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Abstract

Within the Standard Model (SM) of particle physics, the strong
interactions are dictated by the gauge theory called quantum chromodynamics
(QCD). QCD is a theory of quarks and gluons, which carry a gauge charge called
color. Gluons are the mediators of strong interactions between colored particles,
very much like the photon for electromagnetic interactions between electrically
charged particles. However, unlike photons, the gluons themselves carry color
charge due to the non-abelian nature of QCD. This leads to self-interactions of
gluons, and hence to many exciting phenomena in QCD like asymptotic freedom,
color confinement, etc. The quarks and gluons form colorless bound states like
mesons (the bound state of a quark and anti-quark) and baryons (the bound
state of three quarks), collectively called hadrons, at small energies because of
the phenomenon of color confinement. As a result, we only detect colorless
hadrons at the detectors.

According to the scattering theory, experimental observables like decay width,
scattering cross-sections, etc., can be calculated theoretically by calculating the
matrix elements of quark-gluon operators between the initial and final hadron
states called the Hadronic Matriz Elements (HMEs). However, the difficulty
arises as these hadrons are bound states i.e. are non-perturbative in nature,
and hence, the perturbative QCD can not provide a complete solution to these
HMEs. Consequently, these HMEs contain the non-perturbative effects in the
form of hadronic quantities like form factors, decay constants, etc.

These hadronic quantities are very essential inputs for any prediction within or
beyond the SM. Therefore, calculating these quantities is very crucial. There
exist several methods like chiral perturbation theory (xPT), lattice QCD
(LQCD), QCD sum rules (QCDSRs), etc., to handle these objects. However,
none can give precise results with the current techniques and computational
skills, and different methods are found to typically work well in different regimes.
Therefore, estimations of these quantities, involved in the processes of interest,
using different methods is very important to get reliable theoretical estimates

for the experimental observables.
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In this thesis, we have discussed the applications of the method of Light
Cone Sum Rules (LCSR), the QCDSRs on the light cone, to various processes
within and beyond the SM, focusing on the calculation of the Form Factors
(FFs) involved. LCSR is a QCD based method. It uses the analytic properties
of the correlation functions, the matrix elements of the quark and gluon oper-
ators taken between the vacuum and the hadronic state, and the framework of
Operator Product Ezpansion (OPE) to compute these FFs. Along with these
properties, it uses Quark-Hadron duality which allows one to calculate the cor-
relation functions at large Euclidean momentum transfers which can then be
analytically continued to the desired kinematical regime. As stated above, every
available non-perturbative method has limitations and domain of applicability,
and so does the method of LCSR.
To explore the applications of LCSR and gain better understanding of its limita-
tions, we considered several processes within and beyond the SM involving light
as well as heavy quark hadrons. The considered processes are the radiative tau
decay (involving a light meson called pion), the proton decay to a positron and
a photon (involving a light baryon called proton), the baryon number violating
decay of D-meson to an anti-proton and a positron, and the radiative decay of
D*-meson (both involving heavy quark D-meson). In all these cases, the method
of LCSR is found to provide reasonable estimates for the form factors involved.
All of these are the first applications of LCSR to such processes. Moreover,
for the considered cases involving proton and D-mesons, we discussed the first
theoretical estimates of the FFs involved which are of great phenomenological
importance as they can be very helpful in constraining the Beyond SM (BSM)
models, and probing the structure of the hadrons. The results can be further
improved with the inclusion of higher-order effects which may also bring some
new elements. This method also has the potential to be applied to several other
situations like non-leptonic decay modes where systematic calculations still show
some discrepancies.

Keywords: Strong interactions, Hadronic Matrix Elements, Form Fac-

tors, Light Cone Sum Rules, Baryon number violation, Proton decay.
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Chapter 1

Introduction

For decades, the fundamental goal of studying particle and astroparticle physics
has been to understand the origin and structure of the Universe from smallest
to largest scales. According to the present mass-energy budget of the Universe,
we understand only 5% of the Universe, while rest of 95% is a complete mystery.
This 5% is made up of elementary particles which have four fundamental inter-
actions: electromagnetic (EM), weak, strong, and gravitational. The Standard
Model (SM) of particle physics (to be discussed in detail in Section-1.1) describes
the first three fundamental interactions while the gravitational interaction is not
part of the SM. It has obtained great success in explaining various observed
phenomena. However, it fails to explain phenomena like the matter-anti-matter
asymmetry of the Universe [1], [2], the masses of neutrinos [3], [4], the dark mat-
ter, and dark energy [5], [6], and also several deviations from the SM predictions
like in B-meson decays [7], [8], the anomalous magnetic moment of the muon
9], [10], etc. (see [11] for more details). All of these suggest towards physics
Beyond the SM (BSM). The signatures for BSM can be seen either through di-
rect searches or indirect evidences. Collider experiments, like the Large Hadron
Collider (LHC), have looked for direct signatures but have had no success so
far. The other possibility to probe BSM physics is by looking at the indirect
effects of quantum fluctuations at low energies due to microphysics at higher
energies. Low energy probes like rare decays of leptons and hadrons, and related

observables, provide access to look for these indirect searches (with the help of

5
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Effective Field Theories (EFTSs) (see Section-1.5)) by studying the rare decays,
asymmetries, and CP-violating effects [12]. These studies require precise theo-
retical predictions.

However, to make theoretical predictions on any observable involving strong in-
teractions at low energies, the inputs on the non-perturbative hadronic quantities
like form factors (FFs), decay constants, etc., are required. Although, calculating
these quantities is a complicated and cumbersome task due to color confinement,
a property of strong interactions (to be discussed in Section-1.2). Except for a
few observables, which can be defined such that they are free from these hadronic
quantities, like lepton flavor universality (LFU) ratios (R, Ri+) [13], [14], these
hadronic quantities are required everywhere, whether it is a precision calculation
of flavor observables or decay width calculations of processes within or beyond
the SM. Thus they are crucial inputs for making any prediction within or beyond
the SM.

This thesis will discuss the complications and available possible methods (with
the main focus on the method of Light Cone Sum Rules (LCSR)) to compute
these hadronic parameters theoretically, especially the form factors, within the
context of SM and BSM interactions. Let us now review the SM of particle
physics, and the theory of strong interaction including the nitty-grities and in-

volved challenges along with possible solutions.

1.1 The Standard Model of Particle Physics

The Glashow-Weinberg-Salam model [15]-[17], popularly known as the Stan-
dard Model (SM) of particle physics, dictates the fundamental interactions (EM,
weak and strong but not gravitational) between the elementary particles. The
development of the SM was gradual and was driven by many theoretical and
experimental results. Within the SM, the elementary particles are classified as
fermions, gauge bosons, and the Higgs boson. The fermions are further classified
as quarks and leptons. They are of six types (or flavors) and are organized in

three generations or families in order of increasing masses'. The six flavors of

'Why there are three generations is still an open question.
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quarks are: up (u), down (d), strange (s), charm (c¢), bottom or beauty (b),
and top or truth (¢). The six flavour of leptons are: electron (e), muon (i), tau
(7), and their corresponding neutrinos (ve, v, v;). The fundamental interactions
between these particles are mediated by the gauge bosons of the gauge group of
the SM i.e. Gsy = SU(3). ® SU(2), ® U(1)y. Here, SU(3). is a non-abelian
gauge group and dictates the theory of strong interactions, known as Quantum
ChromoDynamics (QCD). SU(2);, and U(1)y are the gauge groups associated
with the weak isospin and the weak hypercharge, respectively. Collectively, the
gauge group SU(2) @ U(1)y provides the ElectroWeak (EW) theory, a combined
framework to explain the weak and the electromagnetic interactions. It breaks
spontaneously to U(1)g due to Spontaneous Symmetry Breaking (SSB) when the
Higgs scalar field acquires a non-zero Vacuum Expectation Value (VEV). U(1)g
is the group of electric charge transformations. The electric charge @ is related
to the weak hypercharge, Y and the third component of the weak isospin, T3 via
the Gell-Mann-Nishijima formula [18], [19] given by

Q:T3+§. (1.1)

The gauge bosons which mediate the EM, weak and strong interactions are named
as the photon (7), the W= and Z°, and the gluons g, respectively. The last piece
of the SM is the Higgs boson which is responsible for mass generation of all the
particles in the SM [20]-[25] and was finally discovered in 2012 [26], [27]. The
fundamental particles along with their basic properties are shown in Fig.(1.1).
Though, the Higgs provides mass to all the particles, the mechanism for the mass
generation of fermions and gauge bosons is different. The gauge bosons acquire
mass due to SSB, while the fermions acquire mass due to the Yukawa interactions
between the fermions and the Higgs boson. The neutrinos, photon and gluons
still remain mass-less within the SM.

The most general Lagrangian for the SM consistent with Gg,; and the condition

of renormalizability is given by

£SM = £kinetic + £interacti0n + ﬁHiggs + EYukawa (12)
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mass - =2.3 MeV/c? =1.275 GeV/c? =173.07 GeV/c? 0 =126 GeV/c?
charge - 2/3 u 2/3 C 2/3 t 0 0 H
spin > 1/2 g 12 7 12 / 1 9 0
Higgs
up charm top gluon boson
=4.8 MeV/c? =95 MeV/c? =~4.18 GeV/c? 0
173 d /3 S 13 b 0
1/2 ’ 1/2 12 1 »
down strange bottom photon
0.511 MeV/c? 105.7 MeV/c? 1.777 GeV/c? 91.2 GeV/c?
-1 -1 -1 0
12 e 12 ]‘1 12 T 1 b
electron muon tau Z boson
<2.2 eVic? <0.17 MeV/c? <15.5 MeV/c? 80.4 GeV/c?
0 0 0 +1 \
=& 12 ve 1/2 -l)p' 1/2 DT 1 W
electron muon tau
neutrino neutrino neutrino W boson

Figure 1.1: The fundamental particles in the Standard Model of particle physics.
(Source: https://www.quantumdiaries.org) .

where, Lyinetic, Linteraction; Lyukawa, ald Liiggs are various kinetic and interaction
terms of elementary particles and we will now discuss them one by one.
Liinetic and Linteraction are the kinetic and interaction terms for fermions and gauge

bosons. The explicit form of these terms is

~— - 1 , 1 1 v
ﬁkinetic + Cinteraction =1 Z @le@b - ZBNVBM - §TT{WMVWM } - §TT{GMVGM }a
¥

(1.3)
where the summation in the first term runs over all the fermions. ) = D,
with D,, being the covariant derivative that acts on the fermions. B,,, W, and
G, are the field strength tensors of the gauge fields B, W} (i = {1,2,3}), and
G (a={1,...,8}) corresponding to U(1)y, SU(2)r, and SU(3)c gauge groups,

respectively. The explicit expressions for these field strength tensors read as

B, =0,B, —-0,B,,
W;u/ = 8HWV - auwu + 292 [W/u Wu] 5

G = 0,G, — 8,G, + g, G, G, (1.4)
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where W, = W;% and G, = Gz% with o; and A\, being the Pauli and Gell-Mann
matrices, respectively (collected in Appendix-A). We have also used Einstein’s
summation convention over the repeated indices. The gauge group of SM treats
the left- and right-chiral fields differently. As a result, the covariant derivative
D,, acts differently on different fields. To understand that, let us first have a
look at the representation of different particles under the SM gauge group. These

representations are provided in Table-2.4. The left-handed fermions transform as

fild | Q) uwh  dy  Ep oy 4 g
(3.2, (3.1): (3.1): (L2 (L1 (L1) (81)

1
3 :

W, 20 H
(]_,3)0 (1,2)1

repr.

Table 1.1: The field representation of the SM particles under the SM gauge group
Gsy- The first and second entry in the bracket represents field representation
under SU(3). and SU(2)y, respectively. The subscript gives the hypercharge Y.

a doublet under SU(2),, while the right-handed fermions transform as a singlet.
Furthermore, the quarks and leptons are SU(3)¢ triplet and singlet, respectively.

Consequently, the covariant derivatives for different fields are given as

DMQL = (au - ZYngM — z'gQWu - igsGu)QLa
Duqr = (a;t — Y B, — igsGu)QRa
D,uEL = (aﬂ — ZYng,u — ngW“)LL,

D,er = (0, —iY 1 B,)er, (1.5)

where ()7 and Ej are the left-handed quark and lepton doublets, respectively.
qr € {ug,dr} and eg are the right-handed quark and lepton singlets. These can

be explicitly written as

) U,ZL ur, Cr, tL
T — R
QL - - 3
dlL dL ST bL
i v Ve,L VL Vr,L
E; = = , and
i
er, er 229 TL
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uR = (UR CR tR) g = (dR SR bR) €r = <€R MR TR) :

The right-handed neutrinos are absent, leaving neutrinos massless in the SM. ¢;

and go are the electroweak couplings constants and are related to the electron

charge, e by the relation
9192

ViE+3

The coupling constant for the strong interactions is represented as gs. More-

(1.6)

e =

over, one commonly uses «.,, and «, to represent the coupling strengths for the

electromagnetic and strong interactions, respectively, and are defined as

2
€ 9s
= — =25 1.
1 , and Qo o (1.7)

respectively. a.,, is popularly known as the fine structure constant and its value

at low energy is ~ =
The second last term of the SM Lagrangian is Liges. It includes the kinetic and

self interaction terms for the Higgs field and is given by

2

Ltiggs = (D, H) (D, H) — S (H'H — v?)° (1.8)

where my is the mass of the Higgs and v is the VEV. The Higgs field also
transforms as a doublet under SU(2),, and hence the covariant derivative for the
Higgs field is

D,H = (0, —1Y¢:B, —ig:W ) H. (1.9)

Finally, Lyukawa 1 the Yukawa interaction term and is given by
»CYukawa: —Y;E'LHGR—}/dQLHdR—YUQLI‘?UR—FII.C., (1.10)

where H = iooH', and Y,, Y;, and Y, are the Yukawa coupling constants.
Eqn.(1.10) is written in the flavor basis. In this basis, there are no mixing terms

for the quarks of different generations. However, for practical applications, it is

2These coupling strengths vary with energy as a result of renormalisation (see Section-1.2
for more details).
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convenient to write them in the mass basis i.e. the basis in which the matrix of
the Yukawa couplings is diagonal. This can be done by performing a bi-unitary

rotation of the quark fields given by
uy, — UuUL, dL — UddL. (111)

where Uy and U, are the unitary matrices. These rotations affect the quark
couplings with W¥ bosons. The modified interaction Lagrangian for quark in-

teraction with the W-bosons reads as

Wagydy, + W;Jyy“uL — W:uiL'y“ (Vern)” d) + WIIJiL'y“ <VCTKM>” ).
(1.12)
Here, Vo is a unitary matrix that results in the mixing of different generation
quarks and is known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix [28],
[29]. It is given by

Vud vus Vub
U,:[Ud = VCKM = V'cd chs ‘/cb (113)
Via Vis Vi

and has 4 independent parameters: 3 rotation angles and 1 complex phase. The
complex phase in the CKM matrix is the only source of CP violation in the SM?3.
Consequently, the SM has eighteen free parameters which include the masses of
the fermions except for neutrinos which are mass-less in the SM, the coupling
constants, the angles and phase of the CKM matrix, and the mass and the VEV
of Higgs.

After this brief introduction to the SM of particle physics, let us understand
the theory of strong interactions in some detail. This thesis is focused on the
challenges involved in calculating processes involving strong interactions at low

energies.

3CP violation in the SM is not sufficient to explain the matter anti-matter asymmetry of
the Universe.
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1.2 Quantum ChromoDynamics and Hadrons

Quantum ChromoDynamics (QCD) is the theory of strong interactions described
by the SU(3). local non-abelian gauge group®. The fundamental degrees of
freedom in QCD are the quarks and gluons. The quarks are the matter particles
while the gluons are the mass-less gauge bosons that act as the mediator of
strong interactions between quarks. QCD is very similar to the well-studied
Quantum ElectroDynamics (QED), the theory which explains the interaction of
photons with the charged particles. Like the electric charge in QED, QCD also
has a charge called color. Though there are various similarities between QED
and QCD, the major difference arises due to the non-abelian nature of QCD. It
results in the self-interaction of gluons as they also carry the color charge while
photons are charge neutral and hence do not interact among themselves. Because
of these self-interactions of gluons, QCD becomes very complicated and leads to
the interesting phenomenon of color confinement. It is the property of strong
interactions which results in the formation of colorless bound states of quarks
and gluons, known as hadrons, at low energies or equivalently at large distances.
This property of strong interactions arises as a consequence of renormalization.

To understand it, let us look at the QCD Lagrangian
1 2 T (s i
LQCD = _Z_JL(G”V) + Z wk@lD — m)”wk + Egauge + Lghost (114)
k

where G, is the gluon field strength tensor defined in Eqn.(1.4), and the covari-
ant derivative D, here is

D, =8, — ig.G,, (1.15)

with G, = GZ%“ (a ={1...8}). The sum over k runs over all flavors of quarks
and {1, j} represents the color indices for quarks.

The first term represents the kinetic and self-interaction terms for gluons while
the second term represents the kinetic and interaction terms for quarks with glu-
ons. The third, and the fourth terms are the gauge fixing and the ghost terms,

respectively and are required to consistently quantize QCD and also to get rid

4A group is called non-abelian if the generators of the group do not commute.
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of the redundant/unphysical degrees of freedom (d.o.f.) in the theory (for detail
look at [30],[31]).
According to the perturbation theory, the scattering amplitude for a process can

be calculated order by order in o, including all the possible Feynman diagrams®

0

s))? one does not en-

for the process at each order. At the leading order (O(«
counter any problem. However, one encounters divergences in the intermediate
steps while computing the higher orders quantum corrections (like O(ay)) i.e.
the loop diagrams. In field theoretical language, the divergences which arise due
to integration over the large (ultra high) momentum of the particle running in
the loop, which can take any value of the momentum from zero to infinity, are
called the UV divergences®. Moreover, the real cross-section should be finite
which demands for a procedure to take care of these infinities. According to
this procedure, these infinities are first regularised, and the parameters are then
redefined via renormalization. Consequently, the physical parameters like cou-
pling constants, fermion masses, etc. are found to be scale-dependent and thus
run with the scale. The physical parameters are the renormalized counterparts
of the bare parameters which are written in the Lagrangian (Eqn.(1.14)). Mea-
suring, say, the coupling at one scale, i.e. in a specific experiment, then allows
one to know the value at a different scale relevant for different experiments. The

dependence of the coupling strength a(= %) on the energy scale () is shown in

Fig.(1.2). Mathematically, it can be written as (upto 1-loop corrections)

2T 1

as(Q) = EW (1.16)

Agep

where 5y = 11 — %Tf is known as the beta function at 1-loop with ns being the
number of active flavors of quarks, and Agep ~ 200MeV provides the Landau
pole for QCD. Furthermore, in contrast to QED, the coupling strength for QCD
decreases with an increase in energy, and this is referred to as asymptotic freedom.

Consequently, at high energies a; < 1 and hence the quarks and gluons behave

5The graphical representations to show the flow and interactions of the particles.
6The divergences which arise when the loop momentum goes to zero are called InfraRed
(IR) divergences.
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almost like free particles, and the perturbation theory is applicable at those
energy scales. However, at low energies (QQ < 1GeV) a, becomes large and QCD
becomes non-perturbative, leading to the phenomenon of color confinement. It
leads to the formation of hadrons at low energies or equivalently large distances
(for details on the subject, see eg. [31]-[34]).

The hadrons are the colorless bound states of quarks and gluons. These states

0.35 T L B y
[ T decay (NLO) F=- ]
low Q2 cont. (N3LO) —e—
03 N DIS jets (NLO) —— ]
Tt Heavy Quarkonia (NLO)
e*e jets/shapes (NNLO+res) H ]
3 pp/pp (jets NLO) F=—
0.25 EW precision fit (N3LOY-e— ]
pp (top, NNLO) —+ 4
~ - 1
<2 o02f 8
. L
0.15
0.1
F = a,(Mz?)=0.1179 £0.0010
0.05_ el el
1 10 100 1000
Q[GeV]

Figure 1.2: The running of strong coupling with energy scale from various ex-
perimental observations along with the theoretical prediction [35].

have a characteristic energy scale of O(Agep). They are of mainly two types:
mesons, the bound states of a quark and anti-quark, and baryons (anti-baryons),

the bound states of three quarks (anti-quarks) which can be written as

1
V2N,

| Anti-baryon) = €ijk |cj§cj§(]§) (1.17)

—enld A,
\/2—]\]c 7k |q1 (:ZQ q3 >
where, N, = 3, is the number of colors, {4, j, k} are the color indices, and the Ein-
stein summation convention over the repeated indices is used. As the quark-gluon

interactions are flavor universal, any combination of {q1, ¢2, g3} € {u,d, s, ¢, b} is
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possible 7. Experimentally, mesons with all the flavor combinations are observed
while for the case of baryons with two or three heavy quarks are yet to be discov-
ered®. The exotic states like tetraquark and pentaquarks are also possible and
have been observed. We will not discuss them further, for more details look at
[36] and references therein.

The states defined in Eqn.(1.17) are called the valence states with a minimal
number of constituent quarks and anti-quarks, collectively called the valence
quarks. These states can have an infinite number of virtual quarks, anti-quarks,
and gluons called the sea quarks such that the state remains color neutral. The
hadrons are the bound states defined as a superposition of all such states with
n number of sea quarks, anti-quarks, and gluons. It can be understood with the
help of the example of the bound state of a hydrogen atom (an example taken
from [37]). According to non-relativistic quantum mechanics, this state is made
up of a valence proton and a valence electron. However, in the field theoretical
description, there will be quantum corrections due to the emission of virtual pho-
tons and electron-positron pairs. Hence, the hydrogen atom is not just a state
given by a bound state of valence electron and proton but is a sum of infinite set
of states consisting of one and more virtual photons and electron-positron pairs
such that they carry the same quantum number as the hydrogen atom. Hence,

one can write a hydrogen state as a superposition of states as

|Hydrogen) = |e " p) @ e py*) & e pete™) +.... (1.18)

In QED, these virtual states do not have large effects and the effect of these
states can be seen only in subtle effects like the Lamb shift. However, in QCD
the states involving extra quarks, anti-quarks, and gluons are very important.
The coupling strength « is large and the average energy of these virtual particles
is ~ O(Agep), i.e of the order of the hadronic scale.

At colliders, one detects only these color-neutral bound states and no free colored

quarks. To have a theoretical estimate of the experimentally observed quantities

"The top quark, ¢ decays before it can hadronize and does not form bound states like other
quarks.
8With the exception of a couple of doubly charmed baryons.
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like decay widths or scattering cross-sections, etc., one is required to use the
scattering theory. According to the scattering theory, the probability amplitude
of any process involving the decay or scattering of particles is determined by the
matrix element of the relevant operator(s) in the interaction Lagrangian between

the initial, 7+ and the final, f state.
Ali = f) ~ <f ‘OM (1.19)

In QCD, interactions are governed by operators, (’j, made up of quarks and
gluons. However, due to the color confinement, the initial and the final states
are the hadrons or the QCD vacuum?, collectively known as hadronic states.
Consequently, only perturbative QCD can not provide a theoretical estimate of
physical observables and an input regarding the non-perturbative effects arising
due to confinement must be included inevitably when strong interactions are
involved in any process. The matrix elements of the quark-gluon operators be-
tween the initial and the final hadronic states (like the one in Eqn.(1.19)) are
known as the Hadronic Matriz Elements (HMEs). These are non-perturbative
in nature. Before moving ahead with the details of these HMEs and how to
calculate them, we collect all mesons and baryons used throughout this thesis
along with their properties in Table-1.2 and Table-1.3. These lists are not even
close to the complete list. The full list of mesons and baryons can be found in

[35).

1.3 Hadronic Matrix Elements and the Form

Factors

Hadron Matrix Elements (HMEs) are defined as the matrix elements of the

quark and gluon operators between the initial and the final hadronic states.

9QCD vacuum is not an empty state. It is rather filled with fluctuating quarks and gluons
such that the total number of quarks and gluons present in the vacuum must satisfy the
quantum numbers of the vacuum, i.e. it must be color neutral, have zero electroweak charges,
and must have the spin parity, J© = 07 with non-zero average densities (see [37] to learn more
about QCD vacuum).
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Meson Valence quark Mass (MeV) Full Width (MeV) Mean life (s) ‘ Jr ‘
0 uiodd (134.9768 + 0.0005) - (8.52+0.18) x 10717 | 0~
7wt ud (139.57039 + 0.00018) - (2.6033 + 0.0005) x 1078 | 0~

p(770) uizdd (775.26 + 0.25) 149.14 0.8 - 1~

w(782) utidd (782.65 & 0.12) (8.49 £ 0.08) - 1-

a, (1260) ui_dd (1230 = 40) 250 to 600 - 1+
K+ us (493.677 £ 0.016) - (1.2380 + 0.0020) x 1078 | 0~

Do cti (1864.83 = 0.005) - (4101 £ 1.5) x 107 | 0~
D+ cd (1869.65 =+ 0.05) - (1040 £7) x 10755 | 0—
Df cs (1968.34 £ 0.07) - (504 £ 4) x 10715 0~
D*(2007) cii (2006.85 + 0.05) <21 - 1-
D*+(2010) cd (2010.26 + 0.05) (0.0834 + 0.0018) - 1-
Dt cs (2112.2 4 0.4) <1.9 - 77

Table 1.2: The list of mesons and their quark contents along with their masses,
decay widths and the spin-parity taken from [35].

‘ Baryon ‘ Valence quark Mass (MeV) ‘ Full Width (MeV) ‘ Mean life ‘ JP ‘
p uud (938.272081 = 0.000006) - > 2.1 x 10% years %+
n udd (939.565413 £ 0.000006) 880.2£1.0 - {r
A uds (1115.683 = 0.006) - (2632 +0.02) x 10705 | 1*
Ay udb (5619.60 = 0.17) - (1470 £ 0.010) x 107125 | 1T

Table 1.3: The list of baryons and their valence quark contents along with their
masses, decay widths and the spin-parity taken from [35].

Theoretically, their study is extremely complicated and tedious. This is because
of the fact that the quarks and gluons inside hadrons interact at the energies of
the order of Agep at which QCD becomes non-perturbative, and can no longer
be treated as a perturbation theory. To compute these HMEs, one parameterizes
them in terms of the non-perturbative objects called the form factors (FFs).
These FFs are the essential theoretical inputs required to make any theoretical
prediction within or beyond the SM. In general, the scattering matrix elements
(or amplitudes) are analytic and unitary and are parameterized in terms of these

FFs. Consequently, the FFs follow the principles of analyticity and unitarity.

The term form factor was first encountered in atomic physics while
studying the scattering of an electron from an atom. In atomic physics the

quantum mechanical initial and final states can be properly described in terms



18 Chapter 1. Introduction

of wave functions, while the mechanism of hadron formation can neither be
described by a potential nor by perturbation theory. Consequently, wave function
description is not possible for hadrons which makes the calculation of hadron FF's
in QCD very challenging. We will discuss the available approximate methods to
handle this difficulty in the next Section. Despite these huge differences between
the atomic and hadronic systems, there are various similarities between the FFs
involved in atomic and hadronic problems. Let us understand the basic properties
of FFs using an atomic physics example where calculating them is easier.
Consider the elastic scattering of an electron from an atom (see [37] for a detailed
discussion involving a general case)

e ( ")+ Ao (1.20)
where ? and ?’ are the three momentum of the incoming and the outgoing
electron, respectively. Ag represent the ground state of the atom. The amplitude

for this process reads as

— A= AnZe®  4me?
MOO = <kI,O|V| k70> == ’7|2 + |7|2F<7)

(1.21)

. . o A ~
where Z is the atomic number, 7 = k" — k is the momentum transfer, and V/
is the operator corresponding to the Coulomb potential given by (neglecting the

atomic recoil)
VT W) = _|Z7e|+zl7%_l (1.22)

Here, 7 are the positions of electrons in the atom with respect to the atomic
nucleus, and 7 is the position of the scattered electron. The function F (7) in
Eqn.(1.21) is called the form factor and is defined as

F(7) = (0] (Z 7?) 0) = [ 47T (@) (1.23)

%

where X is the position operator with eigenvalues x;, p(@') = |1o(@)[? is the

average charge density of electrons in the atom in the ground state. In the limit
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7 — 0, F(?)jﬁo = Ze i.e., the total charge of the electrons in the atom.
The FF reproduces the symmetry of the charge density in the momentum space
ie. F(q) = F(¢?) with ¢ = |{|. Hence, the form factors can be used to
understand the charge distribution inside the atom. In the spherical coordinates
such that 7 is parallel to z-axis, the form factor after angular integration turns
out to be

F(¢*) = %T /OO dr r p(r) sin(qr) (1.24)

0

where r = \/W Hence, the FFs are spherically symmetric. Furthermore,
F(q?) is a real-valued function of ¢* and at large ¢ values, they are dominated
by small distances (r ~ 1/q) as the integrand has a highly oscillatory function
sin(qr) which is suppressed for large r values
The hadronic FFs have a similar physical interpretation. They capture the effect
of the dynamics of strong interactions and can be very helpful in understanding
the structure of hadrons. They typically depend on how the momentum of the
hadron is distributed among different constituent quarks and gluons. These are
the functions of the transferred four-momentum squared to preserve the Lorentz
invariance of the theory. Furthermore, short-distance dominance of the form
factors at large momentum transfer is valid for the case of hadron FFs as well.
Moreover, the electric charge of the hadron can be calculated by calculating the

electromagnetic form factor at zero momentum transfer. Let us now look at the

various possible methods to calculate these FFs.

1.4 Methods to calculate the hadronic form fac-

tors

There are several non-perturbative methods to calculate these hadronic form
factors like the constituent quark model [38], the MIT bag model [39], the Chi-
ral perturbation theory (xPT) [40]-[43], the Lattice QCD (LQCD) [44]-]46],
and the QCD sum rules (QCDSRs) [47]-[49], etc. Out of all the available non-
perturbative methods, only LQCD and QCDSRs are QCD based, while others

are some sort of an effective theory (EFT)/model.
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Now, let us briefly review three of the most commonly used methods to calculate

the hadron form factors:

1. Chiral perturbation theory: Along with the obvious symmetries of the
Lagrangian like Lorentz invariance, gauge invariance etc., the QCD La-
grangian is found to have chiral symmetry in the limit of massless quarks,
known as the chiral limit. As the quark masses are very small compared to
the typical hadronic scale, m,, mq, ms < Agep, QCD can be considered
to have the chiral limit, and the quark masses can be treated as perturba-
tions. In this chiral limit, the chiral symmetry (SU(3), x SU(3)r) of QCD
Lagrangian is spontaneously broken into SU(3) g resulting in eight pseu-
doscalar mesons which can be identified as the corresponding Goldstone
bosons. These Goldstones have derivative couplings, and hence typical
amplitude goes as f—;, where A is related to the breaking scale, F' such that
A ~ 47 F. Consequently, one can write an effective theory, known as chiral
perturbation theory (xPT) to describe the QCD interactions in terms of
the low mass mesons (eg. m, K,n,...). These low mass mesons are the
(pseudo)-Goldstone bosons of spontaneous chiral symmetry breaking such
that the Lagrangian is invariant under the chiral symmetry group, and the
light quark mass terms act as the explicit breaking terms and transform

linearly under this group. See [40]-[43] for detailed reviews.

2. Lattice QCD: Unlike the above discussed yPT, lattice QCD (LQCD)
is a QCD formulation on a discretized Euclidean space-time grid. It has
the same degrees of freedom as in QCD i.e. quarks and gluons, with no
new parameters and hence retains the fundamental characteristics of QCD.
LQCD solves QCD numerically by using computer simulations analogous
to the ones used for statistical mechanics systems. The discretized space-
time provides a non-perturbative regularisation scheme. Hence, we do not
encounter any UV divergences as the finite lattice spacing, a, provides an
UV cutoff given by 7/a. For a — 0, these computations provide the con-
tinuum limit. The numerical simulations in LQCD are non-perturbative

implementations of the Feynman path integral approach of Quantum Field
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Theory (QFT). Here, the calculations of the field theoretical observables
proceed exactly the same way one would have done analytically given the
ability to do such calculations. Hence, LQCD simulations allow us to cal-
culate HMEs numerically using the fundamental principles of QCD with

no extra assumptions. See for example [44]-[46] for detailed reviews.

3. QCD sum rules: It is another method that is based on the fundamen-
tals of QCD. This method allows calculating the HMEs using the analytic
properties of the correlation function of the interpolating quark currents of
the hadrons taken at large virtualities (momentum squared, |Q?| — o).
The correlation functions are the matrix elements of the time ordered prod-
uct of these interpolating currents taken between vacuum or the on-shell
states. These correlation functions are of dual nature. On one side, they
can be written as the sum over the hadronic states using dispersion re-
lations. These dispersion relations include contributions from the lowest
energy hadron state and the continuum and heavier states. The contri-
bution from the continuum and heavier hadronic states can be written in
terms of the spectral densities which are not known and can be approxi-
mated by using the quark hadron duality. It approximates the perturba-
tively computed amplitudes in QCD (under certain assumptions and in
specific energy regime) to the amplitudes calculated considering hadrons
as the fundamental particles. On the other side, the correlation functions
can be treated in the framework of Operator Product Expansion (OPE).
OPE enables one to separate the short and long-distance quark-gluon in-
teractions such that the former can be calculated using perturbative QCD
(pQCD) and the latter can be parameterized in terms of vacuum conden-
sates or distribution amplitudes (DAs). One can then match the two and
perform Borel transformation as a final step to reduce the uncertainties due
to approximations of quark hadron duality and to get rid of the divergences
in the dispersion relations. Finally, one obtains the sum rule which helps
in calculating the hadronic quantities like FFs.

The QCDSRs are of two types: the SVZ sum rules (SVZ SRs) and the
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Light Cone Sum Rules (LCSR). LCSR is a hybrid of the SVZ SRs and
the theory of hard exclusive processes. We will discuss more about it in

Chapter-2.

None of the above mentioned methods can give a precise estimation of the
hadronic FFs with the presently available computational and technical tools.
Every method has its advantages and limitations over the other. As a result of
it, none of these methods can be preferred over the other at present and it is es-
sential to have estimates from different methods. However, with the advances in
computational facilities, LQCD is expected to surpass all other methods. LCSR
on the other hand is faster and complimentary to LQCD, as in many cases, LCSR
and LQCD results are found to be more reliable in different energy regimes such
that the combined analysis of the two gives a fairly good estimate of the hadronic
object in the full Q? region [37], [50]. Taking a step ahead in this direction, we
considered various processes within the SM and BSM scenarios where the ap-
plication of LCSR was not explored, and compute the involved form factors.
Before moving to the detailed description of the method of LCSR, let us review
the basics of the effective field theories (EFTSs).

1.5 Effective Field Theories

The basic idea of an EFT is that only a few d.o.f. will be relevant and dynamical
at a given energy scale, while all other d.o.f. will be integrated out!'®. The effects
of the integrated out d.o.f. are encoded in the coefficients of the local operators
known as the Wilson coefficients (WCs). These coefficients can be calculated
by the so-called matching of the effective theory to the full theory. As both the
theories should give equal results in the infra-red (IR) region, one matches the
result of the two theories at some IR scale and gets the values of the WCs. They
can be considered as the coupling strength of the corresponding operators as

they do not depend on the initial and final states involved in the process. Let us

0The origin of this terminology lies in the path integral formalism of field theory. By
integrating out the particular fields/particles, one means that they are no longer dynamical
degrees of freedom. They can no longer appear as the initial and final state particles and can
only contribute virtually.
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now try to gain a better understanding of EFTs.

We know very well that to explain a phenomenon at the macroscopic scale, one
does not require complete knowledge of the theory which explains the phenomena
at the microscopic scale (QCD). For example to construct a bridge, one does
not require the theory of quarks and gluon. It only requires a knowledge of
Newton’s laws, elasticity, fluid dynamics, etc. Even for a condensed matter
system which consists of only charged electrons and ions, and photons, QED can
be considered an effective field theory built out of the SM by integrating out
all the heavier particles like W and Z bosons, heavier leptons and quarks, and
writing interactions in terms of electrons, protons, ions, and photons. To explain
such a system one does not need knowledge of strong or weak interactions.
Furthermore, let us consider an example of the simplest EFT, the Fermi theory
for the weak interaction of four fermions, for the pion decay (7= — p v,). In
the full theory i.e., the SM, we know that the mediator for weak interactions
between the quarks and leptons is the W and Z bosons. The weak current via

which one explains the interactions mediated by W-boson reads as

gt = Vij (@y" Prdy) + (5" PLe) . (1.25)

where {i, j} represent the flavors of the up and down-type quarks, and ¢ and v,
represent the different flavors of the leptons and their neutrinos. V;; is the CKM
matrix defined in Eqn.(1.13). In the full theory i.e., SM, the Feynman diagram
for pion decay is shown in Fig.(1.3(a)) resulting in the tree-level amplitude for

this process to be

A= 7 Vua (W* Prd) o yp (1y" Prv,) (1.26)
where, g5 is the coupling constant of the weak interactions, and p is the momen-
tum carried by W — boson. If p*> < m¥, i.e., the momentum transferred square

is small, the propagator can be Taylor expanded in powers of #. Then, the
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Figure 1.3: Feynman diagrams showing 7= — p~ 7, (a) in the SM with W~
exchange and (b) in the EFT theory where W-boson is integrated out.

amplitude in Eqn.(1.26) becomes

. N 2
) —1g2 _ _ p
A=—|—F=| WV FPrd P ol—|. 1.27
o (T2 o Pu o) + 0 (2 (1.27)
Consequently, the effective Lagrangian for the m-decay in the four Fermi theory

reads as

4GF

Lo = ——o
W2
4Gr

V2

Vud (’a’YMPLd) (,afyuPLV;J

Vua C(p) O(p) (1.28)

where G is the Fermi’s constant and is related to go by

Grp _ 93

V3 s

(1.29)

The W-boson is no longer a dynamical degree of freedom and has been inte-
grated out. Its effect has been captured in the the Wilson coefficient, C'(u)
which is simply unity in the present case, and O(u) represents the effective four
fermion operator. Here, i represents the scale dependence of the WC and opera-
tor and must cancel in the final result. However, in practical calculations it does
not cancel due to truncation of the infinite series to certain order. The Feynman
diagram for the pion decay using the effective Lagrangian, L.g, is a vertex dia-
gram as shown in Fig.(1.3(b)). For more details on EFTs look at [51]. We will
see a more general form of effective Lagrangian in Chapter-4 and 5 while dealing

with BSM processes including the Baryon Number Violating (BNV) decays.
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1.6 Organisation of thesis

We have organised the thesis as follows: In Chapter-2, we have discussed the
method of LCSR in details. We discuss all the tools and techniques required to
derive these sum rules. In Chapter-3, we discuss the application of LCSR to the
light meson system by considering the radiative tau decay (7= — 7 v,7y). In
Chapter-4, we explored LCSR application to the baryonic system like proton by
considering proton decay to a photon and a positron. The form factors involved
in this case can be calculated in two ways, firstly, by using the proton interpola-
tion current and the photon distribution amplitudes, and secondly, by using the
photon interpolation current and the proton distribution amplitude. We discuss
both these cases one by one in this chapter. In Chapter-5, we further explored
the application of LCSR to the heavy meson system by considering a BNV de-
cay of D%meson i.e., D° — pet. The form factors involved are calculated by
interpolating the proton state with the most general interpolation current. In
this chapter we have also discussed how the experimental information on decay
widths of radiative decays of D*-mesons can be used to probe the structure of the
D-meson. Finally, in Chapter-6, we conclude our findings and provide the future
directions. Moreover, this thesis consists of four Appendices. In Appendix-A, we
collect all the useful identities, integrals and definitions. In Appendix-B, we dis-
cuss the particle propagator near the light cone. Furthermore, in this Appendix,
we collect the definitions and forms of the light cone DAs used throughout this
thesis. The Appendix-C covers the kinematics involved in the decay width calcu-
lation of the radiative tau decay. Finally in Appendix-D, we collect the numerical

values of all the parameters used in this thesis.






Chapter 2

Light Cone Sum Rules in a
Nutshell

As already discussed in Chapter-1, the hadronic quantities like FFs are very
essential theoretical inputs to calculate any process within or beyond the SM.
Light Cone Sum Rules (LCSR) is one of the most effective method to calculate
these hadronic quantities in terms of universal non-perturbative quantities known
as distribution amplitudes (DAs) (discussed briefly in Section-1.4). It is a QCD-
based method and has been employed successfully to determine various non-
perturbative quantities like decay constants and form factors. Though these
sum rules successfully calculate the hadronic quantities of interest, they have
limited accuracy in many cases. It is mainly because of two reasons. Firstly, the
uncertainties arising due to approximations in the Operator Product Expansion
(OPE), and secondly, the uncertainties due to approximations involved in using
quark hadron duality (We will discuss them in detail in Section-2.1.1). Despite
that, it has an ensured place in the toolkit of QCD practitioners because of its
relative ease compared to other methods like lattice QCD.

As already stated in Section-1.4, LCSR is a hybrid of the SVZ SRs and the theory
of hard exclusive processes. Therefore, before moving to the details of LCSR,
let us first understand SVZ SRs and the theory of hard exclusive processes.
Thereafter, we will see how a marriage of the two leads to the beautiful technique

of LCSR to compute these hadronic quantities.

27
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2.1 SVZ Sum Rules

SVZ sum rules were first derived by Shifman, Vainshtein, and Zakharov (SVZ) in
1979 [48] and were named after them. It is a QCD-based semi-phenomenological
method that helps one to determine the characteristics of the low-lying hadrons.
To derive these sum rules one needs a suitable correlation function where the
initial and final state hadrons of the HME are interpolated with the interpola-
tion currents written in terms of quarks and gluons. The interpolation currents
are such that they have the same quantum numbers as the hadrons of interest.
Such correlation functions have dual nature and hence can be written using two
representations.

According to the first representation, it can be written using the short-distance
OPE at ¢> — —o0 i.e., large negative momentum transferred square. The OPE
allows one to separate the short and the long-distance physics contributions.
The short-distance contribution can be calculated using pQCD while the long-
distance contribution can be encoded in the universal non-perturbative objects
called vacuum condensates'. We will discuss more about OPE in Section-2.1.1.
On the other hand, the second representation can be written directly in terms
of physical hadronic states in the form of a dispersion relation using unitar-
ity and analyticity of the correlation function. All the physical hadronic states
with the proper quantum numbers contribute to the dispersion relation. The
dispersive integrals in the dispersion relation are unknown. In practical appli-
cations, the unknown non-perturbative hadronic quantities are related or equal
to the residue of the lowest state contribution (as will be explained in detail in
Section-2.1.1). However, the contributions from the higher and the continuum
states can be approximated in terms of the perturbatively calculated correlation
function using quark-hadron duality (see Section-2.1.1). The sum rule can then
be written by matching the two representations. As a final step one performs
Borel transformation (to be discussed in Section-2.1.1) in order to remove the

divergences from dispersion relations. It also reduces the systematic uncertainty

IThe vacuum condensates are the vacuum expectation values of the quark-gluon local op-
erators that are zero by definition in perturbation theory. They are ordered according to their
canonical mass dimension.
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due to quark-hadron duality by suppressing the contributions coming from the
higher states and the continuum. The final sum rule can then be used to extract
the hadronic quantity of interest. However, there are limitations to the usage of
SV7Z sum rules which we will discuss in Section-2.1.3. Thereafter, we will discuss
how LCSR help us to deal with these limitations.

Let us now understand SVZ SRs and the tools mentioned above in better detail

using a simple field theoretical example.

2.1.1 Understanding SVZ sum rules and its tools

Consider an example of a simple correlation function, say ete™ — ete™ scatter-
ing with quantum fluctuations due to quarks as shown in Fig.(2.1) [52]. It is a
correlation function of the quark currents with no initial or final state hadrons

such that the quarks can propagate only at short distances. It can be written as

g
s
I (q) w.d.s
Sy
e e

Figure 2.1: The Feynman diagram showing the process ete™ — eTe™ with a
quark loop due to quantum fluctuations.

M, (q) = i / d42e1% (O[T {7,(2)7(0)}10) = (quty — P0)1(®)  (2.1)

where ¢ is the momentum that us flowing inside the loop, j, = > . Q4779 is
the electromagnetic current for quarks, ¢ with the sum running over all flavors.
[(g?) is the scalar function that encodes all the information of the effect of
strong interactions, and the Lorentz structure on the right-hand side (r.h.s.) of
Eqn.(2.1) is dictated by current conservation i.e. d,j* = 0. It is important to

note that I1(¢?) is an analytic function of ¢* and is defined for all the values of
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q*. Now our task is to derive a sum rule for TI(¢?). For that, let us first gain a
better understanding of the tools required to derive these sum rules. There are

four main tools, namely
1. Short-distance OPE,
2. Dispersion relation,
3. Quark hadron duality, and
4. Borel transformations.

A schematic flowchart of these tools along with their importance and function

in the derivation of the sum rules is shown in Fig.(2.2). Let us discuss them one

TOOLS TO DERIVE

SUM RULES
l Dispersion Relation

(relates real part of correlation function to
its imaginary part)

Operator Product Expansion
(Enables one to write correlation function as a
product of short distance and long distance physics)

Quark Hadron Duality

(Relates the non-perturbative spectral function to the
perturbatively calculated amplitude function)

Borel Transformation
(To supress the effect of continuum and higher resonances)

Figure 2.2: Flowchart chart showing important tools to derive sum rules along
with their importance and function.

by one and understand their importance for deriving a sum rule for II(¢?).

1. Short-distance Operator Product Expansion: Operator product ex-
pansion (OPE) provides a systematic method to calculate I1(Q?) with
@Q* = —¢* in the deep Euclidean region (Q? > Agep). It was introduced
in particle physics by Wilson [53]. According to it, one can consistently

separate the long-distance (i.e. the distance > ') and the short-distance
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(i.e. the distance < p~') contributions, where, y is some normalization
point which separates the two regions. This separation is possible because
of internal reasons, like the exchange of heavy W-boson, ¢, b— quarks, etc.
The observable quantities do not depend on the value of p and hence one
can choose p according to the convenience. Mathematically, the statement

of OPE reads as

7" (¢%) = > Calg®, 1) (0|0al0) (12). (2.2)
d

Here, Cy(q?, 1) are known as the Wilson coefficients (WCs) and (0|04]0) (u)
represents the vacuum expectation of the local operators, Oy, of different
dimension, d, both evaluated at pu. The sum over d implies a sum over
all the Lorentz and gauge invariant local operators of different dimensions
built from the quark and gluon fields. WCs capture the short distance
(high energy) effects and can be calculated in perturbation theory using
pQCD. However, the vacuum expectations of the local operators capture
the long-distance (low energy) effects and hence are non-perturbative in
nature. The lowest (zero) dimension operator is the unit operator, 1.
The higher dimensional operators capture the information of QCD vacuum
fields in the form of vacuum condensates of quarks and gluons such as (Gq),
(Gil), etc. These vacuum condensates are the universal non-perturbative
quantities and hence can be estimated using the experimental data on the
well-studied modes.
[1(¢?) in deep Euclidean region is dominated by the physics at short dis-
tances i.e., x, — 0 (see [52] for a physical argument for short-distance
dominance). According to the short distance OPE, the it gets the main
contribution from the lowest dimension operator and the contribution of
the higher dimension operators decreases as we go to higher and higher
dimension operators. This OPE dictates the first representation of IT(¢?)
as discussed above. However, in Section-2.1.3, we will see how this short-
distance OPE becomes a problem while computing the three-point correla-

tion functions. Later, in Section-2.2.1.2, we will see how an OPE at light-
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like distances (z? — 0) rescues the situation. Before that let us move to the
second representation of II(¢?), written directly in terms of the hadronic

states.

. Dispersion Relation: It helps us in writing I1(¢*) directly in terms of

the physically observed hadronic states. Its origin lies in classical electro-
dynamics in the form of Kramers-Kronig dispersion relations [54], [55]. It
relates the real part of an amplitude to its imaginary part which is usually
better accessible to us.

The dispersion relation and the Wilson’s OPE were considered to be two
successful approaches to explain the theory of strong interactions outside
field theories. However, lately both became a part of QFT. As already
discussed, Wilson’s OPE uses the expansion of products to explain strong
interactions. On the other hand, the dispersion relation uses the analyt-
icity and unitarity properties of the correlation function. It will become
more clear as we move forward.

Before discussing the dispersion relation corresponding to I1(¢?), let us dis-
cuss a simple example of a two-point correlator of scalar theory in order
to get a better understanding of the importance and physics behind the
dispersion relations. The dispersion relation corresponding to two point

correlator is known as the Kallen-Lehmann (KL) spectral representation.

2.1.1.1 Kallen-Lehmann representation

KL representation helps us to determine the analytic structure i.e., the
singularities like the poles, branch cuts, etc., of the 2-point correlation
function. It shows that the dispersion relations can be derived from the
first principle in QF T and captures the analytic structure of the correlation
function.

To understand it, let us consider the Fourier transform of the 2-point cor-
relator of the scalar field, ¢ given by (we follow [56] for the discussion
below).

I(¢) =i / a0 (0[T{o(x)6(0)}]0) (2.3)
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where T represents the time ordering. For a free theory, this correlator
is nothing but the propagator for the field ¢. However, for an interacting

case, it is a non-trivial object given by

1 _ = _A ( 2 2) f
e r(q?, m?), free
M) =™ " (2.4)
% + f(\ ¢?), interacting

where ) is the coupling constant of the theory, and —Ar(q?, m?) represents
the propagator of the field ¢ with mass m. The function Z(\) is the field
renormalization factor, and the function f(\, ¢?) is the function of interest.
Its properties will be the main focus of our discussion further. In the limit
of free theory, i.e. A — 0, both these functions must satisfy the following
conditions

Z\) =1, f(\g*) =0, for (A—0). (2.5)

The free theory case in Eqn.(2.4) suggests that the analytic properties of
the correlation function are determined by the mass spectrum (as shown
in Fig.(2.3)).

Focusing now on the interacting case, let us consider only the positive
frequency distribution for computational simplicity. In that case

Ap(z?,m?) = [ %e‘i”éﬂf —m?), free

(0l¢(x)0"(0)]0) =

(%), interacting
(2.6)

where, 67 (q? — m?) = §(¢> — m?)6(qo) which ensures the positive energies
and the on-shell condition. (x) is the object which determines the spectral
representation. Using the unitarity condition, one can insert a complete

set of states i.e. 1 =) |n)(n| which results in

(¥) = Y (0(x)|n(gn)) (n(g)|¢' (0)]0). (2.7)

n

Here, |n) represents a complete set of single-particle states as well as

all multi-particle states. Furthermore, using the property of the trans-
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Free Interacting

Pole Brachcut

p(q? Ca)

q* q°

Figure 2.3: Showing the analytic structure of the 2-point correlation function
in the upper graph and the spectral density function in the lower graph as a
function of ¢? for free theory(left panel) and interacting theory (right panel).

lation invariance of the scalar theory along with the property that 1 =

(2717)4 [ d*qe"" [ d*ze'd”, and further interchanging >° and [ d*z 2, one

gets

() = / dae= 2] (016(0) [n(ga)) P = S 8( — gu) | ful?
— 20 @) (28)

where, |f,|> = [(0|¢(0)|n(g.)}|* and p(q¢?) is the spectral density function
which is positive definite as a consequence of unitarity. (27)~3 is a factor
inserted for convenience and 6(qq) ensures positive energies. The condition
of positive energies comes from the same condition on the energies of the

external particles as in Eqn.(2.6). Moreover, using the property of the delta

[darat) = [ dq [as st - )re)

function i.e.

2These interchanges are not always possible. They are ill-defined when there are UV diver-

gences involved. Look at [56] for more details.
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where F(q?) is some arbitrary function of ¢?, and exchanging [ ds and
[ d*q, one gets

(x) = /000 dsp(s) AL (22, s). (2.9)

This is a spectral representation that can be generalized to the negative
frequencies as well and finally results in the Kallen-Lehmann (KL) spectral

representation given by

) = [ oe-an(s) = [ as L (2.10)

s —q? — i€

where € — 07. This representation tells us that the analytic structure
of the correlation function has a one-to-one correspondence with the mass
spectrum of the theory. It was found independently by Kallen [57] and
Lehmann [58]. The analytic structure of the integrand on the r.h.s. of
Eqn.(2.10) is such that it has poles corresponding to the single-particle
states and a branch cut corresponding to the multi-particle states (as shown
in Fig.(2.3)). The spectral density on the r.h.s in Eqn.(2.10) can then be
related to the imaginary part of the correlator I'(¢?) using Cauchy’s integral

formula which states that

1 ['(2)
N@®)=-— ¢ d
(@) 2mi j{; - q?
1 I'(2) 1 [" T(z+4ie) — T(z — ie)
= — — . 2.11
2mi dzz—q2+27ri 0 dz z—q? (2.11)

|z|=R

where C is the contour as shown in Fig.(2.4), R is the radius of the circle
of the contour, C which can go up to infinity. Hence, the first term on
r.h.s. will vanish. However, the second term which gives the discontinuity
along the branch cut and can be written in terms of an integral over the
imaginary part of I'(¢?) using the Schwartz reflection principle which states

that

I'(z+ie) = I'(z — ie) = disc(I'(2)) = 2dImI'(2) at z > tn (2.12)
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o

v

Figure 2.4: Showing the integration contour, C' for the dispersion representation
of the 2-point correlation function I'(¢?).

where t,,;, = m? is defined such that T'(z) is real for z < t,,n.
For practical applications, it is useful to separate out the lowest state con-

tribution. As a result of Cauchy’s integral theorem, one can write

['(¢®) = L 4 1 /OO dzﬂ (2.13)

m2—q?—ie T 6” z—q?® —ie

where fj is the residue of the lowest state and s} is the continuum threshold
(equal to 4m? in many cases). fo is the non-perturbative object that one
usually intends to extract using the method of sum rules.

On equating Eqn.(2.10) and Eqn.(2.13), one can write,
1
p(s) = | fol?6(m? — s) + —ImI'(s)0(s — sp). (2.14)
T

Now, after understanding the KL representation, let us go back to the
dispersion relation corresponding to our considered correlation function
given in Eqn.(2.1).

At ¢* > 0, the long-distance effects become important which leads to the
materialization of the quark-anti-quark pair generated by the current j,
into neutral vector bosons as well as the heavier states along with the
continuum to preserve the spin-parity of the current. Consequently, on

inserting a complete set of states with J = 17, like we did while deriving
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the KL representation, the
2 Il (q) = 3 [ dr2n)'59(a ~ p) O ) 0lif0): (219

This is nothing but the unitarity relation or the Optical theorem. The
sum runs over all the possible hadronic states, |n) with JE = 1~ i.e., the
complete set of neutral vector mesons and the multi-particle continuum
with JP = 17, dr, represents the phase space volume of these states.

Furthermore, the correlation function can be further written as

1

— Imll(¢*) = fP0(q* —my) + p"(¢*)0(¢” — 5) (2.16)

where we have separated the contribution coming from the lowest energy
state and lumped the continuum and the heavier state contributions into
the spectral density p"(¢?). my and fi are the mass and the residue
of the lowest vector meson state, respectively. The contribution coming
from the continuum and the heavier states are more complicated and we
represent it with the spectral density, p"(¢?) (for more details look at [52]).
Consequently, the dispersion relation for II(¢?), using the Cauchy’s integral

formula, can be written as

had/, 2\ _ 1% 1 = SIm(Hhad(s))
) G w0

where 'had’ is the superscripts represents that this is the representation of
I1(¢?) written directly in terms of hadronic states.

In practical applications, the non-perturbative hadronic quantities are re-
lated to fi,. Hence, the problem of computing the hadronic object reduces
to the computation of the residue of the lowest state contribution to the

3

dispersion relation®. The contribution coming from the heavier and the

3These dispersion relations can, in general, have divergences. It is because of the fact that
in general, the correlation function may have ultraviolet (UV) divergences like in the case of
the correlation function in Eqn.(2.1). As a result of these UV divergences, the imaginary part
of the correlation function does not vanish at asymptotic boundaries and thus, the dispersion
integrals are divergent (see [52] for more details). Such divergences can be taken care of by
performing Borel transformations or equivalently by subtracting the first few terms of the
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continuum states can be approximated using the quark hadron duality and
are further suppressed using the Borel transformation for better stability

of the sum rule. We will discuss them below.

. Quark Hadron Duality: As the name suggests, it bridges the gap be-

tween the theoretical predictions based on the perturbative calculations
involved in QCD in terms of quarks and gluons and the experimentally ob-
servable quantities written directly in terms of hadronic states in the form
of the dispersion relation. This idea was formulated when Poggio, Quinn,
and Weinberg suggested that at high energies some inclusive hadronic cross
sections coincide approximately with the cross sections calculated in QCD
and are appropriately averaged over a certain energy range.
The spectral densities in Eqn.(2.16) are unknown. If one had successfully
developed a method to calculate these spectral densities exactly then a
duality approximation would have not been required as that will provide a
complete solution to the theory of strong interactions. However, that is not
the case in practical calculations. Moreover, these spectral densities can be
approximated using the statement of local quark hadron duality according
to which

Im (IT°"(s)) — Im (IIP*"*(s)) at s — oo. (2.18)

where Im (I1°°"(s)) is the contribution to I1"%¢(s) coming from the heavy
states and the continuum. The validity of this assumption relies on the fact
that partonic representation can be approximated to the hadronic repre-
sentation at high energies as QCD is a valid theory for strong interactions
in that regime.

Furthermore, in the deep Euclidean region i.e. ¢*> — —o0, all the conden-
sate contributions are negligible which leads to the validity of I1(¢?) —

[1P°r*(¢?). This along with the statement of local quark hadron duality

1 [ Imll 1 [ _ ImIIpert
1 / g tnli(s) 1 / PRLLGO) (2.19)
s 4

Ty (5=6) T e  (s—¢?)

leads to

Taylor series expansion of the correlation function at ¢ = 0).
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at ¢> — —oo. This is the statement of global quark hadron duality.
Now combining Eqn.(2.18) and Eqn.(2.19), one can postulate that at suf-
ficiently large Q? = —¢?, we have

1 [/ Imll 1 [%°  ImlIpet
1 / g mli(s) 1 / PRI SO (2.20)

Ty (s—q?) 7w/, (s —¢%)

where sq is the continuum threshold, not necessarily equal to s?. It is an
independent parameter in the sum rule calculations and its value depends
on the particle spectrum of the correlation function. Typically, its value
is roughly approximated to the value of the resonance next to the ground
state resonance that can enter in the correlation function: sy ~ (ma; +A)?
where A ~ O(Agep). The final value of sg is fixed by demanding stability
of the final hadronic quantity against a variation in the value of so*. This
introduces the first source of systematic uncertainties in the sum rule cal-
culations. The statement of semi-local quark-hadron duality in Eqn.(2.20)
is what one practically uses in the sum rule calculations (for more detail
one can look at [37], [59]).

Apart from this, there are two other forms of uncertainties coming from
here. First is the natural uncertainty arising due to the truncation of the
infinite series in a,(Q?) as well as the condensates. The computational dif-
ficulties increase with every order in a, which makes it nearly impossible
to sum up this infinite series. Similarly, for a series in condensates, it is not
possible to sum up the complete series. Consequently, both these series are
required to be truncated up to some finite terms. Second, are the devia-
tions from the duality, known as the duality violations. These are the major

sources of systematic uncertainties in the sum rule calculations. Removing

4The choice of sq close to the next resonance can be loosely understood in the following ways;
our objective is to approximate the contribution coming from the heavier (or continuum) states
with the contribution obtained from the QCD calculations. As this approximation has better
validity in the large energy limit therefore, setting sg too small will lead to larger uncertainties.
On the other hand, if we take its value to be very large then we will end up missing out on
the contribution coming from the states between the ground state and the value of sg which
will again lead to large uncertainties in the result. Therefore, one looks for the stable window
of s in the vicinity of the next resonance to optimise the uncertainties and pick a value from
this stable window.
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these uncertainties is one of the major challenges for the QCD practitioners
as even lattice calculations can not shed light on them. This is because
of the fact that duality violation can not be separated from Minkowskian
kinematic and lattice is a Euclidean approach to QCD. Therefore, to un-
derstand these violations we need analytical solutions. There are various
models like an instanton-based model, resonance-based model, etc, which
can describe these duality violations but at present a complete solution is
still lacking (see for example [60], [61] and references therein). Though a
proper analytical method to compute these violations does not exist, the
uncertainties due to these violations can be reduced by suppressing the con-
tribution of the higher state and the continuum which were approximated
using these dualities. This can be done by performing Borel transforma-

tions.

. Borel Transformation: To understand the power of Borel transform [62],

let us first consider a simple example. Consider a function A(z) given by
Az) = At (2.21)
k=0

The Borel transform of this function is defined as (with M being the pa-

rameter called Borel mass)

00 Ak .

B(M)=>_ (g) M (2.22)
k=0

One sees that higher coefficients are factorially suppressed. Further, if Ay

has a factorial divergence like k! then B(M) will be an analytic function in

the neighborhood of origin. Moreover, if the function A(z) itself is a good

analytic function then the following equality holds

T

Az) = /0 M Exp (ﬂ> B(M) (2.23)

This allows to recover the original series. The inverse relation also holds

if B(M) is such that it can be analytically continued on the positive real
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axis up to infinity. The function in Eqn.(2.22) (provided that the integral
converges) is the Borel sum of the asymptotic expansion in Eqn.(2.21).
In practical calculations, the above is then achieved by the mathematical

operation given by the operator [49]

o ()Y d
—q* /n=M?

In a typical sum rule calculation, the most commonly encountered function
of ¢% is

1
(m2 — ¢2)*

f(d?) = (2.25)

where £ is some integer providing the power of the denominator. The Borel

transformation of this function is given by

1 1 emi/M?

Buaf(0)) = Barr e = =y g (2.26)

It is easy to convince oneself that for m? > M?, the term on the r.h.s. of
Eqn.(2.26) gets an exponential suppression. Consequently, on performing
a Borel transformation (on say Eqn.(2.17)) and choosing M? < sl the
continuum contribution can get an exponential suppression. Also, it pro-
vides a factorial suppression to the power-corrections and hence reduces
the impact of higher dimensional condensate terms of the OPE.

The Borel transformations of (¢2)* vanishes i.e., B(¢?)* = 0. It results in
killing off any subtraction terms that appear in the form of polynomial in
¢* which may appear as a consequence of the divergences in the dispersion
relation. Consequently, Borel transformation helps us in improving the
accuracy and stability of the sum rule. The Borel mass is another indepen-
dent parameter in the sum rules calculations. As stated above it must be
lesser than or close to the continuum threshold such that the heavier and
continuum states’ contributions can be suppressed properly. It is deter-
mined by demanding a very small variation of the final hadronic parameter

against its variation. For M, one usually tries to find a region where the
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graph of the derived hadronic quantity vs the Borel mass shows a plateau.
This region is known as the Borel window. The sum rule is considered to
be reliable if the contribution coming from the continuum and higher reso-
nances is small, the dependence on the Borel parameter is weak and there
are no unnatural numerical cancellations in the result. After performing

Borel transform of Eqn.(2.17), one gets,

2 2 1 & 2
Ihed(M?) = f2e~mv/M° 4 — / ds Im(I1"(s)) e=/M", (2.27)
™ Jgh

where M is the Borel mass.

Finally, on approximating the second term of Eqn.(2.27) using the statement
of semi-local quark hadron duality given in Eqn.(2.20) and equating the two
representations obtained using OPE and dispersion relation, one get the final

sum rule for fy as

fremmu/ME %/ ds TmIIPe)) (5) e=5/M* = ch 2 1) (0]04|0) (1) (2.28)
S0
where sq is the continuum threshold, Cq(M?, i) are the Borel transformed per-
turbatively calculated WCs and (0|O4|0) are the non-perturbative objects which
can be written in terms of the vacuum condensates.

fv turns out to be a function of the universal non-perturbative quantities called
vacuum condensates, the independent parameters introduced by the sum rule cal-
culations so and M, and the perturbatively calculable short-distance coefficients.
One saturates the sum rule with the lowest energy resonance i.e. the ground
state and the contribution from the higher resonances and the continuum are
suppressed. The p dependence of the vacuum condensates, introduced by OPE,
is supposed to be canceled by the i dependence of the perturbatively calculated
coefficients. However, as the infinite expansion is truncated to some finite terms,
the p dependence does not disappear completely and leads to another source of
theoretical uncertainty in the sum rule calculations. The application of SVZ sum
rules is not limited to QFT. It can be seen in quantum mechanics as well. Let

us see a quantum mechanical example to develop a better understanding.
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2.1.2 SVZ sum rules in quantum mechanics

In this section, we will try to understand the power of SVZ sum rules with
the help of a simple quantum mechanical example of the harmonic oscillator by
determining its ground state energy (following [63]). In quantum mechanics, the

Green function of the time-dependent Schrodinger equation is given by,

G(xa,to;x1,t1) = > p(a2)y(x1) exp [—iEy(ta — t1)] (2.29)

k=0

where 1, represents the wave function of a quantum state with energy Ej, and
the sum over k runs over all the possible quantum states. The Euclidean Green
function M (7) can be obtained from the Green function given in Eqn.(2.29) by
analytically continuing the time ¢ to the imaginary time 7 = t, also known as

the Euclidean time, such that
M(7) = G(0,—i7;0,0) (2.30)

This Euclidean Green function, M (7) here plays an equivalent role of the Borel
transformed correlation function in field theory and hence is the object of interest
here.

From Eqn.(2.29) and Eqn.(2.30), M(7) can be written as a sum of the ground

state contribution and the contribution coming from the excited states as
M(T) = WJO(O)|2 exp (—Eo7) + M. (7) (2.31)

where M, (7) represents the contribution coming from the excited states given by
M(7) =) [i(0)* exp (—Ep7). (2.32)
k=1

> unambiguously if

One can calculate the ground state parameters Ey and |
ground state contribution dominates M (7). It is possible for large Euclidean
time, 7 > 7, for which the continuum contribution experiences an exponential

damping.
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According to the Born series, M (7) can be calculated perturbatively in the Eu-
clidean region. Let us call it M,,+(7) which usually contains the first few terms
of the truncated Born series of M (7). Therefore, M,.+(T) can approximate M (7)
accurately only for sufficiently small Euclidean times such that (7 < 75) where
Tp is some upper limit for the validity of truncation of the Born series.

Consequently, M(7) and M,e+(7) are like two sides of the same coin and are
valid for different regions of the value of 7. The sum rule can be obtained by
equating the two sides such that a fiducial region exists where this equality holds.
Such a condition is possible for 7. < 7 < 75. For such a region, the ground state

energy Fj, can be calculated approximately as

Ey = —d%l_ In [Mpert(7) — M (7)] (2.33)

Finding such a region for realistic situations is not obvious. However, there
are several systems where such a fiducial region is found to exist and it has
been found that this procedure does provide a reasonably reliable estimate of
the ground state. A harmonic oscillator (HO) in an external electric field is an
example of one such system. Let us see the power of SVZ sum rules by calculating

the ground state energy of a HO in an external electric field.

2.1.2.1 An example: Harmonic Oscillator in an external electric field

The Hamiltonian for a one-dimensional harmonic oscillator (HO) placed in a

constant external electric field, E is given by
H=———- 4 -mw’2® — ebx. (2.34)

where w is the frequency of oscillation and m is the mass of the particle. This is
an exactly solvable system with the eigenvalues, E) and eigenfunctions, v, given
by

B, = (k + % - e) o (2.35)
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with e = 22 and k = 0,1,2,..., and

2muw3

Vi(z) = dr(r — 20) (2.36)

with zg = 7252 and ¢(z) being the eigenfunctions in the absence of external

electric field. Let us now try to find the ground state energy Ej using the method
of SVZ sum rules. As a starting point, we need Euclidean Green’s function for

this system which reads as

M(r) = Bxp(eor) S u(—su)oi-an) exp |- (k41 ) ]

2
k=0

= exp(ewt) Guo (—xg, —iT; —20,0) . (2.37)

Here, Gpgo is the Green function for the harmonic oscillator in the absence of

the electric field given by

1/2
mw . mw
Guo oot = (grrtinig) o0 Uy L0 +49) o) —20im]
(2.38)
with T = t5 — t;. Therefore,

mw 1/2 tanh (%)
M(r) = (W) exp [ewT (1 — T)] (2.39)

2

This is the exact form of the Euclidean Green function for the harmonic oscillator
in an external electric field. Moreover, in order to stay close to the field-theoretic
case where one can sum up only a finite number of terms of an infinite series, let
us take only a few terms of the Born series with the perturbative potential given
by
L5 o
V(z) = Jmw e — eEx (2.40)

Considering only the first few terms of the Born series, the perturbative form of
the Euclidean Green function reads as,
wr)®  (wr)? (wr)®  (wr)*

(
M, (T) = M, 1— . 2.41
pert(7) o(7) 12 + 12 te 12 + 160 (2:41)
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which obviously coincides with the expansion of Eqn.(2.39) in powers of ¢ and
(wr). Here, My(7) corresponds to a one dimensional free particle Euclidean
Green function and is given by

Mo () = <£>1/2 (2.42)

2T

Therefore, the lowest order correction to the M(7) due to the presence of the

external electric field reads as

(wr)*
12

0 Mper(T) = Mo (7) € (2.43)

Our next goal is to approximate the contribution coming from the excited states,
M.(7) in Eqn.(2.31). This can be done using the free motion approximation,
according to which the Euclidean Green function for a free particle can be written

as (see for details)
My(7) :/ dE po(E) exp (—ET) (2.44)
0

where po(E) = * (%)1/ g Consequently, one can assume that the excited state

s

contribution can be approximated as
M.(7) =~ MO (1;E,) = / dEpy(E) exp (—ET) (2.45)

where all the interaction effects have been captured in the free parameter FE.
known as the continuum threshold here. This parameter has to be determined
simultaneously with the ground state parameters (as we will see below).

Furthermore, as discussed above, the important criteria to derive the sum rule is
to find the fiducial region (7., 75) where the method of sum rules is valid. In order
to find this region, following, we demand that the contribution coming from the
excited states should not exceed 30% of the contribution of the ground state and
the corrections due to the truncated terms of the Born series must be smaller
than 30% of the free particle Green function. The first condition sets the lower

boundary of the fiducial region i.e. 7. while the second condition sets the upper
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boundary i.e. 75. The ground state energy can be calculated using Eqn.(2.41)
and Eqn.(2.45) in Eqn.(2.33) if 7. < 7. In [63], it has been reported that the
fiducial region exists which follows the above-mentioned criteria for ¢ < 0.05.
The continuum threshold E. can be tuned such that the ground state energy,
Ey, calculated using Eqn.(2.33), is approximately constant with a variation in
7 in the fiducial region 7. < 7 < 75. Finally, one takes this value of Fj to be
the approximate ground state energy for the system. The uncertainties in the
determination of the ground state energy of the HO without an external electric
field and the shift in the energy due to the presence of the external electric field
are at most 20% (see [63] for details).

Though the SVZ sum rules are found to give reasonable estimates for
the physical quantities of interest, there are certain limitations of these sum rules

which we will discuss next.

2.1.3 Limitations of SVZ sum Rules

The SVZ sum rules face problems while computing the three-point correlation
functions. We mention the major limitations in brief here. For details, one can

look at [52], [64]. While computing SVZ sum rules for a three-point sum rule

e Short-distance OPE (short-distance expansion in terms of condensates)
upsets power counting in large Q. The sum rule for the form factor looks

like,
1

i @ QP+

F(Q*) ~ #

e Practical calculations often suffer from contributions that are not sup-
pressed even after Borel transformations. These can be taken care of by
using double dispersion relation and then performing Borel transformation
in both the variables. However, this brings other caveats (see for example

[64] for details).

These limitations of the SVZ sum rules related to the three-point sum rules can
be taken care of by marrying SVZ sum rules to the theory of hard exclusive

processes (to be discussed in brief in the next Section). By doing so one now
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has an OPE near the light cone (2> — 0) instead of short distance (x, — 0).
This leads to a partial summation of the infinite series of the local operators. It
is an expansion in the new parameter called twist and no longer an expansion
in the canonical mass dimensions. We will discuss more about light cone OPE
in Section-2.2.1.2. Before going into details of the light cone OPE let us discuss

the theory of hard exclusive processes.

2.2 Theory of hard exclusive processes

As discussed in Section-1.2, the strong interactions are perturbative at large
energies (short distances) and non-perturbative at small energies (long distances)
because of the property of the asymptotic freedom and color confinement. We
have also discussed that because of the property of confinement, we observe only
colorless hadrons at experiments and not the colored quarks and gluons, and
thus, one can not get rid of the non-perturbative effects even if probed with high
enough energy. Consequently, it is necessary to have an information about the
constituents of hadron when large momenta are transferred to these extended
objects. The exclusive processes where the momentum transferred is large can
test both the detailed structure as well as the internal dynamics of the hadronic
wave-function at short distances. There are two possible configurations by which
the momentum can be transferred among the constituents of the hadron called
partons. First, where one of the partons carries all the momentum. In this
case, the large momentum can be transferred to this fast moving parton which
finally recombines with the soft cloud of virtual quarks, anti-quarks and gluons.
Second, where we pick up a Fock state with minimum number of constituents (for
example a quark and an anti-quark for a meson and three quarks for a baryon
(as given in Eqn.(1.17))) separated by small transverse distances and a hard
gluon is exchanged in this configuration. Both the configurations are possible,
however, it is not known which configuration is more favourable. It can be studied
only case by case (see [64]-[66] for more details). In the first configuration, the
transverse distances are not restricted which makes this mechanism difficult to

study. One can write a factorisation formula that helps in writing a hadronic
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matrix element as a convolution of a hard scattering kernel and the light cone
distribution amplitudes of the hadrons in the asymptotic limit (Q?* ~ # — 00,
where z denotes the tansverse separation between the partons) or equivalently

near the light cone. Mathematically, this factorization formula can be written as

<f|(’5(:v,0)|z’)mz_>0 ~ /0 du/o dv ¢¢(v,0) @ Ty (u,v) @ ¢i(u,w) (2.46)

A

where | f) and |i) are the outgoing and incoming meson states, O(z, 0) is a bilocal
quark-gluon operator with = being the transverse separation between the par-
tons. u,u =1 —u, and v,9 = 1 — v are the momentum fractions carried by the
quark and the anti-quark in the initial and the final state meson, respectively.
Ty is the hard scattering kernel and can be computed using perturbative QCD.
¢; and ¢ are the light cone distribution amplitudes for the initial and the final
state mesons. These DAs are the universal non-perturbative objects that are
useful in gaining insight about the structure of the hadron (we will discuss more
about them in Section-2.2.2). Consequently, one can extract information about
the dynamics of the strong interaction and the structure of the hadron using the
smallest configuration of a hadron given that it had been probed with a very
high energy probe. For such a scenario the dynamics is dominated by the contri-
butions near the light cone. We will discuss more about light cone dominance in
the next section by considering a specific example of eTe™ — meTe™ scattering.
Before moving to the next section, let us convince ourselves that a description
in minimum number of constituents is valid. This idea was originated while
studying the asymptotic behavior of the form factors. It was found that the
asymptotic behavior of these hadronic quantities depends mainly on the num-
ber of constituents, the interaction Lagrangian, the value of spin, and angular
momentum of the hadron. A dimensional counting rule was proposed which pre-
dicts the asymptotic behaviour of these form factors, F'(¢*), as a function of the

minimum number of constituents given by

(2.47)
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P—9q q

Figure 2.5: A representative graph of a typical correlation function of two cur-
rents between the initial and the final state containing pion and vacuum.

where ’cosnt’ is some contant factor and n is the minimum number of con-
stituents, i.e. n = 2 for mesons and n = 3 for baryons (see [65] for more
details). This rule was found to agree well with the experimental data on the
form factors of pion and nucleons as well as various large angle scattering cross-
sections. Therefore, the description of hadrons in terms of minimum number
of constituents gains its validity. Let us now understand the light cone domi-
nance for such a description and how it leads to a new type of operator product

expansion near light cone called as light cone OPE.

2.2.1 Light cone dominance and OPE

To understand the light cone dominance and light cone operator product ex-
pansion, let us consider the example of a process where two currents fuse into
a meson for example ete™ — mVete™ scattering [52]. Here, two virtual photons
with momentum say ¢ and p — ¢ are fusing into the neutral pion with momentum
p, 1.e.

Y ()7 (p —q) = 7°(p). (2.48)

where ¢ = p; — po and p — q¢ = p3 — py with py, po, p3, and ps being the four
momenta of the incoming and outgoing electron and positron, respectively (see
Fig.(2.5)). The hadronic matrix element that captures the strong interaction

dynamics for this process can be written as

Fulp,q) =i / dz e (2O ()| T Lo ()7 (0)}]0) (2.49)
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The important observation about this matrix element is that if Q*(= —¢?*) and
|(p — q)?| are large, then this matrix element is dominated by the dynamics near
the light cone instead of the short distance dynamics like we had for II,,, defined
in Eqn.(2.1). Let us now convince ourselves about this statement of light cone

dominance.

2.2.1.1 Light cone dominance

To proceed with, let us consider an invariant variable v defined as

(@~ (p-a)?)

: (2.50)

vV=pq=

Therefore, for Q% > Ajop and |(p — q)*| > Adep, [v| will also be large i.e.,
v~ |(p—a)*| ~ Q* > Ajop- (2.51)

It is important to note that the above condition holds true even for non vanishing

momentum of pion. Moreover, for convenience, let us define a ratio £ such that

£=2v/Q (2.52)

is finite ~ 1 in the region defined by Eqn.(2.51).
Now, to find the dominant region for the matrix element defined in Eqn.(2.49),

the argument of the exponential in the integrand (g.z) must follow
gx < O(1) (2.53)

in order to avoid large oscillations, which from the Riemann-Lebesque theorem
will otherwise strongly suppress the integrand.

Let us now consider a reference frame where the three-momentum of pion ( ]?| ~
() is non-vanishing but small compared to the virtuality of photon i.e. p? <
Q% v. As the mass of pion is also small, this implies that the zeroth component
of the pion four momentum will also be of the order of u i.e. |pg| ~ p. Also,

let us consider that in this frame, there is only one non-vanishing component for
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the four momentum ¢ and p such that we can write

qﬂ = (q07 07 07 qS) ) pﬂ ~ (Ma 07 Oa _:u) : (254)

Therefore, in such a frame, using Eqn.(2.50) and Eqn.(2.52), we can write

_ Q*¢
P-4 = Dogo — P3qs = (qo + q3) ~ E (2.55)

which can be further solved using Q% = ¢2 — ¢2. It finally results into

¢ _
qo ~

1% Q£
p €

, and g3 ~ —

W
wte (2.56)

Using this, the argument of the exponential in the integrand of Eqn.(2.49) will
become
§ 7

§
E(xo —x3) — E(xo + x3). (2.57)

Consequently, in order to satisfy the condition of dominance given in Eqn.(2.53),

q.T = qoTo — q3xT3 =

we demand

Ap §
(xo —23) < ——, and xo+x3) < = (2.58
Q% ( a )
The multiplication of these inequalities results into
r:— 22 <—<i-|—x2—|—:702:>x<i (2.59)
0 3 1 2 :

T Q?

As a result, at Q% > AQCD i.e. at asymptotic O, the matrix element given
in Eqn.(2.49) will be dominated by the region given by x? — 0 i.e. near the
light cone. It is important to note here that the condition in Eqn.(2.59) is
a Lorentz invariant object and hence doe not depend on the reference frame
one consider. Consequently, the condition of light cone dominance is true in
general for any matrix element of the form given in Eqn.(2.49). Moreover, as
this condition is true even for large components of the position four vector, z#,
the short distance dominance is not valid in general for matrix element of the
form given in Eqn.(2.49). Now, after convincing ourselves about the light-cone

dominance of this matrix element, let us now see how the operator product
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expansion changes near the light cone.

2.2.1.2 Light Cone OPE

In Section-2.1.1, we have discussed the OPE at short distance (z, — 0), accord-
ing to which a product of currents/operators at different space-time points can
be written as an expansion of the product of perturbatively calculable Wilson
coefficients and the universal non-perturbative quantities called vacuum conden-
sates of increasing canonical dimension, d (see Eqn.(2.2)). In this section, we will
discuss the operator product expansion near the light cone (2 — 0) and will see
how such an expansion partially sum over the local operators of different dimen-
sions and resolves the problem of power counting as discussed in Section-2.1.3.

Let us again consider the matrix element given in Eqn.(2.49). According to the
light cone OPE [37], [67], the product of currents involved in this matrix element

can be written as

T {sz(x)Jsm(O)} |20 = Z [Ct(xz)(/)t(x? 0)} : (2.60)
t

Here, Oy(z,0) are the bilocal operators of quarks, gluons and anti-quarks which
encode the low energy dynamics while C(2?) are the coefficient functions which
can be calculated using pQCD. It is an infinite expansion in the so called twist,
t, which is defined as the difference of canonical dimension and the spin. We will
discuss more about it below. At zeroth order in «ay, the coefficient function for
the minimum twist, Cy_ . (2?), is nothing but the free-quark propagator itself.
For practical applications, this infinite series can be truncated to a finite num-
ber of terms. When one substitutes Eqn.(2.60) in Eqn.(2.49), the higher order
terms turn out to be inversely proportional to the powers of Q% which is large
and thus truncation to a finite number of terms is a reasonable approximation.
Consequently, there are two major differences between the short distance OPE
and the light cone OPE. First is that the former includes local operators while
the latter includes bilocal operators. Secondly, the former is an expansion in
canonical dimension while the latter is an expansion in twist.

To get a better understanding, let us compute the product of currents given
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in Eqn.(2.60) in more detail. Using the light cone propagator (discussed in
Appendix-B ) and the identities collected in Appendix-A, one obtains

wauw?m»uumsjgﬁg;Kmmw%mm—ﬂww%am)
+ (a(0)y ysu(z) — d(0)y ysd(z))] + . .. (2.61)

This is already starting to have a form of an OPE. The coefficient outside the
square bracket on the r.h.s is the perturbatively calculated coefficient function
and the operators inside the square bracket are the bi-local operators. Ellipses
represents the higher order terms. The matrix element can be calculated by
substituting it in Eqn.(2.49). The leading order result for the matrix element

will read as

Funlp) = =i%52% [ ata 47 L (2] (a7 50(0) - d(a)r™154(0)

+ (@(0)y ysu(e) — d(0)y775d(2)) |0)] 2,y - (2.62)

The r.h.s. of this equation involves a new hadronic matrix elements of bilocal
quark-anti-quark operators sandwiched between the 7° state and the vacuum
state. To understand more about these bilocal operators, let us consider one of
these operators and expand it at around z = 0 in terms of a power series of local

operators such that

o0

() y5u(0 Z% < -:I:)Tvﬁvsd(()) (2.63)

where % represents that the covariant derivative which appears due to gauge
invariance is operating on the left u-quark. In the fixed point gaugei.e. z,G* = 0,
the covariant derivative can be replaced by an ordinary derivative. This then is
an infinite series in the local operators with increasing dimension. As the bilocal
matrix element in Eqn.(2.62) depends only on the four momentum of pion i.e.

Py, the matrix element of the infinite series in Eqn.(2.63) between the pion and



2.2. Theory of hard exclusive processes 5}

the vacuum state can be decomposed as

(7" (p)|a(w)y y5d(0)]0)
o0 1 .
= Z e Ty (=) pPpripr . ptr MY
r=0

— (=i)TrgrepPps L prt M+ {0} (2.64)

where {...} represents more terms with two or more number of metric tensor,
g"# with (i, = 1,...,r). By construction, M&"? = M{™ = 0. This expansion
is totally symmetric in g1, pa, . . . and M and M+ are the invariant coefficients
(the matrix elements of the local operators) which differ in dimension by two

units. These coefficients are non-perturbative in nature. For example, for r=0,
(7°(p)[a(0)7 75u(0)|0) = —ip” Mg (2.65)

which implies that Mg has a direct relation with the pion decay constant, f;,
given by

MG = % (2.66)

The infinite series of these invariant coefficients can not be truncated to some
finite order. However, there is a different hierarchy on the r.h.s. of Eqn.(2.64).
After performing the integral over z (see [37] for more details), one finds out that
the second term on the r.h.s of Eqn.(2.64) has an extra factor of 1/Q? compared
to the first term and the other factors in the numerator are of O(1). Hence, the
local operators of different dimensions are having same power of 1/Q?. However,
a closer look at Eqn.(2.64) reveals that the local operators in the first and second
term have different twist. The lowest twist which enters the above expansion is
2 as the dimension of the operator is 3 and Lorentz spin is 1. Consequently,
one can say that the light cone OPE is an expansion in twist rather then the
expansion in canonical dimension and it sums an infinite set of local operators of
the same twist. In the next section, we will see how these matrix elements of the
bilocal operators can be written in terms of the so called light cone distribution

amplitudes (DAs) of increasing twist which have a direct physical significance.
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We will also see how these invariant coefficients M, are related to these DAs.
Furthermore, we will have a better understanding of twist by discussing the

application of conformal symmetry in QCD.

2.2.2 Light Cone Distribution amplitudes and the Con-

formal Symmetry

As discussed in Section-2.2, when large momentum is transferred to the hadronic
system, the hadronic state can be considered to be dominated by its valence
configuration given in Eqn.(1.17). Therefore, near the light cone, a hadronic

state, for example |M (p)) for a meson, M, with momentum p can be written as

M(p)) = / du s ()]s (up) @ (ap)| M) (2.67)

where, ¢; and ¢, represents the quark and the anti-quark, respectively. u is the
fraction of the meson momentum carried by the quark and © = 1—u is the fraction
carried by the anti-quark. ¢,/ (u) is the light cone distribution amplitude (DA)
for meson, M. Using Eqn.(2.67), the matrix element of the bilocal operator® in

Eqn.(2.62) can be parameterized, at the leading order near the light cone, as

(7 (p)|u(z) Y, v5u(0)]0) 42— = —z‘pu%/o due™* p(u, 1) (2.70)

where ¢, (u, p) is the twist-2 DA of pion. This DA is normalised to unity such
that

/0 du ¢p(u,p) =1 (2.71)

5For the gauge invariance of these operators, a path ordered Wilson line given by

1

[w.y] = P exp [g [t - )Gt + (- 1) (2.68)

is present between the quark and the anti-quark where G, = G;;T* with G, being the gluon
field. However, for convenience, we work in the fixed point gauge, also called the Fock-
Schwinger gauge, given by

"G (r) = 0. (2.69)

In this gauge the Wilson line goes to unity. Therefore, we do not write it explicitly, however,
it is present unless otherwise stated.
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The explicit form for ¢ (u, p) is presented in Eqn.(2.81). The invariant coefficient
M, of twist-2 local operators in Eqn.(2.64) is therefore directly related to the

moments of the pion distribution amplitude given by

fr [
——

M, =
V2 Jo

du u” ¢r(u, p). (2.72)

Thus, the distribution amplitude ¢, (u) multiplied by the pion decay constant f
is the universal non-perturbative quantity that enters the light cone OPE and
encode the dynamics of strong interactions at long distances. These distribu-
tion amplitudes (including the higher twist DAs) play a very essential role in
the QCD description of the hard exclusive processes as discussed in Section-2.2.
They play a similar role as parton distribution functions play for the case of
deep inelastic collisions. In the computation of light cone sum rules, they are the
universal non-perturbative quantities very much like the vacuum condensates in
the calculation of the SVZ sum rules.

Distribution amplitudes are the dimensionless functions of the collinear momen-
tum fractions carried by the constituents of the hadron, at zero transverse sep-
aration. They are defined as the probability amplitudes to find constituents
carrying a particular fraction of the hadron momentum. For example, the two-
particle DAs of a meson are defined as the probability amplitude to find the
quark ¢; and anti-quark ¢ with momentum fractions v and u, respectively of
the collinear momentum of the energetic meson, M. Similarly, for three-particle
DAs, the momentum fractions (ay, ag, and az) will be carried by the quark,
anti-quark and gluon. These three-particle DAs arises due to higher order terms
in the light-cone propagator (discussed in Appendix-B).

Along with these lowest twist DAs, higher twist DAs are present. They appear
due to three physical reasons. Firstly, the contribution coming from the so called
bad component of the spinor field (will be better understood when we will dis-
cuss the application of conformal symmetry below). Secondly, the contribution
coming due to the transverse motion of the quark or the anti-quark present in the
leading twist configuration. Thirdly, the contributions coming due to the pres-

ence of higher Fock states including extra gluons and/or quark-anti-quark pairs.
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For the case of mesons, one can use the QCD equations of motion to write the ef-
fect of bad components in terms of the higher Fock states. Consequently, for the
case of mesons, the higher twist effects are suppresses compared to the leading
twist effects. Thus, considering only leading twist effects may be a reasonable
approximation for the meson case. However, for the case of baryons, the QCD
equations of motion are insufficient to write the bad components contribution in
terms of higher Fock states. As a result, the higher twist effects might turn out
to be important for the case of baryons and are dominated by the contribution
coming from the bad components of the three-quark state of a baryon. To gain
more insight of the physics captured by these DAs, let us discuss the case of light
mesons explicitly. For more details one is suggested to look at [68] and references
therein.

For the case of light mesons, these distributions can be determined by using the
property of conformal symmetry of QCD which is valid in the mass-less limit
at tree level. These DAs are defined by the coefficients of the conformal expan-
sion, an expansion in terms of conformal spin which physically corresponds to
a separation between the transverse and the longitudinal d.o.f. similar to the
partial wave expansion in spherical harmonics in quantum mechanics. We will
discuss conformal symmetry and conformal expansion below. Before that let us
understand how this separation of d.o.f. helps us. The transverse degrees can be
simply integrated out and leads to a dependence on the renormalization scale, p,
which can be described by renormalization group equations. However, the longi-
tudinal d.o.f. correspond to the longitudinal momentum fractions which can be

understood using the collinear sub-group given by SL(2,R) (see below).

2.2.2.1 Conformal group and its collinear subgroup

The conformal transformation is defined as the scaling of metric such that the

Minkowskian interval, ds* = g, (z)dz"dz” remains constant i.e.

9 (2") = w(2) g () (2.73)
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such that ds”? = Gy (2")dxMdz" = ds®. Consequently, the conformal symmetry
preserves the angles so that the light-cone remains invariant. There are fifteen
generators of the conformal symmetry in 4 dimensions including four transla-

tions, P,, six Lorentz rotations, M, one dilatation, D, and 4 special conformal

s
transformations, K, which form the conformal group. The usual Poincare group
is a subset of the conformal group (for more details about the conformal symme-
try and group, see for eg. [69]). For a particle which propagates near the light
cone, the full conformal group reduces to its collinear subgroup, SL(2,R) group
with 4 generators P,, M_,, D and K_ where we have used the notation of light
cone coordinates given in Appendix-A.

For practical convenience, one defines the linear combinations of these generators

given by

Ly =1Ly +iLy = —iP,, L =1Ly —iLy=(i/2)K_,

Lo=(i/2)(D+M_,),  E=(i/2)(D—M_). (2.74)

The twist is defined by the commutator of the generator E with the field ¢(z) —

¢(an) which lives on the light ray, i.e.

B, 6()] = 5 (£~ 9)8(a) (2.75)

where, s is the eigen value of the spin operator >, _ such that

Y-¢(@) = sg(a), (2.76)

and ¢ is the scaling dimension which is not necessarily equal to the canonical
dimension for a QFT. The difference between the two is known as the anoma-
lous dimension. However, for a classical theory i.e. field theory at tree level,
the anomalous dimension is zero and the scaling dimension coincides with the
canonical dimension. The twist ¢ = £ — s defined in Eqn.(2.75) is known as the
conformal twist i.e. dimension minus the spin projection on the plus axis. It is
different from the geometric twist which is defined as the dimension minus the

spin and corresponds to the full conformal group.
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Now let us consider a general bilocal operator which one encounters in QCD

applications to hard exclusive processes

Oular, az) = ¢(ar)Cutp(as) (2.77)

such that ¥(z) = ¥(an) = ¥(«) represents a the quark as a light-ray and
I' represents a string of y-matrices with Lorentz spin-1. This operator results
into an infinite series of local operators of quark and anti-quark fields, and the
covariant derivative. The quark field v has different spin projections which can

be identified using the spin projection operators given by

1 1
I = 3= I = 3T+ I +11. =1 (2.78)

Therefore the plus (good) and the minus (bad) components of the quark field

are

Vp =T, o =TL4, § =t +¢, (2.79)

This quantization of the quark field is same as the light-cone quantization. To
find the conformal operators of these fields let us first realise that the ¢, and
Y_ has spin +1/2 and —1/2, respectively which implies that the twist for ¢
and 1_ components of the quark field are different as the canonical dimension
for both the components is 3/2. Explicitly, the twist for ¢, and ¥_ components
are 1 and 2, respectively. Therefore, the operator O, with different components
of the quark field has different properties under conformal transformations. The

operator O, has a twist-2, twist-3 and twist-4 component given by

twist-2: Oy =y = OV,
twist-3: O = iy + Yoy by = OV 4 QY2

twist-4 1 O_ =_~y_yp_ = OY>1/2 (2.80)

Here, the superscript represent the conformal spins of the quark and anti-quark
entering the operator. These conformal local operators of different twists can be

written in terms of Gegenbauer polynomials (see [68] for details), and result into
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the final form of DAs in terms of these polynomials. For example, the twist-2

distribution amplitude of pion is written as

G (u, ) = 6ui

L+ ) an(p)CyP (u— u)] . (2.81)

n=2,4...

Here, C,?;/ % are the Gegenbauer polynomials and a,, are the multiplicatively renor-

malizable coefficient defined as,

o Yn/Bo
an(12) = an(j1) (aj%) (2.82)

with a, = % (gs is the strong coupling constant), [y is the leading QCD -

function and

2

4 1
=3 _3_(n+1)(n+2)+4 27| (2:83)

The other distribution amplitudes of light mesons like pion are collected in
Appendix-B along with the distribution amplitudes of heavy mesons, baryons
and photons used throughout this thesis. For details on how to determine these
distribution amplitude we suggest the reader to look at [70]-[72] and references

therein.

2.3 Light Cone Sum Rules (LCSR)

After having understood the physics of SVZ sum rules (SVZ SRs) ((see Section-
2.1)) and the theory of hard exclusive processes (see Section-2.2), we are now
ready to understand the method of light cone sum rules (LCSR). It was devel-
oped as a hybrid of the SVZ SRs and the theory of hard exclusive processes in
order to deal with the limitations of the SVZ sum rules as discussed in Section-
2.1.3 (see [37], [52], [64] and references therein for details).

The basic idea here is to expand the products of the currents near the light cone
(r?2 — 0) instead of short distances (z* — 0) as the correlation functions are

dominated by the light cone separations (as discussed in Section-2.2.1.1). Due to
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light cone dominance, the perturbative calculation provides an operator product
expansion near the light cone. The light cone OPE is an expansion in twist (as
discussed in Section-2.2.1.2) instead of the canonical dimension [67]. This expan-
sion helps in partially summing over the local operators and hence one can avoid
some of the irregularities of the OPE truncation in the three-point sum rules.
The method of LCSR has proved to be superior to SVZ SRs in calculating FF's
involved in various hadronic transitions as one can now include both the hard
and the soft (end-point) contributions.

Apart from the difference in OPE, there is another major difference between SVZ
SRs and LCSR. In the case of SVZ SRs, one typically calculates the correlation
functions for the vacuum to vacuum transitions while in LCSR, the correla-
tion functions are taken to be the matrix elements of the time-ordered product
of quark and gluon currents taken between vacuum and an on-shell state (like
mesons, baryons or photon). As a result of this, the light cone distribution am-
plitudes (LCDAs) enter in the LCSR calculations as the basic non-perturbative
objects. These LCDAs are the universal objects and can be defined by the ma-
trix element of the quark operators of different twists between the vacuum and
the on-shell state. The conformal symmetry of QCD dictates the form of these
LCDAs for the case of light quark hadrons and have a better physical interpre-
tation (as discussed in Section-2.2.2). The rest of the tools are common in SVZ
SRs and LCSR. One can use the same procedure to derive the final sum rule as
discussed in Section-2.1.1 for SVZ SRs.

To summarize, the non-perturbative hadronic quantities like form factors can be
derived using the method of light cone sum rules by writing the the correlation
function of interest as an operator product expansion near the light cone and
equating it with the representation obtained directly in terms of hadronic states
in the form of dispersion relation. To approximate the unknown spectral densities
which enter in the dispersion relation, one uses the statement of quark-hadron
duality which relates these unknown spectral densities to the perturbatively cal-
culated spectral densities. As a final step, one performs Borel transformation to
get rid of the divergences in the dispersion relation and to reduce the systematic

uncertainties arising due to the duality approximations. Borel transformations
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improves the stability and reliability of the sum rules. The duality approxima-
tions and the Borel transformation brings two independent parameters in the
final results. These parameters can be fixed by checking the stability of the sum
rules against there variation. Remainder of the thesis is devoted to the applica-
tions of LCSR to the physical processes involving different hadrons within and

beyond the SM of particle physics.






Chapter 3

LCSR in radiative tau decay: An

application to light meson system

After collecting and understanding all the tools and machinery required to derive
light cone sum rules in Chapter-2, we now move ahead to see its application
for various physical processes. As a first application, we consider one meson
radiative decay of tau, i.e. 7= — 7 r,7. This process includes a light meson,
pion. The non-radiative decay of tau to pion and tau neutrino is found to have a
branching ratio of (10.82+0.05)% [73]. However, the radiative mode has not been
detected experimentally yet. Theoretically it is expected to have a branching
ratio of O(107%) which is not very small and should be measurable in near future.
Therefore, it is an important mode to study. In this chapter, we discuss this
radiative tau decay in full detail. It includes two time-like form factors (FFs):
the axial-vector and the vector FFs, which can be very useful in understanding
the structure of pion. We first calculate these FFs in the framework of LCSR.
Later, using the LCSR predictions for these FFs, we provide an estimate for
the structure dependent parameter (SDP) for pion. SDP is defined as the ratio
of the axial to the vector form factor at zero momentum transfer. It helps in
determining the structure of pion. Furthermore, we provide estimates for the
invariant mass spectrum of the m — v system along with the normalised decay
width contribution coming from different contributions (see below). This chapter

is based on [74].

65
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3.1 Introduction

7 being the heaviest lepton with mass, m, = 1776.86 £ 0.12MeV [73] has nu-
merous decay channels (see for example [75]-[79] for different aspects of 7 lepton
physics.). Because of its large mass, it is the only lepton that can decay into
hadrons. As discussed in Chapter-1, the electroweak part of the SM is reason-
ably well understood while one is still lacking in developing a proper methodology
to understand the strong interactions. The study of hadronic decays of 7 helps
us in developing a better understanding of the dynamics of strong interaction
involved in the hadronization of QCD currents by providing a cleaner environ-
ment.

In particular, we will discuss the one meson radiative tau decay, i.e. 77 — 7~ 1,7,
in this chapter. Experimentally, the branching ratio of the non-radiative one me-
son decay of tau, i.e. 7= — 7 v, is found to be (10.82 4 0.05)% [73]. Therefore,
one expects the branching ratio for radiative mode to be O(107?). One can un-
derstand it by writing the branching ratio of the radiative mode as a product of
branching ratios of 7 — pr, and p — 7y. Using the values of these branching
ratios from [73], one gets an estimate ~ 107 for the radiative mode, which is
about 1072 of the non-radiative branching ratio. However, the branching ratio
of this mode is not very small, it has never been observed experimentally and a
detailed study of this mode becomes important.

The total decay amplitude of this process can be written as a sum of two contribu-
tions [80]—[84] namely internal bremsstrahlung (IB) and the structure dependent
(SD) contributions. They can be defined as:

e Internal Bremsstrahlung (IB): The contribution that comes from the
emission of photon from either the incoming or the outgoing particles, con-
sidering them to be point-like. This contribution can be calculated trivially
with the use of scalar QED for the point-like charged pion and using spinor
QED for the case of photon emission from tau. Diagrammatically, this is

shown in (a) and (b) of Fig.(3.1).

e Structure Dependent (SD): This contribution is governed by the dy-

namics of strong interactions and includes non-trivial parts. The pion can
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v

v

(e) (d)
SD cT

Figure 3.1: Feynman diagrams showing different contributions to radiative tau
decay (77 — 7 v,7). (a) and (b) represents the IB contribution, (c) represents
the SD contribution, and (d) represents the contact term.

no longer be treated as a point-like particle and its partonic structure will
play a role. This contribution appears as a result of the hadronization of
the intermediate quark currents v* and ~*vs with J =1~ and JZ = 17,
respectively ((c) of Fig.(3.1)). Consequently, it depends on the long dis-
tance dynamics. It can be parameterized in terms of two form factors
namely the vector FF (F{™) and the axial-vector FF (F(”) as a result
of the Lorentz and the gauge symmetry. These form factors are the non-
perturbative objects that encode the information of the dynamics of strong
interactions involved in the hadronization of the intermediate quark cur-
rents. Therefore, their evaluation requires a non-perturbative treatment
such as, Light Cone Sum Rules (LCSR), Chiral Perturbation Theory yPT
or Lattice QCD. This contribution also includes a so called Contact Term
(CT). This term emerges as a consequence of gauge invariance. It can be

graphically represented as in (d) of Fig.(3.1).

We will see the explicit form of these contributions in Section-3.2 where they
will be calculated and discussed in detail. Moreover, we will see that the IB
contribution consists of two terms. Omne of them is independent of m, while
the other turns out to be proportional to m,. Later we will see that the CT

contributions turns out to be equal and opposite to the m, independent term of
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the IB contributions and hence gets cancelled in the total amplitude.

Before moving to the actual calculations involved, let us review some important
features of the one meson radiative decay of tau. The amplitude for this process is
related to that of the radiative pion decay via crossing symmetry with one major
difference that comes at the level of kinematics. The square of the momentum

transferred between the pion-photon and leptonic system in the case of radiative

2

tau decay can take values up to m7. While, for the radiative pion decay, the
maximum value it can take is m2 which is almost negligible. Furthermore, the
FFs involved in the case of radiative pion decay are space-like. However, for the
case of radiative tau decay, they are time-like as both the pion and the photon
are in the final state. Consequently, the study of these form factors becomes
complicated as the light flavoured mesons (p, w, a1) can now be created on-shell
and give resonant structures in the pion-photon invariant mass spectrum.

Therefore, in order to understand this process, the first important task is to
calculate these time-like FFs. These form factors are helpful in probing the
structure of the pion as the ratio of these FFs at zero momentum transferred

square, known as the structure dependent parameter (SDP). Mathematically, it

can be written as

(0)
As these form factors at zero momentum transferred square are same for the ra-
diative pion decay and the radiative tau decay, one can get an experimental esti-
mate of v using the experimental determination of these FFs using the radiative
pion decay. The numerical values of FXr)(O) and F‘(/ﬂ)(()) from such a determina-
tion are (0.0119£0.0001) and (0.0254+0.0017), respectively [73]. Consequently,
the value of v turns out to be equal to (0.4685 4 0.0353). A consistent study of
the radiative decay of tau into a pion and a tau neutrino helps us in developing
a consistent way to determine this parameter theoretically. Apart from probing
the structure of the pion, this decay mode is also useful in understanding the
light-by-light hadronic contribution to the muon anomalous magnetic moment,

(9 —2), [85]. Furthermore, in [86], the authors have discussed how this decay

mode can provide means for the mass generation of the tau neutrino.
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In the past, these gauge invariant time-like form factors involved in the radiative
tau decay have been parametrized using Breit-Wigner type resonances [87], light
front quark model [83] and resonance xPT [84], etc. Majorly, the differences in
the literature stem from the vastly different approaches adopted to determine or
estimate these FFs. It affects the predictions for the rate and spectrum, as well as
the extraction of v, including the sign. In can be better understood by taking an
example. Consider the case where the resonances are included via Breit-Wigner
method. The relative phase between the different contributions has always been
a suspecting issue in such a case. The main aim of this chapter is to provide a
consistent determination of these form factors using the method of LCSR.

In the rest of the chapter, we will first discuss the different contributions to the
amplitude (as mentioned above) in detail and then discuss the calculation of the
form factors involved using the method of light cone sum rules. Thereafter, we
will present the results obtained for the structure dependent parameter, decay
width and the invariant mass spectrum. Finally, we will summarize the results

along with its future endeavours.

3.2 Amplitude Computation

Photon, being the charge carrier of the electromagnetic interactions, can be emit-
ted from any of the charged particles involved in the process. Therefore, in the
present case, it can be emitted either from the pion or the tau-lepton as the tau-
neutrino is charge neutral (see Fig.(3.1)). Moreover, as discussed above, pion is
a composite object with an internal structure comprising of a quark-anti-quark
pair as valance constituents along with the sea quarks and gluons. This internal
structure also contributes to the process and gives rise to two non-perturbative
form factors.

As already discussed, the amplitude of the process 7= — 7~ v,y includes vari-
ous contributions: Internal Bremsstrahlung (IB), Structure Dependent (SD) and
Contact term (CT). IB contribution comes from the emission of the photon from
tau and pion (considering pion to be the point object). SD contribution comes

from the emission of photon from the internal structure of the pion. The contact
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term in an interesting effective contribution and has its origin in the gauge in-
variance of a QED amplitude [88]. This amplitude can be written as (employing
the low energy four-Fermi effective Hamiltonian obtained by integrating out the

heavy W-boson as discussed in Section-1.5),

Gr

AT (p1) = 7 (p2)vr(pa)y (k) = 75V (v ) (L)) (3.2)

where I'* = 4#(1 — 75), G is the Fermi’s constant as defined in Eqn.(1.29), and
Vua is the CKM element (see Eqn.(1.13)).

The amplitude in Eqn.(3.2) can be factorised into two parts as

A(m(p1) = 7 (p2)vr(p3)y(K))
GF

= \/5 Vad [<7r v)(dT u) |0> <VT| (v.THT) |7~ >+ <1/77| (v.THT) |7~ ><7r |(dTu |O>}

(3.3)

where the first term of the right hand side dictates the photon emission from the
final state pion (including the contribution coming from its internal structure)
and the second term dictates the photon emission from the initial state tau
lepton. This factorization of the amplitude holds for energetic photons and at
the leading order in m% and aen,.

Furthermore, using the matrix element of the pion defined as

(7 (p2)|(dy™(1 — ~5)w) |0) = i fuphy (3.4)

where f; is the pion decay constant, and interpolating the photon state with
the the electromagnetic current, j¢ . the amplitude in Eqn.(3.3) can further be

written as

AT = 7 vy) = G—\/gVud [—ieei(ﬂyl“#uf) /d4xeikx< ~T{48, (2)dlMu(0)}0)

B / dte™ (v, [T {5 ()5, T (0)} )
(3.5)
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where, e, is the polarisation vector for the photon. j& (x) = Quu(z)y*(z) =
—TYT 4 Quuy®u + Qqdy*d. Q, and Qg are the electromagnetic charges of u
and d quarks, respectively in units of e.

The second term on the r.h.s. of Eqn.(3.5) is the trivial one and can be calculated

using the Feynman rules of QED. The final form of this term turns out to be

(vey|o- D7) (m7|dLu|0) = —ie frti (p3) ¢ (1 — 75)ur (p1)

+ ZZJ;TZT {w(ps) [(2€".p1) — K¢ (1 +35)ur(p1) } -

(3.6)

However, the first term is non-trivial and is more interesting as it encodes the
dynamics of strong interactions. To compute this term, let us first define a

hadronic matrix element given by

T (pa, k) = /d%e”’“c (| T{4S, (z)dl*u(0)}0) . (3.7)

Moreover, the application of the Ward identity, which comes as a consequence

of the conservation of electromagnetic current, results into
ko T (pa, k) = (7~ |d(0)[*u(0)|0) = i frph (3.8)

in the momentum space. Here, we have used the commutator of the electromag-
netic charge operator and the electroweak current of the pion, which is given

by
Lem (), dTu(0)] = —Qu8°(2)d(0)Tu(z) + Qad® (x)d(z)u(0). (3.9)

Besides, the hadronic matrix element defined in Eqn.(3.7) can also be written in
terms of the momentum of the pion (py) and the photon (k) by using the general

covariant decomposition as

T (py, k) = Ag™ + Bp**p* + Cp*k" + DE*p™ + Ek°K" + iF\" e pysh,
(3.10)
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where A, B,C, D, F, F‘(/W) are the gauge invariant scalar functions of (py + k).
€% is the totally anti-symmetric tensor known as the Levi-civita tensor. On

contracting Eqn.(3.10) with k,, one obtains
ko T (pa, k) = Ak* 4+ B(pa.k)ph + C(pe.k)EH. (3.11)

We can now compare Eqn.(3.8) and Eqn.(3.11) and get

(pzk)’ and b= (pz-k).

(3.12)

Using these conditions on the scalar functions C' and B, the hadronic matrix

element in Eqn.(3.10) can be written as

pepr
T (py, k) = F\ [g**(P.k) — POk +i F €0 Pyky—i frg™ +i f 5 (313)
where FXF) = % and P = p; — p3 = py + k implies py.k = P.k. Consequently,

the first term of Eq.(3.5) reads as

(™ |dT,u|0) (v |, TFr|77)
— jee™ [, [u,] [iFj“’ {gan(P.k) — Pak,} — Fé.”)eauﬁypﬁk”]

“P
+iee™ fr, T, — ie f,fp—ka,,Pu — ) (3.14)

Here, the first term on the r.h.s., written in terms of the gauge invariant scalar
functions F{” and F{™, determines the SD contribution as discussed above.
The second terms is the so called contact term which appeared purely as a
consequence of gauge invariance. The last term provides the IB contribution

coming from the emission of photon from the pion treated as a point particle.

As a result, the final form for the amplitude of the radiative tau decay can then
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be written by using Eqn.(3.6) and Eqn.(3.14) in Eqn.(3.5) as

AT (p1) = 7 (p2)v+(p3)y(K))
G . *Qu/ — . e U v
— TZVM[ [ze(—: (@, T u,) {’LF{& ) [Gop(P.k) — Pko) — F‘(/ )eaﬂﬁyPﬁk }

+iefom.a, {6*.]71 . %yf* B g*.pz} (1 +’Y5)U7—:| ‘ (3.15)

pi.k 2pik pok

In the final amplitude, the contribution coming from the contact terms gets
cancelled against the m, independent contribution of photon emission from 7 (see
Eqn.(3.6)) and Eqn.(3.14). For further simplification, we write the amplitude as

a sum of different contributions as

.A(T_ —>7T_V7-’y) =Ai;p+ Ay +As = Aig+ Asp (3.16)

where A;p depicts the internal bremsstrahlung contribution. Ay and A4 repre-
sents the contribution coming from the vector and the axial-vector form factor
terms. They collectively provides the structure dependent contribution, Agp.

The explicit forms of these contributions are

_Gr - (e kT o
Arp = ﬁvﬂd |:Zef7rm7'u1/ { DLk Wk Dok (1 + 75)'&7— ) (317)
Av = =BV [iec @l ) (F oy, Ph)] and (318)
G - oxaf — . T
Ay = TZVMZ [Zee (@, D, ) (z F{ [gan(Pk) — Puka])] . (3.19)

The form factors, FXF) and F‘(;T), are the unknown non-perturbative quantities.
Therefore, in order to make any prediction for the decay width for this process,
we first need the information on these FFs. In the next section, we will see how
one can get estimates for these form factors using the method of light cone sum

rules.
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sem
Ja

Figure 3.2: Feynman diagram which contributes to the light-cone expansion of
the hadronic matrix element for radiative tau decay up to twist-2. The internal
line connecting the two currents can be either the up-quark or the down quark.
The encircled pion represents that the pion distribution amplitude will enter the
LCSR computation.

3.3 Form Factors in LCSR framework

As discussed in Chapter-2, the starting point to derive the sum rules is to deter-
mine the relevant hadronic matrix element for the process. In the present case,

that matrix element is given by Eqn.(3.7) (see Fig. (3.2)) as

T (pa, k) = i/d‘lxe““ (™ |T { Quuy u(x)dlu(0) + Qqdy*d(x)dI™u(0)} 0)
(3.20)
where @, (Qq) is the charge of up (down) quark in units of e. Furthermore,
this matrix element can be written using two representations. First using OPE
near the light cone, and the second using dispersion relation directly in terms of
hadronic states. Then, in order to derive the sum rules, we equate the matrix
element obtained using both these representations (see Chapter-2 for details).
To derive the first representation, the matrix element in Eqn.(3.20) can be simpli-
fied using the light-cone propagator given in Appendix-B, and using the definition
of the light cone distribution amplitude (DA) of the pion given by

1
<7T Y) v vsu >|O>x2:0 - _ipru/ du ez(um'y+up'x)¢(uuu) (3.21)
0
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where & = 1 — u and ¢(u, p) is leading twist-2 DA of the pion (details can be
found in Appendix-B). The matrix element in Eqn.(3.20) then becomes

ikx

1
) ¢ (&7 Upa2T upoT
T (p2, k) :wa/d%%gmz;/ dud(u, p) [i€7°Pzpa, (Que™" + Qae™ ")

+ (a"py — ¢"(w.p2) + 2°ph) (Que™" — Que™™")] . (3.22)

Here, we considered only the two particle contribution of the light cone propa-
gator. The higher order terms involving one or more gluons are neglected (see
Appendix-B for details). Now, on performing the integration over x and using
the fact that ¢(u, p) is symmetric under the exchange of v and @, we find the
first representation for the matrix element T in terms of light cone distribution

amplitudes as

o(u, 1)

Pk
oL - _pBapt p™B = [ papp _ e
T*(P, k) = wa/ P2 o [ze 3 +2u{P*P (P.k)gh}

— {g"(Pk) — Pk*Y(1—2a)].  (3.23)

Comparing this QCD representation of T“*( P, k) with the general decomposition

in terms of FFs given in Eqn.(3.13), we obtain the forms of vector and axial-vector
FFs in QCD as
- 1
if ¢(u, 1)
FQCDt:—/d—’ d 3.24
1 _
1—2u
FSOP ——i,r/ dug(u, p) | ——— 3.25
A () f o (b( nu) tﬂ—i—k% ) ( )
respectively with ¢ = P? = (py + k)? is the invariant mass square of the m — ~y
system.
Now, after having the first representation, we move towards the second repre-
sentation using dispersion relation in terms of the hadronic states. In order to

derive the dispersion relation, let us insert a complete set of states |n) in the

matrix element in Eqn.(3.20) to get

(m7 | {58 (2) 3L, (0)}0) = (77 [45,(x)|n) (n]jk,(0) (3.26)
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where, |n) = |p) + |w) + |a1)+ higher resonances + continuum, such that it
satisfies the quantum numbers of the matrix element. The sum rules will be
saturated by the contributions coming from lowest energy states i.e., p,w, a;-

mesons'. Therefore, we will focus on the contributions coming from these states.

e p and w-meson contribution: The contribution from the p-meson contri-

bution will come from

(7 (p2)|Jem (@) p(p2 + K)) (p(p2 + F)1L,(0)]0) . (3.27)

This can be simplified by using the matrix element of the electroweak

current between a vacuum and the p—meson given by
{p(p2 + k)|dT,ul0) = —impfpeff)*, and (3.28)

the matrix element of the electromagnetic current between the pion and

the p-meson state given by

(7 ()72 (@) |p(ps + k) = € posk, Fpr (k). (3.29)

Here, m, and f, represents the mass and decay constant of p-meson, respec-
tively. el(f ) represents the polarization vector for the p-meson, and F,.(k?)
is a scalar function of k? which carries the information of the transition of
p-meson into a pion via the electromagnetic current.

Using the above mentioned definitions along with the sum over polariza-

tions of vector meson given by

k k),
Ve = —g\, + (P2 + K)a(p2 £ ) (3.30)

2
my,

where g,, is the metric tensor and V' = p for the present case, the contri-

LAt the present level of accuracy, the contribution of the higher resonances is roughly 20%
of these resonances because of the Borel suppression.
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bution coming from Eqn.(3.27) can be written as

(7 (p2) e () p(p2 + k) (p(p2 + k)| 54,(0)|0) = im, foe ™™ ghpaghs Fpr (K?).
(3.31)
This is the p-meson contribution to the dispersion relation. The contri-
bution of w—meson is almost equal to the p—meson contribution where
we have neglected the very small difference between the masses of the two
mesons. Therefore, in order to incorporate the contribution coming from
the w—meson, we will simply multiply the p-meson contribution by two in

the dispersion relation.

e g;-meson contribution: The contribution from a;-meson will come from

(m (p2)ldem (€)1 (p2 + K)){a1 (p2 + )15£,(0)]0), (3.32)

Similar to the case of p— and w—meson contribution, it can be simplified
by using the matrix element of the electroweak current between a vacuum
and the a;—meson similar to Eqn.(3.28), and the matrix element of elec-

tromagnetic current between the pion and the a;—meson state given by

(7 () |3 (2)|ar(ps + k)Y = [(2p2 — k) kg™ — (2ps — k)P k] 0 Gy (K2).
(3.33)

Here, €("" is the polarization vector for a; —meson, and G, (k?) is a scalar

function of k? which carries the information of the transition of a;-meson
into a pion. Using these definitions along with the polarization sum given
in Eqn.(3.30), the contribution of the a;—meson to the dispersion relation

turns out to be

(7™ (p2) 1580 ()1 (p2 + K)) (a1 (p2 + F)]45,(0)]0)
= Mg, fa, [202.kg™" — 205k"] Goyn (k) (3.34)

where m,, and f,, are the mass and the decay constant of the a;—meson,
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respectively.

Using the contribution coming from the p, w, and a; —mesons, the dispersion re-

lation for T** defined in Eqn.(3.20) turns out to be (see Section-2.1.1 for details)

2im, [N A pagky, Fon (k%) imay fay [2D2-kg%" — 2D5KH] G oy (k)

Tau(p% k:) =

mf% N (pz + k;)Z B imprp mt211 - (p2 + k)2 - immral
1 [ Im{T*(s k)}
it d ‘
+7T/sg Py (3.35)

where s{ is the threshold of the lowest continuum state, and I', and I',, are the
decay widths of p and a; mesons, respectively. The last term on the r.h.s. of
this equation represents the contribution coming from the heavier states and the
continuum.

Now, we are ready to write the sum rules for the form factors F‘(,“) and FXT). The
sum rule for F™ can be written by taking the form of F{™(¢) from Eqn.(3.35)

and equating it with the form obtained in Eq.(3.24), i.e.

2m, [ Fpr (K?) 4 1 /OO dsm - ﬁ /1 duM (3.36)

m2—t—im,l', 7 " s—t—ie 3 tu + k2u’

Now, using the duality approximation (as explained in Section-2.1.1), we can
approximate the heavier state and continuum contribution to the perturbatively

calculated form such that

™

~
n s—1t—1¢€ s s—1t—1e€

where sq is the continuum threshold, a free parameter in sum rules calculation
and Im{ F?“" (s, k)} is the imaginary part of F¥“? (s, k) which can be calculated
from Eqn.(3.24) using Eqn.(A.13) such that

% Im{FZ°P(t)} = % /0 1 dug(u, i) 0(ta + ku). (3.38)

Using Eqn.(3.37) and Eqn.(3.38) in Eqn.(3.36), the sum rule for F‘(;r) (t) simplifies
to
2 F,. (K ' uo
mﬂfp pﬂ'( ) - % / du _gb(u) (339)
0

m2 —t 3 tu + k2u

p
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U = s =1 (as k2 =0).

Similarly, the sum rule for for FXF) (t) turns out to be

2im, fu G (B) /0 s ( 1-2a > (3.40)

m2 —t tu + k%u

using the duality approximation and the imaginary part of FECD(s,k) (see

Eqn.(3.25)) given by
%[m{FfCD(t)} = —ify /0 dug(u, 1) (1 — 20)d(tu + k*u). (3.41)

Finally after perfoming Borel transformation on these sum rules and substituting

them back in Eqn.(3.35), we get the final analytical forms for F\™) and F{" as?

1 m2
P () = —iz— L / duqb(_u)eﬁ’%, and (3.42)
3(m2 —t—im,l,) Jo u
1 2
(™ s fr o(u) oy ey
F,7(t) = ngl Sr—— /0 - (1 —2u)en? (3.43)

respectively. M is the Borel parameter here and the on-shell condition for pho-
ton (i.e. k? = 0) has been used. Also, the pion is considered to be mass-less, i.e.
m?2 = 0 approximation is used.

Furthermore, it is interesting to note that the vector form factor at zero momen-
tum transferred (¢ = 0) can be related to the anomaly term (or Wess-Zumino-
Witten term) in 77y vertex given by ﬁ. Using the KSFR-II relation ([89],
[90]), according to which m? = 2¢> _f? along with the assumptions that the
p-coupling g,.r is universal i.e. gorr = gonN = Gpy = g = QW\/W, and the
pion electromagnetic form factor is dominated by p meson contribution, one finds
that a correct form emerges from F‘(/-W)(O) up to an overall factor of et which
must tend to unity. As we will see in the next section, the choice of Borel mass,
M which provides a stable window for the form factors, trivially yields unity for

this factor within a few percent.

Moreover, before moving to the numerical results, it may be worthwhile to pon-

2Tt is important to note here that these form factors have dimension of inverse mass and there
is an extra factor of —i coming because of the way initial amplitude is defined: A(7~ — 7~ v;7)
instead of 4 A(7~ — 7T~ v,7) as is often done.



80 Chapter 3. LCSR in radiative tau decay

der over possible duality violations. These violations arise due to the use of
perturbatively evaluated spectral functions, which are given by the imaginary
parts of the form factors (see Section-2.1.1), over the entire kinematical range.
The perturbative effects occur at % where () is the hard scale which is ~ m.

for the present case of radiative tau decay, while, the time scale over which the

partons come together to form final hadrons is O ( AQQ > Therefore, the use
QCD

of perturbatively evaluated spectral densities is not a correct approximation and
brings uncertainties. As discussed in Chapter-2, it is rather difficult to exactly
quantify the magnitude of such violations. However, having an estimation is
rather important as otherwise they may lead to large uncertainties in the final
results. To have an educated guess for these duality violations, one possible way
is to use an instanton model. In this model the light quark amplitudes are sup-
pressed. A rough calculation yields a quantity of the form Exp[—Qp]/Q", where
p denotes the mean instanton size, in the Euclidean domain. This FEuclidean
form can be analytically continued to the Minkowski space which would have an
oscillating factor multiplied by negative powers of the energy released in the hard
process ~ O(m,). An alternate method to calculate these duality violation can
be by considering a comb of hadronic resonances that would contribute to the
process and carry out the algebra. Both these methods bring similar conclusions
that the violations are ~ 10% [59] (also see [91], [92] for detailed analyses for
inclusive tau decays). This is typically the amount of duality violations that one
expect in this case as well. However, a more detailed calculation is required to
reveal the exact amount of such violations for the case of radiative tau decay.
Such calculations are out of the scope of this thesis. Now, after having a pos-
sible estimate for the uncertainties due to duality violations, let us now move
to the numerical results for various physical quantities like structure dependent

parameter, decay width, etc., using the form factors evaluated above.

3.4 Numerical results

The analytic expressions for the vector and axial-vector form factors calculated

using LCSR can be read from Eq.(3.42) and Eq.(3.43), respectively. Asymptot-
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ically, both of these has % dependence on the invariant mass squared (t of the
m — 7 system) as expected from perturbative QCD in the asymptotic regime.
For performing numerical analysis using these form factors we need the explicit
form of the distribution amplitude (¢, (u, 1)) of pion. For the present work, we
consider two forms namely the asymptotic form (where y — co) and Chernyak-

Zhitnisky (CZ) form (where C5 term is considered) of the pion DA provided in

Eqn.(2.81). The explicit expressions for these forms are

GEY™ (u, p) = 6uu, and (3.44)
¢S (u, p) = 6ut |1+ 3‘127(“){5@ —a)? — 1} (3.45)

where, as(p) is defined in Eqn.(B.13) with n = 2, and p being the renormaliza-
tion scale.

The structure dependent parameter defined in Eq.(3.1), which provides the in-
formation about the structure of pion (see Section-3.1), is also calculated using
both these forms for pion distribution amplitudes. The values of the various pa-
rameters used for the numerical computation are collected in Appendix-D. The
form factors depend on the value of the Borel parameter, M, and hence also
the structure dependent parameter, v. Fig.(3.3) shows the variation of FXF)(O),
F‘(/ﬂ)(O) and SDP () with the variation in the value of M. The variation of the
observables with M dictates the model dependence here. As can be seen from
the plot, all the observables are quite stable in the chosen Borel window. The
value of v for M = 3.35 GeV is 0.469 (using CZ distribution amplitude) which
matches well, including the sign, with the experimental value of 4 obtained from
the radiative pion decay.

Further, we calculate all the contributions to the decay width for the radiative
tau decay using M = 3.35 GeV and the FFs given in Eq.(3.42) and Eq.(3.43).
The differential decay rate for the radiative tau decay is given by,

——d3kd®padips

1
A7 = 7 ve) = 5o s Bk + pa s — o) AR

- 4
51275 (3.46)
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Figure 3.3: The dependence of structure dependent parameter (SDP), FXT)(O)

and F‘(/ﬂ)(O) on the Borel parameter M (in GeV units) is shown in Blue, Magenta
and Green, respectively. In this plot, form factors have been multiplied by im,
to make them dimensionless in and take care of the extra —i in the FFs as noted
in the Footnotel.

where, E., F, E,, F, are the energies of tau-lepton, pion, photon and neutrino,
respectively. |A|? is the spin averaged square of the amplitude which has been
calculated in Section-3.2.

In terms of the functions used in Eq.(3.16),

|Al* = [Arp|* + [Asp|* + 2Re{Aj 5 Asp } (3.47)

where, [Asp|2 = |Aa|? + |Av|2 + 2Re{ A} Ay }.
The kinematical details to compute the decay rate can be found in Appendix-C.
The structure dependent contribution to the photon spectrum is shown in
Fig.(3.4) using both forms of pion distribution amplitudes. The IB contribu-
tion suffers from infrared divergences which can be taken care of by putting a
threshold on the photon energy. Fig.(3.5) shows the threshold energy dependence
of the IB contribution as well as the full decay width of the radiative tau decay.
The SD contribution is free from any kind of divergences.
FXT) (t) gets contribution from a; meson while F‘(/Tr) (t) from p (and w) meson.
Fig.(3.6) shows the SD contribution to the invariant mass spectrum of © — v sys-
tem. The higher and sharper peak corresponds to the contribution coming from
the vector mesons while the shorter and broader peak corresponds to the axial
vector contribution. The vector contribution to the total decay width dominates

over the axial-vector contribution.
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Figure 3.4: The total Structure Dependent Contribution (blue) to the photon
spectrum is shown along with the individual contributions from the vector (ma-
genta), axial vector (green) and the interference (red) of the two are also shown
for the two distribution amplitudes. Solid lines are for asymptotic distribution
amplitude while dashed ones are for Chernyak-Zitnisky distribution amplitude.

As p and a;-mesons are not very narrow, the effect of ¢ dependence of the widths
is also studied using the prescription provided in [93]. The ¢ dependence of I,
does not have significant effect as it is not that wide while the effect of I',, is
clearly visible as one can see from Fig.(3.7). The explicit forms of ¢ dependence
of the decay widths are provided in Eqn.(C.14) and Eqn.(C.15). We have also
computed the effect of decay width of a;-meson I',,, as it has huge uncertainty,
and found that the decay width of radiative tau decay decreases with an increase
in I',,. The results reported here are calculated using I',, = 425 MeV.

Fig.(3.8) represents all the contributions to the invariant mass spectrum of the
m — system. The IB contribution dominates at the low photon energy for which
we have used the minimum energy threshold of 50 MeV.

After integrating over the full phase space and applying an energy threshold
of 50 MeV for the IB contribution, we get the numerical results for different
contributions to the decay width (normalised to the non-radiative decay width
Eq.(C.9)ie. [ =T (r = 7v,y)/T(r — 7v,)) as tabulated in Table-3.1.

Since we consider radiative rate normalised to the non-radiative one,
the uncertainty in IB contribution is negligible compared to the SD contribution
which dominates the error budget. Therefore, no uncertainty is shown for the
IB part. The final uncertainties are about 10%. From the above it is evident

that there is a dependence on the form of the distribution amplitude chosen to
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Figure 3.5: The dependence of the IB (solid) contribution on the minimum energy
threshold of the photon is shown here. Along with that, the same dependence
for total decay width including form factors using asymptotic (dashed) and CZ
(dotted) pion distribution amplitude is also shown.
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Figure 3.6: (a): The Structure Dependent contribution (blue) to the invariant
mass spectrum of 7—+ system is shown here for asymptotic (solid) and Chernyak-
Zhitnisky (dashed) pion distribution amplitudes. The contribution from the
vector (magenta), axial vector (green) and the interference (red) of the two is
also shown. (b): Zoomed in version of (a).

evaluate these form factors. However, the difference is not too large, which is
reassuring.
Having obtained detailed predictions for the pion in the final state, it is also
instructive to have an estimate of the decay width for the kaon in the final
state. Again, normalising to the appropriate non-radiative width, and employing
the asymptotic distribution amplitude (keeping the Borel parameter, M = 3.35
GeV), we get

' =T(r = Kvy)/T(1 = Kv) ~8 x 107° (3.48)

This (approriately normalised) rate is roughly half of that for the pion.
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Figure 3.7: The SD contribution (blue) considering (a) I', and I',, to be constant
and (b) the ¢ dependence of I', and I',, is shown here for asymptotic (solid) and
Chernyak-Zhitnisky (dashed) pion distribution amplitudes. The contribution
from the vector (magenta), axial vector (green) and the interference (red) of the
two is also shown.
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Figure 3.8: The invariant mass spectrum of ™ — v system for radiative tau decay
is shown here considering (a) asymptotic and (b) CZ pion distribution amplitude.
The contributions from the IB (magenta), SD (green) and the interference (red)
of the two is also shown. The shaded region shows the uncertainties.

3.5 Discussion and Conclusions

In this chapter, we have provided detailed predictions for the rate and photon
spectrum for the process 7= — 7~ v,y. Employing Ward identity from the be-
ginning, the amplitude was written so as to include the contact term which is
necessitated by gauge invariance. The decay involves two time like FFs. These
have been calculated in the present work employing the Light Cone Sum Rules,
to twist-2 accuracy. The FFs, which automatically via the dispersion relations,
encode the contributions from the vector and axial-vector mesons, have the right
asymptotic behaviour expected from perturbative QCD. The ratio of the axial-

vector to vector form factor at zero momentum transfer defines the pion structure
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Contribution | Value using ¢2*¥™ Value using ¢7€Z
NS 1.36 x 1072 1.36 x 1072
Tyy (1.47 £0.06) x 1073 | (1.47 £ 0.06) x 1073
[ aa (3.97£2.45) x 107* | (5.91 +3.62) x 10~*
I ~ 0 ~ 0
Lsp (1.8740.30) x 1073 | (2.29 +0.43) x 107
Cine (3.82 4 2.14) x 107* | (4.90 & 2.60) x 1074
Lo (1.56 4 0.04) x 1072 | (1.61 £ 0.06) x 1072

Table 3.1: Tabulating the values obtained for different contribution of the nor-
malised decay width (normalised to the non-radiative decay width i.e. T =
I'(r — 7wvy)/T(t — 7v,)) using the asymptotic DA (¢%¥™) and the CZ DA
(¢S%) of the pion.

dependent parameter, v. Our evaluation of this parameter, along with the sign,
matches very well with the experimental value obtained from 7 — (v, where
the relevant pion-photon FF's, unlike the present case, are space like. The ob-
tained values for the normalised rate and the photon spectrum are similar to
those obtained in [84] using Resonance xPT. This provides a cross-check on
the theoretical predictions employing a totally different method for computing
the non-perturbative quantities. We have also provided an estimate for the ap-
propriately normalised rate with kaon in the final state instead of a pion. This
normalised rate is approximately half of that for the pion. The present study em-
ployed distribution amplitudes to twist-2 accuracy. The uncertainties reported
here are the uncertainties associated with the uncertainities of the various pa-
rameters used. There will be further uncertainties associated with quark hadron
duality approximation, and higher twist and hight order contributions. The pion
is considered to be massless here. The effect of such an assumption is less than
1% on the values of the FFs. The uncertainties associated with quark hadron
duality violation, like in inclusive tau decays are expected to be at 10% level,

and can be calculated in a particular model to parametrise the spectral density.
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Precise calculations of these duality violations is indeed an important missing
piece but is out of the scope of present work. It would be interesting to consider
both higher twist contributions as well as contributions that are higher order in
as. These can have a significant impact on the phenomenology of radiative one

meson tau decays.






Chapter 4

Exploring LCSR application to

proton decay

After discussing the application of LCSR to the light meson system in the previ-
ous chapter, we now move to the case of a light baryon system like proton. Proton
is the lightest baryon with mass m, = 0.938 GeV [35]. To explain the matter-
anti-matter asymmetry of the Universe, Sakharov proposed three conditions in
1967 [94]. One of these conditions is the requirement of Baryon Number Viola-
tion (BNV). Within the SM of particle physics, baryon number is a conserved
quantity. Therefore, the matter-antimatter asymmetry can not be explained
within the SM and hence BSM physics is required. In the BSM scenarios where
BNV is possible, proton is allowed to decay (see below). Consequently, proton
decay is one of the most important signatures for BSM physics.

In this chapter, we will discuss the decay of proton to a positron and a photon,
i.e. p— ety. As we will see, this process involves two independent physical form
factors. We discuss these FFs in the framework of light cone sum rules. Within
this framework, there exist two possibilities to calculate these FFs. First, by
considering the correlation function by interpolating the proton state and using
the photon distribution amplitudes. Second, where the correlation function is
obtained by interpolation of the photon state with the electromagnetic current
and the proton DAs are used. In this chapter, we will discuss both these ap-

proaches to calculate these FFs one by one and will discuss the numerical results

89
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in both the scenarios. This chapter is based on the study presented in [95].

4.1 Introduction

As discussed in Chapter-1, the SM of particle physics is the most successful model
which explains the electromagnetic, weak, and strong interactions among the
fundamental particles, but, fails in explaining various phenomena. The matter-
antimatter asymmetry of the Universe is one such phenomena and motivates us
towards the study beyond the SM. As, in 1967, Sakharov proposed three con-
ditions to explain this matter-antimatter asymmetry which are: 1) the baryon
number violation, 2) the violation of C and CP symmetries, where C represents
the charge and P represents the parity, and 3) Out of thermal equilibrium [94].
The baryon number is a conserved quantity within the SM as a consequence of the
accidental symmetry of the SM. However, baryon number violation is well moti-
vated at the perturbative level in the theories of grand unification (GUTSs), Su-
perSymmetry (SUSY), various models of baryogenesis, model building in string
theory and in the extra dimension theories, etc. (see for example [96]-[106] and
references therein).

Therefore, in order to probe these BSM models, BNV processes can play a very
important role. Proton decay is one such process. The proton being the lightest
baryon is a stable particle in the SM. However, these BSM scenarios motivate
the decay of proton which makes this decay one of the very crucial tests for
these BSM scenarios and also an important window to understand the nature of
matter unification. Any signature of it will be a clear indication towards physics
beyond the SM as it is forbidden in the SM.

In GUTs, quarks and leptons fall in the common multiplets. Therefore, in such
theories, proton decay is possible even at the tree level via the exchange of super-
heavy gauge bosons or scalar and/or vector leptoquarks. By integrating out these
heavy particles, one can then write effective baryon and lepton number violating
operators of dim-6 such that they are consistent with the SM gauge symme-
try. Instead of baryon (B) or lepton (L) number conservation, these operators

are found to conserve (B-L). As a result, proton always decay into an antilep-
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ton (or antineutrino) (see [107]-[110] for reviews on proton decays). In several
GUT models, the most favourable channel for the decay of proton is found to
be p — e"m’. To compute the decay width for this process, or any process in-
volving hadron, one requires an input on the non-perturbative FFs (as discussed
in Section-1.3). The FFs involved in this decay have been studied using various
models of QCD, such as relativistic quark model, QCD sum rules, effective chi-
ral theory, lattice QCD, [111]-[117]. In a very recent study [118], these FFs are
studied using the method of LCSR.

There are various experiments like Kolar Gold Field [119], NUSEX [120],
SOUDAN [121], Kamiokande [122], etc., which have been designed detect pro-
ton decay. Presently, the largest proton water Cherenkov detector, known as
the Super-Kamiokande detector is the most sensitive detector for proton decay
searches. It puts the most stringent lower bounds on the partial life time for the
proton decays, p — e"n® given by 7, > 103 years [123]. With the advances in
experimental techniques, it becomes important to consider other decay channels
including the radiative decay modes. The present lower bound for the radiative
proton decay modes p — ety and p — uty are 7, > 6.7 x 10°% years and 7, >
4.8 x 1032 years, respectively [35]. Theoretically, these modes are expected to
be suppressed by en,. In [124], p — et was studied within SU(5) GUT set
up. It was pointed out there that this might be an experimentally more feasible
channel as there will be less nuclear absorption. The form factors involved in this
process were evaluated with a simple harmonic oscillator potential as a model for
binding the quarks inside the proton. In [125], it was studied in the framework
of bag model and the conclusions were made that this decay mode is not feasi-
ble at experiments due to small decay rate. However, the experimental facilities
are advancing over the time (see [126] for a review of different experiments and
expected sensitivities expected at future experiments). Thus, a reanalysis of this
mode becomes important, including a fresh attempt at evaluation of the form
factors in a consistent way.

In the Water-Cherenkov experiments, such as Super-Kamiokande, the decay
products of the proton are measured approximately at rest which makes the

relevant energy scale for the process to be the proton mass (see [127] for a review
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on Super-Kamiokande). At these energy scales, a perturbative description for
the hadronic transitions is not possible in QCD because of color confinement and
a alternative non-perturbative way is required to get an estimate of the HMEs
which can help us in probing the baryon-number violating physics with the help
of experimental data (as discussed in Chapter-2). Therefore, in this chapter, we
will discuss the use of LCSR to study p — e*+.

The rest of the chapter will discuss the computation of the form factors involved
in this process using LCSR framework. We will first discuss the amplitude of
this process using dime-6 effective operators and see how this amplitude can
be written in terms of two independent form factors. Then we will discuss two
different possibilities to compute these FFs using LCSR. Later, we will provide
numerical analysis for the FFs obtained using both the possibilities. Finally, we
will conclude our findings with a naive comparison between the results obtained

using the two possibilities.

4.2 Amplitude Computation

As already discussed, proton decay is a baryon number violating process and
hence is forbidden in the SM. However, it is possible to write higher dimensional
baryon number violating effective operators that allow the decay of proton. In
a BSM scenario, like GUTSs, proton decay is possible even at tree level. This
process proceeds via an exchange of heavy gauge bosons or leptoquarks. To
write the effective operators, one can then integrate out these heavy particle (as
discussed in Section-1.5). The Lagrangian corresponding to the dim-6 baryon
number violating effective operators which preserves the gauge symmetry of the

SM can be written as [128]-[131]

E(E?) = Z CFF’OFF’ = Z CFF/EQbC (CZ_ZPFU[)) (G_CPF/UC) (41)

I rI
where {I'I"} € {L,R} are the chirality projection operators. crp» are the
Wilson coefficients. The superscript ¢ denotes charge conjugation such that

d® = —d"C~! with C' = i7?+° being the charge conjugation operator and 7T in
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the superscript denotes the transpose. The indices a, b, ¢ represent the color in-
dices. This effective Lagrangian is written in terms of the physical states of the
quarks and leptons at the relevant scale which means that all the flavour mix-
ing and perturbative renormalization group (RG) effects, along with the short
distance information, are collectively lumped in the WCs cpr.  As this chap-
ter is mainly focused on the evaluation of the form factors involved which are
defined below, the exact details of these effects are not of particular relevance
here. Thus, we do not discuss about them further. These dependencies must be
straightforwardly expressed in a concrete model which allows proton decay.

Having the interaction Lagrangian in hand (Eqn.(4.1)), the transition amplitude
for the radiative proton decay p — et + ~ can be written as the matrix element

given by

Alp(py) = " (pe)v(k)) =D errr (" (pe)y(k) | Orrr| p(py))

T

= crrr (et (pe)y (k) | (ds Prus) (€°Proue)| p(pp))

(4.2)

with all the flavor effects being absorbed in the WCs, crp (as discussed above).
The condition that this transition amplitude must be gauge invariant, allows us

to parameterize it as

. io
Al = ) = S ervte { o e T2 ). (03
T P
where Arrs are the four non-perturbative gauge invariant physical form factors
involved in the process. Furthermore, due to parity conservation in QCD, these

physical FF's get related among themselves as
ApL = —Agr Arr = —ARL, (4.4)

resulting in only two independent form factors. For the present discussion, let
us choose them to be Ay, and Apg. Therefore, in order to have a prediction

about the branching ratio, the knowledge of these FF's is the only hurdle. All
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other factors in the amplitude given in Eqn.(4.3) are known once we choose a
particular model which leads to proton decay. We focus on the computation of
these FF's here.

As both proton and positron are charged, the photon can be emitted from either
of them. The computation of photon emission from positron is trivial. We do not
explicitly show it here as it does not contribute to the dipole transition depicted
above. However, the photon emission from proton is non-trivial and contributes
to the form factors. The photon can now be emitted from either of the u-quarks
or the d-quark and thus, can be helpful in understanding the dynamics of strong
interaction inside the proton. The transition matrix element for the photon

emission from proton can be factorised into the leptonic and hadronic parts as

(e* (pe)y(k) |Orr| p(pp)) = vE(pe) Hrr (pp, pe)tip(py).- (4.5)

where Hrr (pp, pe)uy(pp) is the hadronic matrix element (HME) of interest and

is given by
Hrr(pp, pe)up(pp) = (y(k) |€ (di CPruy) (Proue) | p(py)) - (4.6)

This HME can be most generally parameterized in terms of six invariant scalar

functions F{%. with n =1,...,6 (see [132]) as

Fpt }é ok,
pr/ (pp,pe)up(pp) P[VE FFF’ p F2 —+ FFF”V -+ ’LFIilF/
my m; P
5 6 k;/‘
+ FFF’ + FFF/ up(pp) (4.7)
p p

where o = %[’y“, 7]. Neglecting the mass of positron, the physical form factors

( Arr/) can then be related to these invariant scalar functions, Fi. as

(4.8)

Let us now discuss how to get these form factors using the method of LCSR.
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4.3 Form Factors in the LCSR framework

As discussed in Chapter-2, in order to calculate form factor is LCSR framework,
we need a correlation function of quark-gluon operators between a vacuum and
a hadronic state as a starting object. In the present case, such a correlation
function can be obtained from the HME given in Eq.(4.6) by interpolating either
the proton or the photon state. Consequently, there are two possibilities to

calculate the form factors, Arp defined in Eqn.(4.8) within the framework of

LCSR:

1. Interpolating the proton state with proton interpolation current and using

the distribution amplitudes (DAs) of photon.

2. Interpolating the photon state with the electromagnetic current and using

the distribution amplitudes (DAs) for proton.

Hereafter, in this chapter, we will discuss both these scenarios one by one with
the aim that we can finally make some comparison between the outcomes of the
two which can be helpful in getting a deeper understanding of the underlying

non-perturbative dynamics due to strong interaction.

4.3.1 Case-1: Using proton interpolation and photon
DAs

To find the relevant correlation function in this case, first of all we need an inter-
polation current for proton state. Such an interpolation current is not uniquely
defined. Therefore, it is interesting to discuss a little about the interpolation

current for proton before jumping to the calculation of the form factors.

4.3.1.1 Proton interpolation current

While writing an interpolation current, two things are required to be kept in
mind. First, the interpolation current must have the quark-constituent of the
state. Second, it must satisfy all the quantum numbers of the state. There

are two operators which can satisfy both these criteria for a proton [133], [134].
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These operators are

() = & (uf (@) Crsdn(@) @), xalw) = € (u] (2)Cd () 510 ()
(4.9)

where, {l,m,n} represents the color indices, the superscript T represents the

transpose and C is the charge conjugation matrix. Both these operators can be

used to excite a ground state proton from the vacuum.

Moreover, a linear combination of both these operators will also excite a ground

state proton from the vacuum. Therefore, in general, the proton interpolation

current can be written as

xi(x) = x1(z) + txa(2) (4.10)

where, t is a general parameter and can take any value form the set of real

numbers. It is defined such that

(01 (0)] p(pp)) = mpAyup(pp) (4.11)

where m,, is the mass of proton, )\; is the interaction strength of this interpolation
current with the proton state, and w,(p,) represents the spinor for the proton
state having momentum p,,.

In literature, the most commonly used linear combinations are
Xra(x) = xa(z), and (4.12)

xi0(x) = 2 (x2(z) = xa(x)) - (4.13)

The former can be obtained from Eqn.(4.10) by simply putting ¢t = 0 and is the
most commonly used form for proton interpolation in lattice QCD calculations
(0lxzalp(pp)) = mpApauy(py). The latter can be obtained as xjo(z) = —2x:(x)

with ¢ = —1. Using the Fierz transformation (discussed in Appendix-A), it can
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be rewritten as
Yio(z) = € (T () Cry™ (2)) 257" (2) (4.14)
This is popularly known as the Ioffe current [133]. It is defined such that

(0 ]x10(0)| p(pp)) = MpApup(pp), (4.15)

where )\, is the interaction strength of the Ioffe current with the proton state.
In literature, this current is found to provide the maximum stability against the
Borel mass, the parameter introduced in LCSR computations [70].

There is another linear combination which has been found to be used in sum rule

calculations given by

X' () = 2(x2 + x1)

= L (00,1 ) (4.16)

such that,
(01xa(0)[ p(pp)) = mpAup(pyp) (4.17)

It can be obtained from the general form in Eqn.(4.10) by putting t=1 and
multiplying the r.h.s. by a factor of 2.

Now, after having an understanding of the proton interpolation current,
we move back to our discussion on the form factor calculation using LCSR. For
the further discussion we will use the Ioffe current given in Eqn.(4.14) for proton
interpolation and will call it simply x(x) instead of x;o for notational simplicity.
The correlation function which is obtained after interpolating the proton state

in Eqn.(4.6) using Ioffe current reads as

Ihmwma=g/¢m%wwwwm@mumm»m> (4.18)

where Y(0) = x7(0)7°, Qrr(z) = € (dX C Pruy) (Pruc) and T denotes the time
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ordering.

By inserting a complete set of intermediate hadronic states with the same quan-
tum number as the proton and isolating the pole contribution coming from the
ground state proton, one gets a hadronic parameterization for this correlation

function as

myA\
had _ p7p
HFF/ (pp,pe) — _ﬁHFF/ (pe7pp) (p + mp) + ttt
by — My, P
i kH Yelad
e had,PK %pp had, KK had,V _p had,T 10" Ky
= e, Fr |y 2 + 1 Py + e 4" +
P P P
n I I
had,P Pp had, Kk K" had,K PP kpyp p had, K K P kg p
+ HFF’ + HFF’ + HFF’ 3 + HFF’ 3
my my m3 m3
I " i n
had,v P | p » had, TP ¢ kp P had,PP p WPp had,K P kp P
+ I - + I — I ey I g
P D D p
(4.19)

where ellipses represent the heavier states i.e. excited states and contin-
uum, contributions. The twelve invariant scalar functions, H}F“f‘,j’r with r =
{PK,KK,V,T,P,K, KPP, KKP,VP,TP, PP, KP}, will be used to derive the
physical FFs Ay and Apgr by deriving sum rules for them (see below).

As a first step to write sum rules for these scalar function, we parameterize them

in terms of spectral densities using the dispersion relation given by

00 had,r 2
(s, P,
s (p2, P2) = / g5t (5 Fe) . c) (4.20)
0 S—Pp
where P? = —p3, and p?‘fﬂi’r(s, P?) are the spectral densities and are related to
the imaginary part of these scalar functions as
1
pradr (s, P2) = ZImIIMY" (s + ie, P?). (4.21)
T

These spectral densities can be written by separating the pole contribution and

the heavy states contributions as

pre” (s, P2) = A (s — mp) Fiy (s, P2) + prps™” (s, P?) (4.22)
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where Flr (s, P?) are the residues of the ground state contributions. These can

be related to F{ (s, P?) (Eqn.(4.7)) for s = m? i.e proton being on-shell, the

condition ensured by the delta function. These relations reads as,

FFF’<S7P32) FTI‘%J’DP(SJPeQ):FFIF’(S7P62)7

FI£§1{(<87P62> FKKP(87P62):F12F’(87P62)7

Frp(s, P?) = Fyp/ (s, P2) = Fip(s, P2),
Fir(s, P?) = Fip/ (s, P?) = Frro(s, P2),
Fip(s, B2) = Fi (s, P2) = FRpo(s, P2),
Fiv(s, P2) = Fyy (s, P2) = Fp(s, P2). (4.23)

According to the quark-hadron duality, the spectral densities of the heavier

states, plea”" (s, P2), can be approximated to the spectral densities computed

using QCD (see Section-2.1.1) as

00 heavy,r 0o CD,r 0o CD,r
/ dprrfy (SvPeQ)N/ dplgr'D (s,Pf)_/ d 1 Im (ngr'D (’PeQ))
ST _ 2 7 ST _ o2~ S
S0 S _pp S0 S_pp S0 ™ S _pp
(4.24)

where sq is the continuum threshold, a free parameter in sum rule calculation. It
is expected to be chosen such that it is well above the ground state proton state
but close to the lightest excitation state, which is the Roper resonance with mass
of 1.44 GeV for the present case. Therefore, sy will be chosen in the vicinity of
(1.44 GeV)? (see below).

Consequently, according to Eqn.(4.24), in order to compute the contribution of
the heavier states, we need the evaluation of the correlation functions 5 (s, P?)
in QCD. For that we need the time ordered product in Eqn.(4.18) which can
be computed by partially contracting the quark fields and by employing the

completeness relation given by

¢()q(0) = — (G(0)Tag()) I (4.25)
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p(py) e*(p,) p(py) e*(p,) p(py) V e*(p,)
() (b) (c)
Figure 4.1: Feynman diagrams which contribute to the light-cone expansion of
the hadronic matrix element for proton decay to positron and a photon up to
two particle twist-2 and twist-3 contributions. The vertex on the left represents
the proton interpolations current while the vertex on the right represents the
dim-6 BNV operator. The encircled photon represents that the photon distri-
bution amplitudes are entering the LCSR computation. (a) represents the the

usual non-condensate contribution while (b) and (c) represent the condensates
contributions as discussed in the text.

Here, ¢ = {u,d} and T"4 represents the basis of gamma matrices chosen to be

1,
1—‘A - {177577p72/7p757 Eap } . (426)

Using these relations and partially contracting the quark fields, the time ordered

product in Eqn.(4.18) simplifies to (see Fig. (4.1))

1 - ~(u
T{Qur@)X(0)} = =5 e P | (@(0)T aus(2) { Tan S5l (@) P (235
+ S]('um)(x)%fAPrSfL?(x)V“%}

+ (d(OTadi(@)) { St @S5 @) PrDanss }
(4.27)

where S%(z) is the quark propagator at the light like separations, and
Ly=Crict =Ty, (4.28)

with

]-7 FA = 172.75”7 V5
i = g (4.29)

_17 FA = V> Opv
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In the massless limit, S¥(x) is given by (see Appendix-B for details)

it ( q > max?
Sij(z) = 52y 70ij — dij <1 +t=e )t (4.30)
where (Gq) represents the quark condensate, and ellipses denote higher terms
including one or more gluon exchanges. We will neglect these higher terms for
the present discussion. my is a parameter associated with the mixed condensate

as

(79:G.0q) = mq (7q) (4.31)

where G.o = G, 0". Substituting Eqn.(4.27) back in Eqn.(4.18) and rearrang-
ing the terms, we end up having a matrix element of two or more particle (quarks
and gluons) operators between a vacuum and a photon state. These matrix ele-
ments can then be written in terms of photon light cone distribution amplitudes
(DAs) of varying twist [71]. The present discussion involves only two particle
DAs of twist-2 and twist-3. The effects coming from the higher twist DAs (ex-
pected to be small) are out of scope of this thesis.

At this point, it is important to note that at twist-2 there exist only one DA for
photon labelled as ¢.(u). It appears in the matrix element of two quark operator
with I'y = fap" Moreover, at twist-3, there are two two-particle DAs labelled
as ¢Y¥(u), and ¥*(u) and appears for I'y = {7,,97,75}. Therefore, in the present
discussion, three DAs of photon will contribute namely, ¢, (u), 1" (u), and *(u)
(see Appendix-B for more details about these DAs). On using the definition of
these DAs, and summing up all the contributions, the correlation function in
Eqn.(4.18) can be finally computed in QCD as

[ecp [[QCD.PK %pp 4 [1ecD. K FR" i~ [IODY h 4 HQCD,T%

_ *
rr (PpsPe) = Eup r | Upp m2 rr’ rr’ T
D p p

kg

QCDPpp QCDKk QC’DKPPkp p QCD,KKP p

+ IR P T+ I TR —
p p

+ HQCD,VP ’yu}/}p + HQCD,TP z’a“”k,,pp + HQCD,PPﬁpp HQCD KP k“pp

o o D) T B) o B
my mg m, m,

(4.32)
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where TI%CP" with r = {PK,KK,V,T,P,K, KPP, KKP,VP,TP, PP, KP},
are the QCD analogues of the scalar functions introduced in Eqn.(4.19). The

full analytic expressions for these functions in QCD are:

o ForI'=1"= L:

—_\2 1 9
NPy, p,) = =X Q- @ [ an [=0) (14 28]

(4.33)

_\2 1 ,
3™ () = 40— Qa) [ an a2 (14 5]

(4.34)

1672 Oy 6

() -5

(128 )]

17" (pe pp) = —emy, (Ga) /0 ' [?’Q—“X (u) PPIn(— P2 4 132(Qu = Qd)

q ! k2(2¢" a 2

(4.36)

] 1 ) _
2P (pe,py) = T2l g, Qd)/o du { ! (1 + (uw(u) + ¢T(U)

6 p? 4P2
(uk*y" () + u(py-k)y" () % ( ' 2m_Pg2>}

3 — 1 9 Tv u )
TP (g, ) — — el 8 ) / W22 (1 o
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3 1l 1 a 2
MQCDKEP () 0y %;(M(Qu _ Qd)/o duuwpiu) (1 n m)

— 1 v :
OOPVP () — _%ﬂq@(@u ~ Q) /0 du Vp(f ) (1 " %2)

— (k.pp — ukz)%aéz) (1 + m_g)]

OCDIP(, oy M(Qu — Q) /01 du V”(“) (1 M )}

e For'=Land IV = R:

1 — \2 2
QCD,PK B 2 (70)" XQu D (1) Mgy /3
O7x (Desp) = — emp/o du [ 3 })2 1+ P 4 I3

{3 (2 Quwt @) + (10 + Q)
b Qa2 + 2L 0 (k- i) )}
(4.42)

/ Cdu u? @+ @i + 10, +002)

<P+ (Qu+ Qo) — ) |

2
ems, f3

QCD,KK _
HLR (p€7pp) - 2472

(4.43)
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_ (2
n9sPY (pe, p,) =e /0 L [<qq>3xQu (pp.k]);;sw(u) <1+ m )

f3'y
1672

X (pp-k — uk®)) + Quv®(u)(pp-k) } In(—P?)] (4.44)

{é ((TQu + Qo (W) P* — (Qu + Qu)i" (1)

- 1
1GGP 7 (. py) = 2 00 | {%xww (5P + 2u(p, k — uk?)) In(~P?)

+ fngu(pZ — upp.k;)wa(u) (1 + ﬂ)}

Pt 2p?

(4.45)

257" (pe pp) = (4.46)
1 v 2

fracem, (qq>3/0 du {%Xukggbv(u)ln(—fﬂ) — f3yQu {wp(g) (1 + %)
B k24 1 2
+ (@D”(u)(k.pp — uk?) — 4 12 (u)) i (1 + %) H
(4.47)

_ 1
362 eopy) == 0 [ | 2 u(y o ()

— f3,Qu { (uw”(u) + @) % (1 + 4m—P(2]2>
+ <u(k:.pp — uk?)" (u) — —u(pp‘kz)w(u)) % (1 + 2%%2) H
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3/~ 1

+ fstuuw;flw (1 + 2";32)] (4.50)

CD,KKP
HCL?R (Pe, pp) =

6 472

a 2
+ fstu—wp(f) (1 + %)} (4.51)

- 1
262 () = I [ (k= i) | 20, (0P

3 P2 4p?

f?wQu
1672

(79)” XQu ¢ (u) (1 N m%)

1
CD,TP
HgR (De,pp) = emi/o du

+

w“(u)ln(—PQ)} (4.52)

2 1
257" () = “G2(Qu+ Qu) [ du [0 (in(—P)
+ (ki — uk2)¢;(g)] (4.53)
2 1
35PN (o) = 2 (G, 4 Q) /0 du [ () () + 0" (u)) In(—P?)
+ (pp-k — uk2>“¢;§“>} (4.54)

where P? = (p, — uk)® = (pe + uk)® = ap} — uP? — uuk® with v and @ =1 — u
being the fractions of photon momentum carried by the quak and anti-quark,
respectively. The other scalar functions which are not present in Eqn.(4.33)-
Eqn.(4.54) do not appear in QCD calculations upto two-particle twist-3 accuracy.
Now, according to the LCSR matching condition (see Chapter-2 for details)

N 7, 2) = 9P G, ), (459

p e p e
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the sum rule for FY{,, reads as

Fr. (s, P? o 1 ImITR%CP (s, P2
e frr (s o) :/ gs 1 Ity (5 Fe) (4.56)
0

T s—p2
In order to suppress the effect of the heavier states and improve the stability of

the sum rule, we perform Borel transformation with respect to pf, as a final step

(see Section-2.1.1 for details). Consequently, the final sum rule reads as,

m2

7
eMm?Z S0

s 1
Fri(so, P?) = dse” 2 %ImH?FC/D’T(s, P?) (4.57)

9 e
)\Pmp 0

where M is the Borel mass and sg is the continuum threshold. These are the
artefacts of the LCSR method, and have to be fixed such that the sum rule is
saturated with the ground state and the heavy state contributions are properly
suppressed. A typical rule of the thumb is to try and obtain at least 70% con-
tribution to the correlation function from the ground state itself.

In order to compute these sum rules one needs an imaginary part of the QCD
calculated correlation function collected in Eqns.(4.33-4.54) and substitute them
in Eqn.(4.57) and then perform an integral over s. These can be incorporated
by implementing the following substitutions in Eqns.(4.33-4.54) with s = pf, and
putting k? = 0, as the photon is on-shell

/1 duMG(u,s) - — /uo duF<u)e%G(u,§) (4.58)

P? a

L Fu e 8 F(ug)G(s S U
/ du PS4)G(U,S) — ( Z)D)z (50, o)
0 e

uo F(u)ew% _ 5 0 _
—I—/O du = (G(u,s) M ﬁG(u,s)> (4.59)
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P6 2u2 So
+/0 25_;) [% (eﬁG(u, s)) d(us — qu)]
_ /0“0 AOK S (e;fég(u,g)) (4.60)

2u? 082

[ gt o [yl ¥t w5 o o)
LF

where F(u) and G(u, s) are some arbitrary functions of u and s,

uP?
— and Uy = >
u So + Pe

S0

5= (4.61)
These substitutions are consistent with [70]. After making these substitutions,
we are now ready to perform the numerical analysis for the form factors using

the sum rules provided in Eqn.(4.57).

4.3.1.2 Numerical Analysis

The values of various parameters used during the numerical calculations are
collected in Appendix-D. The physical FFs, Arp, for I'T" = LL and LR are
studied as a function of P? = —p? and the Borel mass M. These FFs can
be found from different combinations of Frr’s as can be read from Eqn.(4.8)
and Eqn.(4.23). As the photon is on-shell, we can put k* = 0. For the case
of TT" = LL, there are only two possibilities to extract Arr (s, P?) which are
from the combination of F7;, and F}f with FEPP as FPE FE and FPP turn
out to be zero. In Fig.(4.2), we show the variation of ALLT5PP(sy P?) with
P? for three different values of the continuum threshold so. In this Figure,
we also show its variation with the Borel mass, M, for three different values
of P? at fixed so = (1.44GeV)? which is equal to the Roper resonance. The
combination ALJ5PP (s, P2?) is found to be less stable against the variation in
the parameters so and M (as can be seen from Fig.(4.3)). Therefore, it is less
reliable. However, on the face value, it is in broad agreement with A?LDJFK PP
As can be seen from the detailed expressions of these functions (Eqn.(4.33)-
Eqn.(4.41)), the contributions coming due to condensate are quite important

(even dominant in some cases). Thus, these contributions can not be simply

ignored. For the case of I'T” = LR, we have eight combinations in total as can
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Figure 4.2: The physical FF, Apz(so, P?) is calculated from the combina-
tion of Ff} and FEFPP employing photon DAs. Left panel: ATPEPP (50 p2)
vs P? is shown for three values of sy = (1.4 GeV)?(violate dotted), sy =
(1.44 GeV)?(red solid) and sy = (1.5 GeV)? (blue dashed) at the Borel Mass,
M? = 2 GeV® Right Panel: ATPTEPP (55 P2) vs M is shown for three values

of P2 = 0.5 GeV?(red solid), P? = 1 GeV*(red dashed) and P? = 2 GeV? (red
dotted) at the continuum threshold, sy = (1.44 GeV)2.
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Figure 4.3: Same as Fig(4.2) but now with the combinations of F}; and FfPF.

be read again from Eq.(4.8) and Eqn.(4.23). Moreover, for this case as well, the
four combinations which involves F1 are found to be less stable against sy and
M and hence we discard them. The other four combinations involving F{} are
shown in Fig.(4.4)-Fig.(4.7).

The values of the physical FFs, Arp for I'TY = LL and I'TY = LR, at
P2 =0.5 GeV?' and M? = 2 GeV? for s (= 1.44 GeV)? are found to be

ATTRPP(1.442)0.5) = (0.00388 + 0.00126) GeV?,

ATPHEPE(1.44% 0.5) = (0.00221 + 0.00082) GeV?>. (4.62)

LCSR calculations are trustworthy at |Q?| — oo, where Q? is the momentum transferred
squared. To be consistent with this requirement, in this case, we have chosen Q? = P? =
0.5 GeV?.
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Figure 4.4: The physical FF, Apr(sg, P?) is calculated from the combination of
FEP. FPE and FEP employing photon DAs. Left panel: Al LTFRTPP (55 P2)
vs P? is shown for three values of sy = (1.4 GeV)?(violate dotted), sy =
(1.44 GeV)?(red solid) and sy = (1.5 GeV)? (blue dashed) at the Borel Mass,
M? =2 GeV?. Right Panel: ALLHPEHPP (55 P2) vs M is shown for three values
of P2 = 0.5 GeV?(red solid), P? = 1 GeV?*(red dashed) and P? = 2 GeV? (red

dotted) at the continuum threshold, sy = (1.44 GeV)2.
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Figure 4.5: Same as Fig(4.4) but now with the combinations of FiF FEPE and
FLPR.
ATPHEPPAP (1 442 0.5) = (0.00251 + 0.00118) GeV?,
ATPHEPPAPP (1 442 (.5) = (0.00250 4 0.00118) GeV?
ATEFPEEP (1 42 0.5) = (0.00176 4+ 0.00123) GeV?,

ATEHAPEFPP (1 42 0.5) = (0.00176 4 0.00123) GeV?. (4.63)

From Eqn.(4.63), it is clearly evident that there is quite a good consistency in
the form factor, Apg, determined from different combinations. The uncertainties
reported here are associated with the uncertainties in the values of the various
parameters entering the sum rules except sg and M which we fixed to a certain

value as mentioned above. These uncertainties are found to decrease with an
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Figure 4.6: Same as Fig(4.4) but now with the combinations of F7F FEPF and
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Figure 4.7: Same as Fig(4.4) but now with the combinations of F{% FEPF and

P
FLR.

increase in P? for all the combinations. However, we have shown the error
bands for A FXFPP (s, P2) and ALLEPPHE (50, P?) at sp = (1.44 GeV)? and M? =
2 GeV? in Fig.(4.8) as the representative ones.

After discussing the first case in detail, let us now move to the other possibility

for form factor calculation in LCSR framework using photon DAs.

4.3.2 Case-2: Using photon interpolation and proton
DAs

In this case, we aim to calculate the physical form factors, Arr by considering
the correlation function where the photon state in Eqn.(4.7) is interpolated using

the electromagnetic current, j¢ (z). Such a correlation function (see Fig. (4.9))
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and M? = 2 GeV? along with the uncertainties associated with the parameters
involved in photon DAs. The bands represents the uncertainties.
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Figure 4.9: Feynman diagram which contributes to the light-cone expansion to
proton decay to positron and photon in case-2 up to twist-3. The vertex on
the left represents the electromagnetic current while the vertex on the right
represents the dim-6 BNV operator. The encircled proton represents that the
proton distribution amplitude will enter the LCSR computation.

reads as

Hrre (pp, pe)up(pp) = —iee,, / '™ (0| T{je, (2)Qrr (0)} p(pp))  (4.64)

where, 7% (z) = Qqd(x)y*d(z) + Quu(z)y*u(x) — e(z)y*e(x), and the operator
Qrr is

Qrr = € (d} CPruy) (Proue) . (4.65)

For I'TY = LL and I'T” = LR, this operator can be rewritten using the generalised

Fierz transformations [135] (discussed in Appendix-A) as

abc

Qre = —

1
(2(PLda)(u§PLub) — E(JWPLda)(ugchPLub)) , and (4.66)
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6abc

4

Qrr = — (v Prda) (" Prus)) (4.67)

respectively?. Now, in order to derive the sum rule, we need to compute the
correlation function in Eq.(4.64) using perturbative QCD. For that, we need the
time ordered product of j¢ with Q1 and QQgr. These time ordered products can
be written as a time product of j&, (z) with the operator (I'aPrd,) (@ Pruy)
with I'y = {1,0,,} and I'y = {v,} for Q. and Qpr, respectively. Therefore,
for the QCD computation we need

T{j8,(x) (CaPrda) (Gl Pruy) }
- [Qu { (v sp@ran,) " (0P)° ((uf ()" uf 0)a2(0))
+ (CT AP Sy(z)y)"? (14 P) " ((uCT(O))Euf(x)df(O) }

= Qu{(Tasi@n) ™ (e r) ™ (! )" uf )P () }]
(4.68)

where capital alphabets (E, F, B,C, D) represent the Dirac indices, {a,b,c,i}
denote the color indices and superscript T refers to the transpose.

Now substitute Eqn.(4.68) in Eqn.(4.64) with I'y = {1,0,,} and I'y = {v,} for
the case I'T" = LL and I'TY = LR respectively. After doing so, we are now left
with the matrix element of of the remaining three quark operator between the
proton state and the vacuum. This matrix element can be parameterized in terms
of proton DAs of varying twists [136]. In the present work, we consider only the
leading twist-3 DAs (collected in Appendix-B). Using the various properties of
these DAs (as discussed in Appendix-B), the correlation function in Eqn.(4.64)

can be computed in perturbative QCD and results into

* pa% ke R @ ’an/Bk

T T T
P D mp
s.0cD Pp 6,0cD kK
mp mp

2The factor of % in the second term of the r.h.s of Eqn.(4.66) was missed in [95] which
reflects as differences in the analytical as well as numerical results for Ap; compared to [95].
However, this does not alter the numerical results much and the conclusions are more or less
the same. We will be submitting an erratum reporting this correction soon.
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where F., with n = (1...6) are the scalar functions of P = (p, — k)? and

K? = —k? and these FJ%, explicitly take the form

o ForI'=1"=L:

F3.QCD _emy, /D Ty (o a3Qq 1@y
rr (pps k) a;Ty(a;) 2(k — azpy)? + (k — aip,)?

(4.70)

2
FLQCD k) = _%/D (o Qa On
i e Ry = =57 [ Dadhlon) | o e T gy

(4.71)
F57Q0D k)= —2 /Da,T Ozz { a1Qy _ a3Qq } 4,79
ek N &=~ E—amy] 7
3Qdem Ty (o)
[0.QCD _ / i n
i (P k) k— aspy) 2 (4.73)
e For'=Land I" = R:
LacD ., em; (Va( sz + A1) Qa - (Vi(ay) — Ar(ai)) Qu
- CVSPP) (k - alpp)
(4.74)

(Vi(ay) + Ar(w)) Qq (2pp.k: — ozgmf,)

e
Fg’}?CD(pp,k) = —§/Dai

2(k — aspy)?
+ (Vi(ai) = Ar(ai)) Qu (200m — py.k)
(k — aupp)?
(4.75)
4,QCD (Va( Oéz + A1) Qa . (Vi(ag) — Ai(w)) Qu
i 000 == [0 Ry (e ]

(4.76)
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6,QCD
Frg = (

- aspp) (k — aupy)?
(4.77)

where, Vi, A;, and T; are the twist-3 light cone DAs of proton (collected in
Appendix-B), and «; = {1, a3, a3} are the proton momentum fractions car-
ried by up and down quarks inside the proton. (k — a;p,)? can be expanded as
aP” — aK? — aam? which will be useful for further computation. In this case
also, some scalar functions do not appear up to twist-3 accuracy and hence are
not reported here.

Moreover, to derive the sum rule, we need another representation for the corre-
lation function in Eqn.(4.64) in terms of the hadronic states. For that, we insert
a complete set of intermediate states with the quantum numbers of the proton
state. To write the hadronic decomposition, we saturate it with the contribution
coming from the lowest state i.e. the ground state of proton. Furthermore, we
use the matrix element of the electromagnetic current between two proton state

given by

(p(pp — k) 1557 (0) p(pp)) = tp(pp — k) |WA(K?)7a

where W1 (K?) and W(K?) are electromagnetic electric and magnetic form fac-

tors of the proton, respectively. The final hadronic decomposition obtained reads

as
a * P p o k + myp o 10 5k5
Hyg! up(pp) = —eeq 1 — A mp( p_ k)2 — m2 {Py Wi (K?) — W2(K2)} up(Pp) +
p P
* 1,had P ok 2. had KK 3had o 4,hadicro‘5k5
= e Pr | Frp Tz_p+FFF/ Fp—i_FFF/ + Frp m,
5,hadp 6.had K
+ Fpp Epp + Fon mp] (4.79)

where ellipses represent the heavier state contributions, and A represents the
coupling strength of the proton interpolation current with the proton state such
that A = A\ and A = =\, for I'T" = LL and I'T" = LR, respectively (as defined in
Eqn.(4.15) and Eqn.(4.17), respectively). F"* with n = 1,...,6 are the scalar
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functions of P = (p, — k)? = p? and K? = —k* They are related to W;(K?)
and Wy (K?) as

— Wy(K?
Flhad _ Z€ oy 2(K7)

4 p pp/2 mg’

Wa(K?)
2,had _ 24/ 2
Fir 4 Z’Apz(P/2 m2)’

had € had € Wi(K?) + Wy(K?)
FEL = _g)‘;WﬂKz)v FéL = Zmz%/\; P2 _ 2 )
p
- Wi(K?) Wi(K?)
5,had _ 9 6had _ € 2
et = miX, s and g = Smn S PR (480)
P my,

There are similar relations between Fy's#** and Wi 5(K?) which can be obtained
by simply replacing X, by —\,. The sum rule can then be computed for W1 (/)
by equating the two representations and using the quark hadron duality to sup-
press the heavier state contributions. As a final step we perform the Borel
transformation on P and using the relations in Eqn.(4.80), we derive the final

sum rules for Fiiv” using the sum rules for Wy o(K?) which reads as

2
Exp (m—’é) s “s\ 1
Fiiv(s0, K%) = ____\"J /0 ds Exp (—S> 7TI <F1£11*'4 S QP ,K2))
(4.81)

where sy and M are the continuum threshold and the Borel mass, respectively.
Here, we provide sum rules only for Frlifl/ﬁ as they are related to the physical
form factors given in Eqn.(4.8). However, one can similarly write sum rules for
other F;Lf},lad. Similar to the previous case, to compute these sum rules, we need
the imaginary part of FI%LL o QP (s K?) (provided in Bqn.(4.70)-Eqn.(4.77)) and
then have to integrate over s. These operations can be incorporated by a simple

substitution using s = (p, — k)* and K? = —k?, given by

/ Dal / Da; et (4.82)
. Otpp

where o = {1, a3}, Da; = dajdasdag 6(1 — a; — as — as),

aK? + aam?
5§ = ——L (4.83)
a
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and

Kz—mi—l—so \/(K2+50)2+mg—2m§(50—[(2)

2 2
Zmp 2mp

(4.84)

g = —

We are now all set to get numerical estimates for the physical form factors ob-

tained using proton DAs upto twist-3.

4.3.2.1 Numerical Analysis

The physical form factors, Arp are studied as a function of K2 = —k? and the
Borel mass, M at P> = m? = 0. Using Eqn.(4.8) and Eqn.(4.80), it is easy to see
that these FFs which are defined using a combination of Fit,, F{r and F2p, turn
out to be proportional to Wy(K?), the magnetic form factor (as discussed above).
It can be seen from Eqn.(4.80) that W5(K?) can also be obtained using other
combinations of F{i,. However, it is found that these other combinations result
in poor stability against the Borel mass, M. Therefore, the combination of F}p,
FY, and FP as defined in Eqn.(4.8) is considered to be the best estimate for
these form factors and thus, we choose to show only this explicitly in Fig.(4.10)
and Fig(4.11).

The values of the physical FFs, Apps using this combination at K2 = 0.5 GeV?
and M? = 2 GeV? for so(= 1.44 GeV)? are found to be

ATHA5(1.44%)0.5) = (0.00038 £ 0.00021) GeV?,

ATHTP(1.44%,0.5) = (0.00174 & 0.00027) GeV? (4.85)

Here again, the uncertainties are associated with the parameters involved in form
factor calculations except so and M, and are found to decrease with an increase
in K? (as shown in Fig.(4.12)).

It is important to note here that, in the present case, the numerical value of the
form factor A;F*+? is smaller than AJE" (also the form factors obtained in the
previous case) by a factor of ~ 3.

Another important thing to remark here is that, it is not possible to have a direct

comparison between the form factors obtained here with the ones obtained in
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Figure 4.10: The physical FF, A7y (s, K?) is calculated from the combination of

Fl,, F} and F?, employing proton DAs. Left panel: A;t*"(sq, K?) vs K? is

shown for three values of sy = (1.4 GeV)?(violate dotted), sq = (1.44 GeV)?(red
solid) and sy = (1.5 GeV)? (blue dashed) at the Borel Mass, M? = 2 GeVZ.
Right Panel: A75*+?(sq, K?) vs M is shown for three values of K2 = 0.5 GeV?(red
solid), K% = 1 GeV?*(red dashed) and K? = 2 GeV? (red dotted) at the contin-
uum threshold, so = (1.44 GeV)?.

case-1 where proton state was interpolated with loffe current and the photon
DAs were used upto two particle twist-3 accuracy. The simple reason for it lies
in the difference in the momentum transferred square in the two cases and the
limitations of LCSR application to low momentum squared region (as discussed
in previous case). Because of this the photon is taken to be far off-shell in the
present case, while in the previous case the photon was taken on-shell. Moreover,
the positron momentum squared in this case can be taken to m? ~ 0 while in
the previous case it was taken to be 0.5 GeV2. Therefore, a direct comparison
between the form factors obtained in the two cases is not straightforward and
some kind of judicious extrapolation would be required in the two cases to meet

the physical requirements and to have a proper comparison.

4.4 Discussion and Conclusions

In this chapter, we have discussed the computation of the form factors involved

in the proton decay to a positron and a photon using the LCSR framework. This

3The numerical values of the form factor in Fig.(4.12 (b)) are slightly different from
Fig.(4.11) as in the present case (p, — k)2 = p? is set to be equal to 0 GeV®. While, for
Fig.(4.11), it has been set to 0.5 GeV?.
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Figure 4.11: The physical FF, Azg(so, K?) is calculated from the combination of
Flp, Ftp and F7p, employing proton DAs. Left panel: AR (s, K2) vs K2 is
shown for three values of so = (1.4 GeV)?(violate dotted), sy = (1.44 GeV)?(red
solid) and sy = (1.5 GeV)? (blue dashed) at the Borel Mass, M? = 2 GeVZ.
Right Panel: A;%"(sq, K2) vs M is shown for three values of K2 = 0.5 GeV?(red
solid), K% = 1 GeV?*(red dashed) and K? = 2 GeV? (red dotted) at the contin-
uum threshold, sy = (1.44 GeV)?.
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Figure 4.12: The physical FF, A7t4 (s, K2) (left panel) and A}E"5(sq, K2)
(right panel) vs K? are shown at so = (1.44 GeV)? and M? = 2 GeV? along with
the uncertainties associated with the parameters involved in proton DAs. The
bands represents the uncertainties 3.

should be viewed as a complimentary approach to lattice calculations, though,
to the best of our knowledge, there is no lattice study so far for proton to gamma
transition. This decay mode is found to have not attracted much attention. How-
ever, as briefly discussed in [124], the branching ratio for this mode is expected
to be smaller than the p — me™ mode, the very well studied mode, by a factor
O(1/(few tens)). As, it is not a huge suppression and keeping in mind that the
nuclear absorption effects are not going to affect the radiative mode, it becomes
important to remain optimistic about this mode. As a next step, it is important

to have the relevant form factors computed in a reliable fashion. With that aim,
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we discussed them in LCSR framework where they can be calculated either by
interpolating the proton state and using the photon DAs (case 1) or by inter-
polating the photon state and using the proton DAs (case-2). In this chapter,
we discussed both these cases one by one. In both the cases, the physical form
factors (define in Eqn.(4.8)), which enter the amplitude and hence the decay
rate of this radiative mode, are found to be related to the hadronic functions
entering the parameterization of the correlator in the two cases. These hadronic
functions have been systematically computed in LCSR framework and and then
the physical FFs have been determined using various combinations of them. In
the first case, it was found that the hadronic functions entering the parame-
terization of the correlation function get important and, in some combinations,
dominant contributions from condensates. Consequently, these contributions are
important and if not considered, these would have led to erroneous results. The
photon DAs used in this case were taken upto two-particle twist-3 accuracy.
However, in case-2, at the order of twist-3 accuracy of the proton DAs, we did
not encounter any contributions coming from the condensates.

Though, the physical FFs can be calculated using various combinations of these
hadronic functions, not all the combinations were found to have good stability
against the Borel mass and hence were discarded. For both the cases, we have
explicitly shown the FFs obtained using the combinations with the best Borel
stability.

The physical FFs in case-2 are found to have a factor of ~ 3 difference between
each other and also to the FFs obtained in case-1. Though, as briefly discussed
above, a straightforward comparison between the two cases is not possible due to
differences in the choice of the momentum transferred square and the limitations
of LCSR to attain the physical point. However, one can naively say that the
FFs obtained in case-2 are more trustworthy on the basis of error analysis. The
errors obtained in case-2 are much smaller that the errors encountered in case-1.
The errors in case-2 are found to be as large as (~ 50% for some combinations).
Similar conclusions on errors were made in [118]. Nevertheless, a detailed analy-
sis including higher twist effects is required. As for the case of baryon, the higher

twist terms can have significant impact on the results obtained using LCSR as
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discussed in Section-2.2.2. Moreover, it has been observed that the choice of in-
terpolation current also plays a very crucial role [70]. For some choice(s), it has
been seen that a particular FF may simply does not show up in the correlator.
Along with this a proper mechanism for interpolating the LCSR result to the
physical point i.e. k* = 0 and p? = m? ~ 0 is required to make any strong
comments on the superiority of the two cases.

The results discussed here can also be utilised, with very less efforts, to compute
the FFs and the branching ratios for process having " instead of e in the final
state. It is possible as the detailed expressions reported in Eqn.(4.33)-Eqn.(4.54)
and Eqn.(4.70)-Eqn.(4.77) are written for non-zero positron mass and without
assuming k2 = 0. However, while computing the amplitude positron was consid-
ered massless and therefor there will be some extra contribution due to non-zero
mass of the lepton while manupulating Eqn.(4.7) and Eqn.(4.8). These modes
might turn out to be important as it was pointed out in a recent study [137]
that in some GUT scenarios, where the scalar mediated contribution dominates
over the gauge mediated ones, the decay channels with final states having second
generation particles are more favoured. Thus, the radiative modes can be equally
important and can provide complimentary information about the details of the

underlying high energy theory.



Chapter 5

The heavy meson system and

LCSR

After discussing the application of LCSR to light quark hadrons in Chpter-3
and Chapter-4, let us now move our attention to the processes involving heavy
quarks like charm quark. In this regard, we discuss the decay of charmed mesons
in this chapter. Firstly, we will discuss a baryon number violating (BNV) decay
of charmed meson into an anti-proton and a positron, i.e. D° — pet. As
discussed in the previous chapter, BNV processes are important as they can
provide direct signature of new physics. This process is found to involve twelve
independent form factors which we study using the framework of LCSR and
find that some of these form factor attain large uncertainties (as large as 200%).
These uncertainties are found to be majorly dominated by our lack of knowledge
of the D-meson light cone distribution amplitudes. To get a better understanding
on these DAs, in the later part of this chapter, we attempt to estimate wq, a
parameter related to the first inverse moment of the D-meson DAs which enters
directly in their definition. It can be estimated using the experimental data on
the Dy D,y (with ¢ = u,d,s) coupling and comparing it with the results one
obtains using LCSR for this coupling. This chapter is based on [138] and an

ongoing project.
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5.1 Introduction

As we know from the previous chapter, according to Sakharov conditions [94],
baryon number violation (BNV) is one of the important criteria to explain the
matter-anti-matter asymmetry of the Universe. Nonetheless, it is not allowed
in the SM as the baryon number is a conserved quantity in the SM as a result
of an accidental symmetry and motivates towards new physics. In that view,
as already discussed in the previous chapter, looking at the BNV processes will
be clear signature of BSM physics. Though, such processes are never observed,
they are well motivated in various BSM scenarios like GUTs, SUSY, etc. and
can be studied using higher dimensional baryon number violating effective oper-
ators (see Chapter-4). Experimentally, there are very stringent bounds on some
of these decays like proton decay, decays of heavy mesons to baryons, etc [139].
Out of all the BNV processes, proton decay has got the most attention so far,
theoretically (see for eg. [95], [112], [118] and references therein) as well as ex-
perimentally (see for eg. [126], [140] and references therein).

However, with advances in experimental facilities study of other modes are be-
coming more and more important. D® — pe’ is one such mode with recently
updated experimental bound on the branching fraction as < 1.2 x 1075 [141].
Theoretically, this decay is possible via baryon number violating dim-6 effective
operators. The major challenge in estimating the branching ratio is our lack
of knowledge of the form factors involved. To the best of our knowledge, [142]
is the only study which provides rough bounds on the branching ratio to be
< 1.1x 1074CE 12, where CE , is the Wilson coefficient corresponding to the
relevant effective operator which we will discuss below, with no explicit discus-
sion on the form factors involved. In this chapter, we will attempt to compute
these form factors within LCSR framework using D-meson light cone distribu-
tion amplitudes using a general interpolation current for the proton state given
in Eqn.(4.10).

The rest of the paper is devoted to the detailed discussion on the definition,
computation, and numerical analysis of these form factors using LCSR. The fol-

lowing analysis proceeds parallel to the analysis of p — e*#? in LCSR framework



5.2. Amplitude parameterization 123

studied in [118] and more or less follows the same methodology and procedure
as was followed in the previous chapter. Therefore, some details will be skipped.
In Section-5.4, we will see that the numerical results on these form factors shows
large uncertainties (as large as 200%). These uncertainties are found to be dom-
inated by the uncertainties in wg, a parameter which enters the considered ex-
ponential model for the D-meson DAs and is related to the first inverse moment
of these DAs. To address this issue, in later part of this chapter (Section-5.5
onwards), we attempt provide better estimate for this parameter by calculating
D; D,y (with ¢ = u,d, s) coupling using LCSR. The experimental value of this
coupling can be estimated from the experimental data on the branching ratio of
D* — D,y decays. Our aim is to compare these experimental estimates with the
theoretical estimates of these coupling and get an estimate on wy. This might
help us in probing and developing a better understanding of the structure of

D-meson.

5.2 Amplitude parameterization

As discussed above, one can compute BNV processes like D° — pet in a model-
independent way with the help of baryon number violating higher dimensional
effective operators. Within the SM effective field theory (SMEFT), there are 4
types of dimension-6 operators which can lead to this process. The explicit forms

of these operators are [128], [129], [143]

dug? b
Ol = eanens (d2C) (g2t 0 = eaeean (00°Ca)" ) (uCe)
4
OMT = €apceapers (¢7°CE) (q1°CH) e = €ae (d7CU5) (uzCer)

(5.1)

where C' = i72+° represents the charge conjugation matrix, {7, j, k, [} represent
the flavour indices, {a,b,c} are the color indices, {u,d} represent the right-
handed up and down quarks, and {q, ¢} represent the left-hand doublets of quarks
and leptons. These operators respect the SM gauge group, nonetheless, violate

baryon number which is an accidental symmetry of the SM.
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Using these operators and the generalised Fierz transformations (discussed in
Appendix-A) [135], one can write the BNV Lagrangian which leads to the process

DY — pe*. Such a Lagrangian reads as

L9 =3O = 3 e (dPCRT ) (FCRT)  (52)
I/ T

where superscript 1" represents the transpose, Pr and P are the chirality projec-
tion operators with {I',I"} € {L, R} and I'* € {1,7,,0""} with A € {S,V,T}.
cA- are the Wilson coefficients L. The transition amplitude for D° — pe* is de-
fined as the matrix element of this Lagrangian between the initial and the final

states as

A(D(pp) — Blpp)e™ (pe)) =Y _ e (e (pe)B(py) | Of

I

D°(pp)) (5.3)

This amplitude can be factorized in terms of the leptonic and the hadronic parts

as

A(D(pp) = Blpp)e™ (pe) = ) cfvUcHirrop(y) (5.4)

r,r
where, v¢ is the spinor corresponding to the positron and HFF,vp(pp) is the

hadronic object of interest defined as
Hivy(p,) = (p(py) !eijk (diTCFAPpuj) (FAPp/ck)| D°(pp)) (5.5)

Following the general parameterization in [118], this hadronic object can also be

parameterized as

qur'vp(pp) = Pr (Flflrf](pg) + ?AFlle/l (p?)) Up(pp) (5.6)

where F0'(p?) are the form factors with A € {S,V, T} and n € {0,1}. As D-
meson comprises of a heavy quark, we treat it in the framework of heavy quark

effective theory (HQET) [144], [145]. pf, = mpv* is the momentum of the D-

!The Lagrangian is assumed to be expressed in terms of the physical fields at the charm
scale and thus, ¢, ’s also include all the flavor and usual RG running effects.



5.3. Form Factors in LCSR 125

meson with v being its velocity such that v? = 1.

Parity conservation in QCD relates these FFs
An An An An
Fri = Frg Frp = Fri, (5.7)

resulting in twelve independent FF's in this case. We will now compute these
FFs in the framework of the light cone sum rules (LCSR).

Though the analysis is parallel to that in [118], there are two major differences
in the two scenarios stemming from the difference in the number of the form
factors and the type of mesons involved in the two cases. In the case of proton
decay [118], there are two form factors and a light quark meson i.e. 7° is in-
volved. However, in the present case, we have D°-meson which brings in various
challenges due to the presence of a heavy quark, and the very little knowledge
about the light cone distribution amplitudes of heavy quark mesons. Along with
that, the amplitude of D° — pe™ involves twelve independent form factors (as
discussed above) stemming as a result of the presence of more number of effective
operators relevant to this decay as compared to the number of effective opera-
tors for the case of proton decay. Having pointed out these major differences in

the two analysis, let us move to the discussion of the computation of these form

factors using the method of LCSR.

5.3 Form Factors in LCSR

As discussed in Chapter-2, the starting object for a sum rule calculation is the
identification of the relevant correlation function for the process. In the previous
chapter, we saw that the interpolation current for the proton state is not unique
and the determination of the form factors depends on the choice of the interpo-
lation current used to define the correlation function. Therefore, in the present
case we obtain the relevant correlation function by interpolating the anti-proton

state in Eqn.(5.5) with the general interpolation current for the proton state
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provided in Eqn.(4.10). Such a correlation function reads as

1 =i [t 0|7 {u(0)Qf ()} D°(0) (53)

where Of/(x) = €% (AT CPrlqu;) (PoTey), and x,(0) = xjo with x,(z) =
[emm (uf (2)Csdm () un(z)] + t [ (uf (2)Cdy () y5un(x)] being the pro-
ton interpolation current defined such that (p(p,)[x:(0)|0) = m,\,v,(p,) Where,
)\; is a measure of the strength with which this current couples with the pro-
ton/antiproton state. {i,j,k} denote the color indices.

To derive the sum rule from this correlation function, we require the two rep-
resentation for this correlation function. First using the perturbative QCD in
terms of OPE near the light cone and second directly in terms of the hadronic
state resulting into the dispersion relation (as discussed in Chapter-2). In order
to derive a representation directly in terms of hadronic states, we insert a com-
plete set of intermediate states with the relevant quantum numbers. Once we

separate the pole contribution coming from the lowest proton state, we get,

H?F}'lad —mpApUp(Pp) [Hrrr] vp(pp) + -

? AVP( 2 2)%

= Z.PF/ HFF’ (pp>pe) + HFI" (pp7pe>¢ + HFF’ (pp7pe)_ + HFF’ Ppy Pe

(5.9)

where ellipses represents are contribution of the heavier and continuum, II{, are
the hadronic scalar function of p} and P? = —p? with r = {S,V, P,V P}. These
functions can then be written in terms of the spectral densities which are related
to the imaginary part of these functions itself. Explicitly, these spectral densities

can be written as
1
pléljj had(sv PeZ) = Apm§5(8 - mi)FfL‘F’f(s, PeQ) + ;Im (H?ﬁ(& Pg)) (5.10)

where, the first term corresponds to the pole contribution coming from the lowest
energy state, i.e. the proton and the second term corresponds to the contribution

of the heavier states and the continuum. FIf‘F’T(s, P?) in the first terms are the
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residues of the lowest energy states. These are the objects which we can compute
using LCSR and are directly related to the form factors defined in Eqn.(5.6) i.e.

F/(s, P2) for the on-shell proton, i.e. s = m? as

AS _ AP _ AD
— Iy = Frp Frp

AV AVP A,
— Iy = Frp Frr/l (5.11)

Using the spectral density defined in Eqn.(5.10), the final dispersion relation for

the hadronic scalar functions in Eqn.(5.9) reads as

FAr o 1Im <HFF'(5 P2)>
Mg (0, P2) = Ay —5— +/ ds— (5.12)

P2 _
mi—py Jy om o s-R

where, sl is the continuum threshold. The second term, coming from the heavier
states and the continuum, can then be approximated using the quark hadron

duality (see Section-2.1.1) according to which

~ 1Im (HFF,(S p? )) ~ 1Im <H§‘F’} QCD (g, P2)>
/ ds— A / ds— (5.13)
s T s — 3 o 7 5 — P2
where sg is also known as the continuum threshold and is not necessarily equals
to sh. We will discuss more about it in Section-5.4. H?fC’QCD are the scalar

functions (p2 and P?) to be calculated in perturbative QCD. We will discuss
them below.

Now, after discussing the representation in terms of the hadronic states, we move
to the representation which is calculated using perturbative QCD. To proceed
further in this direction, we first need to solve the time ordered product of Qf. ()

and x+(0) by contracting the fields and results into (see Fig. (5.1))

T {Xt er'( )} = —¢mneit [(PF'FAQ( )) {<ﬁl(0>755’g@j(x)PFFASﬁk($)
+u(0)Tr (1558, (1) AT 481 () ))
(@055 (@) P aS)y (@)

+20y(0)7s T (S;lnj(x)PprAsgk(x))) }] (5.14)
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r(p,) e*(p,) p(p,) e*(p,)
@) (b)

Figure 5.1: Feynman diagrams contributing to the light-cone expansion of the
correlation function for D° — pet decay to the leading order. The encircled D
represents that the distribution amplitudes for D-meson enters the LCSR compu-
tation. The vertex on the left represents the proton interpolation current while
the vertex on the right represents the dim-6 BNV operators. (a) represents the
usual non-condensate contribution while (b) represents the considered contribu-
tion coming from the condensates.

where I' = CTC~! and Sfj(x) is the quark propagator at the light like separa-
tions given in Eqn.(4.28) and Eqn.(4.30), respectively. In the present analysis,
we do not involve the contributions coming from the higher terms in the propa-
gator due to one of more gluon emissions. Substituting it back in Eqn.(5.8), we
end up having the matrix element of the quark bilinear between a vacuum and
the D°—meson state. Such a bilinear is can be defined in terms of light cone

distribution amplitudes (DAs) of D-meson as [146]

(01(0) [z, Oes ()] D(v))
= 2o [ g e [ (1) {2 ) - Pew) - ¢D<w)¢} ) )

2v.x

where fp represents the decay constant of D-meson, ¢¥(w) and ¢?(w) are the
DAs of D-meson. These DAs are not very-well known and are parameterized
using various models (see Appendix-B for details). For the present discussion we
take the simplest exponential model parameterization for these DAs [72] which
reads as

1 1

o2 (w) = w—ge‘w/ v, ¢P (w) = w—oe—w/wo (5.16)
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where, wy is a model input parameter (we will discuss more about it below).

Also, it is useful to define ®F(w) as

®2(w) = [ de (o210 - 62 (1) (5.17)

such that

L (w)

d2(0) = dP(c0) = 0, and ™

= ¢P(w) = 6P(w).  (5.18)
This definition along with the partial integral helps us in writing

o0 D D : 00
/ de=iwa @20 —OZ(w) _ 1 / dwe DD (). (5.19)
0 0

2u.x 2

Finally, using the above definitions and the integrals collected in Appendix-A,
we get the QCD representation of the correlation function defined in Eqn.(5.8)

as

2

my

AQCD . A,S,QCD
HFFC? =P (HUpp “ (pp’pe> + HFF’ (pp7pe)¢ + HFF’ (pp7pe)

AV ()2 2)%

+ Hpp ™ (P, vz (5.20)

P

Here, H?{?’QCD(pZ,pg) with 7 = {S,V, P,V P} are the scalar functions of p?
and p? that entered in Eqn.(5.13). The explicit forms for these function for
Pr = Pl = P, and Pr = P;, and P} = Py are collected below (the choice we

make for the independent form factors).

5.3.1 Case-1: Pr=P. =Py

e ForT4 =1

472

MRCOIGRY) {(w +m]§>2)¢f(w) N @%220)}} (5.21)

Hif:fDmD/Ooodw[(t_l){(wml))@f( + P2¢P (w) } In(—
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> 3(t+1
;) = fDmD/O dw {% {(w+mp)®L (w) + P*¢? (w)} In(—

@)t 1) {(w + mPD2)¢5 (w) ‘I)%;”) H (5.22)

872 3 P2
(5.23)

P — _p fomp /Ooo du {3(75 + 1>¢)£(w)ln(—P2) ~{ag)(t—1) qﬁf(w)}

TSVP — fomp /OOO du {(t - 1)(I>i7(w)ln(—P2) n (qg)(t —1) qbf(w)}

LL - P 8 471'2 3 P2
(5.24)
o For I'4 = Vo
Iy = fDZLD /OOO = {@8;21) {(w+mp)@L(w) + P2} (w) } In(—
(Gq) [t -1)22w) B+t (w+mp)pP(w) 4(v.P)¢7 (w)
T { P2 * P2 a p2 H
(5.25)
iy — - Jometin) [ g [EIEE ) (0w 14 D620}
(5.26)

= -m, 2220 [ | 2 f20P) - (¢4 8w} | )

V,VP _
Uy~ =—my

fDZﬂLD /OOO dw {(tS;;)CI)f(w)ln(—PQ) 4 <QQ>(§+ 3) ¢—;3(;U)}

(5.28)
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e For I =0,

s — Jomplaa)(t = 1) /0“ i [% {462 (w)(v.P — (w+mp)) + 302 (w)}

6
(5.29)
2= [ [ {2 e
+ gcpg(w)(w + mD)} In(—P?) - <qq>(§ =
% { (U) + mD)((bJrf()g ) + 2¢ ( )) ®§;U) }:| (530)

2 472
B <q61>(§— 1) {(¢f(w);2¢])(w>}] (5.31)
0YP fDmD<qg> t-1) /O " dw {¢£P<;U)] (5.32)

5.3.2 Case-2: Pr=P; and Pl = Py

e ForT4 =1

5 = 2202 [ [P s mp)obo) + P20 -

8 8m?
(@)t —1) [ (w+mp)eP(w) O (w)
aq ! { 2 - H (5.33)
3 = 2222 [ [ s )02 + PR ()
| (@) <§ - 1) {(w + m;m (w) , @iy H (5.34)
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s — _mprmD /0°° dw [(t4;21)<1>£(w)1n(—P2) n <Q_Q>(;_ 1) (b}E;U)}

(5.35)

SVP _
g =—my

(5.36)

o For I'4 = Vo

myy = ool /OOO dw [gb;f;“) {(w + mp) — (t 4+ 3)(v.P)}
(t +2)92 (w)

- T] (5.37)

0 —1
iy = -2 ["aw |2 (w0 mpye2(w)

+ (b*T(w) (P? +2(v.P)(w + mp)) } In(—P?)

(qq) [ (w+mp)
3 { pe

(@)t +3)+ o2w)e+ 1) - T

T /000 . {(t ) {asf(w)(v.P) . <1>£<w>} (P

Py 472 3
(@9 ¢ ,p D
— {6 (w)(t + 3) + o7 (w)(t + 1)}] (5.39)

= oo D
Hg,};/P _ _mprmg<qCI>/0 dwgb}(;ﬂ) (5.40)

e For 4 = ot All the correlation functions turns out to be zero.
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with

P? = (pe + wv)* = ((w + mp)v — pp)*

— w(w+mp) — — — (w i mD) P? (5.41)

such that s = p? and P? = —pZ. Also, as v* =1

(v.P) = —(v.pp, — (w +mp))
_2w+mp s+ P?
N 2 2mp

(5.42)

Finally, after having both the representation given in Eqn.(5.12) and Eqn.(5.20)
for the correlation function defined in Eqn.(5.8), we are ready to write the sum
rule for the present case. It can be written by equating the two representations
and using the statement of quark hadron duality given in Eqn.(5.13) to approxi-
mate the heavier states and continuum contributions. The final statement of the
sum rule can then be written by performing Borel transformation to suppress the
effect of these heavier states and continuum such that the sum rule is saturated
with the lowest proton state. The final sum rule reads as,

mp

|
R o0 %) = = [ e i (96 ) 643
mpp 0 s

where M is the Borel mass. We will now discuss how to choose the values of M

and sy and use them to get the numerical estimates for the form factors.

5.4 Results

The BNV process D° — pe™ is found to involve twelve independent FFs. The
analytic form of these form factors can be obtained using the sum rule for F/qy
given in Eqn.(5.11) and the relations given in Eqn.(5.11). These FFs turns out
to be dependent on two independent parameter, sqg and M known as the contin-
uum threshold and the Borel mass, respectively, and the momentum transferred

square, P2 = —p?. The sum rule in Eqn.(5.43) is derived using the light cone

e



134 Chapter 5. The heavy meson system and LCSR

DAs of the D-meson and using a general interpolation current for the proton
interpolation current. Now, in order to understand the dependence of these FFs
on the choice of interpolation current, let us choose two different choices of this
current namely, x4 and ;o defined in Eqn.(4.12) and Eqn.(4.14), respectively.
These are the usually considered forms of proton interpolation current in lattice
QCD and LCSR calculations (as discussed in previous chapter).

Moreover, in order to perform the numerical analysis, we need information on
the values of sy and M. The values of these parameters are to be chosen such
that the sum rule is saturated with the ground state contribution and the con-
tribution coming from the continuum and the higher resonances should be well
suppressed such that they do not contribute more than 30% to the result (see
Chapter-2 for details). The value of sy must be close to the threshold of the con-
tinuum or the higher resonances such that the sum rule obtained is stable around
its vicinity. we choose sy = (1.44 GeV)?, the Roper resonance and show the de-
pendence of FFs on sy by considering three different values of it in Figs.(5.2-5.5)
for fixed M = 2 GeV. This is the next resonance state after proton with the
quantum numbers of the proton state. The form factors are found to have very
small dependence on the variation of the value of sy in the vicinity of the Roper
resonance. Moreover, for the value of M we find a range called Borel window
such that the form factor is nearly stable in that range of M (as discussed in
Chapter-2). We find these FFs to be most stable for M? > 2 GeV? and show
the Borel stability curves in the right panels of Figs.(5.2-5.5) where these FFs
are plotted against the variation in M? = (2 —5) GeV? for three different values
of P2 equals to 0.1 GeV2, 0.5 GeV?, and 1 GeV? with fixed sy = (1.44 GeV?).
The FFs are found to be very stable in this Borel window for all the sets.

As can be seen from Eqn.(5.11), each form factor can be calculated from two
FAor with A = {S,V,T} and r = {S,V,P,VP}. In Fig.(5.2) and Fig.(5.3),
we have shown the form factors F;5" and F Z‘I’%”, respectively with n = 0,1
and A = {S,V, T} using both combinations of F;;" with A = {S,V,T} and
r={S,V, P,V P} and the x;o interpolation current for the proton state. Simi-
larly, in Fig.(5.4) and Fig.(5.5), we show the FFs F/" and F;=", respectively with
n=0,1and A= {S,V,T} using both combinations of F¢;" with A = {S,V,T}
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Figure 5.4: Same as Fig.(1) but for interpolation current, x 4.
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Figure 5.5: Same as Fig.(3) for F/»" extracted from Fiy .

and r = {S,V, P,V P} and the x4 interpolation current for the proton state. It
is important to note that some of these FIf‘F’T get contributions only from the con-
densate terms due to which we found the difference in the extraction of the FFs
using different combinations of Ffyr. In Figs.(5.2-5.5), we have labelled these
different combinations with (C) and (NC+C) for having only the condensate
contribution and having condensate as well as non-condensate contributions, re-
spectively.

Furthermore we tabulate these form factors in Table-5.1 and Table-5.2 for ;o
and xra, respectively at P? = 0.5 GeV?, sy = (1.44 GeV)?, and M = 2 GeV.
Two FFs, FLTI’{0 and F' Z ]’%1 are found to be explicitly zero in our analysis. The un-
certainties in Table-5.1 and Table-5.2 are associated with the uncertainties in the

values of the parameters used for the numerical analysis (collected in Appendix-
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Case-1: (Pr = Pr = Pp)

Case-2: (PI‘ = PL7PI‘/ = PR)

Form Factor | Extracted from | Value (GeV)® || Form Factor | Extracted from | Value (GeV)?
S,S S,S
F50 FY 0.211 +0.471 pS s —0.106 + 0.075
FP 0.041 £ 0.036 Fy 0.074 £ 0.143
S, S,
s Y 0.074 £ 0.075 s Fr 0.211 +0.471
Fri S,V P Frk S,V P
! —0.187 4+ 0.144 Foy 0.039 + 0.033
V.S V.S
pYo ) 0.360 & 0.467 pro )y 0.277 4 0.227
FP 0.099 + 0.036 FY 0.043 4 0.077
Vi FyY 0.271 +0.097 - Y ~0.251 4 0.341
Frp VVP Fik v,V P
) —0.067 + 0.154 )y 0.078 % 0.067
TS .S
0 FE 1.114 +0.812 0 F 0
Frp TP Fik T,P
Fl 0.550 + 0.256 F 0
TV T,V
o F 1.378 4+ 0.629 o7 Fly 0
LL TVP LR T,V P
! 0.156 + 0.133 Fly 0

Table 5.1: Tabulation of all the 12 independent FFs at P? = 0.5 GeV? for
so = (1.44 GeV)? and M = 2 GeV calculated using the proton interpolation
current x;o. The errors are associated with the errors in the parameters used

for the numerical analysis.

Case-1: (Pr = Pr = Pr)

Case-2: (Pp = PL,PFf = PR)

Form Factor | Extracted from | Value (GeV)® || Form Factor | Extracted from | Value (GeV)?
50 7 —0.110 4+ 0.244 50 Fry 0.183 £ 0.363
. FSP —0.135 £ 0.109 . F5P 0.096 % 0.074
S, S,
s Y 0.183 £ 0.363 s Fr —0.110 # 0.244
Frp SvVP Fik S,V P
Y 0.097 £ 0.074 Fin ~0.133 £ 0.109
Vo Fy —0.302 + 0.268 Vo Fy —0.345 + 0.270
. FYF —0.062 + 0.026 e FYF —0.165 + 0.088
- FrY —0.204 % 0.072 - By 0.218 + 0.257
FLL V.VP FL}" v,vpP
F) —0.046 + 0.125 Fa 0.081 £ 0.068
S S
0 F —0.578 +0.414 0 iy 0
Fip TP Fik T,P
F —0.018 +0.152 Fl 0
. FY —0.081 = 0.405 . F 0
Fri T,VP Fin T,VP
) 0.034 4 0.068 Fla 0
Table 5.2: Tabulation of all the 12 independent FFs at P? = 0.5 GeV? for

so = (1.44 GeV)? and M = 2 GeV calculated using the proton interpolation
current xp4. The errors are associated with the errors in the parameters used

for the numerical analysis.
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Figure 5.6: The representative graphs showing the variation of errors with P2 for
some F;}’T functions calculated using the proton interpolation current, y;o. The
shaded regions represents the error band and the central line gives the calculated
values of the F/37 functions

D). Further uncertainties due to higher order effects and duality violations are
not included here. Looking only at the uncertainties due to uncertainties in the
parameter values are also worrisome as in some cases these uncertainties are as
large as 200%. We have also plotted the uncertainties in Flf}’,r with P? using pro-
ton interpolations currents, x;o0 and xpa in Fig.(5.6) and Fig.(5.7) (only some
representative graphs). These uncertainties are found to be mainly dominated by
the uncertainties in wy which is a model input parameter in the DAs of D-meson.
This parameter is related to the first inverse moment of these DAs, \p, defined

as

Ap(p) = /Ooo %wcbz(w, 1) (5.44)

where, 1 is the normalization scale. This parameter can be very useful in probing
and understanding the structure of D-meson. In the next section, we will discuss
an attempt to have a better estimate on this parameter using the experimental
data on the D;D,y coupling (with ¢ = u,d, s) by equating them to the same
couplings obtained using LCSR.
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5.5 D*D~v: Probing the inner structure of the

charm mesons

In this section, we will first look at the D} D,y (with g=u,d,s) coupling in the
LCSR framework. Later we will see how we can use the experimental data on
the branching ratios of Dj — D,y to obtain the value for this coupling, which
in turn can be used to get an estimate for the parameter wy (see Eqn.(5.16)).

The amplitude for the radiative decay of D;-meson to D,-meson (with ¢ = u, d, s)

can be written as [147]
A(Dy(p') = Dy(p)v(k)) = (Dg(P)Y(K)|Dy) = 9p, € €upok’eSp*ep,  (5.45)

where p' = p+ k, gp, is the D; D,y coupling, €,,,, is the Levi-civita tensor, e
is the electric charge of the electron, and €7 and e, are the polarization vectors
q
for photon and D —meson, respectively. Using this amplitude and the two body
phase space, the decay width of D}-meson for this process can be calculated as
_>
 Qemgp, | KT

L(D; = Dyy) =~ (5.46)
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2 .
where ., = {- is the fine structure constant and

2 2
— mp« — Mp
E|l=— 5.47
| | QmD:; ( )

with mp, and mp; being the masses of D, and D} mesons, respectively. Now,
in order to evaluate this coupling using the method of LCSR, we first need the
relevant correlation function for this process. It can be obtained by interpolat-
ing the D;—meson and photon with the D} interpolation and electromagnetic

currents, respectively. Such a correlation function reads as
T,, = —ic / d*z ¢ (D (p)|T{J™ ()1, (0)}|0) (5.48)

where T represents the time ordering, and the currents Ji™ = Q.c(x)y,c(z) +
Qqq(z)yuq(x) and ij; = ¢(0)7,¢(0) are the interpolation currents for the photon
and Dj-meson states, respectively. Now, in order to derive the sum rule for the
D} D,y coupling, we first calculate this correlation function using perturbative
QCD. As the mass of strange and charm quarks can not be neglected, one need to
employ the light cone propagator for the massive particle given by (see Appendix-

B)

Sij (w1, x3,m) = —i(0[T{gi(x1)g;(x2) }0)

d4k —ik.(x1—x % +m
= / (27_[_)4 e ( 1 2)m§ij + e (549)

where m represents the mass of the quark, and the ellipses represent higher order
terms involving one or more gluon emissions and the condensate contributions.
These are not considered in the present discussion. Next, using the parame-
terization of the matrix element of the bilinear operator between the vacuum
and the D,—meson state (in terms of the light cone DAs of D,—meson given in

Eqn.(5.15)), the representation of the correlation function in Eqn.(5.48) within
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Figure 5.8: Feynman diagram contributing to the light-cone expansion of the cor-
relation function for D} — Dy up to leading order. The encircled D, represents
that the distribution amplitudes for D,-meson enters the LCSR computation.
The encircled vertex on the left represents the D} interpolation current while
the vertex on the right represents the electromagnetic current.

perturbative QCD reads as (see Fig. (5.8))

TP (p, k) = e fp,mp, / ” dw { Da (1) {( Q. . Q }

0 E—wv)2—m2  (k+wv)? —m?

+ o2 (w) { Qeme + Qo E H €pwask®v”

((k —wv)* =m2)% ~ ((k+wv)? —m2

(5.50)

where gbfq (w) and ®Y7(w) are defined in Eqn.(5.16) and Eqn.(5.17), respectively.
Ip, and mp, are the decay constant and mass of the D,-meson while m, and m,
are the masses of the charm and g = {u, d, s} quarks, respectively. v is the four
velocity of the D;—meson such that p* = mp, v* and v* = 1.

Moreover, the representation of the correlation function given in Eqn.(5.48) in
terms of hadronic states can be found by inserting hadron states with relevant
quantum numbers and separating the contribution coming from the lowest energy
state which is D} itself in the present case. Therefore, the hadronic representation

i.e. the dispersion relation reads as

Th(p, k) = 2e

fD;mD; GDqD(}f(—kz) & 1 Im (T}md(s, —k2)>
5 5 T S— 5
mp, +mp; (p+k)>—mp. Sz, T s—(p+k)

(5.51)

where fp» and mp; are the decay constant and the mass of the Dj-meson, respec-

tively, ef,?q represents the polarisation vector for the Dj—meson, and Gp,p; (K %)
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with K2 = —k? is the residue of the lowest energy term and dictates the dynam-
ics of the electromagnetic transition of a D}-meson into a D,—meson defined by

the following matrix element

2

D} 9
— €0 ks Gp«p,(k 5.52
Mp, + Mp; ety Palts Dqu( ) ( )

(Dy(p)] 2 (0) D (p + K)) ==

In writing the first term of Eqn.(5.51), we have also using the following conven-

tions
* — * D;
(D5 (p + k)[e(0)7,q(0)[0) = fpsmpse,' ™, and (5.53)
XY *(DX k k v
EE,Dq)Gy(DQ) = _gpu + (p+ >p2(p+ ) . (554)

D
The second term in Eqn.(5.51) represents the contribution coming from the heav-
ier states and the continuum where s} is the continuum threshold. Now, we are
ready to write the sum rule by equating the two representations and approximat-
ing the heavier states and continuum contributions using quark hadron duality
(see Section-2.1.1). The final sum rule after performing the Borel transformation

on (p + k)? reads as

Gp:p,(—k*) = ! /Odse(f@@%lm(TQCD(s,QZ)) (5.55)
0

B ij;mD;;

where T"%(p, k) can be obtained from T/5%p, k) as Ti(p,k) =
T (p, k)euask®p?, and M is the Borel mass. The imaginary part of T'(s, K?)

can be obtained using the Cutkosky rule and the use of the following identities

1
Im (m) = —7T5(P2 — mz), and (556)

Im ((P2 _1m2>2> - kv_fw (8%5(132 - m2)) (5.57)

where m = {m., m,}, and

P? = (k —wv)? = —K? (1 + ﬂ) +w? — w—— 4 wmp, (5.58)
me me
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with s = (p + k). Similarly, for P"? given by

P? = (k+wv)® = —K” (1 - i) +w? +w—— — wmp, (5.59)
mp, mp,

one can simply replace P? by P"? in Eqn.(5.56) while Eqn.(5.57) will be slightly
different such that

Im ((W _1 m2)2) - /mi - <a%5(P’2 - m2)> . (5.60)

Using these relations, one can then perform the integrations over w and s, and
get the final LCSR extraction for Gp,p; (K?). The Dj Dy coupling represented
by gp, is Eqn.(5.45) can now be calculated using the sum rule for GDqD;(KQ) in

Eqn.(5.55) as the two are related by

2

—— Gp.p(k*=0 5.61
mp, +mp; Dqu( ) ( )

dp, =

where I'p; is the total decay width of the Dj—meson. If we have the experimental
values for gp,, then it can help us in getting a direct estimate of wy.

For that purpose we have collected the values of the branching ratios for D} —
D,y along with the total decay widths of the Dj-meson in Table-5.3 taken from
[35], and also the couplings gp, determined from these experimental values or
limits.

Now, as we have the experimental as well as theoretical curves for gp, as a

Channel || Branching ratio (%) | Total decay widths | gp,
D** — Dy (1.6 £ 0.4) (83.4+ 1.8) KeV 0.47
D*0 — DO% (35.3+0.9) < 2.1 MeV <10.98
D= — Dy (93.5+0.7) <1.9 MeV <16.27

Table 5.3: Tabulating the values of the branching ratios for D} — Dgvy (¢ =
u,d, s) decay and the total decay width of the D;—mesons [35], along with the
experimental estimation of the D} D,y coupling, gp, defined in Eqn.(5.46).

function of wy, the intersection point (see Fig. 5.9)provides the best value of wy.

We infer wg = 0.35 GeV. The experimental uncertainties are found to be almost
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Figure 5.9: Plots showing the variation of gp+ as a function of wy: (a) for different
values of M? and fixed sy = 6.5 GeV?, and (b) for different values of sy and fixed
M? = 6 GeV?. The Magenta line represents the expected value of gp+ using the
experimental data as tabulated in Table-5.3 (Error bands are to be included).
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negligible here. However, the theoretical uncertainties, which we expect to be
small, are yet to be included. As can be seen from Table-5.3, the exact value of
the total decay width is known only for D*T-meson while for D*¥ and D}, we
only have the upper bounds. Thus for D**, an exact value for the coupling gp+
has been extracted. To get an estimate for the total decay widths instead of the
bounds, we plan to construct suitable ratios of the branching ratios of various
process. However, the estimation of wy from experimental information on gp+ in
Fig.(5.9) already shows the power of this method in probing the inner structure
of D-meson. We expect that the estimation of wy obtained using this method
will act as a complimentary way to the method one opts to have estimates on
the first inverse moment of B-meson DAs using data on B — fr,v mode. Such
an approach can be used for D—meson system as well. Moreover, we expect
our method to be sharper and better due to two reasons. Firstly, there are less
complications involved due to presence of only one hadronic quantity here given
by the D D,y coupling, while for D — v,y mode, there will be two form factors
present. Secondly, our method will provide the exact value for this parameter
while using D — (v, one only gets a limit. Whether this expectation bears out
or not can only be confirmed after complete analysis. This is an ongoing work

and is expected to be completed in near future.

5.6 Conclusions and Discussion

In this chapter, we have discussed the application of LCSR to processes involv-
ing mesons with heavy quarks. To this purpose, we first considered the BNV
decay of charmed meson to an anti-proton and a positron i.e. D° — pet. This
process is found to involve twelve independent form factors. We discussed the
evaluation of these form factors in LCSR framework using D-meson light cone
distribution amplitudes in the exponential model parameterization and the gen-
eral interpolation current for proton state. However, for numerical analysis we
explicitly considered two forms of proton interpolation currents labelled as x4
and yro provided in Eqn.(4.12) and Eqn.(4.14), respectively. It is found that
each of these FFs can be extracted from two Fiy, where A = {S,V,T} and
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r = {S,V, P,V P}, the residue functions of the lowest state contribution to the
dispersion relation given in Eqn.(5.12). The relations between these functions
and the form factors are provided in Eqn.(5.11). However, the extraction from
the two are not found to match completely. We suspect two possible reasons
for that. Firstly, some of FrAr’f are found to get contribution coming only from
the condensate term of the propagator while others get contributions from both
condensate and non-condensate terms. The case where both the combinations
have condensate as well as non-condensate contributions, like for F fLO and F' le
for xra case (see Fig.(5.4)), the extractions from the two combinations are found
to be close to each other. Secondly, as the LCSR predictions are more trust-
worthy at large momentum transfers i.e. large P2, the extractions from different
combinations might be different at low P2. At large P?, they are found to be
approaching each other.

Furthermore, the uncertainties associated with the uncertainties in various pa-
rameters used in the numerical analysis are also computed. They are found to
be very large (as large as 200% for some cases) as can be seen from Table-5.1 and
Table-5.2, and also from Fig.(5.6) and Fig.(5.7). Even though the extractions of
the FFs from the two combinations did not match, they are found to be numer-
ically within the error bars of each other. Thus, these results provide reasonable
estimates for these FFs which can be used in a specific model framework where
cin’s are known functions of heavy particle masses and couplings to obtain the
bounds on the parameters of the theory. The uncertainties obtained are found to
be dominated by the uncertainty in the model input parameter, wg in the DAs of
D-meson. Therefore, a better understanding of these FF's demands a better un-
derstanding of D-meson DAs as well. The better understanding of these DAs are
not required just for a better understanding of this particular mode but rather
for other modes involving D-meson also like DY — Ae* which can be studied
straightforwardly using the same method. As experimental searches improve, it
is important to have first estimates of these non-perturbative inputs as well as
to reduce there uncertainties.

We then discussed an attempt to get a better understanding on these DAs. For
that we have estimated the DD,y (with ¢ = u,d, s) coupling, which is a func-
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tion of wy, in the framework of LCSR. These couplings can also be estimated
using the experimental data on the branching ratios of D) — Dyy decays, and
the total decay widths of the Dj—mesons. On equating these estimations, we
have shown that one may indeed get a better estimate of the input parameter wy
which is related to the first inverse moment of the D-meson DAs, Ap. Therefore,
it can help us in probing the structure of the D-meson. For the case of B-meson,
one constrains the analogous inverse moment using the B — (v mode. Such an
analysis provides only a limit on the value of the inverse moment and is rather
complicated due to the presence of two form factors. A similar analysis can also
be performed for D-meson. Our method to estimate Ap can be considered a
complimentary way to this approach and is rather simple and is expected to be
give sharper results. Moreover, stronger conclusions can be made only after a

complete analysis as stated above.






Chapter 6

Summary and Future Work

6.1 Summary

The theory of strong interactions is dictated by Quantum ChromoDynamics
(QCD) at the fundamental level. It is a non-abelian gauge theory that leads to
a special property of self-interactions amongst the gauge bosons called gluons.
Due to these self-interactions of the gluon, QCD becomes complicated and shows
a unique feature of asymptotic freedom as a result of renormalization, because of
which QCD being a perturbative theory is applicable only at small distances or
equivalently at large energies. As one tries to look at the phenomena happening
at long distances or equivalently at small energy scales, perturbative QCD is
no longer reliable. The colored quarks and gluons, the fundamental degrees
of freedom of QCD, are no longer the degrees of freedom. Rather they form
colorless bound states called hadrons as a result of color confinement. These
hadrons are majorly of two types called mesons (the bound state of a quark
and an anti-quark) and baryons (the bound state of three quarks). As QCD
is a relativistic field theory, these hadronic bound states can not be explained
simply by a description in terms of a potential or wave functions. Therefore,
these hadrons are non-perturbative in nature with quarks and gluons interacting
at scale Agep, the scale of hadronization, inside the hadrons.

Experimentally, one can detect only these colorless hadronic states and no

free-colored quarks and gluons. Consequently, according to the scattering the-
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ory, to have a theoretical prediction for any physical observable like scattering
cross-section, decay width, etc., one needs to calculate the matrix elements of the
quark-gluon operators between the hadronic states. Such matrix elements are
called hadronic matrix elements (HMEs). These HMEs are of non-perturbative
nature in general and hence can not be calculated perturbatively using QCD.
These HMEs can be parameterized in terms of hadronic objects like form factors,
decay constant, etc. which contains all the information of the dynamics of
strong interactions responsible for hadron formation. This makes the calculation
of these hadronic quantities very demanding as they are very essential quantities
required to make any theoretical prediction as well as to understand the
dynamics of strong interactions at small energies. These objects are not only
necessary to make predictions within the SM, rather they are very crucial inputs
to make any prediction for beyond the SM physics scenarios as well.

To date, there is no theory that can compute these hadronic objects accurately
and precisely with the present computational and technical skills. Light Cone
Sum Rules (LCSR) is a QCD-based model which attempts to calculate these
hadronic quantities relying on analytic properties and unitarity of the correlation

functions.

In this thesis, we have studied the applications of LCSR to various pro-
cesses involving light pion, proton, photon, and D-mesons within and beyond the
SM of particle physics.

The first application involved considers the radiative decay of tau to a pion,
neutrino, and a photon. This process involves two time-like form factors named
as the axial and the vector form factors. We have computed these form factors
as the first-time application of LCSR to such a system up to twist-2 accuracy.
We have also computed the structure-dependent parameter for the pion which
is defined as the ratio of the axial to the vector form factor at zero momentum
transfer. The prediction for this parameter matches well with the experimental
determination of this parameter from the radiative decay of pion, including sign
where differing results have been quoted in literature. Afterward, we presented

the theoretical prediction for the decay width and the invariant mass spectrum
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of the m —~ system. We have found roughly 10% uncertainties due to the uncer-
tainties in the numerical values of the input parameters. Further uncertainties of
roughly 10% are expected due to higher twist effects and the duality violations
which were not included in this study and have been left for future studies.

As a second application, we have discussed the form factors involved in the ra-
diative proton decay. It is a baryon number violating process and hence is only
possible in beyond the SM scenarios. It involves two independent form factors.
This study presents a first-ever systematic estimation for these form factors. We
have computed these form factors considering two cases. In the first case, the
proton state is interpolated using the Ioffe current and we used the distribution
amplitudes of the photon up to twist-3 accuracy. In the second case, the pho-
ton state is interpolated with the electromagnetic current and the distribution
amplitudes for the proton state have been used up to twist-3 accuracy. The nu-
merical values of both the form factors in the first case are found to be O(107?)
while in the second case the form factor, Ar; was found to be smaller than Ay g
as well as the FFs calculated in case-1, by a factor ~ 3. These two cases can
not be simply compared because of the difference in the momentum transferred
square variable in the two cases and the limitations of the LCSR framework in
reaching the physical point. Moreover, the uncertainties are found to be lesser
for the second case. Hence, the second case can be preferred on the basis of
less uncertainties in the results. However, a careful analysis of both the cases
including higher twist effects and using different interpolation currents for the
proton state are required to make any concrete conclusion on the preference of
a particular case that has been left for future investigations.

After discussing these hadronic systems consisting of light quarks, we moved
to the system involving heavy quarks. For such systems, the distribution ampli-
tudes are not very well known. There are some models which have been proposed
for these DAs using heavy quark symmetry arguments. In this thesis, we have
only considered the exponential model. As an application to the heavy meson
system, we first considered the baryon number violating decay of D-meson to a
proton and an electron. This process involves 12 independent form factors. We

have computed these form factors for the first time using LCSR and provided
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estimates for a general interpolation current for the proton state. These form
factors can be very useful to develop a better understanding of various BSM
models. In calculating these form factors, we have used the D-meson distribu-
tion amplitudes up to the leading twist in the exponential model. The FFs are
found to have uncertainties as large as 200%. This error budget is found to be
dominated by our lack of precise knowledge of these D-meson DAs. In order
to get a better understanding of these DAs, we have attempted to fix the free
parameter wy in the D-meson DAs, which is related to the first inverse moment
of the D-meson DAs, using the experimental data on the radiative decays of the
D*-mesons. These decay modes are expected to be very helpful in probing the

structure of these heavy quark mesons systems.

6.2 Future Works

In future, we plan to study the rate and spectrum of radiative kaon decays i.e.,
K~ — (" yyy, where ¢ = {e, u} using the form factors estimated in the frame-
work of LCSR. These decays are interesting which can be seen by looking at
the branching ratios of the non-radiative and the radiative decay modes of koan

(collected in Table-6.1). There are two important points to notice here. First,

mode Non-radiative Radiative

K- —er, K= = uy, K™ — e vy K= = p vy

Branching ratio | (1.58 +0.007) x 1075 | (63.56 £ 0.11) x 10~2 | (9.4 +0.4) x 10~% | (6.2 +0.8) x 1073

Table 6.1: Tabulating the branching ratios for the radiative and non-radiative
decay modes of kaon to muon and electron (values taken from [35]).

the helicity suppression is lifted for the case of radiative decay. Second, which is
more interesting, is the ratio of the branching ratio for the radiative decay to the
non-radiative decay. This ratio turns out to be (O(1072) ~ a,,) for the muonic
mode, as one might expect. However, for the electronic mode, this ratio is O(1).
This leaves one wondering if there is any interesting physics hidden behind it or
it is just an artifact of kinematics? To get an answer, we need information about
the form factors involved in this decay. This decay also has two form factors like

in the case of radiative pion decay. However, there are extra complications due to
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large mass of kaon, mg which can not be set to zero, unlike the case of the pion.
We plan to compute these form factors within the LCSR framework overcoming
the difficulties arising due to large mass of kaon. Finally, in this project we plan
to find the branching ratios for both the muonic mode and the electronic mode
and look for any interesting phenomena which may be causing the difference in
the behaviour of these radiative modes compared to the non-radiative ones (as
discussed above).

In a different project, we intend to study the radiative decay of A, baryon us-
ing LCSR. This decay is loop induced in the SM and hence, is very sensitive to
new physics. LHCDb has observed this decay for the first time in 2019 and found
the branching ratio to be (7.1 + 1.5+ 0.6 £ 0.7) x 107% where, uncertainties are
associated with statistics, systematics, and external measurements systematics,
respectively [148]. This decay mode is considered to be an important channel to
study the polarisation of photon in b — sv transitions, since one can measure
the helicity of A baryons which provides access to the helicity structure of these
transitions. Theoretically, this mode has been studied in LCSR framework earlier
two times [149], [150]. But, the LCSR analysis with the improved distribution
amplitudes for A, [150] is not found to be in agreement with the experimental
results. However, the earlier predictions [149] are found to be agreeing well, re-
sulting into a dilemma. Moreover, none of these studies considered the effect of
photon emission from the spectator quark and the effect of charm loop inclusion
which is found to be significant for the case of B — K*vy and B — K*{*{~ tran-
sitions [151]. Both these effects can have impact on the LCSR results and might
shed new light. Consequently, we intend to have a fresh computation of the FFs
involved in the decay A, — A+ in LCSR framework including the contributions
coming from the above mentioned effects, and finally comparing the predictions
on the branching ratio of A, — A~ using these FFs with the experimental result
in [148].

Apart from these, we plan to move our attention a little away from LCSR ap-
plications and devote some time to understand how to match lattice results,

computed in specific schemes, to continuum calculations in the MS scheme.






Appendix A

Important definitions, identities

and integrals

Al

1.

Important definitions

Pauli matrices: These are trace-less 2 x 2 matrices and are represented
as 0; with 7 = 1,2, 3. These matrices act as the generators of SU(2) gauge

group. The explicit form of these matrices are:

o] = 09 = , and o3 =

Gell-Mann Matrices: These are trace-less 3 x 3 matrices and are rep-
resented as \; with ¢ = 1,...,8. These matrices act as the generators of

SU(3) gauge group. The explicit form of these matrices are:

010 0 —i 0 1 0 0
M=110 0/ A=1i 0 0] As=10 -1 0|
00 0 0 0 0 0 0 0
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00 1 00 —i 00 0
AM=100 0] =100 0] =100 1]
100 i 0 0 01 0
00 0 10 0
1
AM=10 0 —il,and Ag:ﬁ 01 0 (A.2)
0 i 0 00 —2

3. The light cone coordinates: A four vector, p* = (p°, pt, p?, p*), can be

written in the light cone coordinates basis as

nt n*
Pt = ?ﬁ.p + - P +pl (A.3)
where n* and n* are the light cone basis vectors such that
n? =0, n? =0, n.n =2 (A.4)

where the last property defined the normalisation condition. A standard

choice for these basis vectors is

n* = (1,0,0, 1), Ak = (1,0,0,—1) (A.5)

i.e. taking 7* in the opposite direction of n*. p| = (0,p1,pe,0) is the
component of p* which is perpendicular to both n#* and n*.

One usually represents the four vector in the light cone coordinates in

Eqn.(A.3) by

N
pPr=p"p,P) (A.6)
where the last entry is two-dimensional such that |7, |?> = —p/'p., = p>

i.e. the Buclidean |7/, |? is negative of that of the Minkowskian p>. The
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plus and the minus components are defined as

p"=py =np, p=p-=np
In these coordinates, the four vector square is given by

- -
p=pp +pl=pp -V

using the mostly negative signature for the metric tensor i.e.

(A7)

(A.8)

g =

diag(1,-1,-1,-1). Furthermore, the metric tensro can also be decomposed as

ao o nin n ntn”
7T 2

+¢"", and

the totally anti-symmetric tensor in the L space is defined as

vafS
w _ €
€L -

ﬁang

A.2 Important identities

1. Chisholm Identity:
YA = g Pt — gy 4 g — e

2. For of? = % [,yp7,ya]’

o

,Yao,pa _ 2,igap,ya . 2i7pgaa + O_pafy

3. According to the Cutkosky rule:

1
Imp2——7’n2 = —7T5<p2 — m2)9(p0)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

for a particle with mass m. 6(py) is replaced by 6(—pg) for an anti-particle.

4. In(—x) = In|z| —ind(zx)
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5. Generalised Fierz identities: The Fierz transforms [152] enable one

to change the ordering of the spinors in an operator involved in weak-
interactions as per the requirement of the problem. Also, the Fierz identi-
ties are the relations between the product of Dirac bilinears. For example,

let us take a general product of these bilinears given as

(1T [1h31" 1y (A.14)

where I" and I are some structures of y—matrices and 1, (withn =1...4)
are the Dirac spinors. These Dirac spinors can be arranged in 4! = 24
different orderings. However, only 12 of these orderings will be relevant
as the ordering of the bilinears is irrelevant which removes half of the
combinations. Now to understand the Fierz identities which help us in
attaining these ordering of spinors, let us take the basis of y—matrices

given as

Iy ={1,9", 0", iv"y5,75} (A.15)

for p <vand X = {S,V,T, A, P}, respectively. Moreover, let us choose a

shorthand notation to represent a bilinear given by
e (12) = 1Tk (A.16)

where a represents the Lorentz index of the y—matrices. The simplest form
of the product of bilinear one can obtain is €% (12)ex,(34) which can be

written in a convenient form for the final identities given by
ex(1234) = n3e% (12)exq(34) (A.17)
where ny is given by

1 ifX=SVP

nx =19 —i if X = A, (A.18)

V2 i X =T,

\
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Therefore, we have

es(1234) = [Y1te] [¥31a] ,

ev(1234) = [ s] [37,80] |

er(1234) = [U10,w1a] [1hs0™ 1hu] |

ea(1234) = [y v512] [V37u75¢4) |
)

ep(1234) = [1y5ta] [Usy5¢4] - (A.19)

According to the generalised Fierz identities, different orderings are related
as

€X(1234> = KXY ey(abcd) (A20)

where (abcd) represents all the 12 orderings and K xy is the Fierz transfor-

mation matrix such that

(abed ) || (1234) | (1432) | (201°34) | (124¢3%) | (13°2°4) | (13°4°2) | (142°3°) | (2°1°4°3¢) | (31°2¢4) | (31°4°2) | (4°1°2¢3°) | (4°1¢32)

K 1 F S S SFS SF FS 1 SF SFS F FS

where the superscript ¢ represents the charge conjugation such that
P =ptot (A.21)

with C being the charge conjugation matrix such that C7 = —C' and the

superscript 1" represents the transpose. The Fierz transformation matrices
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are given by

1 1 3 -1 1 -1 00 0 0
4 -2 0 -2 —4 010 0 0
1
F=2112 0o -2 0o 120, S=[0 01 0 0
—4 -2 0 -2 4 000 -1 0
1 -1 L 11 000 0 -1
(A.22)

The other transformation matrices can be obtained by simply multiplying
these matrices. For more details on these generalised Fierz identities, we

suggest the reader to look at [135] and the references therein.

A.3 Important integrals

In this section we collect all the useful integrals used through out this thesis.
The general formula for these integrals in D-dimensions which usually appear in

the sum rule calculations can be written using dimensional regularisation as [37],

D ,.pipe 1 — (i) (=1 " 9(D—2n) D)2 (2 n-p/2I'(D/2 —n)
[ 4P g = a2 =) o)

(A.23)

for n > 1 ,p*> < 0. We can get the desired form of the integrals involved by
differentiating it with respect to the four-momentum p,. Various integrals that

are used throughout this thesis are

/d4.1' e’ F = 277'2]?, (A24)
T xOé p()!
/d4$ e ﬁ = 877'2]?, (A25)

: o 2im? 2P
Jum s B2 (o) g
T p p
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/ dl v T = _8;12 (gaﬂ _ 41’;2]96) , (A.27)

/d4x e % = _Tﬂpaln(—pQ), (A.28)

/d4x e % = _éWszln(—pz), (A.29)

/d4x e % = _42:;2 (pang + 2pap5) In(—p?), and (A.30)

ipe Talply T (2papgp
/ dlz emr S = 21 (% — (Pagsu + PsYap + Pudas) ln(—p2>>
z p
(A.31)
These integrals in general will have divergent terms proportional to p?. We

choose to omit these terms as they goes to zero after Borel transformation.






Appendix B

Light cone propagator and

distribution amplitudes

In this appendix, we discuss and collect the light cone propagator and the light
cone distribution amplitudes of the light meson, photon, nucleon, and heavy

mesons that are used throughout this thesis.

B.1 Light cone propagator

The gauge invariance demands the insertion of a path ordered Wilson line

([x1,z2]) between ¢(x1) and ¢(z2) in a non-local operator given by,

21, 29) = P {exp (ig / GZ(z)T“dz“) } (B.1)

where G, represents the gluon field. With the use of fixed-point gauge given by
Gpatt =0, the light cone expansion of the quark propagator is given by [153],

Sij(w1, 22, m) = =i (0[T{qi(x1)q;(22) }|0)

d‘k . + 1 y
— / o~ ik(z1—22) { f+m 8ij — gs/o dvG (vey + (1 — v)zy)

(2m)* k2 —m?2
(B.2)
1 k’+ m v 1 LV
. [émf’“ ot ) } }
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where G* = G#T* = GH A with Tr(A*A) = 26 (defined in Eqn.(1.4))

It can be written in the mass-less limit as

Sij(x1, 22, M) |0 = B
J(xl T2 m)’ —0 272 (1'1 — x2)4 T 2((1}1 — .I‘Q)Q 16772 (xl - I2)2

1 [ t — iy 2m 1 (1

X /0 dvGag(vzy + (1 —v)x2) [(#, — #5)0as — 4iv(z1 — T2)aV5] -

(B.3)

While calculating the time-ordered product in Eqn.(B.3), we also have a normal
ordered piece which in general perturbative field theories goes to zero. However,
in the present case it does not go to zero but contains universal non-perturbative
effects in terms of vacuum condensates. To understand it, let us consider the
Taylor expansion of the normal ordered piece given by (taking 1 = x and x5 = 0

for simplicity)

1 ¢i(),q;(0) == ¢:(0),q;(0) : +2" : 0,4:(0),g;(0) :

1
+ 5:17“:5” 0 0,0,4;(0),4;(0) - 4. .. (B.4)

To make this expansion gauge invariant, the partial derivative is to be replaced
by the covariant gauge which reads as

D, =0,+19,G, (B.5)

where, the gauge field, G, using the fixed point gauge is given by

G(r) = —%GW(O):U” - % (G (0) 20 + .. (B.6)

Having done this, we find that this normal ordered piece does not goes to zero,
but rather provides a correction to the propagator defined in Eqn.(B.3) in terms

of vacuum condensates. Such a correction term in the mass-less limit reads as

ASij(z1,29,m) = — 1—12 K@j + %m(fl — x2)"(Yu)ji + O(m2)) (qq)
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+ 1%(:01 — 1) <5U + ém(xl — )" (V)i + O(WQ)) <qgsG-UQ>:| +...

(B.7)

where (gq) is the quark condensate, and (gg;G.oq), with G.oc = G0, is a

mixed condensate related to the quark condensate as

(29:G.0q) = m5{qq) (B.8)

where mg is a parameter whose value is provided in Table-D.2. The ellipses in
Eqn.(B.7) represent the contributions of higher dimensional condensates. One

can look at [153], [154] for more details.

B.2 Light cone distribution amplitudes (DAs)

In this section we collect all the light cone distribution amplitudes used through-

out this thesis for light mesons, photon, nucleon, and the heavy meson.

B.2.1 Light-Meson DAs

The light cone DAs of the light pseudoscalar mesons, P like 7, K, are defined by
the matrix elements of the axial-vector bilocal operator, expanded around the

light cone i.e. 73 = 22 = (z; — 22)* = 0 as [155]

(0lG2(w2) v ysq1(21)| P(p)) = fP/0 due™ PR Lip (¢(u) + (21 — 22)*g1p(u))
— ) — pu<x1 - x2)2 u
R D LA ] BT

where v and @ = 1 —u represents the momentum fractions of the meson P carried
by the quark and the anti-quark, respectively, ¢p(u) represents the leading twist-
2 DA used in Chapter-3 for pion, and g;p(u) and gop(u) represents the twist-4

DAs (which are not considered in the discussions involved in this thesis.) These
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DAs have the following normalisation conditions

/O 1 dugp(u) = 1, /0 1 dugsp(u) = 0. (B.10)

These DAs can be derived using the conformal expansion as discussed in Section-

2.2.2 and read as

G (u, p) = bun

1 +Zaf(u)02/2(u—a)] : (B.11)

n=1

where C2/% are the Gegenbauer polynomials given by
3
CY(x) =30, () =—5(1-5%),..., and (B.12)

a, are the multiplicatively renormalizable coefficient defined as,

al’ (1) = a¥ (o) < @) >Wﬁo (B.13)

s (Ho)

with a, = % (gs is the strong coupling constant), [ is the leading QCD -

function given as fy = 11 — %N r, and

A 9 (n+1) 1
w=o | —3— +4 21 B.14
=3 (n+1)(n+2) ;k (B.14)

For pion, a] vanishes for odd values of n due to isospin symmetry.

Apart from the two-particle twist-4 DAs, ¢1p and g¢op, there are four three-
particle twist-4 DAs as well defined by the matrix elements of the quark-anti-
quark and gluon operators taken between the vacuum and the meson state.
Moreover, there exists 2 two particle and 1 three particle twist-3 DAs as well.
These twist-3 and twist-4 DAs are related to each other via QCD equation of
motion. We are not providing exact definitions and forms of these DAs here as
they are not a part of this thesis. However, interested reader can find all of them

collected in the appendix of [156].
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B.2.2 Photon DAs

According to the QCD description of the radiative processes, a photon can be
considered to contain a point-like electromagnetic component along with a soft
hadronic component, as one would anticipate from the deep inelastic scattering
experiments. Using the background field formalism, one can get better under-
standing on the hadronic component (see [71] and references therein for better
understanding). In the presence of a constant electric field, the QCD vacuum
can get magnetized due to the presence of the quarks and antiquarks in the QCD
vacuum. This induced magnetisation will be proportional to the quark density,
applied field, electric charge of the quarks and the magnetic susceptibility, y of

the quark condensate such that

<O|§UWQ’0>F = eqX<qCZ>F/w (B15)

where (ggq) represents the quark-anti-quark condensate, F),, represents the field
strength tensor of the electromagnetic field, e, = e@), represents the charge of
quark, and the subscript F' represents that this vacuum expectation is taken when
the electromagnetic field is present. Moreover, if we have a varying magnetic field
instead of a constant one, the response of the vacuum becomes more complicated
as it will be now sensitive to the separation between the quark and the anti-
quark. For light like separations, the magnetic susceptibility gets substituted by
the response function ¢,. This function can be identified with the photon DA
in the plane wave configuration and the infinite momentum frame. In such a
configuration, the 1.h.s of the above equation for a electromagnetic field varying
at a certain frequency represents the probability amplitude for a real photon to
get dissociated into a quark-anti-quark pair. After having a broad understanding
of how one defines the DAs for photon, let us now collect the definitions and forms
of photon DAs used throughout this thesis. However, a more complete list can
be found in [71].

The photon DAs can be defined as the vacuum expectation value of the non-local
quark-antiquark plus n gluons operator (when n > 0) with light-like separations

in a complete analogy to the case of light meson. In this thesis, we considered
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only the two particle i.e. quark-antiquark DAs of twist-2 and twist-3 which are

defined as follows:

1. Twist-2 DAs: At twist-2, we have only one two-particle photon DA, ¢, (u)

which is defined as

(v(k)14(0)op0q(x)] 0) = —ie, (qq) (e,ko — 6tfkf))/() duemk'zXébfy(U) (B.16)

where €, is the polarisation vector of the photon, v and &« = 1 — u are
the momentum fractions carried by the quark and anti-quark, respectively.
The photon DA, ¢,(u) has the same form as of the twist-2 DA of pion

defined in Eqn.(B.11) with the asymptotic form given by

¢5* (u) = 6u(l — u). (B.17)

2. Twist-3 DAs: At twist-3, there are four DAs out of which two are for

two-particle. The other two are defined using the matrix element of three

particles. The two-particle DAs are defined as

€

(v(k)1q(0)7,q(2)| 0) = €4 fs, <e; — k"ﬂ) /0 due™ ¢ (u, 1) (B.18)

_ 1 [e% * ! wuk.x, ) a
(v(k) 13(0)%750(2)| 0) = €qf3r€umask®a’e “/0 due"™**(u, 1) (B.19)
where, fs, provides a natural mass scale for twist-3 DAs, " (u) and ¢*(u).
The explicit form of these DAs are:

P (u) =5 (3¢ — 1) + 634 (15w} — 5wl) (3 —30¢° +35¢*)  (B.20)

P (u) = (1-¢%) (5¢* - 1) g (1 e iwA) (B.21)

where, £ = 2u — 1 and w;/ & wf corresponds to the local operators of

dimension six. The values of these constants are provided in Appendix-D.
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The integral of 1*(a) over o from 0 to u is defined as ¥*(u) and reads as

5w =2 [ dav(e)

= —20uu + % (w? = 3w)) uag (7€* - 3) (B.22)

B.2.3 Nucleon DAs

The nucleon DAs are defined by the matrix element of the non-local three quark

operator give by
(0 |e“bcug(alm)u%(agx)df{(agx)| P(p, X)) (B.23)

where p and A denote the momentum and helicity of the nucleon state, P, respec-
tively, and u and d represents the up and down quarks. The Greek letters (a,
B, ) and the Latin letters (a, b, ¢) represents the Dirac and the color indices,
respectively. a; are some real numbers and z represents some light-like vector
such that 2% = 0.

Considering the Lorentz covariance, parity and spin of the nucleon, the above
mentioned matrix element can be decomposed into 24 invariant functions, F°

(1 =1,...,24) in general such that

2
4.0 |e®ul(arw)uf(ase)ds(ase)| P(p)) = Y AF ({a1, a2, as}, (p-x)) X,V
i=1
(B.24)
where Xgﬁ and Y,j are the gamma matrix structure, collected in Table-B.1 cor-

responding to each F'. The gamma matrix structures X,g are such that

Xi7 E € Vi7 7;
X7 = (B.25)

-X;, FeA

where superscript 1" represents transpose. The invariant functions, F; are the

functions of p.z and have the following symmetry property under the exchange
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F Xop Y, F Xap Y,
St | M(Clag (v5N)+ As | M(775C)as (7N,
Sy | M*(C)ag (#isN)y || As | MP(£75C)ap (N),
Pr | M(75C)ap (V) As | M*(7,75C)ag (10" 2N ),
Py | M?(75C)ap (ZN )y As | M(£75C)ag (ZN),
Vil (pC)as (V)5 Ti | (P"i0wC)ag (v*15N),
Vo | M(pPC)ag (#N)y || T | M(2"p"i0,,Clap | (3N)y
Vs | M(3,Clag | (" 6N)y || Ts M (00, C)ag (0" 5N )4
Vi | M*(#C)ag (V)4 T (070 Cas | (072,75 N)y
Vs | M*(0,C)ap | (10" 2,5N)y | Ts | M?(2i0,C)ap (VN
Vo | M3(#C)ag | (#3N)y || Te | M*(2"p"i0,uCas | (#25N),
A | (P15C)as (N), Tr | M*0uC)ag (0" Z75N ),
As | M(p75C)ag (#N)y Ts | MP(2"0Clag | (0"72,75N),

Table B.1: Tabulating the invariant functions and the gamma matrix structures
that appear in the general decomposition of the matrix element of the non-local
three quark operator which helps us define the nucleon DAs. Here, C' is the charge
conjugation matrix, M and NN, are the mass and the spinor for the nucleon state,

and 0, = 5[V, W)

of a; and as,

Fi({az, a1, a3}, (pp-x)),

—Fi({az, a1, a3}, (pp.x)),

'Fi({aha%a?)}’(pp‘x)) = <B26)

Fi€ A,

These functions are related to the light cone distribution amplitudes of the nu-
cleon which can be seen by moving to the infinite momentum frame and decom-
posing the Dirac spinors in the good and the bad components as discussed in
Section-2.2.2 (see [136] for the details). We do not discuss these relations for
all 24 DAs here. However a twist classification of all the DAs can be found in
Table-B.2.

In this thesis we have considered DAs upto twist-3 only, and hence we will
discuss only them now. As can be seen from Table-B.2, there are three DAs

upto twist-3: the vector, Vi, the axial-vector, A; and the tensor, T;. These DAs
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Type twist-3 |  twist-4 twist-5 | twist-6
Vector Vi Vo, V3 Vi, Vs Ve
Axial-vector Ay Ay, Az Ay, As Ag
Tensor T, Ty, Ty, Ty | Ts, Tg, T Ty
Scalar Sy S9
Pseudo-scalar P b

Table B.2: The twist classification of nucleon DAs.

can be represented as
.7:2({@1, ag, CL3}, (pLL’)) = / Daieilaiaip'sz(Oél, g, Oég) <B27)
0

where Da; = dagdasdagd(1—oaq —as—ag) and «; (i = 1,2, 3) are the momentum
fractions of the nucleon momentum carried by the three quarks.
These twist-3 DAs of the nucleon are related to the invariant functions in

Eqn.(B.24) as
‘/1 = Vl, A1 = Al, and T1 = 771 <B28)

Therefore, one can directly use the parameterization in Eqn.(B.24) for compu-
tations upto twist-3. We suggest the reader to look at [136] for the relations of
other DAs with the invariant functions in Eqn.(B.24). Moreover, it is important
to point out that with the use of isospin symmetry, the number of independent
DAs is reduced to eight from twenty four and there remains only one independent
DA at twist-3 which is related to the DAs Vi, A; and T7.

The explicit conformal expansion of V;, A; and T7 DAs are
Vi(ai, p1) = 120010003 [¢3(1) + ¢35 (11)(1 — 3a3)] (B.29)

Ay (i, 1) = 1200 sz (e — ) (1) (B.30)

T (s, 1) = 120005015 | 6(00) + 5(05 — 03)(1)(1 — o) (B.31)
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where ¢3(11), ¢ (1), and ¢35 (u) are the renormalisation scale, i, dependent coeffi-

cients. They are available from QQCD sum rules and are provided in Appendix-D.

B.2.4 Heavy meson DAs

Unlike the DAs of the light quark systems which we discussed above, the DAs
for the heavy quark system can not be calculated using the conformal expansion.
It is so because of the presence of heavy mass of the quark because of which the
QCD Lagrangian does not obey the conformal symmetry any more. As a result,
one uses heavy quark effective theory (HQET) to get define and obtain these
DAs (see [72] and [157] for detailed discussion). These distribution amplitudes
are defined using the matrix element of the bilocal operator involving a heavy

quark taken between the vacuum and the heavy-meson state as

(0120(0) [, 0]hs ()| M (v))

. 00
_ _Zthth dw eiwv.z
4 0

2v.x

<1+¢>{ M (1) — “(w*w%}%l
Ba
(B.32)

where ¢ and h represents light and heavy quark, respectively. M, is the heavy
meson containing the heavy quark h. fy;, and my, are the decay constant and
the mass of Mj-meson respectively. v is the velocity of the meson, and (by’l (w)
and ¢™" (w) are the DAs of Mj-meson. These DAs are not very-well known and
have been parameterized using various models. For this thesis, we considered
the simplest exponential model parameterization for these DAs [72] which reads
as

1

1
() = e, O )
0

where, wy is a model input parameter.



Appendix C

Kinematics for radiative tau

decay

In this appendix, we discuss the kinematics involved in the decay width calcu-
lations of the radiative tau decay discussed in Chapter-3. We also provide the
t-dependence of the intermediate vector bosons (p and a;) in the end of this

appendix.

C.1 Kinematics and decay width

As can be seen from Eqn.(3.46) and Eqn.(3.47), the total decay width for the
process can be written as a sum of different components [87]: I';5 coming from
m2, I'sp coming from mQ and I';,; coming from ZW. I'sp can
be further divided into three parts: I'yy coming from mQ, I'y4 coming from

|AA\2 and "4y coming from 2Re(Ay A% ). Therefore, we can write

Faw =T+ Tt +Tsp,
Ilsp=Tvyy+Tay +Taa,

Ling =T'1p—a+T1p_v. (C.1)
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Now, for convenience, we define the dimensionless variables x and y such that

2p1 .k 2p;.
xr = p12 ,and  y = & 2]92' (C.2)
m2 m2

In the rest frame of tau-lepton, these variables, x and y are simply the energies

of the photon and the pion, respectively in the units of “*. The kinematical

boundaries of these variables are given by,

2
,
nggl—rfj, 1—x—|—1p §y§1+7’; (C.3)

where rg = z—% For the discussion in Chapter-3, we considered pion to be mass-
less for form factor calculations thus, we must use 7, — 0 in our final answers
for consistency.

The variable ¢ which provides the invariant mass square of the pion-photon sys-

tem can be written in terms of  and y as

2

and the the differential decay width (provided in Eqn.(3.46)) in the rest frame

of tau is given by
d*r My ——
= T 2
dzdy 2567T3|A| ’ (C5)

where |A|? is defined in Eqn.(3.47). Using the Mathematica package named
FeynCalc [158]), we calculate these different contribution to the differential decay

width as

dZFIB a 2 FT*—Mr*uT

dudy %fIB(Ivyﬂnp)Wa

d*T'g a m?t - S

Do = s 5 VR P vv (e, ) + 2Re(E B fav (.. 7))

U ]-_‘T* T VUr
+ [FO 12 fau(z, y, 7’12,)} (1j—72)2’ (C.6)
p

dQFint o m72— 2 (m) 2 () FT_*HT_VT
dody 27 I [ffB—V(ﬂf,pr)R@(Fv )+ fre—a(z,y,7,)Re(Fy") W,

(C.7)
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where a = % is the fine structure constant, the functions fIB(x,y,rf,),

fvv(z,y, p) Jaa(z,y, p) fip—v(z,y,r ) and fIB—A(l’yyari) are

[r;*(q:+2)—2r§(x—|—y)—|—(1:+y—1)(2—3:1:—|—a:2+xy)] (r2—y+1)
(rZ—z—y+1)%

fis(@,y,13) =

Y

fovizy, ) =—[r+y) + 221 —y)(z+y) + (@ +y - )(—z+ 22—y +9°)],
fav(z,y, ) ==[r@+y)+ Q-2 —y)(y—2)| () —z—y+1),

fAA@,yan;) = fVV($7y7TZ2))a

fpv(ayr?) = 2Ty Dy + )
) »'p - . 7
=2+ y)+(1—z+y)e+y -] (7 —y+1)

2y — _
fip-a(z,y,1,) = (r2—z—y+1)x ’

(C.8)
and I'.- -, represents the non-radiative decay width given by
G2 Va2 2
FT_—HT_VT = F|8—7:_i|fmi(1 - TZ)Q' (09)

Using the double differential decay width given in Eqn.(C.5) and integrating over
y, we get the photon spectrum for the process. Furthermore, the integration over
x gives the total decay width for radiative tau decay. While integrating over =z,
the IB contribution receives infrared divergences because of zero mass of the
photon. These divergences can be fixed by putting a threshold on the minimum
energy of the emitted photon. Moreover, the SD contribution does not face any
such divergence and hence can be integrated over the full phase space. Therefore,

the total decay width for the process reads as

1— r 1+7"
(™ = 7 ) / d:c/ yda:dy (C.10)
1

where, g is the minimum energy cut for the photon energy in unit of %= used
to get rid of the IR divergences discussed above.

Finally, to get the invariant mass spectrum of © — ~ system, we define another
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dimensionless variable z (as used in ref-[87]) as,
t
z:m—z:ajjty—l. (C.11)

The kinematical boundaries for this new variable are given by

2

2 "p 2
z—rpgxgl—;, re <z <1. (C.12)

The invariant mass spectrum of m—~ system can then be obtained by substituting
y in terms of z in Eqn.(C.5) and integrating over x. Hence, the m — 7 spectrum

is defined as

5
N"Ul\)

dr . d°T
- /Z 2 dxdxdy (z,y=2z—x+1) (C.13)

77‘17

C.2 t-dependence of decay width of intermedi-
ate vector mesons

The t-dependence of decay widths of p and a; mesons are given by [93],

2.3
m,p
P

with, 2p = (t — 4m2)"/? and 2p, = (m2 — 4m2)/2.

Mg, Lo, g(2)

Lol == g(m2 ) (G-15)

4.1t —9m2)3(1 —3.3(t —9Im2) +5.8(t —9m2)?) if ¢ < (m, + m,)?

t(1.623 + % — 9{% + 0.89) else

3



Appendix D

Numerical values of various

parameters

In this Appendix, we collect the numerical values along with the errors of all the
parameters used throughout this thesis. The values are tabulated chapterwise.
In Table-D.1, we collected the numerical values of various parameters used while
studying the radiative decay of tau lepton in Chapter-3 along with their symbolic
representations. Similarly, the values used for the numerical analysis in Chapter-

4 and Chapter-5 are collected in Table-D.2 and Table-D.3, respectively.

!The value of the fine structure constant is taken at the scale m, and the decay width of
a; meson is taken to the central value of the range given in [73].

2The decay constant for D° meson is not known. We have used the decay constant for Dt
meson here.
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S.No Parameter Symbol Value used References
1. Fine structure constant Q ﬁ -
2. Fermi’s Constant Gr 1.166 x 107° GeV ™2 [73]
3. Mass of 7-lepton m, (1776.86 + 0.12) MeV [73]
4. Pion decay constant fr (130.41 4+ 0.23) MeV -
5. CKM Matrix element Vid (0.9745 4+ 0.0001) [73]
6. Mass of p-meson mp (775.26 + 0.25) MeV [73]
7. Decay width of p-meson r, (149.1 +£0.8) MeV [73]
8. Mass of a;-meson Ma, (1230 + 40) MeV [73]
9. Decay width of a;-meson Lo, (425 + 175) MeV [73]
10. Vector form factor F‘(/ﬂ)(()) 0.0254 4+ 0.0017 [73]
11. | Axial-vector form factor | F{”(0) 0.0119 =+ 0.0001 [73]

12. as(1 GeV) as(1 GeV) ~ 0.7 -
13. as(m;) as(m;) 0.325 -
14. as(1 GeV) as(1 GeV) 0.12 -

Table D.1: The numerical values of various parameters used in the numerical
analysis performed for the form factor and decay width calculations for radiative
tau decay’.
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S.No. Parameter Symbol Value Used Reference
1. Proton mass m, 0.938 GeV [35]
2. Fine Structure Constant | « = % 5 [35]
3. Quark condensate (qq) —((256 £ 2) MeV)? [118]
4. m2 m2 (0.840.2) GeV? [118]

5. Magnetic Susceptibility X (3.08 £0.02) GeV ™2 [71]
6. f3+ f3y —(442) x 107 GeV? [71]

7. Wy W 38+ 18 [71]
8. W we —2.1+1.0 [71]

9. X\ A, (5.4+1.9) x 1072 GeV” [70]
10. A A —(2.740.9) x 1072 GeV? [70]
11. $3(1GeV) #3(1GeV) | (5.340.5) x 107 GeV? [136]
12. &F (1GeV) = & ét (1GeV) 11403 [136]
13. 65 (1GeV) = % b5 (1GeV) 40415 [136]

Table D.2: The numerical values of various parameters used during the numerical
analysis of both the cases considered in Chapter-4 for determination of the form
factors involved in radiative proton decay.

S.No. Parameter Symbol Value Used Reference
1. Proton mass my, 0.938 GeV [139]
2. Quark condensate (qq) —((256 £2) MeV)? [118]
3. D-meson decay constant Ip (0.212 £ 0.001) GeV? [139]
4. D-meson mass mp 1.864 GeV [139]
5. Ap1 Ap1 (—0.027 4+ 0.009) GeV? [70]
6. Ap2 Ap2 (—0.013 £ 0.004) GeV? [134]
7. Wo wo (0.45 £ 0.3) GeV [159]

Table D.3: The numerical values of the parameters used during numerical anal-
ysis for the form factors involved in D — pet and Dy Dy, with ¢ = {u, d, s},
coupling discussed in Chapter-5 2.
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We present the study of radiative tau decay (z~ — z~v,y), computing the structure dependent
contribution using light cone sum rules. This decay includes the same form factors as the radiative pion
decay with the crucial difference that the momentum transfer squared, 7, between the pion-photon system is

positive, which makes these form factors timelike and also as # can now take values up to m2, it can produce
real hadronic resonances. The analytical form for these form factors has been calculated using the light cone
sum rules method and the invariant mass spectrum in the 7z — y system and the decay width are presented.
The structure dependent parameter, y, the ratio of the axial vector to vector form factor is found to be in

good agreement with the experimental determination.
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I. INTRODUCTION

v is the heaviest lepton with m, =1776.86+
0.12 MeV [1] and has numerous decay channels because
of its heavy mass (see for example [2-6] for different
aspects of 7 lepton physics). It is the only lepton which
can decay into hadrons. Theoretically, the electroweak
part is reasonably well established while one is still
lacking in developing a proper methodology to under-
stand the strong interactions. The study of hadronic z
decays helps us to understand the dynamics of strong
interaction involved in the hadronization of QCD currents
in a cleaner environment

In particular, we are interested in the study of radiative
tau decay in the present work, i.e., v~ — 7 v,y. The
branching ratio of 7= — z7v, is (10.82 £0.05)% [1].
Hence, one expects the branching ratio for radiative tau
decay to be O(1073). To get a sense for this expectation,
one can write the branching ratio as a product of
branching ratios of 7 — pv, and p — zy, and using the
values from [1], one gets ~1073, which is about 1072 of
the nonradiative branching ratio. Even though the branch-
ing ratio is not very small, these decays are not observed
experimentally yet which makes the study of this mode
important.
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The decay amplitude of this process includes two
contributions [7-11]:

(1) Internal bremsstrahlung (IB): The contribution
coming from the emission from either the incoming
or the outgoing particles. This contribution can be
calculated trivially with the use of scalar QED for
the pointlike charged pion while the emission from
the 7 leg is calculated straightforwardly using QED.
Diagrammatically this is shown in (a) and (b)
of Fig. 1.

(1) Structure dependent (SD): This contribution is
governed by the strong interactions and contains
nontrivial parts. The pion can no longer be taken as a
pointlike particle. The partonic structure will play a
role. This contribution appears because of the
hadronization of J* =17 (y*) and 1" (y#ys) inter-
mediate quark-antiquark currents of the matrix
element [(c) of Fig. 1] and hence depends on the
long distance dynamics. Using the Lorentz sym-
metry, it can be parametrized by vector and axial-

vector form factors F 5/”) and F g"), respectively.
These form factors encode the information of strong
dynamics involved in the hadronization of these
currents and their evaluation requires a nonpertur-
bative treatment such as light cone sum rules
(LCSR), chiral perturbation theory yPT or lattice
QCD. The SD contribution also includes a contact
term (CT), which emerges as a consequence of
gauge invariance and graphically represented in
(d) of Fig. 1.

The explicit form of these contributions will be calculated

in Sec. II where we will see that the IB part consists of two

contributions: one independent of m, and another propor-

tional to m,. The m, independent contribution turns out to

Published by the American Physical Society
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vr
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FIG. 1. Feynman diagrams showing different contributions to
the radiative tau decay. (a) and (b) represent the IB contribution,
(c) represents the SD contribution and (d) represents the CT
contribution.

be equal and opposite to the CT contribution and hence gets
canceled in the total amplitude.

The amplitude for the process of interest is related to that
of the radiative pion decay by crossing symmetry with a
major difference that comes at the level of kinematics as the
square of the momentum transferred between the pion-
photon and leptonic system can now take values up to m?2,
while in the radiative pion decay, it can take values only up
to m2 which is almost negligible. Also, as both pion and
photon are in the final state, the form factors involved in
this process are timelike, and hence complicated, unlike the
form factors involved in the radiative pion decay which are
spacelike. As a consequence, the light flavored mesons will
be created on shell and give resonant structures in the pion-
photon invariant mass spectrum.

Hence to understand this process, the main task is to
calculate the timelike form factors involved in the process.
These form factors probe the structure of the pion. The
information about the pion structure can be obtained by

determining the ratio of F XT) (0)to F Ef) (0) which is defined

. FP(0
as the structure dependent parameter, 7, i.e., y = —4 © We

o)
know the values of Fg”)(O) and F @(0) from the exper-
imental determination of radiative pion decay to be equal to
(0.0119 £ 0.0001) and (0.0254 +£ 0.0017), respectively [1],
which results in the value of y equal to (0.4685 + 0.0353).
The value of y, which is the ratio of form factors evaluated
at zero momentum transfer, will be the same for radiative
tau and pion decays. The calculation of radiative tau decay
helps in determining this structure dependent parameter
theoretically in a consistent way. This decay is also useful
to understand the light-by-light hadronic contribution to the

muon anomalous magnetic moment, (g — 2), [12]. In [13],
the authors have discussed how this decay can provide the
means for the tau neutrino mass determination. These
gauge invariant form factors for the radiative tau decay
have been parametrized using Breit-Wigner—type resonan-
ces [14], light front quark model [10] and resonance yPT
[11] in the past.

The differences in the literature stem from the vastly
different approaches adopted to determine or estimate the
form factors, which affect the predictions for the rate and
spectrum, as well as extraction of y, including the sign. As
an example, whenever the resonances are included via
the Breit-Wigner method, a suspecting issue always is
the relative phase between the different contributions. The
main aim of this paper is to calculate these form factors
using the method of LCSR in a consistent way.

The rest of the paper is organized as follows; in Sec. II,
we present the amplitude calculation for the process and
explicitly write the forms of different contributions men-
tioned above. In Sec. III, we present the calculation of the
form factors using the method of LCSR and in Sec. IV we
report our results. Finally, in Sec. V we conclude our results
with some remarks. Various definitions and conventions
used are reported in Appendix A. The values of various
parameters used for numerical calculation are collected in
Appendix B and the kinematical details are provided in
Appendix C.

II. AMPLITUDE COMPUTATION

A photon can be emitted by any charged particle. Hence
in the present case, the photon can be emitted from either
the pion or tau lepton, as shown in Fig. 1. The pion is a
composite object with a quark-antiquark pair. Therefore,
the internal structure of the pion will also contribute to the
process. This gives rise to two nonperturbative form
factors. As mentioned above, the amplitude of radiative
tau decay includes various contributions: internal brems-
strahlung (IB), structure dependent (SD) and contact term
(CT). The IB contribution comes from the emission of the
photon from tau and pion (considering pion to be the point
object). The SD contribution comes from the emission of
the photon from the internal structure of the pion. The
contact term is an interesting effective contribution and has
its origin in the gauge invariance of a QED amplitude [15].
We follow this approach here.

The amplitude of the process 7~ (p;) =z~ (ps)v.(p3)%
y(k) can be written as (employing the low energy four-
Fermi effective Hamiltonian obtained by integrating out the
heavy W boson)

Al = 1 w7) = ZEV olr v | @) @) 7). (1)

V2

where I'* = y#(1 —ys).
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This amplitude can be factorized in two parts; one where
the photon is emitted from the final state pion and another
where the photon gets emitted from the initial state tau
lepton:

At" > 77vy)

—‘j—gvud[<n-y|<arﬂu>|o> A

+{ver| (7)) (™ |(dT,u)[0)]
_Gr
V2

x / dxe™ (= |T{ i () AT 1(0)}]0)

V d [—ieez(ﬁyrﬂur)

_efﬂp2u€;kr/d4xeikx<UT|T{jgm(x)l_/rrw7<0)}|f_> ’ (2)

where jen, () =0, (x)y*w (x) ==7y“t+Q, ity u+Qdy"d
and f, is the pion decay constant. The conventions and
definitions are given in Appendix A. This factorization of
the amplitude holds for energetic photons and at the leading

order in .- L and ay,,.

For the computatlon of the first term of Eq. (2), define the
hadronic matrix element as

T (py. k) Zi/d“xe"‘W ~|T{jén (x)dT*u(0)}[0).  (3)

Using the conservation of electromagnetic current, one can
apply the Ward identity which results in

koI (pa.k) = (a~|d(0)1*u(0)|0) = if .p  (4)
in the momentum space.

Also, one can write the hadronic matrix element [defined
in Eq. (3)] using the general covariant decomposition in
terms of the pion and photon momentum, i.e., p, and k
respectively, as

T"”(Pz, k) — Ag(m + Bp2ap2y + szak” + Dkap2/4

+ EKTkH + iF ) e ok, (5)

where A, B, C, D, E, F$f> are gauge invariant scalar
functions of (p, + k). Contraction of Eq. (5) with k,
results in (for on-shell photon k*> = 0 and the Levi-Civita
tensor is antisymmetric in a and v)

kT (pa, k) = AK' + B(py.k) ph + C(pak)k*.  (6)

On equating Eqgs. (4) and (6), we get

A ifs

e ™ P00

which results in the final form of hadronic matrix element
to be

T%(py, k) = F\P (g% (P.k) — P*k#] + iF\Y e Py,
pepr

O 3

lfn'g + lfﬂ Pr ( )

Here, FX[) _ A;ikf” and P=p,—ps=p,+k and

p2-k = P.k. Hence, the first term in Eq. (2) reads
(™ y|dT,u|0) (v |p. ¥ 7]z7)

= iee* (1,7t |[iF ¥ { G (P-K) = Pk, } = P €, PPV

“.P
+ iee*ﬂflrﬁurﬂur - iefﬂep—kﬁvlb(l —]/S)MT. (9)

The second term in Eq. (2), using QED Feynman rules,
takes the form

(ver|p.I¥z]e™) (™ |dT,ul0)
=—ief i1, (p3)¢* (1—ys)u.(py)

+’ef” ()| (26 p1) — KN (1 +75)

uz(p1)}- (10)

Adding the two, the final form of the amplitude is

A(T_ —)ﬂ:_IJTJ/)
:&Vud Lee*a(ﬁurﬂ”r){iFﬁtﬂ (9 (P-k) = Pk
V2
(%) B . _fe'pr K €.ps
_F PPk - B
v ea[l/}l/ }+lefﬂm‘[uy{p1'k 2p1_k pZ‘k
X (14‘75)”7]- (1)

Here, F/ 5‘”) and F gf) are the gauge invariant axial-vector and
vector form factors, respectively. The contact term appears
explicitly by the use of Ward identity and cancels against
the m, independent contribution of photon emission from .

For further simplification, we have divided the full
amplitude as

A(T_ - n'_I/T]/) =Ap + AV + Ay = A + ASD- (12)
Here,
_Gr . _[epr K €py
AIB - \/zvud |:l€f”m7uy{p1-k 2p1k pzk}
x (1 —I—yS)u,}, (13)
GF . xa v
Ay == SVl 0,00 ) e PR, and (14)
Gro\ o ot
AA:7gvud[l€€ (uyrwu‘[)(lF(A)[gaﬂ(P'k)_Pﬂka])]' (15)
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Ay and A, combined gives the structure dependent
contribution, while A;z is the internal bremsstrahlung
contribution.

III. FORM FACTORS IN LCSR FRAMEWORK

In the previous section, we saw that the amplitude of the
radiative tau decay depends on two gauge invariant form

factors; FXT) and F &f ). These form factors are the non-
perturbative objects and need a nonperturbative treatment.
In this section, we will calculate these form factors using
the method of LCSR.

The method of sum rules was developed in 1979 by
Shifman, Vainshtein and Zakharov (SVZ) [16,17]. Their
basic idea was to use the analytic properties of a correlation
function [treated in the framework of operator product
expansion (OPE)] to derive the hadronic parameter
involved in a process. Below we briefly outline the method
(for details, see [18-20]).

The important tools for deriving the sum rules are
dispersion relation, operator product expansion (OPE),
quark-hadron duality and the Borel transformation. The
dispersion relation relates the real part of the correlation
function to its imaginary part using Cauchy’s integral
formula. According to OPE, the correlation function can
be written as a sum of products of long distance matrix
elements of operators of increasing dimension and short
distance Wilson coefficients which can be calculated using
perturbation theory. The higher dimension operators cap-
ture the information of QCD vacuum fields in the form of
vacuum condensates. Both dispersion relation and OPE
give the same physics and hence can be equated.

Operationally, quark hadron duality means

0 h 2 oo I H(pert)
[T as )4 [ ImIT) g
sh s( 4

! s=q*) 7w Jaw  s(s—¢q)

Here, p” is the hadronic spectral density function, while
et (s) [or TICP(s)] is the perturbatively calculated
correlation function. We will use this duality approximation
below.

As the correlation function has contributions from all the
resonance states as well as the continuum, one performs
Borel transformation to suppress the effect of higher
resonances and continuum. Mathematically, the Borel
transform is given by

T(M?) = B, T1(K)

= lim
—k? n—00,—k> /n=M"> n!

(_ k2)(n+l) d \n 5
(dk2> I(k*), (17)
where M is known as the Borel parameter.

It was noticed that these SVZ sum rules have some
limitations such as the OPE upsets the power counting in
large Q% and that, even after performing the Borel trans-
formation, practical calculations suffer from unsuppressed
contributions. These limitations can be overcome by using
light cone sum rules (LCSR). In LCSR, one expands the
products of the currents near the light cone. LCSR give
vacuum-to-hadron correlation function while by SVZ sum
rules one gets vacuum-to-vacuum correlation functions. In
LCSR, OPE at short distances is replaced by systematic
expansion in the transverse direction in the infinite momen-
tum frame.

In the light cone limit, the bilocal operator sandwiched
between the pion state and vacuum is expressed as

(@ (P)|a(y)7,rsu(x)0) 2,

Lo ]
= —ifapy A due' PP (), (18)

where ## = 1 — u and ¢(u, p) is leading twist-2 distribution
amplitude given by

beli) =6un 1+ Y (-] (19

n=24,...

Here, Cfl/ * are the Gegenbauer polynomials and a,, is the
multiplicatively renormalizable coefficient defined as

anli) = ) () (20)

s (/’tO )

with a, = fz—jr (g, 1s the strong coupling constant), 3, is the
leading QCD f function and

O R o0

k=1

The remaining process for computation is the same as for
SVZ sum rules. We are now ready to derive the form
factors, F if) and F ﬁf), using this technique.

As we know, these form factors arise from the compu-
tation of the hadronic matrix element defined in Eq. (3), i.e.,

T (py, k) = i/d4xeikx(ﬂ_|T{Quﬁy”u(x)c_lr”u(0) + Qudy®d(x)dTu(0)}]0), (22)

where O, and Q, are the charges of up and down quark respectively in units of e. Using the definitions and identities given

in Appendix A, we get

056017-4



PHENOMENOLOGY OF 7~ - 77v,y ...

PHYS. REV. D 103, 056017 (2021)

ikx

T (py k) = if, / e

€ ! : upap [l Py X ]
xz 2x4/0 duqb(u,/,t)[ze”ﬂ /x/jPZp(Que”pz _|_Qdelup2x)

+ (¥ p§ = ¢(x.p2) + x7P5)(Q, e = QqeP)], (23)

where, as mentioned above, ¢(u, u) is the pion distribution amplitude and # = 1 — u. The integration over x results in

e ) = i[5 [ i ot~ (g [
“ a _l-2n
—{g“(P.k) - P k”}{% dudp(u, p) <P2ﬁ+k2u> H (24)

Here, p, + k = P and we have used the fact that the distribution amplitude is a symmetric function of u and .
A comparison with the general decomposition of the hadronic tensor given in Eq. (8) yields the following forms of vector

and axial-vector form factors from QCD calculation:

ife [V, ¢lup)
FCD _lf_”/ du-22 )
v =3 o i+ K
1
= Lim{poe0(y = Y= / dugp(u, p)5(tit + Ku),  and (25)
b4
1 1-2u
FOCD ;i /
3P0 = =i, | duptun) (7
1 QCD . ! - - 2
= -—Im{F; (1)} = —if, | dug(u,p)(1 —2a)d(ta + k*u). (26)
T 0
[
Here, t=P* = (p, +k)* = (p) — ps)* is the invariant (7= (P)]i&m(X) (P2 + k) (p(p2 + k)] jew(0)]0)
mass square of the photon-pion system.
! P P Y =im,f Mﬂ”éfpzﬁk (k). (29)

Now, after computing the perturbative QCD contribu-
tion, the analytic properties of this hadronic matrix element
are used to derive the contribution of various hadronic
states. It will get contributions from (p, , a;-mesons)+
higher resonances and the continuum. In the present case,
contributions coming from p, @, a;-mesons will saturate
the sum rules and thus will be the focus here.'

Considering the matrix element (7~ |T{;j%,(x) jow(0) }|0)
and inserting a complete set of states, we get

(7| T{jem(x)Jew (0) }0) = (27 |jem(x)Im) (n] jew (0)]0).
(27)

where |n)=|p)+|w)+|a;)+ higher resonances+continuum.
(i) p and w-meson contribution: The p-meson contri-
bution will come from

(2= (p2)ljam(X)lp(p2 + K))(p(p2 + k)| jew (0)]0).
(28)

Using the definitions given in Appendix A,
"The contribution of the higher resonances, at the present level

of accuracy, is roughly 20% of these resonances because of the
Borel suppression.

where m, and f, are the mass and decay constant
of the p meson respectively. Neglecting the very
small difference between the masses of p and w, the
contribution of @ will be equal to the contribution of
p and hence multiplying p contribution by a factor of
2 will incorporate the contribution of the @ meson.

(1) a;-meson contribution: The a;-meson contribution
will come from

(5 (pa) (@l (s + ) (@1 (s + )L (0)]0).
(30)

which results in

(= (P2)ljam(X)lar(p2 + k) {ai (p2 + k) jew(0)]0)
= iMg, f o, [2D2-kg™ = 2p5K"| Gy, (K?) (31)

using the definitions given in Appendix A. Here, m,,
and f, are the mass and decay constant of the a,
meson respectively.
Here, F,,(G,,,) captures the physics of transition of the
p(a;) meson to the 7 meson. Using the optical theorem in
Eq. (3), we get
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2m {7 (p,, )}

_Z |]em

(nljew|0)dz, (27)*6* (k= p,).  (32)

and from Cauchy’s theorem,

T(K) = 1/“’ LG (33)

T s —k* —ie
Substituting the contributions of p and a;, we get

Zim/)fpealﬂyg;pZﬁkqun(kz)
m%—(pz—l—k)z—im r,
imalfal [2P2'kgaﬂ szkﬂ}Ga]ﬂ(kz)
m2 - ( D2+ k) - lmalral
1 Im{T* (s, k
+/ ds 7m{ S >}. (34)
S0

T s —k*—

Ta”(Pz, k) =

Here, s{, is the threshold of the lowest continuum state and T",
and I', are the decay widths of p and a; mesons,
respectively. This is the dispersion relation which relates
the imaginary part to the real part. Now, the light cone sum
rules can be derived by taking the form of F Ef) (1) from this
dispersion relation and equating it with the form obtained in
Eq. (25), i.e.,

2m/}f/)F/)7r(k2) +l/°° ds Im{FV<S)}
ml%—t—impr T Jsh s—t—ie

P(u,p)
th+ Ku’

ifr [1
_Ha [y
3[) "

Using the duality approximation and the Chauchy’s integral,

1 feo  Im{F 1 [
_/ ds m{ V(sv.k)}:_/ ds
T Jsy s—1—1€ T s

(35)

Im{FSCD(s, k)}

s—1t—le
ife [1 ¢(u)
L du————~2—, 36
3 A] "+ u (36)

with uy = = 1 (as k> = 0). As aresult, the sum rule for

So
k> +s
F gz)(t) turns out to be

¢(u)
tii + kKPu’

2 F,_(k? [ u
m/’f/; Pﬂ'( ) o l‘f_ﬂ'/ 0 du (37)
m;, — t 3 Jo

Similarly, by equating the form of F E‘”) (t) obtained from the

dispersion relation with the form given in Eq. (26) and using

the duality approximation, the sum rule for F T(I) reads

2i a aGaﬁkz . o —2u
Mado Garl) _ . / ¢<u><f—z”). (38)

mj —t ti + k*u

After Borelization and substituting these sum rules back

in Eq. (34), we get the following analytical forms for F i;”

and F\:

() : fx
Fy(t) =—
v () l3(m/2, —t- im/,F/,)/

x . fr Lp(u) oy
Fﬁx)(t):—zmz — - (1=2@)en. (40)
a, a t a,

Here, M is the Borel parameter and we have used the on-
shell condition for the photon (i.e., k2 = 0).2

For the present calculation, we will use the asymptotic
form (where ¢ — o) and the Chernyak-Zhitnisky form
(where the C, term will be considered) of the pion
distribution amplitude given in Eq. (19). Explicitly these
forms are given by

asym

x (U, pu) = 6uin, and (41)

302( )

@77 (u.p) = 6uin|1+ {5(u-m)?-1}|. (42)

where a,(u) is defined in Eq. (20) with n = 2. All the
structure dependent information of the pion involved in the
radiative tau decay is contained in the ratio of the axial
vector form factor and the vector form factor at zero
invariant mass square of the photon-pion system, i.e.,

(43)

where y is known as the structure dependent parameter
(SDP). The vector form factor at t = 0 can be related to the
anomaly term (or Wess-Zumino-Witten term) in the zyy
vertex [1/(4x°f,)]. Using what is referred to as KSFR-II
relation [21,22], m3 = 2g7,,f7, along with the assumptions
of universality of p coupling (9, = gonn = gpy = 9 =
27r\/m) and p meson dominance of the pion electro-
magnetic form factor, one finds the right form emerging

2
ms

from F if) (0), up to the overall factor em* which should tend
to unity. As we see later, the choice of the Borel parameter
that provides a stable window, trivially yields unity for this
factor within a few percent.

It is to be noted that these form factors have dimension
of inverse mass and there is an extra factor of —i due to the
way initial amplitude is defined: A(r~ — 77v,y) instead of
iA(r~ = m"v,y) as is often done.
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Before discussing the results, it may be worthwhile to
ponder over possible duality violations. Such contributions
arise from our use of perturbatively evaluated spectral
functions, imaginary parts of the form factors here, over the
entire kinematical range. It is notoriously difficult to
exactly quantify the magnitude of such duality violating
terms. However, it is rather important to have some estimate
or an educated guess since these would otherwise cause
large uncertainties in the final results. For the case at
hand, the perturbative effects occur at 1/Q, where hard
scale Q ~ m_ while the time scale over which the partons
come together to form final hadrons ~Q/ AéCD. One
possible way to evaluate the duality violations could be
to use an instanton model, where the light quark amplitudes
will be suppressed. A rough calculation yields a quantity
that in the Euclidean domain has the form Exp[—Qp]/Q",
where p denotes the mean instanton size. Analytically
continued to the Minkowski space, this would have an
oscillating factor multiplied by negative powers of the
energy released in the hard process m,. Alternatively, one
could assume a comb of hadronic resonances that would
contribute and carry out the algebra. Both lead to similar
conclusions that the violations are ~10% [23] (also see
[24,25] for detailed analyses for inclusive tau decays). This
is the typical duality violation contribution that we expect,
though a more detailed calculation can reveal the actual
amount of such violations.

IV. RESULTS

The analytic expressions for the vector and axial-vector
form factors calculated using LCSR are given in Egs. (39)
and (40). Both of these form factors have the asymptotic %
dependence on the invariant mass squared, ¢ of the photon
pion system, as expected from QCD in the perturbative
(asymptotic) regime. We have used two forms of pion
distribution amplitude; the asymptotic form and the CZ
form as given in Eqs. (41) and (42), respectively. The
structure dependent parameter defined in Eq. (43) is also
calculated using both forms for pion distribution ampli-
tudes. The values of the various parameters used for the
numerical computation are collected in Appendix B. The
form factors depend on the value of the Borel parameter,
M, and hence also the structure dependent parameter, y.

Figure 2 shows the variation of FXT) (0), F (\,”>(0) and SDP
(y) with the variation in the value of M. The variation of
the observables with M dictates the model dependence
here. As can be seen from the plot, all the observables are
quite stable in the chosen Borel window. The value of y
for M = 3.35 GeV is 0.469 (using CZ distribution ampli-
tude) which matches well, including the sign, with the
experimental value of y obtained from the radiative pion
decay [1].

Further, we calculate the decay width contribution for the
radiative tau decay using M = 3.35 GeV and the form

05

-
S=ao
Te———
e —————

03[
L mm==— SDP(CZ)

[ FA (asym)
02r  memee- FA(CZ)
FV(asym)

o1k === FV(C2)

0.0l

C L L L L L L L L Il L L L L L L L L
2.0 2.5 3.0 3.5 4.0
M (GeV)

FIG. 2. The dependence of structure dependent parameter
(SDP), Fff) (0) and F 30 (0) on the Borel parameter M (in GeV
units) is shown in blue, magenta and green, respectively. In this
plot, form factors have been multiplied by im, to make them
dimensionless in and take care of the extra —i in the form factors
as noted in footnote 1.

factors given in Egs. (39) and (40). The differential decay
rate for the radiative tau decay is given by

dl'(z” > 7" vyy)

——d’kd® p,d’p

—— ES§9(k - il o ol

s B0kt patps=py)A LEE,
(44)

where £, E,, E,, E, are the energies of tau lepton, pion,

photon and neutrino, respectively. |.A4|? is the spin averaged
square of the amplitude which has been calculated
in Sec. I

In terms of the functions used in Eq. (12),

AP = Al + | Asol? + 2Re{AgAsp}.  (45)

where [Agp[* = [Aa* + [Ay|* + 2Re{ A} Ay }.

The kinematical details to compute the decay rate can be
found in Appendix C.

The structure dependent contribution to the photon
spectrum is shown in Fig. 3 using both forms of pion
distribution amplitudes. The IB contribution suffers from
the infrared divergences which can be taken care of by
putting a threshold on the photon energy. Figure 4 shows
the threshold energy dependence of the IB contribution as
well as the full decay width of the radiative tau decay. The
SD contribution is free from any kind of divergences.

Fg”)(t) gets a contribution from the a; meson while
F iﬁﬂ () from the p (and w) meson. Figure 5 shows the SD
contribution to the invariant mass spectrum of the z —y

system. The higher and sharper peak corresponds to the
contribution coming from the vector mesons while the
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= SD(asym) ’ S

0.003f  Vesm ” A

. = AA(asym) ,/ \\\
E F— AV(asym) V2 \\
= -
~— 0.002 - Sb(€z) /
S == w(C2)

5% 7 AA(CZ) o ———

~ - ~~

I_E 0.001 b==av(cz)

0.000 -

FIG. 3. The total structure dependent contribution (blue) to the
photon spectrum is shown along with the individual contributions
from the vector (magenta), axial vector (green) and the interference
(red) of the two are also shown for the two distribution amplitudes.
Solid lines are for asymptotic distribution amplitude while dashed
ones are for Chernyak-Zitnisky distribution amplitude.

0.040 [
0.035 [
£ oosof  \w ®
- X EEEm—-—— all(asymp)
= St
> 0.025[ A alkcz)
>
3
&~ o0.020f
0.015[
0.010
Il Il Il Il Il Il
0.00 0.02 0.04 0.06 0.08 0.10

Xo

FIG. 4. The dependence of the IB (solid) contribution on the
minimum energy threshold of the photon is shown here. Along
with that, the same dependence for total decay width including
form factors using asymptotic (dashed) and CZ (dotted) pion
distribution amplitude is also shown.

SD(asym)
0.015
VV(asym)
AA(asym)
AV(asym)
0.010

Jrum

sD(CZ)

w(cz)

dres vy
dz

0.005

FIG.5.

shorter and broader peak corresponds to the axial vector
contribution. The vector contribution to the total decay
width dominates over the axial-vector contribution.

As p and a;-mesons are not very narrow, the effect of
t dependence of the widths is also studied using the
prescription provided in [26]. The ¢ dependence of I',
does not have a significant effect as it is not that wide
while the effect of I, is clearly visible as one can see
from Fig. 6. The explicit forms of ¢ dependence of the
decay widths are collected in Appendix A. We have also
computed the effect of decay width of a;-meson I, , as
it has huge uncertainty, and found that the decay
width of the radiative tau decay decreases with an
increase in I, . The results reported here are calculated
using I', =425 MeV.

Figure 7 represents all the contributions to the invariant
mass spectrum of the 7z —y system. The IB contribution
dominates at the low photon energy for which we have used
the minimum energy threshold of 50 MeV.

After integrating over the full phase space and
applying an energy threshold of 50 MeV for the IB
contribution, we get the following values for the different
contributions to the decay width (normalized to the
nonradiative decay width Eq. (C8),i.e.,I' = I'(z — zvy)/
Iz > )l

(i) Asymptotic pion distribution amplitude:

Ip=136x10"2, Ty, =(1.4740.06)x 1073,
D= (3.97+£245)x 107, T,y~0

Fsp = (1.8740.30) x 1073,

[ine = (3.82£2.14) x 1074,

[ =(1.56+0.04) x 1072,

0.0030 -

\ = SD(asym)

0.0025 -

VV(asym)

N — AA(asym)
: -~ ~
t 0.0020 [ N AV(asym)
[ \
~~ “~\ mm=m== SD(CZ)
| 0.0015} R X
g wv(cZ)
N
3 - 2 S \ A N N2 Y-
& o.o0t0f anen
st X0 NN\ - AV(CZ)
0.0005 [~
0.0000
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
z

(a) The structure dependent contribution (blue) to the invariant mass spectrum of the 7 — y system is shown here for asymptotic

(solid) and Chernyak-Zhitnisky (dashed) pion distribution amplitudes. The contribution from the vector (magenta), axial vector (green)
and the interference (red) of the two is also shown. (b) Zoomed in version of (a).
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0.0030 -

SD(asym)

0.0025 - VV(asym)

: LU, < AA(asym)
N
I_.I 0.0020 - \ AV(asym)
— NN e o)
\

> - \

S 0.0015 S mmme w(c2)

Rln W

1™ 00010t N T e
5 .

AV(CZ)
0.0005

0.0000 -

FIG. 6. The SD contribution (blue) considering (a) I', and I,

0.0030

—————— SD(asym)

VV(asym)
0.0025

N AA(asym)
K
4 0.0020 AvG@sym)
~~—~ sD(CZ)
N 0.0015 - wv(cz)
Elwn /,
tle / AA(CZ)
5 0.0010 ,/
AV(CZ)
0.0005 -
0.0000
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
z

to be constant and (b) the 7 dependence of I', and I',,, is shown here for

P

asymptotic (solid) and Chernyak-Zhitnisky (dashed) pion distribution amplitudes. The contribution from the vector (magenta), axial

vector (green) and the interference (red) of the two is also shown.

0.3 0.5

0.6 0.

0.3 0.5 0.6 0.7

(b)

FIG. 7. The invariant mass spectrum of the 7 — y system for radiative tau decay is shown here considering (a) asymptotic and (b) CZ
pion distribution amplitude. The contributions from the IB (magenta), SD (green) and the interference (red) of the two is also shown. The

shaded region shows the uncertainties.
(ii) CZ pion distribution amplitude:

Ip=136x10"2, Ty, =(1.70£0.07) x 1073,

Tua=(5914£3.62)x107*, T,y=~0
[sp=(2.2940.43) x 1073,
[ = (4.90£2.60) x 1074,
Ca = (1.614£0.06) x 1072,

Since we consider radiative rate normalized to the non-
radiative one, the uncertainty in IB contribution is neg-
ligible compared to the SD contribution which dominates
the error budget, therefore no uncertainty is shown for the
IB part. The final uncertainties are about 10%. From the
above it is evident that there is a dependence on the form
of the distribution amplitude chosen to evaluate these form
factors. However, the difference is not too large, which is
reassuring.

Having obtained detailed predictions for the pion in the
final state, it is also instructive to have an estimate of the
decay width for the kaon in the final state. Again, normal-
izing to the appropriate nonradiative width, and employing
the asymptotic distribution amplitude (keeping the Borel
parameter, M = 3.35 GeV), we get

'K =T(r - Kvy)/T(t - Kv) ~8 x 1073, (46)

This (appropriately normalized) rate is roughly half of
that for the pion.

V. DISCUSSION AND CONCLUSIONS

In the present paper, we have provided detailed pre-
dictions for the rate and photon spectrum for the process
7~ — 7z v,y. Employing Ward identity from the beginning,
the amplitude was written so as to include the contact term
which is necessitated by gauge invariance. The decay
involves two timelike form factors. These have been
calculated in the present work employing the light cone
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sum rules, to twist-2 accuracy. The form factors, which
automatically via the dispersion relations, encode the
contributions from the vector and axial-vector mesons,
have the right asymptotic behavior expected from pertur-
bative QCD. The ratio of the axial-vector to vector form
factor at zero momentum transfer defines the pion structure
dependent parameter, y. Our evaluation of this parameter,
along with the sign, matches very well with the exper-
imental value obtained from 7= — vy, where the relevant
pion-photon form factors, unlike the present case, are
spacelike. The obtained values for the normalized rate
and the photon spectrum are similar to those obtained in
[11]. This provides a cross-check on the theoretical
predictions employing a totally different method for com-
puting the nonperturbative quantities. We have also pro-
vided an estimate for the appropriately normalized rate with
kaon in the final state instead of a pion. This normalized
rate is approximately half of that for the pion. The present
study employed distribution amplitudes to twist-2 accuracy.
The uncertainties reported here are the uncertainties asso-
ciated with the uncertainties of the various parameters used.
There will be further uncertainties associated with quark
hadron duality approximation, and higher twist and hight
order contributions. The pion is considered to be massless
here. The effect of such an assumption is less than 1% on
the values of the form factors. The uncertainties associated
with quark hadron duality violation, like in inclusive tau
decays are expected to be at 10% level, and can be
calculated in a particular model to parametrize the spectral
density. Precise calculations of these duality violations is
indeed an important missing piece but is out of the scope of
the present work. It would be interesting to consider both
higher twist contributions as well as contributions higher
order in ;. These can have a significant impact on the
phenomenology of radiative one meson tau decays.

APPENDIX A: CONVENTIONS, DEFINITIONS
AND IDENTITIES

Here, we are reporting the various conventions and
definitions used for the sake of completeness,
1. The matrix element of the pion is defined as

(@ (p2)l(dr* (1 = y5)u)l0) = if o ph. (Al

where f, is the pion decay constant.

2. The outgoing photon state can be obtained by the
use of a creation operator on the vacuum which
results in

<UTJ/|DT}//4(1 - yS) |T_>
= —iec; [ de (Tt (07,0},

(A2)
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where j&, (x) =0, (x)r*y (x) =-7r*c+Q, ity u+
Q,dy%d is the electromagnetic current. Q, and Q,
are the electromagnetic charges of u and d quarks,
respectively in the units of e.

. The commutator of the electromagnetic charge oper-

ator and electroweak current of the pion is given by

[Jom (). dT*u(0)]
= —0,8 (x)d(0)"u(x) + Q0% (x)d(x)T*u(0).
(A3)

The propagator of the massless fermions in position
space is given by,
iSo(x) = (0T {u(x)u(0)}/0)
ix _
= = —(0IT{u(0)a(x)}|0).  (A4)

272 x*

YuYBYa = GupYp ~ Gua¥p + 9pa¥u ~ i€upap?’Vs-

The leading order expansion (twist-2) of the matrix
element (7~ (p,)|d(y)y,rsu(x)|0) in the light cone
limit (x> = 0) is given by

(= (p2)d(y)rursu(x)|0)

1 . _
= ifupas A due ) g ). (AS)

where & =1—u and ¢(u,u) is pion distribution
amplitude of twist-2.

. The matrix elements of p and a; mesons are

defined as
(V(pa + k)|dy,ul0) = —imy fre)”  (A6)

<ﬂ_(p2)|jgm(x)|p(p2 + k)> = eaﬂﬂyeﬁp)p2ﬁka/m(k2)
(A7)

(7= (p2)| o (x) a1 (p2 + K))
— [(2py — k).kg* = (2py — k)]l G 1 (),
(A8)

where V canbe p or a; meson, my, and f are the mass

and decay constant of the V meson, respectively. ef{’ )

and eflm* are the polarization vectors of p and a;
meson, respectively. F,,(k*) and G, ,(k*) are the
scalar functions of k*> which contains the information

of p — & and a; — = transitions, respectively.

. The sum over polarization of p or a; meson is

given by

e = g, + P2 )n*i(zvz b (a9)
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9. The t dependence of the decay widths of p and a,
mesons are given by [26]

with 2p = (t —4m2)"/* and 2p, = (m2 — 4m2)"/*:

a l—‘ll t
) ral(z):m;ﬁl (g<2)) (Al1)

ma

() =r,"22 (A10) SMay

t .
Py with
|
4.1(t—9m2)*(1 = 3.3(r = 9m3) + 5.8(t —9m3)?) if t < (m, + m,)?
1) = 10.38 9.38 0.65
9(1) t<1.623 + -—t+—3 ) else.
t t I
APPENDIX B: VALUES OF Ty = + T+ Tsps
PARAMETERS USED
. bulae the val - . Isp =Tyy +Tyy +Tya,
ere, we tabulate the values of the various parameters B

used for numerical calculation. Fine = Tip-s + T'ip-v- (C1)

S.No. Parameter Symbol Value
1. Fine structure a ﬁ
constant
2. Fermi’s constant Gr 1.166 x 1075 GeV~2 [1]
3. Mass of 7 lepton m, (1776.86 £ 0.12) MeV [1]
4. Pion decay constant I (130.41 £ 0.23) MeV
5. CKM matrix Vod (0.9745 £+ 0.0001) [1]
element
6. Mass of p meson m, (775.26 £ 0.25) MeV [1]
7. Decay width r, (149.1 £0.8) MeV [1]
of p meson
8. Mass of a; meson m, (1230 £ 40) MeV [1]
9. Decay width I, (425 £ 175) MeV [1]
of a; meson
10.  Vector form factor FW(O) 0.0254 £ 0.0017 [1]
11. Axial-vector FX!) (0) 0.0119 £ 0.0001 [1]
form factor
12. as(1 GeV) as(1 GeV) ~0.7
13. ag(m;) ag(m;) 0.325
14. a(1 GeV) a(1 GeV) 0.12

The value of the fine structure constant is taken at the
scale m, and the decay width of the a; meson is taken to the
central value of the range given in [1].

APPENDIX C: KINEMATICS AND
DECAY WIDTH

The differential decay width can be written as a sum of
different components [14]: I coming from |Agp|*, Tsp
coming from [Agp|* and Ty, coming from 2Re(Afz Agp).
I'sp is further divided into three parts: 'y, coming from

|A,|% Tas coming from |A,|* and I';y coming from
ZRE(A‘/AZ)

For convenience, we use the dimensionless variables x and
y defined as

2p..k 2p;.
o Pl2 ’ y= P12P2' (C2)
m‘L’ m‘[

In the rest frame of tau, x and y are simply the energies of
photon and pion respectively in units of 5. The kinematical
boundaries of x and y are given by

2

I—x4 2 <y<l+7,
1—x

0<x<1-r3, (C3)

P
form factor calculations and hence we will use r, — 0 in
our final answers.

The variable 7, the invariant mass square of the pion-
photon system, can be written in terms of x and y as

2 . .
where 12 = %’2' We have considered pion to be massless for
T

t=P = (py+k)?=m(x+y-1)
2

mT
:>P,k:7(x+y—1—r%). (C4)

In terms of variables x and y, the differential decay width
in the rest frame of tau is

2
dF_ m, |A2, (C5)

dxdy  2567°

where different contributions to the differential decay width
are (calculated using FeynCalc [27])
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dQFIB a Fr’—»n”v
= ___f&B(x7)“ r2) _______l_’
dxdy 2n Pr1=r)?
d’r a m? |
dxa?)])) =§F{| |2fvv(x y.r )+2Re( ) fav (.7 )+ |F "2 an(x.y, F%)}m,
p4 P
dZF- t a m2 (7) I -
m__ , R 3 , Re(F\" ’—””r’ C6
dxdy Zﬂfﬂ[fIB v(xy,13) e(FY) + frpoa(x.y. 7 ) Re(F, )}(1_}%)2 (Co)
with a = %, being the fine structure constant,
oy, <2+ =27 (x+y>+(x+y—1)(2—3x+x2+xy)}(r%—y+1)
B, Y, Ty ( —x—y+1)2x2 )
Fov(x,y,ry) = =[rp(x +3) + 25 (1= y)(x +y) + (x +y = D(=x + x> =y +)?)],
Fav(xy.ry) = =[x +y) + (1 =x=y)(y = x)](rp —x =y +1),
fAA(xvy”%) :fvv( %)
(r —x—y+1)(r2 -y+1)
fIB—V(x’yvr%z):_ £ X L )
=2 (x+y)+(I1=x+y)(x+y=-1](r -y +1)
Sipoa(x,y.r3) = — £ £ L , (C7)

and I'-_,,-, is the nonradiative decay width given by

Gz 174 22
Fr‘—»;z‘u, _ F| ud| fﬂ mg(l _ r%)z.

. (C8)

The photon spectrum is obtained by integrating over y.
Integration over x will give the total decay width for
radiative tau decay. The IB contribution has the infrared
divergences which can be fixed by putting a threshold on
the minimum energy of the emitted photon. The SD
contribution does not face any such divergence and hence
can be integrated over the full phase space:

1- r lJrrI7
[z~ - 77vy) dx ,
l—x+& ”

where x is the minimum energy cut for the photon energy
in the unit of %

(€9)

(rp—x—y+1)x

To get the invariant mass spectrum of the zy system, define
another dimensionless variable z (as used in Ref. [14]) as

t
z=—>=x+y—-1 (C10)
mT
The kinematical boundaries for the new variable are
2
z-r;<x<1--L, rr<z<l1. (CIl)
z

The 7y spectrum can be obtained by substituting y in terms of
d°r
dxdy

zin and integrating it over x, i.e.,

d’T
dxdy

2
dr -+

= dx
dz -

(x,y=z—-x+1). (Cl12)
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1 Introduction

In particle physics, the Standard Model (SM) of strong and electro-weak interactions is
the most successful model of particle interactions. In the SM, baryon number conserva-
tion is an accidental global symmetry at the classical level. In 1967, Sakharov proposed
that baryon number violation is one of the important criteria to explain the matter-anti
matter asymmetry of the universe [1]. Baryon number violation at the perturbative level
is well motivated in the theories of grand unification (GUTS), supersymmetry, models of
baryogenesis, model building in string theory and in theories with extra dimensions, etc
(see for example [2-12] and references therein). Proton decay is a baryon number violating
process. Any observation of it is a direct indication of physics beyond the SM. This makes



proton decay a crucial test of such models and an important window to understand the
nature of matter unification.

In the case of GUTs, quarks and leptons fall in the common multiplets and hence
can lead to proton decay at the tree level via the exchange of superheavy gauge bosons
or scalar and/or vector leptoquarks. This makes it possible to write the effective baryon
and lepton number violating operators of dim-6 by integrating out these heavy fields,
such that they are consistent with the SM gauge symmetry. These effective operators are
found to conserve B — L which implies that a proton always decays into an antilepton (or
antineutrino) (see [13-16] for reviews on proton decays).

p — et ¥ is the most favoured channel in several GUTs models. As with any process
involving hadrons, proton decay modes like p — e 7" require hadronic matrix elements,
the form factors, to be computed within some framework or at least properly estimated.
This mode has been studied using various models of QCD, such as relativistic quark model,
QCD sum rules, effective chiral theory, lattice QCD, [17-23]. Very recently, it has been
studied in the framework of light cone sum rules [24]. Another decay channel which is
found to have strong constraints is the radiative mode: p — e®~. The radiative mode is
expected to be suppressed by em. In [25], it is been studied within SU(5) GUT set up.
They pointed out that it might be a more feasible channel experimentally as there will
be less nuclear absorption. The form factors have been evaluated with a simple harmonic
oscillator potential as a model for binding the quarks inside the proton. In [26], it was
studied in the framework of bag model and they concluded that it is not a feasible channel
for experiments as the decay rate is small. The experimental facilities have been advancing
over the time (see [27] for a review of different experiments and expected sensitivities
expected at future experiments) and hence a reanalysis of this mode is required, including
a fresh attempt at evaluation of the involved form factors.

Experimentally, Kolar Gold Field [28], NUSEX [29], SOUDAN [30], Kamiokande [31],
etc, were designed to detect the proton decay. At present, the Super-Kamiokande, the
largest proton water Cherenkov detector, is the most sensitvite detector and has put the
most stringent lower bounds on the partial life times for the proton decays, 7, > 1034
years [32]. The lower bound for the radiative proton decay modes p — ety and p — u*y
are 7, > 6.7 x 1032 years and Tp > 4.8 X 1032 years, respectively [33]. In the Water-
Cherenkov experiments, such as Super-Kamiokande, the decay products of the proton are
measured approximately at rest which makes the relevant energy scale for the process to
be the proton mass (see [34] for a review on Super-Kamiokande).

At these energy scales, a perturbative description for the hadronic transitions is not
possible in QCD because of quark confinement. Hence, we need alternative ways to get an
estimate of the hadronic matrix elements which can help us in probing the baryon-number
violating physics with the help of experimental data. Light Cone Sum Rules (LCSR) is
one such interesting framework which helps us to predict the hadronic matrix elements
at the proton mass scales using the analytic properties of the correlation functions (see
for example [35-40] for details). In this work, we study the p — e®~ in the framework
of LCSR.

The rest of the paper is organised as follows: in section 2, we discuss the general
parametrisation of the amplitude for the decay in terms of the form factor and define



the physical FFs involved. In section 3, we discuss the computation of these form factors
in the framework of LCSR. Here, we discuss the two cases: firstly, the use of photon
distribution amplitudes and interpolating the proton state; and secondly, the use of proton
distribution amplitudes and interpolating the photon state. In this section, we also discuss
the numerical results obtained in both the cases. section 4 is dedicated to discussion of the
results and conclusions. This paper consists of five appendices. In appendix-A, we collect
the distribution amplitudes (DAs) of proton and photon upto the desired twist. appendix-
B and appendix-C are dedicated to collect the correlation functions computed in QCD for
the case employing photon DAs and proton DAs, respectively. In appendix-D, we provide
some useful identities and integrals along with definitions and conventions used through
out the paper. Finally, we tabulate the numerical values of all the important parameters
involved during numerical analysis in appendix-E.

2 Amplitude computation

Proton decay is a baryon number violating process. Though baryon number is a good
symmetry in the SM, one can write higher dimensional effective operators which allow the
proton to decay. In a beyond the SM scenario, like GUTSs, proton decay is possible even at
tree level via an exchange of heavy gauge bosons or leptoquarks. On integrating out these
heavy particles, one obtains the baryon number violating dim-6 SMEFT lagrangian which
preserves the SU(3)¢ x SU(2), x U(1)y invariance [41-44].

Efyf) =Y errOrp = Y eppre™ (d%PpuO (ePrruc) (2.1)
Y, Y,

Here, I'TV € {L, R} are the chirality projections. crr are the Wilson coefficients. C' =
iv%~0 is the charge conjugation matrix and a, b, ¢ are the colour indices. It is worth pointing
out at this juncture that the above effective lagrangian is assumed to be expressed in
terms of the physical quark and lepton fields at the relevant scale. This means that all the
flavour mixing and perturbative renormalization group (RG) effects together with the short
distance information, are collectively lumped in the Wilson coefficients cprv. Since the aim
of the present work is to systematically evaluate the corresponding form factors relevant
for the radiative mode, the exact details of these effects are not particularly relevant here,
and therefore not discussed further. It should be straightforward to explicitly express these
dependencies in a concrete model of proton decay.

The transition amplitude for p — e™ ++ is the matrix element of the dim-6 lagrangian
given in eq.-(2.1) between the initial and the final states.

A(pop) = ¥ (p)r(R)) = 3 err (e (pe)1(k) |Orr | p(wy) )

T

= Z crr <€+(Pe)7(k)

T

ebe (d_gPrub) (e_CPp/uc)

ppp))  (22)



As mentioned above, all the flavour effects are absorbed in the Wilson coefficients, cprr.
On demanding the gauge invariance, this amplitude can be parametrised as

ioc®B kg

P

A (plop) = € () = X ermvitPr {ea*App
T

} up(Pp)- (2.3)

where Apps are the non-perturbative form factors. Parity conservation in QCD relates the
different form factors relevant for the process:

App = —Arr  ArLr = —ARL. (2.4)

Hence, this process involves only two independent gauge invariant form factors. For the
present study, we choose them to be Arr, and Apgr. Clearly, the main hurdle in obtaining
the branching ratio is the knowledge of the form factors. All other factors are known once
a given model of particle physics leading to proton decay is chosen.

The photon can be emitted either from the proton or the positron. The photon emis-
sion from positron can be trivially calculated and is not explicitly written as it does not
contribute to the dipole transition depicted above. The photon emission from proton in-
volves the photon emission from both u and d-quarks and contributes to the form factors.
The study of these FFs in the framework of LCSR is the subject of the present study. The
transition matrix element for the photon emission from proton can be factorised in the
leptonic and hadronic parts as

(" ()Y (k) |Orr | p(py) ) = vE(pe) Hrre (P, pe)up(py). (2.5)

We choose to parametrise the hadronic matrix element Hrru,(pp) as (see [45] for general
parametrisation of the vertex for b — s transition):

Hrr(pp, Pe)up (pp)

= (y(k)

Eabc (dgCPpub) (Pp/ uc)

p(pp)>

fph FiH otk pH kM
= Ppe’ | Fip—2 + F2r " + F2r* 4+ iFp L R+ F — |
Fﬁul I'T m2 + I'pp m2 + fppyt ki § + I'rp - + Frr - »(Dp)

(2.6)

The physical FFs, Arp are then related to F{%, with n = {1,2,3,4, 5}, considering positron
to be massless as,

Bl FRp
Arp = F2F + Ffp + gf (2.7)

3 Form factors in the LCSR framework

To compute the FFs, Aprrv, in LCSR framework, we need to compute the hadronic matrix
element given in eq. (2.6) in QCD. For that there are two possibilities:

1. Interpolating the proton state and using the photon distribution amplitudes (DAs).

2. Interpolating the photon state and using the proton distribution amplitudes (DAs).

4 -



We will discuss here both these approaches one by one with an aim to be finally able
to compare the outcomes from both in order to gain deeper insights into the underlying
non-perturbative dynamics.

3.1 Case-1: using proton interpolation and photon DAs

The interpolation current for the proton state is not unique. For the present study, we
choose it to be

X(@) = € (uT (2) Oyl (x) ) 357" (). (3.1)

Here C is the charge conjugation matrix, {a, b, c} are the color indices and the superscript
T denotes the transpose. This current is popularly known as the Ioffe current [46] and is
defined such that,

(0 x () p(pp)) = mpApup(pp) (3.2)

where, m,, is the mass of proton, wu,(pp) is the proton spinor and A, is the interaction
strength of this interpolation current with the proton state.

In literature, this current is found to provide the maximum stability against the Borel
mass, the parameter introduced in LCSR computations [47]. The Ioffe current is a linear
combination of

xi(@) = et (uT(@)Csd (@) u(e)  and  xo(@) = € (w7 (2)Cd (x) ) y5u(x)

(3.3)
such that x(z) = 2(x2 — x1) after performing Fierz transformation (see for example [48]).
X1 is the common choice of interpolation current employed in Lattice QCD computations.
On interpolating the proton state using the Ioffe current, the correlation function to be
computed reads as

e (pyspe) = [ d'ae = (3(8) IT{Qrr (@)X(0)}]0). (34)

Here, (0) = xT(0)7°, Qrr (z) = e*° (d:;FC’Prub> (Prruc) and T denotes the time ordering.

One can get the hadronic parametrisation of this correlation function by inserting a
complete set of intermediate states with the same quantum numbers as the proton and
isolating the pole contribution of the proton state as,

mpAp
HFF’ (ppap(‘,) %_m%HFF’ (p67pp) (pp+mp)+
Fph k ic*k, pH
e lng;ch L e T
mg ; mp mp
n "
| qrhad K i +Hhad xrp FP5P, [[had KKP Kk, rrhad: Ve’ P
N T m3 T mg T -
olud 5 p
had, TP Yip had,PP¥p P had,K P
+ 1l 3 +1pp 2 5 +Hpp ] . (3.5)
p p p



The ellipsis above represent the heavy states i.e. excited states and continuum, contri-
butions. The 12 Dirac structures in eq. (3.5) can be used to derive the form factors
A LL and ALR~

4" with r = {PK,KK,V,T,P,K, KPP,KKP,VP, TP, PP,KP} are the scalar

functions of pz% and P? = —p? and can be parametrised in terms of spectral densities using
the dispersion relation given by,
had,r 2
had, prre” (s, P7)
0" (p2, P?) = / ds 7” — . (3.6)
0 S pp

where, pl}i%c,”(s, P2) are the spectral densities given by,

1
priv” (s, P2) = Tl (s + ie, P) (3.7)

These spectral densities can also be written by separating the pole contribution and the
heavy states contributions as

pris (s, P2) = My (s — mp) Fp (s, P2) + plfs ™" (s, P2). (3.8)
where Flip (s, P?) can be related to F% (s, P?) for s = m?, i.e proton being onshell which
is ensured by the delta function. These relations reads as,

FI (5, P2) = BT (5, P2) = Fip (s, P2), B (s, P2) = BT (5, P2) = B (5,P2),

?) =1
v, (s,Pf) e (s,Pf) = F3n (s,Pg), jas (s P2) rir (s P2) = Py (s,Pf),
FE, (S,Pf) FED (s,Pf) = F2 (s,Pg), FK, (s P2) FKl (s P2) = FS,, (S,Pf).
(3.9)

Using the assumptions of the quark-hadron duality, the spectral desities of the heavy states,
p?eravy’ (s, P?), can be approximated to the spectral densities computed using the quantum
chromodynamics (QCD) as,

heavy,r CD,r 00 CD,r
/ gl (s, PE) %/ ds M:/ dsllm(ﬂl@ﬂ (5, 7)) (3.10)
S0 S0 50

2 2 2
s —p; s—Dpp s s—p;

with sg being the continuum threshold which is a free parameter and is expected to be

chosen below or equal to the lightest excitation but well above the ground state. In the
present case, the lightest excitation state is the Roper resonance with mass of 1.44 GeV.
To compute the contribution of the spectral densities due to heavier states one needs to
compute the correlation functions I}, (s, P?) in QCD.

In QCD, the time ordered product in eq. (3.4) can be computed by partially contracting
the quark fields as,

T{Qrr (2) (0 )}_7 Imn z]kp {( 1(0)T qu;(x)) {FA'Y/LSJ(WB( )PI‘S( )( s ..
+. .. S](“m) (x)’yquPpSr(L‘? (a:)’y“%}

+ (0D adi(x) ) { Sp) (2)7, 853 () PrT 4y 75}]
(3.11)



Here, we have employed the completeness relation given by,

L (G(0)Tag(a)) T (3.12)

a()a0) =

with, ¢ = {u, d} and the chosen basis of gamma matrices is

) 1
PA == {17757’7p71,7,0’757 ﬂO.PU} . (313)

Further, I'y= CTEC'_l =nl'4 with C = i72'70 and,

1, T'y =145,
= { A V5, VY5 (3.14)

=1, Ta= Vs Ouv

S%(x) is the quark propagator at the light like separations. In the massless limit, it is
given by,

i (79) mgz?
Sij(x) = 27r2x45ij T 0ij (1 + 106 +... (3.15)

Here, (qq) is the quark condensate. Ellipses denote higher terms with one or more gluon
exchanges which are not considered in this work. my is associated with the mixed conden-
sate as

(79:G-0q) = mj (qq) (3.16)

where G.o = G,0"”. After performing the partial integrals, we are left with the matrix
elements of two or more particle (quarks and gluons) operators which had been found to be
written in terms of light cone distribution amplitudes (DAs) of photon of varying twist [49].
In the present work, we only consider the two particle DAs of twist-2 and twist-3 and leave
a more detailed analysis of three-particle twist-3 and higher twist DAs (which are expected
to be small) for future works.

The definitions of the DAs are collected in appendix-A. It is important to note here
that at twist-2 there is only one DA, ¢, (u, ) which appears in the matrix element of
two quark operator with ['y = %0”(’. At twist-3, there are 2 two-particle DAs which
appears for I'y = {7,,97,75} (for details look at appendix-A). On substituting the partial
contractions of the time ordered product of quarks,eq. (3.11) and the two-particle twist-2
and twist-3 DAs of the photon and summing up all the contributions, we get the analytic
structure of the correlation function defined in eq. (3.5) in QCD as,

cD op.pi kpl oD, KK Kk cD,V cp,riotk

HIQF/ (pp,pe) — E;:PF/ HIQF/ ’ g +HI€2F, ’ 2 +HIQF/ ’ 7“+HIQF/ ’ Y
mp mp mp

n n

[I@CD.P Py [QCD.K kH [[@CD.KPP %pppp [QCD.KKP k %?p
+ N mi + T mi‘i_ T m3 + N m3
p P D P

n " n n
HQCD,VP’V P, HQCD,TPW kup,, HQCD,PPpppP [[QCD.KP Ky,
p P b »
(3.17)



HIQFC,YD’T are the scalar functions of pg and P2. The analytic expressions for these functions

are lengthy and hence are provided in appendix-B. We also provide several useful identities
and integrals in appendix-D. According to the light cone sum rule matching condition,

e (p2, P2) = 5P (2, P2) (3.18)

Using the above relations, the final sum rule for FY{y, reads as

S Fro, (s, P2 so 1 ImITR¥CP (s, P2
A2 Eir (5. Fe) :/Ods— - (S’ c) (3.19)
0

P'"'p 2
mg pp s s—pp

To suppress the effect of the heavy states, we perform the Borel transformation with respect
to p2 After Borel transformation the sum rule reads as (see appendix-D for details),

‘3
NS IS

Frp: (50, P?) = / dse” W? 1ImH19FC,D’"( P2) (3.20)

2
pm

Here M is the Borel mass and sy is the continuum threshold. These are the artefacts
of the LCSR method, and have to be fixed such that the sum rule is saturated with the
ground state and the heavy state contributions are properly suppressed. A typical rule of
the thumb is to try and obtain at least 70% contribution to the correlation function from
the ground state itself. The details on these parameters is given in the next section.

3.1.1 Numerical analysis

The values of various parameters used during the numerical calculations are provided in
appendix-E. The physical FFs, Arrv, for I'TY = LL and LR are studied as a function of
P? = —p}

2 and the Borel mass M. These FFs can be found from different combinations

of Frp/’s as can be read from eq. (2.7) and eq. (3.9). As the photon is onshell, we put
k* = 0. For the case of I'T' = LL, we have only two possibilities to extract Apr(so, P?)

Fgfp as FFF, FFF,, and FFF, turns

which are from the combination of FFF, and F; FF, 7 with
out to be zero in this case. In figure 1, we show the variation of ATP TEPP (s, P?) with
P2 for three different values of the continuum threshold sg. In this figure, we also show its
variation with the Borel mass, M for three different values of P? at fixed sg = (1.44GeV)?
which is equal to the Roper resonance. The combination AT+K PP (s, P?) is found to be
less stable when varying the parameters sg and M (as can be seen from figure 2) and hence
is less reliable. On the face value, it is in broad agreement with AngrKP P As can be
seen from the detailed expressions of these functions (listed in appendix-B), condensate
contributions are quite important (and also dominant in some cases), and therefore can’t
be simply ignored. For the case of I'TY = LR, we have a total of eight combinations as
can again be read from eq. (2.7) and eq. (3.9). For this case as well, the four combinations
which involves FFTF, are found to be less stable against so and M and hence we do not show

them here. The other four combinations involving Flr:qf are shown in figure 3-figure 6.
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Figure 1. The physical FF, Arr(so, P?) is calculated from the combination of F{f and FEFP
employing photon DAs. Left panel: ATPTEPP (50 P2) vs P2 is shown for three values of sy =
(1.4 GeV)?(violate dotted), sp = (1.44 GeV)?(red solid) and sg = (1.5 GeV)? (blue dashed) at
the Borel Mass, M? = 2 GeV?. Right Panel: ATPTEPP (55 P2) vs M is shown for three values
of P? = 0.5 GeV?(red solid), P? = 1 GeV*(red dashed) and P? = 2 GeV? (red dotted) at the

continuum threshold, so = (1.44 GeV)?.
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Figure 2. Same as figure 1 but now with the combinations of F{; and FEFP.

The values of the physical FFs, Arp at P? = 0.5 GeV2,! and M? = 2 GeV? for
s0 (= 1.44 GeV)? are found to be:

ATFEPP (1442 0.5) = (0.00388 + 0.00126) GeV?,
ATPHEPP (1 442 0.5) = (0.00221 £ 0.00082) GeV?>. (3.21)

ATEHEPPEP (1442 0.5) =
ATEARPEREP (1 442 0.5) =
ATEAPERP (142 0.5) =

) =

0.00251 + 0.00118) GeV?,
0.00250 + 0.00118) GeV?
0.00176 4 0.00123) GeV?,
0.00176 & 0.00123) GeV?, (3.22)

~—~~ o~ ~~

From the above equations, it is clearly evident that there is quite good consistency in the
form factor, Ay g, determined from different combinations. The uncertainties are associated
with the uncertainties in the values of parameters entering the DAs. These uncertainties

'LCSR calculations are trustworthy at |Q?| — oo, where Q? is the momentum transferred squared. To
be consistent with this requirement, in this case, we have chosen Q? = P2 = 0.5 GeV>.
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Figure 4. Same as figure 3 but now with the combinations of F1 £, FFK and F[,.
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Figure 5. Same as figure 3 but now with the combinations of Ff¥ FEPF and FPP.
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Figure 7. The physical FF, ATPTEPP (5, P2y (left pannel) and ATETEPPHPP (5, P2y (right
panel) vs P? are shown at so = (1.44 GeV)? and M? = 2 GeV? along with the uncertainties

€
associated with the parameters involved in photon DAs. The bands represents the uncertainties.

are found to decrease with an increase in P2 as shown in figure 7 for AL 5P (50 P2) and
ATEEPPFE (g0 P2) as the representative FFs at so = (1.44 GeV)? and M? = 2 GeV?.

3.2 Case-2: using photon interpolation and proton DAs

Having worked through the details with the proton state being interpolated, we next seek
to determine the relevant form factors, but this time employing the distribution amplitudes
of the proton. Then, on interpolating the photon state, the hadronic matrix element in

eq. (2.6) reads as,

Hrr (pp, pe)up(pp) = —ieeq / d'ze™* (0 |T{j (2)Qrr(0)} p(pp)) (3.23)

where, j& (z) = Qqd(x)y*d(z) + Quu(x)y*u(z) — e(x)y¥e(x) is the electromagnetic cur-
rent and

Qrrv = e (df CPrw) (Proe) (3.24)
Using the generalized Fierz transformations [50], it can be written as,
6abc
QLL - 4 (Q(PLda)(ﬂgpLub) — (J“VPLda)<ﬁgU#VPLub)) s and (3.25)
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abc

4

As discussed above, to get the sum rule, we need to calculate the correlation function in

Qrr = —— (2(vuPrda) (@ Prup)) - (3.26)

eq. (3.23) in QCD. To get the time ordered product of the electromagnetic current with
Q11 and Qg we need
T {6 () (CaPrda) (504 Pruy) §
= [Qu {(Cvaézz(x)FAPL)BF (r1p) " ((u;f(x)) uf <0)d£<0>)
T (CTAPLS(x)y™) 8 (T4P) " ((uT )" uf (x)df(0)>}

- Qu{ (Tastiory) " (crir) ™ () vk Oaf @)} e

B

Here, capital alphabets (E, F, B, C, D) are the Dirac indices, {a, b, c,i} are the color indices
and superscript T' denotes the transpose. I'y = {1,0,,} and I'y = {v,} for the case of
LL and LR, respectively. The matrix element of the remaining three quark operator
between the proton state and the vacuum can be parametrised in terms of proton DAs of
varying twists [51]. In the present work, we consider only the leading twist-3 DAs (given
in appendix-A), which can be defined by,

4(0

eyl (alzz:)u% (agz)ds (asz) ’ P(p)> = Z F'({a1, a2, a3}, (p.x))XéﬁYj (3.28)

where,
F Xaop Y,
V1 (Hpc)aﬁ (V5tp )y
Ay (I%’YBC)aB (up)y
Ti | (Ppiouwc)as | (V'v5up)y
such that

xT _

1

X FieV, T
{ (3.29)

—Xi, FieA

where, superscript T represents transpose. The DAs, F;, have the following symmetry
under the exchange of a1 and as,

Fi{a1,az2,a3}, (pp-x)) = Fillazanash, (p.), - Fi € V0T (3.30)
—Fi({az, a1, a3}, (pp-x)), Fi€A;
and )
Fi({a1,az,a3}, (p.x)) = /0 Daje™ %P F (o ag, ai3) (3.31)

with Da; = dagdasdasd(l — a; — ag — as).
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Using these DAs and considering the photon emission from the u- and d-quark, the
correlation function in eq. (3.23) turns out to be,

CD
ch‘zl“’ up(pp)

« el ; aﬁk
— & P FI,QCDPL% +F2,QCD75 +F3,QCD7a +F4,QCD 10" Kg

T T/ T T
P P myp
5,QCD Pp 6,Qcp K
+ FY9OPR 4 phIeP (3.32)
Mp mp
Here, Fyrv are the scalar functions of P2 = (p, — k)% and K? = —k?, and are provided in

appendix-C. Upon saturating with the intermediate lowest state, the hadronic decomposi-
tion reads as,

Hlf“llg('jup(pp)
Pl P, — F+my o 10%Pkg 9
= —eezi)\mpm YWL(KT) — WWQ(K ) ¢ up(Pp) + - -
X Lhad Pk 2, had KK 3,had 1had10P kg 5.had Pp 6,had kK
= eoPr | Frp® mL%+Frr'a m712)+FFr'a v+ m, + e’ m71;+FFF/a —
(3.33)

Here, ellipses represent the contribution from the heavy states and A is the coupling strength
of the proton interpolation current with the proton state. A = A}, and A = —\,, for I'T' = LL
and I'TY = LR, respectively and are defined in eq. (D.2) and eq. (D.4), respectively. W7 (K?)
and W3(K?) are the electromagnetic electric and magnetic form factors of the proton and
are defined as,

-em — 2 ~o-045k;6
{p(pp = k) 175" (0)] p(pp)) = Up(pp — k) | Wi (K )70 — i

- WQ(K2)1 up(pp).  (3.34)

The scalar functions Flillffi" (for n = 1,2,3,4,5,6) of P”? and K? are related to Wy (K?)
and Wa(K?) via following relations:

_ K?
Y Ws (K2)

Ws (K?)
F2,had _ € )\/
4 PP pr2 _ m% LL m

—m P2 (P2 - m3)

3had € 2 bhad € oy Wi (K?) + W, (K?)
Frp* = —§/\;ng (K ) Frp™ = imp)‘z/v P2 m?
_ 2 2
LA LS pipet = E 2y W UC) (3.35)

PP P2 2 4 PP p2

There will be similar relations between ngad and Wi (K?) with A, replaced by —A,.
From eq. (2.7), we know Fllif",’g’ are required to calculate the physical FFs, Arp/. For FIE’FLL,’E’,

after using the quark hadron duality and Borel transformation, the sum rule condition
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Figure 8. The physical FF, Ay (so, K?) is calculated from the combination of F} , F?, and
F?, employing proton DAs. Left panel: A7+*"(so, K?) vs K? is shown for three values of sy =
(1.4 GeV)?(violate dotted), so = (1.44 GeV)?(red solid) and sy = (1.5 GeV)? (blue dashed) at
the Borel Mass, M? = 2 GeV?. Right Panel: ALT*5(so, K?) vs M is shown for three values
of K2 = 0.5 GeV?(red solid), K2 = 1 GeV?(red dashed) and K2 = 2 GeV? (red dotted) at the
continuum threshold, so = (1.44 GeV)2.

reads as,

2
Exp (X}’;)

1,4,5 2\
FFF/ (SO 5 K ) = — m
p

(%))

%0 —s3\1 {14,5},QCD
/0 dSEXp <]\42> ;Im (FFF/

(3.36)

3.2.1 Numerical analysis

The physical FFs, Aprp are studied as a function of K? = —k? and the Borel mass, M at
P"? = m2 = 0. Using eq. (2.7) and eq. (3.35), one can see that the physical form factors
are proportional to Wa(K?) which can be calculated using other combinations of Fi as
well. We have found that the most stable one against the Borel mass is obtained from the
combination of Flp, Ffp, and F2p, as defined in eq. (2.7). We thus choose to show this
explicitly in figure 8 and figure 9. We would also like to remark that a direct comparison
of the form factors obtained here with those obtained when the proton is interpolated and
photon DAs are used is not possible. The simple reason being that in the present case, the
photon is far off-shell while in the previous case photon is on-shell and hence, in our view,
the form factors so obtained in the previous case are better suited for a phenomenological
analysis. The value of the physical FFs, Arp at K2 = 0.5 GeV? and M? = 2 GeV? for

so(= 1.44 GeV)? form the combination of Ft%®

rp/ are forund to be

A7HA5(1.44%,0.5) = (0.00038 + 0.00021) GeV?,

ATETO(1.44%)0.5) = (0.00174 + 0.00027) GeV? (3.37)

Here again, the uncertainties are associated with the parameters involved in the DAs and
are found to decrease with an increase in K? (as shown in figure 10).
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Figure 9. The physical FF, Apr(so, K?) is calculated from the combination of F}p, Fip and
F?  employing proton DAs. Left panel: A1+4+5(so, K?) vs K? is shown for three values of so =
(1.4 GeV)?(violate dotted), so = (1.44 GeV)?(red solid) and sy = (1.5 GeV)? (blue dashed) a
the Borel Mass, M? = 2 GeVQ. Right Panel: A}L'"?(so, K2) vs M is shown for three values
of K2 = 0.5 GeV?(red solid), K2 = 1 GeV?(red dashed) and K2 = 2 GeV? (red dotted) at the
continuum threshold, so = (1.44 GeV)?.
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Figure 10. The physical FF, A1L+L4+5 (s0, K?) (left pannel) and AILJ#JFS(SO, K?) (right panel) vs K2
are shown at s = (1.44 GeV)? and M? = 2 GeV? along with the uncertainties associated with the
parameters involved in proton DAs. The bands represents the uncertainties.?

In the present case, some kind of judicious extrapolation would be required. There is
another issue that is worth pointing out. When employing proton (or nucleon) DAs while
computing the electromagnetic form factors of the nucleons, it has been observed that the
choice of the interpolation current plays a crucial role [47]. For some choice(s), particular
form factors simply don’t actually show up in the correlator calculation. In the case at
hand, the four quark operator, with the positron field factored out, can be thought of as an
analog of an interpolating current. Thus, it seems that differences or ambiguities similar
to the above discussion are perhaps at play even here as the form factor Ary, in figure 8 is
about an order of magnitude smaller than Ay g, and also with the form factors determined
with photon DAs. As its value itself is smaller by an order, the errors in its value are large.

2The numerical values of the form factor in 10b are slightly different from figure 9 as in the present case
(pp — k) = p? is set to be equal to 0 GeVZ. While for figure 9, it has been set to 0.5 GeV?2.
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4 Discussion and conclusions

In this work, we have computed the form factors involved in the proton decay to a positron
and a photon using the LCSR framework. This should be viewed as a complimentary
approach to lattice calculations, though, to the best of our knowledge, no lattice study
exists for proton to gamma transition. This decay mode has not attracted much attention.
However, as briefly discussed in [25], the branching ratio for this mode is expected to be
smaller than the p — met mode by a factor O(1/(few tens)). This is not a huge suppres-
sion and keeping in mind that the nuclear absorption effects are not going to affect the
radiative mode, it is important to remain optimistic about this mode. The next important
task is to have the relevant form factors computed in a reliable fashion. Choosing to work
in the framework of light cone sum rules, these form factors can be calculated either by
interpolating the proton state and using the photon DAs or by interpolating the photon
state and using the proton DAs. We have considered both these scenarios one by one.
The physical form factors that would enter the decay rate for the radiative process can
be determined from different combinations of hadronic functions that can be systemati-
cally computed. In the case when photon DAs are emplyed for computing the correlation
functions, we find that the condensate contributions do turn out to be important and
dominant for specific hadronic functions. Thus, not having considered these would have
led to erroneous results. In the case of proton DAs, at the order in twist employed for
the present calculations, condensate contributions do not appear. For both the cases, we
have explicitly shown the form factors for the combinations that present the best Borel
stability. As we have briefly discussed above, in our opinion, the form factors determined
using photon distribution amplitudes (Case-1) are more trustworthy. This also motivates
for more detailed studies employing proton DAs in order to gain better insight into the is-
sues, including investigating the effect of the condensates at twist-4 and higher. In the first
case i.e., when photon DAs are employed, the calculations performed do not include three
particle twist-3 contributions. This is justified at the level of precision needed at present
as these contributions are expected to be about an order of magnitude smaller than those
already included since two-particle twist-3 contributions are found to be typically an order
of magnitude smaller. We find that the typical errors on form factors are in the range
(30 — 40)% while for some combinations, errors turns out to be larger (~ 50%). Similar
conclusions on error are reached in [24].

The detailed expressions for all the hadronic correlators are listed in the appendices
and are exact in the sense that they are written for non-zero positron mass and without
assuming k2 = 0. While computing the amplitude we have assumed positron to be massless.
Some extra contributions will arise due to non-zero lepton mass while manupulating eq. (3)
and eq. (7). Thus, with very little effort, these can be utilised to compute form factors and
thus branching ratio if there is u™ instead of e’ in the final state. Some Final states with
second generation particles may be favoured channels in scenarios where the scalar mediated
contribution dominates over the gauge mediated one (see for example [52] for a recent study
pointing out this feature). The radiative modes thus become equally important and can
provide complimentary information about the details of the underlying high energy theory.
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A Distribution amplitudes (DAs)

A.1 Proton DAs

Considering the Lorentz covariance, parity and spin of the nucleon, the matrix element of
three quark operator between the vacuum and the nucleon state can be decomposed into
24 invariant functions in general. These functions are related to the light cone distribu-
tion amplitudes of the proton (see [51] for the details). At twist-3, there are three DAs
(eq. (3.28)): the vector, Vi, the axial-vector, A; and the tensor, 7. The explicit conformal
expansion of these DAs are:

Vi (ai, ) = 12001 asa3 [0 (1) + & () (1 = 3a3)] (A1)
A (a4, 1) = 12010003 (02 — 1) ¢35 () (A.2)
Ty (v, 1) = 1200 apxg {gﬁg () + % (¢g - ¢;{) () (1 — 043)] (A.3)

Here, oy (i = 1,2,3) are the momentum fractions of the nucleon momentum carried by
the three quarks. ¢3(u), ¢7 (1), and ¢3 (1) are the renormalisation scale, y, dependent
coefficients. They are available from QCD sum rules and are provided in appendix-E

A.2 Photon DAs

The photon DAs are defined as the vacuum expectation value of the non-local quark-
antiquark plus n gluons operator (when n > 0) with light-like separations. We have
considered only the two particle i.e. quark-antiquark DAs of twist-2 and twist-3 in the
present work which are defined as follows:

1. Twist-2 DAs: at twist-2, we have only one two-particle DA, ¢~ (u) which is defined as

) 000002 0) = iy (@) (epks — coky) [ due™xpnw). (A4)

Here, (qq) is the quark condensate, €, is the polarisation vector of the photon, e, =
Qqe is the electric charge of the quark and x is the magnetic susceptibility. v and v =
1 — u are the momentum fractions carried by the quark and anti-quark, respectively.
¢~(u) is the photon DA of twist-2. The asymptotic form of this DA is

7Y (u) = 6u(l —u) (A.5)

2. Twist-3 DAs: at twist-3, there are four DAs out of which two are two-particle DAs
and two are three particle DAs. The two particle DAs are defined as

e*x 1 .
(v(k) ’q_(o)'YMQ(m)‘ 0) = eqf3y (52 - k“k:x) /0 duemk'xwv(% 1) (A.6)

1 -
() 2013750(0)|0) = Jeafireask®a®e [ due™ i (AT)
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where, f3, provides a natural mass scale for twist-3 DAs ¢"(u) and *(u). The
explicit form of these DAs are:

@ (u) =5 (352 - 1) 634 (15w - 5w§‘) (3 —30€% + 3554) (A.8)
W) = (1-¢) (56 - 1) > ( + 1% WY - % ;‘) (A.9)

where, £ = 2u — 1 and wy & w,‘;‘ corresponds to the local operators of dimension
six. The values of these constants are provided in appendix-E. Twice the integral of
Y¥ () over  from 0 to u is defined as 9¥(u) and is given by

u) =2 /u danp’ ()

= —20uig + 1—2 (wft = 8wY) wiie (762 - 3) (A.10)

For photon DAs of higher twist and DAs corresponding to three or more particles,
one can look at [49].

B Correlation functions for case-1 (employing photon DAs)

In this appendix, we collect the analytic results of the correlation functions IIf. (pe,pp)
computed in QCD.

_ 3Qu A (Qu— 1 2
H%gD,T(pe,pp):—emp (qq>/ [12 ;<¢>7( )p21n <_P2)+fs(Q6Qd){PQ <1+4P2>

" (u¢<v)(u)_w<v;(u)>+zz)2”1g4) <1+2P2> (uk.pp—pf,)}] (B.1)

H%ICI'D,TP(pe’pp): emy, <gQ> X(QU_Q )/ du |:¢W( ) (1+4P2>:| (B2)
H?SD’KK(pe,pp)Z—M(Qu—%)/ du{‘”( )<1+4P2>} (B.3)
27V (pe, p,) = <90 X(Qu_Qd)/ du {uk”ﬁ”( %) (1+4P2)} (B.4)

o (G 1 v
H%gD’VP(pe,pp):—M(QU_Q@/O du [w () <1+4P2>—<k.pp—uk2>

x L <1+2P22>} (B.5)
UGEP S (e, py) = 252199 [ [ (1 75 () + 74 ))
— (k2 (1) +ulpp k)0 (1)) 2 <1+ 2”;)} (B.6)
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7y PR (pe,pp) = empf’; ) (Qu—Qu) / du W(HS&) (B.7)

pJ3vy k2 2 +
2P (p,py) = o) g, —q) / a2 ) 17 () <1+2PQ> (B.8)
MECPKKP(, 1y empf3’y qq) (Qu— / du uw (1+2P2) (B.9)

o
H%D’T(pe,pp) = emPTW/O du {grdzxqbv(u) (5P2+2u(pp.k—uk:2)> In (—P2>

+f37Qu (pf,—upp.k) w;ﬂ 2 (Hwﬂ (B.10)

em> (g 1 d
GG () =~ EI [ 2 (i (P2) i, 58 (14725 )
(B.11)

PGP KL (p, ) = 2 190) / du | L xug, (u)n (~P2) + f3,Qu ) )(1+2P2)]
‘ (B.12)
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95 () = 50 [ [ 2cur, (i (~P?) — @ { S22 (14125

+ (&”(u)(k.pp—uﬁ)—“kQﬁa(“)) ~ <1+2P22>H (B.13)
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ol
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+ f3,Qu w;(f) (Hwﬂ (B.15)
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PesPp) =
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(B.19)
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ZZ:/ du ? H (Qu+Qu)t" (u) + (4Qu+Qu)
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+ (Qu+Qd)(pp.k—uk2)“’;j§‘)} (B.21)

Here, P? = (p, — uk)? = (pe + uk)? = apf, — uP? — uuk?®. The remaining correlation

functions does not appear in QCD calculations upto the twist accuary we have considered.

We perform the Borel transform on plz) to get the final sum rules.

C Correlation functions for case-2 (employing proton DAs)

In this appendix, we collect the analytic results for the correlation functions F{i (pp, k)

computed in QCD.
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The remaining correlation functions does not appear in QCD calculations upto the twist

accuary we have considered. In this case, the Borel transformation will be performed on
P = (pp —k)* = pi.

D Conventions, definitions and identities

D.1 Definitions and conventions

As discussed in section-3.1, the interpolation current for proton state is not unique. The
Ioffe current, x(x) as defined in eq. (3.1) is the linear combination of xi(z) and x2(x)
defined in eq.(3.3) as,

x(#) = 2(x2 — x1) (D.1)
such that,
(01x(0)| p(pp)) = mpApup(pp)- (D-2)
There is another interpolation current as a linear combination of these two currents de-
fined as,
X' () = 2(x2 + x1)
1 aoc a v C
= 5€ b (uT (:E)Caw,ub(:r)> ot y5d¢(x) (D.3)
such that,
(0 fXI(O)fp(pp» = mp)‘;o“p(pp) (D.4)

D.2 Useful identities and integrals
o Identities:

71,

1. For o 5 [v°,~y
YHoP? = 2ig*’y7 = 2ivP g7 + o7 (D.5)
2. Chisholm Identity:

v 767“ —_ gOé,B,Yll _ gall,}/ﬁ + gﬂﬂ,}/a _ Z'Eo‘ﬁf”’fyyfyf) (DG)

e Integrals: in D dimensions using dimensional regularisation, the formula for general

integrations involved in the correlation function is given by [39],

/ dD:L,eipx

)n—D/z I'(D/2—n) (D.7)

— (—i) (—1)*oD—2n) D/2 (_ 2
(=) (-1)"2 (- T
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for n > 1,p? < 0. On differentiating it over the four-momentum p,, we get the desired
form of the integrals involved in our calculations.

/d%eipxx—j = 27r2p—(;,
x p

/d%eim:c—a = SWQ&
22 i

e Tl 2572 2pap
/d4$62pth a4,8 == (goaﬂ - az ﬂ) )

z p? p
o Lo T 8im? 4dpaps
d4 ipz Latp — _ ( o e’ >
/ rer T2 o 9ap 2
2
4 ipgLa 7T 2
/dxe 6= 1 paln( p),
/d4xemi = _M2p2ln <_p2)
26 8
.2
Tl —im
/ dhoc™ =28 = =2 (pPgap + 2paps ) n (—p°)
2
4 ippLalply T 2papppu 9
/d xeszT =5 <pQ — (paglgu + PBYGau +puga5) In (—p ))

(D.8)

Here, the divergent terms which are proportional to p? are omitted as they goes to
zero after Borel transformaion.

D.3 Borel Transformations

As listed in appendix-B and appendix-C, the correlation functions calculated in QCD

involves,
P? = (p, — uk)? = (pe + uk)* = ﬂp}% — uP? — uuk? (D.9)
with P2 = —p? and @ = 1 — u in case-1 and
(k —ap,y)* = aP? — aK? - a&mg (D.10)
with o = {aq, as}, K* = —k% and P”? = (p,—k)? in case-2. To calculate the final sum rules,

one need to find the imaginary part of the correlation functions collected in appendix-B and
appendix-C and substitute them in eq. (27) and eq. (44), which are obtained by performing
the Borel transformations on the momentum trasferred square i.e. pf) and P"? = (pp — k)?
for case-1 and case-2, respectively. To incorporate that, one need to make the following
substitutions in the correlation functions of case-1,

1 U —3
/ duF(g)G(u, s) = — ’ duF(u)eWG(u, 5)
0

P 0 u
(D.11)
I F(u) e Flug)G(so,up) [  Flu) e I S
/0 du pi G(u,s) — P2 +/0 du = <G(u,8)—M 8gG(u,s))
(D.12)
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S.No. Parameter Value Used Reference

1. Proton mass (my,) 0.938 GeV [33]

2. | Fine Structure Constant (a = % %7 [33]

3. Quark condensate ((gq)) —((256 4+ 2)MeV)3 [24]

4. m2 (0.8 +0.2)GeV? [24]

5. Magnetic Susceptibility (x) (3.08 4 0.02)GeV 2 [49]

6. f3vy —(4+2).1073GeV? [49]

7. w5 3.8+1.38 [49]

8. wy —2.1+1.0 [49]

9. A (5.4 4 1.9).1072GeV? [47]

10. Ap —(2.740.9).1072GeV? [47]

11. #(1u = 1GeV) (5.3 +£0.5).1073GeV? [51]
= ¥

12. 6 (n=1GeV) = % 1.1+03 [51]
3

13. b3 (1n=1GeV) = % 40+15 [51]
3

Table 1. Numerical Values for the parameters used for numerical analysis.
) — — / du [e;v;g G(u so)i ((5 (ﬂso - uPQ))]
880 ¢
(U) e ~ 2
+ /0 2u2 85 (e 2 G (u, s)) J (us — uPe)
/ du u3 a 5 (eﬁG(u, 9) (D.13)
with )
_ uFP; S0
S = 4 and ug = m (D14)

In these substitutions we put s = pf, and k% = 0 as the photon is onshell. These substitu-
tions are consistent with [47].
For case two, the subsbtitution reads as,

1 Flos) -s
/Dal — —/ Da; (Oél)eM21 (D.15)
— app o o'
with a = {a1, a3}, Da; = dajdasdasd(l —ag — ag — ag),
_K2 + =~ 2
g — S Taamy (D.16)
a
and
K2 —m2+4sg /(K2 +50)> +mb — 2m2 (s — K?)
o) = — + . (D17)
2m2 2m?2
Here, s = (p, — k)* and K? = —k2.

E Values of parameters used

In this appendix, we collect all the numerical values of the parameters used for both case-1
and case-2 during numerical analysis. The numerical values are collected in table 1.
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