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ABSTRACT |

"“‘n ,The theSis work identifies certain physical process which may

1éyingrimpbit3nt'rdle’in the observations of Base-Ball II, Constance II,
_“Bfﬁhchg,Qz'ﬁitrbi machines.

- In Base-Ball II mirror experimeht (1975) the anomalous losses of

particles from the trap were related to bursts of azimuthal potential

érturbations. In an effort to understand these losses we have identi-
Tfiéd‘fﬁése potential perturbations with mode described by Varma (1967).
e;héﬁe iﬁ?estigﬁted the non-linear stability of these oscillations in
hé;pfeéénce cf ion-cyclotron-oscillations seen in Base-Ball II., The
oqpling’ié envisaged through non-linear Landau damping. We find that
fgﬁae exhibits a bursting instability on a time scale of .~ 400jiLs

s observed in the experiments.

| In 2XIIB and Constance II mirror machines (1978, 1979, 1980)
:Elécfron Beams (FEB) were injected parallel to the magnetic field lines to
ﬁépreés Drift Cyclotron Loss Cone (DCLC) turbulence. In our work we
ihévéVinen'a model for the various observations of 2XIIB and Constance‘II

,which is1based on the resonant damping of EB induced Langmuir plasmons

’§n DCLC modes. The effect of resonant damping was studied by adiabatic
:Qxigapiqn.  We have also derived a quasi-linear theory for these expe-

théra\wQ have set up a closed set of‘equations to calculate ion

f11f¢ time, electron and ion temperature, fluctuation level, etc.



Wé have further studied the effect of EB . induced Langmuir waves
,,bﬁlﬁiéh Freqﬁency Convectiﬁe Loss Cone modes (HFCLC) which have been
’zéﬁedicted fér'mirror plasmas. In the high'( i) region of HFCLC
Japectrum we find that these modes are strongly coupled through non-linear
}Landau damping to Langmuir waves and beem electrons. Mainly the growth

rates are affected i.e. they are strongly damped.

In the low ( (D, < ) region of HFCLC spectrum we find that
 gr6wth length of these modes are affected. The growth lengths are reduced
 $§'about five times. This can he quite dangerous mirror confiﬁement. 1f
ﬂt#ése modes are convectively stabilized (as in 2XIIB) then the electron

féém will again destabilize them.

Based on the anomalous fESistivity we havé glven another mechanism
;fﬁr the saturation of DCLC turbulence in 2XIIB. Invoking perturbed orbit
formalism we have shown that ion—diffusion in 2XIIB generates enough anoma-
;Ious resiétivity to stabilize DCLC modes. The saturated fluctuations level
1célcu1ated from this agrees well with the experimentally observed fluctua-
ftion level. It also explains depression of the fluctuation level and

zimptovement in the jon life time with warm plasma streams.

We have investigated the effect of neutral beam generated Lower
wHybrid Waves (LHW) on DCLC modes. We have shown that DCLC modes in the
‘ Prﬁsence of LHW are strongly damped. This reduces the ion-diffusion in

yélocity space and thus improves the fon life time inside the trap.



wé"ﬁng iﬁVeétigated'thé possibility of suppressing the
nstable Cﬁcgmodeé by feeéback"circuits. We have shown that using
ma‘éfiaiiﬁiﬁbés as Sﬁppression and sensor.grids ahd”égain of~m50;fif
o+ 90° phase shift, the critical density gradient required

or the DCLC instability can be pushed up by as much as two orders

of magnitude.



CHAPTER T

INTRODUCTION

A BRIEF HISTORY OF MAGNETIC MIRROR SYSTEMS

The concept of magnetic mirror reactor was suggested in early
tigs_indépendently by R.F. Post in U.S. and G,I. Budker in U.S.S.R;

The plasma confinement in the mirror trap is brought about due to the
flection of particles from the strong regions of magnetic field
‘mdrrors ) at the end of device., These reflect only particles of large
»pitch angles; particles with smaller pitch angles freely fly out of fhe
&év1¢e;’so that a conical "hole' in the velocity space is formed., Ions
‘;éVe 9u£ when they scatter in angle by classical columbic collisions to
mé;; pitch angles at which they can no longer be reflected by ﬁhe nirrors.

Elé¢?f9n$,tend to scatter more rapidly than ions so that their density



1é§rdrOp sIightly below that of the ion-density. The resulting

heﬁéléctfons‘electrostatically such that electron losses are kept equal

5[i¢n-105ses. The ion-confinement T in the simple mirror is then

hétg hcfi is the time for an ion to diffuse one-radian in pitch angle
n]'d":xwhere Binj and HLC are. the ion injection and loss angles
geépégtively. Magnetic mirror systems are also called ‘'open traps' as in
his syatem the magnetic lines of force leave the plasma volume and pass
‘rdﬁgh the material walls. This is contrary to the closed lines systems

where lines of force do not leave the volume but are rather confined to a

fé@ily of nested topologically toroidal flux surfaces.

In ideal collisional circumstances (that is when the non-
ssical effects have been suppressed) ‘cid, is given by

(2)

_ge‘gtd_fkis the average ion-energy and "1 is the density. From

ed#gfion“(Z) it follows that the Lawson's product V.T for mirror

ﬁafge_&ifférehce gives rise to a positive ambipolar potential which holds
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jhere 7Y}, and ¢ are the mass and charge of an fon. And K is a
henomenological constant which takes into account other effects like wave

‘usion, electron drag, etc. It was suggested that to fuel the mirror

feaffbr'and to sustain the plasma against the collisional end 1ossés;mhigh
'ower neutral beamg must be 1njected perpendicular to the field lines (1-3).
The Q of ‘a mirror reactor which is defined as the ratio of thermal power

"ut to the neutral beam power injected is then given by

Q - ML <ocUL> E vucr
4 E,

JWﬁere P I is the averaged reaction rate, kiwnuct is fusion

(5)

féﬁergy released per D-T reaction ( » 17.6 MeV), E;o is the injection
e@etgy. Taking into account only the classical effects the Q for a mirror
 éactor turns out to be - 1.1 x log Reff9 which is a near ﬁnity value (4,5).
”The impiication of near unity value of Q is that, in order to have economic
advan:age, in D-T mirror reactors, a large fraction of the output power
Mﬁl'have to be recirculated (re-injected into the machine) wiﬁh:high
 i§i¢ncy; the thermal conversion fails on the measure of the required
‘éﬁficiency (6). Because of these considerations, mirror machines appeared
’ﬁithe early sixties, to have doubtful prospects as fusion reactors.
ﬁéte?‘Post et al suggested that béqause of the low values of Q mirror
#eaétors couid function as power amplifiers. In order to achieve economical
net electric output, the scheme of 'Direct Conversion' was suggested, by

'iwhich the end losses could be turned into an advantage. The principle,



1ef;?i3 that the plasma streaming out at éhe‘ends is first spread by
3eré£ﬁé:ﬁéghetic fields until iﬁs_density_is reduced to the cxtent that
’ﬁ;byé‘iength becomes large enough to permit the penetration of electric
ields; Thé'ions and the electrons can then be collected on separate

collectors to get net electrical power (7 9).

Inspite of the somewhat poor prospects, the studies on open traps

evertheless conducted in a large number of laboratories and occupied
'léaSt'as important a place in the overall fusion research as'the work on
1o§éd traps (because at that time, the prospects of mastering the fusion

,e?gy still seemedzvery remote). Some important considerations in favour

éhé mirror traps wére their technical simplicity and flexibility and

th 'possibility of conducting a wide range of physical experiments on them.

the‘period from 1960 to 1965 much of what forms now the basis of plasma
p‘ysics was derived from the open traps.. In fact it can be said that open
Z’passed through a polden age in the early sixties; at the IAEA Confe~
ce:heid at Salzburg (1961) and Culham (1965) more than a quarter of

ers were devoted to them (22)

 The result of Ioffe's team (12) on the possibility of suppressing
‘lute instabillty by generatlng magnetic well created a particular gush of
thusiasm. It had been well known since the work of Rosenbluch and Lonpmire
'7) and that of Kadomtsev (1961) that the plasma in a simple axisymmetric
‘f mach1ne was strongly susceptible to the flute instability. Although
in many moderate scale mirror traps this instability did not occur;‘presu-
Secause of the ”line tylnp“ due to the presence of cold plasma at
S’, 1t was feared that the position would worsen in the case of‘very

aSma with hlgh— (3 . In the light of Ioffe's result this problem |
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yrégarded'as solved. Soon other magnetic systems were reported

énétated”min~ i .« Of these the system which gained most curfEncy

that‘of the Vin~Yang type orooosed at Livermore,

:2 A new hazard was discovered in 1965-66 through the studies of
08 ’end Rosenbluth (13) who pointed out the existence of a danperous
 ‘of,micro~instabilities‘associated with the presence of a loss-cone.

; iﬁst&biiities studied by Post and Rosenbluth were eiectrostatic and

ou duoocur in a low-pressure plasma, their growth rate lying in between

cyclotron and ion-plasma frequency. To suppress the loss cone insta-
ities; Post in 1967 (14) proposed the addition of a group of hot ions

tﬁe olasma. In ekperiments carried out later it was shown that this

casure was In: fact very -effective.

Nevertheless9 from 1968, open traps appeared to gradually 1osek
tn&.f This was due to the fact that in their plasma parameters and
"ecially in confinement time open traps were progressively lagging behind
qeks‘which made rapid advances through 1969-73, Comsolidation of this
;nt ef.view was promoted by the preliminary development of designs for
ﬁ;eteial fﬁsion reactors of various tyﬁes~~ it seemed that because of
theT;Qw Q value open traps would not give acceptable energy characteristics

r fusion power plants.

There were some hopeful developments, however, in Golovin's
oratory. ChuyanOV Argenin (15) and cowotrkers conducted interesting

periments on the’ suppression of MHD 1nstabillties by feedback~ experiments

ried out by Ioffe Kanaev, and Yushamanov on the PR-6, PR?7 (16) devices

ributed to a better understandinp of the mechanisms of suppression of



dﬁefinstabilities; at Livermore; the 2XIIB was built which played a

role in the cnhancement of mirror trap research, Various labora-
es continued persistent search for the method of increasing the Q-
"lue 1“ open systems. In particular, the concept of multi—mirror cofif inement:

\”';pfoposed_and experimentally tried at Novosibirsk and Berkeley.

A‘éharp turn for the better occured in the years 1975 and 1976

‘hich;were noteworthy for two important events: first ‘the 2XIIB machine (17)

as commissioned at Livermore and second the concept of ambipolar trap or
andem mirror was proposed by Dimov and coworkers (18) at Novosibirsk and
Fowler and Logan of Livermore (19). The first of these events demon~L
tedrthat the experimentors had at their disposal a technology equal to

, task of cbtaining in open traps a plasma with fusion parameters (no-
‘ékcm ), Ti = 10 KeV): high power (5 MW) neutral beam injectors with.
;fioieht operating reliability, a vacuum technology based on gettefing
thohoensured sufficient plasma purity under condition of high—energy neutral
ijﬁc;i°n§7piasma beams ‘ensuring neutral capture at the initial stage and
Suppféosion‘of loss—coﬁerinstabilitieo'et later stages (22) The second .
ent was the proposal of the idea of the ambipolar traps which atleast in
pfinCiple, enabled the Q value to be raised considerably for the;same:range.
 fasma parameters that are conventional for open traps, and on the basis
“‘the technology of the type used for 2XIIB. A number of large devices
were built in order-to. verify the idea of the ambipolar trap. The first
'Oibe commissioned, in May 1978 ;> was the Gamma-6 device at the Univeralty
,~Tsukuba, which was followed at the end of 1978 by TMX at leermore andv

n:MaY 1980 by Phaedrus at the University of Wisconsin. In June 1981 the

AMBAL dcv1ce 1s planned to go into operation at the Novosibirsk Institute



clearﬂPhjalcs and in the autumn of that year ™I~V at Livermorc.

efﬁxperiments on Gamma-6 and TMX (20) have demonstrated with

‘1c1ent reliabllity the influence of the ambipolar potential on plasma

e,time in the central mirror trap. Besides,the experiments on TMX
showed the feasibility of MHD-stahle equilibria at finite plasma pressure

winrkhe}gentral.mirror trap.

On the other.hand; some of the results obtained on TMX put one
neke guard,.for in the regimes which are most promising at first sight
eeﬁendiﬁg fo maximum electron temperature the confinement time does
ineiease, as is predicted by the classical theory (21) but decreases

ply. This 1s due to the development dn the end mirror trap,’of

ations which propagate to the central mirror trap and cause the~
th of ‘ion tails’, which then easily comes out of the trap. The flu-

ﬁtiens‘are evidently associated with the development of drift-cyclotron-

loésééoﬁex(bCLC) instability, As has been pointed above, previous experi~ '
on PR—G PR-7 and 2XIIB showed that there were a number of methods of
,ppressing loss cone instabilities. However, these instabilities are

ll far from being controlled - so far it has been possible to achieve

stabilization only for small T /T ratio not exceeding v 10“2 whereas in
ctorythis ratio is expected to be higher than 10 1. Since a rise in

,ctron temnerature is bound to be a¢companied by a deterioration in the

finement of low~energy ions, loss~cone instabilities may become more

ardous,

;fMﬁny\éﬁings remain unclear abcut the mechanism of excitation of

nstabilities under real experimental conditions; in particular,



is no simple explanation for the frequently observed regularity of

”Cillatioﬁég nor is it ﬁﬁderstood ﬁhy their frequency is close to the

vcyclotron Frequency corres ponding to the minimum of magnetic field.
cp other physical problems such as enhanced transverse transport in a
f iiéymmetric mapgnetic field or ‘the ballooning instability in the.

ntfalﬂmitrOr trap, these can certainly be solved by an appropriate choice

’magﬁétié field geometry, perhaps at the cost of a more complicated

‘ysﬁéﬁ;

Reactor calculations made so far on the basis of the ambipolar
k~show that a level of Q = 5-10 can fairly easily be attained in such
éhines though this involves using 0.5~1 MeV ion injectors in the end mirror
and increasing the magnetic field in the mirrors to 150 KG. 1In economic
‘rq¢teristics such a system is inferior to the tokamak reactors 1if it is

fé fusion reactor that we are considering, However, where fusion-fission
‘bfié éystems are concerned the ambipolar trap is even today competitive (22)>
i‘tOkamaksn In the ambipolar trap research, the efforts are being dire-
ted towards improvement of the longitudinal ion-life time in the central
rap énd‘towards lowering the injection energy requirements in the end traps.
gﬁ'ﬁhese conditions are met by the concept of 'thermal barriers' suggested
;bY-Baldwin and Logan in 1979 (23). The essence of the idea is to break
down”the thermal contact between the electrons of the central and end mirror
fps, after which by some method or other the end-trap electrons can be

:djto a temperature considerably exceeding the temperature of central
,"é1GCtronS. Then the ~--° electrostatic potential\hﬁ;p in the
’Efaps can be raised substantially for a given ion denéity. The most

ural method of breaking contact between the two electron populations is



]1uaégaﬁ>additional cell with low dénsity plasma between theipéntral
héiénd‘traps. Maintenance of the nainﬁnumdensity in thisldéi%nrequires

it the captured lons should be continuously 'pumped out' of it; this

bé 5éhieVed by charge exchange on a:specially oriented streams of
eﬁfféls or by using the drift effect in a non-axisymmetric magnetic field,
\ﬁhér;method of creating the minimum density is to use inclined ion inje-

,élbéhing ions) (24). The ion distribution functions obtained in

;h;s%Case appeaf to be less susceptible to loss~cone instabhilities,

a ﬁbugh two-stream instabilities may represent some danger to them.

wéve:, even if thermal barrier works well and the longitudinal life time
géés’to limit the Q factor the anomalous transverse losses from the
_ral"trap; associated with the development of ﬁrift Instabilities may
 reméin as an important problem. In coming years one hopes to have
_tions to these problems of ambipolar traﬁs. Of great interest in this
'éé? will be the experiments to be carried out on the TMX-V device which
ﬁfﬁéimg built at Livermore (22), Very recently a method based on

shing electrons has - alsc been proposed for creating thermal barrier (23).

In the preceeding papges we have followed the development, so to
,,from the axisymmetric mirror traps, to the mirror traps with min-T3
 fd to the ambipolar' traps. However, this line was never the only one,
a’?ere significant developments in other directions too e.g. reversed
ﬁ traps, multiple mirror trap, anti-mirror trap, spindle cusps systems
high frequency plugging Qf mirror etc. Thus in the words of Ryatov
A?Ercan say that on the whole "open systems are now experiencing a -

d of fresh growth, Having retained their traditional advantages i.e.

eQmétric simplicity, the possibility of attaining high- {, values and

{
|
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tatéfgperating conditions, they have a good chance in the next few

pidftﬁéméelves of their main fault i.e. the short confinement time

toglgssQCOﬁe.eXCited instabilities and turbulence",

SCOPE OF THESIS:

As stated in the previous section, at present, loss cone generated

ébilities seems to be plaguing the performance of the open traps. Becauééﬂw
hé{inétabilities plasma readily becomes turbulent. This turbulence
nces the particle losses and thus adversely affects the performance of
’fiﬁpaps as fusion reactors. Hence from the point of view of evalua;ing

improving upon the performance of mirror traps, it becomes necessary to

rifyfand understand various physical processes which may be related to
tﬁrbulence. The primary aim of the thesis is to study these various
ﬁabilities, turbulence and associated transport processes and further

Lo suggest ways and means of suppressing them in some cases.

In Chapter II we have investigated the mechanism of anomalous
'Srﬁiéle losses in Base-Ball II mirror experiment., In this experiment the
sfért up was obtained without the target plasma i.e, by firing energetic
wéi beams in vacuum. The observations indicated that because of r-f
iVity the density build up was limited to «~ 109 cm_B. The r-f

Urgts occurred typically over a time scale of a few hundred (L s. In the

periment ion«cyclotron oscillations and oscillations at YR -drift fre-

ney were also noticed. In an effort to explain the anomalous particle

SS?S‘we have identified the mode at W13 -drift frequency with the Varma

ode. We have further shown that in the presence of W, -oscillation
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arma mode becomes nonlinearly unstable. Tt exh1b1ts a periodic .

ting behaviour on the time scale of few hundreds of S . This

eriodic increase of amplltude increases the scatterinp into the loss-

e which thereby gives rise to bursts of particles.

In Chapter III we have investigated the phenomenon of suppression
VZDCLC turbulence by parallel injection of an electron beam in the context

o :Constance II.-and-2XIIB-mirror— experimentsr'*We have shown that the

parallel Injection of electron beam gives rise to a spectrum of Langmuir

ves. These Langmuir wavas, on the time scale of DCLC waves, act as quagi-

Eieles and hence can exhibit resonant damping or growth depending upon the

opeyof the plasmon distribution function at the resonance point,. In. this

eer we derive a non-linear dispersion relation for DCLC modes in the

esence of these quasi-particles and show that the modified growth rate

epends upon the beam power. In the quasi—-linear theory we have derived a

,osed set of equations to calculate the electron and ion temperatures,

‘fluctuation level, ion 1ife times etc. We have shown that scattering of

angmuir waves by DCLC waves is quite small hence the effect of Langmuir

aves on DCLC modes will last for a long time. We have further shown that

,in the presence of electron beam with power greater than a threshold value,

~the'ion diffusion ig reduced and hence the ion 1{ife time is increased, Our

tesults agree very well with the observations of 2XITB and Constance II,

In Chapter IV we have investigated the non-linear instability

ence of

?Qléthon'beam induced Langmuir waves. We have shown that Langmuir waves

k“'be strongly coupled to HFCLC by non-linear Landau damping. In this
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‘_ we derive an anﬂropr1ate set of kinetic wave equatlons for 1IW

deFcnc.waveso The non-linear growth rate shows a dependence on the

beam élocity and has a negative sign. Thus in the presence of electron
beam HFCLC waves are heavily damped which may explain their absence in

Co stance II.

~ In Chapter V we have investipated the interaction of I on low

.rgquehc§ wave number region of HFCLC spectrum. To study this interaction

é éaiabatic approximation is employed. It turns out that in this region
eléroﬁth lengths are strongly affected. Typically for Constance IT

rameter they are reduced by about five times. This could be very déngefous
electron beam injected plasmas, because normally HFCLC modes are stabi-

d,by axial comvection. But if electron beams are employed for the

fpose of controlling DCLC turbulence then these modes will be again
vtablized We have further shown that in both the cases i‘e. when the

t:on gun and plasma gun are fired simultaneously and the case when the

}ring'of'électron gun is delayed the growth lengths are reduced by about

ve times hence this harmful effect seems to be inevitable.

In Chapter VI we have investigated the process of saturation

'DCLC turbulence in 2XIIB. Using perturbed orbit formalism, we have

’axculated the anomalous resistivity due to DCLC turbulence itself. We

ha:e shown that it induces enough d1551ﬂation to saturate the growth of

CLC modesu We have calculated the fluctuation level which agrees with the

1 ‘tuation level ohserved in 2XIIB. The model also explains the depression

cttation level and improvement in ion life time when warm plasma

t“35ﬁ9<are employed.,
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fe}aeriVé an‘apprdpriate set of kinetic wave equations for LW
\w%ﬁéé; 'The ﬁohflinéar.groﬁth rate éhqws a dependence on the
i;y and‘has‘a nepative sign. Thus in the presence of electron
:EQLé‘waves are heavily'damped which may explain their absence in

nce II.

k”In Chapter V we héve investigated the interaction of LW on low

ﬁéncfiwave number region of HFCLC spectrum. To study this interaction
adiébétic approximation is employed. It turns out that in this region
”th 1éngths are strongly affected. Typically for Constance II
ter_they are reduced by about five times. This could be #ery déngefous
lectfon beam injected plasmas, because normally HFCLC modes are stabi-
by axial convection., But if electron beams are employed for the

efof controllin? DCLC turbulence then these modes will be again
blized We have further shown that in both the cases i.e. when the

*tron gun and plasma gun are fired simultaneously and the case when the

;ng'Of é1ectron gun is delayed the growth lengths are reduced by about

mes hence this harmful effect seems to be inevitable.

’pr Chapter VI we have inveétigated the process of saturation
:fu?bulence in 2XITIB, Using perturbed orbit formalism, we have
téd the anomalous resistivity due to DCLC turbulence itself. We

hown that it induces enough dJSSlﬁation to saturate the growth of

Odes, We have calculated the fluctuation level which agrees with the

on level observed 1in 2XIIB. The model also explains the depression

atlon level and improvement in ion life time when warm plasma

fé ¢mployed¢
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In Chapter VII we have investigated the suporession of DCLC insta-

1 ;yjby'féedback circuits. Using material probes as suppressor and sensor

we haVé*éhowu'that with gain of « 50 42; | and a phase-different of + 90°"
thewcrltlcal density gradient required to excite the DCLC instability can be

shed by atleast two orders of magnitude, The minimum plasma radius can he

tfdown in the same proportion i.e. from 500 a; to 3 ays where a; is

egion larmour radius. Hence the constraint imposed by DCLC turbulence

mirror plasma radius is almost removed.

In Chapter VIII we have investipated some favourable effects of

eutral beam induced lower hybrid waves (LHY) on DCLC modes. We have

,wn that for a modest level of LHW turbulence, the DCLC modes are damped.

‘the quasi-linear theory we have shown that in the presence of LHW, the

hdtkion—diffusion is decreased and hence the ion-life time inside the trap

increased,

In Chapter IX we have summarised our work and have given future

pbésible directions for the extensions of this work.,
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CHAPTER IT -

ANAMOLOUS LOSS OF PARTICLES IN BASE-BALL IT MIRROR EXPERIMENT

 . Introduction:

The present concept of simple mirror fusion reactor envisages
”;ﬁhe perpendicular injection of enerpgetic neutral beams (500 MJ) for the
fipurpose of fueiing the reactor plasma in a steady state magnetic field.
A general problem associlated with this kind éf reactor is to develop a
method of ‘start up', that is to procure the initial plasma iﬁside the
:maghine. The aim of Livermore Base-Ball II experiment was to develop
’ %ethod of start ﬁp which the can be extended to the reactor regimes.

 In general there are following methods of procuring the initial plasma:

(D) Initially the transientltarget plasma is obtained inside the
’machihe, This can be done in several ways like by laser irradiation of
. solid pellat, placed inside the machine (1,2) by passing cold plasma
filament along the field lines (3) by using arc discharges, pulsed

 deuterium discharges (4) etc. or by injecting the plasma directly,
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hfis;heated and trapped by ECRY (5). TFurther the density and tempe-

Bﬁild up are obtainéd.by shooting neutral beams perpendicular to the

jold lines.

! ‘.This method consists in obtaining a build up from high vacuum
gj);‘ For this purpose neutral beams are injected into vacuum in mirror

hine. The beam gets Lorentz ionised to provide a target plasma which

ﬁthen heated by charge exchange and maintained by ionization of the

njected beam.

In one of the experiments done on Base-Ball IT machine the build

was obtained by the 2nd method; injecting powerful neutral beams (2 xw)

in Eigh~vacuum (7). The observations indicated that in the process of
sity build up, beyond a certain threshold, ion~cyclotrdn oscillations
ifé7eXCitedn_ The onset of the instability was observed to depend on

lém geometry and instability signals are usually absent shortly after the

Bééﬁ,injection ceases. The draw back of this technique is that anoma-
 §s‘leses increase as the injected beam current increases limiting -the
nsity to 3-~5x109 cm“3° The spatial and temporal distribution of anoma-
1Qusrlos§es is related to potential perturbation rotating at ion ¥ B

ft‘frequéncy, In this Chapter we have studied in some detail the

mechanism of this anomalous loss of particles from the trap. 1In this

xOSﬁéction we 1dentify the mode near <J B;drift frequency with the mode
eSCribed by Varma (8) for simple mirror geometry. We find that this
‘oae‘in the presence of ion-cyclotron fluctuations becomés nonlinearly
nstable and exhibits a perdodic bursting behaviour very similar to the
?iOdié‘bursts of azimuthal potential perturbations observed in the

,Xperimehtn We have calculated the nonlinear growth time which agrees
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1 ,wéll,with the observed time of SOmloolks between the twquursts,

 As the present investigation concerns Base-Ball II‘ekpéfimeﬁt

;wi11 be appropriate to briefly describe the experimental set up and

:rvationsg This is done in Section 1. In this section we have also
cdséed‘our‘reasons to identify the observed azimuthal potential per-

ion with the Varma mode. Section 2 contains a brief description

e Iiﬁear“theory*6f the Varma mode, a description of Simon and Wing's

fﬁear theory of the Varma mode, which, as we shall see, 1s important

the present context and the energy properties of the Varma mode. In

ction 3 we have briefly discussed the model which we have chosen for
einn—cyclotron'oscillations. Section 4 contains the non~linear insta-

Iity theory of the Varma mode in the context of Base-Rall II mirror

xperiment, while in the last section we have summarized our results,

. Experiment:

‘The confining field of Base-Ball IT experiment is a quadrupole

gnetic well of depth 2.1 generated by a super conducting Base-Ball seam
Wiﬁdiﬁg53'fThiS magnet has been operated at central fields upto 1.5 T.

he mean,diameter of the magnet is 1.2 m, resulting in a plasma radius

Qf”O;lm,and a volume of 2 10 1it. The mirror separation on axis is 90 cm.

oﬂﬁfevent-the loss of plasma ions by chargefexchange a high vacuum is

maintained in the plasma region. In this experiment several square meters

Cryogenic pumping surfaces, at temperatures down to 2°K provide high

%%d;pumping for all ambient gases. The base pressure is o 10—9 P

v -
\ﬂglé neutral beam of either hydrogen or deuterium atom was injected

ormal to the magnetic axis for a period of seconds. The beam energy was
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iy"iﬁ the range of 0.5 tO'5 XeV with some measurementauptd 20 KeV.

h d&frents were adjustablebwith the maximum beam current ranging upto

iequivalent at 20 KeV,

,(11) Observations:

In ;he experiment collisionai plasma regime was examined by
tiﬁng.“The observations showed that a stable plasma at a density of
idé cm“3 was obtained in which classical scattering losses dominated
’vef;fhe charge exchange losses by the ratio of 6 to 1. Alongwith a near
ésSical confinement time the r-f activity indicated the presence of an
ﬁ;éyclotron instability. It was noticed that as the density was
néféaéed, the anomalous losses increase rapidly. The repetitive bursts
f ions each lasting for 50-100 micro-seconds were observed. In the
’éiyéis of the end-loss signals, in a typical case with high current

injection the loss due to instability exceeded the classical losses,

néludihg the charge exchange, by more than a factor of four. The plasma

gﬁsity which could be achieved with the available beam power was limited

c 3 to’leO9 cm_s.

In the experiment loy freéuency oscillations at fon- “J(3 drift
réé@ency were also observed,v The electrostatic probes displaced in
ziﬁ;ﬁﬁ around the central plasma region detected perturbatiohs of plaSma
: ép;ial rotating generally in the,difection of ion-drift. The signals
.Qﬁékdf,two types. One was of a very small amplitude (perturbed potential

thé:order of 0.5 V) near the </ B drift frequency. These types of
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,oﬁs~have been seen in stable plasmas as well. 1In exbériment they

lowed for as long as several minutes during the decay of the

' The other type of oscillations were also near VB frequency.
é;sigﬁais are large amplitude (20—50.V perturbed Q) ) and exhibit a
Ing behaviour. The amplitude rises to a full value in typically

00 L s seconds. Apparently the anomalous particles losses are due to

ge modes. Energetic bursts of protons and electrons are emitted from

rotating region of perturbed potential starting promptly with the
éﬁﬁial increase in each bursts. The origin of this mode 1s not clear.
1f sﬂitable density and temperature gradients are included in the fluid
ibn?rfqr min-B geometry, the characteristics of these modes can be
babi?rreproduced. However, there are no apriori reasons to expect such
_' éﬁfs in the experiﬁent. The authoré of the experiments associate the
ble small amplitude mode with the Varma mode. This may not be quite
 ?é¢t, It has been pointed out that the non-linear effects like wave-
:piing through nénulinear Landau damping plays an important role in the
,déﬁmént of turbulence in the mirror plasma (9,10). Thus Varma node
ich’is linearly stable may not be so in nonlinear regime. 1In fact Simon
d*weng (11) have shown that in the presence of other flute modes, in
;iefmirror geometry, the Varma mode becomes nonlinegrly explosive.
correlate this behaviour of the Varma mode with tﬁe observed insta-
ility’in»°Alice' and 'Phoenix’ (12,13). In Base-Ball IT which has a
“gneticfwell the Varma mode cannot be driven unstable by other flute
Odésg‘as all of them are linearly stable. But as we shall show here that
‘the presence of ion-cyclotron oscillations the Varma mode is again

ven unstable. It exhibists a periodic bursting behaviour. Hence it is
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kéiy~that in the experimental observations the large amplitude

i

t N B-drift frequency which exhibits a pericdic bursting beha-

f;ity by injecting neutrals atoms, the system becomes unstable at the
7n9i£§ of aboutﬁ?log. It was noted fhat in addition to the usual flute
,dgs; a density independent mode was seen both in 'Alice' as well as
Phéenix’. Post (12) has given a theory for the phenomenon observed in
Aiice' which is worked out for plane geometry and approximate identi-
iéation with-the cylindrical geometry of the morror machine is made by

' tb&ﬁqing appropriate boundary conditions. His theory, which amounts to
ﬁg;éﬁ'éqﬁivalent gfavitational acceleration "g' for the force due to the
inhéﬁogeneous magnetic field and is worked out for 5} —fuﬂéfion velocity
iétribution_predicts a two branch curve for the frequency versué density
uptd'a’critical density where the two branches merge. While Kadomtsev (14)
hés;discussed the problem for a mirror machine self-consistently using an:
equation for transverse motion averaged over the line of force. However,
fhé ﬁse of 'effective gravwity' may give results which may not be wholly
correct. - In certain circumstances, the use of an effective gravity not
‘ﬁly»giyes results which are quantitatively incorrect, but also suppresses
giﬁfofmétion which is contained in the actual magnetic gradient force

MSIT: ) which depends upon the velocity of the particle. Varma (8)
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‘jjrfdvedlthe theoretical treatment by relaxing the constraint of constant
rgvity; By allowing for variation of M. and using' a closure equation

ff‘br ,u of the type

\’7\“&.} =
gt (1)

iqhgwith the usual set of fluid equation, it was shown that dispersion

elation for the flute mode is of the form

2 ' ,
CoWe st (e k2 ke
O SRR 1 V) (W R \Voil )

e

A . , -
Wee ol | \r/mz-J
Mo K"

(2)

R ! :
(W | I ) are the frequency and wave numbers of flute mode,

- n L C\\‘ 2 47 " X 14 a ! - ..\—- C\ﬂr—‘ \'/q
= B A “~ A, the\magnat_j.c fie gradient, g = ¥ e
\ \ Vi \ - 3 e "U’/..Q_. \-& the =<y B-drift,

is the velocity with which N ~B particles are injected ete,

Equation (2) is cubic in (O rather than the usual quadratic.

Defining : s
N . ) , B
Y= bl W= el
Wi S -
. 2
) \A) h' ‘Yo
and (N - __,__,;'W,..-o————~

V2 L Y- Gy -V =0 (3)
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he limit k;"gb\ £ ' , this can be solved to give the three

modéfobserved in 'Alice’ and 'Phoenix’.

Later Simon and Weng (11) examined the nonlinear stability of
'§’Varma mode in the presence of the other flute modes. They found that
[#hevinjection current is increasea beyond a threshold one of the lower
éé sﬁarts growing. Because of the nonlinear coupling it tripyers an
‘losive growth of the Varma mode and shuts off itself. The Varma mode
:hgn~grows on its own until inhibited by some conservation process. This
,eﬁé?iéur was’identifiea by ﬁhem with the sudden explosion of the ampli-
udé s;gnal when the injection cufrent was increased beyond the threshold.
fh{min-B geometry sucﬁ a coupling 1is not possible as all the modes are

liﬁearly stable.

The energy of the Varma mode in weakly dissipative dieletric
lédia\is given by

p /~J;l\
\/\‘: Qov _D‘__“é L e //L

DY (4)

is the electric field amplitude of the Varma mode and &
15 §he-die1ectric constant given by

: é‘“ L - G, | . C}, \r\ Yo
' V(Y H) (V)=
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faer‘to calculate the eﬁergy of the Vérma mode we will have to retain
efms:offﬁhe order o~ Y. while solVing for roots ffom equation {(2) (In
bﬁéining equation (3) they were neglected)° Thus including the first
féér‘correction in <y, to the density independent foot we have

)) -, \:’\ - G TO] (6)

ﬁing~this value of V in equation (5), we have the energy of Varma

bde as
i : "2
W= € 2% B

“‘"“‘SQ, -

. \(\’"Bfu L (7)

7Now~asf q> 0, Wdis » 0. Hence the Varma mode is always a positive

energy mode.

4, Model for Ton Cyclotron Oscillations:

In this section we will try to ﬁodel the linear pfoperties of
ion~-cyclotron oscillations observed in the experiment. 1In the mechanism
of excitation of these oscillations electron Landau damping plays a very
importanf role (12). In mirror machines, because of Loss Cone in wvelocity
'épacé a mirror confined plasma develops a positive ambipolar potential
’Cf)h]kJ In this case the electrons are retained electrostatically having
gy:runcated Maxwellian distribution extending upto an energy corresponding
_to the positive potential Qﬁyﬂ . The anisotropic distribution tries to
;dtiQe the ion-Berstein mode with finite \4“ unstable. DBut in situations
iﬁVQlVing freely streaming electrons, strong Landau damping occurs when

t
7A)ZL4H matches the electron thermal velocity. The frequency of the n h



onic ié given by

';.'{A)::’V\,fZ{ = iﬁA)Pﬁ-W<\‘})< ‘ ( vw{<4\il\ |

nce the resonance condition for Landau damping requires

|~ R T N i
Lol = S (W)

o (8)

when the electrons are held in by an electrostatic potential, as in the

resent experiment, then in the central region of the plasma, there exists

1rahge of possible electron energies given by

2 Y (%)
 rdh'these considerations it is clear that threshold for the instability is

ithevpoint when the density becomes so that

Lo ( &\_:_t: Vs ed,

”‘QSS
: N, L& ) L . .
\J\) iy -~ <{<_L (\ ; ) . C/_’_ (/‘\"l’"" :
> ,
~2, T (10)
where a, 1s the ion gyro radius and T, 4is the ion temperature, This

i i

equation suggests that with increase in the electron temperature and the

o . \ ,

concommittant increase in prm (= 3 Te), the density threshold should
{gqrease linearly. This agrees well with the observed increase of (AM“’/SQ;L

with E’ClWﬂ/\H+i in Phoenix II, Base-Ball I & II etc. (7,12),

To £ind the energy characteristics of these oscillations we write

the general dispersion relation for electrostatic mode as (15)
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. fﬂo and %s(, are the zero order electron and ion distribution
unéti\%m's respectively. In the plasma formed by neutral beam injection the
yéyljectr;dns are generally cold (Te v a few eV) hence we may use cold gle—
ctron approximation i.e. 54'1(3((?:"(4 }] . In the ion term we may negleét- the
fitefm ’D}“r‘?/a\)\}-’ as compared to Dg“"/b\)}’ for the reason that in
plasma formed from neutral beam inj.éct-ion there is a large temperatﬁre ani-
sotropy i.e. .T_L >> T-,, . Under this approkimation equafiqn (11)

 becomes

N e 2 2
é - \ — .LUL}G \<'” . AR V\.‘)bl K TV‘ ’\H._..Q| D ‘;’}O C\V.L (\\(“
. ~ .2 L2 = )[\‘L
(.*> \\

(k WO = 0+ 2y )

(12)

where W& Wiee. k”/ L2
th .
n

» It can be shown that for the
harmonic only the nth term in the summ@ﬁion will contribute significantly.
‘:Hence we retain oanly the nth term in the éumggtion. The condition for the

'iinstability for the nth mode from the linear theory is
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(13)

find out the energy characteristics of the nth harmonic we differentiate

with respect to (> to get

. : s D

: ¢ ~ g l 2. l— ’ ’ 1. 2)

= 2 Wpe K Ay ' PR - ‘“_3%.

i ket "\"":’ - 2 We '\'\”\2'[ f T 2300 dvfevy

> o® 1= 1) MW=
T T T T -
(Xnun- L mazy)
(14)

or yrg‘iven (LW and K s DE/ DL can be evaluated . In order

0 evaluate the energy of the wave, let us take (x0 to be positive so that

h‘é”en‘ergy of the wave is given by sign of f‘)e/bb\-) which can be

ot L™ W ke \fm/ e e 2 the first term is = ‘/_{,‘2 i, while the
lowest bound on second term ‘= / b NSy L2 . In the experimental
-besreyrvations < caid was typically in the range 1 to 1.5. This

G ?__ ﬂ‘," .
yields < Asi 2 0.4 to 0.5 £ 1. Hence the waves observed in the

experiment were negative energy waves.

Non-linear Stability of the Varma Mode:

In this section we investigate the nonlinear instability of the
‘arma-mode in the framework of 'weak turbulence theory'. The validity of
L 21 —

he application of this theory requires that W= LE >/94’\ /’Y\ < he

i ] i
4< 1 where (E'D /877 is the average field energy density and 7Y <1
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ﬁé?@él-energ—:y demsity of particles: In the experiment (7) the
itudeﬁafhthe”Varms.modé ranges from 25 to 50 .V in which case for an
temﬁérature of 1 KeV, \Mj: 1/20 « lf Under this conditionAthe
u?gaﬁién expangion of £ and E are made in terms of || as the small-

g“ﬁarameter
585 SQ &»44\‘; vﬂ§1-+«m. e e

PowE e o

= e

(n

“ E‘L = W Elc
| (15)

wvhere we assume that the equilibrium distribution function gives a weak
tability. Then using Vlasov-Maxwell's equation once the solution is
obtained to a certain order (in this case to the third order);képproﬁriate

gﬁg;istical averages using random phase approximation are performed over

éﬁéiiélly‘uniform ensemble to obtain a set of coupled equatioh'for the
spééff&l energy density. Based on this approach, the comprehensive treat-
ment of the theories of plasma turbulence have been developed by a nunber
of:éﬂthors'(16,17,18,19)Q Qur aim in this Chapter is fo obtain in explicit
féfm, the'matrix'elemehts for nonlinear Landau démping of the Varma mode
and the ioﬁ«cyclotron mode. This will be done using Porkolab aﬁd Change
formalism (20) based on expansions of Vlasov's equation and methods of

characteristics., The resonance condition for such an interaction is

| o - ('\‘;)“ - (kn- k'l:") Dy = w2
| (16)

where ,{\&hli) C (g e) are the frequency and the wave
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qﬁbér of‘ion‘cyclotron and the Varma mode’respectivelyn It should be
'1é§téd‘that‘921e¢tion_rule5‘of ﬁonQresbnant intéracticﬁ 1ike non-linear
iiggdau damping are more easily satisfied than those for resonant inter-
gction and hence the& are the dominant processes in the development Q€
ﬁurbulencen In fact it can be shown that in the matrix element of non-
linear Landau damping, there are two terms of opposite sign, ‘One of the

fermswrepresentswspacewchargeMﬁffgctsﬂiiLQJMsgatggring from dressed

particle) while the other term represents the ponderomotive force due to
the beat wave (four wave scatter from the bare partiéle). Normally, these

terms cancel makinp this interaction ineffective i.e, terms of order

()(\< %D\l) cancel (the first. surviying term is C)(&AA %v\)(ﬁ))J
_except for short wave~length modes in the absence of magnetic field or for
waves travelling perpendicular to the magnetic field, The present case

‘belongs to the later type,

We start from the Vlasov~Maxwell's equations which for electro-

static waves are

0t X oS W L w
e 0\ ?_":_, :' ’\, "\,_i ' D___%:_\i’
I‘ L .‘:‘7
v W F O W .an
o= A 29\ L,
Ve By = ARSI DDA = e
—y —> -~

S R T ———
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 The notations are standard, Here all quantities are expanded in Fourier

 series namely o

= o e X -k
o R

Elyvt)y= @ kE, &

(20)

where the %»\\ and E\: are the Fourier components of the dis;ribution

- function. f and. electric field E defined through

4 = ) (e X-o b )
(%, )= O+ < gf" e
JT Th, T (21)

K = 0 term has been treated separately according to the usual quasi-

1inear treatment. Thus 'S»)A:m (L) = (] varies slowly in time. In

this work we are interested in mode coupling term on the right hand side of

equation (17). 1In the foliowing we shall make use of the reaiity condition -

Wop = -wi , do . o

As stated before, we expand Cbk and %\Q in a perturbation
__expansion. Since we are mainly interested in nonlinear Landau damping we

will need perturbation solution valid upto fourth order in CZ‘ e « The

iterative solution of equation (17) to equation (19) can then be written

o first, second and third order in QD e a8 follows.

In first order we have:

~ = FRU
£ (W) By b= ¢
' - (22)

where G (W e) is the quasi-linear dielectric function given later.

To second order we have:
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here VC;¥4fTZ)‘ {is the Green's function for the propagation along the

xact orbité; Myis the particle'massb n, is the equilibrium density. In the
wéak'turbulence approximation, we have

T (R W)

Gumr= ¢
(25)

w
equation (24) there are two types of terms, namely those associated with
the;resonant mode-mode coupling (i.e. € (W, ) = 0) and those due to
~’non—resonant wave-wave scattering (i,e. ( (W, 1) # 0). The latter also
are also called virtual waves' or quasi—modes . To obtain a wave-
',kinetic equation valid upto fourth order in QQ , we subgtitute the appro-
 ,priate expression for virtual waves ::» and (L\(i? from équation
’(23)yin equation (24). The last term of equation (24) is the so-called
ffdu;-wave-scattering term. This térm also contributes to the non-linear
=Léhdau damping through the reéonance condition mentioned before. In the
random phase-approximation, equation (23) and equation (24) céntribute to

A .
the same order in Ci”; in the wave-kinetic equation which is constructed

from the wave equation

—_ X - (>
Clwr)Dd, ()= €W <) \ d LEY + d y (t)] 26

 Utilizing the random phase approximation expanding GE (L0, 1) in the
usual manner and transforming to time~co-ordinmates, equation (26) becones

(Appendix E)
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“ﬁhéré k| K is the nuasi-linear growth rate, A is the resonant mode
ébuplihg co-efficient given by the right hand side of equation (23) and

; the terms B, C and D are the contribution from equation (24).

We are here interested. in obtaining compact expression for the.

latter terms. Using previous equations, we obtain the following expreséions:
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e we normalized so that JfQXECT 9\&})‘:: \ or
09 Lo :
cluy, \Ulé\a—ﬁ,’v\u) = |
- o \o : | » '
(Whéfe /Q'ﬁ'g’:i Fa ). In order to perform the indicated integrations

wé use the cylindrical co-ordinates in velocity space with the magnetic
field “4n-Z-directioni—In- particular, -we—have—| [ (GRGY TL‘]

[ \s, W, 147, 1\<;,\<e;\<~,) and ve put L~k = "

w - bQ': W . For orbits we have

V(M) = j Uy CoA | _2TH0], 0B 2T+ E‘)(‘C)j,u,‘%

e
Vi
i1

lj b J 4 L/.L i Cok (nT+E) - Cod 9]

AZI pl S:iz - Uy Tj‘]

(31)
‘and hence . 21 0)
L Dw\.[\’(“[:) \J. \/,1‘ c
+ W '1—-«
NAYY
(32)

where 2L = qB/mc is the cyclotron frequency., For simplicity‘we assume

>

co-linear propagation in the direction perpendicular to B. Note that in

’ . . " \~L
the forepoing U (T)= 6 @(t Y= (O+2T), O¢t") £ Ors2(C

= and so the integration of (JK; and \V' over (.U and Tﬁ” are inter-
related. This is a consequence of the time dependent orbits of particles

in the magnetic field. Tollowing the method outlined by Porkolab andfChang
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_can perfom‘these tedious integrations to get explicit expressions for

B W \4"» , PR and TD\L! " . This is done in Appendix A.

<, \‘n N \4,\5\“

A C\\"nﬂ Qp\e 4 C(‘."V\E)U‘jf..\\'ﬁ } (33)

In equation (33) the resonant mode-mode coupling contribution has been
dropped as this process is not important here. L YRVL is the coupling

co~efficient given by

_,_"'}’(i“_\—\w”. L‘m }_M I " + C“k" +®“»‘“]

J—

D
- - — (3%)
iy S RO e g pIC
Wiiere Nk B 'ST'T— \ d}‘\ DI and S le ™ »A%(J'Yj I_ Sto |

| e RIC
It is understood that \ /) Lu\ T Wy, etc, Using expressions for

. . C o a1 from the Appendix A it
TV 9 (Vv and )y rom e Appendix A we can write

\_ W' 1o the useful form as
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ggplained in Appendix B it should Be noted thét we shall be interested
’ 1y in the imaginary term associated wiﬁh the resonance condition;.;;v‘(ﬁif'ﬁ?)
and hence the poles associated withic&) and (o' will be neglected. Thus

in the foregoing expressions we split the integrals with fo poles in the

o B -1
('(}Ql- Yy J?..J"\ﬂ’\;\)y\) = TD(._U\.)‘“ ’YV‘»%‘ k)’\ UH)

symmetry relation

(38)
Thus‘using

(QA)H) ) mode

(39)

;whgre \-\<,Kﬁ is given by equation (35).

Proceeding in a similar manner and using equation (38), we can

derive a kinetic wave equation for (—k&)kw.\<“) modes as

Ny | S A () '
D ‘L - - Y{\AH N Ky %_ = ,.L:\ | \L_ "y ‘\‘ \¢ }\\ o
e

)t 2%s (40)

Now we identify U_.U ) \() modes with ion~cyclotron oscillations

Qescribed in Section 5 and ( W K )4”) modes with the Varma mode described
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ction 3. From equation (35) it 1s easy to see that the matrix ele-
nt ‘Lﬂéilr) depends upoh %,, (ﬁxa\—\\n ) which remains finite
ong as one of the modes has finite |<, ., Hence even if we assume a
ﬁfécf Varma flute mode, the nonlinearvinstability will not be signifi-
anﬁly affected, However, a finite \L‘n in Varma mode may give rise te

amping due to electrons which is given by the first term on the right

hand gide of equation (40),

To proceed further let us know find out the sign of matrix ele-
x«m) '
Ll + Accordingly we have

cn

;\C| = e T Ct,"\_)‘\ 0 (\_,)..Q,u \\“\)“5
‘Dg_ ’-)(. 1. 'IL‘M,YM)
\3@)\3“}““ A
» S VAl 7
X d\).L DT:(\I y = \Q_\-’\{\'\L T\p()c)‘j-b-w—. (X”)
, o P R
: T

W k,'.z“_”_‘j% (x') Mo W 1!
" C (W)

N ()

It should be noted that in equation (41) summation over species and m
has already been performed. Since in the experiment under dlscussion
= S22y \_ o MYy T A } , W' = \ﬁ\\z.ﬁjﬁw”j&

- and modes are nearly flute (i.e. \(\\, W = O ).
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@

(}d") £2, R in which casé because of S ~function the only fimite
term would be m = 1 in the ion species. Now as C(.L\’, o ) is é. damped
mode (quasi-mode) of the system C (W) > O in which case ve nay,
neglect the second term as corﬁpared to the first under the :Entegralhsig‘gb

in equation (41)., Hence equation (41) becomes

[

L(” AT Wy, 2 (
Lo,

\D%/L)hs\ \ C /)\u“} \Q \Hl \}\ Y‘\,

5 Jooav AQX ‘ \ : "’ | | {;L
, (gmv Ky b= S20) ™ {dy, 9T 5ol Wy \b(Y ) IYMUC”)‘
| N .|
(_U\)“\ -\ \\\J\\) - =
— = = (42)
'- 1:11 p summation p=2 will have dominant contribution : A (W) = S2| and

Iy 0. For T (x") we may use the Bessel's identity in which case
) .

the matrix element | ke finally becomes
4
M AR LQ;-\,-, 2
AT C T e T
& lide -
= \)M'\\ My Yy 525
(‘CO [ 2
* cuy ?UW q’ J00 3,00 - 3,00 3, (x”)?
Yl ,)‘
y
- (43)

- "‘\'.‘]——' \\"_”Ul Ny
where X = k) &)‘/_52‘ A - 3 -}..,82\
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n equation (43), it is to see that as To and J\ are out of phase
by nearly 90° the :\1\ j| will give negligible contribution to the z.;\\l_L
integral. While for distribution appropriate to plasma formed by neutral

 beam injection in vacuum, i.e.

) . - U\\l /.‘ 2.
Tc,n.(b-)i LS . %(b,\"ulo) e
c>2\\\’1~ U o 4 (44)
. L ]4'2U.'L/ 2
the term X, A e tends to weight the positive (rising)
_portion of PSR ou, over the negative (falling) portion of DAY /3\,\ .

(1
Hence the integral in equation (41) is positive and hence L Kot

is > O for the case under consideration. In Section 4 we have already
shown that for the observed ion-cyclotron mode ’D(‘—/;) w0 for ‘positive )
Thus 6\140 in equation (39). Let us now find out S /' . We recall

—~ Y ) Y
that S\a" represents the sign of Q& /)\‘{;’_at Y= v W = ~-1. Then

Ve _ (WC,)__.‘_..,
SOk

D (,O (45)
From equation (5) we have
208 - - 25
oV ) = (45)
Then 'for positive m UG’//;)\\“;,“ bears a negétive sign. Hence $\L“

in equation (40} 1s <« 0, Hence the wave~kinetic equation (39) and equa~

tion (40) become

DN_E = ' - j‘; \.“: REIN L"- N\
ot LY [Licse ] Nt s 47







Plot of energy densities of Varma mode ( N )

and ion~cyclotron mode ( N ¢ ) with time.




the beam injection current is increased beyond a certain critical density
the electron Landau damping vanishes and the ion-cyclotron oscillations are

linearly excited as represented by the first term in equation (46), Thus

. . - -
Pdk grows and when Fh* Lwiakn becomes larger than «X\U’ then Varma

- Q]
mode is nonlinearly excited, Hence VQ;J' grows and when Fékw L_\aygl
i >

fbecomes larger than 'X\< the ioh-cyclotron oscillations are nonlinearly
. oy W
amped, and hence Pd\< starts decreasing and when Y. LWL)Q,FQ\Q

Varma mode also becomes damped and starts decreasing, Thus we see that

~ because of the coupling the energy of Varma mode and ion~cyclotron mode

ﬂ "bursts periodically (Fig.l).

This is quite similar to the periodic bursts of Varma-mode and
ion~¢yclotron mode observed in Base-Ball II. We will now estimate the
: nénlinear time-~scale of the bursts and compare it with the exéerimental
value. Here we consider the time between bursts to be a meaningful
measure of the time for the wave amplitude to grow from a very small to a

Vvery large level. In the model this time is given by the nonlinear

' growth time which is the inverse of the nonlinear growth-rate NXp“_uP .

~ From equation (42) and equation (48) ”X\QtN,“ for Varma mode is

given by
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" ey —— 'J—
X \} ey W T ) T (o) \‘
(f LAY = 2 "‘—‘q) - k/\ l \J\\ ) z “(le i
(49)
o we choose a distribution function characterising the
neutral beam injection, namely,
N U )
1 - h kY gy . . o L.) \—l 7...
+Cr?, = ._l/;_r_r_T_._ Sy -y e 'A‘"_‘
\ (i)' Ui
-fwhich satisfies .the normalisation condition
Ay o O
ooy, \ b.l (I\‘U.l—?ui: \
- Oy UL:
where KU_\U is the velocity of the beam : | s 1
From equation (14)
~ [ \
PASS SV | |
IS - = {50)
while from equation (5) we have
— . 2
2E _ Awm <<,~‘> \
Jw" WE AN T ) Y <2
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. : \)}u;z“
where A \)’D{ = -~ T \G’\

From equation (49), we may write {ldva as

5

~ _ 4 iy N 21

NarNe = NoThi W
|2E jj2e )
IER VSN iy YT

(51)

Woe & Ny L2 /"V'\DYﬂ  Uyo

\< i.e. the ratio of

 energy in waves to that in particles. For Base-Ball II parameters i.e.

3

’YWyD': 4x109 em - ( KY]F’ is the plasma density), T, = 2 ReV (’I.‘i is

the ion temperature), Lk)ﬁi R 107 Bz, ()Fv{ Vo 3.09x107 cn/ sec,
P
G- = 1/50 cmnli o = 1/5 cmﬂl, L2/ = 107 Hz, we have Vpo| = 2x106

_cm/sec. To our knowledge there is no experimental data on the wave number

of low frequency fields. Typically for azimuthal mode number equal to
' ' ) ' '

1 or 2 we expecé <" = 1. For these parameters
e V28 x\o
:) L\.)\' M_( <
(52)
It should be noted that emergy of ion-cyclotron oscillations N also

fluctuates. Hence to get the order of time scale of nonlinear interaction
we may choose a modest average value of V\;: Jtﬁgé(wﬂ3 under the weak-
turbulence approximation. Substituting for various terms on the right hand
side of equation (51), we get the order of nonlinear interaction time scale

of Varma mode as
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7: oy N — - G A2,

oy
L

J - 7 .
For 2y = 107 Hz, LRTN L © turns out to be = 40 jis which

agrees fairly well with the observed bursting time of 50-100 f(is for

Varma mode.

This periodic bursting of these oscillations periodically

increases the scattering of particles into the loss cone.  From the loss o .

:cohe particles are lost thereby giving rise to bursts of particlEsz'ffﬁf

7. Discussion and Conclusions:

The model developed in the preceeding pages we have shown that
the stability of the Varma mode is affected in the presence of ‘the fon-
cyclotron modes cbserved in the experiment. it no longer remains stable
but exhibits a periodic bursting instability on the time scale of

VZE)4OO _Sliw\ ( =40 )0Ls). Hence the identification made previously by
0P Nwnduodas o) el of a small amplitude in KHz frequency range
 with the Varma mode may not be correct. Rather the large amplitude wave
:exhibiting a bursting instability on the time scale of 500-100 lis is more
“jlikely to be the Varma mode. The small amplitude mode may be one of the
; qther two flute modes whose coupling efficiency to ion-cyclotron fluctua-
tions on account of its low fluctuation level may be small (i.e. the
 ‘matrix element l”}<”u! of this coupling may be quite small as compared
‘VWith the matrix element for coupling between Varma mode and the ion-cyclotron
mede. It should be noted th;t the nonlinear mechanism in the present

~ &xperdiment i.e. Base-Ball IT and the previous ones like 'Alice’ or

:fPﬁoenix' ete. are sliphtly different. As has been pointed out by Simon and
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Weng, in ‘Alice’ and 'Phoenix’ explesive instability of the Varma mode

is responsible for the observations. While in the present case it is

the periodic bursting instability responsible for the anomalous losses.
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- APPENDIX A

Ll li’”

N g e

By substituting the orbits given by equation (31) and equation

(32) into equation (28) and equation (29), the time intepration can be

;performed to give the following compact expression for X% Je v ¥ C\\, \d,_}

6
(A) P2 H RV + PR TRV

R
-
O
|
=

AT, My A E (W)

- = (D)

-5 Q

(to- S Vnbn)? - 24"

+ 1 5[ \’\)l\ (L)"‘ kn Z (i )Z;, /\

(( s ”.~~(»a \<\\UH) ~——-/‘
— = —(2)
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.Y A0

. L — ". \<'\ r
. , wo— = J -} o ‘
‘-’—\\‘/*|‘k~ - LY\ 2—}'1‘ (..\\)\\ ‘ L% U)_ Dl —7 //'ﬂ," K\/L\
. ,
1 ky [ R 7,00 - k) 7y ()]
7 S

(o' - my - . Un ) oe =4

N | UL . : o ]
-+ \J\\: \_ v\{)-. [Jb(_\() S VA - e (\;, )_&?\

\
. LU.‘ —_ /'Y\_er—l\ - \L‘“ \)\\ )1— . ‘()___ . (3)

:where s.1,n, and p are all possible integers, /\ﬁr.;w-= —aalo e , and

— 4 ,
(/O}a = anm, {r' /‘\"r'; . Here we have defined

\/ﬂ‘ . (Uy) = jq,) (ks \)‘Lf"Q) 'jbm (v Ly U‘/QB (\‘:J m/_a)

7o (1) = ML 9Fs 1 g, dFe
n ) Uy oy Yun

( W= M) - WU )
7: ¥ ( l("' ) - 2 ~A C \‘L — \:“ SR L’\"‘\‘ )

(4)

(5)

and
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= > . ’\ . .
£ - ' “" £ —— < O\ ch U U
(<) 7 1 e | [RAVAT
g ~L ‘(“ U . — , — .
X ‘:{?q [ﬂ + lffS?”V )_ KYL:E%E_ 3yt \ ‘{)1?£Eif—W
(W= Mo,y 0w v
| (6)
'Ahd of course as (L&f; E? ) is a quasi-mode C;'(\«f,ii ) + 0.

Equation (1) gives the contribution to the scattering from the shielding
cloud which is characteristic of plasma. Tt is also called the nonlinear
ttering term. As a remark in passing we note that resonant mode

coupling coefficient in equation (27) is given by

o 2.
~ L'\ L) bj\_

qq k'( ‘ﬁn‘ \-L' - - i-—/——-‘ \“\K \-L“ k)
J e Y, o N
0
The derivation of four-wave coupling coefficient
1s as follows: It may be written in the following form:
b
. = ) LY
S T s
LN \\’” — L : _ ——
' J An T, = (8)
I
vhere
, N Co
. = - - ~ >
| = 2 2 2= L dbnldyus Wiy <D
; P Moo
J J (9

Here n, b, and ¢ are all integers in the range (- 3, o) and

Wiy = Jn (M ) Ty (lov ) Ty (' ) T [ {%L)

-2 — ~ = (10)
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Q ®] 0
T
—.l_) = 4 ST
C T—\'\ y L)_ i
O AT RN |
(11)
_so that
_..":' ty 0L ,“ —_—
T— \<3 \<) \-_‘L'+ kl <, DL\\ Yk, D D_\
it
-+ \[‘” 8y Dn 1 :
—_ - - (12)

' k,Th‘e expression for different matrix element can be derived as follows:
Substituting the orbits in equation (30), we can split the integral with

three terms so that

r_DL(,k“ﬂ :~D

' — €13)
where
-D'\ . Al )T Dm k,L Sin p' ‘)?!,
3 N
T - = (1)
S ‘ w\ »
I il o .
1\ — ¢ D kfj 14
) i o~ -(15)
L)
1A ~
D'\\\ C‘\‘S\} (‘“: Dﬁ \ N ‘2_(._))_1:’
J YYlin —— -~ «16)
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_equation (14) to equation (16), we have

= jeals RS CloiB'- CodB)+ - Knn) )T )
k —an

- ey Py
nd after inteprating over C in equation (30) we obtain

—-LJ ‘: _— P, 2._- 1 Z_. [ = -
- BTN 4 = ' T, (Kb Vda ( \<l Uy

% e }?‘\ [ | (c-ol) (hm- o) 4 I (w'- ¢n- Ko U) T _l
| \ kl Siw (@ 2T )2 gy (o) % Lot A6 +27)

R T T e T (aw ) x el Voo
) x I (\{er\;lk_\v. \\\~’w( 3:’3\ X Q)t!, \ V (vwv-an)

(’U‘ S . ]) T (W) = ] A (BT 1_5_\7‘ N

LML () % Cob (614527 ) ¥ K 2 )
T(YW ) % C (& § ) Vi -

N \" Y \\ I > ) ( \<7}_':':%_ > YR X K’w \ L"‘\m\

y ( |/;2 - 9| - 0T j *Z%n [\ ){

—— = — (18)
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_where the_expressién for \Zm () 1is g:fvenbefore by equation (3). We
can now integrate over LC' , substitute back Vinto< equation (14) to

’equation (16) expand the expomential in equation (17) in a double-Bessel
function series and integrate over ' . TFinally we integrate over the

velocit:y’ space angle 9 integrate by parts over U_L repeatedly and

obtain
=0 P
13"1*?: VA A 2 2 2 \duy Ly vl
o Vo C J Y

(W=t ¥ Ui

;"W‘:(MU)/-Q) (k ’b/_xz) % \ 7 (x) ‘/ \"\“ \» v \\vi Y\) ‘X\?

( % L C-vym- \_:) L2~ \‘\\. J\\
(2 P SV 2y L e T =
- h z b - ( \ ) = \\ - YA -V / .

VAN

K
+ L& ( A -1 l l—*ébl_) \—2‘“ 7-—\,7 L\’)]
\A)‘~ ( C-vatm Y=Y un OO

- 7oty 100 D3 ey,

(,l\) [(' MS”\“Juh“ \<|\\.)H

( S\P—J \r%b\

AN z () 1:1\<L {._ 2 (W\A’w‘)]\)l]%@_

BTy -
o - T (Spd Spn)

(- mym) o =\, Un

(C-vym)a2- Xy Oy o,

1 Kua CSpad Spa) o i ﬂg

(19)
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where P = (a-b+c-d+n-m) and : v
' \e B I G TN VIV W '<1'Ul. > 9 1\) J (o N\T (V‘ri L
A = J C C %?_): ) ‘)c:.\ ( - _;.)—-\-)-‘\- ' A C.( i"?— ) R s ":)‘F: :'L\)

T (/0 ) Tor (037

\

[ 3200k [ 2 me) |8 Cedh ) (S Spn v 4y}

(uf - ( C=m 3} M- )":': ¥ Upy

TR BN L RV )INQ (-t ¢
’:4— Z'Z.w(.\f)\i_)_ | .D—U,L¥ \}L\_’{_}_\j)>(§)b (C-dtvwmn) (\Jrggj g@‘*’”)

L'~ (= vyn-1) L - \41: Uy

+ \\\’»\l) (C-clywn- W)(S},|'S}>H (§ L)L,‘., jmik))

- ' - [ YY\})V?\ \(l_ i(n U/}
’ U R 3 Ny
- — qu C\L) <y Y 2y n )JW ( (- cd Ay 1)
% ,K 2 +op

UQ‘“‘ CC;»- Y ) - \) - X Uy
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AVAR!

L (c-wiw) - < by
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n ¢ ) )
* k“ :2_\7 .___,‘gc_ g_‘—b T T '}\ ——b.Q_~\<\\\),n)\J
I) " (,k) - CC""‘(\’] i+ ),.:1‘“ <HUH DUH ;

— Doy U2 4 - W‘)
[?: . DUJ. \)\ KS{ h’b

U\)' - (- "y vy -0 )-5‘*’ \(‘H U

._l_ \(\ X = ?_._ 4 On-ve)
o2 T A VL }(gc %\94-\

' = (=Mt -1)a= Kl Ui

S Sy R
W' - Ce-niEm) -k n oy

(- b~ K\\U\\Yl?

1

— — (21)

LQ \\ \g
‘where Ao = )L 1) We further note that in the foregoing

expressions the derivative D))\)_L and D/D\)H operate on all
quantities to their right,

To proceed further, we add " )" and | )it
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and begin té sum over indices with the help of the kroneckervdeltas,
Then a considerable amount of manipulation with the Bessel function
 identities is necessary to combine the large numbers of terms. Further-
‘more integration by parts oﬁer \)” is performed wherever convenient,
 \ihus_after a considerable amount of tedious algebra, we obtain following

expressions for the matrix elements:

pes
¥=*t) ' N —_

B

(2 VTR ]

[(uﬁ-(b+v)41~knmm?rff]ivf-Ck*ﬂ{l*““hﬂ

KUK Za () = T TR B

[( W= b *l(,,U”)L.‘. _Q}'] i((,\)‘* C-Sl*'\(\‘-\\)n)l-- —ﬂl]

| - —(22)
T, D*"-L’ Zn () = Wy Z 0 Qe ]

, - .
[w - (b ry)y - \<,,uu} [w‘— Ccy)-n- \41-‘\\)\11

= KO TR Zeow - Wz, 0 ’Z

( W- by - Ky Un )ZL( W'~ (- a1 Un )1 -t ]j
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. - . —‘ _‘\ ) ) \ —
— \—(v\j\.,\ - - \%\\U\\)L‘ﬂ 3 X__K’O\' C2- Ky U”-] |
—-:) . i . ' . 1y - a
—_— \ \(H Z (k) = \¢, Zw\-ccw )J

— - = —24)

‘ _ | 2 -
Dn”\ - “’\ (\_,\) - b_&—l”‘ \<\\ U\\) ( U\)"’ S0~ \'4\’\ U\\’) \

i Y \<;'I Zn (1) — Yy, ZM"CCK“)]

- —25)

- Here 7’\4 C\& ) has been defined before. Equation (4) is also called

'compton scattering term’ or scattering from bare particle.

We may now write equation (34) in the following form

\ 4
. L“My;.
\ ﬂ)k“ =z . T by

Pg/‘)u_‘,‘ \ DQ"/D\.«)“? ke k= M,

- - W Y ~

"Yn X )kk." + . \4\”K<H GRIL J

- : K& C w0y e
— — —(26)

’,where bd' - ( {a) ~ \’U”,) . \(' = (\< - \4“) . From
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aﬁétion (26) we see that only Im part of the matrix element is required.
ﬁ‘partiéﬁlar, we shall be inférested mainly in the imaginary terms asso-
ciéfed with the resonance condition (16) of the text and hence the poles
associated with (o and " will be neglected. Thus in.the foregoing

expresgions we split the integrals with ka poles in the form

( L - Mo~ Dy ')-\ = P (W mo-an)

™

. A .
ST S (- M- Kaun)
” (27)

‘where P denotes the principle value part. Utilizing this equation, we
- will now determine L'k,k” for the case under comsideration. To do

this we make following assumptions:

I y }] PIRS ED
\<H<\il s RH 4\4L )KW fﬂ>‘(/)”JZ<U‘ Db;v

(28)

)
Under these approximations we retain F;H only at poles so that we

have following relation for the matrix elements H.
(™o 7

X L | . |
UJ”“" ( ﬂ, - \\\\ \)” L’\_\! - %_ .S.)_ — \(~\\\ \))‘




! \‘—‘\L“{"‘ R \"{ \<f,\-‘f"k" \“‘

_ we have proved the relation

T H

can easily establish the relationship

7 - t\JL - \(_‘\1 U\\ > ‘k/\)”“

! H 1]
) K|]4',‘r»"

‘wl\<,\d‘,\a‘ ¥% V' -t =

j;Yvw } e is obtained in Appendix C,

After this we write down the following symmetry relations:

e = Lo H\c’,v,—w

Equation (31) and equation (32) allows us to write

H

To proceed further, we

= \4}/

- 0 o
= = _ ~NT
L, -k L L dVn | do U 0
< e ) 7/q) b (L) 50,
=0 e
! n
J\ | \'\/\ \ \’L - R
e ks )
\ ( \\ - M. - ‘< 0 U\\ ) - 2.
b0 /1e N . L) L2 /i

(31)

These relations are proved in Apprndix D. Furthermore in Appendix B,

—_— —(32)

< ' \4.“~, it T -(33)
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()
From equation (29), we obtain the imaginary part of H b e e

as follows:

PO (%)

() — Ny
’y\n L\ \( \&” S = — Z__ C\\)\\ C;‘\J \ \/ (\,) \
< - AN

i
-

1,4

— o

C

- : . \ .
x Wiy owmen S La'= A -G O
( Lo - S0 — Yy ) L BoRs

— _ (35)
And from equation (6), we obtain 1'\"\"\ G ("\‘l:V‘ ) as
. ' s e
T ) L .
, _\Am € ( K ) = - W Z, - C\Un cl Ly D:_E_u

— i

(&

o Tyl () § (e i o)

— (36)
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Theﬁ substituting equation (34) and the result of ‘Appendix B in
equation (26) and further using equation (35) and equation (36) for

ln,»\q, C uy PRy and _\“.—hq - \« ' ' and after some algebra

' ) (~\'T'\)
we have the following simple and useful form of L b yen
A An Wy
Ly = 3 N Wey a0
S \Des 1\ \ ANCIPPY
’ \D"E/m] I PINUN It "M
R [0
X\ elon | <l a;;i (:DJ Cm 2~ XU )
)

M Z K T T

)o = e :T’Y)fs LX‘)
(LU‘)‘)_Q - .K\.\U(\)" - 0 V) *=
% \ ‘ \4\“ 2
(; W'y V)
@
 where H x.:_,\.:_”,'k’ and C ((,\L)‘, \L|> in equation (37) are

given by equation (29) and equation (6) respectively.
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To get er \‘\ VANV we may proceed as follows.

We write

e | 5 -\
\ (L,\)\ - N - 1\'11',()1‘)““ \Sf]
=\
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= - (742) 2L [ W - (Mm-1) L2 = Uy \

[\;\)\-—' (’Y\Q—\)ﬂ- )<l‘\ \)n—]“\

J 1)
Then we let n —> n+l and n-1 and obtain
M= 44 Gakg )

X i S /\)njdu '\"’b/b\)l Sb (l)
(o4

" -
( km - L~ \‘\\\M\)

Y ot ' Ny
S S I )ﬁf

(wW- - kiun)

NG T T 60 T )

| '
o' - ( Y:~ '\’\.~~')\Q — f*&’n\‘ \)\|

o

- 1 (2-manf Ky ] qu\_.\ (\i) ) oy (2 ‘1

e e e s e b
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where we have used the notation
xX= kﬁ« Uy / <2
 Now using the resonance condition we pick up the pole n=m, write

w\l__ C'\P;Y\') O - \\(\3: UH - (k/\,)’h—n- “‘kHUY\ )

In the last two terms let \p x Vs \P and obtain

VNG R

(=]

G vy
L H\g = —\i (“ VTG )

¥ Ndo | du 9§ (W mneiaiun)
(:\'L'_l T\/—\_;:ﬂ kj_(l* \<‘\\U|\ )

B )

- ey (b“'*"‘\ j\z-'\,\,. () K j‘m.Mbc’) j@,, (5 )

— j,_m, ‘ (") T\Y\T \ (™ )i\ ?j

% kl h’:) \) p(x ) \ -:)"YV\-).\("){‘ ) jb""(‘ﬂ~§y” ) - j’hr-\,; (3(') j{)’-’—\'ﬂ;).\

(‘m")j
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;Now we employ the identity

R \33”'\0:('"’(') = 4 ] :Jﬁ.\ W) + j}_,,%,\ b{\] )

to split the Yo Jy () and uﬁw’\m/\ ) \\ o (L) , then

collect terms and finally obtain

b M e = T WD)

e n
- \
* (&% db\ DI%' 2% a S( UJ»WWJ1*\M\W\>

et

. le. ~_-’—”E?fjﬂﬁ’ k)_fl—- ¥<\\\)n-)

Vo ()X L\JY L 0e) \\p - }ht“)

jkw\ﬁﬁj in“hq§)(Yh)]

Now let %3 T l—> %3 in the first and second terms respectively

and get
—_— L) . ‘ G 0p)
beo Pl e = -7 kol 2 o dy, 9F
P A
- E o
* 2 ) J}r s (") J L I VSN I VIR VNG

L(J\) 2 - \(} \)” )’2“ - “.\’2.2‘"‘

(3)
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APPENDIX C

Derivation of _LWYW-LDL.L

Splitting terms into partial fractions we can write the

&
i}

E‘«L j’}r‘; (x) jbﬁ; (") ] o (") jfwc ()

i

= Ky T () 300 J )D_C(.X“) s e et j

( = k- iy ) EEN R
% E ¥k Ky
mh'CC+x)£1~kﬁUi§
N ),
~ E i \\/l_ _ GY\ - ( ) k.iL o -*-—‘i) ?)‘*Fr_;
T e W) Gs OO o |
(D
Now we let C —> (C—%) and in the last term (f}w;'c_> —>

Then, we write out all the terms perform a series of manipulation with
the Bessel-~function identity i,e,

4 T v

» o J b (%) = N I N P (X 3+ jﬁmﬁ, ()

Collect terms and obtain
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where

— - . Y, "
% = - xdy,, ) Jp ) IDANINES Joc )

Now we use the resonance condition equation (16) of the text to obtain

_ the imaginary part and hence pick C=m from the summation and obtain

Lve 20 k0 &) 0y Dy W
D )""U 8} — ) —
:~21WTM>iIMKbQmeHWJbU)
< b

( .‘X’, ) - k‘ y RAg ( = v ) j'y\,.\ C_j» ) jY\r Y (‘)(” )}

P o\
* ;_ S (\A) - Yy <L - Ku \)n)]

[kbu- Vo2 - k‘\\g,:)- - AZ’”] L VAR e k.,w\.\.f]
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- s t » ! :
where B <h_> = ol - Y 2~ K L) " and the

terms with 43;& cancel out,

Splitting “Y):jyj(fxy and (M- ‘lWﬂ~( ™) according to

‘the Bessel function identity collecting terms gives us, for the square

‘bracket

e f e 1 ~ lon S ) — wl
~ ( (Y e
(e, ) ] T 00 Ty o= o Y

D, OU) #B

Now we let n —> n¥+l in the first and second terms respectively, combine
the poles fq(k)~ (m*) ) - \<\\thft} !

and obtain

A}

Ales > 2 K kl. k{L&@lI:>l.l,
. . el "\l'?,.. ~N J PR
= S 2 Nz ]’\,L \’\3_ Wi ‘~’I‘-’/w‘ g ( u_;'--w-mﬁ: ku Un)
: f\/\ b i e ’— .’ . Z_
X;. (- o~ kiLun \?—~"2zf] lﬂ(MU*W44?f\<l1\hn)l~~5L‘]
' — — (2)
where W (V)" is defined in the text.
—— 5
m (1) and
y from the

cquation (2), we proceed as
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~ APPENDIX D

We wish to show the following relations:

l>— 1y - :
' b \\1“\ \’\) - ‘—) k\\-“l’\ e (1)
\V\ \/:, Wt = 1~) \¢ ,\,k”. \Ly (2)
here \»\L<‘RH'L(x is as defined in the text and &W\in VT

is written in the following form

r‘/’b 0‘.>>
h < n C»\)L N Fo T_S x) _IS”Q,(DL”)\)Q (x")
R o g 2. — i
2o ) . (o= bz kv ) o =2
R S L2/ ke, (<-0) 2/ —
&\i\)* SJ—Q.-— \<\"a \_)\\ ) &LUH“ C g“Q) .f)_—kq‘,‘ U)\)’

— (3

‘Equation (3) follows from equation (30) of Appendix A by letting p —>s
‘and n — . All other symmetry relations follow from equation (1) and
equation (2). We see that equation (1) follows immediately from the
form - &% Vi.ky]¥ﬁ . In order to show equation (2), we pfoceed as

follows: 1In equation (3) we write
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) “‘

E ((A)‘ - C L2~ kn’ D ) ‘e <zt ] = (\?LQ_)
\:. (& - (. o >\

...) ’
— (o'l d -
(Lo ) ] %)

!

} — t ! .
where we have used the notation (O = (\LU - \\)\ UH) . Similarly, in

Now we let e —_ éf ', L —><4} and obtain

(€8] (5%

,_kh .: — %{ —?: J:P:_ (\<_L k; \\/_-_\.”> C?\U!) dUL
1 <

— £ O

where in the first term we cross multiplical by the denominators. Now

in the first we can apply the Bessel's function density mentioned in

Appendix B to rewrite the Bessel function .\) 4y ()ﬁ_‘) in terms of

\ \TQ (x") . \7()_.!_. 5 &3 ) and \}_gi-; (x) . After regrouping terms

_we obtain
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- V& Q)\(\._\l (5)
e =
Ao\ duy
- ©
D-?L‘x jv\b €y ] I 0 (X“) \) (Y—‘ ) (“‘Q/k
P U,\_. . L

e e e

(6)
R o2
o 2 —\: (\<l¥~‘ \_\‘\) Aun | vy,
Yy ¢ -
_ e 0
Ve Ao M0
[\,‘J’) (@‘_(,2> [ J
— — (7)

o= (G-s2) | N T ) Tp, 000 - (g 0 Ty ]

Ky L(w-&.@.)*- 2
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Aﬁﬁlying the previous mentioned Bessel's identity in (A) and (B) we may

rewf,ite the terms ( Sif!) :)ﬂs;,—‘ (x) /}‘l and Lﬂ (?\)/k"

andvobtain

(%)% [ ®-Ce-nall :\‘s 0O T ) = Ty (0 Ty, ()

Y
)

. _ N

e ¥ R
-‘ - N — S . ) - cee Y ! ~5¢ ) MJ ( of ) ] s

+ L \)v - ( ..C"} RIS ] L ‘} 5;_.2‘&«)" ~J .,\!_.\ (o ) :S ( ()J*' ~_,l)
dccording to the relation (4), let § —> S¥l, collect terms and regroup

; them as follows:

(“) ) : (le C\ ) («, T )
. ' \w‘ ““kl“ “‘" 4\ \¢, \\'. e ¥ (8)
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Yoy
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O

)

5-2) \JS~2.(y) :Yé_{ﬂ (") :Y@ﬂ(ﬁﬁ)

[nggwwjbuvxj&&w)%quy

—_— - — ! 1 7\)‘
— —=(10)
| \\L“‘ = \{H~ \Ll ;] we have

() ~ (G- S) =~ (- 1)

and in equation (9),
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s

7
N _ﬂ L( o - $2) @ (-2 \]

_ Y'(C-S— ) (W (’Q—M“Q]

VL :
Now let Qn S —> C-+\ in equation (9) and using the Bessel

unction identity, we obtain

o P
{2a) o ‘ | / |
H \L" R 7 2 \\’-_\_ \<l: \(‘l ALy C"\U_L Djf:’
< 0 .blﬂﬁ
— {2 O
¥ Jg G T () Je0D - (se0 2"
— \ 9 ' e Ce-0) 2
( 05— ¢ )t Rels (A2 C
— — —(11)

where once more we used equation (9) for combining the [j[:w~( ﬁ:I))gﬁlil

. éoles. It is now straight forward to show by a long-series of manipu-
klations using the Bessel function identity and resumming with the index
S- thﬁt the Bessel functions in equation (10) cancel identically, and

. we have

(12)

7xAdding equations (6), (11) and (12), we obtain



',,:'Symmetric relation (2) is proven.

¢ L)}
o 1
ke n) - <2 -
L-2) L -0 -=efxy
(Lo'= L= %' u) (L= (=)~ Yp'un)
R -(13)
‘ ‘wﬁich 1s identically equal to H b A ‘,,\”' . Hence the
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CHAPTER III

THEORY OF THE SUPPRESSION OF DRIFT CYCLOTRON LOSS CONE INSTABILITY BY

ELECTRON BEAMS

1. Introduction

Recently it has been shown that by paéallel injection of an
electron beam (ER) in mirror machines that the "DCLC turbulepce_can be
controlled efficiently (1-5). The success of this technique in
Constance IT iritiated the same experiments in 2XIIB, §3 -2 (4) from
the point of view of assessing its applicability to ultimately the end
plugs of MFTPF-5 and future tandem mirror reactors. The mechanism usually
suggested for the suppression of DCLC turbulence is the one based on
‘appearance of hot electrons in the late stages of beam plasma {nteraction.
For reasoné d13cuséed in Section 2, we think this mechanism to be unsatigs-
factory. In this article we propose an alternative model for the obser-
vations of Constance IT and 2XIIB which is based on the process of resonant

damping by Langnuir plasmons.
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In Section 3, our studles reveal that this process leads to a

 mod1f1cation in the growth rates of linear DCLC modes which depends upon
the beam power. In Section 4, we have investigated the saturation mecha~
fﬁiSm of these modified DCLC modes. A closed set of equations are obtained
 to study tﬁe evolution of the distribution function to calculate fluctua-

tion level, final electron and ion temperatures, ion life time etc. In

Section 5, we bave explained varioss observations of Constance TI and 2 X IB

using these equations.

2. Proposed Mechanism

The usual mechanism suggested for the suppression of DCLC turbu-

 f"lence is, in brief, as follows: If the injected beam is warm enough i.e.

is the beam velocity, i,

- be /s ( ‘Y\b/’mb) Uz (vhere \/,
. ’13 the beam density, My, dis the plasma density) with the spread A :n
ffkthe wa§e number  |< given by /N = Q%;é (lﬁjb/wthé% ( \&)pe is the
~ electron plasma frequency) centred aroun§ {o= (Jjbq/\ha and electron
eﬁergy content given by approximately by one~third of the total beam kine-
'tic energy, is produced (6). The quasi~linear theory fails to explain the
 saturation of these unstable waves (7-10). However, when strong turbulent
effects are considered the saturation is explained. Accordingly it has

been shown by a number of authors (11-20) that when the amplitude of the

waves becomes sufficiently large, following non-linear processes can occur.

(1) Quasilinear effects on the particle distribution function., How-
ever, as these effects are important for very short wavelengths ie,

L( A1>f> o2 ‘they are generally not considered,



78

(i) Two plasmon absorption and emission processes which are one step
higher'order processes in QND/T-(where/T’ and Gy are the particle tempe-
rature and charge and Qb is the wave potential) than the quasilinear

effects. There are two such processes..

(a) Induced scattering caused by electroms 1i.e.

e+l =y (1)

(where € and E represent the electrons and langmuir wave respectively).
The process is important in short wave-length region given by
| - ‘
YRRy ! ( i | [ i
/Ar <> /AD » /Tnl> - The time scale of the process
o is 2 (\42)\;a Wy, W e )“\ (where >\De is the electron debye

length and \J\< is the ratio of energy in langmuir waves to that in

particles).

(h) Scattering of Langmuir waves by ions
. 1 !
1+ U= i+l | 2

( { denotes an ion). The process is important in the long wave length
' Y. \
\ ’YY\L ] & J . \ YY1y, /S"’
region given by //AD(\ /wn> <i L < AD ( ‘/WW3> . The chara-
-y U -1
i 2 0t i a m $ )
cteristic time scale of this process is [ - (Anﬂ;B l—ka U)hcj

( Y, and Yy are the electrons and ion masses respectively).

(1id) Four plasmon process given by

RN

(3)
\[_
: o yr (Ww/ i;!;_
The process is operative in small )< region given by )< = Aoy i) =
. Lo 1
The characteristic time scale of this process is = \Kmhm\ﬂk % }%Q

/
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Let.us assume thaf the gpeneration of Langmuir wave takes place
at sufficiently large 1< » so0. that By these non-linesar processes the
ienergy is transferred to smaller £ and as a result the spectrum

/

~starts broadening. The rate of this transfer decreases with \{  so that

for some | the rate of influx of energy and that of absorptfon is com-

parable. The transfer stops here and the wave-energy starts accumulating.

: Ay '
ing features. TFor \<‘>\4¥:: \/AD\ (Yﬂe/wﬁi) $ where electron
. scattering is important the spectrum is Kolmogorov type i.en Wi V\Qié
(part IITI in fig.1); In regions where don scattering is important Wi

still decreases with |< but less rapidly (part IT in fig.l). In the

: i |
\/ P /* e / , (IY\'/\'C/, /_g" b .

region 1< < {{ 2 /gl xw2> , where plasmon-plasmen scattering

_is important the spectrum goes threugh a maximum before going to zero at

i.e.

K =-0 (part T in #ig.1). The main scale of the turbulemce |{,

!
¥ YR ).
where the maximum energy oceurs 1is given by l{o::ii (\E;lf >/20 "

T (WOp¢ Wee A\ v
| where of = o B Yo = ke lw YV 4is
L 37 My m, \"\’H‘nﬂ_ E V4 ‘E/Ti:S ' ¢ Wy NEe ’

.about = 3f86 and (Q. is the total power of generation seurce which in this

‘case 1s the electron beam. Clearly the main scale of turbulence will move

towards smaller }{ as the beam power is increased. This pile up of wave-

energy in lower \( is called the condensation of Langmuir turbulence in
- \<~g<3 state. As a consequence of this pile up of wave energy oscillating
two stream instability is excited which opposes this process of "condensa-
tion” by generating larger < (7,13). As numerical simulations have shown
(;2,14), these processes ultimately lead to the.state of 'spilky turhglenge”
where tﬁere ére iocalised regions of strong electric fields.

E\MQ: <E£/9ﬁ>ﬁﬂﬂ(ﬂwﬁﬁ_3 . H@gmwmt@noflmge

__In general, the stationary spectrum formed by these processes has follow-
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leads to a °c§llapse’ of Langmuir turbulence by electron Landau damping
and a smail population of supér thermal electrons (Te > 20 ReV) appears
as a tail in the electron distribution function (21). These electrons get
trapped in the mid-plane to reduce the ambipolar potential which helps

to fill in the 'hole’ in the ion distribution and thus quench the loss

cone instabilities. The observed enhancement at low beam powers ( < 42 KXW

_ in Constance IT was explained by the authors (1) by stating that in this

case, the bulk heating of electrons takes place. This increases the ambipolar
potential; which in turn, widens the ‘hole’ in the ion distribution leading
thereby to the enhancement of the instability. The experimental findings of
this paper however do not support this conjecture. 1In fact, as discussed
below, the conditions and the observations of the experiments on Constance IT
clearly contradict the basic requirements for the quenching of the DCLC
instabilities by hot electrons. As established by Toffe et al (22) in their
experiment on quenching of DCLC instabilities by micro-wave heating of ele-
ctrons, that in order that quenching occurs by hot electrons certain condi-

tions must be satisfied namely,

(L The density of the plasma should be in the regime L&)p“<z’UJCQ

In this regime strong heating of a few electrons is more dominant. At

higher densities i.e. in the regime (kj)ve 2 \Wee the bulk heating of
electrons is more dominant which leads to the enhancement of the instabiiity.
Thus with the decreasing plasma density from the regime L&)rw"i_bucc_

to (\D\oc<<< We¢e a gradual transition from the enhancement to suppression

of the instability should be observed.
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ii) - The floating potential should get inverted from the normal pogi-

;give to the'negative ﬁnteﬁtial‘forlthe quenching to take place., It has
been shown both by Ioffe et al (22) and Kanaev et al (23) that the floating
‘potential and the loss cone instabilitiés are closely connected and a
quenching ofbthe instabiiity by hot electrons must be simultaneouély accom=

panied by a drop in the positive potential of the nlasma,

Now firstly in Constance II experiment densities are large i.e.

n 1013 cmw3 so that \*)be 2 Wee and hence the bulk heating will be

, more important which the authors reporté Te increased from 10 eV to
20 eV, Secondly'in the same experiment a gradual transition from the

- enhancement to suppression was observed with the increasing beam power.
Ié 2XTIB the stabilization did appear with the density decay (4), buﬁ the
‘density was always in the regime Whe = Wee .+ And lastly in
Constance II no sharp drop in the potential was observed. All this secems
to suggest that some mechanism othor than that of the tail formaéién due

to a few hot electrons.is responsible for these observations.

In a recent paper (24) we hgve proposed an alternative scheme

_ which envisages a direct coupling between Langmuir turbulence aﬁd the DCLC
instability. The mechanism in brief is as fallows; The injection of an

~ electron~beam gives rise to a spectrum of Langmuir waves. By dominant
non-linear processes mentioned earlier this spectrum broadens in which
case the wave-plasmon interactions or more precisely the effect of plasmon
Landau resonances on DCLC modes become important. We have taken into

“account these processes to explain the observations of Constance II and

2XIIB experiments. Our previous studies had revealed that these processes




82

;lgad to a modification in the growth rates of iinéar DCLC modes which
dependsnupon‘the,beam power. In this Chapter we give a more complete
 model iﬁciuding.ausaturafion ﬁéchanism for these modified DCLC modes.

Our previous treatment of the modification in the linear propefties of DCLC
modes (24) was to some extent arbitrar& because the nonlinear evolution of
Langmuir turbulence was not taken into account. For the stationary spectrum

of Langmuir turbulence a Gaussian was used which is, to some extent, arbitrary.

Hence in the following section we present a more exact treatment using the
nonlinearly evolved Langmuir turbulenece spectrum. Section 4 deals with the

saturation mechanism of these modified DCLC modes.

3. Modification in the Linear Properties of DCLC Modes: -

For our theoretical model we consider a slab geometry with

the Z-axis along the mirror axis. In general, in the regime b&%?%A;JQQS“‘

where all the present day mirrors lie, the injection of an electron beam

along the field line will produce plasmons which will travel in all

“directions with respect to the field lines. The purpose of this analysis

is to bring out the essemtial features of a possible physical process

involved in the experiment, To this end we will make certain assumpt-

,;ions which may have to be dispensed with for more quantitative accuracy.

irhdgiQé coqs;d%?Aqhe nonlinearly evolved and satUraﬁed spectra of
Langmuir wavéé“iﬁtthe~ﬁm2.plagée Let the main scale of turbulence
lie at an angle {')C’ffom the Y-axis. To study the effect of this
population of éhe Langmuir plasmons on DCLC modé we notice that the

:*,/ DCLC waves and the Langmuir waves have widely different dispersion

characteristics i.e. (A31< EIKN>pQ > L2 Wi i_ W €2 >

is the frequency of Langmuir (DCLC) waves). Herice we can make use of
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the adiabatic approximation due to Vedenov ot al (25) which satisfacto-
rily takes into account the incoherént interaction Eetween wéves of widely
 different dispersion charact@riﬂtirs This approximation envisages that
the high frequency waves bhehave as a group of particles (or quagimpartic%es)
on the time scale of low frequency waves. Hence by Landau resénaﬁce which

may lead to damping or growth, this population of quasiparticles can alter

considers UOk “ Uﬁbc L0 Wy , \4 >> Gy » where X(¢) is the
wavé number of Langmuir wa§es (DCLC)., A similar idea was earlier proposed
by Camac et al (26). There are number of authors who have successfully
used this approximation in different physical situations (27-30). Recently
Pozzoli and Ryotov (31) have furnished a rather general treatment for
studying the modulational instabiiity induced by Langmuir turbulence in a
magnetic field, Unfortunately, though their treatment is general,; it
cannot be used in the present case for explaining the experimental observa-
tions of Constance IT and éXIIB. They consider an ion acoustic like mode
(which is quite different from a DCLC mode) and envisage the effect of
lapgmuir turbulence on this mode by an effective temperature denoted by

vTeffg’ which directly depends upon the beam velocity.

However, from the turbulence term they drop Lhe*term'~flﬁw .

Thus in their case the instability results when T T, (T, is the

off 7
electron temperature) which is gontrary to the experimental observation
»fthat for high tbeam velocity, suppression of the 1nst1b111ty is observed,
It will be hown here that the term _32A§ in the turbulence term .is

very important for- explaining the experimental observations and hence

. should be retained.
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Here the effect of turbulence is envisaged through Langmuir

1éiéémons Eandéu damping or growth on DCLC'mode,»which gives a simple
explanatidn ofvexperimental observations. For these reasons we consider
fhe piouaen iu terms of the simplé model furnished by Vedenov et al (25).
Tt should be noted that Sakai et al (325 have pointed the incomplete
ﬁature of the interaction as envisaged by Vedenov et al. Nevertheless

we will use Vedenov et al's treatment since the interactions retained by

f‘Eﬁém are sufficient for the purpose of our analysis to explain the experi-
menfal observations., wé have shown later that the complete interaction as
f enviséged by Sakai et al will alter the results only quantitatively. The
‘evolution of the plasmon distribution function will be studied By a wave-

’kinetic equation as developed by Vedenov et al (25),

- . . "
M VYN - g M g W
it 1 Y 3\

) , — Ny -
where i“\c is the plasmon distribution function and \Vﬁ = L/B\ﬁ

is the group velocity of the plasma waves. In general the velocity of
: —
\

the plasmons (which is same as the group velocity Vﬁ ) contained in the
. ! T

momentum state K is not along K (31). But as an approximation (which

is discussed at the end) we may take the velocity of the plasmon to be

Vy=

kinetic equation (4) is valid only when the spread in the group veloci-

—y

ties is so large that the convective term \J§'<q‘\h< dominates the

-y ,
1< Noe Ve (28). 1t should be noted that the wave

effect of diffraction i.e. the term containing :)\hjjbgh . In brief
the effect of HFT arises as follows : The low frequency density
perturbation creates a perturbétion in the plasmon density. The gradient
of this plasmon density gives rise¢ to a ponderomotive force (PF) which

reacts back on the low frequency waves to modify its propagation




héracteristicsu Alternatively, a Langmuir plasmon decays into another

laémon»ahd a DCLC wave. The PF on ions is m /_mi times smaller than that
n electrong and hence will be.neglectedu The plasmon distribution
function »YQL< is perturbed as follows: TQ‘<~: Ny 'iﬂ\f where N |

1s the equilibrium distribution function (normalised as &V&kut\k.:\ ' ).

1¢m the wave kinetic equation (4) /ij is given as

MW DNy

[",’Y']‘/ = V] U ke ‘ . I
I Y Ok /| ”cf.\/z) — )

(5)

 The dependence of ﬁh\< on the low frequency density perturbation comes

from the tern IDt&hl/Dg? . The plasma waves in the regime Wy, > W,
’ - - 2
are given by (1)," = Wy + Kk Uy, , which gives

—= . - C b
'Okkhﬁ/'hw o, 6 Wy ﬂG’/:-\/\Q where Y., is the low fre-

quency perturbation. The wave vector CV for the DCLC will be taken in
N\

the y-direction with the density gradient & = ‘%; 2;;} * 4in the
- e

_\:X—direCtionv

For DCLC modes we will use the model given by Post and Rosenbluth
(34). According to this model DCLC modes are electrostatic flute modes
which arise because of the resonance between the positive energy electron
drift mode and the negative energy ion Bernstein mode; the typical phase
velocity of these modes as seen in 2XIIR (38) experiméﬁt is approximately
the ion thermal veolecity. It should be noted that this model for DCLC
modes ignores certain effects which may be needed for quantitative accu-
racy in a given physical situation such as electromagnetic effects to the
electron contribution (35), ion drift term (36), and temperature gradients

(37).
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To calculate the PF on an electron the modified equation of

otion is
~ = _—
m Y L NIV QE~C\/?
)t

C))

)

where now in the equation of motion the nonlinear term -y (v VV

—.—3 & —
~ha9 been.retained. ..In. equation (6) = \/ 4~\/ ,—where \L.

—>
is the low frequency component sustained by DCLC while V& is the

 high frequency component sustained by Langmuir turbulence., The total
P.F. on an electron due to the whole spectrum can be obtained by avera-

ging equation (6) over an ensemble of plasmons.(40)

— - ? V g
o LTS =D, - e NXB,
Wlﬂé\u \/\;/ g S o (7
where \{4_ is governed by the high frequency equation
— : — — —%
ne & Vi N LY
Me & Yy - ¢ L§, € \/‘f ’ (8)

A+t

- In equation (7), E; is the perturbed E-field due to DCLC hence'ﬁg =

: A —
1Es‘ Y while in equation (8), E

£ is the perturbed E-field due to HFT

 hence E )E \Y +)m 7. From equation (6) Vex and V sy can be written
| as . e 4
\, .= ‘u\)c_C Eo/ iz G, Wee YV Y 75 N Wee KV; \/ Vir>
Y = T e o L I
( QUC(L - ““Q‘L) LJ2 ( dK)(L ._12- ) (L/\) - __Sl >

1.0 (9)
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| (m | o) (Luj; - _2%) |

il

( k’\-)(_.c — S )
(10)
The ordering relevant to the present case is (- Wet) < Wee
WMC'U)k'(*kaa) . With this ordering it can be shown from
, ).
equation (8) that P.F, in X-direction i.e. T\, V '7\[;> UVLWAJJpQ

times < the P.F, in Y—direcﬁion i.é.ﬁﬁ\a<<?;.‘3\[;>j and hence may be

@egiécted. In the lihearized equation of continuity, therefore; Vst{may
lﬂé'heglééted and iﬁhvsi"dﬂl§ 4137;Hf<7§a 75 term, apart from the }I:'JS/BO
drift, may be retained. Thus the modified linearized equation of conti-

nuity gives

SIS, M€ {E:’/B.J“ V \/\{{'>3}“O (11)
) Wee

The term 4‘\74"\7 Vk.\h) can be written as

o LAy
NNV = L Y 20y laeal (12)

From equation (8)'ny and fo are given in terms of the high frequency

field Ef as
Y Lx = Wi E_S_ZLBQ
: 5 <.
(Locr - Wi ) (13
- Ve Wee E;&J/n :

(Wi —Wwg2)
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The second term in equation (12) can be neglected for the reason that HFT

lies in ¥-Z plane hence :)Vst'/aﬁt P D\‘S /DX,:: O . Hence
equation (12) becomes 5

B ) , A \

5 - == 1 2 \v S ;1— Loy ‘“9” T L
LN NTY vz g o =y 2__'”';, N T L2\

4 ivd éﬁf 2.00Y - ”Wli (bkkc - Wy >
. EL—J\EKU\L
= as

E){‘_j = E4 Kim @ , where 9

is the angle between the Z-axis

and K. Since {1 /%I\ = ‘,\A)| (where Pdo is the plasmon den-

sity) we can write equation (15) as

< \/7( TV o = T AT Wi et 8t 8 No oL
< T (WE —wE )

(16)

e

YY|. may be substituted from equation (4) in which case equation (16)

‘ becomes , -
‘°<AQ:VVEE Zf \AHLOME;jSEMQ __LDchi—~%‘:Qkau‘%ﬁl
< yn, - ((UCL —-U) )L—— 27 (6;?/5—— J?_)
(17)

—y

Equation (17) may be used to substitute for 4:\[g \/\/ ‘>' in equation (11)

to get the modified electron density perturbation as

LN

Moy = - 1Mo € B/ X\ 406 amer W N  Wpe
(’/\')CL D ’Y‘ﬂ(‘ LL\M‘L \U(L) ;‘)7’70

G5

(18)




where néw iﬁ the turbulence:terﬁ (i.e. the second térm in the denominator)

the summation is replaced by an iﬁtegration in the K-plane, The integra-
tion has to be done in accordance with Landau's Drescription. As ions are

not affected by the P.F. the perturbed ion density ’Y]i, can be calculated

_ in the manner shown by Post et al (34). The ions and electrons perturbed den-

(gl

sities V1§, and Yl¢) can be substituted in Poisson's equation to get the

modified dispersion relation as

s8]

* /. =5 12
| = jD [ - b L =)
_ L/*ﬁL:X - .
L, \ (19)
where _j?L% — M)hal' - I = (\b\z
Wee )"H Wey (";<0 B)
W

- The integration in K-plane has to be done using stationary spectrum
which, in the presence of magnetic field will be a function of K and B
In the high density limit (Ajb{ > Ud<L~& s the effect of magnetic
field on Langmuir oscillation is not very significant and hence to a
good degree of accuracy we may use for Tﬂ <0  the stationary Langmuir

spectrum calculated by Tsytovich et al (20) in the absence of the magnetic

field given in fig.1.
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‘The turbulence'terﬁ L in équation (19) is given by

| = 9ME L4Tie® W, No Wee | 4y 0 G- JNK‘,(\\,@:)\_\,

Wee Wi (L& S W) AT | VK
(\/3 G - —2)

(20)

The integration in K-plane has to be done along Landau's contour accord-

ing to the resonance condition \ﬁ, C‘-—~_12_ . Doing this we have

L= \Lr+iL,’ (21)

where

Ly= g7 oM w,, Wre 1y, (—f'?—l\,k“(ﬁ’md?
((/\) R bé) zl/ - »(\Q)
L - LT
A o [ 1/ /\'DQ L'H*e _}

Li=qia” Welee Wil | 3ivg 5 2R g (R0 2
L (Wi-0E )" IR ’\DC“”“’
W ke _ 1( (’_.\ \ (\g
- = ()

(22)

The real part of L i,e. lny is due to nonresonant plasmons satisfying
Vﬁ 4-*JQ/QV . While the imaginary part of |_ | ¢ L is due
to the resonant plasmons satisfying the condition Vg > _KEAV and is

important in our analysis. The E) integration in Lj » integral can be

done to give
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CU\) P \/\\)'_rcv )L = €23y

- ) Iy L1- Q“’/v )]

‘@- Dby, Ope (24)

! —
where l“\ v

According to Sakai et al (32) in the turbulence term there should be another
factor which is proportional to the intensity of the spectrum »A\ch .

For reasons explainedﬁlatethhitherm#willwhavemte_béwdropped%here;w

Accord=—

ing to the experimental observations the DCLC wave spectrum is a narrow
_ band spectrum i.e. ZXC»/% > 1/10 (40) with maximum power in the funda-

_mental mode at _() - Wici - To look for the stability of this mode we

_retain n=] term in the summation in equation (19) and solve the

_resultant quadratic equation to get the modified _S2_ as

| . * ‘ ‘ | § | -
b . y T — \;) Lt Y i s _ ‘;\3 ]_Z
T 20gpy y Wt S () [Z_m 12" - ()L

—_— 4&\)&

o

.4_( —~ (14 h) J 2 (26)
2

For L = O the dispersion relation (24) reduces to that obtained by Post

et al (32} where long wavelengths characterized by b > 1 are unstable,

We will now evaluate the real and the imaginary part of {2 1i,e. L2 yand Y
In the experimental observations 2.9 < ai‘< 6.1 hence b ranges from

"
1.69x10% to 3.55x10%. mite 2% = (\(Afjéc 45, « 1010

LK)%C v 3.34x1011 rad/sec, {K%33:>1.13x1011 rad/sec, G = 1/7 cmul

rad/sec, for

s

Y1 -2 Cann” ! (for a, = 2.57 cm) and Lol = 3,07x107 rad/sec. Since ||

~*

X from the nonlinear effects we may use the ordering ) L)< A2y Wi g o2

5 N .
In this ordering equation (24) CU\Ubﬂ S22 /Q)g which for the

experimental parameter given above is of the same order as We i

thus justifying the ordering ~_F2}h\ﬂ W To evaluate the growth rate

B/ we note that in the ordering we are considering the first term under
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he radical — _C0 while the second term is -~ W), ; (2 k)
or experimental parameters given above leA)cLMJQf lo > _(l¥ .
' ¥*
Hence we may make binomial expansion in powers of -~ /h(»k;}n .

For the parameters given above -2 /qhuocila‘w o) s In which case

e may retain the leading term to get the growth rate as

5 ' S, 95
5 (25)

‘ : \
) , ¥ 2
In the absence of beam the growth rate - (’UJ“‘EI ‘93 /43 0.3 x 107

rad/sec. This agrees well within a factor of 3 with the observed growth
rate in 2XITE (38), i.e. ¥ v .02 We, to .03 W for Wej v~ 3.07x10’
fad/sec. The discripency of a faétor of 3 may be attributed to the fact
that effects mentioﬁed earlier e.g. electromagnetic effects to electron
contribution, the ion drift term which are stabilizing are not included
in the present analysis. Let us now see how the stability of these modes

is affected by the beam power. We recall from equation (22b) that L{

is given by

P = ! s : Wi, (JB | 9 Nyp (kb A<
L= 02" EWhe W 1y | o 2 Nico (ki8)| 4
. : —= 5 o
(b\_)l,}_\/\)ml)?« l.. ol ,gmg‘\(,j/k
TR
(26)

In the high density limit &\)bef>’\A)ge, we may assume the 9‘ dependence

of Nko to be weak Xw Wiy _ 0

=

)8 -
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From fig.1 VQyQO has a maximum at &LQ , hence the necessary

znditions for the sign of L are

\<L7 > K‘zf | negative L\ (a)
27
(b)

\<‘O 4 \<>' positive |

where as mentioned before »{D is the main scale of turbulence given by

(20) N
\< o < Y& )bw )
) |
1/ % “ (28)
* | Cooie \/ O
were K== (T )% Ve= Whe A
\ /D\, ¥ Y 7'0/\136
T' ‘ v \‘\)b(_

B N — =
O(. - D7 C\+*TP/T,) e YT, L]\‘L,\L‘\f

and (SL is the total power of the generation source which in this case

is the electron beam. From this expression we see that with the change
in beam power the entire spectrum can be made to ehift. Xt dig this shift
- of Langmuir turbulence spectrum relative to the ﬁave number of the DCLC

mode which leads to the damping or growth according to the sign of 1_i

.

which through conditions (27) a and b depend on the beam power. This is
quite possible in Constance II experiment where an increase in beam power

from 30 KW to 50 XW changed the enhancement of DCLC into damping. Thus

\(0 :>]4-y which may correspond to beam power » 42 KW, ],i bears a
negative sign and the growth rates of unstable modes are enbanced. For

\<c.<\<qy which may correspond to beam powers 7 42 KW, L} bears a
positive sign consequently the growth rates of unstable modes are

reduced.



94
Let us now estimate typically the strength of Langmuir turbu-

lence whlch is needed so that the damping induced by plasmons is greater

than the growth due to ion distribution° From equation (26) we may write

Li typically as [ UJK/QUca?;\]

l‘{ “ ,51L¥ﬂ VJ\< (}1 A&/>2_

(29)
L
) VC i '\Q(_))ﬁ)
As the Langmuir spectrum is broad we may take A= }{y = K. T a )
and qlu- k)*hf/(Ajci . typically. Then for the damping

induced by plasmons to be greater than the growth induced by ion distribu-

tion the required level of Langmuir turbulence should be > U&h: where

e = 20 (1)

27\,

2

(30)

For the parameters of 2XIIB \(e,= .18 cmul, CN e/ cmm1 and for
Constance II parameters |4, = 2 and G = 2. Typically Y observed in
2XIIB is ¥ = 003x107 Hz (38), which gives MVC,YC '10—4 for Constance IT
and 2XIIB. This is a very modest level of Langmuir turbulence. The
actual level of Langmuir turbulence excited by the beam is much higher
than this value. Thus we see that the electron beam induced resonant

‘damping is sufficient to overcome the growth due to ions.

We can now see that if we were to consider the complete inter-
action as pointed out by Sakai et al, then in the expression for Ls there
‘would be another additive term proportional to ﬁquo 8<~"43"‘N V >C\\
This term is always positive, hence would lead to growth. Depending on the

shape of the spectrum, this term can be of the same order as the term

)
proportional to S IN o S (- ch % \ c\\ . But clearly the inclusion
DIE
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of the term proportional to 'er

¢ will only slightly alter the transition

point i.e, the bean power where enhancement'changes to damping. The expla-

nation still comes essentially from thélfact that with the increase in beam
power, ID‘“’QF/Q)g changes sign, Tt should be noted that inclusion of
effects like ion drift, temperature gradienf and complete interaction as
pointed by Sakai et al should provide better quantitative agreement with the
experimental observations, Also more realistic expression for ’ quc
should be used, Pozzoli and Ryotov (31) have shown that in general, the

group velocity of the Langmuir waves in a magnetic field is given by

- N 2 n P A ~
Vo= Wee B2 0l + wie Whe 1< 1 31¢ A Vgpe
J W K3 Wpe C*

2 \
— Wee™ zin g Z (31)
“( L e

~ — n
where |< is a unit vector along | while 7 1s the unit vector along By

In equation (25) we nay evaluate the order of each term. Thus typically
W Wee V&

2 = Y o U SN e b
fér (\ - F\Q o \C/ng the second term is of the order - u)b&_~2?: b
which for Vdcei\kmﬂand \&,(<'c can be dropped. The first and the last

RS ;
terms are of the order *OCC/LQ;%-VyQ and hence can be dropped in the
AN
high dengity regime 1) ce < WD be  where all the present day mirror
r\—*—-\ -—\.‘ -
machine lie. Hence \/ il \( /\DQ U%—he
\

Thus it follows from this section that in the presence of an
electron beam the Langmuir turbulence modifies the linear properties of the
DCLC waves. However, saturated DCLC waves are observed in the experiment.,
Thus the considerations made so far may not provide a full explanation of

the experimental observations. To accomplish this we -qust investigate the

saturation mechanism of these modified DCLC modes which is done in the

_ mext section.
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Saturation Mechanism of Mbdified DCLC Modes

In this section we investigate the nonlinear saturation mechanism

of the modified DCLC modes., The saturation of DCLC modes will occur when
the growth due to ions is balanced by plasmon damping. The injection of
electron beam, with power greater than a certain value reduces the ion

1 diffusion aund thereby improves the ion life time inside the trap.

The important velocity transport processes causing the diffusion

_in velocity space are:

(1) Diffusion in velocity space by DCLC waves
(id) Ion~Ion scattering

(iid) Charge-exchange replacement by cold gas atoms
(iv) Loss of unconfined plasma

Keeping these processes in congideration and the fact that we are consider-
ing flute modes ( q)h = 0) we may integrate the distribution function
- over D|| and write down the following equation for the time evolution of

the resulting reduced distribution function fF (L&J{;) as

2 = 2 [l D T JJ
) 20, = Ti *}‘U_L [ —“—fie.
2 ) 2 (0,07
D U . R —_ : -
Nl " L (Vg k) e ] V?(tu,t) F o)

T LK((}
%- Es(UL\ “;i(\h,k)
| T szj

(32).
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—

In equation (32) LE@, is the electron drag time

-0

= 1.5 X 102 (Te (Kev)ﬁ/zfﬁmﬁﬂpﬁ;s the ion-ion scattering time -

\ i‘2.5 X 101? x B KeV (W N g the Spitzer’'s factor = 10), The last

two terms represent the charge exchange with the background gésﬁ(AO),
‘chxg ot ’Wﬂ}?hy% Qﬁqaq?bis the piasma radius while, ng is the

background flux, vt is a;proximately the inverse transit time of. the

untrapped plasma. We take

_ o, Vi > Up
v% = O (33)

OF = 2eR) .
where \/\w = Y¥1} 1s the parameter which measures the size of the

'hole' in the ion distribution function due to ambipolar potential QD .
It is roughly = 3 T_ (35) hence K)Q‘:: igjlj’ﬂﬂj = (:Z‘ 'TLT: LhA:S
where l,\> is the axial length of the mirror plasma and (?5 is the ion
sound veloeity., It should be noted that if the axial length of the plasma
as measured in the experiment turns out to be much less than the distance
between the mirrors, then it can he safely assumed that the pitch angle
distribution is peaked at angles nearly perpendicular to the magnetic field
in which case the ion-ion scattering is not an Important veloci;y Lranspoxt
process. Unfortunately in the published papers (1-5), the axial length of
the plasma has not bden made available, hence it is difficult to decide
ion-ion scattering constitutes an important velocity transportﬁprocess or
not. However as the ratio of ’[i; tofC§@ e y“f-(jk/ﬂg)aégwaﬁd T,
are the ion and electron temperatures) which for the experimental para-

meters is < 1, We may presently neglect ion-ion scattering; of course,

for greater quantitative accuracy it may have to be included. The velocity
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‘,x-' : 1iffusion coefficient j O )l.{L) due to fluctuating DCLC

fields is given by

PR

Lo T E
——D(\\_\,It ) = TG‘ Z rh ‘\)C\ | ¢a \1':/)) «J‘m (%J.Ul ]
'Yn, U m J(am) 'Tl‘z: g

a1

_.__._.»—...---—-"‘—‘

‘\J’ «\'wwu) Y (a0)

(34)

(where \X is the growth rate of DCLC waves in the absence of the beam).
Apart from the linear growth rate, the spectral width /A 2 nmy'contain
frequency shiftjdue to other nonlinear effects. In the absence of beam
the velécity space diffusion continues to f£ill the loss cone, till the
.transit time loss of the unconfined plasma is balanced by the turbulent
diffusion. This lpads to the formation of a plateau i.e. Dy:/DUi =0
and the DCLC instability saturates. The equation for the time evolution

of DCLC fluctuation energy LJ%(+) is

AW Uy eh +‘z';,(_t.>]‘\\\.c»

—..,__..m_.__._————

cAt (35)

where ‘Y) (+) s the damping or growth due to plasmon resonance.

From equations (23) and (25) we have

= b= gt Wi W e 1< - D‘:\\KD“{';M CU(
: < ) < '
(~kk)| Wee ) ‘ im0 x4/
- X L
Ky LV (.\\r/ ""‘) J

(36)
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while )/\(+) - in equation (35} is the linear growth rate of DCLC
modes in fﬁe absence ~f the béam; 'To close the set of equations we need
eqqations describing the time evolution of the electron temperature and

the plasmon distribution function FJK&)(lift)

The evolution of electron temperature can be described by (36)

E.j.-— ( (3/1 g ~T({ ) = q:L\;Q—i B q/( ‘Tﬁ’ —j
At T ‘
Oy ' (37)
where J = >j{ J'qj (L E) L, d(Ql is the flux of

L)
the lost particles, ’Y}H and T, are the hot fons density and average
energy respectively. Equation (37) envisages that the electron energy
increases when energetic ions cool on slower electrons by ion electron

collisions (lst term) and is drained off by electrons escaping from the

ends (represented by the second term) . 41) is a parameter which meaéures
the energy expanded per electron. It will be atleast o 95/1%— in
addition to any other mechanism of energy loss, If procéss such as ioniza-
tion of the background gas ete. are included ’YL turns out to be v 8

for good vacuum. For given F and QWF| at f::tc,,wrt at t :’to can be

evaluated from this equation., Now we proceed to find an equation which

describes the time evolution of quo (k,t). From experimental point of
view only the case where electron beam suppresses the DCLC turbulence are
~important. As stated before this is caused by the negative slope of
Langmuir turbulence spectrum where mostly scattering due to ions is
important. This implies that the equation for the evolution of{V‘u) must
contain terms corresponding to scattering by ions scattering by DCLC waves

and the linear growth. Hence
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_a___.__.Nk' = <Ny D\_.\.\:Z/ - [Z‘ N’—"”—» : ’HF{W"(E—W{"—A )

ot 2
‘ = -
6 q Kag - Wp- ) — Np RAry Pk —> K4g")
S( [/\)—L?i 6‘?~ t,\)Ew__ ﬂ)ja (-\/\—117
1 B Nye
(3.8) G

v 3
\ wher.e < = T Wpe

- .._—-‘———"z:"‘_“'___."‘_‘}m pu-
7, v Uy, L1 N e J

The second term in equation (38) gives the rate of change of ‘\\ \¢ due

~

to direct and inverse DCLC emission and absorption processes by Langmuir
plasmons, ’ﬂ% is the DCLC Plasmon distribution function and

IV > : = =
‘?(_\4 +C[/ — 3 and ~§> C < — K +q, ) represents the transi-

—> — - .
tion probability from the state |{ -‘r(i}, to K and vice=verse and are assumed

to be equal. For (\/ /K K< |  i.e. the adiabatic approximation we may

j\,'Q)Qk:g\xv\ d Nk“l/ around NK to pgive (25) equation (33) as

M(h"t) - & NFjbﬁ 4 .}__iDO{(’S Dj}_‘_[(‘(__i} + Y L7
X3 YW Jep ANE

is diffusion temsor in K-gpace given by




(lk,t) =

- ) -. -5 .
- gl § G PG 10 (T W)

D,

TS D = - )
To calculate the transition probability | (Ao, —= ) we consider

=3
the following process. A Langmuir plasma having momentum K, absorbs and

=Y sy
emits a DCLC wave resonantly according to the condition {2 = \Va‘ O»

The momentum conservation implies

!

S D
<=k + ! (41)

Then the rate of change of DCLC plasmon distribution function due to this

process is given by

" ™ o ) o
’%T:qf: | [ I\k)(» \’IL) S(L/O,),'{» (OK = ““Q>

— »(,:,"'Prﬂgs S ( W i< -\( - Wy 1 -—(L>]CJ\\<

(42)

Qo
Expanding the R.H.8. of this equation for ‘/k:(d ] s> we have

T mg [P g 5(8" 3(“" — ) el ,

From equation (22b) and (25) we know that the damping of DCLC waves by

Langmuir plasmons is given by

: o) . 2.. 3 > N
7(1 — L\/l = TV, 2 56_“__&‘____ U\) \f»:) \Ob(’_ /&l Y“Z(ﬁ f‘\ )N o
S T sy
IMyMe (- tocd) \ K
) 5 YN ! 1’3
5 (7 e <2 )d
vl

(44)
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In equation (43) . Ty

4

T can be put —. 2 7Y, which when compared with
equation (44) gives | ‘ - ¢
‘ e 2
: = = : W . Wz Whe -
T edg = k) = T Wee gyl ..__L“' ke AwnFQ
2 (,'\)c,-e Vo

QY Me (UJ e Whe )L |

(45)
-
This expression for /—_\) (¥ 01,

—
— K ) can be used in equation
(40) for calculating Langmuir plasmon diffusion coefficient.

Thus we have the following set of closed equations for studying
the time evolution of F (V4,1

;)F(U_th): ._Q..- U.LF> *;L[UJ_F> _4,_?___ ED éﬂ__\::}
ot DU,L Tie )V ”-:T U = 2%}
0o
«5)%7: - 3 U)o, TF Lo B
LCx( A e

\

T,CK CJ
o :

- ~(46)

; : N
D (Lyk) = re” Z mt \Uc,'z “b 9 € (1) A A2
' geaf LUJ, m () Ti‘) %c\/:, I ( /U‘k' )

(_:z.wmu(.‘)?“%(;éﬂ? :

— . (&)
D P} C ) _

— - -(48)
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— — —(50)
\ _ .
D\\K(Jr) oo M\( bﬁ‘\__\_ﬁ \ _L"’D‘*B D‘\\'x:.U) +XK\\\\/
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Dyp = S'm) (+) G 90 '”‘PCTZ%{\‘—J\'\)

- — D -~ (52)
- kai.z.— - b‘*”") ko

s ey J T We e, 8 WS wa

'\/\) - "
ee T MM (L -wopt)
x Xt

, T ) = U/ T, J
%LCB/Q,”' e) — My /(/ie— — rYL J(_\) — - -(54)

where od = ~TT (/ob(,
:)7 1, 77, UH\( [)+(T'/\(_,>J
- J \ ~'3/2, — — /—' - )/)
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. Discussion:

Unfortunately in the published papers (1-5) important parameters
like background gas flux gé“k , the axial length and the radius of mirror
- plasma which are needed in the numerical integration of equations (46)~(54)
bave not been made available, Also the observations like energy diffusion
Ifates in different energy channels etc. which would have been useful in

 comparing it with the rates calculated from equations (39) - (47) have not’

been made available. TFor these reasons we have not undertaken the numerical

integration of this set of equatioms to calculate the saturated fluctuation
level, final electron and ion life time etc. However, as we will see, it
may not be necessary here. Qualitatively we can extract enough information

from this set of equations to understand the experimental observations,

To begin with we calculate the K-space diffusion coefficient

of Langmuir waves by DCLC waves. This can be obtained from equation (52),

As the DCLC is taken to be in Y-direction only, the diffusion tensor
will have only one non-zero component which after performing q-integration

is given by

= 2 o .3
ZI&kad): Eﬂﬂ@(wm Qd M&(DM
i Wee Moo (@U\&' Vdcc)

C

(55

» We may put this equation‘i% the following

where ﬂ = ‘JQ/Q

form

)
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Pl = i W% (_>L V("‘)lf Wpe L ) b}m, .Q. - \
2 lsq(' (\)\)k”"—'_wcgﬁ) el & | &2
e —(56)

where \,\]Ls - q’]q We L\(¢/€

b\(7} l.e. the normalised energy
density of DCLC waves. It should be noted that approximation of SE; dc}

by ’XW% Wei qu, may be valid because DCLC turbulent spectra as

observed in 2XTIB is narrow 1.e. /A% “ .02 (40) and 1is peakedﬁv

v'afound Wei Using expre531on for o{, we may write the ratio of

DCLC scattering term and ion scatterinp tern in equation (51) as

Me TN L2 ) () 2 i

oL Ny, A 2wy, b4 opy Ny ) = mp)
% - \ % T
Siv2P ™c

— - — (57)

At resonance \{a = “fz/ﬁ LL‘ L&““ )

/s and in high density

regime (Wi > Wee and _wfl = We hence

. Dun ; N b
. \Tif, o 37 Wy (‘L) Wer >J Vire ) 0¥ Loy
AN Al = N W ) \Oni /) W e

\58)

ey “,5){1013 cm~3,

In 2XIIB we take the average plasma densityﬂﬂy

magnetic field at the mid-plane “© 6.4 KG

aThe

; ilon temperatu: <13 KeV and

electron temperature T, 175 eV (38). TFor these parsi€ters we have

Oy 7
Wipe « 3.34x10! rad/sec, Wee = 1.13x100t rad/see Ui v 7.89x10

cm/sec, U}h625°54x108 cm/sec Wi v 3007X107¢ad/sec;and”
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* .
0f= Wl ¢ Fobdn -1 _ g ol
o ¢ /ﬂb ) rad/gecvforvc.m T o = 1/7'cm and 4 = 2cm
(In 2XIIB 2.9 < G <> & 61" "+ where (I is the ion gyroradius

2 2.57 em). In Constance IT we take V1), = 2x10%3 cm*3, T, = 400 ev

T, < 10 eV (1). For these parameters we have u)bc::2.51x1011 rad/sec.

Wee v 4.9x1010 rad/sec, Ljﬂﬁf = 1°3-8x107 cm/sec, (j+hc e 1.32x10°
cm/sec. In 2XIIB the potential fluctuation ranged from 10 - 50 V. This
glves iAij: 8x10’8. In weak turbulence limit the energy in Langmuir

spectrum would be atleast one-third of the total beam energy (6). Hence

LY Ay _
minimum value of VQ\<t:; 1= YINWY’ where Y1) and V.. are the beam
. — '\Hb T\)C\-))‘K‘L 9

density and velocity. In Constance IT ny 0 1010 cm*B, Vb <> 3x10

em/sec. This gives Vik;: 1/10 atleast. Thus for typical experimental
T %
parameters (}AJC‘/Lk)bQ >‘: ’/‘CQ , Eﬁ?lE =10 rW?“/fy, oo
hi

K4 77 .. \3 ‘ ],\) ‘ \)
— e ] Wiy = A 4 RN
N o 1/VJY:' /lﬁw eic 7 Nic Aﬂf <

Thus on account of the low level of DCLC turbulence the scattering due to

DCLC waves is not as efficient as that due to ions; hence the damping or
growth induced by resonant plasmons will persist for long enough time and

the saturation of DCLC amplitudes will occur when ‘X’:;_,jf} .

In 2XIIB the enhancement which was earlier seen in Constance IT

was not seen (1,4). This may be understood as follows: We recall that

\413 for 2XIIb < .18 cmnl while \(.xiae. K at which the resonance occur
can be found from the equation
2 - :
V. = .\ )‘“@ - L) - R)#%l

3 S ;, “ -
For 2XIIRB parameterg”P37¢1w86 cm 1, thus ’<'W/Kc“> ) Because
of this the DCLC mode will lie in the far right of the. Langmuir wave

spectrum indicated in fig.l and hence the positive slope which leads to
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enhancement of the turbulence is inaccessible in the experiment., The
observation that for beam power 15 KW the stabilization was ineffe-
ctive may be due to the fact that the resonant XK 1.e, )<~x lies in

_ X rx ' -
.between l& w10 and ‘( 2 110 where -mainly ion scattering is important.
The slope in this part of spectrum is genmerally small - almost flat - and
hence resonant damping due to plasmons is not expééted to be vépy effective.

If at this stage the density decays then Langmuir wave generation region

K = Wi

Vi, T
Consequently, the whole spectrum would shift to the left and it may shift

_glven by

will move to the left i.e. towards low I in flgl

,epough so that the mode which was previously lying in part IT of fig.l will
now lie on part ITI, 1In this region the slope is significant i.e.
NL<°4‘%;73 hence the resonant damping will be effective andvstabi-
lization will reappear. This may explain why in 2XIIB, the stabilizatioﬁ
“occurea when the density delayed from 7x10—13 o to 1 x 1013 cm°3°
It should be poted this stabilization cannot be attributed to the appear-
_ence, of hotfelectrons (22). This requires that'density_shouldjdé¢;§ f:om
.the rl_égi;me_i\’\)be 2 Wee to () ke ¢ Wee (2 1012 et for 2XIIRB).
ﬁowever, iﬁ“ZXIIB during the décay, the density always remained in ther
regime L’Qbe?» Wiee . It is also clear that once the electron gun is
turned off the ﬁlasmon distribution would relax under the scattering by
DCLC waves. The relaxation time T;p » , then would give the typicdl

time for which the damping hence the stabilization would be effective

after the gun turn off. 'The typical relaxation time is given by

To = LKkt

where typically -t£>¢<(3 is given by equation (56) as



- I’ \‘-g g X " R B
= Towg & W Wee 08 U 5
e 3 %y A"-')/ *b\) - > o — -
Q e Wee)  Wei I
(61)
W 8 then for W e :
In 2XIIB G, 2 8xl0 , then for S>> Wee,  F2- W and

\/9‘2 Uini rtl<@ turns out to be 2 1.45%10’ em~? secl.

Using this value of FTIDQ(z and the value of .\(=y given before,
Cp v 150jus. The fig.4 in the ref.4 which is a plot of rf activity
with time indicated that effect of beam lasted for about 3 to 4 hundreds

of jis after the beam turn off. This is within a factor of two of the

relaxation time Tr. (calculated above).

The, turbulence level of Constance II was not made available
in the published references (1,2,3). However, referee of the present

paper indicated in his comments that in Constance TII the effect of beam

lasted for 200 [.s after the gun turn off. We can use this information

to calculate the turbulence level in Constance II. We may calculate )<~X

for Constance II from équation (59). Then for er%f 200 M s and the
value of I(-y , we may calculate the required 104z  from equation (61).
This turns out to be equal to 2x108 cm"2 sec_l, Then using the

expression for ID,n  i.e.

T 2
~ : g \ 6 Opee Wi _(—2*
‘ - RN - U W -
Pa ® L Af, Ut We,

(62)

' -8
we may calculate \dcy which is equal to 6 to 7x10 . This is quite

reasonable for machines like Constance IT, 2XITB. It can be seen that

turbulence level in Ccustance II is slightly less than the level observed

in 2XIIB where observed VJO» was 8x10_8.




109

As is-cléar from equation (47), the velocity space diffusion
’coefficient depends on the energy in DCLC turbulence., As shown before, for
the beam vowers‘less than a certain value, the DCLC modes see a positive
slopes of both the ion distribution as well as the Langmqir plasmon distri-
 bution. Hence both of them dump energy into the DCLC turﬁulencev This
increase in the energy of DCLC turbulence, increases the velocity space
diffusion and thus reduces the ion life time inside the tfap. For beam
 powers greater than a critical value Langmuir plasmons de-energise the
DCLC turbulence., This reduces the energy of DCLC turbulence and thereby

improves the ion life time as observed,

And lastly, electron temperature modelling is consistent with the

Constance II. For steady state equation (54) gives

- ]/ W
- § 4 —_— 2
1= oL e TR k)
| e qu\l:\~ AR ST e PR G C (63
hw 13 -3 .. :
In Conmstance II, T; = 400 eV, 3y 1077 em ~. 7 .2se parameters yield

i

T, * 20 eV which agrees well with the observad T 2 10 eV. TFor 2XIIB
Baldwin ec ai have already shown that this modelling is consistent with

the experiment (36).

In summary we have developed a model for the saturation of DCLC
waves in the presence of an electron beam. In section 3 we have shown
that the presence of an electron beam modifies the linear growth rates of
DCLC modes. If the beam power is less than a critical value the growth
rates are enhanced while for beam power above the critical value the
growth rates are reduced. In section 4 a closed set of equations are

obtained to study the time evolution of the given distribution function in
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the presénée of an electron beém ana to éalculate the final ion and
electron temperatﬁre life time, fluctuation level etec. Further we

have shown that scattering of Langmuir waves by DCLC waves 1s negligible
 'as compared to the scattering caused by ions. Hence the damping induced
by Langmuir plasmons persists and the saturation of DCLC turbulence
occurs when the growth due to ions is balanced by the damping due to
Langmuir plasmons. For beam powers greater than a critical value the
 diffusion in velocity spaces decrcases. Hence the hot ion life time

improves.
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APPENULX A

DERIVATION OF THE LIOUVILLE EQUAT?ON FOR PLASMONS

To derive the kinetic equation for the plasmons in terms

of number of quasi-particles, we start from the system of equations

D!rd “\73__{{_ + _Q.:'f_ _\—:'—:d{ Dg" _

N 1 -0
' -
G B = T AT\ f, AV

e (2)

.

—9

where <X denotes the species. Suppose the electric field E as
well as the oscillatory part corresponding to plasma oscillations, has

a part which varies slowly in space and in time N
. - - - IS@( ¥, b)
E‘(—\Er’zf)-’e‘ Eo(%"t)‘*v %“CDQ(’X'HQ

(3)

where the summation over P, denotes summing over all possible initial

-
values of the eikonal gc (v o)

A similar division is also valid for the particle distribution function
' . (GLY,E)
{ , = = VRS 5 Vv t) e
%& Cv, Vlt) s g;d (sz't) %? jFR” ¢ )
(4)

Let us split the initial equation into fast éﬁd slow oéciiidéory parts
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We shall assume that in equation for ﬁ;ZQQ
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Then, solving the equation for i¥€<t to an accuracy to the first

order in the parameters

>
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~ and substituting these in the equation for the potential, we obtdih,

to this approximation a differential equation for q&k

If we define explicit expression for the quantities

o
€= |+ Z_ 4re kv"i?@v
= k¢my | o R

(We- V)

2= s (ane( 2
D\<Q, o T NG .
Ty B ‘\ii\[‘":v Ny :
(&”L— ' ’J C
Y A NP (R

(8)

and similar expressions for

DD (wFe)
oWy

T2 (e
‘\)‘(é)_ﬂ
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then the équation for C})L can be t‘ransforme_d into .

P Qe) DUy i g ol (kle) @y

\<"(;L G (':Z\'\'(* = S 1 pncy
L J KQ 3 %—3 >, J \LQ
aockge) R0 1o 3 (wRey g,
pee} Y 2 0t oWe
pLch s avet [ av . >l
STy T\t T N i
S WY (e~ PYRY ) > AV PR
AN YJod n _Q_i . 23oa ‘s
DY Ving, NV

——-(9)

and the last term in brackets equals to zero because of equation (7).

If we consider the damping of the plasma waves to be

small and neglect the imaginary part of (= , after separating the real

and imaginary parts in equation (9), we obtain the following equation

for \C])Q.)L
2 [ 2 el ] [y, (O |Gl |
)t LWy - LAY
= Q (10)
where \< (3/2'6 = 0O

If we Introduce the-quantity
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and use the identity

DCge) 4 2 (KEE) WL g
LA I 2\

equation (10) can be written in the following form

oy 9 (2 ”W;) = 0

P} L PAIY)

(1)

We note that

2 Ay =0
St

Therefore || { represents the number density of particles in the

w——r

six- D space [ ?, 1< ]
_ = > 7
My = 2 e §L - K7 ) ]
- | (12)

The equation of “Yl\¢ 1s readily obtained by using the equation for M
. - h %
deduced above and the relationship — W (’—‘/} 3y = AN /E‘n‘é’

Differentiating “Y)) with time we have
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¥

3 b X e A
" where wk = wg C KQ ! 'X t) \ )= K carrying out the
, - e

 differentiation with respect to Y and | we obtain the following

equation for the plasmon number density

My W My |
Qﬁ_}_\)ﬁ f——_—’f'}ﬂ“\;*ﬁk’o‘\"ﬁm‘(..o
K W e
(13)

D L'Du,ﬂ e S(\L’\\E) - %q'\&LUL“\\Q)’«L
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CHAPTER IV

STABILIZATION OF CONVECTIVE MODES BY NON-LINEAR LANDAU DAMPING IN ELECTRON

BEAM INJECTED MIRRORS

1. Introduction:

The instability of High Frequency Convective Loss Cone (HFCLC) has
been predicted for all present-day mirror machines (1). These modes have a
finite phase velocity along the field lines hence the concept of growth length
in a plasma of a finite extent like that of mirror, becomes important. It
has been argued that in the absence of wave-reflections at the mirror throat
these modes will restrict the machine length, to a few hundred ion gyro«radii
a;. For machines longer than this critical length, thése modes will grow to.
a significant level. The electrostatic dispersion relation for these modes
in the"limit of cold fluid electrons and straight line ion orbit is given

by (1)
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' AT i SN QR N S G 11V )}: 0
4_. \< [u,‘ %ﬁ \,L)hlé— (,QCZ-S r?’ﬂ’l \) i’) (1)

7]
_where C L&)'li\(, [ ) are the frequency, parallel wave number and

full wave number of HFCLC modes. L&)bé, and (A)C;& are the plasma and

cyclotron frequency of electrons. ?YY\€ and OY1, are the masses of
: L

electrons and ions and f¥.(\1} is given by
N

o
‘r(g) - 2 \dx¥ 1 ]
ox (1-X/ )% | (2)
J |
‘ \)kl o ° W' \
where ¢ = 1 / N W= — ) i
' b%h) ) J \ Db :
is the thermal velocity of ionms, ”¥/ = C (f%u QVIRY ) "
-L pa
’gk>(\)ff\ k)ﬁ- ) is th% distribution function of mirror plasma and C is
3
3to be chosen so that '\# clx = . From equation (1), under the

, [
assumption of the weak-reflection at the morror throat, the critical length L

of the machine turns out to be

L= \DL¥ e ks Q;
- ( 'W\i) t (3)

Thus the electrostatic modes impose a limit that the machine length should

not be greater than 300 to 500 ag.

The electromagnetic dispersion relation for these modes in the

limit of cold fluid electrons and straight line orbits is (2)
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Y

In ‘this equation various quantities are assumed to vary in the Z~direction
fy("along the field lines) while the variation perpendicular to field lines

'gre'ignored. It should be noted that the cold electron approximation is valid

- U Whe '
when (O /V“ D dhe S>> for. -\?,Tc < 1 or when (3) (56 <),

U)be e >y ( (’ﬁg is the ratio of electron pressure to magnetic

pressure). Near the ends of the machine (Jobﬁ —% ¢y SO \/\\\‘\ > o 3

v i,efore this happens ”/lin DH\L and electron landau damping occurs. So

we expect the - wave to be completely observed when it reaches the end of the
 machine. Actually we require that d\(.l\'\/c\z Ve, \4“7" as (/ObeQZ) —% 0
which means that (,LJb,LC'x-) cannot go to zero abruptly but this condition

is satisfied for a collisional distribution (3,4). However, there are possi~
bilities that there may be some wave-reflection at the mirror throat. Q(a’_ymo‘”’d&‘g: :
_and Book (5) pointed out that even a gradual change in \4\:\ () with

1 -
' 2~
A, /CS”Z a4 can cause an exponentially small fraction of the

incident wave energy to be reflected. This is a fraction of order
W 1 -\
exp( — \4"}' Q. ) where Q = Wy, ( cl e /Q,\Z) . Since the wave
—_— N
grows exponentially large by a factor exp (- lr\»{‘\ \<H \_ ), in travelling

the length L of the machine the mode would become absolutely unstable if

- o
— o KL > KH G LTW ‘\“ Z o for unstable mode
since W /b lh 7 :X . TFor the fastest growing modes
(U ‘u : v W _1 - ‘f/ - (. ) "
Ky e Oh'/UHm (1 + N H’/\UCE) = and /kLU\M =

(for a mirror ratio of 2 or so), which may be shown to imply that Q=L

!
(assuming slowly varying magnetic field) and - X'ww KH' < \(;: . Thus these
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_modes do not exhibit absolute instability).

Berk et al (6). showed that non-local reflection mechanism can be
more important thém the local reflection considered by Aamodt and Book (5)
,when'LC;7q<“ ()¥%e <) . This non-local reflection depends on the electronsfk
retaining memory of the original wave perturbation after they reflect from‘ ‘
{the end of the mirror machine, and the reflection cO*effiéient is of order
\exp(~ W AT ), where AT is the range of turn around time
for electrons. Typically [}%?': (}'/,UQqqei , so that non-local reflection
is more important than local reflection just when (Lﬁx/qu()4he.f§ \
‘kbut in special cases (e.g. electrons trapped in parabolic potentiél well)
AT may be much smaller and the reflection coefficient much greater. In
 ,any case the reflection is never much less than exp( — K:z G ). ‘For a
typical mirror machine, it was estimated that the non—local reflection might
cause absolute instability when the machine was longer than about half the
~eritical iength calculated in the absence of wave reflection. Electromagnetic
effects become important when U")‘bﬂ/\{’ ¢ <V} (2). Recent calculations_(7)
give a critical lemgth of about 50 a;. At low frequencies o' Wi y
the straight line orbit approximation breaks down and reflection occurs near
those values of Z where (&fl is an integral multiple of (AW)¢j (Z) . Thus
an.absolute instability, called the negative energy instability, can occur

at low frequencies if the mirror machine is longer than a critical length (8).

Very recently a calculation by Gerver (9) has shown that HFCLC
modes are absolutely unstable which impose a critical length of about a few
ion gyro-radil ay (9). 1In 2XIIB these modes were not observed and it was

conjectured that they were convectively stabilized by warm plasma streams.
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;VEry recently in Constance Ii, eléctron beams were injected in mirrqr
machines parallel to field lines to control Drift Cyclétron Losé Cone (DCLC)
‘turbulence (10, 11, 12, 13). The paésage of the électron beam through
mirror plasma gives rise to Langmuir waves (LW) as has been observed in

Constance II. Thus it becomes important to investigate the properties of

HFCLC modes in the presence of these electron stream generated langmuir .
waves. In this Chapter, we investigate the effect of LW on the high fre-
quency ( (W 2 W , where () 1s frequency of LW) part of HFCLC

spectrum. In the following Chapter, we will investipgate the effect of LW

on low frequency i.e. (L % w" part of HFCLC spectrum.

2. Anomalous Resistivity due to Scattering by Beam Electrons:

The injection of electron streams (ES) along the field lines

. produces Langmuir waves (LW) with frequency' Cl)xc LW ke \<r,/\i; ’
'm:(where’ kﬁl and \<l are the narallel and perpendicular wave numbers
of LW). 1In Constance II (10) oécillations at 30 GHz were observed which
‘correspond to Langmuir wave frequency for Constance II plasma. In the same
' experiment the electron stream velocity st/u 109 cm/ sec (c&rr;sa;nding to
beam power from 30 - 50 KW) and the plasma electron temperature Te was

 about «~ 10 eV, so that “}Te/mi = U w“ 108 cm/sec (."Vs‘ﬁg 10° cm/sec.

the
This implies that instability exciﬁed is of gentle bump type Ld/k\‘d Vs (14)

where positive energy Langmuir waves are driven unstable by negative dissi-~

pation of stream electrons (15). 1In the presence of these oscillations the
1t ) .

HFCLC modes ((A), Kf') are strongly coupled by stream electrons which

satisfy the resonance condition
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le have shown here that scattering of electrons by Langmuir waves according
to equation (5) produces enough anomalous resistivity to stabilize the HFCLC

_modes.

To study this coupling we consider a slab mirror geometry with

ii,parallel magnetic field lines in Z-direction. This is justified as we are

  'concerned in regions around the mid-plane where lines are nearly parallel,-
In this geometry we consider Langmuilr waves I;(A) \4] and HFCLC waves

f [OSU kf’tl having phase velocities u)/k\\ and L /<], in Z—direction.

K@HThe stream-electrons are also streaming with an average velocity Vys in 2-

, ’direction° It is well known that in real situations, the resonance condi-
tions for non-resonant interactions, like the nonlinear Landau damping etc.
(equation (5)) are more easily satisfied than those for resonant interactions

~ like parametric decay etc. Hence non-resonant interactions are important in

~ the nonlinear evolution of a system.

Accordingly, to study the coupling given by equation (4), we use

the kinetic wave equations obtained by Porkolab and Change (16)

?T—‘}SB = (X)z N < +‘ z S\( L]'; W N ! NK
)t " (6)

:)YQ‘<”11 (ﬁ)il h(kn - ;5~ < & Lﬂﬁi{“ N Ny
ot = = ™
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L = 4 m (Ubf’ e Oy Ky (_\-U-“\(»Sa On)
1< I 76 H DC”]\<1\/“ TMe Y?(
BHIoe Jw" s
LR \1'
0 0n ((J)*'¥Q\Lh\)2

- .
hlki = ”Ei“f \ Chk! ;1§i Loy = kf“ '
oy 0 ! Nic o )(Dk”] Ow,,,

e

fE;\< - gr ~ _Szi) §5\<“ s ~261W1 "SZGJL>

' .
(k)i and (!/)i are the linear growth rates of LW and HFCLC waves respe-
ctively, CE and G:” are the dielectric comstants of LW and HFCLC modes,
Ci)k and QjKH are their fluctuation amplitudes. F_ 1is the”distribuf

tion function of stream electrons which we take to be

PR
_(0n-No) /o
L (On=Ned /204,
+. = &
’\/’4\')«‘\\"

(9)
where {)H\g is the thermal spread, \/g is the average streaming
velocity and Tle¢ 1is the density of streaming electrons. TFollowing points
should be noted about equation (6) to equation (9). TFirstly that in the

expression for ‘,\4\{u , we have neglected the term representing the
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cattering from fhe dressed particles. This is because it is propor-
 gional to [.Gf ((Aj'\qf)]ﬂ ! {.e. the dielectric constant of the beat
iwave (16). Since the beat-wave in this coupling is heavily damped by
:streaming electréns (;s((&;, 1) >y o ﬁence we can neglect

}ﬁhis tern. In equation (8), Secondly since the beat-wave is damped
oh streaming electrons, the coupling coefficiént ‘m\i\dt given by
_equation (8) depends only on the distribution of streaming electron

' iven by equation (9). And thirdly since electrons are tightly bound to
_the field lines and to a first approximation they behave as if T&O-—:§ w
('13c> is the strength of the magnetic field). This implies &41'C18'Z< \
( Qe 1is the gyro-radius of electrons). Hence we use the coupling

equation (6) and (7) -in the absence of the magnetic field.

The HFCLC waves are positive energy waves hence €5\<n >C
(17). Further we may drop the second term as compared to the first on the
R.H.S. of equation (6) under the \\_\4\4u ¥¢\<“ \‘4 (A)é . This is justi-
fied as we will show later that the Lanpgmuir waves keep HFCLC mode heavily
damped in which case this approximation 1s justified. Hence the coupling

equations after performing the velocity integration in L-k Ve /i using

equation (9) becomes

4 1y N
)t ‘ (10)

,—~‘ \ ) g ! g : -}
AL (M - % Lcyn N ) N an
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where now g\ is giwven .
4@
Ll S e e v
10¢e \/ Je" j <& k= memg Utne ™ Dy
!' HEeS) Do
/ \
Y% k‘\ Y, \K\, 2 ,.__.---———-'——”’""
U e T - W y‘“
\‘n ‘\I\
(12}
Let us now find the sign of L\< k! . Since W> W' = o= o'

. R h ) K -
and we take \(1\ - K v \K'n , we have L\)/ ki, > LQ/ k=“‘ and 0z

\/i; > \A“/\\,I for gentle-bump-.instability, we have ‘\}S S (\)\)‘/k‘

which mahkes L I« 1t >0

. Thus the Langmuir modes keep HFCLC wmodesz

nonlinearly damoed through the second term in equation (11).

Yo will now estimate the nonlinear growth rate given by

= N o - -

2 Lo Nie and show that even for modest level of turbulence

< . ~
cllmvmd Lo ome Sriianea theories, it fs orecater than or is of the sams
order as the iinear grow:th ('UZ " . From the lineaxr theory of ¥

H , t
(\'U{‘_ é vy, oF + Using w/kn 7 Lo/k\'land (,L) /|\“ < Ne

s 04N
\’(n Ry atc., we have

- 2
— 5 \ - N
VD l\\l \ (WP /~\\ 1} Z ]\\ %3 LLJ )~> e (/O )5 c \/ .

ST | I

- Mo, O |26]] %

JL "

-—__’—
<
e

g
% [ K
Ve

— — — (12
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Further using [’O/k“kf L\:-J\Z' . //()&U L\)hz YN W

we ha L.

— AN Wy
7 Ly Ny AT W \—)i W)
h5

where W = ?\.; N Wie / Mg Me \)}%S i.e. the rat’

(14)

of energy in Langmuir waves to the thermal energy of particles. Now
Ve [ Ms / /2
typically U Fae = S( ’Y)b) where 7Y)|> 1is the main plasma densiiy.
In Constance IT Yi¢ © 1010 cm-3, My o 10t3 cm-B, so that
'y ',
(,\\b/’ﬂg) - o \’S/U“‘S w lo . Thus even for a modest level of

Langmuir turbulence i.e. W © \},’W‘e/,m'l ( 1/40 > the nonlinear growih

rate % L K Ny w1y wb; > Wy 2 U_)“L

3. Discussion:

Thus we see that the scattering of electrons from Langmuir waves
produces c~ough anomalous resistivity to damp the HF"LC modes in the part of

.o R
the spectrum i.e. (> « (0 ‘ k' <

In the end we note that this mechanism of stabilization of HFCLC
modes is independent of conditioms at the mirror throat i.e. the presence om
the absénce of wave  reflection at the throat, because the time scale of
nonlinear interaction \ ZE L Vet N\c \u\ is much faster than the rate of
convection, That is, the HFCLC waves are damped on a time scale which is
much smaller than the time scale on which they travel from any point on th.
axis to the throat,l The typical time scale of nonlinear damping of HFCLC

N . - - -G
waves 48 C N 2 \2 L\Q\&‘lv ‘\\\\\} ! L \J\)b" ] D ‘)0 Ig(:’(’.

e L
for Constance IXI. While the transit time scale of HFCLC is (,T e "‘/‘“ 3

.....
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where L is the length of the machine (L ¥ 100 cm for Constance II).

h

. Y : k.f\.)-) ) .
Typieally, for HFCLC modes =2, = =b¢é o Wee Dy Upye

1< "', i< W
l ' .
where \}{‘m; and U\"M are the thermal velocity of main plasma
electrons and ions. In Constance IT, UW& o 108 cm/sec, which
' o _ n .
ylelds 7:\‘1‘ = L_,E_'.'» e - 10°% sec. Hence (/NL << (C\T .

oo Uppe ~
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CHAPTER V

CRITICAL LENGTHS IM ELECTRON BEAM INJECTED MIRROR MACHTINES

1. Introduction:

In the prece~ding chapter we had-studied the interaction between
HFCLC waves and eiectrén beam induced Langmuir waves in the regime

W' (2 Wee ki [0} o 0 (= WbeKi/ic), K\ =k, ebe

It waé shown there that scattering of beam electrons from Langmuir waves
produces enough anomalous resistivity to stabilize the HFCLC modes. The

coupling was envisaged according to the equation

h
Ww- _ iy
K- 1y

(a)

In this chapter we will study the interaction of HFCLC waves and Langmuixr
waves (electron beam induced) inlthe regime (W) w uch““/y - LL)bC,>> Q)Mm

Y fr
U3h1¥%L., VO&35I\<HV‘K.) V{:JJ]JIWand \(;,‘>\(\| . This regime is
pail ) -
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appropriate to those Langmuir waves which travel almost along the field
lines[éo that - ¢, « [k | . Clearly then equation.(a) for this regime

hecomes

S

(Jk) = \J\\'
kll

which simply expresses the resonance of Langmuir waves with electrons i.e.
the HFCLC get decoupled from the Langmuir waves. Thus we see that in this
regime the coupling between HFCLC waves and Langmuir waves by non-linear
landau damping becomes weak, However, as we show in this Chapter the
Langmuir waves and HFCLC waves can still interact in this regime. The
appropriate technique to study the interaction in this regime is the
‘adiabatic approximation’ which considers interaction between waves of

widely different properties i.e. (OS5 W' ete.

In Chapter IV it was shown that in the interactions considered
in the regime (W= W' , the spectral features of Langmuir wavés do
not play any role. ilowever, in the regime considered here the spectral
features of Langmuir waves play an important role., The magnitude of the
effect of Langmuir waves on HFCLC waves varies in its course of non-linear
evolution. Thus, while studying the interaction it becomes important to.

take into consideration the non-linear evolution of Langmuir waves.

The non-linear evolution of Langmuir turbulence has already
been discussed in general in Chapter TIT. However, for the sake of conti-
nuity we briefly discuss here some of its features relevant to the present
problem. Accordingly, the general scenario is as follows: If the inje~

cted beam is warm enough i.e. zk\/b/Vyg?i‘(rf\b/YW\>>y3
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( \/b Q”Y)b. are the beam velocity and density, f71b is the plasma

density), a narrow spectrum of. wave~number spread K XIDTL égﬂﬁl L)¥h§

AUV

(where (J#ha is thermal velocity of electrons) centred around

)<o = 'LCMDG//VED is generated. The quasi-linear theory fails
to explain the‘saturation of this unstable spectrum (1,2). Tt is explained
when strong turbulénce effects are taken into account, Accordingly it has
been shown by a number of authors (1-5) that, when amplitude becomes large
enough, various non-linear processes like parametric decay, oscillating

two stream-instability éte. can cause scattering in K-space. Computer

simulation (6,7) have shown that these processes lead to the formation
of 'spiky turbulence', where there are localised structures of intense
electric fields ( W = <El>/9'ﬂ’“/‘o\<Te. =B CR (E:J/Q{T>
1s the wave energy density). It has also been shown numerically by
f";solving appropriate kinetic-wave equations, that these processes lead
to a significant broadéuing of the plasmon spectrum ( /) v \40 where
>Z§ is the width of plésmon spectrum), which can be approximated by a
Gaussian centred around 140 (8). The non-linear evolution of Langmuir
turbulence proceeds on the time scale of a few tens of IOOOllJpe—l
i e. a few J s for typical experimental situation§. ‘Now, in experi-
ments employing parallel injection of electron beam,‘the electron gun and
the plasma gun are fired simultaneously. It takes a few s (v a few
’,ion transit time) for the:ion distribution to shape itself to develop the
hole, so that the loss cone Instabilities are triggered a few AL s after
the firing of the plasma gun, Hgnce“in such experiments we expect a
broad and energetic ( A w <, ’ N ) spectrum of Langmuir

L

waves to come into existence by the time HFCLC waves are excited. We wish
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to inveéstigate the effect of this spectrum on HFCLC modes. Later, we will:

investigate the experimental situation in which narrow spectrum of Langmuir

turbulencé interacts with HFCLC waves.

2. The effect of Langmuir Spectrum on HFCLC Waves:

In our theoretical model’we consider a low- CB- mirror plasma with
 the Z-axis along the mirror axis. In this machine we consider a HFCLC mode
'(VQJ’, Fﬁ* ) which is mostly in Y-direction {i.e. \4ii>»\d\\ with fre-
, qu'encsr in the vicinity of (O v Whe )\ | kMo Wegi « \41 Usni

_ (where tk7b; is the lon plasma frequency and ()¥h§ is the ion thermal
- velocity)a In the same geometry, we consider a packet of Langmuir waves

/‘( W, 1« ) in Y~Z plane, mostly along Z-direction i.e, \4\\w\\< . Let
the packet be inclined at a small angle 9 from the field lines and

centred around l<¢>3lkkjbe/kdb '

The evolution of the Lar~muir plasmon distribution function

will be studied by a wave-kinetic equation developed by Velesnov et al (9).

O Nije IN (¢

Vi VW AN
at ot )Y WK
(1)
—> e ‘
where \JS = ;>L*)/b\< is the group velocity of the Langmuir waves.,

In brief the effect of Langmuir turbulence arises as follows i.e. the low
frequency perturbation creates a perturbation in the plasmon density. The
gradient of this plasmon density gives rise to a ponderomotive force (P.F.)
which reacts back on the low frequency wa&es (HFCLC) to modify its chara-
cteristics., The P.F. on ions is me/mi times smaller than that on electrqnsf

hence dropped.




The plasmg distribution function is perturbed as follows:
Nic = Nice £m1 (2)

where b4\<u is the equilibrium distribution function normalised as

\‘(N\Locek = | (3)

The space and time dependence of is given by

R X W)
M =m, e < | (4)

where (VUQH,ILH ) 1s the low frequency mode. Trom equations (1), (2) and

(3), we have
AR 9 Wy, - INko
PRI
(e Vo~ W (5)

The dependence of ﬁﬁ!< on the low frequency density perturbation comes

from the torm D\*)%f/ggba For plasma waves in the regime Lk)be/QA)cc>w

I L~ 2. PN
U)k = Lch + <7 Oyhe (6)

which gives

Wy _ 4 1< Lg,\m'ﬁe,

= -

oY Mo

(7)

where Mle, ig the low frequency density perturbation. Following
Post and Rosenbluth we shall use the straight line orbit approximation (10)
i.e. on the time gcale of the growth of this instability [\ﬁ(AJb;~']

the ion motion is taken to he rectilinear and mainly perpendicular to the
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field lines while electron motion is mainly along the field lines. Hence
we shall include the effect of ponderomotive force only in the electron

_equation for the motion parallel to the magnetic field, which thus becomes

Wc DMK—)‘Z— s - {)_ EZ_ - YV e \)‘z D_}l/} (8
ot D7 )

.In equation (8), we write

A

‘V‘Z: ?\L)/:ZS '\'\J\IZ% EZ: EZS_“\'EZ,;

)

(9)

where \}zg and \:25 are parallel velocity and electric field sus-
tained by HFCLC (identified as the low frequency perturbation as compared

to the Langmuir field frequency) while \)l_( and t:’lr are -those sustained

by Langmuir waves identified as the high frequency field. Averaging

. ~equation (8) over an ensemble of random set of Langmuir waves

30 - 5 D\\/zg-\i’\/’

Me d Y25 eky — Mol 3 S Lo
31 =R 7 (10)
where \.37 1( . may be evaluated from the following equation

Me (i___[}\l—(' = -QEZ_g,

cAt (11)

DL

From equation (11) \)2{_ may be evaluated and substituted in equation (10)

which becomes -

. Z — h) p \E 2—
e D2 V2¢ = ek, - 2 &~ o RAR: 7%\{\
Ot 7 Ame WP D7

(12)

e

where l:2§ s the z-component of the Langmuir field is assumed to
| — —fwR b
oscillate with frequencies (WD i s k= 25 e , "

PaR
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f E_; is the Langmuir field amrlitude in a direction 9
to Z-axis, then |

with respect

e
[
~

i

LTHL PS»\
‘ where FAO

is the average plasmon density
equation (12}, we have:

20, ZEg\o‘"/Qﬂ_ = NP Ny w

Using these relations in

™M, c_iUzg

- eFL. - & At L Cot®O Ny 0Tk
g CtTH TR e W 27 s
Now from equation (5), we have ﬁ% as
wn ')NL.U
" D Mt
My = ?/ 4' /W / =
k bl D ‘/ ( W \I _ L\)Il) (11‘)
Using this expression for ’?\‘4 in equation (13), we obtain‘
el Sy — - 20~ { ’:’!‘ D ‘\’ (2“ :
e D¢ o B 5 ATIET (Coa?@ Ny L\ ok G
AT 2¢ - S 2 - , e
it 2 ™o v, — 2Ky AT
-\pry5~uo) o Z

which gives

(15)
N 1) N
- 2 N 1
e Vo 0, - 2 drme CoAtONo < N ke Ty Mey
| at ' I 2 Yo : '?\“T.‘»l: )
( \‘LH‘\//)J“’ Lo )
(16)
From this equation we can calculate \/75 which is given as (after
:"\ ! ! b .f‘
using );7g = -1\, gﬁ, ) .
\T ¢ i \ 2 y. ' \{”v INvo
L S ’YY’\ P ——-‘,7— Z_’ . N ‘—"‘“’_""—““ ’\' ; \, 2 ___D._\S.,__..——/ﬂ\
€ (Ao () N1, Mo L N e =N B
(W Vg~ ')

(17
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Next, the equations for the perpendicular motion of the electrons give

(taking the perturbation in the peréendicular motion to be on the slow time
scale of the HFCLC modes)

L

—tw! Ve = - k)vg'iio
. — —-(18)
, — i " [ 3
-1 W' U% = ek dF e, R,
( 4
— = = (19)
From these equations we have
o\ , -
- ti \ |
Uae = -ty d’ /rwxem W'
I/ ! — (,'\)CCLA ‘\)H 2. J s
i (20

Also from the equation of éontinuity on the slow time scale of HFCLC mode
we have

: . i ; f ‘“:\‘
2 ﬂ‘g" = =\ Y \<§3 M ye™ L Yo K L 7e
) Jo0

(21)

. -
Substituting for L)%g and \)15 from equation (20) and equation

(17), we have the electron density perturbation as
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Ne, = [ M W 2 @,
)Gl -\ _1) > ‘\(\l\ P
?:\@,L&Y‘Q* S — 22 (ﬁ1‘wqo
~~-—ww—_?;~"‘ - Me W'z
{,_ [‘ -~ LA)CC /(/U“?_J
: t\l— . ) 2 - ‘\_\Z\u :)‘\\(‘_/0 - ) ~\
. |- g M\ Cot%C §—— dx
| W'z RAC
N (\(ﬂ» V; UJ‘) |
J
(22)
2
where ?} = 4me /Q'YY?EL‘T?O : - The summation oven:K~plané

has been replaced by integration which has to be done according to-Landau’s
prescription. The ion density perturbation is unaffected by Langmuir waves
and hence can be calculated in the manner shown by Post et al (10), Using

electron density perturbation and ion density perturbation in the Poisson 8

equation we get the modified dispersion relation for the HFCLC modes as.

| = (Um \ ;- o Wpe”
LO B Toce * e
{>l‘¥ N LU (‘431) ‘§]‘¥ C&Z (%, {}
(/U” .

FoWRT (BT oT
AN ! 1 ) J\y N
/( Ly

= A -V W) (23)

where in the electron term, the inteoration in the K~plane has been per-

formed by modelling N j o = \)_-_TA U)( & (- k ) /752 ] , where

A 1is the width of the spectrum, Thus / (%g ) is the plasma dispersion

W\p - . - T !
function with ‘Vo = N, %X)G()+MQ ) 'ﬁig = .;2;);” ( (J;’ i )
/\\ -\Zp ' \,‘\l !
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—- NI — ¥ 2 . P
W= Nobre /o o7, W E Wpe 7)?3 /\<' (k= ‘13
) etc. In writing down the electron we have alsc used the approximatlon

. 2 (" 2
et >> W' % which gives Wpe /@)ul, Lo, > ch — WO T’Q-/(,Ugg

ce

In the lon term under small growth rate [: U);':)approximationg the

principle value and the pole part can be separated and the qg integra-—
\ = Vs

tion ( (1) is the angle between ' and V)_ ) in the pole part can be

performed to give equation (23) as (11)

= Wee ‘J\”Z,— - u)bt
w2 l<})""' Weo* P .
’ ) _ '(/Q* 2 IAH 2 ‘.}— ‘7(%) ’ }“'LUH,., > j
() S]]
W E(E) S )
PR
VY, 5 57
+ 1 ‘,\..;(317‘(3) -
My
vhere = o / <" Ui X = Vi / Ui
iy = T Bemw'] w "
. X/ oA L
4 y (e
) o
_ DY ) el y 2l f
79(3) ) G = am Uni | FiCubur)dy,
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Fi is the loss cone ion distribution (i.e. +1 (ULF:G) = 0O ).

. W f .
Here the resonance condition is x S y2 or Vl.> Lo /k%f , in which

g

case only Z term is important and Z, may be neglected. Cosz. has
1 P 2

been put » 1. 1In the absence of Langmuir turbulence W = 0, equation (24)
reduces that obtained by Post and Rosenbluth. At the ends (k)ba —_ O

and hence |¢;' —> o but before this, the condition for electron Landau
damping i.e. U)H/kﬁiLhkuz<) is satisfied. Hence we assume in this analysis

that waves are effectively absorbed at the (10),

F(y)\ for collisional
equilibrium distribution fumction 1is € 1 (10). 1In such cases the criti-

cal length can be evaluated by assuming real CL;I ’ o /\ My,‘

and solving for l;YY?VJl;by making binomial expansion in equation {24)

' o " i, [ R
which gives { k' el At al My o el V:? ot wﬁﬂﬂ”‘fﬁb4*xil J
] & ) . :3,., i '—‘
Dol = =Yy () Y200 ) 0 ey
2\ I : ( - _UJ'HI' ey
| (25)
For growth \ﬁ fz»(fj) 70 . We assume that the critical 1éngth

is about 10 times the zrowth length calculated from équation (25). Hence

the critical length comes out to be

| \ 0] (%l'_s)
L v o ('”m \‘/Tﬂc ) = e\ Wee (26)
| 197ty)]
where - . U)hw /Q') > ] has been used
which 1is the typical density regime of present day machines. It should
be noted that Z) ( v ) | is a smooth function of Y and acquires nositlve

and negative value with maximum value of order unity on both sides, We

will now evaluate the -ecritical length in the presence of the electron beam.
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3. Electron Cun and Plasma Gun Fired Simultaneously:

‘In this case as stated earlier the HFCLC waves encounter a
broad spectrum of Langmuir waves, hence we may use %u)":-@WWinJfD .
PA)
Lo ‘ A
( ‘T% )> <<) so that 77 (G,) can be approximated as 2= 0T
)

In this limit the Landau resonance between the wave and the Langmuir plasmons

~ becomes significant which brings about substantial changes in the temporal
; 3!

o ¥ e ke ey

and spatial growth of HFCLC modes. We further assume (U l
L

and W (‘4“45)‘1‘>> | (typically as will be shown later). Using this
we may write \(;:2' from equation (24) as
n 2 U T
- (){) £ vt e T t ':"_
\ noo -z— l (_ P4+ o 71T 407 ) éng — 1 Wy, 7
3 . .
Ppe L kUt
R R J—
T Wpi” 7,+\,}1Tl‘°f{ sz 26';1
g ' -
.ku?— U“” l\!'l } &
(27)
_ - - ol P
where we have put () = LU@?C“/QA)Q%' and T = W <\\‘/l>)
In the bracket we may neglect unity in comparison with (a+T) and take
(a+T) and evaluate the square root to give )<ﬂ as
| ! N o= T ‘ .2 T
ky = W caym) >[4 0T g 1 BT 7, (1)
- : - : & ; =
e (a+7) NN C

(28)



Since a,T \>>  1, %g <\/‘ CUbi /P\“LUH’Z; é ] l 7)&: )

etc. the three terms other than unity in bracket are less than‘unity in
R : . I

o

which case we may make a binomial expansion to get the L’h’) kll as

T It XY { =T e R i .
Lk, = WE cauma[ FTR w2 Z0(14T)

1 . — e T

ch-\’v W pe (¢ +T) I Ui = (a47)

(29)

The first term in equation (29) is smaller than the second - on

account. of f’-{ hence we neglect it to get ’YYI \411 as
" \

iy / .
Low'ie (a+T) & Lop; 2 Z, C1+7)
2 Wpe

I"YY\ kp:‘ = -

k Uan m
(30)
which can be rearranged as
‘—-'*v. . e I — i 'Z (k/) |
__L}f) .)\” — ( (/ym‘) _.____.,\__?_____;____/_. r /
(’\»m (,u“(ﬂ +T) 2(31)

wb, tidee

Thus all those HFCLC modes which have their nerpendicular phase velocities

[_ l
ﬂ U“’\l Lo
with a growth length given by equation (31). The modified critical length

:‘ such that ‘3 7 (D ) is 3 0 will grow spatially

for a mirror machine where these modes are excited is accordingly given by

o H . :
: ~ I , 2 w_l’*’ UP } \,Ulg
L’\'Y"l 2 Wb [ e /‘YV’\C ) lk\/}_l;(fx)?‘} l»\)nrli K)—Ei )

Vo T /(O _},T)Uz, (32)
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Using equation 26) we may write equation (32) as
L vz
L = JZ&I; ‘
G;\ FT) (33)
~ where L is the critical length in the absence of the beam. Since
vc”hr-{?l\ff)‘lz > we see that the critical length is reduced

¢

thereby endangering the open-ended confinement.

We now make a numerical estimate of this reduction of critieal
length in actual experimental situations. In Constance II mirror machine
(12), the electron beam was injected to suppress DCLC fluctuations. Hollow
beam (1 cm diameter, 0.1 cm thick) of & KV, 7A was injected in a plasma
produced by the Tivwasher gun with following parameter: np = 2x1013 cm~3,
Ti = 400 eV, Te = 10 eV, 1In the experiment CB of the plasma was
v 4x10”39 a low- ﬁB plasma. The criticaliiéngth in the absence of wave
reflection at the ends was about 200 cm, while with the wave reflection
(due to different mechanism menticned earlier), the critical length was a
few ems. In the experiment, without the beam, no oscillations at ks
were observed which implies that there was no significant wave-reflection
at the ends and that the waves were damped by the electrons at the throats
before they could grow to a significant level. We can apply our results
as we have assumed a low- (} plasma and the absence of wave~-reflections at
the ends. During the injection strong signals at 30 GHz were observed
which confirmed the existence of Langmuir turbulence in the machine
((&)bb 2y 30 GHz for V1 o 1013 cmmB). In the experiment electron

gun and plasma gun were fired simultaneously hence as stated earlier HFCLC

modes will encounter a broad, energetic spectrum with A = Ko; W 0.2,
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o=

From the electron beam parameter, the beam density comes out to be

. I '
10 = 5x10° cm/sec. As typically KK " M)b'/()+hg

qu 10 ,
Z}‘f‘\<_ov oy Lk)bﬁ/ﬂjt) , WL 0.2, W(al AN )2 = 20 and
o= ("*-)b“%kg =10 so thatja 2 3. Thus Va T /Low_)"z. w12
which gives Ihfﬁ L/12. From this it is clear that in these experiments
the critical length is expected to be reduced by atleast an order of magni-

tude i.e. from a few hundred to a few tens of cm. This can seriously

jeopardize the mirror confinement.

4. Electron Gun Fired After the Plasma Guns

Let us now see whether this situation can be salvaged by delaying
the injection of the beam. Such‘situations are generally encountered in
mirror experiments employing relativistic electron beam for heating purposes
(13). If the injection of electron beam is delayed by a few jL s after the
plasma gun turn off, then the HFCLC modes will encounter the Langmuir wave-
spectrum in its initial stape. In this stage the spectrum is narrow;\thé
width is typically given by Luk“'/\/ (V&V/Hq 4)V3 and contains
roughly 1/3 energy of the beam (11). Hence W = VA M ¥ie Vi Vit

N me Ve
In equation (24) this situation is characterized by

%‘{: \ﬁ.fZ\mO »|('L’>V ,\) >> | - In this limit 2( @4 ) is
given as )

7%= [~ - thyg o ]

. .2
Using this approximation in equation (24) we have o as
U“”‘L‘{ll
‘2... o i aen - { .?... ) - 1—‘ :
e g Oet 0 fwgt
- LK UY T Ty s | s
U)béL : Weem X U,
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wwe 0= [ V(S5 ]

P
W pe »
Typically as we will show later b \Q] is > 1 in which case we
\ .
may write \LC, (after evaluating the square root as
It UQ”M” Tory 1 W ..Z ’ X 2_
e e T )
Wre Wee (! UHM (36)
Hence after binomial expansion :
! -\
I_ ‘LH _ 4 e %—LUM %7 U)Luha) ‘ﬁ\
gagl W
\) bai - Wee S @3N

which gives the modified critical length Lm as

L = L’//\WQI

(38)

Let us now evaluate 1xl for the parémeters of Constance II. Using the

expressions for W and %k given before we have for Constance I1 parameters

W= 1/10, <% =10 t"/)w}o so that WL{A) Se L 5sothat
I1x1 ¥ 4 and as &Ob('A/UC(‘, Z. 10 we have wbt/w 1 %A “v QN

-

thus justifying our approximation stated before. We remark
that this approximation will all the more hold for future generation of
‘high density mirror machines. From equation (38) we have that typically
for present day mirror machine with electron beam injection L= L/4, the
critical length is reduced by about a factor of four. This is not as
dangerous as the previous case where the two guns were fired simultaneousliy
but reduction of the critical length by four times can seriouslyﬁrisk the

mirror confinement.
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5. Discuesion:

From these ¢ lculations we see that “here exists a definite risk

of the worséning of mirror«confihement in the machines which employ parallel
injection of electron beam for the purpose of controlling drift cyclotron
loss cone turbulence or for heating purposes (REB). If the plasma and the
beam gun are fired simultaneously the cfitical length is reduced by about
an order 6f magnitude, this can seriously jeopardize the confinement. On
the other hand we see that if we delay the injection of electron beam i.e.
fire it a few ([ s after the plasma gun firing the critical length is still
reduced by about four to five times. Thus we do not gain much by way of
improving the confinment or eliminating the danger associated with the
previous case. On the other hand, there is yet another strong reason
against delaying the injection of the electron beam. There is a strong
possibility that the very purpose of electron beam injection is defeated.
As stated earlier, after the firine of plasma gun, it takes a few ion transit
time (a few (« s) for DCLC instabiliities to get trigpered. These instabili-
ties saturate very quickly (on the time scale of (AJAT‘ , about 1/10 of
1 jas for typical real situations) by diffusion in velocity space (14). 1In
that process they push substantial amount of plasmé in the loss cogg from
where it is lost. By iInjecting electron beams one tries to inhibit this
process by super thermal electrons which are generated a few [us after the

~ injection of the beam. Thus if electron beam injection is delayed by a few
iLs then it may so happen that by the time the hot electrons appear DCLC
turbulence has already developed and saturated resulting in the concommittant
particle loss. For precisely these reasons it has been found safer to fire

the two guns simultaneously. Thus we see that by delaying the injection of
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elecﬁron beam we do ﬁot gain much by way of improvinﬁ'ﬁhe confinement on
the contrary we run the risk of -defeating the very purpose of electron beanm
ifjection. Clearly we see that this harmful effect of electron beam inje-
ction is unavoidable hence serious. We»femark that if from the reactor
point of view we do a more exact calculation including all ?he mechanism
for wave-reflection and high- F% effects the critical length will be
.further reduced making the confinement still worse. This calculation shows

that even in the simplest case electron beam can be harmful enough.

In view of this discussion we suggest the technique of electron
cyclotron resonance heating employed by Ioffe et al for creating the
hot electrons to suppress the DCLC instabilities. It is much safer and free

from these complications.
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CHAPTER VI

ON STABILIZATION OF ION-CYCLOTRON TURBULENCE IN MIRRORS

1. Introduction:

In mirror machineé such as the 2XIIB (1) at Livermore
.and PR~6, PR-7 at Kurcnatov, fluctuations at the ion-cyclotron frequehcy
Qe have been observed. The qbserved waves have frequencies less
than the vacuum field ion-cyclotron frequency (A)¢|{ , wave numbers in

the range 3< ¢ @-‘ Z 6 ( ?'\ being the fon gyro-radius), phase
velocities very close to the ion thermal velocity and pfopagates in the
direction of fon-dimagnetic drift. These waves could be the drift-
cyclotron loss cone (DCLC) mode which is predicted to be unstable (3,4)

id mirror machines.
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The saturation mech--ism of these mode¢ - is not quite clear

as yet. The observat?ons show a strong correlation of jon-energy diffusion

witil tihe pbuira up an the amplitude uf the oscillations. This suggests a
quasi-~linear type of process as a possibie saturation mechanism. Such a
mechanism was in fact proposed by Galeav (5) in which the unstable DCLC
modes saturate by plateau formation due to the partial filling of the loss
cone as a consequence of velocity space-diffusion. This theory predicted
ion-life times inside the trap to be a few axilal bounce periods which were
not in agreement with the observed life times of a few hundred bounce periods
and much longer life times when warm plasma streams were employed. This
theory was improved by Baldwin et al (4) who argued that mirror plasmas
formed by neutral beam injection do not necessarily fill the entire phase-

space available to them, but are peaked at pitch angles nearly perpendi-

cular to the magnetic field. The predictions of this theory agree well
with the observations of 2XIIB. However there are other mechanisms which
do not if:.7oke the velocify space “iffusion. Gerver (6) and Aamodt et al (7)
have proposed that f. . measured plasma lengtl.; in 2XIIB the short wave-
lengths are stzbilized by axial convection. For plasma lengths longer
than the 2XIIB plasma, Aamodt (8), Timofeev (9), Smith et al (10)

and Menyuk (11) propose ion trapping as the saturation mechanism for

a coherent short wave-length mode. Hasegawa (12) proposed anomalous
resistivity arising from the scattering of electrons from the low-
frequency oscillations ( (WJci  /10) as the saturation mechanism of
these unstable waves. Rosenbluth et al (13) and Aamodt (14) have

proposed a mechanism in which a nonlinear frequency shift leads to the
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detuning of resonance between ior -cyclotron wave arn’ ion-drift wave

which'saturates the drift Cyclotron‘instability.

In this Chapter we propose a saturation mechanism for
the modes observed in 2XIIB at (.- W¢j , [< - MW b/@? where @};
is the plasma radius and 21 is an integer. The physical process
considered here is the velocity space diffusion as indicated by the
experimental data and we use the renérmalised plasma turbulence theory
for the analysis. This process is distinct from the coherent mechanism
proposed by Rosenbluth et al (13) as well as the theories based on
loss cone f£1illing and the plateau formation (4,5). The saturated flu-

ctuation level calculated here agrees well with the observations.

Calculations:-

- The plasma in a mirror machine is inhomogeneous and
supports the electron drift mode at (X)PQ’/¥4 W?h,where QK)*»Q is
electron pxasma frequency, and the ion drift mode at (U = kklx\ =

Pi k’*“‘//Uﬂ( F&yﬂ where k}yhi'is the thermal velocity of ions.
These are positive energy modes and when they are coupled to the negative

energy ion - Bernstein mode the instability at (). Wet  1is excited.

The appropriate dispers1on relation for these modes with \(,, =0 1s (4)
> 2.
b W g Wk Wk Wei* 40_; (= 0)
Wed W KICT e Rply Tk *
o)
N 2 0D > .
1+ W > o du Uy I (k—‘-\’l/wcx)

K e SO0 L [ae p Wai %&.ﬁ] ye

oy W Uy

(1)
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where %‘Q{ is the ion-disfribution function. It nhguld'be n@ted that
in the abové‘dispersion relation the éffects due to the temperature
gradients (19) the magnetic perturbations (20) etc. have been neglected.
We envisage the saturation of the observed instability by the diffusion
in velocity space arising from the perturbation of the particle orbité‘
by the growing waves. This process is described by the perturbed déﬁit
formalism (16,18) and is akin to the quasilinear diffusion process. The
hitherto mentioned agreement between the quasilinear theory and 2XTIB
observations show the preponderance of veloéity space diffusion and this
forms the basis of present study. With the procedure adopted here the
saturation level of the iInstability is calculated. From the linear dis-
persion relation it is seen that the electron contributions do not exhibit
kinetic nature and hence the perturbation of the electroﬁ orbits by the
growing waves is not likely to play an importamt role. On the other hand
the contribution of the ions being kinetic, the perturbed ion orbits will
be important. Consequently we shall consider only the ion trajectories
to be perturbed by the fluctuations and this leads to a diffusion of iomns
in the velocity space. The linear relation for a mode in the plasma is
obtained by integrating over the unperturbed orbits. The nonlinear
dispersion relation which includes the average effect of the fluctuating
filelds on the particle may be obtained by using the perturbed orbit forma-
lism (15,16). As the name indicates in this formalism the integration

is over the perturbed orbits and it is averaged over a set of random

fluctuating fields. With this procedure, the nonlinear dispersion rela-

tion for (W Wei mode with Fé‘t = (0 is obtaimned.
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(2)

In the ion contribution to equation (2) i.e. the right
hand side D;is the coefficient of diffusion in velocity space and is

defined by (17)

g - ) 2 \Ef . - - Z RN

DTy = 87197 T mtu” | dk 1B ™ T C‘i{fﬂ%)

%"7’ Yiz -2 \<1_ LAx
© - \ 7 o D

b= e ) L T T

¥ A\clT e -
—
(3)

Equations (2) and (3) constitute a coupled set of equations which can be
iterated for a given spectrum of modes to give the effect of perturbed
ion orbits. Although the diffusion coefficient Diis’ in general, a
function of the velocity, we assume the " dependence of D;to be weak
and use a constant D in the following analysis. Also in the orbit
2

. i \/7—’1)'7”

integral in equations (2) and (3) we approximate the term 3 <y i b

by (:;é ¥*ATZI>() 2T as this term does not contribute for large T
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As ioms are hot we may use the approximation l/(}\.)CI S5

for simplyfying Bessel’s functions. Then calculations: on the same lines

as (4) yield

, L b ~
|+ Wee |, Wee LW
Wel ™ LOCC.?? \{} c* W Wee K,\..rR = .

. | \
N E el =2 . NN R
EﬁfﬁLﬁ%ﬁLux Y O+ l(:é}kjf?)\)-' Lo x)
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We shall now consider only the fundamental mode (n=1) (L= Wei  which

contains maximum power in the observed spectrum (18). Defining the

quantities N
a= |4+ L\) bL 4+ —— Wee
LUc_(_ L\ )C( l\ {2 C -
b —_ («L) bl __,_‘,_,_,— (.Vs - 9] _.37(:2‘ | \
Wei™ [40>)7 7 Wee Ku Ry

—

¢ o \
oo [j»f; i D] /5

the nonlinear dispersion relation equation (4) may be reduced to the

form

QL — (\t 0 N wd G- \\)ﬁ) _
b “ZUJJMCi4C) (5)

which can be further reduced to the quadratic equation
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(6)
The roots of equation (6) are
69 ‘: cwer g4 lox N o o
A(Utb) 2(alp) (4D
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For 2XIIB parameters and the obsarved range of \T‘() Q', from 2.9 to
6.1, we have b in the range 1.69}(103 to 3,55x1039 a v 103, d = 1x1011n
Then the square root term under the approximation W-W¢i ¥> C (C being the

nonlinear effect), yields the growth rate ¥ of the linear instability.

5 \
Y= ] 4Caik) dwe- J{ Cwer A F bWy g}/l

With («U? D ALY | , the imaginary part of equation (7) is

- (8)
From this equation, it is clear that as the linear unstable mode with
growth rate ¥ grows, the velocity space diffusion starts becoming

important and hence the perturbed orbit effects which lead to the damping
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term in equation (8) also start becoming important. When the diffusion
is sufficient to make the damping term of the same order as ¥  the
saturation occurs. I: 2XIIE the observed ilon-energy diffusion coefficient
29 2 .
is about 10" em /sec3 in terms of velocity space diffusion. If we use
-1 (D e -
ki‘” 2.37 em 7, corresponding to ¥\1 5y v 6.1 and sv~ 2.57 em, then

the damping term is 2 3x10° secmlg while the observed growth rate

in 2XIIB is 0 O,OZkuuaﬂ2x106 sec—l for e = 107 secml. Thus we sce

that energy. diffusion in 2XIIB 1s sufficient to saturate the growth of

the observed modes.

Mow let us calculate the fluctuation level. Accordingly
the condition for this is given by

N k{?'Tbg’)UBﬂ%-'Y =0
= (9)

The diffusion coefficient to the lowest order from equation (3) is

- 3 . B AS ) ¥
—~ . QTed : A e
D = = Ty &(«,\ &S ,‘:.—S '(‘&’"}”"'
s o (oW ci )t
(10)
\ NENLY
where %1\4 ol )liAé\ /%WT is the energy density of the Kth mode.
Also for dons W ) §,S1  so that J+~ can be approximated as
SR VY
TN - —
il k.),U_L
(1)

TN
Sy

Typically we may evaluate at U= Lh¢j so that ﬂ?:)gis given by
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or
s '—L' 3 2
T 2 u)w \)w\___ _YEL o
m (\m&ﬂ 7T 3
where W= ~§Eip:(ﬁ\< is the energy density of ion-cyclotron loss
-t
cone turbulence,(i‘ ~is the ion temperature and »<A, is some typical

wave number. From equation (9) and equation (13), the saturatioa level

is given by

\W 1o \<\§ \0’

P Al

W%JT.

-

(/D 33 ‘ U_) i (14)

Using experimental parameters of 2XIIB i.e. (O pt o= 5.52x10°

Wi 107 Hz, YQA_Q;\ﬂ 6.1, = We /50, etc., we get VQ/W?{T{
w 8x10—8, which corresponds to about 18 to 20 V in terms of root mean
square potential. This agrees well with the observed potential
fluctuntions which varies from 10 to 50V without the stream stabiliza-

tion (18).

And finally we briefly discuss the case of saturation
in the presence of warm-piasma streams. Equation (9) shows a strong
dependence of the fluctuation level on ¥ . Hence a small decrease in
¥ can cause an appreciable decrease in the f luctuation level. This
may be one reason why the fluctuation level is reduced when a small
quantity of warm plasma is added. It can be shown from the linear

dispersion relation (1) that with the addition of a small quantity of
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warm plasma the linear growth rates are reduéed. Then according to

equation (16) this can bring down by an appreciable amount the fluctua-

<

tien level. The saturation condition equation (9) gives the ion life

4

time as

A Owi® B¥lpfif

e

Dy ’ LQX)E

This shows that a small decrease in the growth rate due to warm plasma
injection will significantly bring down the ion life time in the trap as

has been observed.

3. Conclusion:

To conclude we have shown that in 2XIIB the energy

- diffusion is sufficient to saturate the ion-cyzlotron loss cone turbu-
lence by perturbed orbit effect. The fluctuation level calculated from
here agrees well with the observations. We have also shown that apart
from loss cone filling, the percurbed orbit effect may be another
important factor in bringing down the fluetuation level and improving
the ion life time when warm plasma is added. In this work, we have
not discussed the problem of sporadic bursts whichrhave been associated

with other physical processes (21).
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CHAPTER VII

.. FEED BACK STABILIZATION OF DRIFT CY(CLOTRON LOSS CONE INSTABILITY BY

.. MODULATED .ELECTRON. SOURCES

1. Introduction:

The drift c; :lotron loss cone instab.lity (DCLC) which arises
because of the resonance between the positive enerpgy electron drift mode
and the negative energy ion Bernstein mode has been ccaclusiﬁely identi-
fied in high density mirror machines like PR-6, PR-7 (Kanaev and
Yushmanov 1974, 1975), 2XIIB (Simomen 1976), etc, These'modes océur at
£, and its harmonics ( _£2,, ion gyro frequency) and have growth
rates roughly of the same order, They require a critical demsity
gradient (CDG) to become unstable and thus set a minimum limit on the
mirror plasma radius (Post and Rosenbluth 1966) (R = 200 a;s, R mirror

plasma radius, ag ion gyro radius). In this paper we have examined



the feedback stabilization of thec: dangerous modes ;y moaulated eleétroﬁ{f

| sources. This metﬁod'has been suggested and used before for the stébili—
zation of low-frequency drift instébilities and drift temperatufe insta-~

’ bilities, etc, (Simonen 1969; Kitao 1971; Lakhina and Sen 1974) . Here we

~ have shown that when the feedback differs by'+90O in phase from the
unstable perturbation then the CDG increases approximaéely linearly with
the gain. Typically with a feedback gain éf‘«“ 5042i{, the CDG can be
pushed by as much as two orders of magnitude)thereby considgrably

improving the stability of mirror plasmas against DCLC instability.

2. Calculations:

" We consider a high density hot ion plasma f.e. u)yae‘z..fze.fY}>>fﬁi ~

( kei»electron plasma frequency, .JXeelectron gyro freqqeney,z'T; ion
temperature, fTé electron temperature). This p}asma is embedded 1n a mirror
magnetic field ;E; = 130‘% and has a density gradient

Lan 35— ¢

M dx
The feedback system consists of an instability amplitude sensing probe
whose signals are amplified, phase-shifted and impressed on the suppressor
probe which, with appropriate negative DC biés, modulates the local ele-
ctron flow to the probe in giving rise to modulated electron sources. Althou
in any real experiment such sources would be present only at finite ﬁoints
in the plasma, nevertheless we assume in this model that sources are distri-
buted ﬁniformly throughout the plasma and they respond linearly to the local
density perturbation. Such an assumption yields results in good agreement

with the experiment (Furth and Rutherford 1969), Thus we represent the
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source in the form

Pl

D P «\w;f‘?i\ex (1)

where the amplitude and the argument of i[A)# represent the gaim and the
phase of the feedback, Y, is the local electron density perturbation.

This source is included in Vlasov's electron equation,

Following the standard procedure outlined in Sen and Sundaram
(1976) and using the Vlasov-Poisson system of equations with appropriate
source term in electron dynamics the dispersion relation for the electro-

static, flute modes in an inhomogeneous, low«CB plasma can be written as
/
\ N\
|+ X, + Ly=o0 (2)

| ,
3(; and )(Q“ are ion and electron susceptibilities and are given by

‘ = — 1, | "
Wi = - }:f;,z[\— Z_ | Am (b )(WL@N%DE*CRU‘}

Nz - ({UQ-— nc2y)
2 (2,2
7( _ A B Zi” éJyf(bb)Cu}¥LUNe)§oa dT
e = - kldl. “"" o :
¢ n=- (Lo-m 2. ) _

[_ - %—-— T, (52) exbp1-b ]



L’\)jt = LUH

, ' .
1 We, dw = Re

: ; /
Thus, in the dispersion relation (2) the new festire is reflected in X@

wherein now we have a term in the denominator describing the source chara-

cteristics. Since we only consider the electron sources, the ion term is

unaffected.

We shall consider the effect of this term on DCLC wave spectrum.

For this we make use of the following approximations (Post and Rosenbluth

1966)
>> |

‘4.\_ Ut/ S2e <)

~ oy 2
s (e 2. for electrons and L(; Yoty /@Q{ L\J]

S>> | for ions. With these approxima-

tions and taking a loss cone distribution for ions -«&10; (U_L:u) - O

in equation {2) we arrive at the modified dispersion relation for the DCLC

modes as

|+ Wre” Wee /0, ol Wy o* ,Zcz "
- e _..........'_._- ________________’:: | ,hi |
e ' ‘L)“‘ LUHw] \Kf D?u Sy (b -wn-27)

= [
Using <« /(3(4.,(\) =

[@Fa)

M= —-oo

and \*\l

) I

= ar
" L2 *

(3)

Ticot T x. and putting \/\[ = Si‘:)—'x“ﬁ‘

-1

equation (3) can be put in the form
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\/\)1Co\‘\/\lir.\/\/[ (’_\~\/\J_‘CD¥W]' (3W g |
=0 SENPLY >TT E (

where e 2 > e — (W)
W > i ,
>= T (W ea; ) ( -+ Ton > 0

For a piven density gradient ( ZQ;% and mode number defined by (3 (4)

_.
Yvy + _52‘ } A
L&)b\

will give the real and the imaginary of the frequency defined by W . Bu:
as (4) is transcendental, real and imaginary part of W cannot be eva-
luated vanalytically. However, there is yet another method of examining

the stability through (4). TFor N_}, = 0 equation (4) reduces to the well-
known digpersion relation for DCLC modes obtained in Post and Rosenbluth
(1966)., It is shown that the ieft gide of ,(4) admits a saddle point with
respect to W and (5 which gives/rise to a critical density gradient
€.<ai> . For €4y £ € _<Qy> , all the modes defined by (5
are stable, while for CLU> > C. <,y , some of the (Z) are unstable
giving ris‘e to the DCLC instabiliiy. The idea here is to examine the
stability by evaluating CDG in the presence of the feedback i.e. for a
finite \/\1§ . Such an analysis is possible only when \/\),S_ is real i.e.
for 9 = + 90°. TFor other values of e » \'\u becomes complex which malken
the evaluation of CDG quite diffiecult, Accordingly, we proceed .to evaluéta

the CDG for different gains in phase @r = + 90°,

w 6= 4+9v L Wyyg= -, VOJ,,‘:Oj

In this cas: (4) becomes
o2 | L NG
W colwW b W [@ W bW ) HBW, = R eLud

-2
X (w\u_ " > |- -(5)
n l\)/‘)
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Fig. 1 Plot of W vé. F (W) for fixed values of Wf‘
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Fig.2 Plot of W vs. F (W) for fixmed values of Wf'
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We shall use a conventional numerical method to ési:imate CDG in the presencs
of the feedback source term, following Post and Rosenbluth (1966). In order
| to determine Ithe saddle points at which critical density grédient occurs, wo

adopt the procedure described below:

A particular value of HS’, is chosen in (5) and a function

5{\,\) G \,\]s"l is defined as

JIwe N;] CWeekw 4 wymww o) AW
- @'2/3 X -T‘- (6)

We plot in figures 1 and 2, ‘S— as a function of W for different values
of W_;, and (5 (the values of ‘3 are not given in the figure). The pldt :
shows a maximum with respect to \N between 0 and 70 . The existence of a

minimum with respect to (ﬁ is seen from the following equation.

O T CURI S LU S SR N A R '
d ‘5.1 = L @y.lg ENH’ \N{] >0 : £
AN, = oo
As the quantities. (g, / \,{I\ ‘and W { are all ‘poéiti’vé',‘:thefe is a minimur
with respect to CS . This ‘:‘L)mplies the existence of a saddle point

E Wv\ (3 ) | which can be located by simultaneously solving the followi.

set of non-linear equations.

=, A - dW (,Q)“"W\ -
Xd\«) W, = Aiv W, Cod W, XH- ”g‘CJ,i ,, o

G v ‘ oWy AWy
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From (8) and (9) we obtain the sadile point coordinates ,VA\ and Bq

as a function of »U* . *@he CDG for a particular value of Vd4 is then

‘given by
[ el QI;
(LATwI, Wit Wy ) (W o > = e, sapy
T 2) ™M U\)},lz
Tz
(10)
.yhefe %i:(&,(¥d£),\ﬂx(Vd¥), V44-] is to be evaluated from (6) which

pcan be rewritten as

IR L A FEML L [ cotv 4By Wi
(’ la t CRER R by &
D ——-*'(11)

A Such calculations have been carried out for different values of

Ixe Vd§- . The results are'tabulated in table 1. The first column gives the
val#e of \fJ4 s, the second gives the corresponding CDG. In figure 3, CDG is
plo;ted against Gain. The plot shows tﬁat CDG increases linearly with
in the range 0-50T . It must be mentioned bere that this linearity is
only approximate because it so turns out that the value of the first term
and the coefficient of bv_s in the second term in (11) does not change
much for differenF saddle point coordinates \AJ‘(XAK‘) and (3,( VU; )
because of which (11) approximately represents a straight line with % and
VJ% as the two variables. It must be mentioned that (though it appears)
the straight line does not pass through the origin because even in the

absence of the feedback there is a CDG. This is also obviocus from (11).



169

Table 1

TFeedback gain"vs. critical density

gradient
é;;; mmmmmmmmmmmmmmm B h CDG
0 0.38
3W 3.961
47T 5.231
5T 6,50
61T 7.79
77 | 9.07
8T 10.35
9% 11,64
101 12.7é
2077 25,82
307 38.72
40 T 51,52
50 91 64,52

From the table it is clear that with a gain of «— 5052} , the
CDG can be increased by as much as two orders of magnitude, thereby censidc
ably improving the stability of the mirror plasma against DCLC instability;

As. shown in Post and Rosenbluth (1966) the minimum plasma radius is given b-

8- Al r _
szz’Tﬂ{qq = ““”f;jjw/-~—'“’ (Yn/wy\> G qu (_**CZQ /\kjb&%)
g Y_er(élj

— — -(12)



where \k is a.function of *fze,/uggév and is tabulated in Post and
Rosenbluth (1966) for different values of its argument, It is clear from

(12) that R.m oes inversely as the gain of the feedback.‘ Typically in

in 8

the present-day mirror machines where ‘Szé}/kx)gz ) y Qi 1 cm,

with a gain of « 50 $2; |, Roin

thereby almost removing the constraint imposed by DCLC instability on

can be brought down from 500 cm to 3 cm,

the radius of the mirror plasma.

(11) 9 - 90° ( \V\).g,)«: W{, , W“ =0 ). In this case, as
follows from (7) the sign of o*{ Aj(l’“ is not fixed. For W VQ@
dz'(r/d(g}: is positive while for We WL, C\l /leis negative.
Thus the saddle point and the consequent CDG does not exist, and the effect
of the feedback on the overall DCLC spectrum cannot be evaluated. The
stability of a particular K in such phase angles should be evaluated nume-

rically from the dispersion relation (4).

3., Discussion:

We have shown here that the stability of the mirror plasmé against
DCLC instability can be considerably improved by modulating electron sources
at iog gyro frequencies and at a + 90° phase difference from the unstable
perturbation. The question of the number of feedback loops and their loca-
tion has to be decided by the experiment. For instance in Simonen's (1969)
experiment on quenching of drift instabilities in Q-machines by modulated
electron sources‘only one feedback 1éop consisting of two Langmuir probes
located in the region of maximum wave amplitude was sufficient to bring
about a considerable improvement in the density build-up, confinement time,

etc. In our problem, however, more than one loop may be required as DCLC
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modes are not localized and in fact are spread over a larger plasma cross-
section. In the case of mirror plasmas, as the probe would be in actual
contact with the hot plasma some complication may arise due to the heating
and sputtering with the hot plasma of..the probe. But we do not expect these
effects to be very important as mirror plasma éxperiments are pulsed (a‘féw

msec) and their thermal energy content is very low (a few calories).

Arsenin et al (1968 abc) have reported stabilization of m=1 flute

mode and ion cyclotron instabilities in the low density plaémasa(Vf107/cm3)

-By”placing feedback loops at the radial boundaries to appropriately control

them. This method cannot be very effective for the suppression of drift
instabilities, the signals have to be injected in the plasma to modulate

the particle sources.

Our calculations mainly highlight the importance of feedback‘
systems in stabilizing DCLC mode and provide an upper limiting value of the
feedback gain. Considerations such as warm ﬁlésmé'étréamsl(BéldWin’éf al
19763 Gerver 1976) in the loss region of velocity space and the compressional
perturbatiocns of magnetic field (Tang 1972) will signifiCantly'1owér”thé?’*i“
Ifhif”for~the~gain and thereby will make the stabilizing action of modulated ’ «\

electron sources easier,
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CHAPTER VITT

EFFECT OF -LOWER HYBRID TURBULENCE ON DRIFT CYCLOTRON LOSS CONE INSTABILITY

‘1. Introduction: N

ot =

The injection of higﬁ énefgy néﬁtral beams in mirror:
machines is of considerable interest as itrhas been envisaged as an effi-
cient method of fueling and heating the taréet plasma in ﬁpture mirror
reactors (1,2,3). Theoretical speéuléticns on‘plausibleimicroinstabili—
;iés associated with such systems have also been reported (4). The
upshot is that, the most easily'excitabie instability is that of Lower
Hybrid Waves (LHW), which is produégd ﬁy a relative drift of electrons
and ions across the field. The neutral beams in its -interaction with
the target plasma yields ions and electrons. If then, there is suffi-
cient relative motion between the Specieé'because of their differernt

degrees of magnetisation then the lower hybrid waves become unstable.
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The threshold for this instabili's s Vo > k)Hd (5 (N is

the beam velocity, vyh;ié thermal velocity of ions). In mirror machines

this condition is very likely vo be satisfied as the hot plasma is

formed mostly by the charge exchange between the low energy ions of

target plasma and the energetic neutral particle of the beam. Recently

many groups have reported ion beam driven LHW instability using perpendi-

cular injection (6,7). In Chang's experiment (8) waves at (W - Wy

( (AJL}; is the LHW frequency; Wi« Wpi ) were observed by

perpendicular injection of an ion beam with Vo = 15 k)&y} « In

Burnent V steady state mirror strong radial electric field were pfoduced

by electron beam injection. This led to a relative motion between the

ions and electrons and consequently strong oscillations at L&)§>;

were observed. Cordey et al (2) have shown that during the initial

stages of neutral beam injection the hot particle distribution function

is peaked and hence is unstable to perturbations at » (K)gi . They have

also shown that the neutral beam injection can give rise to large scale

radial electric field which in turn can destabilize LH waves. Quite apart

from these considerations, in 2XIIB the threshold for flute type lower

hybrid drift instability ‘L ox / >(“’_’_’l& 3 (éjg ) /"~ where a,
Ty (A)'o )

is the ion gyro~radius and L is the length of the machine) is exceeded

hence one expects a continuous spectrum of lower hybrid waves super-

imﬁosed on a discrete spectrum of ion-cyclotron oscillations (15). Thus

it appears that a modest level of LHW turbulence in future neutral beam

injected mirror machines seems to be inevitable. The positive aspect

of fhese oscillations is that they provide an efficient mechanism of

energy transfer from the beam to the particles and thus lead to a strong



heating of electrons and ions (8). Now it has been shown tha£ invthe
presence of a background turbulence of these oscillations the normal
modes of plasma are drastically modixled (10,11). In this Chapter we
propose to iInvestigate the effect of a mouest level of this turbulence
on the most important and the most deterrent normal mode of the mirror
plasma i.e. the drift cyclotron loss cone (DCLC) instability in realistic
situations. Recently Shaing (12) et al have reported an investigation

of the effect of LHerump on DCLC instébility. However, the result of
their investigations may not be applicable to the actual experimental
situation in the mirror machine for the following reason. They hace con-~
sidered a parauetric coupling between a LHW and a DCLC mode, which is a
coherent interautiuu between two waves. But in real situation the inter-
action is not expected to be coherent. The condition for the saturation
of a coherent wave (by particle trapping) is Z?QC ~ (1€ 8YR) >5(C‘g
where Z?cac is the auto-correlation time, 219 is the linear growth
time, K is the typical wave number of LHW waves, and SV&9 is
the spread in the phase-velocity of the waves, while the condition

for saturation of broad Spectrum is 7?9 (ﬁgc . Now z?q for LHW

2 (Wi N'3)7 here w,= Te/rip [k 1s the beai

density, 'l 1is the target plasma density) while typically \<<7({%§§

O

: |y
and g\(b 2 Nt o= Vo7, = where \(c is the beam velocity and \’T
\luw 5)

is the thermal spread of the beam. Hence Cac = (

o 0
Wpi Y Ly

spectrum of LHW by quasilinear diffusion in velocity space is more

, in which case the saturation of a broad
likely. Indeed in Chang's experiment the observed spectrum of LHW
was quite broad, In order to study the incoherent interaction we

notice that in experimental situations LHW spectrum is broad while DCLC
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wave speccrum is narrow (14) and secondly that the ;ispersionmcharéctéfié
stics of two waves a : widely apart i.e. Wi v U\)br .75 Hp¥ ““--VWC';'LUJ.\R\CJ?}
is the frequency of LHW (DCLC){ Hence we will use 'Vedenov technique(16) | H
called 'adiabatic approximation' which satisfactorily takes into account

the incoherent interaction between waves of widely different properties.

In this method one treats the high frequency microturbulence as a wave

packet with a distribution in,\i -gpace that satisfies a wave—kinetic

equation. One then studies the motion of these wave packets in a medium

varying slowly in space and time, the variation being due to the low

frequency long-wave length wave. The reverse influence of the high fre-

quency turbulence on low frequency waQés comes through the average elect-

ric field pressure J E2 which modifies the electron dynamics.

Our studies reveal that in the presence of LEW the DCLC;
waves are strongly damped. Thus the presence of a lower hybrid turbu-
lence wi’ i have a two fold advan-.ge in mirror mach- nes, firstly it will
provide an efficient mechanism of the energy transfer from beam to
particles for heating purposes and secondly it will help in controlling

the DCLC turbulence, and improving the ion life time inside the machine.

In Section 2 we have calculated the effect of LHW turbu-

lence on linear growth rates of DCLC waves. In Sec.3 we have discussed our
our results.
2. Coupling of DCLC Waves to Lower Hybdird Waves:

For a theoretical model we consider a slab gemoetry with
Z-axis along the mirror axis. The plasma has a density gradient

| dm 2
T en = &% . The DCLC~wave-spectrum observed generally in high
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density mirror machines like 2XIIR is a narrow spectrum (14), with
maximum power in the fundamental mode at (k)ci . We may approximate
this by conzidering a eingle DOLC mode in Y-direction with frequency

N ___:» .
and wave number given by S and OV respectively. We take the LHW

._>>

turbulence in Y-Z plane with frequency and wave number LW and K
= n A ’ 2 ™,

regpectively where W= \4_3_ Y + ¢y 2 and ‘\/“ /|<)} o -;}—r-;f;) <)

This turbulence may be either because of injection of energetic neutra-
beam perpendicular to the field lines or because the threshold for
flute types lower hybrid instability has been exceeded in the mirror
. (e L ) - :
ok »(*11@»‘-':’9‘* )/4 5 Gif «
plasma i.e. ‘/L Ry (O ;2 (For 2XIIB ,CkF/L 2 1/2 and .
( "¢ Vet /Q P ) .. 0.1). To consider the effect of these modes on BCLG

waves we consider a broad spectrum of LHW which haS'saturated'by‘diffu-

sion in vellcity space. The spectrum is taken to be peaked around

/= Wik ‘ : v Sl
L‘O - Y, (where (O W  is the LHW frequency). The LHW obey the
0

linear dispersion relation

2
’ 2 N L -
UK = o [\, P M j) |
(1)

¥(1 ’ﬂﬂo
Wiy = W [H Wee” & omd Mt e
where J\ U g Tuce? k> ™y

We will now envoke the adiabatic approximation due to Vedenov et al.
In this approximation the evolution of Lower Hybrid (LH) plasmon'diStfi»

bution function hd\i is studied’by the following equation (16)

(2)
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v N e
where 9 (ﬂ\’ = V

iy >\

is the group velocity of LHW and from 1
' ¥ L0 1L 1 We /o
\/% - W “""/lz g Qu’“’/\q as 1% /\ 1 /‘W‘f

N

It should be noted that the wave-kinetic equation (2) is valid only when
the spread in the group velocities is so lérpe that the convective term
\J ~7f“;< dominates the effect of diffraction i.e. the term contain-
ing ')\V%/o\( . In brief the effect of LHT arises as follows: The low
frequency pertﬁrbation creates a perturbation in the plasmon density. :
The gradient of this plasmon density giveé rise to a ponderomotive force
(PF) which reacts back on the low frequency'oscillatidns to modify its
characteristics. The effect can also be viewedvby considering thevgroup
of plasmons as a group of particles (or quasi-particles) on the time scale
of low density perturbation. Hence depending upon the slope of plasmon
distribution at the resonancé point, the Landau resonance between the IXLC
wave and plasmon distribution may lead to a growth or damping of the DCLC
wave. the PF on ions is me/mi times smaller than that on electrons and
hence will be dropped. The plasmon distribution function is perturbed as’;

N = ‘“]LU%-WW\g (where N, 1is the equilibrium distribution function

{ - ,
normalised as \ NiZoale = | ). From the wave-kinetic equation (2)
A= QWi 2N&o (o 7-0k)
¢ T = = 2
‘ S N 3)
TS
| ( I \/c} i JQ)

The dependence of ‘Qﬂ)< on the low frequency density perturbation comes

YT S} N L 2
from the term IZXEQ* ; for LHW (ﬁ)\< =z L&>\¥& z &&3\3\ so that

, 'R
Wi &
= 2 G R Ty

¥
perturbation.

(s}
where Y1} 1is the low frequency
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For DCLC modes wé will use the model given by Post and
Rosenﬁluth'(21). According to this model the DCLC modes are electrokl
static flute modes which arise because of resonance between the positive
energy electron drift mode and negative énergy ion Bernstein mode, The
typical frequency and the phase-velocity of these modes as seen in 2XIIB
(17) 18 2 & Wi and uf;A%\a (h%; resﬁectively. It should be‘
noted that this model for DCLC Modes ignores certain effects which may
be needed for more quantitative accuracy, such as electromagnetic effects
to the electron contfibution (18) ion drift term (19) temperature

gradient (20).

To calculate the PF on an electron_the modified e uation

of motion is

N >

- VI3,

o

>

- = _ > -
(‘G'Y\e (D\/ + rn’)c \/r '\lb\/ - - QE

™

s

ot

where now in the equation of motion the nonlinear term ( V' NV ) has

(4)

—_ ™ =
been retained. 1In equation (4) Y= V¢ +~V; where Vs is the low
— — e ;
frequency part of Y  sustained by DCLC mode, and V&~ is the high
-
frequency part of V sustained by LHW. The electron sees the effect

averaged over many periods of high frequency oscillations. Hence taking

the averapge over many high frequency oscillation period (13)

= -

= > ? N v
N _ _oE - eV xB
e L Ny NVeY = > "&'E—"O 5)

—=
where \V4,’ is given by the high frequency equation

—
=

RN . s
e AVe okl - ¢ \/7 xfgl
¥ =

ch ‘t (6)



o
= SN
In equation (5) L “:gl 9 is the 1ow frequency perturbed
electric field, while in equation (6) '“ P ‘E{cam + \ngl z ; E_i?zz i
; =t
is high frequency perturbed E-field. From equation (5) \]5}L can be
written as '
- ™ ﬁ——n)
\/ - [ . < \/g - N Vg2 y
Sx e e e
B, Wee (7

Here we have neglected the inertial term due to slow mode as 2 << Wece

Then the modified equation of continuity becqmgs;"._

Sinma s en [ B0 Ve W] oo
b O c e -

—y ’__-—-—'3
the term < V{, \/V(‘>U can be written as

= 'D \\/{J(K” _‘._ \/‘h ';": 23 V‘Q‘JEK) }
\/VJ J ;1 DKJ 2 B (9)
where \fs(,)( -\‘< ). N ,\ o O?) are fourier amplitude given by
= -

| \f 41‘ ( \<? ) —_ (/\)CO_ (7 /Eo

' (10)
( W ¢ k ~\~ Wce )
._ » =D
Vi (r= =1 €l Wk gy (<)

(\ww \L?‘”' U\)C—)E )

Since LHW lie in Y-Z plane Y {4y (©)
/b'x =
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, _ .
Hence we have - -~ —_ oy \ V()]
AR ATS A R
L NN
= L e” Wi 2 ) g )
A A B
( (/le_, & -
(12)
Substituting ES‘%(K) = \:S, Col B qhére 8 is the
angle between Y and K we have |
: 5 o . ..\),L
s S L oe? coste g 2Nyl
4\/4'VV{, >b:-f ?l—_z; 2 Mgt Déj |
e e mrieres
W L2 - Wee) .
(Wi e (13)
Since \ X’§(¥‘) // = ’ NL)QLDK”Y\M where h\o is the
average LH‘plasmon density and My = §Q|<O A ”(\k‘ . Hence
equation (13) can be written as
it 4KJ E’, WThf (UJ\ LOC%) Dg
(14)

N

Substituting Y}, from equation (3) we have

- 3 | =
<\(1 V\(‘_;>\ = Z Afﬂe Ce 410 W No Wi 4 NMN )":Jl‘

- e R R R
- \ (f W 526 A .
whine My="7, ¢ & L YaT ()’Y\\}W = 9" 15)

While evaluating the dispersion relation for DCLC modes
we will make use of quasi-neutrality condition., This is consistent with

the fact that DCLC instability is for long wavelengths i.e.
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b= Wpi* 259 )
;\)C\ ALan : and the adiabatic approxi-

mation which consider: & (<K . Using the quasi-neutrality condition

the dispersion relation for DCLC mode in the absence of LHW comes out as

T B N f—: Nl
T~ SR St Wei) 16)
where b = LWpi? f A Y O pe? E:
Wi ((’} <C\i>)3 Wee gl

Near _fX - Wel  this equation pred:!.cts unstable roots.for b »» 1

with growth rate .~ (w(' 2%hb )/‘D In 2XIIB (17) the typical unstable
mode had following parameter; W /UJC v 104 G £0i> 3,

LL Wi 3x107 rad/sec. Tor this mode equation (16) would predict .
a growth rate « 0.3x107 rad/sec, which agrees fairly well with thé
observed growth rate O.lxlO7 rad/sec. Hence using ’Y/W\el :' 'm',

in equation (15) and substituting in equation (8) we have the modified ‘

electron density perturbation as

vy —_ I\ ): S /'-2 G \\i") [}
Te) = e _fl .
S N B
[1- o8 4netmeg ¢ Wy b
Wee ™m L ol ( (.U RE- LL)C%) AWo

SZ;\' \/Nku \
(o =52 ) 17)
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whare now in the turbulence term “he summaticn has “aen replacad hy an
integration. As fons are not affected by the PF, WWL‘ can be calcu-
lated in the way snown by Posi ev ai (21), Then using the quasirneutrality
condition "‘ﬁ\j. g ‘TL’I“N: 32). we have the modified dispersion relation

for DCLC modes as

(*»)'Y (g = .
I1 - /a) re Cs2-mUki)
(18)
To ot g 0’ WU Ok |
where / = (oAU 4" == Ve MAJe .
Q\ (/\)3,3 ((‘DIL - U)( (’)
- . —y
- YN :
A 7§¥%‘d¥‘ (19)
l) o ' '

— NS W
W N
YipgkTe

The intepraticn in the K-planeé has tu be performed
according to Landau':’ prescription. Henece th: turbulence will gi‘ve» a
Cauchy's principle value given by ._(Q and a pole term giveu by |4

due: to-resonance of LH plasmons with DCLC modes. The resonance conditicm

4 g =2 :
is given by \Ia)(‘r( )= (} o7 j{' . As \Y(J typically Vo
> -Q/@ ~ Uty (N, > Dypg)  1s the threshold for LHW fnstabi-

Tity) and éos--'@. < 1, the resonance condition will fold and the
dampimg or growth coming from this resonance ma.y be ;si;::‘;nificant. The
fdamp.in'g, or growth will depend upon the slope of LHp?L&smon distribution
at K given by \/r (% )(” A)‘ a )-:“ ~Q/f} (uf¥ . To perform the

integration in K‘-—;p‘!vl'ane we vmc-)d'el the LH plasmon distribution fumetion
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in ¥-Z plane by a broad two dimernsional gaussian spectrum given by

- Z
Nko:‘ 1\ Q')LA» [*(KL‘\(AO) (\4\\~ knu) 1
o AT (20)

oA Tl ,Z_]l o) L\Z ; A’L

2 . b= / | ~
where Ko = “ﬁ,u%' + 4% C WKyg>» Wie) and D is the

width of the spectrum. Since we have assumed a broad spectrum we take

1
Do\ y . From equation (19) T+ and | can be written as
¢ q b4 |

Ty= €20 g% 0" w_wd o ([ WM i gy,
D C(/UK UOcci)

o = C\/:@coﬂ -A'L)
-2 :

To do the pole integration we make the approximation that V(C;) is a

function of V‘_L through Vg = LDLH/\,\, . In this case \(\\ integral
’ L

can be done directly using equation (20) while \(L integral will

bave a pole at W | = LOvm g Jz-. \~\‘{M e

— 2 :
’T; = - U cuAtB vf’ BEQ RV Lo\ﬁ Upe 9 O
L - Wy ((Q\\z ch)’ T o

Uf};l’__‘f”)__,’._, 0 }{’ E ( Wyy- \‘.}o) J

A= Nana RN
o o} (22)
. WOy 6 Wia- o - W ('9__31“
Ky Gy e Vo Vo oo (23)

In the experimental observations the maximum power is

seen to be concentrated in the fundamental mode at (2 -« \Wci (14). To
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look for the stability of this mode we put T: Tyf"r ! i , retain
n =1 term in the summ~tion and solve the resultant quadratic equation

for (2 as

14 ] (0¥ T)- 40" W Rl
2 - Db

2 b
(24)
Now to examine the DCLC spectrum in the presence of LHW, we evaluate
. s
the relative orders of Ty and ) as follows. We write |y as
o
"T;d - CO/S 9 O\’ _:* W 0}\3& COK g 2%_‘5.0 ey dka
(Op (Wi wd)*)) o —
~V—'(_ q - /0) Lu(@)
(25)

In equation (25) Mo /\\flé - ‘E\':“O and (0AD-1 . And as

V@ Ve > —172/(‘; e Ut , we may expand the denominator in
powers of -—~Q/(;) \/9 and retain the leading term. For N Ko we may
substitute from equation (20) and perform the |, integration directl
For performing \‘(_L integration we put \l% = LQ);_E - \'9._.}3_1

Ky k)
in which case _TY becomes

”'T')‘ - W O\EUHML"’ ")_jzy> UJK

O+ N (’OJ” m)(]() (26)

For typical parameters of present day high density mirrors e.g. 2XIIB,

o
||

PR"7, etC', wk > u)CL , ﬁ/q’ wn U"\’\fl - 107 cm/sec’ ! oo

' ...'
o 5x10° em/see, C“UC‘/LOP; © 17102 ( Wei ~  3x10” rad/sec . L€ My G

(,Ob; v 1.6x109 rad/sec for plasma demsity .~ 1013 cm—3) and a modest
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level of LHW turbulence allowed in weak turbulence theory which we are

considering i.e. W = (me/mi) we have Tx‘ v Wei /10 < Wei . On the

other hand in expresslon for T; in eduation (22) <1y - Wy (1/,,0_\: %\_rf'
N . Hf:}
is always > Ko Wei a5 Ve > Upni . is the threshold for LHW.
Q
Hence T1 will always bear a negative sign and cause damping (as we
will show later). In an order of magnitude sense
' 3 4 : 2 ,
T - @/A) ““‘"w”:'”““ 2 N(kam@ iy o n
' G/Q R?‘ - (e 0"2) S ¢ ‘ %—:—”_ "—w“(.‘ -
(27)
1} y O ! -
For A v Yo » Wi N, M W% o -f”,g*."i' : Vg 2 Ui

— e f (‘4 “ ‘ s B 3
w=" C/?m' ) I« \*'_iﬁ-' LW Hum e AT, Typically DCLC oscillations are excited
o , :

with G ¢ 2.} ; in 2X1IB 2.9 < %, (, < 6.1. For these wave

1

2 | :
numbers b ‘= (&'—’—'«- sty B 3x103. We will now examine the stability
Wori2 (0;164:3&)* ,

of these wave numbers in the presence of a weak LHW turbulence. In

equation (24) if we put T = 0, we get the dispersion relation obtained

by Post and Rosenbluth (21) which is

)
| 'l
e e [T A
R F (28)

3y
For typical 2XIIB parameters f.e. 2 =2 10%0 rad/sec, b v 3x103,

Wei 3:\:107 rad/sec. Equation (28) gives the real part of DCLC
frequency ——Q\, «~ Wel , TFor these wave numbers

. , ~ N 2_
LH/U('J £2%b S oY under the radical in equation (28), hence

Y
4 : Y ;

they are unstable with a typical growth rate 0 = (ei-2* b) Z/b

S ;35{107 ‘;éd/secé__ The gr‘ojwf:h ,raté'.observed in 2XITB ¥ .02 to .03 (Oci

o .1x1_07 rad/sec. The discrepency of a factor of 3 may be
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attributed to'the_fact the the effects mentioned earlier i.e. eléctro-
magnetic effects in tho electrbn cbntfibutiongbion drift term which are
stabilizing are not included. In equation (24) we note that for
typical parameters _.{2 =z b|T) and ¥ 4 2% e bo
hence the modified growth rate in»thebpresence of LHW turbulence is

given by

~N = - 1 + Q?,.U‘:'*'Qxb) "
2 RS

(29

T Wy A
The damping induced by LHW plasmons is .~ \\[Z.W' Uk‘4sc) o 0.15x10° rad/sec
' ]
which of the same order as (ﬂk)ci_ﬁlgy?) L/kjv*’B.%\O gﬁﬁ- Thus we see
: e
that a low level of LHW turbulence can bring about a significant stabili-

zation of DCLC modes.

Discussion:

These findings are contrary to the findings of Shiang et al

, ¥
who find stabilization only in the range (DL, ¢ 22 D where

' , 27 _ V2 C
2 we 19

They also find a region of enhancement. In our case, we do not find a
region of enhancement. It follows from here that Lower Hybrid plasmon
damping has significant stabilizing influence on the observed wave
number range of DCLC spectrum. It should be noted that this damping
cannot be convertéd into growth by shifting the turbulent spectrum so
that ¥£j;v'< o . This will require \Vg 4 CW»J which violates

the conditlon for the excitation of lower hybrid modes.
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Thus it follows that presence of lower hybrid turbulence\ o
in mirrofé ﬁas two fo 1 advantage firstly iﬁ leads to an efficient
heating of ions and electrons and secondly it helps in reducing the
fluctuation 1e_ve1 due to DCLC modes which will help in improving the

ion life time inside the trap.
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CHAPTER IX

SUMMARY AND CONCLUSIONS

What has been thrown:

In the community of physicists, plasma physicists are especially
known for their knack of circumventing the hurdles by throwing away terms
under the garb of 'suitable approximationéi As such there is nothing wrong
- in throwing away things (as long as you do not hurt others with it) but
sometimes it may so happen that in this process of throwing one may throw
aﬁay the baby with the bath, As a safeguard against such a folley it is
required from a plasma physicist that he should clearly identify what he~'

has thrown and show that atleast he has not thrown away the baby with the

bath.
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iThe calculations presented in this thesis are mo different
from others in this respect. Lot of terms haye been thrown away. Hence
in this Chapter we will mske an a%ﬁempt ta identify what have we thrown,
how much has been lost in this throwing and how can it be picked up

again 1if the need arises again.

Clearly in the calculations presented in this work we did not
wish to reproduce exacply the observations of (5~2, 2XI1B, .. Bake- Baltll,
‘éonatance Ii;: bur"sims have been rathéf modest. Our aim was to identify
certain phyaiCal processes which we think are responsible for the obser-
vations of ZXIIB Constance II Base~Ba11 IT and CS -2 and further to
evaluate cheir‘pelative importance in some simplified situatioms. To
this end eppﬁoximations have been made which will certainlykhave to be
dispensed'nith far more quantitative accuracy. In this respect these
calculations are to be regarded as only:an initialdstep towards a mose
complete calculations. It is on this aspect that the merit of these

calculations require judgement.

As can be clearly seen that the general direction of the work
presented in this thesis is in studying various normal modes of mirror
plasmas, their non-linear couplings, their suppression or enhancement in
the presence of electron beams or lower hybrid waves, their nonlinear
saturation and their suppression by feedback circuits. In the second

wchapter we have studied the nonlinear instability of a low frequency
znflute mode first predicted by Varma (1) for mirror plasmas. In our
‘3Acalcu1ations we have studied the nonlinear instability of this mode in

the pregsence of ion-cyclotron oscillation which were seen alongwith
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Varma mode in Base-Ball II (2).  “he interes;ing'feature of this
coupling between the ~arma mode and ion~cyclotron mode isvthat the
kinetic wave equations yield a solution which periodically bursts in
time. The time scale of these bursts turns out to be 400 45:Zi’¥
( =£2; 1is the ion-cyclotron frequency) which is quite similar to the
bursts of large amplitude flute mode seen in Base-Ball II, This is in
contrast to the results obtained by Simon and Weng (3) who studied the
 nonlinear instability of Varma mode in the presence of the other flute
ﬁodes and got an explosive solution for the Varma mode which they
correlatéd to the instability observed in 'Alice' and 'Phoenix'. In
Base Ball II such a coupling is not possible as all the flute modes are
linearly stable, However, this wofk suffers from incompleteness on
following accounts, firstly we have not made any effort to identify the
Qtﬁer émall amplitude stable flute mode (0.5 V) observed in Base-Ball II,
We suépéct that this could be one of the other flute modes. Probably
because of its low energy content the coupling of this mode to the ion~
eyclotron mode is weak and hence it remains stable. Of courSe’such,a
gtatement can be made only after a calculation has been made to ghow tﬁat
the matrix element of the coupling of this mode with ion-cyclotron mode
is sna11 a§;c9mpared to the matrix element of coupling between the Varma
mode and‘thé ibu«cyclotron mode. Secondly, in Section 3 of Chapter III
the linear tﬁeéry of the Varma mode is worked out for a perfect flute
mode 1i.e. \(;: =0 wﬁiie in the nonlineatr instability calculation we
have considéred the Vérmaqnode with finite \(S . anliga;iyely a
finite,k(% would give rise to linear damping by partic1e§ whiéﬁ ﬁas

been included in the calculations. But as far as nonlineap instability
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is concerned, it willlnot‘be’affa“ﬁed as it depends on \iS :'\(|\~\<x
which reméins‘finite 48 long és one of \4‘\L§ remain finite.

N ertheless to Have a better caiCulatipn, the linear theory of the

t
Varma mode with finite \4\\ should be examined. These consider-

ations will be taken up in future.

In Chapters III, IV and V, we have examined the effect of
electron beam (EB)induced Langmuir waves an DCLC or HFCLC instabili-
ties. It should be pointed at the outset that in all our calculatione
regarding DCLC or HFCLC instabilities we have_hade use of the electro-
static approximation and have negiected the effect of temperature gra-~
dients. Baldwin (4) and Catto et al (5) have pointed out their import-
ance in experimental situations, They have a stébilizing effect. i |
However, we have dropped them froﬁ our calculations as we wanted to
considef the worst possible situations. For better quantative accuracy

they certainly will have to be cc .sidered.

In Chapter III we have fdentified a physical process which we
think plays an important role in suppression or enhancement of bCLC
turbulence in’electron beam injected mirrors i.e. the process of resons~-
damping by electron:beam induced Langmuir plasmons. Of late‘this fech~’
nique has achieved special attention as it provides an efficient method
of suppressing DCLC turbulence in the end plugs of tandem mirrors (5).
The usual warm plasma stabilizétion method may not be quite useful ha—:
because 1t cools the electrons which leads to a reduction of the ambif
polar potential of the plugs and thus worsens the confinement in the

central cell (7). The electron beam method does not suffer from this
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defect ja: we have shown that by 1csonant damping 1t controls the DCLC

)
turbulence and due t- collapse of Langmuir tu:bqlence it heats up the
electrons which lead to an increase in the ambipolar potential and thus

a better confinement for the central cell ions. The only defect of this
method 1s that for certain range of beam powers it enhances the turbu-
lencé. In Chapter III, we have outlined an approach by which th?s

range can be identified and avoided. In the same chapter we hayﬁlgivén,
a set ofvclosed equations to study the time evolution of the ion distrd~
bution function and toealeulate some important parameters like finai ele~
ctron and ion temperatures, ion life times , final fluctuation level.
However, this work suffers from a certain degree of incomﬁleteneas on
the following account: firstly we have not'undertaken the'numericél |
integration of these equations to calculate parameters mentioned above
but rather bybqualitative arguments and estimates we have made attempts
to explain the observations from these equations. One reason why such a
study was not ﬁaken up was the 1ackaof efficient computing faciiiﬁies

at the institute and secondly parameters like background gas flux, evolu-
tion of electron and ion temperatures, ion life time, diffusion rates in
different energy channels which would‘have_been required for integration
and confirmation of these equations were not made available in the

published references.

The other source of error in the calculation may be that for
the statidnary spectrum we have used the stationary spectrum calculated
by Tsytovich et al (8) in the absence of the magnetic field., This has

been done under the approximation Wiye > Wee where the effect of
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field on particle motion is not very strong. Thus while a mqre'exacﬁ
calculation of the stationary spectrum may very well‘offset the quanti-
tative behaviour; it will not alter mucﬁ the qualitative features of
the process considered in the model (i.e. the resonant damping by

Langmuir plasmons).

Hence on the whole it can be said about this calculation that
to obtain a better confirmation (or refutatioﬁ?) of the model we must
integrate the closed set of equations givgn in Chapter III and calcu-
late the final fluctuation level jelectron and ion temperatures, ion
}1ife time and compare them with the experimental values (if they can

be achieved). Such a programme will be taken up in future here.

In the Fourth and Fifth Chapters, we have studied the effect
of electron beam induced Langmuir waves on another loss cone generated
instability i.e. the HFCLC instability. We find that while in the high
frequency part of HFCLC, Langnuir waves have favourable effects i.e.
they generate sufficient anomalous resistivity to stabilize the HFCLC
mode, in the low frequency range, their effect is harmful for the confine-
ment; they tend to reduce the critical lengths. In our estimates
regarding the reduction of critical lengths we have not 1n¢1udedwtﬁe .
important reflections mechanism like reflection due to corrections to
WKB approximation (9), incoherent bouncing of electrons (10), turning
points due to ion-cyclotron resonances (11), etc. M. Gerver (12) has
pointed that all these mechanisms alongwith high- @ effect tend to
reduce the critical length. On this account our estimates about

critical length may not be of experimental interest. But neither they
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were meant to be so. All we wanted to show from these estimates was that
even in'simple‘situation (low~ (l effect, and absence of wave refléct;
ions) the electron beam is hérmful enough., If the various wave-reflection

mechanisms are considered the situation will become worse,

In the Sixth Chapter, we have given a simple calculation to show
the importance of orbit diffusion effects in the saturation of DCLC turbu-
lence in mirrors. Hitherto all the theories put forward for the’saturation
of turbulence in mirrors are based on perturbation schémes. One of the
unsatisfactory features of any perturbation expansion schemes in general
is that they do not furnish a prescription for the truncation of the
series. Because of this it becomes difficult to decidg;uﬁtO\whéﬁ orders
one must retain terms in order to explain a physical process. Thus on one
hand we have Galeev (13) and Baldwin ét al (14) who think that the first
order effeccts like plateau formation etc. are enough to explain the satura-
‘tion of DCLC turbﬁlence in mi%ro:s. On the other hand we have Rosenbluth
and Aamodt et al (15) who think that one has to go to third ordér effects
like detuning of resonance in order to explain the saturation ofvtﬁrbulence
in mirrors. Perturbed orbit formalism does not suffer from such deféct
as it 1s not based on any perturbation scheme. This interesting
result borne out by the calculations is that damping due to pettﬁrbed
orbit effects is sufficient to overcome the growth due to ion
distribution. These results are not very surprising especially in
the light of‘the‘fact that velocity space diffusion which is responsible
for the diffusion of trajectories is very strong in mirrors 1i.e.

100 e¥/1 ps (7). In the same chapter we have also shown that in perturbed
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orbit formalism the fluctuation level is proportional to fourth power
of the linear growth while ién life time is inversely proporticnal

to third power of the linear growth. So that in the presence of the
warm plasma where the linear growth is reduced by a small amount,
fluctuation level may decrease by a large amount and ion life time may
increase significantly. This points out the importance of the effect
of orbit diffusion in stabilization of DCLC turbulence in the presence
of warm plasma streams. However, this calculation may suffer from
incompleteness because perturbed orbit theory itself is not a complete
theory. 1In it, the operator is normalised but vertex normalisation

is not taken care of. The theory which satisfactorily takes into
account operator and vertex normalisation is the’birect-Interaction
Approximation". A study of ion-cyclotron turbuleﬁce under this

approximation 1s being considered at present.

In Chapter VII, we have bointed out the efficiency of démping
of DCLC tufbulence by lower hybrid turbulence. A modest level of lower
hybrid turbulence is going to be inevitable in future neutral beam
injected mirrors. In this case this turbulence may serve a double
purpose i.e. it will lead to an efficient heating of electrons and ions
(16) and it will help in controlling the DCLC turbulence. As stated
before for more reliable estimates the effects of magnetic perturbations

and temperature gradients should be included.

In Chapter VIII, we have investigated the possibility of

suppressing the DCLC turbulence by feedback circuits. In these
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calculations we have made use of the assumption thaf electroﬁ sources

are present uniformly in the plasﬁa. This is ﬁot a very correct
assumption because maetal.. probes (which aet as sources) are present

at finite points only. However, as Rutherford (17) has pointed out, this
assunption gives results which égree fairly well with the experimental
observationsg. The étﬁer sourﬁée cif \incompleteness is that we havé not
investigated the stability In phase aﬁgies other than 90°. This has

to be done numerically and may be taken up in future.
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