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Abstract

Quantum Hall states are robust and good choice for numerous potential applications

and to study the physics of topological effects. These states have been observed ex-

perimentally in condensed matter systems. However, the observation of fractional

quantum Hall states with high flux is difficult in these systems as they require high

magnetic fields (≈100 T or more). In this respect, ultracold atoms trapped in the

optical lattices are clean and appropriate systems as synthetic magnetic fields equiva-

lent to 1000 T or more can be generated using laser fields. In this thesis, I study the

occurrence of quantum Hall states and competing superfluid states in optical lattices

for both homogeneous and inhomogeneous systems. And, I also study the physics of

multi-component ultracold atomic gases in optical lattices. For the former, I solve the

Bose-Hubbard model with synthetic magnetic field referred to as the bosonic Harper-

Hofstadter model, using cluster Gutzwiller mean-field and Exact diagonalization meth-

ods. The synthetic magnetic field in the optical lattices can be implemented through the

Peierls phase and experimentally using laser fields. For the homogeneous case, with

the inclusion of the synthetic magnetic field, we obtain the quantum Hall states as the

ground state of the bosonic Harper-Hofstadter model. As a first step, the parameters

of the QH states are identified based on the compressibility. We obtain the quantum

Hall states for different values of synthetic magnetic field with different cluster sizes

for the hard core bosons and in the neighbourhood of zero Mott lobe. For the hard

core bosons, the onsite interaction energy of the atoms is much larger than the nearest

neighbour tunneling energy. As a possible experimental signature, I study in detail

the two-point correlation function to distinguish between the quantum Hall states and

superfluid states. The states so obtained as further studied in more detail with the ex-

act diagonalization method. I identify the quantum Hall states and superfluid states

based on the Penrose-Onsager criterion and Von Neumann entropy. Then, the identi-

fication of the quantum Hall states is confirmed by computing the many-body Chern

number and ground state degeneracy. For the inhomogeneous case, I do recover all the

quantum Hall states for hard wall boundary and for a shallow Gaussian potential, but

not with the harmonic oscillator potential. For the multi-component ultracold atomic

gases, I obtain the phase diagram for the Bose-Hubbard model for two species. I get



iv

the half-filled Mott lobes in presence of inter-species interaction strength. And, show

that the width of half-filled Mott lobe varies linearly with increasing the inter-species

interaction strength. I, then, consider the nearest neighbour interaction together with

onsite interaction in the Bose-Hubbard model and study the phase separation for the

strongly correlated phases of two-component ultracold atomic gases in optical lattices.

I also study the phase diagram of the extended Bose-Hubbard model and observe the

shifting of density wave lobe with the increase of the inter-species interaction strength

with zero inter-species nearest neighbour interaction. While with finite inter-species

nearest neighbour interaction I observe the phase separation in density wave, super-

solid and superfluid phase.

Keywords: Optical lattice, Bose-Hubbard model, quantum Hall states, single-site

and cluster Gutzwiller mean-field theory, exact diagonalization.

Work contribution: I was the lead person in defining and developing the ideas of

the research projects which form a part of this Ph.D. thesis. I and Soumik contributed

equally to the development of the codes and designing the algorithms used. I lead the

preparation of the manuscripts of papers published based on the results reported in the

thesis.
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Chapter 1

Introduction

Hall effect is a phenomenon related to the motion of the electron in a 2D plane in

presence of a magnetic field. If a potential difference is applied along x direction, and

a magnetic field along z direction, then due to the cyclotron motion of the electrons, a

Hall voltage is induced along y direction. This is the classical Hall effect, discovered

by Edwin Hall in 1879. In the classical Hall effect, the Hall resistivity varies linearly

with the applied magnetic field. Later, in 1980 the integer quantum Hall effect (IQHE)

was discovered in experiments by Klitzing, Dorda and Pepper [2]. They observed

plateaux in Hall resistivity of the 2D electron gas in thin films at a very low temperature

and with a strong magnetic field. It is referred to as IQHE since the Hall resistivity is

quantized at integer multiples of e2/h, e electron charge and h Planck constant. This

was soon followed by the discovery of fractional quantum Hall effect (FQHE) in 1982

by Tsui, Stormer, and Gossard [3]. They observed the quantization of Hall resistivity

at the fractional multiples of e2/h. The key difference between IQHE and FQHE

is the role of the electron-electron correlation effects. The IQHE can be understood

in terms of single-particle theory without interactions, while to explain FQHE it is

essential to consider electron-electron correlation effects. A theoretical explanation

of FQHE in terms of a correlated wavefunction was first given by Laughlin [4] in

1983. The Laughlin wave-function does not describe all the fractional quantum Hall

states reported in the experiments but provides the essence for some of the FQHE

states. Based on the theory Laughlin predicted that a quasi-particle is an anyon that

has electronic charge e/m at the filling factor ν = 1/m, where m is an integer number.

1
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This implies that m flux quanta are attached to an electron, and the theory of quantum

Hall (QH) states can be understood in terms of the composite particles. In the lowest

Landau level, the ground state is an incompressible liquid such as QH ferromagnet

which can be obtained at ν = 1. While in the higher Landau levels, charge density

wave such as stripe and bubbles are present.

In this chapter, I provide a brief description of the classical and quantum Hall ef-

fects, and related experimental observation of the QH effect in the context of condensed

matter systems. I, then, discuss the importance of the ultracold atoms trapped in the

optical lattices to study the QH states and previous studies of QH states in the optical

lattices. I provide the motivation of our work on the QH states in optical lattices. At

the end of the chapter, I describe previous observations related to the phase diagram,

phase separation of two species BECs in the strongly interacting regime.

1.1 Classical Hall effect

It is well known that electrons moving with velocity v experience Lorentz force when

they are placed in the magnetic field B. The corresponding equation of motion is

mv̇ = −e (E + v ×B) , (1.1)

wherem is electron mass, E and B are electric and magnetic fields, respectively. In the

Hall effect as schematically shown in Fig. 1.1 the electrons are moving with velocity

v in xy plane, a potential difference is applied along x direction and a magnetic field

Bz = −B⊥ < 0 is applied in the −z direction. For the steady state v̇ = 0, as

an induced potential difference along the y direction balances the deflection of the

electrons due to the magnetic field E = −v ×B. Thus, the current densities are

J = −eρ0v, Jx =
eρ0

B⊥
Ey, Jy = −eρ0

B⊥
Ex, (1.2)

with ρ0 equilibrium density of electron. In this, a Hall voltage is produced along y

direction. Due to the Hall voltage the electric field Ey is present along y direction.

Therefore, the Hall resistivity is

Rxy ≡
Ey
Jx

=
B⊥
eρ0

. (1.3)
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Figure 1.1: Schematic representation of Hall effect for electron in a rectangular sam-

ple. A magnetic field is applied B is applied along −z direction, and a current Jx

is along x direction, a Hall voltage Vy is generated along y direction. Thus the Hall

resistivity Rxy is non zero and diagonal resistivity is zero.

Here electric field along x direction is zero Ex = 0, thus the diagonal resistivity is zero

Rxx = Ex/Jx = 0. In the classical Hall effect Hall resistivity is directly proportional

to the applied magnetic field as in Eq. (1.3).

1.2 Quantum Hall effect

The QH effect occurs at very low temperatures and under a strong magnetic field,

where the quantum nature of electrons is prominent. The electrons execute cyclotron

motion in the external magnetic field and the Hamiltonian is

H =
1

2M

[(
−i~∂x + eAext

x

)2
+
(
−i~∂y + eAext

y

)2
]
, (1.4)

where Aext
k is the vector potential, and in Landau gauge, it gives raise to the external

magnetic field B = (0, 0,−B⊥). The energy levels of the above Hamiltonian are

quantized in terms of the cyclotron frequency ωc = eB⊥/M . The energy levels are

referred to as the Landau level and there is a large degeneracy in each level. Each

of the degenerate states in a level occupies an area 2πl2b and is called as a Landau

site. Here, lb =
√

~/(eB⊥) is the magnetic length, and this indicates that the area

of a Landau site decreases with B⊥. To describe the Landau level and Landau sites,

consider the covariant momentum:

Px ≡ −i~∂x + eAext
x , Py ≡ −i~∂y + eAext

y . (1.5)
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We define the guiding center coordinate (X, Y ), the center of the cyclotron motion of

the electrons, in terms of the real space coordinate of the electron (x, y) as

X ≡ x+ Py/eB⊥, Y ≡ y − Px/eB⊥ (1.6)

and their commutation relations are as follows:

[X, Y ] = −il2B, [Px, Py] = ~2/l2B, (1.7)

[X,Px] = [X,Py] = [Y, Px] = [Y, Py] = 0, (1.8)

where as mentioned earlier lB =
√

~/eB⊥ is the magnetic length. Due to the Pauli

exclusion principle one electron can occupy one quantum mechanical state or Landau

site. Since X and Y do not commute, area occupied by an landau site is ∆X∆Y =

2πl2B. Thus, in an area A, the total number of states is A/2πl2B. Thus each Landau

level is highly degenerate as it can harbour several Landau sites. The energy of the

system is

EN =
(
N +

1

2

)
~ωc, (1.9)

where ωc = eB⊥/M is the cyclotron frequency andN is the principal quantum number

corresponding to a Landau level. Each landau levels have the same number of Landau

sites. In general, the QH states are electrons occupying the lowest Landau level, and

magnetic flux Φ quantized in units of the Dirac flux quanta ΦD ≡ 2π~/e are attached

to each electron. The attached flux determine the filling factor for the QH states.

In QH effect Hall resistivity is quantized with respect to the values of the filling

factor ν and can be written as

Rxy ≡
Ey
Jx

=
B⊥
eρ0

=
1

ν

2π~
e2

, (1.10)

where

ν =
Number of electrons

Number of states
=

2π~ρ0

eB⊥
. (1.11)

Furthermore, QH effect is classified as IQHE or FQHE depending on the whether ν is

integer or fractional value, respectively.
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Figure 1.2: The IQHE for the electron system of a silicon MOSFET transistor in the

left figure observed by K. v. Klitzing et al. in 1980. They have observed plateaus

in the Hall voltage (UH) instead of a smooth curve and a deep minima in the magne-

toresistance (UPP ). The x axis is the gate voltage (Vg) which depends on the carrier

density n. In the right figure the equivalent plot for Hall resistivity (RH) and diago-

nal resistivity R with respect to the applied magnetic field for a 2D electron system

on GaAs/AlGaAs. The Hall resistivity has plateaus at integer filling. Reprinted from

[K. v. Klitzing et al., Phys. Rev. Lett. 45, 494 (1980).] Copyright c© 1980 by the

American Physical Society.

1.2.1 Integer Quantum Hall effect

The IQHE can be understood without considering the inter-electron interactions. Thus,

the single-particle states are well defined and based on this we can define the many-

particle state in the presence of a magnetic field. In this scenario, although the electrons

do not interact, electrons are subjected to Pauli pressure due to the Pauli exclusion

principle. So, each electron experiences the presence of other electrons. In exper-

iments, for IQH effect the Hall resistivity Rxy is quantized at the integer values of

filling factor ν as shown in Fig. 1.2. At the same time, energy spectrum in presence

of magnetic field forms Landau levels and these are identified by the principal quan-

tum number, an integer as given in Eq. (1.9). Both of these integers are the same,

that is, the IQH state with ν filling factor occupies the lowest ν Landau levels. And
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Figure 1.3: The Hall resistivity has plateaus at the fractional filling and diagonal resis-

tivity for those plateaus is zero for fractional quantum Hall Effect. Reprinted from [R.

Willett et al., Phys. Rev. Lett. 59, 1776 (1987).] Copyright c© 1987 by the American

Physical Society.

the density of electrons to attain the resistivity of the νth plateau from Eq. (1.11) is

ρ0 = (eB⊥/2π~)ν = (B⊥/ΦD)ν. This is also the electron density, which is required

to fill ν Landau levels. Further, when ν landau levels are filled, there is an energy gap

in the energy spectrum. An energy ~ωc is required to occupy the next state. As long

as the temperature is kBT � ~ωc, these states will remain vacant. Thus, the QH states

are incompressible and gaped.

1.2.2 Fractional Quantum Hall effect

In the FQH effect, Hall resistance has plateaux at the fractional value or at non-integer

value of the filling factor ν. The first plateaux were observed at ν = 1/3 and 2/3, after

that for ν = 1/5, 2/5, 3/7, 4/9, 5/9, . . . in the lowest Landau levels and for ν = 4/3,

5/3, 7/5, 5/2, 12/5, . . . in the higher Landau levels in the experiments [5]. Till date,

many more plateaux for different fractional ν have been observed and are shown in
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Fig. 1.3. The main difference between IQHE and FQHE is that the observation of

FQHE requires strong Coulomb interactions, correlations between the electrons and

presence of disorder in the system [6]. In FQHE the particles condense into a distinct

quantum state, and excitations of this state can be described by fractional quantum

numbers such as fractional charge and fractional statistics. The fractional statistics

is intermediate between the Bose and Fermi statistics. In IQHE, ν Landau levels are

occupied by the electrons and all others are vacant. In FQHE, under circumstances

of a weak disorder, Hall resistivity is quantized at the fractional quantum numbers.

For example, at magnetic field three times larger than the magnetic field at ν = 1 for

IQHE, the lowest Landau level is only 1/3 occupied.

1.3 Ultracold atoms and FQH states

The discovery of the QH effects [2–4] in the condensed matter system has opened up

the new field of topological materials. And, for a detailed understanding of the asso-

ciated physics is essential to understand the properties of electrons in a magnetic field.

Charged particles like electrons experience Lorentz force in the presence of magnetic

fields, and in condensed matter systems, it is the essence for a host of fascinating phe-

nomena like the integer QH effect [7, 8], fractional QH effect [9, 10], and the quantum

spin Hall effect [11]. However, the dilute quantum gases of atoms, which have emerged

as excellent proxies of condensed matter systems, are charge neutral and hence, there

is no Lorentz force in the presence of an external magnetic field [12]. The absence

of Lorentz force can, however, be remedied with the creation of artificial gauge fields

through laser fields [13–15]. The atoms then experience a synthetic electromagnetic

field and mimic the dynamics of charged particles in electromagnetic fields [16]. Thus,

with the artificial gauge potentials, it is possible to explore phenomena such as the

quantum Hall effect, and the quantum spin Hall effect [14] in dilute atomic quantum

gases.

Experimental realizations of ultracold quantum gases [17–19] have provided the

access to explore the physics of quantum many-body systems with controllable inter-

actions. The experimental realization of Bose-Einstein condensates (BECs) of dilute
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atomic gases in optical lattices [20–27], and consequent developments [28, 29] have

opened new frontiers to explore the physics of quantum many-body systems. Most

of the experiments have been performed in the weak interactions regime, the realiza-

tion of Mott insulator (MI) state [26] in ultracold atoms trapped in the optical lattices

take us into the strongly interacting regime with more complex many-body dynamics.

This is due to the possibility of experimental control on the inter-atomic interactions,

number of atoms, lattice geometry and choice of atomic species. Thus, Bose-Einstein

Condensates (BEC) trapped in the optical lattices have become an essential platform

to examine the many-body physics, such as quantum phase transitions [29]. The most

important feature of BEC is its response towards rotation. Based on the earlier works

on superfluid He, it has been studied that BEC does not rotate like normal fluid, rather

rotation of superfluid He gives rise to the formation of quantized vortices [30]. The

observation of the quantized vortices in the BEC has been studied by rotating the BEC

[31–33], through topological phase imprinting [34, 35], or phase engineering in two-

species condensates [36, 37]. In the rotating frame, the Coriolis force is analogous to

the Lorentz force for charge particles moving in the uniform magnetic field. Hence,

the quantized vortices can be considered as the quantized magnetic fluxes penetrating

the system. Therefore, the filling factor for FQHE is ν = Nb/Nφ number of bosons Nb

divided by the number of vortices Nφ in the case of BEC.

Some of the strongly correlated quantum states similar to the FQH states have

been realized at the high rotation in [38, 39], when the number of vortices exceeds

the number of bosons in the condensate. In this method, the observed ground state

is separated by an energy gap from all the other excited states. But this gap is small

as interaction energy between the atoms is small due to the magnetic trap which is

used in the experiments. On the other hand, in the optical lattices, the interaction

energies are much larger because atoms are confined in the smaller volume. Thus,

the FQH states are much more robust with a higher energy gap in the optical lattices.

The Hubbard model [40] well describes the physics of particles trapped in the optical

lattices. In particular, bosons in optical lattices are near ideal realizations [41] of the

Bose-Hubbard model (BHM) [42]. The BHM shows two phases, MI phase in the

strongly interacting regime and SF phase in the weakly interacting regime, these have
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been observed in seminal work by Immanual Bloch and collaborators [26].

In the condensed matter systems, there has been enormous progress in the experi-

mental and theoretical understanding of the QH effect [43–46], but the physics of FQH

effect [3] is not yet completely understood. One of the theoretical models, the Laugh-

lin ansatz [4] provides exact solutions for some FQH systems, but a comprehensive

understating of all the states reported so far remains illusive. The main difficulty arises

from the strong correlation of the electrons, but the same is essential to observe the

FQH effect. Another difficulty is that the observation of FQH states requires a high

magnetic field (≈ 100 T) which is a major hurdle in the condensed matter systems.

In this respect, ultracold atoms in the optical lattices are very clean systems with con-

trollable parameters: inter-particle interaction, number of particles, lattice geometry,

lattice depth, and temperature. Thus, these systems are ideal quantum many-body sys-

tems to study FQH states [47, 48]. The ultracold atoms are, however, charge neutral

and not affected by the external magnetic fields. To overcome this, the concept of

synthetic magnetic field is used to generate a force similar to Lorentz force, and it

has been experimentally implemented in the optical lattices using laser field [49–56].

The synthetic magnetic field equivalent of ≈ 1000 T can be generated in the optical

lattices. In the BHM Hamiltonian, the hopping and on-site interaction are the two

competing terms. And both of these can be tuned by changing the depth of the lat-

tice potential and employing Feshbach resonance [57, 58]. The hopping parameter J ,

which defines the strength of the hopping term in the BHM Hamiltonian, acquires a

phase J → |J | exp(iΦ) in the presence of a synthetic magnetic field [59] through the

Peierls substitution [60, 61] and modifies the states of BHM. So, for an atom in the

optical lattice, there is a change of phase Φ = 2πα when it hops around a unit cell or

plaquette, where α is the flux quanta per plaquette. The ground state of BHM in the

presence of synthetic magnetic field is the QH state.

1.3.1 Previous studies of FQH states with optical lattices

In the ultracold atoms, it has been shown that the FQH states occur as the ground state

by rotating and cooling the atoms confined in the harmonic trap potential. Then, the

Laughlin wave-function describes this FQH state [38, 39]. In the optical lattices, the
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FQH physics is modified through the lattice. For a single particle, the optical lattice

modifies the energy spectrums to the fractal structure known as Hofstadter butterfly

[61] and is different from the Landau levels. In the optical lattices, described by BHM,

the states are FQH type and can be obtained by melting the MI state in a superlattice

potential [48] in some suitable parameter regime. It has been studied that an oscillating

quadrupole potential together with a periodic modulation of the tunneling between

lattice sites provides that the dynamics of the atoms in optical lattices are similar to

that of the motion of the charged particle in the magnetic field [48]. In the ref. [48],

the ground state was obtained by the numerical diagonalization of the lattice system

and it was characterized as FQH state by considering the overlap with the Laughlin

wave function. These FQH states were obtained with the low magnetic flux (α ≤ 0.3).

This work was further extended in the ref. [62], where they have characterized the

FQH states with the topological order of the system by calculating the Chern numbers.

In the same work, features of Laughlin states were also reported in low particle density

limit for ν = 1/2 and α < αc = 0.4. Here, ν is the filling factor, the number of

particles per flux quanta and αc is the critical value of the synthetic magnetic field

below which FQH states exist.

In the high synthetic magnetic field, a bilayer FQH states have been reported near

the rational number of magnetic flux quanta per lattice cell (α) [47]. In another work,

the topological states such as Laughlin and Read-Rezayi states have been observed

in the presence of a weak trapping potential [63]. The system behaves similar to the

two species for the low value of α and near α = 1/2 a stripe vortex phase of one

species is obtained using Gutzwiller ansatz [63]. The same work reports, in future

experimental realizations, the use of noise correlation or Hall current measurements

observable signatures of the QH states. The vortex lattice states in the square and

honeycomb lattices with artificial gauge potential is reported in ref. [64]. The existence

of bosonic FQH states in the rotating optical lattices is predicted [65] in the vicinity of

Mott plateaux using variational Monte Carlo and exact diagonalization (ED) method.

The phase diagram with α = 1/4 and ν = 1/2, for Mott lobe n = 1 is shown in

Fig.1.4. In this, the MI-SF boundary is predicted from the mean-field calculation and

the FQH states are observed for low values of tunneling energy. The FQH states exist
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Figure 1.4: The phase diagram for α = 1/4 and ν = 1/2 Mott lobe n = 1. The

phase transition from MI-SF is obtained from the mean-field method. The FQH states

are obtained for both excess particles and holes for the low value of tunneling en-

ergy. Reprinted from [Umucalılar et al., Phys. Rev. A 81, 053628 (2010).] Copy-

right c© 2010 by the American Physical Society.

for the hole and particle states. The excess particles are ε = αν = 0.125. For hole,

FQH states have the density n = 1 − ε = 0.875 and for particle FQH states have the

density n = 1 + ε = 1.125 Fig. 1.4. Thus in our studies, we also restrict the value of J

to be very low and we study the FQH states for both hole and particle excess.

Similar results for bosonic analogs of the FQH states in the vicinity of Mott lobes

are reported in the recent work by considering the nearest neighbour repulsion in BHM

[66]. They calculate the vortex density, energy gap, and momentum distribution by

considering the effective Hamiltonian for excess particles using single-site Gutzwiller

mean-field (SGMF) theory. The different states as vortex solid for small nearest neigh-

bour repulsion and homogeneous Bose metal with the increase in nearest neighbour

repulsion are reported. The Chern-Simons theory which describes the bosons with at-

tached flux quanta [66] has been used to study the FQH state. In another recent work

[67], using cluster Gutzwiller mean-field (CGMF) theory the incompressibility of the



12 Chapter 1. Introduction

FQH states is considered to identify these states in the numerical computations. In

particular the FQH states for α = 1/5 at ν = 1/2 are discussed. The FQH states have

been obtained with different filling factors and competing SF state for the same param-

eter regime is also obtained in this work [67]. The FQH state has the structure similar

to the density wave order. The CGMF method breaks the translational invariance of

the lattices system, thus a more accurate method reciprocal cluster mean-field (RCMF)

Hügel et al. [68] predicted a competing FQH state as a metastable state for α = 1/4.

The ground-state phase diagram of bosonic Harper-Hofstadter model with RCMF is

shown in Fig. 1.5 with anisotropic tunneling energies.

In this thesis work, I report FQH states for a square lattice at distinct νs for low

and high flux. For example when α = 1/5 low flux, we obtain QH states at ν = n/2,

where n = 1, 2, . . ., 9 and for high flux α = 1/2 at ν = 1/2, 1, and 3/2. In particular,

I discuss the QH states for α = 1/5, 1/4, 1/2 and 1/3 in the strongly interaction

domain, and in particular, choose J/U = 0.01 close to the Mott lobes with n = 0 and

n = 1. we observe the FQH states by considering different external potential such as

box potential, Gaussian potential etc.

1.4 Two species ultracold gas systems and extended BHM

The two species ultracold gas system (TUGS) is a condensate mixture of the two dif-

ferent atomic species [69–74], or two hyperfine states of same species [75–84] or two

isotopes [85–87]. Some of the novel phenomena associated with TUGS are pattern

formation [88–91], phase separation [71, 73, 74, 84, 85], nonlinear dynamical excita-

tions [82, 92, 93], collective excitations [79], Kibble-Zurek mechanism [94], and the

production of dipolar molecules [95–97]. Among all these, the most important fea-

ture of TUGS is the phase separation. The phase separation in TUGS depend on the

competition of inter and intra species interaction energies. These interaction energies

are controllable through the magnetic Feshbach resonance and are repulsive in nature.

For the phase separation, the interspecies interaction energy must be stronger than the

geometric mean of the intra-species interactions energies [98].

TUGS have been experimentally realized in two different hyperfine states of the
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Figure 1.5: The ground state phase diagram with RCMF method in the hard core

boson limit and for α = 1/4. The the different phases are BI→ band insulating (light

blue), SS→ supersolid (dark blue), SF→ stripe superfluid (white), fQH→ fractional

quantum Hall (dark grey). At zero anisotropy the stripe superfluid phase undergoes

a transition from vertical stripe (for tx > ty) to horizontal stripe (for tx < ty) shown

through black vertical line. At zero chemical potential µ = 0, the density is fixed as

1/2 and homogeneous for all phases (green dashed line). Reprinted from [Hügel et

al., Phys. Rev. B 96, 054431 (2017).] Copyright c© 2017 by the American Physical

Society.

87Rb species [99, 100], where the presence of the second component reduces the SF

coherence near to the SF-MI transition for one component. The loss of SF phase

coherence is more prominent for large the admixture of the second component and

tunneling rate asymmetries of the two species [99]. The coexistence of the SF and

MI phases in the hexagonal lattices have also been observed [100]. The presence of

second species provide an additional degree of freedom in the case of optical lattices

and provide an excellent platform to study the two species BHM [41, 101–103]. The

BHM for TUGS presents supercounterflow and antiferromagnetic phases in case of

interspecies repulsion [104–106], density-wave instabilities and pair superfluidity in

the attractive regime [107–109]. For the atomic spin mixtures, signature of Bose-

glass state [110], superexchange interactions [111], antiferromagnetic ordering [112]

and emergence of the twisted-superfluid ground state [113] have been observed in the
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experiment.

The new techniques of adiabatic cooling [114] and thermometry [115] are results

of the influence of a magnetic field the gradient to atomic spin mixtures. The phase

diagram of TUGS consists the MI, SF and different combinations of mixed or phase-

separated configurations of MI and SF phase [102, 116–118]. Analytical and numeri-

cal description of MI-SF phase diagram with inter-species interaction has been studied

for the homogeneous system [119] and with external harmonic potential [120]. For

Bose-Bose mixtures, MI-SF phase boundary is affected by the presence of the second

bosonic species [121]. The quantum phases with various lattice geometries has been

studied in [101, 104, 122]. The other effects which previously have been observed in

the mixture of cold atomic gases in an optical lattice are demixing of bosonic atoms

with increasing interspecies repulsion [123–126], non equilibrium excitations and dy-

namics of TUGS [82, 83, 93], quantum emulsions and coherence properties of TUGS

[25, 127, 128], hydrodynamic instability in the TUGS [129]. The transport properties

with the interspecies interaction has been studied [130, 131]. In the recent works at

finite temperatures, multicritical behaviour of TUGS [132–134], fragmentation [135]

and mixing of phase-separated states [136] have been studied.

After the study of BHM, a new direction is to study the BHM with long-range

interactions. This is referred to as extended BHM (eBHM) [137], where in addition

to the on-site interaction, one has to consider the interaction between atoms at the

nearest neighbour sites [138]. The eBHM represents two more phases such as density

wave (DW) [139–141] and supersolid (SS) [141–145] phase, apart from the MI and

SF phases. The DW phase is an insulating phase, which has crystalline order in the

form of staggered average occupancies at each lattice site. The SS phase shows the

simultaneous existence of diagonal or crystalline order and off-diagonal or superfluid

long-range orders in the system. The SS phase with striped order has been observed

with spin-orbit-coupled BEC in [146, 147] and disordered supersolid with eBHM in

[148]. In TUGS the eBHM has been studied with Bose-Bose mixture in a triangular

lattice [149], spin-orbit coupled BEC [146, 147]. Apart from this the phase diagram

and phase separation with different interaction energy strength for eBHM have not

been observed and I discuss some of these results in this thesis.



1.5. Objectives of the thesis 15

1.5 Objectives of the thesis

Motivated by the recent theoretical investigations and experimental progress, we ad-

dress a basic gap in our current understanding. And, that is the occurrence of QH states

in optical lattices with an envelope potential. This key issue is addressed in this work.

For our studies we use SGMF [150–152] and CGMF [153–157] theories, and ED. Our

results, for the case of homogeneous optical lattices, agree well with the previous the-

oretical results. After establishing this and demonstrating that getting the geometry of

QH states requires larger cluster sizes in CGMF, we provide an answer to the question:

what is the nature of the QH states in optical lattices with an envelope potential? The

objectives of the present studies are as follows:

• Numerical (code) development for the BHM with SGMF, CGMF, and ED meth-

ods using Gutzwiller ansatz. After establishing this, to obtain the phase diagram

of BHM with SGMF and CGMF method and compare them with the previous

studies.

• To obtain the QH and competing SF states with CGMF method for different

values of the synthetic magnetic field and with different cluster sizes for the

homogeneous system. The number of QH states depends on the cluster size and

strength of the synthetic magnetic field.

• To distinguish the QH and SF states, we calculate the two-point correlation func-

tion with the CGMF method.

• To obtain the QH states with different background potential such as hard wall

boundary (box potential), Gaussian potential and harmonic oscillator potential.

• To obtain the QH and SF states with the ED method. In the ED method, number

of atoms are fixed based on the filling factor of the QH state.

• In ED, we compute the condensate fraction and von Neumann entropy to distin-

guish the QH and SF states. The condensate fraction represents the SF fraction

and von Neumann entropy is a measure of correlation effect.



16 Chapter 1. Introduction

• To obtain the phase diagram for TUGS in the miscible and immiscible regime

with extended BHM with nearest neighbour interspecies interaction.

• To study the phase separation in the strongly interacting phases as DW and SS

phases.

1.6 Overview of the chapters

The overview of the chapters in the rest of the thesis is as follows:

In Chapter 2, I provide the details of the Bose-Hubbard model (BHM). It is a

model that describes ultracold atoms trapped in the optical lattices. In this thesis, we

use it to describe the physics of ultracold atoms in 2D optical lattices. We derive the

mean-field Hamiltonian and use the SGMF and CGMF methods to obtain the ground

state of BHM. For SGMF, the Hamiltonian is linear in the operator and contribution

from NN lattice sites is considered through the mean-field. The SGMF method does

not incorporate the correlations, thus we consider the CGMF method. In CGMF, we

consider the exact hopping within the cluster and hopping across clusters is incorpo-

rated through the mean-field. In this chapter, I describe the Hamiltonian matrix con-

struction in detail for both SGMF and CGMF methods. I discuss the phase diagram

for finite temperature BHM at the end of the chapter.

In Chapter 3, I review different types of integer and fractional QH states in optical

lattices such as Laughlin state, Read-Rezayi states and vortex lattice states. I, then,

for completeness describe the details regarding the implementation of the synthetic

magnetic field using laser fields. With the inclusion of the synthetic magnetic field,

we obtain the QH states as the ground state of the bosonic Harper-Hofstadter model.

These states are identified through the compressibility and two point correlation func-

tion. These Properties of the QH states are discussed in this chapter. The SGMF and

CGMF methods do not capture the physics of the BHM with a synthetic magnetic field.

Therefore, we solve it using the exact diagonalization (ED) method. I describe the ED

method in detail and compare it with CGMF in this chapter.

In Chapter 4, I present the integer and fractional QH states obtained with CGMF

and ED methods. We obtain the QH states for different values of the synthetic mag-
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netic field with different cluster sizes for the value of J/U = 0.01 [65] in the vicinity

of Mott lobe. I discuss about the density pattern of QH states, which can be stripe,

checkerboard or homogeneous. We also observe the SF states in the same parameter

regime. We compute the two-point correlation function as a characteristic property

for QH state. We, then, study the QH states with different background potentials like

Gaussian potential, hard wall boundary and Harmonic potential. At the end of the

chapter, I present the results for the QH states obtained from the ED method and cal-

culate the condensate fraction and von Neumann entropy to identify the QH and SF

states.

In Chapter 5, I provide the description of BHM and extended BHM (eBHM)

model for TUGS. Here, eBHM is BHM with NN interaction. The relative strength

of the NN interaction is controllable in the experiments for single and two species.

The eBHM shows two more phases density wave (DW) and supersolid (SS) phase

as it includes long-range interactions of the atoms. A novel feature of TUGS is the

phase separation. We obtain phase separation in DW and SS phases of eBHM. We

obtain the phase diagram with different inter-species interaction with and without NN

inter-species and discuss in this chapter.

Finally in Chapter 6, I present a brief summary of the results and present future

directions.





Chapter 2

Bose Hubbard Model

Ultracold bosonic atoms trapped in the optical lattices are well described by the Bose-

Hubbard model (BHM) [41, 42], which is the bosonic version of the Hubbard model

[40]. BHM is applicable in both weak and strong interaction limits. It admits a quan-

tum phase transition from Mott Insulator (MI) to Superfluid (SF) and, was experimen-

tally first realized in a pioneering work by Greiner et al. in 2002 [26]. Among the two

quantum phases, the MI phase corresponds to the strongly interacting regime and the

SF phase corresponds to the weakly interacting regime. Our interest lies in the physics

of strongly interacting regime as it is essential to observe quantum Hall states in the

optical lattices. One method to study the physics of BHM is the mean-field theory

with Gutzwiller ansatz [158], which was proposed by Sheshadri et al. [151]. It must,

however, be emphasized that mean-field theories are not suitable to study strongly cor-

related states like quantum Hall states. In the present work I use mean-field results

as an efficient initial theoretical tool to probe and identify parameter domains where

quantum Hall states are likely to occur.

The MI-SF phase boundary of the 2D BHM with square geometry has been studied

with different numerical and analytical techniques in previous works. Here, I provide

a brief description of these methods and it is to be mentioned that, some of these have

been used to study the MI-SF phase boundaries in other lower (1D) and higher (3D) as

well. The single-site or site-decoupled mean-field theory [151] with Gutzwiller ansatz

is one of the simplest methods to obtain the MI-SF phase boundary. However, as the

mean-field theory tends to favour the SF phase, the mean-field theory underestimates

19
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the location of the MI-SF transition point. In terms of accuracy, the results from quan-

tum Monte Carlo simulations are the most reliable. And, for 2D BHM with square

geometry, the results of Capogrosso-Sansone et al. [1] is considered as the benchmark

in the 2D BHM literature. Analytically, it has been studied using Strong coupling ex-

pansion [159]. However, the method tends to overestimate the location of the MI-SF

transition point. An improvement of the analytical methods is the work of Santos and

Pelster [160], where they report results based on two different analytical approaches.

First, a variational method which is based on the variational perturbation theory. And,

second is the field theoretical concept of the effective potential. These methods provide

better results for the MI-SF transition point than the mean-field theory and compares

well with the Monte Carlo results. In a semi-analytic work [161], the effective poten-

tial in ref. [160] is considered as a starting point, and then, many-body perturbation

theory based on Kato’s theory is used. The other similar approaches, combination of

both analytic and numerical methods, employed to calculate the MI-SF phase boundary

are random-phase-approximation (RPA) [162], nonperturbative renormalization-group

(RG) approach [163, 164] and bosonic dynamical mean-field theory (B-DMFT) [165].

In the case of the mean-field theory, improvement is to consider clusters of sites as

a single unit. A version of the method referred to as the multi-site mean-field theory

(MSMFT) [156], has been used to compute the phase diagram.

The idea of improving the single-site mean-field theory with a cluster mean-field

was first suggested by Bethe [166] and Peierls [167] in the context of order-disorder

transition in binary alloys. The next important development is the work of Weiss [168],

who applied it to ferromagnetic systems. In the context of 2D BHM, among several

works [156, 157, 169], the recent work of Lümann [157] is an important one and our

work closely follows the methods mentioned in this work. In the cluster mean-field

theory, by increasing cluster size the results can be improved and approaches to the

quantum Monte Carlo results in the limit of infinite cluster size [157]. Besides the

methods mentioned so far, the other novel approaches to identify the quantum critical

region are using the ratio of compressibility to local number fluctuations [170] and

parity order parameter which can be obtained by single-site resolution imaging [171].

The MI-SF phase diagram has also been studied at finite temperatures numerically
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with quantum Monte Carlo simulations [170]. It must be mentioned here that, for 1D

optical lattice density matrix renormalization-group (DMRG) [137, 172, 173] provide

very good results, but in 2D it is restricted to cylindrical geometry. Thus, to emphasize

again, the phase diagram computed with quantum Monte Carlo result [1] serves as a

benchmark. However, one caveat of the method is that it is not suitable for systems

with artificial gauge fields due to the sign problem associated with the phase in the

hopping term.

To observe quantum Hall states in optical lattices, it is essential to introduce arti-

ficial gauge fields. So that, the neutral atoms in the optical lattices experience a force

which is an analogue of the Lorentz force in charged particles. The possibility of in-

troducing artificial gauge fields in optical lattices, first proposed in theoretical studies

[15, 174, 175], have been realized in several experiments [49–55]. And, enormous

progress has been made to understand the physics of the quantum Hall system in re-

cent years. In this thesis I use SGMF [150–152] and CGMF [153–157] theories, and

the ED method to study the quantum Hall physics in BHM.

In this chapter, I provide a brief description of the BHM Hamiltonian, then I derive

the mean-field Hamiltonian. I use Gutzwiller ansatz to obtain the ground state solution

of the mean-field Hamiltonian and obtain the MI-SF phases of the BHM using the

SGMF method. The CGMF method, which is an improvement over the SGMF method,

is described in detail, and in the latter part of the chapter, the BHM Hamiltonian for

finite temperature is discussed.

2.1 BHM Hamiltonian

The Hamiltonian of interacting bosons confined in a potential V (x), in second quanti-

zation, is

Ĥ =

∫
d3xψ̂†(x)

[
− ~2

2m
∇2 + V (x)− µ

]
ψ̂(x) +

1

2
U

∫
d3xψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x),

(2.1)

where, trapping potential V (x) is sum of envelope potential Ven(x) and lattice potential

Vlatt(x), µ is the chemical potential and, U = 4π~2as/m is the inter-atomic interaction

strength. Here, as is scattering length and m is the mass of the atom. In the lowest
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band approximation, that is the relevant energy scales in the system are smaller than

the excitation energy of the second band, Wannier functions can describe the system.

Then, using the Wannier functions as the basis to describe the Bose field operators

ψ̂(x), the above Hamiltonian is reduced to the BHM Hamiltonian [41]

Ĥ = −
∑
p,q

[(
Jxb̂
†
p+1,q b̂p,q + H.c.

)
+
(
Jy b̂
†
p,q+1b̂p,q + H.c.

)]
+
∑
p,q

[
U

2
n̂p,q(n̂p,q − 1)− (µ− εp,q)n̂p,q

]
, (2.2)

where p (q) is the lattice site index along x (y) direction, b̂p,q (b̂†p,q) are the bosonic

annihilation (creation) operators, and n̂p,q is the occupation number operator at the

(p, q)th site. The parameter, Jx (Jy) is the complex hopping strength between two

nearest neighbour (NN) sites along x (y) direction. The hopping strength is defined

through the overlap integral of the Wannier function at the NN lattice sites. The onsite

interaction energy U between the atoms at a particular lattice site is considered as

repulsive U > 0 in this thesis. The chemical potential µ at each lattice site is modified

by the envelope potential with an energy shift εp,q, and the two can be combined as the

local chemical µ̃p,q = µ − εp,q. It is well established that the phase diagram of BHM

admits two phases, Mott-insulator (MI) and superfluid (SF) [26, 41, 42]. The strong

on-site interaction limit (J/U � 1) corresponds to the MI-phase and the opposite limit

(J/U � 1) corresponds to the SF phase. In homogeneous system, where the optical

lattices do not include any background potential, the phase-boundary between MI and

SF forms lobes of different fillings. On the other hand, in the presence of background

harmonic potential the famous wedding cake structure appears.

2.2 Mean-Field Hamiltonian

To obtain the eigenstates of BHM in Eq. (2.2), we use the mean-field approximation

[151]. In this approximation, the annihilation (creation) operators in Eq. (2.2) are

decomposed as

b̂p,q = φp,q + δb̂p,q, (2.3a)

b̂†p,q = φ∗p,q + δb̂†p,q, (2.3b)
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where φp,q = 〈b̂p,q〉 is the SF order parameter, and φ∗p,q = 〈b̂†p,q〉. Using these definitions

in Eq. (2.2) and neglecting the terms like δb̂†p+1,qδb̂p,q which are second order in the

fluctuation operator, we obtain the mean-field Hamiltonian of the BHM as

ĤMF = −
∑
p,q

{[
Jx

(
b̂†p+1,qφp,q + φ∗p+1,q b̂p,q − φ∗p+1,qφp,q

)
+ H.c.

]
+
[
Jy

(
b̂†p,q+1φp,q + φ∗p,q+1b̂p,q − φ∗p,q+1φp,q

)
+ H.c.

]}
+
∑
p,q

[
U

2
n̂p,q(n̂p,q − 1)− µ̃p,qn̂p,q

]
. (2.4)

The mean-field Hamiltonian as given above is linear in terms of the bosonic operators

and for a particular lattice site (p, q) the NN hopping contribution is accounted through

the mean fields (φp+1,q, φp−1,q, φp,q+1, φp,q−1). Thus, the Hamiltonian in Eq. (2.4) can

be considered as the sum of the single-site Hamiltonian

ĥp,q = −
[
Jx

(
b̂†p,qφp−1,q + φ∗p+1,q b̂p,q − φ∗p,qφp−1,q − φ∗p+1,qφp,q

)
+ H.c.

]
−
[
Jy

(
b̂†p,qφp,q+1 + φ∗p,q−1b̂p,q − φ∗p,qφp,q+1 − φ∗p,q−1φp,q

)
+ H.c.

]
+
U

2
n̂p,q(n̂p,q − 1)− µ̃p,qn̂p,q. (2.5)

We can, therefore, diagonalize the Hamiltonian for each site separately, and use the

Gutzwiller ansatz to obtain the ground state solution of the mean field Hamiltonian in

Eq. (2.4).

2.2.1 Gutzwiller ansatz

To compute the ground state of the system, we use the site dependent Gutzwiller ansatz.

In this ansatz, referred to as the single site Gutzwiller mean field (SGMF) theory, the

eigenstate at each site is a linear combination of Fock states and it can be written as

|ψ〉p,q =

Nb∑
n=0

c(p,q)
n |n〉p,q. (2.6)

Here, Nb is the occupation number state with maximum number of particles and nor-

malization condition of this wave-function is
∑
n

|c(p,q)
n |2 = 1. The c-numbers c(p,q)

n are

the complex coefficients of the ground state |ψ〉p,q at the (p, q)th site. Therefore, the

ground state Gutzwiller wave-function of the entire system is the direct product of the
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ground states of all the individual lattice sites, and it can be written in the Fock basis

as

|ΨGW〉 =
∏
p,q

|ψ〉p,q =
∏
p,q

Nb∑
n=0

c(p,q)
n |n〉p,q. (2.7)

This ansatz is referred to as the single-site Gutzwiller mean-field theory and provides

the exact solution of the system in the strongly interacting regime (J � U ).

To obtain the ground state of the system for arbitrary values of J/U , we diagonalize

the single site Hamiltonian in Eq. (2.5) and compute eigenstate at each site. The single-

site Hamiltonian matrix elements in the SGMF approximation is

hmn = p,q 〈m| ĥp,q |n〉p,q , (2.8)

where m (n) is occupation number of the Fock space eigen basis for bra (ket) state at

each lattice site (p, q). Thus, the matrix element of the term in the ĥp,q with the operator

b̂p,q is

−
(
Jxφ

∗
p+1,q + J∗xφ

∗
p−1,q + Jyφ

∗
p,q−1 + J∗yφ

∗
p,q+1

)
〈m| b̂p,q |n〉 = cf

√
nδm,n−1, (2.9)

where cf = −(Jxφ
∗
p+1,q + J∗xφ

∗
p−1,q + Jyφ

∗
p,q−1 + J∗yφ

∗
p,q+1). And for the b̂†p,q operator,

matrix element is

−
(
J∗xφp+1,q + Jxφp−1,q + J∗yφp,q−1 + Jyφp,q+1

)
〈m| b̂†p,q |n〉 = c∗f

√
n+ 1δm,n+1,(2.10)

with c∗f = −(J∗xφp+1,q+Jxφp−1,q+J
∗
yφp,q−1+Jyφp,q+1). Similarly, the diagonal matrix

element is

Dnn = −
[
cfφp,q + c∗fφ

∗
p,q

]
+
U

2
[n(n− 1)]− µ̃p,qn. (2.11)

Combining all the expressions, the Hamiltonian matrix can be written as

h =



D00 cf 0 · · · · · · 0

c∗f D11

√
2cf · · · · · · 0

0
√

2c∗f D22 · · · · · · 0
...

...
... . . . . . .

√
Nbcf

0 0 0 · · ·
√
Nbc

∗
f DNbNb


(2.12)

For the results presented in the thesis, I consider Nb = 10 and choose an initial guess

of φp,q. We, then, diagonalize the Hamiltonian matrix in Eq. (2.12) for each site and
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retain the lowest eigenstate. For example, for the (p, q) lattice site lowest eigenstate is

the ground state |ψ〉p,q in |ΨGW〉. Using this |ψ〉p,q, we compute a new value of φp,q

φp,q = 〈ΨGW|b̂p,q|ΨGW〉 =

Nb∑
n=0

√
nc

(p,q)
n−1

∗
c(p,q)
n . (2.13)

In an iteration, this is repeated for all the lattice sites and the direct product of the

single-site ground states determine the Gutzwiller ground state |ΨGW〉 of the system.

After covering all the lattice sites, in the next iteration, we restart the computations

again from the first lattice site. This cycle is continued till convergence is reached.

Where the convergence criterion is that the change in the average value of φ should be

smaller than a threshold value ∆φ. In this work I take ∆φ = 10−13.

The phase of the ground state is determined based on the value of φp,q: it is zero in

the case of MI, but finite for the SF phase. This can be understood from the definition

of |ΨGW〉 in Eq. (2.7). For the MI state with density or occupancy ρ = m the ground

state is

|ΨGW〉mMI =
∏
p,q

c(p,q)
m |m〉p,q, (2.14)

with the condition |c(p,q)
m |2 = 1. Considering that only |m〉p,q contributes and it is evident

that φp,q is zero from the Eq. (2.13). On the other hand, for the SF phase more than

one occupation number state contributes to the ground state of each lattice site and

hence φp,q is non-zero. Using the ground state of the system, I can also compute the

occupancy or density at each of the lattice site as

ρp,q = 〈ΨGW|n̂p,q|ΨGW〉 =

Nb∑
n=0

n|c(p,q)
n |2. (2.15)

For the MI phase, ρp,q is integer and same for all the lattice sites. For the SF phase ρp,q

has non-integer value.

2.2.2 Cluster Gutzwiller mean-field theory (CGMF)

From the expression of ĤMF in Eq. (2.4), and as mentioned earlier, in the SGMF

theory, the nearest-neighbour hopping or the inter-site coupling is incorporated through

the SF order parameter φp,q. Thus, the SGMF theory does not describe the inter-site

correlation very accurately. The CGMF theory remedy this by including the hopping
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a

a

Figure 2.1: The solid blue lines between the lattice sites represent the inter-site bonds.

The gray dashed lines demarcate cell around each lattice sites, which is used in repre-

senting cluster or attributing properties to each of the lattice sites. For illustration, one

of the cell is highlighted in yellow and as an example of a 2×2 cluster is identified with

orange color.

term exactly within the lattice sites of a cluster. To describe CGMF theory consider

the system size is K ×L and it is divided into W clusters of size M ×N , that is

W = (K×L)/(M×N). Here, K, L, M , N , W ∈ N. A schematic description of

the lattice, single-site and cluster is shown in Fig. 2.1. In the figure the blue lines

represent the nearest-neighbour bonds and the gray dashed lines are the orthogonal

bisectors of the bonds. The bisectors enclosed each lattice point within a cell and

points of intersections of the bisectors form a dual lattice. For clarity one of the lattice

cell is highlighted in yellow color. For the homogeneous systems, the limit of infinite

extent is obtained through the periodic boundary conditions. Like in the SGMF theory,

we can define a cluster Hamiltonian and then, the total Hamiltonian is the sum of all

the cluster Hamiltonians [157]. To derive the Hamiltonian for the CGMF theory, we

decompose the hopping part of the Hamiltonian in two terms. The first term is the

exact hopping term for the inter-site coupling within the cluster and the second term

defines inter-site coupling for the sites at the boundaries through the mean-field φp,q.

The Hamiltonian for a cluster can be written as
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Figure 2.2: A 2×2 cluster within the lattice. The light and bold dashed lines marked

boundaries of cells and cluster, respectively. The solid (dashed) green colored arrows

represent the exact hopping term (Hermitian conjugate) within the cluster. Similarly,

the solid (dashed) red-colored arrows represent the approximate hopping term (Hermi-

tian conjugate) across clusters with one order of φ and operator.

ĤC = −
′∑

p,q∈C

[(
Jxb̂
†
p+1,q b̂p,q + H.c.

)
+
(
Jy b̂
†
p,q+1b̂p,q + H.c.

)]
−
∑
p,q∈δC

[(
Jxφ

∗
p+1,q b̂p,q + H.c.

)
+
(
Jyφ

∗
p,q+1b̂p,q + H.c.

)]
+
∑
p,q∈C

[
U

2
n̂p,q(n̂p,q − 1)− µ̃n̂p,q

]
, (2.16)

where the prime in the summation of the first term is to indicate that (p+ 1, q), (p, q +

1) ∈ C and δC represents the lattice sites at the boundary of the cluster. The order

parameter φ∗p+1,q = 〈b̂†p+1,q〉 with (p + 1, q) /∈ C defines the order parameter at the

boundary of the neighbouring cluster and is required to describe the inter-cluster hop-

ping along the x direction. Similarly, φ∗p,q+1 = 〈b̂†p,q+1〉 with (p, q + 1) /∈ C. Schemat-

ically, the clusters are conveniently represented in terms of cells. In Fig. 2.2 the cells

of a 2×2 cluster and neighbouring clusters are highlighted. In this diagram, the solid

(dashed) green arrow represents the exact hopping term (Hermitian conjugate) within
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Figure 2.3: A 3×3 cluster and form of the hopping terms between the lattice sites. For

clarity, each lattice site is represented in terms of cells. The light and bold dashed lines

marked the boundaries of cells and cluster, respectively. The solid (dashed) green col-

ored arrows represent the exact hopping term (Hermitian conjugate) within the cluster.

Similarly, the solid (dashed) red-colored arrows represent approximate hopping term

(Hermitian conjugate) across clusters with one order of φ and operator. The hopping

terms involving the central lattice site, represented in green color, are all exact.

the cluster. The solid red (dashed) arrow represents the hopping (Hermitian conjugate)

term at the boundary, which is not exact. The BHM Hamiltonian for a 2×2 cluster can

be written as the sum of Hamiltonians of four lattice sites of the cluster as

Ĥc = ĥ00 + ĥ10 + ĥ01 + ĥ11,

where ĥpq, (p, q) = (0, 0), (1, 0), (0, 1), (1, 1) is the single-site Hamiltonian at the (p, q)

lattice sites within the cluster. As mentioned earlier, I consider lattice size is K×L and

the lattice sites are labeled along x (y) axis, which varies as 0, 1, . . ., and K − 1 ( 0, 1,

. . ., and L− 1). The expression of the single-site Hamiltonians in terms of lattice sites
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are

ĥ00 = −
(
Jxb̂
†
1,0b̂0,0 + H.c

)
−
(
Jy b̂
†
0,1b̂0,0 + H.c

)
−
[
Jx

(
b̂†0,0φK−1,0 − φ∗0,0φK−1,0

)
+ H.c

]
−
[
Jy

(
b̂†0,0φ0,L−1 − φ∗0,0φ0,L−1

)
+ H.c

]
+
U

2
n̂0,0(n̂0,0 − 1)− µ̃n̂0,0, (2.17)

ĥ10 = −
(
Jy b̂
†
1,1b̂1,0 + H.c

)
−
[
Jx

(
φ∗2,0b̂1,0 − φ∗2,0φ1,0

)
+ H.c

]
−
[
Jy

(
b̂†1,0φ1,L−1 − φ∗1,0φ1,L−1

)
+ H.c

]
+
U

2
n̂1,0(n̂1,0 − 1)− µ̃n̂1,0, (2.18)

ĥ01 = −
(
Jxb̂
†
1,1b̂0,1 + H.c

)
−
[
Jx

(
b̂†0,1φK−1,1 − φ∗0,1φK−1,1

)
+ H.c

]
−
[
Jy

(
φ∗0,2b̂0,1 − φ∗0,2φ0,1

)
+ H.c

]
+
U

2
n̂0,1(n̂0,1 − 1)− µ̃n̂0,1, (2.19)

ĥ11 = −
[
Jx

(
φ∗2,1b̂1,1 − φ∗2,1φ1,1

)
+ H.c

]
−
[
Jy

(
φ∗1,2b̂1,1 − φ∗1,2φ1,1

)
+ H.c

]
+
U

2
n̂1,1(n̂1,1 − 1)− µ̃n̂1,1, (2.20)

where the operators and φ with index (K−1) and (L−1) embody the periodic bound-

ary conditions along x and y directions, respectively. An important point is, with the

2×2 cluster none of the lattice sites have an exact representation of the hopping term.

The minimal cluster size which has exact hopping terms with respect to a lattice site

is 3×3, and the schematic diagram is shown in Fig. 2.3. As seen from the figure, the

hopping terms involving the central lattice site are all exact.

As I have mentioned the Hamiltonian for a cluster and the full Hamiltonian for the

system is the sum of all the cluster Hamiltonians. Therefore, the full Hamiltonian in

the explicit form with 2×2 cluster is

Ĥ =
∑
i,j

[
ĥ2i,2j + ĥ2i+1,2j + ĥ2i,2j+1 + ĥ2i+1,2j+1

]
,

where i (j) is cluster index along the x (y) direction. The expressions for the compo-

nent Hamiltonians in the total Hamiltonian is given in the Appendix. Now to obtain

the ground state solution of the cluster Hamiltonian, we calculate the matrix elements

and construct the matrix of the Hamiltonian in Eq. (2.16) for each cluster. For this, I
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consider the state for each cluster (i, j) in the Fock basis as

|ψc〉i,j =
∑

n0,n1...,nm′

C(i,j)
n0,n1..,nm′

|n0, n1..., nm′〉 , (2.21)

wherem′ = (M×N)−1 and nm is the quantum number of the occupation number state

of the mth lattice site within the cluster, and C(i,j)
n0,n1,...,nm′

is the amplitude of the cluster

Fock state |n0, n1, . . . , nm′〉. The above definition can be written in a more compact

form using the index quantum number ` ≡ {n0, n1, . . . , nm′} as

|ψc〉i,j =
∑
`

C
(i,j)
` |φc〉` , (2.22)

where |φc〉` represents the cluster basis state |n0, n1..., nm′〉. The ground state of the

entire K×L lattice, like in SGMF, is the direct product of the cluster ground states

|Ψc
GW〉 =

∏
k

|ψc〉k (2.23)

where, k is the cluster index and varies from 1 to W = (K×L)/(M×N). The SF

order parameter φ is computed similar to Eq.( 2.13) as

φp,q = 〈Ψc
GW| b̂p,q |Ψc

GW〉 . (2.24)

The matrix elements of the cluster Hamiltonian are

Hc
mn =`′ 〈φc| Ĥc |φc〉` = 〈m0,m1...,mm′| Ĥc |n0, n1..., nn′〉 , (2.25)

where the index quantum number `′ ≡ {m0,m1, . . . ,mm′}. From the cluster Hamil-

tonian, I find that there are thirteen unique matrix elements for any size of the cluster.

Out of these twelve matrix elements arise from the hopping term and the last one from

the diagonal term. Here, I describe these matrix element for the case of 2×2 cluster

and for this the cluster state Fock basis are |n0, n1, n2, n3〉. Among the matrix ele-

ments arising from the hopping terms, four correspond to intra-cluster hopping, which

are exact, and these are

H intra
x = −Jx 〈m0, ..,m3| b̂†2i+1,2j+kb̂2i,2j+k |n0, .., n3〉 ,

H∗intra
x = −J∗x 〈m0, ..,m3| b̂†2i,2j+kb̂2i+1,2j+k |n0, .., n3〉 ,

H intra
y = −Jy 〈m0, ..,m3| b̂†2i+l,2j+1b̂2i+l,2j |n0, .., n3〉 ,
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H∗intra
y = −J∗y 〈m0, ..,m3| b̂†2i+l,2j b̂2i+l,2j+1 |n0, .., n3〉 ,

where k (l) = 0, 1 for the case of 2×2. The general expression for the case of a M×N
cluster is given in the Appendix. Following the cluster Hamiltonian, there are eight

terms which arise from the inter-cluster hopping at the boundaries and these can be

written as

H in
x = −Jx 〈m0, ..,m3| b̂†2i,2j+kφ2i−1,2j+k |n0, .., n3〉 ,

H∗inx = −J∗x 〈m0, ..,m3| b̂2i,2j+kφ
∗
2i−1,2j+k |n0, .., n3〉 ,

Hout
x = −Jx 〈m0, ..,m3| b̂2i+1,2j+kφ

∗
2i+2,2j+k |n0, .., n3〉 ,

H∗out
x = −J∗x 〈m0, ..,m3| b̂†2i+1,2j+kφ2i+2,2j+k |n0, .., n3〉 ,

H in
y = −Jy 〈m0, ..,m3| b̂†2i+l,2jφ2i+l,2j−1 |n0, .., n3〉 ,

H∗iny = −J∗y 〈m0, ..,m3| b̂2i+l,2jφ
∗
2i+l,2j−1 |n0, .., n3〉 ,

Hout
y = −Jy 〈m0, ..,m3| b̂2i+l,2j+1φ

∗
2i+l,2j+2 |n0, .., n3〉 ,

H∗out
y = −J∗y 〈m0, ..,m3| b̂†2i+l,2j+1φ2i+l,2j+2 |n0, .., n3〉 .

Here, the superscript ’in’ and ’out’ indicate hopping from a neighbouring cluster to the

cluster of interest and vice versa, respectively. Depending on the k and l these matrix

elements can also be calculated. The last term, the diagonal term, is

Hdiag =
∑
k,l

〈m0, ..,m3|
(
Jxφ

∗
2i,2j+kφ2i−1,2j+k + H.c.

+ Jxφ
∗
2i+2,2j+kφ2i+1,2j+k + H.c.+ Jyφ

∗
2i+l,2jφ2i+l,2j−1 + H.c.

+ Jyφ
∗
2i+l,2j+2φ2i+l,2j+1 + H.c.

)
+
U

2
n̂2i+k,2j+l (n̂2i+k,2j+l − 1)

−µ̃n̂2i+k,2j+l |n0, .., n3〉 , .

Here it is worth to be mention that, we employ periodic boundary conditions on a

toroidal geometry. For the matrix elements as I have mention earlier that there are four

Fock basis for the 2×2 cluster and in general, the quantum numbers n0, n1, n2 and n3

correspond to the lattice sites (2i, 2j), (2i + 1, 2j), (2i, 2j + 1), and (2i + 1, 2j + 1),

respectively. The expressions of the matrix elements for the case of the first cluster in

the lattice is given in the Appendix.
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2.2.3 Phase Diagram

As mentioned earlier, at zero temperature BHM admits two phases, MI and SF phases.

These emerge from the competition of the kinetic energy (J) and on-site inter-atomic

interaction energy (U ). In the SF phase, kinetic energy dominates over the on-site

interaction energy (J � U), and atoms can hop between nearest neighbour sites.

The atoms are thus delocalized or itinerant and there is off-diagonal long-range order

(ODLRO) in the system. Due to the phase coherence in the system, atoms exhibit

interference patterns when the lattice is switched off. The phase coherence implies

that the number of atoms at a lattice site or occupancy, the conjugate variable of phase,

fluctuates and this leads to non-zero SF order parameter φp,q. The wave-function of the

SF state for N bosons and K×L lattice sites is

|ΨSF〉 ∝
(

KL∑
i=1

b̂†i

)N
|0〉 , (2.26)

where |0〉 is the vacuum state. In other words, in our numerical computations the SF

state is a linear combination of the coefficients cns and Cn1,..,nM×N s in the SGMF and

CGMF theories, respectively. In the MI phase, the on-site interaction energy domi-

nates over the kinetic energy of the atoms (J � U) and atoms can not hop between

the lattice sites. Hence, the atoms are localized and each site has commensurate inte-

ger filling. In other words, there is number coherence across the lattice but no phase

coherence. As a result, there is no off-diagonal long-range order (ODLRO). The MI

state with n number of atoms at each lattice site is

|ΨMI〉 ∝
KL∏
i=1

(
b̂†i

)n
|0〉 . (2.27)

In our numerical simulation, for the MI state only one of the coefficients cn in the

SGMF case and Cn1,..,nM×N in the CGMF case contribute. Therefore, the SF order pa-

rameter is zero. For the homogeneous system, the phase diagram for the first Mott lobe

n = 1 is shown in the Fig. 2.5. This phase diagram is computed from the SGMF and

CGMF theories. To locate the phase boundary, we compute the energy for a particular

value of µ/U by varying J/U as shown in Fig. 2.4. In the SGMF case, the energy is

constant in the MI phase as the SF order parameter φp,q is zero and tunneling energy

does not contribute in the calculation. Therefore, energy in the strongly interacting
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Figure 2.4: Energy of the system to obtain MI-SF phase boundary around n = 1 Mott

lobe with µ = 0.4 from SGMF theory in Fig. (a) and 2×2 CGMF theory in Fig.(b).

The dashed line in both cases marks the phase boundary. From the CGMF calculation

enhancement in the phase boundary is obtained.

regime (MI phase) with SGMF is

E =
U

2
n(n− 1)− µn.

At the MI-SF phase boundary energy changes and depending on the value of µ it can

either decrease or increase. The energy decreases across the MI-SF boundary when

the phase transition is due to density fluctuations arising from holes, this corresponds

to the lower part of the Mott lobe. For the upper part of the lobe, where the phase

transition is due to the density fluctuations arising from particles, the energy increases.

The trend in the energy for the first case is shown as an example in Fig. 2.4 (a). The

dashed line in Fig. 2.4 (a) represents the phase boundary. For the CGMF computation,

we consider 2×2 cluster and compute the energy for the same value of µ/U = 0.4

by varying the J/U . In the CGMF, energy has variation in the MI phase as within the

cluster hopping is exact. In this case, a discontinuity in the slope of the energy marks

the phase boundary. The dashed line in Fig. 2.4 (b) marks the value of J/U at which

the phase transition occurs with the CGMF theory.

The location of the MI-SF transition is increased to with CGMF and hence, the

size of the Mott lobe is enhanced. This is due to the better description of quantum

fluctuations in the system. The enhanced Mott lobes for n = 1 with different cluster

sizes ranging from 2×2 to 4×5 are shown in the Fig. 2.5. With the SGMF method the tip
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Figure 2.5: MI-SF phase boundary around n = 1 Mott lobe from SGMF theory (blue),

2×2 CGMF theory (green), 3×3 CGMF (magenta) and 4×4 CGMF (black) with open

boundary condition. By considering periodic boundary condition along x direction the

enhancement in the phase boundary is obtained with 4×4 CGMF (dashed Navy Blue)

and 4×5 CGMF (dashed green). The Red circles are the quantum Monte Carlo results

from [1] (The data are obtained from personal communication with Prof. Barbara

Capogrosso-Sansone).

of the Mott lobe is located at J/U = 0.0429, which increases to J/U = 0.0575 with 4×
5 cluster. Here, it is to be mentioned that at the tip of the Mott lobe the phase transition

is second-order as it arises from the phase fluctuations. On the other hand below and

above the tip, the phase transition is first order and arises from the density fluctuations.

In general, the number of cluster states increases exponentially with cluster size and

hence, for computations with large clusters it is essential to do cluster state selection

based on suitable criteria. The details of the state selection and other aspects of CGMF

computations with large clusters are discussed in the next section.
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Figure 2.6: Finite size scaling plot with different cluster sizes. The scaling parameter

λ is plotted with the critical value of J/U for different cluster sizes. The scaling

parameter is zero for 1×1 cluster (single site) and one for infinite size cluster. In this

plot green circle denote the results with open boundary condition, red circles denote

the results with periodic boundary along x direction and black circle denote the result

for an infinite lattice system which approaches to quantum Monte Carlo results.

2.2.4 Phase boundary and Finite-size scaling

It is well established that the mean-field theory [42] underestimates the MI-SF phase

boundary. And, on the other hand, the strong coupling expansion [159, 176] overesti-

mate the boundary when compared with the quantum Monte Carlo simulations [1]. In

the literature, there has been numerous works to obtain the phase boundary of n = 1

Mott lobe for 2D square lattices. The multisite mean field theory predicts the tip of

the lobe to be (J/U = 0.049, µ/U = 0.4) [156], with nonperturbative RG approach

it is (J/U = 0.060, µ/U = 0.387) [163, 164], and with higher order many body per-

turbation theory it is (J/U = 0.05909, µ/U = 0.376) [161]. The finite temperature

B-DMFT [165] also predict the Mott lobe boundary in agreement with the quantum

Monte Carlo simulation for 2D square and 3D cubic lattices. As mentioned earlier,

with SGMF, we observe the Mott lobe tip is located at (J/U = 0.04287, µ/U = 0.41).

Using the CGMF method, the results improve and with large cluster sizes, the loca-

tion of the tip approaches the quantum Monte Carlo result. We demonstrate this with

finite-size scaling and the MI-SF phase diagram for n = 1 from our studies is shown

in Fig. 2.5. Here, computing with a larger cluster size like ≥ 3×3 is computationally
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expensive if we consider all the cluster states and generating a smooth phase boundary

can take several weeks. To overcome this, we restrict the infinite Fock space to a lim-

ited set of Hilbert spaces. In the Hilbert space cluster states are reduced based on the

number fluctuations at a single site and within the entire cluster. For n = 1 Mott lobe,

we restrict the single site Fock basis to ni = ±2 and total number of particles in the

cluster to beN andN±1. HereN is the number of particles inN lattice sites for Mott

lobe n = 1. The cluster states can be further reduced for the phase boundary, where

number fluctuations at each site are limited. The number fluctuations in the cluster can

be restricted as ncf =
∑
i

|ni − n| ≤ 7. A similar scheme to restrict the size of the

Fock space is presented in the work of Lühmann [157].

To obtain the phase boundary with large cluster size such as 3×3, 4×3, 3×4,

4×4, 4×5 we start the CGMF computations with an initial value of order parameter

φ = 10−6. And, φ obtained after one iteration is used to identify the phase. The phase

is MI if the new value of φ is smaller than the initial φ, and otherwise, it is SF phase.

To identify the phase boundary for a specific value of µ/U we start with two values of

J/U , such that the lower and higher values are in the MI and SF phases, respectively.

Then, using the value of φ from a single iteration and bisection method we identify the

phase boundary to the required accuracy. An important point is that using the periodic

boundary condition improves the phase boundary results. This is to be expected as we

consider the exact hopping along the direction where the periodic boundary condition

is imposed. In our case, the periodic boundary condition is applied along x direction

and along y direction the cluster is coupled to the neighbour through the mean-field.

With this, the tip of the Mott lobe is located at (J/U = 0.0560, µ/U = 0.38) for 4×4

cluster it increases to (J/U = 0.0575, µ/U = 0.38) for 4×5 cluster .

To compare our CGMF results with the quantum Monte Carlo results, we use finite-

size scaling to determine the location of the Mott lobe tip in the limit infinite size clus-

ter. For this the scaling parameter λ = BC/(BC + BδC) [157, 169] is plotted with

the critical value of J/U for different cluster sizes in Fig. 2.6. Here, BC is the num-

ber of bonds inside the cluster and BδC is the number of bonds at the boundary. In

Fig. 2.6, the green circles denote the MI-SF phase transition with open boundary con-

dition, red circles denote the MI-SF phase transition with periodic boundary condition
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along x direction. We observe that in the limit of infinite sized cluster our results ap-

proaches the quantum Monte Carlo result J/U = 0.0594 and shown with black circle

in Fig. 2.6. For comparison, in the figure, we also show the phase boundary obtained

from the quantum Monte Carlo studies using the same data of the results reported in

Capograsso-Sasone et al. [1].

2.3 Finite temperature BHM

The theories discussed so far are pertaining to zero temperature. These do provide

important insights, however, experiments are performed at finite temperatures. So, to

relate the theoretical finding with experimental realizations it is essential to incorporate

the effect of thermal fluctuations arising from finite temperatures. One straight forward

approach to consider T 6= 0 in the mean-field theory is to calculate SF order parameter

φp,q (φ∗p,q) as thermal average of the annihilation (creation) bosonic operator [134]

φp,q ≡ 〈b̂p,q〉 =
1

Z
Tr
(
b̂e−βĤ

)
,

whereZ = Tre−βĤ is the partition function, β = 1/kBT with T being the temperature,

and Ĥ is the Hamiltonian of the system. In the finite temperature BHM, we consider

ground and excited states ψ0, ψ1, ψ2, . . ., ψNb−1 in the single site Gutzwiller wave-

function. Therefore, the SF order parameter is

φp,q =
1

Z

Nb−1∑
i=0

[
p,q 〈ψi| b̂p,q |ψi〉p,q e−βEi

]
(2.28)

and the partition function is

Z =

Nb−1∑
i=0

e−βEi , (2.29)

where, E0, E1, . . ., ENb−1 are energies of the ground state and the excited states.

These energies and eigenstates are obtained by digonalizing the single site Hamilto-

nian. As discussed earlier, we consider Nb occupation number Fock basis states, and

when we diagonalize the single-site Hamiltonian we obtain Nb eigenvalues and eigen-

states. These can thus be labeled using index quantum number varying from 0 toNb−1.
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Figure 2.7: MI-SF phase boundary around n = 1 Mott lobe from SGMF theory (green)

and with finite temperature theory (magenta). Melting of the Mott lobe is observed

with the temperature and normal fluid (NF) phase emerges.

In short, for the finite temperature, we obtain the ground state solution by consid-

ering all the eigenstates and eigenvalues. For each computation, we start with an initial

choice of φp,q and construct the single site Hamiltonian in Eq. (2.5). We diagonalize

the Hamiltonian and obtain all the eigenstates and eigenenergies, and compute the new

SF order parameter φp,q as in Eq. (2.28). Then, we use this new φp,q in the next iteration

and repeat the process until it converges. We also compute average lattice occupancy,

which is the thermal average of the number operator and can be written as

ρp,q =
1

Z

Nb−1∑
i=0

[
p,q 〈ψi| n̂p,q |ψi〉p,q e−βEi

]
. (2.30)

The same sequence of computations is followed in the case of the CGMF theory as

well. The only difference is that the thermal average is now computed in terms of

the cluster states. In the CGMF the energy states are E0, E1, . . ., ENM×N
b −1 for the

M×N cluster size. Therefore, in the case of large cluster size we apply a cut off on

the eigenstates we consider in the thermal average based on the eigenenergy. After

which we compute the SF order parameter for all the lattice sites within a cluster and

obtain the ground state solution. We determine the finite-temperature phase diagram

and at higher temperatures, we observe the melting of the MI and SF phases. As an

example the phase diagram for the temperature kBT = 0.1U is shown in Fig. 2.7.

At finite temperatures, a new phase referred to as normal fluid (NF) emerges. In the
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Figure 2.8: (a) Condensate (CF) fraction with 3×3 cluster with zero temperature (blue

line) and at KBT = 0.01U (black line). (b) Superfluid (SF) fraction with SGMF green

line and 3×3 CGMF (blue and black line). Here blue line is at zero temperature and

black line is at KBT = 0.01U

homogeneous case, the NF phase has real commensurate filling with zero SF order

parameter. Thus, in this phase, there is no phase coherence and there is non-zero

number fluctuation.

2.4 Superfluid and Condensate fractions

The condensate fraction (CF) ρcf , for ideal bosons, is the fraction which occupies the

ground state of the system. And, in the case of ideal bosons, which imply no interac-

tions, the ground state is equivalent to the single-particle ground state. However, for

interacting bosons, the general definition given by Penrose and Onsagar [177] is the

appropriate definition of ρcf . Based on which ρcf of a system consisting of Na atoms is

computed from the one-body density matrix (OBDM) as

ρcf = λOBDM
m /Na.

Here, λOBDM
m is the largest eigenvalue of the OBDM and it is of the order of Na.

The OBDM of BHM can be calculated from the ground state obtained using ED and
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the details are given in the next chapter. The CF obtained from above expression is

shown in Fig. 2.8 (a) for a 3×3 cluster. We observe that ρcf is finite in the MI phase

and increases as the system enters in the SF phase. From the figure, it can be seen

that ρcf at zero temperature is higher than at finite temperature. For comparison, ρcf

for KBT = 0.01U shown in Fig. 2.8(a). In the figure the system parameters are

µ/U = 0.4 and θ = 0.1. The lower CF at higher temperature is expected as the

thermal fluctuations deplete the condensate by exciting atoms for the condensate to

higher energy states.

The superfluid fraction ρs, in contrast to ρcf , is associated with the transport prop-

erties of the system. Although the term superfluid was coined after the famed exper-

iments by Kapitza [178], and Allen and Misener [179] to measure the viscosity of

liquid 4-He, the conceptually unambiguous signatures of superfluidity [180] are Hess-

Fairbank effect [181], and existence of metastable superflow. Among these two, the

Hess-Fairbank effect is the exact analog of Meissner effect in superconductors. And,

the metastable superflow is often called as persistent superflow in literature. The per-

sistent superflow has been experimentally observed in annular BECs [182] and it was

shown that persistent superflow occurs even with a very low condensate fraction of

20%. Theoretically, the persistent flow arises from a phase gradient in the condensate

wave-function and this can be emulated with a twisted boundary condition in the case

of ultracold atoms in optical lattices [183]. In the present work, I apply a twist in the

hopping along x direction. For this the hoping term in the BHM Hamiltonian is modi-

fied to Jx = Jxe
i(θ/K) to accommodate a twist by angle θ, whereK is total no of lattice

sites along x direction [184, 185]. Then, the superfluid fraction is

ρs = K2Eθ − E0

NJθ2
(2.31)

where Eθ is the ground state energy of the system with twist θ, E0 is the ground state

energy without twist and N is total number of particles in the system. We observe

that independent of the twist angle the SF fraction is zero in MI phase and finite in the

SF phase this is evident from the plots in Fig. 2.8 (b). In the figure we have plotted

ρs obtained from SGMF theory (green line) for KBT = 0U and KBT = 0.01U .

We observe that the two lines merge and there is no discernible finite temperature

effect with SGMF. However, ρs is non-zero with CGMF theory and this is evident
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from the results shown in Fig. 2.8 (b) based on 3×3 cluster. With CGMF theory ρs,

in the MI phase, is finite but temperature independent. But, in the SF phase ρs is

temperature dependent and it decreases with increasing temperature. To be specific,

with 3×3 cluster for J/U = 0.06 where the MI tip is located in the QMC results, we

get ρcf = 0.380 at zero temperature and ρcf = 0.330 at KBT = 0.01U . On the other

hand for the same value of J/U and cluster size, ρs = 0.181 at zero temperature and

0.027 at KBT = 0.01U . These are also evident from the plots in the figures.

On comparing ρcf and ρs we find that ρcf > ρs and this is consistent with the

previous results reported by Shams and Glyde [186]. In which they showed that the

presence of external potential, like the optical lattice, lowers ρs. And, this is to be

expected as unlike the persistent current in an annular ring, the periodic potential in an

optical lattice is a barrier to the superflow.

2.5 Summary of the Chapter

In this chapter, I derive the BHM Hamiltonian for bosons in 2D optical lattices. I

describe in detail the single-site and cluster mean-field theories and obtain the equilib-

rium solutions of BHM with Gutzwiller ansatz. The phase diagram for the n = 1 MI

lobe is obtained with SGMF and CGMF methods. I show that the description of the

MI-SF phase boundary improves with an increase in the cluster size. Through finite-

size scaling, we show that in the limit of infinite cluster size our results are equivalent

to QMC results. I, then, discuss BHM at finite temperatures. With the inclusion of

the thermal fluctuations, arising from finite temperature, I obtain a new phase normal

phase. I end the chapter with the computation of the CF and SF fractions at zero and

finite temperatures. For the latter, I use twisted boundary condition by applying a

twist in the hoping amplitude. I show that SF and CF fraction decrease with thermal

fluctuations.





Chapter 3

Quantum Hall states in optical lattices

Quantum Hall (QH) effect is a phenomenon associated with electrons in a 2D plane

under a strong magnetic field and at low temperatures. The integer QH (IQH) effect

was experimentally discovered in 1980 by Klitzing, Dorda and Pepper [2], and frac-

tional QH (FQH) effect was soon discovered in 1982 by Tsui, Stormer, and Gossard

[3]. Since then it has gained much attention, both in terms of theoretical as well as

experimental studies, as it is the cornerstone of topological effects in condensed matter

systems [187]. One of the key theoretical breakthroughs was the work of Laughlin

[4], in which he proposed a possible form of the wave-function corresponding to the

QH state. The main feature of the QH effect is the Hall resistivity or the off-diagonal

resistivity Rxy that has plateaus at particular values of the filling factor ν and it can be

written as Rxy = 2π~/νe2. The diagonal resistivity Rxx = 0 for those plateaus. Here,

the filling factor ν is the ratio between the number of electrons and the number of

states. The IQH effect is when ν has integer values and FQH corresponds to fractional

values of ν.

Despite enormous progress in the experimental and theoretical understanding of

QH effect [43–46], a comprehensive understanding of the physics of the FQH effect

[188] is still lacking. The main hurdle to this is the strong correlations of electrons,

but the same is essential for FQH states. One of the theoretical models, the Laughlin

ansatz [4] provides exact solutions for some FQH states, but not for all. One chal-

lenge to experimental efforts in condensed matter systems is the strong magnetic field

required to obtain FQH states. In this respect, ultracold atoms trapped in the optical

43
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lattices, have an advantage to study FQH states with high flux [47, 48]. In theoretical

studies, features of Laughlin states in low particle density limit has been reported [62]

for ν = 1/2 and α < αc = 0.4 using the Exact Diagonalization (ED) method. Here,

αc is the critical value below which FQH states exist, and α is the strength of the syn-

thetic magnetic field. And, the existence of a striped vortex lattice phase is reported

in the neighbourhood of α = 1/2 [63]. On the other hand, based on the results of

Monte Carlo and exact diagonalization (ED), the existence of bosonic FQH states is

predicted [65] in the vicinity of Mott plateaus for α = 2/3. Similar results are reported

in a recent work using the Chern-Simons theory [66] in combination with single site

Gutzwiller mean-field (SGMF) theory. In another recent work [67], the incompress-

ibility of the FQH states is employed to identify these states based on the results from

cluster Gutzwiller mean-field (CGMF) theory for α = 1/5 at ν = 1/2. Similarly, using

reciprocal cluster mean-field (RCMF) analysis Hügel et al. [68] predicted a competing

FQH state as a metastable state for α = 1/4.

In this chapter, I review different types of QH states in optical lattices, then I pro-

vide the details about the synthetic magnetic field in optical lattice. I discuss the prop-

erties of QH states for the CGMF and ED method. I describe the ED method in great

detail and compare the CGMF and ED method in this chapter.

3.1 Quantum Hall states

The QH states are the ground states of a two-dimensional electron gas at low tem-

peratures and under a strong magnetic field. These are identified by the filling factor

ν = N/NΦ, where N is total number of electrons and NΦ is the magnetic flux mea-

sured in units of Dirac flux quanta Φ0 = 2π~/e. The QH states are highly entangled

states which exhibit various properties such as incompressibility and charge density

waves. For ν = 1/m, with m as an integer, the ground state is gapped and is an incom-

pressible quantum liquid. In the Landau gauge, this incompressible quantum liquid is

described by the Laughlin wave function [4]

Ψ(z1, z2, ..., zN) =
N∏
j>k

(zj − zk)m
N∏
j=1

e−y
2
i /2
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where integer m is odd to satisfy the anti-symmetrization criteria for fermions. For

even m the Laughlin state corresponds to bosons, and bosonic systems with repulsive

interaction can show properties similar to FQH states in electrons. In this thesis, I

focus on ultracold bosons trapped in the optical lattices to study the QH states. There

are other QH states such as Read-Rezayi states [189], vortex lattice state [47] and

two-component states [63]. In the upper Landau level and above the filling factor

ν = 1/2 for weak interaction, the states with higher filling ν = 1, 3/2, 2, . . . could be

Read-Rezayi states. At higher ν, bosons can form a condensate in the lowest Landau

level with the vortices in the system. Such a vortex lattice state is referred to as the

mean-field QH state and is gapless and compressible. The transition from Read-Rezayi

states to vortex lattice state occur at the filling ν ≈ 2 [63]. Two-component QH states

occur when particles occupy two internal states of the system. For electrons, it is not

energetically favourable, but it is possible in the bilayer systems. At lower magnetic

fields, electrons occupy the higher Landau levels as degeneracy in each Landau level is

decreased. For the electron system, FQH states are unstable for N ≥ 2, where N = 0,

1, 2, . . . are Landau levels. In this case, instead of FQH states, we observe charge

density wave such as the stripe phase. In our work, I will study the QH states in the

context of the bosonic system with the BH Hamiltonian in the presence of the synthetic

magnetic field. We observe both IQH and FQH states with different fillings ν and for

different flux values α with CGMF and exact diagonalization (ED) method.

3.2 Synthetic magnetic field in optical lattices

The wave-function of electrons in a periodic potential is periodic and referred to as

the Bloch wave-functions. The corresponding energy spectrum consists of bands. In

the presence of an external magnetic field, the energy spectrum split into the highly

degenerate Landau levels. And, the combined effect of the periodic potential and mag-

netic field leads to a complex spectrum which is fractal in nature and it is called as the

Hofstadter’s butterfly [61].

To examine the effect of magnetic field on the electrons, consider a charge particle

moving in a magnetic field B = ∇×A. It acquires an Aharonov-Bohm phase ΦAB
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C
ΦAB

B(a) (b)

Φ

ϕxp,q

ϕxp,q+1

ϕyp,q ϕyp+1,q

Figure 3.1: (a) Schematic diagram for an electron moving along a closed path C in

presence of the magnetic field B = ∇×A. Electron acquire a geometric phase from the

geometry of the system, and known as Aharonov-Bohm phase ΦAB. (b) Equivalence

of the geometric phase in the lattice system. Here complex tunneling amplitudes along

x and y direction pick up a phase ϕip,q, i = {x, y} through Peierls phases. Particle

acquire a phase Φ when it tunnels across a lattice unit cell.

which depends on the closed path C traversed by the particle, which is schematically

shown in Fig. 3.1(a). And, the phase can be calculated from the gauge potential as

ΦAB = − e
~

∮
C

A · dl = −2π
Φ

Φ0

. (3.1)

Here Φ is the magnetic flux enclosed by the closed path C, and Φ0 = 2π~/e is mag-

netic flux quanta. Similarly, a charge particle in a periodic lattice potential acquires a

geometric phase Φ in presence of the gauge potential when it hops around a lattice unit

cell as shown in Fig. 3.1(b)

Φ = ϕxp,q + ϕyp+1,q − ϕxp,q+1 − ϕyp,q. (3.2)

Here ϕip,q = −eAip,q/~ is the Peierls phase with i = {x, y} indicating the direction

of hopping, and Aip,q is the component of gauge potential along ith direction. The

Hubbard model [40] well describe the physics of the electrons in a periodic potential,

and with magnetic field it is modified to the Harper-Hofstadter model [61, 190]. For

the case of ultracold atoms in optical lattices, the presence of artificial gauge potential

introduces Peierls phase and modifies the BHM Hamiltonian to

Ĥ = −J
∑
p,q

[
eiϕ

x
p,q b̂†p+1,q b̂p,q + eiϕ

y
p,q b̂†p,q−1b̂p,q + H.c.

]
. (3.3)

This is the bosonic counterpart of the Harper-Hofstadter model. The magnetic flux per
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unit cell is given by

α =
Φ

2π
=

1

2π

(
ϕxp,q + ϕyp+1,q − ϕxp,q+1 − ϕyp,q

)
. (3.4)

where α determines the strength of magnetic field and Φ is flux per unit cell or pla-

quette. Hereafter, I use plaquette instead of unit cell. In the zero field, the particles in

the periodic lattice potential preserve the discrete translational symmetry, however, in

presence of the magnetic field, this symmetry is broken. With the magnetic field, one

has to consider the magnetic translation symmetry in which the plaquette is enlarged

depending on the magnetic flux. This new plaquette is known as the magnetic unit

cell, and it encloses 2π magnetic flux. So, the area of this unit cell is determined by

the strength of the magnetic field. For example, in a 2D lattice 1×4, 4×1, 2×2 lattice

sites are possible magnetic plaquettes for α = 1/4. In this context, the Hofstadter’s

butterfly is the energy spectrum with respect to α.

As discussed in chapter 2, the BHM Hamiltonian well describes the physics of

ultra-cold atoms in optical lattices. However, as atoms are charge-neutral, they are not

affected by external electromagnetic fields. This can be remedied by using synthetic

magnetic fields generated from artificial gauge potentials, which are created using laser

fields. For bosonic atoms, this was first theoretically proposed by Jaksch and Zoller

in 2003 [174] based on the method of laser-assisted tunneling. This was later refined

by Mueller [191], Lim et al. [192], Gerbier and Dalibard [193], and Kolovsky [194].

Since then, there have been many other theoretical works. Most important develop-

ment, however, is the experimental realizations of the artificial gauge potentials in 2D

optical lattices by the Munich [53, 54] and MIT [55] groups. Inspired by these works,

in this thesis, I consider a system of bosonic atoms at zero temperature in a 2D op-

tical lattice with synthetic magnetic fields. For simplicity, I consider square lattice

geometry.

In the presence of synthetic magnetic field, the atoms acquire a phase 2πα upon

hopping around a plaquette. Where, as defined earlier, α is the number of flux quanta

per plaquette, and it has values 0 6 α 6 1/2. We shall also refer to α as the strength of

synthetic magnetic field. Now, in the Landau gauge A = (Ax, 0, 0) with Ax = 2παq,

such that synthetic magnetic field is along the −z direction. The system is described
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by the following BHM Hamiltonian [41, 47, 48, 63, 174],

Ĥ = −
∑
p,q

[(
Jxe

i2παq b̂†p+1,q b̂p,q + H.c.
)

+
(
Jy b̂
†
p,q−1b̂p,q + H.c.

)]
+
∑
p,q

[
U

2
n̂p,q(n̂p,q − 1)− µ̃p,qn̂p,q

]
, (3.5)

where the NN hopping is modified through the Peierls phase [60, 61, 190]. Here,

Jx (Jy) is the hopping strength along the x (y) direction. The above Hamiltonian,

Eq. (3.5), is the bosonic version of the celebrated Harper-Hofstadter Hamiltonian.

In the experiments, the staggered flux in the optical lattice is created by periodic

modulation of the lattice potential. As shown in Fig. 3.2, the experimental set up

consists of a 2D lattice potential, created from two counter-propagating laser beams of

wavelength λ. Along x direction another laser beam of wavelength 2λ is superimposed,

which provides the energy offset of ∆ between the neighbouring sites and forms a

superlattice potential along x axis. In the superlattice potential, along the x direction

the black circle denotes the low site energy and white circle denotes the sites with high

energy. Along y direction the hopping is the same for all sites. Then another additional

pair of running laser beams (red arrows) with wave vector k1, k2 and frequencies ωr1,

ωr2 are applied to periodically drive the system [195]. Here, |k1| ≈ |k2| ≡ kR, then,

the phase is given by δk.R, where R = maex + naey is the position vector. The

phase at each lattice site is δk.R = kRa(m − n). Thus depending on the value of kR

and lattice geometry, any other phase difference can be created. Such a Peierls phase

can generate the synthetic magnetic field of our interest, by including such a synthetic

magnetic field in BHM we compute the phase diagram. In a homogeneous system,

where the optical lattices do not include any background potential, the phase-boundary

between MI and SF forms lobes of different fillings and in presence of magnetic field

the MI-lobes are enhanced [196].

3.2.1 Magnetic Brollouin zone

In the condensed matter systems the lattice constant is small (≈ Å) and the magnetic

fields required to introduce unit magnetic flux per unit cell is very high (100 Tesla).

However, that is what is required to observe some of the theoretically predicted QH



3.2. Synthetic magnetic field in optical lattices 49

a

a

ωr1

ωr2

Jx

Jy Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Figure 3.2: Implementation of synthetic magnetic fields in the optical lattices. Φ is

the flux associated with each plaquette.

states. This limitation associated with the size of the lattice constant can be over-

come in optical lattices, where the lattice constant is in multiples of 100 nm. And,

as mentioned earlier, synthetic magnetic field equivalent to 100 Tesla or more can be

introduced in these systems. The introduction of the magnetic field, or the synthetic

magnetic field in the case of the optical lattices, modify the Brillouin zone. Without

the magnetic field the BH Hamiltonian is invariant under the translation by multiples

of the lattice constant. So, the corresponding translation operators are

T̂x =
∑
p,q

b̂†p+1,q b̂p,q, and T̂y =
∑
p,q

b̂†p,q+1b̂p,q. (3.6)

The invariance under translation is manifested as these operators commute with the

BH Hamiltonian [T̂x, Ĥ] = [T̂y, Ĥ] = 0 and in addition, they commute with each other

[T̂x, T̂y] = 0 as well. Thus, one can apply the Bloch theorem to obtain the solution of

this lattice system, and the Brillouin zone with lattice momenta k can be defined as

− π

a
< kx <

π

a
, −π

a
< ky <

π

a
, (3.7)

where kx, ky are momenta along the x and y directions. The presence of the magnetic

field or synthetic magnetic field breaks the transnational invariance of the Hamiltonian.

And, the general form of the transformed translational operators are

T̂x =
∑
p,q

b̂†p+1,q b̂p,qe
iϕx

p,q , T̂y =
∑
p,q

b̂†p,q+1b̂p,qe
iϕy

p,q , (3.8)
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where, for the case of the BHM Hamiltonian with uniform synthetic magnetic field in

Landau gauge, Eq. (3.5), ϕxp,q = 2παq and ϕyp,q = 0. These operators do not commute

with the BH Hamiltonian as well as with each other. The translational invariance

can, however, be restored in terms of a new set of translational operators, magnetic

translation operators (MTOs)

T̂Mx =
∑
p,q

b̂†p+1,q b̂p,qe
iθxp,q , T̂My =

∑
p,q

b̂†p,q+1b̂p,qe
iθyp,q , (3.9)

where θxp,q and θyp,q are phases which are to be chosen such that these translation oper-

ators commute with the Hamiltonian. For the present case these phases are [197]

θxp,q = ϕxp,q + qΦ, (3.10)

θyp,q = ϕyp,q + pΦ. (3.11)

These translational operators redefine the size of the unit cell to magnetic unit cell.

The corresponding Brillouin zone is referred to as the magnetic Brillouin zone. If

the magnetic cell is, in terms of the original lattice m×n, then, the magnetic Brillouin

zone can be defined as

− π

ma
6 kx <

π

ma
, − π

na
6 ky <

π

na
. (3.12)

The schematic representation of a magnetic unit cell is shown in Fig. 3.2 by yellow

shaded area for α = 1/4. In the magnetic unit cell, the total flux enclosed is 2π. Here,

as the magnetic cell is larger than the unit cell of the lattice, the magnetic Brillouin

zone is smaller than the Brillouin zone.

As discussed earlier, the BH Hamiltonian is derived in the absence of the magnetic

field and at zero temperature using the tight-binding approximation. In this approxi-

mation, all the particles are assumed to be in the lowest band. The BHM Hamiltonian

so obtained is translationally invariant and the Bloch theorem is applicable. However,

the introduction of the external magnetic field breaks the translational symmetry of the

lattice. More importantly, the Bloch theorem is not applicable with the choice of a

non-periodic gauge like Landau gauge for the vector potential A. This implies that,

although, we obtain the correct bosonic version of Harper-Hofstadter Hamiltonian us-

ing the Peierls substitution, the gauge needs to be chosen appropriately. Otherwise, the
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vector potential is not periodic and the tight-binding approximation is not applicable.

This can be resolved using singular gauge transformation [198], using which the vector

potential A is transformed to a periodic form Ap in terms of magnetic flux lines, in

cylindrical coordinates, as

Ap = A− Φ0

2πρ
eφ, (3.13)

where ρ =
√
x2 + y2 and Φ0, as defined earlier, is the Dirac flux quanta. The magnetic

field ∇×Ap, then, assumes the form

B = B0ez − Φ0

∑
mn

δ2(R−Rmn), (3.14)

where, Rmn = maex + naey is the position vector of the lattice points. Then, the

Bloch theorem is valid for rational magnetic field strengths α = k/l (k, l ∈ Z) and the

validity of the tight binding approximation is restored. If the magnetic unit cell is of

dimension m×n then the translational operators follow the relation

e−imnΦ(T̂Mx )m(T̂My )n = (T̂My )n(T̂Mx )m.

The translational operator commute if Φ = 2πk/l is such that mn/l is an integer.

Now, with the operators (T̂Mx )m = M̂m
x and (T̂My )n = M̂n

y and the Hamiltonian in

the presence of magnetic field as given in Eq.(3.3), we can find eigenstates Ψp,q with

generalized Bloch theorem as

M̂m
x Ψp, q = eikxmaΨp, q, (3.15)

M̂n
y Ψp, q = eikynaΨp, q. (3.16)

Based on these considerations, all results reported in this thesis are based on the com-

putations with the system size as integral multiples of the magnetic unit cell.

3.2.2 Properties of quantum Hall states

The QH states are strongly correlated and hence, we do not get these states with the

SGMF method. So, to obtain QH states we compute the ground state of the Hamilto-

nian in Eq. (3.5) using the CGMF method. To distinguish the ground state as either QH

or SF state, we resort to an important property of the QH state: it is incompressible.
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So, we compute the compressibility of the ground state as

κ =
∂ρ

∂µ
. (3.17)

Here, ρ is the density for the ground state and µ is chemical potential. The ground state

is QH state if κ is zero. Thus, the presence of QH states for different filling factor ν is

indicated by plateaus in the plot of density ρ as a function of µ. For the compressible

SF state κ is non zero, and density ρ is linear as a function of µ.

The other important property relevant to the experimental realizations is the two-

point correlation function 〈b̂†i b̂j〉. The trend in 〈b̂†i b̂j〉 is a good indicator of the presence

or absence of the energy gap in the system. For a gapped system, the two-point corre-

lation function decays exponentially [199]. Thus, in the bulk of the FQH states, which

is gapped, the two-point correlation is expected to show exponential decay. On the

other hand for the gapless edge of the FQH states it was shown by Wen [200] that the

two-point correlation decays as power law. So, the exponential and power law decay

of 〈b̂†i b̂j〉 in the bulk and edge of a state can be considered as an indication of it being a

FQH state. Here, an important general conceptual point is, answering the question of

whether a system is gapped or gapless is a challenging one. To put it more precisely,

given a Hamiltonian, it is difficult to predict whether its spectrum is gapped or gapless

[201]. This is the spectral gap problem. Where the spectral gap is the energy difference

between the two lowest eigen energies of a system. It was shown by Cubitt et al. [201]

that there exists no universal computational algorithm which can solve the spectral gap

problem. The spectral gap problem is linked to the host of other important problems in

very different branches of physics like the explanation for quark confinement in high-

energy physics. To compute the two-point correlation function, we first compute the

one-body density matrix (OBDM) [202, 203] and in CGMF method

ρk,l = 〈Ψc
GW| b̂†l b̂k |ψcGW〉 (3.18)

where k ≡ (p, q) and l ≡ (p′, q′) are the lattice indices. This can further be written in

terms of cluster states as

ρk,l =
∏
jj′

j 〈ψc|b̂†l b̂k |ψc〉j′ , (3.19)
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· · · · · ·n0 n1 n2 n3 nM−1

0 1 2 3 · · ·· · · M − 1

0

Figure 3.3: The M×1 row of a cluster with occupation number n0, n1, . . ., nM−1.

Each square box represents a lattice site and each of ni corresponds to ith lattice site

in that row. Here, ni runs from 0 to Nb − 1 for each lattice site.

that is, the OBDM of the entire lattice can be defined in terms of those correspond-

ing to the cluster states. As we shall see later, in the case of ED, the expression of

OBDM is equivalent to that of a single cluster. And, we use this extensively. From the

above definition, the two-point correlation function along a row of lattice sites can be

defined as 〈b̂†x,y b̂0,y〉, where along x axis we have fixed one lattice point as zero. For

y = 0 and x = 1 the two-point correlation function for one of M×N clusters is

〈b̂†1,0b̂0,0〉 =
∑

m0,..,mm′

∑
n0,..,nm′

C∗m0,..,mm′
Cn0,..,nm′ 〈m0, ..,mm′ | b̂†1,0b̂0,0 |n0, .., nm′〉 ,

=
∑

m0,..,mm′

C∗m0,..,mm′
Cm0+1,m1−1,..,mm′

√
m1(m0 + 1).

Here, m′ = (M×N)− 1, and based on the above expression, fixing y = 0 the general

expression for any x is we get

〈b̂†x,0b̂0,0〉 =
∑

m0,..,mm′

C∗m0,..,mm′
Cm0+1,m1,m2−1,..,mm′

√
mx(m0 + 1) (3.20)

These two point correlation functions, as I have fixed y = 0, are for the edge of the

QH state. Similarly, we can compute the two-point correlation in the bulk of the QH

states by choosing y = (N − 1)/2. In general, for QH states, two point correlation

function has power law behaviour at the edge. In the bulk, it is non-monotonic, initially

it decays exponentially and then increases.

3.3 Exact Diagonalization Method

The CGMF method incorporates correlation effects better than the SGMF method, but

it still uses the mean-field φ to account for the hopping terms at the boundaries between
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two clusters. The use of the mean-field can, however, be avoided entirely with the ED

method. For a M×N lattice the BHM Hamiltonian to be used in the ED method is

Ĥ = −
∑

06p<M
06q<N

[(
Jxe

i2παq b̂†p+1,q b̂p,q + Jy b̂
†
p,q+1b̂p,q

)
+ H.c.

]

+
∑

06p<M
06q<N

U

2
n̂p,q(n̂p,q − 1). (3.21)

The key difference of the above BHM Hamiltonian from those in the SGMF and

CGMF methods is the absence of the term with the chemical potential. In the ED

method, we fix the number of atoms in the system, and hence, the Hamiltonian is di-

agonalized using many-particle states in a Hilbert space. So, the computation is in the

micro-canonical ensemble and the chemical potential is not required. Except for the

fixed number of particles, the generation or identification of states is similar to the case

of a single cluster in CGMF. So, we can consider that the Hilbert space is spanned by

the states |ψc〉 of one M×N cluster. As we had noted earlier, in the context of CGMF,

the number of cluster states increases exponentially with the size. So, to enable com-

putations with the ED method for larger lattice sizes, we define the cluster states or the

basis states of the Hilbert space based on a hierarchy of many-body states. The most

basic many-body state in this scheme is the occupation number states |ni〉 of the ith

lattice site. Then, in the next step using these single-site basis we define a row state

consisting of M lattice sites as

|φ〉m =
M−1∏
i=0

|ni〉 , (3.22)

where, 0 6 i 6M −1 are lattice sites along x direction, and m ≡ {n0, n1, . . . , nM−1}
is an index quantum number which identifies each of the row states uniquely. The

schematic representation of a row state is shown in Fig. 3.3. A basis state of the M×N
lattice or cluster state is a direct product of N row states and can be written as

|Φc〉` =
N−1∏
j=0

|φj〉mj =
N−1∏
j=0

M−1∏
i=0

|nji 〉 , (3.23)

here, 0 6 j 6 N − 1 identifies the row states and a schematic representation is shown

in Fig. 3.4. In the above definition we have introduced the index quantum number ` to
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Figure 3.4: The M×N cluster with occupation number nj0, nj1,. . .,njM−1 for jth row

of the cluster. Each square box represents a lattice site and each of nji corresponds to

each jth row of cluster and ith lattice site in that row. Here, nji runs from 0 to Nb − 1

for each lattice site.

identify each of the basis states uniquely, that is

` ≡ {n0
0, n

0
1, . . . , n

0
M−1, n

1
0, n

1
1, . . . , n

1
M−1, . . . , n

N−1
0 , nN−1

1 , .., nN−1
M−1}. (3.24)

From the definition of the index quantum number of row states, this is also equivalent

to writing as

` ≡ {m0,m1, ..,mN−1}. (3.25)

To reiterate, as shown in Fig. 3.4 there is a hierarchy of states, the single-site occupation

number states |nji 〉, the row states |φ〉m and cluster states |Φc〉`.

3.3.1 Hilbert space and Hamiltonian matrix

To construct the Hilbert space within which the Hamiltonian is diagonalized, consider

the total number of atoms to beNa. This number can be arbitrary, but to give a concrete
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example and relevant to the present work, I consider low density Na �M×N . Here,

the QH states are obtained for parameters which lie in the domain between the n = 0

and n = 1 Mott lobes. We can, therefore, consider the occupation number states |0〉
and |1〉 for the computations and the average occupancy lies between 0 and 1. Then,

the total number of atoms in the row states |φ〉m is 0 6
∑
i

nji 6 min(M,Na). As

the cluster states |Φc〉` are direct product of |φ〉m, the total number of atoms in a basis

|Φc〉` must satisfy the condition

M−1∑
i=0

N−1∑
j=0

nji = Na. (3.26)

For illustration, consider Na = 4 and the size of the lattice as 4×4. Then, the number

of atoms in |φ〉m can range from 0 to 4, and considering that occupation number states

at each lattice sites are either |0〉 or |1〉, the possible row states are

|0, 0, 0, 0〉 , |0, 0, 0, 1〉 , . . . , |1, 1, 1, 1〉 .

In total there are sixteen |φ〉m and an example of |Φc〉` defined as direct product of four

|φ〉ms is

|Φc〉` = |0, 0, 0, 0〉 ⊗ |0, 1, 1, 0〉 ⊗ |0, 0, 0, 1〉 ⊗ |1, 0, 0, 0〉 .

Thus, the number of |Φc〉` is

MNCNa =16 C4 = 1820,

which is much less than the number of states 216 = 65536 required for computation

with 4×4 cluster in CGMF. The essence of the ED method is then to compute the

Hamiltonian matrix elements between the cluster states as

`′ 〈Φ′c| Ĥ |Φc〉` =
M−1∏
k=0

N−1∏
l=0

M−1∏
i=0

N−1∏
j=0

〈nlk| Ĥ |nji 〉 , (3.27)

and then, diagonalize the Hamiltonian matrix to obtain the eigenvalues and eigenvec-

tors. Considering that the sequence of |Φc〉` is not based on symmetries, but rather

based on the combinatorics of |φ〉m, the row wise computation of Hamiltonian matrix

is more efficient. In this regard, for example, the matrix element of hopping term along

x-axis Jxei2παq b̂
†
p+1,q b̂p,q can proceed in a sequence of steps. And one of the efficient

approach is to compare the row states and identify if the `′ 〈Φ′c| and |Φc〉` have right
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combinations of occupation number states to have non-zero matrix element. This can

be done in the following steps:

1. Compare the row states m′ 〈φ| and |φ〉m of `′ 〈Φ′c| and |Φc〉`, respectively. Proceed

to the next step if `′ 〈Φc| and |Φc〉` only differ in one of the row states, say the 1st

row.

2. Consider m′1 〈φ1| and |φ1〉m1 , and compare the single site occupation number

states. Proceed to the next step if the difference in these two row states arise

from the difference in the occupation number states of two neighbouring lattice

sites, say 3rd and 4th lattice sites.

3. The matrix element is nonzero and value is
√
n′2(n′3 + 1) if n′2 = n2 + 1 and

n′3 = n3 − 1. For the example considered, we have nonzero matrix element for

the term p = 2 and q = 1.

In a similar way, for the example considered, the matrix element of the Hermitian

conjugate term J∗xe−i2παq b̂†p,q b̂p+1,q is nonzero when the first two conditions are met

and the last is modified to n′2 = n2 − 1 and n′3 = n3 + 1. With slight modifications,

the same approach can be applied to compute the matrix elements of the hopping term

along y-axis. For this case, two neighbouring row states should be different, and at the

level of the lattice sites, the difference should be on the same column. Then, to have

a nonzero matrix element the occupation numbers should satisfy conditions equivalent

to the condition in the third in the above chain of steps. The computation of the on-site

interaction Hamiltonian matrix elements is trivial as it is diagonal and does not require

a comparison of the basis states. After diagonalizing the Hamiltonian, we can get the

ground state as

|Ψc〉 =
∑
`

C` |Φc〉` , (3.28)

where, C` is the coefficient of the cluster state and the normalization condition of the

state is
∑
`

|C`|2 = 1. The normalization, however, is guaranteed as the Hamiltonian

is Hermitian.
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3.3.2 Calculation of properties

Using the ED method with the basis set defined as a hierarchy of states, we could

diagonalize lattice sizes up to 4×12. As the computations with the ED method are

in the micro canonical ensemble, the SF order parameter φp,q at a lattice site can not

be calculated as 〈b̂p,q〉. So, the SF order parameter can not be used as a property to

distinguish SF ground state. The suitable method to differentiate the QH states and SF

states is based on the Penrose-Onsager criterion [177] and von Neumann entropy. For

this, we construct the OBDM, Eq. (3.18), as

ρ =


〈b̂†0,0b̂0,0〉 〈b̂†1,0b̂0,0〉 . . . 〈b̂†0,1b̂0,0〉 . . . 〈b̂†M ′,N ′ b̂0,0〉
〈b̂†0,0b̂1,0〉 〈b̂†1,0b̂1,0〉 . . . 〈b̂†0,1b̂1,0〉 . . . 〈b̂†M ′,N ′ b̂1,0〉

...
...

...
... . . . ...

〈b̂†0,0b̂M ′,N ′〉 〈b̂†1,0b̂M ′,N ′〉 . . . 〈b̂†0,1b̂M ′,N〉 . . . 〈b̂†M ′,N ′ b̂M ′,N ′〉

 ,

with M ′ = M − 1 and N ′ = N − 1. In OBDM the diagonal elements are the number

operators at that lattice site, and off diagonal matrix elements are similar to the matrix

elements of the hopping term. The computation of the OBDM involves all the basis

states and we can follow a scheme similar to that of the Hamiltonian matrix elements

as outlined in the previous Section. The dimension of the OBDM matrix is M×N and

we obtain the eigenstates and eigenvalues by diagonalizing it. If λOBDM
m is the largest

eigenvalue of the OBDM and it is of the order of Na, following the Penrose-Onsagar

criterion, the condensate fraction in the system is

ρcf = nOBDM
m /Na.

Here, Na as defined earlier is the total number of atoms in the system. The ground

state is a QH state if the largest eigenvalue of the OBDM is much less than Na. From

the scaled eigenvalues pi we can compute the von Neumann entropy as

S = −
M×N∑
i

pi ln(pi), .

In general, the von Neumann entropy is higher for a strongly correlated state like the

QH states than the SF states.
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Figure 3.5: The M×N cluster with occupation number n0, n1, .., nm′ at each lattice

site for CGMF. Each square box represents a lattice site and each of ni corresponds to

each i lattice site. Here, ni runs from 0 to Nb − 1 for each lattice site.

3.3.3 Comparison of ED and CGMF

The general features of the hierarchical definition of states and the approach to compute

the Hamiltonian matrix elements can also be adapted to the CGMF theory as well. As

discussed earlier, in the CGMF theory, hopping is exact within the cluster but hopping

at the boundary is considered via the mean-field φ. Thus, for clusters of size M×N ,

the cluster state defined in Eq. (2.21) is the direct product of the occupation number

states at each lattice site and can be written as

|Φc〉` =
m′∏
i=0

|ni〉 , (3.29)

where m′ = (M×N) − 1 and i = 0, 1, . . ., m′ are the lattice site index, with M

(N ) as number of lattice sites along x (y) direction, ` ≡ {n0, n1, . . . , nm′} as defined

earlier is the index quantum number to identify each of the cluster states uniquely. For
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illustration, the correspondence between quantum numbers and lattice sites is shown

in Fig. 3.5. The ground state of the CGMF Hamiltonian in Eq. (2.16) is obtained by

using the cluster wave-function in Eq. (3.29). The Hamiltonian matrix element can be

written as

`′〈Φc| Ĥ |Φc〉` =
m′∏
j=0

m′∏
i=0

〈n′j| Ĥ |ni〉

= 〈n′0, n′1, . . . , n′m′ | Ĥ |n0, n1, . . . , nm′〉 . (3.30)

The definition of the states and computation of the matrix elements can, however, be

cast in terms of the row and cluster states as in ED. With this modification, we can

implement constraints on the number of atoms in the row and cluster states, thereby

reducing the dimension of the Hamiltonian matrix in the CGMF. The only difference

from ED is, in CGMF the inter-cluster hopping terms are linear in order parameter φ

and hence, connect states in Hilbert spaces with the different total number of atoms. In

other words, the Hamiltonian matrix in CGMF is defined with respect to Fock space.

Another difference is, the diagonal terms have a contribution from µ. With this adap-

tation, we can consider larger clusters in the CGMF.

3.3.4 Limitations of ED

The ED method provides the exact solution of the BH Hamiltonian. The limitation of

this method is that it restricts the computation for large system size, due to the expo-

nential increase in the dimension of Hamiltonian matrix. We perform our computation

at the most for 4×12 lattice which has the matrix dimension of 12271512 for synthetic

magnetic field α = 1/4 and ν = 1/2. Thus, we can not perform the computation for

lattice size higher than this. Another limitation of ED is to incorporate the envelope

potential. In the CGMF, the incorporation of the envelope potential is simple for large

system size, like 40×40 in our case, while with ED we can not go for such a large

lattice system.
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3.4 Summary of the chapter

In this chapter, I provide a brief description of different QH states which can occur

either as ground or excited state in the BHM model with the introduction of synthetic

magnetic fields. The model is the bosonic version of the celebrated Harper-Hofstadter

model in fermionic systems. I, then, discuss the properties of QH states and, in partic-

ular, I focus on the two-point correlation function. After that, I discuss the ED method

in great detail. In the context of ED, the use of Penrose-Onsager criterion to compute

the condensate fraction is discussed. We also compare the CGMF and ED method, and

limitations of the ED method in this chapter.





Chapter 4

Quantum Hall states from CGMF and

ED methods

We have studied QH states in the homogeneous BHM with the synthetic magnetic

field and inhomogeneous case with confining potentials such as box and harmonic

potentials. In this chapter, I discuss the QH states which we obtain with different flux

values of α = 1/5, 1/4, 1/3, and 1/2, and by varying the cluster sizes in the CGMF

theory. Here, as mentioned earlier, it is to be emphasized that we do not get QH states

with SGMF theory as it does not encapsulate the correlation effects accurately. The

QH states obtained from the CGMF method are identified based on the compressibility

κ = ∂ρ/∂µ. For the QH states κ = 0 or incompressible, and it is finite for the SF states.

As a result, ρ(µ) of QH states has plateaus at different ν and it is linear for the SF phase

Fig. 4.1. In our study, similar to the experimental realizations we consider isotropic

hopping, Jx = Jy = J , and repulsive on-site interaction, U > 0. In the case of an

inhomogeneous system, the QH states are sensitive to the confining envelope potential.

We do observe QH states with the box potential for all the cases but that is not the case

for the harmonic potential. However, shallow the harmonic potential is we do not get

QH state. Using the ED method we also observe the QH states for different flux values

and filling factors. In the case of the ED method, we differentiate the QH and SF

states based on the Penrose-Onsager criterion and von Neumann entropy. With the

ED method, the largest lattice size we consider is 4×12. Although the computational

scheme used in the ED method is applicable to CGMF, considering clusters of size

63
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Figure 4.1: The variation in the number density ρ in the presence of synthetic mag-

netic field with α = 1/5 in Fig. (a) and for α = 1/2 in Fig. (b). The states in SF

phase are compressible and have non-zero SF order parameter φ. As a result, ρ varies

linearly with µ and the green curve represents the SF solutions. For specific values of

filling factor ν there are states with constant ρ, represented by the blue lines, and these

correspond to the existence of QH states. In Fig. (a), the plateaus or the constant ρ

values correspond to ν = n/2, n = 1, 2, . . ., 9. In Fig. (b), the plateaus correspond to

ν = 1/2, 1, and 3/2

.

4×12 is computationally not feasible with the CGMF computation due to the large

matrix dimension. To relate with experimental observations we also compute the two-

point correlation functions which can serve to distinguish the QH and SF states.

4.1 QH states in the Homogeneous system

The QH states are one of the possible ground state candidates of the BHM Hamiltonian

in Eq. (3.5) in presence of the synthetic magnetic field. The other is the SF state, and for

the parameter range of our interest, these two are the competing states for the ground
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state. To obtain the ground state, I use CGMF and ED methods. We construct the

BHM Hamiltonian matrix as described in chapter 2, and diagonalize it and the lowest

energy eigenstate is the ground state of the system. As reported in previous works [65],

the QH states are present in the strongly interacting regime and in the vicinity of the

Mott lobe. We also consider our studies in this domain and fix the hopping strength as

Jx = Jy = 0.01U for all of our studies. Further more, our studies are near in parameter

domain close to the n = 0 and n = 1 Mott lobes. So the occupancy at each lattice site

is either 0 or 1. Accordingly, we consider |0〉 and |1〉 as the occupation number basis

states at each lattice site. In the case of computations with the CGMF method, we vary

the chemical potential from −0.03U to 0.03U and compute the compressibility κ.

The CGMF computations are done with clusters which are integer multiple of the

magnetic unit cell. As we consider uniform flux of Φ for α = 1/N , a 1×N cluster

forms a magnetic unit cell. We, however, find that except for a π/2 rotation the results

are identical toN×1 cluster. This is due to the coupling of atomic motions along x and

y directions through the interparticle interaction. We find that the QH states are very

sensitive to the initial condition and to improve convergence, we use a successive over-

relaxation method with a very low value of φ as initial guess. For the SF states, the

use of the relaxation method is not required. To mimic the infinite system or thermo-

dynamic limit, we employ periodic boundary condition along x and along y direction.

The QH states of different values of α are discussed in the next few subsections.

4.1.1 Synthetic magnetic field α = 1/5

For the low flux α = 1/5, we consider a single cluster of size 2×5, such that it is integer

multiple of the magnetic unit cell 1×5 lattice unit cell. We consider the system size as

20×20 lattice sites, which encloses 10×4 clusters. In each iteration, we diagonalize

the Hamiltonian matrix for each of the clusters in a sequence and obtain the ground

state (in terms of Cn0,n1,...,n9) for each of the clusters. For each of the clusters, we also

compute the SF order parameter φ at each lattice site of the cluster. As mentioned

earlier, the coupling between two neighbouring clusters is incorporated through φ. We

repeat the computations for µ in steps of ∆µ = 0.001U for µ ∈ [−0.03U, 0.03U ] and

compute κ. This is done for both QH and SF states, and the plot of ρ as a function
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Figure 4.2: (a) Hall state with stripe phase for α = 1/5, ν = 1/2 with average number

ρ = 0.1. (b) Zero SF order parameter φ for the same.

of µ is shown in Fig. 4.1(a). In the figures the horizontal lines (blue) corresponding

to constant ρ indicate the presence of QH states, and linear (green) line corresponds

to the SF states. The QH states are obtained at the fillings ν = n/2, n = 1, 2, . . .,

9, and corresponding density for these states are ρ = n/10, n = 1, 2, . . ., 9. For low

density (ρ < 1) our CGMF results with 2×5 cluster for ν = 1/2 are consistent with

the results reported in Natu et al. [67]. The plots of ρ and φ for this FQH state are

shown in Fig. 4.2 (a), and (b), respectively. The FQH state has a stripe pattern in ρ and

as to be expected φ is zero. Similarly, we observe that the FQH states with ν = 3/2,

7/2, and 9/2 are also striped, whereas it is homogeneous for ν = 5/2. In addition,

we obtain striped integer QH (IQH) states for ν = 1, 2, 3 and 4. As an example one

of the IQH states for ν = 2 is shown in Fig. 4.3 (a). As described earlier, we also

obtain the competing SF states for the same value of µ and J corresponding to the QH

state. For the present case of α = 1/5 the SF state is always the ground state and QH

state is a metastable state. The energy difference between these two competing states

is ≈ 10−3U . The SF states have zigzag pattern in ρ and φ. The competing SF state

corresponding to ν = 2 IQH state is shown in Fig. 4.3 (b).

To examine the stability of the patterns, we analyze our results with increasing

cluster sizes. As the CGMF approach breaks the translation symmetry of the lattice,

we observe the effect of different cluster sizes on the QH states. Here, to maintain the
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Figure 4.3: (a) Hall state with stripe phase for α = 1/5, ν = 2 with average number

ρ = 0.4. (b) The superfluid state with density wave order which is similar to supersolid.

For the Hall states SF order parameter φ is zero, while there are large fluctuation in the

φ for the superfluid state (not shown here).

magnetic translation of the system along the y axis, we consider clusters consisting

of 5 lattice sites along y direction. But, along x axis, we vary the number of lattice

sites in the cluster. To show the dependence of the ρ on the cluster size, we show one

of the IQH states for ν = 1 with different cluster sizes in Fig. 4.4. On increasing the

cluster size to 3×5 the IQH states with stripe geometry are transformed to checkerboard

pattern as shown in Fig. 4.4 (a). Further, IQH state has reduced density variations with

4×5 cluster in Fig. 4.4 (b).

It is to be noted that we obtain the same IQH states but rotated by π/2, when the

cluster sizes are 5×2, 5×3 and 5×4. For example with 5×2 cluster the stripe pattern is

horizontal while it is vertical for 2×5 cluster. Considering this property of QH states,

and noting that 1×5 is the magnetic unit cell, an accurate description of the FQH state

is possible with 5×5 cluster. With this cluster size the operator part of the hopping term

in the BHM Hamiltonian is exact along x and y axis within the cluster symmetrically.

For example, with 2×5 cluster, hopping along x axis has contribution through mean-

field after 2a while it is 5a for 5×5 cluster, where a is lattice constant. The IQH state

with 5×5 cluster is shown in Fig. 4.4 (c). The density pattern is still checkerboard with

higher density variation. Another important observation with different cluster sizes is
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Figure 4.4: The variations in ρ for IQH state of α = 1/5 and ν = 1 for a single cluster

of different sizes. (a) The result from 3×5 cluster has checkerboard pattern. (b) 4×5

cluster has less variations in ρ compared to 3×5. (c) 5×5 cluster shows a rich variation

in ρ and unlike in (a) and (b) the central lattice site has maxima in density.

that central lattice site has a lower density with 3×5 cluster and it has a maximum

density with 5×5 cluster. For this case, we consider a single cluster, in the context

of inhomogeneous system, and results are discussed in the later part of the thesis. We

also obtain the IQH state for 5×5 lattice through ED calculations.

4.1.2 Synthetic magnetic field α = 1/4

For the case of α = 1/4, we obtain QH states for ν = n/2, where n = 1, 2, . . ., 7, with

2×4 and 4×4 clusters. The FQH states for ν = 1/2, 3/2, 5/2 are striped with 2×4

cluster, however, like in the case of α = 1/5 is transformed into checkerboard with 4×4

cluster. That is, the pattern depends on the cluster size. Furthermore, as we increase the

cluster size to 4×8, the FQH state with ν = 1/2 filling remain qualitatively unchanged.

For the IQH states the ν = 1 and 3 are striped with 2×4 cluster and checkerboard with

4×4 cluster. But, the IQH state corresponding to ν = 2 has homogeneous density. It

must be mentioned that the thermodynamic limit, due to the coupling of neighbouring

clusters through φ, does not apply to CGMF description of QH states where φ = 0.

However, this does limit the applicability of the theory to finite size systems relevant

to experimental realizations in optical lattices. On the other hand for the competing SF

state, a large lattice size in essence of finite φ corresponds to the thermodynamic limit.
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Figure 4.5: The variation in the number density ρ for α = 1/3 as a function of µ.

The states in SF phase are compressible and have non-zero superfluid order parameter

φ. As a result, ρ varies linearly with µ and the green curve represents the SF states.

For specific values of filling factor ν there are states with constant ρ, represented by

the blue lines, and these correspond to the QH states. (a) Results from 2×3 cluster,

the plateaus or the constant ρ values correspond to ν = n/2, n = 1, 2, . . ., 5 and the

corresponding ρ values are n/6. (b) Results from 3×3, the plateaus correspond to

ν = n/3, n = 1, 2, . . ., 8 and the corresponding ρ values are n/9.

4.1.3 Synthetic magnetic field α = 1/3

In the Fig. 4.5, the plateaus corresponding to constant ρ indicate the presence of QH

states. Our computations, as mentioned earlier, are for low value of J/U = 0.01 and

in the vicinity of n = 0 and 1 Mott lobes where ρ < 1. We obtain the QH states for

ν = n/2, with n = 1, 2, . . ., 5 by taking the 2×3 cluster, and at ν = n/3, with n = 1,

2, . . ., 8 by taking the 3×3 cluster. Here, the results from CGMF with 3×3 cluster

are close to the ED results as the contributions from the nearest neighbour hopping

from the central lattice is exact. And, indeed, the diagonalization of the cluster in the

CGMF can be transformed into ED with minor modifications in the computations of
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Figure 4.6: The IQH state for α = 1/3 and ν = 1 with (a) 2×3 cluster and (b) with

3×3 cluster. The IQH state switches from stripe to checkerboard geometry with the

mentioned cluster sizes.

the Hamiltonian matrix elements.

As an example the IQH state for ν = 1, and µ/U = −0.008 with density ρ = 1/3 is

shown in Fig. 4.6. It is striped with 2×3 cluster and transforms into checkerboard with

3×3 cluster. The transformation from the stripe to the checkerboard pattern is observed

for the other IQH state of ν = 2 as well. We observe that all the IQH and FQH states

have stripe pattern except the ν = 3/2 state, which has homogeneous density with

ρ = 0.5 with 2×3 cluster. And the corresponding SF states have a zigzag pattern in the

density ρ and in the SF order parameter φ. As an example, the FQH state for ν = 5/2

and the corresponding SF state are shown in the Fig. 4.7. As discussed earlier, we do

not observe the half-integer FQH states with 3×3 cluster, but do observe the FQH states

at the one-third fillings. One of the FQH and SF state with 3×3 cluster for ν = 1/3 is

shown in the Fig. 4.8. Here, with 3×3 cluster, we observe that all the FQH states have

a checkerboard pattern and all the SF states have diagonal stripe patterns. We find that

in all the cases SF state is the ground state and QH state is a metastable state.

4.1.4 Synthetic magnetic field α = 1/2

For the high flux α = 1/2, we consider 2×4 and 4×4 clusters in the CGMF computa-

tions. Compressibility ρ(µ) for α = 1/2 is shown in Fig. 4.1. It must be emphasized
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Figure 4.7: (a) The FQH state with α = 1/3 and ν = 5/2 with 2×3 cluster, it has a

stripe pattern in the density with vanishing SF order parameter. (b) The analogous SF

state with zigzag pattern in the density as well as in the SF order parameter.

that α = 1/2 is relevant to the recent experimental realizations of synthetic magnetic

field in optical lattices [54, 55]. For this value of α, we obtain the QH states for

ν = 1/2, 1, and 3/2 from both the clusters. Like in the case of α = 1/5, the ν = 1/2

and 3/2 FQH states are in the vicinity of MI lobes, and the FQH and SF states are

stripe and homogeneous phases, respectively, in the results obtained with 4×2 clus-

ter. However, as shown in Fig. 4.9, the structure of the FQH state is transformed into

checkerboard with 4×4 cluster. The latter is more reliable as the operator part of the

hopping term in the cluster Hamiltonian is exact along x and y axis within the cluster.

For ν = 1 the IQH and SF states are homogeneous for both the cluster sizes.

4.1.5 Comparison of the QH states

Based on our results, only the QH states for α = 1/4 and ν = 1/2, 1, 3/2 and 2

are ground states with J/U ≈ 0.01, and the competing SF state is metastable. For

the mentioned values of ν the QH states are the ground state over a small range of

µ centered around −0.019U , −0.014U , −0.007U and 0.000U respectively. For the

other combinations of α and ν, the SF and QH states are ground and metastable states,

respectively. In general, for different αs, the energy difference between the SF and

QH state is ∆E ≈ 10−3U. For the parameters of experimental interest U/~ = 130
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Figure 4.8: (a) The represents FQH state with α = 1/3 and ν = 1/3 with 3×3 cluster

with a checkerboard pattern in the density and vanishing SF order parameter. (b) The

analogous SF state with diagonal stripe pattern in the density as well as in the SF order

parameter.

Hz [204] and we get ∆E ≈ 10−2nK. This implies stringent bounds on the thermal

excitations during the state preparation to obtain QH states. One feature of the CGMF

results which distinguishes the QH states from the SF states is the energy. For the QH

state, the energy decreases with increasing cluster size. For example the QH state of

α = 1/4 with ν = 1/2 and µ = −0.02U has energy −0.0031U and −0.0046U with

2×4, and 4×4 clusters, respectively. Whereas for the SF state, the energy remains

almost unchanged as it is −0.0042U and −0.0045U , respectively. Thus, the QH state

emerges as the ground state with the 4×4 cluster. Here, the key point is not the values

of the energies per se, but the importance of having better correlation effects to obtain

QH states. These trends arise from a better description of the hopping term with larger

cluster size.

4.2 QH states in inhomogeneous system

The simplest modification to the homogeneous system for comparison with the exper-

imental realizations is to impose hard-wall or open boundary conditions. This corre-

sponds to the 2D optical lattice realization similar to the case of homogeneous BEC

in a box potential [205]. With the hard-wall boundary we recover the QH states for



4.2. QH states in inhomogeneous system 73

0 4 8 11
x

0

4

8

11

y

(a)

α=1/2,ν=1/2

0 4 8 11
x

(b)

0.16

0.23

0.30

Figure 4.9: The variation in the lattice occupancy ρ of the FQH states with stripe and

checkerboard geometry for high flux α = 1/2 obtained using CGMF for the filling

factor ν = 1/2. This is a metastable state, and the ground state is in the SF phase.

(a) The FQH state has average number density ρ = 0.25 with stripe pattern and it is

obtained from 2×4 cluster. (b) The checkerboard FQH state with the same number

density obtained from CGMF theory with 4×4 cluster. In both the cases the ground

states, SF phase, like the FQH state has stripe and checkerboard geometries with 2×4

and 4×4 cluster, respectively.

all αs described earlier, and energies remain unchanged. The competing SF states, on

the other hand, have higher energies with the hard-wall boundary. In the present work,

the largest size of the cluster in the CGMF computations required to encapsulate one

magnetic unit cell along y-axis and have the similar representation of hopping terms

along x axis is 5×5 for α = 1/5. For this reason, we focus on the properties of the QH

states of α = 1/5. The other QH states are qualitatively similar but computationally

less demanding. It is also to be emphasized that the results of a single cluster with

hard-wall boundary is equivalent to ED.

The IQH state for ν = 1 with different cluster sizes are shown in Fig. 4.10, which

has stripe geometry. Like in the homogeneous case, the stripe geometry is transformed

into checkerboard geometry with 3×5 cluster. However, the most important observation

is that ρ(x, y) obtained from 5×5 cluster, although checkerboard in structure, is very

different from that of 3×5 and 4×5, which are shown in Fig. 4.4. The other envelope
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Figure 4.10: Density distribution of the IQH state for α = 1/5 and ν = 1 with hard-

wall boundary. The average density of atoms in this state is ρ = 0.2. (a) The IQH

state has stripe geometry in the CGMF results with 2×5 clusters. (b) It is, however,

transformed to checkerboard geometry when 3×5 clusters are considered in the CGMF

computations.

potential which is of experimental relevance is the harmonic oscillator potential. Then,

the energy offset εj = Ωj2 = Ω(p2 + q2), Ω is the strength of the potential. To

encompass the envelope potential, we consider a larger lattice size ranging from 40×40

to 80× 80. We, however, find no QH states with the harmonic oscillator envelope

potential. This is due to the nature of ∂εj/∂j, it monotonically increases and does

not favour the incompressible phase like QH state. One possible modification is that

the beam waist w of the laser beam generating the envelope potential is large. So

that, the effective envelope potential is still a Gaussian VG = U0e
−(x2+y2)/w. Here,

the amplitude of the Gaussian potential U0 is proportional to the intensity of the laser

beam. With this potential, ∂εj/∂j also decays exponentially and we find that the QH

states exist for U0 6 10−3U . At higher values of U0 only the SF state is obtained from

the CGMF computations

4.3 Two point correlation function

An observable property to identify the QH states is the two-point correlation function

〈b̂†x(y)b̂0(y)〉, where the expectation is computed with respect to |ψc〉, and the results



4.3. Two point correlation function 75

1 2 3 4
0.02

0.12

0.22

|〈 b̂
† x
(y
)b̂

0
(y
)〉 | α=1/5,ν=1

(a) y=0

y=1

y=2

1 2 3 4
0.11

0.18

0.25 (b)

x

Figure 4.11: Two-point correlation function for low flux α = 1/5 with the 5×5 and

5×3 clusters for the QH and SF states, respectively. The correlation is calculated along

the x direction for the single cluster. Here y = 0 and 1 represent the edge and bulk,

respectively. (a) As a characteristic feature of QH state, the correlation function of

the ν = 1 IQH state decays non-monotonically in the bulk, and there is no difference

between the hard-wall and periodic boundary conditions. (b) For the corresponding SF

state there is no trend in the bulk correlation function with hard-wall boundary (solid

green line), but it decays monotonically at the edge (solid brown line). With periodic

boundary condition (dashed lines), the range of values change, and both the bulk and

edge exhibit monotonic decay in correlation.

from the 5×5 cluster are shown in Fig. 4.11(a). As mentioned in the previous chapter,

the two-point correlation function is closely related to the OBDM [202, 203]. From the

OBDM one can compute the condensate fraction based on Penrose-Onsagar criterion

[177] and von Neumann entropy [206]. The correlation function, as recently proposed,

could be measured with quantum probes [207, 208]. As reported in a recent work

[209], it can be seen from the figure that 〈b̂†x(y)b̂0(y)〉 decays as inverse power law

at the edge. However, in the bulk, as it is gaped, it initially shows exponential decay

〈b̂†x(y)b̂0(y)〉 ∝ e−x/ξ but it is power law when x > K/2 or on reaching the opposite

edge. Here, ξ is the correlation length of the system and as mentioned earlier, K is the

size of the cluster along x. For the SF state with 5×3 cluster, as seen from Fig. 4.11(b),

the correlation through the bulk does not show any nonmonotonicity. Here, we have
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Figure 4.12: Two point correlation function for α = 1/4 and ν = 1/2 with increasing

cluster size. (a) Log-log plot for power law decay of two point correlation function at

edges y = 0. (b) Log-linear plot for exponential behaviour of two point correlation

function in the bulk y = 1.

considered 5×3 cluster as the correlation in the bulk is not sensitive to the size of the

cluster.

To verify the trends in the two-point correlation function we compute it for increas-

ing cluster sizes. As an example we consider the case of α = 1/4, and ν = 1/2 FQH

state by considering cluster sizes of 6×4, 8×4, 10×4 and 12×4. As mentioned earlier, in

chapter 3, the two-point correlation function of QH states has power law decay at the

edges. For the present case, as shown in Fig 4.12 (a), the fitting function ∝ 1/xa for

the edges y = 0 gives a value of a = 0.86. While in the bulk it decays exponentially as

∝ e−x/ξ with ξ = 1.6 and the relevant plots are shown in Fig 4.12 (b). In general, this

type of detailed study on the trends of two-point correlation function is difficult with

ED as the matrix size increases exponentially with system size.
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Figure 4.13: (a) Hall state with checkerboard pattern for α = 1/4, ν = 1/2 with 4×4

cluster. (b) Same Hall state with checkerboard pattern with 4×8 cluster.

4.4 ED Results

In using the ED method [202, 203], we focus our attention on the α = 1/4, which have

QH states as a ground state. For this we, in particular, consider ν = 1/2 FQH state

with cluster sizes 4×4, 4×8, and 4×12. Here, as alluded earlier, we distinguish the QH

states and SF states based on the Penrose-Onsager criterion [177] and von Neumann

entropy [206]. For this, we compute OBDM in Eq. (3.18), and then diagonalize it

and obtain the energy eigenvalues. Following the Penrose-Onsager criterion, the state

is SF if the condensate fraction ρcf = λOBDM
m /Na ≈ 1, where λOBDM

m is the largest

eigenvalue of the OBDM, and Na is the total number of atoms. In contrast, for the QH

states ρcf < 1. Our results are in agreement with this, for example, with 4×4 cluster,

the values of ρcf are 0.56 and 0.89 for the FQH and SF states, respectively. Once the

OBDM is diagonalized, we calculate the von Neumann entropy

S = −
M×N∑
i

pi ln(pi),

where pi = λOBDM
i /Na andM×N are eigenvalues of the OBDM. As the von Neumann

entropy is a measure of correlation effect, it is higher for the more correlated states

like QH states compared to the SF states. For the states considered the values of S are

1.0 and 0.53 for the FQH and SF states, respectively. These values indicate that the

FQH state, as expected, is more correlated than the SF state. When the cluster size is
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Figure 4.14: Condensate fraction ρcf of the QH state with α = 1/4, and ν = 1/2 as a

function of system size. The thermodynamic limit of ρcf = 0.04 is obtained from the

finite size scaling by fitting a line.

increased to 4×8 the value of ρcf is modified to 0.26 and 0.80 for the FQH and SF states,

respectively. And, the corresponding values of S are 1.84 and 0.95, respectively. We

also obtain similar results for the other QH and SF states, for example, ρcf is 0.33 and

0.75 for the QH and SF states respectively with 5×5 cluster for α = 1/5, and ν = 1.

The corresponding value of S is 1.89 and 1.20, respectively. It is to be mentioned here

that the QH and SF states obtained from the ED method have the same features, ρ and

φ, as in CGMF results.

With ED, we obtain QH states for 4×4, 5×5, 4×8 and 4×12 cluster and identify

them based on the Penrose-Onsager criterion. Here, it must be mentioned that the QH

states obtained from 4×4 and 5×5, 4×8 agree with the CGMF results. One of the

FQH states with α = 1/4 and ν = 1/2 is shown in Fig. 4.13. For this case the total

number of atoms with 4×4 cluster is Na = 2, and the number of cluster states is 120.

Similarly, for 4×8 and 4×12 the number of atoms and cluster states are Na = 4 &

35960 and Na = 6 and 12271512, respectively. To obtain the thermodynamic limit of

ρcf we do a finite size scaling analysis using clusters of different size. As an example,

we compute the thermodynamic limit of ρcf for α = 1/4 and ν = 1/2 QH state. For

this we choose 2×4, 4×4, 6×4 and 8×4 clusters and finite scaling analysis is done with

the parameter λ. Based on the results, the plot of the ρcf as a function of λ is shown
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in Fig 4.14. From the fitting function we obtain the ρcf in the thermodynamic limit

(λ = 1) as 0.04. The small value indicates that the ground state is not SF and hence,

consistent with our identification as a FQH state.

4.5 Numerical validation of FQH states

To confirm that the states we identify as FQH states are indeed true, we investigate

further by computing other properties of the states. For this, to be specific, let us

consider the ν = 1/2 FQH state with α = 1/4 obtained from 8× 4 cluster. This

state is identified as Laughlin state in the literature [62, 210]. We examine the ground

state degeneracy and compute the many-body Chern number (MBCN) for this state by

imposing twist angles with periodic boundary conditions. The Hamiltonian with twist

angle on the boundary is [62, 210, 211]

Ĥ = −
∑
p,q

[(
Jxe

i2π(αq−δxKθx)b̂†p+1,q b̂p,q + H.c.
)

+
(
Jye
−i2πδyLθy b̂†p,q−1b̂p,q + H.c.

)]
+
∑
p,q

U

2
n̂p,q(n̂p,q − 1) (4.1)

where θx and θy are the twist angles along x and y directions, respectively. And, these

have finite values at the boundary for K×L system size.

4.5.1 Ground state degeneracy

An important property of the FQH state is the ground state degeneracy. It was shown

by Wen and Niu [212] that the FQH state with ν = p/q, where p and q are mutually

prime integers, on a Riemann surface of genus g is qg fold degenerate. In our case,

topologically, a torus in 2D has g = 1. Thus, for the present case of ν = 1/2 on the

torus geometry, the ground state should be doubly degenerate if it is an FQH state. This

is indeed the case and can be considered as an evidence of the ground being FQH state.

Further, we vary the twist angles θx and θy compute the ground state energy. And, find

that the double degeneracy is independent of the twist angles. This is to be expected

as the ground state degeneracy is determined by the integer denominator of ν and not

dependent on the twist angles. There is a finite energy gap as the first excited state
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Figure 4.15: Plot for Λφ and Λφ′ where the reference degenerate ground states φ and

φ
′

are considered at the twist angles (θx, θy) = (0.2, 0.1), (0.6, 0.5).

is separated from the ground state by 0.0021U . The ground state degeneracy should

be lifted with open boundary condition as it depends on the topology of the system.

Indeed, we find that with open boundary condition, the ground state is non-degenerate.

The results, for the ground state degeneracy, is dependent on the system size. For

example, with a system size of 4× 4, the three lowest eigenvalues are −0.0586U ,

−0.0556U and−0.0552U . Thus, relatively, we consider the lowest two as non-degenerate

as the energy difference is 0.0020U . The first two excited states, which have an energy

difference of 0.0003, could be considered as quasi-degenerate. The results change sig-

nificantly when we consider a larger system size of 6×4. The three lowest eigenvalues

are then−0.0854U ,−0.0854U and−0.0833U . And, double degeneracy of the ground

state is self-evident. With an even larger system size of 8×4 these three lowest eigen

energies decrease to −0.1129U , −0.1129U and −0.1108U . However, an important

point is that in both results the separation of the first excited state from the ground

state remains unchanged at 0.0021U . Although, we have given the details of only the

ν = 1/2 and α = 1/4 state, we find that the ground state of ν = 3/2 and α = 1/4 is

double degenerate. And, our results with different system sizes show similar trends.
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Figure 4.16: The argument field Ω for the FQH states which shows the phase change

for the vortex.

4.5.2 Many-body Chern number

The QH states are topological in nature and do not have a local order parameter. The

MBCN is one of the approaches to identify the topological order of a many-body sys-

tem. To compute MBCN, in our studies, we do a series of computations by varying

the twist angles θx and θy And, we give detailed results for the MBCN of the ν = 1/2

FQH states. For providing a general description of MBCN, take Ψ(α)(x, y) as the non-

degenerate wave-function of the QH state for magnetic flux α. And, let Ψ(α)(θx, θy) be

the wave-function of the same state with twist angles θx and θy. Then, we can define a

vector field with components

A(α)
j (θx, θy) = i〈Ψ(α)(θx, θy)|

∂

∂θj
|Ψ(α)(θx, θy)〉, (4.2)

and, in terms of this vector field the MBCN is

C(α) =
1

2π

∫ 2π

0

dθx

∫ 2π

0

dθy
[
∂xA(α)

y − ∂yA(α)
x

]
. (4.3)

The definition of the MBCN can be extended to the case of degenerate states as well.

However, the definition given above is a continuum description. For discrete systems
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like optical lattices we use the method, applicable to numerical results, as discussed

by Hatsugai et al. [213, 214], and as implemented by Hazezi et al. [62, 211] and

Gerster et al. [210] for BHM with synthetic magnetic fields. In which case the twist

angles are varied in the range of (θx, θy) ∈ [0, 1]× [0, 1] for the torus geometry. This

method of computing MBCN is based on the computation of overlaps. We consider

the two reference degenerate ground state φ and φ
′

at different twist angles which are

not parallel to each other and these can be arbitrary. For our computation we take

these states at (θx, θy) = (0.2, 0.1) and (0.6, 0.5). These two states correspond to two

different gauge references, and then, we compute the overlaps

Λφ = det 〈φi|P (θx, θy) |φj〉 , (4.4)

Λφ′ = det 〈φ′i|P (θx, θy) |φ
′
j〉 , (4.5)

where i, j varies from 0 to 1. And, here 0 and 1 identify the degenerate ground states of

the reference states. In the above definition, P (θx, θy) is the projector on the degenerate

ground state and is defined as

P (θx, θy) = |ψ0(θx, θy)〉 〈ψ0(θx, θy)|+ |ψ1(θx, θy)〉 〈ψ1(θx, θy)| , (4.6)

where |ψ0(θx, θy)〉 and |ψ1(θx, θy)〉 are the two degenerate ground state eigenstates

defined for twist angles θx and θy. In the Fig.4.15, we show the scalar fields Λφ and

Λφ′ as a function of the twist angles. In the figure we observe regions where Λφ is

nonzero but Λφ′ is zero and vice versa. This is due to the choice of reference states

which are almost orthogonal to each other. Thus the MBCN is equal to one for the

ν = 1/2 FQH state that to 1/2 for each states. We also calculate the argument field

Ωφ→φ′ = det 〈φ′i|P (θx, θy) |φj〉 and observe a phase change from −π to π shown in

the Fig. 4.16
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4.6 Summary of the chapter

In this chapter, I discuss QH states obtained from a combination of CGMF and ED

methods. We get QH states for different value of synthetic magnetic field α = 1/5,

1/4, 1/3 and 1/2, and for different filling factors. I, then study these QH states with

background potential and find that for shallow Gaussian potential, we do recover the

QH states but not for harmonic potential. I provide further evidence for the QH states

by calculating the two-point correlation function in the CGMF method. With the ED

results we examine the properties of these QH states in terms of the Penrose-Onsager

criterion and von Neumann entropy. And, as a validation, we compute MBCN, which

is a topological invariant. As an example, I discuss in detail the computation of MBCN

for the ν = 1/2 Laughlin states which has MBCN equal to unity.





Chapter 5

Two species ultracold gas systems

Two species ultracold gas system (TUGS) is the condensates which consists conden-

sate mixture of two different atomic species or two isotopes of the same element or two

different hyperfine states of the atomic species. I study the TUGS which is trapped in

the optical lattices, and can be described by BH Hamiltonian in this thesis. After the

first experimental realization of TUGS in the two hyperfine states |F = 2,mF = 2〉
and |F = 2,mF = −1〉 of 87Rb atom [75], this field has become important to study the

experimental and theoretical rich physics, which is not accessible in the single species

BEC. In two different hyperfine states of the same species TUGS has been realized in

[75–84]. On the other hand the TUGS in two different atomic species [69–74], two dif-

ferent isotopes [85–87] have been reported. Using the TUGS, interesting phenomena

such as pattern formation [88–91], phase separation [71, 73, 74, 84, 85], nonlinear dy-

namical excitations [82, 92, 93], collective excitations [79], Kibble-Zurek mechanism

[94], and the production of dipolar molecules [95–97] have been studied. The phases

separation, among all the phenomena is a unique property of TUGS. The experimental

realization of TUGS in optical lattices has been observed in [99, 215] and theoretical

studies are presented in [104, 119, 216, 217]. The essential feature associated with

the TUGS is phase separation [124, 125, 218] which has not been fully studied in the

strongly interacting regime of BHM. The BHM for TUGS [41, 101–103] has been

studied and phase diagram of TUGS [102, 116–118] shows the different combinations

of mixed MI-SF phases apart from the MI and SF phase. The phase diagram with

TUGS has been studied with inter-species interactions for homogeneous system [119],

85
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with external potential [120], and the presence of second species have been studied in

[121]. After the study of BHM with TUGS, new direction to study the BHM is by con-

sidering nearest neighbour (NN) interaction in the BHM which is known as extended

BHM (eBHM) [137]. The eBHM shows two more phases density wave (DW) [139–

141] and supersolid (SS) phase [141–145] apart from the MI and SF phases. The DW

phase is an insulating phase similar to the MI phase but with the crystalline order, and

the SS phase is a compressible phase with both diagonal and off diagonal order and

has a crystalline structure. The eBHM and phase separation associated with eBHM is

the main focus of the current study.

In this chapter, I describe the BH Hamiltonian for TUGS and Obtain the ground

state solution with the Gutzwiller ansatz. Then, I discuss the BH Hamiltonian of TUGS

by considering the nearest neighbour intra and inter-species interaction, which is re-

ferred as eBHM for TUGS. I obtain the phase diagram of BHM and eBHM for TUGS

with different inter species interactions. In the end, I provide the phase separation

density profile for different phases such as DW, SS, and SF.

5.1 BH Hamiltonian for TUGS

We consider TUGS confined in square optical lattices. At zero temperature, the BH

Hamiltonian for this system can be expressed as [101, 102, 104, 117, 129, 219–221]

ĤTUGS = −
∑
k=1,2

∑
p,q

[(
Jkx b̂

†k
p+1,q b̂

k
p,q + H.c.

)
+
(
Jky b̂

†k
p,q+1b̂

k
p,q + H.c.

)]
+
∑
k=1,2

∑
p,q

[
Ukk
2
n̂kp,q(n̂

k
p,q − 1)− µ̃kp,qn̂kp,q

]
+
∑
p,q

U12n̂
1
p,qn̂

2
p,q, (5.1)

where k = 1, 2 represents the 1st and 2nd species, Jkx (Jky ) is the hopping strength

along x (y) directions for these two species, Ukk is the intra-species interaction, and

U12 is the inter-species interaction between the two species. It is to be mentioned

that in the above and following discussions, all the interactions are repulsive in nature

U > 0. The local chemical potential at each lattice site for each of the species is

µ̃k = µk − εkp,q. To obtain the ground state solution of the above Hamiltonian, we use

single-site Gutzwiller mean field theory. For this, like in the case of single species,

we derive the mean-field Hamiltonian by partitioning b̂kp,q
†

and b̂kp,q into a mean-field
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and fluctuation operator part. Then, the mean-field Hamiltonian for TUGS in optical

lattices is

ĤTUGS = −
∑
k=1,2

∑
p,q

{[
Jkx

(
b̂†kp+1,qφ

k
p,q + φk∗p+1,q b̂

k
p,q − φk∗p+1,qφ

k
p,q

)
+ H.c.

]
+
[
Jky

(
b̂†kp,q+1φ

k
p,q + φk∗p,q+1b̂

k
p,q − φk∗p,q+1φ

k
p,q

)
+ H.c.

]}
+
∑
k=1,2

∑
p,q

[
Ukk
2
n̂kp,q(n̂

k
p,q − 1)− µ̃kp,qn̂kp,q

]
+
∑
p,q

U12n̂
1
p,qn̂

2
p,q, (5.2)

here, φkp,q (φk∗p,q) is SF order parameter of the kth species. As mentioned earlier, in the

SGMF method, the total Hamiltonian of the system is written as the sum of the single-

site Hamiltonians. And, from the above Hamiltonian we can identify the single-site

mean field Hamiltonian for the TUGS as

ĥTUGS
p,q = −

∑
k=1,2

{[
Jkx

(
b̂†kp,qφ

k
p−1,q + φk∗p+1,q b̂

k
p,q − φk∗p,qφkp−1,q − φk∗p+1,qφ

k
p,q

)
+ H.c.

]
+
[
Jky

(
b̂†kp,qφ

k
p,q+1 + φk∗p,q−1b̂

k
p,q − φk∗p,qφkp,q+1 − φk∗p,q−1φ

k
p,q

)
+ H.c.

]}
+
∑
k=1,2

[
Ukk
2
n̂kp,q(n̂

k
p,q − 1)− µ̃kp,qn̂kp,q

]
+ U12n̂

1
p,qn̂

2
p,q. (5.3)

We can now diagonalize the above Hamiltonian at each lattice site and obtain the

ground state. The ground state Gutzwiller wave-function for TUGS at (p, q)th site

is

|ψ〉p,q =
∑
n1,n2

c(p,q)
n1,n2
|n1, n2〉p,q. (5.4)

Here n1 and n2 are Fock states for 1st and 2nd species respectively, and with Nb oc-

cupation number states, both can have values 0, 1, . . ., Nb − 1. The c-number cp,qn1,n2

is the complex co-efficients for the ground state |ψ〉p,q and satisfies the normalization

condition
∑
n1,n2

|c(p,q)
n1,n2
|2 = 1. For compact notation we combine the two quantum num-

bers n1 and n2 of the occupation number states of the two species into a single index

quantum number n. With this notation |n〉 ≡ |n1, n2〉 and the above equations can be

rewritten as

|ψ〉p,q =
∑
n

c(p,q)
n |n〉p,q , (5.5)

and, the normalization condition is
∑
n

|c(p,q)
n |2 = 1. Hereafter, we use this compact

notation, and we resort to the notation of n1 and n2 where there is a need of clarity.
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5.1.1 Hamiltonian Matrix

To apply the single-site Gutzwiller mean-field theory to the TUGS, the first step is to

construct the matrix of the single-site Hamiltonian in Eq. (5.3). For this, we use the

Gutzwiller wave-function in Eq. (5.4) and the matrix element can be written as

hn′n =p,q 〈n′| ĥTUGS
p,q |n〉p,q . (5.6)

Here, the combined quantum numbers n′ (n), in terms of n′1, n
′
2 (n1, n2) these are

n′ = n′2Nb + n′1 and n = n2Nb + n1. The Hamiltonian in Eq. (5.3) can be partitioned

into five terms

ĥTUGS
p,q = ĥ1

p,q + ĥ2
p,q + ĥ3

p,q + ĥ4
p,q + ĥ5

p,q.

The full form of the first four terms are

ĥ1
p,q = −

(
J1
xφ

1∗
p+1,q + J1∗

x φ
1∗
p−1,q + J1

yφ
1∗
p,q−1 + J1∗

y φ
1∗
p,q+1

)
b̂1
p,q, (5.7)

ĥ2
p,q = −

(
J2
xφ

2∗
p+1,q + J2∗

x φ
2∗
p−1,q + J2

yφ
2∗
p,q−1 + J2∗

y φ
2∗
p,q+1

)
b̂2
p,q, (5.8)

ĥ3
p,q = −

(
J1∗
x φ

1
p+1,q + J1

xφ
1
p−1,q + J1∗

y φ
1
p,q−1 + J1

yφ
1
p,q+1

)
b̂†1p,q, (5.9)

ĥ4
p,q = −

(
J2∗
x φ

2
p+1,q + J2

xφ
2
p−1,q + J2∗

y φ
2
p,q−1 + J2

yφ
2
p,q+1

)
b̂†2p,q, (5.10)

and the fifth term consists of all the diagonal terms in Eq. (5.3). Like in the case of

single species, the Hamiltonian matrix is sparse due to the selection rules arising from

the orthogonality of the occupation number states. To illustrate the non-zero matrix

elements we consider the matrix elements of the terms in the Hamiltonian for a fixed

state |n〉. For the first term the non-zero matrix elements are of the form

〈n′| ĥ1
p,q |n〉 = −

(
J1
xφ

1∗
p+1,q + J1∗

x φ
1∗
p−1,q + J1

yφ
1∗
p,q−1 + J1∗

y φ
1∗
p,q+1

)
〈n′| b̂1

p,q |n〉

= c1
f

√
n1δn′1,n1−1δn′2,n2

= c1
f

√
n1, (5.11)

where c1
f = −

(
J1
xφ

1∗
p+1,q + J1∗

x φ
1∗
p−1,q + J1

yφ
1∗
p,q−1 + J1∗

y φ
1∗
p,q+1

)
, with n′ = n2Nb+n1−

1 and n = n2Nb + n1. In the matrix elements of the remaining terms, as mentioned

earlier, the value n remains unchanged. But, depending on the term of the Hamiltonian

there is a change in the value of n′. Similarly, for the second term ĥ2
p,q, the non-zero

matrix elements are of the form

〈n′| ĥ2
p,q |n〉 = −

(
J2
xφ

2∗
p+1,q + J2∗

x φ
2∗
p−1,q + J2

yφ
2∗
p,q−1 + J2∗

y φ
2∗
p,q+1

)
〈n′1, n′2| b̂2

p,q |n1, n2〉
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= c2
f

√
n2δn′1,n1

δn′2,n2−1 = c2
f

√
n2, (5.12)

where c2
f = −

(
J2
xφ

2∗
p+1,q + J2∗

x φ
2∗
p−1,q + J2

yφ
2∗
p,q−1 + J2∗

y φ
2∗
p,q+1

)
, with n′ = (n2−1)Nb+

n1 and n = n2Nb +n1. For the third term ĥ3
p,q, the non-zero matrix elements are of the

form

〈n′| ĥ3
p,q |n〉 = −

(
J1∗
x φ

1
p+1,q + J1

xφ
1
p−1,q + J1∗

y φ
1
p,q−1 + J1

yφ
1
p,q+1

)
〈n′1n′2| b̂†1p,q |n1, n2〉

= c1∗
f

√
n1 + 1δn′1,n1+1δn′2,n2

= c1∗
f

√
n1 + 1, (5.13)

where c1∗
f = −

(
J1∗
x φ

1
p+1,q + J1

xφ
1
p−1,q + J1∗

y φ
1
p,q−1 + J1

yφ
1
p,q+1

)
, with n′ = n2Nb +

n1 + 1 and n = n2Nb + n1. And, for the fourth term ĥ4
p,q, the non-zero matrix element

is of the form

〈n′| ĥ4
p,q |n〉 = −

(
J2∗
x φ

2
p+1,q + J2

xφ
2
p−1,q + J2∗

y φ
2
p,q−1 + J2

yφ
2
p,q+1

)
〈n′1n′2| b̂†2p,q |n1, n2〉

= c2∗
f

√
n2 + 1δn′1,n1

δn′2,n2+1 = c2
f

√
n2 + 1, (5.14)

where c2∗
f = −

(
J2∗
x φ

2
p+1,q + J2

xφ
2
p−1,q + J2∗

y φ
2
p,q−1 + J2

yφ
2
p,q+1

)
, with n′ = (n2+1)Nb+

n1 and n = n2Nb + n1. Finally, the matrix element of the diagonal term ĥ5
p,q is

Dnn =
∑
k=1,2

{
−
[
ckfφ

k
p,q + ck∗f φ

k∗
p,q

]
+
Ukk
2

[
nkp,q(n

k
p,q − 1)

]
− µ̃knkp,q

}
+U12n

1
p,qn

2
p,q. (5.15)

Once the Hamiltonian matrix is diagonalized, considering only the lowest energy eigen-

state, we obtain the coefficients c(p,q)
n . From these the SF order parameters for both the

species at the lattice site (p, q) can be computed as

φ1
p,q = p,q〈ψ|b̂1

p,q|ψ〉p,q =
∑
n1,n2

√
n1c

(p,q)∗
n1−1,n2

c(p,q)
n1,n2

, (5.16)

φ2
p,q = p,q〈ψ|b̂2

p,q|ψ〉p,q =
∑
n1,n2

√
n2c

(p,q)∗
n1,n2−1c

(p,q)
n1,n2

, (5.17)

and the corresponding occupancy of the two species are

n1
p,q = p,q〈ψ|n̂1

p,q|ψ〉p,q =
∑
n1,n2

n1|c(p,q)
n1,n2
|2, (5.18)

n2
p,q = p,q〈ψ|n̂2

p,q|ψ〉p,q =
∑
n1,n2

n2|c(p,q)
n1,n2
|2. (5.19)

Using these values, we can do the computations for the next lattice site and continue

this till the last lattice site. This completes one iteration, and then, like in the case of

the single species repeat the iteration till convergence.
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5.1.2 Extended BHM for TUGS

The BHM Hamiltonian with NN interaction is referred to as the extended BHM Hamil-

tonian. In the case of TUGS, we consider the addition of the NN interaction to study

the effect of long-range interaction on the density distribution in the immiscible do-

main. The extended BH Hamiltonian for TUGS is

ĤExt = ĤTUGS +
∑
k=1,2

∑
p,q

Vkn̂
k
p,q

(
n̂kp−1,q + n̂kp+1,q + n̂kp,q−1 + n̂kp,q+1

)
+
∑
p,q

[
V12n̂

1
p,q

(
n̂2
p−1,q + n̂2

p+1,q + n̂2
p,q−1 + n̂2

p,q+1

)
+V21n̂

2
p,q

(
n̂1
p−1,q + n̂1

p+1,q + n̂1
p,q−1 + n̂1

p,q+1

)]
, (5.20)

here, Vk is the intra NN interaction strength for both the species, and V12 (V21) is the

inter NN interaction between the two species. And, in the present work, all of these are

repulsive, Vk > 0 and V12 > 0. The NN interaction is non-zero in the experiments with

dipolar atomic species. And, more importantly, the relative effect of the long-range

interaction can be enhanced by suppressing the contact interaction through magnetic

Feshbach resonance. To obtain the ground state of the extended BH Hamiltonian, we

use SGMF method, that is total Hamiltonian is the sum of single-site Hamiltonians

ĥExt
p,q = ĥTUGS

p,q +
∑
k=1,2

Vkn̂
k
p,q

(
n̂kp−1,q + n̂kp+1,q + n̂kp,q−1 + n̂kp,q+1

)
+V12n̂

1
p,q

(
n̂2
p−1,q + n̂2

p+1,q + n̂2
p,q−1 + n̂2

p,q+1

)
+V21n̂

2
p,q

(
n̂1
p−1,q + n̂1

p+1,q + n̂1
p,q−1 + n̂1

p,q+1

)
. (5.21)

For extended BH Hamiltonian also, we diagonalize the Hamiltonian at each site sepa-

rately, and NN interaction terms contribute to the diagonal matrix element.

5.2 Phase diagram of TUGS

For the SGMF, like in the case of single species, we start the computations with the

initial choice of SF order parameter φ, and construct the matrix of the Hamiltonian in

Eq. (5.3) by using Gutzwiller state in Eq. (5.4). We diagonalize it, iterate and repeat till

convergence to obtain the ground state. We identify the MI-SF phase boundary based
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Figure 5.1: Phase diagram of TUGS by varying the inter-species interaction strength

U12. A half filling (ρ1 = ρ2 = 0.5, ρ = 1) MI lobe emerges with the introduction of

interspecies interaction (U12) for low value of µ. This lobe further enhances with the

higher values of U12. The similar behaviour is observed for the (ρ1 = ρ2 = 1.5, ρ = 3)

MI lobe.

on the SF order parameter and the lattice occupancy at each site. For the MI phase,

SF order parameter is zero with integer commensurate filling at each site. While for

the SF phase occupancy is commensurate but real with non-zero SF order parameter.

The phase diagrams of the BH Hamiltonian of TUGS in Eq. (5.3) for different values

of U12 are shown in Fig. 5.1. For simplicity, we consider J1
x = J1

y = J2
x = J2

y = J ,

µ1 = µ2 = µ and U11 = U22 = U . These considerations may quantitatively modify the

location of phase transition in the phase diagram, but do not alter the physics of interest

in a qualitative way. We scale all the energies with U , and plot the phase diagram with

respect to µ/U and J/U .

The phase diagrams consists of lobes of incompressible MI phase in which the

average lattice occupancy ρ = ρ1 + ρ2 is integer at each site. In absence of interaction

strength U12 = 0, the phase diagram of the two species is identical to the case of single



92 Chapter 5. Two species ultracold gas systems

species. With the introduction of inter-species interaction, with U12 = 0.3U , the half

filled lobe having ρ1 = ρ2 = 0.5, ρ = 1 for each species appears in the phase diagram

for µ ≈ 0.4U . This is shown in Fig. 5.1(a). For the range of 0.4 ≤ µ ≤ 1.4U , we

obtain the MI phase with ρ1 = ρ2 = 1, ρ = 2 for both the species, the location of

the Mott lobe tip (J ≈ 0.042U ) is similar to that of the single species. On increasing

µ further we obtain the MI lobe of ρ1 = ρ2 = 1.5, ρ = 3 for small range of µ. And

MI lobe for ρ1 = ρ2 = 2, ρ = 4 is also obtained for large value of µ. The half-filled

lobes arise due to the presence of two species and characteristics of TUGS in optical

lattices. Next, when we increase the inter-species interaction energy to U12 = 0.5U .

We observe that the MI lob of ρ = 4 is shifted beyond the range of µ and J considered.

With the increase in U12 the MI lobes corresponding to half fillings ρ = 1 and ρ = 3

are increased as shown in Fig. 5.1 (b). As shown in Fig. 5.1 (c), we observe that these

half-filled MI lobes are further enhanced for U12 = 0.7U . In the last subfigure Fig. 5.1

(d), we show that the MI lobe for ρ = 3 is shifted beyond the range of the µ and J

considered for U12 = 0.9U .
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Figure 5.2: Phase diagram of extended BHM for TUGS at the different inter-species

interaction strength U12 and for inter-species NN interaction V12 = V21 = 0, V1 =

V2 = 0.05U . The MI(1,1) lobe transforms into the DW(2,0) by increasing the U12.
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Figure 5.3: Phase diagram of extended BHM for TUGS at the different inter-species

interaction strength U12 and for inter-species NN interaction V12 = V21 = 0.05U ,

V1 = V2 = 0.05U . Phase separated (PS) domain are shown in the DW and SF phases.

5.2.1 Phase diagram of TUGS extended BHM

We obtain the ground state solution of extended BHM in Eq. (5.21) by using Gutzwiller

ansatz as described earlier. The extended BHM shows two more phases: DW and SS.

To study effect of the NN interaction, we consider V12 = V21 = 0 and V1 = V2 =

0.05U . The phase diagram is, then, obtained by varying the inter species interaction

strength U12. Like in the BHM case, we consider J1
x = J1

y = J2
x = J2

y = J , µ1 =

µ2 = µ and U11 = U22 = U . The phase diagram for extended BHM at U12 = 0 for

TUGS is shown in Fig. 5.2 (a). As shown in the figure, we observe DW(1,0), MI(1,1),

DW(2,1), SS (green line) and SF phases with the introduction of NN interaction Vk.

In the phase diagram, the DW and MI phase lobes appear for both species. As to be

expected, the SS phase appears near to the DW(1,0) and DW (2,1) lobes. It has been

shown in earlier studies that the DW and SS lobes are enhanced with the stronger Vk

and for Vk ≥ U only the checkerboard DW and SS phases exist for the single species

[141].

For U12 = 0, as mentioned earlier, the two species phase diagram is reduced to

that of the single species phase diagram. With finite inter-species interaction U12 =

0.8U , the corresponding phase diagram is as shown in Fig. 5.2 (b). The inter-species

interaction effectively enhances the NN intra-species interaction Vk, therefore DW(1,0)
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and SS lobes are enhanced in Fig. 5.2 (b), and at the same time the lobes are shifted to

higher values of µ. On further increasing the inter-species interaction to U12 = 0.9U ,

DW(1,0) lobe is enhanced, and region of the SS phase is also increased. Another

important feature is that the MI(1,1) phase is transformed into the DW(2,0) phase. The

transformation from an incompressible MI phase to another incompressible phase DW

passes through the compressible SF phase as an intermediate phase. The MI-SF-DW

transition is discernible in the phase diagram in Fig. 5.2 (c). Here, we also observe that

the area of the SS phase also increased. On increasing U12, the DW lobe is enhanced,

MI and SF lobe start to vanish and DW(2,0) lobe replaces these MI and SF phases. At

U12 = U , within the range of the parameters considered, the MI phase vanishes, and

we observe DW(1,0) and DW(2,0) lobes with enhanced SS regime. In short, there are

two observable effects of increasing the inter-species interaction strength U12: the DW

and SS regimes are enhanced due to larger effective Vkk; and the MI-DW transition

through SF phase is observed. The latter has not been observed in previous works.

0.0 0.5 1.0 1.5 2.0 2.5
µ/U

0.0
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ρ
=
ρ
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+
ρ
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Figure 5.4: (a) Shifting of half filled (ρ = 1, 3, ..) MI lobes for BHM with inter-species

interaction strength U12/U . (b) Shifting of DW lobe (ρ = 1, 3, ..) with U12 in the case

of eBHM for V12 = 0. Here in both cases, we have fixed J/U = 0.

To show the changes in the half filled MI lobes (ρ = 1, 3, 5, . . .) of the BHM with

increasing U12, the value of ρ at J/U = 0 is plotted as a function of µ/U in Fig 5.4 (a).
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Figure 5.5: Plot for width of ρ = 1 in terms of µ/U for half filed MI lobe for BHM

and DW lobe for eBHM with inter-species interaction strength U12.

From the figure it is clear that the width of the half filled MI lobes increase but the

MI lobes for both the species (ρ = 2, 4, . . .) remain unchanged with increasing U12.

Similarly, in the case of eBHM too, as shown in Fig 5.4 (b), the width of the DW lobes

(ρ = 1, 3, 5, . . .) increase with the increase in U12. And, the width of the MI lobes

(ρ = 2, 4, . . .) remain unchanged. The plots in the Fig 5.4 (b) correspond to J/U = 0

and V12 = 0. This implies that we consider intra-species long-range interactions but

not for the inter-species interaction. For a better representation of the increase in the

width of the MI lobes, as an example, the width of the ρ = 1 is plotted as a function

of U12 in Fig 5.5 for both BHM and eBHM. The width for ρ = 1 vary linearly with

interaction strength for BHM. There is key difference in the case of eBHM, initially

the width vary linearly but after U12 = 0.8 the width remains unchanged.

5.3 Miscible and Immiscible phases

A feature unique to TUGS is the phenomenon of phase separation, which occurs when

the inter-species interaction exceeds a critical value. This phenomenon, in general,

is associated with several novel phenomena in nonlinear dynamics, pattern formation,

and phase transitions in condensed matter systems, etc. In the case of TUGS, phase
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separation in the weakly interacting regime or the SF regime is very well studied.

However, it is yet to be explored in the strongly interacting regimes such as the DW

and SS phases, and yet to achieve experimentally. Here, I discuss our results related to

the phase-separated domain in the strongly interacting regime.

We observe like reported in previous works, phase separation in the SF phase with

the BHM, but there is no phase separation in the MI phase. We find that to observe

phase separation in the strongly interacting regime, we need to incorporate NN inter-

actions. With NN interactions, we do get different geometries in the phase-separated

regime. For this, we solve the Eq. (5.21) with finite long-range interactions. We

first consider finite intra-species long-range interactions, but with no long-range inter-

species interactions V12 = 0. In this case, we do not observe the phase separation. In

the next step, we consider finite V12. We, then, observe the phase separation. For our

present study, we take V1 = V2 = V12 = 0.05U . With these values of long-range inter-

action, we have studied the phase diagram in the two regimes corresponding to the con-

tact interactions: miscible phase U2
12 � U11U22; and immiscible phase U2

12 � U11U22.

As mentioned earlier, the interactions considered are all repulsive U , V > 0, and this

is essential to observe the phase separation in the system.

5.3.1 Miscible phase

In the miscible phase, we consider U12 = 0.9U and the corresponding phase diagram

in Fig. 5.3 (a). The phase diagram supports DW, SS and SF phases. The DW(1,0)

lobe is defined with respect to the total site occupancy n1
p,q + n2

p,q, such that nkp,q are

either zero or one. Most importantly, the distributions of the zero and one of nkp,q is

random, but the total n1
p,q+n2

p,q exhibit DW(1,0). This implies that the average number

densities of the two species are ρ1 = ρ2 = 1/4 and thus the total number density is

ρ = ρ1 + ρ2 = 1/2. The SS phase, which circumscribes the DW(1,0) lobe, is an

intervening phase between the DW and SF phases. The SS phase is checkerboard in

ρ as well as φ. In the SF phase ρ is homogeneous with finite φ, and species are in the

miscible phase.

At higher values of µ Mott lobe ρ = ρ1 + ρ2 = 1 appears in the phase diagram. In

this phase too, the site occupancy of each species nkp,q are either zero or one, but the
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Figure 5.6: (a-c) Phase separation in the DW(1,0) phase without periodic boundary

condition with diagonal pattern. (d-e) Phase separation in the DW(2,1) phase with

periodic boundary condition with side by side pattern.

distribution of the values is random. However, the total site occupancy n1
p,q + n2

p,q is

one. On further increasing µ we get the DW(2,1) phase with ρ = ρ1 + ρ2 = 3/2, and

like in the case of DW(1,0), SS phase circumscribes it. We, then, observe the MI(2,2)

lobe with ρ = ρ1 + ρ2 = 2 at still higher µ. Here, it is to be emphasized that with

V12 6= 0, we define the lobes in terms of the total average density ρ. While we had use

ρ1 and ρ2 to identify the phases for V12 = 0.

5.3.2 Immiscible phase

For the immiscible regime, we consider U12 = 1.2U , and the corresponding phase

diagram is shown in Fig. 5.3 (b). The phase diagram is similar to the V12 = 0 case, but

here it is identified with the total density ρ. The important feature of this phase diagram

is that we obtain the phase separation near the DW-SS and SS-SF phase transitions. In

the SF phase, we observe the phase separation in the entire domain. In the DW(1,0)

lobe, we obtain the phase separation without periodic boundary condition, and we

obtain the diagonally phase separation geometry as shown in Fig. 5.6 (a-c). In this
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Figure 5.7: (a-f) Phase separation in the SS phase with periodic boundary condition

with side by side pattern.(g-l) Phase separation in the SF phase with periodic boundary

condition with side by side pattern.

regime, we do not observe the side by side phase separation. The DW(2,1) shows rich

physics. We observe the side by side phase separation in the DW, SS and SF phases.

Phase separation in DW(2,1) phase is shown in Fig. 5.6 (d-e), in SS phase Fig. 5.7

(a-f), and in SF phase Fig. 5.7 (g-l). We do not observe the phase separation in the MI

phase.
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5.4 Summary of the chapter

In this chapter, I describe the BH Hamiltonian for TUGS. I then, discuss the nearest

neighbour intra and inter-species interaction in the BH Hamiltonian, which is known

as eBHM for TUGS. We obtain the ground state solution with the Gutzwiller ansatz

for both BHM and eBHM TUGS. For BHM, I show that the phase diagram has half-

filled MI lobes in presence of inter-species interaction U12 of the system. The width of

half-filled MI lobes increase linearly with U12. While for eBHM we obtain the shifting

in the DW lobe with increasing inter-species interaction strength. In the end, I provide

the phase separation density profile for different phases such as DW, SS, and SF.





Chapter 6

Summary and future directions

Summary

In summary, I have studied bosonic Harper-Hofstadter model for 2D square lattice,

for different values of synthetic magnetic field α and filling factor ν. I have used the

SGMF, CGMF and ED methods to obtain the ground state solution of the system.

We obtain the QH and competing SF states. We obtain QH states for α = 1/5 with

ν = n/2 where n = 1, 2,. . . , 9. The QH states are checker board in density for all νs

except for ν = 5/2, which is homogeneous. For α = 1/3 with ν = n/3 where n = 1,

2,. . . , 8, all the QH states are checker board in nature. For α = 1/4 with ν = n/2

where n = 1, 2,. . . , 7. All the states have checker board density, and are consistent

with the previous RCMF results [68]. For α = 1/2 with ν = 1/2, 1 and 3/2, the QH

states for ν = 1/2 and 3/2 are Checker board but homogeneous for ν = 1.

Based on our results with CGMF and ED, the α = 1/4 with ν = 1/2, 1, 3/2 and 2

are the QH states which occur as the ground state of the BHM with synthetic magnetic

field, and these states exist within a narrow range of chemical potential µ. For other

combinations of α and ν, the SF state is the ground state and the QH states exist as a

metastable state. The experimental observation of a pure QH state needs tight control

on the thermal excitations as the two competing states, QH and SF states, are nearly

degenerate. The energy separation between these states is ≈ 10−2nK. Furthermore,

the QH state is sensitive to the nature of the envelope potential of the optical lattice.

The QH states exist for very shallow Gaussian envelope potentials but cease to exist

101
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for harmonic oscillator potential. The case of a box potential is the most promising

experimentally realizable envelope potential to observe a pure QH state of BHM with

a synthetic magnetic field.

The two-point correlation function for the QH state is non-monotonic. It decays

exponentially in the bulk and it has power law behaviour at the edges. These are

signatures of the gaped bulk and gapless edges for QH state. We obtain all the QH

states with the ED method and identify them based on the Penrose-Onsager criterion

and von Neumann entropy. The Penrose-Onsager criterion provides the condensate

fraction (ρcf) for the ground states obtained from the ED method. The condensate

fraction is less than one (ρcf < 1) for QH state and for SF state (ρcf ≈ 1). The von

Neumann entropy is a measure of entanglement of the state, and QH states have a

higher von Neumann entropy than the SF states. This serves as an additional measure

to distinguish the QH and SF states. We have studied the physics of two species BEC

in the strongly interacting regime. After obtaining the phase diagram for BHM of

TBEC, I have presented the results for extended BHM. For the extended BHM, we

have obtained phase separation in the strongly correlated phases such as density wave

and supersolid phases as well as in the superfluid phase. We do not obtain the phase

separation in the MI phase.

For the studies reported in the thesis I have used SGMF, CGMF, and ED methods.

The results of CGMF for MI-SF phase diagram approaches the QMC results with a

large cluster size. That justifies the use of CGMF in our studies as QMC results are

considered as the benchmark for the MI-SF phase diagram. However, to study the QH

states, the CGMF and ED method are more appropriate as QMC based methods suffer

sign problems. The other method to study the QH states is DMRG but it is applicable in

one dimensional systems. The other method which is appropriate for studying strongly

correlated systems in the Tensor Networks (TN). It provides more reliable results as the

correlations between lattice sites are represented in vector form. In our future works,

we have plans of using the TN method.
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Future directions

We have studied ultracold bosonic atoms with onsite (short-range) interaction in the

BHM. In the future, we plan to study the effect of long-range interaction with single

and two-species BECs in optical lattices. For these systems two more phases density

wave (DW) and supersolid (SS), apart from the Mott insulator (MI) and superfluid (SF)

phase emerge. The long-range dipole-dipole interaction decays as the inverse cubic

power of the distance, and have emerged as promising systems to examine magnetic

ordering. The dipolar interaction is characterized by the long-range and anisotropic

properties, in which the dipole forces modify the ground state and collective excita-

tions of the system. Due to the interplay of short-range and long-range interactions,

interesting phenomena such as the ferromagnetic order and spin waves emerge in the

dipolar system. We shall use the SGMF and CGMF methods to study the BHM with

long-range interaction and plan to study the different phases for single species BEC.

Then, depending on the orientation of the dipole, we shall study the quantum phases.

The physics of TBEC, which I describe in this thesis have been carried out for some

of the specific values of interspecies interaction. In the near future, we shall study the

phase diagram with the variation of the interspecies nearest neighbour interaction. The

most important issue is the stabilization of the SS phase in these systems, that I shall

try to address in our future works.

Another promising direction of study is the real-time dynamics of BHM with and

without the synthetic magnetic field. The real-time dynamics will be carried out with

all possible interactions. The study of QH states in the TBEC is our other interest. In

this thesis, I have used von Neumann entropy as a measure of correlation for the QH

states. But, a more accurate measure of correlation for topological states like the QH

states is the topological entanglement γ [222, 223]. The computation of topological

entanglement, however, requires partitioning the system and then, computing the von

Neumann entropy of the sub-systems. Such computations of γ have been done for

QH states using tensor networks [185]. But, with the ED method, the system partition

involves Singular Value Decomposition of large matrix and this is numerically chal-

lenging for larger system sizes. In the near future our plan is to calculate γ for the QH

states I have discussed in this thesis.





Appendix A

Matrix Elements And Numerical

Details

The expression of cluster Hamiltonians in terms of cluster sites are

ĥ2i,2j = −
(
Jxb̂
†
2i+1,2j b̂2i,2j + H.c

)
−
(
Jy b̂
†
2i,2j+1b̂2i,2j + H.c

)
−
[
Jx

(
b̂†2i,2jφ2i−1,2j − φ∗2i,2jφ2i−1,2j

)
+ H.c

]
−
[
Jy

(
b̂†2i,2jφ2i,2j−1 − φ∗2i,2jφ2i,2j−1

)
+ H.c

]
+
U

2
n̂2i,2j(n̂2i,2j − 1)− µ̃n̂2i,2j, (A.1)

ĥ2i+1,2j = −
(
Jy b̂
†
2i+1,2j+1b̂2i+1,2j + H.c

)
−
[
Jx

(
φ∗2i+2,2j b̂2i+1,2j − φ∗2i+2,2jφ2i+1,2j

)
+ H.c

]
−
[
Jy

(
b̂†2i+1,2jφ2i+1,2j−1 − φ∗2i+1,2jφ2i+1,2j−1

)
+ H.c

]
+
U

2
n̂2i+1,2j(n̂2i+1,2j − 1)− µ̃n̂2i+1,2j, (A.2)

ĥ2i,2j+1 = −
(
Jxb̂
†
2i+1,2j+1b̂2i,2j+1 + H.c

)
−
[
Jx

(
b̂†2i,2j+1φ2i−1,2j+1 − φ∗2i,2j+1φ2i−1,2j+1

)
+ H.c

]
−
[
Jy

(
φ∗2i,2j+2b̂2i,2j+1 − φ∗2i,2j+2φ2i,2j+1

)
+ H.c

]
+
U

2
n̂2i,2j+1(n̂2i,2j+1 − 1)− µ̃n̂2i,2j+1, (A.3)

ĥ2i+1,2j+1 = −
[
Jx

(
φ∗2i+2,2j+1b̂2i+1,2j+1 − φ∗2i+2,2j+1φ2i+1,2j+1

)
+ H.c

]
−
[
Jy

(
φ∗2i+1,2j+2b̂2i+1,2j+1 − φ∗2i+1,2j+2φ2i+1,2j+1

)
+ H.c

]
+
U

2
n̂2i+1,2j+1(n̂2i+1,2j+1 − 1)− µ̃n̂2i+1,2j+1. (A.4)
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Let us consider only one cluster (i = j = 0) and find the matrix elements. For this

single cluster n0 = (0, 0), n1 = (1, 0), n2 = (0, 1), n3 = (1, 1). Here, we are working

in the Fock basis such that n0, .., n3 runs from 0, 1, .., Nb − 1 and the bra (K) and ket

(L) state for the matrix elements in term of m(n) can be written as

K = m3N
3
b +m2N

2
b +m1Nb +m0

L = n3N
3
b + n2N

2
b + n1Nb + n0.

Now, for H intra
x term with i = j = k = 0, the matrix element is

H intra
x = −Jx 〈m0, ..,m3| b̂†1,0b̂0,0 |n0, .., n3〉 ,

= −Jx
√
m1

√
n0δm0,n0−1δm1−1,n1δm2,n2δm3,n3

= −Jx
√
m1

√
m0 + 1, (A.5)

where the locations for the matrix element are

K = m3N
3
b +m2N

2
b +m1Nb +m0

L = m3N
3
b +m2N

2
b + (m1 − 1)Nb + (m0 + 1). (A.6)

We calculate the matrix elements for a single 2 × 2 cluster in terms of the single site

Fock basis m0,m1,m2,m3. In compact form, for a single cluster thirteen elements are

H intra
x (K,L) = −Jx 〈m0, ..,m3| b̂†2i+1,2j+kb̂2i,2j+k |n0, .., n3〉 ,

H intra
x (K,L) =

−Jx
√
m1

√
m0 + 1 for k = 0

−Jx
√
m3

√
m2 + 1 for k = 1

where K is the row location as K = m3N
3
b +m2N

2
b +m1Nb +m0 for the matrix and

L is the column location as

L =

m3N
3
b +m2N

2
b + (m1 − 1)Nb + (m0 + 1) for k = 0

(m3 − 1)N3
b + (m2 + 1)N2

b +m1Nb +m0 for k = 1

Here, we fix the bra state such as K and calculate the corresponding ket state L for all

the matrix elements in terms of Fock basis. The matrix element H∗intra
x is

H∗intra
x (K,L) =

−J
∗
x

√
m0

√
m1 + 1 for k = 0

−J∗x
√
m2

√
m3 + 1 for k = 1
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with

L =

m3N
3
b +m2N

2
b + (m1 + 1)Nb + (m0 − 1) for k = 0

(m3 + 1)N3
b + (m2 − 1)N2

b +m1Nb +m0 for k = 1

The matrix element H intra
y is

H intra
y (K,L) =

−Jy
√
m2

√
m0 + 1 for k = 0

−Jy
√
m3

√
m1 + 1 for k = 1

with location

L =

m3N
3
b + (m2 − 1)N2

b +m1Nb + (m0 + 1) for k = 0

(m3 − 1)N3
b +m2N

2
b + (m1 + 1)Nb +m0 for k = 1

The matrix element H∗intra
y is

H∗intra
y (K,L) =

−J
∗
y

√
m0

√
m2 + 1 for k = 0

−J∗y
√
m1

√
m3 + 1 for k = 1

with location

L =

m3N
3
b + (m2 + 1)N2

b +m1Nb + (m0 − 1) for k = 0

(m3 + 1)N3
b +m2N

2
b + (m1 − 1)Nb +m0 for k = 1

The matrix element H in
x is

H in
x (K,L) =

−Jx
√
m0φ2i−1,2j for k = 0

−Jx
√
m2φ2i−1,2j+1 for k = 1

with location

L =

m3N
3
b +m2N

2
b +m1Nb + (m0 − 1) for k = 0

m3N
3
b + (m2 − 1)N2

b +m1Nb +m0 for k = 1

The matrix element H∗inx is

H∗inx (K,L) =

−J
∗
x

√
m0 + 1φ∗2i−1,2j for k = 0

−J∗x
√
m2 + 1φ∗2i−1,2j+1 for k = 1
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with location

L =

m3N
3
b +m2N

2
b +m1Nb + (m0 + 1) for k = 0

m3N
3
b + (m2 + 1)N2

b +m1Nb +m0 for k = 1

The matrix element H in
y is

H in
y (K,L) =

−Jy
√
m0φ2i,2j−1 for k = 0

−Jy
√
m1φ2i+1,2j−1 for k = 1

with location

L =

m3N
3
b +m2N

2
b +m1Nb + (m0 − 1) for k = 0

m3N
3
b +m2N

2
b + (m1 − 1)Nb +m0 for k = 1

The matrix element H∗iny is

H∗iny (K,L) =

−J
∗
y

√
m0 + 1φ∗2i,2j−1 for k = 0

−J∗y
√
m1 + 1φ∗2i+1,2j−1 for k = 1

with location

L =

m3N
3
b +m2N

2
b +m1Nb + (m0 + 1) for k = 0

m3N
3
b +m2N

2
b + (m1 + 1)Nb +m0 for k = 1

The matrix element Hout
x is

Hout
x (K,L) =

−Jx
√
m1 + 1φ∗2i+2,2j for k = 0

−Jx
√
m3 + 1φ∗2i+2,2j+1 for k = 1

with location

L =

m3N
3
b +m2N

2
b + (m1 + 1)Nb +m0 for k = 0

(m3 + 1)N3
b +m2N

2
b +m1Nb +m0 for k = 1

The matrix element H∗out
x is

H∗out
x (K,L) =

−J
∗
x

√
m1φ2i+2,2j for k = 0

−J∗x
√
m3φ2i+2,2j+1 for k = 1
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with location

L =

m3N
3
b +m2N

2
b + (m1 − 1)Nb +m0 for k = 0

(m3 − 1)N3
b +m2N

2
b +m1Nb +m0 for k = 1

The matrix element Hout
y is

Hout
y (K,L) =

−Jy
√
m2 + 1φ∗2i,2j+2 for k = 0

−Jy
√
m3 + 1φ∗2i+1,2j+2 for k = 1

with location

L =

m3N
3
b + (m2 + 1)N2

b +m1Nb +m0 for k = 0

(m3 + 1)N3
b +m2N

2
b +m1Nb +m0 for k = 1

The matrix element H∗out
y is

H∗out
y (K,L) =

−J
∗
y

√
m2φ2i,2j+2 for k = 0

−J∗y
√
m3φ2i+1,2j+2 for k = 1

with location

L =

m3N
3
b + (m2 − 1)N2

b +m1Nb +m0 for k = 0

(m3 + 1)N3
b +m2N

2
b +m1Nb +m0 for k = 1

Diagonal element is

Hdiag =
∑

k,l

(
Jxφ

∗
2i,2j+kφ2i−1,2j+k + H.c.+ Jxφ

∗
2i+2,2j+kφ2i+1,2j+k + H.c.

+ Jyφ
∗
2i+l,2jφ2i+l,2j−1 + H.c.+ Jyφ

∗
2i+l,2j+2φ2i+l,2j+1 + H.c.

)
+
U

2
n̂2i+k,2j+l (n̂2i+k,2j+l − 1)− µ̃n̂2i+k,2j+l

with location L = m3N
3
b +m2N

2
b +m1Nb +m0.

For the numerical computation, we take the initial value of SF order parameter to

calculate the matrix elements. After that we diagonalize the Hamiltonian and obtain

the lowest eigenvector which is the new cluster wave-function for the next iteration.

With this new wave-function, we calculate the SF order parameter φ at each lattice site

in the cluster as

φ0,0 =
∑

m0,..,m3

∑
n0,..,n3

C∗(0,0)
m0,..,m3

C(0,0)
n0,..,n3

〈m0, ..,m3| b̂0,0 |n0, .., n3〉
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φ0,0 =
∑

m0,..,m3

∑
n0,..,n3

C∗(0,0)
m0,..,m3

C(0,0)
n0,..,n3

√
n0δm0,n0−1δm1,n1δm2,n2δm3,n3

φ0,0 =
∑

m0,..,m3

√
m0 + 1C∗(0,0)

m0,m1,m2,m3
C

(0,0)
m0+1,m1,m2,m3

.

And similarly

φ1,0 =
∑

m0,..,m3

√
m1 + 1C∗(0,0)

m0,m1,m2,m3
C

(0,0)
m0,m1+1,m2,m3

φ0,1 =
∑

m0,..,m3

√
m2 + 1C∗(0,0)

m0,m1,m2,m3
C

(0,0)
m0,m1,m2+1,m3

φ1,1 =
∑

m0,..,m1

√
m3 + 1C∗(0,0)

m0,m1,m2,m3
C

(0,0)
m0,m1,m2,m3+1,

and use these φ in the next iteration and repeat the process till the convergence in the

φ is order of 10−6 in the successive two iteration. We also calculate lattice occupancy

at each lattice sites within the cluster as

ρ0,0 =
∑

m0,..,m3

m0|C(0,0)
m0,m1,m2,m3

|2, ρ1,0 =
∑

m0,..,m3

m1|C(0,0)
m0,m1,m2,m3

|2

ρ0,1 =
∑

m0,..,m3

m2|C(0,0)
m0,m1,m2,m3

|2, ρ1,1 =
∑

m0,..,m3

m3|C(0,0)
m0,m1,m2,m3

|2
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[1] B. Capogrosso-Sansone, S. G. Söyler, N. Prokof’ev, and B. Svistunov, Monte

carlo study of the two-dimensional Bose-Hubbard model, Phys. Rev. A 77,

015602 (2008).

[2] K. v. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy de-

termination of the fine-structure constant based on quantized Hall resistance,

Phys. Rev. Lett. 45, 494–497 (1980).

[3] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-dimensional magnetotrans-

port in the extreme quantum limit, Phys. Rev. Lett. 48, 1559 (1982).

[4] R. B. Laughlin, Anomalous Quantum Hall effect: An incompressible quantum

fluid with fractionally charged excitations, Phys. Rev. Lett. 50, 1395 (1983).

[5] R. Willett, J. P. Eisenstein, H. L. Störmer, D. C. Tsui, A. C. Gossard, and J. H.

English, Observation of an even-denominator quantum number in the fractional

Quantum Hall effect, Phys. Rev. Lett. 59, 1776–1779 (1987).

[6] J. K. Jain, Composite-fermion approach for the fractional Quantum Hall effect,

Phys. Rev. Lett. 63, 199–202 (1989).

[7] K. von Klitzing, The quantized Hall effect, Rev. Mod. Phys. 58, 519–531 (1986).

[8] D. R. Yennie, Integral Quantum Hall effect for nonspecialists, Rev. Mod. Phys.

59, 781–824 (1987).

[9] H. L. Stormer, D. C. Tsui, and A. C. Gossard, The fractional Quantum Hall

effect, Rev. Mod. Phys. 71, S298–S305 (1999).

111



112 BIBLIOGRAPHY

[10] H. L. Stormer, Nobel lecture: The fractional Quantum Hall effect, Rev. Mod.

Phys. 71, 875–889 (1999).

[11] M. König, H. Buhmann, L. W. Molenkamp, T. Hughes, C.-X. Liu, X.-L. Qi,

and S.-C. Zhang, The Quantum Spin Hall effect: Theory and experiment, J.

Phys. Soc. Japan 77, 031007 (2008).
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Dual-species Bose-Einstein condensate of 87Rb and 133Cs, Phys. Rev. A 84,

011603 (2011).

[72] B. Pasquiou, A. Bayerle, S. M. Tzanova, S. Stellmer, J. Szczepkowski, M. Parig-

ger, R. Grimm, and F. Schreck, Quantum degenerate mixtures of strontium and

rubidium atoms, Phys. Rev. A 88, 023601 (2013).

[73] L. Wacker, N. B. Jørgensen, D. Birkmose, R. Horchani, W. Ertmer, C. Klempt,

N. Winter, J. Sherson, and J. J. Arlt, Tunable dual-species Bose-Einstein con-

densates of 39K and 87Rb, Phys. Rev. A 92, 053602 (2015).



118 BIBLIOGRAPHY

[74] F. Wang, X. Li, D. Xiong, and D. Wang, A double species 23Na and 87Rb Bose-

Einstein condensate with tunable miscibility via an interspecies Feshbach reso-

nance, J. Phys. B 49, 015302 (2016).

[75] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Pro-

duction of two overlapping Bose-Einstein condensates by sympathetic cooling,

Phys. Rev. Lett. 78, 586 (1997).

[76] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell,

Dynamics of component separation in a binary mixture of Bose-Einstein con-

densates, Phys. Rev. Lett. 81, 1539 (1998).

[77] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner,

J. Stenger, and W. Ketterle, Optical confinement of a Bose-Einstein condensate,

Phys. Rev. Lett. 80, 2027 (1998).

[78] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, and

W. Ketterle, Spin domains in ground-state Bose-Einstein condensates, Nature

(London) 396, 345 (1998).

[79] P. Maddaloni, M. Modugno, C. Fort, F. Minardi, and M. Inguscio, Collective

oscillations of two colliding Bose-Einstein condensates, Phys. Rev. Lett. 85,

2413 (2000).

[80] G. Delannoy, S. G. Murdoch, V. Boyer, V. Josse, P. Bouyer, and A. Aspect,

Understanding the production of dual Bose-Einstein condensation with sympa-

thetic cooling, Phys. Rev. A 63, 051602 (2001).

[81] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-

Kurn, Spontaneous symmetry breaking in a quenched ferromagnetic spinor

Bose-Einstein condensate, Nature (London) 443, 312 (2006).

[82] K. M. Mertes, J. W. Merrill, R. Carretero-González, D. J. Frantzeskakis, P. G.
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[94] E. Nicklas, M. Karl, M. Höfer, A. Johnson, W. Muessel, H. Strobel,
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Quantum Hall (QH) states of two-dimensional (2D) single-layer optical lattices are examined using the Bose-
Hubbard model (BHM) in the presence of an artificial gauge field. We study the QH states of both the homogeneous
and inhomogeneous systems. For the homogeneous case, we use cluster Gutzwiller mean-field (CGMF) theory
with cluster sizes ranging from 2 × 2 to 5 × 5. We then consider the inhomogeneous case, which is relevant to
experimental realization. In this case, we use CGMF and exact diagonalization (ED). The ED studies are using
lattice sizes ranging from 3 × 3 to 4 × 12. Our results show that the geometries of the QH states are sensitive to
the magnetic flux α and cluster sizes. For homogeneous systems, among various combinations of 1/5 � α � 1/2
and filling factor ν, only the QH state of α = 1/4 with ν = 1/2, 1, 3/2, and 2 occur as ground states. For other
combinations, the competing superfluid (SF) state is the ground state and QH state is metastable. For BHM with
envelope potential, all the QH states observed in homogeneous systems exist for box potentials, but none exist
for the harmonic potential. The QH states also persist for very shallow Gaussian envelope potential. As a possible
experimental signature, we study the two-point correlations of the QH and SF states.

DOI: 10.1103/PhysRevA.98.023606

I. INTRODUCTION

The experimental realization of Bose-Einstein condensates
(BECs) of dilute atomic gases in optical lattices [1–4] and
consequent developments [5,6] have opened new frontiers to
explore the physics of quantum many-body systems. This is
due to the possibility of experimental control on the interatomic
interactions, number of atoms, lattice geometry, and choice
of atomic species. In particular, bosons in optical lattices are
near ideal realizations [7] of the Bose-Hubbard model (BHM)
[8,9]. The recent experimental implementations of artificial
gauge potential [10–16] in optical lattices have introduced an
important parameter and made these systems excellent testing
ground for QH physics [17]. Despite enormous progress in
experimental and theoretical understanding of the QH effect
[18–21], a basic understanding of the fractional quantum Hall
(FQH) effect [22] is still missing. The major difficulty arises
from the strong correlations of electrons, but which is also
the origin of FQH states. Although the Laughlin ansatz [23]
provides exact solutions for some FQH systems, it is not yet
observed in experiments. The strong magnetic field required
to obtain FQH states is the major hurdle to observe these
many-body states. Optical lattices, in this respect, have the
advantage as various topological states, such as FQH states,
are predicted to occur within the range of parameters achieved
in experiments [24,25].

In the BHM Hamiltonian, the hopping and on-site in-
teraction are the two competing terms. And both of these
can be tuned by changing the depth of the lattice potential
and employing Feshbach resonance [26,27]. The hopping
parameter J , which defines the strength of the hopping term
in the BHM Hamiltonian, acquires a phase J → |J | exp(i�)
in the presence of an artificial gauge potential [28] through the
Peierls substitution [29,30] and modifies the states of BHM.
So, for an atom in the optical lattice, there is a change of

phase � = 2πα when it hops around a unit cell or plaquette,
where α is the flux quanta per plaquette. In theoretical studies,
features of Laughlin states in low particle density limit have
been reported [31] for ν = 1/2 and α < αc = 0.4. Here, ν

is the filling factor, the number of particles per flux quanta,
and αc is the critical value below which FQH states exist. For
α > αc, the equilibrium ground-state properties start to change,
and the existence of a striped vortex lattice phase is reported
in the neighborhood of α = 1/2 [32]. On the other hand,
based on the results of Monte Carlo and exact diagonalization
(ED), the existence of bosonic FQH states is predicted [33] in
the vicinity of Mott plateaus for α = 2/3. Similar results are
reported in a recent work using the Chern-Simons theory [34]
in combination with single-site Gutzwiller mean-field (SGMF)
theory. In another recent work [35], the incompressibility of the
FQH states is employed to identify these states in computations
using cluster Gutzwiller mean-field (CGMF) theory for α =
1/5 at ν = 1/2. On the other hand, using reciprocal cluster
mean-field (RCMF) analysis, Hügel et al. [36] predicted a
competing FQH state as a metastable state for α = 1/4. In this
work, we report FQH states at distinct νs for low and high flux.
For example, when α = 1/5, we obtain QH states at ν = n/2,
where n = 1, 2, . . . , 9 and for α = 1/2 at ν = 1/2, 1, and 3/2.
In particular, we discuss the QH states for α = 1/5, 1/4, and
1/2 in the hard-core boson limit. We also obtain QH states for
the α = 1/3 case; however, we have not provided the details
as the general trend is similar to α = 1/5.

Motivated by the recent theoretical investigations and ex-
perimental progress, we address a basic gap in our current
understanding, that is, the occurrence of QH states in optical
lattices with an envelope potential. This key issue is addressed
in this work. For our studies, we use SGMF [37–39] and CGMF
[40–44] theories and ED. Our results, for the case of homoge-
neous optical lattices, agree well with the previous theoretical
observations. After establishing this and demonstrating that
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getting the geometry of QH states requires larger cluster sizes
in CGMF, we provide an answer to the following question:
What is the nature of the QH states in optical lattices with an
envelope potential?

II. THEORETICAL METHODS

We consider bosonic atoms at zero temperature confined
in a two-dimensional (2D) square optical lattice with an
envelope potential in the presence of synthetic magnetic field
[14–16,45]. In the Landau gauge, the system is well described
by the BHM [7,24,25,32,45] with Peierls substitution in the
nearest-neighbor (NN) hopping [29,30,46], and the Hamilto-
nian is

Ĥ = −
∑
p,q

[(Jxe
i2παq b̂

†
p+1,q b̂p,q + H.c.)

+ (Jyb̂
†
p,q+1b̂p,q + H.c.)]

+
∑
p,q

[
U

2
n̂p,q (n̂p,q − 1) − (μ − εp,q )n̂p,q

]
, (1)

where p (q) is the lattice site index along x (y) direction, b̂p,q

(b̂†
p,q) is the bosonic annihilation (creation) operator, and n̂p,q is

the number operator. The parameter Jx (Jy) is the complex hop-
ping strength between two NN sites along the x (y) direction,
andU is the on-site interaction strength. Here, μ is the chemical
potential and εp,q is the energy offset of the envelope potential.
The envelope or confining potential, in the case of harmonic
potential, modifies μ by the energy offset εp,q = �(p2 + q2),
where � is the strength of the harmonic confining potential.
The phase 2πα in Jx arises from the synthetic magnetic field
and 0 � α � 1/2. It is well established that for α = 0 the phase
diagram of BHM admits two phases, Mott insulator (MI) and
superfluid (SF) phases [3,7,8]. The strong on-site interaction
limit (J/U � 1) corresponds to the MI phase, whereas the
opposite limit (J/U � 1) corresponds to the SF phase. The
phase diagram in the μ-J plane consists of Mott lobes with
increasing commensurate integer filling. It has been shown in
previous studies that MI lobes are enlarged for α �= 0 [47].

A. Gutzwiller mean-field theory

To obtain the eigenstates of BHM, we use the mean-
field approximation [38]. For the mean-field Hamiltonian, the
annihilation (creation) operators in Eq. (1) are decomposed as

b̂p,q = φp,q + δb̂p,q , (2a)

b̂†
p,q = φ∗

p,q + δb̂†
p,q, (2b)

where φp,q = 〈b̂p,q〉 is the SF order parameter and φ∗
p,q =

〈b̂†
p,q〉. Using these definitions in Eq. (1) and neglecting the

second-order term in fluctuations like δb̂
†
p+1,qδb̂p,q , we obtain

the mean-field Hamiltonian of the BHM as

Ĥ MF = −
∑
p,q

{[Jxe
i2παq (b̂†

p+1,qφp,q + φ∗
p+1,q b̂p,q

−φ∗
p+1,qφp,q )+H.c.] + [Jy (b̂†

p,q+1φp,q + φ∗
p,q+1b̂p,q

−φ∗
p,q+1φp,q ) + H.c.]}

+
∑
p,q

[
U

2
n̂p,q (n̂p,q − 1) − (μ − εp,q )n̂p,q

]
. (3)

The order parameter φp,q is zero for the MI phase and finite for
the SF phase. The Hamiltonian in Eq. (3) can be considered as
the sum of the single-site Hamiltonian

ĥp,q = −[Jxe
i2παq (φ∗

p+1,q b̂p,q − φ∗
p+1,qφp,q ) + H.c.]

− [Jy (φ∗
p,q+1b̂p,q − φ∗

p,q+1φp,q ) + H.c.]

+ U

2
n̂p,q (n̂p,q − 1) − (μ − εp,q )n̂p,q . (4)

We can therefore diagonalize the Hamiltonian for each site
separately. To compute the ground state of the system, we use
the site-dependent Gutzwiller ansatz. That is, the ground state
of the system is the direct product of the ground states of all
the sites,

|�GW〉 =
∏
p,q

|ψ〉p,q =
∏
p,q

Nb∑
n=0

c(p,q )
n |n〉p,q, (5)

where Nb is the highest occupation number basis state and
c

(p,q )
n are the complex coefficients of the ground state |ψ〉p,q

at the site (p, q ) with the normalization condition
∑

n |c(p,q )
n |2

= 1. Then, the SF order parameter at the lattice site (p, q) is

φp,q = 〈�GW|b̂p,q |�GW〉 =
Nb∑
n=0

√
nc

(p,q )
n−1

∗
c(p,q )
n . (6)

Based on the definition of |�GW〉 in Eq. (5), the MI state with
density or occupancy ρ = m is

|�GW〉mMI =
∏
p,q

c(p,q )
m |m〉p,q, (7)

with the condition |c(p,q )
m |2 = 1. Considering the above ex-

pression, it is evident that φp,q is zero in the MI phase of the
system. But φp,q is finite for the SF phase as more than one
occupation number state contribute to |ψ〉p,q . As the intersite
coupling is through φp,q , it cannot describe strongly correlated
FQH states. For this reason, previous works have relied on
CGMF [35] and RCMF [36] to obtain FQH states in BHM.
In the present work, to obtain the ground state, the mean-field
Hamiltonian is diagonalized for each lattice site with Nb = 10
using initial guess of φp,q . After diagonalization, the ground
state is retained as the state |ψ〉p,q of the site in |�GW〉. In
addition, using |ψ〉p,q , a new φp,q is computed and this cycle
is continued until convergence.

B. Cluster Gutzwiller mean-field theory

From the expression of Ĥ MF in Eq. (3), and as men-
tioned earlier, it is evident that the nearest-neighbor hopping
or the intersite coupling is incorporated through the order
parameter φp,q . Thus, the SGMF theory does not describe
the intersite correlation very accurately. The CGMF remedy
this by including the hopping term exactly within the lattice
sites of a cluster. For this, consider that the system size is
K × L and it is divided into W clusters of size M × N , that
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a

a

FIG. 1. The solid blue lines between the lattice sites represent
the intersite bonds. The gray dashed lines demarcate cells around
each lattice site, which are used in representing cluster or attributing
properties to each of the lattice sites. For illustration, one of the cells
is highlighted in yellow and as an example a 2 × 2 cluster is identified
with orange color.

is, W = (K × L)/(M × N ). Here, K, L, M, N, W ∈ N. A
schematic description of a cluster or a representation of a cell
around a lattice site used while representing ρ are shown in
Fig. 1. Then, for the homogeneous systems, the limit of infinite
extent is obtained through the periodic boundary conditions.
Like in the SGMF theory, we can define a cluster Hamiltonian
and total Hamiltonian is the sum of all the cluster Hamiltonians
[44]. To derive the Hamiltonian for CGMF, we decompose the
hopping part of the Hamiltonian in two terms. The first term is
the exact hopping term for intersite coupling within the cluster
and the second term defines intersite coupling for the sites at
the boundary through mean field φp,q . The Hamiltonian for a
cluster can be written as

ĤC = −
′∑

p,q∈C

[(ei2παqJxb̂
†
p+1,q b̂p,q + H.c.)

+ (Jyb̂
†
p,q+1b̂p,q + H.c.)]

−
∑

p,q∈δC

[(ei2παqJxφ
∗
p+1,q b̂p,q + H.c.)

+ (Jyφ
∗
p,q+1b̂p,q + H.c.)]

+
∑

p,q∈C

[
U

2
n̂p,q (n̂p,q − 1) − (μ − εp,q )n̂p,q

]
, (8)

where the prime in the summation of the first term is to
indicate that (p + 1, q ), (p, q + 1) ∈ C and δC represents
the lattice sites at the boundary of the cluster. The order
parameter φ∗

p+1,q = 〈b̂†
p+1,q〉 with (p + 1, q ) /∈ C defines the

order parameter at the boundary of the neighboring cluster and
is required to describe the intercluster hopping along the x

direction. Similarly, φ∗
p,q+1 = 〈b̂†

p,q+1〉 with (p, q + 1) /∈ C.
Schematically, the clusters are conveniently represented in

FIG. 2. A 2 × 2 cluster within the lattice. The light and bold
dashed lines marked boundaries of cells and cluster, respectively.
The solid (dashed) green (light gray) arrows represent the exact
hopping term (Hermitian conjugate) within the cluster. Similarly, the
solid (dashed) red (gray) arrows represent approximate hopping term
(Hermitian conjugate) across clusters with one order ofφ and operator.

terms of cells. In Fig. 2, the cells of a 2 × 2 cluster and
neighboring clusters are highlighted.

To obtain the ground state with CGMF, we diagonalize the
cluster Hamiltonian and the ground state of the cluster in the
Fock basis is

|�c〉 =
∑

n0,n1...,nm′

Cn0,n1,...,nm′ |n0, n1, . . . , nm′ 〉, (9)

where m′ = (M × N ) − 1 and ni is the index of the oc-
cupation number state of ith lattice site within the cluster,
and Cn0,n1,...,nm′ is the amplitude of the cluster Fock state
|n0, n1, . . . , nm′ 〉. The above definition can be written in a
more compact form using the index quantum number 
 ≡
{n0, n1, . . . , nm′ } as

|�c〉 =
∑




C
|�c〉
, (10)

where |�c〉
 represents the cluster basis state |n0, n1..., nm′ 〉.
The ground state of the entire K × L lattice, like in SGMF, is
the direct product of the cluster ground states

∣∣�c
GW

〉 =
∏
k

|�c〉k, (11)

where k is the cluster index and varies from 1 to W

= (K × L)/(M × N ). The SF order parameter φ is computed
similarly to Eq. (6) as

φp,q = 〈
�c

GW

∣∣ b̂p,q

∣∣�c
GW

〉
. (12)

As mentioned in the previous works [34,35], the convergence
is very sensitive to the initial conditions, and to accelerate
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· · · · · ·n0 n1 n2 n3 nM−1

0 1 2 3 · · ·· · · M − 1

0

FIG. 3. The M × 1 row of a cluster with occupation number
n0, n1, . . . , nM−1. Each square box represents a lattice site and each
of ni corresponds to ith lattice site in that row. Here, ni runs from 0
to Nb − 1 for each lattice site.

convergence we use the method of successive overrelaxation
[48].

C. Exact diagonalization method

For an M × N lattice, the computations with ED method
are done with the BH Hamiltonian

Ĥ = −
∑

0�p<M

0�q<N

[(Jxe
i2παq b̂

†
p+1,q b̂p,q + Jyb̂

†
p,q+1b̂p,q ) + H.c.]

+
∑

0�p<M

0�q<N

U

2
n̂p,q (n̂p,q − 1). (13)

Here, μ is not required as, unlike the mean-field theories, the
number of atoms is fixed and the computations are in the
corresponding Hilbert space. The Hilbert space is spanned by
the states |�c〉, which like in CGMF can be considered as states
of one M × N cluster, and the ground state is obtained by
diagonalizing the Hamiltonian matrix. For compact notation,
we consider each |�c〉 is a direct product of N row states, and
each row state is represented as

|φ〉m =
M−1∏
i=0

|ni〉, (14)

where 0 � i � M − 1 are lattice sites along x direction, |ni〉
is the occupation number state at ith lattice site, and m ≡
{n0, n1, . . . , nM−1} is an index quantum number of the row
state. The schematic representation of a row state is shown in
Fig. 3. Thus, one of the cluster states can be written as

|�c〉
 =
N−1∏
j=0

|φj 〉mj =
N−1∏
j=0

M−1∏
i=0

∣∣nj

i

〉
, (15)

where 0 � j � N − 1 represent a row of the cluster as shown
in Fig. 4, and we have introduced cluster state index quan-
tum number 
 ≡ {n0

0, n
0
1, . . . , n

0
M−1, n

1
0, n

1
1, . . . , n

1
M−1, . . . ,

nN−1
0 , nN−1

1 , . . . , nN−1
M−1}, which is essentially equivalent to

writing 
 ≡ {m0,m1, . . . , mN−1}. In short, as shown in Fig. 4
there is a hierarchy of states: the single-site occupation number
states |nj

i 〉, the row states |φ〉m, and cluster states |�c〉
.
Now to construct the Hilbert space, consider the total

number of atoms to be Na , and for the present work, we
consider low density Na � M × N . We can therefore consider
the occupation number state at each lattice site to vary from
say |0〉 to |1〉, and consider the total number of atoms in the

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

n0
0 n0

1 n0
2 n0

3 n0
M−1

n1
0 n1

1 n1
2 n1

3 n1
M−1

n2
0 n2

1 n2
2 n2

3 n2
M−1

nN−1
0 nN−1

1 nN−1
2 nN−1

3 nN−1
M−1

0 1 2 3 M − 1· · ·· · ·
0

1

2

N − 1

⊗

⊗

⊗
⊗
...

.........

FIG. 4. The M × N cluster with occupation number
n

j

0, n
j

1, . . . , n
j

M−1 for j th row of the cluster. Each square box
represents a lattice site and each of n

j

i corresponds to each j th row of
cluster and ith lattice site in that row. Here, n

j

i runs from 0 to Nb − 1
for each lattice site.

row states |φ〉m as 0 � ∑
i n

j

i � min(M,Na ). However, the
cluster states |�c〉
 are direct product states of |φ〉m such that
the total number of atoms in |�c〉
 is Na , that is,

M−1∑
i=0

N−1∑
j=0

n
j

i = Na. (16)

After diagonalizing the Hamiltonian in Eq. (13) (for details,
see the appendix), we can get the ground state as

|�c〉 =
∑




C
|�c〉
, (17)

whereC
 is the coefficient of the cluster state and normalization
of the state is ensured through the condition

∑

 |C
|2 = 1. The

normalization, however, is guaranteed as the Hamiltonian is
Hermitian. As explained in the appendix, the general features
of the ED method described here can be extended to the CGMF
theory to compactify the Fock space used in the computations.

III. RESULTS AND DISCUSSIONS

To examine the effect of additional correlation in the CGMF
compared to SGMF, we compute the phase diagram using the
two methods in the presence of an artificial gauge field. For
the SGMF, we choose the basis size Nb = 10, that is, the basis
set of each lattice site is {|0〉p,q, |1〉p,q , . . . , |9〉p,q}. For the
CGMF computations, we consider a cluster basis consisting of
single-site occupation number states {|0〉 , |1〉}. As an example,
the ρ = 1 Mott lobe obtained from SGMF and CGMF with
3 × 2 clusters for α = 1/3 is shown in Fig. 5. Based on the
figure, the Mott lobe obtained from the CGMF is larger than
the SGMF. This indicates that the CGMF provides a better
description of the strongly correlated state like the MI phase
better. The other important observation from the figure is
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FIG. 5. MI-SF phase boundary around ρ = 1 Mott lobe with α =
0 from SGMF theory (blue dashed line). For α = 1/3, from SGMF
(black dot-dashed line) and from 3 × 2 CGMF theory (brown solid
line). From the CGMF calculation enhancement in the phase boundary
is obtained.

that the artificial gauge field enhances the Mott lobe. This
is expected as the synthetic magnetic field induced cyclotron
motion suppresses the itinerant character of atoms in the SF
phase and supports the MI phase due to the localization effect
[49]. Our phase diagram from the SGMF theory is consistent
with the results of Ref. [34].

The CGMF computations are done with clusters which are
integer multiple of the magnetic unit cell. As we consider a
system where the flux � is staggered along the y axis, for α =
1/N , a 1 × N cluster forms a magnetic unit cell. We, however,
find that except for a π/2 rotation the results are identical to
N × 1 cluster. This is due to the coupling of motion along x

and y through the interparticle interaction. The states obtained
are classified based on the compressibilty κ = ∂ρ/∂μ, where
the density ρ = ∑

j 〈ψc| n̂j |ψc〉 /(K × L). For the QH states,
κ = 0 or it is incompressible, and κ > 0 for the SF states. As
a result, QH states manifest as plateaus in ρ(μ) for different ν

and it is linear for the SF phase. Thus, in Fig. 6 the horizontal
lines indicating constant ρ define the existence of QH states.
Here, for simplicity and to be consistent with the experimental
realizations we consider isotropic hopping, Jx = Jy = J , and
repulsive on-site interaction, U > 0.

A. Homogeneous system

Based on our results, only the QH states for α = 1/4 and
ν = 1/2, 1, 3/2, and 2 are ground states when J/U ≈ 0.01,
and the competing SF state is metastable. For the mentioned
values, the QH state is the ground state over a small range
of μ centered around −0.019U, −0.014U, −0.007U , and
0.000U , respectively. For the other combination of α and
ν, the SF and QH states are ground and metastable states,
respectively. In general, for different αs, the energy difference
between the SF and QH states �E ≈ 10−3 U . For the param-
eters of experimental interest U/h̄ = 130 Hz [50] and we get
�E ≈ 10−2 nK. This implies stringent bounds on the thermal
excitations during the state preparation to obtain QH states.
One feature of the CGMF results which distinguishes the QH
states from the SF states is the energy. For the QH state, the
energy decreases with increasing cluster size. For example,

FIG. 6. The number density ρ with synthetic magnetic field α >

0. The SF states are compressible; as a result, ρ varies linearly with
μ, which correspond to the green curves. The incompressible QH
states correspond to constant ρ (blue lines) or plateaus for specific
values of filling factor ν. (a) α = 1/5 and the plateaus correspond to
ν = n/2, n = 1, 2, . . . , 9. (b) α = 1/2 and the plateaus correspond
to ν = 1/2, 1, and 3/2.

the QH state of α = 1/4 with ν = 1/2 and μ = −0.02U

has energy −0.0031U and −0.0046U with 2 × 4 and 4 × 4
clusters, respectively. Whereas for the SF state, the energy
remains almost unchanged, as it is −0.0042U and −0.0045U ,
respectively. Thus, the QH state emerges as the ground state
with the 4 × 4 cluster. Here, the key point is not the values
of the energies per se, but the importance of having better
correlation effects to obtain QH states. These trends arise from
the better description of the hopping term with larger cluster
size. Besides α = 1/4, the other values of α we have studied
in detail are 1/5 and 1/2. Results for each of the α considered
are described.

1. α = 1/5

For the hard-core boson limit, where ρ < 1, with α = 1/5,
we obtain QH states for ν = n/2, where n = 1, 2, . . . , 9 with
2 × 5 cluster. The case of ν = 1/2 was reported by Natu et al.
[35] and as shown in Fig. 7 our results are consistent. Among
the new FQH states, we have identified ν = 3/2, 7/2, and 9/2
as stripe phase, whereas it is homogeneous for ν = 5/2. In
addition, we obtain stripe phase integer QH (IQH) states for
ν = 1, 2, 3, and 4 fillings. The other distinguishing feature
of ν = 2 and 5/2 is that the competing SF states have zigzag
order in ρ and φ. On increasing the cluster size to 3 × 5, the QH
states with stripe geometry are transformed to checkerboard,
and the density contrast is reduced on increasing the cluster
size to 4 × 5. We also obtain the same QH states but rotated
by π/2 when the cluster sizes are 5 × 2, 5 × 3, and 5 × 4.
For example, with 5 × 2 cluster, the stripe order is horizontal,
while it is vertical for 2 × 5 cluster. Considering this property
of QH states, and noting that 1 × 5 is the magnetic unit cell for
α = 1/5, an accurate description of the FQH state is possible
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FIG. 7. (a) Hall state with stripe phase for α = 1/5, ν = 1/2 with
average number ρ = 0.1. (b) Zero SF order parameter φ for the same.

with 5 × 5 cluster. With this cluster size, the operator part of
the hopping term in Eq. (1) is exact along the x and y axes
within the cluster symmetrically. For example, with the 2 × 5
cluster, hopping along the x axis has a contribution through the
mean field after 2a while it is 5a for the 5 × 5 cluster, where
a is lattice constant.

2. α = 1/4

For the case of α = 1/4, we obtain QH states for ν = n/2,
where n = 1, 2, . . . , 7, with 2 × 4 and 4 × 4 clusters. The
FQH states for ν = 1/2, 3/2, 5/2 have stripe order with the
2 × 4 cluster; however, like in the case of α = 1/5 they are
transformed into checkerboard order with the 4 × 4 cluster.
That is, the geometry depends on the cluster size. Furthermore,
as we increase the cluster size to 4 × 8, the FQH state with
ν = 1/2 filling remains qualitatively unchanged. For the IQH
states, the ν = 1 and 3 have stripe order with the 2 × 4 cluster
and checkerboard order with the 4 × 4 cluster. But, the IQH
state corresponding to ν = 2 has homogeneous density order.
It must be mentioned that the thermodynamic limit, due to the
coupling of neighbouring clusters through φ, does not apply
to CGMF description of QH states where φ = 0. This limits
the applicability of the theory to finite-size systems relevant to
experimental realizations in optical lattices. On the other hand,
for the competing SF state, a large lattice size, due to the finite
φ, corresponds to the thermodynamic limit.

3. α = 1/2

For the high flux α = 1/2, we again consider 2 × 4 and 4 ×
4 clusters in the CGMF computations. It must be emphasized
that α = 1/2 is relevant to the recent experimental realizations
[15,16]. For this value of α, we obtain the QH states for
ν = 1/2, 1, and 3/2 from both the clusters. Like in α = 1/5
and 1/4 cases, the ν = 1/2 and 3/2 FQH and SF states are
stripe and homogeneous phases, respectively, with the 2 × 4
cluster. The structure of the FQH state is transformed into
checkerboard with the 4 × 4 cluster. This transformation is
visible from the variation in ρ for the case of ν = 1/2 as shown
in Fig. 8. For ν = 1 the IQH and SF states are homogeneous
for both the cluster sizes. An important observation is that the
homogeneous QH state is generic to ρ = 0.5 for the values of
α considered in the present work.

FIG. 8. The variation in the lattice occupancy ρ of the FQH states
with stripe and checkerboard geometry for high flux α = 1/2 obtained
using CGMF for the filling factor ν = 1/2. This is a metastable state,
and the ground state is in SF phase. (a) The FQH state has average
number density ρ = 0.25 with stripe pattern and it is obtained from the
2 × 4 cluster. (b) The checkerboard FQH state with the same number
density obtained from CGMF theory with the 4 × 4 cluster. In both the
cases, the ground states, SF phase, like the FQH state, have stripe and
checkerboard geometries with 2 × 4 and 4 × 4 clusters, respectively.

B. Inhomogeneous system

The simplest modification to the homogeneous system
for comparison with experimental realizations is to impose
hard-wall boundary conditions. This corresponds to the 2D
optical lattice realization similar to the case of homogeneous
BEC in a box potential [51]. With the hard-wall boundary
we recover the QH states for all αs described earlier, and
energies remain unchanged. The competing SF states, on the
other hand, have higher energies with hard-wall boundary.
In the present work, the largest cluster size in the CGMF
computations required to encapsulate one magnetic unit cell
along the y axis and maintain symmetry in the exact description
of hopping term is 5 × 5 for α = 1/5. For this reason, we
focus on the properties of the QH states of α = 1/5. The other
QH states are qualitatively similar but computationally less
demanding. It is also to be emphasized that the results of single
cluster with hard-wall boundary is equivalent to ED. Because
with the hard-wall boundary, we do not employ the periodic
boundary condition, thus the mean-field part vanishes and the
Hamiltonian becomes exact.

The IQH state for ν = 1 with different cluster sizes are
shown in Fig. 9, which has stripe geometry. Like in the
homogeneous case, the stripe geometry is transformed into
checkerboard geometry with the 3 × 5 cluster. However, the
most important observation is that ρ(x, y) obtained from
the 5 × 5 cluster, although checkerboard in structure, is very
different from that of the 3 × 5 and 4 × 5 clusters, which are
shown in Fig. 10. An observable property to identify the QH
states is the two-point correlation function 〈b̂†

x (y)b̂0(y)〉, where
the expectation is computed with respect to |ψc〉, and the results
from the 5 × 5 cluster are as shown in Fig. 11(a). The two-point
correlation function is closely related to another important
property, the one-body density matrix (OBDM) [52,53]

ρk,l = 〈ψc| b̂†
l b̂k|ψc〉, (18)

where k ≡ (x, y) and l ≡ (x ′, y ′) are lattice indices. From the
OBDM, one can compute the condensate fraction based on
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FIG. 9. Density distribution of the IQH state for α = 1/5 and
ν = 1 with hard-wall boundary. The average density of atoms in
this state is ρ = 0.2. (a) The IQH state has stripe geometry in the
CGMF results with 2 × 5 clusters. (b) It is, however, transformed
to checkerboard geometry when 3 × 5 clusters are considered in the
CGMF computations.

the Penrose-Onsagar criterion [54] and von Neumann entropy
[55–57]. These measures are particularly relevant to the ED
method and are described while discussing the ED results. The
correlation function, as recently proposed, could be measured
with quantum probes [58,59]. As reported in a recent work
[60], it can be seen from the figure that 〈b̂†

x (y)b̂0(y)〉 decays
as inverse power law at the edge. However, in the bulk, as it
is gaped, it initially shows exponential decay 〈b̂†

x (y)b̂0(y)〉 ∝
e−x/ξ but it is power law when x > K/2 or on reaching
the opposite edge. Here, ξ is the correlation length of the
system and as mentioned earlier, K is the size of the cluster
along x. For the SF state with the 5 × 3 cluster, as seen from
Fig. 11(b), the correlation through the bulk does not show any
nonmonotonicity. Here, we have considered the 5 × 3 cluster
as the correlation in the bulk is not sensitive to the size of the
cluster.

The other envelope potential which is of experimental
relevance is the harmonic oscillator potential. Then, the energy
offset εj = �j 2 = �(p2 + q2), where � is the strength of the
potential. To encapsulate the envelope potential, we consider
a larger lattice size ranging from 40 × 40 to 80 × 80. We,
however, find that the QH states are absent. This is due to the
nature of ∂εj /∂j : It monotonically increases and does not favor
incompressible phase like QH state. One possible modification

FIG. 10. The variations in ρ for IQH state of α = 1/5 and ν = 1
for a single cluster of different sizes. (a) The result from 3 × 5 cluster
has checkerboard pattern, and is the unit cell of the large lattice shown
in Fig. 9. (b) 4 × 5 cluster has less variations in ρ compared to 3 × 5.
(c) 5 × 5 cluster shows a rich variation in ρ and unlike in panels (a)
and (b) the central lattice site has maxima in density.

FIG. 11. Two-point correlation function for low flux α = 1/5
with the 5 × 5 and 5 × 3 clusters for the QH and SF states, respec-
tively. The correlation is calculated along the x direction for the single
cluster. Here y = 0 and 1 represent the edge and bulk, respectively.
(a) As a characteristic feature of QH state, the correlation function
of the ν = 1 IQH state decays nonmonotonically in the bulk, and
there is no difference between the hard-wall and periodic boundary
conditions. (b) For the corresponding SF state, there is no trend in
the bulk correlation function with hard-wall boundary (solid green
line with down triangle symbol), but it decays monotonically at the
edge (solid brown line with circle symbol). With periodic boundary
condition (dashed lines), the range of values change, and both the bulk
and edge exhibit monotonic decay in correlation.

is that the beam waist w of the laser beam generating the enve-
lope potential is large, so that the effective envelope potential
is still a Gaussian VG = U0e

−(x2+y2 )/w. Here, the amplitude
of the Gaussian potential U0 is proportional to the intensity
of the laser beam. With this potential, ∂εj/∂j also decays
exponentially and we find that the QH states exist for U0 �
10−3U . At higher values of U0, only the SF state is obtained
from the CGMF computations.

C. ED results

With the ED computations [52,53], we focus our attention
on the α = 1/4, which have QH states as ground state. For
this, we in particular consider ν = 1/2 FQH state with cluster
sizes 4 × 4, 4 × 8, and 4 × 12. Here, as alluded earlier, we
distinguish the QH states and SF states based on the Penrose-
Onsager criterion [54] and von Neumann entropy [55–57]. For
this, we compute OBDM in Eq. (18) and then digonalize it.
Following the Penrose-Onsager criterion, the state is SF if
pm = λOBDM

m /N ≈ 1, where λOBDM
m is the largest eigenvalue

of the OBDM, and N is the total number of atoms. In contrast,
for the QH states pm < 1. Our results are in agreement with
this; for example, with the 4 × 4 cluster, the values of pm are
0.56 and 0.89 for the FQH and SF states, respectively. Once the
OBDM is diagonalized, the von Neumann entropy is defined
as

S = −
M∑
i

pi ln(pi ), (19)

where pi = λOBDM
i /N and M is dimension of the OBDM. As

the von Neumann entropy is a measure of entanglement, it is
higher for the more correlated states like QH states compared
to the SF states. For the states considered, the values of S are 1.0
and 0.53 for the FQH and SF states, respectively. These values
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indicate that the FQH state, as expected, is more entangled
than the SF state. When the cluster size is increased to 4 × 8,
the value of pm is modified to 0.26 and 0.80 for the FQH and
SF states, respectively, and the corresponding values of S are
1.84 and 0.95, respectively. We also obtain similar results for
the other QH and SF states; for example, pm is 0.33 and 0.75
for the QH and SF states respectively with the 5 × 5 cluster
for α = 1/5, ν = 1. The corresponding value of S is 1.89 and
1.20 respectively. It is to be mentioned here that the QH and SF
states obtained from the ED method have the same features, ρ

and φ, as in CGMF results.

IV. CONCLUSIONS

Based on the results of our studies with CGMF and ED, the
α = 1/4 with ν = 1/2, 1, 3/2, and 2 are the QH states which
occur as ground states of the BHM with synthetic magnetic
fields, and these states exist within a narrow range of μ. For
other combinations of α and ν, the SF state is the ground state
and the QH state exist as a metastable state. The experimental
observation of a pure QH state needs tight control on the
thermal excitations as the two competing states, QH and SF
states, are nearly degenerate. The separation is only ≈10−2 nK.
Furthermore, the QH state is sensitive to the nature of the
envelope potential of the optical lattice. The QH states exist
for very shallow Gaussian envelope potentials but cease to
exist when the envelope potential is harmonic. The case of a
box potential is the most promising experimentally realizable
envelope potential to observe a pure QH state of BHM with a
synthetic magnetic field.
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APPENDIX

To illustrate the form of the Hamiltonian in CGMF, consider
the BHM Hamiltonian for a 2 × 2 cluster located at the bottom
right of the lattice in Fig. 1 is

ĥc = ĥ00 + ĥ10 + ĥ01 + ĥ11,

where ĥpq is the single-site Hamiltonian at the (p, q ) lattice
sites within the cluster. In general, if the lattice considered is
K × L, then the lattice sites are labeled along x (y) axis as 0,
1, . . ., and K − 1 (0, 1, . . ., and L − 1). The expressions of
the single-site Hamiltonians are

ĥ00 = −(Jxb̂
†
1,0b̂0,0 + H.c.) − (Jyb̂

†
0,1b̂0,0 + H.c.)

− [Jx (b̂†
0,0φK−1,0 − φ∗

0,0φK−1,0) + H.c.]

− [Jy (b̂†
0,0φ0,L−1 − φ∗

0,0φ0,L−1) + H.c.]

+ U

2
n̂0,0(n̂0,0 − 1) − μ̃n̂0,0, (A1)

FIG. 12. A 3 × 3 cluster and form of the hopping terms between
the lattice sites. For clarity, each lattice site is represented in terms of
cells. The light and bold dashed lines mark boundaries of cells and
cluster, respectively. The solid (dashed) light gray arrows represent
the exact hopping term (Hermitian conjugate) within the cluster.
Similarly, the solid (dashed) gray arrows represent approximate
hopping term (Hermitian conjugate) across clusters with one order
of φ and operator. The hopping terms involving the central lattice
site, represented in green color, are all exact.

ĥ10 = −(Jyb̂
†
1,1b̂1,0 + H.c.)

− [Jx (φ∗
2,0b̂1,0 − φ∗

2,0φ1,0) + H.c.]

− [Jy (b̂†
1,0φ1,L−1 − φ∗

1,0φ1,L−1) + H.c.]

+ U

2
n̂1,0(n̂1,0 − 1) − μ̃n̂1,0, (A2)

ĥ01 = −(Jxb̂
†
1,1b̂0,1 + H.c.)

− [Jx (b̂†
0,1φK−1,1 − φ∗

0,1φK−1,1) + H.c.]

− [Jy (φ∗
0,2b̂0,1 − φ∗

0,2φ0,1) + H.c.]

+ U

2
n̂0,1(n̂0,1 − 1) − μ̃n̂0,1, (A3)

ĥ11 = −[Jx (φ∗
2,1b̂1,1 − φ∗

2,1φ1,1) + H.c.]

− [Jy (φ∗
1,2b̂1,1 − φ∗

1,2φ1,1) + H.c.]

+ U

2
n̂1,1(n̂1,1 − 1) − μ̃n̂1,1, (A4)

where the operators and φ with index (K − 1) and (L − 1)
embody the periodic boundary conditions along x and y direc-
tions, respectively. An important point is that with the 2 × 2
cluster, none of the lattice sites have an exact representation
of the hopping term. The minimal cluster size which has exact
hopping terms with respect to a lattice site is 3 × 3, and the
schematic diagram is shown in Fig. 12. As seen from the figure,
the hopping terms involving the central lattice site are all exact.

For illustration of ED, consider Na = 4 and the size of the
lattice as 4 × 4. Then, the number of atoms in |φ〉m can range
from 0 to 4, and considering that occupation number states at
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each lattice sites are either |0〉 or |1〉, the possible row states
are

|0, 0, 0, 0〉 , |0, 0, 0, 1〉 , . . . , |1, 1, 1, 1〉.
In total, there are 16 |φ〉m, and an example of |�c〉
 defined as
direct product of four |φ〉m s is

|�c〉
 = |0, 0, 0, 0〉 ⊗ |0, 1, 1, 0〉 ⊗ |0, 0, 0, 1〉 ⊗ |1, 0, 0, 0〉.
Thus, the number of |�c〉
 is

M×NCNa
=16 C4 = 1820,

which is much less than the number of states 216 = 65536
required for computation with 4 × 4 cluster in CGMF.

The essence of ED is then to compute the Hamiltonian
matrix elements between the cluster states as


′ 〈�′
c| Ĥ |�c〉
 =

M−1∏
k=0

N−1∏
l=0

M−1∏
i=0

N−1∏
j=0

〈
ml

k

∣∣Ĥ ∣∣nj

i

〉
, (A5)

and then diagonalize the Hamiltonian matrix to obtain the
eigenvalues and eigenvectors. Considering that the sequence
of |�c〉
 is not based on symmetries but rather based on the
combinatorics of |φ〉m, the row-wise computation of Hamilto-
nian matrix is more efficient. In this regard, the matrix element
of the hopping term along the x axis Jxei2παq b̂

†
p+1,q b̂p,q can

be done in the following steps:
(1) Compare the row states m′ 〈φ| and |φ〉m of 
′ 〈�′

c| and
|�c〉
, respectively. Proceed to the next step if 
′ 〈�c| and |�c〉

only differ in one of the row states, say, the first row.

(2) Consider m′1 〈φ1| and |φ1〉m1 , and compare the single-
site occupation number states. Proceed to the next step if the
difference in these two row states arises from the difference in
the occupation number states of two neighboring lattice sites,
say, the third and fourth lattice sites.

(3) The matrix element is nonzero and value is√
n′

2(n′
3 + 1) if n′

2 = n2 + 1 and n′
3 = n3 − 1. For the example

considered, we have nonzero matrix element for the termp = 2
and q = 1.

In a similar way, for the example considered, the matrix
element of the Hermitian conjugate term J ∗

x e−i2παq b̂
†
p,q b̂p+1,q

is nonzero when the first two conditions are met and the
last is modified to n′

2 = n2 − 1 and n′
3 = n3 + 1. With slight

modifications, the same approach can be applied to compute
the matrix elements of the hopping term along the y axis. For
this case, two neighboring row states should be different, and
at the level of the lattice sites, the difference should be on
the same column. Then, to have nonzero matrix element, the
occupation numbers should satisfy conditions equivalent to the
third condition in the above chain of steps. The computation
of the interaction Hamiltonian matrix elements is trivial as it
is diagonal and does not require comparison of states.

The general features of the hierarchical definition of states
and the approach to compute the Hamiltonian matrix elements
can also be adapted to the CGMF theory as well. As discussed
earlier, in the CGMF theory, hopping is exact within the cluster
but hopping at the boundary is considered via the mean field
φ. Thus, for cluster of size M × N , the cluster state defined in
Eq. (9) is the direct product of the occupation number states at

......
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......

......

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

·········
· · · · · ·

n0 n1 n2 n3 nM−1

nM nM+1 nM+2 nM+3 n2M−1

n2M n2M+1 n2M+2 n2M+3 n3M−1

n3M n3M+1 n3M+2 n3M+3 n4M−1

nN
nN +1 nN +2 nN +3 nm

N = (N − 1)M , m = (M ×N)− 1

0 1 2 3 · · ·· · · M − 1

0

1

2

3

...

...

...

N − 1

FIG. 13. The M × N cluster with occupation number
n0, n1, . . . , nm′ at each lattice site for CGMF. Each square box
represents a lattice site and each ni corresponds to each i lattice site.
Here, ni runs from 0 to Nb − 1 for each lattice site.

each lattice site and can be written as

|�c〉
 =
m′∏
i=0

|ni〉, (A6)

where m′ = (M × N ) − 1, i = 0, 1, . . . , m′ are the lattice
site index, with M (N ) as number of lattice sites along x

(y) direction and 
 = {n0, n1, . . . , nm′ } as defined earlier is
the index quantum number to identify each of the cluster
states uniquely. For illustration, the correspondence between
quantum numbers and lattice sites is shown in Fig. 13. The
ground state of the CGMF Hamiltonian in Eq. (8) is obtained
by using the cluster state in Eq. (A6). The Hamiltonian matrix
element can be written as


′ 〈�c| Ĥ |�c〉
 =
m′∏

j=0

m′∏
i=0

〈n′
j | Ĥ |ni〉

= 〈n′
0, n

′
1, . . . , n

′
m′ | Ĥ |n0, n1, . . . , nm′ 〉.

(A7)

The definition of the states and computation of the matrix
elements can, however, be cast in terms of the row and cluster
states as in ED. With this modification, we can implement
constraints on the number of atoms in the row and cluster states,
thereby reducing the dimension of the Hamiltonian matrix in
the CGMF. The only difference from ED is that in CGMF
the intercluster hopping terms are linear in order parameter
φ and hence connect states in Hilbert spaces with different
total number of atoms. In other words, the Hamiltonian matrix
in CGMF is defined with respect to Fock space. Another
difference is that the diagonal terms have contribution from μ.
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We demonstrate an enhancement in the vortex generation when artificial gauge potential is introduced 
to condensates confined in a double well potential. This is due to the lower energy required to create 
a vortex in the low condensate density region within the barrier. Furthermore, we study the transport 
of vortices between the two wells, and show that the traverse time for vortices is longer for the lower 
height of the well. We also show that the critical value of synthetic magnetic field to inject vortices into 
the bulk of the condensate is lower in the double-well potential compared to the harmonic confining 
potential.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Charged particles experience Lorentz force in the presence of 
magnetic fields, and in condensed matter systems, it is the essence 
for a host of fascinating phenomena like the integer quantum Hall 
effect [1,2], fractional quantum Hall effect [3,4], and the quan-
tum spin Hall effect [5]. In contrast, the dilute quantum gases of 
atoms, which have emerged as excellent proxies of condensed mat-
ter systems, do not experience Lorentz force as these are charge 
neutral. This can, however, be remedied with the creation of artifi-
cial gauge fields through laser fields [6–10]. Thus, with the artificial 
gauge potentials it is possible to explore phenomena such as the 
quantum Hall effect, and the quantum spin Hall effect [7] in di-
lute atomic quantum gases. The introduction of synthetic magnetic 
field arising from artificial gauge field is also an efficient approach 
to generate quantized vortices in Bose–Einstein condensates (BEC) 
of dilute atomic gases. This method has the advantage of having 
time-independent trapping potentials over the other methods like 
rotation [11–13], topological phase imprinting [14,15], or phase 
engineering in two-species condensates [16,17]. In addition, it has 
the possibility to inject large ensembles of vortices, and an effi-
cient scheme to nucleate vortices with synthetic magnetic fields 

* Corresponding author.
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was demonstrated in a recent work [18]. The method relies on the 
creation of an inhomogeneous synthetic magnetic field, which has 
its maxima coincident with the low density region of a spatially 
separated pair of BECs.

In this work we examine a scheme to nucleate vortices in BECs 
through synthetic magnetic field by employing the density gradi-
ent associated with a double well trapping potential. The advan-
tages of the scheme are: vortices are generated in the bulk of the 
condensate; shorter relaxation time after nucleation; and higher 
density of vortices. In contrast, the other methods like rotating 
traps and phase imprinting nucleates vortices at the periphery. 
These then migrate to the bulk and as the process is diabatic, 
the relaxation times are long. Hence, the present scheme is better 
suited to explore phenomena associated with high vortex densities 
like quantum turbulence [19,20]. BECs in double well potentials 
were first theoretically studied to examine the physics of Joseph-
son currents [21–23], latter observed in experiments [24–27], and 
studied numerically in a recent work [28]. For our study, we the-
oretically consider the case of a double well potential which is 
engineered from a harmonic potential by introducing a Gaussian 
barrier. For alkali metal atoms, the barrier is a blue-detuned light 
sheet obtained from a laser beam, and such setups have been 
used in experiments to observe the matter wave interference [29], 
Josephson effects [26], and collision of matter-wave solitons [30]. 
The artificial gauge potential is introduced through Raman cou-
pling [8], and as a case study we consider the case of 87Rb BEC. 

https://doi.org/10.1016/j.physleta.2018.05.051
0375-9601/© 2018 Elsevier B.V. All rights reserved.
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We use Gross–Pitaevskii (GP) equation for a mean-field descrip-
tion of the BEC with the artificial gauge potential. In this work 
we quench the artificial gauge potential by increasing the Raman 
detuning, and simultaneously increase the height of the barrier 
potential. It is found that the extended low density region asso-
ciated with the barrier promotes the formation of vortices. How-
ever, the quench imparts energy to the BEC and transfer it to an 
excited state. For comparison, we also examine the vortex gener-
ation in the case of uniform BEC [31]. Such a system, devoid of 
trap induced inhomogeneities, is better for quantitative compari-
son of experimental results with theory. This was demonstrated in 
a recent study on wave turbulence in uniform BECs [32]. To in-
duce relaxation of the condensate to the ground state, we use the 
standard approach of introducing a dissipative term [33–35]. The 
presence of the dissipative term in the GP equation is consistent 
with the experimental observations of dissipation or damping [36,
37], which arises from the interaction between the condensate and 
non-condensate atoms.

The paper is organized as follows. In Section 2 we provide a de-
scription of the theory on how to generate artificial gauge potential 
in BECs using Raman coupling. Then, we incorporate the gauge po-
tential in the Gross–Pitaevskii equation to arrive at a mean field 
description of BEC. In Section 3, we present the results of numeri-
cal computations, and discuss the implications. We, then, conclude 
with the key observations.

2. BEC in artificial gauge potentials

To study the vortex formation in double well with synthetic 
magnetic field in BECs theoretically, we consider the scheme based 
on light induced gauge potential proposed in Ref. [8]. In particu-
lar, we consider a quasi-2D BEC along the xy-plane of two level 
atoms, which in the present work is taken as the F = 1 ground 
state of 87Rb atoms. To generate spatial inhomogeneity an external 
magnetic field B(y) = B0 +�B(y) is applied along the y direction. 
Here B0 is the static magnetic field which introduces a linear Zee-
man splitting of the ground state manifold. The energy levels are 
separated by �z = gμB B0, and δ(y) = gμB�B(y) is the measure 
of detuning from Raman resonance. The constants g and μB are 
the atomic Landé factor and Bohr magneton, respectively. The two 
levels in the ground state are Raman coupled through two counter-
propagating laser beams passing through the BEC along ±x direc-
tions [38]. The momentum transferred to the atoms through inter-
actions with the Raman lasers induces a change in the kinetic en-
ergy part of the Hamiltonian through the vector potential term Ax. 
The modified Hamiltonian, however, remains gauge invariant, and 
there is a corresponding synthetic magnetic field Bz = −∂ Ax/∂x.

2.1. Modified Gross–Pitaevskii equation

In the absence of Raman coupling, the Hamiltonian of the 
quasi-2D BEC confined in a harmonic trapping potential V̂ trap is

Ĥ = Ĥx + Ĥ y + V̂ trap + Ĥ int, (1)

where Ĥx , Ĥ y represent the kinetic energy part of the Hamiltonian 
term along x, y directions respectively, and Ĥ int denotes the inter-
action energy between the atoms. Let |1〉 = |1,0〉 and |2〉 = |1,−1〉
denote the two states in the ground state manifold of the atoms. 
The Raman lasers are along the x direction, and hence, the addi-
tion of the atom-light coupling term modifies Hx to

Ĥx = Er

⎛
⎜⎝

(
k̃x + 1

)2 − h̄δ
2Er

h̄�
2Er

h̄�
2Er

(
k̃x − 1

)2 + h̄δ
2Er

⎞
⎟⎠ , (2)

where Er =
(

h̄2k2
r /2m

)
is the recoil energy, and k̃x = (kx/kr) with 

kx as the x-component of the wave-vector, � is the Raman cou-
pling between two levels, and δ is the Raman detuning.

To derive the modified Gross–Pitaevskii (GP) equation, we di-
agonalize Ĥx and obtain the dispersion relation for the two levels 
in the limit of strong Rabi coupling, h̄� � 4Er . This ensures that 
there is single energy minima of the system and leads to the fol-
lowing: there is a change in the momentum along the x direction 
which provides a gauge potential e Ax/h̄kr = δ̃/(�̃ ± 4) in the sys-
tem; and from the light-atom coupling the atoms acquires an ef-
fective mass m∗ defined by m∗/m = �̃/(�̃ ± 4). Here ± denotes 
the two energy levels in the system and δ̃ = h̄δ/Er , �̃ = h̄�/Er . 
Based on this Hamiltonian and restricting the dynamics to only 
the lowest dressed state, the behaviour of such a condensate in 
the presence of artificial gauge fields is governed by the following 
dimensionless modified Gross–Pitaevskii (GP) equation

i
∂φ(x, y, t)
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=
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m
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∂2
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− 1
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∂ y2
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λL�Er
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(
1 + 2Crabδ

′ 2

Er
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+ g2D|φ(x, y, t)|2

−
(

� − 2

2

)
Er

]
φ(x, y, t). (3)

In the above equation, all the parameters having the dimensions 
of length, energy, and time have been scaled with respect to 
the oscillator length aosc = √

h̄/mωx , energy h̄ωx and time ωxt
respectively. For simplicity of notations, from here on we will 
represent the transformed quantities (�, δ′, Er, λL) without tilde. 
The condensate wavefunction is represented by φ(x, y, t), Crab =(
1/�(� − 4) + (4 − �)/4(� + 4)2

)
, δ = δ′ y, δ′ is defined to be the 

detuning gradient, � is the Rabi frequency, Er = (
2π2/λ2

L

)
is the 

recoil energy of electrons, g2D = 2as N
√

2πλ/aosc is the interaction 
energy with N as the total number of atoms in the condensate, 
and λ � 1 is the trap anisotropy parameter along the z direction.

2.2. Double well (DW) potential

For the present work, we consider quasi-2D BEC confined in a 
double well potential

V dw = V trap + U0exp(−2y2/σ 2), (4)

where U0 and σ are the depth and width of the double well po-
tential respectively and V trap = (1/2)mω2⊥(x2 + y2) is the harmonic 
potential along x and y directions, and we have considered the 
symmetric case ω⊥ = ωx = ωy .

The presence of the double well potential modifies the den-
sity distribution, breaks the rotational symmetry of the condensate, 
and brings about novel effects in the dynamical evolution of the 
condensate which forms the main topic of the present study.

2.3. Thomas Fermi correction in the condensates density

The focus of the present work, as mentioned earlier, is to ex-
amine the formation of vortices in the quasi-2D BEC with the 
introduction of artificial gauge potential. It has been shown in pre-
vious works on rotated condensates that vortices are seeded at the 
periphery of the condensate cloud, where the low density of the 
condensate is energetically favourable for the formation of vortices 
[39]. This is due to the presence of nodeless surface excitations 
[40], which create instabilities in the condensate and lead to the 
nucleation of vortices [41]. At later times the vortices migrate and 
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enter the bulk of the condensate. To analyse the density distribu-
tion and optimal conditions for generation of vortices, consider a 
BEC with large number of particles. The condensate is then well 
described with the Thomas–Fermi (TF) approximation as the inter-
action energy dominates in the GP equation, and the kinetic energy 
can be neglected in the bulk of the condensates as the spatial gra-
dient is negligible. In this approximation the density in the bulk 
is |φTF|2 = (μ − V trap)/(2g2D), where μ is the chemical potential 
of the condensate. The TF approximation, however, fails at the pe-
riphery of condensate as the φTF is discontinuous at the boundary 
[42]. However, vortices are seeded at the peripheral regions where 
the TF approximation may break down. Similar conditions are ap-
plicable to the densities at the edges of the double well potential 
considered in the present work. For this we take μ in terms of TF 
radius R and trapping potential in term of radial distance r. The 
correction to the TF density at the edges, similar to the harmonic 
trapping potential, is

|φc
TF|2 = R2 − r2

2g2D

[
1 − R2

2(R2 − r2)3

]2
. (5)

In the above equation, first term is TF density in the bulk of con-
densate and second term is correction to the TF density. Now, the 
density at the boundary is calculated as nc = |φTF|2 −|φc

TF|2, and for 
the region within the barrier of the double well, TF approximation 
is valid as the barrier potential decays exponentially. Accordingly, 
the density distribution is

|φb
TF|2 = R2 − r2 − U0exp(−2y2/σ 2)

2g2D
, (6)

here U0 and σ are depth and width of the double well potential. 
The above density distribution is symmetric about the x-axis, and 
hence, the low density region is more extended compared to the 
peripheral region of a harmonic trapping potential. So, the density 
variation arising from the potential barrier enhances the formation 
of vortices.

3. Results and discussion

3.1. Numerical details

For the present study, we numerically solve the Gross–Pitaevskii 
equation in imaginary time at zero temperature in the absence of 
the artificial gauge potential, which is equivalent to setting δ′ and 
� to zero. For this we use the split-step Crank–Nicolson method 
[43–46] and the solution obtained is the equilibrium ground state. 
To dynamically evolve the condensate, we propagate the stationary 
state solution in real time using Eq. (3). Furthermore, we introduce 
the artificial gauge potential by varying δ′ from 0 to 3 × 109 Hz/m
within ≈ 202 ms, but the value of � is kept constant throughout 
the evolution. Afterwards the system is evolved freely for up to 
t ≈ 962 ms when it relaxes to a steady state. For the present work 
we consider 87Rb condensate with N = 105 atoms, and the s-wave 
scattering length is as = 99a0. The trapping potential parameters 
are chosen to be ωx = ωy = 2π × 20 Hz, and λ = 40 which satis-
fies the quasi-2D condition. The Raman lasers considered for our 
calculations have wavelength λL = 790 nm. The Rabi frequency is 
taken to be � = 6Er , where Er is scaled with h̄ωx . This choice of 
parameters is consistent with the experimental setting of Spielman 
et al. [8].

3.2. Harmonic potential

At the start of the real time evolution, or beginning of the dy-
namical evolution t = 0, the condensate is rotationally symmetric, 

Fig. 1. Generation of vortices in the absence of dissipation. The time (in units of 
ms) is shown above the plots. Here x and y are measured in units of aosc. Density 
is measured in units of a−2

osc and is normalized to unity. (For interpretation of the 
colours in the figures, the reader is referred to the web version of this article.)

and is devoid of any topological defects. This is shown in Fig. 1(a). 
As the artificial gauge potential is switched on by introducing δ′
with constant �, the rotational symmetry of the condensate is 
broken since the effective frequencies along x and y directions 
are unequal due to the term 2Crabδ′ 2/Er in Eq. (3). The conden-
sate thus departs from being circularly symmetric and acquires 
an elliptic structure, which is discernible from the density profiles 
shown in Fig. 1. Furthermore, the angular-momentum like term 
i(2πδ′)/(λL�Er)(y∂φ(x, y, t))/(∂x) in Eq. (3) is non-zero and in-
duces a deformation to the condensate. The combined effects of 
these two effects and an increase in the energy of the system 
favour the seeding of topological defects or vortices in the conden-
sate. Initially, the vortices are generated at the periphery, where 
the density is low and fluctuations in phase are more prominent, 
and at later times the vortices migrate to the bulk of the con-
densate. As the system relaxes towards a steady state, the vortices 
acquires a spatially disordered distribution to minimize the total 
energy. The nature of the spatial distribution of vortices implies 
that the system is in a higher energy state, and this is evident from 
the vortex distribution as shown in Fig. 1(f). To include the effects 
of dissipation which may be present due to quantum and ther-
mal fluctuations, or due to loss of atoms from the trap because of 
inelastic collisions in the condensate we add the dissipative term 
−γ ∂φ(x, y, t)/∂t in Eq. (3) and examine the dynamical evolution 
of the condensate. Here, we set γ = 0.003 based on the results 
from previous work [35]. This leads to loss of energy from the 
condensate and the condensate dynamically evolves to it’s ground 
state. As a consequence the vortices self organise into a vortex lat-
tice and the evolution towards the vortex lattice is as shown in 
Fig. 2.

3.3. Double well potential

To study the dynamics of vortex generation and their transport 
in double well potential we solve time dependent GP Eq. (3) with 
the potential given in Eq. (4). Like in the previous case, we in-
clude a dissipative term to allow the system to relax to it’s ground 
state, which is with a vortex lattice. For the numerical computa-
tion, we take the width of the barrier in the double well potential 
as σ = 0.7 μm. To obtain the initial state, like in the previous case, 
we again consider imaginary time ground state solution of a quasi-
2D BEC of 87Rb atoms without δ′ , �, and U0. We, then evolve the 
solution in real time as described earlier. During the evolution in 
real time, we ramp up or quench the value of δ′ and U0, but keep-
ing � fixed. Increment in δ′ introduces artificial gauge potential in 
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Fig. 2. Generation of vortices in the presence of dissipation. The time (in units of 
ms) is shown above the plots. Here x and y are measured in units of aosc. Density 
is measured in units of a−2

osc and is normalized to unity.

the system, and vortices are generated with time. We find that the 
double well potential has enhanced vortex formation. The vortices 
are generated in the barrier region between the two wells as it is 
a region of low density, and the energy per vortex is lower in this 
regime.

The enhancement of vortex formation in the double well poten-
tial can be understood in terms of the excitation energy of a single 
vortex. In the case of harmonic potential the energy of the vortex 
located at a radial distance b from the centre in the TF approxi-
mation is εv 	 (4/3)π Rzn(0)(h̄2/m)ln(R/ξ0)(1 −b2/R2)3/2. Where, 
n(0) is the density at the centre, when vortex is not present, R is 
the Thomas–Fermi radius, Rz is the length along z direction and 
ξ0 is the healing length [42]. For the quasi-2D system Rz can be 
evaluated using the anisotropy parameter λ and μ in the TF ap-
proximation. Based on this expression we find that the energy of 
a vortex at the centre of the condensate with only the harmonic 
trapping potential or without the barrier is 0.028 h̄ωx , which is 
lower than the value of 0.094 h̄ωx obtained from the numerical 
results. The difference could be due to deviation from the TF ap-
proximation. From the numerical results, without the barrier, the 
energy of a vortex located at a radial distance of 9.0 aosc is 0.008 
h̄ωx . Here, the radial distance considered correspond to the periph-
eral region where vortices first appear. In the case of double well 
potential the energy of a vortex at the centre of the barrier and 
at the same radial distance is 0.007 h̄ωx , which is lower than the 
previous case. In terms of absolute values the energy difference is 
not large, but as discussed latter, the presence of the barrier in 
the double well makes a significant difference in the dynamical 
evolution and generation of vortices. Since we quench two param-
eters of the system, δ′ and U0, we examine the system in terms 
of the relative quench rates. For this we define R1 = λL∂δ′/∂t and 
R2 = ∂U0/∂t as the quench rate of the artificial gauge potential, 
and the barrier height between the two wells, respectively. Where 
λL, δ′ , and U0 are the dimensionless quantities, and δ′ and U0 are 
ramped within a period of t = 202 ms. The value of δ′ vary from 0
to 3 ×109 Hz/m as defined earlier. Here, R1 affects the vortex gen-
eration, and R2 affects the transport of vortices between the two 
wells. We consider three cases, depending on the relative values of 
R1 and R2.

3.3.1. R1 < R2
For this case we vary U0 from 0 to 25.85 (in units of h̄ωx) 

within a period of 202 ms, and the evolution of the density profiles 
are shown in Fig. 3. The inclusion of the barrier, to form a double 
well potential, accelerates the formation of vortices, and they ap-
pear within a short span of time ≈ 40 ms. This is much shorter 

Fig. 3. Transport of vortices when laser field energy rate is less compared to the 
double well potential depth energy rate with dissipation. Vortices transport be-
tween the wells up to the time t = 266 ms, after that some vortices are settled 
near to the interface of the wells. The time (in units of ms) is shown above the 
plots. Here x and y are measured in units of aosc . Density is measured in units of 
a−2

osc and is normalized to unity.

than the time of ≈ 266 ms taken to generate vortices in absence 
of the barrier or in harmonic potential as shown in Fig. 2. The 
shortening is due to the modified density distribution arising from 
the presence of the central barrier in the double well potential. The 
vortices are seeded near the central region of the barrier where the 
density is low as shown in Fig. 3(a). During the quench, at lower 
values of U0, vortices traverse from one well to the other due to 
the lower depth of the potential, but it stops once U0 reaches max-
ima as the vortex energy is not enough for transport from one 
well to the other. The dynamics associated with the crystallisation 
of the vortices to form a vortex lattice is evident from the den-
sity patterns in Fig. 3(b)–(e). The equilibrium ground state solution 
of vortex lattice is obtained at ≈ 861 ms after the free evolution 
as shown in Fig. 3(f). One noticeable feature is the confinement of 
vortices along the barrier with lower spacing compared to the vor-
tex lattice in the bulk of the condensate. In particular, the spacing 
between vortices is 1.43 aosc and 0.87 aosc in the bulk and in the 
barrier respectively.

3.3.2. R1 � R2
For the case of R1 = R2, the value of U0 at the end of the 

quench is 18.85 (in units of h̄ωx). During the quench vortices 
are generated at ≈ 45 ms of the dynamical evolution, and emerge 
from within the barrier region. Here, the potential depth is less 
compared to the case of R1 < R2, and the vortex transportation 
between the two wells occurs for a longer time, that is up to 
≈ 304 ms. Like in the case of R1 < R2 the equilibrium ground 
state solution is attained at ≈ 861 ms. For illustration the con-
densate density profiles during the dynamical evolution are shown 
in Fig. 4. In the case of R1 > R2 the value of U0 at the end of 
the quench is 11.85 (in units of h̄ωx). This implies that the bar-
rier height attained at the end of the quench is less than the two 
previous cases. The generation of vortices start at ≈ 50 ms, and 
the transportation of vortices between the two wells continues 
for much longer time, till ≈ 354 ms. Like in the previous cases 
the equilibrium ground state solution is obtained at ≈ 861 ms as 
shown in Fig. 5.

3.4. Uniform BEC

For uniform BEC, V trap in Eq. (3) is set to zero and consider 
hard wall boundary. With this the BEC is uniform except at the 
boundary, where the density goes to zero over the length scale of 
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Fig. 4. Transport of vortices when laser field energy rate is equal to the double 
well potential depth energy rate with dissipation. Vortices cross from one well to 
another well up to the time t = 304 ms, after that some vortices are settled near 
the interface. The time (in units of ms) is shown above the plots. Here x and y are 
measured in units of aosc . Density is measured in units of a−2

osc and is normalized to 
unity.

Fig. 5. Transport of vortices when laser field energy rate is high compared to the 
double well potential depth energy rate with dissipation. Vortices cross from one 
well to another well up to the time t = 354 ms, after that some vortices are settled 
near to the interface. The time (in units of ms) is shown above the plots. Here x
and y are measured in units of aosc . Density is measured in units of a−2

osc and is 
normalized to unity.

healing length. So, the vortices enter from the edges and propagate 
to the bulk. We obtain the equilibrium state of the modified GP 
Eq. (3) with different values of synthetic magnetic field shown in 
the Fig. 6. We observe that condensate is fragmented at the large 
value of δ′ > 9 × 108 Hz/m. In this case there is no formation of 
vortex lattice. We find that the vortices have higher energies in the 
uniform BEC ≈ 10 h̄ωx , whereas it is ≈ 3 h̄ωx for BEC with har-
monic confining potential. The difference can be accounted by the 
higher moment of inertia associated with the uniform BEC. Next, 
to compare with the results in presence of harmonic potential, we 
introduce a Gaussian barrier along x axis with U0 = 10 (in units 
of h̄ωx) and width of 0.7 μm. In the numerical simulation, the ini-
tial states at time t = 0 ms is without the synthetic magnetic field 
δ′ = 0 as shown in Fig. 7(a). Then, the magnetic field is introduced 
by quenching δ′ . The vortices are nucleated at a critical value of 
δ′ as shown in Fig. 7(b) at t = 38 ms. We increase δ′ from 0 to 
7 × 108 Hz/m in 0 to 202 ms time. After that, we freely evolve 
the system. In the uniform BEC, like in the previous case, the vor-
tices nucleate close to the barrier and then propagate to the bulk. 
However, as to be expected, the dynamics of the vortices are qual-
itatively different from the inhomogeneous case. The dynamics of 

Fig. 6. Generation of vortices in the homogeneous system with the hard wall bound-
ary with the synthetic magnetic field. The equilibrium solutions for different values
of δ′ (in Hz/m) are shown here and values of δ′ are written above each of the plot. 
Vortices are generated near to the boundary and propagate into the bulk of the con-
densate. Here x and y are measured in units of aosc. Density is measured in units 
of a−2

osc and is normalized to unity.

Fig. 7. Generation of vortices in the homogeneous system with the hard wall bound-
ary. A barrier is introduced along the x direction. Vortices are generated near to the 
barrier and propagate into the bulk of the condensate. Here, we do not observe the 
vortex lattice. Here x and y are measured in units of aosc. Density is measured in 
units of a−2

osc and is normalized to unity.

the vortices are determined by the inter-vortex interactions and 
remain within the bulk regions. The selected snap shots of the dy-
namical evolution of the vortices are shown in the Fig. 7(a)–(f).

3.5. Critical value of δ′ and density

As described earlier, we take the equilibrium imaginary time 
solution of a quasi-2D BEC, and evolve it in real time with the in-
troduction of a quenched artificial gauge potential. This is achieved 
by increasing the detuning gradient of the Raman lasers δ′ and vor-
tices are generated in the condensates when δ′ reaches a critical 
value during the quench. In the case of a purely harmonic con-
fining potential the critical value of δ′ is 0.89 × 109 Hz/m. But, 
for the case of a condensate confined in double well potential the 
critical value of δ′ is 0.26 × 109 Hz/m. Hence, the presence of the 
barrier in the double well potential lowers the critical value of δ′ , 
which is the measure of synthetic magnetic field in the system. To 
examine the generation of the vortices in more detail we exam-
ine the condensate density at the region where vortex enters in 
the condensate. In the case of harmonic trap, vortex enters from 
the peripheral region, and we use TF correction to compute the 
density nc . We find that densities nc for the two trapping poten-
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tials are 0.1 × 10−3 and 0.4 × 10−3 for the harmonic and double 
well potential. Here, densities are measured in units of a−2

osc and 
are normalized to unity. These densities correspond to the region 
at which vortex enters in the condensates.

4. Conclusions

We have shown that the presence of the Gaussian potential bar-
rier enhances the generation of vortices due to the presence of 
artificial gauge potential. We examine this by quenching the artifi-
cial gauge potential along with the height of the barrier potential. 
Without the barrier potential, in the case of a harmonic confining 
potential, the vortices are generated at a later time and vortices 
are less in number as well. Like in the previous works [33–35], 
we observe that it is essential to introduce dissipation to obtain 
equilibrium vortex configuration in trapped system. The dissipation 
drains energy gained during the quench and allows the condensate 
relax to the ground state configuration by forming a vortex lattice. 
In case of uniform BEC, there is no formation of vortex lattice even 
in the presence of dissipation.
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