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ABSTRACT

Tn this thesis we have studied some aspects of
parametric interaction processes in a magnetized plasma which
have applications in thermo-nuclear fusion devices and in
ionospheric modification schemes. A detailed study has been
made of parametric scattering instabilitiés in a magnetized
plasma and their implications for a laser produced plasma
discussed. A particular case of scattering instability, viz.
the filamentation instability, which leads to self focussing
of light, has been studied in a high fj’ magnetized plasma,
and interesting modifications arising from magnetic field
‘perturbations discussed. A study has also been made of
decay instabilities with the pump wave frequency near three
natural resonances in a magnetized plasma Vvi1z (1) the lower
nybrid resonance (2) the ion-ion hybrid resonance and
(3) the upper hybrid resonance. fhe first two decay
processes are relevant for plasma heating schemes in thermo-
nuclear fusion devices like tokamak etc., while the third
decay process has been studied in the context of an iono-
spheric modification experiment. Tn this experiment it is
suggested that a ground based transmitter could be used to
artificially trigger or suppress the equatorial‘F—region

irregularities.
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CHAPTER 1

INTRODUCTTION

1.1 Brief History

The field of plasma Physics deals with the study
of matter consisting of a conglomeration of positive ions
and electrons which strive to maintain m@groscopic charge
neutrality. This many body system displays unique features
due.to a variety of collective states.it can éupporf and
‘the investigation of these states is an important aspect

of plasma research.

For any dynamical system the determination of
its equilibrium configuration and the subsequent stability
of the established equilibrium is necessary from an
application point of view. It is known that for a many
body system with a large number of degrees of freedom,
the number of stable configurations reduces drastically
so that it is well recdgnized that a plasma displays a
variety of’instabilities.' An instability arises because

of the existence of a source of free energy in the system.
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In a p;asma the sources bf free energy are the various
currents set up in the equilibrium configuration.because
of the geometry of the set up and background stationary
fields (differential EXB drifts in the partially ionized
plasma, the gravitational, curvature and gradient drifts
are a few such reservoirs of energy). An uneven dis-
tribution of energy in the various degrees of freedom
(measured by the temperature anisotropy) can also
trigger an instability. On the other hand there is a
class of instabilities in which the source of energy
can be introduced through an external agency. By
choosing appropriate field configurations (electric
and magnetic), currents»can be induced which can lead
to the instability of a certain class of perturbations.
If the equilibrium is a dynamic type due to a steady
state normal mode of the system, the instability induced
on some‘other modes (which bear a specific relationship
to the initial mode) is referred to as a parametric

instability.

More specifically parametric instabilities (also
known as parametric excitation of waves) are produced by
an external electric field oscillating at a definite
frequency ér by an intense beam of radiation traversing
a plasma. Physically it correéponds to a basic process

in non-linear mode coupling. It is an important mechanism
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of non linear mode conversion ffom electromagnetic to
electrostatic and from high frequenéy to low frequency
waves. Many experimental observatiOns_of anomalous
absorption and scattering of electromagnetic waves can
be attributed to a parametric excitation phenomenon.
Recently study of parametric excitation phenomenon in a
plasma has been an active fiéld of .research because of
its important role in anomalous heating of plasmas such
as laser heating, 1ower»hybrid resonance heating and so

on, and in ionospheric modification schemes.

 Parametrie excitation can also be defined as
an amplification of an oscillation due to a périodic
modulation of a parameter that characterizes the oscilla-
tion. A plasma may be regarded as an ensemble of an
infinite number of oscillators i.e. elementary modes.
In the linear (small amplitude) approximation these
oscillators become harmonic and independent of each
other. However, fhe non—linear_propefties of the medium
lead to coupling between the oscillator modes, If there
is a modulatihg wave (we shall call it a pump wave) in
the plasma, it will non-linearly couple to some natural
modes of the plasma and under certain conditions para-

.metrically excite atleast a pair of waves.
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Thus it has been discovered that the simplest type of
parametric instability in a plasma is the decay insta-
bility. This consists in the simulﬁaneous growth, in
the presence of a pump wave of frequencyézjand‘waﬁe
vector E.Oof a pair of waves ({,UL’,) Ej) and ('02, 5 Bx,)
satisfying the conditions '/’OO;: w{“f‘wz/ /{f,;):’/_?,,—{—’fi&u .
This is basically a mode-conversion process. MIf the
pump wave is supplied by some external agencies, then
the mode conversion results in a deposition of the
external pump energy into the plasma. Further, if the
excited plasma waves subsequently accelerate the piasma
particles, the energy deposited by the pump wave can be
converted to thermal energy of the particles. In this
way, parametric excitation can act as an efficient

mechanism for heating the plasma.

The first theoretically predicted type of
parametric instability was the instability of a longi-
tudinal electron plasma Wave(1’2). In this process,
waves 1 and 2 are respectively another electron plasma
wave and an ion acoustic wave, This process is often
referred to as plasmon -—>plasmon -+ phonon and was
first experimentally observed by Franklin et al(B) in
1971 in a thermally ionized sodium plasma column. The
linear theory of the parametric instabilities is well

developed and has been reviewed by several authors(4’5),
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(6)

Perkins et al reviewed the linear and non~linear

theories of parametric instabilities with their applica-
tions to iomospheric modification scheme while Nishikawa<7)
gave a general formalism of parametric instabilities in
the presence of damping and caleulated the growth rates

and the threshold of the parametric instability i.e. the

pump wave amplitude above which the instability sets in.

N

Study of parametric interaction of waves can be
broadly divided into three catagories viz. (1) the decay
instability (2) the scattering instability and (3) the
filamentation instability. When an electromagnetic (EM)
or an electrostatic (ES) pump wave interacts with the
plasma and decays into two ES modes, which grow at the
expense.of the pump wave, then the process is known as
decay instability. This process is very efficient for
heating the plasma as the ES waves can easily transfer
energy to the plasma particles by wave-particle inter—
actions. When an EM wave decays into another EM wave
and a 1ow-frequencybES wave, the process is known as
scéttering instability. In this process there is very
little energy transfer from the incident BEM wave to
the plasma, as the scattered EM wave, because of its
high phase velocity, goes out of the system without
interacting with the plasma particles. Filamentation

instability is a special class of scattering instability
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and takes place Wheh the EM pump wave travels perpendis
cular to the 1ow frequency IS (or mixed BES=EM) mode.
This gives rise to the interesting phenomencn of self
focussing of light.

An unﬁiégnétiz(ed plasma supports three natural
modes of propagation viz. (1) an EM wave with the
dispersion relation

- - / 2/ .

(2) a high frequeney ES plasma wave with a frequency

W = (Cu,uo -+ J{QZ Z)/A) (142)

and (3) a low frequency eleétrostatic ion aeoustic

wave with a frequeney,

Ve,

- ke, = (‘Te/M) (1.9)
52/;40/7/’1>

is the electrci/n plasma fregquency g ’U:,/ (7’{,_7/7’)’1) and
C@ = (T@/M>ﬂére reSpect1Vely the eleétron thermal

speed and adoustic speedy TQ/ is the electron. temperature

In the above expresswns (j)FQ/ <A7T1<L

in energy unitsy wland M are the masses of electron and
ion respectively and other symbols have their usual
meaning. The BM wave suffers only ¢olligional damping
while the two ES waves suff or an additional collision=

less damping due to wave-particle interactions.
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If an external EM pump wave 1is applied in such an
unmagnetized plasma, it can lead to the following
decay processes due 0 the parametric interaction of

the collective modes in the plasma.

1) When the frequenoyéuo of the pump wave is
near the plasma frequency Pz’lt may decay into an
electron plasma wave (plasmon) and an ion acoustic
wave (phonon), leading to the anomalous absorption of

the pump wave.

2) When W, = ;?&%QZ the pump wave may decay
(8)

into two plasmons.

3) When (), ;i,zﬁofagp the pump wave may decay
into a photon (scattered EM wave) and a plasmon, leading
to an anomalous scattering of the EM wave off the electron
plasma wave. This process is referred to as the Raman

(9).

scattering

4) The pump wave may decay into a photon and
a phonon leﬂdlﬂg to an anomalous scattering of the EM
wave off the ion acoustic wave when (U, > Wpy This

(9)

process is called the Brillouin soatterlng

The dominant non-linear coupling terms responsi-
ble for the above parametric interaction processes are
(a) the non~linear current density arising due to the
density fluctuations in one of the decay waves, inter-

acting with the oscillating electron velocities due
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to the pump wave and (b) a ponderomotive force produced

by the pump wave and one of the excited waves.

However, most laboratory and natural plasmas
exist in the presence of magnetic fields and therefore
it is important to investigate the effect of a magnetic
field.on the parametric interaction problem. Iﬁ a
magnetized plasma, there is a greater variety of natural
modes of oscillation which makes the problem considerably
complex and interesting., One can also choose various
pump frequencies corresponding to various natural
resonances, which exist in sich a plasma and thereby
have several different alternatives for decay waves.
Another qualitatively new feature introduced by a magnetic
field is that many of the excited modes have now
additional sources of damping e.g. collisionlesgs cyclotron
damping etc., arising due to wave particle interactions
in a magnetic field. This makes the parametric excita-—
tions, in a magnetized plasma more aftractive for plasma

heatings.

1.2 Scope of the thesis

The present thesis aims at studying some
aspects of the parametric interaction phenomenon in a
magnetized plasma. We have studied some aspects of all j

the three different parametric processes discussed above,




6
In the second chapter we have studied the

stimulated scattering process in the presence of a back-
ground magnetic field. The ES modes which we have con-
sidered are (1) the electron Bernstein modes, (2) lower
hybrid waves and (3) drift waves. We have calculated
the' growth rates and threshold powers for each of the
processes and have found them 1o be domparable to those
obtained for unmagnetized plasma. We have also con-
sidered the convective saturation effects of the density
inhomogeneity in the plasma. The calculations were
motivated by recent experiments in laser produced plasmas
where mega gauss magnetic fields were observed. In such
a situation it is important to consider the various low

frequency modes that a magnetic field can support.

In the third chapter we have inyestigated the
filamentation instability »f high frequency EM waves in
an inhomogeneous, magnetized plasma with 1.>>43/2>GWL M
Wherefg i1s the ratio of the plasma pressure t» the
magnetic pressure. For sufficientiy long pérallel
wavelength in such plasmas, the transverse modulation
of the EM wave gets coupled tn drift-Alfven waves and
leads to a new kind of filamentation instability. We
have calculated the growth rates and threshold powers
for this instability under different conditions. Our

estimates of threshnld power and growth rate etc. are




-10-

found to be comparable £0 those obtained for éxcitation of
ES modes and hence this could be a competing process in

a realistic situation with finitefg. We also note that
our dispersion relation does not permit a purely growing
solution in contrast to homogeneous unmagnetizedAplasma
calculations. Both the inhomogeneity and the magnetic
field effects contribute towards a small real part of the
frequency and thus cause the density modulations to have

a finite phase velocity.

In the next three chapters we have studied some
cases of parametric decay instabilities. The loWer hybrid
resonance has received special importance in recent +times
for heating processes. In the fourth chapter we have
pointed out the possibility of excitation of a low
frequency 'cold' ion Bernstein mnde by a lower hybrid
pump in a cold, homogeneous, magnetized plasma. We have
calculated the growth rate and the thréshold power for
this process. The threshold is found to be minimum when
the pump wave is applied perpendicular to the plane
containing the magnetic field and the wave vector of the
excited mode. Numerical estimates with typical laboratory
plasma parameters show that the threshold power in this
case is quite low and thus the 'cold' ion Bernstein mode

can be easily excited in such a situation.
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In a two ion species, magnetized plasma it is
possibie to exploit the ioh-ion hybrid resonance for
the decay instability. In the fifth chapter, we have
pointed out three different possibilities for a decay
of this type where the pump frequency is near the ion-
ion hybrid frequency. (1) The pump wave can decay into
a 'cold'! ion Bernstein mode and another ion-ion hybrid
wave when the phase velocity, of the 'cold' ion Bernstein
mode, parallel to the magnetic field exceeds the electrnn
thermal velocity. (2) It can decay into a low frequency
ion acoustic wave propagating parallel to the ambient
magnetic field and another ion-ion hybrid wave when the
parallel phase velocity of the acoustic mode is much less
than the electron thermal velocity but much greater than
the ion thermal velocity.'(Z) It can decay into two ion
ion hybrid waves when the pump frequency is more than
twice the ion-ion hybrid frequency. In the first two
cases we have taken the wavelength of the pump wave %0
be infinitely large so that we could use the dipole
approximation., For the decay into two ion-ion hybrid
“waves, frequency and wave vector matching conditions o
not allow infinitely large pump wavelength 80 that dipole
approximation cannot be used in this case. Our theory
for the decay into 'cold' ion Bermstein and into low |

frequency acoustic waves, 1is quite general and applies t9
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any masses of the two ion species whereas for the decay
into two'ion—ion hybrid waves we have used the approxima-
tion L)_lz >> [1,)2 )) _Qé/ where _Q,‘ and ,(2 7 are the
cyelotron frequencies of the ion species.1 and 2 res-
pectively. Thus for this case there ia s festriction

on the masses of the ion species and the theory cannot
be applied to the small mass differences of the ion
species. We have obtained the estimates of threshold
powers and growth rates for all the three processes.
Numerical estimates with typioai laboratory plasma para-
meterS‘shOW that they are well within the regime of
present power densities envisaged for r.f.heating
experiments and thus the instabilities considered in our

‘work can be easily exploited in an experimental situation.

Finally in the sixth chapter we have studied
the influence of a large amplitude electric field
oscillating near the upper hybrid freqguency on the
natural stability of the Rayleigh Taylor and collisional
drift modes. It has been proposed recently that the
equatorial F-region irregularities are due to the Rayleigh-
Taylor and collisional drift instabilities. It has been
theoretically suggested that the large scale irregularities
ranging from few kilometers down to a few hundred

meters are due to R-T instability whereas the small
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scale irregularities ranging from few hundred meters down
to a few tens of meters are due to collisional drift
instability. We have studied the influence of an external
wave, with frequency near the upper hybrid frequency,

on the R~T and collisional drift modes in the F-region of
the ionosphere and have found that the natural growth
rates, of these instabilities, can either be enhanced or
depleted by'the pump wave under different conditions. We
have also calculated the threshold power to excite (or
suppress) these instabilities when the ionospheric con-
ditions are below (or above) the natural instability level.
We have suggested an ionospheric modification experiment
where a ground based transmitter could be used to control

the equatorial F-region irregularities.

Briefly, therefore, we have studied some aspects
of parametric instabilities in a magnetized plasmé and
pointed out some interesting effects which can be of
relevence to plasma heating schemes and o ionospheric

modification experiments.
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CHAPTER 2

STIMULATED SCATTERING OF EM WAVES IN A MAGNETIZED PLASMA

2.1 Introduction

An important problem in parametric heating of plasmas
by an intense EM wave is that of enhanced (or stimulated)
scattering of incident EM waves by some ES'waves¢'Physioa11y
we can understand the process as follows. The incident EM
field induces electron.oscillations through the Lorentz'force.
The electrons are initially driven along the electric field
‘vector 5ﬁt then develop a longitudinal tomponent through the
VXB force, where ¥ is the velocity of the electrons and B is
the magneti¢ field of the EM wave. The ions do not respond
direotiy to the field due’ to their large mass; Thus local
charge imbalances are generated which.ténd.to be restored to
neutrality by the opposing coulomb-interaction. On a
mdcroscopic scale, the density oscillations are coupled to
the pump field by the ponderomotive forece density which

varies essentially as the gradient of the intensity, For

suitable phase matching between the incident and the scattered
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waves growth is induced in slowly moving density waves above

a threshold intensity determined by the dissipation of the

interacting waves,

In the abégnce of the pump wave, an unmagnetized
plasma supports two natural ES modes of propagation. They
are (1) the high frequency BS plasma wave and (2) the low
frequency ES ion-acoustic wave. Accordingly in an unmagnetized
plasma we can get two types of scattering processes. When
EM pump wave is sCatte:ed by a plasma wave, the process is
known as stimulated Raman scattering (SRS) and when it is
scattered by an ion'acoustic wave, the process is known as

stimulated Brillouin scattering (SBS).

Historically study of scattering of EM waves by a
plasma started from the work of W.E. Gordoé12 in 1958, who
predicted that if a powerful beam of radio waves with a
ffequency well above the penetration frequency were sent
vertically through the ionosphere, aﬁ extremely small, but
81111 measurable amount of power would be scattered back to
the ground from the randomly distributed free electrons'in
the idnosphefe. Later on Dougherty and Far1e§22 and

3)

Salpete£ also studied the problem of incoherent scattering
4)
of radio waves by a plasma and Goldmen and DuBois studied

the incoherent scattering of light from plasmas.
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BRS in plasmas was studied theoretically by
Gomisat®) in 1966, Gorbunov'®) using one dimensional fluid
and kinetie descriptions, ¢aleulated threshold powers
and growth rates for the baskward SBS process. A unified
formation for the stimulated seattering o6f an EM wave off
ES waves, in a homogenevus unmagnetired plasma, was derived
by Drak%7)ef al in 1974. These authers derived a general
dispersion relation for such & scattering précess and |
discussed various ingtabilities ineluding SRS, SBS, Compton
scattering, and filamentation and modulational instabilities.
Thepe instabilities have direet relevarice to laser produced
plasmas as these instabilities ean be exeited in the tinder
dense region ¢f the laser produced plasma resulting in a
partially reflecting induced dielectric mirror which can
lead to substantial reflection of the incidert radiation.

ReCently Stamper et a1€8> have observed intense
spdntaneouély generated magnetic fields in the laser
produced plasmas. ROuéh estimates of the field strength
in the plasma, by numerical simulation, has shdw@ tha t
fields of the order of mega galiss are pfdduced(gjg THese
intense fields c¢an completely modify the &pectrum of
electrostatic modes in the laser produced plasma. At the
same time, if the laser fredqueney is muceh greater than the
electron eyelotron frequeéncy, these magnetic fields will
not significanﬁly influence the propagafion characteristics

of the incident and scattered EM waves, It is, therefore,
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doncéivable that in a magnetized plasma stimulated scattgring
can occur from a large number of ES modes and it is important
to assess the relative potentialities of each one of them.
In this chapbter we shall discuss the scattering of the
incident EM wave off various electrostatic modes OCcarringb
in magnetized plasma. The low frequency ES modes which we
have considered are (1) the Bernstein modés (2) the lower
hybrid modes and (%) the drift modes. We have calculated
the threshold powers and the maximum growth rates for

scattering off each of these modes.

These growth rates correspond to usual idealized
infinite medium Ilinear theory and for a realistic situation
we must cénsider the stabilizing mechanisms present in the
system. On the 1evei of linear theory we may consider three
stabilizing effects, viz. (1) damping of the product waves,
(25 finite pump wave band width and (%) plasma inhomogeneity.
The effect df damping of decay waves is to stabilize the
decay if )/, ?)2/ > ’/():2/ where ))’ and })Lare the damping rates
of the decay products (in the present case the low frequency
ES mode and the scattered EM wave) and 7% is the growth rate
obtained in the idealized case. If the damping is classical
(i.e. collisional and Lendau damping) then this does not
appear t0 be an important mechanism of stabilization for
laser fusion conditions. Also if‘ﬂj is greater than the

_band width 605 then the finite band width effect is not

important for stabilization.
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Thus the prihcipal linear stabilization mechanism
appears to result from the inhomogeneity effect.  If the
plasma is infinite but inhomogeneous, then the matching
conditions (W, = &)‘+-&)2/ and &, —~k 4’ < 4 can be
satisfied only over a finite region, as the frequencies
and the wave vectors of the interacting waves depénd on the
plasma density thfough the dispersion relation of the waves.
As a wave travels away from the point of perfect matbhing,
it grows until the phase mismatch is so large that the proper
phasing for growth is lost. The wave equation has a turming
point there and the wave propagates without growth from there
on. 4 turming point occurs when the phase mismatd%} dx~ kil t

0
and [%:is the length of' the interacting region. Thus the

is of order 1, where K= R —k, /718 the phase mismatch

decay must occur before the product waves have time to
convect out of the interaction region. A detailed considera-
tion(1o)
by a factor éjx where A = ,"Z,’W"I/O’?/\/, Vg /</ is the ampli-
fication facto;;'VQ and \QL are the group velocities of
the decay products and }</’:; Ciﬁ%/ci?C.

Iu(11)

shows that this results in a growth of fluctuations

et al studied SRS and SBS in an inhomo-
geneous plasmaAand calculated the amplification factors for
thesc scattering prodesses. In this chapter we have
calculated the amplification factors for the\differént

-scattering processes in a magnetized plasma mentioned above.
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In vseqtibn 2.2 we shali briefly discuss the general dispersion
relation for scattering of an BEM wave off a ES mode. In
section 2.3 we shall outline the derivation of the amplifica-
tion factor X . In section 2.4 we shall present estimates(12)
of threshold powérs, maximum growth rates and amplification‘
factors for the instabilities under consideration. Section

2.5 gives a discuséion of our results and compares them with

those obtained by other authors for similar calculations.

2.2 Derivation of the General Dispersion Relation.

Let us consider a large amplitude, plane polarized
- EM pump wave
Eo =

propagating in a homogeneous plasma: We assume (GJU, F?O)

- 2E,0, L()Q<RD L -waﬁ) (2:1)

to satisfy the 1inear dispersion relation,

(’,1)02/: C()Pg’f" C?IQZ (2.2)

In equilibrium, electrons oscillate with high velocity in
the incident electric field B, with the ions forming a
stationary background. If there is a density perturbation
(&)y}q ) agsoclated with an electrostatic wave, then the

-

electron density perturbation ébqg,wiil be driven by;Eo

leading to currents at W+ £w0 andki’[&? where @ is an
integer. These currents will generate mixed ES=EM side
band modes at wiﬁwo,}gfr_ (L/!gowhich will in turn interact
with the pump wave field producing a ponderomotive bunching

force~VE that emplifies the density perturbation. Thus
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there is a positive feedback system that will lead to

instability of the original density perturbation and the

side band modes,

The Fourier ‘transformed wave equation for the side

band modes 0)+ = wtw, , f’{’_; — /Q-(—,&g can be wmtten as

)I }? R 7 47wwilgi (2.3)

@2/
where we have considered the lowest order ooupling ﬁ:i
which is justified when eEo/mwO(E <<i (here €. 1is
the unit charge, ( is the velocity of light). 1In equation
(2.3) L is the unit dyedic ana E'+. = E(w+9k+) |

o~

current density perturbationr§+ arises from the linear
response of electrons to E and from the coupling between

the oscillating velocity produced by the pump and the electron
density perturbation produced by the ele ctrostatic wave.
Substituting these terms for .,f,I+ in equation (2.3%) and re-
arranging we get, -

F’f 6“”‘@[ R Ry

N.._- _”

) w/od m’Lg(w)/e)
£ Z
C
where C+ = _’L ('L)Z [1_) is the linear dielectric constant at
frequencies 6J+ 9 w/@ (47{'@7’1,0/?7']/> is the plasmfl/\
frequency, 71, is the equilibrium density and,\E/O,} = €
E(fg[aa:)‘i‘_ /QO)refer to the components of the pump wave. We
have assumed here (U, >>&)and Oy /U/og>>1 (or if 1JJ/Q{DCIS |
atbitrary then JR ’)\D <L 4  where Q\D is the Debye wave-

E/H‘ (2.4) .
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length). Inverting equation (2.4) we get,

2 (.{)’fl@ (E? OJ);/T “_ h:r Bi Dy— 5 t o3 v
\ o~

- = () ) o 2 .If
i J.Q 3 2/ - o o /vOi,
= , (2.5)
. | ) , .
2, 2
“where Dy = z“c =y e,,,_, 2& 4—:2,/2 }2 c 7 2w, — 0",
' h - -7 (2.6)

In order to calculate<§7hzé€9agwe first calculate
the low frequency force FL)OH the electrons, due to the
‘presence of two high frequency waves, which is given by
the gradient of the ponderomotive potential %io i.e.

,rv

Inserting this force term in the Vlasov equation

and solving it for electron density perturbatiam we get

éy‘ve”f 960) - Ao (R ‘“) ﬂ:( k cu) +:‘:‘ W '//gowﬂ

47 €

(2.8)

Where}c ;Q Qﬂand[l<k LU) denote the electron SUSCCptlbllltV .
and the self consistent electric field respectively. We

can calculate the ion density perturbation in the same way
but without the ponderomotive force since it is smaller than
the electron term by the mass ratio. Inserting this expfes—
sion for the ion perturbation into Poisson's equation, we
can solve for the electron density fluctuation

Brolem)=- HELEL ik E(k,0). o)
é’) L_@Lf\iﬂ“l) 475e - ”"(\""j )
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/
where X - U CO denotes the ion susceptibility. One can
eliminate c I% ,u)between equations (2.8) and (2.9) and

’\/

use equation (2.7) to get

R* Xﬁ(K “)>( . a)\)

4’/\ /TL//V() (}-’(MU

-
oy (k)=

'X(,EQHEW‘FEO:E?Q ' (2.10)
using equations (2.5) and (2.10) we get the general dis-
persion relation, 2 0

1 1 — ?/2' I}?,X,}/Of ) /5450{“‘
e p e T RO
ik o 14Xk, | D, kP!
YA/ Lkm / _ L{ - 2/
' :
}P\_}.Xvo} p,pv'l )
T a7l (LN

RED, Ryw[C+ |
where \/O e .Q)EO/’WLQ)G,.
) : v
This dispersion rela tion describes the parametric
coupling 'of a low frequency electrostatic mod e at(a) )and
two high frequency mixed ES-EM side bands at (CO?LLL)O 9/’< ﬁ )
The R X V Jterms “in equation (2,11) arise from the EM

A

components of the side band modes and thek P\/Ioterms from
the ES components, when (J ’\’wf%?,;; C+ ~ () and the side
bands are predominantly electrostatlc. 1t R /\f><<* 4 then
this reduced form of equation (2,11) correctly describes the
pararﬁetric excitation of two ES waves by an incident BEM
~wave. On the other hand when T\/_}_ ----- , we fmdtﬁi O, In

-this case, the side bands are predominantly EM and this

represents the scéttering process where the EM pump wave



Figure 2.1

Y

Wave vertor diagram for non forward scattering.
Hare R, , Ry and ky (= Ro~ R )are the EM pomp
wave vector, slectrostatic wave vector and ihe
geattered BM wave vector regpectively.



exclites an ES wave and new EM waves at shifted frequencies,
Let us consider a case where D = (U and D, £ i:e: the
Stoke's components are resonant and anti-Stoke's components
are non=resonant., In such a situation equation (2.11)

reducees 140
1 1 . f\,&
=<

SR —
Xelw,R) 1+ X0, k) k2D

Equation (2.12) is valid for (U /( CL[QRO/&)[) and

 xe)*

|

e o b e A W ML

(2.12)

breaks down for small B or if f(J_ {‘( o ¢ FYor (L)O // we
may write : 5;

o N A 2 2 A ey [ 20 R
L:; (QL.; ff*) = /? - (,();_;-I— CLZD o = /vwa ((-/J -*-‘%if'“* + PR )

.

(2.13)

The last two tief'mS" in the parenthesis are of order (J, and
ther efore must roughly ecaneel for D to be smalls This
conditionr implies that R;’ L(QKOC/@O €, where @ is the angle
between ;i and &, 5 - Figﬁ-r’e 2,1 expresses this result in a
geometrical form, Thus substituting Z /COU%LC) for /Q
everywhere except D_ in equation ('2‘ 12) we get
L b LR g2 (0,9)
- S — o e, \}/ »P) o aa)
sk w) wo(@) ’LJLJ)

where
| Cond =R x| ) RV  (2tae)
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Al = C’iﬁf‘j'sb-a/()«’@fczﬁzz/z@o = E}fy*é - (2.144)

v = e~k Jw, ; 5= aj’k"’/,?,&og (2.14e)
2 ~

The dispersion relation (2.74a) is quite general
and the basic form of this equation will not change when a
magnetic field or density, temperature gradients are intro-
duced provided these additions only influence the low
frequency modes at frequency £ and leave the higher fre-
quency modes unaffected. The correct dispersion relation
can be obtained by substituting the appropriate electron
and ion susceptibility tensors 7(,3 and /{L in equation

(2.14a). Equation (2. 14a) can be- rewritten as

(U “.A&J) = u \/KJ ,
ADoK ,2,5{/ .. (2.15)
W, c

The linear dielectric function El (Q)p-,(f L'}/) can be

expanded near Ce) giving
c 7) aé,,a,,,) |
L = S w= (2.16)
Here C!J is the real part of the frequency and 77 is the
growth rate, 61{-{6 is the real part of the dielectric function.

Substituting equation (2.16) into (2.15) we get

T MY+ D €,
(P+T)(+1) = L%@(Hx)f %y (9 2
oW )= w,
T ~ (2. 17)

where we have introduced .{1 and F,_ to denote the pheno-

/

menologlcal damping rates of the free ES and the free EM

waves respectlvely. We have also taken&) KQZ*FLF)’ and AT Wy,
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The maxiﬁum growth rate is obtained from equation
(2.17) for }% >>‘[2y I~ , and is given by
A ZJX@U”)[14*XQ(QQ%EEjé%¢ﬁZ (2.18)

° 19éiéi> \ ¢
aw,w:@ﬁ

The threshold power is readily obtained by setting 7>:rC?

in equation (2.17).

2 .
%ﬁ 1 ?Lﬂ(a@gﬂ 1 o (2.19)
T e e D ST .1

()= Iy
In section (2.4) we shall present estimates of
maximum growth rates and threshold powers for different ES
modes, in a magnetized plasma, using equations (2.18) and

(2.19) respectively.

2.3 Derivation of the amplification factor X |

In an inhomogeneous plasma, thejgwmatchihg condition
can holdonly locally and the mismatch (£ — f2 M(K) -k ,m(x) ”;ﬂzy‘)
develops due to the spatially dependent quantities e.g.
density, temperature which occur in the dispersion relations
determining ﬂi(&gpx),This mismatch then localizes the

region of resonant interaction.

For simplicity, we consider a plasm slab with

-density gradient in the (- direction. In the weak pump
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case, the equations for the amplitudes O ('Z‘Of the

decay waves in an inhomogeneous medium are,

EL o v 2% =y cg zx/ (4 [ <d7‘3 (2.20)

9%; ' 3K
20% _ Y o gub (7 A
and :&144— \/’2 2 - VO@/ ia?;,b( bJOK ) (2.21)

The coupling factor ?5 is taken to be the growth
rate in the absence of damping for the homogeneous medium.
Laplace transforming in time and neglecting initial values,

*.
eliminating C(g and putting
Uy = élf{ de( }b(ﬂ '\/Z)Q(e 22)

we easily find that

where p is the Laplace transformed variable.

| Equation (2.23) is an eigen value equation for &
with |0 its eigen value. If there is a well behaved
solution With}€€J90 > O then Fb will correspond to the
eigen value for a temporally growing mode with growth rate
given by'ReR). This mode is generally localized within
certain regions and grows exponen tially in time until some
non linear mechanism limits the growth. If no such #%
exists, then only spatial amplification over a given

‘source at the thermal level, is possible. By spatial
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amplification we mean that a thérmal gource, due to spon-
taneous emissiom of Wavés, can grow for a limited period of
time and stops growing once a maximﬁm level is reachedo This
level of growth eventually reached is limited principally by
“the duration of interaction, which in turn, is determined by
the wave propagation out of the interaction region where the
- phase matching conditions are approximately satisfied. Since

I/ increases with X the possible behaviour at infinity is
A= P (—~ P \/,>g¢
v E , .
. I _(P/v )ﬂ
and @ﬂ. = Q.’)L{CEZ.JO Kdx (/ 2.)7

(2.24)
for \G\J21;>(j both solutions are badly behaved at either
plus or minus infinity fOI‘F&Z#>;>“Cj and no temporally grdw—
ing modes are possible. Withlbﬂ\éZQiCj'(deCaV modes propa-
gating oppositely) normal modes with?%ﬁ&ﬁ3;>' ’ are possible,
provided the solutions well behaved at -+ & can be joined
at H=0.
, /
For K = Pi{ﬁ))76 we make a transformation
/ " / /
b ke . ——- ¥ S — T wi 3 i 2._
K{O}J[ ’Lp(j/\/' i/\,;/) K,(o)&reducmg equation (2.23) to
the parabolic cylinder equation. Since this equation has
no well behaved solution for RZ&F>;>(D only spatial ampli-
fication is possible. We choose Fj:: € where £ is a
'small positive number to give the proper behaviour at
P . . Ry |~ Pl .
infinity. Conélderlngf 29//VG\QL‘ ;i} < for sizable

——
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amplification equation (2.23) can be written as

;%4, < K’)L ”77/\/ V@;_-g(xf) - (2.25)

where we have put the source at 7(_ O.

Let us consider the oase\d,\GL:>() then . from
the boundary conditions we know that ?; =G for £ <O
(since the amplifioation takeé place fron1762::C) ).
Beyond the turning point K g = ﬁ,%/l(f(\/, \/2,) Vi the
solution is oscillatory while between () and X g it has

N s ) r9 % )/ ;
the approximate form éjLﬂLjvj; # 6£f/\4\{é/*~ K éifj?éfl‘%SCﬂi

Thus there is a net - folding givén by

)('J' / / /Z ’
§ [ d K< = ek
¢ (2.26)

Putting the source term at — X ¢ we get for the

¢-folding of intensity as
=1, quv (‘flﬂ 370 /\/, Vo K/) (2.27)

where ;IC) is the non-driven, thermal source intensity.
Ry /

For effective growth o = ,27(7)0 /\/, \/Z/k)—{— which means

that the wave must grow substantially during the time it

propagates to the point where the phase mismatch is sub-

stantial. The same result can be obtained for ‘J,V&@*<:(7

case also.

—
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2.4 Calculation of gfowth rates; thresholds
and amplification factors.

In this section we shall calculate the growth
rates, threshold powers and amplificétion factors for
different electfostatio modes using equations (2.18),
(2.19) and (2.27). We take the geometry as follows: the
magnetic field !%“ is in the ;}«(iirection; there is a

density gradient along the %.- direction; the pump wave is

applied along the 9~ direction.

2.4.1 Bernstein modes.

The Bernstein modes are polarized with their
electric vector nearly parallel to wave vector kf and

they are almost pure longitudinal waves. These waves

are the counterpart of the field free plasma W&VGS(L)"‘&{PQQ

and (U = }O( and in the limit of the magnetlo field Ba

going to zero, they reduce to the Langmuir Oscillations

at high frequency and to ion sound waves at low frequency.
The Bernstein modes prbpagate in frequency ranges that
lie between harmonics of the cyclotron frequency. The
lowest frequency for which propagation occurs lies above_
the electron cyclotron frequency J24géxﬁgqﬁna} i.e.
7.0 Q/>(U>’Q6’T.he exact location of the m"o@es is a
function of density, temperature and fiéld strength.

The general dispersion relation for the Bernstein modes

ig given by |
(2.7 wp,,<Q9< mo(l 7(1b
| En%n \Q oz ma<

(2.28)
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where XX denotes electrons or ioms, ¥ is an integer, Ty
is the temperaturé measured in energy units, 151 is the
modified Bessel's function of the first kind, be(2i>::
ﬁy#;émiﬂiy&%>gaml<£ﬂiﬂyﬁL£§;lWhen the plasma temperature is
low or when long waves are being studied, the Bessel function
inLcan be expanded in powers of}Qﬁéig CQX being the gyro-
radius of species(f. We shall consider here two special

cases.
(i) Tow density plasma

When the plasma density is low, all the Bernstein
modes occur very close to cyclostron harmonics and the

explicit solutions of equation (2,28) are

W = ﬂzﬂ_§(1+/31(,) | (2.29)

2 f
where BYL: Z(*)PZ i I /‘22&2 ob (- /QZQ,'?’)
_ch’ k Qfa;j ""( @) I ( 82

2
Uyp = T’@/MZ‘Q@ mad Weg, KLe
For this mode, the ion and the electron

susceptibilities are given by,
X,g/(w) ~ 0
Xe (CO> — }’—Qé (i‘f’/gn)/&) | (2.30)

Therefore

%@(wx/): -1 | | (2.31)

.
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The diclectric function € is given by
é(w) = 1- ﬂzﬂé’(iﬁ»ﬁn) w* (2.32)
Therefore <96) o 2

erovans

W=, NQe (2.33)
Substituting equations (2.30) to (2.33) in
equations (2,18) and (2.19) we get the expressions for
grbwth rate and the threshold power for the scattering
of an incident pump wave off a Bernstein mode at low

density as

2 2 L2/ 2
’% :.%f&hllzi’/i' o (2.34)

y 2 |
.ffz - ,lu— ;El ~[32 ; (2.35)
sz, <S¥;a W o,

where we have taken 7L = 1.

and

In order to calculate the amplification factor X
we need to calculate the group velocities Vﬁkand \éz;c
of thélelectrostatic wave and scattered EM wave respectively
and L(/ the derivative of the phase mismatch. TFrom

equation (2.29) we have '
' 2 2
e YO/ A - O aq - ~CZ :
From the dispersion relation of the scattered EM wave viz.

‘ 2 - N _
CLEffz: &)ﬁZ:”f”‘zgaégflfli <f£akﬂz (2.37)

we have

\/L')C-:: aa)ﬁ/akz%::— 2/?27{,/6.00 (2.38)

—
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Also equation (2. 29) can be Writtén as

(”Q - _Qe, ~+ &)J@ (:L k P from which

(LUFQ/ 4107w wjﬂﬁajktn)/w;éag;( (2.39)

using equation (2.37) we have for the scattered wave vector

_— (. |
Z L a Ry Y 2
-’Q,Zx,:_: [@"’o "‘wf’jé - C /Q:/‘:})/CZ‘/ | (2.40)

And for the pump wave we get

M—»f(uo Weg /ng/z o (2aan)

Substituting equations (2.39) to (2.41) in the expression
) %c (k‘”‘f }?m‘“ l?,ac) | (2.42)
we have |
. , S 2/
/ &)P'zéﬁmzé/z {J 2 / Cz(l QQ//?,} )COU 2

)
= +-2 COSQ "4 ¢
(2.43)

/
where @ is the angle between k and k and we have

~ 2
written --(ﬁ/ (dwf)v/d?()Substltutlng equations
(2.34), (2.36), (2.38) and (2.43%) in the expression
2 4 : "
0< = %Wyo/\/}x,v,’z‘x K (4.44_)

we get for the spatlal amplli‘loation factor 2 v .

J— 'l ("‘ 2’ ;?/ 2, \/
O< N / 492()1«’71/ g)f /i 6() U)QO (? \’1 k/ )L()OU g

| U4 ‘)/’ZJ 4[1]3@&@ S«U (J/f(/ |

'~

(Wep

(2.45)
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where ’1,9@:'(72/'772)/%3 the electron thermal speed,
We shall now consider two spe01al cases: |
Case (a) When 6’ 90 i.,e., for side scattering

equation (2.45) becomes

= X7 v@) (kL )( 2’\4¢>wa?”= (2.46)

wpeg

o
Case (b) Whené}:iﬁgO i.e. for back scattering

equation (2,45) becomes 2 | .
Ko o= 4n* k Lﬂ ,ééﬁf%# (2.47)
|80 / UJ/?@

(1i) High density plasma
When the plasma density is large and maghetic
field strength is small, the lowest frequency mode is

given by,

W= Zf.:l.g,(\j_ _ 8} i)fg: k ’@/(UJPZW b)) (2.48)
4

s A .
for &)Fe > B,Q,Q, and K ad?/ L4
For this mode the ion and the electron sus=

ceptibilities are given‘by,

29 w3 k%%
@)20 5 X )= - =L- @ME o

-~ " ‘ . i, 2 .
Therefore X—é’, (CU’L) - "’i ' ( 50).

The dielelectric function é: 1u given by . |
- 26)



| o= 7699,
2€ _ L |
Therefore <517~> = - . (2.52)
oW Go=ldy }Z,QZQZ
using equations (2.49) to (2.52) we get the following
growth rate and the threshold:power for the scattering

of an incident EM wave off a Bernstein mode at high

density, ) ., ,
u))oz — 2\/02&)0,_(2,@ EP AI/ C,Z/ (2.53)

2 .
and Vor . L T le (2.54)

2R we e
Next we shall calculate the spatial amplification

factor (X for this case. The groﬁp velocity V%Lis given by
2, A ¢ 2. ~ 2
j o .. —— ’ 2. N
V== dLeWpe }?’ma«.@_ 4(6‘)/% 2 Q@) (2:25)

The wave vector Klkig calculated to be }?

_(/ 2 % ~

k=B L [20, (1-»)%) w125 20,4,
1TV3 00 Ao Wpg “pe) 8 T4}
| (2.56)

Substituting equations (2.40), (2.41) and (2.56) in equation

2
/ ()l)go)m b‘/// 3_(),(//&)0 Ua,éf_ )
Lﬂ,(i'('}?mc@&g@ " Cl)/“ SML [CL)/D// - 3 Q—b

K
B

N

Substituting equations (2.38), (2.53), (2.55) and (2.57)
in equation (2.44) we get the following expression for
the spatial ampllflcatlon factor,
6TF\/o 0o S <ﬁ /CU/DQ —'Q’)—(A(&) (—LW
%e* 2 Wh G 5en 8 {1 ~3 ¢ QZ 0)2’ () /Jg Sl (uvf% f
(2. 58)/
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Thus for side scattering we get,

o2 T\ o \( Q) .,

qo — ca UQ/ k)o 7L C{)In (‘/‘,{.’71/ (2.59)

i

@ - ) /v
And for back scattering we get

p e
_ 2, Z
o BTV Vs él%u& d.ﬁl@u) o, 2, 6
i = () Kol BT st e

244.2 Lower hybrid waves:

These electrostatic waves propagate almost
Perpendicular to the magnetic field é%f having frequency
lying between electron cyclotron and ion cyclotron |
frequencies. They are known as hybrld waves because the
frequency of these waves depends both on the plasma
density and the magnetic field. When the phase velocity
of lower hybrid wave along the magnetic field is greater
than the electron thermal velocity, ie. for cold plasma
approximation, the dispersion relation for the lower
hybrid mode is git?n by, 2 ‘

2 w}‘)e‘,'(' <'Z _;.k M (2.61)
pusel e f?Q’77V ,
1_#~UDJV/K12€L
where (/L),L — (4 82,7(/0//\1 /2. is the ion plasma.

freguency and K} refers to the wave vector parallel %o

()

the magnetic field such that ki?4§<‘%2_ ~Ton and electron

susceptlbllltles are given by

a)> ( %ﬂj (LVQ% ” < )5 ( )
i ~ ; . A L / Qb' - (2.62 2.63
;Kﬁ C y )~ /L ' /K‘ (U) T e 0~§>_~;§ ' ’

—
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The dielectric function C is given by
R 2
€@U)::1~_&k@fv4 &ff (2.64)
Id U 2/ /\- Q (év

where J = ﬂrv/ﬁ4 + ﬁ?éi/%Qéb - and we Have assumed,

>> OL) >>—Q( . TFrom equation (2. 64) we have

(éég’) _ (i 7ngyap/fczgi) T (2.65)
aa)mqw QW}J“

Substituting equations (2.2 ), (2.63) and (2.65) into

equations (2.18) and (2.19) we get, after some algebra,
the following expressions for growth rate and the threshold
power for the scattering of an incident EM wave of f a

lower hybrid wave as,

; 2 2R 3%
2 '2’ k , Lt)bj / M)/J,d /hzr_L
= 2 Va1 5 a)/ e )X AR
N, N / \

2 %Zabﬁﬁg 2z) (k2 M R* 227
| 2 (2.67)
2 /? By | '
For () >>.&%pg_ and-;?é»égg )i>,1:7 equations
(2.66) and (2.67) become
N 2
Vo = 2 Vo Q)Q%@ h?%ﬂé (2.66a)
c f _
Vi
Vo't b |
o - rz /4 < - (2.67a)

~—.
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Next we shall calculate the amplification factor

for the lower hybrid mode. The group velocity V,, is given by

V. = oo . /{-’ /,x, CU/J%. / (5.68)
™~ —~— 2.68
. 2 2 =
. where | = &)P@}B/(i“f‘wpa/”’qe’) | (2.69)

Again from equation (2.61) we have,
3
( }ﬂvr 2 )"
k!’)(,. ﬁ_ k[; (2.70)
| *(H wie [08)- . '

Substituting equation (2.40), (2.41) and (2.70) in (2.42)

we get, 2 ‘ R
' ) o K,
K= e sin 02 Jr ' A S ;} (2.71)
[nC a5 oK L COS5 o C()fé"é Sen*0 /2 »
2 :a ._ |
e T
where ’/Z - _’1 — __g}b (_[2122‘ — ﬁ)

Now substituting equations (2.38), (2.66), (2.68) and (2.71)
into equation (2.44) we get for the amplification factor

for the lower hybrid mode as,
P

B {}«w ( /kz a)/JL/,Q(/> C/\’ anoa)méll\’, //’g

2 Lc)pu, /Q?/ ) _ Wy “eose’ > | '
&ﬁgz(z ,)(Tk’*b M &&QZJR”fLéJ/;’ i

(2.72)
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For side scattering equation (2. 72) becoméS,
47&“\/0 (k}//?”a W/%/Q@) Roln - Yo E:um, 55
T ) (e SR

(2.73)

And for back scattering equation (2.,72) beoomesy

4 Vo (/Q;//k“’”“ ‘”Px/ﬁe)/*o/n kqgm Sﬁ
G}Z Ci-%‘ﬁ? 7N/OQKQP7>XQ é%;? |

Kigo” =

(2.74)
For j:lp ;Z7buf%l and kz P@/?qurbga/f we get the
following expressions for O<?O Euw.c{lgo as
</ R/ 2N o n 2
Kyo® = 42;/0 (/QoLnj(woZ/wP%) S0 (2.75)
2 g '
and 0(/800 — '4/12\/0 (kot-’)’],) SWZ¢ , (2.76)
C e

2.4.3 Drift waves

When the density inhomogeneity is perpendicular
vo the magnetic field, then arift waves propagate almost
perpendicular tb the magnetic field, The density inhomo-
geneity scale length L—7b i1s assumed to be greater than the
wavelength of perturbation. The phase parallel to the
magnetic field is assumed o be greater than the ion

thermal velocity'ﬂjl but smaller than the electron thermal

4
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velocity 12 The frequenoy of the drift mode is given by,

_ éuxfg | (2.77)
i 4 .
. ;Z“%a ' £327ﬁ£1
where () —_ Rigle ¥ ity 5 iz ——Ff &K1,
7nf1QL4L Jzé
For this mode the ion and the electron susceptabilities are
2 i '
| X, () = Rp (1.—— (o+©x)PB ) (2.78)
| R% (o
| so that XL (Q)J,) —~ _ Z/RZ (2.79)

it Yy () = RE/

The dielectric function is glven by

=442 (:z R GP) 5 RSP o

Thus we have

7
D¢ __(2 2) _ /w
(26),-0, = (RE/RD) (2ED/0  oon
Substituting equations (2.79) to (2.81) into (2,18) and

o % (2.79a)

(2.19) we get the values of growth rate and threshold powér

2 »
ot M W) T s (2.82)
0 7j&?’ QQQ |
2 2 |
wa Vo1 _ 2 L1k fis& (2.85)

C%  SuAP W, Dy kF
Now as the laser produced plasma is expanding with a blow

off velocity(/, which is comparable to the phase velocity
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of the drift wave, the frequency of the drift wave will be

doppler shifted and can be Written as

) Vet
w,.,__ﬁ(i_..k i Pk o
2-p° 2-p
where 1&1 “’-7k9/%n Lﬂmrls the drift velocity. The

group velocity is given by

v — - U(r) (2.85)
and -km:: (w,—~ }g{:} Ud,)/U('ﬁ (2.86)

/
Then [ is oalculated to be

2
K'= e Sir Q/'(’{ 1 2% tal ()
- Ln,ﬁzf%vc cos w/ag Ly
where .
LU = —(-JL %’;% , (2.88)

Substituting equations (2.38),(2.82), (2.85) and (2.87) in
equation (2.44) we get the amplification factor for the

drift wave as

.9 ) o2
O<MU2W\@2 &QLVV~SML 514;4C039£00£ﬁp
AN = 2rre L7y =
U_QL (_/ ‘\,(/,1/ @/Z ! COPQ | L"U
For side scatterlng we have (2.89)

¢/¢_ »—-47r...n U% Ln\ omzsé (2,90)__

and for back soatterlng we get,

X g = AT Vo /? > w/:@ SMCLCb (2.91)
18’ : hn \ o) u | .
| U/ 15 o

—
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2.5 Conclusion and discussion.

| In this chaptér we have calculated the threshold

powers, maximum growth rates and émplification factors for
scattering of an EM wave by threé'different electrostatic
modes in a magnetized plasma. Our results are summarised
in Table 2.1. Recently there has also been other calcula-
tions, done independently, in the same generdl area. Yu
et a1(13) have calculated growth rates and threshold powers
for scattering of an BEM wave by upper hybrid modes, lower
hybrid modes and drift modes. Their results for lower
hybrid and drift modes agree with those of our's. Lee(14)
considered a two ion species plasma and calculated growth
rates and threshold powers for backscattering of an EM
wave from a ion-iqn hybrid wave and found that the threshold
was much greater, and the growth rate much smaller, compared
to stimulated scattering from upper and lower hybrid waves.

e(15) also considered stimulated scattering of EM waves
of circular polarization incident on a magnetiZed plasma
from ion waves propagating parallel to the external magnetic

16) also studied the stimulated scattering of EM

field. He<
ordinary waves from electron plasma waves at the upper hybrid
frequency and found that the threshold intensity required

fdr stimulated scattering was higher in a magnetized plasma

than in an unmagnetized plasma and that it increased with

increasing magnetic field.

—
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In our calculations Wé have considered scattering
from oniy one ion mode viz. drift modes. It is to be noted
that the growth rates for soattering of f most low frequency
ion modes are'comparable to each other. Another interesting
feature is the very low threshold field for the hybrid and
'thé Bernstein modes because of their weak damping. These
modes howéver require long parallel wavelengths and might,

therefore, be prevented by finite geometry effects.

It therefore appears unjustified to ignore 'the
evolution of magnetized modes in laser plasma situations -
especially while considering the non-linear saturation
levels of the scattered electromagnetic waves. In gonclu-
sion we suggest that the inclusion of spontaneously
generated magnetic field is essential for a realistic
estimate of the stimulated scattering of laser beams in

pellet fusion systems.

—
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CHAPTER 3

FILAMENTATION INSTABILITY OF EM WAVES IN A FINITE 3

T

INHOMOGENEQUS PLASMA

3.1 Introduction

In chapter 2 we have discussed the stimulated
scattering of an EM wave by different BES modes in arbitrary
directions, in a magnetized plasma., In this chapter we
shall discuss another-type of instability, known as fila-
mentation or modulational instability, which leads to
growing density fluctwations in the direction perpendicular
to the incident EM wave. The saturated state of such an
instability results in light filamentation leading to
self focussing of 1ight. We can understand the process

~

physically as follows: When the wave vecm‘,o:c’!é(D of

the incident EM wave lies along the perturbed density stria-
tions (i.e. the wave veotorjgi of the density perturbation
lies perpendicular to Eéﬁ ), then the refraction caused

by the density perturbation channels the light beam into
less dense regions., The resulting ponderomotive force puSheé

plasma away from such regions and increases the density per-

turbations. In the steady state the ponderomotive force



balanceg the electron pressure, and regions of high plasma
density with adgacent reglons of high EM energy density are
formed Thls is known as fllamentatlon or self focussing of

light,

This phenomenon can be considered ag g parametric
scattering instability in Which the ES (or mixed ES-EM) wave
vectorl%, is atAright angles to jgo . Since #3 is small, in
this limit, the antl—-StOke S process /fz }? +R is
indistinguishable from the Stokes process - R = ’f?\g*k
discussed in the last chapter. Thus both D. and D, in edquation
(2.11) are resonant and both must be taken into account.
Fllamentatlon is, therefore, a four wave, rather than a
three wave interaction. Self focussing of light in plasmas,
was first studied by Askar' yan(1) in 1962. Tater on Palmer(?)

and Kaw et 31(3) investigated such an effect,

In an: inhomogeneous - magnetized plasma, the low
frequency plasma mode to whieh a high frequency EM wave may
parametrloally couple, is an ES drift wave, and such a process
is discussed in the second chapter, However in plasmas,
characterized by sufflclently large values offg (1 > F>\‘m74@
where f% is the ratio of the particle kinetic pressure to
magnetic pressure and m and M are the masses of the electrm
and ion respectively), low frequency drift perturbations with
sufficiently long rarallel wavelengths tend to be mixed
EM-ES modes because of coupling to Alfven waves (and the

resultant importance of magnetic field perturbations).
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Thus in an inhomogeneous magnetized plasma with finite ﬁ
filamentation énd other stimulated scattering instabilities
can result because of coupling to drift waves or drift-
Alfven waves depending on how closely the angle between the
direction of propagation of low frequency mode and the
‘magnetic field approaches 90°., This chanter is devoted to
a detailed investigation of the latter type of coupling
viz. coupling to drift-Alfven waves. To our knowledge this
~1s the first piece of work oﬁ stimulated scattering instability
(of which filamentation is a special case) in which the
magnetic perturbations of the low-frequency mode have been
taken into accountg4) Drake et a1(5) had investigated the
filamentation instability of EM waves in a homogeneous, un-
magnetized plasma and Yu et 31(6) studied the same in a

magnetized plasma,

In seétion 3.2 we have‘derived a dispersion relation
for scattering of an incident EM wave by a drift-Alfven wave
in an inhomogeneous magnetized plasma. In secfjpn 3.3 we have
solved this dispersion relation for filamentation instability
and estimates of growth rates and threshoid powers for this
instability are presented for different cases. Finally

section 3.4 is devoted to discussion and conclusion.

3.2 Derivation of Dispersion Relation

We consider a weakly inhomogeneous plasma with a

unitform background magnetic field of intensityf%e . In the
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simple slab geometry the density gradient is chosen along the
x—axis( Ezgq/ﬁﬁgzz(K?()ﬂql>and the background magnetic field
lies aléng the Z-axis iﬁjﬁ o (u yC‘f - Eﬁz,\;)) . We shall closely
follow the method used in the second chapter, to derive the
dispersion relation. We also restrict our attention to drift-
"Alfven waves propagating in a layer of constant density i.e.
localized in a plane normal to the density gradient.
e 0E P roeltac— )

Let a plane polarized EM wave £, = 2ZE, €; 4,_.,&%)(}{@% b
be incident along the x-axis. The polarization is chosen such
that the electric wave Veotorzié and magnetic wave vectorj%o
are along 7z and - y axes respectively (ordinary wave). We
assume (J, »> OJFQ’ so that PQﬁCf CQ®/b~ is nearly independent
of x, For a high freguency pump the eleotrons»0501llate with
an equilibrium velocity VO{Z*JZE /’m&)c) whereas ions
Whlch do not respond to fast fields continue to provide a
stationary neutralizing background. Such an equilibrium can
be unstable to low frequency perturbations corresponding to
ES modes or in general to mixed EM;ES modes. Thﬁs electron
motion in the pump wave can couple with the density fluctuations
in a low frequency mode (O%fg ) and produce currents and EM
fields at the high frequency side bands (W = Lt #2+~¢?*L”
The side band modes interact bank with the pump mode to
produce a ponderomotive force at frequency 4> , which can
enhance the original perturbation and thus lead to an insta-
bility. We shall consider the caée where the low frequency

perturbation corresponds to a drift-Alfven mode excited
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Flgure 3.1 ~ The Co-ordinate syslem used
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- in the Y~7% plane such that w << L4 -
d

The Fourier transformed wave equation, for the side

‘bands, is given by

o ot - 2
(jf T ,4\),.,/09*’)1 - Fii kii {Z:,J = 47“‘“:&?2;&/0 (3.1)

where g; denotes the.unit dyadic andrg; =E (O%tpfg+>'

~ The cufrent density perturbationr§+ arises from the linear
response of electrons to;@? and th; non linear coupiing
between the electron quiver velocity and the electron density

fluctuations produced by the drift-Alfven mode. Thus

+ Lt
Jy = = empVg — emng V] (3.2)

I e

Here MQJls the velocity of the electrons at frequency (o4 G2,
and V“:: v (+'U) , 1 } c) refers to the equilibrium
velocity of the electrons,’TLaand‘716are equilibrium and
perturbed electron densities respectively., We neglect ion
oontrlbutlons, since the pump has a high frequency. We can
calculate \/Cffrom the equation of motion which is given by,
y, _M_e,i_'E e 0XB ~£——\/£XD063)
1 arv.

'7,-\/
- e Y

Q)

!

Q,

E%,is the perturbed magnetic field at frequency (J and
can be simply expressed as,
3.4)
B /c = (R,E,~ R3E ) & (
WL /?j/ Y ave | h
since we restrict ourselves to perturbations in the y-z

plane ( ;‘3 =0), we shall also assume /Qx, >‘> }\9 The

assumption of localized perturbations in the X—dlreotjon

—
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leads to considerable simplification beoause we can Fourier

analyse in the y~z plane., We solve for V(;from equation (%,3)

and substitute in equation (3.2), The linear part of g,

can be absorbed on the L.H.S, of equation (3,1) and for

04 >> Qg a simplified equation can be written downj

N S L . b
‘/kf-~ Wt 6"4-:)£_*B+gf BT 47‘ 6,7 \/ (3.5)
\ — ,(,:2 ,sz. - P - - 4 c

. 2
4__£a UJF’& /AME L"){
where £§.+ CLJ+n7fQﬂ:) is the dielectric tensor for a

magnetized electron plasma given by,

// i B ()JPQ / CO.[_J ¢ Q)PQ,JQ 2, / 6():}: @) \
- .2 /& i .2 2 -
::5 + = - '{'C.:)PQJQ@.- (l)i i - LOF@/CD:L, C’ &
2
o 0 4””%/ /
and ébis given by (396)
Q "'ﬁg" Q @/ h\ LO_'L LA @/ 0)4,
A - s T
o~ ' o . ~
~ 0 L} / }22/ 1
O O C
(3.7)

We now need to express the'low frequency quantities.7lg,
and L in terms of B- and By to be able to substitute in
equation (3.5) and obtain a dispersion relation, We assume
that the lowvfrequency perturbations evolve agcording to

the fluid equations as given below,

Iy fat ==3.(nY ) - | (3.8)
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AV

o,«l_j ~ (E \/ XP ) - /e s,

5% 44 v)J“mj( i /C [ Ylogni/m; 5.9)
UXE =~ 38/t 5  wE :4@;2@]"’11; (5.10),(3.11)
UXB = 4nd Jc + ﬂﬁ/g;a;t 9 V.B =0 (3.12),(3.13)

where suffix J stands for electrons or ions and other symbols
have their usual meaning. For P >’m/,«4 the electron thermal
speed 1&; ellceeds the Alfven speed(}x( fgzyﬁkhwband it can

be assumed that (;\,/[‘ < Cu <L Vg so that the electrons
reach equilibrium along the field lines. Neglecting electron

inertia (since 09 <<.£14;), the z~-component of equation

(3.9) can be written as |
’7’1{(\/ D)V (V5 2) Vo + (V2. V)\/gféﬁ(,&f;-il) Vé}}

o N — TN .

=€k, < (\/;C B, + Vex BJ) +£ ity B~ e 27
(5.14)

where \/i“ -~T (x/Q /WLE? ¢, is the eleotro:n drift velocity
arising out of the density gradient and ((Uo+ }QO’*
is assumed to be in the -y direction. Remember:mgT that the
pump wave vector ?O*F is in the x~direction and the quiver
velocity \/ ((A) >1s in the z-direction we Fourier analyse '
equation (3014) and solve it for (”'Z‘-’ the electron density
perturbation and thus leading to, | ‘ -
e _ 425-9/ LO\/J%:/? ( Zf*— fé‘" LT Ay }

Mo RaT R *? T, |
2’ 7 wie #7 7 (3.15) |
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whereQNLis the z-component of, the non-linear ponderomotive

‘acceleration given by,

+ LVO’ Pﬂ \/'@9, + LVO % ng | (3.16)
Now from Maxwell's equation it can be shown that
kF vi = - eBY /mvc
+

Also we have@%.: )?é = Ré/ (since 1&{’0 is in the x direction).

Substituting these conditions in equation (3.16) we can

rewrite equation (3,15) as

’ﬂ.g ,/QE o %Ziv&}@ f.zf./,— E;,t/ (\/ V )
(3.17)

The correSponding,eXpression for the ion density perturbation
can be obtained by solving the llnearlzed ion equatlons with

no coptrlbutlons from FL and \/ 5
A /’?’L p <4,Q/ Mo )< K E. /_( +;€2E7/CO) '(3.1l8)

Substituting for 71, and 7’&@ in the Poisson's equation

gives us one relation between Ey and E

weRy | RECy € /‘k Ro (1 0
<?_+ (1) ﬁ;"+‘ Q)zéi <\>/i?£é},+’ la*' {D(AO ﬁ;gi( CO//R E

- -+
= -«(Lm/}?g"/@) (V0+Vz§z“ff\/0 \/@2} - (3.19)

i
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2

where ‘D = wPQ,/UAZ. is the D.ebye‘ wave number, "/J ::(T(g,/M
is the ion accoustic speed and &)%_:? 5L gfx// :\—
A second relation between Ey and Ez can be’obtalned from
the relation,

4ﬂ-~ (VX@,) é\ ”4.6)(&(}.}\?(5;,**52/. (3.20)

o J7 =X 7T w

where JZ is to be calculated from the fluid equations.

For the long wavelength drift-Alfven waves one can assume
quasi neutrality(’f?_z’l’ 7 4',) and subtracting the continuity
vequation for electrons from that for ions, we get an

exXpression for J-Z,

Lo . c[?Lo ¥ )( )
ikyds = w@(\/m ) —ien ,Ok gy 5.21

- The ion velocities \/' and \a' can be written directly from
the equation ofrnotlon (equation 3. 9) with no contributions

from L)( and \/ as

2
V= S 1-£ bV = L )E:.(3.22>
“x unew; ? ? /3 ?

where the second term within the parenthesis in vj—x,
arises because of finite ion-Larmom adlus oorrectlon

In order to calculate electron velocﬂuos -\{Zx‘and \/[4'_‘?
~let us write down the x and y components of equation (3.9)

for electrons,

{ VoY) Vox + (%) Vo =~ .@ﬂ\/é}Bd, € (\/% By + Vey £

Ao (Dt ’)’)’LA,_'/ /)/)/L/ 4

. + \/O 4*\/0 B > (3.23)
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- - B

(\;/C,N) +(v \7)\/*7”’“[}7#““(\@“ YA/ \/b)
(3.24)

Here Eﬁ (0J+j)k’ refers tothe magnetic field of the

scattered waves., We can eXpresslﬁt(U{t9Z§i> in terms of
(OJ+"fQ ) by Maxwell's equations which can again

be expressed in terms of \45 (hlfpﬁQ ;) by equation (3.%)
(It is to be noted that for Wy >>L1g only the first term
on the R.H.S. of equation (3.%) is important ). We can thus

simplify the terms proportional to the ponderomotive force

in equations (3.23%) and (3,24) which can now be written

simply as

€m0

— Lk - 4 N —~
VS }:(ﬁj(\/\ +vov%) S Vey ™ O (325)

_Substituting equations (3.22) and (3.25) in (3.21) yields,
_,, # - /7 +
=Ry 0, T ) + ok (Ve iV
Z? é? E?.ﬂzg 5? 2% J./
(3.26)

From equations (3.20) and (3.26) we get

L1 0T o) RECH By~ koEy /Ry
= L& LW &);@7”[ ( V;\/g}f + \/O'VQ%)/JZCL'ZQ ;.(3.27)

We now solve for Ey and B from equations (3.19) and

(3 27) and get, ) |
KL ;2 ( ‘)

(Wﬂ4y+W/%z%:( fméi C Fp i+5u_}

TP f ey (7
J ¢) +/€}R 73 28)
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A vfﬁv v@,)[@w@/beky(_,,w*kﬂ (3.29)
R

J € Le Ry .
a)x ; -
where rb is given by ) /O;;REAZ ' “ /IZ) kz k
p=re (SR i;/
| | ., .
-t (20
- (3.30)

We now return to equation (%3.5) to substitute for
71y end Eijh terms of the pump amplitude. I+t is convenient
to effect a simplification at this stage by neglecting the
second term on the R.H.S. of.equation (3.5). Tor a
sufficiently large pump frequency(wo»JZQk}/lé() this is
quite justified., Equation (3.5) can be easily inverted now
(specially since CUb 2>-§2€Z' andZéé is approximated by

a scalar) to give,

4 i%f,:?i R+ R4 +
k= “ (I B >/ Ry (Wi~ ‘“PZ> Lo

(3.31)

9, 9 2 2
Dy :.QZRi-@gfk“#@

- where

Now we have to substitute for 71Q/Qqato get the
dispersion relation. Substituting equations (%.28) and

(3.29) in (3.17) we get,

'ﬂ@ﬁn :>_pﬂk”CE0ii EO.L’)%/WJQ¢&%f(33m
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x K UJP@ (j kp%) ’:i.w (a).;.cog

PUTEE SR

where \;-"“l‘»‘ .'j_

(j»@*T) wpe & ﬁ(wq@wﬂ /Q?K“JP2<CUW)(_W \
- ﬂ/%(} R? AYe) /qz 2p2 0, \ Gk

Substituting equation (3.3%3) in (3.31) we have,

| bR ReRa )+
F’ wP@!Q4 (E Eﬁ-EQ»E)(l_& ~-—2~4>/ f,@?;?jlgt

47 030 > 7TLgb

E+ - w/;g fQD‘P(E E EQE)WE~X§0}Z,{N /E(?Z,‘S(B.M)
~or o 7 47\&) " "m,c)b | ‘Q:‘ZD‘ ;9/—7-( -Cun@ (3 .5)
E— E+ (A)o@ IQD \}/(EO“}: +E ' '»]g+) B+><AEJO[ ’ k EO’Z

MO T i, e L RFDE Ry (‘0 “’F@) |

(5.36 )
Adding equations (3.35) and (3.36) we get the dispersion

relation, -

: . 3 z
DRy et [Rual”  Lenedt et

: e e e 2\ 52 (14
Af YR | M Dy R?J(wi'wfgj@" RED. R‘(' [P’)
(3.37)
Equation (3%.37) is the generalized dispelrsion
relation for the drift-Alfven waves in the presence of
the pump wave. In the electrostatic limit andfor (“\"‘?0
it reduces to the dispersion relation (2.11) obtained in

the second Chapter.
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3.3 Filamentation Instability

We shall now solve eguation (3.37) in the
1imit when both D and D are equally important and the
other two terms are negligible because the denominators
(O%i-«-O)Pé) are non-resonant. Since 0%3;§>£:l€, we
8180 have E ;\_/,JC) = () where Vo= CZEO/CQG is the
group velacity of the pump wa&i. For CQn(i&%*and retain-

ing only *he leading terms equation (3.37) can be simplified
Kab
(wnwf) .

, g, 9,
where c = 09}\2/60 and K IQ:Z l\/o{ /wo is a

measure of the applied power. We have introduced the

to

w(l’ﬂeﬁ-iﬁ))‘"ﬁ@@ -T“- k Lf/\w“" ,2 (3.38)

parameters )) and fﬁ to represent the natural damping
rates of the low frequency wave and pump wave respectively,
in a phenomenological manner. Writing Cu:::?c4'ézf.'we can

separate equation (%.%8) into its real and imaginary parts
' 2z 9 2 2
2,2 0y T kze 2 K”Cg(x"?%’“f’*é)
7L—'?.-b£?—*0)*,_,7c-  (%::&~ :
J F(xs Z*‘) (5 39)

‘77%4')) - y F(”fﬁ) (3.40)

where

o) = (Egrtstagr) s axt (1)
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It is straight forward to obtain an estimate of
the threshold poWer(KI K(’Lg ?——}O) from the above
equations. For the drift-Alfven branch we get,
K, = 2 [(xi-r*= LR % 4r ] an
260 %e

with the crltlcal frequenoyﬂ% given by,

ki T < |
1”%}“‘_} ? Aﬁ 7,, Vg </-: 5 (5.42)
We note that our dispersion relation does not permit

a purely growing solution. Thus the density modulations
excited in this instance do not form a stationary pattem
but possessa slow time dependence given by'%ﬁ, The
threshold expression (3.41) can be further minimized with
respect to 5’ to obtain the minimum power necessary for
parametric instability. This occurs for,gff Otéj and

yields

sor ke
| _ Al ?CA (3.4%)
me T £ ‘
b Wy
One can expect the same result in terms of a minimum

field amplitude Eyn,p
3
£ Jann,Ts = vrwgk cA/&a Whe G

Just above the minimum thresholds, equations (3.%9)

and (%.40) can be linearized to give,

(Ax|ce 22T (K= Km/(.u km (3.45)

- \O/L — :Z/V(K Km)/<m (3.46)
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A = A~ Kp is the frequency shift in the real part

of () and 3, is the growth rate.

FPinally for large applied powers (much beyond threshold)
one would expecttm)Z%)i>a%%)1é]7 and equation (3.38) may

be approximately written as

(;o{coz'—a 52’) - ~i<§ (3.47)

It is possible to estimate the order of magnitude‘of the
maximum growth rate (or the maximum frequency shift) by a
dimensional analysis of equation (3.47). The maximum occurs

:Mréfv%mﬁng and comes out to be

{
x ~ (K Yz . (3.48)
™MOA :jvnélm¢ . ‘ : /3;
Thus the maximum growth rate is of the order of!{D\%éibdQuo
and is comparable to growth rates obtained for modulational
instabilities corresponding to various electrostatic

(6)

modes

3.4 Discussion

We have derived a general dispersion relation
for stimulated scatteringof am EM wave off drift-Alfven
waves in a finite}3 inhomogeneous plasma. The special case
of filamentation instability which leads to self-focussing
of an intense.EM wave, has been investigated in detail.
Our estimates of threshold power and growth rate etc, are
found to be comparable to those obtained for excitation of

ES modes and this could be a competingprocess in a realistic
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sitvation with finite f3. We also note that for,}i,}% =@
our dispersion relation does not rermit a purely growing
solution in'oqntrast to the homogeneous unmagnetized plasma
calailations®’, Both the inhomogencity and the magnetic
field effects contribute towards a small real part of the
frequency and thus cause the density modulations to have

a finite phase velocity.

Our results could be of significance on experiments
with laser fusion plasmas. Recent numerical simulation(7)
and laboratory experiments(B) have shown that intense
spontaneously generated magnetic fields(kfﬂ}égg‘may be
present in the interiorof laser produced plasmas. Such
plasmas have sufficiently high values af/g (in the kilo-
volt range) to make coupling to drift-Alfven waves important.
It is therefore likely that self focussing in such plasmas

is governed by process discussed in this chapter.
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CHAPTER 4

DECAY TINSTABILITY AT TLOWER HYBRID RESONANCE

4.1 Introduction

In ohépters 2 and 3 we have discussed parametric
scattering instabilities in a magnetized plasma. In the
next three chapters we shall discuss the parametric decay
instability where both the decay modes are ES waves.
Parametric decay instability is considered to be very use-
ful because of its role in anomalous heating of plasmas,
such as laser heating, lower hybrid resonance heating and

50 on. In most fusion devices like tokamaks and stellarators
etc. ohmic heating cannot raise the plasma temperature to
the desired value of ten kilo electron volts or so. This
is because the electron ion collision frequency (and hence
the electrical resistivity) is a rapidly decreasing function
of electron temperature. It is hoped therefore that non-
ohmic process, such as anomalous absorption due to para-

metric processes will provide the additional heating.

Let us now try to understand physically what we

mean by anomalous heating of plasmas. Imagine a pump wave

—
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of frequency dlu and wave vecfor E;dimposed on a collision-
less plésma. If the Wavelength of the pump wave is very
large (i.e. smallfio ), its phase‘velocity may be more than
the electron thermal speed and this mode will be essentially
undamped. Now if there is a low freguency short wavelength
OQ)7 fg) perturbation in the plasma, such that &).<3< Wy
and f@ )9>/?0 , 1t will non-linearly interact with the pump
wave leading to the generation of side band components at
(o + We == W, and BTEOQ’B , Which will have a
considerably smaller phase velocity ViZ.CﬁV@Q, When the
pump wave frequency is close to one of the natural frequen-
cies of the'plasma, say a lqwer hybrid frequency, it drives
the natural oscillations resonantly and their amplitude
becomes quite large. These large amplitude side-band modes
are, however, heavily damped by Landau damping because of
their low phase velocity. Thus the pump wave which decays
into other modes, ultimately gets absorbed in the plasma.
This is known as anomalous absofption of the pump wave
leading to anomalous heating of the plasma. Anomalous heat-
ing takes place preferentially for that species -of plasma
particles which interacts strongly with the excited high
frequency ES modes. Thus if the applied osciliating
electric field is near the electron plasma frequency,
anomalous heating of electrons takes place. Any excessive
'heating of ions, in this case, takes place indircctly and

-is not, therefore, very efficient for fusion. For direct
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anomalous heating of ions, one should work with a pump
field at a lower fréquency such as magnetosonic, ion
cyclotron, lower hybrid and ion ion hybrid frequency ete.
It should also be noted that high power is much more easily
availableiat lower frequencies. That is why anomalous
héating for fusion purposes, a great deal of attention

is being given to frequencies like the lower hybfid

resonance,

In this chapter we shall study the anomalous
heating of plasma by decay instability at lower hybrid
resonance. Decay instability at lower hybrid resonance
has been widely discussed in the literature. The theory
of linear conversion process around the lower hybrid
frequency was first developed by Stix(1> and by Piliya
and Federov<2). They showed that a long wavelength EM
wave at the lower hybrid freqﬁency can be 1inearlyrcon~
verted into short wavelength ES modes which then get
heavily absorbed by linear Tandau damping. Kindel et al(a)
for the first time predicted theoretically and observed
in computer simulation experiments, the parametric in-
stability and heating of electrons and ions by a lower
hybrid pump. They considered the decay of the lower
hybrid pump into another lower hybrid wave and an ion

(4)

acoustic wave, Soon after Hooke and Bernabeil made

experimental observations of parametric instabilities
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near the lower hybrid resonance frequency, where the low

frequency waves were found to be ion acoustic waves.

Excitation of an ion cyclotron wave and a lower
hybrid wave by a lower hybrid pump was discussed theoretically

by Chu et a1(5>, Sundaram and Kaw(6)

have investigated the
effects of pump at lower hybrid resonance on the excitation
and suppression of drift instabilities in an inhoﬁogeneous
plasma. In a two ion species plasma, the excitation of ion
ion hybrid wave by a lower hybrid pump has been discussed by

Kaw and Lee(7) and by Ott et al(B).
(9)

Chang and Porkolab have reported experimental

Observations of & new type of parametric instability which
involves the excitation of lower hybrid waves and non
resonant low frequency modes (ion quasi modes) when the
pump r.f. field is near the lower hybrid frequency, accord-
ing to them, the non resonant instability is the dominant
one for pump frequencies between 1 to % times the 1owe?

(10) yas theoretically dis-

hybrid frequency. Porkolab
cussed the excitation of the ion quasi modes and the
lower hybrid modes by a lower hybrid pump. Recently
Ott(11) has discussed the decay of two lower hybrid waves
by a pump field near the lower hybrid frequency. The |
widely used dipole approximation can not be made in this
problem and the pump wave frequency should be more than

twice the lower hybrid frequency for this instability to

~occur. Satya et a1(12) have shown that a long wavelength |
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oscillating electriec field af lower hybrid frequency can.
be anomalously absorbed in a plasma with short wavelength
low frequency fluctuations becaﬁée of their coupling to
short wavelength lower hybrid modes which are damped. Thus
anomalous absorption of lower hybrid waves can result even
1f the wave is not intense enough to excite parametric
instabilities, the only requirementvis that there should

be significant amount of low freguency fluctuations in the

medium.

In the present chapter we shall discuss the
excitation of a Very low frequency 'cold' ion Bernstein
mode, propagating almost normal to the magnetic field in
a cold, homogeneous plasma, by a pump at a frequency near
the lower hybrid wave. In section 4.2 we shall first
discuss the linear dispersion relation for 'cold' ion
Bernstein mode(13) and then derive a dispersion relation
for parametric excitation of this mode by a lower hybrid
pump. In section 4.3 we shall present estimates of
growth rates and threshold powers, for this decay insta-
bility, under different conditions. In section 4.4 we
shall discuss our results and point out some applications

to our results.

4.2 Dispersion relation

We consider a cold, homogeneous, magnetized plasma

~with the magﬁetic field Egoalong the 2z~ direction. By
P
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cold plasma we mean the phase velocity of the perturbation
parallel to the magnetic field is much greater than the
electron thermal speed'taaf The ion and the electron sus-
ceptibilities Y. () andxe(w) in such a plasma is
given as

Wi - Y |
W pe ) o 4=t (4.1)
Kil) = ('ZQ"Q’ zaw)

| Ldpg, [ R v
and X (W) = ( = %_/,#/ r/) (4.2)
) «Jlg, Rz
where U).: ou-#4hUL and U\ o Q)4nL2¢9 9 _j (} é@

represents the phenomenological damping rate for the

Species concerned. k%,,is the wave vector parallel'to
the magnetic field such that k?ti<3<‘/’. The linear

dispersion relation is given by

E(w) = 1+ x(w) + Xy (@) =0 (4.3)
we shall consider the wave frequency, [, to be much
smaller than the ion cyclotron frequency (Kf2'<?fJizé
For such low frequency waves we can ignore unity in

equation (4,%) and substituting for ;(;j(&Q) and ;X;ZCﬂe)

from equations (4.1) and (4.2) in (4.3) we get,

2 R 2 2 <

et ey — T - =" /
QFw  0F w A\ Ww wo (4.4)
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From equation (4.4) we see that ion motion in
the perpendicular direction ié the dominant one, whereas
electron motion dominates in the parallel direction.
Keeping only dominant terms in equation (4.4) we get the
'1inear dispersion relation for 'cold' ion Bernstein

modes as,

(()./‘ +LL?L') (&J nys Ug) = _,Qg—-f\zikujj/kz | (4\.5)

2 2
Thus from equation (4.5) we see that if () 4?(12@

then we must have fQi';z/}’{Z << ’ﬂ"l//M writing (U ::Q}L_——(;L)L
where &2L and l%ﬂ are the real frequency and damping
rate respectively of the low frequency mode under con-
sideration, and equating real and imaginary parts in

equation (4.5) we get,

(7)€+D,¢i)/% (4.6)
2 ) 9 z (4.7)
end (0= Q, QKR ~—( Ve%’)/4 '

Thus for this mode to be undamped we require that,

MM /}ku//Q >> 7)6 4,)/4 Qe ll] (4.8)

under this assumption the dispersion relation (4.5)
can be written as,
t?../ / 2/ (4’»9)
W, = .LZ@Q kll K
It is to be noted that in a cold, homogeneous,
magnetized plasma with a single species of ions this is

the only low frequency mode(&)(llé)propagating in a
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C =T
small cone perpendicular to the magnetic field. There-
fore the excitation of this mode by a high frequency
pump should be important,
We now consider the influence of a lower hybrid
pump wave on this low frequency mode., An oscillating

electric field }é:[—“o CO% (,u'Oz‘, at the lower hybrid
frequency (1!, 1is applied across the magnetic field.
The pump wavelength is considered to be much larger
than the‘anelength of perturbations, so that we can
agsgsume the applied electric field to be spatially
uniform (dipole approximation). We will study the case
when such a pump decays into another lower hybridvmode

(LUH5>E§H) anq the low frequeney 'cold' ion Bernstein

mode ((,UU /:_) satisfying the. resonant conditions.

RN . /‘ R
Wp = W+ | (4.10)
Ro=0=Ry+Re

where (COL.pfgL.> satisfy dispersion relation (4f9)‘ We

now need to obtain a general dispersion relation that

will contain the appropriate non-linear corrections to

depict the parametric decay process. A standard method,
as developed by Arnush et a1(14>, is to transform to the
oscillating frame of each species (to account for the

influence of the pump wave on them) and obtain relations

connecting the density perturbations and electric field

fluctuations. Finally use is made of the Poisson's

equation after inverting each quantity back to the




laboratory frame. This results in a chain of coupled
equations for the perturbed quantities and the determinant‘

of its co-efficients set to zero gives the dispersion
relation. The determinant which is of infinite order can

be suitably truncated to a 3 x‘3 determinant, by limiting
oneself to the. lowest order side bandsl(ﬁ)iiéﬁ&g 5,ﬁ::6)91.
and (U { Wp ) and using the smallness of the excursion
length of the two species under the influence of the pump

wave compared to the wavelength of perturbatiOns(ifi.fij<3<jp),
Since the defails of the method have already been

published we will write down here the final dispersion

relation(1o)
_ (¢ w —
(4.11)
where
E(w+ n,.x)(j/ A+ X /C()?LTLCLO)—-/‘)L? 0+”JUJ>
. (4.12)
and
2 — 0 -
Y o T, Wpe | G+mWo Rim 1|
w47 )‘::: — |2 T =
c( 9 (o +’7LL00;}_CQ) +7’LLU0> ~,Q ‘ /«\ ) ‘f)”@o,
' (4-17 e
N ’)29 —_'\/7”6{’.) /,N‘::"u/) “)
m)(.()/ ((/D ‘/" 'n/(f—)()) = — . /JC e 2, ..<// MM;—T‘%
. ,\’ L)
| / CO-F}’Lwo)(J ﬂ&)o)v—ﬁl@ f W fr
Here 'YLL:-()bgi i.' ; also we have , (4.14)

f7«:1 :K2_+ > x<¥: CA. and /A{,?re defined by

(K(w 'L,() a,) - ?\ Ser Cu £ +/(/( o8 (A,JL,‘Zf' (4.15)

/
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Rpj is the excursion length for the\]ﬂz species under
the'ihfluence of the'pump wave, ‘A and/ou are the
COmponents‘of the excursion aloﬁg the wave vector fg 5
they have respectively phase differences of734gand

zero to the applied field.-:D is the Bessel function of

the first order.

. )
We shall next calculate é;(&)iﬁUQ/ . Substi-

tuting equations (4.1%) and (4.14) in equation (4.12)

we get

((aﬂwo) - a)/gb/(a)+w0)((x)+a),,+uﬁ)

-+ &@@(&%F&b+év%»éaﬂéﬂla@) k“Q%Q{k 0b+ﬂ0

) | >< (040, +we)f
2 lfe Wiy
. ‘ i P D
= Wb s et 2 e

where Lﬁ+ls the lower hybrid damping frequency defined as,

Yy = V., + 7’6(&)0/(2@-Qo + }?n ’\"//‘€ ﬂ’i’b) (4.17)
and (LU,H is ?;flned as, ,

',< /o D p \

Wiy = We/ U+ wpe/ 2E) (4.18)

Now equation (4.16) can be rewritten as,

-

/ (N ,,.QJ)_ Ij& (((,()7“&)0) {/‘)H)/dd pééwr‘,‘)H L‘,U”j

éwﬂ(6§+w+w@/mp | (4.19)

——

where (g;: a)0~‘0)ﬁ+ is the frequency mismatch of

pump frequency (U from the lower hybrid frequency_CLv4
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defined as ”

| z N
2, Wps. /i L Rip M (4.20)
Wy= —FZ7 72" oz |

4~LUF /Cﬁlz,
Again for the 'cold' ion Bernstein mode we have the ion
and the electron susceptibilities'};:(u{) and ;{%ZGQJ)

defined as,

‘/ _,

X, (w) = EA‘)’@ L g X, (w):'-—&—’ i (4,21)
L &Z) ¢ /Q/Z/(L)

Substituting equations (4.19) and (4.21) in equation
(4.11), thé dispersion relation is reduced to a simpler
form,

K& e
2/’_ (&).{-4:7)/_; ~

where k{ — ( ) (O, k%, fﬂ//FQ 7 (4.2%)

Z . 2
W+ Rewy, — W, =

F( is proportional to the applied power and can be
defined as a threshold paramefer. For-f’::o’é K =@ and
equation (4.22) ieduces to the linear dispersion relation
discussed above. We shall now sdlve equation (4.22) in

various limits.

4.3 Estimates of threshold powers and growth rates:

We can have two types of solution of equation

(4.22) viz. (1) a purely growing solution when [<g (= and
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(2) an oscillating growing solution when izétZLiaéCDJ

4.%.1 Purely growing instability.

In this case the real part of the frequency (U
vanishes and we can write (U= z?) j,being real. Substutut-

ing this in equation (4.22) we have

kS
, 52*/’(?”'{'2)/4)/‘/

This equation has a solution only for (5<O . Thus a

\J;Z/' Foaa ) ‘1’?/
g ALt W= (4.24)
purely growing mode can be excited by the pump when its
frequency (1, is less than the lower hybrid frequency (),

0 ¥y H
The threshold power in this case can be obtained by

putting gw“?C) in equation (4.24). Thus we get
K = — &)E())H@, 52)/5 (4.25)

This is independent of the low frequency damping rate ){L 9

and assumes the minimum value
Ko = Z&Of Yy | (4.26)

‘fOI’ é = -V It may be of interest to express the
minimum threshold iﬁ terms of applied electric field.,

In the appendix we have calculated fhe values“ofj?D the
argument of the Bessel function, for the field £ applied in
three different directions and found that the value of

f’ is largest when E;O is applied in thef§><é§;direction.

Thus equations (4,18), (4.23) and (4.26) give the minimum
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threshold power for purely growing instability as

7 o 2 ’:2' P '?/
Eo{{ — g_m,“ vy Lo L2 (4.27)
i LER* Wo

The maximum growth rate near the threshold region

is given by

y = K=z Koo (4.28)
Vi, ,Q(COI?L}“ZﬁL»H) :

}) >> ))L P 2)/4 and W WEIB have 7}.’??’21: (k/g) at
the frequency (v, = Wy — CK /'2')/:3

In the :‘mtermediate region two c‘aSeS.arise°
When (J) »> Yy and L(, »K >> Krm/ we get )/,n,ru /QI/;’Z@Z
Cat theA frequency (U, ~ CUH— K/,Q Ji)L: When wl.- L ))’7‘9
and 2)/;? >k >> ey , we get ’))’)’?’L ~ </~</2 ))H)/l’,(, at the
frequency [0,y ~ Wy -))H s |

4.%.2 Oscillatory growing solution

When the real part of the frequency is not equal
to zero, we then write (O = 7{,,‘—(:? and X ;L'Q The dis-
persion relation (4.22) can be seperated into real and

imaginary parts giving ,

;‘ ’%V = Ké{é %“f’{?“/“ph))//f(?: 29)
and 2%(y+ﬂg- x%ké[?ﬁﬁﬁbﬁfxdﬁ) (4.30)

_where F (‘Kj ?) = <7(,2; 82_-(3'—# ))H)z) 71*4%:2’(?% ))/4) 2( 4.31)
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From equation (4.30) we see that for %#0,‘ a growing
solution (?} O) is possible only when 5}0, in other
words an bsoillatory growingvsolution is possible only

when the frequency of the pump &)0 is greater than the

lower hybrid frequency Oy -

The threshold can be found again by puﬁting’*d/k:; O
The frequency ;g.—:;zc at the threshold can be obtained from
equations (4.29) to (4.31) giving

Ko = i{ I (V/—/a)z_ ‘1*?)1.(3)14 '74—52/))}/'2/(4 32)

Y+ Y

and the threshold given by,

Kd(g) = Vi ﬂ452/+())/f'+27)'¢+1),~+¢0& 5 //(22 +2) J
g (4.33)

Thus from (4.3%), the threshold is zero, if any.one of
the modes is undamped (i.e. ?JH or 2 v 0 ), Obviously
the threshold power is a function of 5 . The value of
optimum (g) for minimum threshold is determined by the

condition dK@/d,é:o’ This condition can be written as
| 2
pa
é) = - = ((7) —/’2)[_);) (’OL+}) 24 (2) _/‘-2)/_',) - +)))
2
iz ((N x4 p’"’) ) )E C(4.3)
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we shall investigate these conditions in some limiting

cases.

Case (a): When L), D>V we get from (4.32)

(452 wL#é (4.35)

B

and (4.,33)

K (é)a—

7£C, - T OJL Sﬁj.“f (?éi/&)L) _.J;zf (4.%6)

The minimum value of the threshold power is given
by :
Km: 40)LVL”H (4.37)

at the frequency & A (U, . When the electric field Eo
is applied in the k X B¢ direction, the minimum threshold
rad ~

power can be written in terms of E;o as

o2 2
EOZZ 16V, Yy Qﬂ fzé ’é/m—z/@ w‘oku/\% (4.38)

Case (b): Tet us consider the case when
1)% >>*Q)L,>>>2)L , In this case, we hgve from equations -
(4.35) and (4.%4)

Kelo) = vL(v,_,+5) vy b (4.39)

e ~ i&)/ﬂ + 2, Py (i-{ 52/));4 )} (4.40)
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The minimum valueof the threshold is given by

| 2 o
K'm = — Y Y, - (4.41)

which is attained at the frequency <5/N?2)H/Kf3', In
terms of the electric field, the minimum threshold in

this case can be written as,

.o 2 , , 2 .
2 mé4 )J,DHIZ@.QL??i (4.42)

Finally we calculate the growth rate well

above threshold. The maximum growth rate in this case

is given by {/%

)/m :%(’g’) (4.43)

VZ
at the frequency 5 s (—g——) 3, (4 .44)

4.4 Discussion and conclusion

In the present chapter we have pointed out the

possibility of parametric excitation of a low frequency
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'cold' ion Bermstein mode, propégating almost perpendicular
to the magnetic field in a coldphomogéneous)magnetized
plasma, by a lower hybrid pump wave, We have calculated
the growth rates and threshold powers for different cases
&iz., for purely growing and oscillatory growing insta-
bilities(15). Since the 'cold' ion Bernstein mode
propagates almost perpendicular to the magnetic field,
its phase velocity parallel to the magnetic field tends
to be large and in some cases it may be comparable to the
Alfven speed CA(__: 130/(47('!"!71'0)‘/2)‘111 such situations the
electrostatic approximation is not valid and one should
consider the electrpmagnetic effects also. In order
that the Alfven speed is larger than the parallel phase
velocity (for which the ES approximation is valid), the
théory presented in this chapter is applicable to a
plasma with a high magnetic field and low density. Also
for the cold plasma a?proximation to be wvalid, the plasma

témperature should not be too high.

For an order of magnitude calculation for the

threshold power, we choose some typical parameters

characteristic of a laboratory plasma: no:1012 per C.C,

Te = 102 e.v.,, B, =25 KG, M = 3,3 X 7|O~24 gm.,

5

W, = 107 rad./sec., W = 106 rad./sec., 1V, = 107 rad./sec.

H L
" the perpendicular wavelength ﬁ\L = .1cm.and parallel
wavelength ﬁ\,l-: 100 em. Using these values we have

numerically estimated the threshold power for the
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excitation of 'cold' ion Bernstein mode for the case

0 > Py and EO' in the direction parallel to ;XL@» .
This gives Eiyv%C)VOlt/cm. which is well within the
~

regime of present poWer densities envisaged for r.f.
heating experiments and thus the instabilities considered
in this chapter can be easily exploited in an experimental

situation.
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APPENDIX 'A’

We shall calculate the argument f of the
Bessel function 3] in equation (4;23). By definition
— (?(2_.}./(,(5‘?‘)%?/ ' (4.1)
and E':(Boa“ fzu) = A SMM0£-+/M/ coc wy,t (a.2)
Thus in order to calculate ) and/AL, we need to
calculate FzgaandfzoLythe electron and ion excursion
lengthsvrespectively. We use the following fluid

equations for the ions and the electrons,

Mo — 2 F oW t+ Ve XJI2e (A.3)
c)f: - M =0 o] ~ o~ |
dUgo_ € £ oowet -V XSLe (4.4)

Y i 9

where 7 and Li are respectlvelv the ion and the electron

~ el
velocities under the influencc of the pump wove field. The
parallel and perpendicular velocities for the electrons

and ions can be solved from equations (A-4) and (A-3)

giving
fvo” - *;iz)'ol:()ucgwu&)of; (1.5)
Vyor = — £ wgc’igww"i 2 Eor X1 e cosat
~ 4% Cué;_*~ _522% | ?VL '54;uJ2. h.6)
Vo = __«__Z_F Epyp Serv w,t (4.7)
Mg
/U"L)L - Y% ,l;:jo_LS.mw?f:_“ E/_EOLX?{?‘ oot

Mo w 02/,“ ,/2:7’ M R ~..,Qf (A.8)
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For the lower hybrid frequency we have _ z_.t_

Ueing this approximation and integrating equations

(A~5) to (A-8) once we get,

Ryoy = (r//mwo)fo,, (03 w,ﬂf o (2.9)
E-:?,Oi —- (u/f?m) >L COS (@ (C/WL.Q@»L))F X (,Lrac m(f;;ujoot)
Rioy =~ (ﬁ/Mw.;/' E o COS@o® - (4. 161)
L S e,
RyoL -“”(Q/M’HO) m“’w‘) @’/M“d” Epu X2 (A.12)

using equations (A-2) and (A-9) to (A-12) we get the

expressions for /) and//(/ as

N= <?//m, Q(/wO> k_L“‘OJ_ .Q.@ +<€/M(/)O kl NOng(‘{:

(4.13)

. P 2 7
/i — i{}gu EOH (i'fyﬂ“/M)/w(j/WL - 1 B-—U EOJ- (j:‘ 77/1J2Q//"1&))/m—\44,

(R.14)
Now we fix our co-ordinate system such that 'l_'j’;,

)

is along #-axis and f/\ is in the \J-z plane so that

~

k,=0. Then substituting (A-13) and (A-14) in (A-1)
we get,
. ) ) ;L . 2/ Q/ ; 2/ :-/:/ 2 Z ,‘2,
fjl' Q,Ak?f/—:-oxf‘)’@ , g /{5,4/50;»* 2R Eoiy 0 na Qk Eﬂj/

- Ea o -
20 (o H 5 4
miag 4 i M~ 0, Ao, m* 0y

'y

,L 210 - 2 9, .
+ »AZVED;,E()HQ IQZRHW 2@ /Q;,EOJ/ .;.?QL/Q,,fiyEw £ﬁ”

My ou‘;} M1 ué)o _QQ v 4)02._0_
- (A.15)




-8

-
We shall now calculaté-fzbfor some special cases.
“Case (a): When E(): zF, and En) = O , then
(1-15) gives -
pi | ZM,E /m.wa (£.16)
Case (b): WhenLOg =E, and [z, o= O,then

we get from (A—15)
0% - g /M” ' | (£,17)

Case (c¢): When L’J:’("E andf: ;,( :‘: (J) then
o4

we get from (A-15)
. L%
. Zr ‘
,’9 ot _&N &\ \} L'(J Q/‘ l'!")O M ! (A .1 8)
4 .

It is easgy to see from equations (A-~16) to
(A~18) that for lpwer hybrid frequency, _J}’x'is largest
when Euis applied in the le xR, direction given by

equation (A-18)e
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CHAPTER 5

DECAY INSTABITLITY AT TON-ION HYBRID RESONANCE

5 h Introduction

In chapter 4 we discussed the decay instability
of a lower hybrid wave in a cold hémogéneOus magnetized
plasma with a single species of ions. HoweVer, normally,
‘the thermonuclear plasmas consist of two 1on species viz,
deuterium and tritium or other combinations 11ke LiD, CH2
and 036D74, and therefore for realistic situation, one
should consider a plasma with two species of ions. In a
two species plasma, resonance at ion-ion hybrid frequency

has attained considerable importance for plasm heating

by oscillating r.f. fieldst'=3),

1

The ion-ion hybrid resonance was first pointed
out by Buohsbaum(4) (and is hence referred to as the
Buchsbaum resonance). Buchsbaum pointed out that when a

high density plasma column in an axial magnetic field

possesses two (or more) species of ions of different charge

to mass ratios, there exists a plasma resonance condition

which involves only the ion cyclotron frequencies. At

A
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resonance, the two species oscillate transversely to the
static magnetic field and 1861degree out of phase with
each ofher, while thé.electrons remain relatively motion-
less. The ratio of the ion osoiilatory energy to that
of the electrons is of the order of the ratio of the ion -
to electron masses. This resonance was later on experi-

(5) (6)

mentally observed by Haas y Toyama and by Tarasenko

et 31(7).

Generally, for a parametric decay type of
situation, the ion ion hybrid mode is taken to be one
of the low frequency decay modes (i.e. the difference
mode between high frequency pump wave and a high fre-
quency decay mode). The possibility of exciting such
an ion ion hybrid mode, by applying external oscillating
fields at the lower hybrid frequency was first studied by
Kaw and Lee(1) and 1afer by Ott et a1(2>. The possibility.
of stimulated back scattering of BM waves from ion ion
hybrid waves in a magnetized plasma, was theorefically

. 8
studied by Lee( ), He showed that although such a

process is theoretically possible, it is unlikely to be
of importance in present day experiments of heating
plasma with intense EM waves, as the threshold,for such
a process, is much greater and growth rate much smaller
than the corresponding stimulated scattering processes
from upper and lower hybrid waves. Plasma heating by

linear conversion of ion ion hybrid waves, was recently
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studied by Klima et. al.(g) and by Longinov et.alg ).

|

One could also consider a situation where the
pump wave itself osciliates at the ion ion hybrid frequency
and decays into an ion ion hybrid mode and some other lower
frequency modes. This has some advantage like greater power
availability for the pump wave (compared to highef frequency
pump waves) and relatively higher efficiency for ion heating.

(3)

In a recent paper Satya et. al have considered such a
scheme for an inhomogeneous plasma where the low frequency

mode involved is the drift mode.

In this chapter we wish to study some other

cases which can occur in a homogeneous plasma. In particular
we have in mind two very low frequency modes which‘héve
received only scant attentioﬁ in such a context., One such
mode is an ion acoustic mode propagating parallel to the
ambient magnetic field. For a warm, homogeneous two ion
species'plasma with'LQ,2>&)Ahlf> ?;%Wherquifandlpﬁ,
(j = 1,2)represemt the thermal velocities of the electrons
and the two ion species respectively) this mode obeys the
disperéion.?elatie? 2 ‘ 3

W= R (e (1-2)C ) Gyt
Here f’f’:_ TQ/NU g;nd /;{(:: m’()l/ﬂ-q)emd (1_—~ O() (:n’loz_/-’ﬂo)

-t

are the concentrations of the species 1 and 2 respectively.

The other low frequency mode we have considered
is the 'cold' ion Bernstein mode, discussed in the -fourth

chapter. In a two 1on species plasma, the dispersion

.



o
relation for this mode is written as o |
(%= Ri“ 0o 0,0y  (5.2)
| K20u22+agd)le

where j:%/ ?\j;: Qﬂ Lj;Z are the cyclotron frequencies.Th@i

7ﬁoﬁ£wpropagates nearly perpendicular tnthe ambient magnetic

field (’Q !’f’/ff{ 2 LL 71/\,-/ M’Z?'m and 1\42/ are the masses of the

electron and ion of specieé 2 respectively such that P4r<ﬁ1£
and also satisfies the relation &%/f%ll 3§>’1ﬁ£;

A thivd possibility (which is analogous to the
decay of plasma waves at a quarter critical density) is
the decay of the pump wave into two ion-ion hybrid modes
of lower frequencies. In orderrto satisfy the resonant
comditions for such a decay process, it is necessary to
take account of the spatial inhomogeneity of‘the pump wave
(the widely used dipole approximation is not valid) and the

Pﬁ spectrum of the waves is restricted.

In the following sections we have studied the
various possibilities and obtained quantitative expressinns
for the threshold poWers and growth rates, Sections 50241
and 5.2.2 are devoted to considering the 'cold' ion
Bernstein and the ion acoustic modes respectively and the
calculetions have been made under the dipole approximation.
In section 5.3 we have considercd the decay of the pump.
into two ion-ion hybrid modes and the ma thema tical for-

malism is necessarily different from the other two cases,

o
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to account for the inhomogeneity in the pump mode. Section
5.4 contains a brief discussion of our results and their

applications.

5.2 Derivation of the dispersion relation

Let us consider a homogeneous plasma consisting
of electrons and two ion species embedded in a uniform
magnetic field of strength B, = (0,0,B5). Let us fepresent
“a large amplitude unlform pump wave by E = E (Os &/E where
&)O is close to the Buchsbaum frequency 606 given by

7 7 s
<a¢§x%j+wwggilf V2 .

where U)H)is the plasma frequency nf thej QL ion species.
Thus at equilibrium we have a homogeneous plasma with
electrons and the two ion species oscillating at the fre-
quency{pounder the influence of the pump fieid. We now
wish to study the stability of this equilibrium against low
frequency pexturbmtlons characterized by {) In general,
if this low frequency perturbation corresponds to a

natural mode U)L) '</) of the plasma, then the pump wave
will decay into another ion ion hybrid mode (0Jﬁﬁgl§,4)'

and the low frequency mode(kﬁL)/ZL) satisfying the

resonant conditions.

[JL)(:) — CUH ‘I” C‘OL
E o O = E;H’!‘E/L

(5.4)
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‘We now require a general dispersion relation
that depicts the appropriate ﬁon-linear corrections of
the parametric decay.process. To this extent a general
dispersion relatiom was derived By Satya et,al.(s) and
a brief account of the derivation of the dispersion
relation will be discussed in the Appendix B. We shall

write the final dispersion relation in the form

| f NP S AN,
£ (0._)) =7, ’2( v, Q,> X (w) X Z(“ﬁ Xy ((,0) Elwt D\)J“é[w %}}
(5.5)

where {((,O—{» 7 C()(D = jf_+xl {(,u 4,-7’{,(/0() -+ X;Z.(CU'J' “/La)o)
+ o (wtmewo)

n = Q;i 1 and the}é{k’ropresent the susceptibility

Bl

functions of the }th species. The argument of'the
w /'..
s A 2N A
N . s v A . ’1
Bessel function J, is given by'Yfﬁ;—tA 4:/A,’> with
C\ amg/lﬂdefined by,
[ N ' ) UL COS Wy
R tﬁOﬁ-“Bo@)’f‘ A Sc%wol’i{/@ 4

SN

t

Roj (i = 1,2) is the excursion length for the jth inn

species under the influence of the pump field, Tor
r,, = 0 equation (5,5) reduces %o é(co);()which is the
linear dispersion relation of the low frequency mode .
The R.H,5. of equation (5.5) gives the non linear correc-

tions fbr the coupling of the pump wave and the ion ion

hybrid mode.
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54241 Decay into 'Cold' Ion-Bernstein Mode.

First we consider a cold;homogeneous, magnetizéd
plasma and solve equation (5.5) by suitably substituting
for thé various expressions, Using a simple three fluid
model (electrons and two ion species), the susceptibilities

for the low frequency mode can be written as

TXJ" (w) = (,of; (j_ay/éyx;/@) /,QJ*'?/  (5.6a)

Ao (W) = v» _?_'l UJ[D(//&)’ZJ(// 7’-&7@7/&)) (5.6b)
2 L

where )9(Cf;; ngqJ;%> represent the collision frequency
of the!itépecies (it can also be used to mock up the

Landau effects phenomemologically). In the derivation of
epressions (5.6a, b), the perpendicular electron and

the parallel ion motions are neglected and we have retained
only the principal contributions that constitute the

'cold' ion Bernstein mode. This mode propagates nearly
perpendicular to the ambienﬁ magnetic field anq satisfies

the condition

(JJ,vw))Q]f) </ /\:( << M
AQ@ZP,LJL R* 2

1L and_jZQ{L are defined as
’Q{f )i

» ),,_.O—O\f‘l)i ( O() ﬂ
1&fo”“ ”Z;/}V&_+f4il (} f%
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Substituting equation (%.6) in- (5. 5) we get
%wﬂ@‘vﬁkﬁﬁ
0,0,,  R*

: ~ . ? -
L ' . N -
(W —--jf,'Z.LwDL"w/w = —J éﬁ;f

o / J
XL 6(&)4‘-0)0) i g(wdo)@ (5.8)

whe re 'D\L-:_ (y€+pﬁhf)/,g/m the linear damping rate of
the low frequency mode. We have

0 F oy LY
XJ [[/J c)o) /E_Of_j_____‘_____ﬂd W . 7

(cu‘comuw)z/ W5»9)

Tor ()) +L)) ’\Q lw lwe can erte equation((5.9) as

)/j (Ck} O)'> U) (2 1 UJU“;(J) CUO(LOO JL)

(5.10)

using equation (5.10), we can express & (&)4 (J)) as
é(m:&wd — (bi (")j:‘/ph‘)-) S (5.11)
: 2

e —Z wjj (5.12)
1) @)( ,_O L) <w0* J)

818 an approx:unate measure of the deviation of the pump

frequency (L,\/\ from the Buchsbaum frequency QJ/ and 1is

defined as

| g« ((,OF %&)Pg/)(&)0~025>
- MWD(wO MQ,) Vwo - /2_29“) (5.13)
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Similarly,v)) 4 is the effective@amping rate of ion-iom
hybrid mode and is given by,
t 2’:
v, =S vy L2 P —7 |
HED £ wg(wo5) (@5 ) (5.14)
Substituting (5.11) in (5.8) we get,
_ N . 2 2
2 2 g = — (5.15)
2{ . s 7 7 2/ .
e K = 2 A (=) B R

—

5.16)

and is proportional to the applied power through the
argument of the Bessel function, We shall now solve
equation (5.15) for two types of solutions viz. purely

growing and oscillatory growing modes.

5.2.7a Purely growing mode

In this case the real part of the frequency
vanishes and we can write (U = LZL) y/ being real. Sub-

stituting this in equation (5.15) we get,

2 2 K&
ey RS 2, 5% (5.17)

(7+4)

Equation (5.17) admits solutions only for 5} O;’ thus a

purely growing mode can only be excited by the pump when
its frequency ig slightly higher than the Buchsbaum
frequency. For ‘}“}O we can easily obtain the threshold

"~ power for excitation as

Ke = wf(p,§+6z)/5 (.f‘j.w)
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This is independent of the low frequency démping rate,LL

and assumes the minimum value;

K'n.'LL/n, = ,?,w[?’ziH_ at CS:—'T Vg - (5.19)

In order to get the actual pump power it is more
instructive to express the above relation in terms of the
field amplitudes. However, since the general expression
in that case is quite cumbersome, we will write it down for

special orientations of the electric vedtor of the punmp
wave .
Thus for EO parallel to the magnetic field ,BS,
we gelt the threshold electrlc, rield as, ' |
00 0<( ~D) (M- Mz)z’k”

For EO‘LPDandE }Hﬁ we ged,
£ 2 Rirws) (wo'ﬂz) (5.21)
08 = FOB 02 ipF (wi m-22)”

And foic ~——0H /QXP we get

2
J:o/?‘ = EO/I?; MM (Wo 0 Qﬂ) / (M/+M,Z)Q;

Next, we can write down the maximum growth rate near the

- (5.20)

(5.22)

threshold region as

TR ;’L(OJLZ(—!—JZDB)H)- (5.2%)
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Far from threshold ()) })JL 9 ))H' 9 0_)[_) we get the usual
(11)

cube root law
| % Iz
})'ma,%,f (K/S) ’ at ng(/Z) - (5.24)

In the intermediate region we get the following behaviour,
For  (J, YyVy and &)E >> K >> Kmﬁnj we have
Ve, ~ /‘</;¢wf’ s S Kjzw (5.
For (W, KK Ly and ))/-1‘ > K >> K s oy + We have
“QWLQ% ad O“i iﬂH) V2 "5 =Yy (5.26)

5.2.10 Oscillatory growing solution

Woen(} = At LY and % £0 then the
dispersion relation (5.15) can be separated into real and

1mag1nary parts to rflve

3 ’LZ’V MwLM <5{7¢ (ZH'))H) 5}//:(%’?)

(5.27)

(Z}*VQ”‘*—Z %5(2’"{'7) /r(xﬂ?) (5.28)
where F )L) 3/> {%Q’ g (ZLqLJ)H) j—1-4}(,) (jH)H)

From equation (5.28) we find that for 7(,# () B has to be
negative to give a positive growth rate. The threshold for
this instability can again be found by letting \g.go

The frequency 3. — ., at the threshold power cean be
L
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obtained from equations (5. 27) to (5 29) and is given by

(2” %vzﬁ"é 2/)7“)#/&) 2)2 %

(L""‘ (5.30)

_ 4
[y

and the threshold power is 6 ‘)
4/(0H+Qﬁhvf%wL _f

| VY, é
()= R

(5.31)
Expression (5.31) can be minlmlzed with respect to é;

and the expression for Kmin examined in various limits.

We have listed these results in Table 5.1, where for the

sake of completeness we have also included the results

for the purely growing case. The behaviour of the max imim
growth rate is analogous to case (5.2.1a) and far from

threshold value the usual cube root law is found to hold.

5.2.2, Decay into Ton - Acoustic Mode

The low frequency ion-acoustic mode propagating
parallel to the magnetic field can be easily excited in a
warm plasma for g > CO/R” >> U and Kij /}Q >> (A)/.Q
The pertinent susceptlbllltlezJare now given as
Y= CRE wpj
J Fléu00+t%) (5.32)

z

?{;O — ffjigi,f | o (5.33)
) ad

—.
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Substituting equations (5.32) and (5.%3) into the general

' dispersion relatlon (5.5) we get
Y
((,o 2wy, — Wy )(cg /wa—c))H) (5.34)

where (1) and ) are defined in equations (5.1) and (5.14)

respectively. _)) and K are given by 4
v = R (e + e (%) :z//f&

(5.35)
2
K = 27 ) .2‘*(’ -%) * ki’
% A D MMz RH (5.5)

The analysis is now exactly analogous 1o that of
section 5.2.1 and the results are displayed in Table 5.1.
It is to be noted, however, that for the purely growing
mode One requires 5<O_<(—:‘Q'«wf)<&é\/‘l‘f0r instability in
contrast to the 'cold' ion Bermstein case where the
condition waslg‘>() } whe reas for the oscillatory
growing solution the reverse conditions hold good for
both the cases i.e. 5’}0 for ion ao‘oustic mode and g(O

for the 'cold' ion Bernstein mode.

5.3 Decay into Two Ton-Ion Hybrid Modes

We now consider a decay instability in which the

incident pump wave decays into two lower fregquency
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ion~-ion hybrid waves which can subseduently get absorbed
in the plasma and thus lead to plasma heating. An
instability of this kind is always dependent upon finite
pump wave length, and it is not possible to satisfy the
wave number and frequency matching conditions under the
~dipole approximation. In order to introduce the finite pump
wavelength, it is necessary to take account of the electron
motion in the ion-ion hybrid mode. Since electron cyclotron
frequency, ,EZQL is much greater than the ion ion
hybrid frequency, electrons will be tightly bound to the
magnetic field and only their motion parallel to the
magnetic field will be important. For the ions, on the
other hand, the perpendicular motion is‘the important
one. Thus the susceptibilities for the ions and the elec-

trons in this case are glven by
"\/C‘ — RJ,.- w/)j
4 - ,—‘——77 . —_
e R o _.JDj (5.37)

and %Q — l/)” (’UP /kZa)

where }{lﬂ refers to the wave vector perpendicular to the

magnetic field. The dispersion relation for the ion-ion
hybrid mode can be written down as

> e, w5
;Ql[ 9&3 F?L. (:_,ﬂIZL_,w~,+* = = O

2. Q. 2 (5.38)
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where we have assumed quasi neutrality. Equation (5.38)
can be expressed as a fourth-order algebric equation in [J,
The 'exéct solution of this fourth order equation is quite
involved and as such we will 'make an approximation right

in the beginning. We will consider a plasma consisting

of a light ion species and another heavy ion spec':ires.suoh
that le, >>(1\)2/>).(2le Under this approximation equation

(5.38) can be solved easily to give
W = Wg (H’ ﬁ) (5.39)
and f} = f\ﬂﬂb//771’<’”"cﬁ)  (5.40)

- In deriving (5.39) we get the folloWing condition for the
angle of p:‘t'ovpagation @‘9

)
Mo A 5y pros e n> M
USSR ———— . \'72/ (504‘1 )
M T-o

where (C0OS5Q — R(l/f% )

Now the pump wave and the other two decay modes
have to satisfy the frequency and the wave wector matching
conditions. We denote the pump wave by suffix @ and the
two decay modes by /(9 and(fr_espe ctively. Then the wave |

vector matching condition is

Ro = E‘,éfSC (5.42)
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From equation (5.39 the freguency matching condition can

( +f’<11m/)) RH(,/5> T 1_+ LB y(5 43)

be written as

In order for (5.4%3) to be satisfied PQ! a '/?<a¢ has
to be greater than 3, that is éLQL‘>uQLCUE3 It has been

(12), for the case of lower hybrid waves

shown by Ott
(where similar equations occur) that solutions to (5.42)

and (5.43) exist if the condition wa>2w/8 is satisfied,

To calculate the growth rate 79@ we note that
it is no longer possible to use the general dispersion
relation (5.5) as it was derived under the dipole approxi-
mation., Dispersion relations with finite pump wavelength
have been derived previously for particular cases. Jackson(73)
has treated the case of decay into two plasma waves at quarter
critioal density for an EM pump wave oscillating at twice
the plasma frequency. His results are, however, valid
only for l RO/RJ<'< | (where f?}o and ﬁ*é are the wave
vectors of the pump wave and one of the decay modes
respectively) and for an EM pump. Similarly the generalized
dispersion relation of Drake et, al.(14) suf fers from the
fact that the nonlinearity arising in the continuity

equation ( V. VY70: ) has not been included and these are
L ~F
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are impor tant when the decay wavesvare both ES., TFor
magnetized plasmas, the recent analysis of Otﬁ(12) for
decay of a lower hybrid mode is most complete in this sense,
and since the ion-ion hybrid mode has close analégies with

the lower hybrid mode, it is most convenient to use the

method of Ott for our analysis.

Basically we assume that the two modes (6Q69£§é>
and (&)(»/QEO) couple to produce second order density per- -
tﬁrbations f/‘é‘z)(w&) f{ cc,) with (/‘)&:‘ Q}/(;'YLCUCJ/ and
fgé‘;:fi()1L1£§C> s In this ordering scheme the first order

 perturbations ‘725U(z0&:}£?0%2}f considered alone would lead
to the linear dispe%sion relation, while the inclusion of
second order pertﬁrbations would give the proper non-linear
correlations to the dispersion relation describing para-

metric decay process.

In order to calculate the growth rate 5; we first
consider a cold, homogeneous and collisionless plasma. The
effects of collisions will be introduced later. TFor theion-
ion hybrid mode under consideration (i.e., with one light ion
species and the other heavy ion species), one of the ion
species (the heavier one; we refer here by mass MZ) can be
considered to be unmagnetized while the lighter ion species
(with mass M1) and the electrons are magnetized. Tor the
heavy ion species we write down the continuity equation

and the equation of motion as follows,

-
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N oy, . '
2”%21”,-./(\7/,. (:LL,\\{Q/) =0 o (5.44)
a\/ — €2 4 , (5.45)
| Pt N vyz,z”‘” M:z)ng

Where YLL and \/fé are the perturbations in density and

the velocity for the ion species 2, and sb is the per-

turbed potential. From equations (5.44) and (5.45) we can

calculate the second order density perturbation ?’Z.g&)for .

the ion species under consideration and we ged,

(2}(60@/ 5‘/) ?Z,Z,(w@) fw) 76/“)47 /{4) Sﬁ(wc’k )

(5.46)
where o

2
,}? ([/()aj k(/{/)‘_ 7’)';:’?/@ 2 u)(;/éz)@ /Q(“ k/(,
-2, TN My 0 W W
>4
_'.wba) ( Ra ﬁ{(a)(ﬁé k )4’(@ &> j
(5.47)
fn()ﬂ/is the equilibrium density for the ion species 2.
The electrons and the light ion species are magnetized so
that their motion perpendicular to the magnetic field
consists of the polarization drift and the EXE drift and
the total velocity can be written as
h\-,/j:l >\/,/U+/\\{Pf ‘{/A\_/EXBJ (5.48)

&
where Suffixj refers to either electrons or ion species 1.

The prrallel and the perpendicular velocities for the g ¥

species can be written down as

V, ¢/ 0
5‘J+\ . J9L7

— (5.49)
_f Mj o
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vV —*»XBJ' = - __B.,o 7 )«to | (5.50)
: - ,L
. M (5.51)

where ﬁ%)is a unit vector along the Z axis. For'j ::j,

4%5;; 2, and Fﬂj.—’4( and for&j-e1ectr0ns éQJ —_ e

anleyH: . The continuity equation for thgj {to species
is written as
@”'U )43 (7Y Vi) =0 | (5.52)

using equations (5.49) to (5.52) the second order density

perturbations for theJ U species can be obtained

’U”!(QJ) (u)a f{@) 7( ((«)a,;k@)¢)(“‘)&9 /eé)gb(wcﬂ/\jc)

J (5,53)

where

oy C ﬁk/?' /qzcz, /"7,6 /@ \
(o) = 39 [ keakat Sze(Zat aty 22

7 ‘ , y
(J My 12 0g - W e , ;) “ f:% kw@'
)(m kel (Ret T Zﬂ
eI\ Ty, T

Lo
*E‘(Zovﬁa”? e We o @

~

2 «L/ g
+n “log &;a, }Qj,(, k_(a ; (’!Q (k a’ /{JL/’{’(QT})j J

) (35

K.
The first term in (5.54) arises due to the terms quadratic
in the motion parallel to the field lines; the second term
is due to the coupling of the EXE/drift with the motion
parallel to the field lines; the third term is due to the
4coupling of polarization drift with the motion parallel

to the field lines; and the fourth term is due to the

—
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terms quadratic in the polarization drift,

Now, we shall make use of the Poisson's equa tion
for the second order density perturbations which can be
written down as,

2, ke k] 2200t arfPung) oo
4’,6 |

@
where £ is the dielectric function and 'fj(f) is given by
(2 ' _CZ); GZ) _ G?O ' 6
YDL): o (N 4ns =7 (5.56)

From equations (5.55) and (5.56) we obtain the grow th

rate as

A (eme’] 45(6%)/ / (G )Mz(‘”‘j Q {e(%&)
< /22%)0% r Q/é)w" (5.57)

In deriving equation (5.57) we have made use of the

i e,
symmetry relatlons )2@ ((,L){,) k )11/ 72_'; 2, 6 )~u)
If we consider the case when [ "/FarufﬁB % tMBn from

equations (5.47) and (5.54) we see that the most important |

term arises from the electron density perturbation. The

second term in VKAL'is greater than 7zi_and 7'Z_,Z*and the
other three terms in 7Z Retaining only this term we

rewrite (5.57) as

, ,?7"' f?a,&/?)[wa,,/ga)( CO/J@-Q/% } Zye R //)197’\/?. l
” iQZCQ f?zé -“fkgc, o4

) qu‘ e~ Rae w‘*”) oo T e T e (5.58)

ZJ

R g M
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ha,
Sett:mg Raﬂ j,,g N/5 k?_ a, ;,C« 9 we obtain an order

of magnitude estlmate for 7)

VZ
}) N CU&,( - %) (W)Q/ (5.59)

Where'f%_is the electron excursion length parallel to
the magnetic field. To obtain the threshold for the

pump power, we need to include damping effects in oux
analysis. In,é homogenecous medium the growth rate in

the presence of damping is given by
:é{éfa’f?[% )f (”ﬂ” )

(5.60)
Where‘Lk and'L%/ are damping rates of the decay modes A

and ¢, respectively. The instability’thréshold thus
2 .
becomes jz ;>7£12.The threshold value for the applied

field in this case is given by

‘ 2/
Izoi?‘”V RS 6UZ?COFW f? (5.61)
L Q)fag,J:L F?(I
5.4 Discussion and conclusion

We have investigated in the present chapter
the decay instability at the ion ion hybrid resonance in
a homogeneous magnetized plasma. Two low frequency modes
considered for this purpose are the slow ilon-acoustic

mode propagating parallel to the magnetic field and the
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‘cold' ioﬁ~Bernstein mode prqpagéting nearly perpendicular
to the magnetic field. We have calculated the instability
growth rates and threshold powers for the onset of the
instability for each case and our results are tabulated

in Table 5.1. Figures 5.1 ana 5.2 show the variation

of the growth rate with TP*Which is proportional to the
applied power, for the ion-acoustic and the 'cold' ion-
Bernstein modes respecti&ely. It is easily seen from the
figures that the growth rate is higher in ion-acoustic

case than the ion-Bernstein case.

A third possibility of decay into two lower
frequency ion-ion hybrid waves has also been considered

and the growth rate and the threshold power calculated.

In this case our analysis is applicable to a plasma with

two ion species of considerable mass difference. This
restricts the angle of propagation, of the decay modes, with
respect to the magne tic field. In this case the instability
is found to be dependent on the finiteness of the pump
wavelength and the dominant contribution is due to the

pump induced electron motion parallel to the magnetic field.

Our present calculations, complement in a sense
the earlier work of Satya et.al(a), where'the decay of an
ion~-ion hybrid mode to another ion ion hybrid mode and a
drift mode was considered. In fact the growth rates and

the threshold powers are quite comparable and therefore

-X-.. P T,a
'f — %12, defined in equation(5.5J.
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in an actual experiment one has.to evaluate the various
competing possibilities., Finally for an order of
magnitude estimate we choose some typical parameters

12 per c.c,X=

characteristic of a laboratory plasma: n, = 10
Te:102€'v.,B0=25KG‘ For the 'cold' ion Bernstein and the
acoustic mode we consider a deﬁterium—tritium plasma

so that My = 3.3 x 107 %gm, M, = 5 x 1072* gm. Also

we have considered the case(An_>>)i+and have taken

O)Lb = 107 rad/sec., ){+= 100 rad/sec., 1{7: 10° rad/sec.
and ;\ = .1 em, Thus fhe threshold electric field Ek

in the direction R X B4is calculated for the 'cold' ion-

.5

Bernstein mode and the slow acoustic mode, to be respectively,

E g 30 volt/cm and E_, a* 15 volt/cm. For the case of
decay into two ion-ion hybrid waves we consider a deutrium-
oxygen plasma so that M, = 2.6 x 10723 gm; and the thresh-
0ld electric field is calculated to be EOI_= 80 volt/cm.

Thus the above values for the threshold electric
fields are well within the regime of present power densi-
ties envisaged for r.f. heating experiments and thus the
instabilities considered in our work can be easily exploited

in an experimental situation.
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- Figure 5.1 - Variation of growth rate )>/ Wi wversus f which

' is proportional to the applied power; for the slow

ion acoustic case. We have used, here, 5/0«’;;,3 1.0,
))H/wlf 0.1, ))L,_/UJL = 0.01 and (0, = 10 rad. /sec.
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Figure 5.2 - Variation of growth rate '}’/wb versus f which is
proportional to the applied power, for the 'cold’

{ion Bernstein case, We have uged Sfw, = 1. 0,
vi»#/“j}_z 0.1 ;)'”L_/U)L = 0.0_1 and W, = j0'r

ad. /sec,




-111-

APPENDIX B

B.1 Derivation of the general dispersion relation.

To derive a general dispersion relation the
standard technique (as developed by Armush et. al.(15>)
is to transform to the oscillatory frame of each species
(to account for the influence of the pump wave on them).
Thus if,Zi and;gf;re the radius vectors in the laboratory

and the oscillating frames respectively we have

/ . ’ M . ¥ \/ N
3 3 /. . o d_ ‘O
To—v-R, ff)wheref_é K, Zl:) = Vo g @0 and, _of
are the excursion lengths and equilibrium velocities
of thej s species under the influence of the applied
— /
electric field. Thus if F{i(ﬁ;*ﬁ) and/yj' zy%)are the
density ﬁerturbations for theu}ﬁ; species in the laboratory

and the oscillating frames respectively, then we have
— / |
(e08) = N3 (1, 8) = N; (2 + Roj , £)
Ny (1) = () = N (£ + Boj 5 .1)

We now define

. : = ”é—, ‘
Bg@yfiﬁvsﬂvaé+%@F2fwd (B.2)

wher%/%j and ?\iare the components of the excursion along

the wave vector ﬁzéthey have phase differences of zero

and EZi/ respectively to the applied field. Fourier
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transformation of equation (B,1) gives

NJ(R W= LT (N) T (A)NJ(R M(mﬂgwo)

'm)(, (B.3)

The inverse relation expressing the fluctuations in the
oscillating frame of a given species to the 1aboratofy
frame can be written as
/ —
(K, w00
. — YT \/ SO
Ny (R co)iz, J ’('?\)7 (/“ AR
J(Ap e m )% J )
Myl ,

In deriving equations (B.3) and (B.4) we have made use of

LZ;LKH/(CQOfijCjL>

the identity

,,,f/ Sm(wﬂﬂ-o() ) ()
M

The Poisson's equation is given by

LR.E = 4/TE(N,+!\/2,--/'\@,) | (B.5)
e~ NS _ ‘
We now define the susceptibilitieék}p the oscillating
J
frame as

Nj = 4{27@]' Ej/z;f/“r@ (B.6)

where E and gj are the electrit fields in the laboratory
fa%d -~ .

and the oscillating frames respectively.gg is the charge

corresponding to thgjﬁispecies. Equation (B.6) can be

used to express the demsity fluctuations in terms of the



electric fields. The electric fields are further trans-—
formed to the laboratory frame by means of relation (B.3).

This gives,

oG | b N
+)(’”{w) N ( ) jﬂ/(ﬁ:b)@miﬁb /\/,Z\z;ujbﬂ,wd)
75((60 ~00

+Z J, ’L (;/ Q_) e ”’-Cfbl > N‘\}/( ) 'n.w‘a)

o= - 00 (B.7)
In equation (B.7) the foliOWing definitions are used
‘ <
A= Aj Ak = TR COS Pk
= = Mk = RSl
From symmetry considerations we get two more relations
connecting the density fluctuations of the different plasma

components in their respective oscillating frames.,

Al ) = T (1)) PR ()
N= -0 |

Xy {w)

2 b
t/ J}D[Q&) e NC(CO%%%)

(B.8)

| 7 =-00 o MM{LJ ‘
_ LK) Ne (@) -:_:/\' VSUDEZ EN,{@H’LWO)
Kelw) 7 T |

,(,’)’L C/)@?

+Z Jﬂ/(% L) € N, (”*nw”)

(B.9)
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The co-efficients ofiq;in equations (B,7) to
(B.9) form an infinite matric whose dcterminant set to zero
gives ué the dispersion'relation.‘ Tb truncate the infinite
determinant we assume that the particle excursions are much
smaller than the perturbation wavelengths so that the

argument of the Bessel functions become very small, that

is

J}tYL (TZi) <é< 1L ’7L%z!29 as 'ij[ <<s

Also for £O<Z;&)0 higher order side band terms proportional

to (Wt Wy o 71’£i;;L are non resonant and can be
ignored. This reduces the infinite determinant to a 7 x 7

one and this determinant can be solved to get the disper—

/

sion relation as,

& (w) e~ 3‘;2/(’0’7 5&) Xl (6‘3) X,L(w) ZQ[w)m+w()72 (w,a)‘zl
" (5.5)

It is to be noted, from equation (5.5) that
only the relative streaming between the two ion species
can lead to coupling to ion ion hybrid modes. Physically
electron streaming effects drop out of the problem because
electron density fluctuations at (w0t () do not couple to
ion ion hybrid waves (note that;X;L(Zu:fQJq)ﬁE(Q).
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CHAPTER 6,

PARAMETRIC CONTROL OF BQUATORIATL SPREAD-F,

6.1 Introduction

In the foregoing chapters, we have discussed a few
problems on parametric interaction of waves and have
obtained some interesting results which have wide applioa—
tiong in fusion schemes like laser fusioﬁ, tokamak ete. In
this chapter we shall discuss a parametric interaction
process which has a direct relevance to ionosphere. In
recent years, ionospheric F-region irregularities have
been extensively'studied both theoretically and experi-
mentally. These irregularities, known as spread-F (named
80 because of the diffused trace on the ionogram), were

(1). Subsequently

first observed in 1938 by Booker and Wells
many experimental obsefvatioms have been made by ground
based low frequency radio techniques, UHF radar techniques
and in situ rocket and satellite measurements(QFB). The
occurrence of spread-F predominates in the two regions - at

the equatorial latitudes and high latitudes. It is a
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relatively rare event in the_region between 20° to 40°
geometric latitudes. The equatorial and high latitude
spread~F are similar kind of phenomena and both involve
field aligned irregularities of electron density in the
Feregion, but it seems 1ike1y'that the irregulérities

are produced by different physical mechanisms in the two
cases. This is due to some morphological features which
distinguishes them as two types. For example the correla-
tion of spread~F with geomagnetic activity is positive at

high latitudes and negative at the equator.

In the present chapter we are conc§rned only with
the equatorial spread-F. The equatorial spread-¥ is a
night time phenomenon and generally onsets in the evening
hours within half an hour after the sun set. The experi-
mental observations show that these irregularities are
essentially field aligned with perbendicular wavelengths

varying from a few meters upto a few kilometers.

So far various properties of F-region irregulari-
ties have been the subject of both theoretical and experi-
mental investigations by many workers in the recent past and

a vast amount of data using various techniques have been

’gathered, revealing a wealth of information about the

occurrence, behaviour and properties of ecquatorial spread-

- F dirregularities. But even then the oroces.:= rasponsibie

—a.

for producing them and many of their fundamental features

are not yet completely understood. The difficulty lies
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in the fact that so maﬂyrparame%efs are to be considered
in the study of ionospheric plasma that it becomes almost
impoésible to take them all into account simultaneously.
Because of this complexity, it seems reasonable to belileve
that there may be many different physical mechanisms
operating individually or simultaneously, which are res-
ponsible for the generatibn of spread-F irregularities
observed with a wide range of scalé sizes perpendicular
to the magnetic field and with a characteristic growth
rate of more than a few seconds. to ~ 30 minutes. Farley
et al(z) had reviewed most of the theories on the equatorial
spread~F that have been advanced in the past and had listed
the reasons pointing out why none of the existing theories
of spread-F could adequately account for all of the

observed characteristics.

Very recently Balsley et a1(6) and Hudson and
Keﬂnel(7’8) have come fofward with the theories of sprecad-F
irregularities which are dependent on gravity and electron
density gradient. In fact, Dungey(g) was th@ first to
suggest that the source of the equatorial F-region irre-
gularities could be a gravitational instability of the
underside of the F-layer. In the night time, the gradient
of electron density is often steep, below the F-region
maxima, and the layer resembles a slab of inhomogenenus
plasma supported against gravity by magnetic field, thus

fulfilling broadly the light fluid (lower density) supporting
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" a heavy fluid (higher density) description of the classical

Rayleigh Taylor instability. Such a configuration is well
known to be unstable. ¥ith the help of this instability
many properties of the long wavelength irregularities

(for 5\i o> (&, where 7\Land (., are the perpendicular
wavelength and ion Larmor radius respeotively) below the
F-region maximum (where the background density gradient ,
¥, is antiparallel to the acceleration due to gravity)
can be explained(6’7>, The R-T instability has a finite-
Tarmor —radius (FIR) cut off (i.e. stabilized due to FIR
effects) at shortef wavelengths of the order of a few
hundred meters so that the irregularity scale sizeS'beloW

a few hundred meters cannot be explained by the R-T insta-
bilify° Hudson and Kennel(a) have recently proposed that
for perpendicular wavelengths below a few hundred meters
down to a few tens of meters (so that ’/\_L >> OL, is still
satisfied), some of the observations‘of the equatorial
spread-F@irregularities could be explained by the density
gradient driven collisional drift instability. In contrast
to fhe R-T 4instability which is stabilized by TIR effects,
the collisional drift instability is found to be destabilized

by the FIR effects. Further from the analysis of Hudson

and Kennel(7’8), it is found that collisions reduce the

maximum R-T growth rate and effectively eliminate the
collisionless FIR cut off. They inferred that below the

F-peak where sprcad-F predominates, both the drift and
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R-T modes, growing on the same zero order density gradient,
contribute to the total spread-F wavelength spectrum, with
the R-T mode dominating at long wavelengths (of the order

of few kilometers down to a few hundred meters) and

' collisional drift mode at short wavelengths (of the order

of few hundred meters down to a few tens of méters) above

the ion Tarmor radius.

In all the observations discussed above, the experi-
menters have been restricted to a passive role of
observing the instability as it naturally occurs and
have not exerted any control over the imstabilitieé.
Since in recent times, ilonospheric modification experi—
ments(1o)
high latitude spread-F) we expect that a similar approach
for equatorial F-region irregﬁlarities would also yield
valuable insight. With such an experiment in mind, we
have carried out a theoretical investigation of fhe |
influence of a large amplitude oscillating electric
field on the dispersion characteristics of both the R-T
mode and the collisional drift mode propagating in a
plasma that is characteristic of the F-region. The
external pump wave can parametrically excite (or stabilize)
both the plasma instabilities mentioned above, when the
natural conditions in the ionospheric F-layer are below

(or above) the linear instability threshold. This

have achieved interesting results (particularly for
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suggests the possibility of experimental observation of
plasma instabilities in the F-layer under controlled
conditions.

Our method of analysis is very similar to that
used by Lee etval.(11) in their investigations of the E-
region irregularities, We shall see in later sections
that the conditions for significant parametric inter-

action are (1) the pump wave freguency should be near

the local upper hybrid frequency of the F-layer and

(2) there should be a finite electric field component
of the pump wave perpendicular to the background static
magnetic fiéld.E&;. The plan of.this chapter is as

follows, In section 6.2, we have investigated the modi-

Sy L

fication of the Rayleigh Taylor instability due to the

pump wave and obtained the modified growth rate and the

| threshold power for this case. Section 6.3 contains these

results.for the collisional drift instability case. In
section 6.4, we have‘étugiedﬁtheaprOpagation character-
istics of the pump wave in the magnetic equatorial region
and we have concluded that the above two conditions can
best be met by an ordinary mode circularly’ polarized pump
wave, transmitted at oblique incideﬁpe”tﬁ’ﬁﬁé ionosphere
in the magnetic meridian plane, In section 6.5 we have
summarized our results and discussed tﬁé validity of the

assumptions used in our theory.
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‘We shall treat the problem by u81ng fluid theory
which restricts our ana1y51s to perpendloular wavelengths
greater than the ion Larmor radlus and parallel wave-
lengths greater than.the electron mean free path
f\Q_:: Ce /(?@i‘+’L@7L :)which dépends on the electron
thermal speed Ge and the sum of the electron-ion and
electron neutral collision frequencies %ééamd )%Zfbres—

pectively.

6.2 Modification of the Rayleigh Taylor Instability

We shall consider the equatorial geometry. There
_is a constant vertical density gradient in the positive
direction and a ﬂravitﬂinnal field in the negative
direction. The earth's magnetic fleld/50 is in the 2,
direction (north-south). It is straight-forward to
derive the main features of the natural instabilities
suggeéted in this region by considering a simplified
picture of.the F-regiOm of the ionOSphére. Thus we
shall assume a scalar pressure and neglect the tempera-
ture fluctuafions. The electrons_and ions then satisfy
the following set of fluid equationss
C/’\; «L/\\{ (Nj\lj> — O (5.1)
N M (4 Y vw“‘L@f
2 .jfiat j -

,,:\;/@ "I_BQ»L+BJ'7'D (5.2)

4me ({\lﬁwf\f_()/) (5.3)

(E44VXBo)+ MiN;g
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Figure 6.1 - Co-ordinate system appropriate for the magnetic dip
' eguator
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| where ?2 = ﬁd | ' | (6.4a)
E= E(Ldof(i)—%[{ (f) ﬁ) (6.4Db)
Ko =~- Ree= *f‘/  Ng 1 (\/ ) (6.4c)

s

Ron= NeMeden Xe | (6.42)
R = NeMoV, Mo  (6.4e)
a Mg=m1, Mg =M (6.41)

In equations (6.1) to (6.4) N and ‘D are the
number density and temperature of the Jthspeoles JLO (C‘Joj _é)
is the electrlc field component of the large amplitude
pump wave of frequency OJO andjé/(:fyf?)lis the gxcited-
electrostatic field. .We shall take the electric field
of the large amplitude wave to be approximately
spatially uniform (dipole approximation) which-is
justified when the wavelength of the perturbation is
much less than that of the pump Wave.'yéé 91%ﬁl nd L, .
are the electron ion, electron-neutral and ion neutral
collision frequencies respeotlvely The other symbols

have their usual meanings.

The equilibrium velocities Vg andr\\/,j'o of the
jth species in the presence of gravity and pump field
respectively are given by,

O =+ %NO\/QXB +M;No 9 (6.5)




and‘ CL \/
: ﬁif'ﬁijc

In equations (6,5) and (6.6) we have neglected the

::j ‘ (E +1 \/J) E«) : (6.6)

cnllision terms since in the F~region of interest the
collision frequencies are much smaller than the cyclotron
frequencies of the particles. From equation (6.5) we

can approximate the ion drift as ¥y, = (CIVH¢/€I3Ei)}g;K§i9
and neglect the electron drift since it is 7”7@4times

smaller than the ion drift.

Next we write down the linearized equations

governing the perturbed quantities.

The continuity equatiqn is

\/ VN5 =0
Nf+[da V \ VA-+NO +‘J o (6.7a)

<97£

| The equation of motion for -the ioms is -
NO(D\//Qt (Mg +Yi0). T Vi ) = QNO{E4’i\/ ><E> y
~ IR M=2Ne YL
and that for the electrons is (6.7)
No (NM/éﬁ»#v V\&) 'wghb(L—k~vVXBq)ém/
”‘§7F2A/77U ldé'VL)Vé

and the Pnisson's equation is written as, (6.8)
7 ‘_'f / v

J.EBEo= 4K@(‘\/u ‘““/\[J?/) (6.9)

o~ -

In the above equations the prime denotes the
perturbed quantities. In equation (6.7) we have retained

only the ion-neutral collision term since the ion electron

-
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collision frequency is much smaller than the ion neutral
collision frequency. In equation (6.8) Ly = X, 7u”f éz,.
It is to be noted that for the Rayleigh-Taylor mode we
shall consider wave propagation perpendicular to E?@
and for j]i€~>>1éz (which is true for the F-region of
interest) we shall neglect the collision term in (6.8)
for this mode.  However for the upper hybrid mode the
collision term is important (as will be evident later)
and , therefore, we have written this term in equation
(6.8), Since ion motions are neglected at the upper
hybrid frequency, we have written the collisional term
in equation (6.8) without the ion velocity. In order to
solve equations (6.6) to.(6.9) we transform to the
oscillating frames of the two specics. Ifjf and’z? are

the radius vectors in the laboratory and the oscillating

frame respectively then we have

4 -
I =r-R ;) | (6.10)

where FQ )( )15 the excursion length for the jth species

under the influence of the pump wave and is given by,

:1; RJGU Nﬂ, €) | (6.11)

Let us now deflne the perturbed quantities in the oscillat-

1,8 = N"(z;" t)
/yj (;{3 t)= \/ zf° ,t) (6.12)

(1, 6)= E @o» )

ing frame as,
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using equations (6 10) to (6.12) we can write the

linearized equations (6.6) to (6.8) in oscillating frame

as
. o~ S :
D) [ '
é’t +\ g 7N +N0V \/J+ Vi X V3\ =0 (6.13)
v - N/ VF/
Vi 77 = €N E IR ARG
o / %/LN v
and . —~ S j
N ONe _ £ (EQ/+_.,\/@ P)—prz*z) NyN¥p  (6.15)
ot AT

The susceptibilities )i and :K are defined in
the 050111%t1ng frame as
~ ~ ~/ . >~
NL/; ’?L*?XLEL//Z}/“(‘Q, and N@:L&X@EQ//é(/T&
| (6.16)
For the Rayleigh Taylor mode we shall take ﬁigff(j-
Then we can readily obtain from equations (6.13%) to '

(6.15) the following expressions for the susceptibilities

y Ly 2
Xi,(C‘J).:&)‘PL((A)*F *E—L /( —szf'R C, &,217)
and

{(0)=-bf, (01;{%% (@20 & )o-Re G

: (6.18)
where ) " /V/
0= W-RNygH s w=0w-R.Nigo® =W+,
L " L L dNg

Y | ) 2.
] »——"['\',“!J 3&)[:) Z7‘/!C,/\/O//VIJ ) L No d;g and



~127-

Now it is necessary to transform back to the
laboratory frame in order to use the Poisson's equation.
We shall discuss the details of this transformation in
the Appendix(¢). Since we shall be considering large
amplitude pump waves with'frequencies matching the upper
hybrid frequency, we will have Q)O:>>wﬁ%ﬁand can neglect
the effect of the oscillating field on the ions, With
this approximation the dispersion relation which includes
the effect of the large amplitude EM wave on electrons

can be compactly written as (from Appendix C.1).

H N (R, w)= M/\(@ (0- “J)H wgd‘“ Ak, UO""’

XN;’ /Ra) )(6,19)
[ \NJ y

where

HL:..(HXQ/X,L ama (4Q:“(i+7¢@)//76(z/ (6.192)

with Z( w) A( o ) (6.,20)

'In the appendix (C.%), we have derived an explicit

expression for the transformation operatorl&(ﬁ§7&%>a

Substituting forlﬁ(?? (Q)ln equation (6.19) we pct

/, Ink; )Jm {) S N (,) W+ m—ﬂ),\)
(u))N L/\ )MZ ﬂlg(w—f"’%&)o, (6.21)

'7ﬂj
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Where P = ‘ {? ROQz

ijons do not respond at high frequencies (at freq.f)and its

and [3 is defined in (¢.13). Since

miltiples) because of their large mass, we can write
N{ R &){-(%’L~ﬂ) wY > 0O for MEMN  (6.22)
L ~ 9 )

From equations (6.21) and (6.22) we have

Ho () = T (P) /H, (w+ mix) (6.23)
.

We can truncate the infinite terms on the R.H.S5. of

equation (6.2%) by assuming ~/)<<i i.e. for the

electron excursion length in the pump .wave field

mich smaller than the perturbation wavelength. In

this approximation, terms for L /}\/ j/ are neglected.

Turther these terms involve a nonresonant response of

electrons to the pump wave. Under these conditions

equation (6.23) reduces to

2o A
1+ X+ Xg= =i (F) Xé(ﬁxﬁ){“@(w t %ﬁ F%e(w“%)_,l

(6.24)

In the absence of the pump wave i.e. for «F: O 3

" equation (6.24) becomes

=

1+ X —F)Cg,”o | (6.25)

Substituting for X and ,:( from equations (6.17)

and (6.18) and taking «CZQ,>>[/U )JJ@ and fQC@we
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have

0w (w@ Re/RL) R

-0 (6.26)
DOF R 2R

where unity has been neglected compared to other

terms. Equation (6.26) gives after some simplification,

({“") T CO%(;) (w";“vlv_éw) +9/L_ = O o (6.27)
mere (O = = RuTe /Ml (6.28)

\

Bquation (6.27) is the dispersion relation for
the collisional Rayleigh-Taylor mode. Natural insta-
bility of this mode in the F-region has been studied

(7)

in great detail by Hudson and Kennel and by

Haerenda1(12). In what follows we shall discuss the
effect of the external pump wave on the natural in-

stability of this mode.

For a finite amplitude of the applied oscillat-

ing electric. field, equation (6.24) gives

(W Wy (&)+L 471)”’” = ()

}“‘L
(6,29)

where we have takenLD g<f(2¢yQQL” Using equations

(6,18) and (6.19a) we calculate the function within

the square bracket and equation (6.29) can be rewritten

as

005 (Wy i+ LV in, w+(wmw%7/ {-»-~ + A) =0,

(6.30)
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where A J (-]0) Zw LwP@(SM (6.31)
R2L2(S% vy Fwpe,)
and Lg wUH*&JzJ is a measure of the frequency

mismatch., The upper hybrid frequency'aJUF%ls deflned as

Wy = (wpé/4~ﬂa’** }2’%@ 1Yo ) (6.32)

Prom equation (6.%1) we find that for 2)_ﬁ>() and ﬁJ GUL”7
6’ C) 'A' becomes infinitely large. Thls expla~

ins the inclusion of )Qa for the upper hybrid mode.

The unstable root of equation (6.30) is given by

W, = - L (w%ﬁ é%){(\w%‘{ 4( 9/ HOJ/Z

6.3%)
Bquation (6.3%%) will, in general, give the real (6.3

frequency and the growth rate. We shall discuss eguation

(6.3%) in two special limits.

Case (1) : The collisional limit: When (U, 0

we have from (6.33)

W) = -nf2 + [yt 4 (9Lt Aﬂ

In this limit the growth rate is independent of -

(6 34)

the finite larmour radius (FIR) effects. This 1limit

(6).

corresponds to that obtained by Balsley et al

Case (2) : The collisionless limit: When Liﬁ{j?CD
we get from equation (6.3%)
:*wﬁ/ﬁ,«‘r[w% ~4(9/z:"”‘>l/

(6.35)

—.
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In both the limits, the last term within the
square brackets of equations (6;34) and (6.%5) will
product a destabilizing effect when 8)0 i.e. when Q)U/%/ Q)O
whereas it will produce a stablllzlng effect when té <O

icec W, u<@. We shall now calculate the modified
v

growth rate and threshold for this excitation.

'A' is maximum when é;::;td%qégé/ From equations
(6.31) and (6.35) we have the modified growth rate of the
Rayleigh-Taylor instability as

) 49 A& L 47 (P)@JPL pp.”
:Z T %L“‘“ b2 2 Vg

2

(6.36)

- The external oscillating electric field merely
appears to produce a pressure term that enhances or
depletes the normal thermokinetic pressure term Propoxr-

tional to (U Physically, the electric field of the

ET

pump wave and the electric field of the upper hybrid
-7

wave together produce a‘EZE; type pressure term at the

low beat frequency, the phase being determined by the

sign Oftg, This is what produces a stabilizing or

destabilizing effect on the Rayleigh-Taylor mode.

6.2.7 Calculation of Threshold Power

Fquation (6.%6) can also yield information

‘about the threshold power i.e. the minimum power necessary
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to trigger off the instability. For that, one needs o
solve (6.36) for f when V C) This gives us,
"7 ) ~
P =2 Ye ) <2L2’(43/L w,b\//«c),% (6.37)
FQ/

«F is a measure of the particle displacement under the
influence of the electric field and can be expressed in

terms of the field amplitudes as (See Appendix C2).
7

LR T
b= 2 .\2,/ Zé:f /7 E2+ ’@ (/?"éw +e )
(05~

49 Qéé L QU/L/\/J / /Z/)“/' ,2//!? }QZC € CO'S\/]( )

(6. 38)

Wheree 'S are the amplitudes of the electric field
:‘mtensity of the pump wave and \{j is the phase difference
between the X. and Z components of the electric vector.
In Section 6.4 we shall see that under the optimum con-
ditions for parametric excitation, the pump wave is
circularly polarized ()-mode s0 that C?(. (—Z’ o and

\{/ = _,7"/2 . Also we can write (,U szfﬁz Thus

equation (6.38) becomes,

(6.39)

27/
3% }:{2/(1 Q@/coo s
Substituting for 1‘72/ from (6,37) in (6.%8),

the .ainimum Tequired energy flux for stabilization and

debilization is

2CNoMgL [, R T kT

@G’/é/w + Vo, . 2
an T \wpe (iw.-Q.g/wO) | 43M

(6 40)
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p
For the plus sign in (6.40), k;t is defined by é>::'+'&3fuzlé9
and for the corresponding minus sign, FQ%; is defined by
o=~ Wpe Vg -

The high freqguency pump wave passes through an
altitude region where its frequency nearly matches the
local upper hybrid frequency. This is the region where
irregularities are influehced most. If the plasma para-
meters are only a function of height, then our analjsis
shows that for each height there is a critical wave

number }’{ adef:med by é — wo — O i.e.

5
f‘?m ¢y = (i - (&)Pg/+ﬁfz, +?fe)

From the conditions of destabilization and stabilization

(6.41)

and from equation (6.41) we see that irregulariﬁies with
R%> Rx(’, can be destabilized and those with Ry X Rxe
can be stabilized. However, whether a given %QK“ (or a
given range of IQ«, ) will be stabilized or destabilized
depends on the strength of the high frequency pump wave.
The new marginal.stability condition is defined by
2 ‘ 2. 2
AR 2 2R R 2
L L2771 R~L (CS F Y, wepe (6.42)

. ' n 0

At a given height (i.e. for fixed set of values of (’°,9 Ly

LAy IJQQ and f%(; ) and for a given PQy& one can

determine, the minimum jp required for stabilization

and destabilization, from equation (6.42).

=
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6.3 Modification of the Collisional Drift Instability.

In this section we shall discuss the effect of
the pump wave on the collisional drift instability. This
instability has been proposed to be one of the candidates
responsible for the equatorial spread-TF, by Hudson and

(8)

Kennel for short wavelength irregularities of the order
of a few tens of meters upto a few hundred meters. The
basic equations are similar to equations (6.6) to (6.9)

of section 6.2, except that the effect of gravity is

ignored here for such short wavelengths under oonsideration.
We take the wave propagation to be perpendicular to the
density gradient i.e. k: R +RJ/ such that Ryc,>>/26%
Since equatorial gecometry permits very long parallel
wavelengths we shall consider the limit ]erj\éa<: (&ﬁ/$4)
In this limit the temperature fluctuatlons and finite

heat conduction effects are unimportant and can be neglected.
Purther for the collisional drift mode, the ion velocity
parallel to the magnetic field is ignored which is Justified
for (,O/Rg/ >~> CL : In the parallel electron motion V_@
is important and therefore has been included. Under

these assumptions the ion and the electron susceptibilities

in the oscillating frame are

2 ~
XL@U) — wPi/ a,;,, (2¢ /ﬁ (OJ CU/T@) (6.43)
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and_ wu)p@{m/z N/Z,Qg,)kj/kz wﬁgﬁ?xg
X @‘D ~/ 2, ,z,fwz :7
2 ( ng/} R /—%P
(6.44)
whe re 9 9,
c < T AN
= WLS' 9 CSI — 7\—4@ and W = WHLY,
C

As in section 6.2, for 'F::Owe can obtain the
linear dispersion relation for the colljsional drift mode
by substituting equations (6.43) and (6.44) in equation

(6.25), neglecting unity for low frequency waves. Then we

get

w&(&ﬁfz) w/%gaML w—ﬁ@)@/fq coQ@//? 3

0w+ ;El») wio (6"40%)-Re i Ry 2o 0F
< .

— 0 (6.45)
For (B L DJZ L0 ¢, and (D/Q@ <‘< ?j//?)

equation (6.45) is simplified as

o s Yo ) i 1000

— = O
R (6.46)

| 2/ ,
where ))”:: K‘?C@/y@ 9 w%@:‘: d/?f)(_,TQ//m,QQL

y |
and £ = 4T [T,
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Equation (6.46) gives the dispersion relation for
the collisional drift mode. This equation resembles to that

(8)

obtained by Hudson and Kennel in the isothermal limit.

Tor a finite amplitude of the applied oscillating

electric field equations (6.24), (6.43) and (6.44) gIve,

{,(wth%@ >(&)+L)/(/,n)+é))”((] f”éf)wf'd 70471, &2\5@)

CU z&) | b
— 2) j (f) FL > )!_’__‘Q(w+a)) H(w di(j—?)

Again we calculatc the functions within the square

bracket in (6.47), using equations (6.19a) and (6.44). Then

the modified dispersion relation becomes,

ﬂ(www gwwﬂ;w,[{(f-%f)wm 44

g PRS- )
e ,Q_LR,@L(C()-{—D@LUFE) ( |
6.48

Equation (6.48) can be rewritten as

D+ FE)- 0ot “‘f“(w-rw%@ )4

iy 2 Atge
- — + CA)CO - U W :
))”< Q/I f T /(9 (6.49)

Z 2 2
where A/:—_ 2,]_1(7'0) (/OP'U wPf,g/‘—QL/?%L(é +2/€,:<Luf)g/>

(6.50)

To the lowest order R.H.S, of equation (6.49)
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can be neglected. Then the real frequency can be written
as _ /
[UR:IH%@+A (6.51)
/
where we have neglectedeK’DA&){h‘Eilcompared to unity.
Equétion (6.51) shows that the real frequency gets shifted
in the presence of the pump wave. Substituting CUFQ for &)
in R.H.S. of equation (6.49) we get an expression for the

modified growth rate given by,
W) :7%{5 (w:;wj X )),, A@%&/Fé) (6.52)
[

As in the case of Rayleigh—Taylor instability, in this
case also, the last term of the R.H.S. of equation (6.52)
will produce a destabilizing effect when¢§;>(§’i.e. when
ajuf4>>&%09and a stabilizing effect when é;((j i.e.

/
when &)Uf4 <:&) At maximum A the growth rate becomes

7? — l'f) ( €0 -)J 2) 'ﬁ}yl (f)CUPLC&VﬂyQQﬂ%A&(2112Lk7‘>
Vi
| (6.5%)
6.3.1 Calculation of threshold power

In this case 79 is calculated to be (See

(k% 2k “¢ € <Q€>5m“f”
(wo-,()_z’)v' +(‘3)%€2”Q6> 1 (6.54)

Appendix C.2)

£
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As in section 6.2, for (::%3’ ég #»«’::«77—/2/ g We get

U

e 2 R2(1-Qefwe)

using equations (6.53) and (6.55) we get the minimum

A
Céx C’?’wp@ Ne v {)Q/ (6.55)

required energy flux for stabilization and destabiliza-

tion as

@QC L

é“;‘r — = 7)g f(,f’ Te J
(6.56)
And the new marginal stability criteria is given by
KJZC‘Z _Mn Q’cz W _fz_-_-g
OHF U T REMF( e ) 2
(6.57)

Ag already discussed in the previous section,
we can calculate from equation (6.57), the minimum f’
required for stabilization or destabilization for a given

FQﬂ;at a given height.

We summarize the results of sections 6.2 and
6.3 by saying that an external pump wave can be used
to parametrically stabilize or destabilize ﬁhe Feregion
plasma modes provided that (1) (S/&)O (L 4 i.e. the wave freq.

is very close to the local upper hybrid freq. and (2) € is
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finite i.e. the electric field has a finite component

perpendicular to the static magnetic field.

6.4 Propagation Characteristics of the Pump Wave.

In sections 6.2 and 6.% we have secen that
parametric stabilization and destabilization, ofthe
naturally occuring Rayleigh~Taylor and collisional drift
modes in the F-~region of the ionosphere, are possible
under some conditions which are summarized in the pre-
vibus section. In order to satisfy those conditioms,
1t is necessary to consider the optimum experimental

geometry for which the parametric coupling can take

place most favourably. As we can see from the previous

sections that our analysis is applicable to equatorial region
only, where the density gradient and the magnetic field are
normal to each other, so that the experiment has tobe
performed for the equatorial region. Since the frequency
of the pump wave is near the local upper hybrid frequency,
we cannot use an extra~ordinary mode (X-mode) pump wave

for parametric interaction as an X-mode will be reflected
at fhe right hand cut off before it ever reaches the
excitation region near the upper hybrid fregquency. On

the other hand, at the magnetic equator an ordinary mode
(O-mode ) pump wave tranémitted at vertical or oblique

incidence to the ionosphere and perpendicular to the
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magnetic meridian plame‘will be_plane polarized with its
electric veqtor parallel to the static magnetic field.
Furthermore, this polarization remains unaltered through-
out its entire transmission path. Parametric stabilization
or destabilization of the Rayleigh-Taylor and collisional
drift modes, by this mode of transmission is also not
possible, since an electric field component of the pump
wave perpendicular to the magnetic field is one of ..

the necessary conditions.

It thus appears that the transmission of the
pump wave in the magnetic meridian plane but at oblique
incidence to the ionosphere is the best geometry'for
achieving parametric coupling. The WKB treatment of the
general problem of oblique propagation in a horizontally
stratified magnetized plasma has been given by Ginzburg(Ta)‘
For the case of N-S propagation at the magnetic equator,

Ginzburg's propagation formulas for the O-mode can be

written as, . Z
V= (1-5")r{un(i-5%) -24( NP -59)
| ' Z(‘*‘ ,Aj ~ (6.58)

i ‘ ”C&%bixlﬂlt . o O@Z{)
6(29\3,;'&(’ fr(, ‘521’}‘& J
) L%(&%Q+S‘ﬂy ( (6.59)

“(ié? dezﬁ.He | (6.60)

where Go= 0 <l~—/\ %2’) ADL/’Z/[O»- (/(,-"A) ~G” ‘?(—))4-
E* V)51
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H = (1 A @’3’)/5@
A= &)Pg//a)(; , W= ,_Q.@/&J(;Q/ (6 61)

< (YY) /% = S8, , 9= (ay/uf’)/ep

In the above equatlonsPQFz%andkapz are the g/
and 7 components of the local propagation vector of the
large amplitude pump wave and ék) is the angle of incidence.
For the general case of oblique incidence, QD, is a solu-
tion of a guartic equation, and reflection occurs at
C%ﬁl/%ih/L ::(}3(142 For the case of N-S propagatiom at
the magnetic equator, the quartic equation for QL ;reduces
to a quadratic equation for ¢, , and reflection at
dki/é€4ﬁ.::oo for the O-mode occurs at ﬁCQE:;Cj,
(15)

Booker obtained an expression for the
critical electron density (in terms of the electron
plasma frequency normalized to the pump wave frequency)
as a function of the angle of incidence, required for
reflection of the O-mode for N-5 transmission in the
equatorial region, given by.
24\ /[, L2 QL, <
A =(4= S0 6‘)({ Qe en  tan' <(9 2
o l)
| (6 62)
Figure 6.2, gives a plot of ﬂ/& against\§9ﬂ, CO . :

In scction 6.2 we have shown that the value of 'A' is
maximum, i.e. parametric interaction occurs most favour-
ably, when the frequency mismatch CiWL::;f F%ghich can
be written as (WU, CL%JH |2 For stabilization
or destabilization of a seleoted range of the optimum

angle of incidence Q'is determined from figure 6.2
m '
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For angles of incidence mﬁoh larger than-f%ﬂ_the pump
wave will be reflected before.it reaches the region of
favourable frequency matching. For angles of incidence
mach smaller than é&nﬁhe pump wave will be reflected at

a height too far above the region of favourable fregquency
matching to take maximum advantage of any amplitude swell-

ing of the pump wave near its reflection point,

Next we shall find expressions for the swelling
of the electric field amplitudes of the pump wave by
expressing the pump wave field eomponents in terms of the
incident energy flux. We can write down the time averaged

energy flux from Maxwell's equations as,
s} ,}e 7 -
= (@/"/SZT&)M:@ X&Pxﬁ)j (6.63)

using equations (6.60), (6.61) and (6.63) we get,

S =(%5n)[(1a% 1) T -H3] €4
Sy = (efsm (16 [H12) 5 - HD ] 164 %o 00
and ,S"—"- (S;\?‘\"S/‘?)/Z/

From the conservation of z-component of the energy flux

H

we have, —|
o X a2 2
d Spz = S fl*l' oy,/OOE = X070 (6.65)

~ ; CF

where O(- is given by

P

{11‘*@& [“"(HO’Z)*% 40%‘_{ y [( Glo ~ %u
- B H,séj f (6.66)
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In (6.65), S, is the Incident flux. In equation (6.66)
all quantities with subscript 0 are to be evaluated at

the base of the ionosphere, Now from equations (6.60),

(6.64) and (6.65) we write

~

{&gﬁ/?ﬁ = ﬁ(y ~o
642/87- = oly So | | (6.67)
el €Y en= 4250

where _ Ao . , C& féi]c% ii
'5‘ [(16f%=L)U-H 5] (?

Figure 6.3 ig & plot of the amplitude swelling factors

@g%? v , Kz 2eainst A | The swelling of the electric
field components of the pump wave near the reflection is
due to a combination of energy density build up and polafi—
zation change, TPTrom figure 6.3 we see that near the
reflection point f andg( are equal and ¢f, goes to zero,
which shows that the pump wave becomes c1rcular1y polarized

about E%Unear the reflection point,

We shall next calculate the minimum threshold
energy flux for parametric instability of Rayleigh~Taylor
and collisional drift modes. From equations (6.40) and

(6.67) we get for the minimum threshold energy flux for

Rayleigh Taylor instability as

ﬁ?%‘71 ?YL
S/th.‘r 7[' 43"4%0* L (6.68)
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Again from equations (6.56)_and.(6.67) the minimum

threshold energy flux for collisional drift mode is

2 A A
S, 20x0 L A Ry DL
. - 20X - '
5 X 2
0,¢.D . p’e’égx Te
In obtaining the above estimates the following numerical
values have been useds CUb:: 1.84X1O7rad/sec., &)anzz

1.78 x 107 rad/sec.,_fz =5 x 106 rad/sec., N, = 105 Cm-3’

. —e
Y, = 10° ¢m™7, T = 107K, M= 3 x 10727 gns,
L=13x10° cn. For the collisional drift instability
we have used a typical perpendicular wavelength?\iz 50

meters,

Our numerical estimates for minimum threshold
energy flux may be compared wi th the typical energy
flux used in recent ionospheric modification experiments.
In the BoalaerzF—layer modification experiment<1o),‘the
incident energy flux was of the order of SO/AﬁO/mZ, which
is very closeto our numerical results. Thus sources
as strong as the Boulder transmitter might be adequate
to produce parametric stabilization and destabilization

effects in the equatorial F-region.

6.5 Discussion and Conclusion

We have investigated the effect of a high

frequency electric field, oscillating near the upper
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hybrid frequency, on the disbersian characteristics of

the low frequency Rayleigh-Taylor mode and the collisional
drift mode and obtained conditions for artificially
triggering them or suppressing them. We have used fluid
theory for the study of parametric interaction processes
which is justified for perpendicular wavelengths greater
than the ion Tarmor radius and parallel Wévelengths
greater fhanjkgl; the electron mean path. We have con=-
sidered a simplified picture and have retained only the
important terms contributing to the natural instabilities
of the modes under consideration, since we are mainly
interested in how the natural instabilities are affected by
the pump wave. We have considered an isothermal plasma
for the drift mode which is justified for long parallel

Wavelengﬂmsj\rlpsuoh that

M >5*@<M/’7”’)‘/2’

In our analysis, we have used the slab geometry
instead of a dipole genmetry and thus have neglected the
field-line curvature. This is due to the fact that in
the ionosphere, the plasma density is locally altitude -
dependent rather than field-1line aligned. Further, the
modes with parallel wavelengths extending out of the
region of the sharpest density gradient to the regions
of weaker gradients, will not grow as fast as those with

parallel wévelengths confined locally to the regions
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of maximum gradiéﬁt. Therefore, there iS a maximimim
1limit imposed on the parallei wavelengths for the largest
grOWihg modes in the system., The meaning bf‘this limit
in the context of equatorial F—fegion innosphere becomés
immediately clear when we realise that due to the field-
line curvature, field lines at the equator soon énter the
regions of varying density gradients. Thus the drift
mode, which has a finitef?j ; will be 1ocalized‘along
the field lines to the region of the maximum density
_gradient. This is in contrast to the R-T flute mode,
which being the lowest order perturbation of the entire
flux tube of field lines, has no variatian along the field
lines. The maximuﬁ paraliel wavelength, to which the

arift mode is limited is given by''6)

MAK ‘

where RE is the radius of the earth,

In figure 6.4 we have shown the experimental
geometry. We have taken a typical height of 300 Km
. below the peak of the F-region, for parametric inter-
action., It is shown that for the most favourable para-
metric coupling at a height of 300 Km, the pump wave
should be incident in the N-S direction (in the magnetic
meridian plane) from a place about 180 Kms. north or south
of the region to be modified., Although we have taken a
typical height of 300 Km for the irregularities, it

should be noted that the drift mode can grow on the
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top side as well as on the bqttoﬁ side of the F-peak,
whereas the Rayleigh-Taylor mode, which requires the
density gradient to be antiparallel to gravity, grows

only on the bottom side of the F-peak,

In our analysis we have neglected the energy
loss due to propagation of the excited waves out of the
excited regions. ©Such effects have been discussed by

(17) (18)_

Perkins and Flick and Fejer and Leer

Propaga-
tion losses can limit the net amplification of the waves.
Consequently, the power threshold for parametric ampli-
fication, obtained above, should be. regarded as a lower

limit to the power required to produce an observable

amplification.

It seems appropriate to conclude therefore that
an ionospheric modification experiment to study the equa-
torial spread-T phenomenon is both a feasible and a desir-

able one,
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Figure 6,2 - Variation of electron densityfuuits of plasma frequency
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squared (A = w,%e / (x)o?“ }» required for reflection
of an O~mode pump wave in the magne’cilc meridian plane
at the magnetic dip equator, versus Sins o where 6, 18y
the angle of incidence. We have ysed We = 1,84 x 10
rad. /sec, s Mg = 1(;*"&"::.6, g Vo = 103 seco, "'1, and

AXg = 4.6 % 108 pag, [ see,
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Pigure 6.3 - Variation of amplitude swelling factors ( 0(;& P 0(;] 4 5(3,)
versus f\ (:,—m"};@ /w;',z")ﬂe.t'e x and z are pump electric-field
components perpendicular, and y that parallel, to the back-
ground magnetic field. Near the veflection point ( A =.84),
the pump wave is approximately circularly polarized about
the magnetic field.
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Figure 6.4 -  Sketch of the experimental geometry, The purip
wave is transmitted in the N-S direction (in the
magnetic mevidian plane) and at an oblique angle
of incidernce to the ionosphere, Dianostics can
be mads with VHE back gcattering radars trans-
mitted in the E-W direction. Correlation studies
can be made between signals returned from the
unperturbed region and the region of paramétric
interaction.
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APPENDIX C -

¢.1  Derivation of Equation (6.19)

We have by deflnltlon

N (r,t) = N (R (@, (c.1)

By taking Fourier and Laplace transforms of both
sides of equation (C1), we get two relations between the
Fourier and Laplace transforms of the above two quantities

as follows:
/

(=L sl ) A

(C.2)

NJ/(B»CO) L(AJ(R (w- w}Nj (R w)dw /\JNJ

AN
(¢.3)

where/_J R w) 50&6’(’;9( 2 F ((&)‘{_Lwt)o 4)
and Aj (R w) A]( )

Since we have taken Q)0j$>ﬁo .in our analysis,

the effect of the pump'wave on the ilons can be neglected

S
/
and thus ﬁdd :lfVL” From Poisson's equation we can show
that
/ / :
+ i — :
where

- _ (('ﬁ*j(/i)//glié, | (¢.6)

—.
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from equation (C.2) and Po‘isson 's equation we have
. / 7
AV @—«N@wxﬁ(ﬂg"\’é“é@'/\’@) (c.7)

Now using equations (C.3) and (C.5) we can write (C.7)

as

H, N A@ [: N! (c.8)
where HQ/?—? *(l“*"xf,)/%@ o (0.9)

Writing equation (C.8) explioitly we got
/
_ dw o)L
H (R, &N (R, W)= A (R, 0-%) 577
1 74 : N/ / +H
&A@(ﬁpw’w NC‘EQOO-‘
L . (6.19)

¢.2 Calculation of f'?/

The electron excursion length Re,under the influ-
ence of the pump wave field, satisfies the following

equation

2 .
OLB{J) S ( 0, ) dR IXBo (c.10)
dt* A

We have already discussed that the parametric
coupling occurs most favourably near the reflection point
where €.~ () so that we can express /Ej near the reflection
point as, ~
SR _.Ci": Q?L[D( ) ﬁ)@x{—{-—z Q%F( Y- ’“wd(@ Cz
Lc. . (C.11)

.
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where c.c. is the complex conjugate and

R - R Q'}(;F (—- i,(,’oot> +C.Cr (c.12)
\@ - o og :

QJ is the phase difference between the x and z componen ts.

Now let us define. '
R Ry = f Sin(WsttB) (0.13)
For the Rayleigh-Taylor instability ( //@ = B <t E&)

case equations (C.10) to (C,13) give,-

- {le
0 0B = e 4Ry €, RS
f co ﬁ oo (cu,,‘a»flé‘)(}%éﬁ‘ EE D, +f€z,/:; (’;05‘0

(C.14)

osm = Ry Ez wsw-/zzézum\/)
ﬂ m(wO‘Jlﬂ)( + kz ;¢~Q6> (C.15)

Prom equations (C.14) and(C.15), we immediately write down

the expression for )p for the R-T case as

9: e* /((I"{ €;¢+f23 +Q@(/3 C{'I'}Qzéxc)
| WL(9“~,Q) L s

T Z'QQ’ 7&@ 6.6 SWY/"’L'?"/% R éz COS\yy |

Tor the collisional drift instability (fﬁ = k,d‘ﬁy)

case equations (C.10) to (C.13) give

70605/5 /m(w 0% O@J;m“ Rx z( >5én"\}/)

(¢.16)
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f S'm/é = ~m‘€ — Rz (‘Q’g’) wst// (6.17)

i)

. A
Thus the expression forf’ for the collisional drift

instability case is given by

Z p* > o
i L o) oor
. 2700\ |

+ }?706% (@Z) J (6.54)

C.3 Calculation of A 2, (E 9 (,O)

By deflnltlon

(k w) jdﬁﬂij( O’Q Rg/ﬂ‘—Lwé) (¢.18)

" Prom equation (C.1%) and using the identify

orp[- L]DQSLW((,OO{,'%—B)J Z Tn(f) @ij[m,w %—m/i

(C.19) i

equatlon (C.18) gives

A R (/t)> Z (( ﬂNuo) (c.eo\)
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