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ABSTRACT

Our understanding of matter under the influence of extremely high temper-

ature or extremely high baryon densities is limited due to lack of conclusive

theoretical tools or experimental evicence. However, the heavy ion collision

experiments and the data obtained from compact stars might shed some light

on what happens to matter under the influence of temperature of the order

of few billions of kelvin or baryon density few times higher than the normal

nuclear matter density. Nucleons are expected to be crushed and quarks are

supposed to be the relevant degrees of freedom at such extreme conditions.

The difficulties in analyzing the behavior of the quark matter arise because

of the non perturbative nature of strong interaction under such extreme con-

ditions. However, at asymptotically high density, when the strong coupling

is small, a first principle calculation shows the QCD ground state to be a 3-

flavor color superconductor (CSC) where all three lightest quarks participate in

Bardeen-Cooper-Shrieffer (BCS) type Cooper pairing. At intermediate densi-

ties, 2-flavor CSC has been suggested. At lower densities, when the coupling is

large, the Cooper pairs might shrink in size to become locally bound diquarks

and thus may give rise to Bose-Einstein concensation (BEC). There may be

other superfluid phases depending on the mismatch in the densities of different

flavors. These superfluid phases are valid at small temperature and at higher

temperature, system is expected to pass on to a state with deconfined quarks

and gluons known as quark gluon plasma (QGP). Confinement-deconfinement

transition and chiral transition are two aspects that plays a crucial role in the

phase structure of quark matter. Strong CP violation has also been suggested

at high temperature and density. Alongwith high temperature and baryon den-

sity, the presence of magnetic fields may also affect the phase structure. This

is important as strong magnetic field can be present in the compact stars and

ultra strong magnetic fields can be created in heavy ion collision experiments.

The study of the phase structure is not possible in the normal framework of

QCD. The only first principle calculational tool available is the lattice QCD,

but it fails at finite densities because of the fermion sign problem. The other
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way is to use effective theories which replicate QCD in certain limits. In this

thesis, we shall use such effective theories to study the transition from BCS

phase to BEC phase, the effects of strong magnetic field on chiral symmetry

breaking (CSB) and the interplay of strong CP violation and CSB.

In the first part of this thesis, the transition from BCS phase to BEC phase

in a relativistic system with two species of fermions is investigated in a field

theoretic model using a variational construct for the ground state. The su-

perfluid gap equation is obtained by minimizing the thermodynamic potential.

The phase structure is studied as a function of the coupling as well as the dif-

ference in chemical potential of the two species. With coupling, the transition

from BCS to BEC turns out to be a crossover. It is observed that the an-

tiparticles play an important role for strong coupling even if the corresponding

Fermi momentum is small. For unequal number densities of the pairing species,

stable gap less modes with one Fermi surface are seen in deep BEC regime.

The effect of fluctuations of the condensate field have also been investigated

in a nonperturbative manner with a quartic coupling for the condensates. For

stronger fluctuations, the transition from superfluid phase to normal matter

phase changes from a second order to a first order transition.

In the second part, we have investigated CSB in hot and dense matter in

presence of strong magnetic field again with a variational construct for the

ground state in a 3-flavor Nambu-Jona-Lasinio (NJL) model. The Kobayashi-

Maskawa-’t Hooft (KMT) six quark determinant interaction term is included

in the Lagrangian to induce flavor mixing. At zero baryon density and high

temperature, the chiral transition remains a crossover even for magnetic field

strength eB = 10m2
π. The magnetic catalysis of CSB is also observed. How-

ever, at finite densities, the chiral transition is a first order transition and the

transition chemical potential decreases with increase in magnetic field. For zero

temperature, after chiral symmetry is restored, the order parameter shows os-

cillation similar to the de Hass van Alphen effect for magnetization in metals.

Inclusion of magnetic field makes the equation of state steeper. Further, the

pressure can be anisotropic if the magnetization of the matter is significant.
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Within our model, this anisotropy starts to become relevant for field strengths

around 1018 Gauss. Such anisotropy of pressure parallel and perpendicular to

the magnetic field can affect the structure of neutron stars.

In the final part, we have investigated the strong CP violation and the

interplay of CSB and strong CP violation at finite temperature and density

with variational approach for 3-flavor NJL model with the KMT term. The

effect of CP violation is included through a phase θ in the KMT term. No

CP violation is seen for θ = 0 however, spontaneous CP violation happens

for θ = π. In the range from θ = 0 to θ = π, the scalar and the pseudo scalar

condensates behave in a complimentary manner and the constituent quark

mass remains almost the same. The CP restoring transition with temperature

at zero density is a crossover for θ 6= π whereas it becomes a second order

one for θ = π. For finite density, the transition is a first order one but it

becomes a second order one for high temperature. The first order transitions

are associated with metastable CP restored states.
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Chapter 1

Introduction

The basic motivation of high energy physics is to understand the nature of

different elementary and composite particles and the different types of interac-

tion among them. The matter in this universe is fully comprised of two types

of elementary fermions: leptons and quarks. There are six different types of

leptons (electron, muon, tau and their corresponding neutrinos) and six dif-

ferent types of quarks (up, down, charm, strange, top and bottom) along with

the corresponding antiparticles.

These different quarks and leptons interact with each other through four

different types of interactions : gravitational, weak, electromagnetic and strong

interaction. Among them, gravity is the least known as we do not yet have a

quantum theory of gravity. Electromagnetic and weak interactions are much

better understood and they have been successfully unified in SU(2)L ×U(1)Y

gauge theory, called the electro-weak theory which is also known as standard

model (SM) of particle physics [1]. The perturbative aspects of strong inter-

action has also been successfully incorporated in the SM by the gauge group

SU(3)C × SU(2)L × U(1)Y [2]. However, there is no conclusive theory which

can predict the low energy behavior of strong force. Difficulties arise because

of the non perturbative nature of strong interaction at low energy. The mo-

tivation of this thesis is to study some aspects of strong interaction in the

non perturbative regime. In the next section, we shall briefly discuss strong

interaction along with its basic aspects.

1
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1.1 Strong interaction

Strong interaction is the strongest of the fundamental forces in nature and

the particles which participate in strong interactions are the hadrons or more

fundamentally, the quarks and gluons. The charge of strong interaction is

called color charge and gluons act as the force carrier. The gluonic interaction

among quarks and antiquarks leads to formation of color singlet composite

particles called hadrons. There are two types of hadrons present in nature:

mesons and baryons. Mesons are quark-antiquark bosonic states and baryons

are three quark fermionic states.

The theory of strong interaction is described by quantum chromodynamics

(QCD). Similar to quantum electrodynamics, QCD is based on a gauge princi-

ple. But unlike QED, this is a Yang-Mills gauge theory with the gauge group

being the local SU(3)C . The gauge invariant QCD Lagrangian is given as

LQCD = ψ̄i
a (iγ

µ∂µ −mi)ψ
i
a + gAA

µ ψ̄
i
aγ

µTA
abψ

i
b −

1

4
GA

µνG
Aµν , (1.1)

where ψi
a is the quark field in the fundamental representation of SU(3)C with

flavor index i and color index a. AA
µ is the vector gauge field of SU(3)C and

represents gluons here. GA
µν = ∂µA

A
ν − ∂νA

A
µ + gfABCAB

µA
C
ν is the gluonic

field strength tensor. The generators of SU(3)C are defined as TA
ab =

1
2

(

λA
)

ab
,

where λA are the Gell-Mann matrices. mi is the current quark mass and g is

the coupling constant of QCD.

If we take the quark mass to be zero, the Lagrangian in Eq.(1.1) has fla-

vor symmetry since strong interaction does not discriminate between different

quark flavors. With Nf massless quark flavors, the QCD Lagrangian is sym-

metric under the global chiral symmetry group SU(Nf )L × SU(Nf )R. Then

the total symmetry group of QCD is SU(Nf )L × SU(Nf )R × U(1)B × U(1)A.

Where U(1)B and U(1)A correspond to baryon number symmetry and axial

symmetry respectively. The chiral symmetry of QCD is only an approximate

symmetry since quarks are not really massless and it is spontaneously broken

to SU(Nf )V in QCD vacuum with the formation of chiral condensates which
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give masses to the hadrons. The vector symmetry U(1)B corresponding to

baryon number symmetry is an exact symmetry. The axial U(1)A symmetry

also breaks through chiral anomaly and this also breaks the charge parity (CP )

symmetry. Though the gauge invariance allows a CP violating θ term in the

Lagrangian, the value of θ is extremely small in nature. This smallness of θ is

not explained and this is known as the strong CP problem. We shall discuss

about the chiral symmetry breaking (CSB) and strong CP problem later in

more details.

QCD has two very important properties arising from self interaction of

gluons : the asymptotic freedom and confinement. QCD processes at high en-

ergies become calculable because of asymptotic freedom whereas confinement

describes formation of hadrons at lower energies. There is no fixed energy

boundary to separate these two phases. Asymptotic freedom is theoretically

well understood and tested but the mechanism of confinement is still a mystery.

The study of confinement, CSB and strong CP requires understanding of low

energy QCD. To understand QCD in the low energy regime, it is necessary to

study QCD under the influences of extreme conditions like high temperature

or baryon density. There might be many interesting phases of matter under

the influence of these extreme conditions where the dominant interaction is

the strong interaction.

Now, we shall briefly discuss about asymptotic freedom and confinement.

Then in the next section, we shall discuss about the extreme conditions, their

existence and their influence on the phases of strongly interacting matter and

various interesting phenomena including CSB and strong CP violation.

1.1.1 Asymptotic freedom

QCD has a surprising property that causes the coupling strengths to become

arbitrarily small when the energy scales become arbitrarily high or equiva-

lently the length scales become arbitrarily small. This is known as asymp-

totic freedom [2]. At very high energy scales, quarks behave like free particles

allowing perturbative calculation described by DGLAP equation [3] in deep
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inelastic processes in QCD, on the other hand at low energies, the strong cou-

pling becomes large making analytic calculation of QCD processes difficult and

sometimes impossible.

Asymptotic freedom arises because of screening and anti screening by vir-

tual quark-antiquark pairs and virtual gluons respectively in a polarized QCD

vacuum. The number of flavors decides whether a gauge theory is asymptot-

ically free or not. This is obtained by calculating the beta function. Beta

function denotes the dependence of gauge coupling, g on the energy scale, µ.

To lowest non trivial order, the beta function for a SU(N) gauge theory with

fermions in the fundamental representation has been derived as

β(g) =
∂g

∂ logµ
= − g3

(4π)2

[

11N

3
− 2Nf

3

]

. (1.2)

It is evident from Eq.(1.2) that, for QCD with three colors, the number of

flavors, Nf , should be more than 16 for beta function to be positive. Since we

have only 6 quarks, the QCD beta function is negative and it is an asymptot-

ically free gauge theory. The running coupling of QCD is given by

αS(Q) =
2π

b0 log
Q
Λ

, (1.3)

where α = g2/4π and b0 = −(4π)2β(g)/g3. Here Q denotes the momentum

transfer and Λ is called the QCD scale. Experiments suggest a value of Λ ≈ 200

MeV. Strong coupling becomes large for distances larger than ∼ 1/Λ, which is

roughly the size of light hadrons.

1.1.2 Confinement

Confinement is another very important property of QCD which prevents free

quarks to exist in nature. Except the top quark, all other quarks form hadrons

almost as soon as they are created. Top quark has a lifetime of about 5× 1025

seconds which is approximately 20 times less than the time scale of strong

interaction and so it decays before forming hadrons. The other quarks can
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never be observed at a more fundamental level than at hadronic level.

To understand the mechanism of confinement, Wilson loops were intro-

duced [4]. which is defined as a path ordered exponential of a gauge field Aµ

along a closed curve C. The gauge invariant Wilson loop is given by

WC = Pei
∮
C
Aµdxµ

, (1.4)

Where P is the path ordering operator. At T = 0, if WC increases with

area then it implies confinement and if WC increases with the perimeter of

the loop then it implies deconfinement. Though Wilson loops does not de-

scribe the mechanism of confinement, it sheds some light on the confinement-

deconfinement phase transition. However the most widely used method to

address this phase transition is the use of Polyakov loop which is essentially

the thermal Wilson loop. It has been shown theoretically that, in the ab-

sence of quarks, the thermal Wilson loop with periodic boundary conditions is

the order parameter for confinement [5]. At finite temperature, after defining

τ = it, in the absence of the spatial components of the gauge field Aµ, the

Polyakov loop can be written as

L(X) = Pei
∫ β

0
A0(X,τ)dτ . (1.5)

If A0 is taken to be constant, L = exp(iβA0) when A0 is Hermitian and

L = exp(βA0) when A0 is anti Hermitian [6, 7]. The free energy of a quark-

quark pair separated by a distance X in the infinitely heavy quark limit is

given by 〈Φ̄(X)Φ(0)〉 [5, 7], where

Φ(x) =
1

NC
〈TrCL(x)〉 and Φ̄(x) =

1

NC
〈TrCL†(x)〉. (1.6)

In the confined phase, the energy required to separate two quarks increases

with the separation distance. So Φ serves as the order parameter. Φ = 0

implies confinement, Φ 6= 0 implies deconfinement and Φ = 1 implies total

deconfinement [8].
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1.2 Extreme conditions and QCD

By the term ‘extreme conditions’, we refer to mainly extremely high temper-

ature and extremely high density. By extreme temperature, we mean tem-

perature ranging up to few hundreds of MeV (1 MeV = 1.16 × 1010 Kelvin).

By extreme densities, we refer to densities up to few times the nuclear matter

density, ρ0 = 1014gm/cc. To study the properties of matter under these con-

ditions is very important because the dominant interaction there is the strong

interaction and these conditions significantly affect the strong dynamics. In

addition to the above mentioned extreme conditions, extremely high magnetic

fields also play a significant role in modifying the QCD dynamics. Now, we

shall discuss about the existence of these extreme conditions and the tools

available for studying their influence on matter. Then in the next section, we

shall discuss about the various phases of matter subject to these extremities.

1.2.1 Existence of extreme conditions

In the early universe, when the universe was only a few microseconds old,

the temperature was of the order of the QCD scale which corresponds to few

hundreds of MeV. In the present universe, such high temperatures might be

seen in new born neutron stars. Neutron stars are the best places in our

universe where these extreme conditions can be observed. The temperature

inside a new born neutron star is ∼ 1012 kelvin though because of cooling, it

falls to ∼ 106 kelvin in few years. The density of a neutron star is ∼ 1015gm/cc

in its core which is approximately 10 times the normal nuclear matter density.

Neutron stars are usually associated with very strong magnetic fields ranging

from 1013 Gauss on the poles of radio pulsars [9] to 1016 Gauss on the surface

of magnetars [10].

In laboratories also, some of these extreme conditions have been realized for

a very short span of time. In the high energy heavy ion collision experiments,

temperature that is comparable to that of 10−5 second old universe has been

created in small regions. This has been achieved at SPS accelerator in CERN,
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at RHIC in BNL and latest at the LHC in CERN. Heavy ion collision processes

are associated with ultra strong magnetic fields. The strengths of magnetic

fields are estimated to be of hadronic scale of the order of eB ∼ 2m2
π (m

2
π ≃ 1018

Gauss) at RHIC [11, 12] to eB ∼ 15m2
π at LHC [12]. The most difficult part

is the creation of ultra high densities in laboratories. All the above mentioned

colliders mostly operate at zero or very low densities. The future planned

FAIR experiment is supposed to be carried out at a higher chemical potential

(µq ∼ 200 MeV).

1.2.2 Techniques for calculation

The dominant interaction in matter under extreme conditions is the strong

interaction. It is very difficult to do analytic calculation there because we

don’t have a conclusive theory. The main difficulty arises from the largeness

of QCD coupling. Asymptotically high temperature or density make the sit-

uation simpler as the weak coupling approximation holds quite good then.

The situation is very different in densities relevant to the neutron stars or the

nuclear matter or temperature relevant for the early universe as the coupling

becomes really large. There are some methods which have been successful to

some extent. One of them is the lattice QCD, the only first principle calcula-

tional tool. This is a brute force computational method and results of lattice

QCD matches to a good extent with the colliders operating at high tempera-

ture but low density. Lattice QCD fails at higher densities because of fermion

sign problem. Another method is to use effective models. Effective models

are models with some properties of QCD but they are easier to manipulate

in the low energy regime. Some popular models are sigma model, bag model

and Nambu-Jona-Lasinio (NJL) model. Bag model includes the effect of con-

finement through an additive energy density. The NJL model is perhaps the

most widely used effective model, studied extensively for high densities as well

as high temperatures. NJL model has no gluon and the strong interaction is

replaced by a four-fermion interaction term [13]. The model is constructed

from interacting Dirac fermions with chiral symmetry very much similar to
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the construction of Cooper pairs with electrons in Bardeen-Cooper-Schrieffer

(BCS) theory of superconductivity [14, 15]. NJL model is very much useful in

exploring the finite density behavior. Even at ultra high densities, the weak

coupling calculation and the NJL model calculation yield quite similar mag-

nitudes for quantities like superfluid gap. The confinement problem has also

been addressed in Polyakov loop extended NJL (PNJL) model [16].

1.3 The QCD phase diagram

At ordinary temperature or density, the strong force confines the quarks inside

hadrons whose size is around 1 fm (which corresponds to ΛQCD = 200 MeV).

When the temperature reaches the QCD scale or the density is so high that

the average inter-quark separation becomes less than 1 fm (quark chemical

potential, µq ∼ 400 MeV), then hadrons are melted and it is logical then to

consider not the hadrons but the quarks as the basic degrees of freedom. Such

phases of matter is called the quark matter. At high temperature, according

to the theoretical prediction, the quarks and gluons become deconfined and

this phase is the quark gluon plasma (QGP) and the suggested phase of quark

matter at high density is a superconducting phase called color superconductor

(CSC). The suggested phases of quark matter at different temperature and

chemical potential is shown in the conjectured QCD phase diagram in Fig.[1.1].

We call it a conjectured phase diagram because theoretically or experi-

mentally, it is not well known. The relevant thermodynamic quantities are

temperature T and baryon chemical potential µB. The vacuum corresponds to

T = µB = 0. The ordinary matter is consisted of nucleon droplets surrounded

by vacuum and this is the case up to the phase boundary between hadron gas

and nuclear matter. This boundary lies at around µB = 900 MeV where a

liquid-gas phase transition takes place. As we increase the chemical potential

keeping the temperature low, at some critical value of µB, different effective

theories suggest a transition from nuclear matter to quark matter. The nature

of quark matter emerging from squeezing of nucleons at intermediate densities
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Figure 1.1: The theoretically proposed phase diagram of QCD.

(few times ρ0) is an open problem. However, different effective theories suggest

the possibility of one of various types of CSC phases. The essence of these CSC

phases is the BCS type of superconductivity. However, unlike electrons in BCS

theory, quarks come in different flavors and colors. This difference along with

different constraints like charge neutrality (relevant for neutron stars) may

lead to the possibility of many different types of superconducting phases over

a range of chemical potential as well as the difference in chemical potential of

different flavors of quarks.

At asymptotically high densities (µq >> mu, md, ms), QCD calculation

predicts quark matter to be in color-flavor locked (CFL) phase which is CSC

phase with pairing among all the three quark flavors [17]. At intermediate

densities, a varieties of phases have been suggested. In this regime, it is ex-

pected that strange quarks are either absent or do not form condensates. So

the pairing is restricted to the two lightest flavors. The most widely studied

phase in this regime is the 2-flavor CSC (2SC) phase where u and d quarks of

different color form Cooper pairs [18]. The mechanism of 2SC pairing is similar
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to the BCS pairing. As the density decreases, the quark matter might pass on

from 2SC phase to Bose-Einstein condensed (BEC) state with bound diquarks

[19, 20]. Few other interesting states of matter have been proposed when con-

straints like charge neutrality are imposed which implies a mismatch in the

chemical potential of different flavors. Near the paired-unpaired transition

boundary, such a mismatch may induce the Fulde-Ferrel-Larkin-Ovchinnikov

(FFLO) phase which involves Cooper pairs with finite momentum [21]. This

phase is known as the crystalline superconducting phase. Phases with effective

Fermi surfaces have also been suggested for stronger coupling and mismatch

in the densities of different flavors of quarks. Superfluidity involving one such

Fermi surface is called the interior gap superfluidity and phases with two such

effective Fermi surfaces are known as breached pairing phases [22].

Now as the temperature is increased keeping the chemical potential low,

at first we get a gas of hadrons (mainly pions). Then at a critical tempera-

ture, TC ∼ 170 MeV which corresponds to ∼ 1012 kelvin, deconfined quarks,

antiquarks and gluons are formed as the thermal fluctuations break up the

hadrons. Such deconfined phase is called the QGP phase. The transition from

hadronic phase to QGP phase is expected to be a crossover. The TC has been

predicted by lattice QCD calculations [23]. The QGP is the theoretically pre-

dicted state of matter when the universe was only a few microseconds old. At

higher densities also, QGP is the expected state of matter when the tempera-

ture is as high as 1012 kelvin. The confinement-deconfinement phase boundary

was also thought to be the boundary for chiral transition. The low density and

low temperature region is supposed to be the region chiral symmetry is broken

and it is supposed to be restored at high density or temperature. However,

some phases, relevant at high density might also break chiral symmetry. So it

is now not clear whether deconfinement phase transition and chiral transition

follows the same path or not.

In the following, we shall discuss in some detail, three different aspects of

strong interaction in the context of the QCD phase diagram : CSB, strong CP

violation and CSC.
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1.3.1 Chiral symmetry breaking (CSB)

Chiral symmetry is a symmetry of the Lagrangian which allows independent

transformation of the left-handed and right-handed components of the Dirac

fields. Let us consider the fermionic part of the QCD Lagrangian with the two

lightest quarks,

L = ūiD/u+ d̄iD/d−muūu−mdd̄d. (1.7)

If we ignore the current quark masses, then the Lagrangian in Eq.(1.7) has

SUV (2) isospin symmetry. In terms of the left-handed and right-handed com-

ponents of the quark doublet Q, the Lagrangian can be written as

L = Q̄LiD/QL + Q̄RiD/QR, (1.8)

where the left-handed and right-handed components of the quark doublet are

given by

QL =

(

1− γ5

2

)

Q and QR =

(

1 + γ5

2

)

Q (1.9)

The Lagrangian in Eq.(1.8) is symmetric under separate unitary transforma-

tions of SUA(2) given by

QL → eiθLQL and QR → QR,

QL → QL and QR → eiθRQR.

This symmetry is called the chiral symmetry. A mass term like mQ̄Q in the

Lagrangian explicitly breaks the chiral symmetry as it mixes the left-handed

and the right-handed quarks,

mQ̄Q = mQ̄LQR +mQ̄RQL.

The QCD Lagrangian respects the chiral symmetry only approximately as the

u and d quarks are not really massless. Chiral symmetry is spontaneously

broken in the QCD vacuum with a non zero vacuum expectation value of Q̄Q.

The explicit mechanism of CSB is not known. Since it is a non perturbative
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phenomenon, lattice QCD or some effective models are used to study CSB.

The NJL model is especially useful as it features the generation of Fermion

masses through dynamical CSB. The mechanism of CSB in NJL model closely

follows the BCS theory of superconductivity as it features quark-antiquark

pair condensation in vacuum through some attractive channel. Now we shall

discuss CSB in 2-flavor NJL model through Green’s function approach [24].

For two flavors of quarks with equal masses, the NJL Lagrangian with the

scalar and pseudo scalar terms is given by

LNJL = ψ̄ (i∂/ −m)ψ +G
[

(

ψ̄ψ
)2

+
(

ψ̄iγ5τψ
)2
]

, (1.10)

where τ = (τ 1, τ 2, τ 3) are the Pauli matrices in the flavor space. We have sup-

pressed the flavor and color indices here. The Lagrangian has isospin symmetry

as mu = md = m. In the mean field approximation, using the Feynman rules

for a four-fermion interaction, the self energy associated with the scalar vertex

(ψ̄ψ)2 and that with the pseudo scalar vertex (ψ̄iγ5τψ)2 can respectively be

written as

ΣS = 2G [Tr{iS(x, x)} − iS(x, x)] , (1.11)

ΣPS = 2G
(

iγ5τ
)

[Tr{iS(x, x)} − iS(x, x)]
(

iγ5τ
)

, (1.12)

where Tr denotes a trace over the color, flavor and spinor indices. S(x, x)

is the time ordered single particle Green’s function defined as iS(x, x′) =

〈Tψ(x)ψ̄(x′)〉. This propagator satisfies

(i∂/x − Σ)S(x, x′) = δ(4)(x− x′), (1.13)

where Σ is the total self energy given by Σ = m + ΣS + ΣPS. It is easy to

identify Σ as the mass of the particle in the system, Σ = M . The solution of

Eq.(1.13) in the momentum space is given by

S(p) =
p/+M

p2 +M2
. (1.14)
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Now, inserting the Fourier transform of the propagator, given in Eq.(1.14)

in Eq.(1.11) and Eq.(1.12) and adding them, the mass gap equation can be

written as

Σ =M = m+ iG [2NCNf + 1]

∫

d4p

(2π)4
trS(p), (1.15)

where the trace is over the spinor indices only. Eq.(1.15) gives the constituent

mass M of the quarks. Now, Eq.(1.15) contains divergence whose origin can

be traced back to the four-fermion contact interaction. Since NJL model is

non renormalizable, some regularization schemes need to be imposed. One

such scheme is the three momentum cutoff scheme. In this method, a three

momentum cutoff, Λ satisfying |p| < Λ, is imposed after carrying out the p0

integration in Eq.(1.15). If we neglect the exchange term in Eq.(1.15), then it

has the form

M = m+ 4GNCNfM

∫ Λ d3p

(2π)3
1

Ep
, (1.16)

with Ep =
√

p2 +M2. Eq.(1.16) is a self consistent equation for the con-

stituent quark mass M and it can be analytically calculated as

∫ Λ d3p

(2π)3
1

Ep

=
1

4π2

[

Λ
√
Λ2 +M2 −M2 sinh−1 Λ

M

]

.

In the limit of vanishing current quark mass, Eq.(1.16) will always have a

trivial solution for M = 0 and the corresponding phase is called Wigner phase

for which, the chiral condensate, 〈ψ̄ψ〉 = 0. On the other hand if a non zero

M exists, then the chiral condensate is given as

〈ψ̄ψ〉 = −2NCNfM

∫

d3p

(2π)3
1

Ep
. (1.17)

Such a phase is known as the Nambu-Goldstone phase. The difference in

energy density between the Nambu-Goldstone phase and the Wigner phase is

given as

〈δT 00〉 = 〈T 00〉NG − 〈T 00〉W ≃ Λ2M2

8π2

[

1− π2

GNCNfΛ2

]

. (1.18)
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A negative 〈δT 00〉 implies that the Nambu-Goldstone phase is energetically

favored over the Wigner phase. From Eq.(1.18), it is evident that 〈δT 00〉 is

negative beyond a critical value of G, GCΛ
2 = π2/NCNf . Below GC , the

Nambu-Goldstone phase will not be favored over the Wigner phase.

The momentum cutoff, Λ, and the four-fermion coupling, G, are fixed by

choosing a value for the current quark mass and fitting to the pion decay

constant and the mass of pion. If the current quark mass, m is taken to be

zero then, for Λ = 653 MeV and GΛ2 = 2.14, the constituent quark mass, M ,

turns out to be 313 MeV in the two flavor case [24].

At finite temperature and density, Eq.(1.16) gets modified due to the ther-

mal contribution of quarks and antiquarks and is given as

M = m+ 4GNCNfM

∫ Λ d3p

(2π)3
1

Ep
[1− n−(p)− n+(p)] , (1.19)

with n∓(p) = [exp{β(Ep ∓ µ)}+ 1]−1 being the quark and antiquark distribu-

tion functions respectively. The chiral order parameter in Eq.(1.17) also gets

modified and is given as

〈ψ̄ψ〉 = −2NCNfM

∫

d3p

(2π)3
1

Ep
[1− n−(p)− n+(p)] . (1.20)

It has been shown that strong magnetic field acts as a catalyzer of CSB

[25, 26, 27] as it enhances the constituent quark mass. But recently it has been

shown using ADS-CFT correspondence that magnetic field may also induce a

lower critical µB for chiral symmetry restoration [28]. This phenomena has

been termed as inverse magnetic catalysis (IMC). The effect of magnetic field

on CSB can play a significant role in the structure of the neutron stars as

they are usually associated with very high magnetic field. The study of the

effect of magnetic field on CSB is essential in the context of heavy ion collision

experiments also as ultra high magnetic fields ∼ 1018 Gauss are produced there

and an interesting phenomenon induced by strong magnetic field called chiral

magnetic effect (CME) [29] has been predicted which may explain the charge

separation observed in STAR experiment [44].
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In the above, we have discussed CSB in 2-flavor NJL model using the

Green’s function method. CSB can also be studied in NJL model using

Bogoliubov-Valatin approach which involves an explicit construction of a BCS

like variational ground state. In chapter-3, we shall study the effect of mag-

netic field on CSB in 3-flavor NJL model with a Kobayashi-Maskawa-’t Hooft

(KMT) determinant interaction term in the Bogoliubov-Valatin approach.

1.3.2 Strong CP violation

Strong interaction is known to respect the parity (P ) and charge parity (CP )

symmetry to a large extent. The QCD Lagrangian that we have considered

in Eq.(1.1) is symmetric under P and CP transformations in the vanishing

quark mass limit. The axial current density Jf
µ5 = ψ̄fγµγ5ψf corresponding to

the Lagrangian in Eq.(1.1) is conserved in the vanishing quark mass limit as

∂µJf
µ5 = 2mf iψ̄fγ5ψf . (1.21)

For mf = 0, the right hand side becomes zero implying exact conservation of

the axial current density. However, these classical symmetries of QCD comes

under question because of the Adler-Bell-Jackiw anomaly [30] which is also

known as the U(1)A axial anomaly [31]. Because of this anomaly, the axial

current density is not conserved even in the vanishing quark mass limit and

the divergence of the axial current is given as

∂µJf
µ5 = 2mf iψ̄fγ5ψf +

Nfg
2

32π2
F a
µνF̃

aµν , (1.22)

where F a
µν is the gluon field strength tensor and F̃ aµν = ǫµνρσF a

ρσ is the dual

field strength tensor. This anomalous divergence of the axial current density

should correspond to a pseudo scalar meson with roughly the same mass as

pion which has never been observed. This is the U(1)A problem. This problem

was theoretically solved by showing that because of instanton effects, U(1)A

should not result in a physical meson [32, 33]. This anomalous axial current
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can be obtained by adding a θ-term, which is allowed in principle by the gauge

invariance of QCD, to the Lagrangian in Eq.(1.1) as

Lθ
QCD = Lθ=0

QCD + Lθ = Lθ=0
QCD +

θ

64π2
g2F a

µνF̃
aµν , (1.23)

where Lθ=0
QCD is the Lagrangian we have considered in Eq.(1.1) and θ is a num-

ber. For non zero values of θ, the P and CP invariance of QCD is lost when

such a term is included. From the Lagrangian in Eq.(1.23), the divergence of

axial current can be written as

∂µJf
µ5 = 2mf iψ̄fγ5ψf +

Nfg
2θ

32π2
F a
µνF̃

aµν . (1.24)

The CP violating θ-term manifests its effect in the electric dipole moments

(EDM) of the hadrons. The current experimental upper bound on the neu-

trons EDM is |dn| < 2.9 × 10−26e cm [34]. A careful analysis from this value

of EDM of neutron yields an upper bound, |θ| < 0.7 × 10−11 [35]. The rea-

son behind such unnatural smallness of θ is not yet known and this is the

strong CP problem. Possible explanation of this problem has been suggested

by promoting θ into a dynamic axion field [36]. These axion fields emerge

as Nambu-Goldstone boson corresponding to the spontaneous breaking of an

additional chiral symmetry : the Peccei-Quinn symmetry [37].

The Vafa-Witten theorem forbids spontaneous violation of P or CP in the

QCD vacuum for θ = 0 [38]. However, this theorem need not hold for QCD

at finite isospin density [39] or finite temperature [40] where P odd operators,

which are not Lorentz invariant, are allowed to have non zero expectation

values. Moreover, the Dashen phenomenon allows degenerate vacuum states

which spontaneously break P and CP for θ = π [41].

The heavy ion collision experiments might produce excited vacuum states

which breaks P and CP [42]. It has been proposed that near the deconfinement

phase transition, the QCD vacuum might posses P and CP odd states with

locally non vanishing θ [43]. However, the prediction that opened new ways

of observing P and CP violating effects in the heavy ion collision experiments
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in presence of strong magnetic field is the chiral magnetic effect (CME). This

predicts separation of electric charges along the axis of the magnetic field

because of the spatial variation of the topological charge distribution [29]. The

experimental results obtained by STAR Collaboration at RHIC also suggests

such charge separation resulting from P and CP odd effects [44].

Because of the non perturbative nature of strong interaction at finite tem-

perature and density, the study of these P and CP violating effects require

lattice QCD or effective models. Though NJL model does not have any CP

violation term, it can still be used with the inclusion of a six fermion determi-

nant interaction term in the Lagrangian. Such a term was first introduced to

account for the large mass of the pseudo scalar meson η′ (mη′ = 958 MeV) [45]

and later, this vertex was derived as an instanton induced quark interaction

[33]. This vertex is called the Kobayashi-Maskawa-’t Hooft (KMT) vertex and

is expressed as

L0
KMT = detψ̄i(1− γ5)ψj + h.c,

where i, j = 1, 2, 3 are the flavor indices. To incorporate the effect of the θ-

term in the Lagrangian in Eq.(1.23), a phase factor is introduced in the KMT

term and then the NJL Lagrangian can be written as

LKMT
NJL = ψ̄i∂/ψ − ψ̄mψ +

8
∑

a=0

G
[

(ψ̄λaψ)
2 + (ψ̄iλaγ5ψ)

2
]

+ K
[

e−iθdetψ̄i(1− γ5)ψj + h.c
]

= L0 + LSB + LS + LKMT , (1.25)

where the quark field ψi has three colors (Nc = 3) and three flavors (Nf = 3).

This Lagrangian incorporates dynamical CSB, the U(1)A axial anomaly and

the explicit symmetry breaking through the current quark mass. To check the

symmetries of the Lagrangian in Eq.(1.25), it is useful to define

Φij = ψ̄i(1− γ5)ψj = 2ψ̄iRψjL (1.26)

with Φ†
ij = ψ̄i(1 + γ5)ψj = 2ψ̄iLψjR where ψiL and ψiR are the left handed
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and right handed fields respectively. Under the SU(3)L×SU(3)R global chiral

transformations defined as

ψiL → [U(θL)]ijψjL ≡ LijψjL and ψiR → [U(θR)]ijψjR ≡ RijψjR,

(1.27)

with U(θ) = exp(i
∑8

a=1 λaθa/2), the bosonic operators are transformed as

Φij → LikΦklR
†
lj and Φ†

ij → RikΦ
†
klL

†
lj. (1.28)

So the bosonic operators and their hermitian conjugates are respectively the

(3, 3̄) and (3̄, 3) representations of SU(3)L×SU(3)R. It is easy to see that the

Lagrangian in Eq.(1.25) has SU(3)L×SU(3)R invariance. LS is also invariant

under U(1)V × U(1)A transformations defined as

ψL → eiαψL and ψR → eiβψR. (1.29)

Under this transformation, the bosonic operators transform as

Φ → ei(α−β)/2Φ and Φ† → e−i(α−β)/2Φ†. (1.30)

The KMT term is invariant under U(1)A only when α = β which is the U(1)V

transformation. So LKMT is invariant under SU(3)L × SU(3)R × U(1)V but

not invariant under U(1)A. In addition to the KMT term, the mass term is

also not invariant under U(1)A. From the Lagrangian in Eq.(1.25), the axial

anomaly equation is given as

∂µJµ5 = 2miψ̄γ5ψ + 2iNfK
(

e−iθdetΦ− h.c
)

. (1.31)

Comparing Eq.(1.31) with Eq.(1.24), it can be said that the effect of the gluon

operator g2

32π2F
a
µνF̃

aµν is simulated by the determinant operator (e−iθdetΦ−h.c)
in the quark sector. We shall discuss the strong CP violation through the KMT

determinant interaction term in detail in chapter-4.
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1.3.3 Color superconductivity (CSC)

Color superconductivity (CSC) is relevant for the high density and low temper-

ature regime of the QCD phase diagram. Let us consider the case of ultra high

density where quarks are the relevant degrees of freedom and they are weakly

interacting. The distribution function at zero temperature is then given by

fF (k) = θ(µ− Ek), (1.32)

where Ek =
√
k2 +m2 is the dispersion relation for a free quark of mass m and

momentum k(k = |k|). µ is the chemical potential given by µ =
√

k2f +m2,

with kf being the Fermi momentum. The distribution function in Eq.(1.32)

implies that up to Fermi level, all the states are filled and beyond that all the

states are empty. This kind of distribution of quarks makes the ground state

unstable in presence of some attractive interaction (even arbitrarily small)

among the quarks because of Cooper instability [14] arising from formation of

Cooper pairs around the degenerate Fermi surface. Since the Cooper pairs are

bosonic in nature, they can form Bose-Einstein condensate at T = 0 leading

to a superconducting state very much similar to the BCS theory of supercon-

ductivity at low temperature [15]. Here, unlike the electrons in BCS type of

low temperature superconductivity, quarks are of different flavors and they

are associated with the non abelian color charge. This kind of superconductiv-

ity with quark matter is called color superconductivity (CSC). This has been

reviewed in Ref.[46].

The ground state of quark matter at asymptotically high density has been

predicted to be a CSC phase from perturbative QCD calculation [18]. At

large enough densities, when the interaction strength is weak, the dominant

interaction is the one gluon exchange interaction and this can be studied from

the first principles of QCD. In presence of a finite chemical potential, the QCD

Lagrangian, given in Eq.(1.1) is modified and it is given by

LQCD = ψ̄i
a

(

iγµ∂µ + γ0µ−mi

)

ψi
a + gAA

µ ψ̄
i
aγ

µTA
abψ

i
b −

1

4
GA

µνG
Aµν , (1.33)
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Since it is reasonable to neglect the current quark masses at high densities,

the Lagrangian in Eq.(1.33) has approximate SU(2)L × SU(2)R global chiral

symmetry. We can neglect constituent quark masses generated by dynamical

symmetry breaking also as the chiral condensate, 〈ψ̄ψ〉 which is responsible

for the constituent quark masses, melts down at higher densities.

In the one gluon exchange approximation, the scattering amplitude for

quark-quark scattering is proportional to the color structure of the interaction

vertex in Eq.(1.33) which is given by

N2
C
−1

∑

A=1

TA
aa′T

A
b′b = −NC + 1

4NC

(δaa′δb′b − δab′δa′b) +
NC − 1

4NC

(δaa′δb′b + δab′δa′b) .

(1.34)

The first term In Eq.(1.34) corresponds to the attractive antitriplet channel

while the second term corresponds to the repulsive sextet channel. The attrac-

tive channel plays the key role in Cooper pairing. This antisymmetry of the

attractive channel is reflected in the color structure of the Cooper pairs, given

by

〈
(

ψ̄C
)i

a
γ5ψj

b〉 ∼ εijǫabc, (1.35)

where ψC = Cψ̄T is the charge conjugated spinor and C = iγ2γ0 is the charge

conjugation matrix. The condensate is antisymmetric in flavor of because

of antisymmetry in color and Dirac indices. The arbitrary orientation of this

condensate in the color space can be modified conveniently through global color

transformations. The convention is to choose the condensate to point towards

blue quark, 〈
(

ψ̄C
)i

a
γ5ψj

b〉 ∼ εijǫab3. This means that the blue quarks do not

participate in the Cooper pairing and they give rise to gapless quasi particles.

To study 2-flavor CSC (2SC) in dense matter, instead of Dirac spinor, it is

convenient to use 8-component Nambu-Gorkov spinor given by

Ψ =





ψ

ψC



 . (1.36)

In Nambu-Gorkov basis, the inverse quark propagator in the ground state of
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2SC has off-diagonal elements,

S−1 =





[

G+
0

]−1
∆−

∆+
[

G−
0

]−1



 , (1.37)

where
[

G±
0

]−1
= γµkµ ± µγ0 (1.38)

are the inverse Dirac propagators for massless quarks (G+
0 ) and charge-conjugated

quarks (G−
0 ). The off-diagonal components are given by, ∆− = −iǫ3εγ5∆ and

∆+ ≡ γ0 (∆−)
†
γ0 = −iǫ3εγ5∆∗, where ∆ is the diquark gap. From the inverse

propagator in Eq.(1.37), the quark propagator can be written as

S =





G+ Ξ−

Ξ+ G−



 , (1.39)

where the diagonal and the off-diagonal elements of the quark propagator are

given by

G± =
[

(

G±
0

)−1 −∆∓G∓
0 ∆

±
]−1

, (1.40)

Ξ± = −G∓
0 ∆

±G±. (1.41)

In dense QCD, though the one gluon exchange interaction is the dominant

one, it gets partially screened because of the surrounding dense medium. So

the gluon propagator also gets modified because of the medium. The inverse

gluon propagator in the medium can be written as

(

D−1
)AB

µν
=

(

D−1
0

)AB

µν
+ΠAB

µν , (1.42)

where (D0)
AB
µν is the gluon propagator in vacuum and ΠAB

µν is the gluon self-

energy. The soft gluons play the key role in Cooper pairing. The dominant

contribution to the soft gluon self energy comes from quark loops with hard

internal momenta of the order of µ. It is large compared to others because it is

proportional to the density of states at Fermi surface and the running coupling,
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αS = g2/4π, i.e., ΠAB
µν ∼ αSµ

2. In case of asymptotically high densities, the

bare quark-gluon vertices and the gluon propagator with the screening effects

are used in the Schwinger-Dyson equation for the quark propagator which, for

this case, can be written as

S−1(k) = S−1
0 (k) + 4παS

∫

d4p

(2π)4
ΓA
µS(p)Γ

B
ν Dµν

AB(k − p), (1.43)

where the quark-gluon vertices to the leading order in the Nambu-Gorkov basis

are given by

ΓA
µ = γµ





TA 0

0 −
(

TA
)T



 . (1.44)

In case of the quark propagator given in Eq.(1.37), the Schwinger-Dyson equa-

tion reduces to an equation for the diquark gap parameter ∆ in the weak

coupling limit. Neglecting the dependence of the gap on the three-momentum

and performing the momentum integration, the approximate form of the gap

equation is obtained as [47, 48, 49],

∆(k4) ≃
αS

9π

∫

dp4∆(p4)
√

p24 +∆2
ln

cµ

|k4 − p4|
, (1.45)

with k4 ≡ ik0 and c = 2(4π)3/2α
−5/2
S . The extra coupling dependence (α

−5/2
S in

the logarithm) comes from the in medium gluon propagator within the hard

dense loop (HDL) approximation [50]. The constant c is calculated by collect-

ing the leading logarithms from both electric and magnetic gluon exchange.

The gap equation, which is an integral equation, can be converted into a dif-

ferential equation [47]. In the weak coupling limit, an approximate solution to

Eq.(1.45) is given by [49],

∆(0) ≃ cµ exp

(

− 3π3/2

23/2
√
αS

)

= cµ exp

(

− 3π2

√
2g

)

. (1.46)

The expression for the superconducting gap in Eq.(1.46) is valid only in

the case of asymptotically high density. Careful analysis shows that the weak

coupling approximation is valid only at µ >> 108 MeV [50]! Below, this,
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the higher order contributions of the coupling, g to the gap, ∆ can not be

neglected. So in case of moderate density (few times ρ0), one has to depend on

the effective models. One convenient choice is the NJL model. The Lagrangian

for 2-flavor NJL model containing diquark term and which is invariant under

global SU(2)L×SU(2)R global chiral symmetry in the vanishing current quark

mass limit is given as [51],

LNJL = ψ̄
(

i∂/ + γ0µ
)

ψ +GD

(

iψ̄Cεǫbγ5ψ
) (

iψ̄εǫbγ5ψC
)

, (1.47)

where (ε)ik ≡ εik and (ǫb)ca ≡ ǫcab are the antisymmetric tensors in the flavor

and color space respectively. GD is the diquark four fermion coupling in the

color flavor antisymmetric channel. The four fermion scalar and pseudo scalar

terms of the Lagrangian in Eq.(1.10) are not included in Eq.(1.47) as this

discussion is confined to densities where chiral symmetry gets restored. The

interplay of both CSB and CSC has also been studied in NJL model. In the

mean field approximation, an auxiliary field is introduced as

∆b = −2GD

(

iψ̄Cεǫbγ5ψ
)

. (1.48)

Using this auxiliary field, the Lagrangian of Eq.(1.47) can be rewritten as

LMF = ψ̄
(

i∂/ + γ0µ
)

ψ−∆∗b

2

(

iψ̄Cεǫbγ5ψ
)

−∆b

2

(

iψ̄εǫbγ5ψC
)

−∆∗b∆b

4GD

, (1.49)

with ∆∗b = −2GD

(

iψ̄εǫbγ5ψC
)

. In the mean field approximation, the expec-

tation value of ∆b is taken to be a constant value ∆, which is the diquark

gap parameter. Here, it has been assumed conventionally that only red and

green quarks form the condensates while the blue quarks remain free. Using

the Lagrangian in Eq.(1.49), the partition function can be written as

Z = N ′

∫

[dψ̄][dψ] exp

{
∫ β

0

dτ

∫

d3xLMF

}

, (1.50)

where β = 1/T is the inverse of temperature. In the mean field approximation,



24 Chapter 1. Introduction

the partition function reduces to a product of three terms as

Z = ZcZbZr,g. (1.51)

The constant term Zc is given by

Zc = N ′ exp

{

−
∫ β

0

dτ

∫

d3x
∆∗∆

4GD

}

. (1.52)

Zb denotes the contribution from the unpaired blue quarks and is given as

Zb =

∫

[dψ̄b][dψb] exp

{
∫ β

0

dτ

∫

d3x

2
[ψ̄b(i∂/ + µγ0)ψb + ψ̄C

b (i∂/ − µγ0)ψ
C
b ]

}

.

(1.53)

Defining Q = ψr,g for the red and green quarks forming the Cooper pairs, the

contribution from the paired quarks to the partition function can be written

as

Zr,g =

∫

[dQ̄][dQ] exp

{
∫ β

0

dτ

∫

d3x

2
[Q̄(i∂/ + µγ0)Q

+ Q̄C(i∂/ − µγ0)Q
C + Q̄∆−QC + Q̄C∆+Q]

}

, (1.54)

where ∆− = −i∆εǫbγ5 and ∆+ = −i∆∗εǫbγ5 satisfy the relation ∆+ =

γ0(∆−)†γ0. Using the 8-component Nambu-Gorkov spinor in Eq.(1.36), Zb

from Eq.(1.53) and Zr,g from Eq.(1.54) can be written as

Zb =
[

Det{β(G+
0 )

−1}Det{β(G−
0 )

−1}
]1/2

, (1.55)

Zr,g =
[

Det(βS−1)
]1/2

, (1.56)

where G±
0 are the free quark propagators in Eq.(1.38) and S is the dressed

quark propagator in Eq.(1.39). The thermodynamic dynamic potential in

terms of the partition function is given as

Ω = −T
V

lnZ = −T
V

[lnZc + lnZb + lnZr,g] . (1.57)

Using Eq.s(1.52,1.55,1.56), the logarithms of the three different contributions
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can be written as

lnZc = −V
T

∆2

4GD
,

lnZb =
NfV

T

∫

d3k

(2π)3

[

E+
k + 2T ln{1 + e−βE+

k }+ E−
k + 2T ln{1 + e−βE−

k }
]

,

lnZr,g =
2NfV

T

∫

d3k

(2π)3

[

E+
∆ + 2T ln{1 + e−βE+

∆}+ E−
∆ + 2T ln{1 + e−βE−

∆}
]

,

where E±
k = |k| ± µ and E±

∆ =

√

E±
k
2
+∆2. Using these logarithms, the

thermodynamic potential in Eq.(1.57) can explicitly be written as

Ω =
∆2

4GD

− 2Nf

∫

d3k

(2π)3

[

|k|+ T ln{1 + e−βE+
k }+ T ln{1 + e−βE−

k }

+ E+
∆ + 2T ln{1 + e−βE+

∆}+ E−
∆ + 2T ln{1 + e−βE−

∆}
]

. (1.58)

Minimizing Ω, given in Eq.(1.58), with respect to ∆ gives the equation for the

diquark gap parameter ∆ at T = 0 as

1 = 8NfGD

∫

d3k

(2π)3

[

1

2E−
∆

+
1

2E+
∆

]

. (1.59)

The approximate solution to the gap equation in Eq.(1.59) is given by

∆ ≃ 2
√

Λ2 − µ2 exp

(

− π2

8GDµ2
+

Λ2 − 3µ2

2µ2

)

, (1.60)

where Λ is the three momentum cutoff. For µ = 400 MeV, which is relevant for

the core of neutron stars, the gap turns out to be around 140 MeV for GD = 3.5

GeV−2 and Λ = 600 MeV [52]. This observation triggered interest in the field

of CSC as such a large gap should be reflected in the observational data from

the compact stars. This should affect the transport and thermodynamical

properties as viscosity, conductivity, specific heat and equation of state.

Other than the lightest up and down quarks, strange quarks might also

be present when the quark chemical potential, µq, is much larger than the

constituent mass of the strange quark. There have been speculations that

strange quark matter may be the actual ground state of dense baryonic matter
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[53]. If the density is so high that the current mass of strange quark becomes

negligible compared to µq, then all the three quarks can participate in Cooper

pairing and the resulting phase will be a 3-flavor CSC phase. The condensate

for such a state is antisymmetric in flavor and color and is given by [17],

〈(

ψ̄C
)a

i
γ5ψb

j

〉

∼ δai δ
b
j + δaj δ

b
i . (1.61)

In this state, the left-handed condensates break the SU(3)L chiral symmetry

and SU(3)C color symmetry but leave the SU(3)L+C symmetry unbroken.

Similarly the right-handed condensates break the SU(3)R chiral symmetry

and SU(3)C color symmetry but leave the SU(3)R+C symmetry unbroken.

In presence of both types of condensates, the symmetry of the ground state

is SU(3)L+R+C . So the color-flavor orientations of the two condensates are

locked to each other. This mechanism is called the color-flavor locking and so

the 3-flavor CSC phase is called color-flavor locked (CFL) phase.

We have discussed about the 2SC phase which is the most widely studied

phase at intermediate densities and whose essence is BCS type of superconduc-

tivity with Cooper pairs for weak interaction strength. But, as we mentioned

while discussing the QCD phase diagram, a wide range of non BCS phases

might appear at intermediate densities when the coupling is large. The expec-

tation of this phase structure with non BCS phases is propelled mainly by two

facts : the structural dependence of the Cooper pairs on the coupling strength

and the relevance of charge neutrality condition in the context of neutron stars

which implies a mismatch in chemical potential of different flavors of quarks.

The structural change of Cooper pair alone can induce BEC phase in quark

matter. This, coupled with the mismatch in chemical potential can induce

more exotic phases like FFLO, interior gap superfluidity and breached pairing.

In the Cooper paired phase, the typical size of Cooper pairs is characterized

by the coherence length, ξc, which is defined as [19],

ξ2c =

∫

d3rr2|ϕ(r)|2
∫

d3r|ϕ+(r)|2
, (1.62)
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where ϕ(r) is the diquark correlation function for the quarks related to the

superfluid gap, defined as [19],

ϕ(r) = N

∫

d3k

(2π)3
∆(k)

2
√

(|k| − µ)2 + |∆(k)|2
eik·r. (1.63)

However, from ξc alone, it can not be concluded whether the Cooper pairs are

tightly bound or loosely bound spatially. For that, ξc needs to be compared to

the typical length scale of the system which in this case is the averaged inter

quark quark distance dq, given as

dq =
1

µ

[

π2

2

]1/3

. (1.64)

The expression for dq in Eq.(1.64) is obtained assuming the quarks to be free.

For accurate estimation, the contributions from interaction should be included.

However, for ∆ >> µ, the expression in Eq.(1.64) holds good as the corrections

due to interaction are suppressed by powers of ∆/µ. The behavior of the ratio

of ξc/dq with µ is shown in Fig.[1.2]

Figure 1.2: Ratio of the coherence length ξc and the average inter quark distance
dq as a function of the chemical potential. This figure is taken from Ref.[19]

As the chemical potential decreases, so does the ratio ξc/dq. BCS phase is
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characterized by ξc/dq >> 1, i.e, coherence length much larger that the inter

quark separation. When the ratio becomes of the order of 1, the system might

pass on to strongly coupled BEC with locally bound diquarks [19, 20]. Fig.[1.2]

suggests that BEC might be the relevant phase at densities that exist in the

neutron stars. The transition from BCS phase to BEC phase is expected to

be a crossover similar to the case of cold atoms.

Now, in the context of neutron stars, one important constraint is the charge

neutrality condition. Since different flavors of quarks have different charges,

charge neutrality condition demands for unequal chemical potential for differ-

ent species. This mismatch motivated the suggestion of FFLO condensates

which was first proposed in the context of superconductivity in metals with

magnetic impurity [21]. Unlike BCS superconductivity, the essence of FFLO

is the formation of Cooper pairs with non zero momentum near the pairing-

unpairing boundary which might be thermodynamically favorable when there

is a mismatch in the chemical potential of different flavors of quarks. The

FFLO condensates break translational and rotational invariance and conse-

quently the gap varies periodically in a crystalline pattern. So FFLO is called

the crystalline CSC phase.

There also have been suggestions of exotic non BCS phases with non zero

effective Fermi surfaces induced by a mismatch in chemical potential in the

strongly coupled CSC regime. These non zero effective Fermi surfaces imply

the existence of non zero Fermi momenta of the quasi particles which corre-

spond to the zeros of the respective energy dispersion relation. In these phases,

there may exist one or more such Fermi surfaces for the quarks and this type

of superfluidity is called gapless superfluidity. Phases with one non zero Fermi

surface are known as the interior gap superfluid phase and phases with two

such effective Fermi surfaces are called the breached pairing phase. Depending

on the mismatch in chemical potential and the coupling strength, there may

exist a mixed superfluid phase where particles and antiparticles of different

flavors might exhibit different types of gapless superfluidity. In these mixed

phases, usually one or more flavors show superfluidity without gapless modes
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as all the species can not have gapless modes simultaneously. Gapless super-

fluidity has been studied in the context of quark matter [22] as well as in the

case of cold atoms [54, 55].

We shall discuss BCS-BEC crossover and gapless superfluid phases for a

general relativistic fermionic system in the context of quark matter in detail

in chapter-2.

1.4 Outline of the thesis

This thesis has been organized in the following manner : In the second chapter,

we shall discuss the BCS-BEC crossover in a system of two species of relativistic

fermions. We shall consider a relativistic model with four fermion interaction

for our purpose. First we shall discuss the BCS-BEC crossover within the mean

field approximation. We shall compare our results to the results obtained in

the non relativistic systems. Then we shall extend our model to include the

quantum fluctuation of the condensate field to study the crossover beyond

mean field approximation.

Chapter-3 is devoted to studying the effect of magnetic field on CSB at

finite temperature and density. We use the 3-flavor NJL model with a KMT

determinant interaction term to see the effect of flavor mixing. The effects

of charge neutrality condition which is relevant for neutron stars have been

studied and the equation of states for different values of magnetic field have

also been obtained.

In chapter-4, we shall discuss the effect of finite temperature and density

on strong CP violation and the interplay of CSB and strong CP violation in

quark matter. Here also we have used the 3-flavor NJL model with the KMT

term. The spontaneous CP violation at θ = π has been discussed and the CP

restoration at finite temperature and finite density is also discussed. Finally,

in chapter-5, we shall summarize our studies.
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Relativistic BCS-BEC crossover

In this chapter, we shall discuss the BCS-BEC crossover in relativistic fermionic

matter. At high density and low temperature, a system of fermions might

form a degenerate Fermi gas with all the energy levels upto the Fermi level are

completely filled. In presence of such a filled Fermi sea, even a arbitrarily small

attractive interaction may lead to formation of Cooper pairs and consequently

BCS type superconductivity as we have mentioned in Sec.[1.3.3]. But the

scenario changes if the density decreases which means increase in coupling

strength in the context of quark matter. As shown in Fig.[1.2], the ratio of the

coherence length and the average inter particle separation becomes smaller as

the density decreases. At some critical density before the quarks are confined

the coherence length becomes of the order of the inter particle separation

[19, 56]. At such situation, it is proper to treat the Cooper pairs as spatially

localized bound states rather than pairs. At sufficiently low temperature, these

bosonic bound states may condense to form a BEC of difermion molecules. If

the density is decreased further, there might be a confinement phase transition

from BEC to hadronic matter in the context of quarks [57].

The transition from BCS phase to BEC phase is likely to be a smooth

crossover much similar to the case of cold fermionic atoms. Relativistic BCS-

BEC crossover within four-fermion point interaction model has been studied

using various approaches [56, 58, 59]. Effects of fluctuation of the condensate

field on the crossover have also been examined [60, 61, 62]. Some exotic phases

31
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other than BCS or BEC phases have been observed when charge neutrality or

color neutrality conditions are imposed. These phases have been observed in

quark matter [63] as well as polarized Fermi gas of atoms [64, 65]. This kind of

stressed pairing implies a mismatch in the chemical potential of the two species

of fermions. BCS-BEC crossover with such a mismatch has been studied in a

boson-fermion model and a rich phase structure has been observed [59].

We shall study the BCS-BEC crossover with two species of fermions in a

relativistic model. We restrict ourself to the pairing between particles and

pairing between antiparticles. The variational method with an explicit con-

struction of the ground state will be implemented. The ansatz functions will

be determined from the minimization of the thermodynamic potential. The

gap equation will also be determined from the minimization of the thermody-

namic potential. Then the gap equation and the number density equation will

be numerically solved and the thermodynamic stability of different phases at

different coupling strength and mismatch in chemical potential will be checked

by calculating the free energy and comparing the free energy of different states.

First, we study the BCS-BEC crossover within the mean field approxi-

mation with only fermionic degrees of freedom. The condensate field will be

treated as a classical auxiliary field. Then we shall extend our model to treat

the condensate field as a quantum field and there we shall study the effects of

quantum fluctuation of the condensates on the crossover to study this beyond

the mean field approximation.

2.1 BCS-BEC crossover in mean field approx-

imation

In this section, we shall discuss the BCS-BEC crossover within the mean field

approximation. We consider a general relativistic model with two species of

fermions of equal mass and different chemical potential. The Lagrangian is

given by

L = ψ̄i(iγµ∂µ −m+ µiγ
0)ψi + LI ≡ Lf + LI (2.1)



2.1. BCS-BEC crossover in mean field approximation 33

where, ψi denotes the Dirac fields, the index i = 1, 2 represents the fermion

flavors and µi denotes the chemical potentials of the two species of fermions.

Lf represents the free particle term and LI represents the interaction term of

the Lagrangian. Here we take LI to be a four-fermion interaction term as

LI = −G(ψ̄i
cγ

5ψj |ǫij|)(ψ̄kγ5ψl
c|ǫkl|), (2.2)

where G is the coupling constant and ψc is the charge conjugated spinor given

by ψc = Cψ̄T , ψ̄c = ψTC, with C = iγ2γ0 being the charge conjugation matrix.

The |ǫij| and |ǫkl| terms ensure cross flavor, spin zero antisymmetric pairing.

For mean field calculation we introduce a field Φ which is a fermion bilinear.

we can rewrite LI in terms of Φ as

LI = g|ǫij|
(

ψ̄iγ5ψj
cΦ+ ψ̄i

cγ
5ψjΦ∗

)

−m2
bΦ

∗Φ, (2.3)

with G = g2/m2
b , which can be treated a a crossover parameter. The field Φ

here represents an auxiliary field as the Lagrangian does not have any kinetic

term for Φ. For mean field calculation, we shall consider Φ as a classical

field and take its expectation value φ0 = 〈Φ〉 a constant while retaining the

quantum nature for the fermion field. This will enable us to calculate the

effective potential as a function of φ0.

2.1.1 The ansatz for the ground state

We are now interested in choosing a suitable choice of ground state for the

kind of interaction we have considered in Eq.(2.2). Since the dynamics is well

understood when there is no interaction, it will be convenient for us to choose

a ground state in terms of the free particle vacuum state. To do this, we need

the creation and annihilation operator for the free vacuum. So we need the

fermion field operator expansion which is given as

ψ(x) =
1

(2π)3/2

∫

[U0(k)q(k) + V0(−k)q̃(−k)] eik·xdk (2.4)
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The operators q and q̃ are the two component particle annihilation and an-

tiparticle creation operators respectively for the free vacuum |0〉. We can write

them in terms of the two component spinors as

q(k) = qr(k)ur and q̃(k) = q̃s(k)vs

where both r and s can take values of 1
2
or−1

2
. ur and vs are the two component

spinors given by

u 1
2
=





1

0



 and u− 1
2
=





0

1



 ,

v 1
2
=





0

i



 and v− 1
2
=





−i
0



 .

Here we have suppressed the flavor indices of the fermion field operators. The

fermionic spinors U0(k) and V0(−k) are given by

U0(k) =





cos χ0

2

σ · k̂ sin χ0

2



 and V0(−k) =





−σ · k̂ sin χ0

2

cos χ0

2



 . (2.5)

The function χ0(k) in the spinors in Eq.(2.5) are given as cotχ0
i = mi/|k|

for free massive fermion fields, i being the flavor index. For massless fields

χ0(|k|) = π/2. Now we can proceed to construct the ground state in terms of

the vacuum state. We take it as a squeezed coherent state given as [66, 67],

|Ω〉 = Ud|0〉 = exp(B†
d −Bd)|0〉. (2.6)

Ud is a unitary operator which creates or annihilates fermion pairs and an-

tifermion pairs. B†
d is the pair creation operator given by,

B†
d =

∫

[

qir(k)
†rf(k)qj−r(−k)†|ǫij |

]

dk+

∫

[

q̃ir(k)rf1(k)q̃
j
−r(−k)|ǫij |

]

dk.

(2.7)

In the above, i, j are flavor indices, and r(= ±1/2) is the spin index. the
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condensate functions for the fermion pairs and the antifermion pairs are rep-

resented by f(k) and f1(k) respectively. These ansatz functions will be de-

termined from the extremization of the thermodynamic potential. Since we

assume isospin symmetry and we are not taking electric charge into account,

we can assume that the condensate functions are independent of the flavor

of the fermions. We shall see later that these condensate functions depend

upon the average energy and average chemical potential of the fermions or

antifermions consisting the condensates.

Now, to proceed further, we need the creation and annihilation operators

for both particles and antiparticles for |Ω〉 which can be obtained through a

Bogoliubov transformation of the creation and annihilation operators for |0〉,

q′r
i
(k) = Udqr

i(k)U−1
d and q̃′r

i
(k) = Udq̃

i
r(k)U−1

d , (2.8)

where the primed operators correspond to |Ω〉 and the unprimed operators

correspond to |0〉. Explicit calculation leads to the following inverse transfor-

mation matrices,





qir(k)

qj−r

†
(−k)



 =





cos f 2r|ǫij| sin f
−2r|ǫij | sin f cos f









q′r
i(k)

q′−r
j†(−k)









q̃r
i(k)

˜qj−r

†

(−k)



 =





cos f1 2r|ǫij| sin f1
−2r|ǫij | sin f1 cos f1









q̃′r
i
(k)

˜q′−r
j
†

(−k)



 (2.9)

The reason behind writing the inverse transformation matrices instead of the

direct transformation matrices is that the Lagrangian we are considering is

consisted of only the unprimed operators whereas |Ω〉 can identify the primed

operators only. Finally, to include the effects of temperature and density we

write down the state at finite temperature and density, |Ω(β, µ)〉 taking a ther-

mal Bogoliubov transformation over the state |Ω〉 using thermo field dynamics

(TFD) [68]. We can write,

|Ωβ,µ〉 = Uβ,µ|Ω〉 = eB
†(β,µ)−B(β,µ)|Ω〉, (2.10)
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with

B†(β, µ) =

∫

[

q′(k)†θ−(k, β, µ)q
′(k)† + q̃′(k)θ+(k, β, µ)q̃

′(k)
]

dk (2.11)

In Eq.(2.11), we have suppressed the flavor indices of the fermion operators

and the ansatz functions θ(k, β, µ). The underlined operators in Eq.(2.11) are

operators in the extended Hilbert space associated with thermal doubling in

TFD method. We shall see later that the ansatz functions θ±(k, β, µ) will

be related to the distribution functions for particles and antiparticles. Now

we shall calculate the thermodynamic potential for |Ωβ,µ〉 and carry out the

minimization which will give us the ansatz functions in Eq.(2.10).

2.1.2 Evaluation of thermodynamic potential and gap

equation

To calculate the thermodynamic potential for the state given in Eq.(2.10), we

first write down the expectation values of the following Fermion bilinears.

〈Ωβ,µ|ψ̃i
γ(k)ψ̃

j
δ(k

′)†|Ωβ,µ〉 = δijΛi
+γδ(k, β, µ)δ(k− k′), (2.12)

〈Ωβ,µ|ψ̃i†
δ (k)ψ̃

j
γ(k

′)|Ωβ,µ〉 = δijΛi
−γδ(k, β, µ)δ(k− k′), (2.13)

where,

Λi
±γδ(k, β, µ) =

1

2

[

1±
{

F i
1(k)− F i(k)

}

± {γ0 cosχi(k)

+ α · k̂ sinχi(k)}
{

1− F i(k)− F i
1(k)

} ]

γδ
. (2.14)

In the above, ψ̃(k) is the Fourier transform of ψ(x). The effect of the fermion

condensates and their temperature and density dependences are encoded in

the functions F i(k) and F i
1(k), respectively given as

F i(k) = sin2 θi−(k) + sin2 f(k) cos 2θi,j− (k), (2.15)

F i
1(k) = sin2 θi+(k) + sin2 f1(k) cos 2θ

i,j
+ (k), (2.16)
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where we have defined cos 2θi,j± = 1− sin2 θi± − sin2 θj±, with i 6= j.

For difermion operators, we have,

〈Ωβ,µ|ψi
α(x)ψ

j
γ(0)|Ωβ,µ〉 = − 1

(2π)3

∫

eik·xP i,j
+γα(k, β, µ)dk (2.17)

〈Ωβ,µ|ψi†
α (x)ψ

j†
γ (0)|Ωβ,µ〉 = − 1

(2π)3

∫

eik·xP i,j
−αγ(k, β, µ)dk, (2.18)

where,

P i,j
+ =

|ǫij |
4

[

Si,j(k)

{

cos

(

χi − χj

2

)

− γ · k̂ sin

(

χi − χj

2

)}

+

{

γ0 cos

(

χi + χj

2

)

−α · k̂ sin

(

χi + χj

2

)}

Ai,j(k)

]

γ5C, (2.19)

P i,j
− =

|ǫij |Cγ5
4

[

Si,j(k)

{

cos

(

χi − χj

2

)

+ γ · k̂ sin

(

χi − χj

2

)}

+

{

γ0 cos

(

χi + χj

2

)

−α · k̂ sin

(

χi + χj

2

)}

Ai,j(k)

]

. (2.20)

In Eq.s(2.19,2.20) the functions S(k) and A(k) are given as

Si,j(k) = sin 2f(k) cos 2θi,j− (k, β, µ) + sin2f1(k) cos 2θ
i,j
+ (k, β, µ),

Ai,j(k) = sin 2f(k) cos 2θi,j− (k, β, µ)− sin2f1(k) cos 2θ
i,j
+ (k, β, µ).

The thermodynamic potential is given by

Ω = ε− µiρi − 1

β
S, (2.21)

where ε is the energy density and S is the entropy density and ρi = 〈ψi†ψi〉
(i = 1, 2) is the number density of i-th species. It is now straightforward

to calculate the expectation value of the Hamiltonian corresponding to the

Lagrangian given in Eq.(2.1) as we have all the required expectation values.

This can be written as

ε− µiρi = 〈H − µiψi†ψi〉 = T + VD (2.22)
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Explicitly, the kinetic energy minus the µiρi = µi〈ψi†ψi〉 part is given as

T ≡ 〈Ωβ,µ|ψ†
i (−iα ·∇+ γ0m− µi)ψi|Ωβ,µ〉

=
2

(2π)3

2
∑

i=1

∫

dk
[√

k2 +m2(F i + F i
1)− µi(F i − F i

1)
]

, (2.23)

where, F i and F i
1 are given by Eq.(2.15,2.16). Here we have subtracted out the

vacuum contributions. Similarly, the contribution from the interaction term

in Eq.(2.3) to the energy density can be written as

VD = −〈Ωβ,µ|LI |Ωβ,µ〉 = −4gIDφ0 +m2
bφ

2
0, (2.24)

where we have taken φ0 to be real. In the above,

ID =
1

2
〈ψ̄c

i
γ5|ǫij |ψj〉 = 1

(2π)3

∫

dk
[

sin 2f(k)(1− sin2 θ1− − sin2 θ2−)

+ sin 2f1(k)(1− sin2 θ1+ − sin2 θ2+)
]

, (2.25)

which is proportional to the fermion condensate. Finally, to calculate the ther-

modynamic potential we have to include the entropy density for the fermions.

This is given as [68],

S = − 2

(2π)3

∑

i

∫

dk
[

sin2 θi− ln sin2 θi− + cos2 θi− ln cos2 θi−

+ sin2 θi+ ln sin2 θi+ + cos2 θi+ ln cos2 θi+
]

. (2.26)

The extremization of the thermodynamic potential Eq. (2.21) with respect to

the condensate functions f(k) and f1(k) respectively yields

tan 2f(k) =
2gφ0

ǭ− µ̄
≡ ∆

ǭ− µ̄
, (2.27)

tan 2f1(k) =
2gφ0

ǭ+ µ̄
≡ ∆

ǭ+ µ̄
, (2.28)

where, we have defined the superconducting gap ∆ = 2gφ0. In the above

ǭ = (ǫ1+ ǫ2)/2 and µ̄ = (µ1+µ2)/2 with ǫi =
√

k2 +m2
i being the free particle
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energy. So we can see the condensate functions depend on the average energy

and the average chemical potential of the particles or antiparticles that con-

dense. Finally, the minimization of the thermodynamic potential with respect

to the thermal functions θ±(k) gives

sin2 θi±(k) =
1

exp(βωi
±) + 1

, (2.29)

where ωi
± are the energy dispersion relations for the particles and antiparticles

of the two species and are given as

ω1
± = ω̄± + δǫ ± δµ, (2.30)

ω2
± = ω̄± − δǫ ∓ δµ, (2.31)

with ω̄± =
√

∆2 + ξ̄2±, where ξ̄± = (ξ1±+ξ2±)/2 and ξi± = ǫi±µi. The average

chemical potential difference and the average free particle energy difference are

respectively given by, δµ = (µ1 − µ2)/2 and δǫ = (ǫ1 − ǫ2)/2. Since we have

assumed equal masses for the two species, we can see from Eq.s(2.30,2.31)

that, for δµ > 0, we may have gapless modes for ω1
− or ω2

+, which means one

or more non zero values of momentum will correspond to zeros of the energy

dispersion relation. Using these dispersion relations, condensate functions and

distribution functions, the thermodynamic potential given by Eq.(2.21) can be

written as

Ω =
2

(2π)3

∫

dk [2ǫ− ω̄− − ω̄+]−
2

(2π)3β

∑

i

∫

dk
[

ln
{

1 + e−βωi
−

}

+ ln
{

1 + e−βωi
+

}]

+m2
bφ

2
0. (2.32)

Extremization of Eq.(2.32) with respect to φ0 leads to the gap equation

m2
b

4g2
=

∫

dk

(2π)3

[

cos 2θ1,2−

ω̄−
+

cos 2θ1,2+

ω̄+

]

, (2.33)

The gap equation in Eq.(2.33) is quadratically divergent which is regularized in

the NJL model by introducing a momentum cut off Λ. In the non relativistic
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case this is rendered finite by subtracting out the vacuum contribution and

relating the four fermion coupling to the s-wave scattering length [55, 69]. A

similar approach here leads to the regularized gap equation [58],

− m

4πa
=

∫

dk

(2π)3

[

cos 2θ1,2−

ω̄−

+
cos 2θ1,2+

ω̄+

− 1

ǫ−m
− 1

ǫ+m

]

. (2.34)

However, after this regularization, unlike the non relativistic case, dependence

on ultraviolet cutoff still remains in the above gap equation, although the

dependence is milder. The gap equation can also be regularized by defining

a renormalized boson mass mb,r with m2
b,r = ∂Ω/∂φ2

0|φ0=T=0,µ=m which will

also result into the same gap equation [59]. In our analysis, we shall treat the

renormalized coupling in Eq.(2.34) as the crossover parameter. As a function

of this coupling, the gap parameter ∆ for different densities of the fermions of

the two species will be calculated. The average number density is given as

ρ̄ =
ρ1 + ρ2

2
= ρ− − ρ+, (2.35)

where, the fermionic and antifermionic components are given as

ρ∓ = − 1

(2π)3

∫

ξ∓
ω̄∓

cos 2θ1,2∓ dk (2.36)

The difference in the number densities is given as

δρ =
ρ1 − ρ2

2
=

1

(2π)3

∫

[

(sin2 θ1− − sin2 θ1+)− (sin2 θ2− − sin2 θ2+)
]

dk (2.37)

Using the gap equation Eq.(2.33), the thermodynamic potential in Eq.(2.32)

can be rewritten as

Ω(∆, µ̄, δµ, β) =
2

(2π)3β

∫

dk

[{

ξ̄− − ω̄− +
∆2

2ω̄−
+ ξ̄+ − ω̄+ +

∆2

2ω̄+

}

−
∑

i

{

ln
(

1 + e−βωi
−

)

+ ln
(

1 + e−βωi
+

)}

]

. (2.38)

To compare the stability of various phases we compare the thermodynamic
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potentials of these phases with respect to that of normal matter. This can be

obtained from Eq.(2.38) in the limit of gap ∆ → 0. We consider the difference

in the thermodynamic potentials between condensed phase and the normal

matter as given by

Ω̃(∆, µ̄, δµ, β) = Ω(∆, µ̄, δµ, β)− Ω(∆ = 0, µ̄, δµ, β)

=
2

(2π)3

∫
{

|ξ̄−| − ω̄− +
∆2

2ω̄−

cos 2θ1,2−

+ |ξ̄+| − ω̄+ +
∆2

2ω̄+

cos 2θ1,2+

}

dk

− 2

(2π)3β

∑

i=1,2

∫

[

ln
{

1 + e−βωi
−

}

+ ln
{

1 + e−βωi
+

}

− ln
{

1 + e−βωi
0−

}

− ln
{

1 + e−βωi
0+

}]

dk (2.39)

In the above, ω1
0∓ = |ξ̄∓| ∓ δµ and ω2

0∓ = |ξ̄∓| ± δµ, correspond to the normal

matter dispersion relations for the two species. For stability of the condensed

phase, Ω̃ has to be negative with ∆ and µ̄ determined from the gap equation

Eq.(2.34) and the number density equation Eq.(2.35). Further, it has to be

ensured that the extremized solution corresponds to a minimum and not a

maximum. Here, we shall restrict ourselves to the case of zero temperature

only but, we shall consider δµ > 0. This leads to the possibility of quasi

particle energy for species ‘1’, ω1
− or the quasi antiparticle energy for species

‘2’, ω2
+ becoming negative. In that case the distribution functions given by

Eq.(2.29), become Heaviside Θ functions, i.e. sin2 θa = Θ(−ωa). Further,

using the identity lima→∞ ln(1 + e−ax)/a = −xΘ(−x), in Eq.(2.39), the zero

temperature thermodynamic potential can be calculated as

Ω̃0(∆, µ̄, δµ) =
2

(2π)3

∫
{

|ξ̄−| − ω̄− +
∆2

2ω̄−

+ |ξ̄+| − ω̄+ +
∆2

2ω̄+

}

dk

+
2

(2π)3

∫
[{

ω1
− − ∆2

2ω̄−

}

θ(−ω1
−) +

{

ω2
+ − ∆2

2ω̄+

}

θ(−ω2
+)

− ω1
0−θ(−ω1

0−)− ω2
0+θ(−ω2

0+)
]

dk (2.40)

The Eq.(2.34) and Eq.(2.35) need to be solved self consistently to determine
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the gap as a function of the coupling. BEC is usually discussed using the canon-

ical ensemble where the particle number density is fixed. BCS-BEC crossover

with fixed number density has been discussed in the relativistic regime [59, 60].

However, we might note that, to discuss quark matter, usually grand canoni-

cal ensemble with a fixed quark chemical potential is employed to explore the

QCD phase diagram in the chemical potential and temperature plane. In the

numerical analysis, we keep the average number density fixed and consider the

solutions as a function of the coupling and the difference in chemical poten-

tials. Sometimes we find multiple solutions for the gap and average chemical

potential satisfying Eq.s(2.34,2.35), which correspond to multiple extrema of

the thermodynamic potential. In such cases, the solution with least thermo-

dynamic potential is chosen. The positivity of the second derivative of the

thermodynamic potential is checked in such cases. Next we discuss the de-

tailed numerical calculations for the present investigation.

2.1.3 Numerical analysis and the phase structure

For convenience in numerical analysis, we introduce dimensionless quantities

in terms of Fermi momentum kf or Fermi energy ǫf =
√

k2f +m2, defined as

|k| = kfx, η = 1/(kfa), m = kfm̂ , ∆ = ǫfz, µ = ǫf µ̂. Then the gap equation

in Eq.(2.34) can be written in terms of these dimensionless variables at zero

temperature as

−η
2
=

∫ xmax

0

dxx2

m̂π

[

1

ω̂−
+

1

ω̂+
− 2ǫ (x)

x2
− 1

ω̂1
−

Θ(−ω̂1
−)−

1

ω̂2
−

Θ(−ω̂2
−)

]

. (2.41)

Similarly, the equation for the average number density in Eq.(2.35) can be

rewritten in terms of these dimensionless variables as

1 = 1.5

∫ xmax

0

dxx2

[

ξ̂+(x)

ω̂+(x)

{

1−Θ(−ω̂2
+)
}

− ξ̂−(x)

ω̂−(x)

{

1−Θ(−ω̂1
−)
}

]

.

(2.42)

Here, ω̂± =
√

ξ̂2± + z2(1 + m̂2) and ξ̂±(x) = ǫ̂(x) ± ¯̂µ
√
1 + m̂2 with ǫ̂(x) =

√
x2 + m̂2. The upper cut-off for momentum in units of Fermi momentum kf
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is given by xmax = Λ/kf . Here ¯̂µ is the average chemical potentials of the

two species in units of Fermi energy. Essentially we have three dimensional

quantities here : the cutoff Λ, the mass of the fermion m and the scattering

length a. The dimensional coupling G is bounded above with a critical value

GcΛ
2 > 2π2, beyond which the zero density vacuum itself is unstable to form

fermion pairs leading to a Majarona mass for the fermions.

To analyze the crossover, let us first consider the symmetric case, i.e, δµ = 0.

In this limit, Θ(−ωi
−) become zero in Eq.s(2.41,2.42). At zero density, the

minimum excitation energy for the fermion is its mass m. For normal matter

with finite chemical potential it is (m−µ). In the BEC state, the decay mode

is the bound state going to two fermions. So the threshold energy for this is

2(m − µ). The BEC state should therefore be stable if this threshold energy

is positive, implying m > µ. This we shall take as our working definition

for distinguishing BEC phase from BEC phase as we increase the coupling

parameter η from weak coupling BCS (large negative η) to strong coupling

BEC phase (large positive η) through unitary regime (η=0).
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Figure 2.1: Gap parameter (left panel) and the scaled chemical potential
(µ − m)/(ǫf − m) (right panel) in units of Fermi energy as a function of
the coupling. The dotted line corresponds to the case where antiparticle con-
tributions are not included and the solid line corresponds to inclusion of the
antiparticle contributions.

To test the non relativistic limit of our calculations we choose the param-

eters xmax = Λ/kf = 50 and m̂ = m/kf = 5. The resulting gap and chemical
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potential are shown in Fig.[2.1]. To show the contribution from antiparticles we

have plotted the results obtained by solving Eq.s(2.41,2.42), with and without

the antiparticle contributions.

We might naively expect that the antiparticle channel is suppressed in the

non relativistic limit. But Fig.[2.1] shows that, while such an expectation

might be satisfied to a reasonable extent for weak coupling BCS regime, the

antiparticle contributions become increasingly important as the coupling in-

creases. As the coupling increases, the chemical potential µ̃ = µ−m decreases

and changes sign at coupling η ≈ 1.04 signaling the BEC regime.
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Figure 2.2: (Left panel) Superfluid gap (solid line) and chemical potential (dot-
ted line) in units of Fermi energy as functions of the coupling. (Right panel)
Number densities of particles, ρ− (solid line) and antiparticles, ρ+ (dotted line)
in units of k3f/3π

2 as functions of the coupling.

To investigate the relativistic effects we choosem/kf = 0.67 and Λ/kf = 3.3

[59] and the resulting gap and the chemical potential are shown in the left panel

of Fig.[2.2]. In the weak coupling BCS limit, the chemical potential is given

by the Fermi energy. But it decreases with increasing coupling and becomes

negligible as compared to the Fermi energy in deep BEC regime. The gap is

negligible as compared to the Fermi energy in the weak coupling regime as

expected from BCS theory and rises monotonically as the coupling increases.

At η = 0, the gap and the chemical potential turn out to be ∆ = 0.3ǫf

and µ = 0.78ǫf respectively in our analysis whereas µ = 0.37ǫf at η = 0

in Ref.[59]. This discrepancy arises from the different regularization of the
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gap equation. To compare with the non relativistic systems, we consider the

ratio µ̃/ǫ̃f = (µ − m)/(ǫ − m). In our model, µ̃/ǫ̃f ≈ 0.5 at η = 0. In the

non relativistic fermionic models this value is about 0.4 to 0.5 [64, 70]. As η

increases, at about η = 1.68, the chemical potential becomes smaller than the

mass of the fermion and the system enters the BEC regime.

As the coupling approaches the unitary regime, the antiparticle contribu-

tions become important. In the right panel of Fig.[2.2], the number densities

of the particles, ρ− and the antiparticles ρ+ as defined in Eq.(2.36), are shown.

The particle number density remains almost constant in the BEC regime and

starts increasing monotonically from near the unitary regime. In the weak cou-

pling BCS regime the antiparticle contribution to the number density is almost

zero but near the unitary regime it starts increasing and as the coupling in-

creases, the antiparticle contribution becomes larger and larger. At very large

values of η, the chemical potential becomes negligible, signaling very little pref-

erence of particles over antiparticles. The difference in the contributions from

particles and antiparticles produces a conserved net density [58].

Now, we consider the case of superfluidity with a mismatch in the chemical

potentials, i.e. δµ 6= 0. Here, we keep the average density fixed and calculate

the average chemical potential and the superfluid gap using Eq.(2.35) and

Eq.(2.34) respectively. In this case, sometimes we get multiple solutions of the

gap and number density equations near the transition region. As mentioned

earlier, we choose the solution with the least thermodynamic potential in such

instances.

Without loss of generality, we take δµ > 0. It is possible then that the quasi

particle energy for species ‘1’, ω1
−(k) = ω̄−(k)− δµ, and the quasi antiparticle

energy for species ‘2’, ω̄2
+(k) = ω̄+(k) − δµ, may become negative. The con-

tributions of the Θ functions in Eq.s(2.41,2.42) will be non vanishing at zero

temperature in that case. The Θ functions will limit the range of the momen-

tum integrations. ω1
−, vanishes at momenta k2

min/max =
(

µ̄±
√

δ2µ −∆2
)2−m2

and ω2
+ vanishes at momenta k2

min/max =
(

−µ̄±
√

δ2µ −∆2
)2−m2. These mo-

menta are imaginary if δµ is smaller than the gap ∆. But for δµ > ∆, the
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zeros of the dispersion relations correspond to real effective Fermi surfaces. In

general there can be two such Fermi surfaces for species ‘1’ and one for species

‘2’ along with the gapped ones. So we can have the interesting possibility of

interior gap solutions, which means the existence of one effective Fermi sur-

face, for both species [59]. When there exist two effective Fermi surfaces, the

corresponding phase is called the breached pairing phase. Here, it is possible

for quasi particle of species ‘1’ to have breached pairing solutions but it is not

a possibility for species ‘2’ since there can be only one effective Fermi surface.
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Figure 2.3: Ratio of critical chemical potential difference to the gap as a func-
tion of the coupling strength η. Gapless phase appear for η > 1.9. Solid line
denotes absence of gapless modes. The dotted line corresponds to gapless modes
for quasi particles of species ‘1’ and the dashed line indicates the regime where
quasi antiparticles of species ‘2’ also become gapless.

In Fig.[2.3], we have shown δcµ/∆, the ratio of maximum chemical potential

difference to the superfluid gap, that can sustain pairing, as a function of

η. Here, we have taken the parameters Λ/kf = 3.3 and m/kf = 0.67 which is

same as that corresponding to Fig.[2.2]. For weak coupling BCS limit, the ratio

approaches the Clogston-Chandrasekhar limit, δcµ/∆ ≃ 0.72. As the coupling

increases, δcµ/∆ increases slowly as shown by the solid line in Fig.[2.3]. There

is no gapless mode upto η ≃ 1.9. So we can see that BCS phase does not

correspond to any gapless mode as we have seen in the left panel of Fig.[2.2],
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Figure 2.4: (Left panel) Quasi particle dispersion relation for species ‘1’ for
η = 2.1 and δµ/∆0 = 1.125, ∆0 being the gap at δµ = 0. (Right panel)
Dispersion relations for quasi particle of species ‘1’ (solid line) and for quasi
antiparticle of species ‘2’ (dotted line) for η = 3 and δµ/∆0 = 1.195.

that the crossover from BCS phase to BEC phase occurs at η = 1.68. From,

η ≃ 1.9, δcµ/∆ increases sharply until η ≃ 2.38 as ω1
− corresponds to one gapless

mode in this regime while all other modes are gapped. This phase is shown

by the dotted line in Fig.[2.3]. The energy dispersion relation corresponding

to the gapless mode, ω1
−(k) in this region is shown in the left panel of Fig.[2.4]

for η = 2.1 and δµ/∆0 = 1.125. Here ∆0 is the gap at δµ = 0 and turns out to

be ∆0 = 0.637ǫf . The average chemical potential turns out to be µ̄ = 0.47ǫf

and the gap is ∆ = 0.35ǫf corresponding to the left panel of Fig.[2.4].

Beyond η ≃ 2.38, ω2
+ also corresponds to one gapless mode along with

ω1
−. The dashed line in Fig.[2.3] represents this regime. In the right panel of

Fig.[2.4], we show the dispersion relations for these gapless modes for η = 3 and

δµ/∆0 = 1.195. The gap and the average chemical potential are ∆ = 0.72ǫf

and µ̄ = 0.23ǫf respectively corresponding to the right panel of Fig.[2.4].

(µ̄ − m) < 0 for all the gapless phases shown in Fig.[2.3]. Which implies

the stability criteria for BEC is satisfied in the gapless phases. We have not

observed any breached pairing phenomena for any value of the coupling η.

The density difference between the two species is non zero for the gap-

less phases which can be realized from Eq.(2.37). In left panel of Fig.[2.5],

the dependence of the gap on the density difference, δρ is shown for cou-
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Figure 2.5: (Left panel) Superfluid gap as a function of difference in num-
ber densities of the condensing species. This is plotted for η = 2.1. (Right
panel) Number density distribution for the two species. Solid line corresponds
to species ‘1’ and the dashed line corresponds to species ‘2’. This plot corre-
sponds to η = 3 and δµ/∆0 = 1.195.

pling η = 2.1. Superfluidity is supported for a maximum density difference

of δρ ≃ 0.9(k3f/3π
2) beyond which the system goes over to unpaired matter

phase with zero gap. For coupling η < 1.9, we do not find any superfluid phase

energetically favorable with any non zero value of density difference δρ.

Next, we consider the number density distribution of the two species in

the momentum space when gapless modes exist. The number densities at zero

temperature for the two species are given by

ρ1 =
2

(2π)3

∫

dk
[

sin2 f(k) + Θ(−ω1
−) cos

2 f(k)− sin2 f1(k){1− θ(−ω2
+)}

]

=
2

(2π)3

∫

dkn1(k), (2.43)

ρ2 =
2

(2π)3

∫

dk
[

sin2 f(k){1−Θ(−ω1
−)} − sin2 f1(k) + cos2 f1(k)θ(−ω2

+)
]

=
2

(2π)3

∫

dkn2(k). (2.44)

In the right panel of Fig.[2.5], we have shown the momentum space density

distributions n1(k) and n2(k) for η = 3 and δµ/∆0 = 1.195. In this case both

ω1
− and ω2

+ can become gapless. In the region where both ω1
− and ω2

+ are

negative, n1(k) = 1 and n2(k) = −1 from Eq.(2.43,2.44). In the region, where
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only ω1
− is negative, n1(k) = (1 + ξ̄+/ω̄+)/2 and n2(k) = −(1 + ξ̄+/ω̄+)/2.

Finally, when both ω1
− and ω2

+ are positive, both n1(k) and n2(k) are identical

and are given by the relativistic BCS distribution function n(k) = (ξ̄+/ω̄+ −
ξ̄−/ω̄−). This behavior is depicted the right panel of Fig.[2.5]. Although the

individual distribution functions in the momentum space for the two species

can be negative, the average occupation number densities n̄(k) = [n1(k) +

n2(k)]/2 as well as the difference in occupation number densities δn(k) =

[n1(k)− n2(k)]/2 are always positive definite.

The phase structure obtained in this section with a four-fermion interac-

tion is similar to the mean field results obtained in a boson-fermion model

[59].It is nice to see the similarity to the mean field results of Ref.[59] which

in our investigation arises with a simple ansatz for the ground state given by

of Eq.(2.10) determined through an extremization of Ω. As emphasized in the

beginning of Sec.[2.1], the scalar condensate field was considered as a classical

auxiliary field. In the following section we shall treat them as dynamical fields

and generalize the ansatz of Eq.(2.10) to include the quanta of this field along

with those of the fermions. We shall illustrate this for the symmetric case,

i.e, when there is no mismatch in chemical potential for the two species of

fermions.

2.2 BCS-BEC crossover with condensate fluc-

tuations

In this section, we shall treat the condensate field introduced in Eq.(2.3) as a

dynamical field rather than as an auxiliary field as considered in the previous

section. Here, we generalize the BCS ansatz to include quanta of the scalar

field. We shall see that this modified ansatz for the ground state leads to a

mass gap equation for the scalar field and the corresponding thermodynamic

potential can be obtained by resummation of bubble diagrams of perturbation

theory similar to the Cornwall-Jackiw-Tomboulis (CJT) composite operator

formalism [71]. Treating the condensate field Φ as a dynamical field, we can
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write the Lagrangian as

L = Lf + Lb + Lbf (2.45)

where,

Lf = ψ̄i(iγµ∂µ −m+ µγ0)ψi

Lb = (∂0 − iµB)Φ
†(∂0 + iµB)Φ−m2

bΦ
†Φ− (∇Φ†)(∇Φ)− λ(Φ†Φ)2

Lbf = g|ǫij|
(

ψ̄iγ5ψj
cΦ + ψ̄i

cγ
5ψjΦ∗

)

. (2.46)

We shall illustrate the effect of the dynamical bosonic field on the BCS-BEC

crossover physics and will consider the case where there is no mismatch in the

chemical potentials of the two condensing fermionic species with a common

chemical potential µ. For the dynamical bosonic field we have introduced the

chemical potential µB which is twice the fermionic chemical potential µ in

equilibrium. LB has a quartic term in the scalar field which, as we shall see

later, leads to non perturbative corrections to the thermodynamic potential. In

absence of the kinetic term and quartic interaction term of Φ, this Lagrangian

reduces to the one considered in section [2.1].

We consider a state such that 〈Φ〉 = φ0 = 〈Φ†〉 and investigate the fluctu-

ations of the condensate field by defining the quantum fields Φ′ = Φ− φ0, and

Φ′† = Φ† − φ0. If we neglect odd powers in Φ′s Lb then reduces to

Lb ≃ (∂0 − iµB)Φ
′†(∂0 + iµB)Φ

′ −m2
bΦ

′†Φ′ − (∇Φ′†)(∇Φ′)

− λ(Φ′†Φ′)2 − 4λφ2
0(Φ

′†Φ′)− V0(φ0), (2.47)

where V0(φ0) is the tree level potential given as

V0(φ0) = (m2
b − µ2

B)φ
2
0 + λφ4

0 (2.48)

The corresponding Hamiltonian density can be written as

H = Hf +Hb +Hbf (2.49)
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with

Hf =
∑

i

ψ†
i (−iα · ∇ + βm)ψi

Hb = ΠΦ′†ΠΦ′ + iµb(ΠΦ′Φ′ −ΠΦ′†Φ′†) + Φ′†(−∇2 +m2
b)Φ

′

+λ(Φ′†Φ′)2 + 4λφ2
0(Φ

′†Φ′) + V0(φ0)

Hbf = −Lbf = −g|ǫij|
(

ψ̄iγ5ψj
cΦ+ ψ̄i

cγ
5ψjΦ∗

)

(2.50)

Here, ΠΦ′ (ΠΦ′†) is the conjugate momentum of the field Φ′ (Φ′†).

2.2.1 The new improved ground state

To construct the ground state for the Lagrangian in Eq.(2.45), we write down

the field operator expansions of the boson field Φ′ (Φ′†) and the conjugate

momentum ΠΦ′ (ΠΦ′†) in terms of the creation and annihilation operators,

Φ′(x, t = 0) =
1

(2π)3/2

∫

dk
1

√

2ω(k)
{a(k) + b†(−k)}eik·x (2.51)

ΠΦ′(x, t = 0) =
i

(2π)3/2

∫

dk

√

ω(k)

2
{−b(k) + a†(−k)}eik·x (2.52)

The above expansion for ΠΦ′ satisfying the quantum algebra [Φ′(x),ΠΦ′(y)] =

iδ(x−y) leads to the usual commutation relations [a(k), a†(k′)] = δ(k−k′) =

[b(k), b†(k′)], for bosons for any arbitrary function ω(k).

With the operators for the scalar fields defined, we now generalize the

ground state |Ωβ,µ〉, given in Eq.(2.10), to include the effects of boson field

and write down the new ansatz |ΩB
β,µ〉 as

|ΩB
β,µ〉 = UB

β,µU
B|Ωβ,µ〉. (2.53)

Here, similar to Eq.s(2.7,2.11) the operator UB and UB
β,µ are given as

UB = exp

[
∫

dkg(k)a†(k)b†(−k)− h.c.

]

, (2.54)

UB
βµ = exp

[
∫

dk{a′†(k)a(−k)θa(k) + b′†(k)b(−k)θb(k)} − h.c

]

.(2.55)
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Here, g(k) is the condensate function and θa,b(k) = θa,b(k, β, µ) is the thermal

ansatz function corresponding to bosonic degrees of freedom. Similar to the

fermionic case, here also we shall see later that this thermal function is related

to the bosonic distribution functions.

2.2.2 Thermodynamic potential and gap equation

To calculate the thermodynamic potential for the state |ΩB
β,µ〉, we require the

following expectation value,

〈ΩB
β,µ|Φ′(x)Φ′(y)|ΩB

β,µ〉 =
1

(2π)3

∫

dk

2ω(k)
eik·(x−y) [{cosh 2g(k)

+ sinh 2g(k)}(cosh2θa + sin h2θb)
]

≡ I(x− y, β). (2.56)

Now we can proceed to calculate the thermodynamic potential which, for the

boson fermion system can be written as

Ωtot = Ω+ ΩB = Ω+ ǫB − µBρB − 1

β
sB. (2.57)

Here, the fermionic contribution Ω has already been evaluated in Eq.(2.21).

The contribution of the first two terms of ΩB is the expectation value of the

Hamiltonian in Eq.(2.49) with respect to the state in Eq.(2.53). The bosonic

entropy density SB is given similar to their fermionic counterpart in Eq.(2.26),

as [68],

SB =
1

(2π)3

∑

i

∫

dk
[

cosh2 θa ln cosh
2 θa − sinh2 θa ln sinh

2 θa + a→ b
]

.

(2.58)

Minimization of Ωtot with respect to the fermionic functions f(k), f1(k) and

θi∓(k) leads to the same solutions for them as given in subsection [2.1.2]. Min-

imization with respect to the bosonic function g(k) leads to

tanh 2g(k) =
ω2 − k2 −M2

ω2 − k2 +M2
, (2.59)
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with the quantityM2 satisfying the temperature dependent mass gap equation

given as

M2 = m2 + 4λφ2
0 +

4λ

(2π)3

∫

dk

2
√
k2 +M2

(cosh2 θa + sinh2 θb)

= m2 + 4λ(φ2
0 + I(β)). (2.60)

Here, I(β) = I(0, β), as given in Eq.(2.56). Minimization of Ωtot with respect

to the bosonic thermal functions yields the distribution function for respec-

tively the bosonic particles and the bosonic antiparticles.

sinh2 θa =
1

exp(EB − µB)− 1
≡ na

B(k), (2.61)

sinh2 θb =
1

exp(EB + µB)− 1
≡ nb

B(k). (2.62)

Here EB =
√
k2 +M2, with the temperature dependent mass M satisfying

the self consistent mass gap equation in Eq.(2.60).

With all the ansatz functions in Eq.(2.53) determined, we can now write

the thermodynamic potential in a more elaborated form. For our convenience,

we choose to split it into fermionic and bosonic parts using Eq.(2.32,2.57),

Ωtot = Ωf + ΩB, (2.63)

where, the fermionic part of the thermodynamic potential is given by

Ωf =
2

(2π)3

∫

[2ǫ− ω̄− − ω̄+] dk

− 2

(2π)3β

∑

i

∫

dk
[

ln{1 + e−βωi
−}+ ln{1 + e−βωi

+}
]

. (2.64)

the only difference of Eq.(2.64) from Eq.(2.32) is the mass term m2
bφ

2
0 which

is absorbed in the bosonic part ΩB in Eq.(2.63). ΩB can be written as

ΩB =

∫

dk

(2π)3

[

√
k2 +M2 +

1

β

2
∑

i=1

ln{1− eEi}
]

− 2λI2(β) + V0, (2.65)
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where V0 is the tree level potential given in Eq.(2.48). The summation is over

the bosons and antibosons with E1 = EB−µB and E2 = EB+µB. Finally, the

minimization of Ωtot with respect to φ0 leads to the superfluid gap equation,

M2 − µ2
B = 2λφ2

0 + 4g2
∫

dk

(2π)3

[

cos 2θ1,2−

ω̄−

+
cos 2θ1,2+

ω̄+

]

, (2.66)

with, the mass M satisfying the mass gap equation Eq.(2.60) and cos 2θ1,2∓ =

1− sin2 θ1∓(k)− sin2 θ2∓(k) with sin2 θi±(k) being the thermal distribution func-

tions for the fermions defined in Eq.(2.29). This is the parallel of Eq.(2.33)

where the condensate field was considered as an auxiliary field.

However the bosonic part of the thermodynamic potential, ΩB, given in

Eq.(2.65) is affected by two types of divergences, one arising from the divergent

integrals as vacuum terms (φ0 = 0 at T = 0, µ = 0), and the other arising from

the logarithmic divergence in the mass parameter M2, given in the mass gap

equation Eq.(2.60). This can be taken care of by defining the renormalized

quartic coupling and the renormalized boson mass as [71],

1

λR
=

1

λ
+ 4I2(Λ, µsc) (2.67)

m2
R

λR
=

m2
b

λ
+ 4I1(Λ) (2.68)

where, I1 and I2 are divergent integrals which are rendered finite by introducing

a three momentum cutoff |k| < Λ,

I1 =
1

(2π)3

∫

dk

2|k| = lim
Λ→∞

Λ2

8π2
, (2.69)

I2 =
1

(2π)3

∫

dk

2µ2
sc

[

1

|k| −
1

√

µ2
sc + k2

]

=
1

16π2

[

ln
4Λ2

µ2
sc

− 1

]

, (2.70)

where, µsc is the renormalization scale and Λ is the three momentum cut-

off. We can see from Eq.(2.67), that the difference between the bare and the

renormalized quartic coupling is given by

λ− λR =
4λRI2(Λ, µsc)

1− 4λRI2(Λ, µsc)
λR. (2.71)
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In terms of the renormalization parameters, the mass gap equation can be

written as

M2 = m2
R + 4λR{φ2

0 + If (β)}, (2.72)

with If(β) given as

If(β) =
M2

16π2

[

ln
M2

µ2
sc

+ 1

]

+

∫

dk

(2π)3
1

2E
{nB(k) + nB̄(k)}. (2.73)

Now, since the mass parameter M2 is renormalized, the bosonic part of the

effective potential, ΩB, can be rendered finite by subtracting out the vacuum

contribution. We can write the finite ΩB as

ΩB = V0 + V1 + V2, (2.74)

with

V0 = m2
Rφ

2
0 + λRφ

4
0 − µ2

Bφ
2
0 + (λR − λ)φ4

0, (2.75)

V1 =
1

β(2π)3

∫

dk
2

∑

i=1

ln{1− eEi}+ M4

32π2
ln
M2

µ2
sc

, (2.76)

V2 = −2λRIf (β)
2. (2.77)

However, the cut off dependence is still there in the last term of Eq.(2.75)

which vanishes in the limit Λ → ∞. In the present calculations, however, we

keep the cut off finite. Still we can take care of the cut off dependence by

choosing 4λRI2 << 1. We can see from Eq.(2.71), that this choice would make

the contribution of the last term in Eq.(2.75) negligible.

Due to the presence of dynamical condensate fields having a chemical po-

tential twice as that of the fermions, the number density equation described

in Eq.(2.35) gets modified,

ρ̄ = 8µφ2
0 +

∫

dk

(2π)3

[

2{na
B(k)− nb

B(k)}+
ξ+
ω̄+

cos 2θ1,2+ − ξ−
ω̄−

cos 2θ1,2−

]

.

(2.78)
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To discuss the crossover, we define the mass parameter m1 as [59],

m2
1 = m2

R − 4g2
∫

dk

(2π)3
2√

k2 +m2
, (2.79)

and define the crossover parameter as

x = −m
2
1 − µ2

B

4g2
. (2.80)

The gap equation in Eq.(2.66) can be written as

m2
1 − µ2

B = 4g2
∫

dk

(2π)3

[

cos 2θ1,2−

ω̄−

+
cos 2θ1,2+

ω̄+

− 2√
k2 +m2

]

+ 2(λ− λR)φ
2
0 − 2λRφ

2
0 − 4λRIf(β). (2.81)

The contributions from bosonic fluctuations comes into the gap equation through

If(β) which is given in Eq.(2.73). Now, since we have the gap equation and

the number density equation, we are in a position to analyze the crossover by

solving them numerically. Next, we shall discuss this numerical analysis.

2.2.3 Numerical analysis of the crossover

For numerical analysis, we solve the number density equation, Eq.(2.78), and

the gap equation, Eq.(2.81), for chemical potential and superfluid gap for a

given value of the renormalized boson mass, mR. At each stage of evaluation,

the boson mass parameter M2 is calculated self consistently solving Eq.(2.72).

This way we obtain the superfluid gap and the chemical potential for a given

value of mR or equivalently, for a given value of the crossover parameter x

obtained through Eq.s(2.79,2.80). These values are then used to calculate the

thermodynamical potential. Throughout our analysis we have chosen g = 2
√
2

and the cut off scale µ2
sc = m2

R.

In the left panel of Fig.[2.6], we show the gap and chemical potential as

a function of the dimensionless order parameter x/x0 with x0 = Λ2/(4π2) for

three values of the quartic coupling λR=0, 0.5 and 2.0 at zero temperature.
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Figure 2.6: (Left panel) Fermion chemical potential and gap in units of Fermi
energy as functions of the crossover parameter. (Right panel) Number densities
of fermions and bosons in units of total number density as functions of the
crossover parameter. In both the plots, The solid (black), dotted (blue) and
dashed (red) curves correspond to λR=0, 0.5 and 2 respectively.

λ = 0 corresponds to the mean field results. Effects of the bosonic fluctuations

are almost negligible in the BCS regime (x/x0 < 0) as well as near the unitary

regime (x/x0 ∼ 0). However, these effects manifest a small reduction of the

superfluid gap at large positive values of x/x0 and a small increase of chemical

potential near the unitary regime from their corresponding mean field values.

Magnitudes of these changes increase with the quartic coupling, λR. This can

be understood from Eq.(2.81), which implies an increase in µB with increasing

λR for a given value of the gap. This leads to an increase in the corresponding

value of the crossover parameter x as it can be seen from Eq.(2.80). However,

the chemical potential approaches zero in the deep BEC regime for any values

of λR, similar to the mean field case. These effects of fluctuations are reflected

in the number densities of the fermions and bosons also, which are shown in

the right panel of Fig.[2.6].

The behavior of critical temperature, TC and the chemical potential at

T = TC as a function of the crossover parameter is shown in the left panel of

Fig.[2.7]. These results are obtained by setting ∆ = 0 = φ0 in all the equations

to be solved. The chemical potential behaves in a qualitatively similar manner

to the T = 0 case and TC behaves similar to the gap at T = 0 with the

crossover parameter. The correction to the critical temperature is significant
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in the BEC regime only and increases with λR. Here also, the reduction of

TC is due to the increase in chemical potential due to thermal and vacuum

fluctuations which can be realized from Eq.(2.81).
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Figure 2.7: (Left panel) Critical temperature Tc and the chemical potential at
T = Tc in units of Fermi energy as a function of the crossover parameter. The
solid (black), dotted (blue) and dashed (red) curves correspond to λR=0, 0.5
and 2 respectively. (Right panel) Superfluid gap as a function of temperature
for quartic coupling λR = 5. The dotted line corresponds unstable solutions
with higher thermodynamic potential as compared to ∆ = 0.

We have also studied the effect of thermal fluctuations of the condensate

field for different values of λR. As λR is increased, we observed that the order

parameter ∆ changes discontinuously at TC . A typical behavior is shown in

the right panel of Fig.[2.7] where we have taken λR = 5. Near TC there are

solutions with finite ∆ but larger thermodynamic potential as compared to

the solution with ∆ = 0. These unstable solutions are indicated by the dotted

line in the right panel of Fig.[2.7]. This suggests a first order phase transition

when the effect of thermal fluctuations becomes large. However it is difficult

to draw conclusions from extrapolation for such a large value of λR, because,

although the result here is non perturbative, it is limited by the ansatz for

the ground state in Eq.(2.53). In this context we might remark here that the

gauge field fluctuations in color superconductors change the superconducting

phase transition to a first order transition [72]. Similar observations were also

made in a boson-fermion model where the fluctuations were treated within a

CJT formalism [61].
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2.3 Summary

We have considered here a variational approach to discuss the BCS-BEC

crossover in a system with two species of relativistic fermions with a mis-

match in their Fermi momenta. An explicit construct for the ground state is

considered to describe the difermion condensates. The ansatz functions are

determined by minimizing the thermodynamic potential.

In section[2.1], the BCS-BEC crossover is described within the mean field

approximation by considering the condensate field to be a classical auxil-

iary field. We constructed the ground state in terms of particle-particle and

antiparticle-antiparticle pairs corresponding to a crossed flavor four fermion in-

teraction term. Using the thermofield dynamics, we extended our ground state

to include the effect of temperature. Minimizing Ω with respect to the thermal

function gives us the distribution functions and the gap equation is obtained

by minimizing Ω with respect to the expectation value of the condensate field.

The quadratically divergent gap equation is made logarithmically divergent

by subtracting out the vacuum contribution and by relating the four fermion

coupling to the s-wave scattering length [55, 58, 69]. Unlike the usual non

relativistic case, the antiparticle degrees of freedom become important even

for the case kf/m << 1, particularly for large values of η ≡ 1/kfa).

We have not observed any gapless modes in the BCS regime when the

Fermi momenta of the two species are different. Breached pairing solutions

with two Fermi surfaces are also not observed. However, in the BEC region

with µ̄ < m, stable gapless modes are observed. The quasi particle of type

‘1’ becomes gapless for η > 1.9 and beyond η = 2.38, quasi antiparticle of

type ‘2’ also becomes gapless. In the deep BEC region, the phase transition

from gapped phase to gapless phase is a second order phase transition with the

order parameter decreasing continuously, while the transition from the gapless

phase to the normal matter phase is a first order transition as the difference in

the densities of the two condensing species is increased. Such gapless modes

is relevant for the transport coefficients of the fermionic system. The phase
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structure for this fermionic theory turns out to be similar to that of the boson-

fermion model treated within a mean field approximation [59].

We have not calculated here the Meissner masses, or the number suscep-

tibility to discuss the stability of different phases by ruling out regions in the

parameter space of gap and chemical potential difference. Instead, we have

solved the gap equation and the number density equation self consistently and

have compared Ω. In certain regions of the chemical potential difference and

the coupling, we have multiple solutions for the gap equation. In such cases,

we have taken the solution which has the least Ω.

We have also considered the effects of quantum fluctuations by treating the

condensate field as a dynamical bosonic field in a model with quartic self inter-

actions of the boson field. The BCS ansatz was modified to include the quanta

of the fluctuating field along with the usual fermion pairs. In the evaluation

of the superconducting gap the scalar field mass gap was also calculated self

consistently. This leads to a decrease of the critical temperature in the BEC

regime. We also observed that the superfluid transition can be first order for

larger quartic coupling with the effect of the condensate fluctuations becom-

ing larger. The present ansatz for the ground state leads to the result arising

from a summation of an infinite series of bubble diagrams for the scalar field.

However, this does not include the effect of ’sunset’ type diagram. Inclusion of

such diagrams has been successfully done recently within a CJT formulation

[61].

The results obtained here are of course limited by the choice of the ansatz.

Here, we have not considered other non uniform ansatz leading to the FFLO

phase [64, 65, 73]. Nevertheless, the results obtained here might be regarded as

a reference solution with which other numerical or analytical results obtained

from more involved ansatz for the ground state may be compared.



Chapter 3

Chiral symmetry breaking in a

magnetic background

This chapter is devoted to the discussion on the effects of strong magnetic fields

on chiral symmetry breaking (CSB) in the context of hot and dense quark

matter. The importance of this study lies in the fact that the natural sources

where we can find quark matter or the laboratory experiments where we can

produce quark matter are usually associated with very strong magnetic fields

and recent calculations, both analytic and lattice simulations, indicate that the

QCD phase diagram gets significantly affected by strong magnetic fields [74,

75]. Studies on effects of magnetic fields on chiral symmetry breaking (CSB)

also suggest that strong magnetic fields act as catalyzer of CSB [25, 26, 27].

The strength of the magnetic fields is of the order of eB ∼ 2m2
π (m2

π ≃ 1018

Gauss) at RHIC [11, 12] to eB ∼ 15m2
π at LHC [12]. Study of CSB in presence

of a strong magnetic field has led to one interesting finding, known as the chiral

magnetic effect (CME), in the context of heavy ion collision experiments [29].

There an electric current is generated along the magnetic field axis if the

densities of left and right handed quarks are not equal. The phase structure of

dense matter in presence of magnetic field along with a non zero chiral density

has been investigated for two flavor Polyakov loop extended NJL (PNJL) model

for high temperatures relevant for RHIC and LHC [76].

Neutron stars usually posses magnetic fields of the order of 1013 Gauss at

61
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the surface of ordinary pulsars [9] to 1016 Gauss at the pole of magnetars [10].

Physical upper limit on the magnetic field in a gravitationally bound star is

1018 Gauss that is obtained by using virial theorem [9]. This limit can be higher

for self bound objects like quark stars [77]. Since the magnetic field strengths

are of the order of QCD scale, this can affect both the thermodynamics and

hydrodynamics [78]. The effects of magnetic fields on the equation of state for

cold dense matter have also been studied using NJL model for both two and

three flavors [79].

Here, we shall consider 3-flavor NJL model with a KMT determinant in-

teraction term. First, the Dirac spinors in presence of magnetic field will be

derived and then, we shall consider explicit variational construct for the ground

state in terms of quark-antiquark pairs. The ansatz functions will be deter-

mined from the minimization of the thermodynamic potential and we shall

obtain the mass gap equation in the similar manner. The gap equation will

be solved at different chemical potential and temperature for various strengths

of the magnetic field. The thermodynamic stability of different phases will be

checked by comparing the free energy.

3.1 Dirac spinors in a magnetic field

We consider a constant magnetic field B in the z− direction. We choose

the gauge such that the electromagnetic vector potential is given as Aµ(x) =

(0, 0, Bx, 0). The Dirac equation in presence of the uniform magnetic field can

be written as

i
∂ψ

∂t
= (α ·Π+ βm)ψ, (3.1)

where, Π = p − qA is the kinetic momentum of the particle with electric

charge q in presence of the magnetic field. We choose the stationary solution

of Eq.(3.1) for positive energy, E as

U(x, t) =





φ(x)

χ(x)



 e−iEt, (3.2)
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where φ(x) and χ(x) are the two component spinors. Substitution this in

Eq.(3.1) leads to

χ(x) =
σ ·Π
E +m

φ(x), (3.3)

So using Eq.(3.3) and (σ · Π)2 = Π2 − qσ · B, Eq.(3.1) and using can be

reduced into an equation of φ,

(E2 −m2)φ(x) = [−∇2 + (qBx)2 − qB(σ3 + 2xpy)]φ(x). (3.4)

Noticing that the coordinates y and z do not occur explicitly except for in the

derivatives, we assume the solution to be of the form

φ(x) = ei(pyy+pzz)f(x) (3.5)

where, f(x) = fαuα, α = ±1 for spin up and spin down respectively with

u1 =





1

0



 and u−1 =





0

1



 ,

so that σ3f = αf . Using Eq.(3.5) in Eq.(3.4) we have,

[

∂2

∂ξ2
− ξ2 + aα

]

fα(ξ) = 0, (3.6)

where, we have introduced the dimensionless variables ξ =
√

|q|B (x− py/qB)

and aα = (E2 −m2 − p2z + qBα)/|q|B. Eq.(3.6) is a special form of Hermite

differential equation, whose solutions exist for aα = 2n+1, n = 0, 1, 2, .... This

condition gives the energy levels, E2
nα = m2 + p2z + (2n + 1)|q|B − qBα. The

solution of Eq.(3.6) is

fα(ξ) = cne
− ξ2

2 Hn(ξ) = In(ξ), (3.7)

where Hn(ξ) is the Hermite polynomial of the n-th order, with the normal-

ization constant cn = (
√

|q|B/n!2n√π)1/2. The functions In(ξ)’s satisfy the
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following completeness relation and the orthonormality condition respectively

∑

n

In(ξ)In(ξ‘) = |q|Bδ(ξ − ξ′). (3.8)

∫

dξIn(ξ)Im(ξ) =
√

|q|Bδn,m, (3.9)

Using Eq.s(3.5,3.7,3.3), we can write the positive energy spinors as U(x, t) =

U(n,p
\x
, x) exp(ip

\x
· x

\x
− iǫnt) with

U↑(x,p\x
, n) = Nn

















(ǫn +m) {Θ(q)In +Θ(−q)In−1}
0

pz {Θ(q)In +Θ(−q)In−1}
−i

√

2n|q|B {Θ(q)In−1 +Θ(−q)In}

















(3.10a)

U↓(x,p\x
, n) = Nn

















0

(ǫn +m) {Θ(q)In−1 +Θ(−q)In}
i
√

2n|q|B {Θ(q)In −Θ(−q)In−1}
−pz {Θ(q)In −Θ(−q)In−1}

















. (3.10b)

We have defined the normalization constant as Nn = 1/
√

2ǫn(ǫn +m) with,

ǫn =
√

m2 + p2z + 2n|q|B ≡
√

m2 + |p|2 being the Landau levels. We have

also defined I−1 = 0.

In an identical manner, we can obtain the solutions for the antiparticles as

V (x, t) = V (x,p
\x
, n) exp(−ip

\x
· x

\x
+ iǫnt) with

V↑(x,−p
\x
, n) = Nn

















√

2n|q|B {Θ(q)In −Θ(−q)In−1}
ipz {Θ(q)In−1 +Θ(−q)In}

0

i(ǫn +m) {Θ(q)In−1 +Θ(−q)In}

















, (3.11a)

V↓(x,−p
\x
, n) = Nn

















ipz {Θ(q)In +Θ(−q)In−1}
√

2n|q|B {Θ(q)In−1 −Θ(−q)In−1}
−i(ǫn +m) {Θ(q)In +Θ(−q)In−1}

0

















. (3.11b)
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The spinors are normalized as

∫

dxUr(x,p\x
, n)†Us(x,p\x

, m) = δn,mδr,s =

∫

dxVr(x,p\x
, n)†Vs(x,p\x

, m).

(3.12)

In terms of these normalized spinors, the Dirac field operator expansion for a

particle in a magnetic field can be written as [80],

ψ(x) =
∑

n,r

1

2π

∫

dp
\x

[

qr(n,p\x
)Ur(x,p\x

, n) + q̃r(n,−p
\x
)Vr(x,−p

\x
, n)

]

e
ip

\x
·x

\x .

(3.13)

The sum over n in the above expansion runs from 0 to infinity. In the above,

p
\x
≡ (py, pz), and, r = ±1 denotes the up and down spins. We have suppressed

the color and flavor indices of the quark field operators. The quark annihilation

and antiquark creation operators, qr and q̃r, respectively, satisfy the quantum

algebra

{qr(n,p\x
), q†r′(n

′,p′
\x
)} = {q̃r(n,p\x

), q̃†r′(n
′,p′

\x
)} = δrr′δnn′δ(p

\x
− p′

\x
). (3.14)

3.2 Ground state and chiral order parameter

Now, we shall construct a variational ground state in a constant magnetic field.

We are in a position to do so because we have obtained the Dirac field operator

in terms of the spinors in a magnetic field. To incorporate CSB, we choose

the ground state as a squeezed coherent state with quark-antiquarks pairs as

[66, 67],

|Ω〉 = UQ|0〉. (3.15)

Here, UQ is an unitary operator which creates quark-antiquark pairs from the

vacuum |0〉. Explicitly, the operator, UQ is given as

UQ = exp

[

∞
∑

n=0

∫

dp
\x
qir

†
(n,p

\x
)air,s(n, pz)f

i(n,p
\x
)q̃is(n,−p

\x
)− h.c.

]

. (3.16)

In Eq.(3.16), We have retained the flavor index i for the quark field opera-
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tors. f i(n, pz) is a real function describing the quark-antiquark condensates

related to the vacuum realignment for chiral symmetry breaking. In the above

equation, the spin dependent structure air,s is given by

air,s =
1

|pi|
[

−
√

2n|qi|Bδr,s − ipzδr,−s

]

, (3.17)

with |pi| =
√

p2z + 2n|qi|B denoting the magnitude of the three momentum of

the quarks (antiquarks) of i-th flavor with electric charge qi (−qi). in presence

of magnetic field. It can be shown that, aa† = I, where I is the identity

matrix in two dimensions. The ansatz functions fi(n, pz) are determined from

the minimization of thermodynamic potential. This particular choice of ground

state in Eq.(3.15) is a generalization of the ansatz considered earlier [81], to

include the effects of magnetic field. Clearly, a nontrivial fi(n, pz) breaks the

chiral symmetry. Summation over three colors is assumed in the exponent of

UQ in Eq. (3.16).

The creation and annihilation operators for |Ω〉 can be expressed in terms

of the operators in Eq.(3.13) through a Bogoliubov transformation as





q′r(n,p\x
)

q̃′s(n,−p
\x
)



 =





cos |f | −ar,s sin |f |
a†s,r sin |f | cos |f |









qr(n,p\x
)

q̃s(n,−p
\x
)



 (3.18)

The ‘primed’ operators satisfy the same anticommutation relations as the ‘un-

primed’ ones as in Eq.(3.14). Using Eq.(3.18), we can expand the quark field

operator ψ(x) in terms of the primed operators,

ψ(x) =
∑

n

∑

r

1

2π

∫

dp
\x

[

q′r(n,p\x
)U ′

r(x, n,p\x
) + q̃′r(n,−p

\x
)V ′

r (x, n,−p
\x
)
]

e
ip

\x
·x

\x ,

(3.19)

where we have suppressed the flavor and color indices. It is easy to see that

the ‘primed’ spinors are given as

U ′
r(x, n, p\x) = cos |f |Ur(x, n, p\x)− a†r,s sin |f |Vs(x, n,−p\x) (3.20a)

V ′
r (x, n,−p\x) = cos |f |Vr(x, n,−p\x) + as,r sin |f |Us(x, n, p\x). (3.20b)
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For positive charges, U ′
r’s can be explicitly written as

U ′
↑(p\x

, n) =
1

√

2ǫn(ǫn +m)

















a1In

0

a2pzIn

−ia2
√

2n|q|BIn−1

















, (3.21a)

U ′
↓(p\x

, n) =
1

√

2ǫn(ǫn +m)

















0

a1In−1

ia2
√

2n|q|BIn
−a2pzIn−1

















. (3.21b)

Similarly, V ′
r ’s can be explicitly written for positive charges as

V ′
↑(−p

\x
, n) =

1
√

2ǫn(ǫn +m)

















a2
√

2n|q|BIn
ia2pzIn−1

0

ia1In−1

















(3.22a)

V ′
↓(−p

\x
, n) =

1
√

2ǫn(ǫn +m)

















ia2pzIn

a2
√

2n|q|BIn−1

−ia1In
0

















, (3.22b)

where the functions, a1 and a2, are given in terms of the condensate function

f(pz, n) as

a1 = (ǫn +m) cos |f(n, pz)|+ |pi| sin |f(n, pz)|, (3.23)

a2 = cos |f(n, pz)| −
ǫn +m

|pi|
sin |f(n, pz)|. (3.24)

So through Eq.(3.19), we have defined the quark field operator in terms of

operators which induce CSB in presence of magnetic field. Now, to include

the effects of temperature and density, we write down the state at finite tem-

perature and density |Ωβ,µ〉 through a thermal Bogoliubov transformation over
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the state |Ω〉 using the thermofield dynamics (TFD) method as [68],

|Ωβ,µ〉 = Uβ,µ|Ω〉 = eB
†(β,µ)−B(β,µ)|Ω〉 (3.25)

with

B†(β, µ) =
∞
∑

n=0

∫

dk
\x

[

q′r(n, kz)
†θ−q

′

r
(n, kz)

† + q̃′r(n, kz)θ+q̃
′

r
(n, kz)

]

. (3.26)

We have suppressed the color and flavor indices in Eq.(3.26). The underlined

operators in Eq.(3.26) are the operators in the extended Hilbert space asso-

ciated with thermal doubling in TFD method and θ± = θ±(n, kz, β, µ) are

thermal the ansatz functions and, as we shall see, are related to the quark and

antiquark distribution functions. The ansatz functions in Eq.(3.25) are ob-

tained by minimizing the thermodynamic potential which we shall carry out

in the next section.

Now, to test the reliability of the ansatz, considered in Eq.(3.25), we shall

calculate the expectation values of the chiral and axial current densities with

respect to |Ωβ,µ〉 and check whether they reduce to the already known results

in the respective limits. We use the following relation which transforms three

dimensional integrals into one dimensional integrals in presence of quantizing

magnetic field with discrete Landau levels [82],

∫

dp

(2π)3
→ |qB|

(2π)2

∞
∑

n=0

αn

∫

dpz.

For the i-th flavor, the chiral order parameter, i.e, the expectation value of the

chiral current density, 〈Ωβ,µ|ψ̄iψi|Ωβ,µ〉 ≡ −Ii is given as

Ii =

∞
∑

n=0

Nc|qi|Bαn

(2π)2

∫

dpz
ǫni

[mi cos 2fi + |pi| sin 2fi] cos 2θi∓, (3.27)

where cos 2θi∓ = 1 − sin2 θi− − sin2 θi+ and αn = (2 − δn,0) is the degeneracy

factor of the n-th Landau level (all levels are doubly degenerate except the

lowest Landau level). We shall see later that, the functions sin2 θ∓ are related
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to the distribution functions for the quarks and antiquarks. It is useful to

define φi = φi
0 − 2fi with cos φi

0 = mi/ǫni and sinφi
0 = |pi|/ǫni and rewrite the

order parameter Ii as

Ii =
∞
∑

n=0

Nc|qi|Bαn

(2π)2

∫

dpz cosφ
i cos 2θi∓. (3.28)

In the limit of vanishing condensates (fi=0), Ii in Eq.(3.28) reduces to the

expression derived in Ref.[80]. In the absence of the magnetic field at zero

temperature and zero density, Ii becomes

〈ψ̄iψi〉 = −Ii = − 6

(2π)3

∫

dp cosφi, (3.29)

which is the same as derived earlier [67].

Now, let us consider the axial current density. The expectation value of

the axial current density is given by

〈j35〉 ≡ 〈ψ̄a
i γ

3γ5ψa
j 〉 =

∑

n

Nc

(2π)2

∫

dp
\x

(

I2n − I2n−1

) (

sin2 θi− − sin2 θi+
)

. (3.30)

Integrating over dpy using the orthonormal condition of Eq.(3.9), all the terms

in the above sum for the Landau levels cancel out except for the zeroth level

so that,

〈ji35 〉 =
Nc|qi|B
(2π)2

∫

dpz
[

sin2 θi0− − sin2 θi0+
]

. (3.31)

which is identical to that in Ref.[83] once we identify the functions sin2 θi0∓ as

the particle and the antiparticle distribution functions for the zero modes (see

e.g.Eq.(3.42) in the next section).

So with our ansatz, taking the appropriate limits, we have reproduced the

results obtained in previous works. So we can say that our ansatz is valid in the

previously tested limits. Now, we can proceed to calculate the thermodynamic

potential with a suitable choice of effective model and to determine the mass

gap equation from the minimization of the thermodynamic potential.
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3.3 Thermodynamic potential and gap equa-

tion

In the present work, we shall consider 3-flavor NJL model with KMT deter-

minant interaction term. The corresponding Hamiltonian density is given as

H = ψ†(−iα ·∇− qBxα2 + γ0m̂)ψ −Gs

8
∑

A=0

[

(ψ̄λAψ)2 − (ψ̄γ5λAψ)2
]

+ K
[

detf [ψ̄(1 + γ5)ψ] + detf [ψ̄(1− γ5)ψ]
]

(3.32)

Here also, we have suppressed the color and flavor indices. Wit the color and

flavor indices, the field operator is denoted by ψi,a with color ‘a’ (a = r, g, b),

and flavor ‘i’ (i = u, d, s), indices. m̂ = diagf(mu, md, ms) is the current

quark mass matrix in the flavor space. We shall assume isospin symmetry

for u and d quarks. This is an approximate symmetry because, when the

electromagnetic effects are taken into account, the current quark masses of

u and d quarks will not be the same due to the difference in their electrical

charge. However, because of the smallness of the electromagnetic coupling,

we shall ignore this tiny effect and continue with mu = md in the present

investigation of CSB. In Eq.(3.32), λA, A = 1, · · ·8 denotes the Gell-Mann

matrices acting in the flavor space and λ0 =
√

2
3
11f with 11f being the unit

matrix in the flavor space. The four point interaction term ∼ Gs is symmetric

in SU(3)V × SU(3)A × U(1)V × U(1)A. In contrast, the determinant term

∼ K which generates a six point interaction term for 3 flavors, breaks U(1)A

symmetry. In the absence of the magnetic field and the mass term, the overall

symmetry in the flavor space is SU(3)V ×SU(3)A×U(1)V . This spontaneously
breaks to SU(3)V × U(1)V implying conservation of the baryon number and

the flavor number. The current quark mass term introduces additional explicit

breaking of chiral symmetry leading to partial conservation of the axial current.

On the other hand, due to the presence of magnetic field, the SU(3)V symmetry

in flavor space reduces to SU(2)V × SU(2)A since the u quark has different

electric charge compared to d and s quarks [84].



3.3. Thermodynamic potential and gap equation 71

Now, the thermodynamic potential is given by,

Ω = ε−
3

∑

i=1

µiρi −
S

β
= T + VS + VD −

3
∑

i=1

µiρi −
S

β
, (3.33)

where ε = T + VS + VD is the expectation value of the Hamiltonian given in

Eq.(3.32) with T being the expectation value of the kinetic term, Vs being

the expectation value of the four point interaction term GS and VD being

the expectation value of the six point interaction term ∼ K. µi and ρi are

respectively the chemical potential and number density for the i-th flavor. S

denotes the entropy density.

Evaluation of the kinetic term requires the spatial derivatives of the func-

tion In(ξ) which, from Eq.(3.7), can be written as

∂In
∂x

=
√

|qi|B
[

−ξIn +
√
2nIn−1

]

. (3.34)

Using Eq.(3.34) and the field operator described in Eq.(3.19), a straightforward

calculation gives the expectation value of the kinetic term as

T = 〈Ωβ,µ|ψa†
i (−iα ·∇− qiBxα2)ψ

a
i |Ωβ,µ〉

= −
∞
∑

n=0

∑

i

Ncαn|qiB|
(2π)2

∫

dpz(mi cosφi + |pi| sinφi) cos 2θ
i
∓. (3.35)

Using Eq.(3.27) and the properties of the Gell-Mann matrices,
∑8

A=0 λ
A
ijλ

A
kl =

2δilδjk, the contribution from the quartic interaction term in Eq.(3.32) to the

energy expectation value turns out to be

VS ≡ −Gs〈Ωβ,µ|
8

∑

A=0

[

(ψ̄λAψ)2 − (ψ̄γ5λAψ)2
]

|Ωβ,µ〉 = −2GS

∑

i=1,3

I i
2
. (3.36)

Finally, the expectation value of the six quark interaction term is given as

VD = K〈detf [ψ̄(1 + γ5)ψ] + detf [ψ̄(1− γ5)ψ]〉 = −2KI1I2I3. (3.37)

So we have the expectation value of the Hamiltonian given in Eq.(3.32). Now,
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The number density of the i-th flavor is given by

ρi = 〈ψ†
iψi〉 =

∞
∑

n=0

Ncαn|qiB|
(2π)2

∫

dpz
[

sin2 θi− − sin2 θi+
]

. (3.38)

Finally, the entropy density for the quarks is given as

S = −
∑

i,n

Ncαn|qi|B
(2π)2

∫

dpz{(sin2 θi− ln sin2 θi− + cos2 θi− ln cos2 θi−) + (− → +)}.

(3.39)

Now, as we have the expressions for all the terms of the thermodynamic

potential Ω given in Eq.(3.33), we can carry out the minimization of Ω. Mini-

mization of Ω with respect to the chiral condensate function φi(pz) gives

cotφi =
mi + 4GsIi + 2K|ǫijk|IjIk

|pi|
=
Mi

|pi|
, (3.40)

where we have defined Mi as the constituent quark mass for the i-th flavor as

Mi = mi + 4GsIi + 2K|ǫijk|IjIk. (3.41)

Minimisation of Ω with respect to the thermal functions θ±(k) leads to the

distribution functions of the quarks,

sin2 θi,n± =
1

eβ(ωi,n±µi) + 1
, (3.42)

where, ωi,n =
√

M2
i + p2z + 2n|qi|B is the excitation energy of the i-th flavor

with constituent quark mass Mi.

Substituting the solution for the condensate function in Eq.(3.40) and the

thermal function in Eq.(3.42) back in Eq.(3.28) yields the chiral condensate as

−〈ψ̄iψi〉 ≡ Ii =
∞
∑

n=0

Nc|qi|Bαn

(2π)2

∫

dpz
Mi

ωi

(

1− sin2 θi− − sin2 θi+
)

. (3.43)

Eq.s(3.41,3.43) describe the self consistent mass gap equation for the i-th quark

flavor. Using the solutions for the condensate functions in Eq.s(3.40,3.42)
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and the chiral condensate in Eq.(3.43), the thermodynamic potential given in

Eq.(3.33) reduces to

Ω = −
∑

n,i

Ncαn|qiB|
(2π)2

∫

dpzωi + 2Gs

∑

i

I2i + 4KI1I2I3

−
∑

n,i

Ncαn|qiB|
(2π)2β

∫

dpz
[

ln sin2 θi− + ln sin2 θi+
]

. (3.44)

In the limit, T = µ = 0, the first term of Ω in Eq.(3.44) suffers from ultraviolet

divergence which is also transmitted to the gap equation in Eq.(3.41) through

Ii in Eq.(3.43). In absence of magnetic field, such terms are usually regularized

either by a sharp momentum cutoff [24, 85] or by a smooth regulator [86, 87]

in effective theories like NJL model. But in presence of magnetic field, a sharp

cutoff suffers from cutoff artifact as the continuous momentum dependence in

two spatial dimensions gets replaced by a sum over discretized Landau level.

A smooth parametrization can still be used and it has been successfully used

in the context of chiral magnetic effect in PNJL model [76]. Here, however,

we shall adopt the regularization scheme of adding and subtracting a vacuum

(T = µ = B = 0) term which is also divergent [79]. This makes the first

term of Eq.(3.44) acquire a more convenient form by separating terms with

explicit field dependence and terms without explicit field dependence and can

be written in terms of Riemann-Hurwitz ζ function as

∑

n,i

Ncαn|qiB|
(2π)2

∫

dpzωi =
Nc

2π2

3
∑

i=1

|qiB|2
[

ζ ′(−1, xi)−
1

2
(x2i − xi) ln xi +

x2i
4

]

+
2Nc

(2π)3

3
∑

i=1

∫

dp
√

p2 +M2
i , (3.45)

where xi =M2
i /2|qiB| is a dimensionless quantity and ζ ′(−1, x) = dζ(z, x)/dz|z=1

is the derivative of the Riemann-Hurwitz ζ function which is given by [88],

ζ ′(−1, x) =
lnx

2

[

x2 − x+
1

6

]

−x
2

4
+x2

∫ ∞

0

2 tan−1 y + y ln(1 + y2)

e2πxy − 1
dy. (3.46)
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Using Eq.s(3.44,3.45), the thermodynamic potential can be rewritten as

Ω(β, µ, B,Mi) = Ωvac + Ωfield + Ωmed + 2Gs

3
∑

i=1

I2i + 4KI1I2I3, (3.47)

where Ωvac denotes the vacuum term with no explicit dependence on T , µ or

B. Ωfield denotes the field contribution which explicitly depends only on B

and Ωmed represents the medium contribution which explicitly depends on T ,

µ and B. Explicitly they are given as

Ωvac = − 2Nc

(2π)3

∑

i

∫

dp
√

p2 +M2
i , (3.48)

Ωfield = − Nc

2π2

∑

i

|qiB|2
[

ζ ′(−1, xi)−
1

2
(x2i − xi) ln xi +

x2i
4

]

, (3.49)

Ωmed =
∑

n,i

Ncαn|qiB|
(2π)2β

∫

dpz
[

ln sin2 θi− + ln sin2 θi+
]

. (3.50)

Similar to the thermodynamic potential, we can split the chiral condensate, Ii

into different terms according to dependence on T , µ and B using Eq.(3.45) as

Ii =
2Nc

(2π)3

∫

dp
Mi

√

p2 +M2
i

+
NcMi|qiB|

(2π)2

[

xi(1− ln xi) + ln Γ(xi) +
1

2
ln
xi
2π

]

−
∞
∑

n=0

Nc|qi|Bαn

(2π)2

∫

dpz
Mi

√

M2
i + |pi|2

[

sin2 θi− + sin2 θi+
]

= I ivac + I ifield + I imed. (3.51)

The field contribution Ωfield, given in Eq.(3.49) to the thermodynamic po-

tential has the simplest form that we can have since we have the derivative

of Riemann-Hurwitz ζ function in Eq.(3.46). The ln Γ(xi) term in the field

contribution I ifield to the chiral condensate in Eq.(3.51) has to be calculated

numerically and rest of the terms in I ifield are simple enough. The integrals in

the vacuum contributions to both the chiral condensate and thermodynamic

potential, I ivac and Ωvac, given in Eq.(3.51) and Eq.(3.48), can be analytically

solved and since there is no explicit magnetic field dependence in the vacuum

contributions, a three momentum cutoff can safely be imposed as is usually
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done in NJL model [24, 85]. Solving the integrals with a three momentum

cutoff Λ, the vacuum terms can be written as

I ivac =
NcMi

2π2

[

Λ
√

Λ2 +M2
i −M2

i ln
Λ +

√

Λ2 +M2
i

Mi

]

, (3.52)

Ωvac =
Nc

8π2

∑

i

[

M4
i ln

Λ +
√

Λ2 +M2
i

Mi

−
√

Λ2 +M2
i (2Λ

2 +M2
i )

]

.(3.53)

However, since in presence of magnetic field, |p|2 = p2z+2n|qiB|, the condition
of sharp three momentum cutoff translates to a summation over finite number

of Landau levels in Ωvac or in I ivac with the maximum number of Landau

levels that are filled up being given as nmax = Int
[

Λ2

2|qi|B

]

for pz = 0. For

the medium contribution Imed, this also leads to a cut off for the magnitude

of |pz| as Λ′ =
√

Λ2 − 2n|qi|B for a given value of n. At finite temperature

the medium contributions Ωmed and I imed can not be calculated analytically.

However, in the zero temperature limit, the integrals in Ωmed and I imed can

be solved analytically. At T = 0 the particle distribution function sin2 θi− =

Θ(µi − ωi
n) while the antiparticle distribution function sin2 θi+ = 0. The θ

function restricts the magnitude of |pz| to be less than pizmax =
√

pi2f − 2n|qi|B,

where, pif =
√

µ2
i −M2

i is the Fermi momentum of the i-th flavor. This also

restricts maximum number of Landau levels to ni
max = Int[

pi2
f

2|qi|B
]. Solving the

integrals and setting the upper limit of pz as p
i
zmax, the medium contributions

I imed and Ωmed at T = 0 can be written as

I imed(T = 0) =
Nc

2π2

ni
max
∑

n=0

αn|qi|BMi ln

[

pizmax + µi
√

M2
i + 2n|qi|B

]

, (3.54)

Ωmed(T = 0) =
∑

i

Nc

4π2

ni
max
∑

n=0

αn|qi|BMi

[

µip
i
zmax

− (M2
i + 2n|qi|B) ln

{

pizmax + µi
√

M2
i + 2n|qi|B

}]

. (3.55)

So, we have complete expressions for the thermodynamic potential and the

chiral condensate for T = 0. This situation is relevant for neutron stars.
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However, in the context of neutron star matter, the presence of electrons should

also be considered along with u, d and s quarks. The following processes can

takes place in weak equilibrium with three quarks,

d → u+ e− + ν̄e−, s→ u+ e− + ν̄e− and s+ u→ d+ u,

which leads to the following relation between the chemical potentials µu, µd,

µs and µE as

µs = µd = µu + µe. (3.56)

The neutrino chemical potentials are taken to be zero as they can diffuse

out of the star. So two independent chemical potentials are needed in the

context of neutron star matter which we take to be the quark chemical potential

µq = µB/3 and the electric charge chemical potential, µE in terms of which

the chemical potentials are given by µs = µq − 1
3
µE = µd, µu = µq +

2
3
µE and

µe = −µE . In addition, for description of the charge neutral matter, there is

another constraint for the chemical potentials through the following relation

for the particle densities given by

2

3
ρu −

1

3
ρd −

1

3
ρs − ρe = 0. (3.57)

The quark number densities ρi for each flavor are already defined in Eq.(3.38).

The electron number density is given by

ρe =

∞
∑

n=0

αn|eB|
(2π)2

∫

dpz
[

sin2 θe− − sin2 θe+
]

, (3.58)

where sin2 θ∓ = 1/{exp(ωe∓µe)+1} are the distribution functions for electrons

and positrons with ωe =
√

p2z + 2n|e|B. To calculate the total thermodynamic

potential relevant for neutron star, the contribution of the electrons, Ωe must

be added to Ω in Eq.(3.47), which is given by

Ωe =
∑

n,i

αn|eB|
(2π)2β

∫

dpz[ln {1 + e−β(ωe−µe)}+ ln {1 + e−β(ωi+µe)}] (3.59)
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Now, as we have the complete expressions for the mass gap and thermodynamic

potential, we can proceed to evaluate them numerically by solving Eq.(3.41) for

the mass gap and Eq.(3.47) for the thermodynamic potential. In the context

of neutron star matter, we shall use Eq.s(3.57,3.59) for incorporating charge

neutrality and electronic contribution. We shall discuss the numerical analysis

for various physical situations in the next section.

3.4 Results and discussions

For numerical evaluations, we need to choose fixed values for some parameters

in the NJL model. If we take the masses of u and d quarks to be equal, then,

we have to fix five parameters in total. They are the four-fermion coupling

Gs which has the dimension of [Mass]−2, the six fermion coupling K with

dimension [Mass]−5, the sharp three momentum cutoff Λ and the current quark

masses for the non strange and strange quarks, mq and ms respectively. After

choosing mq MeV, the remaining four parameters are fixed by fitting to the

pion decay constant and the masses of pion, kaon and η′. Here, we have chosen

mq = 5.5 MeV and ms = 0.1407 GeV, Λ = 0.6023 GeV, GsΛ
2 = 1.835 and

KΛ5 = 12.36 [89]. With this set of parameters the mass of η′ is underestimated

by about six percent and the constituent masses of the light quarks turn out

to be Mq = 0.368 GeV for u and d quarks and Ms = 0.549 GeV for strange

quark at T = µ = B = 0.

For 3-flavor NJL model, different values of the parameters have also been

used although the principle there is same as above [85, 90]. This discrepancy

lies in the different treatments of the η′ meson. Since NJL model does not

confine, and because of the large mass of η′ (mη′ = 958 MeV), it lies above the

threshold for qq̄ decay with an unphysical imaginary part for the correspond-

ing polarization diagram. This is an unavoidable feature of NJL model and

leaves an uncertainty which is reflected in the choice of different values of the

parameters. Within this limitation, however, we shall proceed with the above

set of parameters which has been used in the study of the phase diagram of
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dense matter [91] and in the context of equation of state of neutron star [92].

Let us start our analysis by considering the case when the charge neutral-

ity condition is not imposed. In this case µE = 0 and all the quark flavors

have equal chemical potential µq. For given values of µq, T and eB, we solve

Eq.(3.41) self consistently for the mass gap M using Eq.(3.51) for the chiral

order parameter Ii. We then evaluate the thermodynamic potential Ω using

Eq.(3.47) to examine whether the chiral condensate is energetically favored

or not. In the evaluation of I imed of Eq.(3.51), while considering T = 0, the

Landau levels are filled upto a maximum value, nmax = Int
[

Λ2

2|qi|B

]

as already

mentioned in the previous section. On the other hand, for T 6= 0, the levels are

filled upto the maximum Landau level. But the error in neglecting the higher

Landau levels is less than 10−5. Near the crossover transition temperature,

there may be multiple solutions for M corresponding to multiple extrema of

Ω. In such cases, as we have mentioned in the previous chapter, we have cho-

sen the solution with least Ω. This by verified by checking the positivity of

the second derivative of Ω with respect to M .
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Figure 3.1: Constituent quark masses as functions of magnetic field at T = µ =
0. (Left panel) Effect of the KMT determinant interaction term is included.
(Right Panel) The KMT term is ignored, i.e. K = 0. The solid curves, the
dotted curves and the dash-dotted curves represent the constituent masses of
u, d and s quarks respectively in both the plots.

In the left panel of Fig.[3.1], we show the effect of magnetic field on the

constituent masses of the three quark flavors for T = µ = 0 including the KMT

term. It is evident that magnetic field enhances the order parameters though,



3.4. Results and discussions 79

because of difference in electric charge, the enhancement is not the same for

different flavors. For eB = 20m2
π, the enhancement factors, [M(B) −M(B =

0)]/M(B = 0), are about 35%, 24% and 12% for u, d and s quarks respectively.

The effect of magnetic field on CSB has been studied in NJL model without

the KMT term also [93]. For comparing the effects of magnetic field with

and without the KMT term, we have shown the constituent quark masses

as functions of magnetic field at T = µ = 0 in the right panel of Fig.[3.1].

The mass splitting between u and d quarks is much larger when the KMT

term is not taken in to account, i.e, K = 0. For eB = 20m2
π, the ratio

[Mu(B) − Md(B)]/Mu(B = 0) = 57% when K = 0 while the same ratio is

about 11% when KΛ5 = 12.36. This difference is due to the flavor mixing

through the KMT term. Whereas the magnetic field tends to differentiate

among different flavors depending on electric charges, the KMT term tends

to bring the constituent quark masses together through mixing of different

flavors. So the splitting between the constituent masses of different flavors in

presence of magnetic field become smaller when K 6= 0. This behavior has

also been observed in 2-flavor NJL model [27]. The effect of the KMT term is

prominent in the s quark mass also. For K = 0, the s quark mass experiences

little enhancement compared to u and d quarks whereas, because of the flavor

mixing, the enhancement is significant in presence of the KMT term.

The temperature dependence of the constituent quark masses for different

strengths of magnetic field at µ = 0 is shown in Fig.[3.2]. The left panel

corresponds to the constituent mass of u quark and the right panel corresponds

to the constituent mass of the s quark. The magnetic catalysis is evident as

the constituent quark masses increase with higher magnetic field for a given

temperature. In this calculation, instead of assuming the lowest Landau level

approximation, we have considered the maximum number of Landau levels

as appropriate for a given magnetic field. For both the quarks, the transition

from chiral symmetry broken phase to chiral symmetry restored phase remains

a crossover for finite strengths of magnetic field as is the case for zero magnetic

field. Here, the restoration of chiral symmetry is approximate as we have taken
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the current quark masses to be non zero for all flavors. In the chiral symmetry

restored phase, the constituent quark masses approach the current quark mass

values of the respective flavors. Similar feature has been observed in 2-flavor

NJL model also [27] but this is in contrast with the linear sigma model results

where the usual crossover becomes a first order phase transition for strong

magnetic fields [75].
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Figure 3.2: Constituent masses of the u quark, Mu (left panel) and the s quark,
Ms (right panel) as functions of temperature for different strengths of magnetic
field at µ = 0.

Now, we shall discuss the behavior of constituent quark masses and baryon

number density as functions of the quark chemical potential, µq for different

strengths of magnetic field at T = 0. In Fig.[3.3], we show the variations

constituent quark masses for u quark, Mu (left panel) and d quark, Md (right

panel). Fig.[3.4] shows the variation of the constituent mass of the s quark,

Ms (left panel) and the ratio of the baryon number density, ρ to the normal

nuclear matter density, ρ0 = 0.17/fm3 (right panel).

For eB = 0, as µq increases, a first order transition is observed to take place

for all flavors at a critical value µc = 362 MeV. Prior to that (µ < µc), the

quark masses stay at their vacuum values and ρ/ρ0 remains zero. At µ = µc,

the light quarks experience a drop in their masses from their vacuum values

of ∼ 367 MeV to ∼ 52 MeV. The s quark mass also experiences a first order

transition and drops from its vacuum value of ∼ 549 MeV to ∼ 464 MeV due

to flavor mixing through the KMT term. ρ/ρ0 also jumps from zero to 2.37.
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Figure 3.3: Constituent masses of u quark (left panel) and d quark (right panel)
as functions of µq for different strengths of magnetic field at T = 0.
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Figure 3.4: Constituent mass of s quark (left panel) and baryon density (right
panel) as functions of µq for different strengths of magnetic field at T = 0.

As the magnetic field is increased, the µc for the first order transition

consistently decreases. For eB = 10m2
π and eB = 15m2

π, the corresponding

values of µc are 327 MeV and 323 MeV respectively. This decrease of µc with

the increase in magnetic field has also been observed in the context of dense

holographic matter and it has been termed as inverse magnetic catalysis of CSB

[28]. For µ < µc, the constituent quark masses increase with the magnetic field

for all flavors. For eB = 10m2
π, the increase in Mu and Md are ∼ 45 MeV and

∼ 30 MeV respectively while Ms experiences an increase of about ∼ 21 MeV

as compared to eB = 0.

Since the µc decreases with increase in magnetic field, there are windows in

the range of µq where the quark masses apparently decrease with the magnetic
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field in the range µ = 323 MeV to µ = 362 MeV. In this regime however, the

chiral transition has already taken place for eB = 15m2
π and it is yet to happen

for eB = 0. For eB = 10m2
π, though the chiral transition takes place in this

regime, the transition is weaker compared to the case of eB = 15m2
π. This

is because of the kinks that appear in the quark masses after the transition

due to filling of different Landau levels for eB 6= 0 and these kinks change the

ordering of the quark masses after the transition. Expectedly, no kinks appear

for eB = 0 and the quark masses smoothly approach the respective values of

the current quark masses.

Although µc decreases with magnetic field, the corresponding baryon den-

sity increases as it can be seen in the right panel of Fig.[3.4]. For eB = 10m2
π,

the critical density ρc/ρ0 = 2.39 is almost similar to eB = 0 case where

ρc/ρ0 = 2.38 but it is substantially larger for eB = 15m2
π with ρc/ρ0 = 3.62.

Similar qualitative feature has been observed in Ref.[79].
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Figure 3.5: Oscillation of u quark mass with magnetic field. We have taken
µq = 380 MeV and T = 0.

For µq > µc, the quark masses exhibit de Haas van Alphen oscillation

similar to the oscillation of the magnetization of a metal in presence of magnetic

field [94]. This oscillation is shown for u quark in Fig.[3.5]. Here we have taken

µq = 380 MeV and T = 0. This phenomenon is a consequence of oscillation

of the density of states at Fermi surface due to Landau quantization. The
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oscillation continues as long as 2|q|B <
√

µ2
q −M2

q and ceases when the first

Landau level lies above the Fermi surface [87, 95].

Now, let us focus our attention on the effects of magnetic field on charge

neutral dense matter which is relevant in the context of neutron star matter.

Here, we take the value of the electric charge chemical potential µE to be non

zero along with T , µq and eB. The mass gap is calculated by self consistently

solving Eq.(3.41) for given values of T , µq, µE and eB. µE is varied so that the

charge neutrality condition in Eq.(3.57) is satisfied. The resulting solutions

are then used in Eq.(3.47) to compute Ω.

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
u(

G
eV

)

0.25 0.3 0.35 0.4 0.45 0.5

q(GeV)

eB = 0
eB = 2
eB = 5
eB = 10

m
2

π

m
2

π

m
2

π 0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

M
s(G

eV
)

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

q(GeV)

eB = 0
eB = 2
eB = 5
eB = 10

m
2

π

m
2

π

m
2

π

Figure 3.6: Constituent masses of u quarks (left panel) and s quarks (right
panel) as functions of µq at T = 0 for different strengths of magnetic field for
charge neutral matter.

Fig.[3.6], shows Mu (left panel) and Ms (right panel) as functions of µq

for charge neutral matter at T = 0 for different strengths of magnetic field.

Similar to the case without charge neutrality condition, here also we observe

a first order transition at a critical quark chemical potential µc. To maintain

the charge neutrality condition, the d quark number density should be almost

twice that of u quark number density at the transition point as Ms is much

too large to contribute to the charge density. To realize this, Md should be

sufficiently smaller as compared to Mu. This implies that µd should be larger

than µu unlike case without charge neutrality where the chemical potential of

all the flavors were the same and equal to µq. Numerically, it turns out for

eB = 0 that µd = 393 MeV, µu = 318 MeV and µq = µc = 368 MeV which is
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slightly higher as compared to the common chemical potential µc = 362 MeV

when charge neutrality condition were not imposed. At the transition point,

Mu = 80 MeV andMd = 61 MeV whereas both the quarks had a common mass

of 52 MeV at the transition point when the charge neutrality condition were not

imposed. These values of µu = 318 MeV and µd = 393 MeV at the transition

point correspond to µe = 75 MeV. At µc, the electron number density turns

out to be three orders of magnitude lower than the number densities of both

u and d quarks. As the magnetic field is increased, the constituent masses of

all three flavors increase for µq < µc. The first drop in Ms is related to the

drops in Mu and Md through the KMT term. The kink structure in Ms for

higher magnetic fields is due to the filling of different Landau levels. Similar to

the case without charge neutrality, here also we observed that higher magnetic

field induces smaller µc. However, the critical density increases for increase

in magnetic field. This behavior is shown in Fig.[3.7], where Mu (left panel)

and Ms (right panel) are shown as functions of baryon density at T = 0 for

different strengths of magnetic field.

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
u(

G
eV

)

0 1 2 3 4 5 6 7 8
( b/ 0)

eB = 0
eB = 2
eB = 5
eB = 10

m
2

π

m
2

π

m
2

π

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

M
s(G

eV
)

0 1 2 3 4 5 6 7 8
( b/ 0)

eB = 0
eB = 2
eB = 5
eB = 10

m
2

π

m
2

π

m
2

π

Figure 3.7: Constituent masses of u and s quarks as functions of baryon density
in units of nuclear matter density ρ0 for different strengths of magnetic field
at T = 0.

Next, we discuss the effects of magnetic field on hot neutral quark matter.

Such a condition is relevant for the matter in the interior of the proto-neutron

stars where the temperature can be about few tens of MeV. In Fig.[3.8], we

show the effects of magnetic field on Mu (left panel) and Ms (right panel)

in magnetized charge neutral matter at T = 40 MeV. Here also, the chiral
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symmetry restoration happens through a first order transition similar to the

T = 0 case although the transition is smoother. Here also, µc decreases for

increase in magnetic field and the constituent masses increase with magnetic

field for µq < µc reflecting the magnetic catalysis of CSB.
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Figure 3.8: Constituent masses of u and s quarks as functions of µq for charge
neutral matter for different strengths of magnetic field at T = 40 MeV.
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Figure 3.9: Equations of state for charge neutral matter at T = 0 (left panel)
and T = 40 MeV (right panel) for different strengths of magnetic field.

Now, let us study the effect of magnetic field on the equation of state, i.e,

pressure as a function of energy for the charge neutral matter. This is shown in

Fig.[3.9] for T = 0 (left panel) and T = 40 MeV (right panel). For T = 0, the

effect of Landau quantization shows up in the kink structure of the equations

of state. For smaller magnetic fields, this effect is less visible as the number

of filled Landau levels are quite large. For both T = 0 and T = 40 MeV, the

equation of state becomes steeper as the magnetic field increases. Since the
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zero density constituent quark masses increase with magnetic field, the vacuum

energy density decreases with increasing magnetic field. Therefore the starting

value of pressure is lowest for eB = 0 and increases with the magnetic field

as seen in Fig.[3.9]. For higher densities when chiral symmetry is restored,

the magnetic field contribution to the Ω as given in Eq.(3.49) increases with

magnetic field. This means that the chemical potential must be larger for lower

magnetic field as compared to higher field to have the same energy density. So

we might naively expect the pressure (P = µρ− ǫ) to be higher for lower field

which is in contrast with what we see in Fig.[3.9]. The explanation to this lies

in the fact that higher magnetic field induces lower µc as observed in Fig.[3.6]

and Fig.[3.8]. So for a given energy density, the number density can be higher

for higher magnetic field leading to a higher pressure and consequently, the

equation of state becomes steeper with higher magnetic field.

The pressure that we have considered to show the equations of state in

Fig.[3.9] is the thermodynamic pressure, i.e, negative of Ω given in Eq.(3.47).

However, in presence of strong magnetic fields, the hydrodynamic pressure can

be highly anisotropic when there is significant magnetization of the matter

[77, 78, 96]. The hydrodynamic pressure in the direction of the field is given

by the thermodynamic pressure, P‖ = P = −Ω as defined in Eq.(3.47). On

the other hand, the pressure in the transverse direction of the magnetic field

is given by P⊥ = P −MB [78]. Here, M = −∂Ω/∂B is the magnetization

of the system. Using the expression for Ω in Eq.(3.47), we can write the

magnetization as

M =Mmed +Mfield +Mc (3.60)

where Mmed = −∂Ωmed/∂B is the medium contribution to the magnetization

at T = 0 and is given by

Mmed =
Nc

4π2

∑

n,i

αn|qi|
[

µip
i
zmax − (A2

n,i + 2n|qi|B) ln
µi + pizmax

An,i

]

, (3.61)

where An,i =
√

M2
i + 2n|qi|B. The field contribution to the magnetization is
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given as

Mfield = −∂Ωfield

∂B
=

∑

i

q2iB

[

ln xi
12

− 1

24
+ x3i I1(xi)

]

, (3.62)

where xi = (M2
i /2|qi|B) as we have defined earlier and I1(xi) is defined as

I1(xi) =
1

π

∫

y
2 arctan(y) + y ln(1 + y2)

{exp(2πxiy)− 1}{1− exp(−2πy)}dy. (3.63)

Since the Ωfield term originates from the effect of magnetic field on Dirac

sea so Mfield can be recognized as the contribution arising because of the

magnetization of the Dirac sea. Finally, Mc in Eq.(3.60) is the contribution

to the magnetization arising from the last two terms of the thermodynamic

potential in Eq.(3.47) and is given as

Mc = −4G
∑

i

Ii
∂Ii
∂B

− 2K
∑

i 6=j 6=k

IiIj
∂Ik
∂B

. (3.64)

Here, ∂Ii/∂B is the derivative of the chiral condensate (-〈ψ̄ψ〉i) with respect

to the magnetic field and using Eq.(3.51), we can write this derivative as a

sum of the contribution from the medium and contribution from field as

∂Ii
∂B

=
∂I imed

∂B
+
∂I ifield
∂B

,

where, the medium contribution at T = 0 is

∂I imed

∂B
=

∑

n

Ncαn

2π2

[

ln
pizmax + µi

An,i

− n|qi|B
A2

n,i

µi

pizmax

]

. (3.65)

The field contribution to the derivative of Ii is given by

∂I ifield
∂B

=
Nc

2π2

[

ln Γ(xi) +
1

2
log

xi
2π

+ xi − xiΨ
0(xi)−

1

2

]

, (3.66)

where Ψ0(xi) = Γ′(xi)/Γ(xi) is the logarithmic derivative of the Gamma func-

tion.



88 Chapter 3. Chiral symmetry breaking in a magnetic background

The magnetization M , described in Eq.(3.60) is shown in the left panel of

Fig.[3.10] for T = 0 and µu = µd = 400 MeV. M exhibits rapid de Hass van

Alphen oscillation. The irregularity in the oscillation is due to the unequal

masses of the three quark flavors. M does not become constant even after all

the quarks are in the lowest Landau level unlike Ref.[78]. This is because of

the contribution from magnetization of the Dirac sea which is included here

along with the Fermi sea contribution through Mmed.
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Figure 3.10: (Left panel) Magnetization in units of Λ2 as a function of magnetic
field. (Right panel) P‖ and P⊥ of strange quark matter as functions of the
magnetic field in units of pressure P0 for eB = 0. In both the plots, the
magnetic field in units of m2

π is plotted in a logarithmic scale and we have
taken here T = 0 and µu = µd = 0.4 GeV.

The longitudinal pressure P‖ and the transverse pressure P⊥ for strange

quark matter is plotted in the right panel of Fig.[3.10] for T = 0 and µ =

400 MeV. The oscillatory behavior of the magnetization is reflected in the

transverse pressure. P‖ and P⊥ start to differ significantly for magnetic field

strengths of about eB = m2
π, which corresponds to about 1018 Gauss. Such

field induced anisotropy in pressure is qualitatively similar to the case where

the anisotropic properties of transport coefficients for strange quark matter

were considered [78]. While considering neutron star structure, it is necessary

to also include the free field energy B2/2 to the total energy and pressure.

This term adds to P‖ and P⊥ with different signs [77]. This free field energy

can make P⊥ negative and consequently may lead to mechanical instability

[77]. While studying structural properties of compact astrophysical objects
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endowed with magnetic fields such anisotropy in pressure should be taken into

account as this can effect the structure and geometry of the star.

Finally we end this section with a comment regarding the axial fermion

current density induced at finite chemical potential. From Eq.s(3.31) and

Eq.(3.42),

〈ji35 〉 =
Nc|qi|B
(2π)2

∫

dpz

[

1

exp(
√

p2z +M2
i − µi)

− 1

exp(
√

p2z +M2
i + µi)

]

.

(3.67)

Thus, although the lowest Landau level contributes to the above expectation

value, because of its dependence on the constituent quark mass parameter Mi,

the effects of all the higher Landau levels are implicitly there in Eq.(3.67) as

the constituent masses here are calculated self consistently using Eq.(3.41) and

Eq.(3.51). Further, because of dependence on the constituent quark mass the

axial quark current density expectation value also depends upon the coupling

in a non perturbative manner [26, 97].

3.5 Summary

We have analyzed here the effect of magnetic field on CSB in a 3-flavor NJL

model with a KMT determinant interaction term. We calculated the Dirac

spinors explicitly in presence of magnetic field and wrote the field operator

expansion in terms of these spinors. An explicit variational construct for the

ground state in terms of quark-antiquark pairing is used with respect to which

the thermodynamic potential is calculated. The ground state ansatz includes

the effect of finite temperature and density. In that sense it is a generalization

of the 2-flavor NJL model at finite temperature and density [27].

The mass gap equation and the thermal distribution functions are obtained

from the minimization of Ω. The gap equation is self consistently solved for

given values of T , µq and eB. At µq = 0 and high temperature, the nature of

chiral transition remains a crossover transition even for magnetic field strength

eB = 10m2
π. The magnetic catalysis of CSB is also observed.
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At finite densities, the effect of Landau quantization shows up in the kink

structure of the constituent masses for T = 0. The order parameter shows

oscillation similar to the de Haas van Alphen effect for magnetization in metals.

However, in the present case of dense quark matter, the mass of the quark itself

is dependent on the strength of magnetic fields which leads to a non periodic

oscillation of the order parameter. Although the critical chemical potential,

µc, for chiral transition consistently decreases with increase in the strength of

the magnetic field, the corresponding density increases with the magnetic field

strength. The effect of the KMT term, which causes flavor mixing, is evident

in the drop in strange quark mass. Imposing the electrical charge neutrality

condition for the quark matter increases the value for µc slightly. Since the

mass of the strange quark plays an important role in maintaining the charge

neutrality, this in turn affects the chiral restoration transition in quark matter.

The presence of non zero magnetic field appears to make the equation of state

steeper for charge neutral matter.

The hydrodynamic pressure can be anisotropic if the magnetization of the

matter is significant. Within the model, this anisotropy starts to become

relevant for field strengths around 1018 Gauss. While considering the structural

properties of astrophysical compact objects endowed with magnetic fields, this

anisotropy in the equation of state should be taken into account as it can affect

the geometry and structure of the star.

We have considered here quark-antiquark pairing in our ansatz for the

ground state which is homogeneous with zero total momentum. However, it is

possible that the condensate can be spatially non homogeneous with a net total

momentum [98]. The effect of deconfinement transition can also be included by

generalizing the present model to PNJL model for three flavors to investigate

the inter relationship of deconfinement and the chiral transition in presence of

strong magnetic fields considered here [99]. This will be particularly important

for finite temperature calculations. At finite density and small temperatures,

this ansatz can be generalized to include the diquark condensates in presence

of magnetic field [82, 100].



Chapter 4

Strong CP violation at finite

temperature and density

We shall discuss the effects of finite temperature and density on strong CP

violation and the interplay of strong CP violation and CSB in this chapter.

Strong interaction is known to respect space and time reflection symmetry to a

very high degree as we have mentioned in the beginning of section[1.3.2]. How-

ever, these symmetries become questionable because of U(1)A axial anomaly

[30, 31]. The anomalous divergence of the axial current density can be ob-

tained from inclusion of a CP violating θ-term in the QCD Lagrangian which

is, in principle, permitted from Lorentz invariance and gauge invariance. This

θ-term is give by

Lθ =
θ

64π2
g2F a

µνF̃
aµν . (4.1)

In Eq.(4.1), F a
µν is the gluon field strength tensor and F̃ aµν = ǫµνρσF a

ρσ being

its dual. This term violates CP unless θ = 0 mod π. However, extremely

small value of intrinsic electric dipole moment (EDM) of neutron, |dn| < 2.9×
10−26e cm, measured by precise experiments suggest that the QCD vacuum can

be regarded as symmetric under CP [34]. Reliable theoretical calculation using

this value of EDM of neutron imposes an upper bound on θ, |θ| < 0.7× 10−11

[35]. This extreme smallness of θ is framed as the strong CP problem. The

strong CP problem is still unsolved although possible solutions have been

91
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proposed by introducing axions [36] which arises from spontaneous breaking

of the Peccei-Quinn symmetry [37].

According to the Vafa-Witten theorem, spontaneous CP violation does

not happen for θ = 0 [38]. On the other hand, it has also been shown that

spontaneous CP violation may take place in the QCD vacuum for θ = π and

degenerate vacuum states may arise which is known as Dashen phenomenon

[41]. Even if CP is not broken for QCD vacuum, it is possible that it can be

broken at finite density and finite temperature where the Vafa-Witten theo-

rem need not be valid [39, 40]. It has been shown that metastable states with

locally non vanishing θ can be formed near the deconfinement phase transition

region in the heavy ion collision experiments [43]. The most striking predic-

tion regarding CP violation in the heavy ion collision experiments is the chiral

magnetic effect (CME) [29]. This predicts, in presence of strong magnetic

field, due to local CP violation, an electric current will be produced along

the magnetic field axis since particles with right handed helicity move oppo-

site to antiparticles with right handed helicity. CME may provide the proper

explanation behind the charge separation phenomena that has been observed

recently in the STAR experiment [44].

Because of the non perturbative nature of the θ-term, strong CP violation

is usually studied using lattice QCD or effective field theories. This has been

extensively studied in low energy effective field theories like chiral perturba-

tion theory [101] and linear sigma model [102]. The NJL model and its exten-

sions have also been extensively used by incorporating CP violation through

the Kobayashi-Maskawa-’t Hooft (KMT) determinant interaction term with a

phase factor [103]. The NJL model has been used to study the spontaneous

CP violation for θ = π in the two flavor case [104]. This has been further

extended to study CP restoration at high temperature [105]. The effect of θ

vacuum on deconfinement phase transition and chiral transition has also been

analyzed in a 2-flavor PNJL model [106].

Here, we focus our attention on how chiral transition is affected in presence

of a CP violating term in the Lagrangian. For this purpose, we adopt the 3-
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flavor NJL model as an effective theory for CSB in strong interaction [24, 89].

The effect of CP violation is included through the KMT term with a phase θ.

We shall consider a variational ground state with quark-antiquark pairs that

is related to CSB. The ground state ansatz is general enough to include both

scalar and pseudo scalar condensates. We shall see that the pseudo scalar con-

densates arise for non zero values of θ in the KMT term. The ansatz functions

are to be determined through minimization of the thermodynamic potential.

The mass gap equations for the scalar and the pseudo scalar condensates will

also be obtained from the minimization of the thermodynamic potential. these

gap equations will be self consistently solved and we shall discuss the phase

structure at finite temperature and density for different values of θ.

4.1 NJL model with CP violating term

To describe the chiral phase structure of strong interactions including the CP

violating effects, we use the 3-flavor NJL model along with the flavor mixing

KMT term. The Lagrangian is given by

L = ψ̄ (i∂/ −m)ψ +G
8

∑

A=0

[

(ψ̄λAψ)2 + (ψ̄iγ5λAψ)2
]

− K
[

eiθdet{ψ̄(1 + γ5)ψ}+ e−iθdet{ψ̄(1− γ5)ψ}
]

, (4.2)

where ψi,a denotes a quark field with color a (a = r, g, b), and flavor i (i =

u, d, s), indices. m̂ = diagf(mu, md, ms) is the current quark mass matrix in

the flavor space. Here, we shall assume isospin symmetry for the two lightest

flavors with mu = md. In Eq.(4.2), λA, A = 1, · · ·8 denote the Gell-Mann

matrices in the flavor space and λ0 =
√

2
3
11f , where 11f is the unit matrix in the

flavor space. The four point interaction term∼ G is symmetric under SU(3)V×
SU(3)A × U(1)V × U(1)A. The determinant term ∼ K, which generates a six

point interaction for the case of three flavors, breaks U(1)A symmetry for non

vanishing values of θ. The effect of topological term of Eq.(4.1) is simulated

by the KMT term of Eq.(4.2) in the quark sector.
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The field operator expansion for the quark fields is given as [81],

ψ(x, t = 0) =
1

(2π)3/2

∫

[

U0(k)q
0(k) + V0(−k)q̃0(−k)

]

eik·xdk. (4.3)

The superscript ‘0’ indicates that the operators q0 and q̃0 are the two compo-

nent operators for the quark annihilation and antiquark creation corresponding

to the the perturbative or the chiral vacuum |0〉. We have suppressed the color

and flavor indices of the quark field operators. U0(k) and V 0(−k) are the four

component spinors which can be explicitly written as

U0(k) =





cos χ0

2

σ · k̂ sin χ0

2



 and V0(−k) =





−σ · k̂ sin χ0

2

cos χ0

2



 . (4.4)

χ0(k) in Eq.(4.4) is given as cotχ0
i = mi/|k|, for free massive fermion fields, i

being the flavor index. For massless fields χ0(|k|) = π/2.

4.2 Ground state and order parameters

Here, we shall construct a ground state for the Lagrangian in Eq.(4.2) to

describe the phase structure. The ground state should be general enough to

account for CSB as well as CP violation. We shall consider an ansatz for the

ground state with quark-antiquark condensates which includes both the scalar

as well as CP violating pseudo scalar channels. We consider an ansatz of the

ground state at T = µ = 0 in terms of the chiral vacuum |0〉 as

|Ω〉 = Uq|0〉, (4.5)

where, Uq = UqIUqII is an unitary operator. In terms of creation and annihi-

lation operators for quark and antiquark, UqI and UqII are given as

UqI = exp

[
∫

dkq0r(k)
†(σ · k̂)rsf(k)q̃0s(−k)− h.c

]

, (4.6)

UqII = exp

[
∫

dkqr(k)
†rg(k)q̃−r(−k)− h.c

]

. (4.7)
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f(k) and g(k) are the ansatz functions which are to be determined later from

the minimization of the thermodynamic potential. To include the effect of

temperature and baryon density, we use the techniques of thermofield dynamics

(TFD) [68]. The thermal ground state is constructed from the ground state

|Ω〉 at T = µ = 0 through a thermal Bogoliubov transformation given as

|Ωβ,µ〉 = UF |Ω〉 = eB(β,µ)
†−B(β,µ)|Ω〉 (4.8)

with,

B†(β, µ) =

∫

[

θ−(k, β, µ)q
′(k)†q′(−k)† + θ+(k, β, µ)q̃

′(k)q̃′(−k)
]

dk. (4.9)

We shall see that the ansatz functions θ±(k, β, µ) in Eq.(4.9) will be related

to the quark and the antiquark thermal distributions respectively and the

underlined operators are associated with thermal doubling in TFD method.

To calculate the thermodynamic potential, we need the creation and an-

nihilation operators for the thermal ground state |Ωβ,µ〉. We obtain these

operators from the creation and annihilation operators for |0〉 through Bogoli-

ubov transformation similar to what we did in section[2.1.1] and section[3.2]

in the context of BCS-BEC crossover and CSB respectively. Here, we have to

perform two successive transformations for UqI and UqII described respectively

in Eq.s(4.6,4.7). Here, we do not write the transformation matrices, instead,

we write the following expectation value from which, the other expectation

values can be calculated trivially,

〈Ωβ,µ|ψ†ia
α (x)ψjb

β (y)|〉Ωβ,µ〉 = δijδab
∫

dk

(2π)3
e−ik·(x−y)Λi(k, β, µ)βα, (4.10)

where,

Λi(k, β, µ) =
1

2

[

(cos2 θi+ + sin2 θi−) + (sin2 θi− − sin2 θi+)(γ
0 cosφi cos 2gi

+ α · k̂ sinφi cos 2gi)− iγ0γ5 sin 2gi
]

, (4.11)
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where, we have introduced a new function φi(k) = χ0 + 2f i(k) in terms of

the condensate function f i(k) of Eq.(4.6). From now on, we shall consider

φi(k) as the condensate function instead of f i(k). From Eq.(4.10), it is easy

to calculate the scalar and pseudo scalar condensates. In terms of the ansatz

functions φi(k) and gi(k) the scalar and pseudo scalar condensates for the i-th

flavor can be respectively written as

〈ψ̄ψ〉i = − 2Nc

(2π)3

∫

dk cosφi cos 2gi(1− ni
− − ni

+) ≡ −I is, (4.12)

〈ψ̄γ5ψ〉i = −i 2Nc

(2π)3

∫

dk sin 2gi(1− ni
− − ni

+) ≡ −iI ip, (4.13)

where ni
∓ = sin2 θi∓. Thus a non vanishing I is will imply CSB phase while a

non vanishing I ip or equivalently gi(k) will indicate CP violating phase. The

condensate functions φi(k), gi(k) as well as the thermal functions θi∓(k, β, µ)

will be determined from the minimization of the thermodynamic potential

which we shall carry out in the following section.

4.3 Effective potential and gap equations

Here, we shall evaluate the thermodynamic potential and the minimization of

the same will lead us to the mass gap equations for the scalar and the pseudo

scalar condensates. The thermodynamic potential is given by

Ω = ǫ− µρ− S

β
, (4.14)

where ǫ is the energy density, µ is the quark chemical potential, ρ is the

quark number density and S is the entropy density. β = 1/T is the inverse

of temperature. The energy density ǫ is given by the expectation value of the

Hamiltonian corresponding to the Lagrangian given in Eq.(4.2) with respect

to the thermal ground state |Ωβ,µ〉 of Eq.(4.8). The energy density can be

written as

ǫ = T + V = T + VS + VD (4.15)
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where T is the expectation value of the kinetic term in Eq.(4.2) and using

Eq.(4.10), it can be written as

T = 〈ψ†(−iα ·∇+ βm)ψ〉

=
2Nc

(2π)3

∑

i

∫

dk(mi cosφi + |k| sinφi) cos 2gi(ni
− + ni

+ − 1),(4.16)

where ni
∓ = sin2 θi∓. VS is the contribution from the four point interaction

term ∼ G in Eq.(4.2) to the energy density and using Eq.(4.10), this can be

written as

VS = −2G
∑

i

[

I is
2
+ I ip

2
]

. (4.17)

Finally, VD is the contribution from the six point KMT term ∼ K in Eq.(4.2)

and using Eq.(4.10), it can be written as

VD = 2K

[

cos θ

{

|ǫijk|
2

I isI
j
pI

k
p −

3
∏

i=1

I is

}

+ sin θ

{

|ǫijk|
2

I isI
j
sI

k
p −

3
∏

i=1

I ip

}]

(4.18)

The quark number density ρ is given by

ρ =
∑

i=u,d,s

〈ψ†ψ〉i =
2Nc

(2π)3

∑

i=u,d,s

∫

dk(1− ni
+ + ni

−). (4.19)

The entropy density S is given as

S =
2Nc

(2π)3

∑

i=u,d,s

∫

dk
[

ni
− lnni

− + (1− ni
−) ln(1− ni

−) + (− → +)
]

. (4.20)

So the thermodynamic potential Ω given in Eq.(4.14) is known in terms of the

ansatz functions φi(k), gi(k) and θi∓(k, β, µ). Minimization of Ω with respect

to φi(k) and gi(k) respectively leads to

tanφi =
|k|
M i

s

and tan 2gi =
M i

p
√

M i
p
2 + |k|2

, (4.21)

where M i
s and M i

p are respectively the contributions to the constituent quark

mass of the i-th flavor from the scalar and pseudo scalar condensates and they
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are given by

M i
s = mi + 4GI is +K|ǫijk|{cos θ(IjsIks − IjpI

k
p )− sin θ(IjsI

k
p + IjpI

k
s )},

M i
p = 4GI ip −K|ǫijk|{cos θ(IjsIkp + IjpI

k
s )− sin θ(IjpI

k
p − IjsI

k
s )}. (4.22)

Minimizing Ω with respect to the thermal ansatz functions θi∓ leads to

sin2 θi± =
1

exp(ωi ∓ µi) + 1
, (4.23)

where ωi(k) =
√

k2 +M i2 is the excitation energy of the i-th flavor with quark

massM i whereM i =
√

M i
s
2 +M i

p
2. So it is evident that the constituent quark

masses get contribution from both the scalar and pseudo scalar condensates.

Using Eq.(4.21), in Eq.s(4.12,4.13), the scalar and pseudo scalar conden-

sates can be written as

I is ≡ −〈ψ̄ψ〉i =
2Nc

(2π)3

∫

dk
(

1− ni
− − ni

+

)M i
s

ωi
(4.24)

I ip ≡ i〈ψ̄γ5ψ〉i =
2Nc

(2π)3

∫

dk
(

1− ni
− − ni

+

)M i
p

ωi
. (4.25)

So from Eq.s(4.24,4.25), we can see that Eq.(4.22) represents the coupled self

consistent equations for the scalar mass gapM i
s and the pseudo scalar mass gap

M i
p. Using Eq.(4.22) and the extremized solution for the condensate functions

from Eq.(4.21), the thermodynamic potential in Eq.(4.14) can be rewritten as

Ω = − 2Nc

(2π)3

∑

i

∫

dk(ωi − |k|) + 2Gs

∑

i

[

I is
2 − I ip

2
]

+
∑

i

M i
pI

i
p

+4K cos θ

3
∏

i=1

I is − 2K sin θ

[

3
∏

i=1

I1p +
1

2
|ǫijk|I isIjsIkp

]

− 2Nc

β(2π)3

∑

i

∫

dk
[

ln {1 + e−β(ωi−µi)}+ ln {1 + e−β(ωi+µi)}
]

.(4.26)

In Eq.(4.26), we have subtracted the perturbative vacuum energy density con-

tribution. It is important to mention here that the effective potential can also

be evaluated at a mean field level after performing a chiral transformation for
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the quarks so as to remove it from the KMT term [104, 106].

So we have Eq.(4.22) for the mass gap and Eq.(4.26) for Ω. We shall solve

Eq.(4.22) self consistently and calculate Ω from Eq.(4.26) using the solutions

for M i
s and M i

p. In the next section, this will be done and and the resulting

phase structure will be discussed.

4.4 Analysis of the phase structure

For numerical analysis, we have to fix the parameters of the 3-flavor NJL model.

The model that we have considered here is similar to that we considered in

the previous chapter while discussing CSB in presence of magnetic field. The

only difference is the phase factor in the KMT term that we have taken here

to incorporate the effect of CP violation. Here also, we have assumed isospin

symmetry for the two lightest flavors with mu = md. So we have to fix the

same parameters here that we fixed in chapter-3. We have five parameters

in total, namely the current quark masses for the non strange and strange

quarks, mq and ms, the two couplings G, K and the three momentum cutoff

Λ. Here, we have chosen the same values of the parameters as in chapter-3.

So we have Λ = 0.6023 GeV, GΛ2 = 1.835, KΛ5 = 12.36, mq = 5.5 MeV and

ms = 0.1407 GeV [89]. With these parameters, the constituent masses of the

lightest quarks turn out to be Mu,d = 0.368 GeV for quarks, while the same

for strange quark turns out to be Ms = 0.549 GeV, at T = µ = 0.

For a given temperature T and the quark chemical potential µq, we solve

the coupled gap equations in Eq.(4.22) self consistently. Since we have as-

sumed mu = md, there are actually four coupled equations: two for the scalar

condensates related to the two masses Mu
s = Md

s , M
s
s and two equations for

the pseudo scalar condensate related to the corresponding mass parameters

Mu
p = Md

p , M
s
p . The solutions to these equations are used to calculate Ω. If

there are more than one solutions, the one with the minimum Ω is chosen.

Let us first discuss the ground state structure at T = µq = 0. In the left

panel of Fig.[4.1], the theta dependence of contributions toMu from the scalar
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Figure 4.1: θ dependence of scalar and pseudo scalar condensates for u quark
(left panel) and the effective potential (right panel) at T = µq = 0.

and pseudo scalar condensates are shown. As θ increases the condensates in

the two channels behave in a complimentary manner. While the contribution

from the scalar condensates decreases with θ (till θ = π), the pseudo scalar

contribution increases so that the constituent quark mass M =
√

Ms
2 +Mp

2

remains almost the same. Spontaneous CP violation is clearly seen for θ = π

with two degenerate solutions for Mu
p differing by a sign. The right panel of

Fig.[4.1] shows the effective potential as a function of θ. The effective potential

is normalized with respect to the same at θ = 0. The minimum of the potential

is at θ = 0 which is consistent with the Vafa-Witten theorem and has a cusp

at θ = π which has also been observed in 2-flavor NJL model [104].
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Figure 4.2: (Left panel) Temperature dependence of the constituent mass of u
quark for θ = µq = 0. (Right panel) Constituent mass of u and s quark as
functions of chemical potential at θ = T = 0.

In Fig.[4.2], we show the temperature dependence of Mu at θ = µq = 0
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(left panel) and the dependence of Mu and Ms on µq at θ = T = 0 (right

panel). In both cases, the pseudo scalar channel contributes nothing and the

constituent mass is equal to the contribution from the scalar channel. As

expected, the chiral transition with temperature is a crossover. For finite

density at T = 0, the (approximate) first order chiral transition takes place at

µ ∼ 361 MeV for u and d quarks with their masses decreasing discontinuously

to Mu,d ∼ 52 MeV from their vacuum value of Mu,d = 368 MeV. Because of

the flavor mixing KMT term, this decrease is reflected also in the decrease in

the strange quark mass to Ms = 464 MeV from its vacuum value of Ms = 549

MeV. These results are similar to the results obtained in the previous chapter

while studying CSB in presence of magnetic field without the CP violating

parameter θ. These results are also similar to the results obtained in the

context of color superconductivity in NJL model with a KMT term [107].
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Figure 4.3: Constituent mass of u quark and the contributions from scalar and
pseudo scalar condensates as a function of temperature at µq = 0 for θ = π/2
(left panel) and θ = π (right panel).

Next we discuss the variations of the contributions from scalar and pseudo

scalar condensates with temperature at µq = 0 for non zero values of θ. The

pseudo scalar contribution is non zero for θ 6= 0. For θ = π/2, masses arising

from both type of condensates are shown in the left panel of Fig.[4.3]. Here,

both the scalar and pseudo scalar masses show a crossover transition as tem-

perature is increased. In the right panel of Fig.[4.3], the behavior of the masses

for θ = π is shown. The scalar contribution becomes negligible as compared
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to the pseudo scalar contribution at θ = π which is exactly the opposite to

the case for θ = 0. The pseudo scalar mass shows a second order transition

at θ = π instead of a crossover which was case for θ = π/2. This feature is

elaborated in Fig.(4.4) where θ dependence of the nature of transition with

temperature is shown for both scalar and pseudo scalar condensates at µq = 0.

The left panel of Fig.[4.4] shows the θ dependence of the transition for the

scalar condensate. The transition is always a crossover for scalar condensate.

This is not the case for the pseudo scalar condensate which shows a second

order transition at θ = π and a crossover for other non zero values of θ. This re-

sult is similar to the results obtained in 2-flavor NJL model [105]. This change

in nature of the transition has been observed also in the linear sigma model

but there the transition at θ = π is a first order transition [102]. The reason

behind such different behavior regarding the order of the transition is due to

the non analytic vacuum term in the NJL model [105]. The CP restoring

transition temperature for µq = 0 turns out to be 192 MeV. However, the con-

stituent mass remains non zero as the scalar condensate remains non vanishing

due to non zero current quark masses. This high temperature restoration of

CP is expected as the instanton effects responsible for CP violation become

suppressed exponentially at high temperature [6].

Next we consider the effect of nonzero density at T = 0. In Fig.(4.5), we

show the variation of constituent masses of u and s quarks with µq along with
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Figure 4.5: Constituent masses of u and s quarks along with the contributions
from scalar and pseudo scalar channels as functions of quark chemical potential
T = 0 for θ = π/2 (left panel) and θ = π (right panel). The pseudo scalar
contribution for strange quarks is negligible in this range of chemical potential.

the variation of the contributions from scalar and pseudo scalar condensates

at T = 0 for θ = π/2 (left panel) and θ = π (right panel). For θ = π/2, the

critical chemical potential for chiral transition is µc ∼ 375 MeV where the mass

contributions from scalar and pseudo scalar condensate become 24 MeV and

12 MeV respectively from their vacuum values of 266 MeV and 248 MeV. The

total mass for the u and d quarks become 27 MeV from its vacuum value of 364

MeV. On the other hand the contribution of the pseudo scalar condensate to

the strange quark mass is negligible (∼ 12 MeV) compared to the contribution

from the scalar condensate (∼ 548 MeV). Because of flavor mixing, strange

quark mass also falls to 463 MeV at µc = 375 MeV. For θ = π the scalar

condensate almost vanishes but for the non zero current quark masses while

the contributions to the constituent masses of u and d quarks come solely

from the pseudo scalar condensate as shown in the right panel of Fig.[4.5].

However, the strange quark mass gets almost no contribution from the pseudo

scalar channel as CP violation is not expected to happen for strange quark

in the chemical potential range that we are considering. As µq is increased

there is a first order transition at µc ∼ 368 MeV. At µc the pseudo scalar

condensate vanishes and the contribution to quark mass arises solely from the

scalar condensate which is non vanishing because of the nonzero current quark

masses.
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Though the CP restoring transition with µq is first order at T = 0, it

becomes a second order transition at high temperature. This change in nature

of the transition is shown in the left panel of Fig.(4.6) where we have shown the

dynamical mass,Mu
p arising from the pseudo scalar condensate as a function of

µq for different temperatures for θ = π. While at zero temperature, the order

parameter decreases discontinuously, as the temperature increases, it becomes

less sharp and finally results in a second order transition at high temperature.
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Figure 4.6: (Left Panel) Contribution from the pseudo scalar condensates to the
u quark mass as a function of µq for different temperatures for θ = π. (Right
panel) The phase diagram for CP restoring transition in the T − µ plane for
θ = π. The region between the solid line and the dotted line represents the
unstable CP restored phase with Ω higher than the CP violated phase.

In the right panel of Fig.(4.6), we show the phase diagram in the T − µ

plane for the CP restoring transition for θ = π. Since the transition is first

order at T = 0 and second order at µq = 0, there is a tri-critical point for

this transition in this plane. This turns out to be (µc, Tc) = (273,94) MeV.

Including Polyakov loop in the two flavor NJL model, such a tri-critical point

occurs at (209,165) MeV [106]. First order transitions are associated with

existence of metastable states where CP is restored. However the pressure for

these metastable lower than the CP broken phase. In the phase diagram that

we have shown, such metastable states exist in the region between solid line

and the dotted line.
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4.5 Summary

In this chapter, we have studied the effects of CP violation and the interplay

of CP violation and CSB in quark matter at finite temperature and density.

For this, we have adopted 3-flavor NJL model with the KMT determinant in-

teraction term. The effect of CP violation is included through a phase θ in the

KMT term. The thermal ground state is obtained through successive Bogoli-

ubov transformations of the perturbative vacuum |0〉 for including the effects

of both CSB and CP violation. CP violation takes place through the pseudo

scalar channel and the CSB happens through the scalar channel. The scalar

and pseudo scalar mass gap equations are obtained from the minimization

of the thermodynamic potential Ω with respect to the condensate functions.

These gap equations are solved self consistently and Ω is calculated numerically

using the solutions to check the thermodynamic stability.

For θ = 0, we have not observed any CP violation which is perfectly in

accordance with the Vafa-Witten theorem [38]. For θ = π, we have observed

spontaneous CP violation and degenerate vacuum states are formed. This

is exactly what is expected from Dashen phenomenon [41]. This has been

observed in 2-flavor NJL model also [104]. The effective potential is minimum

for θ = 0 and has a cusp at θ = π. The CSB and CP violation behaves in a

somewhat complimentary manner as CSB solely accounts for the constituent

masses for θ = 0 and the chiral symmetry gets almost restored for θ = π. The

constituent mass remains almost the same for different values of θ.

At finite temperature also, CSB and CP violation exhibits the same com-

plimentary behavior. At finite temperature, the CP restoring transition is a

crossover similar to the chiral transition for θ 6= π at zero density. However,

at θ = π, the transition becomes a second order one unlike the case in linear

sigma model where it becomes a first order one for θ = π [102]. The chiral

transition at finite temperature remains a crossover for all values of θ at zero

density.

At finite chemical potential, the CP restoring transition is a first order
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transition for all values of θ at T = 0. However, at high temperature, it

becomes a second order transition. In the range of chemical potential that

we have considered, there is negligible contribution from the pseudo scalar

condensates to the strange quark mass. In this range, the CP violating effects

on the constituent mass of strange quark can be neglected though strange

quark affects the other quarks through the KMT term.

We have also shown the phase diagram for the CP restoring transition in

the T − µ plane. There exist a tri-critical point at (µc, Tc) = (273,94) MeV in

this plane because of the different nature of transition at finite temperature

and finite density. This tri-critical point turns out to be at (209,165) MeV in

2-flavor PNJL model [106]. We have also observed region with the existence of

metastable states in the phase diagram. These metastable states arise when

the transition is a first order one.

This study is important in the context of heavy ion collision experiments

and the compact stars. However, strong magnetic fields are associated with

both cases. So for a more complete study, the effect of magnetic field should

be included which has been done in linear sigma model [102]. In the context of

heavy ion collision experiments, the effect of deconfinement phase transition

should be considered which has been studied in 2-flavor PNJL model [106].



Chapter 5

Summary and outlook

This thesis covers the studies on some aspects of matter under the influence

of extreme conditions such as high temperature, high density as well as strong

magnetic fields. The main motivation of our work was to analyze some phases

that have been conjectured in the QCD phase diagram. Because of the non

perturbative nature of the strong interaction, these phases are usually studied

using either lattice QCD or effective models. However, because of the limita-

tions of lattice QCD in the finite density regime, it can not be employed to

study the finite density phases. In our analysis, we resort to effective models.

Here, we have discussed three different aspects: (i) the transition from BCS

type superconducting state at weak coupling to BEC type spatially localized

bound state for strong coupling for a relativistic fermionic system, (ii) CSB in

presence of magnetic field and (iii) the interplay of CSB and strong CP viola-

tion at finite temperature and density. For studying the BCS-BEC crossover,

we have used a general model with two species of relativistic fermions with

or without a mismatch in their relative population. While analyzing the ef-

fects of magnetic field on CSB, we have used the 3-flavor NJL model with

a KMT determinant interaction term which causes flavor mixing. We have

used the same model also to study the interplay between CSB and strong CP

violation with the effect of CP violation being incorporated through a CP

violating phase in the KMT term. Throughout our analysis, our approach

has been variational. This involves constructing a ground state explicitly in

107
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terms field operators acting on the perturbative vacuum state |0〉 for each case.

The effect of temperature is included through a unitary transformation on the

ground state where the unitary operator encodes the effect of temperature

within the framework of thermo-field dynamics method. The ansatz functions

and the thermal distribution functions are determined from minimization of

the thermodynamic potential. While our methodology is non perturbative, it

is limited by the choice of the ansatz for the ground state.

In chapter-2, we have discussed the BCS-BEC crossover with two species of

relativistic fermions. We considered a relativistic Lagrangian with four fermion

interaction term. We have considered particle-particle and antiparticle-antiparticle

pairing for the ground state.

First, we studied the BCS-BEC transition within the mean field approx-

imation were the condensate field is treated as a classical auxiliary field and

its expectation value is taken to be constant. The thermal ground state is

constructed from the vacuum |0〉 trough a thermal Bogoliubov transforma-

tion. The ansatz functions and the superfluid gap equation are obtained by

minimizing the thermodynamic potential. This gap equation is solved self

consistently to see the transition.

The transition from BCS to BEC phase is observed to be a crossover similar

to the case with cold atoms. It is observed that the antiparticle degrees of

freedom plays a significant role even for kf/m << 1, particularly for large

values of η ≡ 1/kfa. For a mismatch in chemical potentials of the two species,

we have not observed any gapless modes in the BCS regime but in the deep

BEC regime gapless modes with one Fermi surface have been observed. We

have not seen any breached pairing modes with two Fermi surfaces. The phase

structure is qualitatively similar to that obtained in a boson-fermion model

[59].

Then we extended our study to see the crossover beyond the mean field

approximation by treating the condensate field as a dynamical bosonic field in

a model with quartic self interactions of the boson field. The scalar field mass

gap was also calculated self consistently. A decrease in the critical temperature
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in the BEC regime is observed. It is observed that the transition can be a first

order one for larger quartic coupling.

Our study is important in the context of cold dense matter where these

superfluid phases might be realized. The results obtained here is limited by our

choice of ansatz. We have not considered an ansatz with non zero momentum of

the Cooper pair like the FFLO condensate which would give rise to crystalline

superconductivity. Our study can be extended to a more phenomenological

models like the NJL model. Nevertheless, the results we obtained here can

serve as a good reference solution in the appropriate limit with which the

results obtained from a more generalized ansatz for the ground state can be

compared.

In chapter-3, we have analyzed the effects of magnetic field on CSB within

a framework of 3-flavor NJL model. Here, we have included the KMT determi-

nant interaction term which causes flavor mixing. In contrast with our analysis

of BCS-BEC crossover, here we have considered quark-antiquark terms in the

Lagrangian which is relevant for CSB. We have explicitly calculated the Dirac

spinors in presence of magnetic field. The thermal ground state is constructed

in a similar manner to that in the study of BCS-BEC crossover with the differ-

ence being our choice of ansatz which here, accounts for the quark-antiquark

pairing. The ansatz functions and the mass gap equation is obtained from the

minimization of the thermodynamic potential and solved in a self consistent

manner.

We have observed the magnetic catalysis of CSB at finite temperature. At

zero baryon density, the transition from the chiral symmetry broken phase to

the chiral symmetry restored phase with temperature remains a crossover even

for magnetic field as high as eB = 10m2
π. The chiral transition with density

is observed to be a first order transition for the two lightest flavors at T = 0.

The effect of flavor mixing through the KMT term is reflected in the drop

of strange quark mass at the critical chemical potential µc for the first order

transition for the two lightest flavors. µc is seen to decrease with increase in

the strength of magnetic field which has been observed in case of holographic
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QCD also and is termed as inverse magnetic catalysis (IMC) [28]. However,

we observe that the first order transition becomes stronger with increase in

magnetic field leading to a smaller value of the quark mass. This in turn leads

to a larger baryon density as compared to the zero field case at the transition

chemical potential µc. At T = 0, for non zero magnetic field, the quark masses

oscillate rapidly for µ > µc similar to the de Haas van Alphen effect in metals.

When the charge neutrality condition is imposed, the critical chemical po-

tential µc increases slightly as compared to the same when charge neutral-

ity condition is not imposed. At finite temperature, the transition becomes

smoother and the kink structure in the quark masses arising from Landau

quantization disappears. For charge neutral matter, the equation of state be-

comes more steep if the magnetic field is increased. We have also observed

the anisotropy in the hydrodynamic pressure due to significant magnetization

of quark matter in presence of very strong magnetic field. The pressure in

the direction of the magnetic field becomes large as compared to the same

in the transverse direction to the magnetic field. This anisotropy becomes

appreciable at magnetic field strength ∼ 1018 Gauss. This can have possible

ramification in the structural properties of highly magnetized compact stars.

The magnetization also exhibits the de Haas van Alphen oscillation and con-

sequently the pressure in the transverse direction to the magnetic field also

shows oscillation.

We have analyzed CSB in presence of magnetic field both at finite tem-

perature as well as finite densities so that, our results can be of relevance in

the context of both heavy ion collision experiments and compact stars. How-

ever, our analysis is not complete even within the 3-flavor NJL model. We

have considered here quark-antiquark pairing only with zero total momentum.

However, the formation of spatially non homogeneous condensates with non

zero net momentum is also possible [98]. We also have not considered the

interplay of chiral transition and deconfinement transition in presence of mag-

netic field. This can be studied with Polyakov loop extended NJL (PNJL)

model [99]. This is particularly important at finite temperature in the context
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of heavy ion collision experiments. At finite density and low enough tem-

peratures, the diquark condensates in presence of magnetic field can also be

studied [82, 100] apart from the quark-antiquark condensates that have been

investigated in this thesis.

In chapter-4, we have examined the effect of a CP violating θ-term and

the interplay of CSB and CP violation in the context of quark matter at

finite temperature and density. Here also, we have used the 3-flavor NJL

model with the KMT term with the effect of CP violation being simulated

through a phase factor in the KMT term. We constructed the thermal ground

state through a thermal Bogoliubov transformation of the vacuum |0〉. The

ground state incorporates the scalar as well as the CP violating pseudo scalar

condensates. The scalar and pseudo scalar mass gap equation is obtained from

the minimization of the thermodynamic potential.

We have not observed any CP violation for θ = 0 which is consistent with

the Vafa-Witten theorem [38]. Spontaneous CP violation is seen for θ = π in

accordance with the Dashen phenomenon [41]. This is qualitatively opposite

to the CSB which is dominant for θ = 0 and negligible for θ = π. In between,

both CSB and CP violation contribute to the constituent quark mass. With

temperature, the transition from the CP violating phase to the CP restored

phase is a crossover for θ < |π|. However, at θ = π, the transition is a second

order transition unlike the case with linear sigma model, where a first order

transition has been observed [102]. With density, the transition is seen to

be a first order transition at T = 0 and becomes a second order transition

when the temperature is increased. In the range of temperature and chemical

potential that we have considered, the effect of CP violation on the strange

quark is negligible but it does affect the u and d quarks through the KMT term.

We have also shown the phase diagram for θ = π where a tri-critical point,

(µc, Tc) = (273, 94) MeV, exists because of the different nature of transition at

zero density and zero temperature.

Our result is important in the context of the present heavy ion collision

experiments at LHC and RHIC as well as the future planned experiments
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with finite density like FAIR, NICA and BES at RHIC. However, the effect

of confinement which we have not considered here should also be taken into

account and the effect of magnetic field should be studied in order to get a

complete picture.

Thus we have presented here, our analysis of some phases relevant for

the QCD phase structure as a function of temperature, density as well as

strong magnetic fields. While the variational method that we have used and a

simplified ansatz for the ground state within NJL type of models show a rich

phase structure, it also calls for more reliable and systematic non perturbative

techniques to be developed so as to lead us to a more complete understanding

of properties of matter under the influence of extreme conditions.
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