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Abstract

In this thesis we have made a detailed analysis

'”fln the frame-~work of general reiat1v1ty, the trajectories oF

'chargod partlcles in electromagnetlc fleld surrounding a Kezr

biack hole on the equatorlal plane as seen from locally nor-
rotating frames and off the equatorial plane as seen by a
faraaway observer, as well as the dynamics of pressureless

_ thin charged fluid disk and of structured thick disk around

”* NﬂQ"onOact objects We present below a brief summary of the

rasults obtained and the conclusions drawn.

Prasanna and Vishveshwara (1978) studyingythe
trajectories of charged particles on the equatorial plane
of a Kerr black hole in an external electromagnetic field
have found that tﬁe particle gyrates only when it is com-
pletely outside the ergosphere, an effect which they attri-

bute to the role of inertial frame dragging. As it is well

, , anwn this frame dragging arisés mainly because of the

BoyéréLindquist,Coordihates;and'thatlif one goeé over to a
Locally Non-Rotating Frame (LNRF) there is no frame-
dragging. It is essential to see whether 44 a result of
2th¢5 the non-gyration of charged particle also is a Royer-
Lindquist effect which may not exist in LNRF. With this
,,in mind we have considered the orbits of charged particles
for the same set of parameters as in the earlier case but
 as viewed from LNRE, hbmerical integratiOn of the cOrres»

r)rﬁdlng equatlons of motlon clearly show that ‘the partlclc



_ gyrates in all cases irrespective of the fact whether the

"perficle'is completely inside or completely outside or

rmoves in and out of the ergosphere. This analysis exhi-

bits the fact that for a distant stationary observer

u‘Lollow1ng the global time llhe killing vector) a charged

7;cle does not gyrate when it is inside the ergosphure

f‘whcreas in the LNRF the effect of frame dragging has been

 cancelled out completely. (Prasanna and Chakraborty l980),

The orbital dynamics on the equatorial plane
_of'a central gravitating source forms a basis for the study
of thin disks whereas to understand the structure of thick
gisks as’wéll as to understand the nature of accretion

along the field lines, one requires a study of the motion

fgf:thé’particles along the field lines off the equatorial

'”“}bléne. This aspect of the orbital dynamics we have consi-
dered for charged particle motions under the same situations
"f as:in the previous case. For this study we first examined
the structure of electric and magnetic field lines of the
superposed electromagnetic field. The detailed study of
f the particle orbits in such fields show that the particle
bounces between mirror pointé provided its velocity parallel
'ﬁd the field lines is suf ficiently low, otherwise the parti-

cle moves continuously towards the central source in the

_ case of dipole field or escapes to infinity in the case of
uniform field without showing signs of turning back., In

the case of an unifornm field, the bending of field lines




"”Kerr'black holekand the consequent trapping of the

',oartlcles clearly irdicates how general relativity can modify

 £'e,bnenomena 1n certaln 51tuatlon5 (Chakraborty and Prasanna
‘ 19P1)

While considering the dynamics of accretion

“ﬂisks around compact objects we have first developed a fully

'f_tﬂe qqmllbrlum and perturbations for a non-self- grav1tatlno

f'perfect fluid disk with finite charge density and conductl~
vity, under the influence of the gravitational field of the
‘;¢éniralzsqurce, the self-consistent electromagnetic field and

thé‘centrifugal force of the disk. After writing the general

. dyhémical equations in terms of the velocity and field compo-

v hénts‘of a local Lorentz observer, we have studied the stru-

cture and stability for three different cases as mentioned

"ﬁfbelow.
We first copsider the case of a non-conducting,
':préssureless infinitesimally thin charged fluid disk confined
fo,thé equatorial plane of a Schwarzschild black hole, We
determined the matter density when the charge density is
:ébnStant and the disk is rotating with either rigid or
Q»différ@ntial rotation; required to maintain the equilibrium
7f‘ under gfavitational, centrifugal and electromagnetic forces;

~ The matter density is found to become infinity at the point

.erjcentrifugal force becomes équal to thé}graviﬁationélYu

Vﬁgéheral relativistic system of dynamical equatibns governing

T
i

]



k‘Vdisks with either the outer edge lying within the singula-
. pity point or with the inner edge lying beyond the singula-
|  rity pbint, the velocity of disk being necessarily small

in the first case,

To study the stability of such disk under

radial perturbation we use the normal mode analysis. Taking

L

Qi the time depehdence of the perturbed variables as exp(i e t)
kwe establish an eigenvalue equation of a se¢lf-adjoint operc-
tor forg 2. A sufficient cordition for the disk to be
‘unstable will be a particular choice of the parameters such

 that the eigenvalue is zero, calculated by using a trial
fuﬁction for the eigenfunction itself, We have fourd that

 the disks are@ generally stable, The magnetic field acts

°55 3 confining field. We find that depending upon the cen-
trifugal force‘the matter in the pressureless disk adjusts
 itse1f with the help of electric field to such a distribu-
ﬁion that the forces balance each other completely and
allow the magnetic field to keep the fluid in stable confi-
guration under radial perturbations. It is in fact import-
ant to notice that we have several examples of disks which
have inrer edge well within 6m (m = MGVCZ) limit and are

"fwstable (Prasanna and Chakraborty, 1981).

Next, we have studied the case of a neutral

"‘fO rce—To ; oVOldS veh ,,.S,,i.ng.ug__a_:-p_p_@_j:mthsw.\,\]@m‘ha\/, e conpsdidered oo



fmuiation? ’Snch disks need not be’thin and so the stru-

in thc meridional plane is important. For specific

we detecrmine the steady'state velo-

c1ty and prbesure dlstrlbutlon for F1U1ds obeylng adiabatic

. ,"ff-i,"'”]az"eitio’h of state,

We consider the stability of such fluid disk

i»symm etric perturbations., It is possible to con-

r

‘equation for the square of the frequency (gr‘z}

n@%&ﬁﬁe\ex1uswmﬂutrlc oscillations whlch is symmetric in
iridl'and true Lagrangian displacements which in turn impii:o:c
18k, ariational principle. We then evaluatecr;szy‘choésirg
trial functions which have adjustable parameters, for the :
'  frue Lagrargian displacements and extremizerﬁ“z by adjust-
 'ihg these parameters, Equating this 6”2 to zero we calcu-
  :1até'a éritical value of adiabatic index t; for neutral
'k’MOdcﬁ, In all cases that we have considered, critical Y
/s buCn found to be less than 4/3 indicating stable con-
kgﬁrations, We also find that an ordinary perfect fluid
(with ¥ = 5/3) ‘disk rotating around central gravitating

tablc under radial pulsations with frequency

(Chakraborty and Prasanna II, 1981).

Finally we have considered the case of a
‘,nCUL al fluid disk with pressure in Schwarzschild geometry.

Il@ velocity and pressure distributions have been calculatud




”fdisk\with\conStant density. Considering the fact

he pressure should be positive within the disk we

;éVeﬁipuhd that the inner edoe of the disk cannot lie

’ ”Within 4dm and further if the inner edge lies between 4m
éﬁd 6m then the outer edge must lie beyond 2a/(a-4) where

ykia  is the radius of inner edge in the units of m. There
k’igkno restriction on outer edge if the inner edge is at &m
 or beyond. The stability of such disks are then studied
fk\lP the same manner as in the corresponding Newtonian case

tér} are found to be generally stable ( f;<: 4/3). We also

find thac a pressureless disk collapsing to® =71 /2 plane
is stable only when its inner edge is beyond 6m (a well

known result for single particle orbits) with local fre-

quency \},ﬂﬂ_(?L__ .hqj (Chakraborty and Prasanna III,

1881),



CHAPTER T

INTRODUCT ION

One of the most importaht toﬁics of discuss-
Ayﬂéiéhé in theoretical astrophysics today deals with the under.

anding of high energv cosmic sources like quasars, X-ray

ﬂi?éiéhd\the like. 'Thgpgh no definite conclusions exist
0 £hé nature of eneérgy release and transport, it is more
or iéss agreed upon that the main mechanisms have to do with
 “;7 sna procesSés in the vicinity of the compact objects
“ (Mestel 1371, Basko and Sunyaev 1976). Bearing this in ﬁind
many authors have considered ¢ 1fterent aspects of plasma
;;p ~ocesses in astrophysical SltUﬁblOna 9p901f1ca11y th ‘form:m
. tion of accretion disks rotating around the campact objects
L

! the resultant lum1n031ty and the spectrum but have mosgl)

aCt‘“’ObJeCt invelved in certaln models are black holes it is
:necersdry to consider the mechanisms and proceésses in a nore
   f1at'baCkground. More recently attempts have beeh made to
 ¥5tU dy the plasma processes nn curved background In a
k”» qeheral treatment of a plasma in nonafelativistic bhysicé
  §§€ uses normally a kinetic approach or a fluid approach

depending upon the scale lengths and densities involved.

ks

hmwuve either of these two approaches is required only

hen.the collective effects of plasma are important. On the
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In this chapter we present

'"rstanding of the situation.

1i3tofical Fackground of the studies on particle dynamics

s on disk dynamics alongwith the motivations for

tudies.

. PARTICLE DYNAMICS

To solve the problem of particle trajectories
_ in an electromagnetic field in general relativistic formula-
~x’tion; one should solve the Elnste1n~Maxwell equations alonom

~ with the covariant WMaxwell's equations to obtain the metric

f  potentials §c4 and the electromagnetic field components Fé[

nally one should solve the covariant Lorentz equation to

.ei fhé beité.‘ Tﬁe only known class of soiutions of Einstein

:judQWCll;s equationsrwhich are of astrophysical interest, are
‘fhe ones from the Kerr~Néwnan‘fanily which represent the geoQ

:*jmetry outside a black hole of mass M, charge Q, and éngular

“  momentQm a. The sclution reduces to that of Kerr for Q = Ci

*  uG1csnurmIer trom for a = O and Schwarzschild for Q =

'1 3 = 0. Carter (1973) was the first to obtain the complete

_ set of first integrals of motion of charged particles in

_ Kerr nNewman geometry while Ruffini et al (13%73) have worked

wus the dynamics of charged particles in Kerr-Newman and

~ Heissner-Nordstrom geometries,



T

A more realistic situation will be the case of

ompact objects without any net charge, with the electro-

 fgslﬁerihg the situations where electromagnetic field erergy

"Viié ﬁéfy small compared to the rest mass energy of the comp:

abject, several authors have obtained the solutions for a

tionary axi-symmetric electromagnetic field around a
jarzschild black hole (Ginzburg and Ozernoi 1965,
”;?etterson 1574, Bicak and Dvorak 1077) and around a Kerr

’,blaCk hole (Chitre and Vishveshwara 1875, Petterson 1975,

‘  5Kinq et al 1875). Charged particle dynamics in such electro-

k'fmagnetic field has been extensively studied by Prasanna and
Varma (1377) for a Schwarzschild black hole and by Prasanna
 and Vishveshwara (1978) for a Kerr black hole. A lucid

sunmary of the charged particle dynamics may be found in the

,ﬁicle of Prasanna (1380). Some of the plots of the orhits,

g

as obtained by these authors are presented in figures (1l-1)
Two general conclusions can be drawn from these
‘orbit‘plots; (i) that bound stable orbits for charged parti-
cles in electromagnetic field exist even very close to the
evént horizon, and (ii) that the particles execute Larmor
"gyrations except when they are inside the ergosphere. Both

thése conclusions have far reaching significance. In case

\Qf'the disk structures, the inner edge of the disk had

7lfﬁééhé£ib field being produced by the external currents. Cor-



4
,alWays been conventionally taken to be the last stable, cix.

(eg. 6m for the case of Schwarzschild geometrr,

1, cz, M being the mass of the black hole) which may not
, 5éktruekin the presence of charges ard the electromagnetic
'fiéld. On the other hand the absence of gyration when the

particle goes inside the ergosphere may have its signature

\efgosphere is, in fact, the reflection of the effect bf
dfagging of inertial frames by the rotating star. If the
perticle has to gyrate, then during every Larmor circle the
angular velocity of the particle will be prograde for one
half and retrograde for the other half with respect to the
argular velocity of the star. It is well known in the KErr
geemetry that the ergosurface is the static limit surface,
on and beyond which (i.e. towards the event horizon) no
retrograde motion, is possible. Thus the particle can

gyrate only outside the ergosurface.
\ J

As it is well known that the frame-dragging
arises mainly because of the use of Boyer-Lindquist coordi-
nate system used to describe Kerr-geometry and if one gocs
over to a locally non-rotating frame, this effect would not
arise, it is worthwhile Lo examine the orbits as viewed by

locally non-rotating observers. - Further, as we could infer

oﬁ the radiation pattern. The absence of gyration within the

Q



Lhe possible inner edge of the disk from the studies
pé;ticle motion confined to the equatorial plane, it might

Jossible to infer about the possibilities of having thick

disks from the studies of trapped orbkits in the meridional

rticle dynamics in electromagnetic field on Kerr geometry.

abter5’2 and 3 contain the basic mathematical formulations,
:pﬁé*méfhodology and the results of the studies of the charged
/zpafticles'orbits in an electromagnetic field on Kerr gedmetry
as viewed by locally non-rotating observers for the motion
l?":'c‘::o'nf:'med to equatorial plane and the motion of charged

 particles off the equatorial plane.

2. DISK DYNAMICS

It is well known that in the case of accretion
‘of matter onto compact objects the accretion isrrédial or
spherically symmetric if either the compact object is at
rest with respect to interstellar gas or the incoming matter
does not possess angular momentum, Studies regarding such
spherically symmetric accretion were made by Bondi (l952)?
Shvartsman (1871) Shapiro (1973), Cox and Snith (1976),
Thorne and Flamming (1980). Det ailed aCCOQnts of accretion

when the compact object is stationary or when it is moving

olare. Accordingly we consider both thesé studies of charged



fcghdfin the articles of zeldovich and Novikov (1971), .-
,;ﬁtyikov and Thorne (1973), and Lightman, Shapiro and H%es

. (1378).

On the other hand the general picture of the

accretion is quite different when (i) a compact object is

in orbit about a normal star forming a close binary or

. (ii) a supermassive black hole resides at the centre of a

galaxy. In such cases accretion rate is mugh higher.

For typicaily observed binary systems that emit X-rays
(¢.g. Cyg %1 and Cen %-3) the ohservations and models
suggest that the normal star is dumping gas onto its compa-

. oL - 3 .
nion at a rate of ~ 10 2 M@/yr which is much higher compared
15

T

O

the typical accretion rate (~, 10 MO/yr) in the case

ty

of an isolated black hole. The second point of difference

is that the accreting gas has sufficient angular momentum

(specific angular momentum L %> 4 mc) so that instead of
falling radially onto the compact object, it forms a rota-

ting disk around it.

Viscosity plays an important role in such
accretion disks. It removes angular momentum causing the

gas of the disk to spiral gradually onto the compact

upefgﬁhically*with """"" respect—to-the-interstellar gas,-may be



:Object and also it heats the gas caus1ng 1t to radiate.

'Th@ existence of an “CCrOthﬂ disk in determination of “‘the
  em1Lted radiation is crucial for accretion onto black holes,

H  s1nce there exists no hard surface to decelerate the matun
',rlal and guarantee high efficiency of radiation as in the

~ case of neutron stars.

. Ihin Disk Models

Models for the disk type accretion around
neutron stars and black holes when they form a binary with
a normal star as their companion was first considered by
Pringle and Rees (1872) and Shakura and Sunyaev (1973).
This model and its subsequent modifications by Novikov and
Thorre (1973) is termed as standard o ~model (Eardley
and Lightman 1975). The main problems investigated by
these authors are the luminosity and the spectrum of the

radiation which are found to depend mainly on the accretion

rate,

Earlier Salpeter (1964), Zeldovich (1964),
Novikov and Zeldovich (1966) and Shklovsky (1867) had
suggested that accretion onto black holes and neutron

stars may produce a significant amount of electromagnetic



~m

¢frad1at10n while it was demonstrated by Cameron and Mock

 ;@1067) that there is a p0551b111ty of producing a 51zeab7b

"flUx,of X-rays even when the central object is as noncompact

' afstarvas a white dwarf. The essential role of the angular

_momentum of the gas in binary accretion was first emphasized

dvfby‘Prendergast and Burbkidge (1368),

The earlier works on accretion disk were based
on Newtonian theory of gravitation. However, the correctiors
due to general relativistic effects are significant specialliy
when the compact object is a black hole and the inner edge
of the disk 1s very near to the event horizon. Thorne (l??%}
and Novikov and Thorne (1973) have calculated the effects

of general relativity on the imner regions of the accretion

disks.,

While all the above imnvestigations were made
on binary accretion, Lyrden~Bell (1969) and Lyndel Bell
and Rees (1971) have argued that the galaxies might have
supeérmassive black holes (~Lll08 MO) at their centres, as
many of the observed forms of activities in galactic nuclei
can be interpreted as the effects of accretion of inter-

stellar matter onto a central black hole.



Below, we describe the salient features of

‘¢(ignwdel of the accretion disk, based primarily on the
f  2arﬁicles of Shakura and Sunyaev (1376), Lightman, Shapiro
':aﬁd Rees (1978) and Novikov and Thorne (1973). These authcrs
 have considered the features like the modes of mass transfer
into and out of the disk, the structure of the disk in
steady state and the resultant luminosity and the spectrum
of +the radiation emitted. The gravitational field has beén
considercd to be Newtonian and subsequently geéneral relati-
vistic corrections have been introduced. Mass of the disk is
corsidered to be very small compared to the mass of the
central star and therefore the gravitational field produced
by the disk is neglected. The gas pressure is considered to
be Vefy low as the material forming the disk has sufficient
time for cooling during its transfer onto the disk and as

such the disk is thin.

Modes of mass_transfer, accretion rate

Tt is conventional to distinguish two modes of
mass transfer in case of binary accretion - Roche~lobe over-
flow and accretion from stellar wind. In a compact star -
normal star binary if the surface of the normal star fills
the Roche-~lobe, it can dump gas onto the compact star con-
tinuous ly through the Lagrangian point L; (Figure 1.7).

This is likely to be occurring in the H-Z Her-Her X-1
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“sysﬁén althouch perhaps not in other well known X-ray bina-

ver, when the surface of the normal star is inside the

Roche-1lobe, gas can flow onto the compact object by means of
1lar wind only, which blows gas off the star supersoni-

cally in all the directions with only that gas blown towards

‘the companion being captured.

At some outer radius T, the incoming gas goes
into roughly circular orbit. Freshly arriving gas interacts
viscously with the gas already in the orbit. Some of the gas
cets deposited onto the disk. Other incoming gas is fed
angular momentun from the disk by means of viscous stress and
thereby gets ejected out of the disk region and back onto the
normal star or through the Lagrangian point L2 into the inter-

stellar space,

The inner edge of the disk o] is placed very near
to the star's surface in case of a white dwarf or a neutron
star and consequently the tolal energy radiated pergﬁﬁit Mmass
of the gas during its passage through the disk is éqﬁated to
the gravitational hinding 2nergy of unit massywﬁen it reaches
the inner edge. For a black heole the inner édge is'placed at
the last stable circular orbit. Thus for a‘(nonmrotating)

Schwarzschild black hole r, = 6m. If Md is the accretion rate

the total luminosity L of the disk must be



[

Zﬁfia‘g‘*&vas.{s&c i My ) ! for white dwarf

. “"’Mu!g*’

LﬁJ[{L efaé/Qg()(-_,ﬁwwwuam ‘)‘ ggrhgi:tron star  (1.2.1)
\ 27 4

In order to match the observed luminosity of ~ 10° érgs/sec
r the case of Cyg %1 a rate of 1077 MO/yr of accretion is
jnéeded. This rate is much smaller than the rate («;lCVS Mm/yr)

at Wthh variable stars of the type g -Lyrae are ejecting

_nass uonulnuously fron their atmospheres.

Considering galactic nucleil or quasars as the
_accreéting supermassive holes we need a much higher accretion
rate to account for the observed luminosity. For most violent
quasars L*VLO47 ergs/sec and so Mdn«lo Mo/yr. For our own
galaxy L~ 10%2 ergs/sec and therefore Md»xlCr4 Mo/yr which

is much smaller than the rate at which all the stars in the

galaxy eject mass into the interstellar medium (ﬁ/lMO/yr)

Stationary State

The dynamics of the disk is governed by the laws
of conservaticns of mass, angular momentum, erergy and vertic
momentum, by the nature of viscosity and by the law of radia-
tive transfer from inside of the disk to its lower and upper
faces., The gas is assumed to be supported against the graVia 
tational pull of the central compact object mainly by rotation
and consequently its velocity in the azimuchal direction is
Keplerian. Due to viscous forces. the gas loses its angular
momentum and acquires velocity in the radial direction, while

in the vertical direction its velocity is assumed to be subscnic



<0 that the vertical structure is governéd'by the law of hydro-

éﬁic balance. Turbulence and small scale magnetic field

'é5b+ributeq to the viscosity and one writes for the cas¢ of
‘"[ksplerian rotation, the integrated viscous-stress as tﬁz¢ =
?‘fzzx,ph’ where p is the pressure, h is the vertical height and
"'éa is a constant (and that is why the name & —model). The
‘ ,énergy produced’due to the friction is transferred to the disk
yéﬁrfaces. The medium is considered as optically thick with
 the opacity due to Thomson scattering k® and that due to
fres-free absorption lc¥¢ . To discuss the stationary state
oﬁ? also needs an equation of state where one assumes the
pressure to be the sum of the gas pressure pg and the radia-
tion pressure Pp and an equation comnecting the radiation
density to the thermodynamical properties of the gas. One
can then combine all these equations namely (i) Keplers law,
(ii) continuity equation, (iii) momentum equation, (iv) vertical
mome ntum balance, (v) viscosity law, (vi) encrgy production by
friction, (vii) removal of erergy by radiation, (viii) equation
of state and (ix) equation comnecting the radiation density
with thermodynamical properties of the gas, to describe density,
velocity, température and the height as the functions of the

radial coordinate r and the parameters Mﬂ, M and < .
(=

The entire disk can be divided into three regions

(a) inner region where [ >% h% and kB s KIF
! 3 )
Ko sy wH

(b) middle region where h{<<§% and
: é
(¢) outer region where bh<‘:‘“ and |k ®fe< k4

"3



Inner region is the hottest region and most of

the radiation is expected to come from this region. ” The

o : + . .
nergy-production.rate Q-.-is-—zero at By reaches-—maximum. at
r = 49/36 r; and decreases as ™3 for large values of ©. The

;tOtol lun1n051ty
Lﬂ%'thh m MG,
o+ (1.2.2)
LL

: L
's independent of the nature of the dissipative forces and

depends cnly on the accretion rate Md and the inner radius T
In the inner region, radiation pressure dominates‘over‘gas
pressure and the opacity comes mainly from the Thonson scattoer-
ing.

Just the opposite happens in the cool outer
reglion: gas pressure dominates_over radiation pressure while
free~free transition is the main source of opacity. In addi-
tion to these, there is an intermediate region also, where
scattering is the prime source of opacity, just like the
inner region, and gas pressure is much higher than radiation
pressure as in the outer region. The boundaries between
various regions are determined by e¢quating the quantities

which change the sign of inequality during the transition

from one region to other,

Instakbilities in _accretion disk

The original o —-model of Novikov and Thorne
(1873) was stationary or time-independent model., Lightman I,
(1974) on the other hand considered a time dependent model

wherein the underlying physics is essentially the same as in



stationary model but a
evbive'in time. The princ

ation® fOr the surface

structure variables in terms of the surface density. Besides

studying the variability o
973, McCray 1573), such t
ler instability, resulting

~ rings whenever e/ DE

*“c inner portion of the d

explanation for the observe

Lightman and Eardley 1874).

11 the variables are allowed to

ipel result is & nonlinear "evoluti

density € of the disk alongwith a

f mass deposition rate as a possible

ime dependent model was uséd to

irmvestigate the stability cf the disk (Lightman II, 1374,

Their analysis indicates a secu-
in a clumping of the disk into
£ O a condition which occurs in

isks with the « -~parameter visco-

sity law, where radiative pressure exceeds thermal gas

pressure,

Lightman I, II (1374) used the condition Q+ = Q

where Q is the rate of removal of energy by radiation, to

discuss the stability. It

(1976) that the relation Q' =

was shown by Shakura and Sunyaev

dynamical viscosity for the inner region of the disk which is

“mucn higher than the maximum possible viscosity for a fully

ionised gas and radiation.
realistic one which takes

encrgy as a result of work

They replaced this law by a more
account of the change of internal

done by pressure forces. They

found that disks are unstable when &.= P /(pﬁ' ),,5p

for perturhations of wavel

vertical height.

engths greater than tw1ce the

d 35-day cycle of Her X-1 (Pringle

i

¥

"1

Q" leads to a fixed value of the
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The instabilities discussed above depends on the

hgh between Q+ and Q Q+ depends on the viscosity law

ile Q is determined by the cooling mechanism, It is thera-

¢ worthwhile to examine various cooling meéchanisms ard
Viécosity laws which may eventually lead to stable disk con-
ifigufations. Several attempts were made in these direction5, 
t iiang (1977), Liang and Price (1977) and Shakura, Sunyaev and
'?Zilitnkevich (1977) have suggested corwvection as a source of
 cooling and Piran (1377) had postulated secondary wind as the
étabilizing agency. However, these effects are not sufficient
'fbtédéure stability (Piran 1978), It was shown by Piran {L278)

 that stability of the disk depends more sensitively on the

viscosity law and relatively a small variation in viscosity law
stabilizes the disk. The trouble is that one dozs not know as

to how to evaluate a modified turbulent or magnetic viscosity.

Discussions of instabilities on gas pressure
dominated region, restricting to "pressure equilibrated per-
turbations”'(g.p = 0) was made by Livio and Shaviv (1977).
They vse Navier-Stokes equations for the motion of the fluid

and do not integrate the equations along the vertical dire-

ctions z. Conseqguently they allow dynamical variables to
depend on z in addition to radial distance r and time t. (In
the original « -model, one integrates out the Z-dependence
of the variables). The necessary condition for stability
sgainst convection is then found to depend on temperature

gradient along z and r directions, on entropy as a function



of r and on the dependence of viscous stress on thermodynami-

cal variables,

It may be argued that the instability which

féﬁéuré’in the radiation pressure dominated innér region, may
2?ﬁ§t exist in disks around neutron stars because such innér
‘ régiow nay not exist at all in this ‘case. (Lightman 1974 I,1IT).
However, as was shown by Hoshi (1977), Hoshi and Shibazaki
;(l977) and Shibazaki (1678), the stationary disk around black
- hole would bhe very much different from the standard € -modcl
when the effect of pressure gradient force in the equations of
meotion is taken into account and the formula derived by
Ichimaru (1377) for viscous stress is used. Following this
Okuda (1880) has discussed the problem of stability of accre-
tion disk around neutron stars by taking into account of the
pressure gradient forces in the momentum and energy conser-
vation equations, while keeping the same viscosity law as in
the stand&mi<x,~model. The principle result of this analysis
shows that the inner region of the disk is thermally unstai:le

unless the accretion rate is very low,

Thick disks

It was pointed out that the thin disks as des.
cribed by « -model are not stable in their imnmer regions and
also the various modifications suggested to stabilize the
disk are not very saticfactory. Besides, it was realized
long bhack that, in case the accretion rate exceeds the criti-

cal value (Supercritical accretion), the inner edge of the



dnsk will render a thick structure (Shakura and Sunyaev 1973),

It now seems that the thin di sks (< ~model) are inconsistent

(Wiita et al 1980) and one should consider thick disks as

éip;é models of the high energy sources.

Investigations on thick fluid disks were started
 Ey"Fishbone and Moncrietf (1876), Abramowicz et al (1978) and
;;RbZlele et al (1978). Unlike the o -model, the disk consi-
  ? ed by these authors has thickness comparable with its
fadial dimension which reflects the importance of pressurc
’gradient force. The velocity of rotation is then different
’from being Keplerian. Besides the fluid of the disk is.
regarded as a perfect fluid (without viscosity), as a result
of vhich one cannot consider the processes of dissipation of
'ehergy and the resultant radiation. The main emphasis is on
the structure of such disks., In case the heat generation
rate is small one can treat the effect of viscosity on the

structure and on the heat generation as a perturbation

(Koslowski et al 1978).

Fishbone and Moncrief have (1276) considered

stationary and pure azimuthal flow of perfect fluid disk

~around a Kerr black hole, restricting the discussion to
isentropic flow. They have solved the reletivistic Euler's
equation as derived froa the cons ation of energy-momentum

tensor of perfect fluid and written in the Hamilton-Jacobil
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éﬁfic\tehsor are obtained by requiring that either LL¢ Q
) ' . . i

b b

WHﬂgUlar“momenhmmmwvafﬁémiﬁeﬁ%i@iwmage—@rwtluu.|(iq”
’fhe angular momentum per barYon be constant throughout the
' ijid. Here u~:.(1x*’L{1,u§{LL@) is the four-velocity, h
7ﬁis~the enthalpy per baryon. To obtain these solutions the
 hetric is left arbitrary except for the stationary and axi-
  symmetry requirements. It is then possible to impose
7  Einstein*s equations upon the metric and thus take the

effects cof the self-gravitation of the disk into account.

In case of backgrourd gravitational field.
the metric components are specified and therefore 1ln(h)
can bhe computed as functions of coordinates. At the boun-
dary of such a disk, pressure is zero and enthalpy is just
the rest mass energy per baryon, mc2. Thus ln(h/ch) =0

gives the bourdary of such a disk,

Following the earlier works of Fishbone and
Moncrief (l§76) and Abromowicz et al (1978), Paczynski and

Wiita (1980), Paczynski (1980) and Wiita et al (1980)

have considered thick disks with accretion and have obtained
shapes of the disk in stationary state. However, they use a
pseéudo-Mewtonian potential to describe the gravitational

field., A fully relativistic treatment has been considered

by Jaroszynski et al (1380) while a more gencral formalism
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i
with wider class of angular momeéntum distributions in Newto-

n framework has_been considered by Abramowicz et al

(1280)., The offect of magnetic field has been recently
/ = 7

éttempted by Dadhich and Wiita (lg8l).

Need for a rigorous.study of accretion

The original < -model and its subsequent
modificatiors, apart from being unstable, assumes pressure
gradient force to be small and as a conseéquence it is thin
and the velocity is Keplerian. If the forces other than
Egravitational and centrifugal forces are not assumed to be
éﬁall then they will significantly alter the motion from
‘being geodesic and as such the assumption that the 1nner

edac cannot be closer to the event horizon than the last

/)

:le circular orbit may not necessarily remain true. Tne

|
)

fact that in the presence of magnetic field we do have
hourd single particle orbits even.very close to the cevent
horizon strengthens our view. The general relativistic

corrections are then of more importance.

The thick disk models do consider the pre-

ssure gradient feorce playing significant rolé. However,

he studies made so far, do not describe the behaviour

of all the dynamical variables as functions of the coordi-

nates. This, in addition to giving a more complete picturc
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£ such disks can also prove to be useful in discussing the

v of such: disks.

A1l the stability analysis done so far are
-gtfiétéd to local analysis only and have used Newtonian
vitational ficld (Although recently Keto and Fukue 1980

‘e discussed radial oscillations of thin gaseous disk

farbund Schwarz5child hlack hole). In a local analysis the

javelength of the perturbation is assumed to be shorter
than the characteristic scale length over which the unper-

* fufbed dynamical variables change appreciably. The analysis

5iSjtherefore valid for short wavelengths only. On the cther

. hand in global analysis one constructs an eigenvalue equa=

tion and forms a variational principle to determine the

'growth\rate and then solves it using appropriate boundary
conditions. No restrictions on wavelengths is assumed and
_therefore the conclusion remains valid for all wavelengths

of the perturbation.

A rigourous analysis of the structure of the
disk by sclving equations of motion and then making a
alobal analysis of its stability, in general relativistic
frame work is werth attempting. Accordingly we present
in Chapter 2 the methodology used to study the stability

alongwith the general set of equations governing the motion

and linear perturbations of a non-self-gravitating, perfect

PR
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lf, 1nclud1ng pressure p, charge density &  and
— "”"“a"‘d" rotating_around a Schwarzschild black
We assUme an adiabatic flow. These equations are of
gemrai naturc. Specialised cases of the gereral

tua’tlon as described by these equations, are then consi-

uke,redy‘in Chapters 4, 5 and 6 for & =0, p = O but ¢ #

fan"d:}f'or ¢ =0, a =0but p # 0.




Cantions for fiqures..

orbits of the particles on” e-uatorial plane

of a Kerr black hole in a dipole field

(Prasanna and Vishveshwara (1978),
Same as in Sigures (1,1)- (1,3) for uniform

field.

}+ The equipotentials for the Newtonian - plus-

centrifugal ootential in the orbital plane
of a binary system with mass ratio'lO:l.
The values of the potential measured in the
units of (total mass of the binary/distance
between their centre of masses) are shown

in the figure (Novikov and Thorne,l973).
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CHAPTER 113

[ASURFIPE M NS

BASIC MATHEMATICAL FORMULATIONS

Tr this Chapter we presont the methodology and

basic mathematical equations needed for

o

the complete set of
the study of particle as well as disk dynamics.

1, PARTICLE DYNAMICS,

Tt is well known that the best way to understand
the structure of any field is to study the dynamics df test
particles in that field, In goneral relativity, wherein the
gravitation is represented by the space- time curvature of
the undor~lying manifold, the structure of the manifold can
be completely studied through the geodesics of the manifaold
which represent the trajectories of test pal rticles in the
absence of any other external ficld (Hewking and Ellis
1972) . Alongwith the gra avitational ficld, if there is another
field present like an electromagnetic field,then it modifies
the gravitational Tield and therafore the geometry of the
space~time, which in turn influerces the electromagnetic
field and modifies it, Trajectories of a neutral particle
are then the geodesics of the modified space~-time and
thus Teveal informations about the interaction of clectré-
magnetic field on the geome try while the orbits of a charged
particle deviate from geodesic motion and provide informa-
tions aboub the interaction of the geometry on the electro-

magnetic field and the vice-versa.
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For writting down the equations we shall be using

cgs gaussian system of units unless othorwise mentiosned, Further

we shall adopt the convention that latin indices Tun from o

to 3 and greek indices Tun from 1 to 3, the zeroth component
being the time component, Also indices in brackets shall
denote the comoonents in the local inertial frame; |

The trajectories of a charged particle of charge

o

e and mass Mg (the word fmass © will always mean the rost mass),

in combined elcctromagnetic and gravitational field are given
by the covarient Lorentz equaticns

Ly e o .
L 0 U = ?ﬁm:i ~ J ij (2.1.1)

o

i

b

where u® = djﬂ/&ﬂs is the four velocity of the particle and

£ ' is the clectromagnutic field tensor with componants

S .
£ 2
EL -‘83 o B‘
ol ” 2
B3 3, _»B) o (2.1.2)

" o SN -~ - - p - -

where (E , Ey, Ey ) énd (B,, By, B, ) arc the components of
clectric and magnetic ficlds, ¢ 1s the velocity of light,
The somow-colon denotes the covariant derivative taken with

r.sncct to the space-time metric associated with the guometry

of tho swace-time as given by

. Lo
s = G At clwd (2.1.3)
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- Here gi{} are the metric !;)Dteﬂt’j_als which should e obtainef

45 solutions of the combined set—of-Einstein - Maxwell

equations containing Fié in its source term, F, . also

catisfics the covariant Maxwell equations
Fro ‘ifi- Tt (2.1.4)

= LJA R+ Mk L'fIQ o, (2.1.5)

"“"‘ 1(}', -
J" being the current density vector.

‘A self consistent solution of (2,l.4)’(2.l.5)

and the Einstein Maxwell equation for a given J L and

the electro-

matter distribution gives us the metric i and

magnetic field F{; . From gy, We can construct connectlion

Y4
coefficients [F and finallv we can solve (2.1.1)

SR
to get the orbits,

In a realpstic astrophysical situation involving

a noutron star, the electromagnetic field is generated by

the curcents on 1ts surface while for a black hole it may

due te the current rings in plasma disks surrounding

be
it. Ty addition to above the intersteller magnetic field

may also be present.

with the current and the matter distributions

appropnriate to the above mentioned situations, we should

look for the solutLons of Elnstoln “Maxwell equations which

are asymptotically flat and have non-zoero dipole moment

oven in the absence of rotation of the central compact
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ﬁoﬁjegt, A chargeu star-produccs—an—induced magnetic—dipole
 ﬁ§ment if it is rotating ), Th@se systom of enuations arc
 formidable to solve in general. However, there are some
 sQlUtioHs obtained by perturbation technique under the assu-
iﬁptidn that the electromagnetic field €nergy is small compared
{tc the masswenergy of the gravitating source, As o  rosult
the electrgmagnatic field doas not affect the back-ground
geometry (test ficld) - the later being solely determined by

the central compact cbject but the background geometry
i p J g J

~

modifies the electromagnetic field (equation 2.1.4
For the back ground geometry we Consider Kerr

solution which represents the external field of a rotating

black hole of mass M and angular velocity a ( in units of c)

with metric given by (Misner, Thorne and wheeler 1973) -

QL&B‘L - (l ).\’\’“1“‘2,)61_ d,,tlé Zfﬂ?:@. e e)(,dlid(f‘
s [__‘
> 5
+5-dntrzde e danrede2 (2.1.6)

in Boyer Lindquist coordinates (t, r, O , P Y. In above

equaticn

L. I3 PR SENPND 3
S oz (e Qj cos”a )‘y} A= (‘n’) + & —Lmm) } m o= /\’)(31_/(_:1..
i
) 2’" . N .
pod (7’13’4« C),:z') VA (]_Z' gﬂ,thﬁ
(2.1.7)

signature of the matric is +2.
Using the assumotion that tho electromagnatic

fiold is a test field as mentioned above, several authores




26

. obtained the solutions for a stationary axisymmctric

QL

1ecﬁrgmagne$icm£ieidwﬂrnund a Kerr black hole (Chitre and
{shveshwara, 1975, Petterson 1975, King et al 1975), We
dbt pettersonts salution for the casc of dipole magnetic

,eld with zero electrgst-tic charge,given by
‘:‘:-i;/*\‘t'O}O,AQ)ﬁj (2._]..8)

2 QLM
Lers é

n(i m;+@1 mn )L qh@}

Mt { e ) = (1 - mml@)‘z

?L"?’Y(ﬂ()) (2‘]_'9>

?/DLSLH © ‘
3 (n-w)arcoste ¢t mns2G0)

be*s

H

2,
“éﬁin’ ma—+a%JhA&Uﬁf¥ uJ%ka
i C2p TR S e lo)

where A is the four pbtential, B= (YY\L—41l)V2-, and A is
the dipole moment which 1s parallel or antiparallel to the
‘veratlon axis., The sign of AL has tobe taken positive when
ltfis\parallel to the rotation axis,

For considering the case of uniform magnetic

field we use wWaldts (1974) solution for the electromagnatic
‘ fieldHobtained by placing a Kerr black hole in an original

uniform magnetic field of strength B, aligned along the

symmetry axis of the black hole. This would give the four
potential tobe

1 ,ij :;ﬂ-Q,Bo[} ‘hm%_(2x~aLn @)‘
. | (2.1,11)
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Ay s Berntel L s T
L E (Nl ) - pgsine ~Lmal n

@

As we arc interssted in a situation in which both
_the gravitational and the eclactromagnetic field are stationary
apd sxiesymmetric, angular momentum 1 and energy E ara the

_constants of motion , given by

M, Pdoc )
R {
: " £ :
: C —_—
u<t'* bcl/\t et (2.1.14)

o

use ’thC‘SQ to V\U:ite CP = a'ﬂd t\- Cg'ﬂl’)ot"]en’t‘s Of th\_} equa"‘io

' motion., To calculate = and @ . components nf the equation

motion, we use (2.1,1), revritten as

Lo .
d KT L dxd P | )
o g* ) R —— —/ = & F*—.(LJ
LS 4% 4 o M, | C(2.1.15)
where

£ 0 - . . -
i LJ’—/A\J)L"‘[‘\L,(’. (2,_1.‘16\/

The equations of motion appropriate to Kerr
back ground geometry can Dbe derived from (2.1.13) to (2.1.15)

and are as follows (Prasanﬂa and Vishweshwara 1973‘)

S i
E(:_E\‘ B szl; G(LCOSLBMR“L.%“'LQJ f(,LR“‘ PA i ds A
et S ()~ 5

P

_zdlqneto5e dR yrde N T T dt
2ot (4R](32) £, 5 < rer(ED




: . 1 —_— |
+R,o<L*CQSL {/d’@ j o a _{_E)/.\(P d @ W AT d_}‘_%

@ : SR o
Hae T Aop do 3R 4o b,
(2.1.17)
de «snocss (dR )'}‘ 4 ZR/AR) ( de
- 5 (g==) 7% (=il
»“}w /49 )} LA sinacoss [ \?
> ko{T > 3 \Qu /
LR (R o , \ 3
+ w*-(jw—*-*)&un @Losc(i@ \(dt) Ay OCOS@{(K et
21 o s C-Qq— Zz L..

(R 3 de e[ 4 fi = -—‘”{BA‘P do , Bhc dx]
b da T %o de) P

|

AN

. = = L (T 2R)(L-Pp)fsinte + 2Rt (wa«Az,)%
‘T £ 2

~—

(2,1.19)
3
4t L. S/X E+Px)—2Re(L -—ﬂi@)%
o bt (2.1.20)
. wherein

t‘:Lt/\q,\ s E:E//M._QL

R o= = afy

L= Ll e _ﬁ"q) = ehy[mM - pr o= ¢he M cr
\» ) I J

Lo sl s
CHT, T RTtwle (2.1.21)
btk ) = O T 5dnTe



The four wotential A[ , rewritten here in terms of the

cuan tities tntroduced—in ( .1.21> yare
case (1) dipolar field
F"c — jjj ila(,fe~|)+(e< L\)cos’*e? _,__r }Lu R'H "F"’(l
— (R~ Cos™ 6)3 (2.1.22)
~n . 3 r\ﬂfh /
T ANR Ra’« R —72ed ‘)J,Qd P i A
arﬁ‘(;,a&)t § Nyt
—i4. N :~ \
R } '; K +(l<"‘)°\ /O5®+ Q(@ {1_‘4_“204-}«)& (é._L.23)
.—— — — L- 3
with < -
A= e Mot m (2.1,24)

case (ii)uniform ficld

2.
Av= =<2 { = - 6)] ’ (2.1.25)

R )+A¢ gnte — Qm 2]
- (2.1.20)

(2.1.27)

One can then solve (2.1.17) to (2.1.20) alongwith the field

- comnonants (2.1.22) to (2,1.27) toget the actual orbits, These

-1

equations are almost imnossible tn solve analvtically and
| Y

thenefgre one resorts to numerical integrations,

f one uses the in itial conditions@= T2 and U = o

equation (2.1.13) immediately gives CLf%&bthro or that the

nlane, To study

particle remains confined to the equatorial
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}Such aquatorial motion one first studies the effective

potahtigl (Bardeen 1972, Prasanna and Vishveshwara 1978).

 Using the normallsatilon condition of four velocity

'l
J . 3
the first integrals (2.1.19) and (z.l,20) and that U =0,

v

Loa
9. L wW=-1 (2.1,23)

ane obtalns an expression for 1A, The cffectlve notential \je§F'

. . . 2. .
is the anergy calculatad from this eypression of WU by putting

Ufi:,g , Plots of the \@+$against 9 gives the turning noints

?L‘ and 1., for particles with snocific cholces of initial

conditions and other parameters ncedad to solve the dynamical

equations, The sarticles are then in bound owbits around the

err black holz and confined to its equatorial nlane,
Tn obtain the trajcctorics off the equatorial planc
: - O s
we still take &=TI/y but assume 2 finite nongero U, as initiel

conditionp., The particles are thon no longer confined to the

equatorial planc and cxecutc motion 1in 3.dimenslonal spacC.

¢+ far we have usced Boyer Lindauist coordinate systom

to doscribe the metric, ol ectromagnetic field and the dynas-

AN D

governing the motion of the particle, The

mical equations
Boyer Lindguist coprdinatos which are the natural generali-

sation of Schwarzschila coordinptes are the bost for many

purposcs, However within the ergosphere which ts the Teglon

between the static Limit Rﬁ;

Re= L+ fi-et coste | (2.1.29)
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and the event horizon

) SUEUIOR——

’hei.h%wmdl) (2.1.30)
they are somewhat uﬁphysical,for axannle a physical observer
_can not remain at rest with R,55, 2 = constant but has to
rotate in the same sense as the hole itself (inertial frame-

dragging)., It was shown by Bardeen (1970) that for observer

b
i

et

rotating with angular velocity w = “ﬁwt/‘é}@\pt @ local geometry

ig flat, It is then useful to introduce a set of local obscrve

pES

ers cach carrying ag othonormal totrad of 4-vectors- his

locally Minkowskian conrdinate basis vectors and describe the

hysical aquantitios ab each point by thelr projections on this

srthonsrmal tetrad i,e, theirm physically measured comnonents

in tho local sbservers frame,

Far a motric in the standard carnonical form
3 W, 2 LY RS YV 244 2 '
dst— e Tcdt T @7 de ~wedt) e M tre . AeT(2.1,31)

: PR & 3 o en -y . Amecrriha
shere )%lf’,AL,and vy are functions of 9 and & doscrib-

ing an axisymmetric, stationary and asymoptotically flat

spacetime, there is a uniquely sensible cholce of obsorvers

and tetrads: the Iocally non rotating frames (LMRF) for which

the obscrvers world lines are I'= constant £ = constant and

p = wt + constant wherELa::wﬁth/g%(? . The orthonormal

— . . -
tetrad 63(&) carricd by such an observer (the set of LNRF ba-
sis vectors) at point (&,T, I, ¢ ) is given by

(Bardeen et at 1972)



g - ‘,:1)\
(£) - £ { e A7 (A) e ) H
; g O ) @ 7

g - efr2
(e) e
~ ‘ -y
2 - & '
Lg) 2
(2.1,32)
The corresoonding basis one forms & e are
~e {F N
& (t’} - e)) ¢ dt )
N Ly
& "™ = ™Mol ,
LS Ay
& - & Z'C{.G \
~ i i/ W
3@ - _wefeat refdg | (2.1.33)

The transformation relating components in the coordinate

_ _ _ TR
basks and frame are carrice oub through matrices || e zj)”
. g
. . hoalt .
and its invorse || & ) ; ;’f componients of which can be
d

’

directly read off from (2.1.32), (2.1.33) and the relations

€,y = 6} 2
Le) ST

~ L) L) |
5 ~ e gy (2.1.34)
q
Thus
ROV Y, 7o feY ]
C‘. «d_, ~ | & o o & = 5.}') ~‘ C L © O
N — 1L
o et o o o Mo o
o o eMr o O .ékﬁ'n
()
Y . W ) —
-we o o ¢! we © © € |(2,1,35)




The ossential idea of studying any phenomena in LNRF is to

canccl out, as much as possible the framc dragging cffect of tha

nolets rotatinng

2, DISK DYNAMICS.
From the studics of particlc dynamics we pass on to

he study of dynamics of agrrogate of particles fopming a fluid

disk rotating around a comnact object. We shall limit oul
studics to the case of perfect fluid disk only and thercfore
wo cannot study the generation of heat and its transport, because

of the neglect of viscosity. Also fecause of the same reason we

not account for the loss of mass of the disk frcm its inner

edue and 1ts compensation at the outer edge by accretiocn,

We assume that tho disk: is alrcady formed and in its stecady

stata, radial velocity is zero., We are presently interes ted

in the strunture and shability of such ! already formed! disks,

cr

o

Ly

The mass of tho disk 1s negligible compard to tha

the centrol eompact object snthat the geometry is solely detenr-

| by the later. The disk is assuncd tobo made un of

mineod char god

as well 15 neutral f£luid antd therefore the motion of the disk

givoes rise tn electromagnetic field, Tha e¢lectromagnetic Fioeld

carded as a test fiold cnd therefore it does not meodify the

geome try hut the later modifies thoe electromagnetic field,

Tha fundamanuval aequations govering the dvnamics of

the disk are derived from (prasanna and Chakraborty 1981

Chakraborty and Prasannd TII, 1931).
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(¢) the law of conscrvaotion of cnergy-momentun:

;r LA @

g . ‘l : : )‘ : —
where T % i1s the eneryy momoentum tesor given by

TH Zpgdy (.-'—a—e }ww"

g Raay L r '
)

wherein p 1s the pressure and €c” is the energr density,

!

icluding rost mass encrgy, alongwith the Maxwell's equations
glVﬁn by (2.;.4and 2.1.5) with J”’glven by
TUlceuwbagpdd Ly (2.2.3)
with £ being the charge density and O the conductivity;

and

(b) laws of thermolvnamlcs which include the law

of conservation of baryen numbers

: L . .
(N )i =0 (2.2,4)
wherein n is the number density of baryons and the sccond 1aw
0of thermodynamics

b+ pdV = Tds (2.2.5)
where LL,\/! T and % are internal energy, volume, temner-
ature and entropy. Tho above set of equations is supplemented
by a suitable cqution of state to make the system of equations

closc,

As . satisfies the normalisation welationship L) w*

= -1 (equation 2.1,21) and as PiLj

cquation (2,2.1) may be resolved into the equation Qf continuity

is antisymmetric, the
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2.2.5)
and the cquation “
[0+ Pl2) WL)J u,‘f - _7 (g "o‘+ ut w*) P+ g— l“":j W

R I A S - U A P SR 8 :
+Z§(‘—L'J - ,,\LL + }’JL}T' j{u‘ w /. (2.2.7)
Using baryen conservation quation(2,2,4) in continuity

equation (? 2. 6) we obtwin

.J ec_ /_N_‘g: . "'_J. L P\

Lo

. . Lt 2- -
Further since Qﬁ\ 1s the volume per baryan and € In is the
- Internal energy per bamyen , law of thermodynamics vields
o ’f(‘
T d3d = i(ﬁ:ﬁ")*"/:‘d m/ (2.2.9)
wherein A 1s the entropy per barvon. Equations (2.2.8) and

£.2.9) imply

— & 3T O pe.pd L, R |
NT SoiT T Fi P ww (2.2.10)

o

or that the motion of a porfeoct fluid with ¢ = o is adiabatic
maintalning the entropy constant along its flow., For a fluid

obeying cquation of state as given by

L P
ect= n M, e+ T (2.2.11)

where M , is the mass of each baryon and Y = C#%co,is tho

rptiq of specific heats, equation (2.2.10) reduces to

oot 2 (b T ol ] L, R
’\1"4 u drd (7‘\*) - T Pb(} F"L;{ U (2.2.12)

Equations of momontum conscrvation can be obtained from

(2.2.7) by using its zeroth- component, into its spaces-
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components., The set of momentum equations aelongwith the

continuity equation (2.2,6) and the Maxwell's equations
(2.1.4) and (2.1;5);baryon consarvation equation(2,2.4),

ahd the equation (2,2,12) of adiabatic flow now foTms tho
completa set yf cquations governing the dynamics of tﬁﬂ oisk,
conta 1ning all the informations of the original fundamental
sct of equatlons (a) and (b) for a fluid obeying cquation

of statz of the tyne (2.2.11),

In order to compare with correswonding Newtonian
- - . - c’
equations wo introduce 3- velocities 3 such that ux - % uja

wh zrein uf:.‘%%; , X° being the time coordinate axpressed

in the length units and write the cquations in torms of local
Iorentz frame (LLF) components d efined by the orthorormal
tetrad apnrooriate to the metric corresponding to the back

ground geometry, Thoe momentum cequations as obtained from

(2.2.7) then reduce.” to

k /
C+ 5 )ue MV et L 2 o
( AL FY Sx8 e {(Mae ~ M%)
A U“}(l"* - t;?:‘l—,c )+ o & Y/ Aax Lo "o __l
[ . 0@ g D(3 y L 7 () B)""Z I @"{”)A
— K O 0e ~ ~
Z-{g"% g g) 2 g oG uey ob
o - T
C % < ",)x{:
Y A ¢ é o
Sl A B =R S A Y A = 0}~U°“ R LT
K Lo 6 z (‘w& S I ¢ o FalFt
V[ ek o - Y !
T (F o P+ EXLEY, e v (37
Q( ,L) S = FQY F P ) | (2.2.13)

while the continuity cquation (2.2, )rnducos to
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Baryon conscrvation equation in '.t.ccms of g_:;'=< is
- . o [} 0& B . . 3 ] P
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and adiabatic cquation in terms of X is given by
Y\Y» > /B w Y (b oy i

= - ( e ) A {9 = (w ) e (T L’LL | } 1‘0(
() Lot LinY Yl [~

L o
4&.“9#&,‘ Fl‘: . g}a«@l@/ - . oy 16
" Fopl x ¥ o (Fu Pl vy Fle) | (2.2.16)
with
i
—(W) = (G, 2y, 5% 56

(€
A (3‘9{‘)~+C> (o) 3 .
I 4‘ . () E
Fo o= =i 2.2,17
j A ( J T (m) ( )



For the analysis of disk dvnamics we 1limit ourselves

to the case of Schwarzschold background geometry representing
the gravitational field of a non.rotating mass M. Hence the
metric can be obtained from Kerr metric represented by cquatio

(Z-l.é) by nutting a=n:

¢} (0.2.1%)

debe —(1- B0 )t (1 2D Vb s (e S sin e d

A corrcesnonding lqcal Lorontz frame is Cefined by
|

i :
- L= I '”’r\
-\ Fi ”(, ;
(&) {9/ LL) 4 : o
iy st 0 = L‘-Lﬂ o AP
N e %L/ )\ ¢ - O >\ J - \'} L 7 d . (2.2.1(})

The commonents of velocity as woll as of electromagnetic field

are therefore given by

' —={ !
o {7) 2 ¥ ) ey 1
UL = (- Ean ) e Im V¥ € ( 7
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| el
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2m [ Ly L'
T T L ke (R
rﬂw( 9 gy @( s r(()n., F(cp) (£) 2%n .'9,( Foe  (2.2.20)

In the study of charged fluid disk we use charge contiulty

equation

S Lo
E ' u., -t E; l,L D [,. - (:] (2. 2. :).-]-)

alongwith the continuity cquation (2.2.6) with@ = ¢to obtain

(2.2.22)

o Lt O Ve — ¢
( T ‘-)(. \DXLQA) €= t() - C}q\;)’O) '



which exDressess conservation of both charge as woll as of

‘mass, whilo for the study of neutral fluid disk we use (2.2.14)

as the continuity equation. Thus the complete system of equations
that govern the dynamics of the disk (charged as well as neutral)
is given by (For & =0 case):

the momentum equations

POV AR § B
I bE i \
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the continuity ecuations
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the baryon conservation equation
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Tn order to consider the stability of the fluid flow

around the black hole, we consider perturbations in all the

physical variables as given by

#;‘&*gﬁ /€’<1*5613:>50+5£W T\:ﬂ6+8n‘

PR Y 1

p)

- (2.2.,41)

(i) = -‘:aamau P

wherein subscriot " 101 refers to the steady state parameters and

o denotes small varietions in the corresnonding dvnamical
variables, Introducing these expressions in the general equations
(2.2.23) to (2.2,37) and retaining only the linear terms in the

perturbations, we get the following linearised set of equations

governing the perturbations:
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- Tn discuss the stability as governed by the above set of

equations, we use the normal mode analysis and the variatilonal
‘Jriﬂcipl@ techn i+ que as developed by Chandragekhar (1964) and
 Chandras wekhar and Friedman (I, II, 1972).

The variational princiole;:

Tt is useful to distinguish between Rulerian changes
(denoted by § ) and Lagrangian changes (denoted by /2 ) of dynami-
_cal variatles under perturbation, Fulerian changes are the

changes in dynamical variables at a fixed point in space while

the Lagrangian changes describe changes in dynamical variables
as we move alongwith the fluild element, These two are related by

C x
A= o+ 5 ST (2.2.58)

¢ X, . .
where bqug;'§“5o.‘f is called the Lagranglan displacement.
Tn case of radial oscillations of thin disk we have only
) . .
‘i , the raidal component of the Lagrangian displacement,

non-zero. ‘e consider in normel mode

. Y LG £
T A, t) =T (ne (9 2, 59)
and construct an eigen value equation for the amnlitude % ( L)

of a Hermitian operator with gL as its eigen value (Arfken,l970)

o - ko .
G L\/\/(_?’L) 5 = - (A‘)}_(P 'E;T?S;')"{’Q(%—/ g , (2.2.60)



callerd vYoulsatinn cquationw, Hore P ;e and W
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are functisns of—F— iﬁ Pe—eallet—the—weignt function, g
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is subitected to boundary conditions, Using U

(2.2.51)
the operator on the right hand side of (2,2.57) is Hermition,

(Actually cgndikioh (2,2.61) is slightly more restrictive thon
is required to make the onerator Hermitian, but nevaerthless we

find this condition more suitable for our nurpcs2). As such the

usual oronerts -»f Hermitian onerator follow namcly the eigen
functions fora @ comolete st with the eigen values being all
real and orthogonal,

A variatinonal base for determining gt is formed by

multiplying (2.2.62) by % and integrating over the rangs

( a«, b )y of 7T, We thus obtain
b -b (o 2. B
ctiWrtdan = | p(de)an +[Q%F
',

<
-4 M .

Cb (..'ﬁ K O ( 202 (.72>

As the ejcsn functions form o comolete set, any given function

which satisfies the same boundory conditions as the true cigen

car be mpanded in terms of the eiden function, It can be showin

N

that if we €£alculate g F as given bv (2,2.62), usinsc a trial

function for § we got the uooer bound of the lowest eijer
value (refar, for examnle, Schiff ,1955). Decausc eigen values

g+ ars all real, a sufficient condition for the onset of

function- Qi but otherwise completely arbitrary (Mrial functiomu)
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1

that (TJ“, evaluated bv the wmanmer

dynamical instability is

indicatod abova, i1s zero,

symnetric thick disks. Dynamical varia>les are functions
% and @ . In an axi.symmetric nerturbation we have €

e , . . .
and bnth nonwzero, We then distinguish two classes of

the equations governing the perturbation: initial value egqua-
tions and dynamical equations, Initial value ecuations are
those, that are first order in time derivatives, Dynamical
equations are those thot are second order in time derivatives.
Tnitial volue ecuations can be directly integrated withrespact
to time when they are exoressed in terms of a Langrangian
displacement. In contrast, dynamical equations lead to an
eigen value probem that determines the normal modes of oscilla-
tion of the system, Using the reletion of the tyne (2.2.5@)

- N

both for T ° ahd ‘féa in the dynamical equationns one obtains

the pulsation equations of the form

-Z—D ﬁ‘?l,m -é—- b 36 ’.
TTRET=LIne ’ﬂ'g%,ﬁifﬁ ) (2.2.53)
P ey - .
TP sl = M(he 2 N @
o S TRECRLE PR (2.2.64)

where P is some function of 9, and & and L. and f are
operators involving functions of % and @ , derivatives nf
f?ﬁ,*§9 and other dyna&ical variahles y - Using initial
value equations, func tions involving 5%% can be exoressed 1in

terms of'"?(}1 and € . (2,2.63) and (2.2,54) are the eigen
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value equations which should be solver consistently with the

initial value equations with proper boundary conditions cho

according to the physical reguirements. If # de notrs the
pressure, the boundary copdition conbe chosen such that £>t
vanishes at thes boundarv of the disk,

To evaluate < > one takes trial disnlacements é?h'
and %%9 evoluate variations Eﬁd by putting these trial lis.

placements in initial value equations, multioly (2.2.63) by

by 'f ad:s them and int ate over the

range of L and & . One then gets

G‘LJ{?DCﬁ?h~f>h, ¢n94§9’)72 %Ln()ci7Lci8

= [[($*L+ FeM)nrsnodrde

[9)Y

(2.2.65)

One fipds that the left hand side is marnifestly symmetric
iv the barred and unbarred quantities. One thew manipulates

the right hapd side ~rf the above squation and bring it into

a similar manifestly symmetric form. To achieve this one heas
to perform numerous integrations by part; and substitutions

from the initial value equations, The final result i1s an equa-

“jtion of the form

LXS'P ( :é?‘m ¥ foogl 5;:(9 £9) Hrsenedards

= { B e '
= L{N‘ Vst g dh Lo (2.2.66)
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Wherefqi is symcoric in barred anc ~harred viatiables, Identi-

A

fying the barred and unbarred variables in (2,6.65) tha resultant

@

cruation

g | o1E Y e .
SH[P(Ew) (52 )n wnodrdo

;“NLﬂWMQd%da
- '2,2.67)

can then be shown té imply a variational princiole in the foll-
owing sense: suppose one evaluates g % from the enuation

(.2,67) successively with the aid of two trial disnlacemoents

X and'§g+g§?(o<;71 Je ) and the ossoclated variaotions é}g
. - ) . ~ o) .
and Szé 4w'£l‘% , one finds an ivicroment ST as a result

of variatioms in trial functionns, writting the eroression for
6'(;‘»-1. and demanding it tobe zero, can e shown to be ecuivalent
to solving the original dynamical equations (2.2.63) and (2.2.64),
In the following disussion we shall show this {0 our caleuloe
tions for stability of thick fluid disk where the form of
pd‘ is exolicitly known,

In particular we are interested in the neutral mode
of deformation, A sufficilent condition for neutral mode o f
deformatioﬁ ig that if for some ng; and associater variations
comsistent with the initial vaolue eguations the quastity on

o

the ricaht hand side of (2.2.07 ) and its first variationa.
vanish simultaneously.
In this chaoter we have develoned a general set

of equétion 0f motinn of a particlz in Kerr background geometry



and equations of =wotiom and stability of a [luld disk with

possible charges in Schuar-schild qeometry, We have also

outlined the methadology for the study of dynamics of

particles and dvnemics and stabilitv of disks, 1In the
following chanters ve use these formalisms to study few
r~

cases of particle as vell as disk gdynemics,



CHAPTER III

QﬁAbuED LABIIQLE DYBN«IGS IN AN ELECTRQMAGUPTLC FIELD ON_

lkﬂ - N

KERR CLOxquV

It was mentioned in .. Chapter I that the charged
particles in an electromegnetic field on Kerr background gcos-
metry exccute Larmor motion (ayration) in their bound orbits
orly when they are completely outside the ergnsnherae, This
is due to ‘inertial frame dragging which precludes completely

any rotrograde motion within the ergosphere, But it 1s well

tnown that this frame dragging arises mainly because of the
Bhyer-Lindquist coordinates and that 1f one goes over to a
Tocally non-rotating frame (LNRF) as defined by Bardeen
(1970) and Bardeen ot al (1972) there is no frame dragging.
It is esscntial to see whether as amwsult of this, the non-
gyration of the charged particle 1s also a coordinate cffect
which dozs mot oxist in LNRF, Accordingly we procesd to
study the orbits as viewer from LKRF for the sama sct of
parameters as in the carlier case (prasanna and Chakraborty,
1980) .

Further as wo Could infer about the possible inner
cdge of the disks from the studics ~f orbital dynamics
confined to the eceguatixial  planc the gRudy of atharged
particle mption off the ecquatorpal plane may possibly reveal
some indications regarding the thickness of stable thick

disks. It is therefore worthwhile to take up this problem
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also and study the tranping 3 particles due to magnetic field

in meridional plane ( Chakraborty and Prasanna I, 19815

1, OBBITS OF THE PARTICLES AS VIEWED IROM LOCALLY NON.

ROTATING FRAMES.

The general seb of equations describing the motion
of the particle when viewed from LNRF canbe ohtained by trans-

forming the dynamical variables from coordinate basis to LNRE,

The transformation matrix can bc eabtained from (2.1.34), after
writing the metric of the space-time in cannonical form and
compmatring it with (2,1.32) . The metric for Kerr geometxy

(equation 2.1,6) ir connonical form is glven by ( Brour 1975)

S S R Rl ¥ TZ- dat + 5 dev

F\Suh 2“’\(391
o —° Celt
= - [dep ) (3.1.1)
Comparison of (3,1,1) with (2.1.20) yields
20 L 2O Lk, T 2
e = Eb eI elMear
1.
2y L sen O -
€ Yo Arn o ) W) = %ﬁngF}L
A (2:1.2)

and therofore the transformation matrix || € J{I as given

by (2.1,34) appropriate tn Kerr geometry becomes

et

1

* L
ety =Ea)t e 00
' L.

o (Z/[l)l’ o &
e) ) 5:)’{' Q

2o AN,

31292;2bme 0 &) Ef) Sing (3.1.3)
(ZA)+ - A
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The lans of transformations for four velocity L , field

-'L

components [ J ant] [Wb are
) pli) 4 ' o
wts e (3.1.4)
L) Hhel ¢ R )
Fid. = e e ng L, | (3.1,5)
é . .
PLC) e ["”-' e @J b\ (¢ ) o - p
tarby =M €70 Ela)® oyt € w@c ey (3.1.6)

: . b, . :
wh srein e(j) is thoe inverse matrix of G.V . Using these
transformatinng we can transform cquations nf motion (2.1.17)
to (2.1.20) in LNRF, ¥ shall limit oucrselves to the
equatorial orbits anly and therefore we use the initial
(I 3 ‘ 9 'r‘ in R e
cornditions W =0 & = /2 . we taen have

(%)
d. u _ 1 ( l(u{ "tAL' () 1 2 ¢ LL('@)
e o LR -3 [U o A <)

B S (0

R AL | :

L { 1—' \ ?) JeX - {% < { |

23 Zeog " nulty 1
ﬂ / +‘R5A%RLL't3M Angf..7)

L@y — ;L
W == (.L”"P‘Lp )/ B, ' (3.1.3)
Lt)w‘ | T

U (&) PLEF AT = & J’"”J : - (3.1.9)

wherein the field componert Ai,are given by (2.1.22) to
(2,1.27) by putting g = M}, and
A i L
B = R+ L7424
R,
we find that the above equatinons of motion and

of fields contain coordinate R but are indepondent of
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VcoordinatEs(Pand T . Toexamine the nature of the orbit of the
particle when viewed from LNRF, we determine the local valocities

S E T ey

; ; . t . R ‘
,LLQhJ and WViTTYTat each instenttge as might bo measured by

an observer stationary at the locatlon of the particlc at that
instant, From the obsecrvations of such local observers, each
measuring the local vclocity of the particle as it flics past

them, we can woTrkout the nature of the ocrbit, In case the particle
éyrates, then with increasing O we have the reglons wher@‘LL(W)
changes sign whercas LUﬁJ keeps the same sign, With a further
increase in o we have a yeglon where Ltwvoantinues to maintain

Yy

the same sign as it had at the end of the first region but

changes sign, This nattern of sign change 1s repeated conti~
. . ¢ . . . .
noously in LLL ) and LC‘Q)alto~nat1velv in successive regions

obtained with increcasing T ,

— R

If we now use a coordinate system (R, ¢ , T  )such

that
AR _ . de . L le dT e
de ~ % 0 4 T I (3.1.10)
then, sirce
Lé%Jfl ~E§“ LL?L
e (3.1,11)

and further since R/[5%/ is positive, the coordinates ( R L@ )

will carry the signaturc of the pattorns of sigos of li‘%Jaﬁd
h;p@); an incrcase (decrease) in R or df with @ will imply

positive (Neosative) u}ﬁJor 14‘*” (Table 3.1), At this stage

—— —

we note that the introduction of coordinates @ and T is

possible because the equations govorning .the motion and the



olds are independent of ¢ and T Accordingly the cquetions

motinn arc

L
a5 2 LG T
=S5 [&u(; =) d{) T+ (5 Pj) Tt e
[ . rL‘C QL(P
- g(& ‘f"cLl)-"’ﬂo( )J '{P\'(A t<p R d(j"‘

fY

= dT dx Loy ROR 'd R
= N\ e Jar L - L J ]
‘+’ (f> R OL +‘B C ;\"dc"} ai(.-l A (LLJ""} . (30-1-512)

¢f - (L-Bg)/B% (3.1,13)
qu-' '. L] L]
dT o, [B(E+A 500
- Tk - R
g {aa)"l e) - (L Rl ] (3.1.14)
_ Usinc the normalisation r2lationshio
RSy
ﬂww‘-’i W= -1 (3.1.15)
and the rst integrals (3,1,13) and (3.1,14) we obtain
2 ( L + ; S e
(. LS L 2R : SV T
Lu ) N Z(R o 4 WE’ )(E+ Hc) (1 R >(_L Hep
. e 2 '
S (ErAc)(L-fy) =L ] (3.1.,16)
 vherein we have used the condition uf@ﬁ:¢> . The effective
9
potential is sbhtained from above by nutting ti(LJ::CD
: 5 L
— -
K = 26 (L-Ap)+ & §R(L- Fg ) r RR ¢
3 L S
20 = R AT R X
Y ! ' (3.1,17)

The effeoctive notential is the same as sbtained by prasanna and

Vishveshwara (1973) while studying the particle orbits in coordinate
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%

o . . . . R (% L
asis. This is simnly because of the relationshipn (L éztﬁlwxﬁ/RJ

b
The turning ooints, therefore, remains wunchanzod
3 et v v 3 vl L

ooy te . co c ,
Wo-integrate—the—set-of-equations(3+142) to

3.1.14) mumerically with aporooriate Az and Ay for the tws

o

cases of dinolar and uniforn ficlds and use the same set of

arameters « ,X/L_and E as was uscd bv Prasanna and Vishveshwara,

: , A

To fix u» initial conditiors@enoted by subscripts '0') we cloose

P =0 and R , the point which is well ~1thin the potential well
°

of the corrusponding For such ¢ and R _ initial w0

‘ K @A' - ' o & o - ‘o
is calculated from (3,1,18).

Table (3,1) gives the valuvs of W™, (P R and

~

¢ as G increascs for dinolar field which glearly indicates
how tha nature »f the signs of ut ") ang Liuw is carries pver
to the coordinate system (R, P ) and establishcs, the gyrating

nature of the aerbit, The orbits themsclv.s are shown i~ figures

(3.1) to (3.5). As may be seon from these nlots, the gyration
exists in all cases‘irrespoctive of the fect whether the particle
is Completeiy oukside (figurcs 3.1 and 3.4) or completely insicde
(figures 3,2 and 3,9) or moves in and out of the ergepherc
(figures 3.3 and 3.6)., W now analyse the Consequence of the
condition that g /dg~ has tego through zero for some B=ig , @
copnditinn which is necessary for the particle to gyrate, The

above condition imnlies that L:(/%W ) p. ant! therefore

8,

ld‘}.{\ ”_é?-—'[+_.’.3._({;_. + A .x-,L
Ldﬁ'/"\% R 3 A~ T A Y (3.1,18)

which can bo made real irresnectl nf qutl%% is, We note




same conditinn gave @ constraint that Rg> 21, for the

rhits studied in coordinate basis (prasanna and Vishveshwara,19078) .

esults and discussions,

we have analyscd th orbits of charged particles in

ectromagnatic field on the equatorial plane of Kerr black hole
viewed from LNRE, Tho orbits are then found to be gyréting irre.
wective of whether they are in or out of the ergosphere, But

a distant stationary observer (following the global time like
i1ling vector) the charged particle does not gyrate when it is

o the orgosshere because of the frame dragging cffzet which
/in turn is due to the angular momentum of/the black holc, This
1nolies that in LNRF the offcct of frame drageing has been can-
celled out completely at least in regard to the motion of charged
marticle around Kerr black hole, The analysis as secn from LNRF,
nay be consideresd similar to the case of analysis of a co-moving

~f a collapsing sphere who would cress the

I~

ent horizen in finite Time where as for the distant observer

his would happen only esymptotically as t =0 ,

2. MOTION OF THE CHARGED PARTICLES OFF THE EQUATORIAL PLANE;

far we have confined ourselves to the motion of

(€]
O

the particles on the cquatorial plane only. If the initial velocity

st zero or Lf the initial position is not at
th, then the resultant motion is ir three dimensional

the charged

=

Motion off the equatorial plane in the case o

Vi

particle in magnetic field nn Schwarzschild back ground geometry

has boon studisd by Prasanna and \Var.ma (1977), In the - @ planc
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:the particle follows the magnetic field lines and as well as

gyrates about the ficld lines, As the field was a dipolar field,

_particle finds stronger magnetic field as it moves further away

from the cquatorial plane, For suitable choice of initial condi-~
tisn and ficld strength it gets reflected from the mirror noints,
The locatinn of the mirror point depends upon the initial volocity
parallel to the ficld lines, if all the other paramcters are kept
constant,

To studv the motinon of the charged narticles off

tha equatorial planc of a Kerr black hole we (Chakraborty and

prasanna I, 1931) first study the structure of the electromagnetic
field in a more detailed way., Starting from the expressions
(2.1.22 ) to ( 2.1.27) we first calculate the electromagnetic ficld
tensor 13;} using ( 2.1,16) and finally using the transformation.
law (2.1,5) we obtain: the components of the eleoctric field
(Eyps Egs E‘P ) and of the magnetic field (BoyBg, Bg- Yin

LNRF as given by

e _ '/_\ii- Il R —
Ly = > /‘\Y'z:,;z t ‘"“jf”[f\“;'“%ll
s PN 2ol R ~
: = [ )= A‘C o+ e S s 3
o * \B)E Nuer s e e
Ei? = o
Tpz e A
- AV senmge ¢.©
AB o = ~9'->ki */:E.IPJE:_
£ Lin e
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where £y = T By and By=mby .
. We plot the lines of force defined by

ds, = :
oo = KB, (3.2.2)

for the magnatic field and

A E I B (3.2.3)
for the elat:ic field, K“ boing a . constant,. For selected values
. of £ and A , the plots of lines of force are presented in
: ‘figures (3.7) for thé case of the dipalar field and in (3.11)
 for the casc of the uniform field,

We also calculate the components of 3- velocity

parallel and perpendicular ta the magnetic field linss. The com-
ponents nf four velocity in LMREF are
Thate ={z/0) AR
' g
U\,(‘@) — Z‘i, d@”
da ’
(@) AT &e) P
e = (\."m) AN ”“::ili‘ “ing AT
- (A )L dao 7
Lt < AT
LA :
an? the omoonents of 3. velocity 9> are then ( in LNRF)
; (34
s cu® e cu™ e ® o
- (e = Ut - Ty (3.2.5)
Defining the anglk: Z between B, and the lines of force by

tow 2 = B/,

we find the allel and perpendicular commonents Gy and Uy
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© U £ 8@ ing .
' (3.2.6)
i L
. ) .
v P R U & P IR 3 -
Uu_:.zp9ﬁ¢,)4—(‘9( Vin - S ) S e

Actual orbits of the narticles arc obbained by

integrating numerically the equations of motion (2.1.17) to

( 2.1.20)alongwith the field components (2,1,22) to (2;i.27);

Alongwith its trajectory we also calculate By ant U . To

. L . » @
fix up the initial conditionSwe notu that when @ =TMW[_ and UW=o

S TR & A ()t
()2 (W5 = B () (3.2.3)

vherein U™ is the same as obtaincd in (3,1.15). In (3.7.8)
putting LL%:43 we can obtain effective potential Vq4 for the
motion of particle studied in coordinate -basis and confinet to
B =T/, plane, For o selected value E of energy Vey curve

gives the turning points R1 and R, such that for any R satis-

o . - , % ) . .
fying 5§<~&'< Ru4u_as calculated from the cquation (3.2.8) 1is
real, Mow 1f we take Brfﬂﬁ'but ufaﬁ-a , the normalisation
condition for the four velocity yields

n = ,/)'v ] @\)"
(wr) :(ﬁf})o,nh’”‘ﬁ(ll / (3.2.9)

Wow since /\ is mositive for any R outside the event horizen,

A . S L .
Wt as given by (3.2.9) is real, for the same E as-above and

for R satisfying RI<,R LR, when

SvE oy L
O « C}(UJ?) (x(,u ) o, (3.2.10)

{

st

: e ‘ . Caps
This scts the usser hound for W5, We fix up the initial

positions ¢ =0 E%-;fﬁVz R, < R.Z R, and calculate the
f) -

43



maximum allowed value of w® at the initial position, as given
by the inequality (3.2.10), Using any value of Lﬁgbetween tho

maximum and gzerc as its initial value we calculate initial U?L

present @ few cases througa tables and plots, Tables (3,2) to
(3.3) show the values of R, &, ¢ , 8 and B, where B is the
net megnetic ficld, along the trajectory of the ﬁarticio and
figures (3.8) to (3,10) and (3.12) to (3,14) show the plots

of the orbits on the ( %2 - & ) plane, for different choices of
LA

as well as for uniform magnetic field, It is seen from thosc

| E L and the initial &, (= Vi) for dipole
tables and the nlots that the narticles follow more or less the
magnetic field lines an? are trapned betweon mirror points 1f

\%,, is high, they conti-

[¢Y)

Uy is sufficiently low, In Cas

w

(&)
nue to move towards the cvent horizen for the casc of dimole
field whorcas they escape to infinity for the case of uaiform

The sign

]._I
X
O

pun

e
]
o8]

-

fiela with-ut showing any signs of ref
of lﬁh changes on cach reflection,

Results and discussions,

1

Yo have oresented above a study of charged particle

orbits off the coguatorial =lanc of a Kerr black hole in uniform
and dioonle magnotic £icld, The effect of curvature of the
underlying  snacc time on the field lines are very apparent in
the case of uniform Field, The magnuetic ficld lines which

would have been streicht, parallel and equally spaced in aflat

sprco time, arc how curved in the vicinity of the Kerr black hole,
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showing verv clearlv the cffect of geometry on the ficld structure,
Dopending unon the field strength and the initial conditions,

_the particles get tramped if Wy, 1is low or olse they continue

to follow the ficld lines without any reflection, both for dipole
as well as wniform magnetic ficld,

Trapoing of the particles in dipolar field is not
unusual in the sensc that even in flat space time, the charge?
particles ar: treopped in a dipole field., Tho benting of ficld
lines, in cese of an uniform field on Kerr geometry is purely a

general relativistic effect, The trapping of the particles in

a5

such situations are therafore morae interesting, We found numbor

of cases of trapped orbits in meridional olane in case of an

)

uriform field, some of which are prescnted through the respoctive
tables and figures, The initial value of the parallel velocity
is very sméll comparad to what we haﬁe iv the case of a dipnlar
field, in order to have trapped orbits, This gives rise to the
possthbility of having thick disk around black holes immersed in

the galactic magnetic ficld of the orter of u;g@_, The counling

sarameter A, for protens, appropriate to such casc is
r -~ g - 7
N = Soxin M/Mg

: . 2 -
For a supermassive black hole of mass~ 1o M, ATS56. The
4
casecs opresented through the tables and the plots for A= S0

corrasmonds to such @ ohysically realistic situation.
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Figures (3.
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Figures (3,

“oean aw

3.1)=

3,3) ¢
4)'
fw)

3
.

(3.5)
Figure (3.7)
Figures (3.3)-;

Figure (3.,11):

Figures (3.12)%
(3.14) }

Table (3,1): Ve
kR

Tables (3.2)~-:
(3.3)
Tables (3.4)-;
(3.5)

s for Figures and Tables,
-orbits—of-the—particle—ads—saen by LMIF. olservors
in the cose of dinole field.

Same as above in the case of uniform

field,

Lines nof force for magnetic and electric

. ¥ - B
ficld for dipole field for « = .99, 2= 300
orbits of the particle off the equatorial

slane following the magnetic field lines for
dinole field for o= .99, A =300 E=5, L=1o0 R =4.559
and different Uy,

Same as figure (3,7) for uniform field,

Same as figures (3.9)- (3.10) for the cese

of uniform field.

locities UM and w!® showing its signature

—

‘
:
@

Orbits of the nmarticle in ( R ~@ ) »lane

coordinates ( R

giving the values of R, 6 ¢ ¥ and B

for dinnle fiegd.

Same s tables (3.2)-(3.3) for the case of

uniform field,
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TADLE 3,1

X =90 ,,,»}x,v;loof),, I =107, [ =3.% , Uniform field,

ut"’*; ' " u('w )
52, 14 1.56 ~36,32 ~0.03
31,53 1,59 ~64.57 ~0,13
- 3.96 R ~72.09 ~0.27
- 37.52 1,59 ~59,01 ~5,41
- 53,65 1,55 -29,920 ~0.50
- 47.99 1.51 1,99 - -0.53
- 26.01 1.49 24,03 .50
2.63 1,49 31,19 -0, 44
30.54 1.50 21,30 ~0.39
50, 27 1.52 - 3.23 -0, 37
52,44 1,56 ~35,09 0.4l
32,43 1,59 ~63.82 -0.51

- 2,77 1,60 573.06 ~0.65
- 36,67 1,59 60,56 -0.79
- 53,50 1.55 ~30.05 0,88
- 43,27 1.52 1.08 ~0.91




K & @ 9, g
4,56 1.57 0.0 0.78 5.49
4,31 1.79 - 2B 7,92 632
4,26 1.84 =0, 047 7.84 7.51
4,32 2,00 ~0,005 0.63 7,70
4,25 2.10 n.15 0,50 5,69
3.88 2.11 0.31 0.49 12,24
3.48 2,11 0,22 n.54 15,62
3.51 2,31 0,29 .40 19,84
3.22 2,27 0,46 0 .46 27,55
3.08 2.26 .39 0.53 32,86
3.04 0.34 9.33 0.54 35,59
3.01 2,45 n.43 0 .54 33.79
2.82 2,44 n,61 0,65 51.11
2.58 2.48 n.51 .79 77.19
2,34 2,65 0,75 0.39 131.0
2.22 2,64 0,85 0.93 182.4

N
{—
=
N
(@)
o
)]
0
O
O
O
()Y
N
(O]
}._-
<0




X =45, N =300, L =197, =50, =0, 19 Re=1,392
R o @ o, B
3 e ey
4,56 1,57 5.0 0,19 5,49
4,31 1,583 ~ 0,21 0.2l 6,82
4,97 1,75 - 0.15 7,03 4,11
5,31 1,783 ~ 0,04 0.04 3,31
5, 14 1.57 0.52 0.33 3,57
4,15 1,42 0,54 0.75 7.96
4.31 1,11 9,98 AP 7.96
4,24 1,13 076 1, 14 3,37
4,19 1,46 1.13 %79 7.56
5,25 1,77 1.24 0,26 3,41
5,10 1.32 1.79 7,01 3.80
4,54 1.74 1.83 ~5.15 5,74
5,309 1,54 1.76 -0, 12 2,99
5,62 1,50 2,37 -0 .01 0,60
4,42 1.54 .50 0,09 6.10
4,00 1,57 0,45 0.13 8. 24
5,33 1.62 2.50 0.02 3.11
5,87 1.63 0,86 0,03 0,23
5.03 1.58 3.31 ~0.13 3.83




S

6 P @ 8
5,31 1,57 0.0 ~0.27 41,39
6,34 1,60 0,055 -0, 27 41,43
5.38 1,61 N, 07 ~0,27 41,34
H.21 1.63 7.035 -0, 27 11,75
5,47 1,74 0.054 -0.27 41,85
6,36 1,78 0,263 -0 .27 41,85
6,56 1.80 n.024 -0, 27 42,13
6.75 1,87 0,045 -0.26 42,775
5.74 1,95 0,083 -0,25 43,14
6,85 1,95 N.035 ~0,25 4,34
5,99 2.02 0,084 -0, 24 43,73
7.09 2.04 0.0%4 -0,23 44,08
7,39 2.07 0.052 ~0.20 44,45
7.55 2,13 0.101 -0.15 44,99
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CHAPTER TV.

TRUCTURE AMD STARPILITY OF CHARGED FLUID DISKS AROUND A

CHWARZSCHILD BTIACK HOLE,

In this chapter we present our analysis of the
structure end stability of cunarged fluid disk around a Schwarz.
schild black hole (Prasanna and Chakraborty 1981), It was ment.
ioned in Chapter 1 that even a weak magnetic field associated
with the Schwarzschild geometry results in a stable orbit for
charged particle even very close to the event horizen ( 1 X
2.1 ). This made us consider the structure and stebility of
disks in a more detailed way ingeneral relativistic formulation;
for if the inner edge @ould got so close to the event horizon
then the general relativistic effects would not be egligible,
Further we solve the entire system of £luld equations and Max-
iell equations self consistently on a curved backgrourd such
that the disk is under the influence of the gravitational field
of the plack hole and the electromagnetic field produced by

its own motion, The effect of geometry in the electromagnetic
field is teken through solving Maxwell equations on the curved
back ground so that the coupling between the fields 1s well
taken care of. As far as we know such a formulation has not
been teceated in the earlier literature and thus a detailed

discussion =ven for simple. cases would possibly provide guide-

lines for treatment of more complicated problems,

The general set wf assumntions and a comnlete set

of equations describing the dynamical hbehaviour of the disk are
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already presented in Chaoter 2, For the case of charged fluid

disk the momentum equations (2,2,23) to (2.2.25) , the continu-

ity equation (2.2.26) and the Maxwell equations (2.2,28) to
{2.2.35) alongwith the corresponding equations describing ner.
turbations are sufficient to study the structuré and stability
of charged fluid disks

1. STELDY STATE SOLUIIONS .

We restrict ourselves to the case of an axisymmet.
ric disk implyving thereby that all physical parameters are in-
dependent of azimuthal coordinate @ and further that 9, ™-,

cx(b & and 1j}¢):;1§0 . The equations governing the steady

state moti-n then reduce to

ot amy 85 = gy 15520 joks
e, + ? T o Ay o= e (1= 0
L 1L
oIy D 9, i = B T e
“’"“'0(‘ w) -5 ) [Py, ™ 2 h(,o)w’, | (4.1.1)
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,+ - ( = Fotoyig™ = Fe (.6)(@)} |

(4.1.2)
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LD - - R
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i) (' ‘“‘ﬂnv P R -
an- £ @361 T %a ey T 9 (4.1.4)
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oty [ ] B
bht ( gy FU((P}H;) J = L)J (4.1.5)
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noonkT Totwy(y LT s de LT 5.) Fac 9!(!«_)_7_
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The continuity equation is identimlly satisfied. Qur sim is
to solve this set of OHUUtwﬂnQ self consistently and then
consider the corresponding perturbation equations, LEguation
(4.1,3) directlv imolies that the toroidsl electric field
FC@M&,iS identically zero, wiich 1s consistent with two of
the Maxwell'!'s equations (4,1.5) and (4,l.6). Similarly we
find that the toroidal magnetic field is not counled with
arv of the ohvsical oarameters cf the system and hence with-
out 1loss of generality it is taken to be =zero consistent
with equations (4.1.8) and (4,1.9)., This reduces our system
of equations to six equations connecting six variables which

are thus comnletely determined.



presently we shall consider two speclal cases:

~ . . . 48]
Case 1, Differential rotation: LL}

and &, are constant, where

£ is the charge density as seen by the comoving observer

Case 2. Rigid rotdtlon LL/QL and b are constant, where
-l _
9. .
b= (I- zrﬁ - © A is the charge density as seen by the
ohserver at infinity,

case 1, Differentizl Rotation,

Since 'LA?: constant,U? =f[¢ with M1 =constant,
the azimuthal comoonent of 3~veloc1tu in local Lorentz frame
wou Ld be'@b::TLJL5£ﬁ6{1+7LJY$G$6 ) The eguations (4.1.,7)
and (4.1.10) involving magnetic field comoonents become similar
to the ones\tonsidered by Binzburg and Ozérnoi (1965) excent
for the source term in (4,1.10) , Adopting the same procedure
as used hy these authorg we assume the magnetic field comoos-
nents to have the form
rom(co) Bro = (244 Cos 8793 ) f(n)
angd
FWP)(%._) = Be = (Mscne/nd) g (R) (4.1.12)
with L the dipole moment, and ,47} and q) giving the cont-
riburtions to the field onponents from the curvature of the
background geometry, Substituting thase in equations (4.1.7)

and (4.1,10) we det the equations for _f’ and f} to be
L ’

gfn(%) ' ‘7% (1- Z‘gl) =0 (4.1.13)
and

— c b '
&9 (otmys] 2L o YT h},
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Hence

N SU— . (... Y e _( P ‘T, '_(L & —2")
:f - L'l"i " C?Q,)?... . :/(“L(.“ h\')
~where
n Laa { lm)
BBV N (4 o
{ﬂ 3 ( % ( + 2 ,)'_ )
R
= R [2w
i [2m
and
- b, , 8;_1'}1‘_)/ %2
h= e s bl 71) 5 (4.1.15)
C — C\(j - (.. E—i’_‘) 7“]_&
L{% IJ‘ L%\“+‘ 5 W—/C{,(:A hl—:
where |
a = ‘7"97:}" .:’J}_”_ - ). m 2vny :/
%"“-:‘;‘\L’L‘W‘ '(M(l "l)‘T—I"' )4,..—{( %w-))

(.)r ,(/l,/m )(f %:\:)b;

and

An Ly r‘) { ¢ ’ -
h, = li + Gz by, 4—”‘ J B R
> _ h 7 L ) ()J‘h - (! h’/) . (4..]-,_]_6)

C, and C, are the constants of ivntegration, In order to deter-
mine these constants of integration we expect the field tobe
continuous at inner and outer boundaries 5Za_and ?Lb .

Tn order to solve for electrical fields we now
consider the fact that Maxwell's equations should be solved
consistantly with the fluid equations. In view of this we

snlve for the components of electric field from momentum

ecquations (4.1,1) and (4.1,2) getting
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Usins these e¥*pressions for the electric field in (4.1,4) and

(4,1,11) we =et the constraint equations for fi and /P as

(o)
follows:
- r -k .
}Q_ », ).-: R RPN Ly - 3:_ -0 ) L)( . R
R‘BR! RTW &n @) (! R) Z(Q*'Zi)ﬂkkféun()Core
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== 0% 5 oonte | = 8Ty
K} + () sk_h & LQ(‘, C"l: ) CLC&)___) 4 —.—S}w}{\f‘i‘i(gj
+ ( s~—%~>‘1-11 b <1
R - I =
<t DR )| ) (4.1.19)
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whereln
L L
R = o= M o= g g
ny 4 . mre> 7 e (4.1.21)

Thus in princinle we have the entire system solved self-consist-
ently., Bu®t in oractice it is formidable to solve these two
equations completely for C; and %l . We limit ourseives to
the case of incoherent fluid disk which has ba = and further
treat the disk tobe infinitesimaXly thin and confined to the
equatorial plane. In nrder to hring in the last requirement

we introduce a theight coordinate! h:;qL(TWL—(a):,R‘nq(%:~Q)

and further exorosé the 3.densities ec « 8 interms of
> _ )
corresonnding 2~densities € o @3S
&y }
= B (R)S(h), X=X E(h) &= Balh) (4.1.22)

ensuring o and (3 tobe independent of R. Putting these 1n
(4.1,20) and integrating the Tesulting equation with respect

to h we get



= LTTE Rl(l-z/n] (1+R" ‘0)7’"

while the equation (4.1.20) becomes identically zero. To
solve this equation we expand the factor (1- 2/R) binomially,

keeping the terms upto (2/R)6 and obtain the solution:

p—

Lr").,
1 L —
: i s , . ; 3
' Cl]’é (=2 0y e (- 2R
wherein _
L L”B/L/Q Y 3 ) i
P o= {1+ RN T (RInw T Bifug R Y3 0T)
{1+ R R GDEELYTY 3R Jy =631 R R w0™)

+ &MLRQJ* (\w\‘w”)i] Chi-Ywor) Yew

LhkR T -
4 L L«U {‘ NERS :)“""’"” J ( (: + J?}— l-'..)é")

(1+R” Lo"' py g
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and Cqy is the constant of integration.

From the expression (d.l.24),we find that Ei has
singularities at the values of R given by the roots of the

equat lon



(4.1.26)

The second factor of (4.1.26) has a pair of complex ¢onjugete

(J

roots and one real root as given by

; - z r . ,
Reing =1+ gomyy, [ e 20™s (e wwt) 7]

‘. -
Ef"‘“‘?“‘*’ [+ 4™ Ll'ff?a{

(4.1,27)
Thus for any given value of W we can ev aluate Rsing where

we have a singularity in addition to the one at R = 2. For

R . lies for out and as {} increases

lower values of w sing

R g approaches the value 3 asymptotically. Hence we can
\),L.

corsider two kinds of disks, (1) R, < R and (2) R > R

sing sing?

+he disks in the secord case are fast rotating compared to

those in the first case.

To get the equations for electromagnetic field for

the infinitesimally thin disk considered above we also intro-

duce surface charge density £, by

s

£, = €, 8(h) (4.1.28)
te Lo L)

and obtaln

IR =0
I
X = *“”*;;( = z {—C . ar (OR*. o
et E’e’)eaa?‘f/ 2V M d g )+ = WRTh 8
3
( ﬁ)e'“rry =0,
Y = &;%-b{f% ) BTy = L*iTw(j%PiC’ -. (4.1.29;

% R‘l—



Pi.nall.v using (4.1.29) in (4.1.24) we obtain

1 -
P \{-U’O)K\JR(I (HQ“‘(Q 23;”‘ L’-DLﬁl (4.1,30)

2. Rigid Rotation

We solve this case exactly on the same lines as Tov

o Lol

case 1 with b = constant, u,q)/uo—;, Life N. = constant. We
J
- &
acv! have w“’) A2 sine () 3‘4&3 L ., The expression for

magnetic fields (4.1.15) and {4.1.16) remain unchanged except

for the fact that & gets replaced by b. The compcnents of
Lo

the electric field as calculated from momentum equations

become

— 1. ~
i =k :~(€ +-EE L7/ 2w, Ritn- =1, 9Lpl
o (% (4 > Ty =5 - o win o) ( -% ~9~2'~£_~ Sinln)
- —L
gl 2o AP T Y ug
B Y < Fa 2 ¥nt s
R J (4,.1.31)
“one T © ”"(f’*' )~~—~ xé‘lw"?’( 2o ’*/’"ﬁ-‘* -
/ b w /U R T R 0)
L s
FEE Bhet e+ (1ot b
! b 08
A —L
,~l):':&(|...£.ﬁ\ L)~M~-' s
c " o S oh &Ll g (4.1.32)
Substituting these in Maxwell's eguations, using
oK == Ak _ gt
et I P N (4.1.33)

and irtegrating with respect to h after putting 8 function

as in the previous case, we get the following expression for
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the electromagnetic field components and for Ei .

‘ z " 2‘ﬁ Y !'\Ll — o]
B i‘aL) =T "‘g__“‘ WK /™y N (3 , "(V4'11:T”<f=4)
(4.1,3%"

Vs 3 !
[y = xR (-~ o)L oty

in this case is exact and we can

i
i1

The expression for €
the inner edge of the disk very near to the event horizon

singularity point in this case is given by

1~
T
LA

—Y
W 13
(4.1.37)

K&Lh% -

Because of the nature of the velocity function i* in this

’

we have to confine only to the slowly rotating disks

Y

-

t

cas
The limitation comes from the consideration

with R_o< R _.

' “HhS fsing”

that the maximum linear velocity 1% at Rb should be less
()

than ¢, the velocity of light.

Doundary. conditions

In order to determine the constants appearing in

the expressions for magretic and electric field components
we take the fields to be continuous at boundaries Rj and Rh'
[& »

For magnetic field av R Zr Ry we take the Ginzburg-Ozcrnoil

field which gives

(y 3 - g
> - 3 i
Vs Ry, 5 % Iy (4.1.38)

To obtair another boundary condition for the magnetic field

we use the familiar results of the field in the interior of &
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circular current loop at & =T7], plane restricting only

z.pf-the-disk

the lowestorder—termsv—In-the—present—case

these fields appear as

. — n I . !
F" U‘PJ(’}) - B@ = ~AD Sing ?f (%)/Vyxg

Fo{@:m; T B Do £ 0/, 'g, | (4.1.39)
i ; ﬁ 4 N A _FY —Y Y o ot ']"’\
\\/Il‘l’\f"l n D = S(RbﬂRa)/LRb”‘Raf and T at’]d g I(‘,preaﬁz’ﬁﬁ E‘!'S‘

correction due to curvature of spacetime, Substituting

these in Maxwell's equations governing magnetic field we ¢l

ch 2 i -l
e 91 . C - . .
C{_‘}LL* ’S J Ci (J 97,) ) (4.l.4C‘;
and
d |- L | © J
i ?]__( i - "':_y_‘i ) ' f — —( -
do L SO ) T O (4.1.41)
Solutions of (4.1.40) and (4.1.41) yield
.f«/ — ¢ ! ‘,’LL»L (( DI X, ) ;
vl )y U .>“j+<z_
and
I N ¢ { 2-"‘\4 -
a = C ﬁ’b((\ —- TR M Ly PN I A ‘{% ; b, L
< g L ? ) N N m)_l+ga,ua VA
We chocse CJI = 0 in order to avold singularity at r = 2m

and take ¢f = 1 to obtain the flat space time limit (m -3 O},

_ L.
L%)P“z‘?\a&‘:: - e, D/{{’.');)L-

A%

(4.1.42)



7E
To obhtain the boundary conditions for the e€lectric

field we use the results of the field duc to a circuvlar

rnanged current loop and use only the monopole term

<,

i
'

- o)
(\" nin >‘71,}

(En ) —
. 91 g Q
<.7‘la I (4‘_’[_.‘1':\

where g is the net charge of the ring. The monopole field
Jdees not get modified due to the curvature of the space time
ac may be seen by applying the similar procedure as was cdone
by Ginzburg and Ozernoi. For the case of extended disk,

above results give

() = BTA
X b FLL,( R?— ?\ﬁ) W /

L)

L, T o, (4.1.44)

wher @

~ ' -
) b
F% 1 ( [+ Ql— ’— / e

‘ ) -

L ~ g, ) : (4.1.45

A .

for the case of divferential rotation and

IS
- ,1-‘ b
=[50 B - e 5 (0.1.46
. Qav ,
for the case of rigid rotation. In obtaining the above

boundary corditions we have used the following expressions

sbtained by elementary considerations



et for differential rotation  (4.1,47)

Pl
B
3

i

P for rigid rotation. (4.1.4¢€)

Using these boundary conditions we determine Cy,
Co. Cn
20 T3

follows:

and (& and finally the expressions for fields as

sase 1. Differential rotation
3 - A .?L 2 S
b= ;ng:;w gf / Q3::" mh 'D&&lé
. b a) ‘Dflu) o ’
fo= TR mE (-
— . (2N LA
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P\")’
oo A Y
L(cha,:).g , (4.1.49)



case 2. Rigid rotaticn
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drai, = 9,9, (4 :
-
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' = e el
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S
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> U) ~Da )<l)Lf A ) / (4.1.55)

for differential rotation and
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for riglid rotation,

From the expression (4,1.30)

poundary condition that at inner edge

-

negativ

find that for fast rotating disk (RA“> R

sing

e , and from tnre
(-]

= C and X £ 0, we

), € becomes

. We therefore exclude the possibility of having

Test rotating disks and limit ourselves to the slowly rota-

.
rential
made 1in

we have

wvent horizon., We Tind that R,l as snmall
Ci

reasonably good choice

2. Stab

disks (R < R_y ) only.

Tables 4.1 to 4.4 show €. ,

for various values of R Rb and o

and rigid rotations. Because
L
2

expanding the factor (1-2/R)

and E_ profiles

6 ™
the case of diffe..

the approximation

in evaluating @
(54

restrained ourselves from going too near to the

ility Analysis

of such

ation.

for +the inner edge.

as 3.5 is a

We shall now take up the analysis of the stabhili

disks as described above under purecely radial perturth

We use normal mode analysis and

use the variational
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principle as nutlined in Chapter 2 to examine tne criteriu
41

for the onset of instability. The equations governing the

perturbations can be obtained from the set of oquatlonb

(2.2.42) to (2.2.45) and (2.2.47) to (2.2.54) by putting

N - and F equal to zero,
\?c( S wie) , [;,D' }.D(‘R’(t?an S S (3 (8 fu

" % - . i i ;N ‘

Limiting ourselves to the case when oh = O, suver = C

and B = 0, we obtain
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and making use of the § ~functions for Q , and @ wc

o

get the pulsation equation.

ase 1, Differential rotation

In this casc we rave
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wherein

2 =20 (-Me) "

(4i24d4)

Using S :b?a‘/hf where €% is the Lagran-
gian displacemnent ard integrating with respect to time &£, we
got pulsation equation. Finally we set

Lt

o .
T )= T e | (402415)

. . . ~ Lol
and get the characteristic value equation tor 73

AT ivdc. s B , )
gﬁéj’ﬁ)gziVﬁlz*X)%{}f~Hﬁwp (1—r"h) (1-% )t

- 4 T O (4.2:16)

wherein Y = R(lmz/R)‘”’f € (r). To bring (4.2.16) into the
self-adjoint form we impose the boundary ccndition ¥ = O at
the two edgés Ra and Ry and integrate it by parts after
multiplying by (—~€;Z + X)Y. The resultant equation is
m).-uq_l/

. _,,_l P

L AT ERNNILIV P o
= Am ;L) o +><) g o £ Jﬁ“ {- “)[ §< €?:+;(}Ld(§] dp.

-1

b
e Y 2 L 7 Cy -
rerwdf g R L PG SW S TPy

4 -3¢ - g

5 T R x| de (4.2.17)

which is the variational base corresponding to the charactexr-

istic value equation
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74"\3‘4‘%5‘:1’(:*’ ( o TN (4.2.18)
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which 1s clearly a characteristic value equation of a self-

adioilnt operator.

Case 2. Rigid rotation

The variational base corresponding to a character-

istic value equation for rigid rotation is

P _ | 2
mLG.Lﬂ' 6 , - Lo, " .
- - e (i(‘ e ¥
= (%) (82 + %)y dp = i(‘“i)iaﬁ’c‘e"é”}dﬁd&
L - )

“q
I
—_ P
J (4.2.19)
wWnera21n
oz wl- 2502 o TS ey
Rl ST TR (1= -rfw?) (4.2,20)

and y satisfies same boundary condition as in case 1,

From the exprissions (4.2.17) and (4.2.198) and the
2

expressions for X. Y and @€ , we find that ¢~ is independ-

SR
P

ent of charge density. We then choose R, Rb and evaluate
i
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12 integrals appearing on the right hand sides of (4,2.17;

and (4.2.19) for different choices of W) such that R 1rg>

SaAv

e

using a trial'functiOﬂw¥w:~4R¢RﬁlmLRb~H) which satisfics

the same boundary condition as the true eigenfunctior. For
- . 2 . . s ,
all the choices of W we found thatg~ > 0 indicating thit

+he disks are stable.

T essureless

We have considered in this Chapter
trin disks of charged fluild with differential as well as

rigid rotation and have found that 1in all cases the disk is

stanle under radial pulsations. The disk which is in equi
Lpium urder gravitational, centrifugal and electremagnetic
nes scems to adjust its material and field structure SuCh
+that it can always ~etain the stability under perturkation.
We find that Ei incrcases outward while electric ficld winich

is directed radially sutward, increases in magnitude as R

t
-
)
|
0}
»
1))
6]
P
]

=

magnetic field always changes sign as we g-

from inner edge to outer edge srdicating its role as a confi-

rh

ning field. It is important to notice that we have several
examples of disks which have their inner edge well within
6w and are stable under perturbations. This supports our
-

view expressed in Chapter I concer ~ning the eignificance of

ceneral relativistic effects in the study of disk structurs.
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In this analysis, though B, = O along the equato-

1

rial plane Eﬁ:ﬁnlz to which the disk 1s confined, it shou.:

pe recogritsed-that B field-outside—the—disk—(above and

below E521T/1 plane) will give rise to vertical forces which.

in general, compress the disk from above and below, These

e not affect the perturbations in radial direction but could

give rvise to plasma instabilities like 'pincn' and 'tearirg

for a general perturbation.



Captions for the Tables

Profiles of velocity electromagnetic
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fields and density for differential

and rigid rotations.




Table 4.1

et

[oaY

Differe

ooy 3
nti-ald Rotatio

17l

= 0, 037

R 2.1, Ry = 10.0, 7
R v Y X e, /10°
3.5 0.13 0.0 -0,99 0, 0L
3.8 0. 14 0, 37 -0,83 0, 05
4.5 0.16 0,90 ~-0.65 0,15
5.1 0.13 1.27 ~0.52 0, 3L
5.8 0,21 1.57 ~0,41 0.52
6.8 0.24 1.92 -0,26 1.2
7.4 0,27 2,13 -0.15 1.58
8.1 0.29 2,32 -0,04 2.49
8.7 0.31 2.51 0.08 4.27
9.4 0. 33 2. 68 0,22 9,18
10.0 0. 35 2.86 0. 36 77.88




Table 4:2

Differential Rotation

R_ = 3.5, R = 50.0,(0= 0,003

a

V10 Y Xx10 €,/10°

0.11 0.0 0,62 0.56x10°°

0.26 0.61 ~0,42 0., 04
12.8 0.41 0.91 ~0.41 0,14
17.5 0.56 1.18 -0,38 0. 34
22,1 0,71 1.46 ~0,34 0. 68
31.4 1.01 2.01 ~0,23 1.33
36.1 1,17 2,20 0,15 2.91
40.7 1.32 2,57 -0.,07 4,18
4.4 1.47 .85 0.03 5.78
47.7 1.54 2.99 0.08 6.71

50,0 1.62 3.13 0,13 7,775




ooty

Table 4.3

Riaid Rotation

2.1, R

= 10,0, = 0,031

a b
R v % X €o
0.1 0.30 0,0 ~0,34 0,02
2.9 0.16 0. 44 -0, 43 1.30
3.7 0.17 0.74 -0, 46 5.14
4.5 0.19 0. 98 _0.44  12.44
5,3 0.21 1.21 ~0.38  24.64
6.1 0.23 1.43 _0.31 44,19
6.8 0.25 1.63 ~0,21  75.78
7.6 0.28 1.84 ~0.10 130.0
8. 4 0. 30 2.04 0.02  237.5
5.2 0.32 2.23 0.16 537.5
10,0 0. 35 2. 44 0.30 5567.0




R =2.1, R =50.0,l)= 0,003

v Y X e,
0.003 0,0 ~0.19 0, 01
0.2 | 0. 40 ~0, 35 13,87

0, 04 0,70 7-0._35 8L1.39
0.05 0.90 ~0.34 247.9

0. 06 1.27 ~0.30 572.9

0. 08 1.57 ~0.26  11.50x10%
0. 09 1.86 ~0.20 21, 56x10°
0.10 2.14 _0.14  39.96x10°
0.12 2. 43 _0.06  78.70x17°
0.13 2,72 0.02  15.68x10°
0.14 3.0l 0.12  1l,77x10°




CHAPTER V

Peniiiaremamamsesnt e ety

| STRUCTURE_ AND_STABILITY OF ROTATING THICK DISKS ARQUND COMPACT

OBTECTS ;NEWTONIAN FORMULATTON,

In chapter 1iv we considered pressuraless infinit-

csimally thin disk confined to the equatorial pléns of a “chwar-

schild black hole, Forces other than the gravitational and cents
rifugal were the electromagnetic forces generated by the charges
residing on the disk, However, if the pressure is not zero, the
oressure gradient forces will cause the risks tobe thick and

its structure off the‘equatorial plane needs tobe considered,

In chanter I we have mentisned the work thne by v arious author-,
nn thick accretion disks, Thick accretion disks seem to be phy-
sically more nlausable and as such we present our studies of
thick disk with pressure but with zero charge density. Presently
we study the disks in Newtonian formulation (Chakraborty and
prasanna II, 1981) and we shall consider the complot@ gencral

stic discussinn in the subsequent chanter,

fand

reLativ

L. STEADY STATE SOLUTION,

We assume a non-self gravitating perfoct fluid disk
ar~und a compact object of mass M producing Newtonian gra-
vitational field., The general sct of equations governing the
dynarics of such disks are obtained from equations (2.2.23)
to (2.2.29) and (2.2,27) by putting € =0 | r.—»<0 and are given

by the momantum ccuations

- N S -
e[po™ Mo O YT ob
Dt nt e ,J”‘ on ? (5.1.2)



-" Ssine 20 (5.1.3)

and the continuity equation,

%y 9% 4 . Gina 198) . 7)(_9?72‘_;,_3_)}1 —
Laz}?m( ") sfmeB@( ne vt 55 _$\ “De "9 (5.4

whorein the rate of change operator in the present case is give

by
19 2

e it

Y
—_ O . S
—-. 2 4 1& T O 4 - S

P ST R 38 0 htine 2¢ (5.4.9)

e further assume for making the svstemdoterminate, the equatisn

of state as expressead by the adiabatic law (cquations 2.2,37 and

(5.1.6)

fis we assumer! in the case of chargzd fluid disk

(chaptor iv) , here also we shall rostrict to the casce of pure
i Ea C

rotational flow os cxoresscd by %30”&:43 and 1%%9- 5 and ugP::“U§

Further we assume the disk tobe ax isymmetric and therefore the

steady state oquati@ns arce given by:

£ Mo Uy 1 b

L 7L . '”*" o (5,1.7)
L :

€0 Cor o ,%g ) (5.1.8)

romaining equations being 1 identimlly satisfied, Wwhile solving
the steady state cquations for charger fluld disk we ghose

the volocity distributionad the charge donsity and then calcu.
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1atod the remaining steady state variables., In the orosent sro.

blemwe find it more convinient to sclect a donsity distribution
ar? then to colculate the romaining veriables amearing 1 the
steady  state equations, In the case when € is indepoend.nt

of & #these cquations may be solved exactly, Thus considering
o ' ‘
0 o=

o= Gl | (5.1.9)

cquations (5,1,7) and ( 5,1,8) together give the equation

|
|

-0 J o

ve Ty - IR
CUn )+t @ gp (GY) =0, (5.1.,10)
whose solution is given by
— XN c,f;*’\K@
B T (5.,1.,11)

K being cunstants, Substituting these in (5.1.7) and

et H9LK’4%{rJ;@,~ ﬁigiﬁ? ) (5.1.12)
P A

a o) ,,. - .
- AR Cm«u%rm ¥ (5,1,12)
solution may be obtalred asg

,/EL Ko ¥ea _ g Pd?l.,__ »
bn - RN Ln ™ H f‘(Jm,_ Q;‘\—):‘A + R (f"’,l,l/—"’r)

il

for K # o . For the case k=0, the oressurc is given by

b= Al (fisine) »f\ta{f’g:&“‘ o B (5.1.15)

o

Rssuming

(5.1.16)

. . ~ 2 S S e et
wﬂ@rcln-hﬁ(:_xqgufal~), 2. andfarc constants the expressions



for é; are given by
: >

e, M(;'L, Q_ z’:’ﬂ :L\l o K, . Kq (oL pooef i s
Tt (U TR Ee A | IR ACE Y
2 '
o Mef ) \
T e (e-y t+ Al (Bsene )t B, L4 ,K=0, (5,1,18)
M G, A K. . N g oo
-V +-— ntenforp, (=1, kg0, (5.1.19)
. M6, G ‘ .
b= Alulsine) + (A=) n +B, L=} K=o, (5.2.20)

. ]
The special case when k=-2 and & =0 , corresoonds to that of

Fishbone and Moneriecf., The whole class of solutions abtained

bove arc all physically plausible provided the pressure satisfics

he condition « ~  throughout the interior of the disk and b0
> O E
[ - D

1l

_over the boundary, The constants A and B may be obtained by using

*he relation ﬁ::%pat’_%ﬂ_and Ty the inner and outer edges at the

slane B = /2. and from > we can obtain the condition
s O
T?ljtlﬂﬁ}K‘an& L . Fvaluating the constants thus, we have

the pressure glven by the oxnressicns

L P‘“ T Sept o at ’)P sinbe — R* (b c¥)
Cl’ ()(_L ‘*a_‘ Z,
7 &, Gy
o T C o — PR
+b L o b i ) Q#i/&\—.ﬁ(’)/(5.‘l.21>
bc < 4 €
Pe = S L At e fRsine) - & (e
- (ﬂ U(\(U‘“&*—Q_(O\J L~ ) ‘[‘ " a/ R (UJ«;L "G,(C&)
(/l--— i’( i_) —— (("_,l_( 7% e_'_'t: i/ }/\;O) <5.‘]‘l22)

[ € Kk
=50 ,fgf)-ﬂi sin @ (L~ Cua) (S ak)e R
+ bl —af b g (=1, Ko (5.1.29)

/
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and hﬁ:;a for € =1, k=0, In the abovo R,a,b arc dimension.

1@55 guantities denoting %{jh ’ahlth and?%/n7rospectively, In

order to got the boundary &, of the disk off the cauatorial n»lane

wo solve these cguatlons # — ¢ for sin@g and thus every ‘%
(‘\' .

we got Se  and (M- @, ), corresponding to the edie of the

disk in the meridional =lane, Finally using the co-rition that

b > (& throughout the interior of the disk we get the critoerion
o s

connecting k and £ as KL - ., If K=¢-} then it
follows immediately thd p ), 8 = T?i,and

e MG '
V.= 5 (5.1,24)

showing thot the disk is a pressurcless thin disk confined to
the equatorial nlane and hpving Keplerian motion, a well ~known
result., Thus the non-zero -ressurce would definitely roquire a
structure off the cquatorial »lane, As € and k are then
ralated through K < (—| , taking (- — K+ %1 , D
being a positive rcal number, we can write the velocity

function tobe

1. P%Gn
U = p‘(.. ) tn o (5.1.25)

where the constant 'At for the three diffcrent cases is given by:

/..
K b L—t“ {,;L(, | \ |
"'\ R et D= o I/:« "j; - P i
f 0 é KR - ak ), F o, L+ ,
ﬁﬂ; mt'g |
| b —tal K=o, Ly
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In order to discuss the stability of tho configur-

B4

atisn wo perturb the system and considor the cguations governing
the axisymmetric perturbations and cerform the normal modc ana-

lysis restricting the perturvaticns to linear terms only, The

general orscedur? wo use is as given oy ChaﬂLPasekhﬂr and Friedman
(T,IT 1972) and as outlined in Chapnter II., The complete sat of

:wations governing the perturbations may be eobtained from cqua-

tions (2.2.42) to (2.2.44) and (2,2,46) Wﬂlch in the Newtonian

el &b Lusuel, selMa Yol 2 gy
Lot L I L5> S T TR ) (5.2.1)
¢ E”'E@ =Ry st 8 .
O}.}M’f . -+ , “LUreE — | *‘3C"T 3 b (5.2,2)
- .08 T
D ¥ 1 [%e .
P 6&9 o ,___.__(.._.__.- 9 l §.9'° 19 hw_ =
Y8 A+ v + 0, Co¥ 0)5@ (85: ng)g@ =5 (5.2.3)
{ [0.1- L97‘1. l ) T
e .0 + " iy ) - N &
D{%lf'o%\ J? ,) ?‘{_S’ih(’) ae(ﬂ,i’\(ﬁgv ) ;
N
- .0
VS, SanDP DO Y0,
) ) Badiniidt e Dor— A
+ at“ \ "‘{’d@ T t ruy -ae U/ (5.2' )

whereas the condition of adiebaticity glve -

2 o et 5 oy Y F0®
L (esp-Xpe. bP)+0U t%&pe )+~« 2% (R e) = |
Yo introduce the Lagrangian displacoment g' (y =6 through

tha relation

o

d ) : LT &
; = 8% mopt)=F 26 e (5.2.5)

Dennting the perturber variables to reprecsent orly thelr spatial

narts we obtain after some rcarrandgemont of terms the following




sct of equations governing the perturbations:

g (§ f NG e ;
290 o L [2% L ag T (29, Uayehe
72——(.()@ 4 <..0~<." (_9-0) 5 ... }?‘L 1 ,'L.J> i\ ; (5.2.7)

en}’ L ...-—( 2 S-JL) ..,_____‘_ - 9 (::C}; "affb :i_?i _"'gf U“..cr . . .
e i ta (8 S S T 5 (5.2.9)

™~
’ 6 2 P’é\'\‘x? ‘__‘9;2.()/’ K3 Bf%
i £ 5 gt e e 2D 5
ébo‘ OIS Sy T %o 4 (5.2.9)
B = . L
~€ 5 g 20.0eg Ma _ Ba\sp. 2.5t 5,0,1
3 - S = - X // - T ] oy O
® F2 <P“‘ ( Gy & ) - Ir s ( )
gt e 2P G, o Sed, BE L aCs 1D s
. o RS = “ia Coiy & ’\(_9%’ “*'(.«’l'edﬁ)*""?*“ 6! . 1
c g Y& QG T4 g C w35 CP (5.2,11)

Equations (5.2,7) to (5.2,9) arce the initial value equations

obtained after integrating once with respect to time while

(5.2.10) ana (5.2.11)_are the pulsation equations obtained by
putting the form (5.2,6) for the time dependence of the Lagrang»
ian displacements, Equations (5,2.10) and (5.2.11) have tobe
solved as an dgenvalue problem consistently with the ecguations
5.2,7) to (5.2.,9) with proper boundary conditions. Equation
(5.2,9) being the condition of adiabaticity, is identimal with

2N

(using 5.2.8)

wherein A b and A& arc the Lagrangian perturbations in p and
€ . At the cdge of the cisk we need the boundery comdition
Ab=o, vhich is satisfied by restricting <X and their deri.
vatives to remain finilte everywherc,
. Follwoing the procedurce of Chandrasckhar and Fricd-
man ( loc.clt), we multiply the dynaemical cquations (5.2.l0) and

-

(5.2.11) by $%  and €9 resnectively, add them and integraote




with respect to %y and @  over the entire region of the dislk,

Here 7% and €& are the ftrial functions!' which satisfy the

pu R

__same _boundary con i tions as the

true cigen functions 'Q%f.,and
< but otherwise completely arbitrary, By performing several

integrations by narts and using the steady state relations, wo

can then bring the resultant cquation, to symmetrical form in

Farred and unbaorred Jisslacements, as given by

P tontsine (Prans o go)dn e

e Jg 2 QJ . U, SLh (3%( ol

Peyenhen | WwigfaGs VT D el
o 7}_)%{ g? 7 T \/:(;’Z{ -\“:/U:}‘f“)w{\)BQ? .
The
g caa(Feser T {dncte ~Maf[Ue wno Frsdrels
> PYes
L ¢ 2 e DO €e ¢o e, ! -
%'J( U8+ 8in @(4 élgh?(jl + 2 cae %’r‘f‘ gd‘hcgc

- . M{:} ~
— .~9B ($cne E° )5”‘ (sine§C) {
Yo O g

jetiet S
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. e [N o
4s shown by Chandrasclhar and Friedman, the symmetrical toom of

b . 3 . = . . ’" ~ - . , _.r . , .
57+ cquation imolics a voriational principle; for identifving

iy

_ . . w 2,
Tet  with ¢el onc can write the following equation fop g

o l}TC Blsin O € w0 )dnd e

o
h 2 ~
{ e {/v 1_9,5 ,)L = lf_,é/} C?: :‘) 9 & p - :2‘_
&(Z(’ U 91_4(.'"\\,15(\* 4+ «9‘:)6 -+ "--72':' “B;;“ - L} &1, ) £
J D4 ore”

"\'/%%f’c ey & f ™ z (’\g/ {‘:""; de — ™ (A,( g:{’ Sn & %77-* 5{?1_5[’ &

&Un &

ITre . ;, 7 { N 2
~i(€ nlino$h 2 —"‘ hp’_/\H«;h‘w“?e 2 (—~*- 0’ )jdh((é

d

W
U
(‘\

i~ 5~ﬂg’ba r C)‘ e )2- ’)113 “
- — 3 O n £ Py L) ’__(c ara :
J ‘I£,h} h@ibhtﬁ f’)s-%,ﬁjiaﬁ%_< V Lh S
e § L (gt g £9)4 “la {% o6 - 5 13
3%.-;,@169 B “e . (5.2.,13)

e R"'\v

Now if onc cvaluates (5.2,13) oy two trial disnlacements % and

1. = o ,
'€“+§EESUuh that the resultant varietion in g~ is Sga % and

?
trace back the calculatisns that lead to (5.2.12) starting

from (5.2.7) = (5.2.11) ,one gets

E;Q“lgffgﬁﬁ Soh & (“ﬂh 4*‘?9 )CifL¢(é>

EXS a
o :—}—;;Lgb‘\ C’t‘;?,(:[ (; 4 j,( —2 S T 9 ‘g.[-_h @ ‘ 6:3 U-«L-? >

f -

= [~ 288" s ol Cargh 2600 50 (He vl se
-
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4 “coaan bt 4 Ys 28 ,
4 K wno bt 4 ‘.‘}1 Cor &SP — 91 B?T} {:; dbhd b,

... , - : ) ) :
is clear from (5,2,14) that demoncing 00 = O , mounts to

solving the originsl eigenvelue cquations (5.2.10) ana (5.2,11)
alongwith the initial value equations (2,2.7) to (5.2.9). To mcoet
. . ) e oo
this reouirement we choose trial functions for 7 and %~ whibh

satisfv the reguired boundary condition and which have adjusts-

able naramotres r«‘(/‘\3 .. . otc, We then extremize & as obta-

inad by using such <€ ang <& in (5.2.13) , with rospect to

the adjustable parametroes 04\’(3,_ ctc, Roewriting the equation

: 8.
o 4 .- » . 0 0 — ~ kY v > iy
(5,2,13) in turms of dimensionless quantities R, ant \/D(—*))we cot

@Z-G‘J(f R sime (T T0%) dRd.e
J

”— \ DVa , Ve '«::72. oEs - b E_ ot 9b)
“j 26\, Reen e(ﬁ” :2\) akém 8T - R S e (,\( R )

PN _
+V, Rsn6 37 = «ldqde,;,“,a{’ V, o E.V_z + (&Y B Y, ) ?ﬁ}”

s

>
€9y (1 Tabe s T |
—%n"e 2o S-f—— P> 5 € '. ’ AV L =
L aer(&mn@ w4)+ Vs V.Gs@ 26 z;’{( fo 4 j([”lfﬁ\/@ Gsy 8 '?h% “

2P D (g en) eB) 4. 2Ps D eny D ,
S (R (50 FO) + TE 5L (REM)(Sen 0 T9)
-~ . . 7 — ¢)'
‘r“‘; (;—L-—' Kl 6 53¢ \dﬁde +‘(~f( ..... (h & B-(QH:"))’ _“‘!j‘__“..« g
¢ - O sth ¢

)L -
W j "“(3’“ ”433')3,’*” ?“'bb = (plwﬁh') Sl sen 8 tf'qugff(ﬁn(

L R DR

28 RC™ ok A (5.2.15)

In order to evaluate 55“2’, we chonsae two kinds of trial functions
ol

(1) with fixed boundary, i,¢. the Lagranglan di splacemints 3

va-ish at the boundary and (1i) expanding.or contracting boundary,
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{1)Correspond ling to the throo difforent tvpes of solutions

(H5.1.21) = (5.1.23) , wa choose a function tgf

O e S S P Y oo/ R E»:, Y {7 Cf |
2 R E Q}‘; (“ { -t li\) | )+ .’L} KF#0 , (5_2. 1e )
- < A 2w 5 R L 3 R 2
4 = Fn @ = Bpfe e = o haky {F1 K=o (5.2.17)
1 )
ot i .
C| ey N A '3 . o
L{ 8 — ’ QK((MR L))’, {-'“i k#__O ( .L‘._;)>
which vanishes at the boundary and take
ol " - (3 » N
g 1“V*%@%, $7= §+89 ) (5.2.19)

wherein . and A are adjustable narameters determined by extro-

- : . ~ b . ¥
mising thu exoression for a” . with this choice of §1Land

e
$ in (5,2.17) =@ evaluate the critical value of adiabatic index

i~

- 3 . 1 » .
Yo, for o *=p , which would jive the neutral stability,

(i1) Ir tho case of nonstotlonary boundary we first consider the

case of radial perturbation with S =0 . The equations governs-

ing such radial perturbation arw nktained from the original

sot of equations (5.2.7) to (5,2,11) as follows:

Cig 2. (Fa
¢ -9 l ( 2);7; +- K';w,. )’fg”b"

) (5,2.20)

Lg“(? . - éj___ (%L.@r\) =/\/B(’

‘h}«-})n 2h ? (5.2.21)
- .('-,,. ,_’_ N . L )L n }‘ . .
Op = —the 2 (4> €M) €7 2b (5.2.22
| eyt ) ey (5.2.22)
-
gt 26050 M6, Veho, 2 &
? P ~~—;}:*“ é&q}“‘“ (”’Z)L,._,_" - h—~fé€~ﬁféls"' (5 2 23)

€z>(90 D 2 b
50 P qﬂegc__ngégb::a (5.2.24)
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Using initial value equations (5,2.29) to (5.2,22) in (5,2.24)

!
_ and assuminggtobe a function of N only we obkain the differential

i equatioh
- [,L‘ " L":)h ) g - ?L — N
(1-¥) & (g™ s anth =0 -
_for *’5« , whose solution is given by
.LL“Z_:::{_

L«‘Wn c (5.2.26)
where Wq/ is constant of integration, Using this solution
for é’h‘ in (5,2, 93) W g2t
_(D»(—JL—;'?Z_ i~ S MG ( gj"fﬂ‘«s )

- ‘Y\Q- | (V““,..() IJ
+ Rsinte BI=SI(K-k+27)
K-> -
+ {’ L.t.:_,?:f A l__w__ 3?- ‘i -/ ,-..‘:..Lﬂk
Tl (=1 (€~ ) o
J
L+ A./K-:OI(5.2.27)
(T
+ 2 A Lfnsin @)ééiég; e (309
(£-1) )

%—fh’ﬂ—l’—i‘fw 21 LIS (-0 bz br
Ly= 7 iy O H’L 0 ¥

LFL K=o, (5.2.29)

ot = CeMa Car(atg) 3
L (=2
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+ B Sin K@ \5‘\(:*:__)( Ky — K- Q\f) K

K(r-0>

—

=1 kzFo. (5.2.29
For the succial case of ordinory ges with = S]g

cruations for (rl« reiluce to o a very sim 1o form

MM 0)_/{/]7,3 (5'.2.30>

stowing that the disks are strble with tlocalt froquency being

. =3, : :
sroonrtional to irrcsocctive of the other parameters 1like

ﬁw k, a and b, Inci entally this vailue Af Y= $/3 mokes the
function ﬁuLtobu: % which is cxactly the form as used by
Bisnovatyi~Kogan and Blinnikov (1972) for analysing tho stability
~f thin gas disks against crnansion an: contraction, It is
dnteresting to note that the froquency obtained above is also

the some for tho radial oscillation of a Qressurgless disk

confined to Griﬁ/l‘planq and is Keolerian motion with = ﬁq@/h,

as may he secen from cquations (5.2,20) to (5.2.23) w1tquu;O
To coansider the stability with nonw-stationary

bou-dary and with axisymmeuric perturbations wa choosc

5= R+ -Lq, LR LY (5.2.31)
evaluate o * as given by (5.2.15) and calculate Tal_by sctting
@’%;O af tor uXteriZiﬂg it by adjusting o and B as i~ Cho
case (i). From the exoressions of g 2 in all the above casc

w2 Tind that <YL'is indenendent of the constant €_ which wao
‘ '

"
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taks as unity,

Discussion and Conslusinns,

1

A thoatoneral saluybisn-ohtained
s L s

A above rofers to
a class of solutions with naramoters { and roferring to
cifforent donsity and relocity distributions, we have consi-
dored a nunber of casaes f9r various values of £ * for
different cases of disk radii, The thickness of the disk vary
from case to case deoending upon the density and velocity
distributions, The genercl structurce of the disks are nrosons
ter! through figures and tables, Figures (5,1) and (5.2) show
the u=-ner half of the meridional svction ( ?L g ) vplanc

far two tvsical cases with (i) a =4 , b=20, L =1, k=-1 and (ii)
a=4, b=10, £ =0, k==2, For these two cases the corressonding
srofiles of =rossurc, Consity and velocity ds a function of
the equatorial distance are plotted in figures (5.3) and (D.4).

1

Study of number of cascs for the disk structurc
revealad that the maximum thickness P\m ( F\m:: R (a3 éﬂ”\,,_’ém,
beins the minimum valuc of € for a given disk) of the disk
as well os the shane change with the volocity (n) an! density
(&) nrofiles of the disk, For a “isk with a=4,b=20,plots
(5.5),(5.5),(5.7) and (5.5) reveal the naturc of such changues,
As may be szon from the nlots (5,3) and (5;6) the maximum
thickness incrcases as fn' incrcases, which is in confirmlty
with the kaown rosult that disks with larger angular momendum
are thinrer than the ones with lesser angular momendum, /Also

as regard the shape of the disks tho maximum thickness occurs



nearer to the inner edge as 'n' increascs, Figurc (5,7) shous

the variation of the maximum thickness with the donsitv distri.

bution for different valucs of n, As mav be s2en the maximum
thickness raises slowly as l increascs, attaining a maximum
around € =2 t5 £ =0 for n=l to 7, ant then falls off rapidly
as { increascs, which is consistent with normal distributions,
fis regards the onscet of instability, as we remarke:
bove we evaluate thoe critical adiabatic indax YZ 5 by setting
GJ’:;O for different values of a, b,.n and £, Tables (5.1)~
{5.6) show the values of Y. (we found that {"< Y. for the
instability) for different A , N, a and b, The tables aléo show
the value of the ratio of the kinetic energy to notential energy
(j;fLLy\\AJ; ) for each disk, DNormally in the casc of self-

gravitating fluid spherc if therc is rotation then the criterion

for stability differs £ rom f':»Lf/g to YVM-QIB - Jefgyi_rﬁqu\ 

.

(Lebovitz,; 1970) showing an increasc &n the range of stability,
However we find that there is =0 such sim»le relation connecting
*CL and the enerqy ratio for the case of rotating disks, The

critical Yx however has always been less than 4/3 indicatiqg
that alt the ceses considered hero corresnond to stable configuw-
ratio~s under axisymmetric perturbations,

We have thus fou d thét ordinary perfect fluid (Y~
= &J3 ) disks rotating around massive objects are stabler
under radial pulsations with frequoncy,l?{&]%? (Kato and Fukuc
(1930) and Cox (1981) have also considered tht local and quassi

radial oscillotions of a thin gasous disk in Schwarzschild back
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greund, when Pbéx\fb,;l~ Y., 1In this case the boundary could be

expanding-or-contracting-as_yiven by tho amslitude function
b ) = 7 - -

oy , . . .
‘??E:Y}ﬁl ~n the other hand 1f the nerturbations are axisymn-
-~ 7 * .

ctric tho criticar Y is much less than 4/3 thus indicating
stability of sqch disks., From this detailed study, it anpears
as though that the dynamical configuration of a rotating disk
around massive objoct is similar to that of a sc f-gravitating

fluid sohero,



N

Cantionns for Figures and Tables,

e,

Upner half of the meridional section of the

Figure 5,1
disk for a=4,0,b=20,0 { =1, k=-1, The shaded
portion is the section of the central massive
object with R=2,
Figure 5,2 : Same as figure 5,1 with a=4,0,b=100, { =0,
K==2,
Figure 5,3 ; Profiles of pressure, density and velocity
at e:fﬂ/; nlane for the disk described in

figure 5,1

Figure 5.4 ¢ Profiles of oressure, density and velocity at
@1;ﬂ/) nlanc for the disk described in Fioure
5,2

Figure 5.,5.; Maximum height h?n:,R\Q&SBW\as function of n
for different values of € for the diskth
a=4,0, b=20.0.

. 0 o . ' ~ .
Figure 5.5: The distance R = Rsen ©),, of the noint

where the thickhess is moximum as function of
n for different values of {,
1 € : e Moo S ey -4 J —_ D Frym b5 e ey £
Figure 5.7: Maximun height hy = Regif,,as function of t for
different values nof n,
Figure 5,3: The distance R = R $in On, @as function of L

for different values of n,
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Table %,1. Ratin
1 7‘,.2"’”/_\/E JR N o3 RN )
e ST P W ae ‘o Tordiskwitha=a1m , b =197
e oo
=.3 and different es of ‘
¢ S and different values of n, YZ, refeors

to the case v -~ € rj?‘.. 7 . - G
LG 165@ ¥h.@an S - \,b 4 o CI/ and (;'\(3_:

N r M N fad '

Y + § 4" while YL refers to the case when

)
(5-"2/ ~ .
3 Tz K+ oo <8 . p
> PR @ﬁ/
Tadle 5,2 -« : Same as table

5.6 :
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a-=4,05 b=190;0&—==3
i T
L Lo/iw S
o
L 0,037 1.07
2 9.7 32 1,04
3 0.005 1,02
4 0.003 0.96
S 2.002 0.89
5 D.00L 0.83




TAR
g L

]

a=4.0, b=109,0, 2
n T ) { Y
L‘f LL
1 0,15 1,05 1.10
2 0,050 1,06 1,17
3 0.021 1,02 1,11
4 0,011 0.95 1,04
5 0.6 0.89 0,97
5 0.074 0.83 0.92




TABLE 5.3

a=4.,5, b=120,0, L

m \ ﬂ}/}vjl ?;l YzL‘
1 0,35 1,00 1.09
2 n.13 1.04 1,17
3 0,054 1,00 1,11
4 0.728 0.%4 1.08
5 0.017 0.88 1.04
6 7,011 0.82 0,99




N « ‘o
1 0,63 0.89 1.04
2 0,24 0,99 1.16
3 0,10 0.97 1,15
4 0.052 0,92 1,11
5 0,031 0.37 1,07
6 0.021 0.81 1.04







TABLE 5,6

[nTEy

a=20,0, b=116.,0, L =0

W N

n T 1w 1, T
1 1.0l 0.47 0.54
0.7 0,76 0.94
0.49 0.85 1.04
0.34 0.86 1,05
5 0.25 0.84 1.04
6 .19 0.81 1,02
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;;;;; CHAPTER VI

STRUCTURE AND STABILITY OF ROTATING THICH DISKS AROUND COMPACT

OBJECT: GEMERAL RELATIVISTIC FORWMULATION ,

In tnls chapt=r we present our studies on the
comnlete geoneral relativistic treatment of the stpucture and staw-
bility of thick disks around a Schwarzschild black hole |
(Chakraborty & Prasanna III, 1981)., The same problem in
Newtonian formulation was presented in chapter 5, One immedia-
tely realiscs that the Newtonian treatment is inadequate when
the 1nwor ecdge of the disk is situated near the event horizon
and one must go over to a general relativistic treatment of
the proplem, Similar to what we assumed in the case of Newto-
nian treatment, here also we Considerer a non-sc¢lf gravitating
nerfect fluid disk rotating around a ®mmpact object of mass
M which is now treated as Schwarzschold black hole,

1 ,STEADY STATE SOLUTION,

The gencral set of cquations governing thoe dyna-

mics of “he disk can be obtained from equations (2.2,23) to

~

(2.2.25) , (2.2.27 ),(2.2.35) and (2,2.37) by putting £=¢.
We 1limit ourselves as beforc to the case of an axisvmmetric
disk with pure rotational flow in steady stase, The eguations

govarning the stcaﬂy state are then

[

. Jal- '
(€.« )“M_ - (-R) Y] = lm)(n 25 )k fon
~



£ = )ede v = (l'w« 2"“,

(6.1.2)

other equations arc indentimlly satisfied. The above two equations

S

[¢}}
3

o

o solved exactly for a special case of (€, = constant,

Using this in (6,1.1) and (6.1.,2) we obtain

Cd¥ e%;;:u') \L\\@ (,9 + o3 (‘ /l, ’ OL, LD O) (6 .1 .3)
whose solution is given by

18’\ \
pro rA (- 2R /ntsinte (6.1,

A “2ing a constant, Substituting this in (6,1,1) and (6.1.4)

we et
P F%'c.l‘(%%-.ﬂ'—‘ - All-1m i\ D f
)Lm—”‘ L m = (- (_,___/LL))( :A)__L’
LERTRE Nsinte SR
(6.1.5)
‘. bo )c’ "QP‘,{L ) et CA(=2hys) )?’Jt.)_‘i
Vol o o N wiante e ! (6.1.6)

whose sclution may be obtained as

. L
by _ 1 L
o BL ) ?z’*sm o] -G (5.1.7)

wihere B is another constant. Using the boundary condition

b -~ o at FL and ‘hb , the inner and outer cdges at the plane

e = T'/L, we obtain

A = 2 nsns [ ety ) (-2 (a2 ) (6.1.5)

and
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and

S ST .
U‘fﬁ":f;)("‘q'e‘ = (’ )\oe y (6.1,2)

_other equations are indentimlly satisfied, The above tws equations

~senbe solved exactly for a special case of € = constant,

Using this in (6,1.1) and (6.1,2) we obtain

Cr e - 7% 5.+ (‘ o) 56 D, (6.1.3)
whose solution is given by

L a a (. ~r’h\

{‘/L‘;:L AL’ /?- Sﬂ'—f”@ (6,l.4)

m “eing a constant, Substituting this in (6,1.,1) and (6.1.4)

we et
"/6 ‘-’o)i nl.c,l: ,_A(l -l)’h/?)_ )(l Ly BP“
e k)8 JCLIPIIY
NEsinta 7.
(6.1.5)
b Al SR ) =2y 4 2b
(t 4_.‘1)(‘;{1@,__‘;** - M:(’N/At(_ ‘ /’l))i”i )
C,-L alz_%ix\l@ .,b—l—-%,Lh l’(‘j \é I (6. 1 . 6)
whose sclution may be obtained as
' - — L
Ps  _ |,.],‘_D1 ~ A ]~ ’

where B is another constant. Using the becundary condition
Lo a e 1 ) and nute d e 1t the lane
bO:-CD at 9La,“ﬂd ‘hb , the inner and outer cdges at the plane

Tr/L, we obtaln

c -
A = 2 71:; h(t/z(%a—}‘b_b Whe-2m) (97_&:_)_ ) i (6.1.8)

and



|

/

B= & LL ,’*b“’*% J(FLp=2m) (g -2 { |
RN (%rz—m)-hd(ﬁzb»iwj . o (6.19)

TIn terms of Tthetdmensionless quantities Ry a and bdenoting
resoectivelyzvnm hﬁ/n\, %%/Yh , the steady state solutions

read as

E’Q = Congtont

(5 ) - JJ.:::iif)_ )

e R fuw o
L
™ . ~| L
b, — flas 2 N _ A ,l]
II)_ — . b <f-—-..—-—~) ﬂl; 3 i
cx °h~ i; R REstnbto B )
wherein
ACL

A (a+b)(u (a-2)(b-1) ’L

(b,a ) b-2) (& )_j] -

B =
The solutions obtained atnve are physically
accentable 1f .h;><b throuchout the interior of the disk and
if it goes over to zero at the boundary, The former condition
leads us to the constraint that the irnner edge can not lie

within 4 and further

b > 20a-y) } U h<ace (6.1,11)

There is not restriction on the outer edge if CL 2z ¢ . The
later condition gives the edse of the disk Ge ( andT —)

on the meridional »lane as
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o - -
g,“’y\ 6/; T er——— ,“__.-.‘,,,,.____.:_.. -

Figures (5,1) and (6.2) show the meridional section of the disk
while figures (6,3) and (6.4) show the profiles of velocity and
pressure,

2, STABILITY ANALYSIS,

We consider the axisymmetric perturbations of the
disk as described above and use the normal mode analysis res-
tricting the oerturbations to linear terms only ; tho general
procedure of tie analysis remains tho same as used in the
Newtonian casc, The set of equations governing the perturbation
are obtoined from equations (2,2.42) to (2,2,44),(2.2.46),
(2.2,55) and (2,2.55) by nutting Eo:‘o and S€ = o .
Defining the Tagrangian disnlacement ??m"/ <0<==9L/€5)

through

. ‘( W { ) LO’ t’
é;uf*z.21§> = (7iy9/éj - ??\(7lle)~2
)

e (6.2.1)
. obtain
(e ’D°)SL9““—» ¢ Yo s
ot = TR ok (6.2.2)

2¢ = (e + )\/‘_Lf (‘bﬁ'@’t) + %%ineb (gme“g'@}]

o
25" ¢ S s }:}
J-““*%*«T?{sf”»l 3° §~—f”~
cH { \r—l = 'BTL—}’ . DO (ﬁl‘) (6.2,3)
Q.

Sn = - J“kgigiﬁthh)+wm;;e%é(Sﬁw9fe£z



ios

..»5? < - h-_\oha i‘GBhG
AR o h "Se‘\,
*’((’c\&i——)..%i,bp,;.\gg\)? b fi_e«ﬁ{‘%jws -
> O g;{*nmf J’{Z(@.Q.q)
Lo Th
bb - *—V’ngn ”\}'le\rﬁ— '{Q'BF' + S‘_.e_a#"i
) { < 92’ N e
aTe &
P, .-E &
4+ 1P S [T e N, izm{
R AR R Vi v (6.2,5)
”(Cﬁ -EE.)O“th‘: (€ + Py Ecw sl _y Shime- s 4
“ T (5€-+ /| THb % O }
- Q )——é z/°‘?_,“_b_i o (4
58, 5m #—#Zs‘e‘z$ S1e @/ (6.2.6)
b ) e.
(e 4+ Po\gq - Po) 1 . - Su e
(€. é‘”) £ (€'°+ZC)'?7L““E¢C‘/*5UDS°W (c€+ ﬁ)ngd}ﬁ
— Jeg¢ b 2 Sy Bo | 2 Cro
CSL%BQ P ‘,*'2\}-3., Z}‘E;L"’e‘ sule) , (6.2.7)
whearein |
$,= (1-2m/n) S, = (1= Vs/c-
' /), % ) (6.2.8)

and ail vperturbed variables represent only their spatial parts,
Equations (6.,2,2) to (6.2.,5) are the initial value equations
while (6.2.6) and (5,2,7) are the pulsation equations. In above,
we have crooped out thos: terms which become zero because of the
steady state sglutions that we have and also we have integrated
the initial value éqﬁations with resmct to timo, Equation
(6.2.3) togeth with (6,2.4) vields

[AYS _ AN o |
rbje . | (6.2.9)




while (6.2.9) can bc rewritten as

Ab . yv-On

e ! (A0 10
\)0 n Y \ v 2 ¢ —LO !

in terms of Lagrangian oerturbaticns. From equations (5.2.3)

to (6.2.5) we obtain
r -~ -,\4 ,"'L‘ ) L i " [ 1 - _,(,)‘:., .
a \)V( e ?f‘*/,‘._‘- ..‘_%L]: - Ll" ﬂJﬁ/C) j(s ""7"'}*:)3 Ty 5 B#’a)

Pl <7 o+ B - 17 Je
R D <
\(\'é‘ L L>j‘77.,< ) cié;_)" 8 <=Lr’\6 )7 (6.2..1,}_)

S‘.o [}____'Y}-’—m/gl“ _1:91;:7:__ P A, [_g > Qleh \r— 5 . “
LJ ( ‘f'-——~) Lb‘h} < )+7L§mebg—(&” Q1§6—)_[

(6.2.12)
which along with (6.2.2) from alternative expressions for the
set of initial v alue equations,
Oour oroblem is then to solve equations (5.2.6) and
(6.2.,7) as the eigen »value cquations consistently with the
initial valuc cenations and the aporonriate boundery conditinns.
o nov o tipia] disolacements! T Fe
Jo now define 'trial displacements! 3% and %
as we didin the earlier studv, multinly (6.2.13) by < and
“ Y o )
(6.2.14) by ¥° , add them and integrate over the wyange
of % and ® . In order to bring the resultant expression
in a symmetrical form in barrcd and unbarrcd variables, we
“imit ourselves to the class of perturbations such that g}a =0
at the boundary of the disk, This in turn rcquires tha
both ?h’ and ?e are zero at the boundary of the disk,

performing soveral integrations by parts. and using (5.2.2) and
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the steady state equations we finally obtain

T4 :«"“ (f+ fi‘ S Fose) 0 gin o dade

f{}(?’k Smf”g;:)«;-“ (F22 LS+ 792 5F)

F A (Fr5p 4 £n ST

2. o - < —
FIREA (55728 L EE b Eap ETO3,
cl (();i‘h,/c") D1 o ye ‘ I A '5-7)
N /{‘
+ IR ~-—~zSe G, ffﬂcm J3, ‘i ég)+ 88 (s, ?’P\O:b NS 84
C (C P/,), T AT N ‘:5?;)}

Y b Thotc-

N S
(e.4 ko %)L"‘ (REVE "‘j chcﬂﬁ h e dndo | (5,5, 13)

where §F and bb arc variations in perturbed density and DL O -

ssure obtained by using the tnal dlsolacome»t ( in place of

the true eigen functions § i €© Yin initial value equations,
As it was shown in the case of Newtonian analysis,

this symmotrical expressio~ for CTL' imnlies a variational

principle: we identifv barred variables with ths unbarred onpos

and write |

W"[f +(c + % ) (75 0% ) n sine dn s

={(l2s, en2 5 L 28 ey o, L, y
ﬂ{[ R T ﬁgggf’*%}?”‘&b

A
12
e (5 en ) r‘ T3
C“‘(<7+/>/r_.v)(’ ' ‘S“n "ﬁ“)
_),{‘,L <, — g
T Se /< *g“"?% NS EO,
(et hpy-oels e 2b )
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\'\'}5 | WwET e .
. M"— :i A‘P / L L Ry 'S
(6;-}'!-7/0_ L (€+ bl © J ( )_N ki gdbdde

1

end calculatea G'L'aS given by (6.2.14) by two trial disnlacow
ments “gvi and TS EX . T we now temand the rosultant variaw
tion Bo* in ot tobe zero, then it amounts to solving the
original eigen valuc cguations (6.2.6) and (6.2,7).

As in the case of Newtonian analysis, here dso
we calculate the critical valu@ of tho adiabatic indox for neutral
stability, Limiting owersclves to t he situations whero ln(VF/CL
“ijﬂ(€+‘ °) is very cmall compared to units such that we can
roe-write (5,2.11) and (56.2,12) in the form.

Sk = —|f1-Thi {(GFm26 o 22k

G+ b/ e de

+‘“#0§fo ‘J(% ?")*Cm@béfambg )i” e e G, }(r 2.15)

o by o>
and
ge T— [{ !a < i I
e )2‘;&,3 (n :E%memf&‘"a wi
‘Sl. e 71,3# ? —B{.\ )7..\, ol
- —= (S L. B N QT Yo
> ( '? 371— ‘ ' Do 'l :'_;,. '_;/(1,7"‘:] (602.16)

and using these in (6,2,14) we obtain

Yn”

s

L
T e )02 co) R ot

. L Lo~ .
- (9 /C 2 ~- o T
- e e T -25 =N \‘.'.‘—T;__ 208 o ?:;T
ﬁihr A ST - B BT, .,,* ’l*r R'%inbct Rt
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gt L L <.
R 6 ! c L [% ey v 4T3 ]—3-)

. 4 L/ B

D:l—'3 (-—-—-———T-‘.,.;]S:’T' )‘"2'§2‘§)%TT wS.TL_//D il/‘ 12

N € T e LR A A N N "-‘”JS

, L - :

,SDECF.*,‘:{ TLJ—S* T;‘.- T 7T L,

5 s <‘—) v ?“':"g"“j MZSL[/IZ._{ ,QLétneoH’\ﬁ(t‘—)

MJM““ (ST B ) v 2522 (2T

_ 215,58y <.T A 1J5,¢°
R Be( i 1—->+ R

> (s2T)

58

o N
L 3
3

. - (_' L
""53552((’0—& b T= o,

)T, e s T 7. %
- (F“f}l-‘/:") o "5
2 1. -
/ _../., 287 ¢€ 'T' ‘ ;
4((~+ )8 Pros . « L, .
} ) (63 b L—,SS-SLT,T;»)R SthedRy o

1
e L2yl iy SETE

+ 2 L
(QH",/&) S
.
+ Sy8ci2 ey P 2, 2578-Tr
325 = )s T 275
> L"s"["}"—-—hm_}; 'ST,ﬂ ¢
( ‘ Cot B /er) L/S'S- v L,..J Kl’khédﬂd}e
Jr‘{“"‘Jsg,_"‘ J+_LS roosleTE vl .
j 375 (€ )S“T Foes T = 28,8, 2(}’1)_3"-""@0‘&6{(:
C+EB - ljj(6.2.17) ‘
wheraein
S - [D'b/(l’
Cxhjer ) Ta T 230 Se =S uy,
Toz 2002 (preny L8y,
; R”"ARO‘ £+ Reine 5ol Fho e
T, = &, g2 (2=2),05 €8 2 /b
g S8 (T2 kel iE) (6.2.18)
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We choost a function 'q' as

S OO W

- TS L TN - -
"”(i ::~%drr59”:rwﬁiw“*%:é*mLA%*‘*FJ”
AR ! (6.2.15%)

which is zero at the boundory of the disk and take

eh_ L ep oL
37z Yt g, 37 =9 +89

/
wherein c&/ég drfe Constants determined hy extremizi g

% as celculated by using these trial disolacements in

the eguation (6,2,17). Wwith such Choice of €% and T ..
calculate thoe critical value TC of the adiabatic index for

the neutral stability,

Table (6.1) shows the values of Y, for the onset
of instability (Y« Y. for instability) for different values
of irvner edge 'at and outer edge 'b' for general relativistic
as well as for the Newtorian case, It turns out that the cow
efficients of T%;Y‘B and Y on the right hand side of
(6.2 17) are verv small as comoarzd to the first two terms and
therefor: are drooped out while calculating >?L .

The critical ¥ for tho Newtonian case is calculated by taking
the limit C= o of equations (5.2,13) | (6.2.11) and (5.2.12),

In this case we sbtain

’Y\LQJ’ - (P’L’" s 2
Wzi:.« o\ 3 + 3 ) R NG dic o
L DR R *“SZ; ~oItned Ral g

v ([ ny by 169 (w, B )
’“dﬂ 232 (T,) - A2 DBy ) %T;L)k fnodielg)(6.2.21)
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wherein

T - 0 D v
E i;—{\LR )+ L 2 (&inw €6,
K¥he 0@ ’
T2 S (E) s T2 (B
L i }p\ <t - R das™ v (f: p) Cm)
with steady state solutisns (again obtained by taki g the limit

/a L [
P2y -
Lo L. )

< K7&nt 8

Doz LA 3

i LR LR¥"5inta

]
ho 20b
Grn Ev (5.2, 29

We noto that the oL equation obtained here for Newto ian ¢ ase

has a difforent form than that revortad in Chanter 5, This is

~

because of the differant boundary conditions usad for ¥~

and <e . In Chapter 5 we used the condition that A].-(Vat
. . . "L_

the boundary and ther by any finite and continuous T and

‘fe 1s sufficient whoreas here we Limit oursclves to tho

case wheno 8': = o at the boundary which imolies. that both
A 1 @ - re o b ke .
€ 'e and 3 e zalo et the boundavy,

wWe find that 14 case p = o » the disk collasses

2

to 0= T)’/Z/ nlane rotating with velocity

' L-
l.('l — } -”gc . J——h") v L . 4
-~ o } < e (L).‘_...

24)
as may be soon t’from cquations (6,1,1) and (6,1,2) which is

indeed anticipatoed |, Considering further the radial oscillations
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. =0 5 :
of such disks (%= T o ) with 5}>::£) we have

/
{q) L ‘ ” -
(’Q q {(! ’h)éo ’ZL\I"‘:LLJ")U)‘_\{*%‘ i ) =
YT 7 [ 4 J 5 \)..,_.@J)
TUE 2 (- =Y e §elq
w(l 9»')L Q| , (6.7.06)

3s the equations governing the radial perturbations aooronriate

to this cas:, Combining above we got

(‘\"'Ll ‘hC (7.)‘_6}?.\)

tad

which sows that such disks are always stable if % > &m.

Resuylts and discussions,

profiles of the steady state narameters velocit: and
pressura-as @ function of radial distance along the equatorial
olane for a constant density thick disk rotating around a
Schwarzschild black holé, i1s pnresented in figures (6,3) and
(6.4) while figures (5,1} and (6,2) show the meridional-scctiOﬂ
of such a disk, The corresmonding plots ir the Newtonian form.-
ulation for che’ same values of the inner and outer refii
a and b (for a constant density model) are also shown in
these figures, for comoarison, wWe find that for same a and b,
Newtonian disk occupnies more volume than the relativistic onc.
It scems that the relativistic disks show a formation of cusp
at the inner ed:oe specially when it is near 4m ,  For the
Nowtonias disk prossure at any point is higher while the velocity
at any point is lower at the cquatorial olane, than for the
relativistic disk,

In tha case of relativistic disk we find a constraint
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that the inner edge can not be inside 4m, Furthor if 4<cie g
. --,“_\Jh

rd

b= ch/ﬁﬂr*i). For A 2 &, any h>q  gives rise to

dlausibli disks, No such rostriction amocared in the Newtonian
disks indicating a ourc general relativistic origin of the
oresent constraints,

From tho valucs of YZ» as tabulated i tablo

Ao

5.1 we find that tho disks considered represent stable confi-
gurations ( Y, £ 4 /3 ). In calculating Y. thgough

the equation (5.2.7) we have used the anproximation that
{&i/é?(#J(ﬁ/ZQ;ch(h}d<hI which is quite justified from
the values of Y./¢ ard bo/¢¥ as we obtained, There is a
qualitative agr:ement between the Y. calculated for relativi.
stic and the Corresoonding Newtonian disks, In these two
cas<s, althouch inner ang outor redid. a and b arc the same,
the regions occunied by the disks in the two cases are not

the came, In gereral, Newtonian disks ar. thicker (minimum
angular clevation = 77-'2Q>€«nan. ). We also find from the
numbers Shat Y, denends upon the size of the dbsk, In the
calculations of Y,_ | the effects duc to general relativistic
corrccfions and that duz to the differcnce in sizes have contri.
buted simultancously and thercefora tho agreement between the
gecneral relativistic ‘VL and the Newtonian Y7 is no bottor
than a qualitative one., It docs not scem tobe possible to
separate the contributions from difforent offects in the

present formulation,
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L]

For a pressureless thin disk collabnsing to GﬁJﬁLplan@

we founo thet it ig stable under radial verturbation if the inper

ed a beyond 6ém with lpcal frequency {ﬁﬂi(% —i ] Mow since
N\ & . o -
al {
2 oressureless fluid is essentially an aggregate of noneinterae

cting particles, the above conclusinn can be Tegarded as an altor.
native dorivation of the well known result that the last stableA
circular orbit for Schwargschild geometry is at 6m,

The gonoersl conclusisn thet the perfoct fluid thick
disks of constant density and rotating around a Kerr black hole
dre genaoraloy stoble under axi»symmétric perﬁurbations, may have
tmoortant significance in the study of tho models of accretion

disks; which one normally uses for explai~ing radiatian from high

Cnergy cosmic sources,




Caotions for Fiqures and Tables,

Figures (6.1): HMeridional co~tie- of i el s B
Cl ! »ork) A o2 ST ene T

. on

(6.2) 1 relativistic formuletinn (solid: ring )
i
and of the corresoonding Newtonian disk
(dashed Lines),
Figures (5.3) : profiles of nressure and waiocity for
(5.4) : relativistic disk (soliﬁ‘liwg) and of
Newtonian disk (dashed line)
Table (6,1): Volues of Y andv.G% - for dif{

ot a0 s
ent oL o b .
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