. Similarly, the uncertainty

from the termination of cluster amplitude calculation is negligible as we set 10−7

as the convergence criterion. The second type of error arises from the truncation

of the CC theory at T
(0)
2 and the truncation of eT

(1)†

DeT
(0)

+ eT
(0)†

DeT
(1)
. Based

on other detailed studies, the contributions from the triples and quadruple ex-

citations could be in the range of ≈ -2.6%. So that it balances the larger error

arising from the inclusion of the nonlinear terms in the PRCC theory. Based our

earlier studies with iterative method [75], to incorporate higher order terms in

the properties calculations with CC theory, the contributions from the third or

higher order in eT
(1)†

DeT
(0)

+ eT
(0)†

DeT
(1)

is negligibly small. The contribution

from Breit and QED corrections could be another source of error. However, as

Zα � 1 for Ne, the uncertainty from excluding Breit and QED correction could

easily be ≈ 0.01%. Here, α is the fine structure constant and is not to be con-

fused with the dipole polarizability. The estimated uncertainty is consistent with

the estimates of the contribution from the Breit interaction to correlation energy

[74]. Combining all the sources of error, the uncertainty for the calculations with

nonlinear PRCC is ≈ 2.6%. But the uncertainty with linearized PRCC calcula-

tions is below 0.1%. The lower uncertainty associated with the linearized theory

is due to the different trends in the contributions from higher order terms.

5.2.2 Dipole polarizability of Ar, Kr, Xe and Rn

The α of the Ar, Kr, Xe and Rn is discussed in this section. To optimize the

basis set size, we examine the convergence of α using the LPRCC theory. We

start with a basis set of 50 GTOs and increase the basis set size in steps through

a series of calculations. As an example the results for the case of Kr is listed in

Table. 5.7. The value of α changes by only 7 × 10−4 when the number of basis

states is increased from 117 to 131. So, we can use the former for our calculations
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without compromising the desired accuracy.

No. of orbitals Basis size α

79 (15s, 9p, 9d, 7f, 7g) 16.8759

97 (17s, 11p, 11d, 9f, 9g) 16.7507

117 (21s, 13p, 13d, 11f, 11g) 16.7403

131 (25s, 15p, 14d, 13f, 11g) 16.7396

139 (25s, 16p, 15d, 13f, 13g) 16.7394

155 (29s, 17p, 16d, 15f, 15g) 16.7394

Table 5.7: Convergence pattern of α (Kr) as a function of the basis set size.

In this set of calculations we use HDCB. With the introduction of the Breit

interaction in the total atomic Hamiltonian, the number of two electron integrals

becomes large and we need large memory to store these integrals. At the first

order MBPT, which we use as the initial guess, there is an important change

with the inclusion of HB. With only the Coulomb interaction, at the first order

MBPT, the wave operator follows the Coulomb parity selection rule and only

selected multipoles of the Coulomb interaction contributes. However, with HB,

which has opposite parity selection rule compared to Coulomb interaction, all

multipoles of the two-electron interaction which satisfy the triangular conditions

are allowed. In Table 5.8, we list the values of α calculated using the LPRCC

theory. For comparison we have also included the results from previous theo-

retical studies and experimental data. There are no discernible trends in the

previous theoretical results and present work. For Kr and Xe, the results from

the many-body perturbation theory (MBPT) [89] is higher than the experimen-

tal data, but with RCCSD triples (RCCSDT) approximations [88], Ar and Kr

have higher values. For Ar our result is 1% higher than the experimental data

and this is consistent with the RCCSDT result reported in a previous work. It

must, however, be mentioned that the previous work is based on third-order

Douglas-Kroll [92] method. Our result for Kr is in excellent agreement with the

experimental data. This could be a coincidence arising from well chosen basis
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set parameters and inherent property of PRCC to incorporate correlation effects

more completely within a basis set. In the case of Xe our result is 3.4% lower

Method Ar Kr Xe Rn

RCCSDT[88] 11.22 16.80 27.06 33.18

CCSDT [87] 11.084 16.839 27.293 34.43

MBPT[89] 11.062 17.214 28.223

This work 11.213 16.736 26.432 35.391

Expt.[93] 11.091 16.740 27.340

Expt.[94] 11.081(5) 16.766(8)

Table 5.8: The static dipole polarizability, α (atomic units), from linearized

PRCC and comparison with previous results.

than the experimental data and 2.4 % lower than the RCCSDT result. The

later, difference from the the RCCSDT result, can be partly attributed to the

triple excitations. There is no experimental data of α for Rn, the highest Z atom

among the noble gases. In ref. [88], the α of Rn is computed using RCCSDT

and their result is 6.2% lower than our result.

To estimate the importance of Breit interaction, we exclude HB in the PRCC

calculations and then calculate α. The results are 11.202, 16.728, 26.404, 35.266

a.u. for Ar, Kr, Xe and Rn respectively. These represent a decrease of 0.010,

0.012, 0.021 and 0.133 a.u. from the results with the inclusion of HB. Except for

Rn, the change in α is below 0.1%. This implies that to obtain accurate results

for Rn, it is desirable to include Breit interaction in the calculations.

To examine the results in more detail, the contributions from the terms in

the expression of α given in Eq. (5.4) are listed in Table 5.9. It is evident that

T
(1)†
1 D and it’s hermitian conjugate are the leading order terms. This is to be

expected as these terms include the Dirac-Hartree-Fock-Breit contribution and

RPA effects, which have the dominant contributions. In all the cases, the result

from T
(1)†
1 D is larger than the total value of α and shows dependence on Z: the

results of Ar, Kr, Xe and Rn from this term are 8.7%, 11.2%, 16.7% and 17.7%



Chapter 5. Some Applications 91

Contributions from Ar Kr Xe Rn

T
(1)†
1 D + h.c. 12.191 18.613 30.855 41.641

T1
(1)†DT

(0)
2 + h.c. −0.545 −0.888 −1.677 −2.328

T2
(1)†DT

(0)
2 + h.c. 0.510 0.748 1.352 1.862

T1
(1)†DT

(0)
1 + h.c. −0.057 −0.118 −0.357 −0.301

T2
(1)†DT

(0)
1 + h.c. 0.022 0.038 0.092 0.073

Normalization 1.081 1.099 1.145 1.157

Total 11.213 16.736 26.432 35.391

Table 5.9: Contribution to α from different terms of the dressed dipole operator

in the linearized PRCC theory

higher than the total values of α, respectively. The next to leading order terms

are T1
(1)†DT

(0)
2 and its hermitian conjugate. Contributions from these terms

are, approximately, a factor of twenty smaller than the leading order terms and

opposite in phase. On a closer inspection, it is natural that T1
(1)†DT

(0)
2 and it’s

hermitian conjugate are the next to leading order terms. At the second order,

these are the terms which have T1
(1) and T

(0)
2 , the dominant cluster amplitudes in

the perturbed and unperturbed relativistic coupled-cluster theories. The results

from T1
(1)†DT

(0)
2 have large cancellations with the term T2

(1)†DT
(0)
2 , which is

almost the same in magnitude but opposite in sign. Interestingly, a similar

pattern occurs with the T(1)†DT
(0)
2 terms. Namely, the results from T1

(1)†DT
(0)
2

are negative and opposite in sign to T2
(1)†DT

(0)
2 .

The results from the full PRCC, including the terms nonlinear in cluster

amplitudes are given in table 5.10. From the table, it is clear that the nonlinear

terms tend to increase the deviations from the experimental data. For Ar, the

non-linear PRCC theory result is 5.4% larger than the result from linearized

PRCC and it is 6.5% larger than the experimental result. Similarly, for Xe

the nonlinear PRCC result is 6.3% larger than the linearized PRCC result. On

the other hand for Kr, the non-linear PRCC results are marginally larger than

the linearized PRCC results. The larger values of α in the non-linear PRCC
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Contributions from Ar Kr Xe

T
(1)†
1 D + h.c. 12.950 18.622 33.108

T1
(1)†DT

(0)
2 + h.c. −0.579 −0.899 −1.7964

T2
(1)†DT

(0)
2 } + h.c. 0.488 0.769 1.278

T1
(1)†DT

(0)
1 + h.c. −0.061 −0.096 −0.392

T2
(1)†DT

(0)
1 + h.c. 0.022 0.035 0.095

Normalization 1.081 1.099 1.145

Total 11.859 16.771 28.203

Table 5.10: Contribution to α from different terms of the dressed dipole operator

in the non-linear PRCC theory.

can almost entirely be attributed to higher value of T
(1)†
1 D and it’s hermitian

conjugate. It means that the non-linear terms tend to increase the RPA effects.

This is an example where inclusion of higher order terms enhance the uncertainty.

It is possible that triple excitations, higher order excitation not considered in the

present work, may balance the deviations and bring the results closer to the

experimental data.

Ar Kr Xe Rn

8.152 (3p3/2) 12.872 (4p3/2) 22.292 (5p3/2) 34.524 (6p3/2)

3.914 (3p1/2) 5.572 (4p1/2) 8.120 (5p1/2) 6.502 (6p1/2)

0.100 (3s1/2) 0.058 (4s1/2) 0.222 (4d5/2) 0.382 (5d5/2)

0.012 (2p3/2) 0.056 (3d5/2) 0.140 (4d3/2) 0.214 (5d3/2)

Table 5.11: Core orbital contribution from T
(1)†
1 D to α.

For a more detailed analysis of the contributions from the RPA effects, we

consider contributions from each of the core orbitals in T
(1)†
1 D. In terms of

orbital indices the expression is

T
(1)†
1 D+H.c. =

�

ap

(rapτ
p
a + τ pa

∗rpa) , (5.6)

where, r is the single particle electric dipole operator. The values of the four
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leading core orbitals (a) for each of the atoms are listed in Table. 5.11. In all

the cases, the result from the outermost np3/2 valence orbitals are the largest.

This is not surprising as these are the orbitals which have the largest spatial

extent. In addition, as the matrix elements in the expression of α has a quadratic

dependence on radial distance, orbitals with larger radial extent have higher

contributions. The next largest values arise from the np1/2 valence orbitals. Here

we notice an interesting pattern in the results, with higher Z the ratio of the

contribution from np3/2 to np1/2 increases. For Ar, Kr and Xe the ratios are 2.1,

2.3 and 2.7, respectively. However, the ratio for Rn is much larger, it is 5.3. The

reason for the trend in the ratios is the contraction of the np1/2 core orbitals due

to relativistic corrections. Hence, the np1/2 valence orbitals of higher Z atoms

show larger contraction and accounts for the higher ratio. The third largest

contributions in Ar and Kr arise from the 3s1/2 and 4s1/2 orbitals, respectively.

This is expected as these are the orbitals which are energetically just below the

np orbitals and spatially as well. On the contrary, for Xe and Rn, the third

largest contributions must be from the 5s1/2 and 6s1/2 orbitals, respectively, but

this is not case as these orbitals are contracted because of relativistic corrections.

So, the diffused nd5/2 orbitals have the third largest values. From the trends in

the results of the RPA effects, it is obvious that the relativistic corrections are

important for Xe and Rn.

Ar Kr

−0.124 (3p3/2, 3p1/2) −0.205 (4p3/2, 4p1/2)

−0.118 (3p3/2, 3p3/2) −0.193 (4p3/2, 4p3/2)

−0.027 (3p1/2, 3p1/2) −0.038 (4p1/2, 4p1/2)

−0.006 (3p3/2, 3s1/2) −0.008 (4p3/2, 3d5/2)

Table 5.12: Core orbitals contribution from T1
(1)†DT

(0)
2 to α of Argon and Kryp-

ton.

Next, we examine the pair-correlation effects, which manifest through the

next to leading order terms, T1
(1)†DT

(0)
2 and it’s hermitian conjugate. In terms



Chapter 5. Some Applications 94

of orbital indices

T1
(1)†DT

(0)
2 +H.c. =

�

abpq

[(τ pa
∗rbq − τ qa

∗rbp) t
pq
ab + tpqab

∗ (τ parqb − τ qarpb)
�
. (5.7)

The values of the four leading terms, listed in terms of the pairs of the core

orbitals (ab), for Ar and Kr are given in Table. 5.12. From the table we can

identify (np3/2, np1/2) as the most dominant pairing of the core-orbitals among

the double excitations. Considering that the pairing is between different orbitals,

the number of cluster amplitudes is large and this explains the large contribu-

tion. The second and third dominant contributions, from the (np3/2, np3/2) and

(np1/2, np1/2) pairs, are also on account of number of cluster amplitudes. Since

np3/2 and np1/2 each accommodate four and two electrons each, respectively, the

former has a larger number of cluster amplitudes. There is a small but important

change in the results of Xe and Rn listed in Table. 5.13. The most dominant

pair for these atoms is (np3/2, np3/2) and the next dominant pair is (np3/2, np1/2).

This is in contrast to the sequence observed in Ar and Kr. The reason is, al-

though the later pair has more cluster amplitudes, the np1/2 is contracted due

to relativistic corrections. So, the contributions to α from T
(0)
2 involving np1/2

is smaller. The difference between the results from the two pairs is even more

dramatic in Rn. There are other changes in the case of Rn. The (6p3/2, 5d5/2)

pair, involving the diffused 5d5/2, is now the third largest contribution. And the

(6p1/2, 6p1/2), which has the contracted 6p1/2 orbital, is the fourth largest con-

tribution. This difference in the sequence of leading contributions for Rn arises

from the larger relativistic corrections. Here also we estimate the uncertainty

in the calculation of α. As mentioned in the uncertainty estimation of Ne, here

also we have identified few important sources of uncertainty. The first one is the

truncation of orbital basis sets. Although we start with 9 symmetry for all the

calculations, we increase the number of symmetries upto 13 in steps. The basis

set chosen for the results given are after the value of α converges to 10−4. So,

the uncertainty from the basis set truncation is negligible. The second source of

uncertainty is the truncation of CC theory at the single and double excitation for

both the unperturbed and perturbed RCC theory. Based on earlier studies, the
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Xe Rn

−0.361 (5p3/2, 5p3/2) −0.591 (6p3/2, 6p3/2)

−0.359 (5p3/2, 5p1/2) −0.387 (6p3/2, 6p1/2)

−0.054 (5p1/2, 5p1/2) −0.071 (6p3/2, 5d5/2)

−0.035 (5p3/2, 4d5/2) −0.036 (6p1/2, 6p1/2)

Table 5.13: Core orbitals contribution from T1
(1)†DT

(0)
2 } to α of Xenon and

Radon.

contributions from the triples and quadruple excitations could be at the most

≈3.3%. This is also consistent with the deviations from the experimental data.

Finally, the truncation of eT
(1)†

DeT
(0)

+ eT
(0)†

DeT
(1)

is another source of uncer-

tainty. From our earlier studies with iterative method [75] to incorporate higher

order terms in the properties calculations with CC theory, the contributions from

the third or higher order is negligibly small. Quantum electrodynamical (QED)

corrections in this set of calculations is another source of uncertainty. However,

it is expected to be smaller than the correction from the Breit interaction. As

the largest Breit correction, in the case of Rn, is 0.1%, we can assume the correc-

tions from QED effects to be at the most 0.1%. So, adding this, the maximum

uncertainty in our calculations is 3.4%. However, it must be emphasized that,

for Ar and Kr, the uncertainty is much smaller than this bound.

5.2.3 Dipole Polarizability of Alkali Metal Ions

For the case of alkali metal ions, we consider terms up to second order in the

cluster operators. We have, however, studied terms which are third order in

cluster operators and examined the contributions from the leading order terms.

But the contributions are negligible and this validates our choice of considering

terms only up to second order in cluster operators. To begin with, we compute

α using the cluster amplitude obtained from the LPRCC and results are pre-

sented in Table 5.14. In the table we have listed, for systematic comparison, the

experimental data and results from previous theoretical computations.
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Atom LPRCC + Breit RCCSDT RRPA [95] Expt.

Na+ 1.009 1.00(4)[96] 0.9457 0.9980(33) [97]

K+ 5.521 5.52(4)[96] 5.457 5.47(5) [98]

Rb+ 8.986 9.11(4)[96] 9.076 9.0 [99]

9.11(4)[100]

Cs+ 14.924 15.8(1)[96] 15.81 15.644(5) [101]

Fr+ 19.506 20.4(2)[96]

Table 5.14: Static dipole polarizability of alkali ions.

For Na+ and K+, our values of α are higher than the experimental values by

1% and 0.9%, respectively. However, for Rb+ and Cs+ our results are lower than

the experimental values by 0.15% and 4.8%, respectively. In comparison to the

previous theoretical results, our results of Na+ and K+ are in excellent agreement

with the previous work which used the RCCSDT method for computation. But,

for Rb+ and Cs+, like in the experimental data, our results are lower than the

RCCSDT results. One possible reason for the deviations in the heavier ions could

be the exclusion of triple excitation cluster operators in the present work. Our

result of Fr+ seems to bear out this reasoning as the same trend ( our result is

4.4% lower than the RCSSDT result) is observed in this case as well. However,

in absence of experimental data for Fr+, it is difficult to arrive at a definite

conclusion.

To investigate the importance of Breit interaction, HB, in computing α of

the alkali ions, we exclude HB in the Hamiltonian and do a set of systematic

calculations. Our results for the values of α are then 1.008, 5.514, 8.973 and

14.908 for Na+, K+, Rb+ and Cs+, respectively. These values are 0.001, 0.007,

0.013 and 0.016 a.u lower than the results computed using the Dirac-Coulomb-

Breit Hamiltonian. This indicates that the correction from the Breit interaction

is larger in heavier ions and this is as expected since the stronger nuclear potential

in heavier ions translates to larger Breit correction. However, the largest change

is ∼ 0.001% and shows that the contribution from Breit interaction to α can be
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neglected.

For a more detailed study, we examine the contributions from each of the

terms in the Eq. (5.4) and these are listed in Table. 5.21. The leading order

Terms + h.c. Na+ K+ Rb+ Cs+ Fr+

T
(1)†
1 D 1.018 6.043 10.029 17.472 22.926

T1
(1)†DT

(0)
2 −0.018 −0.299 −0.519 −1.023 −1.326

T1
(1)†DT

(0)
1 0.012 −0.038 −0.072 −0.188 −0.126

T2
(1)†DT

(0)
1 −0.001 0.008 0.016 0.039 0.026

T2
(1)†DT

(0)
2 0.023 0.204 0.332 0.654 0.834

Normalization 1.025 1.072 1.089 1.136 1.145

Total 1.009 5.521 8.986 14.924 19.506

Table 5.15: Contribution to α from different terms and their hermitian conjugates

in the linearized PRCC theory.

contribution arises from T
(1)†
1 D + h.c and diagrammatically, it corresponds to

the first two diagrams in Fig. 5.1. These are also the lowest order terms and

are the dominant terms since these subsume the contributions from the Dirac-

Fock and RPA effects. For all the ions, the results from the dominant terms

exceeds the final results and similar trend is observed in the results of noble

gas atoms as well [50, 51]. The next to leading order (NLO) contributions arise

from the T1
(1)†DT

(0)
2 + h.c. The contributions from these terms are an order of

magnitude smaller then T
(1)†
1 D + h.c but more importantly, the contributions are

opposite in phase. Interestingly, the next important termsT2
(1)†DT

(0)
2 + h.c have

contributions which nearly cancels the NLO contributions. Continuing further,

among the second order terms, the smallest contribution arise from T2
(1)†DT

(0)
1

+ h.c., which is perhaps not surprising since T2
(1)† and T

(0)
1 are the cluster

operators with smaller amplitudes in PRCC and RCC theories, respectively.

Collecting the results, the net contributions from the second order terms are

0.016, −0.117, −0.223, −0.456 and −0.517 for Na+, K+, Rb+, Cs+ and Fr+,

respectively.
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Next, we consider all the terms in the PRCC theory, including the terms

which are non-linear in cluster operators. The results of α are presented in the

Table 5.16.

Terms + h.c. Na+ K+ Rb+ Cs+

T
(1)†
1 D 1.034 6.302 10.438 18.376

T1
(1)†DT

(0)
2 −0.018 −0.316 −0.544 −1.084

T1
(1)†DT

(0)
1 0.012 −0.040 −0.076 −0.198

T2
(1)†DT

(0)
1 −0.0008 0.008 0.016 0.038

T2
(1)†DT

(0)
2 0.024 0.194 0.308 0.596

Normalization 1.026 1.072 1.090 1.136

Total 1.025 5.735 9.305 15.606

Table 5.16: Contribution to α from different terms and their conjugate in the

PRCC theory after including the terms nonlinear in cluster operators.

For Na+ the result of α is 2.6% higher than the experimental value. Similarly,

for K+ and Rb+ the results are 4.6% and 3.3% higher than the experimental

values. For Cs+ the nonlinear PRCC theory gives a much improved result than

the LPRCC results and the deviation from the experimental value is reduced

to 0.24%. On a closer examination, most of the change associated with the

nonlinear PRCC can be attributed to the increased contribution from T
(1)†
1 D +

h.c. As these terms subsume RPA effects, the increased contributions indicate

that RPA effects are larger in the nonlinear PRCC.

To investigate the RPA effects in detail, we isolate the contributions from

each of the core spin-orbitals to T
(1)†
1 D + h.c. and The dominant contributions

are presented in Table. 5.22.

It is to be noted that α has a quadratic dependence on the radial distance,

so the orbitals with larger spatial extent contribute dominantly. The effect of

this is discernible in the results, for all the alkali ions the leading contribution

to α arises from the outermost np3/2 orbital, which is the occupied orbital with

largest radial extent. The next leading contribution arise from the np1/2 orbital.
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Na+ K+ Rb+ Cs+ Fr+

0.652 (2p3/2) 4.016 (3p3/2) 6.858 (4p3/2) 12.375 (5p3/2) 18.287 (6p3/2)

0.322 (2p1/2) 1.938 (3p1/2) 3.038 (4p1/2) 4.735 (5p1/2) 4.073 (6p1/2)

0.044 (2s1/2) 0.076 (3s1/2) 0.058 (4s1/2) 0.192 (4d5/2) 0.376 (5d5/2)

0.0004 (1s1/2) 0.008 (2p3/2) 0.044 (3d5/2) 0.121 (4d3/2) 0.211 (5d3/2)

Table 5.17: Four leading contributions to {T(1)†
1 D + h.c} to α in terms of the

core spin-orbitals.

An important observation is, as we proceed from from lower Z to higher Z, the

ratio of contribution of np3/2 to the np1/2 increases. It is 1.8, 2.1, 2.3, 2.6 and

4.5 for Na+, K+, Rb+, Cs+ and Fr+ respectively. The ratio is much larger in

the case Fr+ and without any ambiguity it can be attributed to the relativistic

contraction of the np1/2 orbital. The third leading contribution for Na+, K+,

Rb+ arise from the 2s1/2, 3s1/2 and 4s1/2 orbital respectively. But, for Cs+ and

Fr+ the third leading contribution arise from 4d5/2 and 5d5/2 orbital respectively.

This is because the 5s1/2 and 6s1/2 orbital are contracted due to large relativistic

effects. From the above analysis of RPA effects, the trend in the contributions

demonstrates the importance of relativistic corrections in Cs+ and Fr+.

Na+ K+

−0.0040 (2p3/2, 2p3/2) −0.0646 (3p3/2, 3p3/2)

−0.0021 (2p3/2, 2p1/2) −0.0367 (3p3/2, 3p1/2)

−0.0021 (2p1/2, 2p3/2) −0.0360 (3p1/2, 3p3/2)

−0.0010 (2p1/2, 2p1/2) −0.0148 (3p1/2, 3p1/2)

Table 5.18: Core orbitals contribution from T1
(1)†DT

(0)
2 to α of Na+ and K+.

To study the pair-correlation effects, we identify the pairs of core spin-orbitals

in the next leading order terms T1
(1)†DT

(0)
2 + h.c. The four leading order pairs

for Na+ and K+, and Rb+, Cs+ and Fr+ are listed in table 5.18 and 5.19 respec-

tively. The dominant contribution, for all the ions, arise from the combination

(np3/2, np3/2) orbital pairing. To illustrate the relative values, the contributions



Chapter 5. Some Applications 100

from the pairs of the five outermost core spin-orbitals of Rb+ is shown as a

barchart in Fig. 5.2.

Rb+ Cs+ Fr+

−0.1113 (4p3/2, 4p3/2) −0.2126 (5p3/2, 5p3/2) −0.3078 (6p3/2, 6p3/2)

−0.0601 (4p3/2, 4p1/2) −0.1073 (5p3/2, 5p1/2) −0.1266 (6p3/2, 6p1/2)

−0.0565 (4p1/2, 4p3/2) −0.0930 (5p1/2, 5p3/2) −0.0828 (6p1/2, 6p3/2)

−0.0223 (4p1/2, 4p1/2) −0.0347 (5p1/2, 5p1/2) −0.0489 (6p3/2, 5d5/2)

Table 5.19: Core orbitals contribution from T1
(1)†DT

(0)
2 to α of Rb+, Cs+ and

Fr+.
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Figure 5.2: Contributions to the next to leading order terms T1
(1)†DT

(0)
2 + h.c.

in terms of the pairs of core spin-orbitals.

Comparing the results of all the ions, there is a major difference in the results

of Fr+. For Fr+ the fourth largest contribution is from the (6p3/2, 5d5/2) pair,

whereas for the other ions it is (np1/2, np1/2). This is again a consequence of the

contraction of the 6s1/2 spin-orbital in Fr+ due to relativistic effects.

Coming to the uncertainty estimates of the results of alkali ions, we have

identified the following important sources and based on these we calculate the

uncertainty in our results. The truncation of the spin-orbital basis sets is one of
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the possible source. For all the ions we start the computations with 9 symme-

tries and increase up to 13 symmetries. Along with it, we also vary the number

of the spin-orbitals till α converges to ≈ 10−4. So, we can safely neglect this

uncertainty for our calculations. Another source of uncertainty is the truncation

of the CC theory at the single and double excitation for both unperturbed and

the perturbed RCC theories. The truncation of eT
(1)†

DeT
(0)

+ eT
(0)†

DeT
(1)

at

the second order in cluster operator is also a source of uncertainty. However,

from our earlier studies [75] and our studies on the contribution from third order

terms, the contribution from higher orders is negligibly small. The quantum

electrodynamical(QED) corrections is another source of uncertainty in our cal-

culations and based on our previous studies, we estimate it at 0.1%. In total,

we estimate the maximum uncertainty in our results as ≈3.4%. For lighter ions,

the uncertainty is much lower.

5.2.4 Dipole Polarizability of Alkaline-Earth Metal Ions

As mentioned earlier, for the case of alkaline-Earth metal ions also we consider

up to second order in cluster amplitudes. However, considering that the cluster

operators T
(0)
2 and T

(1)
1 accounts for more than 95% of the many-body effects in

RCC and PRCC, the terms considered in Eq. (5.4) give very accurate results.

To verify, we have examined the leading terms which are third order in cluster

amplitudes and find the contributions are ∼ 10−4. So, for the present work, as we

consider α upto third decimal place, it is appropriate to neglect the contributions

from terms which are third and higher order in cluster operators.

In table 5.20 we list the α of alkaline-Earth metal ions Mg2+, Ca2+, Sr2+,

Ba2+ and Ra2+ computed using Eq. (5.4). The results are based on two sets

of calculations: one is based on the cluster amplitudes obtained from LPRCC

and the other is based on PRCC. For a systematic comparison we also list the

previous theoretical and experimental results. The results of α along with the

orbital energy corrections arising from VUe(r) for each of the ions are discussed

in the subsequent sections.
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Atom This Work Method Previous Works Method

Mg2+ 0.489 (LPRCC) 0.4691 RRPA

0.495 (PRCC) 0.489(5)2 Expt.

Ca2+ 3.284 (LPRCC) 3.2623 RCCSDT

3.387 (PRCC) 3.2541 RRPA

3.26(3)2 Expt.

Sr2+ 5.748 (LPRCC) 5.7923 RCCSDT

5.913 (PRCC) 5.8131 RRPA

Ba2+ 10.043 (LPRCC) 10.4913 RCCSDT

10.426 (PRCC) 10.611 RRPA

Ra2+ 12.908 (LPRCC) 13.3613 RCCSDT

13.402 (PRCC)

Table 5.20: Static dipole polarizability of doubly ionized alkaline-Earth-metal

ions and the values are in atomic units.

Mg2+

The α of Mg2+ computed with LPRCC is in excellent agreement with the exper-

imental data. However, the PRCC result is 1.2% higher than the LPRCC result

and experimental data. This may be due to a part of the additional many-body

effects arising from the nonlinear terms in the cluster amplitude equations, but

which may ultimately cancel with the contributions from the cluster amplitudes

of higher excitations like T
(0)
3 and T

(1)
3 . The RRPA result is 4.1% lower than the

experimental data and it is also lower than both the LPRCC and PRCC results.

It must be added that a similar trend is observed for the Na+ ion [103], which

is isoelectronic with Mg2+, the RRPA result of α is lower than the experimental

data [95]. This trend may be on account of the inherent strength and limitation
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of RRPA, the potential to incorporate core-polarization effects very accurately

and weakness to account for pair correlation effects. To estimate the contri-

bution from the Breit interaction we consider the Dirac-Coulomb Hamiltonian

with the VP potential. The contribution from the Breit interaction can be safely

neglected for this ion as the contribution is less than 0.02%.

Ca2+

For Ca2+, the LPRCC result of α is within the experimental uncertainty and

it is in good agreement with the result from a previous work, which is based

on the RCCSDT theory. The PRCC result is 3.1% larger than the LPRCC

result and deviates from the experimental data by 3.7%. On the other hand, the

result from the RRPA [95], like in Mg2+, is lower than the experimental data.

Based on another set of calculations with the Dirac-Coulomb Hamiltonian, the

contribution from the Breit interaction is estimated to be 0.004, which is a mere

≈0.1% of the total value.

Sr2+

For Sr2+ it is important to have accurate theoretical results as there are no

experimental data of α. From the Table 5.20 the LPRCC result of 5.748 is in very

good agreement with the previous work using RCCSDT. And, like in the previous

cases, the PRCC result of 5.913 is larger than the LPRCC result. Comparing

the results from different theoretical methods, we observe the emergence of two

important changes in the relative patterns when compared with the results results

of Mg2+ and Ca2+. First, the RRPA result is higher than both the LPRCC and

RCCSDT results, and second, the RCCSDT result is larger than the LPRCC

result. This may be on account of the filled 3d shell in Sr2+. As it is of higher

angular momentum, it has larger polarization effects as well as pair correlation

effects. A method like RRPA incorporates the core-polarization effects very

accurately but could potentially under estimate the pair correlation effects. Not

surprisingly, the same trends are observed in the heavier ions Ba2+ and Ra2+

with filled d and f shells. Based on a comparison with the calculations using the
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Dirac-Coulomb Hamiltonian, we estimate the Breit contribution as 0.005. This

is negligibly small and similar in magnitude to the case of Ca2+.

Ba2+

Like in Sr2+, there are no experimental data of α for Ba2+. Hence, it is important

to have accurate theoretical results and in this regard, it is pertinent to calculate

α with a reliable method like RCC. Here, computing with the relativistic version

coupled-cluster is essential as the high Z implies that the relativistic corrections

are important. From Table. 5.20, it is evident that our LPRCC result of 10.043 is

4.3% lower than the RCCSDT result. However, our PRCC result is in very good

agreement with the RCCSDT result, it is just 0.6% less. Examining the results

discussed so far, there is a discernible trend when we compare the PRCC and

RCCSDT results. The difference between the two results narrows with increasing

Z. This may be due to the the basic property of the CCT, the inclusion of selected

electron correlation effects to all order. So, with higher Z the importance of the

correlation effects grows and the two coupled-cluster based methods incorporate

the correlation effects to similar accuracy. The other theoretical result from

the RRPA theory is larger than the other results. Following the computations

described earlier, we estimate the Breit contribution as 0.007, which is similar to

the previous cases.

Ra2+

Our PRCC result of α for Ra2+ is ≈3.7% larger than the LPRCC result. This

trend is similar to the case of Ba2+ and may be attributed to better accounting

of correlation effects in PRCC. To be more precise, the importance of the corre-

lation effects grows with increasing number of electrons, but, LPRCC theory is

insufficient to incorporate the correlation effects as it considers only the linear

terms. The PRCC theory, which includes the nonlinear terms, provides a better

description of the electron correlations. This is borne by the fact that the PRCC

results are in good agreement with the RCCSDT results, the difference between

the two results is just ≈0.3%. Like in the previous cases, the contribution from
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the Breit interaction is small and the value is 0.008.

Terms + h.c. Mg2+ Ca2+ Sr2+ Ba2+ Ra2+

LPRCC results

T
(1)†
1 D 0.496 3.594 6.400 11.708 15.160

T1
(1)†DT

(0)
2 −0.008 −0.180 −0.330 −0.676 −0.864

T1
(1)†DT

(0)
1 0.001 −0.022 −0.044 −0.114 −0.108

T2
(1)†DT

(0)
1 −0.0001 0.004 0.008 0.020 0.018

T2
(1)†DT

(0)
2 0.008 0.098 0.174 0.370 0.470

Normalization 1.019 1.064 1.080 1.126 1.137

Total 0.489 3.284 5.748 10.043 12.908

PRCC results

T
(1)†
1 D 0.502 3.718 6.606 12.214 15.820

T1
(1)†DT

(0)
2 −0.008 −0.188 −0.344 −0.710 −0.908

T2
(1)†DT

(0)
2 0.002 −0.022 −0.046 −0.120 −0.114

T1
(1)†DT

(0)
1 −0.0001 −0.004 0.008 0.018 0.016

T2
(1)†DT

(0)
1 0.008 0.092 0.162 0.338 0.424

Normalization 1.019 1.064 1.080 1.126 1.137

Total 0.495 3.387 5.913 10.426 13.402

Table 5.21: Contribution to α from different terms and their hermitian conjugates

in the LPRCC and PRCC theory.

Core-polarization and pair correlation effects

In the previous sections we discussed the comparison between the results from

different theories, general trends and orbital energy corrections from VP. To ex-

amine and investigate the contributions from various many-body effects, which

are encapsulated in different terms of LPRCC and PRCC, we isolate the contri-

butions from different terms through a series of computations. The results are

listed in Table. 5.21. From the table it is evident that the leading term in the

LPRCC as well as PRCC theory is {T(1)†
1 D + h.c}. This is not surprising as it



Chapter 5. Some Applications 106

is the term which subsumes the DF contribution and the RPA effects. Now to

understand and quantify the RPA effects in these systems, we separate the core

orbital contribution to α.

Mg2+ Ca2+ Sr2+

0.312 (2p3/2) 2.378 (3p3/2) 4.344 (4p3/2)

0.154 (2p1/2) 1.148 (3p1/2) 1.940 (4p1/2)

0.028 (2s1/2) 0.056 (3s1/2) 0.048 (4s1/2)

0.0002(1s1/2) 0.006 (2p3/2) 0.034 (3d5/2)

Ba2+ Ra2+

8.182 (5p3/2) 11.766 (6p3/2)

3.188 (5p1/2) 2.822 (6p1/2)

0.162 (4d5/2) 0.338 (5d5/2)

0.102 (4d3/2) 0.192 (5d3/2)

Table 5.22: Four leading contributions to {T(1)†
1 D + h.c} to α in terms of the

core spin-orbitals.

The four dominant contributions from the core orbitals to {T(1)†
1 D + h.c}

are listed in table 5.22. For all the ions, the outermost p3/2 orbital is the most

dominant and this because of the larger radial extent of the p3/2 orbitals. The

next important contribution arises from the outermost p1/2. A prominent feature

that we observe in the results is the ratio between the contribution from the

outermost p3/2 to the p1/2 orbitals. The ratio are 2.03, 2.07, 2.24, 2.57 and

4.17 for Mg2+, Ca2+, Sr2+, Ba2+ and Ra2+, respectively. The ratio increase

with increasing Z but for Ra2+ it is 1.6 times higher than the Ba2+. This is

an important feature arising from the contraction of p1/2 orbitals due to the

relativistic effects, which is more prominent in the heavier atoms and ions. The

third largest contribution arise from ns1/2 orbital in the case of Mg2+, Ca2+ and

Sr2+. This is because the ns1/2 orbital is energetically lower than the np1/2 and

relativistic corrections are not large. However, for Ba2+ and Ra2+, due to the

relativistic contraction, the contribution from the outermost ns1/2 is suppressed.
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And, the third largest contribution arises from the more diffused outer nd5/2

orbital.

The next leading contribution arises from {T1
(1)†DT

(0)
2 + h.c}. The con-

tribution from this term is much smaller and opposite in phase to the leading

order term. A similar trend is observed in case of the noble gas atoms and

was reported in one of our previous works [51]. Among the various terms the

{T1
(1)†DT

(0)
1 + h.c} has the smallest contribution. This is because of the fact

that T
(0)
1 and T2

(1) have smaller amplitudes in the RCC and PRCC theories,

respectively. As can be seen from the table 5.21, the overall contribution from

the second order terms are 0.0009, -0.100, -0.192, -0.400, -0.484 for Mg2+, Ca2+,

Sr2+, Ba2+ and Ra2+, respectively. Except for Mg2+, the higher order terms

gives a negative contribution to the α.

To study the pair-correlation effects we examine the next to leading order

term, T1
(1)†DT

(0)
2 in more detail. In Table 5.23, 5.24 we list the four leading order

core-orbital pairs which contribute to α. The (np3/2, np3/2) orbital pairing gives

the most dominant contribution. The next leading order contribution arises from

the (np3/2, np1/2) orbital pairing. The same pattern is observed for all the doubly

charged ions. For Ra2+ the fourth largest contribution arise from (6p3/2, 5d5/2)

orbital pairing, but for other ions it is from (np1/2, np1/2) orbital pairing. This is

because of the relativistic effects, which contracts the outer s1/2 orbital in Ra2+

more than the other ions. One important point to notice here is the higher order

terms does not translate to higher accuracy as observed in the case of Mg2+ and

Ca2+.

Mg2+ Ca2+

−0.002 (2p3/2, 2p3/2) −0.038 (3p3/2, 3p3/2)

−0.001 (2p3/2, 2p1/2) −0.022 (3p3/2, 3p1/2)

−0.001 (2p1/2, 2p3/2) −0.022 (3p1/2, 3p3/2)

−0.0004 (2p1/2, 2p1/2) −0.009 (3p1/2, 3p1/2)

Table 5.23: Core orbitals contribution from T1
(1)†DT

(0)
2 to α of Mg2+ and Ca2+.
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Sr2+ Ba2+ Ra2+

−0.069 (4p3/2, 4p3/2) −0.132 (5p3/2, 5p3/2) −0.186 (6p3/2, 6p3/2)

−0.038 (4p3/2, 4p1/2) −0.070 (5p3/2, 5p1/2) −0.077 (6p3/2, 6p1/2)

−0.036 (4p1/2, 4p3/2) −0.061 (5p1/2, 5p3/2) −0.052 (6p1/2, 6p3/2)

−0.014 (4p1/2, 4p1/2) −0.022 (5p1/2, 5p1/2) −0.039 (6p3/2, 5d5/2)

Table 5.24: Core orbitals contribution from T1
(1)†DT

(0)
2 to α of Sr2+, Ba2+ and

Ra2+.

Theoretical Uncertainty

The sources of uncertainty are similar to the earlier cases. Based on a series of test

calculations, we estimate the contribution from triple excited cluster amplitudes

to less than 0.2% of the total value. So, we can consider the upper bound on

the uncertainty from the truncation of the RCC and PRCC theories as 0.4% for

the heavier ions Sr2+, Ba2+ and Ra2+. Examining the trend in the results of

Mg2+ and Ca2+, the uncertainty is likely to be higher for the PRCC results of

these ions. But, the LPRCC results could have an uncertainty less than ≈0.4%.

The other source of error is the truncation of the non-terminating series of α.

We terminate eT
(1)†

DeT
(0)

+ eT
(0)†

DeT
(1)

at the second order in cluster operator.

However, based on our earlier study [75], where we reported an iterative technique

to calculate properties to all order, the contribution from the third and higher

order terms is negligible. So, the uncertainty arising from the truncation in the

expression of α can be neglected. Quantum electrodynamic (QED) corrections

is another source of uncertainty in the present calculation. We include the VP

potential in the present work but the self-energy part of the radiative corrections

is neglected. The self-energy correction is important for the heavy atoms [15].

We can, however, safely neglect it from the error estimates as the contribution

is less than the correction from Breit interaction, which accounts for at the most

0.1% of the total value. So, considering all the sources, the upper bound on the

uncertainty of the present calculations is ≈0.4% for the LPRCC results of Mg2+

and Ca2+, and PRCC results of Sr2+, Ba2+ and Ra2+ ions.



Chapter 6

Future Directions and

Discussions

The present thesis examines the QED corrections in atoms and ions. In this

work we develop the RCCSDT theory with HDCB as the atomic Hamiltonian.

Along with this we consider the vacuum polarization correction to the orbital

energies. This approach provides a platform to study the relativistic, correlation

and QED effects in heavy atoms. To test the effect of T
(0)
3 we study the corre-

lation and excitation energies, electric dipole transition amplitudes. Our results

are compatible with the previous RCCSD works. We must emphasize that there

is scope to improve on the present work. As we mentioned earlier, we have only

considered the vacuum polarization part of the QED corrections in the present

work. In future we will focus on incorporating the self energy and the vertex

correction to obtain a lowest order QED corrections in atoms.

There is tremendous progress in the field of highly charged ions in the past

decades [104]. It is worth to mention that RCC theory can be used to verify the

precision experimental results of highly charged ions. It has been pointed out

that atomic clocks with exceptional high accuracy can be build using the highly

charged ions [105]. For this it is important to develop high precision atomic

many body methods and essentially, coupled-cluster theory is one of the leading

candidate to test it.

The PRCC theory is a general extension of the RCC method to incorporate an

109
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additional perturbation. The present thesis demonstrates that it is suitable for

properties calculations for closed-shell atoms and ions. Although, in the present

thesis we have used PRCC theory to calculate electric dipole polarizability, the

method can be extended to calculate other atomic properties as well. The nu-

clear spin dependent parity non-conservation (NSD PNC), which provides an

important window to test the physics beyond standard model, can be studied

using the PRCC theory [86, 106]. In future we would like to incorporate the

QED effects to study the NSD PNC in atoms.

Time dependent coupled-cluster theory is another emerging field that can be

studied in future. It is always important to study the dynamics of electrons in

many electron atoms. Now with the advent of high power Lasers, experimentally

it is possible to study the dynamics of electrons. There is certainly a scope to go

beyond the time dependent Hartree-Fock theory to incorporate the correlation

effects precisely using the time dependent CCT. The time dependent CCT is

studied in the nuclear physics [107] as well as in quantum chemistry [108]. A

future possibility is to study the dynamics of the electrons in the framework of

time dependent coupled-cluster theory.



Appendix A

Matrix Element of Breit

Interaction

The matrix element of the Breit interaction is necessary to consider the Breit

Hamiltonian at the DHF SCF method as well as in the RCC theory. Here we

will follow the treatment of Grant and his coworkers [18, 63, 65, 66].

The interaction strength for the Breit interaction is

Xk
Br(abcd) = (−1)k�ja||Ck||jc��jb||Ck||jd�{jajck}{jbjdk} ×

�
k+1�

ν=k−1

Π(κa,κc, ν)Π(κb,κd, ν)
4�

µ=1

γν,k
µ (a, b, c, d)Rν

µ(a, b, c, d) +

Π(κa,κc, k − 1)Π(κb,κd, k − 1)
8�

µ=1

skµ(a, b, c, d)S
k
µ(a, b, c, d)

� �� �

�

.

(A.1)

Let us consider the first term in Eq. (A.1). So for ν = k − 1 it is

[Xk
Br(abcd)]ν=k−1 = (−1)k�ja||Ck||jc��jb||Ck||jd�{jajck}{jbjdk} ×

Π(κa,κc, k − 1)Π(κb,κd, k − 1)
�

rk−1,k
1 (a, b, c, d)Rk−1

1 (a, b, c, d)
� �� �

+

rk−1,k
2 (a, b, c, d)Rk−1

2 (a, b, c, d) + rk−1,k
3 (a, b, c, d)Rk−1

3 (a, b, c, d) +

rk−1,k
4 (a, b, c, d)Rk−1

4 (a, b, c, d)
�

(A.2)

Let us consider the term in the under-brace, i.e, rk−1,k
1 (a, b, c, d)Rk−1

1 (a, b, c, d).
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Using the coefficients from Grant’s work [18] we can write the term as follows :

rk−1,k
1 (a, b, c, d)Rk−1

1 (a, b, c, d) = {(κc − κa) + k}{(κd − κb) + k}
� k + 1

k(2k − 1)(2k + 1)

�

×

� ∞

0

dr2

� ∞

0

dr1Pa(r1)Qc(r1)Uk−1(r1, r2)Pb(r2)Qd(r2).

Similarly the other terms can expressed in terms of the large and small compo-

nents of the radial wave-function. For completeness we give here all the integrals

with the coefficients.

rk−1,k
2 (a, b, c, d)Rk−1

2 (a, b, c, d) = {(κc − κa)− k}{(κd − κb)− k}
� k + 1

k(2k − 1)(2k + 1)

�

×

� ∞

0

dr2

� ∞

0

dr1Qa(r1)Pc(r1)Uk−1(r1, r2)Qb(r2)Pd(r2),

rk−1,k
3 (a, b, c, d)Rk−1

3 (a, b, c, d) = {(κc − κa) + k}{(κd − κb)− k}
� k + 1

k(2k − 1)(2k + 1)

�

×

� ∞

0

dr2

� ∞

0

dr1Pa(r1)Qc(r1)Uk−1(r1, r2)Qb(r2)Pd(r2),

rk−1,k
4 (a, b, c, d)Rk−1

4 (a, b, c, d) = {(κc − κa)− k}{(κd − κb) + k}
� k + 1

k(2k − 1)(2k + 1)

�

×

� ∞

0

dr2

� ∞

0

dr1Qa(r1)Pc(r1)Uk−1(r1, r2)Pb(r2)Qd(r2).

For ν = k the integrals and the coefficients has the following form :

rk,k1 (a, b, c, d)Rk
1(a, b, c, d) =

�(κc + κa)(κd + κb)

k(k + 1)

�

×

� ∞

0

dr2

� ∞

0

dr1Pa(r1)Qc(r1)Uk(r1, r2)Pb(r2)Qd(r2),

rk,k2 (a, b, c, d)Rk
2(a, b, c, d) =

�(κc + κa)(κd + κb)

k(k + 1)

�

×

� ∞

0

dr2

� ∞

0

dr1Qa(r1)Pc(r1)Uk(r1, r2)Qb(r2)Pd(r2),

rk,k3 (a, b, c, d)Rk
3(a, b, c, d) =

�(κc + κa)(κd + κb)

k(k + 1)

�

×

� ∞

0

dr2

� ∞

0

dr1Pa(r1)Qc(r1)Uk(r1, r2)Qb(r2)Pd(r2),

rk,k4 (a, b, c, d)Rk
4(a, b, c, d) =

�(κc + κa)(κd + κb)

k(k + 1)

�

×

� ∞

0

dr2

� ∞

0

dr1Qa(r1)Pc(r1)Uk(r1, r2)Pb(r2)Qd(r2).
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For ν = k + 1 the integrals and the coefficients are

rk+1,k
1 (a, b, c, d)Rk+1

1 (a, b, c, d) = {(κc − κa)− (k + 1)}{(κd − κb)− (k + 1)} ×
� k

(k + 1)(2k + 1)(2k + 3)

�

×

� ∞

0

dr2

� ∞

0

dr1Pa(r1)Qc(r1)Uk+1(r1, r2)Pb(r2)Qd(r2),

rk+1,k
2 (a, b, c, d)Rk+1

2 (a, b, c, d) = {(κc − κa) + (k + 1)}{(κd − κb) + (k + 1)} ×
� k

(k + 1)(2k + 1)(2k + 3)

�

×

� ∞

0

dr2

� ∞

0

dr1Qa(r1)Pc(r1)Uk+1(r1, r2)Qb(r2)Pd(r2),

rk+1,k
3 (a, b, c, d)Rk+1

3 (a, b, c, d) = {(κc − κa)− (k + 1)}{(κd − κb) + (k + 1)} ×
� k

(k + 1)(2k + 1)(2k + 3)

�

×

� ∞

0

dr2

� ∞

0

dr1Pa(r1)Qc(r1)Uk+1(r1, r2)Qb(r2)Pd(r2),

rk+1,k
4 (a, b, c, d)Rk+1

4 (a, b, c, d) = {(κc − κa) + (k + 1)}{(κd − κb)− (k + 1)} ×
� k

(k + 1)(2k + 1)(2k + 3)

�

×

� ∞

0

dr2

� ∞

0

dr1Qa(r1)Pc(r1)Uk+1(r1, r2)Pb(r2)Qd(r2).

Now coming to the under braced term in Eq. (A.1). After expanding it is

Π(κa,κc, k − 1)Π(κb,κd, k − 1)
8�

µ=1

skµ(a, b, c, d)S
k
µ(a, b, c, d) =

Π(κa,κc, k − 1)Π(κb,κd, k − 1)×
�

sk1(a, b, c, d)S
k
1 (a, b, c, d) + · · ·+

sk8(a, b, c, d)S
k
8 (a, b, c, d)

�

.

Here we give the details of the integrals and the coefficients in the above expres-

sion that we use in our code.

sk1(a, b, c, d)S
k
1 (a, b, c, d) = − 1

2(2k + 1)
{(κc − κa) + k}{(κd − κb)− (k + 1)} ×

� � ∞

0

dr2

� ∞

0

dr1Pa(r1)Qc(r1)Ūk−1(r1, r2)Pb(r2)Qd(r2)−
� ∞

0

dr2

� ∞

0

dr1Pa(r1)Qc(r1)Ūk+1(r1, r2)Pb(r2)Qd(r2)
�

,



Chapter A. Matrix Element of Breit Interaction 114

sk2(a, b, c, d)S
k
2 (a, b, c, d) = − 1

2(2k + 1)
{(κc − κa)− (k + 1)}{(κd − κb) + k} ×

� � ∞

0

dr2

� ∞

0

dr1Pb(r1)Qd(r1)Ūk−1(r1, r2)Pa(r2)Qc(r2)−
� ∞

0

dr2

� ∞

0

dr1Pb(r1)Qd(r1)Ūk+1(r1, r2)Pa(r2)Qc(r2)
�

,

sk3(a, b, c, d)S
k
3 (a, b, c, d) = − 1

2(2k + 1)
{(κc − κa)− k}{(κd − κb) + (k + 1)} ×

� � ∞

0

dr2

� ∞

0

dr1Qa(r1)Pc(r1)Ūk−1(r1, r2)Qb(r2)Pd(r2)−
� ∞

0

dr2

� ∞

0

dr1Qa(r1)Pc(r1)Ūk+1(r1, r2)Qb(r2)Pd(r2)
�

,

sk4(a, b, c, d)S
k
4 (a, b, c, d) = − 1

2(2k + 1)
{(κc − κa) + (k + 1)}{(κd − κb)− k} ×

� � ∞

0

dr2

� ∞

0

dr1Qb(r1)Pd(r1)Ūk−1(r1, r2)Qa(r2)Pc(r2)−
� ∞

0

dr2

� ∞

0

dr1Qb(r1)Pd(r1)Ūk+1(r1, r2)Qa(r2)Pc(r2)
�

,

sk5(a, b, c, d)S
k
5 (a, b, c, d) = − 1

2(2k + 1)
{(κc − κa) + k}{(κd − κb) + (k + 1)} ×

� � ∞

0

dr2

� ∞

0

dr1Pa(r1)Qc(r1)Ūk−1(r1, r2)Qb(r2)Pd(r2)−
� ∞

0

dr2

� ∞

0

dr1Pa(r1)Qc(r1)Ūk+1(r1, r2)Qb(r2)Pd(r2)
�

,

sk6(a, b, c, d)S
k
6 (a, b, c, d) = − 1

2(2k + 1)
{(κc − κa)− (k + 1)}{(κd − κb)− k} ×

� � ∞

0

dr2

� ∞

0

dr1Qb(r1)Pd(r1)Ūk−1(r1, r2)Pa(r2)Qc(r2)−
� ∞

0

dr2

� ∞

0

dr1Qb(r1)Pd(r1)Ūk+1(r1, r2)Pa(r2)Qc(r2)
�

,

sk7(a, b, c, d)S
k
7 (a, b, c, d) = − 1

2(2k + 1)
{(κc − κa)− k}{(κd − κb)− (k + 1)} ×

� � ∞

0

dr2

� ∞

0

dr1Qa(r1)Pc(r1)Ūk−1(r1, r2)Pb(r2)Qd(r2)−
� ∞

0

dr2

� ∞

0

dr1Qa(r1)Pc(r1)Ūk+1(r1, r2)Pb(r2)Qd(r2)
�

,

sk8(a, b, c, d)S
k
8 (a, b, c, d) = − 1

2(2k + 1)
{(κc − κa) + (k + 1)}{(κd − κb) + k} ×

� � ∞

0

dr2

� ∞

0

dr1Pb(r1)Qd(r1)Ūk−1(r1, r2)Qa(r2)Pc(r2)−
� ∞

0

dr2

� ∞

0

dr1Pb(r1)Qd(r1)Ūk+1(r1, r2)Qa(r2)Pc(r2)
�

.



Appendix B

Matrix Element of Dipole

Operator

The matrix element of the dipole operator is extremely useful to calculate the

electric dipole transition amplitude as well as for static dipole polarizability cal-

culation. Here we will briefly discuss about the matrix element of the dipole

operator.

Using Wigner-Eckart theorem the matrix element of the dipole operator be-

tween two configuration state function can be written as

�Ψi|D|Ψj� = �γ(JI)PFMF |D|γ�(J �I �)PF �M �
F �

= (−1)(F−MF )




F 1 F �

−MF q M �
F



 �γ(JI)F |D|γ�(J �I �)F ��

= (−1)(F−MF )(−1)J+I+F �+1δ(I, I �)[F, F �]




F 1 F �

−MF q M �
F



×







F 1 F �

J � I J






�γJ ||D||γ�J ��. (B.1)

In terms of spin-orbital decomposition the reduced matrix element is written as

�γJ ||D||γ�J �� = dabk (J, J �)�γJa||d||γ�Jb�. (B.2)

Here dabk are the angular factors. Therefore the reduced matrix elements of the
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dipole operator in terms of Dirac spin-orbital can be written as

�γ(la, sa)ja||d||γ�(lb, sb)jb� = −
�

d3rψ†
a(r)rψb(r),

= −
� ∞

0

dr

�

dΩ




Paχκama(r̂)

iQaχ−κama(r̂)





†


r 0

0 r



×




Pbχκbmb

(r̂)

iQbχ−κbmb
(r̂)



 (B.3)

If z-axis is the axis of quantization, then the component of the dipole operator d

along the axis of quantization is dz cos θ. Therefore the reduced matrix element

is

�γ(la, sa)ja||dz||γ�(lb, sb)jb� = −
� ∞

0

drr(P ∗
aPb+Q∗

aQb)

�

dΩχ∗
κama

(r̂) cos θχκbmb
(r̂).

(B.4)

Here we use the relations σ · r̂χ−κbmb
= χκbmb

and (σ · r̂)2 = 1. For convenient

we express the dipole operator in terms of the C tensor operator. Then the

expression is

d = rC1. (B.5)

The components of the C tensor operators are

Ck
q (θ,φ) =

�

4π

2k + 1
Y k
q (θ,φ). (B.6)

Thus the reduced matrix element of the dipole operator in terms of C tensor can

be written as

�γ(la, sa)ja||dz||γ�(lb, sb)jb� = −
� ∞

0

drr(P ∗
aPb +Q∗

aQb)�κa||C
1||κb�. (B.7)

Here the last term in the reduced matrix element is

�κa||C
1||κb� = (−1)ja+1/2

�

(2ja + 1)(2jb + 1)




ja jb 1

−1/2 1/2 0



Π(la + lb + 1).

(B.8)

Here the parity condition is

Π(la + lb + 1) =







1 if la + lb + 1 is even;

0 otherwise.

(B.9)
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In the present work we consistently use the expression B.8 to evaluate the reduced

matrix element of the dipole operator.
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We use perturbed relativistic coupled-cluster (PRCC) theory to calculate the electric dipole polarizability of

the noble-gas atoms Ar, Kr, Xe, and Rn. We also provide a detailed description of the nonlinear terms in the

PRCC theory and consider the Dirac-Coulomb-Breit atomic Hamiltonian for the calculations. We find that the

largest contribution from the Breit interaction to the electric dipole polarizability is 0.1%, in the case of Rn. As

we go from Ar to Rn, based on the pattern in the random-phase-approximation effects, the contraction of the

outermost p1/2 orbitals due to relativistic corrections is discernible without any ambiguity.

DOI: 10.1103/PhysRevA.86.062508 PACS number(s): 31.15.bw, 31.15.ap, 31.15.ve

I. INTRODUCTION

The electric dipole polarizability α is the lowest-order

linear-response property and relevant to a wide range of

physical phenomena related to properties from the microscopic

to the macroscopic. Among the macroscopic properties, the

dielectric constant and refractive index of the gas are the

important ones. In the case of microscopic properties, parity

nonconservation in atoms [1], optical atomic clocks [2,3], and

physics of the condensates of dilute atomic gases [4–6] are

of current interest. For accurate theoretical calculation of α,

a precise treatment of the electron correlation effects is very

important. In the past, a wide range of atomic many-body

theories were used to calculate α. The recent review by Mitroy

et al. [7] gives a detailed overview of the atomic and ionic

polarizabilities.

In the present work we use the perturbed relativistic

coupled-cluster (PRCC) theory to calculate α of the noble-gas

atoms. It is a theory we have developed to incorporate a

perturbation in the conventional relativistic coupled-cluster

(RCC) theory. In general, the coupled-cluster theory (CCT)

[8,9] is one of the most elegant many-body theories which

incorporates the electron correlation to all orders. The details of

the CCT and different variants are described in a recent review

[10]. The theory has been widely used for atomic [11–14],

molecular [15], nuclear [16], and condensed matter physics

[17] calculations. The PRCC theory is different from the

previous RCC-based theories in a number of ways. The most

important one is the representation of the cluster operators

in the PRCC theory. The cluster operator can be a rank-1

tensor operator and it has the advantage of incorporating

multiple perturbations of different ranks in the electronic

sector. One basic advantage of PRCC theory is that it does away

with the summation over intermediate states in the first-order

time-independent perturbation theory. The summation over all

the possible intermediate states within the chosen basis set is

subsumed in the perturbed cluster amplitudes.

For the calculations we use the no-virtual-pair Dirac-

Coulomb-Breit Hamiltonian. However, to assess the impor-

tance of the Breit interaction we also carry out another

series of calculations with the no-virtual-pair Dirac-Coulomb

Hamiltonian. We isolate the changes arising from the Breit

interaction by comparing the results from the two sets of

calculations. For the present work, we have chosen the

noble-gas atoms to study as these systems are ideal for testing

the closed-shell PRCC theory. In previous works, α values

for the noble-gas atoms were calculated in the framework of

many-body perturbation theory [18], nonrelativistic coupled-

cluster theory with single, double, and triple (CCSDT) ex-

citations [19], and the RCCSDT approximation [20]. In the

last work, using the RCCSDT, the third-order Douglas-Kroll

method [21] was used. It is an alternative to the Foldy-

Wouthuysen transformation and a quasirelativistic treatment.

For the single-particle wave functions, we use kinetically bal-

anced Gaussian-type Dirac-Hartree-Fock orbitals. The results

from our PRCC theory calculations are in good agreement

with the experimental data and consistent with previous

calculations.

The paper is organized as follows. In Sec. II, for com-

pleteness and easy reference we briefly describe the RCC

theory with the Breit interaction. In Sec. III we introduce

the PRCC theory and provide a detailed description of the

tensor structure of the PRCC operators. In Sec. III B we

give the analytical structure of the PRCC equations. In

Sec. III C we present a diagrammatic and algebraic description

of the the nonlinear terms in the PRCC theory. In Sec. IV we

introduce the formal expression of the dipole polarizability

and its representation in the PRCC theory. In subsequent

sections we describe the details of the methods of calculation

and present the results and discussion. We then end with

conclusions. All the results presented in this work and related

calculations are in atomic units (h̄ = me = e = 4πǫ0 = 1). In

this system of units the velocity of light is α−1, the inverse

of the fine-structure constant, for which we use the value of

α−1 = 137.035 999 074 [22].

II. RCC THEORY

For high-Z atoms and ions, the Dirac-Coulomb-Breit

Hamiltonian, denoted by H DCB, is an appropriate choice to in-

clude the relativistic effects. However, there are complications

associated with the negative-energy continuum states of H DCB.

These lead to variational collapse and continuum dissolution

[23]. A formal approach to avoid these complications is to use

the no-virtual-pair approximation. In this approximation, for a

062508-11050-2947/2012/86(6)/062508(12) ©2012 American Physical Society
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neutral atom of N electrons [24]

H DCB = �++

N
∑

i=1

[cαi · pi + (βi − 1)c2 − VN (ri)]

+
∑

i<j

[

1

rij

+ gB(rij )

]

�++, (1)

where α and β are the Dirac matrices, �++ is an operator

which projects to the positive-energy solutions and VN (ri) is

the nuclear potential. Sandwiching the Hamiltonian with �++

ensures that the effects of the negative-energy continuum states

are neglected in the calculations. The last two terms 1/rij and

gB(rij ) are the Coulomb and Breit interactions, respectively.

The latter, Breit, interaction, represents the interelectron

magnetic interactions and is given by

gB(r12) = −
1

2r12

[

α1 · α2 +
(α1 · r12)(α2 · r12)

r2
12

]

. (2)

The Hamiltonian satisfies the eigenvalue equation

H DCB|�i〉 = Ei |�i〉, (3)

where |�i〉 is the exact atomic state and Ei is the energy of

the atomic state. In CCT the exact atomic state is given by the

ansatz

|�i〉 = eT (0)

|�i〉, (4)

where |�i〉 is the reference-state wave function and T (0) is

the unperturbed cluster operator. In the case of closed-shell

atoms the model space of the ground state consists of a single

Slater determinant |�0〉. For an N -electron closed-shell atom

T (0) =
∑N

i=1 T
(0)
i , where i is the order of excitation. In the

coupled-cluster single and double (CCSD) approximation,

T (0) = T
(0)

1 + T
(0)

2 . (5)

The CCSD approximation is a good starting point for structure

and property calculations of closed-shell atoms and ions. In

the second quantized representation

T
(0)

1 =
∑

a,p

tpa a†
paa, (6a)

T
(0)

2 =
1

2!

∑

a,b,p,q

t
pq

ab a†
pa†

qabaa, (6b)

where t ······ are cluster amplitudes, a
†
i (ai) are single-particle

creation (annihilation) operators, and abc . . . (pqr . . .) rep-

resent core (virtual) single-particle states or orbitals. The

eigenvalue equation of the closed-shell ground state in the

CCT approximation is

H DCBeT (0)

|�0〉 = E0e
T (0)

|�0〉. (7)

Following a similar procedure, the CC eigenvalue equation of

closed-shell excited states may be defined as well.

III. PRCC THEORY

To incorporate an additional interaction Hamiltonian Hint

perturbatively, we introduce the perturbed coupled-cluster

operator T(1). This means that Hint is applied once and the

residual Coulomb interaction is applied to all orders in all

possible sequences. In general, T(1) is a tensor operator and

the multipole structure depends on the properties of Hint. With

the perturbation, the modified eigenvalue equation is

(H DCB + λHint)|�̃i〉 = Ẽ|�̃i〉, (8)

where λ is the perturbation parameter. Consider the case

where Hint represents the interaction with an external static

electric field E. The interaction Hamiltonian is then Hint =

−
∑

i ri · E = D · E, where D is the many-electron electric

dipole operator. The perturbed atomic state in PRCC theory is

|�̃i〉 = eT (0)+λT(1)·E|�0〉=eT (0)
[1+λT(1)·E]|�0〉. (9)

This approach has the advantage of taking into account the

effect of multiple perturbations systematically. Other than E,

Hint could be one of the interactions internal to the atom,

such as the Breit interaction, hyperfine interaction, etc. For the

present work, we examine T(1) arising from E, which is parity

odd and a vector operator in the electronic space.

A. Tensor structure of PRCC operator

For the present case, with E as the perturbation, we can

write the perturbed single-excitation cluster operator as

T
(1)
1 =

∑

a,p

τp
a C1(r̂)a†

paa. (10)

Note that T
(1)
1 is a vector operator in the electronic space and

the C tensor C1(r̂) represents the vector nature of T(1). The key

difference of T
(1)
1 from T

(0)
1 is the parity condition, the total

orbital parity must be odd; in other words (−1)la+lp = −1.

Here, la (lp) is the orbital angular momentum of the core

(virtual) orbital a (p). Diagrammatically, the T
(1)
1 operator

is represented as shown in Fig. 1(a). It is similar to the

conventional representation of T
(0)

1 but the interaction line is

replaced by a wavy line.

The tensor structure of T
(1)
2 , on the other hand, has

additional complications as it consists of two vertices. After

due consideration of the Hint and T (0) multipole structure, it is

represented as

T
(1)
2 =

∑

a,b,p,q

∑

l,k

τ
pq

ab (l,k){Cl(r̂1)Ck(r̂2)}1a†
pa†

qabaa. (11)

As in T
(1)
1 , Ck are the C-tensor operators and two C-tensor

operators of rank l and k are coupled to a rank-1 tensor operator

T
(1)
2 . At the two vertices, the orbital angular momenta must

satisfy the triangular conditions |ja − jp| � l � (ja + jp) and

|jb − jq | � k � (jb + jq). In addition, the two tensor opera-

tors must be such that |l − k| � 1 � (l + k). These selection

rules arise from the triangular conditions at the vertices. The

other selection rule follows from the parity condition and

Hint is parity odd; therefore (−1)(la+lp) = −(−1)(lb+lq ). The

a p a p b q

FIG. 1. Diagrammatic representation of T
(1)
1 and T

(1)
2 .
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diagrammatic representation of T
(0)
2 is as shown in Fig. 1(b),

where the vertical bar on the interaction line is to represent

the rank of the operator. Furthermore, this representation,

at a later stage, simplifies the angular integration using the

diagrammatic technique.

B. PRCC equations

The ground-state eigenvalue equation with Hint is

(H DCB + λHint)e
[T (0)+λT(1)·E]|�0〉 = Ẽ0e

[T (0)+λT(1)·E]|�0〉.

(12)

When Hint is parity odd, as in the present case, there is no

first-order perturbative correction to the energy so Ẽ0 = E0.

In the CCSD approximation we define the perturbed cluster

operator T(1) as

T(1) = T
(1)
1 + T

(1)
2 . (13)

Using this, the PRCC equations are derived from Eq. (12).

The derivation involves several operator contractions and these

are more transparent with the normal-ordered Hamiltonian

H DCB
N = H DCB − 〈�i |H

DCB|�i〉. The eigenvalue equation

then assumes the form
[

H DCB
N + λHint

]

|�̃0〉 = [E0 − 〈�0|H
DCB|�0〉]|�̃0〉. (14)

A more convenient form of the eigenvalue equation is
(

H DCB
N + λHint

)

|�̃0〉 = �E0|�̃0〉, (15)

where �E0 = E0 − 〈�0|H
DCB|�0〉 is the ground-state corre-

lation energy. Following the definition in Eq. (13), the PRCC

eigenvalue equation is

(

H DCB
N + λHint

)

eT (0)+λT(1)·E|�0〉 = �E0e
T (0)+λT(1)·E|�0〉.

(16)

Applying e−T (0)

from the left, we get

[

H̄ DCB
N + λH̄int

]

eλT(1)·E

|�0〉 = �E0e
λT(1)·E|�0〉, (17)

where H̄ = e−T (0)

HeT (0)

is the similarity-transformed Hamil-

tonian. Using the Campbell-Baker-Hausdorff expansion for

the Dirac-Coulomb-Breit Hamiltonian

H̄ DCB = H DCB + [H DCB,T (0)] +
1

2!
[[H DCB,T (0)],T (0)]

+
1

3!
[[[H DCB,T (0)],T (0)],T (0)]

+
1

4!
[[[[H DCB,T (0)],T (0)],T (0)],T (0)]. (18)

The commutations represent contractions and as H DCB consist

of one- and two-body interactions, the expansion terminates at

the fourth order. Multiplying Eq. (17) from the left by e−λT(1)

and considering terms linear in λ, we get the PRCC equation
[

H̄ DCB
N ,T(1)

]

· E + H̄int|�0〉 = 0. (19)

Here, the similarity-transformed interaction Hamiltonian H̄int

terminates at second order as Hint is a one-body interaction

Hamiltonian.

Expanding H̄int, the PRCC equation assumes the form

([

H̄ DCB
N ,T(1)

]

+ · · ·
)

· E|�0〉

=
(

D + [D,T (0)] + 1
2
[[D,T (0)],T (0)]

)

· E|�0〉. (20)

Hereafter, for simplicity, we drop E from the equations and

for compact notation, we use HN to denote H DCB
N . The cluster

equations of T
(1)
1 are obtained after projecting the equation on

singly excited states 〈�
p
a |. These excited states, however, must

be opposite in parity to |�0〉. Similarly, the T
(1)
2 equations are

obtained after projecting on the doubly excited states 〈�
pq

ab |.

After the application of Wick’s theorem, the T(1) equations are

〈

�p
a

∣

∣

[

HN + HNT(1) + HNT (0)T(1) +
1

2!
HNT (0)T (0)T(1)

]

|�0〉

=
〈

�p
a

∣

∣

[

DT (0) +
1

2!
DT (0)T (0)

]

|�0〉, (21)

〈

�
pq

ab

∣

∣

[

HN + HNT(1) + HNT (0)T(1) +
1

2!
HNT (0)T (0)T(1)

+ · · ·

]

|�0〉 =
〈

�
pq

ab

∣

∣

[

DT (0) +
1

2!
DT (0)T (0)

]

|�0〉, (22)

where AB represents all possible contractions between the

two operators A and B. Equations (21) and (22) form

a set of coupled nonlinear algebraic equations. However,

T (0) are solved for first as these are independent of T(1);

the PRCC equations are then reduced to coupled linear

algebraic equations. An approximation which incorporates

all the important many-body effects like the random-phase

approximation (RPA) is the linearized PRCC (LPRCC). In

this approximation, only the terms linear in T , equivalent to

retaining only HNT (1) and DT (0) in Eqs. (21) and (22), are

considered in the equations. Hereafter we use T as the general

representation of both the T (0) and T(1) operators.

C. Nonlinear terms in the PRCC

The calculation with the LPRCC approximation involves

few many-body diagrams, and it is computationally less

complex and hence faster. In our calculations, the LPRCC

equations are solved first and we use the solutions as the initial

guess to solve the PRCC equations. To describe the PRCC

equations in detail, we examine each of the nonlinear terms.

These involve more contractions and are larger in number

than the linear terms. To begin with, consider the second term

on the left-hand sides of Eqs. (21) and (22), second order in

T . In the CCSD approximation it expands to

HNT (0)T(1) = HNT
(0)

1 T
(1)
1 + HNT

(0)
1 T

(1)
2

+HNT
(0)

2 T
(1)
1 + HNT

(0)
2 T

(1)
2 . (23)

All the terms contribute to both T
(1)
1 and T

(1)
2 . Similarly, the

third term on the left-hand sides of Eqs. (21) and (22), third

order in T , expands to

HNT (0)T (0)T(1) = HNT
(0)

1 T
(0)

1 T
(1)
1 + HNT

(0)
1 T

(0)
2 T

(1)
1

+HNT
(0)

1 T
(0)

1 T
(1)
2 + HNT

(0)
1 T

(0)
2 T

(1)
2 . (24)
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(i) (j)

(e) (f) (g) (h)

(a) (b) (c) (d)

FIG. 2. Diagrams of T
(1)
1 arising from HNT

(0)
1 T

(1)
1 .

In this equation, of the four terms, only the first one contributes

to T
(1)
1 . But all the terms contribute to T

(1)
2 . At the fourth order

there is only one term and it contributes to only T
(1)
2 . The terms

on the right-hand sides of Eqs. (21) and (22) expand to

DT (0) = DT
(0)

1 + DT
(0)

2 , (25)

DT (0)T (0) = DT
(0)

1 T
(0)

1 + DT
(0)

1 T
(0)

2 . (26)

Here, DT
(0)

1 and DT
(0)

1 T
(0)

2 are nonzero for only T
(1)
1 and T

(1)
2 ,

respectively. Each of the terms, after contraction, generates

several topologically unique Goldstone diagrams. The dia-

grammatic treatment is the preferred mode of further analysis

and calculation as it simplifies the calculations and is well

suited to represent contractions between the operators. In the

next few sections we discuss the T
(1)
1 and T

(1)
2 diagrams and

their algebraic expressions.

1. T
(1)

1 diagrams

In this section we describe the single-excitation diagrams

arising from the nonlinear terms. The many-body diagrams or

the Goldstone diagrams are drawn and evaluated as described

in Ref. [25]. Consider the first term on the right-hand side of

Eq. (23), HNT
(0)

1 T
(1)
1 , it is equivalent to ten diagrams and these

are shown in Fig. 2. Algebraically, we can write it as

〈

HNT
(0)

1 T
(1)
1

〉p

a
=

∑

bcqa

g̃bcqa

(

tpc τ
q

b + t
q

b τp
c

)

+
∑

bpqr

g̃bpqr

(

t raτ
q

b + t
q

b τ r
a

)

,

where gijkl = 〈ij |1/r12 + gB(r12)|kl〉 is the matrix element

of the electron-electron interactions and g̃ijkl = gijkl − gij lk

is the antisymmtrized matrix element. We have used 〈· · · 〉
p
a

to represent the matrix element 〈�
p
a | · · · |�0〉. The diagrams

in Figs. 2(i) and 2(j), arising from the one-body part of HN,

evaluate to zero when the orbitals are calculated with the Dirac-

Hartree-Fock potential. The next term, HNT
(0)

1 T
(1)
2 , generates

eight diagrams and these are shown in Fig. 3.

(e) (f) (g) (h)

(a) (b) (c) (d)

FIG. 3. Diagrams arising from the contraction HNT
(0)

1 T
(1)
2 .

It is to be noted that here, contractions with only the

gabpq type of two-body interaction are nonzero. The algebraic

expression of the diagrams is

〈

HNT
(0)

1 T
(1)
2

〉p

a
=

∑

bcqr

g̃cbrq

(

t raτ
cb
pq + tpc τ

rq

ab + t rc τ
qp

ba + t
q

b τ rp
ac

)

.

Among these terms, we next consider HNT
(0)

2 T
(1)
1 , the last of

the second-order terms. Like the previous term, after contrac-

tion it generates eight diagrams and these are shown in Fig. 4.

The topological structures of the diagrams are very similar

to those of Fig. 3 and the algebraic expression of the diagrams is

〈

HNT
(0)

2 T
(1)
1

〉p

a
=

∑

bcqr

g̃bcqr

(

t
qr

ba τ c
p + t

qp

bc τ r
a + t

pq

ab τ r
c + t rpac τ

q

b

)

.

At the third order, as mentioned earlier, only HNT
(0)

1 T
(0)

1 T
(1)
1

contributes to the T
(1)
1 diagrams. This term generates six

Goldstone diagrams and these are shown in Fig. 5. The

algebraic expression of the diagrams is

〈

HNT
(0)

1 T
(0)

1 T
(1)
1

〉p

a
=

∑

bcqr

g̃bcqr

(

t ra t
p
c τ b

q + t
q

b t raτ
p
c + t

q

b tpc τ r
a

)

.

In total, the nonlinear terms in the T
(1)
1 equation generate 30

Goldstone diagrams. Considering that T
(0)

2 and T
(1)
1 are the

dominant cluster operators, in terms of amplitudes, in the

unperturbed RCC and PRCC approximations, respectively, we

can expect the magnitude of HNT
(0)

2 T
(1)
1 to be the largest.

2. T
(1)

2 diagrams

In this section we discuss the Goldstone diagrams of T
(1)
2

arising from the nonlinear terms on the left-hand side of Eq.

(22). Consider the second-order term; after expansion there

are four terms as given in Eq. (23) and all have nonzero

contributions to T
(1)
2 .

(e) (f) (g) (h)

(a) (b) (c) (d)

FIG. 4. Diagrams arising from the contraction HNT
(0)

2 T
(1)
1 .
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(a) (b) (c) (d)

(e) (f)

FIG. 5. Diagrams arising from the contraction HNT
(0)

1 T
(0)

1 T
(1)
1 .

The first term, HNT
(0)

1 T
(1)
1 , has six diagrams and these are

shown in Fig. 6. The equivalent algebraic expression is

〈

HNT
(0)

1 T
(1)
1

〉pq

ab
=

∑

rs

gpqrs t
r
aτ

s
b +

∑

cd

gcdabt
p
c τ

q

d −
∑

cr

gpcrb

×
[(

t ra + t rb
)

τ q
c − tqc

(

τ r
a + τ r

b

)]

,

where we have used 〈· · · 〉
pq

ab to represent the matrix element

〈�
pq

ab | · · · |�0〉. The next term, HNT
(0)

1 T
(1)
2 , has 16 diagrams

and these are shown in Fig. 7.

However, the last two diagrams in Figs. 7(o) and 7(p) are

zero when Dirac-Hartree-Fock-Breit orbitals are used, as in

the present work. The equivalent algebraic expression is

〈

HNT
(0)

1 T
(1)
2

〉pq

ab
=

∑

crs

gcqrs

(

t rc τ
sp

ba − t sc τ
rp

ba + t sb τ̃
rp
ca − t rbτ

sp
ca

−t raτ
ps

cb − tpc τ rs
ab

)

+
∑

cdr

gcdrb

(

− t rc τ
qp

da

+t rdτ
qp
ca − t

q

d τ̃ rp
ca + tpc τ

rq

ad + t raτ
pq

cd

)

,

where τ̃
rp
ca = τ

rp
ca − τ

rp
ac is the antisymmetrized amplitude of

T
(1)
2 . Interchanging the order of excitations of the cluster

operators, we get the next term HNT
(0)

2 T
(1)
1 . As in the previous

term there are 16 diagrams; these are shown in Fig. 8 and the

equivalent algebraic expression is

〈

HNT
(0)

2 T
(1)
1

〉pq

ab
=

∑

crs

gcqrs

(

t̃pr
ac τ s

b − tps
ac τ r

b − t
sp

bc τ r
a + t

ps

ab τ r
c

− t
pr

ab τ s
c − t rsabτ

p
c

)

+
∑

cdr

gcdrb

(

t̃pr
ca τ

q

d

− t
pr

ad τ q
c + t

qr

daτ
p
c − t

pq

ad τ r
c + tpq

ac τ r
d + t

pq

cd τ r
a

)

,

(a) (b) (c) (d)

(e) (f)

FIG. 6. Diagrams arising from the contraction HNT
(0)

1 T
(1)
1 .

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

FIG. 7. Diagrams arising from the contraction HNT
(0)

1 T
(1)
2 .

where t̃
pr
ac = t

pr
ac − t

rp
ac is the antisymmetrized amplitude of

T
(0)

2 . The last second-order term is HNT
(0)

2 T
(1)
2 and we can

expect a large number of diagrams as both of the cluster

operators are double excitation. There are 18 diagrams and

these are shown in Fig. 9.

The algebraic expression for the diagrams is

〈

HNT
(0)

2 T
(1)
2

〉pq

ab
=

∑

cdrs

gcdrs

(

t̃pr
ac τ̃

sq

db − t̃ps
ac τ

rq

db + tps
ac τ

qr

db

+ t sqac τ
pr

db − t̃ rscaτ
pq

db − t̃
rp

cd τ
sq

ab − t
ps

ab τ
qr

dc

+ t
pr

ab τ
qs

dc − tpq
ac τ̃ rs

bd + t rsabτ
pq

cd + t
pq

cd τ rs
ab

)

.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

FIG. 8. Diagrams arising from the contraction HNT
(0)

2 T
(1)
1 .
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

FIG. 9. Diagrams arising from the contraction HNT
(0)

2 T
(1)
2 .

Collecting all the diagrams which are second order in T(1),

there are 56 Goldstone diagrams in the T
(1)
2 equation after

contraction of the cluster operators with HN.

At the third order, all the terms in Eq. (24) have nonzero

contributions to T
(1)
2 . There are six Goldstone diagrams from

the first term HNT
(0)

1 T
(0)

1 T
(1)
1 and these are shown in Fig. 10.

The equivalent algebraic expression of the diagrams is

〈

HNT
(0)

1 T
(0)

1 T
(1)
1

〉pq

ab
=

∑

crs

gcqrs

[

− t ra t
p
c τ s

b −
(

tpc τ r
a − t raτ

p
c

)

t sb
]

+
∑

cdr

gcdrb

[

t ra
(

tpc τ
q

d + τp
c t

q

d

)

+ tpc τ r
a t

q

d

]

.

The overall contribution from these diagrams is expected

to be small as these are quadratic in T
(0)

1 . The next term,

HNT
(0)

1 T
(0)

1 T
(1)
2 , has ten Goldstone diagrams; these are shown

in Fig. 11 and the equivalent algebraic expression of the

diagrams is

〈

HNT
(0)

1 T
(0)

1 T
(1)
2

〉pq

ab
=

∑

cdrs

gcdrs

[

t ra t
p
c τ̃

sq

bd + t ra t
p

d τ
sq

cb + t ra t
s
bτ

pq

cd

+t
q

d

(

t raτ
ps

cb + tpc τ rs
ab

)

−
(

t rc t
s
a − t sc t

r
a

)

τ
pq

db

−
(

t rc t
p

d − t rd t
p
c

)

τ
sq

ab

]

.

(a) (b) (c) (d)

(e) (f)

FIG. 10. Diagrams arising from the contraction HNT
(0)

1 T
(0)

1 T
(1)
1 .

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

FIG. 11. Diagrams arising from the contraction HNT
(0)

1 T
(0)

1 T
(1)
2 .

Contributions from these diagrams will be lower than

HNT
(0)

1 T
(0)

1 T
(1)
1 as these depend on T

(1)
2 , which is smaller in

magnitude than T
(1)
1 . The contributions from the two terms are

expected to be small as these are second order in T
(0)

1 . The last

third-order term HNT
(0)

1 T
(0)

2 T
(1)
1 has 18 diagrams and these are

shown in Fig. 12.

The algebraic equivalent of these diagrams is

〈

HNT
(0)

1 T
(0)

2 T
(1)
1

〉pq

ab
=

∑

cdrs

gcdrs

[(

t sc t
pr

ab − t rc t
ps

ab

)

τ
q

d −
(

t rc t
pq

ad

− t rd t
pq
ac

)

τ s
b + t ra

(

t
ps

cb τ
q

d − t̃
sq

dbτ
p
c + t

sq

cb τ
p

d

− t
pq

cb τ s
d + t

pq

db τ s
c + t

pq

cd τ s
b

)

+ tpc
(

t
rq

ad τ s
b

− t̃
sq

dbτ
r
a + t

rq

dbτ
s
a − t

rq

ab τ s
d + t

sq

abτ
r
d

+ t rsabτ
q

d

)]

.

Among the third-order terms in the T
(1)
2 equation this will be

the leading term as it depends on T
(0)

2 and T
(1)
1 , the dominant

cluster operators among the unperturbed and perturbed cluster

operators, respectively. There are two Goldstone diagrams

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

FIG. 12. Diagrams arising from the contraction HNT
(0)

1 T
(0)

2 T
(1)
1 .
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(a) (b)

FIG. 13. Diagrams arising from the contraction HNT
(0)

1 T
(0)

1 T
(0)

1 T
(1)
1 .

from the fourth-order term; these are shown in Fig. 13 and

the algebraic expression is

〈

HNT
(0)

1 T
(0)

1 T
(0)

1 T
(1)
1

〉pq

ab
=

∑

cdrs

gcdrs t
r
a t

p
c

(

t sbτ
q

d + t
q

d τ s
b

)

.

Among all the diagrams considered so far these two diagrams

will have the lowest contributions as these are third order

in T
(0)

1 . However, for completeness we include these in the

calculations.

3. DT (0) and DT (0)T (0) diagrams

Another group of PRCC diagrams arise from the contrac-

tion of D and T (0); these contribute to the right-hand side of

Eqs. (21) and (22). In this group, there are five Goldstone

diagrams of T(1) and these are shown in Fig. 14.

Among the diagrams only the last one is nonlinear in T (0).

The algebraic expression of the diagrams is

〈DT (0)〉pa + 〈DT (0)T (0)〉pa =
∑

q

rpq t
q
a −

∑

c

rcat
p
c

×
∑

bq

rbq

(

t
qp

ba − t
qp

ab − tqa t
q

b

)

,

where rij = 〈i|r|j 〉 is the electronic part of the single-particle

matrix element. For T
(1)
2 , there are four diagrams; these are

shown in Fig. 15 and the last two are nonlinear in T (0).

The algebraic expression of the diagrams is

〈DT (0)〉
pq

ab + 〈DT (0)T (0)〉
pq

ab =
∑

r

rqr t
pr

ab −
∑

c

rcbt
pq
ac

×
∑

cr

rcr

(

− t ra t
pq

cb − tpc t
rq

ab

)

.

This completes the diagrammatic and algebraic analysis of the

nonlinear terms in the T(1) equations. To obtain the linear

(a) (b) (c) (d)

(e)

FIG. 14. Singles diagrams arising from the contraction HintT
(0)

and HintT
(0)T (0).

(a) (b) (c) (d)

FIG. 15. Doubles diagrams arising from the contraction HintT
(0)

and HintT
(0)T (0).

algebraic equations of the cluster amplitudes, each of the

diagrams or terms in the algebraic expression requires further

simplification to radial and angular components. The angular

part is evaluated diagrammatically; however, the diagrams are

different from the Goldstone diagrams.

IV. DIPOLE POLARIZABILITY

From the second-order time-independent perturbation the-

ory, the ground-state dipole polarizability of a closed-shell

atom is

α = −2
∑

I

〈�0|D|�I 〉〈�I |D|�0〉

E0 − EI

, (27)

where |�I 〉 are the intermediate atomic states and EI is the

energy of the atomic state. As D is an odd-parity operator, |�I 〉

must be opposite in parity to |�0〉. In the PRCC theory we can

write

α = −
〈�̃0|D|�̃0〉

〈�̃0|�̃0〉
. (28)

From the definition of |�̃0〉 in Eq. (9) and based on the parity

selection rules, only the terms linear in λ are nonzero. That is,

α = −
〈�0|T

(1)†D̄ + D̄T(1)|�0〉

〈�0|�0〉
, (29)

where D̄ = eT (0)†
DeT (0)

represents the unitary transformed

electric dipole operator and 〈�0|�0〉 is the normalization

factor. From here on, it is implicit that expressions with more

than one operator involve contraction and for compactness, we

drop the notation representing operator contractions. Retaining

the the leading-order terms, we obtain

α ≈
1

N
〈�0|T

(1)†
1 D + DT

(1)
1 + T

(1)†
1 DT

(0)
1 + T

(0)†
1 DT

(1)
1

+T
(1)†
2 DT

(0)
1 + T

(0)†
1 DT

(1)
2 + T

(1)†
1 DT

(0)
2

+T
(0)†

2 DT
(1)
1 + T

(1)†
2 DT

(0)
2 + T

(0)†
2 DT

(1)
2 |�0〉, (30)

whereN = 〈�0| exp[T (0)†] exp[T (0)]|�0〉 is the normalization

factor, which involves a nonterminating series of contractions

between T (0)† and T (0). However, in the present work we use

N ≈ 〈�0|T
(0)†

1 T
(0)

1 + T
(0)†

2 T
(0)

2 |�0〉. From the above expres-

sion for α, an evident advantage of calculation using PRCC

theory is the absence of summation over |�I 〉. The summation

is subsumed in the evaluation of T(1) in a natural way. This is

one of the key advantages of using PRCC theory.

062508-7



S. CHATTOPADHYAY, B. K. MANI, AND D. ANGOM PHYSICAL REVIEW A 86, 062508 (2012)

TABLE I. Comparison between GTO and GRASP92 results.

Atom GTO GRASP92

Ar −528.6837 −528.6837

Kr −2789.8605 −2788.8605

Xe −7446.8976 −7446.8976

Rn −23602.0202 −23602.0232

V. CALCULATIONAL DETAILS

A. Basis set and nuclear density

The first step of our calculations, which is also true of any

atomic and molecular calculation, is to generate an orbital

basis set. For the present work, we use the Dirac-Hartree-

Fock Hamiltonian and even-tempered Gaussian-type orbitals

(GTOs) [26]. The radial parts of the spin orbitals are linear

combinations of the Gaussian-type functions

gL
κp(r) = CL

κir
nκ e−αpr2

, (31)

where p is the GTO index and CL
κi is the normalization

constant. The exponent αp depends on two parameters α0 and

β; these are related as αp = α0β
p−1, where p = 0,1, . . . ,m

and m is the number of Gaussian-type functions. The small

components of the spin orbitals are linear combinations of

gS
κp(r), which are generated from gL

κp(r) through the kinetic

balance condition [27]. We calculate the GTOs on a grid [28]

and optimize the values of α0 and β for individual atoms to

match the spin-orbital energies and self-consistent-field (SCF)

energy of GRASP92 [29], which solves Dirac-Hartree-Fock

equations numerically. The comparison of the SCF energies is

given in Table I. Except for Rn, there is excellent agreement

between the SCF energies obtained from the GTOs and

GRASP92. The symmetrywise values of the optimized α0 and

β are listed in Table II.

To optimize the basis set size, we examine the convergence

of α using the LPRCC theory. We start with a basis set of

50 GTOs and increase the basis set size in steps through a

series of calculations. As an example, the results for the case

of Kr are listed in Table III. The value of α changes by only

7 × 10−4 when the number of basis states is increased from

117 to 131. So we can use the former for our calculations

without compromising the desired accuracy.

In the present work we have considered a finite-size Fermi

density distribution of the nucleus,

ρnuc(r) =
ρ0

1 + e(r−c)/a
, (32)

TABLE II. The α0 and β parameters of the even-tempered GTO

basis used in the present calculations.

s p d

Atom α0 β α0 β α0 β

Ar 0.00055 1.620 0.00515 2.405 0.00570 2.850

Kr 0.00015 2.015 0.00945 2.975 0.00635 2.845

Xe 0.00012 2.215 0.00495 2.995 0.00745 2.460

Rn 0.00010 2.280 0.00671 2.980 0.00715 2.720

TABLE III. Convergence pattern of α(Kr) as a function of the

basis set size.

No. of orbitals Basis size α

79 (15s,9p,9d,7f,7g) 16.8759

97 (17s,11p,11d,9f,9g) 16.7507

117 (21s,13p,13d,11f,11g) 16.7403

131 (25s,15p,14d,13f,11g) 16.7396

139 (25s,16p,15d,13f,13g) 16.7394

155 (29s,17p,16d,15f,15g) 16.7394

where a = t4 ln(3). The parameter c is the half charge radius

so that ρnuc(c) = ρ0/2, and t is the skin thickness. The PRCC

equations are solved iteratively using the Jacobi method; we

have chosen this method as it is easily parallelizable. The

method, however, is slow to converge. So we use direct inver-

sion in the iterated subspace [30] to accelerate the convergence.

B. Breit interaction

There are two different but equivalent approaches, reported

in previous works, to calculate the matrix elements of gB(r12).

The first approach [31] is to couple the angular parts of the

orbitals with Dirac matrices to give a linear combination of

vector spherical harmonics. This is then combined with the

angular part of 1/r12 for integration. In the second approach

[32], gB(r12) is expanded as a linear combination of irreducible

tensor operators. In the present work we use the latter and

employ the expressions given in Ref. [33] to incorporate

gB(r12) in the GTO and RCC calculations. For the GTO

calculation, Refs. [34,35] provide a very good description for

inclusion of gB(r12) in finite-basis-set calculations. To assess

the relative importance of the Breit interaction, we calculate

the first-order energy correction

〈H B〉DF = 〈�0|
∑

i<j

gB(rij )|�0〉, (33)

where |�o〉 is the ground-state reference function gener-

ated from the Dirac-Hartree-Fock spin orbitals and H B =
∑

i<j gB(rij ) represents the many-particle form of the Breit

interaction. The 〈H B〉DF values for the rare-gas atoms Ar, Kr,

Xe, and Rn are listed in Table IV.

For each atom we calculated the SCF energy with H DC

and H DCB; these are EDC
SCF = 〈�0|H

DC|�0〉 and EDCB
SCF =

〈�0|H
DCB|�0〉. Here, H DC = H DCB − H B is the atomic

Hamiltonian without the Breit interaction. From the table, it

is evident that our results are in very good agreement with the

previous results [36]. The largest deviation from the previous

results is observed in Rn; our result for〈H B〉DF is 0.8% lower

than the previous result. However, as the Breit-interaction

TABLE IV. SCF energies for noble-gas atoms.

Atom EDC
SCF EDCB

SCF 〈H B〉DF Ref. [36]

Ar −528.6837 −528.5511 0.1326 0.1324

Kr −2788.8605 −2787.4310 1.4295 1.4268

Xe −7446.8976 −7441.1248 5.7728 5.7753

Rn −23602.0202 −23572.8480 29.1722 29.3968
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contribution to EDCB
SCF is a mere 0.12% in Rn, in absolute

terms, the deviation is ≈0.001%. Our results are also in good

agreement with the results of another previous study [37]. In

the PRCC calculations, as described earlier, we treat H B at par

with the residual Coulomb interaction. However, to examine

the relative importance of the Breit interaction, we calculate α

with and without H B.

VI. RESULTS AND DISCUSSION

The expression of α in PRCC theory, as mentioned earlier,

is a nonterminating series. However, the terms of order higher

than quadratic in T have negligible contributions. For this

reason, in the present work, we consider up to second order

in the cluster operator. With the introduction of the Breit

interaction in the total atomic Hamiltonian, the number of two-

electron integrals becomes large and we need large memory

to store these integrals. In first-order many-body perturbation

theory (MBPT), which we use as the initial guess, there is

an important change with the inclusion of H B. With only

the Coulomb interaction, at the first-order MBPT, the wave

operator follows the parity selection rule and only selected

multipoles of the Coulomb interaction contribute. However,

with H B, which has the opposite parity selection rule compared

to the Coulomb interaction, all multipoles of the two-electron

interaction which satisfy the triangular conditions are allowed.

In Table V, we list the values of α calculated using the LPRCC

theory. For comparison we have also included the results from

previous theoretical studies and experimental data. There are

no discernible trends in the previous theoretical results and

present work. For Kr and Xe, the results from the many-body

perturbation theory [18] are higher than the experimental data,

but with RCCSDT approximations [20], Ar and Kr have higher

values. For Ar our result is 1% higher than the experimental

data and this is consistent with the RCCSDT result reported

in a previous work. It must, however, be mentioned that the

previous work is based on the third-order Douglas-Kroll [21]

method. Our result for Kr is in excellent agreement with the

experimental data. This could be a coincidence arising from

well-chosen basis set parameters and the inherent property

of the PRCC theory to incorporate correlation effects more

completely within a basis set.

In the case of Xe our result is 3.4% lower than the

experimental data and 2.4% lower than the RCCSDT result.

The latter difference from the the RCCSDT result can be partly

attributed to the triple excitations. There is no experimental

data for α for Rn, the highest-Z atom among the noble gases.

In Ref. [20], the α for Rn is computed using the RCCSDT

approximation and their result is 6.2% lower than our result.

TABLE V. The static dipole polarizability α (atomic units) from

linearized PRCC calculations and comparison with previous results.

Method Ar Kr Xe Rn

RCCSDT [20] 11.22 16.80 27.06 33.18

CCSDT [19] 11.084 16.839 27.293 34.43

MBPT [18] 11.062 17.214 28.223

This work 11.213 16.736 26.432 35.391

Expt. [38] 11.091 16.740 27.340

Expt. [39] 11.081(5) 16.766(8)

TABLE VI. Contribution to α from different terms of the dressed

dipole operator in the linearized PRCC theory.

Contributions from Ar Kr Xe Rn

T
(1)†
1 D + H.c. 12.191 18.613 30.855 41.641

T1
(1)†DT

(0)
2 + H.c. −0.545 −0.888 −1.677 −2.328

T2
(1)†DT

(0)
2 + H.c. 0.510 0.748 1.352 1.862

T1
(1)†DT

(0)
1 + H.c. −0.057 −0.118 −0.357 −0.301

T2
(1)†DT

(0)
1 + H.c. 0.022 0.038 0.092 0.073

Normalization 1.081 1.099 1.145 1.157

Total 11.213 16.736 26.432 35.391

To estimate the importance of the Breit interaction, we

exclude H B in the PRCC calculations and then calculate α.

The results are 11.202, 16.728, 26.404, and 35.266 for Ar, Kr,

Xe, and Rn, respectively. These represent a decrease of 0.010,

0.012, 0.021, and 0.133 from the results with the inclusion

of H B. Except for Rn, the change in α is below 0.1%. This

implies that to obtain accurate results for Rn, it is desirable to

include the Breit interaction in the calculations.

To examine the results in more detail, the contributions

from the terms in the expression for α given in Eq. (30) are

listed in Table VI. It is evident that T
(1)†
1 D and its Hermitian

conjugate are the leading-order terms. This is to be expected as

these terms include the Dirac-Hartree-Fock-Breit contribution

and RPA effects, which have the dominant contributions. In

all the cases, the result from T
(1)†
1 D is larger than the total

value of α and shows dependence on Z: the results for Ar,

Kr, Xe, and Rn from this term are 8.7%, 11.2%, 16.7%, and

17.7% higher than the total values of α, respectively. The

next-to-leading-order terms are T1
(1)†DT

(0)
2 and its Hermitian

conjugate. Contributions from these terms are, approximately,

a factor of 20 smaller than the leading-order terms and opposite

in phase. On a closer inspection, it is natural that T1
(1)†DT

(0)
2

and its Hermitian conjugate are the next-to-leading-order

terms. At the second order, these are the terms which have

T1
(1) and T

(0)
2 , the dominant cluster amplitudes in the perturbed

and unperturbed relativistic coupled-cluster theories. The

results from T1
(1)†DT

(0)
2 have large cancellations with the

term T2
(1)†DT

(0)
2 , which is almost the same in magnitude but

opposite in sign. Interestingly, a similar pattern occurs with

the T(1)†DT
(0)

2 terms. Namely, the results from T1
(1)†DT

(0)
2 are

negative and opposite in sign to T2
(1)†DT

(0)
2 .

The results from the full PRCC, including the terms

nonlinear in cluster amplitudes are given in Table VII. From

TABLE VII. Contribution to α from different terms of the dressed

dipole operator in the nonlinear PRCC theory.

Contributions from Ar Kr Xe

T
(1)†
1 D + H.c. 12.950 18.622 33.108

T1
(1)†DT

(0)
2 + H.c. −0.579 −0.899 −1.7964

T2
(1)†DT

(0)
2 } + H.c. 0.488 0.769 1.278

T1
(1)†DT

(0)
1 + H.c. −0.061 −0.096 −0.392

T2
(1)†DT

(0)
1 + H.c. 0.022 0.035 0.095

Normalization 1.081 1.099 1.145

Total 11.859 16.771 28.203
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TABLE VIII. Core-orbital contribution from T
(1)†
1 D + H.c to α.

Ar Kr Xe Rn

8.152 (3p3/2) 12.872 (4p3/2) 22.292 (5p3/2) 34.524 (6p3/2)

3.914 (3p1/2) 5.572 (4p1/2) 8.120 (5p1/2) 6.502 (6p1/2)

0.100 (3s1/2) 0.058 (4s1/2) 0.222 (4d5/2) 0.382 (5d5/2)

0.012 (2p3/2) 0.056 (3d5/2) 0.140 (4d3/2) 0.214 (5d3/2)

the table, it is clear that the nonlinear terms tend to increase

the deviations from the experimental data. A similar trend

was reported in our previous work on Ne [40]. For Ar,

the nonlinear PRCC theory result is 5.4% larger than the

result from linearized PRCC and it is 6.5% larger than the

experimental result. Similarly, for Xe the nonlinear PRCC

result is 6.3% larger than the linearized PRCC result. On the

other hand for Kr, the nonlinear PRCC results are marginally

larger than the linearized PRCC results. The larger values of α

in the nonlinear PRCC can almost entirely be attributed to the

higher value of T
(1)†
1 D and its Hermitian conjugate. This means

that the nonlinear terms tend to increase the RPA effects. This is

an example where inclusion of higher-order terms enhances the

uncertainty. It is possible that triple excitations, higher-order

excitations not considered in the present work, may balance

the deviations and bring the results closer to the experimental

data.

For a more detailed analysis of the contributions from the

RPA effects, we consider contributions from each of the core

orbitals in T
(1)†
1 D. In terms of orbital indices the expression is

T
(1)†
1 D + H.c. =

∑

ap

(

rapτp
a + τp

a
∗
rpa

)

, (34)

where r is the single-particle electric dipole operator. The

values of the four leading core orbitals (a) for each of the

atoms are listed in Table VIII. In all the cases, the result

from the outermost np3/2 valence orbitals are the largest.

This is not surprising as these are the orbitals which have the

largest spatial extent. In addition, as the matrix elements in the

expression of α have a quadratic dependence on radial distance,

orbitals with larger radial extent have higher contributions. The

next largest values arise from the np1/2 valence orbitals. Here

we notice an interesting pattern in the results; with higher Z

the ratio of the contribution from np3/2 to np1/2 increases. For

Ar, Kr, and Xe the ratios are 2.1, 2.3, and 2.7, respectively.

However, the ratio for Rn is much larger; it is 5.3. The reason

for the trend in the ratios is the contraction of the np1/2 core

orbitals due to relativistic corrections. Hence, the np1/2 valence

orbitals of higher-Z atoms show larger contraction and account

for the higher ratio. The third largest contributions in Ar and

Kr arise from the 3s1/2 and 4s1/2 orbitals, respectively. This is

expected as these are the orbitals which are energetically just

below the np orbitals, and spatially as well. On the contrary,

for Xe and Rn, the third largest contributions should be from

the 5s1/2 and 6s1/2 orbitals, respectively, but this is not case as

these orbitals are contracted because of relativistic corrections.

So the diffused nd5/2 orbitals have the third largest values.

From the trends in the results of the RPA effects, it is obvious

that the relativistic corrections are important for Xe and Rn.

TABLE IX. Core-orbital contributions from T1
(1)†DT

(0)
2 to α of

argon and krypton.

Ar Kr

−0.124 (3p3/2,3p1/2) −0.205 (4p3/2,4p1/2)

−0.118 (3p3/2,3p3/2) −0.193 (4p3/2,4p3/2)

−0.027 (3p1/2,3p1/2) −0.038 (4p1/2,4p1/2)

−0.006 (3p3/2,3s1/2) −0.008 (4p3/2,3d5/2)

Next, we examine the pair-correlation effects, which are

manifest through the next-to-leading-order term T1
(1)†DT

(0)
2

and its Hermitian conjugate. In terms of orbital indices

T1
(1)†DT

(0)
2 + H.c. =

∑

abpq

[(

τp
a

∗
rbq − τ q

a
∗
rbp

)

t
pq

ab

+ t
pq

ab

∗(

τp
a rqb − τ q

a rpb

)]

. (35)

The values of the four leading terms, listed in terms of

the pairs of core orbitals (ab), for Ar and Kr are given in

Table IX. From the table we can identify (np3/2,np1/2) as the

most dominant pairing of the core orbitals among the double

excitations. Considering that the pairing is between different

orbitals, the number of cluster amplitudes is large and this

explains the large contribution. The second and third dominant

contributions, from the (np3/2,np3/2) and (np1/2,np1/2) pairs,

are also on account of the number of cluster amplitudes.

Since np3/2 and np1/2 accommodate four and two electrons

each, respectively, the former has a larger number of cluster

amplitudes. There is a small but important change in the results

for Xe and Rn listed in Table X. The most dominant pair for

these atoms is (np3/2,np3/2) and the next dominant pair is

(np3/2,np1/2). This is in contrast to the sequence observed

in Ar and Kr. The reason is that, although the latter pair

has more cluster amplitudes, the np1/2 is contracted due to

relativistic corrections. So the contribution to α from T
(0)

2

involving np1/2 is smaller. The difference between the results

from the two pairs is even more dramatic in Rn. There are other

changes in the case of Rn. The (6p3/2,5d5/2) pair, involving

the diffused 5d5/2 orbital, is now the third largest contribution,

and the (6p1/2,6p1/2) pair, which has the contracted 6p1/2

orbital, is the fourth largest contribution. This difference in the

sequence of leading contributions for Rn arises from the larger

relativistic corrections.

To estimate the uncertainty in our calculations, we have

identified a few important sources of uncertainty. The first

one is the truncation of the orbital basis sets. Although we

start with nine symmetries for all the calculations, we increase

the number of symmetries up to 13 in steps. The basis sets

TABLE X. Core-orbital contributions from T1
(1)†DT

(0)
2 } to α of

xenon and radon.

Xe Rn

−0.361 (5p3/2,5p3/2) −0.591 (6p3/2,6p3/2)

−0.359 (5p3/2,5p1/2) −0.387 (6p3/2,6p1/2)

−0.054 (5p1/2,5p1/2) −0.071 (6p3/2,5d5/2)

−0.035 (5p3/2,4d5/2) −0.036 (6p1/2,6p1/2)
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chosen for the results given are taken after the value of α

converges to 10−4. So the uncertainty from the basis set

truncation is negligible. The second source of uncertainty is the

truncation of CC theory at the single and double excitations for

both the unperturbed and perturbed RCC theories. Based on

earlier studies, the contributions from the triple and quadruple

excitations could be at the most ≈3.3%. This is also consistent

with the deviations from the experimental data. Finally, the

truncation of eT(1)†

DeT (0)

+ eT (0)†

DeT(1)

is another source of

uncertainty. From our earlier studies with an iterative method

[41] to incorporate higher-order terms in the calculations of

properties with CC theory, the contributions from the third or

higher orders are negligibly small. Quantum electrodynamical

corrections in this set of calculations are another source of

uncertainty. However, they are expected to be smaller than

the correction from the Breit interaction. As the largest Breit

correction, in the case of Rn, is 0.1%, we can assume the

corrections from QED effects to be at the most 0.1%. So,

adding this, the maximum uncertainty in our calculations is

3.4%. However, it must be emphasized that, for Ar and Kr, the

uncertainty is much smaller than this bound.

VII. CONCLUSION

The PRCC theory is a general extension of the RCC

method to incorporate an additional perturbation. The present

work demonstrates that it is suitable for property calculations

for closed-shell atoms. Although, in the present work we

have used the PRCC theory to calculate the electric dipole

polarizability, the method can be extended to calculate other

atomic properties as well.

The present study indicates, through a detailed analysis

and identification of the dominant contributions, a discernible

pattern in the relativistic corrections to α arising from the

contraction of the outermost p1/2 orbital. The notable impact of

this is the larger fractional contribution from the outermost p3/2

orbitals to the terms which subsume RPA effects in the PRCC

calculations, T
(1)†
1 D and its Hermitian conjugate, as we proceed

from Ar to Rn. For Rn, the effect of relativistic corrections is

also identifiable without any ambiguity in the pair-correlation

effects; the (6p1/2,6p1/2) pair is below the (6p3/2,5d5/2) pair

for the term T1
(1)†DT

(0)
2 in the PRCC calculations.

We have also examined the importance of the Breit

interaction in the calculation of α. The largest change of 0.1%

is associated with Rn, the heaviest noble-gas atom. So, when

the required uncertainty of the calculations is below 1%, the

inclusion of the Breit interaction is desirable for higher-Z

closed-shell atoms like Rn.
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Using perturbed relativistic coupled-cluster (PRCC) theory we compute the ground-state electric dipole

polarizability, α, of doubly ionized alkaline earth metal ions Mg2+, Ca2+, Sr2+, Ba2+, and Ra2+. In the present

work we use the Dirac-Coulomb-Breit atomic Hamiltonian and we also include the Uehling potential, which is

the leading-order term in the vacuum polarization corrections. We examine the correction to the orbital energies

arising from the Uehling potential in the self-consistent field calculations as well as perturbatively. Our results

for α are in very good agreement with the experimental data, and we observe a change in the nature of the orbital

energy corrections arising from the vacuum polarization as we go from Mg2+ to Ra2+.
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I. INTRODUCTION

The static electric dipole polarizability, α, of an atom or ion

is a measure of the first-order response to an external electric

field. It is an essential parameter to determine any property

associated with atom-field or ion-field interactions as well as

atom-atom and atom-ion interactions. The properties include

the refractive indexes, dielectric constants, ion mobility in

gases, and van der Waal’s constants [1] and α has been

measured using a wide variety of experimental techniques [2].

For closed-shell ions, like the doubly ionized alkaline-earth-

metal ions, α is a good representative of the core-polarization

effects.

Theoretically, α of the many electron atoms and ions have

been calculated using different many-body methods. A recent

review on atomic and ionic polarizabilities [3] provides a

description of the theoretical methods used in the calculation

of α. However, among the various theoretical methods, the

ones based on coupled-cluster theory (CCT) [4,5] are ideal

for atoms and ions which are closed shell or with few valence

electrons. The CCT is, among the many-body theories, one of

the most reliable and powerful. It takes into account the

electron correlation to all order. A detailed discussion on the

CCT and different variants is given in a recent review [6], and

very good descriptions of the application of nonrelativistic

CCT to atomic and molecular systems are given in Refs. [7,8].

The CCT has been used with great success in atomic [9–14],

molecular [15], nuclear [16], and condensed-matter physics

[17] calculations. For the theoretical calculations of α, the

CCT-based methods which have given very precise results are

the finite field [18], sum over states [19,20], and perturbed

relativistic coupled-cluster (PRCC) theory [21–23].

In a previous work, the CCT-based finite-field method with

the Douglas-Kroll Hamiltonian [24] was used to compute the α

of the alkaline-earth-metal ions [25]. In this work we compute

the α of doubly ionized alkaline-earth-metal ions using the

PRCC theory. The method was used in our previous works to

calculate the α of noble gas atoms [21,22] and alkaline-earth

metal ions [23]. The theory is the conventional relativistic

coupled-cluster (RCC) theory with an additional perturbation.

To account for the additional perturbation, we introduce a new

set of cluster operators and accordingly define a second set

of cluster equations. The equations, however, are linear in the

cluster operators and the new operators obey the same selection

rules as the perturbation Hamiltonian. In the calculation of α

the perturbation is the external electric field E. In the present

work we use the Dirac-Coulomb-Breit atomic Hamiltonian

along with the vacuum polarization (VP) potential. The VP

potential is treated self-consistently as well as perturbatively.

The paper is organized as follows. In Sec. II we give a

brief discussion on RCC and PRCC theory along with the VP

correction. The theoretical formulation of α in the framework

of PRCC theory is discussed in Sec. III. In Sec. IV we give

the details of our calculational methodology. Next we discuss

about the VP correction to the orbital energies of doubly

ionized alkaline-earth-metal ions. In the subsequent sections

we give the results of static polarizability and discuss it in

great detail. Then we end with the conclusion. All the results

presented in this work and related calculations are in atomic

units(h̄ = me = e = 4πǫ0 = 1). In this system of units the

velocity of light is α−1, the inverse of fine structure constant,

for which we use the value of α−1 = 137.035 999 074 [26].

II. THEORETICAL METHODS

A detailed description of the RCC theory for closed-shell

atoms is given in Ref. [13] and similarly a detailed account

of PRCC theory is given in our previous works [21–23].

However, for completeness and easy reference we provide

a brief overview in this section.

A. RCC and PRCC theory

In the present work we use the Dirac-Coulomb-Breit no-

virtual-pair Hamiltonian, H DCB, to incorporate the relativistic

effects and avoid the difficulties associated with the negative

continuum states [27]. For a doubly ionized atom with N

electrons [28]

H DCB = �++

N
∑

i=1

[cαi · pi + (βi − 1)c2 − VN+2(ri)]

+

N,N
∑

i<j

[

1

rij

+ gB(rij )

]

�++, (1)
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where α and β are the Dirac matrices, �++ is an operator

which projects to the positive energy solutions, and VN+2(ri)

is the nuclear potential arising from the Z = (N + 2) nucleus.

Projecting the Hamiltonian with �++ ensures that the ill

effects of the negative-energy continuum states are removed

from the calculations. An elegant alternative to the projection

operators, better suited for numerical computations, is to use

the kinetically balanced finite basis sets [29–32]. This is the

method adopted in the present work to generate the orbital

basis sets. Returning to H DCB, the last two terms, 1/rij and

gB(rij ), are the Coulomb and Breit interactions, respectively.

The latter, Breit interaction, represents the transverse photon

interaction and is given by

gB(r12) = −
1

2r12

[

α1 · α2 +
(α1 · r12)(α2 · r12)

r2
12

]

. (2)

The general trends in the observables arising from the inclusion

of Breit interaction in RCC and PRCC are discussed in our

previous work on noble gas atoms [22]. For a closed-shell ion,

the ground-state eigenvalue equation is

H DCB|�0〉 = E0|�0〉, (3)

where |�0〉 is the ground state of the ion. In the presence of

a perturbation Hamiltonian, Hint, the eigenvalue equation is

modified to

(H DCB + λHint)|�̃0〉 = Ẽ0|�̃0〉, (4)

where λ is the perturbation parameter, |�̃0〉 is the perturbed

ground state, and Ẽ0 is the corresponding eigenenergy. The

origin of Hint could be internal to the ion, like the hyperfine

interaction, or external, like the interaction with an external

electromagnetic field E.

In the RCC and PRCC theories, we define two sets of

coupled-cluster operators T (0) and T(1), which we refer to

as the unperturbed and perturbed coupled-cluster operators,

respectively. The former is equivalent to the conventional

cluster operators, and the latter is an additional set of cluster

operators introduced in our recent works [21–23]. It accounts

for the electron correlation effects arising from Hint and follows

the same selection rules as Hint. To calculate α, consider the

interaction of the ion with an electrostatic electric field E. The

interaction Hamiltonian is then

Hint = −
∑

i

ri · E = D · E, (5)

where D is the many-electron electric dipole operator. The

cluster operators T(1) are then rank one tensor operators in the

electronic space and follows the same parity selection rule as

Hint. Consequently, as Hint is parity odd, there is no first-order

perturbative correction to the energy, so to first order in λ we get

Ẽ0 = E0. Using the cluster operators T (0) and T(1), the atomic

states of unperturbed and perturbed atomic Hamiltonians are

|�0〉 = eT (0)

|	0〉, (6a)

|�̃0〉 = e[T (0)+λT(1)·E]|	0〉, (6b)

where |	0〉 is the reference-state wave function. The clus-

ter operators involve all possible excitations; however, a

simplified but accurate representation is the coupled-cluster

single and double (CCSD) excitation approximation. With this

approximation

T (0) = T
(0)

1 + T
(0)

2 , (7a)

T(1) = T
(1)
1 + T

(1)
2 , (7b)

where the subscripts represent the level of excitation. In the

second quantized notations

T
(0)

1 =
∑

a,p

tpa a†
paa, (8a)

T
(0)

2 =
1

2!

∑

a,b,p,q

t
pq

ab a†
pa†

qabaa, (8b)

where t ...... are cluster amplitudes, a
†
i (ai) are single-particle cre-

ation (annihilation) operators, and abc . . . (pqr . . .) represent

core (virtual) states. Similarly, the perturbed cluster operators

are represented as

T
(1)
1 =

∑

a,p

τp
a C1(r̂)a†

paa,

T
(1)
2 =

∑

a,b,p,q

∑

l,k

τ
pq

ab (l,k){Cl(r̂1)Ck(r̂2)}1a†
pa†

qabaa.

Here, C1(r̂), a C tensor, is used to represent the vector nature

of T
(1)
1 . On the other hand, two C tensor operators of rank l

and k are coupled together to form a rank one tensor operator,

T
(1)
2 . For a more rigorous description of the tensor structure of

the PRCC operators we refer to our previous work [22].

B. Linearized PRCC theory

In this section we describe in brief the linearized form of the

PRCC (LPRCC) theory. It is much simpler than the complete

PRCC but encompasses all the important many-body effects.

To derive the LPRCC equations, as discussed earlier, consider

E as the perturbation. The eigenvalue equation is then

(H DCB + λHint)e
[T (0)+λT(1)·E]|	0〉 = Ẽ0e

[T (0)+λT(1)·E]|	0〉.

(9)

By using the normal ordered form of the Hamiltonian, the

eigenvalue equation may be written as
(

H DCB
N + λHint

)

|�̃0〉 = �E0|�̃0〉, (10)

where �E0 = E0 − 〈	0|H
DCB|	0〉 is the ground-state cor-

relation energy of the many-electron ion. Using the PRCC

wavefunction in Eq. (6b), we write the ground state as

|�̃0〉 ≈ eT (0)

[1 + λT(1) · E]|	0〉. (11)

Using this expression, the PRCC eigenvalue equation assumes

the form
(

H DCB
N + λHint

)

eT (0)

[(1 + λT(1) · E)]|	0〉

= �E0e
T (0)

[(1 + λT(1) · E)]|	0〉. (12)

Following the standard coupled-cluster ansatz, as the initial

step to derive the cluster amplitude equations, we apply e−T (0)

from the left and get

[

H̄ DCB
N + λH̄int

]

eλT(1)·E|	0〉 = �E0e
λT(1)·E|	0〉, (13)
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where H̄ = e−T (0)

HeT (0)

is the similarity transformed

Hamiltonian. After applying e−λT(1)

from the left and con-

sidering the terms linear in λ, we obtain the PRCC equation

([

H̄ DC
N ,T(1)

]

· E + H̄int

)

|	0〉 = 0. (14)

The linearized PRCC is the approximation where we

take [H̄ DC
N ,T(1)] ≈ [H DC

N ,T(1)] and H̄int ≈ D + [D,T (0)]. The

eigenvalue equation is then reduced to
[

H DCB
N ,T(1)

]

|	0〉 = (D + [D,T (0)])|	0〉. (15)

For simplicity, we have dropped E from the equation. The

equations of the cluster amplitudes T
(1)
1 and T

(1)
2 are obtained

by projecting the above equation to singly and doubly excited

states 〈	
p
a | and 〈	

pq

ab |, respectively. These states, however,

must be opposite in parity to the reference state |	0〉. The

equations so obtained form a set of linear algebraic equations

and are solved using standard linear algebraic methods.

The other method of calculating α which avoids summation

over the intermediate states is the finite-field method [18].

The method, however, requires evaluation of the energy for

different values of E and this implies computing the cluster

amplitudes multiple times. In the PRCC theory, however, the

computations of the cluster amplitudes are limited to one time

evaluation of T (0) and T(1). Although the equations of T(1)

are linear, the tensor nature translates into angular factors

consisting of a large number of 6j symbols and 9j symbols.

So, for our present work we resort to a symmetry-adapted

storing of these angular factors.

C. Vacuum polarization

In the present work we incorporate the vacuum polarization

(VP) corrections to the electron-nucleus interactions. It modi-

fies the Coulomb potential between the nucleus and electrons.

For a point nucleus, to the order of Zα, it is given by the

Uehling potential [33]

VUe(r) = −
2αZ

3πr

∫ ∞

1

dt
√

t2 − 1

(

1

t2
+

1

2t4

)

exp

[

−
2rt

α

]

,

where Z is the nuclear charge and α, in this case, is the fine

structure constant. The latter is not to be confused with the

dipole polarizability. In heavy atoms a finite-size Fermi charge

distribution model of the nucleus is more appropriate [34] and

it is defined as

ρnuc(r) =
ρ0

1 + e(r−c)/a
, (16)

where a = t4 ln(3). The parameter c is the half charge radius so

that ρnuc(c) = ρ0/2 and t is the skin thickness. For a consistent

treatment of the nucleus-electron electrostatic interaction,

VUe(r) must be modified to account for the finite nuclear size.

This is done by folding VUe(r) with the ρnuc(r) [35]. The

modified form of the Uehling potential is [36]

VUe(r) = −
2α2

3r

∫ ∞

0

dx xρ(x)

∫ ∞

1

dt
√

t2 − 1

×

(

1

t3
+

1

2t5

)

(e−2ct |(r−x)| − e−2ct(r+x)).

We add this to the electron-nucleus Coulomb interaction

potential in the self-consistent field computations to generate

the single-particle states. The Uehling potential is the leading

order term in VP correction and it accounts for more than 90%

of the VP correction in hydrogen-like ions, so we identify it as

the VP correction in the subsequent sections.

III. DIPOLE POLARIZABILITY

In the present calculation of α we use the PRCC expression

discussed and described in our previous works [21,22].

Accordingly, the α of the ground state of a doubly ionized

alkaline atom is

α = −
〈	0|T

(1)†D̄ + D̄T(1)|	0〉

〈�0|�0〉
, (17)

where D̄ = eT (0)†
DeT (0)

is a nonterminating series, we consider

only the leading-order terms in this expression and we get

α = −
1

N
〈	0|T

(1)†
1 D + DT

(1)
1 + T

(1)†
1 DT

(0)
2 + T

(0)†
2 DT

(1)
1

+T
(1)†
1 DT

(0)
1 + T

(0)†
1 DT

(1)
1 + T

(1)†
2 DT

(0)
1

+T
(0)†

1 DT
(1)
2 + T

(1)†
2 DT

(0)
2 + T

(0)†
2 DT

(1)
2 |	0〉, (18)

whereN = 〈	0| exp[T (0)†] exp[T (0)]|	0〉 is the normalization

factor, which involves a nonterminating series of contractions

between T (0)† and T (0). However, in the present work we

use N ≈ 〈	0|1 + T
(0)†

1 T
(0)

1 + T
(0)†

2 T
(0)

2 |	0〉. In the PRCC

expression of α, the summation over intermediate states is

subsumed within T(1) in a natural way and eliminates the need

for a complete set of intermediate states. This is, however, with

the condition of solving an additional set of cluster equations.

IV. CALCULATIONAL DETAILS

A. Basis set

To get accurate results the first step is to generate an

appropriate basis set of orbitals. Here we use the Gaussian-type

orbitals (GTO’s), in which the orbitals are expressed as a linear

combination of Gaussian-type functions [30]. In particular, the

large component of the orbitals are the linear combination of

the Gaussian-type functions of the form

gL
κp(r) = CL

κir
nκ e−αpr2

, (19)

where p = 0,1, . . . ,m is the GTO index and m is the number of

Gaussian-type functions. The exponent αp = α0β
p−1, where

α0 and β are two independent parameters. The small compo-

nents are constructed from the large component through the

kinetic balance condition [29–32]. The GTOs are calculated

on a grid [37] and we optimize the values of α0 and β for

individual atoms to reproduce the orbital energies of the core

orbitals and self-consistent field (SCF) energy from GRASP92

[38] code. The comparison of the SCF energies for the doubly

ionized alkaline atoms are given in Table I.

From the table it is evident that the results of the SCF

energies from the GTOs are in agreement with the GRASP92

results to the accuracy of at least 10−3 hartree. The symmetry-

wise values of the optimized α0 and β are listed in Table II.

The number of Gaussian-type functions with the optimized

basis set parameters is large and not all the GTOs generated
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TABLE I. Comparison between the ground-state SCF energies

obtained from the computations with GTO and GRASP92. The energies

are in atomic units.

Atom GTO GRASP92

Mg2+ −199.1500 −199.1501

Ca2+ −679.1038 −679.1038

Sr2+ −3177.5211 −3177.5218

Ba2+ −8135.1404 −8135.1421

Ra2+ −26027.5632 −26027.5634

are important for the calculations. For the PRCC calculation

we select the number of GTO’s for each symmetry such that

the electron correlation is accounted accurately. In order to

investigate this, we examine the convergence pattern of the α

by varying the basis set size. Here we present the result for

Sr2+. We start with a basis set size of 95 GTOs and increase it

in steps up to 155 GTO’s. For this the computations are done

with the Dirac-Coulomb Hamiltonian and the results are listed

in Table III. Based on the table the optimal basis size to get

converged result accurate up to 10−3 is 127.

To solve the PRCC equations for single and double

excitations, we use the Jacobi method. We chose this method

as it can be parallelized without any difficulty. However,

there is a major drawback of the method or performance

penalty: slow convergence. To accelerate the convergence we

use direct inversion of the iterated subspace (DIIS) [39], and

this improves the convergence significantly.

B. VP corrections to the orbital energies

To study the VP corrections arising from VUe, we compute

the orbital energy corrections in the self-consistent field

(SCF) calculations. We also compute the first-order correction

using the many-body perturbation theory. In the former case,

SCF calculations, the VP potential is considered along with

the Dirac-Hartree-Fock (DHF) potential, UDHF. The orbital

eigenvalue equation is then

[h0 + VUe(r) + UDHF(r)] |ψ ′
i 〉 = ǫ′

i |ψ
′
i 〉,

where h0 = cα · p + (β − 1)c2 − VN−2(r) is the single-

particle part of Dirac-Coulomb Hamiltonian, UDHF(r) is the

DHF potential, |ψ ′
i 〉 is a four-component orbital, and ǫ′

i is the

corresponding eigenvalue. Similarly, we use unprimed states,

|ψi〉, to represent orbitals which are eigenfunctions of the DHF

Hamiltonian, that is,

[h0 + UDHF(r)] |ψi〉 = ǫi |ψi〉,

TABLE II. The α0 and β parameters of the even-tempered GTO

basis for different ions used in the present calculations.

s p d

Atom α0 β α0 β α0 β

Mg2+ 0.00825 2.310 0.00715 2.365 0.00700 2.700

Ca2+ 0.00895 2.110 0.00815 2.150 0.00750 2.500

Sr2+ 0.00975 2.100 0.00915 2.010 0.00900 2.030

Ba2+ 0.00985 2.150 0.00975 2.070 0.00995 2.010

Ra2+ 0.00995 2.110 0.00925 2.090 0.00850 2.010

TABLE III. Convergence pattern of α of Sr2+ ion as a function

of the basis set size. For this set of calculations we consider the

Dirac-Coulomb Hamiltonian and result is in atomic units.

No. of orbitals Basis size α

95 (15s,11p,11d,9f,9g) 5.762

113 (17s,13p,13d,11f,11g) 5.745

127 (19s,15p,15d,13f,11g) 5.743

137 (21s,17p,17d,13f,11g) 5.743

155 (23s,19p,19d,15f,13g) 5.743

where ǫi is the DHF energy of the orbital. To quantify the VP

effect we define

�ǫi = ǫ′
i − ǫi, (20)

as the change in the orbital energy due to VUe(r). Following

the time-independent many-body perturbation theory, the first-

order energy correction associated with VUe(r) is

〈VUe〉i = 〈ψi |VUe(r)|ψi〉.

Since the VP potential is attractive and short range in nature,

it has larger effect on the orbitals which have finite-probability

density within the nucleus. So, at the first order 〈VUe〉 is

negative for orbitals, but only the s1/2 orbitals have negative

�ǫ for all the ions. A similar pattern is reported in Ref. [40]

for the orbitals energies of Cs+. For the Ra2+ ion, in addition

to s1/2 the p1/2 orbitals also have negative �ǫ. More details

of the �ǫi and 〈VUe〉i for the core orbitals of the Ca2+, Sr2+,

Ba2+, and Ra2+ are presented in the next section.

V. RESULTS AND DISCUSSION

As mentioned earlier, the expression of the α in PRCC

theory is a nonterminating series of the cluster amplitudes.

However, considering that the cluster operators T
(0)

2 and T
(1)
1

account for more than 95% of the many-body effects in RCC

and PRCC, the terms considered in Eq. (18) give very accurate

results. To verify, we have examined the leading terms which

are third order in cluster amplitudes and find the contributions

are ∼10−4. So, for the present work, as we consider α up

to the third decimal place, it is appropriate to neglect the

contributions from terms which are third and higher order

in cluster operators.

In Table IV we list the α of alkaline-earth metal ions Mg2+,

Ca2+, Sr2+, Ba2+, and Ra2+ computed using Eq. (18). The

results are based on two sets of calculations: One is based on

the cluster amplitudes obtained from LPRCC and the other is

based on PRCC. For a systematic comparison we also list the

previous theoretical and experimental results. The results of α

along with the orbital energy corrections arising from VUe(r)

for each of the ions are discussed in the subsequent sections.

A. Mg2+

The α of Mg2+ computed with LPRCC is in excellent

agreement with the experimental data. However, the PRCC

result is 1.2% higher than the LPRCC result and experimental

data. This may be due to a part of the additional many-

body effects arising from the nonlinear terms in the cluster
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TABLE IV. Static dipole polarizability of doubly ionized alkaline-

earth-metal ions and the values are in atomic units.

Atom This work Method Previous works Method

Mg2+ 0.489 (LPRCC) 0.469a RRPA

0.495 (PRCC) 0.489(5)b Expt.

Ca2+ 3.284 (LPRCC) 3.262c RCCSDT

3.387 (PRCC) 3.254a RRPA

3.26(3)b Expt.

Sr2+ 5.748 (LPRCC) 5.792c RCCSDT

5.913 (PRCC) 5.813a RRPA

Ba2+ 10.043 (LPRCC) 10.491c RCCSDT

10.426 (PRCC) 10.61a RRPA

Ra2+ 12.908 (LPRCC) 13.361c RCCSDT

13.402 (PRCC)

aReference [41].
bReference [42].
cReference [25].

amplitude equations but which may ultimately cancel with the

contributions from the cluster amplitudes of higher excitations

like T
(0)

3 and T
(1)
3 . The RRPA result is 4.1% lower than the

experimental data and it is also lower than both the LPRCC

and PRCC results. It must be added that a similar trend is

observed for the Na+ ion [23], which is isoelectronic with

Mg2+, and the RRPA result of α is lower than the experimental

data [41]. This trend may be on account of the inherent

strength and limitation of RRPA, the potential to incorporate

core-polarization effects very accurately, and the weakness to

account for pair correlation effects.

To estimate the contribution from the Breit interaction

we consider the Dirac-Coulomb Hamiltonian with the VP

potential. The contribution from the Breit interaction can be

safely neglected for this ion as the contribution is less than

0.02%. Not surprisingly, the orbital energy corrections �ǫi

and 〈VUe〉i are very small and can be neglected. For this reason

we have not listed the values of �ǫi and 〈VUe〉i for Mg2+.

B. Ca2+

For Ca2+, the LPRCC result of α is within the experimental

uncertainty and it is in good agreement with the result from

a previous work, which is based on the RCCSDT theory. The

PRCC result is 3.1% larger than the LPRCC result and deviates

from the experimental data by 3.7%. On the other hand, the

result from the RRPA [41], like in Mg2+, is lower than the

experimental data.

Based on another set of calculations with the Dirac-

Coulomb Hamiltonian, the contribution from the Breit interac-

tion is estimated to be 0.004, which is a mere ≈0.1% of the total

value. Similarly, we calculate the VP correction to the orbital

energy with a series of SCF calculations and results are listed

in Table V. As is to be expected, the first-order correction 〈VUe〉

is negative for all the core orbitals, but the values of �ǫ are

negative only for the s1/2 orbitals. Another important observa-

tion is that for s1/2 orbitals 〈VUe〉i and �ǫi are similar in value,

but for the other orbitals, besides the change in sign, the values

of 〈VUe〉i and �ǫi are different by several orders of magnitude.

TABLE V. VP Corrections to the orbital energies of Ca2+. Here

[x] represents multiplication by 10x .

Orbital �ǫ 〈VUe〉

1s1/2 −4.204[ −3] −4.435[ −3]

2s1/2 −3.531[ −4] −3.790[ −4]

2p1/2 4.884[ −5] −1.511[ −6]

2p3/2 4.938[ −5] −2.732[ −7]

3s1/2 −4.391[ −5] −4.500[ −5]

3p1/2 6.817[ −6] −1.619[ −7]

3p3/2 6.880[ −6] −2.931[ −8]

C. Sr2+

For Sr2+ it is important to have accurate theoretical results

as there are no experimental data of α. From Table IV the

LPRCC result of 5.748 is in very good agreement with the

previous work using RCCSDT. And, like in the previous cases,

the PRCC result of 5.913 is larger than the LPRCC result.

Comparing the results from different theoretical methods,

we observe the emergence of two important changes in the

relative patterns when compared with the results results of

Mg2+ and Ca2+. First, the RRPA result is higher than both

the LPRCC and RCCSDT results, and second, the RCCSDT

result is larger than the LPRCC result. This may be on account

of the filled 3d shell in Sr2+. As it is of higher angular

momentum, it has larger polarization effects as well as pair

correlation effects. A method like RRPA incorporates the

core-polarization effects very accurately but could potentially

under estimate the pair correlation effects. Not surprisingly,

the same trends are observed in the heavier ions Ba2+ and

Ra2+ with filled d and f shells.

Based on a comparison with the calculations using the

Dirac-Coulomb Hamiltonian, we estimate the Breit contribu-

tion as 0.005. This is negligibly small and similar in magnitude

to the case of Ca2+. The VP corrections to the orbital energies

arising from VUe(r) are listed in Table VI. From the table it

is evident that �ǫ1s1/2
is an order of magnitude larger than in

Ca2+. In addition, we also observe a difference of four orders

of magnitude between the 〈VUe〉i and �ǫi of the 3d orbitals.

This is not surprising as the short-range VUe(r) have little

TABLE VI. VP Corrections to the orbital energies of Sr2+. Here

[x] represents multiplication by 10x .

Orbital �ǫ 〈VUe〉

1s1/2 −5.721[ −2] −5.904[ −2]

2s1/2 −5.968[ −3] −6.231[ −3]

2p1/2 3.604[ −4] −1.144[ −4]

2p3/2 4.354[ −4] −1.636[ −5]

3s1/2 −1.003[ −3] −1.045[ −3]

3p1/2 8.281[ −5] −1.995[ −5]

3p3/2 9.664[ −5] −2.865[ −6]

3d3/2 8.145[ −5] −4.341[ −9]

3d5/2 8.048[ −5] −1.123[ −9]

4s1/2 −1.301[ −4] −1.320[ −4]

4p1/2 1.592[ −5] −2.086[ −6]

4p3/2 1.747[ −5] −2.984[ −7]
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TABLE VII. VP Corrections to the orbital energies of Ba2+. Here

[x] represents multiplication by 10x .

Orbital �ǫ 〈VUe〉

1s1/2 −2.952[ −1] −3.025[ −1]

2s1/2 −3.493[ −2] −3.623[ −2]

2p1/2 5.074[ −4] −1.669[ −3]

2p3/2 1.786[ −3] −1.748[ −4]

3s1/2 −7.084[ −3] −7.391[ −3]

3p1/2 1.984[ −4] −3.725[ −4]

3p3/2 4.926[ −4] −3.981[ −5]

3d3/2 4.856[ −4] −2.047[ −7]

3d5/2 4.737[ −4] −4.712[ −8]

4s1/2 −1.531[ −3] −1.599[ −3]

4p1/2 8.513[ −5] −7.689[ −5]

4p3/2 1.476[ −4] −8.242[ −6]

4d3/2 1.272[ −4] −4.004[ −8]

4d5/2 1.245[ −4] −9.185[ −8]

5s1/2 −2.449[ −4] −2.473[ −4]

5p1/2 2.295[ −5] −1.071[ −5]

5p3/2 3.230[ −5] −1.066[ −6]

effect on the electrons in the higher angular momentum orbitals

like d.

D. Ba2+

Like in Sr2+, there are no experimental data of α for Ba2+.

Hence, it is important to have accurate theoretical results, and

in this regard, it is pertinent to calculate α with a reliable

method like RCC. Here, computing with the relativistic version

of coupled-cluster theory is essential as the high Z implies that

the relativistic corrections are important. From Table IV, it is

evident that our LPRCC result of 10.043 is 4.3% lower than

the RCCSDT result. However, our PRCC result is in very

good agreement with the RCCSDT result; it is just 0.6% less.

Examining the results discussed so far, there is a discernible

trend when we compare the PRCC and RCCSDT results. The

difference between the two results narrows with increasing Z.

This maybe due to the basic property of the CCT and which is

to include selected electron correlation effects to all order. So,

with higher Z the importance of the correlation effects grows

and the two coupled-cluster-based methods incorporate the

correlation effects to similar accuracy. The other theoretical

result from the RRPA theory is larger than the other results.

Following the computations described earlier, we estimate

the Breit contribution as 0.007, which is similar to the previous

cases. Coming to the orbital energy corrections arising from

the VP, listed in Table VII, we find an important change in the

pattern of �ǫ. The �ǫ of p1/2 and p3/2 continue to be positive,

but �ǫ2p1/2
is ≈72% smaller than �ǫ2p3/2

. For the remaining

np1/2 and np3/2, although the difference is not so dramatic, the

differences are still large.

E. Ra2+

Our PRCC result of α for Ra2+ is ≈3.7% larger than the

LPRCC result. This trend is similar to the case of Ba2+ and

may be attributed to better accounting of correlation effects in

PRCC. To be more precise, the importance of the correlation

TABLE VIII. VP Corrections to the orbital energies of Ra2+. Here

[x] represents multiplication by 10x .

Orbital �ǫ 〈VUe〉

1s1/2 −2.560 −2.614

2s1/2 −3.881[ −1] −3.999[ −1]

2p1/2 −3.802[ −2] −5.753[ −2]

2p3/2 1.211[ −2] −2.707[ −3]

3s1/2 −8.999[ −2] −9.315[ −2]

3p1/2 −9.620[ −3] −1.504[ −2]

3p3/2 3.728[ −3] −7.545[ −4]

3d3/2 4.213[ −3] −1.330[ −5]

3d5/2 3.953[ −3] −2.385[ −6]

4s1/2 −2.362[ −2] −2.451[ −2]

4p1/2 −2.238[ −3] −3.938[ −3]

4p3/2 1.315[ −3] −1.999[ −4]

4d3/2 1.350[ −3] −3.943[ −6]

4d5/2 1.282[ −3] −7.062[ −7]

4f5/2 1.015[ −3] −1.647[ −9]

4f7/2 9.928[ −4] −4.229[ −10]

5s1/2 −5.378[ −3] −5.633[ −3]

5p1/2 −3.002[ −4] −8.438[ −4]

5p3/2 4.845[ −4] −4.200[ −5]

5d3/2 4.074[ −4] −6.735[ −7]

5d5/2 3.859[ −4] −1.187[ −7]

6s1/2 −9.883[ −4] −9.951[ −4]

6p1/2 −1.613[ −5] −1.290[ −4]

6p3/2 1.211[ −4] −5.949[ −6]

effects grows with increasing number of electrons, but LPRCC

theory is insufficient to incorporate the correlation effects as

it considers only the linear terms. The PRCC theory, which

includes the nonlinear terms, provides a better description of

the electron correlations. This is borne by the fact that the

PRCC results are in good agreement with the RCCSDT results;

the difference between the two results is just ≈0.3%.

Like in the previous cases, the contribution from the Breit

interaction is small and the value is 0.008. In regards to the

orbital energy correction arising from VP, listed in Table VIII,

there is a key difference from the other ions. The values of

�ǫnp1/2
, in addition to �ǫns1/2

are negative.

F. Core-polarization and pair correlation effects

In the previous sections we discussed the comparison

between the results from different theories, general trends, and

orbital energy corrections from VP. To examine and investigate

the contributions from various many-body effects, which are

encapsulated in different terms of LPRCC and PRCC, we

isolate the contributions from different terms through a series

of computations. The results are listed in Table IX. From the

table it is evident that the leading term in the LPRCC as well

as PRCC theory is {T
(1)†
1 D + H.c}. This is not surprising as it

is the term which subsumes the DF contribution and the RPA

effects. Now to understand and quantify the RPA effects in

these systems, we separate the core orbital contribution to α.

The four dominant contributions from the core orbitals

to {T
(1)†
1 D + H.c} are listed in Table X. For all the ions,

the outermost p3/2 orbital is the most dominant and this

because of the larger radial extent of the p3/2 orbitals. The
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TABLE IX. Contribution to α from different terms and their

Hermitian conjugates in the LPRCC and PRCC theory.

Terms + H.c. Mg2+ Ca2+ Sr2+ Ba2+ Ra2+

LPRCC results

T
(1)†
1 D 0.496 3.594 6.400 11.708 15.160

T1
(1)†DT

(0)
2 −0.008 −0.180 −0.330 −0.676 −0.864

T1
(1)†DT

(0)
1 0.001 −0.022 −0.044 −0.114 −0.108

T2
(1)†DT

(0)
1 −0.0001 0.004 0.008 0.020 0.018

T2
(1)†DT

(0)
2 0.008 0.098 0.174 0.370 0.470

Normalization 1.019 1.064 1.080 1.126 1.137

Total 0.489 3.284 5.748 10.043 12.908

PRCC results

T
(1)†
1 D 0.502 3.718 6.606 12.214 15.820

T1
(1)†DT

(0)
2 −0.008 −0.188 −0.344 −0.710 −0.908

T2
(1)†DT

(0)
2 0.002 −0.022 −0.046 −0.120 −0.114

T1
(1)†DT

(0)
1 −0.0001 −0.004 0.008 0.018 0.016

T2
(1)†DT

(0)
1 0.008 0.092 0.162 0.338 0.424

Normalization 1.019 1.064 1.080 1.126 1.137

Total 0.495 3.387 5.913 10.426 13.402

next important contribution arises from the outermost p1/2.

A prominent feature that we observe in the results is the

ratio between the contribution from the outermost p3/2 to

the p1/2 orbitals. The ratios are 2.03, 2.07, 2.24, 2.57, and

4.17 for Mg2+, Ca2+, Sr2+, Ba2+, and Ra2+, respectively. The

ratio increase with increasing Z but for Ra2+ it is 1.6 times

higher than for Ba2+. This is an important feature arising

from the contraction of p1/2 orbitals due to the relativistic

effects, which are more prominent in the heavier atoms and

ions. The third largest contribution arises from ns1/2 orbital in

the cases of Mg2+, Ca2+, and Sr2+. This is because the ns1/2

orbital is energetically lower than the np1/2 and relativistic

corrections are not large. However, for Ba2+ and Ra2+, due to

the relativistic contraction, the contribution from the outermost

ns1/2 is suppressed. The third largest contribution arises from

the more diffused outer nd5/2 orbital.

The next leading contribution arises from {T1
(1)†DT

(0)
2 +

H.c}. The contribution from this term is much smaller and

opposite in phase to the leading order term. A similar trend

is observed in case of the noble gas atoms and was reported

in one of our previous works [22]. Among the various terms

TABLE X. Four leading contributions to {T
(1)†
1 D + H.c} to α in

terms of the core spin orbitals.

Mg2+ Ca2+ Sr2+

0.312 (2p3/2) 2.378 (3p3/2) 4.344 (4p3/2)

0.154 (2p1/2) 1.148 (3p1/2) 1.940 (4p1/2)

0.028 (2s1/2) 0.056 (3s1/2) 0.048 (4s1/2)

0.0002(1s1/2) 0.006 (2p3/2) 0.034 (3d5/2)

Ba2+ Ra2+

8.182 (5p3/2) 11.766 (6p3/2)

3.188 (5p1/2) 2.822 (6p1/2)

0.162 (4d5/2) 0.338 (5d5/2)

0.102 (4d3/2) 0.192 (5d3/2)

TABLE XI. Core orbitals contribution from T1
(1)†DT

(0)
2 to α of

Mg2+ and Ca2+.

Mg2+ Ca2+

−0.002 (2p3/2,2p3/2) −0.038 (3p3/2,3p3/2)

−0.001 (2p3/2,2p1/2) −0.022 (3p3/2,3p1/2)

−0.001 (2p1/2,2p3/2) −0.022 (3p1/2,3p3/2)

−0.0004 (2p1/2,2p1/2) −0.009 (3p1/2,3p1/2)

the {T1
(1)†DT

(0)
1 + H.c} has the smallest contribution. This is

because of the fact that T
(0)

1 and T2
(1) have smaller amplitudes

in the RCC and PRCC theories, respectively. As can be seen

from Table IX, the overall contribution from the second order

terms are 0.0009, −0.100, −0.192, −0.400, and −0.484 for

Mg2+, Ca2+, Sr2+, Ba2+, and Ra2+, respectively. Except for

Mg2+, the higher order terms gives a negative contribution to

the α.

To study the pair-correlation effects we examine the next-

to-leading-order term, T1
(1)†DT

(0)
2 , in more detail. In Tables XI

and XII we list the four leading-order core-orbital pairs which

contribute to α. The (np3/2,np3/2) orbital pairing gives the most

dominant contribution. The next leading-order contribution

arises from the (np3/2,np1/2) orbital pairing. The same pattern

is observed for all the doubly charged ions. For Ra2+ the fourth

largest contribution arises from (6p3/2,5d5/2) orbital pairing,

but for other ions it is from (np1/2,np1/2) orbital pairing. This is

because of the relativistic effects, which contract the outer s1/2

orbital in Ra2+ more than the other ions. One important point

to notice here is that the higher order terms do not translate to

higher accuracy as observed in the cases of Mg2+ and Ca2+.

G. Theoretical uncertainty

We have isolated the following sources of uncertainty in

the present calculations. The first is the truncation of the

numerical basis set. We start our calculations with 9 symmetry

and increase up to 13 symmetry. Along with this we also

increase the number of orbitals per symmetry and we observe

that our values of α converge for all the doubly charged ions,

so we can neglect this error safely. The second source of error

is associated with the truncation of RCC theory at the single

and double excitation in both the unperturbed and perturbed

TABLE XII. Core orbitals contribution from T1
(1)†DT

(0)
2 to α of

Sr2+, Ba2+, and Ra2+.

Sr2+ Ba2+

−0.069 (4p3/2,4p3/2) −0.132 (5p3/2,5p3/2)

−0.038 (4p3/2,4p1/2) −0.070 (5p3/2,5p1/2)

−0.036 (4p1/2,4p3/2) −0.061 (5p1/2,5p3/2)

−0.014 (4p1/2,4p1/2) −0.022 (5p1/2,5p1/2)

Ra2+

−0.186 (6p3/2,6p3/2)

−0.077 (6p3/2,6p1/2)

−0.052 (6p1/2,6p3/2)

−0.039 (6p3/2,5d5/2)
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levels. Based on a series of test calculations, we estimate

the contribution from triple excited cluster amplitudes to be

less than 0.2% of the total value. So, we can consider the

upper bound on the uncertainty from the truncation of the

RCC and PRCC theories as 0.4% for the heavier ions Sr2+,

Ba2+, and Ra2+. By examining the trend in the results of

Mg2+ and Ca2+, we conclude that the uncertainty is likely to

be higher for the PRCC resuls of these ions, but the LPRCC

results could have an uncertainty less than ≈0.4%. The third

source of error is the truncation of the nonterminating series

of α. We terminate eT(1)†

DeT (0)

+ eT (0)†

DeT(1)

at the second

order in cluster operator. However, based on our earlier study

[43], where we reported an iterative technique to calculate

properties to all order, the contribution from the third and

higher order terms is negligible. So, the uncertainty arising

from the truncation in the expression of α can be neglected.

Quantum electrodynamic (QED) corrections is another source

of uncertainty in the present calculation. We include the VP

potential in the present work but the self-energy part of the

radiative corrections is neglected. The self-energy correction

is important for the heavy atoms [44]. We can, however, safely

neglect it from the error estimates as the contribution is less

than the correction from Breit interaction, which accounts for

at the most 0.1% of the total value. So, considering all the

sources, the upper bound on the uncertainty of the present

calculations is ≈0.4% for the LPRCC results of Mg2+ and

Ca2+ and PRCC results of Sr2+, Ba2+, and Ra2+ ions.

VI. CONCLUSION

The electric dipole polarizabilities of doubly ionized

alkaline-earth-metal ions calculated using the PRCC theory are

in very good agreement with the previous theoretical results

and experimental data. An important observation is that for

the lighter ions Mg2+ and Sr2+ the inclusion of nonlinear

terms in PRCC does not translate to better agreement with

the experimental data. However, for the heavier ions, the

nonlinear terms are essential to obtain results which are in

agreement with the other results based on relativistic coupled-

cluster theory. The correction from the Breit interaction shows

marginal increase with atomic number and this may be due to

the radial dependence of the α.

The changes in orbital energies, SCF, and first-order

correction with the VP potential reflect the short-range nature

of this potential. Furthermore, there is an important change in

the SCF energy correction �ǫ with increasing Z. For lighter

atoms only the �ǫ of the core ns1/2 are negative, but for Ra2+

in addition to the core ns1/2, the core np1/2 orbitals also have

negative �ǫ.
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