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Abstract

One of the outstan&ing problems 1n theoretical
astrophysics for the last two decades has been the
gnérgetics of high energy astrophysical objects like
Quasars and X-ray sources. However, the consensus of the
scientific community on the Dbasic 1issue of the energy
producing mechanism has been on the mechanism of accretion
of matter by compact objects.

Any gravitating body attracts matter from its
surroundings, and if the matter being attracted has angular
momentum with respect to the body,it forms a disk around it.
Such gaseous disks around astronomical objects,known as
accretion disks, while spiralling down, convert the
gravitational energy of the object into radiation 1in a very
effective way.

The material will fall onto the object only if it
looses 1its angular momentum. Presence of viscosity,while
trying to equalize thg differential veloclty present in the
disk, helps 1n transferring the angular momentum to the
outer regions of the disk. This process generates high
temperature and the material in the disk will generally be
in plasma state. In the general studies of accretion disks
very little has been said about the role of magnetic fields
‘and that of general relativity.It has been shown (Prasanna
1980), in the earlier studies of charged particle

 trajectories 1in electromagnetic fields on curved space time
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that the presence of magnetic fields-helpvin gi#ing rise to
stable- orbits :for Vbarticles cioser to r=3m,whereas in the
absence of magnetic fieids the particle orbits lie beyond
r=6m. Thus ©bringing the particle closer would increase the
gravitational ©potential energy and help in getting out more
energy. Also when the particles are 1n the range 3m<r<6m, the
effects of general relativity on their dynamics would not
be negligible (in fact the pure Newtonlian description 1s
inadequate) and thus it would become relevant to study the
dynamics of disks in the presence of electromagnetic fields
on curved spacetime.

In this thesis we have taken wup this problem in a
carefully devised formalism and then solved the possible
equilibrium configurations for several special <cases of
velocity distributions and further shown explicitly the
inter~dependence of certain physical parameters like outer
density, seed magnetic field,Aand continuous pressure
distribution 1in the disk configurations around very compact
objects.

The dynamical equations for a magnetofluld in a curved
background is obtained from the conservation laws in the
given background alongwith the Maxwell's equations for
electromagnetic fields.We conslder the background metric as
the linearized Kerr metric, which corresponds to the
geometry around a slowly rotating (a/m < 0.5) compact
object. The dynamical equations are obtained ffom the

\| [
conservation laws T gj = O
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and the Maxwell's equations from
1 -t e .
= .&",\ka -4 Fripw] =0
with the current four vector Ji defined through the

generalized Ohm's law

N { S
T = a +& Flru |

2 being the charge density and & the electrical
conductivity.

We have obtained the dynamical equations in terms of
the spatial 3 velocity ch defined as 06 =*JKaF and
further, wusing the appropriate 1local Lorentz frames,
considered the following different. cases with only the
coefficient of ©bulk viscosity mnonzero, and obtained the
equilibrium configurations for these cases and studied the
behaviour of different properties of the disk.

Before considering the dynamics of plasma disks,the
motion of a radiating charged particle moving around a
compact object was studied. As the particle radiates it
looses energy and should slowly spiral into the object.It
was found that the timescale in which this effect becomes
appreciable 18 much larger compared to the orbital period
and hence it would be possible to have an equilibrium disk
configuration of charged particles around a compact object.
So in the study of plasma disks,it is not necessary to
conslider the effects due to radia;ion reaction,atleast in
the first approximation.

After developilng the formalism for studying the
dynamics of ﬁlasma disks around compact objects,we first

consider the equilibrium configuration of an axially
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symmetric. statiomary fluid disk withv only the azimuthal
velocity component v ? non-zero —around é non—-rotating
compaét object. For .an ‘uncharged fluid with infinite
conductivity and a magnetic Vfield which 1s dipolar at
infinity, we get analytical solutions for azimuthal velocity
and magnetic and electric field components.The pressure
profiles corresponding to different angular momentum
parameter and radial dependance of velocity for a disk of
incompressible fluid ( ? = const) confined to the
equatorial plane (€ =T /2) of the object were obtained by
numerically integrating the equation of motion.It was found
that it 1s possible to get equilibrium configuration of
disk structure only with velocity distributions which
decrease for dincreasing r. Also,the inclusion of magnetic
fields allows the possibility of the inner edge of the disk
extending to regions much <closer to the event horizon,
unlike in the absence of magnetic fields, where in
Schwarzschild background the inner edge has to be beyond r
= 6m. Further,using the general expression as given by Page
and Thorne (1974),but adapted to Schwarzsghild geometry by
Luminet (1974) and Hanawa (1989),we obtain the radiation
flux from the disk corresponding to different velocity
distributlons. It was found that variation from the
Keplerian velocity distribution does not have much effect
on the flux distribdtion. |

Next we consider the equilibrium configuration of an
axially symmetric stationary disk with finite electrical

conductivity with nonzero radial and azimuthal components of
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velocity. With the toroidal compoﬁent of magnetic field B?
takeq ‘as zero and the welectromagnetic field satisfying
Ohmfs. léw,we gef anélytical solutions for the components of
velocity, electric 'and magnetic fields and further get an
expression for accretion raté.

Pressure and density profiles were obtained for
different values of magnetic field strength,conductivity
and angular momentum for given values of density at the
outer edge, to 1nvestigate the effects of these parameters
on the equilibrium configurations of the disk.It was found
that for a given value of density at the Outef edge, there
i1s a critical wvalue for the magnetic field strength,above
which no equilibrium configuration 1is possible.Similarly
the conductivity has to be higher than a critical value for
equiliBrium configuration. Also we have obtained the
dependence of different parameters, on the disk structure
and the allowed range of their values.

Finally, we <consider the equilibrium configuration of a
fluild disk of infinite conductivity around a slowly
rotating compact object. With the toroidal component of
magnetic field taken as zero, and assuming the azimuthal
velocity to >be a modified Keplerian velocity by including

the effects of frame dragging, we obtain analytical

solutions for magnetic and electric field components.
Further we obtain pressure profiles for 0 = /2 plane of
the central object for the  cases of (a) disk of

incompressible fluid,and (b) disk with an equation of state

o
given by P = Cle ~B2/85' by numerically integrating the



momentum equation.

It has been found that it 1is ﬁossible to get
equilibrium configurafion‘ of disks around slowly rotating
compact objects, wherein the influence of co- and
counter-rotation with respect to the central object bears a
definite contribution which is particularly significant in
the dinner regions. One also finds that,the magnetic field
structure 1s 1influenced by the frame dragging,again as
evidenced by‘ the difference 1n co- and counter—~rotating

disks.



CHAPTER T

INTRODUCTION
One of the outstanding problems in theoretical
astrophysics for the 1last two decades has been the

energetics of high energy astronomical objects like quasars,

active galactic mnuclei and X-ray sources.The efficlency of

conventional energy generation mechanism in astrophysics,

viz., nuclear burning,is not capable ofdexplaining the large

amounts of radiation (Lv\lO12 L@) coming from a small

region of the sky (rwl pc) in quasars and active galactic
36

nuclei, and the large power (L~10 erg/s) emitted

predominantly in X-rays observed in X~ray sources.Now it is
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widely -accepted that the sourcé of energy 1s gravitational,
the mechanism by which energy is released being accretion
of matter by compact objects.

Any gravitating body  attracts matter from 1its
surroundings. If the matter being attracted has angular
momentum with respect to the body,it cannot fall directly
onto 1t, but starts orbiting the body at a fixed distance
determined by its angular momentum, and the mass of the

gravitating body. This leads to the formation of disks of

matter rotating around the object and are known as
accretion disks. Matter without angular momentum falls
directly onto the object and is known as spherical

accretion. The efficiency of energy generation is small in
spherical accretion as compared to disk accretion.
For a body of mass M and radius R,the gravitational

potential energy released by accretion of mass m onto its

surface is given by AE - Sim where G 1is the
ac 128
gravitational constant.For a neutron star with M = 1 M _ and

®

20

R w» 10 Km, we getiéanC w10 erg/accreted gm,whereas

while Hydrogen is converted into Helium in nuclear burning,
8

A E = 0.007 me? wA 6xlol

ac erg/gm only.However,it is

evident from the expression for C*Eac that,the efficiency
of energy release depends on the ratio (GM/R) 1.e.,the
gravitational ©potential of the object.Thus for accretion
onto black holes and neutron stars with M = 1 M@ and R v 3
km and 10 km respectively,acceretion of matter is a more
efficient energy generation mechanism than nuclear burning.

4
For a solar mass white dwarf with Rw10" km,even though
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nuclear burning is more efficient;there are stages in the
life of a white dwarf when accretion Dbecomes the
predominant energy source..

If all the kipetic energy of the infalling matter is

converted into radiation at the surface of the object,the
Ed

_ GMM

acc R,

rate at which matter is being accreted.However,in practice,

resultant luminosity 1is given by L ,where M is the

energy may not be released at this rate and one can

3 ]
introduce a parameter N\ such that L = ZW]G%S = ”LMCZ

where R = ZGM/ez,is the Schwarzschild radius of the object,
and N\ is the efficiency at which the rest mass 1s
converted into radiation.Nuclear burning has an efficiency
N] = 0.007 and to account for the enrgy productlon in
quasars it is mnecessary to process 250 Me yr_1 ﬁo produce
the observed luminosity of v 1047 erg s_l which varies by
an order of 2, on time scales of weeks or even less than
that. If on the other hand, accretion with efficiency of
energy production A 0.1 is the process which genera%es the
energy, it 1s enough to have an accretion rate of 20 Me yr“l

to produce the above luminosity.

For a radiation of frequency in the continuum

spectrum, a temperature Trad can be associated through the
Vv . ‘
relation Trad = k%A where K is Boltzman's constant.For an

object of radius R radiating as a black body with a
luminosity Lacc’ a black body temberature can be defind as
Tb = chc/(aTYR%y)l/a, where 6" 1s the Stefan—-Boltzman

constant. If all the potential energy 1s converted into

thermal energy, yet another temperature Tth’ can Dbe
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associated with this system, defined through Tth = EMEB
' ' - BRR

where.'mp is mass. df proton.If the accreting matter is in
thermal equilibrium we get Trad N Tb.If all the accretion

energy 1is converted directly into radiaton we have Trad

wA T . In general the temperature will lie between these two
th p .

extremes and hence one can write T. < T < T ,.Now,if we
b rad th

make an estimate of what can be the temperatures attalnable

in accretion process, we see that,for a solar mass neutron

llK

star v 5.5 x 10 which corresponds to a thermal

Tth
energy, KTt
1038

A\ 50 MeV.Similarly,for a luminosity of Laccvq
7

ergs~1, the blackbody temperature 1is Tb v~ 107 K i.e.

h

KTb v 1 KeV. This shows that accretion onto a solar mass
neutron star can produce photons with energies in the range
1 KeV < W L 50 MeV,which corresponds to X-ray enegies.
In the same way,it can be shown that accretion onto a solar
mass white dwarf produces photons with energy 6 eV i h S
100 KeV which corresponds to ultraviolet and soft X-rays.
Matter in accretion flow 1is expected to be in glasma
state due to the high temperature generated.The flow .of
charged particles creates magnetic fields,which in turn can
‘affect the flow as well as the radiation mechanism.If a
seed magnetic field was present in the accreted matter,it
can be amplified to large values near the 1lnner reglons of
the disk.So a realistic study of accretion flow should take
into account the effects of magnetic fleld in the dynamics
of accretion flow.It has been shown in the study of single

particle dynamics around black holes that,it 1is possible to

have stable orbits very near to the object,which is not
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possible in -a pure Schwarzschild ©background, where one
cannot have stable " orbits for »particleé below the last
stable orbit ( h& 4m) (Prasanna and Varma,l977). Znajek
(1977) has shown the possibility of having stable orbits.
very mnear to the black hole,when magnetic field 1is present.
The fact that,one éan have a disk very close to the compact
object, is dimportant, because 1t allows the extraction of
more energy. As the gravitational field near the compact
object will be very intense, it becomes necessary o
consider the effects of general relativity. So a better
understanding of accretion process 1s possible only by a
self-consistent study of plasma processes in curved space
time with the associated electromagnetic fields.A fluid
approach 1s necessary if collective effects are important,
whereas study of particle dynamics <can give a good
understanding of the phenomenon if the densities involved
are sufficiently low. A brief description of the study of
single particle dynamics as well as fluid dyna&ics is

presented in this chapter.
1.1. Particle Dynamics

To obtain the particle trajectories 1in a general curved
spacetime, with an associated electromagnetic field,first,
the metric potentials and the electromagnetic field tensor
Fij should be obtained by solving the Einstein-Maxwell

equations and then solve the covariant Lorentz force

equation 1in this background.Kerr-Newman metric represents
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‘the unique solution of Einstein-Maxwell equation
corresponding to the geometry outside a blaékholevof mass M,
charge Q and angular momentum per unit mass a = JM/c.This
solution reduces  to Kerr metric for Q = 0, the
Reissner-Nordstrom metric for a=0 and to Schwarzschild
metric for a=0,Q=0.Carter (1973) has obtained the complete
set of first 1integrals of motion in Kerr—Newman geometry.
Ruffini (1973) studied the dynamics of charged particle in
Kerr-Newman and Reissner—~Nordstrom geometry. However, in
astrophysical situations, as one does not expect to have an
object with net charge on it,electromagnetic fields can be
produced only by the presence of extermnal currents.lf the
electromagnetic field energy 1s much less than the rest
mass energy of the compact object,the Maxwell’s equations
can be solved in the given spacetime geometry around the
object to obtain the structure of electromagnetic fields
there. Ginzburg and Ozernoi (1965),Petterson (1974),Bicak
and Dvorak (1977) have obtained such solutioés for
Schwarzschild geometry and Chitre and Vishveshwara (1975),
Petterson (1975) and King et al (1975) have found solution
for Kerr geometry.

Dynamics of charged particle in curved spacetime with
superimposed electromagnetic fields have been extensively
studied by Prasanna and Varma (1977) for Schwarzschild
background, Prasanna and Vishveshwafa (1978),Chakraborty and
Prasanna (1981) for Kerr background.An extensive.treatment
of charged particle dynamics in curved spacetime with

electromagnetic fields .1s given in Prasanna (1980).0ne
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important result of these studies is that in presence of
magnetié fields it - is possible to have bound state orbits
for‘.charged particlés very close to the event horizon,
unlike the case of pure Schwarzschild background where it
is not possible to have stablé orbits for r < 6bm. -

An accelerated charged particle radiates energy. A
radiating charged particle exéeriences a force which 1is
proportional to the time rate of change of its acceleragion
and is known as radiaton reaction.In Chapter IT we give an
accouﬂt of the study that we have domne to undrstand the
effect of radiation reaction on the motibn .of charged

particle.
1.2. Disk Dynamics

Importance of accretion of matter by gravitating
objects was realized long Dback in connection with solar
system studies. Hoyle and Lyttleton (1939) have obtained an
expression for the rate at which mass is accreted by a star
like Sun moving through cold interstellar gas.In 1952,Bondi
considered the case of infall of matter to a self
gravitating body, obtained analytical solutions for the
fluid flow and evaluated the accretion rate.

Following the discovery‘ of objects like X-ray sources
and quasars, there was a renewal of the study of accretlon
mechanism. The observed large luminosities in quasars and
the large power emitted, predominantly in X-rays in the

X-ray sources demanded a different energy generation
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mechanism which is more efficient fhan the conventional
nuclear burning.Ag discussed earlier,accfetion of matter by
compéét objects can xconVert the rest mass into radiation
with far. more efficiency than nuclear burning. Models
proposed for quésars, have massive compact objects at the
centre of galaxies accreting matter from the surroundings
producing large amount of luminosity.

Even before the detection of X-ray sources,Hayakawa and
Matsuoka (1964) had suggested that close binary stars may
be deteétable as X-ray sources, because of the mass
accretion (gas from the companion impingingv upon the
primary) yilelding high temperature plasma which can emit
thermal X-rays. In a similar vein, Novikov and Zeldovich
(1966) and Shklovsky (1967), Prendergast and Burbridge
(1968) had proposed that accretion onto neutron stars and
black holes in binaries could produce X-rays emitted as a
consequence of the liberation of gravitational binding
energy released by the infalling matter.The discovéry in
1971 of the sources Cen X-3 and Her X-1 by the UHURU
s#tellite, exhibiting eclipses and .periodic Doppler
variations of the pulsation period was really the beginning
of a new era in astronomy.In the following years lots of
new X-ray sources were -discovered and correspondingly many
theoretical models were proposed. Paczynski (1978)
discussing the evolution of binary‘X—ray systems,expressed
a belief that the majority of strong galactic X-ray sources
are interacting close Dbinaries with the optical component

being O or B type giants nearly filling their Roche Lobe
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and the  X-ray emitter being a neutroﬁ star (Cen X-4,Vela
X-1, SMC X-1) or possibly a black hole like'Cyg X-1 énd Cir
X-1. Fﬁrther it Qas_ érgued that the type II sources which
have a very high ratio of X-ray to optical luminosity could
very well be compact objecgs like neutron stars or black
holes surrounded by massive (thick) accretion disk.

Whether it 1is high> mass X-ray binary or the low mass
one, the main mechénism of X-ray emission is attributed as
due to accretion with mass transfer through stellar wind
(spherical accretion) for the high mass ones and through
Roche Lobe filling (disk accretion) for the low ﬁass ones.
In the former case, the orbiting primary comes in as an
obstacle in the wind stream of the companion which has
expanded and a bow shaped shock forms around the primary
and the gas stream accreates onto the primary in a
spherically symmetric fall.On the other hand,in the latter
case, wherein the secondary fills its Roche Lobe and then
the expanding 'gas from its corona moves through the:inner
Lagrange point Ll onto the orbiting primary (pulled in by
the intense gravity of the primary).As this directed flow
will have significant angular momentum,the infall will no
longer be radial but form a disk around the compact primary
with the matter 1in the disk being Dbalanced by the
centrifugal and gravitational forces. Unless the Dbinary
period 1is quite long,the inflowing gas through L1 appears
to move almost orthogonally to the line joining the centres

of the two stars.
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Fig. 1y

The configuration of this 1s shown in Fig. (1.1).The
incoming gas orbits the primary in the binary plane at a
distance RC such that the Keplerian orbilt at RC has the

same angular momentum as the transferring gas had on

passing L1
ql
Ng (Re) = &&)
Ri (1.1.1)
2
with RC‘J? = blfﬂj bl being the distance of Ll from the
centre of M and ) = 2W/p, P being the binary period.

1
Simplifying and using Kepler's law

P
4700 = G (M Ma) P
(1.1.2)
4, 3
one gets Rc = (l+q) by/a”,q being the mass ratio Mz/Ml.This
gives the mnecessary conditions on dimensions of the disk,
once the mass and radius of the primary is known,along with
the binary period. As the disk is composed of matter with
bulk motion there could be dissipative processes giving
rise to a redistribution of angular momentum and subsequent

infall of the material from the disk onto the primary
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surface. As the gas

element starts at distances quite far

from the primary,with very little binding energy,the total

luminosity in steady state 1is

-

Gty M

Loasiy = *jiizﬂ
(1.1.3)

ﬁ being the accretion rate. This disk luminosity is just
about half the accretion luminosity which is obtained when
all the kinetic energy of infalling matter 1s given up at
the stellar Surface,Lacc= EME%.ThuS about half the kinetic
energy of matter would be lost due to disk luminosity and
the dissipative processes producé torque that transport
angular momentum outward and finally away from the disk.

However, the timescale over which

enough

one can conceive of disk
equilibrium around the primary
and the outer edge 1inside the
Most of the disks are generally
there do exist discussions of
edge being Dblown wup

the gas 1in

up 1nto temperatures A 105-106

X-rays. Further these soft

relativistic

by inverse Compton scattering

observed in the X~ray binaries.
Lynden-Bell

(1969) "studied

configurations

this happens could be long

(in fact depends on the nature of viscosity) so that

existing 1in
with the inner edge at Rc
Roche Lobe of the primary.

assumed to be thin,whereas

thick disks with the inner

by radiation pressure.In either case

the inner regions of the disk would get heated

K and becomes a source for

¥-rays scattering with the hot

electrons of the plasma,achleve greater energy

and appears as hard X-rays

the accretion of matter by
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massive black holes at the centre of éaiaxies as a possible
mechanism of energy generation‘byrquasars.Shakura (1972),
PringieA and Rees (1972) and Shakura and Sunyaev (1973) have
studied the accretion process using Newtonlan dynamics
whereas Novikov and Thorne (1§73) have extended this study
to include the effects of strong gravitational fields by
having a general relativistic approach.They consider the
formation of a disk around a compact object slowly
spiralling onto the object as angular momentum is carried
outward by viscosity.Molecular viscosity being too small to
produce the required di;sipation of energy to acéount for
the observed luminosity, it is considered that there exist
large anomalous viscosity whose origin may be turbulent or
magnetic >stress. Since the mechanism of producing viscosity
by turbulence or magnetic field is not well understood, it

is characterised by a parameter oL given by

2.
s Ve + W

=, 9,
Als 4w 3\s :
where
2 -
Xﬂs = g &Xil + is the thermal energy density

of matter, Sy 1s the energy density of radiation,VS is the
sound velocity 1in the fluid and Vt is the characteristic
turbulent velocity. All the dynamical variable connected
with. the accretion flow can be determined in terms of of,
the accretion rate ﬁ at the outer boundary and the mass of
the central object M and distance R from the central object.
These models are known as e -models.Properties of the disk

are largely independent of the central body except at the
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inner boundary. If the object 1is ; neutron star or white
dwarf, matter have to be slowed down before it hits the star
surfacé. The précess By which it is slowed down determines
the nature of the padiation spectrum.If the objects have
magnetic fields associated with it,as we go neérer to the
object the magnetic pressure 1increases more rapidly than
gas pressure and when they are of comparable magnitude,the
disks gets disrupted and matter starts flowing 1in
quasi-radial orbits along the field lines.This process will
also change the nature of radiation emitted from the inner
reglions of the disk.

Most of the accretion disk models had been constructed
in the realm of Newtonian description of gravitation as it
was always believed that the gravitational potential at the
site of emission is rather small.However,in the description
of accretion disks the &effects of general relativity had
been considered by Shakura and Sunyaev (1973),and Novikov
and thorne (1973),Page and Thorne (1974) and several oehers,
an 1ntegrated tfeatment of which may be found in Shapiro
and Teukolsky (1984).The situation for considering general
relativity in the accretion dynamics hés gotten further
strengthened with the discovery of quasiperiodic
oscillations 1in the galactic X~ray sources. Paczynski
(1987) has bointed out the relevance of the flow through
Los? the marginally stable orbit for nonmagnetospheric disk
accretion onto neutron stars,which requires the discussion
of flow properties as described by general relativity.

In case the compact object is a black hole,it is very
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pertinent’ to have the general relativistlc formalism since
the disk could reach almost ’upto 3m (i.5 times the
Schwarzschild radius) with the help of external magnetic
fields. The same would apply to the case of extremely
compact neutron stars too.Whatever the emission mechanism
be, it 1s evident that accretion in binary systems with self
consisteﬁt electromagnetic fields 1in the presence of
intense gravitational field is the physical phenomena whose
dynamics has to be properly understood for constructing

models.
1.3. Basic Theory of ol -Disk Models

Assumptions

1. The disk is considered to be geometrically thin.At any
point on the disk with radial distance R from the
centre, the thickness of the disk H 1is such that

H/R << 1.

2. Pressure gradients and heat flux along radial
direction are neglected.Hence it can be safely assumed
that matter foliows Keplerian orbits. At a radius R
from an object of mass M, the Keplerian angular

velocity is given by

Ha,

O = £1KCR>'3 C{%3> (1.3.1)

and circular velocity V? = R.IL&R).



— 15_

3. Radial drift velocity VR is small compared with VcF(VR
| = (2 M2

S ¢

Vertical component of the velocity VZ is negligible.

<K V%) and is subsonic VR <V

Nz <<NR <Q \{(P,

The disk is characterised by a surface density !:(R,t)
defined as the mass/unit area of the disk and is obtained
by integrating the density in the Z-direction.

The equations of motion for a fluid element at radius R can

be written as
R 4L + & (RINg) =0
(conservation of mass)

and (1.3.2)

2 Q) = L u
R%—b(?—“’—>*§g<‘(2\l“a ) 2w THR.

(conservation of angular momentum)

!

(1.3.3)
where G(R, t) 1is the torque acting due to viscosity and is
given by the expression

T - a8,
k) = 2T R ZRT QL
Gt (R1%) e |

(1.3.4)
These e@uations can be used to obtain the equation for the
time evolution of the surface density as given by

b S’ W, Wa
0L = 3 2 g @_.Eq)'za
5L R 9R | DR,
(1.3.5)



and radial velocity

— : it
Je = - 3 98 &z&“‘j
5 gl 3] '

(1.3.6)
If Y s known, all other dynamical variables of the disk
can be determined in terms of 2 .The standard ol -disk is
characterised by the viscosity relations
2D = o CsH

(1.3.7)

where g is the sound speed in the disk,H is the thickness
of the disk and o < 1.If magnetic fields are present ol is

L
increased by (S V\'{ﬁ&where is the Alfven speed in the

VA

disk.For steady state one can get the following relations.

Accretion rate

-

M = - 21U R ZANR

2

(1.3.8)
L i
. 2
Dy = M \:\““‘ (Rolr) ]
AW ’
(1.3.9)
where Rg is the Schwarzschild radius of the object.
Viscous dissipation per unit surface area
: \
- MM
pR) = BOMY T (e )]
R0 RS
(1.3.10)
Luminosity of the disk
Gt
Ld\'am“ (1.3.11)
2 Ry

The vertical structure. of the disk 1s obtained from
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hydrostatic equilibrium in the Z~direction (cylindrical

polar coordinates)

Lep . 2 [ am
¢ 01 O¢ (R z2%)%

(1.3.12)
which for Z <KR gives
L OP - — OME
AL R.>

(1.3.13)
with the solution

— 2?2 >

SQ%IQ‘B = ’gc@) Q%PC le

(1.3.14)

2
where we have taken P W ?Cs . Half thickness H is given by
2
B = Qs R &M
M (1.3.15)

For the thin disk definiton to hold we need g << G?%@llz
i.e.,local Keplerian velocity should be highly supersonic.

1.4. Time Dependence of ol -Disks

Lightman (1974) and Lightman and Eardly (1974) have
studied the time dependence of O -disk models to understand
the stability. of time dependent disk models and the
variability of mass deposition’ rate as a possible
explanation for the observed periodicity in the X-ray
source HerX-1.They obtained an ‘'evolution equation' for the

surface density si of the disk,which when solved can be
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used to calculate all other disk struétdre'variables.lt was
found that, in the inner region of the disk,Where.radiation
pressuré dominates thé gas pressure,an instability which
leads to clumping of matter into rings occurs.This shows
the break down of 0L -disk modei at the inner edge and makes
it necessary to revise the basic assumptions behind this
model. One important assumption‘ is that the disk 1is
geometrically thin everywhere,which need not be true always’
If the disk cannot radiate away all the radiation produced
in the 1inner region,pressure gradient forces will develop
in the vertical direction leading to bulging of.the disk
and formation of thick disk structure with thickness

comparable to radial distance.
1.5. Thick Disks

The theory of thick accretion disks 1is relatively less
understood compared to that of thin disks.Thick disgs are
formed -when the accretion rate is large enough to produce
luminosities of the order of or more than Eddington
luminosity, where the Eddington luminosity 1is the

luminosity at which radiation pressure on free electron
— 2,
4 &‘\J\W\\gc with
Sy
G-

T being the Thomson scattering cross section.As already

balances gravity and 1is given by LE

mentioned, this leads to the formation of pressure gradient
forces which supports disks with thickness comparable to
its radial distance. Another reason for the study of thick

accretion disk is that, they provide a mechanlsm by which
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particles_ can be accelerated to very Eigh velocities in the
narrow funnels that they possess;due to the large radiation
pressdré gradients that exist there.Thus thick disks can
explain at the same time both the energy generation
mechanism as well as the oﬁsreved jets in objects like
active galactic nuclei.

One of the wearliest studies of thick disk is that of
Fishbone and Moncrief (1976). They studied statiomnary,
axisymmetric, purely azimuthal flow of isentropic fluid in
an arbitrary stationary, axisymmetric gravitational field,
and as a special case obtained solutions for a fiuid disk
around Kerr black hole without taking self gravity of the
disk into account. For constant angular momentum per unit
mass, it was shown that disks have considerable thickness in
the direction perpendicular to the equatorial plane.
Following this, Abramowicz et al (1978) have given an
analytical theory of the hydrodynamical structure of

accretion disks around compact objects, using a
G
R~ Ry

most features of a Schwarzschild metric.They showed that,

pseudo-Newtonlan potential %’ = ,which reproduces

for a disk with constant angular momentum density,the
surface of the disk lie on equipotential surfaces and the
inner edge of the marginally stable orbit shows a cusp
located at the equatorial plane (Fig. 1.2) between L and

r Paczynski and Witta (1980) and Jaroszynski et al (1980)

mb”
have worked out details of thick accretlion disk models
which can produce super Eddington luminosities with large

accretion rates. In the models of Abramowlcz et al,the gas
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falls over the. cusp with no dissipatién of‘angulaf momentum.
Accretion 1s driven ' by pressufe gradient forces and there
is no need of any viscosity whereas Paczynski and Witta
considered generation of energy by viscous dissipation.
Abramowicz et al (1980) in their study of thick accretion
disk | using Newtonian dynamics have shown that, super
Eddingtoh luminogsities (L v~ 100 LE) do not change the
equilibrium configuration of the disk. Rees et al (1982)
have studied ion supported torus around massive blackholes
accreting gas at subcritical rates in a galactic nuclei and
shown that, the inner regions of such disks can collimate a
pair of relastivistic jets comprising electrons,positrons
and electromagnetic fields.The acceleration of the jets is
possible by tapping the rotational energy of the blackhole
thfough electromagnetic interactions. Sikora (1981) studied
the effects of absorption and re—emission-of radiation from

the surface of the disk and have computed upper limits for

*
‘

the total 1luminosities and collimation of radiation from
thick radiation supported disks. Chakréborty and Prasanna
(1982) have <clearly wunderlined the necessity of wusing
General Relativity by comparing the meridional stfuctue of
thick disk in Newtonian and GR formalisms,and showing that
the cusp at the inner edge forms only when GTR effects are

considered.
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1.6. Magnetic Accretion Disks
g

White dwarfs and neutron stars generally possess
surface magnetic fields of the order of 107 G and 1012 G
respectively. Even though a black hole cannot have intrinsic
magnetic field asociated with it, external currents can
produce a field around i1t.It is gemerally accepted that,

magnetic fields can play the role of viscosity in

transferring angular momentum and further acting as a

a
[}

dissipatidn mechanism. If the magnetic pressure 1is
comparable with the gas pressure, which 1s possible in
various <circumstances 1in the inner regions of the disk,the
disk gets disrupted, and the matter flow acquires a
quasiradial nature following the magnetic field lines.The
emitted spectrum can also be significantly modified when
magehtic fields are present.

Lynden-Bell (1969) has considered magnetic fields as a
possible mechanism of viscosity. As a magnetic field is

sheared by an initially perpendicular displacement, the

b8
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component across the shear |is left unchanged whereas the
one dowﬁ the sheaf gets continually amplified till the
magnetié pressure becomés ‘equal to the gas pfessure.The
resulting magnetic stress can be estimated to be equal to
UQJ\.QP A Wa X H"F ‘%L/"\/\ HZI,S‘W. N QE‘_“_’_), . Shakura and
Sunyaev (1973) have shown that it 1s possible to
incorporate viscoslty produced by magnetic fields in the
®-prescription, the contribution to o0& being VAZ/CQ2
where VA is the Alfven velocity.

Eardly and Lightman (1975) have formulated a detailed
self consistent model for magnetic viscosity in an
accretion disk around Kerr blackhole.The magnetic field is
amplified by shear and dissipated by reconnection,leading
to a chaotic field configuration.in steady state consisting
- of magnetic cells which reconnect with each other.The
integratged shear stress 1s obtained in terms of the
magnetic flux. Based on the microscopic formulation of
transport processes in a plasma,Ichimaru (1976) has studied
the turbulence generated by differential rotation and its
decay through current dissipation due to anomalous magnetic
viscosity. Blandford (1976) gave a model of an accretion
disk, where it is shown that, 1if the material carries a
vertical component of magnetic field (parallel to the
rotation axis), them a magnetosphere can form above and
below the disk. Analytical solutions for such a force-free
geometry was obtainpd, which ﬁas the property that energy
and angular momentum can be extracted from the disk without

invoking any separate viscous torques.Blandford and Znajek
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(1977) studied the case of a rotatiﬁg‘black hole threaded
by magnetic field lines produced by currents flowing in an
equatorial disk and éhowed that if the induced potential
difference 1s too 1large then electron—positron pairs will
be produced 1leading to the ﬂcregtion of a force free
magnetospﬁere, and energy and angular momentum can be
extracted electromagnetically.

Bisnovatyi-Kogan and Ruzmaikin (1974,1976) studied the
variation of magnetic field in spherically symmetric
aécretion flow of infinitely conducting fluid in
Schwarzschild geometry and made estimates of sfnchroton
radiation from such flow.A1s§ they showed that considerable
part of the radiation was formed in the relativistic region
r < (2.5 to 7.7) Rg. Further, they have obtained two
dimensional magnetohydrodynamic solutions of accretion of
matter onto a blackhole in the Newtonian case and obtained
the structure of the disk and the spectrum of outgoing
radiation for the <cases of laminar disks with Coulomb
mechanism of dissipation and that for turbulent disks.

The problem of magnetic accretion onto meutron stars
was studied by Pringle and Rees (1972),for non-axisymmetric
magnetic filelds showing that, if the star has a magnetic
field and is spinning slowly,accretion takes place along
field 1lines, and X-rays will be emitted thermally from
regions near the magnetic ©poles of the neutron star, the
radiation being pulsed with ; frequency equal to the

rotation period of the star.On the other hand,no accretion

takes place when either magnetic field is very strong or
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the star . is rotating very rapidly.Lamb ét al (1973) showed
that in a magnetic disk around a rotating stér,the sﬁellar
magnetié field 1is scréened by the currents flowing in the
accretion plasma 1in regions far away from star,whereas in
closer regions, the stellar field forces matter to corotate
with tﬁe star. The position of Alfven surface,where the
transition between the two regions occurs,is dependent on
the flow pattern and the strength of the stellar field.
Ghosh et al (1977) showed that in accretion of matter by
neutron star with the axis of stellar magnetic field
aligned wiph the rotation axis,within the Alfven radius, the
flow of matter is described by magnetohydrodynamics.Matter
in this region moves along the field lines when viewed from
the frame corotating with the star.Considering the case of
Keplerian disk outside the magnetosphere,they showed that,
it 1is possible to have a strong spin up torque exerted on
_the star ‘by the disk.Further they obtained solutions for
the matter flow and configuration of magnetic field i;side
the magnetosphere, both of them showing dependence on the
angular momentum transport to the star by accreting matter.
By matching the solution of flow in the regions outside and
inside the magnetosphere,they obtained torque acting on the
star and further calculated bounds on the accretion torque.
Extending their study Ghosh and Lamb (1978,1979) showed
that the stellar magnetic fileld cannot be completely
screened Dby fhe disk plasma and the coupling between the
two exerts a torque on the star.They calculated the total

accretion torque, which shows a periodic change which is in
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accordance with the observed periqa changes in pulsating
X-ray sources. In the «case of steady, axisymmetric disk
accretion by aligned rotator, a detailed structure of the
vertical and radial structure of the transition zone was
obtained. They calculated the éffective conductivity of the
disk plasma under steady state condition and the effectlve
dissipation which is 1n agreement with that expected from
magnetic flux reconnection.

Aly (1980) obtained the structure of magnetic field
resulting from distortion of stellar field by currents
flowing in the disk with a perfectly conducting plasma,
whereas Kundt and Robnik (1980) obtained the field line
structures by mnumerical methods.Review articles by Gerhard
Bornet (1980) and S.Hayakawa (1986) give a detailed account
of production of X-rays from accreting neutron stars where
the effect of magnetic field on accretion flow is reviewed.
Kaburaki (1986,1987) has studied the structure of Keplerian
disks threaded by magnetic field lines and showed thét the
azimuthal velocity of the disk plasma 1s somewhat reduced
from the Keplerian value due to the pressure gradient
forces exerted by the magnetic field.Magﬁetic stress acts
as viscous stress and extracts angular momentum from the
disk. The solutions are obtained in terms of the electrical
conductivity, “q- = c2/4“6" which depends on the half
thickness of the disk and correéponds to specifying the
effective kinematic viscosity » = A CsHW in the standard
K-models. In another paper Kaburaki and Itoh (1987) have

proposed an analytical model for ionized jets from young
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stars, where the azimgthal component-of the magnetic field
which is generated by accretion. disks around the object
plays an‘kessential role 1in collimation and long travel
distance of the jets.

In Chapter. IIT we present a general formalism for the
study of ‘plasma disks around slowly rotating compact
objects. The study of the dynamics and structure of plasma
disks of infinite conductivity with only azimuthal velocity
nonzero around a stationary compact object 1is presented in
Chapter IV,and that of a plasma disk of finite conductivity
with nonzero azimuthal and radial velocity in Chapter V.
Finally in Chapter VI, we give results of the study of a
plasma disk of dinfinite conductivity with only azimuthal

velocity nonzero around a slowly rotating compact object.

1.7. Luminosity Function of Radiation from Accretion Disk

When the matter circulating along the Keplerian ofbit
gradually falls inward,half of the energy released will be
converted into radiation from the disk,the other half being
carried into the accreting star's surface as.kinetic energy
of the matter and is released there.Thus accretion disks
are expected to have atleast two emission reglons with
different characteristics of emissions.The observed X-ray
spectra of low mass binary X-ray sources indeed show two
spectral components, a hard component and a soft component
(Mitsuda et al 1984;White et al 1986).A detailed account of

the emission characteristics of accreting neutron stars is
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given by Hayakawa (1986). Page and fhofne (1974) gave a
model for a geometrically thin ‘accretion disk rotating
around Kerr black holeA taking the effect of general
rélativity into account. Luminet (1979) adapted the result
obtained by Page and Thorne to éalculate the distribution
of bolometric flux as seen by observers at various angles
above the‘ plane of the disk. Hanawa (1989) showed that
taking into account general relativity significantly
modifies the results obtained in a Newtonian model.Compared
to the Newtonian model,the colour temperature 1s less by a
factor of 3 in the gemneral relativistic model.Also oﬁserved
maximum temeprature has a strong dependence on radial

distance (T A r—3/4) in the Newtonian model,whereas it

col
has only a weak dependence on radial distance in the
‘general relativistic model. In Chapter IV, we give the

results of our study of the dependence of the luminosity

function for different azimuthal velocity structures.



Figure Captions

Fig. 1.1 o Accretion disk formation in Binary star
system
Fig. 1.2 : Formation of cusp in the inner region of

thick disk




CHAPTER II

EFFECT OF RADIATION REACTION ON THE MOTION OF CHARGED

PARTICLES IN ELECTROMAGNETIC FIELDS AROUND COMPACT OBJECTS

2.1. Introduction

The dynamics of charged particle motion in
electromagnetic fields surrounding blackholes had Dbeen
studied extensivély by several authors,a review of which 1is
given in Prasanna (1980). In these studies,it was shown
clearly that, in the ' presence of magnetic fields it 1is
possible to have stable orblts for charged particles very
close to the event horizon of a black hole.Negative energy

orbits . of particles in magnetic fields around compact
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objects - wherein the possibility of enefgy extraction in the
sense of Penrose process exists has been studied by
Prasaﬁna and Dadhich.(1982),Prasanna (1983) and Dhurandhar
and Dadhich (1984). Prasanna and Rawal (1983) studied
charged particle trajectories in electromagnetic fields
near compact objects in the framework of Rosen's bimetric
theory of gravity. |

However, in all these studies, the discussion Wwas
restricted to the class of orbits wherein the radiation
emission effects of the charged particles were not
considered. The trajectories of particles whose.energy and
angular momentum Wwere constants throughout were considered
and it was found that they have stable orbits under varying
circumstances. A particle 1in orbit around a blackhole will
radiate as it 1is accelerated and will loose energy and
angular momentum.A radiating charged particle experiences a
force which 1is proportional to the rate of change of
acceleration and is known as radiation reactiont It is
important to see the effect of this force on the motion of
charged particles in the context of a‘plasma disk around
compact objects, because the possibility of having a stable
disk depends on how long the charged particle can stay in

orbit.
2.2. Equation of Motion for Radiating Charged Particle

The concept of radiation reaction was first introduced

by Lorentz as a damping force that appeared in the
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equations of motion of the electron loosing energy by

 'radiatioh. However, the special relativistic expression was

:firSt'.obtained by Abraham,and is known as the Abraham four

vector (Rohrlich 1965) represented as

R;~ e CéJ.., u‘ag&)
T a3

. - (2'2!1)
\
i WU
wherein the acceleration a- = q%;g , ui being the
i ,
4-velocity defined as cﬁK ; the overhead dot denotes the

“ds

derivative with respect to the affine parameter s and ds2 =
gijXmdXJ is the background metric.
The Lorentz-Dirac equation for the motion of charged

particle in an electromagnetic field is given by

. { S

L.q e‘ -

(2.2.2)
where F,, = A, . - A, ., is the electromagnetic field tensor
1] J1 i,

with Ai being the four potential.

!
1

By dincluding the radiation reaction term,the equation
of motion for the radiating charged particle is given by

| . :
L o elud — &l a-—uaa)
Moo c 31(

(2.2.3)

For a general curved spacetime,this equation can be written

as
. \ . . ' ,‘A
{ Lo i ‘o a
Mool = € Fiud- 22 .._._.,Dﬂ-““J)
¢ C d '5c.3 Ds

(2.2.4)

where the acceleration ai is defined by
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ot= DW= Usju = qu! + r¢mUL”~
0 Ds | ds (2.2.5)
fffwith rj‘k the Christoffel sfymbols.

\
Since Rl contains the term Eaz&

05
motion dis a third order differential

»the equation of

equation,which in
general

leads to runaway solutions.However,here we consider

i
an approximate case only,where a

in the expression for R*

is replaced by the approximate form a’

N (e/Moc)FluJ,thus
reducing the equations of motion to a

second order
differential equation.

t
The term D. Q

in expression (2.2.4) can be written
Os
as

D -
D_gé: BSL%\“rd J “j\u Lrém:lskuk

—_ v n "y
- _@;.LF—\‘\,\KA + & FEF\%U\,] :
Moc d Moc

(2.2.6)
where we have used equation (2.2.2)
Using the relation rt ., = F* . Vﬂ x + N “w\in
P; ] Py 1 JP m mj p
(2.2.6) 2

and then substituting it in (2.2.4),the equation of
motion can be written explicitly as

-

SN o
cii\_ = - réy\u(& * @'fM“’*) TZS o
a3
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(2.2.7)
Considering the motion of charged particle din an
electromagnetic field superposed on the Schwarzschild

background;

ds~ U~2pr dk«(vzhu)d& xdeﬂﬁwmd¢

(2.2.8)
the four components of the equation of motion can be

written as
2

A =\ 2 | 8
AUt~ WM — 9 AP
M=o (=2 ) Wh )

2, 2
+ n(\- z&) Swe wd %LQ 2%) N
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(2.2.13)
Assumlng the velectromagnetic field lto be of purely

magnetostatic 1in nature and dipolar at infinity,one can use

for Fij’ the components obtained by Ginzburg and Ozernolil

(1964) as wused by Prasanna and Varma (1977) the vector

potential Ai given by Ai (0,0,AP,O) with
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and the assoc1ated magnetic field components are

.9 . - -
Fhr.? = - 5‘/\.5\?\6 g‘: \V\(\-«‘Z@).ﬁ. (\., QW\)\+\
2 WA A A
4 (2.2.15)

\:ec{s = 3\"“?1,7‘ Stwe Cos o [‘Q_A,\,C\——Q.W\)—l(‘l\m —kQW\]
4\~\

(2.2.16)

Using these in the system of equations (2.2.5) to
(2.2.11) one will have the general equationsv with the
appropriate radiation reaction term.However,considering the
particles to be confined to the equatorial plane
(& ="T/2) of the compact object,one knows the nature of
orbits without the reaction term as discussed by Prasanna
and Varma (1977),in terms of the effective potential.As the
equations are a coupled set of second order nonlinear
differential equations, they may at best Dbe :solved
numerically using proper initial conditions.

If we consider the radiation reaction as a perturbation
to the motion of the particle with energy E and angular
momentum L as constants of moti@n,the initial conditions
caﬁ be obtained from the first integrals of motion for such
a system. As glven bvarasanna and Varma,the lagrangian for
the motion of charged particle in electromagnetic fields 1is

‘given by

S0 ) . {3
Y <. g
L%\d\/tab‘»o* ZA’L o

(2.2.17)
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- Qhere the suffix o denotes unperturbed quantities.If the

are stationary and

‘background metric gij and potentilal Ai

 agxisymmetric, two first iﬁtegrals of motion may be written
corresponding to the two ilgnorable coordinates t and q> of

the coordinate chart (t,r, ©® ,?5) as

o= ~[aglevem) s peltemfo
Ltqbo = \t%qw(é* €A£> * c(}+cF(L~£A~P): [D
(2.2.19)
with
| 2
O = 3¢ Jet = Gro
(2.2.20)

Using the normalization condition for velocity one more

integral of motion can be obtained as

- 2
A
<}L o
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(2.2.21)
For the motion of charged particle <confined to the
equatorial plane one can consider u = 0 .and -equation

(2.2.18) to (2.2.21) give the required initial values of
n -t,
W s (A? ,and w .
The complete set of differential equations for this

case in terms of the dimensionless parameters
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dt - 2 (-2 3 d?}( . )
ae® Ql
— tb?\{ ?QLQ lV\(\—-Z/@ + (\~Q/,§S‘+\ d_}ﬁd_o_\*%‘
=3
-\
— %m<dg_€>[€ ln(\aﬁ) + (0 2/e) +\]
2 A\ (A 7’]
[ fomp) ~ @)
(2.2.24)

2.3. Results and Discussion

As one can obtain self consistently the solutions of
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:f orbit‘ equations 1in terms of trajecfofies for par;icles with

;given iﬁitial conditions the plots so obtained would show
;he effects of radiétion reaction. As the effect of the
reaction term is cumulative one can only hope to sece
substantial effect oniy after a large number of revolutlions.
However, continued integration over several number of
periods does not show any appreciable change in the orbit
profiles from those obtained earlier without the Ri term.
This clearly indicates that for the situation under
consideration with the allowed values of dipolar magnetic
field on the Schwarzschild background,the loss of energy
due to radiation reaction seems to be negligibly small even
over a large number of periods and thus there is no orbit
loss for the particle.Thus the particles seem to continue
in their stable orbits for sufficiently long time thus
paving way for possible build up of structures which might
lead to disklike configurations.With this in the background
we proceed on to consider possible equilibrium
configurations by just generalising the orbit equations
without the radiation reaction term leading to fluid
equations of motion obtained through the conservation of

energy and momentum on a general curved space.



CHAPTER III

FORMALISHM

In this chapter we describe a general formalism for
discussing the structure and dynamics of plasma &isks,
around slowly rotating compact objects, having finite

viscosity and conductivity (Prasanna and Bhaskaran (1989)).

3.1. Dynamics of Plasma Disks
The dynamical equations for the motion of fluid in a
general curved background is obtained from the conservation
i3, o 1] )
laws T 3& = 0 where T is the appropriate energy momentum

tensor. In general, the geometry of the spacetime should be

obtained by solving the set of Einstein's equations
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Gij = Tij' However? if the selfi gravity of ‘the matter -
‘distribﬁtion 1s mnegligible compared with the gravitational
field~bof the - centrél object,the geometry of the spacetime
can be takem to be that due to the central object only,
which ié given by the wvacuum solution of Einstein's
equations.

The spacetime outside a  self-gravitating, rotating
compact object is described exactly by the Kerr solution of

Einstein's equations. Expressed in Boyer—Lindquist

coordinates,it is written as

ds = (G = QISM%) k" 2a35Me (sl ’Az)d"d‘f
P

Y

N
— (B]g) Swie aq = (F,)W - Tae®

(3.1.1)

with

2
A = .%24 o — 2mh

b = Ay 03'65616

2,
GS = Q%%¥CK1> - 4&‘33250&%5

For the convenlence of comparing the results with the
observations in local inertial frames,one should be able to

transform the geometrical wvariables idinto variables in a
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local Lorentz frame. Two types of 1local frames can be

'defined. One, the local Lorentz frame (LLF)'corresponding to

an .oﬁéerver (defined.through the principle of equivalence)
at rest and the other, the locally nonrotating frame
corresponding to an observef comoving with the disk.These
transfofmatons can be carried out using orthonormal tetrads
corresponding to the respective ffames.

For any metric dsd'= gijdxtdj,an orthonormal tetrad can

be defined through the relations

af= @)= @)= (e @)

(3.1.2)
ea the one form being defined as
a 1 o= Oy 52,3
& = A% dx , _
1 = 'tl'ﬁ 61? R
jk% are the components of the tetrad and are related to
the metric coefficients through the relation
%‘6: N\o‘bo‘t;\é 2 Gd:’vl Aa A’
(3.1.3)

The Kerr metric can be written in the following two tetrad

fi:és:w UQ. ) %- 2 %q a
as’= [ (%) db] - (%) o\.x} - [2%ae]

——

Ua, 2

¥ (5 St (0\?,‘. 200m ca\.&)] (3.1.4)

= T T = o
2.
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and" A Q
as = (A"i) [Cu; -\—'e\é\‘\f%e dcﬂ . (‘za) A%
ol
o oside | (a2re?) dg ¢ ade
—~ T de Liq LQ T 9 ]

(3.1.5)
Metric (B.1.4) gives the tetrad for the locally nonrotating

frame as

a
A (LNRE) =

I o,
(/_&___2_4) o o o
o)
o,
AR
o o () o
| Qevmf dlwes o Qsl’i,)%—s“"%
L "G’.)”L)m‘ '

(3.1.6)
Similarly from metric (B.1.5), the tetrad for the local

lorentz frame can be obtained as
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o
(_X___) b o o - \N\ QSW;LQT

DT e @)

3 .
o (z/zQ o ©
HL
O © z O
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_ asive o O @\ i )“L\MJ
]Ehm (3.1.7)

As we are interested in the study of plasma disks
around slowly rotating compact objects only,it will suffice
to use the 1linearised form of the Kerr metric written as

(neglecting terms of second order in a)
N V2 R N N L
(‘=20 ) k™ | (—2am ) dra'— sZde 45 Lo
A A

4 dom st A Al

A
(3.1.8)

The associated orthonormal tetrads for this metric are

-
Q\Q. i |
[(LNRE) = C\“‘l‘ﬂ-’);) o o o
o) @ Q—B_V\:} ) O
ﬁ
@) ©) N 0
\\ - 2, St 0 0 AXwao
A2

(3.1.9)
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and
q ..
A P (Lee) L
— b A
Cr— 2w o o - q(\d&\f@%@ h
Gy ™ 6 ©
\ -2
o X
@) o A ©
bW

.
(3.1.10)

The components of the affine connections for this metric

are given by

[ = = %}V Q%g\
rgLe = = AL 2%3’\)
C fﬁ - = (- 9):_%) S0
\"é\: = v\%lu_ QMAA)
e
The = "\51

\M:* = T Stwae Esse.
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LAk £2 ry

(3.1.11)
The components of electromagnetic fields and of the
velocity can be expressed in the respective frames through

the following transformation laws

Cp)

e <
\f(—: ANepy N7 4 AW

SIS Y

) &
?\hc\a)\JU ¥ ¢ AW

(3.1.12)

and

. a) ) -
= \\C\ = ’/\(’{I A ] - Lh)
(3.1.13)

where the indices with brackets represent the components in

: oC
the 1local frame and V is the spatial 3-velocity vector
A o 4
defined through the relation &« U= N W

/C (Prasanna 1982),
- where &K takes values 1,2,3.

For the case of the linearized Kerr metric the
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components of velocity and electromégnetic fields in the

two frames are given by the expressions:

LNRF
[ C
N = Q=2 )
A
]
\I('B - LQ\"QM)/L\I@)
Mo ()
¢ L Ceaw) U
A St A
(3.1.14)
~llo. A
- - A - aw \
Ta= E® %\“‘%U ,Q Stuwe b @
I,
E‘ & =

A2 Ew * 9-9-’”“}—; Stve B ()

' 1
E¢ = hQ\—‘l_ngi)" Stwa B

Br= R Swe B@)

-l
Be = (- 2“_:\,\) St B

Ly = 9\(\«(2\%\;) B ) (3v.1.15)
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e A
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W
— 1L
L\A« & (-2 ) Sone \lu‘)j
e, A
Ean= T+ & L-2m) stne Q@)
Lo
Teo = .9\;(‘\-‘“9’3".".,) Ee)— A dlue B
A, A
Wa
C“T = ?LQ-«Q&/;\) St G )
e o
By = ATy @) — al(‘-’”—”ﬁi) S\‘V\Q'@' & @)
~\ >
Qe = hQ\—-Q%) St B @) 4 @ Sta'e Gen)
| ~Wa.
QsC\ =

A, Qva.v}\\) Bep)

(3.1.16)
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Here we . have used -the electric and magnetic field vectors

defined as

= o, = v:okb‘ And

= ¥+ B |
Qb(k'" 5Ld.ﬁ ‘b (3.1.17)
(without any summation).
The energy momentum tensor for an imperfect fluid with

the associated electromagnetic field is given by

(neglecting the heat conduction)

“

VoA ! ! v
T (en F) Wb - Py ased e

(3.1.18)
with
: \
- - . a Wy
P= P- (“’\b 2/5”\5) ®; @ "
(3.1.19)
: : : Al o iy
B \b\'\ 3 6) { A d‘
Gr*):: i-Q\A 4& kY ib 3(9 b y
(3.1.20)
and )
¥ Y _ \ﬁ&A
h™ = 9 ,
(3.1.21)
C;lJ, ® and hij representing the shear tensor, the
coefficient of expansion and the projectlion tensor

respectively and 'ﬂb and ‘qs are the coefficients of bulk

and shear viscosity respectively.The electromagnetic stress

tensor ElJ is related to the field tensor F., . = A. .
‘ ij i,3 - Ai i
H

'through
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A - ) * ~ ' oy K\

\ WKed, - L g e E
5 d.':- = RiR .2% Fw :
. (3.1.22)
The dynamical equations for the magnetofluid is obtained
from the conservation laws

oL
T:)d"‘o

(3.1.23)
together with the Maxwell's equations
il 1
Foow = =~ 3 ; F:tnb)\g] = O
(3.1.24)

Supplemented with the generalized Ohm's law for the current

four vector

-~

; .
J

s, + & Flyw

1l

(3.1.25)
where 2 1is the charge density and G is the ele;trical
conductivity. In general, the conductivity in a plasma will
be a tensor quantity, but here we consider it as a scalar
only. |

As a special case we consider the shear viscosity to be
zero (”ls = 0) and use equation (2.1.18) in (2.1.23) to get
the momentum and continuity equations.Written in terms of

the 3~velocity vector defined wearlier, we get (Prasanna

1982)



(3.1.26)

6)—* @}C’L) [\IKJ"‘\ + Tew = (- FYB,Q)\I V(,L\su \lp_]

4 2 C?* E) N QQ" P/(ﬂ-)

ot c
R Y e
. 8, + < __B_er«-o.\:ww]
N
cme"—\ 4 ot 3 5] ae

(3.1.27)

For the case of the linearised Kerr metric these equations

reduces to %

(s @‘/Cq_) u@?‘[ =N " Qe ) e ot

— R O QM) NEaSee awx)\'_'\x A% Sme,q‘t:l

( . N _
4 Gawm Q\—‘l&ib ST \tﬂ $ (-am)) 2P
c At | oL
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(e ) w2 2o o ey oy

— St ey \)‘{’ 4 20M S\we\j‘?izc. Cos &
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e AN .2 7b‘ j\,s;ui

- Q.&s\'e\{e’\ff—y 2ame o eske o
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IV 2awme Y1 OF oamy , L, o
* L oad/c* ';t;( A XSt ke 2ch

(3.1.28)



c.5\3‘ (3.1.30)
and
N \Ié ~\ 91
@J¢ p/(’q)\‘ a_\__‘_* < 8_.... i 8\(“? L. 2w Q_-(Lw\)\‘
SA e O P
N J¥ . Gow 2w ) Sive \f‘d“\j
e Q"\l Ar QJA\’B X 'C\-" Vi
A CA*
% ) (‘Q"‘plm "c\]o(-—&« (_'{—'? )
Bl © d [
\~ g,m OP & 2owe IP
* c‘m‘ﬁ"‘ic \L v O
SR
* LF*‘\,\T&ul PRSP U\‘wb)} =Y
(3.1.31)
Using the relation
% du = 3
(3.1.32)
ut can be expressed in terms of the spatial velocity
{
components as
<)
2 ~\
W= - Q_V;}\) (_\~—-\l7@.>
N (3.1.33)
2 2z
where ‘{2 = \ch) )vk \1Bf) , bracket around the

indices representing components in the locally nonrotating
frame.
Using Maxwell's equation (2.1.24),the current Ji can be

written as
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N lvy
:\T’:ﬂ ) e, (_?_3_'3__, - ' 2, (‘;szm 73
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Maxwell's equation gives four more equations:

3'{5% “ ?2_%? Y D%ﬁ =0

DA 2 &ﬁ (3.1.38)
pILYY + 5@%&;« OGe - ©
vlvi g 2<‘>
(3.1.39)
a@:@ + aGA\ — 8@ = 0
e ‘Dc‘) oD%,
(3.1.40)
2B + Do - 4 = 4
o PR o6
(3.1.41)

Together with the Maxwell's equations (2.1.34) to g2.1.41)
and the expression for ut,the set of equations (2.£.28) to
(2.1.31) constitutes the set of equations governing a
magnetofluid supported on the background geometry of a
slowly rotating compact object.

3

3.2. X-Ray Emission from a Geometrically Thin Disk

Page and Thorne (1974) obtained an explicit algebraic

expression for, the radial dependence of the time averaged
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_energy flux emlitted from the disk}s'surface.Assuming the
idisk to‘reside on the equatorial plane of a Kerr black hole
and "be thin with 1its material moving in nearly circular
geodesics with negligible heat transport 1In the radial
direction, they obtain the fime averaged flux of radient

energy emitted from the disk surface to be

= 3 ! B 2 - ¢b+§a*\v\(x/¢h>
§ 2w, xl(’x%&x-\cna*_)l. *

2
— ¥y ax) o (X0 >
- Xo ~ ¥
(s —va) (x - *3) '

- Blamo0T e (Lot

Yo — X
o (ta—a) (Xa-%s) ST

- ptecad (2 )

X5 X3 - x\)(&r X2.) o %3

(§.2.1)
wherein a* = a/m,x = (r/m)llz,xo = ( %%%i)l/z with Juwa the
radius of the i1nnermost stable geodesic orbit (marginally
stable orbit) and X5 %, and Xq the three foots of the cubic
equation x3 - 3x + 2a* = O0.Luminet (1979) and later Hanawa

(1989) obtained the expression for Schwarzschild space time

(a=0) given as

= = (5(4“““a Q\m.%w\) i\ Jﬁvm 3ﬁ& \ (}4QJ*§ECA .kqu§ )

2w J\‘ \.—'\'\Fl.-l'z,
U AS

(3.2.2)

&

where M 1s the accretion rate,the flux being measured by a
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1ocal observer comoving with the gas 1in the disk.The
effective temperature of the disk as a function of radial

vdistance can be obtained from the relation

Q4.
Teﬁ = G: !6‘)

(3.2.3)
: where G~ 1s the Stefan Boltzman constant.

As the gas emitting radiation is rotating around the
central object, the radiation that the distant observer
~receives will be redshifted or Dblueshifted according to
whether the radiation is emitted from the approaching part
of the disk or from the receeding part.Also,thé intense
gravitational field at the site of emission contributes a
gravitational redshift. The amount of redshift will depend
on the wvelocity of fotation, angle of inclination of the
disk to the 1line of sight and the mass of the central
object. Hanawa obtained analytical expressions for the
redshift for the two extreme cases, l.e., when the
inclination angle 1=0 9or W /2 for radiation from agdisk
rotating with a velocity

llL
\lcf - BCIIIEN
v A
Ac®

(3.2.4)
and calculated the corresponding temperature distribution.
The expression . for the observed temperature can be

rewritten in terms of a general rotationmal velocity V? as
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(

(3.2.7)
The + sign corresponds to the blueshifted part and
the — sign to the redshifted part of the émission.Equationé
(3.2.5) to (3.2.7) <can be wused to obtain the radial
dependence of temperature distribution in a thin accretion

disk with an azimuthal velocity VQ.



CHAPTER IV

PLASMA DISK AROUND A SCHWARZSCHILD BLACK HOLE WITH NON-ZERO

AZIMUTHAL VELOCITY : STRUCTURE AND LUMINOSITY

4.1, Introduction

In the third chapter we gave the general formalism for
studying plasma disks around slowly rotating compact
objects. In this chapter we consider the —case of a
stationary and axisymmetric disk around a nonrotating (a=0)
compact object, having only its azimuthal velocity nonzero.
We assume a magnetic field which is dipolar at infinity and
look for equilibrium configurations of the fluid in the

gravitatlional field of the compact object such that at the
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inner }boundary of the fluild, thé Hydrosthtic pressure ls
balanced by the magnetic Bouyancy. Furthermore, we shall
assume the fluid to . be infinitely conducting plasma with
zero net charge,and having oﬁly its azimuthal component of
spatial 3-velocity nonzero. We obtain the equilibrium
configﬁrations for a disk of incompressible fluid confined
to the equatorial plane of the compact object and further
study the nature of luminosity flux functions for the class

of velocity fields (Bhaskaran and Prasanna (1989a)).
4.2. Disk Structure

The dyanmical equations governing the structure of such
a cbnfiguration is glven by the set of equatlons (3.1.28)
to (3.1.41), with a=0 and Q& = 2&. = 0,f being any
2¢ pdy
function.
Due to axisymmetry and stationarity, the toroldal
component of electric field EcF is zero and the syétems of

equations for the magnetic and electric field components

reduces to

(4.2.1)

o6 ox ' (4.2.2)
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(4.2.5)

e \ -\
1 = =L V2 /r2e)y — (-29) &(® G)]
- S\L\_Z)“;\C" €x) 5“'\18(“ R fm&ww ° a ey

Since the charge density % is zero and the electrical
conductivity G 1is infinite the generalized Ohm's law

(3.1.25) gives the force free condition

\ 0
F‘Ku\L = O . \\\

(4.2.7)

n 8

For V and V zero, this gives the two relations
between the electric and magnetic field components ‘
$ : = $
Ea= N Boe o e = —N" B

< < :

(4.2.8)

As the magnetic field 1s assumed to be dipolar at

infinity,one has the simple solution

.‘5.X-: ‘59*”% S(v»e Ekﬁ(a;
h

(4.2.9)

with BO belng the surface field of the compact object with



- 63~
radius Rg.In terms of the LNRF components,one has the field

given_by

5
Bead) = Bo(Ryy) Gme o

3 ' o,
Be) = Be (RYy) Siwe -24) (4.2.10)
2
Using (4.2.8) in (4.2.2) an equation for V? can be obtained,

which expressed in LNRF components is given by

-\
St 8 L 2 eape ), 2t (1- 293 eogou®

20
)
+ 24 Es3o :¥£§i = 0O (4.2.11)
which has the solution
\[C(P)i K Q= 2m ) CEL" )Sw\ Q

(4.2.12)
"N e
where ¥ and n are arbitrary constants.As V and V are

zero,the momentum and continuity equations reduce to

e €T e Cam ) —2wm ) §¢ \rj
& _gl)u me (- ) — 4 (-2t ) Sidte o

S =W
tQ-om) eF = PRy
(4.2.13)
(L, ,Vq% L oOp e~
- GDJ{ P/c'z)u‘" Stk Cota V. TR T PR,
(4.2.14)

~
(chu\_”‘ \:tv\“’cPC> d[c = O )

(4.2.15)
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-~ - 2Fied w A = O -
g \’\_ . (4.2.16)
. - o :
Here we have P = P as V and Va- are zero.
‘Since i;cF = 0, the two constraint equations (4.2.15)

and (4.2.16) together give the relation

A - —
%(93 — Q)j\.d = O ‘::> (_%X_J}(‘:; - O
' ’ (4.2.17)
As B&L is =zero on the equatorial ©plane e =T /2,
(4.2.17) would require J¥ to be zero on © =W/2 plane.
h c) .
However, as V and V are zero,if we assume the currents
J'  and .Ie also to be iero, then both the éonstraints
(4.2.15) and (4.2.16) would be identically satisfied.The
first two Maxwell's equations (4.2.3) and (4.2.4) give two

equations for B? s the toroidal component of the magnetic

field as given by

2. (Sy PN =
2ﬁ3<~\vVe CT) O CAWC\

%}L (‘C_\-‘Q.\_'_V\j\'_) %cﬂ e (4.2.18)

which has a solution of the form

-~
Dy = KiQi—2m)

Stve '
| V\ (4.2.19)
kl being a constant.
s ]
- However, wilth J and J zero;B? does not enter into

any dynamical equation, and for the present case one can

choose B ?, to be zero without any loss of generality.Using

y ¢9)

the expreésions for B(r)’ B @) and and equation

(4.2.8) 1in the remaining two Maxwell's equations (4.2.5)
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and (4.2.6),we get . E(é\ s G&& ,JOW) énd J(t) as given by

. 2 )
Gw) = < Ba Rc_ 5\\/&!\*\@

a ax2)
Ay, (4.2.20)
G = ~ V\%Op\“ Q- Q”\M> S\V\ o Cswu
Qrwfs)
(4.2.21)
' 3
jef) - - %ﬁnj%!iflf St @
925
4.2.22
B ke (o am | |
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< 2 %
St e — Q/\-\-\)e.rse-(}

(4.2.23)
Now we are left with r and © components ' of the

momentum equations only. Expressed in the LNRF components,

these can be written as
xy - )
(1 ) () [ 2 = oo 807 ]

A Q\-JD-\P;\\) %‘1” cl,ck 2‘”‘) ‘ Ps@)d Cc&)ﬁuj

(4.2.24)
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where we have used the relation
%11 —‘2W\~\ kwA‘J? ~\
w = Q ‘z)( cz‘)
(4.2.26)

For the special case of a disk of incompressible fluid
(with density Q = ?0 3 a constant), confined to the
equatorial plane ( @ = T /2) of the compact object,these

equations can be written as

o - o
26

(4.2.27)

. o ]
Cﬂ (gué%tP> + I:\~— :Q%ihd V{i{; V\J {: W%?;—-V}SS i}(&u&+?ﬁ
da o

- OboRc. %C V‘)-\» (\~fu~\> 2 %J

‘)_c.91:{L 9\,“ &
(4.2.28)
2 MW
Introducing a dimensionless parameter F) = K ,one
c -
can write the velocity as
2 A~ -\
() - —
Q)_i*‘) =~ PR (=2r)
C
= &-MM
whete R | (4.2.29)

such that when n=4, \5 =1 corresponds to the usual
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relativistic Keplerian velocity..If ‘"is clear from this
‘expression that, in‘ order to. keep V(?)<3 c,the disk will
have * a2 constraint elther on 1ts Ilnner edge or outer edge
depending upon whether n>3 or n<3.For exampie,for n=4,the
inner edge should ﬁe beyondA2+13,and thus for relativistic
Keplerian orbit with @ ¥l, the inner edge must be outside
r=3m. On the other hand if ‘3( 1,it i1s possible to have the
inner edge extended within r=3m.For n<3,as V(¢) increases
with R, ?> has to be very small (‘3((1) to have plausible
equilibrium configurations.

Figure (4.1) shows the velocity profiles for the case
n<3 and Figure(4.2) the corresponding pressure profiles
obtained through numerically integrating equation (4.2.29).
It 1s «clear that as veloclity increases with R,the pressure
profiles too show increasing trend outwords and that it is
unlikely that one could have ' disklike configuration for
these values of n when the fluid is incompressible.

With n=3,the velocity profiles for different P kFigure
4.3) show a trend,where in the velocity drops slightly and
remains almost a constant. The corresponding pressure
profiles (Figure 4.4) show again increasiﬁg trend depending
upon the:value of F> and thus may not be realizable as disk
configuration.

As may be expected with n=4 and above the velocity
profiles show a smooth decrease outwards whose rate of
decrease 1s governed Dby VB (Figure 4.5) and the pressure
profiles show a reasonable behaviour (decreasing outwards)

(Figure 4.6). However, if F) is very small as may be seceen
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from Figures (4.7) and(4.8) the veioéity saturates at a very
low vaiue beyond P\erO_z and thus the corresponding
preééufe profiles also do not show any change.

When n=4 , \BWIsz,the inner edge of the disk can extend
to within r < 3m region.HoweQer,when the laoner edge 1s very
near tb the horizoh, the pressure drops to zero rather
abruptly whereas 1f it 1is slightly away (r > 2.3 m),the
pressure distribution again shows a possible realizable
disk configuration (Figure 4.9). Figure (4.10) gives a

representative diagram of the pressure profiles for

differnt densities when n and @>are kept fixed.
4.3. Luminosity Flux from the Disk

The luminosity function associated with the radiative
flux from the disk for Schwarzschild geometry is given by
equation (3.2.2). As analyzed by Hanawa (1989),the energy
observed by the distant observer Eoo,measured in térms of
the generalized velocity profile (4.2.12) for different
inclination angle 1 is given by

23—\ ILL
Zoolg, = L= 2r= PN
(4.3.1)

for 1=0 and -
& - "y,
@—-D“ \ pARY (N E" ZIK.« > ]_(‘\” ZIK) X

(4.3.2)
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(Evelec)mn = (=2 pR V\]C‘”%) [0“7{&)*@*& {j

(4.3.3)
for 1 = "0 /2. Witﬁ this the observed temperature Tobs
expressed 1in terms of the ratios of colour temperature TCol
to effective temperature T is given by,(Hanawa 1989)

u | Tea] Tese ( )( >m
\. 15 o252 \4‘“/\’*‘ l° Vo
(4.3.4)
with \
~ 1[4~ S R
YR) = PR) = O“ 3re) |\~ 2R
( | % \E’%K \—NeiT \rz
O 1= {Or  Plr N (=
(4.3.5)

-

for i=0, while for i = W /2, we have

- —l]4 ~
~- 34. > e
%MMCK} = Gp CR) = R (- Q-[p\) (- 5!&)(‘4[& B J}_,

Tk \— ‘FLL2> +
BN N S
b 0] e A e o

- 2%

(4.3.6)
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= R (~2)p) Q: SIK) L= 2 éﬁhj(_ﬁ"ql&)*\é/éyj,

Gl .1 G NTH
i\—ﬂrh{’c M(\ir}& L@}ﬁ%) .

(4.3.7)

The Newtonian limit of these functions is just given by
-3

%LQ(J(> = K\ !4“

(4.3.8)

Figures (4.11) to (4.19) show profiles of the function g
for wvarious values of n and P It is clear from the plots
that with general relativistic contribution a single
blackbody curve could fit the emission features
particularly from the inner regiouns of the disk,whereas the
Newtonian 1limit would require a superposition of several
different (multicolour) blackbody spectraA to magch‘ the
theoretical curve. Figpre (4.13) with n=4 and P, =1
corresponds ewactly to the <case discussed by Hanawa and
thus comparing this with other figurés one can see the
differences that occur due to the variation 1n the velocity
from the wusual relativistic Keplerian value.Figures (4.15)
and (4.16) give ﬁhe curves for gO(R) for different values
of n with (4.15) for n>3 and (4.16) for n<3.As one sees
gO(R) shows the same trend for all situations except that
the peak value seems to decrease with increésing n.Fixing n

»

and changing the values of (% one finds for g(R) (Figures
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4017, 4.18  and 4.19), whereas for n=4, there 1s a slight
difference in the ' curves for changes ini 2 ,with n=5,there
isihérdly any change’for different Fu

If we consider the plotsAfor g+ and g- which in fact
refer to the different contributions from the redshift
factor (the approaching part giving rise to blueshift while
the receding part gives rise to redshift) the difference
between the cases n>3 and n<3 is indeed large,particularly

for g+.
4.4. Results and Discussion

The dinclusion of the magnetic field in the discussion
of the thin disk configuration straightaway renders the
possibility of the inner edge of the disk extending to
regions much <closer to the 'event horizon',unlike in the
absence of the magnetic field when in Schwa?zschild
background the inner edge has to be beyond r=6m,£he last
stable orbit for tardyons. This obviously requires a
discussion in the framework of general relativity as
Newtonian treatment is hardly appropriate for regions very
close to a highly collapsed central object.The class of
solutions discussed for the velocity field with varying
vélues of n and F) (which reflects in the values of
associated angular momentum of the fluid element) shows
approprilately that with outwardly dincreasing velocity
distributions one has a runaway situation (increasing

pressure profiles) whereas with VC¢) decreasing outwards,
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the disk equilibrium with the magnetic field looks more
reasonable.

Hanawa (l989),*foiloﬁing the earlier studies due to
Luminet and others,has dlgcussed the ﬁossible scenario for
the radiative flux from a thin disk possibly applicable to
the study of emission from low mass X-ray binaries.In view
of the discussion given ﬁy Paczynskl (1987) in the coutext
of Quasi Periodic Oscillation of binary X-ray sources,one
could conceive a situation having a highly compact Neutron
star (radius A 2.5 to 3m) and a thin fluid disk
surrounding it. For such a scenario the analysis as made
here - showing the existeﬁce of equilibrium configuration
is of direct relevance, for, the extension of these
discussions including viscosity as well'as radial velocity
component, would then describe the flow through the sonic
point. Regarding the profiles for the 'g' function
assoclated with the radiative flux and temperature profile,
our investigatibn seems to show that it is not ! very
sensitive to wvariations from the relativistic Keplerian
distributions (Figures 4.17 and 4.18) except when the
inclination angle 1is different from =zero.For 1.=T/2 as
shown 1in the pldts,the component coming from the blueshift
factor seems to be very sensitive to the variation in the n
and F& values for n<3.

The electrical field which has only non-zero radial
component 1is rather small,unless n<0,and is consistent with
the current system, participates effectively alongwith the
gravitational and centrifugal forces in giving rise to the

equilibrium pressure profiles.
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CHAPTER V

PLASMA DISK AROUND SCHWARZSCHILD BLACKHOLE WITH

RADTAL AND AZIMUTHAL VELOCITY

5.1. Introduction

In many of the standard models of accretion disks
(Abramowicz et. al. 1978,Kozlovski et. al. 1978) the fluid
flow 1is restricted to the azimuthal direction only with the
inherent assumption that the radial and meridional
components of velocity are mnegligible in comparison with
the azimuthal one.Recently Kuwahara-(1978) has studied the
relativistic accretion tori around Schwarzschild blackhole

considering all the three components of flow velocity to be
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pﬁénzero and has found that though the rédial and meridional
Cgelocitiesv play a minor role in the structure of. the tori,
they bﬁlay an importaﬁt role in determining the accretion
‘rate and the angular momentum transport due to shear stress.
bﬁowever, the study 1is incompleté.without taking into account
the role of electromagnetic fields that could coexist with
any such‘fluid configurations.

In Chapter IV, we have described the study of the
structure and equilibrium configurations for a disk of
incompressible fluid, where the flow was restricted to the

azimuthal directions only.The importance of considering the

magnetic field was easily realized by the fact that the
inner edge of the disk can now reach almost upto 3m (m =
GM/C2> whereas one knows that in the puve Schwarzschild
geometry the inner edge 1s necessarily beyond 6m.

In the present chapter we discuss the structure of the

disk when both the radial and the azimuthal components of

)
i

velocity are nonzero and the associated electromagnetic
field being self-consistent for a finitely conducting disk,
in the absence of the toroidal components of magnetic field

(Bhaskaran and Prasanna (1989b)).

3

5.2. Disk Structure

The present discussion being for the case of a plasma
disk with finite conductivity and having only the
coefficient of bulk viscosity to be non-zero (Aqb‘f 0) with

the central compact object static (a=0) the system of
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_governing equations are given by:

the continuity equation:

[\, a\J“’ 20 QW\)(\*

= chp\g-—'rv\\f)d[&

and the Maxwell's equations:

| (A ‘2-\N\> 65 @\WB @cY)

[,

AT St

o ‘31 EC\NQEJC) &a

5L

(5.

(5.

(5.

1)

.2)

.3)

. 4)

.5)

.6)
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KF 3ne 2% L Siwe. A2sivie e | C &) d

(5.2.7)
G-m) 2 (swoBe) =3
2 2, Q-am ) 2 (Slmebe) = d
%\"L %7\("91 Gﬂ) - L
. (5.2.8)
ODEs — 2G4 =o
oA >e (5.2.9)
O B4 + gﬁéﬁ - O
oA o (5.2.10)
and the Ohm's law
A\ ¥ W,
32 & Flew
(5.2.11)

As the toroidal component of the magnetic field has
!
been assumed to be zero (\%q = 0),(5.2.5) and (5.2.6) give
— A — 6
= O M o4 = O
(5.2.12)
Using these conditions in (5.2.11) we are 1led to the

relation between E and B fields:

Ex&= j? 3
C.

and

E@:*\‘j XY
C

(5.2.13)

whereas from (5.2.4) we get the equation for V?
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9\1‘(’ + 2 (_\./ZZW\ ) Q\—~ %W\)\ﬁ)

Yy A | , , ~ o (5.2.14)
whose solution is given by
\[‘{*

A A ' (5.2.15)

The '©' dependence of ve may be obtained through
consistency conditions for defining J‘* and Jt through
Ohm's law and this requires [ (®) = L/Sin® where L is a
constant; Thus we have for the azimuthal component of the

velocity the structure
\JCF = .L;~_~ CK~79&2,>
A2 Sty A
(5.2.16)
Using this VCP in (5.2.13) and substituting so obtained E 9\,
and E® in (5.2.9) (which says curl E=0) we obtain two
equations for Bg and By which are solved to get the general

solutions

<)

Ba= — AKX cx~%D St @ Ersd

(5.2.17)
— -\
z le.
Be = AR QC-F)(-29) s e
(5.2.18)
- and consequently the electric field is given by
-2 ”H’- -2
- L - B \— 2w ¢ )
Ba= AL Q ) C 2) St
(5.2.19)
-3 —JL*\ w3
e = AL C\"Q‘"‘> Sin 8 €0
< (5.2.20)

with A and k being arbitrary constants.Using these E and B
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fields one can calculate the non-zero current components J?

and J~” and are given by

j<f~. —_s B N Uht,/

A Sive - | | (5.2.21)
I = MG'C\*?‘V“E,s\ﬂ?%h Do,

: (5.2.22)
Thus we have solved for the electromagnetic field and the
azimuthal velocity exactly. The remaining equations to be
considered are the equation of- continuity and the two
momentum equations and part of the Ohm's law concerning\1¢
and Jt, as given in (5.2.21) and (5.2.22).Consistency of

(5.2.21) and (5.2.22) with the Maxwell's equations (5.2.7)
A

and (5.2.8) lead us to the exact solution for V as given

by _
)\ 2 ~\
Vb o~ L Siv\w«. @) (d-2w) [y eote (1~ 3 DJ}
ang A% Ay
(5.2.23)
wherein :
£ =\ 3! 2 R )
Ww = CM~%%}(\‘4zﬂ> 3 Nz N @R
(5.2.24)
the parenthesis around‘ an index indicating the LNRF

component. Expressing the remaining equations in terms of

LNRF components we have now the system

({’* ﬁ/ﬂ) —\; @igj: % 2_\_1;)] PN 59_.&( = ?/c&)

' + @ 2
= &6 LV ey (- \sf_t?;’_>

—ew

% >

(5.2.25)
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(Q‘\' %L),(‘L—*\?‘/Cl) [ &) M) + w\_‘;:l CL-—'Z"M) (_\- \‘H.)L)

[k ™

- . .
—_ 4 \IC""’L] 4 9 L - u.b-fscey \10‘)0-«\:332‘
Q'L

A A o
(5.2.26)
and
C‘{’) 8(’
\~w7z NPoge +
@*P )( °> 26 -,
L o L sy By (L)
o (5.2.27)
wherein
-.\ !\.‘
) S g
J 2 mustwe(l-g) N,
\
Bt = Frgee Bt
2,
&) = %‘S\::.v?\) e . (5.2.28)
\

From (5.2.25) and (5.2.26) one <can easily obtain the

relation

- (5 zﬁ) e ao- 2%?(\*“7&) ,

which indeed 1is the relativistic generalisation of the

equation for the accretion rate and thus one has

..._\ .
(Q—% E ) (- ‘J.__\'i) (\\N\(Q/cﬁ RnE Nl = — ™
c* '

(5.2.29)
the parameter C\ being 1identified with -M,which may be a
function of & .With this we now have just two equations and

two unknowns in P and ? .
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g =) 2
<Q,J< P/&) Qﬂdz]&) SLMET’: C\~2\m) é> \_QL~QM) (\~ 7]@]}

+ M = - g %g)z\lw(\ \JC‘?) )

(5.2.30)

and (5.2.27). Using (5.2.29), they may be written as

— -\ —_
A P2 3 — — op
ME S B G2 (@ )] + TR

s

.

2% W) eyt
L s Be W (N2 )
L .

(5.2.31)
. L )L - "; B“C)
—w eeke N o v B = "6‘(50\)(5@)\1 o C\"\l >
D
(5.2.32)

—

The integrability condition for P wviz., 2 (5.2.31)
pog~]
= §%55.2.32) would give a differential equation for M and

thus one can 1n principle have a complete set of solution

for ﬁ,ﬁ and € . :

Special Case: thin disk approximation © = 0W/2.With this we

have
) 2
\ =, C\~‘2W\)

) (- Qmjg
VG = =2 - 'l"“> jl mﬂ“\'l@' o
AT6
e @H\)

Be = An -2 C\"“‘)
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2®
and ' | : i
—_ . “1; L2,
dP - —-m™M 32 X;C.H (- \‘?cﬂ)
5;\ }‘?_\‘(X)

e @ \(G\)ULJC C\__\(ch)’lCO

CQ"
(5.2.33)

which on integration gives after using (5.2.29) again the

equation for e “HQ.

e tend o) (@ o) Gy s
\‘\gww\- @-"\"‘) (A~ 9’"‘53

1 (5©> ULW\_\_ (2-k) (_,9\..9.\'“}}@ Q\«v\) (\a\f‘ﬂ )c\&
Y g

(5.2.34)

For different wvalues of %k one can evaluate the density
!

profiles and consequently the pressure profile from

(5.2.29) for a given accretion rate M.

5.3. Structure of the Magnetic Field

In order to get the structure of the complete magnetic
field 1inside and outside the disk one has to consider a
proper solution for a poloidal magnetic field in the
Schwarzschild background. Using the general approach of

Ginzburg and Ozernoi (1964),Prasanna and Varma (1977) have
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expressed the <vacuum solution bf‘a-magnetic field dipolar
at infinity as given by

Ry = - B [J?M_ (\- 2_\._%) + '1__\/;\{, (H:Wq—\)] Eoso
(5.3.1)

* Ha =\
cw (=2 o )t Qe (-2 ) | Sie
o 7\} ’\) (C ’\) A ] (5.3.2)

re =
Demaﬁding the continuity of the magnetic field lines across
the disk through matching (5.2.17) and (5.2.18) with
(5.3.1) and (5.3.2) one can express the constant A in terms
of the constant Bgy = (3P¥4m ). Approximating * from the
expression for the dipole moment of a magnetised star at
its surface having surface field'strength‘Bs and the radius
R we can‘ use for B the expression (3B5/4)(R/m$ ,R the
radius being expressed in the units of m = MG/cZ.Figures
(5.1) and (5.2) show a typical profile of the magnetic

field structure without and with the disk.For the purpose

of illustration the meridional structure of the disk is

o

presumed to extend to about 15 on either side %f the
~equatorial plane.
5.4. Results and Discussions
The integration of the equation for the density

(5.2.34) 1nvolves a boundary condition as well as the
knowledge of the accretion rate 'ﬁ and of the electrical
conductivity G . While the second term can be integrated
analytically for different values of k,the first term can

be integrated numerically and thus the profiles of density
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and pressure be obtained. One othér factor to be kept in
mind is  that‘ the wvelocity should not exceed‘c and this
reétricfion for the Schwarzschild geometry imposes the
restriction - on the constant angular momentum 1 = L/cm to be
less than BJEi As tﬁe formation of the disk is through
accretion (normally from the companion of the compact star
in a binary) of matter flowing in through the inner
Lagrange point, fof any realistic mode} one should have the
outer edge of the accretion disk located at a distance r

b

less than bl the distance of Ll from the centre of the
primary (the compact object).Using the approximate relation
as given by Plavec and Kratochvil (Frank et al 1985),
bi= (05— 022t Lgy)a

(5.4.1)
with q being the mass ratio- M2/Ml and 'a' the distance

between the centres of the two stars,one can work out for a

typical binary with the period-mass relation

4-112&3: € (MH— N\’1-> M Pl,

P being the ©binary period. If Miw 2M® and Mgww IM@ and
P10 days (typical for X-ray binary) a w 2x105 kms and
b1 N 1.13x105 kms.With this in mind we chose r = 50m (m =
MG/CA) which places the disk around the priméry well within
the Roche lobe.As the constant k in our expression for the

electromagnetic field was kept free we can now choose some

typical values for k and then integrate for the density.
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wherein the constant C g is evaluéted‘through the boundary
éonditidn.

Fixing L and obtaining A thorugh Bg the assumed
surface magnetic field of the compact star one can obtain
the relation betwéen % and ﬁ through the boundary
condition that the ©pressure in the disk at the outer edge

is equal to the magnetic pressure at that point plus

“one—-third the energy density at that point

(Plab = (Pwlao + 9«5;

(5.4.7)
by using (5.2.29).Hence fixing one of them the other may be
evaluated and subsequently the density and the
corresponding pressure profiles are obtained. The set of
results are presented in tables and figures as detailed
below.

Table (5.1) gives the approximate position of tﬁe inner
edge XA as a function of the angular momentum‘ L for
different values of k.As shown 1n the corresponding Figures
(5.3)-(5.5), the pressure profiles for k=2 and 0 decrease
inwards for 1 = 3J3,whereas for k = ~2,—I there is no such
pathology, and the pressure has a reasonable profile
decreasing outwards and saturating as one moves away from
the inner edge. As evident from the table for k = 0 and 2,
the inner edge stays quite farl away from 3 for 1 = 3{3
whereas for lower values of 1 the inner edge can reach

farther lnwards. Figure (5.6) gives a typical density
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profile .for k = -2,for different &aiués of 1l,which however
are not significantly different..

Table (5.2) gives the positions of inner edge as a
function of the conductivity G which seems to have a
minimum plausible value of 103.As k changes from 2 to -2,
one sees the minimum allowed & for reasonable preésure
profiles . is about 103 which also depends on correlated
;alues of B, and &). Figures (5.7) and (5.8) show the
typical profiles for pressure and density as a function
of & .

Table (5.3) shows the possible permitted values of L,

G and Bp for different k and €. .Again for k = 0,~1,and -2
if Qg is less than some critical value for the same @o,G‘
and 1 , the inner edge cannot reach beyond 6m.Figures (5.9)
and (5.10) show the pressure profiles for k = -2,-1 whereas
(5.11) gives the density profiles for k = -2.

Table (5.4) gives the varilation with respect to the

t
magnetic field and as may be seen the magnetic fields

cannot be higher than a critical value for reasonable

L]

pressure behaviour. For instance with k -1, L= 5,and

G = lO8 if Bo V‘lO11 the inner edge can-reach upto 3.1 m,

but still the pressure at that point shows an abrupt

decrease from the steady value.However for B,VﬂlOlo,one can

have a reasonable pressure profile with ¥X@av 3m. Figure

(5.12) shows the pressure profilcs‘for k = -2 and different

B o wherein a plausible equilibrium configuration occurs
8

only for B w10 and for any higher value the pressure

decreases at the inner edge.
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Thus as may be seen from the>sét'of,tables and figures

é possible disk—likg equilibrium structures exist only for
a right combination of k, 1., G ,B o, andAﬁ «For a given
magﬁetic field By and angular momentum J4 the density at the
outer edge Thas to, be reaéonably high 1f one wants a
disk—-like configuration. For example, with Bovw107 if the
disk inner edge has to reach upto \~ 3m (within 6m,where
3@TR influence would be strong) then 2 7 leo—lO gm/cc or

p——

5x1021 particles/m3 with the corresponding accretion rate M

e 7xlO11 gmns/cc D 10—14

o~

Ma/yr.

In conclusion we <can say that accretion disks around
very compact objects (radius < 3m) can be sustained
provided one has a certain amount of magnetic field
associated with the compact object which may be either due
to the intrinsic field 1ike in a neutron star or due to
ring currents just outside the event horizon,which smoothly
joins with the disk field existing due to the currents
within the disk. It 1is very interesting to note tﬁat for
possible stable configurations having reasonable accretion

rate a disk close to the surface of a highly compact star

(R “~3m) 1is ©possible only when the surface magnetic field
strength dis lower than w 1010 G.It may also be noted,that
though the bulk viscosity coefficient does contribute

through the mnon-zero radial velocity term,it does not seem

to be very effective at this stage of the calculations.
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Table 5.1

k j_ G Bo fo

0 Ax10% 0.1x10”7  0.1x10®  0.1x1078 .1348x10%3 5
1x107 .1348x101° 5
.3x10% .1350x10%2 5
.5x10° .1354x10%3 .4

2 107t 0xa0®  0.ax107 0.1x107° .2808x102 5
.1x10Y .2808x102 5
.3x107 .2808x1072 5
.5x10! .2813x10%2 5
.519x10% .2823x1012 .9

-2 ax10®  0.1x10®  0.1x10™t 0.1x1073 26671015 1
. 1x107 .2668x101° 1
.3x10% .2672x101° 1
.5x101 .2680x101° 1

-1 ax10® 0.1x10%  0.1x107  0.1x10”° .2008x10™4 1
.1x10% .2008x104 1
.3x107 .2011x10%4 A
.5x10% .2017x10M4 A




Table 5.2

k 1 G Bo fo XA
2 1.0 .1x10% 0.1x10° 0.1x10" 2814x10Y7 5.8
5x10% .5628x10°° 3.5
-1x10° % .2814x10%5 3.5
0 1.0 .1x10% 0.1x10™7  0.1x10" .1580x10°1  28.8
.5x10% 2717x10%0 9.5
.8x10% .1690x10%% 3.5
.1x10° 1350x10%0 3.5
-1 5.0 .1x10° 0.1x10" 0.1x10" 2017x10°% 3.1
.1x107 .2017x10%8 3.1
.1x10° 2026x10%0 3.1
.1x10* 2754x10%t 3.1
-2 5.0 5x10% 0.1x10t  0.1x10” .5522x102Y  13.1
.7x10® .3888x10°7 3.1
.1x10° 2701x10%0 3.1
.1x107 .2680x10°8 3.1
-1 5.0 .1x10% 2754x10%1 3.1
.1x10° .2020x10%0 3.1
1x108 2017x101% 3.1
1x107 2017x10M8 3.1




Table 5.3

l. G BO co M XA

1.0 0.1x10° 0.1x10™  0.1x107% 0.3335x1074 3.5
0.1x1072 0.2861x1015 3.5

0.1x10" 0.2814x10°0 3.5

1.0 0.1x10° 0.1x10° 0.1x107° 0.2808x107% 3.5

0.1x107~ 0.2808x10°9 3.5

0.1x1078 0.2808x10° 3.5

0.1x10" 11 0.2814x10° 3.5

0 1.0 0.1x107 0.1x10° 0.1x1078 0.1348x10%% 3.5
0.1x1072 0.1348x10 2 3.5

0.1x10™ 10 0.1348x10Y 3.5

0.7x10” 1t 0.9440x101;O 7.8

0.5x10 11 0.6743x101% 9.5

0 1.0 0.1x10" 0.1x10° 0.1x10" 17 0.1351x10°%  17.5
0.1x10° 18 " 0.1348x10%° 3.5

0.1x10 4 0.1348x10%7 3.5

-1 5.0 0.1x10° 0.1x10™*  0.1x107° 0.2017x10™%  27.4
0.2x107° 0.4055x10°% 9.0

0.5x107° 0.1008x10%° 3.4

0.1x10‘4 0.2017x1015 3.1

Contd.



- Table 5 3(Contd.)

*

. [ G B0 fo M XA
5.0 0.1x10 0.1x101r  0.1x1077 0.2680x10°3  14.
0.1x107° 0.2680x10°%  g.
0.1x107° 0.2680x10°° 3.
0.1x10~4 0.2680x10° 3.
5.0 0.1x10 0.1x107 0.1x10" 13 0.2680x10 3.
0.1x10™ 12 0.2680x10° 3.
0.1x10" 1 0.2680x10° 3.




Table 5..4

B XA
(6]
0.1x1071 2017x10Y7 3.1
0.5%x10° 1 2017x10Y7 3.1
0.1x10%2 2017x10Y7 a1
0.5x10+2 2017x10Y7  40.0
0.1x10° 2017x10° T 3.1
0.5x10° 2017x10°F 3.1
0.1x10° 2017x100F 3.1
0.5x10” .2017x10 Y 40.9
0.1x10° 2017x10°0  27.4
0.1x108 .2017x10%0 3.1
0.5x108 2017x1010 3.8
0.1x1011 2017x101% 3.1
0.5x1011 .2017x107% 3.8
0.1x10%2 .2017x10%8  27.4
0.1x1011 2701x10%9 3.1
0.5x101t .2701x10%0 3.1
0.1x10%2 2701x10%9 6.2
0.5%102 .2701x10%0  12.1
0.1x10%3 2701107 14.9

Contd.



Table 5.4 (Contd)-

1 G B, € XA
5.0 0.1x10 0.7x10'%  0.1x10 .2683x10' 25,
0.5x1010 .2682x10°1 23,

0.1x10%0 .2680x10%° 14,

0.5x10” .2680x10%1 11,

0.1x10° .2680x1071 3.

5.0 0.1x10 0.1x10™®  0.1x10 .2681x10*°  20.
0.5x10" .2681x10%%  16.

0.1x10%2 .2681x101% g,

.sx10tt .2681x10'°% 6.

0.1x10° 1 .2681x10%% 3.
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CHAPTER VI

PLASMA DISKS AROUND A SLOWLY ROTATING COMPACT OBJECT

6.1. Introduction

In the earlier chapters we discussed the equilibrium
configurations of plasma disks around a nénrotating compact
object. The importance of considering electromagnetic field
in the dfscussions of disk dynamics was clearly brought out
from the fact that, it is possible to have disk
configuration, very near to the object in the presence of
electromagnetic fields and it affects the structure of the
disk, especlally in regions close to the object where

magnetic pressure can become comparable with the gas
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pressure. However,such a study would notbbe coﬁplete without
taking into effect. the:rotainn of the compéct object.The
compact object may poésess rotation as an end product of
the collapse of a rotating star or it can acquire it by the
transfer of torque from the disk around it.In this chapter
we discuss the structure and dynamics of a plasma disk

around a slowly rotating compact object (%E\( 0.5).
6.2. Structure of the Disk

For the present case we consider the plasma to bé
having only azimuthal component of velocity nonzero.The
toroidal component of magnetic field B is taken to b=
zero, and the ©plasma is of infinite conductivity.Under the
conditions of stationarity and axisymmetry, the general
equations that we have developed for fluid flow around
slowly rotating compact objects (equations (3.1.28) to

!
(3.1.41)) reduces to the following form.

Momentum Equation:

T ¢ ¢
(P ) W ) = 2o o)

% ~ 5 W
— (%= 2w ) Stnt e N 3 + (- Q_"?,x) a—g:\_” 5 vol

—— -

(6.2.1)

Qh ?Zf») U\f‘l'\i.._ Sivee Eany \l'fz-*\' 42% Qx‘ws@mdﬂ
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— & ,.\b
+ L @-P, = 'v\\\[(‘ |
_)\L_ e | | _ 620
Maxweii's Equation: V
7¢ ! 2, by ) O ¢\ ]
3T e OF BTM> AL Site aq\f‘ E’{)E"*
, (_L~ Q.\N\\ & (S\M Eeﬂ
_ cu/v\ c
o \_ ERQ-ALR ~X55u~e A T6.2.3)
'“t 198 Q\LEO A Q\.. Q.\N\) ' @\we e:»)]
= Q_t
— 2om | v Q- Q-.YQ) .&CS\M @L) 2 L%%)]
ﬂ?fi .Rbsu~b ﬁ
(6.2.4)
OBs 4 Abe -o |
oA 89 (6.2.5)
{
9€R - ke =o
0@ OA | (6.2.6)

The continuity equation is identically satisfied.As we have
taken Bcr to be =zero the 91and ® components of current

also turns out to be zero

— 06

:SS):. O } J = O
(6.2.7)

Ohm's law gives the force free condition
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?""
O

'
(6.2.8)

from which we get two rélations between the magnetic and

electric field components.as given by

Eaz= N By  awnd Eeo=-V'0s .
< <
(6.2.9)
Now 1f we assume the azimuthal velocity to be given by the

expression

\fF =

(- Q.W\b>

«XQE;V;Q
(6.2.10)
with
b = v ac
| (6.2.11)
which is a generalisation of the =earlier considered

relativistic Keplerian including the effect of slow

!
rotation of the central object.

Using equations (6.2.9) and (6.2.5) in equation (6.2.7)

we can solve for the magnetic field components as given by

vt —i-
Be = A% (- %\mb) (1~ me) Rine
(6.2.12)
\C "’HQ‘ :
La = ~A% C_\ QM\C’) S)\V\ G) Cose
(6.2.13)

where A and K are arbitrary constants.
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In terms of the components in the LNRF the electromagnetic

field components can be written as

132 .ﬁkil' w2
Loy = = AR U*‘l”l‘g) N © 5w

(6.2.
\ .-—\L——\
-2 k! | 3w
Be) = Axn (-2w) (\~%@)(&~Zm)?cwe
AT A A
(6.2,
@)
Te) = U B
c
(6.2.
<Y
T = — \J__a Les)
(6.2.
with VC{) given by
‘ \ .
5 -
\JU’P) L (=2 ) V= U 0L C\~2m ) Cw 5\‘\0%3
= - s A L A
NSine
(6.2.

CP and Jt

The current components J are given by

Y

<0t o ~ L 8 {s0-am)* G :

V= A &Uﬁu)) »9\04\\~3\Q ‘l"{.) @@j+ %g\‘wetu)
(6.2.19)

A ¥
~ ) 2. 2 8 ~2w ) PO . )
— =\ (\—awm ‘ O (X Ecd)‘% 2. Q) ..) 2. ( Sine Ce (

14)

15)

16) ~

17)

18)

(6.2.20)

which on simplification reduces to
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L) Wb oy -
T S q,wb) e o [\~ \L.xz)es%_

| A
— Q\~2m7) 9 %e) 1@4) ~\~W\Q\—‘2M\3 A 2>w> (- %wxb)
1.\
~ () C\ﬂ“‘b)
3.
- b6 - . dq&
_ (b%) (-2 5\\~ s~ 624 (-2 ) Bie ?}

(6.2.21)

and

ey L _e ag 1@}
= - \—- W \~ va\) W+ Stn

37 = e — Y‘ s -6 0L ¢

z 5 CA Siwae

oy AlwWm oL (‘\—-CLW\) Css®
A c A L

- \1 Q\~O\m i be) S\‘L\LJ)_) . \MQ\JLW\}

%Mb) — (\5_.\._2) W\\O <‘\— Q,\N\\?>

a2 (-
‘9\\;,, ) “\‘J\?. _ 0.l
Y Q&AK (A—mb ) gw\ \~ s)\v,%

(6.2.22)

We are left with the two momentum equations (6.2.1) and

(6.2.2) which 1in terms of the LNRF components can be

written as

@c—&P)(\”Q"“)(\ ‘4’)2> “Vtm ()O;V‘;C\:"Q—V“

— A (\— 2™ \IC‘Q -+ @Ji -

)%— ()
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= (\- QW\) %@) LA%) L:) &)J

(6.2.23)

!
- (g p) (-8 )@““ o3P = a3 15

(6.2.24)
where we have used the relation
~\ -
(:\’Q‘"M—_“'\) C\“\?fc}>
(6.2.25)
with 2
2
NN N N

which is a consequence of the orthonormality relation.

As a special case we will how consider a disk confined
to the equatorial oplane (6 =T/2) of the compact object,
wherein equation (6.2.24) 1ig identically satisfied and we
are left with only one ordinary differential equation
describing the radial dependence of pressure given by

)
: ()

Ao - ()oY (-
~— A
A% \ )

. () - ¢
Wy - Go (- Y “JRL\ Q)'T@ @—a )§
. RS A [ ‘

-1 )
—oamY” Se E A I
Y C-\ "‘5\') ) c
(6.2.26)
but having two unknown ? and P. Hence for a complete

solution one needs an equation of state,relation between ?

and P, (1) If the fluid is incompressible with the constant
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density e = ? o’ equation (6.2. 6) .can be written as a
dlfferential equatlon for the variable ( gcc+'P ) and can
be ,integratged numerically once appropriate boundary

conditions are given.For this case,we get
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(6.2.27)

_ e
with J"*h\f@ 1

given by
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(6.2.28)
The corresponding pressure profiles are as given in Figures
(6.1) to (6.8),
(1i1) We now conslder the case where the total pressure P is

given by the equation of state
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P= G- T o (6.2.29)

where Cﬁ is a constant and Y is the adiabatic index heat.

The constant Ch is Vdetermined from the expression for

sound velocity given by
2 -1
\[5 2. "(C\ g
(6.2.30)

for given wvalues of Vs’ and fo,the density at the outer

boundary of the disk.In this case we get the equation

_O_\_f_.—:. \‘?c + C\ﬁ - Q’@’ ]C.\“QJ’“) QLN\LLM )
AA
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)
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with EGQ)“-QUM E(AJ given by (6.2.28)
C \

(6.2.31)

6.3. Structure of Magnetic Field

To get the structure of magnetic field inside the disk;
we match the inside solution given by equations. (6.2.14)
and (6.2.15) with the vacuum solution at the boundary as
described in Section 5.3. The structure of magnetic field
lines 1is given 1in figures (6.155 to (6.17).Fig. (6.15)
shows the field 1lines for o = 0 (static central object)
and for o = 0.5 (disk corotating with respect to the

central object) whereas Figure (6.16) shows the same for of
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= 0 and [ = -0.5 (disk counter rotating with respect to
the _central object) ~with | X = ‘Q4Wb' In the case of
corotating disk, the field lines are pulled in as compared
to that of a disk arbund a static object,and in the case of
counter-rotating disk they are pushed out.Fig. (6.17) shows

the field lines for co- and countef-rotating disks.
6.4. Results and Discussion

Case l:Constant Density

As the rotation parameter a enters the final equation
for p linearly, one can distinguish the case of corotating
and counterrotating disks with respect to the central
source. Figures (6.1) and (6.2) show the Pressure profiles
in the case of an incompressible thin disk for & = 0,+ 0.2
and -0.2 for two different densities. Whereas (6.1)
corresponds to the case go = 10—5,(6.2) correspnds to the
case where density is 10—8.One finds that when the d;nsity
1s higher the pressure profiles are not sensitive to the
fact whether the disk is corotating or ﬁot.On the other
hand if the density is smaller the impact of the
parameter becomes clearer as one moves inwards with the
effect being pronounced 1in the innermost regions.The case
of corotating disk needs to have higher pressure in the
inner regions as compared to its coﬁnterrotating partner.In

fact as was found in the nonrotating case here also there

exists a critical combination of the surface magnetic field

BO and the density Y o which gives physically reasonable
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pressure . profiles.Figures (6.3) and (6.4) show the pressure
profiles for two distinct magnetic fields buf f d being the
same.‘figure (6.5) gi&es the pressure profile for the same
values of X and 'Qo,but for different magnetic fields,and

it is clear that for the density 10—5,the magnetic field

should not be more than 109.

Figures (6.6) and (6.7) show the behaviour of pressure
for the <case of high magnetic field A 1010 but with
different &£ values for both corotation and counter
rotation. It is interesting to note that whereas in'the case
of corotation (&> 0) the pressure increases towards the
inner edge,in the other case (X< 0) the pressure decreases
indicating the fact that the pressure gradient force in the

inside region acts differently for corotating and

counterrotating disks.

Case 2:With Equation of State

!
The profiles for pressure and density as depicted in

Figures (6.8) and (6.9) for Beg= 10_9, ?o = 10 again show
the distinction for the case oK = 0,0.2 and 0.4.

As VS is taken as a free pafaﬁeter, Fig. (6.10)
indicates ‘the difference in pressure profiles as a function
of VS. One observes that as the pressure gradient varies
smoothly for varying values of VS With the pressure in the
inner region would have to be large for 1ower.values of V%.
Fig. (6.11) shows the profiles for the same o but with

varying values of the adiabatic index Y .Fig. (6.12) shows

the variation with respect to the angular momentum
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parameter i_ (for KX > 0). It is toibé noted that for low
value ofv j & (Q “ 0.1) the trend 1in the profile 1is
substanfially different from those for higher values.The
corresponding case of counterrotaitng disk (L> 0, A< 0) 1is

shown in figure 6.13. |
Figure (6.14) depicts the ©behaviour for different
initial values of the density for the same surface magnetic
field Be . It 1is evident that .to have a monotonically
increasing pressure towards the inner edge of the disk,the
density at the outer boundary should be higher than a

critical value for a given magnetic field strength.
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