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Abstract

Inflationary scenario has been very successful in solving various problems asso-

ciated with the standard Big Bang cosmology. But the nature of the field that

drives accelerated expansion (inflaton) is still unknown to us. The inflationary

models with scalar fields, under the slow-roll approximations, are well studied. In

contrast, inflationary scenario with spinor fields have not attracted much atten-

tion. In earlier works the ‘classical’ Dirac spinor field was studied as a candidate

of inflaton. However, there were some issues with inflationary scenario driven by

the Dirac spinor. One of the most important problem with Dirac spinor is that

it produces highly scale dependent power-spectrum (with spectral index ns ∼ 4),

which is inconsistent with the CMB observations.

Recently, one special type of spinor was proposed by Ahluwalia (2005, 2013)

which is an eigenspinor of charge conjugation operator, also known as Elko. This

spinor is called the Non-Standard Spinor (NSS) as it has an unusual property:

(CPT )2 = −I. NSS field is a spin-1
2

field with mass dimension one, whereas

the ‘classical’ Dirac spinor is a spin-1
2

fermion with mass dimension 3
2
. This new

spinor field obeys the Klein-Gordon equation instead of Dirac equation. NSS

can interact only through Higgs and with gravity, therefore it is dark by nature.

Thus it is worth investigating the role of NSS in the unknown dark sector of the

universe like: Dark matter, dark energy and inflation etc. In this thesis our focus

is on the NSS driven accelerated expansion of the universe.

In the earlier NSS theories there was one major inconsistency — the equation

of motion of NSS obtained from the energy-momentum tensor did not match with

the equation of motion calculated using the Euler-Lagrange equation. Recently

a consistent theory of NSS was developed which removed this inconsistency. In

this thesis we use a consistent NSS theory to study the first order cosmological

perturbation theory for NSS. The NSS Lagrangian and the energy-momentum

tensor can be expressed as follows:

L =
1

2

¬
λ
←−
∇µ∇µλ− V (

¬
λλ), T µν =

¬
λ
←−
∇ (µ∇ν)λ− gµνL+ F µν
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where λ and
¬
λ is the NSS and its dual. The covariant derivatives are defined

as:
¬
λ
←−
∇µ ≡ ∂µ

¬
λ +

¬
λΓµ and ∇µλ ≡ ∂µλ − Γµλ where, Γµ is the spin connection.

In the expression of energy-momentum tensor the F µν term, which was absent

in the earlier works, appears because of the variation of Γµ with respect to the

metric (Böhmer et al., 2010). Using a simple ansatz of the perturbed NSS and

its dual, δλ = δϕξ, δ
¬
λ = δϕ

¬
ξ where ϕ is a scalar and ξ is a constant spinor with

the property
¬
ξξ = 1, we have calculated components of the perturbed energy-

momentum tensor. The perturbation theory for NSS becomes like a scalar field

theory. However, calculation of the energy-momentum tensor shows the presence

of additional terms in comparison with the standard canonical scalar field. We

construct the modified Mukhanov-Sasaki equation for the NSS. Unlike scalar

field case, the sound speed square is shown to be c2
s 6= 1 in general. The spectral

index for the scalar perturbation is shown to give a nearly scale invariant power-

spectrum which is consistent with the observation provided that F̃ ≡ ϕ2

8M2
pl
< 10−4.

With this upper bound c2
s ∼ 1. Thus in case of first order perturbation theory,

NSS becomes indistinguishable with the canonical scalar field theories.

In this thesis we have also studied the attractor behaviour of NSS cosmology.

In inflationary and dark energy theories it is difficult to find exact initial condi-

tions. Therefore it is important that these theories show the attractor behaviour,

which will allow a wide class of solutions with different initial conditions to have

similar asymptotic behaviour. The search for an attractor in case of NSS was

attempted before also (see Wei, 2011). But no stable fixed points were found in

the earlier attempts. In this thesis it is shown that the NSS equations can give

inflationary-attractor which corresponds to 60 e-foldings. We have also demon-

strated, with a new definitions of variables, that in the presence of barotropic

perfect fluid the dynamical equations of the NSS can have stable fixed points.

The stable fixed points can give us late-time attractor for NSS which can be

useful in alleviating the cosmic coincidence problem. The stable fixed points are

achieved by redefining the kinetic and potential part of NSS.

Keywords: Inflation, Elko, NSS, Cosmological perturbation theory, Dark

energy, Cosmic coincidence problem.
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Chapter 1

Introduction

One of the most important problems of cosmology is to understand evolution of

the universe. General relativity provides us a theoretical framework to under-

stand the universe at different stages of evolution. Recent developments in the

observational cosmology are providing us a very detailed picture of the universe

by measuring various cosmological parameters with high accuracy. Whatever

theoretical models that we have, must agree with the observations. According to

the standard model of cosmology, the universe was created from an extremely hot

and dense state of matter which after a prolonged period of expansion became

the universe that we see today. This model of cosmology is also known as the Big

Bang model and it is highly sucessful in explaining many observational data. Big

Bang model was first proposed by Lemâıtre in 1927 [1]. Lemâıtre’s model was

based on the solutions of Einstein equation found by Friedmann [2, 3] describing

an expanding universe with a homogeneous and isotropic matter distribution.

This idea of the expanding universe was confirmed later with the observations

by Hubble in 1929 [4]. A very important discovery in cosmology came in 1965

when Penzias and Wilson discovered Cosmic Microwave Background Radiation

(CMBR) [5, 6]. The discovery rendered enormous observational support to the

Big Bang cosmology. According to the standard model of cosmology, the matter-

radiation decoupling occurred when the universe was approximately 380,000 years

old (after the Big Bang). CMB photons are the photons which we see today are

travelling freely after the decoupling. Hence it can reveal to us the nature of

1
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the distribution of various components of the universe at the time of decoupling.

The measurement of CMBR shows nearly perfect black body nature of the pho-

ton spectrum [7] with current temperature 2.725 ± 0.001K [8] throughout the

sky. NASA led Cosmic Background Explorers (COBE) has measured a very lit-

tle inhomogeneity (∼ 10−5) [9] in the temperature distribution of CMBR. Thus

CMBR observations imply that the matter distribution in the early universe might

be highly homogeneous and isotropic. Study of the observed inhomogeneity in

CMBR can give us an idea about the physics at time much earlier than decoupling

(see later). Another very important observation regarding the universe is its flat-

ness. Wilkinson Microwave Anisotropy Probe (WMAP) has measured curvature

parameter Ωκ = κ
(aH)2

(κ is the spatial curvature, a is the scale factor and H is the

Hubble parameter) to be quite small [10]. WMAP seven years data, along with

Baryon Acoustic Oscillation (BAO) and Hubble parameter measurement, has

constrained the curvature parameter as −0.0133 < Ωκ < 0.0084 in 95% CL [8].

Therefore, it can be concluded that in the flat universe total energy density, in

the unit of critical density εcr = 3H2

8πG
where G is Newtonian gravitational con-

stant, Ωtot = 1 + Ωκ ' 1. From the supernovae data cosmological models based

on a purely matter dominated universe (Ωm = 1) has been ruled out in the flat

universe [11]. The ΛCDM model of the universe includes a non-zero contribution

of the cosmological constant Λ in the total energy density along with the mat-

ter (baryonic matter and Cold Dark Matter (CDM)). The origin of cosmological

constant is not clear to us. It is believed that non-zero vacuum energy can be be-

hind cosmological constant. In the ΛCDM model total energy density in the flat

universe can be written as Ωtot = Ωm + ΩΛ ' 1 where, Ωm and ΩΛ are the matter

density and the cosmological constant density respectively, in the unit of critical

density. ΛCDM model has been very successful in explaining CMBR. From the

very recent Planck data Ωm = 0.314 ± 0.020, and ΩΛ = 0.686 ± 0.020 in 68%

CL [12]. Hubble parameter today is measured to have the value H0 = 67.3± 1.2.

The age of the universe is calculate to be 13.817± 0.048 Gyr.

In this thesis, we focus on the accelerated phases of expansion of the universe.

The universe has undergone the phase of acceleration twice in its history. The
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first phase of expansion is called inflation which occurred at a very early time

during the evolution of the universe [13–16]. Inflation was proposed to solve two

main problems of standard expanding universe model, viz. horizon puzzle and

flatness puzzle. During the inflation the universe expands nearly exponentially.

Because of the rapid expansion during inflation the causally connected region

blowed up exponentially [14]. This can provide an explanation for the observed

correlation of temperature between two causally disconnected region around an-

gular scales > 1◦ in the present-day sky. Thus inflationary paradigm can solve the

horizon problem. The rapid expansion during inflation also makes the universe

extremely flat. Indeed, CMB data are consistent with the flatness assumption.

It is generally expected that CMB data can tell us about the physics at the time

of the matter-radiation decoupling. But the presence of the large scale correla-

tion (at angular scale > 1◦) can provide us insight into the physics at time scale

much earlier than the matter-radiation decoupling. If the inflationary theory is

correct then it can leave some imprint in the CMB spectrum on super horizon

scales. Indeed the inflationary theory produces the inhomogeneity in CMB spec-

trum. Considering the fact that the subsequent expansion can not dissolve the

inhomogeneities produced during inflation, inflationary theory should be consis-

tent with the observation of the CMB. Observationally the power spectrum (two

point correlation function) of perturbation is scale invariant in large scale. Scale

dependence of the power spectrum is measured by the quantity called spectral

index. Spectral index of the scalar perturbation produced during inflation (ns) is

constrained by Planck+WMAP+BAO at ns = 0.9643± 0.0059 [17]. Exact scale

invariance of scalar perturbation, ns = 1 has been ruled out by Planck mission.

CMB can also have an imprint of the primordial gravitational waves which could

have been produced by tensor perturbations during inflation. The tensor per-

turbations can produce B-mode polarization by Thomson scattering of the elec-

tromagnetic wave at the time of recombination [18–20]. Therefore, the detection

of B-mode polarization can prove the existence of primordial gravitational wave

and thereby provides evidence of the inflation. However tensor perturbations are

small compared to the scalar perturbation. The ratio of power spectrum of the
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tensor perturbation to scalar perturbation r, so called tensor-to-scalar ratio, has

an observational upper bound r < 0.12 imposed by recent Planck mission [17].

After the end of inflation the standard Friedmann-Lemâıtre-Robertson-Walker

(FLRW) expansion started. The observation of type Ia Supernovae data shows

that the universe is currently going through a phase of accelerated expansion

[11, 21]. It has ruled out pure matter dominated universe. The acceleration can

be due to cosmological constant (Λ) which contribute the most in the energy

budget of the universe. This second inflationary phase started at around red

shift z ∼ 1 (the age of the universe was approximately 9 billion years old) and

it’s still continuing. Late time accelerated expansion is thought to be caused by

the presence of the dark energy. Cosmological constant in the Einstein equation

is supposed to be one of the candidate of the dark energy [22,23]. There are many

models of inflation and dark energy among them single scalar field model is well

studied.

In this thesis we study inflationary scenario with the non-standard spinors [24].

Spinor fields have not attracted much in the context of cosmology compared to the

scalar fields. In reference [25] the authors have studied the classical homogeneous

spinor fields in the context of cosmology based on the action given in (2.6.12). In

case of classical Dirac spinor one can consider the spinor fields coupled to gravity

by adding a term like ξψ̄ψR, where ψ and ψ̄ is the Dirac spinor and its adjoint

respectively, R is the Ricci scalar and ξ is the non-minimal coupling constant,

in the action. However, it was also shown that during evolution the bilinear

ψ̄ψ evolves as ∝ 1
a3

. Therefore, during the rapid expansion in an inflationary

period the the non-minimal coupling term will rapidly vanish. Thus, the effects

of non-minimal coupling terms becomes insignificant during inflation.

For the potential of the form V =
(ψ̄ψ)

n

(1+ψ̄ψ)
n , which could be an example for

quasi de Sitter inflation, to get e-folding greater than 60 the change in the bilinear

ψ̄ψ has to be 180 orders of magnitude. This is extremely high in contrast to the

standard chaotic inflation with scalar fields. The other problems in the standard

classical spinor inflation are:

1. Reheating: In case standard inflationary models with scalar fields the uni-
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verse is reheated when the scalar field oscillates around the bottom of its

potential and decays into particle. In contrast the equation of motion for

classical spinors are first order (Dirac equation), therefore, the spinor field

can not oscillate. So, the reheating can not happen with the standard

mechanism.

2. Scale dependence of the power spectrum: In [25] the authors have calculated

the power spectrum and spectral index. It was shown that in case of classical

spinors in large scale the power spectrum is strongly scale dependent. The

calculation of spectral index shows that it is blue tilted with the value ∼ 4.

Thus, the prediction of Dirac spinors are in conflict with observation.

Recently one special type of spinor is proposed by Ahluwalia and Grumiler [24,

26] which are non-standard. These are called Elko (Eigenspinoren des Ladungskon-

jugationsoperators). Elko is an eigen spinor of the charge conjugation operator

with dual helicity. These spinors are called non standard spinors (NSS) because

unlike Dirac spinors NSS have mass dimension one and (CPT )2 = −I. These are

also called ‘dark spinor’ as its dominant interaction channel is via Higgs and grav-

ity. One of the important properties of these spinors is it follows Klein-Gordon

equation instead of Dirac equation. Recently there has been some interest in

spinor inflation and dark energy models with NSS. In references [27, 28] authors

first considered NSS as inflaton and the authors calculated the back ground equa-

tions. They have shown that the equations are similar to canonical scalar field

equations with some additional terms which are the coming because of the pres-

ence of spin-connection (see in section 2.6) while considering spinors in curved

space-time. In Ref. [29] the authors calculated the cosmological perturbations.

However, in [30] the authors have shown that the energy momentum tensor cal-

culated in references [27–29] may be incorrect. In the earlier works while deriving

the expression of energy-momentum tensor from the action, the variation of spin-

connection with respect to metric was not properly calculated. This results in

the disagreement between Euler-Lagrange equations calculated directly from the

action and the equation of motion calculated from the continuity equation using
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the energy-momentum tensor. In the same work properly considering the varia-

tion of spin-connection the corrected expression of the energy-momentum tensor

is calculated and back ground equations are corrected.

In [30] it has been argued that the form of NSS considered in [24] does not

have any positive definite Lorentz invariant norm for the spinor resulting negative

energy ghost modes. These ghosts modes can be eliminated by introducing some

special choice of projection operator. But, the presence of the projection operator

in the Lagrangian can include preferred axis, hence the theory can not be Lorentz

invariant. However, to study inflationary scenario one can use a specific form of

the homogeneous and isotropic NSS and its dual as: λ = ϕ(t)ξ and
¬
λ = ϕ(t)

¬
ξ

where, ϕ(t) is a homogeneous and isotropic scalar and ξ is constant spinor with

the property:
¬
ξξ = 1. With the help of this ansatz, the action and various

components of the energy momentum tensor for NSS can be expressed entirely

in terms of the quantity
¬
λλ (or, ϕ2(t)) and its time derivatives. As in this case

¬
ξξ > 0, one may not have the negative energy solutions, hence the theory can be

free of the ghost modes. In addition, since the action and the energy densities

become functions of ϕ(t) in this ansatz, the theory can be treated as Lorentz

invariant. Therefore, in this thesis we use the above ansatz to study cosmology

of NSS models.

In cosmology, it is useful that the dynamical equations allow to have attractor

solutions during inflation. As the initial conditions are not known, the attractor

behaviour can allow a wide class of solutions with different initial conditions to

have similar asymptotic behaviour. In cosmology this has been done by analysing

the stability of the fixed points. The attractor nature of the dynamical equations

also helps us to alleviate cosmic coincidence problem associated with the dark

energy. As the universe expands, the matter density and dark energy density

evolve differently. The matter density falls as ∝ a−3 where as dark energy density

remains almost constant. Therefore, it is not clear why at red shift z ∼ 1 the dark

energy dominated universe started. If it is because of the reason that the initial

conditions were such that at red shift z ∼ 1 the dark energy domination started,

then the initial conditions should be extremely fine tuned – which is known as
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cosmic coincidence problem. In reference [31] the stability analysis was done for

NSS in the context of dark energy. It was concluded that there do not exist any

stable fixed points for NSS. In this thesis we have done the stability analysis with

a set of variables different than those used in [31].

The thesis mainly focuses on the following two issues in the NSS cosmology:

1. Developing a consistent cosmological perturbation theory, 2. to study the

robustness of NSS based models to produce accelerated expansion.

1. We ask the question if, unlike classical Dirac spinors, NSS driven inflation

can give us scale invariant power spectrum at large scale? To answer this

question we have used consistent NSS theory [30] and studied first order

perturbation theory [32]. It has been shown that the scalar spectral index

in case of NSS can be in the observed range provided ϕ satisfies an upper

bound ϕ2

8M2
pl
< 10−4 where Mpl is the reduced Planck mass.

2. The other issue that has been studied in this thesis is the attractor behaviour

in the NSS cosmology [33]. It is shown that inflationary attractor can exist

in case of NSS. With the redefinition of the variables it is shown that the

dynamical equations can behave as an attractor in the inflationary era. It

is also shown that in case of late-time acceleration the dynamical equations

have stable fixed points which can alleviate the cosmic coincidence problem

associated with the dark energy.

Plan of the thesis: In Chapter-2 we give a general description of the in-

flationary universe. We start with the standard model of cosmology with the

FLRW metric as a solution of Einstein equation. Using the approximations for

the metric and the energy-momentum tensor for an ideal fluid, the Einstein equa-

tion is written in terms of the Friedmann equation and the acceleration equation.

With the help of acceleration equation the condition for the accelerated expansion

(negative pressure) has been established. Next, we describe motivation for infla-

tion, namely — two puzzles associated with the standard model of cosmology:

horizon puzzle and flatness puzzle. Solutions of these puzzles using inflationary

scenario has been explained in this section. After this we introduce the concept
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of dark energy in order to explain the current acceleration of the universe. Next

we study the inflationary universe scenario with a canonical single scalar field.

We have explained some of the general features of the inflationary scenario with

scalar field like, slow-roll, fast-roll and multi-field inflation. Then we consider

the spinors in the curved space-time. We discuss the tetrad formalism which is

important for incorporating spinors in the curved space-time and use it to write

the Dirac equation in the curved space-time. Finally, we write the consistent set

of NSS equations. It has been shown that in comparison with the canonical scalar

field case, the Friedmann equation and acceleration equation in case of NSS have

additional terms proportional to F̃ = ϕ2

8M2
pl

when a simple ansatz on the form of

NSS is used. From Friedmann equation it is shown that the condition F̃ < 1 is

necessary in order to have a real Hubble parameter H, i.e. H2 > 0.

In Chapter-3 we focus on the first order perturbation theory of NSS based

inflationary model. At first we provide discussions on the metric perturbation.

Then we discuss properties of the gauge transformation and define the gauge

invariant quantities using the metric perturbation. By using a simple ansatz,

the NSS perturbations can be expressed in terms of scalar quantity δϕ. So in

this chapter we discuss the various aspects of the perturbation theory for single

scalar field. Then we construct the Mukhanov-Sasaki equation and show that

the solutions of this equation leads to nearly scale invariant power spectrum un-

der the slow-roll paradigm. Next, we calculate the perturbed energy-momentum

tensor for NSS. It is demonstrated that the pressure perturbation for NSS, in

general, can be anisotropic. Using the assumption that F̃ � 1, we calculate the

modified Mukhanov-Sasaki equation for NSS in the linear order of F̃ . We solve

the Mukhanov-Sasaki equation for NSS as corrections to the solutions found in

the single scalar field case. Finally, we show that NSS can give us a nearly scale

invariant power spectrum, which is consistent with the observation if the term F̃

satisfies an upper bound, F̃ < 10−4.

In Chapter-4 we focus on the early universe attractor scenario with NSS. We

discuss the attractor scenario in case of the canonical scalar field. We have shown

that in case of NSS, the Friedmann and acceleration equation can show attractor



9

behaviour during inflation. The attractor in this case corresponds to 60 e-folds,

which is necessary for successful inflationary scenario, when F̃ < 10−4. Then

we find the fixed points for the dynamical equations of NSS in the presence of a

perfect barotropic fluid with a new set of variables. After that a general analysis

of the stability of the fixed points has been discussed. In this chapter it is shown

that in case of NSS the fixed points can be stable. The stable fixed points can give

us late-time attractor which can be helpful in alleviating the cosmic coincidence

problem associated with the dark energy.

Chapter-5 contains summary and discussions.





Chapter 2

Inflationary universe

2.1 Introduction

In this section we briefly review the various aspects of inflationary cosmology. As

we have already mentioned that theme of our thesis is spinors in inflation, partic-

ularly non-standard spinors, it is necessary that we document the developments

in this regard. We first start with the standard model of cosmology based on

the FLRW metric (2.2). Then we briefly discuss the drawbacks of the standard

model of cosmology and we introduce the idea of inflation which proves to be the

potential model for our observed universe (2.3). In section (2.4) we discuss about

the present stage of accelerated expansion which can be also be considered as

quasi-inflationary stage. After that we present the various scalar field models of

inflationary universe such as slow-roll inflation, fast-roll inflation and multi field

models of inflation (2.5). In sections (2.6) and (2.7) we discuss the inflationary

model based on spinors.

2.2 The standard model of cosmology: FLRW

universe

The standard model of cosmology is based on the observational fact that the

universe is homogeneous and isotropic over length scale greater than 100Mpc.

11
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As we have sufficient evidence that our universe is expanding, geometry of the

universe can be described by FLRW metric. To understand the nature of the

expansion cosmologists prefer to work using the comoving formalism. In this

formalism comoving distance between the any two points remain same. And the

physical distance between the points can be obtained by multiplying comoving

distance with a scale factor, a (t). The scale factor contains information about

the evolution of our universe: If the scale factor increases with time, the distance

between the two points increases and thus describes the expanding universe. If the

scale factor decreases with time we have contracting universe. The dependence of

scale factor on time varies in different era of evolution (e.g. ∝ t1/2 in the radiation

dominated era, ∝ t2/3 in the matter dominated era). One of the important

quantities that quantify the change in the scale factor is the Hubble parameter

defined as H = ȧ (t) /a (t). Here the ‘dot’ denotes the derivative with respect to

cosmic time t. In terms of the Hubble parameter the acceleration can be written

as
ä

a
= H2

(
1 +

Ḣ

H2

)
. (2.2.1)

Equation (2.2.1) is an identity and it contains information about geometry. Now

the question is what drives the dynamics of the scale factor. The answer lies in

the Einstein equations in general relativity, which connects the geometry with

the energy-momentum tensor describing the energy density.

The Einstein equation in general space-time is given as

Rµ
ν −

1

2
gµνR = 8πGT µν . (2.2.2)

The left hand side is known as Einstein tensor Gµ
ν ≡ Rµ

ν − 1
2
gµνR. Here, G is

Newton’s gravitational constant and T µν describes the energy-momentum tensor

of the matter. The Einstein tensor is a function of the metric and its derivatives

and therefore, contains the information of space-time. The term Rµ
ν is the mixed

form of the Ricci tensor Rµν which is defined as follows:

Rµν = Γλµν,λ − Γλµλ,ν + ΓηµνΓ
λ
λη − ΓηµλΓ

λ
νη, (2.2.3)
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where, Γµνρ is the Christoffel symbol which can be expressed in terms of the metric

gµν as follows

Γµνρ =
1

2
gµσ [∂νgσρ + ∂ρgσν − ∂σgνρ] . (2.2.4)

The term R is called Ricci scalar, which can be obtained by contracting Ricci

tensor into the metric:

R = gµνRµν . (2.2.5)

gµν contains the information about the space-time. In four dimension the flat

space time the metric gµν is given by the diagonal Minkowski metric ηµν =

diag (1,−1,−1,−1), where the first component corresponds to temporal part

and the last three corresponds to the spatial part. As in the case of isotropic

and homogeneous expanding universe the physical distance is proportional to the

scale factor, one can write the metric by multiplying the space part of ηµν with

the scale factor:

gµν = diag
{

1,−a2 (t) ,−a2 (t) ,−a2 (t)
}
. (2.2.6)

The metric (2.2.6) is known as FLRW metric. gµν is ‘the inverse’ of the metric

(2.2.6) defined as gµν = diag
{

1,− 1
a2
,− 1

a2
,− 1

a2

}
. One can see that in case of the

Minkowski metric ηµν all the components of Christoffel symbol are zero. However,

this is not the case when gµν is considered. Different components of Christoffel

symbol for (2.2.6) are listed in the appendix (A.1.1). The expressions for the Ricci

scalar and for the different components of Ricci tensor (2.2.6) are listed in the

appendix (A.1.2). For isotropic perfect fluid the energy-momentum tensor can be

written as a diagonal matrix where energy density is the time-time component

of the energy-momentum tensor and pressure is given by the negative of the

space-space components:

T µν = diag {ε,−p,−p,−p} . (2.2.7)

Finally, using (A.1.4) and (A.1.5) one can write the Einstein equation for the
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energy-momentum tensor (2.2.7) in terms of scale factor as

(
ȧ

a

)2

=
8πG

3
ε, (2.2.8)

2
ä

a
+

(
ȧ

a

)2

= −8πGp. (2.2.9)

Combining (2.2.8) and (2.2.9) the acceleration ä becomes

ä

a
= −4πG

3
(ε+ 3p) . (2.2.10)

From (2.2.10) it can be checked that for ordinary matter (pressure p = 0) and for

radiation (p = ε/3) the universe expands with deceleration (ä < 0).

The dynamics of the fluid quantity may come from ∇µT
µν = 0. But the

equation of state relating ε and p is needed in order to close the fluid equation.

Setting ν = 0 in ∇µ = 0, one can obtain the continuity equation in the FLRW

background which can be written as follows:

ε̇+ 3H (ε+ p) = 0. (2.2.11)

From the above continuity equation one can understand that in the FLRW uni-

verse as the universe expands, in the radiation dominated era the energy density

falls as ∝ a−4 and in the matter dominated era it falls as ∝ a−3. Substituting

this in (2.2.8) one can easily see that in the radiation dominated era the scale

factor grows as ∝ t1/2 and in the matter dominated era the scale factor grows as

∝ t2/3.

2.3 Drawbacks of the standard model of cosmol-

ogy

Although the FLRW model of our universe satisfactorily describes the contents

of our universe, still FLRW universe has some problems. There are two major

issues with the standard model of cosmology namely: (i) Horizon puzzle and (ii)
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flatness puzzle in order to understand these puzzles it is useful to write most

general form of FLRW metric in polar coordinate can be written as

gµν = diag

{
1,−a2 1

1− κr2
,−a2r2,−a2r2sin2(θ)

}
(2.3.1)

where, κ is the spatial curvature and have values κ = −1, 0,+1 depending on

whether the universe is open, flat and closed respectively. The Friedmann equa-

tion now becomes

H2 +
κ

a2
=

8πG

3
ε. (2.3.2)

i. Horizon puzzle:

Today the causal horizon size is l0 = cto, where t0 is the age of the universe

t0 ∼ 1017sec. At Planckian time (tpl ∼ 10−43sec) from which the universe was

originated, must have a size greater than lpl = l0
apl
a0

= cto
apl
a0

. Now, the causal

horizon size at Planck time is lc = ctpl. Comparing lpl and lc one can get
lpl
lc

=

t0
tpl

apl
a0

. As
apl
a0
∼ 10−32, it can be shown that the size of the universe at nearly

Planck time was at least 1028 times greater than the size of the causal horizon.

Now the puzzle is how a smooth distribution of temperature with fluctuation

∼ 10−5 is observed in the CMBR over a large number of causally disconnected

region.

ii. Flatness puzzle:

Friedmann’s equation (2.3.2) can be written as: Ω(t)− 1 = κ
(aH)2

, where Ω = ε
εcr

,

εcr = 3H2

8πG
is called the critical energy density. From here we get Ωi(t) − 1 =

(Ω0(t)−1)( ȧ0
ȧi

)2. In the discussion of horizon problem we saw that li
lc
∼ t0ai

tiao
∼ 1028.

Now as the scale factor is a function of time only we take a
t
∼ ȧ. Therefore we

find that Ωi(t)− 1 ≤ 10−56. This means that in the early universe critical energy

density was unity(flat universe) with a fluctuation of 10−56. Ω can also be written

as the ratio of gravitational potential energy and kinetic energy. Now, for Ω is

>1, <1 or =1 respectively signifies closed, open or flat universe. Thus in standard

model of cosmology, the early universe the value of Ω was so fine tuned that any
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very very small deviation (of the order 10−56) from 1 would lead to a closed or

open. This problem of fine tuning is called flatness puzzle.

These puzzles can be solved if the universe had an accelerated phase of ex-

pansion some time early in its expansion history. This phase of acceleration is

called inflation. To retain the success of standard model of decelerated expansion

of the universe we say that the inflation started and ended very early. During

inflation the universe expanded almost exponentially. Actually due to this accel-

erated expansion, the region of space that were in causal contact before inflation,

became causally disconnected during inflation. This paradigm can also explain

the observed flatness (κ = 0) in the CMB spectrum.

2.4 Second inflationary stage: Dark energy

We know from observations of CMB that the total energy density of the universe

is very close to its critical value, i.e. εtot = εcr or Ωtot = εtot
εcr

= 1. Discovery of the

dark energy is fairly recent. The late-time acceleration which is still continuing

is attributed to the dark energy, the name suggestive of our ignorance about its

origin. Evidences from type Ia supernova data [11, 21] have rejected the matter

dominated expansion after red shift z ∼ 1. According to our current understand-

ing at present the total energy-budget of the universe consists of 31.4% matter

and 68.6% is inform of dark energy [12]. Dark energy can be regarded to be dis-

tributed smoothly (in homogeneous and isotropic fashion) over the entire present

universe.

One of the simplest models of the universe which can explain the late-time

accelerated expansion is based on inclusion of cosmological constant Λ in the

Einstein equation. Energy density related with Λ does not dilute with expansion

of the universe and at some point in time it can start dominating over the other

energy densities to give the accelerated expansion. Energy density and pressure of

the cosmological constant term are respectively given by εΛ = Λ and pΛ = −Λ and

thus have the equation of state pΛ = −εΛ necessary to give accelerated expansion.

But this model of dark energy suffers one theoretical problem. The non-zero
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vacuum energy density is believed to be acting as the cosmological constant Λ.

From field theoretic calculation it is found that calculation of zero point energy

leads to the value of Λ which is 60-120 orders of magnitude higher than the

observed value [23, 34]. There is an issue with the dark energy models with

finite Λ which is called ‘coincidence’ problem. It asks the question, why the dark

energy domination started at z ∼ 1? One possible answer could be that the

initial conditions were such that the dark energy domination started at z ∼ 1.

But this will make the initial conditions extremely fine tuned. In cosmology we

avoid this kind of fine tuning. To solve ‘coincidence’, we consider problem dark

energy models with a time dependent scalar field ϕ(t) called quintessence and this

quintessence field evolve in such a way that irrespective of its initial condition

it starts following the track that we know is needed for this transition to take

place at z ∼ 1. In other word dynamical equations should show some attractor

behaviour. This kind of attractor solutions are also called tracking solutions.

The quintessence models [35] follow the similar set of equations as of inflation.

So, writing the energy-momentum tensor and identifying its energy density and

pressure we find that if ϕ(t) is varying very slowly with time we can neglect ϕ̇2

to get p(ϕ)
ε(ϕ)

= −1 which is desired equation of state.

In addition there are some other models of dark energy: Composite scalar

models of dark energy. Neutrinos may be one of such candidates which conden-

sates and form scalar [36]. In this thesis we investigate the role of NSS in the

accelerated expansion of the universe.

2.5 Scalar fields in inflation

In this section we discuss some of the important features of the inflationary uni-

verse. At first we discuss the standard slow-roll inflationary scenario in which

the smallness of slow-roll parameters ε � 1 and η � 1 help us in getting the

negative pressure required for the accelerated expansion. If the second slow-roll

condition is violated (η ∼ 1) still one can have accelerated expansion, which is

briefly described in the fast-roll section. In a later section we will also discuss
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the multi field scenario. Some of the general features will be used in the later

chapters of the thesis.

2.5.1 Slow-roll

From Friedmann equation we find that to get inflationary universe we need p <

−1
3
ε. We can understand the this odd equation of state from field-theoretic point

of view. Let us consider the simple field-theoretic model where inflation is driven

by a scalar field. It is called inflaton which is function of time only. That energy

momentum tensor for this inflaton can be identified as that of a perfect fluid.

As scalar field is independent of space coordinates, we find energy density and

pressure as followed:

ε =
1

2
ϕ̇2 + V (ϕ), p =

1

2
ϕ̇2 − V (ϕ). (2.5.1)

Therefore the equation of state is

p

ε
=

1
2
ϕ̇2 − V (ϕ)

1
2
ϕ̇2 + V (ϕ)

. (2.5.2)

So from equation (2.5.2) we get, when ϕ̇2 � V (ϕ), p = −ε. That means,

when the scalar field is rolling slowly in a flat potential, its kinetic energy is

negligible compared to potential energy, then we get our desired equation of

state. Therefore to get the two initial problems solved we need to keep ϕ̇2 much

smaller than V (ϕ) for a sufficiently long time, for about 75 e-folds. Now if we

write the Klein-Gordon equation for the scalar field it looks like:

ϕ̈+ 3Hϕ̇+ V,ϕ = 0. (2.5.3)

As the scalar field is rolling very slowly down the potential, we can neglect ϕ̈ com-

pared to ϕ̇ and V (ϕ). Therefore using (2.5.3) the first order slow roll parameters

in terms of the potential can be defined as:

εV =
1

16πG

(
V,ϕ
V

)2

, ηV =
1

8πG

(
V,ϕϕ
V

)
, δV = η − ε.
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Now in terms of slow roll parameters we can say that inflation occurs when εV � 1

and ηV � 1. In the slow-roll case the inflation ends when εV ∼ 1.

•Hamilton-Jacobi approach: So far we have treated the inflaton field as

the fundamental quantity in case of inflation. It is also possible to define the

slow-roll quantities entirely in terms of Hubble parameter H. This approach is

also known as Hamilton-Jacobi approach [37]. One of the advantages of using

Hamilton-Jacobi approach is that it can remove the explicit time dependence as

the independent variable in this case is the field itself. Using (2.5.1) one can

write the Friedmann equation and the acceleration equations for flat universe

respectively as

H2 =
κ2

3
ε =

1

3

[
1

2
ϕ̇2 + V (ϕ)

]
. (2.5.4)

Ḣ = −κ
2

2
(ε+ p) = −1

2
ϕ̇2. (2.5.5)

Here in the last lines we have set κ2 = 8πG = 1. As the expression of Ḣ tells

us that the value of Hubble parameter goes down with time, equation (2.2.1)

suggests that | Ḣ
H2 | < 1 to get acceleration (ä > 0). As H,ϕ = Ḣ/ϕ̇, using (2.5.5)

the expression of H,ϕ becomes

H,ϕ = −1

2
ϕ̇. (2.5.6)

Finally, the Friedmann equation (2.5.4) can be written as,

H2 (ϕ) =
2

3
H2
,ϕ +

V

3
. (2.5.7)

Therefore, using (2.5.5) and (2.5.6) the slow-roll parameters can be defined in

terms of Hubble parameters as

εH = − Ḣ

H2
= 2

(
H,ϕ

H

)2

, ηH =
ϕ̈

Hϕ
= 2

H,ϕϕ

H
. (2.5.8)

During inflation both εH � 1 and ηH � 1. The definition of change in the
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number of e-folding also can be in terms of the Hubble parameter as

∆N = − H

2H,ϕ

∆ϕ = − ∆ϕ√
2εH

. (2.5.9)

Here we have considered that during inflation the change in the inflaton is very

small. The value of inflaton changes towards the end of inflation [38].

Inflation has strong evidence in the Cosmic Microwave Background data from

WMAP(Wilkinson Microwave Anisotropy Probe) satellite. WMAP measures the

temperature and temperature anisotropy of CMBR. At large scale(early time)

it has evidence of inflation. Fluctuation of inflaton δϕ implies fluctuation of

energy-momentum tensor(δTµν) which implies fluctuation in metric. Fluctuation

in CMB temperature can be related to gravitational potential(in the metric per-

turbation) at last scattering surface. So temperature fluctuation can be related

to the inflaton fluctuation. Finally if we calculate power spectrum of the inflaton

fluctuation we can see it fits very well with the WMAP data.

2.5.2 Fast-roll

So far we have seen that in case of slow-roll inflation we need two independent

conditions, ε � 1 and η � 1. The usefulness of slow-roll conditions is mainly

twofolds: One is, it produces a very large expansion during inflation and the

other one is production of scale invariant power spectra of density perturbation

which gives us nearly isotropic universe, consistent with observation. In other

words, if the perturbations that we observe today are the primordial perturbations

produced during inflation, they must have occurred when inflaton was on the top

of the potential. Now the question can be asked is: Can inflation occur if the

slow-roll conditions are violated? From Friedmann equations one point is clear

that to get scale factor growing exponentially ε � 1 must be satisfied. If this

condition is violated, we can’t treat Hubble parameter (H) as a constant – hence,

exponential expansion will not be possible. Thus, in the fast-roll scenario only

possible violation of slow-roll can be η ∼ 1.

For inflaton with mass m the slow-roll condition η � 1 can be translated
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into |m2| � H2. However, in various models of supergravity theories the mass

square terms are observed being of the order of the square of Hubble parameter,

|m2| = O (H2) [39, 40]. Non minimal coupling scenarios [41, 42] with conformal

coupling constant (ξ = 1/6) also gives the correction in the mass square term

∼ H2. In reference [43, 44] the authors have studied the inflationary theory in

the context of fast-roll. It has been shown that in case of potentials which are

unbounded from below (for example V = V0 − m2ϕ2/2), under the condition

m2 = O (H2), the scale factor can grow exponentially. Fast-roll inflation can

be an interesting scenario to study at the beginning and the end of slow-roll

inflation. It can also be the possible reason behind the current acceleration of

our universe [44].

2.5.3 Multi field inflation

So far we have described the standard single field inflationary scenario. In this

picture the inflationary scenario has following stages: The scalar field very slowly

rolls down the potential which gives acceleration of our universe. Towards the end

of inflation, kinetic energy of the field becomes comparable to potential energy

and the inflation ends with the violation of the slow-roll. The primordial per-

turbations that we observe today might have originated at the time of inflation.

At the end of the inflation, the inflaton field decays into particles by oscillation

near the minimum of the inflaton potential and transfers all its energy to the

created particles [45]. The created particles finally come to thermal equilibrium

by interacting among themselves and the universe reheats.

It is natural to have more than one scalar field can during the inflation. One

of the simplest way to consider the multi field inflationary scenario is provided

by the hybrid models where two scalar fields are required to have the inflation.

In hybrid inflation one field contributes the most to the total energy density and

thus gives accelerated expansion. While the second field remains sub-dominant

during inflation and this field would not contribute to the expansion. Hybrid

models are extension of new-inflation and hybrid inflation is not eternal [46, 47].

One very popular example of hybrid inflation is the two field case where one
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field ϕ has potential V (ϕ) = m2ϕ2/2 with mass m and the other scalar field

σ (sometimes known as ‘waterfall field’) has the symmetry breaking potential

V (σ) = 1
4λ

(M2 − λσ2)
2
, where M is mass and λ is the self coupling parameter

for σ. The hybrid potential with the interaction term between the two scalar

fields can be written as, V (ϕ, σ) = 1
4λ

(M2 − λσ2)
2

+ 1
2
m2ϕ2 + 1

2
g2ϕ2σ2, where

g is the coupling constant. The main difference between this model of hybrid

model and the single field chaotic model is the end of inflation: In the single

field model inflation ends when the ϕ potential becomes steep, but in the hybrid

model the inflation ends when the potential in the σ direction becomes steep [16].

This may give some freedom in the model building of inflation. Production of

curvature perturbation in hybrid inflation can be found in references [48, 49].

Hybrid inflation in case of inflaton field (ϕ) non-minimally coupled to gravity has

been discussed in [50].

Another popular example of multi field inflation is Curvaton model [51]. In

a curvaton model there exist two scalar fields: One is called inflaton field which

drives the inflation and the other field, known as curvaton, seeds the density

perturbation observed today. The curvaton field remains sub-dominant during

inflation, so it does not participate during inflation. Therefore, the slow-roll

conditions – which are must in case of inflaton field – are not necessary in case

of curvaton. The curvature perturbation due to curvaton takes place in two

stages: During inflation the quantum fluctuation in curvaton becomes classical

perturbation at the time of horizon exit and then the classical perturbation is

converted into curvature perturbation. The details of the perturbation theory of

curvaton can be found in [52]. In contrast to the standard curvaton scenario, in

reference [53] the authors have considered the double inflation with the second

phase of inflation is due to slowly rolling curvaton field. It has been shown that

inflating curvaton also has a significant contribution in curvature perturbation.
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2.6 Spinors in curved space-time

While treating spinros in a curved space-time it is useful to introduce the concept

of tetrads [54, 55].

• The tetrad formalism: In the Minkowski space-time infinitesimal Lorentz trans-

formation is described as

xa → x̃a = Λa
bx

b, (2.6.1)

where, a and b are the Lorentz indices associated with inertial frame and Λa
b =

(δab + σab ). σab is an antisymmetric tensor and has the value much smaller than

one, |σab| � 1. Under the above infinitesimal Lorentz transformation any general

field F transform as

F → F̃ = D (Λ)F . (2.6.2)

Here the quantity D (Λ) can be written as,

D (Λ) = 1 +
1

2
σabf

ab, (2.6.3)

where fab is the generator of the Lorentz group. The above transformation law is

valid for any physical quantity under a Lorentz transformation, it could be scalar,

vector, tensor of rank 2 (or above) or it could be a spinor. Depending on our

interest the generator takes different forms, for example, in case of scalar fab = 0

and for spinors fab can be expressed in terms of the γ matrices (defined in the next

section). To accommodate the general field in the curved space time, respecting

the Lorentz transformation, we need to use the tetrad or vierbien formalism.

In tetrad formalism we erect normal coordinates associated with the local

inertial frames (ξaX) at each points X of the curved space-time. At each point

X in the space-time the coordinate ξaX has the flat Minkowski metric ηab. But

in general coordinate system the metric gµν can be related with the Minkowski

metric as

gµν = eaµe
b
νηab. (2.6.4)
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Here the quantities eaµ are called tetrads or vierbiens and they are defined as

eaµ =
∂ξaX
∂xµ

. (2.6.5)

• Properties of tetrads : The tetrads transforms as a vector under both the

general coordinate and the Lorentz transformations. The transformation rules

for the tetrads under the general coordinate and Lorentz transformation are re-

spectively,

eaµ →
∂xν

∂x′µ
eaν , eaµ → Λa

be
b
µ. (2.6.6)

Inverse of the tetrads can be found from the following normalization conditions

eaµe
ν
a = δνµ, eaµe

µ
b = δab . (2.6.7)

When any covariant coordinate vector (transforms as a vector under a coordinate

transformation) is contracted into a tetrad then, it gives us a quantity which

transforms as a vector under a Lorentz transformation, at the same time it trans-

forms as a scalar under a general coordinate transformation. For example, if a

four coordinate vector Aµ is contracted into eµa we get,

Aa = eµaAµ. (2.6.8)

Aa is a scalar under a coordinate transformation and a vector under a Lorentz

transformation. Similarly, when covariant Lorentz vector Aa is contracted into

tetrads, it gives us a Lorentz scalar which at the same time is a coordinate vector.

Therefore, using tetrad formalism one can bring the spinors (in general, any other

field of arbitrary spin) into the considerations of general relativity.

As there are two kind of transformations, to write a sensible action we have

to ensure that the action is invariant under both coordinate as well as the lo-

cal Lorentz transformations. As the action contains derivatives of the physical

quantity of interest and the quantity itself, we have to ensure that the action is

coordinate scalar as well as Lorentz scalar in spite of the presence of the deriva-

tives. One way to do this is defining the covariant derivatives which contains
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tetrads. In case of classical spinors, which follows Dirac equation, the action is

linear in space-time derivative – ∂µ. Since ∂µ is a coordinate vector, one can make

it a coordinate scalar by contracting it into eµa , i.e., eµa∂µ. When we operate eµa∂µ

on any spinor ψ one can see that the transformation (2.6.2) does not allow eµa∂µψ

transform like a Lorentz vector. Thus, one can construct a Lorentz vector by

defining a ‘coordinate scalar Lorentz vector derivative’ ∇a which, when operated

on a spinor transforms like

∇aψ → Λb
aD (Λ)∇bψ. (2.6.9)

This can be achieved when ∇a is defined as:

∇a = eµa (∂µ + Γµ) , (2.6.10)

where, Γµ is given by

Γµ =
1

2
fabeνa

(
∂µebν − Γρνµebρ

)
. (2.6.11)

In the above expression Γρνµ is the Christoffel symbol in the curved space-time.

Therefore, the invariant action for the Dirac spinor defined in curved space-time

is,

SDirac =

∫ √
−g
[
i

2

(
ψ̄γµ∇µψ −∇µψ̄γ

µψ
)
− V

]
d4x, (2.6.12)

where, ψ̄ is the adjoint of ψ, V is the potential, ∇µ = (∂µ + Γµ) and γµ = eµaγ
a

is the gamma matrices in the curved space time with anti-commutation relation

{γµ, γν} = 2gµν . Thus Dirac equation in a curved space-time becomes

iΓµ∇µψ −mψ = 0, (2.6.13)

where Γµ is the spin connection defined in equation (2.6.11) and m is the mass. In

the above equation the form of the potential is chosen as V = mψ̄ψ. In the FLRW
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background the equation of motion for the homogeneous spinor field becomes

ψ̇ +
3

2
Hψ + iγ0mψ = 0. (2.6.14)

2.7 Non-standard Spinors

Recently there is a lot of interests in studying dark or Non-Standard Spinor (NSS).

The theory of NSS was first developed in Refs. [24, 56]. Subsequently the NSS

models were further developed and investigated by several authors [57–65]. These

spinors can be regarded as ‘dark’ as their dominant interaction is with Higgs and

via gravitational field only and they have been extensively applied to study above

mentioned problems in cosmology [27–31,66–68]. Unlike the Dirac, Majorana or

Weyl spinors, NSS propagator behaves like 1/p2 in the large momentum limit and

has mass dimension one. At present the theory of NSS is under development,

however, NSS are known to be either violating the Lorentz invariance or locality

or both. Basic Lagrangian of NSS can be written as

Lcosmo =
1

2

¬
λ
←−
∇µ∇µλ− V (

¬
λλ), (2.7.1)

where,
¬
λ
←−
∇µ ≡ ∂µ

¬
λ +

¬
λΓµ, ∇µλ ≡ ∂µλ − Γµλ. λ and

¬
λ are NSS and its dual

respectively. Γµ are defined as

Γµ =
i

4
ωabµ fab, fab =

i

2

[
γa, γb

]
(2.7.2)

where index µ is the space-time index and index a is the spinor index. Here ωabµ

is defined as

ωabµ = eaν∂µe
νb + eaνe

σbΓνµσ, (2.7.3)

where eaµ are tetrads defined as eaµe
b
νηab = gµν . Here

gµν = a2 (η)× diag(1,−1,−1,−1) (2.7.4)
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is the space-time metric in the conformal time (η). Unlike (2.2.6), in the conformal

time the temporal part is multiplied with the scale factor. Here the relation

between conformal time and cosmic time can be written as: dη = dt
a

. Γνµσ are

Christoffel symbols of gµν defined before. γ-matrices are constructed as

γ0 =

 0 I2×2

I2×2 0

 , γi =

 0 −σi

σi 0

 , (2.7.5)

where σi (i = 1, 2, 3) are Pauli matrices defined as

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (2.7.6)

It should be noted that the form of NSS considered in [24] does not have a positive

definite Lorentz invariant norm [30]. This can lead us to negative energy ghost

modes. To remove the ghost modes, a term with a special choice of projection

operator P is needed in the action (or Lagrangian). But this can make the

NSS theory Lorentz violating. However the NSS theory can be made Lorentz

invariant with a non-local choice of operator P [30]. But using this kind Lorentz

invariant form of the Lagrangian the calculation of energy momentum tensor can

be extremely complicated. In spite of that one can treat the action using the

Lagrangian (2.7.1) classically and study various areas of NSS cosmology. For

simplicity we use the following form of NSS and it dual

λ = ϕ(η)ξ,
¬
λ = ϕ(η)

¬
ξ, (2.7.7)

where, ϕ(η) is a scalar quantity. ξ and
¬
ξ are two constant matrices with

¬
ξξ = I.

As, in this case
¬
ξξ > 0 the NSS theory can be ghost free as there may not be

any negative energy solution. With the above ansatz the components of energy-

momentum tensor can be written entirely in terms of the scalar, ϕ(η). Therefore,

the NSS cosmological theories can be treated as Lorentz invariant.

In [30] it is shown that the energy-momentum tensor T µνcosmo can be constructed
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from Lcosmo as

T µνcosmo =
¬
λ
←−
∇ (µ∇ν)λ− gµνLcosmo + F µν , (2.7.8)

where F µν = 1
2
∇ρJ

µνρ and Jµνρ defined as

Jµνρ = − i
2

[
¬
λ
←−
∇ (µf ν)ρλ+

¬
λfρ(µ∇ν)λ

]
. (2.7.9)

F µν is the additional term which did not appear in the earlier models [27,28,68]

as the authors did not consider the variation of Γµ with respect to the met-

ric. Therefore in cosmological perturbation theory this term can bring in some

additional features compared to [29]. As it turned out , the cosmological pertur-

bations based on equation (2.7.8) are far more complex than the theory based

upon canonical scalar field model. Appearance of F µν term can give rise to an

additional scale F̃ =
¬
λλ

8M2
pl

in the problem, where Mpl =
√

1
8πG

is the reduced

Planck mass and G is the gravitational constant.

It is generally assumed that the inflation is driven by a scalar field, which can

have the following verifiable predictions: (a) nearly a scale invariant spectrum,

(b) existence of gravitational waves and (c) the tensor to scalar ratio of the power

spectrum may be of the order of ε, where ε is the slow roll parameter [15,69,70].

In this thesis we investigate some of the predictions of the inflation theory by

assuming that the inflation is driven by a NSS with energy-momentum tensor

described by equation (2.7.8).

2.7.1 Background equations

Using (2.7.7) in a flat, isotropic and homogeneous space-time unperturbed Lcosmo

can be written as

Lcosmo =
1

2a2

[
ϕ′2 +

3

4
H2ϕ2

]
− V (ϕ), (2.7.10)

where prime (′) denotes the derivative with respect to conformal time η . V (ϕ)

is the potential which is a function of ϕ. While the Hubble expansion parameter

H is defined as H = a′

a
. The relation between H and H is H = aH. Unperturbed
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energy momentum tensors and equation of motion for ϕ in FRLW space-time

have already been calculated in [30]. We are enlisting them below in conformal

time . Let us first define the covariant energy momentum tensor T µνcosmo, which

appears into the Einstein’s equation, as

T µνcosmo = T̄ µν +
1

2
∇ρJ

µνρ, (2.7.11)

where,

T̄ µν =
¬
λ
←−
∇ (µ∇ν)λ− gµνLcosmo. (2.7.12)

The non-vanishing components of Jµνρ are

J iηj = Jηij =
1

4

H
a4
ϕ2δij, J ijη = −1

2

H
a4
ϕ2δij. (2.7.13)

Here ϕ2 =
¬
λλ, is a function of time only. Next, we can write the expressions for

the energy density ε and pressure p as following:

ε = T ηη = T̄ ηη + F η
η , p = −T ij δij = −

(
T̄ ij + F i

j

)
δij. (2.7.14)

Expressions for T̄ µν and F µν can be written as,

T̄ ηη =
1

2a2

[
ϕ′2 − 3

4
H2ϕ2

]
+ V (2.7.15)

and

F η
η =

3

4a2
H2ϕ2. (2.7.16)

From these one can write energy density as

ε =
1

2a2

[
ϕ′2 +

3

4
H2ϕ2

]
+ V. (2.7.17)

It is useful to write the expression for ε as,

ε = X + V, (2.7.18)



30 Chapter 2. Inflationary universe

where, X =
(
∇η

¬
λ∇ηλ

)
− gηη

(
1
2
∇µ

¬
λ∇µλ

)
+ gηη

1
2
∇ρJ

ηηρ = 1
2a2

[
ϕ′2 + 3

4
H2ϕ2

]
.

Considering the diagonal space-space components of energy-momentum tensor

one can write

T̄ ij δij = − 1

2a2

[
ϕ′2 +

1

4
H2ϕ2

]
+ V, (2.7.19)

and

F i
j δij =

1

4a2
H2ϕ2 +

1

4a2

(
Hϕ2

)′
. (2.7.20)

From these one can obtain the expression for pressure as

p =
1

2a2

[
ϕ′2 − 1

4
H2ϕ2

]
− 1

4a2

(
Hϕ2

)′ − V. (2.7.21)

It is easy to notice that the pressure is homogeneous and isotropic. All other

components of background T µν are zero. By adding ε and p

(ε+ p) =
ϕ′2

a2
+

1

4a2
H2ϕ2 − 1

4a2

(
Hϕ2

)′
. (2.7.22)

For the instance when the last two terms in the above equations are absent, one

can recover the expression for (ε + p) of the canonical scalar-field. Equation of

motion for ϕ can be obtained by equating the divergence of T µν to zero:

ϕ′′ + 2Hϕ′ − 3

4
H2ϕ+ a2V,ϕ = 0. (2.7.23)

It should be emphasized that the above equation for ϕ matches with the equation

motion obtained using Euler-Lagrange equation as discussed in [30]. However, in

the earlier calculations based on non Lorentz invariant model of NSS there were

mismatches between the equation motions calculated using these two methods,

e.g. [28]. This is solved because of the additional term F µ
ν in equation (2.7.8).

The modified Friedmann equations can be written as

H2 =
1

1− F̃

[
1

3M2
pl

(
ϕ′2

2
+ a2V

)]
,

H′ =
1

1− F̃

[
1

3M2
pl

(
a2V − ϕ′2

)
+HF̃ ′

]
, (2.7.24)
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where, F̃ = ϕ2

8M2
pl

. One can notice from the above that the condition F̃ < 1

is required to be satisfied to ensure the positivity of H2. Therefore ϕ has to

be smaller than
√

8Mpl as mentioned in [30]. It should be emphasized that the

introduction of Jµνρ term in equation (2.7.8) makes the expressions for H2 and

H′ different from those obtained in [29, 66, 67]. In this thesis the expression for

T µν given in equation (2.7.8) is used to study the cosmology of NSS. From what

follows the label cosmo on the energy-momentum tensor has been dropped.





Chapter 3

Perturbation theory

3.1 Introduction

After the inflation ends, the inflaton decays and the universe reheats. The uni-

verse become full with matter and radiation in thermal equilibrium. As the den-

sity of the radiation component, in the expanding universe, falls faster than the

energy density of the matter component, the matter-radiation decoupling occurs

around 380,000 years after the Big Bang. After this decoupling the ‘thermalised’

photons travel freely in the space which we see today as a black-body radiation in

the microwave range known as CMBR. It should be noted that the CMB photons

are not in thermal equilibrium currently. As the CMB photons have not inter-

acted since they left the ‘Last Scattering Surface’, they carry the information of

the universe back to the time of the matter-radiation decoupling. COBE revealed

that CMB photons have mean temperature of approximately 2.73K with the fluc-

tuation ∆T
T
∼ 10−5. The fluctuation in the temperature of the universe can be

connected with the fluctuations during inflation. The cosmological perturbation

theory gives us a relation between the temperature fluctuation in the CMB and

the metric perturbation during inflation due to the Sachs-Wolf effect [15].

The primordial inhomogeneities produced during inflation are also important

from the point of view of structure formation. A rapid expansion during the

inflation leaves the universe ‘almost’ homogeneous and isotropic. The amount

of inhomogeneity that is observed in the CMB spectrum is about ∆ε
ε
∼ 10−5.

33
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The structure formation mechanism lies in the ‘tug of war’ between the pressure

and gravity. The primordial inhomogeneities can be amplified by the gravitational

instability and this can seed the formation of structures that we see today [71–73].

The standard Friedmann cosmology works only when the physical length scale

is smaller than Hubble radius (H−1). However, the relevant astrophysical scale

of clusters, galaxies etc. were bigger than the Hubble radius at early epochs.

Therefore, to seed the large-scale structure formation at early universe we need

a mechanism which can make the wavelength of the density perturbation (λ)

larger than the Hubble radius (λ > H−1) starting from the time when λ < H−1.

During inflation the proper wavelengths of the perturbations grow exponentially

(as λ ∝ a) and at the same time H remains constant allowing the wavelengths

to exit the Hubble radius. In this way perturbation during inflation seeds the

density perturbation required for the large-scale structure.

Apart from the providing seed for the formation of large-scale structures the

inflationary perturbation theory also leaves imprint in the CMB. As mentioned

before the CMB radiation can allow us to probe the structure of the universe

at the time of the Last Scattering Surface (LSS). There are nearly 104 causally

disconnected patches on LSS. The angle sustaining the horizon size on LSS is

approximately 1◦, beyond which correlation between the temperature fluctuation

produced by any causal process of expansion can not exist. However, there exists

nonzero correlation in temperature fluctuation at angular scale > 1◦. The patches

which were once in causal contact, became causally disconnected because of the

accelerated expansion during inflation giving us nonzero correlation at large an-

gular scale. The inflationary perturbation theory has been remarkably successful

in calculating the power spectra of scalar and tensor perturbation. The theory

predicts nearly scale invariant power spectra within the slow-roll paradigm. Data

obtained from the missions like WMAP [8], PLANCK [17] confirm some of these

general predictions of the inflationary perturbation theory. Power spectrum is

the two point correlation of the perturbation. It is observed that over large scales

the power spectrum is nearly scale invariant. The scale dependence of the power

spectrum is measured by spectral index. The measured spectral index associ-
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ated with the scalar perturbation is very close to unity and is red tilted, ns . 1.

The exact scale invariance (ns = 1) has been ruled out by PLANCK. The ob-

servations also reveal a small amount of gravitational wave. In the inflationary

theories the gravitational waves are generated by the divergence less and trace less

tensor modes of the metric perturbation. In the single field inflationary models

the tensor-to-scalar ratio (r) remains small in the slow-roll paradigm. Tensor-

to-scalar ratio observed by the PLANCK mission is < 0.12 [17]. The minimally

coupled canonical scalar field models of inflation produces tensor to scalar ratio

∼ 16ε, where ε is slow-roll parameter (∼ 10−2). As shown in the reference [42] the

tensor to scalar ratio in the single scalar field models with non-minimal coupling

remains even smaller.

In this chapter we will study the inflationary perturbation theory with NSS.

As described in the introduction, because of spinor nature of the inflaton field,

the perturbation theory can have some issues in comparison with the canonical

single scalar field theory. Therefore, using the ansatz similar to the background

case we will reduce the problem of spinor perturbation to scalar perturbation

and use the standard tool of scalar perturbation theory. Here we will show that

the terms which appears in addition to the standard single canonical scalar field

theory, are very small. The calculation of the spectral index will show that NSS

can produce nearly scale invariant perturbation consistent with observation. It

can also be argued that NSS cosmology can have very small tensor-to-scalar ratio.

3.2 Metric perturbation

Our aim is to calculate the cosmological evolution of the linear perturbations for

NSS. The first step to do this is perturbing the metric about the background

FRW metric at the first order. The full metric in general can be written as

gµν = ḡµν (η) + δgµν (η,−→x ) , (3.2.1)



36 Chapter 3. Perturbation theory

where ḡµν (η) is the homogeneous and isotropic background FRW metric and δgµν

is the perturbation. Unlike the background FRW metric the perturbed metric in

general may have off-diagonal elements. The other property of δgµν is that it is

symmetric. In general one can write δgµν at any order. But, in this thesis we are

interested in the first order perturbation theory. Therefore, we choose to write

δgµν up to linear order.

In the (n+ 1) dimensional space-time the linear order metric perturbation

can be written as:

δgµν =

δgηη δgηi

δgiη δgij

 , (3.2.2)

where i, j = 1, ..., n. Here δgηη is one component of the above ((n+ 1)× (n+ 1))

dimensional matrix, where as δgηi is the (1× n) dimension row matrix, δgiη is

the (n× 1) dimensional column matrix and δgij is the (n× n) matrix. δgηη

is a scalar quantity and we write it as δgηη = a2 (2Ψ). The entries δgηi and

δgiη are vector in nature as it has one running index (i). One can write this

matrix as δgηi = a2 (∂iB + vi), where B is a scalar quantity and vi is a real

divergence less (∂iv
i = 0) vector. Similarly the tensor part δgij can be written as

δgij = a2
[
2Φδij + 1

2
(∂iΠj + ∂jΠi) + 2Π,ij + hij

]
, where Φ and Π are scalars, Πi

is divergence less vector and hij is a traceless (hii = 0) and transverse (∂ih
ij = 0)

tensor. The pure tensor modes hij are also referred as ‘gravitational waves’. A

detailed discussion on the various degrees of freedom can be seen in references

[69,74].

Let us now consider the scalar degrees of freedom in the perturbed metric in

the covariant form,

gµν = ḡµν + δgµν = a2

(1 + 2Ψ) ∂iB

∂iB (−1 + 2Φ) δij + 2Π,ij

 , (3.2.3)

where i, j = 1, ..., 3. To calculate the various perturbed quantities it is important

to know the contravariant form of the metric perturbation δgµν . To calculate
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δgµν it is useful to know the orthogonality condition:

gµσgσν = δµν . (3.2.4)

Using (3.2.4) gµν can be written as,

gµν = ḡµν + δgµν =
1

a2

(1− 2Ψ) ∂iB

∂iB (−1− 2Φ) δij − Π ij
,

 . (3.2.5)

3.3 Gauge transformation and Gauge invariant

quantities

As described in equation (3.2.1), unlike the background FRW metric the per-

turbed metric depends also upon the spatial part of the coordinate. All of the

perturbed quantities, in general are considered inhomogeneous and anisotropic.

Our aim is to study the evolution of these perturbed quantities in the homoge-

neous and isotropic background.

In analysis of the perturbations in GTR described by the FLRW-cosmology

it is important that we work with the quantities which are invariant under gen-

eral coordinate transformation [75, 76]. In general relativity the unperturbed

background quantities are calculated in a preferred coordinate system (which we

choose by the symmetry of the background). However for the perturbed quanti-

ties we do not have any preferred coordinate. The freedom of gauge or coordi-

nate leads to various ‘fictitious’ perturbations under coordinate transformation.

Therefore to analyze perturbations either we choose a specific gauge or we con-

struct gauge invariant quantities. The construction of gauge invariant quantities

are done by determining the transformation laws for the perturbations of scalar,

vector and tensor quantities under infinitesimal coordinate transformation

xµ → x̃µ = xµ + ξµ, (3.3.1)

and then removing the gauge dependences by choosing the appropriate combi-
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nations of the various quantities. Here ξµ is an infinitesimal 4-vector (ξµ � xµ)

with the components ξµ ≡ (ξη, ξi). ξη contributes to the scalar perturbation and

ξi is a 3-vector which can be written in terms of a divergence free vector (αi) and

a gradient of a scalar (β): ξi = αi + βi, . The keys to calculate the transforma-

tion laws for perturbations are:(i) Transformation of various quantities under the

general coordinate transformation, and (ii) the functional form of the background

remains same in all coordinates. Finally, the transformation properties of scalar

(f), vector (vµ) and tensor (Sµν) perturbations in the linear order can be listed

respectively as:

˜δf = δf − f (0)
,γ ξ

γ, (3.3.2)

δ̃vµ ≈ δvµ − v(0)
µ,γξ

γ − v(0)
σ ξσ,µ, (3.3.3)

˜δSµν ≈ δSµν − S(0)
µν,γξ

γ − S(0)
σν ξ

σ
,µ − S(0)

µρ ξ
ρ
,ν . (3.3.4)

The superscript ‘(0)’ denotes the background quantities.

Because of the presence of ξµ in the above expressions the scalar (e.g. in-

flaton perturbation or density perturbation) and various components of metric

perturbation are gauge dependent quantities. Inflaton perturbation and the scalar

components of the metric perturbation depend on the temporal part of ξµ, i.e. ξη.

The gauge dependence of the perturbations Ψ and Φ can be removed by choosing

the following combinations

ψ = Ψ− 1

a
[a (B − Π′)]

′
, φ = Φ +H (B − Π′) . (3.3.5)

It can be straightforward to check that the above quantities are gauge invariant.

These expressions of the metric perturbations were first proposed by Bardeen

in [75]. The scalar quantities ψ and φ are also known as Bardeen potentials.

Using (3.3.2) and transformation properties of metric perturbation the gauge

invariant inflaton perturbation can be defined as

δϕ = δϕ− ϕ′ (B − Π′) . (3.3.6)
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It can be easily verified that the combination – R = φ + H
ϕ′ δϕ is also a gauge

invariant quantity. R is also known as comoving curvature perturbation. From

the perturbed Einstein equations we will see that R stops evolving once it crosses

the horizon.

Fixing gauge and connection to the gauge invariant quantities: One

can fix the coordinate by choosing a proper gauge condition as we have the

freedom to choose the functions ξη and β. Fixing gauge sometimes can simplify

the scalar equations. So, solving the perturbed equations can be sometimes easier

in a particular gauge. But, the only threat is that the perturbed quantities may

not be always physical. However, there exist one particular gauge where the

perturbations turns out to be gauge invariant. This gauge is called longitudinal

gauge or conformal Newtonian gauge. The longitudinal gauge is given by the

gauge condition B = 0 and Π = 0. To achieve this the only choice we have

is ξη = 0 and β = 0. Any other choice of ξη or β can spoil this gauge. From

equation (3.3.5) and (3.3.6) it clear that in the longitudinal gauge the gauge

invariant perturbations become ψ = Ψ, φ = Φ and δϕ = δϕ.

Although the calculation with the gauge invariant quantities can be compli-

cated, one can use a simple trick based on the properties of the Newtonian gauge:

derive the perturbed equations in the Newtonian gauge and solve for gauge invari-

ant quantities after directly substituting the gauge invariant quantities in those

equations. We will follow this trick in the following sections.

We have already explained before that in case of spinors the action can be

made invariant under coordinate and Lorentz transformation by properly defin-

ing a covariant derivative. In the first-order perturbation theory of spinors we

will show that the perturbed energy momentum tensor can be written in terms of

various combinations of the product of the perturbed spinors and the background

spinors and their derivatives. Because of the presence of spinors Lorentz invari-

ance could be an issue in perturbation while defining proper physical quantities

using them. This can be avoided if one considers the following ansatz regarding

the structure of the perturbed spinor: δλ = δϕ(η,−→x )ξ and δ
¬
λ = δϕ(η,−→x )

¬
ξ.

The advantage of this ansatz is that the perturbation can be written entirely in
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terms of the scalar field perturbation. This allows one to construct the gauge

invariant definition of inflaton perturbation (δϕ) and density perturbation (δε)

in the standard way described in this section. By doing so we will see that the

perturbed equations will pick up some terms, proportional to F̃ , along with the

standard terms which appear in case of single scalar field theory. Thus, in the

next section we briefly describe the essential features of the perturbation theory

for single scalar field.

3.4 Perturbation theory in single canonical scalar

field:Mukhanov-Sasaki equation

In this section we briefly review the cosmological perturbation theory of the single

scalar field inflationary scenario based on the gauge invariant formalism discussed

in the previous section. In the following sections we generalise the technique

learned here for the NSS perturbation theory. To calculate the perturbed equa-

tions we have to write the perturbed Einsteins equations, about the homogeneous

and isotropic background.

The linearised perturbed Einstein equation, in terms of the gauge dependent

quantities can be written as

δGµ
ν = 8πGδT µν . (3.4.1)

Here δGµ
ν are functions of the gauge dependent metric perturbations Ψ and Φ

whereas components of δT µν contain inflaton fluctuation, metric perturbations and

background quantities. Now we will calculate the perturbation in the conformal

Newtonian gauge. Then using the gauge invariant definitions given in the previous

section we can write the various components of linearised perturbed Einstein

equation in terms of the gauge invariant variables ψ and φ as (see appendix A.3

for details):

∆φ− 3H (φ′ +Hψ) = 4πGa2δT ηη , (3.4.2)
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(φ′ +Hψ),i = 4πGa2δT ηi , (3.4.3)

−
[
2φ′′ + 2H (ψ′ + 2φ′) + 2

(
2H′ +H2

)
ψ + ∆ (ψ − φ)

]
δij+∂i∂j(ψ−φ) = 8πGa2δT ij ,

(3.4.4)

where ∆ = ∂i∂
i. For single scalar field theories the perturbed expressions of

δT µν will be written in terms of gauge invariant δϕ (as given in appendix B.1).

Following the methods given in reference [15] we will only focus on two equations

(3.4.2) and (3.4.3). The standard single scalar field theories give us isotropic

perturbation, i.e. δT ij = 0 for i 6= j. For i 6= j, from the equation (3.4.4) we can

see that ψ = φ. Using this constraint and substituting the expressions of δT ηη

and δT ηi from the appendix (B.1) in (3.4.2) and (3.4.3) we can finally write,

∆φ =
4πGϕ′2

H
R′, (3.4.5)

(
a2 φ

H

)′
=

4πGa2

H2
R, (3.4.6)

where R = φ + H δϕ
ϕ′ is the comoving curvature perturbation. From (3.4.5) one

can see that in the large scale limit (∆→ 0) the comoving curvature perturbation

R′ = 0 thus, R does not evolve in the super-horizon scale.

Equations (3.4.5) and (3.4.6) are coupled equations of two gauge invariant

quantities φ and R. After eliminating R from these equations we can decouple

them. The decoupled equation for φ in the Fourier space can be written as

u′′ +

(
k2 − θ′′

θ

)
u = 0, (3.4.7)

where u = φ

4πG
√

(ε+p)
and θ =

√
8πG

3
1
a

(
ε
ε+p

)1/2

. To calculate the power spectrum

and the spectral index associated with the perturbation φ we have to solve the

equation (3.4.7). Elimination of φ from (3.4.5) and (3.4.6) gives us

v′′ +

(
k2 − z′′

z

)
v = 0, (3.4.8)

where v = aϕ
′

H
R and z =

a2
√

(ε+p)

H . The power spectrum associated with the
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metric perturbation can be expressed as:

δ2
φ =

k3

2π2
|φk|2. (3.4.9)

Using spectral index associated with the power spectrum, one can measures

the scale dependence of the perturbation. The spectral index associated with φ

can be defined as

nφ = 1 +
d ln δ2

χ

d ln k
. (3.4.10)

In canonical single scalar field theories, in the slow-roll paradigm, the last term

on the right hand side can be written in terms of the slow-roll parameters giv-

ing us nearly scale invariant spectrum. The spectral index that is given by

PLANCK collaborators in [17] indicates the ‘nearly’ scale invariant power spec-

trum (spectral index ns = 0.9643± 0.0059) with PLANCK+WP+BAO data.

3.5 Perturbation theory in NSS

In this work the gauge invariant approach for treating the cosmological perturba-

tions discussed in section (3.4) is applied to the NSS cosmology. The full metric

in terms of gauge invariant quantities can be written as:

ḡµν + δgµν = a2

(1 + 2ψ) O

O (−1 + 2φ) δij + 2hij

 . (3.5.1)

Here i, j denotes space-space components of the metric, φ,ψ are the gauge invari-

ant scalar perturbations and hij are traceless and divergence-less tensor perturba-

tions. The metric perturbations are functions of space and time. It is necessary

to first calculate the perturbations in energy momentum tensor δT µν by including

the perturbations in F µ
ν term. Final equations are obtained by substituting δT µν

into the perturbed Einstein’s equations. As mentioned in section (3.3), the ansatz

regarding the NSS perturbation:

δλ = (δϕ) ξ, δ
¬
λ = (δϕ)

¬
ξ (3.5.2)
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can be used to calculate δT µν . The constant matrices ξ and
¬
ξ as given in [29]:

ξ =
1

4
√

12


−α1e

iπ
4

α2
i√
2

α2
1√
2

α1e
iπ
4

 ,
¬
ξ =

1
4
√

12

(
−α1e

−iπ
4 −α2

i√
2

α2
1√
2

α1e
−iπ

4

)
, (3.5.3)

which follows the condition
¬
ξξ = 1 provided α1 = α−1

2 =
√

1+
√

3
2

, can be used

in the ansatz of perturbed NSS to compute the perturbed energy-momentum

tensor. It should be noted here that we have not used the hedgehog ansatz for

the unperturbed NSS like the previous study [29]. With this relatively simpler

ansatz one can obtain all the equations perturbations given in [29] provided that

the Jµνρ term is ignored from equation (2.7.8). With the above ansatz, one can

construct the gauge invariant quantities for NSS using the method similar to the

one described in case of standard scalar perturbation theory.

3.5.1 Perturbed energy momentum tensors:

Using equations (3.5.1, 3.5.3) we can calculate δT ηη , δT ηi and δT ij (i 6= j) com-

ponents of the perturbed energy-momentum tensor. Below we have enlisted the

different components of the energy-momentum tensor for the scalar perturbations.

i) Perturbation of ε = T ηη : One can write the general expression for energy as

ε = X + V, (3.5.4)

where X is the kinetic part dependent on background quantities H, ϕ and ϕ′ and

V is the potential which is function of ϕ only. X can be written asX = Y+gηηF
ηη,

where Y =
(
∇η

¬
λ∇ηλ

)
− gηη

(
1
2
∇µ

¬
λ∇µλ

)
. From the expression of ε which is a

function of X and V we can write

δε = ε,XδX + ε,ϕδϕ. (3.5.5)
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The continuity equation one can write as:

ε′ = ε,XX
′ + ε,ϕϕ

′ = −3H (ε+ p) . (3.5.6)

Eliminating ε,ϕ from (3.5.5) and (3.5.6)

δε = ε,X

(
δX −X ′ δϕ

ϕ′

)
− 3H (ε+ p)

δϕ

ϕ′
. (3.5.7)

The perturbation in Y is

δY =
1

a2

(
−ψϕ′2 +

3

4
ψH2ϕ2 + ϕ′δϕ′ +

3

4
ψ′Hϕ2 − 3

4
H2ϕδϕ

)
, (3.5.8)

while the perturbation in F ηη can be written as

δF ηη =
1

2
δ (∇ρJ

ηηρ) . (3.5.9)

Next, the perturbation in the covariant derivative of Jµνρ can be written as;

δ (∇ρJ
ηηρ) = ∂ρδJ

ηηρ + δ
(
ΓησρJ

σηρ + ΓησρJ
ησρ + ΓρσρJ

ηησ
)
. (3.5.10)

Therefore we get after substituting for δ (∇ρJ
ηηρ)

δF ηη = − 1

4a4
(∆ψ)ϕ2 +

3

2a4
H2ϕδϕ− 3

2a4
φ′Hϕ2 − 3

a4
ψH2ϕ2. (3.5.11)

From this one can calculate δX

δX = −ψ (2X) +
1

a2
ϕ′δϕ′ +

3

4a2
(ψ′ − 2φ′)Hϕ2 +

3

4a2
H2ϕδϕ− 1

4a2
(∆ψ)ϕ2,

(3.5.12)

X ′ = −2HX +
1

a2
ϕ′ϕ′′ +

3

4a2
HH′ϕ2 +

3

4a2
H2ϕϕ′. (3.5.13)
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Finally one can write the energy perturbation δε as

δε = ε,X [2X

(
−ψ +Hδϕ

ϕ′
+

(
δϕ

ϕ′

)′)
− 3

4a2
Hϕ2

(
Hδϕ
ϕ′

)′
+

3

4a2
(ψ′ − 2φ′)Hϕ2 − 1

4a2
(∆ψ)ϕ2]− 3H (ε+ p)

δϕ

ϕ′
. (3.5.14)

ii) Perturbation of T ηi :

δT ηi = ¯δT ηi + δF η
i . (3.5.15)

Now for scalar perturbation

¯δT ηi =

[
1

a2
ϕ′δϕ− 1

4a2

(
Hϕ2

)
ψ

]
,i

, (3.5.16)

and

δF η
i =

[
−a

2

8

(
ψϕ2

a4

)′
− 1

8a2
H (2ϕδϕ)− 1

4a2
(ψ + φ)Hϕ2 +

1

8a2
φ′ϕ2

]
,i

.

(3.5.17)

And we get

δT ηi =

[
1

a2
ϕ′δϕ− 1

4a2

(
Hϕ2

)
ψ

]
,i

+[
−a

2

8

(
ψϕ2

a4

)′
− 1

8a2
H (2ϕδϕ)− 1

4a2
(ψ + φ)Hϕ2 +

1

8a2
φ′ϕ2

]
,i

.(3.5.18)

iii) Perturbation of T ij (i 6= j):

δT ij = δT̄ ij + δF i
j .

Now for scalar perturbation, δT̄ ij = 0 and δF i
j = − 1

4a2
(∂i∂jφ)ϕ2 for i 6= j.

Therefore,

δT ij = − 1

4a2
(∂i∂jφ)ϕ2 (i 6= j) . (3.5.19)
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3.5.2 Perturbed Einstein’s Equation:

Perturbed Einstein’s equation can be written as:

δGµ
ν = 8πGδT µν , (3.5.20)

where δGµ
ν is the perturbed Einstein’s tensor. The scalar part of perturbed Ein-

stein’s equations are given below,

∆φ− 3H (φ′ +Hψ) = 4πGa2δT ηη

−

[
2φ′′ + 2

a′

a
(ψ′ + 2φ′)− 2

{(
a′

a

)2

− 2
a′′

a

}
ψ + ∆ (ψ − φ)

]
δij + ∂i∂j (ψ − φ)

= 8πGa2δT ij

(φ′ +Hψ),i = 4πGa2δT ηi , (3.5.21)

In the previous sub-section we have already calculated the scalar perturbations

for the various components of the energy-momentum tensor. The tensor part of

the perturbed Einstein’s equations can be written as,

h′′ij + 2Hh′ij −∆hij = −16πGa2δT ij(T ), (3.5.22)

where subscript T on the energy-momentum tensor denotes the tensor part. Next,

consider the space-space components of the Einstein equation with (i 6= j).

i) δGi
j = 8πGδT ij : Using the expression of δT ij when i 6= j from equation (3.5.19)

one can write,

∂i∂j (ψ − φ) = ∂i∂j

(
−2F̃ φ

)
, (3.5.23)

where F̃ = πGϕ2 = ϕ2

8M2
PL

. In the case of the standard inflation driven by a

canonical scalar-field, δT ij = 0 for i 6= j and φ = ψ. However, this is no longer

true for a NSS driven inflation. The above equation implies that the condition

ψ = (1− 2F̃ )φ needs to be satisfied by the metric and the NSS perturbations. In
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the previous study using a NSS field [29], δT̄ ij = 0 for i 6= j. That’s why in [29] the

authors got φ = ψ. Here inequality between ψ and φ arises because of the extra

F µν term in the energy-momentum tensor. As explained in the introduction, we

consider F̃ to be a very small quantity and from here onwards we will write the

equations up to the linear order in F̃ .

ii) δGη
i = 8πGδT ηi : Using the last equation of (3.5.21) we get

2

a2
(φ′ +Hψ),i = 8πG[

1

a2
ϕ′δϕ− 1

4a2

(
Hϕ2

)
ψ − a2

8

(
ψϕ2

a4

)′
−

1

8a2
H
(
δ

¬
λλ+

¬
λδλ

)
− 1

4a2
(ψ + φ)Hϕ2 +

1

8a2
φ′ϕ2],i, (3.5.24)

or,

(φ′ +Hψ) = 4πGa2

(
ϕ′2

a2

)
δϕ

ϕ′
−HF̃ φ−

(
ψ′ − φ′

2

)
F̃ − F̃ ′

2

(
Hδϕ
ϕ′

+ ψ

)
.

(3.5.25)

Substituting ψ = (1− 2F̃ )φ in the right hand side of the above equation,

(φ′ +Hψ) ' 4πGa2 (ε+ p)
δϕ

ϕ′
+

[(
HF̃

)′
−H2F̃ − HF̃

′

2

]
δϕ

ϕ′
−

(
HF̃ +

F̃ ′

2

)
φ.

(3.5.26)

Again setting ψ = (1− 2F̃ )φ in the left hand side and multiplying both sides by

a2

H one may obtain,

(
a2

H
φ

)′
'

4πGa4

H2
(ε+ p) +

a2

H


(
HF̃

)′
H

−HF̃ − F̃ ′

2


(Hδϕ

ϕ′
+ φ

)
+

2HF̃ −

(
HF̃

)′
H

 a2φ

H
. (3.5.27)

iii) δGη
η = 8πGδT ηη = 8πGδδε: Now the first equation in (3.5.21) implies

∆φ− 3H (φ′ +Hψ) = 4πGa2δε. (3.5.28)



48 Chapter 3. Perturbation theory

Using the expression of (φ′ +Hψ) from equation (3.5.26) we get

∆φ − 3H

[
4πGa2 (ε+ p)

δϕ

ϕ′
+

{(
HF̃

)′
−H2F̃ − HF̃

′

2

}
δϕ

ϕ′
−

(
HF̃ +

F̃ ′

2

)
φ

]
' 4πGa2δε. (3.5.29)

Similarly, using the expression of ψ from equation (3.5.26) in the expression of

δε we get,

δε ' ε,X
2X

H

[(
Hδϕ
ϕ′

+ φ

)′
−

{
(HF̃ )′ −H2F̃ − HF̃

′

2

}
δϕ

ϕ′
+

(
HF̃ +

F̃ ′

2

)
φ

]
−

ε,X
3

4a2
Hϕ2

(
Hδϕ
ϕ′

+ φ

)′
+ ε,X

3

4a2
(ψ′ − φ′)Hϕ2 − ε,X

1

4a2
(∆ψ)ϕ2 −

3H (ε+ p)
δϕ

ϕ′
. (3.5.30)

Finally using ψ = (1− 2F̃ )φ in the above expression of δε, up to linear order in

F̃ the Einstein’s equation becomes,

(
1 + ε,XF̃

)
∆φ '

(
4πGa2ε,X

2X

H
− ε,X3HF̃

)(
Hδϕ
ϕ′

+ φ

)′
+

(
3H− 4πGa2ε,X

2X

H

)
(
HF̃

)′
H

−HF̃ − F̃ ′

2


(
Hδϕ
ϕ′

+ φ

)
−

(
3H− 4πGa2ε,X

2X

H

) (HF̃)′
H

φ. (3.5.31)

In order to calculate the power spectrum for φ and δϕ, we have to solve equations

(3.5.27, 3.5.31). These equations are highly coupled and one may need to decou-

ple them. For simplicity we first write equations (3.5.27, 3.5.31) in a different

notations as given below:

x′ = A1y +B1x, (3.5.32)

A2∆x = B2y
′ + C2y −D2x. (3.5.33)
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where the quantities x and y are

x =

(
a2φ

H

)
,

y =

(
Hδϕ
ϕ′

+ φ

)
.

One can quickly identify that the variable y is the gauge invariant comoving cur-

vature perturbation (R) defined before. The coefficients associated with (3.5.32)

and (3.5.33) are

A1 =
4πGa4

H2
(ε+ p) +

a2

H

[
(HF̃ )′

H
−HF̃ − F̃ ′

2

]
,

B1 =

2HF̃ −

(
HF̃

)′
H

 ,

A2 =
(

1 + ε,XF̃
)
,

B2 =
a2

H

(
4πGa2ε,X

2X

H
− ε,X3HF̃

)
,

C2 =
a2

H

(
3H− 4πGa2ε,X

2X

H

)
(
HF̃

)′
H

−HF̃ − F̃ ′

2

 ,
D2 =

(
3H− 4πGa2ε,X

2X

H

) (HF̃)′
H

. (3.5.34)

It can be easily seen that when we set the terms containing F̃ to be zero, the

coefficients B1, C2 and D2 are all zero; and equations (3.5.32, 3.5.33) reduces to

the standard canonical single scalar field equations (3.4.5, 3.4.6). Now, following

the procedure similar to single scalar field case, y can be eliminated from equation

(3.5.33) by using equation (3.5.32) and the decoupled equation for x can be

written as:

x′′−A1A2

B2

∆x+

[
A1

{(
1

A1

)′
− B1

A1

}
+
C2

B2

]
x′−
[
A1

(
B1

A1

)′
+ C2

B1

B2

+D2
A1

B2

]
x = 0.

(3.5.35)
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Next, it is useful to substitute x = u(η,−→x )f(η) in the above equation

u′′ − A1A2

B2

∆u+

[
2
f ′

f
+

{
A1

(
1

A1

)′
−B1 +

C2

B2

}]
u′+[

f ′′

f
+

{
A1

(
1

A1

)′
−B1 +

C2

B2

}
f ′

f
−
{
A1

(
B1

A1

)′
+ C2

B1

B2

+D2
A1

B2

}]
u = 0.

(3.5.36)

By equating the coefficient of u′ to zero one gets

f = exp

[
−1

2

∫ {
A1

(
1

A1

)′
− B1 +

C2

B2

}
dη

]
=

√
A1exp

[
1

2

∫ (
B1 −

C2

B2

)
dη

]
(3.5.37)

Here f ′ and f ′′ can be written as

f ′

f
= −1

2

[
A1

(
1

A1

)′
−B1 +

C2

B2

]
(3.5.38)

f ′′

f
=

[
−1

2

{
A1

(
1

A1

)′
−B1 +

C2

B2

}]2

− 1

2

[
A1

(
1

A1

)′
−B1 +

C2

B2

]′
.(3.5.39)

Finally the generalized Mukhanov-Sasaki equation can be written as

u′′ − A1A2

B2

∆u+

[
−1

4

{
A1

(
1

A1

)′
−B1 +

C2

B2

}2

− 1

2

{
A1

(
1

A1

)′
−B1 +

C2

B2

}′
−{

A1

(
B1

A1

)′
+ C2

B1

B2

+D2
A1

B2

}]
u = 0, (3.5.40)

which one may write in a more simplified form as

u′′ + (1 + A) k2u−
(
θ′′

θ
+B

)
u = 0, (3.5.41)

Here both A and B are functions of F̃ and its derivatives. In the limit F̃ → 0

both A,B → 0 and one recovers the standard Mukhanov-Sasaki equation for a

canonical scalar-field [15].

The coefficient of the k2 term in equation (3.5.41) can be regarded as the

square of sound speed (c2
s), which implies c2

s = (1 + A) = A1A2

B2
. Using the
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expressions of A1,A2 and B2 in terms of background quantities, we can write c2
s

after some algebra :

c2
s ≈ 1 + F̃ − 1

3

F̃ ′

H
1(

1 + p
ε

)
can

(3.5.42)

where,
(
1 + p

ε

)
can

, which represents the quantity for canonical scalar field, can be

obtained by setting F̃ terms to zero in equations (2.7.17, 2.7.21), i.e.
(
1 + p

ε

)
can

=

ϕ′2

3M2
plH2 . In the cosmic time c2

s can be expressed as: c2
s ≈ 1 + F̃ − 1

4
ϕ

ϕ̇/H
. The

terms ϕ and ϕ̇/H can be expressed in terms of F̃ and slow-roll parameter εV

as: ϕ = 2
√

2Mpl

√
F̃ and ϕ̇/H =

√
2Mpl

√
εV . Finally the expression of c2

s can

be written as c2
s ≈ 1 + F̃ − 1

2

√
F̃
εV

. Later we will show that the spectral index

(ns) will be in the observed range if F̃ < 10−4. Therefore, for a typical value of

εV ∼ 10−2 one can see that just like canonical scalar field, in case of NSS we get

c2
s ' 1.

3.5.2.1 Solutions and the power spectrum

From the solutions of equation (3.5.41) the power spectrum for the scalar-perturbations

can be calculated. In what follows we closely follow the method of the power-

spectrum calculations given in [15] for a canonical scalar-field.

i) Short wavelength(large k) region : For a short wavelength regime (or large k),

we can neglect
(
θ′′

θ
+B

)
term with respect to (1 + A) k2 term in equation (3.5.41)

and write

u′′ + (1 + A) k2u = 0. (3.5.43)

Here we would like to comment on the choice of vacuum in the perturbation theory

with NSS. From equation (3.5.43) it is clear that in the small scale the equation

behaves like a harmonic oscillator if A is constant in time. However, compared to

the canonical single scalar field case (B.2) frequency of the oscillator is differed

by terms proportional to F̃ . Therefore, in case of NSS one can get Bunch-Davies

vacuum with a modified frequency ω(η) =
√

(1 + A)k. Later we will show that

there is an upper bound on F̃ in order to give a nearly scale invariant spectrum.

In that case the Bunch-Davies vacuum for NSS and single scalar field will match
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with each other as the term A practically becomes very small. One may look

for the solution of equation (3.5.43) in the form u = c (η) exp
[
ik
∫ √

1 + Adη
]
.

Substituting this back into equation(3.5.43) we get a 2nd order equation for c(η),

c′′ + ikc′
(

1 +
A

2

)
+ ikc

A′

2
= 0, (3.5.44)

where we have considered A to be a small quantity and write
√

1 + A ' 1 + A
2
.

Next, We look for an approximate solution of equation(3.5.44) by regarding A

and A′ to be small. Thus we consider c ≈ c0 + c̄ with |c0| > |c̄| and c̄ is of the

same order of A and A′. Equations for c0 and c̄ can be written as follows,

c′′0 + ikc′0 = 0

c̄′′ + ikc′0
A

2
+ ikc̄′ + ikc0

A′

2
= 0. (3.5.45)

The solution for c0 can be written as

c0 = b2 −
b1e
−ikη

ik
, (3.5.46)

where b1 and b2 are the constants of integration. Solution for c̄ can be obtained

as

c̄ = e−ikη
∫ (

b1 − ikb2e
ikη
) A

2
dη. (3.5.47)

Finally we get,

c(η) = b2 −
b1e
−ikη

ik
+ e−ikη

∫ (
b1 − ikb2e

ikη
) A

2
dη. (3.5.48)

Since in the limit when A→ 0 one should get the solution of the canonical scalar-

field [15], we set b1 = 0 and b2 = − i

k
3
2

. Thus one can write solution of equation

(3.5.43) as

u = − i

k
3
2

[
1− ike−ikη

∫
eikη

A

2
dη

]
exp

[
ik

∫ √
1 + Adη

]
. (3.5.49)
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Finally one can obtain

φ = − i

k
3
2

[
1− ike−ikη

∫
eikη

A

2
dη

]{
H
a2

√
A1exp

[
1

2

∫ (
B1 −

C2

B2

)
dη

]}
×

exp

[
ik

∫ √
1 + Adη

]
. (3.5.50)

From this expression of φ the power spectrum for φ in case of large k(small

wavelength) can be found to be

δ2
φ ∝ |φ|2k3

=

{
H2

a4
A1exp

[∫ (
B1 −

C2

B2

)
dη

]}[
1− ike−ikη

∫
eikη

A

2
dη

]2

.(3.5.51)

The at large k (or small wavelength) scales the power spectrum of φ is not a

scale-invariant. However, there is a possibility that it becomes a scale invariant

when A can be regarded as a constant.

ii) Large wavelength(Small k) region : In case of small k regime one can neglect

(1 +A)k2 term with respect to ( θ
′′

θ
+B) term. In this case we write the equation

(3.5.41) can be written as

u′′ −
(
θ′′

θ
+B

)
u = 0. (3.5.52)

It is useful to look for the solution of u in the form u = ucang where, ucan is the

solution when B = 0 i.e. no effect of non standard spinor is considered. This im-

plies that in the B → 0 limit g = 1. Now substituting for u into equation(3.5.52)

we get the equation for g as

g′′ + 2

(
u′can
ucan

)
g′ −Bg = 0. (3.5.53)

For the case when B = B(F̃ ) is a small quantity, an approximate solution of

g ≈ (g0 + ḡ) with |g0| > |ḡ| can be obtained in a manner similar to that discussed
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in the previous section. From equation (3.5.53) we get

g′′0 + 2

(
u′can
ucan

)
g′0 = 0

ḡ′′ + 2

(
u′can
ucan

)
ḡ′ = Bg0. (3.5.54)

From the equation for g0 we get

g0 = c1 +

∫ (
c2

u2
can

)
dη, (3.5.55)

where c1 and c2 are constants of integration. Plugging this solution of g0 into the

equation for ḡ and solving the inhomogeneous equation, we can write get ḡ as

ḡ =

∫
1

u2
can

[∫
Bu2

candη

]
dη. (3.5.56)

Thus we get,

g = c1 +

∫ (
c2

u2
can

)
dη +

∫
1

u2
can

[∫
Bu2

candη

]
dη. (3.5.57)

Since g = 1 when B = 0, one can set c1 = 1 and c2 = 0. The approximate

solution for u can be written as

u ' ucan

(
1 +

∫
1

u2
can

[∫
Bu2

candη

]
dη

)
. (3.5.58)

One can notice from the expression of u in the long wavelength(small k) regime

that the resultant power spectrum is a scale invariant quantity. Therefore in a

long wavelength regime we can write

φ ' H
a2

√
A1exp

[
1

2

∫ (
B1 −

C2

B2

)
dη

]
ucan

(
1 +

∫
1

u2
can

[∫
Bu2

candη

]
dη

)
.

(3.5.59)
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Finally we get power spectrum of φ as

δ2
φ ∝ |φ|2k3

= δ2
φ(can)

[
1− HF̃ ′

8πGa2 (ε+ p)can

]
exp

[∫ (
B1 −

C2

B2

)
dη

]
×(

1 +

∫
1

u2
can

[∫
Bu2

candη

]
dη

)2

(3.5.60)

3.5.2.2 Spectral indices and the bound

Now as
∫

1
u2can

[∫
Bu2

candη
]
dη are k independent, we get that power spectrum of

φ for large wavelength(small k) is scale independent. Taking logarithm on both

side we get

ln δ2
φ = ln δ2

φ(can) + ln

[
1− HF̃ ′

8πGa2 (ε+ p)can

]
+

[∫ (
B1 −

C2

B2

)
dη

]
+

2 ln

(
1 +

∫
1

u2
can

[∫
Bu2

candη

]
dη

)
. (3.5.61)

Spectral index for scalar perturbation can be written as

ns − 1 =
d ln

(
δ2
φ

)
d ln k

. (3.5.62)

At the time of horizon crossing (csk ' aH). Therefore, derivative with respect to

(ln k) can be approximated as d ln k ' Hdη (here we have neglected that variation

of sound velocity and Hubble parameter with respect to cosmic time t as they are

very small). Therefore in the expression for the spectral index all the logarithmic

derivatives can be replaced with time derivatives and finally we get

ns − 1 ≈ 1

H
(
ln δ2

φ(can)

)′
+

1

H

(
ln

[
1− HF̃ ′

8πGa2 (ε+ p)can

])′
+

1

H

(
B1 −

C2

B2

)
+

2

H

[
ln

(
1 +

∫
1

u2
can

[∫
Bu2

candη

]
dη

)]′
. (3.5.63)

In the case of a slow-roll approximation, for some quantity M its time derivative

can be very small compared to HM , i.e. Ṁ
HM
� 1. So we argue that in the
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above expression we can neglect the second and last term. In the case of single

canonical scalar-field we can write the first term in equation (3.5.63) following

reference [15] as
1

H
(
ln δ2

φ(can)

)′ ' −3
(

1 +
p

ε

)
can
. (3.5.64)

But in the case of NSS the correction term 1
H(B1 − C2

B2
) can be approximated as

1

H

(
B1 −

C2

B2

)
' 3H2

4πGϕ′2
F̃. (3.5.65)

Using the Friedmann’s equation and keeping the terms up to linear order in F̃

we write
1

H

(
B1 −

C2

B2

)
' 2

1(
1 + p

ε

)
can

F̃. (3.5.66)

Finally using (3.5.64) and (3.5.66) we get spectral index for scalar perturbation

as

ns = 1− 3
(

1 +
p

ε

)
can

+ 2
1(

1 + p
ε

)
can

F̃. (3.5.67)

On galactic scale the canonical terms
(
1 + p

ε

)
can

can be estimated as 10−2 and

εcan can be estimated as 10−12 ∗ of the Planckian density [15]. Then equation

(3.5.67) can be written as

ns − 1 = −0.03 + 200F̃. (3.5.68)

WMAP 7 years data suggests ns = 0.968 ± 0.012 with 68 % CL [8]. Therefore

from equation (3.5.68) we can understand that, to get ns closer to the observed

value, F̃ has to be smaller than 10−4. F̃ is the only new feature which NSS

driven inflation brings over the inflationary scenario driven by canonical scalar

field. Although F̃ is not a part of potential in the theory, its value may be

estimated from V . As the potential V (ϕ) is the dominant term in εcan, we can

write εcan/εPL ∼ V
εPL
∼ V

M4
PL
∼ 10−12. Now from different models of potentials we

can estimate F̃ . For example, if we consider ϕ4 kind of potential then εcan/εPL

becomes F̃ 2 and from the value of εcan we can estimate F̃ ∼ 10−6 which is

∗One can note that
(
1 + p

ε

)
can

is nothing but slow-roll parameter εV
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consistent with the NSS model.

In the case of a canonical scalar-field inflation it is well known that at a large

scale the power-spectrum of tensor perturbation is [15] δ2
h(can) '

8
π
H2. But for

the present case the power-spectrum for the tensor perturbation can be modified

to

δ2
h '

8

π
H2 × f

(
F̃
)
. (3.5.69)

Thus when F̃ → 0, f
(
F̃
)
→ 1 and we get the power-spectrum of the tensor

perturbations for a canonical scalar-field. Since F̃ is a small quantity, the tensor

to scalar ratio of the power spectrum for a NSS still be very small. With the upper

bound on F̃ the tensor-to-scalar ratio for NSS can be very close to the canonical

single scalar field case r ∼ 16εcan. In the scalar field theories the detectability

of the gravitational wave (r > 0.07) requires field variation ∆ϕ ≥ 0.4Mpl during

the last 4-5 e-foldings [38]. This lower bound on the variation of the scalar field

is also known as the Lyth bound. Because of the upper bound on F̃ the NSS

driven inflationary scenario becomes very similar to the standard single scalar

field theories of inflation. Thus, we speculate that for the detectability of the

gravitational waves, the Lyth bound can be valid in case of NSS driven inflationary

models also provided F̃ < 10−4 is satisfied.

In conclusion,we have studied the cosmological perturbations generated by

the inflation driven by a Lorentz invariant NSS model. We find that the the

usual condition for the gravitational potentials φ and ψ for scalar-perturbations

i.e. δT ij = 0 giving ψ = φ is modified to ψ =
(

1− 2F̃
)
φ. We have also shown

that the perturbations are nearly scale invariant and the hedgehog ansatz is not

required. More importantly we have calculated the power-spectrum and spectral

index for the metric perturbation. The model predicts the running spectral index

which allows for a wide range of F̃ . For the case F̃ = 0 one gets back the

expressions for the power spectrum and spectral index for a canonical scalar-

field. Further our analysis shows that the calculated value of the spectral index

ns can match to the value obtained from the WMAP data if there is an upper

bound on the parameter F̃ < 10−4. Our analysis shows that the sound speed



58 Chapter 3. Perturbation theory

of the perturbation is not a constant but dependent on time. However, the

expression of c2
s ' 1 + F̃ − 1

2

√
F̃
εV

and the upper bound on F̃ imply that c2
s ∼ 1.

Finally the tensor to scalar ratio of the power spectrum remains much smaller as

in the case of a scalar-field inflation due the upper bound on F̃ . Here we would

like to comment on the choice of vacuum in the perturbation theory with NSS.

From equation (3.5.43) it is clear that in the small scale the equation behaves

like a harmonic oscillator if A is constant in time. However, compared to the

canonical single scalar field case (B.2) frequency of the oscillator is differed by

terms proportional to F̃ . Therefore, in case of NSS one can get Bunch-Davies

vacuum with a modified frequency. When F̃ satisfies the upper bound, the Bunch-

Davies vacuum for NSS and single scalar field will match with each other.



Chapter 4

Early universe attractors

4.1 Introduction

Although the observations provide us the useful informations about dynamics of

the inflaton field (like slow-roll etc.), in the inflationary theory we do not know the

initial conditions [77–79]. The nature of the solutions of the dynamical equation

may change with initial conditions. It is useful to have an important property

associated with the dynamical equations, that allows wide class of solutions with

different initial conditions to have similar asymptotic behaviour, i.e. attractor.

There exist models of cosmology that allow to have an attractor solutions during

inflation [15,37].

The knowledge of initial conditions can provide crucial information about the

nature of the fields and their interactions with the known matter fields [80, 81].

For instance, it is usually assumed that the inflaton is a fundamental scalar field.

However, we do not know the nature of the scalar fields or its interaction with

other fields. Similarly, it is not clear what are the properties of NSS and how

they interact with the other fields. If the observations do provide evidence that

the inflation occurred due to the one of these fields, the initial conditions of these

fields will provide information about the nature of interactions with standard

model particles. This in turn can be useful for model building which can be

verified in high-energy experiments.

Though we have discussed so far the inflation but above issues are relevant

59



60 Chapter 4. Early universe attractors

in the context of dark energy also. It is unclear what dynamical fields drive the

current accelerating universe. Even if the observations reveal the nature of the

field, it is still not possible to know what were the initial condition that has lead

to the current acceleration. This is referred to as a cosmic coincidence problem.

The constraints on the interaction of these fields (inflaton and dark energy) with

standard model particles will provide information about the initial condition that

lead to acceleration. The attractor nature is also important in the context of dark

energy. In case of dark energy, as explained in section (2.4), to alleviate the fine

tuning problem (also known as the cosmic coincidence problem) associated with

the initial condition it is important to have attractor behaviour in various dark

energy models. In the reference [82] the authors have extensively studied the

attractor nature in the various dark energy models.

In this chapter we investigate the following questions: If dynamical field during

inflation is a condensate of the non-standard spinor whether a large set of initial

conditions lead to inflation. If it does, then, can it constraint the interactions

between the spinor fields and the matter particles. Recently NSS was proposed

as a candidate of dark matter [83]. In Ref. [31,84], the authors could not find any

stable fixed point with various kind of potentials. One of the draw-backs of their

analyses is the choice of variables. Specifically, they have assumed ϕ and V (ϕ)

to be independent variables. In reference [33] a combination of ϕ̇, H and V (ϕ) as

variables has been chosen and fixed points of the dynamical equations have been

found. It has been shown that in these newly defined variables the dynamical

equations have stable fixed points for a wide class of potentials and interactions

between ELKO and matter. The general analysis of fixed points as an attractor is

given in the appendix (D). In this chapter the scalar field is considered evolving in

the presence of a barotropic fluid with equation of state pm = (γ − 1) εm ( where

0 ≤ γ ≤ 2, γ = 4
3

for radiation and γ = 1 for dust). Analysing the dynamical

equations we show that in general there exist two sets of possibilities where one

can find stable fixed points. One can also find fixed points which are stable during

the time of inflation when there were no other matters and the only constituent

of the universe was the inflaton field. We will argue that these fixed points are
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stable when the slow-roll inflationary conditions are satisfied. Thus we can have

early time attractor during inflation. In the presence of the barotropic fluid with

some specific form of interactions between the NSS and matter the stable fixed

points can be achieved provided there are conditions on the coupling parameters

of interactions.

4.2 Attractors in the scalar field theories

Attractor solutions in the scalar field models of inflation were studied by various

authors. In the standard inflationary theory with m2ϕ2 potential the dynami-

cal equations lead to an attractor where solutions for various initial conditions

eventually converges [15]. In [37] the author has shown that in case of minimally

coupled canonical scalar fields, under slow-roll conditions during inflation, the

perturbations in the Hubble parameters decays exponentially concluding the ex-

istence of attractor. From equation (2.5.7) a deviation from any solution H̃ can

be written as
δH,ϕ

δH
≈ 3

2

H̃

H̃,ϕ

. (4.2.1)

Therefore, using the expression of ∆N given in (2.5.9) the solution of this equation

can be written as

δHf ≈ δHi exp

[
−3

2
∆N

]
, (4.2.2)

where the subscripts i and f denotes the initial value and some final value respec-

tively. From equation (2.5.9) it can be noticed that as during inflation εH � 1,

the solution of (4.2.2) will vanish rapidly irrespective of the initial value. Thus,

the inflationary period will behave like an attractor. Using the similar arguments

in reference [85] the authors has shown that there exists attractor solutions in

case of brane-inflation scenario in the FRW background. In reference [86] the

author has studied the attractor behaviour in the new inflationary scenario. It

is shown that in case of new inflationary scenario a small part of the attractor

corresponds to the inflation as the rest does not give us e-folding greater than

60. In contrast, the chaotic inflationary scenario gives the inflationary attractor
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which attracts most of the solutions. In cosmology the role of exponential po-

tentials of the form V ∝ exp (−σϕ), where σ is a constant, were investigated by

various authors [87]. The steep nature of the exponential potential prevents it

from driving inflation [80,88,89]. Depending on the choice of the constant σ the

attractor solutions can be obtained in different time of evolution. Although ex-

ponential potentials do not give good inflationary model, in contrast to standard

inflationary models, the steepness in the potential may allow a significant amount

of energy density at the time of nucleosynthesis [80]. In reference [90] inflationary

scenario with general scalar tensor theory was considered. It was shown that in

the scalar tensor theory, in general, attractors exist. It was further shown that

as long as the potential has the form V ∝ fM (ϕ), where M is some non-negative

number and f (ϕ) is the general coupling term, in the attractor one can get the

scale independent spectrum of density perturbation irrespective of the functional

choice of f (ϕ). The super-inflationary scenario was considered in [81], where

under fast-roll conditions the scale invariant power spectrum was obtained.

4.3 Attractors in NSS cosmology

In this section we study attractor solutions in NSS equations.

4.3.1 Background equations

In section (2.7.1) we have already given the background equations in the confor-

mal time. In this chapter we will work in cosmic time. Using the transformation

between cosmic time and conformal time (dt = adη) the expression of the energy

density and pressure can be written as

εϕ =
1

2
ϕ̇2 +

3

8
H2ϕ2 + V (ϕ),

pϕ =
1

2
ϕ̇2 − 1

4

(
Hϕ2

). − 3

8
H2ϕ2 − V (ϕ), (4.3.1)
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where H is the Hubble parameter defined in the cosmic time. In the cosmic time

the Friedmann equation and the acceleration equation can be written as follows:

Ḣ = − κ2

2
(

1− F̃
) [ϕ̇2 − 1

2
Hϕϕ̇

]
, (4.3.2)

H2 =
κ2

3
(

1− F̃
) [1

2
ϕ̇2 + V

]
(4.3.3)

where, κ2 = 8πG = 1
M2
pl

. The equation of motion can be written as:

ϕ̈+ 3Hϕ̇− 3

4
H2ϕ+ V,ϕ = 0, (4.3.4)

It is interesting to see that the above equations are similar to that of ‘teleparallel’

dark-energy [91, 92] with a particular value of coupling ξ = −1
8
. However the

physical reason behind this similarity is not known yet and can be a good problem

for future.

4.3.2 Slow-roll parameters for NSS

Due to the presence of the H2 ϕ2 term in the density and pressure, one has be

careful in defining the slow-roll parameters for the ELKO condensate. In this

section, we give the expressions for the slow-roll parameters. From the expres-

sion of time-time component of Einstein’s equation one can write the Friedman’s

equation for NSS as:

H2 =
1

3M2
pl

(
ϕ̇2

2D
+ V̂

)
(4.3.5)

where D = 1− F̃ = 1− ϕ2

8M2
pl

and V̂ = V
D

. Taking the time derivative on the both

the sides of equation (4.3.5) one can write the slow-roll parameter ε as

ε = − Ḣ

H2
=

3

2

ϕ̇2/D

ϕ̇2/2D + V̂
+

Ḋ

HD
= εV + α. (4.3.6)

where, εV = 3
2

ϕ̇2

ϕ̇2/2+V
' 3

2
ϕ̇2

V
(when ϕ̇2 � V ). The slow-roll parameter εV also

appears in the canonical single scalar field models of inflation. α = Ḋ
HD

is the
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additional parameter arising entirely due to the NSS. Thus the slow-roll conditions

in NSS cosmology are modified. In what follows, the other slow-roll parameters

are written.

Substituting for
(
ϕ̇2/2D + Ṽ

)
from (4.3.6) into (4.3.5) one can write

ϕ̇2 = 2M2
plH

2D (ε− α) . (4.3.7)

Now in this case we define δ = ϕ̈
Hϕ̇

. Taking the time derivative on both the sides

of (4.3.7) we get,
ϕ̈

Hϕ̇
= δ = −ε+

α

2
+

(ε− α).

2H (ε− α)
(4.3.8)

The last term can be dropped as it is the time derivative of the slow-roll param-

eters. Therefore finally one can write the definition of δ as:

δ = −ε+
α

2
= −εcan −

α

2
. (4.3.9)

A closer inspection of above expression immediately suggests that δ is negative

definite. For canonical scalar field, it is positive definite.

4.3.3 Early-time inflationary attractor in NSS

Following the procedure in canonical single scalar field case, using equation (4.3.2)

and H,ϕ = Ḣ
ϕ̇

, for NSS one can write the following expression:

H,ϕ = − κ2

2
(

1− F̃
) [ϕ̇− 1

2
Hϕ

]
. (4.3.10)

By taking the square of the above equation and rearranging the terms, ϕ̇2 can be

expressed as following:

κ2

6
(

1− F̃
) ϕ̇2 =

2
(

1− F̃
)

3κ2
H2
,ϕ +

1

6

κ2(
1− F̃

) [Hϕϕ̇−H2ϕ2
]
. (4.3.11)
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In the previous chapter (also in reference [32]) we have shown that, although

perturbation theory tells us that there could be anisotropy associated with NSS,

the amount of anisotropy is small and can be neglected. We have argue that the

anisotropy terms are proportional to F̃ , where F̃ = κ2

8
ϕ2. To get scale invariant

spectrum one must have an upper bound F̃ < 10−4. Thus, during inflation

F̃ = κ2

8
ϕ2 � 1. Under the consideration F̃ � 1 and the slow-roll condition

ϕ̇2 � V the Friedmann equation can be approximated as

H2 ≈ κ2

3
V. (4.3.12)

Using the approximate expression of H2 and the definition of εV one can write

κ ϕ̇
H
≈
√

2
√
εV . Therefore, replacing ϕ̇2 term in the Friedmann equation (4.3.3)

with the right-hand-side of (4.3.11), for NSS one can write the relation between

H2 and H2
,ϕ as:

H2

1 +
4F̃

3
(

1− F̃
) − 2

3
(

1− F̃
)√εV√F̃

 ≈ 2

3

(
1− F̃

)
κ2

H2
,ϕ +

κ2

3
(

1− F̃
)V.

(4.3.13)

Assuming that H̃ is a solution of (4.3.13), let us consider a small perturbation

δH around H̃, i.e.

H = H̃ + δH. (4.3.14)

Linearising the equation (4.3.13) one can find that for NSS, the relation equivalent

to the canonical scalar field case (4.2.1) becomes

δH,ϕ

δH
≈ 3

2

1 + 4F̃

3(1−F̃)
− 2

3(1−F̃)
√
εV
√
F̃(

1− F̃
) κ2 H̃

H̃,ϕ

. (4.3.15)

When F̃ � εV ⇒ ϕ < ϕ̇
H

, one can safely ignore the last term on the right hand

side of (4.3.10). Therefore, using (4.3.10) one can write the following relation

κ2 H

H,ϕ

∆ϕ ≈ −2
(

1− F̃
) ∆ϕ

ϕ̇/H
= −

(
1− F̃

)
∆N. (4.3.16)
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Here ∆N = Nf − Ni is the change in the e-folds during inflation where, the

subscripts i and j denote the start and end of the inflation. Finally, using (4.3.16)

the solution of (4.3.15) can be expressed as

(δH)f ≈ (δH)i exp

−3

2

1 +
4F̃

3
(

1− F̃
) − 2

3
(

1− F̃
)√εV√F̃

∆N


(4.3.17)

During inflation, the number of e-folds rapidly expands (∆N ∼ 60). Therefore,

it can be seen that under the condition F̃ < 10−4 and for a typical value of

εV ∼ 10−2 the perturbation in the Hubble parameter H decreases exponentially.

Hence the dynamical equations of NSS behave like an attractor which is very

similar to the canonical scalar field case provided F̃ < 10−4.

4.3.4 Dynamical equations of NSS in the presence of a

barotropic perfect fluid

The expressions of energy density and pressure (4.3.1) can be written in terms of

newly defined quantities X and Ṽ as following

εϕ = X + Ṽ, pϕ = X − Ṽ, (4.3.18)

where

X =
1

2
ϕ̇2 − 1

8

(
Hϕ2

).
(4.3.19)

Ṽ =
1

8

(
Hϕ2

).
+

3

8
H2ϕ2 + V (ϕ) . (4.3.20)

X can be considered as the kinetic energy of the NSS and Ṽ can be considered

as its potential.

Friedmann equation can be written as

H2 =
κ2

3
εtot =

κ2

3
(εϕ + εm) , (4.3.21)

where εm is the matter density and κ2 = 8πG. Using equation (4.3.18) we can
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write the Friedmann equation(4.3.21) as

x2 + y2 + v2 = 1, (4.3.22)

where x,y and v can be defined as x = κ
√
X√

3H
, y = κ

√
Ṽ√

3H
and v =

κ
√
εm√

3H
. Now, if we

consider that the matter and dark energy are interacting only with themselves

then the continuity equation

ε̇tot + 3H(εtot + ptot) = 0 (4.3.23)

can be written as two separate equations

ε̇ϕ + 3H(εϕ + pϕ) = −Q, (4.3.24)

ε̇m + 3H(εm + pm) = Q, (4.3.25)

where Q is the interaction term. In terms of the variables x, y, v equations

(4.3.24,4.3.25) can be written respectively as

x′ = (ε− 3)x− λ

H

y2

x
− Q1

x
, (4.3.26)

v′ =

(
ε− 3

2
γ

)
v +

Q1

v
. (4.3.27)

Here ′ is the derivative with respect to time divided by H, i.e. ′ = d
Hdt

, ε = − Ḣ
H2

and λ =
˙̃V
Ṽ

, Q1 = κ2Q
6H3 . To derive the above equations we have used the relation

pm = (γ − 1) εm, where γ can take values 1 or 4
3

depending on whether the

universe is filled with cold matter or radiation respectively. Derivative of the

variable y with respect to time give us

y′ =

(
ε+

λ

2H

)
y. (4.3.28)

Ḣ can be written as

Ḣ = −κ
2

2
[εϕ + pϕ + εm + pm] (4.3.29)
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Therefore we have three dynamical equations (4.3.26), (4.3.27) and (4.3.28) with

one constraint (4.3.22). It is important to contrast the above set of variables with

those used earlier [31]. The two variables X and Ṽ are independent of each other.

However, in Wei’s analysis [31], the two variables y and u are not independent.

In the rest of this work, we study the stability of fixed points with equations

(4.3.26,4.3.27,4.3.28). Using these equations it is demonstrated that the NSS

cosmology has a new sets of fixed points that can not be identified with the fixed

points of a canonical scalar field.

4.3.5 Fixed points and stability analysis: General Analy-

sis

Fixed points are the points where the dynamical variables stop evolving, i.e., at

fixed point (x̄, ȳ, v̄) the time derivative of x, y and v are zero. At fixed points,

dynamical equations (4.3.26, 4.3.27, 4.3.28) can be written as:

(ε̄− 3) x̄− λ

H

ȳ2

x̄
− Q1

x̄
= 0, (4.3.30)

(
ε̄− 3

2
γ

)
v̄ +

Q1

v̄
= 0, (4.3.31)

(
ε̄+

λ

2H

)
ȳ = 0. (4.3.32)

Eq. (4.3.32) leads to the following two set of fixed points:

1. Case I: ȳ = 0 and ε̄ 6= − λ
2H

2. Case II: ȳ 6= 0 and ε̄ = − λ
2H

In the rest of this section, the above two cases are considered with general in-

teraction term Q1. In the following section, we consider special cases for the

interaction term and discuss the nature of fixed points.
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4.3.5.1 Case I

Substituting ȳ = 0 in equation (4.3.30) we get

ε̄ = 3 +
Q1

x̄2
. (4.3.33)

The above form of ε gives crucial information about the class of interaction terms

between the NSS and matter fields that can lead to attractor behavior. In partic-

ular, it immediately shows that Q1 ∝ x2 may not lead to stable attractor points.

It also provides an upper bound on the coupling constant. We discuss these in

the next section.

General expression for ε can be written as

ε = − Ḣ

H2
=

3

2
γ +

(
3− 3

2
γ

)
x2 − 3

2
γy2. (4.3.34)

Therefore, setting ȳ = 0, at fixed points ε̄ can be written as ε̄ = 3
2
γ+

(
3− 3

2
γ
)
x̄2.

ε̄ has to be a positive to ensure to have an accelerated expansion of the universe.

Finally one can write an important relation for ε̄ which will be used later

ε̄− 3 =

(
3

2
γ − 3

)(
1− x̄2

)
. (4.3.35)

Once we get the fixed points, we need to study the stability of the fixed point

to ensure that the fixed points are actually giving us an attractor. If the fixed

points are stable then we can have an attractor. The existence of an attractor

will help in alleviating the ‘cosmic coincidence’ problem. To analyse the stability

of these fixed points we perturb the system about the fixed point, x→ x̄+δx and

y → ȳ + δy and study the evolution of the perturbations. If we have a growing

solution of the perturbations then the fixed points are not stable. However if one

finds a decaying solution one can say that the fixed points are stable. Substituting

these values of x and y in equation (4.3.26) and (4.3.28) we get the perturbed
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equations of x and y as follows:

δx′ =

[
(ε̄− 3) + (6− 3γ) x̄2 +

Q1

x̄2
− 1

x̄

∂Q1

∂x

]
δx−(

1

x̄

∂Q1

∂y

)
δy, (4.3.36)

δy′ =

(
ε̄+

λ

2H

)
δy. (4.3.37)

Here we have used δε = [(6− 3γ) x̄] δx and ȳ = 0. Equations (4.3.36) and (4.3.37)

can be written as δx′
δy′

 = (M)

δx
δy

 , (4.3.38)

where

M =

(ε̄− 3) + (6− 3γ) x̄2 + Q1

x̄2
− 1

x̄
∂Q1

∂x
1
x̄
∂Q1

∂y

0
(
ε̄+ λ

2H

)
 .

Two eigenvalues of the matrix M are

µ1 =

(
ε̄+

λ

2H

)
, (4.3.39)

µ2 = (ε̄− 3) + (6− 3γ) x̄2 +
Q1

x̄2
− 1

x̄

∂Q1

∂x
. (4.3.40)

Stability around the fixed points depend upon the nature of the eigen values µ1

and µ2. When µ1 < 0, µ2 < 0 the fixed points are stable and we can get an

attractor solution. If µ1 > 0, µ2 > 0, the fixed points are unstable and we can

not have any attractor. If one of them is positive and other one is negative, we

get a saddle point which says that at one direction the fixed points are stable and

at the other direction the fixed points are unstable.

It is already shown that accelerated expansion of the universe can occur only

when the pressure is negative, i.e. the equation of state wϕ = pϕ
εϕ
< 0. In case

of standard canonical scalar fields, in the region −1 ≤ wϕ < 0 the kinetic energy

term ϕ̇ ≥ 0. But the phantom modes (or ghosts) can appear with negative kinetic

terms (ϕ̇ < 0) when the equation of state wϕ < −1. In Ref. [31] it was noted

that in case of NSS, equation-of-state parameter wϕ ≥ −1 when ϕ̇2 ≥ 1
4

(Hϕ2)
.
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and the phantom modes appear (wϕ < −1) if ϕ̇2 ≤ 1
4

(Hϕ2)
.
. Therefore in the

region wϕ ≥ −1 we always get X > 0 and in the phantom region X < 0. Now

from Friedmann equation (4.3.21) one gets

H2 =
8πG

3

(
X + Ṽ + εm

)
, (4.3.41)

which implies that H2 > 8πG
3
Ṽ . Finally taking logarithmic time derivative on

both the sides of this inequality we get

ε+
λ

2H
< 0. (4.3.42)

This means that the eigenvalue µ1 is always negative as far as the condition

wϕ ≥ −1 region is satisfied. Therefore it is possible to have a stable fixed point,

if µ2 becomes negative for some interaction Q. In the next section, we analyse

the stability for three types of interactions with the positive kinetic term X for

NSS.

In Ref. [93], the authors have shown that for the ϕ4 potential in case of NSS

produces small primordial non-Gaussianity fNL (of the order of slow-roll param-

eters). The authors also investigated the anisotropy caused due to non-standard

spinors by introducing two different expansion parameters. However, it is impor-

tant to note that the Friedmann’s equations for the condensate given in [93] and

in the present work are different. In the present work we are using the expressions

obtained in [30], whereas in [93] the authors used the old results. Although, the

final conclusions about the anisotropy and fNL may still remain valid in our case.

With the above mentioned potential, one can show that the dynamical equations

can give stable fixed points. Using the definition of ε equation (4.3.19) can be

written as

X =
1

2
ϕ̇2 +

1

8

(
εH2ϕ2 − 2Hϕϕ̇

)
. (4.3.43)

As, the above potential suggests that during inflation ϕ̇ < 0 when ϕ > 0, we get

X > 0. Thus, potential –V = a2ϕ2 + bϕ4, where a2 is the mass term and b is

the self coupling– can give us the equation-of-state wϕ ≥ −1 and the inequality
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(4.3.42) remains valid in this case.

4.3.5.2 Case II

Substituting the value of ε̄ = − λ
2H

and constraint (4.3.22) in Eqs. (4.3.26) and

(4.3.27), we get for (γ = 1):

x
′

= (ε− 3)x− λ

H

y2

x
− Q1

x
(4.3.44)

v
′

=

(
ε− 3

2

)
v +

Q1

v
(4.3.45)

Substituting for λ, we get,

ε̄ = − λ

2H
= 3x̄2 +

3

2
v̄2 (4.3.46)

δε = 6x̄δx+ 3v̄δv (4.3.47)

The perturbed equations about the fixed point are:

δx
′

=

(
3− 9x̄2 − 15

2
v̄2 − 3

v̄2

x̄2
+ 3

v̄4

x̄2

)
δx+

(
6
v̄

x̄
− 12

v̄3

x̄
− 15x̄v̄

)
δv −

δ(
Q1

x̄
) (4.3.48)

δv
′

= 6 x̄ v̄ δx+

(
3x̄2 +

9

2
v̄2 − 3

2

)
δv + δ

(
Q1

v

)
(4.3.49)

These attractor points are unique to ELKO cosmology regarding which we would

like to stress the following points:

1. The perturbed equations do not explicitly depend on the potential. Hence,

these equations can be realised for any potential provided ε̄ = −λ/(2H) is

satisfied.

2. In case of γ ≥ 2
3

the fixed points x � 1 and v → 1 (or vice-versa), Eq.

(4.3.46) implies that ε > 1 ∗. The parameter ε > 1 means the decelerated

∗In [33] it was claimed that this corresponds to fast-roll inflation. But ε > 1 does not imply
fast-roll inflation. If γ < 2

3 then we get ε < 1 and this case can give us fast-roll inflation

provided the slow-roll condition , ϕ̈
Hϕ̇ � 1, is violated for some special potentials [43,44]. It will

be interesting to study fast-roll inflationary scenario for the NSS field.
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period of evolution of universe. This period will be important in case of

matter or radiation dominated era which are non-inflationary in nature

(ä < 0).

4.3.6 Special cases of the interaction term

In the previous section, we have obtained the condition for the existence of fixed

point for general interaction. However, the analysis for a general interaction term

is complicated. Here, for two cases, we take simple form of the interaction term

and show explicitly the nature of the fixed points. In particular, the following

interactions are considered: Q1 = βv2x, Q1 = βv2x2 and Q1 = βvx2 where β is

the coupling constant.

4.3.6.1 Case I:

• Q1 = βv2x

In this case the fixed point ȳ is zero. The fixed point x̄ and v̄ can be found

using the equation (4.3.30). Substituting ȳ = 0 in equation (4.3.30) and using

v̄2 = 1− x̄2 from equation (4.3.22) we can write

(ε̄− 3)x̄− Q1

x̄
= 0. (4.3.50)

Which gives us two solutions for x̄

x̄ = ±1, x̄ = − β(
3− 3

2
γ
) . (4.3.51)

Now x̄ = ±1 can not be a scaling solution because that will make the universe

completely kinetic energy dominated. These solutions may be important in the

time earlier than inflation. Therefore, the only possible scaling solution is x̄ =

− β

(3− 3
2
γ)

which is negative as β and
(
3− 3

2
γ
)

are both positive.

In the present case the eigenvalue µ2 of the matrix M can be written as

µ2 =

[
−
(

3− 3

2
γ

)(
1− 3x̄2

)
+ 2βx̄

]
. (4.3.52)
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Now substituting the solution of x̄ from (4.3.51) in the above expression of µ2

one can get the following expression of µ2:

µ2 = −
(

3− 3

2
γ

)
+

β2(
3− 3

2
γ
) , (4.3.53)

From the above expression of µ2 it can be understood that when the first term

dominates over the last term one can get µ2 < 0. Therefore the condition for

having a stable fixed point for this kind of interaction is:

β <

(
3− 3

2
γ

)
. (4.3.54)

Therefore, in the presence of a barotropic perfect fluid, dynamical equations of

NSS can show attractor behaviour for this kind of interaction provided the fixed

coupling constant satisfy an upper bound.

The expression of ε̄ in terms of the fixed points is

ε̄ = 3x̄2 +
3

2
γ
(
1− x̄2

)
. (4.3.55)

The above analysis tells us that when γ = 0 we get stable attractor when β < 3.

When the coupling β is very weak (β � 3), the expression of x̄ is also very small

(x̄ � 1). In this case equation (4.3.55) suggests ε̄ � 1. On this attractor the

dominant contribution in total energy will come from the barotropic fluid which

behave as a cosmological constant with negative pressure (pm = −εm). Thus, this

attractor can be the late-time attractor which is driven by cosmological constant

to give accelerated expansion of the universe today.

• Q1 = βv2x2

In this case equation (4.3.35) and (4.3.50) tell us that

(
3

2
γ − 3

)(
1− x̄2

)
x̄− β

(
1− x̄2

)
x̄ = 0. (4.3.56)

So, the only solution of x̄ = (0,±1). Here we get barotropic fluid dominated and

kinetic energy dominated universe respectively. When x̄ = 0, in contrast to the
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previous case of interaction, µ2 will become negative and the fixed point will be

stable attractor for any value of coupling β.

• Q1 = βvx2

Following the similar method as described above using (4.3.50) for this kind

of interaction one can find that at fixed point the only solution for x is:

x̄ = ±
√

1− β2(
3− 3

2
γ
)2 , (4.3.57)

Here we have considered x̄ 6= (0,±1). Substituting the above expression of Q1 in

the expression of µ2 one can get

µ2 = (6− 3γ) x̄2 + β
x̄2

v̄
. (4.3.58)

Using the definition of v̄2 = 1− x̄2 and the expression of x̄ from (4.3.57) one can

write the expression of µ2 in terms of the coupling β as:

µ2 = 3

[(
3− 3

2
γ

)
− β2(

3− 3
2
γ
)] , (4.3.59)

Therefore in this case the µ2 will be negative only when β >
(
3− 3

2
γ
)
. However

from (4.3.57) one can see that this condition will make x̄ imaginary. Therefore

we can not find a physical stable fixed point in this case.

4.3.6.2 Case II:

• Q1 = βv2x

For this interaction, the perturbed equations of x and v are:

δx
′

= [3− 9x̄2 − 15

2
v̄2 − 3

v̄2

x̄2
+ 3

v̄4

x̄2
]δx+

[6
v̄

x̄
− 12

v̄3

x̄
− 15x̄v̄ − 2βv̄]δv. (4.3.60)

δv
′

= [6x̄v̄ + βv̄]δx+ [3x̄2 +
9

2
v̄2 − 3

2
+ βx̄]δv (4.3.61)

The two eigen-values corresponding to the above set of equations are negative.
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Fig. (1a) shows that for different initial conditions v → 1 and x � 1 is an

attractor point.

• Q1 = βv2x2

For this interaction, the perturbed equations of x and v are:

δx
′

= [3− 9x̄2 − 15

2
v̄2 − 3

v̄2

x̄2
+ 3

v̄4

x̄2
− βv̄2]δx+

[6
v̄

x̄
− 12

v̄3

x̄
− 15x̄v̄ − 2βv̄x̄]δv. (4.3.62)

δv
′

= [6x̄v̄ + 2βv̄x̄]δx+ [3x̄2 +
9

2
v̄2 − 3

2
+ βx̄2]δv (4.3.63)

Here again, both the eigenvalues corresponding to the above set of equations are

negative. The eigenvalues are negative for all ranges of β for which x and v are

real. Fig. (1b) shows that for different initial conditions v → 1 and x � 1 is an

attractor point.

• Q1 = β v x2

For this interaction, the perturbed equations of x and v are:

δx
′

= [3− 9x̄2 − 15

2
v̄2 − 3

v̄2

x̄2
+ 3

v̄4

x̄2
− βv̄]δx+

[6
v̄

x̄
− 12

v̄3

x̄
− 15x̄v̄ − βx̄]δv. (4.3.64)

δv
′

= [6x̄v̄ + 2βx̄]δx+ [3x̄2 +
9

2
v̄2 − 3

2
]δv (4.3.65)

Here again, in contrast to case-I, both the eigenvalues corresponding to the

above set of equations are negative for all values of β where x and v are real. Fig.

(1c) shows that for different initial conditions v → 1 and x � 1 is an attractor

point.

As it is known that it is extremely difficult to know the initial conditions

for the field that drives the inflation. In addition it is also desirable to have an

inflationary model which does not require any finely tuned initial conditions to

have an inflationary regime. Hence it is important for a model of inflation to

have attractor points in the space of matter field variables. In earlier works, it

was not possible to show explicitly that the NSS based inflationary models can
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(a) (b)

(c)

Figure 4.1: The late attractor for three interactions (a) Q1 = βv2 x, (b) Q1 =
βv2x2 and (c) Q1 = βvx2. The figures show that v → 1 and x � 1 is a stable
fixed point.
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support a late-time attractor. In this section we have shown that by rewriting the

background field equations in terms of new variables x and y, the NSS based model

can have such attractor solution. We have also shown that under the condition

F̃ < 10−4 the attractor solution can be found for the early-time inflationary era.

The search for stable fixed points is made by considering the evolution of NSS in

the presence of barotropic perfect fluid. It is shown that the attractor points can

be found without any specific choice of potential. Here we have shown that the

dynamical equations can give us fixed points for the following two cases: In Case-I

we have y = 0 and ε + λ
2H
6= 0, and in Case-II we have y 6= 0 and ε + λ

2H
= 0.

Stability of the fixed points or the negativity of the eigenvalues are shown to

depend on the form of interaction between NSS and matter. In this thesis, for

both Case-I and Case-II we have considered three types of interactions between

the NSS and the barotropic fluid: Q1 = βv2x, Q1 = βv2x2 and Q1 = βvx2. In

Case-I, for the interaction term Q1 = βv2x, one must put an upper bound on the

coupling parameter β <
(
3− 3

2
γ
)

to get stable fixed points. For other types of

interactions no such upper bound is required for Case-I. In Case-II it is shown

that x� 1 and v → 1 are stable fixed points. In this case the stable fixed points

can be obtained without any condition on the coupling parameter β.
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Summary and Conclusions

We have noted earlier that in previous literature on NSS-cosmology the equation

of motion obtained from the energy-momentum tensor was not matching with

the equation of motion obtained from varying the action. In this work we use

the consistent NSS theory developed in reference [30] to study NSS-cosmology.

In particular we have addressed two important aspects of NSS-cosmology in this

thesis: The first order inflationary perturbation theory and attractor behaviour.

We have used a simple ansatz for the NSS-field λ and its dual
¬
λ (3.5.2) to study

the NSS-cosmology. This ansatz helps in defining gauge-invariant quantities. It

should be noted that the term F µ
ν in equation (2.7.8), arises due to variation of

spin-connection Γµ with respect to the metric. Perturbation of F µν would imply

that for the NSS δT ij 6= 0 for i 6= j. For a canonical scalar field case δT ij = 0 for

i 6= j. Thus the metric perturbations φ and ψ for the NSS one can write ψ =(
1− 2F̃

)
φ in contrast with a scalar field theory where ψ = φ. We have shown

that the perturbations are nearly scale invariant. More importantly we have

calculated the power-spectrum and spectral-index for the metric perturbation.

We show that the running spectral-index allows for a wide range of values for F̃ .

When all of the terms containing F̃ are dropped one gets back the expressions for

the power spectrum and spectral index for a canonical scalar-field inflation. It

should be noted that our analysis shows that the calculated value of the spectral-

index ns for NSS-field can match with the WMAP data provided F̃ satisfies an

upper bound F̃ < 10−4. Our analysis also shows that the sound speed of the

79
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perturbation is not a constant but dependent on time. However, the expression

of c2
s ' 1+ 2

3
F̃ together with the upper bound on F̃ , implies that c2

s ∼ 1. Ratio of

power-spectrum of the tensor perturbation and scalar perturbation may remain

as small as the ratio calculated from a scalar field inflationary model due to the

upper bound on F̃ . Thus, from the first order perturbation theory point of view,

it may not be possible to distinguish between predictions of NSS field inflationary

model and the predictions of single scalar field inflationary model.

The attractor behaviour of NSS cosmology has been studied in this thesis.

As we don’t know the initial conditions exactly, the attractor behaviour is very

important from the point of view of the robustness of the models associated

with the inflation and the dark energy. The search for having stable fixed points

as attractors in the context of NSS dark energy were pursued in reference [31]

with various models of NSS potentials. It was argued that there exist no fixed

points and the dark energy models of NSS field suffer from the cosmic coincidence

problem. In this thesis we have shown that the dynamical equations can give

us early-time inflationary attractor which corresponds to 60 e-folding when the

condition F̃ < 10−4 is satisfied. We have also demonstrated that for NSS field,

stable fixed points can be obtained if we choose the variables in a different way

than used in reference [31]. We have shown that in case of NSS dark energy

model if we work with the new variables x and y we can get stable fixed point. In

this analysis the evolution equations of NSS has been studied in the presence of a

barotropic perfect fluid with equation of state p = (γ − 1) ε. The analysis shows

that we can have two cases: Case-I is when y = 0 and ε+ λ
2H
6= 0, Case-II is when

y 6= 0 and ε + λ
2H

= 0. We have also considered three types of interaction terms

between NSS and the fluid: Q1 = βv2x, Q1 = βv2x2 and Q1 = βvx2. In Case-I,

when the equation of state satisfies the condition wφ ≥ −1, X > 0. Therefore,

the negativity of the eigenvalue µ1 = s+ λ
2H

< 0 comes naturally from Friedmann

equation. In this case for interaction Q1 = βv2x we get the coupling constant

must have an upper bound β <
(
3− 3

2
γ
)

to have stability, i.e. µ2 < 0. There is

no such upper bound for the other types of interactions in Case-I. Case-II shows

that x � 1 and v → 1 are the stable fixed points. In Case-II the stability can
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be achieved for any range of β. In this work the variables we have worked with

are not a simple transformation of the variables chosen in reference [31]. The

stability can be achieved by redefining the potential and the kinetic part.

Cosmology with NSS is a very new field. There are many directions to which

the future research can be done. In this thesis we have done the first order per-

turbation theory. As we are in the era of precision cosmology, it is important

to study the inflationary theory of NSS numerically, without any slow-roll ap-

proximations, to match various cosmological parameters with the Planck data.

In the first order perturbation theory one important assumption is that the per-

turbations are Gaussian random fields in nature. Deviation from Gaussianity

can be due to various reasons, for example, presence of multi field, violation of

slow-roll, exited initial state (non-Bunch-Davies vacua) etc. Recent observational

data from Planck mission has constrained the local bispectrum amplitude asso-

ciated with non-Gaussianity as fNL = 2.7 ± 5.8 [94]. It can be interesting to

study non-Gaussianity with the NSS field to check whether the theoretical pre-

dictions matches with the observation. In order to calculate bispectrum for NSS,

calculation of the second order perturbation theory is required. As we have seen

that NSS satisfies the Klein-Gordon equation which is second order differential

equation in time, study of parametric oscillations in the reheating theories can

be exciting problems in future. As we do not know how NSS interacts with the

observable matter, at present it is not clear how NSS can decay to matter and

reheats. One possibility could be that NSS can decay to ordinary matter through

Higgs.





Appendix A

Basics of FLRW metric

A.1 Background

A.1.1 Christoffel symbol in case of FLRW metric

From equation (2.2.4) it can be seen that the Christoffel symbol contains the

derivative of the metric. Therefore, for those metrics whose components are con-

stants of space and time, the christoffel symbol vanishes. Because of the presence

of the time dependent scale factor, there will be some non-zero components of

Christoffel symbol for the FLRW metric (2.2.6). It can be shown that in case of

FLRW metric the cmponents which contain two same spatial indices are non-zero

and all other components will vanish. The non-zero components are given as:

Γtij = δijaȧ, Γitj = Γijt = δij
ȧ

a
, (A.1.1)

where the index t is the temporal index and i, j are three spatial indices. In case

of the metric in conformal time (2.7.4) the expressions of the Christoffel symbols

changes a little, the Christoffel symbol with all three temporal indices becomes

nonzero and all of the non-zero components of Christoffel symbol are same:

Γηηη =
a′

a
, Γηij = δij

a′

a
, Γiηj = Γijη = δij

a′

a
, (A.1.2)
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A.1.2 Ricci tensor and Ricci scalar for FLRW metric

From the expression of Ricci tensor in (2.2.3) one can write the time-time com-

ponent of Ricci tensor for the metric (2.2.6) as

Rtt = −∂tΓλtλ − ΓηtλΓ
λ
tη, (A.1.3)

where the first term and the third term becomes zero, as the Christoffel symbol

with two temporal indices are zero. Substituting the expressions of Christoffel

symbol (A.1.1) in the above expression one can write

Rtt = −3
ä

a
. (A.1.4)

In the similar manner the space-space component of the Ricci tensor can be

written as

Rij = δij
(
2ȧ2 + aä

)
(A.1.5)

Contracting Ricci tensor into the metric the expression of Ricci scalar in terms

of Ricci tensor can be written as

R = Rtt −
1

a2
δiiRii, (A.1.6)

where i index will be summed over. Therefore, the expression of Ricci scalar

becomes

R = −6

(
ä

a
+
ȧ2

a2

)
. (A.1.7)

In conformal time (2.7.4) the non-vanishing components of background Ricci

tensor and Ricci scalar can be written as

Rηη = −3

[
a′′

a
−
(
a′

a

)2
]
, Rij =

[
a′′

a
+

(
a′

a

)2
]
δij, R = − 1

a2

(
6
a′′

a

)
.

(A.1.8)

All other components of Ricci tensor are zero.

It is worth mentioning that, as the Christoffel symbol is quadratic in metric,

the Christoffel symbol and Ricci tensor both remains unchanged under the change
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of signature of the metric (2.2.6). However, the expression of Ricci scalar will pick

up opposite sign if we change the signature of the metric. For example, here the

signature of the metric is {+,−,−,−}, but if we use {−,+,+,+} the Ricci scalar

(A.1.7) becomes R = 6
(
ä
a

+ ȧ2

a2

)
.

A.2 Perturbation

To calculate the perturbations in the Ricci scalar and tensor the first step is

calculation of the perturbation of Christoffel symbol.

A.2.1 Perturbation in the Christoffel symbol

The general expression of the perturbed Christoffel symbol for inhomogeneous

metric perturbation (3.2.1) can be written as

δΓαβγ =
1

2
ḡαρ [∂β (δgργ) + ∂γ (δgρβ)− ∂ρ (δgγβ)] +

1

2
δgαρ [∂β ḡργ + ∂γ ḡρβ − ∂ρḡβγ] ,

(A.2.1)

where the bar over the metric denotes the unperturbed background metric.

As we have seen that gauge invariant perturbation can be calculated by di-

rectly writing the perturbation in longitudinal Newtonian gauge and replacing the

gauge dependent quantities by gauge invariant quantities. The general metric, in

conformal time, in terms of gauge invariant quantities can be given as

gµν = ḡµν + δgµν = a2

1 + 2ψ O

O (−1 + 2φ) δij + 2hij

 , (A.2.2)

and

gµν = ḡµν + δgµν =
1

a2

1− 2ψ O

O (−1− 2φ) δij − 2hij

 (A.2.3)

where ψ and φ are the gauge invariant scalar perturbations. The above metric is

obtained by replacing gauge dependent variables Ψ and Φ with gauge invariant

variables ψ and φ respectively in (3.2.3) and (3.2.5). Here we have added hij

as the symmetric tensor perturbations with properties hyy = −hzz = h+, hyz =
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hzy = h×, and all other tensor parts are zero. It should be mentioned here that

the tensor perturbations are gauge invariant quantities, therefore they don’t need

any treatment like scalar perturbations.

Using (A.2.2) and (A.2.3) one can write the different components of the per-

turbed Christoffel symbol (A.2.1) as,

δΓηηη = ψ′, δΓηηi = ∂iψ, δΓiηη = ∂iψ, δΓiηj = −φ′δij − h′ij,

δΓηij = −
(

2
a′

a
ψ + 2

a′

a
φ+ φ′

)
δij −

(
h′ij + 2

a′

a
hij

)
,

δΓijk = [(∂iφ) δjk − (∂jφ) δik − (∂kφ) δij] + [∂ihjk − ∂jhik − ∂khij] . (A.2.4)

A.2.2 Perturbed Ricci tensor and Ricci scalar

The expression of perturbed Ricci scalar and Ricci tensor are respectively

δR = (δgµν)Rµν + ḡµν (δRµν) , (A.2.5)

δRµν =
(
δΓαµν

)
,α
−
(
δΓαµα

)
,ν

+ δ
(
ΓαβαΓβµν

)
− δ

(
ΓαβµΓβαν

)
(A.2.6)

Using the expressions of perturbed Christoffel symbol (A.2.4) the different com-

ponents of perturbed Ricci tensor can be listed as

δRηη = 3φ′′ + 3
a′

a
(ψ′ + φ′) + ∆ψ, δRηi = 2

(
φ′ +

a′

a
ψ

)
,i

,

δRij = −

[
φ′′ +

a′

a
(ψ′ + 5φ′) + 2

a′′

a
(ψ + φ) + 2

(
a′

a

)2

(ψ + φ)−∆φ

]
δij −

∂i∂j (ψ − φ) , (A.2.7)

where ∆ = ∂i∂
i. The perturbed Ricci scalar in terms of the metric perturbations

becomes

δR =
1

a2

[
6φ′′ + 12

a′′

a
ψ + 6

a′

a
(ψ′ + 3φ′) + 2∆ (ψ − 2φ)

]
. (A.2.8)
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A.3 Perturbed Einstein tensor

The Einstein tensor in the mixed form is written as,

Gµ
ν = gµρ

(
Rρν −

1

2
gρνR

)
. (A.3.1)

Using the background expressions of Ricci tensor and Ricci scalar the non-zero

components of Einstein tensor can be written as

Gη
η =

3

a2

(
a′

a

)2

, Gi
j = − 1

a2

[
−2

a′′

a
+

(
a′

a

)2
]
δij. (A.3.2)

Perturbation in the Einstein tensor can be written as

δGµ
ν = δgµρ

(
Rρν −

1

2
ḡρνR

)
+ ḡµρ

(
δRρν −

1

2
δgρνR−

1

2
ḡρνδR

)
(A.3.3)

which after substituting the perturbed metric, Ricci tensor and Ricci scalar gives

us the following components

δGη
η = − 2

a2

[
3
a′

a

(
φ′ +

a′

a
ψ

)
−∆φ

]
,

δGη
i =

2

a2

(
φ′ +

a′

a
ψ

)
,i

,

δGi
j = − 1

a2

[
2φ′′ + 2

a′

a
(ψ′ + 2φ′)− 2

{(
a′

a

)2

− 2
a′′

a

}
ψ + ∆ (ψ − φ)

]
δij +

1

a2
∂i∂j (ψ − φ) . (A.3.4)

Therefore, using perturbed Einstein tensor (A.3.4) one can quickly write the

perturbed Einstein equation as (3.4.2), (3.4.3) and (3.4.4).





Appendix B

Perturbations in the scalar field

theories

B.1 Perturbed energy-momentum tensor in the

scalar field theories

To describe inflationary scenario with single scalar field one need to write the

action of the scalar field along with the gravitational Einstein-Hilbert action. In

general the gravitation part in the action can have a coupling with the scalar

field (non-minimal coupling). For simplified models we consider the scalar field

minimally coupled with gravity. The minimally coupled action with the canonical

kinetic term in the scalar field can be written as

S =

∫
d4x
√
−g
[
−1

2
M2

PLR +
1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
. (B.1.1)

Taking the variation with the metric gµν the energy-momentum tensor can be

written as

Tµν = ∂µϕ∂νϕ− gµν
(

1

2
∂σϕ∂σϕ− V (ϕ)

)
. (B.1.2)

One can identify the second term under the parenthesis is the Lagrangian associ-

ated with the scalar field, L =
(

1
2
∂σϕ∂σϕ− V (ϕ)

)
. Using the expression of the

energy-momentum tensor for the perfect fluid (2.2.7) one can get the following

89
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expressions of energy density and pressure for homogeneous and isotropic scalar

field

ε =
1

2
ϕ̇2 + V (ϕ), p =

1

2
ϕ̇2 − V (ϕ), (cosmic time)

ε =
1

2a2
ϕ′2 + V (ϕ), p =

1

2a2
ϕ′2 − V (ϕ). (conformal time)(B.1.3)

The perturbed energy momentum tensor in the mixed form can be expressed as

δT µν = ḡµσδTσν + δgµσTσν , (B.1.4)

where δTµν is the perturbation in (B.1.2). Using (A.2.2), (A.2.3) and (B.1.4) the

different components of perturbed energy momentum tensor in conformal time,

which has been used in section (3.4), can be written as

δT ηη =
1

a2

[
δϕ′ϕ′ − ψϕ′2 + a2V,ϕδϕ

]
,

δT ηi =
1

a2
(δϕϕ′),i ,

δT ij = − 1

a2

[
δϕ′ϕ′ − ψϕ′2 − a2V,ϕδϕ

]
δij. (B.1.5)

B.2 Quantisation of the perturbation

To quantize the perturbations one can follow the standard methods of quanti-

sation, i.e., find the canonically conjugate momentum corresponding to the per-

turbed quantities and then satisfy the following commutation relations at any

particular time:

[v (η,x) , v (η,y)] = [π (η,x) , π (η,y)] = 0,

[v (η,x) , π (η,y)] = iδ (x− y) . (B.2.1)

Here π = v′ is the canonically conjugate momentum of v associated with the

Lagrangian

L =
1

2

[
v′2 −

(
k2 − z′′

z

)
v2

]
, (B.2.2)
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Expanding the solution of (3.4.8) in terms of creation and annihilation operators

(a†, a) we get

v =

∫
d3k

2π3/2

[
v (η)k e

−ik.xa†k + v∗ (η)k e
ik.xak

]
, (B.2.3)

where vk and v∗k are the two independent solutions of equation (3.4.8) which are

dependent only up on time. One can write the equation satisfied by the modes

vk as:

v′′k + ω2 (η) vk = 0, (B.2.4)

where ω (η) =
√
k2 − z′′

z
is the time dependent frequency of the simple harmonic

oscillator when k2 > z′′

z
.

The creation and annihilation operators a† and a satisfy the bosonic commu-

tation relation

[ap, ap′ ] =
[
a†p, a

†
p′

]
= 0, and

[
ap, a

†
p′

]
= δ (p− p′) . (B.2.5)

Substituting (B.2.3) in the commutation relation (B.2.1) one can get the following

relation among the modes vk and v∗k:

v′kv
∗
k − vkv∗′k = i. (B.2.6)

The normalisation condition (B.2.6) is very useful to obtain the nature of the

solution vk at an early time (ηi).

Parametrising the solution vk as

vk = r eiα, (B.2.7)

where r and α are the time dependent real parameters, the normalisation condi-

tion (B.2.6) gives us the condition between r and α as

r2α′ =
1

2
. (B.2.8)
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For the modes with k2 � z′′

z
, the expression of the energy corresponding to the

harmonic oscillator (B.2.4) can be expressed as

Ek =
1

2

(
r′2k +

1

r2
k

+ k2r2
k

)
. (B.2.9)

At some early time (ηi) the initial condition of rk (ηi) can be found out by min-

imizing the Energy Ek, i.e., by choosing a vacuum. This choice of vacuum is

also known as Bunch-Davis vacuum. Bunch-Davis vacuum corresponds to the

choice of initial condition where r′k (ηi) = 0 and rk (ηi) = 1√
2k

. Therefore, equa-

tion (B.2.8) gives us the value of the parameter α = kη, where we have set the

constant of integration to be zero. Finally, for Bunch-Davis vacuum one gets,

vk(BD) =
1√
2k

eikη, v′k(BD) = i

√
k

2
eikη (B.2.10)

B.3 Power spectrum and spectral indices

The power spectrum is a statistical property associated with gaussian random

fields. It measures the two point correlation function of the random fields. In

case of small perturbations about the FRW background one can consider the

perturbations to be gaussian. Power spectrum measures scale dependence of the

perturbations. In other words it measures how large the field fluctuations are

on different scales. The remarkable feature of inflation is that inflation predicts

nearly a scale invariant power spectrum which is in good agreement with the

observation. For any generic field ξ(η,x) can be written in the Fourier space as

ξ (η,x) =

∫
1

(2π)3/2
eik.xξk (η)d3k (B.3.1)

The two point correlation function associated with the field ξ can be written as

〈0|ξ2|0〉 =

∫
dk

k
δ2
χ (k), (B.3.2)
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where, δ2
χ = k3

2π2 |ξk|2 is called the power spectrum associated with ξ. Using (B.3.2)

the power spectrum associated with the metric perturbation and the spectral

index respectively becomes: δ2
φ = k3

2π2 |φk|2 and nφ = 1 +
d ln δ2χ
d lnφ

Now let us calculate the power spectrum for the metric perturbation φ. We

start with equation (3.4.7). Let us first consider the small wavelength region (also

known as subhorizon mode characterised by kη > 1) where k2 � θ′′

θ
,

u′′k + k2uk = 0. (B.3.3)

Under WKB approximation the solution of (B.3.3) can be written as

uk ≈ c1e
ikη + c2e

−ikη, (B.3.4)

where c1 and c2 are constants which are determined by the initial conditions.

Following the section (B.2) one can choose the initial condition which is consistent

with the Bunch-Davis vacuum (B.2.10). Therefore, from the initial conditions,

using (3.4.5) and (B.2.10), the coefficients c1 and c2 can be fixed as

c1 = − i

k3/2
, and c2 = 0. (B.3.5)

Thus, in the region k2 � θ′′

θ
the solution of uk becomes

uk ≈ −
i

k3/2
eikη. (B.3.6)

Although (B.3.6) is the solution in the small scale region, the solution of the

perturbation after crossing the horizon will be applicable for a small time period

ε
k
< η < 1

k
. Where ε is the slow-roll parameter. The lower bound is obtained

using the fact that θ′′

θ
≈ ε

η2
and kη < 1 implies the entry into the super-horizon

mode (or large scale mode) after horizon crossing. Thus, in the small time interval

ε
k
< η < 1

k
the exponent of the solution (B.3.6) does not evolve hence it freezes.

From (3.4.9) the power spectrum in the small wavelength region becomes

δ2
φ = 8G2 (ε+ p) . (B.3.7)
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In the super horizon mode k2 � θ′′

θ
the equation of motion of uk becomes

u′′k −
θ′′

θ
uk = 0, (B.3.8)

The solution of (B.3.8) can be written as (for details see appendix (B.4))

uk =
A0

4πG
√

(ε+ p)

(
1− H

a

∫
adt

)
. (B.3.9)

Where, the quantity A0 can be found by comparing (B.3.9) with (B.3.6), ignoring

the exponential term, during the small time period at the time of horizon crossing

(kη ' 1 or k ' aH). After some simplification (B.4) the expression of uk becomes

uk ≈ A0

√
ε+ p

H2
. (B.3.10)

Therefore, the expression of A can be written as

A0 ' −
i

k3/2

(
H2

√
ε+ p

)
k'aH

. (B.3.11)

Using the Friedmann equation the power spectrum in the super horizon scale can

be written as

δ2
φ ≈

32

9
G2

[
ε

1 + p/ε

]
k'aH

(
1− H

a

∫
adt

)2

. (B.3.12)

Taking the logarithm on both the sides of (B.3.12) we get

ln δ2
φ ≈ ln

(
32

9
G

)
+ ln ε− ln (1 + p/ε) + 2 lnM, (B.3.13)

Where M =
(
1− H

a

∫
adt
)
. Now using the fact that during horizon crossing

k ' aH one can have
d ln k

dt
≈ H, (B.3.14)

where we have ignored the slow-roll parameter ε = − Ḣ
H2 compared to Hubble

parameter H. Finally, taking the logarithmic time derivative of equation (B.3.13)
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the final expression of spectral index can be obtained as

nφ − 1 ≈ −2ε− ε̇

Hε
+

Ṁ

HM
. (B.3.15)

This expression is obtained using the Friedmann equation. The last two terms

are also slow-roll parameters which have small values. Therefore, one can see that

the single scalar field inflationary models give us the spectral index nφ ∼ 1.

In the next section we calculate the perturbation theory for NSS based on this

section. We will show that the effect of the NSS is small compared to the single

scalar field theories of inflation. Hence, one can calculate the power spectrum and

spectral index as a small deviation around the results obtained in this section.

Finally we will confront the expression of spectral index with the observed value

and put a bound on the additional term F̃ that appears in case of NSS.

B.4 Solutions in the super horizon mode

Let us consider the equation (B.3.8) in the super horizon scale. One obvious

solution of this equation is uk = c1θ. This can be checked that uk = c2θ
∫

dη
θ2

is also a solution of (B.3.8). Here c1 and c2 are the constants. Therefore the

complete solution can be written as,

uk = c2θ

[
c1

c2

+

∫
dη

θ2

]
, (B.4.1)

As, the ratio c1
c2

is a number, one can always absorb this ratio into the integral by

changing the limit of it appropriately. Therefore, we would like to consider the

second term of (B.4.1) as the solution of (B.3.8),

uk = c2θ

∫
dη

θ2
, (B.4.2)
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Using the Freidmann and accelration equations it can be shown that θ = 1
a

√
4πG

1− H′
H2

.

Using this expression of θ one can write

∫
dη

θ2
=

1

4πG

∫
a2

[
1 +

(
1

H

)′]
dη, (B.4.3)

After integrating by parts one can write the expression of uk as

uk = A

[
1− H

a2

∫
a2dη

]
= A

[
1− H

a

∫
adt

]
, (B.4.4)

where all other terms are absorbed in A = c2
a2θ

4πGH . After integrating by parts

the last term of (B.4.4) and ignoring the higher time derivatives, finally one can

write

uk ' −
A0

4πG
√
ε+ p

Ḣ

H2
, (B.4.5)

after replacing c2 = A0, which after using Friedmann equation gives (B.3.10).
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Perturbations in tetrad and Γµ

C.1 Tetrad or vierbien Field

Vierbien field is related to the metric as

eµae
ν
bη

ab = gµν , (C.1.1)

where {a, b} = {0, 1, 2, 3} are tetrad indices and {µ, ν} = {η, x, y, z} are space-

time indices. ηab =

1 O

O −1δij

 is Minkowski metric and gµν = 1
a2

1 O

O −1δij


is FRW metric.

C.1.1 Unperturbed vierbien

Unperturbed vierbien in conformal time are written as

eµa = diag

{
1

a
,

1

a
,

1

a
,

1

a

}
, eaµ = diag {a, a, a, a} . (C.1.2)

C.1.2 Perturbed Veirbiens

Perturbed vierbiens are defined as follows,

δeµa = −σbae
µ
b , δeaµ = σab e

b
µ, (C.1.3)
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where σab is the perturbation. In case of vierbiens perturbation, we can raise or

lower the tetrad and space-time indices with the unperturbed Minkowski metric

and FRW metric respectively where as we can transform between tetrad and

coordinate frames with unperturbed vierbiens. Therefore we can write,

δeµa = −σbae
µ
b = −ηbcσcaeµb ,

δeaµ = σab e
b
µ = ηacσcbe

b
µ. (C.1.4)

Using equation (C.1.1) one can write that the perturbed FRW metric in the

following form,

δgµν = ηab(δe
a
µ)eb(0)

ν + ηabe
a(0)
µ (δebν)

= σνµ + σµν . (C.1.5)

Once we know the expression of σµν we can contract it with the unperturbed

vierbien and find the expression of σab which we can use to find the perturbed

vierbien using (C.1.4). Using the expression of δgµν in (A.2.2) and (A.2.3) one

can write the perturbation in the vierbien σµν and σab as

σµν = a2


ψ 0 0 0

0 φ 0 0

0 0 φ+ h+ h×

0 0 h× φ− h+

 , σab =


ψ 0 0 0

0 φ 0 0

0 0 φ+ h+ h×

0 0 h× φ− h+

 .

(C.1.6)

Finally, using the above results we can write the complete expression of the

perturbed vierbien as

δeaµ = a


ψ 0 0 0

0 −φ 0 0

0 0 −(φ+ h+) −h×
0 0 −h× −(φ− h+)

 , (C.1.7)
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and

δeµa =
1

a


−ψ 0 0 0

0 φ 0 0

0 0 (φ+ h+) h×

0 0 h× (φ− h+)

 . (C.1.8)

C.2 Unperturbed and perturbed Γµ’s

As mentioned previously the the general expression of Γµ is given by

Γµ =
1

4
ebν(∇µe

ν
c )γbγ

c, (C.2.1)

where the covariant derivative of vierbien eµc is given by

∇µe
ν
c = ∂µe

ν
c + Γνµρc

ρ
c . (C.2.2)

C.2.1 Unperturbed components of Γµ

Using the background vierbiens (C.1.2) the components components of Γµ in

FRW background are written as

Γη = 0, Γx =
1

4

a′

a
(γ0γ1 − γ1γ0) =

a′

a
f 01,

Γy =
1

4

a′

a
(γ0γ2 − γ2γ0) =

a′

a
f 02, Γz =

1

4

a′

a
(γ0γ3 − γ3γ0) =

a′

a
f 03,(C.2.3)

where fab = 1
4

[
γa, γb

]
are the generators. γa are the Dirac gamma matrices

which follows the anticommutation relation
{
γa, γb

}
= 2ηab. Here we have used

a convenient definition of Γµ, which apparently looks different compared to the

expression given in (2.7). However it can be easily checked that the Γµ calculated

in both the ways will match exactly for both background and perturbation.
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C.2.2 Perturbed components of Γµ

Perturbing the expression of Γµ in (C.2.1) one can write the general expression

of perturbed Γµ as,

δΓµ =
1

4

[(
δebν
)

(∇µe
ν
c ) + ebνδ (∇µe

ν
c )
]
γbγ

c, (C.2.4)

where the perturbed covariant derivative of the vierbien can be expressed as

δ (∇µe
ν
c ) = ∂µ (δeνc ) + Γνµρ (δeρc) +

(
δΓνµρ

)
eρc . (C.2.5)

Finally, the components of δΓµ can be calculated as

δΓη =
1

2

[
(∂xψ) γ0γ1 + (∂yψ) γ0γ2 + (∂zψ) γ0γ3

]
,

δΓx =
1

2

[
−
(
a′

a
ψ +

a′

a
φ+ φ′

)
γ0γ1 + (∂yφ) γ1γ2 + (∂zφ) γ1γ3

]
,

δΓy =
1

2

[
−
(
a′

a
ψ +

a′

a
φ+ φ′ +

a′

a
h+ + h′+

)
γ0γ2 −

(
h′× +

a′

a
h×

)
γ0γ3

]
−

1

2

[
(∂xφ+ ∂xh+) γ1γ2 − (∂xh×) γ1γ3 + (∂zφ+ ∂zh+ − ∂yh×) γ2γ3

]
δΓz =

1

2

[
−
(
h′× +

a′

a
h×

)
γ0γ2 −

(
a′

a
ψ +

a′

a
φ+ φ′ − a′

a
h+ − h′+

)
γ0γ3

]
−

1

2

[
(∂xh×) γ1γ2 − (∂xφ− ∂xh+) γ1γ3 − (∂yφ− ∂yh+ − ∂zh×) γ2γ3

]
.(C.2.6)



Appendix D

Fixed points and stability

D.1 Fixed points

Let us consider two linearised dynamical equations of x and y as

x′ = a1x+ a2y, and, y′ = b1x+ b2y, (D.1.1)

where ′ denotes the derivative with respect to e-folding N . As dN = Hdt one

can calculate the prime by simply taking time derivative and dividing by Hubble

parameter. Fixed points are those solutions of the dynamical equations when the

dynamical quantities stop evolving, i.e., x′ = 0 and y′ = 0.

D.2 Stability of fixed points

Let us say that the fixed points associated with the equations (D.1.1) are x̄ and

ȳ. Now let us perturb the solutions about the fixed points:

x = x̄+ δx, and, y = ȳ + δy. (D.2.1)

Substituting (D.2.1) in (D.1.1) and linearising the perturbed equations we get

δx′ = a1δx+ a2δy, and, δy′ = b1δx+ b2δy. (D.2.2)
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Finally, the perturbed equations can be written in a matrix form asδx′
δy′

 =M

δx
δy

 , (D.2.3)

where M =

a1 a2

b1 b2

. The general solution of the equation (D.2.3) can be

written as

δx = δx1e
µ1N + δx2e

µ2N , and, δy = δy1e
µ1N + δy2e

µ2N (D.2.4)

where µ1 and µ2 are the eigenvalues of the matrix M. From the expressions

(D.2.4) it can be understood that the stability criteria depends entirely of the sign

of the eigenvalues µ1 and µ2. The different possibilities regarding the solutions

based on the sign of µ1 and µ2 are listed below:

1. µ1 > 0 and µ2 > 0, no stable solutions, i.e., perturbations will grow and

will be away from the fixed points.

2. µ1 > 0 (< 0) and µ2 < 0 (> 0), saddle point, i.e., perturbations will be

stable in one direction and will be unstable in the other direction.

3. µ1 < 0 and µ2 < 0, stable solutions, i.e., perturbations will decay exponen-

tially and all the solutions irrespective of the initial conditions will fall on

the fixed points after some times.
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[1] G. Lemâıtre, Expansion of the universe, A homogeneous universe of

constant mass and increasing radius accounting for the radial velocity of

extra-galactic nebulae, MNRAS 91 (Mar., 1931) 483–490.

[2] A. Friedman, On the curvature of space, General Relativity and Gravitation

31 (1999), no. 12 1991–2000.

[3] A. Friedmann, On the possibility of a world with constant negative curvature

of space, General Relativity and Gravitation 31 (1999), no. 12 2001–2008.

[4] E. Hubble, A relation between distance and radial velocity among

extra-galactic nebulae, Proceedings of the National Academy of Sciences 15

(1929), no. 3 168–173.

[5] A. A. Penzias and R. W. Wilson, A measurement of excess antenna

temperature at 4080 mc/s., Astrophysical Journal 142 (July, 1965) 419–421.

[6] A. A. Penzias and R. W. Wilson, Measurement of the flux density of cas a

at 4080 mc/., Astrophysical Journal 142 (Oct., 1965) 1149.

[7] R. H. Dicke, P. J. E. Peebles, P. G. Roll, and D. T. Wilkinson, Cosmic

black-body radiation., Astrophysical Journal 142 (July, 1965) 414–419.

[8] WMAP Collaboration Collaboration, E. Komatsu et. al., Seven-Year

Wilkinson Microwave Anisotropy Probe (WMAP) Observations:

Cosmological Interpretation, Astrophys.J.Suppl. 192 (2011) 18,

[arXiv:1001.4538].

103

http://xxx.lanl.gov/abs/1001.4538


104 BIBLIOGRAPHY

[9] G. F. Smoot, C. Bennett, A. Kogut, E. Wright, J. Aymon, et. al., Structure

in the COBE differential microwave radiometer first year maps,

Astrophys.J. 396 (1992) L1–L5.

[10] WMAP Collaboration Collaboration, D. Spergel et. al., Wilkinson

Microwave Anisotropy Probe (WMAP) three year results: implications for

cosmology, Astrophys.J.Suppl. 170 (2007) 377, [astro-ph/0603449].

[11] Supernova Cosmology Project Collaboration, S. Perlmutter et. al.,

Measurements of Omega and Lambda from 42 high redshift supernovae,

Astrophys.J. 517 (1999) 565–586, [astro-ph/9812133].

[12] Planck Collaboration Collaboration, P. Ade et. al., Planck 2013 results.

XVI. Cosmological parameters, arXiv:1303.5076.

[13] A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon

and Flatness Problems, Phys. Rev. D23 (1981) 347–356.

[14] S. Dodelson, Modern Cosmology. Academic Press, 2003.

[15] V. Mukhanov, Physical Foundations of Cosmology. Cambridge University

Press, 2005.

[16] A. D. Linde, Inflationary Cosmology, Lect.Notes Phys. 738 (2008) 1–54,

[arXiv:0705.0164].

[17] Planck Collaboration Collaboration, P. Ade et. al., Planck 2013 results.

XXII. Constraints on inflation, arXiv:1303.5082.

[18] M. Kamionkowski, A. Kosowsky, and A. Stebbins, Statistics of cosmic

microwave background polarization, Phys.Rev. D55 (1997) 7368–7388,

[astro-ph/9611125].

[19] M. Kamionkowski, A. Kosowsky, and A. Stebbins, A Probe of primordial

gravity waves and vorticity, Phys.Rev.Lett. 78 (1997) 2058–2061,

[astro-ph/9609132].

http://xxx.lanl.gov/abs/astro-ph/0603449
http://xxx.lanl.gov/abs/astro-ph/9812133
http://xxx.lanl.gov/abs/1303.5076
http://xxx.lanl.gov/abs/0705.0164
http://xxx.lanl.gov/abs/1303.5082
http://xxx.lanl.gov/abs/astro-ph/9611125
http://xxx.lanl.gov/abs/astro-ph/9609132


BIBLIOGRAPHY 105

[20] U. Seljak and M. Zaldarriaga, Signature of gravity waves in polarization of

the microwave background, Phys.Rev.Lett. 78 (1997) 2054–2057,

[astro-ph/9609169].

[21] Supernova Search Team Collaboration, A. G. Riess et. al., Observational

evidence from supernovae for an accelerating universe and a cosmological

constant, Astron.J. 116 (1998) 1009–1038, [astro-ph/9805201].

[22] P. J. E. Peebles and B. Ratra, The cosmological constant and dark energy,

Rev. Mod. Phys. 75 (2003) 559–606, [astro-ph/0207347].

[23] T. Padmanabhan, Cosmological constant: The weight of the vacuum, Phys.

Rept. 380 (2003) 235–320, [hep-th/0212290].

[24] D. V. Ahluwalia and D. Grumiller, Spin half fermions with mass dimension

one: Theory, phenomenology, and dark matter, JCAP 0507 (2005) 012,

[hep-th/0412080].

[25] C. Armendariz-Picon and P. B. Greene, Spinors, inflation, and nonsingular

cyclic cosmologies, Gen.Rel.Grav. 35 (2003) 1637–1658, [hep-th/0301129].

[26] D. V. Ahluwalia, On a local mass dimension one Fermi field of spin

one-half and the theoretical crevice that allows it, arXiv:1305.7509.

[27] C. Boehmer, The Einstein-Elko system: Can dark matter drive inflation?,

Annalen Phys. 16 (2007) 325–341, [gr-qc/0701087].

[28] C. G. Boehmer, Dark spinor inflation: Theory primer and dynamics,

Phys.Rev. D77 (2008) 123535, [arXiv:0804.0616].

[29] D. Gredat and S. Shankaranarayanan, Consistency relation between the

scalar and tensor spectra in spinflation, JCAP 1001 (2010) 008,

[arXiv:0807.3336].

[30] C. G. Boehmer, J. Burnett, D. F. Mota, and D. J. Shaw, Dark spinor

models in gravitation and cosmology, JHEP 1007 (2010) 053,

[arXiv:1003.3858].

http://xxx.lanl.gov/abs/astro-ph/9609169
http://xxx.lanl.gov/abs/astro-ph/9805201
http://xxx.lanl.gov/abs/astro-ph/0207347
http://xxx.lanl.gov/abs/hep-th/0212290
http://xxx.lanl.gov/abs/hep-th/0412080
http://xxx.lanl.gov/abs/hep-th/0301129
http://xxx.lanl.gov/abs/1305.7509
http://xxx.lanl.gov/abs/gr-qc/0701087
http://xxx.lanl.gov/abs/0804.0616
http://xxx.lanl.gov/abs/0807.3336
http://xxx.lanl.gov/abs/1003.3858


106 BIBLIOGRAPHY

[31] H. Wei, Spinor Dark Energy and Cosmological Coincidence Problem,

Phys.Lett. B695 (2011) 307–311, [arXiv:1002.4230].

[32] A. Basak and J. R. Bhatt, Lorentz invariant dark-spinor and inflation,

JCAP 1106 (2011) 011, [arXiv:1104.4574].

[33] A. Basak, J. R. Bhatt, S. Shankaranarayanan, and K. P. Varma, Attractor

behaviour in ELKO cosmology, JCAP 1304 (2013) 025,

[arXiv:1212.3445].

[34] S. Rugh and H. Zinkernagel, The quantum vacuum and the cosmological

constant problem, Studies in History and Philosophy of Science Part B:

Studies in History and Philosophy of Modern Physics 33 (2002) 663 – 705.

[35] R. Caldwell, R. Dave, and P. J. Steinhardt, Cosmological imprint of an

energy component with general equation of state, Phys.Rev.Lett. 80 (1998)

1582–1585, [astro-ph/9708069].

[36] J. R. Bhatt, B. R. Desai, E. Ma, G. Rajasekaran, and U. Sarkar, Neutrino

condensate as origin of dark energy, Physics Letters B 687 (2010) 75 – 78.

[37] D. Baumann, TASI Lectures on Inflation, arXiv:0907.5424.

[38] D. H. Lyth, What would we learn by detecting a gravitational wave signal

in the cosmic microwave background anisotropy?, Phys.Rev.Lett. 78 (1997)

1861–1863, [hep-ph/9606387].

[39] M. Dine, W. Fischler, and D. Nemeschansky, Solution of the entropy crisis

of supersymmetric theories, Phys. Lett. B136 (1984) 169.

[40] G. D. Coughlan, R. Holman, P. Ramond, and G. G. Ross, Supersymmetry

and the entropy crisis, Phys.Lett. B140 (1984) 44.

[41] R. Fakir and W. G. Unruh, Improvement on cosmological chaotic inflation

through nonminimal coupling, Phys. Rev. D41 (1990) 1783–1791.

http://xxx.lanl.gov/abs/1002.4230
http://xxx.lanl.gov/abs/1104.4574
http://xxx.lanl.gov/abs/1212.3445
http://xxx.lanl.gov/abs/astro-ph/9708069
http://xxx.lanl.gov/abs/0907.5424
http://xxx.lanl.gov/abs/hep-ph/9606387


BIBLIOGRAPHY 107

[42] E. Komatsu and T. Futamase, Complete constraints on a nonminimally

coupled chaotic inflationary scenario from the cosmic microwave

background, Phys.Rev. D59 (1999) 064029, [astro-ph/9901127].

[43] R. Kallosh, A. D. Linde, S. Prokushkin, and M. Shmakova, Gauged

supergravities, de Sitter space and cosmology, Phys.Rev. D65 (2002)

105016, [hep-th/0110089].

[44] A. D. Linde, Fast roll inflation, JHEP 0111 (2001) 052, [hep-th/0110195].

[45] L. A. Kofman, The Origin of matter in the universe: Reheating after

inflation, astro-ph/9605155.

[46] A. Linde, Axions in inflationary cosmology, Physics Letters B 259 (1991)

38 – 47.

[47] A. D. Linde, Hybrid inflation, Phys.Rev. D49 (1994) 748–754,

[astro-ph/9307002].

[48] J.-O. Gong and M. Sasaki, Waterfall field in hybrid inflation and curvature

perturbation, JCAP 1103 (2011) 028, [arXiv:1010.3405].

[49] D. H. Lyth, Contribution of the hybrid inflation waterfall to the primordial

curvature perturbation, JCAP 1107 (2011) 035, [arXiv:1012.4617].

[50] S. Koh and M. Minamitsuji, Non-minimally coupled hybrid inflation, Phys.

Rev. D83 (2011) 046009, [arXiv:1011.4655].

[51] D. H. Lyth and D. Wands, Generating the curvature perturbation without

an inflaton, Phys.Lett. B524 (2002) 5–14, [hep-ph/0110002].

[52] D. H. Lyth, C. Ungarelli, and D. Wands, The Primordial density

perturbation in the curvaton scenario, Phys.Rev. D67 (2003) 023503,

[astro-ph/0208055].

[53] K. Dimopoulos, K. Kohri, D. H. Lyth, and T. Matsuda, The inflating

curvaton, JCAP 1203 (2012) 022, [arXiv:1110.2951].

http://xxx.lanl.gov/abs/astro-ph/9901127
http://xxx.lanl.gov/abs/hep-th/0110089
http://xxx.lanl.gov/abs/hep-th/0110195
http://xxx.lanl.gov/abs/astro-ph/9605155
http://xxx.lanl.gov/abs/astro-ph/9307002
http://xxx.lanl.gov/abs/1010.3405
http://xxx.lanl.gov/abs/1012.4617
http://xxx.lanl.gov/abs/1011.4655
http://xxx.lanl.gov/abs/hep-ph/0110002
http://xxx.lanl.gov/abs/astro-ph/0208055
http://xxx.lanl.gov/abs/1110.2951


108 BIBLIOGRAPHY

[54] S. Weinberg, Gravitation and cosmology: principles and applications of the

general theory of relativity. Wiley, 1972.

[55] N. Birrell and P. Davies, Quantum Fields in Curved Space. Cambridge

Monographs on Mathematical Physics. Cambridge University Press, 1984.

[56] D. V. Ahluwalia and D. Grumiller, Dark matter: A Spin one half fermion

field with mass dimension one?, Phys.Rev. D72 (2005) 067701,

[hep-th/0410192].

[57] R. da Rocha and J. Hoff da Silva, ELKO, flagpole and flag-dipole spinor

fields, and the instanton Hopf fibration, Adv.Appl.Clifford Algebras 20

(2010) 847–870, [arXiv:0811.2717].

[58] J. Hoff da Silva and R. da Rocha, From Dirac Action to ELKO Action,

Int.J.Mod.Phys. A24 (2009) 3227–3242, [arXiv:0903.2815].

[59] D. Ahluwalia, C.-Y. Lee, D. Schritt, and T. Watson, Elko as

self-interacting fermionic dark matter with axis of locality, Phys.Lett. B687

(2010) 248–252, [arXiv:0804.1854].

[60] D. Ahluwalia, C.-Y. Lee, and D. Schritt, Self-interacting Elko dark matter

with an axis of locality, Phys.Rev. D83 (2011) 065017, [arXiv:0911.2947].

[61] L. Fabbri, The Most General Cosmological Dynamics for ELKO Matter

Fields, Phys.Lett. B704 (2011) 255–259, [arXiv:1011.1637].

[62] L. Fabbri, Causal propagation for ELKO fields, Mod.Phys.Lett. A25 (2010)

151–157, [arXiv:0911.2622].

[63] L. Fabbri, Causality for ELKOs, Mod.Phys.Lett. A25 (2010) 2483–2488,

[arXiv:0911.5304].

[64] A. Bernardini and R. da Rocha, Dynamical dispersion relation for ELKO

dark spinor fields, Phys.Lett. B717 (2012) 238–241, [arXiv:1203.1049].

[65] R. da Rocha, A. E. Bernardini, and J. Hoff da Silva, Exotic Dark Spinor

Fields, JHEP 1104 (2011) 110, [arXiv:1103.4759].

http://xxx.lanl.gov/abs/hep-th/0410192
http://xxx.lanl.gov/abs/0811.2717
http://xxx.lanl.gov/abs/0903.2815
http://xxx.lanl.gov/abs/0804.1854
http://xxx.lanl.gov/abs/0911.2947
http://xxx.lanl.gov/abs/1011.1637
http://xxx.lanl.gov/abs/0911.2622
http://xxx.lanl.gov/abs/0911.5304
http://xxx.lanl.gov/abs/1203.1049
http://xxx.lanl.gov/abs/1103.4759


BIBLIOGRAPHY 109

[66] S. Shankaranarayanan, What-if inflaton is a spinor condensate?,

Int.J.Mod.Phys. D18 (2009) 2173–2179, [arXiv:0905.2573].

[67] S. Shankaranarayanan, Dark spinor driven inflation, arXiv:1002.1128.

[68] C. G. Boehmer, The Einstein-Cartan-Elko system, Annalen Phys. 16

(2007) 38–44, [gr-qc/0607088].

[69] A. Riotto, Inflation and the theory of cosmological perturbations,

hep-ph/0210162.

[70] S. Weinberg, Cosmology. Oxford University Press, 2008.

[71] T. Padmanabhan, Structure Formation in the Universe. Cambridge

University Press, 1993.

[72] V. Springel, S. D. White, A. Jenkins, C. S. Frenk, N. Yoshida, et. al.,

Simulating the joint evolution of quasars, galaxies and their large-scale

distribution, Nature 435 (2005) 629–636, [astro-ph/0504097].

[73] V. Springel, C. S. Frenk, and S. D. White, The large-scale structure of the

universe, Nature 440 (2006), no. 7088 1137–1144.

[74] L. Sriramkumar, An introduction to inflation and cosmological perturbation

theory, arXiv:0904.4584.

[75] J. M. Bardeen, Gauge-invariant cosmological perturbations, Phys. Rev. D

22 (Oct, 1980) 1882–1905.

[76] V. Mukhanov, H. Feldman, and R. Brandenberger, Theory of cosmological

perturbations, Physics Reports 215 (1992) 203 – 333.

[77] J. E. Lidsey, A. R. Liddle, E. W. Kolb, E. J. Copeland, T. Barreiro, and

M. Abney, Reconstructing the inflaton potential: An overview, Rev. Mod.

Phys. 69 (1997) 373–410, [astro-ph/9508078].

[78] B. A. Bassett, S. Tsujikawa, and D. Wands, Inflation dynamics and

reheating, Rev.Mod.Phys. 78 (2006) 537–589, [astro-ph/0507632].

http://xxx.lanl.gov/abs/0905.2573
http://xxx.lanl.gov/abs/1002.1128
http://xxx.lanl.gov/abs/gr-qc/0607088
http://xxx.lanl.gov/abs/hep-ph/0210162
http://xxx.lanl.gov/abs/astro-ph/0504097
http://xxx.lanl.gov/abs/0904.4584
http://xxx.lanl.gov/abs/astro-ph/9508078
http://xxx.lanl.gov/abs/astro-ph/0507632


110 BIBLIOGRAPHY

[79] K. A. Malik and D. Wands, Cosmological perturbations, Phys. Rept. 475

(2009) 1–51, [arXiv:0809.4944].

[80] E. J. Copeland, A. R. Liddle, and D. Wands, Exponential potentials and

cosmological scaling solutions, Phys.Rev. D57 (1998) 4686–4690,

[gr-qc/9711068].

[81] E. Copeland, D. Mulryne, N. Nunes, and M. Shaeri, Super-inflation in Loop

Quantum Cosmology, Phys.Rev. D77 (2008) 023510, [arXiv:0708.1261].

[82] E. J. Copeland, M. Sami, and S. Tsujikawa, Dynamics of dark energy,

Int.J.Mod.Phys. D15 (2006) 1753–1936, [hep-th/0603057].

[83] C. G. Boehmer and J. Burnett, Dark energy with dark spinors,

Mod.Phys.Lett. A25 (2010) 101–110, [arXiv:0906.1351].

[84] H. M. Sadjadi, On coincidence problem and attractor solutions in ELKO

dark energy model, Gen.Rel.Grav. 44 (2012) 2329–2336,

[arXiv:1109.1961].

[85] Z.-K. Guo, H.-S. Zhang, and Y.-Z. Zhang, Inflationary attractor in brane

world scenario, Phys.Rev. D69 (2004) 063502, [hep-ph/0309163].

[86] D. S. Goldwirth, Initial conditions of new inflation, Phys.Lett. B243

(1990) 41–44.

[87] F. Lucchin and S. Matarrese, Power-law inflation, Phys. Rev. D 32 (Sep,

1985) 1316–1322.

[88] C. Wetterich, Cosmologies with variable newton’s ?constant?, Nuclear

Physics B 302 (1988), no. 4 645 – 667.

[89] P. G. Ferreira and M. Joyce, Structure formation with a self-tuning scalar

field, Phys. Rev. Lett. 79 (Dec, 1997) 4740–4743.

[90] L. Amendola, D. Bellisai, and F. Occhionero, Inflationary attractors and

perturbation spectra in generally coupled gravity, Phys.Rev. D47 (1993)

4267–4272, [gr-qc/9303023].

http://xxx.lanl.gov/abs/0809.4944
http://xxx.lanl.gov/abs/gr-qc/9711068
http://xxx.lanl.gov/abs/0708.1261
http://xxx.lanl.gov/abs/hep-th/0603057
http://xxx.lanl.gov/abs/0906.1351
http://xxx.lanl.gov/abs/1109.1961
http://xxx.lanl.gov/abs/hep-ph/0309163
http://xxx.lanl.gov/abs/gr-qc/9303023


BIBLIOGRAPHY 111

[91] C.-Q. Geng, C.-C. Lee, E. N. Saridakis, and Y.-P. Wu, ’Teleparallel’ Dark

Energy, Phys.Lett. B704 (2011) 384–387, [arXiv:1109.1092].

[92] H. Wei, Dynamics of Teleparallel Dark Energy, Phys.Lett. B712 (2012)

430–436, [arXiv:1109.6107].

[93] C. G. Boehmer and D. F. Mota, CMB Anisotropies and Inflation from

Non-Standard Spinors, Phys.Lett. B663 (2008) 168–171,

[arXiv:0710.2003].

[94] Planck Collaboration Collaboration, P. Ade et. al., Planck 2013 Results.

XXIV. Constraints on primordial non-Gaussianity, arXiv:1303.5084.

http://xxx.lanl.gov/abs/1109.1092
http://xxx.lanl.gov/abs/1109.6107
http://xxx.lanl.gov/abs/0710.2003
http://xxx.lanl.gov/abs/1303.5084




LIST OF PUBLICATIONS

Publications related to the thesis work

1. “Lorentz invariant dark-spinor and inflation”

Abhishek Basak, and Jitesh R. Bhatt

JCAP 06 (2011) 011

arXiv:1104.4574.

2. “Attractor behaviour in ELKO cosmology”

Abhishek Basak, Jitesh R. Bhatt, S. Shankaranarayanan, and K. V. P.

Verma

JCAP 04 (2013) 025

arXiv:1212.3445.




	Acknowledgements
	Abstract
	Contents
	Introduction
	Inflationary universe
	Introduction
	The standard model of cosmology: FLRW universe
	Drawbacks of the standard model of cosmology
	Second inflationary stage: Dark energy
	Scalar fields in inflation
	Slow-roll
	Fast-roll
	Multi field inflation

	Spinors in curved space-time
	Non-standard Spinors
	Background equations 


	Perturbation theory
	Introduction
	Metric perturbation 
	Gauge transformation and Gauge invariant quantities
	Perturbation theory in single canonical scalar field:Mukhanov-Sasaki equation 
	Perturbation theory in NSS
	Perturbed energy momentum tensors:
	Perturbed Einstein's Equation:
	Solutions and the power spectrum
	Spectral indices and the bound



	Early universe attractors
	Introduction
	Attractors in the scalar field theories
	Attractors in NSS cosmology
	Background equations
	Slow-roll parameters for NSS
	Early-time inflationary attractor in NSS
	Dynamical equations of NSS in the presence of a barotropic perfect fluid
	Fixed points and stability analysis: General Analysis
	Case I
	Case II

	Special cases of the interaction term
	Case I:
	Case II:



	Summary and Conclusions
	Basics of FLRW metric
	Background
	Christoffel symbol in case of FLRW metric 
	Ricci tensor and Ricci scalar for FLRW metric 

	Perturbation
	Perturbation in the Christoffel symbol
	Perturbed Ricci tensor and Ricci scalar

	Perturbed Einstein tensor

	Perturbations in the scalar field theories
	Perturbed energy-momentum tensor in the scalar field theories 
	Quantisation of the perturbation
	Power spectrum and spectral indices
	Solutions in the super horizon mode

	Perturbations in tetrad and 
	Tetrad or vierbien Field
	Unperturbed vierbien
	Perturbed Veirbiens

	Unperturbed and perturbed 's
	Unperturbed components of 
	Perturbed components of 


	Fixed points and stability
	Fixed points
	Stability of fixed points

	Bibliography
	List of Publications

