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Abstract

The study of the transport properties is very important for understanding various

interactions in electronic systems. These properties such as electrical conductivity,

thermal conductivity and thermoelectric coefficients have been widely studied within

the Bloch-Boltzmann approach. In this approach, the transport equations are gener-

ally solved analytically under the relaxation time approximation (RTA) and in the zero

frequency limit. Success of this approach is mostly limited to the zero frequency be-

havior. It becomes very complicated while investigating the finite frequency behavior

of these transport coefficients especially beyond RTA. Thus, one needs an alterna-

tive approach which goes beyond RTA and captures the finite frequency features of

these coefficients with much ease. This approach is known as the memory function

approach. By construction, this formalism is beyond RTA and using this formalism

one can calculate the time dependent correlation functions upto any order. It has been

used by Götze and Wölfle (GW) to calculate the dynamical electrical conductivity for

metallic electrons. It is successfully applied to study the transport behavior in presence

of weak electron-phonon, electron-impurity interactions in metals under the assump-

tion of constant electronic density of states (EDOS). An attempt to extend the GW

approach beyond its original assumption of constant EDOS is made here and also we

have applied GW approach to a wide variety of transport coefficients (dynamical ther-

mal conductivity, dynamical Seebeck coefficient, etc). Sharapov and Carbotte have

also calculated the generalized Drude scattering (GDS) rate for systems with gapped

density of states based on Kubo formalism. We reconsider that problem here using

the memory function formalism. We show the suppression in GDS due to the pres-

ence of gap. We also compare the resulting GDS with that calculated by Sharapov

and Carbotte (SC). We find discrepency in the scattering rate using both approaches in

the low frequency limit. This is due to the crucial assumption made by SC approach

which is not assumed in the memory function approach. We then study the dynam-

ical thermal conductivity of metals within the memory function formalism. Here we

introduce the thermal memory functions for the first time and calculate them for the

cases of the electron-impurity and electron-phonon interactions. Several new results

have been obtained and discussed in various temperature and frequency regimes. In the
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zero frequency limit, we find that the results are consistent with the results predicted

by using the Bloch-Boltzmann approach and are also in accord with the experiments.

Furthermore, we also investigate the dynamical behavior of the thermo-electric coef-

ficient, namely Seebeck coefficient. This analysis is done to explore the possibility of

obtaining large figure of merit in various materials so that the efficiency of thermo-

electric devices can be enhanced. We first confirm that at the zero frequency and in

the high temperature case, the results of the Seebeck coefficient are in qualitatively

agreement with the experimental findings. We further find that the Seebeck coefficient

increases with increasing frequency. This enhancement hints towards a possibility of

greater figure of merit if the device is operated at a certain non-zero frequency. We

have also applied the memory function approach to other systems such as graphene,

a two dimensional system and we investigate the electronic thermal conductivity. In

that, we explore the roles of different acoustic phonons, characterized by different dis-

persion relations. It is found that at the high temperature, the thermal conductivity

saturates for all type of phonons. But the longitudinal phonons gives larger contribu-

tion to the total thermal conductivity. While at the low temperature, it follows different

temperature power law behavior for different type of phonons. We have also found

the results at finite frequency regimes which are identical to the case of conventional

metals. In the above studies, we performed analytical studies of various transport coef-

ficients that have been done for the weak perturbative interactions by using the memory

function approach. However, with the increase in the interaction strength, one needs

to go beyond GW approach. In this context, we propose a high frequency expansion

of the memory function in term of its various moments. Taking simple example of

the electron-impurity interaction for the case of the metal, we calculate the memory

function upto the second order moment. It is found that the higher moments contribute

more in the low frequency regimes and in the case of large interaction strength. In a

nutshell, we extend the GW memory function formalism to various physical situations

of interest with encouraging new results in the dynamical regime. While in the dc

limit, our results agree with the traditional approaches.
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Chapter 1

Introduction

The study of the transport properties of condensed matter systems provides a frame-

work to understand or to determine the effects arising within the system when electrons

under the influence of an external field, scatter among themselves or with other degrees

of freedom like impurities or phonons. In general, these systems are considered to be

in equilibrium in the absence of an external field. In this situation, the quantities such

as charge and heat can not be transported over long distances. However, in the presence

of an external field, the systems are driven out of equilibrium and the quantities trans-

port over macroscopic length scales. In this situation, the flow of these quantities under

the influence of an external field is determined by the transport properties. These prop-

erties include electrical conductivity, thermal conductivity, Seebeck coefficient, Hall

coefficient, etc.

Experimentally, these transport properties are used as a tool to characterize a sys-

tem. For example, the electrical conductivity is used to distinguish between the metals,

semiconductors and insulators. On the other hand, theoretically these properties are

used to test the models by comparing the predictions of the model with the experimen-

tal findings. But it is not straightforward to deal with the many body systems (with

number of particles of the order of 1023 per cubic centimeter) and study the effects of

different interactions with in the system. Several theories like the Drude theory [1],

the Bloch Boltzmann theory [2–5] and the memory function approach [6–13] have

been proposed to study the transport properties. However, each has its own merits and

demerits.

1



2 Chapter 1. Introduction

In addition to the experimental and theoretical interest, this study is also impor-

tant in the applied field. For example, the behavior of the thermoelectric or Seebeck

coefficient is important for the fabrication or design of the electrical circuits [14].

In this thesis, we investigate these transport properties using the memory function

approach [6–13]. Before proceeding to the main calculations of the transport coeffi-

cients, first we review the preliminary theories such as Drude theory, Bloch-Boltzmann

theory and the memory function approach with its pros and cons in this chapter. This

will provide a conceptual background in order to discuss the theoretical study of these

properties that we are presenting in this thesis.

1.1 Drude Theory

In 1900, Paul Drude, after the discovery of electron by J. J. Thompson, proposed the

first model for the theory of metals [1]. It successfully reproduced the various features

of the transport properties which were based on the classical kinetic theory of gases

[15, 16]. In this model, Drude considered the free electrons of metal as conduction

electrons which move under the influence of an external field and collide with positive

ion cores which are taken to be immobile particles. To implement this idea, the basic

assumptions are as follows [17, 18].

1. The collisions between electrons and ions (electron-ion collisions) are instanta-

neous.

2. The electrons are treated as noninteracting particles i.e. electron-electron colli-

sions are neglected.

3. The probability of an electron to collide in small time interval dt is dt/τ , where

τ is the relaxation time i.e. the time taken by the electrons to relax towards

equilibrium and it is treated as a constant.

4. After each collision, electrons acquire random velocity.

Based on the above mentioned assumptions, the formulae of the transport prop-

erties such as electrical conductivity, thermal conductivity are derived. For general
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idea of the Drude approach, we give derivation of one of the transport coefficient, the

electrical conductivity as follows [17–19].

Consider a system i.e. metal in which electrons in the absence of an external field

are moving randomly in all directions with random velocities vi. Thus the average over

all velocities is zero and no current flows in the system. If an external field say an elec-

tric field E is applied on the system, then electrons tend to move in a direction opposite

to the electric field with a mean velocity vav or 〈v〉. This oriented movement of elec-

trons sets up an electrical current in the direction of an electric field. To elaborate this,

assume that the electron (say 1) is moving with initial velocity v1
0 and accelerates for

time t1 after the last collision and adds additional velocity−eEt1
m

, wherem is the elec-

tron mass and e is the electron charge. Similarly, the electron (say 2) accelerates and

adds velocity −eEt2
m

and so on. Thus, the average velocity acquired by all electrons is

given by

〈v〉 =
N∑

i=1

vi0 −
eE
m

N∑

i=1

ti, (1.1.1)

where N is the total number of electrons.

As the average of random velocities is zero i.e.
N∑

i=1

vi0 = 0 and the average time for

accelerating the electrons is τ =
N∑

i=1

ti, substituting these in Eq. (1.1.1) the average

velocity becomes

〈v〉 = −eEτ
m

. (1.1.2)

Suppose that there are n electrons per unit volume moving with the average velocity

〈v〉 and these electrons traverse the distance 〈v〉dt. Then, the number of electrons

crossing the area of cross section A in the direction of velocity will be n〈v〉dtA and

hence gives the current density as J = −ne〈v〉. Using the above equation, the average

current density proportional to the average velocity can be expressed as

J = −ne〈v〉 =
ne2τ

m
E, (1.1.3)

Also, from the Ohm’s law: J = σE, where σ is the electrical conductivity. Thus on

comparing this expression with Eq. (1.1.3), the electrical conductivity becomes

σ =
ne2τ

m
. (1.1.4)
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This is the Drude formula for the electrical conductivity of a metal which is known as

the Drude dc electrical conductivity [1, 17]. It states that for a fixed electron number

density, the electrical conductivity is directly proportional to the average collision time

or the relaxation time.

Further, for the time varying field i.e. when the electric field is time dependent but

spatially uniform, the frequency dependent electrical conductivity can be obtained as

below. In this case, the average electron velocity at any time t is represented as v(t).

Hence, the equation of motion can be expressed as

m
dv(t)

dt
+m

v(t)

τ
= −eE(t). (1.1.5)

Here the second term in the left hand side states the damping term to account for

the effect of electron collisions. Now assuming E(t) = Re(E(ω)e−iωt) and v(t) =

Re(v(ω)e−iωt) for time varying field and velocity respectively and substituting it in

Eq. (1.1.5), we obtain

v(ω) =
E(ω)

1/τ − iω . (1.1.6)

Since J(ω) = −nev(ω) and J(ω) = σ(ω)E(ω), the frequency dependent or AC elec-

trical conductivity using Eq. (1.1.6) is given by

σ(ω) =
ne2

m

τ

1− iωτ . (1.1.7)

On separating the real and the imaginary parts, we have

Re[σ(ω)] =
ne2

m

τ

1 + ω2τ 2
; Im[σ(ω)] =

ne2

m

ωτ 2

1 + ω2τ 2
(1.1.8)

These are the real and the imaginary part of the electrical conductivity for the case of

metal within the Drude formalism where electron-phonon effects are neglected [17].

Based on the classical idea, the Drude theory successfully gives the expressions

of the electrical and the thermal conductivity and explains the Wiedemann-Franz law

[1, 20, 21]. The latter states that the ratio of the thermal conductivity to the electrical

conductivity is directly proportional to the temperature. But, the Drude theory also

suffers from important shortcomings. Particularly, it does not explain the temperature

dependence of the electrical and thermal conductivity of a metal. Also, it does not

consider the different mechanisms for collisions which may effect the relaxation time
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for example electron-phonon interaction. The main reason of these shortcomings is

the treatment of electrons as a classical electron gas [22].

To overcome these shortcomings and to capture the temperature dependent behav-

ior of various transport properties, it is important to consider the quantum nature of the

electron gas and describe the collision processes in detail. This is taken into account

in semi-classical approach by Bloch [2, 3, 22] which is discussed in the next section.

1.2 The Bloch-Boltzmann approach

As discussed earlier, the study of the transport phenomenon depends on the two char-

acteristic mechanisms such as the driving force i.e. the external field and the scattering

of charge carriers i.e. scattering of electrons due to its interactions with impurities,

phonons, etc. This interplay can be described by the Bloch-Boltzmann approach [2–5]

which explains how the distribution of charge carriers in phase space evolve in the

presence of an external field and with the electron scattering mechanisms. Also, it is

studied in the framework of semi-classical treatment. Due to large number of electrons

in many body interacting systems, it is futile to solve the problem for each electron to

extract the transport properties. Hence, the statistical treatment (the Bloch-Boltzmann

equation) is needed which consider the effect of average motion of electrons.

Before embarking on the main description of the Bloch-Boltzmann transport ap-

proach, we first discuss the important assumptions of this approach.

1.2.1 Semi-classical treatment

In semi-classical approximation, we consider electronic wave packet obtained from

the superposition of plane wave states. This wave packet is assumed to be localized

around a mean position r and mean wave vector k with an extent dr and dk such that

dr � l, (l is the mean free path i.e. the distance travelled by an electron between two

successive collisions) and dk � k respectively. Also the phase space cell drd~k is

much bigger than the quantum limit ~ to respect the Heisenberg uncertainty principle.

Hence, the wave packet is to be constructed with the Bloch functions which consider

the motion of electrons in a periodic potential [17, 19].
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Within this picture, the motion of electrons subjected to an external electric field is

described as

ṙ(t) = vk = ∇kεk, (1.2.1)

k̇(t) = eE(r, t). (1.2.2)

Here εk and vk are energy and velocity of electron in kth state respectively and E(r, t)

is the electric field. Also we set ~ = 1 and kB = 1 in throughout the calculations. This

concludes that the dynamics of an electron in semi-classical approximation relies on

the energy dispersion of an electron.

1.2.2 Transport equation

To discuss the motion of electrons, we introduce the electron distribution function

fk(r, t) which is the occupation probability of an electron at position r, at time t and

having wave vector k. This means that the number of electrons with in a phase space

volume element drdk (a six dimensional space) about the point (r,k) are given as

drdkfk(r, t). Thus the total number of electrons becomes
2

(2π)3

∫
drdkfk(r, t), where

the factor 2 is introduced to account the two spin orientations of the electron.

According to the Liouville’s theorem the time rate of change of the distribution

function is zero i.e.

dfk

dt
= 0. (1.2.3)

Now, the distribution function can evolve with time through the following mechanisms.

1 Diffusion: Due to the movement of carriers in and out of the region r, the rate of

change of the distribution becomes
(
∂fk

∂t

)

diffusion
= −vk ·

∂fk

∂r
= −vk · ∇rfk. (1.2.4)

2 External Fields: As we have seen in Eq. (1.2.2), the presence of an external field

gives the rate of change of wave vector k. Thus, the change of distribution in

such fields give rate as
(
∂fk

∂t

)

fields
= −eE · ∇kfk. (1.2.5)
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3 Scattering: Due to the interaction of electrons or collisions with lattice ions, the

rate of change is represented as

(
∂fk

∂t

)

coll
. (1.2.6)

Using Eqs. (1.2.4) to (1.2.6), Eq. (1.2.3) becomes

dfk

dt
=

(
∂fk

∂t

)

diffusion
+

(
∂fk

∂t

)

fields
+

(
∂fk

∂t

)

coll
= 0. (1.2.7)

−vk · ∇rfk − eE · ∇kfk = −
(
∂fk

∂t

)

coll
. (1.2.8)

If there is a temperature gradient, then the above equation can be written as

−vk ·
∂fk

∂T
∇rT − eE · ∇kfk = −

(
∂fk

∂t

)

coll
. (1.2.9)

This is the general form of the Bloch-Boltzmann transport equation (BTE) of the elec-

tron system.

To solve this, it is necessary to obtain the expression of the scattering term for

different types of electronic collisions.

Scattering term

Consider that the electrons scatter from the state k to k′. In that case, the transi-

tion probability of electrons into the k′ state is fk(1 − fk′)Wk→k′ , where Wk→k′ is the

scattering rate of electrons to go from k to k′ state. Similarly, the probability of the

electrons to scatter into k state is fk′(1 − fk)Wk′→k. Here the occupation number fk

and (1 − fk) assure that electron is going from an occupied state to an empty state.

Thus

(
∂fk

∂t

)

coll
=

∑

k′
[Wk→k′fk′(1− fk)−Wk′→kfk(1− fk′)] . (1.2.10)

According to the Fermi Golden rule [23, 24], for the scattering of electrons due to

impurities, Wk→k′ is written as [25, 26]

Wk→k′ = 2π|〈k|U |k′〉|2δ(εk − εk′). (1.2.11)
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Here U is the electron-impurity interaction strength. Similarly the expression for

Wk′→k is same as Eq. (1.2.11) with the interchange of k to k′. Thus according to

the principle of detailed balance [22],

Wk′→k = Wk→k′ . (1.2.12)

Using the Eq. (1.2.12), the scattering term Eq. (1.2.10) for the case of electron-impurity

interaction becomes
(
∂fk

∂t

)

coll
=

∑

k′
Wk→k′ (fk′(1− fk)− fk(1− fk′))

=
∑

k′
Wk→k′(fk′ − fk). (1.2.13)

Similarly, for the scattering of electrons due to the phonons, Wk→k′ is written as [3,27]

Wk→k′ = 2π|〈I|Hep|F 〉|2δ(εk − εk′ ± ωq)(nq + η). (1.2.14)

Here Hep is the electron-phonon interaction Hamiltonian, I and F corresponds to the

initial and final state of the electron respectively, ωq is the phonon frequency, ± sign

within the delta function correspond to the absorption (η = 0) and emission (η = 1) of

phonon respectively, and nq is the Boson distribution function which is represented as

nq =
1

eβωq − 1
. (1.2.15)

Here β is the inverse of the temperature i.e. β =
1

T
.

In this case, Wk→k′ and Wk′→k relate to each other as [27]

Wk′→k =
f 0

k

f 0
k′
Wk→k′ , (1.2.16)

where f 0
k is the equilibrium distribution function which is defined as

f 0
k =

1

eβ(εk−µ) + 1
. (1.2.17)

Here µ is the chemical potential or the reference level to measure the energy of an

electron and this distribution function is independent of r because of the homogeneity

assumption.

Using the Eq. (1.2.16) into (1.2.10), we have
(
∂fk

∂t

)

coll
=

∑

k′
Wk→k′

(
fk′

f 0
k

f 0
k′
− fk

)
. (1.2.18)
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Substituting Eq. (1.2.13) and (1.2.18) for electron-impurity and electron-phonon in-

teraction respectively in the general form of Boltzmann transport equation (1.2.9), the

transport equation becomes an integro-differential equation and hence is complicated

to solve to determine the non equilibrium distribution function fk(r, t). Therefore, one

has to consider an assumption(s) to solve it.

Linearized BTE

Assume that the steady state distribution function does not depart far from the equilib-

rium i.e.

gk = fk − f 0
k ; gk � f 0

k . (1.2.19)

Here f 0
k is the local equilibrium distribution function. A local equilibrium means that

the state is described by the slowly varying time and space dependent temperature and

chemical potential i.e. T (r, t) and µ(r, t) respectively. It is defined as

f 0
k (r, t) =

{
exp

(
εk − µ(r, t)
T (r, t)

)
+ 1

}−1

. (1.2.20)

Substituting Eq. (1.2.19) in (1.2.9) and assuming the constant chemical potential, we

have

−vk ·
∂f 0

k

∂T
∇T − eE · ∂f

0
k

∂k
= −

(
∂fk

∂t

)

coll
+ vk ·

∂gk

∂r
+ eE · ∂gk

∂k
. (1.2.21)

On further simplifications, we get

−vk ·
(−(εk − µ)

T
∇T + eE

)
∂f 0

k

∂εk
= −

(
∂fk

∂t

)

coll
+ vk ·

∂gk

∂r
. (1.2.22)

This is the linearized form of the Boltzmann transport equation. Here we drop the

term of the order of E2 and higher, since the external fields are assumed to be slowly

varying in space.

Furthermore, for the scattering term, the phenomenonlogical assumption is made

−
(
∂fk

∂t

)

coll
' fk − f 0

k

τk
. (1.2.23)

Here τk is the relaxation time i.e. the time with which the non equilibrium distribution

function relax towards local equilibrium state via scattering processes. Also, the for-

mer depends only on the mean k value. This assumption Eq. (1.2.23) is known as the
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Relaxation Time Approximation (RTA). The essence of this approximation implies that

taking into account the fact of local equilibrium the collisions do not change the form

of the distribution function. Under this assumption, the linearized BTE Eq. (1.2.22)

can be written as

−vk ·
(−(εk − µ)

T
∇T + eE

)
∂f 0

k

∂εk
=

gk

τk
+ vk.

∂gk

∂r
. (1.2.24)

If the distribution function and the temperature do not depend on the position, then

Eq. (1.2.24) becomes

−vk · eE
∂f 0

k

∂εk
=

gk

τk
. (1.2.25)

Hence from Eq. (1.2.19) we have

fk = f 0
k + eτkvk · E

∂f 0
k

∂εk
. (1.2.26)

This is the required distribution function which includes the effect of scatterings via

the relaxation time τk. Using it, the transport properties such as electrical conductivity,

thermal conductivity and thermoelectric coefficient, etc. can be computed as discussed

in the next subsection.

Transport properties

To find the electrical conductivity, let us first define the electrical current density as [28]

J =
2e

(2π)3

∫
vkfkdk. (1.2.27)

In the above equation, the equilibrium part of the distribution function i.e. f 0
k does not

contribute to current density. Thus only second term of Eq. (1.2.26) contributes to the

current density which on substituting into (1.2.27) gives

J =
e2

4π3

∫
τkvk(vk.E)

(
∂f 0

k

∂εk

)
dk. (1.2.28)

On comparing the Eq. (1.2.28) with Ohm’s law J = σE, assuming that the field is

applied in x-direction and the system has cubic symmetry (which gives v2
x =

v2

3
), the

electrical conductivity can be written as

σ =
e2

12π3

∫
τkv

2
k

(
∂f 0

k

∂εk

)
dk. (1.2.29)
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Similarly, the thermal conductivity and the thermoelectric coefficient can be expressed

as

σS =
e

12π3T

∫
τkv

2
k (εk − µ)

(
∂f 0

k

∂εk

)
dk, (1.2.30)

κ =
1

12π3T

∫
τkv

2
k (εk − µ)2

(
∂f 0

k

∂εk

)
dk. (1.2.31)

Here S and κ represents the Seebeck coefficient and the thermal conductivity respec-

tively [3, 24]. The Seebeck coefficient is the measure of an electric field generated by

the thermal gradient and the thermal conductivity measures the amount of heat flow

per unit time through a unit area in the presence of thermal gradient.

Now, we consider the case of a simple metal where electrons follow quadratic

energy dispersion (i.e. εk =
k2

2m
). In this case, it is found that the temperature de-

pendent transport coefficients (using Eqns. (1.2.29) to (1.2.31)) show different tem-

perature power law behavior for different interactions such as electron-impurity and

the electron-phonon interactions. In the case of electron-impurity interactions, the

electrical conductivity σ(T ), the thermal conductivity κ(T ) and the Seebeck coeffi-

cient S(T ) show temperature independent behavior. While for the electron-phonon

interaction case, in the high temperature regime i.e. when T � ΘD, σ(T ) ∼ T−1,

κ(T ) ∼ T 0 and S(T ) ∼ T , where ΘD is the maximum temperature cutoff for phonons

i.e the Debye temperature. These predictions are verified in several works with exper-

iments findings and thus are agree with them [3, 14, 29–34]. In the low temperature

(T � ΘD), σ(T ) ∼ T−5, κ(T ) ∼ T−2 and S(T ) gives kink in its structure due to the

presence of the phonon drag [3].

At the end, we conclude that the BTE can be solved under the relaxation time

approximation to calculate electrical conductivity, thermal conductivity and Seebeck

coefficient to explain their temperature dependent behavior. The general solutions of

the BTE are complicated and generally discussed numerically. To get general analyti-

cal expressions, one must resort to an alternative approach. One such approach which

goes beyond RTA is called the memory function approach. Within this approach one

can also discuss the finite frequency cases. This approach is analogous to the Kubo’s

linear response approach. Before to present the memory function approach, let us first

briefly discuss the Kubo approach in the next section.
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1.3 Kubo approach

Earlier in Drude and Bloch-Boltzmann approaches, the transport properties have been

discussed based on the classical and semi-classical treatment of the motion of inter-

acting carriers respectively. Here, we discuss the quantum mechanical treatment to the

theory of electron transport which is known as Kubo’s theory of linear response. In this

approach, a system is considered in equilibrium state and the small external perturba-

tion is applied to the system. In response to it, the expectation values of observables

change from their equilibrium values and can be obtained within this approach to lin-

ear order in the strength of perturbation. In the following, we sketch the derivation of

the general form of Kubo’s formula as well as in particular for the case of electrical

conduction.

Let us consider a system which is described by the total Hamiltonian H = H0 + H ′,

where H0 is the time independent unperturbed part and H ′ is the time dependent per-

turbed part of the Hamiltonian. Here H ′ is defined as H ′ = −F (t)B, where B is

an operator to which the external field couples and F (t) is the strength of the pertur-

bation (like an electric field). We assume that the perturbation is switched on in the

past t = −∞. At that time, the expectation value of operator A is represented as

〈A〉 = tr(ρ0A), where ρ0 is the equilibrium density matrix. Due to the small applied

perturbation, the density matrix changes and it is represented as ρ(t) = δρ(t) + ρ0.

Then the equation of motion for ρ(t) is

∂ρ(t)

∂t
=

1

i~
[H, ρ(t)]. (1.3.1)

On substituting the value of ρ(t), keeping the terms in linear order in F (t) and using

δρ(−∞) = 0, it becomes

∂δρ(t)

∂t
= − 1

i~
[H ′, ρ0].

Now using interaction representation (where A(t) = e−iH0tAe−iH0t), the above equa-

tion gives the formal solution as

δρ(t) = − 1

i~

∫ t

−∞
dt′[H ′(t′), ρ0]. (1.3.2)
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Further using the identity

[C(t′), ρ0] =

∫ β

0

dλρ0e
λH0 [H0, C(t′)]e−λH0 = −i~

∫ β

0

dλĊ(t′ − i~λ), (1.3.3)

Eq. (1.3.2) can be written as

δρ(t) =

∫ t

−∞
dt′ρ0

∫ β

0

dλḢ ′(t′ − i~λ). (1.3.4)

Using the above equation, the change in the expectation value of an operator A i.e.

δ〈A(t)〉 becomes

δ〈A(t)〉 =

∫ t

−∞
dt′F (t′)

∫ β

0

dλtr(ρ0Ḃ(t′ − i~λ)A(t))

=

∫ ∞

−∞
dt′χAB(t− t′)F (t′). (1.3.5)

Here χAB(t− t′), the response function is defined as

χAB(t− t′) =

∫ β

0

dλ〈Ḃ(t′ − i~λ)A(t))〉Θ(t− t′). (1.3.6)

This is known as the Kubo formula in linear response theory. Now we will apply this

approach to the case of electrical conduction. We assume that the the time dependent

and spatially independent electric field is applied to the system in ν direction. This

gives the perturbing Hamiltonian as H ′ = −erEν(t). Also, the current density is

defined as Jµ(t) = −nevµ(t). In this case, the general quantities are defined as A(t) =

J(t), B = r and F (t) = eiωtE. Using these, the electrical conductivity is expressed as

σµν(ω) =

∫ ∞

0

dteiωt
∫ β

0

dλ〈Jν(−i~λ)Jµ(t))〉. (1.3.7)

In classical limit ~→ 0, it becomes

σµν(ω) = β

∫ ∞

0

dteiωt〈Jν(0)Jµ(t))〉. (1.3.8)

This is known as the Kubo formula for the electrical conductivity. Similarly, this for-

mula can be derived for other transport properties. The limits of applicability of the

Kubo approach are as follows:

1. It is based on the linear response theory which is valid at the low magnitude of

the perturbing field.
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2. This approach is applicable to a system if the latter maintains the local equilib-

rium.

3. It cannot be applied to calculate the correlation functions in the nonequilibrium

state.

Now, we will present the memory function approach in the next section which we use

to compute the transport properties in this thesis.

1.4 Memory Function approach

The memory function technique was developed by Zwanzig and Mori [6–8, 11]. It is

introduced to describe the non-equilibrium behavior of the system via the time evo-

lution of the correlation functions. It is formulated in several renditions. Among all

these, the projection operator formalism, originally developed by Zwanzig, is the most

illuminating as it uses many body projection operators to capture the relevant infor-

mation of many body systems [12, 13]. Latter, it was generalized by Mori to cast the

Laplace transform of the auto correlation function into the continued fraction repre-

sentation [9]. This technique is also very appealing, because it relates the transport

coefficients to the interaction energy and deals with the dynamical study of the physi-

cal variables [35–37]. The memory function approach enables one to separate the time

scales i.e. slow and fast. Here the slow variables means the variables that have long

time memory functions i.e. which decays slowly with time and the fast variables are

those which have short time memory functions i.e. which decay quickly. More clearly,

this can be explained with a following example.

Suppose that a particle is moving through a fluid and its motion is opposed by fluid

particles as depicted in Fig. 1.1. The microscopic origin of the phenomena is surely the

Coulomb interactions between all the atoms and electrons of the total system. How-

ever, if the moving particle is macroscopically large and we focus on its center-of-mass

motion, we can reduce the complexity of the problem drastically without compromis-

ing with the basic physics. If the center-of-mass velocity of macroscopic particle is

small compared to the velocity of the fluid particles, we can separate or project out the

center-of-mass coordinates from the rest of the degrees of freedom of the total system.
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Figure 1.1: In the left panel when the external particle of macroscopic size moves slowly,

we see viscous drag with a streamline flow. In this case the time scales corresponding to the

macroparticle and the fluid particles are nicely separable. In the right panel, due to the faster

motion of a particle within fluid, a turbulence sets in and in such situation, separation of scales

are not possible.

In such a situation, we can write its effective equation of motion where the effects of

the molecular drag on its motion is incorporated through a drag force. This leads to a

very simple and well known equation of motion of the dragged particle which is of the

form [38],

R̈− γṘ + F = 0. (1.4.1)

Here R is the position vector of the center-of-mass of the macroscopic particle of unit

mass, Ṙ and R̈ represent its time derivative or the velocity and the acceleration re-

spectively and F is the external force. This is indeed a major simplification of a very

complex system. The parameter γ is termed as friction coefficient, viscous coefficient,

etc. depending on the contexts. It describes dissipation or the flow of energy and or

momentum from the coherent to the incoherent degrees of freedom in a system. It can

also be space and time dependent. However when the velocity of the particle becomes

large, as seen in the right panel of the Fig. 1.1, turbulence sets in and the idea of sepa-

ration of scales is no longer obvious. Separation of scales as used in studying the case

of a slowly moving particle in a fluid, can be used in quantum systems also. Many

such examples can be found in the literature. Since we look at the system within our

desired or approximate time scale and length scale, we effectively observe the dissipa-

tion of the momentum or energy of the particle as a result of the interaction with other

fast variables. The same scenario also may be emerged in other interacting systems

to calculate the generalized dissipative constant or the scattering rates. Moreover, in

short, the goal of this formalism (the Mori-Zwanzig formalism) is the systematic eval-
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uations of the time dependent correlation functions in classical or quantum many body

systems [12, 13].

1.4.1 Projectors and Memory functions

In this subsection, we will give the idea to use the projectors or projection operators

[12,13] and describe the mathematical setup to calculate the expressions of the memory

functions.

Let us start with a many body system having macroscopically large number of

degrees of freedom and examine its macroscopic properties. In classical case, such a

system is described by position and momentum variables of the constituent particles.

This set of position-momentum variables is called phase space. In quantum cases,

these variables are replaced by a set of linearly independent operators. These physical

operators have well defined inner product and thus forms a Hilbert space [23]. This is

depicted pictorially in the big dark blue circle in Fig. 1.2.

Figure 1.2: A schematic representation of the idea of projection in the memory function for-

malism. Here the full big circle is the total many body operator Hilbert Space. The Projection

of full many body states defined by a few operators residing in the region P is represented by

light blue circle. Rests are defined by I-Q.

Now studying the low energy consequences of such a large number of variables

or operators and their interactions is extremely complicated, if not impossible as men-

tioned before. To do this job, we need methods which captures the correct low energy
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physics. Here the Memory function formalism drastically simplifies the above pic-

ture. Basic principle of the memory function formalism is as follows. Suppose we

are interested in studying the center-of-mass motion of a system of N number of par-

ticles. Then we separate or project out the center-of-mass variable from the others.

Here the center-of-mass variable is a macroscopic variable and is defined as a linear

combination of the microscopic variables. Now in memory function formalism, it is

shown that the effects of the rest of the microscopic variables on the dynamics of the

macroscopic variable can be estimated systematically and is cast in a so called Mem-

ory function [39–52]. The above discussion is applicable to the quantum systems also,

except that the classical variables will be replaced by operators. Since we discuss this

formalism in a context of the electronic systems, we invoke quantum mechanics from

the very beginning and work with operator language henceforth.

Consider an operator A corresponds to some physical observable and obeys the

Hamiltonian dynamics. To determine its dynamics, we define an operator L in the

Liouville space i.e. the linear vector space whose elements are represented by linear

operators in Hilbert space [36]. These operators are known as superoperators and the

operator L is named as Liouville operator. Its action on an another given operator A

produces a new operator or maps its action into its commutator with the Hamiltonian

H .

LA = [H,A] = −idA
dt
. (1.4.2)

Here [· · · , · · · ] is the commutator between two operators. It is to be noted that there

is no restriction on the Hamiltonian. It can be non-Hermitian as well, a case of non-

equilibrium situation [53]. From Eq. (1.4.2), we see that an operator evolves with time

as,

A(t) = eiLtA(0). (1.4.3)

To understand the dynamic property of observable in a many body system, the time

evolutions of related operators are needed to quantify the correlation between its vari-

ous components. If such operators are represented asAi, then their correlation function
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matrixR(t) in terms of its matrix elements is defined as

Rij(t) = 〈Ai(t)|Aj(0)〉

= 〈Ai(0)e−iLt|Aj(0)〉. (1.4.4)

Here the angular bracket 〈· · · 〉 represents the canonical ensemble average. Now, per-

forming the Laplace transform of Eq. (1.4.4), we obtain

Rij(z) = i

∫ ∞

0

dteiztRij(t)

=

〈
Ai

∣∣∣∣
1

z − L

∣∣∣∣Aj
〉
, z = ω + iζ. (1.4.5)

Here z refers the complex frequency and ζ → 0+ is a small positive number. Again,

evaluation of Rij(z) is a many body problem with all its associated complicacies as

discussed previously. Further to evaluate the correlation function, we introduce a pro-

jection operator P which projects onto the subspace of operators Ai and is defined

as [12, 13]

P =
∑

ij

|Ai〉〈Aj|
〈Ai|Aj〉

= I−Q. (1.4.6)

Here P separates A, the operator corresponding to the observed macroscopic quantity,

from the rest of the microscopic degrees of freedom and the role of the Q is just the

opposite. A generic projection operator should have the following properties.

P 2 = P, PQ = QP = 0 , etc.. (1.4.7)

Again considering the correlation function in terms of matrix elements Eq. (1.4.6) and

replacing the operator L by L(P +Q) in Eq. (1.4.5), we have

Rij(z) =

〈
Ai

∣∣∣∣
1

z − LP − LQ

∣∣∣∣Aj
〉
. (1.4.8)

Using the operator identity [12, 13]

1

X + Y
=

1

X
− 1

X
Y

1

X + Y
, (1.4.9)

we can write Rij(z) in the following form

Rij(z) =

〈
Ai

∣∣∣∣
(

1

z − LQ +
1

z − LQLP
1

z − L

)∣∣∣∣Aj
〉
. (1.4.10)



1.4. Memory Function approach 19

SinceQ|Aj〉 = 0, the first term in the right hand side of the above expression simplifies

as
〈
Ai

∣∣∣∣
1

z − LQ

∣∣∣∣Aj
〉

=
1

z
〈Ai|Aj〉

=
1

z
χij. (1.4.11)

Therefore the expression for Rij(z) can be re-written as

Rij(z) =
1

z
χij +

∑

lm

〈
Ai

∣∣∣∣
1

z − LQL
∣∣∣∣Al
〉
χ−1
lmRmj. (1.4.12)

In matrix notation, this can be cast in the following form

zI− Cχ−1R = χ. (1.4.13)

Here the matrix elements of C are expressed as

Cil =

〈
Ai

∣∣∣∣
z

z − LQL
∣∣∣∣Al
〉
. (1.4.14)

Further this can be decomposed into two parts by writing the numerator as z+LQ−LQ
as

Cil = 〈Ai|L|Al〉+

〈
Ai

∣∣∣∣LQ
1

z − LQL
∣∣∣∣Al
〉
. (1.4.15)

The first term of the right hand side of the above expression is called the frequency

matrix and is defined as

Lil = 〈Ai|L|Al〉. (1.4.16)

The remaining part of Eq. (1.4.15) contains the effects of the faster degrees of freedom

residing in the un-projected part of the Hilbert space and is termed as the memory

matrix. It is defined as,

Mil(z) =

〈
Ai

∣∣∣∣LQ
1

z −QLQQL
∣∣∣∣Al
〉

=

〈
Ȧi

∣∣∣∣Q
1

z −QLQQ
∣∣∣∣ Ȧl
〉
. (1.4.17)

Here we use the relation Q2 = Q to write Mil(z) in a symmetric form. This form

is very instructive as it defines the memory function in terms of the un-projected part
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of the |Ȧ〉 = L|A〉 and the un-projected part of the Liouville operator L, i.e. QLQ.

Since the memory function consists of the unprojected degrees of freedom only, it

describes the effects of fast modes on the the slow modes in a system and accounts

for the dissipation in the slow degrees of freedom. Using the above expressions, the

correlation function Eq. (1.4.4) between different components of A can be written in a

compact notation as,

R(z) =
1

zI− [L +M(z)]χ−1
χ. (1.4.18)

In terms of the matrix elements, it takes the form,

∑

l

(
zδil −

∑

s

[Lis +Mis]χ
−1
sl

)
Rij(z) = χij. (1.4.19)

This completes the general description of the memory function formalism. In the next

section, we provide the motivation to apply the above technique to electronic transport.

1.4.2 Application to electronic transport

The usefulness of the memory function formalism to find the correlation function be-

comes significant when infinite dimensional matrix M has finite number of eigen val-

ues [37,54,55]. It allows us to treat this formalism for the finite dimensional system to

study the dynamical transport properties of the electronic systems. Here our focus is on

the time evolution of the current operator and the correlation of its various components

in a generic many body system. In our discussions on electronic systems we assume

that momentum is the only almost conserved quantity here and thus there is only one

slow mode associated with this conservation law. We study the momentum relaxation

of a charged particle under external perturbation. Thus the projector operator is defined

only in terms of the current operator. This assumption holds if there is no other slow

modes associated with any other conservation law or broken symmetry that couples to

the charge degrees of freedom. However for simplicity we stick to this picture for the

time being.

Now we can start with the expression for memory function as defined in Eq. (1.4.17).

In certain situations, we can evaluate the expression in the spirit of perturbation theory.

Memory function can be viewed as the self energy of the current-current correlation
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function [12]. It has an added advantage that such self energy calculation does not

require vertex correction [56]. The latter is extremely important and problematic when

it is expressed thorough the interaction renormalized single particle propagators [24].

Now, for the case of current-current correlation, the general operators are replaced by

the current operators J and the memory function Eq. (1.4.17) can be rewritten as [57]

M(z) =

〈
J̇

∣∣∣∣Q
1

z −QLQQ
∣∣∣∣ J̇
〉
. (1.4.20)

Here J̇ = [J,H], where H is the total Hamiltonian of the system under consideration.

With this, we can conclude that knowing the form of total Hamiltonian (including

the perturbation part) and current of a specific system, one can calculate the memory

function in a systematic way, hence the transport properties which is the main aim

of our thesis. A procedure to calculate the memory function, due to Götze-Wölfle is

presented in the next chapter. Further, the limits of the applicability of the memory

function approach are as follows:

1. In this approach, the existence of quasiparticle is not essential. Thus, it is ap-

plicable to certain strongly correlated systems. There is no restriction on the

dimension of the system. In this thesis, I have used the quasiparticle picture to

study the transport properties.

2. Within the Götze-Wölfle memory function approach, one can calculate the trans-

port properties perturbatively by considering current as a nearly conserved quan-

tity. If the system has other nearly conserved quantities like total momentum,

heat diffusion, etc. as in the case of strongly interacting non-Fermi liquids, one

has to use the memory matrix formulation rather than GW approach to include

the other slow modes that couples to the electric (thermal in case of thermal

conductivity) current.

3. It is valid only if the system is in the local equilibrium.

1.5 Objectives of the present study

To study the effect of perturbative interactions on the transport coefficients, we use the

memory function approach and calculate them at zero and finite frequency regimes.
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The main objectives of our study are as follows:

1. Studying the generalized Drude scattering rate based on the Götze-Wölfle (GW)

approach takes into account the effect of gapped electronic density of states.

2. Exploring the frequency and temperature evolution of the thermal conductivity

of metal for the case of the electron-impurity and the electron-phonon interac-

tions. Motivated by recent experimental advancements, we report the results in

the finite frequency regimes.

3. Materials with the large figure of merit are required for the operation of nano

thermoelectric devices. Motivated by that we study the dynamical thermoelec-

tric coefficient in a metal for the case of electron-impurity and electron-phonon

interactions.

4. Exploring the role of various acoustic phonon modes such as longitudinal, trans-

verse and flexural modes considering the electron-phonon interactions in the dy-

namical thermal conductivity of graphene.

5. Extension of the GW memory function approach taking the high frequency ex-

pansion of the memory function for the case of the electron-impurity interaction.

We calculate the memory function upto the second moment and show its large

contributions in the case of larger interaction strength.

1.6 Overview of chapters

In the next chapter, Chapter 2, we begin with discussion of the Götze-Wölfle (GW)

memory function approach. We then present the results of scattering rate predicted by

GW to address the effect of electron-phonon interaction in a metal by taking constant

electron density of states. We then go beyond this assumption and introduce the gapped

density of states and calculate the imaginary part of the memory function or known

as generalized Drude scattering rate. Here we discuss the dc (zero frequency limit)

and ac imaginary part of the memory function in different temperature and frequency

regimes. Then we compare our findings with the phenomenonlogical approach given

by Sharapov and Carbotte and discuss our results.
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In Chapter 3, we calculate the dynamical thermal conductivity in the case of a

metal using the memory function approach. Here for the first time we introduce the

thermal memory functions and calculate them to study the effects of electron-impurity

and electron-phonon interactions. Then we discuss its asymptotic behavior in differ-

ent frequency and temperature regimes. Further we compare the results for the zero

frequency case with the results obtained by the Boltzmann approach and find good

agreement. In addition to this, we make several predictions in the frequency dependent

cases for ac thermal conductivity.

In Chapter 4, with the same spirit of the previous chapter, we calculate the fre-

quency dependent thermoelectric transport i.e. the Seebeck coefficient of a metal.

First, we discuss the basic relations of the thermoelectric coefficients and then calcu-

late them in various frequency and temperature regimes. Also, we discuss that how

the Seebeck coefficient can improve the figure of merit of any material to increase the

efficiency of thermoelectric devices.

In Chapter 5, we study the two dimensional system i.e. graphene which is different

from the normal three dimensional system. We present the role of various acoustic

phonons to the electronic thermal conductivity of graphene. Furthermore, we also

discuss the contribution of these phonons to the finite frequency cases.

In Chapter 6, we extend the GW memory function approach to the higher order

contribution to the Drude scattering rate. We propose a systematic expansion of the

memory function involving its various moments. Then, we calculate the scattering rate

upto second moment in the memory function expansion for the case of the electron-

impurity interactions. We discuss the contributions from higher moments in the case

of larger interaction strength. Finally, in Chapter 7 we present the summary of the

dynamical transport coefficients and outlook for the future studies.





Chapter 2

Generalized Drude Scattering Rate:

Memory Function approach

Electrical conductivity is one of the important transport property and its study can

help us in attaining a better understanding of the electronic interactions in many body

systems. These interactions comprise of electron-impurity, electron-phonon, electron-

electron interactions which play important role in the frequency dependent generalized

scattering rate. Their signatures can be easily grasped by using the experimental data

on reflectance to extract σ(ω, T ) which can be written in a general way by the memory

function expression or the generalized Drude scattering form [12, 56]:

σ(ω, T ) =
ω2
p

4π

1

1/τ(ω, T ) + iω(1 + λ(ω, T ))
. (2.0.1)

Here 1/τ(ω, T ) is the frequency and temperature dependent scattering rate, λ(ω, T )

is the frequency and temperature dependent mass enhancement factor and ωp is the

plasma frequency.

On theory side, the derivation of the analytical formulae for these quantities (like

1/τ(ω, T ) and λ(ω, T )) is quite complicated and has yet not been calculated by the

Bloch-Boltzmann approach as discussed in previous chapter. Owing to the analytical

tractability, the memory function formalism was first used in a systematic way to cal-

culate electrical conductivity for the case of a simple metal with various interactions

by Götze-Wölfle [56]. Within this approach, they calculated the frequency depen-

dent conductivity with various interactions such as electron-phonon, electron-impurity,

electron-magnetic impurity, scattering with localized modes etc. For electron-impurity

25
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interactions they showed that the results are identical to the single particle calculations

by using the Bloch-Boltzmann equation with vertex corrections [56]. This is indeed a

benchmark and major success of this formalism.

In this chapter, we discuss the case of electron-phonon interaction in the dynami-

cal or frequency dependent electrical conductivity. In Sec. 2.1, we describe the model

Hamiltonian of the system. In Sec. 2.2, we first calculate the electrical memory func-

tion as done by Götze-Wölfle to provide the background and then we go beyond the

assumption of constant electronic density of states. Here we introduce the gapped elec-

tronic density of states and calculate the electrical memory function. In Sec. 2.3, we

review the approach introduced by Sharapov and Carbotte. Later in Sec. 2.4, we com-

pare our results with the Sharapov-Carbotte results. Finally, we discuss our findings in

Sec. 2.5.

2.1 Model Hamiltonian

We consider a system in which conduction electrons interact with phonons. In such

system, the total Hamiltonian is given by [56]

H = H0 +Hep +Hph, (2.1.1)

where H0 is the Hamiltonian for non-interacting electrons or free band Hamiltonian

and is represented as

H0 =
∑

k,σ

εkc
†
k,σck,σ, (2.1.2)

where εk is the electron energy dispersion and c†k,σ (ck,σ) is creation (annihilation) op-

erator having wave vector k and spin σ. The Hamiltonian Hep represents the electron-

phonon interaction or known as the perturbing Hamiltonian due to interaction of elec-

trons with phonons and is given by

Hep =
∑

k,k′,σ

[
D(k− k′)c†k′,σck,σbk−k′ + h.c.

]
. (2.1.3)

Here bk−k′ (b†k−k′) is the annihilation (creation) operator for phonon having momentum

q = k − k′ and D(k − k′) is the electron-phonon matrix element. The symbol h.c.
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corresponds to the Hermitian conjugate of the first term. Here for simplicity or to

understand the low energy dynamics of a metal, we consider only the acoustic phonons.

In this case, the electron-phonon matrix element can be specified as [3]

D(q) =

(
1

2miNωq

)−1/2

qC(q); ωq = csq, (2.1.4)

where C(q) is the slowly varying function of q, mi is the ion mass, N is the total

number of unit cells, cs is the sound velocity and ωq is the phonon frequency.

The third part of Eq. (2.1.1) represents the free phonon Hamiltonian and is de-

scribed as

Hph =
∑

q

ωq

(
b†qbq +

1

2

)
. (2.1.5)

With this description of the Hamiltonian, we will proceed for the calculation of the

electrical memory functions in the next section.

2.2 Electrical memory functions

According to the Götze-Wölfle approach, the electrical memory function is defined

as [56]

M(z, T ) = z
χ(z, T )

χ0 − χ(z, T )
or χ(z, T ) = χ0

M(z, T )

z +M(z, T )
, (2.2.1)

where χ(z, T ) is the current-current correlation function, χ0 corresponds to the static

limit of the correlation function (= Ne/m, Ne is the electron density) and z is the

complex frequency (z = ω + iζ , ζ → 0+). As discussed in the first chapter, the

memory function includes the effect of fast degrees-of-freedom like electron-phonon

interactions, etc. on slow degrees-of-freedom which in the present case is the electrical

current density. If there are no interactions then current density is a conserved quantity.

The decay of a spontaneously generated current fluctuation in a realistic system is

due to the electron-phonon or electron-impurity interactions. In metals*, there is clear

scale separation in that the time scale over which current density decays is much larger

*In strange metals, transport is controlled by the collective diffusion of energy and charge rather than

by quasiparticle or momentum relaxation [58].
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than the time scale of the fast degrees-of-freedom electron-phonon or electron-impurity

interactions.

The effect of these fast degrees-of-freedom on the slow degrees-of-freedom can be

calculated by using the memory function formalism which is an alternative formulation

of the linear response theory. In this theory, the linear response of an operator due to

perturbation (electron-phonon, electron-impurity) coupled to an another operator is

expressed in terms of the correlation function as [59, 60]

χ(z, T ) = 〈〈J ; J〉〉z = −i
∫ ∞

0

dteizt〈[J(t), J ]〉. (2.2.2)

Here the electrical current J is defined as

J =
1

m

∑

k

ek.n̂c†k,σck,σ, (2.2.3)

where n̂ is the unit vector parallel to the direction of current. In Eq.(2.2.2), [· · · , · · · ]
denotes the commutator, the inner angular bracket of 〈〈· · · 〉〉z represents the ensemble

average at temperature T and the outer one represents the Laplace transform of the

ensemble average. Thus electrical current density J defined in the above equation is

our slow mode as discussed earlier.

In this chapter, we want to discuss the dynamical transport i.e. the dynamical elec-

trical conductivity σ(z, T ) which is related to the current-current correlation function

as follows [24, 59–61]

σ(z, T ) = −i1
z
χ(z, T ) + i

ω2
p

4πz
. (2.2.4)

In the above expression, ω2
p = 4πNee

2/m is the square of plasma frequency. Now

substituting Eq. (2.2.1) in (2.2.4), the electrical conductivity becomes [27, 56]

σ(z, T ) =
i

4π

ω2
p

z +M(z, T )
. (2.2.5)

To calculate σ(z, T ), we need to calculate the electrical memory function which further

relies on the correlation function. This correlation function can be obtained by using

the equation of motion [56] i.e. first multiplying χ(z, T ), defined in Eq. (2.2.2) by z

and then performing the integration on the right hand side of the equation by parts†

†z〈〈J ; J〉〉z = −i
∫ ∞

0

dt
1

i

d(eizt)

dt
〈[J(t), J ]〉 = 〈[J, J ]〉 − i

∫ ∞

0

dteizt〈[[J,H], J ]〉
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which express z〈〈J ; J〉〉z as

z〈〈J ; J〉〉z = 〈[J, J ]〉+ 〈〈[J,H]; J〉〉z. (2.2.6)

Here the first term in the right hand side contains equal time commutator [J, J ] which

identically vanishes. Thus, z〈〈J ; J〉〉z = 〈〈[J,H]; J〉〉z. Again using the equation of

motion on 〈〈[J,H]; J〉〉z as done earlier, one obtains

z〈〈[J,H]; J〉〉z = 〈[[J,H], J ]〉 − 〈〈[J,H]; [J,H]〉〉z. (2.2.7)

In this equation, the difference is the negative sign in front of the second term of the

right hand side which can be proved by the cyclic property of trace operation‡. Fur-

ther for z = 0, 〈[[J,H], J ]〉 = 〈〈[J,H]; [J,H]〉〉z=0. Thus, substituting these back in

Eq. (2.2.6) we get

z〈〈J ; J〉〉z =
〈〈[J,H]; [J,H]〉〉z=0 − 〈〈[J,H]; [J,H]〉〉z

z
. (2.2.8)

Finally, the correlation function can be expressed as

χ(z, T ) =
〈〈[J,H]; [J,H]〉〉z=0 − 〈〈[J,H]; [J,H]〉〉z

z2
. (2.2.9)

In Ref. [56], an expansion for M(z, T ) = zχ(z, T )/χ0 (1 + χ(z, T )/χ0 − ...) is used.

Basis of this assumption is the smallness of interaction energy as compared to the

kinetic energy of free electrons [56]. Using this expansion and on keeping leading

order term, the electrical memory function M(z, T ) can be written as

M(z, T ) = z
χ(z, T )

χ0

= z
〈〈J ; J〉〉z

χ0

. (2.2.10)

Substituting Eq. (2.2.8) in the above equation, the electrical memory function becomes

M(z, T ) =
〈〈[J,H]; [J,H]〉〉z=0 − 〈〈[J,H]; [J,H]〉〉z

zχ0

. (2.2.11)

Further for this evaluation, we first calculate the commutator of the current and the total

Hamiltonian. Since, the electrical current commutes with the free parts of Hamiltonian

i.e. H0 and Hph. Thus [J,H] = [J,Hep] which using Eqs. (2.1.1) and (2.2.2) becomes

[J,H] =
1

m

∑

kk′σ

(k− k′) · n̂
(
D(k− k′)c†k,σck′,σbk−k′ − h.c.

)
. (2.2.12)

‡〈[[A,H], B]〉 = Tr[A,H]B − TrB[A,H] = −TrA[B,H] + Tr[B,H]A = −〈[A, [B,H]]〉
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Using the above equation, the correlation function for the case of electron-phonon

interaction 〈〈[J,H]; [J,H]〉〉z becomes

〈〈[J,H]; [J,H]〉〉z =
1

m2

∑

kk′σ

∑

pp′τ

(k− k′) · n̂ (p− p′) · n̂ (2.2.13)

×
(
D(k− k′)D∗(p− p′)〈〈c†kσck′σbk−k′ ; c

†
p′τcpτb

†
p−p′〉〉z

−D∗(k− k′)D(p− p′)〈〈c†k′σckσb
†
k−k′ ; c

†
pτcp′τbp−p′〉〉z

)
.

To simplify the above expression, we need to calculate
〈〈
c†k,σck′,σbk−k′ ; b

†
p−p′c

†
p′,σ′cp,σ′

〉〉
z

which can be calculated as (using definition Eq. (2.2.2))

〈〈
c†k,σck′,σbk−k′ ; b

†
p−p′c

†
p′,σ′cp,σ′

〉〉
z

=

−i
∫ ∞

0

dteizt〈[c†k,σ(t)ck′,σ(t)bk−k′(t); b
†
p−p′c

†
p′,σ′cp,σ′ ]〉. (2.2.14)

Using ck,σ(t) = ck,σe
−iεkt and performing the integration over time, we have

〈〈
c†k,σck′,σbk−k′ ; b

†
p−p′c

†
p′,σ′cp,σ′

〉〉
z

= −
〈[c†k,σck′,σbk−k′ , b

†
p−p′c

†
p′,σ′cp,σ′ ]〉

z − εk′ + εk − ωk−k′
. (2.2.15)

Further solving the commutator and ensemble average, the above equation reduces to

〈〈
c†k,σck′,σbk−k′ ; b

†
p−p′c

†
p′,σ′cp,σ′

〉〉
z

= −
[f(1− f ′)(1 + n)− f ′(1− f)n] δk,pδk′,p′δσ,σ′

z − εk′ + εk − ωk−k′
.

(2.2.16)

Here f and n are Fermi and Boson distribution functions as defined in Eqs. (1.2.15)

and (1.2.17) in Chapter 1.

Inserting Eq. (2.2.16) into (2.2.14) and hence in Eq. (2.2.11) and then performing

the analytic continuation z → ω + iζ , ζ → 0+, the imaginary part of the electrical

memory function§ can be expressed as

M ′′(ω, T ) =
2π

3

1

mNe

∑

k,k′
|D(k− k′)|2(k− k′)2fk′(1− fk)nk−k′

[
eβω − 1

ω
δ(εk − εk′ − ωk−k′ + ω) + (terms withω → −ω)

]
.

(2.2.17)

For simplification in the above expression, we use the law of conservation of mo-

mentum q = k − k′ and assume that the system has cubic symmetry for which

§ lim
ζ→0

1

a+ iζ
= P

(
1

a

)
− iπδ(a)
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((k − k′).n̂)2 =
1

3
|k − k′|2. Convert the summations over k and k′ into integrations

using εk =
k2

2m
and εk′ =

k′2

2m
and assuming that k is pointing along the z-direction

and k′ subtends an angle θ with it (at the end, k integration over all directions and mag-

nitudes is to be performed). Insert an integral
∫
dqδ(q − |k − k′|) over q to simplify

the calculation as given below. Thus the Eq. (2.2.17) becomes

M ′′(ω, T ) =
2

3

N2

(2π)3mNe

∫ ∞

0

dqq2|D(q)|2
∫
dεk

vk
k2

∫
dεk′

vk′
k′2

∫ π

0

dθ sin θδ(q − |k− k′|)fk′(1− fk)nq
[
eβω − 1

ω
δ(εk − εk′ − ωk−k′ + ω) + (terms withω → −ω)

]
.

(2.2.18)

In a typical metal, the Fermi energy is very large (is of the order of 104K). On the other

hand the experiments are usually performed at temperature of the order of 102K. Thus,

electrons from a small region of width kBT (in the present case kB = 1) around the

Fermi surface participate in the scattering events. Hence, we assume that the magni-

tudes of k and k′ are equal to kF , the Fermi wave vector. With this, the θ integral can

be simplified as:
∫ π

0

dθ sin θδ(q −
√

2kF
√

1− cos θ) =
q

k2
F

. (2.2.19)

Using this and simplifying the above equation, we obtain

M ′′(ω, T ) =
4

3

N2m2εF
(2π)3Nek2

F

∫ qD

0

dqq3|D(q)|2
∫ ∞

−∞
dε

nq
e−β(ε−εF ) + 1

×
[

1

eβ(ε−εF +ω−ωq) + 1

eβω − 1

ω
+ (terms withω → −ω)

]
.

(2.2.20)

This is an expression for the imaginary part of the electrical memory function by

considering the constant electronic density of states (EDOS) as deduced by Götze-

Wölfle [56].

2.2.1 For gapped density of states

In the optical study of strongly correlated systems, the generalized Drude scattering

rate is obtained experimentally using the reflectance data. To address these exper-
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imental findings, Sharapov and Carbotte have proposed a theoretical approach. This

approach is based on several assumptions which have shortcomings as discussed in lat-

ter section (Sec. 2.3). Here we have proposed [62] an alternative approach to address

the optical measurements which is based on the memory function formalism.

In this section, we extend the GW approach which is based on constant EDOS. To

go beyond the latter assumption, we consider a system with a gap around the Fermi

surface and introduce the phonon DOS into the GW formalism which generalizes it in

a substantial way as explained below. In this case, the electronic density of states is

zero in energy region (−∆,∆). Thus the energy integration in Eq. (2.2.20) has to be

modified

I =

∫ εF−∆

−∞
dε

eβ(ε−εF )

eβ(ε−εF ) + 1

1

eβ(ε−εF +ω−ωq) + 1

+

∫ ∞

εF +∆

dε
eβ(ε−εF )

eβ(ε−εF ) + 1

1

eβ(ε−εF +ω−ωq) + 1
. (2.2.21)

After simplification we have

I =
1

β

1

eβ(ω−ωq) − 1
log

{
(1 + eβ(−∆+ω−ωq))(1 + eβ∆)eβ(ω−ωq)

(1 + eβ(∆+ω−ωq))(1 + e−β∆)

}
. (2.2.22)

Using the simplified version of the energy integral, the imaginary part of electrical

memory function can be written as

M ′′(ω, T ) =
π3N2ρ2

F

4mk5
F

∫ qD

0

dqq3|D(q)|2 1

β
nq

[
eβω − 1

ω

1

eβ(ω−ωq) − 1
log

{(
1 + eβ∆

1 + e−β∆

)(
1 + e−β(∆−ω+ωq)

eβ∆ + eβ(ωq−ω)

)}

+(terms withω → −ω)

]
. (2.2.23)

This is the desired expression for the frequency and temperature dependent imagi-

nary part of electrical memory function. For ∆ = 0 and using phonon matrix ele-

ment Eq. (2.1.4), this expression reduces to the expression calculated by GW in their

work [56], as it should. In actual practise (i.e. for an arbitrary form of gap around

the Fermi surface), the general expression of the imaginary part of electrical memory

function is complicated and difficult to proceed analytically. A general formulae is

given in Appendix A. Thus for the simplicity of calculation, here we have discussed it

for a hypothetical system. Further to write M ′′(ω, T ) in the general form, change the
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variable ωq to Ω in above equation which can be rewritten as

M ′′(ω, T ) =
2π

ω

∫ ωD

0

dΩα2F (Ω)
1

β

[
eβω − 1

eβ(ω−Ω) − 1

× 1

eβΩ − 1
log

{
1 + e−β(∆−ω+Ω)

1 + e−β(∆+ω−Ω)

}
− (terms withω → −ω)

]
,

(2.2.24)

where α2F (Ω) is defined as

α2F (Ω) =
π2N2ρ2

F

8mk5
F c

4
s

Ω3|D(Ω)|2. (2.2.25)

This is known as phonon spectral function whose form is same as given by Allen [63](
α2F (Ω) =

N(0)

4v2
F

〈〈|Mkk′ |2 (v(k)− v(k′))2δ(~ΩQ − ~Ω)〉〉
)

.

Equation (2.2.23) is our main result. To discuss it in various temperature and fre-

quency regimes, we use the electron-phonon matrix element Eq. (2.1.4) and calculate

M ′′(ω, T ) in next subsections.

DC memory function

In the zero frequency limit and assuming C(q) as a constant i.e. C(q) = 1/ρF [3], the

imaginary part of the electrical memory function Eq. (2.2.23) becomes

M ′′(T ) =
1

8
π3 N

mmik5
F

∫ qD

0

dqq5 1

(eβωq − 1)(e−βωq − 1)

1

ωq

× log

{
1 + eβ∆

1 + e−β∆

1 + e−β(∆+ωq)

eβ∆ + eβωq

}
. (2.2.26)

Now consider the case of T � ωD,∆, the above equation reduces to

M ′′(T ) =
1

8
π3 N

mmik5
F

∫ qD

0

dqq5 1

ωq

−1 + βωq
(βωq)2

log

{
2− β∆− βωq
2− β∆ + βωq

}
.

(2.2.27)

On substituting x =
qΘD

qDT
(i.e. βωq = x) where ΘD is the Debye temperature, the dc

electrical memory function reduces to

M ′′(T ) =
1

8
π3 Nq6

D

mmik5
FΘD

(
T

ΘD

)5 ∫ βΘD

0

dxx2(x− 1) log

{
2− β∆− x
2− β∆ + x

}
.

(2.2.28)

This expression under case T � ωD,∆ is equivalent to

M ′′(T ) ≈ A

{
T

ΘD

+
∆

ΘD

+
1

T

(
∆2

8ΘD

+
8∆

5
− ΘD

6

)
...

}
. (2.2.29)
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where A refers for constant numerical factor.

Similarly for T � ωD,∆, the Eq. (2.2.26) becomes

M ′′(T ) = −1

8
π3 Nq6

D

mmik5
FΘD

(
T

ΘD

)5 ∫ βΘD

0

dxx4e−x log

{
eβ∆ + e−x

eβ∆ + ex

}
.

(2.2.30)

The above expression can also be simplified as

M ′′(T ) ≈ Ae−β∆

{
1

5
− 3

4

(
T

ΘD

)5

...

}
. (2.2.31)

Substituting the Eq. (2.2.30) into (2.2.5), it leads to the expression of dc conductivity

for the electron-phonon interaction. Here if we insert gap ∆ = 0 in the Eq. (2.2.26),

we obtain the results as given in Ref [56].

AC memory function

We proceed again with Eq. (2.2.23) to study frequency dependent behaviour of elec-

trical memory function in different regimes. In the high frequency regime i.e. for

ω � ωD and using same approximation (C(q) = 1/ρF ) as considered for the dc case,

the imaginary part of electrical memory function becomes

M ′′(ω, T ) =
1

8
π3 N

mmik5
F

∫ qD

0

dqq5 1

βωq

n

ω

×
[
log

(
1 + e−β(∆−ω)

1 + e−β(∆+ω)

)
−eβωq log

(
1 + e−β(∆+ω)

1 + e−β(∆−ω)

)]
.(2.2.32)

When the gap is smaller than the |ω − ωD| i.e. ∆ < |ω − ωD|, the above equation

reduces to ¶

M ′′(ω, T ) =
1

8
π3 N

mmik5
FΘD

q6
D

(
T

ΘD

)5 ∫ βΘD

0

dxx4 coth
(x

2

)
. (2.2.33)

From this we identify that at high temperature, the imaginary part of electrical memory

function becomes temperature and frequency independent. This means the saturation

behavior ofM ′′(ω, T ) for ω � ωD. The reason is that under this condition, the integral

approaches to (ΘD/T )5 and it cancels with prefactor (T/ΘD)5 in Eq. (2.2.24). At low

temperature, it varies linearly with temperature as the integral approaches to (ΘD/T )4.

¶In the opposite case |ω − ωD| < ∆, Eq. (2.2.23) leads to vanishing scattering rate.
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In the later section we compare our findings Eq. (2.2.24) with that by the Sharapov-

Carbotte approach. Before we compare our results, let us first discuss briefly the

approach proposed by Sharapov and Carbotte [64] to study the transport in the next

section.

2.3 Sharapov-Carbotte approach

In this approach, Sharapov and Carbotte deduce a relationship between the scatter-

ing rate 1/τ(ω, T ) [64], which in our context is termed as memory function, and the

electron-phonon spectral function for a system in which electronic density of states

cannot be considered as a constant. The motivation behind this approach was to study

the frequency and temperature dependencies of the optical conductivity σ(ω, T ) data

through the Generalized Drude Scattering rate (GDS) 1/τ(ω, T ).

A simple expression for the scattering rate in terms of the electron-phonon spectral

function at zero temperature was first derived by Allen [63] to study the effects of

electron-phonon interaction in electrical conductivity of metals. Then for the finite

temperature, it was extended by Shulga, Dolgov and Maksimov [65]. But in both the

formalisms, the Electronic Density Of States (EDOS) at the Fermi energy is considered

as a constant. To go beyond this idea, Mitrović and Fiorucci [66] gave a relation for

non-constant EDOS, but their result is at zero temperature. Sharapov and Carbotte [64]

generalize their result for finite temperatures. In deriving the formula, they begin with

the Kubo formula for electrical conductivity

σ(ω) =
i

ω + i0

[
Π(ω + i0) +

ne2

m

]
. (2.3.1)

Here Π(ω) is the current-current correlation function which can be obtained from

imaginary time expression [24]

Π(iΩm) =

∫ β

0

dτeiΩmτ 〈j(τ)j(0)〉, (2.3.2)

where iΩm = ω + i0 and τ is the imaginary time. Further using the definition of

electrical current, this expression has been expressed in terms of Green’s function and

calculated using Matsubara technique [24]. Substituting the resulting expression for
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correlation function in Eq. (2.3.1) and comparing that with the expression for the gen-

eralized Drude formula Eq. (2.0.1), they derived the frequency and temperature depen-

dent scattering rate. In this derivation, they made several assumptions including the

important one on self energy, |Σ(ε+ω)−Σ∗(ε)| � ω where Σ(ε) is the electronic self

energy and ∗ corresponds to the complex conjugate [64]. Based on these, Sharapov

and Carbotte gave the following expression for GDS

1

τ(ω, T )
=

π

ω

∫ ∞

0

dΩα2F (Ω)

∫ ∞

−∞
dω′
[
N(ω′ − Ω)

N(0)
+
N(−ω′ + Ω)

N(0)

]

[n(Ω) + f(Ω− ω′)] [f(ω′ − ω)− f(ω′ + ω)] , (2.3.3)

where α2F (ω) is the phonon spectral function, N(ω) is the electronic density of states

and N(0) is the normalization factor. Thus we conclude that by knowing the form of

the phonon spectral function and the electronic density of states of a specific system,

one can obtain the behavior of the generalized Drude scattering rate.

2.4 Comparison of GW and SC approach

To compare our approach Eq. (2.2.24) with SC approach Eq. (2.3.3), we have done

calculations using models for electronic density of states and the phonon spectral func-

tion. First in SC approach, for the electronic density of states, we use a square well

type model with center at Fermi energy and considered a gap of 2∆ around it. This

model is considered for the simplicity of the analytical treatment of our calculation and

it is similar to the density of states of the quantum well. However, the consideration

of the gapped density of states is important to understand the behavior of various sys-

tem such as conventional and unconventional superconductors. Same gap is taken in

our approach Eq. (2.2.24) for comparison. Second, for the phonon spectral function,

α2F (Ω), we modelled it as Lorentzian of the type
ΓΩ

(Ω− ΩE)2 + (Γ)2
where ΩE repre-

sent the phonon peak frequency and Γ is the width of the Lorentzian [67–69]. Thus for

comparison, we use the same form of α2F (Ω) in SC approach and our approach. In

the whole analysis, we have fixed the value of ΩE and Γ as 0.02eV and 0.04eV respec-

tively in both approaches. The value of Debye frequency (the upper limit of phonon

frequency integration Eq. (2.2.24)) is very much high as compared to the Lorentzian

width, hence ωD does not give any effect in whole calculation. To compare the results



2.4. Comparison of GW and SC approach 37

T=10K, D=0.02

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

ΩHeVL

1
�Τ

He
V

L
SC

Mem

(a)

T=200K, D=0.02

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

ΩHeVL

1
�Τ

He
V

L

SC

Mem

(b)

T=10K, D=0.20

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

ΩHeVL

1
�Τ

He
V

L

SC

Mem

(c)

T=200K, D=0.20

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

ΩHeVL

1
�Τ

He
V

L

SC

Mem

(d)

Figure 2.1: Comparison plot of scattering rate 1/τ(ω, T )(=M ′′(ω, T )) calculated using Mem-

ory function approach (Mem, solid, green) and Sharapov-Carbotte approach (SC, solid, blue)

at temperature T= 10K and 200K and at gap ∆ = 0.02eV and 0.20eV. The agreement is

excellent.

from both the approaches, the frequency dependent scattering rate has been plotted at

different temperatures. In Fig. 2.1, we can observe an excellent agreement between

both the approaches. As the gap magnitude is increased, the scattering rate shows

suppression upto the frequency ω ∼ ∆ as expected (compare Figs. 2.1(a) and 2.1(c)).

These results are qualitatively in agreement with the experimental results [70, 71].

In Fig. 2.2, we plot 1/τ(ω → 0, T ) as a function of temperature T . Here we

can observe that the scattering rate using memory function approach gives more mag-

nitude over the SC approach. In Fig. 2.2(a) i.e. in zero frequency limit, the ratio∣∣∣∣
1/τMF − 1/τSC

/1/τMF

∣∣∣∣
100K

, where 1/τMF and1/τSC represents the scattering rate by mem-

ory function technique and SC technique respectively, is 0.7 which becomes 0.4 at

ω = 0.05eV (as shown in Fig. 2.2(b)) and at ω = 0.5eV it further reduce to 0.031 (as
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shown in Fig. 2.2(c). This shows that the ratio for scattering rates using memory func-

tion approach and SC approach reduces as we go from dc limit to finite frequency limit.

Thus we notice that there are discrepancies between the two approaches in the low
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Figure 2.2: Temperature variation of scattering rate with two different approaches namely

memory function (Mem, dotted) and Sharapov-Carbotte (SC, dashed) at gap 0.02eV. (a) dc

case (b) at ω = 0.05eV (c) at ω = 0.5eV.

frequency (ω → 0) limit. But both approaches explain the Holstein’s mechanism at

T = 0K [72, 73] (as shown in Figs. 2.2(b), 2.2(c)). This means that at finite frequency

and at zero temperature(where thermally excited phonons are not present), there is a

finite scattering rate. This attributes due to the generation of phonons along with the

electron-hole excitations with the absorption of photon quanta. This mechanism is

known as Holstein mechanism [72, 73].

Next, we have plotted 1/τdc at different temperatures as a function of ∆ and com-

pare the both approaches (Fig. 2.3). Here we observe that 1/τdc decreases with the

increase of gap energy ∆. Also, we find that the difference between the magnitudes
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Figure 2.3: Comparison of dc scattering rate (1/τdc) as a function of ∆ using Memory func-

tion approach (Mem, Purple) and Sharapov-Carbotte approach (SC, Red) at various tempera-

tures 50K and 200K.
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Figure 2.4: Variation of difference = (1/τMF − 1/τSC) of dc scattering rate with tempera-

ture calculated by two different approaches MF and SC at ∆ = 0.02eV.

of 1/τSC and 1/τMF is not much dependent on ∆, but it does increase with increasing

temperature. These discrepancies observed in the dc limit are discussed below.

To illustrate these discrepancies, we have plotted the difference in the magnitudes

of scattering rates calculated by both approaches. The difference (1/τMF − 1/τSC)

at ∆ = 0.02eV is plotted in Fig. 2.4. Here we find that this difference increases

with the rise of temperature. The reason behind this difference in the low frequency

case is the assumption made by SC i.e. ω � |Σ(ε + ω) − Σ∗(ε)| which becomes

more severe in high temperature regime. To clarify this fact, we plot the quantity

|Σ(ε+ω)−Σ∗(ε)| as a function of temperature in Fig. 2.5 (where the expression used

for Σ(ω) has been given in Ref. [64]). It shows that the magnitude of the difference

of self energy increases with the temperature. This shows the stronger violation of
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Figure 2.5: Plot of |Σ(ε + ω) − Σ∗(ε)| with temperature at different frequencies such as (a)

ω = 0.0001eV, (b) ω = 0.001eV and (c) ω = 0.01eV . Here Σ(ω) represents the self energy

and ∗ corresponds to the conjugate.

the condition ω � |Σ(ε + ω) − Σ∗(ε)| in high temperature limit. It implies that SC

formalism is not appropriate to study the dc behavior and the disagreement is severe at

high temperature, but it is quite reasonable for the finite frequency case.

2.5 Conclusion

In this chapter, we look at the case of the electrical conductivity of a metal discussed

by Götze-Wölfle and extend their approach by considering the non constant electronic

density of states. Here we have considered a phenomenological gap around the Fermi

surface and analyzed its impact on the scattering rate. The calculations of the scattering

rate have been done by two different approaches namely (1) memory function (MF)

and (2) Sharapov-Carbotte (SC).
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In a nutshell, the concluding remarks of this chapter are as follows:

1 The finite frequency scattering rate using memory function formula is in

excellent agreement with the same obtained from SC formula as shown in

Fig. 2.1.

2 Assumptions made in these two different approaches are consistent at finite

frequencies.

3 In the case of low frequency, significant discrepancy for the scattering rate

between the two approaches (Figs. 2.2(a) and 2.3) has been observed.

4 There is also decrease in the dc scattering rate with the increase in gap and the

difference between the magnitudes of the scattering rate by two approaches

does not depend much on gap.

5 This discrepancy is due to the assumption ω � |Σ(ε + ω) − Σ∗(ε)| made in

the SC approach which becomes severe in high temperature regime.

6 No such assumption has been obtained in MF formalism.

7 Thus, the MF formalism is better choice to calculate frequency and tempera-

ture dependent scattering rate.





Chapter 3

Dynamical Thermal Conductivity of

metals

In this chapter, we apply generalized version of the Götze-Wölfle memory function

formalism to a very interesting problem of dynamical thermal conductivity of metals.

Before to start this problem, we first give the brief introduction about the concept of

thermal conductivity.

The knowledge of the properties of the metals are very important for industrial de-

velopment [69,74–77]. These properties include appearance, malleability and ductility,

ability to conduct heat, etc. Among them, the most important criteria is how the metal

conducts heat. To answer this question, there is one transport property known as ther-

mal conductivity that quantifies the ability of the material to conduct heat. Understand-

ing this heat conduction process is an interesting issue of the scientific research. In this

direction, several methods based on the Kubo formalism and the Bloch-Boltzmann

method have been applied to calculate thermal conductivity of metals [3]. These are

discussed in the zero frequency limit and are well verified. However, the notion of the

frequency dependent thermal conductivity was not previously known and hence was

not addressed in theoretical discussions.

Recently, the notion of the dynamical thermal conductivity is introduced by Volz et

al. [78]. With this idea, the recent experiments access frequency in which dependence

of the thermal conductivity on frequency cannot be ignored. There it is introduced in

the context of its usefulness for the thermal design of microsystems and nanosystems

43
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which operates at several GHz clock frequency. Cooling of the Joule heating in such

systems is an important issue [78] and it requires detailed understanding of the fre-

quency dependence of the thermal conductivity. In reference [78], the dynamical ther-

mal conductivity is introduced in the context of phonon mediated thermal transport

in Si crystals. However, in the case of metals, and particularly at certain oscillating

frequency, the electronic contributions to the thermal conductivity under local ther-

mal equilibrium condition may predominate. We consider this scenario and present in

the chapter a careful theoretical analysis of the frequency dependent electronic ther-

mal conductivity of metals in various regimes of interest [79]. In a recent computer

simulation using molecular dynamics technique, it is found that the phononic thermal

conductivity reduces in magnitude at high frequencies [78]. Experimentally, it is also

studied in the context of semiconductor alloys and it is found that the magnitude of the

phononic thermal conductivity reduces as the frequency increases [80].

Theoretically, the electronic and the phononic dynamical thermal conductivity is

discussed recently by Shastry [81] and others [82–85] in different contexts such as in

open systems, strongly correlated systems, semiconductor crystals, etc. In the present

chapter, we explicitly derive the various expressions for the electronic thermal conduc-

tivity in case of a metal using the memory function formalism. First, in Sec. 3.1, we

give the basic definition of the thermal conductivity and then give its relation to the

memory function. In Sec. 3.2, we calculate the thermal memory functions for the case

of the electron-impurity and electron-phonon interactions in a metal. Then, we present

our results in Sec. 3.3 and give the conclusion of our results in Sec. 3.4.

3.1 Thermal Conductivity

According to the Kinetic theory, the thermal conductivity is defined as the rate of flow

of heat across a unit area of cross section in a unit temperature gradient [14, 24] i.e.

JQ = −κ∇T. (3.1.1)
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Here ∇T is the temperature gradient, κ is the thermal conductivity, and JQ is the

thermal current density and is defined as [24],

JQ =
1

m

∑

k

k · n̂(εk − µ)c†kck. (3.1.2)

In Eq.(3.1.1) κ, the thermal conductivity, describes the response due to the change in

the temperature gradient and is generally analyzed by various approaches where the

gradient of the temperature is considered as static. In the present work, we assume

that ∇T is not static and oscillates with the frequency ω. This oscillation leads to

the dynamical variation of the thermal conductivity. Here it is to be noted that while

oscillating the temperature at one of the end of the bath, the local thermal equilibrium

must be maintained. This impose the condition that the oscillating frequency should

be greater than the scattering rate. Under this condition, we can define the thermal

current density by Fourier law and calculate the thermal conductivity by using memory

function formula.

To calculate it, we employ the memory function approach. In this approach, the

dynamical thermal conductivity at a complex frequency z and temperature T is defined

as [79]

κ(z, T ) =
i

T

χ0
QQ(T )

z +MQQ(z, T )
, (3.1.3)

where χ0
QQ(T ) is the static thermal current thermal current correlation function and

MQQ(z, T ) is the thermal memory function.

It is known that, within the perturbation theory, the thermal memory function can

be expressed to leading order in the interaction strength as (derivation of this equation

is given in Appendix C)

MQQ(z, T ) =
〈〈[JQ, H]; [JQ, H]〉〉z=0 − 〈〈[JQ, H]; [JQ, H]〉〉z

zχ0
QQ(T )

. (3.1.4)

This is the complex memory function in which the imaginary part of the memory func-

tion describes the thermal scattering rate due to the presence of different interactions

such as electron-impurity and electron-phonon interactions and its real part describes

the mass enhancement factor. In the present work, we focus on the thermal scattering

rate which leads to the real part of the thermal conductivity. Here for simplicity, we

have ignored the mass enhancement contribution to the thermal conductivity as the

thermal conductivity is mainly controlled by the thermal scattering rate [56].
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3.2 Thermal Memory functions

Using the definitions of the thermal current and the Hamiltonian, let us focus on the

calculation of the thermal memory function and hence the thermal conductivity.

3.2.1 Electron-Impurity Interaction

Consider a system in which electrons interact only with impurities, the total Hamilto-

nian in this case is given in the form H = H0 + Himp, where the form of unperturbed

Hamiltonian H0 is given in Eq. (2.1.2) and the perturbing part Himp is defined as

Himp = N−1
∑

i

∑

kk′σ

〈k|U i|k′〉c†kσck′σ, (3.2.1)

where U i refers to the impurity interaction strength, sum over i index refers to the

number of impurity sites and N represents the number of lattice cells.

Using the form of Hamiltonians Eqs. (2.1.2) and (3.2.1) and the expression of ther-

mal current Eq. (3.1.2), the thermal memory function can be calculated from Eq. (3.1.4)

for the case of the electron-impurity interaction. In this direction, we first calculate the

commutator between JQ and H . Due to the fact that JQ and H0 commutes with each

other, we left with [JQ, Himp]. Thus [JQ, H] = [JQ, Himp] which is given as

[JQ, H] =
1

mN

∑

i

∑

kk′σ

〈k|U i|k′〉
{

k(εk − µ)− k′(εk′ − µ)
}
· n̂c†kσck′σ.

(3.2.2)

Using the above commutation relation, the Laplace transform and the thermal average

of the inner product 〈〈[JQ, H]; [JQ, H]〉〉z becomes

=
1

m2N2

∑

ij

∑

kk′σ

∑

pp′τ

〈k|U i|k′〉〈p|U j|p′〉
{

k(εk − µ)− k′(εk′ − µ)
}
· n̂

{
p(εp − µ)− p′(εp′ − µ)

}
· n̂〈〈c†kσck′σ; c†pτcp′τ 〉〉z. (3.2.3)

Now we consider the case of dilute impurity i.e. i = j which means that we have

neglected the interference terms i.e. terms that corresponds to i 6= j and perform the

ensemble average followed by integration over time using the definition for correlation
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function Eq. (2.2.2) . This yield Eq. (3.2.3) in the following form

=
2Nimp

m2N2

∑

kk′
|〈k|U |k′〉|2

[{
k(εk − µ)− k′(εk′ − µ)

}
· n̂
]2 fk − fk′

z + εk − εk′
.

(3.2.4)

Here Nimp represents the impurity concentration, the factor 2 is due to the electronic

spin degeneracy and fk =
1

eβ(εk−µ) + 1
is the Fermi distribution function and β is the

inverse of the temperature.

Using the above Eq. (3.2.4) in (3.1.4) and then performing the analytic continuation

z → ω+iζ , ζ → 0+, the imaginary part of the thermal memory function can be written

as

M ′′
QQ(ω, T ) =

2π

N2

Nimp

χ0
QQ(T )m2

∑

kk′
|〈k|U |k′〉|2

[{
k(εk − µ)− k′(εk′ − µ)

}
· n̂
]2

×fk − fk′

ω
δ(ω + εk − εk′). (3.2.5)

Further to reduce the Eq. (3.2.5), we assume that the system has cubic symmetry. Then

on averaging over all directions, we obtain

[(k(εk − µ)− k′(εk′ − µ)) · n̂]
2

=
1

3
|k(εk − µ)− k′(εk′ − µ)|2. (3.2.6)

Using the above Eq. (3.2.6) along with the assumption of point like impurities (i.e.

momentum independent character of U ), the Eq. (3.2.5) can be written in the integral

form

M ′′
QQ(ω, T ) =

U2Nimp

3(2π)5m2χ0
QQ(T )

∫
dεk

vk
k2 sin θdθdφ

∫
dεk′

vk′
k′2 sin θ′dθ′dφ′

|k(εk − µ)− k′(εk′ − µ)|2fk − fk′

ω
δ(ω + εk − εk′). (3.2.7)

Following the assumptions used in Chapter 2 (for details refer page 27) to simplify

the expression of the memory function, the magnitudes of k and k′ can be considered

equal to kF . Thus, the imaginary part of the thermal memory function takes the form

M ′′
QQ(ω, T ) =

NimpU
2k4
F

6π3χ0
QQ(T )

∫
dε
[
(εk − µ)2 + (εk − µ+ ω)2

]

×f(εk − µ)− f(εk − µ+ ω)

ω
. (3.2.8)
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Substituting
εk − µ
T

= η and
ω

T
= x, the above expression can be written in simpler

form as

M ′′
QQ(ω, T ) =

NimpU
2k4
FT

2

6π3χ0
QQ(T )

∫ ∞

0

dη
η2 + (η + x)2

x

[
1

eη + 1
− 1

eη+x + 1

]
.

(3.2.9)

M ′′
QQ(ω, T ) =

NimpU
2k4
FT

2

6π3χ0
QQ(T )

{
π2

6
+ x log

(
2ex

1 + ex

)
+ 2Li2(−e−x)

+
4

x
Li3(−e−x) + 3ζ(3)

}
.

This is the final expression for the imaginary part of the thermal memory function

due to the electron-impurity interaction and is our main result. Further in various

frequency and temperature limits, its behavior can be discussed as follows:

Case-I: In the dc limit i.e. ω → 0

In this limit, the Eq. (3.2.9) reduces to

M ′′
QQ(T ) =

Nimp

3π3

U2k4
FT

2

χ0
QQ(T )

∫ ∞

0

dη
η2eη

(eη + 1)2
(3.2.10)

=
Nimp

18π

U2k4
FT

2

χ0
QQ(T )

(3.2.11)

This concludes that the temperature dependent imaginary part of the thermal mem-

ory function, also known as thermal scattering rate, 1/τth, varies with temperature as

T 2/χ0
QQ(T ). Since the static correlation function χ0

QQ(T ) is directly proportional to

the square of temperature (proof is given in Appendix B.1). Thus, 1/τth in the zero

frequency limit is expressed as

M ′′
QQ(T ) ∝ T 0 or constant. (3.2.12)

This yields that the thermal scattering rate does not show temperature dependent be-

havior in the case of electron-impurity interaction. On the other hand, due to the sym-

metry relations of the thermal memory function, its real part becomes identically zero

in the dc limit [56]. On substituting this in the expression for the thermal conductiv-

ity Eq. (3.1.3), we find that the real part of the thermal conductivity depends on the

temperature as

Re[κ(T )] =
1

T

χ0
QQ(T )

M ′′
QQ(T )

. (3.2.13)
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Using Eqs. (3.2.11) and (B.1.2) (as mentioned in the Appendix B.1), the above equa-

tion for the thermal conductivity reduces to

Re[κ(T )] =
1

72

πk2
F

NimpU2m2
T

i.e., Re[κ(T )] ∝ T. (3.2.14)

This result is in accord with the result predicted earlier using Bloch-Boltzmann’s equa-

tion approach Eq. (D.1.10) in Appendix D.1.

Case-II: In the finite frequency limit

In the high frequency limit i.e. ω � T , the imaginary part of the thermal memory

function Eq. (3.2.9) approximately becomes

M ′′
QQ(ω, T ) ≈ NimpU

2k4
FT

2

6π3χ0
QQ(T )

∫ ∞

0

dηx

[
1

eη + 1
− 1

eη+x + 1

]
.

≈ NimpU
2k4
FT

2 log 2

6π3χ0
QQ(T )

ω

T
. (3.2.15)

This yields that the thermal memory function or the thermal scattering rate approxi-

mately varies linearly with the frequency and inversely with the temperature (as χ0
QQ(T ) ∼

T 2). While in the opposite case ω � T , the leading order term in the Eq. (3.2.9) be-

comes

M ′′
QQ(ω, T ) ≈ NimpU

2k4
FT

2

6π3χ0
QQ(T )

∫ ∞

0

dη
η2

eη + 1

(
2− ω

T

)

≈ NimpU
2k4
FT

2ζ(3)

4π3χ0
QQ(T )

(
2− ω

T

)

≈ A+B
ω

T
, (3.2.16)

where A and B are constants.

These results are summarized in the Table 3.1.

3.2.2 Electron-Phonon Interaction

Now we consider that the system has only electron-phonon interactions as consid-

ered for the calculation of electrical memory function in Chapter 2. Then, the thermal

memory function can be calculated in a similar fashion as is done in the case of im-

purity interactions in the previous section. Here the total Hamiltonian is considered

as H = H0 + Hep + Hph (the parts of Hamiltonian are defined in Eq. (2.1.2), (2.1.3)
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Table 3.1: The results of thermal memory function and the real part of the thermal conductivity

due to the electron-impurity interaction in different frequency and temperature domains.

Regimes
Thermal memory function

1/τth or M ′′
QQ

Thermal conductivity,

κ

ω = 0 T 0 T

ω � T T−1ω ω−1

ω � T T 0 T

and (2.1.5)). The thermal current commutes with the free electron and the free phonon

parts of the Hamiltonian. Thus, we are left with the commutator of the thermal current

JQ and the interaction term Hep which is expressed as

[JQ, Hep] =
1

m

∑

kk′σ

{
k(εk − µ)− k′(εk′ − µ)

}
· n̂
(
D(k− k′)c†kσck′σbk−k′ − h.c.

)
.

(3.2.17)

This commutation relations yield the Laplace transform and ensemble average of the

inner product, 〈〈[JQ, Hep]; [JQ, Hep]〉〉z in the following form

=
1

m2

∑

kk′σ

∑

pp′τ

{
k(εk − µ)− k′(εk′ − µ)

}
· n̂
{

p(εp − µ)− p′(εp′ − µ)
}
· n̂

(
D(k− k′)D∗(p− p′)〈〈c†kσck′σbk−k′ ; c

†
p′τcpτb

†
p−p′〉〉z

−D∗(k− k′)D(p− p′)〈〈c†k′σckσb
†
k−k′ ; c

†
pτcp′τbp−p′〉〉z

)
.

(3.2.18)

On further simplifications, the above expression reduces to

〈〈[JQ, Hep]; [JQ, Hep]〉〉z =
2

m2

∑

kk′

[{
k(εk − µ)− k′(εk′ − µ)

}
· n̂
]2 |D(k− k′)|2

×
{
fk(1− fk′)(1 + nk−k′)− (1− fk)fk′nk−k′

}

×
{

1

z + εk − εk′ − ωk−k′
− 1

z + εk′ − εk + ωk−k′

}
,

(3.2.19)

where n is the Boson distribution function (see Eq. (1.2.16)).
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Substituting the above Eq. (3.2.19) in the thermal memory function Eq. (3.1.4) and

then performing the analytic continuation z → ω + iζ , ζ → 0+, the imaginary part of

the thermal memory function can be written as

M ′′
QQ(ω, T ) =

2π

χ0
QQ(T )m2

∑

kk′

[{
k(εk − µ)− k′(εk′ − µ)

}
· n̂
]2 |D(k− k′)|2(1− fk)

×fk′nk−k′

{
eω/T − 1

ω
δ(εk − εk′ − ωk−k′ + ω) + (terms with ω → −ω)

}
.

(3.2.20)

To evaluate the above equation, we use the law of conservation of energy εk = εk′−ωq
and the law of conservation of momentum q = k′−k which simplify a factor appearing

in the Eq. (3.2.20) as follows

[{k(εk − µ)− k′(εk′ − µ} · n̂]
2

= [{ωqk′ + (εk − µ)q} · n̂]
2
. (3.2.21)

For simplicity, we consider that the system has cubic symmetry as considered in the

impurity case. Then on averaging over all directions, we obtain

[{ωqk′ + (εk − µ)q} · n̂]
2

=
1

3

{
ω2
qk
′2 + q2(εk − µ)2 + ωq(εk − µ)q2

}
.

(3.2.22)

Substituting the Eq. (3.2.22) in (3.2.20) and converting the summations into integrals,

we get

M ′′
QQ(ω, T ) =

N2

3χ0
QQ(T )m2(2π)5

∫
dεk

vk
k2 sin θdθdφ

∫
dεk′

vk′
k′2 sin θ′dθ′dφ′

∫
dq

×|D(q)|2δ(q − |k− k′|)(1− fk)fk′nk−k′

×
{
ω2
qk
′2 + q2(εk − µ)2 + ωq(εk − µ)q2

}

×
{
eω/T − 1

ω
δ(εk − εk′ − ωk−k′ + ω) + (terms with ω → −ω)

}
.

(3.2.23)

Following the argument as quoted in the Chapter 2 (refer page 31), for low energy

scattering, we consider the magnitudes of k and k′ of the order of kF . With these facts

and solving one of the energy integrals, the above Eq. (3.2.23) reduces to

M ′′
QQ(ω, T ) =

N2

12π3

1

χ0
QQ(T )

∫ ∞

0

dη

∫ qD

0

dqq|D(q)|2
{
ω2
qk

2
F + q2η2T 2 + ωqηTq

2
}

× 1

ey − 1

1

e−η + 1

[
1

eη−y−x + 1

ex − 1

x
+ (terms with ω → −ω)

]
.

(3.2.24)
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Here we introduce new dimensionless variables
εk − µ
T

= η,
ωq
T

= y and
ω

T
= x. Now

integrating over η, we obtain

M ′′
QQ(ω, T ) =

N2T 6

12πχ0
QQ(T )

(
qD
ΘD

)4 ∫ ΘD/T

0

dyy3|D(y)|2
[

(x− y)

ex−y − 1

ex − 1

x(ey − 1)

{
k2
F

π2

(
ΘD

qDT

)2

+
1

3
+

(x− y)2

π2

+
1

2π2
y(x− y)

}
+ (terms with ω → −ω)

]
. (3.2.25)

Substituting the phonon matrix element using the Eq. (2.1.4), the thermal memory

function is simplified to

M ′′
QQ(ω, T ) =

N

24πmiρ2
F

T 7

χ0
QQ(T )

(
qD
ΘD

)6 ∫ ΘD/T

0

dyy4

[
(x− y)

ex−y − 1

ex − 1

x(ey − 1)

{
k2
F

π2

(
ΘD

qDT

)2

+
1

3
+

(x− y)2

3π2

+
1

2π2
y(x− y)

}
+ (terms with ω → −ω)

]
. (3.2.26)

This is the frequency and the temperature dependent thermal memory function for the

case of electron-phonon interaction. It can be further simplified by using the integral

which we have shown in Eq. (G.0.4) in Appendix G. Here we discuss it in certain

regimes of temperature and frequency as follows:

Case-I: In the dc limit i.e. ω → 0

In this limit, the Eq. (3.2.26) reduces to

M ′′
QQ(T ) =

N

12πmiρ2
F

T 7

χ0
QQ(T )

(
qD
ΘD

)6 ∫ ΘD/T

0

dy
y5ey

(ey − 1)2

×
{

k2
F

π2T 2

(
ΘD

qD

)2

+
1

3
− 1

6π2
y2

}
. (3.2.27)

The closed form of the above expression can be obtained by solving the integral which

gives the result in the form of PolyLogs (as shown in Eq. (G.0.5)) and then simplifying

by substitution of the upper and lower limits of integration. Here we discuss the above

equation in high and low temperature limit. In the high temperature limit i.e. when the

temperature is much greater than the Debye temperature (T � ΘD), the second term

within the curly brackets contributes more as compared to the other terms. Because

the other terms varies inversely as square of the temperature, they contribute less than
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the second term (i.e. 1/3). Hence, the thermal memory function M ′′
QQ(T ) with leading

term can be approximated as

M ′′
QQ(T ) ≈ N

36πmiρ2
F

T 7

χ0
QQ(T )

(
qD
ΘD

)6 ∫ ΘD/T

0

dy
y5ey

(ey − 1)2
.

M ′′
QQ(T ) =

NΘ4
D

144πmiρ2
F

(
qD
ΘD

)6
T 3

χ0
QQ(T )

. (3.2.28)

Thus on considering the temperature variation of the static thermal correlation func-

tion (Eq. B.1.2 in Appendix B.1), we find that the imaginary part of the dc thermal

memory function varies linearly with the temperature in the high temperature regime.

On substituting this in Eq. (3.1.3), we find that the real part of the thermal conductivity

varies as

Re[κ(T )] = constant. (3.2.29)

In the low temperature limit i.e. when the temperature is much less than the Debye

temperature (T � ΘD), the first term and the third term in the Eq. (3.2.27) contributes

more to the thermal memory function as compared to the second term. We know that

qD is generally much smaller than the kF , then the first term dominates over third term.

Thus using this fact M ′′
QQ(T ) becomes

M ′′
QQ(T ) ≈ Nk2

F

12π3miρ2
F

(
qD
ΘD

)6
T 5

χ0
QQ(T )

∫ ∞

0

dyy5 ey

(ey − 1)2

≈ 10Nk2
F ζ(5)

π3miρ2
F

(
qD
ΘD

)6
T 5

χ0
QQ(T )

(3.2.30)

The above equation tells that the imaginary part of the thermal memory function or the

thermal scattering rate varies as T 3 (1/τth ∝ T 3 as χ0
QQ(T ) ∼ T 2). Thus, we find that

the real part of the thermal conductivity Eq. (3.1.3) which varies inversely as square of

the temperature i.e.

Re[κ(T )] ∝ T−2. (3.2.31)

These results in different temperature regimes are in accord with the results obtained

from the Bloch-Boltzmann equation approach (details are given in Appendix D.2) and

with the experimental results [29, 31, 86].

Case-II: In the finite frequency case
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In the high frequency limit i.e. when frequency is much higher than the Debye fre-

quency (ω � ωD), the thermal memory function Eq. (3.2.26) becomes

M ′′
QQ(ω, T ) ≈ N

12πmiρ2
F

T 7

χ0
QQ(T )

(
qD
ΘD

)6 ∫ ΘD/T

0

dy
y4

ey − 1

×
{
k2
F

π2

(
ΘD

qDT

)2

+
1

3
+

1

3π2

ω2

T 2

}
. (3.2.32)

In the low temperature limit i.e. ω � ΘD � T , the first term and the third term are

the leading order terms in the thermal memory function. Further, in the limit ω � T ,

M ′′
QQ(ω, T ) ≈ 2Nζ(5)

πmiρ2
F

T 7

χ0
QQ(T )

(
qD
ΘD

)6
{
k2
F

π2

(
ΘD

qDT

)2

+
1

3π2

ω2

T 2

}
.

(3.2.33)

In the high temperature limit i.e. T � ω � ΘD, the second term of Eq. (3.2.32)

contributes more over the other terms. Thus, the imaginary part of the thermal memory

function in this regime becomes

M ′′
QQ(ω, T ) ≈ N

36πmiρ2
F

(
qD
ΘD

)6
T 7

χ0
QQ(T )

∫ ΘD/T

0

dy
y4

ey − 1
. (3.2.34)

On solving the integral in the above limits, we obtain the integral as (ΘD/T )4. Thus,

M ′′
QQ(ω, T ) ∝ T. (3.2.35)

In the case, when ω � T � ΘD, the third term of Eq. (3.2.32) contributes to the

thermal memory function as

M ′′
QQ(ω, T ) ≈ N

36π3miρ2
F

T 7

χ0
QQ(T )

(
qD
ΘD

)6
ω2

T 2

∫ ΘD/T

0

dy
y4

ey − 1
. (3.2.36)

In the above mentioned frequency and temperature regime, the integral gives (ΘD/T )4.

Thus the thermal memory function varies as ω2/T . All these limiting cases are col-

lected in Table 3.2

Similarly in the low frequency limit i.e. when the frequency is much smaller than the

Debye frequency (ω � ωD), the Eq. (3.2.26) is written as

M ′′
QQ(ω, T ) ≈ N

24πmiρ2
F

T 7

χ0
QQ(T )

(
qD
ΘD

)6
eω/T

ω/T

×
∫ ΘD/T

0

dy
y5ey

(ey − 1)2

{
k2
F

π2

(
ΘD

qDT

)2

+
1

3
− y2

6π2

}
.(3.2.37)
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The closed form of the above equation can be obtained similar to Eq. (3.2.27).

In the limit ΘD � ω � T ,

M ′′
QQ(ω, T ) ≈ Nk2

F

24π3miρ2
F

T 5

χ0
QQ(T )

(
qD
ΘD

)4
eω/T

ω/T

∫ ∞

0

dy
y5ey

(ey − 1)2
.

≈ 5Nk2
F ζ(5)

π3miρ2
F

T 5

χ0
QQ(T )

(
qD
ΘD

)4
eω/T

ω/T
(3.2.38)

And in the limit T � ΘD � ω,

M ′′
QQ(ω, T ) ≈ N

36πmiρ2
F

T 7

χ0
QQ(T )

(
qD
ΘD

)6 ∫ ΘD/T

0

dy
y5ey

(ey − 1)2
. (3.2.39)

Under this limit, the integral over y yields (ΘD/T )4. Hence the thermal memory func-

tion becomes

M ′′
QQ(ω, T ) ∝ T. (3.2.40)

This shows the linear temperature variation and frequency independent character of

the thermal scattering rate in the regime T � ΘD � ω.

In the case when ΘD � T � ω, the Eq. (3.2.37) becomes

M ′′
QQ(ω, T ) ≈ Nk2

F

12π3miρ2
F

T 5

χ0
QQ(T )

(
qD
ΘD

)4 ∫ ∞

0

dy
y5ey

(ey − 1)2
.

≈ 10Nk2
F ζ(5)

12π3miρ2
F

T 5

χ0
QQ(T )

(
qD
ΘD

)4

(3.2.41)

From the above equation, we find that M ′′
QQ(ω, T ) varies as T 3 and it shows frequency

independent behavior.

We summarize the above results in the Table 3.2. These analytical predictions of

the dynamical behavior of the thermal memory functions in different temperature and

frequency domains are supplemented by numerical calculation in the next section.

3.3 Results and Discussion

In this section, we have plotted and discussed the imaginary part of the dynamical ther-

mal memory functions M ′′
QQ(ω, T ) for the case of the electron-impurity and electron-

phonon interactions ( i.e. Eqs. (3.2.9) and (3.2.26)). To extract the characteristic fre-

quency dependent and temperature dependent behavior of M ′′
QQ(ω, T ), we suitably

normalize it in various cases.
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Table 3.2: The results of thermal memory function and the real part of the thermal con-

ductivity due to the electron-phonon interaction in different frequency and temperature

domains.

Regimes
Thermal memory function

1/τth or M ′′
QQ

Thermal conductivity,

κ

ω = 0, T � ΘD T 1 T 0

ω = 0, T � ΘD T 3 T−2

ω � T � ΘD T 3 T 4ω−2

ω � ΘD � T T 1 T 2ω−2

T � ω � ΘD T 4ω−1eω/T T 5ω−3eω/T

ΘD � ω � T T 1 T 2ω−2

ΘD � T � ω T−1ω2 T 0ω0

T � ΘD � ω T 3(a+ bω2) T 4(Aω−2 +B)

First for the impurity interaction, we plot M ′′
QQ(ω, T )/M ′′

0 where M ′′
0 is frequency

and temperature independent constant
(
= 2k4

Fm/π
5Ne

)
, as a function of frequency at

a fixed temperature using the Eq. (3.2.9) in Fig. 3.1. Here we consider impurity con-

centration Nimp = 0.001 and interaction strength U = 0.1eV. It is found that the nor-

malized thermal scattering rate increases linearly with the frequency in the range where

the frequency is very high as compared to the temperature (as shown in Fig. 3.1(a)).

This linear feature becomes more prominent as the temperature is lowered. For exam-

ple in Fig. 3.1(b), the purple curve drawn at T = 200K start showing a linear behavior

above a frequency lower than that of the other two curves drawn at higher temperatures

such as 300K and 400K. The low frequency regime ω � T of the plot is more elab-

orated in Fig. 3.1(b) which shows deviations from linearity. Also in both the regimes,

the thermal scattering rate due to the impurity interaction decreases with the rise in

temperature. These features are in accord with our asymptotic analytical predictions

(Table 3.1).

In the zero frequency limit, the thermal scattering rate Eq. (3.2.11) becomes tem-
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U = 0.1, Nimp = 0.001
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Figure 3.1: (a): The imaginary part of the thermal memory function for the case of electron-

impurity interaction is plotted with frequency at different temperatures such as 200 (purple),

300 (brown) and 400K (blue) at fixed interaction strength U and impurity concentration Nimp.

(b): The low frequency regime of Fig. 3.1(a) is elaborated.

perature independent. The same result can be obtained using Boltzmann approach

as mentioned in Appendix D.1. This feature is also in accord with the experimental

findings [3, 5].
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Figure 3.2: (a): The imaginary part of the thermal memory function for electron-phonon

interaction is plotted with frequency at different temperatures such as 200 (purple), 250 (red),

300 (brown) and 400K (blue) at fixed Debye temperature ΘD = 300K. (b): The low frequency

regime of Fig. 3.2(a) is elaborated.

For the electron-phonon interaction, the frequency dependent behavior of the nor-

malized thermal scattering rate Eq. (3.2.26) is shown in Fig. 3.2 at different temper-
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QD = 300 K
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Figure 3.3: (a). The normalized frequency dependent thermal conductivity is plotted with the

ratio ω/ω0 for electron-phonon interaction at different temperatures such as 200 (purple), 250

(red), 300 (brown) and 400K (blue) and at Debye temperature ΘD = 300K. Here the dashed

line corresponds to the scale for Debye frequency cutoff i.e. ωD/ω0. (b). The low frequency

regime of Fig. 3.3(a) is elaborated.

atures. Here the Debye temperature ΘD is kept fixed at 300K. In Fig. 3.2(a), we ob-

serve that in the high frequency regime (ω � ΘD), the scaled thermal memory func-

tion M ′′
QQ/M

′′
0

(
M ′′

0 = Nmq6
D/6π

3miρ
2
FNeΘD

)
increases as the frequency increases.

While in the low frequency regime (ω � ωD), it becomes constant . To see the zoomed

low frequency behavior, we replot the same curves within a small frequency regime

(as shown in Fig. 3.2(b)). We also observe that the magnitude of the thermal memory

function reduces with the increase in temperature. However, the exact temperature de-

pendence in the low frequency regime depends on whether the temperature is greater

or lower than the Debye temperature. The detail asymptotic behaviors are obtained

analytically in previous section (3.2) and given in Table 3.2.

In Fig. 3.3, the real part of the thermal conductivity in case of electron-phonon in-

teraction using Eq. (3.1.3) is plotted as a function of frequency at a fixed Debye temper-

ature ΘD and at different temperatures. Here we have scaled the frequency with param-

eter ω0

(
= Nmq6

D/6π
3miρ

2
FNeΘD

)
, which has the dimension of energy and scaled the

real part of the thermal conductivity Re[κ(ω, T )] with κ0

(
= π2Ne/4mω0

)
. It is ob-

served that the thermal conductivity decays with the increase in frequency (as shown

in Fig. 3.3). Also, with the increase of temperature, the thermal conductivity increases.
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This detailed behavior can be understood as follows. Our calculation is limited to a per-

turbative regime i.e. M ′′
QQ(ω, T )� ω, thus Re[κ(ω, T )] ∼ χ0

QQ/T ×M ′′
QQ(ω, T )/ω2.

As the static thermal current thermal current correlation function, χQQ0 (T ) ∼ T 2, the

real part of the thermal conductivity becomes Re[κ(ω, T )] ∼ TM ′′
QQ(ω, T )/ω2. Under

this condition, the increase in the thermal conductivity due to the increase in tempera-

ture is governed by the factor TM ′′
QQ(ω, T ) which is an increasing function of temper-

ature. Using this relation and Table 3.2, various regimes of Fig. 3.3 can be understood.

For example, in the regimes

1. T � ω � ωD, Re[κ(ω, T )] ∼ T 5 e
ω/T

ω3
,

2. T � ω � ωD, Re[κ(ω, T )] ∼ T 2

ω2
,

3. ω � ωD � T , Re[κ(ω, T )] ∼ T 4
( a
ω2

+ b
)

,

where a(= 2Nζ(5)q4
D/π

3miρ
2
FΘ4

D) and b(= 2Nζ(5)q6
D/3π

3miρ
2
FΘ6

D) are constants.

The detailed asymptotic results of the thermal conductivity due to the electron-phonon

and the electron-impurity interactions are given in Table 3.2 and 3.1. These signatures

are new predictions from our formalism and can be verified in future experiments.
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Figure 3.4: (a): Plot of temperature dependent normalized dc imaginary part of the thermal

memory function for electron-phonon interaction at different Debye temperatures such as 200

(purple), 300 (brown) and 400K (blue). (b): The variation of the normalized thermal conduc-

tivity with T at same Debye temperatures.

Now in the dc limit, we plot M ′′
QQ(T )/M0 as a function of temperature T at differ-

ent Debye’s temperatures in Fig. 3.4(a). Here we find three important features. One
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is the increase of the thermal scattering rate with temperature in the low temperature

regime (∼ T 3, refer Table 3.2). Second, it increases linearly with the temperature at

high temperature regime. Third, in the intermediate regime around the Debye tem-

perature, there is a minima in the thermal scattering rate. These features (at high and

low temperatures namely T 3 at T � ΘD and T at T � ΘD) are in agreement with

experiments [29,31,86]. In Fig. 3.4(b), using Eq. (3.1.3), the normalized thermal con-

ductivity has been plotted with temperature T . This shows that it decreases as T−2

in the low temperature regime and becomes constant in the high temperature regime.

These results are consistent with the results derived using Boltzmann approach in Ap-

pendix D.2. In the intermediate temperature regime, it passes through a minimum.

This minimum in the thermal conductivity plot is an artifact of neglecting contributions

from the Umklapp process in the memory function. Such minima occurs near the De-

bye temperature where Umklapp process becomes important. The same peculiarity is

also found in Bloch-Boltzmann theory when Umklapp processes are neglected [3,87].

3.4 Conclusion

In this chapter, we present analytical calculation of the dynamical thermal conductivity

of metal for electron-impurity and electron-phonon interactions. We discuss the results

in different frequency and temperature domains. Since in the zero frequency limit

(dc limit) behavior of the thermal conductivity of metals is well known, we consider

the dc results from the Bloch-Boltzmann approach and the experimental findings as a

benchmark and compare our results with them.

According to the memory function formalism, the total thermal memory function is

the thermal-current thermal-current correlation function which captures the role of the

impurity and the electron-phonon interactions. This leads to the thermal memory func-

tion as the sum of the memory functions due to the electron-impurity interactions and

the electron-phonon interactions which further result in the total thermal conductivity.
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In a nutshell, the concluding remarks of this chapter are as follows:

1. The thermal memory function due to the impurity interaction shows the tem-

perature independent behavior Eq. (3.2.12). Thus the thermal conductivity

κ(T ) shows linear temperature behavior Eq. (3.2.14).

2. Due to the electron-phonon interactions, the thermal memory function and the

thermal conductivity in the dc limit show:

a. M ′′
QQ(T ) ∼ T 3; κ(T ) ∼ T−2, T � ΘD,

b. M ′′
QQ(T ) ∼ T ; κ(T ) ∼ T 0, T � ΘD.

3. If we consider the impurity and phonon contributions together, we see that the

total thermal conductivity can be expressed in an empirical form as,

1

κtotal(T )
=

1

κimp(T )
+

1

κep(T )
.

∼





A

T
+BT 2, T � ΘD

A

T
+ C, T � ΘD.

(3.4.1)

Here, the first term and the second term are due to the electron-impurity and

the electron-phonon interactions respectively and A, B and C are material

dependent constants.

4. The results in the zero frequency limit (dc limit) are in accord with the results

calculated using Bloch-Boltzmann approach [3, 5] and also with the experi-

mental findings [3, 29, 86].

5. In the finite frequency cases we have several new predictions depending on the

relative values of the frequency ω, temperature T and the Debye frequency ωD

(as refer in Table 3.1 and 3.2). This is the main contribution of this chapter.

6. Moreover, the present approach can also be used to study other transport prop-

erties such as thermo-electric coefficients etc.
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Dynamical Thermoelectric Coefficient

of metals

For the future technological advancements, the theoretical and the practical under-

standing of the thermoelectric devices are of fundamental important [88–90]. These

are the devices which possess the ability to convert the thermal energy into electri-

cal energy and hence recognized for the energy conversion processes [91–93]. In this

quest, the knowledge of the efficiency of these devices is essential which is charac-

terized by the figure of merit, ZT = S2σT/κ where S is the Seebeck coefficient,

σ is the electrical conductivity, κ is the thermal conductivity and T is the tempera-

ture [14]. This ensures that larger the value of ZT , higher is the efficiency of the

thermoelectric device. Enormous efforts have been made in order to increase the fig-

ure of merit. In the steady state, it can be increased by increasing the product of the

electrical conductivity and square of the Seebeck coefficient i.e. σS2 or by decreasing

the thermal conductivity κ. But in this pathway, there is a well known relation between

the thermal conductivity and the electrical conductivity, known as Wiedemann-Franz

law [17]. The latter makes it difficult to decrease κ without the decrease of σ. Thus,

an alternative approach known as dynamical approach is required to make this path-

way easier [94]. This approach is beyond the above mentioned restriction and includes

the frequency dependent behavior of the transport coefficients. The details of this ap-

proach is discussed in Chapter 1. Here we find that the Seebeck coefficient is higher

at higher external driving frequencies, thus it leads to a greater figure of merit as the

63
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Wiedemann-Franz law is no more valid in the finite frequency case:

κ(ω, T )

Tσ(ω, T )
=

TM ′′
QQ(ω, T )

M ′′(ω, T )

(
ω2 + (M ′′(ω, T ))2

ω2 + (M ′′
QQ(ω, T ))2

)
, (4.0.1)

whereM ′′
QQ(ω, T ) andM ′′(ω, T ) are thermal and electrical memory functions or known

as scattering rates respectively. The right hand side of the above equation is not a con-

stant. Thus Wiedemann-Franz restriction is not applicable.

Another importance of this study is due to the recent demand of the microelectronic

and optoelectronic devices, working at several Giga Hertz frequencies i.e. GHz clock

frequencies [78, 80]. The basic working principle of these devices involves various

frequency dependent thermal transport coefficients. Thus the quest of making the ther-

moelectric devices more efficient requires the understanding of the frequency and the

temperature dependences of various transport quantities. So far, the dynamical nature

of the electrical conductivity and the thermal conductivity have been studied in recent

years [56,62,79,95,96]. The study of the Seebeck coefficient is an important parame-

ter to determine the figure of merit and was not studied previously in detail especially

in the dynamical regime.

In the present chapter, we first define the thermoelectric coefficients in Sec. 4.1.

Then in Sec. 4.2, we introduce the thermoelectric memory functions and calculate

them and the Seebeck coefficient for the case of electron-impurity and electron-phonon

interactions in a metal. In Sec. 4.3, we present our results with discussion and latter

we give conclusion in Sec. 4.4.

4.1 Thermoelectric Coefficients

In the linear response theory, the electric field and the temperature gradient are related

to the electric current and the thermal current as follows [14, 24].

J = σE− α∇T. (4.1.1)

JQ = α̃E− κ∇T. (4.1.2)

These equations tell that the generation of charge current and the flow of heat can be a

consequence of either electric field or temperature gradient or both. Here κ is the ther-
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mal conductivity, σ is the electrical conductivity, α is the thermoelectric conductivity,

and α̃ is the electrothermal conductivity.

Consider that the system is electrically insulated. Thus, there is no electric current

flow in the system i.e. J = 0. Then, Eq. (4.1.1) can be written as

E

∇T =
α

σ
. (4.1.3)

The Seebeck coefficient S is defined as the electric field generated by a thermal gradi-

ent in the absence of electric current [14]

S = − E

∇T = −α
σ
. (4.1.4)

Here the sign indicates the sign of the charge carriers.

The Peltier coefficient is defined as the flow of heat due to the electric current. Accord-

ing to the Kelvin relation, it can be expressed as [22]

Π = ST. (4.1.5)

Similarly, the Thomson coefficient which is related to the phenomenon of reversible

heating or cooling in a current carrying material is defined as [22]

µT = T
dS

dT
(4.1.6)

We see that all these coefficients are related Eqs. (4.1.4) - (4.1.6) and the calculation

of the Seebeck coefficient is sufficient to understand the others. The former is the ratio

of the thermoelectric conductivity and the electrical conductivity which are calculated

in the later sections.

4.2 Thermoelectric Memory Functions

Following the same idea of the previous chapters, the thermoelectric conductivity can

be calculated via the thermal-current electric-current correlation function which relates

the former via the corresponding memory function as

α(z, T ) =
i

T

χ0
Q(T )

z +MQ(z, T )
. (4.2.1)
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Here χ0
Q(T ) is the static thermal-current electric-current correlation function andMQ(z, T )

is the thermoelectric memory function. Further, the latter is related to the correlation

function as

MQ(z, T ) = z
χQ(z, T )

χ0
Q(T )− χQ(z, T )

, (4.2.2)

where χQ(z, T ) according to the linear response theory is defined as [59, 60, 97]

χQ(z, T ) = 〈〈JQ; J〉〉z = −i
∫ ∞

0

dteizt〈[JQ(t), J ]〉. (4.2.3)

Further, this correlation function using equation of motion can be expressed in a sim-

ilar fashion as the electric-current electric-current correlation function in Chapter 2.

To deal with thermal-current electric-current correlation function, here we replace the

electric currents J by JQ and J . Thus, χQ(z, T ) can be written as

χQ(z, T ) =
〈〈[JQ, H]; [J,H]〉〉z=0 − 〈〈[JQ, H]; [J,H]〉〉z

z2
. (4.2.4)

Substituting this correlation function in Eq. (4.2.2), then expanding the memory func-

tion expression as MQ(z, T ) = χQ(z, T )/χ0
Q

(
1 + χQ(z, T )/χ0

Q − · · ·
)

and keeping

the leading order term [62, 79], the thermoelectric memory function MQ(z, T ) can be

expressed as

MQ(z, T ) =
〈〈[JQ, H]; [J,H]〉〉z=0 − 〈〈[JQ, H]; [J,H]〉〉z

zχ0
Q(T )

. (4.2.5)

Knowing the commutation relations between the currents and Hamiltonian, it can

be calculated for different type of interactions such as electron-impurity and electron-

phonon.

4.2.1 Electron-Impurity Interaction

We want to calculate MQ(z, T ) for a system in which the total Hamiltonian is defined

byH = H0+Himp due to the presence of electron-impurity interaction. First, we calcu-

late the Laplace transform and thermal average of the inner product 〈〈[JQ, H]; [J,H]〉〉z
which requires the commutation relations between the currents and the Hamiltonian.

The commutator between the electric current and the Hamiltonian is given by [J,H] =
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[J,H0] + [J,Himp]. As the electric current and the unperturbed Hamiltonian commutes

with each other, we have

[J,H] =
1

mN

∑

i

∑

kk′σ

〈k|U i|k′〉
{

k− k′
}
· n̂c†kσck′σ. (4.2.6)

Similarly, the commutator of thermal current and Hamiltonian is given by

[JQ, H] =
1

mN

∑

i

∑

kk′σ

〈k|U i|k′〉
{

k(εk − µ)− k′(εk′ − µ)
}
· n̂c†kσck′σ.(4.2.7)

Using the above relations, the correlation function 〈〈[JQ, H]; [J,H]〉〉z becomes

=
1

m2N2

∑

ij

∑

kk′σ

∑

pp′τ

〈k|U i|k′〉〈p|U j|p′〉

×
{

k− k′
}
· n̂
{

p(εp − µ)− p′(εp′ − µ)
}
· n̂〈〈c†kσck′σ; c†pτcp′τ 〉〉z. (4.2.8)

By considering the case of dilute impurity (i.e. i = j case and neglect the terms i 6= j),

performing ensemble average, and integrating over time, Eq. (4.2.8) reduces to

〈〈[JQ, H]; [J,H]〉〉z =
2Nimp

m2N2

∑

kk′
|〈k|U |k′〉|2

{
k− k′

}
· n̂

×
{

k(εk − µ)− k′(εk′ − µ)
}
· n̂× fk − fk′

z + εk − εk′
.(4.2.9)

Here fk is the Fermi distribution function. Substituting Eq. (4.2.9) in the thermoelectric

memory function Eq .(4.2.5) and performing the analytic continuation using z → ω +

iζ , ζ → 0+, the imaginary part of the thermoelectric memory function* takes the form

M ′′
Q(ω, T ) =

2πNimp

χ0
Q(T )m2N2

∑

kk′
|〈k|U |k′〉|2

[{
k− k′

}
· n̂

×
{

k(εk − µ)− k′(εk′ − µ)
}
· n̂
]
fk − fk′

ω
δ(ω + εk − εk′).

(4.2.10)

Further, assuming the cubic symmetry of the system and using the laws of conservation

of energy and conservation of momentum, the part within the square brackets of above

equation can be written as

{
k− k′

}
· n̂
{

k(εk − µ)− k′(εk′ − µ)
}
· n̂ =

1

3

[
(εk − µ)k2 + (εk′ − µ)k′2

]
.

(4.2.11)

* lim
ζ→0

1

a+ iζ
= P

(
1

a

)
− iπδ(a)
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Now we assume that the impurity strength U is independent of momentum and con-

sider the fact that due to large Fermi energy, electrons from a small region of width kBT

(here we set kB = 1) around the Fermi surface participate in scattering events. Using

these considerations and Eq. (4.2.11), the thermoelectric memory function Eq. (4.2.10)

in the integral form reduces to

M ′′
Q(ω, T ) =

NimpU
2k4
F

6π3χ0
Q(T )

∫ ∞

0

dε

{
2(εk − µ) + ω

}
f(εk)− f(εk + ω)

ω
.

(4.2.12)

Defining the new dimensionless variables
εk − µ
T

= η and
ω

T
= x and substituting it

in Eq. (4.2.12) we have

M ′′
Q(ω, T ) =

NimpU
2k4
FT

6π3χ0
Q(T )

∫ ∞

0

dη
2η + x

x

(
1

eη + 1
− 1

eη+x + 1

)
. (4.2.13)

After performing the integration, the above expression reduces to

M ′′
Q(ω, T ) =

NimpU
2k4
FT

6π3χ0
Q(T )

{
π2

6x
+ log 2− log

(
1 + e−x

)
+

2Li2(−e−x)
x

}
.

(4.2.14)

This is an expression for the imaginary part of the thermoelectric memory function in

the presence of electron-impurity interaction. Its behavior can be discussed in different

frequency and temperature regimes as follows.

Case-I The zero frequency limit i.e. ω → 0:

In this limit, Eq. (4.2.13) can be written as

M ′′
Q(T ) =

Nimp

3π3

U2k4
FT

χ0
Q(T )

∫ ∞

0

dη
ηeη

(eη + 1)2
. (4.2.15)

Substituting the expression of the static thermoelectric correlation function (Eq. (B.2.2)

in Appendix B.2), we obtain

M ′′
Q(T ) =

Nimp

π

U2kF
log 2

∫ ∞

0

dη
ηeη

(eη + 1)2
.

≈ Nimp

π
U2kF . (4.2.16)

Thus, in the zero frequency limit,M ′′
Q(T ) behaves independent of the temperature. Us-

ing this temperature variation ofM ′′
Q(T ), the thermoelectric response function, Eq. (4.2.1)

in the zero frequency limit becomes

α(T ) =
1

T

χ0
Q(T )

M ′′
Q(T )

(4.2.17)
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Using Eqs. (4.2.16) and (B.2.2) (as mentioned in Appendix B.2), the thermoelectric

response function Eq. (4.2.17) approximately becomes

α(T ) ≈ 1

NimpU2 log 2
. (4.2.18)

Thus we concludes that the thermoelectric conductivity shows temperature indepen-

dent behavior in the case of electron-impurity.

Case-II The finite frequency regime

In the high frequency limit i.e. ω � T , the Eq. (4.2.13) reduces to

M ′′
Q(ω, T ) ≈ NimpU

2k4
FT

6π3χ0
Q(T )

(
1− 2e−ω/T

ω/T
+ e−ω/T + log 2

)
.

≈ NimpU
2k4
F

6π3

T

χ0
Q(T )

log 2.

=
NimpU

2mkF
π

. (4.2.19)

Here for calculation, we use the Eq. (B.2.2) for the static correlation function χ0
Q(T ).

In the opposite case, when ω � T , the imaginary part of the thermoelectric memory

function Eq. (4.2.13) with the leading order term becomes

M ′′
Q(ω, T ) ≈ NimpU

2k4
F

18π3

T

χ0
Q(T )

=
NimpU

2mkF
3π log 2

. (4.2.20)

These asymptotic results are collected in Table 4.1.

Using these results, the Seebeck coefficient for the case of electron-impurity interaction

can be calculated in the following subsection.

Seebeck Coefficient

As discussed earlier that the Seebeck coefficient is the ratio of the thermoelectric and

electrical response functions. Thus, to calculate it, we require α(z, T ) and σ(z, T ).

The σ(z, T ), known as electrical conductivity can be calculated with the following re-

lation which relates the electrical conductivity with the memory function (as discussed

in Chapter 2, Eq. (2.2.5)) [27, 56].

σ(z, T ) = i
χ0

z +M(z, T )
, (4.2.21)
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Table 4.1: The thermoelectric and electrical scattering rates or memory functions due

to the electron-impurity interaction in different frequency and temperature domains.

Regimes
Thermoelectric memory

function 1/τte or M ′′
Q(ω, T )

Electrical memory

function 1/τe or M ′′(ω, T )

ω = 0 T 0 T 0

ω � T log 2 + Tω−1 Tω−1

ω � T T 0 T 0

where χ0 is the static electric-current electric-current correlation function andM(z, T )

is the electrical memory function.

Following the same procedure of the thermoelectric memory function, the imagi-

nary part of the electrical memory function for the case of electron-impurity interaction

is written as [56]

M ′′(ω, T ) =
NimpU

2k4
F

6π3χ0

∫ ∞

0

dη
1

x

(
1

eη + 1
− 1

eη+x + 1

)
.

=
NimpU

2k4
F

6π3χ0

1

x

(
1 + log 2− log(1 + ex)

)
. (4.2.22)

Here x = ω/T and χ0 = Ne/m. The detailed calculation of this expression will be

discussed in Sec. 6.2 of Chapter 6.

In the zero frequency limit i.e. ω → 0, the above integral equation can be expressed as

M ′′(T ) =
NimpU

2k4
F

6π3χ0

∫ ∞

0

dη
eη

(eη + 1)2
.

≈ NimpU
2k4
F

12π3χ0

. (4.2.23)

This shows the temperature independent behavior of the electrical memory func-

tion. Further, on substituting Eq. (4.2.23) in (4.2.21) by taking the zero frequency

limit of σ(z, T ) (= χ0/M
′′(T )), we find that the electrical conductivity shows tem-

perature independent behavior in case of the electron-impurity interaction. Using the

thermoelectric and electrical memory functions, the Seebeck coefficient is calculated

as follows.
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In the zero frequency limit, the Seebeck coefficient is

S(T ) =
α(T )

σ(T )

=
1

T

χ0
Q(T )

χ0

M ′′(T )

M ′′
Q(T )

. (4.2.24)

Using Eqs. (4.2.16), (4.2.23) and (B.2.2), we find that the Seebeck coefficient in the

zero frequency limit shows temperature independent behavior for the case of electron-

impurity interaction [3].

On the other hand, in the finite frequency case the Seebeck coefficient S(z, T ) is writ-

ten as

S(z, T ) =
1

T

χ0
Q(T )

χ0

z +M(z, T )

z +MQ(z, T )
. (4.2.25)

Thus, the real part of the Seebeck coefficient becomes

Re[S(ω, T )] =
1

T

χ0
Q(T )

χ0

ω2 +M ′′(ω, T )M ′′
Q(ω, T )

ω2 + (M ′′
Q(ω, T ))2

. (4.2.26)

Substituting the imaginary part of the electrical and the thermoelectric memory func-

tions, Eqs. (4.2.13) and (4.2.22), we can discuss the frequency variation of the Seebeck

coefficient for the case of the electron-impurity interaction. This is done in Sec. 4.3

after discussing the case of electron-phonon interaction.

4.2.2 Electron-Phonon Interaction

In the presence of electron-phonon interaction in a system, the total Hamiltonian is

described by H = H0 + Hep + Hph. With this Hamiltonian (the details of which

are given in Sec. 2.1 of Chapter 2) and using the commutation relations defined in

Eq. (2.2.12) and (3.2.17), the inner product 〈〈[JQ, H]; [J,H]〉〉z can be written as

=
2

m2

∑

kk′

[{
k− k′

}
· n̂
{

k(εk − µ)− k′(εk′ − µ)
}
· n̂
]

×|D(k− k′)|2fk′(1− fk)nk−k′
(
eβ(εk′−εk+ωk−k′ ) − 1

)

×
{

1

z − εk′ + εk − ωk−k′
− 1

z + εk′ − εk + ωk−k′

}
. (4.2.27)

Here nk−k′ is a Boson distribution function.

Putting Eq. (4.2.27) in the thermoelectric memory function Eq. (4.2.5), the imaginary
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part of the thermoelectric memory function after performing analytic continuation z →
ω + iζ , ζ → 0+ can be expressed as

M ′′
Q(ω, T ) =

2π

χ0
Q(T )m2

∑

kk′

[{
k− k′

}
· n̂
{

k(εk − µ)− k′(εk′ − µ)
}
· n̂
]
|D(k− k′)|2

×(1− fk)fk′nk−k′

{
eω/T − 1

ω
δ(εk − εk′ − ωk−k′ + ω)

+(terms with ω → −ω)

}
. (4.2.28)

To simplify the above expression, we use the law of conservation of energy εk =

εk′ −ωq and the law of conservation of momentum k′− k = q. Thus, the factor within

the square brackets of above equation becomes

{
k− k′

}
· n̂
{

k(εk − µ)− k′(εk′ − µ)
}
· n̂ = q · n̂

{
q · n̂(εk − µ) + k′ · n̂ωq

}
.

(4.2.29)

For simplifications, we consider that the system has cubic symmetry, thus the averag-

ing over all the directions reduces the above expression as 1/3
(
q2(εk − µ)− k′2ωq

)
.

Using this relation and converting the summations into integrals along with introduc-

ing the new dimensionless variables
εk − µ
T

= η,
ω

T
= x and

ωq
T

= y, the imaginary

part of the thermoelectric memory function Eq. (4.2.28) becomes

M ′′
Q(ω, T ) =

N2T 3

12π3χ0
Q(T )

(
qD
ΘD

)2 ∫ ∞

0

dη

∫ ΘD/T

0

dy|D(y)|2 y

ey − 1

1

e−η + 1
{
η

(
qDT

ΘD

)2

y2 − k2
Fy

}[
ex − 1

x(eη−y+x + 1)
+ (terms with ω → −ω)

]
.

(4.2.30)

Substituting the phonon matrix element Eq. (2.1.4) and solving the integral over η, we

obtain

M ′′
Q(ω, T ) =

NT 4

48π3miρ2
Fχ

0
Q(T )

(
qD
ΘD

)4 ∫ ΘD/T

0

dy
y2

ey − 1

{
x− y
ex−y − 1

ex − 1

x
(

(x− y)

(
qDT

ΘD

)2

y2 − 2k2
Fy

)
+ (terms with ω → −ω)

}
.

(4.2.31)

This is the final expression of the imaginary part of the thermoelectric memory function

in the case of the electron-phonon interaction. The analytic closed form of the above
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equation can be obtained by solving the integral whose solution is given in Eq. (G.0.6).

Here we discuss it in different limits of frequency and temperature as follows.

Case-I The zero frequency limit:

In this limit i.e. ω → 0, the magnitude of the imaginary part of the thermoelectric

memory function Eq. (4.2.31) reduces as

M ′′
Q(T ) =

NT 4

24π3miρ2
Fχ

0
Q(T )

(
qD
ΘD

)4 ∫ ΘD/T

0

dy
y4ey

(ey − 1)2

{(
qDT

ΘD

)2

y2 + 2k2
F

}
.

(4.2.32)

Further, for high and low temperature regimes, this expression can be discussed as fol-

lows:

In the high temperature regime i.e. T � ΘD, the first term within a bracket of

Eq. (4.2.32), i.e. (qDT/ΘD)2 y2, gives more contribution to M ′′
Q(T ). Thus, the lat-

ter becomes

M ′′
Q(T ) ≈ NT 6

24π3miρ2
Fχ

0
Q(T )

(
qD
ΘD

)6 ∫ ΘD/T

0

dy
y6ey

(ey − 1)2
.

≈ N

24π3miρ2
F

q6
D

ΘD

T

χ0
Q(T )

. (4.2.33)

In the opposite case when T � ΘD, Eq. (4.2.32) becomes

M ′′
Q(T ) ≈ 2Nk2

F

π3miρ2
F

(
qD
ΘD

)4
T 4

χ0
Q(T )

. (4.2.34)

Thus, from these above expressions we find that the imaginary part of the thermoelec-

tric memory function in the zero frequency limit is proportional to T/χ0
Q(T ) in the high

and T 4/χ0
Q(T ) in the low temperature regimes. The static thermoelectric correlation

function χ0
Q(T ) varies linearly with the temperature (as given in Appendix B.2). Thus,

M ′′
Q(T ) varies as T 3 in the low temperature regime and becomes constant in the high

temperature regime. Substituting this in Eq. (4.2.1), we find that the thermoelectric

response function in the zero frequency limit shows temperature dependence as

α(T ) =
1

T

χ0
Q(T )

M ′′
Q(T )

. (4.2.35)

Hence, it varies as T−3 in the low temperature regime and becomes temperature inde-

pendent in the high temperature regime i.e.

α(T ) ∝




T−3, T � ΘD

constant, T � ΘD

(4.2.36)
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Case-II The finite frequency regime:

In finite frequency regimes, we study the general expression Eq. (4.2.31) in the two

limiting cases and then analyze this expression numerically.

In the high frequency limit i.e. when the frequency is more than the Debye frequency

(ω � ωD), the imaginary part of the thermoelectric memory function Eq. (4.2.31) can

be written as

M ′′
Q(ω, T ) ≈ Nk2

F

12π3miρ2
F

(
qD
ΘD

)4
T 4

χ0
Q(T )

∫ ΘD/T

0

dy
y3

ey − 1
.

≈ Nk2
F

12π3miρ2
F

(
qD
ΘD

)4
T 4

χ0
Q(T )





π4

15
, T � ΘD

1

3

(
ΘD

T

)3

, T � ΘD.

(4.2.37)

On substituting the temperature variation of χ0
Q(T ) (as shown in Appendix B.2), the

thermoelectric memory function shows temperature dependencies as

M ′′
Q(ω, T ) ∝




T 3, T � ΘD

constant, T � ΘD.

(4.2.38)

This implies that the imaginary part of the thermoelectric memory function in case of

the electron-phonon interaction shows frequency independent and temperature depen-

dent behavior at high frequency regime. It shows T 3 behavior in the low temperature

regime and temperature independent behavior in the high temperature regime.

Similarly in the low frequency regime i.e. ω � ωD, M ′′
Q(ω, T ) Eq. (4.2.31) in the

leading order is given by

M ′′
Q(ω, T ) ≈ N

24π3miρ2
F

(
qD
ΘD

)4
T 5

χ0
Q(T )

sinh (ω/T )

ω

×
∫ ΘD/T

0

dy
y4ey

(ey − 1)2

{(
qDT

ΘD

)2

y2 + 2k2
F

}
. (4.2.39)

Now in the limit ω � T ,

M ′′
Q(ω, T ) ≈ Nπk2

F

45miρ2
F

(
qD
ΘD

)4
eω/T

ω

T 5

χ0
Q(T )

. (4.2.40)
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In the opposite case, i.e. ω � T ,

M ′′
Q(ω, T ) ≈ N

24π3miρ2
F

(
qD
ΘD

)4
T 4

χ0
Q(T )





8π4

15
k2
F , at T � ΘD

1

5
q2
D

(
ΘD

T

)3

, at T � ΘD

.

(4.2.41)

This concludes that the finite frequency imaginary part of the thermoelectric memory

function shows frequency dependence of the form eω/T/ω in the regime where the

frequency is in between the value of temperature T and Debye temperature ΘD and

becomes frequency independent in the other cases. There is also different temperature

dependencies within the different regimes depending on whether the temperature is

greater or lesser than the Debye temperature. The details of these asymptotic results

are discussed in latter section Sec. 4.3 and are collected in Table 4.2.

Table 4.2: The thermoelectric and electrical scattering rates or memory functions due

to the electron-phonon interaction in different frequency and temperature domains.

Regimes
Thermoelectric memory function

1/τte or M ′′
Q(ω, T )

Electrical memory function

1/τe or M ′′(ω, T )

ω = 0, T � ΘD T 0 T 1

ω = 0, T � ΘD T 3 T 5

ω � T � ΘD T 0 T 1

ω � ΘD � T T 3 T 5

T � ω � ΘD T 0 T 1

T � ω � ΘD T 4ω−1eω/T T 6ω−1eω/T

ω � ΘD � T T 3 T 5

ω � T � ΘD T 0 T 1

Seebeck Coefficient

For the case of electron-phonon interaction, the Seebeck coefficient can be calculated

in a similar way as done for the case of electron-impurity interaction.



76 Chapter 4. Dynamical Thermoelectric Coefficient of metals

In this case, the electrical memory function in the finite frequency case and in the zero

frequency limit can be written as [27, 56, 62]

M ′′(ω, T ) =
N

24π3miρ2
F

(
qD
ΘD

)6
T 5

χ0

∫ ΘD/T

0

dy
y4

(ey − 1){
x− y
ex−y − 1

ex − 1

x
+ (terms with ω → −ω)

}
,

(4.2.42)

and

M ′′(T ) =
N

12π3miρ2
F

(
qD
ΘD

)6
T 5

χ0





124.4, T � ΘD

1

4

(
ΘD

T

)4

, T � ΘD,
(4.2.43)

respectively. The details of this expressions are given in Chapter 2. Substituting this

zero frequency electrical memory function Eq. (4.2.43) in Eq. (4.2.21), we find that the

electrical conductivity in this limit proportional to

σ(T ) ∝




T−5, T � ΘD

T−1, T � ΘD.

(4.2.44)

On the other hand, we have also discussed that the thermoelectric conductivity

α(T ) shows T−3 and a temperature independent behavior in the low and the high tem-

perature regimes respectively. Substituting these variations into Eq. (4.1.4), the See-

beck coefficient in the electron-phonon interaction case shows temperature dependence

as follows

S(T ) ∝




T 2, at T � ΘD

T, at T � ΘD.

(4.2.45)

Similarly for the finite frequency case, substituting Eqs. (4.2.31) and (4.2.42) in (4.2.26),

the frequency variation of the Seebeck coefficient for the case of the electron-phonon

interaction can be analyzed and discussed which is presented in the next section.

4.3 Results and Discussion

In this section, we have presented the results for the imaginary part of the thermo-

electric memory function and the corresponding thermoelectric coefficient in different

temperature and frequency regimes.
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Figure 4.1: (a): Plot of the imaginary part of the thermoelectric memory function for impurity

case at different temperatures such as 200K (purple), 300K (brown) and 400K (blue). (b): The

low frequency regime of M ′′Q(ω, T )/M ′′0 of Fig. 4.1(a) is elaborated.

In Fig. 4.1, we plot the imaginary part of the normalized thermoelectric memory

function Eq. (4.2.13) M ′′
Q(ω, T )/M ′′

0 , where M ′′
0 = 2k4

FmNimpU
2/3π4Ne, due to the

electron-impurity interaction as a function of ω and at different temperatures. Here

we observe that the thermoelectric memory function at low frequency i.e. ω � T

shows frequency and temperature independent behavior (as shown in Fig. 4.1(a)). In

the intermediate regime, it decays with the increase of the frequency (as shown in

Fig. 4.1(b)). Also it increases with the increase of the temperature. Finally, at high

frequency i.e. ω � T , it saturates to constant value (Fig. 4.1(a)).

In Fig. 4.2, the real part of the normalized Seebeck coefficient Re[S(ω, T )]/S0

for the case of electron-impurity interaction is shown as a function of ω/ω0, (ω0 =

2k4
FmNimpU

2/3π4Ne) and at different temperatures. Here, we observe that first it

starts to decrease with the rise of the frequency and shows a dip at a certain frequency

(as shown in Fig. 4.2(a)). Then, in the high frequency regime, it saturates to the con-

stant value. Also, with the rise of temperature, Re[S(ω, T )]/S0 increases in the low

frequency regime and becomes independent of the temperature in the high frequency

regime. This behavior can be understood from Eq. (4.2.26) as follows:

In the high frequency regime, Eq. (4.2.26) can be written as

Re[S(ω, T )] ≈ 1

T

χ0
Q(T )

χ0

≈ constant. (4.3.1)
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Figure 4.2: (a): Plot of the real part of the normalized Seebeck coefficient for impurity case

at different temperatures such as 200K (purple), 300K (brown) and 400K (blue). (b): The low

frequency regime of Re[S(ω, T )/S0 of Fig. 4.2(a) is elaborated.

This feature is depicted in Fig. 4.2(a).

Now, in the low frequency regime i.e. ω → 0, Eq. (4.2.26) is approximated as

lim
ω→0

Re[S(ω, T )] ≈ lim
ω→0

1

T

χ0
Q(T )

χ0

M ′′(ω, T )

M ′′
Q(ω, T )

. (4.3.2)

Thus in the zero frequency limit, Re[S(ω, T )] shows a constant value as given by above

expression.
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Figure 4.3: (a): Plot of imaginary thermoelectric memory function for phonon case at different

temperatures such as 200K (purple), 250K (red), 300K (brown), 350K (blue). (b): The low

frequency regime of Fig. 4.3(a).

In Fig. 4.3, we plot the frequency and the temperature dependent normalized imagi-
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nary part of the thermoelectric memory functionM ′′
Q(ω, T )/M ′′

0 for case of the electron-

phonon interaction, where M ′′
0 = Nmq6

D/6π
5miNeρ

2
FΘD. Here, we keep the Debye

temperature ΘD fixed at 300K i.e. 0.026eV and look at the frequency dependence

at different temperatures. We observe that the thermoelectric memory function shows

frequency variation below 0.2eV. While in other region ω � 0.2eV, it shows frequency

independent behavior (Fig. 4.3(a) and 4.3(b)). Along with the frequency character, we

also observe the temperature behavior. In throughout the frequency region, it increases

with the increase of the temperature (Fig. 4.3(a) and 4.3(b)).

Now, in Fig. 4.4 we plot the imaginary part of the thermoelectric memory func-

tion in the zero frequency limit as a function of temperature. Here, we consider dif-

ferent values of the Debye temperature such as 200, 300 and 400K. It is found that

M ′′
Q(T )/M ′′

0 first increases with the increase of temperature and then saturates to a

constant value at a temperature above the Debye temperature.
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Figure 4.4: Plot of imaginary part of the dc thermoelectric memory function for phonon case

at different Debye temperatures such as 200(purple), 300(brown) and 400K(blue).

In Fig. 4.5, we plot the real part of the frequency and temperature dependent nor-

malized Seebeck coefficient Re[S(ω, T )]/S0 with ω/ω0 (using Eq. (4.2.26)) at different

temperatures. Here ω0

(
= Nmq6

D/6π
5miNeρ

2
FΘD

)
in the energy units is a normaliz-

ing parameter. We have kept the Debye temperature fixed at 300K. In Fig. 4.5(a),

we observe that Re[S(ω, T )]/S0 is independent of frequency and temperature in the

high frequency regime (i.e. ω � ωD as shown in the regime right to the dashed line

within the plot). In contrast, there is strong frequency and temperature dependence

in the low frequency regime. To elaborate the low frequency regime, we replot the

real part of the Seebeck coefficient in Fig. 4.5(b). Here we find that the later increases
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Figure 4.5: (a): Plot of finite frequency real part of the normalized Seebeck coefficient at dif-

ferent temperatures such as 200(purple), 250(red), 300(brown), 350(blue) and 375K(magenta)

at fixed Debye temperature 300K. Here the dotted line corresponds to the Debye cuotff i.e.

ωD/ω0, where ω0 is the constant scale parameter having dimensions of energy. (b): The low

ω/ω0 regime of Fig. 4.5(a) is elaborated. Here ω0 is a normalizing parameter.
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Figure 4.6: (a): Plot of the real part of the normalized Seebeck coefficient in zero frequency

limit at different Debye temperatures such as 200 (purple), 300 (red) and 400K (brown). (b):

The low temperature regime of Re[S(ω, T )]/S0 of Fig. 4.6(a) is elaborated.

with the increase in frequency. While with the rise in temperature, the magnitude of

Re[S(ω, T )]/S0 reduces. The saturation at high frequencies can be understood from

the formula Eq. (4.2.26) as explained above. Also the suppression of the normalized

Seebeck coefficient with the increase in temperature can be understood by recognizing

the enhanced scattering of quasiparticles at higher temperature. At very low frequency,
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we show the same plot at temperature 300K within the inset of Fig. 4.5(b). We can see

from the inset that near the zero frequency, Re[S(ω, T )]/S0 approaches to the constant

value.

For the zero frequency case, Re[S(T )]/S0 (using Eq. (4.2.26)) is plotted as a func-

tion of temperature at different Debye temperatures such as 200, 300 and 400K in

Fig. (4.6). It is observed that Re[S(T )]/S0 increases linearly with the rise of temper-

ature. Also, its linear behavior is more pronounced at the temperature more than the

Debye temperature. This linear behavior feature is in accord with the result calculated

by Boltzmann approach (Mott formula) and with the experimental findings [3, 14].

However, at very low temperature (T � ΘD), it is quadratic in temperature (refer

Eq. (4.2.45)). Experimentally, this regime is dominated by the phonon drag effects and

these are not considered in the present formalism [3].

4.4 Conclusion

Making highly efficient thermoelectric devices, one needs materials with large figure

of merit (ZT = S2σT/κ). As discussed earlier, one possible route to increase ZT

is to look beyond the static limit and look for the frequency dependent case. In this

connection the understanding of the frequency dependence of the Seebeck coefficient

S(ω, T ) is extremely important and is attempted here.

In a nutshell, the concluding remarks of this chapter are as follows:

1. In the case of electron-impurity interactions, the Seebeck coefficient in the

zero frequency limit shows temperature independent behavior.

2. In the case of electron-phonon interactions, S(T ) shows

a Linear temperature dependent behavior in high temperature regime

(T � ΘD)

b Quadratic temperature dependent behavior in low temperature regime

(T � ΘD).
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3. In the finite frequency regimes, S(ω, T ) in the case of electron-impurity in-

teractions decays with the increase in frequency in the low frequency regime

and then after passing through a minimum, it becomes constant in the high

frequency regime.

4. In the case of the electron-phonon interactions, it rises with the frequency in

the regime where ω � ωD and in the opposite case i.e. ω � ωD, it saturates.

5. These new predictions insure that the phonon interaction plays an important

role in the dynamical behavior of the Seebeck coefficient and hence can help

in improving the figure of merit.

6. In addition to these, we have also reported that the thermoelectric memory

function in the zero frequency limit for the case of

a electron-impurity interaction shows temperature independent behavior.

b electron-phonon interaction shows T 3 behavior in the low temperature

regime, and temperature independent in the high temperature regime.

7. In the finite frequency case, it shows frequency variation depending on the

relative strengths of the temperature T , frequency ω, and Debye frequency

ωD (refer Table 4.1 and 4.2).



Chapter 5

Dynamical Thermal Conductivity of

Graphene

In the previous chapters, we have calculated the transport properties of three dimen-

sional metals both in zero frequency and finite frequency regimes using the memory

function technique and produced several new results. This chapter deals with an in-

vestigation which is performed on a very important two dimensional system, namely

Graphene using the techniques developed and applied to three dimensional systems

i.e., metals in the previous chapters. Before we proceed for calculation, we first briefly

introduce the system i.e., graphene.

Graphene is a two dimensional (2D) material [98,99] and is made of carbon atoms

arranged in a honeycomb structure. Being 2D in nature and having linear electron

dispersion relation, it creates a lot of attention both in the fundamental and applied

research due to its unique electrical, magnetic, thermal, optical and mechanical prop-

erties. These properties include anomalous high electrical conductivity, high thermal

conductivity, effect of impurities on the electric properties, etc. [100–113] which make

the use of this material quite promising for the fabrication or design of the electronic

devices. These unique properties are due to its one of the interesting aspect i.e. linear

electron energy dispersion which differs from normal metals having quadratic energy

dispersion. This energy dispersion of graphene is expressed as

E± = ±vF |k|. (5.0.1)

Here we set ~ = 1 and vF represents the Fermi velocity. Also the sign± corresponds to

83
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the conduction (+) and valence (−) bands. These dispersions lead to form a structure

known as Dirac cones and the points, where the Dirac cones of electrons and holes

touch each other and give rise to a valley degeneracy gv = 2 [114]. In our calcula-

tions, we have simply taken into account this degeneracy factor and do not discuss

the intervalley scattering mechanisms in the transport of graphene. Specifically, we

present here the thermal conductivity of graphene due to electron-phonon scattering

mechanism.

In the literature, it is argued that the thermal conductivity of graphene is high

[115, 116] and is mainly contributed by the phonons and the electronic contribution

is small [117, 118]. However, electrons and phonons provide different temperature

dependence to the electronic and phononic thermal conductivities in low and high

temperature limits. In the high temperature limit, due to large number of phonons

the electronic thermal conductivity show temperature independent behavior [3, 5, 62]

due to the scattering by electron-phonon interactions. On the other hand, the phononic

thermal conductivity shows T−1 temperature behavior due to the dominating scatter-

ing mechanism by phonon-phonon interactions. In the opposite limit i.e. the low

temperature limit, the electronic and the phononic thermal conductivities are due to

the interactions of electrons and phonons with impurities, boundaries, defects, etc. In

the literature, the thermal conductivity of graphene due to phonons has been exten-

sively studied [115–118]. However, the electronic thermal conductivity of graphene is

less studied topic [119]. In the present chapter, we describe our study of the electronic

thermal conductivity. For the accurate determination of the total thermal conductivity,

it is important to have detailed theoretical models for both type of conductivities. In

the present context, we use the memory function approach by which both the zero and

the finite frequency behavior of the thermal conductivity can be calculated or explained

with much ease.

In case of metals, it has been find that in the low temperature regime i.e. T � ΘD

(ΘD being the Debye temperature) only the acoustic phonons within the phonon sphere

of radius kph with kph � kD (where kD is the radius of Debye sphere) play a role in the

electronic thermal conductivity [3, 5, 62]. In these three dimensional systems, it leads

to T−2 behavior of the electronic thermal conductivity in T � ΘD regime. In such
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systems, the radius of the Fermi sphere is larger than the radius of the Debye sphere

i.e. 2kF � kD. Thus all phonons can scatter off the electrons. But in the systems

where kF � kD (in graphene and other low density systems), only small number of

phonons can scatter off the electrons. These phonons are restricted within the energy

range vskph ≤ 2vskF . This can be explained by introducing the new temperature

scale known as Bloch Grüneisen (BG) temperature which is smaller than the Debye

temperature [120]. This scale defines two regimes i.e. low temperature (T � ΘBG) and

high temperature (T � ΘBG) regimes for the electron-phonon interaction in graphene.

In the low temperature regime (T � ΘBG), the acoustic phonons with linear dispersion

relation yield inverse temperature behavior to the electronic thermal conductivity i.e.

T−1 and then change to the temperature independent behavior in the high temperature

regime (T � ΘBG) [119, 121]. However, because of the two dimensional nature of

the graphene, there are also other acoustic phonons known as flexural phonons or out

of plane phonons which obey quadratic dispersion relation and hence give different

power law behavior to the electronic thermal conductivity. Thus the role of the different

acoustic phonons is very important to understand the transport or the electronic thermal

conductivity of graphene.

In this chapter, we first set the theoretical framework of the problem in Sec. 5.1.

Here we discuss the phonon dispersion relations and give the description of the elec-

tronic thermal conductivity of graphene for different acoustic phonons. In Sec. 5.2,

we present the results in zero and finite frequency regimes. Finally, in Sec. 5.3 we

conclude the chapter.

5.1 Theoretical Framework

We consider a two dimensional graphene with only electron-phonon interaction and

intraband transitions within this system. The Hamiltonian of such a system is described

as H = H0 + Hep + Hph. Here the unperturbed parts H0 and Hph are defined by

Eqs. (2.1.2) and (2.1.5) respectively. And the perturbed part of Hamiltonian Hep is

defined by the Eq. (2.1.3) as for the case of normal metals. While the difference in

the present case comes from the form of the electron-phonon matrix element (which
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is specified in Chapter 2 Sec. 2.1 Eq. (2.1.4) for the case of metals). In the case of

graphene, the latter is represented as [114, 122]

D(q) =
D0q√
2ρmωq

{
1−

(
q

2kF

)2}1/2

. (5.1.1)

Here D0 is the deformation potential coupling constant, ρm is the graphene mass

density, kF is the Fermi wave vector and ωq is the phonon energy dispersion. Con-

trary to the case of metal, here the extra q dependence comes from the factor
{

1 −
(

q

2kF

)2}1/2

. The consequence of this factor is the suppression of the backscattering

in graphene [121, 123]. Further, this is valid for the case of intraband transitions that

we have considered in our study.

5.1.1 Phonon Dispersion relations

Before proceeding to calculate the thermal scattering rate and the corresponding ther-

mal conductivity of graphene, for the sake of completeness, we will first discuss the

phonon dispersion relations in this subsection.

The thermal transport due to the electron-phonon interaction significantly depends

on the characteristics of the phonon which are further determined by the two dimen-

sional structure of the graphene. In graphene, there are two carbon atoms per hexagonal

unit cell which gives six phonon branches in the dispersion spectrum. These are three

acoustic and three optical branches namely LA(Longitudinal Acoustic), TA(Transverse

Acoustic), LO(Longitudinal Optical), TO(Transverse Optical), ZA(Flexural Acoustic)

and ZO(Flexural Optical). The TA and TO phonons are due to the transverse vibra-

tions within the graphene plane and LA, LO are due to the longitudinal vibrations

within the graphene plane. The other modes such as ZA, ZO are due to the oscillations

of phonons in the direction normal to the longitudinal and transverse phononic modes.

These phononic modes are also referred to the out of plane modes [124]. Among these,

the optical phonons usually have higher energies than the acoustic phonons. And in

the present work our main focus is on the low temperature behavior (i.e. below the De-

bye temperature) of the electronic thermal conductivity. Thus, for the time being we

ignore the contribution of optical phonons and consider only acoustic phonons hence-

forth. The schematic representation of these phonons is shown in Fig. 5.1.
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q

(a) Displacement of LA phonons

(b) Displacement of TA phonons

(c) Displacement of ZA phonons

Figure 5.1: Schematic representation of the displacement of acoustic in plane and out of plane

phonon modes.

From the phonon dispersion spectra, it has been found that these modes follow

different dispersion relations. The LA and TA modes follow the linear dispersion rela-

tions [124, 125] i.e.,

ωLA ≈ vLAq

ωTA ≈ vTAq, (5.1.2)

where vLA and vTA are the longitudinal and transverse phonon velocities and vLA =

21.3× 103ms−1, vTA = 14.1× 103ms−1. [125]

The other acoustic phonon ZA approximately follows the quadratic dispersion re-

lation as [124, 126]

ωZA ≈ αq2. (5.1.3)

Here the parameter α =

(
s

ρm

)1/2

, where s is the bending stiffness of the graphene,

ρm is the graphene mass density and α = 4× 10−7m2s−1. [127]
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5.1.2 Mathematical Calculations

As discussed in Chapter 3, the thermal conductivity Eq. (3.1.3) can be calculated using

the memory function formalism by calculating the thermal memory function or thermal

scattering rate Eq. (3.1.4). Thus with the definitions of the thermal current Eq. (3.1.2)

and the model Hamiltonian (described in Chapter 2 Sec. 2.1), the imaginary part of the

thermal memory function can be expressed as*

M ′′
QQ(ω, T ) =

4π

χ0
QQ(T )m2

∑

kk′

[{
k(εk − µ)− k′(εk′ − µ)

}
· n̂
]2 |D(k− k′)|2

×(1− fk)fk′nk−k′

{
eω/T − 1

ω
δ(εk − εk′ − ωk−k′ + ω)

+(terms with ω → −ω)

}
. (5.1.4)

Here fk =
1

eβ(εk−µ) + 1
and nq =

1

eβωq − 1
are the Fermi and the Boson distribution

functions, β is the inverse of the temperature and factor 4 is for the two spin and two

valley degeneracies.

To simplify Eq. (5.1.4), we convert the summations over momentum indices into

the two dimensional energy integrals using the linear electron energy dispersion rela-

tion εk = vFk and εk′ = vFk
′, where vF is the Fermi velocity. This linear dispersion

relation distinguishes the characteristics of the graphene from those of the three di-

mensional normal metals which follows the quadratic dispersion relation. Further

these simplifications along with integrations over the angular parts yield

M ′′
QQ(ω, T ) =

ε2FD
2
0

4π2m2ρmv4
FkFχ

0
QQ(T )

∫
dεk

∫ λ

0

dq
q2

ωq

√
1−

(
q

2kF

)2

{
ω2
qk

2
F + (εk − µ)2q2 +

ωq(εk − µ)

2
q2

}
(1− f(εk))nq

{
eω/T − 1

ω
f(εk − ωq + ω) + (terms with ω → −ω)

}
.

(5.1.5)

Here we use the expression for the electron-phonon matrix element given in Eq. (5.1.1)

and the symbol λ corresponds to the upper cut off value of the phonon momentum.

Since in normal metals, the Fermi sphere is very large as compared to the Debye

*The details of the calculation of this expression is given in Sec. 3.2.2 Chapter 3.
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sphere, the phonons residing in the Debye sphere participate in scattering events and

we restrict λ to qD, qD being the Debye momentum. While in the case of graphene,

this is not the case due to the smaller Fermi surface than the Debye surface. This

allows only phonons residing below the Fermi surface to participate in the scattering

phenomenon, hence restrict the upper cut off value of q integral to 2kF (the idea of the

Bloch-Grüneisen temperature). Further the above equation Eq. (5.1.5) for graphene

can be solved for various acoustic phonons as discussed in the following subsections.

Longitudinal/Transverse Acoustic Phonons (LA/TA)

To calculate MQQ(z, T ) for the Longitudinal and the Transverse acoustic phonons

(having linear dispersion relation), we define few dimensionless quantities such as
εk − µ
T

= η,
ωq
T

= y and
ω

T
= x, where ωq = vsq, vs ≡ (vLA, vTA). Using these

variables and then performing the integral over variable η, Eq. (5.1.5) becomes

M ′′
QQ(ω, T ) =

ε2FD
2
0

4π2m2ρmv4
Fv

5
skF

T 6

χ0
QQ(T )

∫ ΘBG/T

0

dy
y3

ey − 1

(
1− y2T 2

2Θ2
BG

)

×
{

x− y
ex−y − 1

ex − 1

x

(
Θ2

BG

4T 2
+
π2

3
+

(x− y)2

3
+
y(x− y)

4

)

+(terms with ω → −ω)

}
. (5.1.6)

Here ΘBG is the Bloch-Grüeinsen temperature and is equal to 2kFvs. The analytic

closed form of the integral over y variable is calculated by Mathematica and is given in

Eq. (G.0.7). Further, in different frequency and temperature regimes it can be solved

analytically and is discussed as follows:

Case-I: The zero frequency limit i.e. ω → 0

In this limit in Eq. (5.1.6), M ′′
Q(T ) becomes

M ′′
QQ(T ) =

ε2FD
2
0

2π2m2ρmAv4
Fv

5
skF

T 6

χ0
QQ(T )

∫ ΘBG/T

0

dy
y4ey

(ey − 1)2

(
1− y2T 2

2Θ2
BG

)

×
{

Θ2
BG

4T 2
+
π2

3
+
y2

12

}
. (5.1.7)

The closed analytic form of this expression is given in Eq. (G.0.8). Here, we find

that M ′′
QQ(T ) for the case of interaction of the electrons with the longitudinal or trans-

verse phonons leads to different temperature dependence in different regimes. In the

high temperature regime (T � ΘBG), the term π2/3 within the curly brackets of above
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equation and in the low temperature regime (T � ΘBG), first and last term contribute

more to the thermal memory function. Hence it obtains the temperature behavior as

M ′′
QQ(T ) ∝




T, T � ΘBG

T 2, T � ΘBG.

(5.1.8)

Using this, the electronic thermal conductivity can be calculated as follows.

The electronic thermal conductivity Eq. (3.1.3) in the zero frequency limit can be writ-

ten as [62]

κ(T ) =
1

T

χ0
QQ(T )

M ′′
QQ(T )

≈ T

M ′′
QQ(T )

. (5.1.9)

Here we use the temperature variation of the static correlation function χ0
QQ(T ) (as dis-

cussed in Appendix B.3). Thus the electronic thermal conductivity depends inversely

on the thermal memory function. From Eqs. (5.1.7) and (5.1.9), we find that κ(T ) for

the case of LA and TA phonons varies inversely with the temperature and saturates at

the low and the high temperature regimes (as shown in Table 5.1). These are in accord

with the results in the literature [119, 121].

Case-II: Finite frequency regimes

In the finite frequency regime, the thermal memory function and the corresponding

thermal conductivity can be calculated in different temperature and the frequency

regimes depending on the relative strengths of frequency ω, temperature T and Bloch-

Grüneisen temperature ΘBG. These limiting cases are calculated as follows.

1. When the frequency, ω is high as compared to T and ΘBG, the thermal memory

function for LA/TA phonons, Eq. (5.1.6) reduces as

M ′′
QQ(ω, T ) =

ε2FD
2
0

6π2m2ρmv4
Fv

5
skF

T 6

χ0
QQ(T )

ω2

T 2

∫ ΘBG/T

0

dy
y3

ey − 1

(
1− y2T 2

2Θ2
BG

)
.

(5.1.10)

Further, the above equation in the closed form is given in Eq. (G.0.9) which in

different temperature regimes gives the thermal memory function as

M ′′
QQ(ω, T ) ∝




ω2T−1, ω � T � ΘBG

ω2T 2, ω � ΘBG � T .

(5.1.11)
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2. In the opposite case, when ω is smaller than T and ΘBG, Eq. (5.1.6) becomes

M ′′
QQ(ω, T ) =

ε2FD
2
0

2π2m2ρmv4
Fv

5
skF

T 6

χ0
QQ(T )

∫ ΘBG/T

0

dy
y4ey

(ey − 1)2

(
1− y2T 2

2Θ2
BG

)

×
(

Θ2
BG

4T 2
+
π2

3
+
y2

12

)
. (5.1.12)

The integral in this equation is similar to the integral of Eq. (5.1.7) and is given

in Eq. (G.0.8). In limiting cases,it further reduces to

M ′′
QQ(ω, T ) ∝




T 2, ω � T � ΘBG

T, ω � ΘBG � T .

(5.1.13)

3. In the intermediate regimes, the thermal memory function Eq. (5.1.6) shows

temperature and frequency dependent behavior as

M ′′
QQ(ω, T ) ∝




T 3ω−1eω/T , T � ω � ΘBG

T, ΘBG � ω � T .

(5.1.14)

These asymptotic results are shown in Table 5.1.

Now from Eq. (3.1.3), the real part of the electronic thermal conductivity is ex-

pressed as

Re[κ(ω, T )] =
χ0
QQ(T )

T

M ′′
QQ(ω, T )

ω2 +
[
M ′′

QQ(ω, T )
]2 , (5.1.15)

where M ′′
QQ(ω, T ) for different regimes are given in Table 5.1. In the perturbative

regime of small electron-phonon couplings, we assume that the frequency dependent

thermal memory function is small. Using this assumption, Eq. (5.1.15) can be written

as [62, 95]

Re[κ(ω, T )] ≈ χ0
QQ(T )

T

M ′′
QQ(ω, T )

ω2
≈ TM ′′

QQ(ω, T )

ω2
.

(5.1.16)

Here we use the temperature variation of the static correlation function (shown in Ap-

pendix B.3). Substituting the variation of the temperature and the frequency dependent

thermal memory function of graphene, we conclude that the electronic thermal con-

ductivity of graphene at high frequency shows frequency independent behavior. While

at the low frequency, it gives large conductivity due to the weakly frequency depen-

dent behavior of the thermal memory function. These behaviors are summarized in

Table 5.1 and discussed in Sec. 5.2.
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Table 5.1: The results of thermal memory function and the thermal conductivity of

graphene for the interaction of electrons with LA/TA and ZA phonons in different

frequency and temperature domains.

Regimes
LA/TA phonons ZA phonons

Thermal memory

function

1/τth or M ′′
QQ

Thermal

conductivity,

κ

Thermal memory

function

1/τth or M ′′
QQ

Thermal

conductivity,

κ

ω = 0, T � ΘBG T 1 T 0 T 1 T 0

ω = 0, T � ΘBG T 2 T−1 T 1/2 T 1/2

ω � T � ΘBG T 2 T 3ω−2 T 1/2 T 3/2ω−2

ω � ΘBG � T T 1 T 2ω−2 T 1 T 2ω−2

T � ω � ΘBG T 3ω−1eω/T T 4ω−3eω/T T 5/2ω−1eω/T T 7/2ω−3eω/T

ΘBG � ω � T T 1 T 2ω−2 T 1 T 2ω−2

ΘBG � T � ω T−1ω2 T 0ω0 T−1ω2 T 0ω0

T � ΘBG � ω T 2ω2 T 3 ω2T−1/2 T 1/2

Flexural Acoustic Phonons (ZA)

Now, in the case of the flexural acoustic phonons having quadratic dispersion [126] i.e.

ωq = αq2, the thermal memory function can be computed in a similar fashion as done

in the case of the LA/TA phonons.

Following the same procedure, the Eq. (5.1.5) for ZA phonons is written as

M ′′
QQ(ω, T ) =

ε2FD
2
0

8π2m2ρmv4
Fα

3/2kF

T 7/2

χ0
QQ(T )

∫ ΘBG/T

0

dy
y1/2

ey − 1

(
1− yT

8ΘBG

)

×
{

x− y
ex−y − 1

ex − 1

x

(
ΘBG

4T
y +

π2

3
+

(x− y)2

3
+
y(x− y)

4

)

+(terms with ω → −ω)

}
. (5.1.17)

This is analyzed in different frequency and temperature regimes as follows.

Case-I: The zero frequency limit i.e. ω → 0
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Using this limit in Eq. (5.1.17), we have

M ′′
QQ(ω, T ) =

ε2FD
2
0

4π2m2ρmv4
Fα

3/2kF

T 7/2

χ0
QQ(T )

∫ ΘBG/T

0

dy
y3/2ey

(ey − 1)2

(
1− yT

8ΘBG

)

×
(

ΘBG

4T
y +

π2

3
+
y2

12

)
. (5.1.18)

The above equation shows that the thermal memory function M ′′
QQ(T ) varies as a

square root and linearly with temperature at T � ΘBG and T � ΘBG respectively

(shown in Table 5.1). Accordingly, the electronic thermal conductivity Eq. (5.1.9) leads

to the T 1/2 power law behavior in the low temperature regime and temperature inde-

pendent behavior in the high temperature regime.

Case-II: Finite frequency regimes

In this regime, the thermal memory function for the case of flexural phonons in differ-

ent regimes can be discussed as follows.

1. When ω is higher than T and ΘBG, Eq. (5.1.17) reduces to

M ′′
QQ(ω, T ) =

ε2FD
2
0

12π2m2ρmv4
Fα

3/2kF

T 7/2

χ0
QQ(T )

ω2

T 2

∫ ΘBG/T

0

dy
y1/2

ey − 1

(
1− yT

8ΘBG

)
.

(5.1.19)

Further at different values of T and ΘBG, the above equation can be expressed as

M ′′
QQ(ω, T ) ∝




ω2T−1, ω � T � ΘBG

ω2T−1/2, ω � ΘBG � T .

(5.1.20)

2. In the opposite case, when ω is smaller than T and ΘBG, Eq. (5.1.17) becomes

M ′′
QQ(ω, T ) =

ε2FD
2
0

8π2m2ρmv4
Fα

3/2kF

T 7/2

χ0
QQ(T )

∫ ΘBG/T

0

dy
y3/2ey

(ey − 1)2

(
1− yT

8ΘBG

)

×
(

ΘBG

4T
y +

π2

3
+
y2

12

)
. (5.1.21)

The above equation further reduces to

M ′′
QQ(ω, T ) ∝




T 1/2, ω � T � ΘBG

T 1, ω � ΘBG � T .

(5.1.22)

3. In the intermediate regime, Eq. (5.1.17) gives

M ′′
QQ(ω, T ) ∝




T 5/2ω−1eω/T , T � ω � ΘBG

T 1, ΘBG � ω � T .

(5.1.23)
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Using these results, the thermal conductivity for the case of flexural phonons can be

calculated same as for the case of LA/TA phonons and the results are shown in Ta-

ble 5.1. From this analysis, we observed that the frequency variation for M ′′
QQ(ω, T )

and the corresponding κ(ω, T ) is same as the case for the longitudinal or the trans-

verse phonons. But the temperature variations are different. At temperatures higher

than the BG temperature, the ZA phonons show identical temperature dependence as

the LA/TA phonons do. On the other hand, at temperature lower than the BG temper-

ature, the temperature dynamics of ZA phonons is different from the LA/TA phonons.

5.2 Results

5.2.1 Thermal Conductivity in zero frequency limit

In Fig. 5.2, M ′′
QQ(T ) Eq. (5.1.7) is plotted as a function of T for LA and TA phonons

at different ΘBG which depends on the carrier density n. Here we separately plot

nH10
13

cm
-2L

6.85

4.65

2.86

0 50 100 150 200

0

1

2

3

4

THKL

M
Q

Q

''
HT

L�M
0''

(a)

nH10
13

cm
-2L

6.85

4.65

2.86

0 50 100 150 200

0

1

2

3

4

THKL

M
Q

Q

''
HT

L�M
0''

(b)

Figure 5.2: The imaginary part of the thermal memory function for the longitudinal and trans-

verse acoustic phonons are plotted with temperature at different ΘBG ∝
√
n, where n is in the

units of 1013 cm−2. (a): for the longitudinal acoustic (LA) phonons, ΘBG = 57
√
nK and (b):

for the transverse acoustic (TA) phonons, ΘBG = 38
√
nK.

it by setting ΘBG ≈ 57
√
n and ΘBG ≈ 38

√
n (where n is in the units of 1013 cm−2)

for the LA and the TA phonons respectively. Also, we have scaled the M ′′
QQ(T ) with

M ′′
0

(
=

6ε2FD
2
0

π3ρmv3
Fv

5
skF

)
. It is observed that the thermal memory function increases
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Figure 5.3: The Thermal Conductivity for the (a): longitudinal (LA) and (b): transverse

acoustic (TA) phonons are plotted with temperature at different ΘBG ∝
√
nK, where n is in

the units of 1013 cm−2.

linearly with increase in the temperature in the high temperature T � ΘBG and non

linearly in the low temperature T � ΘBG regimes. Also, it decreases with the increase

in the carrier density or ΘBG. This decrease is due to the onset of scattering via large

momentum phonons as full backscattering condition i.e. 2kF = qc, where qc is the

critical phonon momentum, leads to larger qc with large kF and kF is the monotonically

increasing function of carrier density. Further on comparing the Fig. 5.2(a) and 5.2(b),

it is found that the magnitude of the thermal memory function for the TA phonons is

more than the LA phonons. This is due to the low phonon velocity of the TA phonons.

The corresponding electronic thermal conductivity for LA and TA phonons is shown

in Fig. 5.3. Here for T � ΘBG, the thermal conductivity reduces with the increase in T

and for T � ΘBG, it saturates. These observed features are in accord with the results

in the literature [119,121]. In the intermediate regime i.e. around ΘBG, the small dip is

observed which is due to the consideration of the normal process scattering only in the

system and we have not taken into account the U-processes (as discussed in Chapter 3,

Sec. 3.3).

For the flexural (ZA) phonons,M ′′
QQ(T ) Eq. (5.1.18) is shown as a function of tem-

perature in Fig. 5.4. Here we have set ΘBG ≈ 0.1n. Such small ΘBG ensures that these

phonons play significant role in the low temperature behavior of the thermal conduc-

tivity of graphene. Here the value ofM ′′
0 is 3ε2FD

2
0/π

3ρmv
3
Fk

4
Fα

5/2. It is observed that
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Figure 5.4: (a): The thermal memory function for the flexural acoustic phonons (ZA) is plotted

with temperature at different ΘBG = 0.1nK, where n is in the units of 1013 cm−2 and (b): the

corresponding thermal conductivity.

the thermal memory function increases with the increase in the temperature by power

law T 1/2 which further results the increase in the thermal conductivity as T 1/2 law.

But at the high temperature, it increases linearly similar to the case of LA/TA phonons

and further it results in the temperature independent thermal conductivity (Fig. 5.4(b)).
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Figure 5.5: The frequency and temperature dependent thermal memory function or the thermal

scattering rate for the (a): longitudinal and (b): transverse acoustic phonons are plotted with

frequency at different T/ΘBG ratio.
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Figure 5.6: The frequency and temperature dependent thermal conductivity for the longitudi-

nal acoustic phonons is plotted with frequency at different T/ΘBG ratio.

5.2.2 Thermal Conductivity in finite frequency regime

In Fig. 5.5 and 5.8(a), we find that in the high frequency regime, the thermal mem-

ory function increases with increase in frequency. While in the low frequency regime,

it shows saturation behavior. Next, using this variation, we plot the real part of the

thermal conductivity Eq. (5.1.15) in Fig. 5.6, 5.7 and 5.8(b). From the frequency be-

havior of the thermal conductivity, we observe that it shows 1/ω2 behavior in the high

frequency regime. This frequency dependent behavior of κ(ω, T ) is identical to the
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Figure 5.7: The frequency and temperature dependent thermal conductivity for the transverse

acoustic phonons is plotted with frequency at different T/ΘBG ratio.
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Figure 5.8: (a): The Thermal memory function for the flexural acoustic phonons (ZA) is

plotted with frequency T/ΘBG ratio. (b): The corresponding Thermal Conductivity variation

of flexural phonons.

case of metal†. This gives the signature that the two dimensional scenario modifies the

temperature variation of the thermal conductivity but it does not effect the frequency

variation of κ(ω, T ).

By comparing Fig. 5.3(a), 5.3(b) and 5.4(b), we note that the magnitude of thermal

conductivity κ(T ) is different in all three cases. This is due to the different values such

as vLA = 21.2 × 103 ms−1, vTA = 14.1 × 103 ms−1 and α = 4.7 × 10−7 m2s−1 for

the longitudinal, transverse and the flexural phonons respectively. Due to it, the LA

phonons contribute more to the electronic thermal conductivity as compared to the TA

and ZA phonons. This can also be explained as follows.

According to the Mathiessen’s law [3, 5], the total resistivity is the sum of the

resistivities due to different interactions separately. And the resistivity is directly pro-

portional to the scattering rate or the memory function. Thus, the memory functions

adds up due to the interactions of electrons with longitudinal, transverse and flexural

acoustic phonons. Based on that the electronic thermal conductivity, Eq. (5.1.9), is ex-

pressed as 1/κe(T ) = 1/κLA
e (T ) + 1/κTA

e (T ) + 1/κZA
e (T ). This shows that at the high

temperature T � ΘBG, 1/κe(T ) ≈ constant and at the low temperature i.e. T � ΘBG,

1/κe(T ) ≈ B

(
T

v5
LA

+
T

v5
TA

+
T−1/2

α5/2

)
. Here, we find that at the low temperature, the

contribution of the LA phonons to the electronic thermal conductivity due to higher

†behavior for metal is discussed in Chapter 3 and Ref. [79].
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phonon velocity is more than that from other phonons. Also we observe that the total

electronic thermal conductivity decreases approximately linearly with the temperature.

Because of the small value of the magnitude of electronic thermal conductivity of ZA

phonons, it does not effect much to the total electronic thermal conductivity. Further-

more to understand the whole scenario of the electronic thermal conductivity at the

low temperature, one also has to consider the electron-electron interactions which play

an opposite role from the electron-phonon interactions [128].

5.3 Conclusion

Graphene is an unique system as it has two dimensional nature, unusual electron dis-

persion relation, etc. which make its properties different from what is found from the

normal three dimensional metal. It also shows unusual phonon modes that do not ex-

ist in normal metals. In some sense, these characteristics make the study of graphene

novel and more promising. In this connection, we have presented the study of dynam-

ical electronic thermal conductivity of graphene and analyzed its findings.

In a nutshell, the concluding remarks of this chapter are summarized as follows:

1. The electronic thermal conductivity for various acoustic phonons shows dif-

ferent power law behavior due to different phonon dispersion relations.

2. In the zero frequency limit, the electronic thermal conductivity for LA/TA

phonons shows T−1 and temperature independent behavior in low and high

temperature regimes respectively.

3. While for ZA phonons, it shows T 1/2 and temperature independent behavior

in low and high temperature regimes respectively.

4. In the total thermal conductivity, it is found that the LA phonons contribute

more to κ(T ) and the ZA phonons contribute less.

5. For the finite frequency cases, the dynamics of the electronic thermal conduc-

tivity due to the electron-phonon interaction is identical to the case of three

dimensional system such as a metal [62].





Chapter 6

Moment Expansion to the Memory

Function

In the previous chapters, we have discussed the use of the memory function approach

to calculate various transport properties of metals and graphene. In addition to these,

it has been used extensively in other contexts such as to study the molecular dynamics,

thermodynamic properties, etc. [12,13,37,54–56,61,62,96,129–139]. This wide range

of applications make the memory function approach a method of choice in various cor-

related electronic systems such as strange metal phase of the optimally doped cuprate

superconductors where the notion of the electronic quasiparticle breaks down [37,54].

In a generic electronic system there can be various slow modes such as the charge dif-

fusion, the heat diffusion, etc [37, 54]. In the present study, we consider the electric

current as the only relevant slow mode, and then systematically study the effects of

other fast degrees of freedom on the current-current correlation with an extension of

this formalism. In Ref. [56], the effects of various interactions on the dynamical elec-

trical conductivity (relates to current current correlation function) of a simple metal

have been studied previously within the memory function approach in detail. Here,

the authors find that the results for electrical conductivity are identical with that of the

Boltzmann’s results [3] in the dc limit. However, this formalism is restricted to the

lowest order in interaction strength and needs corrections as it increases. In the present

work, we make corrections and present a method more accurate than that presented in

Ref. [56].

101
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With this motivation, we review the application of the memory function formalism

in case of current-current correlation function in metal and propose an expansion of the

memory function in terms of its various moments. Then we show that the previously

studied Götze-Wölfle [56] formalism and similar other memory function formalism

based studies [61,69,96,138] are equivalent to the truncation of our proposed moment

expansion at the lowest order. While for the case of higher interaction strength, one

has to calculate the contribution from the next order in the moment expansion.

In this chapter, we first introduce the high frequency expansion of the general mem-

ory function using the series expansion and the equation of motion methods in Sec. 6.1.

Then in Sec. 6.2, we calculate the memory function by considering an example of

electron-impurity interaction for a metal. Here we compute the first moment of the

memory function. Later in Sec. 6.3, we calculate the memory function with the higher

order moments. In Sec. 6.4, we present the results and compare the contribution of

different moments to the memory function. Finally, we conclude in Sec. 6.5.

As discussed in Chapter 1, the memory function is expressed as

M(z) =

〈
Ȧ

∣∣∣∣Q
1

z −QLQQ
∣∣∣∣ Ḃ
〉
.

To discuss the moment expansion of the memory function, we consider one of the

application i.e. the electrical conductivity. The latter deals with the current-current

correlation function. Hence, we replace the general operators A and B by the current

operator J . Thus, the desired memory function becomes

M(z) =

〈
J̇

∣∣∣∣Q
1

z −QLQQ
∣∣∣∣ J̇
〉
. (6.0.1)

On expanding M(z) in series expansion, we have

M(z) =
1

z

〈
J̇

∣∣∣∣Q
(

1 +
1

z
QLQ+

1

z2
QLQQLQ+ · · ·

)
Q

∣∣∣∣ J̇
〉
. (6.0.2)

Using the fact that QQ = Q2 = (1 − P )2 = Q and 〈J |J̇〉 = 〈J̇ |J̈〉 = 0 (proved in

Appendix E), the memory function in series expansion can be written as

M(z) =
1

z
〈J̇ |J̇〉+

1

z3
〈J̈ |J̈〉+ · · ·+ 1

z2n−1
〈
n

J |
n

J〉. (6.0.3)

Here
n

J represents the nth time derivative of the current operator. This expression rep-

resents the high frequency expansion of the memory function in terms of the equal
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time autocorrelation functions [140]. The same scenario for the moment expansion of

the memory function can also be proceeded by an alternative way i.e. the equation

of motion method, which is widely used in several works for calculating the transport

properties [27, 62, 79, 95].

6.1 Equation of motion method

To calculate the memory function using the equation of motion method (EQM), we

begin with the expression for response function within the linear response theory by

Kubo [59, 60, 97], which is given as,

χ(z) = 〈〈J ; J〉〉z = −i
∫ ∞

0

dteizt〈[J(t), J ]〉. (6.1.1)

Using the equation of motion, it can be expressed as (detail is given in Chapter 2)

z〈〈J ; J〉〉z =
1

z

(
〈〈J̇ ; J̇〉〉z=0 − 〈〈J̇ ; J̇〉〉z

)
. (6.1.2)

Here the time derivative of the current operator J̇ is equal to the commutator [J,H].

Further, this expression is used by Götze and Wölfle [56] to evaluate the memory func-

tion for electrons in metal with various interactions. However instead of considering

the above expression and evaluating 〈〈J̇ ; J̇〉〉z perturbatively, we can opt for a higher

moment expansion as follows. We apply EQM method again to evaluate the correla-

tion function 〈〈J ; J〉〉z in terms of the correlations involving higher time derivatives

of J̇ . Thus in order to express in second moment, we use the EQM for 〈〈J̇ ; J̇〉〉z, and

obtain,

z〈〈J̇ ; J̇〉〉z = 〈[J̇, J̇ ]〉+ 〈〈[J̇, H]; J̇〉〉z. (6.1.3)

Using 〈[J̇, J̇ ]〉 = 0 and z〈〈[J̇, H], J̇〉〉z = 〈〈J̈ ; J̈〉〉z=0 − 〈〈J̈ ; J̈〉〉z, the above equation

can be written as

z〈〈J̇ ; J̇〉〉z = −1

z

(
〈〈J̈ ; J̈〉〉z=0 − 〈〈J̈ ; J̈〉〉z

)
. (6.1.4)

Substituting above equation in Eq. (6.1.2), we have

z〈〈J ; J〉〉z =
1

z
〈〈J̇ ; J̇〉〉z=0 +

1

z3

(
〈〈J̈ ; J̈〉〉z=0 − 〈〈J̈ ; J̈〉〉z

)
. (6.1.5)
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Thus the expression for the response function becomes,

zχ(z) =
1

z
〈〈J̇ ; J̇〉〉z=0 +

1

z3

(
〈〈J̈ ; J̈〉〉z=0 − 〈〈J̈ ; J̈〉〉z

)
. (6.1.6)

By applying EQM recursively, we can obtain a series expansion for zχ(z) as,

zχ(z) =
1

z
〈〈J̇ ; J̇〉〉z=0 +

1

z3
〈〈J̈ ; J̈〉〉z=0

− · · ·+ 1

z2n−1
〈〈
n

J ;
n

J〉〉z=0 −
1

z2n−1
〈〈
n

J ;
n

J〉〉z. (6.1.7)

In Ref. [56], it is shown that χ(z) is related to the memory function as

M(z) = z
χ(z)

χ0 − χ(z)
, (6.1.8)

where χ0 represents the static correlation function (= Ne/m, where Ne corresponds to

electron density). Here M(z) is the complex memory function, which upon analytic

continuation, can be written as a function of real frequency as,

M(ω ± i0) = M ′(ω)± iM ′′(ω), (6.1.9)

where M ′(ω) and M ′′(ω) are real and imaginary part of the memory function and

satisfies the symmetry properties M ′(ω) = −M ′(−ω) and M ′′(ω) = M ′′(−ω) [56].

An approximate form of the memory function can be obtained by assuming that

χ(z)/χ0 � 1. Within this approximation, the expression for the memory function

with the leading order term is expressed as,

M(z) = z
χ(z)

χ0

. (6.1.10)

The basis of this assumption is the smallness of electron-impurity interaction energy

as compared to the electronic kinetic energy [56]. and more details of the validity of

the above equation is discussed in Chapter 2. There we have used the current-current

correlation function upto the lowest order term i.e. upto first time derivative of the

current. Below we go beyond the lowest order result of the correlation function.

Using Eq. (6.1.7), the memory function expansion to general order can be written as,

M(z) =
1

χ0

(
1

z
〈〈J̇ ; J̇〉〉z=0 +

1

z3
〈〈J̈ ; J̈〉〉z=0 + · · ·

· · ·+ 1

z2n−1
〈〈
n

J ;
n

J〉〉z=0 −
1

z2n−1
〈〈
n

J ;
n

J〉〉z
)
.

(6.1.11)
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This is an expression of the complex memory function which is equivalent to the

Eq. (6.0.3), but under a restrictive condition χ(z) � χ0 [56, 62]. Here we find that

instead of limiting at a perturbative calculation of J̇−J̇ correlation, we can include cor-

relations involving higher order time derivatives of J̇ . These correlations with higher

order time derivatives involves higher order corrections in interaction strength to the

scattering rate. We will use this expression with n = 2, to evaluate the scattering rate

due to the impurity interactions in later sections and will see how the result differs from

that of the previously studied lower order corrections.

6.2 Case of electron-impurity scattering

In this section, we review the work discussed in Ref. [56] to calculate the memory

function for impurity interactions. We consider a metal where degenerate electrons are

interacting with impurities. In this case, the Hamiltonian is

H = H0 +Himp, (6.2.1)

where the unperturbed HamiltonianH0 and the perturbed HamiltonianHimp are defined

in Eqs. (2.1.2) and (3.2.1).

We discuss first the memory function, truncating at the first order [56]. In this case,

it can be written as

M(z, T ) =
1

zχ0

(
〈〈J̇ ; J̇〉〉z=0 − 〈〈J̇ ; J̇〉〉z

)
. (6.2.2)

To evaluate the above expression, let us first calculate the time derivative of the elec-

trical current i.e., J̇ . The latter is defined as,

J̇ = −i[J,H] = −i
(
[J,H0] + [J,Himp]

)
. (6.2.3)

As [J,H0] = 0, thus J̇ = −i[J,Himp]. Using Eq. (3.2.1) for perturbed Hamiltonian

and defining the current operator J =
∑

k

vx(k)c†kck, where vx is the x-component of

velocity, the time derivative of J can be written as,

J̇ = − i

N

∑

j,k,k′
〈k|U j|k′〉

{
vx(k)− vx(k′)

}
c†kck′ . (6.2.4)
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With the above expression, the correlator 〈〈J̇ ; J̇〉〉z becomes

〈〈J̇ ; J̇〉〉z = − 1

N2

∑

j,k,k′

∑

i,p,p′
〈k|U j|k′〉〈p|U i|p′〉

×
{
vx(k)− vx(k′)

}{
vx(p)− vx(p′)

}
〈〈c†kck′ ; c

†
pcp′〉〉z. (6.2.5)

Using the definition of the correlator as defined in Eq. (6.1.1), after performing time

integration and thermal average by using ck(t) = cke
iεkt, we get,

〈〈c†kck′ ; c
†
pcp′〉〉z = − 1

z + εk − εk′

{
f(k)− f(k′)

}
δp′,kδp,k′ . (6.2.6)

We consider the above expression and also the case of dilute impurity and neglecting

the interference terms (as done in Chapter 3), thus substitute i = j in Eq. (6.2.5).

Performing the summation over impurity sites which contributes Nimp, we have

〈〈J̇ ; J̇〉〉z = 2
Nimp

N2

∑

k,k′
|〈k|U |k′〉|2

{
vx(k)− vx(k′)

}2f(k)− f(k′)
z + εk − εk′

.

(6.2.7)

Writing v = k/m, substituting the above equation in Eq. (6.1.2) and using the Eq. (6.1.10),

followed by analytic continuation, i.e. z → ω + iζ , ζ → 0+, the imaginary part of the

memory function becomes,

M ′′(ω, T ) =
2π

3N2

Nimp

mNeω

∑

k,k′
|〈k|U |k′〉|2

(
k− k′

)2{
f(k)− f(k′)

}
δ (ω + εk − εk′) .

(6.2.8)

Under the assumption thatU is independent of momentum, i.e. for point like impurities

[57, 141] the expression further reduces to,

M ′′(ω, T ) =
2π

3N2

NimpU
2

mNeω

∑

k,k′
(k− k′)2 {

f(k)− f(k′)
}
δ (ω + εk − εk′) .

(6.2.9)

Converting the summation over momentum indices to the energy integrals and per-

forming one integral involving the delta function, the equation further reduces to

M ′′(ω, T ) =
2

3

Nimp

Ne

U2m3

π3ω

∫ ∞

0

dε
√
ε(ε+ ω)(2ε+ ω)

{
f(ε)− f(ε′)

}
.

(6.2.10)
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This is the expression of imaginary part of the memory function or the scattering rate

of the electronic quasiparticles due to the electron-impurity interactions [56]. Here,

for simplicity we replace εk and εk′ by ε and ε′ respectively in rest of the calcula-

tions. According to our proposed expansion, this result is equivalent to truncating the

Eq. (6.1.11) at n = 1 followed by a perturbative evaluation of the J̇ − J̇ correlation.

In the next section we will perform a perturbative calculation at higher order, and will

show that this approximation has limited validity.

6.3 The MF with a higher order moment

The memory function with higher order moment can be calculated within the moment

expansion method proposed by us using Eq. (6.1.7). One can obtain better result by in-

cluding higher order moments. Due to mathematical complexity, we restrict ourselves

to the evaluation of the memory function M(z) defined in Eq. (6.1.11) at n = 2, i.e.

by considering upto the J̈ − J̈ correlation. We proceed as follows. We begin with the

evaluation of 〈〈J̈ ; J̈〉〉z, which is defined as,

〈〈J̈ ; J̈〉〉z = −〈〈[J̇, H]; [J̇, H]〉〉z
= 〈〈[[J,H], H] ; [[J,H], H]〉〉z. (6.3.1)

Now considering the non-interacting and the interacting parts of the Hamiltonian sep-

arately the above equation can be rewritten as,

〈〈J̈ ; J̈〉〉z = 〈〈[[J,Himp], H0] ; [[J,Himp], H0]〉〉z
+〈〈[[J,Himp], Himp] ; [[J,Himp], H0]〉〉z
+〈〈[[J,Himp], H0] ; [[J,Himp], Himp]〉〉z
+〈〈[[J,Himp], Himp] ; [[J,Himp], Himp]〉〉z. (6.3.2)

The second term in the above expression is equal to the third term but with an opposite

sign (due to the properties of the commutators). Hence they cancel each other and thus

we obtain,

〈〈J̈ ; J̈〉〉z = 〈〈[[J,Himp], H0] ; [[J,Himp], H0]〉〉z
+〈〈[[J,Himp], Himp] ; [[J,Himp], Himp]〉〉z. (6.3.3)
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To find the exact expression for the left hand side of the above equation, calculations

can be performed in a way similar to that of the 〈〈J̇ ; J̇〉〉z as described in Sec. 6.2. The

details of which are presented in Appendix F. After several algebraic manipulations,

we obtain,

〈〈J̈ ; J̈〉〉z =
2

3

NimpU
2m2

π4

∫ ∞

0

dε

∫ ∞

0

dε′
√
εε′ (ε+ ε′) (ε− ε′)2 f(ε)− f(ε′)

z + ε− ε′

+
2

3

(NimpU
2)2m2

π4

∫ ∞

0

dε

∫ ∞

0

dε′
√
εε′ (ε+ ε′)

f(ε)− f(ε′)

z + ε− ε′ .

(6.3.4)

Substituting Eq. (6.3.4) and Eq. (6.2.10)) into Eq. (6.1.11), the expression for the mem-

ory function M(z, T ) upto second order becomes,

M(z, T ) =
2

3

m3

π4

1

Ne

{
−2

z
NimpU

2

∫ ∞

0

dε

∫ ∞

0

dε′ε
√
εε′
f(ε)− f(ε′)

ε− ε′

− 1

z2
NimpU

2

∫ ∞

0

dε

∫ ∞

0

dε′
√
εε′ (ε+ ε′) (ε− ε′)2 f(ε)− f(ε′)

(z + ε− ε′)(ε− ε′)

− 1

z2
(NimpU

2)2

∫ ∞

0

dε

∫ ∞

0

dε′
√
εε′ (ε+ ε′)

f(ε)− f(ε′)

(z + ε− ε′)(ε− ε′)

}
.

(6.3.5)

After further algebraic manipulations, the expression for the complex memory function

M(z, T ) reduces to

M(z, T ) =
2

3

m3

π4

1

Ne

∫ ∞

0

dε

∫ ∞

0

dε′
√
εε′
f(ε)− f(ε′)

ε− ε′
{
−NimpU

2 ε+ ε′

z + ε− ε′

−(NimpU
2)2 ε+ ε′

(ε− ε′)2(z + ε− ε′) +
2

z
(NimpU

2)2 ε

(ε− ε′)2

}
. (6.3.6)

We are interested in the frequency dependent character of the imaginary part of mem-

ory function M ′′(ω, T ). On performing analytic continuation, i.e. z → ω + iζ , ζ → 0,

the expression for M ′′(ω, T ) becomes,

M ′′(ω, T ) =
2

3

m3

π3

1

Ne

∫ ∞

0

dε

∫ ∞

0

dε′
√
εε′
f(ε)− f(ε′)

ε− ε′ δ(ω + ε− ε′)
{
NimpU

2(ε+ ε′) + (NimpU
2)2 ε+ ε′

(ε− ε′)2
− 2(NimpU

2)2 ε

(ε− ε′)2
δ(ω)

}
.

(6.3.7)
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Now performing one of the energy integral, i.e. the integral over ε′, the above expres-

sion at frequency ω > 0 reduces to,

M ′′(ω, T ) =
2

3

m3

π3

1

Ne

∫ ∞

0

dε
√
ε(ε+ ω)

f(ε)− f(ε+ ω)

ω
(2ε+ ω)

×
{
NimpU

2 + (NimpU
2)2 1

ω2

}
. (6.3.8)

This is an expression of the imaginary part of memory function for electrons in a metal,

within the second order truncation of our proposed moment expansion for correlation

function. Here the first term within the braces corresponds to the contribution from

the first moment [56] and the second term is the contribution from the second moment

to the memory function. The frequency dependent behavior of the above expression

with different interaction strength U , impurity concentration Nimp and temperature T

is discussed in next section.

6.4 Results and Comparison

The equation Eq. (6.3.8), describes the imaginary part of the memory function or the

scattering rate as a function of ω, U , Nimp and T within a second order in moment

expansion. We compare it with the imaginary part of the memory function obtained

in Eq. (6.2.9), within first order in moment expansion [56]. The validity of truncating

such an expansion at the n-th order is valid when the n-th term in the expansion is

smaller than the (n − 1)-th term. In the present work we restrict ourselves to the

second order. In this case to check the validity of our results, we define an energy scale

ω0 above which the present high frequency expansion is valid. By taking the ratio of

second order term to the first order term, the condition becomes 1/ω2×〈J̈ |J̈〉/〈J̇ |J̇〉 �
1. From Eq. (6.3.8), the above criterion translates to NimpU

2/ω2 � 1. This implies

that our results are valid if the condition ω > (NimpU
2)1/2(= ω0) is satisfied.

In Fig. 6.1, we plot normalized imaginary part of memory function M ′′(ω)/M0

as a function of frequency ω for both the cases (upto the first moment and the sec-

ond moment), keeping other parameters fixed. In Fig. 6.1(a), the scattering rates are

shown at temperature T = 10K. It is observed that at high frequency regime, the result

which includes the second moment contribution agrees well with the previous result



110 Chapter 6. Moment Expansion to the Memory Function
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Figure 6.1: Plots of the imaginary part of normalized memory functions at different temper-

atures (a) at T = 10K and (b) at T = 200K. Here the red curve corresponds to the case with

first moment only and the brown curve corresponds to the case where second moment also

considered within the present moment expansion of the memory function. In both cases, there

is agreement between the results from the two different approaches at high frequency regimes.

However they differ significantly in the low frequency regime.
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Nimp=0.04, U=0.1,

T=200K
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Figure 6.2: Plots of the imaginary part of normalized memory functions at different impurity

densities Nimp (a) 0.01 and (b) 0.04. Here the red curve corresponds to the case with first

moment only and the brown curve corresponds to the case where the second moment is also

considered in the moment expansion. Here also a deviation occurs at low frequency regime

as in the previous case. The increase in the impurity density enhances the magnitude of the

memory function.
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Figure 6.3: Variation of the scattering rates with interaction strength U at different frequencies

(a) ω = 0.02eV and (b) 0.2eV. Here the red curve represents the scattering rate with the

first moment only and the brown curve is with the inclusion of the second moment. It is

observed that the deviation is more for higher interaction strength in the low frequency regime,

as expected.

(which includes only the first moment) [56]. But above the defined energy scale ω0

(which is 0.004 in this figure), results deviate from each other. The second moment

contributes more in the later deviation and thus increasing the magnitude of the scat-

tering rate compared to the case with only the first moment. We see that the magnitude

of the scattering rate in this case is high as compared to the case with n = 1 term of

M ′′(ω). Similarly, the scattering rates are plotted at a different temperature T = 200K

in Fig. 6.1(b). Here we observe that with the increase in temperature, the magnitude of

the scattering rate with the inclusion of the second moment term is more as compared

to that in the previous figure Fig. 6.1(a).

In Fig. 6.2, again we plot the scattering rates at fixed temperature for different

impurity densities Nimp = 0.01 and 0.04. We observe the same trend in both cases

similar to the previous figure. Here the increase in the impurity density increases the

scattering centers which leads to higher magnitude to the scattering rates. Also, here

the results are valid for frequency greater than 0.01 and 0.02 in Figs. 6.2(a) and 6.2(b)

respectively. We would like to comment here that our results are valid only for second

moment expansion under the condition ω > ω0 =
√
NimpU2. Also, one can envisage

from Eq. (6.1.11) that higher order terms will be divergent individually in the zero
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frequency limit and a more sophisticated resummation of all the higher order terms

would be needed to rectify the problem. But we will not undertake this problem in this

thesis, and it is beyond the scope of the present work.

Further to elaborate the memory function dependence on the interaction strength

U , plot of the scattering rate with U at fixed frequency, Nimp and temperature is shown

in Fig. 6.3. In Fig. 6.3(a), the scattering rate is shown at a small frequency ω = 0.02eV

at which earlier we see that there is deviation in the results of memory function with

different moment expansions. Here we find that the increase of U increases the scat-

tering rate at low frequency due to the presence of the term (NimpU
2)2 in the moment

expansion of the memory function. In Fig. 6.3(b), we observe that at a higher fre-

quency (ω = 0.2eV), difference in M ′′(ω) with the increase of interaction strength,

from two approximations becomes insignificant.

6.5 Conclusion

It is often convenient to express a frequency dependent response function in terms of

a memory function [96]. In this work we propose a series expansion for the memory

function. We show that, many of the previous works [56,61,62,96], which address the

optical conductivity of the metals within the memory function formalism, are equiv-

alent to restricting at the lowest order in the expansion of the memory function. We

perform a higher order calculation for the same in the presence of electron-impurity

interaction and compare our results with the result from one of the celebrated pre-

vious work [56]. In all these approaches, one needs to calculate the current-current

correlation function (〈JJ〉), a two particle correlator. In summary, we extend the lat-

ter work [56] further by introducing the higher order approximation for the memory

function.

In a nutshell, the concluding remarks of this chapter are as follows.

1 It is found that there is discrepancy between the results of the imaginary part

of memory function computed by including and not including higher order

terms.
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2 These discrepancies have been observed in the low frequency regime and for

higher impurity strengths.

3 There is an increase in the scattering rate with impurity strength and fur-

ther the inclusion of higher order contribution leads to higher scattering rates

(Fig. 6.3).

4 Within the presented systematic memory function expansion, the interaction

effects up-to required order depending on the interaction strength can be in-

cluded. Thus our work goes beyond the GW formalism which is restricted to

the lowest order in the interaction strength.





Chapter 7

Summary and Future directions

In this thesis, we have studied theoretically the various transport properties of metals

and graphene in the finite frequency and temperature regimes using memory function

formalism.

First, we have reviewed the memory function approach where we introduce the

projectors and the memory functions, and discuss the application of this to the elec-

tronic transport. Further, on applying this approach to the case of metal, we have

investigated the behavior of the electrical conductivity in the presence of the gapped

density of states. We observe that with the increase of the magnitude of the gap, the

suppression in the scattering rate increases. We also find that the memory function

and the phenomenological Sharapov-Carbotte approach [64] yield the same results of

the scattering rate in the finite frequency regimes. But these approaches show discrep-

ancy in the low frequency regime which is due to the assumptions considered in the

Sharapov-Carbotte approach in calculating the scattering rate. The memory function

approach, on the other hand, does not make such assumptions.

We have also investigated the dynamical thermal conductivity of metals by con-

sidering the electron-impurity and the electron-phonon interactions. Here, we intro-

duce the thermal memory functions and compute them in the zero and finite frequency

regimes. We find that in the zero frequency limit, our results agree with that calculated

by the traditional Bloch-Boltzmann approach. Also, these results are in qualitative

agreement with the experimental findings. In the finite frequency case, we obtain sev-

eral new results. Some of them are summarized as follows: 1) T >> ωD : in this
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case, the thermal conductivity as we move from the low frequency regime to the high

frequency regime, shows a crossover behavior from the κ ∼ T 2/ω2 behavior to the

κ ∼ T 0/ω0 behavior. 2) On the other hand for T << ωD, we observe that κ ∼ T 4/ω2

in the low frequency regime (ω � ωD), then we find κ ∼ T 5 sinh(ω/T )/ω3 behavior

in the intermediate regime and finally we observe κ ∼ T 4(aω−2 + b) behavior in high

frequency regime (ω � ωD).

Further we have computed the thermoelectric response function, Seebeck coeffi-

cient, for the case of a metal using the memory function approach. Here, we have

studied the role of two different weak interactions such as the electron-impurity and

the electron-phonon interactions in the Seebeck coefficient. We have found that in

the zero frequency case, S(T ) shows temperature independent behavior for the case

of electron-impurity interaction and linear temperature dependent behavior in the high

temperature regime (T � ΘD) for electron-phonon interaction. These results are in

agreement with the previous results calculated by using Mott formula and with the

experimental findings. In the finite frequency regimes, we observe that the dynamical

Seebeck coefficient saturates at high frequencies in both the interactions.

Then to apply the memory function approach to other class of materials, we have

investigated the dynamical thermal conductivity of two dimensional system graphene.

We have explored the role of different acoustic phonons in the thermal conductivity

and discussed it’s power law dependence due to the different dispersion relations of

these phonons. We have found that due to the large phonon velocity of the longitu-

dinal phonons, their contribution to the total thermal conductivity is higher than the

transverse and flexural phonons.

To extend the memory function approach beyond lowest order perturbative calcula-

tion, we have also proposed a systematic expansion of the memory function involving

its various moments to account for the case of stronger interaction strengths. We have

devoted this study to discuss the general aspects of memory function approach, par-

ticularly to discuss the limitations of this approach used by GW [56] to treat weak

electron-phonon, electron-impurity interactions. We have calculated the higher order

contribution to the generalized Drude scattering rate in the case of electron-impurity

interactions in a metal. We have found that the higher moments contribute more in the
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low frequency regime and in the case of the large interaction strength.

In this thesis, we have mainly discussed the effects of electron-impurity and electron-

phonon interactions in various transport properties under the influence of the electric

field. In future work, we plan to study aspects of electron-electron interactions to these

properties with memory function technique within the Hubbard model. This model is

a simplified model to account the quantum mechanical motion of electrons and to dis-

cuss the interaction of electrons with each other through Coulomb interaction. Also,

using the memory function approach, the dynamics of the transport properties under

the influence of the magnetic field such as Hall effect, Nernst effect can be a topic of

future study. Moreover, motivated by the results of the thermal conductivity of metals

at low temperature, this formalism can also be employed to investigate the behavior

of thermal conductivity by taking the Umklapp scattering process. Further, the effects

of charge diffusion in disordered system [54], conserved momentum [54] can also be

included.





Appendix A

General formula of GDS for the case

of non constant DOS

The imaginary part of memory function Eq. (2.2.17) is

M ′′(ω, T ) =
2π

3

1

mNe

∑

k,k′
|D(k− k′)|2(k− k′)2fk′(1− fk)nk−k′

×
[
eω/T − 1

ω
δ(ε− ε′ − ωk−k′ + ω) + (terms withω → −ω)

]
.

(A.0.1)

Converting the summations into energy integrals and inserting the dq integral, we have

M ′′(ω, T ) =
2π

3

N2

mNe

∫ ∞

0

dq

∫ ∞

−∞
dεN(ε)

∫ ∞

−∞
dε′N(ε′)|D(q)|2q2f ′(1− f)nq

×
∫ π

0

dθ sin θδ(q − |k− k′|)

×
[
eω/T − 1

ω
δ(ε− ε′ − ωq + ω) + (terms withω → −ω)

]
. (A.0.2)

Here the energy dependent density of statesN(ε) has been introduced. Thus on solving

the integrals over ε′ and θ, the above equation reduces to

M ′′(ω, T ) =
2π

3

N2

mNek2
Fω

∫ ∞

0

dq|D(q)|2q3

∫ ∞

−∞
dεN(ε)

eβ(ε−εF )

eβ(ε−εF ) + 1

1

eβωq − 1

×
[
N(ε− ωq + ω)

eβω − 1

eβ(ε−εF−ωq+ω) + 1
−N(ε− ωq − ω)

e−βω − 1

eβ(ε−εF−ωq−ω) + 1

]
.

(A.0.3)

This is the general expression for the imaginary part of memory function (called as

GDS).
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Appendix B

Derivation of static correlation

functions

B.1 Thermal-current thermal-current correlation func-

tion

The static thermal-current thermal-current correlation is defined as [75]

χ0
QQ(T ) =

1

3T

∑

k

(εk − µ)2v2
kfk(1− fk). (B.1.1)

Converting the summation into energy integral (here the energy is k2/2m for the case

of three dimensional metal) and substituting
εk − µ
T

= η, the above equation reduces

to

χ0
QQ(T ) =

T 2k3
F

3m

1

2π2

∫ ∞

0

dη
η2eη

(eη + 1)2
.

= T 2Ne

m

π2

12
(B.1.2)

This shows that the static thermal-current thermal-current correlation varies quadrati-

cally in temperature.
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B.2 Thermal-current electric-current correlation func-

tion

Similarly, the static thermal-current electric-current correlation function is defined as

χ0
Q(T ) =

1

3T

∑

k

(εk − µ)v2
kfk(1− fk). (B.2.1)

After simplifications, it can be written as

χ0
Q(T ) =

Tk3
F

3m

1

2π2

∫ ∞

0

dη
ηeη

(eη + 1)2
.

= T
Ne

3m
log 2. (B.2.2)

This shows that the static thermal-current electric-current correlation varies linearly in

temperature.

B.3 Thermal-current thermal-current correlation func-

tion for two dimensional system

The static thermal-current thermal-current correlation function for the two dimensional

system (graphene) can be computed in a similar way as done in Sec. B.1 for three

dimensional metals. Here after converting the summation over momentum indices

into the energy integral using the linear energy dispersion relation i.e. ε = vF |k| for

graphene and then simplifying, χ0
QQ(T ) can be expressed as

χ0
QQ(T ) =

T 2k2
F

6π

∫ ∞

0

dη
η2eη

(eη + 1)2
.

= T 2k
2
Fπ

72
. (B.3.1)



Appendix C

Derivation of Eq.(3.1.4) for thermal

memory function

In Eq. (3.1.3), we see that the dynamical thermal conductivity κ(z, T ) depends on the

thermal memory function MQQ(z, T ). Further the thermal memory function in terms

of the correlation function can be expressed in a similar way as the electrical memory

function in Eq. (2.2.1) as

MQQ(z, T ) = z
χQQ(z, T )

χ0
QQ(T )− χQQ(z, T )

, (C.0.1)

where χQQ(z, T ) is the thermal-current thermal-current correlation function, χ0
QQ cor-

responds to the static limit of the correlation function. Here χQQ(z, T ) is defined as

χQQ(z, T ) = 〈〈JQ; JQ〉〉z = −i
∫ ∞

0

dteizt〈[JQ(t), JQ]〉, (C.0.2)

where JQ is the thermal current and defined in Eq. (3.1.2).

Now χQQ(z, T ) can be obtained by using the equation of motion as done in Chapter 2

to compute χ(z, T ) with replacement of electrical current J by thermal current JQ.

Following the same procedure, the thermal-current thermal-current correlation func-

tion can be expressed as

χQQ(z, T ) =
〈〈[JQ, H]; [JQ, H]〉〉z=0 − 〈〈[JQ, H]; [JQ, H]〉〉z

z2
. (C.0.3)

Further expanding Eq. (C.0.1) and keeping it upto leading order term, the thermal

memory function using Eq. (C.0.3) can be expressed as

MQQ(z, T ) =
〈〈[JQ, H]; [JQ, H]〉〉z=0 − 〈〈[JQ, H]; [JQ, H]〉〉z

zχ0
QQ(T )

. (C.0.4)
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Appendix D

Thermal conductivity using

Boltzmann approach

D.1 For electron-impurity interaction

The Boltzmann equation for the semi-classical distribution function gk(r, t) is written

as

vk
∂gk
∂r

=

(
∂gk
∂t

)

coll
=

∫
dk′

2π3
(W (k′ → k)−W (k→ k′)). (D.1.1)

HereW (k′ → k) defines the transition probability of an electron scattering from initial

state k′ to final state k. According to the Fermi-Golden rule, in case of the impurity

scattering it can be expressed as

W (k′ → k) = 2π|〈k′|Himp|k〉|2δ(εk′ − εk). (D.1.2)

Considering the impurity interaction Hamiltonian given in Eq. (3.2.1), the transition

probability can be expressed as

W (k′ → k) = 4π
Nimp

N2
|U(k′,k)|2gk(1− gk′)δ(εk′ − εk). (D.1.3)

Here U(k′,k) = 〈k′|U |k〉, the matrix element for the impurity interaction. Inserting

the above Eq. (D.1.3) in Eq. (D.1.1), we obtain

(
∂gk
∂t

)

coll
=

∫
dk′

Nimp

2π2N2
|U(k′,k)|2 (gk′ − gk) δ(εk′ − εk). (D.1.4)
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Now linearizing the Boltzmann equation using gk = fk + δgk and taking equilibrium

collision integral terms to zero, the Eq. (D.1.4) can be written as
(
∂gk
∂t

)

coll
=

∫
dk′

Nimp

2π2N2
|U(k′,k)|2 (δgk′ − δgk) δ(εk′ − εk). (D.1.5)

In the standard procedure, the collision integral is solved by an iterative procedure

[5, 27, 142]. One starts with the relaxation time approximation.

gk = fk + δgk = fk +
kx
m
τ(εk)

(
∂fk
∂T

)
(∇T )x. (D.1.6)

Thus the change in the distribution function is written as

δgk = gk − fk =
kx
m
C(εk)

(
∂fk
∂ε

)
, (D.1.7)

Here C(εk) is proportional to an energy dependent relaxation time. On substituting the

above expression in Eq. (D.1.5) and noticing that vxk∇gk =
kx
m

∂fk
∂T
∇T , one obtains

1

τ(εk)
=

2NimpmkF
πN2

∫ π

0

dθ|U(kF , θ)|2 sin θ(1− k.k′). (D.1.8)

This shows that the thermal scattering rate due to electron-impurity interaction is inde-

pendent of the temperature. As the thermal conductivity is defined as

κ(T ) =
2

T 2

∑

k

τ(εk) (εk − µ)2 e(εk−µ)/T

(e(εk−µ)/T + 1)
2 . (D.1.9)

Substituting the Eq. (D.1.8) in the above Eq. (D.1.9), the thermal conductivity due to

the electron-impurity interaction shows the temperature dependence as

κ(T ) =
1

72

πk2
F

NimpU2m2
T

i.e. κ(T ) ∝ T. (D.1.10)

From this we infer that the results of the thermal conductivity using both the ap-

proaches the memory function and the Boltzmann approach agree quantitatively to

each other.

D.2 For electron-phonon interaction

Similarly for the electron-phonon interaction case, the Boltzmann equation becomes

vk
∂gk
∂r

=

(
∂gk
∂t

)

coll
=

∫
dk(W (k + q→ k)−W (k→ k + q)). (D.2.1)
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Here W (i → f) is the transition probability involving both the emission and absorp-

tion of phonons. This, using Fermi Golden rule can be expressed as [17]

W (k + q→ k) = 2π|〈k|Hep|k + q〉|2δ(εk+q − εk ± ωq). (D.2.2)

Using the Eq. (2.1.3), above expression for the transition probability can be written as

W (k + q→ k) = 4π|D(q)|2gk+q(1− gk)(nq + 1)δ(εk + ωq − εk+q).

(D.2.3)

Considering all possible scattering processes, the collision integral can be written as
(
∂gk
∂t

)

coll
=

∫
dq (U(k + q : k)gk+q(1− gk)− U(k; k + q)gk(1− gk+q)) ,

(D.2.4)

where

U(k + q; k) = W 0
q [(nq + 1)δ(εk + ωq − εk+q) + n−qδ(εk − ωq − εk+q)],

(D.2.5)

U(k; k + q) = W 0
q [(n-q + 1)δ(εk+q + ωq − εk) + nqδ(εk+q − ωq − εk)],

(D.2.6)

and W 0
q = 4π|D(q)|2.

The details of the calculation is given in the references ( [5,27,142]). Here we note that

using the relation U(k + q; k) = eβεk+qe−βεkU(k; k + q) and linearizing the Boltzmann

equation by substituting gk = fk + δgk and taking the equilibrium collision integral

terms to be zero, the Eq. (D.2.4) can be reduced to,
(
∂gk
∂t

)

coll
=

∫
dqU(k; k + q)

{
δgk+q(e−β(εk−εk+q)(1− fk) + fk)

−δgk(e−β(εk−εk+q)fk+q + (1− fk+q)
}
. (D.2.7)

On further simplifications, the collision integral can be written as
(
∂gk
∂t

)

coll
= β

∫
dqW 0

qnq {fk+q(1− fk)δ(εk+q + ω−q − εk)

+fk(1− fk+q)δ(εk+q − ωq − εk} (δφ(k + q)− δφ(k)),

(D.2.8)



126 Chapter D. Thermal conductivity using Boltzmann approach

where δφ(k) =
δgk

βfk(1− fk)
.

As explained in the impurity scattering case that the calculation is done by an iterative

procedure, where one introduces

δφ(k) =
kx
m
C(εk). (D.2.9)

From Eqs. (D.2.8) and (D.2.9), we have

kx
m

(
∂fk
∂T

)
(∇T )x =

(
∂gk
∂t

)

coll

=
4π

mT

∫
dq|D(q)|2nq {fk+q(1− fk)δ(εk+q + ω−q − εk)

+fk(1− fk+q)δ(εk+q − ωq − εk)}

{(kx + qx)C(εk+q)− kxC(εk)} . (D.2.10)

On inserting the phonon matrix element, solving the angular integrals and introducing

the dimensionless variables
εk − µ
T

= η and
ωq
T

= y, the collision integral reduces to

(
∂gk
∂t

)

coll
= − 1

2πmiNρ2
F (2m)1/2

ε−3/2kx
∂fk
∂ε

(
T

ΘD

)3
q4
D

ΘD

∫ ΘD/T

0

dy
y2

ey − 1{
eη + 1

eη−y + 1

[(
ε− 1

2
D

(
T

ΘD

)2

y2 − 1

2
Ty

)
C(η − y)− εC(η)

]

+
ey(eη + 1)

eη+y + 1

[(
ε− 1

2
D

(
T

ΘD

)2

y2 +
1

2
Ty

)
C(η + y)− εC(η)

]}
.

(D.2.11)

Here D =
q2
D

2m
. On further simplifications, the above expression can be written as

−kx
m
η

(
∂fk
∂ε

)
(∇T )x =

(
∂gk
∂t

)

coll

= − kx
2πmiNρ2

F

ε−3/2

(2m)1/2

∂fk
∂ε

(
T

ΘD

)3
q4
D

ΘD

∫ ΘD/T

−ΘD/T

dy
y2

|ey − 1|

× eη + 1

eη+y + 1

[(
ε− 1

2
D

(
T

ΘD

)2

y2 +
1

2
Ty

)
C(η + y)

−εC(η)] . (D.2.12)
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In the above Eq. (D.2.12), the contribution from the terms with odd power in z van-

ishes. Thus on simplification, we have

2πmiNρ
2
F ε

1/2
F (2m)1/2

m

ΘD

q4
D

(
ΘD

T

)3

η(∇T )x =

∫ ΘD/T

−ΘD/T

dy
y2

|ey − 1|
eη + 1

eη+y + 1[(
1− D

2εF

(
T

ΘD

)2

y2

)
C(η + y)

−C(η)] . (D.2.13)

In the high temperature limit i.e. T � ΘD, the term within the bracket in Eq. (D.2.13)

with T 2 contributes more than the others terms and in the case η � y, the C(η) can be

approximated as

C(η) ≈ −16πmiρ
2
FNε

3/2
F (2m)1/2ΘD

mDq4
D

(
ΘD

T

)
η(∇T )x. (D.2.14)

The thermal current is defined as

JQ = 2

∫
dk

(2π)3
vk(εk − µ)δgk

=
2k3

F

π2

∫
dηηC(η)

∂fk
∂η

. (D.2.15)

Substituting the value of C(η) and using the relation JQ = −κ(∇T )x, we find that the

thermal conductivity in high temperature regime becomes

κ(T ) ≈ 8

3

πk6
Fmiρ

2
FΘ2

DN

q6
Dm

2

i.e. κ(T ) = constant. (D.2.16)

Now in the case of low temperature (T � ΘD), the right hand side of Eq. (D.2.13) can

be written as
∫ ΘD/T

−ΘD/T

dy
y2

|ey − 1|
eη + 1

eη+y + 1
[C(η + y)− C(η)] . (D.2.17)

The above Eq. can be solved by variational method [142]. Following the reference

[142], in the low temperature limit, we can write,

C(η) = −4πΘDε
1/2
F ρ2

FmiN

3mq4
D

(
ΘD

T

)3

η(∇T )x. (D.2.18)

Substituting the above Eq. (D.2.18) in (D.2.15), we observe that the thermal conduc-

tivity shows a temperature dependence of the following form

κ(T ) ≈ 2

125

π3k4
Fmiρ

2
FΘ4

DN

m2q4
D

κ(T ) ∝ T−2. (D.2.19)
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Thus, we see that the thermal conductivity in the case of electron-phonon interaction

shows inverse square temperature dependence in the low temperature regime and sat-

urates to a constant value in the high temperature regime within the Bloch-Boltzmann

approach and this agrees qualitatively with our calculation using the memory function

formalism.



Appendix E

Calculation of inner product of the

current with its time derivative

To calculate the inner product of the current with its derivative, consider that the en-

semble average of current operators at same time argument is represented by

〈J |J〉 = C (E.0.1)

where C is some constant.

Now, differentiate above equation w.r.t. time

〈J̇ |J〉+ 〈J |J̇〉 = 0

〈J̇ |J〉 = −〈J |J̇〉. (E.0.2)

In another way, the ensemble average of J and J̇ can be expressed as

〈J̇ |J〉 = tr(ρ[H, J ]J)

= tr(ρHJJ)− tr(ρJHJ)

= tr(ρJ [H, J ])

= 〈J |J̇〉. (E.0.3)

From equations (E.0.1) and (E.0.2), we conclude that 〈J |J̇〉 = 0.
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Appendix F

Detailed calculation of the higher

order contribution

To calculate 〈〈J̈ ; J̈〉〉z we first calculate the first term of Eq. (6.3.3). For this we need

[[J,Himp], H0] which using Eq. (2.1.2) and (6.2.4) becomes,

[[J,Himp], H0] =
1

N

∑

j,k,k′
〈k|U j|k′〉 (vx(k)− vx(k′)) (εk′ − εk) c†kck′ . (F.0.1)

Using the above expression, the first term of Eq. (6.3.3) becomes

=
1

N2

∑

j,k,k′

∑

i,p,p′
〈k|U j|k′〉〈p|U i|p′〉 (vx(k)− vx(k′)) (vx(p)− vx(p′))

× (εk′ − εk) (εp′ − εp) 〈〈c†kck′ ; c
†
pcp′〉〉z. (F.0.2)

Here again we will consider the case of i = j as considered in Eq. (6.2.7) and using

Eq. (6.1.1) with performing time integration and ensemble average, the above equation

reduces to

=
2Nimp

N2

∑

k,k′
|〈k|U |k′〉|2 (vx(k)− vx(k′))2

(εk − εk′)
2 f(k)− f(k′)
z + εk − εk′

. (F.0.3)

This expression is further simplified by converting summations into energy integrals

and ignoring the momentum dependence of U as

=
2

3
Nimp

U2m2

π4

∫ ∞

0

dε

∫ ∞

0

dε′
√
εε′ (ε+ ε′) (ε− ε′)2 f(ε)− f(ε′)

z + ε− ε′ . (F.0.4)
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Now we perform the calculations for the second term of Eq. (6.3.3). First, [[J,Himp], Himp]

using Eq. (3.2.1) and (6.2.4) is written as

[[J,Himp], Himp] =
1

N2

∑

j,k,k′

∑

i,p,p′
〈k|U j|k′〉〈p|U i|p′〉 (vx(k)− vx(k′))

[
c†kck′ , c

†
pcp′
]

=
Nimp

N2

∑

k,k′,p

〈k|U |k′〉〈k′|U |p〉 (vx(k)− 2vx(k′) + vx(p)) c†kcp.

(F.0.5)

Using this, 〈〈[[J,Himp], Himp] ; [[J,Himp], Himp]〉〉z can be written as

= 2
N2
imp

N4

∑

k,k′,p

∑

r,r′,l

〈k|U |k′〉〈k′|U |p〉〈r|U |r′〉〈r′|U |l〉 (vx(k)− 2vx(k′) + vx(p))

(vx(r)− 2vx(r′) + vx(l)) 〈〈c†kcp; c†rcl〉〉z. (F.0.6)

After calculating 〈〈c†kcp; c†rcl〉〉z with help of Eq. (6.1.1) and substituting in Eq. (F.0.6)

and taking U as independent of momentum, 〈〈[[J,Himp], Himp] ; [[J,Himp], Himp]〉〉z can

be expressed as

= 2
N2
impU

4

N4m2

∑

k,k′,p,r′

1

z + εk − εp
(kx − 2k′x + px) (px − 2r′x + kx) (fk − fp) .

(F.0.7)

After doing algebra, the above expression can be written as

=
2

3

N2
impU

4m2

π4

∫ ∞

0

dε

∫ ∞

0

dε′
√
εε′ (ε+ ε′)

f(ε)− f(ε′)

z + ε− ε′ . (F.0.8)

Substituting Eqs. (F.0.4) and (F.0.8) in Eq. (6.3.3), we have

〈〈J̈ ; J̈〉〉z =
2

3

NimpU
2m2

π4

∫ ∞

0

dε

∫ ∞

0

dε′
√
εε′ (ε+ ε′) (ε− ε′)2 f(ε)− f(ε′)

z + ε− ε′

+
2

3

N2
impU

4m2

π4

∫ ∞

0

dε

∫ ∞

0

dε′
√
εε′ (ε+ ε′)

f(ε)− f(ε′)

z + ε− ε′ . (F.0.9)



Appendix G

Integrals

The analytic closed form of the integrals mentioned in the different chapters has been

calculated by Mathematica and is given as follows with the reference of the equation

number(as in the relevant chapter). Here, we have expressed the integral in the form of

A(y) and B(x,y) functions which we defined as:

An(y) =
n∑

m=1

(−1)m+1

(
dm

dym
yn
)(

dn−m

dyn−m
Lin(ey)

)
. (G.0.1)

Bn(x, y) =
n∑

m=1

(−1)m+1

(
dm

dym
yn
)(

dn−m

dyn−m
Lin(ex+y)

)
. (G.0.2)

Cn(y) =
n∑

m=1

(−1)m+1

(
dm

dym
yn
)(

dn−m

dyn−m
Lin(e−1+y)

)
. (G.0.3)

1. Eq. (3.2.26)

I =
1

6b2x

[{
− 1

8
b2B8 +

(
a2 + b2(

π2

3
+ x2)

)
B6

+

(
6

5
a2x+

2

5
b2x(π2 + x2)

)
B5 + terms with x→ −x

}

−4

5
x

{
3a2 + b2(π2 + x2)

}
A5

]
. (G.0.4)

2. Eq. (3.2.27)

I =
1

6

{ −y4ey

−1 + ey

(
6a2

b2
+ 2π2 + y2

)
−
(
a2

b2
+ 2π2

)
A4 − A6

}
.(G.0.5)
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3. Eq. (4.2.31)

I = b2

{
1

7
(A7 − C7)− 1

3
(A6 − C6) +

1

5
(A5 − 2C5)

}

+a2

{
2

5
(A5 − C5)− 1

2
(A4 − C4)

}
. (G.0.6)

4. Eq. (5.1.6)

I =

{
1

9
B9 +

3

4
xB8 +

1

7
(9x2 + 4π2 + a2)B7 +

x

6
(4x2 + 4π2 − a2)B6

−2a2

5
(9x2 + 4π2 + 3a2)B5 −

a2x

2
(4x2 + 4π2 − 3a2)B4

+(terms with x→ −x)

}

−3

2
xA8 +

1

3
x(9a2 − 4π2 − 4x2)A6 + a2x(4x2 + 4π2 + 3a2)A4.

(G.0.7)

5. Eq. (5.1.7)

I = − 1

24a2

{−y4(−2a2 + y2)(3a2 + 4π2y2)

−1 + ey
+ 2a2(3a2 + 4π2)

1

4

(
y4 + A4

)

−(a2 + 3π2)
1

6

(
y6 + A6

)
− 1

8

(
y8 + A8

)}
. (G.0.8)

6. Eq. (5.1.10)

I = −1

4

(
y4 + A4

)
+

1

12a2

(
y6 + A6

)
. (G.0.9)

7. Zeta function

ζ(x) =
1

Γ(x)

∫ ∞

0

ux−1

eu − 1
du (G.0.10)

where Γ(x) is the gamma function. If x is an integer n,

ζ(n) =
1

Γ(n)

∫ ∞

0

un−1

eu − 1
du

=
1

Γ(n)

∫ ∞

0

∞∑

k=1

e−kuun−1du

=
∞∑

k=1

1

kn
(G.0.11)
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310 (1986).
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[56] W. Götze and P. Wölfle, Phys. Rev. B 6, 1226 (1972).

[57] N. Das, P. Bhalla, and N. Singh, Int. J. Mod. Phys. B 30, 1630015 (2016).

[58] A. Hartnoll, Sean A. Lucas and S. Sachdev (2016).

[59] L. P. Kadanoff and P. C. Martin, Annals of Physics 24, 419 (1963).

[60] D. N. Zubarev, Physics-Uspekhi 3, 320 (1960).

[61] B. Arfi, Phys. Rev. B 45, 2352 (1992).

[62] P. Bhalla and N. Singh, The European Physical Journal B 89, 1 (2016).

[63] P. B. Allen, Phys. Rev. B 3, 305 (1971).



BIBLIOGRAPHY 139

[64] S. G. Sharapov and J. P. Carbotte, Phys. Rev. B 72, 134506 (2005).

[65] S. Shulga, O. Dolgov, and E. Maksimov, Physica C: Superconductivity 178, 266

(1991).
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Memory function formalism or projection operator technique is an extremely useful

method to study the transport and optical properties of various condensed matter sys-
tems. A recent revival of its uses in various correlated electronic systems is being ob-

served. It is being used and discussed in various contexts, ranging from nonequilibrium

dynamics to the optical properties of various strongly correlated systems such as high
temperature superconductors. However, a detailed discussion on this method, starting

from its origin to its present day applications at one place is lacking. In this paper, we

attempt a comprehensive review of the memory function approach focusing on its uses
in studying the dynamics and the transport properties of correlated electronic systems.

Keywords: Electronic conduction in metals; theory of electronic transport; scattering

mechanisms; memory function formalism.

PACS numbers: 72.10.-d, 72.15.-v

1. Motivation

Condensed matter physics deals with the collective phenomena that emerge out

of the mutual interactions between a large number of particles. Many of them

are novel, i.e., are beyond the realm of pre-existent theories and almost none of

them can have first principle microscopic explanations. Understanding such novel

complex cooperative phenomena requires new physical ideas such as spontaneous

symmetry breaking, Goldstone modes, renormalization of physical parameters etc.1

§Corresponding author.
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The basic principle of all such descriptions is adapting an effective description by

separating the low energy slow degrees of freedom from the high energy faster

degrees of freedom in a system of macroscopically large number of particles to

study its low energy and long wavelength properties. Successes of such theories

depend on how accurately one can develop an effective description of the effects

of a large number of faster degrees of freedom on a few slower degrees of freedom

which are experimentally probed in a certain physical system. As a result, these

theories are dependent on some common aspects of the various systems, e.g., energy

and each of them works well for a certain class of physical systems.2

Advent of the memory function formalism is a major theoretical progress in

this line of thought. It was developed and is being used to study the dynamics and

the transport properties of various complex many body systems.3–8 This technique

relies on the idea of separating the slow and the faster degrees of freedom in a

physical system and to systematically calculate the effects of the latter on the

former. Separation of scales is a very familiar and essential concept in studying

various physical systems. It is suitable in systems having finite number of slow

modes related to the dynamics of conserved variables and/or the broken symmetry

variables. Their studies are often termed as hydrodynamics and those slow modes

are called hydrodynamic modes and soft modes, respectively.10

To illustrate the idea of separating the scales, we can choose a simple example,

a particle moving in a fluid. In this case, when the particle moves, the fluid particles

oppose its motion as depicted in Fig. 1. An attempt to build up a microscopic theory

for this motion will require a Hamiltonian that describes the Coulomb interactions

between all the atoms and electrons present in the total system. Then one can try

to solve Poisson or Schrödinger equation respectively depending on whether the

system is classical or quantum in nature. Such an microscopic attempt is not only

impossible, also it is too complicated to capture the essential physical description

of the system.1 On the other hand, we can build up a simple description without

compromising with the basic physics as follows. If the moving particle is macro-

scopically large and if the velocity of the center-of-mass is small compared to the

(a) (b)

Fig. 1. (Color online) (a) We see viscous drag from the fluid molecules during a streamline flow,

i.e., when an external particle of macroscopic size moves slowly inside the fluid. In this case, the

time scales corresponding to the macro-particle and the fluid particles are nicely separable, (b) a
turbulence sets in during a faster motion of a particle within fluid where such separation of scales

is not possible.

1630015-2
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velocity of the fluid molecules, we can separate or project out the center-of-mass

coordinates from the rest of the degrees of freedom of the total system. In such a

situation, we can write its effective equation of motion where the effects of the rest

of the degrees of freedom can be termed as “molecular drag” on its motion. The

latter can be incorporated through a drag force. This leads to a very simple and

well known equation of motion of the dragged particle of the form,9

R̈− γṘ + F = 0. (1)

Here, R is the position vector of the center-of-mass of the macroscopic particle of

unit mass, Ṙ and R̈ represent its time derivative or the velocity and the acceleration

respectively and F is the external force. This is indeed a major simplification of

a very complex system. The parameter γ is termed as friction coefficient, viscous

coefficient, etc. depending on the contexts. It describes dissipation or the flow of

energy and or momentum from the coherent to the incoherent degrees of freedom

in a system. It can also be space and time dependent. However, when the velocity

of the particle becomes comparable to that of the fluid molecules, as seen in part

B of Fig. 1, turbulence sets in and the idea of separation of scales does not remain

obvious.

Many such examples can be found in the vast literature on complex systems

both in the classical and quantum domains. It is to be noted that there is no

concept of dissipation in the microscopic principles. In an effective description of a

physical system, we observe the system within our desired or convenient time scale

and length scale. We thus ignore the complete distribution of energy which occurs

over a larger time and length scales. Hence, we effectively observe dissipation of the

momentum or energy of the particle as a result of the interaction with other fast

degrees of freedom. The same picture emerges in various effective descriptions of

interacting systems and the study of the low energy properties becomes synonymous

to finding out the generalized dissipative constant or the scattering rates of the

collective excitations. We will see in the later sections that the Memory function

approach deals with systematic evaluations of the generalized dissipative constant

(γ in Eq. (1)) related to the dynamics of generalized slow variables.

In this paper, we will first address the general aspects of the Memory function

formalism in Sec. 2. We elaborate it further in Sec. 3 and in Sec. 4. In those sections,

we present derivation of the generalized Langevin equation within this formalism

and present a continued fraction representation of the dynamic correlation, respec-

tively. In Sec. 5, we discuss its applications in various electronic systems. Finally in

Sec. 6, we conclude.

2. Projectors and Memory Functions

Memory function technique was introduced by Zwanzig and Mori.3–7 The mathe-

matical formalism used for systematic calculation of the memory function is also

called projection operator method. Following Refs. 10 and 11, we summarize the

1630015-3
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Many Body Operator 

Hilbert Space

Projected Space

of

P
Q = 1−P

Conserved Variables

Fig. 2. (Color online) A schematic representation of the idea of projection in the memory function

formalism. Here, the full big circle is the total many body operator Hilbert Space and is equivalent
to identity. The projection of the full many body states defined by few operators representing

conserved variables residing in the region P . On the other hand, the incoherent degrees of freedom

lives in the part of the Hilbert space defined by I−Q.

idea of using projectors and the general mathematical setup for calculating the

memory function. Let us start with a many body system having macroscopically

large number, i.e., an Avogadro number (∼ 1023/cc) of degrees of freedom and look

for its macroscopic properties. Our system can be both classical and quantum in na-

ture. A classical system is described by a set of variables comprising of the particles

position and momentum variables. Such a set of position and momentum variables

is called phase space. In the systems obeying quantum mechanics, a set of linearly

independent operators do the same job. In that case, a mathematical space contain-

ing the set of operators forms a Hilbert space as depicted pictorially in the big green

circle in Fig. 2. Now understanding the low energy consequences of the interactions

between such a large number of variables or operators is extremely complicated,

if not impossible. We need methods which eliminate the technical difficulties but

capture the correct low energy physics.

Basic principle of the memory function formalism is as follows. Suppose we

are interested in studying the center-of-mass motion of a system of N number

of particles. Then we separate or project out the center-of-mass variable from the

others. Here, the center-of-mass variable is a macroscopic variable and is defined as a

linear combination of the microscopic variables. Now in memory function formalism,

it is shown that the effects of the rest of the microscopic variables on the dynamics of

the macroscopic variable can be estimated systematically and is cast in a so-called

Memory function in different systems.12–16 The reason behind the use of the term

“memory” will be discussed in detail in the next section. The above discussion is

applicable to the quantum systems also, except the fact that the classical variables

will be replaced by operators. Since we discuss this formalism in context of the

electronic systems, we invoke quantum mechanics from the very beginning and

work with operator language, henceforth.
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Let us consider an observable represented by an operator A obeying the Hamil-

tonian dynamics. To determine its dynamics, we define the Liouville operator

associated with the Hamiltonian. Mathematically, the latter is called a super-

operator as it acts on operators and produces a new operator. For a system with a

given Hamiltonian H, it is defined as,

LA = [H,A] = −idA
dt
. (2)

Here, [, ] is the commutator between two operators. From Eq. (2), we see that an

operator evolves with time as,

A(t) = eiLtA(0). (3)

In a many body system, we need to quantify the correlation between various physical

quantities represented by various operators Ai. We can express their correlation in

terms of a correlation function matrix R(z), defined in frequency space with matrix

elements as,

Rij(z) = i

∫
dteizt〈Ai(t)|Aj〉 = i

∫
dtei(z−L)t〈Ai(t)|Aj〉

=

〈
Ai

∣∣∣∣
1

z − LAj
〉
, z = ω + iη. (4)

Here, η → 0+ is a small positive number, which assures causality. Evaluation of

Rij(z) is a many body problem and is in general complicated. To simplify the

evaluation of the above expression, we invoke the principle of memory function

formalism and introduce a projection operator defined as follows,10,11

P =
∑

ij

|Ai〉χ−1
ij 〈Aj |, χij = 〈Ai|Aj〉,

= I−Q. (5)

Here, P separates the operator Ais, corresponding to the observed macroscopic

quantity, from the rest of the microscopic degrees of freedom and the act of Q is just

the opposite. A generic projection operator should have the following properties.

P 2 = P, PQ = QP = 0, etc. (6)

We also introduce a decomposition L = LP + LQ and introduce the identity

1

X + Y
=

1

X
− 1

X
Y

1

X + Y
. (7)

Using the above identity, the expression for the time dependent correlation function

becomes

Rij(z) = 〈Ai|
{

1

z − LQ +
1

z − LQLP
1

z − L

}
|Aj〉. (8)
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Since Q|Aj〉 = 0, we can simplify the first term in the right-hand side of the above

expression as,
〈
Ai

∣∣∣∣
1

z − LQ

∣∣∣∣Aj
〉

=
1

z
〈Ai|Aj〉 =

1

z
χij . (9)

Therefore, the expression for the correlator can be re-written as,

Rij(z) =
1

z
χij +

∑

lm

〈
Ai

∣∣∣∣
1

z − LQLAl
〉
χ−1
lmRmj . (10)

Above expression can be cast in a matrix notation as follows:
(
zI−Kχ−1

)
R = χ. (11)

The matrix K has the elements defined as,

Kil =

〈
Ai

∣∣∣∣
z

z − LQLAl
〉
. (12)

Elements of K can be decomposed as,

Kil = 〈Ai|LAl〉+

〈
Ai

∣∣∣∣LQ
1

z − LQLAl
〉
. (13)

The first part of the above expression is called the frequency matrix and is given

as,

Lil = 〈Ai|LAl〉. (14)

Remaining part contains the effects of the faster degrees of freedom residing in the

unprojected part of the Hilbert space and is termed as the memory matrix. It is

defined as

Mil =

〈
Ai

∣∣∣∣LQ
1

z −QLQQLAl
〉
. (15)

The relation Q2 = Q is used to write it in a symmetric form. This form is very

instructive. The above expression tells that the memory function is defined in terms

of the unprojected part of the |Ȧ〉 = L|A〉 and the unprojected part of the Liouville

operator L, i.e., QLQ. The projected degrees of freedom during their slow dynamics,

cannot keep track of the movements of the fast unprojected part and treat the later

as incoherent excitations. Since the memory function consists of the unprojected

degrees of freedom only, it describes the effects of the incoherent excitations on

the low energy excitations in a system and accounts for the dissipation in the slow

degrees of freedom. Using the above expressions, the correlator between different

components of A can be written in a compact notation as,

R(z) =
1

zI− [L+M(z)]χ−1
χ. (16)

Writting in terms of the matrix elements, it takes the form,

∑

l

(
zδil −

∑

s

[Lis +Mis]χ
−1
sl

)
Rlj(z) = χij . (17)
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Here, we see that any given correlation function can be written in terms of the cor-

responding memory matrix. This completes the general description of the memory

function formalism. The use of it to study the electronic transport will be discussed

in later sections.

3. Generalized Langevin Equation

Before using this formalism in the case of electronic transport, let us elaborate

its physical contents in more detail in context of an well-known physical system.

Consider the dynamics of a system where few macroscopic slow degrees of freedom

are immersed in and interacting with a soup of fast microscopic degrees of freedom.

The famous Brownian motion is such an example.17,10 Here, a particle is suspended

in a fluid and it collides with the fluid molecules. As a result, it follows a zigzag

trajectory as shown in Fig. 3.

To explain such a phenomena, in the classical limit a scenario that the particle

is experiencing “some random force”, is adopted. As a result, for the particle a

Newtonian equation of motion with phenomenological random force, mimicking

the kicks from the fluid particles can be written. Such an equation of motion is

called Langevin equation18 and for the simplest case, in one dimension it takes the

following form.

d2

dt2
R(t) = γ

d

dt
R(t) + f(t). (18)

Here, f(t) is a random force of “white noise” type, i.e., with correlation 〈f(t)f(t′)〉 =

γkBTδ(t− t′) and the mass of the particle is assumed to be unity. This correlation

has a delta function in time structure and thus it is frequency independent. Such a

random force description is used quite often and is highly successful in explaining

various complex phenomena. How such a probabilistic picture emerges from the

microscopic interactions which are deterministic in nature, can be addressed within

the memory function formalism.19

Fig. 3. (Color online) Motion of a Brownian particle (Big circle) moving in a fluid. Red dots
represents small fluid molecules and they exhibit faster movements. The Brownian particle collides

with the fluid particles and follows a zigzag path.
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Let us consider a time dependent operator A(t) which mimic the velocity of

a Brownian particle and consider its time evolution. The corresponding Liouville

equation is given as,20

d

dt
A(t) = iLA(t), A(t) = eiLtA(0). (19)

The time derivative of the operator A(t) can be written in terms of its initial value

A(0) as,

d

dt
A(t) = iLeiLtA(0). (20)

Now we introduce the projection operator acting on an operator B as,

PB =
〈A,B〉
〈A,A〉A, P 2 = P. (21)

We insert the identity I = P +Q in Eq. (19), and get,

d

dt
A(t) = ieiLt(P +Q)LA(0). (22)

Now onwards, we drop the argument 0 from A(0) for convenience and thus the first

term in the above expression can be evaluated as,

eiLtPLA =
〈LA,A〉
〈A,A〉 e

iLtA = ΩeiLtA. (23)

Here, Ω = 〈LA,A〉
〈A,A〉 is the frequency matrix. To evaluate the second term, we introduce

the identity,

eiLt = ei(P+Q)Lt

= eiQLt +

∫ t

0

dτeiL(t−τ)iPLeiQLt. (24)

Applying it to the second term of Eq. (22), we get,

eiLtiQLA = eiQLtiQLA

+

∫ t

0

dτeiL(t−τ)iPLeiQLtiQLA. (25)

We call the first term of the above equation a “force” which is given as,

f(t) = eiQLtiQLA = eiQLtf(0). (26)

Here, f(0) is a “force” inserted on the slow variable by the incoherent degrees of

freedom and f(t) is formers time propagation. The other term can be evaluated as

follows,

I2 =

∫ t

0

dτeiL(t−τ)iPLeiQLtiQLA

=

∫ t

0

dτeiL(t−τ)iPLf(t)
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=

∫ t

0

dτeiL(t−τ)i
〈Lf(t), A〉
〈A,A〉 A

=

∫ t

0

dτeiL(t−τ)i
〈LQf(t), A〉
〈A,A〉 A. (27)

Since both Q and L are Hermitian, the above integral can be written as

I2 = −
∫ t

0

dτeiL(t−τ)i
〈f(t),LQA〉
〈A,A〉 A

= −
∫ t

0

dτeiL(t−τ) 〈f(t), f(0)〉
〈A,A〉 A

= −
∫ t

0

dτκ(t)A(t− τ). (28)

This term relates the dissipation in A with the fluctuations in other fast incoher-

ent degrees of freedom. Such a relation is often termed as fluctuation dissipation

theorem.21,22 It leads to the generalized Langevin equation which can be written as

d

dt
A(t) = iΩA(t)−

∫ t

0

dτγ(t)A(t− τ) + f(t). (29)

The force–force correlator γ(t) and its Fourier transform have in general, com-

plicated time and hence frequency dependence, respectively. Thus, it carries the

information of the memory or the history of the past scattering events and are

termed as non-Markovian processes. This is why, the kernel describing the effects

of the unprojected or incoherent degrees of freedom is termed as memory function.

For a specific case when γ(t) = γ0δ(t), i.e., when its Fourier transform is constant,

the dynamics becomes memory less and are called Markovian process in statistical

mechanics literature.23 Let us now compare the above expression which is obtained

from the exact microscopic description, with that of the Langevin equation used

from a phenomenological consideration. In the later case, the force f(t) is considered

as random with a variance assumed phenomenologically. In principle, f(t) follows

deterministic equation of motion and its exact evolution requires solutions of infi-

nite set of equations as we will discuss in the next section. This is computationally

impossible as no system is completely isolated and thus the “total system” implies

the whole universe! To a good approximation, it is justified to consider force of some

suitable order as random variables and solving the above equation to get an effec-

tive understanding about the system dynamics. Findings from such probabilistic

description fits nicely with experimental findings. This is how an effective random

or probabilistic description out of deterministic microscopic principles can emerge

in a complex system. However, the origin of randomness in a purely deterministic

system is a subtle issue. For more discussions interested readers can consult Ref. 5.
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4. Continued Fraction Description

To elaborate on the memory function description further, we discuss how any dy-

namical correlation function can be expressed in terms of the static correlations in

a continued fraction form. It was first shown by Mori, in his seminal work.7 From

Eq. (29), we see that, the time dependence of a general dynamical variable say A(t)

is dictated by the correlations of its time derivative Ȧ(t). Same should hold true

for Ȧ(t) and its higher time derivatives also.24 This leads to a new type of moment

expansion as follows. We can rewrite the generalized Langevin equation [Eq. (29)]

as

d

dt
A(t) = iΩ0A(t)−

∫ t

0

dτκ1(t)A(t− τ) +A1(t). (30)

Here, A1 is termed as the random force and has the same symmetry as Ȧ. If we write

its equation of motion, it will also follow a generalized Langevin equation involving

higher time derivative of Ȧ. The equation of motion for a nth order “force” An
becomes,

Ȧn(t) = iΩnAn(t)−
∫ t

0

dτκn+1(t)An(t− τ) +An+1(t) (31)

with nth order frequency and the (n+ 1)th order memory kernel

Ωn =
〈LAn, An〉
〈An, An〉

, κn+1(t) =
〈An+1(t), An+1〉
〈An, An〉

, (32)

respectively. This recurrence formula can be cast in a single continued fraction form

of the correlation function as follows,
∫ ∞

0

dte−izt〈A(t);A〉 =
〈A;A〉

i(z − Ω0) + ∆1

i(z−Ω1)+
∆2

i(z−Ω2)+···

. (33)

In the above expression ∆n = κn(0). Here, the dynamic property of a system

is completely described by its static correlations. The above result is in principle

exact. But the exact evaluation needs the knowledge of the static correlations upto

infinite order.25 However, depending on the situation one can truncate the continued

fraction at some suitable order and get sensible results.26 A detailed discussions of

its use in various systems are beyond the scope of this paper. Interested readers

may look at Refs. 27–29, where dynamic correlations in the case of simple metal,

Hubbard Model and spin 1
2–XYZ model respectively are cast in the continued

fraction form.

5. Application to the Electronic Transport

In the previous sections, we described various aspects of the memory function

approach. Thus, we set up the stage for using it to study the dynamical transport

properties of various electronic systems. Here our focus is on the time evolution

of the current operator and the correlation of its various components in a generic
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many body system. In our discussions on electronic systems, first we assume that

the momentum is the only nearly conserved quantity in the system.a Thus there is

only one slow mode associated with this conservation law. We study the momentum

relaxation of a charged particle under external perturbation. In this case, the pro-

jector operator is defined solely in terms of the current operator. This assumption

holds good if there is no other slow modes associated with any other conserva-

tion law or broken symmetry that couples to the charge degrees of freedom.30–33

However, for simplicity, we stick to this picture for the time being and will generalize

it in the later subsections.

Now, we can start with the expression for memory function as defined in

Eq. (15). In certain situations, we can evaluate the expression in the spirit of

perturbation theory. Memory function can be viewed as “the self-energy” of the

current–current correlation function. It has an added advantage that such “self-

energy” calculation does not require vertex correction. The latter is extremely im-

portant and problematic when the current–current correlation is expressed through

the renormalized single particle propagators.34 Now, for further simplicity, we con-

sider the case of an one component current operator J and replace |A〉 by |J〉.
To clarify more, in an electronic system |J〉 ≡ J |Φ0〉, where |Φ0〉 is the electronic

ground state. The correlation denoted by 〈J(t)|J〉, can be used to represent corre-

lation of the form 〈[J(t), J ]〉 without changing the form of Eq. (16). We choose the

latter form, as it is used to describe the response function. We focus on the response

of an electronic system under an external electric field and the relevant quantity

is dynamic conductivity σ(z) and is given in terms of a commutator correlation of

the current operators. In this case, Eq. (16) can be written as,

σ(z) =
1

z −M(z)/χ
χ. (34)

It is to be noted that, we assume time reversal invariance so that 〈J |L|J〉 = 〈J̇ |J〉 =

0, i.e., the generalized frequency vanishes. Here, we see that using memory function

formalism, the dynamic susceptibility can be written in an Extended Drude form,

frequently used by the experimentalists35 to explain any non-Drude dynamic con-

ductivity. Here, we see that the memory function or the generalized many particle

(two particle in this case) self-energy defined by Eq. (15) is the most important

quantity to determine the dynamic conductivity. Within our simplified picture, it

takes the following form,

M(z) =

〈
J

∣∣∣∣LQ
1

z −QLQQLJ
〉

=

〈
J̇

∣∣∣∣Q
1

z −QLQQJ̇
〉
. (35)

To get some qualitative idea, we can opt for a “high frequency expansion” of the

above expression. We consider an energy scale z0 = 〈J̇ |QLQJ̇〉/χ. As long as z0 �

aIt means that the related correlation function has a very slow decay, e.g., of the form e−
t
τ , with

the relaxation time τ →∞.
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|z|, we can expand inverse operator 1
z−QLQ in a series and can rewrite the memory

function as follows,

M =
1

z

〈
J̇

∣∣∣∣Q
(

1 +
1

z
QLQ+

1

z2
QLQQLQ+ · · ·

)
QJ̇

〉

=
1

z
〈J̇ |QJ̇〉+

1

z2
〈J̇ |QLQJ̇〉+

1

z3
〈J̇ |QLQLQJ̇〉+ · · · . (36)

Here we use the fact Q2 = Q and the above expansion can be termed as a high

frequency expansion. Its validity will depend on how small or large the z0/|z| is.

Since the time derivative of two different orders are uncorrelated in a system having

time reversal symmetry, i.e., 〈J |J̇〉, 〈J̇ |J̈〉 = 0, as proved in Appendix A,

M(z) =
1

z
〈J̇ |J̇〉+

1

z3
〈J̈ |J̈〉+ · · · . (37)

Clearly this expansion will hold good in high frequencies and will breakdown below

certain energy scale set by the incoherent part of the Hamiltonian. Here, J is the

current operator. Now, its time derivative J̇ = [J,H = H0 + H ′] = [J,H ′] is pro-

portional to the coupling strength g (say) with the dimension of energy of different

interactions. Thus, the above expansion can be viewed as an expansion in terms

of g2

z2 . For very weak interactions, one can truncate the above expression at the

first term itself and calculate the conductivity. However, this perturbation theory is

different form the diagrammatic perturbation theory that incorporates interaction

effects through single particle self energy and vertex corrections.36

5.1. Weak coupling theory

The memory function formalism was first used in a systematic way to calculate

the electrical conductivity in the case of simple metals with various interactions by

Götze and Wölfle.36 Similar approach is used by many others in this context.37–43

Their approach can be summarized as follows. According to the linear response

theory, the dynamical conductivity is defined as,34,44–46

σ(z) = −i1
z
χ(z) + i

ω2
p

4πz
. (38)

Here, ω2
p = 4πNee

2/m is the square of plasma frequency where e electronic charge,

m electron mass and Ne is the electron density, z is the complex frequency and

χ(z) is the current–current correlation function defined as,

χ(z) = 〈〈J ; J〉〉z = i

∫ ∞

0

eizt〈[J(t), J ]〉, (39)

where J =
∑

k ev(k)c†k,σck,σ is the current density and v(k) is the velocity disper-

sion. Here, [J(t), J ] denotes the commutator, 〈. . .〉 denotes the ensemble average at

temperature T and 〈〈. . .〉〉 denotes the Laplace transform of the ensemble average.
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According to the Götze and Wölfle approach,36 the memory function is defined

as

M(z) = z
χ(z)

χ0 − χ(z)
, (40)

where χ0 corresponds to the static limit of correlation function (i.e., χ0 = Ne/m).36

Using this, the expression for dynamical conductivity in Eq. (38) can be cast in an

extended Drude form as,

σ(z) =
i

4π

ω2
p

z +M(z)
. (41)

In Ref. 36, an expansion for M(z) = zχ(z)
χ0

(1 + χ(z)
χ0
− · · · ) is used. Basis of this

assumption is the smallness of the contribution from the interaction part as com-

pared to the kinetic energy of free electrons. Using this expansion and on keeping

the leading order term, the memory function M(z) can be written as

M(z) = z
χ(z)

χ0
= z
〈〈J ; J〉〉z

χ0
. (42)

To compute memory function, we need 〈〈J ; J〉〉z which by using equation of

motion is

z〈〈J ; J〉〉z = 〈[J, J ]〉+ 〈〈[J,H ′]; J〉〉z. (43)

As the first term of right-hand side is zero, hence the above expression is equivalent

to second term which can be further calculated by applying equation of motion.

z〈〈[J,H ′]; J〉〉z = 〈[[J,H ′], J ]〉 − 〈〈[J,H ′]; [J,H ′]〉〉z. (44)

For z = 0, 〈[[J,H ′], J ]〉 = 〈〈[J,H ′]; [J,H ′]〉〉z=0. Thus, the memory function M(z)

becomes

M(z) =
φ(0)− φ(z)

zχ0
. (45)

Here, φ(z) (called as correlation function) is defined as

φ(z) = 〈〈[J,H ′]; [J,H ′]〉〉z. (46)

Here, the current operator Ji =
∑
vi(k)c†kσckσ and its derivative or “force”

A = J̇ = [J,H]. Here, the total Hamiltonian has two parts, H0 the free part or the

kinetic part and an interaction part. While the first part commutes with the current

operator, the later part does not. Thus, A = J̇ = [J,H0+H ′] = [J,H ′] is determined

by the interaction part only and is different for different types of interactions.

Within this approach, they calculated the frequency dependent conductivity with

various interactions such as electron–phonon, electron-impurity, electron-magnetic

impurity, scattering with localized modes, etc. To illustrate their work further, we

will discuss the simplest case of electron-impurity interaction.
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In this case, the interaction part of the Hamiltonian is given as

H ′ =
1

N

∑

j

〈k|U |k′〉c†kσck′σ. (47)

Here, U denotes the impurity potential. In this case, the jth component of the force

operator A is given as

Aj =
1

N

∑
〈k|U |k′〉[vj(k)− vj(k′)]c†kσck′σ. (48)

Here, vj(k) is the velocity of the particle with momentum k in the jth direction.

The force–force correlation in the case of free electron is estimated as

φ(z) = 〈〈A|A〉〉z = (2c/3m2N)
∑

kk′

|〈k|U |k′〉|2(k− k′)2 f(εk)− f(εk′)

z − εk + εk′
. (49)

From this expression, the imaginary or the absorptive part of the memory function

can be estimated as

M ′′(ω) = C × 1

N2

∑

kk′

|〈k|U |k′〉|2(k− k′)2

× [f(εk)− f(εk′)]δ(ω − εk + εk′)/ω. (50)

For momentum independent U , i.e., point impurity

M ′′(ω) = C′(UρF )2εF , (51)

where ρF and εF are the density of states at the Fermi surface and the Fermi energy,

respectively. For ω � εF , the imaginary part of the memory function is independent

of the frequency and the result is identical to the Drude result. On the other hand,

if the impurities are spatially extended,

M ′′(ω) ≡ 1

τ
∼ vF

∫∫
dΩσsc(1− cos θ). (52)

In the above expression, the differential scattering cross-section is defined as

σsc(Ω) = (πkF )2|ρFU(kF − k′F)|2. (53)

For interactions with nonmagnetic impurity, we see that the results are identical

to the single particle calculations with vertex corrections. This is indeed a bench-

mark and major success of this formalism. In other cases, there are deviations from

the Drude formula. They argued that these discrepancies are because of spin-flip

scattering in a magnetic field, because of resonance scattering, because of phonon

creation at low temperatures, and because of breaking of the screening cloud at-

tached to charged impurities, respectively. However, this version of the memory

function approach to calculate the dynamic conductivity is somewhat limited. It

is designed for simple metal, i.e., for weakly-interacting electrons with very weak

electron–phonon or electron-impurity or other interactions and nonexpandable to

the cases of strong interactions. Lifting these limitations, as required for more ex-

otic systems like strange metal phase in cuprates near optimal doping, and others

need substantial improvements.
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5.2. Strong coupling extension

A large volume of works47–59 on the applications of the memory function in the

case of strongly interacting electronic systems is being done by Plakida and his

collaborators based on the mathematical formalism developed by Tserkovnikov.60

We see in the Götze and Wölfle formalism, that the dynamical conductivity or the

current–current correlation 〈J ; J〉 can be calculated with the knowledge of 〈J̇ ; J̇〉
which is calculated by simple perturbation theory. However, it will be seen in this

section that, their approach misses some subtle points which may not affect the

results in the perturbative limit but can be problematic in the case of strongly

correlated systems. Plakida et al. refined the relation between the memory function

and the J̇–J̇ correlation as follows. First, a relation between two time retarded

Green’s function and the Kubo–Mori relaxation function can be established as

follows. The two time retarded Green’s function for two Heisenberg operators A

and B are defined as

GrAB(t− t′) ≡ 〈〈A(t)|B(t′)〉〉

= −iΘ(t− t′) 〈A(t)B(t′)− ηB(t′)A(t)〉 . (54)

Here the step function Θ(t) = 1 for t > 0 and Θ(t) = 0 for t < 0. The 〈........〉
represents the thermal average, i.e., Tre−βH(..) with β as the inverse temperature

and η = ± for Bosons and Fermions, respectively. The above Green’s function

follows an equation of motion,

i
d

dt
〈〈A(t)|B(t′)〉〉 = δ(t− t′)〈[A,B]η〉+ 〈〈Ȧ(t)|B(t′)〉〉. (55)

On the other hand, Kubo–Mori relaxation function is defined as

ΦAB(t− t′) ≡ ((A(t)|B(t′))) = −iΘ(t− t′) (A(t)|B(t′)) . (56)

The last expression is called the Kubo–Mori scalar product and is defined as,9

(A(t)|B) =

∫ β

0

dλ 〈A(t− iλ)B〉 . (57)

It can be shown that,60

ω((A|B))ω = (A|B) + 〈〈A|B〉〉ω
= −〈〈A|B〉〉0 + 〈〈A|B〉〉ω. (58)

Now, we apply projection operator technique to the Green’s function,

Gk,k′(t− t′) = 〈〈Ak(t)|A†k′(t′)〉〉. (59)

It has an equation of motion

i
d

dt
〈〈Ak(t)|A†k′(t′)〉〉 = δ(t− t′)〈[Ak, Bk′ ]η〉+ 〈〈Ȧk(t)|A†k′(t′)〉〉. (60)
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Here, Ȧk(t) = [Ak(t), H]. Now, we extract the linear term in the equation of motion

as

iȦk(t) = [Ak(t), H] =
∑

q

Ek,qAq + Zirk . (61)

The irreducible part Zirk is defined by the orthogonality condition

〈[Zirk , A†k′ ]η〉 = 0. (62)

This defines the frequency matrix

Ekq =
∑

k′

〈[[Ak(t), H], Ak′ ]η〉I−1
k′q, Ik′q = 〈[Ak, Ak′ ]η〉. (63)

Upon Fourier transform, Eq. (60) gives,

Gk,k′(ω) = G0
k,k′(ω) +

∑

qq′

G0
k,k′(ω)I−1

qq′ 〈〈Zirq′ |A†k′〉〉. (64)

Here, the zeroth-order Green’s function is given as,

G0
k,k′(ω) =

∑

q

Iqk′

ωδkq − Ekq
. (65)

This defines the excitation spectrum in the mean field approximations. In order to

determine the many body part of the Green’s function 〈〈Zirq′ (t)|A†k′(t′)〉〉, one needs

to differentiate it with respect to t′ and after taking Fourier transform one obtains,

Gk,k′(ω) = G0
k,k′(ω) +

∑

qq′

G0
k,q(ω)Tqq′(ω)G0

q′,k′(ω). (66)

The scattering matrix appeared above is defined as

Tkk′(ω) =
∑

qq′

I−1
k,q〈〈Zirq |(Zir)

†
q′〉〉I−1

q′k′ . (67)

Now, if we define the self-energy as

Tkk′(ω) = Σkk′(ω) +
∑

qq′

Σkq(ω)G0
q,q′(ω)Tq′k′(ω). (68)

Then the Green’s function can be cast in a Dyson form as,

Gk,k′(ω) = G0
k,k′(ω) +

∑

qq′

G0
k,q(ω)Σqq′(ω)Gq′,k′(ω). (69)

This tells that the generalized self-energy or the memory function is given by the

proper part of the scattering matrix. Thus it can be written as,

Σkk′(ω) =
∑

qq′

I−1
k,q〈〈Zirq |(Zir)

†
q′〉〉properI−1

q′k′ . (70)

If we recall the Dyson equations in the electronic Green’s function,34 we can easily

identify that the T (ω) is the generalized many body or multi-particle scattering

matrix while the memory function or the generalized multi-particle self-energy Σ(ω)
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T 

T T 

=
Σ

+=

Fig. 4. A diagrammatic description of the relation between the single particle self-energy and

the T-martix for electron-Boson interaction is shown here. The solid lines represents the electron

propagator while the dashed lines represents Bosonic propagators.

is given by the proper part of T (ω). Diagrammatically, it means that the part of

the scattering matrix is not connected by a single relaxation function. To clarify

this statement, a diagrammatic description for the same in case of single particle

electronic Green’s function or propagator in a coupled electron-Boson system is

presented in Fig. 4.

Now to calculate the conductivity, we need to focus on the current–current

correlations. In this case, the relevant response function ΦJJ(ω) and the memory

function or the corresponding multi-particle self-energy M(ω) is related to each

other as

ΦJJ(ω) = ((J |J))ω =
χ0

ω +M(ω)
. (71)

Here, χ0 = χJJ(0) and the memory function has both real and imaginary parts, i.e.,

M(ω + iδ) = M ′(ω) + iM ′′(ω). Again following the general procedure as discussed

earlier, the time derivative of the response function,

ΦJJ(t− t′) = ((J(t)|J(t′))), (72)

followed by the Fourier transform gives,

ΦJJ(ω) = Φ0
JJ(ω) + Φ0

JJ(ω)TJJ(ω)Φ0
JJ(ω). (73)

Here, Φ0
JJ(ω) = χ0

ω and in this case the scattering martix is given as

TJJ(ω) =
1

χ0
((J̇ |J̇))ω

1

χ0
. (74)

In order to express Eq. (73) in the form of Eq. (71), we need the following relation

between the memory function and the scattering matrix.

TJJ(ω) = − 1

χ0
[M(ω) +M(ω)Φ0

JJ(ω)TJJ(ω)]. (75)

The above equation tells that the memory function for the electrical conductivity

is equivalent to the irreducible or the proper part of the force–force correlator, i.e.,

M(ω) =
1

χ0
((J̇ |J̇))proper

ω

1

χ0
. (76)
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These authors use this improved definition of the memory function to calculate

dynamical quantities in various system such as t–J model in context of high tem-

perature superconductors and many others in the references cited at the beginning

of this subsection.

As we see, the evaluation of memory function requires evaluation of J̇ = [J,H ′]
and its correlation. Thus any scheme based on the memory function depends on

the interaction part of the Hamiltonian and the algebra followed by the operators

corresponding to the observables in a system. Also an evaluation of correlator of

the form shown in Eq. (76) needs some approximations with suitable justifications.

Plakida et al. consider the t–J model61,62 for the strongly correlated normal

phase of the cuprate superconductors to apply their formalism. The authors use

it to calculate both the optical conductivity and the dynamic spin susceptibility

in this model. Due to the involved mathematical complexity, the detail description

of the application in this model is beyond the scope of this review. However, the

findings from this approach are comparable with the other analytical methods and

also comparable with the experiments. Interested reader can look at Refs. 52 and 57,

where Plakida has nicely reviewed the related works.

Similar approach is also used by some other researchers to calculate the spin

susceptibility in strongly correlated electronic systems.63–70 Since we focus on the

electrical conductivity here, we skip those discussions here.

5.3. Effects of additional slow modes

Until now, we consider systems where the electrical current of the momentum was

the only slow mode. However, in many systems we need to consider many other slow

modes which couple to the electrical current. For example in a system where there

is charge conservation, along with the drift current (related to the momentum of the

charge particles), there is another slow mode namely charge diffusion or diffusion

current mode.30–33 The latter is also a slow mode and couples to the electric current.

In such a system, the projected space along with the electrical current also contains

density fluctuation operators. Following Ref. 30, we define,

J0(q) = ρ(q) and J1(q) = J(q). (77)

Due to the charge conservation, the density and the longitudinal part of the current

operator are related as

LJ0 = −qJL. (78)

Since the number of slow modes is more than one, in this case, the memory function

takes a matrix form as shown in Eq. (15). Here, we consider two slow modes, hence

the memory matrix has a 2×2 structure and is defined by four correlation functions,

namely R00 = ρ − ρ,R01 = ρ − J, R10 = J − ρ and R11 = J − J. However, the

density fluctuations couple only to the longitudinal part of the current and thus in
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this case Eq. (17) can be written in a set of two decoupled equations as follows,

1∑

l=0

[
zδil −

∑

s

[Lis +ML
is]χ

−1
sl

]
RLij(z) = χij ,

[z − [L11 +MT
11]χ−1

11 ]RT11(z) = χT11.

(79)

Here, χij = 〈Ji|Jj〉 is the static correlation function. Now the continuity equa-

tion (78) and the time reversal invariance in the system tell that 〈J0|JL1 〉 ∼
〈J0|J̇0〉 = 0. Moreover, since LJ0 ∝ JL1 , the first component of the “four force”

lies within the projected space and thus its unprojected part, i.e., QLJ0 is identi-

cally zero. This simplifies this picture drastically as it leads to

M00 = ML
01 = ML

10 = 0. (80)

Thus, only M11 = M survives and it can be calculated using Eq. (15) and assuming

Q ≈ 1.30,31 Once the memory function is determined suitably, the coupled equation

can be solved and the effects of charge diffusion can be discussed in varieties of

systems as done in references cited in this section.

In this connection, we can mention the works of Lucas and Sachdev.31,33 In their

work, they focus on the magneto-transport in strange metals. Their system is a 2D

quantum critical metal under an external magnetic field. They consider systems

where electronic quasi-particles are absent. Thus, they use memory formalism in-

stead of standard perturbation theory to determine the relevant response functions.

In their approach, they include the effects of other slow modes such as charge dif-

fusions and heat diffusions in their formalism. Within this formalism, they present

some explanation of recently observed anomalous behavior in the hall angle in the

strange metal phase.71 In summary, this approach contains the essential complexity

of a typical non-Fermi liquid. It provides a systematic way of including various slow

modes within this approach and thus very promising.

5.4. Comments on few recent works

In this section, we will qualitatively discuss few of the present day activities based on

memory function formalism. We aim to give a flavor of the present day importance

of this formalism and keep the discussion very brief. For details, readers are advised

to look at the articles cited in appropriate paragraphs.

Holographic approach: Since the memory function formalism does not invoke sin-

gle particle picture to calculate electrical transport. In principle, it can be used

to calculate transport properties even when quasi-particle picture is not valid. Re-

cently many researchers used both the holographic ADS-CFT principle to study

electronic transport in a similar situation, namely 2d metals near quantum critical

point.31 These models include the coupling between various slow modes and thus

produces various non-Fermi liquid transport behavior. To check the consistency,

results are often compared with the complimentary memory function calculations

and interestingly they have very good agreements.
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Nonequilibrium steady state: Some of the present authors72 used memory function

formalism to study electronic transport in nonequilibrium steady state, where the

electron and the phonon temperatures are different. They consider nonequilibrium

relaxation of electrons due to their coupling with phonons in a simple metal. In

their model, electrons are living at a higher temperature than that of the phonon

bath, mimicking a nonequilibrium steady state situation. They show that the dc

scattering rate at high temperatures and optical scattering rate at high frequen-

cies, are independent of the temperature difference between the electrons and the

phonons is found in this work. The present formalism forms a basis which can also

be extended to study hot-electron relaxation in more complex situations.

Scattering rates in the gapped system: In an another work, two of the present au-

thors73 calculated generalized Drude scattering (GDS) rate for the case of electron–

phonon scattering in metals with a gap in the electronic density of states at the

Fermi energy. The resulting GDS is compared with a recent one by Sharapov and

Carbotte74 obtained through a different setup. They find good agreement between

the two at finite frequencies. However, there are discrepancies in the dc scattering

rate which are severe at high temperature which they attribute to some assumptions

made in the Sharapov and Carbotte formalism.

High frequency expansion: Most of the studies within the memory function formal-

ism suffers from the lowest order perturbative evaluation of the required two particle

correlation function. This is done without much justifications, particularly in case of

strong correlations. One needs to improve upon by considering higher order terms

in the continued fraction representation [Eq. (33)] or the high frequency expansion

[Eq. (37)] as shown in the previous sections. Present authors recently proposed75 a

systematic expansion of the memory function involving its various moments. They

calculate the higher order contribution to the GDS rate in case of electron-impurity

interactions. They find larger contributions from the higher moments in the low fre-

quency regime and also in the case of larger interaction strength.

5.5. Future directions

As mentioned by Lucas and Sachdev in their work,31,33 a lot of work is needed in

incorporating various slow modes in a generic electronic system which often lead

to non-Fermi liquid behavior. Depending on the systems under consideration, one

needs to include slow modes occurring from various broken symmetries related to

spin density wave, charge density wave, superconductor, nematic transitions in a

systematic way.

Also the same formalism can be used to explore the response of a physical

system due to the external fields other than the electric field. Present authors are

involved in calculating thermal coefficient and thermoelectric coefficients (Seebeck

coefficient and Peltier coefficient, respectively) and magneto-thermoelectric effects

or Nernst effects within this approach.
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6. Discussions

As discussed in this paper, though the memory function formalism originated in

context of nonequilibrium statistical mechanics, it is being used recently as an im-

portant tool to calculate various dynamic transport quantities in various interacting

systems. From a theorists point of view, this formalism directly deals with the two

particle correlations and thus the existence of electronic quasiparticle is not an es-

sential ingredient here. This is the main advantage of this formalism compared to

the single particle perturbation theories which fails in making good predictions in

these systems.34 Moreover, in this formalism dynamical conductivity can be cast

in an extended Drude form. The latter has a structure as predicted by Drude in

case of noninteracting electrons, but with a frequency dependent scattering rate

and mass enhancement factor. This form becomes very convenient for experimen-

talists to estimate the deviation of their data from the simple Drude expression for

metals. Thus, this method is becoming popular to both the communities. In this

paper, we summarize the foundation of the memory function formalism. We review

its applications in transport studies of various electronic systems in detail. Also we

critically examine the approximations used within this formalism in various works

and discuss the possible improvements. This review brings all the necessary details

of the memory function formalism together at one place. We hope that the present

review will be useful to whoever works in this area, particularly the newcomers.
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Appendix A. Some Useful Relations

Here, we mention few useful relations. The detailed derivation of them can be found

in Ref. 60. First, we define the Kubo–Mori scalar product as

(A(t), B) =

∫ β

0

dλ〈A(t− iλ)B〉. (A.1)

Here 〈......〉 represents an equilibrium thermal average. Next, we define Greens func-

tion for the above scalar product as follows,

((A(t), B))z =

∫ ∞

0

dteizt(A(t), B). (A.2)

The commutator Green’s function is defined as,

〈〈A(t), B〉〉z =

∫ ∞

0

dteizt〈[A(t), B]〉. (A.3)

These two Green’s functions are related as,

z((A(t), B))z = 〈〈A(t), B〉〉z − 〈〈A(t), B〉〉z=0. (A.4)
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We also have the following relations,

((iȦ, B))z = ((A(t),−iḂ))z = 〈〈A,B〉〉z. (A.5)

(iȦ, B) = (A(t),−iḂ) = 〈[A,B]〉. (A.6)

Here we see, if B = A,

(iȦ, A) = (A(t),−iȦ) = 〈[A,A]〉 = 0. (A.7)
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Abstract. An explicit perturbative computation of the Mori’s memory function was performed by Götze
and Wölfle (GW) to calculate generalized Drude scattering (GDS) rate for the case of electron-impurity
and electron-phonon scattering in metals by assuming constant electronic density of states at the Fermi
energy. In the present investigation, we go beyond this assumption and extend the GW formalism to the
case in which there is a gap around the Fermi surface in electron density of states. The resulting GDS is
compared with a recent one by Sharapov and Carbotte (SC) obtained through a different route. We find
good agreement between the two at finite frequencies. However, we find discrepancies in the dc scattering
rate. These are due to a crucial assumption made in SC namely ω � |Σ(ε + ω) − Σ∗(ε)|. No such high
frequency assumption is made in the memory function based technique.

1 Introduction

The study of transport properties like optical conductiv-
ity is very important to understand the electronic inter-
actions in complex many body systems like cuprates [1,2].
The electronic interactions comprises of electron-phonon,
electron-boson (spin-fluctuations), electron-impurity, elec-
tron-electron interactions. Experimentally, the signatures
of these interactions can be grasped by using optical data
(σ(ω, T )) [3,4] which includes the deduction of the general-
ized Drude scattering (GDS) rate and mass enhancement
factor using the standard form

σ(ω, T ) =
ω2
p

4π

1

1/τ(ω, T ) + iω(1 + λ(ω, T ))
. (1)

Here 1/τ(ω, T ) is the frequency and temperature depen-
dent scattering rate, λ(ω, T ) is the frequency and temper-
ature dependent mass enhancement factor and ωp is the
plasma frequency. On theory side, the derivation of the an-
alytical formulae for these quantities (like 1/τ(ω, T ) and
λ(ω, T )) is very complicated.

Generally, the optical conductivity is calculated using
Boltzmann’s equation by assuming relaxation time ap-
proximation [5–7]. In that picture, scattering rate is con-
sidered as constant (independent of frequency and tem-
perature) and the resulting behaviour corresponds to the
Drude behaviour. In systems such as cuprates where the

a e-mail: pankaj@prl.res.in

electron-boson, electron-electron interactions are impor-
tant, this approach is inadequate as experiments show that
scattering rate does depend on frequency and tempera-
ture [8,9]. The complete solution of the transport problem
in cuprates and other strongly correlated materials is com-
plicated as there are no controlled perturbation parame-
ters. For example, in simple metals where, as first shown
by Holstein [10], the perturbation parameter is vs/vF
(sound speed/Fermi velocity) which is a small parameter
and perturbative calculations are justified. Building upon
Holstein’s work on metals [10], Allen [11] has derived a
relation for frequency dependent scattering rate. This has
been further generalized by Mitrović and Fiorucci [12] by
considering the effects of non-constant density of states.
Further this has been extended recently for the finite tem-
perature case by Sharapov and Carbotte [13]. All these
approaches are based on some assumptions such as ne-
glecting vertex corrections. To go beyond this assumption,
we have developed a formula for frequency and temper-
ature dependent scattering rate using memory function
technique [14,15] which includes the effect of vertex cor-
rections [16] (where the current-current correlators are
directly computed without writing them in terms of single-
particle Green’s function). This technique is a general-
ization of Zwanzig projection operator technique [17,18].
Physically, this approach is very appealing, because the
conductivity σ(ω, T ) can be cast into the generalized
Drude form with frequency and temperature dependent
scattering rate. Recently, it has also been used by several



Page 2 of 8 Eur. Phys. J. B (2016) 89: 49

authors to study the transport properties of different sys-
tems [19–27].

The paper is organized as follows. In Section 2, we
have elaborated the Götze-Wölfle memory function for-
malism [16]. In Section 3, we go beyond the constant
electronic density of states assumption and introduce the
gapped density of states and calculate the imaginary part
of memory function. Here we also discuss the dc and ac
imaginary part of memory function in different tempera-
ture regimes and in appropriate limits we reproduce GW
results. In Section 4, we compare our findings with SC re-
sult [13] and finally we conclude with a brief discussion in
Section 5.

2 Götze-Wölfle formalism
for electron-phonon scattering

In this section, a short introduction to GW formalism is
presented [16]. The Hamiltonian used for electron-phonon
interaction is given by

H = H0 +Hep +Hp, (2)

where H0 is the Hamiltonian for non-interacting electrons
and is represented as:

H0 =
∑

k,σ

ε(k)c†
k,σck,σ, (3)

where ε(k) is the band dispersion and c†
k,σ, ck,σ are cre-

ation and annihilation operators with wave vector k and
spin σ. The Hamiltonian Hep represents the electron-
phonon interaction and is given by

Hep =
∑

k,k′,σ

[
D(k− k′)c†

k′,σck,σbk−k′ + h.c.
]
. (4)

Here bk−k′ , b†
k−k′ are the annihilation and creation oper-

ators for phonons and D(k − k′) is the electron-phonon
matrix element. Here the symbol h.c. corresponds to the
Hermitian conjugate of first term. The third part of equa-
tion (2) represents the free phonon Hamiltonian

Hp =
∑

q

ωq

(
b†
qbq +

1

2

)
, (5)

where ωq is the phonon frequency.
According to the linear response theory, the dynamical

conductivity is defined as [28–31]

σ(z) = −i
1

z
χ(z) + i

ω2
p

4πz
. (6)

Here ω2
p = 4πNee

2/m is the square of plasma frequency
where e electronic charge, m electron mass and Ne is the
electron density, z is the complex frequency and χ(z) is
the current-current correlation function defined as:

χ(z) = 〈〈J ; J〉〉z = i

∫ ∞

0

eizt〈[J(t), J ]〉, (7)

where J =
∑

k ev(k)c
†
k,σck,σ is the current density and

v(k) is the velocity dispersion. Here [J(t), J ] denotes the
commutator, 〈...〉 denotes the ensemble average at tem-
perature T and 〈〈...〉〉 denotes the Laplace transform of
the ensemble average.

According to the Götze and Wölfle approach [16], the
memory function is defined as

M(z) = z
χ(z)

χ0 − χ(z)
or χ(z) = χ0

M(z)

z +M(z)
,

(8)
where χ0 corresponds to the static limit of correlation
function (i.e. χ0 = Ne/m) [16]. Using this, the conduc-
tivity from equation (6) in terms of memory function can
be written as

σ(z) =
i

4π

ω2
p

z +M(z)
. (9)

In reference [16], an expansion for

M(z) =
zχ(z)

χ0

(
1 +

χ(z)

χ0
− . . .

)

is used. Basis of this assumption is the smallness of
electron-phonon interaction energy as compared to the
Fermi energy of free electrons. Using this expansion and
on keeping the leading order term, the memory func-
tion M(z) can be written as:

M(z) = z
χ(z)

χ0
= z

〈〈J ; J〉〉z
χ0

. (10)

To compute memory function, we need 〈〈J ; J〉〉z which by
using equation of motion is:

z〈〈J ; J〉〉z = 〈[J, J ]〉+ 〈〈[J,Hep]; J〉〉z . (11)

As the first term of r.h.s is zero, hence the above expres-
sion is equivalent to second term which can be further
calculated by applying equation of motion.

z〈〈[J,Hep]; J〉〉z = 〈[[J,Hep], J ]〉 − 〈〈[J,Hep]; [J,Hep]〉〉z .
(12)

For z = 0, 〈[[J,Hep], J ]〉 = 〈〈[J,Hep]; [J,Hep]〉〉z=0. Thus,
the memory function M(z) becomes

M(z) =
φ(0)− φ(z)

zχ0
. (13)

Here φ(z) (called as correlation function) is defined as

φ(z) = 〈〈[J,Hep] ; [J,Hep]〉〉z . (14)
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For the present case of electron-phonon interaction, the
correlation function from equations (4) and (14) is

φ(z) =
∑

k,k′

∑

p,p′

∑

σ,σ′

[
v1(k)− v1(k

′)
]
[v1(p)− v1(p

′)]

×
〈〈

D(k− k′)c†
k,σck′,σbk−k′ −D∗(k− k′)b†

k−k′c
†
k′,σck,σ;

D(p−p′)c†
p,σ′cp′,σ′bp−p′−D∗(p− p′)b†

p−p′c
†
p′,σ′cp,σ′

〉〉

(15)

φ(z) = −
∑

k,k′

∑

p,p′

∑

σ,σ′

[
v1(k)− v1(k

′)
]
[v1(p)− v1(p

′)]

×
[
D(k − k′)D∗(p− p′)

]

×
(〈〈

c†
k,σck′,σbk−k′ ; b†

p−p′c
†
p′,σ′cp,σ′

〉〉

+
〈〈

ck,σc
†
k′,σb

†
k−k′ ; bp−p′cp′,σ′c†

p,σ′

〉〉)
. (16)

To evaluate the φ(z), we need to calculate

〈〈
c†
k,σck′,σbk−k′ ; b†

p−p′c
†
p′,σ′cp,σ′

〉〉

which can be calculated as (using definition (7))

〈〈
c†
k,σck′,σbk−k′ ; b†

p−p′c
†
p′,σ′cp,σ′

〉〉

= i

∫ ∞

0

dteizt〈[c†
k,σ(t)ck′,σ(t)bk−k′(t); b†

p−p′c
†
p′,σ′cp,σ′ ]〉.

(17)

Using ck,σ(t) = ck,σe
−iεkt and performing the integration

over time and ensemble average, we have

〈〈
c†
k,σck′,σbk−k′ ; b†

p−p′c
†
p′,σ′cp,σ′

〉〉

= − [f(1− f ′)(1 + n)− f ′(1− f)n] δk,pδk′,p′δσ,σ′

z − εk′ + εk − ωk−k′
. (18)

Here f ≡ f(εk) =
(
eβεk + 1

)−1
and n ≡ n(ωk−k′) =(

eβωk−k′ − 1
)−1

represent the Fermi and Bose distribu-
tion functions and β corresponds to inverse of tempera-
ture. Inserting this equation in equation (16) and hence
in equation (13) and then by taking the limit z → ω+ iη,
η → 0+, the imaginary part of the memory function can
be expressed as

M ′′(ω, T ) =
2π

3

1

mNe

∑

k,k′
|D(k − k′)|2(k− k′)2f ′(1− f)n

×
[
eβω − 1

ω
δ(εk − εk′ − ωk−k′ + ω)

+ (terms withω → −ω)

]
. (19)

Convert the summations over k and k′ into integrations
and assuming that k is pointing along the z-direction

and k′ subtends an angle θ with it (at the end k integration
over all directions and magnitudes is to be performed). In-
sert an integral

∫
dqδ(q − |k − k′|) over q to stratify the

calculation as given below. Thus equation (19) becomes

M ′′(ω, T ) =
2

3
π

2N2

(2π)4mNe

∫ ∞

0

dqq2|D(q)|2
∫ ∞

0

dkk2

×
∫ ∞

0

dk′k′2
∫ π

0

dθ sin θδ(q − |k− k′|)

× f ′(1−f)n

[
eβω − 1

ω
δ(εk−εk′ − ωk−k′ + ω)

+ (terms withω → −ω)

]
. (20)

Here due to the presence of Fermi factors f ′(1 − f) the
integrand has finite value only around the Fermi surface
and vanishes outside the strip of width 2/β (ω � εF ).
Thus k and k′ can be approximately replaced by kF . With
this the θ integral can be simplified as:

∫ π

0

dθ sin θδ(q −
√
2kF

√
1− cos θ)

which will yield the result q
k2
F
. Using this and convert-

ing k integrals into energy integrals, the above equation
reduces to

M ′′(ω, T ) =
4

3

N2m2εF
(2π)3Nek2F

∫ qD

0

dqq3|D(q)|2

×
∫ ∞

−∞
dε

n

e−β(ε−εF ) + 1

×
[

1

eβ(ε−εF+ω−ωq) + 1

eβω − 1

ω

+ (terms withω → −ω)

]
. (21)

This is an expression for the imaginary part of memory
function as deduced by Götze-Wölfle [16]. It can be simpli-
fied by using electron-phonon matrix element for acoustic
phonons which is defined as [5]

D(q) =

(
1

2miNωq

)−1/2

qC(q); ωq = csq, (22)

where C(q) is the slowly varying function of q, mi is the
ion mass, N is the total number of unit cells and cs is the
sound velocity. To analyze equation (21), various limiting
cases using equation (22) were discussed in reference [16].

3 Memory function with gapped density
of states

In this section we go beyond the assumption of constant
electronic density of states and we consider a system with
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a gap around the Fermi surface. In this case, density of
states is zero in energy region (−Δ,Δ). Thus the energy
integration in equation (21) has to be

I =

∫ εF −Δ

−∞
dε

eβ(ε−εF )

eβ(ε−εF ) + 1

1

eβ(ε−εF+ω−ωq) + 1

+

∫ ∞

εF+Δ

dε
eβ(ε−εF )

eβ(ε−εF ) + 1

1

eβ(ε−εF+ω−ωq) + 1
. (23)

After simplification we have

I =
1

β

1

eβ(ω−ωq) − 1

× log

(
(1 + eβ(−Δ+ω−ωq))(1 + eβΔ)eβ(ω−ωq)

(1 + eβ(Δ+ω−ωq))(1 + e−βΔ)

)
.

(24)

Using this, the imaginary part of memory function can be
written as:

M ′′(ω, T ) =
π3N2ρ2F
4mk5F

∫ qD

0

dqq3|D(q)|2 1
β
n

×
[
eβω − 1

ω

1

eβ(ω−ωq) − 1

× log

[(
1 + eβΔ

1 + e−βΔ

)(
1 + e−β(Δ−ω+ωq)

eβΔ + eβ(ωq−ω)

)]

+(terms withω → −ω)] . (25)

This is the desired expression for the frequency and tem-
perature dependent imaginary part of memory function.
For Δ = 0 and using phonon matrix element (Eq. (22)),
this expression reduces to the expression (refer Eq. (54a))
given in original GW work [16], as it should. In actual
practise (i.e. for an arbitrary form of gap around the
Fermi surface), the general expression of the imaginary
part of memory function is complicated and is difficult to
proceed analytically. A general formulae is given in Ap-
pendix. Thus for the simplicity of calculation, we have
discussed the specific system in this article. Further to
write M ′′(ω, T ) in compact form, change the variable ωq

to Ω in above equation which can be rewritten as:

M ′′(ω, T ) =
2π

ω

∫ ωD

0

dΩα2F (Ω)
1

β

[
eβω − 1

eβ(ω−Ω) − 1

× 1

eβΩ − 1
log

(
1 + e−β(Δ−ω+Ω)

1 + e−β(Δ+ω−Ω)

)

− (terms withω → −ω)

]
, (26)

where α2F (Ω) is defined as

α2F (Ω) =
π2N2ρ2F
8mk5F c

4
s

Ω3|D(Ω)|2. (27)

This is known as phonon spectral function [11]. In the case
of cuprates, it is replaced by I2χ(Ω) which represents the

boson spectral function [13]. This form is same as given
by Allen [11]

(
α2F (Ω) =

N(0)

4v2F
〈〈| Mkk′ |2 (v(k)−v(k′))2

× δ(�ΩQ − �Ω)〉〉
)
.

Equation (26) is our main result. To discuss it in various
temperature and frequency regimes, we use the phonon
matrix element equation (22) and calculate M ′′(ω, T ) in
next sections.

3.1 DC memory function

In the zero frequency limit and assuming C(q) as a con-
stant i.e. C(q) = 1/ρF [5], the imaginary part of the mem-
ory function (Eq. (25)) becomes

M ′′(0, T ) =
1

8
π3 N

mmik5F

∫ qD

0

dqq5
1

(eβωq − 1)(e−βωq − 1)

× 1

ωq
log

[
1 + eβΔ

1 + e−βΔ

1 + e−β(Δ+ωq)

eβΔ + eβωq

]
.

(28)

Now consider the case of T � ωD, Δ, the above equation
reduces to

M ′′(0, T ) =
1

8
π3 N

mmik5F

∫ qD

0

dqq5
1

ωq

−1 + βωq

(βωq)2

× log

[
2− βΔ− βωq

2− βΔ+ βωq

]
. (29)

On substituting x = qΘD

qDT (i.e. βωq = x) where ΘD is the

Debye temperature, the dc memory function reduces to

M ′′(0, T ) =
1

8
π3 N

mmik5FΘD
q6D

(
T

ΘD

)5

×
∫ βΘD

0

dxx2(x− 1) log

[
2− βΔ− x

2− βΔ+ x

]
.

(30)

This expression under case T � ωD, Δ is equivalent to

M ′′(0, T )	A

{
T

ΘD
+

Δ

ΘD
+

1

T

(
Δ2

8ΘD
+
8Δ

5
− ΘD

6

)
. . .

}
,

(31)
where A refers for constant numerical factor. Similarly for
T << ωD, Δ, equation (28) becomes

M ′′(0, T ) = −1

8
π3 N

mmik5FΘD
q6D

(
T

ΘD

)5

×
∫ βΘD

0

dxx4e−x log

[
eβΔ + e−x

eβΔ + ex

]
. (32)
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This expression can also be simplified as:

M ′′(0, T ) 	 Ae−βΔ

{
1

5
− 3

4

(
T

ΘD

)5

. . .

}
. (33)

Substituting equation (32) in equation (8) and hence in
equation (6), leads to the expression of dc conductivity
for the electron-phonon interaction. Here if we insert gap
Δ = 0 in equation (28), we obtain equation (54b) as given
in reference [16], as expected.

3.2 AC memory function

We proceed again with equation (25) to study frequency
dependent behaviour of memory function in different
regimes. In the high frequency regime i.e. for ω � ωD and
using same approximation (C(q) = 1/ρF ) as considered
for the dc case, the imaginary part of memory function
becomes

M ′′(ω, T ) =
1

8
π3 N

mmik5F

∫ qD

0

dqq5
1

βωq

n

ω

×
[
log

(
1 + e−β(Δ−ω)

1 + e−β(Δ+ω)

)

−eβωq log

(
1 + e−β(Δ+ω)

1 + e−β(Δ−ω)

)]
. (34)

When the gap is smaller than the |ω − ωD| i.e. Δ < |ω −
ωD|, the above equation reduces to1

M ′′(ω, T ) =
1

8
π3 N

mmik5FΘD
q6D

(
T

ΘD

)5

×
∫ βΘD

0

dxx4 coth
(x
2

)
. (35)

From this we identify that at high temperature, the imag-
inary part of memory function becomes temperature and
frequency independent. This means the saturation be-
haviour ofM ′′(ω, T ) for ω � ωD. The reason is that under
this condition, the integral approaches to (ΘD/T )5 and it
cancels with prefactor (T/ΘD)5 in equation (35). At low
temperature, it varies linearly with temperature as the
integral approaches to (ΘD/T )4.

In the next section we compare our findings (Eq. (26))
with the Sharapov-Carbotte [13].

4 Comparison with Sharapov-Carbotte results

Sharapov and Carbotte have deduced a relation for the
generalized Drude scattering rate [13] taking electron-
boson interaction and non constant electronic density of
states. Using Kubo formula [32] and calculating the self

1 In the opposite case |ω − ωD| < Δ, equation (25) leads to
vanishing scattering rate.

energy under certain assumptions (as discussed below),
they derived the following expression

1

τ(ω, T )
=

π

ω

∫ ∞

0

dΩI2χ(Ω)

∫ ∞

−∞
dω′

×
[
Ñ(ω′ −Ω)

N(0)
+

Ñ(−ω′ +Ω)

N(0)

]

× [n(Ω) + f(Ω − ω′)]

× [f(ω′ − ω)− f(ω′ + ω)] , (36)

where I2χ(ω) is the boson spectral function and Ñ(ω) is
the quasiparticle electronic density of states and N(0) is
for normalization. In deriving the above formula, the fol-
lowing assumptions were made: (1) vertex corrections were
neglected, (2) energy independent character of plasma fre-
quency in the vicinity of Fermi level and (3) |Σ(ε+ ω) −
Σ∗(ε)| � ω where Σ(ε) is the electronic self energy.

To compare our approach (Eq. (26)) with SC ap-
proach (Eq. (36)), we have done calculations using mod-
els for electronic density of states and the boson spectral
function. First in SC approach, for the electronic density
of states, we use a square well type model with center
at Fermi energy and considered a gap of 2Δ around it.
Same gap is taken in our approach (Eq. (26)). Second,
for the boson spectral function, I2χ(Ω), we modelled it
as Lorentzian of the type ΓΩ

(Ω−ΩE)2+(Γ )2 where ΩE rep-

resents the boson peak frequency and Γ is the width of
the Lorentzian (this form has been used extensively in
Refs. [33–35]). Thus for comparison, we use the same form
of I2χ(Ω) in SC approach and our approach. In the whole
analysis, we have fixed the value of ΩE and Γ as 0.02 eV
and 0.04 eV, respectively in both approaches. The value
of Debye frequency (the upper limit of phonon frequency
integration Eq. (26)) is very much high as compared to
the Lorentzian width, hence ωD does not give any effect
in whole calculation. To compare the results from both
the approaches, the frequency dependent scattering rate
has been plotted at different temperatures. In Figure 1,
we can observe an excellent agreement between both the
approaches. As the gap magnitude is increased, the scat-
tering rate shows suppression upto the frequency ω ∼ Δ
as expected (compare Figs. 1a and 1c). These results qual-
itatively agree with experimental results [8,9].

In Figure 2, we plot 1/τ(ω → 0, T ) as a function of
temperature T . Here we can observe that the memory
function approach yields more magnitude over the SC
approach. In Figure 2a i.e. in zero frequency limit, the

ratio | 1/τMF −1/τSC

/1/τMF
|100K, where 1/τMF and1/τSC repre-

sents the scattering rate by memory function technique
and SC technique respectively, is 0.7 which becomes 0.4
at ω = 0.05 eV (as shown in Fig. 2b) and at ω = 0.5 eV it
further reduces to 0.031 (as shown in Fig. 2c). This shows
that the difference between scattering rates using memory
function approach and SC approach reduces as we go from
dc limit to finite frequency limit. Also both approaches
explain the Holstein’s mechanism at T = 0 K [36,37] (as
shown in Figs. 2b and 2c). Thus we notice that there are
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Fig. 1. Comparison plot of scattering rate 1/τ (ω, T )
(=M ′′(ω,T )) calculated using Memory function approach
(Mem, solid, green) and Sharapov-Carbotte approach (SC,
dashed, black) at temperature T = 10 K and 200 K and at
gap Δ = 0.02 eV and 0.20 eV. The agreement is excellent.
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Fig. 2. Temperature variation of scattering rate with two dif-
ferent approaches namely memory function (Mem, dotted) and
Sharapov-Carbotte (SC, dashed) at gap 0.02 eV; (a) dc case
(b) at ω = 0.05 eV (c) at ω = 0.5 eV.

discrepancies between the two approaches in the d.c. limit.
The reasons are discussed in next section.

Next, we have plotted 1/τdc at different temperatures
as a function of Δ and compare the both approaches. Here
we observe that 1/τdc decreases with the increase of gap
energy Δ. Also, we find that the difference between the
1/τSC and 1/τMF is not much dependent onΔ, but it does
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Fig. 3. Comparison of dc scattering rate (1/τdc) as a func-
tion of Δ using Memory function approach (Mem, Purple)
and Sharapov-Carbotte approach (SC, Red) at various tem-
peratures 50 K, 100 K and 200 K.
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Fig. 4. Variation of difference = (1/τMF − 1/τSC) of dc scat-
tering rate with temperature calculated by two different ap-
proaches MF and SC at Δ = 0.02 eV.

increase with increasing temperature. These discrepencies
observed in the dc limit are discussed in the next section.

5 Discussion

It is observed that the finite frequency scattering rate us-
ing memory function formula is in excellent agrrement
with the same obtained from SC formula as shown in Fig-
ure 1. This shows that the assumptions made in these
two different approaches are consistent at finite frequen-
cies. However, while discussing dc scattering rate, we ob-
serve significant discrepancy between the two approaches
(Figs. 2a and 3). To illustrate it further, we have plotted
the difference in the magnitudes of scattering rates calcu-
lated by both approaches. The difference (1/τMF −1/τSC)
at Δ = 0.02 eV is plotted in Figure 4. Here we find that
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Fig. 5. Plot of |Σ(ε+ω)−Σ∗(ε)| with temperature at different
frequencies such as (a) ω = 0.0001 eV, (b) ω = 0.001 eV and
(c) ω = 0.01 eV. Here Σ(ω) represents the self energy and ∗
corresponds to the conjugate.

this difference increases with the rise of temperature. The
reason behind this difference in the dc case is the assump-
tion made by SC i.e. ω � |Σ(ε + ω) − Σ∗(ε)| which be-
comes more severe in high temperature regime. To clarify
this fact, we plot the quantity |Σ(ε+ω)−Σ∗(ε)| as a func-
tion of temperature in Figure 5 (where the expression used
for Σ(ω) has been given in Ref. [13]). It shows that the
magnitude of the difference of self energy increases with
the temperature. This shows the stronger violation of the
condition ω � |Σ(ε + ω) − Σ∗(ε)| in high temperature
limit. It implies that SC formalism is not appropriate to
study the dc behavior and the disagreement is severe at
high temperature, but it is quite reasonable for the finite
frequency case.

Regime of validity of Memory function: It is important
to recognize that memory function calculation of 1/τ(ω)
presented here is also perturbative in character and has its
own limitations. Here in calculation, we have used the ex-
pansion for M(z) which is given below equation (9) where
M(z) = (zχ(z)/χ0) (1 + χ(z)/χ0 + . . .). In the leading or-
der approximation, we took χ(z)/χ0 � 1, which implies
that the magnitude of memory function is smaller than z
(M(z)/z = χ(z)/χ0). Thus to ensure this point we have
plotted the frequency dependent scattering rate for tem-
perature 10 K and 200 K at Δ = 0.02 eV and 0.20 eV in
Figure 6 and compared with the linear variation f(ω) = ω.
From Figure 6, we find that our approach is valid for
regime where Δ � T (as shown in Figs. 6a, 6c and 6d).
Thus it is quite suited to study the pseudogap phase of
cuprates when Δ is greater than the T . But our approach
is not good in the low frequency regime to discuss the case
where Δ ∼ T (as shown in Fig. 6b). Such small gap sce-
narios occur in spin/charge density systems [38–40].
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Fig. 6. Solid line: variation of scattering rate with frequency
at different temperature and Δ (in eV). Dotted line: plot of
f(ω) = ω to check the validity of memory function approach.
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Appendix

The imaginary part of memory function (Eq. (19)) is

M ′′(ω, T ) =
2π

3

1

mNe

∑

k,k′
|D(k− k′)|2(k− k′)2f ′(1 − f)n

×
[
eω/T − 1

ω
δ(ε− ε′ − ωk−k′ + ω)

+(terms withω → −ω)] . (A.1)

Converting the summations into energy integrals and in-
serting the dq integral as before, we have

M ′′(ω, T ) =
2π

3

N2

mNe

∫ ∞

0

dq

∫ ∞

−∞
dεN(ε)

∫ ∞

−∞
dε′N(ε′)

×
∫ π

0

dθ sin θδ(q−|k−k′|)|D(q)|2q2f ′(1−f)n

×
[
eω/T − 1

ω
δ(ε− ε′ − ωq + ω)

+(terms withω → −ω)] . (A.2)

Here the energy dependent density of states N(ε) has been
introduced. Thus on solving the integrals over ε′ and θ,
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the above equation reduces to

M ′′(ω, T ) =
2π

3

N2

mNek2Fω

∫ ∞

0

dq|D(q)|2q3

×
∫ ∞

−∞
dεN(ε)

eβ(ε−εF )

eβ(ε−εF ) + 1

1

eβωq − 1

×
[
N(ε− ωq + ω)

eβω − 1

eβ(ε−εF−ωq+ω) + 1

−N(ε− ωq − ω)
e−βω − 1

eβ(ε−εF−ωq−ω) + 1

]
. (A.3)

This is the general expression for the imaginary part of
memory function (called as GDS).
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The Mori’s projection method, known as the memory function method, is an important theoretical formalism
to study various transport coefficients. In the present work, we calculate the dynamical thermal conductivity in
the case of metals using the memory function formalism. We introduce thermal memory functions for the first
time and discuss the behavior of thermal conductivity in both the zero frequency limit and in the case of nonzero
frequencies. We compare our results for the zero frequency case with the results obtained by the Bloch-Boltzmann
kinetic approach and find that both approaches agree with each other. Motivated by some recent experimental
advancements, we obtain several new results for the ac or the dynamical thermal conductivity.
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I. INTRODUCTION

There have been significant advancements in the study of
the thermal transport coefficients for complex systems [1–5].
In such systems, the transport coefficients can be understood
via the transport lifetime which captures the role of different
interactions such as electron-impurity, electron-phonon, and
electron-electron interactions. Several methods [6–8] based on
the Kubo formalism and the Bloch-Boltzmann method have
been applied to compute the effects of such interactions on
various transport coefficients such as thermal conductivity.
The commonly used method is the Bloch-Boltzmann transport
method [9]. Within this approach, it is found that the thermal
conductivity κ(T ) is proportional to the temperature T both
in high and low temperature regimes in the case of impurity
interactions. While in the case of electron-phonon interactions,
it varies as T −2 in the low temperature limit (T � �D ,
where �D is the Debye temperature) and saturates to a
constant value in the high temperature limit (T � �D) [9].
These signatures are predicted long ago and are well verified.
However, the notion of frequency dependent (dynamical)
thermal conductivity was not previously known and hence
was not addressed in theoretical discussions.

Recently, the notion of the dynamical thermal conductivity
is introduced by Volz et al. [10]. With this idea, the recent
experiments access frequency in which ω dependence cannot
be ignored. There it is introduced in the context of its useful-
ness for the thermal design of microsystems and nanosystems
which operates at several GHz clock frequency. Cooling of the
Joule heating in such systems is an important issue [10] and it
requires detailed understanding of the frequency dependence
of the thermal conductivity. In Ref. [10], the dynamical thermal
conductivity is introduced in the context of phonon mediated
thermal transport in Si crystals. However, in the case of
metals, and particularly at certain frequency, the electronic
contributions to the thermal conductivity may predominate.
We consider that scenario and present the paper to a careful the-
oretical analysis of the frequency dependent electronic thermal
conductivity of metals in various regimes of interest. In a recent
computer simulation using the molecular dynamics technique,

*pankajbhalla66@gmail.com

it is found that the phononic thermal conductivity reduces
its magnitude at high frequencies [10]. Experimentally, it is
also studied in the context of semiconductor alloys and it is
found that the magnitude of the phononic thermal conductivity
reduces as the frequency increases [11].

Theoretically, the electronic and the phononic dynamical
thermal conductivity is discussed in the recent past by Shastry
[12] and others [13–16] in different contexts such as in open
systems, strongly correlated systems, semiconductor crystals,
etc. In the present work, we explicitly derive the various
expressions for the electronic thermal conductivity in case of
metal with electron-impurity and electron-phonon interaction.

We use the memory function formalism which was in-
troduced by Mori and Zwanzig [17–19]. It is formulated
in several renditions. The commonly used version named
projection operator formalism is the most fascinating regarding
the physical aspects of the systematic approximations. The
main motivation of this approach is the determination of the
time correlation function in quantum or classical many body
systems in a systematic way [20–29].

We calculate for the first time, the dynamical thermal
memory functions for the case of electron-impurity and
electron-phonon interactions. It is directly related to the
dynamical thermal conductivity viz. κ(z,T ) ∼ 1

z+MQQ(z,T ) ,
where MQQ(z,T ) is the thermal memory function and z is
the complex frequency. The details of MQQ(z,T ) will be
discussed in the next section. The results in the zero frequency
limit are consistent with the results predicted using the Bloch-
Boltzmann approach. We also calculate the dynamical thermal
memory functions in different frequency regimes and discuss
the effects of the impurity and the phonon scattering on it.

This paper is organized as follows: We review the basics of
the memory function formalism in Sec. II. Later in Sec. III,
we introduce the model Hamiltonian and then calculate the
thermal memory functions for the case of electron-impurity
and electron-phonon interactions. Then, we discuss its be-
havior in different frequency and temperature regimes. Here
we also calculate the asymptotic behavior of the thermal
conductivity in the presence of these interactions. The results
for the zero frequency case is compared with the results
previously obtained by the Boltzmann approach and we find
good agreement. We make several predictions in frequency
dependence cases in Sec. IV. Finally, in Sec. V, we conclude.

2469-9950/2016/94(11)/115114(12) 115114-1 ©2016 American Physical Society
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II. MEMORY FUNCTION FORMALISM

Before embarking into the detailed calculation of the
thermal memory function, let us first briefly review the general
framework of the memory function formalism in this section.

Consider two operators A and B corresponding to two
different physical observables. Their correlation function is
defined as [30–32]

χAB(t) = 〈A(t); B(0)〉, (1)

where 〈· · · 〉 denotes the thermal average and t is the time
variable. The Laplace transform of the correlation function in
the complex frequency domain can be expressed as

χAB(z) = 〈〈A; B〉〉z = −i

∫ ∞

0
eizt 〈[A(t),B]〉dt. (2)

Here [·,·] represents the commutator between two operators,
z is the complex frequency variable, and the outer angular
bracket 〈· · · 〉 in 〈〈A; B〉〉z refers to the Laplace transform.

In frequency space, the equation of motion of this correla-
tion function can be cast in the following form:

z〈〈A; B〉〉z = 〈[A,B]〉 + 〈〈[A,H ]; B〉〉z. (3)

Here H represents the total Hamiltonian of the system. In
the present work, we are interested in calculating the thermal
current-thermal current correlation function. Thus we replace
both the general operators A and B by the thermal current
operator JQ and Eq. (3) takes the form,

z〈〈JQ; JQ〉〉z = 〈[JQ,JQ]〉 + 〈〈[JQ,H ]; JQ〉〉z. (4)

Here the first term in the right-hand side contains equal
time commutator [JQ,JQ] which identically vanishes. Thus,
z〈〈JQ|JQ〉〉z = 〈〈[JQ,H ]; JQ〉〉z. Again applying equation of
motion on 〈〈[JQ,H ]; JQ〉〉z, one obtains

z〈〈JQ; JQ〉〉z = 〈〈[JQ,H ]; [JQ,H ]〉〉z=0−〈〈[JQ,H ]; [JQ,H ]〉〉z
z

.

(5)

Finally, the correlation function can be expressed as

χQQ(z,T ) = 〈〈[JQ,H ]; [JQ,H ]〉〉z=0−〈〈[JQ,H ]; [JQ,H ]〉〉z
z2

.

(6)

Following the Refs. [33,34], the correlation function χQQ(z,T )
and the memory function MQQ(z) are related as

MQQ(z,T ) = z
χQQ(z,T )

χ0
QQ(T ) − χQQ(z,T )

, (7)

where χ0
QQ(T ) is the static thermal current-thermal current

correlation function. This above expression is identical to that
in the case of electrical transport.

On considering the assumption that χQQ(z,T )/χ0
QQ(T ) is

smaller than one, the above expression with the leading order
term can be expressed as

MQQ(z,T ) ≈ z
χQQ(z,T )

χ0
QQ(T )

. (8)

The validity of this approximation is discussed in detail in
Refs. [35,36] for the electrical transport and the same should
follow to the case of thermal transport.

Using Eqs. (6) and (8), the thermal memory function can
be written as

MQQ(z,T ) = 〈〈[JQ,H ]; [JQ,H ]〉〉z=0−〈〈[JQ,H ]; [JQ,H ]〉〉z
zχ0

QQ(T )
.

(9)

This is an expression for the complex thermal memory function
in terms of the thermal force-thermal force correlation. Further
the thermal conductivity can be written in terms of the thermal
memory function as follows,

κ(z,T ) = i
1

T

χ0
QQ(T )

z + MQQ(z,T )
. (10)

This is a general expression for the thermal conductivity in a
memory function formalism (proof is given in Appendix A).
Here MQQ(z,T ) is the thermal memory function which pro-
vides the information about the effects of various interactions
such as electron-impurity and electron-phonon interactions
on the thermal conductivity κ(z,T ). The specific cases are
discussed in detail in the next section.

III. THERMAL CONDUCTIVITY

A. Model Hamiltonian

In this work, we consider a system in which electrons
interact with impurities and phonons. The total Hamiltonian
of such a system takes the form,

H = H0 + Himp + Hep + Hph. (11)

Here the first term in the right-hand side of the above equation
corresponds to the unperturbed part which is expressed as

H0 =
∑
kσ

εkc
†
kσ ckσ , (12)

where εk is the energy dispersion for free electrons, and ckσ

and c
†
kσ are annihilation and creation operators having crystal

momentum k and spin σ . The second term is the perturbed
Hamiltonian for the electron-impurity interactions which is
described as

Himp = N−1
∑

i

∑
kk′σ

〈k|Ui |k′〉c†kσ ck′σ . (13)

Here N represents the number of lattice cells, Ui refers for
impurity interaction strength, and sum over i index refers to
the number of impurity sites. Here the unit cell volume is taken
as unity. The third term of Eq. (11) describes the interacting
Hamiltonian for electron-phonon interactions which is defined
as

Hep =
∑
kk′σ

[D(k − k′)c†kσ ck′σ bk−k′ + H.c.]. (14)

Here bq(b†q) is the phonon annihilation(creation) operator
having momentum q. The electron-phonon matrix element
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D(q) can be considered in the following form [9]:

D(q) = 1√
2miNωq

qC(q), (15)

where mi is the ion mass, and ωq is the phonon dispersion.
C(q) is a slowly varying function of the phonon momentum
which in the case of metal is considered as 1/ρF , where ρF is
the density of the states (DOS) at the Fermi surface [9]. The
last term of the Hamiltonian represents free phonons and is
given by

Hph =
∑

q

ωq

(
b†qbq + 1

2

)
. (16)

With this Hamiltonian, we proceed to the calculation of the
thermal memory functions.

B. Thermal memory functions

To compute the thermal memory functions, we need to
define the heat current [37] which is the energy current where
energy is measured with respect to the electronic chemical
potential μ. In an operator form, it can be written as

JQ = 1

m

∑
k

k.n̂(εk − μ)c†kck, (17)

where n̂ is the unit vector parallel to the direction of heat
current and m is the electron mass.

Using this definition, let us focus on the calculation of
the thermal memory function and hence thermal conductivity.
In general, the MQQ(z,T ) is a complex valued function of
frequency having both real and imaginary parts. Its imaginary
part describes the scattering rate due to the presence of different
interactions such as electron-impurity and electron-phonon
interactions. On the other hand, the real part describes mass
enhancement.

1. Electron-impurity interaction

In the presence of only electron-impurity interactions, the
thermal memory function defined in Eq. (9) is computed by
considering the total Hamiltonian H = H0 + Himp.

To compute it, we first evaluate the commutator of JQ and
H . Since JQ commutes with the free part of the Hamiltonian
H0, then [JQ,H ] = [JQ,Himp]. Thus using Eqs. (13) and (17),
the commutator becomes

[JQ,H ] = 1

mN

∑
i

∑
kk′σ

〈k|Ui |k′〉,

(k(εk − μ) − k′(εk′ − μ)).n̂c
†
kσ ck′σ . (18)

Using the above expression, the Laplace transform and the
thermal average of the inner product 〈〈[JQ,H ]; [JQ,H ]〉〉z
becomes

= 1

m2N2

∑
ij

∑
kk′σ

∑
pp′τ

〈k|Ui |k′〉〈p|Uj |p′〉

× (k(εk − μ) − k′(εk′ − μ)).n̂,

(p(εp − μ) − p′(εp′ − μ)).n̂,

〈〈c†kσ ck′σ ; c†pτ cp′τ 〉〉z. (19)

By considering the case of dilute impurity, i.e., i = j and
performing the ensemble average using Eq. (2) followed by
integration over time, Eq. (19) takes the following form:

= 2Nimp

m2N2

∑
kk′

|〈k|U |k′〉|2[(k(εk − μ) − k′(εk′ − μ)).n̂]2

× fk − fk′

z + εk − εk′
. (20)

Here Nimp represents the impurity concentration, the factor 2
is due to the electronic spin degeneracy and fk = 1

eβ(εk−μ)+1
is

the Fermi distribution function, and β is the inverse of the
temperature.

Substituting the above equation in Eq. (9) and on per-
forming the analytic continuation z → ω + iη, η → 0+, the
imaginary part of the thermal memory function becomes

M ′′
QQ(ω,T ) = 2π

N2

Nimp

χ0
QQ(T )m2

∑
kk′

|〈k|U |k′〉|2

× [(k(εk − μ) − k′(εk′ − μ)).n̂]2

× fk − fk′

ω
δ(ω + εk − εk′). (21)

To reduce the equation further, it is convenient to assume that
the system has cubic symmetry. Then on averaging over all
directions, we obtain

[(k(εk − μ) − k′(εk′ − μ)).n̂]2

= 1
3 |k(εk − μ) − k′(εk′ − μ)|2. (22)

Using the above equation along with the assumption that U

is independent of momentum, Eq. (21) can be written in the
integral form,

M ′′
QQ(ω,T ) = U 2Nimp

3(2π )5m2χ0
QQ(T )

∫
dεk

vk
k2 sin θdθdφ,

∫
dεk′

vk′
k′2 sin θ ′dθ ′dφ′,

|k(εk − μ) − k′(εk′ − μ)|2,
fk − fk′

ω
δ(ω + εk − εk′). (23)

For our convenience, we drop the subscript k from all εk in
further calculations and solve one of the energy integrals using
the property of delta function. In a typical metal, the Fermi
energy is very large (of the order of 104K). On the other hand
the experiments are usually performed at temperature of the
order of 102K. Thus, electrons from a small region of width
kBT (in the present case kB = 1) around the Fermi surface
participate in the scattering events. Hence, we assume that the
magnitudes of k and k′ are equal to kF , the Fermi wave vector.
Thus, the imaginary part of the thermal memory function takes
the following form:

M ′′
QQ(ω,T ) = NimpU

2k4
F

6π3χ0
QQ(T )

∫
dε((ε − μ)2 + (ε − μ + ω)2)

× f (ε − μ) − f (ε − μ + ω)

ω
. (24)
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Substituting ε−μ

T
= η and ω

T
= x, the above expression can be

written in simpler form as

M ′′
QQ(ω,T ) = NimpU

2k4
F T 2

6π3χ0
QQ(T )

∫ ∞

0
dη

η2 + (η + x)2

x
,

[
1

eη + 1
− 1

eη+x + 1

]
. (25)

This is the final expression for the imaginary part of the thermal
memory function due to the impurity interactions. Here we
assume that the electronic kinetic energy is higher than the
temperature T . Further in various frequency and temperature
limits, its behavior can be discussed as follows:

Case I. In the dc limit, i.e., ω → 0.
In this limit, Eq. (25) reduces to

M ′′
QQ(T ) = Nimp

3π3

U 2k4
F T 2

χ0
QQ(T )

∫ ∞

0
dηη2 eη

(eη + 1)2
. (26)

This concludes that the temperature dependent imaginary part
of the thermal memory function, also known as thermal scat-
tering rate, 1/τth varies with temperature as T 2/χ0

QQ(T ), since
the static correlation function χ0

QQ(T ) is directly proportional
to the square of temperature (proof is given in Appendix B).
Thus, 1/τth in the zero frequency limit is independent of the
temperature. This result agrees with the Bloch-Boltzmann
result. On the other hand, due to the symmetry relations of the
thermal memory function [33], its real part becomes identically
zero in the dc limit. On substituting this in the expression for
the thermal conductivity [Eq. (10)], we find that the real part
of the thermal conductivity depends on the temperature as

Re[κ(T )] = 1

T

χ0
QQ(T )

M ′′
QQ(T )

. (27)

Using Eqs. (26) and (B2) (mentioned in Appendix B), the
above equation for the thermal conductivity reduces to

Re[κ(T )] = 1

72

πk2
F

NimpU 2m2
T ,

i.e., Re[κ(T )] ∝ T . (28)

This result is in accord with the result predicted earlier using
Boltzmann’s equation approach [Eq. (C10) in Appendix C 1].

Case II. In the finite frequency limit.
In the high frequency limit, i.e., ω � T , the imaginary part

of the thermal memory function becomes

M ′′
QQ(ω,T ) ≈ NimpU

2k4
F T 2

6π3χ0
QQ(T )

∫ ∞

0
dηx

[
1

eη + 1
− 1

eη+x + 1

]

≈ NimpU
2k4

F T 2

6π3χ0
QQ(T )

∫ ∞

0
dη

1

eη + 1

ω

T
. (29)

This yields that the thermal memory function or the ther-
mal scattering rate approximately varies linearly with the
frequency and inversely with the temperature. While in the
opposite case ω � T , the leading order term in Eq. (29)
becomes

M ′′
QQ(T ) ≈ NimpU

2k4
F T 2

6π3χ0
QQ(T )

∫ ∞

0
dη

η2

eη + 1

(
2 − ω

T

)
. (30)

These results are summarized in Table I.

TABLE I. The thermal scattering rate due to the electron-impurity
interaction in different frequency and temperature domains.

ω = 0 ω �= 0

1/τth ∼ T 0 ω � T ω � T

1/τth ∼ ω

T
1/τth ∼ (2 − ω

T
)

2. Electron-phonon interaction

Now consider that the system has only electron-phonon
interaction. Then, the thermal memory function can be
calculated in a similar fashion as is done in the case of the
impurity interaction. Here the total Hamiltonian is considered
as H = H0 + Hep + Hph. The thermal current commutes with
the free electron and the free phonon parts of the Hamiltonian.
Thus, we are left with the commutator of the thermal current
JQ and the interaction term Hep which is expressed as

[JQ,Hep] = 1

m

∑
kk′σ

(k(εk − μ) − k′(εk′ − μ)).n̂,

(D(k − k′)c†kσ ck′σ bk−k′ − H.c.). (31)

Using the above commutation relation, 〈〈[JQ,Hep];
[JQ,Hep]〉〉z can be cast in the following form:

= 1

m2

∑
kk′σ

∑
pp′τ

(k(εk − μ) − k′(εk′ − μ)).n̂,

(p(εp − μ) − p′(εp′ − μ)).n̂,

(D(k − k′)D∗(p − p′)〈〈c†kσ ck′σ bk−k′ ; c†p′τ cpτ b
†
p−p′ 〉〉z

−D∗(k − k′)D(p − p′)〈〈c†k′σ ckσ b
†
k−k′ ; c†pτ cp′τ bp−p′ 〉〉z).

(32)

On further simplifications, the above expression reduces
to

= 2

m2

∑
kk′

[(k(εk − μ) − k′(εk′ − μ)).n̂]2|D(k − k′)|2,

(fk(1 − fk′)(1 + n) − (1 − fk)fk′n),{
1

z + εk − εk′ − ωk−k′
− 1

z + εk′ − εk + ωk−k′

}
, (33)

where n = 1
eβωq −1

is the Boson distribution function at a
temperature 1/β.

On substituting the above equation in the thermal memory
function Eq. (9) and then performing the analytic continuation
z → ω + iη, η → 0+, the imaginary part of the thermal
memory function can be written as

M ′′
QQ(ω,T ) = 2π

χ0
QQ(T )m2

∑
kk′

[(k(εk − μ)−k′(εk′−μ)).n̂]2,

|D(k − k′)|2(1 − fk)fk′n,{
eω/T − 1

ω
δ(εk − εk′ − ωk−k′ + ω)

+ (terms with ω → −ω)

}
. (34)

115114-4



THEORY OF THE DYNAMICAL THERMAL CONDUCTIVITY . . . PHYSICAL REVIEW B 94, 115114 (2016)

To evaluate the above equation, we use the law of conservation
of energy εk = εk′ − ωq and conservation of momentum
q = k′ − k which simplify a factor appearing in Eq. (34) as
follows:

[(k(εk − μ) − k′(εk′ − μ).n̂]2 = [(ωqk′ + (εk − μ)q).n̂]2.

(35)

For simplicity, we consider that the system has cubic symmetry
as considered in the case of impurity. Then on averaging over
all directions, we obtain

[(ωqk′ + (εk − μ)q).n̂]2

= 1
3

{
ω2

qk
′2 + q2(εk − μ)2 + ωq(εk − μ)q2

}
. (36)

Substituting Eq. (36) in (34) and on converting the summations
to integrals, we get

M ′′
QQ(ω,T ) = N2

3χ0
QQ(T )m2(2π )5

∫
dεk

vk
k2 sin θdθdφ,

∫
dεk′

vk′
k′2 sin θ ′dθ ′dφ′

∫
dq|D(q)|2,

δ(q − |k − k′|)(1 − fk)fk′n,{
ω2

qk
′2 + q2(εk − μ)2 + ωq(εk − μ)q2

}
,{

eω/T − 1

ω
δ(εk − εk′ − ωk−k′ + ω)

+ (terms with ω → −ω)

}
. (37)

Following the argument as quoted in the impurity case, for low
energy scattering, we consider the magnitudes of k and k′ of
the order of kF . With these facts and solving one of the energy
integrals, the above equation reduces to

M ′′
QQ(ω,T ) = N2

12π3

1

χ0
QQ(T )

∫ ∞

0
dη

∫ qD

0
dqq|D(q)|2,

1

ey−1

1

e−η + 1

{
ω2

qk
2
F +q2η2T 2+ωqηT q2

}
,[

1

eη−y−x+1

ex−1

x
+(terms with ω → −ω)

]
.

(38)

Here we introduce new dimensionless variables εk−μ

T
= η,

ωq

T
= y, and ω

T
= x. Now integrating over η, we obtain

M ′′
QQ(ω,T ) = N2T 6

12πχ0
QQ(T )

(
qD

�D

)4 ∫ �D/T

0
dyy3|D(y)|2,

[
(x − y)

ex−y − 1

ex − 1

x(ey − 1)
,

{
k2
F

π2

(
�D

qDT

)2

+ 1

3
+ (x − y)2

π2
+ 1

2π2
y(x − y)

}

+ (terms with ω → −ω)

]
. (39)

Substituting the phonon matrix element using Eq. (15), the
thermal memory function is simplified to

M ′′
QQ(ω,T ) = N

24πmiρ
2
F

T 7

χ0
QQ(T )

(
qD

�D

)6 ∫ �D/T

0
dyy4,

[
(x − y)

ex−y − 1

ex − 1

x(ey − 1)

{
k2
F

π2

(
�D

qDT

)2

+ 1

3
+ (x − y)2

3π2
+ 1

2π2
y(x − y)

}

+ (terms with ω → −ω)

]
. (40)

This is the frequency and the temperature dependent thermal
memory function for the case of electron-phonon interaction.
In certain regimes of temperature and frequency, this can be
solved analytically and is discussed as follows:

Case I. In the dc limit, i.e., ω → 0.
In this limit, Eq. (40) reduces to

M ′′
QQ(T ) = N

12πmiρ
2
F

T 7

χ0
QQ(T )

(
qD

�D

)6 ∫ �D/T

0
dy,

y5ey

(ey − 1)2

{
k2
F

π2T 2

(
�D

qD

)2

+ 1

3
− 1

6π2
y2

}
.

(41)

In the high temperature limit, i.e., when the temperature is
much more than the Debye temperature (T � �D), the second
term within the curly brackets contributes more as compared
to the other terms. Because the other terms vary inversely as
square of the temperature, they contribute less then the second
term (i.e., 1/3). Hence, the thermal memory function M ′′

QQ(T )
with leading term can be approximated as

M ′′
QQ(T ) ≈ N

36πmiρ
2
F

T 7

χ0
QQ(T )

(
qD

�D

)6

,

∫ �D/T

0
dy

y5ey

(ey − 1)2
.

M ′′
QQ(T ) = N�4

D

144πmiρ
2
F

(
qD

�D

)6
T 3

χ0
QQ(T )

. (42)

Thus on considering the temperature variation of the static
thermal correlation function, we find that the imaginary part
of the dc thermal memory function varies linearly with the
temperature in the high temperature regime. On substituting
this in Eq. (10), we find that the real part of the thermal
conductivity varies as

Re[κ(T )] = constant. (43)

In the low temperature limit, i.e., when the temperature is
much less than the Debye temperature (T � �D), the first
term and the third term in Eq. (41) contributes more to the
thermal memory function as compared to the second term. If
we consider qD to be smaller than the kF , then the first term
dominates over the third term. Thus using this fact M ′′

QQ(T )
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becomes

M ′′
QQ(T ) ≈ Nk2

F

12π3miρ
2
F

(
qD

�D

)6
T 5

χ0
QQ(T )

,

∫ ∞

0
dyy5 ey

(ey − 1)2
. (44)

The above equation tells that the imaginary part of the thermal
memory function or the thermal scattering rate varies as
T 3 (1/τth ∝ T 3). As argued in the impurity case, the mass
renormalization is zero. Thus, we find that the real part of
the thermal conductivity [Eq. (10)] which varies inversely as
square of the temperature, i.e.,

Re[κ(T )] ∝ T −2. (45)

These results in different temperature regimes are in accord
with the results obtained by the Boltzmann equation ap-
proach [8,9] and with the experimental results [38–40]. In
Appendix C 2, we compare these results with the results from
the Bloch-Boltzmann equation and we observe agreement.

Case II. In the finite frequency case.
In the high frequency limit, i.e., when frequency is much

higher than the Debye frequency (ω � ωD), the thermal
memory function [Eq. (40)] becomes

M ′′
QQ(ω,T ) ≈ N

12πmiρ
2
F

T 7

χ0
QQ(T )

(
qD

�D

)6 ∫ �D/T

0
dy,

y4

ey − 1

{
k2
F

π2

(
�D

qDT

)2

+ 1

3
+ 1

3π2

ω2

T 2

}
.

(46)

In the high temperature limit, i.e., T � �D and ω � T , the
second term of Eq. (46) contributes more over the other terms.
Thus, the imaginary part of the thermal memory function
becomes

M ′′
QQ(ω,T ) ≈ N

36πmiρ
2
F

(
qD

�D

)6
T 7

χ0
QQ(T )

×
∫ �D/T

0
dy

y4

ey − 1
. (47)

On solving the integral in the above limits, we obtain

M ′′
QQ(ω,T ) ∝ T . (48)

In the case, when T � �D and ω � T , the third term of
Eq. (46) contributes to the thermal memory function as

M ′′
QQ(ω,T ) ≈ N

36π3miρ
2
F

T 7

χ0
QQ(T )

(
qD

�D

)6

× ω2

T 2

∫ �D/T

0
dy

y4

ey − 1
. (49)

In the above mentioned frequency and temperature regime, the
thermal memory function varies as ω2

T
.

In the low temperature limit, i.e., T � �D , the first term
and the third term are the leading order terms in the thermal

memory function. Further in the limit ω � T ,

M ′′
QQ(ω,T ) ≈ N

12πmiρ
2
F

T 7

χ0
QQ(T )

(
qD

�D

)6

×
{

k2
F

π2

(
�D

qDT

)2

+ 1

3π2

ω2

T 2

} ∫ ∞

0
dy

y4

ey − 1
.

(50)

Similarly in the low frequency limit, i.e., when frequency is
much smaller than the Debye frequency (ω � ωD), Eq. (40)
is written as

M ′′
QQ(ω,T ) ≈ N

24πmiρ
2
F

T 7

χ0
QQ(T )

(
qD

�D

)6 sinh (ω/T )

ω/T
,

∫ �D/T

0
dy

y5ey

(ey − 1)2
,

{
k2
F

π2

(
�D

qDT

)2

+ 1

3
− y2

6π2

}
. (51)

In the limit T � �D and ω � T ,

M ′′
QQ(ω,T ) ≈ N

36πmiρ
2
F

T 7

χ0
QQ(T )

(
qD

�D

)6

×
∫ �D/T

0
dy

y5ey

(ey − 1)2
. (52)

This shows the linear temperature variation and frequency
independent character of the thermal scattering rate.

In the case when T � �D and ω � T , Eq. (51) becomes

M ′′
QQ(ω,T ) ≈ Nk2

F

12π3miρ
2
F

T 5

χ0
QQ(T )

(
qD

�D

)4

×
∫ ∞

0
dy

y5ey

(ey − 1)2
. (53)

From the above equation, we find that M ′′
QQ(ω,T ) varies as T 3

and frequency independent behavior.
In the limit T � �D and ω � T ,

M ′′
QQ(ω,T ) ≈ Nk2

F

24π3miρ
2
F

T 5

χ0
QQ(T )

(
qD

�D

)4 sinh (ω/T )

ω/T

×
∫ ∞

0
dy

y5ey

(ey − 1)2
. (54)

FIG. 1. (a) The imaginary part of the thermal memory function for
the case of electron-impurity interaction is plotted with frequency at
different temperatures such as 200 (purple), 300 (brown), and 400 K
(blue) at fixed interaction strength U and impurity concentration Nimp.
(b) The low frequency regime of Fig. 1(a) is elaborated.
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TABLE II. The thermal scattering rate due to the electron-phonon interaction in different frequency and temperature domains.

ω = 0 ω � ωD ω � ωD

T � �D T � �D

1/τth ∼ T 1/τth ∼ T 3

ω � T ω � T

T � �D T � �D

1/τth ∼ ω2

T
1/τth ∼ T 3(

k2
F

�2
D

π2q2
D

+ ω2

3π2 )
T � �D

1/τth ∼ T

ω � T ω � T

T � �D

1/τth ∼ T 4 sinh(ω/T )
ω

T � �D T � �D

1/τth ∼ T 3 1/τth ∼ T

These analytical predictions of the dynamical behavior of
the thermal memory functions in different temperature and
frequency domains are supplemented by numerical calculation
in the next section. We summarize the above results in Table II.

IV. RESULTS AND DISCUSSION

In this section, we have plotted the imaginary part of the
dynamical thermal memory functions M ′′

QQ(ω,T ) for the case
of the electron-impurity and electron-phonon interactions. To
extract the characteristic frequency dependent and temperature
dependent behavior of M ′′

QQ(ω,T ), we suitably normalize it in
various cases.

First for the impurity interaction, we plot M ′′
QQ(ω,T )/M ′′

0
where M ′′

0 is the frequency and temperature independent

constant (= 2k4
F m

π5Ne
), as a function of frequency using Eq. (25) in

Fig. 1. Here we consider impurity concentration Nimp = 0.001
and interaction strength U = 0.1 eV. It is found that the
normalized thermal scattering rate increases linearly with the
frequency in the range where the frequency is very high as
compared to the temperature (as shown in Fig. 1(a)). This linear
feature becomes more prominent as the temperature is lowered.
For example in Fig. 1(b), the purple curve drawn at T = 200 K
starts showing a linear behavior above a frequency lower than
that of the other two curves drawn at higher temperatures such
as 300 and 400 K. The low frequency regime ω � T of the
plot is more elaborated in Fig. 1(b) which shows deviations
from linearity. Also in both the regimes, the thermal scattering
rate due to the impurity interaction decreases with the rise in
temperature. These features are in accord with our asymptotic
analytical predictions (Table I).

In the zero frequency limit, the thermal scattering rate
[Eq. (26)] becomes temperature independent. The same result

FIG. 2. (a) The imaginary part of the thermal memory function
for electron-phonon interaction is plotted with frequency at different
temperatures such as 200 (purple), 250 (red), 300 (brown), and
400 K (blue) at fixed Debye temperature �D = 300 K. (b) The low
frequency regime of Fig. 2(a) is elaborated.

can be obtained using the Boltzmann approach as mentioned
in Appendix C 1. This feature is also in accord with the
experimental findings [8,9].

For the electron-phonon interaction, the frequency de-
pendent behavior of the normalized thermal scattering rate
[Eq. (40)] is shown in Fig. 2 at different temperatures. Here
the Debye temperature �D is kept fixed at 300 K. In Fig. 2(a),
we observe that in the high frequency regime (ω � �D),

M ′′
QQ/M ′′

0 (M ′′
0 = Nmq6

D

6π3miρ
2
F Ne�D

) increases as the frequency
increases. While in the low frequency regime, it becomes
constant. To see the zoomed low frequency behavior, we
replot the same curves within a small frequency regime (as
shown in Fig. 2(b)). We also observe that the magnitude of
the thermal memory function reduces with the increase in
temperature. However, the exact temperature dependence in
the low frequency regime depends on whether the temperature
is greater or lower than the Debye temperature. The detail
asymptotic behaviors are obtained analytically in the previous
section (Sec. III) and given in Table II.

In Fig. 3, the real part of the thermal conductivity in the
case of electron-phonon interaction using Eq. (10) is plotted
as a function of frequency at a fixed Debye temperature �D

and at different temperatures. Here we assume that the leading
frequency dependence of the thermal conductivity is coming
from the thermal scattering rate. Thus to make our discussion
simpler, we neglect the frequency dependence of the mass
renormalization factor in the thermal conductivity coming
from the real part of the thermal memory function. Here we

have scaled the frequency with parameter ω0 (= Nmq6
D

6π3miρ
2
F Ne�D

),
which has the dimension of energy and normalized the real part
of the thermal conductivity Re[κ(ω,T )] with κ0 (= π2Ne

4mω0
). It is

FIG. 3. (a) The normalized frequency dependent thermal conduc-
tivity is plotted with the ratio ω/ω0 for electron-phonon interaction at
different temperatures such as 200 (purple), 250 (red), 300 (brown),
and 400 K (blue) and at Debye temperature �D = 300 K. Here ω0 is a
constant having dimensions of energy and the dashed line corresponds
to the scale for Debye frequency cutoff, i.e., ωD/ω0. (b) The low
frequency regime of Fig. 3(a) is elaborated.
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FIG. 4. (a) Plot of temperature dependent normalized dc imag-
inary part of the thermal memory function for electron-phonon
interaction at different Debye temperatures such as 200 (purple),
300 (brown), and 400 K (blue). (b) The variation of the normalized
thermal conductivity with T at the same Debye temperatures.

observed that the thermal conductivity decays with the increase
in frequency in a nonlinear manner. Also with the increase of
temperature, the thermal conductivity increases. This detail
behavior can be understood as follows. Since our calculation
is limited to a perturbative regime, i.e., M ′′

QQ(ω,T ) � ω,

then Re[κ(ω,T )] ∼ χ0
QQ

T

M ′′
QQ(ω,T )

ω2 . As χ
QQ
0 (T ) ∼ T 2, thus the

real part of the thermal conductivity becomes Re[κ(ω,T )] ∼
T M ′′

QQ(ω,T )
ω2 . Under this condition, the increase in the thermal

conductivity due to the increase in temperature is governed
by the factor T M ′′

QQ(ω,T ) which is an increasing function
of temperature. Using this relation and Table II, various
regimes of Fig. 4 can be understood. For example, (1) in
the regime T � ω � ωD , Re[κ(ω,T )] ∼ T 5 sinh(ω/T )

ω3 , (2) in

regime T � ω � ωD , Re[κ(ω,T )] ∼ T 2

ω2 , (3) for ω � ωD ,
ω � T , and T � �D , Re[κ(ω,T )] ∼ T 4( a

ω2 + b), where a

and b are constants, etc. The detail asymptotic results of
the thermal conductivity due to the electron-phonon and the
electron impurity is given in Tables III and IV. These signatures
are new predictions from our formalism and can be verified in
future experiments.

Now in the dc limit, we plot M ′′
QQ(T )/M0 as a function of

temperature T at different Debye’s temperatures in Fig. 4(a).
Here we find three important features. One is the increase
of the nonlinear thermal scattering rate with temperature
in the low temperature regime (∼T 3, refer to Table II).
Second, it increases linearly with the temperature at the
high temperature regime. Third in the intermediate regime
around the Debye temperature, there is a minima in the
thermal scattering rate. These features (at high and low
temperatures namely T 3 at T � �D and T at T � �D) are
in agreement with experiments [38–40]. In Fig. 4(b), using
Eq. (10) the normalized thermal conductivity has been plotted
with temperature T . This shows that it decreases as T −2

TABLE IV. The real part of the thermal conductivity due to the
electron-impurity interaction in different frequency and temperature
domains.

ω = 0 ω �= 0

κ ∼ T
ω � T ω � T

κ ∼ 1
ω

κ ∼ T

ω2

in the low temperature regime and becomes constant in the
high temperature regime. These results are consistent with the
results derived using the Boltzmann approach in Appendix C 2.
In the intermediate temperature regime, it passes through a
minimum. This minimum in the thermal conductivity plot is an
artifact of neglecting contributions from the Umklapp process
in the memory function. Such minima occurs near the Debye
temperature where the Umklapp process becomes important.
The same peculiarity is also found in the Bloch-Boltzmann
theory when the Umklapp processes are neglected [9,41]. Such
a minima is purely a theoretical artifact and is not observed in
any experiments [42].

V. CONCLUSION

Traditionally, the dc transport of a metallic system is discussed
in several contexts using the Boltzmann equation approach
with much success [8,34,43]. However within this approach,
the calculation of the dynamical thermal conductivity is
lacking. Also, the Boltzmann approach is solved using
relaxation time approximation [29]. On the other hand, the
memory function approach is beyond the relaxation time
approximation. So, it is a better choice to study the dynamical
transport properties in various electronic systems. Also, this
approach does not require the quasiparticle picture, hence has
a broader range of applicability [44–46]. Thus, the memory
function formalism is a better choice to study the dynamical
transport properties in various electronic systems. However, in
the present work, we deal with the system having well-defined
quasiparticles, i.e., metals.

In this work, we perform analytical calculation of the
dynamical thermal conductivity of metal for electron-impurity
and electron-phonon interactions. We discuss the results in
different frequency and temperature domains. Since in the
zero frequency limit thermal conductivity of the metal is well
known, we consider the results from the Bloch-Boltzmann
approach and the experimental findings as a benchmark and
compare our results with them.

According to the memory function formalism, the total
thermal memory function is the thermal current-thermal
current correlation function which captures the role of the
impurity and the electron-phonon interactions. This leads

TABLE III. The real part of the thermal conductivity due to the electron-phonon interaction in different frequency and temperature domains.

ω = 0 ω � ωD ω � ωD

T � �D T � �D

κ ∼ T 0 κ ∼ T −2

ω � T ω � T

T � �D T � �D

κ ∼ ω0T 0 κ ∼ T 4( a

ω2 + b)
T � �D

κ ∼ T 2

ω2

ω � T ω � T

T � �D

κ ∼ T 5 sinh(ω/T )
ω3

T � �D T � �D

κ ∼ T 4

ω2 κ ∼ T 2

ω2
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the thermal memory function as the sum of the memory
functions due to the electron-impurity interactions and the
electron-phonon interactions which further result to the total
thermal conductivity. We found that at the low temperature,
the thermal memory function due to the impurity interaction
shows the temperature independent behavior [Eq. (26)]. While
due to the electron-phonon interaction, it shows T 3 behavior
[Eq. (44)]. On the other hand, at the high temperature, the
thermal memory function gives linear temperature behavior
[Eq. (42)].

Now, in the dc limit, the thermal conductivity can be written
as

κ(T ) ≈ T

M ′′
QQ(T )

, (55)

which shows that it varies with an inverse of the memory func-
tion. According to the Matthiessen’s rule [9,47], resistivities
add up. Hence, the memory function also adds up which is
the sum of the memory function due to the electron-impurity
and the electron-phonon interactions. Based on that the thermal
conductivity can be explained as follows. At very low tempera-
ture regime, the conductivity comes mainly due to the impurity
interactions which gives the linear temperature dependence
behavior. As the temperature increases, the population of
the phonon starts increasing, resulting in the increase of the
memory function due to the electron-phonon interaction and
the corresponding thermal conductivity decreases. But as the
temperature becomes more than the Debye temperature �D ,
the population of the phonon saturates and thus the memory
function gives linear temperature dependent behavior and
hence the thermal conductivity becomes constant.

In other words, if we consider the impurity and phonon
contribution together, we see that the total thermal conductivity
can be expressed in an empirical form as

1

κtotal(T )
= 1

κimp(T )
+ 1

κep(T )

∼
{

A
T

+ BT 2, at T � �D

A
T

+ C, at T � �D.
(56)

Here, the first term and the second term are due to the electron-
impurity interaction and the electron-phonon interaction,
respectively and A, B, and C are material dependent con-
stants. These results are in accord with the results calculated
using the Bloch-Boltzmann approach [8,9] and also with the
experimental findings [38–40].

In a general theory of electrical and/or thermal conductivity
within the memory function(matrix) theory one must consider
the slow relaxation of the conserved total momentum. In
principle, one should consider all the relevant slow modes
to construct the “full memory matrix.” The mode with the
slowest relaxation rate is the most relevant in studying the
dynamics. First, to keep our discussion simple we neglect
the inclusion of the conserved total momentum. However,
we see good agreement between our results with that of the
previous theories and experiments as well. This is possible
because we have confined our discussions on metals with a
well-defined Fermi surface.

In the finite frequency cases we have several predictions
depending on the relative values of the frequency ω, tem-

perature T , and the Debye frequency ωD . Few of them can
be summarized as follows: (1) T � ωD: in this case, as we
move from the low frequency regime to the high frequency
regime we see a crossover from the κ ∼ T 2

ω2 behavior to the
κ ∼ T 0/ω0 behavior. (2) On the other hand for T � ωD , we
observe that κ ∼ T 4

w2 in the low frequency regime, then we
see κ ∼ T 5 sinh ω/T

ω3 behavior in the intermediate regime, and
finally see κ ∼ T 4( a

ω2 + b) behavior. These predictions can be
verified in future experiments. Moreover, the present approach
can also be used to study other transport properties such as
thermoelectric coefficients, etc.

APPENDIX A: THERMAL CONDUCTIVITY
AND MEMORY FUNCTION RELATION

In the linear response theory, the thermal conductivity is
expressed as [30–32]

κμν(z) = 1

T

∫ ∞

0
dteizt

∫ β

0
dλ〈JνQ(−i�λ)JμQ(t)〉. (A1)

Here μ, ν = x,y,z and represent special directions.
In the classical limit, i.e., � → 0, the above equation

reduces to

κμν(z) = 1

T 2

∫ ∞

0
dteizt 〈JνQ(0)JμQ(t)〉. (A2)

The time evolution of a dynamical variable f follows the
Liouville equation which is given as

∂f

∂t
= −Lf, (A3)

where L is the Liouvillian operator. The solution of the above
equation yields

f (t) = eiLt f (0). (A4)

Using the above relation, the Kubo formula for the thermal
conductivity can be written as

κμν(z) = 1

T 2

∫ ∞

0
dteizt 〈JνQ(0)eiLt JμQ(0)〉. (A5)

On further simplification, it becomes

κμν(z) = 1

T 2

〈
JνQ

∣∣∣∣ i

z + L

∣∣∣∣JμQ

〉
. (A6)

Now we introduce the projection operator P which is defined
as follows:

P =
∑
ν,μ

|JνQ〉〈JμQ|
〈JνQ|JμQ〉 = I − Q, (A7)

where I is an identity matrix and Q = I − P is an unprojected
part. Then replace L by L(P + Q) in Eq. (A6), and κμν(z)
becomes

κμν(z) = i
1

T 2

〈
JνQ

∣∣∣∣ i

z + LQ

∣∣∣∣JμQ

〉

− i
1

T 2

〈
JνQ

∣∣∣∣ i

z + LQ
LP 1

z + L

∣∣∣∣JμQ

〉
. (A8)

On expanding the above equation, the first term is

i 1
zT 2 〈JνQ|JμQ〉 which can be written as i

χ0
QQ(T )
T z

where χ0
QQ(T )
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is the static thermal current-thermal current correlation func-
tion. Inserting the projection operator into the second term, the
latter becomes

1

T 2

〈
JνQ

∣∣∣∣ i

z + LQ
L

∑
μ′Q

|Jμ′Q〉〈Jμ′Q| 1

z + L

∣∣∣∣JμQ

〉
. (A9)

Inserting the above expressions of the first and second terms
in Eq. (A8), the thermal conductivity in the isotropic case can
be written as

κ(z,T ) = i
1

T

χ0
QQ(T )

z + MQQ(z,T )
, (A10)

where MQQ(z,T ) is the thermal memory function,

MQQ(z,T ) = 1

T χ0
QQ(T )

〈
JQ

∣∣∣∣ z

z + LQL
∣∣∣∣JQ

〉
. (A11)

APPENDIX B: DERIVATION OF STATIC
CORRELATION FUNCTION

The static thermal current-thermal current correlation is
defined as [3]

χ0
QQ(T ) = 1

3T

∑
k

(εk − μ)2v2
kfk(1 − fk). (B1)

Converting the summation into the energy integral and
substituting εk−μ

T
= η, the above equation reduces to

χ0
QQ(T ) = T 2k3

F

3m

1

2π2

∫ ∞

0
dη

η2eη

(eη + 1)2

= T 2 Ne

m

π2

12
. (B2)

This shows that the static thermal current-thermal current
correlation varies quadratically in temperature.

APPENDIX C: THERMAL CONDUCTIVITY
USING BOLTZMANN APPROACH

1. For impurity interaction

The Boltzmann equation for the semiclassical distribution
function gk(r,t) is written as

vk
∂gk

∂r
=

(
∂gk

∂t

)
coll

=
∫

dk′

2π3
(W (k′ → k) − W (k → k′)).

(C1)
Here W (k′ → k) defines the transition probability of an
electron scattering from initial state k′ to final state k.
According to the Fermi golden rule, in the case of the impurity
scattering it can be expressed as

W (k′ → k) = 2π |〈k′|Himp|k〉|2δ(εk′ − εk). (C2)

Considering the impurity interaction Hamiltonian given in
Eq. (13), the transition probability can be expressed as

W (k′ → k) = 4π
Nimp

N2
|U (k′,k)|2gk(1 − gk′)δ(εk′ − εk).

(C3)

Here U (k′,k) = 〈k′|U |k〉, the matrix element for the impurity
interaction. Inserting the above equation in Eq. (C1), we obtain(

∂gk

∂t

)
coll

=
∫

dk′ Nimp

2π2N2
|U (k′,k)|2(gk′ − gk)δ(εk′ − εk).

(C4)

Now linearizing the Boltzmann equation using gk = fk +
δgk and taking equilibrium collision integral terms to zero,
Eq. (C4) can be written as(

∂gk

∂t

)
coll

=
∫

dk′ Nimp

2π2N2
|U (k′,k)|2(δgk′ − δgk)δ(εk′ − εk).

(C5)

In the standard procedure, the collision integral is solved by
an iterative procedure [8,34,43]. One starts with the relaxation
time approximation.

gk = fk + δgk = fk + kx

m
τ (εk)

(
∂fk

∂T

)
(∇T )x. (C6)

Thus the change in the distribution function is written as

δgk = gk − fk = kx

m
C(εk)

(
∂fk

∂ε

)
. (C7)

Here C(εk) is proportional to an energy dependent relaxation
time. On substituting the above expression in Eq. (C5) and
noticing that vx

k∇gk = kx

m

∂fk

∂T
∇T , one obtains

1

τ (εk)
= 2NimpmkF

πN2

∫ π

0
dθ |U (kF ,θ )|2 sin θ (1 − k.k′). (C8)

This shows that the thermal scattering rate due to the impurity
interaction is independent of the temperature. The thermal
conductivity is defined as

κ(T ) = 2

T 2

∑
k

τ (εk)(εk − μ)2 e(εk−μ)/T

(e(εk−μ)/T + 1)2
. (C9)

Substituting Eq. (C8) in the above equation, the thermal
conductivity due to the electron-impurity interaction shows
the temperature dependence as

κ(T ) = 1

72

πk2
F

NimpU 2m2
T ,

i.e., κ(T ) ∝ T . (C10)

From this we infer that the results of the thermal conductivity
using both approaches, the memory function and the Boltz-
mann approach, agree quantitatively with each other.

2. For electron-phonon interaction

Similarly for the electron-phonon interaction case, the
Boltzmann equation becomes

vk
∂gk

∂r
=

(
∂gk

∂t

)
coll

=
∫

dk(W (k + q → k) − W (k → k + q)). (C11)

Here W (i → f ) is the transition probability involving both
the emission and absorption of phonons. This, using the Fermi
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golden rule, can be expressed as [47]

W (k + q → k) = 2π |〈k|Hep|k + q〉|2δ(εk+q − εk ± ωq).

(C12)

Using Eq. (14), the above expression for the transition
probability can be written as

W (k + q → k) = 4π |D(q)|2gk+q(1 − gk)(nq + 1),

δ(εk + ωq − εk+q). (C13)

Considering all possible scattering processes, the collision
integral can be written as(

∂gk

∂t

)
coll

=
∫

dq(U (k + q : k)gk+q(1 − gk)

−U (k; k + q)gk(1 − gk+q)), (C14)

where

U (k + q; k) = W 0
q [(nq + 1)δ(εk + ωq − εk+q)

+ n−qδ(εk − ωq − εk+q)], (C15)

U (k; k + q) = W 0
q [(n−q + 1)δ(εk+q + ωq − εk)

+ nqδ(εk+q − ωq − εk)], (C16)

and W 0
q = 4π |D(q)|2.

The details of the calculation is given in the references
([8,34,43]). Here we note that using the relation U (k + q; k) =
eβεk+qe−βεkU (k; k + q) and linearizing the Boltzmann equa-
tion by substituting gk = fk + δgk and taking the equilibrium
collision integral terms to be zero, Eq. (C14) can be reduced
to (

∂gk

∂t

)
coll

=
∫

dqU (k; k + q){δgk+q(e−β(εk−εk+q),

(1 − fk) + fk) − δgk(e−β(εk−εk+q)fk+q

+ (1 − fk+q)}. (C17)

On further simplifications, the collision integral can be written
as(

∂gk

∂t

)
coll

= β

∫
dqW 0

q nq(fk+q(1 − fk)δ(εk+q + ω−q − εk)

+ fk(1 − fk+q)δ(εk+q − ωq − εk),

(δφ(k + q) − δφ(k)), (C18)

where δφ(k) = δgk
βfk(1−fk) .

As explained in the impurity scattering case the calculation
is done by an iterative procedure, where one introduces

δφ(k) = kx

m
C(εk). (C19)

From Eqs. (C18) and (C19), we have

kx

m

(
∂fk

∂T

)
(∇T )x =

(
∂gk

∂t

)
coll

= 4π

mT

∫
dq|D(q)|2nq,

{fk+q(1 − fk)δ(εk+q + ω−q − εk)

+ fk(1 − fk+q)δ(εk+q − ωq − εk)},
{(kx + qx)C(εk+q) − kxC(εk)}. (C20)

On inserting the phonon matrix element, solving the angular
integrals and introducing the dimensionless variables εk−μ

T
=

η and ωq

T
= z, the collision integral reduces to

(
∂gk

∂t

)
coll

= − 1

2πmiNρ2
F (2m)1/2

ε−3/2kx

∂fk

∂ε

(
T

�D

)3
q4

D

�D

,

∫ �D/T

0
dz

z2

ez − 1
,

{
eη + 1

eη−z + 1

[(
ε − 1

2
D

(
T

�D

)2

z2 − 1

2
T z

)
,

C(η − z) − εC(η)

]
+ ez(eη + 1)

eη+z + 1
,

[(
ε − 1

2
D

(
T

�D

)2

z2 + 1

2
T z

)
,

C(η + z) − εC(η)

]}
. (C21)

Here D = q2
D

2m
. On further simplifications, the above expression

can be written as

− kx

m
η

(
∂fk

∂ε

)
(∇T )x =

(
∂gk

∂t

)
coll

= − kx

2πmiNρ2
F

ε−3/2

(2m)1/2

∂fk

∂ε

(
T

�D

)3

× q4
D

�D

∫ �D/T

−�D/T

dz
z2

|ez − 1|
eη+1

eη+z+1
,

[(
ε − 1

2
D

(
T

�D

)2

z2 + 1

2
T z

)
,

C(η + z) − εC(η)

]
. (C22)

In the above equation, the contribution from the terms with
odd power in z vanishes. Thus on simplification, we have

2πmiNρ2
F ε

1/2
F (2m)1/2

m

�D

q4
D

(
�D

T

)3

η(∇T )x

=
∫ �D/T

−�D/T

dz
z2

|ez − 1|
eη + 1

eη+z + 1
,

[(
1 − D

2εF

(
T

�D

)2

z2

)
C(η + z) − C(η)

]
. (C23)

In the high temperature limit, i.e., T � �D , the term within the
bracket in Eq. (C23) with T 2 contributes more then the others
terms and in the case η � z, the C(η) can be approximated as

C(η) ≈ −16πmiρ
2
F Nε

3/2
F (2m)1/2�D

mDq4
D

(
�D

T

)
η(∇T )x.
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The thermal current is defined as

JQ = 2
∫

dk
(2π )3

vk(εk − μ)δgk

= 2k3
F

π2

∫
dηηC(η)

∂fk

∂η
. (C24)

Substituting the value of C(η) and using the relation JQ =
−κ(∇T )x , we find that the thermal conductivity in high
temperature regime becomes

κ(T ) ≈ 8

3

πk6
F miρ

2
F �2

DN

q6
Dm2

,

i.e., κ(T ) = constant. (C25)

Now in the case of low temperature (T � �D), the right-hand
side of Eq. (C23) can be written as∫ �D/T

−�D/T

dz
z2

|ez − 1|
eη + 1

eη+z + 1
[C(η + z) − C(η)]. (C26)

The above equation can be solved by the variational method
[43]. Following the Ref. [43], in the low temperature limit, we

can write

C(η) = −4π�Dε
1/2
F ρ2

F miN

3mq4
D

(
�D

T

)3

η(∇T )x. (C27)

Substituting the above equation in (C24), we observe that the
thermal conductivity shows a temperature dependence of the
following form,

κ(T ) ≈ 2

125

π3k4
F miρ

2
F �4

DN

m2q4
D

,

κ(T ) ∝ T −2. (C28)

Thus, we see that the thermal conductivity in the case of
electron-phonon interaction shows inverse square temperature
dependence in the low temperature regime and saturates
to a constant value in the high temperature regime within
the Bloch-Boltzmann approach and this agrees qualitatively
with our calculation using the memory function formalism.
Because of the approximate results of the thermal conductivity,
the numeric factors are different in the thermal conductivity
expressions in both the approaches.
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[33] W. Götze and P. Wölfle, Phys. Rev. B 6, 1226 (1972).
[34] N. Singh, Electronic Transport Theories: From Weakly to

Strongly Correlated Materials (Taylor and Francis Group, CRC
Press, Boca Raton, 2016).

[35] P. Bhalla and N. Singh, Eur. Phys. J. B 89, 49 (2016).
[36] P. Bhalla, N. Das, and N. Singh, Phys. Lett. A 380, 2000 (2016).
[37] G. D. Mahan, Many-Particle Physics, 2nd ed. (Plenum,

New York/London, 1990).
[38] J. M. Ziman, Proc. R. Soc. London A 226, 436 (1954).
[39] H. M. Rosenberg, Philos. Trans. R. Soc. London A 247, 441

(1955).
[40] P. G. Klemens, Thermal Conductivity of Solids at Low Temper-

atures (Springer-Verlag, Berlin, 1956), Vol. 14.
[41] F. Seitz and D. Turnbull, Solid State Physics, Advances in

Research and Applications (Academic Press, New York, 1957),
Vol. 4.

[42] A calculation based on the memory function formalism includ-
ing both the N-process and the U-process is planned for a future
investigation.

[43] T. Kasuya, Prog. Theor. Phys. 13, 561 (1955).
[44] A. A. Patel and S. Sachdev, Phys. Rev. B 90, 165146 (2014).
[45] A. Lucas, J. High Energy Phys. 03 (2015) 071.
[46] A. Lucas and S. Sachdev, Phys. Rev. B 91, 195122 (2015).
[47] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Science:

Physics (Saunders College, Rochester, 1976).

115114-12



JID:PLA AID:24276 /SCO Doctopic: Condensed matter [m5G; v1.195; Prn:20/01/2017; 8:33] P.1 (1-7)

Physics Letters A ••• (••••) •••–•••

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Role of acoustic phonons in frequency dependent electronic thermal 
conductivity of graphene

Pankaj Bhalla a,b

a Physical Research Laboratory, Navrangpura, Ahmedabad-380009, India
b Indian Institute of Technology, Gandhinagar-382355, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 October 2016
Received in revised form 10 November 2016
Accepted 6 January 2017
Available online xxxx
Communicated by R. Wu

Keywords:
Electronic transport in graphene
Scattering mechanisms
Thermal conductivity
Phonon scattering

We study the effect of the electron–phonon interaction on the finite frequency dependent electronic 
thermal conductivity of two dimensional graphene. We calculate it for various acoustic phonons present 
in graphene and characterized by different dispersion relations using the memory function approach. It is 
found that the electronic thermal conductivity κe(T ) in the zero frequency limit follows different power 
law for the longitudinal/transverse and the flexural acoustic phonons. For the longitudinal/transverse 
phonons, κe(T ) ∼ T −1 at the low temperature and saturates at the high temperature. These signatures 
qualitatively agree with the results calculated by solving the Boltzmann equation analytically and 
numerically. Similarly, for the flexural phonons, we find that κe(T ) shows T 1/2 law at the low 
temperature and then saturates at the high temperature. In the finite frequency regime, we observe 
that the real part of the electronic thermal conductivity, Re[κe(ω, T )] follows ω−2 behavior at the low 
frequency and becomes frequency independent at the high frequency.

© 2017 Elsevier B.V. All rights reserved.

In recent times, Graphene [1–3] has attracted a lot of atten-
tion both in the fundamental and applied research due to its 
unique electronic and optical properties. These properties include 
anomalous high electrical conductivity, high thermal conductivity, 
quantum Hall effect, effect of impurities on the electric properties, 
etc. [4–17] which make the use of this material quite promising 
for the fabrication or design of the electronic devices. Among these 
properties, electrical conductivity, Hall effect have been discussed 
several times in literature, while there is lack of discussions in the 
electronic contribution to the thermal conductivity. Thus, in the 
present work, we focus on the electronic thermal conductivity of 
graphene.

In the literature, it is argued that the unusual high thermal con-
ductivity of graphene [18,19] is mainly contributed by the phonons 
and the electronic contribution is small, hence neglected. How-
ever, in real systems, the total thermal conductivity is expressed 
as the sum of the electronic and the phononic thermal conduc-
tivity. In different temperature limits, these thermal conductivi-
ties show different temperature behavior. In the high temperature 
limit, due to larger number of phonons the electronic thermal con-
ductivity shows temperature independent behavior [20–22] due 
to the scattering by electron–phonon interactions. On the other 
hand, the phononic thermal conductivity shows T −1 behavior due 

E-mail address: pankajbhalla66@gmail.com.

to the dominating scattering mechanism by phonon–phonon inter-
actions. In the opposite limit i.e. the low temperature limit, the 
electronic and the phononic thermal conductivities are due to the 
interactions of electrons and phonons with impurities, boundaries, 
defects. These different scenarios of the electronic thermal con-
ductivity in both low and high temperature limits make this study 
important.

In case of metals, it has been depicted that at the low tem-
perature i.e. T � �D , �D being the Debye temperature, only the 
acoustic phonons within the phonon sphere of radius kph with 
kph � kD , where kD is the radius of Debye sphere, play a role 
in the electronic thermal conductivity [20–22]. In these three di-
mensional systems, it leads to T −2 behavior of the electronic 
thermal conductivity. In such systems, the radius of the Fermi 
sphere is larger than the radius of the Debye sphere i.e. 2kF � kD . 
Thus all phonons can scatter off the electrons. But in the sys-
tems where kF � kD , only small number of phonons can scatter 
off the electrons. These phonons are restricted within the en-
ergy range vskph ≤ 2vskF . This can be explained by introducing 
the new temperature scale known as Bloch Grüneisen (BG) tem-
perature which is smaller than the Debye temperature [23]. This 
scale defines two regimes i.e. low temperature (T � �BG) and 
high temperature (T � �BG) regimes for the electron–phonon in-
teraction in graphene. In the low temperature regime (T � �BG), 
the acoustic phonons with linear dispersion relation yield inverse 
temperature behavior to the electronic thermal conductivity (i.e. 

http://dx.doi.org/10.1016/j.physleta.2017.01.006
0375-9601/© 2017 Elsevier B.V. All rights reserved.
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κe ∼ T −1) and then change to the temperature independent behav-
ior in the high temperature regime (T � �BG) [24,25]. However, 
because of the two dimensional nature of the graphene, there are 
also other acoustic phonons known as flexural phonons or out 
of plane phonons which obey quadratic dispersion relation and 
hence give different power law behavior to the electronic ther-
mal conductivity. Thus the role of the different acoustic phonons is 
very important to understand the transport or the electronic ther-
mal conductivity of graphene. However most of the studies have
considered only the zero frequency limit. But for the generation 
of the integrated circuits, high frequency communication devices, 
the study of the electronic thermal conductivity in the dynamical 
regime is important as it may degrade the issue of the heat dissi-
pation within the systems [26–29].

With this motivation, we have examined the electronic thermal 
conductivity both in the zero frequency and the finite frequency 
regime using the memory function approach [30–34]. The advan-
tage of using memory function approach is that it directly deals 
with the dynamics of the transport [35]. Here we discuss the dy-
namical behavior of the electronic thermal conductivity due to the 
interactions of electrons with different acoustic phonons and also 
its difference with the behavior in normal metals. In the zero fre-
quency limit, our findings for the electronic thermal conductivity 
of graphene agrees qualitatively with the results calculated by solv-
ing the Boltzmann equation analytically and numerically [40,24,
25]. In the finite frequency regime, our findings may be impor-
tant from both the fundamental and the application points of view 
and may inspire important experimental studies in future.

This paper is organized as follows. In Sec. 1, first we discuss 
the basic idea of the thermal conductivity and its relation with the 
memory function. Then the model Hamiltonian considering only 
the electron–phonon interactions in graphene is discussed. Later, 
we discuss the phonon dispersion relation of different acoustic 
phonons. With these descriptions, we calculate the finite frequency 
and temperature dependent electronic thermal conductivity for 
different acoustic phonons. In Sec. 2, the results are presented in 
the two subsections. In one subsection, we discuss the electronic 
thermal conductivity in the zero frequency limit. In other subsec-
tion, the results for the finite frequency in different BG regimes 
has been discussed. Finally, in Sec. 3, we conclude.

1. Theoretical framework

1.1. Thermal conductivity

The thermal conductivity is defined as the rate of flow of heat 
across a unit area of cross section in a unit temperature gradi-
ent [36]. Mathematically, this can be depicted from the following 
expression

J Q = −κ∇T . (1)

Here J Q is the thermal current density and is defined as,

J Q = 1

m

∑
k

k.n̂(εk − μ)c†
kck, (2)

where ck (c†
k) is the annihilation (creation) operator having mo-

mentum k, εk is the electron energy dispersion of graphene, μ is 
the chemical potential, m is the electron mass and n̂ is the unit 
vector parallel to the direction of heat current. And in Eq. (1) ∇T
is the temperature gradient and κ is the thermal conductivity. The 
latter is known as response due to the change in the tempera-
ture gradient and is generally analyzed by various approaches [20,
21] where the gradient of the temperature is considered as static. 
But in the present work, we assume that ∇T is not static, while 

it oscillates with the external driving frequency ω. This oscillation 
leads to the dynamical variation of the thermal conductivity. Here 
we set h̄ = 1 and kB = 1 in our calculations.

To compute it, we employ the memory function approach. Fol-
lowing the latter approach, the dynamical thermal conductivity at 
complex frequency z and temperature T is defined as [22]

κ(z, T ) = i

T

χ0
Q Q (T )

z + M Q Q (z, T )
, (3)

where χ0
Q Q (T ) is the static thermal current–thermal current cor-

relation function i.e. χ0
Q Q (T ) = π

24
k3

F
m2 v F

T 2, where kF is the Fermi 
wave vector and v F is the Fermi velocity, M Q Q (z, T ) is the ther-
mal memory function.

It is known that within the perturbation theory, the thermal 
memory function can be expressed to the leading order in the 
electron–phonon coupling, as [37,35,22]

M Q Q (z, T ) = 〈〈[ J Q , H]; [ J Q , H]〉〉z=0 − 〈〈[ J Q , H]; [ J Q , H]〉〉z

zχ0
Q Q (T )

.

(4)

This is the complex memory function in which the imaginary part 
of the memory function describes the thermal scattering rate and 
the real part describes the mass enhancement factor. In the present 
work, we focus on the thermal scattering rate which leads to the 
real part of the thermal conductivity. Here for simplicity, we have 
ignored the mass enhancement contribution to the thermal con-
ductivity. To calculate it, we require the total Hamiltonian that is 
discussed in the next subsection.

1.2. Model Hamiltonian

We consider a two dimensional graphene with only electron–
phonon interactions. The Hamiltonian of such a system is de-
scribed as

H = H0 + Hep + Hph, (5)

where H0 = ∑
kσ εkc†

kσ ckσ and Hph = ∑
q ωq

(
b†

qbq + 1
2

)
corre-

sponds to the Hamiltonians of the free electrons and phonons 
respectively. Here ωq is the phonon energy dispersion, bq (b†

q)

is the phonon annihilation (creation) operator having phonon 
wave vector q = k − k′ and σ is the electron spin. Hep de-
scribes the electron–phonon interactions and is given as Hep =∑

kk′σ

[
D(k − k′)c†

kσ ck′σ bk−k′ + H .c.
]

, where D(q) is the electron–

phonon matrix element. The latter is usually written in the follow-
ing form [38,39]

D(q) = D0q√
2ρmωq

(
1 −

(
q

2kF

)2
)1/2

. (6)

Here D0 is the deformation potential coupling constant, ρm is the 
graphene mass density and ωq is the phonon energy dispersion.

1.3. Phonon dispersions

Before proceeding to compute the thermal scattering rate and 
the corresponding electronic thermal conductivity for the sake of 
completeness, we will first discuss the phonon dispersion relations 
in this subsection.

The thermal transport due to the electron–phonon interactions 
significantly depends on the characteristics of the phonon which 
are further determined by the two dimensional structure of the 
graphene. In graphene, there are two carbon atoms per hexagonal 
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unit cell which gives six phonon branches in the dispersion spec-
trum. These are three acoustic and three optical branches namely 
LA (Longitudinal Acoustic), TA (Transverse Acoustic), LO (Longitudi-
nal Optical), TO (Transverse Optical), ZA (Flexural Acoustic) and ZO 
(Flexural Optical). The detailed description of these phonons are 
discussed in Refs. [16,17,40,41]. Among these, the optical phonons 
usually have higher energies than the acoustic phonons. And in the 
present work our main focus is on the low temperature behavior 
(i.e. below the Debye temperature) of the electronic thermal con-
ductivity. Thus, for the time being we ignore the contribution of 
optical phonons and consider only acoustic phonons henceforth.

From the phonon dispersion spectra, it has been found that 
these modes follow different dispersion relations. The LA and TA 
modes follow the linear dispersion relations [41,42] i.e.

ωLA ≈ vLAq

ωTA ≈ vTAq, (7)

where vLA and vTA are the longitudinal and transverse phonon ve-
locities and vLA = 21.3 × 103 m s−1, vTA = 14.1 × 103 m s−1 [42].

The other acoustic phonon ZA approximately follows the 
quadratic dispersion relation as [41,43]

ωflex ≈ αq2. (8)

Here the parameter α =
(

s
ρm

)1/2
, where s is the bending stiffness 

of the graphene, ρm is the graphene mass density and α = 4 ×
10−7 m2 s−1 [44].

1.4. Calculation of κe(ω, T )

As discussed earlier, the electronic thermal conductivity can be 
computed using Eq. (3) and (4). Thus with the definitions of the 
thermal current (Eq. (2)) and the model Hamiltonian (Eq. (5)), the 
imaginary part of the thermal memory function or the thermal 
scattering rate can be expressed as

M ′′
Q Q (ω, T )

= 4π

χ0
Q Q (T )m2

×
∑
kk′

[(
k(εk − μ) − k′(εk′ − μ)

)
.n̂

]2 |D(k − k′)|2

(1 − fk) fk′n

{
eω/T − 1

ω
δ(εk − εk′ − ωk−k′ + ω)

+ (terms with ω → −ω)} . (9)

Here fk = 1
eβ(εk−μ)+1

and n = 1
eβωq −1

are the Fermi and the Boson 
distribution functions, β is the inverse of the temperature and fac-
tor 4 is for the two spin and two valley degeneracies.

To simplify Eq. (9), we convert the summations over momen-
tum indices into the two dimensional energy integrals using the 
linear electron energy dispersion relation εk = vFk and εk′ = vFk′ , 
where vF is the Fermi velocity. This linear dispersion relation dis-
tinguish the characteristics of the graphene from those of the three 
dimensional normal metals which follows the quadratic dispersion 
relation. Further these simplifications along with integrations over 
the angular parts yield

M ′′
Q Q (ω, T )

= ε2
F D2

0

4π2m2ρm v4
F kF χ

0
Q Q (T )

∫
dεk

λ∫
0

dq
q2

ωq

√
1 −

(
q

2kF

)2

(
ω2

qk2
F + (εk − μ)2q2 + ωq(εk − μ)

2
q2

)
(1 − f (εk))n

{
eω/T − 1

ω
f (εk − ωq + ω) + (terms with ω → −ω)

}
. (10)

Here we use the expression for the electron–phonon matrix ele-
ment given in Eq. (6) and the symbol λ corresponds to the upper 
cut off value of the phonon momentum. Since in normal metals, 
the Fermi sphere is very large as compared to the Debye sphere, 
the phonons residing in the Debye sphere participate in scattering 
events and we restrict λ to qD , qD being the Debye momentum. 
While in the case of graphene, this does not remain the same due 
to the smaller Fermi surface than the Debye surface. This allows 
only phonons residing below the Fermi surface to participate in 
the scattering phenomenon, hence restrict the upper cut off value 
of q integral to 2kF . Further the above Eq. (10) for graphene can be 
solved for various acoustic phonons in the following subsections.

1.4.1. Longitudinal/Transverse acoustic phonons (LA/TA)
To compute M Q Q (z, T ) for the Longitudinal and the Transverse 

acoustic phonons (having linear dispersion relation), we define few 
dimensionless quantities such as εk−μ

T = η, ωq
T = y and ω

T = x, 
where ωq = vsq, vs ≡ (vLA, vTA). Using these variables and then 
performing the integral over the energy, Eq. (10) becomes

M ′′
Q Q (ω, T )

= ε2
F D2

0

4π2m2ρm v4
F v5

s kF

T 6

χ0
Q Q (T )

�BG/T∫
0

dy
y3

e y − 1

(
1 − y2T 2

2�2
BG

)

{
x − y

ex−y − 1

ex − 1

x

(
�2

BG

4T 2
+ π2

3
+ (x − y)2

3
+ y(x − y)

4

)

+ (terms with ω → −ω)} . (11)

Here �BG is the Bloch–Grüeinsen temperature and is equal to 
2kF vs . Further, the above expression in different frequency and 
temperature domains can be discussed or analyzed as follows:

Case-I: The zero frequency limit i.e. ω → 0
In this limit in Eq. (11), M ′′

Q (T ) becomes

M ′′
Q Q (T ) = ε2

F D2
0

2π2m2ρm Av4
F v5

s kF

T 6

χ0
Q Q (T )

×
�BG/T∫

0

dy
y4e y

(e y − 1)2

(
1 − y2T 2

2�2
BG

)

×
(

�2
BG

4T 2
+ π2

3
+ y2

12

)
. (12)

Here, we find that M ′′
Q Q (ω, T ) for the case of interaction of the 

electrons with the longitudinal or transverse phonons leads to the 
linear and the quadratic temperature dependence in the high (T �
�BG) and low (T � �BG) temperature regimes respectively.

Now the electronic thermal conductivity Eq. (3) in the zero fre-
quency limit can be written as [22]

κe(T ) = 1

T

χ0
Q Q (T )

M ′′
Q Q (T )

≈ T

M ′′
Q Q (T )

. (13)

Thus the electronic thermal conductivity depends inversely on the 
thermal memory function. From Eqs. (12) and (13), we find that 
κe(T ) for the case of LA and TA phonons varies inversely with the 
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Table 1
The results of thermal memory function and the electronic thermal conductivity for the interaction of electrons with LA/TA and ZA phonons in different frequency and 
temperature domains.

Regimes LA/TA phonons ZA phonons

Thermal memory function 
1/τth or M ′′

Q Q

Electronic thermal 
conductivity, κLA/TA

e

Thermal memory function 
1/τth or M ′′

Q Q

Electronic thermal 
conductivity, κZA

e

ω = 0, T � �BG T 1 T 0 T 1 T 0

ω = 0, T � �BG T 2 T −1 T 1/2 T 1/2

ω � T � �BG T 2 T 3ω−2 T 1/2 T 3/2ω−2

ω � �BG � T T 1 T 2ω−2 T 1 T 2ω−2

T � ω � �BG T 3ω−1eω/T T 4ω−3eω/T T 5/2ω−1eω/T T 7/2ω−3eω/T

�BG � ω � T T 1 T 2ω−2 T 1 T 2ω−2

�BG � T � ω T −1ω2 T 0ω0 T −1ω2 T 0ω0

T � �BG � ω T 2ω2 T 3 ω2 T −1/2 T 1/2

temperature and becomes saturate at the low and the high tem-
perature regimes respectively (as shown in Table 1). These are in 
accordance with the results existed in the literature [24,25].

Case-II: Finite frequency regimes
In finite frequency regimes, the asymptotic results of the thermal 
memory function and the corresponding electronic thermal con-
ductivity in different temperature and the frequency regimes are 
shown in Table 1. Here, we observe that M ′′

Q Q (ω, T ) shows fre-
quency independent behavior at extremely low frequency (or dc 
limit) and then in the intermediate regimes, the complicated be-
havior is observed. In the high frequency regime, due to more ex-
citations, it varies quadratically with the increase in the frequency.

Now from Eq. (3), the real part of the electronic thermal con-
ductivity is expressed as

Re[κe(ω, T )] = χ0
Q Q (T )

T

M ′′
Q Q (ω, T )

ω2 + (M ′′
Q Q (ω, T ))2

, (14)

where M ′′
Q Q (ω, T ) for different regimes are given in Table 1. In 

the perturbative regime of small electron–phonon couplings, we 
assume that the frequency dependent thermal memory function is 
small. Using this assumption, Eq. (14) can be written as [22,37]

Re[κe(ω, T )] ≈ χ0
Q Q (T )

T

M ′′
Q Q (ω, T )

ω2
≈ T M ′′

Q Q (ω, T )

ω2
. (15)

Here we use the temperature variation of the static correlation 
function. On substituting the variation of the temperature and the 
frequency dependent thermal memory function, we conclude that 
the electronic thermal conductivity at high frequency shows fre-
quency independent behavior. While at the low frequency, it gives 
large conductivity due to the weakly frequency dependent behav-
ior of the thermal memory function. These behaviors are summa-
rized in Table 1.

1.4.2. Flexural acoustic phonons (ZA)
Now, in the case of the flexural acoustic phonons having 

quadratic dispersion [43] i.e. ωq = αq2, the thermal memory func-
tion can be computed in a similar fashion as done in the case of 
the LA/TA phonons.

Following the same procedure, the Eq. (10) for ZA phonons is 
written as

M ′′
Q Q (ω, T )

= ε2
F D2

0

8π2m2ρm v4
F α

3/2kF

T 7/2

χ0
Q Q (T )

�BG/T∫
0

dy
y1/2

e y − 1

(
1 − yT

8�BG

)

×
{

x − y

ex−y − 1

ex − 1

x

(
�BG

4T
y + π2

3
+ (x − y)2

3
+ y(x − y)

4

)

+ (terms with ω → −ω)} . (16)

This is analyzed in different frequency and temperature domains 
as follows.

Case-I: The zero frequency limit i.e. ω → 0
Using this limit in Eq. (16), we have

M ′′
Q Q (ω, T ) = ε2

F D2
0

4π2m2ρm v4
F α

3/2kF

T 7/2

χ0
Q Q (T )

×
�BG/T∫

0

dy
y3/2e y

(e y − 1)2

(
1 − yT

8�BG

)

×
(

�BG

4T
y + π2

3
+ y2

12

)
. (17)

Further in the high and the low temperature regimes, Eq. (17)
shows that the thermal memory function M ′′

Q Q (T ) varies as a 
square root and linearly with temperature at T � �BG and T �
�BG respectively (shown in Table 1). Accordingly, the electronic 
thermal conductivity (Eq. (13)) leads to the T 1/2 power law behav-
ior at the low temperature and temperature independent behavior 
in the high temperature.

Case-II: Finite frequency regimes
In this case, we have shown the asymptotic results in Table 1. It is 
observed that the frequency variation for M ′′

Q Q (ω, T ) and the cor-
responding κe(ω, T ) is the same as the case for the longitudinal or 
the transverse phonons. But the temperature variations are differ-
ent. At the temperature higher than the BG temperature, the ZA 
phonons show identical temperature dependent behavior as the 
LA/TA phonons. On the other hand, at the low temperature then 
the BG temperature, the temperature dynamics of ZA phonons is 
different from the LA/TA phonons.

2. Results

In this section, we present our findings for the thermal scatter-
ing rate and the electronic thermal conductivity for different cases.

2.1. Electronic thermal conductivity in zero frequency limit

In Fig. 1, M ′′
Q Q (T ) is plotted as a function of T for LA and 

TA phonons at different �BG which depends on the carrier den-
sity n. Here we separately plot it by setting �BG ≈ 57

√
n and 

�BG ≈ 38
√

n for the LA and the TA phonons respectively. Also, 
we have scaled the M ′′

Q Q (ω, T ) with M ′′
0 (= 6ε2

F D2
0

π3ρm v3
F v5

s kF
). It is ob-
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Fig. 1. The imaginary part of the thermal memory function for the longitudinal and transverse acoustic phonons are plotted with temperature at different �BG ∝ √
n. (a): For

the longitudinal acoustic (LA) phonons and (b): for the transverse acoustic (TA) phonons.

Fig. 2. The electronic thermal conductivity for the longitudinal and transverse acoustic phonons are plotted with temperature at different �BG ∝ √
n. (a): For the longitudinal 

acoustic (LA) phonons and (b): for the transverse acoustic (TA) phonons.

served that the thermal memory function increases linearly with 
increase in the temperature in the high temperature T � �BG and 
non-linearly in the low temperature T � �BG regimes. Also, it 
decreases with the increase in the carrier density or �BG. This de-
crease is due to the linear density of states which provides more 
phase space to phonons to scatter. This results in the less electron–
phonon scattering rate. On comparing the Fig. 1(a) and 1(b), it is 
found that the magnitude of the thermal memory function for the 
TA phonons is more than the LA phonons. This is due to the low 
phonon velocity of the TA phonons.

The corresponding electronic thermal conductivity for LA and 
TA phonons is shown in Fig. 2. Here for T � �BG, the elec-
tronic thermal conductivity reduces with the increase in T and at 
T � �BG, it saturates. These observed features are in accordance
with the results existed in the literature [24,25]. In the interme-
diate regime i.e. around �BG, the small dip is observed which is 
due to the consideration of the normal process scattering in the 
system.

For the flexural (ZA) phonons, M ′′
Q Q (T ) is shown with the vari-

ation in the temperature in Fig. 3. Here we have set �BG ≈ 0.1n. 
This small �BG ensures that these phonons play significant role 
in the low temperature behavior of the electronic thermal con-

ductivity of graphene. Here the value of M ′′
0 is 3ε2

F D2
0

π3ρm v3
F k4

F α5/2 . It is 
observed that the thermal memory function increases with the in-
crease in the temperature by power law T 1/2 which further results 
the increase in the electronic thermal conductivity as T 1/2 law. But 
at the high temperature, it increases linearly similar to the case of 
LA/TA phonons and hence results in the temperature independent 
electronic thermal conductivity.

2.2. Electronic thermal conductivity in finite frequency regime

To discuss our results at the finite frequency, we plot M ′′
Q Q (ω,

T )/M ′′
0 and Re[κe(ω, T )]/κ0 with the variation in the frequency at 

different temperature ratio i.e. T /�BG.
In Figs. 4 and 7(a), we find that in the high frequency regime, 

the thermal memory function increases with the increase in the 
frequency. While at the low frequency, it shows saturation behav-
ior. Next, using this variation, we plot the real part of the electronic 
thermal conductivity (14) in Figs. 5, 6 and 7(b). From the frequency 
behavior of the electronic thermal conductivity, we observe that it 
is suppressed by the factor 1/ω2 in the high frequency regime. 
While in the low frequency regime, the frequency variations are 
observed. This frequency dependent behavior of κe(ω, T ) is iden-
tical to the case of the metal. This gives the signature that the 
two dimensional scenario modifies the temperature variation of 
the electronic thermal conductivity and does not give effect on the 
frequency variation of κe(ω, T ).

By comparing Figs. 2(a), 2(b) and 3(b), we note that the mag-
nitude of electronic thermal conductivity κe(T ) is different in all 
three cases. This is due to the different values such as vLA = 21.2 ×
103 m s−1, vTA = 14.1 × 103 m s−1 and α = 4.7 × 10−7 m2 s−1 for 
the longitudinal, transverse and the flexural phonons respectively. 
Due to it, the LA phonons contribute more to the electronic ther-
mal conductivity as compared to the TA and ZA phonons. This can 
also be explained as follows.

According to the Mathiessen’s law [20,21], the total resistivity 
is the sum of the resistivities due to different interactions sepa-
rately. And the resistivity is directly proportional to the scattering 
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Fig. 3. (a): The thermal memory function for the flexural acoustic phonons (ZA) is plotted with temperature at different �BG ∝ n and (b): the corresponding electronic 
thermal conductivity.

Fig. 4. The frequency and temperature dependent thermal memory function or the thermal scattering rate for the longitudinal and transverse acoustic phonons are plotted 
with frequency at different T /�BG ratios. (a): For the longitudinal acoustic (LA) phonons and (b): for the transverse acoustic (TA) phonons.

Fig. 5. The frequency and temperature dependent electronic thermal conductivity for the longitudinal acoustic phonons is plotted with frequency at different T /�BG ratios.

Fig. 6. The frequency and temperature dependent electronic thermal conductivity for the transverse acoustic phonons is plotted with frequency at different T /�BG ratios.
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Fig. 7. (a): The thermal memory function for the flexural acoustic phonons (ZA) is plotted with frequency T /�BG ratio. (b): The corresponding electronic thermal conductivity 
variation of flexural phonons.

rate or the memory function. Thus, the memory functions adds up 
due to the interactions of electrons with longitudinal, transverse 
and flexural acoustic phonons. Based on that the electronic ther-
mal conductivity, Eq. (13), is expressed as 1/κe(T ) = 1/κLA

e (T ) +
1/κTA

e (T ) + 1/κZA
e (T ). This shows that at the high temperature 

T � �BG, 1/κe(T ) ≈ constant and at the low temperature i.e. T �
�BG, 1/κe(T ) ≈ B 

(
T

v5
LA

+ T
v5

TA
+ T −1/2

α5/2

)
. Here, we find that at the 

low temperature, the contribution of the LA phonons is more than 
others. And the total electronic thermal conductivity decreases ap-
proximately linearly with the temperature. Because of the small 
value of the magnitude of electronic thermal conductivity of ZA 
phonons, it does not effect much to the total electronic thermal 
conductivity. Furthermore to understand the whole scenario of the 
electronic thermal conductivity at the low temperature, one also 
has to consider the electron–electron interactions which play re-
verse role from the electron–phonon interactions [45].

3. Conclusion

In the present study, the effect of the electron–acoustic phonon 
interactions to the electronic thermal conductivity is analyzed in 
detail. These analytic calculations for κe(ω, T ) have been per-
formed by using the memory function formalism which is beyond 
the relaxation time approximation. We find that the electronic 
thermal conductivity for various acoustic phonons shows different 
power law behavior due to the linear and quadratic phonon dis-
persion relations. These power law predictions are in agreement 
with the existing results in the literature [24,25]. It is also showed 
that in the total electronic thermal conductivity, the contribution 
of the ZA phonons is extremely small.

For the finite frequency cases, we have studied the dynamics 
of the electronic thermal conductivity due to the electron–phonon 
interaction which is identical to the case of three dimensional sys-
tem such as metal [22]. But due to the semi-metallic character of 
the graphene, its’ dynamical study may give information about the 
heat control for the reliable use of electronic devices.
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The memory function formalism is an important tool to evaluate the frequency dependent electronic 
conductivity. It is previously used within some approximations in the case of electrons interacting with 
various other degrees of freedom in metals with great success. However, one needs to go beyond those 
approximations as the interaction strengths become stronger. In this work, we propose a systematic 
expansion of the memory function involving its various moments. We calculate the higher order 
contribution to the generalized Drude scattering rate in case of electron–impurity interactions. Further 
we compare our results with the results from previously studied lowest order calculations. We find 
larger contributions from the higher moments in the low frequency regime and also in the case of larger 
interaction strength.
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1. Introduction

The study of frequency dependent conductivity or optical con-
ductivity is very important for understanding various interactions 
in the electronic systems [1,2]. In case of non-interacting electrons 
(neglecting Coulomb interactions) colliding with ions, it can be cast 
in the simple Drude formula, where the optical conductivity σ(ω)

is expressed as σ(ω) = σ0
1−iωτ [3]. Here σ0 = ne2τ

m is the DC con-
ductivity, where n is the electron density, m is the electron mass 
and 1/τ refers to the scattering rate. Strictly speaking, the above 
Drude expression for optical conductivity is valid when ω << 1/τ . 
Thus we see that the frequency regime over which the Drude the-
ory is valid depends on the smallness of the scattering rate 1/τ . 
The latter increases with the increase of interaction strength and 
the validity regime shrinks. In presence of interactions, a modified 
form of the Drude conductivity with frequency dependent scatter-
ing rate is often used and the resulting expression is known as the 
generalized Drude conductivity [4–6]. Within the linear response 
theory, the frequency dependent scattering rate (1/τ (ω)) is related 
to the current–current correlation which is equivalent to the two 
particle correlation functions [7]. It captures the effects of different 
interactions within an electronic system.

The correlation functions can be calculated by several ways 
such as Mori’s formalism [8], within Pade approximation [9], Ru-

* Corresponding author.
E-mail address: pankajbhalla66@gmail.com (P. Bhalla).

elle response theory [10], generalized methods for recursion re-
lations [11–14], etc. In general any formalism based on standard 
quantum many body perturbation theory, expresses two particle 
correlators in terms of single particle correlations [7]. Thus the 
current–current correlator is expressed in terms of single particle 
correlators or single particle spectral function and the formalism 
depends on the existence of the quasiparticle. On the other hand 
the Mori–Zwanzig memory function formalism [8,15,16] deals with 
the two particle correlators. It is based on the existence of few 
slow modes (e.g. conserved or nearly conserved electric current) 
related to certain conservation laws in the system. Hence the ex-
istence of quasiparticles is not a necessity here and this approach 
has a wider range of applicability. The detailed discussions on its 
application in correlated electronic system can be found in a recent 
review by the present authors [17]. In this method, the generalized 
scattering rate 1/τ (ω) can be expressed as an imaginary part of a 
memory function (ImM(ω)). The latter will be defined in the next 
section.

In literature, the memory function approach has been used in 
various systems, such as to study the molecular dynamics, ther-
modynamic properties, transport properties, etc. [18–22,24–42]. It 
becomes a method of choice in various strongly correlated elec-
tronic systems such as strange metal phase of the optimally doped 
cuprate superconductors where the very notion of the electronic 
quasiparticle breaks down [38,40], but the translational invariance 
is present. In a generic electronic system there can be various slow 
modes such as the charge diffusion, the heat diffusion etc. [38,40]. 
In the present study, we consider the electric current as the only 

http://dx.doi.org/10.1016/j.physleta.2016.04.010
0375-9601/© 2016 Elsevier B.V. All rights reserved.
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relevant slow mode. We then systematically study the effects of 
other fast degrees of freedom on the current–current correlation 
within this formalism. In the present case, our main focus will be 
only on the role of electron–impurity interactions on the current–
current correlation. The effects of the impurity interactions on the 
dynamical conductivity of a simple metal have been studied pre-
viously within the memory function in Ref. [22] in detail. There 
authors yield identical results for electrical conductivity with that 
of the Boltzmann’s results [23] in the dc limit. However the for-
malism is restricted to the lowest order in interaction strength and 
needs corrections as the latter increases.

With this motivation, we review the application of the memory 
function (MF) formalism in case of current–current correlation in 
metals and propose an expansion in terms of its various moments. 
Then we show that the previously studied Götze–Wölfle [24] for-
malism and similar other studies [6,25,36,41] are equivalent to the 
truncation our proposed moment expansion at the lowest order. 
We look for the case of higher interaction strength and calculate 
the contribution from the next order in the moment expansion.

This paper is organized as follows: In Sec. 2, we present the 
memory function formalism for electrical conductivity. In Sec. 3, 
the memory function is derived using equation of motion ap-
proach. Then in Sec. 4 the scattering rate has been calculated for 
impurity interactions with first moment expansion as done in liter-
ature. Then, we derive the second moment expansion of scattering 
rate and give the expression of scattering rate up-to second mo-
ment in our expansion of the memory function in Sec. 5. In Sec. 6, 
we compare our results with the former results. In Sec. 7, we con-
clude with discussion.

2. Memory function formalism

The memory function method, also known as projection opera-
tor method is first introduced by Zwanzig [15,16] to study the time 
evolution of correlation functions. Later, the method was general-
ized by Mori [8] and the Laplace transform of an autocorrelation 
function was cast into a continued fraction form. In this section, 
we will review the mathematical description of the memory func-
tion formalism [29].

Let us consider a system with a given Hamiltonian H in which 
Liouville operator L is defined by its action on any operator A as,

LA = [H, A] = −i
dA

dt
. (1)

Here A is an operator representing some observable and [· · · , · · · ]
represents the commutator between two such operators and we 
use units in which h̄ = 1 and kB = 1. The above equation yields 
the time evolution of the operator as,

A(t) = eiLt A(0). (2)

To understand the dynamic property of certain observable in many 
body systems, the time evolutions of related operators are needed. 
Let Ai represent such operators. Their correlation is expressed in 
terms of the correlation function matrix R(t). The latter, in terms 
of its matrix elements is defined as,

Rij(t) = 〈Ai(t)|A j(0)〉. (3)

Here the inner product of such operators is defined as canoni-
cal ensemble average. Using eqn. (2) and performing the Laplace 
transform, the above equation can be expressed as,

Rij(z) =
∞∫

0

dteizt〈Ai(t)|A j(0)〉 =
〈

Ai

∣∣∣∣ i

z − L

∣∣∣∣ A j

〉
. (4)

Here z is a complex frequency and z = ω+ iη with η → 0+ . To ex-
press the correlation function in terms of the memory function, we 

introduce a projector operator P which projects onto an operator 
A and is defined as,

P =
∑
i, j

|Ai〉〈A j|
〈Ai|A j〉 = I − Q . (5)

Replacing the operator L by L(P + Q ) in eqn. (4) and using the 
identity

1

X + Y
= 1

X
− 1

X
Y

1

X + Y
, (6)

the matrix elements of correlation function (eqn. (4)) becomes,

Rij =
〈

Ai

∣∣∣∣
{

1

z − LQ
+ 1

z − LQ
LP

1

z − L

}∣∣∣∣ A j

〉
. (7)

On simplification, the above expression can be rewritten as,

Rij = 1

z
χi j +

∑
lm

〈
Ai

∣∣∣∣ 1

z − LQ
L

∣∣∣∣ Al

〉
χ−1

lm Rmj, (8)

where χi j = 〈Ai |A j〉. In matrix notation, this can be written as,

(zI − Kχ−1)R = χ. (9)

Here the elements of matrix K are defined as,

Kil =
〈

Ai

∣∣∣∣ z

z − LQ
L

∣∣∣∣ Al

〉

= 〈Ai|L|Al〉 +
〈

Ai

∣∣∣∣LQ
1

z − LQ
L

∣∣∣∣ Al

〉
. (10)

The first part of the right hand side of the above equation is known 
as frequency matrix and is defined as,

Lil = 〈Ai|L|Al〉. (11)

The other part is known as memory matrix and is defined as fol-
lows,

Mil(z) =
〈

Ai

∣∣∣∣LQ
1

z − LQ
L

∣∣∣∣ Al

〉
. (12)

Using the fact Q 2 = Q , the above expression can be written in a 
symmetric form as,

M(z) =
〈

A

∣∣∣∣LQ
1

z − Q LQ
Q L

∣∣∣∣ B

〉
. (13)

Now, on applying the Liouvillian operator on both the operators A
and B , the above equation reduces to

M(z) =
〈

Ȧ

∣∣∣∣Q
1

z − Q LQ
Q

∣∣∣∣ Ḃ

〉
. (14)

We focus on the electrical conductivity and thus our concern is the 
current–current correlation. Hence, we replace both A and B oper-
ators by the current operator J . Thus the desired memory function 
for the electrical conductivity becomes,

M(z) =
〈

J̇

∣∣∣∣Q
1

z − Q LQ
Q

∣∣∣∣ J̇

〉
. (15)

On expanding M(z) in series expansion, we have

M(z) = 1

z

〈
J̇

∣∣∣∣Q

(
1 + 1

z
Q LQ

+ 1

z2
Q LQ Q LQ + · · ·

)
Q

∣∣∣∣ J̇

〉
. (16)
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Using the fact that Q Q = Q 2 = (1 − P )2 = Q and 〈 J | J̇ 〉, 〈 J̇ | J̈ 〉 = 0
(proved in Appendix A), the memory function in series expansion 
can be written as

M(z) = 1

z
〈 J̇ | J̇ 〉 + 1

z3
〈 J̈ | J̈ 〉 + · · · + 1

z2n−1
〈n

J | n
J 〉. (17)

Here 
n
J represents the nth time derivative of the current opera-

tor. This expression represents the high frequency expansion of the 
memory function in terms of the equal time autocorrelation func-
tion [45]. With this motivation, we will derive a similar expression 
for the memory function by an alternative way in the next section.

3. Equation of motion method

In an alternative way, the memory function can also be calcu-
lated using the equation of motion method (EQM) as follows. Let 
us start with the expression for response function within the linear 
response theory by Kubo [46–48], which is given as,

χAB(z) = 〈〈A; B〉〉z = −i

∞∫
0

eizt〈[A(t), B(0)]〉dt. (18)

Here A and B are two operators and correspond to two physical 
variables, [A, B] denotes their commutator and the inner 〈· · · 〉 rep-
resents statistical ensemble average at temperature T . The outer 
〈· · · 〉 represents the Laplace transform at a complex frequency z. 
Using the equation of motion, 〈〈A; B〉〉z can be written as,

z〈〈A; B〉〉z = 〈[A, B]〉 + 〈〈[A, H]; B〉〉z. (19)

Here H is the total Hamiltonian of the system. According to the 
Heisenberg equation of motion, an operator evolves as,

i
dA

dt
= i Ȧ = [A, H]. (20)

Using the above expression, eqn. (19) can be expressed as,

z〈〈A; B〉〉z = 〈[A, B]〉 + i〈〈 Ȧ; B〉〉z. (21)

In the present case, we are interested in current–current correla-
tion function. Hence, we replace both A and B by current opera-
tor J . Thus, the above equation becomes

z〈〈 J ; J 〉〉z = 〈[ J , J ]〉 + i〈〈 J̇ ; J 〉〉z. (22)

As the commutator [ J , J ] = 0, the above equation reduces to

z〈〈 J ; J 〉〉z = i〈〈 J̇ ; J 〉〉z. (23)

Again from the equation of motion (using eqn. (19)),

z〈〈 J̇ ; J 〉〉z = 〈[ J̇ , J ]〉 + i〈〈 J̇ ; J̇ 〉〉z. (24)

For z = 0, 〈[ J̇ , J ]〉 = −i〈〈 J̇ ; J̇ 〉〉z=0. Using these, eqn. (23) can be 
written as,

z〈〈 J ; J 〉〉z = 1

z

(〈〈 J̇ ; J̇ 〉〉z=0 − 〈〈 J̇ ; J̇ 〉〉z
)
. (25)

This expression is used in the well cited work by Götze and Wölfle 
[24] to evaluate the memory function for electrons in metal with 
various interactions. However instead of considering the above ex-
pression and evaluating 〈〈 J̇ ; J̇ 〉〉z perturbatively, we can opt for a 
higher moment expansion as follows. We apply EQM method again 
to evaluate the correlation function 〈〈 J ; J 〉〉 in terms of the cor-
relations involving higher time derivatives of J̇ . Thus in order to 
express the correlation function in terms of the next moment, i.e. 
second moment, we use the EQM for 〈〈 J̇ ; J̇ 〉〉z , and obtain,

z〈〈 J̇ ; J̇ 〉〉z = 〈[ J̇ , J̇ ]〉 + 〈〈[ J̇ , H]; J̇ 〉〉z. (26)

Using 〈[ J̇ , J̇ ]〉 = 0 and z〈〈[ J̇ , H], J̇ 〉〉 = 〈〈 J̈ ; J̈ 〉〉z=0 − 〈〈 J̈ ; J̈ 〉〉z , the 
above equation can be written as

z〈〈 J̇ ; J̇ 〉〉z = −1

z

(〈〈 J̈ ; J̈ 〉〉z=0 − 〈〈 J̈ ; J̈ 〉〉z
)
. (27)

Substitute this equation in eqn. (25), we have

z〈〈 J ; J 〉〉z = 1

z
〈〈 J̇ ; J̇ 〉〉z=0 + 1

z3

(〈〈 J̈ ; J̈ 〉〉z=0 − 〈〈 J̈ ; J̈ 〉〉z
)
. (28)

Thus the expression for the response function becomes,

zχ(z) = 1

z
〈〈 J̇ ; J̇ 〉〉z=0 + 1

z3

(〈〈 J̈ ; J̈ 〉〉z=0 − 〈〈 J̈ ; J̈ 〉〉z
)
. (29)

By applying EQM again and again, we can obtain a series expan-
sion for zχ(z) as,

zχ(z) = 1

z
〈〈 J̇ ; J̇ 〉〉z=0 + 1

z3
〈〈 J̈ ; J̈ 〉〉z=0 − · · ·

+ 1

z2n−1
〈〈n

J ; n
J 〉〉z=0 − 1

z2n−1
〈〈n

J ; n
J 〉〉z. (30)

In Ref. [24], it is shown that χ(z) is related to the memory func-
tion as

M(z) = z
χ(z)

χ0 − χ(z)
, (31)

where χ0 represents the static correlation function (= Ne/m, 
where Ne corresponds to electron density). Here M(z) is the com-
plex memory function, which upon analytic continuation, can be 
written as a function of real frequency as,

M(ω ± i0) = M ′(ω) ± M ′′(ω), (32)

where M ′(ω) and M ′′(ω) are real and imaginary part of the 
memory function and satisfy the symmetry properties M ′(ω) =
−M ′(−ω) and M ′′(ω) = M ′′(−ω) [24].

An approximate form of the memory function can be obtained 
by assuming that χ(z)/χ0 is smaller than one. Within this approx-
imation, the expression for the memory function becomes,

M(z) = zχ(z)

χ0

(
1 + χ(z)

χ0
− · · ·

)
. (33)

Keeping only the leading order term, the memory function can be 
expressed as

M(z) = z
χ(z)

χ0
. (34)

This expression is valid under the approximation discussed before 
and works well in high frequency regime and shows valid/invalid 
results in low frequency regime depending upon the parameters 
chosen to calculate the χ(z). More details of its validity are dis-
cussed in our recent work [42].

Using eqn. (30), the memory function to general order can be 
written as,

M(z) = 1

χ0

(
1

z
〈〈 J̇ ; J̇ 〉〉z=0 + 1

z3
〈〈 J̈ ; J̈ 〉〉z=0 + · · ·

· · · + 1

z2n−1
〈〈n

J ; n
J 〉〉z=0 − 1

z2n−1
〈〈n

J ; n
J 〉〉z

)
. (35)

This is an expression of the complex memory function which is 
equivalent to eqn. (17), but under a restrictive condition χ(z) <<

χ0 [42]. Here we see that instead of limiting at a perturbative 
calculation of J̇– J̇ correlation, we can include correlations involv-
ing higher order time derivatives of J̇ . Since the correlations with 
higher order time derivatives involve higher order corrections in 
interaction strength to the scattering rate. We will use this expres-
sion with n = 2, to evaluate the scattering rate due to the impurity 
interactions in later sections and will see how the result differs 
from that of the previously studied lower order corrections.
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4. Case of electron–impurity scattering

In this section, we review the work discussed in Ref. [24] to cal-
culate the memory function for impurity interactions. We consider 
a metal where degenerate electrons are interacting with impuri-
ties. In this case, the Hamiltonian is described as

H = H0 + H imp. (36)

Here H0 is the unperturbed Hamiltonian and in second quantized 
notation can be written as [7]

H0 =
∑

p

εpc†
pcp. (37)

Here c†
p and cp are electron creation and annihilation operators re-

spectively and εp is the energy of free electrons with momenta p. 
The other part of Hamiltonian describes the electron–impurity in-
teraction and is given as,

H imp = 1

N

Nimp∑
j=1

∑
k,k′,σ

〈k|U j|k′〉c†
k,σ ck′σ , (38)

where N represents the number of lattice cells, Nimp corresponds 
to number of impurity sites and U j is the scattering potential from 
jth impurity.

Computation of the memory function in Ref. [24] is restricted 
to the first moment only. First we discuss it. Truncating at the first 
order, the memory function can be written as,

M(z) = 1

zχ0

(〈〈 J̇ ; J̇ 〉〉z=0 − 〈〈 J̈ ; J̈ 〉〉z
)
. (39)

To evaluate the above expression, let us first calculate J̇ . It is de-
fined as,

J̇ = −i[ J , H] = −i
([ J , H0] + [ J , H imp]) . (40)

As [ J , H0] = 0, thus J̇ = −i[ J , H imp]. Using eqn. (38) and defin-

ing the current operator J = ∑
k vx(k)c†

kck , where vx is the x-
component of velocity, the time derivative of J can be written as,

J̇ = − i

N

∑
j,k,k′

〈k|U j|k′〉 (
vx(k) − vx(k′)

)
c†

kck′ . (41)

With the above expression, the correlator 〈〈 J̇ ; J̇ 〉〉 becomes

〈〈 J̇ ; J̇ 〉〉z = − 1

N2

∑
j,k,k′

∑
i,p,p′

〈k|U j|k′〉〈p|U i |p′〉

× (
vx(k) − vx(k′)

) (
vx(p) − vx(p′)

) 〈〈c†
kck′ ; c†

pcp′ 〉〉.
(42)

Using the definition of the correlator as defined in eqn. (18), 
〈〈c†

kck′ ; c†
pcp′ 〉〉 after doing time integration and thermal average by 

using ck(t) = ckeiεkt , we get,

− 1

z + εk − εk′

(
f (k) − f (k′)

)
δp′,kδp,k′ . (43)

We consider the above expression and also the case of dilute im-
purity and neglecting the interference terms, thus substitute i = j
in eqn. (42). Performing the summation over impurity sites which 
contributes Nimp, we have

〈〈 J̇ ; J̇ 〉〉z

= 2
Nimp

N2

∑
k,k′

|〈k|U |k′〉|2 (
vx(k) − vx(k′)

)2 f (k) − f (k′)
z + εk − εk′

. (44)

Here factor 2 is due to the spin degeneracy. After simplification 
considering isotropic free electron case and writing v = k/m,

〈〈 J̇ ; J̇ 〉〉z = 2

3

Nimp

m2N2

∑
k,k′

|〈k|U |k′〉|2 (
k − k′)2 f (k) − f (k′)

z + εk − εk′
. (45)

On substituting the above equation in eqn. (25) and using eqn. (34), 
followed by analytic continuation, i.e. z → ω + iη, η → 0+ , the 
imaginary part of the memory function becomes,

M ′′(ω) = 2π

3N2

Nimp

mNeω

∑
k,k′

|〈k|U |k′〉|2 (
k − k′)2 (

f (k) − f (k′)
)

× δ (ω + εk − εk′) . (46)

Under the assumption that U is independent of momentum, i.e. 
for point like impurities [43,44] the expression further reduces to,

M ′′(ω) = 2π

3N2

NimpU 2

mNeω

×
∑
k,k′

(
k − k′)2 (

f (k) − f (k′)
)
δ (ω + εk − εk′) . (47)

Converting the summation over momentum indices to the energy 
integrals and performing one integral involving the delta function, 
the equation further reduces to

M ′′(ω) = 2

3

Nimp

Ne

U 2m3

π3ω

×
∞∫

0

dε
√

ε(ε + ω)(2ε + ω)
(

f (ε) − f (ε′)
)
.

This is an expression of imaginary part of the memory function 
or the scattering rate of the electronic quasiparticles due to the 
electron–impurity interactions. Here for simplicity we replace εk
and εk′ by ε and ε′ respectively in the rest of the calculation. 
According to our proposed expansion, this result is equivalent to 
restrict eqn. (35) at n = 1 followed by a perturbative evaluation 
of the J̇– J̇ correlation. In the next section we will perform a 
perturbative calculation at higher order and will show that this 
approximation has limited validity.

5. The MF with a higher order moment

The memory function with higher order moment can be cal-
culated within the moment expansion proposed by us using 
eqn. (30). One can obtain more exact results by including higher 
order moments. Due to mathematical complexity, we restrict us to 
evaluate the memory function M(z) defined in eqn. (35) at n = 2, 
i.e. by considering up-to the J̈ – J̈ correlation. We proceed as fol-
lows. We begin with the evaluation of 〈〈 J̈ ; J̈ 〉〉z , which is defined 
as,

〈〈 J̈ ; J̈ 〉〉z = −〈〈[ J̇ , H]; [ J̇ , H]〉〉z

= 〈〈[[ J , H], H] ; [[ J , H], H]〉〉z. (48)

Now considering the non-interacting and the interacting parts of 
the Hamiltonian separately the above equation can be rewritten as,

〈〈 J̈ ; J̈ 〉〉z = 〈〈[[ J , H imp], H0
] ; [[ J , H imp], H0

]〉〉z

+ 〈〈[[ J , H imp], H imp
] ; [[ J , H imp], H0

]〉〉z

+ 〈〈[[ J , H imp], H0
] ; [[ J , H imp], H imp

]〉〉z

+ 〈〈[[ J , H imp], H imp
] ; [[ J , H imp], H imp

]〉〉z. (49)

The second term in the above expression is equal to the third term 
but with an opposite sign, due to the properties of the commuta-
tors. Hence they cancel each other and thus we obtain,
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〈〈 J̈ ; J̈ 〉〉z = 〈〈[[ J , H imp], H0
] ; [[ J , H imp], H0

]〉〉z

+ 〈〈[[ J , H imp], H imp
] ; [[ J , H imp], H imp

]〉〉z. (50)

To find the exact expression for the left hand side of the above 
equation, calculations can be performed in a way similar to that 
of the 〈〈 J̇ ; J̇ 〉〉z in section 4. The details of which are presented in 
Appendix B. After several algebraic manipulations, we obtain,

〈〈 J̈ ; J̈ 〉〉z = 2

3

NimpU 2m2

π4

×
∞∫

0

dε

∞∫
0

dε′√εε′ (ε + ε′) (
ε − ε′)2 f (ε) − f (ε′)

z + ε − ε′

+ 2

3

(NimpU 2)2m2

π4

×
∞∫

0

dε

∞∫
0

dε′√εε′ (ε + ε′) f (ε) − f (ε′)
z + ε − ε′ . (51)

Using eqn. (51) and performing the energy integrals as done in 
the case of first moment (eqn. (45)), in eqn. (35), the expression 
for the memory function M(z) becomes,

M(z) = 2

3

m3

π4

1

Ne

⎧⎨
⎩−2

z
NimpU 2

∞∫
0

dε

∞∫
0

dε′ε
√

εε′ f (ε) − f (ε′)
ε − ε′

− 1

z2
NimpU 2

∞∫
0

dε

∞∫
0

dε′√εε′ (ε + ε′) (
ε − ε′)2

× f (ε) − f (ε′)
(z + ε − ε′)(ε − ε′)

− 1

z2
(NimpU 2)2

∞∫
0

dε

×
∞∫

0

dε′√εε′ (ε + ε′) f (ε) − f (ε′)
(z + ε − ε′)(ε − ε′)

⎫⎬
⎭ . (52)

After further algebraic manipulations, the expression for the com-
plex memory function M(z) reduces to

M(z) = 2

3

m3

π4

1

Ne

∞∫
0

dε

∞∫
0

dε′√εε′ f (ε) − f (ε′)
ε − ε′

×
{
−NimpU 2 ε + ε′

z + ε − ε′

− (NimpU 2)2 ε + ε′

(ε − ε′)2(z + ε − ε′)

+ 2

z
(NimpU 2)2 ε

(ε − ε′)2

}
. (53)

We are interested in the frequency dependent character of imag-
inary part of memory function M ′′(ω) as a function of real fre-
quency. On performing analytic continuation, i.e. z → ω + iη, 
η → 0, the expression for M ′′(ω) becomes,

M ′′(ω) = 2

3

m3

π3

1

Ne

∞∫
0

dε

∞∫
0

dε′√εε′ f (ε) − f (ε′)
ε − ε′ δ(ω + ε − ε′)

×
{

NimpU 2(ε + ε′) + (NimpU 2)2 ε + ε′

(ε − ε′)2

− 2(NimpU 2)2 ε

(ε − ε′)2
δ(ω)

}
. (54)

Fig. 1. Plots of the imaginary part of normalized memory functions at different tem-
peratures: (a) at T = 10 K and (b) at T = 200 K. Here the red curve corresponds 
to the case with first moment only and the brown curve corresponds to the case 
where second moment is also considered within the present moment expansion of 
the memory function. In both cases, there is nice agreement between the results 
from the two different approaches at high frequency regimes. However they differ 
significantly in the low frequency regime. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

Now performing one of the energy integral, i.e. the integral over ε ′ , 
the above expression for the memory function at frequency ω > 0
reduces to,

M ′′(ω) = 2

3

m3

π3

1

Ne

∞∫
0

dε
√

ε(ε + ω)
f (ε) − f (ε + ω)

ω
(2ε + ω)

×
{

NimpU 2 + (NimpU 2)2 1

ω2

}
. (55)

This is an expression of imaginary part of the memory function for 
electrons in metal, within the second order truncation of our pro-
posed moment expansion for correlation function. Here the first 
term within the braces corresponds to the contribution from the 
first moment [24] and the second term is the contribution from 
the second moment to the memory function. The frequency depen-
dent behavior of the above expression for the imaginary part of the 
memory function or the scattering rate with different interaction 
strength U , impurity Nimp and T is discussed in the next section.

6. Results and comparison

Eqn. (55) describes the imaginary part of the memory function 
or the scattering rate as a function of ω, U , Nimp and T within a 
second order in moment expansion. We compare it with the imag-
inary part of the memory function obtained in eqn. (47), within 
a first order in moment expansion [24]. The validity of truncating 
such an expansion at the n-th order is valid when the n-th term in 
the expansion is smaller than the (n − 1)-th term. In the present 
work we restrict us at the second order. In this case to check the 
validity of our results, we define an energy scale ω0 above which 
the present high frequency expansion is valid. By taking the ratio 
of second order term to the first order term, the condition be-
comes 1

ω2
〈 J̈ | J̈ 〉
〈 J̇ | J̇ 〉 << 1. From eqn. (55), the above criterion translates 

to NimpU 2

ω2 << 1. This implies that our results are valid if the con-

dition ω ≥ (NimpU 2)1/2(= ω0) is satisfied.
In Fig. 1, we plot normalized imaginary part of MF M ′′(ω)/M0

as a function of frequency ω for both the cases (up-to the first 
moment and the second moment), keeping other parameters fixed.

In Fig. 1(a), the scattering rates are shown at temperature 
T = 10 K. It is observed that at high frequency regime, the re-
sult which includes the second moment contribution agrees well 
with the previous result (which includes only the first moment) 
[24]. But above the defined energy scale ω0 (which is 0.004 in this 
figure), results deviate from each other. The second moment con-
tributes more in the latter deviation thus increasing the magnitude 
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Fig. 2. Plots of the imaginary part of normalized memory functions at different im-
purity densities Nimp: (a) 0.01 and (b) 0.04. Here the red curve corresponds to the 
case with first moment only and the brown curve corresponds to the case where 
the second moment is also considered in the moment expansion. Here also a devi-
ation occurs at low frequency regime as in the previous case. The increase in the 
impurity density enhances the magnitude of the memory function. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 3. Variation of the scattering rates with interaction strength U at different 
frequencies: (a) ω = 0.02 eV and (b) 0.2 eV. Here the red curve represents the scat-
tering rate with the first moment only and the brown curve is with the inclusion 
of the second moment. It is observed that the deviation is bigger for higher inter-
action strength in the low frequency regime. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

of the scattering rate compared to the case with only the first mo-
ment. We see that the magnitude of the scattering rate in this case 
is high as compared to the case with n = 1 term of M ′′(ω). Sim-
ilarly, the scattering rates are plotted at a different temperature 
T = 200 K in Fig. 1(b). Here we observe the same behavior as in 
the previous figure, with temperature induced enhancement in the 
magnitude of the scattering rates.

In Fig. 2, again we plot the scattering rates fixing the tem-
perature for different impurity densities Nimp = 0.01 and 0.04. 
We observe the same trend in both cases similar to the previ-
ous figure. Here the increase in the impurity density increases the 
scattering centers which leads to higher magnitude of the scat-
tering rates. Also, here the results are valid for frequency greater 
than 0.01 and 0.02 in Figs. 2(a) and 2(b) respectively. From both
Figs. 1 and 2 we find that the scattering rate with the first mo-
ment approximation is valid only for high frequency regime and 
the truncation becomes more severe as one increases the interac-
tion strength.

To elaborate its dependence on the interaction strength U , the 
plot of the scattering rate with U at fixed frequency, Nimp and 
temperature is shown in Fig. 3. In Fig. 3(a), the scattering rate is 
shown at a small frequency ω = 0.02 eV at which earlier we see 
that there is deviation in the results of memory function with dif-
ferent moment expansions. Here we find that the increase of U
increases the scattering rate at low frequency due to the pres-
ence of the term (NimpU 2)2 in the moment expansion of the 
memory function. In Fig. 3(b) we observe that at a higher fre-
quency (ω = 0.2 eV), difference in M ′′(ω) with the increase of 
interaction strength, from two approximations becomes insignifi-

cant. More discussions on these results are presented in the next 
section.

7. Discussion

It is often convenient to express a frequency dependent re-
sponse function in terms of a memory function or “multi-particle 
self-energy” [17]. In this work we propose a series expansion 
for the memory function for optical conductivity or the current–
current correlation function. We show that many of the previous 
works [24,25,41,42], which address the optical conductivity of the 
metals within the memory function formalism, are equivalent to 
restricting at the lowest order in this expansion. We perform a 
higher order calculation for the same in the presence of electron–
impurity interactions and compare our results with the results 
from one of the celebrated previous work [24]. In all these ap-
proaches, one needs to calculate the current–current correlation 
function (〈 J J 〉), a two particle correlator with some approxima-
tions. In summary, conventional Kubo approach [7] decouples 〈 J J 〉
correlation into a product of single particle correlators whereas 
Götze and Wölfle [24] first write it in terms of 〈 J̇ J̇ 〉 and then use 
single particle decoupling. In the present approach, we extend the 
latter work further and write 〈 J J 〉 in terms of 〈 J̇ J̇ 〉 and 〈 J̈ J̈ 〉 and 
use single particle decoupling of 〈 J̈ J̈ 〉. We see large discrepancy 
between the two results from the two approaches in the low fre-
quency regime and also for higher impurity strengths.

These results are in accord with our proposal and also phys-
ically sensible. If we look at our expansion (eqn. (35)), we see 
that as we go to the higher frequencies, the contributions from the 
higher order moments become more and more irrelevant. On the 
other hand, higher time derivatives of the current operator involve
the higher power of impurity strengths. Thus the inclusion of the 
higher moments is equivalent to including higher order contribu-
tion in the perturbation theory. Inclusion of the effects from higher 
moments is also manifested in Fig. 3 where variation of the scat-
tering rates at a certain frequency with the impurity strengths is
shown. In this figure we see that the scattering rate is increasing 
with impurity strength and the inclusion of higher order contribu-
tion leads to higher scattering rates. The results at very low fre-
quency (ω << ω0) should not be trusted much. As discussed ear-
lier, in this regime the present approximation is not valid. In case 
when ω0 is sufficiently small, result from the present method can 
be trusted even up-to lower frequency. But we see that the second 
moment contribution to the memory function is M ′′

2 ∼ ω2
0/ω2M ′′

1 . 
This implies that the results for the memory function are in ac-
cord with the condition |M(z)| << |z|. This scenario can be clearly 
seen in Figs. 1 and 2 where the memory function M ′′(ω) is of very 
small magnitude as compared to the frequency ω.

To summarize, our proposal is mathematically simpler com-
pared to the previous attempts [26,27] to calculate the memory 
function for the electronic conductivity beyond the lowest order 
perturbative calculations [24]. Within this systematic expansion, 
we can include interaction effects up-to required order depending 
on its strength. This method in principle can be applied for met-
als with other interactions as well as for non-metallic electronic 
systems [39,40] to estimate higher order perturbative corrections.

Appendix A. Calculation of 〈 J | J̇ 〉

Consider that the ensemble average of current operators at the 
same time argument is represented by

〈 J | J 〉 = C (A.1)

where C is some constant.
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Now, differentiate the above equation w.r.t. time

〈 J̇ | J 〉 + 〈 J | J̇ 〉 = 0

〈 J̇ | J 〉 = −〈 J | J̇ 〉. (A.2)

In another way, the ensemble average of J and J̇ can be expressed 
as

〈 J̇ | J 〉 = tr(ρ[H, J ] J )

= tr(ρH J J ) − tr(ρ J H J )

= tr(ρ J [H, J ])
= 〈 J | J̇ 〉. (A.3)

From equations (A.2) and (A.3), we conclude that 〈 J | J̇ 〉 = 0.

Appendix B. Detailed calculation of the higher order 
contribution

To calculate 〈〈 J̈ ; J̈ 〉〉z we first calculate the first term of 
eqn. (50). For this we need 

[[ J , H imp], H0
]

which using eqns. (37)
and (41) becomes,

[[ J , H imp], H0
]

= 1

N

∑
j,k,k′

〈k|U j|k′〉 (
vx(k) − vx(k′)

)
(εk′ − εk) c†

kck′ . (B.1)

Using the above expression, the first term of eqn. (50) becomes

= 1

N2

∑
j,k,k′

∑
i,p,p′

〈k|U j|k′〉〈p|U i |p′〉 (
vx(k) − vx(k′)

)

× (
vx(p) − vx(p′)

)
(εk′ − εk)

(
εp′ − εp

) 〈〈c†
kck′ ; c†

pcp′ 〉〉z. (B.2)

Here again we will consider the case of i = j as considered in 
eqn. (44) and using eqn. (18) with performing time integration and 
ensemble average, the above equation reduces to

= 2Nimp

N2

∑
k,k′

|〈k|U |k′〉|2 (
vx(k) − vx(k′)

)2
(εk − εk′)2

× f (k) − f (k′)
z + εk − εk′

. (B.3)

This expression is further simplified by converting summations 
into energy integrals and ignoring the momentum dependence of 
U as

= 2

3
Nimp

U 2m2

π4

∞∫
0

dε

∞∫
0

dε′√εε′ (ε + ε′) (
ε − ε′)2 f (ε) − f (ε′)

z + ε − ε′ .

(B.4)

Now we perform the calculations for the second term of eqn. (50). 
First, 

[[ J , H imp], H imp
]

using eqns. (38) and (41) is written as

[[ J , H imp], H imp
]

= 1

N2

∑
j,k,k′

∑
i,p,p′

〈k|U j|k′〉〈p|U i |p′〉 (
vx(k) − vx(k′)

)

×
[

c†
kck′ , c†

pcp′
]

= Nimp

N2

∑
k,k′,p

〈k|U |k′〉〈k′|U |p〉 (
vx(k) − 2vx(k′) + vx(p)

)
c†

kcp.

(B.5)

Using this, 〈〈[[ J , H imp], H imp
] ; [[ J , H imp], H imp

]〉〉z can be written 
as

= 2
N2

imp

N4

∑
k,k′,p

∑
r,r′,l

〈k|U |k′〉〈k′|U |p〉〈r|U |r′〉〈r′|U |l〉

× (
vx(k) − 2vx(k′) + vx(p)

)
× (

vx(r) − 2vx(r′) + vx(l)
) 〈〈c†

kcp; c†
rcl〉〉z. (B.6)

After calculating 〈〈c†
kcp; c†

rcl〉〉z with help of eqn. (18) and substi-
tuting in eqn. (B.6) and taking U as independent of momentum, 
〈〈[[ J , H imp], H imp

] ; [[ J , H imp], H imp
]〉〉z can be expressed as

= 2
N2

imp U 4

N4m2

∑
k,k′,p,r′

1

z + εk − εp

(
kx − 2k′

x + px
) (

px − 2r′
x + kx

)

× (
fk − fp

)
. (B.7)

After doing algebra, the above expression can be written as

= 2

3

N2
imp U 4m2

π4

∞∫
0

dε

∞∫
0

dε′√εε′ (ε + ε′) f (ε) − f (ε′)
z + ε − ε′ . (B.8)

Substituting eqns. (B.4) and (B.8) in eqn. (50), we have

〈〈 J̈ ; J̈ 〉〉z = 2

3

NimpU 2m2

π4

∞∫
0

dε

∞∫
0

dε′√εε′ (ε + ε′) (
ε − ε′)2

× f (ε) − f (ε′)
z + ε − ε′ + 2

3

N2
imp U 4m2

π4

×
∞∫

0

dε

∞∫
0

dε′√εε′ (ε + ε′) f (ε) − f (ε′)
z + ε − ε′ . (B.9)
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[32] P. Prelovŝek, I. Sega, J. Bonĉa, Phys. Rev. Lett. 92 (2004) 027002.
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