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Synopsis

Standard Model(SM) is a gauge theory invariant under SU(3)e x SU(2)r x U(1)y. The inter-
action is mediated by eight gluons of the strong interaction sector and the four gauge bosons
Ww*, 2% and 7 of the eloctroweak sector. In nature SU(2)p x U(1)y symmetry is broken and
s0 SU(3)e X U(1)em symmetry is preserved at low energy. The most popular method to induce
this symmetry breaking is to assume the existence of a complex doublet higgs field, which upon
acquiring vacuum expectation value breaks the electroweak symmetry. Out of the four real de- -
grees of freedom of the complex doublet three get absorbed by the gauge bosons of electroweak
~ sector as longitudinal degrees of freedom and hence three gauge bosons become massive. The
fourth degree of freedom is expected to be detected by the experiment. From LEP searches the
present lower bound on its mass is 63 GeV[1].

In SM left handed fields transform as doublets and right handed fields as singlets of the SU(2)L
group. On the other hand quarks transform as triplets and leptons transform as singlets of the
SU(3). group. Theright handed neutrino is not included in SM to render the neutrino absolutely
massless. Hence there are fifteen fermions per generation. There exists three generations making
a total of fortyfive fermions. Out of all these fermions the top quark is yet to be discovered
by direct experimental search though there are a number of indirect (theoretical as well as
experimental) evidences of the existence of the Top quark. At the Fermilab Tevatron the Top
~ quark decays which are allowed by SM are studied. The present lower bound on the mass
of the top quark is 108 GeV from CDF collaboration and about 10 GeV less from the DO

collaboration[2].
In spite of great experimental successes the Standard Model cannot be given the status of a

complete theory and there is strong motivation for the study of the physics beyond the Standard
Model. In this thesis we have concentrated on GUTS and supersymmetric GUTS as studies
beyond the Standard Model. GUTS offer the possibility of a simple but unified description of
strong and electroweak interactions. Typically in these models all the interactions arise out of a
single Lagrangian which is locally invariant under the gauge transformations of a single simple
lie group called the unification group. The fermions are put into some irreducible representation
of the GUT group. A large spectrum of GUTS are proposed in the literature which can be
classified by the unification group. All these theoretically very attractive models have at least
one common prediction namely the decay of proton. :
’Thiys'},t,hersis: looks at the constraints on unification theories vis-a-vis the recent experimental
results coming from high LEP results. The work may be subdivided into three broad classes.
First part deals with comparing the experimental results with the predictions of the known
models of unification. The second part deals with a new paradigm of GUT namely the low
energy unification. In the third part we look at the predictions that one may obtain from the
study of the evolution of the yukawa couplings in supersymmetric GUTS.
We have shown that the stringent bounds placed on the weak mixing angle from a recent analysis
of me'asurements at LEP rule out any possibility of the survival of Left-Right symmetry at low
energies in Grand Unified Theories and partially unified theories. The lowest mass scale to
which the left-right symmetry survives is 10% GeV. This scale is driven up even higher with the

inclusion of the higgs contributions to beta functions, and also in the supersymmetric versions

 of the theories(3].
- ‘ngckezn_tly; ,j:tyl'lasibeen shown that using the precise values of the weak mixing angle and the
_ strong coupling constant at weak scale an unique intersection point of the strong weak and

- ._'._.,hYPetghgrge couplings is not obtained in one step. unification assuming only SM at low energy

. an Q'n:e‘kgkhkiggs doublet. Furthermore it hes also been shown that the criterion of unique




intersection of the couplings at the unification scale is satisfied in the minimal supersymmetric
standard model, predicting an unification scale around 10'6 GeV and the supersymmetry scale
around 1 TeV[4]. In this context we consider the modification of the minimal SU(5) lagrangian
due to higher dimensional operators, arising from quantum gravity effects or from spontaneous
compactification of extra dimensions in Kaluza-Klein theories. Due to the presence of these
operators the strong weak and hypercharge couplings do not meet at all at the unification s:cale,
My, and the magnitude of the mismatch are directly related to the couplings of the higher
dimensional operator. In particular, we consider five and six dimensional operators and show
that large range of values of couplings of these operators are compatible with the latest values
of the weak mixing angle and the strong coupling constant derived from LEP. Experimental
constraints on My coming from proton lifetime is also satisfied[5]. We have also studied the
nonterturbarive unification scenario first proposed by Maiani Parisi and Petronzio[10] in the
context of the LEP data. We see that the supersymmetric version of the theory with five
fermion generations is still consistent with the LEP data though the nonsupersymmetric version
is ruled out. ‘
Recently a new paradigm of GUT has evolved with an interesting possibility that unification
‘s achieved at a low scale which means the absence of the big desert while at the same time
the experimental constraints including that of the proton lifetime remain satisfied[6]. A GUT
model based on SU(15) or SU(16) offers such a possibility. We have studied the possibility
of achieving low unification scale GUT models based on SU(16)[7]. Baryon number symmetry
being an explicit local gauge symmetry the gauge boson mediated proton decay is absent. We
have considered in detail a number of breaking chains and the higgs representations giving
“rise to the desired symmetry breaking, and identified one chain giving low energy unification.
These higgs field representations are constructed in such a way that higgs mediated proton
decay is absent. At the end we have indicated the very rich low energy physics obtainable
from. these models which includes quark-lepton ununified symmetry and chiral color symmetry.
~ Phenomenological implications of these low energy groups are also studied.
The SU(15) GUT model was already existing in the literature when we started working on such
 model building exercises. Our result [8]is that when one includes the higgs field contributions
in the beta functions and assume the well known extended survival hypothesis, it rules out the
symmetry breaking chains which exist in the literature. On the other hand it predicts new
phenomenologically more interesting symmetry breaking chains. ‘
_ Supersymmetry offers a very interesting theoretical possibility which places fermions and bosons
at an equal footing via its symmetry transformations.laws. Though supersymmetry itself can
solve the problem of gauge hierarchy it is nevertheless an interesting proposition to endow the
SU(IS) GUT model with supersymmetric transformation laws and see the consequences. This
is simply because supersymmetry is a rich symmetry and nature seems to use all the symmetries
avail'able to her. We have considered the supersymmetric version of the SU(15) GUT[9] and
appht?d the constraints coming from the LEP experiments. We have attempted to ask the
questx.on, that if supersymmetry is discovered in near future how is it going to affect the new
Pi.tradxgm of l?w energy unification of the SU(15) GUT. We find that the low energy unification
, w1t}.1 SvU(IS) in the supersymmetric framework is not allowed. Most of the symmetry breaking
Cha’;n,s; do 'not allow for low energy unification, and a few symmetry breaking chains which low
energy u'mvﬁcation fail to satisfy the perturbative unification constraint ( coupling constant less
\:\than unity). Hence the signals of the existence of supersymmetry in future colliders will rule
_out vthe possibility of low energy unification. .
. sTuhe perfect Flnifiicatioll of gauge coupl.ings[zi} around the scale 2 x 10'® GeV in the presence of
p?Fs}’In,¥ll¢.try above the TeV range is often considered as a serious hint about the existence




of supersymmetry in nature. We have considered the evolutions of the yukawa couplings of
the Minimal Supersymmetric Standard Model (MSSM) assuming that there is an underlying
perturbative theory upto the scale of unification of the gauge couplings (Muy). Demanding that
the Top quark yukawa coupling has to remain perturbative upto the scale My we have calculated
the upper bound of the top quark yukawa coupling at the low energy scale. This in turn gives
a lower bound on the quantity tanf of MSSM which is defined as the ratio of the vacuum
expectation values of the higgs fields that couples to the top quark to that which couples to
the down quark. Such bound on the value of tanf3 is expected to influence the search of higgs
bosons in the MSSM [11] [12). Numerically this bound is very similar to the bound obtained
from the fixed point solution of the top quark Yukawa coupling.

In summary in the first part we have considered the presently available experimental data and
worked out some of its consequences in the context of unified models. In the second part we
have done some model building exercises which avoids the hierarchy problem and does not suffer
from fast proton decay. At the end we have studied the evolution of yukawa couplings in the
~ context of supersymmetric QUTS and have given lower bound on the parameter tanf of the

MSSM.
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Chapter 1

Introduction

‘An understanding of how the laws of nature work requires a theory of the elementary particles
of matter interacting with each other. Equivalently it requires a theory of the basic forces of
nature. Four such forces exist, and until recently a different kind of theory was needed for
each of them. Two of them, electromagnetism and gravitation are long range; hence they are
familiar to us. The remaining forces which are simply called strong forces and weak forces
cannot be felt directly as their influence extends only within the nucleus. The strong force
binds together the protons and the neutrons in the nucleus and in another context it binds
together the quarks which are the constituents of protons and the neutrons. The weak force
is responsible for the decay of certain the neutrons.

The long standing problem of physics is to construct a master theory which takes into account
all the known forces. One imagines that such a theory would reveal some deep connection
between the theories which apparently look so diverse. In recent past one crucial step towards
that goal has been taken. The weak force and the electromagnetism can now be understood
in terms of a single theory - this unified theory of electroweak interactions form part of the
standard model. Thus one thinks that in near future one can formulate a single theory of
?trong, weak and electromagnetic theory which is popularly named as grand unified theory
GUT).

The first step towards the construction of the unified theory is the demonstration that the
weak, the strong and the electromagnetic forces could all be described in terms of the theories

of the same kind namely the gauge theories. The three forces remain distinct but they can

be 'seen to operate through the same mechanism. This hints that the grand unified theory
V\;thh is intended to incorporate (and not supplement) the established theories is also a gauge
theory.

" In the following section we shall review the status of the standard electroweak theory which we
intend to embed in a grand unified version. Latter in the section following it we shall briefly
reYiew the rudiments of the prototype grand unified theory namely the minimal SU(5) GUT.
Afterwards we shall go on to review the inclusion of left-right symmetry and supersymmetry

. in the framework of unification.

1.1 Basic ideas of Standard Model

| fSt:undar'd Model(S.M) is a gauge theory invariant under SU(3). x SU(2)L X U(l)y. The
, ‘Inkeractlon is mediated by eight gluons of the strong interaction sector and the four gauge




bosons W*, 2% and ¥ of the electroweak sector. Here we have labeled the electroweak gauge
bosons by their electric charge as they are not eigenstates of SU(2)r x U(L)y whereas they
are eigenstates of electric charge. Which immediately means that in nature SU@)Lx ULy
symmetry is broken and U(1)em symmetry is preserved.

The objective is to formulate a renormalized gauge theory of electroweak interactions in-
corporating massive gauge bosons. This is achieved by spontaneously breaking the gauge
symmetry. The experimental data suggests that the interactions are invariant under weak
isospin SU(2)L and the weak hypercharge Uy transformations.

We first write down the basic interactions in gauge invariant form. First, we write, an
isotriplet of weak currents J,, coupled to the three vector bosons W, in an SU(2)L invariant

way, ' '
—ig J, . WH= —igxXrYu T - W#xrL, (1.1)

next, a weak hypercharge current coupled to the fourth vector boson B* in a U(1)y invariant

way,

/
- i%— JYB* = -ig'%#%wﬂ. (1.2)
The operators T and B are the generators of the SU(2) and U(1)y transformations.

The left handed fermions form isospin doublets XL and the right handed fermions are the
isosinglets ¥r. For example, for the electron and its neutrino we have

YL = (”5) with T=1/2, Y =-1,
€ L

wp= (e )gp with T =0, Y = -2

Whereas for quarks the assignment is,

u
XL=<d> . 1R = uR or dr.
L

?[‘he electromagnetic interaction is embedded in such a way that the generator of the U(1)em
is related to the generators of SU(2)r, and U(1)y by the following relationship,

Y
:3-—'
Q=T+

In _\Qphs,r/words, the electromagnetic current is a combination of the two neutral currents J3
‘ anfittJu . The two neutral gauge fields. The interaction in the neutral current sector can be
written as

e

. g v .
—'ig J3W3“ - 1—2— J; B* = ——w]zmA" — [Jg - Sinzgwjf}m]zﬂ- (1.3)

sinf,, cosby

We have written the above equation in terms of the two physical fields,

A, = cosBy B+ sinf,Wp,
Z, = —sinfy, By + cosOst.

. The requirement that electromagnetic interaction must appear in the right hand side of
,’, eqn(l.:})’has fixed a relationship between (g,g') and (e, 6y), namely,

e = g sinby, = g'costy.




The weak mixing angle ¢in? §, is one of the important parameters of the standard model,
which gives us the amount of mixing of the two neutral gauge bosons with photon and Z,.

is incorporated to make the electroweak gauge bosons massive. To do
t ¢ is introduced. The most economical choice is the isospin doublet

+
o= (%)
The relevant part of the SU(2)r x U(1)y invariant Lagrangian for the gaugé boson masses

is,

The Higgs mechanism
this, the scalar double
with hypercharge ¥ = 1:

i Y
Ly =[(0,—9gT - Wy—g EB#)qﬁ]2 - V().
The [ ] above is defined as [ ][ ]. V(¢) is the Higgs potential given by,
O V(9) = ueTe 4 A(8T9)%

When the coefficient of ;2 becomes negative, the Higgs scalar acquires a vacuum expectation
value (vev) to make the gauge bosons massive. The vev ¢ has the following form,

. /170
so=5(%).
The gauge boson masses are obtained by shifting the variable, ¢ = ¢’ — ¢o the vev ¢ in the
Lagrangian £; and identifying terms with ¢q. The relevant term is,

T g 2
|(—1.g§ LW, - z%Bu)dB

1 2' _ 1 2 —ad’ w3
= (= s 12ws g g9
(3v9)" W' .+ g (Wu Bu) (——gg’ g” )(B:r)

Now it is easy to see that the gauge bosons W=, Z, and the photon A has the following

masses,
1 1
Mw = 3993 Ms=0;, Mz= §v\/g2 + g%

"’Ir}”the.standard model Lagrangian the fermion mass term of the form mapp is forbidden by

‘gauge ‘mvaria.nce. An interesting feature of the standard model is that the same Higgs doublet

'.y.i,th;a,t gives masses to the gauge bosons is also sufficient to give masses to the fermions. For

- ex;mple, to generate the mass for the electron let us consider the following Yukawa part of
the Lagrangian: :

ﬁzz_he[(ge &)L <‘i:) er+éer (¢~ ¢o) (?)L}

. Now we can read off the mass of the electron when the Higgs field gets a vev,

. — hev
a,}:: q,ll?rk masses are generated in the same way. The only novel feature is that to generate
' ?SS' .o_rvthe upper quark of a quark doublet we must construct a new doublet,

“-: —iTd" = (;q_ﬁ‘)) .

Pe



Due to the special properties of SU(2) ¢. transforms identically to ¢. Hence this minimal
choice of Higgs fields can give mass to both up and down type quarks. However in case of
supersymmetry, we shall see that such minimal choice no longer works. One needs in that
case two Higgs doublets to give masses to up and down type of quarks.

Standard model describes a tremendous chunk of physics. The strong interactions are re-
sponsible for the structure of the nuclei and for the most part of what happens in the high
energy collisions. The weak interactions are responsible for the nuclear transmutations. The
electromagnetism is of course responsible for, " All of Chemistry and most of Physics”. SM
is highly successful phenomenologically. It is consistent with all available experimental data.
From present experimental inputs both model dependent [2] and independent [3] precision
tests have been done and they indicate no deviation from Standard Model.

Despite all these successes the Standard Model cannot be given the status of a complete
theory and there is strong motivation for the study of the physics beyond the Standard
Model. First, it has a large number of parameters which has to be determined from the
experiments (gauge couplings, fermion masses etc). The assignment of quantum numbers is
partly arbitrary and it has to be explained from a better theory (Charge Quantization). The
Higgs sector is not properly understood as there are problems in the fixed point structure of
the ¢* theory (Triviality Problem). Theré is no fundamental symmetry in the SM which will
prevent the Higgs boson from getting large quadratic corrections to its mass from radiative
processes (Hierarchy Problem). Now to explain charge quantization one has to embed the SM
into a larger group and the fermions in some irreducible representation of the bigger group(4].
_ Then from the remormalization group analysis one can study the unification of forces [10].
These ideas lead to the study of Grand Unified Theories (GUTS). In a different attempt to
explain the hierarchy one may assume that there is a scale A above which the Higgs boson
is not a fundamental particle. Hence this scale will act as a cut-off scale in the quadratically
divergent integrals. This idea lead to the study of the Technicolor and Condensate models[6]
where one aims to have a spontaneous symmetry breaking with the gauge interactions alone:
there is no elementary scalar with its self couplings and Yukawa couplings. On the other
hand there may be fermionic-bosonic symmetry due to which large quadratic divergences
cancel upto all orders and one is left with a finite theory. Studies in this direction leads
to Supersymmetry. Out of these three major directions to go beyond the standard model
Technicolor is less favored by the precision electroweak measurements [3].

1.2 Minimal SU(5) GUT

Grand Unified Theories (GUTs) [7] offer the possibility of a simple but unified description
of strong and electroweak interactions. Typically in these models at some high energy all
the interactions arise out of a single Lagrangian which is locally invariant under the gauge
~ transformations of a single simple Lie group called the unification group. A large spectrum

~ of GUTs are proposed in. the literature which is broadly classified by the unification group.

In the minimal SU(5) model all interactions unite at a single step at an energy around 10
; GeV ?herefore predicting the absence of any new physics between the standard electroweak
,’b.reakmg scale(M,) and the unification scale(My) while the SO(10) model admits interme-
, glate breakings of symmetry. On the other hand there are models which are inspired by
| 'Sngrstring theories, one of them postulates the exceptional group Eg as the unifying group.
Thls specific model predicts atleast 12 exotic fermions on top of the 15 standard fermions.



All these theoretically very attractive models have atleast one common prediction namely
the decay of proton. There has been a desperate search by the experimentalists to see the
signature of proton decay for the last decade.and a half. Contrary to the theoretical beliefs
proton decay has not been discovered. At present the lower limit of the half life of proton is

a whopping 103? years.

The simplest model of unification existing in the literature is the SU(5) GUT 1 Although the
simplest nonsupersymmetric version of SU(5) is ruled out by LEP data and limit on proton
lifetime (although the effect of gravity may still make it a viable one) the idea of grand
unification is very much alive and supposed to be the most popular extension of standard
model. To explain the basic concepts of grand unification we briefly describe the SU(5) GUT
which is conceptually easiest to understand.

The major success of the Glashow Weinberg Salam (GWS) model of electroweak interactions
has motivated physicists to look for a unified theory of strong and electroweak interactions.
According to the present view the strong interaction can be understood in terms of Quantum
Chromodynamics (QCD), which is an unbroken gauge theory based on the gauge group
SU(3)c. The fundamental representation of this group contains the three colored states of a

quark.

The color gauge group SU(3). is orthogonal to the WS electroweak symmetry group SU(2)L X
U(1)y. Thus a broken gauge theory based on the semi-simple group SU(3).x SU(2)LxU(1)y
with a coupling strengths of g3, g and g', respectively, for the three factors, can explain the
strong and electroweak interactions at low energies. The quantum numbers of the fermions
under the group SU(3)e x SU(2)r x U(1)y are given in Table 1.1 ‘

ur,
() (3,2,1/3)
<:§) (1a27'—1) .
ui (3,1,—4/3)
dg, | (3,1,2/3)
e (1,1,2)

Table 1.1: fermions and their SU(3). x SU(2)r, x U(1)y transformation laws

These particles form a family or generation. We have expressed all the fields in a left handed
basis, using 9§ = ¢ k. The results for those particles can be extended to other generations
~also, which will not be discussed here. The right-handed neutrino vg or the left handed
antineutrino v§ will also be included in some models.

'This discussion on minimal SU(5) follows Ref [13]



However, one notices that the theory is not truly unified in the sense that the gauge coupling
strengths g3, g2 and g1 are different. Georgi and Glashow first suggested the idea of embedding
the the standard group SU(3)c X SU(2)L x U(})y into a simple group, namely SU(5), such

that at very high energies the symmetry group SU(5) breaks down to the standard group.
The fermions are contained in the SU(5) representations 5 and 10 respectively. The explicit

form of the fermion representations are:

d§ 0 u§  —u§ - —dy
ds —u§ 0 uf Uz —ds
5= d§ 10 = u§  —uf 0 —ug —d3
e U1 U9 U3 0 —et
—Ve [/ g, d] d2 d3 6+ 0 L

These representations decompose under the standard model gauge group as,

5

I

-2
3,1, 5) +(1,2,-1)
_ 4 1 .
10 = (3, 1,—3—) + (3,2,5) +(1,1,2)
The transformation properties of the 24 gauge bosons of the SU(5) model are as follows,
24 = (8,1,0) + (1,3,0) + (1,1,0) + (3,2,-5/3) + (3,2,5/3).

The first term represents the gluons and the second and third term represents a linear com-
bination of the W*, Z boson and the photon. The gauge bosons (3,2,-5/3) and (3,2,5/3)
are introduced by the SU(5) GUT and they acquire masses at the scale My, i.e, the scale
at which the SU(5) symmetry is broken. These gauge bosons couple to diquarks and lepto-
quarks. . They can mediate the processes like p — etn® and n — etx~. The lifetime of
such nucleon decay will be given by,
4
My (1.4)

5

Ty ~ Qg
p 5
mpy

where as is the SU(5) coupling constant, my stands for the nucleon mass. We shall now
estimate My following Georgi Quinn and Weinberg [10].

_ If we use the same normalization conventions for different gauge groups, then the invariance
under SU(5) implies that the coupling constants gs, g3, g2 and, g; associated with the groups
- SU(5), SU(3) SU(2) and U(1) respectively are equal when SU(5) is broken at a scale My, i.e,

g95(My) = g3(Mu) = g2(Mu) = g1(My). (1.5)

When the SU(5) symmetry is exact the charge Q and the SU(2) and U(1) generators T and
T are given by,
Q =Tz + cTo.

 The gauge coupling constants gz and g; must also be related to the usual SU(2)r, and U(1)y

. coupling constants of the WS model, g and ¢’ by,

go=g and gy =cg.



Now we can write

Tr[Q% = (1 + A)Tr[T%].

For ny generations of fermions we have,

. 16
Tr[T%] =2 ny and Tr[QY) = 5"

This immediately gives us the value of c,

Thus we get the value of the Weinberg angle at the scale Q,

.2 _ glz(Q)
sin“0,(Q) = ——————-—————-—-gz(Q) Q)

Hence, for a scale Q larger than or equal to the unification scale My we have,

2
L9, _ ¢ 3
sin“fy, = it (1.6)
and also,
« @) = et/ar _ e* g%g"?
a, g3/4m g3 gi(g*+g?)
Hence, for a scale Q larger than or equal to the unification scale My we have,
a 3
a, 8

Once the value of sin*8,, and o are calculated in terms of the normalized coupling constants
at the SU(5) symmetry level, it is a straight forward job to calculate sin?6,, and 2 at the
present energies. We use the standard renormalization group equations,

a=1(q) = a™}(Q) +2 b Mgy, (1.7)

where in equation (1.7) b is defined as,

1 11, 4 1
[N = =Thp-=T,], 1.
1671'2[3 37 R % ) (1.8)

and, Mg, is defined as 4w In?. The three terms in the r.h.s. of equation (1.8) represent
the gauge boson, the fermion and the scalar contributions respectively. For the U(1) groups
there is no nonabelian gauge coupling and hence the first term is absent. thus combining the
boundary conditions given in equation (1.5) and in in equation(1.6) we can write,

. 3 550 MP
2 2 U
a(Q?) 3 1la, MP2
d = 21— =4ty
o as(Q?) 8(1 2 fn Q? )

For @, = 0.12 the value of sin20,, is predicted to be 0.21 which is lower than the experimen-
tally observed value of 0.234.002 approximately. The proton lifetime is also predicted to be



too low to be consistent with the experimental lower bound on 7p. Due to these reasons it
is believed that the minimal version of the SU(5) model is ruled out. However we shall see
in this thesis that including the effects of gravity induced higher dimensional operators one
can still make the model consistent with experimental results. Certain other non-minimal
extensions of this model like extending it to include new fermions at some intermediate scale

can also make the model consistent with exp«rimental results.

1.3 Inclusion of left-right symmetry

One important feature of the minimal SU(5) GUT is that it suggests the existence of a desert
above the electroweak scale. Actually, the minimal SU(5) model predicts no new mass scale
between the electroweak scale and the unification scale. This depressing feature is absent in
more extended models of unification like SO(10) GUT. This model admits intermediate mass

scales in which parity is restored.

The nature of the weak .interactions appears to be very well described by the celebrated
V-A theory, which enjoys sound phenonenological success at the low energies. The standard
SU(2)1, x U(1)y gauge theory provides a sound mathematical basis of the V-A theory. An
alternative approach to the electroweak interactions has been proposed by Pati and Salam
according to which the basic weak Lagrangian is invariant under the space reflections. This
involves both V-A as well as V4A interactions. The gauge group of this model is left right
symmetric and it is broken to standard model spontanedusly by Higgs mechanism.

SU@2)L x SU2)R x U(\)p-r, M2 SU(2)L x U(1)y
| Mz U(1)em. | (1.9)

The electromagnetic charge is related to the diagonal generators of the left-right symmetric

mode] as,
L

B —

The weak Lagrangian prior to the symmetry breaking is given by,

Luyeak = %(JuL . I’Vf + J“R . I/Vﬁ
here, J,1, = J,r(y5 — —7s). The noninvariance of the vacuum under space reflections results

in Mw, >> Myw,, and, as a result, all the low energy weak processes appear the same as in
the SU(2); x U(1)y theory, with small corrections undetectable in expcerimental results.

In left right symmetric models, since both left handed and right handed helicities of the
neutrino are included, the neutrino naturally has a mass. It has been shown that if the
neutrino is a Majorana particle, one can obtain the qualitative relation

L

MWg

my, =~ O(

This relation provides a deeper physical insight into the connection between the small neutrino
mass and the maximality of parity violation.

50(10) is the minimal left-right symmetric grand unified theory. Actually, the whole SU(4)cx
SU(2),x SU(2)p of Pati and Salam can be embedded into SO(10). The adjoint representation




of SO(lO) is 45 dimensional, hence there are 45 gauge bosons. We have 21 gauge bosons
associated with the group SU(2)r X SU(2)r x SU(4) and 24 superheavy guage bosons which
become massive at the scale of breaking of SO(10).

The symmetry breaking pattern of the SO(lO) model is the following,

SO(10) ;[_L; SU2)L x SU(2)r X SU(4). =Gps
E SU(3). x SU(2)L X SUR)rxUQl)p-r =GLr
E}: SU2)L x SUB)xU(l)y =Gou
Ey SU(3). x U(1)q (1.10)

The first stage of symmetry breaking at the scale My is conventionally done by the the vev
of 45 dimensional scalar which has a singlet under the lower symmetry group. In the next
stage the breaking at the right handed scale Mp is achieved by the vev of a SU(2)r triplet
field Ar which transforms as (1,3,1) under Gps and contained in 126 of SO(10). This scalar
also contains the left and handed triplets Az = (3,1,1) under Gps. Finally in the minimal
SO(10) model the 10 dimensional scalar contains the usual SU(2)r, doublet which breaks the
electroweak symmetry and gives masses to the scalars.

The mass scales of this symmetry breaking chain can be calculated using the renormalization

group equations. The intermediate symmetry breaking scales My and Mp reduces the hierar-
chy problem of the SU(5) GUT. For low Mg there can also be interesting phenomenological

consequences.
The fermions transform under the 16 dimensional spinorial representation of SO(10). This

multiplet contains the right handed neutrino on top of the standard 15 fermions. Let us
at this stage state the transformation properties of the fermions under the group SU(2)L,

SU(2)r x SU4).,

wo= ()i = ()

L
_ uLy . . _ [ YR ).
e = ()19 en= (7)1 (111)
Also let us state the scalar fields which may acquire vev,
¢ = (2,2,1) ; d=mndin

Ar (3,1,10) ; Ar=(1,3,10)

i

The vacuum expectation values of the fields have the following form:

@ = (5 0) wwo=(2 )
(@) = <16, 2) ; <AR>:(722 8)

" . . . . . . » . .
Now we are in a position to discuss the physics of neutrino masses in left-right symmetric
models. The fermions acquire masses through the Yukawa terms in the Lagrangian when the




Higgs fields acquire vev. The Yﬁkawa-part in the Lagrangian written in terms of fermionic
and Higgs fields is given by,

Ly = wni(fofrd1) + va(frfrd2) + ya(fifrAL + fRfRAR),
(1.12)

where, y; (i=1,3) are the Yukawa couplings. With this notation neutrino mass matrix written

in the basis (vr,v§) is
M= (mML "D ) (1.13)
mp MMg
where mps, (marg) is the left (right) handed Majorana mass term whereas mp is the Dirac
mass term. These terms can be related to the Yukawa couplings and vevs through the
following relations;

mas, = Y3vL,
mp = (y1+y2)(k+ &),
MM, = Y3VR. (1.14)

Diagonalizing the mass matrix we obtain the mass eigenvalues. Now let us consider the
simplifying assumption that all the Yukawa couplings are of order "h” and the vev k' is
much smaller than the vevs k. Under this assumption the eigenvalues become,

my = Y3VR,
M} h2k?
my = MMy — = Yy3vr — .
mMMp Y3VR

We substitute for vz, from the see-saw condition to get,

k2 h2k2
mo = ys-é— —_ . (1.15)
VR Y3VUR

Here 3 is a function of couplings. We notice that the second term inthe right hand side
is suppressed by the square of the Yukawa coupling. Due to this the first term dominates.
If we want to make the first term small compared to the second we need to fine tune the
parameters. Hence one has to fine tune such that Sk? ~ 0 to get acceptable value of the the

light neutrino mass.

1.4 Extension to include supersymmetry

~ Supersymmetry (SUSY) implies that every fermion has a bosoic partner, and vice versa, with
the same quantum numbers but with spin differing by one half. Since no such partners have
been found in low energy, SUSY has to be broken at the present energy scale but could be
restored at and above some higher scale Mgygy.

The primary theoretical motivation for SUSY is that it stabilizes divergent loop contributions
to the scalar mass, because fermion and boson loops contribute with opposite signs and largely
cancel. This cures the naturalness problem in the SM so long as Msysy < O(1TeV'), where
otherwise the Higgs mass would require fine tuning of parameters.
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In addition to these general motivations for SUSY there exists several significant motivations
for studying SUSY-GUTS. Firstly the ordinary GUTs don’t predict satisfactory convergence
of the gauge couplings at the scale My if there are no intermediate symmetry breaking
scale between Mz and My and no new particles (in other words if the couplings converge
it does not predict the correct vale of sin?f,, at low energy) however the convergence can
be achieved if SUSY partners contribute to the Renormalization Group Equations (RGE).
Secondly proton decay is too rapid in non supersymmetric minimal SU(5) GUTs whereas in
SUSY GUTs because of the higher value of My the it is acceptable. Finally in SUSY-GUT
models the Higgs field naturally develops a vacuum expectation value for a heavy top mass.

To understand the basic SUSY algebra, let us consider the following toy example. Here is a
field theory where the Lagrangian is given by ?,

L= Lkin + Lmas.ﬂ (116)
where, the terms in the r.h.s. has the following explicit form,
. 1, 1 T 1 .
Lin = 5(0u A+ 5(0u BY + 5907 + 5(F7 + G?),
Lipass = "TTL[%’IZ)’(/J + GA + FB} .

Here A, B, F, G are real scalar flelds and 9 is a self conjugate, Majorana spinor field. Since
7 is its own charge conjugate we have,

p=Cy.
~ Wess and Zumino [7] observed that under the transformations,
6A = iaysy,
§B = —ap, |
§v = Fa—iGysa+ d,7*ysAa +i0,7" Ba,
§F = —iad*y,1,
6G = —avs0

(1.17)

Lagrangian density (1.16) changes by a total time derivative so that the equations of motion
are unchanged. We observe that these transformations mix bosons and fermions and $0
are supersymmetry transformations. The parameter of the transformation, « is thus itself
spinorial. Further, to preserve the reality of A and B as well as the Majorana nature of ¥ «
itself has to have the Majorana nature.

In order to understand the SUSY transformations further, we consider the effect of two
successive SUSY transformations with parameters oy and as.

(5251 - 61(52)14 = -—-21.0.71’)’“8”/1&2. (118)

In or_der to find the algebra obeyed by the generator of supersymmetry, we write as usual
6 = a@). We note that Q must be a Majorana generator. Now Eqn.(1.18) can be written as,

(2Q 1Q — @1Q Q) = ajaan(@sQa + Qu@s)A,
= —2ia7,00(0u 7" A)as- (1.19)

?The discussion on SUSY algebra closely follows (8]
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Here, a, b are spinor indices. To obtain the first equ:ﬂity we have used the fact that the
parameter Qg anticommutes with themselves as well as the charges Q. Since (1.19) is true
for arbitrary values of of the parameters we are led to conclude that the SUSY charges obey

the following anticommutation relation,
[QaaQb]+ = 2(7uPu)ab-

Where, P* is the translation generator of the Poincare group and the curly brackets denote

an anticommutator. This shows that supersymmetry is a space time symmetry and not an
in turn, leads us to examine the commutators of @, with the

internal symmetry. which,
f we identify P° with the Hamiltonian, conservation of

generators of the Poincare group. [

@), implies,
(@, P°] =0, (1.20)

from covariance,

[Qa, P¥] = 0. | (1.21)

Notice that the supersymmetry algebra described above contains commutators as well as
anticommutators and so is not a Lie algebra. Such algebras are called graded Lie algebras. In
fact, Haag, Lopuzanski and Sohnius [9] hiave shown that the algebra we have derived above
is the most general graded Lie algebra compatible with certain rather reasonable physical

assumptions.

We note that the the relation (1.20) means that all states but the zero energy one (the
vacuum) come in degenerate pairs with one member of the pair being bosonic and the other -
fermionic. This implies that in a supersymmetric theory, every particle has a partner with the
same mass but spin different by % Finally we note that supersymmetry being a space time
symmetry is independent of any internal symmetry; i.e., the generators of internal symmetry
transformations and supersymmetry transformations commute. As a result a particle and its
SUSY partner have identical internal symmetry quantum numbers such as electric charge,

color, isospin and so on.

In order to construct the Minimal. Supersymmetric Standard Model (MSSM), we have to
introduce a partner for every particle of the standard model, with a spin differing by 3. Thus
the SUSY partners of the matter fermions must have spin zero or spin one. Since the only
way we know to consistently introduce interactions of the spin one particles is to make them
gauge bosons we are led to consider spin zero bosons as their partners. |

In the electroweak symmetry breaking sector, in the standard model, the SU2)L x U(L)y
symmetry is broken by a single Higgs field. Moreover the same field can give masses to
both the upper and lower member of a fermion multiplet. Technically this is possible in SM
because both the scalar ¢ and its conjugate ¢¢ can couple to fermions in a gauge invariant
way. In SUSY, however, these Yukawa couplings come from the superpotential which in turn
cannot depend both on a field and its complex conjugate. As a result, a doublet Higgs scalar
Caltl givc; rise to the mass of either the upper partner or the lower partner of a multiplet but
not both.

The MSSM thus contains the particles of the standard model with two Higgs doublets and
the spin one bosons which mediate the interactions as shown in the first row of the Table
1.2. The second row contains the super partners of the fields shown in the first row. These
a’Lre’combined to form the super multiplets which are shown in the third row. Thus Li(Q)
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and E;(U;, D;) are the left handed lepton (quark) and antilepton (antiquark) singlet chiral
superfields, where i, refers to the generation index. Similarly Hj o are the chiral superfields
representing the the two Higgs doublets and and G is the vector superfield representing the
gluon. The Yukawa part of the Lagrangian contains the Higgs coupling terms responsible for

the lepton and quark masses.

Ly = h,T]-(L;H;EJ')F + h?j(Q;Hle)p + hgj(Q;Hng)F. (1.22)

ordinary fields | l; g 1 di thy [ha |9 v

€; wilZz
superpartners I1& | @ |ui|di by By |G | W 7|7

I?uperfields !Lg[E,‘IQ;‘U{‘D;IHllfIQlG‘.. ||J

v &

Table 1.2: first row - ordinary fields, second row - corresponding superpartners and third row

- superfields

In the evolution of the gauge couplings of the MSSM the superpartners also contribute. This
changes the expression of the coefficient b of equation (1.8). The new expression for b in the

SUSY case is,

1
To72 [3N —Tgr — Ts]. (1.23)

‘In the LEP experiments at CERN, Geneva, the gauge couplings of the standard model are
very precisely measured at the Z-peak. If we evolve the couplings using the supersymmetric
beta functions with a symmetry breaking scale of around one TeV the couplings meet at an
unique intersection point-at the scale of around 106 GeV. This is considered as a hint for
the existence of SUSY above the TeV region.

The supersymmetric GUT has another advantage over the nonsupersymmetric GUT. As the
unification in the SUSY GUT is achieved at a scale of around 10'® GeV the proton decay
rate is consistent with the experimental lower bound on proton lifetime. On the other hand
the nonsupersymmetric GUT the proton decay is predicted to be too fast.

The supersymmetric GUTs predict the correct electroweak symmetry breaking scale. This
happens because the top quark Yukawa coupling contributes to the evolution of the Higgs
mass that couples to the top quark. As a result for a heavy top the Higgs mass becomes neg-
ative at the electroweak region. It can be shown that for reasonable choices in the parameter
space it predicts the correct electroweak symmetry breaking.

Independently of the GUT relations among the Yukawa couplings, BT, h® and A* (for the time
being let us consider only the third generation for simplicity) must be bounded from above
at the low energies otherwise they would blow up before reaching the unification scale My.
Using this fact one can obtain an upper bound on the top mass in the SUSY GUTs [10].

b= -

me = h'vg,
< (174GeV) hbas ! -
‘ tan2f
< 135,170,180,190 (GeV) (for tanf = 1,2,3,0). (1.24)

13




Here vy is the vev of the scalar field Hj and tanf = g{% This upper bound is remarkably
consistent with the value of the top quark mass predicted from the precision electroweak

measurements.

Thus we see that the introduction of SUSY is one of the major candidate theories to solve
the gauge hierarchy problem. In the next section we shall introduce another new paradigm of
unification models which can also solve the hierarchy problem based on SU(15) and SU(16).

1.5 Low energy unification

One of the most important prediction of GUTs is proton decay. In models such as SU(5) or
50(10), the coupling constants for the SU(3)c, SU(2)L and U(1l)y groups evolve to My ~
0(10'*) GeV or higher before they get unified. Proton decay in these models are predicted
to occur with a rate of the order of the present experimental limit for such My. Recently it
has been observed that at least one symmetry breaking chain of a GUT based on the group
SU(15) can be unified at a very low energy My ~ O(107) GeV([17]. Because baryon number
B is a gauge symmetry in this model, proton decay can be suppressed, and certain possible
Higgs structure has been proposed to this end. This was true for SU(16) GUT[11] also, where
it was also known that the proton lifetime can be large. Low energy unification makes these
models free from problems of grand unified monopoles(18] and the gauge hierarchy problem
is also much less severe.

The drawback of SU(15) and SU(16) GUT compared to SU(5) is that the anomaly cancella-
_tion is incomplete without mirror fermions, although the latter could be in principle, replaced
by other compensating fermions in higher mass scales in a more general theory based on, e.g.,
superstrings. If the chiral anomalies are canceled by mirror fermions; it is assumed that such
mirror fermions have masses of the order of O(Myw ). If they appear as mass degenerate sets,
they do not affect the renormalization group determinations of the unification and other mass
scales, and more generally need not affect the low energy physics.

The fermions, belong to the 15 dimensional fundamental representation.
15L - ( Uy, Uz, U3, dl) d21 d3’ ﬂla 17'27 17'37 le,fzz, d_37 €+, Ve, €™ )L (1-25)

The 15 of SU(15) decomposes to (12,1)+(1,3) under the group SU(12)quark X SU(3)iepton-
Next the subgroup SU(12) breaks to SU(6), X SU(6)r x U(1)p and 12 of SU(12) breaks to
(6,1)4(1,6). In these two mass scales the leptoquark and the diquark gauge bosons become
massive. Now as the leptoquark and diquarks have different baryon number (note here U(1)p
can be identified as gauged baryon number) they do not mix and hence there is no gauge
boson mediated proton decay.
We denote the group SU(n)ZxSU(m)IRxU(l)X as n%—mIR-lx where the subscript implies
either the charge of the U(1) group or that right (left) handed particles are non-singlets under
SU(n) (SU(m)) and the superscript ¢ ({) means that only quarks (leptons) transform under
this group. For the breaking G; — G;_;, the G;_; singlet component of the Higgs scalars
acquires a vev at a scale M;. We consider the pattern G[15] @ Ga[129-31] (ff,) G3[6L-6R-
15-31]) ‘%) G4[3:0-29—6p- -15-31) %) Gs[3.1-20-3p—1p-15-24-1}] ) Ge[3c-20-1p-1y/]
((ﬁ_i) G7[3C—2[J—1y] @ G3[3C—IQ], with (¢>,> = M;.

Th.is scena'rio of symmetry breaking of the SU(15) GUT has some more interesting features.
It is essential for the low energy unification to have the chiral color SU(3).r X SU(3)cr group
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and the quark-lepton un-unified group SU(2)7 x SU(2)L survive till very low energy, for the
gauge coupling constants to evolve very fast and get unified at an energy scale My ~ 0(10%)
GeV. Thus the existence of these groups and the lepto-quarks are some of the essential
critereons of the low energy unification, which can be tested in the laboratory in near future.
Furthermore, any signature of supersymmetry will rule out the possibility of low energy
unification [19]. If we find signatures of the low energy unification and supersymmetry both,
then our understanding of the grand unification has to be revised completely.
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Chapter 2

LEP Constraints on Unified
Theories

2.1 Prelude

Since 1989 LEP has been producing electron positron collisions at various center of mass
energies centered around the peak of the resonance production of the Z, bosons. The four
experiments ALEPH, DELPHI, OPAL and L3 has till now collected about five million events,
The analysis of this data on most varied subjects have been performed. The two most
publicized results are the very precise measurements of the number of light neutrino and the
absence of the standard neutral Higgs bosons in the energy range upto 63 GeV.

Recent interest in Grand Unified Theories has been motivated by the precision data that
has emerged from LEP in the past years [1]. The measurements of the Z mass and width

and also the jet cross sections and energy-energy correlations provide very accurate values
of sin? 8y and «a; at the scale Mz. These precision values of sin? 6y and a,, when evolved
using the renormalization group equations, can be used to put strong constraints on unified

theories (2], [3], [4], [5].
In particular, in the analysis of Refs.[2],[4], it has been shown that using the recent experi-

mental values

sin?w = 0.2333 + 0.0008
0.113 % 0.005 (2.1)

Il

Qs

2 unique intersection point of the SU(3)., SU(2); and U(1)y couplings is not obtained in
the standard model with one Higgs doublet (See Figure 1). Further in Ref.[2], it is shown
that the criterion of unique intersection of the couplings at the unification scale is satisfied
in the minimal supersymmetric extension of the standard model, and an unification scale of
around 10'® GeV is obtained with the supersymmetry scale around 1 1V (See Figure 2).

There are other ways of modifying the minimal standard model in order to get consistency
with the data and the solutions that immediately suggest themselves are the inclusion of
the effects of additional fermion generations or Higgs particles. However, the addition of
new fermion generations changes the slopes of all the three couplings equally because the
fermions contribute the same amount to the beta function coeficients of the SU(3)e, SU(2)L
and U(1)y groups. As for the Higgs, it has been shown (2] that, in the non-supersymmetric
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case, with six or more Higgs doublets it is possible to obtain a unique intersection point
for the couplings, but the value of the unification scale is too low and is ruled out by the
measured value of the proton lifetime, 7, = 5.5 X 1032 years[6)].

The failure of these attempts seems to indicate that the possibility of any unification group
breaking in one step to the minimal non-supersymmetric standard model is, indeed, ruled
out by present experimental data. Non-minimal (but non-supersymmetric) extensions of
the standard model have also been studied [10] where it has been shown that either the
introduction of a pair of leptoquarks at a scale of around 100 GeV or of a split 45 dimensional
multiplet can also satisfy the unification constraints. The consensus seems to be that if we
demand coupling constant unification, then there must be some new physics between the
electroweak scale and the unification scale. The possibility of a desert between presently
available energies and the unification scale seems to be ruled out. However the minimal left-
right symmetric GUTs are consistent with the LEP results. We will see in this chapter that
~ the LEP results put strong lower bounds on the right handed breaking scales of the left-right

symmetric GUTS.

2.2 Effects of Higher Dimensional Operators

In this section, we show that this is not a necessary conclusion !. This we do by considering the
presence of higher dimensional operators in the SU(5) invariant Lagrangian. Such operators,
scaled by powers of the Planck mass, arise due to quantum gravity effects [11] or due to
spontaneous compactification of the extra spatial dimensions in Kaluza-Klein theories [12].
Such non-renormalizable terms involving fermion and Higgs fields have been used to show that
the predictions of the minimal SU(5) model for the fermion masses can be made consistent
with observations [13]. Similar terms in the gauge part of the Lagrangian involving the gauge
and Higgs scalar fields imply modifications in the gauge coupling constants at the unification
scale [11], [14], [15]. We present, in the following, an analysis of the modification of the
coupling constants at the unification scale due to the presence of five- and six-dimensional
operators in the Lagrangian. We then check whether there is a consistent choice of couplings
of the higher dimensional operators which yield sin? 6y, the unification scale, My, and the
SU(5) coupling constant ag such that the experimental constraints from LEP and those
coming from the measurement of the proton lifetime are simultaneously satisfied.

We start with a SU(5) invariant Lagrangian which breaks at a scale My into SU(3). X
SU(2)L, x U(1)y due to a scalar Higgs field, ¢, which transforms under the 24-dimensional
adjoint representation of SU(5). This Lagrangian in the domain of encrgies My < £ < Mp;
(where Mp; denotes the Planck mass) is given as a combination of the usual four dimensional
terms and the new higher dimensional terms which have been induced by the physics beyond
the Planck scale (or compactification scale). In principle, such non-renormalizable operators
can be induced even due to the presence of a group G’ which breaks to SU(5) at a scale
above the unification scale. We note here that the compactification scale can be even two
orders of magnitude below the Planck scale in Kaluza-Klein theories [16]. The Lagrangian

can be written as
L=Lo+)y, 1™ (2.2)

n=1

'"This section follows Ref. [9]
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where

Lo = —%Tr(Fu,,F“”) ' (2.3)

and the sum in Eq. 2.2 runs over all possible higher dimensional operators. We write down
the five- and six-dimensional operators explicitly as

10 = 20 g (2.4)
! - 2 Mp[ e ‘
L = 4 (g Tr(F 67 F) + Te(Fu ¢F* ) +
O Te(@2)Te(Fy F*) + 82 Tr( F“”¢)Tr(Fuu¢)J (2.5)
where, ' '
Fuy = 0,4, - 0,A, —ig[A,, A (2.6)
A, = A;%" (2.7)
with, )
Tr(/\;)\j) = 55,'1' (2.8)

In the above equations 5™ specify the couplings of the higher dimensional operators. Since
Tr(F¢* F*) = Tr(Fu,¢F*™ ¢) (2.9)

we have used the same coupling n‘(lz)for both these operators in Eq. 2.5.

At the unification scale My, the Higgs field acquires the vacuum expectation value

(6) = = dodiog(1L1,1,~3, ~3) (2.10)
The SU(5) symmetry breaks at this scale because of the non-invariance of the Higgs vacuum
expectation value under the SU(5) symmetry. The magnitude of (@) is itself proportional to
the unification scale, My, and, hence, one can replace the Higgs field appearing in Eq.2.5 by
its vacuum expectation value (ignoring the small fluctuations of the Higgs field around (g)).
With this replacement one obtains the following SU(3) x SU(2) x U(1) invariant Lagrangian:

—3(1+ ) Tr(FS) FOm) — L(1 4 e ) Tr(FD FOM)
—1(1 4 ey ) Te(FL) FOImv) (211)

Thus, even in the presence of the higher dimensional operators that we have considered above,

we obtain the usual SU(3) x SU(2) x U(1) invariant Lagrangian merely scaled by constant
factors (14 ¢;) i = C, L,Y. Defining the physical gauge fields below the unification scale to

be 1
Al = A(1+¢)? (2.12)

20




we recover the usual SU}(B.) X SU(2) x U(1) invariant Lagrangian with modified coupling

constants

93(My) = g3 (Mu)(1+ ec)™

93 (Mu) = g3(Mu)(1+e)™

9i(Mu) = gi(Mu)(1 + ey)™! (2.13)
The couplings g; are the couplings that would have appeared in the absence of the higher
dimensional operators, whereas the g; are the physical couplings which are evolved down to
lower scales.
It is expedient to introduce the parameter ¢(®) associated with a given operator of dimension
n + 4 in the following way:

(n) _ [._L;&]" (n) , 914
e\ = .
V15 Mp; , (2.14)
The vacuum expectation value ¢q is related to My by
1
6 2
= M, 2.15
b0 [57!‘&@] v ( )

where ag = g¢/4r is the GUT coupling. We then have

1 n '
) = H 2 }2 A[U} p(™) (2.16)

257TCYG Mp[

The charige in the coupling constants are then related to the e(™s through the following

equations:

€c = ¢ + e[(lz) + ?6,52) + ..

3 9 - 158
= _Z )4 2 (2 L 22 (2)
€L 7€ +4ea +26,, +...
1 7 15 7
;o= s ) L2 22 @) L (2)
€y = 26 + 46a + 1 & + 8€° +.... (2.17)

The ellipsis in the above equations denote the contribution of operators with dimension
greater than six.

As shown above, the effect of the higher dimensional operators is to modify the gauge coupling
constants. The unification scale, My, is defined, as usual, through the boundary condition

B=0=0=9 (2.18)

In the presence of the higher dimensional operators, the couplings g; are not the physical
couplings g; but are related to them via the relations in Eq. 2.13. - The result is that the
following modified boundary condition is required to be satisfied at the unification scale

g3(1+ec) = g3(1+er) = g¥(1 + ey) = g2 (2.19)

The crucial point is that the physical couplings at the unification scale are 95, g3 and g¢?
and these are the quantities that are evolved down to lower energy scales. The condition of
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equality in Eq.2.19 is; however, not on these physical couplings but on the "bare” couplings
g#(1+ €;). The mismatch of the physical couplings at the unification scale can, therefore, be
interpreted as due to the higher dimensional operators. With this in mind, one may use the

standard one-loop renormalizdtion group equations|7]

b; My
=1 = ] O, My .
aj (Mz) = a7 (My) + 27rln(MZ (2.20)
with the beta function coefficients given by
41 19
I S A S 2.21
b1 T 5 b8 (2.21)
where we have taken N; = 3 and Niiggs = 1. Solving the RG equations yield
My 6 1 8 a} { S5ey + 3¢y, a}]
In(—)= ——=(¢{1 - —— —_ 2.22
"1, = 57aD [{ 3a, ) T € 3 ol (2.22)
1 19 1 4] « 95 «
I-Q ;= — '29(‘5,)___ ___{2 ____} Y ] .2
sin” @y D [sm " 13460 + & 1+ a €r, + 102 asey (2.23)
1 3 1711 7
o = 5D 5 * o) (224
1
D=1+ 6?(1160 + 21ep + 356)/) (2.25)
where sin? 0§f,) is the usual minimal SU(5) prediction
o5 _ 23109 @ | 296
S0 = 137 Y 01 (2.26)

With the above equations at hand, we now consider whether it is possible to obtain a consis-
tent choice of the parameters ec, €7, and €y such that we can satisfy the constraints on sin? Ow
and My from present experiments. First we restrict ourselves to five- dimensional operators
only and try to see whether these operators alone can provide the required numerical values
for sin? B and My. The restriction to five-dimensional operators implies from Eq.2.17 the

following relations: '
1

cc =€l ¢ = —gegl); €y = ———2—6(1) (2.27)

We use the values of sin? 8y and a, derived from LEP data, given in Eq.2.1, and o = 1/127.9.

Since €¢, €7, and €y are all determined in terms of a single parameter €(1), specifying the value

of sin? Ay in Eq.2.23 at the scale My fixes up these parameters uniquely. For the central

value of sin? 6 (= 0.2333), we obtain the solution ¢(!) = —0.0441, which from Eq.2.22 gives

My = 3.8 x 10" GeV. The corresponding value of ag = 0.0245. Using

L g

'&'@G* M,? (2.28)

Tp R
(where 1/, is the proton mass), we find that the value of My is too low to be consistent with
the experimental limits on proton lifetime. We also find that by varying sin? fy over the
allowed range, the values of My and ag do not change appreciably. Thus, we find that it is
not possible to obtain a consistent solution with five-dimensional operators alone.
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We would now like to check whether it is possible to obtain a consistent solution if we admit
both five- and six-dimensional operators. Then, from Eq.2.17, we see that ec, €, and ey are
now independent parameters. By feeding in the value of sin? fy, we obtain one constraint
on these three parameters. The other constraint that these parameters need to satisfy is,
of course, the proton lifetime constraint. From Eq.2.28, we see that the proton lifetime
is controlled by both My and ag. There is a further constraint that we impose on the
parameters. If we require that successive terms in the sum in Eq.2.17 be scaled by inverse
powers of Mpy, then this can be ensured by requiring that [17‘5220| < In(1)| and with 7{!) not
too large. Restricting ourselves to the space of parameters that satisfy these constraints, we
present some sample values of the parameters in Table 2.1.

€L, €c €y (My)min | Qg
-0.85 -0.86 - -0.845 -0.893 - -0.864 1017 10~3
-0.90 -0.913  --0.905 -0.926 - -0.897 1017 10-3
-0.95 -0.956 --0.953 -0.963 - -0.949 1016 10~
-0.99 -0.9913 - -0.9906 -0.9926 - -0.9897 1016 10~

Table 2.1: The ranges of the various parameters obtained with the central value of sin? 8y
0.2333

We thus find that if we include both five- and six-dimensional operators, then there are a

whole range of parameters that are consistent with the values of sin? §y and My that are

required for agreement with experiment. In earlier papers [11], [14], where the effect of only
five-dimensional operators was considered, the value of sin? f obtained is too small to be in
conformity with the latest values. The effect of six-dimensional operators was also included in
Ref.[15]. Our work goes beyond the analysis presented in Ref.[15] in that we have included a
more general set of six-dimensional operators. The effect of the extra operators that we have
considered cannot a priori be neglected. Even if we restrict ourselves to the Tr(F,,¢2F+»)
operator, as in Ref.[15], we have checked that for the range of parameters chosen in Table. II
of Ref.[15], the values of sin? @y obtained are not in conformity with the LEP results.

Our analysis thus shows that by including the effects of higher dimensional operators aris-
ing due to quantum gravity or spontaneous compactification of extra spatial dimensions in
Kaluza-Klein theories, it is possible to show that the predictions of a minimal SU(5) GUT is
in conformity with the latest LEP values of sin? f and a,, and also with the experimental

constraints on proton lifetime.

2.3 Constraints on Left-Right Symmetric GUTs

An important class of GUTs are the left-right symmetric models where the Standard Model
comes from a larger group with a SU(2)r X SU(2)r symmetry 2. One interesting possibility
is that the left-right symmetry survives to relatively low energies, and would therefore have
testable consequences at current experiments or in experiments planned in the near future.

Earlier phenomenological studies [17] [18] [19] have indicated that it is indeed possible to
have a low value for the left-right symmetry breaking scale, Mg, in various grand unified

2This section follows Ref. [5]
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theories with intermediate mass scales and in partially unified theories. In these analyses,
however, values of sin?6y from as low as 0.21 to as high as 0.28 were considered.

Such a large variation in sin?fy was expected from the existence of a extra neutral gauge
boson, Z’, coming from either a U(1)gr or SU(2)r symmetry. Due to the mixing of the Z
with the Z’ the usual p parameter, defined as

M} .
E e 2.29
P MZcos?fw ( )
changes by a positive quantity, Apas, given as [20]
M2
Apr = smzf[ zl _ l} (2.30)
Z
where ¢ is the mixing angle. From the definitions of sin?dy, and p one can see that
. 20 ¢ 20 .
6(sinfy ) = _ L 7w o T PM (2.31)

cos28w

The quantity Apas is determined entirely by the measured value of Mw Mz, as can be seen
clearly from Eq. 2.30. The results of a recent fit [20] to the LEP data [1 [1] yield the following

bound: (Gev)
my(Ge
—Té-a—} (2.32)
where the dependence on the top mass, my, comes through the radiative corrections. Using
this value of Apps we get 6(sin®dyy) a2 3.32 x 1073 which is well within the quoted errors on
sin®fy . Tt is with this very stringently bound value of sin?6yy that we wish to study whether
a low value for the left-right symmetry breaking scale, Mg, is allowed.

Apps < 0.010 — 0.003[

In this section, we will first assume the existence of precisely such a mass scale and study
the evolution of the couplings via the renormalization group (RG) equations at the one-loop
level. To keep matters simple at first, we consider a symmetry breaking scheme without any
other intermediate mass scale other than Mp and neither do we specify the GUT group, G.
We take Mg ~ 1 TeV and try to determine if there is any unification point below the Planck
scale (= 10 GeV). The central values for the couplings at the scale Mz(= 91.176 GeV),

obtained from a,, sin?fy and a [2] [3]

ai(Mz) = 0.016887; ay(Mz) = 0.03322; az(Mz) = 0.11 (2.33)
are evolved to the scale Mp. Using the matching conditions of the coupling constants at Mg
_ 3
ary(Mp) = a?R(MR) + 5“ (B )(Mr)
a; (Mp) = am(MR) (2.34)
the evolution equations become
) 5
“1(3_1;)((1) = 20‘1}'(MZ) - azL(M7)

5b1y Mrz + 3szan — 2byB-1)yMyr
ay nlq) ay} (Mz) = 2by, MRz — 20, M, g
agcl(q) = 03c1(AlZ) - 2b3CAlRZ - 2[)3(,’1‘1{]1{ (235)
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where M;; = 4drln(M;/M;) and the beta function coefficients, b;’s are given as:

4 110 7

by = CW, by = —«El—ﬂ'w)r‘,’-?; by = —W (‘2.36)‘
Here we have taken the number of fermion families, ny = 3. In Fig. 3 we have plotted the
gauge coupling constants al"ig_L), a;g,R and a;cl as a function of energy, taking Mp = 1 TeV.
We see from the Figure 3 that as a result of choosing alow value for Mg, there is no unification
point even when we evolve upto a scale as high as 10'® GeV. The SU(3). and SU(2)L,r do
intersect at about 107 GeV, but the U(1) scale remains much too high for any possibility
of unification to exist. We stress that the discrepancy is of such a large magnitude that the
inclusion of the experimental errors on the input values of the coupling constants at Mz will
not redeem the situation and therefore this analysis using the central values should suffice to

illustrate the point.

The above illustrative exercise certainly indicates that a low value of Mg is inconsistent with
grand unification with no intermediate scales. To investigate this more thoroughly and to
consider, in particular, the effect of introducing intermediate mass scales we will study various
unification schemes with left-right symmetry, in detail. The traditional model of left-right
symmetry is based on SO(10), [17] Egs [21] or SU(16) [22] unification groups. Recently a
very interesting proposal for unification starting from a SU(15) group has been made [23].
Since baryon number is a local symmetry in this model, it is possible to suppress proton
decay and allow unification at very low scales (=~ 10° GeV). This model is not left-right
symmetric but a simple extension of this model which uses a SU(16) unification group [24]
is left-right symmetric. In this work, we consider the SO(10), Es and SU(16) based-models.
Other than these we also consider partially unified models, which are left-right symmetric
[17], where one starts from the semi-simple group SU(4). x SU(2)r X SU(2)r instead of a
simple group. These models are constrained by the value of sin?6w but not by the value of
a, and consequently there is more freedom in these models than in the grand unified models.

The detailed breaking chain that gives a intermediate left-right symmetry starting from a
S0O(10) model is as follows [10]:
50(10) Mu sU(4) x SU(2)L x SU(2)R
M SU(3)e x SU(2)p x SU(2)r % U(1)(B-1)
MrSU(3)e x SU(2)L x U(1)y
Mw SU3)e X U(L)em
The matching conditions at Mp are precisely the same as those given in Eq. 2.34. The weak
breaking scale, My, is taken to be 250 GeV in our computations. The renormalization group

equations for this breaking chain imply the following relations between the standard model
coupling constants and the unification coupling constants:

- - 6 4
Cl’”}(ﬁ/fnl) = aSé(lO)(MU) + (gbZR + ’B‘bll)AlUl +
6 4
("5‘1)212 + gbl(B—L))A/IlR + 2byy Mpw
ap(Mw) = agone)(Mu) + 2bsr Muy + 221, My g + 2ba Mpw
a3 (Mw) = a5hp0)/(Mu) + 204Muy + 2bscMig + 2b3c Mpw (2.37)
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The analysis for the Fg-based theories is very similar to that of the SO(10)-based theories.
In the L case, however, there are two independent routes which lead to the Standard Model
group. In one of these, the Eg group goes to the Standard Model group via SU(4).x SU(2), X
SU(2)r (exactly as in the S5O(10) case). Tlie other possibility, which is of our interest, is

Es MU SU(3). x SU3)L x SU3)R

—

M 503). x SU@)L x SU@)R x U(1)(5-1)

A_ﬁSU(Ii)C x SU2)1 x U(1)y
My

—

SU@3)e x U(D)em

The renormalization group equations for this case are

_ 8 2
ajy(Mw) = agl(My)+ (gbm + gbBL)MUl +

6 4
(5b2r + £bi(p-1))MiR + 2b1y Mpw

5
ajt (Mw) = apl(My)+ 2bsp Myy + 2b3, Mig + 2b31, Mpw
az (Mw) = apl(My)+ 263 My + 2bscMig + 263 Mpw (2.38)

The M;;’s are as defined earlier and the beta function coefficients are

1 22 1 1 44
by =0 by = — _Z. = ——11: by = - — 2.39
PO T am)273 BT Tz T T T (42 3 (2.39)
Note that the fermionic contribution to the beta functions have not been written down in
the above equations since our intention is to use these in the equations for sin?fy and aj,
where the fermionic contributions cancel exactly. The linear combinations of the couplings

that yield sin®fy and «, are the following:

Sinzanf = -8- - ga(aly - QZL)
. 8« _ 5 _ 8 _
L= o alagy, + 50‘1)} - §a301) (2.40)

Using the experimental numbers, sin?y = 0.236 and a, = 0.11 [2][3], the above relations
reduce to the following:

afy — a;} = 29.097 (2.41)
and 5 8
ag; + §a;yl - gagcl = 104.755 (2.42)

Substituting the expressions for the couplings from Eq. 2.37 and in Eq. 2.38 and solving we
get the same solutions for both the SO(10) and Fg cases

3
myy = —26.1741 + §me
myy = 88.5009 — 477?.}'{”/ (243)
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where m;; = M;;/4r. Using the fact that myy is positive, one can readily see that the
minimum value of mpyy is 17.4494 i.e.

A/[le,‘n = Mwewp(mnw) (2.44)

which means that Mg cannot be lower than 10° GeV, in both the SO(10) and Eg models.

Now consider left-right symmetry coming from SU(16) as the Grand unification group.
SU(16) can break to the left-right symmetric group via a number of chains. But all the
symmetry breaking chains which proceed via the SU(4) x SU(2), x SU(2)r group will give
a lower bound on AMpg, similar to what happens in the case of SO(10) or Eg models. We
will, therefore, not discuss the chains which have an intermediate SU(4) x SU(2)r, x SU(2)r

group.
It was noticed in the SU(15) GUT that if SU(3)Lx SU(2)E x SU(3)pxU(1)px SU(2)}, xU (1)
group breaks at the un-unification scale M, then the condition for low energy unification is
that M; has also to be lowered. This idea can be extended to the SU(16) GUT and it can be
seen that lowering the un-unification scale one can achieve low energy unification. We shall
now try to explore this scenario and see if we can have low-energy left-right symmetry in
SU(16) GUT with low energy unification. We shall assume that the Higgs structure is such
that proton decay is suppressed. The detailed breaking chain we consider is the following:

SU@6) MuSU(3)p x SU2)% x SU(3)r x SU(2)% x U(1)p X
SU(2)f, x SU(2)j X U(1)1ep
MSU3). x SU@)E x SUR)E! x U(1)(p-1
Mr§U(3). x SU(2)L x U(L)y
M SU(3)e X U(1)em

In the above breaking chain, U(1)p is proportional to the baryon number and U(1), is
proportional to lepton number both properly normalized. The matching conditions at Mp
are again those given in Eq. 2.34 with appropriate modifications to account for the quark-
lepton un-unification group while those at the scale M; for the U(1) groups can be easily

seen to be
_ 1 _
a’x(B—L)(MI) = alB(Nh) + a”ip(Ml) (2.45)

From the fermion transformation properties at different levels, we can check that SU(3)L
and SU(3)r are normalized to 1, SU(2)} and SU(2)}, are normalized to 3/2, and SU(2)}
and SU(2)% are normalized to 1/2 All other groups are normalized to 2. The beta function

coefficients properly normalized are

bi-r)y = 0; biy =0; byp = 0; byjep =0

1 88 1 88 1 22
9 pe 2ot = oy = —— 22
I 1 1
bs = Tne 115 byp, = —WQQ; bsp = —WQQ (2.46)
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The values of the beta function coefficients given above are, as before, without the fermionic
contributions since these cancel exactly in the expressions for sin20y and ay. The evolution

equations for the SU(16) case are as follows:

_ _ 9 3., 1 6
a”}(ﬂfw) = aS(}(ls)(A/IU) + (i—abgR + —l—O-bzR + —5—()13 + mbuep)
6 4
Muv+ (b2 + s0uB-1))Min + 2by Mpy
3 1

a;LI(A’]W) = agg,(le)(ﬁ/fu) + (-z-bgL + -ibéL)MUl + 21)2.M|'/,:

+2by Mpw
az! (M) = agrlj(ls)(MU) + (bsr + bsr) My, + 2b3(Mig + Mpw) (2.47)

As in the SO(10) case, we use Eqs. 2.41 and 2.42 and solve for the ratios of the mass scales.

The resulting equations are

mpw = 17.4494
mip = 18.7031 - 2myy (2.48)

In this case, therefore, we see that we get a fixed value of mpw = 17.4494, which is precisely
the value of the minimum of mpw in the 50(10) case. This implies a value of & 10° for the
left-right symmetry breaking scale, My.

Finally, we investigate the possibility of left-right symmetry from a partially unified model
[17]. The detailed breaking chain is as follows:

SU(4) x SU2)1, x SU@)n f‘_fi

SU(3)e x SU@)1 x SU@)r x U(1)g—p)
fl_’fsv(:z)c x SU(2)z x U(1)y

MW S1(3). x U(1).0,

The matching condition at Mg is the same as in the preceding examples. The evolution
equations in this case read as follows:

- 3 _ 2 _
ay (Mw) = =% H(My) + 5% HMy) +
6 4
(gbzR + gbl(B—L))MlR + 2b1y Mpw
an(Mw) = o;'(My) + 2b20 MiR + 2bor, MRy
ag. (Mw) = a7 (My)2bs. Myg + 25, Mpyy (2.49)

In writing the above equations we have used the fact that, due to the left-right symmetry
beyond the scale Mg, as;, = asp = ay. The beta, function coefficients remain the same as
before. Note that the important difference in this case is that the single coupling at the
unification scale which appeared in the unified models, is now replaced by the disparate
coupling strengths at the scale of partial unification. To express the couplings at the scale
My in terms of sin?6;y and s an appropriate linear combination needs to be constructed
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such that the different c'ouplin’gs at the partial unification scale are exactly canceled. The

resulting equation is

1 [(1— 2sin®fy) 2 } 2 2
— |t 2| = 9bop —b =by_y — =b3) M
M[ - 3o, 2(bar — bor, + 3018-1) — 3b3)Mir

5 2
+2(—3—bly = by, — §b3)A/IRW (2.50)

Using the experimental values of sin®fy and o, we get
83.74 — 2mpw = myp (2.51)

To get the minimum of My in this case, we also use the constraint that M, should be less
than (or equal to!) the Planck scale, 10'° GeV j.e.

mpw + mop < 38.23 . (2.52)

From these equations, we get mpw > 15.51 which implies a lower bound on Mp equal to
~ 10° GeV.
We now consider the effect of including the Higgs contribution in the renormalization group
equations. The specific Higgs representations under different symmetry groups are given in
Table (2.2).

| SUB)e x SUR)L x SU(2)r x U)g-1) || SUB)e x SU2)L x Uy

1,1,3,+,/2 1,1,0
1,2,2,0 2 1,2,_%\@
Vs

1,2,2,0 1,2,+1

1,3,1,—/3 1,3,-/2

Table 2.2: The explicit Higgs representations under the left-right symmetric group and the
electroweak group.

Using these representations, the beta function coefficients are given as

A U RS U S N
I(B—L)W(ZIW)ZQ’ 1} ——(471')25’ 2L = 0r = (471")23’

1 41 1
b5y = ——— 2. = ——11 .
= - ! | (2.53)

Solving as before, we find that with the Higgs contribution the lower bound of MF increases
to & 101 GeV.

We have also studied the effect on Mp of including supersymmetry. The essential difference
in the analysis is that the beta function coeflicients are modified. ‘aking into account these
modifications, we find that in the supersymmetric case the lower bound on Mpis=~ 10! GeV.

In conclusion, the most recent experimental data provide very strong constraints on left-right
symmetric models. We have shown that if a left-right symmetric group coming from either a
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grand unified or partially unified group breaks at an intermediate mass scale, Mg, then the
tightly constrained values of sin?fy and e, can be used to put a lower bound on the value
of Mp. This lower bound is = 10° GeV, irrespective of the unification group. Grand unified
theories and partially unified theories, therefore, completely rule out the possibility of seeing
the right handed partners of W at the energies available in current experiments or those
planned in the near future. Conversely, the discovery of these particles at such energies can be
used to refute unification models. It is of importance to note, however, that our analysis puts
no constraints whatsoever on the existence of extra Z at low energies, as an extra U(1)g can
survive down to electroweak breaking scales. The inclusion of the Higgs or supersymmetry

increases the lower bound on Mg.

2.4 Contraints on Non-Perturbative Unification

The compatibility of the simple supersymmetric GUT with no intermediate breaking scales
and the couplings determined from LEP is remarkable. Nonetheless, it is important to study
other models, which are alternatives to grand unification, and see whether they are viable in

the light of the available experimental information on couplings 3.

An interesting alternative to GUTs was proposed by Maiani, Parisi and Petronzio [26] several
years ago. In this scheme, the couplings enter a non-perturbative phase at a high energy scale,
i.e. the theory is asymptotically divergent. Starting from the renormalization group equation

for a coupling «,

da
= 2.54
) (254
where f(a) is the beta function and t = In(Q?%/u?), i being some refernnce scale, we obtain
2(Q?) do
t:/ — 2.55
i B (259)
For f(a) > 0 (asymptotically divergent theory) there is a value of ¢, given by
*® da
t = / — < 00, 2.56
a(w) Ale) (2.56)

for which @ — oo. If perturbation theory is to be valid at all energy scales, we require
a(p) = 0, so that ¢, = 0o, a(u) = 0 is the infra-red fixed point. But if a(u) # 0 but small,
i.e. it is sufficiently close to the infra-red fixed point, then there is a finite cut-off in energy
beyond which the theory is non-perturbative.

In Ref. [26], it was assumed that the standard SU(3)xSU(2)xU(1) theory, due to new fermion
generations that get switched on around the weak scale Ap = 250 GeV, is asymptotically
divergent beyond Ap. The couplings a1,2,3 are sufficiently close to zero at Ar but not quite
zero. As a consequence, the theory is cut off at a scale A. At this scale, the most interesting
situation is that not just one but all three couplings are large, i.e. of O(1). In fact, it has been
shown [27] that such a non-perturbative scenario exhibits a "trapping” mechanism, whereby
if one of the couplings grows large, the other couplings will also increase. This effect, by
means of which all three couplings are large and of the same order of magnitude at A, leads
to what is called non-perturbative unification. In Ref. [26] the cut-off scale A was assumed

3This section follows Ref. [25]
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to be the Planck scale; however, in subsequent studies [28, 29], A was determined to be of
the order of 10'® ~10'7 GeV. Since the low-energy couplings are close to the infra-red fixed
point, they are insensitive to the values of the couplings at the scale A.

One natural extension of the above scenario is the inclusion of supersymmetry. This was first
considered in Ref. [28], and was later discussed in Refs. (29, 30]. Other than solving the hjer-
archy problem, the inclusion of supersymmetry is attractive because it provides a framework
for the existence of new particles needed to make the theory asymptotically divergent. In the
case of the simplest N = 1 supersymmetric extension of the scenario, it suffices to consider
ny =5, where n; is the number of fermion generations,

In this section, we use the recent LEP values to check whether any strong constraints on the
non-perturbative unification scenario can be obtained. The values of sin®dy and @, from LEP
are very precise compared to that available from older experiments. One strong constraint
is on the number of extra chiral generations. The present limit on the oblique parameters §,
T and U allows only three chiral fermion generations, while the vectorial generations are not
constrained. Thus in addition to the three chiral fermion generations we are allowed to have

only an even number of generations.

We shall first specify the supersymmetric non-perturbative unification scenario in detail.
While discussing the results we shall also comment on the results of the non-supersymmetric

case. We consider an SU(3)xSU(2)x U(1) supersymmetric gauge theory with the assumption
that an. NV = 1 supersymmetry holds above the scale As. We assume ny = 5 supersymmetric
generations and two Higgs supermultiplets. In the discussion of the non-supersymimetric
case we shall consider one Higgs scalar and ny = 8 and 9. From the requirement that
the Yukawa couplings do not become arbitrarily large, a bound on the fermion masses can
be obtained [31, 32]. This bound is that fermion masses are, in general, smaller than 200—
250 GeV. We assume that the extra fermion generations, which are required for the theory
to be asymptotically divergent, are of the order of 250 GeV in mass.

Having specified the theory we can now address the question of the ¢ lution of the three
couplings. The two-loop renormalization group equations for the couplings are given by the
following coupled differential equations: ’

dai(p) 1 [ by . b J 9 2b;; 4
B = o | 2as(n) + eyt + ) (2.57)

where i, j, k=1, 2, 3 and i # 7 #k, and a; and bij are the one- and two-loop beta function
coefficients. In the range of energies between Mz and the supersymmetric threshold, M,,
we use the non-supersymmetric. beta functions to evolve the couplings, whereas from M,
onward the supersymmetric beta functions are effective. We retrieve the result for the non-
supersymmetric scenario by taking M, = Appp and large ny.

In the non-supersymmetric case the one-loop beta function coefficients are (33]

0 20 1
9
b= (=2 )40, (1) 40 (2 (2.58)
J 3 f :} h 6 .
-11 3 0
while the two-loop beta functions are
0 0 o0 2 1 4 % 20
aj = —|0 12 0 |+u, |4 159 4l +m |3 £ 0 (2.59)
0 0 102 B 3 B 0 0.0
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In the supersymmetric case the one-loop beta functions take the form [33]

0 ¥ 2
b = (~6)+nf(2)+nh<§) (2.60)
-9 2 0

while the two-loop beta functions are

90 88 1 3
00 0 127 2 7 7 30
aij = =0 24 0 )+n;| 2 14 8 |4m|i L 0 (2.61)
0 0 54 ¥ 3 & 0 00

In all these equations, n; and nj, denote the number of fermion generations and the number
of Higgs doublets respectively.

We integrate the coupled differential equations in Eq. (2.57) numeric..lly, with the initial
values of the three couplings a1,2,3 taken to be of O(1) at the unification scale A. What we
do in practice is to evolve downwards using the renormalization group equations for several
values of A, and check what the predicted values of the couplings at the scale Mz are. The
extra fermion generations are assumed to contribute to the beta functions for all energies
greater than 250 GeV.

We shall first comment on the non-supersymmetric scenario and then present our main result,
namely the supersymmetric extension. In this case we find that for ny <8, az(M;) remains
too small, and that ay(M,) falls within the experimental bound for n; > 9. But for ny>9
the strong coupling constant evolves extremely fast and a3z(M,) becomes too large. Thus the
precision LEP data rule out the non-supersymmetric scenario completely. ‘

The results of the computation for the supersymmetric version are shown in Figure 4, where
a1,2,3(Mz) are shown as a function of A. The solid, dashed and dotted curves are for M, =
250 GeV, 1.2 TeV and 5 TeV, respectively. The horizontal lines in the Figure 4 show the
upper and lower bounds on the couplings at Mz as determined by the LEP experiment.

These are as follows [34]:
ay 0.0101322 £ 0.000024
az = 0.03322 + 0.00025
az = 0.120 £ 0.006. ' (2.62)

1l

It is clear from the Figure 4 that the non-perturbative unification scheme is certainly viable
if we have M, = 1.2 TeV and A close to 0.78 x 10'7 GeV. We have checked that the range of
values allowed is My = 1.240.2 TeV and A =(0.7-0.8)x 1017 GeV. We have also checked that
the couplings at Mz are not sensitive to the choice of the couplings at A. We have checked
this by varying these from 0.75 to 10.

Let us now summarize our results of this section. We have studied the non-perturbative
unification scenario first proposed by Maiani, Parisi and Petronzio. We point out that the
non-supersymmetric version of this scenario is ruled out by LEP data. However, the su-
persymmetric extension of this scenario remains a viable alternative to conventional grand
unified theories and is capable of predicting the precision values of couplings determined from
LEP. Our numerical results show that the non-perturbative scale, A, at which all couplings
are large, is around 0.7-0.8x10'7 GeV, with the supersymmetric threshold M, around 1.0~
1.4 TeV. If the scale M, gets either larger or smaller it is then not possible to reproduce the
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values of the couplings at Mz. We should note that the agreement with the data is obtained
only for a constrained range of parameters of this scenario. In principle, the effect of higher-
order corrections could be large and this may ruin the agreement. It is also likely that more
accurate measurements of the strong coupling a3 at low energies may be sufficient to either
put strong constraints or completely rule out this scenario. It is nevertheless interesting that
this scenario, at the two-loop level, is a possible alternative to conventional grand unification.

33



Bibliography

(1] The LEP Collaborations ALEPH, DELPHI, L3, OPAL and The LEP
Electroweak Working Group, conference contribution, Europhysics Confer-
ence on High Energy Physics, Marseille, July 22-28, 1993. CERN preprint

CERN/PPE/93-157.

(2] U. Amaldi, W. de Boer and H. Furstenau, Phys. Lett. B 260 (1991), 447;
U. Amaldi et. al., CERN Preprint No. CERN PPE/91-233.

[3] F. Anselmo et. al., CERN preprint no. CERN-PPE 123/91. F. Anselmo et al.,
Nuovo Cimento A 104 (1991) 1817.

[4] P. Langacker and M. Luo, Phys Rev D44, 817, (1991).
[5] B. Brahmachari, U. Sarkar and Sridhar K., Phys Lett B297, 105 (1992)
[6] IMB-3 Collab., R. Becker-Szendy et. al., Phys. Rev. D 42 (1990) 2974l.

[7] See for example, A. Masiero in "Grand Unification with and without Super-
symmetry and Cosmological Implications”, International School for Advanced
Studies Lecture Series No. 2, published by World Scientific, (1984), p.1; see
also A. Zee (ed.) "Unity of Forces in the Universe”, Vol. 1, published by World

Scientific, 1982,
(8] H. Georgi, H. R. Quinn, S. Weinberg, Phys Rev Lett, 33, (1974), 451.

(9] B. Brahmachari, P.K. Patra, U. Sarkar and K. Sridhar, Mod Phys Lett A8
(1993), 1487.

(10} H. Murayama and T. Yanagida, Mod. Phys. Lett. A 7 (1992), 142; A. Giveon,
L. Hall and U. Sarid, Phys. Lett. B 271 (1991), 138.

[11] C.T. Hill, Phys. Lett. B 135 (1984), 47.

[12] C. Wetterich, Phys. Lett. B 110 (1982), 384.
[13] J. Ellis and M.K. Gaillard, Phys. Lett. B 88 (1979), 315.

[14] Q. Shafi and C. Wetterich, Phys. Rev. Lett. 52 (1984), 875.
[15] M.K. Parida, P.K. Patra and A.K. Mohanty, Phys. Rev. D 39 (1989), 316.
[16] P.G.O. Freund, Nucl. Phys. B 209 (1982), 146.

34



150070

[17] J.C. Pati and A. Salam, Phys. Rev. I 10 (1974) 275; R.N. Mohapatra aﬁd
J.C. Pati, Phys. Rev. D 11 (1975) 566.

(18] T.G. Rizzo and G. Senjanovic, Phys. Rev. D 24 (1981) 704.
[19] F. del Aguila and L.E. Ibanez, Nucl. Phys. B 177 (1981) 60.

[20] G. Altarelli ef. al. Nucl. Phys. B 342 (1990) 15; CERN preprint no. CERN-TH
6028/91.

(21] F. Giirsey and M. Serdaroglu, Nuovo Cimento 65 A (1981) 337; Y. Achiman
and B. Stech, Phys. Lett. B 77 (1978), 389; and references therein.

[22] J.C. Pati, A. Salam and J. Strathdee, Nucl. Phys. B 145 (1981) 445; R.N. Mo-
hapatra and M. Popovic, Phys. Rev. D 25 (1982) 3012, A. Raychoudhuri and
U. Sarkar, Phys. Rev. D 26 (1982) 3212. _

[23] S. Adler, Phys. Lett. B 225 (1989), 143; P.H. Frampton and B.H. Lee,
Phys. Rev. Lett. 64 (1990), 619; P.H. Frampton and T. Kephart, Phys. Rev.
D 42 (1990), 3892; P.B. Pal, Phys. Rev. D 44 (1991), R1366; B. Brah-
machari,R.B. Mann, U. Sarkar and T.G Steele, Phys. Rev. D 45 (1992) 2467.

[24] B. Brahmachari, Phys Rev D 48, (1993), 1266

(25] B. Brahmachari, U. Sarkar and K. Sridhar, Mod. Phys. Lett. A8 (1993), 3349
[26] L. Maiani, G. Parisi and R. Petronzio, Nucl. Phys. B 136 (1978) 115.

[27] P.Q. Hung, Phys. Rev. D 38 (1988) 377.

(28] N. Cabibbo and G.R. Farrar, Phys. Lett. B 110 (1982) 107.

[29] G. Grunberg, Phys. Rev. Lett. 58 (1987) 80.

[30] L. Maiani and R. Petronzio, Phys. Lett. B 176 (1986) 120.

[31] N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Nucl. Phys. B 158 (1979)
295.

[32] J. Bagger, S. Dimopoulos and E. Masso, Nucl. Phys. B 253 (1985) 397.
[33] D. Jones, Phys. Rev. B 25 (1982) 581,
[34] For a recent review, see S.C.C. Ting, preprint CERN-PPE/93-34 (1993).

35



Chapter 3

Low energy unification

3.1 Higgs Effect in SU(15) GUT

Recently a new paradigm of GUT models have evolved(1, 2, 6, 7] following an observation that
at least one symmetry breaking chain of a GUT based on the group SU(15) can be unified
at a very low energy M, ~ O(107) GeV[1]. Because baryon number B is a gauge symmetry
in this model, proton decay can be suppressed, and one possible Higgs structure has been
proposed to this end[2]. Low energy unification makes these models free from problems of
grand unified monopoles[6] and the gauge hierarchy problem is also much less severe !.

All the present activity on SU(15) GUT relys on two important claims, namely, (i) there
exists at least one symmetry breaking pattern of SU(15) grand unification, where the gauge -
coupling constants evolve very fast and can be unified at an energy scale M, ~ O(107)
GeV and (ii) there exists at least one choice of Higgs fields which can (a) allow the above
symmetry breaking chain, (b) forbid any gauge boson mediated proton decay, (c) suppress
Higgs mediated proton decay and (d) make this low energy unification consistent with the

nonobservation of proton decay.

Here we analyze these two claims. We discuss in a general way proton decay and the choice
of Higgs fields required for any symmetry breaking in these GUTs along with their effect on
the evolution of the gauge coupling constants. We find this cannot be neglected: for SU(15),
unification below M, ~ O(10') GeV is impossible for the breaking pattern proposed by
Frampton and Kephart [FK][2]. However other interesting patterns exist which yield unifi-
cation at ~ 109GeV and violate baryon number symmetry U(1)p at about the electroweak
breaking scale, although there is no proton decay. The low energy (~ 250GeV) symmetry
includes phenomenologically interesting chiral color symmetry[8] and quark-lepton un-unified

electroweak symmetry[9].

Our notation is the following. When we write the semisimple group SU(n)] xSU(m)L xU(1)x

the subscript implies either the charge of the U(1) group or that right (left) handed particles

are non-singlets under SU(n) (SU(m)) and the superscript ¢ ({) means that only quarks

(leptons) transform under this group. The gauge coupling constants of the groups SU(n)]
!]2

2
and U(1)x will be written as Qngr, = 4% and oy = %l;} respectively. For the breaking

Gy — Gi-1, the Gi_4 singlet component of the Higgs ¢; acquires a vev at a scale M;. 1"

"This section is based on Ref. [3]
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denotes a totally antisymmetric nt® rank tensor; hence 1™1™ denotes a Young tableaux of m

and n in the first and second columns respectively.

G1[SU(15)] (#1) Go[SU(12)7 x SU(3)))

—

2 GulSU(6), x SU(6)R x U(1)p x SU(3)']

——

@) Gy[SU(3)er x SU(2)], x SU(6)r x U(1)g x SU(3)]

——h

) Gs[SUB)er x SU2)L x SU(3)n x U(r x U(1)p x SU(2)" x U(1)}]
Be) GelSU(3)e x SU2)1 x U(1)5 x U1}

o) G[SU(3)e x SU(2)1, x U(1)y]

Y1) Ga[SU(3). x xU(1)g) (3.1)

(#i) = M;. We shall denote this pattern by {1234567}; the pattern of ref, [1] is {1267}, for
which M3 = M, = Ms = M.

We turn next to the Higgs fields required to ensure this pattern, taking minimal representa-
tions wlienever possible. Our Higgs structure is very similar to that of [FK][2]. We choose
¢1 to be a 13, je, a 455-plet. The G, singlet component of ¢1 can then acquire a vev
to break the group Gy —— G5. The vev of the G5 singlet component of 1141 (224-plet)
can break Gy, leaving U(1)g unbroken. Breaking SU(6)L, to its special maximal subalgebra,
SU(3)er x SU(2)% requires a somewhat large Higgs representation. Although self-conjugate .
representations can break any group to its maximal subalgebra, in this case the adjoint rep-
resentation does not work and the next higher dimensional self-conjugate representation is
required. These are contained in the self-conjugate representations of the higher groups, and
the particular SU(6), — SU(3)er x SU(2)} symmetry breaking can be accomplished with
a 10800 dimensional (131?) Higgs of SU(15) which is contained in 105 ® T05. This is
the lowest dimensional Higgs to break G3 — Gly; [FK] considered a 14175-plet (11411417)
C 120 ® 120 i.e. the next-highest one. Appropriate components of the adjoint (224-plet)
can break Gy — G%. For the next stage a 13 (¢s5 = 455 — plet) can be used; this breaks
global lepton number in addition to the local groups. -

The surviving group is now Gy [SU(3). x SU(2)1, x U(1)y— 1g]. Note that U(1)y: is orthog-
onal to U(1)g, while the hypercharge Y in the standard model does not commute with B. In
fact Y is a linear combination of B and Y. [FK] break G with a 15 (3003-plet) by giving
a vev to the ¥ = 0 component labeled (10,11,12,13,14). To find out whether there exists
any lower dimensional Higgs representation one can check that it is not possible to write any
B-violating operator only with the fermions invariant under Gs. However with a 13 (455-
dimensional) or a 14 (1365-dimensional) Higgs field there exists a Gg-invariant B-violating
dimension-7 operator. But under G'7 one can write down B-violating dimension-6 operators
only with fermions. Hence one can have $6 = 455 or 1365. Both have B and ¥’ nonzero;
the Y = 0 component can acquire a vev. Either of ¢7 = 105 or a 120 can be used to break
the standard electroweak symmetry; [FK] had considered both for this purpose, but this is

not necessary.

Considering next proton decay, since quark-lepton unification is broken at a scale M, the
lepto-quark gauge bosons (Xu) acquire a mass &~ M;, while the di-quark bosons (Y),) acquire
mass at a scale where the quark-antiquark unification is broken (= M,). Since U(1)gisalocal
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gauge symmetry X, and Y, do not mix at this level. These transform under G5 as X, =
((6,1,5,3)+ (1,6,~4,3) + (1,6,5,3) + (6,1,-3,3)] and v, = [(6,6,2,1) + (6,6,-2,1)],
with m3 ~ (¢;) and m¥ ~ (¢3). The mixing between X, and Y, takes place when the Higgs
fields ¢, and ¢, acquire vevs in the term XupaY*dy C D,y D*y. Since X, and Y, carry
different B, the mixing can occur only at Mg, suppressing the amplitude for gauge boson

mediated proton decay ~ O(%}%ﬁ—}@) Thus if My ~ My ~ M, and Ms = Mg =~ 102 GeV,
1 2
then M, > 10° GeV from the present limit on the proton lifetime.

Now both X, and Y, are contained in the SU(15) gauge boson G, which transforms as a
self-adjoint 224-plet of SU(15). As a result, the SU(15) multiplets ¢,(D ®,) and ¢(D @)
can allow the coupling XED Y, Py iff ¢, = d)Z(E ¢). If only one component of ¢ acquires a
vev, i.e. the Higgs multiplet which breaks U(1)p takes part in no other symmetry breaking,
then (®,) and (®;) = (®}) will carry equal and opposite B, forbidding mixing between X,
and ¥,. Gauge boson mediated proton decay is then absent, at least to this order. Couplings
of ¢! with other Higgs fields will determine the higher order terms. Since ¢, is the Higgs
field which breaks U(1)g, in our case o = ¢ = 1365. The couplings of 1365t of the form
(1365)(13651) with other Higgs fields cannot have any B-violating effect. If we also consider
$7 = 120 then the only U(1)p-breaking term is of the form (1365)(1365)(1365)(455), for
which B = 3. Thus this also cannot contribute to proton decay. Since there is no linear
coupling of 1365 with other Higgses, in this scenario there is absolutely no gauge boson
mediated proton decay with $6 = 1365 and ¢; = 120. If different components of the
same Higgs field (which break U(1)B) acquire vevs, then there can be gauge boson mediated
proton decay: for example if ¢g = 455, then since ¢p5 = 455, mixing between X, and Y, will

occur. The amplitude will be proportional to ~ %%l, which is not suppressed by Yukawa
1 2

couplings.

There is no straightforward way to understand the Higgs mediated proton decay; such pro-

cesses will depend on the choice of all the Higgs fields in the theory. For ®e, the types of
operators which can lead to proton decay are of the form Ypi)p(ds). But the Higgs fields
necessary to couple the fermions with ¢g = 1365 are 105 dimensional, and ¢g does not have
any linear couplings with combinations of other Higgs fields; hence this operator cannot give
rise to proton decay. Considering higher dimensional operators, with one ¢g there does not
exist any other higher dimensional operator, and as a result there is also no Higgs medi-
ated proton decay for this choice. Hence to avoid proton decay we choose ¢ = 1365 and
¢7 = 120,

We next compute the effect of the Higgs fields considered in the evolution of the coupling
constants[10]. We use the one-loop renormalization group equations which have the form,

dai(p) | o
/LT = 2B;af (n) ‘ (3.2)

where «a; = %21;, the J-functions are defined as, §; = ——ab;‘a, and b; = Ty[d] — 47[i] - ST[4],
corresponding to the contributions from gauge bosons, fermions and Higgs scalars, respec-
tively. The fermionic contributions to the various subgroups are the same and are given by
Ty = nj, where ny is the number of generations; these cancel out in the equation of sin?4,,

and (1 — gf:) The gauge contributions are

Ty[12] = 176;  2T,[3..] = 2T,[35] = T,[3") = 4T, [3.] = 44;
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88

Tol6] = Ty[6r] = 88;  3Ty[2]] = T,[2}) = 4T,[2,] = 3 (3.3)

with 7, = 0 for all U(1) groups. For our choice of Higgs the T, are given in Table 3.1.

To include the Higgs contributions we assumed the extended survival hypothesis[11] and the
Applequist-Carrazone decoupling theorem[12] (standard assumptions made in calculating
Higgs effects in evolution of coupling constants).-

Al] hand A/fg Alg — Alg Affa — Al,; M4 g M5 M5 - MB Mﬁ - M7
[12] = 3052 | [6,] = 264 | 3] = [27] =48 | 3r] = [20] = BA] =18 | 3] =0 | B.]=0
[3] =608 | [6p] =114 | [6n] = 114 [1r] = 18.33 [2.]=05 [ [2.]= 05
[15] =93 | [1p] = 93 [15]=1.5 1g]= 15| [Iy] = .3
[3] =136 | [3,] = 136 1] = 13.33 [y ]=5
[21] = 36

Table 3.1: Contributions to Ty[n] at various scales

Denoting a&l(/\/[J) by Ag(J), we employ the appropriate boundary conditions: (i) A12(1) =
Asi(l) = Ais(1), (ii) AsL(2) = Aer(2) = A1B(2) = A1(2), (iii) Asep(3) = Az (3)
Asr(3), (iv) Ap(4) = Azp(4) = Asr(4) and Ay(4) = Ay(4) = Azi(4), (v) Asz:(5) =
343e0(5) + L A3R(5); Agp(5) = $42,L(5) + 2 A2(5) and Ay (5) = 7A1R(5) + 2Au(5), (vi)
A1y (6) = S A1y1(6) + 75A418(6). With this information we can relate the SU(15) coupling
constants (at energy M, ~ M;) to the low energy (M7 = M, ~ 102GeV) SU(3). x SU(2)L x
U(1)y coupling constants:

M,

= (M) + 2512171(% )+ (o + oy in (o

+(BseL + ﬂeR)ln(MA%) + (Baer + ﬂSR)ln(‘jAj—:

M M,
+2ﬁ3c17l(E) + %Jn(;f )

- 3 1 M 3 1
s (M) + (G + 5Ba)in(370) + (Shor + 5 B )i

3 1 M. 3 1 M,
+(‘2‘ﬂ2q[, + §ﬂ31)17l(ﬁf) + (552(11, + §ﬂ21L)1'ﬂ(““‘

M
M M,
+2ﬂ2L1n(m§) + 2ﬂ2L1n(M6) (3.5)

azl(M,)

! (3.4)

M,

M) = 2
ayr (My) A/[3)

- ~ 11 9 M
a'”}(ﬂ/[w) = alsl(A/h) + (Taﬂm + 16,531)171(1/—1%)

9 1 9 My
+( loﬁsR + 5ﬂ1B + Eﬂzl)ln(m)

9 1 9 M;
+(1056R + gﬂlB + Eﬁsl)l"(m)

9 1 9 My
Jr(ﬁﬂm + :),:ﬂlB + 'l‘aﬂll)/n(m)

39




9 - l A[s . MG
+(5[31Y' +5ﬂ13)17l(m) + 261y ln(M ) (3.6)

w

The relevant linear combinations are those which yield

. _ 8 « -1, 9 _ -
alogy —agy) and (1-z—=)=aleg) + 307} — za5))  (3.7)

ol v

ol w

sin?(6,,) =

namely,

2.4(167%) = (52.8 = 162.9h)In(M1y) + (35.2 — 36.7h)In(Mas) + (17.2h — 82.1)In(Msy)
+(29.3 = 2.7h)In(Mas) + (14.7 + .1h)In(Mse) + (14.7 — .1h)In(Me,) (3.8)

8.3(167%) = (264 - 814.7h)In(Mya) + (117.3 — 23h)In(Mas) + (58.7 — 19h)in(Ms3,)
+(88 — .5h)in(Mys) + (44 + 5h)In(Mse) + (44 4 .3h)In(Msy) (3.9)

where /= 0 denotes the pure gauge case and h = 1 includes Higgs effects. Here M;; = M;/M;
and the current experimental values[13] of sin? 6, (= .233) and a,(= .11) have been used.

For the pattern {1267} the unification scale M; ~ M, ~ 107GeV in the pure gauge case,
which is the [I'L] result[1]. Large gauge contributions to the evolution equations enhance the
coeflicients of the first two terms; as a result unification is reached faster than in the usual
GUTs like SU(5) (for which My = My = M4 = M, ~ O(10')GeV). However when Higgs
effects are included (h = 1) we find no solution to (3.8,3.9) for the {1267} scenario other than
My = M, > O(10'")GeV, forbidding the low energy unification of [FL]. '

For h =1 we find three other interesting three-stage patterns: (A) {2467} with M, = M, =
Alu; A/[3 = _A/[4 = Alr, A’[s = A{[ﬁ = My, (B) {3467} with M1 = A/fg = M3 = Mu; M4 = Mz,
Ms = Mg = My; and (C) {2567} with My = My = My; Ms = My = Ms = My; Mg = M,
each having a l-parameter family of solutions for M,. (Although (C) does not have full
unification at low energy, it does have interesting TeV physics.) Sample values are given in

Table 3.2.

{2467} {3467} ‘ {2567}
M, M, M, M, M, M, M,
250  7.91x 10® 2.96 x 108 8.87 x 105 3.50 x 107 1.97 x 101% 1.77 x 10°
500 1.11x 10° 4.06 x 108 1.25x 10° 7.05x 102 1.98 x 10 3.53 x 103
1000 1.56 x 109 5.56 x 10®  1.76 x 10° 1.42 x 10> 1.98 x 10  7.05 x 103
1500 1.91x 10° 6.68 x 108 2.15x 10° 2.15x 103 1.99 x 10" 1.06 x 104

Table 3.2: Mass scales (in GeV) for patterns (A)-(C)

‘The most interesting pattern is {3467}, which has both low energy unification at ~ 10°
GeV and interesting TeV physics. We can decouple the electroweak breaking scale with the
other symmetry breakings and have TeV scale chiral color symmetry and the quark-lepton
un-unified electroweak symmetry breaking, which will raise the unification scale a little.
The existence of chiral color symmetry at the TeV scale or lower will imply the presence
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of axigluons, whose phenomenological consequences have been studied[14]. The presence of
the un-unified electroweak symmetry at low energy will imply the existence of extra charged
and neutral gauge bosons, whose mixing with the Z-boson will affect various asymmetry

parameters in the ete™ deep-inelastic scattering[15].

To summarize, we have shown that Higgs fields play a significant role in the evolution of
gauge coupling constants in GUTs where baryon number is a symmetry. The consistency
of the symmetry breaking scenario presented here with present-day proton decay data along
with its interesting TeV scale physics make it a model worthy of further investigation.

3.2 Implications of SUSY SU(15) GUT

Supersymmetry offers a very interesting theoretical possibility which places fermions and
bosons at equal footing via its transformation laws. Though supersymmetry itself can solve
the problem of gauge hierarchy it is nevertheless an interesting proposition to endow tlie
SU(15) GUT model with supersymmetric transformation laws and seé the consequences. This
is simply because supersymmetry is a rich symmetry by itself and nature seems to use all the
symmetries available to her. Particularly, if one wants to unify these theories with gravity
without causing naturalness problem, then supersymmetric version seems more promising.
Another important aspect of checking the consistency of the supersymmetric SU(15) GUT
is to find out whether experimental findings of supersymmetry will still allow the possibility

of low energy unification.

In the suspersymmetric version of the theory 2every particle will imply the presence of its
supersymmetric partner. When all this new particles run in the loops they will alter the
renormalization procedure of the conventional theory and hence the beta functions. The
supersymmetric beta functions (to one loop order) which will control the evolution of the
coupling constants given by the following expression [16]. Let us also note here that due to
unequal normalizations of the generators at different stages of the symmetry breaking chain
in the calculations of the mass scales one has to multiply the beta functions with proper

normalization factors )

N)y=—-———=3N-T-n 3.10
By = | ] (3.10)
Here, N stands for the SU(N) group of which the coupling constant is under consideration,
T denotes the contribution of the scalar loops and ny stands for the number of fermion
generations which is constrained to be three by LEP data.

We use the one-loop renormalization group equations which have the form,

d
M——%%Q = 2Ba*(p) (3.11)

Where a(p) stands for the value of the coupling constant at the energy scale p

Solving the renormalization group equations (3.6) using the combinations of the couplings
given in the equation (3.7) and the Higgs contributions given in Table(3.3) we can find out
the unification scale. Afterwards using the value of the unification scale as an input we can
find the value of a5 at the unification scale using the expressions of az. We have calculated

2This section is based on Ref. [5]
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A/fl — A’IQ 1"‘12 - 1‘/13 M3 - M4 M4 - M5 M5 and A/fg Ms s Al’]
[12] = —2908 || [61] = =192 [ Ber] = =30 | [3..]=0 B]=9 [3.] = 11
(3] = =572 || [6p) = —42 || [6r] = —42 | [lr] = —18.3 (2] =5 [21] = 7.2

[1g] = —93 [1g] = —93 [1g] = 1.5 (1g] = =15 || [1ly] = -.02
[3)) = =100 | [3)]=—100 || [;]=—13.3 || [1y1] = —0.5
[29] = —40 || [2}] = —15.6
2] = ~10
[3r]=0

Table 3.3: Value of [3N-T] at various scales with proper normalizations

these quantities for all possible chains coming from SU(15) GUT. None of the chains can
give a consistent low energy unification scheme. For a few breaking chain where unification
is apparently achieved at a scale around 10'? GeV the value of ay5 at the unification scale
becomes undefined hence forbidding a consistent perturbative unification scheme. What it
means is that the coupling constants evolve so fast that they become more than unity much
before the unification scale. Then the a1 evolves to zero and the coupling constants becomes
undefined.

To outline the procedure of solutions in brief let us set the notation that 771@:172%. Now
solving in the case when mys = 0,m34 = 0,mse = 0 we get by solving for mo3 and mys:

Ma3 = —135+0005m67
mys = 17.78 + 0.60mg7.

Now for m; > mj, m;; has to be positive definite which immediately sets the bound mey = 27
when mj3 = 0 hence for the breaking chain 2467 mg has the minimum value of the order of
10 GeV. Furthermore by using the minimum value of mg7 in the second equation we can
see that the minimum value of mys is 34. Hence forbidding any unification of coupling at all

(within the plank scale).
Similarly let us consider the case when myy = 0,m33 = 0, ms6 = 0 we get by solving for may
and mys:
mgzqg = 11.2 - 041mg7
—-7.03 4+ 0.31mg7.

mys

Now in this case to make mys at least positive mgy has to be atleast 22.67 and hence may4 has
to be atleast 1.9 which leads to an apparent unification scale of approximately 1012 GeV. But
if one checks the value of the inverse of the coupling constant at the unification scale using
the a3 equation, for example, one sees that it has crossed the value zero and has become
negative. Hence for the chain 3467 there is no consistent unification framework. In this
simple way all possible symmetry breaking chains can be analyzed.

To see the result for the chain 1367 let us solve the equations for my, and msy in terms of
megr7, making all other m;;s vanish. The solutions are:

myz = —0.27 4 0.009mgy
Moz = —0558+002377107
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this means that to make my, positive, mgr has a minimum value of 30. Which immedia,tely
means that the scale mg is at least 10!5 GeV, and the unification scale is even higher. For
the chain 2567 we will solve for mgg and ‘mgse and making all the other my;s vanish. The

solutions are:

miz = 0.26 — 0.004mgy
Moz = 34.03 - 1.16mg7.

Here though mg7 can be low yet the unification of couplings still occur at a very high value.
This is simply because as mg7 becomes smaller the value of mg3 increases. Similarly, for most
of the chains, we find the unification scale becomes larger than 10'* GeV, and the possibility
of low energy unification is lost. For these chains we have first calculated by taking the
supersymmetry breaking scale to be same as M. Taking M,ysy to be lo_wer, or around the

TeV scale, we find the situation worsens.

In the Table 3.4 we state a sample of these values for those chains which was considered
earlier in the nonsupersymmetric model, and some more sample chains.

Breaking Chain || Unification Scale ars (My)
2467 No Unification -
3467 4.63 102 Undefined
2567 Greater than 1014 -
1367 Greater than 104 -
4567 Greater than 104 -

Table 3.4: Mass scales in GeV

In this section we have attempted to ask the question that if supersymmetry is discovered
in near future how is it going to affect the new paradigm of the low energy unification of
the SU(15) GUT model. These conclusions will also be true for the SU(16) GUT, with
similar symmetry breaking chains. We find that the low energy unification with SU(15) in
the supersymmetric framework is not allowed. Most of the symmetry breaking chains do
not allow for low energy unifications, and a few symmetry breaking chains which allow low
energy unification fails to satisfy the perturbative unification constraint (coupling constants
to be less than one). Hence the signals of the existence of supersymmetry in future colliders
will rule out the possibility of low energy unification.

The scenario of symmetry breaking in nonsupersymmetric SU(15) GUT, which allows low
energy unification, has some interesting features. It is essential for the low energy unification
to have chiral color SU(3)cr, x SU(3)cr group and the quark-lepton ununified group SU(2)% x
SU(?)IL survive till very low energy, for the gauge coupling constants to evolve very fast and
get united at an energy scale around 108 GeV. Thus the existence of these groups and
the leptoquarks are some of the essential critereons of the low energy unification, which
can be tested in the laboratory in near future. Thus any signatures of these groups may
seriously question the existence of supersymmetry and if the signatures of the low energy
unification and also that of supersymimetry are found, then it will cast a serious question on
our understanding of the grand unification scenario.
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3.3 Low energy unification with SU(16)

We have already discussed a new paradigm of low energy unification in which we have consid-
ered SU(15) as the unification group(1]. Here we extend the idea to the left-right symmetric
version of such a theory. We show that retaining all the good features of SU(15) we can also
incorporate left-right symmetry in intermediate stages. Unlike the SU(15) GUT here lepton
number is also a local gauge symmetry which may survive to a low energy scale. Right handed
neutrino can be accommodated naturally as all the fermions transform in the fundamental

representation of SU(16).

At the level of highest symmetry the theory is invariant under the gauge group SU(16) 3, At
and above this level the coupling constant is that of the group SU(16). With the decrease
in energy, the group goes through a number of symmetry breaking phases, and the theory
becomes least symmetric at the present energies with the residual symmetry of SU(3) color
and the symmetry of electromagnetic interactions. It is noteworthy that the baryon number
Symmetry remains exact upto a very low energy scale of a few TeV. This makes the proton
stable in the sense that the gauge boson mediated proton decay is absent. Interestingly
the completely un-unified symmetry group of the quarks and leptons also appears at a low
energy scale together with the chiral color symmetry. The appearance of this group at a
comparatively low scale makes this model worthy of phenomenological studies(8],[9],[14].

Here to begin with we give the breaking chain that can give rise to the standard model. We
note here that there can be in general a number of chains of descent to the standard model.

sU(16) Mo Glsu(12) x SU4)!)

—

M GhSU(6) x SU(6)g x U(l)g x SU(4)]

M GSU3)L x SU(2)], x SU(6)r x U(1)p x SU(4)!]

M GalSU3)L x SU@R)L x SUB)R x U()h x U(1)p x SU(2)} x SU(2)k x U(1)ler
Mo GUSU3)L x SU2), x SU(2)f, x SU(3)r x U(1)g x U(l)p x U(1)

M Gs[SU(3)e x SU(2)1, x U(1)p x U(1)]
Mo Ge[SU(3). x SU2)L x U(1)y]
Me o GH[SU(3)e x U(1)em]

Here the superscript q or | denotes that quarks or leptons have nontrivial transformation
law under these groups and the subscripts L and R mean so for the left and right handed
fermions. The subscript ¢ stands for the color gauge group of QCD,

In a previous section we have shown that in SU(15) GUT the effect of Higgs bosons play a
significant role in the evolution of the coupling constants with increasing energy and hence
on the values of the mass scales. This is due to the presence of high dimensional Higgs fields
required to obtain the desired symmetry breaking pattern. The influence of the Higgs fields
on the evolution of coupling constants can be so serious that they can alter the symmetry
breaking pattern altogether. In SU(16) GUT The symmetry breaking pattern is very similar
to that of its SU(15) counterpart. Hence in SU(16) orin SU(15) GUT the Higgs effects must

*This section is based on Ref. [4]
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be taken seriously. Here we shall consider the Higgs fields required to obtain the breaking
chain and their contribution in the renormalization group equations in detail.

The Higgs structure is similar to that we proposed for SU(15) GUT. We denote 1™ as the
totally antisymmetric nth rank tensor and 1™1™ as the representation which has m and n
vertical boxes in the first and second columns of its Young’s tableau. For the transition from
the group G to group G5 the Gy singlet component of the Higgs field should acquire vacuum
expectation value. Turning to the specific case of SU(16) we note that at the scale My
the breaking can be achieved by giving the vacuum expectation value to the SU(12)x SU(4)
singlet component of 14, Using the exactly same procedure we see thai Lhe breaking at the
scale My can be done by 1'*1 which leaves U(1)p unbroken. At the scale M3 the breaking
of SU(6), to its special maximal subalgebra requires a somewhat large dimensional Higgs
field representation. We use the 14144 dimensional Higgs field 11412 to break this group.
As a passing comment we note here that this Higgs field will contribute significantly to the
beta functions of the renormalization group equations and make its presence strongly felt
in the determination of the mass scales. The group SU(4)" can be broken by a Higgs field
which transforms as a 15-plet under SU(4)! and which is contained in 255 under SU(16). At
the stage M3 the breaking of SU(6)r to SU(3)rx U(1)R is a bit complicated. 255 breaks
SU(6)r to SU(3)x SU(3)xU(1)r and subsequently the two SU(2); groups of the quark
and leptonic sectors respectively are glued by 11412, The breaking of the lepton number local
gauge symmetry U(1)!*P can be achieved by either 16 or the two index symmetric Higgs field
of dimension 136. In the first case it carries a lepton number one unit and in the second
case it carries that of two units. We shall see that the choice of specific Higgs field shall give
interesting difference of physics in the context of neutrino oscillations. At the scale My the -
breaking is done by the 14 Higgs field which is 1820 dimensional. The baryon number is
broken by either 1% or 18, In both the cases we get interesting physics. As an example in the
first case we get processes where baryon number changes by 3 units and in the second case it
changes by 2 units. It is welknown that to give masses to the fermions vacuum expectation
value has to be given to the component (1,2, —~%) which is contained in either 12 or 11. These
Higgs Field representations are summarized in Table A

Let us now turn our attention to the group theoretic transformation properties of the fermions
under the different symmetry groups in the symmetry breaking scheme. A minimal left-right
symmetric theory should have at least one right handed neutrino (vr) on top of the standard
quarks which includes three left handed doublets and six right handed singlets under the
weak interaction gauge group SU(2) and three leptons namely one left handed doublet
and one right handed singlet. At grand unification energies and above this sixteen fermions
should transform under some representation of the unification group. This requirement makes
SU(16) a very natural choice of the unification gauge group which has a 16 dimensional
fundamental representation. In the model the fermions transform under the fundamental
representation of SU(16). Now as the energy becomes lower the symmetry breakings occur
and the transformation properties of the fermions change in each symmetry breaking scale.
In the following we summarize these transformation properties. We use the notation that
(m,n) is a representation which transforms under the semisimple group SUM)xSU(N) as
a m-plate under the former group and as a n-plate under the the later group.

SU(16) — 16
G — (12,1)+(1,4)
Gy — (1,6,72,1)+(6,1,—n,1)+(1,1,0,4)
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Gy — (L1,6,m, 1)+ (3,2,1,—n, 1) + (1, 1,1,0,4)
Gy — (l,l,g,p,n,1,1',0)+(1,1,3,—-p,n,1,1,0)+(3,2,1,0,—n,1,1,0)
+(1,1,1,0,0,1,2,m)+(1,1,1,0,0,2,1,~771)

_ _ 2
Gy — (1,1,3,1),71.,0)4—(1,1,3,—-}),72,0)+(3,2,1,0,-71,0)+(1,1,1,0,0,——2\/;m)

+(1,2,1,0,0, \/gm) +(1,1,1,0,0,0)
(3,1,m,n) 4+ (3,1,n,—n) + (3,2, —n, 0) + (1,2,0,n) +(1,1,0,-2n) + (1,1,0,0)

G’s —
- 2 . = . 1 1, . 1 .
(3,1,—§Ix)+(3,1,§ﬁ)+(3,2,61()+(1,1,Is)+(1,1,—§1s)+(1,1,0)

Gg —

Here the U(1) normalization are defined in terms of

1 1 1 " /3
?2:_—; ’!RI——; ):-——; = —
26 22 ! 23 20

We know that in the electroweak breaking scale M the generators of electromagnetic sym-
metry group (1), arises out as a linear combination of the generator of the U(1) part of
the weak isospin group SU(2); and that of the weak hypercharge U(1)y by the following
equation,

Q=T +Y. (3.12)

Let us call this equation as the U(1) matching condition at the sca'. Mz. Similarly at
the various symmetry breaking scales in the above breaking chain we have used different
matching conditions for the groups. These matching conditions are stated below.

At the scale My the lepton number symmetry breaks as the generator of U(1)P and the
diagonal generator of SU(2)} mixes with each other in the following way to generate the

R
1 2
s = m3 “yrlep
Y= \/;T22+\/;) ' (3.13)

At the scale Ms, U(1)p and U(1)! breaks to make U(1),.

1 1
o= \/;YR + \/;Y’. (3.14)

At the scale Mg, baryon number cease to be a local gauge symmetry and conventional hy-
percharge appears from the linear combination of U(1)p and U(1).

1 9
Y = —\/=Yg - /2V,. ,
10777 Vig' (3 15)

Now we briefly touch two more mathematically involved topics . To begin with we note that
the generators of SU(16) and that of the standard model groups cannot be normalized in
the same way. We proceed further by giving a short discussion of the process of calculating
the contribution of the Higgs fields to the beta functions. Let us fix that all the generators
of SU(16) are normalized to 2. In that case at the standard model energies the generators
of SU(3)c and SU(2), automatically becomes the generators of SU(16). In contrast the

group U(1)!,
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generators of I/(1)y are normalized to % So in the renormalization group equations we have
to multiply the beta function corresponding to U(1)y group by the appropriate factor of 4.
Similarly it is easy to see that all other U(1) groups in the symmetry breaking chain has
to be multiplied by 4. Turning to the non-abelian groups it can be checked that the group
SU(2)} in all stages is normalized to % hence to treat it at par with all other groups one has
to multiply the beta function corresponding to this by a factor of% - SU(3)r, and SU(3)R in
all the stages are normalized to 1 hence one finds the aforesaid factor to be 2. To complete

the discussion on the normalization factors we note that all other groups are normalized to
1

5 hence the relevant factor is 4

At this point let us turn our attention to the expression of the beta function for the group

SU(N)
1 4

N——éT———nf (3.16)

1 [11
3

b(N) = ——s | —
( ) (471')2 3
For U(1) groups N vanishes. Here n; denotes the number of families of fermions and T(R)

denotes the contribution of the Higgs fields which transform nontrivialy under the group
under consideration. To calculate T' we have followed the following sum rule[18]:

Suppose ; and r; (i = 1,2,..) are different representations of a group SU(N), which when
vectorically multiplied satisfies the following relation.

Ry X Ry =) m (3.17)

1=1

Also let for the representation of dimension r, the contribution to the renormalization group
equation is T'(R). Then,
T(Ry x Ry) = ReT(Ry) + RiT(Ry) = Y T(r;) (3.18)
1=1

To use these equations one uses the following information to start with

T(N) =

.

T(N?-1) =
[
r[rogen

T(1) = o.

z =
|
o

=
-+
N

As an example consider 3 and 3 representations of SU(3). When vectorically multiplied they
give
3X3=1+8,

so using the sumrule

T(8) =3T(3)+31(3) - T(1) = 3.



To evalvate the mass scales we use the standard procedure of evolving the couplings with

energy. The energy dependence of the couplings with energy[10]. The energy dependence of fi

the couplings are completely determined by the particle content of the theory and their cou-

plings inside the loop diagrams of the guage bosons. This is expressed by the renormalization

group equation. The one-loop RG equation is given by the following equation.

d _ ,
Hagp o) =26 (), (3.19)

where 7
Q = :17;. (3.20)

Using the above information and the matching conditions given with each symmetry breaking |
chain one can relate the SU(16) coupling constant @su(16) With the standard model couplings
Q3cy @, and ayy at the scale My, At this point let us remember that there are three quark

doublets and one leptonic doublet under the group SU(2)r in the standard model hence

in the evolution of coupling ay; the quark and leptonic groups $U(2)] and SU(2)L do

not contribute equally to the standard model group SU(2)r, instead: they contribute with a
relative factor 3. .

950 (M) = 95016y (M) +

2b12Myy + (ber, + bgr) My + (bar + ber)Mas +

(bsr + bap)May + (bsr, + bar)Mys + 2b3. Mg + 2b3. Mo,
9L (M:) = g3k 6 (M) +

3 1 3 1
(51)12 + Eb‘l;)/"fm + (§b6L + Ebf;)ﬂfflz +

3 1 3 1 3 1
(508, +504) Mas + (5022 + 5650) Maq + (5032 + 5b50) Mis +
202, Msg + 2byy, M,
Gy (Mz) = g3k o (My) +

11 9 , 9 1 9
by + Zbon+ ~big + —bl )M
(Iobm + 101)4)/WU1 +(103>GR+ 5 1B + 0 4)Miq +

3

ToVont) My +

1 6
bir + gblB + bl 4

9 1 9 , 9
(‘1‘61)6R+"5‘bl13 +1*6174)A’123+(‘1*0‘ 10

9 1 9
(mb({R + 31)13 + 1*0-1)5)11’145 +

9 1 |
(gblh + gblB)A’ISG + 201y Mg, (3.21)

Here M;; is defined as ln(%%)

To calculate the mass scales we also have to know the numerical values of the beta function
coefficients. To know them one has to know the contribution of the Higgs scalars to the beta
functions (7'). In the Table 3.5 we give these values.

With the quantities I (M) 957 (M,) and 93:2(M.,) at hand one can construct two different
linear combinations with them to form the experimentally measured quantities at the energy
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LG' G’] G’g G3 G; G’5 Gs
[12] = 1492 | [6.] = 69 | [3.] = 42 | [BL] = 16 | 3] = [3¢] = [3c]=0
[4'] = 293 (6r] =93 | [2]] =63 | [27] = 22.5 | [22] = 13.5 | [2,] = 0.5 [21] = 0.5
[1p] =45 |[6r] =93 | [3r] =15 |[3p] =9 (1] = .375 | [1y] = .075
(4]=63 |[1p] = 45| [19] = 7.58 (1%] = 3.16 | [14] = .083
[4'] = 63 | [1g] = .375 | [15] = .375
[2]=18 |[[2,]=09
[1ler] = (1] = 3.16

Table 3.5: Contributions of the Higgs scalar to the R-G equation at various energy scales

scale M, .It easy to check that the following relations hold between them.

) 3 5 - -
5"'"2(9111) = g §e2(91)2 - 921:2 ’
8 a _ 5 _ 8 _
1- 3. e*(95f + “3‘!/1)? - §gac2)- (3.22)

From the present experimental measurements at LEP the value of Sin2(0w) and o, has been
very accurately measured.We use for our purpose the following values[2] of them and the
U(1) coupling a at the scale M, ’

sin®(6,) = .233,
a, = .11,
S (3.23)
* T 279 '

Having these informations at hand one can straightaway go to calculate the mass scales of
symmetry breaking. :

Let us discuss the calculation of the first chain in some detail. Let us now assume that
My = M3 = M,. This means that the groups SU(6);, SU(6)g and SU(4)! happens to break
at the same scale. Similarly let us also assume that My = Ms = Mg. Solving for My, and
Mpe in terms of the other variables one gets,

My, = —.928 — J0My 4 — A0Meg, + D4M 4 g
Mps = 19.80 — 4.81My 4 — 2.93Ms, — 21M 45 (3.24)

As the symmetry breaking at My precedes thet at My, Myy is at least positive. So from the
first equation one infers that for a specific set of values of the other parameters in the right-
hand side there is a minimum value to M4p.Varying the parameters of the equations one
gets the following subset of the solution set allowed by the equations.Taking M, to be around
91 GeV one can also calculate the unification scale and the scaleMg where the completely
un-unified symmetry of the quarks and leptons and the chiral color symmetry is broken.We
note that as the parameter M 4p increases i.e. as the separation between the scale M4 and
the scale Mg increases the scale Mp comes down. Results are summarized in Table 3.6.
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| Mg || Mig | M, || Mgg | My || Mg My,
7 0 0 [ 184 0 109 [ 10

9.5 1 0 12.9 0 108 || 1012

10,75 ]| 1.5 0 10.3 0 107 | 101!

12 2 0 8.7 0 108 || 101!

14.5 3 0 2.3 0 104 | 101t

Table 3.6: Mass scales of SU(16) GUT

3.3.1 Proton Decay

Having the mass scales and Higgs structure in hand we proceed in this paper to discuss the
issue of proton decay now. In all the breaking chains that we have considered here, the quark
lepton unification is broken at the scale My while the quark antiquark unification is broken
at the scale M;. As a result the leptoquark gauge bosons (X,) will acquire mass at the scale
My while the diquark gauge bosons (Y,.) acquire mass at the scale M;. Under the group G

their transformation properties are
X, = (6,1,-B,4)+(1,6,B,4) +
(6,1,B,4) + (1,6, -B,4)
Y, = (6,6,——23,1)+(6,6,2B,1)

(3.25)
where B is defined as,
1
B = —
2v6
: (3.26)

Now U(1)p being an explicit local gauge symmetry of the model, X, and Y, contains different
” Barion Numbers ™ and hence cannot mix directly to form an SU(16) invariant operator.

The mixing can be induced indirectly through the term D, ¢, D¢y, where D, is the covariant
derivative of the SU(16) invariant theory.D, ¢, D*¢y will contain a term X X . When
¢a and ¢, acquires vacuum expectation value the mixing between X, and Y* occurs. But

this can occur only at the scale Mg hence the amplitude is suppressed by a factor ofOéA—A%‘NM!'}%.
172

To see how the gauge bosons couple to the Iliggs fields we note that all the gauge bosons at
the SU(16) level transform under the 224 dimensional adjoint representation. We also note
the following tensor product at the SU(16) level

224 X 224 = 1+ 224 + 224 4 14175 + 10800 + 12376 + 12376 (3.27)
Being the product of two selfconjugate representations all the terms in the right hand side
are selfconjugate which couples to only self conjugate representations. From the Table A

that the the Higgs field that carries Baryon Number is 15. So the only Higgs field which can
induce a Baryon Number violating effect is 15 which is 4368 dimensional.
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The only self conjugate combination made up with 15s is < 4368 >< 4368 > which again
corries no baryon number hence not giving rise to any baryon number violating process[17].

To see the Higgsfield mediated proton decay at first we note that the fermions are in the 16
dimensional fundamental representation. To give mass to the fermions the coupling of the
form 4y, “1r,¢ must exist. The minimum dimensional Higgs field which can do the job is 120.
This field can give rise to Higgs madiated proton decay if 1° breaks the Baryon Number due
to the presence of the term < 16 >< 18 >< 12 >< 12 > in the Lagrangian. In that case
we can choose 136 to give mass to the fermions. In our choice 1° breaks the baryon number
hence it does not couple to 120. Hence there is no Higgs mediated proton decay.

3.3.2 N — N Oscillations

Let us consider the SU(16) level operator < 1% >< 1% >< 15 >< 16->. This forms a singlet
under SU(16) and hence allowed in the Lagrangian. This term give rise to AB = 3 processes.
If instead we choose 136 to break the lepton Number symmetry, then this process vanishes.

We have already noted that if 16 breaks the Baryon Number symmetry then one has to choose
136 to give mass to the fermions; here we note that then the term < 1112 >< 136 ><
136 >< 1% >< 1% > will be be allowed in the Lagrangian which may give rise to AB = 3
processes. As the term is of dimension five it will be suppressed by My. With 12 we can
construct the SU(16) level operator < 1° >< 1% >< 1% >< 12 > which can break the Baryon
Number by two units and hence give rise to gauge boson mediated N — N oscillations. To see
the Higgs field mediated processes we note that if 120 dimensional Higgs field couples to the
fermions and 16 breaks the Baryon number then the operator < 120 >< 120 >< 120 >< 18 >
can give rise to Higgs field mediated N-N oscillations.

In this paper we have seen that there exists one possible breaking chain in a Grand Unified
Theory based on the group SU(16) where a unification scale of the order of 10! GeV is
possible. There exists a very low energy scale (Mpg) which may be almost anywhere between
the unification scale and the electroweak scale where completely ununified symmetry of quarks
and leptons may exist together with chiral color symmetry. The scale Mg comes lower
when the separation between the scale M4 and the scale Mp is increased. Qualitatively we
understand it in the following way. The beta function coefficients can be looked into as the
slope of the lines if one plots the inverse coupling constants with respect to energy. It can be
easily checked that as at the SU(16) level all the fermions transform under the fundamental
representation of the group and in the other levels they transform in a more complicated
way under the various groups in the intermediate stages, all the groups cannot be normalized
in the same way. To compensate for the mismatch in the normalization the beta function
coefficients has to be multiplied by appropriate factors. Because of this the slope of the
curves representing the inverse couplings also gets multiplied by the appropriate factors and
the couplings get united earlier giving rise to low energy unification.

We have also seen that this model satisfies the experimental constraints coming from proton
decay experiments in the sense that proton decay is suppressed. We have shown that there
exists atleast one choice of the Higgs sector where there is no Higgs mediated proton decay
either,

For some specific choice of the Higgs fields there may exist mtexestmg physical consequences
like the N — N oscillation. There is also the possibility of having the sea-saw mechanism to
give Majorana mass to the neutrinos and this also may have observable consequences.
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Last but not the least we emphasize again that there exists very rich low energy physics

coming from t}

1is model hence keeping in mind the forthcoming high-energy experiments at

Superconducting Super Collider, CERN Large Hadron Collider and other places this mode]

is worthy of further investigation.

3.4 Appendix

3.4.1 SU(16) Tensor Products
16 x 16 = 120, + 136,
16x16 = 14255
16 x 120 560, + 1360
120 x 120 1+ 255 + 14144
136 x 136 1+ 255 + 18240
560, x 16 1820, + 7140
1820, X 16 = 4368, + 24752
(3.28)
3.4.2 SU(16) Branching Rules
SU(16) = SU(12)xSU(4)
16 = (12,1) 4 (1,4)
136 (78,1) + (12,4) + (1,10)
120 = (66,1) + (12,4) + (1,6)
255 = (143,1) + (12,4) + (12,4) +
(1,15) 4 (1,1)
560 = (220,1)+ (66,4) + (12,6).+
(1,4)
1820 = (495,1)+ (220,4) + (66,6) +
(12,4) + (1,1)
14144 = (1,1) +(1,35) + (12,4) +
(12,20) + (12,4) + (12,20) +
(66,6) + (66,6) + (143,1) +
(143,15) + (70,4) + (780,4) +
(4212, 1)
(3.29)
3.4.3 SU(12) Tensor Products
12x12 = 66, + 78,



12x12 = 14143

12X 66 = 220, 4572

78 X 78 = 1+ 143 + 5940
66 x 66 = 1+ 143 +4212

220, x 12 = 495 + 2145
495, x 12 = 792 + 5148

(3.30)

3.4.4 SU(12) Branching Rules

SU(12)
12

66

78

143

220

495

792

572

4212

= SU(6)xSU(6)x

u(1)
(6,1,-B) + (1,6, B)
(15,1,-2B) + (1,15,2B) + (6,6,0)
(21,1,-2B) + (1,21,2B )+(6 6,0)
(35,1,0) + (6,6,2B) + (6,6, —28) +
(1,1,0) +(1,35,0)
(20,1,-3B) + (1,20,3B) + (6,15, B) +
(15,6, —B)
(15,1,—4B) + (20,6, -2B) + (15,15,0) +
(6,20,2B) + (1,15,4B)
(6,1,-5B) + (15,6, -3B) + (20,15, - B) +
(15,20, B) + (6,15,3B) + (1,6,5B)
(70,1,~3B) + (15,6, - B) + (6,15, B) +
(21,6,-B) + (6,21, B) + (1,70,3B)
(189,1,0) + (15,15, ~48) + (6,6,—2B) +
(84,6,—2B) + (15,15,4B) + (1,35,0) +
(1,189,0) + (6,84,2B) + (84,6,2B) +
(6,84, -2B) +(1,1,0) + (35,1,0) +
(35,35,0) + (6,6,2B)

(3.31)

3.4.5 SU(6) Branching Rules

SU(6) = SU(3)xSU(2)

6 = (3,2

15 = (6,1)4(3,3)
20 = (1,4)+(8,2)
21 = (3,1)+(6,3)



35
.70

(-

(1,3) +(8,1) + (8,3)
(1,2) + (8,4) + (8,2)
(10,2)

(3.32)
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Chapter 4

Evolution of the Yukawa Couplings
of MSSM

Minimal Supersymmetric Standard Model(MSSM) is arguably the most promising extension
of the SU(3). x SU(2)r, x U(1)y Standard Model. The model introduces one superpartner
to all the fermionic scalar and gauge fields and demands invariance of the Lagrangian under
the supersymmetric transformations of the fields. The most interesting feature of the model
is that due to the cancellation of infinities between scalar and fermion loops the model does
not suffer from the gauge hierarchy problem. Presently much interest is generated in this
model as it leads to successful gauge coupling unification when the supersymmetry breaking
scale is around 1 TeV[1]. On the other hand the model introduces more free parameters like
the masses of the superpertners and the quantity tanf defined as the ratio of the vacuum
expectation values of the the two Higgs scalars present to give masses to the up and down
type quarks respectively.

Recently a lot of effort has gone into trying to constrain these free parameters of MSSM by
embedding into a grand .unified framework. Particularly in one approach [10] one assumes
a GUT group of SO(10), Es or and at the same time assumes Georgi-Jarlskog[9] form of
mass matrices at the unification scale. In a second approach [7] it is assumed that at the
unification scale y, = y, but y; does not have to satisfy such an unification condition. In a
complete two loop analysis it is shown that in this case tanf can have two solutions one of
which is substantially larger than the other. In yet another approach [8] it is assumed that in
a 50(10) GUT framework the third family fermions get mass from the operator 16 X 16 x 10
and hence at the unification scale y, = y, = y;. In this approach one gets a large value of
tang.

Our aim is to find a lower bound on the quantity tanf = ’;’f without imposing any specific
boundary condition on the Yukawa couplings at the GUT scale. To do that we first note that
the Yukawa coupling y;(m;) s are related to the corresponding fermion masses m;(m;) and
tanf (See the exact relation below). Where we have called the top quark mass as m,. Now let
us consider the specific case of the coupling y,. By solving the Renormalization Group (RG)
equations of the Yukawa couplings one can find out the maximum value of the top quark
Yukawa coupling at the scale m, for which the top Yukawa coupling will remain perturbative
in the entire range upto My which is the unification scale of the gauge couplings (From the
proton decay experiments we know that the lifetime of proton is more than 1032 years which
puts lower bound on the scale My. We take My = 2 x 1018 GeV/[2]). This will give an upper
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bound on y;. Now for fixed value of m; this will give a lower bound on tanf. Hence now by
varying m, in the entire parameter space of interest one gets an absolute lower bound of the

quantity tan/s.

Our starting point is the following Lagrangian
Line = Ary, (LsH1Es)r + Vary, (QsH1D3)r + /Ay, (UsH2Qs)r (4.1)

Where y,,y; and y; are tau lepton top quark and bottom quark Yukawa couplings respectively.
Whereas Q3, D3, Us, E3, L3 are the chiral fields and the subscript signifies the generation to
which they belong. H; and H; signifies the scalar fields which couple to down and up type
quarks respectively. We describe the transformation properties and the anomalous dimensions

2
of the fields in the Table 4.1. «; is defined as %‘;, where g; s are the gauge couplings.

Field | Quantum number | Anomalous Dimension

Ly [ (L,2,-3) wlyr = e — 5oy

Ey | (1,1,1) L2y, — £a,]

Ds (3,1, %) #[2% - -g-a-g - g‘%ay]

Us (3,1,-%) =2y — Sas — Sy

@3 (3,2, %) =i+ u— 5oz — 20; ~ Loy
Hy (1,2,-3) =[Yr + 3y — Sz — Fay]

15 (1,2,3) =y~ 30z — oy

Table 4.1: Transformation properties and anomalous dimensions

From the anomalous dimensions one can immediately write down the evolution equations of
the Yukawa couplings. The variable t is defined as t = 5= In pu (GeV) [5].

Oay, 2 3

a "

-§—:—2 = ad[2n; -6+ 1] (4.3)
0(13

0 = adleny =9 (4.4)
Y+ 9

’“0”[" = ?/T[7L3 + 7, + 753] = yr[477‘ + 3y — 3ag — -5-013/] (45)
Ay 16 17

o0 = vt m 5] = wlyr+ vt O = Fas—3ar - ey (46)
dy : 16 13

O_tl = il + v, +76,) = vlby + - T dag — ‘1*5%] (4.7)
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While solving this set of differential equations we have made the following inputs of experi-

mental numbers.

V ;Wyt(mt) = (V1 + tan’s ‘ (4.8)

174 tan 8
drgs(me) = mb(mbi\7/417;: tan?f (4.9)
fis - el -

ny takes into account the 3-loop Q.C.D. plus 1-loop Q.E.D. evolution of y, from the bottom
mass energy scale to the top mass energy scale [4]. The value of 7, depends on the value of

. we have used

a,(M;) = 0.123 +.004
sin20(M,) = 0.2334 %+ .0008
1
= 127402
aem(Mz)

y, does not vary much in this interval as tau lepton does not carry color. Once the values
of the couplings y;, v, and y, are specified at the top mass scale they can be evolved to the
supersymmetry breaking scale M,ys, using the non-supersymmetric renormalization group
equations [6]. In our calculation we have considered two cases in one case Msysy is taken to-
be 1 TeV and M,y is taken to be m; in the other. From 1 TeV to My we have used the
supersymmetric evolution equation which we-have described above. We have used my(my) =
4.25 + 0.15 GeV and m.(m,) = 1.777 GeV. The top quark mass is taken in the range 108[3]
to 175 GeV. We have not assumed any unification of the Yukawa couplings at the GUT scale.
The minimum value of tan is 0.70 and it is achieved when m; is minimum that is 108 GeV.In
Figure 5 have plotted the evolution of y; when m; is 135 GeV. Curve A represents the case
when tan/ is 1.01 which is lower than the lower bound 1.03 (see Table 4.2) for bounds. Hence
we see that curve A reaches the nonperturbative region earlier than the scale My. On the
other hand curve C which represents tanf = 1.05 becomes nonperturbative after the scale
My . Curve B is obtained when tanf = 1.03. The variation of the lower bound with respect

to m, is plotted in Figure 6.

To conclude we have asked the question that what is the minimum value of tanf that can be
achieved without assuming any specific boundary conditions on the Yukawa couplings at the
GUT scale?”. We have assumed that there is a perturbative supersymmetric theory upto the
scale of 2x 106 GeV though we have not assumed any specific model of grand unification. We
have seen that the requirement that all the Yukawa couplings should be in the perturbative
domain upto My forces tanf to be atleast 0.70 for m; = 108 GeV. This lower limit rises with
higher values of m;. We have checked that if we have M,,,, = m; the lower bound does not
vary much rather it stays at 0.71 for m; = 108 GeV. In Figure 6 the upper curve is for the
case when Mgysy = my. We have also checked that the lower bound remains insensitive to
the variation the bottom quark mass in the range 4.10 to 4.40 GeV. It is interesting to note
that evenif we increase Myysy upto 10 TeV the lower bound on tanf still remains just above
0.71 when m, is 108 GeV and for other values of m; it remains just above the lower bound
for Mgyusy = my case. As tanf is a free parameter in the MSSM we consider such a bound
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my | Mausy =.1T€V | Myysy = 1y
108 0.70 0.71
115 0.78 0.79
125 0.89 0.90
135 1.03 1.05
145 1.21 1.24
155 1.45 1.48
165 1.84 1.87
175 2.25 2.65

Table 4.2: Lower Bounds on tanf for Myyusy = 1 TeV and M,ysy = my

as important. As a practical example it will have important implications in the search of
supersymmetric Higgs bosons in colliders[7].
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Chapter 5

Conclusions

To conclude, the works represented in this thesis may be divided into three parts. In the first
part we have studied the constraints imposed by the LEP data on various GUT models. In
the second part we have considered the new paradigm of low energy unification and found
various interesting results. In the third part we have worked out some constraints on the
parameter space of MSSM using the evolution of Yukawa couplings. In the following we

summarize this three parts.

5.1 LEP Constraints on Unified Models

Our analysis shows that by including the effects of higher dimensional operators arising due
to quantum gravity or spontaneous compactification of extra spatial dimensions in Kaluza-
Klein theories (or due to a group G’ which breaks to SU(5) above the unification scale), it
is possible to show that the predictions of a minimal SU(5) GUT is in conformity with the
latest LEP values of sin?fyw and a,, and also with the experimental constraints on proton

*lifetime.

The most recent experimental data provide very strong constraints on left-right symmetric
models. We have shown that if a left-right symmetric group coming from either a grand
unified or partially unified group breaks at an intermediate mass scale, Mg, then the tightly
constrained values of sin?fw and a, can be used to put a lower bound on the value of Mg.
This lower bound is &~ 10° GeV, irrespective of the unification group. Grand unified theories
and partially unified theories, therefore, completely rule out the possibility of seeing the right
handed partners of W at the energies available in current experiments or those planned in
the near future. Conversely, the discovery of these particles at such energies can be used to
refute unification models. It is of importance to note, however, that our analysis puts no
constraints whatsoever on the existence of extra Z at low energies, as an extra U(1)g can
survive down to electroweak breaking scales. The inclusion of the Higgs or supersymmetry

increases the lower bound on Mp.

We have studied the non-perturbative unification scenario first proposed by Maiani, Parisi
and Petronzio. We point out that the non-supersymmetric version of this scenario is ruled out
by LEP data. However, the supersymmetric extension of this scenario remains a viable alter-
native to conventional grand unified theories and is capable of predicting the precision values
of couplings determined from LEP. Qur numerical results show that the non-perturbative
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scale, A, at which all couplings are large, is around 0.7-0.8x10'7 GeV, with the supersym-
metric threshold M, around 1.0-1.4 TeV. If the scale M, gets either larger or smaller it is
then not possible to reproduce the values-of the couplings at Myz. We should note that
the agreement with the data is obtained only for a constrained range of parameters of this
scenario. In principle, the effect of higher-order corrections could be large and this may ruin
the agreement. It is also likely that more accurate measurements of the strong coupling as
at low energies may be sufficient to either put strong constraints or completely rule out this
scenario. It is nevertheless interesting that this scenario, at the two-loop level, is a possible

alternative to conventional grand unification.

5.2 Studies on Low Energy Unification

We have shown that Higgs fields play a significant role in the evolution of gauge coupling
constants in GUTs where baryon number is a symmetry. The consistency of the symmetry
breaking scenario presented here with present-day proton decay data along with its interesting
TeV scale physics make SU(15) GUT a model worthy of further investigation. The most
interesting pattern is {3467} (see section 3.1), which has both low energy unification at
~ 10° GeV and interesting TeV physics. We can decouple the electroweak breaking scale
with the other symmetry breakings and have TeV scale chiral color symmetry and the quark-
lepton un-unified electroweak symmetry breaking, which will raise the unification scale a little.
The existence of chiral color symmetry at the TeV scale or lower will imply the presence of
axigluons, whose phenomenological consequences have been studied in the literature. The
presence of the un-unified electroweak symmetry at low energy will imply the existence of
extra charged and neutral gauge bosons, whose mixing with the Z-boson will affect various

asymmetry parameters in the ete™ deep-inelastic scattering.

The scenario of symmetry breaking in nonsupersymmetric SU(15) GUT, which allows low
energy unification, has some interesting features. It is essential for the low energy unification
to have chiral color SU(3)eL ® SU(3)cr group and the quark-lepton ununified group SU(2){ ®
SU(2)% survive till very low energy, for the gauge coupling constants to evolve very fast and
get united at an energy scale around 108 GeV. Thus the existence of these groups and
the leptoquarks are some of the essential critereons of the low energy unification, which
can be tested in the laboratory in near future. Thus any signatures of these groups may
seriously question the existence of supersymmetry and if the signatures of the low energy
unification and also that of supersymmetry are found, then it will cast a serious question on
our understanding of the grand unification scenario.

We have seen that there exists one possible breaking chain in a Grand Unified Theory based on
the group SU(16) where a unification scale of the order of 101 GeV is possible. There exists
a very low energy scale (Mpg) which may be almost anywhere between the unification scale
and the electroweak scale where completely ununified symmetry of quarks and leptons may
exist together with chiral color symmetry. The scale Mp comes lower when the separation
between the scale M4 and the scale Mg is increased. Qualitatively we understand it in the
following way. The beta function coefficients can be looked into as the slope of the lines
if one plots the inverse coupling constants with respect to energy. It can be easily checked
that as at the SU(16) level all the fermions transform under the fundamental representation
of the group and in the other levels they transform in a more complicated way under the
various groups in the intermediate stages all the groups cannot be normalized in the same
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way. To compensate for the mismatch in the normalizations the beta function coefficients
has to be multiplied by appropriate factors. Due to that the slope of tlic curves representing
the inverse couplings also gets multiplied by the appropriate factors and the couplings get
united earlier giving rise to low energy unification. We have also seen that this model satisfies
the experimental constraints coming from proton decay experiments in the sense that proton
decay is suppressed. We have shown that there exists atleast one choice of the Higgs sector
where there is no Higgs mediated proton decay either. For some specific choice of the Higgs
fields there may exist interesting phisical consequences like the N — N oscillation. There is
also the possibility of having the sea-saw mechanism to give Majorana mass to the neutrinos
and this also may have observable consequences. Last but not the least we emphasize again
that there exists very rich low energy physics coming from this model hence keeping in mind
the forthcoming high-energy experiments at SSC,LHC and other places this model is worthy

of further investigation.

5.3 Evolution of Yukawa Couplings

We have asked the question that "what is the minimum value of tang that can be achieved
without assuming any specific boundary conditions on the Yukawa couplings at the GUT
scale?”. We have assumed that there is a perturbative supersymmetric theory upto the scale
of 2 x 10'® GeV though we have not assumed any specific model of grand unification. We
have seen that the requirement that all the Yukawa couplings should be in the perturbative
domain upto My forces tanf to be atleast 0.70 for m; = 108 GeV. This lower limit rises-
with higher values of m,. We have checked that if we have M,,,, = m, the lower bound does
not vary much. It stays at 0.71 for m; = 108 GeV. In Figure 6 the upper curve is for the
case when M,,,, = m;. We have also checked that the lower bound remains insensitive to
the variation the bottom quark mass in the range 4.10 to 4.40 GeV. It is interesting to note
that evenif we increase My, upto 10 TeV the lower bound on tang still remains just above
0.71 when m; is 108 GeV and for other values of m, it remains just above the lower bound
for Mysy = my¢ case. As tanf is a free parameter in the MSSM we consider such a bound
as important. As a practical example it will have important 1mphcat10ns in the search of
supersymmetric Higgs bosons in colliders.
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