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Abstract

The study of the transport properties is very important for understanding various
interactions in electronic systems. These properties such as electrical conductivity,
thermal conductivity and thermoelectric coefficients have been widely studied within
the Bloch-Boltzmann approach. In this approach, the transport equations are gener-
ally solved analytically under the relaxation time approximation (RTA) and in the zero
frequency limit. Success of this approach is mostly limited to the zero frequency be-
havior. It becomes very complicated while investigating the finite frequency behavior
of these transport coefficients especially beyond RTA. Thus, one needs an alterna-
tive approach which goes beyond RTA and captures the finite frequency features of
these coefficients with much ease. This approach is known as the memory function
approach. By construction, this formalism is beyond RTA and using this formalism
one can calculate the time dependent correlation functions upto any order. It has been
used by Gotze and Wolfle (GW) to calculate the dynamical electrical conductivity for
metallic electrons. It is successfully applied to study the transport behavior in presence
of weak electron-phonon, electron-impurity interactions in metals under the assump-
tion of constant electronic density of states (EDOS). An attempt to extend the GW
approach beyond its original assumption of constant EDOS is made here and also we
have applied GW approach to a wide variety of transport coefficients (dynamical ther-
mal conductivity, dynamical Seebeck coefficient, etc). Sharapov and Carbotte have
also calculated the generalized Drude scattering (GDS) rate for systems with gapped
density of states based on Kubo formalism. We reconsider that problem here using
the memory function formalism. We show the suppression in GDS due to the pres-
ence of gap. We also compare the resulting GDS with that calculated by Sharapov
and Carbotte (SC). We find discrepency in the scattering rate using both approaches in
the low frequency limit. This is due to the crucial assumption made by SC approach
which is not assumed in the memory function approach. We then study the dynam-
ical thermal conductivity of metals within the memory function formalism. Here we
introduce the thermal memory functions for the first time and calculate them for the
cases of the electron-impurity and electron-phonon interactions. Several new results

have been obtained and discussed in various temperature and frequency regimes. In the
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zero frequency limit, we find that the results are consistent with the results predicted
by using the Bloch-Boltzmann approach and are also in accord with the experiments.
Furthermore, we also investigate the dynamical behavior of the thermo-electric coef-
ficient, namely Seebeck coefficient. This analysis is done to explore the possibility of
obtaining large figure of merit in various materials so that the efficiency of thermo-
electric devices can be enhanced. We first confirm that at the zero frequency and in
the high temperature case, the results of the Seebeck coefficient are in qualitatively
agreement with the experimental findings. We further find that the Seebeck coefficient
increases with increasing frequency. This enhancement hints towards a possibility of
greater figure of merit if the device is operated at a certain non-zero frequency. We
have also applied the memory function approach to other systems such as graphene,
a two dimensional system and we investigate the electronic thermal conductivity. In
that, we explore the roles of different acoustic phonons, characterized by different dis-
persion relations. It is found that at the high temperature, the thermal conductivity
saturates for all type of phonons. But the longitudinal phonons gives larger contribu-
tion to the total thermal conductivity. While at the low temperature, it follows different
temperature power law behavior for different type of phonons. We have also found
the results at finite frequency regimes which are identical to the case of conventional
metals. In the above studies, we performed analytical studies of various transport coef-
ficients that have been done for the weak perturbative interactions by using the memory
function approach. However, with the increase in the interaction strength, one needs
to go beyond GW approach. In this context, we propose a high frequency expansion
of the memory function in term of its various moments. Taking simple example of
the electron-impurity interaction for the case of the metal, we calculate the memory
function upto the second order moment. It is found that the higher moments contribute
more in the low frequency regimes and in the case of large interaction strength. In a
nutshell, we extend the GW memory function formalism to various physical situations
of interest with encouraging new results in the dynamical regime. While in the dc

limit, our results agree with the traditional approaches.
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Introduction

The study of the transport properties of condensed matter systems provides a frame-
work to understand or to determine the effects arising within the system when electrons
under the influence of an external field, scatter among themselves or with other degrees
of freedom like impurities or phonons. In general, these systems are considered to be
in equilibrium in the absence of an external field. In this situation, the quantities such
as charge and heat can not be transported over long distances. However, in the presence
of an external field, the systems are driven out of equilibrium and the quantities trans-
port over macroscopic length scales. In this situation, the flow of these quantities under
the influence of an external field is determined by the transport properties. These prop-
erties include electrical conductivity, thermal conductivity, Seebeck coefficient, Hall

coefficient, etc.

Experimentally, these transport properties are used as a tool to characterize a sys-
tem. For example, the electrical conductivity is used to distinguish between the metals,
semiconductors and insulators. On the other hand, theoretically these properties are
used to test the models by comparing the predictions of the model with the experimen-
tal findings. But it is not straightforward to deal with the many body systems (with
number of particles of the order of 10?* per cubic centimeter) and study the effects of
different interactions with in the system. Several theories like the Drude theory [1],
the Bloch Boltzmann theory [2-5] and the memory function approach [6—13] have
been proposed to study the transport properties. However, each has its own merits and

demerits.
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In addition to the experimental and theoretical interest, this study is also impor-
tant in the applied field. For example, the behavior of the thermoelectric or Seebeck
coefficient is important for the fabrication or design of the electrical circuits [14].

In this thesis, we investigate these transport properties using the memory function
approach [6—-13]. Before proceeding to the main calculations of the transport coeffi-
cients, first we review the preliminary theories such as Drude theory, Bloch-Boltzmann
theory and the memory function approach with its pros and cons in this chapter. This
will provide a conceptual background in order to discuss the theoretical study of these

properties that we are presenting in this thesis.

1.1 Drude Theory

In 1900, Paul Drude, after the discovery of electron by J. J. Thompson, proposed the
first model for the theory of metals [1]. It successfully reproduced the various features
of the transport properties which were based on the classical kinetic theory of gases
[15, 16]. In this model, Drude considered the free electrons of metal as conduction
electrons which move under the influence of an external field and collide with positive
ion cores which are taken to be immobile particles. To implement this idea, the basic

assumptions are as follows [17, 18].

1. The collisions between electrons and ions (electron-ion collisions) are instanta-

neous.

2. The electrons are treated as noninteracting particles i.e. electron-electron colli-

sions are neglected.

3. The probability of an electron to collide in small time interval dt is dt /7, where
7 is the relaxation time i.e. the time taken by the electrons to relax towards

equilibrium and it is treated as a constant.
4. After each collision, electrons acquire random velocity.

Based on the above mentioned assumptions, the formulae of the transport prop-

erties such as electrical conductivity, thermal conductivity are derived. For general
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idea of the Drude approach, we give derivation of one of the transport coefficient, the
electrical conductivity as follows [17-19].

Consider a system i.e. metal in which electrons in the absence of an external field
are moving randomly in all directions with random velocities v;. Thus the average over
all velocities is zero and no current flows in the system. If an external field say an elec-
tric field E is applied on the system, then electrons tend to move in a direction opposite
to the electric field with a mean velocity v,, or (v). This oriented movement of elec-
trons sets up an electrical current in the direction of an electric field. To elaborate this,
assume that the electron (say 1) is moving with initial velocity v; and accelerates for
time ¢, after the last collision and adds additional velocity —imtl, where m is the elec-
tron mass and e is the electron charge. Similarly, the electron (say 2) accelerates and
adds velocity —QE% and so on. Thus, the average velocity acquired by all electrons is
given by

N
V) = v — ek t; 1.1.1
M) = 22t (111)

where N is the total number of electrons.
N

As the average of random velocities is zero i.e. Z v, = 0 and the average time for

1=1
N

accelerating the electrons is 7 = Z t;, substituting these in Eq. (1.1.1) the average
i=1
velocity becomes

eET

(v) = (1.1.2)

m
Suppose that there are n electrons per unit volume moving with the average velocity
(v) and these electrons traverse the distance (v)dt. Then, the number of electrons
crossing the area of cross section A in the direction of velocity will be n(v)dtA and
hence gives the current density as J = —ne(v). Using the above equation, the average
current density proportional to the average velocity can be expressed as

n€2’7'

J = —nelv)= E, (1.1.3)

m
Also, from the Ohm’s law: J = oE, where o is the electrical conductivity. Thus on

comparing this expression with Eq. (1.1.3), the electrical conductivity becomes

o = . (1.1.4)
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This is the Drude formula for the electrical conductivity of a metal which is known as
the Drude dc electrical conductivity [1, 17]. It states that for a fixed electron number
density, the electrical conductivity is directly proportional to the average collision time
or the relaxation time.

Further, for the time varying field i.e. when the electric field is time dependent but
spatially uniform, the frequency dependent electrical conductivity can be obtained as
below. In this case, the average electron velocity at any time ¢ is represented as v(t).

Hence, the equation of motion can be expressed as

dv(t) v(t)
m— +m - = —eKE(t). (1.1.5)

Here the second term in the left hand side states the damping term to account for
the effect of electron collisions. Now assuming E(t) = Re(E(w)e ™) and v(t) =
Re(v(w)e ™) for time varying field and velocity respectively and substituting it in

Eq. (1.1.5), we obtain
E(w)

viw) = Tr—iw

(1.1.6)

Since J(w) = —nev(w) and J(w) = o(w)E(w), the frequency dependent or AC elec-
trical conductivity using Eq. (1.1.6) is given by

’n,€2 T

ow) =~ (1.1.7)

On separating the real and the imaginary parts, we have

7’L€2 T 7’L€2 w7'2

_— I = 1.1.8
m 1+ w?7?’ m{o (w)] m 1+ w272 ( )

Refo(w)] =

These are the real and the imaginary part of the electrical conductivity for the case of
metal within the Drude formalism where electron-phonon effects are neglected [17].

Based on the classical idea, the Drude theory successfully gives the expressions

of the electrical and the thermal conductivity and explains the Wiedemann-Franz law

[1,20,21]. The latter states that the ratio of the thermal conductivity to the electrical

conductivity is directly proportional to the temperature. But, the Drude theory also

suffers from important shortcomings. Particularly, it does not explain the temperature

dependence of the electrical and thermal conductivity of a metal. Also, it does not

consider the different mechanisms for collisions which may effect the relaxation time
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for example electron-phonon interaction. The main reason of these shortcomings is
the treatment of electrons as a classical electron gas [22].

To overcome these shortcomings and to capture the temperature dependent behav-
ior of various transport properties, it is important to consider the quantum nature of the
electron gas and describe the collision processes in detail. This is taken into account

in semi-classical approach by Bloch [2, 3,22] which is discussed in the next section.

1.2 The Bloch-Boltzmann approach

As discussed earlier, the study of the transport phenomenon depends on the two char-
acteristic mechanisms such as the driving force i.e. the external field and the scattering
of charge carriers i.e. scattering of electrons due to its interactions with impurities,
phonons, etc. This interplay can be described by the Bloch-Boltzmann approach [2-5]
which explains how the distribution of charge carriers in phase space evolve in the
presence of an external field and with the electron scattering mechanisms. Also, it is
studied in the framework of semi-classical treatment. Due to large number of electrons
in many body interacting systems, it is futile to solve the problem for each electron to
extract the transport properties. Hence, the statistical treatment (the Bloch-Boltzmann
equation) is needed which consider the effect of average motion of electrons.

Before embarking on the main description of the Bloch-Boltzmann transport ap-

proach, we first discuss the important assumptions of this approach.

1.2.1 Semi-classical treatment

In semi-classical approximation, we consider electronic wave packet obtained from
the superposition of plane wave states. This wave packet is assumed to be localized
around a mean position r and mean wave vector k with an extent dr and dk such that
dr < [, (I is the mean free path i.e. the distance travelled by an electron between two
successive collisions) and dk < k respectively. Also the phase space cell drdrk is
much bigger than the quantum limit A to respect the Heisenberg uncertainty principle.
Hence, the wave packet is to be constructed with the Bloch functions which consider

the motion of electrons in a periodic potential [17,19].
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Within this picture, the motion of electrons subjected to an external electric field is

described as

r(t) = Vg = VkEk, (121)

k(t) = eE(r,1). (1.2.2)

Here ¢, and vy are energy and velocity of electron in k™ state respectively and E(r, ?)
is the electric field. Also we set A = 1 and kg = 1 in throughout the calculations. This
concludes that the dynamics of an electron in semi-classical approximation relies on

the energy dispersion of an electron.

1.2.2 Transport equation

To discuss the motion of electrons, we introduce the electron distribution function
fx(r,t) which is the occupation probability of an electron at position r, at time ¢ and
having wave vector k. This means that the number of electrons with in a phase space

volume element drdk (a six dimensional space) about the point (r, k) are given as

2
2y / drdK fx(r, t), where

the factor 2 is introduced to account the two spin orientations of the electron.

drdK fx(r, t). Thus the total number of electrons becomes

According to the Liouville’s theorem the time rate of change of the distribution

function is zero i.e.

dfi

= 0. 123
i (1.2.3)

Now, the distribution function can evolve with time through the following mechanisms.

1 Diffusion: Due to the movement of carriers in and out of the region r, the rate of

change of the distribution becomes

dfx L 0 fx -
<W)diffusion N Yk or =% Vrfk- (124)

2 External Fields: As we have seen in Eq. (1.2.2), the presence of an external field
gives the rate of change of wave vector k. Thus, the change of distribution in

such fields give rate as

9 fx _
<W) fields - kak‘ (125)
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3 Scattering: Due to the interaction of electrons or collisions with lattice ions, the

rate of change is represented as

dfx
Ik ] 1.2.6
( at >coll ( )
Using Egs. (1.2.4) to (1.2.6), Eq. (1.2.3) becomes

dfx 0 fx 0 fx 0 fx
Yk _ [ 2k = —_ = 0. 1.2.7
dt ( at >diffusion - ( at fields " at coll ! ( )
—Vgk - Vrfk —cE- kak = — <%> . (128)

at coll

If there is a temperature gradient, then the above equation can be written as

O _ (%%
—Vk - a—TVrT —cKE - kak = ( ot )COH . (129)

This is the general form of the Bloch-Boltzmann transport equation (BTE) of the elec-
tron system.

To solve this, it is necessary to obtain the expression of the scattering term for

different types of electronic collisions.

Scattering term

Consider that the electrons scatter from the state k to k’. In that case, the transi-
tion probability of electrons into the k' state is fx(1 — fir) Wi, where Wy, is the
scattering rate of electrons to go from k to kK’ state. Similarly, the probability of the
electrons to scatter into k state is fi/(1 — fx)Wj_k. Here the occupation number fi
and (1 — fi) assure that electron is going from an occupied state to an empty state.
Thus

(%) - Z Wi fie (1= fi) = Wik k(1 = fi)] . (1.2.10)
coll K’

According to the Fermi Golden rule [23, 24], for the scattering of electrons due to

impurities, W) _, is written as [25,26]

Wi = 27|(K|UK)|*0 (e — ). (1.2.11)
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Here U is the electron-impurity interaction strength. Similarly the expression for
Wik is same as Eq. (1.2.11) with the interchange of k to K. Thus according to

the principle of detailed balance [22],
Wk’—}k == Wk—}k’~ (1 212)

Using the Eq. (1.2.12), the scattering term Eq. (1.2.10) for the case of electron-impurity

interaction becomes
o
(a_tk) = Z Wi (fie(1 = fi) = f(l = fi))
coll K
= Y Wi (fi = fi). (1.2.13)
kl
Similarly, for the scattering of electrons due to the phonons, W) _, is written as [3,27]
Wiow = 27[(I|Hep| F)*5(ex — € & wq) (ng + 1) (1.2.14)

Here H,, is the electron-phonon interaction Hamiltonian, I and ' corresponds to the
initial and final state of the electron respectively, wq is the phonon frequency, =& sign
within the delta function correspond to the absorption (7 = 0) and emission (1 = 1) of

phonon respectively, and nq is the Boson distribution function which is represented as

1
e = T (1.2.15)
. . ) 1
Here [ is the inverse of the temperature i.e. 5 = T
In this case, Wy _, and Wy _,, relate to each other as [27]
K
Wik o Wik (1.2.16)
I
where fy is the equilibrium distribution function which is defined as
o L (1.2.17)
he = eBlec—p) 17 -

Here 1 is the chemical potential or the reference level to measure the energy of an
electron and this distribution function is independent of r because of the homogeneity
assumption.

Using the Eq. (1.2.16) into (1.2.10), we have

9 f
(E)coll Z Wkﬁkl (fklf_k’ - fk) ‘ (1218)
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Substituting Eq. (1.2.13) and (1.2.18) for electron-impurity and electron-phonon in-
teraction respectively in the general form of Boltzmann transport equation (1.2.9), the
transport equation becomes an integro-differential equation and hence is complicated
to solve to determine the non equilibrium distribution function f(r, t). Therefore, one

has to consider an assumption(s) to solve it.

Linearized BTE

Assume that the steady state distribution function does not depart far from the equilib-

rium i.e.

a = fi— [ a < . (1.2.19)

Here f) is the local equilibrium distribution function. A local equilibrium means that
the state is described by the slowly varying time and space dependent temperature and

chemical potential i.e. T'(r,t) and yu(r, t) respectively. It is defined as

S t) = {exp (%) + 1}1. (1.2.20)

Substituting Eq. (1.2.19) in (1.2.9) and assuming the constant chemical potential, we
have

0
v - %VT—eE-

T ok ot +v-———+eE-—. (1.2.21)

a_fl? _ 9 Jx dgx Jgxk
coll or ok

On further simplifications, we get

N el Gt 0] o _ (O g
Vi ( VTR ) SR = o) Ve e (1.2.22)

This is the linearized form of the Boltzmann transport equation. Here we drop the
term of the order of £? and higher, since the external fields are assumed to be slowly
varying in space.

Furthermore, for the scattering term, the phenomenonlogical assumption is made

AN .
_(W)mu_ — (1.2.23)

Here 7 is the relaxation time i.e. the time with which the non equilibrium distribution
function relax towards local equilibrium state via scattering processes. Also, the for-

mer depends only on the mean £ value. This assumption Eq. (1.2.23) is known as the
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Relaxation Time Approximation (RTA). The essence of this approximation implies that
taking into account the fact of local equilibrium the collisions do not change the form
of the distribution function. Under this assumption, the linearized BTE Eq. (1.2.22)

can be written as

—(ex — af 9]

v (Z g g) e g 99 (1.2.24)
T 861( Tk or

If the distribution function and the temperature do not depend on the position, then

Eq. (1.2.24) becomes

a 0
v Bk 9 (1.2.25)
aEk Tk

Hence from Eq. (1.2.19) we have

0

0
fv = flg‘l'eTka'Ea—Q:. (1.2.26)

This is the required distribution function which includes the effect of scatterings via
the relaxation time 7. Using it, the transport properties such as electrical conductivity,
thermal conductivity and thermoelectric coefficient, etc. can be computed as discussed

in the next subsection.

Transport properties

To find the electrical conductivity, let us first define the electrical current density as [28]

2
J = ﬁ / Vi fudK. (1.2.27)

In the above equation, the equilibrium part of the distribution function i.e. f;’ does not

contribute to current density. Thus only second term of Eq. (1.2.26) contributes to the

current density which on substituting into (1.2.27) gives

e? of
= — E) [ =) dk. 1.2.28
J 13 TiVk (Vi E) ((%k) ( )
On comparing the Eq. (1.2.28) with Ohm’s law J = ¢E, assuming that the field is
2
applied in x-direction and the system has cubic symmetry (which gives v> = %), the

electrical conductivity can be written as

2 0
, - € / v’ (%) dk. (1.2.29)

1273
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Similarly, the thermal conductivity and the thermoelectric coefficient can be expressed

as
_ € 20, ofy
oS = 19257 /Tkvk (ex — 1) (_aek) dk, (1.2.30)
1 > 2 (O
= 1937 /Tkvk (Ek [L) (361( dk. (1231)

Here S and « represents the Seebeck coefficient and the thermal conductivity respec-
tively [3,24]. The Seebeck coefficient is the measure of an electric field generated by
the thermal gradient and the thermal conductivity measures the amount of heat flow
per unit time through a unit area in the presence of thermal gradient.

Now, we consider the case of a simple metal where electrons follow quadratic
energy dispersion (i.e. ex = %). In this case, it is found that the temperature de-
pendent transport coefficients (using Eqns. (1.2.29) to (1.2.31)) show different tem-
perature power law behavior for different interactions such as electron-impurity and
the electron-phonon interactions. In the case of electron-impurity interactions, the
electrical conductivity o(7"), the thermal conductivity ~(7") and the Seebeck coeffi-
cient S(T") show temperature independent behavior. While for the electron-phonon
interaction case, in the high temperature regime i.e. when 7' > Op, o(T) ~ T,
x(T) ~ T® and S(T) ~ T, where O is the maximum temperature cutoff for phonons
i.e the Debye temperature. These predictions are verified in several works with exper-
iments findings and thus are agree with them [3, 14,29-34]. In the low temperature
(T < Op), a(T) ~T°, k(T) ~ T %and S(T) gives kink in its structure due to the
presence of the phonon drag [3].

At the end, we conclude that the BTE can be solved under the relaxation time
approximation to calculate electrical conductivity, thermal conductivity and Seebeck
coefficient to explain their temperature dependent behavior. The general solutions of
the BTE are complicated and generally discussed numerically. To get general analyti-
cal expressions, one must resort to an alternative approach. One such approach which
goes beyond RTA is called the memory function approach. Within this approach one
can also discuss the finite frequency cases. This approach is analogous to the Kubo’s
linear response approach. Before to present the memory function approach, let us first

briefly discuss the Kubo approach in the next section.



12 Chapter 1. Introduction

1.3 Kubo approach

Earlier in Drude and Bloch-Boltzmann approaches, the transport properties have been
discussed based on the classical and semi-classical treatment of the motion of inter-
acting carriers respectively. Here, we discuss the quantum mechanical treatment to the
theory of electron transport which is known as Kubo’s theory of linear response. In this
approach, a system is considered in equilibrium state and the small external perturba-
tion is applied to the system. In response to it, the expectation values of observables
change from their equilibrium values and can be obtained within this approach to lin-
ear order in the strength of perturbation. In the following, we sketch the derivation of
the general form of Kubo’s formula as well as in particular for the case of electrical
conduction.

Let us consider a system which is described by the total Hamiltonian H = H, + H’,
where H, is the time independent unperturbed part and H' is the time dependent per-
turbed part of the Hamiltonian. Here H' is defined as H' = —F(t)B, where B is
an operator to which the external field couples and F'(¢) is the strength of the pertur-
bation (like an electric field). We assume that the perturbation is switched on in the
past t = —oo. At that time, the expectation value of operator A is represented as
(A) = tr(poA), where p, is the equilibrium density matrix. Due to the small applied
perturbation, the density matrix changes and it is represented as p(t) = dp(t) + po-

Then the equation of motion for p(t) is

op(t) - _ %[H,p(t)]_ (1.3.1)

On substituting the value of p(t), keeping the terms in linear order in F'(¢) and using

dp(—o0) = 0, it becomes

dop(t) 1.,

7’L'HQtA€7’L.H0t

Now using interaction representation (where A(t) = e ), the above equa-

tion gives the formal solution as

1 t
Solt) = —= [ at[HE), ol (132)

—00



1.3. Kubo approach 13

Further using the identity
B B
[C(t), po] = / dApoe°[Hy, O (t')]e Mo = —ih / d\C(t' —ih)),  (1.3.3)
0 0

Eq. (1.3.2) can be written as

t B .
Sp(t) = / dt' po / ANE (' — ih)). (1.3.4)
—00 0

Using the above equation, the change in the expectation value of an operator A i.e.

d(A(t)) becomes

S(A(t)) = /t dt’F(t')/Oﬂd)\tr(poB(t’—ih/\)A(t))

—0o0

o0

Here x ap(t — t'), the response function is defined as

wanlt—t) = /B ANB(E — ihA)A®)))O(t — 1), (13.6)

0
This is known as the Kubo formula in linear response theory. Now we will apply this
approach to the case of electrical conduction. We assume that the the time dependent
and spatially independent electric field is applied to the system in v direction. This
gives the perturbing Hamiltonian as H = —erE,(t). Also, the current density is
defined as .J,,(t) = —nev, (). In this case, the general quantities are defined as A(t) =

J(t), B=rand F(t) = ¢"'E. Using these, the electrical conductivity is expressed as

o B
ouw(w) = /0 dte™" /O dN(J,(—ihA)J,(1))). (1.3.7)

In classical limit & — 0, it becomes

ow(w) = B/Ooodtei“t<Jy(O)JM(t))). (1.3.8)

This is known as the Kubo formula for the electrical conductivity. Similarly, this for-
mula can be derived for other transport properties. The limits of applicability of the

Kubo approach are as follows:

1. It is based on the linear response theory which is valid at the low magnitude of

the perturbing field.
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2. This approach is applicable to a system if the latter maintains the local equilib-

rium.

3. It cannot be applied to calculate the correlation functions in the nonequilibrium

state.

Now, we will present the memory function approach in the next section which we use

to compute the transport properties in this thesis.

1.4 Memory Function approach

The memory function technique was developed by Zwanzig and Mori [6-8, 11]. It is
introduced to describe the non-equilibrium behavior of the system via the time evo-
lution of the correlation functions. It is formulated in several renditions. Among all
these, the projection operator formalism, originally developed by Zwanzig, is the most
illuminating as it uses many body projection operators to capture the relevant infor-
mation of many body systems [12, 13]. Latter, it was generalized by Mori to cast the
Laplace transform of the auto correlation function into the continued fraction repre-
sentation [9]. This technique is also very appealing, because it relates the transport
coefficients to the interaction energy and deals with the dynamical study of the physi-
cal variables [35-37]. The memory function approach enables one to separate the time
scales i.e. slow and fast. Here the slow variables means the variables that have long
time memory functions i.e. which decays slowly with time and the fast variables are
those which have short time memory functions i.e. which decay quickly. More clearly,
this can be explained with a following example.

Suppose that a particle is moving through a fluid and its motion is opposed by fluid
particles as depicted in Fig. 1.1. The microscopic origin of the phenomena is surely the
Coulomb interactions between all the atoms and electrons of the total system. How-
ever, if the moving particle is macroscopically large and we focus on its center-of-mass
motion, we can reduce the complexity of the problem drastically without compromis-
ing with the basic physics. If the center-of-mass velocity of macroscopic particle is
small compared to the velocity of the fluid particles, we can separate or project out the

center-of-mass coordinates from the rest of the degrees of freedom of the total system.
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Figure 1.1: In the left panel when the external particle of macroscopic size moves slowly,
we see viscous drag with a streamline flow. In this case the time scales corresponding to the
macroparticle and the fluid particles are nicely separable. In the right panel, due to the faster
motion of a particle within fluid, a turbulence sets in and in such situation, separation of scales

are not possible.

In such a situation, we can write its effective equation of motion where the effects of
the molecular drag on its motion is incorporated through a drag force. This leads to a
very simple and well known equation of motion of the dragged particle which is of the

form [38],

R-"R+F=0. (1.4.1)
Here R is the position vector of the center-of-mass of the macroscopic particle of unit
mass, R and R represent its time derivative or the velocity and the acceleration re-
spectively and F is the external force. This is indeed a major simplification of a very
complex system. The parameter +y is termed as friction coefficient, viscous coefficient,
etc. depending on the contexts. It describes dissipation or the flow of energy and or
momentum from the coherent to the incoherent degrees of freedom in a system. It can
also be space and time dependent. However when the velocity of the particle becomes
large, as seen in the right panel of the Fig. 1.1, turbulence sets in and the idea of sepa-
ration of scales is no longer obvious. Separation of scales as used in studying the case
of a slowly moving particle in a fluid, can be used in quantum systems also. Many
such examples can be found in the literature. Since we look at the system within our
desired or approximate time scale and length scale, we effectively observe the dissipa-
tion of the momentum or energy of the particle as a result of the interaction with other
fast variables. The same scenario also may be emerged in other interacting systems
to calculate the generalized dissipative constant or the scattering rates. Moreover, in

short, the goal of this formalism (the Mori-Zwanzig formalism) is the systematic eval-
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uations of the time dependent correlation functions in classical or quantum many body

systems [12,13].

1.4.1 Projectors and Memory functions

In this subsection, we will give the idea to use the projectors or projection operators
[12,13] and describe the mathematical setup to calculate the expressions of the memory
functions.

Let us start with a many body system having macroscopically large number of
degrees of freedom and examine its macroscopic properties. In classical case, such a
system is described by position and momentum variables of the constituent particles.
This set of position-momentum variables is called phase space. In quantum cases,
these variables are replaced by a set of linearly independent operators. These physical
operators have well defined inner product and thus forms a Hilbert space [23]. This is

depicted pictorially in the big dark blue circle in Fig. 1.2.

Projected Space
of

Conserved Variables

Figure 1.2: A schematic representation of the idea of projection in the memory function for-
malism. Here the full big circle is the total many body operator Hilbert Space. The Projection
of full many body states defined by a few operators residing in the region P is represented by

light blue circle. Rests are defined by I-Q.

Now studying the low energy consequences of such a large number of variables
or operators and their interactions is extremely complicated, if not impossible as men-

tioned before. To do this job, we need methods which captures the correct low energy
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physics. Here the Memory function formalism drastically simplifies the above pic-
ture. Basic principle of the memory function formalism is as follows. Suppose we
are interested in studying the center-of-mass motion of a system of N number of par-
ticles. Then we separate or project out the center-of-mass variable from the others.
Here the center-of-mass variable is a macroscopic variable and is defined as a linear
combination of the microscopic variables. Now in memory function formalism, it is
shown that the effects of the rest of the microscopic variables on the dynamics of the
macroscopic variable can be estimated systematically and is cast in a so called Mem-
ory function [39-52]. The above discussion is applicable to the quantum systems also,
except that the classical variables will be replaced by operators. Since we discuss this
formalism in a context of the electronic systems, we invoke quantum mechanics from

the very beginning and work with operator language henceforth.

Consider an operator A corresponds to some physical observable and obeys the
Hamiltonian dynamics. To determine its dynamics, we define an operator £ in the
Liouville space i.e. the linear vector space whose elements are represented by linear
operators in Hilbert space [36]. These operators are known as superoperators and the
operator £ is named as Liouville operator. Its action on an another given operator A
produces a new operator or maps its action into its commutator with the Hamiltonian

H.

dA
LA=[H A = —i—. (1.4.2)
dt
Here [- - ,-- -] is the commutator between two operators. It is to be noted that there

1s no restriction on the Hamiltonian. It can be non-Hermitian as well, a case of non-
equilibrium situation [53]. From Eq. (1.4.2), we see that an operator evolves with time

as,
A(t) = e A(0). (1.4.3)
To understand the dynamic property of observable in a many body system, the time

evolutions of related operators are needed to quantify the correlation between its vari-

ous components. If such operators are represented as A;, then their correlation function
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matrix R(t) in terms of its matrix elements is defined as
Ryj(t) = {Ai(1)[A;(0))

= (A;(0)e™"*"A4;(0)). (1.4.4)

Here the angular bracket (- - - ) represents the canonical ensemble average. Now, per-

forming the Laplace transform of Eq. (1.4.4), we obtain

Rij(Z) = Z/ dt@iZtRij(t)
0

z —

1
E‘Aj>, 2 =w+il. (1.4.5)

Here z refers the complex frequency and ¢ — 07 is a small positive number. Again,
evaluation of R;;(z) is a many body problem with all its associated complicacies as
discussed previously. Further to evaluate the correlation function, we introduce a pro-
jection operator P which projects onto the subspace of operators A; and is defined

as [12,13]
Ay
P = 2T
- 1-0Q. (1.4.6)

Here P separates A, the operator corresponding to the observed macroscopic quantity,
from the rest of the microscopic degrees of freedom and the role of the () is just the

opposite. A generic projection operator should have the following properties.
P*=P, PQ=QP =0 ,etc.. (1.4.7)

Again considering the correlation function in terms of matrix elements Eq. (1.4.6) and

replacing the operator £ by L(P + @) in Eq. (1.4.5), we have

1
A ).
z2—LP— EQ‘ J>
Using the operator identity [12,13]

1 1 1 1
= —— Y 1.4.9
X+Y X X X+Y ( )

we can write R;;(2) in the following form

1 1 1
(z_£Q+2_£Qﬁpz_£)‘Aj>. (1.4.10)

Rij(z) = <Ai
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Since Q| A;) = 0, the first term in the right hand side of the above expression simplifies

(4

Therefore the expression for R;;(z) can be re-written as

1
Rij(2) = —xij + >, <A,~
lm

In matrix notation, this can be cast in the following form

as

1 1
m‘AJ’> = - (Ail4y)

1
z

1
z— LQ

L‘,‘ A,>X;W§ij. (1.4.12)

A-Cx 'R = x. (1.4.13)

Here the matrix elements of C are expressed as

Ca = <Ai

Further this can be decomposed into two parts by writing the numerator as z+£Q —L()

z
— ﬁ@g‘ Az>- (1.4.14)

as

Cy = <Ai\.c|Al>+<A@-

1
L‘QZ_EQL“A1>. (1.4.15)

The first term of the right hand side of the above expression is called the frequency

matrix and is defined as

The remaining part of Eq. (1.4.15) contains the effects of the faster degrees of freedom
residing in the un-projected part of the Hilbert space and is termed as the memory

matrix. It is defined as,

1
My(z) = <Ai EQWQE‘AZ>
. 1 .
_ <Az- Qz——QﬁQQ'A’>' (14.17)

Here we use the relation Q* = @ to write M;(z) in a symmetric form. This form

is very instructive as it defines the memory function in terms of the un-projected part
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of the |A) = £|A) and the un-projected part of the Liouville operator £, i.e. QLQ.
Since the memory function consists of the unprojected degrees of freedom only, it
describes the effects of fast modes on the the slow modes in a system and accounts
for the dissipation in the slow degrees of freedom. Using the above expressions, the
correlation function Eq. (1.4.4) between different components of A can be written in a

compact notation as,

1
dA— [+ M) x ¥

R(z) = (1.4.18)

In terms of the matrix elements, it takes the form,

l s
This completes the general description of the memory function formalism. In the next

section, we provide the motivation to apply the above technique to electronic transport.

1.4.2 Application to electronic transport

The usefulness of the memory function formalism to find the correlation function be-
comes significant when infinite dimensional matrix M has finite number of eigen val-
ues [37,54,55]. It allows us to treat this formalism for the finite dimensional system to
study the dynamical transport properties of the electronic systems. Here our focus is on
the time evolution of the current operator and the correlation of its various components
in a generic many body system. In our discussions on electronic systems we assume
that momentum is the only almost conserved quantity here and thus there is only one
slow mode associated with this conservation law. We study the momentum relaxation
of a charged particle under external perturbation. Thus the projector operator is defined
only in terms of the current operator. This assumption holds if there is no other slow
modes associated with any other conservation law or broken symmetry that couples to
the charge degrees of freedom. However for simplicity we stick to this picture for the
time being.
Now we can start with the expression for memory function as defined in Eq. (1.4.17).

In certain situations, we can evaluate the expression in the spirit of perturbation theory.

Memory function can be viewed as the self energy of the current-current correlation
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function [12]. It has an added advantage that such self energy calculation does not
require vertex correction [56]. The latter is extremely important and problematic when
it is expressed thorough the interaction renormalized single particle propagators [24].
Now, for the case of current-current correlation, the general operators are replaced by
the current operators J and the memory function Eq. (1.4.17) can be rewritten as [57]
: 1 :

M(z) = <J'Q—Z_Q£QQ‘J>. (1.4.20)

Here .J = [J, H], where H is the total Hamiltonian of the system under consideration.
With this, we can conclude that knowing the form of total Hamiltonian (including
the perturbation part) and current of a specific system, one can calculate the memory
function in a systematic way, hence the transport properties which is the main aim
of our thesis. A procedure to calculate the memory function, due to Gétze-Wolfle is
presented in the next chapter. Further, the limits of the applicability of the memory

function approach are as follows:

1. In this approach, the existence of quasiparticle is not essential. Thus, it is ap-
plicable to certain strongly correlated systems. There is no restriction on the
dimension of the system. In this thesis, I have used the quasiparticle picture to

study the transport properties.

2. Within the Gotze-Wolfle memory function approach, one can calculate the trans-
port properties perturbatively by considering current as a nearly conserved quan-
tity. If the system has other nearly conserved quantities like total momentum,
heat diffusion, etc. as in the case of strongly interacting non-Fermi liquids, one
has to use the memory matrix formulation rather than GW approach to include
the other slow modes that couples to the electric (thermal in case of thermal

conductivity) current.

3. Itis valid only if the system is in the local equilibrium.

1.5 Objectives of the present study

To study the effect of perturbative interactions on the transport coefficients, we use the

memory function approach and calculate them at zero and finite frequency regimes.
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The main objectives of our study are as follows:

1. Studying the generalized Drude scattering rate based on the Gotze-Wolfle (GW)

approach takes into account the effect of gapped electronic density of states.

2. Exploring the frequency and temperature evolution of the thermal conductivity
of metal for the case of the electron-impurity and the electron-phonon interac-
tions. Motivated by recent experimental advancements, we report the results in

the finite frequency regimes.

3. Materials with the large figure of merit are required for the operation of nano
thermoelectric devices. Motivated by that we study the dynamical thermoelec-
tric coefficient in a metal for the case of electron-impurity and electron-phonon

interactions.

4. Exploring the role of various acoustic phonon modes such as longitudinal, trans-
verse and flexural modes considering the electron-phonon interactions in the dy-

namical thermal conductivity of graphene.

5. Extension of the GW memory function approach taking the high frequency ex-
pansion of the memory function for the case of the electron-impurity interaction.
We calculate the memory function upto the second moment and show its large

contributions in the case of larger interaction strength.

1.6 Overview of chapters

In the next chapter, Chapter 2, we begin with discussion of the Gotze-Wolfle (GW)
memory function approach. We then present the results of scattering rate predicted by
GW to address the effect of electron-phonon interaction in a metal by taking constant
electron density of states. We then go beyond this assumption and introduce the gapped
density of states and calculate the imaginary part of the memory function or known
as generalized Drude scattering rate. Here we discuss the dc (zero frequency limit)
and ac imaginary part of the memory function in different temperature and frequency
regimes. Then we compare our findings with the phenomenonlogical approach given

by Sharapov and Carbotte and discuss our results.
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In Chapter 3, we calculate the dynamical thermal conductivity in the case of a
metal using the memory function approach. Here for the first time we introduce the
thermal memory functions and calculate them to study the effects of electron-impurity
and electron-phonon interactions. Then we discuss its asymptotic behavior in differ-
ent frequency and temperature regimes. Further we compare the results for the zero
frequency case with the results obtained by the Boltzmann approach and find good
agreement. In addition to this, we make several predictions in the frequency dependent
cases for ac thermal conductivity.

In Chapter 4, with the same spirit of the previous chapter, we calculate the fre-
quency dependent thermoelectric transport i.e. the Seebeck coefficient of a metal.
First, we discuss the basic relations of the thermoelectric coefficients and then calcu-
late them in various frequency and temperature regimes. Also, we discuss that how
the Seebeck coefficient can improve the figure of merit of any material to increase the
efficiency of thermoelectric devices.

In Chapter 5, we study the two dimensional system i.e. graphene which is different
from the normal three dimensional system. We present the role of various acoustic
phonons to the electronic thermal conductivity of graphene. Furthermore, we also
discuss the contribution of these phonons to the finite frequency cases.

In Chapter 6, we extend the GW memory function approach to the higher order
contribution to the Drude scattering rate. We propose a systematic expansion of the
memory function involving its various moments. Then, we calculate the scattering rate
upto second moment in the memory function expansion for the case of the electron-
impurity interactions. We discuss the contributions from higher moments in the case
of larger interaction strength. Finally, in Chapter 7 we present the summary of the

dynamical transport coefficients and outlook for the future studies.
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Generalized Drude Scattering Rate:

Memory Function approach

Electrical conductivity is one of the important transport property and its study can
help us in attaining a better understanding of the electronic interactions in many body
systems. These interactions comprise of electron-impurity, electron-phonon, electron-
electron interactions which play important role in the frequency dependent generalized
scattering rate. Their signatures can be easily grasped by using the experimental data
on reflectance to extract o(w, T') which can be written in a general way by the memory

function expression or the generalized Drude scattering form [12,56]:

w 1
Ar 17w, T) +iw(l + Mw,T))

(2.0.1)

Here 1/7(w,T) is the frequency and temperature dependent scattering rate, A(w, T)
is the frequency and temperature dependent mass enhancement factor and w,, is the
plasma frequency.

On theory side, the derivation of the analytical formulae for these quantities (like
1/7(w,T) and \(w,T)) is quite complicated and has yet not been calculated by the
Bloch-Boltzmann approach as discussed in previous chapter. Owing to the analytical
tractability, the memory function formalism was first used in a systematic way to cal-
culate electrical conductivity for the case of a simple metal with various interactions
by Gotze-Wolfle [56]. Within this approach, they calculated the frequency depen-
dent conductivity with various interactions such as electron-phonon, electron-impurity,

electron-magnetic impurity, scattering with localized modes etc. For electron-impurity

25
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interactions they showed that the results are identical to the single particle calculations
by using the Bloch-Boltzmann equation with vertex corrections [56]. This is indeed a
benchmark and major success of this formalism.

In this chapter, we discuss the case of electron-phonon interaction in the dynami-
cal or frequency dependent electrical conductivity. In Sec. 2.1, we describe the model
Hamiltonian of the system. In Sec. 2.2, we first calculate the electrical memory func-
tion as done by Goétze-Wolfle to provide the background and then we go beyond the
assumption of constant electronic density of states. Here we introduce the gapped elec-
tronic density of states and calculate the electrical memory function. In Sec. 2.3, we
review the approach introduced by Sharapov and Carbotte. Later in Sec. 2.4, we com-
pare our results with the Sharapov-Carbotte results. Finally, we discuss our findings in

Sec. 2.5.

2.1 Model Hamiltonian

We consider a system in which conduction electrons interact with phonons. In such

system, the total Hamiltonian is given by [56]
H = Hy+ He, + Hpp, (2.1.1)

where H is the Hamiltonian for non-interacting electrons or free band Hamiltonian

and is represented as

Hy = ) et} Cho (2.1.2)

k,o

where ¢ is the electron energy dispersion and CLU (ck,») 1s creation (annihilation) op-
erator having wave vector k and spin o. The Hamiltonian H., represents the electron-
phonon interaction or known as the perturbing Hamiltonian due to interaction of elec-

trons with phonons and is given by

Hy = > |[Dk=K)d abcw +hel. 2.1.3)

kK o

Here by (bLk,) is the annihilation (creation) operator for phonon having momentum

q = k — K and D(k — K') is the electron-phonon matrix element. The symbol h.c.
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corresponds to the Hermitian conjugate of the first term. Here for simplicity or to
understand the low energy dynamics of a metal, we consider only the acoustic phonons.

In this case, the electron-phonon matrix element can be specified as [3]

1

~1/2
_ : = ¢y, 2.14
o, qu) qC(q);  wq=csq (2.1.4)

v ~ (

where C(q) is the slowly varying function of ¢, m; is the ion mass, N is the total
number of unit cells, ¢, is the sound velocity and w, is the phonon frequency.
The third part of Eq. (2.1.1) represents the free phonon Hamiltonian and is de-

scribed as

1
Hy, = Y w, <bgbq + 5) : (2.1.5)
q

With this description of the Hamiltonian, we will proceed for the calculation of the

electrical memory functions in the next section.

2.2 Electrical memory functions

According to the Gotze-Wolfle approach, the electrical memory function is defined
as [56]

M(z,T)

x(z,T)
Oz + M(z,T)

M(z,T) = ZXO G or x(z,T)=x (2.2.1)

where x(z,T) is the current-current correlation function, x, corresponds to the static
limit of the correlation function (= N./m, N, is the electron density) and z is the
complex frequency (z = w + ¢, ¢ — 07). As discussed in the first chapter, the
memory function includes the effect of fast degrees-of-freedom like electron-phonon
interactions, etc. on slow degrees-of-freedom which in the present case is the electrical
current density. If there are no interactions then current density is a conserved quantity.
The decay of a spontaneously generated current fluctuation in a realistic system is
due to the electron-phonon or electron-impurity interactions. In metals®, there is clear

scale separation in that the time scale over which current density decays is much larger

“In strange metals, transport is controlled by the collective diffusion of energy and charge rather than

by quasiparticle or momentum relaxation [58].
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than the time scale of the fast degrees-of-freedom electron-phonon or electron-impurity
interactions.

The effect of these fast degrees-of-freedom on the slow degrees-of-freedom can be
calculated by using the memory function formalism which is an alternative formulation
of the linear response theory. In this theory, the linear response of an operator due to
perturbation (electron-phonon, electron-impurity) coupled to an another operator is

expressed in terms of the correlation function as [59,60]

VT = (T ). = —i /0 e L), J]). (2.2.2)

Here the electrical current J is defined as
J = —1 E ek.fcl Ck 2.2.3)
m 4 koK

where 7 is the unit vector parallel to the direction of current. In Eq.(2.2.2), [- -+, - -]
denotes the commutator, the inner angular bracket of ((- - - )), represents the ensemble
average at temperature 7' and the outer one represents the Laplace transform of the
ensemble average. Thus electrical current density J defined in the above equation is
our slow mode as discussed earlier.

In this chapter, we want to discuss the dynamical transport i.e. the dynamical elec-
trical conductivity o(z,T") which is related to the current-current correlation function

as follows [24,59-61]

2

1 w
T) = —i— T —2 224
o(5T) = —isx(T) +igl (224)

In the above expression, wf, = 47N.e?/m is the square of plasma frequency. Now

substituting Eq. (2.2.1) in (2.2.4), the electrical conductivity becomes [27,56]

i w2
T) = ———————. 2.2.
o(zT) Az + M(2,T) 22.5)

To calculate o(z, T'), we need to calculate the electrical memory function which further
relies on the correlation function. This correlation function can be obtained by using
the equation of motion [56] i.e. first multiplying x(z,7"), defined in Eq. (2.2.2) by =

and then performing the integration on the right hand side of the equation by parts’

sl =i [ e S0, = Qay i [ a1,

¢ 0
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which express z((.J; J)), as
()= = (L)) + (U, HI; )= (2.2.6)

Here the first term in the right hand side contains equal time commutator [.J, J] which
identically vanishes. Thus, z((.J;J)), = (([J, H]; J)).. Again using the equation of

motion on (([J, H]; J)), as done earlier, one obtains
(L H ). = (U H]L D = ([, H] 1, H))- (2.2.7)

In this equation, the difference is the negative sign in front of the second term of the
right hand side which can be proved by the cyclic property of trace operation®. Fur-
ther for z = 0, ([[J, H], J]) = ({[J, H]; [J, H])).—o. Thus, substituting these back in
Eq. (2.2.6) we get

AT TY. = (I H]; I, H))amo — (I, HE [T H]))- (228)

z

Finally, the correlation function can be expressed as

ey — WLHRUHD) o~ (UHETHD).

22

In Ref. [56], an expansion for M (z,T) = zx(z,1)/x0 (1 + x(2,T)/x0 — -..) is used.
Basis of this assumption is the smallness of interaction energy as compared to the
kinetic energy of free electrons [56]. Using this expansion and on keeping leading
order term, the electrical memory function M (z,T") can be written as

2T) _ (1)
X0 X0 '

(2.2.10)

M(z,T)= zX(

Substituting Eq. (2.2.8) in the above equation, the electrical memory function becomes

M(Z,T) _ <<[‘]>H]§[J7H]>>ZZZOX_ <<[‘]>H];[J7H]>>z' 2.2.11)

Further for this evaluation, we first calculate the commutator of the current and the total
Hamiltonian. Since, the electrical current commutes with the free parts of Hamiltonian

i.e. Hy and Hyy,. Thus [J, H] = [J, Hep| which using Eqs. (2.1.1) and (2.2.2) becomes

1
LH = =Y (k-K)- ﬁ(D(k O h.c.). (2.2.12)
m b

kKo

(A, H], B)) = Tt[A, H|B — TtB|A, H] = —TrA[B, H] + Tt[B, H)A = —([A, [B, H]))
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Using the above equation, the correlation function for the case of electron-phonon

interaction (([J, H]; [/, H])). becomes

(L HEHD). = 5SS (k- K) ip—p) 4 2213)

kk'c pp’T
% (D(k = K)D" (p = B){(cy o s Crprbh )

~D*(k —K)D(p — p)(< Cr ckabl k,,cLTcp/pr,p/»Z).

To simplify the above expression, we need to calculate < <CLUCk',obk_k’; bI’—P’C;T)/ +Cpo’ >>
) ’ z

which can be calculated as (using definition Eq. (2.2.2))

<<ClT(,ack’,Ubk—k’; b;r,fp/cz)/p/ Cp.o’ >> =
i / dte (el (Hew o (Db (i8] !, eyl (2214)
0

—iext

Using ¢k ,(t) = ¢k o€ and performing the integration over time, we have

= — : . (2.2.15)
2 — € + €k — Wk—_x

T T T
it (et ) )
Ck,ack/,a k—k’; p— p/Cp, ’Cpa .

Further solving the commutator and ensemble average, the above equation reduces to

(ot Oy el pr)) = ~LEZ I 2 U7 o) Geal O
k,o “K' ,0 Vk—K ppp//p z— Z— € + €k — Wik

(2.2.16)

Here f and n are Fermi and Boson distribution functions as defined in Egs. (1.2.15)
and (1.2.17) in Chapter 1.

Inserting Eq. (2.2.16) into (2.2.14) and hence in Eq. (2.2.11) and then performing

the analytic continuation z — w + i¢, ¢ — 07, the imaginary part of the electrical

memory function® can be expressed as

2 1
M"(w,T) = ?mN |D (k = K)]*(k = K)? fir(1 = fi)mew
_ 1 .
[ d(ex — e — Wk +w) + (terms withw — —w)|.
w

(2.2.17)

For simplification in the above expression, we use the law of conservation of mo-

mentum q = k — k' and assume that the system has cubic symmetry for which
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(k —K).n)? = §|k — K|%. Convert the summations over k and K’ into integrations
2 2

using € = o and ¢ = o and assuming that k is pointing along the z-direction
m m

and k subtends an angle ¢ with it (at the end, K integration over all directions and mag-
nitudes is to be performed). Insert an integral / dgd(q — |k — K'|) over ¢ to simplify

the calculation as given below. Thus the Eq. (2.2.17) becomes

N? dex deys
" _ 2 k
M"(w,T) = 3 @nmn, / dqq?®|D(q) / —k /

/ dfsin05(q — |k — K'|) fir (1 — fi)ng

0

-1
{ d(ex — e — Wi_k + w) + (terms withw — —w)} :
w

(2.2.18)

In a typical metal, the Fermi energy is very large (is of the order of 10*K). On the other
hand the experiments are usually performed at temperature of the order of 10?°K. Thus,
electrons from a small region of width k57" (in the present case kg = 1) around the
Fermi surface participate in the scattering events. Hence, we assume that the magni-
tudes of k and k' are equal to kr, the Fermi wave vector. With this, the # integral can

be simplified as:
/ dfsin06(q — V/2kpv/1 — cosh) = k‘% (2.2.19)
0 F
Using this and simplifying the above equation, we obtain
4 N?mPep 9o n
M// T — = d 3 D 2 / d q

1 ebw — 1
X eBle—ertw—wq) +1

+ (terms withw — —w) |.

(2.2.20)

This is an expression for the imaginary part of the electrical memory function by
considering the constant electronic density of states (EDOS) as deduced by Gotze-

Wolfle [56].

2.2.1 For gapped density of states

In the optical study of strongly correlated systems, the generalized Drude scattering

rate is obtained experimentally using the reflectance data. To address these exper-
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imental findings, Sharapov and Carbotte have proposed a theoretical approach. This
approach is based on several assumptions which have shortcomings as discussed in lat-
ter section (Sec. 2.3). Here we have proposed [62] an alternative approach to address
the optical measurements which is based on the memory function formalism.

In this section, we extend the GW approach which is based on constant EDOS. To
go beyond the latter assumption, we consider a system with a gap around the Fermi
surface and introduce the phonon DOS into the GW formalism which generalizes it in
a substantial way as explained below. In this case, the electronic density of states is
zero in energy region (—A; A). Thus the energy integration in Eq. (2.2.20) has to be
modified

ep—A 66(6—5p) 1
I = de
—00 eﬁ(G—EF) + 1 GB(E_EFJ’_W_Wq) + 1
00 6,8(6761:) 1
* /€F+A dgeﬂ(e—EF) 41 eBleertw—wg) 4 1° (2.2.21)

After simplification we have

] p—

———log
ﬁ eﬁ(w—wq) —1 (1 + @B(A‘H"_wq))(l —+ e—ﬁA)

}. (2.2.22)

Using the simplified version of the energy integral, the imaginary part of electrical

memory function can be written as

TIN2p2 [P 1
dqq®|D(q)|*=
g [ aa D@,

efv —1 1 14 efA 1 4 e AlA-wtwa)
{ w  ePlo—wd) — 1 log{ (1 + eBA) ( P 4 eflwa—w) ) }

+(terms withw — —w)} : (2.2.23)

M"(w,T) =

This is the desired expression for the frequency and temperature dependent imagi-
nary part of electrical memory function. For A = 0 and using phonon matrix ele-
ment Eq. (2.1.4), this expression reduces to the expression calculated by GW in their
work [56], as it should. In actual practise (i.e. for an arbitrary form of gap around
the Fermi surface), the general expression of the imaginary part of electrical memory
function is complicated and difficult to proceed analytically. A general formulae is
given in Appendix A. Thus for the simplicity of calculation, here we have discussed it

for a hypothetical system. Further to write M"”(w, T) in the general form, change the
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variable w, to {2 in above equation which can be rewritten as

2 [“P 1[ e —1
" = 2 -
M'(w,T) = o ), dQa F(Q)ﬁ Lﬁ(wﬂ) =

1 1+ efﬁ(AwarQ) ‘

X R log { e } — (terms withw — —w) |,

(2.2.24)
where o® F'(€2) is defined as
2 7\2 2

Q2FP(Q) = “ PR3 D). (2.2.25)

8mk3.ct
This is known as phonon spectral function whose form is same as given by Allen [63]

(a2F(@) = S50 M P (000 = oK) 250020 — h)) )

4v?,
Equation (2.2.23) is our main result. To discuss it in various temperature and fre-

quency regimes, we use the electron-phonon matrix element Eq. (2.1.4) and calculate
M"(w, T) in next subsections.
DC memory function

In the zero frequency limit and assuming C(q) as a constant i.e. C'(q) = 1/pp [3], the

imaginary part of the electrical memory function Eq. (2.2.23) becomes

1 N v 1 1
M// T — - 3 d 5 _
(T) 8" mm;ky Jo 7 (B — 1) (e=Pwa — 1) w,
1+ ePA 14 e AlAtw)
x log { [ F o 7a ohh oo [ (2.2.26)

Now consider the case of T' > wp, A, the above equation reduces to

1 N aw 1 -1 2 — A —
M'(T) = =-r° = qq5——+ bey log {—B by }
8 mmk Jo Wy (Bwy)? 2 — BA + Puw,
(2.2.27)
)
On substituting x = q_; (i.e. Bw, = x) where Op is the Debye temperature, the dc
dp

electrical memory function reduces to
1 Ngj T\ [7°r 2-pBA -z
M”T:—3—D—/ dra®(z —1)log{ =———— ¢.
@) = ™ ka6 <@D) | derle—Dlos 5o
(2.2.28)

This expression under case 7' > wp, A is equivalent to

T OOA 1/A SA O,
My ~ ad 8 1 22 B G
() {@D+@D+T(8®D+5 6) } (2.2.29)




34 Chapter 2. Generalized Drude Scattering Rate: Memory Function approach

where A refers for constant numerical factor.

Similarly for " < wp, A, the Eq. (2.2.26) becomes

1, Ngb T\° [Per efA 4 e
M"(T) = —=p3——2D0 [ — / dezte ™1 _ .
(T) 8" mm;k>Op (@D) 0 e 0B e + e

(2.2.30)

The above expression can also be simplified as

5
M'(T) ~ Ae {% _ z (@%) } | (2.2.31)

Substituting the Eq. (2.2.30) into (2.2.5), it leads to the expression of dc conductivity
for the electron-phonon interaction. Here if we insert gap A = 0 in the Eq. (2.2.26),

we obtain the results as given in Ref [56].

AC memory function

We proceed again with Eq. (2.2.23) to study frequency dependent behaviour of elec-
trical memory function in different regimes. In the high frequency regime i.e. for
w > wp and using same approximation (C'(q) = 1/pr) as considered for the dc case,

the imaginary part of electrical memory function becomes

1, N aD s 1 n

M// T — - -
(@T) 8" mm;k3 Jo 7 Pw, w
|4 efBoN 1 4 o-B(0tw)

When the gap is smaller than the |w — wp| i.e. A < |w — wpl, the above equation
reduces to

1 N T \° [%er T
M"T=-3—6—/ deatcoth (2). 2.2.
(w,T) 8" mmks0, P (@D) , e (2) (2.2.33)

From this we identify that at high temperature, the imaginary part of electrical memory
function becomes temperature and frequency independent. This means the saturation
behavior of M" (w, T') for w >> wp. The reason is that under this condition, the integral
approaches to (©p/T)® and it cancels with prefactor (7//0p)° in Eq. (2.2.24). At low

temperature, it varies linearly with temperature as the integral approaches to (O /T)*.

Tn the opposite case [w — wp| < A, Eq. (2.2.23) leads to vanishing scattering rate.
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In the later section we compare our findings Eq. (2.2.24) with that by the Sharapov-
Carbotte approach. Before we compare our results, let us first discuss briefly the
approach proposed by Sharapov and Carbotte [64] to study the transport in the next

section.

2.3 Sharapov-Carbotte approach

In this approach, Sharapov and Carbotte deduce a relationship between the scatter-
ing rate 1/7(w, T") [64], which in our context is termed as memory function, and the
electron-phonon spectral function for a system in which electronic density of states
cannot be considered as a constant. The motivation behind this approach was to study
the frequency and temperature dependencies of the optical conductivity o(w,T") data
through the Generalized Drude Scattering rate (GDS) 1/7(w, T').

A simple expression for the scattering rate in terms of the electron-phonon spectral
function at zero temperature was first derived by Allen [63] to study the effects of
electron-phonon interaction in electrical conductivity of metals. Then for the finite
temperature, it was extended by Shulga, Dolgov and Maksimov [65]. But in both the
formalisms, the Electronic Density Of States (EDOS) at the Fermi energy is considered
as a constant. To go beyond this idea, Mitrovi¢ and Fiorucci [66] gave a relation for
non-constant EDOS, but their result is at zero temperature. Sharapov and Carbotte [64]
generalize their result for finite temperatures. In deriving the formula, they begin with
the Kubo formula for electrical conductivity

2

) . ne
olw) = o0 {H(w +10) + W] . (2.3.1)

Here II(w) is the current-current correlation function which can be obtained from

imaginary time expression [24]

B
(o) - /0 dr e ((7)(0)), (232)

where i€),, = w + 10 and 7 is the imaginary time. Further using the definition of
electrical current, this expression has been expressed in terms of Green’s function and

calculated using Matsubara technique [24]. Substituting the resulting expression for
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correlation function in Eq. (2.3.1) and comparing that with the expression for the gen-
eralized Drude formula Eq. (2.0.1), they derived the frequency and temperature depen-
dent scattering rate. In this derivation, they made several assumptions including the

important one on self energy,

Y(e+w)—3"(e)| < w where X(¢) is the electronic self
energy and * corresponds to the complex conjugate [64]. Based on these, Sharapov

and Carbotte gave the following expression for GDS

1 A 9 < JINW—-Q) N(—w+9Q)
o) 5/0 Ha”F () /oo o [ NO) T N)
n(Q) + £ — )] [f(e — ) — F( +w)]. (233)

where o F'(w) is the phonon spectral function, N (w) is the electronic density of states
and N(0) is the normalization factor. Thus we conclude that by knowing the form of
the phonon spectral function and the electronic density of states of a specific system,

one can obtain the behavior of the generalized Drude scattering rate.

2.4 Comparison of GW and SC approach

To compare our approach Eq. (2.2.24) with SC approach Eq. (2.3.3), we have done
calculations using models for electronic density of states and the phonon spectral func-
tion. First in SC approach, for the electronic density of states, we use a square well
type model with center at Fermi energy and considered a gap of 2A around it. This
model is considered for the simplicity of the analytical treatment of our calculation and
it is similar to the density of states of the quantum well. However, the consideration
of the gapped density of states is important to understand the behavior of various sys-
tem such as conventional and unconventional superconductors. Same gap is taken in

our approach Eq. (2.2.24) for comparison. Second, for the phonon spectral function,
ra

(€ —Qp)? +(I')?
sent the phonon peak frequency and I is the width of the Lorentzian [67-69]. Thus for

o®F(Q), we modelled it as Lorentzian of the type

where () repre-

comparison, we use the same form of a>F () in SC approach and our approach. In
the whole analysis, we have fixed the value of {2z and I" as 0.02eV and 0.04eV respec-
tively in both approaches. The value of Debye frequency (the upper limit of phonon
frequency integration Eq. (2.2.24)) is very much high as compared to the Lorentzian

width, hence wp does not give any effect in whole calculation. To compare the results
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Figure 2.1: Comparison plot of scattering rate 1/7(w, T')(=M" (w, T)) calculated using Mem-
ory function approach (Mem, solid, green) and Sharapov-Carbotte approach (SC, solid, blue)
at temperature T= 10K and 200K and at gap A = 0.02eV and 0.20eV. The agreement is

excellent.

from both the approaches, the frequency dependent scattering rate has been plotted at
different temperatures. In Fig. 2.1, we can observe an excellent agreement between
both the approaches. As the gap magnitude is increased, the scattering rate shows
suppression upto the frequency w ~ A as expected (compare Figs. 2.1(a) and 2.1(c)).

These results are qualitatively in agreement with the experimental results [70,71].

In Fig. 2.2, we plot 1/7(w — 0,7 as a function of temperature 7. Here we
can observe that the scattering rate using memory function approach gives more mag-
nitude over the SC approach. In Fig. 2.2(a) i.e. in zero frequency limit, the ratio
Lmve = 1/7sc , where 1/7y/r and1/7sc represents the scattering rate by mem-

/1) TmF 100K
ory function technique and SC technique respectively, is 0.7 which becomes 0.4 at

w = 0.05eV (as shown in Fig. 2.2(b)) and at w = 0.5eV it further reduce to 0.031 (as
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shown in Fig. 2.2(c). This shows that the ratio for scattering rates using memory func-
tion approach and SC approach reduces as we go from dc limit to finite frequency limit.

Thus we notice that there are discrepancies between the two approaches in the low

0.010
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w~0,A=002 / ©=0.05,A=0.02 7
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Figure 2.2: Temperature variation of scattering rate with two different approaches namely
memory function (Mem, dotted) and Sharapov-Carbotte (SC, dashed) at gap 0.02eV. (a) dc
case (b) at w = 0.05eV (c) at w = 0.5eV.

frequency (w — 0) limit. But both approaches explain the Holstein’s mechanism at
T = 0K [72,73] (as shown in Figs. 2.2(b), 2.2(c)). This means that at finite frequency
and at zero temperature(where thermally excited phonons are not present), there is a
finite scattering rate. This attributes due to the generation of phonons along with the
electron-hole excitations with the absorption of photon quanta. This mechanism is
known as Holstein mechanism [72,73].

Next, we have plotted 1/, at different temperatures as a function of A and com-
pare the both approaches (Fig. 2.3). Here we observe that 1/7,. decreases with the

increase of gap energy A. Also, we find that the difference between the magnitudes
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Figure 2.3: Comparison of dc scattering rate (1/74.) as a function of A using Memory func-
tion approach (Mem, Purple) and Sharapov-Carbotte approach (SC, Red) at various tempera-
tures 50K and 200K.
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Figure 2.4: Variation of difference = (1/7pr — 1/75¢) of dc scattering rate with tempera-

ture calculated by two different approaches MF and SC at A = 0.02eV.

of 1/7s¢ and 1/7)F is not much dependent on A, but it does increase with increasing
temperature. These discrepancies observed in the dc limit are discussed below.

To illustrate these discrepancies, we have plotted the difference in the magnitudes
of scattering rates calculated by both approaches. The difference (1/7yr — 1/7s¢)
at A = 0.02eV is plotted in Fig. 2.4. Here we find that this difference increases
with the rise of temperature. The reason behind this difference in the low frequency
case is the assumption made by SC i.e. w > |¥(e + w) — X*(e)| which becomes
more severe in high temperature regime. To clarify this fact, we plot the quantity
|X(e +w) — X*(¢)| as a function of temperature in Fig. 2.5 (where the expression used
for ¥(w) has been given in Ref. [64]). It shows that the magnitude of the difference

of self energy increases with the temperature. This shows the stronger violation of
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Figure 2.5: Plot of |X(e + w) — £*(€)| with temperature at different frequencies such as (a)
w = 0.0001eV, (b) w = 0.001eV and (c) w = 0.01eV . Here ¥ (w) represents the self energy

and * corresponds to the conjugate.

the condition w > |X(e + w) — X*(¢)| in high temperature limit. It implies that SC
formalism is not appropriate to study the dc behavior and the disagreement is severe at

high temperature, but it is quite reasonable for the finite frequency case.

2.5 Conclusion

In this chapter, we look at the case of the electrical conductivity of a metal discussed
by Gotze-Wolfle and extend their approach by considering the non constant electronic
density of states. Here we have considered a phenomenological gap around the Fermi
surface and analyzed its impact on the scattering rate. The calculations of the scattering
rate have been done by two different approaches namely (1) memory function (MF)

and (2) Sharapov-Carbotte (SC).
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In a nutshell, the concluding remarks of this chapter are as follows:

1 The finite frequency scattering rate using memory function formula is in
excellent agreement with the same obtained from SC formula as shown in

Fig. 2.1.

2 Assumptions made in these two different approaches are consistent at finite

frequencies.

3 In the case of low frequency, significant discrepancy for the scattering rate

between the two approaches (Figs. 2.2(a) and 2.3) has been observed.

4 There is also decrease in the dc scattering rate with the increase in gap and the
difference between the magnitudes of the scattering rate by two approaches

does not depend much on gap.

5 This discrepancy is due to the assumption w > [3(e + w) — ¥*(¢)| made in

the SC approach which becomes severe in high temperature regime.
6 No such assumption has been obtained in MF formalism.

7 Thus, the MF formalism is better choice to calculate frequency and tempera-

ture dependent scattering rate.
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Dynamical Thermal Conductivity of

metals

In this chapter, we apply generalized version of the Gotze-Wolfle memory function
formalism to a very interesting problem of dynamical thermal conductivity of metals.
Before to start this problem, we first give the brief introduction about the concept of

thermal conductivity.

The knowledge of the properties of the metals are very important for industrial de-
velopment [69,74—77]. These properties include appearance, malleability and ductility,
ability to conduct heat, etc. Among them, the most important criteria is how the metal
conducts heat. To answer this question, there is one transport property known as ther-
mal conductivity that quantifies the ability of the material to conduct heat. Understand-
ing this heat conduction process is an interesting issue of the scientific research. In this
direction, several methods based on the Kubo formalism and the Bloch-Boltzmann
method have been applied to calculate thermal conductivity of metals [3]. These are
discussed in the zero frequency limit and are well verified. However, the notion of the
frequency dependent thermal conductivity was not previously known and hence was

not addressed in theoretical discussions.

Recently, the notion of the dynamical thermal conductivity is introduced by Volz et
al. [78]. With this idea, the recent experiments access frequency in which dependence
of the thermal conductivity on frequency cannot be ignored. There it is introduced in

the context of its usefulness for the thermal design of microsystems and nanosystems

43
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which operates at several GHz clock frequency. Cooling of the Joule heating in such
systems is an important issue [78] and it requires detailed understanding of the fre-
quency dependence of the thermal conductivity. In reference [78], the dynamical ther-
mal conductivity is introduced in the context of phonon mediated thermal transport
in Si crystals. However, in the case of metals, and particularly at certain oscillating
frequency, the electronic contributions to the thermal conductivity under local ther-
mal equilibrium condition may predominate. We consider this scenario and present in
the chapter a careful theoretical analysis of the frequency dependent electronic ther-
mal conductivity of metals in various regimes of interest [79]. In a recent computer
simulation using molecular dynamics technique, it is found that the phononic thermal
conductivity reduces in magnitude at high frequencies [78]. Experimentally, it is also
studied in the context of semiconductor alloys and it is found that the magnitude of the

phononic thermal conductivity reduces as the frequency increases [80].

Theoretically, the electronic and the phononic dynamical thermal conductivity is
discussed recently by Shastry [81] and others [82-85] in different contexts such as in
open systems, strongly correlated systems, semiconductor crystals, etc. In the present
chapter, we explicitly derive the various expressions for the electronic thermal conduc-
tivity in case of a metal using the memory function formalism. First, in Sec. 3.1, we
give the basic definition of the thermal conductivity and then give its relation to the
memory function. In Sec. 3.2, we calculate the thermal memory functions for the case
of the electron-impurity and electron-phonon interactions in a metal. Then, we present

our results in Sec. 3.3 and give the conclusion of our results in Sec. 3.4.

3.1 Thermal Conductivity

According to the Kinetic theory, the thermal conductivity is defined as the rate of flow

of heat across a unit area of cross section in a unit temperature gradient [14,24] i.e.

Jo = —kVT. (3.1.1)
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Here VT is the temperature gradient, « is the thermal conductivity, and Jg is the

thermal current density and is defined as [24],
1 .
Jo=— gk (e — )t ek (3.1.2)

In Eq.(3.1.1) &, the thermal conductivity, describes the response due to the change in
the temperature gradient and is generally analyzed by various approaches where the
gradient of the temperature is considered as static. In the present work, we assume
that V'T' is not static and oscillates with the frequency w. This oscillation leads to
the dynamical variation of the thermal conductivity. Here it is to be noted that while
oscillating the temperature at one of the end of the bath, the local thermal equilibrium
must be maintained. This impose the condition that the oscillating frequency should
be greater than the scattering rate. Under this condition, we can define the thermal
current density by Fourier law and calculate the thermal conductivity by using memory
function formula.

To calculate it, we employ the memory function approach. In this approach, the
dynamical thermal conductivity at a complex frequency z and temperature 7" is defined
as [79]

v X(()QQ(T>
Tz + MQQ(Z, T) ’

where X%Q(T) is the static thermal current thermal current correlation function and

k(z,T) (3.1.3)

Mgo(z,T) is the thermal memory function.

It is known that, within the perturbation theory, the thermal memory function can
be expressed to leading order in the interaction strength as (derivation of this equation
is given in Appendix C)

MQQ(Z,T) _ <<[‘]Q’H];[JQ’HD’)Zng;)Q_(;’;[‘]Q?H]?[JQ’H]»z. (3.1.4)

This is the complex memory function in which the imaginary part of the memory func-

tion describes the thermal scattering rate due to the presence of different interactions
such as electron-impurity and electron-phonon interactions and its real part describes
the mass enhancement factor. In the present work, we focus on the thermal scattering
rate which leads to the real part of the thermal conductivity. Here for simplicity, we
have ignored the mass enhancement contribution to the thermal conductivity as the

thermal conductivity is mainly controlled by the thermal scattering rate [56].
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3.2 Thermal Memory functions

Using the definitions of the thermal current and the Hamiltonian, let us focus on the

calculation of the thermal memory function and hence the thermal conductivity.

3.2.1 Electron-Impurity Interaction

Consider a system in which electrons interact only with impurities, the total Hamilto-
nian in this case is given in the form H = H, + H;yp, where the form of unperturbed

Hamiltonian H| is given in Eq. (2.1.2) and the perturbing part Hijy, is defined as

Himy = N7 (KUK )el, 00, (3.2.1)

i Kkk'o

where U’ refers to the impurity interaction strength, sum over 7 index refers to the
number of impurity sites and /V represents the number of lattice cells.

Using the form of Hamiltonians Egs. (2.1.2) and (3.2.1) and the expression of ther-
mal current Eq. (3.1.2), the thermal memory function can be calculated from Eq. (3.1.4)
for the case of the electron-impurity interaction. In this direction, we first calculate the
commutator between Jg and H. Due to the fact that Jg and H, commutes with each

other, we left with [Jg, Himp|. Thus [Jg, H] = [Jg, Himp| which is given as

o Hl = oSS RIT K k(e — )~ Kiew = )} - el

i Kkk'o

(3.2.2)

Using the above commutation relation, the Laplace transform and the thermal average

of the inner product (({[Jg, H|; [Jg, H])). becomes

= O S MU (I (ke — )~ K — )}

ij kKo pp'T

{p(e, — 1) — Py — 1)} - (el ewoi chrcpr))oe (3:23)

Now we consider the case of dilute impurity i.e. ¢ = 7 which means that we have
neglected the interference terms i.e. terms that corresponds to ¢ # j and perform the

ensemble average followed by integration over time using the definition for correlation
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function Eq. (2.2.2) . This yield Eq. (3.2.3) in the following form

2Nim )
o S IO [{k(e = 1) =K (e = )} - )

Kk’

2 fk— fv

2+ e — €

(3.2.4)

Here Ny, represents the impurity concentration, the factor 2 is due to the electronic

spin degeneracy and fi = is the Fermi distribution function and f3 is the

eﬁ(fk_ﬂ) + 1
inverse of the temperature.
Using the above Eq. (3.2.4) in (3.1.4) and then performing the analytic continuation

z — w+i¢, ¢ — 07, the imaginary part of the thermal memory function can be written

as
Mg, T) = 22 T ST [{Kex — ) ~ Kee — )} -]
W) = Jay k K[y
Kk’
O fk’a(w + ek — ) (3.2.5)

w

Further to reduce the Eq. (3.2.5), we assume that the system has cubic symmetry. Then

on averaging over all directions, we obtain
. 1
[(k(ex — ) = K (o — ) -7]* = slk(ac—p) =Kl —p)l. (326)

Using the above Eq. (3.2.6) along with the assumption of point like impurities (i.e.
momentum independent character of U), the Eq. (3.2.5) can be written in the integral
form

U? Nimp
3(2m)5m2x Qo (T

k(e — 1) — K (e — 1)

MgQ(w, T)

/ B 12 G 0dpdes / 2 sin 0/ d6' de’
(U

‘2%5(&) + ek — ek/)_ (327)

Following the assumptions used in Chapter 2 (for details refer page 27) to simplify

the expression of the memory function, the magnitudes of k and k' can be considered

equal to kr. Thus, the imaginary part of the thermal memory function takes the form

Ny U2k ) 2
MaolwT) = WQ(;)/*[(%—M) + (e — 1+ w)?]
Xf<€k_:u)_f(€k_ﬁb+w).
w

(3.2.8)
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Substituting - 1 and % = z, the above expression can be written in simpler
form as
Nim U2 k?4 T2 o) 2 2 1 1
Mg)Q(w,T) = —§0 L / dnn +(n+2) [ - }
67X 00(T) Jo x en+1 enrtr 41
(3.2.9)

N U?kAT? (72 2e*
Mbo(w,T) = /2 _J__ 41 2Liy(—e™®
toloT) = G U o () + 2=

+%Lz’3(—e_x) + 34(3)}.

This is the final expression for the imaginary part of the thermal memory function
due to the electron-impurity interaction and is our main result. Further in various
frequency and temperature limits, its behavior can be discussed as follows:

Case-I: In the dc limit i.e. w — 0
In this limit, the Eq. (3.2.9) reduces to
, 2742 oo 2.1
Mpo(T) = %% /0 dnﬁ (3.2.10)
= %ij—%g; (3.2.11)
QQ

This concludes that the temperature dependent imaginary part of the thermal mem-
ory function, also known as thermal scattering rate, 1/7;,, varies with temperature as
T?/X0o(T). Since the static correlation function x ¢, (7)) is directly proportional to

the square of temperature (proof is given in Appendix B.1). Thus, 1/7, in the zero

frequency limit is expressed as
Mgo(T) o< T° or  constant. (3.2.12)

This yields that the thermal scattering rate does not show temperature dependent be-
havior in the case of electron-impurity interaction. On the other hand, due to the sym-
metry relations of the thermal memory function, its real part becomes identically zero
in the dc limit [56]. On substituting this in the expression for the thermal conductiv-
ity Eq. (3.1.3), we find that the real part of the thermal conductivity depends on the

temperature as
1 Xgo(T)

Re[x(T)] = (T

(3.2.13)
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Using Eqgs. (3.2.11) and (B.1.2) (as mentioned in the Appendix B.1), the above equa-

tion for the thermal conductivity reduces to

1 7wk
RC[H(T)] = E—MmpU2m2
ie., Re[s(T)] o T. (3.2.14)

This result is in accord with the result predicted earlier using Bloch-Boltzmann’s equa-
tion approach Eq. (D.1.10) in Appendix D.1.
Case-II: In the finite frequency limit
In the high frequency limit i.e. w > T, the imaginary part of the thermal memory
function Eq. (3.2.9) approximately becomes
7721472 poo
Mpo(w,T) = %/0 dnx L”:—l — €n+m1+1 :
NinpU?kpT? log 2 w
6m3xg(T) T

(3.2.15)

This yields that the thermal memory function or the thermal scattering rate approxi-
mately varies linearly with the frequency and inversely with the temperature (as X(CJQQ (T) ~
T?). While in the opposite case w < T, the leading order term in the Eq. (3.2.9) be-

comes

Nim U2k,4 T2 [e’e) 2
Mé@(w,T) ~ p—F/ dn 1 (2—£>
0

673 x40 (T) en+1 T
NimpUQk%’TZC@) (2 o ﬂ)
4m3x0(T) T
w
~ A+ B— 3.2.16
TEE ( )

where A and B are constants.

These results are summarized in the Table 3.1.

3.2.2 Electron-Phonon Interaction

Now we consider that the system has only electron-phonon interactions as consid-
ered for the calculation of electrical memory function in Chapter 2. Then, the thermal
memory function can be calculated in a similar fashion as is done in the case of im-
purity interactions in the previous section. Here the total Hamiltonian is considered

as H = Hy + Hep, + Hpyy, (the parts of Hamiltonian are defined in Eq. (2.1.2), (2.1.3)
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Table 3.1: The results of thermal memory function and the real part of the thermal conductivity

due to the electron-impurity interaction in different frequency and temperature domains.

Thermal memory function = Thermal conductivity,

Regimes ,
1 /74 or Mo K
w=0 T T
w>T T 'w wt
w<LT T° T

and (2.1.5)). The thermal current commutes with the free electron and the free phonon
parts of the Hamiltonian. Thus, we are left with the commutator of the thermal current
Jg and the interaction term H,, which is expressed as
[Jo,Heyp = — Z {k(ex — (e —p)} -1 ( (k — K| cobe i — h.C.> .
M e

(3.2.17)
This commutation relations yield the Laplace transform and ensemble average of the
inner product, (([Jg, Hepl; [Jo. Hep))) - in the following form

= 3 D k=)~ Kl =)} ilplep = 1)~ ey =10} -

kk'c pp’'T
(D(k K)D*(p — p){(cho o bis chyrCprbl )

=D (k= K)D(p — P) (s, hrbl i Chrrebip )= ) -

(3.2.18)
On further simplifications, the above expression reduces to
2 12
(o Hpli oy Hal))e = 5 > [{k(ew =) = K(ew = )} -2 [Dlk = K)P?
Kk’

X { fie1 = fi) (1 + i) — (1 = fi) o }

1 1
X - )
{Z+Ek_€k’_wk—k’ Z+€k'—€k+wk—k'}
(3.2.19)

where n is the Boson distribution function (see Eq. (1.2.16)).
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Substituting the above Eq. (3.2.19) in the thermal memory function Eq. (3.1.4) and
then performing the analytic continuation z — w + i(,  — 0T, the imaginary part of

the thermal memory function can be written as

Mgo(w,T) = 0 m2 Z [{k(e — K (e — 1)} ‘ﬁ]z |D(k —K)]*(1 — fi)

KK/
ew/T — 1
X [ Mo/ {Té(ek — € — Wk_i +w) + (terms with w — —w)} )
(3.2.20)

To evaluate the above equation, we use the law of conservation of energy ex = e — w,

and the law of conservation of momentum q = kK’ —k which simplify a factor appearing

in the Eq. (3.2.20) as follows

[{k(ek —p) = K(a0 —p} -0 = [wk'+ (ac—ma}-n”. (3221
For simplicity, we consider that the system has cubic symmetry as considered in the

impurity case. Then on averaging over all directions, we obtain

{wok' + (6 — p)g} -0 = {w2k’2 + ¢ (ex — 1) + wolew — )}
(3.2.22)

Substituting the Eq. (3.2.22) in (3.2.20) and converting the summations into integrals,

we get
N? dek dek
M T) = BRI,
oow,T) 3X%Q(T)m2(27r)5/ an@dgb/ o 2 sin 6'd6’ d¢p /dq
x| D(q)*o(q — [k = K|)(1 = fi) frmcw
x {wk” + ¢ (e — p)* + welex — w)g° }

1
X {—6(ek — € — Wg_i +w) + (terms with w — —w)} .
w
(3.2.23)
Following the argument as quoted in the Chapter 2 (refer page 31), for low energy

scattering, we consider the magnitudes of k and K’ of the order of k. With these facts

and solving one of the energy integrals, the above Eq. (3.2.23) reduces to

N2 o0 4dD
Mpo(w,T) ——/ dn/ dqq|D(q)]* {wiki + ¢*n*T? + wynTq®
QQ 1273 X%Q(T> 0 0 { qVF q }
1 1 1 et —1 .
X + (terms with w — —w)
eYy—lem+1|em vy 241 x

(3.2.24)
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Here we introduce new dimensionless variables &1 n, % =y and % = x. Now
integrating over 7, we obtain
N2T6 qp 4 ©p/T
MSo(w,T) = —— <—) / dyy’|D(y)?
e 12mx0o(T) \ O/ o
(x—y) e =1 [k (6p 2+1+ (x —y)?
erv —1la(evy —1) | 72 \gpT 3 2
1
+2—7T2y(9c — y)} + (terms with w — —w)} . (3.2.25)

Substituting the phonon matrix element using the Eq. (2.1.4), the thermal memory

function is simplified to

N T7 4o 6 r0p/T
Mpo(w,T) = o dyy’
(x-y) =1 [k (Op) 1 (z-9)
erv —1la(evy —1) | 72 \gpT 3 32
1 .
+2—7T2y(x — y)} + (terms with w — —w)} . (3.2.26)

This is the frequency and the temperature dependent thermal memory function for the
case of electron-phonon interaction. It can be further simplified by using the integral
which we have shown in Eq. (G.0.4) in Appendix G. Here we discuss it in certain
regimes of temperature and frequency as follows:

Case-I: In the dc limit i.e. w — 0

In this limit, the Eq. (3.2.26) reduces to

N T7 4 6 r0p/T y5ey
Mgo(T) = 2 0 (_> / dy——3
12rmip3 xoo(T) \Op /) Jo (ev — 1)
K o/ep\’ 1 1

The closed form of the above expression can be obtained by solving the integral which
gives the result in the form of PolyLogs (as shown in Eq. (G.0.5)) and then simplifying
by substitution of the upper and lower limits of integration. Here we discuss the above
equation in high and low temperature limit. In the high temperature limit i.e. when the
temperature is much greater than the Debye temperature (7' > ©Op), the second term
within the curly brackets contributes more as compared to the other terms. Because

the other terms varies inversely as square of the temperature, they contribute less than
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the second term (i.e. 1/3). Hence, the thermal memory function M), (T") with leading

term can be approximated as

N T7 4 6 rOp/T y5€y
M) (T) =~ —_— dy————.
2alT) (&) [ ey

36mm;p% Xoo(T)
No? gp \® T3
Mpo(T) = 144—132(@_17> at (3.2.28)
mmiph \Op) xoo(T)

Thus on considering the temperature variation of the static thermal correlation func-
tion (Eq. B.1.2 in Appendix B.1), we find that the imaginary part of the dc thermal
memory function varies linearly with the temperature in the high temperature regime.
On substituting this in Eq. (3.1.3), we find that the real part of the thermal conductivity

varies as

Re[x(T")] = constant. (3.2.29)

In the low temperature limit i.e. when the temperature is much less than the Debye
temperature (1" < Op), the first term and the third term in the Eq. (3.2.27) contributes
more to the thermal memory function as compared to the second term. We know that
qp 1s generally much smaller than the £, then the first term dominates over third term.

Thus using this fact M), (T") becomes

Nk? qp 6 3 o eY
MS(T) ~ —E (2= —/ dyy® ——————
o = ey (6)
10Nk¢(5) (QD )6 T°
mm;pF ©p XOQQ (T)

The above equation tells that the imaginary part of the thermal memory function or the

(3.2.30)

thermal scattering rate varies as 7° (1 /7, o< T° as x40 (T') ~ T?). Thus, we find that
the real part of the thermal conductivity Eq. (3.1.3) which varies inversely as square of

the temperature i.e.

Re[k(T)] o< T72. (3.2.31)

These results in different temperature regimes are in accord with the results obtained
from the Bloch-Boltzmann equation approach (details are given in Appendix D.2) and
with the experimental results [29, 31, 86].

Case-1I: In the finite frequency case
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In the high frequency limit i.e. when frequency is much higher than the Debye fre-

quency (w > wp), the thermal memory function Eq. (3.2.26) becomes

N T? qp 6 ©p/T y4
Mo, T) = — 5 — / dy——
12rmipt Xoo(T) \Op 0 ey —1

K2 (6p) 1 1 ?
2y, 2, — @ 3232
X{ﬂ (qDT) T3 3eT (5232)

In the low temperature limit i.e. w > ©p > T, the first term and the third term are

the leading order terms in the thermal memory function. Further, in the limit w > T,

OINC(5) T [(ap\°[KZ (Op\ 1 ?
Mo (w0, T) ~ o\ JER (2D 2 @
o« T) ™m;p% X%Q(T) Op w2 \gpT * 3m2 T2

(3.2.33)

In the high temperature limit i.e. 7" > w > Op, the second term of Eq. (3.2.32)
contributes more over the other terms. Thus, the imaginary part of the thermal memory

function in this regime becomes

N . 6 7 /@D/T y4
M, T) ~ —5 | = d . (3234

On solving the integral in the above limits, we obtain the integral as (6 /T)*. Thus,

Mbo(w,T) o« T. (3.2.35)

In the case, when w > T > Op, the third term of Eq. (3.2.32) contributes to the
thermal memory function as

N T? o 6 w2 Op/T y4
M T) =~ — | = d .(3.2.36
2w T) 36m3mipt Xoo(T) (@D) T2 /0 Yer -1 ( )

In the above mentioned frequency and temperature regime, the integral gives (O /T)*.
Thus the thermal memory function varies as w?/T. All these limiting cases are col-
lected in Table 3.2

Similarly in the low frequency limit i.e. when the frequency is much smaller than the
Debye frequency (w < wp), the Eq. (3.2.26) is written as

N T7 4 6 w/T
Moo, 1) ~ g s 0T (@_> T
Tmipp Xoq(1) \Op ) w/

©p/T 5.y k2 [S) 2 1 2
ye F D Y

dy——< = | — - — = %(3.2.37

X/O Yev — 1) {ﬂ (qDT> Ty o (O
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The closed form of the above equation can be obtained similar to Eq. (3.2.27).
In the limit Op > w > T,
Nk. TP few/T oo Se
Mol T) ~ 247r3n£p% Xgq(T) (q_l;) w/T /0 dy (eyy -1
SNKRC(5) T° (q_D> ter
ik \oolT) w]T
And in the limit 7" > ©p > w,

Mo (w0, T) =~ (— / dy———. (3.2.39)
(@ T) 36mmipt Xoo(T) \©p 0 y(ey —1)2

(3.2.38)
D

Under this limit, the integral over y yields (© 5 /7T')*. Hence the thermal memory func-

tion becomes
MgQ(w,T) x T. (3.2.40)

This shows the linear temperature variation and frequency independent character of
the thermal scattering rate in the regime 7" > ©p > w.
In the case when ©p > T > w, the Eq. (3.2.37) becomes
NE2 T5 4o 4 proo y5 ey
Mpo(w, T) =~ i (—) / dy———.
@Q 1273m,p% X0o(T) \ ©p 0 (ev —1)2

10NKRC() T°  (qp '
1213mip% x4o(T) \ ©Op

(3.2.41)

From the above equation, we find that M), (w, T') varies as T and it shows frequency
independent behavior.

We summarize the above results in the Table 3.2. These analytical predictions of
the dynamical behavior of the thermal memory functions in different temperature and

frequency domains are supplemented by numerical calculation in the next section.

3.3 Results and Discussion

In this section, we have plotted and discussed the imaginary part of the dynamical ther-
mal memory functions M&’)Q(w, T') for the case of the electron-impurity and electron-
phonon interactions ( i.e. Egs. (3.2.9) and (3.2.26)). To extract the characteristic fre-
quency dependent and temperature dependent behavior of MgQ(w, T), we suitably

normalize it in various cases.
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Table 3.2: The results of thermal memory function and the real part of the thermal con-

ductivity due to the electron-phonon interaction in different frequency and temperature

domains.
Thermal memory function  Thermal conductivity,
Regimes
1/ or Mg K

w=0,T> Op T T°
w=0,T < Op 3 T2

w< T < Op T T'w™?
wLOp LT T! T?w™2

T < w<K Op Thw te/T Tow3e/T
Op<LKwkT T T?w ™2

O KT <K w T w? T0°
T<KOp <Kw T3(a + bw?) T Aw™® + B)

First for the impurity interaction, we plot M), (w, T') /My where My is frequency
and temperature independent constant (: 2ktm/ 7T5Ne) , as a function of frequency at
a fixed temperature using the Eq. (3.2.9) in Fig. 3.1. Here we consider impurity con-
centration Niy, = 0.001 and interaction strength U = 0.1eV. It is found that the nor-
malized thermal scattering rate increases linearly with the frequency in the range where
the frequency is very high as compared to the temperature (as shown in Fig. 3.1(a)).
This linear feature becomes more prominent as the temperature is lowered. For exam-
ple in Fig. 3.1(b), the purple curve drawn at 7" = 200K start showing a linear behavior
above a frequency lower than that of the other two curves drawn at higher temperatures
such as 300K and 400K. The low frequency regime w < 71" of the plot is more elab-
orated in Fig. 3.1(b) which shows deviations from linearity. Also in both the regimes,
the thermal scattering rate due to the impurity interaction decreases with the rise in
temperature. These features are in accord with our asymptotic analytical predictions

(Table 3.1).

In the zero frequency limit, the thermal scattering rate Eq. (3.2.11) becomes tem-
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Figure 3.1: (a): The imaginary part of the thermal memory function for the case of electron-
impurity interaction is plotted with frequency at different temperatures such as 200 (purple),
300 (brown) and 400K (blue) at fixed interaction strength U and impurity concentration Njy,.

(b): The low frequency regime of Fig. 3.1(a) is elaborated.

perature independent. The same result can be obtained using Boltzmann approach
as mentioned in Appendix D.1. This feature is also in accord with the experimental

findings [3, 5].

30r ‘ ; 1.0 : :
E ®p =300K ®p =300 K
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“g OE Vg 0.4}
= 1 5 H
= =
st 0.2
0t : : ‘ : 0.0 ‘ ] ] ]
0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.02 0.04 0.06 0.08 0.10
w(eV) w(eV)
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Figure 3.2: (a): The imaginary part of the thermal memory function for electron-phonon
interaction is plotted with frequency at different temperatures such as 200 (purple), 250 (red),
300 (brown) and 400K (blue) at fixed Debye temperature © p = 300K. (b): The low frequency
regime of Fig. 3.2(a) is elaborated.

For the electron-phonon interaction, the frequency dependent behavior of the nor-

malized thermal scattering rate Eq. (3.2.26) is shown in Fig. 3.2 at different temper-
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Figure 3.3: (a). The normalized frequency dependent thermal conductivity is plotted with the
ratio w/wy for electron-phonon interaction at different temperatures such as 200 (purple), 250
(red), 300 (brown) and 400K (blue) and at Debye temperature © p = 300K. Here the dashed
line corresponds to the scale for Debye frequency cutoff i.e. wp/wp. (b). The low frequency

regime of Fig. 3.3(a) is elaborated.

atures. Here the Debye temperature O, is kept fixed at 300K. In Fig. 3.2(a), we ob-
serve that in the high frequency regime (w > ©p), the scaled thermal memory func-
tion Mg, /M{ (M{ = Nmgf, /67°m;p3N.Op) increases as the frequency increases.
While in the low frequency regime (w < wp), it becomes constant . To see the zoomed
low frequency behavior, we replot the same curves within a small frequency regime
(as shown in Fig. 3.2(b)). We also observe that the magnitude of the thermal memory
function reduces with the increase in temperature. However, the exact temperature de-
pendence in the low frequency regime depends on whether the temperature is greater
or lower than the Debye temperature. The detail asymptotic behaviors are obtained

analytically in previous section (3.2) and given in Table 3.2.

In Fig. 3.3, the real part of the thermal conductivity in case of electron-phonon in-
teraction using Eq. (3.1.3) is plotted as a function of frequency at a fixed Debye temper-
ature O p and at different temperatures. Here we have scaled the frequency with param-
eter wo (: Nmg /67°m;p5.N,© D) , which has the dimension of energy and scaled the
real part of the thermal conductivity Re[x(w, T')] with ko (= 7°N,/4mwy). It is ob-
served that the thermal conductivity decays with the increase in frequency (as shown

in Fig. 3.3). Also, with the increase of temperature, the thermal conductivity increases.
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This detailed behavior can be understood as follows. Our calculation is limited to a per-
turbative regime i.e. M, (w, T) < w, thus Re[k(w, T)] ~ Xoo/T X Mgo(w, T)/w?.
As the static thermal current thermal current correlation function, y$¢(T) ~ T2, the
real part of the thermal conductivity becomes Re[r(w, T')] ~ T M (w, T) /w?. Under
this condition, the increase in the thermal conductivity due to the increase in tempera-
ture is governed by the factor T' M, (w, T') which is an increasing function of temper-
ature. Using this relation and Table 3.2, various regimes of Fig. 3.3 can be understood.

For example, in the regimes

w/T
. T < w<wp, Re[rk(w,T)] NT5€ 3
w

2. T>w>wp, Relk(w,T)]~ Z);z,

3. w>wp>T, Relk(w,T)] ~T" (% n b),
where a(= 2N((5)qp/m°m;p30%) and b(= 2N((5)q% /37°m;p3.0%) are constants.
The detailed asymptotic results of the thermal conductivity due to the electron-phonon

and the electron-impurity interactions are given in Table 3.2 and 3.1. These signatures

are new predictions from our formalism and can be verified in future experiments.
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Figure 3.4: (a): Plot of temperature dependent normalized dc imaginary part of the thermal
memory function for electron-phonon interaction at different Debye temperatures such as 200
(purple), 300 (brown) and 400K (blue). (b): The variation of the normalized thermal conduc-

tivity with 7" at same Debye temperatures.

Now in the dc limit, we plot M), (T') /M as a function of temperature 7" at differ-

ent Debye’s temperatures in Fig. 3.4(a). Here we find three important features. One
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is the increase of the thermal scattering rate with temperature in the low temperature
regime (~ T2, refer Table 3.2). Second, it increases linearly with the temperature at
high temperature regime. Third, in the intermediate regime around the Debye tem-
perature, there is a minima in the thermal scattering rate. These features (at high and
low temperatures namely 7° at T < ©p and T at T > Op) are in agreement with
experiments [29,31,86]. In Fig. 3.4(b), using Eq. (3.1.3), the normalized thermal con-
ductivity has been plotted with temperature 7. This shows that it decreases as 7>
in the low temperature regime and becomes constant in the high temperature regime.
These results are consistent with the results derived using Boltzmann approach in Ap-
pendix D.2. In the intermediate temperature regime, it passes through a minimum.
This minimum in the thermal conductivity plot is an artifact of neglecting contributions
from the Umklapp process in the memory function. Such minima occurs near the De-
bye temperature where Umklapp process becomes important. The same peculiarity is

also found in Bloch-Boltzmann theory when Umklapp processes are neglected [3,87].

3.4 Conclusion

In this chapter, we present analytical calculation of the dynamical thermal conductivity
of metal for electron-impurity and electron-phonon interactions. We discuss the results
in different frequency and temperature domains. Since in the zero frequency limit
(dc limit) behavior of the thermal conductivity of metals is well known, we consider
the dc results from the Bloch-Boltzmann approach and the experimental findings as a

benchmark and compare our results with them.

According to the memory function formalism, the total thermal memory function is
the thermal-current thermal-current correlation function which captures the role of the
impurity and the electron-phonon interactions. This leads to the thermal memory func-
tion as the sum of the memory functions due to the electron-impurity interactions and

the electron-phonon interactions which further result in the total thermal conductivity.
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In a nutshell, the concluding remarks of this chapter are as follows:

1. The thermal memory function due to the impurity interaction shows the tem-
perature independent behavior Eq. (3.2.12). Thus the thermal conductivity

x(T') shows linear temperature behavior Eq. (3.2.14).

2. Due to the electron-phonon interactions, the thermal memory function and the

thermal conductivity in the dc limit show:
a. M{o(T) ~T° w(T) ~ T2, T < Op,
b. M{o(T) ~ T w(T) ~ T°, T > Op.

3. If we consider the impurity and phonon contributions together, we see that the

total thermal conductivity can be expressed in an empirical form as,

L S
'Litotal(T) /’fimp(T> Hep(T) ‘
A
— +BT? T<Op
~ £ 3.4.1)

—+C T > Op.
T+, > 0Op

Here, the first term and the second term are due to the electron-impurity and
the electron-phonon interactions respectively and A, B and C' are material

dependent constants.

4. The results in the zero frequency limit (dc limit) are in accord with the results
calculated using Bloch-Boltzmann approach [3, 5] and also with the experi-

mental findings [3, 29, 86].

5. Inthe finite frequency cases we have several new predictions depending on the
relative values of the frequency w, temperature 7" and the Debye frequency wp

(as refer in Table 3.1 and 3.2). This is the main contribution of this chapter.

6. Moreover, the present approach can also be used to study other transport prop-

erties such as thermo-electric coefficients etc.
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For the future technological advancements, the theoretical and the practical under-
standing of the thermoelectric devices are of fundamental important [88—90]. These
are the devices which possess the ability to convert the thermal energy into electri-
cal energy and hence recognized for the energy conversion processes [91-93]. In this
quest, the knowledge of the efficiency of these devices is essential which is charac-
terized by the figure of merit, ZT = S?0T/k where S is the Seebeck coefficient,
o is the electrical conductivity, ~ is the thermal conductivity and 7' is the tempera-
ture [14]. This ensures that larger the value of ZT', higher is the efficiency of the
thermoelectric device. Enormous efforts have been made in order to increase the fig-
ure of merit. In the steady state, it can be increased by increasing the product of the
electrical conductivity and square of the Seebeck coefficient i.e. 5% or by decreasing
the thermal conductivity . But in this pathway, there is a well known relation between
the thermal conductivity and the electrical conductivity, known as Wiedemann-Franz
law [17]. The latter makes it difficult to decrease x without the decrease of . Thus,
an alternative approach known as dynamical approach is required to make this path-
way easier [94]. This approach is beyond the above mentioned restriction and includes
the frequency dependent behavior of the transport coefficients. The details of this ap-
proach is discussed in Chapter 1. Here we find that the Seebeck coefficient is higher

at higher external driving frequencies, thus it leads to a greater figure of merit as the

63
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Wiedemann-Franz law is no more valid in the finite frequency case:

ww.T) _ TMgelw.T) ( W 4 (M, 7)) ) (0.1

To(w,T)  M'(w,T) \uw?+ (Mbo(w, T))>
where M), (w, T) and M"(w, T') are thermal and electrical memory functions or known
as scattering rates respectively. The right hand side of the above equation is not a con-
stant. Thus Wiedemann-Franz restriction is not applicable.

Another importance of this study is due to the recent demand of the microelectronic
and optoelectronic devices, working at several Giga Hertz frequencies i.e. GH z clock
frequencies [78, 80]. The basic working principle of these devices involves various
frequency dependent thermal transport coefficients. Thus the quest of making the ther-
moelectric devices more efficient requires the understanding of the frequency and the
temperature dependences of various transport quantities. So far, the dynamical nature
of the electrical conductivity and the thermal conductivity have been studied in recent
years [56,62,79,95,96]. The study of the Seebeck coefficient is an important parame-
ter to determine the figure of merit and was not studied previously in detail especially
in the dynamical regime.

In the present chapter, we first define the thermoelectric coefficients in Sec. 4.1.
Then in Sec. 4.2, we introduce the thermoelectric memory functions and calculate
them and the Seebeck coefficient for the case of electron-impurity and electron-phonon
interactions in a metal. In Sec. 4.3, we present our results with discussion and latter

we give conclusion in Sec. 4.4.

4.1 Thermoelectric Coefficients

In the linear response theory, the electric field and the temperature gradient are related

to the electric current and the thermal current as follows [14,24].

J = oE—-aVT. 4.1.1)

Jo = aE—kVT. (4.1.2)

These equations tell that the generation of charge current and the flow of heat can be a

consequence of either electric field or temperature gradient or both. Here « is the ther-
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mal conductivity, o is the electrical conductivity, « is the thermoelectric conductivity,
and « is the electrothermal conductivity.

Consider that the system is electrically insulated. Thus, there is no electric current
flow in the system i.e. J = 0. Then, Eq. (4.1.1) can be written as

E «
= = 4.1.3
vT o ( )
The Seebeck coefficient S is defined as the electric field generated by a thermal gradi-

ent in the absence of electric current [14]

E «Q
= __= 4.1.4
vT o ( )

S =
Here the sign indicates the sign of the charge carriers.
The Peltier coefficient is defined as the flow of heat due to the electric current. Accord-

ing to the Kelvin relation, it can be expressed as [22]
Inm = ST. 4.1.5)

Similarly, the Thomson coefficient which is related to the phenomenon of reversible

heating or cooling in a current carrying material is defined as [22]

ds
pr = T (4.1.6)

We see that all these coefficients are related Eqs. (4.1.4) - (4.1.6) and the calculation
of the Seebeck coefficient is sufficient to understand the others. The former is the ratio

of the thermoelectric conductivity and the electrical conductivity which are calculated

in the later sections.

4.2 Thermoelectric Memory Functions

Following the same idea of the previous chapters, the thermoelectric conductivity can
be calculated via the thermal-current electric-current correlation function which relates
the former via the corresponding memory function as

i xo(T)

T -
a(zT) Tz+ Mg(z,T)

(4.2.1)
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Here X% (T') is the static thermal-current electric-current correlation function and My (2, T')
is the thermoelectric memory function. Further, the latter is related to the correlation
function as

XQ(zaT)
Xo(T) — xq(2,T)’

Mo(2,T) = =z 4.2.2)

where X (z,T) according to the linear response theory is defined as [59, 60, 97]

(= T) = (Uoil)e=—i [ dee (gl ) @23

0

Further, this correlation function using equation of motion can be expressed in a sim-
ilar fashion as the electric-current electric-current correlation function in Chapter 2.
To deal with thermal-current electric-current correlation function, here we replace the
electric currents J by Jg and J. Thus, xo(z,T) can be written as

<<[‘]Q>H]; [‘]’ H]>>z:0 - <<[‘]Q’ H]; [Jv H]>>z

22

xo(z,T) = 4.2.4)

Substituting this correlation function in Eq. (4.2.2), then expanding the memory func-
tion expression as Mq(z,T) = xq(2,T)/xg (1+ xo(2,T)/x¢ — - -+ ) and keeping
the leading order term [62,79], the thermoelectric memory function M (z,T") can be
expressed as

(o, H]: [J, H])) om0 — ({[Jo. H]: [, H]))=

Mo(=T) = 2xg(T)

(4.2.5)

Knowing the commutation relations between the currents and Hamiltonian, it can
be calculated for different type of interactions such as electron-impurity and electron-

phonon.

4.2.1 Electron-Impurity Interaction

We want to calculate M (z,T") for a system in which the total Hamiltonian is defined
by H = Hy+ Hinp due to the presence of electron-impurity interaction. First, we calcu-
late the Laplace transform and thermal average of the inner product (([Jo, H]; [/, H])).
which requires the commutation relations between the currents and the Hamiltonian.

The commutator between the electric current and the Hamiltonian is given by [J, H| =
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[J, Ho| + [J, Himp|. As the electric current and the unperturbed Hamiltonian commutes
with each other, we have
1 )
_ ) ~ F
LH = — Z l;(kw K){k —K'} - el i (4.2.6)

Similarly, the commutator of thermal current and Hamiltonian is given by

Jo,H = — ZZ k|U'[K') {k(ex — K (e — )} - hel, cwy (4.2.7)

t KK'o

Using the above relations, the correlation function (([Jo, H][; [J, H])). becomes

D WU )G

ij Kkk'c pp’'T
x{k =K'} a{ple, — p) — P'ley — 1)} - (o chrcpr))z. (42.8)

By considering the case of dilute impurity (i.e. = = j case and neglect the terms ¢ # j),

performing ensemble average, and integrating over time, Eq. (4.2.8) reduces to

2Nim / / A
(o HEH). = 250 S U (k- K} -
KK/
x{k(ex — p) — K (e — p)} - 7t x %(4.2.9)

Here fi is the Fermi distribution function. Substituting Eq. (4.2.9) in the thermoelectric
memory function Eq .(4.2.5) and performing the analytic continuation using z — w +
i¢, ¢ — 07, the imaginary part of the thermoelectric memory function® takes the form

Mj(w,T) = T:;“;’NZ > KUK |2[{k K} n
Xo(T KK/
fu = fi

x{k(ek—u) —k’(ek/ —Iu)} 1 (w+€k—€k/).

(4.2.10)

Further, assuming the cubic symmetry of the system and using the laws of conservation
of energy and conservation of momentum, the part within the square brackets of above

equation can be written as

[ €k — u)kQ + (Ek/ - [L)k‘/ﬂ .
(4.2.11)

W

{k—K} n{k(ex—p) —K(aw —p)}-n =

. 1 1y
%I—%a—l—ig _P<a> imd(a)
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Now we assume that the impurity strength U is independent of momentum and con-
sider the fact that due to large Fermi energy, electrons from a small region of width k5T
(here we set k = 1) around the Fermi surface participate in scattering events. Using
these considerations and Eq. (4.2.11), the thermoelectric memory function Eq. (4.2.10)

in the integral form reduces to

NimoU%k% [ ex) — flex +w
My(w,T) = W%af;/o de{Q(ek—u)+w}f( ) oJ:( i )

(4.2.12)

€k — M

Defining the new dimensionless variables

in Eq. (4.2.12) we have

NimpU?kET [ 2n+x 1 1
MS(w,T) = “‘P—F/ d — . (4.2.13
o T) 6m3xo(T) Jo T en+1  enrtr41 ( )

w . . .
= 7 and 7= and substituting it

After performing the integration, the above expression reduces to

NipmoUkET (72 2Li (—e‘a’)
M (w,T) = —=2Z It " 4log2—1 1 - A
Q(wv ) 67T3X(C)9(T) {61’ + log 0g ( +e ) + -

(4.2.14)
This is an expression for the imaginary part of the thermoelectric memory function in
the presence of electron-impurity interaction. Its behavior can be discussed in different
frequency and temperature regimes as follows.
Case-I The zero frequency limit i.e. w — 0:

In this limit, Eq. (4.2.13) can be written as

Nimp U?kET /°° . ne’
33 XDQ(T) 0 (en+1)%

Substituting the expression of the static thermoelectric correlation function (Eq. (B.2.2)

Mg(T) 4.2.15)

in Appendix B.2), we obtain

Nimp U%kp [ ne'
MHT) = —= dn——.
a(T) T logQ/O n(e’7—|—1)2
Nim
~ Uk (4.2.16)
T

Thus, in the zero frequency limit, M (T') behaves independent of the temperature. Us-
ing this temperature variation of )/, (g (T'), the thermoelectric response function, Eq. (4.2.1)

in the zero frequency limit becomes

1 x(T)
aT) = AT (4.2.17)
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Using Egs. (4.2.16) and (B.2.2) (as mentioned in Appendix B.2), the thermoelectric

response function Eq. (4.2.17) approximately becomes

1
T ~ — 42.1
o(T) NanpU?2 l0g 2 (4.2.18)

Thus we concludes that the thermoelectric conductivity shows temperature indepen-
dent behavior in the case of electron-impurity.
Case-II The finite frequency regime

In the high frequency limit i.e. w > T, the Eq. (4.2.13) reduces to

NimpU2kET (1 — 2e7/T
M//(W,T) imp F ( + efw/T +10g 2) )
@ 6m3x Y (T) w/T

NimpU?ks T

~ L £ log 2.

67 XQ(T)

NimpU?mk

_  Limpt MEF (4.2.19)

m

Here for calculation, we use the Eq. (B.2.2) for the static correlation function X%(T).
In the opposite case, when w < 7', the imaginary part of the thermoelectric memory

function Eq. (4.2.13) with the leading order term becomes

NumpU2k% T
M// T ~ mp F
o T) 187\ (T)
NimpU?mk
—3; g2 F (4.2.20)

These asymptotic results are collected in Table 4.1.
Using these results, the Seebeck coefficient for the case of electron-impurity interaction

can be calculated in the following subsection.

Seebeck Coefficient

As discussed earlier that the Seebeck coefficient is the ratio of the thermoelectric and
electrical response functions. Thus, to calculate it, we require «(z,7") and o(z, T').
The o(z,T'), known as electrical conductivity can be calculated with the following re-
lation which relates the electrical conductivity with the memory function (as discussed
in Chapter 2, Eq. (2.2.5)) [27,56].

Xo

T)=i—20
0-(27 ) ZZ“I‘M(Z,T)’

(4.2.21)
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Table 4.1: The thermoelectric and electrical scattering rates or memory functions due

to the electron-impurity interaction in different frequency and temperature domains.

Thermoelectric memory Electrical memory
Regimes
function 1/7 or M (w,T) function 1/7, or M"(w,T)
w=0 T° T°
w>T log2 + Tw™? Tw™!
wLT T° T°

where Y is the static electric-current electric-current correlation function and M (z, T')
is the electrical memory function.

Following the same procedure of the thermoelectric memory function, the imagi-
nary part of the electrical memory function for the case of electron-impurity interaction
1s written as [56]

N’m 214 o]
M'(w,T) = —2—*~ oV kF/ dnl( ! ! )
0

1 ente 41

673 X0 x

NimpU?k+ 1

T F (1 +log2 — log(1 +¢€”) ). (4.2.22)
6130 X

Here x = w/T and xo = N./m. The detailed calculation of this expression will be
discussed in Sec. 6.2 of Chapter 6.
In the zero frequency limit i.e. w — 0, the above integral equation can be expressed as

]Vim U2/{Z4 o0 el
M'"(T) = —2—L / 5.
6m3x0  Jo (en+1)

NimpU? k7

. 4223
12730 ( )

This shows the temperature independent behavior of the electrical memory func-
tion. Further, on substituting Eq. (4.2.23) in (4.2.21) by taking the zero frequency
limit of o(2,T) (= xo/M"(T)), we find that the electrical conductivity shows tem-
perature independent behavior in case of the electron-impurity interaction. Using the
thermoelectric and electrical memory functions, the Seebeck coefficient is calculated

as follows.
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In the zero frequency limit, the Seebeck coefficient is

om - 3
_ 1xo(T) M"(T)
= T M) (4.2.24)

Using Eqgs. (4.2.16), (4.2.23) and (B.2.2), we find that the Seebeck coefficient in the
zero frequency limit shows temperature independent behavior for the case of electron-
impurity interaction [3].

On the other hand, in the finite frequency case the Seebeck coefficient S(z,T') is writ-

ten as

lXDQ(T) 2+ M(z,T)

S(z,T) = . 4.2.25
S S TN R
Thus, the real part of the Seebeck coefficient becomes
1 XY(T) w? 4+ M"(w, T) M} (w, T
Re[s(w.7)] = LX) . T)Mg(w, T) (4.2.26)

T xo w? + (Mg (w,T))?
Substituting the imaginary part of the electrical and the thermoelectric memory func-
tions, Egs. (4.2.13) and (4.2.22), we can discuss the frequency variation of the Seebeck
coefficient for the case of the electron-impurity interaction. This is done in Sec. 4.3

after discussing the case of electron-phonon interaction.

4.2.2 Electron-Phonon Interaction

In the presence of electron-phonon interaction in a system, the total Hamiltonian is
described by H = Hy + Hep + Hpy. With this Hamiltonian (the details of which
are given in Sec. 2.1 of Chapter 2) and using the commutation relations defined in

Eq. (2.2.12) and (3.2.17), the inner product (([Jg, H]; [/, H])). can be written as

S {{k—k’} {k(ac— p) — K (e — )} n}

m2
Kk’

x| D(k = K)[* (1 = fi)mw (eﬁ(ek’_q‘wk—k’) —1)

1 1
X { — } ) 4.2.27)
2 — € + €k — Wik 2+ € — €k + Wr_k’

Here ny_ is a Boson distribution function.

Putting Eq. (4.2.27) in the thermoelectric memory function Eq. (4.2.5), the imaginary
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part of the thermoelectric memory function after performing analytic continuation z —

w +i¢, ¢ — 07 can be expressed as

M) = s S kK a0 K = ) 1D KO

ew/T — 1
x(1— fk)fk'nk—k’{T5(€k — € — Wk + W)
+(terms with w — —w)}. (4.2.28)

To simplify the above expression, we use the law of conservation of energy e =
e — wy and the law of conservation of momentum k' — k = q. Thus, the factor within

the square brackets of above equation becomes

{k—K} i{k(ex —p) —K(aw —p)} -0 = q-a{q-n(e—p) + K - fwg }.
(4.2.29)
For simplifications, we consider that the system has cubic symmetry, thus the averag-

ing over all the directions reduces the above expression as 1/3 (¢*(ex — p1) — kwg).

Using this relation and converting the summations into integrals along with introduc-

ing the new dimensionless variables k1 _ 7, % =z and % = y, the imaginary
part of the thermoelectric memory function Eq. (4.2.28) becomes
N2T3 ©p/T 1
MA(w,T) = d dy|D(y
qpT 9 9 et —1 .
{7’} <@—D> 7 — kFy} [m + (terms with w — —w) .

(4.2.30)

Substituting the phonon matrix element Eq. (2.1.4) and solving the integral over 7, we

obtain

M(w,T) = NT an 4/®D/Tdy [ w—y e -1
A 487T3mip%‘XQQ(T) ©p 0 ey —1|e*v—1 =

T 2
((x ) (q@D—) y* — 2k%y> + (terms with w — —w)}.
D

(4.2.31)

This is the final expression of the imaginary part of the thermoelectric memory function

in the case of the electron-phonon interaction. The analytic closed form of the above



4.2. Thermoelectric Memory Functions 73

equation can be obtained by solving the integral whose solution is given in Eq. (G.0.6).
Here we discuss it in different limits of frequency and temperature as follows.

Case-I The zero frequency limit:

In this limit i.e. w — 0, the magnitude of the imaginary part of the thermoelectric

memory function Eq. (4.2.31) reduces as

NT* g \' [Pyl | (qpT\?
M// T — - d 2 2]{:2 .
4O = e (o) [ =i (6,) ¥

(4.2.32)

Further, for high and low temperature regimes, this expression can be discussed as fol-
lows:
In the high temperature regime i.e. 7' > Op, the first term within a bracket of

Eq. (4.2.32), i.e. (¢qpT/Op)° 1>, gives more contribution to Mg(T). Thus, the lat-

M2(T) NT* a0\ / e
Q 247r3mip2FX0Q(T) Op 0 (ev —1)2

N @ T
24m3mipz Op xo(T)

ter becomes

Q

Q

(4.2.33)

In the opposite case when 7' < O p, Eq. (4.2.32) becomes
2Nk? o
MY(T) ~ ——F& (q—D) — (4.2.34)
mm;py \ Op XQ(T)

Thus, from these above expressions we find that the imaginary part of the thermoelec-

tric memory function in the zero frequency limit is proportional to 7'/ ng (T") in the high
and T*/ XOQ (T') in the low temperature regimes. The static thermoelectric correlation
function XOQ(T) varies linearly with the temperature (as given in Appendix B.2). Thus,
Mg(T) varies as 7° in the low temperature regime and becomes constant in the high
temperature regime. Substituting this in Eq. (4.2.1), we find that the thermoelectric

response function in the zero frequency limit shows temperature dependence as

oT) = 1 xo(T)
T MY(T)

(4.2.35)

Hence, it varies as 72 in the low temperature regime and becomes temperature inde-

pendent in the high temperature regime i.e.

T_g, T < Op
Oé(T) X (4.2.36)

constant, 1> ©Op
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Case-II The finite frequency regime:

In finite frequency regimes, we study the general expression Eq. (4.2.31) in the two
limiting cases and then analyze this expression numerically.

In the high frequency limit i.e. when the frequency is more than the Debye frequency
(w > wp), the imaginary part of the thermoelectric memory function Eq. (4.2.31) can

be written as

Nk2 4 T4 Op/T 3
MAw.T) ~ —F (q_D> k / dy—Y
0

1273mp3 \©Op ) Xxo(T) e =1
4
() e reo
1273m;p% \ Op X%(T) 1% ., T > Op.
3\ T
(4.2.37)

On substituting the temperature variation of X%(T) (as shown in Appendix B.2), the

thermoelectric memory function shows temperature dependencies as

T3, T <« Op
Mg(w, T) X (4.2.38)

constant, 1> Op.

This implies that the imaginary part of the thermoelectric memory function in case of
the electron-phonon interaction shows frequency independent and temperature depen-
dent behavior at high frequency regime. It shows 7 behavior in the low temperature
regime and temperature independent behavior in the high temperature regime.
Similarly in the low frequency regime i.e. w < wp, M) (w,T) Eq. (4.2.31) in the

leading order is given by

N Y75 sinh (w/T
My, T) ~ (&) ol

24m3mipz \Op /) xo(T) w

@D/T 4€y T 2
X / dy(eyy_ 7 {(qu) ) Y2+ 2k§} . (42.39)
0

Now in the limit w > T,

MY (w,T) N7k (qD)4ew/T T°
oW, oo

—_. 4.2.40
45m;p% \ Op w xo(T) ( )
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In the opposite case, i.e. w < T',

M}(w, T) N ("JD_>4—T4 15 ah <O
2473mipr \Op ) xo(T) gq% (%) . atT > 0Op

(4.2.41)

This concludes that the finite frequency imaginary part of the thermoelectric memory
function shows frequency dependence of the form e/t /w in the regime where the
frequency is in between the value of temperature 7" and Debye temperature ©p and
becomes frequency independent in the other cases. There is also different temperature
dependencies within the different regimes depending on whether the temperature is
greater or lesser than the Debye temperature. The details of these asymptotic results

are discussed in latter section Sec. 4.3 and are collected in Table 4.2.

Table 4.2: The thermoelectric and electrical scattering rates or memory functions due

to the electron-phonon interaction in different frequency and temperature domains.

Thermoelectric memory function  Electrical memory function

Regimes
1/7ie or M(w, T) 1/7eor M"(w, T)

w=0,7>0p, T° T!
w=0,T<Op T T°
w>T>0Op T" T
w>0Op>T T3 T°
T>w>0p T T!

T <Kw<kK0Op Thw™ e/t Towtew/T
w<Op<T T >
w<T < Op " T

Seebeck Coefficient

For the case of electron-phonon interaction, the Seebeck coefficient can be calculated

in a similar way as done for the case of electron-impurity interaction.
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In this case, the electrical memory function in the finite frequency case and in the zero

frequency limit can be written as [27, 56, 62]

N 6 T ©p/T 4
M//(CWT) — PN (Q_D> _/ dy )
24m3mupE \©p /) Xo Jo (ev —1)

_ z_q
{ Ty + (terms with w — —w)} :
x

e" v —1
(4.2.42)
and
N 6 T5 1244, T @D
MI(T) = s (g_D) =31 /0,\" (4.2.43)
oM P D Xo | - [ XD T )
4 ( T ) ) > D>

respectively. The details of this expressions are given in Chapter 2. Substituting this
zero frequency electrical memory function Eq. (4.2.43) in Eq. (4.2.21), we find that the

electrical conductivity in this limit proportional to

T75, T<Op
o(T) (4.2.44)

T, T> 0p.

On the other hand, we have also discussed that the thermoelectric conductivity
o(T) shows T~ and a temperature independent behavior in the low and the high tem-
perature regimes respectively. Substituting these variations into Eq. (4.1.4), the See-
beck coefficient in the electron-phonon interaction case shows temperature dependence

as follows

T2, at T <« @D
S(T) o (4.2.45)

T, atT > Op.
Similarly for the finite frequency case, substituting Egs. (4.2.31) and (4.2.42) in (4.2.26),
the frequency variation of the Seebeck coefficient for the case of the electron-phonon

interaction can be analyzed and discussed which is presented in the next section.

4.3 Results and Discussion

In this section, we have presented the results for the imaginary part of the thermo-
electric memory function and the corresponding thermoelectric coefficient in different

temperature and frequency regimes.
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Figure 4.1: (a): Plot of the imaginary part of the thermoelectric memory function for impurity
case at different temperatures such as 200K (purple), 300K (brown) and 400K (blue). (b): The
low frequency regime of M) (w, T') /My of Fig. 4.1(a) is elaborated.

In Fig. 4.1, we plot the imaginary part of the normalized thermoelectric memory
function Eq. (4.2.13) My (w,T) /M, where M = 2kpmNimpU? /37" N, due to the
electron-impurity interaction as a function of w and at different temperatures. Here
we observe that the thermoelectric memory function at low frequency i.e. w < T
shows frequency and temperature independent behavior (as shown in Fig. 4.1(a)). In
the intermediate regime, it decays with the increase of the frequency (as shown in
Fig. 4.1(b)). Also it increases with the increase of the temperature. Finally, at high
frequency i.e. w > T, it saturates to constant value (Fig. 4.1(a)).

In Fig. 4.2, the real part of the normalized Seebeck coefficient Re[S(w,T)]/So
for the case of electron-impurity interaction is shown as a function of w/wy, (wy =
2k3mNimpU? /37*N,) and at different temperatures. Here, we observe that first it
starts to decrease with the rise of the frequency and shows a dip at a certain frequency
(as shown in Fig. 4.2(a)). Then, in the high frequency regime, it saturates to the con-
stant value. Also, with the rise of temperature, Re[S(w, T)]/S, increases in the low
frequency regime and becomes independent of the temperature in the high frequency
regime. This behavior can be understood from Eq. (4.2.26) as follows:

In the high frequency regime, Eq. (4.2.26) can be written as
134(1)

T Xxo
/A constant. 4.3.1)

Re[S(w, T)]

Q
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Figure 4.2: (a): Plot of the real part of the normalized Seebeck coefficient for impurity case

at different temperatures such as 200K (purple), 300K (brown) and 400K (blue). (b): The low

frequency regime of Re[S(w,T") /Sy of Fig. 4.2(a) is elaborated.

This feature is depicted in Fig. 4.2(a).

Now, in the low frequency regime i.e. w — 0, Eq. (4.2.26) is approximated as

| . 1xo(T) M"(w,T)
lim Re[S(w,T)] ~ }Jlg(l)f Xo Mgw,T)

4.3.2)

Thus in the zero frequency limit, Re[S(w, T")| shows a constant value as given by above

expression.
20 : ‘ : ‘ 20 : : : :
©»=300K (0.026 eV) ©p=300K (0.026 eV)
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Figure 4.3: (a): Plot of imaginary thermoelectric memory function for phonon case at different
temperatures such as 200K (purple), 250K (red), 300K (brown), 350K (blue). (b): The low

frequency regime of Fig. 4.3(a).

In Fig. 4.3, we plot the frequency and the temperature dependent normalized imagi-
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nary part of the thermoelectric memory function M) (w, T') /My for case of the electron-
phonon interaction, where M/ = Nmgb /67°m;N.p%2Op. Here, we keep the Debye
temperature ©p fixed at 300K i.e. 0.026eV and look at the frequency dependence
at different temperatures. We observe that the thermoelectric memory function shows
frequency variation below 0.2eV. While in other region w > 0.2eV, it shows frequency
independent behavior (Fig. 4.3(a) and 4.3(b)). Along with the frequency character, we
also observe the temperature behavior. In throughout the frequency region, it increases
with the increase of the temperature (Fig. 4.3(a) and 4.3(b)).

Now, in Fig. 4.4 we plot the imaginary part of the thermoelectric memory func-
tion in the zero frequency limit as a function of temperature. Here, we consider dif-
ferent values of the Debye temperature such as 200, 300 and 400K. It is found that
Mg(T) /My first increases with the increase of temperature and then saturates to a

constant value at a temperature above the Debye temperature.

35
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.o 25F
2.0

0

15t [/
1o |/
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0.00"“

My(D)/M,

200 400 600 800
T(K)

Figure 4.4: Plot of imaginary part of the dc thermoelectric memory function for phonon case

at different Debye temperatures such as 200(purple), 300(brown) and 400K (blue).

In Fig. 4.5, we plot the real part of the frequency and temperature dependent nor-
malized Seebeck coefficient Re[S(w, T')] /S with w/wy (using Eq. (4.2.26)) at different
temperatures. Here wy (: Nmg%, /6m°m; N, p%0 D) in the energy units is a normaliz-
ing parameter. We have kept the Debye temperature fixed at 300K. In Fig. 4.5(a),
we observe that Re[S(w,T)]/Sy is independent of frequency and temperature in the
high frequency regime (i.e. w > wp as shown in the regime right to the dashed line
within the plot). In contrast, there is strong frequency and temperature dependence
in the low frequency regime. To elaborate the low frequency regime, we replot the

real part of the Seebeck coefficient in Fig. 4.5(b). Here we find that the later increases
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Figure 4.5: (a): Plot of finite frequency real part of the normalized Seebeck coefficient at dif-
ferent temperatures such as 200(purple), 250(red), 300(brown), 350(blue) and 375K (magenta)
at fixed Debye temperature 300K. Here the dotted line corresponds to the Debye cuotff i.e.
wp/wo, Where wy is the constant scale parameter having dimensions of energy. (b): The low

w/wg regime of Fig. 4.5(a) is elaborated. Here wy is a normalizing parameter.
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Figure 4.6: (a): Plot of the real part of the normalized Seebeck coefficient in zero frequency
limit at different Debye temperatures such as 200 (purple), 300 (red) and 400K (brown). (b):
The low temperature regime of Re[S(w, T)]/Sy of Fig. 4.6(a) is elaborated.

with the increase in frequency. While with the rise in temperature, the magnitude of
Re[S(w,T)]/So reduces. The saturation at high frequencies can be understood from
the formula Eq. (4.2.26) as explained above. Also the suppression of the normalized
Seebeck coefficient with the increase in temperature can be understood by recognizing

the enhanced scattering of quasiparticles at higher temperature. At very low frequency,
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we show the same plot at temperature 300K within the inset of Fig. 4.5(b). We can see
from the inset that near the zero frequency, Re[S(w, T")]/ S, approaches to the constant

value.

For the zero frequency case, Re[S(7')]/.Sy (using Eq. (4.2.26)) is plotted as a func-
tion of temperature at different Debye temperatures such as 200, 300 and 400K in
Fig. (4.6). It is observed that Re[S(T)]/Sy increases linearly with the rise of temper-
ature. Also, its linear behavior is more pronounced at the temperature more than the
Debye temperature. This linear behavior feature is in accord with the result calculated
by Boltzmann approach (Mott formula) and with the experimental findings [3, 14].
However, at very low temperature (I' < ©Op), it is quadratic in temperature (refer
Eq. (4.2.45)). Experimentally, this regime is dominated by the phonon drag effects and

these are not considered in the present formalism [3].

4.4 Conclusion

Making highly efficient thermoelectric devices, one needs materials with large figure
of merit (ZT = S*0T/k). As discussed earlier, one possible route to increase ZT
is to look beyond the static limit and look for the frequency dependent case. In this
connection the understanding of the frequency dependence of the Seebeck coefficient

S(w, T) is extremely important and is attempted here.

In a nutshell, the concluding remarks of this chapter are as follows:

1. In the case of electron-impurity interactions, the Seebeck coefficient in the

zero frequency limit shows temperature independent behavior.
2. In the case of electron-phonon interactions, S(7") shows

a Linear temperature dependent behavior in high temperature regime

(T > ©p)

b Quadratic temperature dependent behavior in low temperature regime

(T' < Op).
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3. In the finite frequency regimes, S(w,T’) in the case of electron-impurity in-
teractions decays with the increase in frequency in the low frequency regime
and then after passing through a minimum, it becomes constant in the high

frequency regime.

4. In the case of the electron-phonon interactions, it rises with the frequency in

the regime where w < wp and in the opposite case i.e. w > wp, it saturates.

5. These new predictions insure that the phonon interaction plays an important
role in the dynamical behavior of the Seebeck coefficient and hence can help

in improving the figure of merit.

6. In addition to these, we have also reported that the thermoelectric memory

function in the zero frequency limit for the case of
a electron-impurity interaction shows temperature independent behavior.
b electron-phonon interaction shows 7 behavior in the low temperature

regime, and temperature independent in the high temperature regime.

7. In the finite frequency case, it shows frequency variation depending on the
relative strengths of the temperature 7, frequency w, and Debye frequency

wp (refer Table 4.1 and 4.2).
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Dynamical Thermal Conductivity of

Graphene

In the previous chapters, we have calculated the transport properties of three dimen-
sional metals both in zero frequency and finite frequency regimes using the memory
function technique and produced several new results. This chapter deals with an in-
vestigation which is performed on a very important two dimensional system, namely
Graphene using the techniques developed and applied to three dimensional systems
i.e., metals in the previous chapters. Before we proceed for calculation, we first briefly
introduce the system i.e., graphene.

Graphene is a two dimensional (2D) material [98,99] and is made of carbon atoms
arranged in a honeycomb structure. Being 2D in nature and having linear electron
dispersion relation, it creates a lot of attention both in the fundamental and applied
research due to its unique electrical, magnetic, thermal, optical and mechanical prop-
erties. These properties include anomalous high electrical conductivity, high thermal
conductivity, effect of impurities on the electric properties, etc. [100—113] which make
the use of this material quite promising for the fabrication or design of the electronic
devices. These unique properties are due to its one of the interesting aspect i.e. linear
electron energy dispersion which differs from normal metals having quadratic energy

dispersion. This energy dispersion of graphene is expressed as
EL = Hvplk|. (5.0.1)
Here we set i = 1 and v represents the Fermi velocity. Also the sign + corresponds to

83
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the conduction (+4) and valence (—) bands. These dispersions lead to form a structure
known as Dirac cones and the points, where the Dirac cones of electrons and holes
touch each other and give rise to a valley degeneracy g, = 2 [114]. In our calcula-
tions, we have simply taken into account this degeneracy factor and do not discuss
the intervalley scattering mechanisms in the transport of graphene. Specifically, we
present here the thermal conductivity of graphene due to electron-phonon scattering

mechanism.

In the literature, it is argued that the thermal conductivity of graphene is high
[115,116] and is mainly contributed by the phonons and the electronic contribution
is small [117,118]. However, electrons and phonons provide different temperature
dependence to the electronic and phononic thermal conductivities in low and high
temperature limits. In the high temperature limit, due to large number of phonons
the electronic thermal conductivity show temperature independent behavior [3, 5, 62]
due to the scattering by electron-phonon interactions. On the other hand, the phononic
thermal conductivity shows 7! temperature behavior due to the dominating scatter-
ing mechanism by phonon-phonon interactions. In the opposite limit i.e. the low
temperature limit, the electronic and the phononic thermal conductivities are due to
the interactions of electrons and phonons with impurities, boundaries, defects, etc. In
the literature, the thermal conductivity of graphene due to phonons has been exten-
sively studied [115-118]. However, the electronic thermal conductivity of graphene is
less studied topic [119]. In the present chapter, we describe our study of the electronic
thermal conductivity. For the accurate determination of the total thermal conductivity,
it is important to have detailed theoretical models for both type of conductivities. In
the present context, we use the memory function approach by which both the zero and
the finite frequency behavior of the thermal conductivity can be calculated or explained

with much ease.

In case of metals, it has been find that in the low temperature regime i.e. 7' < Op
(©p being the Debye temperature) only the acoustic phonons within the phonon sphere
of radius ky, with kp, < kp (where kp is the radius of Debye sphere) play a role in the
electronic thermal conductivity [3,5,62]. In these three dimensional systems, it leads

to 72 behavior of the electronic thermal conductivity in 7 < ©p regime. In such
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systems, the radius of the Fermi sphere is larger than the radius of the Debye sphere
i.e. 2kr > kp. Thus all phonons can scatter off the electrons. But in the systems
where kr < kp (in graphene and other low density systems), only small number of
phonons can scatter off the electrons. These phonons are restricted within the energy
range vskpy, < 2v,kp. This can be explained by introducing the new temperature
scale known as Bloch Griineisen (BG) temperature which is smaller than the Debye
temperature [120]. This scale defines two regimes i.e. low temperature (7' < Opg) and
high temperature (7' > Og) regimes for the electron-phonon interaction in graphene.
In the low temperature regime (7" < ©gpg), the acoustic phonons with linear dispersion
relation yield inverse temperature behavior to the electronic thermal conductivity i.e.
T~ and then change to the temperature independent behavior in the high temperature
regime (1" > Opg) [119, 121]. However, because of the two dimensional nature of
the graphene, there are also other acoustic phonons known as flexural phonons or out
of plane phonons which obey quadratic dispersion relation and hence give different
power law behavior to the electronic thermal conductivity. Thus the role of the different
acoustic phonons is very important to understand the transport or the electronic thermal

conductivity of graphene.

In this chapter, we first set the theoretical framework of the problem in Sec. 5.1.
Here we discuss the phonon dispersion relations and give the description of the elec-
tronic thermal conductivity of graphene for different acoustic phonons. In Sec. 5.2,
we present the results in zero and finite frequency regimes. Finally, in Sec. 5.3 we

conclude the chapter.

5.1 Theoretical Framework

We consider a two dimensional graphene with only electron-phonon interaction and
intraband transitions within this system. The Hamiltonian of such a system is described
as H = Hy + H., + Hp,. Here the unperturbed parts Hy and H,, are defined by
Egs. (2.1.2) and (2.1.5) respectively. And the perturbed part of Hamiltonian H, is
defined by the Eq. (2.1.3) as for the case of normal metals. While the difference in

the present case comes from the form of the electron-phonon matrix element (which
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is specified in Chapter 2 Sec. 2.1 Eq. (2.1.4) for the case of metals). In the case of

graphene, the latter is represented as [114, 122]

/
D(q) = ﬂ{1—(i>2}12. (5.1.1)
'\/meWq 2/{3F

Here D, is the deformation potential coupling constant, p,, is the graphene mass
density, kp is the Fermi wave vector and w, is the phonon energy dispersion. Con-

trary to the case of metal, here the extra ¢ dependence comes from the factor {1 —

2kp
in graphene [121, 123]. Further, this is valid for the case of intraband transitions that

25 1/2
( q ) } . The consequence of this factor is the suppression of the backscattering
we have considered in our study.

5.1.1 Phonon Dispersion relations

Before proceeding to calculate the thermal scattering rate and the corresponding ther-
mal conductivity of graphene, for the sake of completeness, we will first discuss the
phonon dispersion relations in this subsection.

The thermal transport due to the electron-phonon interaction significantly depends
on the characteristics of the phonon which are further determined by the two dimen-
sional structure of the graphene. In graphene, there are two carbon atoms per hexagonal
unit cell which gives six phonon branches in the dispersion spectrum. These are three
acoustic and three optical branches namely LA (Longitudinal Acoustic), TA(Transverse
Acoustic), LO(Longitudinal Optical), TO(Transverse Optical), ZA(Flexural Acoustic)
and ZO(Flexural Optical). The TA and TO phonons are due to the transverse vibra-
tions within the graphene plane and LA, LO are due to the longitudinal vibrations
within the graphene plane. The other modes such as ZA, ZO are due to the oscillations
of phonons in the direction normal to the longitudinal and transverse phononic modes.
These phononic modes are also referred to the out of plane modes [124]. Among these,
the optical phonons usually have higher energies than the acoustic phonons. And in
the present work our main focus is on the low temperature behavior (i.e. below the De-
bye temperature) of the electronic thermal conductivity. Thus, for the time being we
ignore the contribution of optical phonons and consider only acoustic phonons hence-

forth. The schematic representation of these phonons is shown in Fig. 5.1.
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(c) Displacement of ZA phonons

Figure 5.1: Schematic representation of the displacement of acoustic in plane and out of plane

phonon modes.

From the phonon dispersion spectra, it has been found that these modes follow
different dispersion relations. The LA and TA modes follow the linear dispersion rela-

tions [124,125] i.e.,

WLA =~ ULA{

Wra = UTA(, (5.1.2)

where vp 4 and vra are the longitudinal and transverse phonon velocities and vy, =
21.3 x 10°ms ™, vpa = 14.1 x 10°ms ™. [125]
The other acoustic phonon ZA approximately follows the quadratic dispersion re-

lation as [124,126]
Wza ~ Oéq2. (513)

1/2

Here the parameter o = <i) , where s is the bending stiffness of the graphene,
Pm

pm is the graphene mass density and v = 4 x 10~ "m?s~ 1. [127]
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5.1.2 Mathematical Calculations

As discussed in Chapter 3, the thermal conductivity Eq. (3.1.3) can be calculated using
the memory function formalism by calculating the thermal memory function or thermal
scattering rate Eq. (3.1.4). Thus with the definitions of the thermal current Eq. (3.1.2)
and the model Hamiltonian (described in Chapter 2 Sec. 2.1), the imaginary part of the

thermal memory function can be expressed as”

47 .12

Mol T) = s 3 [{Klex — )~ Klew — )} -] | Dk ~ )P

XQQ( ym KK’

/T —1
x(1— fk)fk’nk—k'{T5(€k — €y — Wk T W)
+(terms with w — —w)}. (5.1.4)
H = d = L he Fermi and the B distributi

€re fk = m and ng = efB“"q——l are the Fermi1 and the boson distribution

functions, (3 is the inverse of the temperature and factor 4 is for the two spin and two
valley degeneracies.

To simplify Eq. (5.1.4), we convert the summations over momentum indices into
the two dimensional energy integrals using the linear electron energy dispersion rela-
tion ¢, = vek and e = vpk', where vg is the Fermi velocity. This linear dispersion
relation distinguishes the characteristics of the graphene from those of the three di-
mensional normal metals which follows the quadratic dispersion relation. Further

these simplifications along with integrations over the angular parts yield

2 D2 A q2 q 2
M’ (w0, T) = ro /de/d— 1—(—)
(@ T) Am2m2 ppvpkexgo(T) “J qwq 2kp
w R
+ q\*k :u) 2 ))nq

{wcfk% + (e — p)*q° (GTC] }(1 — flex

e?/T —1
{—f(ek — w, +w) + (terms with w — —w)}.
w

(5.1.5)

Here we use the expression for the electron-phonon matrix element given in Eq. (5.1.1)
and the symbol A corresponds to the upper cut off value of the phonon momentum.

Since in normal metals, the Fermi sphere is very large as compared to the Debye

“The details of the calculation of this expression is given in Sec. 3.2.2 Chapter 3.
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sphere, the phonons residing in the Debye sphere participate in scattering events and
we restrict A to qp, gp being the Debye momentum. While in the case of graphene,
this is not the case due to the smaller Fermi surface than the Debye surface. This
allows only phonons residing below the Fermi surface to participate in the scattering
phenomenon, hence restrict the upper cut off value of ¢ integral to 2k (the idea of the
Bloch-Griineisen temperature). Further the above equation Eq. (5.1.5) for graphene

can be solved for various acoustic phonons as discussed in the following subsections.

Longitudinal/Transverse Acoustic Phonons (LA/TA)

To calculate Mgq(z,T) for the Longitudinal and the Transverse acoustic phonons

(having linear dispersion relation), we define few dimensionless quantities such as

€k — w w )
kT B n, ?q = y and 7= where w, = vyq, vs = (vLa, vra). Using these
variables and then performing the integral over variable 7, Eq. (5.1.5) becomes
2 D2 T6 Opg/T 3 22
Mog(w,T) = 2 SF ¥ 570 / dy . (1 -2 3 )
Am*m? prvpvike Xoq(T) Jo eV —1 2056

+ —+ +
ety -1 «x

oty " —1 (0% 7w (r—y)? ylr—y)
4772 3 3 4

+(terms with w — —w)}. (5.1.6)

Here Ogg is the Bloch-Griieinsen temperature and is equal to 2kgv,. The analytic
closed form of the integral over y variable is calculated by Mathematica and is given in
Eq. (G.0.7). Further, in different frequency and temperature regimes it can be solved
analytically and is discussed as follows:

Case-I: The zero frequency limit i.e. w — 0

In this limit in Eq. (5.1.6), M{,(T) becomes

M (T) _ E%Dg T° /GBG/T dyﬂ 1— y2T2
Qe 212 m2 pr, Avpvike x40(T) Jo (ev —1)2 20%,

O , ™ | Y

The closed analytic form of this expression is given in Eq. (G.0.8). Here, we find

that M, CSQ (T') for the case of interaction of the electrons with the longitudinal or trans-
verse phonons leads to different temperature dependence in different regimes. In the

high temperature regime (T >> Ogg), the term 7* /3 within the curly brackets of above
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equation and in the low temperature regime (7' < Ogpg), first and last term contribute

more to the thermal memory function. Hence it obtains the temperature behavior as

T7 T > @BG
Mo(T) (5.1.8)

T?, T < Ogg.
Using this, the electronic thermal conductivity can be calculated as follows.
The electronic thermal conductivity Eq. (3.1.3) in the zero frequency limit can be writ-

ten as [62]

1 Xao(T) ~ T
T Mbo(T) ™ Mo (T)

K(T) = (5.1.9)

Here we use the temperature variation of the static correlation function XOQQ (T') (as dis-
cussed in Appendix B.3). Thus the electronic thermal conductivity depends inversely
on the thermal memory function. From Eqgs. (5.1.7) and (5.1.9), we find that x(7") for
the case of LA and TA phonons varies in