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Abstract

Within the Standard Model (SM) of particle physics, the strong

interactions are dictated by the gauge theory called quantum chromodynamics

(QCD). QCD is a theory of quarks and gluons, which carry a gauge charge called

color. Gluons are the mediators of strong interactions between colored particles,

very much like the photon for electromagnetic interactions between electrically

charged particles. However, unlike photons, the gluons themselves carry color

charge due to the non-abelian nature of QCD. This leads to self-interactions of

gluons, and hence to many exciting phenomena in QCD like asymptotic freedom,

color confinement, etc. The quarks and gluons form colorless bound states like

mesons (the bound state of a quark and anti-quark) and baryons (the bound

state of three quarks), collectively called hadrons, at small energies because of

the phenomenon of color confinement. As a result, we only detect colorless

hadrons at the detectors.

According to the scattering theory, experimental observables like decay width,

scattering cross-sections, etc., can be calculated theoretically by calculating the

matrix elements of quark-gluon operators between the initial and final hadron

states called the Hadronic Matrix Elements (HMEs). However, the di�culty

arises as these hadrons are bound states i.e. are non-perturbative in nature,

and hence, the perturbative QCD can not provide a complete solution to these

HMEs. Consequently, these HMEs contain the non-perturbative e↵ects in the

form of hadronic quantities like form factors, decay constants, etc.

These hadronic quantities are very essential inputs for any prediction within or

beyond the SM. Therefore, calculating these quantities is very crucial. There

exist several methods like chiral perturbation theory (�PT ), lattice QCD

(LQCD), QCD sum rules (QCDSRs), etc., to handle these objects. However,

none can give precise results with the current techniques and computational

skills, and di↵erent methods are found to typically work well in di↵erent regimes.

Therefore, estimations of these quantities, involved in the processes of interest,

using di↵erent methods is very important to get reliable theoretical estimates

for the experimental observables.
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In this thesis, we have discussed the applications of the method of Light

Cone Sum Rules (LCSR), the QCDSRs on the light cone, to various processes

within and beyond the SM, focusing on the calculation of the Form Factors

(FFs) involved. LCSR is a QCD based method. It uses the analytic properties

of the correlation functions, the matrix elements of the quark and gluon oper-

ators taken between the vacuum and the hadronic state, and the framework of

Operator Product Expansion (OPE) to compute these FFs. Along with these

properties, it uses Quark-Hadron duality which allows one to calculate the cor-

relation functions at large Euclidean momentum transfers which can then be

analytically continued to the desired kinematical regime. As stated above, every

available non-perturbative method has limitations and domain of applicability,

and so does the method of LCSR.

To explore the applications of LCSR and gain better understanding of its limita-

tions, we considered several processes within and beyond the SM involving light

as well as heavy quark hadrons. The considered processes are the radiative tau

decay (involving a light meson called pion), the proton decay to a positron and

a photon (involving a light baryon called proton), the baryon number violating

decay of D-meson to an anti-proton and a positron, and the radiative decay of

D⇤-meson (both involving heavy quark D-meson). In all these cases, the method

of LCSR is found to provide reasonable estimates for the form factors involved.

All of these are the first applications of LCSR to such processes. Moreover,

for the considered cases involving proton and D-mesons, we discussed the first

theoretical estimates of the FFs involved which are of great phenomenological

importance as they can be very helpful in constraining the Beyond SM (BSM)

models, and probing the structure of the hadrons. The results can be further

improved with the inclusion of higher-order e↵ects which may also bring some

new elements. This method also has the potential to be applied to several other

situations like non-leptonic decay modes where systematic calculations still show

some discrepancies.

Keywords: Strong interactions, Hadronic Matrix Elements, Form Fac-

tors, Light Cone Sum Rules, Baryon number violation, Proton decay.
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Chapter 1

Introduction

For decades, the fundamental goal of studying particle and astroparticle physics

has been to understand the origin and structure of the Universe from smallest

to largest scales. According to the present mass-energy budget of the Universe,

we understand only 5% of the Universe, while rest of 95% is a complete mystery.

This 5% is made up of elementary particles which have four fundamental inter-

actions: electromagnetic (EM), weak, strong, and gravitational. The Standard

Model (SM) of particle physics (to be discussed in detail in Section-1.1) describes

the first three fundamental interactions while the gravitational interaction is not

part of the SM. It has obtained great success in explaining various observed

phenomena. However, it fails to explain phenomena like the matter-anti-matter

asymmetry of the Universe [1], [2], the masses of neutrinos [3], [4], the dark mat-

ter, and dark energy [5], [6], and also several deviations from the SM predictions

like in B-meson decays [7], [8], the anomalous magnetic moment of the muon

[9], [10], etc. (see [11] for more details). All of these suggest towards physics

Beyond the SM (BSM). The signatures for BSM can be seen either through di-

rect searches or indirect evidences. Collider experiments, like the Large Hadron

Collider (LHC), have looked for direct signatures but have had no success so

far. The other possibility to probe BSM physics is by looking at the indirect

e↵ects of quantum fluctuations at low energies due to microphysics at higher

energies. Low energy probes like rare decays of leptons and hadrons, and related

observables, provide access to look for these indirect searches (with the help of

5
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E↵ective Field Theories (EFTs) (see Section-1.5)) by studying the rare decays,

asymmetries, and CP-violating e↵ects [12]. These studies require precise theo-

retical predictions.

However, to make theoretical predictions on any observable involving strong in-

teractions at low energies, the inputs on the non-perturbative hadronic quantities

like form factors (FFs), decay constants, etc., are required. Although, calculating

these quantities is a complicated and cumbersome task due to color confinement,

a property of strong interactions (to be discussed in Section-1.2). Except for a

few observables, which can be defined such that they are free from these hadronic

quantities, like lepton flavor universality (LFU) ratios (RK , RK⇤) [13], [14], these

hadronic quantities are required everywhere, whether it is a precision calculation

of flavor observables or decay width calculations of processes within or beyond

the SM. Thus they are crucial inputs for making any prediction within or beyond

the SM.

This thesis will discuss the complications and available possible methods (with

the main focus on the method of Light Cone Sum Rules (LCSR)) to compute

these hadronic parameters theoretically, especially the form factors, within the

context of SM and BSM interactions. Let us now review the SM of particle

physics, and the theory of strong interaction including the nitty-grities and in-

volved challenges along with possible solutions.

1.1 The Standard Model of Particle Physics

The Glashow-Weinberg-Salam model [15]–[17], popularly known as the Stan-

dard Model (SM) of particle physics, dictates the fundamental interactions (EM,

weak and strong but not gravitational) between the elementary particles. The

development of the SM was gradual and was driven by many theoretical and

experimental results. Within the SM, the elementary particles are classified as

fermions, gauge bosons, and the Higgs boson. The fermions are further classified

as quarks and leptons. They are of six types (or flavors) and are organized in

three generations or families in order of increasing masses1. The six flavors of

1Why there are three generations is still an open question.
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quarks are: up (u), down (d), strange (s), charm (c), bottom or beauty (b),

and top or truth (t). The six flavour of leptons are: electron (e), muon (µ), tau

(⌧), and their corresponding neutrinos (⌫e, ⌫µ, ⌫⌧ ). The fundamental interactions

between these particles are mediated by the gauge bosons of the gauge group of

the SM i.e. GSM = SU(3)c ⌦ SU(2)L ⌦ U(1)Y . Here, SU(3)c is a non-abelian

gauge group and dictates the theory of strong interactions, known as Quantum

ChromoDynamics (QCD). SU(2)L and U(1)Y are the gauge groups associated

with the weak isospin and the weak hypercharge, respectively. Collectively, the

gauge group SU(2)⌦U(1)Y provides the ElectroWeak (EW) theory, a combined

framework to explain the weak and the electromagnetic interactions. It breaks

spontaneously to U(1)Q due to Spontaneous Symmetry Breaking (SSB) when the

Higgs scalar field acquires a non-zero Vacuum Expectation Value (VEV). U(1)Q

is the group of electric charge transformations. The electric charge Q is related

to the weak hypercharge, Y and the third component of the weak isospin, T3 via

the Gell-Mann-Nishijima formula [18], [19] given by

Q = T3 +
Y

2
. (1.1)

The gauge bosons which mediate the EM, weak and strong interactions are named

as the photon (�), the W± and Z0, and the gluons g, respectively. The last piece

of the SM is the Higgs boson which is responsible for mass generation of all the

particles in the SM [20]–[25] and was finally discovered in 2012 [26], [27]. The

fundamental particles along with their basic properties are shown in Fig.(1.1).

Though, the Higgs provides mass to all the particles, the mechanism for the mass

generation of fermions and gauge bosons is di↵erent. The gauge bosons acquire

mass due to SSB, while the fermions acquire mass due to the Yukawa interactions

between the fermions and the Higgs boson. The neutrinos, photon and gluons

still remain mass-less within the SM.

The most general Lagrangian for the SM consistent with GSM and the condition

of renormalizability is given by

LSM = Lkinetic + Linteraction + LHiggs + LYukawa (1.2)
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Figure 1.1: The fundamental particles in the Standard Model of particle physics.
(Source: https://www.quantumdiaries.org) .

where, Lkinetic, Linteraction, LYukawa, and LHiggs are various kinetic and interaction

terms of elementary particles and we will now discuss them one by one.

Lkinetic and Linteraction are the kinetic and interaction terms for fermions and gauge

bosons. The explicit form of these terms is

Lkinetic+Linteraction = i
X

 

 ̄ /D �
1

4
Bµ⌫B

µ⌫
�

1

2
Tr{Wµ⌫W

µ⌫
}�

1

2
Tr{Gµ⌫G

µ⌫
},

(1.3)

where the summation in the first term runs over all the fermions. /D = Dµ�µ

with Dµ being the covariant derivative that acts on the fermions. Bµ⌫ , Wµ⌫ , and

Gµ⌫ are the field strength tensors of the gauge fields Bµ, W i
µ (i = {1, 2, 3}), and

Ga
µ (a = {1, . . . , 8}) corresponding to U(1)Y , SU(2)L, and SU(3)C gauge groups,

respectively. The explicit expressions for these field strength tensors read as

Bµ⌫ = @µB⌫ � @⌫Bµ,

Wµ⌫ = @µW⌫ � @⌫Wµ + ig2 [Wµ,W⌫ ] ,

Gµ⌫ = @µG⌫ � @⌫Gµ + igs [Gµ,G⌫ ] (1.4)
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whereWµ = W i
µ
�i
2 andGµ = Ga

µ
�a
2 with �i and �a being the Pauli and Gell-Mann

matrices, respectively (collected in Appendix-A). We have also used Einstein’s

summation convention over the repeated indices. The gauge group of SM treats

the left- and right-chiral fields di↵erently. As a result, the covariant derivative

Dµ acts di↵erently on di↵erent fields. To understand that, let us first have a

look at the representation of di↵erent particles under the SM gauge group. These

representations are provided in Table-2.4. The left-handed fermions transform as

field Qi
L ui

R diR Ei
L eiR � g W±, z0 H

repr. (3,2) 1
3

(3,1) 4
3

(3,1)� 2
3

(1,2)�1 (1,1)�2 (1,1)0 (8,1)0 (1,3)0 (1,2)1

Table 1.1: The field representation of the SM particles under the SM gauge group
GSM . The first and second entry in the bracket represents field representation
under SU(3)c and SU(2)L, respectively. The subscript gives the hypercharge Y .

a doublet under SU(2)L while the right-handed fermions transform as a singlet.

Furthermore, the quarks and leptons are SU(3)C triplet and singlet, respectively.

Consequently, the covariant derivatives for di↵erent fields are given as

DµQL = (@µ � iY g1Bµ � ig2Wµ � igsGµ)QL,

DµqR = (@µ � iY g1Bµ � igsGµ)qR,

DµEL = (@µ � iY g1Bµ � ig2Wµ)LL,

DµeR = (@µ � iY g1Bµ)eR, (1.5)

where QL and EL are the left-handed quark and lepton doublets, respectively.

qR 2 {uR, dR} and eR are the right-handed quark and lepton singlets. These can

be explicitly written as

Qi
L ⌘

0

BBB@

ui
L

diL

1

CCCA
⌘

0

BBB@

0

BBB@

uL

dL

1

CCCA

0

BBB@

cL

sL

1

CCCA

0

BBB@

tL

bL

1

CCCA

1

CCCA
,

Ei
L ⌘

0

BBB@

⌫iL

eiL

1

CCCA
⌘

0

BBB@

0

BBB@

⌫e,L

eL

1

CCCA

0

BBB@

⌫µ,L

µL

1

CCCA

0

BBB@

⌫⌧,L

⌧L

1

CCCA

1

CCCA
, and
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ui
R ⌘

 

uR cR tR

!
, diR ⌘

 

dR sR bR

!
eiR ⌘

 

eR µR ⌧R

!
.

The right-handed neutrinos are absent, leaving neutrinos massless in the SM. g1

and g2 are the electroweak couplings constants and are related to the electron

charge, e by the relation

e =
g1g2p
g21 + g22

. (1.6)

The coupling constant for the strong interactions is represented as gs. More-

over, one commonly uses ↵em and ↵s to represent the coupling strengths for the

electromagnetic and strong interactions, respectively, and are defined as

↵em =
e2

4⇡
, and ↵s =

g2s
4⇡

, (1.7)

respectively. ↵em is popularly known as the fine structure constant and its value

at low energy is ⇠ 1
137

2.

The second last term of the SM Lagrangian is LHiggs. It includes the kinetic and

self interaction terms for the Higgs field and is given by

LHiggs = (DµH)†(DµH)�
m2

H

2v2
�
H†H � v2

�2
(1.8)

where mH is the mass of the Higgs and v is the VEV. The Higgs field also

transforms as a doublet under SU(2)L and hence the covariant derivative for the

Higgs field is

DµH = (@µ � iY g1Bµ � ig2Wµ)H. (1.9)

Finally, LYukawa is the Yukawa interaction term and is given by

LYukawa = �YeĒLHeR � YdQ̄LHdR � YuQ̄LH̃uR + h.c., (1.10)

where H̃ = i�2H†, and Ye, Yd, and Yu are the Yukawa coupling constants.

Eqn.(1.10) is written in the flavor basis. In this basis, there are no mixing terms

for the quarks of di↵erent generations. However, for practical applications, it is

2These coupling strengths vary with energy as a result of renormalisation (see Section-1.2
for more details).



1.1. The Standard Model of Particle Physics 11

convenient to write them in the mass basis i.e. the basis in which the matrix of

the Yukawa couplings is diagonal. This can be done by performing a bi-unitary

rotation of the quark fields given by

uL ! UuuL, dL ! UddL. (1.11)

where UL and Ud are the unitary matrices. These rotations a↵ect the quark

couplings with W± bosons. The modified interaction Lagrangian for quark in-

teraction with the W-bosons reads as

W+
µ ūL�

µdL +W�
µ d̄L�

µuL ! W+
µ ui

L�
µ (VCKM)ij djL +W�

µ d̄iL�
µ
⇣
V †
CKM

⌘ij

uj
L.

(1.12)

Here, VCKM is a unitary matrix that results in the mixing of di↵erent generation

quarks and is known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix [28],

[29]. It is given by

U †
uUd ⌘ VCKM =

0

BBBBBBB@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

CCCCCCCA

(1.13)

and has 4 independent parameters: 3 rotation angles and 1 complex phase. The

complex phase in the CKM matrix is the only source of CP violation in the SM3.

Consequently, the SM has eighteen free parameters which include the masses of

the fermions except for neutrinos which are mass-less in the SM, the coupling

constants, the angles and phase of the CKM matrix, and the mass and the VEV

of Higgs.

After this brief introduction to the SM of particle physics, let us understand

the theory of strong interactions in some detail. This thesis is focused on the

challenges involved in calculating processes involving strong interactions at low

energies.

3CP violation in the SM is not su�cient to explain the matter anti-matter asymmetry of
the Universe.
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1.2 Quantum ChromoDynamics and Hadrons

Quantum ChromoDynamics (QCD) is the theory of strong interactions described

by the SU(3)c local non-abelian gauge group4. The fundamental degrees of

freedom in QCD are the quarks and gluons. The quarks are the matter particles

while the gluons are the mass-less gauge bosons that act as the mediator of

strong interactions between quarks. QCD is very similar to the well-studied

Quantum ElectroDynamics (QED), the theory which explains the interaction of

photons with the charged particles. Like the electric charge in QED, QCD also

has a charge called color. Though there are various similarities between QED

and QCD, the major di↵erence arises due to the non-abelian nature of QCD. It

results in the self-interaction of gluons as they also carry the color charge while

photons are charge neutral and hence do not interact among themselves. Because

of these self-interactions of gluons, QCD becomes very complicated and leads to

the interesting phenomenon of color confinement. It is the property of strong

interactions which results in the formation of colorless bound states of quarks

and gluons, known as hadrons, at low energies or equivalently at large distances.

This property of strong interactions arises as a consequence of renormalization.

To understand it, let us look at the QCD Lagrangian

LQCD = �
1

4
(Gµ⌫)

2 +
X

k

 ̄j
k(i /D �m)ij 

i
k + Lgauge + Lghost (1.14)

where Gµ⌫ is the gluon field strength tensor defined in Eqn.(1.4), and the covari-

ant derivative Dµ here is

Dµ = @µ � igsGµ (1.15)

with Gµ = Ga
µ
�a
2 (a = {1 . . . 8}). The sum over k runs over all flavors of quarks

and {i, j} represents the color indices for quarks.

The first term represents the kinetic and self-interaction terms for gluons while

the second term represents the kinetic and interaction terms for quarks with glu-

ons. The third, and the fourth terms are the gauge fixing and the ghost terms,

respectively and are required to consistently quantize QCD and also to get rid

4A group is called non-abelian if the generators of the group do not commute.
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of the redundant/unphysical degrees of freedom (d.o.f.) in the theory (for detail

look at [30],[31]).

According to the perturbation theory, the scattering amplitude for a process can

be calculated order by order in ↵s including all the possible Feynman diagrams5

for the process at each order. At the leading order (O(↵0
s)), one does not en-

counter any problem. However, one encounters divergences in the intermediate

steps while computing the higher orders quantum corrections (like O(↵s)) i.e.

the loop diagrams. In field theoretical language, the divergences which arise due

to integration over the large (ultra high) momentum of the particle running in

the loop, which can take any value of the momentum from zero to infinity, are

called the UV divergences6. Moreover, the real cross-section should be finite

which demands for a procedure to take care of these infinities. According to

this procedure, these infinities are first regularised, and the parameters are then

redefined via renormalization. Consequently, the physical parameters like cou-

pling constants, fermion masses, etc. are found to be scale-dependent and thus

run with the scale. The physical parameters are the renormalized counterparts

of the bare parameters which are written in the Lagrangian (Eqn.(1.14)). Mea-

suring, say, the coupling at one scale, i.e. in a specific experiment, then allows

one to know the value at a di↵erent scale relevant for di↵erent experiments. The

dependence of the coupling strength ↵s(=
g2s
4⇡ ) on the energy scale Q is shown in

Fig.(1.2). Mathematically, it can be written as (upto 1-loop corrections)

↵s(Q) =
2⇡

�0

1

ln
⇣

Q
⇤QCD

⌘ (1.16)

where �0 = 11 � 2nf

3 is known as the beta function at 1-loop with nf being the

number of active flavors of quarks, and ⇤QCD ⇠ 200MeV provides the Landau

pole for QCD. Furthermore, in contrast to QED, the coupling strength for QCD

decreases with an increase in energy, and this is referred to as asymptotic freedom.

Consequently, at high energies ↵s ⌧ 1 and hence the quarks and gluons behave

5The graphical representations to show the flow and interactions of the particles.
6The divergences which arise when the loop momentum goes to zero are called InfraRed

(IR) divergences.
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almost like free particles, and the perturbation theory is applicable at those

energy scales. However, at low energies (Q  1GeV) ↵s becomes large and QCD

becomes non-perturbative, leading to the phenomenon of color confinement. It

leads to the formation of hadrons at low energies or equivalently large distances

(for details on the subject, see eg. [31]–[34]).

The hadrons are the colorless bound states of quarks and gluons. These states

Figure 1.2: The running of strong coupling with energy scale from various ex-
perimental observations along with the theoretical prediction [35].

have a characteristic energy scale of O(⇤QCD). They are of mainly two types:

mesons, the bound states of a quark and anti-quark, and baryons (anti-baryons),

the bound states of three quarks (anti-quarks) which can be written as

|Mesoni =
1
p
Nc

|qi1q̄2ii

|Baryoni =
1
p
2Nc

✏ijk|q
i
1q

j
2q

k
3i, |Anti-baryoni =

1
p
2Nc

✏ijk|q̄
i
1q̄

j
2q̄

k
3i (1.17)

where, Nc = 3, is the number of colors, {i, j, k} are the color indices, and the Ein-

stein summation convention over the repeated indices is used. As the quark-gluon

interactions are flavor universal, any combination of {q1, q2, q3} 2 {u, d, s, c, b} is
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possible 7. Experimentally, mesons with all the flavor combinations are observed

while for the case of baryons with two or three heavy quarks are yet to be discov-

ered8. The exotic states like tetraquark and pentaquarks are also possible and

have been observed. We will not discuss them further, for more details look at

[36] and references therein.

The states defined in Eqn.(1.17) are called the valence states with a minimal

number of constituent quarks and anti-quarks, collectively called the valence

quarks. These states can have an infinite number of virtual quarks, anti-quarks,

and gluons called the sea quarks such that the state remains color neutral. The

hadrons are the bound states defined as a superposition of all such states with

n number of sea quarks, anti-quarks, and gluons. It can be understood with the

help of the example of the bound state of a hydrogen atom (an example taken

from [37]). According to non-relativistic quantum mechanics, this state is made

up of a valence proton and a valence electron. However, in the field theoretical

description, there will be quantum corrections due to the emission of virtual pho-

tons and electron-positron pairs. Hence, the hydrogen atom is not just a state

given by a bound state of valence electron and proton but is a sum of infinite set

of states consisting of one and more virtual photons and electron-positron pairs

such that they carry the same quantum number as the hydrogen atom. Hence,

one can write a hydrogen state as a superposition of states as

|Hydrogeni = |e�pi � |e�p�⇤i � |e�pe+e�i+ . . . . (1.18)

In QED, these virtual states do not have large e↵ects and the e↵ect of these

states can be seen only in subtle e↵ects like the Lamb shift. However, in QCD

the states involving extra quarks, anti-quarks, and gluons are very important.

The coupling strength ↵s is large and the average energy of these virtual particles

is ⇠ O(⇤QCD), i.e of the order of the hadronic scale.

At colliders, one detects only these color-neutral bound states and no free colored

quarks. To have a theoretical estimate of the experimentally observed quantities

7The top quark, t decays before it can hadronize and does not form bound states like other
quarks.

8With the exception of a couple of doubly charmed baryons.



16 Chapter 1. Introduction

like decay widths or scattering cross-sections, etc., one is required to use the

scattering theory. According to the scattering theory, the probability amplitude

of any process involving the decay or scattering of particles is determined by the

matrix element of the relevant operator(s) in the interaction Lagrangian between

the initial, i and the final, f state.

A(i! f) ⇠
D
f
���Ô
��� i
E

(1.19)

In QCD, interactions are governed by operators, Ô, made up of quarks and

gluons. However, due to the color confinement, the initial and the final states

are the hadrons or the QCD vacuum9, collectively known as hadronic states.

Consequently, only perturbative QCD can not provide a theoretical estimate of

physical observables and an input regarding the non-perturbative e↵ects arising

due to confinement must be included inevitably when strong interactions are

involved in any process. The matrix elements of the quark-gluon operators be-

tween the initial and the final hadronic states (like the one in Eqn.(1.19)) are

known as the Hadronic Matrix Elements (HMEs). These are non-perturbative

in nature. Before moving ahead with the details of these HMEs and how to

calculate them, we collect all mesons and baryons used throughout this thesis

along with their properties in Table-1.2 and Table-1.3. These lists are not even

close to the complete list. The full list of mesons and baryons can be found in

[35].

1.3 Hadronic Matrix Elements and the Form

Factors

Hadron Matrix Elements (HMEs) are defined as the matrix elements of the

quark and gluon operators between the initial and the final hadronic states.

9QCD vacuum is not an empty state. It is rather filled with fluctuating quarks and gluons
such that the total number of quarks and gluons present in the vacuum must satisfy the
quantum numbers of the vacuum, i.e. it must be color neutral, have zero electroweak charges,
and must have the spin parity, JP = 0+ with non-zero average densities (see [37] to learn more
about QCD vacuum).
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Meson Valence quark Mass (MeV) Full Width (MeV) Mean life (s) JP

⇡0 uū�dd̄p
2

(134.9768± 0.0005) - (8.52± 0.18)⇥ 10�17 0�

⇡+ ud̄ (139.57039± 0.00018) - (2.6033± 0.0005)⇥ 10�8 0�

⇢(770) uū�dd̄p
2

(775.26± 0.25) 149.1± 0.8 - 1�

!(782) uū+dd̄p
2

(782.65± 0.12) (8.49± 0.08) - 1�

a1(1260)
uū�dd̄p

2
(1230± 40) 250 to 600 - 1+

K+ us̄ (493.677± 0.016) - (1.2380± 0.0020)⇥ 10�8 0�

D0 cū (1864.83± 0.005) - (410.1± 1.5)⇥ 10�15 0�

D+ cd̄ (1869.65± 0.05) - (1040± 7)⇥ 10�15 0�

D+
s cs̄ (1968.34± 0.07) - (504± 4)⇥ 10�15 0�

D⇤0(2007) cū (2006.85± 0.05) < 2.1 - 1�

D⇤+(2010) cd̄ (2010.26± 0.05) (0.0834± 0.0018) - 1�

D⇤+
s cs̄ (2112.2± 0.4) < 1.9 - ??

Table 1.2: The list of mesons and their quark contents along with their masses,
decay widths and the spin-parity taken from [35].

Baryon Valence quark Mass (MeV) Full Width (MeV) Mean life JP

p uud (938.272081± 0.000006) - > 2.1⇥ 1029 years 1
2

+

n udd (939.565413± 0.000006) 880.2± 1.0 - 1
2

+

⇤ uds (1115.683± 0.006) - (2.632± 0.02)⇥ 10�10 s 1
2

+

⇤b udb (5619.60± 0.17) - (1.470± 0.010)⇥ 10�12s 1
2

+

Table 1.3: The list of baryons and their valence quark contents along with their
masses, decay widths and the spin-parity taken from [35].

Theoretically, their study is extremely complicated and tedious. This is because

of the fact that the quarks and gluons inside hadrons interact at the energies of

the order of ⇤QCD at which QCD becomes non-perturbative, and can no longer

be treated as a perturbation theory. To compute these HMEs, one parameterizes

them in terms of the non-perturbative objects called the form factors (FFs).

These FFs are the essential theoretical inputs required to make any theoretical

prediction within or beyond the SM. In general, the scattering matrix elements

(or amplitudes) are analytic and unitary and are parameterized in terms of these

FFs. Consequently, the FFs follow the principles of analyticity and unitarity.

The term form factor was first encountered in atomic physics while

studying the scattering of an electron from an atom. In atomic physics the

quantum mechanical initial and final states can be properly described in terms
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of wave functions, while the mechanism of hadron formation can neither be

described by a potential nor by perturbation theory. Consequently, wave function

description is not possible for hadrons which makes the calculation of hadron FFs

in QCD very challenging. We will discuss the available approximate methods to

handle this di�culty in the next Section. Despite these huge di↵erences between

the atomic and hadronic systems, there are various similarities between the FFs

involved in atomic and hadronic problems. Let us understand the basic properties

of FFs using an atomic physics example where calculating them is easier.

Consider the elastic scattering of an electron from an atom (see [37] for a detailed

discussion involving a general case)

e�(
�!
k ) + A0 ! e�(

�!
k 0) + A0 (1.20)

where
�!
k and

�!
k 0 are the three momentum of the incoming and the outgoing

electron, respectively. A0 represent the ground state of the atom. The amplitude

for this process reads as

M00 = h
�!
k 0; 0|V̂ |

�!
k ; 0i = �

4⇡Ze2

|
�!q |2

+
4⇡e2

|
�!q |2

F (�!q ) (1.21)

where Z is the atomic number, �!q =
�!
k0
�
�!
k is the momentum transfer, and V̂

is the operator corresponding to the Coulomb potential given by (neglecting the

atomic recoil)

V ({�!x i},
�!y ) = �

Ze2

|
�!y |

+
ZX

i=1

e2

|
�!y ��!x i|

. (1.22)

Here, �!x i are the positions of electrons in the atom with respect to the atomic

nucleus, and �!y is the position of the scattered electron. The function F (�!q ) in

Eqn.(1.21) is called the form factor and is defined as

F (�!q ) = h0|

 
X

i

ei
�!q .

�̂!
X i

!
|0i =

Z
d�!x ei

�!q .�!x ⇢(�!x ). (1.23)

where
�̂!
X is the position operator with eigenvalues xi, ⇢(

�!x ) = | 0(
�!x )|2 is the

average charge density of electrons in the atom in the ground state. In the limit
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�!q ! 0, F (�!q )�!q !0 = Ze i.e., the total charge of the electrons in the atom.

The FF reproduces the symmetry of the charge density in the momentum space

i.e. F (�!q ) = F (q2) with q ⌘ |
�!q |. Hence, the form factors can be used to

understand the charge distribution inside the atom. In the spherical coordinates

such that �!q is parallel to z-axis, the form factor after angular integration turns

out to be

F (q2) =
4⇡

q

Z 1

0

dr r ⇢(r) sin(qr) (1.24)

where r =
p

|
�!x |2. Hence, the FFs are spherically symmetric. Furthermore,

F (q2) is a real-valued function of q2 and at large q values, they are dominated

by small distances (r ⇠ 1/q) as the integrand has a highly oscillatory function

sin(qr) which is suppressed for large r values

The hadronic FFs have a similar physical interpretation. They capture the e↵ect

of the dynamics of strong interactions and can be very helpful in understanding

the structure of hadrons. They typically depend on how the momentum of the

hadron is distributed among di↵erent constituent quarks and gluons. These are

the functions of the transferred four-momentum squared to preserve the Lorentz

invariance of the theory. Furthermore, short-distance dominance of the form

factors at large momentum transfer is valid for the case of hadron FFs as well.

Moreover, the electric charge of the hadron can be calculated by calculating the

electromagnetic form factor at zero momentum transfer. Let us now look at the

various possible methods to calculate these FFs.

1.4 Methods to calculate the hadronic form fac-

tors

There are several non-perturbative methods to calculate these hadronic form

factors like the constituent quark model [38], the MIT bag model [39], the Chi-

ral perturbation theory (�PT ) [40]–[43], the Lattice QCD (LQCD) [44]–[46],

and the QCD sum rules (QCDSRs) [47]–[49], etc. Out of all the available non-

perturbative methods, only LQCD and QCDSRs are QCD based, while others

are some sort of an e↵ective theory (EFT)/model.
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Now, let us briefly review three of the most commonly used methods to calculate

the hadron form factors:

1. Chiral perturbation theory: Along with the obvious symmetries of the

Lagrangian like Lorentz invariance, gauge invariance etc., the QCD La-

grangian is found to have chiral symmetry in the limit of massless quarks,

known as the chiral limit. As the quark masses are very small compared to

the typical hadronic scale, mu,md,ms ⌧ ⇤QCD, QCD can be considered

to have the chiral limit, and the quark masses can be treated as perturba-

tions. In this chiral limit, the chiral symmetry (SU(3)L⇥SU(3)R) of QCD

Lagrangian is spontaneously broken into SU(3)L+R resulting in eight pseu-

doscalar mesons which can be identified as the corresponding Goldstone

bosons. These Goldstones have derivative couplings, and hence typical

amplitude goes as E2

⇤2 , where ⇤ is related to the breaking scale, F such that

⇤ ⇠ 4⇡F . Consequently, one can write an e↵ective theory, known as chiral

perturbation theory (�PT) to describe the QCD interactions in terms of

the low mass mesons (eg. ⇡, K, ⌘, . . .). These low mass mesons are the

(pseudo)-Goldstone bosons of spontaneous chiral symmetry breaking such

that the Lagrangian is invariant under the chiral symmetry group, and the

light quark mass terms act as the explicit breaking terms and transform

linearly under this group. See [40]–[43] for detailed reviews.

2. Lattice QCD: Unlike the above discussed �PT, lattice QCD (LQCD)

is a QCD formulation on a discretized Euclidean space-time grid. It has

the same degrees of freedom as in QCD i.e. quarks and gluons, with no

new parameters and hence retains the fundamental characteristics of QCD.

LQCD solves QCD numerically by using computer simulations analogous

to the ones used for statistical mechanics systems. The discretized space-

time provides a non-perturbative regularisation scheme. Hence, we do not

encounter any UV divergences as the finite lattice spacing, a, provides an

UV cuto↵ given by ⇡/a. For a ! 0, these computations provide the con-

tinuum limit. The numerical simulations in LQCD are non-perturbative

implementations of the Feynman path integral approach of Quantum Field
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Theory (QFT). Here, the calculations of the field theoretical observables

proceed exactly the same way one would have done analytically given the

ability to do such calculations. Hence, LQCD simulations allow us to cal-

culate HMEs numerically using the fundamental principles of QCD with

no extra assumptions. See for example [44]–[46] for detailed reviews.

3. QCD sum rules: It is another method that is based on the fundamen-

tals of QCD. This method allows calculating the HMEs using the analytic

properties of the correlation function of the interpolating quark currents of

the hadrons taken at large virtualities (momentum squared, |Q2
| ! 1).

The correlation functions are the matrix elements of the time ordered prod-

uct of these interpolating currents taken between vacuum or the on-shell

states. These correlation functions are of dual nature. On one side, they

can be written as the sum over the hadronic states using dispersion re-

lations. These dispersion relations include contributions from the lowest

energy hadron state and the continuum and heavier states. The contri-

bution from the continuum and heavier hadronic states can be written in

terms of the spectral densities which are not known and can be approxi-

mated by using the quark hadron duality. It approximates the perturba-

tively computed amplitudes in QCD (under certain assumptions and in

specific energy regime) to the amplitudes calculated considering hadrons

as the fundamental particles. On the other side, the correlation functions

can be treated in the framework of Operator Product Expansion (OPE).

OPE enables one to separate the short and long-distance quark-gluon in-

teractions such that the former can be calculated using perturbative QCD

(pQCD) and the latter can be parameterized in terms of vacuum conden-

sates or distribution amplitudes (DAs). One can then match the two and

perform Borel transformation as a final step to reduce the uncertainties due

to approximations of quark hadron duality and to get rid of the divergences

in the dispersion relations. Finally, one obtains the sum rule which helps

in calculating the hadronic quantities like FFs.

The QCDSRs are of two types: the SVZ sum rules (SVZ SRs) and the
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Light Cone Sum Rules (LCSR). LCSR is a hybrid of the SVZ SRs and

the theory of hard exclusive processes. We will discuss more about it in

Chapter-2.

None of the above mentioned methods can give a precise estimation of the

hadronic FFs with the presently available computational and technical tools.

Every method has its advantages and limitations over the other. As a result of

it, none of these methods can be preferred over the other at present and it is es-

sential to have estimates from di↵erent methods. However, with the advances in

computational facilities, LQCD is expected to surpass all other methods. LCSR

on the other hand is faster and complimentary to LQCD, as in many cases, LCSR

and LQCD results are found to be more reliable in di↵erent energy regimes such

that the combined analysis of the two gives a fairly good estimate of the hadronic

object in the full Q2 region [37], [50]. Taking a step ahead in this direction, we

considered various processes within the SM and BSM scenarios where the ap-

plication of LCSR was not explored, and compute the involved form factors.

Before moving to the detailed description of the method of LCSR, let us review

the basics of the e↵ective field theories (EFTs).

1.5 E↵ective Field Theories

The basic idea of an EFT is that only a few d.o.f. will be relevant and dynamical

at a given energy scale, while all other d.o.f. will be integrated out10. The e↵ects

of the integrated out d.o.f. are encoded in the coe�cients of the local operators

known as the Wilson coe�cients (WCs). These coe�cients can be calculated

by the so-called matching of the e↵ective theory to the full theory. As both the

theories should give equal results in the infra-red (IR) region, one matches the

result of the two theories at some IR scale and gets the values of the WCs. They

can be considered as the coupling strength of the corresponding operators as

they do not depend on the initial and final states involved in the process. Let us

10The origin of this terminology lies in the path integral formalism of field theory. By
integrating out the particular fields/particles, one means that they are no longer dynamical
degrees of freedom. They can no longer appear as the initial and final state particles and can
only contribute virtually.
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now try to gain a better understanding of EFTs.

We know very well that to explain a phenomenon at the macroscopic scale, one

does not require complete knowledge of the theory which explains the phenomena

at the microscopic scale (QCD). For example to construct a bridge, one does

not require the theory of quarks and gluon. It only requires a knowledge of

Newton’s laws, elasticity, fluid dynamics, etc. Even for a condensed matter

system which consists of only charged electrons and ions, and photons, QED can

be considered an e↵ective field theory built out of the SM by integrating out

all the heavier particles like W and Z bosons, heavier leptons and quarks, and

writing interactions in terms of electrons, protons, ions, and photons. To explain

such a system one does not need knowledge of strong or weak interactions.

Furthermore, let us consider an example of the simplest EFT, the Fermi theory

for the weak interaction of four fermions, for the pion decay (⇡�
! µ�⌫µ). In

the full theory i.e., the SM, we know that the mediator for weak interactions

between the quarks and leptons is the W and Z bosons. The weak current via

which one explains the interactions mediated by W-boson reads as

jµW = Vij (ūi�
µPLdj) + (⌫̄`�

µPL`) . (1.25)

where {i, j} represent the flavors of the up and down-type quarks, and ` and ⌫`

represent the di↵erent flavors of the leptons and their neutrinos. Vij is the CKM

matrix defined in Eqn.(1.13). In the full theory i.e., SM, the Feynman diagram

for pion decay is shown in Fig.(1.3(a)) resulting in the tree-level amplitude for

this process to be

A =

✓
�ig2
p
2

◆2

Vud (ū�
µPLd)

0

@
�i

⇣
gµ⌫ �

pµp⌫
m2

W

⌘

p2 �M2
w

1

A (µ̄�⌫PL⌫µ) (1.26)

where, g2 is the coupling constant of the weak interactions, and p is the momen-

tum carried by W � boson. If p2 ⌧ m2
W i.e., the momentum transferred square

is small, the propagator can be Taylor expanded in powers of p
mW

. Then, the
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Figure 1.3: Feynman diagrams showing ⇡�
! µ�⌫̄µ (a) in the SM with W�

exchange and (b) in the EFT theory where W-boson is integrated out.

amplitude in Eqn.(1.26) becomes

A =
i

m2
W

✓
�ig2
p
2

◆2

Vcb (ū�
µPLd) (µ̄�µPL⌫µ) +O

✓
p2

m4
W

◆
. (1.27)

Consequently, the e↵ective Lagrangian for the ⇡-decay in the four Fermi theory

reads as

Le↵ = �
4GF
p
2
Vud (ū�

µPLd) (µ̄�
µPL⌫µ)

= �
4GF
p
2
Vud C(µ) O(µ) (1.28)

where GF is the Fermi’s constant and is related to g2 by

GF
p
2
⌘

g22
8m2

W

. (1.29)

The W-boson is no longer a dynamical degree of freedom and has been inte-

grated out. Its e↵ect has been captured in the the Wilson coe�cient, C(µ)

which is simply unity in the present case, and O(µ) represents the e↵ective four

fermion operator. Here, µ represents the scale dependence of the WC and opera-

tor and must cancel in the final result. However, in practical calculations it does

not cancel due to truncation of the infinite series to certain order. The Feynman

diagram for the pion decay using the e↵ective Lagrangian, Le↵, is a vertex dia-

gram as shown in Fig.(1.3(b)). For more details on EFTs look at [51]. We will

see a more general form of e↵ective Lagrangian in Chapter-4 and 5 while dealing

with BSM processes including the Baryon Number Violating (BNV) decays.
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1.6 Organisation of thesis

We have organised the thesis as follows: In Chapter-2, we have discussed the

method of LCSR in details. We discuss all the tools and techniques required to

derive these sum rules. In Chapter-3, we discuss the application of LCSR to the

light meson system by considering the radiative tau decay (⌧� ! ⇡�⌫⌧�). In

Chapter-4, we explored LCSR application to the baryonic system like proton by

considering proton decay to a photon and a positron. The form factors involved

in this case can be calculated in two ways, firstly, by using the proton interpola-

tion current and the photon distribution amplitudes, and secondly, by using the

photon interpolation current and the proton distribution amplitude. We discuss

both these cases one by one in this chapter. In Chapter-5, we further explored

the application of LCSR to the heavy meson system by considering a BNV de-

cay of D0-meson i.e., D0
! p̄e+. The form factors involved are calculated by

interpolating the proton state with the most general interpolation current. In

this chapter we have also discussed how the experimental information on decay

widths of radiative decays of D⇤-mesons can be used to probe the structure of the

D-meson. Finally, in Chapter-6, we conclude our findings and provide the future

directions. Moreover, this thesis consists of four Appendices. In Appendix-A, we

collect all the useful identities, integrals and definitions. In Appendix-B, we dis-

cuss the particle propagator near the light cone. Furthermore, in this Appendix,

we collect the definitions and forms of the light cone DAs used throughout this

thesis. The Appendix-C covers the kinematics involved in the decay width calcu-

lation of the radiative tau decay. Finally in Appendix-D, we collect the numerical

values of all the parameters used in this thesis.





Chapter 2

Light Cone Sum Rules in a

Nutshell

As already discussed in Chapter-1, the hadronic quantities like FFs are very

essential theoretical inputs to calculate any process within or beyond the SM.

Light Cone Sum Rules (LCSR) is one of the most e↵ective method to calculate

these hadronic quantities in terms of universal non-perturbative quantities known

as distribution amplitudes (DAs) (discussed briefly in Section-1.4). It is a QCD-

based method and has been employed successfully to determine various non-

perturbative quantities like decay constants and form factors. Though these

sum rules successfully calculate the hadronic quantities of interest, they have

limited accuracy in many cases. It is mainly because of two reasons. Firstly, the

uncertainties arising due to approximations in the Operator Product Expansion

(OPE), and secondly, the uncertainties due to approximations involved in using

quark hadron duality (We will discuss them in detail in Section-2.1.1). Despite

that, it has an ensured place in the toolkit of QCD practitioners because of its

relative ease compared to other methods like lattice QCD.

As already stated in Section-1.4, LCSR is a hybrid of the SVZ SRs and the theory

of hard exclusive processes. Therefore, before moving to the details of LCSR,

let us first understand SVZ SRs and the theory of hard exclusive processes.

Thereafter, we will see how a marriage of the two leads to the beautiful technique

of LCSR to compute these hadronic quantities.

27
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2.1 SVZ Sum Rules

SVZ sum rules were first derived by Shifman, Vainshtein, and Zakharov (SVZ) in

1979 [48] and were named after them. It is a QCD-based semi-phenomenological

method that helps one to determine the characteristics of the low-lying hadrons.

To derive these sum rules one needs a suitable correlation function where the

initial and final state hadrons of the HME are interpolated with the interpola-

tion currents written in terms of quarks and gluons. The interpolation currents

are such that they have the same quantum numbers as the hadrons of interest.

Such correlation functions have dual nature and hence can be written using two

representations.

According to the first representation, it can be written using the short-distance

OPE at q2 ! �1 i.e., large negative momentum transferred square. The OPE

allows one to separate the short and the long-distance physics contributions.

The short-distance contribution can be calculated using pQCD while the long-

distance contribution can be encoded in the universal non-perturbative objects

called vacuum condensates1. We will discuss more about OPE in Section-2.1.1.

On the other hand, the second representation can be written directly in terms

of physical hadronic states in the form of a dispersion relation using unitar-

ity and analyticity of the correlation function. All the physical hadronic states

with the proper quantum numbers contribute to the dispersion relation. The

dispersive integrals in the dispersion relation are unknown. In practical appli-

cations, the unknown non-perturbative hadronic quantities are related or equal

to the residue of the lowest state contribution (as will be explained in detail in

Section-2.1.1). However, the contributions from the higher and the continuum

states can be approximated in terms of the perturbatively calculated correlation

function using quark-hadron duality (see Section-2.1.1). The sum rule can then

be written by matching the two representations. As a final step one performs

Borel transformation (to be discussed in Section-2.1.1) in order to remove the

divergences from dispersion relations. It also reduces the systematic uncertainty

1The vacuum condensates are the vacuum expectation values of the quark-gluon local op-
erators that are zero by definition in perturbation theory. They are ordered according to their
canonical mass dimension.
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due to quark-hadron duality by suppressing the contributions coming from the

higher states and the continuum. The final sum rule can then be used to extract

the hadronic quantity of interest. However, there are limitations to the usage of

SVZ sum rules which we will discuss in Section-2.1.3. Thereafter, we will discuss

how LCSR help us to deal with these limitations.

Let us now understand SVZ SRs and the tools mentioned above in better detail

using a simple field theoretical example.

2.1.1 Understanding SVZ sum rules and its tools

Consider an example of a simple correlation function, say e+e� ! e+e� scatter-

ing with quantum fluctuations due to quarks as shown in Fig.(2.1) [52]. It is a

correlation function of the quark currents with no initial or final state hadrons

such that the quarks can propagate only at short distances. It can be written as

Figure 2.1: The Feynman diagram showing the process e+e� ! e+e� with a
quark loop due to quantum fluctuations.

⇧µ⌫(q) = i

Z
d4xeiq.x h0|T {jµ(x)j⌫(0)} |0i = (qµq⌫ � q2gµ⌫)⇧(q

2) (2.1)

where q is the momentum that us flowing inside the loop, jµ =
P

q Qq q̄�µq is

the electromagnetic current for quarks, q with the sum running over all flavors.

⇧(q2) is the scalar function that encodes all the information of the e↵ect of

strong interactions, and the Lorentz structure on the right-hand side (r.h.s.) of

Eqn.(2.1) is dictated by current conservation i.e. @µjµ = 0. It is important to

note that ⇧(q2) is an analytic function of q2 and is defined for all the values of
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q2. Now our task is to derive a sum rule for ⇧(q2). For that, let us first gain a

better understanding of the tools required to derive these sum rules. There are

four main tools, namely

1. Short-distance OPE,

2. Dispersion relation,

3. Quark hadron duality, and

4. Borel transformations.

A schematic flowchart of these tools along with their importance and function

in the derivation of the sum rules is shown in Fig.(2.2). Let us discuss them one

Figure 2.2: Flowchart chart showing important tools to derive sum rules along
with their importance and function.

by one and understand their importance for deriving a sum rule for ⇧(q2).

1. Short-distance Operator Product Expansion: Operator product ex-

pansion (OPE) provides a systematic method to calculate ⇧(Q2) with

Q2 = �q2 in the deep Euclidean region (Q2
� ⇤QCD). It was introduced

in particle physics by Wilson [53]. According to it, one can consistently

separate the long-distance (i.e. the distance � µ�1) and the short-distance
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(i.e. the distance  µ�1) contributions, where, µ is some normalization

point which separates the two regions. This separation is possible because

of internal reasons, like the exchange of heavy W -boson, c, b� quarks, etc.

The observable quantities do not depend on the value of µ and hence one

can choose µ according to the convenience. Mathematically, the statement

of OPE reads as

⇧pert(q2) =
X

d

Cd(q
2, µ) h0|Od|0i (µ). (2.2)

Here, Cd(q2, µ) are known as the Wilson coe�cients (WCs) and h0|Od|0i (µ)

represents the vacuum expectation of the local operators, Od, of di↵erent

dimension, d, both evaluated at µ. The sum over d implies a sum over

all the Lorentz and gauge invariant local operators of di↵erent dimensions

built from the quark and gluon fields. WCs capture the short distance

(high energy) e↵ects and can be calculated in perturbation theory using

pQCD. However, the vacuum expectations of the local operators capture

the long-distance (low energy) e↵ects and hence are non-perturbative in

nature. The lowest (zero) dimension operator is the unit operator, 1.

The higher dimensional operators capture the information of QCD vacuum

fields in the form of vacuum condensates of quarks and gluons such as hq̄qi,

hG2
µ⌫i, etc. These vacuum condensates are the universal non-perturbative

quantities and hence can be estimated using the experimental data on the

well-studied modes.

⇧(q2) in deep Euclidean region is dominated by the physics at short dis-

tances i.e., xµ ! 0 (see [52] for a physical argument for short-distance

dominance). According to the short distance OPE, the it gets the main

contribution from the lowest dimension operator and the contribution of

the higher dimension operators decreases as we go to higher and higher

dimension operators. This OPE dictates the first representation of ⇧(q2)

as discussed above. However, in Section-2.1.3, we will see how this short-

distance OPE becomes a problem while computing the three-point correla-

tion functions. Later, in Section-2.2.1.2, we will see how an OPE at light-
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like distances (x2
! 0) rescues the situation. Before that let us move to the

second representation of ⇧(q2), written directly in terms of the hadronic

states.

2. Dispersion Relation: It helps us in writing ⇧(q2) directly in terms of

the physically observed hadronic states. Its origin lies in classical electro-

dynamics in the form of Kramers-Kronig dispersion relations [54], [55]. It

relates the real part of an amplitude to its imaginary part which is usually

better accessible to us.

The dispersion relation and the Wilson’s OPE were considered to be two

successful approaches to explain the theory of strong interactions outside

field theories. However, lately both became a part of QFT. As already

discussed, Wilson’s OPE uses the expansion of products to explain strong

interactions. On the other hand, the dispersion relation uses the analyt-

icity and unitarity properties of the correlation function. It will become

more clear as we move forward.

Before discussing the dispersion relation corresponding to ⇧(q2), let us dis-

cuss a simple example of a two-point correlator of scalar theory in order

to get a better understanding of the importance and physics behind the

dispersion relations. The dispersion relation corresponding to two point

correlator is known as the Kallen-Lehmann (KL) spectral representation.

2.1.1.1 Kallen-Lehmann representation

KL representation helps us to determine the analytic structure i.e., the

singularities like the poles, branch cuts, etc., of the 2-point correlation

function. It shows that the dispersion relations can be derived from the

first principle in QFT and captures the analytic structure of the correlation

function.

To understand it, let us consider the Fourier transform of the 2-point cor-

relator of the scalar field, � given by (we follow [56] for the discussion

below).

�(q2) = i

Z
d4x eiq.xh0|T{�(x)�†(0)}|0i (2.3)
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where T represents the time ordering. For a free theory, this correlator

is nothing but the propagator for the field �. However, for an interacting

case, it is a non-trivial object given by

�(q2) =

8
><

>:

1
m2�q2�i✏ = ��F (q2,m2), free

Z(�)
m2�q2�i✏ + f(�, q2), interacting

(2.4)

where � is the coupling constant of the theory, and ��F (q2,m2) represents

the propagator of the field � with mass m. The function Z(�) is the field

renormalization factor, and the function f(�, q2) is the function of interest.

Its properties will be the main focus of our discussion further. In the limit

of free theory, i.e. � ! 0, both these functions must satisfy the following

conditions

Z(�)! 1, f(�, q2)! 0, for (�! 0). (2.5)

The free theory case in Eqn.(2.4) suggests that the analytic properties of

the correlation function are determined by the mass spectrum (as shown

in Fig.(2.3)).

Focusing now on the interacting case, let us consider only the positive

frequency distribution for computational simplicity. In that case

h0|�(x)�†(0)|0i =

8
><

>:

�+(x2,m2) =
R

d4q
(2⇡)3 e

�iq.x�+(q2 �m2), free

(⇤), interacting

(2.6)

where, �+(q2 �m2) = �(q2 �m2)✓(q0) which ensures the positive energies

and the on-shell condition. (⇤) is the object which determines the spectral

representation. Using the unitarity condition, one can insert a complete

set of states i.e. 1 =
P

n |nihn| which results in

(⇤) =
X

n

h0|�(x)|n(qn)ihn(qn)|�
†(0)|0i. (2.7)

Here, |ni represents a complete set of single-particle states as well as

all multi-particle states. Furthermore, using the property of the trans-
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Figure 2.3: Showing the analytic structure of the 2-point correlation function
in the upper graph and the spectral density function in the lower graph as a
function of q2 for free theory(left panel) and interacting theory (right panel).

lation invariance of the scalar theory along with the property that 1 =

1
(2⇡)4

R
d4qe�iq.x

R
d4xeiq.x, and further interchanging

P
n and

R
d4x 2, one

gets

(⇤) =

Z
d4qe�iq.x

|h0|�(0)|n(qn)i|
2
⌘

X

n

�(q � qn)|fn|
2

= (2⇡)�3⇢(q2)✓(q0) (2.8)

where, |fn|2 = |h0|�(0)|n(qn)i|2 and ⇢(q2) is the spectral density function

which is positive definite as a consequence of unitarity. (2⇡)�3 is a factor

inserted for convenience and ✓(q0) ensures positive energies. The condition

of positive energies comes from the same condition on the energies of the

external particles as in Eqn.(2.6). Moreover, using the property of the delta

function i.e. Z
d4qF (q2) =

Z
d4q

Z
ds �(s� q2)F (s),

2These interchanges are not always possible. They are ill-defined when there are UV diver-
gences involved. Look at [56] for more details.
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where F (q2) is some arbitrary function of q2, and exchanging
R
ds and

R
d4q, one gets

(⇤) =

Z 1

0

ds⇢(s)�+(x
2, s). (2.9)

This is a spectral representation that can be generalized to the negative

frequencies as well and finally results in the Kallen-Lehmann (KL) spectral

representation given by

�(q2) =

Z 1

0

⇢(s)(��F (s, q
2)) =

Z 1

0

ds
⇢(s)

s� q2 � i✏
. (2.10)

where ✏ ! 0+. This representation tells us that the analytic structure

of the correlation function has a one-to-one correspondence with the mass

spectrum of the theory. It was found independently by Kallen [57] and

Lehmann [58]. The analytic structure of the integrand on the r.h.s. of

Eqn.(2.10) is such that it has poles corresponding to the single-particle

states and a branch cut corresponding to the multi-particle states (as shown

in Fig.(2.3)). The spectral density on the r.h.s in Eqn.(2.10) can then be

related to the imaginary part of the correlator �(q2) using Cauchy’s integral

formula which states that

�(q2) =
1

2⇡i

I

C

dz
�(z)

z � q2

=
1

2⇡i

I

|z|=R

dz
�(z)

z � q2
+

1

2⇡i

Z R

0

dz
�(z + i✏)� �(z � i✏)

z � q2
. (2.11)

where C is the contour as shown in Fig.(2.4), R is the radius of the circle

of the contour, C which can go up to infinity. Hence, the first term on

r.h.s. will vanish. However, the second term which gives the discontinuity

along the branch cut and can be written in terms of an integral over the

imaginary part of �(q2) using the Schwartz reflection principle which states

that

�(z + i✏)� �(z � i✏) = disc(�(z)) = 2iIm�(z) at z > tmin (2.12)
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Figure 2.4: Showing the integration contour, C for the dispersion representation
of the 2-point correlation function �(q2).

where tmin = m2 is defined such that �(z) is real for z < tmin.

For practical applications, it is useful to separate out the lowest state con-

tribution. As a result of Cauchy’s integral theorem, one can write

�(q2) =
|f0|2

m2 � q2 � i✏
+

1

⇡

Z 1

sh0

dz
Im�(z)

z � q2 � i✏
(2.13)

where f0 is the residue of the lowest state and sh0 is the continuum threshold

(equal to 4m2 in many cases). f0 is the non-perturbative object that one

usually intends to extract using the method of sum rules.

On equating Eqn.(2.10) and Eqn.(2.13), one can write,

⇢(s) = |f0|
2�(m2

� s) +
1

⇡
Im�(s)✓(s� sh0). (2.14)

Now, after understanding the KL representation, let us go back to the

dispersion relation corresponding to our considered correlation function

given in Eqn.(2.1).

At q2 > 0, the long-distance e↵ects become important which leads to the

materialization of the quark-anti-quark pair generated by the current jµ

into neutral vector bosons as well as the heavier states along with the

continuum to preserve the spin-parity of the current. Consequently, on

inserting a complete set of states with JP = 1�, like we did while deriving
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the KL representation, the

2 Im⇧µ⌫(q) =
X

n

Z
d⌧n(2⇡)

4�(4)(q � pn)h0|jµ|nihn|j⌫ |0i. (2.15)

This is nothing but the unitarity relation or the Optical theorem. The

sum runs over all the possible hadronic states, |ni with JP = 1� i.e., the

complete set of neutral vector mesons and the multi-particle continuum

with JP = 1�, d⌧n represents the phase space volume of these states.

Furthermore, the correlation function can be further written as

1

⇡
Im⇧(q2) = f 2

V �(q
2
�m2

V ) + ⇢h(q2)✓(q2 � sh0) (2.16)

where we have separated the contribution coming from the lowest energy

state and lumped the continuum and the heavier state contributions into

the spectral density ⇢h(q2). mV and fV are the mass and the residue

of the lowest vector meson state, respectively. The contribution coming

from the continuum and the heavier states are more complicated and we

represent it with the spectral density, ⇢h(q2) (for more details look at [52]).

Consequently, the dispersion relation for ⇧(q2), using the Cauchy’s integral

formula, can be written as

⇧had(q2) =
f 2
V

(m2
V � q2)

+
1

⇡

Z 1

sh0

ds
Im(⇧had(s))

(s� q2)
. (2.17)

where 0had0 is the superscripts represents that this is the representation of

⇧(q2) written directly in terms of hadronic states.

In practical applications, the non-perturbative hadronic quantities are re-

lated to fV . Hence, the problem of computing the hadronic object reduces

to the computation of the residue of the lowest state contribution to the

dispersion relation3. The contribution coming from the heavier and the

3These dispersion relations can, in general, have divergences. It is because of the fact that
in general, the correlation function may have ultraviolet (UV) divergences like in the case of
the correlation function in Eqn.(2.1). As a result of these UV divergences, the imaginary part
of the correlation function does not vanish at asymptotic boundaries and thus, the dispersion
integrals are divergent (see [52] for more details). Such divergences can be taken care of by
performing Borel transformations or equivalently by subtracting the first few terms of the
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continuum states can be approximated using the quark hadron duality and

are further suppressed using the Borel transformation for better stability

of the sum rule. We will discuss them below.

3. Quark Hadron Duality: As the name suggests, it bridges the gap be-

tween the theoretical predictions based on the perturbative calculations

involved in QCD in terms of quarks and gluons and the experimentally ob-

servable quantities written directly in terms of hadronic states in the form

of the dispersion relation. This idea was formulated when Poggio, Quinn,

and Weinberg suggested that at high energies some inclusive hadronic cross

sections coincide approximately with the cross sections calculated in QCD

and are appropriately averaged over a certain energy range.

The spectral densities in Eqn.(2.16) are unknown. If one had successfully

developed a method to calculate these spectral densities exactly then a

duality approximation would have not been required as that will provide a

complete solution to the theory of strong interactions. However, that is not

the case in practical calculations. Moreover, these spectral densities can be

approximated using the statement of local quark hadron duality according

to which

Im
�
⇧cont(s)

�
! Im

�
⇧pert(s)

�
at s!1. (2.18)

where Im (⇧cont(s)) is the contribution to ⇧had(s) coming from the heavy

states and the continuum. The validity of this assumption relies on the fact

that partonic representation can be approximated to the hadronic repre-

sentation at high energies as QCD is a valid theory for strong interactions

in that regime.

Furthermore, in the deep Euclidean region i.e. q2 ! �1, all the conden-

sate contributions are negligible which leads to the validity of ⇧(q2) !

⇧pert(q2). This along with the statement of local quark hadron duality

leads to
1

⇡

Z 1

sh0

ds
Im⇧(s)

(s� q2)
'

1

⇡

Z 1

4m2

ds
Im⇧pert(s)

(s� q2)
(2.19)

Taylor series expansion of the correlation function at q2 = 0).



2.1. SVZ Sum Rules 39

at q2 ! �1. This is the statement of global quark hadron duality.

Now combining Eqn.(2.18) and Eqn.(2.19), one can postulate that at suf-

ficiently large Q2 = �q2, we have

1

⇡

Z 1

sh0

ds
Im⇧(s)

(s� q2)
'

1

⇡

Z 1

s0

ds
Im⇧pert(s)

(s� q2)
(2.20)

where s0 is the continuum threshold, not necessarily equal to sh0 . It is an

independent parameter in the sum rule calculations and its value depends

on the particle spectrum of the correlation function. Typically, its value

is roughly approximated to the value of the resonance next to the ground

state resonance that can enter in the correlation function: s0 ⇠ (mM +�)2

where � ⇠ O(⇤QCD). The final value of s0 is fixed by demanding stability

of the final hadronic quantity against a variation in the value of s04. This

introduces the first source of systematic uncertainties in the sum rule cal-

culations. The statement of semi-local quark-hadron duality in Eqn.(2.20)

is what one practically uses in the sum rule calculations (for more detail

one can look at [37], [59]).

Apart from this, there are two other forms of uncertainties coming from

here. First is the natural uncertainty arising due to the truncation of the

infinite series in ↵s(Q2) as well as the condensates. The computational dif-

ficulties increase with every order in ↵s which makes it nearly impossible

to sum up this infinite series. Similarly, for a series in condensates, it is not

possible to sum up the complete series. Consequently, both these series are

required to be truncated up to some finite terms. Second, are the devia-

tions from the duality, known as the duality violations. These are the major

sources of systematic uncertainties in the sum rule calculations. Removing

4The choice of s0 close to the next resonance can be loosely understood in the following way;
our objective is to approximate the contribution coming from the heavier (or continuum) states
with the contribution obtained from the QCD calculations. As this approximation has better
validity in the large energy limit therefore, setting s0 too small will lead to larger uncertainties.
On the other hand, if we take its value to be very large then we will end up missing out on
the contribution coming from the states between the ground state and the value of s0 which
will again lead to large uncertainties in the result. Therefore, one looks for the stable window
of s0 in the vicinity of the next resonance to optimise the uncertainties and pick a value from
this stable window.
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these uncertainties is one of the major challenges for the QCD practitioners

as even lattice calculations can not shed light on them. This is because

of the fact that duality violation can not be separated from Minkowskian

kinematic and lattice is a Euclidean approach to QCD. Therefore, to un-

derstand these violations we need analytical solutions. There are various

models like an instanton-based model, resonance-based model, etc, which

can describe these duality violations but at present a complete solution is

still lacking (see for example [60], [61] and references therein). Though a

proper analytical method to compute these violations does not exist, the

uncertainties due to these violations can be reduced by suppressing the con-

tribution of the higher state and the continuum which were approximated

using these dualities. This can be done by performing Borel transforma-

tions.

4. Borel Transformation: To understand the power of Borel transform [62],

let us first consider a simple example. Consider a function A(x) given by

A(x) =
1X

k=0

Akx
k+1 (2.21)

The Borel transform of this function is defined as (with M being the pa-

rameter called Borel mass)

B(M) =
1X

k=0

✓
Ak

k!

◆
Mk (2.22)

One sees that higher coe�cients are factorially suppressed. Further, if AK

has a factorial divergence like k! then B(M) will be an analytic function in

the neighborhood of origin. Moreover, if the function A(x) itself is a good

analytic function then the following equality holds

A(x) =

Z 1

0

dM Exp

✓
�M

x

◆
B(M) (2.23)

This allows to recover the original series. The inverse relation also holds

if B(M) is such that it can be analytically continued on the positive real
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axis up to infinity. The function in Eqn.(2.22) (provided that the integral

converges) is the Borel sum of the asymptotic expansion in Eqn.(2.21).

In practical calculations, the above is then achieved by the mathematical

operation given by the operator [49]

BM2 = lim
�q2,n!1
�q2/n=M2

(�q2)(n+1)

n!

✓
d

dq2

◆n

. (2.24)

In a typical sum rule calculation, the most commonly encountered function

of q2 is

f(q2) =
1

(m2 � q2)k
(2.25)

where k is some integer providing the power of the denominator. The Borel

transformation of this function is given by

B̂M2f(q2) ⌘ B̂M2
1

(m2 � q2)k
=

1

(k � 1)!

e�m2/M2

(M2)k
. (2.26)

It is easy to convince oneself that for m2 > M2, the term on the r.h.s. of

Eqn.(2.26) gets an exponential suppression. Consequently, on performing

a Borel transformation (on say Eqn.(2.17)) and choosing M2 < sh0 , the

continuum contribution can get an exponential suppression. Also, it pro-

vides a factorial suppression to the power-corrections and hence reduces

the impact of higher dimensional condensate terms of the OPE.

The Borel transformations of (q2)k vanishes i.e., B̂(q2)k = 0. It results in

killing o↵ any subtraction terms that appear in the form of polynomial in

q2 which may appear as a consequence of the divergences in the dispersion

relation. Consequently, Borel transformation helps us in improving the

accuracy and stability of the sum rule. The Borel mass is another indepen-

dent parameter in the sum rules calculations. As stated above it must be

lesser than or close to the continuum threshold such that the heavier and

continuum states’ contributions can be suppressed properly. It is deter-

mined by demanding a very small variation of the final hadronic parameter

against its variation. For M , one usually tries to find a region where the
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graph of the derived hadronic quantity vs the Borel mass shows a plateau.

This region is known as the Borel window. The sum rule is considered to

be reliable if the contribution coming from the continuum and higher reso-

nances is small, the dependence on the Borel parameter is weak and there

are no unnatural numerical cancellations in the result. After performing

Borel transform of Eqn.(2.17), one gets,

⇧had(M2) = f 2
V e

�m2
V /M2

+
1

⇡

Z 1

sh0

ds Im(⇧had(s)) e�s/M2
, (2.27)

where M is the Borel mass.

Finally, on approximating the second term of Eqn.(2.27) using the statement

of semi-local quark hadron duality given in Eqn.(2.20) and equating the two

representations obtained using OPE and dispersion relation, one get the final

sum rule for fV as

f 2
V e

�m2
V /M2

+
1

⇡

Z 1

s0

ds Im⇧(pert)(s) e�s/M2
=
X

d

Cd(M
2, µ) h0|Od|0i (µ) (2.28)

where s0 is the continuum threshold, Cd(M2, µ) are the Borel transformed per-

turbatively calculated WCs and h0|Od|0i are the non-perturbative objects which

can be written in terms of the vacuum condensates.

fV turns out to be a function of the universal non-perturbative quantities called

vacuum condensates, the independent parameters introduced by the sum rule cal-

culations s0 and M , and the perturbatively calculable short-distance coe�cients.

One saturates the sum rule with the lowest energy resonance i.e. the ground

state and the contribution from the higher resonances and the continuum are

suppressed. The µ dependence of the vacuum condensates, introduced by OPE,

is supposed to be canceled by the µ dependence of the perturbatively calculated

coe�cients. However, as the infinite expansion is truncated to some finite terms,

the µ dependence does not disappear completely and leads to another source of

theoretical uncertainty in the sum rule calculations. The application of SVZ sum

rules is not limited to QFT. It can be seen in quantum mechanics as well. Let

us see a quantum mechanical example to develop a better understanding.
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2.1.2 SVZ sum rules in quantum mechanics

In this section, we will try to understand the power of SVZ sum rules with

the help of a simple quantum mechanical example of the harmonic oscillator by

determining its ground state energy (following [63]). In quantum mechanics, the

Green function of the time-dependent Schrödinger equation is given by,

G(x2, t2; x1, t1) =
1X

k=0

 k(x2) 
⇤
k(x1) exp [�iEk(t2 � t1)] (2.29)

where  k represents the wave function of a quantum state with energy Ek, and

the sum over k runs over all the possible quantum states. The Euclidean Green

function M(⌧) can be obtained from the Green function given in Eqn.(2.29) by

analytically continuing the time t to the imaginary time ⌧ = it, also known as

the Euclidean time, such that

M(⌧) ⌘ G(0,�i⌧ ; 0, 0) (2.30)

This Euclidean Green function, M(⌧) here plays an equivalent role of the Borel

transformed correlation function in field theory and hence is the object of interest

here.

From Eqn.(2.29) and Eqn.(2.30), M(⌧) can be written as a sum of the ground

state contribution and the contribution coming from the excited states as

M(⌧) = | 0(0)|
2 exp (�E0⌧) +Mc(⌧) (2.31)

where Mc(⌧) represents the contribution coming from the excited states given by

Mc(⌧) =
1X

k=1

| k(0)|
2 exp (�Ek⌧) . (2.32)

One can calculate the ground state parameters E0 and | 0|
2 unambiguously if

ground state contribution dominates M(⌧). It is possible for large Euclidean

time, ⌧ > ⌧c for which the continuum contribution experiences an exponential

damping.
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According to the Born series, M(⌧) can be calculated perturbatively in the Eu-

clidean region. Let us call it Mpert(⌧) which usually contains the first few terms

of the truncated Born series of M(⌧). Therefore, Mpert(⌧) can approximate M(⌧)

accurately only for su�ciently small Euclidean times such that (⌧ < ⌧B) where

⌧B is some upper limit for the validity of truncation of the Born series.

Consequently, M(⌧) and Mpert(⌧) are like two sides of the same coin and are

valid for di↵erent regions of the value of ⌧ . The sum rule can be obtained by

equating the two sides such that a fiducial region exists where this equality holds.

Such a condition is possible for ⌧c < ⌧ < ⌧B. For such a region, the ground state

energy E0 can be calculated approximately as

E0 = �
d

d⌧
ln [Mpert(⌧)�Mc(⌧)] (2.33)

Finding such a region for realistic situations is not obvious. However, there

are several systems where such a fiducial region is found to exist and it has

been found that this procedure does provide a reasonably reliable estimate of

the ground state. A harmonic oscillator (HO) in an external electric field is an

example of one such system. Let us see the power of SVZ sum rules by calculating

the ground state energy of a HO in an external electric field.

2.1.2.1 An example: Harmonic Oscillator in an external electric field

The Hamiltonian for a one-dimensional harmonic oscillator (HO) placed in a

constant external electric field, E is given by

H = �
1

2m

d2

dx2
+

1

2
m!2x2

� eEx. (2.34)

where ! is the frequency of oscillation and m is the mass of the particle. This is

an exactly solvable system with the eigenvalues, Ek and eigenfunctions,  k given

by

Ek =

✓
k +

1

2
� ✏

◆
! (2.35)
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with ✏ ⌘ (eE)2

2m!3 and k = 0, 1, 2, . . ., and

 k(x) = �k(x� x0) (2.36)

with x0 ⌘
eE
m!2 and �k(x) being the eigenfunctions in the absence of external

electric field. Let us now try to find the ground state energy E0 using the method

of SVZ sum rules. As a starting point, we need Euclidean Green’s function for

this system which reads as

M(⌧) = Exp (✏!⌧)
1X

k=0

�k(�x0)�
⇤
k(�x0) exp


�

✓
k +

1

2

◆
!⌧

�

= exp(✏!⌧) GHO (�x0,�i⌧ ;�x0, 0) . (2.37)

Here, GHO is the Green function for the harmonic oscillator in the absence of

the electric field given by

GHO (x2, t2; x1, t1) =

✓
m!

2⇡i sin(!T )

◆1/2

exp

⇢
i

m!

2sin(!T )

⇥�
x2
1 + x2

2

�
cos(!T )� 2x1x2

⇤�

(2.38)

with T = t2 � t1. Therefore,

M(⌧) =

✓
m!

2⇡ sinh(!⌧)

◆1/2

exp

"
✏!⌧

 
1�

tanh
�
!⌧
2

�
�
!⌧
2

�
!#

(2.39)

This is the exact form of the Euclidean Green function for the harmonic oscillator

in an external electric field. Moreover, in order to stay close to the field-theoretic

case where one can sum up only a finite number of terms of an infinite series, let

us take only a few terms of the Born series with the perturbative potential given

by

V (x) =
1

2
m!2x2

� eEx (2.40)

Considering only the first few terms of the Born series, the perturbative form of

the Euclidean Green function reads as,

Mpert(⌧) = M0(⌧)

"
1�

(!⌧)2

12
+

(!⌧)2

12
+ ✏

(!⌧)3

12
+

(!⌧)4

160

#
. (2.41)
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which obviously coincides with the expansion of Eqn.(2.39) in powers of ✏ and

(!⌧). Here, M0(⌧) corresponds to a one dimensional free particle Euclidean

Green function and is given by

M0(⌧) =
⇣ m

2⇡⌧

⌘1/2

(2.42)

Therefore, the lowest order correction to the M(⌧) due to the presence of the

external electric field reads as

�Mpert(⌧) = M0(⌧)
(!⌧)3

12
✏ (2.43)

Our next goal is to approximate the contribution coming from the excited states,

Mc(⌧) in Eqn.(2.31). This can be done using the free motion approximation,

according to which the Euclidean Green function for a free particle can be written

as (see for details)

M0(⌧) =

Z 1

0

dE ⇢0(E) exp (�E⌧) (2.44)

where ⇢0(E) = 1
⇡

�
m
2E

�1/2
. Consequently, one can assume that the excited state

contribution can be approximated as

Mc(⌧) ⇡M (0)
c (⌧ ;Ec) =

Z 1

Ec

dE⇢0(E) exp (�E⌧) (2.45)

where all the interaction e↵ects have been captured in the free parameter Ec

known as the continuum threshold here. This parameter has to be determined

simultaneously with the ground state parameters (as we will see below).

Furthermore, as discussed above, the important criteria to derive the sum rule is

to find the fiducial region (⌧c, ⌧B) where the method of sum rules is valid. In order

to find this region, following, we demand that the contribution coming from the

excited states should not exceed 30% of the contribution of the ground state and

the corrections due to the truncated terms of the Born series must be smaller

than 30% of the free particle Green function. The first condition sets the lower

boundary of the fiducial region i.e. ⌧c while the second condition sets the upper
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boundary i.e. ⌧B. The ground state energy can be calculated using Eqn.(2.41)

and Eqn.(2.45) in Eqn.(2.33) if ⌧c < ⌧B. In [63], it has been reported that the

fiducial region exists which follows the above-mentioned criteria for ✏  0.05.

The continuum threshold Ec can be tuned such that the ground state energy,

E0, calculated using Eqn.(2.33), is approximately constant with a variation in

⌧ in the fiducial region ⌧c < ⌧ < ⌧B. Finally, one takes this value of E0 to be

the approximate ground state energy for the system. The uncertainties in the

determination of the ground state energy of the HO without an external electric

field and the shift in the energy due to the presence of the external electric field

are at most 20% (see [63] for details).

Though the SVZ sum rules are found to give reasonable estimates for

the physical quantities of interest, there are certain limitations of these sum rules

which we will discuss next.

2.1.3 Limitations of SVZ sum Rules

The SVZ sum rules face problems while computing the three-point correlation

functions. We mention the major limitations in brief here. For details, one can

look at [52], [64]. While computing SVZ sum rules for a three-point sum rule

• Short-distance OPE (short-distance expansion in terms of condensates)

upsets power counting in large Q2. The sum rule for the form factor looks

like,

F (Q2) ⇠ #
1

Q2
+#(Q2)0 +#Q2 + . . .

• Practical calculations often su↵er from contributions that are not sup-

pressed even after Borel transformations. These can be taken care of by

using double dispersion relation and then performing Borel transformation

in both the variables. However, this brings other caveats (see for example

[64] for details).

These limitations of the SVZ sum rules related to the three-point sum rules can

be taken care of by marrying SVZ sum rules to the theory of hard exclusive

processes (to be discussed in brief in the next Section). By doing so one now
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has an OPE near the light cone (x2
! 0) instead of short distance (xµ ! 0).

This leads to a partial summation of the infinite series of the local operators. It

is an expansion in the new parameter called twist and no longer an expansion

in the canonical mass dimensions. We will discuss more about light cone OPE

in Section-2.2.1.2. Before going into details of the light cone OPE let us discuss

the theory of hard exclusive processes.

2.2 Theory of hard exclusive processes

As discussed in Section-1.2, the strong interactions are perturbative at large

energies (short distances) and non-perturbative at small energies (long distances)

because of the property of the asymptotic freedom and color confinement. We

have also discussed that because of the property of confinement, we observe only

colorless hadrons at experiments and not the colored quarks and gluons, and

thus, one can not get rid of the non-perturbative e↵ects even if probed with high

enough energy. Consequently, it is necessary to have an information about the

constituents of hadron when large momenta are transferred to these extended

objects. The exclusive processes where the momentum transferred is large can

test both the detailed structure as well as the internal dynamics of the hadronic

wave-function at short distances. There are two possible configurations by which

the momentum can be transferred among the constituents of the hadron called

partons. First, where one of the partons carries all the momentum. In this

case, the large momentum can be transferred to this fast moving parton which

finally recombines with the soft cloud of virtual quarks, anti-quarks and gluons.

Second, where we pick up a Fock state with minimum number of constituents (for

example a quark and an anti-quark for a meson and three quarks for a baryon

(as given in Eqn.(1.17))) separated by small transverse distances and a hard

gluon is exchanged in this configuration. Both the configurations are possible,

however, it is not known which configuration is more favourable. It can be studied

only case by case (see [64]–[66] for more details). In the first configuration, the

transverse distances are not restricted which makes this mechanism di�cult to

study. One can write a factorisation formula that helps in writing a hadronic
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matrix element as a convolution of a hard scattering kernel and the light cone

distribution amplitudes of the hadrons in the asymptotic limit (Q2
⇠

1
x2 ! 1,

where x denotes the tansverse separation between the partons) or equivalently

near the light cone. Mathematically, this factorization formula can be written as

hf |Ô(x, 0)|iix2!0 ⇠

Z 1

0

du

Z 1

0

dv �f (v, v̄)⌦ TH(u, v)⌦ �i(u, ū) (2.46)

where |fi and |ii are the outgoing and incoming meson states, Ô(x, 0) is a bilocal

quark-gluon operator with x being the transverse separation between the par-

tons. u, ū = 1� u, and v, v̄ = 1� v are the momentum fractions carried by the

quark and the anti-quark in the initial and the final state meson, respectively.

TH is the hard scattering kernel and can be computed using perturbative QCD.

�i and �f are the light cone distribution amplitudes for the initial and the final

state mesons. These DAs are the universal non-perturbative objects that are

useful in gaining insight about the structure of the hadron (we will discuss more

about them in Section-2.2.2). Consequently, one can extract information about

the dynamics of the strong interaction and the structure of the hadron using the

smallest configuration of a hadron given that it had been probed with a very

high energy probe. For such a scenario the dynamics is dominated by the contri-

butions near the light cone. We will discuss more about light cone dominance in

the next section by considering a specific example of e+e� ! ⇡0e+e� scattering.

Before moving to the next section, let us convince ourselves that a description

in minimum number of constituents is valid. This idea was originated while

studying the asymptotic behavior of the form factors. It was found that the

asymptotic behavior of these hadronic quantities depends mainly on the num-

ber of constituents, the interaction Lagrangian, the value of spin, and angular

momentum of the hadron. A dimensional counting rule was proposed which pre-

dicts the asymptotic behaviour of these form factors, F (q2), as a function of the

minimum number of constituents given by

F (q2) ⇠
const

(q2)n�1
(2.47)
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Figure 2.5: A representative graph of a typical correlation function of two cur-
rents between the initial and the final state containing pion and vacuum.

where ’cosnt’ is some contant factor and n is the minimum number of con-

stituents, i.e. n = 2 for mesons and n = 3 for baryons (see [65] for more

details). This rule was found to agree well with the experimental data on the

form factors of pion and nucleons as well as various large angle scattering cross-

sections. Therefore, the description of hadrons in terms of minimum number

of constituents gains its validity. Let us now understand the light cone domi-

nance for such a description and how it leads to a new type of operator product

expansion near light cone called as light cone OPE.

2.2.1 Light cone dominance and OPE

To understand the light cone dominance and light cone operator product ex-

pansion, let us consider the example of a process where two currents fuse into

a meson for example e+e� ! ⇡0e+e� scattering [52]. Here, two virtual photons

with momentum say q and p�q are fusing into the neutral pion with momentum

p, i.e.

�⇤(q)�⇤(p� q)! ⇡0(p). (2.48)

where q = p1 � p2 and p � q = p3 � p4 with p1, p2, p3, and p4 being the four

momenta of the incoming and outgoing electron and positron, respectively (see

Fig.(2.5)). The hadronic matrix element that captures the strong interaction

dynamics for this process can be written as

Fµ⌫(p, q) = i

Z
d4x e�iq.x

h⇡0(p)|T{jemµ (x)jem⌫ (0)}|0i (2.49)
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The important observation about this matrix element is that if Q2(= �q2) and

|(p� q)2| are large, then this matrix element is dominated by the dynamics near

the light cone instead of the short distance dynamics like we had for ⇧µ⌫ defined

in Eqn.(2.1). Let us now convince ourselves about this statement of light cone

dominance.

2.2.1.1 Light cone dominance

To proceed with, let us consider an invariant variable ⌫ defined as

⌫ = p.q =
(q2 � (p� q)2)

2
. (2.50)

Therefore, for Q2
� ⇤2

QCD and |(p� q)2|� ⇤2
QCD, |⌫| will also be large i.e.,

|⌫| ⇠ |(p� q)2| ⇠ Q2
� ⇤2

QCD. (2.51)

It is important to note that the above condition holds true even for non vanishing

momentum of pion. Moreover, for convenience, let us define a ratio ⇠ such that

⇠ = 2⌫/Q2 (2.52)

is finite ⇠ 1 in the region defined by Eqn.(2.51).

Now, to find the dominant region for the matrix element defined in Eqn.(2.49),

the argument of the exponential in the integrand (q.x) must follow

q.x  O(1) (2.53)

in order to avoid large oscillations, which from the Riemann-Lebesque theorem

will otherwise strongly suppress the integrand.

Let us now consider a reference frame where the three-momentum of pion (|�!p | ⇠

µ) is non-vanishing but small compared to the virtuality of photon i.e. µ2
⌧

Q2, ⌫. As the mass of pion is also small, this implies that the zeroth component

of the pion four momentum will also be of the order of µ i.e. |p0| ⇠ µ. Also,

let us consider that in this frame, there is only one non-vanishing component for
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the four momentum q and p such that we can write

qµ = (q0, 0, 0, q3) , pµ ⇠ (µ, 0, 0,�µ) . (2.54)

Therefore, in such a frame, using Eqn.(2.50) and Eqn.(2.52), we can write

p.q = p0q0 � p3q3 =) (q0 + q3) ⇠
Q2⇠

2µ
(2.55)

which can be further solved using Q2 = q23 � q20. It finally results into

q0 ⇠
Q2⇠

4µ
�

µ

⇠
, and q3 ⇠

Q2⇠

4µ
+

µ

⇠
. (2.56)

Using this, the argument of the exponential in the integrand of Eqn.(2.49) will

become

q.x = q0x0 � q3x3 '
Q2⇠

4µ
(x0 � x3)�

µ

⇠
(x0 + x3). (2.57)

Consequently, in order to satisfy the condition of dominance given in Eqn.(2.53),

we demand

(x0 � x3) 
4µ

Q2⇠
, and (x0 + x3) 

⇠

µ
. (2.58)

The multiplication of these inequalities results into

x2
0 � x2

3 
4

Q2
<

4

Q2
+ x2

1 + x2
2 =) x2


4

Q2
(2.59)

As a result, at Q2
� ⇤2

QCD i.e. at asymptotic Q2, the matrix element given

in Eqn.(2.49) will be dominated by the region given by x2
! 0 i.e. near the

light cone. It is important to note here that the condition in Eqn.(2.59) is

a Lorentz invariant object and hence doe not depend on the reference frame

one consider. Consequently, the condition of light cone dominance is true in

general for any matrix element of the form given in Eqn.(2.49). Moreover, as

this condition is true even for large components of the position four vector, xµ,

the short distance dominance is not valid in general for matrix element of the

form given in Eqn.(2.49). Now, after convincing ourselves about the light-cone

dominance of this matrix element, let us now see how the operator product
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expansion changes near the light cone.

2.2.1.2 Light Cone OPE

In Section-2.1.1, we have discussed the OPE at short distance (xµ ! 0), accord-

ing to which a product of currents/operators at di↵erent space-time points can

be written as an expansion of the product of perturbatively calculable Wilson

coe�cients and the universal non-perturbative quantities called vacuum conden-

sates of increasing canonical dimension, d (see Eqn.(2.2)). In this section, we will

discuss the operator product expansion near the light cone (x2
! 0) and will see

how such an expansion partially sum over the local operators of di↵erent dimen-

sions and resolves the problem of power counting as discussed in Section-2.1.3.

Let us again consider the matrix element given in Eqn.(2.49). According to the

light cone OPE [37], [67], the product of currents involved in this matrix element

can be written as

T
�
jemµ (x)jem⌫ (0)

 
|x2!0 =

X

t

⇥
Ct(x

2)Ot(x, 0)
⇤
. (2.60)

Here, Ot(x, 0) are the bilocal operators of quarks, gluons and anti-quarks which

encode the low energy dynamics while Ct(x2) are the coe�cient functions which

can be calculated using pQCD. It is an infinite expansion in the so called twist,

t, which is defined as the di↵erence of canonical dimension and the spin. We will

discuss more about it below. At zeroth order in ↵s, the coe�cient function for

the minimum twist, Ctmin(x
2), is nothing but the free-quark propagator itself.

For practical applications, this infinite series can be truncated to a finite num-

ber of terms. When one substitutes Eqn.(2.60) in Eqn.(2.49), the higher order

terms turn out to be inversely proportional to the powers of Q2 which is large

and thus truncation to a finite number of terms is a reasonable approximation.

Consequently, there are two major di↵erences between the short distance OPE

and the light cone OPE. First is that the former includes local operators while

the latter includes bilocal operators. Secondly, the former is an expansion in

canonical dimension while the latter is an expansion in twist.

To get a better understanding, let us compute the product of currents given
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in Eqn.(2.60) in more detail. Using the light cone propagator (discussed in

Appendix-B ) and the identities collected in Appendix-A, one obtains

T
�
jemµ (x)jem⌫ (0)

 
|x2!0 = �

✏µ⌫↵�x↵

12⇡2(x2)2
⇥�
ū(x)���5u(0)� d̄(x)���5d(0)

�

+
�
ū(0)���5u(x)� d̄(0)���5d(x)

�⇤
+ . . . (2.61)

This is already starting to have a form of an OPE. The coe�cient outside the

square bracket on the r.h.s is the perturbatively calculated coe�cient function

and the operators inside the square bracket are the bi-local operators. Ellipses

represents the higher order terms. The matrix element can be calculated by

substituting it in Eqn.(2.49). The leading order result for the matrix element

will read as

Fµ⌫(p, q) = �i
✏µ⌫↵�
12⇡2

Z
d4x e�iq.x x↵

(x2)2
h
⇥
⇡0(p)|

�
ū(x)���5u(0)� d̄(x)���5d(0)

�

+
�
ū(0)���5u(x)� d̄(0)���5d(x)

�
|0i
⇤
x2!0

. (2.62)

The r.h.s. of this equation involves a new hadronic matrix elements of bilocal

quark-anti-quark operators sandwiched between the ⇡0 state and the vacuum

state. To understand more about these bilocal operators, let us consider one of

these operators and expand it at around x = 0 in terms of a power series of local

operators such that

ū(x)���5u(0) =
1X

r=0

1

r!
ū(0)

⇣
 �
D.x

⌘r

���5d(0) (2.63)

where
 �
D represents that the covariant derivative which appears due to gauge

invariance is operating on the left u-quark. In the fixed point gauge i.e. xµGµ = 0,

the covariant derivative can be replaced by an ordinary derivative. This then is

an infinite series in the local operators with increasing dimension. As the bilocal

matrix element in Eqn.(2.62) depends only on the four momentum of pion i.e.

pµ, the matrix element of the infinite series in Eqn.(2.63) between the pion and
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the vacuum state can be decomposed as

h⇡0(p)|ū(x)���5d(0)|0i

=
1X

r=0

1

r!
xµ1xµ2 . . . xµr

⇥
(�i)r+1p�pµ1pµ2 . . . pµrM

d
r

� (�i)r+1gµ1µ2p�pµ3 . . . pµrM
d+2
r + {. . .}

⇤
(2.64)

where {. . .} represents more terms with two or more number of metric tensor,

gµiµj with (i, j = 1, . . . , r). By construction, Md+2
0 = M

d+2
1 = 0. This expansion

is totally symmetric in µ1, µ2, . . . and M
d
r and M

d+1
r are the invariant coe�cients

(the matrix elements of the local operators) which di↵er in dimension by two

units. These coe�cients are non-perturbative in nature. For example, for r=0,

h⇡0(p)|ū(0)���5u(0)|0i = �ip
�
M

d
0 (2.65)

which implies that M
d
0 has a direct relation with the pion decay constant, f⇡

given by

M
d
0 =

f⇡
p
2
. (2.66)

The infinite series of these invariant coe�cients can not be truncated to some

finite order. However, there is a di↵erent hierarchy on the r.h.s. of Eqn.(2.64).

After performing the integral over x (see [37] for more details), one finds out that

the second term on the r.h.s of Eqn.(2.64) has an extra factor of 1/Q2 compared

to the first term and the other factors in the numerator are of O(1). Hence, the

local operators of di↵erent dimensions are having same power of 1/Q2. However,

a closer look at Eqn.(2.64) reveals that the local operators in the first and second

term have di↵erent twist. The lowest twist which enters the above expansion is

2 as the dimension of the operator is 3 and Lorentz spin is 1. Consequently,

one can say that the light cone OPE is an expansion in twist rather then the

expansion in canonical dimension and it sums an infinite set of local operators of

the same twist. In the next section, we will see how these matrix elements of the

bilocal operators can be written in terms of the so called light cone distribution

amplitudes (DAs) of increasing twist which have a direct physical significance.
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We will also see how these invariant coe�cients Mr are related to these DAs.

Furthermore, we will have a better understanding of twist by discussing the

application of conformal symmetry in QCD.

2.2.2 Light Cone Distribution amplitudes and the Con-

formal Symmetry

As discussed in Section-2.2, when large momentum is transferred to the hadronic

system, the hadronic state can be considered to be dominated by its valence

configuration given in Eqn.(1.17). Therefore, near the light cone, a hadronic

state, for example |M(p)i for a meson, M , with momentum p can be written as

|M(p)i =

Z 1

0

du �M(u)|q1(up)q̄2(ūp)|Mi (2.67)

where, q1 and q̄2 represents the quark and the anti-quark, respectively. u is the

fraction of the meson momentum carried by the quark and ū = 1�u is the fraction

carried by the anti-quark. �M(u) is the light cone distribution amplitude (DA)

for meson, M . Using Eqn.(2.67), the matrix element of the bilocal operator5 in

Eqn.(2.62) can be parameterized, at the leading order near the light cone, as

h⇡0(p)|ū(x)�µ�5u(0)|0ix2=0 = �ipµ
f⇡
p
2

Z 1

0

dueiup.x�⇡(u, µ) (2.70)

where �⇡(u, µ) is the twist-2 DA of pion. This DA is normalised to unity such

that Z 1

0

du �⇡(u, µ) = 1 (2.71)

5For the gauge invariance of these operators, a path ordered Wilson line given by

[x, y] = P exp


igs

Z 1

0
dt(x� y)µG

µ(tx+ (1� t)y)

�
(2.68)

is present between the quark and the anti-quark where Gµ = Ga
µT

a with Ga
µ being the gluon

field. However, for convenience, we work in the fixed point gauge, also called the Fock-
Schwinger gauge, given by

xµGa
µ(x) = 0. (2.69)

In this gauge the Wilson line goes to unity. Therefore, we do not write it explicitly, however,
it is present unless otherwise stated.
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The explicit form for �⇡(u, µ) is presented in Eqn.(2.81). The invariant coe�cient

Mr of twist-2 local operators in Eqn.(2.64) is therefore directly related to the

moments of the pion distribution amplitude given by

Mr = �i
f⇡
p
2

Z 1

0

du ur �⇡(u, µ). (2.72)

Thus, the distribution amplitude �⇡(u) multiplied by the pion decay constant f⇡

is the universal non-perturbative quantity that enters the light cone OPE and

encode the dynamics of strong interactions at long distances. These distribu-

tion amplitudes (including the higher twist DAs) play a very essential role in

the QCD description of the hard exclusive processes as discussed in Section-2.2.

They play a similar role as parton distribution functions play for the case of

deep inelastic collisions. In the computation of light cone sum rules, they are the

universal non-perturbative quantities very much like the vacuum condensates in

the calculation of the SVZ sum rules.

Distribution amplitudes are the dimensionless functions of the collinear momen-

tum fractions carried by the constituents of the hadron, at zero transverse sep-

aration. They are defined as the probability amplitudes to find constituents

carrying a particular fraction of the hadron momentum. For example, the two-

particle DAs of a meson are defined as the probability amplitude to find the

quark q1 and anti-quark q2 with momentum fractions u and ū, respectively of

the collinear momentum of the energetic meson, M . Similarly, for three-particle

DAs, the momentum fractions (↵1, ↵2, and ↵3) will be carried by the quark,

anti-quark and gluon. These three-particle DAs arises due to higher order terms

in the light-cone propagator (discussed in Appendix-B).

Along with these lowest twist DAs, higher twist DAs are present. They appear

due to three physical reasons. Firstly, the contribution coming from the so called

bad component of the spinor field (will be better understood when we will dis-

cuss the application of conformal symmetry below). Secondly, the contribution

coming due to the transverse motion of the quark or the anti-quark present in the

leading twist configuration. Thirdly, the contributions coming due to the pres-

ence of higher Fock states including extra gluons and/or quark-anti-quark pairs.
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For the case of mesons, one can use the QCD equations of motion to write the ef-

fect of bad components in terms of the higher Fock states. Consequently, for the

case of mesons, the higher twist e↵ects are suppresses compared to the leading

twist e↵ects. Thus, considering only leading twist e↵ects may be a reasonable

approximation for the meson case. However, for the case of baryons, the QCD

equations of motion are insu�cient to write the bad components contribution in

terms of higher Fock states. As a result, the higher twist e↵ects might turn out

to be important for the case of baryons and are dominated by the contribution

coming from the bad components of the three-quark state of a baryon. To gain

more insight of the physics captured by these DAs, let us discuss the case of light

mesons explicitly. For more details one is suggested to look at [68] and references

therein.

For the case of light mesons, these distributions can be determined by using the

property of conformal symmetry of QCD which is valid in the mass-less limit

at tree level. These DAs are defined by the coe�cients of the conformal expan-

sion, an expansion in terms of conformal spin which physically corresponds to

a separation between the transverse and the longitudinal d.o.f. similar to the

partial wave expansion in spherical harmonics in quantum mechanics. We will

discuss conformal symmetry and conformal expansion below. Before that let us

understand how this separation of d.o.f. helps us. The transverse degrees can be

simply integrated out and leads to a dependence on the renormalization scale, µ,

which can be described by renormalization group equations. However, the longi-

tudinal d.o.f. correspond to the longitudinal momentum fractions which can be

understood using the collinear sub-group given by SL(2,R) (see below).

2.2.2.1 Conformal group and its collinear subgroup

The conformal transformation is defined as the scaling of metric such that the

Minkowskian interval, ds2 = gµ⌫(x)dxµdx⌫ remains constant i.e.

g0µ⌫(x
0) = !(x)gµ⌫(x) (2.73)
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such that ds02 = g0µ⌫(x
0)dx0µdx0⌫ = ds2. Consequently, the conformal symmetry

preserves the angles so that the light-cone remains invariant. There are fifteen

generators of the conformal symmetry in 4 dimensions including four transla-

tions, Pµ, six Lorentz rotations, Mµ⌫ , one dilatation, D, and 4 special conformal

transformations, Kµ, which form the conformal group. The usual Poincare group

is a subset of the conformal group (for more details about the conformal symme-

try and group, see for eg. [69]). For a particle which propagates near the light

cone, the full conformal group reduces to its collinear subgroup, SL(2,R) group

with 4 generators P+, M�+, D and K� where we have used the notation of light

cone coordinates given in Appendix-A.

For practical convenience, one defines the linear combinations of these generators

given by

L+ = L1 + iL2 = �iP+, L� = L1 � iL2 = (i/2)K�,

L0 = (i/2)(D +M�+), E = (i/2)(D �M�+). (2.74)

The twist is defined by the commutator of the generator E with the field �(x)!

�(↵n) which lives on the light ray, i.e.

[E,�(↵)] =
1

2
(`� s)�(↵). (2.75)

where, s is the eigen value of the spin operator ⌃+� such that

⌃+��(↵) = s�(↵), (2.76)

and ` is the scaling dimension which is not necessarily equal to the canonical

dimension for a QFT. The di↵erence between the two is known as the anoma-

lous dimension. However, for a classical theory i.e. field theory at tree level,

the anomalous dimension is zero and the scaling dimension coincides with the

canonical dimension. The twist t = ` � s defined in Eqn.(2.75) is known as the

conformal twist i.e. dimension minus the spin projection on the plus axis. It is

di↵erent from the geometric twist which is defined as the dimension minus the

spin and corresponds to the full conformal group.
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Now let us consider a general bilocal operator which one encounters in QCD

applications to hard exclusive processes

Oµ(↵1,↵2) =  ̄(↵1)�µ (↵2) (2.77)

such that  (x) =  (↵n) ⌘  (↵) represents a the quark as a light-ray and

� represents a string of �-matrices with Lorentz spin-1. This operator results

into an infinite series of local operators of quark and anti-quark fields, and the

covariant derivative. The quark field  has di↵erent spin projections which can

be identified using the spin projection operators given by

⇧+ =
1

2
���+, ⇧� =

1

2
�+��, ⇧+ + ⇧� = 1 (2.78)

Therefore the plus (good) and the minus (bad) components of the quark field

are

 + = ⇧+ ,  � = ⇧� ,  =  + +  �, (2.79)

This quantization of the quark field is same as the light-cone quantization. To

find the conformal operators of these fields let us first realise that the  + and

 � has spin +1/2 and �1/2, respectively which implies that the twist for  +

and  � components of the quark field are di↵erent as the canonical dimension

for both the components is 3/2. Explicitly, the twist for  + and  � components

are 1 and 2, respectively. Therefore, the operator Oµ with di↵erent components

of the quark field has di↵erent properties under conformal transformations. The

operator Oµ has a twist-2, twist-3 and twist-4 component given by

twist-2 : O+ =  ̄+�+ + ⌘ O
1,1,

twist-3 : O? =  ̄+�? � +  ̄��? + ⌘ O
1,1/2 +Q

1/2,1,

twist-4 : O� =  ̄��� � ⌘ O
1/2,1/2, (2.80)

Here, the superscript represent the conformal spins of the quark and anti-quark

entering the operator. These conformal local operators of di↵erent twists can be

written in terms of Gegenbauer polynomials (see [68] for details), and result into
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the final form of DAs in terms of these polynomials. For example, the twist-2

distribution amplitude of pion is written as

�⇡(u, µ) = 6uū

"
1 +

X

n=2,4...

an(µ)C
3/2
n (u� ū)

#
. (2.81)

Here, C3/2
n are the Gegenbauer polynomials and an are the multiplicatively renor-

malizable coe�cient defined as,

an(µ) = an(µ0)

✓
↵s(µ)

↵s(µ0)

◆�n/�0

(2.82)

with ↵s = g2s
4⇡ (gs is the strong coupling constant), �0 is the leading QCD �-

function and

�n =
4

3

2

4�3� 2

(n+ 1)(n+ 2)
+ 4

0

@
(n+1)X

k=1

1

k

1

A

3

5 . (2.83)

The other distribution amplitudes of light mesons like pion are collected in

Appendix-B along with the distribution amplitudes of heavy mesons, baryons

and photons used throughout this thesis. For details on how to determine these

distribution amplitude we suggest the reader to look at [70]–[72] and references

therein.

2.3 Light Cone Sum Rules (LCSR)

After having understood the physics of SVZ sum rules (SVZ SRs) ((see Section-

2.1)) and the theory of hard exclusive processes (see Section-2.2), we are now

ready to understand the method of light cone sum rules (LCSR). It was devel-

oped as a hybrid of the SVZ SRs and the theory of hard exclusive processes in

order to deal with the limitations of the SVZ sum rules as discussed in Section-

2.1.3 (see [37], [52], [64] and references therein for details).

The basic idea here is to expand the products of the currents near the light cone

(x2
! 0) instead of short distances (xµ

! 0) as the correlation functions are

dominated by the light cone separations (as discussed in Section-2.2.1.1). Due to
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light cone dominance, the perturbative calculation provides an operator product

expansion near the light cone. The light cone OPE is an expansion in twist (as

discussed in Section-2.2.1.2) instead of the canonical dimension [67]. This expan-

sion helps in partially summing over the local operators and hence one can avoid

some of the irregularities of the OPE truncation in the three-point sum rules.

The method of LCSR has proved to be superior to SVZ SRs in calculating FFs

involved in various hadronic transitions as one can now include both the hard

and the soft (end-point) contributions.

Apart from the di↵erence in OPE, there is another major di↵erence between SVZ

SRs and LCSR. In the case of SVZ SRs, one typically calculates the correlation

functions for the vacuum to vacuum transitions while in LCSR, the correla-

tion functions are taken to be the matrix elements of the time-ordered product

of quark and gluon currents taken between vacuum and an on-shell state (like

mesons, baryons or photon). As a result of this, the light cone distribution am-

plitudes (LCDAs) enter in the LCSR calculations as the basic non-perturbative

objects. These LCDAs are the universal objects and can be defined by the ma-

trix element of the quark operators of di↵erent twists between the vacuum and

the on-shell state. The conformal symmetry of QCD dictates the form of these

LCDAs for the case of light quark hadrons and have a better physical interpre-

tation (as discussed in Section-2.2.2). The rest of the tools are common in SVZ

SRs and LCSR. One can use the same procedure to derive the final sum rule as

discussed in Section-2.1.1 for SVZ SRs.

To summarize, the non-perturbative hadronic quantities like form factors can be

derived using the method of light cone sum rules by writing the the correlation

function of interest as an operator product expansion near the light cone and

equating it with the representation obtained directly in terms of hadronic states

in the form of dispersion relation. To approximate the unknown spectral densities

which enter in the dispersion relation, one uses the statement of quark-hadron

duality which relates these unknown spectral densities to the perturbatively cal-

culated spectral densities. As a final step, one performs Borel transformation to

get rid of the divergences in the dispersion relation and to reduce the systematic

uncertainties arising due to the duality approximations. Borel transformations
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improves the stability and reliability of the sum rules. The duality approxima-

tions and the Borel transformation brings two independent parameters in the

final results. These parameters can be fixed by checking the stability of the sum

rules against there variation. Remainder of the thesis is devoted to the applica-

tions of LCSR to the physical processes involving di↵erent hadrons within and

beyond the SM of particle physics.





Chapter 3

LCSR in radiative tau decay: An

application to light meson system

After collecting and understanding all the tools and machinery required to derive

light cone sum rules in Chapter-2, we now move ahead to see its application

for various physical processes. As a first application, we consider one meson

radiative decay of tau, i.e. ⌧� ! ⇡�⌫⌧�. This process includes a light meson,

pion. The non-radiative decay of tau to pion and tau neutrino is found to have a

branching ratio of (10.82±0.05)% [73]. However, the radiative mode has not been

detected experimentally yet. Theoretically it is expected to have a branching

ratio of O(10�3) which is not very small and should be measurable in near future.

Therefore, it is an important mode to study. In this chapter, we discuss this

radiative tau decay in full detail. It includes two time-like form factors (FFs):

the axial-vector and the vector FFs, which can be very useful in understanding

the structure of pion. We first calculate these FFs in the framework of LCSR.

Later, using the LCSR predictions for these FFs, we provide an estimate for

the structure dependent parameter (SDP) for pion. SDP is defined as the ratio

of the axial to the vector form factor at zero momentum transfer. It helps in

determining the structure of pion. Furthermore, we provide estimates for the

invariant mass spectrum of the ⇡ � � system along with the normalised decay

width contribution coming from di↵erent contributions (see below). This chapter

is based on [74].

65
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3.1 Introduction

⌧ being the heaviest lepton with mass, m⌧ = 1776.86 ± 0.12MeV [73] has nu-

merous decay channels (see for example [75]–[79] for di↵erent aspects of ⌧ lepton

physics.). Because of its large mass, it is the only lepton that can decay into

hadrons. As discussed in Chapter-1, the electroweak part of the SM is reason-

ably well understood while one is still lacking in developing a proper methodology

to understand the strong interactions. The study of hadronic decays of ⌧ helps

us in developing a better understanding of the dynamics of strong interaction

involved in the hadronization of QCD currents by providing a cleaner environ-

ment.

In particular, we will discuss the one meson radiative tau decay, i.e. ⌧� ! ⇡�⌫⌧�,

in this chapter. Experimentally, the branching ratio of the non-radiative one me-

son decay of tau, i.e. ⌧� ! ⇡�⌫⌧ is found to be (10.82± 0.05)% [73]. Therefore,

one expects the branching ratio for radiative mode to be O(10�3). One can un-

derstand it by writing the branching ratio of the radiative mode as a product of

branching ratios of ⌧ ! ⇢⌫⌧ and ⇢ ! ⇡�. Using the values of these branching

ratios from [73], one gets an estimate ⇠ 10�3 for the radiative mode, which is

about 10�2 of the non-radiative branching ratio. However, the branching ratio

of this mode is not very small, it has never been observed experimentally and a

detailed study of this mode becomes important.

The total decay amplitude of this process can be written as a sum of two contribu-

tions [80]–[84] namely internal bremsstrahlung (IB) and the structure dependent

(SD) contributions. They can be defined as:

• Internal Bremsstrahlung (IB): The contribution that comes from the

emission of photon from either the incoming or the outgoing particles, con-

sidering them to be point-like. This contribution can be calculated trivially

with the use of scalar QED for the point-like charged pion and using spinor

QED for the case of photon emission from tau. Diagrammatically, this is

shown in (a) and (b) of Fig.(3.1).

• Structure Dependent (SD): This contribution is governed by the dy-

namics of strong interactions and includes non-trivial parts. The pion can
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Figure 3.1: Feynman diagrams showing di↵erent contributions to radiative tau
decay (⌧� ! ⇡�⌫⌧�). (a) and (b) represents the IB contribution, (c) represents
the SD contribution, and (d) represents the contact term.

no longer be treated as a point-like particle and its partonic structure will

play a role. This contribution appears as a result of the hadronization of

the intermediate quark currents �µ and �µ�5 with JP = 1� and JP = 1+,

respectively ((c) of Fig.(3.1)). Consequently, it depends on the long dis-

tance dynamics. It can be parameterized in terms of two form factors

namely the vector FF (F (⇡)
V ) and the axial-vector FF (F (⇡)

A ) as a result

of the Lorentz and the gauge symmetry. These form factors are the non-

perturbative objects that encode the information of the dynamics of strong

interactions involved in the hadronization of the intermediate quark cur-

rents. Therefore, their evaluation requires a non-perturbative treatment

such as, Light Cone Sum Rules (LCSR), Chiral Perturbation Theory �PT

or Lattice QCD. This contribution also includes a so called Contact Term

(CT). This term emerges as a consequence of gauge invariance. It can be

graphically represented as in (d) of Fig.(3.1).

We will see the explicit form of these contributions in Section-3.2 where they

will be calculated and discussed in detail. Moreover, we will see that the IB

contribution consists of two terms. One of them is independent of m⌧ while

the other turns out to be proportional to m⌧ . Later we will see that the CT

contributions turns out to be equal and opposite to the m⌧ independent term of
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the IB contributions and hence gets cancelled in the total amplitude.

Before moving to the actual calculations involved, let us review some important

features of the one meson radiative decay of tau. The amplitude for this process is

related to that of the radiative pion decay via crossing symmetry with one major

di↵erence that comes at the level of kinematics. The square of the momentum

transferred between the pion-photon and leptonic system in the case of radiative

tau decay can take values up to m2
⌧ . While, for the radiative pion decay, the

maximum value it can take is m2
⇡ which is almost negligible. Furthermore, the

FFs involved in the case of radiative pion decay are space-like. However, for the

case of radiative tau decay, they are time-like as both the pion and the photon

are in the final state. Consequently, the study of these form factors becomes

complicated as the light flavoured mesons (⇢, !, a1) can now be created on-shell

and give resonant structures in the pion-photon invariant mass spectrum.

Therefore, in order to understand this process, the first important task is to

calculate these time-like FFs. These form factors are helpful in probing the

structure of the pion as the ratio of these FFs at zero momentum transferred

square, known as the structure dependent parameter (SDP). Mathematically, it

can be written as

� =
F (⇡)
A (0)

F (⇡)
V (0)

. (3.1)

As these form factors at zero momentum transferred square are same for the ra-

diative pion decay and the radiative tau decay, one can get an experimental esti-

mate of � using the experimental determination of these FFs using the radiative

pion decay. The numerical values of F (⇡)
A (0) and F (⇡)

V (0) from such a determina-

tion are (0.0119±0.0001) and (0.0254±0.0017), respectively [73]. Consequently,

the value of � turns out to be equal to (0.4685± 0.0353). A consistent study of

the radiative decay of tau into a pion and a tau neutrino helps us in developing

a consistent way to determine this parameter theoretically. Apart from probing

the structure of the pion, this decay mode is also useful in understanding the

light-by-light hadronic contribution to the muon anomalous magnetic moment,

(g � 2)µ [85]. Furthermore, in [86], the authors have discussed how this decay

mode can provide means for the mass generation of the tau neutrino.
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In the past, these gauge invariant time-like form factors involved in the radiative

tau decay have been parametrized using Breit-Wigner type resonances [87], light

front quark model [83] and resonance �PT [84], etc. Majorly, the di↵erences in

the literature stem from the vastly di↵erent approaches adopted to determine or

estimate these FFs. It a↵ects the predictions for the rate and spectrum, as well as

the extraction of �, including the sign. In can be better understood by taking an

example. Consider the case where the resonances are included via Breit-Wigner

method. The relative phase between the di↵erent contributions has always been

a suspecting issue in such a case. The main aim of this chapter is to provide a

consistent determination of these form factors using the method of LCSR.

In the rest of the chapter, we will first discuss the di↵erent contributions to the

amplitude (as mentioned above) in detail and then discuss the calculation of the

form factors involved using the method of light cone sum rules. Thereafter, we

will present the results obtained for the structure dependent parameter, decay

width and the invariant mass spectrum. Finally, we will summarize the results

along with its future endeavours.

3.2 Amplitude Computation

Photon, being the charge carrier of the electromagnetic interactions, can be emit-

ted from any of the charged particles involved in the process. Therefore, in the

present case, it can be emitted either from the pion or the tau-lepton as the tau-

neutrino is charge neutral (see Fig.(3.1)). Moreover, as discussed above, pion is

a composite object with an internal structure comprising of a quark-anti-quark

pair as valance constituents along with the sea quarks and gluons. This internal

structure also contributes to the process and gives rise to two non-perturbative

form factors.

As already discussed, the amplitude of the process ⌧� ! ⇡�⌫⌧� includes vari-

ous contributions: Internal Bremsstrahlung (IB), Structure Dependent (SD) and

Contact term (CT). IB contribution comes from the emission of the photon from

tau and pion (considering pion to be the point object). SD contribution comes

from the emission of photon from the internal structure of the pion. The contact
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term in an interesting e↵ective contribution and has its origin in the gauge in-

variance of a QED amplitude [88]. This amplitude can be written as (employing

the low energy four-Fermi e↵ective Hamiltonian obtained by integrating out the

heavy W-boson as discussed in Section-1.5),

A(⌧�(p1)! ⇡�(p2)⌫⌧ (p3)�(k)) =
GF
p
2
Vud

⌦
⇡�⌫⌧�|(⌫̄⌧�

µ⌧)(d̄�µu)|⌧
�↵ (3.2)

where �µ = �µ(1� �5), GF is the Fermi’s constant as defined in Eqn.(1.29), and

Vud is the CKM element (see Eqn.(1.13)).

The amplitude in Eqn.(3.2) can be factorised into two parts as

A(⌧�(p1)! ⇡�(p2)⌫⌧ (p3)�(k))

=
GF
p
2
Vud

⇥⌦
⇡��|(d̄�µu)|0

↵ ⌦
⌫⌧ |(⌫̄⌧�

µ⌧)|⌧�
↵
+
⌦
⌫⌧�|(⌫̄⌧�

µ⌧)|⌧�
↵ ⌦
⇡�

|(d̄�µu)|0
↵⇤

(3.3)

where the first term of the right hand side dictates the photon emission from the

final state pion (including the contribution coming from its internal structure)

and the second term dictates the photon emission from the initial state tau

lepton. This factorization of the amplitude holds for energetic photons and at

the leading order in 1
m⌧

and ↵em.

Furthermore, using the matrix element of the pion defined as

⌦
⇡�(p2)|(d̄�

µ(1� �5)u)|0
↵
= if⇡p

µ
2 (3.4)

where f⇡ is the pion decay constant, and interpolating the photon state with

the the electromagnetic current, j↵em, the amplitude in Eqn.(3.3) can further be

written as

A(⌧� ! ⇡�⌫⌧�) =
GF
p
2
Vud


�ie✏⇤↵(ū⌫�µu⌧ )

Z
d4xeikx

⌦
⇡�

|T{j↵em(x)d̄�
µu(0)}|0

↵

� ef⇡p2µ✏
⇤
↵

Z
d4xeikx

⌦
⌫⌧ |T{j

↵
em(x)⌫̄⌧�

µ⌧(0)}|⌧�
↵�

(3.5)



3.2. Amplitude Computation 71

where, ✏↵ is the polarisation vector for the photon. j↵em(x) = Q  ̄(x)�↵ (x) =

�⌧̄ �↵⌧ + Quū�↵u + Qdd̄�↵d. Qu and Qd are the electromagnetic charges of u

and d quarks, respectively in units of e.

The second term on the r.h.s. of Eqn.(3.5) is the trivial one and can be calculated

using the Feynman rules of QED. The final form of this term turns out to be

⌦
⌫⌧�|⌫̄⌧�

µ⌧ |⌧�
↵ ⌦
⇡�

|d̄�µu|0
↵
= �ief⇡ū⌫(p3)/✏

⇤(1� �5)u⌧ (p1)

+
ief⇡m⌧

2p1.k
{ū⌫(p3) [(2✏

⇤.p1)� /k/✏⇤] (1 + �5)u⌧ (p1)} .

(3.6)

However, the first term is non-trivial and is more interesting as it encodes the

dynamics of strong interactions. To compute this term, let us first define a

hadronic matrix element given by

T ↵µ(p2, k) = i

Z
d4xeikx

⌦
⇡�

|T{j↵em(x)d̄�
µu(0)}|0

↵
. (3.7)

Moreover, the application of the Ward identity, which comes as a consequence

of the conservation of electromagnetic current, results into

k↵T
↵µ(p2, k) =

⌦
⇡�

|d̄(0)�µu(0)|0
↵
= if⇡p

µ
2 (3.8)

in the momentum space. Here, we have used the commutator of the electromag-

netic charge operator and the electroweak current of the pion, which is given

by

⇥
j0em(x), d̄�

µu(0)
⇤
= �Qu�

3(x)d̄(0)�µu(x) +Qd�
3(x)d̄(x)�µu(0). (3.9)

Besides, the hadronic matrix element defined in Eqn.(3.7) can also be written in

terms of the momentum of the pion (p2) and the photon (k) by using the general

covariant decomposition as

T ↵µ(p2, k) = Ag↵µ +Bp2↵p2µ + Cp2↵kµ +Dk↵p2µ + Ek↵kµ + iF (⇡)
V ✏↵µ�⌫p2�k⌫

(3.10)
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where A,B,C,D,E, F (⇡)
V are the gauge invariant scalar functions of (p2 + k)2.

✏↵µ�⌫ is the totally anti-symmetric tensor known as the Levi-civita tensor. On

contracting Eqn.(3.10) with k↵, one obtains

k↵T
↵µ(p2, k) = Akµ +B(p2.k)p

µ
2 + C(p2.k)k

µ. (3.11)

We can now compare Eqn.(3.8) and Eqn.(3.11) and get

C =
�A

(p2.k)
, and B =

if⇡
(p2.k)

. (3.12)

Using these conditions on the scalar functions C and B, the hadronic matrix

element in Eqn.(3.10) can be written as

T ↵µ(p2, k) = F (⇡)
A [g↵µ(P.k)� P↵kµ]+iF (⇡)

V ✏↵µ�⌫P�k⌫�if⇡g
↵µ+if⇡

P↵P µ

P.k
(3.13)

where F (⇡)
A = A+if⇡

P.k and P = p1 � p3 = p2 + k implies p2.k = P.k. Consequently,

the first term of Eq.(3.5) reads as

⌦
⇡��|d̄�µu|0

↵ ⌦
⌫⌧ |⌫̄⌧�

µ⌧ |⌧�
↵

= ie✏⇤↵ [ū⌫�
µu⌧ ]

h
iF (⇡)

A {g↵µ(P.k)� P↵kµ}� F (⇡)
V ✏↵µ�⌫P

�k⌫
i

+ ie✏⇤µf⇡ū⌫�µu⌧ � ief⇡
✏⇤.P

P.k
ū⌫ /P (1� �5)u⌧ . (3.14)

Here, the first term on the r.h.s., written in terms of the gauge invariant scalar

functions F (⇡)
A and F (⇡)

V , determines the SD contribution as discussed above.

The second terms is the so called contact term which appeared purely as a

consequence of gauge invariance. The last term provides the IB contribution

coming from the emission of photon from the pion treated as a point particle.

As a result, the final form for the amplitude of the radiative tau decay can then
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be written by using Eqn.(3.6) and Eqn.(3.14) in Eqn.(3.5) as

A(⌧�(p1)! ⇡�(p2)⌫⌧ (p3)�(k))

=
GF
p
2
Vud

h
ie✏⇤↵(ū⌫�

µu⌧ )
n
iF (⇡)

A [g↵µ(P.k)� Pµk↵]� F (⇡)
V ✏↵µ�⌫P

�k⌫
o

+ ief⇡m⌧ ū⌫

⇢
✏⇤.p1
p1.k

�
/k/✏⇤

2p1.k
�
✏⇤.p2
p2.k

�
(1 + �5)u⌧

�
. (3.15)

In the final amplitude, the contribution coming from the contact terms gets

cancelled against them⌧ independent contribution of photon emission from ⌧ (see

Eqn.(3.6)) and Eqn.(3.14). For further simplification, we write the amplitude as

a sum of di↵erent contributions as

A(⌧� ! ⇡�⌫⌧�) = AIB +AV +AA = AIB +ASD (3.16)

where AIB depicts the internal bremsstrahlung contribution. AV and AA repre-

sents the contribution coming from the vector and the axial-vector form factor

terms. They collectively provides the structure dependent contribution, ASD.

The explicit forms of these contributions are

AIB =
GF
p
2
Vud


ief⇡m⌧ ū⌫

⇢
✏⇤.p1
p1.k

�
/k/✏⇤

2p1.k
�
✏⇤.p2
p2.k

�
(1 + �5)u⌧

�
, (3.17)

AV = �
GF
p
2
Vud

h
ie✏⇤↵(ū⌫�

µu⌧ )
⇣
F (⇡)
V ✏↵µ�⌫P

�k⌫
⌘i

, and (3.18)

AA =
GF
p
2
Vud

h
ie✏⇤↵(ū⌫�

µu⌧ )
⇣
iF (⇡)

A [g↵µ(P.k)� Pµk↵]
⌘i

. (3.19)

The form factors, F (⇡)
A and F (⇡)

V , are the unknown non-perturbative quantities.

Therefore, in order to make any prediction for the decay width for this process,

we first need the information on these FFs. In the next section, we will see how

one can get estimates for these form factors using the method of light cone sum

rules.
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Figure 3.2: Feynman diagram which contributes to the light-cone expansion of
the hadronic matrix element for radiative tau decay up to twist-2. The internal
line connecting the two currents can be either the up-quark or the down quark.
The encircled pion represents that the pion distribution amplitude will enter the
LCSR computation.

3.3 Form Factors in LCSR framework

As discussed in Chapter-2, the starting point to derive the sum rules is to deter-

mine the relevant hadronic matrix element for the process. In the present case,

that matrix element is given by Eqn.(3.7) (see Fig. (3.2)) as

T ↵µ(p2, k) = i

Z
d4xeikx

⌦
⇡�

|T
�
Quū�

↵u(x)d̄�µu(0) +Qdd̄�
↵d(x)d̄�µu(0)

 
|0
↵

(3.20)

where Qu (Qd) is the charge of up (down) quark in units of e. Furthermore,

this matrix element can be written using two representations. First using OPE

near the light cone, and the second using dispersion relation directly in terms of

hadronic states. Then, in order to derive the sum rules, we equate the matrix

element obtained using both these representations (see Chapter-2 for details).

To derive the first representation, the matrix element in Eqn.(3.20) can be simpli-

fied using the light-cone propagator given in Appendix-B, and using the definition

of the light cone distribution amplitude (DA) of the pion given by

⌦
⇡0(p)|ū(y)�µ�5u(x)|0

↵
x2=0

= �if⇡pµ

Z 1

0

du ei(up2.y+ūp.x)�(u, µ) (3.21)
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where ū = 1 � u and �(u, µ) is leading twist-2 DA of the pion (details can be

found in Appendix-B). The matrix element in Eqn.(3.20) then becomes

T ↵µ(p2, k) = if⇡

Z
d4x

eikx

2⇡2x4

Z 1

0

du�(u, µ)
⇥
i✏µ�↵⇢x�p2⇢

�
Que

iūp2x +Qde
iup2x

�

+ (xµp↵2 � gµ↵(x.p2) + x↵pµ2)
�
Que

iūp2x �Qde
iup2x

�⇤
. (3.22)

Here, we considered only the two particle contribution of the light cone propa-

gator. The higher order terms involving one or more gluons are neglected (see

Appendix-B for details). Now, on performing the integration over x and using

the fact that �(u, µ) is symmetric under the exchange of u and ū, we find the

first representation for the matrix element T ↵µ in terms of light cone distribution

amplitudes as

T ↵µ(P, k) = if⇡

Z 1

0

du
�(u, µ)

P 2ū+ k2u


i✏µ�↵⇢

P⇢k�
3

+ 2ū {P↵P µ
� (P.k)gµ↵}

� {gµ↵(P.k)� P↵kµ
} (1� 2ū)] . (3.23)

Comparing this QCD representation of T ↵µ(P, k) with the general decomposition

in terms of FFs given in Eqn.(3.13), we obtain the forms of vector and axial-vector

FFs in QCD as

FQCD
V (t) =

if⇡
3

Z 1

0

du
�(u, µ)

tū+ k2u
, and (3.24)

FQCD
A (t) = �if⇡

Z 1

0

du�(u, µ)

✓
1� 2ū

tū+ k2u

◆
, (3.25)

respectively with t = P 2 = (p2 + k)2 is the invariant mass square of the ⇡ � �

system.

Now, after having the first representation, we move towards the second repre-

sentation using dispersion relation in terms of the hadronic states. In order to

derive the dispersion relation, let us insert a complete set of states |ni in the

matrix element in Eqn.(3.20) to get

⌦
⇡�

|T{j↵em(x)j
µ
ew(0)}|0

↵
=
⌦
⇡�

|j↵em(x)|n
↵
hn|jµew(0)|0i (3.26)
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where, |ni = |⇢i + |!i + |a1i+ higher resonances + continuum, such that it

satisfies the quantum numbers of the matrix element. The sum rules will be

saturated by the contributions coming from lowest energy states i.e., ⇢,!, a1-

mesons1. Therefore, we will focus on the contributions coming from these states.

• ⇢ and !-meson contribution: The contribution from the ⇢-meson contri-

bution will come from

⌦
⇡�(p2)|j

↵
em(x)|⇢(p2 + k)

↵
h⇢(p2 + k)|jµew(0)|0i . (3.27)

This can be simplified by using the matrix element of the electroweak

current between a vacuum and the ⇢�meson given by

⌦
⇢(p2 + k)|d̄�µu|0

↵
= �im⇢f⇢✏

(⇢)⇤
µ , and (3.28)

the matrix element of the electromagnetic current between the pion and

the ⇢-meson state given by

⌦
⇡�(p2)|j

↵
em(x)|⇢(p2 + k)

↵
= ✏↵��⌫✏(⇢)� p2�k⌫F⇢⇡(k

2). (3.29)

Here, m⇢ and f⇢ represents the mass and decay constant of ⇢-meson, respec-

tively. ✏(⇢)µ represents the polarization vector for the ⇢-meson, and F⇢⇡(k2)

is a scalar function of k2 which carries the information of the transition of

⇢-meson into a pion via the electromagnetic current.

Using the above mentioned definitions along with the sum over polariza-

tions of vector meson given by

✏(V )
� ✏(V )⇤

⌫ = �g�⌫ +
(p2 + k)�(p2 + k)⌫

m2
V

(3.30)

where g�⌫ is the metric tensor and V = ⇢ for the present case, the contri-

1At the present level of accuracy, the contribution of the higher resonances is roughly 20%
of these resonances because of the Borel suppression.
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bution coming from Eqn.(3.27) can be written as

⌦
⇡�(p2)|j

↵
em(x)|⇢(p2 + k)

↵
h⇢(p2 + k)|jµew(0)|0i = im⇢f⇢✏

↵��⌫gµ�p2�k⌫F⇢⇡(k
2).

(3.31)

This is the ⇢-meson contribution to the dispersion relation. The contri-

bution of !�meson is almost equal to the ⇢�meson contribution where

we have neglected the very small di↵erence between the masses of the two

mesons. Therefore, in order to incorporate the contribution coming from

the !�meson, we will simply multiply the ⇢-meson contribution by two in

the dispersion relation.

• a1-meson contribution: The contribution from a1-meson will come from

h⇡�(p2)|j
↵
em(x)|a1(p2 + k)iha1(p2 + k)|jµew(0)|0i, (3.32)

Similar to the case of ⇢� and !�meson contribution, it can be simplified

by using the matrix element of the electroweak current between a vacuum

and the a1�meson similar to Eqn.(3.28), and the matrix element of elec-

tromagnetic current between the pion and the a1�meson state given by

⌦
⇡�(p2)|j

µ
em(x)|a1(p2 + k)

↵
=
⇥
(2p2 � k).kgµ� � (2p2 � k)µk�

⇤
✏(a1)⇤� Ga1⇡(k

2).

(3.33)

Here, ✏(a1)⇤� is the polarization vector for a1�meson, and Ga1⇡(k
2) is a scalar

function of k2 which carries the information of the transition of a1-meson

into a pion. Using these definitions along with the polarization sum given

in Eqn.(3.30), the contribution of the a1�meson to the dispersion relation

turns out to be

⌦
⇡�(p2)|j

↵
em(x)|a1(p2 + k)

↵
ha1(p2 + k)|jµew(0)|0i

= ima1fa1 [2p2.kg
↵µ
� 2p↵2k

µ]Ga1⇡(k
2) (3.34)

where ma1 and fa1 are the mass and the decay constant of the a1�meson,
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respectively.

Using the contribution coming from the ⇢, !, and a1�mesons, the dispersion re-

lation for T ↵µ defined in Eqn.(3.20) turns out to be (see Section-2.1.1 for details)

T ↵µ(p2, k) =
2im⇢f⇢✏↵��⌫g

µ
�p2�k⌫F⇢⇡(k

2)

m2
⇢ � (p2 + k)2 � im⇢�⇢

+
ima1fa1 [2p2.kg

↵µ
� 2p↵2k

µ]Ga1⇡(k
2)

m2
a1 � (p2 + k)2 � ima1�a1

+
1

⇡

Z 1

sh0

ds
Im{T ↵µ(s, k)}

s� k2 � i✏
(3.35)

where sh0 is the threshold of the lowest continuum state, and �⇢ and �a1 are the

decay widths of ⇢ and a1 mesons, respectively. The last term on the r.h.s. of

this equation represents the contribution coming from the heavier states and the

continuum.

Now, we are ready to write the sum rules for the form factors F (⇡)
V and F (⇡)

A . The

sum rule for F (⇡)
V can be written by taking the form of F (⇡)

V (t) from Eqn.(3.35)

and equating it with the form obtained in Eq.(3.24), i.e.

2m⇢f⇢F⇢⇡(k2)

m2
⇢ � t� im⇢�⇢

+
1

⇡

Z 1

sh0

ds
Im{FV (s)}

s� t� i✏
=

if⇡
3

Z 1

0

du
�(u, µ)

tū+ k2u
. (3.36)

Now, using the duality approximation (as explained in Section-2.1.1), we can

approximate the heavier state and continuum contribution to the perturbatively

calculated form such that

1

⇡

Z 1

sh0

ds
Im{FV (s, k)}

s� t� i✏
'

1

⇡

Z 1

s0

ds
Im{FQCD

V (s, k)}

s� t� i✏
(3.37)

where s0 is the continuum threshold, a free parameter in sum rules calculation

and Im{FQCD
V (s, k)} is the imaginary part of FQCD

V (s, k) which can be calculated

from Eqn.(3.24) using Eqn.(A.13) such that

1

⇡
Im{FQCD

V (t)} =
if⇡
3

Z 1

0

du�(u, µ) �(tū+ k2u). (3.38)

Using Eqn.(3.37) and Eqn.(3.38) in Eqn.(3.36), the sum rule for F (⇡)
V (t) simplifies

to
2m⇢f⇢F⇢⇡(k2)

m2
⇢ � t

=
if⇡
3

Z u0

0

du
�(u)

tū+ k2u
. (3.39)
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u0 =
s0

k2+s0
= 1 (as k2 = 0).

Similarly, the sum rule for for F (⇡)
A (t) turns out to be

2ima1fa1Ga1⇡(k
2)

m2
a1 � t

= �if⇡

Z u0

0

�(u)

✓
1� 2ū

tū+ k2u

◆
(3.40)

using the duality approximation and the imaginary part of FQCD
A (s, k) (see

Eqn.(3.25)) given by

1

⇡
Im{FQCD

A (t)} = �if⇡

Z 1

0

du�(u, µ)(1� 2ū)�(tū+ k2u). (3.41)

Finally after perfoming Borel transformation on these sum rules and substituting

them back in Eqn.(3.35), we get the final analytical forms for F (⇡)
V and F (⇡)

A as2

F (⇡)
V (t) = �i

f⇡
3(m2

⇢ � t� im⇢�⇢)

Z 1

0

du
�(u)

ū
e

m2
⇢

M2 , and (3.42)

F (⇡)
A (t) = �i

f⇡
m2

a1 � t� ima1�a1

Z 1

0

�(u)

ū
(1� 2ū)e

m2
a1

M2 , (3.43)

respectively. M is the Borel parameter here and the on-shell condition for pho-

ton (i.e. k2 = 0) has been used. Also, the pion is considered to be mass-less, i.e.

m2
⇡ = 0 approximation is used.

Furthermore, it is interesting to note that the vector form factor at zero momen-

tum transferred (t = 0) can be related to the anomaly term (or Wess-Zumino-

Witten term) in ⇡�� vertex given by 1
(4⇡2f⇡)

. Using the KSFR-II relation ([89],

[90]), according to which m2
⇢ = 2g2⇢⇡⇡f

2
⇡ along with the assumptions that the

⇢-coupling g⇢⇡⇡ is universal i.e. g⇢⇡⇡ = g⇢NN = g⇢� = g = 2⇡
p

3/Nc, and the

pion electromagnetic form factor is dominated by ⇢ meson contribution, one finds

that a correct form emerges from F (⇡)
V (0) up to an overall factor of e

m2
⇢

M2 which

must tend to unity. As we will see in the next section, the choice of Borel mass,

M which provides a stable window for the form factors, trivially yields unity for

this factor within a few percent.

Moreover, before moving to the numerical results, it may be worthwhile to pon-

2It is important to note here that these form factors have dimension of inverse mass and there
is an extra factor of �i coming because of the way initial amplitude is defined: A(⌧� ! ⇡�⌫⌧�)
instead of iA(⌧� ! ⇡�⌫⌧�) as is often done.
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der over possible duality violations. These violations arise due to the use of

perturbatively evaluated spectral functions, which are given by the imaginary

parts of the form factors (see Section-2.1.1), over the entire kinematical range.

The perturbative e↵ects occur at 1
Q where Q is the hard scale which is ⇠ m⌧

for the present case of radiative tau decay, while, the time scale over which the

partons come together to form final hadrons is O

⇣
Q

⇤2
QCD

⌘
. Therefore, the use

of perturbatively evaluated spectral densities is not a correct approximation and

brings uncertainties. As discussed in Chapter-2, it is rather di�cult to exactly

quantify the magnitude of such violations. However, having an estimation is

rather important as otherwise they may lead to large uncertainties in the final

results. To have an educated guess for these duality violations, one possible way

is to use an instanton model. In this model the light quark amplitudes are sup-

pressed. A rough calculation yields a quantity of the form Exp[�Q⇢]/Qn, where

⇢ denotes the mean instanton size, in the Euclidean domain. This Euclidean

form can be analytically continued to the Minkowski space which would have an

oscillating factor multiplied by negative powers of the energy released in the hard

process ⇠ O(m⌧ ). An alternate method to calculate these duality violation can

be by considering a comb of hadronic resonances that would contribute to the

process and carry out the algebra. Both these methods bring similar conclusions

that the violations are ⇠ 10% [59] (also see [91], [92] for detailed analyses for

inclusive tau decays). This is typically the amount of duality violations that one

expect in this case as well. However, a more detailed calculation is required to

reveal the exact amount of such violations for the case of radiative tau decay.

Such calculations are out of the scope of this thesis. Now, after having a pos-

sible estimate for the uncertainties due to duality violations, let us now move

to the numerical results for various physical quantities like structure dependent

parameter, decay width, etc., using the form factors evaluated above.

3.4 Numerical results

The analytic expressions for the vector and axial-vector form factors calculated

using LCSR can be read from Eq.(3.42) and Eq.(3.43), respectively. Asymptot-
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ically, both of these has 1
t dependence on the invariant mass squared (t of the

⇡ � � system) as expected from perturbative QCD in the asymptotic regime.

For performing numerical analysis using these form factors we need the explicit

form of the distribution amplitude (�⇡(u, µ)) of pion. For the present work, we

consider two forms namely the asymptotic form (where µ ! 1) and Chernyak-

Zhitnisky (CZ) form (where C2 term is considered) of the pion DA provided in

Eqn.(2.81). The explicit expressions for these forms are

�asym
⇡ (u, µ) = 6uū, and (3.44)

�CZ
⇡ (u, µ) = 6uū


1 +

3a2(µ)

2
{5(u� ū)2 � 1}

�
(3.45)

where, a2(µ) is defined in Eqn.(B.13) with n = 2, and µ being the renormaliza-

tion scale.

The structure dependent parameter defined in Eq.(3.1), which provides the in-

formation about the structure of pion (see Section-3.1), is also calculated using

both these forms for pion distribution amplitudes. The values of the various pa-

rameters used for the numerical computation are collected in Appendix-D. The

form factors depend on the value of the Borel parameter, M , and hence also

the structure dependent parameter, �. Fig.(3.3) shows the variation of F (⇡)
A (0),

F (⇡)
V (0) and SDP (�) with the variation in the value of M . The variation of the

observables with M dictates the model dependence here. As can be seen from

the plot, all the observables are quite stable in the chosen Borel window. The

value of � for M = 3.35 GeV is 0.469 (using CZ distribution amplitude) which

matches well, including the sign, with the experimental value of � obtained from

the radiative pion decay.

Further, we calculate all the contributions to the decay width for the radiative

tau decay using M = 3.35 GeV and the FFs given in Eq.(3.42) and Eq.(3.43).

The di↵erential decay rate for the radiative tau decay is given by,

d�(⌧� ! ⇡�⌫⌧�) =
1

512⇡5
E⌧�

(4)(k + p2 + p3 � p1)|A|2
d3kd3p2d3p3
E�E⇡E⌫

(3.46)
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Figure 3.3: The dependence of structure dependent parameter (SDP), F (⇡)
A (0)

and F (⇡)
V (0) on the Borel parameter M (in GeV units) is shown in Blue, Magenta

and Green, respectively. In this plot, form factors have been multiplied by im⇡

to make them dimensionless in and take care of the extra �i in the FFs as noted
in the Footnote1.

where, E⌧ , E⇡, E�, E⌫ are the energies of tau-lepton, pion, photon and neutrino,

respectively. |A|2 is the spin averaged square of the amplitude which has been

calculated in Section-3.2.

In terms of the functions used in Eq.(3.16),

|A|2 = |AIB|
2 + |ASD|

2 + 2Re{A⇤
IBASD} (3.47)

where, |ASD|
2 = |AA|

2 + |AV |
2 + 2Re{A⇤

AAV }.

The kinematical details to compute the decay rate can be found in Appendix-C.

The structure dependent contribution to the photon spectrum is shown in

Fig.(3.4) using both forms of pion distribution amplitudes. The IB contribu-

tion su↵ers from infrared divergences which can be taken care of by putting a

threshold on the photon energy. Fig.(3.5) shows the threshold energy dependence

of the IB contribution as well as the full decay width of the radiative tau decay.

The SD contribution is free from any kind of divergences.

F (⇡)
A (t) gets contribution from a1 meson while F (⇡)

V (t) from ⇢ (and !) meson.

Fig.(3.6) shows the SD contribution to the invariant mass spectrum of ⇡�� sys-

tem. The higher and sharper peak corresponds to the contribution coming from

the vector mesons while the shorter and broader peak corresponds to the axial

vector contribution. The vector contribution to the total decay width dominates

over the axial-vector contribution.
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Figure 3.4: The total Structure Dependent Contribution (blue) to the photon
spectrum is shown along with the individual contributions from the vector (ma-
genta), axial vector (green) and the interference (red) of the two are also shown
for the two distribution amplitudes. Solid lines are for asymptotic distribution
amplitude while dashed ones are for Chernyak-Zitnisky distribution amplitude.

As ⇢ and a1-mesons are not very narrow, the e↵ect of t dependence of the widths

is also studied using the prescription provided in [93]. The t dependence of �⇢

does not have significant e↵ect as it is not that wide while the e↵ect of �a1 is

clearly visible as one can see from Fig.(3.7). The explicit forms of t dependence

of the decay widths are provided in Eqn.(C.14) and Eqn.(C.15). We have also

computed the e↵ect of decay width of a1-meson �a1 , as it has huge uncertainty,

and found that the decay width of radiative tau decay decreases with an increase

in �a1 . The results reported here are calculated using �a1 = 425 MeV.

Fig.(3.8) represents all the contributions to the invariant mass spectrum of the

⇡�� system. The IB contribution dominates at the low photon energy for which

we have used the minimum energy threshold of 50 MeV.

After integrating over the full phase space and applying an energy threshold

of 50 MeV for the IB contribution, we get the numerical results for di↵erent

contributions to the decay width (normalised to the non-radiative decay width

Eq.(C.9) i.e . �̄ = �(⌧ ! ⇡⌫⌧�)/�(⌧ ! ⇡⌫⌧ )) as tabulated in Table-3.1.

Since we consider radiative rate normalised to the non-radiative one,

the uncertainty in IB contribution is negligible compared to the SD contribution

which dominates the error budget. Therefore, no uncertainty is shown for the

IB part. The final uncertainties are about 10%. From the above it is evident

that there is a dependence on the form of the distribution amplitude chosen to
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Figure 3.5: The dependence of the IB (solid) contribution on the minimum energy
threshold of the photon is shown here. Along with that, the same dependence
for total decay width including form factors using asymptotic (dashed) and CZ
(dotted) pion distribution amplitude is also shown.
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Figure 3.6: (a): The Structure Dependent contribution (blue) to the invariant
mass spectrum of ⇡�� system is shown here for asymptotic (solid) and Chernyak-
Zhitnisky (dashed) pion distribution amplitudes. The contribution from the
vector (magenta), axial vector (green) and the interference (red) of the two is
also shown. (b): Zoomed in version of (a).

evaluate these form factors. However, the di↵erence is not too large, which is

reassuring.

Having obtained detailed predictions for the pion in the final state, it is also

instructive to have an estimate of the decay width for the kaon in the final

state. Again, normalising to the appropriate non-radiative width, and employing

the asymptotic distribution amplitude (keeping the Borel parameter, M = 3.35

GeV), we get

�̄K = �(⌧ ! K⌫�)/�(⌧ ! K⌫) ⇠ 8⇥ 10�3 (3.48)

This (approriately normalised) rate is roughly half of that for the pion.
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Figure 3.7: The SD contribution (blue) considering (a) �⇢ and �a1 to be constant
and (b) the t dependence of �⇢ and �a1 is shown here for asymptotic (solid) and
Chernyak-Zhitnisky (dashed) pion distribution amplitudes. The contribution
from the vector (magenta), axial vector (green) and the interference (red) of the
two is also shown.
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Figure 3.8: The invariant mass spectrum of ⇡� � system for radiative tau decay
is shown here considering (a) asymptotic and (b) CZ pion distribution amplitude.
The contributions from the IB (magenta), SD (green) and the interference (red)
of the two is also shown. The shaded region shows the uncertainties.

3.5 Discussion and Conclusions

In this chapter, we have provided detailed predictions for the rate and photon

spectrum for the process ⌧� ! ⇡�⌫⌧�. Employing Ward identity from the be-

ginning, the amplitude was written so as to include the contact term which is

necessitated by gauge invariance. The decay involves two time like FFs. These

have been calculated in the present work employing the Light Cone Sum Rules,

to twist-2 accuracy. The FFs, which automatically via the dispersion relations,

encode the contributions from the vector and axial-vector mesons, have the right

asymptotic behaviour expected from perturbative QCD. The ratio of the axial-

vector to vector form factor at zero momentum transfer defines the pion structure
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Contribution Value using �asym
⇡ Value using �CZ

⇡

�̄IB 1.36⇥ 10�2 1.36⇥ 10�2

�̄V V (1.47± 0.06)⇥ 10�3 (1.47± 0.06)⇥ 10�3

�̄AA (3.97± 2.45)⇥ 10�4 (5.91± 3.62)⇥ 10�4

�̄AV ⇠ 0 ⇠ 0

�̄SD (1.87± 0.30)⇥ 10�3 (2.29± 0.43)⇥ 10�3

�̄int (3.82± 2.14)⇥ 10�4 (4.90± 2.60)⇥ 10�4

�̄all (1.56± 0.04)⇥ 10�2 (1.61± 0.06)⇥ 10�2

Table 3.1: Tabulating the values obtained for di↵erent contribution of the nor-
malised decay width (normalised to the non-radiative decay width i.e. �̄ =
�(⌧ ! ⇡⌫⌧�)/�(⌧ ! ⇡⌫⌧ )) using the asymptotic DA (�asym

⇡ ) and the CZ DA
(�CZ

⇡ ) of the pion.

dependent parameter, �. Our evaluation of this parameter, along with the sign,

matches very well with the experimental value obtained from ⇡ ! `⌫�, where

the relevant pion-photon FFs, unlike the present case, are space like. The ob-

tained values for the normalised rate and the photon spectrum are similar to

those obtained in [84] using Resonance �PT. This provides a cross-check on

the theoretical predictions employing a totally di↵erent method for computing

the non-perturbative quantities. We have also provided an estimate for the ap-

propriately normalised rate with kaon in the final state instead of a pion. This

normalised rate is approximately half of that for the pion. The present study em-

ployed distribution amplitudes to twist-2 accuracy. The uncertainties reported

here are the uncertainties associated with the uncertainities of the various pa-

rameters used. There will be further uncertainties associated with quark hadron

duality approximation, and higher twist and hight order contributions. The pion

is considered to be massless here. The e↵ect of such an assumption is less than

1% on the values of the FFs. The uncertainties associated with quark hadron

duality violation, like in inclusive tau decays are expected to be at 10% level,

and can be calculated in a particular model to parametrise the spectral density.
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Precise calculations of these duality violations is indeed an important missing

piece but is out of the scope of present work. It would be interesting to consider

both higher twist contributions as well as contributions that are higher order in

↵s. These can have a significant impact on the phenomenology of radiative one

meson tau decays.





Chapter 4

Exploring LCSR application to

proton decay

After discussing the application of LCSR to the light meson system in the previ-

ous chapter, we now move to the case of a light baryon system like proton. Proton

is the lightest baryon with mass mp = 0.938 GeV [35]. To explain the matter-

anti-matter asymmetry of the Universe, Sakharov proposed three conditions in

1967 [94]. One of these conditions is the requirement of Baryon Number Viola-

tion (BNV). Within the SM of particle physics, baryon number is a conserved

quantity. Therefore, the matter-antimatter asymmetry can not be explained

within the SM and hence BSM physics is required. In the BSM scenarios where

BNV is possible, proton is allowed to decay (see below). Consequently, proton

decay is one of the most important signatures for BSM physics.

In this chapter, we will discuss the decay of proton to a positron and a photon,

i.e. p ! e+�. As we will see, this process involves two independent physical form

factors. We discuss these FFs in the framework of light cone sum rules. Within

this framework, there exist two possibilities to calculate these FFs. First, by

considering the correlation function by interpolating the proton state and using

the photon distribution amplitudes. Second, where the correlation function is

obtained by interpolation of the photon state with the electromagnetic current

and the proton DAs are used. In this chapter, we will discuss both these ap-

proaches to calculate these FFs one by one and will discuss the numerical results

89



90 Chapter 4. Exploring LCSR application to proton decay

in both the scenarios. This chapter is based on the study presented in [95].

4.1 Introduction

As discussed in Chapter-1, the SM of particle physics is the most successful model

which explains the electromagnetic, weak, and strong interactions among the

fundamental particles, but, fails in explaining various phenomena. The matter-

antimatter asymmetry of the Universe is one such phenomena and motivates us

towards the study beyond the SM. As, in 1967, Sakharov proposed three con-

ditions to explain this matter-antimatter asymmetry which are: 1) the baryon

number violation, 2) the violation of C and CP symmetries, where C represents

the charge and P represents the parity, and 3) Out of thermal equilibrium [94].

The baryon number is a conserved quantity within the SM as a consequence of the

accidental symmetry of the SM. However, baryon number violation is well moti-

vated at the perturbative level in the theories of grand unification (GUTs), Su-

perSymmetry (SUSY), various models of baryogenesis, model building in string

theory and in the extra dimension theories, etc. (see for example [96]–[106] and

references therein).

Therefore, in order to probe these BSM models, BNV processes can play a very

important role. Proton decay is one such process. The proton being the lightest

baryon is a stable particle in the SM. However, these BSM scenarios motivate

the decay of proton which makes this decay one of the very crucial tests for

these BSM scenarios and also an important window to understand the nature of

matter unification. Any signature of it will be a clear indication towards physics

beyond the SM as it is forbidden in the SM.

In GUTs, quarks and leptons fall in the common multiplets. Therefore, in such

theories, proton decay is possible even at the tree level via the exchange of super-

heavy gauge bosons or scalar and/or vector leptoquarks. By integrating out these

heavy particles, one can then write e↵ective baryon and lepton number violating

operators of dim-6 such that they are consistent with the SM gauge symme-

try. Instead of baryon (B) or lepton (L) number conservation, these operators

are found to conserve (B-L). As a result, proton always decay into an antilep-
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ton (or antineutrino) (see [107]–[110] for reviews on proton decays). In several

GUT models, the most favourable channel for the decay of proton is found to

be p ! e+⇡0. To compute the decay width for this process, or any process in-

volving hadron, one requires an input on the non-perturbative FFs (as discussed

in Section-1.3). The FFs involved in this decay have been studied using various

models of QCD, such as relativistic quark model, QCD sum rules, e↵ective chi-

ral theory, lattice QCD, [111]–[117]. In a very recent study [118], these FFs are

studied using the method of LCSR.

There are various experiments like Kolar Gold Field [119], NUSEX [120],

SOUDAN [121], Kamiokande [122], etc., which have been designed detect pro-

ton decay. Presently, the largest proton water Cherenkov detector, known as

the Super-Kamiokande detector is the most sensitive detector for proton decay

searches. It puts the most stringent lower bounds on the partial life time for the

proton decays, p ! e+⇡0 given by ⌧p > 1034 years [123]. With the advances in

experimental techniques, it becomes important to consider other decay channels

including the radiative decay modes. The present lower bound for the radiative

proton decay modes p ! e+� and p ! µ+� are ⌧p > 6.7 ⇥ 1032 years and ⌧p >

4.8 ⇥ 1032 years, respectively [35]. Theoretically, these modes are expected to

be suppressed by ↵em. In [124], p ! e+� was studied within SU(5) GUT set

up. It was pointed out there that this might be an experimentally more feasible

channel as there will be less nuclear absorption. The form factors involved in this

process were evaluated with a simple harmonic oscillator potential as a model for

binding the quarks inside the proton. In [125], it was studied in the framework

of bag model and the conclusions were made that this decay mode is not feasi-

ble at experiments due to small decay rate. However, the experimental facilities

are advancing over the time (see [126] for a review of di↵erent experiments and

expected sensitivities expected at future experiments). Thus, a reanalysis of this

mode becomes important, including a fresh attempt at evaluation of the form

factors in a consistent way.

In the Water-Cherenkov experiments, such as Super-Kamiokande, the decay

products of the proton are measured approximately at rest which makes the

relevant energy scale for the process to be the proton mass (see [127] for a review
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on Super-Kamiokande). At these energy scales, a perturbative description for

the hadronic transitions is not possible in QCD because of color confinement and

a alternative non-perturbative way is required to get an estimate of the HMEs

which can help us in probing the baryon-number violating physics with the help

of experimental data (as discussed in Chapter-2). Therefore, in this chapter, we

will discuss the use of LCSR to study p ! e+�.

The rest of the chapter will discuss the computation of the form factors involved

in this process using LCSR framework. We will first discuss the amplitude of

this process using dime-6 e↵ective operators and see how this amplitude can

be written in terms of two independent form factors. Then we will discuss two

di↵erent possibilities to compute these FFs using LCSR. Later, we will provide

numerical analysis for the FFs obtained using both the possibilities. Finally, we

will conclude our findings with a naive comparison between the results obtained

using the two possibilities.

4.2 Amplitude Computation

As already discussed, proton decay is a baryon number violating process and

hence is forbidden in the SM. However, it is possible to write higher dimensional

baryon number violating e↵ective operators that allow the decay of proton. In

a BSM scenario, like GUTs, proton decay is possible even at tree level. This

process proceeds via an exchange of heavy gauge bosons or leptoquarks. To

write the e↵ective operators, one can then integrate out these heavy particle (as

discussed in Section-1.5). The Lagrangian corresponding to the dim-6 baryon

number violating e↵ective operators which preserves the gauge symmetry of the

SM can be written as [128]–[131]

L
(6)
/B

=
X

�,�0

c��0O��0 =
X

�,�0

c��0✏abc
�
d̄caP�ub

� �
ēcP�0uc

�
(4.1)

where {�,�0
} 2 {L,R} are the chirality projection operators. c��0 are the

Wilson coe�cients. The superscript c denotes charge conjugation such that

d̄c = �dTC�1 with C = i�2�0 being the charge conjugation operator and T in
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the superscript denotes the transpose. The indices a, b, c represent the color in-

dices. This e↵ective Lagrangian is written in terms of the physical states of the

quarks and leptons at the relevant scale which means that all the flavour mix-

ing and perturbative renormalization group (RG) e↵ects, along with the short

distance information, are collectively lumped in the WCs c��0 . As this chap-

ter is mainly focused on the evaluation of the form factors involved which are

defined below, the exact details of these e↵ects are not of particular relevance

here. Thus, we do not discuss about them further. These dependencies must be

straightforwardly expressed in a concrete model which allows proton decay.

Having the interaction Lagrangian in hand (Eqn.(4.1)), the transition amplitude

for the radiative proton decay p ! e+ + � can be written as the matrix element

given by

A(p(pp) ! e+(pe)�(k)) =
X

��0

c��0
⌦
e+(pe)�(k) |O��0 | p(pp)

↵

=
X

��0

c��0
⌦
e+(pe)�(k)

��✏abc
�
d̄caP�ub

� �
ēcP�0uc

��� p(pp)
↵

(4.2)

with all the flavor e↵ects being absorbed in the WCs, c��0 (as discussed above).

The condition that this transition amplitude must be gauge invariant, allows us

to parameterize it as

A(p(pp) ! e+(pe)�(k)) =
X

��0

c��0 v̄ceP�0

⇢
✏↵⇤A��0

i�↵�k�
mp

�
up(pp). (4.3)

where A��0 are the four non-perturbative gauge invariant physical form factors

involved in the process. Furthermore, due to parity conservation in QCD, these

physical FFs get related among themselves as

ALL = �ARR ALR = �ARL, (4.4)

resulting in only two independent form factors. For the present discussion, let

us choose them to be ALL and ALR. Therefore, in order to have a prediction

about the branching ratio, the knowledge of these FFs is the only hurdle. All
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other factors in the amplitude given in Eqn.(4.3) are known once we choose a

particular model which leads to proton decay. We focus on the computation of

these FFs here.

As both proton and positron are charged, the photon can be emitted from either

of them. The computation of photon emission from positron is trivial. We do not

explicitly show it here as it does not contribute to the dipole transition depicted

above. However, the photon emission from proton is non-trivial and contributes

to the form factors. The photon can now be emitted from either of the u-quarks

or the d-quark and thus, can be helpful in understanding the dynamics of strong

interaction inside the proton. The transition matrix element for the photon

emission from proton can be factorised into the leptonic and hadronic parts as

⌦
e+(pe)�(k) |O��0 | p(pp)

↵
= v̄ce(pe)H��0(pP , pe)up(pp). (4.5)

where H��0(pP , pe)up(pp) is the hadronic matrix element (HME) of interest and

is given by

H��0(pP , pe)up(pp) =
⌦
�(k)

��✏abc
�
dTaCP�ub

�
(P�0uc)

�� p(pp)
↵
. (4.6)

This HME can be most generally parameterized in terms of six invariant scalar

functions F n
��0 with n = 1, . . . , 6 (see [132]) as

H��0(pP , pe)up(pp) = P�0✏⇤µ


F 1
��0

/kpµp
m2

p

+ F 2
��0

/kkµ

m2
p

+ F 3
��0�µ + iF 4

��0
�µ⌫k⌫
mp

+ F 5
��0

pµp
mp

+ F 6
��0

kµ

mp

�
up(pp) (4.7)

where �µ⌫ = i
2 [�

µ, �⌫ ]. Neglecting the mass of positron, the physical form factors

( A��0) can then be related to these invariant scalar functions, F n
��0 as

A��0 =
F 1
��0

2
+ F 4

��0 +
F 5
��0

2
. (4.8)

Let us now discuss how to get these form factors using the method of LCSR.
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4.3 Form Factors in the LCSR framework

As discussed in Chapter-2, in order to calculate form factor is LCSR framework,

we need a correlation function of quark-gluon operators between a vacuum and

a hadronic state as a starting object. In the present case, such a correlation

function can be obtained from the HME given in Eq.(4.6) by interpolating either

the proton or the photon state. Consequently, there are two possibilities to

calculate the form factors, A��0 defined in Eqn.(4.8) within the framework of

LCSR:

1. Interpolating the proton state with proton interpolation current and using

the distribution amplitudes (DAs) of photon.

2. Interpolating the photon state with the electromagnetic current and using

the distribution amplitudes (DAs) for proton.

Hereafter, in this chapter, we will discuss both these scenarios one by one with

the aim that we can finally make some comparison between the outcomes of the

two which can be helpful in getting a deeper understanding of the underlying

non-perturbative dynamics due to strong interaction.

4.3.1 Case-1: Using proton interpolation and photon

DAs

To find the relevant correlation function in this case, first of all we need an inter-

polation current for proton state. Such an interpolation current is not uniquely

defined. Therefore, it is interesting to discuss a little about the interpolation

current for proton before jumping to the calculation of the form factors.

4.3.1.1 Proton interpolation current

While writing an interpolation current, two things are required to be kept in

mind. First, the interpolation current must have the quark-constituent of the

state. Second, it must satisfy all the quantum numbers of the state. There

are two operators which can satisfy both these criteria for a proton [133], [134].
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These operators are

�1(x) = ✏lmn
�
uT
l (x)C�5dm(x)

�
un(x), �2(x) = ✏lmn

�
uT
l (x)Cdm(x)

�
�5un(x)

(4.9)

where, {l,m, n} represents the color indices, the superscript T represents the

transpose and C is the charge conjugation matrix. Both these operators can be

used to excite a ground state proton from the vacuum.

Moreover, a linear combination of both these operators will also excite a ground

state proton from the vacuum. Therefore, in general, the proton interpolation

current can be written as

�t(x) = �1(x) + t�2(x) (4.10)

where, t is a general parameter and can take any value form the set of real

numbers. It is defined such that

h0 |�t(0)| p(pp)i = mp�
t
pup(pp) (4.11)

wheremp is the mass of proton, �tp is the interaction strength of this interpolation

current with the proton state, and up(pp) represents the spinor for the proton

state having momentum pp.

In literature, the most commonly used linear combinations are

�LA(x) = �1(x), and (4.12)

�IO(x) = 2 (�2(x)� �1(x)) . (4.13)

The former can be obtained from Eqn.(4.10) by simply putting t = 0 and is the

most commonly used form for proton interpolation in lattice QCD calculations

h0|�LA|p(pp)i = mp�p2up(pp). The latter can be obtained as �IO(x) = �2�t(x)

with t = �1. Using the Fierz transformation (discussed in Appendix-A), it can
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be rewritten as

�IO(x) = ✏lmn
�
uT l(x)C�µu

m(x)
�
�5�

µdn(x) (4.14)

This is popularly known as the Io↵e current [133]. It is defined such that

h0 |�IO(0)| p(pp)i = mp�pup(pp), (4.15)

where �p is the interaction strength of the Io↵e current with the proton state.

In literature, this current is found to provide the maximum stability against the

Borel mass, the parameter introduced in LCSR computations [70].

There is another linear combination which has been found to be used in sum rule

calculations given by

�0(x) = 2(�2 + �1)

=
1

2
✏abc

�
uTa(x)C�µ⌫u

b(x)
�
�µ⌫�5d

c(x) (4.16)

such that,

h0 |�A(0)| p(pp)i = mp�
0
pup(pp) (4.17)

It can be obtained from the general form in Eqn.(4.10) by putting t=1 and

multiplying the r.h.s. by a factor of 2.

Now, after having an understanding of the proton interpolation current,

we move back to our discussion on the form factor calculation using LCSR. For

the further discussion we will use the Io↵e current given in Eqn.(4.14) for proton

interpolation and will call it simply �(x) instead of �IO for notational simplicity.

The correlation function which is obtained after interpolating the proton state

in Eqn.(4.6) using Io↵e current reads as

⇧��0(pp, pe) = i

Z
d4xeipe.x h�(k) |T{Q��0(x)�̄(0)}| 0i (4.18)

where �̄(0) ⌘ �†(0)�0, Q��0(x) = ✏abc
�
dTaCP�ub

�
(P�0uC) and T denotes the time
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ordering.

By inserting a complete set of intermediate hadronic states with the same quan-

tum number as the proton and isolating the pole contribution coming from the

ground state proton, one gets a hadronic parameterization for this correlation

function as

⇧had
��0 (pp, pe) = �

mp�p
p2p �m2

p

H��0(pe, pp)(/pp +mp) + . . .

= ✏⇤µP�0


⇧had,PK

��0

/kpµp
m2

p

+ ⇧had,KK
��0

/kkµ

m2
p

+ ⇧had,V
��0 �µ + ⇧had,T

��0
i�µ⌫k⌫
mp

+ ⇧had,P
��0

pµp
mp

+ ⇧had,K
��0

kµ

mp
+ ⇧had,KPP

��0

/kpµp/pp
m3

p

+ ⇧had,KKP
��0

kµ/k/pp
m3

p

+ ⇧had,V P
��0

�µ/pp
mp

+ ⇧had,TP
��0

i�µ⌫k⌫/pp
m2

p

+ ⇧had,PP
��0

/ppp
µ
p

m2
p

+ ⇧had,KP
��0

kµ/pp
m2

p

#

(4.19)

where ellipses represent the heavier states i.e. excited states and contin-

uum, contributions. The twelve invariant scalar functions, ⇧had,r
��0 with r =

{PK,KK, V, T, P,K,KPP,KKP, V P, TP, PP,KP}, will be used to derive the

physical FFs ALL and ALR by deriving sum rules for them (see below).

As a first step to write sum rules for these scalar function, we parameterize them

in terms of spectral densities using the dispersion relation given by

⇧had,r
��0 (p2p, P

2
e ) =

Z 1

0

ds
⇢had,r��0 (s, P 2

e )

s� p2p
. (4.20)

where P 2
e = �p22, and ⇢

had,r
��0 (s, P 2

e ) are the spectral densities and are related to

the imaginary part of these scalar functions as

⇢had,r��0 (s, P 2
e ) =

1

⇡
Im⇧had,r

��0 (s+ i✏, P 2
e ). (4.21)

These spectral densities can be written by separating the pole contribution and

the heavy states contributions as

⇢had,r��0 (s, P 2
e ) = �pm

2
p�(s�m2

p)F
r
��0(s, P 2

e ) + ⇢heavy,r��0 (s, P 2
e ) (4.22)
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where F r
��0(s, P 2

e ) are the residues of the ground state contributions. These can

be related to F n
��0(s, P 2

e ) (Eqn.(4.7)) for s = m2
p i.e proton being on-shell, the

condition ensured by the delta function. These relations reads as,

F PK
��0 (s, P 2

e ) = FKPP
��0 (s, P 2

e ) = F 1
��0(s, P 2

e ),

FKK
��0 (s, P 2

e ) = FKKP
��0 (s, P 2

e ) = F 2
��0(s, P 2

e ),

F V
��0(s, P 2

e ) = F V P
��0 (s, P 2

e ) = F 3
��0(s, P 2

e ),

F T
��0(s, P 2

e ) = F TP
��0 (s, P 2

e ) = F 4
��0(s, P 2

e ),

F P
��0(s, P 2

e ) = F PP
��0 (s, P 2

e ) = F 5
��0(s, P 2

e ),

FK
��0(s, P 2

e ) = FKP
��0 (s, P 2

e ) = F 6
��0(s, P 2

e ). (4.23)

According to the quark-hadron duality, the spectral densities of the heavier

states, ⇢heavy,r��0 (s, P 2
e ), can be approximated to the spectral densities computed

using QCD (see Section-2.1.1) as

Z 1

s0

ds
⇢heavy,r��0 (s, P 2

e )

s� p2p
⇡

Z 1

s0

ds
⇢QCD,r
��0 (s, P 2

e )

s� p2p
=

Z 1

s0

ds
1

⇡

Im(⇧QCD,r
��0 (s, P 2

e ))

s� p2p
(4.24)

where s0 is the continuum threshold, a free parameter in sum rule calculation. It

is expected to be chosen such that it is well above the ground state proton state

but close to the lightest excitation state, which is the Roper resonance with mass

of 1.44 GeV for the present case. Therefore, s0 will be chosen in the vicinity of

(1.44 GeV)2 (see below).

Consequently, according to Eqn.(4.24), in order to compute the contribution of

the heavier states, we need the evaluation of the correlation functions ⇧r
��0(s, P 2

e )

in QCD. For that we need the time ordered product in Eqn.(4.18) which can

be computed by partially contracting the quark fields and by employing the

completeness relation given by

q(x)q̄(0) =
�1

4
(q̄(0)�Aq(x))�

A. (4.25)
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Figure 4.1: Feynman diagrams which contribute to the light-cone expansion of
the hadronic matrix element for proton decay to positron and a photon up to
two particle twist-2 and twist-3 contributions. The vertex on the left represents
the proton interpolations current while the vertex on the right represents the
dim-6 BNV operator. The encircled photon represents that the photon distri-
bution amplitudes are entering the LCSR computation. (a) represents the the
usual non-condensate contribution while (b) and (c) represent the condensates
contributions as discussed in the text.

Here, q = {u, d} and �A represents the basis of gamma matrices chosen to be

�A =

⇢
1, �5, �

⇢, i�⇢�5,
1
p
2
�⇢�

�
. (4.26)

Using these relations and partially contracting the quark fields, the time ordered

product in Eqn.(4.18) simplifies to (see Fig. (4.1))

T {Q��0(x)�̄(0)} = �
1

2
✏lmn✏ijkP�0

h
(ūl(0)�Aui(x))

n
�A�µS̃

(u)
jm(x)P�S

(d)
nk (x)�

µ�5

+ S(u)
jm(x)�µ�̃AP�S

(d)
nk (x)�

µ�5
o

+
�
d̄l(0)�Adi(x)

�n
S(u)
kn (x)�µS̃

(u)
jm(x)P��A�

µ�5
oi

.

(4.27)

where Sij(x) is the quark propagator at the light like separations, and

�̃A = C�T
AC

�1 = ⌘i�A (4.28)

with

⌘i =

8
><

>:

1, �A = 1, i�5, �µ�5

�1, �A = �µ, �µ⌫

. (4.29)
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In the massless limit, Sij(x) is given by (see Appendix-B for details)

Sij(x) =
i/x

2⇡2x4
�ij �

hq̄qi

12
�ij

✓
1 +

m2
0x

2

16

◆
+ . . . (4.30)

where hq̄qi represents the quark condensate, and ellipses denote higher terms

including one or more gluon exchanges. We will neglect these higher terms for

the present discussion. m0 is a parameter associated with the mixed condensate

as

hq̄gsG.�qi = m2
0 hq̄qi (4.31)

where G.� = Gµ⌫�µ⌫ . Substituting Eqn.(4.27) back in Eqn.(4.18) and rearrang-

ing the terms, we end up having a matrix element of two or more particle (quarks

and gluons) operators between a vacuum and a photon state. These matrix ele-

ments can then be written in terms of photon light cone distribution amplitudes

(DAs) of varying twist [71]. The present discussion involves only two particle

DAs of twist-2 and twist-3. The e↵ects coming from the higher twist DAs (ex-

pected to be small) are out of scope of this thesis.

At this point, it is important to note that at twist-2 there exist only one DA for

photon labelled as ��(u). It appears in the matrix element of two quark operator

with �A = 1p
2
�⇢�. Moreover, at twist-3, there are two two-particle DAs labelled

as  v(u), and  a(u) and appears for �A = {�⇢, i�⇢�5}. Therefore, in the present

discussion, three DAs of photon will contribute namely, ��(u),  v(u), and  a(u)

(see Appendix-B for more details about these DAs). On using the definition of

these DAs, and summing up all the contributions, the correlation function in

Eqn.(4.18) can be finally computed in QCD as

⇧QCD
��0 (pp, pe) = ✏⇤µP�0


⇧QCD,PK

��0

/kpµp
m2

p

+ ⇧QCD,KK
��0

/kkµ

m2
p

+ ⇧QCD,V
��0 �µ + ⇧QCD,T

��0
i�µ⌫k⌫
mp

+ ⇧QCD,P
��0

pµp
mp

+ ⇧QCD,K
��0

kµ

mp
+ ⇧QCD,KPP

��0

/kpµp/pp
m3

p

+ ⇧QCD,KKP
��0

kµ/k/pp
m3

p

+ ⇧QCD,V P
��0

�µ/pp
mp

+ ⇧QCD,TP
��0

i�µ⌫k⌫/pp
m2

p

+ ⇧QCD,PP
��0

/ppp
µ
p

m2
p

+ ⇧QCD,KP
��0

kµ/pp
m2

p

#

(4.32)
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where ⇧QCD,r
��0 with r = {PK,KK, V, T, P,K,KPP,KKP, V P, TP, PP,KP},

are the QCD analogues of the scalar functions introduced in Eqn.(4.19). The

full analytic expressions for these functions in QCD are:

• For � = �0 = L:

⇧QCD,KK
LL (pe, pp) = �

em2
p hq̄qi

2 �

6
(Qu �Qd)

Z 1

0

du


��(u)

P 2

✓
1 +

m2
0

4P 2

◆�

(4.33)

⇧QCD,V
LL (pe, pp) =

e hq̄qi2 �

6
(Qu �Qd)

Z 1

0

du


uk2��(u)

P 2

✓
1 +

m2
0

4P 2

◆�

(4.34)

⇧QCD,T
LL (pe, pp) = �emp hq̄qi

Z 1

0

du


3Qu�

16⇡2
��(u)P

2ln(�P 2) +
f3�(Qu �Qd)

6

⇥

⇢
1

P 2

✓
1 +

m2
0

4P 2

◆✓
u (v)(u)�

 ̄(v)(u)

2

◆

+
 a(u)

2P 4

✓
1 +

m2
0

2P 2

◆�
uk.pp � p2p

���
(4.35)

⇧QCD,P
LL (pe, pp) =

empf3� hq̄qi

12
(Qu �Qd)

Z 1

0

du
uk2(2 ̄v(u) +  a(u))

P 4

✓
1 +

m2
0

2P 2

◆

(4.36)

⇧QCD,K
LL (pe, pp) =

empf3� hq̄qi

6
(Qu �Qd)

Z 1

0

du


1

P 2

✓
1 +

m2
0

4P 2

✓
u v(u) +

 ̄v(u)

2

◆◆

�
�
uk2 ̄v(u) + u(pp.k) 

a(u)
� 1

P 4

✓
1 +

m2
0

2P 2

◆�

(4.37)

⇧QCD,KPP
LL (pe, pp) = �

em3
pf3� hq̄qi

12
(Qu �Qd)

Z 1

0

du
2 ̄v(u) +  a(u)

P 4

✓
1 +

m2
0

2P 2

◆

(4.38)
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⇧QCD,KKP
LL (pe, pp) =

em3
pf3� hq̄qi

12
(Qu �Qd)

Z 1

0

du
u a(u)

P 4

✓
1 +

m2
0

2P 2

◆

(4.39)

⇧QCD,V P
LL (pe, pp) = �

empf3� hq̄qi

6
(Qu �Qd)

Z 1

0

du


 v(u)

P 2

✓
1 +

m2
0

4P 2

◆

� (k.pp � uk2)
 a(u)

2P 4

✓
1 +

m2
0

2P 2

◆�

(4.40)

⇧QCD,TP
LL (pe, pp) =

em2
p hq̄qi

2 �

6
(Qu �Qd)

Z 1

0

du


��(u)

P 2

✓
1 +

m2
0

4P 2

◆�

(4.41)

• For � = L and �0 = R:

⇧QCD,PK
LR (pe, pp) =� em2

p

Z 1

0

du

"
hq̄qi2 �Qu

3

��(u)

P 2

✓
1 +

m2
0

4P 2

◆
+

f3�
16⇡2

⇥

⇢⇢
1

3

�
2(Qu +Qd)u 

v(u) + (7Qu +Qd) ̄
v(u)

�

+ Qu 
a(u)} ln(�P 2) +

2(Qu +Qd)

3P 2
u
�
pp.k � uk2

�
 ̄v(u)

��

(4.42)

⇧QCD,KK
LR (pe, pp) =

em2
pf3�

24⇡2

Z 1

0

du u2

⇢
(Qu +Qd) 

v(u) + (4Qu +Qd)
 ̄v(u)

u

�

⇥ ln(�P 2) + (Qu +Qd)(pp.k � uk2)
 ̄v(u)

P 2

�

(4.43)
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⇧QCD,V
LR (pe, pp) =e

Z 1

0

du

"
hq̄qi2 �Qu

3

(pp.k)��(u)

P 2

✓
1 +

m2
0

4P 2

◆

+
f3�
16⇡2

⇢
1

3

�
(7Qu +Qd) 

v(u)P 2
� (Qu +Qd) ̄

v(u)

⇥ (pp.k � uk2)
�
+Qu 

a(u)(pp.k)
 
ln(�P 2)

⇤
(4.44)

⇧QCD,T
LR (pe, pp) =

emp hq̄qi

6

Z 1

0

du


Qd

8⇡2
���(u)

�
5P 2 + 2u(pp.k � uk2)

�
ln(�P 2)

+ f3�Qu(p
2
p � upp.k)

 a(u)

P 4

✓
1 +

m2
0

2P 2

◆�

(4.45)

⇧QCD,P
LR (pe, pp) = (4.46)

fracemp hq̄qi3

Z 1

0

du


Qd

8⇡2
�uk2��(u)ln(�P 2)� f3�Qu

⇢
 v(u)

P 2

✓
1 +

m2
0

4P 2

◆

+

✓
 ̄v(u)(k.pp � uk2)�

uk2 a(u)

2

◆
1

P 4

✓
1 +

m2
0

2P 2

◆��

(4.47)

⇧QCD,K
LR (pe, pp) =�

emp hq̄qi

3

Z 1

0

du


Qd

8⇡2
�u(pp.k)��(u)ln(�P 2)

� f3�Qu

⇢✓
u v(u) +

 ̄v(u)

2

◆
1

P 2

✓
1 +

m2
0

4P 2

◆

+

✓
u(k.pp � uk2) ̄v(u)�

u(pp.k) a(u)

2

◆
1

P 4

✓
1 +

m2
0

2P 2

◆��

(4.48)

⇧QCD,KPP
LR (pe, pp) = �

em3
p hq̄qi

6

Z 1

0

du


Qd

4⇡2
���(u)ln(�P 2)

+ f3�Qu
 a(u)

P 4

✓
1 +

m2
0

2P 2

◆�
(4.49)
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⇧QCD,KKP
LR (pe, pp) =

em3
p hq̄qi

6

Z 1

0

du


Qd

4⇡2
�u��(u)ln(�P 2)

+ f3�Qu
u a(u)

P 4

✓
1 +

m2
0

2P 2

◆�
(4.50)

⇧QCD,V P
LR (pe, pp) =

emp hq̄qi

6

Z 1

0

du
�
pp.k � uk2

�  Qd

4⇡2
���(u)ln(�P 2)

+ f3�Qu
 a(u)

P 4

✓
1 +

m2
0

2P 2

◆�
(4.51)

⇧QCD,TP
LR (pe, pp) = em2

p

Z 1

0

du

"
hq̄qi2 �Qu

3

��(u)

P 2

✓
1 +

m2
0

4P 2

◆

+
f3�Qu

16⇡2
 a(u)ln(�P 2)

�
(4.52)

⇧QCD,PP
LR (pe, pp) =

em2
pf3�

24⇡2
(Qu +Qd)

Z 1

0

du
⇥
 v(u)ln(�P 2)

+ (pp.k � uk2)
 ̄v(u)

P 2

�
(4.53)

⇧QCD,KP
LR (pe, pp) = �

em2
pf3�

24⇡2
(Qu +Qd)

Z 1

0

du
⇥�
u v(u) +  ̄v(u)

�
ln(�P 2)

+ (pp.k � uk2)
u ̄v(u)

P 2

�
(4.54)

where P 2 = (pp � uk)2 = (pe + uk)2 = ūp2p � uP 2
e � uūk2 with u and ū = 1� u

being the fractions of photon momentum carried by the quak and anti-quark,

respectively. The other scalar functions which are not present in Eqn.(4.33)-

Eqn.(4.54) do not appear in QCD calculations upto two-particle twist-3 accuracy.

Now, according to the LCSR matching condition (see Chapter-2 for details)

⇧had,r
��0 (p2p, P

2
e ) = ⇧QCD,r

��0 (p2p, P
2
e ), (4.55)
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the sum rule for F r
��0 reads as

�pm
2
p

F r
��0(s, P 2

e )

m2
p � p2p

=

Z s0

0

ds
1

⇡

Im⇧r,QCD
��0 (s, P 2

e )

s� p2p
. (4.56)

In order to suppress the e↵ect of the heavier states and improve the stability of

the sum rule, we perform Borel transformation with respect to p2p as a final step

(see Section-2.1.1 for details). Consequently, the final sum rule reads as,

F r
��0(s0, P

2
e ) =

e
m2

p
M2

�pm2
p

Z s0

0

dse�
s

M2
1

⇡
Im⇧QCD,r

��0 (s, P 2
e ) (4.57)

where M is the Borel mass and s0 is the continuum threshold. These are the

artefacts of the LCSR method, and have to be fixed such that the sum rule is

saturated with the ground state and the heavy state contributions are properly

suppressed. A typical rule of the thumb is to try and obtain at least 70% con-

tribution to the correlation function from the ground state itself.

In order to compute these sum rules one needs an imaginary part of the QCD

calculated correlation function collected in Eqns.(4.33-4.54) and substitute them

in Eqn.(4.57) and then perform an integral over s. These can be incorporated

by implementing the following substitutions in Eqns.(4.33-4.54) with s = p2p and

putting k2 = 0, as the photon is on-shell

Z 1

0

du
F (u)

P 2
G(u, s) ! �

Z u0

0

du
F (u)

ū
e

�s̃
M2G(u, s̃) (4.58)

Z 1

0

du
F (u)

P 4
G(u, s) !

e
�s0
M2 F (u0)G(s0, u0)

P 2
e

+

Z u0

0

du
F (u)

ū2

e
�s̃
M2

M2

✓
G(u, s̃)�M2 @

@s̃
G(u, s̃)

◆
(4.59)
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Z 1

0

du
F (u)

P 6
G(u, s) ! �

Z 1

0

du
F (u)

2ū2


e

�s0
M2 G(u, s0)

@

@s0

�
�(ūs0 � uP 2

e )
��

+

Z 1

0

F (u)

2ū2


@

@s

⇣
e

�s
M2G(u, s)

⌘
�(ūs� uP 2

e )

�

�

Z u0

0

du
F (u)

2ū3

@2

@s̃2

⇣
e

�s̃
M2G(u, s̃)

⌘
(4.60)

where F (u) and G(u, s) are some arbitrary functions of u and s,

s̃ =
uP 2

e

ū
and u0 =

s0
s0 + P 2

e

. (4.61)

These substitutions are consistent with [70]. After making these substitutions,

we are now ready to perform the numerical analysis for the form factors using

the sum rules provided in Eqn.(4.57).

4.3.1.2 Numerical Analysis

The values of various parameters used during the numerical calculations are

collected in Appendix-D. The physical FFs, A��0 , for ��0 = LL and LR are

studied as a function of P 2
e = �p2e and the Borel mass M . These FFs can

be found from di↵erent combinations of F��0 ’s as can be read from Eqn.(4.8)

and Eqn.(4.23). As the photon is on-shell, we can put k2 = 0. For the case

of ��0 = LL, there are only two possibilities to extract ALL(s0, P 2
e ) which are

from the combination of F T
LL and F TP

LL with FKPP
LL as F PK

LL , F P
LL, and F PP

LL turn

out to be zero. In Fig.(4.2), we show the variation of ATP+KPP
LL (s0, P 2

e ) with

P 2
e for three di↵erent values of the continuum threshold s0. In this Figure,

we also show its variation with the Borel mass, M , for three di↵erent values

of P 2
e at fixed s0 = (1.44GeV)2 which is equal to the Roper resonance. The

combination AT+KPP
LL (s0, P 2

e ) is found to be less stable against the variation in

the parameters s0 and M (as can be seen from Fig.(4.3)). Therefore, it is less

reliable. However, on the face value, it is in broad agreement with ATP+KPP
LL .

As can be seen from the detailed expressions of these functions (Eqn.(4.33)-

Eqn.(4.41)), the contributions coming due to condensate are quite important

(even dominant in some cases). Thus, these contributions can not be simply

ignored. For the case of ��0 = LR, we have eight combinations in total as can



108 Chapter 4. Exploring LCSR application to proton decay
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Figure 4.2: The physical FF, ALL(s0, P 2
e ) is calculated from the combina-

tion of F TP
LL and FKPP

LL employing photon DAs. Left panel: ATP+KPP
LL (s0, P 2

e )
vs P 2

e is shown for three values of s0 = (1.4 GeV)2(violate dotted), s0 =
(1.44 GeV)2(red solid) and s0 = (1.5 GeV)2 (blue dashed) at the Borel Mass,
M2 = 2 GeV2. Right Panel: ATP+KPP

LL (s0, P 2
e ) vs M is shown for three values

of P 2
e = 0.5 GeV2(red solid), P 2

e = 1 GeV2(red dashed) and P 2
e = 2 GeV2 (red

dotted) at the continuum threshold, s0 = (1.44 GeV)2.
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Figure 4.3: Same as Fig(4.2) but now with the combinations of F T
LL and FKPP

LL .

be read again from Eq.(4.8) and Eqn.(4.23). Moreover, for this case as well, the

four combinations which involves F T
LR are found to be less stable against s0 and

M and hence we discard them. The other four combinations involving F TP
LR are

shown in Fig.(4.4)-Fig.(4.7).

The values of the physical FFs, A��0 for ��0 = LL and ��0 = LR, at

P 2
e = 0.5 GeV21 and M2 = 2 GeV2 for s0 (= 1.44 GeV)2 are found to be

AT+KPP
LL (1.442, 0.5) = (0.00388± 0.00126) GeV2,

ATP+KPP
LL (1.442, 0.5) = (0.00221± 0.00082) GeV2. (4.62)

1LCSR calculations are trustworthy at |Q2
| ! 1, where Q2 is the momentum transferred

squared. To be consistent with this requirement, in this case, we have chosen Q2 = P 2
e =

0.5 GeV2.
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Figure 4.4: The physical FF, ALR(s0, P 2
e ) is calculated from the combination of

F TP
LR , F PK

LR and F PP
LR employing photon DAs. Left panel: ATP+PK+PP

LR (s0, P 2
e )

vs P 2
e is shown for three values of s0 = (1.4 GeV)2(violate dotted), s0 =

(1.44 GeV)2(red solid) and s0 = (1.5 GeV)2 (blue dashed) at the Borel Mass,
M2 = 2 GeV2. Right Panel: ATP+PK+PP

LR (s0, P 2
e ) vs M is shown for three values

of P 2
e = 0.5 GeV2(red solid), P 2

e = 1 GeV2(red dashed) and P 2
e = 2 GeV2 (red

dotted) at the continuum threshold, s0 = (1.44 GeV)2.
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Figure 4.5: Same as Fig(4.4) but now with the combinations of F TP
LR , F PK

LR and
F P
LR.

ATP+KPP+P
LR (1.442, 0.5) = (0.00251± 0.00118) GeV2,

ATP+KPP+PP
LR (1.442, 0.5) = (0.00250± 0.00118) GeV2

ATP+PK+P
LR (1.42, 0.5) = (0.00176± 0.00123) GeV2,

ATP+PK+PP
LR (1.42, 0.5) = (0.00176± 0.00123) GeV2. (4.63)

From Eqn.(4.63), it is clearly evident that there is quite a good consistency in

the form factor, ALR, determined from di↵erent combinations. The uncertainties

reported here are associated with the uncertainties in the values of the various

parameters entering the sum rules except s0 and M which we fixed to a certain

value as mentioned above. These uncertainties are found to decrease with an
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Figure 4.6: Same as Fig(4.4) but now with the combinations of F TP
LR , FKPP

LR and
F PP
LR .
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Figure 4.7: Same as Fig(4.4) but now with the combinations of F TP
LR , FKPP

LR and
F P
LR.

increase in P 2
e for all the combinations. However, we have shown the error

bands for AT+KPP
LL (s0, P 2

e ) and AT+KPP+P
LR (s0, P 2

e ) at s0 = (1.44 GeV)2 andM2 =

2 GeV2 in Fig.(4.8) as the representative ones.

After discussing the first case in detail, let us now move to the other possibility

for form factor calculation in LCSR framework using photon DAs.

4.3.2 Case-2: Using photon interpolation and proton

DAs

In this case, we aim to calculate the physical form factors, A��0 by considering

the correlation function where the photon state in Eqn.(4.7) is interpolated using

the electromagnetic current, j↵em(x). Such a correlation function (see Fig. (4.9))
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Figure 4.8: The physical FF, ATP+KPP
LL (s0, P 2

e ) (left pannel) and
ATP+KPP+PP

LR (s0, P 2
e ) (right panel) vs P 2

e are shown at s0 = (1.44 GeV)2

and M2 = 2 GeV2 along with the uncertainties associated with the parameters
involved in photon DAs. The bands represents the uncertainties.

Figure 4.9: Feynman diagram which contributes to the light-cone expansion to
proton decay to positron and photon in case-2 up to twist-3. The vertex on
the left represents the electromagnetic current while the vertex on the right
represents the dim-6 BNV operator. The encircled proton represents that the
proton distribution amplitude will enter the LCSR computation.

reads as

H��0(pp, pe)up(pp) = �ie✏⇤↵

Z
d4xeik.x h0 |T{j↵em(x)Q��0(0)}| p(pp)i (4.64)

where, j↵em(x) = Qdd̄(x)�↵d(x) +Quū(x)�↵u(x)� ē(x)�↵e(x), and the operator

Q��0 is

Q��0 = ✏abc
�
dTaCP�ub

�
(P�0uc) . (4.65)

For ��0 = LL and ��0 = LR, this operator can be rewritten using the generalised

Fierz transformations [135] (discussed in Appendix-A) as

QLL =
✏abc

4

✓
2(PLda)(ū

c
cPLub)�

1

2
(�µ⌫PLda)(ū

c
c�µ⌫PLub)

◆
, and (4.66)
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QLR =
✏abc

4
(2(�µPLda)(ū

c
c�

µPLub)) , (4.67)

respectively2. Now, in order to derive the sum rule, we need to compute the

correlation function in Eq.(4.64) using perturbative QCD. For that, we need the

time ordered product of j↵em with QLL and QRL. These time ordered products can

be written as a time product of j↵em(x) with the operator (�APLda)
�
ūc
c�

APLub

�

with �A = {1, �µ⌫} and �A = {�µ} for QLL and QLR, respectively. Therefore,

for the QCD computation we need

T{j↵em(x) (�APLda)
�
ūc
c�

APLub

�
}

=


Qu

⇢⇣
C�↵S̃u

ic(x)�APL

⌘BF �
�APL

�CD
⇣�

uT
i (x)

�B
uF
b (0)d

D
a (0)

⌘

+ (C�APLSbi(x)�
↵)EB ��APL

�CD
⇣�

uT
c (0)

�E
uB
b (x)d

D
a (0)

⌘o

� Qd

n�
�AS

d
ai(x)�

↵
�CB �

C�APL

�EF
⇣�

uT
c (0)

�E
uF
b (0)d

B
i (x)

⌘oi

(4.68)

where capital alphabets (E,F,B,C,D) represent the Dirac indices, {a, b, c, i}

denote the color indices and superscript T refers to the transpose.

Now substitute Eqn.(4.68) in Eqn.(4.64) with �A = {1, �µ⌫} and �A = {�µ} for

the case ��0 = LL and ��0 = LR,respectively. After doing so, we are now left

with the matrix element of of the remaining three quark operator between the

proton state and the vacuum. This matrix element can be parameterized in terms

of proton DAs of varying twists [136]. In the present work, we consider only the

leading twist-3 DAs (collected in Appendix-B). Using the various properties of

these DAs (as discussed in Appendix-B), the correlation function in Eqn.(4.64)

can be computed in perturbative QCD and results into

HQCD
��0 up(pp) = ✏⇤↵P�0


F 1,QCD
��0

p↵p /k

m2
p

+ F 2,QCD
��0

k↵/k

m2
p

+ F 3,QCD
��0 �↵ + F 4,QCD

��0
i�↵�k�
mp

+ F 5,QCD
��0

p↵p
mp

+ F 6,QCD
��0

k↵

mp

�
(4.69)

2The factor of 1
2 in the second term of the r.h.s of Eqn.(4.66) was missed in [95] which

reflects as di↵erences in the analytical as well as numerical results for ALL compared to [95].
However, this does not alter the numerical results much and the conclusions are more or less
the same. We will be submitting an erratum reporting this correction soon.
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where F n
��0 with n = (1 . . . 6) are the scalar functions of P 02 = (pp � k)2 and

K2 = �k2 and these F n
��0 explicitly take the form

• For � = �0 = L:

F 3,QCD
LL (pp, k) = �

em2
p

2

Z
D↵iT1(↵i)


↵3Qd

2(k � ↵3pp)2
+

↵1Qu

(k � ↵1pp)2

�

(4.70)

F 4,QCD
LL (pp, k) = �

em2
p

2

Z
D↵iT1(↵i)


Qd

2(k � ↵3pp)2
+

Qu

(k � ↵1pp)2

�

(4.71)

F 5,QCD
LL (pp, k) =

em2
p

2

Z
D↵iT1(↵i)


↵1Qu

(k � ↵1pp)2
�

↵3Qd

(k � ↵3pp)2

�
(4.72)

F 6,QCD
LL (pp, k) =

3Qdem2
p

4

Z
D↵i

T1(↵i)

(k � ↵3pp)2
(4.73)

• For � = L and �0 = R:

F 1,QCD
LR (pp, k) =

em2
p

2

Z
D↵i


(V1(↵i) + A1(↵i))Qd

(k � ↵3pp)2
�

(V1(↵i)� A1(↵i))Qu

(k � ↵1pp)2

�

(4.74)

F 3,QCD
LR (pp, k) = �

e

2

Z
D↵i

"
(V1(↵i) + A1(↵i))Qd

�
2pp.k � ↵3m2

p

�

2(k � ↵3pp)2

+
(V1(↵i)� A1(↵i))Qu

�
2↵1m2

p � pp.k
�

(k � ↵1pp)2

#

(4.75)

F 4,QCD
LR (pp, k) = �

em2
p

2

Z
D↵i


(V1(↵i) + A1(↵i))Qd

2(k � ↵3pp)2
+

(V1(↵i)� A1(↵i))Qu

(k � ↵1pp)2

�

(4.76)
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F 6,QCD
LR (pp, k) = �

em2
p

2

Z
D↵i


(V1(↵i) + A1(↵i))Qd

2(k � ↵3pp)2
�

(V1(↵i)� A1(↵i))Qu

(k � ↵1pp)2

�

(4.77)

where, V1, A1, and T1 are the twist-3 light cone DAs of proton (collected in

Appendix-B), and ↵i = {↵1,↵2,↵3} are the proton momentum fractions car-

ried by up and down quarks inside the proton. (k � ↵ipp)2 can be expanded as

↵P 02
� ↵̄K2

� ↵↵̄m2
p which will be useful for further computation. In this case

also, some scalar functions do not appear up to twist-3 accuracy and hence are

not reported here.

Moreover, to derive the sum rule, we need another representation for the corre-

lation function in Eqn.(4.64) in terms of the hadronic states. For that, we insert

a complete set of intermediate states with the quantum numbers of the proton

state. To write the hadronic decomposition, we saturate it with the contribution

coming from the lowest state i.e. the ground state of proton. Furthermore, we

use the matrix element of the electromagnetic current between two proton state

given by

hp(pp � k) |jem↵ (0)| p(pp)i = ūp(pp � k)


W1(K

2)�↵ � i
�↵�k�

2mp
W2(K

2)

�
up(pp).

(4.78)

where W1(K2) and W2(K2) are electromagnetic electric and magnetic form fac-

tors of the proton, respectively. The final hadronic decomposition obtained reads

as

Hhad
��0 up(pp) = �e✏⇤↵

P�0

4
� mp

/pp � /k +mp

(pp � k)2 �m2
p

⇢
�↵W1(K

2)�
i�↵�k�
2mp

W2(K
2)

�
up(pp) + . . .

= ✏⇤↵P�0


F 1,had
��0

p↵p /k

m2
p

+ F 2,had
��0

k↵/k

m2
p

+ F 3,had
��0 �↵ + F 4,had

��0
i�↵�k�
mp

+ F 5,had
��0

p↵p
mp

+ F 6,had
��0

k↵

mp

�
(4.79)

where ellipses represent the heavier state contributions, and � represents the

coupling strength of the proton interpolation current with the proton state such

that � = �0p and � = ��p for ��0 = LL and ��0 = LR, respectively (as defined in

Eqn.(4.15) and Eqn.(4.17), respectively). F n,had
��0 with n = 1, . . . , 6 are the scalar
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functions of P 02 = (pp � k)2 = p2e and K2 = �k2. They are related to W1(K2)

and W2(K2) as

F 1,had
LL =

�e

4
m2

p�
0
p

W2(K2)

P 02 �m2
p

, F 2,had
LL =

e

4
m2

p�
0
p

W2(K2)

2
�
P 02 �m2

p

� ,

F 3,had
LL = �

e

8
�0pW2(K

2), F 4,had
LL =

e

4
m2

p�
0
p

W1(K2) +W2(K2)

P 02 �m2
p

,

F 5,had
LL =

�e

2
m2

p�
0
p

W1(K2)

P 02 �m2
p

, and F 6,had
LL =

e

4
m2

p�
0
p

W1(K2)

P 02 �m2
p

. (4.80)

There are similar relations between F n,had
LR and W1,2(K2) which can be obtained

by simply replacing �0p by ��p. The sum rule can then be computed for W1,2(K2)

by equating the two representations and using the quark hadron duality to sup-

press the heavier state contributions. As a final step we perform the Borel

transformation on P 02 and using the relations in Eqn.(4.80), we derive the final

sum rules for F 1,4,5
��0 using the sum rules for W1,2(K2) which reads as

F 1,4,5
��0 (s0, K

2) = �

Exp
⇣

m2
p

M2

⌘

P 02 �m2
p

Z s0

0

ds Exp

✓
�s

M2

◆
1

⇡
Im

⇣
F {1,4,5},QCD
��0 (s,K2)

⌘

(4.81)

where s0 and M are the continuum threshold and the Borel mass, respectively.

Here, we provide sum rules only for F 1,4,5
��0 as they are related to the physical

form factors given in Eqn.(4.8). However, one can similarly write sum rules for

other F n,had
��0 . Similar to the previous case, to compute these sum rules, we need

the imaginary part of F {1,4,5},QCD
��0 (s,K2) (provided in Eqn.(4.70)-Eqn.(4.77)) and

then have to integrate over s. These operations can be incorporated by a simple

substitution using s = (pp � k)2 and K2 = �k2, given by

Z
D↵i

F (↵i)

(k � ↵pp)2
! �

Z 1

↵0

D↵i
F (↵i)

↵
e

�s1
M2 (4.82)

where ↵ = {↵1,↵3}, D↵i = d↵1d↵2d↵3 �(1� ↵1 � ↵2 � ↵3),

s1 =
↵̄K2 + ↵↵̄m2

p

↵
, (4.83)
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and

↵0 = �
K2

�m2
p + s0

2m2
p

+

q
(K2 + s0)2 +m4

p � 2m2
p(s0 �K2)

2m2
p

. (4.84)

We are now all set to get numerical estimates for the physical form factors ob-

tained using proton DAs upto twist-3.

4.3.2.1 Numerical Analysis

The physical form factors, A��0 are studied as a function of K2 = �k2 and the

Borel mass, M at P 02 = m2
e = 0. Using Eqn.(4.8) and Eqn.(4.80), it is easy to see

that these FFs which are defined using a combination of F 1
��0 , F 4

��0 and F 5
��0 , turn

out to be proportional to W2(K2), the magnetic form factor (as discussed above).

It can be seen from Eqn.(4.80) that W2(K2) can also be obtained using other

combinations of F n
��0 . However, it is found that these other combinations result

in poor stability against the Borel mass, M . Therefore, the combination of F 1
��0 ,

F 4
��0 , and F 5

��0 as defined in Eqn.(4.8) is considered to be the best estimate for

these form factors and thus, we choose to show only this explicitly in Fig.(4.10)

and Fig(4.11).

The values of the physical FFs, A��0 using this combination at K2 = 0.5 GeV2

and M2 = 2 GeV2 for s0(= 1.44 GeV)2 are found to be

A1+4+5
LL (1.442, 0.5) = (0.00038± 0.00021) GeV2,

A1+4+5
LR (1.442, 0.5) = (0.00174± 0.00027) GeV2 (4.85)

Here again, the uncertainties are associated with the parameters involved in form

factor calculations except s0 and M , and are found to decrease with an increase

in K2 (as shown in Fig.(4.12)).

It is important to note here that, in the present case, the numerical value of the

form factor A1+4+5
LL is smaller than A1+4+5

LR (also the form factors obtained in the

previous case) by a factor of ⇠ 3.

Another important thing to remark here is that, it is not possible to have a direct

comparison between the form factors obtained here with the ones obtained in
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Figure 4.10: The physical FF, ALL(s0, K2) is calculated from the combination of
F 1
LL, F

4
LL and F 5

LL employing proton DAs. Left panel: A1+4+5
LL (s0, K2) vs K2 is

shown for three values of s0 = (1.4 GeV)2(violate dotted), s0 = (1.44 GeV)2(red
solid) and s0 = (1.5 GeV)2 (blue dashed) at the Borel Mass, M2 = 2 GeV2.
Right Panel: A1+4+5

LL (s0, K2) vsM is shown for three values ofK2 = 0.5 GeV2(red
solid), K2 = 1 GeV2(red dashed) and K2 = 2 GeV2 (red dotted) at the contin-
uum threshold, s0 = (1.44 GeV)2.

case-1 where proton state was interpolated with Io↵e current and the photon

DAs were used upto two particle twist-3 accuracy. The simple reason for it lies

in the di↵erence in the momentum transferred square in the two cases and the

limitations of LCSR application to low momentum squared region (as discussed

in previous case). Because of this the photon is taken to be far o↵-shell in the

present case, while in the previous case the photon was taken on-shell. Moreover,

the positron momentum squared in this case can be taken to m2
e ⇡ 0 while in

the previous case it was taken to be 0.5 GeV2. Therefore, a direct comparison

between the form factors obtained in the two cases is not straightforward and

some kind of judicious extrapolation would be required in the two cases to meet

the physical requirements and to have a proper comparison.

4.4 Discussion and Conclusions

In this chapter, we have discussed the computation of the form factors involved

in the proton decay to a positron and a photon using the LCSR framework. This

3The numerical values of the form factor in Fig.(4.12 (b)) are slightly di↵erent from
Fig.(4.11) as in the present case (pp � k)2 = p2e is set to be equal to 0 GeV2. While, for
Fig.(4.11), it has been set to 0.5 GeV2.
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Figure 4.11: The physical FF, ALR(s0, K2) is calculated from the combination of
F 1
LR, F

4
LR and F 5

LR employing proton DAs. Left panel: A1+4+5
LR (s0, K2) vs K2 is

shown for three values of s0 = (1.4 GeV)2(violate dotted), s0 = (1.44 GeV)2(red
solid) and s0 = (1.5 GeV)2 (blue dashed) at the Borel Mass, M2 = 2 GeV2.
Right Panel: A1+4+5

LR (s0, K2) vsM is shown for three values ofK2 = 0.5 GeV2(red
solid), K2 = 1 GeV2(red dashed) and K2 = 2 GeV2 (red dotted) at the contin-
uum threshold, s0 = (1.44 GeV)2.
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Figure 4.12: The physical FF, A1+4+5
LL (s0, K2) (left panel) and A1+4+5

LR (s0, K2)
(right panel) vs K2 are shown at s0 = (1.44 GeV)2 and M2 = 2 GeV2 along with
the uncertainties associated with the parameters involved in proton DAs. The
bands represents the uncertainties 3.

should be viewed as a complimentary approach to lattice calculations, though,

to the best of our knowledge, there is no lattice study so far for proton to gamma

transition. This decay mode is found to have not attracted much attention. How-

ever, as briefly discussed in [124], the branching ratio for this mode is expected

to be smaller than the p ! ⇡e+ mode, the very well studied mode, by a factor

O(1/(few tens)). As, it is not a huge suppression and keeping in mind that the

nuclear absorption e↵ects are not going to a↵ect the radiative mode, it becomes

important to remain optimistic about this mode. As a next step, it is important

to have the relevant form factors computed in a reliable fashion. With that aim,
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we discussed them in LCSR framework where they can be calculated either by

interpolating the proton state and using the photon DAs (case 1) or by inter-

polating the photon state and using the proton DAs (case-2). In this chapter,

we discussed both these cases one by one. In both the cases, the physical form

factors (define in Eqn.(4.8)), which enter the amplitude and hence the decay

rate of this radiative mode, are found to be related to the hadronic functions

entering the parameterization of the correlator in the two cases. These hadronic

functions have been systematically computed in LCSR framework and and then

the physical FFs have been determined using various combinations of them. In

the first case, it was found that the hadronic functions entering the parame-

terization of the correlation function get important and, in some combinations,

dominant contributions from condensates. Consequently, these contributions are

important and if not considered, these would have led to erroneous results. The

photon DAs used in this case were taken upto two-particle twist-3 accuracy.

However, in case-2, at the order of twist-3 accuracy of the proton DAs, we did

not encounter any contributions coming from the condensates.

Though, the physical FFs can be calculated using various combinations of these

hadronic functions, not all the combinations were found to have good stability

against the Borel mass and hence were discarded. For both the cases, we have

explicitly shown the FFs obtained using the combinations with the best Borel

stability.

The physical FFs in case-2 are found to have a factor of ⇠ 3 di↵erence between

each other and also to the FFs obtained in case-1. Though, as briefly discussed

above, a straightforward comparison between the two cases is not possible due to

di↵erences in the choice of the momentum transferred square and the limitations

of LCSR to attain the physical point. However, one can naively say that the

FFs obtained in case-2 are more trustworthy on the basis of error analysis. The

errors obtained in case-2 are much smaller that the errors encountered in case-1.

The errors in case-2 are found to be as large as (⇠ 50% for some combinations).

Similar conclusions on errors were made in [118]. Nevertheless, a detailed analy-

sis including higher twist e↵ects is required. As for the case of baryon, the higher

twist terms can have significant impact on the results obtained using LCSR as
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discussed in Section-2.2.2. Moreover, it has been observed that the choice of in-

terpolation current also plays a very crucial role [70]. For some choice(s), it has

been seen that a particular FF may simply does not show up in the correlator.

Along with this a proper mechanism for interpolating the LCSR result to the

physical point i.e. k2 = 0 and p2e = m2
e ⇡ 0 is required to make any strong

comments on the superiority of the two cases.

The results discussed here can also be utilised, with very less e↵orts, to compute

the FFs and the branching ratios for process having µ+ instead of e+ in the final

state. It is possible as the detailed expressions reported in Eqn.(4.33)-Eqn.(4.54)

and Eqn.(4.70)-Eqn.(4.77) are written for non-zero positron mass and without

assuming k2 = 0. However, while computing the amplitude positron was consid-

ered massless and therefor there will be some extra contribution due to non-zero

mass of the lepton while manupulating Eqn.(4.7) and Eqn.(4.8). These modes

might turn out to be important as it was pointed out in a recent study [137]

that in some GUT scenarios, where the scalar mediated contribution dominates

over the gauge mediated ones, the decay channels with final states having second

generation particles are more favoured. Thus, the radiative modes can be equally

important and can provide complimentary information about the details of the

underlying high energy theory.



Chapter 5

The heavy meson system and

LCSR

After discussing the application of LCSR to light quark hadrons in Chpter-3

and Chapter-4, let us now move our attention to the processes involving heavy

quarks like charm quark. In this regard, we discuss the decay of charmed mesons

in this chapter. Firstly, we will discuss a baryon number violating (BNV) decay

of charmed meson into an anti-proton and a positron, i.e. D0
! p̄e+. As

discussed in the previous chapter, BNV processes are important as they can

provide direct signature of new physics. This process is found to involve twelve

independent form factors which we study using the framework of LCSR and

find that some of these form factor attain large uncertainties (as large as 200%).

These uncertainties are found to be majorly dominated by our lack of knowledge

of the D-meson light cone distribution amplitudes. To get a better understanding

on these DAs, in the later part of this chapter, we attempt to estimate w0, a

parameter related to the first inverse moment of the D-meson DAs which enters

directly in their definition. It can be estimated using the experimental data on

the D⇤
qDq� (with q = u, d, s) coupling and comparing it with the results one

obtains using LCSR for this coupling. This chapter is based on [138] and an

ongoing project.

121
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5.1 Introduction

As we know from the previous chapter, according to Sakharov conditions [94],

baryon number violation (BNV) is one of the important criteria to explain the

matter-anti-matter asymmetry of the Universe. Nonetheless, it is not allowed

in the SM as the baryon number is a conserved quantity in the SM as a result

of an accidental symmetry and motivates towards new physics. In that view,

as already discussed in the previous chapter, looking at the BNV processes will

be clear signature of BSM physics. Though, such processes are never observed,

they are well motivated in various BSM scenarios like GUTs, SUSY, etc. and

can be studied using higher dimensional baryon number violating e↵ective oper-

ators (see Chapter-4). Experimentally, there are very stringent bounds on some

of these decays like proton decay, decays of heavy mesons to baryons, etc [139].

Out of all the BNV processes, proton decay has got the most attention so far,

theoretically (see for eg. [95], [112], [118] and references therein) as well as ex-

perimentally (see for eg. [126], [140] and references therein).

However, with advances in experimental facilities study of other modes are be-

coming more and more important. D0
! p̄e+ is one such mode with recently

updated experimental bound on the branching fraction as < 1.2 ⇥ 10�6 [141].

Theoretically, this decay is possible via baryon number violating dim-6 e↵ective

operators. The major challenge in estimating the branching ratio is our lack

of knowledge of the form factors involved. To the best of our knowledge, [142]

is the only study which provides rough bounds on the branching ratio to be

 1.1⇥ 10�4
|CR

ucdl|
2 , where CR

ucdl is the Wilson coe�cient corresponding to the

relevant e↵ective operator which we will discuss below, with no explicit discus-

sion on the form factors involved. In this chapter, we will attempt to compute

these form factors within LCSR framework using D-meson light cone distribu-

tion amplitudes using a general interpolation current for the proton state given

in Eqn.(4.10).

The rest of the paper is devoted to the detailed discussion on the definition,

computation, and numerical analysis of these form factors using LCSR. The fol-

lowing analysis proceeds parallel to the analysis of p ! e+⇡0 in LCSR framework
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studied in [118] and more or less follows the same methodology and procedure

as was followed in the previous chapter. Therefore, some details will be skipped.

In Section-5.4, we will see that the numerical results on these form factors shows

large uncertainties (as large as 200%). These uncertainties are found to be dom-

inated by the uncertainties in w0, a parameter which enters the considered ex-

ponential model for the D-meson DAs and is related to the first inverse moment

of these DAs. To address this issue, in later part of this chapter (Section-5.5

onwards), we attempt provide better estimate for this parameter by calculating

D⇤
qDq� (with q = u, d, s) coupling using LCSR. The experimental value of this

coupling can be estimated from the experimental data on the branching ratio of

D⇤
! Dq� decays. Our aim is to compare these experimental estimates with the

theoretical estimates of these coupling and get an estimate on w0. This might

help us in probing and developing a better understanding of the structure of

D-meson.

5.2 Amplitude parameterization

As discussed above, one can compute BNV processes like D0
! p̄e+ in a model-

independent way with the help of baryon number violating higher dimensional

e↵ective operators. Within the SM e↵ective field theory (SMEFT), there are 4

types of dimension-6 operators which can lead to this process. The explicit forms

of these operators are [128], [129], [143]

O
duq`
ijkl = ✏abc✏↵�

�
daiCub

j

� ⇣
q↵ck C`�l

⌘
, O

qque
ijkl = ✏abc✏↵�

⇣
q↵ai Cq�bj

⌘
(uc

kCel)

O
qqq`
ijkl = ✏abc✏↵�✏��

�
q↵ai Cqbetabj

� �
q�ck C`�l

�
, O

duue
ijkl = ✏abc

�
daiCub

j

�
(uc

kCel)

(5.1)

where C = i�2�0 represents the charge conjugation matrix, {i, j, k, l} represent

the flavour indices, {a, b, c} are the color indices, {u, d} represent the right-

handed up and down quarks, and {q, `} represent the left-hand doublets of quarks

and leptons. These operators respect the SM gauge group, nonetheless, violate

baryon number which is an accidental symmetry of the SM.
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Using these operators and the generalised Fierz transformations (discussed in

Appendix-A) [135], one can write the BNV Lagrangian which leads to the process

D0
! p̄e+. Such a Lagrangian reads as

L
(6)
/B

=
X

�,�0

cA��0O
A
��0 =

X

��0

cA��0✏ijk
�
dTi CP��Auj

� �
eTCP�0�Ack

�
(5.2)

where superscript T represents the transpose, P� and P�0 are the chirality projec-

tion operators with {�,�0
} 2 {L,R} and �A

2 {1, �µ, �µ⌫
} with A 2 {S, V, T}.

cA��0 are the Wilson coe�cients 1. The transition amplitude for D0
! p̄e+ is de-

fined as the matrix element of this Lagrangian between the initial and the final

states as

A(D0(pD) ! p̄(pp)e
+(pe)) =

X

�,�0

cA��0
⌦
e+(pe)p̄(pp)

��OA
��0

��D0(pD)
↵

(5.3)

This amplitude can be factorized in terms of the leptonic and the hadronic parts

as

A(D0(pD) ! p̄(pp)e
+(pe)) =

X

�,�0

cA��0 v̄ceH
A
��0vp(pp) (5.4)

where, v̄ce is the spinor corresponding to the positron and HA
��0vp(pp) is the

hadronic object of interest defined as

HA
��0vp(pp) =

⌦
p̄(pp)

��✏ijk
�
dTi C�AP�uj

� �
�AP�0ck

���D0(pD)
↵

(5.5)

Following the general parameterization in [118], this hadronic object can also be

parameterized as

HA
��0vp(pp) = P�0

⇣
FA,0
��0 (p2e) + /vFA,1

��0 (p2e)
⌘
vp(pp) (5.6)

where FA,n
��0 (p2e) are the form factors with A 2 {S, V, T} and n 2 {0, 1}. As D-

meson comprises of a heavy quark, we treat it in the framework of heavy quark

e↵ective theory (HQET) [144], [145]. pµD = mDvµ is the momentum of the D-

1The Lagrangian is assumed to be expressed in terms of the physical fields at the charm
scale and thus, cA��0 ’s also include all the flavor and usual RG running e↵ects.
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meson with v being its velocity such that v2 = 1.

Parity conservation in QCD relates these FFs

FA,n
LL = FA,n

RR FA,n
LR = FA,n

RL (5.7)

resulting in twelve independent FFs in this case. We will now compute these

FFs in the framework of the light cone sum rules (LCSR).

Though the analysis is parallel to that in [118], there are two major di↵erences

in the two scenarios stemming from the di↵erence in the number of the form

factors and the type of mesons involved in the two cases. In the case of proton

decay [118], there are two form factors and a light quark meson i.e. ⇡0 is in-

volved. However, in the present case, we have D0-meson which brings in various

challenges due to the presence of a heavy quark, and the very little knowledge

about the light cone distribution amplitudes of heavy quark mesons. Along with

that, the amplitude of D0
! p̄e+ involves twelve independent form factors (as

discussed above) stemming as a result of the presence of more number of e↵ective

operators relevant to this decay as compared to the number of e↵ective opera-

tors for the case of proton decay. Having pointed out these major di↵erences in

the two analysis, let us move to the discussion of the computation of these form

factors using the method of LCSR.

5.3 Form Factors in LCSR

As discussed in Chapter-2, the starting object for a sum rule calculation is the

identification of the relevant correlation function for the process. In the previous

chapter, we saw that the interpolation current for the proton state is not unique

and the determination of the form factors depends on the choice of the interpo-

lation current used to define the correlation function. Therefore, in the present

case we obtain the relevant correlation function by interpolating the anti-proton

state in Eqn.(5.5) with the general interpolation current for the proton state
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provided in Eqn.(4.10). Such a correlation function reads as

⇧A
��0 = i

Z
d4x eipe.x

⌦
0
��T{�̄t(0)Q

A
��0(x)}

��D0(v)
↵

(5.8)

where Q
A
��0(x) = ✏ijk

�
dTi CP��Auj

� �
P�0�Ack

�
, and �̄t(0) = �†

t�0 with �t(x) =
⇥
✏lmn

�
uT
l (x)C�5dm(x)

�
un(x)

⇤
+ t

⇥
✏lmn

�
uT
l (x)Cdm(x)

�
�5un(x)

⇤
being the pro-

ton interpolation current defined such that hp̄(pp)|�t(0)|0i = mp�tpvp(pp) where,

�tp is a measure of the strength with which this current couples with the pro-

ton/antiproton state. {i,j,k} denote the color indices.

To derive the sum rule from this correlation function, we require the two rep-

resentation for this correlation function. First using the perturbative QCD in

terms of OPE near the light cone and second directly in terms of the hadronic

state resulting into the dispersion relation (as discussed in Chapter-2). In order

to derive a representation directly in terms of hadronic states, we insert a com-

plete set of intermediate states with the relevant quantum numbers. Once we

separate the pole contribution coming from the lowest proton state, we get,

⇧A,had
��0 = �mp�pv̄p(pp) [H��0 ] vp(pp) + . . .

= iP�0

"
⇧A,S

��0 (p2p, p
2
e) + ⇧A,V

��0 (p2p, p
2
e)/v + ⇧A,P

��0 (p2p, p
2
e)

/pp
mp

+ ⇧A,V P
��0 (p2p, p

2
e)
/v/pp
mp

#

(5.9)

where ellipses represents are contribution of the heavier and continuum, ⇧A,r
��0 are

the hadronic scalar function of p2p and P 2
e = �p2e with r = {S, V, P, V P}. These

functions can then be written in terms of the spectral densities which are related

to the imaginary part of these functions itself. Explicitly, these spectral densities

can be written as

⇢A,r,had
��0 (s, P 2

e ) = �pm
2
p�(s�m2

p)F
A,r
��0 (s, P 2

e ) +
1

⇡
Im

⇣
⇧A,r

��0(s, P 2
e )
⌘

(5.10)

where, the first term corresponds to the pole contribution coming from the lowest

energy state, i.e. the proton and the second term corresponds to the contribution

of the heavier states and the continuum. FA,r
��0 (s, P 2

e ) in the first terms are the
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residues of the lowest energy states. These are the objects which we can compute

using LCSR and are directly related to the form factors defined in Eqn.(5.6) i.e.

FA,n
��0 (s, P 2

e ) for the on-shell proton, i.e. s = m2
p as

� FA,S
��0 = FA,P

��0 = FA,0
��0

� FA,V
��0 = FA,V P

��0 = FA,1
��0 (5.11)

Using the spectral density defined in Eqn.(5.10), the final dispersion relation for

the hadronic scalar functions in Eqn.(5.9) reads as

⇧A,r
��0(p2p, P

2
e ) = �pm

2
p

FA,r
��0

m2
p � p2p

+

Z 1

sh0

ds
1

⇡

Im
⇣
⇧A,r

��0(s, P 2
e )
⌘

s� p2p
(5.12)

where, sh0 is the continuum threshold. The second term, coming from the heavier

states and the continuum, can then be approximated using the quark hadron

duality (see Section-2.1.1) according to which

Z 1

sh0

ds
1

⇡

Im
⇣
⇧A,r

��0(s, P 2
e )
⌘

s� p2p
⇡

Z 1

s0

ds
1

⇡

Im
⇣
⇧A,r,QCD

��0 (s, P 2
e )
⌘

s� p2p
(5.13)

where s0 is also known as the continuum threshold and is not necessarily equals

to sh0 . We will discuss more about it in Section-5.4. ⇧A,r,QCD
��0 are the scalar

functions (p2p and P 2
e ) to be calculated in perturbative QCD. We will discuss

them below.

Now, after discussing the representation in terms of the hadronic states, we move

to the representation which is calculated using perturbative QCD. To proceed

further in this direction, we first need to solve the time ordered product ofQA
��0(x)

and �̄t(0) by contracting the fields and results into (see Fig. (5.1))

T
�
�̄t(0)Q

A
��0(x)

 
= �✏lmn✏ijk

h�
P�0�Aci(x)

�n⇣
ūl(0)�5S̃

d
mj(x)P��AS

u
nk(x)

+ūl(0)Tr
⇣
�5S̃

d
mj(x)P��AS

u
nk(x)

⌘⌘

+t
⇣
ūl(0)S̃

d
mj(x)P��AS

u
nk(x)�5

+ūl(0)�5Tr
⇣
S̃d
mj(x)P��AS

u
nk(x)

⌘⌘oi
(5.14)
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Figure 5.1: Feynman diagrams contributing to the light-cone expansion of the
correlation function for D0

! p̄e+ decay to the leading order. The encircled D
represents that the distribution amplitudes for D-meson enters the LCSR compu-
tation. The vertex on the left represents the proton interpolation current while
the vertex on the right represents the dim-6 BNV operators. (a) represents the
usual non-condensate contribution while (b) represents the considered contribu-
tion coming from the condensates.

where �̃ = C�C�1 and Sq
ij(x) is the quark propagator at the light like separa-

tions given in Eqn.(4.28) and Eqn.(4.30), respectively. In the present analysis,

we do not involve the contributions coming from the higher terms in the propa-

gator due to one of more gluon emissions. Substituting it back in Eqn.(5.8), we

end up having the matrix element of the quark bilinear between a vacuum and

the D0
�meson state. Such a bilinear is can be defined in terms of light cone

distribution amplitudes (DAs) of D-meson as [146]

⌦
0 |ū↵(0)[x, 0]c�(x)|D

0(v)
↵

=
�ifDmD

4

Z 1

0

dw eiwv.x


(1 + /v)

⇢
�D
+(w)�

�D
+(w)� �D

�(w)

2v.x
/x

�
�5

�

�↵

(5.15)

where fD represents the decay constant of D-meson, �D
+(w) and �

D
�(w) are the

DAs of D-meson. These DAs are not very-well known and are parameterized

using various models (see Appendix-B for details). For the present discussion we

take the simplest exponential model parameterization for these DAs [72] which

reads as

�D
+(w) =

1

w2
0

e�w/w0 , �D
�(w) =

1

w0
e�w/w0 (5.16)
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where, w0 is a model input parameter (we will discuss more about it below).

Also, it is useful to define �D
±(w) as

�D
±(w) =

Z w

0

dt
�
�D
+(t)� �D

�(t)
�

(5.17)

such that

�D
±(0) = �D

±(1) = 0, and
d�D

±(w)

dw
= �D

+(w)� �D
�(w). (5.18)

This definition along with the partial integral helps us in writing

Z 1

0

dwe�iwv.x�
D
+(w)� �D

�(w)

2v.x
=

i

2

Z 1

0

dwe�iwv.x�D
±(w). (5.19)

Finally, using the above definitions and the integrals collected in Appendix-A,

we get the QCD representation of the correlation function defined in Eqn.(5.8)

as

⇧A,QCD
��0 = iP�0


⇧A,S,QCD

��0 (p2p, p
2
e) + ⇧A,V

��0 (p2p, p
2
e)/v + ⇧A,P

��0 (p2p, p
2
e)

/pp
mp

+ ⇧A,V P
��0 (p2p, p

2
e)
/v/pp
mp

#
(5.20)

Here, ⇧A,S,QCD
��0 (p2p, p

2
e) with r = {S, V, P, V P} are the scalar functions of p2p

and p2e that entered in Eqn.(5.13). The explicit forms for these function for

P� = P 0
� = PL, and P� = PL and P 0

� = PR are collected below (the choice we

make for the independent form factors).

5.3.1 Case-1: P� = P 0

� = PL

• For �A = 1

⇧S,S
LL =

fDmD

8

Z 1

0

dw


(t� 1)

4⇡2

�
(w +mD)�

D
±(w) + P 2�D

+(w)
 
ln(�P 2)

+
hq̄qi(t� 1)

3

⇢
(w +mD)�D

+(w)

P 2
+

�D
±(w)

P 2

��
(5.21)
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• For �A = �µ
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⇧V,V P
LL = �mp

fDmD

4

Z 1

0

dw


(t� 1)

8⇡2
�D

±(w)ln(�P 2) +
hq̄qi(t+ 3)

3

�D
+(w)

P 2

�

(5.28)



5.3. Form Factors in LCSR 131

• For �A = �µ⌫
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5.3.2 Case-2: P� = PL and P 0

� = PR

• For �A = 1
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• For �A = �µ
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• For �A = �µ⌫ : All the correlation functions turns out to be zero.
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with

P 2 = (pe + wv)2 = ((w +mD)v � pp)
2

= w(w +mD)�
ws

mD
�

✓
w +mD

mD

◆
P 2
e (5.41)

such that s = p2p and P 2
e = �p2e. Also, as v

2 = 1

(v.P ) = �(v.pp � (w +mD))

=
2w +mD

2
�

s+ P 2
e

2mD
. (5.42)

Finally, after having both the representation given in Eqn.(5.12) and Eqn.(5.20)

for the correlation function defined in Eqn.(5.8), we are ready to write the sum

rule for the present case. It can be written by equating the two representations

and using the statement of quark hadron duality given in Eqn.(5.13) to approxi-

mate the heavier states and continuum contributions. The final statement of the

sum rule can then be written by performing Borel transformation to suppress the

e↵ect of these heavier states and continuum such that the sum rule is saturated

with the lowest proton state. The final sum rule reads as,

FA,r
��0 (P 2

e , s0,M
2) = �

e
m2

p
M2

m2
p�p

Z s0

0

dse
�s
M2

1

⇡
Im

⇣
⇧A,r,QCD

��0 (s, P 2
e )
⌘

(5.43)

where M is the Borel mass. We will now discuss how to choose the values of M

and s0 and use them to get the numerical estimates for the form factors.

5.4 Results

The BNV process D0
! p̄e+ is found to involve twelve independent FFs. The

analytic form of these form factors can be obtained using the sum rule for FA,r
��0

given in Eqn.(5.11) and the relations given in Eqn.(5.11). These FFs turns out

to be dependent on two independent parameter, s0 and M known as the contin-

uum threshold and the Borel mass, respectively, and the momentum transferred

square, P 2
e = �p2e. The sum rule in Eqn.(5.43) is derived using the light cone
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DAs of the D-meson and using a general interpolation current for the proton

interpolation current. Now, in order to understand the dependence of these FFs

on the choice of interpolation current, let us choose two di↵erent choices of this

current namely, �LA and �IO defined in Eqn.(4.12) and Eqn.(4.14), respectively.

These are the usually considered forms of proton interpolation current in lattice

QCD and LCSR calculations (as discussed in previous chapter).

Moreover, in order to perform the numerical analysis, we need information on

the values of s0 and M . The values of these parameters are to be chosen such

that the sum rule is saturated with the ground state contribution and the con-

tribution coming from the continuum and the higher resonances should be well

suppressed such that they do not contribute more than 30% to the result (see

Chapter-2 for details). The value of s0 must be close to the threshold of the con-

tinuum or the higher resonances such that the sum rule obtained is stable around

its vicinity. we choose s0 = (1.44 GeV)2, the Roper resonance and show the de-

pendence of FFs on s0 by considering three di↵erent values of it in Figs.(5.2-5.5)

for fixed M = 2 GeV. This is the next resonance state after proton with the

quantum numbers of the proton state. The form factors are found to have very

small dependence on the variation of the value of s0 in the vicinity of the Roper

resonance. Moreover, for the value of M we find a range called Borel window

such that the form factor is nearly stable in that range of M (as discussed in

Chapter-2). We find these FFs to be most stable for M2 > 2 GeV2 and show

the Borel stability curves in the right panels of Figs.(5.2-5.5) where these FFs

are plotted against the variation in M2 = (2� 5) GeV2 for three di↵erent values

of P 2
e equals to 0.1 GeV2, 0.5 GeV2, and 1 GeV2 with fixed s0 = (1.44 GeV2).

The FFs are found to be very stable in this Borel window for all the sets.

As can be seen from Eqn.(5.11), each form factor can be calculated from two

FA,r
��0 with A = {S, V, T} and r = {S, V, P, V P}. In Fig.(5.2) and Fig.(5.3),

we have shown the form factors FA,n
LL and FA,n

LR , respectively with n = 0, 1

and A = {S, V, T} using both combinations of FA,r
LL with A = {S, V, T} and

r = {S, V, P, V P} and the �IO interpolation current for the proton state. Simi-

larly, in Fig.(5.4) and Fig.(5.5), we show the FFs FA,n
LL and FA,n

LR , respectively with

n = 0, 1 and A = {S, V, T} using both combinations of FA,r
LL with A = {S, V, T}
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Figure 5.2: The FFs, FA,n
LL with A 2 {S, V, T} and n 2 {0, 1} are extracted

from di↵erent combinations of FA,r
LL with r 2 {S, V, P, V P} using the proton

interpolation current �IO. Left panel: We plot FA,n
LL vs P 2

e for s0 = (1.4 GeV)2

(dashed), s0 = (1.44 GeV)2 (solid) and s0 = (1.5 GeV)2(dotted) withM = 2GeV
. Right panel: We plot FA,n

LL vs M2 for P 2
e = 0.1 GeV2 (dashed), P 2

e = 0.5 GeV2

(solid) and P 2
e = 1 GeV2 (dotted) with s0 = (1.44GeV)2.
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Figure 5.3: Same as Fig.(1) for FA,n
LR extracted from FA,r

LR .
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Figure 5.4: Same as Fig.(1) but for interpolation current, �LA.
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Figure 5.5: Same as Fig.(3) for FA,n
LR extracted from FA,r

LR .

and r = {S, V, P, V P} and the �LA interpolation current for the proton state. It

is important to note that some of these FA,r
��0 get contributions only from the con-

densate terms due to which we found the di↵erence in the extraction of the FFs

using di↵erent combinations of FA,r
��0 . In Figs.(5.2-5.5), we have labelled these

di↵erent combinations with (C) and (NC+C) for having only the condensate

contribution and having condensate as well as non-condensate contributions, re-

spectively.

Furthermore we tabulate these form factors in Table-5.1 and Table-5.2 for �IO

and �LA, respectively at P 2
e = 0.5 GeV2, s0 = (1.44 GeV)2, and M = 2 GeV.

Two FFs, F T,0
LR and F T,1

LR are found to be explicitly zero in our analysis. The un-

certainties in Table-5.1 and Table-5.2 are associated with the uncertainties in the

values of the parameters used for the numerical analysis (collected in Appendix-
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Case-1: (P� = P�0 = PL) Case-2: (P� = PL, P�0 = PR)

Form Factor Extracted from Value (GeV)2 Form Factor Extracted from Value (GeV)2

F S,0
LL

F S,S
LL 0.211± 0.471

F S,0
LR

F S,S
LR �0.106± 0.075

F S,P
LL 0.041± 0.036 F S,P

LR 0.074± 0.143

F S,1
LL

F S,V
LL 0.074± 0.075

F S,1
LR

F S,V
LR 0.211± 0.471

F S,V P
LL �0.187± 0.144 F S,V P

LR 0.039± 0.033

F V,0
LL

F V,S
LL 0.360± 0.467

F V,0
LR

F V,S
LR 0.277± 0.227

F V,P
LL 0.099± 0.036 F V,P

LR 0.043± 0.077

F V,1
LL

F V,V
LL 0.271± 0.097

F V,1
LR

F V,V
LR �0.251± 0.341

F V,V P
LL �0.067± 0.154 F V,V P

LR 0.078± 0.067

F T,0
LL

F T,S
LL 1.114± 0.812

F T,0
LR

F T,S
LR 0

F T,P
LL 0.550± 0.256 F T,P

LR 0

F T,1
LL

F T,V
LL 1.378± 0.629

F T,1
LR

F T,V
LR 0

F T,V P
LL 0.156± 0.133 F T,V P

LR 0

Table 5.1: Tabulation of all the 12 independent FFs at P 2
e = 0.5 GeV2 for

s0 = (1.44 GeV)2 and M = 2 GeV calculated using the proton interpolation
current �IO. The errors are associated with the errors in the parameters used
for the numerical analysis.

Case-1: (P� = P�0 = PL) Case-2: (P� = PL, P�0 = PR)

Form Factor Extracted from Value (GeV)2 Form Factor Extracted from Value (GeV)2

F S,0
LL

F S,S
LL �0.110± 0.244

F S,0
LR

F S,S
LR 0.183± 0.363

F S,P
LL �0.135± 0.109 F S,P

LR 0.096± 0.074

F S,1
LL

F S,V
LL 0.183± 0.363

F S,1
LR

F S,V
LR �0.110± 0.244

F S,V P
LL 0.097± 0.074 F S,V P

LR �0.133± 0.109

F V,0
LL

F V,S
LL �0.302± 0.268

F V,0
LR

F V,S
LR �0.345± 0.270

F V,P
LL �0.062± 0.026 F V,P

LR �0.165± 0.088

F V,1
LL

F V,V
LL �0.204± 0.072

F V,1
LR

F V,V
LR 0.218± 0.257

F V,V P
LL �0.046± 0.125 F V,V P

LR 0.081± 0.068

F T,0
LL

F T,S
LL �0.578± 0.414

F T,0
LR

F T,S
LR 0

F T,P
LL �0.018± 0.152 F T,P

LR 0

F T,1
LL

F T,V
LL �0.081± 0.405

F T,1
LR

F T,V
LR 0

F T,V P
LL 0.034± 0.068 F T,V P

LR 0

Table 5.2: Tabulation of all the 12 independent FFs at P 2
e = 0.5 GeV2 for

s0 = (1.44 GeV)2 and M = 2 GeV calculated using the proton interpolation
current �LA. The errors are associated with the errors in the parameters used
for the numerical analysis.
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Figure 5.6: The representative graphs showing the variation of errors with P 2

e for
some FA,r

��0 functions calculated using the proton interpolation current, �IO. The
shaded regions represents the error band and the central line gives the calculated
values of the FA,r

��0 functions

D). Further uncertainties due to higher order e↵ects and duality violations are

not included here. Looking only at the uncertainties due to uncertainties in the

parameter values are also worrisome as in some cases these uncertainties are as

large as 200%. We have also plotted the uncertainties in FA,r
��0 with P 2

e using pro-

ton interpolations currents, �IO and �LA in Fig.(5.6) and Fig.(5.7) (only some

representative graphs). These uncertainties are found to be mainly dominated by

the uncertainties in w0 which is a model input parameter in the DAs of D-meson.

This parameter is related to the first inverse moment of these DAs, �D, defined

as

��1
D (µ) =

Z 1

0

dw

w
�+
D(w, µ) (5.44)

where, µ is the normalization scale. This parameter can be very useful in probing

and understanding the structure of D-meson. In the next section, we will discuss

an attempt to have a better estimate on this parameter using the experimental

data on the D⇤
qDq� coupling (with q = u, d, s) by equating them to the same

couplings obtained using LCSR.
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Figure 5.7: The representative graphs showing the variation of errors with P 2
e for

some FA,r
��0 functions calculated using the proton interpolation current, �LA. The

shaded regions represents the error band and the central line gives the calculated
values of the FA,r

��0 functions

5.5 D⇤D�: Probing the inner structure of the

charm mesons

In this section, we will first look at the D⇤
qDq� (with q=u,d,s) coupling in the

LCSR framework. Later we will see how we can use the experimental data on

the branching ratios of D⇤
q ! Dq� to obtain the value for this coupling, which

in turn can be used to get an estimate for the parameter w0 (see Eqn.(5.16)).

The amplitude for the radiative decay ofD⇤
q -meson toDq-meson (with q = u, d, s)

can be written as [147]

A(D⇤
q(p

0) ! Dq(p)�(k)) = hDq(p)�(k)|D
⇤
qi = gDq e ✏µ⌫⇢�k

⇢✏��p
⌫✏µD⇤

q
(5.45)

where p0 = p + k, gDq is the D⇤
qDq� coupling, ✏µ⌫⇢� is the Levi-civita tensor, e

is the electric charge of the electron, and ✏�� and ✏µD⇤
q
are the polarization vectors

for photon and D⇤
q�meson, respectively. Using this amplitude and the two body

phase space, the decay width of D⇤
q -meson for this process can be calculated as

�(D⇤
q ! Dq�) =

↵emg2Dq
|
�!
k |

3

3
(5.46)
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where ↵em = e2

4⇡ is the fine structure constant and

|
�!
k | =

m2
D⇤

q
�m2

Dq

2mD⇤
q

(5.47)

with mDq and mD⇤
q
being the masses of Dq and D⇤

q mesons, respectively. Now,

in order to evaluate this coupling using the method of LCSR, we first need the

relevant correlation function for this process. It can be obtained by interpolat-

ing the D⇤
q�meson and photon with the D⇤

q interpolation and electromagnetic

currents, respectively. Such a correlation function reads as

Tµ⌫ = �ie

Z
d4x eik.xhDq(p)|T{J

em
µ (x)J

D⇤
q

⌫ (0)}|0i (5.48)

where T represents the time ordering, and the currents Jem
µ = Qcc̄(x)�µc(x) +

Qq q̄(x)�µq(x) and j
D⇤

q
⌫ = c̄(0)�⌫q(0) are the interpolation currents for the photon

and D⇤
q -meson states, respectively. Now, in order to derive the sum rule for the

D⇤
qDq� coupling, we first calculate this correlation function using perturbative

QCD. As the mass of strange and charm quarks can not be neglected, one need to

employ the light cone propagator for the massive particle given by (see Appendix-

B)

Sij(x1, x2,m) ⌘ �ih0|T{qi(x1)q̄j(x2)}|0i

=

Z
d4k

(2⇡)4
e�ik.(x1�x2)

/k +m

k2 �m2
�ij + . . . (5.49)

where m represents the mass of the quark, and the ellipses represent higher order

terms involving one or more gluon emissions and the condensate contributions.

These are not considered in the present discussion. Next, using the parame-

terization of the matrix element of the bilinear operator between the vacuum

and the Dq�meson state (in terms of the light cone DAs of Dq�meson given in

Eqn.(5.15)), the representation of the correlation function in Eqn.(5.48) within
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Figure 5.8: Feynman diagram contributing to the light-cone expansion of the cor-
relation function for D⇤

q ! Dq� up to leading order. The encircled Dq represents
that the distribution amplitudes for Dq-meson enters the LCSR computation.
The encircled vertex on the left represents the D⇤

q interpolation current while
the vertex on the right represents the electromagnetic current.

perturbative QCD reads as (see Fig. (5.8))

TQCD
µ⌫ (p, k) = efDqmDq

Z 1

0

dw


�Dq
+ (w)

⇢
Qc

(k � wv)2 �m2
c

+
Qq

(k + wv)2 �m2
q

�

+ �Dq
± (w)

⇢
Qcmc

((k � wv)2 �m2
c)

2
+

Qqmq

((k + wv)2 �m2
q)

2

��
✏µ⌫↵�k

↵v�

(5.50)

where �Dq
+ (w) and �Dq

± (w) are defined in Eqn.(5.16) and Eqn.(5.17), respectively.

fDq and mDq are the decay constant and mass of the Dq-meson while mc and mq

are the masses of the charm and q = {u, d, s} quarks, respectively. v is the four

velocity of the Dq�meson such that pµ = mDqv
µ and v2 = 1.

Moreover, the representation of the correlation function given in Eqn.(5.48) in

terms of hadronic states can be found by inserting hadron states with relevant

quantum numbers and separating the contribution coming from the lowest energy

state which isD⇤
q itself in the present case. Therefore, the hadronic representation

i.e. the dispersion relation reads as

T had(p, k) = 2e
fD⇤

q
mD⇤

q

mDq +mD⇤
q

GDqD⇤
q
(�k2)

(p+ k)2 �m2
D⇤

q

+

Z 1

m2
D⇤
q

ds
1

⇡

Im
�
T had(s,�k2)

�

s� (p+ k)2

(5.51)

where fD⇤
q
andmD⇤

q
are the decay constant and the mass of theD⇤

q -meson, respec-

tively, ✏
D⇤

q
µ represents the polarisation vector for the D⇤

q�meson, and GDqD⇤
q
(K2)
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with K2 = �k2 is the residue of the lowest energy term and dictates the dynam-

ics of the electromagnetic transition of a D⇤
q -meson into a Dq�meson defined by

the following matrix element

hDq(p)|j
µ
em(0)|D

⇤
q(p+ k)i ==

2

mDq +mD⇤
q

✏µ⇢↵�✏
D⇤

q
⇢ p↵k� GD⇤

qDq(k
2) (5.52)

In writing the first term of Eqn.(5.51), we have also using the following conven-

tions

hD⇤
q(p+ k)|c̄(0)�⌫q(0)|0i = fD⇤

q
mD⇤

q
✏
⇤(D⇤

q )
⌫ , and (5.53)

✏
(D⇤

q )
⇢ ✏

⇤(D⇤
q )

⌫ = �g⇢⌫ +
(p+ k)⇢(p+ k)⌫

m2
D⇤

q

. (5.54)

The second term in Eqn.(5.51) represents the contribution coming from the heav-

ier states and the continuum where sh0 is the continuum threshold. Now, we are

ready to write the sum rule by equating the two representations and approximat-

ing the heavier states and continuum contributions using quark hadron duality

(see Section-2.1.1). The final sum rule after performing the Borel transformation

on (p+ k)2 reads as

GD⇤
qDq(�k2) =

1

fD⇤
q
mD⇤

q

Z s0

0

ds e

✓
m2

D⇤
q
�s

◆

M2
1

⇡
Im

�
TQCD(s,Q2)

�
(5.55)

where T had(p, k) can be obtained from T had
µ⌫ (p, k) as T had

µ⌫ (p, k) =

T had(p, k)✏µ⌫↵�k↵p�, and M is the Borel mass. The imaginary part of T (s,K2)

can be obtained using the Cutkosky rule and the use of the following identities

Im

✓
1

P 2 �m2

◆
= �⇡�(P 2

�m2), and (5.56)

Im

✓
1

(P 2 �m2)2

◆
=

�⇡

k.v � w

✓
@

@w
�(P 2

�m2)

◆
(5.57)

where m = {mc,mq}, and

P 2 = (k � wv)2 = �K2

✓
1 +

w

mDq

◆
+ w2

� w
s

mDq

+ wmDq (5.58)
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with s = (p+ k)2. Similarly, for P 02 given by

P 02 = (k + wv)2 = �K2

✓
1�

w

mDq

◆
+ w2 + w

s

mDq

� wmDq (5.59)

one can simply replace P 2 by P 02 in Eqn.(5.56) while Eqn.(5.57) will be slightly

di↵erent such that

Im

✓
1

(P 02 �m2)2

◆
=

⇡

k.v + w

✓
@

@w
�(P 02

�m2)

◆
. (5.60)

Using these relations, one can then perform the integrations over w and s, and

get the final LCSR extraction for GDqD⇤
q
(K2). The D⇤

qDq� coupling represented

by gDq is Eqn.(5.45) can now be calculated using the sum rule for GDqD⇤
q
(K2) in

Eqn.(5.55) as the two are related by

gDq =
2

mDq +mD⇤
q

GDqD⇤
q
(k2 = 0) (5.61)

where �D⇤
q
is the total decay width of theD⇤

q�meson. If we have the experimental

values for gDq , then it can help us in getting a direct estimate of w0.

For that purpose we have collected the values of the branching ratios for D⇤
q !

Dq� along with the total decay widths of the D⇤
q -meson in Table-5.3 taken from

[35], and also the couplings gDq determined from these experimental values or

limits.

Now, as we have the experimental as well as theoretical curves for gDq as a

Channel Branching ratio (%) Total decay widths gDq

D⇤+
! D+� (1.6± 0.4) (83.4± 1.8) KeV 0.47

D⇤0
! D0� (35.3± 0.9) < 2.1 MeV < 10.98

D⇤+
s ! D+

s � (93.5± 0.7) < 1.9 MeV < 16.27

Table 5.3: Tabulating the values of the branching ratios for D⇤
q ! Dq� (q =

u, d, s) decay and the total decay width of the D⇤
q�mesons [35], along with the

experimental estimation of the D⇤
qDq� coupling, gDq defined in Eqn.(5.46).

function of w0, the intersection point (see Fig. 5.9)provides the best value of w0.

We infer w0 = 0.35 GeV. The experimental uncertainties are found to be almost
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(a)

(b)

Figure 5.9: Plots showing the variation of gD+ as a function of w0: (a) for di↵erent
values of M2 and fixed s0 = 6.5 GeV2, and (b) for di↵erent values of s0 and fixed
M2 = 6 GeV2. The Magenta line represents the expected value of gD+ using the
experimental data as tabulated in Table-5.3 (Error bands are to be included).
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negligible here. However, the theoretical uncertainties, which we expect to be

small, are yet to be included. As can be seen from Table-5.3, the exact value of

the total decay width is known only for D⇤+-meson while for D⇤0 and D⇤+
s , we

only have the upper bounds. Thus for D⇤+, an exact value for the coupling gD+

has been extracted. To get an estimate for the total decay widths instead of the

bounds, we plan to construct suitable ratios of the branching ratios of various

process. However, the estimation of w0 from experimental information on gD+ in

Fig.(5.9) already shows the power of this method in probing the inner structure

of D-meson. We expect that the estimation of w0 obtained using this method

will act as a complimentary way to the method one opts to have estimates on

the first inverse moment of B-meson DAs using data on B ! `⌫`� mode. Such

an approach can be used for D�meson system as well. Moreover, we expect

our method to be sharper and better due to two reasons. Firstly, there are less

complications involved due to presence of only one hadronic quantity here given

by the D⇤
qDq� coupling, while for D ! `⌫`� mode, there will be two form factors

present. Secondly, our method will provide the exact value for this parameter

while using D ! `⌫`�, one only gets a limit. Whether this expectation bears out

or not can only be confirmed after complete analysis. This is an ongoing work

and is expected to be completed in near future.

5.6 Conclusions and Discussion

In this chapter, we have discussed the application of LCSR to processes involv-

ing mesons with heavy quarks. To this purpose, we first considered the BNV

decay of charmed meson to an anti-proton and a positron i.e. D0
! p̄e+. This

process is found to involve twelve independent form factors. We discussed the

evaluation of these form factors in LCSR framework using D-meson light cone

distribution amplitudes in the exponential model parameterization and the gen-

eral interpolation current for proton state. However, for numerical analysis we

explicitly considered two forms of proton interpolation currents labelled as �LA

and �IO provided in Eqn.(4.12) and Eqn.(4.14), respectively. It is found that

each of these FFs can be extracted from two FA,r
��0 where A = {S, V, T} and
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r = {S, V, P, V P}, the residue functions of the lowest state contribution to the

dispersion relation given in Eqn.(5.12). The relations between these functions

and the form factors are provided in Eqn.(5.11). However, the extraction from

the two are not found to match completely. We suspect two possible reasons

for that. Firstly, some of FA,r
��0 are found to get contribution coming only from

the condensate term of the propagator while others get contributions from both

condensate and non-condensate terms. The case where both the combinations

have condensate as well as non-condensate contributions, like for F S,0
LL and F S,1

LL

for �LA case (see Fig.(5.4)), the extractions from the two combinations are found

to be close to each other. Secondly, as the LCSR predictions are more trust-

worthy at large momentum transfers i.e. large P 2
e , the extractions from di↵erent

combinations might be di↵erent at low P 2
e . At large P 2

e , they are found to be

approaching each other.

Furthermore, the uncertainties associated with the uncertainties in various pa-

rameters used in the numerical analysis are also computed. They are found to

be very large (as large as 200% for some cases) as can be seen from Table-5.1 and

Table-5.2, and also from Fig.(5.6) and Fig.(5.7). Even though the extractions of

the FFs from the two combinations did not match, they are found to be numer-

ically within the error bars of each other. Thus, these results provide reasonable

estimates for these FFs which can be used in a specific model framework where

cA��0 ’s are known functions of heavy particle masses and couplings to obtain the

bounds on the parameters of the theory. The uncertainties obtained are found to

be dominated by the uncertainty in the model input parameter, w0 in the DAs of

D-meson. Therefore, a better understanding of these FFs demands a better un-

derstanding of D-meson DAs as well. The better understanding of these DAs are

not required just for a better understanding of this particular mode but rather

for other modes involving D-meson also like D0
! ⇤̄e+ which can be studied

straightforwardly using the same method. As experimental searches improve, it

is important to have first estimates of these non-perturbative inputs as well as

to reduce there uncertainties.

We then discussed an attempt to get a better understanding on these DAs. For

that we have estimated the D⇤
qDq� (with q = u, d, s) coupling, which is a func-
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tion of w0, in the framework of LCSR. These couplings can also be estimated

using the experimental data on the branching ratios of D⇤
q ! Dq� decays, and

the total decay widths of the D⇤
q�mesons. On equating these estimations, we

have shown that one may indeed get a better estimate of the input parameter w0

which is related to the first inverse moment of the D-meson DAs, �D. Therefore,

it can help us in probing the structure of the D-meson. For the case of B-meson,

one constrains the analogous inverse moment using the B ! `⌫`� mode. Such an

analysis provides only a limit on the value of the inverse moment and is rather

complicated due to the presence of two form factors. A similar analysis can also

be performed for D-meson. Our method to estimate �D can be considered a

complimentary way to this approach and is rather simple and is expected to be

give sharper results. Moreover, stronger conclusions can be made only after a

complete analysis as stated above.





Chapter 6

Summary and Future Work

6.1 Summary

The theory of strong interactions is dictated by Quantum ChromoDynamics

(QCD) at the fundamental level. It is a non-abelian gauge theory that leads to

a special property of self-interactions amongst the gauge bosons called gluons.

Due to these self-interactions of the gluon, QCD becomes complicated and shows

a unique feature of asymptotic freedom as a result of renormalization, because of

which QCD being a perturbative theory is applicable only at small distances or

equivalently at large energies. As one tries to look at the phenomena happening

at long distances or equivalently at small energy scales, perturbative QCD is

no longer reliable. The colored quarks and gluons, the fundamental degrees

of freedom of QCD, are no longer the degrees of freedom. Rather they form

colorless bound states called hadrons as a result of color confinement. These

hadrons are majorly of two types called mesons (the bound state of a quark

and an anti-quark) and baryons (the bound state of three quarks). As QCD

is a relativistic field theory, these hadronic bound states can not be explained

simply by a description in terms of a potential or wave functions. Therefore,

these hadrons are non-perturbative in nature with quarks and gluons interacting

at scale ⇤QCD, the scale of hadronization, inside the hadrons.

Experimentally, one can detect only these colorless hadronic states and no

free-colored quarks and gluons. Consequently, according to the scattering the-
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ory, to have a theoretical prediction for any physical observable like scattering

cross-section, decay width, etc., one needs to calculate the matrix elements of the

quark-gluon operators between the hadronic states. Such matrix elements are

called hadronic matrix elements (HMEs). These HMEs are of non-perturbative

nature in general and hence can not be calculated perturbatively using QCD.

These HMEs can be parameterized in terms of hadronic objects like form factors,

decay constant, etc. which contains all the information of the dynamics of

strong interactions responsible for hadron formation. This makes the calculation

of these hadronic quantities very demanding as they are very essential quantities

required to make any theoretical prediction as well as to understand the

dynamics of strong interactions at small energies. These objects are not only

necessary to make predictions within the SM, rather they are very crucial inputs

to make any prediction for beyond the SM physics scenarios as well.

To date, there is no theory that can compute these hadronic objects accurately

and precisely with the present computational and technical skills. Light Cone

Sum Rules (LCSR) is a QCD-based model which attempts to calculate these

hadronic quantities relying on analytic properties and unitarity of the correlation

functions.

In this thesis, we have studied the applications of LCSR to various pro-

cesses involving light pion, proton, photon, and D-mesons within and beyond the

SM of particle physics.

The first application involved considers the radiative decay of tau to a pion,

neutrino, and a photon. This process involves two time-like form factors named

as the axial and the vector form factors. We have computed these form factors

as the first-time application of LCSR to such a system up to twist-2 accuracy.

We have also computed the structure-dependent parameter for the pion which

is defined as the ratio of the axial to the vector form factor at zero momentum

transfer. The prediction for this parameter matches well with the experimental

determination of this parameter from the radiative decay of pion, including sign

where di↵ering results have been quoted in literature. Afterward, we presented

the theoretical prediction for the decay width and the invariant mass spectrum
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of the ⇡� � system. We have found roughly 10% uncertainties due to the uncer-

tainties in the numerical values of the input parameters. Further uncertainties of

roughly 10% are expected due to higher twist e↵ects and the duality violations

which were not included in this study and have been left for future studies.

As a second application, we have discussed the form factors involved in the ra-

diative proton decay. It is a baryon number violating process and hence is only

possible in beyond the SM scenarios. It involves two independent form factors.

This study presents a first-ever systematic estimation for these form factors. We

have computed these form factors considering two cases. In the first case, the

proton state is interpolated using the Io↵e current and we used the distribution

amplitudes of the photon up to twist-3 accuracy. In the second case, the pho-

ton state is interpolated with the electromagnetic current and the distribution

amplitudes for the proton state have been used up to twist-3 accuracy. The nu-

merical values of both the form factors in the first case are found to be O(10�3)

while in the second case the form factor, ALL was found to be smaller than ALR

as well as the FFs calculated in case-1, by a factor ⇠ 3. These two cases can

not be simply compared because of the di↵erence in the momentum transferred

square variable in the two cases and the limitations of the LCSR framework in

reaching the physical point. Moreover, the uncertainties are found to be lesser

for the second case. Hence, the second case can be preferred on the basis of

less uncertainties in the results. However, a careful analysis of both the cases

including higher twist e↵ects and using di↵erent interpolation currents for the

proton state are required to make any concrete conclusion on the preference of

a particular case that has been left for future investigations.

After discussing these hadronic systems consisting of light quarks, we moved

to the system involving heavy quarks. For such systems, the distribution ampli-

tudes are not very well known. There are some models which have been proposed

for these DAs using heavy quark symmetry arguments. In this thesis, we have

only considered the exponential model. As an application to the heavy meson

system, we first considered the baryon number violating decay of D-meson to a

proton and an electron. This process involves 12 independent form factors. We

have computed these form factors for the first time using LCSR and provided
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estimates for a general interpolation current for the proton state. These form

factors can be very useful to develop a better understanding of various BSM

models. In calculating these form factors, we have used the D-meson distribu-

tion amplitudes up to the leading twist in the exponential model. The FFs are

found to have uncertainties as large as 200%. This error budget is found to be

dominated by our lack of precise knowledge of these D-meson DAs. In order

to get a better understanding of these DAs, we have attempted to fix the free

parameter !0 in the D-meson DAs, which is related to the first inverse moment

of the D-meson DAs, using the experimental data on the radiative decays of the

D⇤-mesons. These decay modes are expected to be very helpful in probing the

structure of these heavy quark mesons systems.

6.2 Future Works

In future, we plan to study the rate and spectrum of radiative kaon decays i.e.,

K�
! `�⌫`�, where ` = {e, µ} using the form factors estimated in the frame-

work of LCSR. These decays are interesting which can be seen by looking at

the branching ratios of the non-radiative and the radiative decay modes of koan

(collected in Table-6.1). There are two important points to notice here. First,

mode Non-radiative Radiative

K�
! e�⌫e K�

! µ�⌫µ K�
! e�⌫e� K�

! µ�⌫µ�

Branching ratio (1.58± 0.007)⇥ 10�5 (63.56± 0.11)⇥ 10�2 (9.4± 0.4)⇥ 10�6 (6.2± 0.8)⇥ 10�3

Table 6.1: Tabulating the branching ratios for the radiative and non-radiative
decay modes of kaon to muon and electron (values taken from [35]).

the helicity suppression is lifted for the case of radiative decay. Second, which is

more interesting, is the ratio of the branching ratio for the radiative decay to the

non-radiative decay. This ratio turns out to be (O(10�2) ⇡ ↵em) for the muonic

mode, as one might expect. However, for the electronic mode, this ratio is O(1).

This leaves one wondering if there is any interesting physics hidden behind it or

it is just an artifact of kinematics? To get an answer, we need information about

the form factors involved in this decay. This decay also has two form factors like

in the case of radiative pion decay. However, there are extra complications due to



6.2. Future Works 155

large mass of kaon, mK which can not be set to zero, unlike the case of the pion.

We plan to compute these form factors within the LCSR framework overcoming

the di�culties arising due to large mass of kaon. Finally, in this project we plan

to find the branching ratios for both the muonic mode and the electronic mode

and look for any interesting phenomena which may be causing the di↵erence in

the behaviour of these radiative modes compared to the non-radiative ones (as

discussed above).

In a di↵erent project, we intend to study the radiative decay of ⇤b baryon us-

ing LCSR. This decay is loop induced in the SM and hence, is very sensitive to

new physics. LHCb has observed this decay for the first time in 2019 and found

the branching ratio to be (7.1± 1.5± 0.6± 0.7)⇥ 10�6 where, uncertainties are

associated with statistics, systematics, and external measurements systematics,

respectively [148]. This decay mode is considered to be an important channel to

study the polarisation of photon in b ! s� transitions, since one can measure

the helicity of ⇤ baryons which provides access to the helicity structure of these

transitions. Theoretically, this mode has been studied in LCSR framework earlier

two times [149], [150]. But, the LCSR analysis with the improved distribution

amplitudes for ⇤b [150] is not found to be in agreement with the experimental

results. However, the earlier predictions [149] are found to be agreeing well, re-

sulting into a dilemma. Moreover, none of these studies considered the e↵ect of

photon emission from the spectator quark and the e↵ect of charm loop inclusion

which is found to be significant for the case of B ! K⇤� and B ! K⇤`+`� tran-

sitions [151]. Both these e↵ects can have impact on the LCSR results and might

shed new light. Consequently, we intend to have a fresh computation of the FFs

involved in the decay ⇤b ! ⇤� in LCSR framework including the contributions

coming from the above mentioned e↵ects, and finally comparing the predictions

on the branching ratio of ⇤b ! ⇤� using these FFs with the experimental result

in [148].

Apart from these, we plan to move our attention a little away from LCSR ap-

plications and devote some time to understand how to match lattice results,

computed in specific schemes, to continuum calculations in the MS scheme.





Appendix A

Important definitions, identities

and integrals

A.1 Important definitions

1. Pauli matrices: These are trace-less 2 ⇥ 2 matrices and are represented

as �i with i = 1, 2, 3. These matrices act as the generators of SU(2) gauge

group. The explicit form of these matrices are:

�1 =

0

BBB@

0 1

1 0

1

CCCA
, �2 =

0

BBB@

0 �i

i 0

1

CCCA
, and �3 =

0

BBB@

1 0

0 �1

1

CCCA
. (A.1)

2. Gell-Mann Matrices: These are trace-less 3 ⇥ 3 matrices and are rep-

resented as �i with i = 1, . . . , 8. These matrices act as the generators of

SU(3) gauge group. The explicit form of these matrices are:

�1 =

0

BBBBBBB@

0 1 0

1 0 0

0 0 0

1

CCCCCCCA

, �2 =

0

BBBBBBB@

0 �i 0

i 0 0

0 0 0

1

CCCCCCCA

, �3 =

0

BBBBBBB@

1 0 0

0 �1 0

0 0 0

1

CCCCCCCA

,
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�4 =

0

BBBBBBB@

0 0 1

0 0 0

1 0 0

1

CCCCCCCA

, �5 =

0

BBBBBBB@

0 0 �i

0 0 0

i 0 0

1

CCCCCCCA

, �6 =

0

BBBBBBB@

0 0 0

0 0 1

0 1 0

1

CCCCCCCA

,

�7 =

0

BBBBBBB@

0 0 0

0 0 �i

0 i 0

1

CCCCCCCA

, and �8 =
1
p
3

0

BBBBBBB@

1 0 0

0 1 0

0 0 �2

1

CCCCCCCA

. (A.2)

3. The light cone coordinates: A four vector, pµ = (p0, p1, p2, p3), can be

written in the light cone coordinates basis as

pµ =
nµ

2
n̄.p+

n̄µ

2
n.p+ pµ? (A.3)

where nµ and n̄µ are the light cone basis vectors such that

n2 = 0, n̄2 = 0, n.n̄ = 2. (A.4)

where the last property defined the normalisation condition. A standard

choice for these basis vectors is

nµ = (1, 0, 0, 1), n̄µ = (1, 0, 0,�1) (A.5)

i.e. taking n̄µ in the opposite direction of nµ. pµ? = (0, p1, p2, 0) is the

component of pµ which is perpendicular to both nµ and n̄µ.

One usually represents the four vector in the light cone coordinates in

Eqn.(A.3) by

pµ = (p+, p�,�!p ?) (A.6)

where the last entry is two-dimensional such that |�!p ?|
2 = �pµ?p?µ = p2?

i.e. the Euclidean |
�!p ?|

2 is negative of that of the Minkowskian p2?. The
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plus and the minus components are defined as

p+ = p+ ⌘ n.p, p� = p� ⌘ n̄.p (A.7)

In these coordinates, the four vector square is given by

p2 = p+p� + p2? = p+p� �
�!p 2

? (A.8)

using the mostly negative signature for the metric tensor i.e. gµ⌫ =

diag(1,-1,-1,-1). Furthermore, the metric tensro can also be decomposed as

gµ⌫ =
nµn̄⌫

2
+

n̄µn⌫

2
+ gµ⌫? , and (A.9)

the totally anti-symmetric tensor in the ? space is defined as

✏µ⌫? =
✏µ⌫↵�

2
n̄↵n� (A.10)

A.2 Important identities

1. Chisholm Identity:

�↵���µ = g↵��µ � g↵µ�� + g�µ�↵ � i✏↵�µ⌫�⌫�5 (A.11)

2. For �⇢� = i
2 [�

⇢, ��],

�↵�⇢� = 2ig↵⇢�� � 2i�⇢g↵� + �⇢��↵ (A.12)

3. According to the Cutkosky rule:

Im
1

p2 �m2
= �⇡�(p2 �m2)✓(p0) (A.13)

for a particle with mass m. ✓(p0) is replaced by ✓(�p0) for an anti-particle.

4. ln(�x) = ln|x|� i⇡✓(x)
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5. Generalised Fierz identities: The Fierz transforms [152] enable one

to change the ordering of the spinors in an operator involved in weak-

interactions as per the requirement of the problem. Also, the Fierz identi-

ties are the relations between the product of Dirac bilinears. For example,

let us take a general product of these bilinears given as

⇥
 ̄1� 2

⇤ ⇥
 ̄3�

0 4

⇤
(A.14)

where � and �0 are some structures of ��matrices and  n (with n = 1 . . . 4)

are the Dirac spinors. These Dirac spinors can be arranged in 4! = 24

di↵erent orderings. However, only 12 of these orderings will be relevant

as the ordering of the bilinears is irrelevant which removes half of the

combinations. Now to understand the Fierz identities which help us in

attaining these ordering of spinors, let us take the basis of ��matrices

given as

�X = {1, �µ, �µ⌫ , i�µ�5, �5} (A.15)

for µ < ⌫ and X = {S, V, T, A, P}, respectively. Moreover, let us choose a

shorthand notation to represent a bilinear given by

eaX(12) =  ̄1�
a
X 2 (A.16)

where a represents the Lorentz index of the ��matrices. The simplest form

of the product of bilinear one can obtain is eaX(12)eXa(34) which can be

written in a convenient form for the final identities given by

eX(1234) = n2
Xe

a
X(12)eXa(34) (A.17)

where nX is given by

nX =

8
>>>>><

>>>>>:

1 if X = S, V, P,

�i if X = A,

p
2 if X = T,

(A.18)
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Therefore, we have

eS(1234) =
⇥
 ̄1 2

⇤ ⇥
 ̄3 4

⇤
,

eV (1234) =
⇥
 ̄1�

µ 2

⇤ ⇥
 ̄3�µ 4

⇤
,

eT (1234) =
⇥
 ̄1�µ⌫ 2

⇤ ⇥
 ̄3�

µ⌫ 4

⇤
,

eA(1234) =
⇥
 ̄1�

µ�5 2

⇤ ⇥
 ̄3�µ�5 4

⇤
,

eP (1234) =
⇥
 ̄1�5 2

⇤ ⇥
 ̄3�5 4

⇤
. (A.19)

According to the generalised Fierz identities, di↵erent orderings are related

as

eX(1234) = KXY eY (abcd) (A.20)

where (abcd) represents all the 12 orderings and KXY is the Fierz transfor-

mation matrix such that

(abcd ) (1234) (1432) (2c1c34) (124c3c) (13c2c4) (13c4c2) (142c3c) (2c1c4c3c) (31c2c4) (31c4c2) (4c1c2c3c) (4c1c32)

K 1 F S S SFS SF FS 1 SF SFS F FS

where the superscript c represents the charge conjugation such that

 ̄c =  TC�1 (A.21)

with C being the charge conjugation matrix such that CT = �C and the

superscript T represents the transpose. The Fierz transformation matrices
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are given by

F =
1

4

0

BBBBBBBBBBBBBBBB@

1 1 1
2 �1 1

4 �2 0 �2 �4

12 0 �2 0 12

�4 �2 0 �2 4

1 �1 1
2 1 1

1

CCCCCCCCCCCCCCCCA

, S =

0

BBBBBBBBBBBBBBBB@

�1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 �1 0

0 0 0 0 �1

1

CCCCCCCCCCCCCCCCA

.

(A.22)

The other transformation matrices can be obtained by simply multiplying

these matrices. For more details on these generalised Fierz identities, we

suggest the reader to look at [135] and the references therein.

A.3 Important integrals

In this section we collect all the useful integrals used through out this thesis.

The general formula for these integrals in D-dimensions which usually appear in

the sum rule calculations can be written using dimensional regularisation as [37],

Z
dDxeipx

1

(x2)n
= (�i) (�1)n 2(D�2n)⇡D/2

�
�p2

�n�D/2 � (D/2� n)

�(n)
(A.23)

for n � 1 ,p2 < 0. We can get the desired form of the integrals involved by

di↵erentiating it with respect to the four-momentum p↵. Various integrals that

are used throughout this thesis are

Z
d4x eipx

x↵

x4
= 2⇡2p↵

p2
, (A.24)

Z
d4x eipx

x↵

x2
= 8⇡2p↵

p4
, (A.25)

Z
d4x eipx

x↵x�

x4
= �

2i⇡2

p2

✓
g↵� �

2p↵p�
p2

◆
, (A.26)
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Z
d4x eipx

x↵x�

x2
= �

8i⇡2

p4

✓
g↵� �

4p↵p�
p2

◆
, (A.27)

Z
d4x eipx

x↵

x6
=

�⇡2

4
p↵ln(�p2), (A.28)

Z
d4x eipx

1

x6
=

�i⇡2

8
p2ln(�p2), (A.29)

Z
d4x eipx

x↵x�

x8
=

�i⇡2

48

�
p2g↵� + 2p↵p�

�
ln(�p2), and (A.30)

Z
d4x eipx

x↵x�xµ

x8
=
⇡2

24

✓
2p↵p�pµ

p2
� (p↵g�µ + p�g↵µ + pµg↵�) ln(�p2)

◆
.

(A.31)

These integrals in general will have divergent terms proportional to p2. We

choose to omit these terms as they goes to zero after Borel transformation.





Appendix B

Light cone propagator and

distribution amplitudes

In this appendix, we discuss and collect the light cone propagator and the light

cone distribution amplitudes of the light meson, photon, nucleon, and heavy

mesons that are used throughout this thesis.

B.1 Light cone propagator

The gauge invariance demands the insertion of a path ordered Wilson line

([x1, x2]) between q̄(x1) and q(x2) in a non-local operator given by,

[x1, x2] = P

⇢
exp

✓
ig

Z x1

x2

Ga
µ(z)T

adzµ
◆�

(B.1)

where Ga
µ represents the gluon field. With the use of fixed-point gauge given by

Ga
µx

µ = 0, the light cone expansion of the quark propagator is given by [153],

Sij(x1, x2,m) = �i h0|T{qi(x1)q̄j(x2)}|0i

=

Z
d4k

(2⇡)4
e�ik(x1�x2)

⇢
/k +m

k2 �m2
�ij � gs

Z 1

0

dvGij
µ⌫(vx1 + (1� v)x2)

(B.2)

⇥


1

2

/k +m

(k2 �m2)2
�µ⌫

�
1

k2 �m2
v(x1 � x2)

µ�⌫
��
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where Gµ⌫ = Gµ⌫
a T a = Gµ⌫

a
�a

2 with Tr(�a�b) = 2�ab (defined in Eqn.(1.4))

It can be written in the mass-less limit as

Sij(x1, x2,m)|m!0 =
1

2⇡2


/x1 � /x2

(x1 � x2)4
+

2m

2(x1 � x2)2

�
�

1

16⇡2

(1

(x1 � x2)2

⇥

Z 1

0

dvG↵�(vx1 + (1� v)x2)
⇥
(/x1 � /x2)�↵� � 4iv(x1 � x2)↵��

⇤
.

(B.3)

While calculating the time-ordered product in Eqn.(B.3), we also have a normal

ordered piece which in general perturbative field theories goes to zero. However,

in the present case it does not go to zero but contains universal non-perturbative

e↵ects in terms of vacuum condensates. To understand it, let us consider the

Taylor expansion of the normal ordered piece given by (taking x1 = x and x2 = 0

for simplicity)

: qi(x), q̄j(0) := : qi(0), q̄j(0) : +xµ : @µqi(0), q̄j(0) :

+
1

2!
xµx⌫ : @µ@⌫qi(0), q̄j(0) : + . . . (B.4)

To make this expansion gauge invariant, the partial derivative is to be replaced

by the covariant gauge which reads as

Dµ = @µ + igsGµ (B.5)

where, the gauge field, Gµ using the fixed point gauge is given by

Gµ(x) = �
1

2
Gµ⌫(0)x

⌫
�

1

3
(@�Gµ⌫(0)) x

�x⌫ + . . . (B.6)

Having done this, we find that this normal ordered piece does not goes to zero,

but rather provides a correction to the propagator defined in Eqn.(B.3) in terms

of vacuum condensates. Such a correction term in the mass-less limit reads as

�Sij(x1, x2,m) =�
1

12

✓
�ij +

i

4
m(x1 � x2)

µ(�µ)ji +O(m2)

◆
hq̄qi
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+
i

16
(x1 � x2)

2

✓
�ij +

i

6
m(x1 � x2)

µ(�µ)ji +O(m2)

◆
hq̄gsG.�qi

�
+ . . .

(B.7)

where hq̄qi is the quark condensate, and hq̄gsG.�qi, with G.� ⌘ Gµ⌫�µ⌫ , is a

mixed condensate related to the quark condensate as

hq̄gsG.�qi = m2
0hq̄qi (B.8)

where m0 is a parameter whose value is provided in Table-D.2. The ellipses in

Eqn.(B.7) represent the contributions of higher dimensional condensates. One

can look at [153], [154] for more details.

B.2 Light cone distribution amplitudes (DAs)

In this section we collect all the light cone distribution amplitudes used through-

out this thesis for light mesons, photon, nucleon, and the heavy meson.

B.2.1 Light-Meson DAs

The light cone DAs of the light pseudoscalar mesons, P like ⇡, K, are defined by

the matrix elements of the axial-vector bilocal operator, expanded around the

light cone i.e. x2
1 = x2

2 = (x1 � x2)2 = 0 as [155]

h0|q̄2(x2)�µ�5q1(x1)|P (p)i = fP

Z 1

0

due�i(upx1+ūpx2)
�
ipµ

�
�(u) + (x1 � x2)

2g1P (u)
�

+

✓
(x1 � x2)µ �

pµ(x1 � x2)2

p(x1 � x2)

◆
g2P (u)

�
(B.9)

where u and ū = 1�u represents the momentum fractions of the meson P carried

by the quark and the anti-quark, respectively, �P (u) represents the leading twist-

2 DA used in Chapter-3 for pion, and g1P (u) and g2P (u) represents the twist-4

DAs (which are not considered in the discussions involved in this thesis.) These
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DAs have the following normalisation conditions

Z 1

0

du�P (u) = 1,

Z 1

0

dug2P (u) = 0. (B.10)

These DAs can be derived using the conformal expansion as discussed in Section-

2.2.2 and read as

�⇡(u, µ) = 6uū

"
1 +

X

n=1

aPn (µ)C
3/2
n (u� ū)

#
. (B.11)

where C3/2
n are the Gegenbauer polynomials given by

C3/2
1 (x) = 3x, C3/2

2 (x) = �
3

2
(1� 5x2), . . . , and (B.12)

an are the multiplicatively renormalizable coe�cient defined as,

aPn (µ) = aPn (µ0)

✓
↵s(µ)

↵s(µ0)

◆�n/�0

(B.13)

with ↵s = g2s
4⇡ (gs is the strong coupling constant), �0 is the leading QCD �-

function given as �0 = 11� 2
3NF , and

�n =
4

3

2

4�3�
2

(n+ 1)(n+ 2)
+ 4

0

@
(n+1)X

k=1

1

k

1

A

3

5 . (B.14)

For pion, a⇡n vanishes for odd values of n due to isospin symmetry.

Apart from the two-particle twist-4 DAs, g1P and g2P , there are four three-

particle twist-4 DAs as well defined by the matrix elements of the quark-anti-

quark and gluon operators taken between the vacuum and the meson state.

Moreover, there exists 2 two particle and 1 three particle twist-3 DAs as well.

These twist-3 and twist-4 DAs are related to each other via QCD equation of

motion. We are not providing exact definitions and forms of these DAs here as

they are not a part of this thesis. However, interested reader can find all of them

collected in the appendix of [156].
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B.2.2 Photon DAs

According to the QCD description of the radiative processes, a photon can be

considered to contain a point-like electromagnetic component along with a soft

hadronic component, as one would anticipate from the deep inelastic scattering

experiments. Using the background field formalism, one can get better under-

standing on the hadronic component (see [71] and references therein for better

understanding). In the presence of a constant electric field, the QCD vacuum

can get magnetized due to the presence of the quarks and antiquarks in the QCD

vacuum. This induced magnetisation will be proportional to the quark density,

applied field, electric charge of the quarks and the magnetic susceptibility, � of

the quark condensate such that

h0|q̄�µ⌫q|0iF = eq�hq̄qiFµ⌫ (B.15)

where hq̄qi represents the quark-anti-quark condensate, Fµ⌫ represents the field

strength tensor of the electromagnetic field, eq = eQq represents the charge of

quark, and the subscript F represents that this vacuum expectation is taken when

the electromagnetic field is present. Moreover, if we have a varying magnetic field

instead of a constant one, the response of the vacuum becomes more complicated

as it will be now sensitive to the separation between the quark and the anti-

quark. For light like separations, the magnetic susceptibility gets substituted by

the response function ��. This function can be identified with the photon DA

in the plane wave configuration and the infinite momentum frame. In such a

configuration, the l.h.s of the above equation for a electromagnetic field varying

at a certain frequency represents the probability amplitude for a real photon to

get dissociated into a quark-anti-quark pair. After having a broad understanding

of how one defines the DAs for photon, let us now collect the definitions and forms

of photon DAs used throughout this thesis. However, a more complete list can

be found in [71].

The photon DAs can be defined as the vacuum expectation value of the non-local

quark-antiquark plus n gluons operator (when n � 0) with light-like separations

in a complete analogy to the case of light meson. In this thesis, we considered
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only the two particle i.e. quark-antiquark DAs of twist-2 and twist-3 which are

defined as follows:

1. Twist-2 DAs: At twist-2, we have only one two-particle photon DA, ��(u)

which is defined as

h�(k) |q̄(0)�⇢�q(x)| 0i = �ieq hq̄qi (✏⇢k� � ✏�k⇢)

Z 1

0

dueiūk.x���(u) (B.16)

where ✏µ is the polarisation vector of the photon, u and ū = 1 � u are

the momentum fractions carried by the quark and anti-quark, respectively.

The photon DA, ��(u) has the same form as of the twist-2 DA of pion

defined in Eqn.(B.11) with the asymptotic form given by

�asy
� (u) = 6u(1� u). (B.17)

2. Twist-3 DAs: At twist-3, there are four DAs out of which two are for

two-particle. The other two are defined using the matrix element of three

particles. The two-particle DAs are defined as

h�(k) |q̄(0)�µq(x)| 0i = eqf3�

✓
✏⇤µ � kµ

✏⇤x

kx

◆Z 1

0

dueiūk.x v(u, µ) (B.18)

h�(k) |q̄(0)�µ�5q(x)| 0i =
1

4
eqf3�✏µ⌫↵�k

↵x�✏⇤µ
Z 1

0

dueiūk.x a(u, µ) (B.19)

where, f3� provides a natural mass scale for twist-3 DAs,  v(u) and  a(u).

The explicit form of these DAs are:

 (v)(u) = 5
�
3⇠2 � 1

�
+

3

64

�
15!V

� � 5!A
�

� �
3� 30⇠2 + 35⇠4

�
(B.20)

 (a)(u) =
�
1� ⇠2

� �
5⇠2 � 1

� 5
2

✓
1 +

9

16
!V
� �

3

16
!A
�

◆
(B.21)

where, ⇠ = 2u � 1 and !V
� & !A

� corresponds to the local operators of

dimension six. The values of these constants are provided in Appendix-D.
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The integral of  v(↵) over ↵ from 0 to u is defined as  ̄v(u) and reads as

 ̄v(u) = 2

Z u

0

d↵ v(↵)

= �20uū⇠ +
15

16

�
!A
� � 3!V

�

�
uū⇠

�
7⇠2 � 3

�
(B.22)

B.2.3 Nucleon DAs

The nucleon DAs are defined by the matrix element of the non-local three quark

operator give by

⌦
0
��✏abcua

↵(a1x)u
b
�(a2x)d

c
�(a3x)

��P (p,�)
↵

(B.23)

where p and � denote the momentum and helicity of the nucleon state, P, respec-

tively, and u and d represents the up and down quarks. The Greek letters (↵,

�, �) and the Latin letters (a, b, c) represents the Dirac and the color indices,

respectively. ai are some real numbers and z represents some light-like vector

such that z2 = 0.

Considering the Lorentz covariance, parity and spin of the nucleon, the above

mentioned matrix element can be decomposed into 24 invariant functions, F i

(i = 1, . . . , 24) in general such that

4
⌦
0
��✏abcua

↵(a1x)u
b
�(a2x)d

c
�(a3x)

��P (p)
↵
=

2X

i=1

4F i({a1, a2, a3}, (p.x))X
i
↵�Y

i
�

(B.24)

where X i
↵� and Y i

� are the gamma matrix structure, collected in Table-B.1 cor-

responding to each F
i. The gamma matrix structures X↵� are such that

XT
i =

8
><

>:

Xi, Fi 2 Vi, Ti

�Xi, Fi 2 Ai

(B.25)

where superscript T represents transpose. The invariant functions, Fi are the

functions of p.z and have the following symmetry property under the exchange
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F
i X↵� Y� F

i X↵� Y�

S1 M(C)↵� (�5N)� A3 M(�µ�5C)↵� (�µN)�

S2 M2(C)↵� (/z�5N)� A4 M2(/z�5C)↵� (N)�

P1 M(�5C)↵� (N)� A5 M2(�µ�5C)↵� (i�µ⌫z⌫N)�

P2 M2(�5C)↵� (/zN)� A6 M3(/z�5C)↵� (/zN)�

V1 (/pC)↵� (�5N)� T1 (p⌫i�µ⌫C)↵� (�µ�5N)�

V2 M(/pC)↵� (/z�5N)� T2 M(zµp⌫i�µ⌫C)↵� (�5N)�

V3 M(�µC)↵� (�µ�5N)� T3 M(�µ⌫C)↵� (�µ⌫�5N)�

V4 M2(/zC)↵� (�5N)� T4 (p⌫�µ⌫C)↵� (�µ⇢z⇢�5N)�

V5 M2(�µC)↵� (i�µ⌫z⌫�5N)� T5 M2(z⌫i�µ⌫C)↵� (�µ�5N)�

V6 M3(/zC)↵� (/z�5N)� T6 M2(zµp⌫i�µ⌫C)↵� (/z�5N)�

A1 (/p�5C)↵� (N)� T7 M2(�µ⌫C)↵� (�µ⌫/z�5N)�

A2 M(/p�5C)↵� (/zN)� T8 M3(z⌫�µ⌫C)↵� (�µ⇢z⇢�5N)�

Table B.1: Tabulating the invariant functions and the gamma matrix structures
that appear in the general decomposition of the matrix element of the non-local
three quark operator which helps us define the nucleon DAs. Here, C is the charge
conjugation matrix, M and N� are the mass and the spinor for the nucleon state,
and �µ⌫ = i

2 [�µ, �⌫ ].

of a1 and a2,

Fi({a1, a2, a3} , (pp.x)) =

8
><

>:

Fi({a2, a1, a3} , (pp.x)), Fi 2 Vi, Ti

�Fi({a2, a1, a3} , (pp.x)), Fi 2 Ai

. (B.26)

These functions are related to the light cone distribution amplitudes of the nu-

cleon which can be seen by moving to the infinite momentum frame and decom-

posing the Dirac spinors in the good and the bad components as discussed in

Section-2.2.2 (see [136] for the details). We do not discuss these relations for

all 24 DAs here. However a twist classification of all the DAs can be found in

Table-B.2.

In this thesis we have considered DAs upto twist-3 only, and hence we will

discuss only them now. As can be seen from Table-B.2, there are three DAs

upto twist-3: the vector, V1, the axial-vector, A1 and the tensor, T1. These DAs
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Type twist-3 twist-4 twist-5 twist-6

Vector V1 V2, V3 V4, V5 V6

Axial-vector A1 A2, A3 A4, A5 A6

Tensor T1 T2, T3, T4 T5, T6, T7 T8

Scalar S1 S2

Pseudo-scalar P1 P2

Table B.2: The twist classification of nucleon DAs.

can be represented as

F
i({a1, a2, a3}, (p.x)) =

Z 1

0

D↵ie
�i↵iaip.xF i(↵1,↵2,↵3) (B.27)

where D↵i = d↵1d↵2d↵3�(1�↵1�↵2�↵3) and ↵i (i = 1, 2, 3) are the momentum

fractions of the nucleon momentum carried by the three quarks.

These twist-3 DAs of the nucleon are related to the invariant functions in

Eqn.(B.24) as

V1 = V1, A1 = A1, and T1 = T1. (B.28)

Therefore, one can directly use the parameterization in Eqn.(B.24) for compu-

tations upto twist-3. We suggest the reader to look at [136] for the relations of

other DAs with the invariant functions in Eqn.(B.24). Moreover, it is important

to point out that with the use of isospin symmetry, the number of independent

DAs is reduced to eight from twenty four and there remains only one independent

DA at twist-3 which is related to the DAs V1, A1 and T1.

The explicit conformal expansion of V1, A1 and T1 DAs are

V1(↵i, µ) = 120↵1↵2↵3

⇥
�0
3(µ) + �+

3 (µ)(1� 3↵3)
⇤

(B.29)

A1(↵i, µ) = 120↵1↵2↵3(↵2 � ↵1)�
�
3 (µ) (B.30)

T1(↵i, µ) = 120↵1↵2↵3


�0
3(µ) +

1

2
(��

3 � �+
3 )(µ)(1� ↵3)

�
(B.31)
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where �0
3(µ), �

+
3 (µ), and �

�
3 (µ) are the renormalisation scale, µ, dependent coe�-

cients. They are available from QCD sum rules and are provided in Appendix-D.

B.2.4 Heavy meson DAs

Unlike the DAs of the light quark systems which we discussed above, the DAs

for the heavy quark system can not be calculated using the conformal expansion.

It is so because of the presence of heavy mass of the quark because of which the

QCD Lagrangian does not obey the conformal symmetry any more. As a result,

one uses heavy quark e↵ective theory (HQET) to get define and obtain these

DAs (see [72] and [157] for detailed discussion). These distribution amplitudes

are defined using the matrix element of the bilocal operator involving a heavy

quark taken between the vacuum and the heavy-meson state as

h0 |q̄↵(0)[x, 0]h�(x)|Mh(v)i

=
�ifMh

mMh

4

Z 1

0

dw eiwv.x

"
(1 + /v)

(
�Mh
+ (w)�

�Mh
+ (w)� �Mh

� (w)

2v.x
/x

)
�5

#

�↵

(B.32)

where q and h represents light and heavy quark, respectively. Mh is the heavy

meson containing the heavy quark h. fMh
and mMh

are the decay constant and

the mass of Mh-meson respectively. v is the velocity of the meson, and �Mh
+ (w)

and �Mh
� (w) are the DAs of Mh-meson. These DAs are not very-well known and

have been parameterized using various models. For this thesis, we considered

the simplest exponential model parameterization for these DAs [72] which reads

as

�Mh
+ (w) =

1

w2
0

e�w/w0 , �Mh
� (w) =

1

w0
e�w/w0 (B.33)

where, w0 is a model input parameter.



Appendix C

Kinematics for radiative tau

decay

In this appendix, we discuss the kinematics involved in the decay width calcu-

lations of the radiative tau decay discussed in Chapter-3. We also provide the

t-dependence of the intermediate vector bosons (⇢ and a1) in the end of this

appendix.

C.1 Kinematics and decay width

As can be seen from Eqn.(3.46) and Eqn.(3.47), the total decay width for the

process can be written as a sum of di↵erent components [87]: �IB coming from

|AIB|
2
, �SD coming from |ASD|

2
and �int coming from 2Re(A⇤

IBASD). �SD can

be further divided into three parts: �V V coming from |Av|
2
, �AA coming from

|AA|
2
and �AV coming from 2Re(AVA

⇤
A). Therefore, we can write

�all = �IB + �int + �SD,

�SD = �V V + �AV + �AA,

�int = �IB�A + �IB�V . (C.1)

175
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Now, for convenience, we define the dimensionless variables x and y such that

x =
2p1.k

m2
⌧

, and y =
2p1.p2
m2

⌧

. (C.2)

In the rest frame of tau-lepton, these variables, x and y are simply the energies

of the photon and the pion, respectively in the units of m⌧
2 . The kinematical

boundaries of these variables are given by,

0  x  1� r2p, 1� x+
r2p

1� x
 y  1 + r2p (C.3)

where r2p =
m2

⇡
m2

⌧
. For the discussion in Chapter-3, we considered pion to be mass-

less for form factor calculations thus, we must use rp ! 0 in our final answers

for consistency.

The variable t which provides the invariant mass square of the pion-photon sys-

tem can be written in terms of x and y as

t = P 2 = (p2 + k)2 = m2
⌧ (x+ y � 1) =) P.k =

m2
⌧

2
(x+ y � 1� r2p), (C.4)

and the the di↵erential decay width (provided in Eqn.(3.46)) in the rest frame

of tau is given by
d2�

dxdy
=

m⌧

256⇡3
|A|2, (C.5)

where |A|2 is defined in Eqn.(3.47). Using the Mathematica package named

FeynCalc [158]), we calculate these di↵erent contribution to the di↵erential decay

width as

d2�IB

dxdy
=

↵

2⇡
fIB(x, y, r

2
p)
�⌧�!⇡�⌫⌧

(1� r2p)
2
,

d2�SD

dxdy
=

↵

8⇡

m4
⌧

f 2
⇡

n
|F (⇡)

V |
2fV V (x, y, r

2
p) + 2Re(F (⇡)⇤

A F (⇡)
V )fAV (x, y, r

2
p)

+ |F (⇡)
A |

2fAA(x, y, r
2
p)
o �⌧�!⇡�⌫⌧

(1� r2p)
2
, (C.6)

d2�int

dxdy
=

↵

2⇡

m2
⌧

f⇡

h
fIB�V (x, y, r

2
p)Re(F (⇡)

V ) + fIB�A(x, y, r
2
p)Re(F (⇡)

A )
i �⌧�!⇡�⌫⌧

(1� r2p)
2
,

(C.7)
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where ↵ = e2

4⇡ is the fine structure constant, the functions fIB(x, y, r2p),

fV V (x, y, r2p), fAA(x, y, r2p), fIB�V (x, y, r2p), and fIB�A(x, y, r2p) are

fIB(x, y, r
2
p) =

⇥
r4p(x+ 2)� 2r2p(x+ y) + (x+ y � 1)(2� 3x+ x2 + xy)

⇤
(r2p � y + 1)

(r2p � x� y + 1)2x2
,

fV V (x, y, r
2
p) = �

⇥
r4p(x+ y) + 2r2p(1� y)(x+ y) + (x+ y � 1)(�x+ x2

� y + y2)
⇤
,

fAV (x, y, r
2
p) = �

⇥
r2p(x+ y) + (1� x� y)(y � x)

⇤
(r2p � x� y + 1),

fAA(x, y, r
2
p) = fV V (x, y, r

2
p),

fIB�V (x, y, r
2
p) = �

(r2p � x� y + 1)(r2p � y + 1)

x
,

fIB�A(x, y, r
2
p) = �

⇥
r4p � 2r2p(x+ y) + (1� x+ y)(x+ y � 1)

⇤
(r2p � y + 1)

(r2p � x� y + 1)x
,

(C.8)

and �⌧�!⇡�⌫⌧ represents the non-radiative decay width given by

�⌧�!⇡�⌫⌧ =
G2

F |Vud|
2f 2

⇡

8⇡
m3

⌧ (1� r2p)
2. (C.9)

Using the double di↵erential decay width given in Eqn.(C.5) and integrating over

y, we get the photon spectrum for the process. Furthermore, the integration over

x gives the total decay width for radiative tau decay. While integrating over x,

the IB contribution receives infrared divergences because of zero mass of the

photon. These divergences can be fixed by putting a threshold on the minimum

energy of the emitted photon. Moreover, the SD contribution does not face any

such divergence and hence can be integrated over the full phase space. Therefore,

the total decay width for the process reads as

�(⌧� ! ⇡�⌫⌧�) =

Z 1�r2p

x0

dx

Z 1+r2p

1�x+
r2p
1�x

dy
d2�

dxdy
(C.10)

where, x0 is the minimum energy cut for the photon energy in unit of m⌧
2 used

to get rid of the IR divergences discussed above.

Finally, to get the invariant mass spectrum of ⇡ � � system, we define another
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dimensionless variable z (as used in ref-[87]) as,

z =
t

m2
⌧

= x+ y � 1. (C.11)

The kinematical boundaries for this new variable are given by

z � r2p  x  1�
r2p
z
, r2p  z  1. (C.12)

The invariant mass spectrum of ⇡�� system can then be obtained by substituting

y in terms of z in Eqn.(C.5) and integrating over x. Hence, the ⇡ � � spectrum

is defined as

d�

dz
=

Z 1�
r2p
z

z�r2p

dx
d2�

dxdy
(x, y = z � x+ 1). (C.13)

C.2 t-dependence of decay width of intermedi-

ate vector mesons

The t-dependence of decay widths of ⇢ and a1 mesons are given by [93],

�⇢(t) = �⇢

m2
⇢

p3⇢

p3

t
(C.14)

with, 2p = (t� 4m2
⇡)

1/2 and 2p⇢ = (m2
⇢ � 4m2

⇡)
1/2.

�a1(t) =
ma1�a1
p
t

g(t)

g(m2
a1)

(C.15)

with,

g(t) =

8
><

>:

4.1(t� 9m2
⇡)

3(1� 3.3(t� 9m2
⇡) + 5.8(t� 9m2

⇡)
2) if t < (m⇢ +m⇡)2

t(1.623 + 10.38
t �

9.38
t2 + 0.65

t3 ) else



Appendix D

Numerical values of various

parameters

In this Appendix, we collect the numerical values along with the errors of all the

parameters used throughout this thesis. The values are tabulated chapterwise.

In Table-D.1, we collected the numerical values of various parameters used while

studying the radiative decay of tau lepton in Chapter-3 along with their symbolic

representations. Similarly, the values used for the numerical analysis in Chapter-

4 and Chapter-5 are collected in Table-D.2 and Table-D.3, respectively.

1The value of the fine structure constant is taken at the scale m⌧ and the decay width of
a1 meson is taken to the central value of the range given in [73].

2The decay constant for D0 meson is not known. We have used the decay constant for D+

meson here.
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180 Chapter D. Numerical values of various parameters

S.No. Parameter Symbol Value used References

1. Fine structure constant ↵ 1
133.6 -

2. Fermi’s Constant GF 1.166⇥ 10�5 GeV�2 [73]

3. Mass of ⌧ -lepton m⌧ (1776.86± 0.12) MeV [73]

4. Pion decay constant f⇡ (130.41± 0.23) MeV -

5. CKM Matrix element Vud (0.9745± 0.0001) [73]

6. Mass of ⇢-meson m⇢ (775.26± 0.25) MeV [73]

7. Decay width of ⇢-meson �⇢ (149.1± 0.8) MeV [73]

8. Mass of a1-meson ma1 (1230± 40) MeV [73]

9. Decay width of a1-meson �a1 (425± 175) MeV [73]

10. Vector form factor F (⇡)
V (0) 0.0254± 0.0017 [73]

11. Axial-vector form factor F (⇡)
A (0) 0.0119± 0.0001 [73]

12. ↵s(1 GeV) ↵s(1 GeV) ⇠ 0.7 -

13. ↵s(m⌧ ) ↵s(m⌧ ) 0.325 -

14. a2(1 GeV) a2(1 GeV) 0.12 -

Table D.1: The numerical values of various parameters used in the numerical
analysis performed for the form factor and decay width calculations for radiative
tau decay1.
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S.No. Parameter Symbol Value Used Reference

1. Proton mass mp 0.938 GeV [35]

2. Fine Structure Constant ↵ = e2

4⇡
1

137 [35]

3. Quark condensate hq̄qi �((256± 2) MeV)3 [118]

4. m2
0 m2

0 (0.8± 0.2) GeV2 [118]

5. Magnetic Susceptibility � (3.08± 0.02) GeV�2 [71]

6. f3� f3� �(4± 2)⇥ 10�3 GeV2 [71]

7. !v
� !v

� 3.8± 1.8 [71]

8. !a
� !a

� �2.1± 1.0 [71]

9. �0
p �0

p (5.4± 1.9)⇥ 10�2 GeV2 [70]

10. �p �p �(2.7± 0.9)⇥ 10�2 GeV2 [70]

11. �0
3(1GeV) �0

3(1GeV) (5.3± 0.5)⇥ 10�3 GeV2 [136]

12. �̃+
3 (1GeV) = �+

3

�0
3

�̃+
3 (1GeV) 1.1± 0.3 [136]

13. �̃�
3 (1GeV) = ��

3

�0
3

�̃�
3 (1GeV) 4.0± 1.5 [136]

Table D.2: The numerical values of various parameters used during the numerical
analysis of both the cases considered in Chapter-4 for determination of the form
factors involved in radiative proton decay.

S.No. Parameter Symbol Value Used Reference

1. Proton mass mp 0.938 GeV [139]

2. Quark condensate hq̄qi �((256± 2) MeV)3 [118]

3. D-meson decay constant fD (0.212± 0.001) GeV2 [139]

4. D-meson mass mD 1.864 GeV [139]

5. �p1 �p1 (�0.027± 0.009) GeV2 [70]

6. �p2 �p2 (�0.013± 0.004) GeV2 [134]

7. w0 w0 (0.45± 0.3) GeV [159]

Table D.3: The numerical values of the parameters used during numerical anal-
ysis for the form factors involved in D0

! p̄e+ and D⇤
qDq�, with q = {u, d, s},

coupling discussed in Chapter-5 2.
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We present the study of radiative tau decay (τ− → π−ντγ), computing the structure dependent
contribution using light cone sum rules. This decay includes the same form factors as the radiative pion
decay with the crucial difference that the momentum transfer squared, t, between the pion-photon system is
positive, which makes these form factors timelike and also as t can now take values up tom2

τ , it can produce
real hadronic resonances. The analytical form for these form factors has been calculated using the light cone
sum rules method and the invariant mass spectrum in the π − γ system and the decay width are presented.
The structure dependent parameter, γ, the ratio of the axial vector to vector form factor is found to be in
good agreement with the experimental determination.

DOI: 10.1103/PhysRevD.103.056017

I. INTRODUCTION

τ is the heaviest lepton with mτ ¼ 1776.86"
0.12 MeV [1] and has numerous decay channels because
of its heavy mass (see for example [2–6] for different
aspects of τ lepton physics). It is the only lepton which
can decay into hadrons. Theoretically, the electroweak
part is reasonably well established while one is still
lacking in developing a proper methodology to under-
stand the strong interactions. The study of hadronic τ
decays helps us to understand the dynamics of strong
interaction involved in the hadronization of QCD currents
in a cleaner environment
In particular, we are interested in the study of radiative

tau decay in the present work, i.e., τ− → π−ντγ. The
branching ratio of τ− → π−ντ is ð10.82" 0.05Þ% [1].
Hence, one expects the branching ratio for radiative tau
decay to be Oð10−3Þ. To get a sense for this expectation,
one can write the branching ratio as a product of
branching ratios of τ → ρντ and ρ → πγ, and using the
values from [1], one gets ∼10−3, which is about 10−2 of
the nonradiative branching ratio. Even though the branch-
ing ratio is not very small, these decays are not observed
experimentally yet which makes the study of this mode
important.

The decay amplitude of this process includes two
contributions [7–11]:

(i) Internal bremsstrahlung (IB): The contribution
coming from the emission from either the incoming
or the outgoing particles. This contribution can be
calculated trivially with the use of scalar QED for
the pointlike charged pion while the emission from
the τ leg is calculated straightforwardly using QED.
Diagrammatically this is shown in (a) and (b)
of Fig. 1.

(ii) Structure dependent (SD): This contribution is
governed by the strong interactions and contains
nontrivial parts. The pion can no longer be taken as a
pointlike particle. The partonic structure will play a
role. This contribution appears because of the
hadronization of JP ¼ 1− (γμ) and 1þðγμγ5Þ inter-
mediate quark-antiquark currents of the matrix
element [(c) of Fig. 1] and hence depends on the
long distance dynamics. Using the Lorentz sym-
metry, it can be parametrized by vector and axial-
vector form factors FðπÞ

V and FðπÞ
A , respectively.

These form factors encode the information of strong
dynamics involved in the hadronization of these
currents and their evaluation requires a nonpertur-
bative treatment such as light cone sum rules
(LCSR), chiral perturbation theory χPT or lattice
QCD. The SD contribution also includes a contact
term (CT), which emerges as a consequence of
gauge invariance and graphically represented in
(d) of Fig. 1.

The explicit form of these contributions will be calculated
in Sec. II where we will see that the IB part consists of two
contributions: one independent of mτ and another propor-
tional to mτ. The mτ independent contribution turns out to
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be equal and opposite to the CT contribution and hence gets
canceled in the total amplitude.
The amplitude for the process of interest is related to that

of the radiative pion decay by crossing symmetry with a
major difference that comes at the level of kinematics as the
square of the momentum transferred between the pion-
photon and leptonic system can now take values up to m2

τ ,
while in the radiative pion decay, it can take values only up
to m2

π which is almost negligible. Also, as both pion and
photon are in the final state, the form factors involved in
this process are timelike, and hence complicated, unlike the
form factors involved in the radiative pion decay which are
spacelike. As a consequence, the light flavored mesons will
be created on shell and give resonant structures in the pion-
photon invariant mass spectrum.
Hence to understand this process, the main task is to

calculate the timelike form factors involved in the process.
These form factors probe the structure of the pion. The
information about the pion structure can be obtained by
determining the ratio of FðπÞ

A ð0Þ to FðπÞ
V ð0Þwhich is defined

as the structure dependent parameter, γ, i.e., γ ¼ FðπÞ
A ð0Þ

FðπÞ
V ð0Þ

. We

know the values of FðπÞ
A ð0Þ and FðπÞ

V ð0Þ from the exper-
imental determination of radiative pion decay to be equal to
(0.0119" 0.0001) and (0.0254" 0.0017), respectively [1],
which results in the value of γ equal to (0.4685" 0.0353).
The value of γ, which is the ratio of form factors evaluated
at zero momentum transfer, will be the same for radiative
tau and pion decays. The calculation of radiative tau decay
helps in determining this structure dependent parameter
theoretically in a consistent way. This decay is also useful
to understand the light-by-light hadronic contribution to the

muon anomalous magnetic moment, ðg − 2Þμ [12]. In [13],
the authors have discussed how this decay can provide the
means for the tau neutrino mass determination. These
gauge invariant form factors for the radiative tau decay
have been parametrized using Breit-Wigner–type resonan-
ces [14], light front quark model [10] and resonance χPT
[11] in the past.
The differences in the literature stem from the vastly

different approaches adopted to determine or estimate the
form factors, which affect the predictions for the rate and
spectrum, as well as extraction of γ, including the sign. As
an example, whenever the resonances are included via
the Breit-Wigner method, a suspecting issue always is
the relative phase between the different contributions. The
main aim of this paper is to calculate these form factors
using the method of LCSR in a consistent way.
The rest of the paper is organized as follows; in Sec. II,

we present the amplitude calculation for the process and
explicitly write the forms of different contributions men-
tioned above. In Sec. III, we present the calculation of the
form factors using the method of LCSR and in Sec. IV we
report our results. Finally, in Sec. V we conclude our results
with some remarks. Various definitions and conventions
used are reported in Appendix A. The values of various
parameters used for numerical calculation are collected in
Appendix B and the kinematical details are provided in
Appendix C.

II. AMPLITUDE COMPUTATION

A photon can be emitted by any charged particle. Hence
in the present case, the photon can be emitted from either
the pion or tau lepton, as shown in Fig. 1. The pion is a
composite object with a quark-antiquark pair. Therefore,
the internal structure of the pion will also contribute to the
process. This gives rise to two nonperturbative form
factors. As mentioned above, the amplitude of radiative
tau decay includes various contributions: internal brems-
strahlung (IB), structure dependent (SD) and contact term
(CT). The IB contribution comes from the emission of the
photon from tau and pion (considering pion to be the point
object). The SD contribution comes from the emission of
the photon from the internal structure of the pion. The
contact term is an interesting effective contribution and has
its origin in the gauge invariance of a QED amplitude [15].
We follow this approach here.
The amplitude of the process τ−ðp1Þ→π−ðp2Þντðp3Þ×

γðkÞ can be written as (employing the low energy four-
Fermi effective Hamiltonian obtained by integrating out the
heavy W boson)

Aðτ− → π−ντγÞ ¼
GFffiffiffi
2

p Vudhπ−ντγjðν̄τΓμτÞðd̄ΓμuÞjτ−i; ð1Þ

where Γμ ¼ γμð1 − γ5Þ.

FIG. 1. Feynman diagrams showing different contributions to
the radiative tau decay. (a) and (b) represent the IB contribution,
(c) represents the SD contribution and (d) represents the CT
contribution.
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This amplitude can be factorized in two parts; one where
the photon is emitted from the final state pion and another
where the photon gets emitted from the initial state tau
lepton:

Aðτ−→π−ντγÞ

¼GFffiffiffi
2

p Vud½hπ−γjðd̄ΓμuÞj0ihντjðν̄τΓμτÞjτ−i

þhντγjðν̄τΓμτÞjτ−ihπ−jðd̄ΓμuÞj0i'

¼GFffiffiffi
2

p Vud

"
−ieϵ(αðūνΓμuτÞ

×
Z

d4xeikxhπ−jTfjαemðxÞd̄Γμuð0Þgj0i

−efπp2μϵ(α

Z
d4xeikxhντjTfjαemðxÞν̄τΓμτð0Þgjτ−i

#
; ð2Þ

where jαemðxÞ¼Qψ ψ̄ðxÞγαψðxÞ¼−τ̄γατþQuūγαuþQdd̄γαd
and fπ is the pion decay constant. The conventions and
definitions are given in Appendix A. This factorization of
the amplitude holds for energetic photons and at the leading
order in 1

mτ
and αem.

For the computation of the first term of Eq. (2), define the
hadronic matrix element as

Tαμðp2; kÞ ¼ i
Z

d4xeikxhπ−jTfjαemðxÞd̄Γμuð0Þgj0i: ð3Þ

Using the conservation of electromagnetic current, one can
apply the Ward identity which results in

kαTαμðp2; kÞ ¼ hπ−jd̄ð0ÞΓμuð0Þj0i ¼ ifπp
μ
2 ð4Þ

in the momentum space.
Also, one can write the hadronic matrix element [defined

in Eq. (3)] using the general covariant decomposition in
terms of the pion and photon momentum, i.e., p2 and k
respectively, as

Tαμðp2; kÞ ¼ Agαμ þ Bp2αp2μ þ Cp2αkμ þDkαp2μ

þ Ekαkμ þ iFðπÞ
V ϵαμβνp2βkν; ð5Þ

where A, B, C, D, E, FðπÞ
V are gauge invariant scalar

functions of ðp2 þ kÞ2. Contraction of Eq. (5) with kα
results in (for on-shell photon k2 ¼ 0 and the Levi-Civita
tensor is antisymmetric in α and ν)

kαTαμðp2; kÞ ¼ Akμ þ Bðp2:kÞpμ
2 þ Cðp2:kÞkμ: ð6Þ

On equating Eqs. (4) and (6), we get

C ¼ −A
ðp2:kÞ

; and B ¼ ifπ
ðp2:kÞ

ð7Þ

which results in the final form of hadronic matrix element
to be

Tαμðp2; kÞ ¼ FðπÞ
A ½gαμðP:kÞ − Pαkμ' þ iFðπÞ

V ϵαμβνPβkν

− ifπgαμ þ ifπ
PαPμ

P:k
: ð8Þ

Here, FðπÞ
A ¼ Aþifπ

P:k and P ¼ p1 − p3 ¼ p2 þ k and
p2:k ¼ P:k. Hence, the first term in Eq. (2) reads

hπ−γjd̄Γμuj0ihντjν̄τΓμτjτ−i

¼ ieϵ(α½ūνΓμuτ'½iF
ðπÞ
A fgαμðP:kÞ−Pαkμg−FðπÞ

V ϵαμβνPβkν'

þ ieϵ(μfπūνΓμuτ− iefπ
ϵ(:P
P:k

ūν=Pð1− γ5Þuτ: ð9Þ

The second term in Eq. (2), using QED Feynman rules,
takes the form

hντγjν̄τΓμτjτ−ihπ−jd̄Γμuj0i
¼−iefπūνðp3Þ=ϵ(ð1−γ5Þuτðp1Þ

þ iefπmτ

2p1:k
fūνðp3Þ½ð2ϵ(:p1Þ−=k=ϵ('ð1þγ5Þuτðp1Þg: ð10Þ

Adding the two, the final form of the amplitude is

Aðτ−→ π−ντγÞ

¼GFffiffiffi
2

p Vud

"
ieϵ(αðūνΓμuτÞfiF

ðπÞ
A ½gαμðP:kÞ−Pμkα'

−FðπÞ
V ϵαμβνPβkνgþ iefπmτūν

$
ϵ(:p1

p1:k
−

=k=ϵ(

2p1:k
−
ϵ(:p2

p2:k

%

× ð1þ γ5Þuτ
#
: ð11Þ

Here, FðπÞ
A and FðπÞ

V are the gauge invariant axial-vector and
vector form factors, respectively. The contact term appears
explicitly by the use of Ward identity and cancels against
themτ independent contribution of photon emission from τ.
For further simplification, we have divided the full

amplitude as

Aðτ− → π−ντγÞ ¼ AIB þAV þAA ¼ AIB þASD: ð12Þ

Here,

AIB ¼ GFffiffiffi
2

p Vud

"
iefπmτūν

$
ϵ(:p1

p1:k
−

=k=ϵ(

2p1:k
−
ϵ(:p2

p2:k

%

× ð1þ γ5Þuτ
#
; ð13Þ

AV ¼−
GFffiffiffi
2

p Vud½ieϵ(αðūνΓμuτÞðF
ðπÞ
V ϵαμβνPβkνÞ'; and ð14Þ

AA¼
GFffiffiffi
2

p Vud½ieϵ(αðūνΓμuτÞðiF
ðπÞ
A ½gαμðP:kÞ−Pμkα'Þ': ð15Þ
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AV and AA combined gives the structure dependent
contribution, while AIB is the internal bremsstrahlung
contribution.

III. FORM FACTORS IN LCSR FRAMEWORK

In the previous section, we saw that the amplitude of the
radiative tau decay depends on two gauge invariant form
factors; FðπÞ

A and FðπÞ
V . These form factors are the non-

perturbative objects and need a nonperturbative treatment.
In this section, we will calculate these form factors using
the method of LCSR.
The method of sum rules was developed in 1979 by

Shifman, Vainshtein and Zakharov (SVZ) [16,17]. Their
basic idea was to use the analytic properties of a correlation
function [treated in the framework of operator product
expansion (OPE)] to derive the hadronic parameter
involved in a process. Below we briefly outline the method
(for details, see [18–20]).
The important tools for deriving the sum rules are

dispersion relation, operator product expansion (OPE),
quark-hadron duality and the Borel transformation. The
dispersion relation relates the real part of the correlation
function to its imaginary part using Cauchy’s integral
formula. According to OPE, the correlation function can
be written as a sum of products of long distance matrix
elements of operators of increasing dimension and short
distance Wilson coefficients which can be calculated using
perturbation theory. The higher dimension operators cap-
ture the information of QCD vacuum fields in the form of
vacuum condensates. Both dispersion relation and OPE
give the same physics and hence can be equated.
Operationally, quark hadron duality means

q2
Z

∞

sh0

ds
ρhðsÞ

sðs − q2Þ
≃
q2

π

Z
∞

4m2
ds

ImΠðpertÞðsÞ
sðs − q2Þ

: ð16Þ

Here, ρh is the hadronic spectral density function, while
ΠpertðsÞ [or ΠQCDðsÞ] is the perturbatively calculated
correlation function. We will use this duality approximation
below.
As the correlation function has contributions from all the

resonance states as well as the continuum, one performs
Borel transformation to suppress the effect of higher
resonances and continuum. Mathematically, the Borel
transform is given by

ΠðM2Þ≡BM2Πðk2Þ

¼ lim
−k2;n→∞;−k2=n¼M2

ð−k2Þðnþ1Þ

n!

&
d
dk2

'
n
Πðk2Þ; ð17Þ

where M is known as the Borel parameter.
It was noticed that these SVZ sum rules have some

limitations such as the OPE upsets the power counting in
large Q2 and that, even after performing the Borel trans-
formation, practical calculations suffer from unsuppressed
contributions. These limitations can be overcome by using
light cone sum rules (LCSR). In LCSR, one expands the
products of the currents near the light cone. LCSR give
vacuum-to-hadron correlation function while by SVZ sum
rules one gets vacuum-to-vacuum correlation functions. In
LCSR, OPE at short distances is replaced by systematic
expansion in the transverse direction in the infinite momen-
tum frame.
In the light cone limit, the bilocal operator sandwiched

between the pion state and vacuum is expressed as

hπ0ðpÞjūðyÞγμγ5uðxÞj0ix2¼0

¼ −ifπpμ

Z
1

0
dueiðup2:yþūp:xÞϕðu; μÞ; ð18Þ

where ū ¼ 1 − u and ϕðu; μÞ is leading twist-2 distribution
amplitude given by

ϕπðu; μÞ ¼ 6uū
"
1þ

X

n¼2;4;…

anðμÞC
3=2
n ðu − ūÞ

#
: ð19Þ

Here, C3=2
n are the Gegenbauer polynomials and an is the

multiplicatively renormalizable coefficient defined as

anðμÞ ¼ anðμ0Þ
&
αsðμÞ
αsðμ0Þ

'
γn=β0

ð20Þ

with αs ¼ g2s
4π (gs is the strong coupling constant), β0 is the

leading QCD β function and

γn ¼
4

3

"
−3 − 2

ðnþ 1Þðnþ 2Þ
þ 4

&Xðnþ1Þ

k¼1

1

k

'#
: ð21Þ

The remaining process for computation is the same as for
SVZ sum rules. We are now ready to derive the form
factors, FðπÞ

V and FðπÞ
A , using this technique.

As we know, these form factors arise from the compu-
tation of the hadronic matrix element defined in Eq. (3), i.e.,

Tαμðp2; kÞ ¼ i
Z

d4xeikxhπ−jTfQuūγαuðxÞd̄Γμuð0Þ þQdd̄γαdðxÞd̄Γμuð0Þgj0i; ð22Þ

whereQu andQd are the charges of up and down quark respectively in units of e. Using the definitions and identities given
in Appendix A, we get
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Tαμðp2; kÞ ¼ ifπ

Z
d4x

eikx

2π2x4

Z
1

0
duϕðu; μÞ½iϵμβαρxβp2ρðQueiūp2x þQdeiup2xÞ

þ ðxμpα
2 − gμαðx:p2Þ þ xαpμ

2ÞðQueiūp2x −Qdeiup2xÞ'; ð23Þ

where, as mentioned above, ϕðu; μÞ is the pion distribution amplitude and ū ¼ 1 − u. The integration over x results in

TαμðP; kÞ ¼ ifπ

"
iϵμβαρ

3
Pρkβ

Z
1

0
du

ϕðu; μÞ
P2ūþ k2u

þ 2fPαPμ − ðP:kÞgμαg
Z

1

0
du

ϕðu; μÞū
P2ūþ k2u

− fgμαðP:kÞ − Pαkμg
$Z

1

0
duϕðu; μÞ

&
1 − 2ū

P2ūþ k2u

'%#
: ð24Þ

Here, p2 þ k ¼ P and we have used the fact that the distribution amplitude is a symmetric function of u and ū.
A comparison with the general decomposition of the hadronic tensor given in Eq. (8) yields the following forms of vector

and axial-vector form factors from QCD calculation:

FQCD
V ðtÞ ¼ ifπ

3

Z
1

0
du

ϕðu; μÞ
tūþ k2u

⇒
1

π
ImfFQCD

V ðtÞg ¼ ifπ
3

Z
1

0
duϕðu; μÞδðtūþ k2uÞ; and ð25Þ

FQCD
A ðtÞ ¼ −ifπ

Z
1

0
duϕðu; μÞ

&
1 − 2ū
tūþ k2u

'

⇒
1

π
ImfFQCD

A ðtÞg ¼ −ifπ
Z

1

0
duϕðu; μÞð1 − 2ūÞδðtūþ k2uÞ: ð26Þ

Here, t≡ P2 ¼ ðp2 þ kÞ2 ¼ ðp1 − p3Þ2 is the invariant
mass square of the photon-pion system.
Now, after computing the perturbative QCD contribu-

tion, the analytic properties of this hadronic matrix element
are used to derive the contribution of various hadronic
states. It will get contributions from (ρ, ω, a1-mesons)þ
higher resonances and the continuum. In the present case,
contributions coming from ρ, ω, a1-mesons will saturate
the sum rules and thus will be the focus here.1

Considering the matrix element hπ−jTfjαemðxÞj
μ
ewð0Þgj0i

and inserting a complete set of states, we get

hπ−jTfjαemðxÞj
μ
ewð0Þgj0i ¼ hπ−jjαemðxÞjnihnjj

μ
ewð0Þj0i;

ð27Þ

where jni¼jρiþjωiþja1iþ higher resonancesþcontinuum.
(i) ρ and ω-meson contribution: The ρ-meson contri-

bution will come from

hπ−ðp2ÞjjαemðxÞjρðp2 þ kÞihρðp2 þ kÞjjμewð0Þj0i:
ð28Þ

Using the definitions given in Appendix A,

hπ−ðp2ÞjjαemðxÞjρðp2 þ kÞihρðp2 þ kÞjjμewð0Þj0i
¼ imρfρϵαλβνg

μ
λp2βkνFρπðk2Þ; ð29Þ

where mρ and fρ are the mass and decay constant
of the ρ meson respectively. Neglecting the very
small difference between the masses of ρ and ω, the
contribution of ω will be equal to the contribution of
ρ and hence multiplying ρ contribution by a factor of
2 will incorporate the contribution of the ω meson.

(ii) a1-meson contribution: The a1-meson contribution
will come from

hπ−ðp2ÞjjαemðxÞja1ðp2 þ kÞiha1ðp2 þ kÞjjμewð0Þj0i;
ð30Þ

which results in

hπ−ðp2ÞjjαemðxÞja1ðp2 þ kÞiha1ðp2 þ kÞjjμewð0Þj0i
¼ ima1fa1 ½2p2:kgαμ − 2pα

2k
μ'Ga1πðk

2Þ ð31Þ

using the definitions given in Appendix A. Here,ma1
and fa1 are the mass and decay constant of the a1
meson respectively.

Here, FρπðGa1πÞ captures the physics of transition of the
ρða1Þ meson to the π meson. Using the optical theorem in
Eq. (3), we get

1The contribution of the higher resonances, at the present level
of accuracy, is roughly 20% of these resonances because of the
Borel suppression.

PHENOMENOLOGY OF τ− → π−ντγ … PHYS. REV. D 103, 056017 (2021)

056017-5



2ImfTαμðp2;kÞg

¼
X

n

hπ−jjαemðxÞjnihnjjμewj0idτnð2πÞ4δ4ðk−pnÞ; ð32Þ

and from Cauchy’s theorem,

Tðk2Þ ¼ 1

π

Z
∞

tmin
ds

ImfTðsÞg
s − k2 − iϵ

: ð33Þ

Substituting the contributions of ρ and a1, we get

Tαμðp2; kÞ ¼
2imρfρϵαλβνg

μ
λp2βkνFρπðk2Þ

m2
ρ − ðp2 þ kÞ2 − imρΓρ

þ
ima1fa1 ½2p2:kgαμ − 2pα

2k
μ'Ga1πðk

2Þ
m2

a1 − ðp2 þ kÞ2 − ima1Γa1

þ 1

π

Z
∞

sh0

ds
ImfTαμðs; kÞg
s − k2 − iϵ

: ð34Þ

Here, sh0 is the threshold of the lowest continuum state and Γρ

and Γa1 are the decay widths of ρ and a1 mesons,
respectively. This is the dispersion relation which relates
the imaginary part to the real part. Now, the light cone sum
rules can be derived by taking the form of FðπÞ

V ðtÞ from this
dispersion relation and equating it with the form obtained in
Eq. (25), i.e.,

2mρfρFρπðk2Þ
m2

ρ − t − imρΓρ
þ 1

π

Z
∞

sh0

ds
ImfFVðsÞg
s − t − iϵ

¼ ifπ
3

Z
1

0
du

ϕðu; μÞ
tūþ k2u

: ð35Þ

Using the duality approximation and the Chauchy’s integral,

1

π

Z
∞

s0
ds

ImfFVðs; kÞg
s − t − iϵ

¼ 1

π

Z
∞

sρ
0

ds
ImfFQCD

V ðs; kÞg
s − t − iϵ

¼ ifπ
3

Z
1

u0
du

ϕðuÞ
tūþ k2u

; ð36Þ

with u0 ¼ s0
k2þs0

¼ 1 (as k2 ¼ 0). As a result, the sum rule for

FðπÞ
V ðtÞ turns out to be

2mρfρFρπðk2Þ
m2

ρ − t
¼ ifπ

3

Z
u0

0
du

ϕðuÞ
tūþ k2u

: ð37Þ

Similarly, by equating the form of FðπÞ
A ðtÞ obtained from the

dispersion relation with the form given in Eq. (26) and using
the duality approximation, the sum rule for FðπÞ

A ðtÞ reads

2ima1fa1Ga1πðk
2Þ

m2
a1 − t

¼ −ifπ
Z

u0

0
ϕðuÞ

&
1 − 2ū
tūþ k2u

'
: ð38Þ

After Borelization and substituting these sum rules back
in Eq. (34), we get the following analytical forms for FðπÞ

V

and FðπÞ
A :

FðπÞ
V ðtÞ ¼ −i

fπ
3ðm2

ρ − t − imρΓρÞ

Z
1

0
du

ϕðuÞ
ū

e
m2
ρ

M2 ; ð39Þ

FðπÞ
A ðtÞ¼−i

fπ
m2

a1 − t− ima1Γa1

Z
1

0

ϕðuÞ
ū

ð1−2ūÞe
m2
a1

M2 : ð40Þ

Here, M is the Borel parameter and we have used the on-
shell condition for the photon (i.e., k2 ¼ 0).2

For the present calculation, we will use the asymptotic
form (where μ → ∞) and the Chernyak-Zhitnisky form
(where the C2 term will be considered) of the pion
distribution amplitude given in Eq. (19). Explicitly these
forms are given by

ϕasym
π ðu; μÞ ¼ 6uū; and ð41Þ

ϕCZ
π ðu; μÞ ¼ 6uū

"
1þ 3a2ðμÞ

2
f5ðu − ūÞ2 − 1g

#
; ð42Þ

where a2ðμÞ is defined in Eq. (20) with n ¼ 2. All the
structure dependent information of the pion involved in the
radiative tau decay is contained in the ratio of the axial
vector form factor and the vector form factor at zero
invariant mass square of the photon-pion system, i.e.,

γ ¼ FðπÞ
A ð0Þ

FðπÞ
V ð0Þ

; ð43Þ

where γ is known as the structure dependent parameter
(SDP). The vector form factor at t ¼ 0 can be related to the
anomaly term (or Wess-Zumino-Witten term) in the πγγ
vertex [1=ð4π2fπÞ]. Using what is referred to as KSFR-II
relation [21,22],m2

ρ ¼ 2g2ρππf2π , along with the assumptions
of universality of ρ coupling (gρππ ¼ gρNN ¼ gργ ¼ g ¼
2π

ffiffiffiffiffiffiffiffiffiffiffi
3=Nc

p
) and ρ meson dominance of the pion electro-

magnetic form factor, one finds the right form emerging

from FðπÞ
V ð0Þ, up to the overall factor e

m2
ρ

M2 which should tend
to unity. As we see later, the choice of the Borel parameter
that provides a stable window, trivially yields unity for this
factor within a few percent.

2It is to be noted that these form factors have dimension
of inverse mass and there is an extra factor of −i due to the
way initial amplitude is defined: Aðτ− → π−ντγÞ instead of
iAðτ− → π−ντγÞ as is often done.
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Before discussing the results, it may be worthwhile to
ponder over possible duality violations. Such contributions
arise from our use of perturbatively evaluated spectral
functions, imaginary parts of the form factors here, over the
entire kinematical range. It is notoriously difficult to
exactly quantify the magnitude of such duality violating
terms. However, it is rather important to have some estimate
or an educated guess since these would otherwise cause
large uncertainties in the final results. For the case at
hand, the perturbative effects occur at 1=Q, where hard
scale Q ∼mτ while the time scale over which the partons
come together to form final hadrons ∼Q=Λ2

QCD. One
possible way to evaluate the duality violations could be
to use an instanton model, where the light quark amplitudes
will be suppressed. A rough calculation yields a quantity
that in the Euclidean domain has the form Exp½−Qρ'=Qn,
where ρ denotes the mean instanton size. Analytically
continued to the Minkowski space, this would have an
oscillating factor multiplied by negative powers of the
energy released in the hard process mτ. Alternatively, one
could assume a comb of hadronic resonances that would
contribute and carry out the algebra. Both lead to similar
conclusions that the violations are ∼10% [23] (also see
[24,25] for detailed analyses for inclusive tau decays). This
is the typical duality violation contribution that we expect,
though a more detailed calculation can reveal the actual
amount of such violations.

IV. RESULTS

The analytic expressions for the vector and axial-vector
form factors calculated using LCSR are given in Eqs. (39)
and (40). Both of these form factors have the asymptotic 1

t
dependence on the invariant mass squared, t of the photon
pion system, as expected from QCD in the perturbative
(asymptotic) regime. We have used two forms of pion
distribution amplitude; the asymptotic form and the CZ
form as given in Eqs. (41) and (42), respectively. The
structure dependent parameter defined in Eq. (43) is also
calculated using both forms for pion distribution ampli-
tudes. The values of the various parameters used for the
numerical computation are collected in Appendix B. The
form factors depend on the value of the Borel parameter,
M, and hence also the structure dependent parameter, γ.
Figure 2 shows the variation of FðπÞ

A ð0Þ, FðπÞ
V ð0Þ and SDP

(γ) with the variation in the value of M. The variation of
the observables with M dictates the model dependence
here. As can be seen from the plot, all the observables are
quite stable in the chosen Borel window. The value of γ
for M ¼ 3.35 GeV is 0.469 (using CZ distribution ampli-
tude) which matches well, including the sign, with the
experimental value of γ obtained from the radiative pion
decay [1].
Further, we calculate the decay width contribution for the

radiative tau decay using M ¼ 3.35 GeV and the form

factors given in Eqs. (39) and (40). The differential decay
rate for the radiative tau decay is given by

dΓðτ−→ π−ντγÞ

¼ 1

512π5
Eτδð4Þðkþp2þp3−p1ÞjAj2d

3kd3p2d3p3

EγEπEν
;

ð44Þ

where Eτ, Eπ, Eγ, Eν are the energies of tau lepton, pion,

photon and neutrino, respectively. jAj2 is the spin averaged
square of the amplitude which has been calculated
in Sec. II.
In terms of the functions used in Eq. (12),

jAj2 ¼ jAIBj2 þ jASDj2 þ 2RefA(
IBASDg; ð45Þ

where jASDj2 ¼ jAAj2 þ jAV j2 þ 2RefA(
AAVg.

The kinematical details to compute the decay rate can be
found in Appendix C.
The structure dependent contribution to the photon

spectrum is shown in Fig. 3 using both forms of pion
distribution amplitudes. The IB contribution suffers from
the infrared divergences which can be taken care of by
putting a threshold on the photon energy. Figure 4 shows
the threshold energy dependence of the IB contribution as
well as the full decay width of the radiative tau decay. The
SD contribution is free from any kind of divergences.
FðπÞ
A ðtÞ gets a contribution from the a1 meson while

FðπÞ
V ðtÞ from the ρ (and ω) meson. Figure 5 shows the SD

contribution to the invariant mass spectrum of the π − γ
system. The higher and sharper peak corresponds to the
contribution coming from the vector mesons while the

SDP(asym)

SDP(CZ)

FA (asym)

FA(CZ)

FV(asym)

FV(CZ)

2.0 2.5 3.0 3.5 4.0

0.0

0.1

0.2

0.3

0.4

0.5

M (GeV)

FIG. 2. The dependence of structure dependent parameter
(SDP), FðπÞ

A ð0Þ and FðπÞ
V ð0Þ on the Borel parameter M (in GeV

units) is shown in blue, magenta and green, respectively. In this
plot, form factors have been multiplied by imπ to make them
dimensionless in and take care of the extra −i in the form factors
as noted in footnote 1.
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shorter and broader peak corresponds to the axial vector
contribution. The vector contribution to the total decay
width dominates over the axial-vector contribution.
As ρ and a1-mesons are not very narrow, the effect of

t dependence of the widths is also studied using the
prescription provided in [26]. The t dependence of Γρ

does not have a significant effect as it is not that wide
while the effect of Γa1 is clearly visible as one can see
from Fig. 6. The explicit forms of t dependence of the
decay widths are collected in Appendix A. We have also
computed the effect of decay width of a1-meson Γa1 , as
it has huge uncertainty, and found that the decay
width of the radiative tau decay decreases with an
increase in Γa1 . The results reported here are calculated
using Γa1 ¼ 425 MeV.
Figure 7 represents all the contributions to the invariant

mass spectrum of the π − γ system. The IB contribution
dominates at the low photon energy for which we have used
the minimum energy threshold of 50 MeV.
After integrating over the full phase space and

applying an energy threshold of 50 MeV for the IB
contribution, we get the following values for the different
contributions to the decay width (normalized to the
nonradiative decay width Eq. (C8), i.e., Γ̄ ¼ Γðτ → πνγÞ=
Γðτ → πνÞ]:

(i) Asymptotic pion distribution amplitude:

Γ̄IB¼ 1.36×10−2; Γ̄VV ¼ð1.47"0.06Þ×10−3;

Γ̄AA¼ð3.97"2.45Þ×10−4; Γ̄AV ≈0

Γ̄SD¼ð1.87"0.30Þ×10−3;

Γ̄int¼ð3.82"2.14Þ×10−4;

Γ̄all¼ð1.56"0.04Þ×10−2:

IB

all(asymp)

all(CZ)

0.00 0.02 0.04 0.06 0.08 0.10

0.010

0.015

0.020

0.025

0.030

0.035

0.040

FIG. 4. The dependence of the IB (solid) contribution on the
minimum energy threshold of the photon is shown here. Along
with that, the same dependence for total decay width including
form factors using asymptotic (dashed) and CZ (dotted) pion
distribution amplitude is also shown.

SD(asym)

VV(asym)

AA(asym)

AV(asym)
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VV(CZ)

AA(CZ)

AV(CZ)

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.001

0.002

0.003

x

FIG. 3. The total structure dependent contribution (blue) to the
photon spectrum is shown along with the individual contributions
from thevector (magenta), axial vector (green) and the interference
(red) of the two are also shown for the two distribution amplitudes.
Solid lines are for asymptotic distribution amplitude while dashed
ones are for Chernyak-Zitnisky distribution amplitude.

SD(asym)

VV(asym)

AA(asym)

AV(asym)

SD(CZ)

VV(CZ)

AA(CZ)

AV(CZ)

0.0 0.2 0.4 0.6 0.8 1.0
0.000
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0.010

0.015

z

(a)
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VV(asym)
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AV(CZ)
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0.0015

0.0020

0.0025

0.0030

z

(b)

FIG. 5. (a) The structure dependent contribution (blue) to the invariant mass spectrum of the π − γ system is shown here for asymptotic
(solid) and Chernyak-Zhitnisky (dashed) pion distribution amplitudes. The contribution from the vector (magenta), axial vector (green)
and the interference (red) of the two is also shown. (b) Zoomed in version of (a).
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(ii) CZ pion distribution amplitude:

Γ̄IB¼ 1.36×10−2; Γ̄VV ¼ð1.70"0.07Þ×10−3;

Γ̄AA¼ð5.91"3.62Þ×10−4; Γ̄AV ≈0

Γ̄SD¼ð2.29"0.43Þ×10−3;

Γ̄int¼ð4.90"2.60Þ×10−4;

Γ̄all¼ð1.61"0.06Þ×10−2:

Since we consider radiative rate normalized to the non-
radiative one, the uncertainty in IB contribution is neg-
ligible compared to the SD contribution which dominates
the error budget, therefore no uncertainty is shown for the
IB part. The final uncertainties are about 10%. From the
above it is evident that there is a dependence on the form
of the distribution amplitude chosen to evaluate these form
factors. However, the difference is not too large, which is
reassuring.

Having obtained detailed predictions for the pion in the
final state, it is also instructive to have an estimate of the
decay width for the kaon in the final state. Again, normal-
izing to the appropriate nonradiative width, and employing
the asymptotic distribution amplitude (keeping the Borel
parameter, M ¼ 3.35 GeV), we get

Γ̄K ¼ Γðτ → KνγÞ=Γðτ → KνÞ ∼ 8 × 10−3: ð46Þ

This (appropriately normalized) rate is roughly half of
that for the pion.

V. DISCUSSION AND CONCLUSIONS

In the present paper, we have provided detailed pre-
dictions for the rate and photon spectrum for the process
τ− → π−ντγ. Employing Ward identity from the beginning,
the amplitude was written so as to include the contact term
which is necessitated by gauge invariance. The decay
involves two timelike form factors. These have been
calculated in the present work employing the light cone

SD(asym)

VV(asym)

AA(asym)

AV(asym)

SD(CZ)

VV(CZ)

AA(CZ)

AV(CZ)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

z

(a)

SD(asym)

VV(asym)

AA(asym)

AV(asym)

SD(CZ)

VV(CZ)

AA(CZ)

AV(CZ)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

z

(b)

FIG. 6. The SD contribution (blue) considering (a) Γρ and Γa1 to be constant and (b) the t dependence of Γρ and Γa1 is shown here for
asymptotic (solid) and Chernyak-Zhitnisky (dashed) pion distribution amplitudes. The contribution from the vector (magenta), axial
vector (green) and the interference (red) of the two is also shown.
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INT
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0.015
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(b)

FIG. 7. The invariant mass spectrum of the π − γ system for radiative tau decay is shown here considering (a) asymptotic and (b) CZ
pion distribution amplitude. The contributions from the IB (magenta), SD (green) and the interference (red) of the two is also shown. The
shaded region shows the uncertainties.
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sum rules, to twist-2 accuracy. The form factors, which
automatically via the dispersion relations, encode the
contributions from the vector and axial-vector mesons,
have the right asymptotic behavior expected from pertur-
bative QCD. The ratio of the axial-vector to vector form
factor at zero momentum transfer defines the pion structure
dependent parameter, γ. Our evaluation of this parameter,
along with the sign, matches very well with the exper-
imental value obtained from π → lνγ, where the relevant
pion-photon form factors, unlike the present case, are
spacelike. The obtained values for the normalized rate
and the photon spectrum are similar to those obtained in
[11]. This provides a cross-check on the theoretical
predictions employing a totally different method for com-
puting the nonperturbative quantities. We have also pro-
vided an estimate for the appropriately normalized rate with
kaon in the final state instead of a pion. This normalized
rate is approximately half of that for the pion. The present
study employed distribution amplitudes to twist-2 accuracy.
The uncertainties reported here are the uncertainties asso-
ciated with the uncertainties of the various parameters used.
There will be further uncertainties associated with quark
hadron duality approximation, and higher twist and hight
order contributions. The pion is considered to be massless
here. The effect of such an assumption is less than 1% on
the values of the form factors. The uncertainties associated
with quark hadron duality violation, like in inclusive tau
decays are expected to be at 10% level, and can be
calculated in a particular model to parametrize the spectral
density. Precise calculations of these duality violations is
indeed an important missing piece but is out of the scope of
the present work. It would be interesting to consider both
higher twist contributions as well as contributions higher
order in αs. These can have a significant impact on the
phenomenology of radiative one meson tau decays.

APPENDIX A: CONVENTIONS, DEFINITIONS
AND IDENTITIES

Here, we are reporting the various conventions and
definitions used for the sake of completeness,

1. The matrix element of the pion is defined as

hπ−ðp2Þjðd̄γμð1 − γ5ÞuÞj0i ¼ ifπp
μ
2; ðA1Þ

where fπ is the pion decay constant.
2. The outgoing photon state can be obtained by the

use of a creation operator on the vacuum which
results in

hντγjν̄τγμð1 − γ5Þjτ−i

¼ −ieϵ(μ
Z

d4xeikxhντjTfjαemðxÞν̄τΓμτð0Þgjτ−i;

ðA2Þ

where jαemðxÞ¼Qψ ψ̄ðxÞγαψðxÞ¼−τ̄γατþQuūγαuþ
Qdd̄γαd is the electromagnetic current. Qu and Qd
are the electromagnetic charges of u and d quarks,
respectively in the units of e.

3. The commutator of the electromagnetic charge oper-
ator and electroweak current of the pion is given by

½j0emðxÞ; d̄Γμuð0Þ'
¼ −Quδ3ðxÞd̄ð0ÞΓμuðxÞ þQd∂3ðxÞd̄ðxÞΓμuð0Þ:

ðA3Þ

4. The propagator of the massless fermions in position
space is given by,

iS0ðxÞ ¼ h0jTfuðxÞūð0Þgj0i

¼ i=x
2π2x4

¼ −h0jTfuð0ÞūðxÞgj0i: ðA4Þ

5. γμγβγα ¼ gμβγβ − gμαγβ þ gβαγμ − iϵμβαργργ5.
6. The leading order expansion (twist-2) of the matrix

element hπ−ðp2Þjd̄ðyÞγμγ5uðxÞj0i in the light cone
limit (x2 ¼ 0) is given by

hπ−ðp2Þjd̄ðyÞγμγ5uðxÞj0i

¼ ifπp2μ

Z
1

0
dueiðup2yþūp2xÞϕðu; μÞ; ðA5Þ

where ū ¼ 1 − u and ϕðu; μÞ is pion distribution
amplitude of twist-2.

7. The matrix elements of ρ and a1 mesons are
defined as

hVðp2 þ kÞjd̄γμuj0i ¼ −imVfVϵ
ðVÞ(
μ ðA6Þ

hπ−ðp2ÞjjαemðxÞjρðp2 þ kÞi ¼ ϵαλβνϵðρÞλ p2βkνFρπðk2Þ
ðA7Þ

hπ−ðp2Þjj
μ
emðxÞja1ðp2 þ kÞi

¼ ½ð2p2 − kÞ:kgμλ − ð2p2 − kÞμkλ'ϵða1Þ(λ Ga1πðk
2Þ;

ðA8Þ

whereV can beρora1meson,mV andfV are themass
and decay constant of the V meson, respectively. ϵðρÞλ

and ϵða1Þ(λ are the polarization vectors of ρ and a1
meson, respectively. Fρπðk2Þ and Ga1πðk

2Þ are the
scalar functions of k2 which contains the information
of ρ → π and a1 → π transitions, respectively.

8. The sum over polarization of ρ or a1 meson is
given by

ϵðVÞλ ϵðVÞ(ν ¼ −gλν þ
ðp2 þ kÞλðp2 þ kÞν

m2
V

: ðA9Þ
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9. The t dependence of the decay widths of ρ and a1
mesons are given by [26]

ΓρðtÞ ¼ Γρ
m2

ρ

p3
ρ

p3

t
ðA10Þ

with 2p ¼ ðt − 4m2
πÞ1=2 and 2pρ ¼ ðm2

ρ − 4m2
πÞ1=2:

Γa1ðtÞ ¼
ma1Γa1ffiffi

t
p gðtÞ

gðm2
a1Þ

ðA11Þ

with

gðtÞ ¼

8
>><

>>:

4.1ðt − 9m2
πÞ3ð1 − 3.3ðt − 9m2

πÞ þ 5.8ðt − 9m2
πÞ2Þ if t < ðmρ þmπÞ2

t
&
1.623þ 10.38

t
−
9.38
t2

þ 0.65
t3

'
else:

APPENDIX B: VALUES OF
PARAMETERS USED

Here, we tabulate the values of the various parameters
used for numerical calculation.

S.No. Parameter Symbol Value

1. Fine structure
constant

α 1
133.6

2. Fermi’s constant GF 1.166 × 10−5 GeV−2 [1]
3. Mass of τ lepton mτ (1776.86" 0.12) MeV [1]
4. Pion decay constant fπ (130.41" 0.23) MeV
5. CKM matrix

element
Vud (0.9745" 0.0001) [1]

6. Mass of ρ meson mρ (775.26" 0.25) MeV [1]
7. Decay width

of ρ meson
Γρ (149.1" 0.8) MeV [1]

8. Mass of a1 meson ma1 (1230" 40) MeV [1]
9. Decay width

of a1 meson
Γa1 (425" 175) MeV [1]

10. Vector form factor FðπÞ
V ð0Þ 0.0254" 0.0017 [1]

11. Axial-vector
form factor

FðπÞ
A ð0Þ 0.0119" 0.0001 [1]

12. αsð1 GeVÞ αsð1 GeVÞ ∼0.7
13. αsðmτÞ αsðmτÞ 0.325
14. a2ð1 GeVÞ a2ð1 GeVÞ 0.12

The value of the fine structure constant is taken at the
scalemτ and the decay width of the a1 meson is taken to the
central value of the range given in [1].

APPENDIX C: KINEMATICS AND
DECAY WIDTH

The differential decay width can be written as a sum of
different components [14]: ΓIB coming from jAIBj2, ΓSD

coming from jASDj2 and Γint coming from 2ReðA(
IBASDÞ.

ΓSD is further divided into three parts: ΓVV coming from
jAvj2, ΓAA coming from jAAj2 and ΓAV coming from
2ReðAVA(

AÞ:

Γall ¼ ΓIB þ Γint þ ΓSD;

ΓSD ¼ ΓVV þ ΓAV þ ΓAA;

Γint ¼ ΓIB−A þ ΓIB−V: ðC1Þ

For convenience, we use the dimensionless variables x and
y defined as

x ¼ 2p1:k
m2

τ
; y ¼ 2p1:p2

m2
τ

: ðC2Þ

In the rest frame of tau, x and y are simply the energies of
photon and pion respectively in units of mτ

2 . The kinematical
boundaries of x and y are given by

0 ≤ x ≤ 1 − r2p; 1 − xþ
r2p

1 − x
≤ y ≤ 1þ r2p; ðC3Þ

where r2p ¼ m2
π

m2
τ
. We have considered pion to be massless for

form factor calculations and hence we will use rp → 0 in
our final answers.
The variable t, the invariant mass square of the pion-

photon system, can be written in terms of x and y as

t ¼ P2 ¼ ðp2 þ kÞ2 ¼ m2
τðxþ y − 1Þ

⇒ P:k ¼ m2
τ

2
ðxþ y − 1 − r2pÞ: ðC4Þ

In terms of variables x and y, the differential decay width
in the rest frame of tau is

d2Γ
dxdy

¼ mτ

256π3
jAj2; ðC5Þ

where different contributions to the differential decay width
are (calculated using FeynCalc [27])
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d2ΓIB

dxdy
¼ α

2π
fIBðx; y; r2pÞ

Γτ−→π−ντ

ð1 − r2pÞ2
;

d2ΓSD

dxdy
¼ α

8π
m4

τ

f2π
fjFðπÞ

V j2fVVðx; y; r2pÞ þ 2ReðFðπÞ(
A FðπÞ

V ÞfAVðx; y; r2pÞ þ jFðπÞ
A j2fAAðx; y; r2pÞg

Γτ−→π−ντ

ð1 − r2pÞ2
;

d2Γint

dxdy
¼ α

2π
m2

τ

fπ
½fIB−Vðx; y; r2pÞReðFðπÞ

V Þ þ fIB−Aðx; y; r2pÞReðFðπÞ
A Þ'

Γτ−→π−ντ

ð1 − r2pÞ2
; ðC6Þ

with α ¼ e2
4π, being the fine structure constant,

fIBðx; y; r2pÞ ¼
½r4pðxþ 2Þ − 2r2pðxþ yÞ þ ðxþ y − 1Þð2 − 3xþ x2 þ xyÞ'ðr2p − yþ 1Þ

ðr2p − x − yþ 1Þ2x2
;

fVVðx; y; r2pÞ ¼ −½r4pðxþ yÞ þ 2r2pð1 − yÞðxþ yÞ þ ðxþ y − 1Þð−xþ x2 − yþ y2Þ';
fAVðx; y; r2pÞ ¼ −½r2pðxþ yÞ þ ð1 − x − yÞðy − xÞ'ðr2p − x − yþ 1Þ;
fAAðx; y; r2pÞ ¼ fVVðx; y; r2pÞ;

fIB−Vðx; y; r2pÞ ¼ −
ðr2p − x − yþ 1Þðr2p − yþ 1Þ

x
;

fIB−Aðx; y; r2pÞ ¼ −
½r4p − 2r2pðxþ yÞ þ ð1 − xþ yÞðxþ y − 1Þ'ðr2p − yþ 1Þ

ðr2p − x − yþ 1Þx
; ðC7Þ

and Γτ−→π−ντ is the nonradiative decay width given by

Γτ−→π−ντ ¼
G2

FjVudj2f2π
8π

m3
τð1 − r2pÞ2: ðC8Þ

The photon spectrum is obtained by integrating over y.
Integration over x will give the total decay width for
radiative tau decay. The IB contribution has the infrared
divergences which can be fixed by putting a threshold on
the minimum energy of the emitted photon. The SD
contribution does not face any such divergence and hence
can be integrated over the full phase space:

Γðτ− → π−ντγÞ ¼
Z

1−r2p

x0
dx

Z
1þr2p

1−xþ
r2p
1−x

dy
d2Γ
dxdy

; ðC9Þ

where x0 is the minimum energy cut for the photon energy
in the unit of mτ

2 .

To get the invariantmass spectrumof theπγ system, define
another dimensionless variable z (as used in Ref. [14]) as

z ¼ t
m2

τ
¼ xþ y − 1: ðC10Þ

The kinematical boundaries for the new variable are

z − r2p ≤ x ≤ 1 −
r2p
z
; r2p ≤ z ≤ 1: ðC11Þ

The πγ spectrum can be obtained by substituting y in terms of
z in d2Γ

dxdy and integrating it over x, i.e.,

dΓ
dz

¼
Z

1−
r2p
z

z−r2p
dx

d2Γ
dxdy

ðx; y ¼ z − xþ 1Þ: ðC12Þ
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1 Introduction

In particle physics, the Standard Model (SM) of strong and electro-weak interactions is
the most successful model of particle interactions. In the SM, baryon number conserva-
tion is an accidental global symmetry at the classical level. In 1967, Sakharov proposed
that baryon number violation is one of the important criteria to explain the matter-anti
matter asymmetry of the universe [1]. Baryon number violation at the perturbative level
is well motivated in the theories of grand unification (GUTs), supersymmetry, models of
baryogenesis, model building in string theory and in theories with extra dimensions, etc
(see for example [2–12] and references therein). Proton decay is a baryon number violating
process. Any observation of it is a direct indication of physics beyond the SM. This makes
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proton decay a crucial test of such models and an important window to understand the
nature of matter unification.

In the case of GUTs, quarks and leptons fall in the common multiplets and hence
can lead to proton decay at the tree level via the exchange of superheavy gauge bosons
or scalar and/or vector leptoquarks. This makes it possible to write the effective baryon
and lepton number violating operators of dim-6 by integrating out these heavy fields,
such that they are consistent with the SM gauge symmetry. These effective operators are
found to conserve B − L which implies that a proton always decays into an antilepton (or
antineutrino) (see [13–16] for reviews on proton decays).

p → e+π0 is the most favoured channel in several GUTs models. As with any process
involving hadrons, proton decay modes like p → e+π0 require hadronic matrix elements,
the form factors, to be computed within some framework or at least properly estimated.
This mode has been studied using various models of QCD, such as relativistic quark model,
QCD sum rules, effective chiral theory, lattice QCD, [17–23]. Very recently, it has been
studied in the framework of light cone sum rules [24]. Another decay channel which is
found to have strong constraints is the radiative mode: p → e+γ. The radiative mode is
expected to be suppressed by αem. In [25], it is been studied within SU(5) GUT set up.
They pointed out that it might be a more feasible channel experimentally as there will
be less nuclear absorption. The form factors have been evaluated with a simple harmonic
oscillator potential as a model for binding the quarks inside the proton. In [26], it was
studied in the framework of bag model and they concluded that it is not a feasible channel
for experiments as the decay rate is small. The experimental facilities have been advancing
over the time (see [27] for a review of different experiments and expected sensitivities
expected at future experiments) and hence a reanalysis of this mode is required, including
a fresh attempt at evaluation of the involved form factors.

Experimentally, Kolar Gold Field [28], NUSEX [29], SOUDAN [30], Kamiokande [31],
etc, were designed to detect the proton decay. At present, the Super-Kamiokande, the
largest proton water Cherenkov detector, is the most sensitvite detector and has put the
most stringent lower bounds on the partial life times for the proton decays, τp > 1034
years [32]. The lower bound for the radiative proton decay modes p → e+γ and p → µ+γ

are τp > 6.7 × 1032 years and τp > 4.8 × 1032 years, respectively [33]. In the Water-
Cherenkov experiments, such as Super-Kamiokande, the decay products of the proton are
measured approximately at rest which makes the relevant energy scale for the process to
be the proton mass (see [34] for a review on Super-Kamiokande).

At these energy scales, a perturbative description for the hadronic transitions is not
possible in QCD because of quark confinement. Hence, we need alternative ways to get an
estimate of the hadronic matrix elements which can help us in probing the baryon-number
violating physics with the help of experimental data. Light Cone Sum Rules (LCSR) is
one such interesting framework which helps us to predict the hadronic matrix elements
at the proton mass scales using the analytic properties of the correlation functions (see
for example [35–40] for details). In this work, we study the p → e+γ in the framework
of LCSR.

The rest of the paper is organised as follows: in section 2, we discuss the general
parametrisation of the amplitude for the decay in terms of the form factor and define
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the physical FFs involved. In section 3, we discuss the computation of these form factors
in the framework of LCSR. Here, we discuss the two cases: firstly, the use of photon
distribution amplitudes and interpolating the proton state; and secondly, the use of proton
distribution amplitudes and interpolating the photon state. In this section, we also discuss
the numerical results obtained in both the cases. section 4 is dedicated to discussion of the
results and conclusions. This paper consists of five appendices. In appendix-A, we collect
the distribution amplitudes (DAs) of proton and photon upto the desired twist. appendix-
B and appendix-C are dedicated to collect the correlation functions computed in QCD for
the case employing photon DAs and proton DAs, respectively. In appendix-D, we provide
some useful identities and integrals along with definitions and conventions used through
out the paper. Finally, we tabulate the numerical values of all the important parameters
involved during numerical analysis in appendix-E.

2 Amplitude computation

Proton decay is a baryon number violating process. Though baryon number is a good
symmetry in the SM, one can write higher dimensional effective operators which allow the
proton to decay. In a beyond the SM scenario, like GUTs, proton decay is possible even at
tree level via an exchange of heavy gauge bosons or leptoquarks. On integrating out these
heavy particles, one obtains the baryon number violating dim-6 SMEFT lagrangian which
preserves the SU(3)C × SU(2)L × U(1)Y invariance [41–44].

L(6)
/B

=
∑

Γ,Γ′
cΓΓ′OΓΓ′ =

∑

Γ,Γ′
cΓΓ′εabc

(
d̄caPΓub

)
(ēcPΓ′uc) (2.1)

Here, Γ,Γ′ ∈ {L,R} are the chirality projections. cΓΓ′ are the Wilson coefficients. C =
iγ2γ0 is the charge conjugation matrix and a, b, c are the colour indices. It is worth pointing
out at this juncture that the above effective lagrangian is assumed to be expressed in
terms of the physical quark and lepton fields at the relevant scale. This means that all the
flavour mixing and perturbative renormalization group (RG) effects together with the short
distance information, are collectively lumped in the Wilson coefficients cΓΓ′ . Since the aim
of the present work is to systematically evaluate the corresponding form factors relevant
for the radiative mode, the exact details of these effects are not particularly relevant here,
and therefore not discussed further. It should be straightforward to explicitly express these
dependencies in a concrete model of proton decay.

The transition amplitude for p → e++γ is the matrix element of the dim-6 lagrangian
given in eq.-(2.1) between the initial and the final states.

A
(
p(pp) → e+(pe)γ(k)

)
=
∑

ΓΓ′
cΓΓ′

〈
e+(pe)γ(k) |OΓΓ′ | p(pp)

〉

=
∑

ΓΓ′
cΓΓ′

〈
e+(pe)γ(k)

∣∣∣εabc
(
d̄caPΓub

)
(ēcPΓ′uc)

∣∣∣ p(pp)
〉

(2.2)
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As mentioned above, all the flavour effects are absorbed in the Wilson coefficients, cΓΓ′ .
On demanding the gauge invariance, this amplitude can be parametrised as

A
(
p(pp) → e+(pe)γ(k)

)
=
∑

ΓΓ′
cΓΓ′ v̄cePΓ′

{

εα∗AΓΓ′
iσαβkβ

mp

}

up(pp). (2.3)

where AΓΓ′ are the non-perturbative form factors. Parity conservation in QCD relates the
different form factors relevant for the process:

ALL = −ARR ALR = −ARL. (2.4)

Hence, this process involves only two independent gauge invariant form factors. For the
present study, we choose them to be ALL and ALR. Clearly, the main hurdle in obtaining
the branching ratio is the knowledge of the form factors. All other factors are known once
a given model of particle physics leading to proton decay is chosen.

The photon can be emitted either from the proton or the positron. The photon emis-
sion from positron can be trivially calculated and is not explicitly written as it does not
contribute to the dipole transition depicted above. The photon emission from proton in-
volves the photon emission from both u and d-quarks and contributes to the form factors.
The study of these FFs in the framework of LCSR is the subject of the present study. The
transition matrix element for the photon emission from proton can be factorised in the
leptonic and hadronic parts as

〈
e+(pe)γ(k) |OΓΓ′ | p(pp)

〉
= v̄ce(pe)HΓΓ′(pP , pe)up(pp). (2.5)

We choose to parametrise the hadronic matrix element HΓΓ′up(pp) as (see [45] for general
parametrisation of the vertex for b → sγ transition):

HΓΓ′(pP , pe)up(pp)

=
〈
γ(k)

∣∣∣εabc
(
dTaCPΓub

)
(PΓ′uc)

∣∣∣ p(pp)
〉

= PΓ′ε∗µ

[

F 1
ΓΓ′

/kpµp
m2

p
+ F 2

ΓΓ′
/kkµ

m2
p
+ F 3

ΓΓ′γµ + iF 4
ΓΓ′

σµνkν

mp
+ F 5

ΓΓ′
pµp
mp

+ F 6
ΓΓ′

kµ

mp

]

up(pp)

(2.6)

The physical FFs, AΓΓ′ are then related to Fn
ΓΓ′ , with n = {1, 2, 3, 4, 5}, considering positron

to be massless as,
AΓΓ′ = F 1

ΓΓ′

2 + F 4
ΓΓ′ + F 5

ΓΓ′

2 . (2.7)

3 Form factors in the LCSR framework

To compute the FFs, AΓΓ′ , in LCSR framework, we need to compute the hadronic matrix
element given in eq. (2.6) in QCD. For that there are two possibilities:

1. Interpolating the proton state and using the photon distribution amplitudes (DAs).

2. Interpolating the photon state and using the proton distribution amplitudes (DAs).
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We will discuss here both these approaches one by one with an aim to be finally able
to compare the outcomes from both in order to gain deeper insights into the underlying
non-perturbative dynamics.

3.1 Case-1: using proton interpolation and photon DAs

The interpolation current for the proton state is not unique. For the present study, we
choose it to be

χ(x) = εabc
(
uaT (x)Cγµub(x)

)
γ5γ

µdc(x). (3.1)

Here C is the charge conjugation matrix, {a, b, c} are the color indices and the superscript
T denotes the transpose. This current is popularly known as the Ioffe current [46] and is
defined such that,

〈0 |χ(0)| p(pp)〉 = mpλpup(pp) (3.2)

where, mp is the mass of proton, up(pp) is the proton spinor and λp is the interaction
strength of this interpolation current with the proton state.

In literature, this current is found to provide the maximum stability against the Borel
mass, the parameter introduced in LCSR computations [47]. The Ioffe current is a linear
combination of

χ1(x) = εabc
(
uTa(x)Cγ5db(x)

)
uc(x) and χ2(x) = εabc

(
uTa(x)Cdb(x)

)
γ5u

c(x)
(3.3)

such that χ(x) = 2(χ2 − χ1) after performing Fierz transformation (see for example [48]).
χ1 is the common choice of interpolation current employed in Lattice QCD computations.
On interpolating the proton state using the Ioffe current, the correlation function to be
computed reads as

ΠΓΓ′(pp, pe) = i
∫

d4xeipe.x 〈γ(k) |T{QΓΓ′(x)χ̄(0)}| 0〉 . (3.4)

Here, χ̄(0) ≡ χ†(0)γ0, QΓΓ′(x) = εabc
(
dTaCPΓub

)
(PΓ′uC) and T denotes the time ordering.

One can get the hadronic parametrisation of this correlation function by inserting a
complete set of intermediate states with the same quantum numbers as the proton and
isolating the pole contribution of the proton state as,

Πhad
ΓΓ′ (pp,pe)=− mpλp

p2p−m2
p
HΓΓ′ (pe,pp)

(
/pp+mp

)
+. . .

= ε∗µPΓ′

[

Πhad,PK
ΓΓ′

/kpµp
m2

p
+Πhad,KK

ΓΓ′
/kkµ

m2
p
+Πhad,V

ΓΓ′ γµ+Πhad,T
ΓΓ′

iσµνkν

mp
+Πhad,P

ΓΓ′
pµp
mp

+Πhad,K
ΓΓ′

kµ

mp
+Πhad,KPP

ΓΓ′

/kpµp/pp
m3

p
+Πhad,KKP

ΓΓ′

kµ/k/pp
m3

p
+Πhad,V P

ΓΓ′

γµ/pp
mp

+Πhad,TP
ΓΓ′

iσµνkν/pp
m2

p
+Πhad,PP

ΓΓ′
/ppp

µ
p

m2
p
+Πhad,KP

ΓΓ′

kµ/pp
m2

p

]

. (3.5)
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The ellipsis above represent the heavy states i.e. excited states and continuum, contri-
butions. The 12 Dirac structures in eq. (3.5) can be used to derive the form factors
ALL and ALR.

Πhad,r
ΓΓ′ with r = {PK,KK, V, T, P,K,KPP,KKP, V P, TP, PP,KP } are the scalar

functions of p2p and P 2
e = −p2e and can be parametrised in terms of spectral densities using

the dispersion relation given by,

Πhad,r
ΓΓ′ (p2p, P 2

e ) =
∫ ∞

0
ds
ρhad,rΓΓ′ (s, P 2

e )
s − p2p

. (3.6)

where, ρhad,rΓΓ′ (s, P 2
e ) are the spectral densities given by,

ρhad,rΓΓ′ (s, P 2
e ) =

1
π
ImΠhad,r

ΓΓ′ (s+ iε, P 2
e ) (3.7)

These spectral densities can also be written by separating the pole contribution and the
heavy states contributions as

ρhad,rΓΓ′ (s, P 2
e ) = λpm

2
pδ(s − m2

p)F r
ΓΓ′(s, P 2

e ) + ρheavy,rΓΓ′ (s, P 2
e ). (3.8)

where F r
ΓΓ′(s, P 2

e ) can be related to Fn
ΓΓ′(s, P 2

e ) for s = m2
p i.e proton being onshell which

is ensured by the delta function. These relations reads as,
FPK

ΓΓ′

(
s,P 2

e

)
=FKPP

ΓΓ′

(
s,P 2

e

)
=F 1

ΓΓ′

(
s,P 2

e

)
, FKK

ΓΓ′

(
s,P 2

e

)
=FKKP

ΓΓ′

(
s,P 2

e

)
=F 2

ΓΓ′

(
s,P 2

e

)
,

F V
ΓΓ′

(
s,P 2

e

)
=F V P

ΓΓ′

(
s,P 2

e

)
=F 3

ΓΓ′

(
s,P 2

e

)
, F T

ΓΓ′

(
s,P 2

e

)
=F TP

ΓΓ′

(
s,P 2

e

)
=F 4

ΓΓ′

(
s,P 2

e

)
,

FP
ΓΓ′

(
s,P 2

e

)
=FPP

ΓΓ′

(
s,P 2

e

)
=F 5

ΓΓ′

(
s,P 2

e

)
, FK

ΓΓ′

(
s,P 2

e

)
=FKP

ΓΓ′

(
s,P 2

e

)
=F 6

ΓΓ′

(
s,P 2

e

)
.

(3.9)
Using the assumptions of the quark-hadron duality, the spectral desities of the heavy states,
ρheavy,rΓΓ′ (s, P 2

e ), can be approximated to the spectral densities computed using the quantum
chromodynamics (QCD) as,

∫ ∞

s0
ds
ρheavy,rΓΓ′ (s, P 2

e )
s − p2p

≈
∫ ∞

s0
ds
ρQCD,r

ΓΓ′ (s, P 2
e )

s − p2p
=
∫ ∞

s0
ds

1
π

Im(ΠQCD,r
ΓΓ′ (s, P 2

e ))
s − p2p

(3.10)

with s0 being the continuum threshold which is a free parameter and is expected to be
chosen below or equal to the lightest excitation but well above the ground state. In the
present case, the lightest excitation state is the Roper resonance with mass of 1.44GeV.
To compute the contribution of the spectral densities due to heavier states one needs to
compute the correlation functions Πr

ΓΓ′(s, P 2
e ) in QCD.

In QCD, the time ordered product in eq. (3.4) can be computed by partially contracting
the quark fields as,

T{QΓΓ′(x)χ̄(0)}=−1
2ε

lmnεijkPΓ′

[
(ūl(0)ΓAui(x))

{
ΓAγµS̃

(u)
jm(x)PΓS

(d)
nk (x)γµγ5 . . .

+. . .S(u)
jm(x)γµΓ̃APΓS

(d)
nk (x)γµγ5

}

+
(
d̄l(0)ΓAdi(x)

){
S(u)
kn (x)γµS̃(u)

jm(x)PΓΓAγ
µγ5

}]
.

(3.11)
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Here, we have employed the completeness relation given by,

q(x)q̄(0) = −1
4 (q̄(0)ΓAq(x))ΓA (3.12)

with, q = {u, d} and the chosen basis of gamma matrices is

ΓA =
{
1, γ5, γρ, iγργ5,

1√
2
σρσ

}
. (3.13)

Further, Γ̃A = CΓT
AC

−1 = ηiΓA with C = iγ2γ0 and,

ηi =





1, ΓA = 1, iγ5, γµγ5
−1, ΓA = γµ,σµν

(3.14)

Sij(x) is the quark propagator at the light like separations. In the massless limit, it is
given by,

Sij(x) =
i/x

2π2x4 δij − 〈q̄q〉
12 δij

(

1 + m2
0x

2

16

)

+ . . . (3.15)

Here, 〈q̄q〉 is the quark condensate. Ellipses denote higher terms with one or more gluon
exchanges which are not considered in this work. m0 is associated with the mixed conden-
sate as

〈q̄gsG.σq〉 = m2
0 〈q̄q〉 (3.16)

where G.σ = Gµνσµν . After performing the partial integrals, we are left with the matrix
elements of two or more particle (quarks and gluons) operators which had been found to be
written in terms of light cone distribution amplitudes (DAs) of photon of varying twist [49].
In the present work, we only consider the two particle DAs of twist-2 and twist-3 and leave
a more detailed analysis of three-particle twist-3 and higher twist DAs (which are expected
to be small) for future works.

The definitions of the DAs are collected in appendix-A. It is important to note here
that at twist-2 there is only one DA, φγ(u, µ) which appears in the matrix element of
two quark operator with ΓA = 1√

2σ
ρσ. At twist-3, there are 2 two-particle DAs which

appears for ΓA = {γρ, iγργ5} (for details look at appendix-A). On substituting the partial
contractions of the time ordered product of quarks,eq. (3.11) and the two-particle twist-2
and twist-3 DAs of the photon and summing up all the contributions, we get the analytic
structure of the correlation function defined in eq. (3.5) in QCD as,

ΠQCD
ΓΓ′ (pp,pe)= ε∗µPΓ′

[

ΠQCD,PK
ΓΓ′

/kpµp
m2

p
+ΠQCD,KK

ΓΓ′
/kkµ

m2
p
+ΠQCD,V

ΓΓ′ γµ+ΠQCD,T
ΓΓ′

iσµνkν

mp

+ΠQCD,P
ΓΓ′

pµp
mp

+ΠQCD,K
ΓΓ′

kµ

mp
+ΠQCD,KPP

ΓΓ′

/kpµp/pp
m3

p
+ΠQCD,KKP

ΓΓ′

kµ/k/pp
m3

p

+ΠQCD,V P
ΓΓ′

γµ/pp
mp

+ΠQCD,TP
ΓΓ′

iσµνkν/pp
m2

p
+ΠQCD,PP

ΓΓ′
/ppp

µ
p

m2
p
+ΠQCD,KP

ΓΓ′

kµ/pp
m2

p

]

(3.17)
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ΠQCD,r
ΓΓ′ are the scalar functions of p2p and P 2

e . The analytic expressions for these functions
are lengthy and hence are provided in appendix-B. We also provide several useful identities
and integrals in appendix-D. According to the light cone sum rule matching condition,

Πhad,r
ΓΓ′

(
p2p, P

2
e

)
= ΠQCD,r

ΓΓ′

(
p2p, P

2
e

)
(3.18)

Using the above relations, the final sum rule for F r
ΓΓ′ reads as

λpm
2
p
F r

ΓΓ′
(
s, P 2

e

)

m2
p − p2p

=
∫ s0

0
ds

1
π

ImΠr,QCD
ΓΓ′

(
s, P 2

e

)

s − p2p
(3.19)

To suppress the effect of the heavy states, we perform the Borel transformation with respect
to p2p. After Borel transformation the sum rule reads as (see appendix-D for details),

F r
ΓΓ′

(
s0, P

2
e

)
= e

m2
p

M2

λpm2
p

∫ s0

0
dse− s

M2
1
π
ImΠQCD,r

ΓΓ′

(
s, P 2

e

)
(3.20)

Here M is the Borel mass and s0 is the continuum threshold. These are the artefacts
of the LCSR method, and have to be fixed such that the sum rule is saturated with the
ground state and the heavy state contributions are properly suppressed. A typical rule of
the thumb is to try and obtain at least 70% contribution to the correlation function from
the ground state itself. The details on these parameters is given in the next section.

3.1.1 Numerical analysis

The values of various parameters used during the numerical calculations are provided in
appendix-E. The physical FFs, AΓΓ′ , for ΓΓ′ = LL and LR are studied as a function of
P 2
e = −p2e and the Borel mass M . These FFs can be found from different combinations

of FΓΓ′ ’s as can be read from eq. (2.7) and eq. (3.9). As the photon is onshell, we put
k2 = 0. For the case of ΓΓ′ = LL, we have only two possibilities to extract ALL(s0, P 2

e )
which are from the combination of F T

ΓΓ′ and F TP
ΓΓ′ with FKPP

ΓΓ′ as FPK
ΓΓ′ , FP

ΓΓ′ , and FPP
ΓΓ′ turns

out to be zero in this case. In figure 1, we show the variation of ATP+KPP
LL (s0, P 2

e ) with
P 2
e for three different values of the continuum threshold s0. In this figure, we also show its

variation with the Borel mass, M for three different values of P 2
e at fixed s0 = (1.44GeV)2

which is equal to the Roper resonance. The combination AT+KPP
LL (s0, P 2

e ) is found to be
less stable when varying the parameters s0 and M (as can be seen from figure 2) and hence
is less reliable. On the face value, it is in broad agreement with ATP+KPP

LL . As can be
seen from the detailed expressions of these functions (listed in appendix-B), condensate
contributions are quite important (and also dominant in some cases), and therefore can’t
be simply ignored. For the case of ΓΓ′ = LR, we have a total of eight combinations as
can again be read from eq. (2.7) and eq. (3.9). For this case as well, the four combinations
which involves F T

ΓΓ′ are found to be less stable against s0 and M and hence we do not show
them here. The other four combinations involving F TP

ΓΓ′ are shown in figure 3-figure 6.
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Figure 1. The physical FF, ALL(s0, P 2
e ) is calculated from the combination of FTP

LL and FKPP
LL

employing photon DAs. Left panel: ATP+KPP
LL (s0, P 2

e ) vs P 2
e is shown for three values of s0 =

(1.4 GeV)2(violate dotted), s0 = (1.44 GeV)2(red solid) and s0 = (1.5 GeV)2 (blue dashed) at
the Borel Mass, M2 = 2 GeV2. Right Panel: ATP+KPP

LL (s0, P 2
e ) vs M is shown for three values

of P 2
e = 0.5 GeV2(red solid), P 2

e = 1 GeV2(red dashed) and P 2
e = 2 GeV2 (red dotted) at the

continuum threshold, s0 = (1.44 GeV)2.
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Figure 2. Same as figure 1 but now with the combinations of FT
LL and FKPP

LL .

The values of the physical FFs, AΓΓ′ at P 2
e = 0.5 GeV2,1 and M2 = 2 GeV2 for

s0 (= 1.44 GeV)2 are found to be:

AT+KPP
LL (1.442, 0.5) = (0.00388± 0.00126) GeV2,

ATP+KPP
LL (1.442, 0.5) = (0.00221± 0.00082) GeV2. (3.21)

ATP+KPP+P
LR (1.442, 0.5) = (0.00251± 0.00118) GeV2,

ATP+KPP+PP
LR (1.442, 0.5) = (0.00250± 0.00118) GeV2

ATP+PK+P
LR (1.42, 0.5) = (0.00176± 0.00123) GeV2,

ATP+PK+PP
LR (1.42, 0.5) = (0.00176± 0.00123) GeV2. (3.22)

From the above equations, it is clearly evident that there is quite good consistency in the
form factor, ALR, determined from different combinations. The uncertainties are associated
with the uncertainties in the values of parameters entering the DAs. These uncertainties

1LCSR calculations are trustworthy at |Q2| → ∞, where Q2 is the momentum transferred squared. To
be consistent with this requirement, in this case, we have chosen Q2 = P 2

e = 0.5 GeV2.
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Figure 3. The physical FF, ALR(s0, P 2
e ) is calculated from the combination of FTP

LR , FPK
LR and

FPP
LR employing photon DAs. Left panel: ATP+PK+PP

LR (s0, P 2
e ) vs P 2

e is shown for three values of
s0 = (1.4 GeV)2(violate dotted), s0 = (1.44 GeV)2(red solid) and s0 = (1.5 GeV)2 (blue dashed)
at the Borel Mass, M2 = 2 GeV2. Right Panel: ATP+PK+PP

LR (s0, P 2
e ) vs M is shown for three

values of P 2
e = 0.5 GeV2(red solid), P 2

e = 1 GeV2(red dashed) and P 2
e = 2 GeV2 (red dotted) at

the continuum threshold, s0 = (1.44 GeV)2.
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Figure 4. Same as figure 3 but now with the combinations of FTP
LR , FPK

LR and FP
LR.
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Figure 5. Same as figure 3 but now with the combinations of FTP
LR , FKPP

LR and FPP
LR .
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Figure 6. Same as figure 3 but now with the combinations of FTP
LR , FKPP

LR and FP
LR.
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Figure 7. The physical FF, ATP+KPP
LL (s0, P 2

e ) (left pannel) and ATP+KPP+PP
LR (s0, P 2

e ) (right
panel) vs P 2

e are shown at s0 = (1.44 GeV)2 and M2 = 2 GeV2 along with the uncertainties
associated with the parameters involved in photon DAs. The bands represents the uncertainties.

are found to decrease with an increase in P 2
e as shown in figure 7 for AT+KPP

LL (s0, P 2
e ) and

AT+KPP+P
LR (s0, P 2

e ) as the representative FFs at s0 = (1.44 GeV)2 and M2 = 2 GeV2.

3.2 Case-2: using photon interpolation and proton DAs
Having worked through the details with the proton state being interpolated, we next seek
to determine the relevant form factors, but this time employing the distribution amplitudes
of the proton. Then, on interpolating the photon state, the hadronic matrix element in
eq. (2.6) reads as,

HΓΓ′(pp, pe)up(pp) = −ieε∗α

∫
d4xeik.x 〈0 |T{jα

em(x)QΓΓ′(0)}| p(pp)〉 (3.23)

where, jα
em(x) = Qdd̄(x)γαd(x) + Quū(x)γαu(x) − ē(x)γαe(x) is the electromagnetic cur-

rent and
QΓΓ′ = εabc

(
dTaCPΓub

)
(PΓ′uc) . (3.24)

Using the generalized Fierz transformations [50], it can be written as,

QLL = εabc

4 (2(PLda)(ūccPLub) − (σµνPLda)(ūccσµνPLub)) , and (3.25)
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QLR = εabc

4 (2(γµPLda)(ūccγµPLub)) . (3.26)

As discussed above, to get the sum rule, we need to calculate the correlation function in
eq. (3.23) in QCD. To get the time ordered product of the electromagnetic current with
QLL and QRL we need

T
{
jα
em(x) (ΓAPLda)

(
ūccΓAPLub

)}

=
[
Qu

{(
CγαS̃u

ic(x)ΓAPL

)BF (
ΓAPL

)CD
((

uTi (x)
)B

uFb (0)dDa (0)
)

+ (CΓAPLSbi(x)γα)EB
(
ΓAPL

)CD
((

uTc (0)
)E

uBb (x)dDa (0)
)}

− Qd

{(
ΓAS

d
ai(x)γα

)CB (
CΓAPL

)EF
((

uTc (0)
)E

uFb (0)dBi (x)
)}]

(3.27)

Here, capital alphabets (E,F,B,C,D) are the Dirac indices, {a, b, c, i} are the color indices
and superscript T denotes the transpose. ΓA = {1,σµν} and ΓA = {γµ} for the case of
LL and LR, respectively. The matrix element of the remaining three quark operator
between the proton state and the vacuum can be parametrised in terms of proton DAs of
varying twists [51]. In the present work, we consider only the leading twist-3 DAs (given
in appendix-A), which can be defined by,

4
〈
0
∣∣∣εabcuaα(a1x)ubβ(a2x)dcγ(a3x)

∣∣∣P (p)
〉
=
∑

i

F i({a1, a2, a3}, (p.x))Xi
αβY

i
γ (3.28)

where,

F i Xαβ Yγ

V1 ( /ppC)αβ (γ5up)γ

A1 ( /ppγ5C)αβ (up)γ

T1 (pν
piσµνC)αβ (γµγ5up)γ

such that

XT
i =





Xi, Fi ∈ Vi, Ti
−Xi, Fi ∈ Ai

(3.29)

where, superscript T represents transpose. The DAs, Fi, have the following symmetry
under the exchange of a1 and a2,

Fi({a1, a2, a3} , (pp.x)) =





Fi({a2, a1, a3} , (pp.x)), Fi ∈ Vi, Ti
−Fi({a2, a1, a3} , (pp.x)), Fi ∈ Ai

(3.30)

and
F i({a1, a2, a3}, (p.x)) =

∫ 1

0
Dαie

−iαiaip.xF i(α1,α2,α3) (3.31)

with Dαi = dα1dα2dα3δ(1 − α1 − α2 − α3).
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Using these DAs and considering the photon emission from the u- and d-quark, the
correlation function in eq. (3.23) turns out to be,

HQCD
ΓΓ′ up(pp)

= ε∗αPΓ′

[

F 1,QCD
ΓΓ′

pα
p /k

m2
p
+ F 2,QCD

ΓΓ′
kα/k

m2
p
+ F 3,QCD

ΓΓ′ γα + F 4,QCD
ΓΓ′

iσαβkβ

mp

+ F 5,QCD
ΓΓ′

pα
p

mp
+ F 6,QCD

ΓΓ′
kα

mp

]

(3.32)

Here, FΓΓ′ are the scalar functions of P ′2 = (pp − k)2 and K2 = −k2, and are provided in
appendix-C. Upon saturating with the intermediate lowest state, the hadronic decomposi-
tion reads as,

Hhad
ΓΓ′ up(pp)

= −eε∗α
P ′

Γ
4 λmp

/pp − /k +mp

(pp − k)2 − m2
p

{

γαW1(K2) − iσαβkβ

2mp
W2(K2)

}

up(pp) + . . .

= ε∗αPΓ′

[

F 1,had
ΓΓ′

pα
p /k

m2
p
+ F 2,had

ΓΓ′
kα/k

m2
p
+ F 3,had

ΓΓ′ γα + F 4,had
ΓΓ′

iσαβkβ

mp
+ F 5,had

ΓΓ′
pα
p

mp
+ F 6,had

ΓΓ′
kα

mp

]

(3.33)

Here, ellipses represent the contribution from the heavy states and λ is the coupling strength
of the proton interpolation current with the proton state. λ = λ′

p and λ = −λp for ΓΓ′ = LL

and ΓΓ′ = LR, respectively and are defined in eq. (D.2) and eq. (D.4), respectively. W1(K2)
and W2(K2) are the electromagnetic electric and magnetic form factors of the proton and
are defined as,

〈p(pp − k) |jemα (0)| p(pp)〉 = ūp(pp − k)
[

W1(K2)γα − i
σαβkβ

2mp
W2(K2)

]

up(pp). (3.34)

The scalar functions F had,n
ΓΓ′ (for n = 1, 2, 3, 4, 5, 6) of P ′2 and K2 are related to W1(K2)

and W2(K2) via following relations:

F 1,had
LL = −e

4 m2
pλ

′
p
W2

(
K2)

P ′2 − m2
p

F 2,had
LL = e

4m
2
pλ

′
p

W2
(
K2)

2
(
P ′2 − m2

p

)

F 3,had
LL = −e

8λ
′
pW2

(
K2
)

F 4,had
LL = e

4m
2
pλ

′
p
W1

(
K2)+W2

(
K2)

P ′2 − m2
p

F 5,had
LL = −e

2 m2
pλ

′
p
W1

(
K2)

P ′2 − m2
p

F 6,had
LL = e

4m
2
pλ

′
p
W1

(
K2)

P ′2 − m2
p

(3.35)

There will be similar relations between Fn,had
LR and W1,2(K2) with λ′

p replaced by −λp.
From eq. (2.7), we know F 1,4,5

ΓΓ′ are required to calculate the physical FFs, AΓΓ′ . For F 1,4,5
ΓΓ′ ,

after using the quark hadron duality and Borel transformation, the sum rule condition
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Figure 8. The physical FF, ALL(s0,K2) is calculated from the combination of F 1
LL, F 4

LL and
F 5
LL employing proton DAs. Left panel: A1+4+5

LL (s0,K2) vs K2 is shown for three values of s0 =
(1.4 GeV)2(violate dotted), s0 = (1.44 GeV)2(red solid) and s0 = (1.5 GeV)2 (blue dashed) at
the Borel Mass, M2 = 2 GeV2. Right Panel: A1+4+5

LL (s0,K2) vs M is shown for three values
of K2 = 0.5 GeV2(red solid), K2 = 1 GeV2(red dashed) and K2 = 2 GeV2 (red dotted) at the
continuum threshold, s0 = (1.44 GeV)2.

reads as,

F 1,4,5
ΓΓ′

(
s0,K

2
)
= −

Exp
(

m2
p

M2

)

P ′2 − m2
p

∫ s0

0
dsExp

( −s

M2

) 1
π
Im
(
F {1,4,5},QCD

ΓΓ′

(
s,K2

))

(3.36)

3.2.1 Numerical analysis

The physical FFs, AΓΓ′ are studied as a function of K2 = −k2 and the Borel mass, M at
P ′2 = m2

e = 0. Using eq. (2.7) and eq. (3.35), one can see that the physical form factors
are proportional to W2(K2) which can be calculated using other combinations of Fn

ΓΓ′ as
well. We have found that the most stable one against the Borel mass is obtained from the
combination of F 1

ΓΓ′ , F 4
ΓΓ′ , and F 5

ΓΓ′ as defined in eq. (2.7). We thus choose to show this
explicitly in figure 8 and figure 9. We would also like to remark that a direct comparison
of the form factors obtained here with those obtained when the proton is interpolated and
photon DAs are used is not possible. The simple reason being that in the present case, the
photon is far off-shell while in the previous case photon is on-shell and hence, in our view,
the form factors so obtained in the previous case are better suited for a phenomenological
analysis. The value of the physical FFs, AΓΓ′ at K2 = 0.5 GeV2 and M2 = 2 GeV2 for
s0(= 1.44 GeV)2 form the combination of F 1,4,5

ΓΓ′ are forund to be

A1+4+5
LL (1.442, 0.5) = (0.00038± 0.00021) GeV2,

A1+4+5
LR (1.442, 0.5) = (0.00174± 0.00027) GeV2 (3.37)

Here again, the uncertainties are associated with the parameters involved in the DAs and
are found to decrease with an increase in K2 (as shown in figure 10).
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Figure 9. The physical FF, ALR(s0,K2) is calculated from the combination of F 1
LR, F 4

LR and
F 5
LR employing proton DAs. Left panel: A1+4+5

LR (s0,K2) vs K2 is shown for three values of s0 =
(1.4 GeV)2(violate dotted), s0 = (1.44 GeV)2(red solid) and s0 = (1.5 GeV)2 (blue dashed) at
the Borel Mass, M2 = 2 GeV2. Right Panel: A1+4+5

LR (s0,K2) vs M is shown for three values
of K2 = 0.5 GeV2(red solid), K2 = 1 GeV2(red dashed) and K2 = 2 GeV2 (red dotted) at the
continuum threshold, s0 = (1.44 GeV)2.
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Figure 10. The physical FF, A1+4+5
LL (s0,K2) (left pannel) and A1+4+5

LR (s0,K2) (right panel) vs K2

are shown at s0 = (1.44 GeV)2 and M2 = 2 GeV2 along with the uncertainties associated with the
parameters involved in proton DAs. The bands represents the uncertainties.2

In the present case, some kind of judicious extrapolation would be required. There is
another issue that is worth pointing out. When employing proton (or nucleon) DAs while
computing the electromagnetic form factors of the nucleons, it has been observed that the
choice of the interpolation current plays a crucial role [47]. For some choice(s), particular
form factors simply don’t actually show up in the correlator calculation. In the case at
hand, the four quark operator, with the positron field factored out, can be thought of as an
analog of an interpolating current. Thus, it seems that differences or ambiguities similar
to the above discussion are perhaps at play even here as the form factor ALL in figure 8 is
about an order of magnitude smaller than ALR, and also with the form factors determined
with photon DAs. As its value itself is smaller by an order, the errors in its value are large.

2The numerical values of the form factor in 10b are slightly different from figure 9 as in the present case
(pp − k)2 = p2e is set to be equal to 0 GeV2. While for figure 9, it has been set to 0.5 GeV2.
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4 Discussion and conclusions

In this work, we have computed the form factors involved in the proton decay to a positron
and a photon using the LCSR framework. This should be viewed as a complimentary
approach to lattice calculations, though, to the best of our knowledge, no lattice study
exists for proton to gamma transition. This decay mode has not attracted much attention.
However, as briefly discussed in [25], the branching ratio for this mode is expected to be
smaller than the p → πe+ mode by a factor O(1/(few tens)). This is not a huge suppres-
sion and keeping in mind that the nuclear absorption effects are not going to affect the
radiative mode, it is important to remain optimistic about this mode. The next important
task is to have the relevant form factors computed in a reliable fashion. Choosing to work
in the framework of light cone sum rules, these form factors can be calculated either by
interpolating the proton state and using the photon DAs or by interpolating the photon
state and using the proton DAs. We have considered both these scenarios one by one.
The physical form factors that would enter the decay rate for the radiative process can
be determined from different combinations of hadronic functions that can be systemati-
cally computed. In the case when photon DAs are emplyed for computing the correlation
functions, we find that the condensate contributions do turn out to be important and
dominant for specific hadronic functions. Thus, not having considered these would have
led to erroneous results. In the case of proton DAs, at the order in twist employed for
the present calculations, condensate contributions do not appear. For both the cases, we
have explicitly shown the form factors for the combinations that present the best Borel
stability. As we have briefly discussed above, in our opinion, the form factors determined
using photon distribution amplitudes (Case-1) are more trustworthy. This also motivates
for more detailed studies employing proton DAs in order to gain better insight into the is-
sues, including investigating the effect of the condensates at twist-4 and higher. In the first
case i.e., when photon DAs are employed, the calculations performed do not include three
particle twist-3 contributions. This is justified at the level of precision needed at present
as these contributions are expected to be about an order of magnitude smaller than those
already included since two-particle twist-3 contributions are found to be typically an order
of magnitude smaller. We find that the typical errors on form factors are in the range
(30 − 40)% while for some combinations, errors turns out to be larger (∼ 50%). Similar
conclusions on error are reached in [24].

The detailed expressions for all the hadronic correlators are listed in the appendices
and are exact in the sense that they are written for non-zero positron mass and without
assuming k2 = 0. While computing the amplitude we have assumed positron to be massless.
Some extra contributions will arise due to non-zero lepton mass while manupulating eq. (3)
and eq. (7). Thus, with very little effort, these can be utilised to compute form factors and
thus branching ratio if there is µ+ instead of e+ in the final state. Some Final states with
second generation particles may be favoured channels in scenarios where the scalar mediated
contribution dominates over the gauge mediated one (see for example [52] for a recent study
pointing out this feature). The radiative modes thus become equally important and can
provide complimentary information about the details of the underlying high energy theory.
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A Distribution amplitudes (DAs)

A.1 Proton DAs

Considering the Lorentz covariance, parity and spin of the nucleon, the matrix element of
three quark operator between the vacuum and the nucleon state can be decomposed into
24 invariant functions in general. These functions are related to the light cone distribu-
tion amplitudes of the proton (see [51] for the details). At twist-3, there are three DAs
(eq. (3.28)): the vector, V1, the axial-vector, A1 and the tensor, T1. The explicit conformal
expansion of these DAs are:

V1 (αi, µ) = 120α1α2α3
[
φ03 (µ) + φ+3 (µ) (1 − 3α3)

]
(A.1)

A1 (αi, µ) = 120α1α2α3 (α2 − α1)φ−
3 (µ) (A.2)

T1 (αi, µ) = 120α1α2α3

[
φ03 (µ) +

1
2
(
φ−
3 − φ+3

)
(µ) (1 − α3)

]
(A.3)

Here, αi (i = 1, 2, 3) are the momentum fractions of the nucleon momentum carried by
the three quarks. φ03(µ), φ+3 (µ), and φ−

3 (µ) are the renormalisation scale, µ, dependent
coefficients. They are available from QCD sum rules and are provided in appendix-E

A.2 Photon DAs

The photon DAs are defined as the vacuum expectation value of the non-local quark-
antiquark plus n gluons operator (when n ≥ 0) with light-like separations. We have
considered only the two particle i.e. quark-antiquark DAs of twist-2 and twist-3 in the
present work which are defined as follows:

1. Twist-2 DAs: at twist-2, we have only one two-particle DA, φγ(u) which is defined as

〈γ(k) |q̄(0)σρσq(x)| 0〉 = −ieq 〈q̄q〉 (ερkσ − εσkρ)
∫ 1

0
dueiūk.xχφγ(u). (A.4)

Here, 〈q̄q〉 is the quark condensate, εµ is the polarisation vector of the photon, eq =
Qqe is the electric charge of the quark and χ is the magnetic susceptibility. u and ū =
1− u are the momentum fractions carried by the quark and anti-quark, respectively.
φγ(u) is the photon DA of twist-2. The asymptotic form of this DA is

φasyγ (u) = 6u(1 − u) (A.5)

2. Twist-3 DAs: at twist-3, there are four DAs out of which two are two-particle DAs
and two are three particle DAs. The two particle DAs are defined as

〈γ(k) |q̄(0)γµq(x)| 0〉 = eqf3γ

(
ε∗µ − kµ

ε∗x

kx

)∫ 1

0
dueiūk.xψv(u, µ) (A.6)

〈γ(k) |q̄(0)γµγ5q(x)| 0〉 = 1
4eqf3γεµναβk

αxβε∗µ
∫ 1

0
dueiūk.xψa(u, µ) (A.7)
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where, f3γ provides a natural mass scale for twist-3 DAs ψv(u) and ψa(u). The
explicit form of these DAs are:

ψ(v)(u) = 5
(
3ξ2 − 1

)
+ 3

64
(
15ωV

γ − 5ωA
γ

) (
3 − 30ξ2 + 35ξ4

)
(A.8)

ψ(a)(u) =
(
1 − ξ2

) (
5ξ2 − 1

) 5
2

(
1 + 9

16ω
V
γ − 3

16ω
A
γ

)
(A.9)

where, ξ = 2u − 1 and ωV
γ & ωA

γ corresponds to the local operators of dimension
six. The values of these constants are provided in appendix-E. Twice the integral of
ψv(α) over α from 0 to u is defined as ψ̄v(u) and is given by

ψ̄v(u) = 2
∫ u

0
dαψv(α)

= −20uūξ + 15
16
(
ωA

γ − 3ωV
γ

)
uūξ

(
7ξ2 − 3

)
(A.10)

For photon DAs of higher twist and DAs corresponding to three or more particles,
one can look at [49].

B Correlation functions for case-1 (employing photon DAs)

In this appendix, we collect the analytic results of the correlation functions Πr
ΓΓ′(pe, pp)

computed in QCD.

ΠQCD,T
LL (pe,pp)=−emp 〈q̄q〉

∫ 1

0
du
[
3Quχ
16π2 φγ(u)P 2ln

(
−P 2

)
+ f3γ(Qu−Qd)

6

{
1
P 2

(
1+ m2

0
4P 2

)

×
(
uψ(v)(u)− ψ̄(v)(u)

2

)
+ψa(u)

2P 4

(
1+ m2

0
2P 2

)(
uk.pp−p2p

)}]
(B.1)

ΠQCD,TP
LL (pe,pp)=

em2
p 〈q̄q〉2χ
6 (Qu−Qd)

∫ 1

0
du
[
φγ(u)
P 2

(
1+ m2

0
4P 2

)]
(B.2)

ΠQCD,KK
LL (pe,pp)=−em2

p 〈q̄q〉2χ
6 (Qu−Qd)

∫ 1

0
du
[
φγ(u)
P 2

(
1+ m2

0
4P 2

)]
(B.3)

ΠQCD,V
LL (pe,pp)= e〈q̄q〉2χ

6 (Qu−Qd)
∫ 1

0
du
[
uk2

φγ(u)
P 2

(
1+ m2

0
4P 2

)]
(B.4)

ΠQCD,V P
LL (pe,pp)=−empf3γ 〈q̄q〉

6 (Qu−Qd)
∫ 1

0
du
[
ψv(u)
P 2

(
1+ m2

0
4P 2

)
−
(
k.pp−uk2

)

× ψa(u)
2P 4

(
1+ m2

0
2P 2

)]
(B.5)

ΠQCD,K
LL (pe,pp)= empf3γ 〈q̄q〉

6 (Qu−Qd)
∫ 1

0
du
[

1
P 2

(
1+ m2

0
4P 2

(
uψv(u)+ ψ̄v(u)

2

))

−
(
uk2ψ̄v(u)+u(pp.k)ψa(u)

) 1
P 4

(
1+ m2

0
2P 2

)]
(B.6)
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ΠQCD,KPP
LL (pe,pp)=−em3

pf3γ 〈q̄q〉
12 (Qu−Qd)

∫ 1

0
du

2ψ̄v(u)+ψa(u)
P 4

(
1+ m2

0
2P 2

)
(B.7)

ΠQCD,P
LL (pe,pp)= empf3γ 〈q̄q〉

12 (Qu−Qd)
∫ 1

0
du

uk2(2ψ̄v(u)+ψa(u))
P 4

(
1+ m2

0
2P 2

)
(B.8)

ΠQCD,KKP
LL (pe,pp)=

em3
pf3γ 〈q̄q〉
12 (Qu−Qd)

∫ 1

0
du

uψa(u)
P 4

(
1+ m2

0
2P 2

)
(B.9)

ΠQCD,T
LR (pe,pp)= emp 〈q̄q〉

6

∫ 1

0
du
[
Qd

8π2χφγ(u)
(
5P 2+2u(pp.k−uk2)

)
ln
(
−P 2

)

+f3γQu

(
p2p−upp.k

)
ψa(u)
P 4

(
1+ m2

0
2P 2

)]
(B.10)

ΠQCD,KPP
LR (pe,pp)=−em3

p 〈q̄q〉
6

∫ 1

0
du
[
Qd

4π2χφγ(u)ln
(
−P 2

)
+f3γQu

ψa(u)
P 4

(
1+ m2

0
2P 2

)]

(B.11)

ΠQCD,KKP
LR (pe,pp)=

em3
p 〈q̄q〉
6

∫ 1

0
du
[
Qd

4π2χuφγ(u)ln
(
−P 2

)
+f3γQu

uψa(u)
P 4

(
1+ m2

0
2P 2

)]

(B.12)

ΠQCD,P
LR (pe,pp)= emp 〈q̄q〉

3

∫ 1

0
du
[
Qd

8π2χuk
2φγ(u)ln

(
−P 2

)
−f3γQu

{
ψv(u)
P 2

(
1+ m2

0
4P 2

)

+
(
ψ̄v(u)(k.pp−uk2)− uk2ψa(u)

2

)
1
P 4

(
1+ m2

0
2P 2

)}]
(B.13)

ΠQCD,K
LR (pe,pp)=−emp 〈q̄q〉

3

∫ 1

0
du
[
Qd

8π2χu(pp.k)φγ(u)ln(−P 2)−f3γQu

×
{(

uψv(u)+ ψ̄v(u)
2

)
1
P 2

(
1+ m2

0
4P 2

)

+
(
u(k.pp−uk2)ψ̄v(u)− u(pp.k)ψa(u)

2

)
1
P 4

(
1+ m2

0
2P 2

)}]
(B.14)

ΠQCD,V P
LR (pe,pp)= emp 〈q̄q〉

6

∫ 1

0
du
(
pp.k−uk2

)[
Qd

4π2χφγ (u) ln
(
−P 2

)

+f3γQu
ψa (u)
P 4

(
1+ m2

0
2P 2

)]
(B.15)

ΠQCD,TP
LR (pe,pp)= em2

p

∫ 1

0
du
[

〈q̄q〉2χQu

3
φγ(u)
P 2

(
1+ m2

0
4P 2

)
+ f3γQu

16π2 ψ
a(u)ln

(
−P 2

)]

(B.16)

ΠQCD,V
LR (pe,pp)= e

∫ 1

0
du
[

〈q̄q〉2χQu

3
(pp.k)φγ(u)

P 2

(
1+ m2

0
4P 2

)
+ f3γ

16π2

{1
3

(
(7Qu+Qd)ψv(u)P 2

− (Qu+Qd)ψ̄v(u)(pp.k−uk2)
)
+Quψ

a(u)(pp.k)
}
ln
(
−P 2

)]

(B.17)
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ΠQCD,PK
LR (pe,pp)=−em2

p

∫ 1

0
du
[

〈q̄q〉2χQu

3
φγ(u)
P 2

(
1+ m2

0
4P 2

)
+ f3γ

16π2

{{1
3 (2(Qu+Qd)

× uψv(u)+(7Qu+Qd)ψ̄v(u)
)
+Quψ

a(u)
}
ln(−P 2)

+ 2(Qu+Qd)
3P 2 u

(
pp.k−uk2

)
ψ̄v(u)

}]
(B.18)

ΠQCD,PP
LR (pe,pp)=

em2
pf3γ

24π2 (Qu+Qd)
∫ 1

0
du
[
ψv(u)ln(−P 2)+(pp.k−uk2) ψ̄

v(u)
P 2

]

(B.19)

ΠQCD,KP
LR (pe,pp)=−em2

pf3γ

24π2 (Qu+Qd)
∫ 1

0
du
[(

uψv (u)+ψ̄v (u)
)
ln
(
−P 2

)

+
(
pp.k−uk2

)
uψ̄v (u)

P 2

]
(B.20)

ΠQCD,KK
LR (pe,pp)=

em2
pf3γ

24π2

∫ 1

0
du u2

[{
(Qu+Qd)ψv(u)+(4Qu+Qd)

ψ̄v(u)
u

}
ln
(
−P 2

)

+
(
Qu+Qd)(pp.k−uk2) ψ̄

v(u)
P 2

]
(B.21)

Here, P 2 = (pp − uk)2 = (pe + uk)2 = ūp2p − uP 2
e − uūk2. The remaining correlation

functions does not appear in QCD calculations upto the twist accuary we have considered.
We perform the Borel transform on p2p to get the final sum rules.

C Correlation functions for case-2 (employing proton DAs)

In this appendix, we collect the analytic results for the correlation functions Fn
ΓΓ′(pp, k)

computed in QCD.

F 3,QCD
LL (pp,k)=−

em2
p

2

∫
DαiT1(αi)

[
α3Qd

(k−α3pp)2
+ α1Qu

(k−α1pp)2

]

(C.1)

F 4,QCD
LL (pp,k)=−

em2
p

2

∫
DαiT1(αi)

[
Qd

(k−α3pp)2
+ Qu

(k−α1pp)2

]

(C.2)

F 5,QCD
LL (pp,k)=

em2
p

2

∫
DαiT1(αi)

[
α1Qu

(k−α1pp)2
− 2α3Qd

(k−α3pp)2

]

(C.3)

F 6,QCD
LL (pp,k)=

3Qdem2
p

2

∫
Dαi

T1(αi)
(k−α3pp)2

(C.4)

F 1,QCD
LR (pp,k)=

em2
p

2

∫
Dαi

[
(V1(αi)+A1(αi))Qd

(k−α3pp)2
− (V1(αi)−A1(αi))Qu

(k−α1pp)2

]

(C.5)

F 3,QCD
LR (pp,k)=−e

2

∫
Dαi




(V1(αi)+A1(αi))Qd

(
2pp.k−α3m2

p

)

2(k−α3pp)2

+
(V1(αi)−A1(αi))Qu

(
2α1m2

p−pp.k
)

(k−α1pp)2



 (C.6)
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F 4,QCD
LR (pp,k)=−

em2
p

2

∫
Dαi

[
(V1(αi)+A1(αi))Qd

2(k−α3pp)2
+(V1(αi)−A1(αi))Qu

(k−α1pp)2

]

(C.7)

F 6,QCD
LR (pp,k)=−

em2
p

2

∫
Dαi

[
(V1(αi)+A1(αi))Qd

2(k−α3pp)2
− (V1(αi)−A1(αi))Qu

(k−α1pp)2

]

(C.8)

The remaining correlation functions does not appear in QCD calculations upto the twist
accuary we have considered. In this case, the Borel transformation will be performed on
P ′2 = (pp − k)2 = p2e.

D Conventions, definitions and identities

D.1 Definitions and conventions

As discussed in section-3.1, the interpolation current for proton state is not unique. The
Ioffe current, χ(x) as defined in eq. (3.1) is the linear combination of χ1(x) and χ2(x)
defined in eq.(3.3) as,

χ(x) = 2(χ2 − χ1) (D.1)

such that,
〈0 |χ(0)| p(pp)〉 = mpλpup(pp). (D.2)

There is another interpolation current as a linear combination of these two currents de-
fined as,

χ′(x) = 2(χ2 + χ1)

= 1
2ε

abc
(
uTa(x)Cσµνu

b(x)
)
σµνγ5d

c(x) (D.3)

such that,
〈
0
∣∣χ′(0)

∣∣ p(pp)
〉
= mpλ

′
pup(pp) (D.4)

D.2 Useful identities and integrals

• Identities:

1. For σ = i
2 [γρ, γσ],

γασρσ = 2igαργσ − 2iγρgασ + σρσγα (D.5)

2. Chisholm Identity:

γαγβγµ = gαβγµ − gαµγβ + gβµγα − iεαβµνγνγ5 (D.6)

• Integrals: in D dimensions using dimensional regularisation, the formula for general
integrations involved in the correlation function is given by [39],

∫
dDxeipx

1
(x2)n = (−i) (−1)n 2(D−2n)πD/2

(
−p2

)n−D/2 Γ (D/2 − n)
Γ(n) (D.7)
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for n ≥ 1,p2 < 0. On differentiating it over the four-momentum pα, we get the desired
form of the integrals involved in our calculations.

∫
d4xeipx

xα

x4
= 2π2 pα

p2
,

∫
d4xeipx

xα

x2
= 8π2 pα

p4

∫
d4xeipx

xαxβ

x4
= −2iπ2

p2

(
gαβ − 2pαpβ

p2

)
,

∫
d4xeipx

xαxβ

x2
= −8iπ2

p4

(
gαβ − 4pαpβ

p2

)

∫
d4xeipx

xα

x6
= −π2

4 pαln
(
−p2

)
,

∫
d4xeipx

1
x6

= −iπ2

8 p2ln
(
−p2

)

∫
d4xeipx

xαxβ

x8
= −iπ2

48
(
p2gαβ + 2pαpβ

)
ln
(
−p2

)

∫
d4xeipx

xαxβxµ
x8

= π2

24

(2pαpβpµ
p2

− (pαgβµ + pβgαµ + pµgαβ) ln
(
−p2

))

(D.8)
Here, the divergent terms which are proportional to p2 are omitted as they goes to
zero after Borel transformaion.

D.3 Borel Transformations
As listed in appendix-B and appendix-C, the correlation functions calculated in QCD
involves,

P 2 = (pp − uk)2 = (pe + uk)2 = ūp2p − uP 2
e − uūk2 (D.9)

with P 2
e = −p2e and ū = 1 − u in case-1 and

(k − αpp)2 = αP ′2 − ᾱK2 − αᾱm2
p (D.10)

with α = {α1,α3}, K2 = −k2 and P ′2 = (pp−k)2 in case-2. To calculate the final sum rules,
one need to find the imaginary part of the correlation functions collected in appendix-B and
appendix-C and substitute them in eq. (27) and eq. (44), which are obtained by performing
the Borel transformations on the momentum trasferred square i.e. p2p and P ′2 = (pp − k)2
for case-1 and case-2, respectively. To incorporate that, one need to make the following
substitutions in the correlation functions of case-1,
∫ 1

0
du

F (u)
P 2 G(u, s) → −

∫ u0

0
du

F (u)
ū

e
−s̃
M2 G(u, s̃)

(D.11)
∫ 1

0
du

F (u)
P 4 G(u, s) → e

−s0
M2 F (u0)G(s0, u0)

P 2
e

+
∫ u0

0
du

F (u)
ū2

e
−s̃
M2

M2

(
G(u, s̃) − M2 ∂

∂s̃
G(u, s̃)

)

(D.12)
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S.No. Parameter Value Used Reference
1. Proton mass (mp) 0.938GeV [33]
2. Fine Structure Constant

(
α = e2

4π

)
1

137 [33]
3. Quark condensate (〈q̄q〉) −((256± 2)MeV)3 [24]
4. m2

0 (0.8± 0.2)GeV2 [24]
5. Magnetic Susceptibility (χ) (3.08± 0.02)GeV−2 [49]
6. f3γ −(4± 2).10−3GeV2 [49]
7. ωv

γ 3.8± 1.8 [49]
8. ωa

γ −2.1± 1.0 [49]
9. λ′

p (5.4± 1.9).10−2GeV2 [47]
10. λp −(2.7± 0.9).10−2GeV2 [47]
11. φ03(µ = 1GeV) (5.3± 0.5).10−3GeV2 [51]
12. φ̃+3 (µ = 1GeV) = φ+

3
φ0
3

1.1± 0.3 [51]

13. φ̃−
3 (µ = 1GeV) = φ−

3
φ0
3

4.0± 1.5 [51]

Table 1. Numerical Values for the parameters used for numerical analysis.

∫ 1

0
du

F (u)
P 6 G(u, s) → −

∫ 1

0
du

F (u)
2ū2

[
e

−s0
M2 G(u, s0)

∂

∂s0

(
δ
(
ūs0 − uP 2

e

))]

+
∫ 1

0

F (u)
2ū2

[
∂

∂s

(
e

−s
M2 G(u, s)

)
δ
(
ūs − uP 2

e

)]

−
∫ u0

0
du

F (u)
2ū3

∂2

∂s̃2

(
e

−s̃
M2 G(u, s̃)

)
(D.13)

with
s̃ = uP 2

e

ū
and u0 =

s0
s0 + P 2

e
. (D.14)

In these substitutions we put s = p2p and k2 = 0 as the photon is onshell. These substitu-
tions are consistent with [47].

For case two, the subsbtitution reads as,
∫

Dαi
F (αi)

(k − αpp)2
→ −

∫ 1

α0
Dαi

F (αi)
α

e
−s1
M2 (D.15)

with α = {α1,α3}, Dαi = dα1dα2dα3δ(1 − α1 − α2 − α3),

s1 =
ᾱK2 + αᾱm2

p

α
(D.16)

and

α0 = −
K2 − m2

p + s0
2m2

p
+

√
(K2 + s0)2 +m4

p − 2m2
p (s0 − K2)

2m2
p

. (D.17)

Here, s = (pp − k)2 and K2 = −k2.

E Values of parameters used

In this appendix, we collect all the numerical values of the parameters used for both case-1
and case-2 during numerical analysis. The numerical values are collected in table 1.
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