OW FREQUERCY PLASNA WAVES TN A MAGNETIC FIELD
INSTABILITIES, TURBULENT DIFFUSION AND SPECTRA

by

fparna Basu oL
Physical’Research Laboratory
Ahmedabad, India.

A THESIS
SUBMITTED TO

 GUJARAT UNIVERSITY o
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

1
i

043

.

.B13080

B¢




m%”ﬁwﬂgﬁ<ggfg“, . my parents

SUKUMAR and HIMANT CHAUDHURT

my parents—in-Ilaw

PABITRA KUMAR and NILIMA BASU

L e i
Vi S R -
B i ; i ;
L b : :: ;
G i
e
\, i

.

o

L : i
e j :
L S :
. e :
. :



CERTIFICATE

I hereby declare that the work
:prééénted in this thesis is original and has not
jfbrméd the basis for the award of any degree or

diploma by any University or Institution.

(] G oL B oAU

(APARNA BASU)
AUTHOE

Certified by:

o S
,\*%(UQ,

4 e Das



 ACKNOWLEDGEMENTS

It is Zmpossible to thank individually
ﬂﬁ;QEQOpZe = teachers, friends and aoZZeagues = who
;havé moulded my understandzng of the subject over the
‘;earsbl I am deeply conscious of their contribution,
iaﬂd marmZy thank all those, who, through books, Zectures,
?Qiséﬂééions and other indirect ways, have influenced

  tk£s;wak,

I shall always remain indebted to

 rof©ssop A.C. Das for GOﬂSbelng 5o'supervise the study

téwards tkzs thests,’ I deenZy appreciate not only his
\e“auidance and hzs ktnd conszderattons but also the

onsvderable freedom he has generously given me during

the course of this study. I have learned « great deal
due to miy ﬂsqﬂcvatzon with him. I thank him for care-

fuZZy rbadtnq the manuscrﬁnt and suggesting important

I am very grateful to Dr. A.S8. Sharma for

odueznq me to the problem of the zon acoustic

\'thank him for many hours of fruztful
fjdfhelp with many initial problnmsg and

rfthe uoe of has eomputer programs in Chapter 6.



o,
o

‘I oznaerelq thank Dr. V.B. Sheorey for

“wng me on Chebysa v Polynomialss and for his

ind and patnstakznq ass¢3tance with the calculations

:infohapter 4,

Several discussions with Prof. A. Sen
"[j and Prof S.M, Mahajan have been of considerable help in
f ,eZear$ng the concepts underlying turbulence theory. I

f gratefuZZy acknowledge their contribution.

I thank all the members of the Theory
i wtth whom I have been continually associated

”vervthe Zast several Yyears, for providing a very

fufcongenzal atmosphere for research.

I must also thank all my friends in PRL

'whb‘haue helped unfailingly in keeping more and spirits

‘ﬁigh."It 18 a pleasure to thank Dr. M. Mohan who has

‘ﬂkelped me over many initial hurdles.

I thank the Physical Research Laboratory
iﬂan¢ial support and the use of the facilities in
Qrdtofy, I must mention, in particular, the prompt,
prul and friendly atmosphere in the library. In all
,wical matters relating to the thesis, I have reaezved
”fﬁzzﬂco‘operatlon from all concerned. I thank Mp. S.cC.

hdvsara Mr. J.G. Vora, Mr. N.F. Khoja and Mrs. Bhatt for



.which my family members have contributed to this
‘ My parents have given the initial inspiration
iupport for the work. My husband Dipankar has

tded continued encouragement, and support on a day

'&qy,basis. My sister Mitali has been invaluable in
(g‘yfdifferent vays. The entire checking and collating

héifhesis was done by her. Were <t not for their

/tféffOptsg this task would never have been concluded.

Speetal thanks go to my little son, Upal,

tas not only cheerfully put up with many hours of my

e from home, but also provided positive encourage-

n many ways.




2

 conrEnrs

PART I : ELECTROMAGNETIC INSTA-

BILITIES IN SPACE

PLASHA

Introduction

ENHANCED SCINTILLATIONS ASSOCIATED
WITH HIGH SPEED STREAMS IN THE
SOLAR WIND. e i
Introduction

Dispersion Relation

Summary

Re ferences

PIELD ALTGNED PARTICLE STREAMING
AND GEOMAGNETIC MICROPULSATIONS
InfroduatianV%ﬁfJ%jfmﬂ”
Dispersion Relation
Stability Criterion & Growth Rate
ﬁié%béﬁiédéions

References

15

17

19

20
21
25
29

31



" PART II : WAVE PARTICLE EFFECTS
" IN TURBULENT PLASMA

Introduction

PARTICLE DIFFUSION IN A TURBULENT
BACKGROUND ” ‘

3.1 Electrostatie Fluctuations
( << L1 )
3.1.a.Turbulent Diffusion D across B
3.1.b.Velocity Space Diffusion D
3.2 Eleetrostatic Fluctuations
(4> >3 e )
3.2.a.Integration over the Perturbed
Orbit |

3.2.b.Diffusion Coefficient in the
Quasilinear Limit

3.2sc.8patial Diffusion in Electrostatic
J

v

Purbulence ( L5 = L
3.3 Electromagnetic Fluctuations
( i <7 Jd\LL )

References

CALCULATIONS OF THE PERTURBED ORBIT

”Wf,@éll The Perturbed Orbit as a Convolu~

tion Integral

32

36

37

42
44
48

53

55

57

60

64



Limiting values of the Perturbed
Orbit

Strong Spatial Diffusion,

(

L L

¥% b, s> sk, % p, )13
4.2.b.Strong Veloeity Space Diffusion,
x, > 135y 1582 p

4.3  Numerical Integration of the
Perturbed Orbit

4.4 Self-Consistent Values of the

Diffusion Co-efficient

References

;CHAPTER 5 NONLINEAR DISPERSION RELATION

5.1 Dielectric Function in a
Turbulent Plasma

5.2 ITon-Acoustie Waves in a
Magnetic Field

5.3 Effect of Veloeity Space
Diffusion

5.3.a. Ton Diffusion
5.3.b. Electron Diffusion

5.4 Non-Linear Ion—-Cyclotron
Dispersion Relation

References

70

73

76
79
83
84
86
50
98

38
102

102

105



$PECTRUM OF TURBULENT ION
ACOUSTIC WAVES
6.1 Ton Acoustic Spectrum

6.2 Superposition Principle of
Dressed Particles

Caleulation of the Spectrum
Numerical Results
Compér£30nfwith Observed Spectra
and Simulations

 3.6  thpdriSanwith TheoreticaZ

_ Speatva '

o

*Speatﬁum f Electromagnetie

Fluetuations

SUMMARY AND CONCLUSIONS

APPENDIX I: Properties of the
Lommel Funection

106

108

109

110
115
116

118

119

120

122

122
129

132
133

138



i o
.. .
\r).wr,;//,y L "
G :\" T AR R
S i

o :
.
-
e
.
. . i
S . S :
‘;W.u.,w T »M/, E : :
?/ . s d
/Wr i B
L A
e \‘,\»‘”Hy i ; e i
S ,v\’«(wr i
o ey
o /:(\, . i s

. ’rw, o

-
,,M,,,\,,// -

; w”o’".«l'/?'.’\("‘f”"w"ﬁé\, \‘,’1‘- Gl
. h// i Do
G ,,,Ef\ry,,,’\,f\",-,:r, o
/,/’w, | G \,””uu} S R
b i ,”}\"',\h’ i b T
»«\w\»m,m‘ e s
. /5 : i
. ‘ .
- “,:.3,w
_w i :
G S
. ,,/q\w"”"l{\’;\, i
ﬁ,;z,,w,w . C
Cai

H
{




INTRODUCTION

The anear theory of plasma waves 1§ now
U derstood vand ‘many naturally occurring and labora-
asma phenomena have been satzsfactorzly explained

baszs."f" The linear theory is valid <f

,ﬁce of suprathermaz quctuattons. The effect.of

rzbedionZy in terms of a non Zznear theory. There are

xistznq theorzes of nlasma turbulence, but they

‘éééhéli be concerned only

requency waves 7 hﬁ <¥ L to W= Ny ),

xetted by'partzcle streamzno along the external magnevic

2 ld fboth in the Ztnear and turbulent regimes. Certain
frequency modes are commonZJ observed in Zabowauury
space plasmas. It is necessaryvto understand their
mechanzsmg zdentﬂfy the method of saturatzon,
ke”characterzutzcs of the turbulent state which
med throuqb the nonlinear interactions. These

fthe poznts that we shall constder in this thesis.
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Tne theszs is dtvzded znto two tndependent
8 deeltnq with the Zznear and turbulent regimes respe-
eZy;e Part I conszsts of two chapters where we attempt
poazn certazn space phenomena artising from electro~.

ﬁettc waves, uszng Zznear ingtability theory

In Chapter 1 we consider the generatton of
tosontc waves by hzqh speed solar wznd streams.
_wavea eanfexplamn the increase in interplanetary
kcznthZatzon observed at the Zeadzng ednes of the fast
A stabzlazznq meahanzsm operates by w%zch the

szttu zs turned off wzth the advanee of. the gtream.

’ :In Chapter 2 we conszder the thermally
nxtke maqnetosphere wzth particle

‘éd?ihfs magnetic field. ItAts well

zyldﬁﬁsetropy leads to Zow;fTeQuency\

"firehese” and “mirror"” instabili-

pZasmas. In a homogeneous plasma, the

tLons triggered by substorm particles.

In Part II, we turn to the study of non-

,ﬁeafeeffects in turbulent nlasmas. These could be due to



of whzch we shall conszder onZJ wave-particle

cts;’ Of the emzstzng theories of plasma turbulence,

to extend the framework of the
above theories to tnelude higher
frequency electrostatic waves and

electromagnetic waves, and

(2) to caleulate the electric field

fluéfudtibnlspectrum explicitly,

‘@nd:eompare'it,with the several

e ﬁdﬁdie,qnd scope of our study of plasma

evw§ZZfbg;deacribgd'£n the introduction to Part IT.




CHAPTER I

ENHANCED SCINTILLATIONS ASSOCIATED WITH HIGH SPEED STREAMS

IN THE SOLAR WIND

Abstract: The long wavelength ( A > 3P£ Zon=gyro -
radius) density inhomogeneities in the solar wind that
ratse the stellar radio scintillation index during the
onset of a high—~veloeity stream, may be generated by a
Zowmfrequency compressional electromagnetic mode such as
the magnetosonic (MS) wave. Our investigation shows that

obliquely propagating MS waves are dpiven unstable by the



;~beaked proton dzstrtbutmons observed in the solar
‘ﬁd/: We pronO“e fhws as a reason For the correlation
Jhigh speed streams wzth enhanced scintillation. The
gtability at 1 AU of the observed nonequilibrium, double-
peaked particle distributions emerges as a natuial econge-

?qygnce of the suggésted meechanism.

INTRODUCTION

‘ It had been observed as far back as 1972
(Houminer and Hewish, 1972) that long-lived (8-4 days)
Eétrong geintillation of radio sources was directly
 pelated to high speed solar wind streams (700~800 km/s).
-The sectors of enhanced scintillation preceded the fast
streams by about 2.5 days. These sectors were found to

be regions of increased density (Belcher and Davi33 1971),
and the ad hoc assﬁmption that electron densify fluctua~
tionsg are proportional to density was employed to explain

?

the increased scintillations.

e can reasonably assume that the enhanced
seintillations are due to a compressional plasma mode that
produces ‘microscale’ ( ~ 100 km) density fluctuations in
the solar wind near the sun and acrsoss the line of sighﬁ
to the radio source. Of the low-frequency hydromagﬁetia
modes the Alfven wave, although commonly observed in the
solar wind., is not effiecient in produqing density fluctua-

tions in the linecar regime (Wu and Huba, 1975). In situ



serﬁdt¢ons andzeata that while trazns of oure Avaen
waves are seen wzthan fast and sZow streams as well as in
}ihelﬂratlzng edges of fast streams, there is at least 10%
mdaneto acoustic noise at the leading edges of fast

reams (Barnes, 1978; Lzahenstezn and Sonett, 1980),

The wave mode must be supported by a source
gofffree energy in the system. Some energy sources,
fdiéaussed earlier bybseveral investigators, are particle
f%émperature antsotropry and heat flux from the base of the
:édrona, which do not relate specifically to fast streams.
 Beleher and Davis (1971) qualitatively discuss the inter-
. actzon (coZZision) of fast and slow streams, but there is

no evzd nee of spirally aligned shock fronts within 1 AU.

ffor the solar wiﬂﬁ the wave modes invoked
 have been the Zon-acoustic (Forslund, 1970), seen to be
 associated w%th bursts of electrostatic turbulence in the
quiescent 'solar wind (Gurnett and Frank, 1978), the magneto-
sonic,and iton ecyclotron waves. The ton-cyclotron mode
gives_rise to a narrow band of frequencies around <(1;

and <8 invoked to e&blain the enhancement of the power
j speetra near fr (Neugebauer et al., 1978). The séale
Kof trregularities generated by Zon acoustic waves ranges
”frém the Debye length Ap (~ km) to ¢ (~ 50 km),
Whereas the magnetosonic wave irreqularities are larger

than P , which is the relevant scale for radio-



LntiiZation‘at Megahertsz frequencies. The enhanced
,_gﬁic’field Ffluctuations during the onset of a fast

stream also »noint to an 2lectr-magnetic mode.

In éonnfptinn with fa3t streams, the ’beaﬁ'
{nstability appears to be the most natural choice. The
proton veloeity distributions observed at 1 AU in high
speed streams are indeed double peaked with relative
peloeity =- 64 km/s and beam densities varying from o 0.1
 at the omset to e~ 0.3 during a fast stream (e.g- s
Abraham~3hraunéf and Feldman, 1977). Such distributions
may have the required free energy to sustaiﬁ,the waves,
but careful note must he taken of the fact that the

distributions observed ~t 1 AU are necessartly stairls on a

time scale of several days.

The ambient solar wind veloetity ( ~ 400 km/s)

is less than the fast stream velocity («~ 700-800 km/s )

by more than 300 km/s. Yet in the distributions observed
at 1 AU the velative velocity between the peaks is only
~64 km/s. We infer that at least a part of the streaming

energy has gone toward exeitation of plasma instabilities

ultimately resulting im the double peaked distributions
with reduced relative veloeily as observed at 1 AU. If
magnetoacoustic waves are built up by this mechanism, they

can provide density bunching on the scale length respon-

sible for seintillation. We investigate therefore the



stabzl'bty of obliquely propagating m&gnetoacous tic waves
znthe pre;sénce of doubl‘e beake& proton cfistmlbui‘:ﬁons with
(iﬂbitrary relative veZociiy using the Vlasov theory.
omﬁgomeru et al. (1976) have numerically analyzed the
’,,ivnferiaction of hydromagnetiec waves with double Zon streams-
over a wide range of parameters such as }3 s the drift
‘V"’z)el‘ocity V., and temperature anisotropy. However, they do

"nm'; discuss the resonant instability of oblique MS waves.

DISPERSION RELATION

The bastie equations used for deriving the
:"C\Zispersion relation for low-frequency (w < L2; ion-
gyrofrequency) hydromagnetic modes are the Maxwell and
Viasov equations., For a z-directed mczgnétic field and
nropagation vector ~7-<‘ lying in the xzz plane,

kK = (7‘:1_‘> 0, k” or (k sin @ , 0, k cos & ), the dielectric
constant g 18 a tensor (see, e.g., Hasegawa, 1975).

A
In the absence of currents some of the elements of &

vanish, and the dispersion relation decouples to

z) % 2
E - E..-.i}ﬂ + G = Q

2y w 2z JE
(1)
and further to
o _ c*k*



in the limit of large conductivity when égzz is large.
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are the plasma and cyclotron frequen—

’ . . 4 d .
G pie A Lgs and f;
cies and distribution function of the particle spectes J.

The initial normalized nroton distribution

function is taken to be a double Maxwellian in the center

of mass frame of the nrotons:
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 £n which the high veloeity beam protons with temperature
j[TB.drift avay from the sun with speed VB while the main
  protons at temmerature T, drift slowly back toward the

. sunm at a speed Ve

The electron distribution <8 also obse?ved
{fo be double-peaked (Feldman et al., 1973) but since we
find that the electron contribution to the riquired disper-
ston relation is O(me/mi) of the nroton contribution, we
shall not deal with the details of the electron distribu-
tion here. It <s simply assumed to be a Maxwellian drift-
ing at the center of mass'velocity of the protons, with a

femperature ~ 10° ok,

We assume that pressure anigotropy is not
,%ﬁpbrtant for MS modes following Kennal and Wong (1967),
t&ho,derive,a general particle instability criterion which
shows that while anisotropy drives fon-cyclotron waves
' ‘ﬂ@stabZa3 beam instabilities are_ﬁére‘important for

_magnetosontic waves.



The dispersion relation obtained for
o,b:z@f‘q-uye ly provnagating. Zow«frequen ey waves in the center

mass frame of the wind is

. e L ,‘ / ( 7)

N A2 o
Vo = 5 \/—‘~i~'lT\:~'~ ig the Alfven velocity,

YT is the sound veloeity and

}

-
| |
NIE '
|
g

. ..:‘___,_ € ) AR 9 :
4 \! v/ LT N e (9)

\.y/ 207

A Y

The phase velocity of the wave s

Vo = N, + (\ TR L'(}_; /\"V:':) —(us & v YL,_P_L» (10)

11
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”fé?ms'of'the'relatipe'velocity Voo Vg + vV, In the
absence of stpeaming,and k perpendicular to B, (10)

peduces to the familiar magnetosonte velocity.

. In the direction of B for a high
fidéma (/3'1.nK9482/87T )) we would obtain a pure acoustic
wave nrovided the full equation (2) was taken (e.g..,

Spitazer, 1962, p. 67) or a modified Alfven wave if [5 < I

The W function can be expanded when

2| < 1 ae
o P :
LA T A TR ol S B S R
v S Y (11)
SRRV
Vﬁi.ffllmi? ) =
\
‘\:f ‘;'_,l‘l:',/!;g.'/
i
} (12a)
i
!

< (12h)

From (12a) and (12b) we obtain the lower and upper limits
of the range of frequencies that grow in the forward

 divection:



Ve, > L -
. \ ) {
(13a)
) h{?\ ‘ \) - B
p }yEW/;! ) (13b)

The growth rates of the waves are

— L= o7
SRR S AT
:TA 2 (W N i/
(14)
(\)4). — "/,M
' I
[

2. -~

Ox e

(15)

/ _The threshold conditions (13) rewritten in terms of the

relative veloeity V (V =7;n/nB) ?M Z-(n/nM)VB are
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(16)

(17)

’Comparison of (14) to (17) shows that at tke onset of the
fast particles the forward wave grows, the rate increasing
with the number of beam vrotons. As the fast strecm
&dvancess the increase in np may reverse the threshold
condition (16) and arrest the growth of the forward wave.
The backward wavé begins to grow only aftef there are «
suffieient number of beam nrotons to satisfy the threshold
eondition (17), but the growth rate, being rroportional to
Mo decreases with the advance of the high~velocity strzam.
This means that the maximum density fluctuations are gene-
rated at the leading edge of the high~sveed stream followed
xby a quenching of the instability with the advance of‘the
stream. Stince the instabildty is not self-limited by
nonlinear amnlitude growth but is quenched by an externally
changing proton distribution function, we may safely assume
‘that the use of linear theory <e adequate under the circum-
stances. The eleetron Landau damping represented by the
first term in (8) is effecctive for large propagation

angles.
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An interesting consequence cf the beam

’ngtﬁfiiity 18 that energy‘is drained frém the fast
 §afticZes (e.qg., Spitzer, 1962, p. 89) asilong as there
~ex£éts a wave with ﬁhase veldeity less than the beam
~uelqcity.. As the particles slow down by beam retardation,
‘théy'may eross the threshold velocity of thg sléwest-
’wave. After this, tha particles cannct sté energé to
any wave and are nrevented from reaching eqﬁilibrium_in
the collisionless solar wind. Qualitativeiy, we expect
vtherefore to see nonequilibrium particle distfibution
"qunctﬂons with peaks separated by a veloeity of the order
of the MS mode (V = 64 km/s) at 1 AU. ’To Studu the
exact change in the nature of the dzstrzbutzon function
as a result of interaction wzth the waves reauzres a

nonlinear calculation.

SUMMARY

The enhancement of stellar rad20w
’fjscintiZZation during the onset of high—-speed streams is
dﬁe to density fluctuations on a scale 33100 km. In this
range the MS mode is the most efficient zn nroducwng
‘_density fluctuations. The onset of a f@ut stream ereates
 5ahprovriqte conditions fof thefioﬁ;resonant beam instabi-
Zzty oP ébliquely nropagating MS waves. At a fized

Observer the anstabtlzty 78 tnzttnt@d by tho fast sireai
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md quenched with the advance of the stream. The double-
mped proton distribution function continues to act as a

ourcé,of energy to the waves until the streaming velocity

 faZZs below the threshold for emeiting the slowest ( ~ 7V,
k;or V ) wave. We expect thereforo to see enhanced scinti-
1lation along the leading edges of high speed streams and
k~ﬁon«equilibrium ton distribution functions with V ~50-60
; kh/8 at 1 AU. These facts are well borne out by observu-

tions.
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CHAPTER 2

FIELD ALIGNED PARTICLE STREAMING AND GEOMAGNETIC MICRO-

PULSATIONS

AbBstract: Particle streaming is invariably associated
with certain types of micropulsations. These particles, |
released from the geomagnetic tail inte the magnetosphere
during substorms, may be a primary source for the onset of
geomqgnetic micropulsations. We suggest a mechanism by which
particle streaming along the magnetiec field itn an otherwise
étable, homogeneous plasma with anisotropic temperature,
generates low frequency electromagnetie modes similar to

the "mirror” instability. The plasma density and magnetic
féeld undergo a peritodic modulation at a frequency

which is a functton of the particle streaming velocity.
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. INTRODUCTION

Several distinet classes of miecropulsations
:;of~the geomagnetic field have been studied by McPherron
két’al (1968). The’micronulsdtions are often assoectated
’witk,impulsive electron and ioﬁ precibitationsn The
enérgetic particles probably enter from the tail during
isubstorms and stream along the magnetic field in the
magnetosphere. The streaming velocity can be of the
ﬁérder of the Alfven speed. In general this speed is lower
\ £han the thréshold velocity required for the generation

of low frequency electrostatic or electromagnetic modes

in a thermally isotropic plasma.

The early theories on the generation of
mieropulsations (Dungey 1955, Southwood 1974. Radosk<t |
1967, Newton et al. 1978) considered the guided propaga~
tion of Alfven waves in toroitdal and transverse poloidal
mode. Hasegawa (1975) explained micropulsations on the
basis of'the drift mirror instability} The mirror insta-
'bflity is exeited in an anisotropic plasma with B, > [,
=/ Eﬂllf'ﬁki.' This mode neither propagates nor

[ K
— d

where [3

does it have a real frequency. When coupled to a gradient
in the magnetie field, the mode has a Llow frequency which
has been associated with Pe~§ miteropulsations by Hasegawa.

The role of particle streaming in the triggering of

mieropulsations has not been considered.
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2.3. DISPERSION RELATION

We consider an idealized collisionless
‘homogenaous plasma Qitk antsotropic temperature ana carrying‘
 fa beam of particles along the ﬁagneﬁic field., The <impliectt:
asSMm?tion is that although we shall be considering low
frequency, long wavelength phenomena, the scale is small
’aé'compared to the length of the magnetic field lines qnd

the scale of variation of plasma density and temperature

along them.

N

The low frequency electromagnetic waves that
may be exeited in a high {% plasma are the Alfven and
magnetosonic waves. OFf these, the Alfven wave is not sig ér
fieantly affected by wave particle interactions. Moreover,
since Alfven waves are recognised to cause « rotation in

the magmetic veetor without change of magnitude, their

influence on geomagnetic micropulsations must be limited.

The magnetosonic wave dispersion relation

(Hasegawa 1975) when decoupled from the acoustic wave is

(1)




‘and k, are the wave veetor components parallel

L L
xpefpendicular to the z~directed magnetic ficld, {L)pj

‘Jllj are the plasma and gyrofrequency of the jth

 for the ambient plasma, and a drifting Maxwellian for the

_gtream, we obtain
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As 1s evident from the fact that

for electrons s O(me/mi) smaller than for protons, and as
expected, for low frequency modes, the electrons hardly
affect the diepersion velation ezcept in Landau damping or
growthn Assuming that the beam density <s small, the

dispersion relation becomes
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where A A 18 the Alfven veloecity.

Iy

Furthermore, if the beam temperature is comparable to the

ion temperature, the imaginary part of Eq.(1) reduces to

(3)

In the low frequemecy Llimit, (v << kVA ,

an anisotropic plasma is unstable even in the absence of a



beam. The instabilitygdriven_by‘the‘anisotropy,'is obtained

ﬁnder two limiting conditions:

e [+ > 5 T <o s
J’ s
for large A@/A : Z.e. almost parallel propagation

o S (Bu(l-B)) <o
= Pyl -R)) (o)
J J
for large Ry, : i.e. almost perpendicular propagation.

Pl ”
These are the firehose and mirror instabilities. The con-

ditions can be further simplified to

T = for Aﬂ; > K
o > P for K> k“

The plasma is stable tf |5, < [oy < (572 .
The presence of a beam can render such a plasma unstable.
The nature of the instability is similar to the mirror
insgtability, but unlike the mirror instability where the
freéuenay is purely imaginary, the instability excited by
‘the beam has a complex frequency. In the next section we
solve the dispersion Eq.(2) keeping in mind that the waal
nart of the frequency may be small, or comparable to the

imaginary part.
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3. STABILITY CRITERION AND GROWTH RATE
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The dispersion Eq,(Z) is a quadratic in

(7)

(9)
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(13)

where

(14)

which gives Kig > 4(1~Kr)

From (13) we get,

The instability threshold is defined by /% cos W/2 > 1
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(15)

which defines the threshold value of the streaming veloeity.

Equ.(15) shows that depending on the degree
of thermal anisotropy, even a low streaming velocity s
éufficient to exeite an tnstability. The streaming velocity
.Ldoes not have to ewceed the phase veloeity of the wave in

order to trigger the instability.

The above situation is interesting because
even when neither the beam nor the anisotropy ts sufficitent
to drive an instability, in conjunction they can trigger

a low frequency instability.

The wave frequenecy ts given by

/ - g
| \ .o U - N W P f& =\

(Qy = I Va o [+ (o) (€‘>L' By /1 +50 O( ey )\
! 2 | fooi /|
. 4




have

and_

The growth rate is

To have large growth we need

e

(At v = vanishes).

Ki << Kr which gives

- -

P

(17)

Under these conditions we
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The mode has an oscillotion frequency'that
depends on the streaming veloecity. At 0 :: 03 the growth
rﬁte rate vanishes, and,at'?:7vl the thrgshéld streaming
veloeity tends to fnfinity. The obiique modes are theréw

fore most favoured.

Both electron and proton stredming can
excite these waves but the threshold velocity ts lower and

the growth rates higher in the case of protons.

2.4, MICROPULSATIONS

The above analysis‘éhows that even small
fluxes of particles flowing at Llow beZocity aZong the field
linbs in the anigotropic maqnetosnherLc vZasma can excite
electromagnetic waves. Thus the roZe of the substorm

particles zssociated with geomagnetic micropulsations must be
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carefully considered. Unlike the usual mirror instability
which is purely growing and cannot modulate the geomagnetic

3

field, the magnetic field fluctuations of these waves when

exotted will modulate the gecmagnetic field at a frequency

which is a function of the streaming velocity.

The density fluctuations tnduced will be
out of phase with the magnetic field fluctuations by a
faetor of T . This and the associated existence of
proton fluxes ( 134 keV) have been observed (Brown et al
1968). The mechanism suggested here may act along with

the drift mirror imstability suqgested by Hasegawas, or by
ttself for a smaller degree of anisotrophy when the mirror
instability <s not operative. Detailed correlation measure-
ments of mieronulsations and associated particle fluxes,
their flow welocity and energy,and the background plasma
antsotropy are required before the validity of the

theory can be established.
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PART II : WAVE PARTICLE EFFECTS IN

TURBULENT PLASMA
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INTRODUCTION

The iinearised Viasov tﬁeory used in Part I

 offers a precise description of a qutescent plasma. For a
turbulent plasma, the theory suffers from serious limita-
tions. Firstly, the linearization procedure becomes invalid

with the growth of fields that, lead to the onset of turbu-

lence. Secondly, the description im terms of smoothed or

averaged quantities cannot take tnto account the effects

of particle disereteness, correlatibns, and fluctuations

that characterize the turbulent plasma.

Let us briefly examine heve the ascumptions
used in the Vliasov description, and where they break down.

Due to Debye screening, a charged particle is assumed to

Q
—y

move in a potential due to the smoothed, averaged fields
> g .

NS
V)

all the other particles. The trajectory of the particle
then completely determined by the initial conditions o
the invariant surfaces on which it ts constrained to move.
It 48 éevident that even in a quiescent plasma, over
distances comparable to the Debye distance, the particie is
subject to random fluctuations about these smoothed fields.
For turbulent plasmas this ts true over distances mieh
larger than Ldkd'" These random pverturbations in the
potential result in the breaking of the tnvaritant surfoces;

leading to Kolmogorov-Arnold-Moser diffusion about tham.



g
{Cbnsequentlyﬁ instead of the shafﬁly'definej trajectory,
k@'number of trajectories are now nosgible for different’
’rédlizations of the microscopiec turbulent fields. A stati-
 stical average over the. fluctuations leads to an average
diffused trajectory. This forms the basis of the Perturbed.
Orbit Theory of Dupree and Weinstock which we shall be

using. It is a Renormalized Propagator Theory, which
corvrectly takes into account the coherent part of the contri-
button of all the other particles to the test particle
trajeetory or propagator. In this manner, correlations are
taken into aceount, without explicitly including collisional

effects.

As in the linear theory, a consistent descri-
piion of the turbmlent plasma has been built up in terms of
the perturbed orbit. In particular, the di:lectric rasponse
i8 altered. Turbulent diffusion was shown to broaden the
wave~particle resonance, which stabilizes the grow%h of

the fluctuations.

In an alternative approach to Vliasov theory,
based on the Klimontovich deseription in which cll
particle discreteness e¢ffects are tneluded, 1t was shown
by Cook and Taylor (1973) that the altered dielectric
response in a turbuleﬁt plasma can self-consistently quanch
the growth of the fluctuations. The fluctuations then

exist in a dynamically stable or "stationary” state.



_eoles applicable to the turbulent state, Cook and Taylor
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 purther, using a sunerposition principle of dressed parti-

 obtained a formal empression for the spectrum of fluctua-

tions of the background turbulence. This was not done in

the original theory of Dunree and Weinstock, which was in

this sense incomplete.

We peexamine in this part, some of the
aspects of the turbulence theorieé, with a view towards
extending their region of applicability. The wave auto-
cérrelation time is assumed to be short compared to the
partiele trapping time, so that the wave particZe inter-
action {s diffusive. In addition to spatial di ffusion,
velocity space diffuston coefficients are obtained in a
magnetic field, both with and without the guiding centre
approximation. Tha effect of low frequencv‘turbulent
electromagnetic waves on the diffusion coefficient is

also obtained (Chapter 3).

In Chapter 3, the coupling between the

components of the guiding-centre diffusion coeffictents

in the perturbed orbit had been neglected. In Chapter 4,

we numerically evaluate the complete perturbed orbit,
and use an iteration scheme to obtain self-consistent

values of the diffusiton coefficient,
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The influence of orbit perturbation on the
' ?stma dielectric function is examined in Chapter 5. The
nonlinear dispersion rélatﬂon for Zon acoustic waves 18
solved. In partivular, we find that veloeity space

diffuston does not contribute to resonance broadening.

The test particle diffusion discussed above
28 not observable in the absence of gradiéntsn One of the
important observables of the tuvbulent plasma is the
fluetuation spectrum. In Chapter 6, we use the super-
position principle of dressed particles to calculate,
analytically,the ton acoustic spectrum in a magnetic field.
This is compared to theoretical and exnerimental spectra

and computer simulations.

In Chapter 7, we obtain the spectrum of
higher frequency ( & =~ -2 ) electrostatic turbulence,
and low frequency electromagnetic turbulencé in a magnetic
field. The vesults and eonclusions are summarised in the

last section.
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CHAPTER 3

PARTICLE DIFFUSION IN A TURBULENT BACKGROUND -

In this Chapter we present a statistical

approach(l) to deal with particle motion in a turbulent

plasma with a suprathermal level of fluctuations. It

begins with calculating the mean diffused trajectory or.

'perturbed orbit', which is identical to the characteristic

function of the random walk executed by the particle.in,

the turbulent background. The diffusion coefficients of

the partieles qre defined in terms of the perturbed orbit,

whieh ©s in turn a function of the diffusion., The formu-

lation i8 therefore self-constistent,
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In the foZZowing‘section we rederive the

(1) (2))

spéfiql diffusion coefficient (Dupree -~ Weinstoek
én the gutding centre approzimation. We then obtain the
uéiocity space diffusion coefficient, by heglectﬁng the
 fcoupZing terms in the perturbed orbit. In Sections 2 and 3
‘;we extend the formalism to the case of higher frequency

¢ ~ L) electrostatic waves, and to electromagnetic

_waves.

5.1. EBLECTROSTATIC FLUCTUATIONS ( w << Ll

In the absence of fluctuations in the
electric field E , the (E¥B) velocity V, of the guiding
centre 1s an invaritant of the motion. The particle moves
_on surfaces of constant vy in phase space. The accele-
ration parallel to B 1is also constant. Small fluctuations
in the Hamiltonian of the pdrticles, ariging from the back~
ground turbulence, break the invariant surfaces in accord-
ance with the KAM theory(g)s whieh allows for the diffusion
of particles in a certain region'about the invariant surface.

The components of the diffusion tensor are

"{ AN oy P Y 2
the spatial diffusion iy, 3~£‘&,VL§NN} vo(LEn)) b

L

aeross the magnetic field B,s the veloeity space diffusion

ffﬂ: - g { \A,(f')kﬂjifl*t);>éit in‘the direction of B,

o A e ’_ 7 Y -

and a cross diffusion term ﬁ) — f f\fl¥ﬁ>\ﬁ,(L*‘t{>CH~
i N T "

In general, the three diffusion procésses proceed on
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Jifferent time scales; the shortest time scale defining

_the dominant diffusion process.

The evaluation of the time correlation
*requires the knowledge of the exact particle propagator.
Tn the Duprce-Weinstock theory, this is replaced by a
statistically averaged propagator or nerturbed orbit

. In terms of this, the diffusion

coefficient is

_‘_—:’ ; vi - ",/" A
D = |dt <X( L)/ '\\7«"*?.!}
J
TOF o TkaR(T b
= \ x &H /r \/ \(\, _/l e , ptb)“
/ ; . \ N/ fo ! s
T o (3.1.1)
where /\R(t) = R(T + t) - R(T ) is a section of the

particle orbit, and <s independent of 7 under stationary
conditions. The correlations between Fourier components

at different wave number (the incoherent contribution) have

been neglected.

Replacing X, X' in Eq.(3.1.1) by v, = .

T

e Ei,/lﬁc and o, = € g,rw, we obtain the components

iy

of D .
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L o

tions and the orbit function. exp{ﬁia)t ﬂik,¢§xR(t)7 are

o

uncorrelated, so that the ensemble average over their

product may be written as the product

<!EK12'\ <f emp!}iLat ~ Tk A> R(t)iny of the averages.

/

’ /
This assumption, made in several places, is not explieitly
stated hereafter. < EKi2>5 represants the electric

field fluctuation spectrum of the turbulent fluctuations

whieh 18 undewermined.

* The factor 3 has been introduced to keep the perturbed
orbit in the same form as that used by Dupree and
Weinstock.

Note: j& represents veloeity space diffusiong D
spatial diffusion; and W), diffusion in mixed

veloeity and configuration space.
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‘The perturbed orbit is the characteristic

0

exp |

0,

s
v‘/
\

ke AR(E)T

P

[ AR(E) S

of the step stze

#

-

ete.)

the perturbed orbit for guiding centre diffusion is

LR(E)
. the random walk emecuted.by the diffusing particle. The
aracteristic function can, in general, be expanded in

,ébmsypf~the cumulants of the distribution of the varitable

(3.1.3)

The cumulants K, can be written in terms of the moments

\/'.{}\ R (t )\/\3' 9 K2 =

Retaining cumulants upto gecond order only,

(2)
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Thafhigher order cumulants vanish tdentically when the
distribution is Gaussian.

Substituting Eq.(3.1.4) in Eq.(3.1.2) we
fgét a set of coupled equations for the diffusion coeffi-

etents,

2. \ .
y - . \ — by \
Z J | — /._...(:. \ // ;i !’._ { } {)
/ SR IR
|IA ‘."\‘ 4 \ A} ey
3 ,.. f/
le
W%— e £ R — \
oo T ORELN i oo D
N = Ve e 4
./._-4.._1 \ ! f Vi .
R N o (3.1.5)
! St N o e ¢
\ f '_'__‘v \ 3
. : /: x\ B i ;( }/ i
, k [
where
i.': A . N ‘ ~ 'Z
- [ i o ! Cv T kLT
[ - N B TR T T leﬁhuﬂ
: i L
- / )
f P L
' T
2 Y (3.1,6)

Tt follows that the evaluation of any of the
components of D requires a knowledge of all the other
 'components unless some of them can be regarded as dominant
and the others neglected. We examine below the relative

‘importanae of each term in the orbit function Eq.(3.1.6).
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The diffusion coefficients for the j
gpecies satisfy an ordering relation
N L . YV AT
g - o . 4 .3 e R Y e e § ).
Lo Y Foony T = Do & Tl fjglp'~ji,t
- T ) .
o -ty !
J
(3.1.7)

where t is some large multiple of the correlation time

of the waves ( 7 = k DLk | N © k:~ﬂE::kn

o= k¢ ﬂ e J. At T, - jl.i ; the ratio,is

. ; ' i I T S N DL
P r N - L oI Coy 00 Ty ‘{') S IR
KA "_;‘,‘l; FNTiN L

&

iZeZ diffustion

For ;Zecfslﬂonsf‘s therefore, the effect of pd;a
dominates for almost all propagation angles sinca

Al ) 2 W(me/mi)ml. For ions, parallel diffusion
dominates for prépagation angles less than 45° on either
~side of B, For larger anglzs perpendicular diffusion is
dominant on this time scale. After a sufficiently long

time, veloeity diffusion will ultimately dominate over

the others.

Each diffusion coefficitent is now calculated
approximately, in the region in which it is dominant. The

eross diffusion D cannot be calculated in this 1limit.

Ea

The complete orbit integral is treated in Chapter 2,

3.1.a) Turbulent Diffusion D, across B

Neglecting the coupling terms in the orbit

tntegral, the spatial diffusion s
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(3.1.8)

In the limit of D —> O‘thereeare no
orbit perturbation effects and Eq.(3.1.8) reduces to the

quasilinear diffusion

" (341.9)

D , 2N - . Q
quastlinear = Eo > ;;%u%”§<uwxf

which is elassical ( ‘Jl/Bg)ﬁ and strongly peaked at the

resonant velocity.

In the limit of strong diffusion

»kiﬁ; % }m;—~f<uv“f when orbit perturbation effects

™ {pgg SR R Fs ‘
Tk - (3.1.10)

P I S TR '
where A= T is the turbulent potentiol.

The diffusion is Bohm like (~ 1/B), and in contrast to
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qunswlmnear diffusion, is independent of the particle
uelonztu, In other words, the presence of orbit diffusion
broadens the sharp quasilinear resonance (Eq. &.1.8) and

_eompletely smears it out for high levels of turbulence.

;satzsfﬁed for the bulk of the electron distribution {f

g *;-ﬁ’kigﬁ;_ fo:0, s and for the bulk of the

oy

ton distribution if Py > IR ey JRS e

This means that for spatial diffusion, ton orbit perturba-
tion effects are important at much lower levels of electric
fluctuation than electron orbit perturbation effects, even

though the diffusion coeffictent D, <8 the same for

both species.

13 1.b) Veloeity Space Diffusion - D

S e e < e o ez v e R o B % A7 e e T 23 G S e e S g 258 1

The parellel veloecity space diffusion co-

efficient is

. ! \ i . -
+ e \ / _ P
rl‘\ - <t i {‘ . ! wo s { A N X i by - }m\,@“ \]\’
o ;o Loy e )
! # g 200 '\ / ¢ -
Lk : 5 2T
[ { ¥ ;, - "“'::; '} o J'
.o e R g (3.1.11)

1f coupling between the ecomnonents of the diffusion tensor

is neglected.
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‘Tke_time.integratioh of Eq.(3.1.11) gives

£ e N LT sy
b= 28 0 S |
l‘ Yy / , ;‘ Y \ f‘ /f
) .
r" I "-';i
7'::. -AJ ' (2381
5 I( ( 3 ° 1 a 1 L4
- _ Vs \ g Lo — Ly
where . 3 (>} = ( Ox } 5 R S R

/

18 Hardy's generalizatfon of the Airy integra2(4).

7 o

Resonant particles with Vv, mf‘*fk“; contri-
bute to the redl vart of ;é/ ., and exchange energy
irreversitbly with the waves. The imaginary part of
arises from reversible ensrgy exchange with the waves,
which does not give rise to real diffusion. The Imaginaxvy
part of is therefore neglected. It can be seen from the
properties of the Eis funetion fhat non—resonant particles
contribute mainly to the imaginary part of , which mzans

that there is no diffusion assoctated with them.

For particles close to resonance,

!

i o

o w—e ) ] e S T e P
<ok i) ,’\” "H/'“ / {b G, A . B ) [ / can be
(4) o .
expanded in powers of ¢ to give
) ot '
L * ] 0, a
f FAR * e S
" R =L Ny
[ / ' i - /
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For particles very close to resonance, y” becomes inde-
pendent of the particle veloeity. Assuming that the wave
spectrum 18 peaked at k = kTg we may write for these

particles,

X 276 R, oty
. e (3.1.14)

~—

Tt

where Unp i8 a measure of the turbulent veloecity,

- Iy

PR ™| e ) " . (;';,zk P /

Substituting the zero order value of ﬁ”

given by Eq.(3.1.14) in Eq.(3.1.13) we get

+ ( VI R N A U }P b 0.2 Ve =N R
;:';” T B 6 < n, Tt VR / [ g
; v .

(3.1.15)

where VPT 18 the wave phase veloetty at k = kTg and

[, =] << Wy,

The diffusion coeffietent is a function of
the partiele velocity except for particles very close to
resonance or for very high values of D, when the resonant

nature of the diffusion is completely smeared out.

The secaling of the nonlinear diffusion given

T

by‘Eq.(5,1914) 18 diffevent from quastlinear diffusion which

scales as k,,guT4 .
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We conclude from this section that:

 the smaller masé of the electron causes it to
diffuse more rapidly in veloeity space than the

ions

spatial diffusion of electrons is negligible

except at large angles to B.

the larger spread in the electron thermal veloelty
requires a level of turbulénce higher by a factor

(mi/me)z/g for bulk diffusion of electrons

on short time scales, spatial diffusion of ions

18 more important tham veloeity spdce diffusion

the resonant charvacter of the diffusion ig smeared
out at high turbulence levels. This feature is of
particular importance <n the caleulation of the

spectrum (Chapter 6).

the scaling laws are different for non~linear and

quastilinear diffusion.

- N 3 R . 2 4

@nonlinear Ry U * ébquczsilinea:ﬁ kT Up

D ] PR : D ‘g —~ 2
nonlinear 5 " quasilinear —5
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2. ELECTROSTATIC FLUCTUATIONS ( & ~ £);)

7411 now we have considered only low
ff?equency fluctuations and guiding centre diffusion. We
yqﬁ aonsider the motion of charged particles in a turbu-
i;nt background where the wave frequeﬁay 18 higher and

the gutding centre approximation breaks down.

In a Cartesian frame, the helical motion of

the particles is given by

\/X . - 2 | + Ol Vo
']\: K - N \y ~
. r
Ve oo = ko (3.2.1)
o :
] ) " ;&(
In a rotating reference frame with v, = &4‘+tA@ v e

 the motion in (x,y) is deocourled, to give the equations

of motion

Ats - - ’ - (3.2.2)

= Vg =g
2 e (3.2.3)

Fluctuations in the electric field cause the

particles to diffuse in veloeity space. The dﬁffuston co~

FInY

efficient D 1is given by the correlations j g V\/ “ dt
s N /

In obtaining the correlations, the gyro motion due to the
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magnetic field alone must be separated out, This is given

y'thg.solutions &  of the homogenedus part of

Let the solution of Eq.(3.2.2) be

vV, = ~V% (t) &'t T, Substituting in (3.2.2) we get
. _ .
5‘/ - - '_~L__ v!';'_ . £
B iy - (3.2.4)
. o =

This gives the acceleration of the particles due to the

fields E, along the gyro path of the particle in the field

»

Bo' By taking the correlation of the acceleration V , we

obtain the diffusion tensor,

AN i
+ ,
e

= / . £
i I I
N 41 .
4 @ + - b
£ -4
f\‘ ,,/ k .

'{ 4 - ( 3 . 2 ° 5 )
oy :{?\ v,*(\ )
7 '. T Zd
o G , R |
- N L / S NS A
where gﬁlF - joe <\ iﬁ (5-) Vi, [ (4 LQ;> s

and is independent of C - under stationary conditions.
Neglecting the incoherent contribution (arising from

correlations between different Fourier modes), we have
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(3.2.6)

The expansion of the perturbed orbit in a magnetic field

Bs retaining cumulants unto second order is

- i
/ ) : 3 E
Ve | e g | - L kAR, )
\‘g".’ L*‘ AK(F}J/ T oeup | T3 7," 0y \i/
.,+..'.,-
co T T TR
TR N =0 WU B | S 1
- ke R ok 2(3.2.7)
+ T \ p© .
where k, = k e -~ s and L R (t) Ls the unperturbed
trajectory.

Substituting for ﬂ‘RO+ , we get

. ~ vy , ;
£ »szv;ge,x,AM- .U_> = wxp‘l‘
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Using the expansion, e [ box LK = v

“and averaging over the initial nhase ¥ we get
e R
—- s e e T T RMYT ‘\/_,‘\
<’t xpl-ck ARGy = VY N e R §
1 ..w/ y 4| & /
| /] £ A
o L
¥} e [ A Sty 2]
o N L (-t ) ‘t:‘
xY 7/\ "“’ t 2 - P
&wvl—p(k%%.+ﬁﬁkﬁl*]&uﬁ kb “ra
(3.2.9)

1]

The characteristic function given by Eq.(3.2.9) is substi-~
tuted in Eq.(3.2.6) and averaged over I»  to obtain the
components of the diffusion tensor D . The off-diagonal

elements contain 5 dependent terms which vanish on

3

averaging over the phase ¥ . In the (+, z) representa-

Lr

tion, D 1is diagonal and is given by
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where
o Y “ |
i | . L i - s ’\_,
Lok =k, w‘xxf“‘x FRydlyy Ry FROWS
T By ky oy g
- x ;
- %'! ko4 , U
A LU SR S R
vl . (3.2.11)

The equations (3.2.10), are a set of coupled self consistent
equations for D, which we have obtained by takinmg the diffusive
spread of the unperturbed trajectory due to the turbulent

fluctuations into account. In the next section we integrate
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'buer the‘perturbed orbit, and obtain the components of b))

by neglécting the coupling terms in the orbit as before.

3.2.a) Integration gggg the Perturbed Orbit

- = e v W D o VIR T e W) IR e CIT DS ASD R

The time integration of Eq. (3.2.10) gives

l in o <, 2 — /
- . L - f
\ L 1 ..J ¥y /,.’l
Y‘\ ’/"
— i- - Y ~«
U S N L )
, j‘m_mv'; g Rl S ./m
vk oKkge s 3k gk 3T
(3.2.12)

(4)

where E. (X ) is the generalized Airy Hardy function

7
5

~and the argument of the Bessel function has been suppressed.

For particles close to resonance, or for strong diffusion

when o << 1, Eis ( « ) can be expanded to give

. P

. oy

v : 207 y. [ (= kv, —nil)

To- AT B T P Fr i) 2 . ey INFERT y
g - e s [ - .+

. H — _,1 . ! : e A ‘;.-a‘
20k B vy B ;}/g[ {;/7)£ Z}Miﬁzj(kuﬁgkjvﬁ

(3,.2.13)
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In the limit of very strong diffusion when

3(k,D7k)1/3 ;:>$ i - kv for all the particles,

Efg( ) = 2(3f§wfﬂ(2/3)3.and‘is indepandent of the
particle veloecity. The resonant nature of the diffusion
28 smeared out in the limit of very strong fluetuations.
In this limit we obtain the components of the diffusion

‘coefficient by neglecting the coupling terms. Defining

xﬁ, = (ﬁ++ +.D__)/4, we have

h/ “’ﬁ = o |/Z - .
- iz L : KA S SN
G e )“\: l "’I—) r‘j [ / / ;'—":;' L 1 e/
) - "x“—“"‘ I‘I' “: ! / 2 *
3B Tez) L4
, = oon
JF 1)
AN - ¢ ;,\,.*" /
m /4,’-‘-;'
o H )T T kot 5
/i - B SR B FIG R \ ] i ’{ - e“\»
oh B — N - U e ; \ ST !
Do) = ) So AP
£ = 7 "‘{' R ;o) L 4
E 1 b - -1
- R -

(3.2.14)

Not all the harmonics n in the summation need be consi~

dered. The higher harmonics which do not satisfy the

< e ¢'-—‘ —N . './'.-'
condition ! ui«rknuum;xglf S A0k J},A g wtll not
. . ) . <5 2

contribute to the diffusion. Since A Jn = 1,
Eq.(3.2,14) can be simplified to give

) [ X /.“/; MR 4,

t | - i\ r\'(“ﬁ : /

“ o i “ / B ,:'b b
+ - N (3.2.15)
‘[ i 4 AN Yy P / !
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"ff we further assume the energy to be peaked around k = kg ,

S

. = ;. & iy 2 G e . | .
80 that :_)_ K0T el AP q.;# = e . ax ‘
v X ) : W - i

and take Uy = (=df, " to be a measure of the turbulent

veloeity of the particle, we may write

4 By
x} i o .
1y To,n (3.2. 18

with different constants of proportionality along and

across B .
0

P e

3.2.b) Diffusion_Coefficient in_the Quasilinear Limit

For low values of the electric field
fluctuations, we should be able to vecover the quastilinear
diffusion coefficient by neglecting the ordit perturbation

- in Eq.(3.2.10).

[f P = o
N s s e oo ! - v
. L v T -
.-/ :‘ ‘". N oy ! y \ \‘ A § N\ 1 ‘\"' < it s
I ST W A A LSS R B g :
/ VR RS T H ) [ /u Y e, it /o
_ : — i e

X ’: oy ?/' / .o ! s

: ' Lt e [ i 1 £ R !
\ I I iy ; i o

Aori )

)y . quastilinear



(3.2.17)

The expression for D <n Eq.(3.2.17)

differs from the diffusion coefficient obtained by

’Ichimaru(S) using Fokker-Planck theory, which ig8 diagonal

i

b =D, .

in the Cartesian frame of reference wttk'pxx::“'yyf” ),

18 diagonal in the rvotating system

(+, =. ) with D = (D, +D_J)/4 = (D . * Dyy)/Z,

In Eq. (3.2.17), b

The off diagonal elements of D in the Cartesian frahé

and J_ J A The
n

contain terms of the type J, J, 4 n+l’

quasilinear diffusion coefficient ts the lowest order
approximation of the nonlinear diffusion coefficient we

have obtained (Eq. (3.2.12)).
Tt is important to note that the scaling
of the quasilinear diffusion, which we write approximctaly

as

&
Lt e - 1
A \ , o
SN - '\ ; boh -

D « v \ -,
quastilinear o/

(3.2.18)

is quite different from the scaling of the nonlinear

diffusion
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(3.2.19)

This feature should be of considerable importance in
problems of plasma confinement,since the scaling of particle
and energy transport determine the confinement time of the

nlasma.
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3.2.¢) Spatial Diffusion _in Electrostatic Turbulence

( Ly =~ L1 )

To obtain the spatial diffusion coefficient D,

we consider the correlation of particle velocities along the

perturbed orbit. From Eq.(3.2.4)

; iy
Py / T — Ve
’*-\Vk“ﬂ‘ - \'.t( L2 i
RV -
L e F
y —-—-t’ S
Y = _ !" .
e — C! { .__ | [
rm et
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T A Lk it
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-
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rhe spatial diffusion is D = }}'

]

: At R

diagonal ecomponents of D vanish on averaging over the
: Lo

phase ¢ , so that D <s diagonal. Incorporating

jspatial diffusion in the orbit term, we obtain,

i =
M‘) ! :. o f {‘4 -a- {,,.

i
1B , iT 179 \

i
j
f j
A/ N
O —

53?Ek‘s\2> U S
——;—~~%~-;-—~ Cx l‘) % ( (‘LO - k Wwe o ﬂ-;)t -k.D. ktj
K* L

(3.2.24)

Only in the low frequency Llimit, (U << L2, when D,, ard
D__ become independent of (v ,do they represent triu.

spatial diffusion. Combining them to give D = (D, +* n__)/4

and integrating over t  we have
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(3.2.22)

where the coupling term in the orbit has been neglected.

From Eq.(3.2.22) in the limit of small and
large D, , we recover the quasilinear diffusion coeffi-

ctents.

e , N
N) o i i \\\ /‘ ' f" (I/ . "\
| 0 . U v R P I ;
L quasilinear g // VARG ;
5 . £ = /f — h ! ./
N St (3,2.23)

which agrees with Matsuda(g)ﬁ and
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which scales like Bohm diffusion and agrees with the

guiding centre diffusion'obfained in Seetion 3.1.

3.3, ELECTROMAGNETICVFLUCTUATIONS+ oy <

In this section we consider the motion of
 the guiding centre of a test particle in a background of

electromagnetic turbulence and an external magnetic field.

(7)

Following Sehmidt , the equations of motion are

i P . — i :
W ‘ R -
——— i - (. - v——— ’( ! P ‘ d?
(_‘i-t— / - - -I' ,}....D.I ( l‘i”y ) L) I’ (3. 30 1)
Cale Y ; y
N / “ ¥y ," . — “
N —— N e “:3 2 |
- o oox VBT
A¥ P \ -t (A4 i : ’
tnf Wi L S |2 - |
o pe b 2o
N s d
POL L Bk W | o(3,3.2)
eRT L -
- . ¢ 20 - ﬁ.y 5
where W = veloeity of the gutding centre; Wp = —55—
. N — — B
the electric dpift, Wo = Wp + W s the zeroth order
: 2.2
guiding centre motion, and }imi: é 3~§4§ 18 the magnetic

moment of the particle.

MKS units have been used in this section.
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The two Low frequency eZectromagnétic modes
upported by a plasma in an external magnetic field are the
vaen and magnetosonic waves. We now examine whether
ofbit pertuvrbation éffécts are éignificant for these modes.
Aévseen-in Section 3,1, the perturbed orbit terms are of the
orm exp!ju k,Duk,tn'E. In the case of pure Alfven waves,
ihe guiding centre motion ig in a direction perpendicular

to k. (Fig.3.1). The diffusion coefficient, therefore,

ﬁas no components in the direction of k. Consequently,

the perturbed orbit contribution Kk.D.k. vanishes for

purely transverse Alfven waves.

In the magnetosonic wave geometry, the wave

-

vector k is largely in the plane perpendicular to B, s
,ith k,>> k, . The magnetic perturbation B, s
dlmost in the direction of Bo s and E, is perpendicules~

to B, as shown in Fig.3.2. It i<s assumed that B, is much

less than the statie field B .

From Eqs. (3.3.1), we have

i
™

. i | .o T T
Y pUgs L 7 e [EAY i / ‘,:{’ B T !

i

PP ! - - . !
, R T Wi / _ i
i v L Az

o

where W, Ts the veloeity parallel to the total field B

only terms linear in the turbulent field quanti-



Geometry of the Transverse Alfven wave propagating
aleng the external magnetic field. S




wave.

Geometry of the magnetosonic
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Eqs. (3.3.3) and (3.3.4) define the guiding centre

of a particle <in fluctuating electromagnetic fields.
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(3.3.3)

(3.3.4)

motion

The

ecorrelations between wi' and W, define the components
of the diffusion tensor.
1),,yf) - é \ = //j:‘ ‘” oo \?! }“!/g L
. X \
/ vy < \\ < v (3.3.5)
Kk
voor . \ vy
D,00= % 1 £ e B Dkl /e g
L £y NI e Tk - T ek
Lo MR i [-f’m\ S s
i '1::'"'w - \ .
D)= =,/ | F ;2\ |
RN R A (3.3.7)
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where I 1is the perturbed orbit given by Eq.(3.1.6).
The perturbed orbit can be integrated as in See, 3.1 to

obtain the diffusion in turbulent electromagnetic fields.

Unlike the electrostatic case, k = 1s

very small. This makes velocity space diffusion much

smaller in the case of electromagnetic turbulence than
for a comparable level of electrostatic turbulence. Even
though magnetic fluctuations do not contribute to spatial
diffustion to this order of approzimation, spatial diffu-
ston 1s high because the transverse nature of FE causes

the E X B drift to lie along Kk .



(1)
(2)

(3)

- (4)

(5)

(6)

(7)
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CHAPTER 4

CALCULATION OF THE PERTURBED ORBIT

The perturbed orbit Integral for the

tre motion of a partiecle, defined by*

- / C,
bl >
— ](:“ U .Ji ” t J

(4.1)

65

*

A factor of 1/3 has been absorbed in the definition of
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 hasebeen~evaZuated in Chapter 3 by truncating the expre-
gsion for the ovbit to retain onZy a single component of
the di ffusion tensonr. Thislcannot be justified under the
, mqgt general conditions. The components of D are non-—
'Zinearly coupled through the perturbed orbit, and intere-
sting éffects could be lost by neglecting these coupling
 -terms. AZthoughvthe analytic integration of Eq.(4.1) is
not possible if all the terms of D are retained, the
'*integfal can be expressed as a convolution (Sgc, 4,1).
Undér certain limiting conditions, the convolution integral
ean be caleulated to successive orders iIn an expansion

parameter (Sec. 4.2).

Accurate numerical estimates of I are also
'difficult to obtain by the usual methods of quadrature
because of the oseillating nature of the infinite time
integration. By fitting the integrand to a Chebyshev
series, a fast and accurate numerical code is developed

to obtain I for an arbitrary set of diffusion coeffi-

etents (Sec. 4.3).

Sinece D and I are related self-
consistently, there exists the possibility of setiing up
a n@merical iterative scheme to obtain the diffusion
coefficients., For an assumed svectral profile, the
tterative scheme used to evaluate the diffusion satisfies

both the ecriterion of stability, and of rapid convergence



to the self consistent values of D, starting from some

initial estimate. (See. 4.4).

4.1. THE PERTURBED ORBIT AS A CONVOLUTION INTEGRAL

The perturbed orbit can be written as the

Fourier transform of f(tlgl(t), Z.e.

[0
Tﬂ ( o N o -
'?:. - = Qkfi [(u*rnWMt %(t>ﬂ/{>UL
VaTr VT Pos
J_o L
where

/ - TN “ ’tl
3(‘() = c;xl_-wL,,; <o !
~ 1 NE -1 i} —-{
and
hW(t) = | A
— O f 20
(4.2)
This is eaxpressed as the convolution
I L Flumkew) o Gle-Ko)
I CT R o

67
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here F and G are the Fourier transforins of f(t)

gﬁd g(t),bnamely,

;- ' L3 |
r LLU“ ku\’l’) - ‘/‘:‘_"_ C(t {j;x P L —l’ n\fn> t- -k wt g\l\ \j\ L :
V21 : _
© (¢.4)
G -
(_]‘ &U\)‘ }\h\/u> s dt E'XP ( ((\) “H\/”){, : "U’) s
o varm
2,
— B S
i . ‘ W — Ky Ve )
- _W'._,_ﬂ_. exp| - ( K ‘V'> |
VZQ} *uﬁ) qj\L \H JH J

in
(4.5)

Sinece Eq.(4.1) is defined only for t = U,
the corresponding transform emisﬁs_only for (“ﬁ“*K“WC)>‘O-

Physically this implies that the perturbed orbit is de fined
only for those particles that gaiﬁ energy from the turbulent

background.

The transform F (Eq.4.4) can be expressed

in terms of the Lommel function S (v) as
0, 1/3

_ CED —((w-kyy ’
E(w-bwa)= ‘t,_,_,,._ﬂ__._,J N (v
I 2E | (kEd) | o
(4,7)

where
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- '“;’Mf‘ i/
| ' (4.8)
and 50
\ o ~ z ” 2.3 1 L
Sy (0= T | enp [Ldrt-at e
e = (4.9)
8
with v = 2(2/3a)°% (Ref. 1, Pg. 76).
Combining Eqs. (4.3), (4.5) and (4.7) we
obtain
' C? 2 r 2 =
= «-lw«-—mw-w cu X e, ‘/.7(’\) expl ! |
. L el SN ” B ’ LTy
\V/jn- (1' l() KIIMp) /4.,} ’: - 4‘”\1!-.“1’.1“‘)
- 2 AN ERVEIV
:J_l"l by "‘(‘“ X ’j (4.10)
where
T 2 " j 2
N = Z hlr&ag((mdknw'u> ) 2

2, Z 4 s
2 (K L, )/

or equivalently,




70

“€X[Q : B
ol 3
. P! \LI’\“ iL",ﬂ;;
(4.11)
- 2 3
N o= U Lu_iap“‘“ | 2

2 (ki )"

LIMITING VALUES OF THE PERTURBED ORBIT

4.2,

The values of the Lommel function are
tabulated or known in terms of other functions such as the
Airy, Bessel and Anger functions. These expresaibnsra?e
listed in Appendixz I, along with series and asymptatic
expansions which are used in this section. |

25,01/

4. 2a. Strong Spaticl Diffusion, Kf D >> 3(ky, )

B AT i o iaiw S T ek Kk R 3% M3 KD LR PERS e vaed b £ ARR AITH AN DS L3 G o) M e A [ ST €N ST WD ETD RN e S ST MW SRS T

As discussed in Chapter 3, this condition is
eastly satisfied for Ztons. In the presence of strong
spatial diffusion, we can use an asymptotic expansion for

S (V). Using equation (AI.8), for V >> 1, we have

0,1/3
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\,'

Substituting in Eq.(4.10),

20
1B N ’ ‘ - [Ll -
! PR S g €x Pl — [
v (" }’\Lk“[ﬁ"J ) | TRkl
| —~ o0
. ! G t"‘\nz \J\j“
x / ~ o - T
) )(\' : DL . (\M*i’«n\h," (J.) ‘7 kL D_L“ i.OJ\)——lanu—l.L {

(4.12)

(\(/'3 - ‘(«):Vi;) -+ { l<il 'DJ_~ _
<_4’k¢l1n EDLH)Vl

VAN

where

H

Reecalling that the diffusion coefficients follow an ordering
relation, Eq.(3.1.7), the condition KﬁD > (K“ %Q_ )1/3
implies [%| >> 1. Using the asymptotic eapansion of the

2 function in Eq.(4.12), we have
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—

'Gliﬁil}u

(4.13)

The rveal part of the perturbed orbit contributes to particle.
diffusion, and the contribution is maximum for resonant
particles with Vi ‘ﬂﬁ(ﬁ/ku. The imaginary part corresponds
to reversible emnergy exchange between the particles and the

waves and does not contribute to particle diffusion.

From Eq.(4.13), ve infer that when spatial
diffuston dominates,only resonance broadening appears in the
lowest order of approximation. The velocity space diffu-
sion Ja', responsible for changes in fc(v), ceaurs only in
a higher order term. This provides some justification for
neglecting changes in the distribution function in the
stationary turbulent state achieved through spatial diffu-
ston. Moreover, Eq.(4.13) provides a deseription for thg
behaviour of particles both near and far from resonance. I
is epproximately constant for all particles with veZocf%ies
lying within the broadened resonance t.e. with (LD“‘ka&>

<< K, D . For sufficiently large D, T

L
becomes insensitive to the details of f,(v) and s
approximately constant for all the particles.  In other

words the resonant character of I arising from (M““HAW)

18 smeared out by strong spatial diffusion.
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The electron is eastly aceelerated along ‘B
because of <ts light mass. Veloeity space diffusion
jdlmost invariably dominates over spatial diffusion for

_eleectrons.

We exgmine first the orbit for particles
] . A1y
elose to resonance, satisfying Iuy—&uv”] <3;\3(kfush)k
In Eq. (4.10), we use the smgll avrgument limit of Sé, 1/3(v)

(Eq.(AT.3))

(4.14)

to obtain
- Y(H5> kfiaf;(w-k“w,]
f(%) A

(4,15)
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/s seen from Eq. (4. 15) the integral over the perturbed
orbit in the presence oF stronq velocity space dtffuston:ﬁ
: S =
is quite distinct from the resonant response ((Qu—k”vu)

g k4

' / .. s ! .
or the broadened response ( M)“;M;W,“Iﬂ\ obtained for-

(2)

spatial diffusion. The practice of replacing the

veloocity space diffusion term in the orbit by a broadened
. 5 1/3"

resonance of the type Cju)-. Kooy t ¢ (RJ1@“> ‘J

therefore incorrect.

, For non—-pesonant electrons satisfying
N n B '
(w-Kyvi) > 3 (¢Qf¢b,l>’5 , we recover Eq.(4.13)
showing that the form of I is the same for non-resonant
particles regardless of whether spatial diffusion dominates

over veloeity space diffusion or vice wversa.
To summarise, the results of this section
are:

() for KD, >5( Al JJu\ , (2.g. for ions), for

7

- G.kJ D”
" 2

e |
) (e =R+ k )&) ! (1o Fuve K Do)
[EVEESN AN nVy -t \i I' — .

(¢4,16a)

PR 4
(1) for (kn JhL) >y ’gf]}L , (e.g. for electrons),

: . . N
e ( o - }/\ n Vi ) ->> 5(!’\!1L J}” ) -
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‘ o (b\)—- 3 i/, ‘v"kizu’; ) L | ( e - L(”‘y’“;" Ik:I;:i )
(4.16b)
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or, tf,
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|
-~
—
-~
N—
/\
VAN
&N

\N

) | —”/ | f(7/3> ,<L I) - L v) {\,,\/,‘D}
5) (R Y [(/s) Qk,‘ YA

(4.16¢)

~\
1%
il =1

It is to be noted that )

' does not appear to this order

of approximation.

The algebraic relations between the nozto T
orbitt I, D, and 56“ can be written schematically for
tons as

D.zowy (k)

y fe

Iz
_ <.
T = '5' I [ — FS’\:\' ! :/
-1 - "y
-1, L =Dy )
(4.17a)
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(4.17b)

where { etc. are parameters,

It is in principle possible to obtain selflconsisient
values of D by iterating Eq.(4.17) . starting from some
initial guess for D. It is also possible that there exist
interesting regions in the parameter space which exhibit
non-linear effects such as stochasticity. However, it is
difficult to ensure that the limiting conditions under
which the equations were obtained will be maintained in the
course of the iteration process. An alternative approach
is to obtain the perturbed orbit numerically, and, by an
exact numerical iteration procedure, calculate the self-

consistent values of D.

4.3. NUMERICAL INTEGRATION OF THE PERTURBED orBIT?

In this section we numemnically integrate the

=erturbed orbit, Eq.(4.1), with initial estimates of the

* For the vemainder of this éhapter D, = D

{1
and DS = DL .
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diffusion coefficients. This gives the nature of varia-

and ) (= %B).

tion of I as a funection of K, v,

The . infinite time integral 18 of the
damped osctllatory type and ts diffieult to obtain accura~
tely by the usual numerical integration procedures. We

outline below a scheme for obtaining I to an accuracy of

o

_at least 6 significant figures.

The upper limit T of the integration is
chosen such that for given values of k, D and 7 , the

absolute value of the integrand is less than 107715 for all
)1/3

D

t > T. This in our case was T = Zomzs/max [(kfl.ﬁ

kz D ]. Within this range, the integrand

/

. 1/2
(kLkLIQZ ) R ;D3

‘:is fitted to a Chebyshev polynomial(4) to an aceuracy
‘/f(x) - fFIT(m) / SR 10n8 everywhere. The choica of
this orthogonal polynomial is governed by (i) the oscilla-
tory nature of the integrand, and (17) ihe minimax

property of the Chebyshev polynomials. (When a continuous

function f(z) in (a,b) is fitted to any orthogonal poly-

: rIa :
nomial, then the maximum absolute errcr i<.e. max /f(m)~f“ {md
for a £ x L b 18 a minimum for the Chebyshev polynomial).

Once the coefficients of the fit are known, the dejfinite and

indefinite time integrals are evaluated.

In order to check the numerical stability and

accuracy of this method, we obtained numerical values For the



78

:fOZZjow"L'ng spectal cases which are known analytically. The
peal and imaginary parts of I reduce to the following

standard forms in the limits given below:

- - 4.;'7.‘)'{4(\

= \[_ﬁ Gy ’ €
Z
e ) (‘_7.

—, - Q
-[V"" (l) = Sin Jl't e -

¢ at | 'I‘"/'AC(

= e f4a T a ¢ L_Ldfj
o L o

where the expression (1 ) ts Dawson's integral .
¥ o g _

—~
3
~~~
.
S
!
C
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In all cases our values compared with the cxact values upso

at least 6 significant figures.

The mazimum number of terms in thk expaision

i

was 45. The variation of I with k and (7 for

values are plotted im Figs. (4.1) end (4.?)

different %i

respectively.

4,4. SELF CONSISTENT VALUES OF THE DIFFUSION COEFFICISNT

The normalised’ diffusion temsor is velated
self consistently to the orbit integral through the

equations

) N '
/ D; \ = /W/Z / (/".L:'sl)'!)‘.!‘ \\\

| ol TN RPN
,D2 _ ) mL L’\ld ). Cin O d 5} \,)(L‘ {)) 1{, \‘(;)(,‘.L_,z Su
vy ’ ‘ PR !
J
D3~ 2 @ \ !
J (4. 1.1)
where
50 A R
0 . COUNE -k (o O DT
ook st = kies €
J = db expl ¢ B
3 ’]
G . . o 2 —_— -' ¢Q j." "f) )/) L :J'
— ki Cezsm b ’/{ K gint & (d.88)

The following normalisations have been used:

\{[’—EI ) 4"// ST I;Z’: Y

ﬂuwl't = | kAy= | S(keé)=
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‘coineides for both particles.
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4.2 The perturbed orbit integral T ae a
function of the wave propagation
angle o .



80

and Vé 18 the wave phaée veloetty, and fl_f the cyclotron
frequency of the jthvsnecies. For the fluctuation spectrum,
we assumed the profile function at q turbulence level

to be,

p— oy -7
. P 7 s
- —_ P / N ( e (7
Sike)= C OXF |~ (k=1a) ok ] o

— (“/-\‘. k. 22//\‘ W }(hi(f)

This profile is an idealized representation of the observed

spectral behaviour of ion acoustic waves (Chapter 3).

Trial values of the diffusion coefficients
‘were chosen and the 3-dimensional integral in Eq.(4.4.1)

evalucted as follows:

(¢) the time integral was obtained by the procedure

outlined in Seec. (4.3) to an accuracy of 1 in 108,

(t1) the angular integration over (7} with the three

di fferent &) nrofiles was done using Simpson's

Hule(g). The step size taken was ZOJ and conse~-

quently the erroy in the integral is also 10“8,

(2i2) the Integration over K was donz using the Gauss

(3) 7,7

Laguerre 15 noint quadrature formula . Thus <t

is estimcted that the 3-dimensional integral has bezn
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evaluated to an accuracy of at least 6 significant

.fvlgufes°

fltv) the self-consistent diffusion coefficients were
obtained for tomns from Eq.(4.4.1) for i = 2,

¢« = 0.1, .01 and the spectrum parameters ko = 0.5

and AK = 0.25, by an tterative scheme.

Reasonable initial trial values for Di’s were taken,
and the iteration terminated when successive values
for each of the D's converged to 3 significant figures.
In general 3-4 iterations were required for conver—
gence. The procedure was also tested for a poor
initial guess of the D’s. The convergence in this

case was slower, but the converged values were in
excellent agreement with those obtained from a

Judietous choice of the initial D's.

I'm Fig. (4.3) and (4.4) we show the conver-

gence of the D's as a function of the iteration number for a
good tnitfal guess and a poor inttial estimate of D, for

F:O,l and V“ = 0»5{11\.;/? >
b AT

The values of D as a function of %l
are shown in Fig. (4.5) at = = 0.1 and é = 0,01. The

convergence for V” = 0.1 at &£ = 0.01 was not obtained.

It 78 evident from Fig. (4.5) that D falls

sharply as we move away from the resonance at V, I ¥,
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for low turbulent energy €= 0.01. This is no longer
true at = = 0.1 where D -is relatively flat over a wide

range of V This feature has an extremely important

l .
consequence, namely, that it enables us to ealeculate the
fluetuation spectrum analytically in the 1imit of high

turbulent energy.
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CHAPTER &

NONLINEAR DISPERSION RELATION

According to the linear response theory, the

nlasma response to the field E igs governed by the linear

relation
- A
D = € .E
where (& is the linear dielectric function. In the

presence of stronger fields, the response may contain

quadratic or higher order terms, e.g.

D. = & E. +

4 . 0. a . +cunu
7 N R - 2k Eg B
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This type of nonwlinedrity in the dielectric response of
the plasma will not be discuséed here. The éollectfué plasma
‘response is assumed to remain within the bounds of the
linear response theory; Only the non~1linearity in the
single particle response to the turbulent background, and

its effect on the dielectric properties will be considered.

The entire behaviour of the turbulent plasma,
the normal modes it supports, and the degree of screening

due to polarization are determined by the dielectric

 function in the turbulent state.. In the usual linear theory,
the dielectric function is obtained by consideving the
collective motion of the particles im the average or macro-
scopic fields, while neglecting the’effect of fluctuations.
Turbulent on suprathermal fluctuations nonlinearly perturb

the particle orbits. The dielectric function in the turbu-
lent state s therefore obtained from the collective

response of the particles mowving along perturbed orbits.

This <s the nonlinear dielectric function, - I @ defined

in the context of the Perturbed Orbit Theory.

In this Chapter, we indicate how the non-
linear dispersion relation 78 obtainedin the guiding centre
approximation ( (o << L2: ) (See. 5.1), and obtain & W
for turbulent ion acoustic waves in a magnetic field. The
dispersion relation is then solbed to obtain the nonlinear

Ffrequency and growth rate in the turbulent state (See. 5.2).
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Aé geen in Chapter S,Vhighervffequency
(W > L) turbulence results in.velocity space diffuston.
We examine the effect of veloeity space diffusion‘on the
dielectric funetion (Sec. 5.3). The dispersion relation
for ionmayélotron wavee is obtained and solved in the

presence of an average spatial diffusion (Sec. 5.4).

5,1, DIELECTRIC FUNCTION IN A TURBULENT PLASMA

Congider an electron moving in an electric
field E_ exp i(k.r=(3t) . In the frame moving with the

electron, the acceleration of the electron at r, 18

(5.1.1)

 where Go's (8 -k.V is the Doppler shifted frequency seen
by the electron moving with veloeity V . In the linear
theory, the perturbation of the position of the electron due

to the electric field is neglected, so that

4

2 ) (§5.1.2)

N s
eio—

" - _ -
- [

In the frame moving with the unperturbed electron, we inte-

grate along the unperturbed trajectory to -obtain
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In the laboratory frame,

2
(us-k.v) (5.1.3)

- -

where E = E_ eaxp i(k.roméft) . The dipole moment

{

produced by the electron displacement ts

N, -
— 1:‘.. £ :" E
\ P
- - oy l’\ ': - e e o ————————
[ = &°" -

WW(QJ—YQV>‘

-

The dielectric polarization P 18

— - NVE
T - _ent +O(V)dv
p— - oot e
AR (ul"’l/\,\/’);

—

and the induction or displacement vector D is

-
oo

4line foAgv

.Y“ _ j ‘* o IR

4 ( (n) = k \/'> :

In a plasma with several specties, the dielectric function

18 therefore
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This 18 easily generalised in the presence of a magnetic

field (if finite gyroradius effects are neglected) to

cowE ok k.
(i et ( —‘T— \ (.Is.) FJ ‘< " T: o
— L Tg, _ .f-'-'}/“ C,\!N (5'1.4)
’ \ N [: (w) - k'l\/ll)

I'n a turbulent plasma, the particles

diffuse away from the unperturbed orbits. Replacing the

unknown true orbit by the statietically averaged gutding

centre orbit in Eq.(5,1,2)3 we have

¥ <
-: - { “‘ ' X 2—‘—‘-,'—
= -l =k
- = 1l: C\’}} O Ku¥n "L"_;” AT
el ke in
_ 2 I 2 [_3‘7
. P N :
‘;"{J_ ,<n '/lint T J}‘
“(5.1.5)

‘where the perturbed orbit is defined from - 7%  to t.

The double time integration of Fq.(5.1.5),

-—

required to obtain the displacement D, is not easy to
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’ .
1 are

\\\

perform. For st implicity we assume #Q” and

small. The varticle displacement in the presence of epatial
diffuston only is

A — < A

moor Ty T

L(m-im%&+3k£1il

and the polarization is

4
v

:‘!l“':*_\ - l\-'*:': ‘:E | 'Fo(v} d\/

—— I K P

W/ L (‘.«U—— }n‘ \/“\ ’ [( ‘?,' _[;\_

e

(5.1.6)

where f (V) is the equilibrium distribution funetion in

the turbulent state.

The nonlinear dieleetric function ts then

S T I

N
vy, AV

S [ k) # KD

(6.1.7)

The non-linear dielectric function in Eq.(5.1.7) may be
obtained by simply replacing &) by O+ ikf D
in the resonance term of the linear dielectric function

(Eq.5.1.4). This <s Catto”s(z) prescription for obtaining
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NL5 which ie valid only <f velocity space diffuston can
‘be neglected; The dielectric function in the presence of

only veZocity space diffusion s discussed in See. (5.3).

5.2. ION-ACOUSTIC WAVES IN A MAGNETIC FIELD

In a magnetie field B , the Zon acoustic
mode is split into the fast mode with >l 5 and the
slow mode with ) <-§l;. We consider here the slow mode

in g thermal plasma with Vo > I Vo, o (where Cs

e 2
1/2)

18 the iom acoustic speed (Te/mi) . The waves are

exeited by an electron drift along B . The veloeity

distribution function is

S o] Ve

e xi

f.00 = / .,.;———3:5/‘ 25"

-
[ 3 —

(5.2.1)

- ¥ ond V_ . = 0.

The linear dielectric function in a magnetic

— < B i | I Y
= ( K. W) - \ Lo P \ LY | e
K . J t W H .

|

J

ya T; | )
‘J y T =00
~ N1 O
o e s
3V, o
LA ve Z (5.2.2)
e — o L
LHV.\ (& L))
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-Substituting'fbr: £ (V) rom Eq.(5.2.1) and integrating

over ¥V . we get,

T s \ - /\ |
— B SCIA AN
o -k‘ ' _U).) - f —l‘_ \ """‘"!“""" \ = 'l“ﬂ <>\j>

J SRS
) T o Ww-kal, N T/ w =Nl - kYo ”
’ | -+ =

VikaVr; /o, N7 ko, Vi

(5.2.3)

where M . = K° 73.2,
J SAY)

- D

For low frequency waves, only the n = 0 * 1
terms are retained. Assuming KX, f’i << 1, and that
electron gyroradius effects are negligible, we expand the 2

function in the appropriate limite for electrons and itons

to obtain

L _

T kW) = ( wp Cos @ e

Re € (kw) = |45, - 22 (1= k03
kA W

2 - -
. E)H&léﬁ

!

SIS Sy (5.2.4)
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first harmonic of the ion eyclotron wave are obtained in

different frequency regimes:

(i) > T L}, slow acoustic wave

DA RIS ) ke G
]—:‘ = kE‘ /\'(A\ st ( - .~ - ) _ r — I
A ( ) k N2 - >
Y v,
- = Cs /( [ + Kk Lf’\‘; -+ k N ‘f{?_> T
- / A
(5.2.6)
"’ o . 2 ) A pon 2
Dispersion relation: (i = i<, Co
(22) QO > Y. , fast acoustic wave
ol /‘:;/\ D— N 2.2 7
),\ w P
i< \: (::_ (}‘\ (\__\) — ( — — - . } B (‘\ f: ’
kA e bt J

X Co - !,/'
“ /( | (5.2.7)

Dispersion relation: T P
B - oD
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(2~ 42y, Zon eyelotron wave

where ;u\: 578' s (=TT,
e

omes positive.

£17)
~ s . i%-klA;L' - |oape T
[ ‘\t, i ( (0, }’\) pon ( — I_> Ll RN (: }
ST\ £ T
(5.2.8)
. . ., Ltx e
Dispersion relation: W= L2, 1 Siobs
The slow acoustic wave is treated in this section and the
ton~cyclotron wave in See. (5.3). ‘
From the solution of the equations R, E{(3k) = 0
, B o .
and V= =~ ImE / (c)wﬁﬁ;/gnb)‘\«l\ the linear frequency
R T
and growth rate of the slow acoustic wave are obtained.
=+ ke
- — 1 =
— - | ,
N/ H <~ ‘,.’ (; - i / / Qn\/ L Lt
a T (—‘ ) e JAN - —
L pely NP l ! b O
(14 KA+ Ruls) |
‘Jl ) . A i
~ [ (@ (&
— ij_\z_L_ ex ( - -1:—~‘7
L\ Ce Tk ('3 ’
v -4 (5.2.9)
m -1
Id The mode is driven unstable
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We now perform an identical linear stability
analysis of the turbulent state, where the effect of the

turbulence is included througk the perturbed orbits of the

particles. The non-linear dielectric function is

. |

I /_ 2 1, V= ‘

i) ku\'j /_ \ ~N/ Lz }\“V'j (5°2°10)
/

‘ 0y = kv, = [to-Ani}j—kmhﬁ#kaN
\

As discussed in Chapter 3, Sec. (38.1a), the
level of turbulent energy required for the spatial diffusion
of the bulk of electron: distribution is very high. At
turbulent energies -~ 0.1 nT,, the diffusion of electrons
can be negleeted. Even if turbulent diffusion of electrons
ig high, this does not affect the low frequency dispersion
relation since the integration along the electron orbits
only contributes to C  the term 1 + 1/k2 MNp?  which is

independent of orbit diffuston.

Retaining only ton diffusion, = yp for the
nonlinear slow acoustic wave ts obtained in the limit

%) < < _fl LS
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- s I‘. RS
O I E\_.‘ (_‘L’_:_l.l._)' f
L S e - PR )
/\n T "\/11; '.}L. v ok V"L/ _J

(5.2.11)

?l Z ok D

and >~  occurs in the expansion of %(X + Zy) and has the

values

0 y > 1/X

e

=4 g for 1yl < 1/%
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, R . e - by ~
_'J)NL * 1oLy 18 the solutton of 'L'NL 0, and

AN e the real and imaginary parts of

| ' 2 —_ 2 ),', ,’ r‘ + \/ > b -'(
AL A i - W C S \ L te :A - j
P /\ ‘ - Z L _..\ | e ) Cog _
u“)w«';. (~U|\It VT:—
(5.2.12)

(5,2.13)

where E/L’ is the linear growth rate altered by the diffu-

sion, and i8 given by

L..\ [NE {‘.,)N
4 I Byt
AN
"“-n\/'f( F A Sebs 0, 14)

Setting = VL to aero, the monlinear frequency W VL and

growth rate ‘B/NL are obtained.
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{ - : \\/ A/
_ i{ - - \'\'\'\—"NL/
{1 NLT i1 C- \ e e ,.;;-.—-—«-
P |/\ Y \/T‘(_,
(5.2.15)
;
(W]
/ 4 *Z / ] t\“
PR ARy
'\' L - —fJ L IL - 3' ‘r\:"“ \/T I /
(5.2.16)
Eqs. (5.2.15) and (5.2.16) are coupled. If
A _ N = T W 2 2 2-1/2
¢ g SSTL . then O up i K G [ 1~ /K, VTi 1

The frequency i8 Lowered as « result of scattering off the
particles. For ton resonance broadening to be effective

the “on temperature must be suffietently high so that at
Zeast some ions fall within the resonance width T\ . More-
over, for physically meaningful results, "\ must not exceed
Kk, VTi . If 7, becomes &0 large that all the tons are

ineluded in the broadened resonance, a further increase in

cannot produce any physical effect.

The qrowth rate ;/NL refers to a perturba-
tion about the turbulent state. If ?(NL is‘negative3
perturbations about this state will decay to give another
realization of the same turbulent state. We see From
Eq.(5.2.16) that the ifon diffuston 7| has a stabilizing

effect on the turbulent state. The effect is enhanced by
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the factor '(A}NL /3k,‘2VT'Z . It would appear that the
k4 ' .

condition:for stationari&y isvvb/NL = 0. Howeuers'the
selfmconsisteﬁt nature of the relations between the level
of fluctuations and the'diffusﬂon requires that Im D
lie suffzcmentlu far below the peal axis in the ' -plane
to ensure stationarity. This point will be discussed in
greater detail in Chapter 6, where we caleculate the

fluctuation speectrum.

5.3, EFFECT OF VELOCITY SPACE DIFFUSION

As seen in Sec. (3.2), particles diffuse in
velocity space in the presence of higher frequency
( L2 2. fLl: ) turbulence. In this section, we examine the

i

effect of velocity space diffusion on the dielectric function.

The perturbed orbit 18,

\\ / \,v
> J " (
= - [

- - i) 'y
’\JQT_ ; L /<A/_‘"’(,

e
© \

()

y o)

Po)

o (- kv, .-;,,Slj /)g; kLN K
¢ ¢

(5.3.1)

The dielectric funetion in terms of the perturbed orbit may

be written as
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b _t
5.3.a. Ion Diffusion

-

Let us consider the change in L due to Ton

— Zy=3/4 2 2
di ffusion. With fo (V) = (87 Vpy =) / exp =(V7/2Vyp )
J 4 T

the integral over V, gives
Lesin oo
\ S E T P
- / ) - . |
o (f(,uﬁ) -~ Wp \\ ! | (‘fﬁ> X
N — & v
- s 5 (. - 17
,
k Vi Z_'
¥y = -0
( Tk v, -nSd ’f [ (v,) >
{ (-;‘ \/” } =Ky, Y - '5,( Vi

_ o ._,,,_<‘L’)f;il-f__>,7<1“’?—

(5.3.3) ~
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(3)

The time integral gives the Lommel function:'

BEC SnSbib — ke Dokt

I At

J . |
- L = -
- T Z Jdg Y (t)

R Eh
oo ' (5.3.4)

: N
i - ~, [ - I( " Vi = n _( ) L _/4‘
where Z = P i , ” (5.3.5)

NEETROSNOL

(5.3.6)

Far from resonance (ZJ > 1, (Eq.(AI.8))

_C o[- B
S, @ | ay
e e
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Cl ) = M .
N W)= T ¢ | (;\‘)
V7 : -1\
A S
0y .
[N
) P ~, r (D T 6 \‘\ 7) l \
' d\fn {'0<«V”) v - |
s L\) - Y \‘I r)_" L\) ;/\‘Vu V‘JL)
(5.3.7)
To lowest order in e , the linear dielectric function

is recovered from Eq.(5.3.7). It may be noted that the
veloetty diffuston term does not contribute to a resonance
broadening 2 +fV1 . This result is particularly
important in view of fﬁe fact that the velocity diffustion
term RQXF . K ts in the orbit 1s sometimes(4) approximated
by (k.JS. k)l/3 t which gives rise to a resonance broadenfng

o

Wt (k) . 0

Another important concluston from this s
that while spatial diffusion can lead to a stationary turbu-
lent state, veloeity space diffusion does not lead to a
similar effect. On.a longer time scale, veloetty diffusion
can alter the unstable particle velocity distribution,

which may quench the turbulence.

7

el
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For the fésonant electron response, we
replace the perturbed orbit integral in Eq.(5.3.2) by
Eqn. (4.16c) with k?Di': 0. UNegleecting all electron gyro-
effects; we obtain, approximately, the electron contribu-

. (:'
tion to = NI

electron — ey
Ty s

(k)= (5) =
g . A s 2N o2 e g
L T [ K )

ST Y5y (el

ﬁ A ] o/ N

i - o i
i

f’”*!:) ( #<; z}u),' (5.3.8)
\ ) i

1l

where V_ is the drift speed along B of the Mazwellian

electron distribution.

The linecar growth rate is modified by the

turbulent diffusion of electrons in velocity space.

5.4. NON-LINEAR ION CYCLOTRON DISPERSION RELATION

As seen in Seec.(5.3), pure veloceity space
diffusion does not lead to a stationary turbulent state. A
quasi-stationary state for turbulent fluctuations at Ly~
may be obtained through the average spatial diffusion D,

described in Sec. 3.2.c.
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Tn terms of D , the non-linear dielectric

function <s

. >
o Z 7 \
- - s N N\ AN
- ((m,/—,> = { - ¢ l}‘, N e ,; ()\)
"l\lL / - N — 7} . )
A I;A PR
. (\)/_ !
N
j Fr= - 00

The n = 0 mode gives rise to the ton—acoustic waves

considered in Sec.(5.2). When L L the n= 1 mode

dominates over the others. The dielectric function in the

presence of the first harmontc of the ton=cyclotron wave

-

where 1)z ik,°D << W .

The solution of this equation gives the nonlinear frequency

4
u%d, and growth rate D) VI of ton-cyeclotron waves.

i

The non-linear frequency s
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, , L, o 2 ‘ ."2 \.: n .. l 2 5 ‘_)
Wy - k*‘g LTy < TR s

(5.4.3)
: (Te/mi)l/g o ¢,
where Cg = 2 s )T
1+ k 2 Tl
D
The nonlinear ¢rowth rate is
\ B S _ vy {")!\"L‘h
S T | —
(o, - (L ‘]‘) (5.4.4)
Vi
where
P II'!“ (:L i
,->/ _ _ R i
9, = -
. : C)Fu"?.‘é:m, ’
- {
RIS }()ﬁ\, SN URETY

18 the linear growth rate modified by the nonlinear

frequency shift.
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CHAPTER - 6

SPECTRUM OF TURBULENT ION ACOUSTIC WAVES

The -Perturbed Orbit Theory of Dupree and
Weinstock(l) has been discussed in Chapters 3-5, and based
on it, test nartiele diffusion rates and the dielectric
function tn a turbulent plasma have been obtained. The
test particle diffusion cannot be physically observed in

the absence of gradients. It is necessary that physically

observable parameters of the turbulent plasma be calculated5

and ecompared with observations. One of the important

measurable features of the turbulent state is the fluctua-
tion spectrum. However, as pointed out by Cook and Taylor(g),
the equilibrium fluetuation spectrum in the stattonary,

turbulent plasma had not been obtained in the initial
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Dupree-ieinstock theory, which was in tﬁié-sense ineomplete.
The fluctuation spectrum mds formally obtaiﬁéd by Cook and
Taylor using a superposition princ?ple of dressed particles.
In fheir formulation,‘the speetrum 18 an'ﬁmplfcit function
of the diffusion, and cannot be expliettly qaZCuZated ih

general.

From ouxr numericalﬁstuay of the behaviour
of D (Chapter 4, Fig.4.5), we have seen that at high

levels of turbulence, D <8 almost aonstangAfO?iﬁdPticzes

within a wide range of veloeities. In thig limit, we find
that the spectrum can be expliditly,éalcul&ted from the
‘knowledge of theinonwlinear dielectric functioé obtained
from the Perturbed Orbit Theory. Using the superposition

prineiple, we calculate the spectrum of ion acoustic waves

excited by an electron drift along B, .

In the next seetion we review the earlier

theoretical work on the ton-acoustic gpectrum (Sec. 6.1).

We then describe the superposition principle and its exten-
sion to turbulent plasmas (See. 6.2). In Sec. 6.3, we obtain
the 1on-acoustic Spectfuﬁ:&ndlytically in (k, () space.

The spedtrum is numerically evaluated and compared with
earlier theoretical spectra, laboratory measurements and

stmulations.
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6.1. ION ACOUSTIC SPECTRUM

(3) of

the ton-qeoustic turbulence spectrum suffered from certain

The earlicst theoretical caleulations

drawbacks, such as a divergence at low k . This could be
rectified by the addition of ton~-neutral coZZisions(4).

These were essentially quasilinear caleulations applicable

to weak turbulence. The itnclusion of higher order perturba-
tions to the partiele motion, in a renormalized quastlinear
theory, removed the low~k divergence in collisionless

plasma. The renormalized quasilinear theory of fon-qeoustic
turbulence has been dealt with in detaitl by Horton and
Ghdi(5): who have obtained the spectrum by a mode simulation
technique, and have also reviewed the literature on spectral
observations and computer simulation results. All these
caleulations belong to a class of tnitial value problems,
where the time evolution s studied by taking explicitly into
account ihe féedback action of the oscillations on the single

particle distribution functions, while the wave-wave inter-

action is treated perturbatively.

A second class of problems arises if connection
to an extermal energy source s maintained. Under such condi-
tions the system can go to a new equilibrium or stationary
state where large fluctuating fields co-exist with linearly
unstable distribution funetions and enhanced levels of
diffusion. It is this class of problems that we shall

consider here.
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Stationary ion-acoustic spectra have been

obtained by Ichimaru(6) in the absence of a magnetic field.

(7) et al determines the .

b,

angular extent of the spectrum in the k plane.

Another caleulation by Sleeper

6.2. SUPERPOSITION PRINCIPLE OF DRESSED PARTICLES(Z)

As 1s well known, the field of a charge in «a
thermal plasma 18 sereened out at distances larger than the
Debye length. The degree of screening, arising from the

ecollective response of all the particles, depends on the

plasma dielectric function., It s stmulated by assigning

a dressing to each charge in the plasma. The superposition
of the fields of the dressed particles gives rise to the
corpect screened field at a given point. ALl further inier-
actions between the dressed particles are neglected, which

now move as free particles tn the plasma.

In a quiescent plasma, the fluctuation spectrum

obtained from a superposition of dressed fields 1is

;

<' ’ E‘k 5~> - nij’ v; T"—’f’,‘i—fl V:i’ d ) | ‘{rU(~V ) (! ; ‘6 (HJ - PT/)

v/ ) ) el

J

(6.1)
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where i (LS <k, V) arises from the integration over the

21( L "k‘a V)t Of the dressed particzas.

free propagator
The spectrum diverges at the onset of instability signalled

by = —> o,

As seen in Chapters 3-5, the turbulent
growth of fluctuations in a linearly unstable plasma
supporting a wide spectrum of frequencies causes the
particles to diffuse about their unperturbed trajectories.
The diffuston can lead to the stabilization of further
g%owth of the fluctuations, and to the formation of a
stationary state. The dressing of the particles in the
stationary state will be determined by the stable nonlinear

dielectric function & ¥ By a superposition principle

LB
analogous to that employed for a quiescent plasma, the

spectrum in the turbulent plasma can be written as

TEDD S e nd | | 1 (v

O od togh

» \/ “v,/ |+

Py, o

L AR PN

J NI

J— (;l( {n) - <., \/>

A

(6.2)

where fO(V) 18 the equilibrium distribution function in the

turbulent plasma.

6. 3. CALCULATION OF THE SPECTRUM

Although, the spectrum can be formally

obtained using the superposition principle described above,
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the explicit calculation of the turbulence spectrum ie

diffieult for several reasons.

Firstly, the self~consistent nature of the

fbrmuldtion relating several unknowns e.g. f; D, e
and <W5}hl>,/‘v requives that some approximate esti-
mates for some éf them must be made before the others can
be caleulated analytically. Numerically, the error
tntroduced by this could be removed by émploying an iterag-
tion proecess to obtain the correct self-consistent values
of the unknowns. It is assumed that such an iteration

process would converge.

Secondly, ¢ yr 8 a function of the difqu
siton D , which depends on the particle veloecity V .
This makes it difficult to perform the veloeity integral
in Eq.(6.2). However, as seen in Chapter 4 (Fig. 4.5)),
at high levels of turbulence ( & ~0.1 r,), D <Zs rela-
tively constant over q wide range of V . The veloeity
intég?al can then be performed to obtain the spectrum
explicitly. The dielectric funection = VL in the presence

of turbulent slow acoustic waves has been calculated using

Perturbed Orbit Theory (Chapter 5, Sec. 2).
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{ { P ~Au‘)fd L i i
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=z L } I+ 2 Kea h’ﬁ ~l-—* - “L""f‘ L (6.3)
where W, = Ck)NL - 7 yNL* 15 the solution of the nonlinear
dispersion relation,
S ,
5 2 ~ z y
(A) ( { . Yo .:’_ s ?{{\!L > i) phL
N T N SR
D L 4
- (;) t L{?(} b L (6. éa}

amd 4 oz (1+ kN2 kB P2 /P N 0P substituting
for Iz NI in Eq.(6.2), and assuming that the particle distri-
bution in stationary equilibrium with the turbulent plasma

is Maxwellian with an electron drift along B , we obtain

the 1on contribution to the spe trum, to be

m}/
A

PN ek S>3 .
(’H’> e f\/.f ¢
____'-—‘-—'—‘—"—"__-.———— e esan— -

T
VTl

N i

|+ 4 Kea H%,kn )Z(Ji‘\\’)\

~(6.4)

i

The contribution from the drifting electron is
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=z - e
(47) e € v, LV,
[« VTl Vo, | & U b ‘)‘
e
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= + 2 Real ) { !\/.-.’_ . > L /\: S
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+,-
(6.5)
The total fluctuation spectrum <is
/1B o o
\{ ,«K} / (/1 “_))—j/\f? ‘ \ |
- - N L { I \
/ 2 “ ;L
\ )\ ["‘\ ‘ l_
J
By o, i B N - N —_ ,.L)\)o _:L_- {;“Vh\ -.} ‘vM
2 Real | { St )y 1 (2etE)|
B pa VR RV,

When normalised to the electron thermal energy, the spectrum

18
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(6.7)
For a quiescent plasma without an electron drift or magnetic

field, we recover the thermal acoustic fluctuation spectrum

from Eq.(6.7),

- J R A\ 2
</IL¢J > . AT Te ﬂ’« AD ]
~ T ooLey F\4 (6.8
\/ ( |+ k A£,> (6.8
In Eq. (6.7), as Z/NL tends to zero, t.e.

the pole of = VI annroaches the real axis from below,

the spectrum diverges, which indtcates that the state can
no longer be stationary. This situation is the ezact non-
1inear analogue of the onset of ﬂnstabﬁlity in the linear
regime described by Cook and Taylor. g gives the growth

rate of perturbations about the turbulent state, and if

7
Y NL

staqte instead of decaying away. It s important to note,

0, all perturbations remain indefinitely in that

= 0 does mot give a condition for

therefore, that b/Nr

stationarity. For the state to be stationary, Im & must
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be sufficieﬁtly far below the real axis to ensure that
perturbatibns about the turbulent statz decay back to the
same state faster than a certain rate, which must be deter-
mined from the selfwconsistent solution of the equations

relating the spectrum and the diffusion coefficient.

6.4. NUMERICAL RESULTS

The spectrum S(ﬁ) 28 computed for a typical
set of 1on acoustic wave parameters, viz.. Te/Ti z 10,i
VO/CS = 100, flf/oqri = 2, and turbulence level
£ /aTe ~ 0.1. The diffusion coefficient D/CS>\ 8 taken
to be 0.035. The spectrum obtained, (Fig.6.1), peaks at
K XD ~ 0.4 at G = 0° For larger angles, the peak value
falls, while the peak shifts to lower values of k . S(k,3)

follows a power law in k, (8 ~k,, ") with the same
tndex “{ = 3.54 + 0.03 for all =" (Fig.6.2). The

classical Kolmogorov exponent for a 3 dimensional spectrum
i =11/3. If the fractal dimension Dn of the turbulence
18 taken into account, the Kolmogorov exponent is replaced

(8) 1977).

by 11/3 + B, where B = (S"DF)/3 (Mande lbrot
From this we infer that the fractal limemnsion in our model

is Dp = 3.38.
The angular spectrum

5(e)= 27 j{ jefidle & (FL0)

(6.9)
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and the frequency spectrum,

5(w) = 27 f Kk | cimo a0 S (kB)S (o-F(R)
J |

-’ %

(6.10)

where ) = f(k) is the nonlinear dispersion relation, are

evaluated (Figs. (6.3), (6.4)). S() follows a power law

in W with exponent ~2.62. (Fig.(6.5)). The angular
intensity falls to half its peak value between H = 40-45°

(Fig.6.3).

It may be noted, in particular, that the

spectra go smoothly to zero at low k and >,

6.5. COMPARISON WITH OBSERVED SPECTRA AND SIMULATIONS

It is difficult to make a quantitative

comparison of our results with observed spectra in a
magnetic field. In most experiments and simulations(gnll),
turbulence levels are lower and the Zons are unmagnetized

( Q)Ff\>>-~rlf ), in contrast to our assumption

”(li = 2 (wp In addition’some of the features

h
observed may be due to eyclotron modes n > 1, which we have
not constidered here. The anomalous k spectrum, dominated
by waves propagating at oblique angles to B , appears to

be one such feature. We shall discuss this in Chapter 7.
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Since the slow acoustic wave €8 essentially similar to the
ion acoﬁétic‘wave in an uhmagnetized plasma (except for a
ahange in veloeity and ﬁncredsed dispersion), it is
appropriate to compare Our resulté with ion sound turbulence

. . (12~17
measupements in an unmagnetised plasma ).

Some typical measured spectra are shown in
Figs. 6.6 to 6.10 . The shape of the 3~dimensional Kk
spectrum (Fig. 6.6) measured by CO0, laser scattering
experiments of SZusher(zé) agrees well with ours (Fig.6.1).
As pointed out by Slusher, the spectrum obtaitned by him
appeared to be consistent with ion resonance broadening, but
theoretical spectra in 3-dimensions were not available for

comparison at that time. The angular spread if in S 18
(13)

~30°. The power law index of the measurved k spectra

15 =4.8 + O,S)which is high compered to our index (Fig.6.2).

The shape of the measured frequency spectra
(e.g. Figs. 6.7, 6.8), are consistent with our theoretical
spectrum (Fig. 6.3). However, the spectrum measured by
Gurnett (Fig.6.8) does not appear to have a power law
structure. The index of the power law in S(>) measured
in various experiments ranges between ~1.7 to =2.8 whiahv

compares well with our value of ~2.6 (Fig. 6.5).

The angular spectrum obtained by us (Fig. 6.4)

has the same form as the measured spectra (Figs. 6.9, 6.10).
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The énergy‘is peaked along the‘directﬁon‘of the eZeétrQn
drift. This also agrees with the short time behaviour
of S(F) obtained by éomputer simulatton (Fig. 6.11).
In Fig. 6.11, the peak of the spectrum shifts a@ay from
(= 0 after a longer time interval. This is an anomalous

feature which we shall discuss in Chapter 7.

6.6. COMPARISON WITH THEORETICAL SPECTRA

The early theoretical iTon acoustic sPéctra(S’zl)’
exhibited a pure nower law dependence without the cut off at
low k or low >, which was found in all measured spaetfa.
This feature ts similar to the divérgence in the Coulomb
erosSasecfion when polarization effects are not inecluded,

A self-consistent cut off is present in the spectrum calou-

(50 (pig. 6.13).

lated from renormalized turbulence theory
Since the dressed particle picture tnduces polartzation
effects, this feature is built <nto . our spectrum. The
stationary spectrum S(k) that we have caleulated compares
well with the spectrum obtained by Horton and Cho£(5)

(Fig. 6.14) using a mode simulation technique.

. The shape of the angular spectrum calculated

on the baats of the Perturbed Orbit Theory by Sleeper et aZ(7)

(Fig. 6.12) is consistent with ours.
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6.7. CONCLUSIONS

Qualitative comparisoné indiecate that Ton
resonance broadening appears to be a satisfaétory satura-
tion mechanism, and that the predictions based on the
turbulence theories discussed, are raalistic. More quanti-
tative comparisons are necessary after matching the theore-

tiecal and eaxperimental parameters.
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CHAPTER 7

FLUCTUATION SPECTRUM OF HIGHER FBEQUENGY ELECTROSTATIC AND

ELECTROMAGNETIC TURBULENCE

By an extension of the supexposition
prinaiple(l) introduced in Chapter 6, it is possible to
obtain analytically the spectrum of higher frequency
turbulent electrostatic and electromagnetic fluctuations,

in a magnetic field.

7.1. ELECTROSTATIC FLUCTUATIONS

The unperturbed helical orbit of a particle
in an external magnetic field, when averaged over the perpendi-

cular veloeity, s
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/v

L (L&)t“ .

= =00
Eqn. (7.1.1) also represents the trajectories

of uncorrelated dressed particles moving in a turbulent

plasma.

By a superposition of the fields of the
dressed particles, the electric field fluctuation spectrum

in the turbulent plasma s obtained as,

<’ \/ > (%” )Z‘— v ANy {:O'(V/l% \\ :}T'“ 2()\/T ‘A\(u) e hﬁ)
K™ 4 (s o =L
i [ ( ' EER (7.1.2)

is the nonlinear dielectric function that

(=
where '‘Z VL

determines the dressing on the particles.

The n = 0 term of Eq.(7.1:2) gives the

fon~aeoustic gpectrum caleulated in Chapter 6
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(- VI contains all the cyclotron harmonics.

The spectrum for‘eacn nw can be obtained approzimately by

- (1) .
replaeing z NZ by (= VI w1 where only the terms correspond-

iﬁg to the nth eyclotron harmonic gpe retatned. The n - @
term gives the ton-acoustic spectfum,ﬁmv_f"

S e z

The spectrum for the first harmonic of the

{on=cyclotrgn wave 18

-~

) o T .
Qe > _ @H)lngl -
2

(k.2 ] £ (Vi)
| 7 (1 ‘ { - L
\/ /< \jl (I"\,LJ f) { \/”’ \ 'CjJ Vi Z é(()@"’\nvﬂ ’h'()ij
' ( 6 tx)
RS

(7.1.3)

()
where (o 7T s the dielectric function for the first

harmonic of the fon-cyclotron wave calculated earlier
(Eq.(5.4.2)),

iy ) -~ T P

C (k)= (V)

L. L
WL 8 I\p /
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K A <934-1é> A‘$2ﬂ2‘ r

(7.1.4)

z : -
5 = 7?(/#5 A,E ) Y ;u%):(jl W4Kf*k f
Substituting for = NL(l) from Eq.(7.1.4) in Eq.(7.1.3),
and performing the veloecity integratton under the assumption
that the diffusion <g independent of velocity;(see Fig.(4.5)),
we obtain the speetrum of current driven ion~cyclotron
turbulence. Assuming that the particle distribution in

equilibrium with the turbulent fluctuations is

—_ R i T
I VL'*LVH“'%U>
S oy %

5// : VTJ'

(7.1.5)

ROE > =
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/ (k.@)) |+ — m!N\ + v, .u,){
Lo e Ul < )
j ! ) \.2_ \1|V- \/L \“ "
+ -
‘ (7.1.6)
where
-/ . \ - 2 7 i
G o [onsit) = ]
o o- Lo~ T
Z; ;(j (,zO“ CD ( " o+ i é)
- ,2 O 2 )
(&); - __'1 ”’?1)(14"“,' 3)
S ;=2 , !
= (1Y) -
(7.1.7)
and
|
D/ / _ _ _l__ "’WGL / ®, ’:{G (':N L\
L =
Ve W=

as defined earlier.



127
Let us examznc tke féatureo of the Zon-
cyclotron speetrum Eq. (7. 1. 6). Sinee /('f' 8 usuaZZy
very small, the electron contribution to the spectrum,
2

governgd by JJ (kl j% )s 18 small.

There is no energy in the fluctuation
spectrum along the magnetiec field, for which %k = k-
The eontribution to the fluetuation spectrum comes from

waves propagating at an angle to B .

Typically, in turbulence driven by an
electron drift along the magnetic field, several n modes
will be exeited. Initially, if the partiecle veloecities are
low, only the n = ¢ ton~acoustic mode is exeited. At
this point, the energy < maximum along B , as shown by
‘the spectrum we have caleuloted (Fig. 6.1). A4s partiéles
are drawn out into the tail by veloecity space diffusion,
they can begin to exoite the n = 1 mode, whieh contpi-
butes in directions away from B . If the ion temperature
increases by turbulent heating, the contribution from the
ton-ecyelotron wave tnereases and qt @ij ~ 25 2t begins

to dominate over the n = 0 mode.

Our formulation for obtaining stattonaru
spectrq cannot describe the time evolution pictured above.
However, computer simulations(g’s) of ecurrent driven 7on-
acoustic turbulence elearly show this behaviour (Figs. (7.1)

and (7.2)).



Fig; 7.1.. Angular spectrum obtained from a

computer simulation of fon acoustic
turbulence in a magnetie ftald
,(stkamp and Cﬁodura, 1871)
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The peaking of the gpectrum at an angle away
fromrvB , referre.l to ds the anomalous feature of the k
spectrum, has been experimentally observed by Gekelman and

Stenzel(4)s.aﬁd noted by Tshihara and Hirose(S)

in their
simulation of the multidimensional quasilinear evolution of

thefion—acoustic instability in a magnetic field. In

~

N

Reference 3, the singular o function in the quastilinear
diffusion c¢.offtetent is approximated by

n

. N
4 P4

(Lby-k ,g/,,) < a1

e

which is identical in form to the nonlinearly broadened
diffusion (Eq.(8.1.8)). We expect, therefore, that our
analytical results can be compared to their stmulation

results.

Iéhihara and Hivose also mention that there
25 nc theoretical ezplanation for the anomalous Kk spectrum,
whieh is not prédicted by linear theory. The explanation
they offer is iﬁ terms of the angular dependence of the high
energy ton tall that s produced during the simulation. It
would appear that the anomalous k spectrum can be eastly
explained by the generation of fon-eyclotron turbulence as
our caleulations show. Numerical estimates of the speetrum

are needed for quantitative comparison with the observations

and simulations.
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7 9. SPECTRUM OF ELECTROMAGNETIC FLUCTUATIONS

In this section we briefly sketch how to

obtain the low fraquency electromagnetic field fluctuation

gpectrum tn a stationary turbulent state. The spectrum is

obtained by a superposition of dressed currents, dynamically

The electrie field E

is given by(S)

sereened by the dielectric function.

in a plasma due to a current denstity J

= = all 7 (lgw) J<k“g

IS
(7.2.1)
where 7 1is the inverse of the dispersion tensor 7\ R
defined by
z . N = 1
and
Ao & ek
— (:.’ namn -7
o (A" (7.2.2)

Using the superposition principle, the fluctuation speetrum
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(7.2.3)

where <<JJ*(k ,OJ'):> (0) {8 the ensemble average of the
uncorrelated current fluctuations. The electromagnetic
spectrum in an isotopic medium can be written in a simpli-

fied form,

ceeX 0 N - N (4 S N

\\E E' <L4’.)&_>>> - L (\__,_....,_..._---—-- CI v {?C?j (\/) [‘1 /\L}‘)"’F:’\\/)
Jd

Ly Lo,

e ‘L L - N

L
. N '
' (; (I'Tlu'))l + “
el T '

J T ‘
‘ k x \/J LT !
| <2‘c}‘ <

N ~ {
() ‘(__;L(J(‘U\’i)' a’)’z. f

¥

In the present of a magnetic field,this simplification

€s not possible.

Let us consider low frequency hydromagnetic

turbulence.
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The dpessed current correlations are evalua-
ted along the unpertufbed guiding centre orbits (Sec. 3.3).
The nonlinear dielectric tensor = NI for hydromagnetic
waves is obtained from Perturbed Orbit Theory by replacing ¢
by b+ 1w in G ; , and taking the low frequency
limit W — 0 and €% > V,°. 2 is then obtained

from Eq.(7.2.2).

The electromagnetic fluctuation spectrum can

then be ealeulated from Eq.(7.2.3).
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. SUMMARY AND CONCLUSIONS

In this thesis we have considered low
frequg@cy‘wavee‘that are excited by a beam or current along
‘annegteﬁnal<magnetic field in a plasma. The study is
‘condﬁgted along two lines contained in Pants I and II of

the thests.

The aim in Part I s to explain certain
observed phenomena in space, in terms of the linear theory
of plasma waves. In pa?ticular, our study of high speed
streams in the solar wihd shows that magnetosonic waves
generated by the fastsétream can account for the enhanced
ﬂntéfplanetary scinti?lation observed at the same time.

The instability condition is violated with the advance of

the stream, which coﬁfines this effect to the leading edges
of the stream. The existence of stable double ion streams

in the solar wind is also explaitned on this basis

(Chapter I)..

In Chapter 2, we have considéred the role
of substorm particles in the generation of micropulsations.
Linear stability analysis <ndicates that a Llow veloeity |
stream, acting in conjunction with the thermal anisbtropy
in the magnetospheric plasma, can trigger an instability.
This low frequericy wave modulates the geomagnetie field,

leading to mieropulsations.
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While the linear theory is well established
forrinfinﬁtésiﬁal'fieids;*and verified through extensive
experimentdtion, thevsamé cannot be saitd of the nonlinear
theories describing finite quctuatioﬁs and plasma turbu-
lence., One of our aims in Part II of the thesis, which is
concerned with wave particle effects in turbulent plasmas,
has been to{critically examine the existing nonlinear
theories and define and extend their region of applicabi-v

lity.

In Chapter 3, we have considered the diffu-
gion of partieles in the turbulent fields using Perturbed
Orbit‘Theory, While the effeets arising from spatial
diffusion of particles in the turbulent fields had been
well documented earlier, the nature of the veloeity space
diffusion had not been carefully examined. The guiding
centre diffusion éoefficients have been obtained analyti-
cally by neglecting the coupling between the components of
the diffusion tenmsor in phase space. It is seen that the
level of turbulent energy required for iton diffusion <8
lower than *7.zk the level required for the high temperature

electrons.

The perturbation of helical orbits in a
magnetic field has been considered i<n Sec. 3.2. We have
obtained nonlinear diffusion coeffieients which reduce to

the Fokker-Planck di ffusion coefficients in a magnetic
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rfiéZd @kén orb£t perturbationreffects are neglected, The
gﬁid{ng céntre diffusfbnbof pafticles in low frequency
electromagnetic ftelds hdve been obtained in Sec. 3.3.

The resﬁlts‘of Seecs. 3.2 and 3.3 are new to the best of
our kno@lédge, and show that the nonlinear scaling of 5

s differvent from the quastilinear scaling.

The complete orbit integral has been
evaluated in Chapter 4 by an accurate numerical routine.
We have dlso obtained the self-consistent values of the
dﬁffusﬁbn coefficitent by a rapidly convergent iterative
scheme. We haﬁe found ihaﬁ the resonant nature of the
di ffusion coefficient at low turbulence levels gets smeared
out at high turbulent energy, making D almost independent
of V . The above scheme is only partially serLconsiStent
since the fluctuation spectrum is introduced as a pdra¥ |
meter, and remains constant during the <teration. The
fully self-consistent numerical solution would require not
only fhe évaluafion of the spect?um, but also the evolution
of the particle distribution functions‘during the iteration

process.

The effect: of turbulent fluctuations on the
dielectrie response of the plasma has been considered in
Chapter 5. While spatial diffusion gives rise to the well

known resonance broadening and consequent stabilization,
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it iS'found that'veléciiy épace diffusioﬁ does not lead
to the same effect. Veloeity space diffusion can quench the
turbulence, but not give rise to a stationary turbulent
state. By a linear stability analystis of the stationary
turbulent state, arising from spatial diffusion, the non-
linear dispersion relation for <ton-acoustic and ton-
eyclotron waves have been obtained, and solved for the non-

linear frequency and growth rate.

Our next atm in this part was to éaZcuZate
explicitly éome observable parameters of the turbulent
state, and compare them with experiment. This provides a
check for the existing theories. Although turbulence
has been observed for some time, explicit theoretical
caleulations of observables has been lacking. This may have
been due to the self-consistent nature of the statistical
theories which makes explicit caleulations difficult. By
synthesising tkgvPerturbed Orbit Theory and an equivalent
description in terms of the Superposition of Diessed
Particles, we have explicitly calculated the fluctuation
spectrum of Ion-Acoustic Waves. The comparison of our
spectrum with observed ion—acoustic spectra and simulations,
~both in wave number and frequency, 18 very encouraging,
leading one to suppose that the statistical theories provide

a reliable framework for the study of turbulent plasma.



Tke'spéctrum of Zton-cyclotron waves has
been obtained in Chapter 7, we find that the form of the
spectrum offers q simple explanation for the anomalous %
spectruh observed in simulations.and experiments on current
driven Zon-qeoustie turbulence in q magnetic field, The
extension of the formalism to ZLow frequency electromagnetie

fluctuations 1s briefly outlined,

Further vefinement is possible along thesez
lines by ineluding the effects of mode eoupling, the ehange
in the partiecle distribution functions, and obtaining the

time evolution of the spectrum.

&

The diffusion boefficients obtained can be
used to caleulate the transport proverties in a turbulent
plasma, which have important practical applications in the
areas of plasma heating and eonfinement. Much further vork
lies in this direction once the plasma turbulence theorias
can be made tractable and as easily used as the linear

theory.
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APPENDIX I : Properties{of ihé/Lammel Function

1. ~ The Lommel function S,

defined by

2

- -
. - 7 e
w1 Ll B %
e dl = Z‘ ‘/\So ! CV)
, ) AR (AI.1)
\J(:) . »
H R _5/;.
where vz 2 <lf/g(;>
(Magnus et al., Pg. 76) .
2. 803 1/3(V) can be expressed in terms of the

Anger functions J, 1/3(V) and Bessel funetions J 1/3(7)

as

I P
v) =
‘~> O , '/?< //

Jo }-—fﬂ,, vy - o ()

/

U

~Z
D

S

(AT.2)

(Magnus et al., Pg. 112)

For large values of the argument and

~f<arg V <1
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| (AI.3)
(Magnus et al., Pg. 118).
4. For small values of the argument,
f&] w—{
--—;—‘ VYA s 2T ., 3} R
T, 0= oy \' () | TOm )
2y e )it |
—
yh = O
s SR TeIN 3, ,MFJ Y
+ S 2 S (Y) [i g
< - Z,
' . (AI.4a)
mz O
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,(.:' 2w -
. - , rN - -
J}* (v) = (o= %% ;> (=) ( %j). t r(h\4\—,.>‘0nq}+2 /
o : | i
-
A.i"'l‘
— - 71 ' - ) s
- Sl '< Y (L) ,/\1);(>)J
- ’
(AI.4Db)
(Magnus et al., Pg. 117).
Therefore,
vqu_ - QU-&q = 2 5in %47 N
3 73
“S" Jvi+l — . N ;I
\ w2 J.l)[‘\\f\ + =z ‘8)1

" (V2

[
I

U (%)) %1("' / ) s

5. Limiting values of the Bessel funetion J

for small arguments,
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NCRION NG

(Abramowitz, Pa. 360).

n / : ! R
JZE’(V> - J-y7(Vj ~ i-.w&(Y/2) - — k\/l)
") - 1D

(AI.7)

8. From Eq. (AI.3), for large values of V ;

e 4 5 A -‘,r __’_L,_?—_:_"_L(
\‘}"}'/3(’\/') - \}'13<y) - l 6/1);[ {/ ; EY C7\/Z’I j

N S

Substituting in Eq.(AI.2), the asymptotic value of So 1/S(V)

for large V s

...\_,‘
—
/
™~
- N
P

1 I
1 ay ]
A (AT, 8)
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7. , ~ For small V , substitufiﬁg EQs;?ZiES)fand,.

(AT.7) in (Afgz)

ST, ()]
S VB TR TG TUR)

o
=
~~
<
—
<
i
)

or

T i : -
7~ _ m (Vi v, N\ 32 N
v, ( v) = Al 72) ( /2) () +
175 R — -\ e e x

R

(AT.9)
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