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Summary of the thesis

Accretion disks are the most popular models to explain high luminosity (1036e7'gs-

S-l to 1047ergs - S-l) objects like quasars, X-ray binaries, AGNs etc. Disks can be

thin or thick depending on their geometrical shapes. More quantitatively, if (h / r) ~

Cs/Vvil'ial~ 1 the disk is considered to be thin. Here h is the scale height normal to

the orbital plane, r is the radial distance from the center of the central star, and Csis

the internal sound speed. On the other hand, if the internal pressure builds up so that

Cs c::=(GM/r)1/2, the disks become geometrically thick, with h c::=T. Thin disk models

are well studied and using these models many observable quantities can be calculated.

Such models are based fairly on observational basis. On the contrary, the study of thick
-" accretion disks is not well developed.

In this thesis, we have studied the structure and stability of a pressure-supported,

magnetized thick non-accreting disk equilibria. Such studies are important due to

follwing reasons:

(i) The study of thick disks is important as such structures may presumably be formed in

nature, e.g., around AGNs and protostars. Thin disk can go to thick disk configuration

when the infalling gas is hot or gets heated up by electromagnetic waves or radiation

pressure. Such studies are also useful from theoretical point of view, as they can

give better insight into the thin disk model approximations and allows one to treat

intermediate cases.

(ii) However, the study of thick disk equilibrium, in general, is extremely complex

and far from complete. There remain many uncertainties pertaining to their structure

and. stability. For example, the radiation pressure-supported thick disk is subjected

to various kinds of powerful instabilities and therefore, the existence of steady state

radiation supported thick disks is doubtful. However, there is another possibility

of thick disk, e.g., ion-supported tori which may not be subjected to these kind of

instabilities. The detailed study of such models is not carried out so far.

(iii) Magnetic fields may have significant dynamical effects in the disk environment



Vll

depending on the concrete physical situations. For example, they can generate and

collimate jets, removing angular momentum from the disk in the form winds, they can

be source of coronal heating, they can also influence spin-up and spin-down rates of

the central star. In fact, it is found that the large scale ordered magnetic field may exert

a powerful torque onto the central star and which in turn changes its period.

;.

(iv) Though it is a general belief that strong gravitational field of the central object

may not influence the physics of accretion disks, there are some interesting effects

related with the presence of both strong gravity and magnetic field. For example, the

strong magnetic field in the Schwarz schild geometry can bring the inner edge of the

disk arbitrarily close to the surface of the compact object, it can also influence many

electromagnetic processes like pair-production near the vicinity of the star's surface.

Therefore, we have considered a pressure-supported, magnetized disk equilibria with-

out invoking any thin or thick disk approximations. We use ideal magnetohydrody-

namic (MHD) frame work to describe the disk equilibria. The disk is usually believed to

be filled with plasma or with a highly ionized gas. The macroscopic behaviour of such

a state can be analyzed by the MHD approximation since the Larmor radii of ionized

species are much smaller than the size of the disk. Moreover, molecular and magnetic

Reynold numbers are usually very large for a typical accretion disk scenario ranging

from 1014for white dwarf disk to 1026for an AGN disk. Therefore, molecular viscosity

and resistivity can be neglected. The effects of turbulance or dissipative forces such as

anomalous viscosity and anomalos resistivity is regarded small compared to the long

ranged order equilibrium forces. Such effects may be introduced perturbatively over

the equilibrium force balance.

The general study of thick accretion disk is very difficult. To begin with, we have

considered that the disk is having only azimuthal motion and therefore, the corre-

sponding equilibria considered by us are non-accreting. Generally, in accretion disk

scenario, the radial inflow velocity is much less than the azimuthal velocity. Thus, the

solutions describing the accretion may be constructed by incorporating radial velocity

perturbatively.

Though we have considered the disk dynamics within the ideal MHD framework,
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the external magnetic field of the central object considered to be penetrating inside

the disk. From the studies of well known thin magnetically threaded disk models, it

is conjectured that external field can penetrate into the disk via non-linear processes

like Kelvin-Helmholtz instability, turbulent dissipation etc. In our work, we have used

the basic set of covariant form of general relativistic magnetohydrodynamic equations

which govern the flow of the stationary (i.e. at == 0), axisymmetric (i.e. a<p== 0)

pressure-supported magnetized fluid disk in a state of azimuthal motion only with the

following assumptions: The self gravity of the disk is negligible. The geometry of the

spacetime is cdescribed by the Schwarz schild metric and the electromagnetic fields do

..

not modify the spacetime structure.

Under the above mentioned assumptions, We have obtained two classes of solutions:

(i) when the MHD flow velocity becomes quasi-Keplerian in the flat space limit and (ii)

when the MHD flow velocity becomes rigid rotation type (with the star) in the flat space

limit. In the Newtonian limit, the solution having a quasi-Keplerian azimuthal velocity

are found to depend upon two parameters a and (3. The parameter a signifies the

ratio of the gravitational potential energy to the bulk kinetic energy of a fluid element.

The parameter (3signifies the ratio of the toroidal magnetic field strength to poloidal

magnetic field strength. Analyses of the pressure profile show that the equilibrium

solutions are physically plausible for certain values of toroidal magnetic field allowed

by the inequality relation satisfied by a and (3. Furthermore, these kind of solutions

support non-barotropicity. In the general relativistic case the above solutions indicate

that the strength of the toroidal magnetic field decreases near the surface of the compact

object. Analyses of magnetic field line topology show that toroidal field generates very

high shear and thus, indicate that this kind of equilibrium might be unstable.

The solutions having rigid rotation type velocity profile are found to be less sensitive

to the parameters a and (3. The pressure profiles show that these solutions support a

barotropic equilibrium in the asymptotic limt. But, the barotropicity may be violated

very near to the compact object because of the strong gravity. Also the effect of strong

gravity can cause a departure from the rigid rotation type behaviour of the velocity

profile.

In closing, the importance of the solution in the context of a neutron star is discussed.
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Moreover, the discussion of future work based on the obtained solutions is provided

in the concluding chapter of the thesis.
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Chapter 1

Introduction

Capture of ambient matter gravitationally by compact objects is called accretion. When

the matter is falling onto the surface of the compact object either directly or through

spiraling-in process, due to viscous dissipation most of the energy of the ordered

bulk motion is converted into its internal energy which in turn being converted into

electromagnetic radiation. However, the accretion depends mainly on the nature of

the effective potential which the flow experiences near the central compact object. The

effective potential of a rotating gas with specific angular momentum ,\ in the presence

of a Newtonian star is given by

cPN(1') = - ~ + ~,\2
l' 2 1,2'

(1.1)

~ For small 1', the rotational term causes the potential to diverge to positive infinity at

the origin at l' = O.It can be easily shown that only those matter, around a Newtonian

star, with angular momentum less than the Keplerian value on the surface of the star

IKep";N= Rl/? (1.2)

can accrete. For the case of black hole accretion, the effective potential of the fluid

around a non-rotating black hole (Schwarzschild solution), in the units where the

gravitati,onal constant G, the central mass 1\1and the velocity of light c are all unity

(G = 1\11 = c = I), is given by (Chakrabarti, 1996)

</;8(1')=
[

~ - 2/1'

]

1/2

1 + (1-2/,.)f2,.2
(1.3)

1
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If the specific angular momentum of the flow is less than that of the marginally stable

value (i.e., T < Ims), the flow can fall onto the black hole without any barrier. If the

angular momentum is higher than the marginally bound value (i.e., T > 1mb),the

potential barrier is higher than 1 - the rest mass of the particle. It tells that matter

must have significant energy to begin with for the accretion to take place. Thus, matter

must have significant radial velocity or thermal energy at a large distance. In any case,

since the potential turns around and passes through zero, matter can always be made

to accrete when pushed sufficiently hard. Matter having angular momentum between

the marginally bound and marginally stable values would form accretion disks.

One of the important difference between the fluid dynamics around a black hole

and that around a Newtonian star is as follows: As the matter accretes on a Newtonian

star, it can hit the surface of the star subsonically (i.e., when the radial velocity of matter

is less than the adiabatic sound speed) or supersonically (i.e., when the radial velocity

of matter is greater than the adiabatic sound speed) depending on the location of the

star surface. But in case of black hole accretion, the flow is supersonic on the horizon

since the velocity of sound (even for the steepest equation of state) is less than the flow

velocity on the horizon, which is the velocity of light. Hence, it is evident that the black

hole accretion is necessarily transonic.

Following order-of-magnitude estimates show the role of gravitational potential

energy in accretion process.

Suppose that the matter falls freely onto th~ surface of the star of mass lvIx and

radius Rx so that a unit mass has a kinetic energy G Mx / Rx. If the amount of matter

falling per unit time on the surface is M, then the total luminosity of the accreting

object is given by (Lipunov, 1992)

. G lvIx '?

Lace. = M ~ == 77AI c ;
(1.4)

where, M being the accretion rate and 17being the accretion efficiency (i.e., efficiency of

conversion of matter into energy). One can write

1 Rg .
- --,

17- 2 Rx (1.5)

where, Rg is the gravitational radius defined as Rg
2GMx

c2
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For a neutron star, Rx = 10km. and Rg = 3 km., which means that 71= 10%. This is

about 100 times the efficiency of nuclear fusion reactions. Thus, accretion is a process

that can be considerably more efficient as a cosmic energy source and could thus play

a central role in understanding the central engine which is widely believed to power

most luminous objects, for which the nuclear source of energy of the stars are wholly

inadequate.

It is evident from the eq. (1.5) that the efficiency of accretion as an energy generation

mechanism is strongly dependent on the compactness of the central accreting object.

Furthermore, for a fixed value of the compactness, the luminosity of an accreting system

depends on the mass accreting rate (i.e. J\lI). In case of high luminosity scenarios,

the accretion rate may be controlled by the transfer of momentum outwardly from

the radiation to the accreting material by scattering and absorption. Under certain

circumstances, there can be a maximum luminosity for a given mass, usually referred

to as the Eddington luminosity which can be obtained with the following assumptions:

Accretion flow is assumed to be steady and spherically symmetric. Accreting material is

assumed to be mainly hydrogen and to be fully ionized. In these situations, Eddington

luminosity is defined for a spherically symmetric Newtonian star of mass M = 1 Mev

as:

L Edd. - 4 7rG N1~.mp c / as

~
1.3 X 1038 (Mx / /v1ev)erg 8-1 (1.6)-

where, mp is the proton mass, as is the Thompson scattering cross-section, and Mev

denotes the solar mass. Though it is a Newtonian concept and the computation is done

using spherical geometry, the definition is generally used unchanged in measuring

luminosity of accreting matter around a black hole. For black hole accretion, the

Eddington luminosity can go up to 1047 Erg 8-1. The luminosity of the quasars and

active galaxies have indeed been observed to be sometimes as high as 1047erg 8-1 and

the usual explanation for such a high energy output is that the energy is mostly coming

from the gravitational binding energy of matter accreting onto a massive black hole

with Alx '" 109Mev.

The physics of accretion flow onto a compact star and the emitted radiation pattern
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are, in general, extremely difficult and intricate in nature. Flow behavior depends

on many physical parameters like flow geometry, for e.g., if the fluid possess intrmsic

angular momentum, the flow will be either two- or three-dimensional, depending upon

the flow symmetry. In simple cases, the flow pattern may be spherical when there is

no mean motion of the fluid far from the stationary compact star or disk-like as in

axisymmetric flow of the fluid with intrinsic angular momentum. Secondly it depends

on dominant heating and cooling mechanisms that characterize the accreting plasma.

If the fluid is optically thick to emitted radiation, the net heating and cooling rates

depend on the radiation field which is to be evaluated self-consistently. Third, the

magnetic field playa dominant role in controlling the plasma motion near the surface

of the magnetized compact objects. Fourth, the effect of radiation pressure which

influences the geometry of the flow pattern near the compact source. Finally, one has

to understand the flow boundary conditions both at large distances where the fluid"

joins on " to the ambient medium, and at the stellar surface, where the fluid merges

into the star. The study of gas dynamic flow of matter near central compact objects

were first started by Hoyle, Bondi, and Mac Crea in connection with the problem of

interaction of ordinary stars with interstellar m~tter.

Generally there are two important kinds of accretion processes are being studied

in detail and are frequently being realized in practical model building. They are (i)

Spherically symmetric accretion where the accreting star practically does not move

relative to the medium: Voo~ aooand the matter constituting the medium does not

possess any significant angular momentum and (ii) Disk accretion where the total

angular momentum of matter is sufficient to form an accretion disk, around the central

compact object.

1.1 Spherical Accretion

Though the process of accretion as a source of energetics gained popularity in the

seventies, its importance was earlier recognized in the context of cosmology nearly

five decades ago. Bondi and Hoyle (1944) studied the physics of stationary spherical

accretion of gas (at rest at infinity) onto a spherical Newtonian star with the accreting gas
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having a polytropic equation of state (i.e., P = ]( p-', where ]( is a constant measuring

the entropy of the flow, and I is the adiabatic index which is the ratio of the specific

heats and is assumed to be constant throughout the flow). In terms of the density of

the flow at infinity PCCJ/ the Bondi mass flux AI is given as (Bondi, 1952),

1

( )

n - 3/2

111 - - poo n
c - 4 ao} 11 - 3/2

This above equation shows that accretion from the interstellar medium is unlikely

to be an observable phenomenon; reasonable values would be aoo = 10](m 8-1,

poo = 10-24 9 cm-3, corresponding to a temperature of about 104 ]( and number

density near 1 particle cm-3 give mass accretion rate of lOll 9 8-1. This mass accretion

rate on to a neutron star yields Laceonly of the order 2 x 1031e1'g8-1; at a typical

distance of 1 kpc this gives far too low a flux to be detected. Bondi also pointed out

that the star's gravitational pull seriously influences the flow behavior of the gas only

(1.7)

inside the accretion radius Race.and inflow velocity must become supersonic near the

stellar surface. Thus, in generat the efficiency of the spherical accretion solutions were

not found to be sufficiently high to explain the high observed luminosity from active

galaxies. Furthermore, this kind of accretion process cannot reproduce the observed
,

bump in the ultraviolet in the continuum. Therefore, it is very much essential to look

for more realistic accretion flows which posses angular momentum and magnetic field.

1.2 Accretion Disk

In most of the astrophysical situations, the infalling matter would have sufficiently high

angular momentum and thus form a disk. In the previous section we have discussed the

properties of spherically symmetric accretion flows. In these flows, the infall velocity

was very high and therefore, for a given accretion rate, the density was very low. Thus,

these flows were found to be inefficient in converting the gravitational potential energy

of the infalling matter into radiation. But, if the flow has high angular momentum,

the inflow velocity becomes very small and the density becomes much higher. As a

result the infall time becomes higher and hence, viscosity has time to dissipate angular

momentum (except in regions very close to the black hole) and energy. As matter

loses its angular momentum, it sinks deeper into the potential well of the central
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compact object and radiates more efficiently. For example, the accretion disk around

a Schwarzschild black hole can radiate up to six percent of the gravitational potential

energy of the infalling matter as compared to its rest mass energy and in case of Kerr

black hole, the efficiency can go up to forty percent depending upon the rotation

parameter. However, the actual efficiency depends on quantities such as viscosity

parameter and the cooling process inside the disk. This energy is released in the entire

electromagnetic spectrum and the success of the disk model on its ability to describe

the way this energy is distributed in various frequency bands. The temperature and

density distributions as well as the geometrical shape of the disk governs the nature

of the emerging radiation spectrum. These, in turn, depend on the outer boundary

condition like the rate of matter supply, the specific angular momentum, and energy

content of the matter.

1.2.1 Observational evidences of Accretion Disks

It was first mentioned by Zel'dovich (1964) that the most favorable condition for ac-

cretion to a relativistic star is encountered in the ~ase when this star forms a pair with

a normal star. This assumption is in excellent agreement with observations. With the

capability to observe from space-based telescopes, binary stellar X-ray sources have

been a subject of intensive observational and theoretical study during the past two

decades. There are more than 170 sources of this type in the Galaxy with the majority

of them consisting of a neutron star and a relatively unevolved companion. Of these,

-about 100 systems have companions of high mass (AI ;(; 10M0), and the remainder

have stellar companions of low mass (;:S2 AI0). For review of the observational data

and the interpretation of these X-ray sources see the article by Nagase (1989) for the

high-mass systems and by Lewin, van Paradijs, and Taam (1993) for low-mass systems.

Though X-rays had been observed in some discrete sources in the pre-satellite days,

the satellite astronomy brought in a rich haul of observations and particularly the

UHURU satellite discovered the sources Cen X-3,Her X-I (Giacconi, et aI., 1971; Schreier

et aI., 1972; Tananbaum et aI., 1972) and with a balloon-borne instrument (Lewin et

aI., 1971). These objects exhibiting eclipses and periodic Doppler variations of the

pulsations which really confirmed the speculation that close binaries could be X-ray
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sources as a result of mass accretion (Hayakawa and Matsuoka, 1964). However, the

most dramatic observations concerning X-ray sources came in 1985 with the discovery

of quasi-periodic oscillations (QPO) in X-ray binaries (Van der Klis et ai., 1985), a

phenomena which still eludes explanation. It was almost immediately recognized that

the source of energy to drive the X-ray pulsations was accretion of matter onto the

magnetic polar caps of a rotating neutron star. The accreted matter is transferred to the

neutron star from a relatively normal binary companion. Furthermore, SAS-3 X-ray

astronomy satellite and Hakucho satellite discovered X-ray bursts (see review Joss and

Rappaport, 1984). There is now persuasive evidence that these sources, too, are neutron

stars in close binary system with relatively weak surface magnetic field (~ 1012 G).

As weak field is unable to direct the flow of the accreting matter it leads to no X-ray

pulsation. Therefore, the lack of funneling of the accretion flow alters the properties

of the neutron-star surface layers in such a way that the freshly accreted matter may

undergo strong thermonuclear flashes. It is these flashes that result in the emission of

X-ray bursts. Recent observations have provided considerable insight into the structure

of the accretion disk, an issue intimately linked to the details of the mechanism that

precesses the disk. In the context of compact stars in the binary systems; for example,

the 35-day X-ray modulation of Hercules X-I is widely attributed to disk precession,

and a variety of other X-ray sources are now known to have long-term periods probably

also due to disk precession (Lang et ai., 1981; Priedhorsky and Terrell, 1984). In the

case of SS 433, the amplitude and shape of the 164-day photometric component of

the light curve indicate that the disk is present and it is remarkably thick (Anderson

et ai., 1983a,b; Bochkarev et ai., 1980); a disk half-thickness to radius ratio of 2/3 has

been suggested. This conclusion is supported by an entirely independent observation,

namely the existence of the 6.3-day nodding motion (Katz et ai., 1982). The disk must be

extremely viscous to rapidly transmit the nodding from the outside where significant

torque is applied to the interior, where the jets originate and are seen to respond to the

motion (Katz, 1980). Again, the existence of nodding motion provides independent

confirmation of the extent of the disk (i.e., with dimensions of order 1012 em), because

the torque can be significant only on a rather large structure.

Furthermore, the cataclysmic variables (i.e. a binary having a white dwarf with
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a companion star with low mass (rv 0.11\10to rv 1M0) and close to the lower main

sequence) show strong emission lines due to the phasing of their periodic red- and

blue shifts and can be strongly identified as coming from the vicinity of the accreting

component of the biIlary system. In this scenario, the emission lines are found to be

double peaked with extensive wings which is expected for line emission from a rotating

disk of optically thin gas. The extensive (broad) wings are due to the Keplerian motion

of the gas. Similar to the line emissions seen in Cataclysmic variables, one would expect

that if the accretion disk around a black hole also emits lines, they should show double

horned patterns (Smak, 1980; Horne and Marsh, 1986). If there is a non-axisymmetric

feature on the disk, the double horned pattern need not be symmetric (Chakrabarti and

Wiita, 1994; Bunk et ai., 1990).

In the context of AGNs, a dominant feature of the continuum spectrum is a hump

in the spectrum near blue region known as the 'big blue bump'. This emission feature

is observed in radio-weak sources as well as in many radio-loud quasars. In galactic

black hole candidates, the spectra in the soft-state also has the bump in soft X-rays.

The 'big blue bump' in the spectrum of many QSOs as well as the soft X-ray bump

in galactic black hole candidates are usually attributed to the quasi-thermal emission

from accretion disks (Cowley, 1992; Shields, 1978; Malkan, 1983, and Malkan and

Sargent, 1982) and good fits to this part of the spectrum can be obtained from standard,

optically thick but geometrically thin '0' disk models (Sun and Malkan, 1989; Laor,

1990), thick accretion disks (Madau, 1988), and disks incorporating shock waves in

the disk (Chakrabarti and Wiita, 1992) among others. Sun and Malkan (1989) fits

60 quasars and AGNs from IR to UV region of the continuum by using standard

accretion disk models (Shakura and Sunyaev, 1973; Novikov and Thorne, 1973) around

black holes. The relativistic effects of disk inclination, including Doppler boosting,

gravitational focusing and gravitational red-shift on the observed spectra for both

Kerr and Schwarzschild black holes are considered. Some of the active galactic nuclei,

especially those which are radio-quiet, show strong evidence of X-ray emission. ROSAT

in its all sky survey has identified numerous active galactic nuclei in the soft X-ray range.

Based on the analysis of the Ginga data, one of the at least four (model dependent)

components has been tentatively assumed to be present (Pounds et ai., 1990; Nandra
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and Pounds, 1994): fluorescent Fe-K emission line at 6.4 keY. The more recent analysis

of Ginga data (Titarchuk, 1994) tells that the X-ray is considered to be of thermal origin.

Thus, the observation of X-rays may testify to the existence of compact hot source of

energetics electrons as well as soft photon source from the underlying pre-shock cool

accretion disks. The energetic electrons could also be produced from magnetic corona

of the accretion disks (Chakrabarti and D'Silva, 1994; D'Silva and Chakrabarti, 1994).

1.2.2 Formation of Accretion Disk

However, the detailed study of interacting binary systems has revealed the importance

of angular momentum in accretion. In many situations, the transferred material can

not simply fall onto the stellar surface directly until it has rid itself of most of its angular

momentum and thus, it leads to the formation of accretion disk. It is well known in the

case of binary systems, that the normal stars can lose their mass mainly in two ways

(we are dealing with slow processes only and not with the cataclysmic processes like

supernova bursts etc.): (i) In the form of a quasi-spherical stellar wind; such phenomena

are observed practically in all stars, starting from the Sun and ending with the massive

super giants; (ii) In the form of gas jets upon the filling of a Roche lobe by normal star.

Apparently, there exists another flow regime which characterizes rapidly rotating stars

(e.g., Be-stars), viz., overflow in the form of disk-shaped shells. Possibly there also

exists a strongly transient regime in which matter is ejected in the form of individual

gas clusters. In the binary system, where one of the components is a compact object,

i.e., a white dwarf, neutron star or a black hole, the companion is stripped of its matter

due to the tidal effects. To understand the circumstance in which an accretion disk may

form around a compact object, we consider a binary system with component masses

Nfl and lvI2having angular velocity D. So in the case of circular orbits in the reference

system rigidly connected with a component of a binary system, there exits an effective

scalar potential <Peff describing the gravitational and centrifugal force. In the plane of

the orbit, this potential corresponding Newtonian system can be presented in the form

1111

<Peff = - ~r11 !v12 - ~(n x r).2 (1.8)
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where n = 27r/ T is the angular velocity of rotation in the binary system. The total

energy of the particle moving in the potential it>effis given by

V2

it>eff + :2 = const = Eo. (1.9)

The constant Eo in the above equation is determined by the total energy of the particle at

a certain instant of time. The region of possible motion of the particle is determined by

the equality V2 /2 2: O.In this case, we obtain from the above equation the equivalent
relation

it>ef f :S Eo. (1.10)

Consequently, the equipotential surface it>eff = Eo (Hill's surface) limits the region of

possible trajectories of a moving particle with energy Eo. For a certain energy ER = it>R,

Hill's surfaces around adjacent stars come in contact and form the Roche lobe.
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Fig. 1.1: Equipotential surfaces of a compact binary system with mass ratio Md M2 = 1/3.

Distances are in units of G1\;[1/C2. Five points of four distinct types marked as L1, L2, L3 and

L4 are the so-called Lagrange points where it>ef f is locally or globally an extremum. Rochelobe

overflow occurs when matter from ]\;[2fills its lobe (right section of thefigure-of-eight formed by

the innermost contour) and passes through L1 to the star j\11 on the left (Chakrabarti, 1996).

The point of contact (inner Lagrangian point) can be determined from the condition

d it>eff / d x = 0 (the resultant of all the forces is equal to zero) as shown in the Fig. 1.1.
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The shape of the Hill's surfaces is independent of the absolute values of the component

masses and depends only on their ratio (q = 1\11/1'12),

At a certain stage of its evolution, a normal star fills its Roche lobe and begins to

intensely flow over to the neighboring component through the inner Lagrangian point.

The matter flowing from the normal star has an enormous angular momentum due to

the orbital motion. Since the angular momentum is conserved as the accreting star is

approached, the centrifugal acceleration of the infalling matter increases in accordance

with the law V2/ R ex:R-3, i.e., more rapidly than the acceleration due to gravity.

Therefore, at certain distance the matter enters some orbit. The following batches of

the infalling matter having nearly the same initial conditions fall on the same orbit.

A ring of increasing density is formed by the gas. Because of the collisions of gas

elements, shocks, viscous dissipation, turbulence cells, etc., some of the energy of the

ordered bulk orbital motion about the primary will be converted into internal (heat)

energy. Eventually, some amount of this energy is radiated and therefore lost from

the gas. The only way the gas can meet this drain of energy is by spiraling-in into the

gravitational potential well of the compact object and hence loss of angular momentum.

However, in the absence of external torque, this can only occur by transfer of angular

momentum outwards by internal torques. But, it is worth noting that the viscous

time scale (i.e. tvisc ~ R2/v ~ R/VR where, R being the radial extent, v being the

coefficient of the turbulent viscosity, and vRbeing the radial inflow velocity of the fluid)

on which the orbiting gas can redistribute its angular momentum is normally much

longer than both the time scales over which it loses energy by radiative cooling, trad.

defined as trad. '" M-2 tvisc where, M being the Mach number (i.e. M = V<.p/ cs, Cs

being the speed of sound), and the dynamical (i.e. orbital) time \Scale tdyn.defined as

tdyn. ~ R / V<.p ~ Ok-1 where, Ok is the Keplerian angular velocity and V<.pthe azimuthal

velocity of the fluid. For example, in case of standard a-disk models where a is assumed

to be:S I, there exists a well-defined hierarchy of time scales tdyn. :S trad. ~ tvisc.. It

was found that the dynamical and thermal time scales were of the order of minutes, and

the viscous time scale of the order of days to weeks for typical parameters. Since the

removal of the angular momentum process operates on slower time scales as compared

to free fall time, the infalling gas with sufficiently high angular momentum can form a
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disk like structure around a central gravitating body. If the viscous stresses disappear

at the inner edge of the disk, the matter flows inwards from outside, and the angular

momentum is transported outwards from inside. In another context, some matter from

the winds of the companion will also be accreted by the primary, and the Keplerian

flow could become sub- or super-Keplerian close to the compact objects due to terms

such as advection, pressure and cooling efficiency which are neglected in standard

disks. Therefore, flows close to the compact object will be an admixture of Keplerian

and sub-Keplerian matter.

Depending on their geometrical shapes, the disk can be classified into thin or thick

disk.

Z - vertical direction

. R

H

Fig. 1.2: This is a schematic diagram of the accretion disk around the central star with H as the

scale height defined along the z- direction and R defined as the radius of the central star.

It is useful to introduce a vertical scale height parameter H defined as

H t"V (R3/GM)(ozP/ p) to provide such classification more quantitatively.

1.2.3 Thin Accretion Disk

For the case when H ~ R, the disk is called thin disk and the model equations

governing the stationary disk flow become the set of ordinary differential equations.
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Disk in this regime is well studied and using these models many observable quantities

can be calculated. Such models are based fairly on observational basis (Pringle and

Rees, 1972; Shakura and Sunyaev, 1973). Subsequently several improvements were

made from these early models which may be found in a detailed review by Lightrnan

et aL (1978). All these models corne under the nomenclature of standard accretion disk

model (SADM) or a model as they assume the same viscosity law (i.e., P = air r/i)'

However, the weak point in modeling the thin accretion disks is the specification of

viscosity law. As the ordinary molecular viscosity is almost certainly irrelevant in disk

scenarios, it is conjectured that the turbulent or magnetic viscosity may playa key role

in the disk dynamics though their'nature is not fully well understood. Although the

radial dependence of the viscosity law does not alter the energetics for a disk with

fixed M, it may have a influence on the column density through the disk which in turn

change the emitted spectrum.

1.3 Standard Thin Disk Model
I

The standard disk model was originally conceived to describe Roche lobe accretion in

a binary system.

1.3.1 Model equations

In this model, the heat generated by the viscous stress is radiated out and hence the disk

becomes cool which means k T « G M mp / r contrary to spherical accretion where the

temperature is virial which means k T '"V G M mp / 1'. Therefore, the thin disk is highly

non-adiabatic. In the thin disk limit, the vertical velocity component is negligible as

compared to radial and azimuthal velocity components. Equations in two directions

are decoupled and hence vertical equation can be solved independently of the radial

equation. The accretion rate is assumed to be much lower compared to the Eddington

rate and pressure is neglected so that the radial force balance equation governs the

specific angular momentum distribution to become Keplerian.

The specific angular momentum of a Keplerian circular orbit of radius r' around a
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Newtonian star is given by

r = (G1I17')1/2. (1.11)

Considering 2 H to be the vertical scale height and L;the surface density of the disk at

the radius 7', the surface density can be expressed as

L; ==j H pdz.-H (1.12)

where the density p is computed on the mid-plane of the disk. By replacing the integral

of products by the product of the averages, one can write the above integral as,

L; ~ 2 H p. (1.13)

Fig. 1.3: Two annular sections of a thin accretion disk are drawn at radii 7' and l' + 81' to

illustrate how matter is accretedfrom l' + 81' to l' after angular momentum is transportedfrom

l' to l' + 81'through the action of the viscous stress f",. Thefigure is reproducedfrom Shapiro

and Teukolsky (1983).

For a Keplerian disk, the stress tensor is expressed as,

elD 3
t,. '" = TI1'- = - - 'I Dell' 2' (1.14)
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where, n2 = G!vI /1,3 is the Keplerian angular velocity. The viscous stress frj; exerted

in the <P direction by one fluid element at r to its adjacent fluid element at r + d r (Fig.

1.3) is related to the stress tensor according to frj; = - t,'rj; and hence,

3 3
frj;= -trrj; = 217n = 2 '7(G!vI /r3)1/2. (1.15)

-'

where 17is the dynamic viscosity coefficient. In order to obtain the steady state disk

structure, one has to solve four conservation equations describing the conservations

of the rest mass, the specific angular momentum, the specific energy and the vertical

momentum balance condition. In addition, a viscosity law must be specified which

transports angular momentum outwards allowing matter to fall in.

Using the conservation of energy, one can obtain the luminosity of the disk by

integrating over the radial extent of the disk and is given as,

Ldisk = lOCi2F(r) x 27rrdr = ~GM Nf 1rin ') r . = _2 Lace.
~ In

(1.16)

where F(r) denotes flux defined as H Q+ where Q+ is the measure of the rate of heat

generated by the viscosity. Q+ defined as Q+ ",-,>(tr1»2 / 17, where 17 is the dynamic\

viscosity coefficient.

It is worth noting that the above luminosity expression for the disk is exactly half the

potential energy of the matter at the inner edge of the disk as well as half of the accretion

luminosity. The reason for this magical factor is due to the assumption of the Keplerian

distribution. If there is no energy loss, the rotational velocity at the inner edge should

be ~ Vrj;2= G M / r but instead it is found to be ~ 'U1>K2= G M / 2 r because of the

choice of angular momentum distribution at the inner edge of the disk. Therefore, half

of the energy must come out of the disk irrespective of the physical viscosity in order,

to maintain a Keplerian disk. This above relation for Ldiskis valid only for the case

when there is no transport of angular momentum at the inner edge of the disk. This

clearly shows that having the disk inner edge closer to the central compact object would

increase the luminosity. The other half of the accretion luminosity is still available to

be radiated from the boundary layer itself, which is therefore just as important as the

disk for the total emission. For the case of non-rotating black hole, dividing the relation

(1.16) by AI C2,the efficiency of energy liberation during disk accretion is 17c:::1/12,
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i.e., '" 8%. For the case of rotating black hole, the efficiency sharply increases to '" 42 %

(Bardeen et a1., 1972).

Since the disk is thin, the vertical velocity component must be smaller compared to

other velocity components and thus one can ignore the advection term containing Vzin

the z-component of the Euler equation:

1 dP GM z

P d z - - -;:2-;:'
(1.17)

By setting ~ P '" P and ~ z '" H, one can obtain,

as
H"'O'

(1.18)

Thus,
H as

(1.19)- '" -.
r v'"

It is clear from the above relation that in the thin disk condition H (r) ~ r boils down

to assuming that the flow is subsonic with respect to the azimuthal velocity or the

azimuthal velocity v'"is Keplerian and highly supersonic (i.e. H '" M-1 r, where M

is the Mach number) which clearly puts a condition on the temperature of the disk

and hence, ultimately, on the cooling mechanism. Hence the thermal energy of the

gas in thin disks is much lower than the gravitational energy (i.e. the entire energy is

concentrated in the kinetic energy of rotation) which tells that equilibrium along the

azimuthal direction does not involve the pressure gradient because the gravitational

force is balanced by the centrifugal force. Furthermore, the radial drift velocity VI' and

vertical scale-height H are self-consistently small (i.e. VI' '" a M-1 as)'

It is generally accepted that the exact nature of the physical viscous mechanisms is

very poorly understood in the accretion disk scenarios. However, the molecular and

radiative viscosities are usually too small for a cool Keplerian accretion disk. So, one

of the possibilities is to consider small scale turbulent dissipation. In this case, the

coefficient of viscosity is given by

71 '" P Vtul'b ItU1'b, (1.20)

where, VtU1'bis the velocity of turbulent eddies relative to the mean gas motion and Iturb

is the size of the largest turbulent eddies. In case of supersonic turbulence, the shocks
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dissipate energy into heat and enforce VtuTbS CS' Since the largest size of the eddies

are bounded by the disk thickness, Itul'b SHand thus the viscous stress is bounded by,

110= -tre/> S pVsHfl rv pCs2 rv P. (1.21)

Therefore, in general,

11>= exP, (1.22)

with ex < 1. Here, P is the pressure in the equatorial plane and ex is a dimension-

less parameter called the turbulence parameter.This prescription has some basis in

phenomenological models of turbulent (Lynden-Bell and Pringle, 1974) and magnetic

(Lynden-Bell, 1969, Eardley and Lightman, 1976 etc.) viscosities, which predict values

of exin the range'" (10-3 - 0.1). If ex < 1 then the inflow is subsonic with respect to

the gas in the disk and disk will be in hydrostatic equilibrium in the vertical direction.

However, this generally used prescription is inadequate in describing flows which

include discontinuity such as shock waves.

1.3.2 Stability of a Thin Disk

Thin disks are subject to a variety of instabilities. Some of these arise from the viscosity

model (Lightman and Eardley, 1974), while others are related to the processes by

which thin disks cool, and are particularly dangerous for disks supported vertically by

radiation pressure (Pringle et ai., 1973;Pringle, 1981; Shakura and Sunyaev, 1976; Piran,

1978). All these above instabilities are secular, i.e., they grow over times considerably

longer than the orbital time. Consider, for example, a radiation pressure and Thomson

scattering dominated inner disk of variable half thickness H. More generally, an

equilibrium thin disk will be thermally unstable if

(
8( Q+ - Q- )

)
> 0

8H ~
(1.23)

(Shakura and Sunyaev, 1973;Pringle, 1981;Franket ai., 1992). The time scale for thermal

instability to develop is the local cooling time

27r

. tth '" fl ex
(1.24)

A thermally unstable disk will develop a corrugated surface, where the amplitude of

the corrugations is limited by non-linear effects. Their general effect is to cause the
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disk to break up into rings. Many types of equilibrium disks are thermally unstable.

It is worth to note that the assumption that the viscous heating is described by the a

model with constant a is crucial and different prescriptions can render our particular

example stable.

An alternative class of instabilities can develop more slowly on the time-scale asso-

ciated with mass accretion. If the disk adjusts to thermal equilibrium, then Q+ = Q-

holds inside the disk. If tpe accretion rate increases, then the local density can readjust,

to a new equilibrium; if not, then the disk is subject to viscous instability. The criterion

for viscous stability is then given by

d(v~) > 0
d~ (1.25)

(Pringle, 1981; Frank et al., 1992). When this inequality is reversed, then the disk will

depart further from equilibrium and become unstable. If there is viscous instability,

then perturbations will grow on the mass accretion time-scale
r

(
r

)
2

tvis rv -; rv tth H (1.26)

It is also important to know about the non-linear development of these instabilities and

to understand whether or not they are likely to disrupt global mass accretion flow.

VI

I

Fig. 1.4: Mass accretion rate at a given radius as afunction of the local surface density. When

d(v ~)/d~ > 0, the disk is stable to small perturbations in the surface density. When the

inequality is reversed, the disk is unstable. If mass is accreting at an unstable rate the disk may

follow the limit cycle variation ABCD instead of accreting steadily (Blandford, 1990).

One exception is a class of disks where relationship between the mass accretion rate
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"

and the surface density has the form depicted in the Fig. 1.4. If the rate at which

mass is supplied to the disk lies within an unstable range, then the disk may alternate

between two stable states following a limit cycle through this evolution. This limit

cycle behavior is held responsible for dwarf nova outbursts in cataclysmic variables.

In this case a portion of the disk associated with an ionization zone is believed to have

an unstable M(L:) curve. Similar behavior may occur in AGN accretion disks (Lin and

Shields, 1986;Clarke and Shields, 1989).

Other instabilities operate on a dynamica~ time although the unstable conditions

evolve over an inflow time, e.g., convective instabilities (particularly for radiation-

dominated disks: Cunningham, 1973; Shakura and Sunyaev, 1976). These instabilities

can be avoided if the viscous stress scales as the gas pressure rather than the radiation

pressure (Sakimoto and Coroniti, 1981;Meier, 1979). Thin disks in a Keplerian potential

are believed to be dynamically stable. However, when a disk is sufficiently massive that

its self-gravitation becomes important, then the disk can become dynamically unstable.

Finally, certain dynamical instabilities have been suggested as the basis of the angular

momentum transport, e.g., the Kelvin-Helmholtz instability leading to inflow in the

Gunn (1977) model for NGC 4278 and the weak Jeans instability in a disk which is

marginally self-gravitating in the vertical direction (Paczynski and Rozyczka, 1977;

Bailey and Clube, 1978). .

1.3.3 Magnetized Accretion Disks

So far we have discussed the structure and stability of the thin accretion disk without

considering the role of magnetic fields. Magnetic fields are ubiquitous in most astro-

physical systems and might be generated in the accreting plasma due to dynamical

processes. It is thought that accretion disks, whether in star-forming regions, in cata-

clysmic variables, X-ray sources or in the centers of active galactic nuclei are likely to

possess magnetic fields. Magnetic fields could play varied and important role in the

accretion disk scenarios depending on the concrete physical situations under consider-

ations. Magnetic fields may also have a big effect on the radiation spectrum emerging

from a realistic thin disk. For example, energy transported by magnetic buoyancy into

a hot corona could dominate the (approximately blackbody) radiation from the dense
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part of the disk. magnetic flares in the corona may accelerate relativistic electrons that

radiate non-thermally. In case of AGN disks, there is no ultimate repository from the

angular momentum of disks carried outward by viscous tress. Blandford (1984) has

emphasized that if the magnetic field were sufficiently well ordered, a coronal wind

(rather than outward transfer via viscosity within the disk itself) could be the main

sink for the angular momentum of accreted material (Blandford, 1976; Blandford and

Payne, 1982). In the context of extragalactic radio sources, formation and collimation

of extragalactic jets (for a recent review, see Spruit, 1996), could onset varied magneto-

hydrodynamic instabilities which can influence many radiation mechanisms which in

turn may explain important observed phenomena like variability, polarization, pulse

modulations etc. It can also be responsible for generating viscosity (turbulent) which

may redistribute the angular momentum in a more efficient way. In many accretion disk

scenarios the central objects possess intrinsic magnetic fields. The observations from

the X-ray satellites substantiate the evidence of the existence of X-ray stars. These stars

are broadly classified into two categories: (a) those emitting pulsed X-ray radiation

(X-ray pulsars) and usually belonging to a comparatively younger stellar population

in the Galaxy (plane component), and (b) the sources of non-periodic varying radiation

(e.g., X-ray bursters) belonging to the galactic bulge, a quasi-spherical sub-systems

with radius on the order of 5 kpc. All these stars are undoubtedly binary systems. The

existence of pulsations can be attributed to very powerful magnetic fields. From the

observations of cyclotron spectral features in X-ray pulsar systems, estimates for the

surface magnetic field strengths of neutron stars have been inferred to be in the range

of f'V 1 - 4 X 1012Gauss. The magnetic field strength on neutron stars in the galactic

bulge is in the range of 108 - 1011Gauss. These estimates have been inferred from

the interpretation of the intensity-dependent quasi-periodic oscillations in the bright

sources (Lewin et ai., 1988) in terms of the magnetospheric beat-frequency modulated

accretion model of Alper and Shaham (1985) and Lamb et ai. (1985).

1.3.4 Survey of Magnetospheric Models

A star with such a strong magnetic field has a magnetosphere which can be hundreds

of times the size of the star itself. Many workers studied the structure of the magneto-
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sphere of a neutron star in the vacuum approximation, i.e., under the assumption that

matter does not penetrate the magnetosphere. Such magnetospheres can indeed exist

for some neutron stars in the propeller or georotator regimes. However, it is clear that

in some powerful X-ray sources (like X-ray pulsars), matter penetrates to the surface

across thousands of kilometers of magnetic field strata. After all, it is the interaction of

plasma and the magnetic field in the magneto sphere that is responsible for a number

of observational facts, such as (1) liberation of energy of the accreting matter on the

surface and its emission (anisotropic in a pow,erful magnetic field): circumpolar region;

(2) exchange of angular momentum between a star and accreting matter, leading to a

change in the rotational period of the neutron star (Alfven zone- transition layer); (3)

determination of the time evolution of a source by a valve at the magnetosphere bound-

ary. The first ideas on the passage of the plasma across the magnetosphere boundary

were put forth by Shvartsman (see, Lipunov, 1992) and he suggested that plasma may

pass through the magnetosphere boundary due to magnetohydrodynamic instabilities.

Stimulated by the observations of these binary X-ray sources, it has been recognized

that the structure of the magnetosphere surrounding an accreting neutron star and the

structure and evolution of the accretion disk in the system are central for providing

a physical interpretatio'n of the observed phenomena. Some theoretical progress has

been made in understanding the dynamics of accretion within the magnetosphere and

the topology. However, in the context of magnetospheric models around magnetized

compact objects, Lamb, Pethick and Pines (1973) were the first to assume that the

plasma entering the magnetosphere would be rapidly threaded by the magnetic field

and showed that the plasma would then be forced to flow along the field lines. Later

on Ghosh, Lamb, and Pethick (1977, hereafter GLP) have investigated accretion of

matter by a rotating magnetic neutron star, assuming that the magnetic field of the star

has a symmetry axis which is aligned with the rotation axis, that the accreting matter

becomes threaded by the stellar magnetic field near the magnetosphere boundary, and

that the star is not rapidly rotating. They have shown that for bright X-ray sources

the flow of matter within the Alfven surface is well described by the equations of

magnetohydrodynamics, and that the matter there moves along field lines when viewed

in the corotating frame with respect to the star. They found that matter inside the Alfven
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surface rotates in a sense opposite to that of the net angular momentum flux toward

the star if the star is rotating slowly. Using a simple model for the transition region

between the magnetosphere and the exterior flow, they have illustrated how matching

the interior and exterior flows determines the angular momentum flux, and therefore

whether the neutron star is spinning up or spinning down. They have also explored the

special case of Keplerian disk flow outside the magnetosphere. Their calculations show

that if 0 < Os r~ / 1 < I, then any energy dissipated in the disk beyond that provided

by the release of the gravitational binding energy of the matter flowing through the

disk comes neither from the matter flowing through the disk nor from the rotational

energy of the star but from the energy released by matter in the transition zone between

the disk and the magnetosphere.

Scharlemann (1978) emphasized the importance of the shape of the field lines thread-

ing the plasma in controlling the flow of plasma from the inner edge of the disk to the

neutron star. By assuming the stellar magnetic field is completely excluded from the

disk by screening currents which are represented by a current ring of radius RCF, (i.e.,

Chapman-Ferraro radius estimated by equating the pressure of the dipole magnetic

field to the gas pressure of the accreting matter) Scharlemann discussed the possi-

ble mechanisms viz. Kelvin-Helmholtz (K-H) and Rayleigh-Taylor (R-T) instabilities

through which the plasma can flow to the stellar surface either along the field lines or

through the equatorial magnetosphere. Ichimaru (1978) proposed a model of disk ac-

cretion in which the inner radius of the disk is determined by the static pressure balance

condition but modified to take into account of effective gravity and centrifugal force

acting on the plasma in the boundary layer between the disk and the magneto sphere

of the compact object. However, all these models are mostly qualitative in nature and

several questions have been raised on the validity of the inherent assumptions. The

most important of all, concerns the complete screening of the stellar magnetic field

from the disk.

However, the pulse periods for a number of X-ray pulsars have been sufficiently

well measured over the past decade to provide important information regarding the

torques exerted on the neutron stars by the accreting material. From the pulse period

histories of these eight sources, it is apparent that the "spin-up" trend first noted in Her
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X-I and Cen X-3 (Giacconi, 1974; Gursky and Schreier, 1975) is very prominent in at

least five of them. The trend in most of the X-ray pulsars toward a secular decrease in

pulse period can be understood in terms of the torques exerted by the matter accreting

onto the neutron star. These torques can be readily calculated for the case where the

matter has roughly circular Keplerian velocities at the magnetopause of the neutron

star, as would be the case if the accretion is mediated by a disk. These models are

known as magnetic.:.lly threaded disk models (hereafter MTD).

There have been extensive studies on this subject (Pringle and Rees, 1972; Ghosh
,

and Lamb, 1978, 1979a,b, (hereafter GL); Lipunov, 1992; Wang, 1995; Li and Wang,

1996). The principal uncertainty in the calculation of the net torque N appears to lie

in the behavior of the toroidal field, Brj;(1'). Such calculations (Pringle and Rees, 1972;

Lamb et ai., 1973; GL, 1979a,b, and references therein) show that the rate of change

P of the intrinsic pulse period P is related to the X-ray luminosity and the physical

properties of the neutron star:
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Here, ~ is the fractional solid angle sub tended at the neutron star by the infalling

matter at the magnetopause; Vr / vII is the ratio of the average radial infall velocity

of a particle to its free-fall velocity just outside the magnetopause; M, R, Rg, and ~

are the mass, radius, radius of gyration, and magnetic dipole moment of the neutron

star, respectively; and Lx is the accretion-driven luminosity. The quantity (~ Vr / v I I) 1/7

is not expected to differ greatly from unity (see, for example, Lamb et ai., 1973). The

overall minus sign in the above equation is explicitly for the case where the sense of the

orbital angular momentum in the accreting matter is the same as that of the rotation of

the neutron star. For simplicity, one can rewrite the above equation as,
.

(

' 6/7

P = - 3 X 10-5 f £. Lx .
P C.J 1037erg 8-1) (1.28)

(Rappaport and Joss, 1977), where the dimensionless function f is expected to be of

order unity for a neutron star and contains parameters that are not yet measurable
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for most or all of the X-ray pulsars. Therefore, it actually seems that the pulse-period

changes in binary X-ray pulsars are a sensitive diagnostic of the process of accretion

onto a neutron star in the presence of the its magnetic field. Measurements of the

magnitude and sign of P/ P may also be used to infer intrinsic properties of the source

such as its dipole moment, and may even provide information about the nature of the

binary system and its evolution.

One of the main conclusions of GL model is that in disk accretion the transition zone

is not thin, and recognition of this is an important step in understanding the period

behavior of Her X-I, Cen X-3, and 4U 0900~40. However, the principal uncertainty

in the calculation of the net torque N appears to lie in the behavior of the toroidal

field, Be/>(R).In their model the toroidal magnetic field BY' is generated by the shear

motion between the disk and the star; but the amplification to take place on a time-scale

Tw rv I, (Os - OK),-I (with, of order one), is limited by reconnection between the field

lines above and below the symmetry plane of the disk (where Be/>changes sign). The

latter process occurs on a time scale Td rv h/(~lvAe/>I),wherevA.p == B.p/(47rp)I/2,p

denotes the plasma mass density, and ~is a numerical factor which may be considerably

less than unity (d. Priest, 1981). In this scenario, lines of force become twisted and a

corresponding stress is exerted on the neutron star. They have found that the torque can

have both positive and negative contributions, with near-cancellation occurring under

some conditions. The model was applied to Her X-I, which is observed to spin-up on

a time scale much longer than expected from naive dimensional estimates, as well as

to other binary X-ray pulsars for which measurements of Pwere available. However,

the detailed predictions of the model depend on assumptions about the amount of

distortion undergone by the magnetic field threading the disk.

However, the Ansatz (i.e., generation and amplification of wounded magnetic field)

is physically untenable for the following reason. According to GL (1979a), the struc-

ture of the outer zone l' > 1'0 resembles that of an undisturbed, thermally-supported

accretion disk (see, e.g., the review of Pringle, 1981). If this is the case, the vertical

pressure scale-height (or half-thickness) of the disk is related to the isothermal sound

speed Cs = (p / p)I/2 through h rv Cs / OJ(. Thi~means that the pressure of the wound

field, which they did not include in their vertical hydrostatic balance equation, greatly
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exceeds the thermal pressure p beyond R rv Rc (where Rc is denoted as corotation

radius defined as Rc == (G AI / n~)1/3 where ns is the angular velocity of the neutron

star defined as ns = 21f / P) and would disrupt the disk. On the other hand, their

model requires that a substantial (negative) contribution to the torque on a fast rotator

like Her X-I originate from the region T » l'c (see GL, 1979b).

However, Wang (1987) has presented a model for the accretion disk torque acting

on a neutron star, based on a more realistic treatment of the magnetic stresses than

has been considered by GL. Although, his approximations are still crude to allow an

accurate determination of dipole moment, the model generally indicates higher values

of dipole moment than that of GL. The differences arises because, for given J.l (dipole

moment) and 1](dipole screening factor), GL treatment predicts a larger spindown

contribution to the torque from the asymptotic region beyond Tc:the winding law that

they adopted leads to too much amplification of the toroidal field. In other respects,

the predictions of the two models are in qualitative agreement. We know a useful

parameter often adopted in diagnosis of the magnetic field-accretion disk interaction

is the "fastness parameter" which is defined as Ws == ns / n(To) == (1'0/ Tc)3/2,where

ns and n are the angular velocitiesof the star and the disk plasma respectively,Te is

the corotation radius of.the star. Li and Wang (1996, hereafter LW) have shown that

the torque exerted on a rotating, magnetized star by magnetically threaded accretion

disk is depending on the "fastness parameter", Ws. In equilibrium state for which there

is no torque exerted on the star, the fastness parameter reaches its critical value we.

Recently Wang (1995) obtained that the value of We lies in the range of 0.875 - 0.95

But LW argue that an uncertainty of a factor of 4, exists in the torque calculation at

the inner edge of the disk. Together with uncertainties relating to the strength of the

toroidal field, LWfind that the value of L<-'ccan range between 0.71and 0.85for different

physically plausible conditions inside the accretion disk. These results are found to be. .

larger than those of GL (1979a, b), but smaller than those of Wang (1995), implying that

the field-threaded disk is moderately effective in braking the star. Combining Wang's

results, LWconclude that the value of We should lie in the range of 0.71 - 0.95. Hence

LW support the idea that the MTD model is incompatible with the critical fastness

parameter whose value is significantly less than 1 (Wang, 1995). LW results present
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constraints on the magnetically threaded disk model and seem to be consistent with

observations of the binary X-ray pulsar 4U1626 - 67, which belongs to a low-mass

X-ray binary (McClintock et aI., 1977; Levine et aI., 1988), in which the neutron star

accretes matter from its companion through a disk. The pulse period of 4U1626 - 67

is ""' 7.7 seconds and the period measurements obtained before 1990 demonstrated a

constant spin-up of - 1.6 x 10-3 s yr-l (Nagase,1989). Recent observations with ART-

P / Granat (Lutovinov et al., 1994) and BATSE/ CGRO (Bildstenet al., 1994) showed that

the period derivative changed sign in 1991. This fact reflects that 4U1626 - 67 was close

to the equilibrium state for which the net torque vanishes. If the beat frequency model

(Alper and Shaham, 1985;Lamb et aI., 1985) is applied for the QPO of 4U1626 - 67, the

rotation frequency of the disk plasma at the inner edge can be estimated to be 0.17 Hz

and the critical fastness parameter We ~ 0.76 which lies in LW estimated range of we.

Lovelace et aI. (1986) and Mobarry and Lovelace (1986) have proposed a general

theory for both Newtonian and relativistic ideal MHD flows around a rotating magne-

tized neutron star and Schwarzschild black hole and they derived a virial equation and

discussed the stability of the motion of the charged test particle in the presence of an

electromagnetic field but without presenting any specific equilibrium solution. The im-

portance of general relativity in discussing the structure and stability of magnetospheric

plasma around a compact object is explained by Prasanna (1991). In a completely differ-

ent formalism, Prasanna and Chakrabarty (1981) and Chakrabarty and Prasanna (1981)

analyzed structure and stability of fluid disks around a Schwarzschild black hole and

observed that (i) the inner edge of the disk can not lie within 4 m, (ii) if the inner edge

of the disk lies within 4 m and 6 m, then the outer edge must lie beyond 2 a / (a - 4),

where a is the radius of the inner edge defined in units of m (m = M G / c2), (iii) there

exists no restriction on outer edge, if the inner edge is at or beyond 6 m, (iv) in the

case of pressureless <;lisk,the structure is stable if the inner edge is greater than ()m,

(v) an ordinary perfect fluid disk rotating around central source is stable under radial

perturbations. The dynamics of accretion disk and its emerging flux in the presence.
of electromagnetic fields on curved space time for several special cases of azimuthal

velocity distributions was obtained by Prasanna and Bhaskaran (1989) and Bhaskaran

and Prasanna (1989). A subsequent analysis by Bhaskaran and Prasanna (1990) includ-
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ing the radial velocity component of the flow revealed the inter-dependence of different

physical parameters like outer density, seed magnetic field and finite conductivity on

the continuous pressure distributions of the disk configurations. An analysis for disk

around slowly rotating compact object was also carried out by Bhaskaran et al. (1990)

,which demonstrated the influence of co- and counter rotation at the inner edge of the

disk. However, all these analyses were confined to thin disk limit (i.e., () = 7r /2). In

another context, Anzer et aI. (1987) computed the changes in the vertical structure of

the accretion disk brought about by an external magnetic field and showed that high

probability exists for the occurrence of instabilities at the magnetospheric boundary

due to the inversion of the density profile.

Directed outflow is a ubiquitous feature of active galactic nuclei, and it is also seen

in some small~scale prototypes of AGNs in our own Galaxy (e.g., SS 433). Over the past

twenty years radio observations have shown us unexpected phenomena which have

revolutionized our ideas about the structure and energetics of active galactic nuclei.

Specifically, they have revealed that many galactic nuclei produce what appear to be

collimated jets of plasma which traverse the vast distances spanned by the extended

radio emission. The Hubble Space Telescopefor the first time enabled optical and UV

images of jets to be obtained with spatial resolution comparable to radio interferometric

techniques. Jets may be significantly more common than presently realized given the

serendipitous discovery by HST of a new, previously unsuspected optical non thermal

synchrotron jet in 3C 264. In the realm of jets the magnetic fields" have long figured

prominently in models designed to account for the double nature of extragalactic radio

sources. Magnetic fields can operate in two different ways, passively in defining a

channel along which a stream of high-energy particles can flow, and actively if the field

itself carries a major component of the power leaving the nucleus.

It is generally bel~eved that the origin of the bipolar outflows and jets are closely

related to the properties of magnetized accretion disk around a compact object. Any

disk structure near a black hole provides a pair of preferred directions along the rotation

axis; moreover, within the Lense-Thirring effect's domain of inf1uence, this axis is

maintained steady by the hole's gyroscopic effect. These outflows and jets can extract

angular momentum very efficiently from the disk with the attractive attribute of a
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self-confining toroidal field when there is no binary companion. It had been shown

that angular momentum transport in a bipolar outflow is consistent with its loss from

the proto-stellar disk (e.g., Pudritz and Norman, 1986; Konigl, 1989; Contopoulos and

Lovelace, 1994). Jets may be produced electromagnetically. The potential difference

~cross a disk threaded by open magnetic field lines can exceed 1020 V (Lovelace, 1976;

Blandford, 1976), and this is available for accelerating high-energy particles which

will produce an electron-positron cascade and ultimately a relativistic jet that carries

away the binding energy and angular momentum of the accreting gas. Since plasma

can easily flow from the disk into the magnetosphere, a hydromagnetic description is

probably more appropriate than the force-free approximation ( Blandford and Payne,

1982 , hereafter BP; Phinney, 1983; Ustyugova et aI., 1995 and references therein). In

this description the jet mechanism relies upon hydromagnetic stresses exerted by a

magnetized accretion disk to. fling gas outward centrifugally (Blandford, 1990). The

gas will be tied to the magnetic field and its inertia will cause the magnetic field lines'

to be bent backwards creating a toroidal component. Now this toroidal component of

magnetic field has an associated "hoop" stress which can act to collimate the poloidal

flow of plasma.

BP (1982) have developed a model self-consistently for the infinitesimally, thin,

--

Keplerian, magnetized disk whose solutions also produces collimated radio jets. In

this model, matter is ejected using a 'sling-shot' mechanism if the poloidal field line,

emerging from the disk, is sufficiently bent outwards and making an angle () with

the outward radial direction. Plasma that is attached to this field line will behave

somewhat like a 'bead' on a wire, and it is straightforward to show that if the disk is

in Keplerian orbit and () ;S; 60°, then centrifugal force will exceed gravity and gas will

flow away from the disk surface. The natural assumption to make in this case is that the

particle stresses, p V2,.are in rough equipartition with the magnetic and gravitational

stresses. Therefore, the plasma in the magnetosphere is streaming outward at roughly

the Alfven speed B(47r pt1/2 '" (GkJ /1')1/2 rather than the speed of light, as is the

case with force-free assumption. This piece of work shows that collimated bipolar jets

may be formed from a Keplerian disk. In real physical situation, the disk need not be

Keplerian and the potential will be modified due to curvature effect very near to the



29

black hole and as a result much higher inclination than 60° will be required in order to

fling out matter from the strong gravitational field.

In the absence of resistivity, magnetic field lines can be thought of as being frozen

into the plasma (e.g., Parker, 1979). If no field is entrained from the ambient medium,

the magnetic flux in the jet is conserved along the jet trajectory, although the field

strength may be amplified by internal shear. In the absence of a velocity gradient

across the jet, the magnetic field should become predominantly toroidal far from the

source of the jet, regardless of its configuration closer in (Begelman et al., 1984). The

presence of toroidal field B", has three general consequences. First, there can be a

magnetic tension associated with it, i.e., large enough to collimate the outflow. Second,

there will be an associated Poynting flux of energy rv (B; / 4 11") V j. This energy flux is

in a form suitable for driving particle acceleration at large distances from the central

source, in particular within the radio components. Third, as the magnetic field is not

entirely toroidal but retains a poloidal component Bp that decays with distance as d-2,

there is also a flux of electromagnetic angular momentum associated with the outflow

rv Bp B", d /411".

1.3.5 Stability of Magnetized Accretion Disks

However, the magnetized thin disk also suffers from instability like magnetic shearing

instabilities. Although the hydrodynamic shear flow is stable as long as the specific

angular momentum is increasing outwards, the corresponding ideal magneto hydrody-

namic shear flow becomes unstable as soon as the angular velocity decreases outwards

in the presence of a weak magnetic field. A magneto hydrodynamic shearing instability

was first found by Velikhov (1959) and independently by Chandrasekhar (1960, 1961).

In fact, Safronov (1972) had hinted the existence of the above mentioned instability

in the accretion disk scenario where azimuthal field is more important than the one

of the vertical field. Thereafter, Balbus and Hawley (1991) found a magnetic shearing
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instability that affects a magnetized thin Keplerian flow.
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Fig. 1.5: Schematic diagram showing the origin of Balbus-Hawley instability inside a differen-

tially rotating disk in presenceof vertical and toroidalflux tubes (Chakrabarti, 1996).

Their analysis assumed a continuous magnetic field, but it can be shown that this in-

stability also holds for magnetic flux tubes. Furthermore, Balbus and Hawley (1992a,b)

have emphasized that the growth rate is related to Gort's A-constant, and by numerical

simulations in two dimensions (Hawley and Balbus, 1991). The driving force behind

the magnetic shearing instability is the centrifugal force which enhances the sinusoidal

perturbation and causes strong bending as well as stretching of the field lines as shown

in the Fig. 1.5. The bending of the field line introduces two different effects. The first

effect is stabilizing the perturbed field line at R = Ro by pulling it back due to magnetic

tension and the second effect is destabilizing by forcibly rotating the displaced field

line at its original angular frequency OK = OK(Ro) == OKO due to magnetic tension.

The stretching makes the tube buoyant so that the perturbed parts rise out of the

disk. The. Coriolis force affects the radial displacement by twisting the tube path.

Therefore, the joint effect of buoyancy ("lift") and Coriolis force ("twist") results in

"wiggling" of the tube path. The wiggles and the uppermost parts of the tube are

regions of high curvature and torsion implying strong currents and magnetic field

twisting respectively. If the resistivity are taken into account, the tube will be disrupted
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by kinking instabilities and reconnection. The instability criterion is given as,

k2 v~o - 3 DJ(o < O. (1.29)

if the magnetic field is sufficiently weak or the wavelength sufficiently long. The above

cr~terion can be translated into a lower limit of the perturbation wavelength:

27r VAO

A > Acrit = sqrt3 DKo
(1.30)

For a sufficiently weak magnetic field the wavelength becomes comparable to the length

scale of magnetic diffusion and the instab.ility is no longer ideal. At the other limit of

a strong magnetic field the length scale is comparable to the scale height of the disk so

that the local analysis does not apply.

However, the validity of this local analysis was questioned by Knobloch (1992) who

showed that the simple-minded derivation of a dispersion relation from a local analysis

can yield erroneous results in shear flows if applied carelessly. The proper way to

analyze instabilities in shear flows is given by an eigenvalue-problem for the frequency,

which introduces a dependence on the radial boundary conditions. Knobloch could

not exclude the possibility of an instability even though he suggested that it would be

overstable instead of exponentially growing because of the stabilizing influence of the

toroidal magnetic field. Dubrulle and Knobloch (1993) derived a stability criterion for

axisymmetric perturbations

1 a
(

2 B~

)
2 a (

V

)R2 aR R 4 7r P - R ilR R2 > 0, (1.31)

where v is the equilibrium azimuthal velocity, which in general is not Keplerian because

the equilibrium state is affected by the presence of the azimuthal field. The growth

rate of the most unstable mode is of the order of D1/ but decreases as the azimuthal

field becomes stronger. Similar stability criteria have been derived recently from an

interchange method (Christodoulou et aI. 1995). Balbus and Hawley (1991, 1992a,b) did

not find the stabilizing effect of the toroidal field, as they did not take into account the

tension of the toroidal field, BJ / R which is the stabilizing force. The global stability

of magnetized accretion disks has been analyzed by Kumar et aI. (1994), Coleman et aI.

(1995), Gammie and Balbus (1994) and in particular by Curry et aI. (1994). The single

most important result of all the papers fortunately is that the instability still exists in the
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global analysis for a fairly large range of parameters, although the azimuthal magnetic

field does have a stabilizing influence.

1.4 Thick Accretion Disks

So far we have discussed theoretical work on thin disk structure primarily aimed at

understanding cataclysmic variables, X-ray binaries, etc., but it is also relevant in the

context of active galactic nuclei. In all disks, the thermal balance of the outer parts is

likely to be controlled by irradiation (causing photoionization, Compton heating, etc.)

from the central region. Even where such disks exist, they could be embedded in hotter

>,

quasi-spherical structures. Thus, there may be no distinct demarcation between thin

disks and the toroidal structures (i.e., thick disks or tori). Disks become geometrically

thick, with H ~ R, if the internal pressure builds up so that Cs ~ (GM / r )1/2 (Rees,

1984). This can happen if gas passing through a thin disk reaches a radius within which

the internal pressure builds up- either because it is unable to cool in an inflow time (i.e.,

the material is unable to radiate the energy dissipated by viscous friction which then

remains as internal energy) or because the radiation-pressure force is competitive with. .

gravity. In a thick disk or torus the pressure provides substantial support in the radial as

well as the vertical direction, and the angular momentum distribution (now a function

of z as well as r) may be far from Keplerian which in turn becomes (within certain

constraints) a free parameter. Nevertheless, the analogy with thin accretion disks still

applies if slow inflow occurs as a result of the viscous transfer of angular momentum.

However, in thick disks the viscous stress must be considered in two directions. The

stresses determine the distribution of both angular momentum and enthalpy, and

therefore the shape of the isobars inside the disk; internal circulation patterns may be

important for energy transport. There always exists a pressure maximum at r = 1'max

in the equatorial plane. The angular velocity becomes sub-Keplerian for r > l'maxand

becomes faster than Keplerian for l' < rma~"

However, the above fact has enabled Paczynski and Wiita (1980), Jaroszynski,

Abramowicz, Paczynski (1980), Abramowicz, Calvani, and Nobili (1980), and Wiita

(1982) to construct global models of thick accretion disks without reference to the vis-
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cosity. They have exploited an important simplifying feature: the shape of a torus

depends only on its surface distribution of angular momentum. If the angular velocity

n is taken to be the function of angular momentum L, then the binding energy U is

given implicitly by

d U / U = n dL / (C2- L n 2). (1.32)

For uniform L, the binding energy U is then constant over the whole surface of the

torus and thus for each value of L, a family of such tori parameterized by the surface

binding energy can be obtained. The tori will'puff up' when U -t 0and hence a part of

the surface close to the rotation axis becomes paraboloidal in shape. The gravitational

field remain Newtonian throughout the torus except near the hole where relativistic

effects play an important role if L ~ Lmin, the angular momentum of the smallest

stable orbit. For Lmin < L < Lo, the binding energy U of the torus exactly equals the

binding energy of the unstable orbit of angular momentum L. There is then a cusp-like

inner edge, across which material can spill over into the hole (just as material leaves a

star that just fills its Roche lobe in a binary system). This particular relation between

U and L would approximately prevail at the inner edge of any torus where quasi-

steady accretion is going on. Although self-consistency and stability considerations

do somewhat constrain the acceptable forms of the angular momentum distribution

(Abramowicz, Calvani, and Nobili, 1980), this model allows considerable freedom to

specify the shape of the surface arbitrarily, and yield virtually no information about

the interior. More generally, one can consider tori having angular velocity n goes as

some power of L (Phinney, 1983). These tori can exist in all cases where the angular

momentum increases with n at a slower rate compared to Keplerian. In this context

the funnels tend to be conical rather than paraboloidal if the rotation law is close to

Keplerian and they extend closer to r = 1'g when the black hole is rapidly rotating.

Accretion flows possessing high internal pressures could resemble such tori if the

viscosity were low enough to provide essentially circular flow and provided with

stable configuration.

A generic feature of accretion tori is that they liberate energy per gram of infalling

matter less efficiently as compared to thin disks. The efficiency is given by the binding

energy of the material at the cusp which depends on the angular momentum profile
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described by the eq. (1.32). But for a constant angular momentum .c torus of outer

radius rout, it is (rout /1'9)-1, which implies very low efficiency for large tori.
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Fig. 1.6: An equipotential surface of a barotropic thick accretion disk is schematically shown

along with the chimney (or funnel) along the axis. The directions of the gravitational force,

centrifugal force, the net force along the effective gravity, and the force due to pressure gradient

are shown with arrows. An equipotential surface isformed by the tangent vector normal to the

directions of the pressure balance. (Reproduced from Chakrabarti, 1996)

Before we discuss various thick disk models it is worth to sketch a cartoon picture

to indicate forces acting on a blob of matter inside a thick accretion disk. The Fig.

1.6. shows schematically an equipotential surface. The gravitational force acts radially

inwards and the centrifugal force acts in a direction normal to the angular momentum

vector. Addition of these two vectors produces a net force along the effective gravity.

In order to remain in hydrostatic equilibrium, a force of equal magnitude due to the

pressure gradient must act opposite to this diredion. The tangents drawn normal to

the pressure balance produce the equipotential surface.

However, tori may be supported by either radiation pressure or gas pressure. A

radiation-pressure supported thin disk has a constant thickness", rtr, the trapping

radius defined as rtr = (1~1/ Nhdd)'1'9 where MEdd = LEdd / C2 is the critical accretion

rate associated with the Eddington limit; hence it becomes geometrically thick at 4 1'9 <

r ;S rtr, when the accretion rate exceeds the critical value Nhdd. Indeed, in any

configuration supported in this way, not only the total luminosity but its distribution

over the surface is determined by the form of the isobars. Tori having long narrow
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funnels have the property that their total luminosity can exceed LEddby a logarithmic

factor (Sikora, 1981). Most of this radiation escapes along the funnel, where centrifugal

effects make the surface gravity (and hence the leakage of radiation) much larger than

~ver the rest of the surface. If the accretion powers such a torus, then mx (efficiency)

;<: 10. However, radiation tori are similar in many respects to the massive objects

originally postulated by Hoyle and Fowler (1963a,b) and may suffer the same fate (i.e.,

dynamically unstable). There are possible axisymmetric local instabilities caused by

unfavorable entropy and angular momentum gradients (e.g., Seguin, 1975; Kandrup,

1982). These presumably evolve to create marginally stable convection zones just as

in a star. But more threatening are non-axisymmetric instabilities. Papaloizou and

Pringle (1984) have demonstrated that a toroidal configuration known to be marginally

stable to axisymmetric disturbances possesses global, non-axisymmetric dynamical

instabilities. More detailed studies suggest that the modes are most damaging when

din 0 < - 31(2.
dinr (1.33)

As they are dynamical, these modes grow on the time scale of a few orbital periods.

tdyn rv 0-1 rv (;) 2 a-I tvis'
(1.34)

For a thick disk with a rv 0.1, as commonly assumed, they grow somewhat more

rapidly than viscous modes. The tori will apparently destroy itself in a few orbital

periods unless nonlinear terms can saturate the instability at a low amplitude. It is

not yet known if this is the general property of these tori. Furthermore, it is not at

all clear that tori can evolve towards stable or marginally stable states even if they

exist, nor that the rate of internal energy generation through viscous dissipation can

always be balanced by the transport. Numerical simulations (Hawley, 1989), exhibit

the formation of counter-rotating planets as the non-linear evolution of this instability.

These structures may be highly dissipative and destroy the disk. If this happens, then

the concept of highly optically and geometrically thick torus, may be invalidated and in

particular the fluid approximation may no longer be appropriate. Alternatively, (i) if the

radial velocity is sufficiently large (i.e., inclusion of accretion flQw) , particularly in the

vicinity of the cusp, the equilibrium flow may convect the waves inwards and inhibits

their reflection (Blaes, 1987; Hawley, 1991;Gat and Livio, 1992). The waves might then
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be maintained at a level of marginal stability transporting angular momentum just fast

enough to limit the wave growth. In this sense, they may act like an effective viscosity

and ultimately drive a steady disk flow, (ii) inclusion of self-gravity (Goodman and

Narayan, 1988) could stabilize the tori. It was pointed out that the growth rate of

the instability was too low to be of any astrophysical significance and decreases with

increasing width of the torus. More numerical simulations are undoubtedly needed to

settle this controversial matter.

A gas-pressure-dominated disk would become thick in the opposite limit, that of

low accretion rate. Like for spherically symmetric inflow, the cooling time scale and

even the electron-ion coupling time can be longer than the free-fall time in case of flow

with angular momentum, provided that m is low enough. In this model the cooling time

varies inversely with M,while the infall time", a -1 t f ree- fall should be insensitive to

l'VIfor a turbulent or magnetic viscosity (Rees et al., 1982) and the characteristic density

for a given 1nis higher by a-1. The condition for electron-ion coupling to be ineffective

in the inner parts of a torus is

ma-2 < 50. (1.35)

When the above equation holds, the ion can remain at the virial temperature even

if synchrotron and Compton processes allows the the electrons to cool, and the disk

swells up into a torus. The dominant viscosity is likely to be magnetic. Though the

estimates of the magnetic viscosity are very uncertain, Eardley and Lightman (1976)

suggest that a falls in the range 0.01 - 1.0. So eq. (1.35) should definitely be fulfilled

for sufficiently low accretion rates. An accretion flow where m is small, and where

the radiative efficiency is low, it may seem that the model is doubly unpromising for

any powerful galactic nucleus. Even though it may not radiate much directly, the

torus around a spinning black hole offers an environment where the Blandford-Znajek

(1977) process could operate and torus in turn serve as a catalyst for tapping the hole's

latent spin energy. However, if there exist pair-productions or other collective plasma

processess, it enhances the ion-electron coupling yielding to rapid cooling of protons

(Sikora and Zbyszewska, 1985; Takahara and Kusunose, 1985; Begelman et ai., 1987).

As a result, in the presence of strong magnetic field ion torus may be cooled rapidly

and get deflated. then the restoring force can bring back the cool disk to the hot torus
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configuration and therefore it leads to instability which may be responsible for the cas~

of AGN variabilities (Begelman et ai., 1987). In the case of gas pressure dominated thick

disk, the gas may be completely photo-dissociated into protons and neutrons. Protons

may be accreted onto the black hole as they experience the magnetic viscosity whereas

neutrons may orbit around the hole till they decay and as a consequence, neutron

torus may be formed which combines with incoming matter give rise to neutron-rich

elements in the galaxy (Hogan and Applegate, 1987).

However, the likely presence of magnetic fields in both types of tori (i.e., radiation-

dominated torus and ion-supported torus) may prompt a question whether this kind

of configurations are dynamically stable. Therefore, global dynamical stability of mag-

netized tori has been a part of active research (Goldreich et ai., 1986, hereafter qGN;

Blandford, 1990) and is not being completely investigated yet. With the recent renewed

interest in magnetic processes spurred by the Balbus-Hawley (1991) instability (the

local version of the Velikhov-Chandrasekhar instability), it seems natural to consider

whether a global, non-axisymmetric counterpart exists in tori. In fact, Hawley (1991)

has commented that the viability of thick disk may very well rest with this magnetic

instability. Interestingly, Curry and Pudritz (1996) showed that thick and thin disks

are equally susceptible to the magnetic version of the Papaloizou and Pringle (1984)

instability, so applications need not be limited to the AGN context. They have shown

that any differentially rotating disk threaded by even a weak magnetic field should be

susceptible to the instabilities. They have demonstrated the existence of globally un-

stable, non-axisymmetric modes in incompressible MHD cylinders and, by extension,

in astrophysical disks. In closing, since the instability acts for all allowable angular mo-

mentum distributions, both thick (i.e., radiation pressure supported and ion-supported

tori) and thin disks should be equally affected.

Unlike magnetized thin disk models no similar models for thick magnetized disk

have been developed which are associated with the production of jets. However,

Chakrabarty and Prasanna (1982) showed the possible existence of thick disk struc-

tures due to the interaction of magnetic and intense gravitational fields. This analysis

also revealed that the formation of cusp is possible only when the gravitational field

is described by the general relativistic formalism and not in the Newtonian theory.
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P'urthermore, no detail study of the structure, stability of the pressure-supported mag-

netized disk is available in the literature. These models may help in understanding

the various instabilities which can give better insight in various radiation mechanisms

generated near the surface of a magnetized compact objects like neutron star or white

dwarf.

1.5 Objective of the thesis

In the previous section we have discussed, in some detail, the standard model of thin

accretion disk and the role of magnetic field in the disk dynaI!lics. We have also

pointed out that there are many theoretical difficulties in constructing a detail model

of thick accretion disk. For instance, radiation-supported thick accretion disk models

are subjected to powerful instabilities and therefore, the existence of a steady-state,

radiation-supported thick disk structure may be doubtful. Despite these odds, study

of thick accretion disk configuration may be important due to the following reasons:

(i) Thick disk steady-state structure may actually occur in the nature, e.g., around a

proto-star or AGNs. In fact it was pointed out by Rees et al. (1982) that ion-supported

thick disk structure may not be subjected to the powerful instability as suffered by a

radiation dominated thick disk structures.

(ii) Studies of thick accretion disk are also interesting from theoretical point of view

as they can provide valuable insight in the approximations invoked in thin accretion

disk models. Also such studies might be useful in handling the intermediate cases, Le.,

when the disk is neither thin nor thick. Therefore, in the work done by us in this thesis,

we set out to study pressure-supported disk configuration and their stability without

invoking any thin disk approximation.

In all the accretion disk models, the release of the gravitational potential energy

of the infalling matter in form of radiation is the main source of the observed high

luminosity in various astrophysical scenarios. It is generally beleived that though the

most characteristic accretion phenomena taking place around a compact object having
.,
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a strong gravitational field, the effects of general relativity do not playa crucial role

in the physics of accretion disk. Therefore, most of the accretion disk models use the

Newtonian framework to describe the disk structure and dynamics. However, the

effects of general relativity have found to have following consequences:

(a) It can change the disk morphology,

(b) It can affect the inner radius of the disk (together with magnetic field),

(c) It can influence the signals coming out near the vicinity of the compact object.

(a) It is found that non-Newtonian stiffening of the gravitational potential close to

the event horizon causes the equipotential surfaces for a given angular momentum

distribution to form a toroidal cusp close to the event horizon. Thus, the cusp formation

is purely a general relativistic effect.
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Fig. 1.7: Nested equipotential surfaces for a barotropic radiation torus in orbit about a massive

black hole. In this example, it is assumed that the angular momentum is constant. Note the

presence of a neutrally stable ring, X. Matter that fills the equipotential surface passing thro~gh

X, is able to spill through onto the black hole. (Adopted from Blandford, 1990)

In the case of a thick disk, the angular momentum distribution intersects with the

Keplerian distribution at two locations, 1"11and 1'c,the inner edge and the center of

the disk respectively. Therefore, the equipotential surfaces of a thick accretion disk

around a black hole possess cusp very similar to the Lagrange p()int in a Roche lobe

overflow (Fig. 1.7). In this case, matter fills the closed potential and forms the thick
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accretion disk, and the excess matter is accreted to the black hole through the cusp.

The cusp is formed at rin between the marginally bound (2rg) and marginally stable

(3rg) orbits. The separatrix passing through this cusp is a limiting surface for matter

orbiting in a stationary torus shown in the Fig. 1.7. If a thick accretion disk develops, it

is expected that the torus will expand until its innermost radius approaches the cusp.

At this point there are no pressure gradients and the gravitational orbit is unstable.

On passing through the cusp, matter will spill through onto the black hole with little

further emission. On the contrary, in the Newtonian analysis, the angular momentum

in a thick disk is monotonic and intersects this distribution only once, and therefore,

no cusp is expected to form in a thick disk in Newtonian geometry.

(b) It is pointed out by Znajek (1976) that the strong gravitational field of the comapct

object together with the magnetic field can support disk equilibrium in the close vicin-

ity of the surface of the compact star. This conclusion also made by Prasanna and

Varma (1977) while studying single particle trajectories in a magnetized Schwarz schild

geometry.

(c) Gonthier and Harding (1994) have recently pointed out that the electromagnetic

signals can be influenced by the curvature effect.

In many accretion disk scenarios the central objects possess an intrinsic magnetic

field. Also the magnetic field might be generated in the accreting plasma due to

dynamical processes. For example, although black holes do not have an intrinsic

magnetic field, the analysis of Galeev et aI. (1979) showed that as a result of stretching

of the interstellar magnetic fields, the field gets amplified and becomes dynamically

important. Magnetic fields could play varied and important role in the accretion disk

scenarios depending on the concrete physical situations under considerations. For

example, in the absence of the magnetic field, the transformation of kinetic energy into

radiation is very small but this gets enhanced in the presence of the magnetic field due

to the intense synchrotron radiation (Bisnovatyi-Kogan, 1979). They could be a source

for coronal heating, formation and collimation of extragalactic jets (for a recent review

see Spruit, 1996) etc. There is a alternative proposal involving magnetic fields in which
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jets are electrodynamic ally accelerated due to the unipolar induction dynamo effect,

has also been considered (Lovelace et aI., 1976; Blandford, 1976; Blandford and Znajek,

1977). The strong intrinsic magnetic field, for the case of a neutron star, can influence

many crucial parameters of the accretion disk like its inner edge and torque. This in

turn can influence the spin-up and spin-down rates of the neutron star (Ghosh and

lamb, 1978, 1979a,b, Lipunov, 1992). In these works, the authors have considered thin

accretion disk around a neutron star within the Newtonian framework.

Most of the models of magnetized accretion disk, incorporate large scale ordered

magnetic field and are successful in explaining many observational features. However,

it was shown by Balbus and Hawley (1991) that accretion disks are dynamically unstable

to axisymmetric shear perturbation when a weak magnetic field is present in the vertical

direction. This instability could destroy the disk and may cast doubt about some models

of magnetized accretion disks. But, it has been pointed out recently by Knobloch (1992)

that such an instability is absent in the case when a toroidal component of the magnetic

field is present.

Therefore, in this thesis, one investigates the structure and stability of a thick mag-

netized, pressure-supported disk and also analyze the role of general relativistic effects.

The rest of the thesis is divided into the following chapters. The equilibrium configu-

ration both in Newtonian and general relativistic framework and stability analyses are

being discussed in detail in Chapter2. The conclusions and future work are summa-

rized in Chapter3.
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Chapter 2.

Axisymmetric Magnetohydrodynamic

Equilibrium Around a Magnetized

Compact Object

2.1 Introduction

In this chapter, we discuss axisymmetric magnetohydrodynamic (MHD) equilibrium

around a magnetized non-rotating compact object both in Newtonian and Schwarzschild

background in detail. We first write basic set of MHD equations in general relativis-

tic covariant form and subsequently apply them to study axisymmetric equilibrium

solutions.

As mentioned in Chap. I, though there have been numerous discussions of the

magnetospheric theory with considerable progress, only a few of them attempts to

obtain self-consistent equilibrium configurations of a thick pressure-supported disk in

the presence of both poloidal and toroidal magnetic fields around a magnetized compact

object. Furthermore, most of the the investigators have considered thin accretion disk

around a neutron star or a black hole. . Prasanna et aI. (1989) and Tripathy et aI.

(1990) have studied, for various velocity profiles, both thin and thick magnetofluid

disk equilibrium around a magnetized compact object in the Newtonian as well as in

the curved background in detail. In these investigations authors have, however, not

considered the effects of toroidal magnetic field in the disk dynamics. As we have

42
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mentioned in the Chap. 1 the toroidal magnetic field in the accretion disk provides the

stabilizing influence over the magnetic shearing instability which arises due to shear

in the accretion flows. The stabilizing effect sterns out from the tension of the toroidal

field which is the stabilizing force.

As it has been discussed in the previous chapter, our main interest is to examine

equilibrium structure and stability of a pressure-supported magnetized thick disk.

In what follows, we begin our study by considering a magnetically threaded disk

(hereafter MTD) equilibria, around a central compact object, in which the magnetic

field of the central star is penetrating inside the disk. This kind of models have been

considered by earlier researchers (Li and Wang, 1996; Wang, 1995; Ghosh and Lamb,

1978, 1979a,b; Ghosh et aI., 1977; Lamb et al., 1973) around a magnetized neutron star

and such models are proved to be successful in explaining many observational facts

like spin-up and spin-down rates of the observed pulsating sources. In these studies,

authors have considered a thin magnetized Keplerian disk. Though in these works,

accretion disk is described by highly conducting plasma, the stellar magnetic field

penetrates the inner part of the disk via non-linear processes such as Kelvin-Helmholtz

instability, turbulent diffusion, and reconnection.

The matter surrounding a neutron star is almost always in the form of a plasma

at high temperature and hence has a high electric conductivity. The conductivity of a

completely ionized plasma is estimated by the expression (Pikel'ner, 1966)

Ac ~ 107 T3/2 3-1e (2.1)

where Te is the electron temperature. For Te ~ Tff ~ 108 - 1010 J{, Ae ~

1019 - 1022 em-I, which is higher than the conductivity of copper. Therefore, Ideal

magnetohydrodynamic (MHD) frame work can describe equilibrium accretion disk to

a fairly good approximation (Lovelace et aI., 1986).

The effects of general relativity and the magnetic field could playa central role in

determining important disk parameters like disk inner edge, influencing the emergent

radiation corning from the inner edge of the disk as mentioned earlier. Since the effect

of strong gravitational field is important only in the vicinity of the compact object,

we are going to investigate the equilibrium structure of magnetized accretion disk

solutions in the presence of strong gravitational field and a toroidal magnetic field in
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the corotation regime without invoking any thin disk approximations. It is possible to

show that the solutions of the velocity profile satisfy the Ferraro's iso-rotation law in

the corresponding Newtonian limit.

Th~ complete solutions of magnetically threaded thick accretion disk is quite dif-

ficult to obtain. Therefore, in the present work, we first construct non-accreting (i.e.,

velocity flow is only in azimuthal direction) magnetized thick disk structures. The

thick accretion disk model can be constructed by incorporating radial velocity profile

perturbatively in such equilibria. The relevance of these solutions in the context of a

neutron star in Schwarzschild geometry are discussed.

2.2 Formalism

The basic set of general relativistic magnetohydrodynamic equations is as follows:

Particle conservation:

(nU');i = 0; (2.2)

where, n is the proper baryon number density, i.e., number of baryons per unit three-

dimensional volume in the rest frame and Ui is the time-like fluid four-velocity with

the normalization condition defined as

gij U' UJ = + 1 ; (2.3)

where, gij is the general metric tensor defining the background geometry;

\ 2 ..
ds = gij dx' dxJ . (2.4)

Energy-momentum conservation:

( T ij + Tij ) . - O.
matt. e.m. ;J - , (2.5)

where, Tij matt.and Tij e.m.are energy-momentum tensor for the fluid and electromag-

netic stress tensor respectively. Here, Tij matt.for the general fluid is given by (heat

conduction assumed to be negligible)

yijmatt. = (nF/c2)Uiuj - Pg'J + 217stJ; (2.6)
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where, :F==(p + P) In is the proper enthalpy per particle, p is the proper internal

energy density and P is the proper pressure defined as

') .

P = p - (776 - ~ 7]8 ) UI ; i ;
(2.7)

where, 7]6and 7]8are the coefficients of bulk and shear viscosity. ~i j is the conductivity

tensor defined as

t:ij=~ ( Ui;khj + Uj;khi ) _~Uk. hij.
<" 2 k k 3 ,k , (2.8)

with hi j being the projection tensor defined as

hij = g'J - Ui uj. (2.9)

The electromagnetic stress tensor Tij e.m. is related to the electromagnetic field tensor

Fi j through

T'J = Fik Fj , - ~gij F, Fkl.
e.m. k 4 k I ,

(2.10)

where, the antisymmetric field tensor Fij is defined through a vector potential as :

Fij = Aj;i - A;;j . (2.11)

The covariant form of the Maxwell's equations can be written as:

Fi j ; j = (4 7r I c) Ji ; (2.12)

, F(ij;k) = 0; (2.13)

with

( T ' J ) . - 1 F i . J j .
e.m. ;J - - J ,c (2.14)

where, J j is the plasma four current density defined through the covariant form of

Ohm's law as:

J' = CPe Ui + (J"ij Fjk Uk; (2.15)

where, Pe is the charge density measured locally and (J"ij is the electrical conductivity

tensor of the plasma fluid.
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In the present work, we will consider the complete set of dynamical equations which

govern the magnetohydrodynamic flow of the fluid disk on a given curved background

. with the following assumptions:

(i) The fluid disk is not massive in comparison with the central compact object such

that the spacetime structure supporting the disk is entirely determined by the central

body. Thus, the self-gravity of the disk is considered to be negligible.

(ii) The energy of the electromagnetic field is regarded to be negligible as compared

to the energy associated with the mass of the central object. Thus, the electromagnetic

fields do not influence the geometry but, they can be modified by the geometry of the

central object. Further, we consider the central object to possess a poloidal magnetic

field (Ginzburg and Ozernoi, 1965; see also Prasanna and Varma, 1977; Wasserman

and Shapiro, 1983) which has the usual dipolar form in the asymptotic limit of the

Schwarzschild metric.

(iii) Though the central compact object may be in general rotating, the Schwarzschild

geometry is used to describe the spacetime structure. This is because it is assumed that

the angular momentum parameter a ~ 1 and which, indeed, seems to be the case for

most of the pulsars (e.g. Gonthier and Harding, 1994).

Molecular and magnetic Reynold numbers, defined by Rmol = (V L / I/mol) and

Rmag = (V L / I/mag) respectively, are usually very large for a typical accretion disk,
scenario. Here, V, L, and I/mol(mag)are typical flow velocity, flow length, and the

coefficients of the molecular (magnetic) viscosity respectively. Indeed, accretion disk

are characterized by very large Reynolds numbers ranging from 1014for a white dwarf

disk to 1026for an AGN disk (Dubrulle and Knobloch, 1992). This allows one to neglect

molecular viscosity and resistivity terms from eqs. (2.6) and (2.15). The effect of

turbulence or dissipative forces such as anomalous viscosity and resistivity is regarded

as small compared to the long ranged ordered equilibrium forces. Such effects may

be introduced perturbatively over the equilibrium force balance (e.g. Lovelace et al.,

1986).
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The Schwarzschild metric is defined by:

(
2m

) (
2 1n

)
-1 ,

ds2 = 1 - ---;:- C2dt2 - 1 - ---;:- d1,2 - 1'2(de2 + sin2 e d<p2) ;
(2.16)

where, m = G!vI / C2with G as universal gravitation constant, M is the mass of the

central object and c is the velocity of light. In this notation, 2m is the Schwarzschild

radius. We express the dynamical equations in terms of physical quantities by writing

them in the orthonormal tetrad frame appropriate to the Schwarzschild metric;

.

[(
2m

)
-1/2

(
21/1

)
1/21 1

]A(a) = diag 1 - ---;:- , 1 - 7 ' ;:' r sine ; (2.17)

satisfying

Ai (a) Aj (b)gij = l}(a)(b) ; (2.18)

where, l}(a)(b) is the metric tensor defined in Local Lorentz Frame. All the global

variables are then defined in Local Lorentz Frame as,

F(a) (b) = A(a) A(b) Fij ; (2.19)

J(a) = /\(a)Ji ; (2.20)

E(a) = F(a) (t) ; (2.21)

B(a) = fa be F(b) (c) ; (2.22)

\

where, fabc is the Levi-civita symbo1. Using these definitions, the electromagnetic field

components can be explicitly written as,

1
(

2m

)
1/2 ~

F(r) (0) = - 1 - - Pro;
I' I'

(2.23)

F(r) (t) = F,.t ; (2.24)

1
F(o)(</» = 2' 11Fo</>;I' SIll

(2.25)

1

(
2m

)
-1/2

F(O) (t) = - 1 - - FOt;
l' I'

(2.26)

(2.27)

(2.28)

F(</» (r)
=

1 (. 2111 )1/2
. 1- - 1

l' Sill e r P<pr ;

F(</J)(t)
=

1 ( . 2 1/1 )-1/2r sin e ,1 - ---;:- F</>t.
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Using the same tetrad eqn. (2.17), one can also express the spatial3-velocity Va, defined

through the relation Ua = Uo(Va / c), in terms of local Lorentz components as given

. by,

Further, we assume, as a first approximation, that the radial and meridional components

of the velocity are zero i.e. ~r) = ~II) = 0, it implies that \7 . V = 0 is identically

satisfied. Next, as the poloidal components of the field are external, the ring current

density is absent inside the disk (i.e. J(<p)= 0). In the ideal MHD limit the equation

(2.15) reduces to
1

Ep = - - (V x Bp ) ;c
(2.32)

where, subscript p represents the poloidal component of the fields. Eq. (2.32) has similar

form as that of the Ohm's law in the Newtonian MHD equation. As a consequence of

stationarity and axisymmetry, the toroidal component of the electric field is zero.

In order to study the problem in a dimensionless form, we introduce the following

three parameters: Bo, Bl, and va signifying the strength of the external magnetic

field on the surface of the neutron star, the strength of the toroidal magnetic field

at the inner edge of the disk, and the velocity of the fluid at the inner edge of the

disk respectively. We choose the geometric unit system, i.e. G = c = 1. The

fundamental unit of length is m and the Schwarzschild coordinate r is normalized with

respect to m by introducing a dimensionless variable r = r / m. By regarding all the

quantities with tilde as dimensionless, all the MHD variables can be written as follows

: poloidal magnetic field B(p) = Bo B(p), toroidal magnetic field Bp') = Bl B(T)'

velocity field ~<p) = ~'Ot7(<p),poloidal electric field E(p) = Eo E(p), poloidal current

density J(P) = JoJ(P)' proper enthalpy:F = :Fo:F,and proper pressure P = PoP.
Here, Eo = VoBo,Jo = Bl/47rm,Fo = (1/47r)(Bo/va)2,andPo = B02/47r. With

these substitutions, all the basic equations of the problem reduce to dimensionless form

and contain two dimensionless parameters (Q and;3) whose meaning will be clarified

'r) =
(1 - 2;n )-1 Vr;

(2.29)

( ')m) -1/2II) =
r 1 - r . VII;

(2.30)

<p) (2 m) -1/2
=

r sine 1 - -;:- V<p. (2.31)
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later.

Now using the eqns. (2.13) and (2.32), one gets,

-
(

2

)1/2 - ot(<p) - ot(<p) ";,

[ (
2

)
1/2 -

r 1 - f B(r) o'r + B(o) fJi) + \'(<p) 1 - f B(r)

1

(
2

)
-1/2 -

(
2
)

1/2 DB DB
]+ f 1 - f B(7')+ r 1 - f o~r) + 0~0) = 0;

the solution of which will give the azimuthal component of the velocity field in the

presence of the external poloidal magnetic field. From the equation (2.12),one can get

(2.33)

1
(

2

)1/2 0 -2 - 1 0 . -
J(t) = - rz 1 - f ar [1' E(r)] + ofsin 0 ao [sm 0 E(o)] ;

(2.34)

1 0
[

-
]J(r) = -:::: ~:~ LJ00 sin 0 B(<p) ;

(2.35)

1 0

[ (
2

)
1/2 -

]J(o) = FOr of 1 - F B(<p)

For the present case, the azimuthal component of the eq. (2.5) reads

(2.36)

B(r) J(O) - B(o) J(r) = 0; (2.37)

which constrains the poloidal components of the current density. B(<p)can be deter-

mined from eq. (2.37) by eliminating the current densities in the equation (2.37) by

using equations (2.35) and (2.36), viz.

1/2 - --
(

2
) - oB(<p) - oB(<p) -

r 1 - f B(r) or + B(o)"7ie + B(<p)[ (
')

)
1/2

1 - ~ B(r)
\

1

(
2

)
-1/2 - -

]+ f 1 - f B(r) + cot 0 B(o) = O. (2.38)

Equation (2.38) dearly tells that the toroidal component of the magnetic field is coupled

only to the external poloidal magnetic field. The poloidal components of the Euler

equation (2.5) are the following:

0p -
{ (

2
)-1 ,- /

[

0:

(
. 2

) f(~)

]
---::;- = - A 1 - ::: :F - - 1 - :::---::--
or r rz r r

(
.)

)
-1/2

}1 - ~ [ [2 E(r) J(t) + 132B(<p) ~O) ] ; (2.39)
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~~ = A { cot e~~) F' - (,2 r E(O) J(t) - 132 r B('I')J(rJ] } ;

. where, F' is defined as i' = (1 - ,2 ~~)) -1 F ~ith, = va / c and A = B02 /4 7rPo.

The two dimensionless parameters, defined as ex = 1/ va2 which signifies, in this

normalization scheme, the ratio of gravitational energy of the fluid element at the

inner edge of the disk due to the central object to its kinetic energy and 13= B1/ Bo

which denotes the ratio of the field strength of the toroidal to poloidal magnetic fields

respectively.

(2.40)

2.3 Possible Equilibrium Solutions

We first solve equation (2.38)and its solutions describe the form of the toroidal magnetic

field in the presence of external poloidal field. This equation is a first order homoge-

neous partial differential equation whose solution is obtained by using the method

used by Ginzburg and Ozernoi (1965) viz. the flat space solution (BBDP) is multiplied

by a scalar function hCr)of the Schwarzschild coordinate r to take account of general

relativistic effects. The partial differential equation will reduce to an ordinary differen-

tial equation for h(r) with r as an independent variable. Next, we impose the r as an

independent variable. Next, we impose the condition that as r -t 00, h(r) -t 1. This

will ensure that in the asymptotic limit the solution will reduce to that of the flat space.

The components of the external magnetic field of the central object in Schwarzschild

coordinate can be written in dimensionless form as:

\
2

{ (
-3f'3

)
-

}B(r) =10 8 Bg cos e; (2.41)

- 1

{ (

3f'3

)

-
} (

2

)
1/2

B(o) = f3 4. Bh 1 - F sine ; (2.42)

where, the dimensionless variables Bg and Bh are defined as:

(
')

)
2

(
1

)B = in 1 - ~ + - 1 -L.- .9 - - I - ,
r T r (2.43)

(
2

)
1

(
2

)
-1 1

B h = in 1 -::: +::: 1 - ::: + ::: ;
T T T r (2.44)
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which approach to unity in the asymptotic limit. By substituting B(r) and BUJ)into eq.

(2.38), the solution of the toroidal component of the magnetic field is found to be

- 1

{ (
-3i3

)

-
}

5/2

(
,)

)
-1/2

B(<p) = P/2 -S Bg 1 - ~ sin4 ()
(2.45)

The above solution reduces to Newtonian solution of BBDP in the asymptotic limit.

As we mentioned in the introduction, we have considered two kinds of solutions which

in the flat space limit reduce to (i) quasi-Keplerian velocity profile, (ii) rigid rotation

velocity profile, and are furnished below:

2.3.1 Quasi-Keplerian velocity profile

By substituting the explicit forms of B(?)and B(8) into eq. (2.33), the azimuthal compo-

nent of the velocity field is found to be

1

{ (
-3::3

) }

3/2

(
') -1/2

0'1') = il/2 -i- Bg 1 - ~ ) sin4 ()
(2.46)

The above solution also reduces to Newtonian one (BBDP, 1995) in the asymptotic

limit. At () = 7r/2 plane, eq.(2.46) shows departure from the Keplerian profile due to

the general relativistic effect. The poloidal components of the electric field are found

from the eq. (2.32) :

1

{ (
3::3

) }

3/2

{ (

3::3

) }E(r) = P/2 - 8' Bg : Bh sin5 (); (2.47)

\
- 2

{ (

-3f3

)

-

}

5/2 2 -1/2

E(8) = -P/2 -s Bg (1- ~) sin4() cas(). (2.48)

The components of the current density J are found to be

and the charge density ~t) is obtained by substituting the expressions for the poloidal

components of the electric field in the eq. (2.34) to get,

. 2 [( 3 r) r 2 -1/2 .J(?) = - P/2 - 8 Bg (1 - ) sin3 () cas () ;
(2.49)

[ ( 3'2

- 1 3 - I :3i<J -
J(8) = - P/2 - 8 ) Bg ] [ ( 4 ) Bh] sin4().

(2.50)
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2

[

3

{ (

3:::-3

) }

1/2

{ (

3--:3

) }

2

J(t) = PJ/2 4" - 81' Bg + Bh (1 -

r { ( -~CO)13,t' {(3~) Bhr (1 - ~) 1/2

~) 1/2

{ (
3-3

)

-
}

5/2 2 -1/2

]+ + Bg (1 - i ) (.5 sin-2e - 6) sinse ;
(2.51)

where, the prime stands for ordinary derivative with respect to r.

The Euler equations (2.39) and (2.40) are then used to determine the proper pressure

and the proper enthalpy for given ~<p)and B(<p)'We assume the bulk motion of the fluid

satisfies Vo ~ c whereas the internal motion can still be relativistic. This assumption

is consistent with the accretion disk scenario because the infalling ga~ can convert its

bulk kinetic energy into its internal energy. Consequently, the contribution of the term

due to electric field is neglected in the Euler's equation. The correct solution of eqs.

(2.39)and (2.40)must satisfy the compatibility condition [:0 ( ~):) = :r ( ~~) ]

from which an' equation for proper enthalpy j: is determined, viz.

-2°j: (
2

)
-1

[

0

(cot e V(<p) or + 1 - i f'2 - 1
- ~ ) V(~)

]

oj:
r r oe

\

+ 2 j: ~<p)
[

cot eov~) - ~o~<p)
]01' r oe

[

0 - -
(

'J

)
-1/2 0 - -

]= - ~2 0:;:(r B(<p)J(r)) + 1 - ~ . oe (B(<p)J(O)) (2.52)

We see that the proper enthalpy stratification does not depend on the external poloidal

field. It is determined by the azimuthal components of the velocity and magnetic fields

only. After substituting for B(<p),~<p),J(r), and J(O),one could get the solution of the eq.

(2.52)by using the characteristic method. The solution is found to be

{ (

:::-3

) }

-3- 1 15 . 8 -15/8 2 -31" - 2

:F = r6 [8 (al 0 - sm e) + ~ a2] -s Bg (1 - i) ; (2.53)

where, al and a2are defined as :

8I1
(2.54)a1 = r8'
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a2 = - 5 I2 i15 ; (2.55)

where, II and I2 are two integrals defined as :

I, ~ J r7 { ( -~r') By }-3 dr;
(2.56)

I2 = J r-16 [ { ( -~r') Bg } 4 { (3~) Bh }

{ (
-3 i

)
-

}
5

{

I

(
2

)
-1

} ] (
2

)
-1

+ 2 8 Bg 1 +"f: 1 - "f: 1 - "f: di.
(2.57)

One can see from the above that a} and a2 tend to unity in the asymptotic limit. Finally,

after substituting for :i, t:(<p),and 13(<p)into the eq. (2.39) and integrating over i we

obtain viz.

- 1
[

15
( )

-7/8
( )]p = iT 8" al 0: - sin8e + (32 a30: - 3.5 a4 sin8 e ; (2.58)

where, the variables a3 and a4 are defined as :

a3 = 35 I3 i7 ; (2.59)

(5S(r) - a2) .
a4 = 4 ' (2.60)

\
with

{ (

3:::3

) }

5 2

)
-1

5 (i) = - 81' 139 (1 - "f: ; (2.61)

I3 being the integral defined as

7, = J P { ( -~r') Bgr I2 de .
(2.62)

2.3.2 Solutions obtained in Newtonian limit

By assuming the proper enthalpy function represents only the rest mass energy den-

sity, it can be shown that the eqs. (2.45)-(2.46), (2.53) & (2.58) will be reduced to the

expressions for the toroidal magnetic field, azimuthal velocity field, the density and
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,the pressure respectively in the Newtonian limit (BBDP, 1995). The derived solutions

in the Newtonian limit are given below:

(
,.

)
7/2

Bep = B1 ~n sin4 () ;
(2.63)

(
,.

)
1/2

Vep = Vo ~n sin 4 () ;
(2.64)

(
,.

)
6

[

15

]pm = Pmo ~n s( a - sin8 ()t15/8 + (32 ;
(2.65)

BJ
(

'in

)
7

[

15 . 8 7/ 8 2 7. 8

]
P = - - -( a - 8m ()t + (3 (a - -8m ()) .2811", 8 2

(2.66)

where, the set of above solutions are normalised tin which is denoted as the inner edge

of the disk. In our case, a has a natural lower bound a > 1 as the plasma pressure P

and the matter density Pmshould be nowhere singular.

To study the magnetic field configuration within the disk, the solutions of magnetic

lines-of-force equations,

\

d, = ,d() = ' sin()dcP. (2.67)
Br Bg B<p'

should be analyzed. In order to visualise the field line structure, it is useful to tran-

form over to a Cartesian frame through the usual relations (X = , sin()cos<P,y =
, sin ()sin <P,Z = , cos ())and then to obtain the corresponding parametric equations that

generate the curves, viz.

X = tin COS[<Po- (3 C;;)3 COS ()] sin3 ();
(2.68)

Y = tin sin [<Po - (3(';;) 3COS()] sin3 ();
(2.69)

Z = 1'insin2 ()cos (); (2.70)

where cPois a constant of integration( due to the azimuthal symmetry it can be set to zero,

without any loss of generality) and R defined as the radius of the compact object. From

the eqs. (2.6B)-(2.70), one can see that self-consistently generated toroidal magnetic

field can affect magnetic field line structures in the disk and this will be discussed in

detail in the next section.
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2.3.3 Stability Analysis in Newtonian limit

The general question of stability of these equilibrium solutions is extremely difficult

and beyond the scope of present paper. Therefore, we have considered a simplified

stability problem under the following assumptions:

(1) The structure of the disk is assumed to have cylindrical symmetry and the gravi-

tational potential of the compact object does not change appreciably along the z-axis.

Hence, only the gravitational potential along the radial direction affects the pertur-

bations through its effect on the equilibrium values of the magnetic field and fluid

rotation.

\

(2) We assume only the Bz component of the magnetic field to be non-zero.

With these assumptions, the equilibrium configuration is generally that of a cylinder

with an annular cross-section and all the physical variables governing the flow are

functions of only the radial cylidrical coordinate. Therefore, our analysis is valid only

around the z=O plane and in the limit B<p-r O. In this regime of parameter space,

one can draw an analogy with the stability analysis of the Couette flow carried out by

Chandrasekhar (1961)/ but with two differences: viz the magnetic field and density are

not constant. We would like to note that although the equilibrium density profiles are

not constant, we have assumed the perturbations in the velocity fields to be solenoidal.

This is quite compatible with incompressibility assumption. Incompressible fluids

can support density stratified profiles in the external field like gravity and the global

stability of such equilibria had been analyzed in the literatures (e.g. Chandrasekhar

1961).

Following the analysis of Chandrasekhar (1961) we consider, with appropriate mod-

ifications (i.e. B = [0,0, Bz(r)] and pm =I-constant) the resulting simpler set of equations
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that allow the stationary solutions:

Ur = 'Uz= 0, 1I<p= 11(1')= 1'D(1'),

Br = B<p= 0, Bz = Bz(1'), (2.71)

Pm = Pm(1'), and P = P(1')

where V(1'), Bz(1'), Pm(1'),and P(1') are now arbitraryfunctions of l' and e = ~2
Let us consider an infinitesimal perturbation of the flow represented by the solution

(2.71),

Un V + u<.p, Uz, br, b<p, Bz(1') + bz, Pm(1')+ PmI' and P(1') + Pl. (2.72)

The linear equations governing these perturbations are easily found to be:

apml + u. \7Pm= 0,at (2.73)

ab
7ft - \7 x (V x b) - \7 x (u x B) = 0, (2.74)

au. \7 PI

(
\7P

)- + (V . \7)u + (u . \7)V + - - ---z pml -at pm Pm

(
~

) [(\7XB)Xb+(\7Xb)XB] = o.
47rpm

(2.75)

\
In addition to these equations, one takes into account the conditions for the solenoidal

character of u and b.

In accordance with the general procedure, one analyzes the disturbance in terms

of axisymmetric normal modes. We assume the various quantities describing the

perturbation to have a (t,z)-dependence as given by:

exp [i(wt + kz)], (2.76)

where w is a constant (which can be complex) representing frequency and k is the wave

number of the disturbance in the z-direction.

Introducing Lagrange variables ~T'~<.p,and ~z related to Ur,U<p'and Uzby

. . t

(
dll 11

)
d ' t

Ur = zW~r, U<p= zW<,,<p- d; - -;: ~," an Uz = zW<"z, (2.77)
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For the 'incompressible' perturbations,

'V . ~= o. (2.78)

Equation (2.74) gives,

and

br= ikBz~,', b" =ikBz~",

. dBz
bz= zkBz(z - -d ~r'

l'

(2.79)

(2.80)

Then from the equations (2.73) and (2.75), one gets,

- -
(

dpm

)
~T1

Pm! - dr
(2.81)

[(
2 dn 2

)
1

(
dPm

) (
dP

)]
. 1 dP1

w -2rn--nB -- - - ~r+2zwn~<p=--,
dr pm2 d1' dr Pm dr

(w2 - n1) ~<p- 2iwn~r = 0,

(W2- n1) ~z - (
~ dB;

)
~r = ~j\.

871'Pm dr Pm

B2 - B2 -
~,and P = Po+ -=-,and P1
47rpm 871'

(2.82)

(2.83)

(2.84)

where n~ is the Alfven frequency defined as n~ =J.:2

B.b
=P1 + -.

471'

Eliminating ~<p,~z, and 151between these equations, one finds,

.. [(
dn

) (
1

)

-
] (

4w2n2

)W2 - 2rn dr - n1 - Pm2 (DPm)(DP) ~r - w2 - n~ ~r =

(p~) D [(:~l) {(W2- n1)D*~" - (8:;m) (DB;)~r}]
(2.85)

where D* = D + 1/ r = d / dr + 1/1'. In the present case the Alfven frequency turns

out to be a constant because Pmand B; have the same radial dependence (i.e. 1'-6)and

is renamed as n.4.radial dependence (i.e. ,-6)and is renamed as nA. So, equation (2.85)

can be written as

[(

2 (")2
) )

4n2n~ 1
( ) , ') 1 2

(
B;

)]

-
W - HA - <1>(1' - ( 2 - n2) - ~ Dpm I,D} ) + - D _8

~r -
W A ~ ~ 71'

(W2- n~) (DD*~r) + (W2~')n~) (D In Pm)D*~r - ~D( B
8 ; )(D~r)

pm 71'
(2.86)
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~ where <1> (,) is Rayleigh discriminant and is defined as <1>(,) = 2,0 ddO + 402'. Defining,
W2- O~ = K,one has then,

K(DD*- k2)~r =
[

40202 1 ~ K 1 B2

]
-k2 <1>(,)+ A + ~(Dpm)(DP) + -k2 D in pm -D( 8 Z) ~r

. K Pm ' pm Jr

1

[

B2

]
+- D( --2 )k2 - K(DPm) (D~,.)

Pm 8Jr
(2.87)

If the fluid is confined between two rigid coaxial cylinders of radii 'in and Tout,we

must require that the radial component of the velocity vanishes at the edges. Thus, the

solution of equation (2.87) must be sought which satisfies the boundary conditions

~r = 0 for I = 'in and r'out (2.88)

Equation (2.87) together with the boundary conditions (2.88) constitute a characteristic

value problem for K.

After doing some algebraic manipulation and integrating over the range of " one can

obtain,

K l~:ut,{IDk~rI2+ k21~rI2}d, -
2 {rout

{

. 40~02K*

}

2

k Jrm I <1>(r')+ IK\2 I~rI d,

+K l~:ut (D in Pm)l~rI2d,

+k21rout r.D in Pm)(DP)I~rI2d,I'm pm

- O~ {"out ~(D2Pm)I~TI2d,
2 Jrin Pm

02

1
rout

--f!- T(D in Pm)~;(D~r)d,
2 I'm

+K l~,~ut r(D in Pm)C(D~r)dr'.
(2.89)

Assuming ~,. to be real, the imaginary part of the equation (2.89) gives,

Irn(K) =0; (2.90)

In view of the reality of the characteristic values of K,we can rewrite equation (2.89) in

the form

K2II - Kk2I2 - 40~ k2h = 0 ; (2.91)
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where

iTOU!

{

2

(
2 D In pm

)
2

}II = Tin r ID*~TI + k - l' I~TI dr,

12 = iTQut l' { (
<p(r)+ ~(D In Pm)(DP) - ,2

/1 (D2pm)
) I~TI2

}
dr,

Ttn pm pm

(2.92)

(2.93)

and

iTQut

h = d121~,.12d,.
T,n

Now extracting the root of the equation (2.91),we have

K= v} - n~ =
[
k2I2::J:V(l\~4Ii+ 16k2n~hIl) ]

~.
211

For stability it is necessary that

(2.94)

(2.95)

(.;.)2= n~ +, 2~1{k2 12- V(k4 Ii + 16k2n~IlI3)} > o.

which gives the condition:

2 i
TQU!

{

dn2 1 - V1 D2Pm

}
2

"'All> - . r r -d + -(D In Pm)(DP) - --:J- I~TIdrTtn r pm ~ pm

(2.96)

(2.97)

This condition is satisfied if the bracketed expression is positive. We then obtain

following condition to be satisfied by the equilibrium solutions for stability,

D(f!npm)(DP) >
(

V1
) (

D2pm

)
- rdn2

pm. 2 pm dr

where D and D2 are the operators defined as d / dr and d2 / dr2 respectively. VA is the

Alfven velocity, Pm and P are the background matter density and hydrostatic pressure,

respectively and n is the angular velocity of the flow. The above criterion when used

with the equilibrium solutions obtained earlier shows that for stability the ratio of r to

rin (= Alfven radius),

(2.98)

l' 15

(
r.

)
6

1'in <"8 ;;- [2(0' _1)-i/8 - (a -lrlS/8] ,
(2.99)

which is satisfied for all values of ex> 1.5.

2.3.4 Rigid rotation velocity profile

Similarly, by substituting the solutions of B(T) and B(o) in eq. (2.33), the toroidal

component of the velocity field is obtained to be

-
(

'» -1/'2

'~<p) = 1 - ; r sing ;r (2.100)
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where, the above solution reduces to rigid rotation velocity field of the Newtonian type

in the asymptotic limit. The presence of strong gravitational field introduces 'non-

'rigidness' in the velocity profile. Betweenr = 2 to 3, velocity no longer increases with

distance. However, for a neutron star having mass around one NI0, the inner edge of

the disk lies far away and thus, this behavior of velocity profile, between F = 2 to 3,

does not arise. The poloidal components of the electric field are found from the eq.

(2.32) viz.

1

{ (

3:;-:3

)

-
}

. 2
E(r) = F2 "4 Eh sm ();

- 2
{(

-3F3

)
-

}Eun = - F2 s- Eg sin () cas ().

(2.101)

(2.102)

Since, the form of B<pis the same as that of the previous case, the current density

expressions are identical and given by the eqs. (2.49) & (2.50). Now, we consider

the Euler equation to determine the equilibrium proper pressure and enthalpy for the

given solutions of 17('1') and B(<p)' Like in the previous case, we consider Vo ~ c and

ignore the electric field contribution in the Euler equation. However, in the vicinity of

the light cylinder this assumption may be violated. The compatibility condition on the

pressure derivatives then give a differential equation to determine the proper enthalpy.

This equation is the same as eq. (2.52). After substituting for B(<p),f'~<p),J(r), and J(O)'

one could obtain the solution of the eq. (2.52) by using the characteristic method. The

solution is found to be

. 1
(

Eo
)

2

[

2

(
2

) ( 3 . 2 2 3 ) ]F = 471" Vo (-2;3) 1 - i 8 II - 6a8 I2 + 12a 8I3 - 8a I4 + 1 ; (2.103)

where, 8 is the integration constant defined as 8 = 2 a / :;-:+ :;-:2sin2 () and II, I2' I3' &

I4 are the four integrals defined as :

(2.104)

(2.105)

(2.106)

(2.107)

, I-
II = J FI6 Q(F) d F;

I2 J 1 -= FI7 Q(F)dF;

I3 J 1 -= - Q(F)dF;FI8

I4 J 1 -= - Q(F) d F ;FI9
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where, Q(r) is defined as :

eM = (1 - ~r { ( -~P) H, r H (-:") H,} + { C:) HI.}+

~{(-~~)Bg}(l-~)-I] .
(2.108)

Eq. (2.103) can be reduced to the following form in the asymptotic limit

=2- (
BO

)
2

[(3

2

{
a3 ~ 3a2sin20 3asin40 ~sin60

}
1
]

.
:F 471"Va 255f1s + 85 r15 + 20 f12 + 5 r9 +

(2.109)

Finally, after substituting for F, ~'P) and B(<p) in the eq. (2.39)and integrating over r,

we obtain viz.

p = B02

[
2(32(abl - b2 sin20- b3 sinSO)

]
;

471" 2

where, b1,b2,and b3are defined as :

(2.110)

1

[

1
(

')

)
-1

]

3 2 2 3 ~-
b1 = J T2 (5 Il - 6ac5 I2 + 12a 5I3 - 8a Id - 2(32 1 - i dr; (2.111)

b2 = J r [(1 - ~) (53I1 - 6a52I2 + 12a2bI3- 8a3I4) - 2~2] dr;
(2.112)

'I. b3 = J ~ (1 - ~r { ( -~P) B, r {en Bh } d" (2.113)

The solution of the proper pressure given in the eq. (2.110) reduces to the following

form in the asymptotic limit as :

B 2

[ (

a T2

) (
a4 1 a3 sin20 39a2 sin4e

P o. 20 (3
2

=- -+-sln + -- -+ --+--
471" r 2 4845 'T19 ' 510 f16 22100 f13

+ ~ sin6e - ~sins 0
)]40 rlO 5 r7

(2.114)

2.4 Discussion and Conclusions

2.4.1 Quasi-Keplerian velocity profile

We first consider the case when the flow velocity is quasi-Keplerian in the flat space

limit. This class of solutions is a general relativistic generalisation of the Newtonian
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solutions obtained by BBDP (1995). It is worth noting here that in the flat space limit,

the pressure and enthalpy profiles do not satisfy the barotropic condition even when the

'J x B term is zero. This is because when the velocity profile is the quasi-Keplerian, the

(V . \7) (\7 x V) term is not zero. Further, the inclusion of the J x B term in the Euler's

equation can introduce additional non-barotropicity. From the flat space limit of eqs.

(2.53)& (2.58),one can see that the non-zero toroidal magnetic field ((3 i= 0) introduces

additional inhomogeneities in the pressure and enthalpy profiles. The strength of these

inhomogeneities is of order (3,which for (3 rv 1 is of the same order as the equilibrium

without any J x B force.

The solutions obtained in the Newtonian limit depend crucially on the two dimen-

sionless parameters a defined as the ratio of the gravitational energy to the kinetic

energy of a fluid element at t = tin and (3defined as the ratio of the toroidal magnetic

field to the poloidal magnetic field strengths.

The vertical (meridional) nature of the pressure profile described by the eq. (2.66)

shows a quite complicated behavior. First, the pressure function does not necessarily

have a global maximum at () = 7r/2 for all the values of parameters a and (3 leading
I

to unphysical equilibria. Second, it becomes negative for certain values of a and (3.

Obviously these features are unwanted. In order to ensure that the plasma pressure P

is positive everywhere within the disk and that it has a local maximum at () = 7r/2, the

parameters a and (3have to satisfy the following inequalities:

The parameter space (a, (3)allowed by these above inequalities is depicted in the Fig.

2.1 by the shaded region with a ranging from 1 to 3.5. For a ;::: 1.1, the strongest

constraint comes from equation (2.116). It can also be seen from Fig. 2.1 that the

maximum value of (3must be less than 2, while the parameter a does not have any

upper bound. However, for large valuea does not have any upper bound. However,

for large values of a (say a > 3.5), maximum allowed value of (3becomes negligibly

small to have any importance for the kind of equilibrium that we have considered.

(32 < 3.67 a-15/8; (2.115)

(32 < 15 (a - 1)-15/8 (2.116)32
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Fig. 2.1: subtended below the dashed line shows the parameter space allowed by the inequality

(2.116). The area below the solid line shows the parameter space described by the inequality

(2.115). The shaded region shows the allowedparameterspaceby both the inequalities.

15

Vertical (meridional) structures of equilibrium plasma density Pm(O)== 8(0:-

sin8 fJt15/8 :+ 132and Pressure Profiles P(fJ) == 15 (0: - sin8fJ)-7/8 + 132(0: - ~sin80) are, 8 2
shown in Figs. (2.2)-(2.5).We first study the case when the toroidal field is absent (i.e.,

13= 0) and it is shown in shown in Figs. (2.2)-(2.3) given below. Under this condition,

as there is no azimuthal plasma current density (i.e. Jep= 0), the effectof external dipole

field does not play any direct role in the disk equilibridipole field does not play any

direct role in the disk equilibrium. One can see that both pressure and density profiles

show global maxima at 0 = 7f/2 plane for all the values of parameter 0:. It should alsobe

stated that the pressure profile is always positive for 13=O. One can also observe from

the following figures that, for the case 0: -7 I, both pressure and density profiles have

sharp gradients in the f)- direction indicating rapid decrease in matter density off the

equatorial plane. Such solutions may, however, be unstable since 0: < 1.5 (sub-section

2.3.3).
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fig. 2.2: Thevariationofdensityalong the meridional direction as afunction of ()from ()min = 0

to ()max= 7rfor f3 = 0 andfor threedifferent values of a.
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fig. 2.3: The variation of pressure along the meridional direction as a function of () from

()min = 0 to ()max= 7rfor f3 = 0 andfor threedifferent valuesof a.
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Next we consider the case in the presence of toroidal magnetic field (i.e. ;3 i- 0)

and its effect is shown in the Figs. (2.4)-(2.5) given below. Figs. (2.4)-(2.5) depict the

pressure profiles in meridional plane with various values of ;3. One can clearly notice

that the inclusion of toroidal field leads to distinct qualitative changes in the pressure

profiles compared to ;3 =0 case.
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Fig. 2.4: The variationof pressure along the meridional direction as a function of ()fromI

Ornin = 0 to Omax = 7r for a fixed value of 0: = 1.51 and for four different values of ;3.
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Fig. 2.5: The variation of pressure along the meridional direction as a function of ()from

Omin= 0 to Omax= 7rfor afixed value of 0: = 2.0 andfor four differentvaluesof ;3.
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First, due to the presence of toroidal magnetic field, the value of the pressure

.maximum has been reduced. Secondly,the pressure function shows two local minima

on either side of () = 7f/2 plane. This feature could be because the toroidal field

assists the plasma pressure gradient in balancing the ()component of centrifugal force,

making thus the pressure gradients less steeper in this region. After the point () =

sin-1 ((2a/7)1/8) from either side of the 0 = 7f /2 plane, the isotropic part of the pressure

profile dominates over the plasma pressure with j3 = 0 while for a higher value of

j3 -t 1 it shows a large gradient in the ()-direction. These features are found to be valid

for all allowed values of a and j3 depicted in the parameter space (Fig. 2.1). On the

contrary, density profiles do not exhibit any change with non-zero j3 value except for

changes the back-ground values.

We next consider the magnetic field topology. For the present problem, as there is

axisymmetry, we have the toroidal component of magnetic field BT satisfying \7 .BT =
0, where BT = (0, 0, B<p)and the poloidal component of the magnetic field Bp separately

satisfying \7 . Bp = 0 with Bp = (Bn Be, 0).

~l:::~~]:[<~~]
-1 0 -1 0

~1,S?31-l,,~]-1 0 -1 0

'~1

G
=O'O

~ 0

-1 l:~]--1 0
X(8)

-1 a
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Fig. 2.6: The projection of a magnetic line offorce within the disk on the X-Y plane runs from

Omin= 0 to Omax= 7f,at r = rin = 14fT/,and R = 7m for six different values of j3 = Bd Bo.
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Fig. 2.7: The projection of a magnetic line offorce within the disk on the X-Z plane runs from

Omin = 0 to Omax = 7r,at r = rin = 14m and R = 7m for six different values of (3= Bd Bo.
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.Thus, B<phas a loop type structure in the l' - 1Y plane of the disk. With the help of eqs.

,(2.68)-(2.70), we can study the general magnetic field line structure which is represented

in Figs. (2.6)-(2.8) depicting the projection of a line-of-force in the X - Y, X - Z, and

Y - Z planes, respectively, for various values of 13. In Fig. 2.6, for (3 = 0, when the

external dipole field axis is aligned along z-axis, one can see the projection of a dipole

field line as a straight line in the X - Y plane. For 13#- 0, the structure forms a loop

caused by the BcjJ component. As the value of ,8increases, one can clearly visualise that

the line-of-force is being streched more and the size of the loop beccomes larger and, in

order to accomodate the line of force, kinks developa. In Fig. 2.7, the projection of the

dipole field line represents a loop structure on X - Z plane, the inclusion of the toroidal

field only deforms the loop by stretching and compressing. Finally, in Fig. 2.8, for the

case (3= 0, the projection of the pure dipole field is a stright line on Y - Z plane. For

(3 -# 0, the toroidal field line also has straight line projection that makes a right angle

with the dipolar field line. Thus, one can clearly notice two lobes on the Y - Z plane

and these lobes grow in size as (3increases and tilt in the horizental direction.

Fig. 2.9: A schematic diagram of magnetic lines offorce at the inner edge of the disk with and

without toroidalmagneticfield. A dashed line depictsfor (3= 0, thedot-dashedlinedepictsfor

/31 -#0 and the dotted line depicts (32-#0 where 132> (31'



69

This kind of field line topology clearly indicates shear in the magnetic field lines which

, is shown schematically in Fig. 2.9which is shown above. The structure of the magnetic

. field (depicted in Fig. 2.9) shows that the shear which produces kinks in the field lines

increases with the strength of the toroidal magnetic field compared to the poloidal field

strength. Such lines migl'rt store sufficient free energy which potentially can drive the

instabilities. In fact, a very recent study (Kumar et aI., 1994) has shown that in the

case of a thin disk while the vertical fields tend to stabilize the disk, the toroidal field

destabilises the disk, especially when the ratio of toroidal to poloidal field is large. In

our case as well, the kinks in the field lines increase with increasing {3and the role of

the toroidal magnetic field becomes very important in disscussion of thick magnetized

accretion disks. We have found that the obtained equilibria do not support arbitrarily

high toroidal magnetic field (i.e. (3< 2). Further, it was shown that, the plasma pressure

gradient changes sign somewhere between the polar and equatorial planes due to the

presence of this toroidal magnetic field. This structure might give rise to instabilities.

Another important aspect to be considered is the generalisation of the Newtonian

analyses to general relativistic formalism wherein the spacetime curvature produced by

the strong gravitational field of the central compact object would modify the magnetic

fields and may introduce new features. From the general relativistic solutions obtained

for a pressure-supported magnetised thick disk it is clear that the pressure function

also does not necessarily have a global maximum at () = 11"/2 plane for all values

of parameters a and {3/leading to unphysical equilibria. Second, it also becomes
I

negative for certain values of a and {3. Obviously these features are undesirable to

have physically meaningful disk solutions. Hence, in order to ensure that the plasma

pressure P is positive everywhere within the disk and that it has a local maximum at

() = 11"/2 plane, the parameters a and (3have to satisfy the following inequalities:
3 67

[

7 ')

( ]
-15/8

2' - a3 15 8(3 < - - al - - - ) a- / ; (2.117)
a4 5 5 a4

{32 < 15 (al a-I )-15/8

32 a4
(2.118)

Unlike in the Newtonian case, in the general relativistic situation, the above inequalities

are functions of the Schwarzschild coordinate r. It can be shown that in the asymptotic

limit (i.e. r --t (0)/ these inequalities reduce to those of Newtonian analyses.
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Fig. 2.10: Theparameterspace(a, (3)at theSchwarzschildcoordinater = 6.0shownfor the

casewhen theplasmaazimuthal velocity profile is quasi-Keplerian in theasymptotic limit. The

areas below the dashedand solid lines show the domain of values of a and /3 allowed by the

inequalities (2.117) and (2.118) respectively. The shadedregion shows the common parameter

spaceallowed by both the inequalities.

We would like to recall from (BBDP 1995) that the parameter /3has an upper bound

around /3 "J 2, beyond which positivity and local maximum at () = 7r/2 plane are

violated. Also the parameter a has a natural lower bound a > 1. Thus, the rotational

state of the disk and the toroidal component of the magnetic field get related due to

positivity and local maximum criteria on the pressure profile at () = 7r/2 plane. In the

general relativistic situation, the lower bound on the parameter a is amin = 1/ al and

the upper bound on the parameter /3is /3maxgiven by

/32 = 3.67
[
~al - ~ (

a3

)]
-15/8 a15/8.max

5 5 1 ,
a4 a4

(2.119)

are the functions of the Schwarzschild coordinate r. Fig. 2.10shows the allowed

values of the parameter space (a & (3)denoted by the shaded region for the value of the

Schwarz schild coordinate r = 6.
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Fig. 2.12: The parameter !3 has the maximum allowed value !3max[defined by the eq. (2.119)]

is a function of the Schwarzschild coordinate r. !3maxis plotted as afunction of r.

Figs. (2.11)-(2.12) describe the variation of Omin and !3maxas the functions of the

Schwarzschild coordinate r respectively. From Fig. 2.11, it is clear that Omin increases

to a very high value as the inner edge of the disk comes closer to the star's surface. This
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shows that the gravitational potential energy of the fluid element at the inner edge of

the disk due.to the central compact object becomes very large as compared to its kinetic

energy. Fig. 2.12 clearly shows that the parameter /3maxdrops to a very low value as the

inner edge of the disk comes nearer to the stellar surface. Thus, the relative strength

of self-consistently generated toroidal magnetic field decreases very fast compared to

the external poloidal magnetic field. As a consequence of smaller /3maxto retain the

positivity and local maximum of the pressure at 0 = 7r/2 plane, the field line structure

is largely determined by the external poloidal field. Moreover, there is no significant

qualitative departure from the field line topology as examined in the Newtonian anal-

yses. Fig. 2.13 shows the meridional (vertical) structure of the pressure profile for the

allowed values of the parameters ( a & (3). Unlike BBDP, the vertical structure of the

pressure is a function of the Schwarzschild coordinate r. Due to the presence of toroidal

magnetic field, the local maximum of the pressure has been reduced at 0 = 7r/2 plane.
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Fig. 2.13: The variation of pressure along the meridional direction as a function of 0 from

Bmin = 0 to Bmax = 7r at Schwarzschild coordinater = 6.0for afixed value of a = 4.0 and

for three different values of /3.

Moreover, the pressure shows two minima on the either side of the 0 = 7r/2 plane.

This feature is qualitatively same as that of Newtonian thick disk problem treated in
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'BBDP (1995).

"

2.4.2 Rigid rotation velocity profiles

In order to see the nature of equilibrium described by the proper pressure [eq. (2.110)]

and the proper enthalpy [eq. (2.103)] profiles, we consider their flat space limit. In this

limit they are described by eqs. (2.114) & (2.109) respectively. For the case when there

is no J x B force on the plasma, i.e., (3 = 0, one can see from eq. (2.114) that density

is a constant. Under this condition, criteria for the barotropic equilibrium, i.e., 'VP

x 'VF = 0 is satisfied by the pressure and density. It can also be seen from eqs. (2.114) &

(2.109) that the finite (3term introduces an additional r & e dependence but, its strength

is extremely small for the entire region satisfying r ~ 1. Thus, non-barotropic behavior

introduced by the toroidal magnetic field is quite small. In the general relativistic case

magnetic field is quite small. In the general relativistic case even when (3 -+ 0, the

proper enthalpy does not become constant, [see eq. (2.103)] which may lead to an

additional source of 'non-barotropicity' near the surface of the compact object.

We also find that, unlike the pressure and enthalpy profiles for the quasi-Keplerian

velocity, the positivity of the pressure and local maximum at e = 7r/2 plane is main-

tained for any range of parameter a and (3. The criterion for the global stability

for axisymmetric perturbations with stratified enthalpy and inhomogeneous magnetic

field was obtained in BBDP (1995). It can be shown that in the Newtonian limit with

(3-+ 0, the enthalpy becomes constant and the stability criterion is satisfied.

The solutions that we have examined here may be important in the following respect

: In this paper, we have obtained the solutions for non-accreting, pressure-confined,

and magnetized disk equilibria around a magnetized compact object without invoking

any thin disk approximations. Such solutions can be used to study magnetic torque

exerted by a thick disk on the central star by incorporating the effects of accretion flow

and finite resistivity perturbatively. Moreover, the presence of plasma equilibrium may

influence the electromagnetic processes near a magnetized central object (e.g. Michel,

1982). Such solutions may also be employed to study the effect of general relativistic

plasma on such processes.
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Chapter 3

Summary and Conclusions

We have studied axisymmetric, non-accreting pressure-supported thick disk MHD

equilibria around a compact object. Specifically we have analyzed two cases of impor-

tance:

(i) The solutions having a quasi-Keplerian azimuthal velocity profile are found to

depend upon two parameters a and /3. The parameter a signifies the ratio of the grav-

itational potential energy to the bulk kinetic energy of a fluid element. The parameter

/3 signifies the ratio of the toroidal magnetic field strength to poloidal magnetic field

strength. Analyses of the pressure profile show that such solutions cannot support

a toroidal magnetic field of the arbitrary strength but the maximum strength of the

toroidal field can be determined from the inequality relation satisfied by a and /3. We

have also found that this kind of solution support a non-barotropic distributions.

Analyses of the general relativistic solutions indicate that the strength of the toroidal

field decreases significantly near the surface of the compact object due to relativistic

effects, and the magnetic field line structure shows that the generation of toroidal

magnetic field makes magnetic field lines highly sheared in this kind of equilibria.

Such field line structure may indicate that this kind of equilibrium might be unstable.

(ii) The solutions having rigid rotation type azimuthal velocity profile are found to

depend less sensitively on the parameters a and /3. The pressure and the density

profiles obtained by solving the relevant equations show that such configurations, in

74
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the asymptotic limit, support a barotropic equilibrium. However, the effect of strong

gravity may violate the barotropic nature of the equilibrium. Also the effect of strong

gravity can cause a departure from the rigid rotation type behavior of the velocity

profile. This solution can also have relevance as a model of plasma magnetosphere

around magnetized compact object like a neutron star.

So far we have completed a study of non-accreting thick disk equilibrium and some

aspects of their stability. Such study can be logically continued, as future work, in the

following directions.

(1) The interpretation of most pulsating X-ray sources as accreting neutron star based

on the qualitative features of their spectra and their secular spin-up rates. If the

accreting star possesses a sufficiently strong magnetic field, interaction between the

stellar magnetic fields and the surrounding accretion disk significantly influences the

structure and dynamics of the disk and spin evolution of the star. The qualitative

features of disk accretion by rotating magnetic neutron stars were first described by

Pringle and Rees (1972), Lamb, Pethick and Pines (1973), and Ghosh, Lamb, and Pethick

(1977). These authors have argued that a slowly rotating neutron star accreting matter

from a Keplerian disk should spin up as a consequence of the torque exerted on the

star by the accreting matter. These models have been used to calculate the bounds on

the accretion torque. The period changes observed in these X-ray sources are generally

consistent with the above theoretical estimates. Furthermore, an understanding of this

phenomenon would provide an important tool for exploring other important problems,

such as the characteristics of mass transfer in binaries and properties of neutron stars

(e.g., star's dipole field, size of its moment of inertia, relative inertial ~oments of the

crust and superfluid neutron core etc.).

The progress in understanding these observations has been stymied in part by the

absence of a detailed self-consistent quantitative model of disk accretion by magnetic

neutron stars. However, generally two kinds of quantitative models have been pro-

posed for the magnetic field-disk interaction. These models can be used to calculate

torque exerted on the star by the accreting matter and explain the changes observed

in the pulsation periods of these X-ray sources. Some investigators (e.g., Anzer and
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Borner, 1980, 1983; Arons et al., 1985; Aly, 1986) considered that the disk plasma is

infinitely conducting, and the surface currents on the disk exclude the stellar magnetic

field. In this case, the torque N exerted on the star by the disk only results from the

material stress, N = tVI(G M Tin)1/2,where M and !II are the mass and mass accretion

rate of the star respectively, Tinthe inner edge of the accretion disk and G the Newtonian

constant of Gravity.

I
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FLOW

I

REGION

OUTER
, TRANSITION

BOUNDARY ZONE
LAYER

y '~.~_.

UNPERTURBED
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Fig. 3.1: Schematic picture of the accretionflow. Beyond the radius Ts at which the stellar

magnetic field is completely screened, the disk flow, of vertical thickness 2h, is unperturbed

by the magnetosphere. In the transition region between Tsand TA, disk flow changes into

magnetosphericflow. The transition region divides into two parts, an outer transition zone

where viscous stresses dominate magnetic stresses, and a boundary layer of width {j ~ 1'A

where magnetic stresses dominate (Ghosh and Lamb, 1978).

On the other hand, Ghosh and Lamb (1978, 1979a,b, hereafter GL) developed a mag-

netically threaded disk (MID) model with the assumption that the effective resistivity

arises due to flow conditions. In this model, the disk is partially threaded by the

magnetic field Bz via the non-linear mechanisms like the Kelvin- Helmholtz instability,

turbulent diffusion, and reconnection with small- scale fields within the disk etc. They

have adopted cylindrical coordinate (R, ljJ,z) centered-on the star and the disk is located

on the z = 0 plane, which is perpendicular to the star's spin and magnetic axes.



77

The total torque exerted by the accretion disk is contributed by both the material stress

and the magnetic stress in the case of axisymmetric disk accre.tion can be expressed as,

N = No + 1:' [B<I>(r) Bz (r)]z=h r2 dr,

where No = if (G M ro) 1/2denotes the rate at which angular momentum is transported

inward past the point r = roby matter within the disk while the second term represents

the effect of magnetic stresses (torque) acting outside ro (i.e., outside the co-rotation

radius) across the surfaces of the disk, z = :!::h (with equal contributions coming from

top and bottom), which can be positive or negative, determined by the spin period,

the magnetic moment and the mass accretion rate of the star as shown in the Fig. 3.1.

So, the star can be spun down even while accretion occurs. ro is defined as the radius

(3.1)

at which the angular velocity of the plasma begins to depart significantly from the

Keplerian behavior. By assumption, the magnetic field disrupts the disk flow inside ro,

and all of the matter is eventually accreted onto the neutron star.

The toroidal component of the magnetic field in eq. (3.1) changes sign as it crosses

the equatorial plane (i.e. e = 11"/2). Such a B<I>arises due to coupling of plasma,

its azimuthal motion in the poloidal field with the stellar magnetic field. In order

to calculate B<I>,which changes its sign near the equator, we need to know the radial

velocity profile v" also. One can use the present solution to calculate corresponding

Vr and B<I>perturbatively. This can allow us to calculate the magnetic torque from the

accretion disk by analytical means. However, this will be a rather simplified model of

the magnetic torque calculation in case of a thick disk configuration. For the proper

treatment of the transition region (GL, 1978, 197'9a,b) one has to carry out a detailed

numerical study.

(2) General relativistic effects near neutron stars have previously been explored in the

context of emission models for X-ray pulsars and gamma-ray bursts. Recently Gonthier

and Harding (1994) examined the importance of general relativistic corrections to the

production of gamma rays near the surface of a neutron star. They have found that the

curved spacetime metric significantly increases the magnitude of the magnetic field.

Therefore, the attenuation coefficients of curvature radiation for pair production in a

magnetic field can be increased by factors as large as 100. As a result, the survival
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distance of 1Gev photons for pair production, is decreased by a factor of 2 for B rv

1012 G. In this work, space near the neutron star surface assumed to contain zero

matter density. However, the presence of plasma equilibrium can strongly influence

the electromagnetic processes near the neutron star (Gonthier and Harding, 1994).

Therefore, the axisymmetric MHD equilibrium carried out by us can be used to study

the effects of a plasma equilibrium on electromagnetic process. In particular, it would

be of interest to investigate how single particle moving in such a equilibrium will
radiate.
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