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Abstract
The Standard Big-Bang Model (SM) of Cosmology has been a widely accepted

and successful framework in describing the post Big-Bang Nucleosynthesis (BBN)

evolution of our Universe. But certain difficulties arise when one tries to explain the

observations of the early Universe, like the extreme homogeneity and isotropy of the

cosmic microwave background radiation, within this description. Thus, to overcome

these shortcomings and probe an insight to the early Universe, a phenomenon known

as ‘Inflation’, is introduced. Inflation is a phase of a rapid accelerated expansion of

the early Universe during which the physical distance between any two spatial points

in the Universe grows tremendously (nearly exponentially) within a brief time. It is

proposed to have taken place when the Universe was in its initial stages (within 1

second of its formation). The inflationary paradigm of the early Universe efficiently

resolves the problems faced by the SM, as well as explains the current observations

very precisely. As an additional feature, it also provides a mechanism to generate the

density inhomogeneities that become the seeds of the Large Scale Structure (LSS) at

late times, which supplements its importance and success.

There are two approaches to explain the dynamics of inflation. The first one is

the standard cold inflation. In this description, as the Universe inflates, the number

densities of all the species present at that time dilute away, and the Universe attains

an almost supercooled state during the inflationary phase. On the other hand, there

is a second description, known as Warm Inflation, in which the dissipation processes

during the inflationary phase are taken in account. During expansion, a thermal bath

of particles (radiation) is created from the inflaton dissipation and thus, the Universe

has a non-zero temperature during warm inflation.

The two descriptions of inflation have different microphysics that governs them. In

warm inflation, one accounts for the inflaton couplings to the other fields during infla-

tion, unlike in cold inflation where they are neglected. Because of these couplings, the

inflaton dissipates its energy, which is quantified in terms of a dissipation coefficient.

Thus, warm inflation is a broader and more general description, with cold inflation

as its limiting case. The dynamics of the Universe are different in the two scenarios

and lead to significant distinctions in the theoretical predictions of the cosmological
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observables. In this thesis, I consider a few models of warm inflation and discuss their

signatures in the large and small scale observations.

The observational test of any inflationary model is carried out by examining the

imprints of inflation on the Cosmic Microwave Background (CMB) radiation. CMB

radiation - the earliest signals of the Universe, refers to the primordial photons present

in all directions of the sky. The CMB temperature is observed to be uniform over the

entire sky to high precision, with some tiny anisotropies of the order of 1 part in 105.

The anisotropies in the CMB temperature is evidence for the existence of fluctuations

in the energy density of the primordial Universe and is studied using the linear the-

ory of cosmological perturbations. The origin of these anisotropies is attributed to the

inflationary phase, therefore features in the CMB act as a probe to the physics of infla-

tion. The correlations in the CMB anisotropies are described in terms of a primordial

power spectrum, and are quantified by the amplitude of the primordial power spectrum,

As, the scalar spectral index, ns, and the tensor-to-scalar ratio, r. With the precision

measurements of the CMB, stringent bounds have been put on the parameters ns and r.

Hence, in order that any inflationary model is a viable one, its theoretical estimates of

the cosmological parameters must be consistent with the observational measurements.

Constructing a model of inflation from fundamental particle physics has always

been elusive. The ultimate goal of model builders is to make a connection between the

inflationary theory and the elementary particle physics theory of the early Universe.

This requires a knowledge of the parameters of the inflation model such as the masses,

couplings, and multiplicities of the fields involved. Therefore, an estimation of the

model parameters consistent with the observations is essential for the inflation model

building. In the first part of the thesis, I consider some models of warm inflation

with monomial potentials and explore their microphysics in terms of the inflaton self-

coupling, and its dissipation to other fields characterized by a dissipation parameter.

Using the CosmoMC numerical code, I estimate the values of these model parameters

for which these models are consistent with the CMB observations. In our analysis, it

is seen that for some parameter values, these models are viable models of inflation.

Further, I also calculate the ns and r values for the mean values of the parameters

and show that for the weak dissipative regime, r is within the sensitivity of the next
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generation CMB polarization experiments, which is an important observational test for

these models.

In the second part of the thesis, I discuss the growth of small scale fluctuations

generated during warm inflation in the context of Primordial Black Holes (PBHs),

i.e., black holes with a primordial origin. PBHs are one of the exotic and remarkable

probes to the physics of the early Universe. They are a very unique and efficient means

to investigate various inflation models. PBHs can form in the early Universe when

primordial small scale overdense fluctuations, generated during inflation, reenter the

horizon and collapse by gravitational instability. In my thesis, I study a model of warm

inflation and find that for certain parameter space, it has the features that it is consistent

with the CMB as well as has a large amplitude of the primordial power spectrum at the

small scales to form a significant abundance of PBHs. Further, I calculate the mass and

the initial mass fraction of the generated PBHs and discuss the observational bounds

on the abundance and other implications of the PBHs formed in our warm inflation

model.

Keywords: Cosmic inflation, Warm inflation, Dissipation coefficient, Primordial

power spectrum, Primordial black holes, Initial mass fraction of black holes
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Chapter 1

Introduction

Cosmology - the study of the origin, evolution, and fate of our Universe - is a subject

based on observations. By looking at the state of the Universe at present, we pos-

tulate about the various phases attained in its evolution. Inflation is one such specu-

lated period in the cosmic evolution, which has a remarkable importance in the cosmic

history. To begin with, firstly I give a brief introduction to the timeline of our Uni-

verse, followed by the Standard Model and basics of cosmology. Then, I discuss the

shortcomings in the Standard Model and how inflation can provide a solution to these

problems.

1.1 Timeline of our Universe

From numerous observational studies, we have arrived at the following understanding

of the timeline of our Universe in the Standard Big-Bang Model of cosmology, as

shown in Fig. 1.1 (see standard texts [13–23] and lectures [24–30]; also see Ref. [31]

for a comprehensive list of references.).

According to the Standard Model of cosmology, the present age of our Universe

is found to be around 13.8 billion years. From observations of Hubble [32], we have

inferred that our Universe is expanding. As it expands, it cools down and the number

density of particles dilutes, which indicates that the early Universe was extremely hot

and dense. In the Big-Bang model, the Universe is assumed to originate from an

infinite energy density at time t = 0, known as the Big-Bang singularity. The cause

1
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Figure 1.1: Timeline of our Universe with different epochs and energy scale during

evolution are shown here. Source: Particle Data Group 2015.

and the nature of this singularity are still open questions in cosmology. Followed by

that is the epoch when quantum gravity effects are important, and the energy density

in the Universe is above the scale of Planck energy MPl ∼ 1019 GeV. Till date, we

do not have a complete understanding of the quantum gravity era, and our concept of

spacetime from the classical Theory of General Relativity (GR) does not hold at such

epochs.

At the energy scale of ∼ 1015 GeV or below, there is a proposed phase of cos-

mic inflation, which is the subject of this thesis. Cosmic Inflation [33–39] is a phase

of accelerated expansion of the early Universe for a very brief duration of time. It is

speculated to happen in the Universe when the age of the Universe was 10−34 seconds

(for Grand Unified Theory (GUT) scale inflation) or later. This phase was introduced

to resolve some issues faced by the Standard Model of cosmology, as will be discussed

in Section 1.4. The inflationary paradigm is very powerful and successful, as it pro-

vides a solution to problems in the Standard Model, as well as its predictions satisfy
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observations to high precision.

Inflation ends with a production of elementary particles into a radiation dominated

Universe. Subsequently, the Universe is like a hot soup of plasma with quarks, leptons,

gauge bosons, dark matter particles, etc. Then, at around an energy scale ∼ 200 MeV

(time nearly 10−6 second), the quarks hadronize into protons and neutrons. With fur-

ther expansion and cooling, when the temperature of the Universe corresponds to the

nuclear binding energy∼ 1 MeV (time around∼ 1 second after the big-bang), the pro-

tons and neutrons begin to combine and form nuclei. Light nuclei - Helium 4He, traces

of deuterium 2H, Helium 3He, Lithium 7Li, are formed during this epoch, known as

the Big-Bang Nucleosynthesis (BBN), and takes place within the first 3 minutes after

the Big-Bang [40].

Further, when the temperature of the Universe is about 0.3 eV, neutral Hydrogen

atoms begin to form (the Universe at this stage is almost 380, 000 years old). As a con-

sequence, the photons which earlier underwent Thomson scattering with the charged

particles, now do not scatter efficiently with the neutral atoms. After the last scattering,

these photons free stream, and this phase is also known as decoupling, as the photons

decouple from the thermal plasma. These relic photons are now seen in all directions

of the sky as the primordial Cosmic Microwave Background (CMB) radiation [41–45].

The CMB is isotropic to a high degree with an average temperature of 2.725 K but also

has tiny anisotropies of 1 part in 105. (For a review, see Refs. [46, 47].) The origin of

these anisotropies is attributed to the early inflationary phase.

For long periods after the photon decoupling, the Universe remains in the dark

ages. At around an age of 200 million years, when the density fluctuations in the

Universe grew sufficiently, the first stars, galaxies, and quasars came into existence.

The radiation emitted from these sources ionized the neutral intergalactic medium,

and this phase is known as the epoch of reionization. As the Universe expanded and

diluted further, this epoch gradually ended. The density inhomogeneities continued to

grow, linearly and then non-linearly, and collapsed to form all the structures - galaxies,

clusters, superclusters, voids, etc. in the Universe.

After about 10 billion years of cosmic time, the Universe became dominated by
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dark energy, which resulted in its accelerated expansion. The present age of the Uni-

verse is nearly 13.8 billion years and is the outcome of all the phases attained during

its evolution.

The above timeline of the Universe is in good accordance with the observational

evidence from the Big-Bang Nucleosynthesis epoch till the present. However, the

physics of the Universe within the first second of the Universe formation is not well

tested.

The phase of inflation in the early Universe is interesting and vital as it can well ex-

plain the isotropy of the CMB temperature and the correlations in its tiny anisotropies.

The quantum fluctuations generated during inflation are also considered to become the

seeds of the density inhomogeneities that grow and subsequently become the structures

at late times. Thus, inflation simultaneously explains the features in the CMB and the

formation of Large Scale Structure (LSS) seen today, thus its remarkable success as a

cosmological theory.

1.2 Standard Model of Cosmology

The Standard Model of cosmology, also called ΛCDM (Lambda Cold Dark Matter),

is a theoretical framework for understanding the composition and evolution of our

Universe. According to this, our present Universe is composed of baryonic matter,

invisible Cold Dark Matter (CDM), and Dark Energy (DE). The radiation density had

dominant contributions in the early Universe but has diluted by today. The baryonic

and the dark matter contribute to the structure formation, whereas the dark energy, or

cosmological constant Λ, is responsible for the present-day accelerated expansion of

the Universe. The energy budget of the present day Universe from the recent obser-

vations is shown in Fig. 1.2. At present, the majority of the energy content of the

Universe, 68.3%, is in the form of dark energy, 26.8% is cold dark matter, and the rest

4.9% is the baryonic matter.
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Figure 1.2: The present energy budget of the Universe from Planck satellite observa-

tions. Source: https://sci.esa.int/web/planck/-/51557-planck-new-cosmic-recipe .

1.3 Basics of Cosmology

Friedmann-Lemâitre-Robertson-Walker (FLRW) metric

By the cosmological principle, our Universe is homogeneous and isotropic on large

scales (above 100 Mpc), i.e. the large scale properties are independent of the position

of the observer. The geometry of the (3 + 1) space-time is expressed in terms of

the metric gµν , given by the line element ds2 = gµνdx
µdxν . In our notation, the

greek alphabets, µ, ν, etc., run over time, space coordinates, (t,x) and have the values

(0, 1, 2, 3), respectively.

From observations, it is well established that our Universe is expanding spatially.

The metric for the expanding Universe is given by the FLRW metric (we follow the

notation of Ref. [1]) as

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θ dφ2)

]
, (1.1)

where t is the proper time, (r, θ, φ) are the comoving spherical coordinates, a(t) is the

scale factor which indicates how the physical distance between any two positions in

the Universe scales with time and k is a measure of the spatial curvature and is equal

to 0,−1,+1 for a flat, open, and a closed Universe, respectively.

Observations also indicate that the spatial geometry of our Universe is almost flat.

For a flat Universe, we can also write the FLRW metric in terms of conformal time(
η =

∫
dt

a(t)

)
as

ds2 = a2(t)
[
−dη2 + dx2

]
. (1.2)
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Here the term in brackets is like the metric of the Minkowski spacetime.

Hubble expansion rate

The rate of expansion of the Universe at any epoch is measured in terms of the Hubble

expansion rate, defined as

H(t) ≡ ȧ(t)

a(t)
, (1.3)

where a dot represents the derivative w.r.t. the proper time.

Einstein equation

The dynamics of the Universe is studied using Einstein’s Theory of General Relativity.

According to it, the geometry of the spacetime is related to the energy density of the

Universe, which is mathematically formulated in the Einstein equation, as

Gµν ≡ Rµν −
1

2
gµνR = 8πGNTµν (1.4)

where Rµν is the Ricci tensor which depends on the metric and its derivatives, R =

gµνRµν is the Ricci scalar, GN is the Newton’s gravitational constant, and Tµν is the

stress-energy tensor. The quantities on the left represent the geometry part, and the

energy-momentum components are written on the right-hand side.

The Ricci tensor is constructed from the Christoffel symbols as

Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓ
β
µα , (1.5)

where the subscript ,α denotes
∂

∂xα
. For any metric, the Christoffel symbols are given

as,

Γµαβ =
gµν

2
[gαν,β + gβν,α − gαβ,ν ] . (1.6)

For the FLRW metric given in Eq. (1.1), the Ricci tensor components are obtained

to be

R00 = −3
ä

a

R0i = 0

Rij =

[
ä

a
+ 2

ȧ2

a2
+ 2

k

a2

]
gij, (1.7)
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and the Ricci scalar is calculated to be

R = 6

[
ä

a
+
ȧ2

a2
+
k

a2

]
. (1.8)

Stress Energy Tensor

The stress energy tensor for a perfect fluid in its rest frame is a diagonal matrix, given

as

T µν = diag (−ρ, p, p, p), (1.9)

where the 00 component represents the energy density ρ, and the diagonal elements

give the pressure p. The off-diagonal elements are 0, as the fluid is considered as a

perfect one. The conservation of the stress energy demands T µν;µ = 0, which gives the

energy conservation equation for the expanding Universe as

ρ̇+ 3H(ρ+ p) = 0. (1.10)

For a fluid with p = wρ, where w is called the equation of state, Eq. (1.10) can be

rewritten as,

ρ̇+ 3
ȧ

a
(1 + w) ρ = 0. (1.11)

The solution of this turns out as ρ ∝ a−3(1+w). For a radiation fluid, w =
1

3
, and thus

ρ ∝ a−4. For the pressureless dust or matter, w = 0, and the solution is obtained

as ρ ∝ a−3. Thus, the energy density of the radiation and the matter decreases as

the Universe expands. However, for a fluid with w = −1, it can be found that ρ =

constant, independent of the expansion of the Universe.

Friedmann equations

Using the Eqs. (1.7) and (1.8) in the Einstein equation given in Eq. (1.4), we obtain

the following two independent equations, known as the Friedmann equations, as(
ȧ

a

)2

+
k

a2
=

8πGN

3
ρ , (1.12)

and

2
ä

a
+

(
ȧ

a

)2

+
k

a2
= −8πGN p . (1.13)
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On combining these two equations, we get

ä

a
= −4πGN

3
(3p+ ρ) = −4πGN

3
ρ (3w + 1) . (1.14)

It can be seen that for the radiation (w = 1/3), or the matter fields (w = 0), ä turns

out to be negative, which implies a decelerated expansion of the Universe. But in the

case when w < −1/3, the Universe has an accelerated expansion, as in the present

time (dark energy dominated Universe, w ≈ −1), as well as during the early phase of

inflation.

1.4 Shortcomings of the Standard Model

Despite its success in explaining the post-BBN Universe, the Standard Model fails to

explain certain issues of the early Universe. These shortcomings are listed below:

1.4.1 Horizon problem

The horizon problem is related to the uniform temperature of the observed cosmic

microwave background radiation. CMB is measured to have a black body spectrum

with an average temperature of 2.725 K in all the directions over the entire sky. But

by looking at our past light cone, it is seen that there are nearly 104 uncorrelated or

causally disconnected patches in the sky at the time of the last scattering from when

the CMB photons free stream. A pictorial representation of the horizon problem is

shown in Fig. 1.3. The horizon size at the epoch of last scattering (t ∼ 380, 000 year),

subtends an angle of ∼ 1◦ on the sky today, which means that no microphysics could

equilibrate the CMB photons at angles greater than 1◦. Despite this, the CMB has a

uniform temperature in all the directions. This raises the question of why temperature

is the same for any two causally disconnected regions or how thermal equilibrium is

attained between the two separated regions.

Mathematically, it can be understood as follows. The photons or any particle travel

a physical distance from the epoch of the Big-Bang (t = 0) till any time t, known as

the particle horizon, dH(t). It is the measure of the maximum size of the Universe

that can be in causal contact at any epoch. Since the trajectory of the photons is a null
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Figure 1.3: Horizon problem: At the time of recombination or last scattering, there are

causally disconnected regions in the sky. Source: https://favpng.com/.

geodsic ds2 = 0, for radial propagation dr = dt/a(t) , which gives the particle horizon

as,

dH(t) = a(t)

∫ t

0

dt

a(t)
=

2t, radiation dominated era

3t, matter dominated era
(1.15)

Since we see the CMB photons from the last scattering surface, as illustrated in Fig.

1.3, the physical distance travelled by the CMB photons from the surface of the last

scattering (tLSS) till today (t0) can be calculated as

rCMB(t0) = a0

∫ t0

tLSS

dt

a(t)
.

Then at the CMB epoch, this distance would have been rescaled according to the scale

factor at that time aLSS , so that

rCMB(tLSS) = aLSS

∫ t0

tLSS

dt

a(t)
.

Assuming a matter dominated era (a ∝ t2/3) from the epoch of last scattering till today,

and t0 � tLSS , the integral gives

rCMB(tLSS) = 3 t
2/3
LSS t

1/3
0 . (1.16)

The particle horizon or the size of the causally connected Universe at the CMB epoch,

as calculated in Eq. (1.15) is,

dH(tLSS) = 2tLSS. (1.17)
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Then from Eqs. (1.16) and (1.17), it can be seen that

rCMB(tLSS)

dH(tLSS)
=

3

2

(
to
tLSS

)1/3

∼ 3

2

(
1010

105

)1/3

∼ 70. (1.18)

This implies that at the time of last scattering, the size of the Universe in causal con-

nection was smaller than the rescaled size of current CMB sky. Then how is the tem-

perature uniform in all directions of the sky today? This is the horizon problem.

1.4.2 Flatness problem

The flatness problem in cosmology is the problem of an extreme fine tuning of the early

Universe, in order to have the present Universe as spatially flat. This can be understood

as below. From the Friedmann equation, for a Universe with total energy density ρ at

any time t, the Hubble rate of expansion is given as

H2(t) +
k

a(t)2
=

8π

3M2
Pl

ρ(t), (1.19)

where k/a2 is the measure of spatial curvature, andMPl = 1/
√
GN = 1.2×1019 GeV

is the Planck mass in our notation. The critical energy density at any time is defined as

the energy density of the Universe for which its geometry is flat, i.e. k = 0,

H2(t) =
8π

3M2
Pl

ρcr(t). (1.20)

Substituting this in Eq. (1.19), we get

1 +
k

a(t)2H(t)2
=

ρ(t)

ρcr(t)
≡ Ω(t), (1.21)

where Ω(t) is known as the density parameter, and is the ratio of energy density of the

Universe to the critical energy density at that epoch. From observations, it is found

that at present Ω0 ≈ 1, corresponding to the flat geometry, shown in Fig. 1.4.

The ratio of |Ω(t)− 1| at an earlier time, say Planck scale, to the present value

|Ω(tPl)− 1|
|Ω0 − 1|

=
a2

0H
2
0

a2
PlH

2
Pl

. (1.22)

The comoving horizon, (aH)−1 increases as time proceeds (ignoring late time accel-

eration), which implies that a0H0 � aPlHPl, and hence |Ω(tPl) − 1| < O(10−61), or
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Figure 1.4: Geometry of the Universe (Top to Bottom: closed, open, and flat). Source:

Wikipedia

an extreme fine tuning of the density parameter of the early Universe. This is puzzling

as it is very unnatural and raises a question to how can it be explained.

1.4.3 Monopole and unwanted relics problem

Monopoles are point-like topological defects produced in phase transitions. When the

GUT symmetry breaks down to a lower symmetry, then during this transition, magnetic

monopoles are produced. These are very massive and stable, but are unwanted, as

they contribute to the present energy density and overclose it. However, they are not

observed, and their non-detection raises a question as to where are such predicted

unwanted relics.

1.5 Solution to the problems - Inflation

The solution to all the above-listed problems can be provided by introducing a phase

of inflation in the very early Universe.

Cosmic Inflation [33–39] is a phenomenon of a rapid accelerated expansion in the

early Universe. It is speculated to have taken place at the energy scale of GUT or below

when the Universe was 10−34 seconds old. During this phase, the physical distances

between any two points in the Universe grew nearly exponentially by at least 50 to 60

efolds, i.e., e50(≈ 1021) to e60(≈ 1026) (if the scale of inflation is the GUT scale), as
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shown in Fig. 1.5. For a review on inflation, see Refs. [1, 48–53].

Figure 1.5: Phase of cosmic inflation in the early Universe shown here. Source:

https://commons.wikimedia.org

Now we explain how inflation can solve all these problems simultaneously. Dur-

ing the inflationary phase, the Hubble rate of expansion is nearly a constant, but as

the scale factor increases nearly exponentially, the comoving Hubble radius, (aH)−1

shrinks as the Universe inflates. The comoving Hubble radius at any time represent

the causally connected region of the Universe, and the fact that it decreases during the

inflation provides a solution to the horizon problem. The regions in the sky that ap-

pear to be causally disconnected on the last scattering surface were connected in the

early Universe, but were taken out of the causal contact due to the shrinking comoving

radius during the inflationary phase, as shown in Fig. 1.6. In this way, the two far

away regions at the last scattering surface were in causal contact before inflation, but

separated as the physical lengths grew nearly exponentially during inflation. Thus, the

uniform temperature of the CMB is explained, and the horizon problem is solved with

inflation.

Next, we consider the flatness of the Universe, and the extreme fine-tuning required

to achieve it. During inflation, the scale factor increases exponentially and the curva-

ture term on the right-hand side of Eq. (1.22) goes to almost 0, thereby solving the

flatness problem without any fine-tuning requirement.

During inflation, due to the exponential expansion, the number densities of all the
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Figure 1.6: A pictorial representation of the solution to the Horizon problem [1].

particles dilute away, and thus the monopoles or other unwanted relics become too

scarce to detect. Thus inflation resolves the monopole problem as well.

All these successes make inflation a very compelling and relevant phase of cosmic

history. Besides resolving these shortcomings, inflation, as a bonus, also provides a

mechanism to explain the tiny anisotropies in the CMB and the formation of structures

at the late time.

1.6 Thesis Overview

The main focus of this thesis is on the Warm Inflation description of inflation, and its

implications on the large and small scales observations.

The thesis is organized as follows. In Chapter 2, I first give an overview of the

standard cold inflation and the dynamics associated with it. Then I describe the fluc-

tuations generated during cold inflation and the primordial curvature power spectrum.

After that, I discuss the observational imprints of inflation on the cosmic microwave

background radiation and the current status of various cold inflation models.

In Chapter 3, I give a review of the warm inflation description of inflation and the

motivation for it. I discuss the features of warm inflation that make it distinct from
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cold inflation. Then I describe the dissipation coefficient and the primordial scalar and

tensor power spectrum of warm inflation.

In Chapters 4 and 5, I discuss the warm inflationary models considered in our study

and calculate the primordial power spectrum for all the models. Then using the MCMC

technique, I constrain the parameter space of these models from the CMB observations.

After that, in Chapter 6, I discuss the small scale features of inflation in the context

of the formation of Primordial Black Holes (PBHs). I consider a model of warm in-

flation and calculate the initial mass fraction of PBHs that are generated in this model.

Further, I also discuss the theoretical and observational constraints on the abundance

of the generated PBHs.

In the last Chapter, I summarize and conclude this thesis with some future direc-

tions for research.



Chapter 2

Cosmic inflation - the standard cold

description

As discussed in the previous Chapter, the inflationary scenario can successfully resolve

the problems in the Standard Model of cosmology. Now I discuss the field theoretical

description of inflation and the associated observables in the CMB anisotropies. In the

literature, there are two realizations for the dynamics of inflation - cold inflation and

warm inflation. In this Chapter, I give a brief review of the standard cold inflation and

the dynamics that govern it. From the next Chapter onwards, the focus will be on warm

inflation.

2.1 Introduction

The idea of an expanding early Universe was independently studied by Refs. [33–35]

before the term ‘Inflationary Universe’ was first coined by Alan Guth [36]. Guth’s

1981 ‘old inflation’ [36] model was based on a first-order symmetry breaking phase

transition at the GUT scale. Above the GUT scale energy (TGUT > 1015 GeV), the

symmetry is restored, and there is a single minimum of the potential V (φ), as shown

in Fig. 2.1. The inflaton field is trapped in a metastable ‘false vacuum’ with a constant

energy density in the Universe, leading to exponential expansion. As the temperature

falls below the TGUT , a ‘true minimum’ emerges in the potential V (φ). During the

phase transition, bubbles of ‘true vacuum’ emerge in the sea of false vacuua, which

15
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Figure 2.1: Pictorial representation of the old inflation model Source: Left figure: [2]

and Right figure: https://ned.ipac.caltech.edu/

expand and then collide to complete the phase transition and reheat the Universe. The

inflationary phase lasts till the inflaton tunnels and rolls down to the true minima. But

this model encounters a problem that the process of bubble nucleation and collision

was rare in the expanding background, and a sufficient reheating of the Universe could

not be achieved at the end of inflation. This is known as the ‘graceful exit’ problem of

old inflation.

Figure 2.2: Pictorial representation of the new inflation model. Source: Left figure:

https://ned.ipac.caltech.edu/ and Right figure: [3].

Thereafter, a ‘new inflation’ model was proposed by Linde [37, 54], and indepen-

dently by Albrecht and Steinhardt [38] in which this problem was resolved by con-

sidering the phase transition to be second order. In the new inflation or the ‘slow roll

inflation’, the inflaton field starts near φ = 0 and evolves very slowly down a potential

V (φ) initially taken to be Coleman-Weinberg potential. During this slow-roll phase,

the energy density of the Universe remains nearly constant and causes the Universe

to inflate, as pictorially shown in Fig. 2.2. A separate ‘reheating’ phase is needed at
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the end of inflation in which the inflaton oscillates about the minima and decays into

particles, and the Universe enters the radiation dominated epoch.

Both old and new inflation models were based on a phase transition in the early

Universe, with the initial field value tuned near 0. Thereafter, in 1983, Linde [39]

proposed the idea that inflation could even be achieved without a phase transition with a

sufficiently flat potential and initial conditions where the inflaton field value φ�MPl,

as pictorially represented in Fig. 2.3. This model was named as the ‘chaotic model’ of

inflation.

Figure 2.3: Pictorial representation of the chaotic inflation model. Source: [4].

Inflation takes place when the energy density of the inflaton field dominates the

energy density of the Universe, ρtotal ≈ ρφ. As the field rolls down a potential V (φ)

slowly, the Universe undergoes an accelerated expansion. A pictorial representation of

the phenomenon of inflation is shown in Fig. 2.4.

Figure 2.4: Pictorial representation of inflaton slowly rolling down a potential V (φ)

leading to the cosmic inflation [5].
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In the standard cold inflation description, it is presumed that the inflaton’s coupling

to other fields is ineffective during the inflationary phase. Therefore, because of the

nearly exponential expansion of the Universe during inflation, the number densities

of all the species present at that epoch dilute away, and the Universe enters into a

supercooled state. Further, when the inflationary phase ends, the Universe undergoes

a reheating phase in which the inflaton oscillates and decays into particles [55].

2.2 Kinematics of inflation

In the simplest form, inflation is assumed to be driven by a scalar field, inflaton φ,

minimally coupled to the gravity. Some standard texts and good reviews on inflation

include Refs. [1, 4, 48–53, 56–63]. The Lagrangian density for the inflaton field in a

potential V (φ) is given as,

L(φ) =
1

2
(∂µφ)(∂µφ)− V (φ), (2.1)

and the action governing its dynamics is given as

Sφ =

∫
d4x
√
−g
[

1

2
(∂µφ)(∂µφ)− V (φ)

]
, (2.2)

where g is the determinant of the metric gµν .

By varying the action with respect to the metric, we obtain the stress energy tensor

for the inflaton field as

T µν = (∂µφ)(∂νφ)− L δµν . (2.3)

The diagonal components of T µν gives the energy density and the pressure for the

inflaton field, as

ρφ =
φ̇2

2
+ V (φ) +

(∇φ)2

2a2
(2.4)

pφ =
φ̇2

2
− V (φ)− (∇φ)2

6a2
. (2.5)

For a spatially homogeneous inflaton field, ∇φ = 0 in these equations. As shown in

Eq. (1.14), an accelerated expansion takes place in the cosmic fluid when 3p+ ρ < 0.

For the homogeneous inflaton field responsible for the accelerated expansion, from

Eqs. (2.4) and (2.5), this implies that φ̇2 < V (φ), i.e., the field has smaller kinetic

energy than the potential energy.
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The inflaton evolution equation is obtained by varying the action given in Eq. (2.2)

with respect to φ, as

φ̈+ 3Hφ̇+ V ′(φ) = 0. (2.6)

In our notation, overdot represents derivative w.r.t. time and prime represents deriva-

tive w.r.t. φ. The second term, 3Hφ̇, arises because of the Hubble expansion of the

Universe and acts as friction to the inflaton motion. For different forms of the potential

V (φ), the inflaton equation of motion is solved to get the trajectory of the inflaton.

Thus from the Friedmann equation, the Hubble parameter for the homogeneous

inflaton field is given as

H2 =
8π

3M2
Pl

(
φ̇2

2
+ V (φ)

)
. (2.7)

As the field is slowly rolling φ̇2/2� V (φ), this can be approximated as,

H2 ≈ 8π

3M2
Pl

V (φ). (2.8)

2.2.1 Slow roll approximation

In the approximation that the kinetic energy of the inflaton field is very small, φ̈ can be

taken to 0, and thus the Eq. (2.6) reduces to,

φ̇ ≈ −V
′(φ)

3H
. (2.9)

The slow roll motion of the inflaton is maintained by a flat potential, which is quantified

in terms of the slow roll parameters,

εφ =
M2

Pl

16π

(
V ′(φ)

V (φ)

)2

, ηφ =
M2

Pl

8π

(
V ′′(φ)

V (φ)

)
. (2.10)

The first slow roll parameter, εφ, measures the slope of the potential, and the second

slow roll parameter, ηφ, measures the curvature of the potential. The slow roll condi-

tions demand that during inflation,

εφ � 1, |ηφ| � 1. (2.11)
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2.2.2 Duration of inflation

The scale factor during inflation increases almost exponentially during inflation. To

quantify this growth, we define a parameter called number of efolds

N(t) ≡ ln
a(te)

a(t)
,

where a(te) is the scale factor at the end of inflation and a(t) is the scale factor at

any time. In our notation, the number of efolds are counted from the end of inflation

(N(te) = 0). From its definition, the Hubble parameter can also be written as

H =
ȧ

a
=
d ln a

dt
,

which gives dN = −Hdt.

For the inflaton field moving in a potential V (φ), the equation of motion in the slow

roll approximation
dφ

dN
=
V ′(φ)

3H2
. (2.12)

Thus, the number of efolds of inflation can be calculated as,

N =
8π

M2
Pl

∫ φ

φe

V

V ′(φ)
dφ. (2.13)

2.3 Cosmological perturbations during inflation

As previously mentioned, the generation of density and metric fluctuations is also at-

tributed to inflation. These fluctuations are imprinted as the anisotropies in the CMB

and further become the seeds of structures at late times. Having discussed the back-

ground dynamics of the inflaton field, we now discuss the quantum fluctuations during

inflation, which lead to density and metric fluctuations.

2.3.1 Linear Cosmological Perturbation Theory

The perturbations generated during inflation are small and are treated using linear per-

turbation theory. In this approach, the inhomogeneities in any physical observable can

be treated as linear perturbations around a homogeneous background [1, 6, 48, 64–67].

All the physical quantities X(t, x) (metric gµν and stress energy tensor Tµν(φ, ρ, p))
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can be decomposed into a homogeneous background X̄(t) which is a function of time

only, and inhomogeneous perturbations dependent on both space and time, as

X(t, x) = X̄(t) + δX(t, x).

Metric perturbations

We first discuss the perturbations in the components of the metric of the Universe. The

full metric can be written as

gµν(t, x) = ḡµν(t) + δgµν(t, x),

where the unperturbed metric ḡµν(t) =

 −1 0

0 a2(t)δij

 and the metric perturba-

tions are given as

δg00 = −2Φ (2.14)

δg0i = a(t)Bi (2.15)

δgij = 2a(t)2Cij. (2.16)

We further write

Bi ≡ B,i − Si

Cij ≡ −Ψδij + E,ij + Fi,j +
1

2
hij,

where a subscript ,i represents
∂

∂xi
. Here Φ, B,Ψ, E are called the scalar metric

perturbations constructed from scalars or their derivatives. Si, Fi are called the vec-

tor metric perturbations which satisfy the condition that they are divergence free

∂iSi = 0 and ∂iFi = 0. The tensor metric perturbation hij satisfy the condition that

it is transverse ∂ihij = 0 and traceless hii = 0.

Decomposition Theorem

At linear order, the scalar, vector, and tensor perturbations decouple and can be studied

independently. The scalar perturbations are related to the density fluctuations, while

the tensor perturbations contribute to the primordial gravitational waves. The vector

perturbations are related to the vorticity effects, which are damped during inflation,

and hence not interesting. Here we discuss the scalar perturbations only.



22 Chapter 2. Cosmic inflation - the standard cold description

Scalar metric perturbations

Considering only the scalar perturbations in the line element ds2 = gµνdx
µdxν , we get

ds2 = −(1 + 2Φ) dt2 + 2 a(t)B,i dt dx
i + a(t)2 [(1− 2Ψ) δij + 2E,ij] dx

idxj. (2.17)

We can see that there are 4 scalar degrees of freedom in the metric Φ, B,Ψ, E.

Matter perturbations

Now we discuss the perturbations in the components of the stress energy tensor. For a

perfect fluid, the unperturbed stress energy tensor is given as

T̄ µν = (ρ̄+ p̄) uµ uν + δµν p̄, (2.18)

where the 4-velocity satisfy gµνuµuν = −1. The perturbed 4-velocity is given as,

uµ = (−1− Φ, avi), uµ = (1− Φ, a−1(vi −Bi)).

The unperturbed stress energy tensor can be expressed as T̄ µν =

 −ρ̄ 0

0 p̄ δij

 and

the perturbations are given as

δT 0
0 = −δρ (2.19)

δT 0
i ≡ δq,i = (ρ̄+ p̄) avi (2.20)

δT i0 = −(ρ̄+ p̄)(vi −Bi)/a (2.21)

δT ij = δp δij. (2.22)

Here we have assumed that no anisotropic stresses are present.

2.3.2 Perturbed Einstein equations for the scalar perturbations

The Einstein’s equations relate the geometry part with the matter energy density as

Gµν ≡ Rµν −
1

2
gµνR = 8πGNTµν .

Similarly, the perturbations in the metric (Φ, B,Ψ, E) are related to the stress energy

tensor perturbations (δρ, δq, δp), at linear order as

δGµν = 8πGN δTµν .
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On expanding the perturbed Einstein equation for the perturbed metric given in Eq.

(2.17), we obtain the following equations

3H(Ψ̇ +HΦ) +
k2

a2

[
Ψ +H(a2Ė − aB)

]
= −4πGNδρ

Ψ̇ +HΦ = −4πGNδq

Ψ̈ + 3HΨ̇ +HΦ̇ + (3H2 + 2ḢΦ) = 4πGNδp.

2.3.3 Gauge Choice

Gauge choice refers to a slicing and threading of the spacetime. Spacelike hypersur-

faces of constant time t are called slices, and timelike worldlines of constant x are

called threads. A choice of gauge is not unique, and spurious perturbations can be

generated by a transformation of coordinates. Thus, it is important to work either in a

specific gauge or construct gauge-invariant quantities.

Types of Gauges

A list of popular gauge choices and their respective definitions is given here. For

details on the perturbed Einstein and continuity equations for the different gauges, see

the Appendix A of Ref. [1].

• Longitudinal or Conformal Newtonian Gauge: B = 0, E = 0

• Spatially Flat Gauge: E = 0, Ψ = 0

• Comoving Gauge: E = 0, δq = 0

• Uniform Density Gauge: E = 0, δρ = 0

• Synchronous Gauge: B = 0, Φ = 0

A gauge choice reduces the degrees of freedom by 2.
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2.3.4 Gauge transformations

Under a gauge transformation, xα → x̃α = xα + εα, we can write

x̃0 = x0 + ε0 , x̃i = xi + δijεs,j (2.23)

where we separate the scalar and vector parts as εi = εs,i + εv and consider only the

scalar perturbation.

Under the coordinate transformation defined in Eq. (2.23), the scalar metric per-

turbations transform as the following,

Φ̃→ Φ− ε̇0

B̃ → B +
ε0

a
− aε̇s

Ẽ → E − εs

Ψ̃→ Ψ +Hε0.

From the combination of these scalar metric perturbations, two gauge invariant quan-

tities known as Bardeen potentials are constructed as

ΦB = Φ +
d

dt
[a(B − aĖ)] (2.24)

ΨB = Ψ− [aH(B − aĖ)]. (2.25)

The quantity (B − aĖ) is a function of time only.

The stress energy tensor perturbations transform under the gauge transformations

in Eq. (2.23) as follows,

δρ̃→ δρ− ρ̇ε0

δq̃ → δq + (ρ̄+ p̄)ε0

δp̃→ δp− ṗε0.

Some gauge invariant quantities formed for the stress energy tensor perturbations are

δρ(gi) = δρ+ ˙̄ρa[(B − aĖ)] (2.26)

δq(gi) = δq + (ρ̄+ p̄)[a(B − aĖ)] (2.27)

δp(gi) = δp+ ˙̄pa(B − aĖ). (2.28)
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The inflaton field perturbations also transform under the gauge transformation as

δφ̃→ δφ− ρ̇ε0,

and the corresponding gauge invariant quantity constructed from it is given as

δφ(gi) = δφ+ φ̇a[(B − aĖ)]. (2.29)

2.3.5 Gauge invariant quantities constructed from metric and scalar

field perturbations

• Comoving curvature perturbation

R ≡ Ψ− H

ρ̄+ p̄
δq,

where δq is defined in Eq. (2.20). During inflation δT 0
i = − ˙̄φ ∂iδφ from Eq.

(2.3), which gives

R = Ψ +
H
˙̄φ
δφ. (2.30)

Geometrically, it measures the spatial curvature of comoving (during inflation

δφ = 0) hypersurface, i.e. R = Ψ|δq=0, where the spatial curvature of constant

conformal time hypersurface (3)R =
4

a2
∇2Ψ.

• Curvature perturbation on uniform energy density hypersurfaces

−ζ ≡ Ψ +
H
˙̄ρ
δρ.

Geometrically, it measures the spatial curvature of constant density (δρ = 0)

hypersurface, i.e. −ζ = Ψ|δρ=0. During inflation, φ is the dominant field con-

tributing to energy density. Therefore,

− ζ ≈ Ψ +
H
˙̄φ
δφ. (2.31)

From Eqs. (2.30) and (2.31), we see that during inflation, the two gauge invariant

quantitiesR and −ζ are equal.
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2.4 Primordial curvature power spectrum

In this section, we calculate the primordial power spectrum of the gauge-invariant co-

moving curvature perturbationR.

2.4.1 Dynamics of perturbations during inflation

• The curvature perturbations are generated during inflation on sub Hubble scales

(physical wavelengths of perturbation modes smaller than Hubble radius), i.e.

λphys � (H)−1 or
k

a
� H . The physical wavelength of these modes grows

like the scale factor.

• When λphys = (H)−1 or
k

a
= H , the modes exit the Hubble radius and the

amplitude of the fluctuations freeze-in.

• The fluctuation modes become super Hubble when λphys > (H)−1 or
k

a
< H

and no causal physics acts on them.

Figure 2.5: Evolution of the physical wavelength of the fluctuation modes generated

during inflation, as a function of scale factor. Source: [6].

• After inflation ends, the Hubble radius increases. At some time during the ra-

diation or matter-dominated era, these perturbation modes re-enter the Hubble

radius.
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• These fluctuations are observed in the CMB anisotropies and are also the seeds

for density perturbations which grow to form structures at late time.

• For two modes with physical wavelengths, λ1, λ2, where λ1 > λ2 or
k1

a
<
k2

a
,

the mode with larger physical wavelength λ1 exits the Hubble radius early and

re-enters the Hubble radius late - First Out - Last In, as shown in Fig. 2.5.

2.4.2 Evolution of comoving curvature perturbation

The action for a canonical single field inflation model can be written as

S =
1

2

∫
d4x
√
−g [R + (∂µφ)(∂µφ)− 2V (φ)] . (2.32)

Here 8πGN = 1. To study the perturbations, we choose a comoving gauge, where

δφ = 0, andR = Ψ. The action is expanded to second order inR, as

S(2) =
1

2

∫
d4x a3 φ̇

2

H2

[
Ṙ2 − a−2(∂iR)2

]
. (2.33)

By changing the time coordinate to conformal time and defining v ≡ zR, called the

Mukhanov Sasaki variable, where z =
aφ̇

H
, we get

S(2) =
1

2

∫
dη d3x

[
v′2 + (∂iv)2 +

z′′

z
v2

]
, (2.34)

where a prime denotes a derivative with respect to η. By varying the action in Eq.

(2.34) with respect to v, and taking a Fourier transform in k space, we get a parametric

oscillator equation for vk as,

v′′k +

(
k2 − z′′

z

)
vk = 0. (2.35)

The subscript k denotes a mode with wavenumber k. The boundary conditions for

solving this equation are obtained (a) from the normalization of quantized vk, and (b)

by selecting a vacuum. By choosing a Bunch-Davies vacuum,

lim
η→−∞

vk =
e−ikη√

2k

and de Sitter space (H = constant), the solution to the mode equation

v′′k +

(
k2 − 2

η2

)
vk = 0

is given as

vk =
e−ikη√

2k

(
1− i

kη

)
. (2.36)
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Primordial curvature power spectrum

The two point correlation function of the curvature perturbation modes is given by the

primordial curvature power spectrum PR(k), as

< RkRk′ >= (2π)3δ(k + k′)PR(k).

From the definition of the Mukhanov Sasaki variable, R =
v

z
. On substituting the so-

lution for vk given in Eq. (2.36) for a mode at Hubble crossing (|kη| = 1 or k = a∗H∗,

where a subscript ∗ denotes the value of any quantity evaluated at Hubble crossing),

we get

< RkRk′ >= (2π)3δ(k + k′)
H2
∗

2k3

H2
∗

φ̇2
∗
.

The dimensionless power spectrum ∆2
R(k) is thus given as

∆2
R(k) ≡ k3

2π2
PR(k) =

(
H2
∗

2πφ̇∗

)2

. (2.37)

In single field inflation, the primordial curvature power spectrum is a constant quantity

for any perturbation mode on the super Hubble scale. In the slow roll approximation,

the scalar power spectrum can be written as

∆2
R(k) ≈ 8

3

V

M4
Pl

1

εφ

∣∣∣∣
k=aH

. (2.38)

The slope of the scalar power spectrum at a fiducial scale, called the pivot scale kP , is

given in terms of a scalar spectral index ns, as

ns − 1 ≡ d ln ∆2
R(k)

d ln k

∣∣∣∣
k=kP

= 2ηφ − 6εφ. (2.39)

2.5 Tensor power spectrum

Similar to the scalar perturbations and the associated dimensionless scalar power spec-

trum, tensor fluctuations hij are also generated during inflation. The dimensionless

tensor power spectrum is calculated by expanding the Einstein Hilbert action to sec-

ond order in the tensor fluctuations and is given as

∆2
t (k) =

16

π

H2
∗

M2
Pl

. (2.40)
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In the slow roll approximation, the tensor power spectrum can be written as

∆2
t (k) ≈ 128

3

V

M4
Pl

∣∣∣∣
k=aH

. (2.41)

The slope of the tensor power spectrum at the pivot scale kP , is given in terms of a

tensor spectral index nt, as

nt ≡
d ln ∆2

t (k)

d ln k

∣∣∣∣
k=kP

= −2εφ. (2.42)

Tensor-to-scalar ratio

The ratio of the amplitude of the tensor power spectrum to the amplitude of the scalar

power spectrum at the pivot scale is known as the tensor-to-scalar ratio,

r ≡ ∆2
t (kP )

∆2
R(kP )

. (2.43)

From Eqs. (2.38) and (2.41), we get

r = 16εφ,

and further using Eq. (2.42), we obtain the consistency condition, r = −8nt.

The amplitude of the scalar perturbations is known from CMB observations to be

∆2
R(kP ) = 2.1×10−9,where the pivot scale kP = 0.05 Mpc−1. Then using Eq. (2.41),

we get

V 1/4 ∼
( r

0.01

)1/4

1016GeV.

Thus, the tensor power spectrum or the tensor-to-scalar ratio are the direct measures of

the energy scale of inflation.

2.6 Observational imprints of inflation on the CMB

2.6.1 Cosmic Microwave Background Radiation

The cosmic microwave background radiation refers to the relic photons from the epoch

of recombination that are present in all the directions of the sky. They are the earliest

snapshots of the very early Universe. These photons from the last scattering surface

have free streamed and redshifted from z = 1100 till today at z = 0 and have a
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Figure 2.6: Left: Full sky map of CMB with the anisotropies, as seen by the Planck

satellite. The color coding (red to blue) represents a temperature value above or be-

low the mean value of 2.725 K. Source: https://sci.esa.int/ and Right: A black body

spectrum of the CMB radiation, as seen by the COBE satellite. Source: Wikipedia

uniform temperature 2.725 K. The existence of CMB was predicted in 1948 by Ralph

Alpher and Robert Herman, but it was serendipitously detected for the first time in

1964 by Arno Penzias and Robert Woodrow Wilson in their radio antenna, for which

they received the Nobel prize in 1978 [41]. The temperature of the CMB was measured

to be uniform across the sky through a series of ground-based and balloon experiments

till the satellite experiments were launched in the 1990s [68].

The spectrum of the CMB was measured to be a perfect black body with the Far

Infrared Absolute Spectrophotometer (FIRAS) instrument on COBE (COsmic Back-

ground Explorer) satellite [42], as shown in Fig. 2.6. The ansiotropies in the CMB

temperature are extremely tiny, 1 part in 105, as shown in Fig. 2.6. The different colors

in the CMB map denote a value of temperature above or below the mean temperature

of 2.725 K. These anisotropies were first detected with the Differential Microwave

Radiometer (DMR) instrument on COBE [43]. For these findings, John Mather and

George Smoot jointly received the Nobel prize in 2006. After the COBE mission, the

WMAP (Wilkinson Microwave Anisotropy Probe) satellite was launched in 2001 with

a better sensitivity to measure the CMB anisotropies and polarization, and it operated

for 9 years [44]. Thereafter, the Planck satellite mission was launched in 2009 with a

further high resolution and it completed its exploration in 2018.
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2.6.2 Angular Power Spectrum of CMB temperature fluctuations

The temperature anisotropy in the CMB can be expanded in spherical harmonics as

Θ(x, η, n̂) ≡ ∆T

T
(x, η, n̂) =

∞∑
l=1

+l∑
m=−l

alm(x, η)Ylm(n̂),

where n̂ is the direction of observation, l are different multipoles (l = 0 monopole,

l = 1 dipole, l = 2 quadrupole), and Ylm are the spherical harmonics on a 2-sphere.

Using the orthogonality property of Ylm,∫
dΩ Ylm(n̂) Y ∗l′m′(n̂) = δll′δmm′ ,

where dΩ is the solid angle subtended by n̂, we get

alm(x, η) =

∫
d3k

(2π)3
eik.x

∫
dΩ Y ∗lm(n̂)Θ(k, η, n̂). (2.44)

The variance of alm is called the angular power spectrum CTT
l

〈alma∗l′m′〉 = δll′δmm′CTT
l

CTT
l =

1

2l + 1

∑
m

〈alma∗lm〉 . (2.45)

The CMB temperature fluctuations are sourced by the scalar fluctuations R, and

are related through the relation [1],

CTT
l =

2

π

∫
k2dk PR(k)∆T l(k)∆T l(k), (2.46)

where the transfer function ∆T l(k) describes the evolution of perturbations from the

horizon reentry epoch till the matter radiation equality. Mathematically, it is the line-

of-sight integral of convolution of the source terms and geometric projection factors.

For reviews, see Refs. [1, 16, 47].

The angular power spectrum of the CMB from recent Planck 2018 results is shown

in Fig. 2.7. The quantity on the y-axis is defined asDTTl ≡ l(l + 1)

2π
CTT
l . In the figure,

the blue curve represents the best fit of the theoretical predictions from ΛCDM to the

data. Also, the residuals of the theoretical predictions for the best fit parameters and the

data points are shown in the lower panel of Fig. 2.7. For a scale-invariant primordial

power spectrum (ns = 1), at the large scales (l < 30), the angular power spectrum is

independent of l.
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Figure 2.7: Angular power spectrum of the CMB from Planck 2018 results [7]. The

blue curve represents the ΛCDM best fit to the data points for Planck TT, TE, EE+ low

E + lensing. The lower panel shows the residuals with respect to the best fit.

2.7 Current status of cold inflation models from CMB

CMB is the most pristine probe of the composition and primordial fluctuations of the

early Universe. The angular power spectrum of the CMB, and especially its peaks,

carry a lot of information and are important for understanding the early Universe. From

the CMB, we infer that the spatial geometry of our Universe is flat, and the spectrum

of scalar fluctuations is nearly scale-invariant, Gaussian, and adiabatic. Current obser-

vations are in good agreement with the inflationary predictions. In the era of precision

cosmology, various inflationary models have been stringently tested with the observa-

tions. The theoretical estimates of the cosmological parameters, scalar spectral index

ns, and the tensor-to-scalar ratio r for the inflationary models are compared with their

allowed range from the measurements.

Inflationary models are classified into various categories, eg. single-field (eg. chaotic

inflation, natural inflation, hilltop inflation, power-law inflation) or multiple-field (eg.

hybrid inflation, N-inflation) (based on the field driving inflation), large-field or small-

field (based on the field evolution, comparable toMPl), having minimal or non-minimal
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Figure 2.8: Joint 68% and 95% confidence limits on the parameters ns and r for various

inflationary models from Planck 2018 results. The band of values for various models

corresponds to the number of inflationary efolds between 50 to 60. Source: [7].

kinetic term (eg. K-inflation, DBI inflation, tachyonic inflation), with minimal or non-

minimal coupling to gravity (eg. Starobinsky inflation, Higgs inflation), etc. For a

detailed review and the current status of various models, see Refs. [69–71].

The future measurements of CMB will focus on the B-mode polarization [72]. The

amplitude of B-modes of CMB is a direct measure of the energy scale of inflation.

Their detection will provide a unique signature of the inflationary gravitational waves.

Some experiments dedicated for CMB B-mode polarization include CMB-S4 [73],

LiteBIRD [74], CORE [75]. Also, in the future, studies like HI intensity mapping with

BINGO [76], FAST [77] and SKA-I [78], will explore the non-Gaussian signatures in

the CMB [79]. Non-Gaussanity is an important aspect to understand the interactions

of the inflaton field and therefore demands precision measurements in this direction.

2.8 Numerical codes in Cosmology

The test of any theory in cosmology is its compatibility with observations. For the

various epochs of the Universe evolution, there are a variety of observations, like the

CMB temperature anisotopies and polarization [44, 45, 80–83], matter power spectrum

and baryon acoustic oscillations [84–87], galaxy cluster counts [88], dark ages 21 cm
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line [89], Lyman-α [90], weak lensing observations [91, 92],Type Ia supernovae [93],

Cepheid variables [94, 95] etc. In the era of precision cosmology, powerful numerical

tools are required to estimate the theoretical parameters which explain the observations

[96]. Here is the list of numerical codes used in this study.

CAMB (Code for Anisotropies in the Microwave Background)

CAMB [97] is a cosmological Boltzmann code, used for calculating the theoretical

power spectrum of the cosmological observables [98, 99]. It is written in Fortran and

Python languages, and is developed by Antony Lewis and Anthony Challinor. CAMB

integrates the Boltzmann equations for various species and has features to compute

CMB, CMB lensing, lensing, galaxy count and dark-age 21 cm power spectra, transfer

functions and matter power spectra, and background cosmological functions [100–

102].

CosmoMC (Cosmological Monte Carlo)

CosmoMC [103, 104] is a Markov Chain Monte Carlo (MCMC) engine for exploring

cosmological parameter space. It has been developed by Antony Lewis and Sarah

Bridle in Fortran language and has Python codes for analyzing MCMC samples. For

notes on installation and running of CosmoMC, see Refs. [105, 106]. CosmoMC is

based on the technique of Bayesian inference to estimate the model parameters that

best explain the observational data [107–110].

In the Bayesian analysis for cosmological parameter estimation, given a dataset D,

and a theoretical model parameter θ, the Baye’s Theorem is given as

P (θ|D) =
P (D|θ)P (θ)

P (D)
, (2.47)

where,

P (θ|D) is the posterior probability of a value of the parameter θ given the data,

P (D|θ) is the likelihood of the data given a model, i.e. the conditional probability of

data given a value of the parameter θ, and is also written as L(θ).

P (θ) is the prior probability of the theoretical parameter. It is the degree of belief in

the value of theoretical parameter, before the dataset D is observed, and
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P (D) is called the evidence or marginal likelihood, the probability of observing data

under all possible models. It is a normalizing constant obtained by marginalizing the

likelihood over all models,

P (D) =

∫
P (D|θ)P (θ)dθ.

In statistics, one also computes a quantity called chi-square, defined as,

χ2 =
∑
ij

(xi − µi) C−1
ij (xj − µj). (2.48)

Here µi and µj are the mean values of variables xi and xj , respectively, and the covari-

ance matrix,

Cij =< (xi − µi)(xj − µj) > .

For a gaussian distributions, the likelihood is given as

L(θ) = exp(−χ
2

2
). (2.49)

The best fit point to data is obtained for the theoretical parameters with a maximum

likelihood.

For CMB analysis, the Planck likelihoods need to be installed from the Planck

Legacy Archive [45]. The CAMB code is inbuilt into CosmoMC for the theoretical

computations of power spectra. The output of CosmoMC consists of multiple chains

with parameter values, which are then further analyzed.

GetDist GUI

GetDist [111, 112] is a Python package used for analysing CosmoMC chains. It reads

the MCMC chains in plain text format, and has a Graphical User Interface (GUI) for

easy use [113]. The output of GetDist are marginalized probability distribution (1

D) plots and statistics, joint contour (2 D) plots with 68%, 95%, and 99% confidence

limits, three parameter plots (3 D), and triangle plots.





Chapter 3

Warm Inflation

Although the cold inflation description successfully solves the problems faced by the

Standard Model of cosmology, it must be scrutinized for its supercooled phase during

inflation. This led to the idea of warm inflation, where one does not neglect the inflaton

dissipative effects during the slow roll, and it results in the production of radiation and

hence temperature in the Universe even during the inflationary phase. In this Chapter,

I present a review of warm inflation and the dynamics associated with it.

3.1 Introduction

Warm Inflation [114–116] is a description of inflation in which one accounts for the

dissipation processes and non-equilibrium effects during inflation. In this scenario, ra-

diation fields are produced simultaneously with the expansion during the inflationary

phase [114–118]. The inflaton energy dominates the energy density of the Universe,

as required for inflation. However, it also dissipates into the radiation energy density

as it evolves during inflation, and therefore, a separate reheating phase may not be

required in some warm inflation models [116, 119–121]. In this way, it differs from

the cold inflation description, where the particle production occurs only in the reheat-

ing phase after the end of inflation [55, 122, 123]. Because of the inflaton dissipation

into radiation, the Universe has a temperature throughout the inflationary phase, un-

like the supercooled state during cold inflation. (For reviews, see Refs. [124–130].)

Thus, warm inflation is a more natural and complete picture of inflation, with the cold

37
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inflation as its limiting case [131].

The warm inflation description has the following unique and distinct characteris-

tics from cold inflation. In this picture, the inflaton couplings with other fields are

accounted for during the inflationary phase [119, 131–137], unlike in cold inflation

where they are overlooked. As a result of its interactions, the inflaton dissipates its

energy, and calculations show that even a tiny amount of dissipation can lead to a

sufficient particle production and a temperature in the Universe. Therefore, the as-

sumptions of the cold inflation description have to be scrutinized more carefully, and

this motivates one to study warm inflation.

In warm inflation, the dynamics of the inflaton is modified and there is an addi-

tional friction term in its equation of motion because of its interactions and dissipation

into radiation [138–141]. The radiation fields which are produced backreact to affect

the fluctuations in the inflaton. These fluctuations are then imprinted on the cosmic

microwave background radiation as its temperature anisotropies. Therefore, from the

observations of the CMB, we can access the information about the microphysics of the

inflationary phase. The friction term in the evolution equation of the inflaton due to the

inflaton interactions during warm inflation is quantified as the dissipation coefficient

[142–145]. The microphysics of dissipation, such as the channel of decay, the cou-

pling strengths, and the multiplicities of the fields involved, govern the strength of the

dissipation coefficient [142, 144, 145], and even a small amount of inflaton dissipation

could lead to important cosmological consequences.

The criterion for warm inflation is that ρ1/4
r & H , where ρr is the radiation energy

density, and H is the Hubble expansion rate of the Universe [119, 139]. Assuming the

thermalization of the radiation, this amounts to the condition that the temperature of

the thermal bath T & H . The perturbations during warm inflation are generated in a

statistical state and are thermal [117, 134, 146–150], rather than the quantum vacuum

fluctuations in cold inflation. Therefore, the primordial curvature power spectrum for

warm inflation is sourced dominantly by the thermal fluctuations [147–151], and de-

pends on the magnitude of the dissipation. This leads to significant differences in the

imprints of warm inflation on the Cosmic Microwave Background radiation compared

to the standard cold inflation [152, 153]. For warm inflation models, the theoretical
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predictions of the scalar spectral index ns, and the tensor-to-scalar ratio r, depends on

the strength of the dissipation parameter. Warm inflation predicts a lower value of r,

as compared to the standard cold inflation. Therefore, certain inflation models which

were ruled out in the cold inflation studies because of r values above the observation-

ally allowed bounds, are now viable from the warm inflation dynamics for some range

of dissipation [136, 154–156].

Besides the Gaussian two-point correlations, warm inflation can also lead to non-

Gaussianities because of the inflaton interactions. These are studied in Refs. [157–

161], where it is shown that the amplitude of the bispectrum, measured in terms of the

non-linearity parameter fNL, as well as the shape of the bispectrum are different for the

warm inflation models and depends on the dissipation parameter and the temperature

of the thermal bath in the weak dissipation case.

Further, warm inflation also predicts interesting features at the small scales. In the

model we studied in Ref. [162], it is found that the dissipation parameter is enhanced

to a large value by the end of inflation, which leads to a huge growth in the primor-

dial power spectrum at the small scales and the formation of primordial black holes

[163–166]. This feature originates naturally in our model of warm inflation because of

inflaton dissipation, which makes it interesting to study. It will be discussed in detail

in Chapter 6.

Depending on the strength of inflaton dissipation, warm inflation is classified into

two dissipative regimes - weak and strong [125, 136]. These are characterized by

a dissipation parameter Q, defined as the ratio of the inflaton dissipation rate, Υ to

the Hubble expansion rate. When the dissipation parameter is smaller than the Hubble

expansion rate (Q < 1), it is the weak dissipative regime, and when it is larger (Q > 1),

then it is the strong dissipative regime of warm inflation.

For the strong dissipation case, warm inflation may relax the η problem [167],

which is related with the requirement to have an extremely flat potential during the

slow roll phase. In warm inflation, because of the dissipation coefficient term in the

inflaton equation of motion, the conditions for slow roll are modified. The presence

of the extra friction term slows down the inflaton motion, and thus, even for a non-

flat potential, the desired number of efolds of inflationary expansion can be achieved.
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Therefore, warm inflation is less restrictive in the flat shape of the potential, and the

slow roll conditions are relaxed in this scenario [168].

Furthermore, the warm inflation scenario also offers a resolution to the swamp-

land problems faced by cold inflation [169–173]. As inflation is a low energy effective

field theory, it has to obey some criteria, such as the swampland distance and de-Sitter

conjectures [174, 175], in order to embed it in a UV complete theory. It has been

found [176, 177] that single-field slow roll cold inflation, with a canonical kinetic term

and a Bunch Davies vacuum, is not in accordance with the swampland conjectures.

However, recent studies [169–173] show that a warm inflation description of inflation

can satisfy the swampland conjectures, thus making it in agreement with a high en-

ergy theory. This requires warm inflation to be in the strong dissipative regime [170]

with a large value of the dissipation parameter [171]. Such a large dissipation may

not be consistent to explain the CMB observations for many models, as discussed in

Ref. [171]. However, if the bounds in the swampland conjectures are relaxed, then

even the weak dissipative regime of many models can simultaneously satisfy both the

swampland conjectures as well as the current CMB observations [170, 171].

All these above features arise from the fundamental feature of treating the dynamics

of inflaton as that of a dissipative system, and hence makes warm inflation interesting.

Thus, a comprehensive study of the warm inflation scenario is significant and necessary

to understand the physics of the Universe.

3.2 Model Building in Warm Inflation

A microscopic particle physics construction of inflation has always been elusive. The

ultimate aim of the model building is to make a connection between elementary par-

ticle physics and the early Universe physics. In the warm inflation description, one

considers the dissipative processes during inflation which are based on the principles

of non-equilibrium field theory for interacting quantum fields [178–183]. Here the

background slow-rolling inflaton field constitutes the system and the radiation fields to

which it couples and dissipates its energy, constitute the reservoir or the environment.

The inflaton is assumed to be near-equilibrium and evolving slowly as compared to
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the microphysics timescales in the adiabatic approximation. The inflaton approach to

equilibrium can also be described in a linear response theory.

The effective equation of motion of inflaton field is obtained using the Schwinger-

Keldysh close time path formalism of thermal field theory (For reviews on this, see

Refs. [12, 184–188]). Using this formalism, a Langevin type equation of motion with

a dissipation term and a stochastic noise is obtained for the inflaton field coupled to

radiation [132, 178, 180].

The microphysics description of warm inflation is described by non-equilibrium

field theory [180], based on which a field theoretical model was constructed in Ref.

[132] for studying the strong dissipative regime of warm inflation. However, it was

indicated in [132] and also pointed out in [189] that it is difficult to obtain a success-

ful strong dissipative regime of warm inflation. The problem was that in the high-

temperature limit taken in Ref. [132], the thermal corrections to the effective potential

become large, due to which the shape of the potential no longer remains flat, and thus

inflation ends quickly without achieving a sufficient number of efolds of expansion

[189]. Therefore, subsequent studies considered new models, such as the supersym-

metric distributed mass model in the context of string theory [133], or a two-stage

decay mechanism of inflaton, where the inflaton couples to a heavy intermediate cat-

alyst field which then further couple to the light radiation fields [119, 131, 135, 139],

or recently discrete interchange symmetry in the warm little inflaton model [190, 191]

to control these corrections [192], and attain a strong dissipation regime of warm in-

flation.

There is another difficulty in warm inflation, that it usually requires the inflaton to

couple to a very large number of fields [136, 193]. However, such large multiplicities

of fields can be achieved through some string theory inspired generation mechanism

[194]. Another possible solution to this shortcoming is the recently proposed warm

inflation models with the inflaton as a pseudo-Nambu-Goldstone boson which requires

a very few additional fields [190, 195] and allow for a well-motivated particle physics

description.

In the literature, a number of studies have been carried out for the warm inflation

model building. Some examples include, warm supersymmetric hybrid inflation [193,
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196–198], warm hilltop potential [156, 193, 198, 199], warm inflation with a SUSY

breaking potential [153], warm inflation near an inflection point [200], warm natural

inflation [195, 201], tachyonic warm inflation [202], warm inflation with monomial

potentials [154–156, 193, 198], warm little inflaton [190, 203], warm psuedoscalar

inflation [204], minimal warm inflation with axions [205], etc. Also, inspired from

string theory, brane world models of warm inflation are constructed in Refs. [206–

209] and in loop quantum cosmology [210]. There are other warm inflation studies

which consider non-canonical scalar fields [211–213] or modifications to gravity, such

as f(R) theory [214, 215], f(G) gravity [216], teleparallel f(T ) gravity [217]. Apart

from this, there are studies which also include the viscous pressure contributions in the

radiation produced during warm inflation [218–220].

3.3 The theory of warm inflation

In this section, we first review the dynamical equations for the inflaton and the radiation

during warm inflation. Then, we define the slow-roll parameters and the slow roll

conditions in warm inflation. We then discuss the forms of the dissipation coefficient

and their physical interpretation. After that, we describe the primordial scalar and

tensor power spectrum for warm inflation.

3.3.1 Evolution equations for the inflaton and radiation

The warm inflation dynamics of inflation involves the evolution of a scalar inflaton

field φ(x, t) coupled with other fields. The system (inflaton) is assumed to be slightly

displaced from thermal equilibrium. Dissipative effects, because of its interactions

with the environment (fields coupled to inflaton), tend to relax the system to thermal

equilibrium within the relaxation time approximation. Using the principles of non-

equilibrium field theory, the effective equation of motion of the inflaton is calculated

to have a Langevin-like form with dissipation and fluctuation terms, as given by [132,

180]

φ̈(x, t) + 3Hφ̇(x, t) + Υφ̇(x, t)− 1

a2(t)
∇2φ(x, t) + V ′(φ) = ξq + ξT . (3.1)
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In this equation, apart from the Hubble friction term 3Hφ̇(x, t), due to the expansion of

the Universe, there is an additional friction from the dissipative term Υφ̇(x, t), which

is absent in the cold inflation Eq. (2.6). Υ(φ, T ) is called the dissipation coefficient,

and it emerges because of the terms in the Lagrangian involving the inflaton coupling

to the other fields. The form of Υ(φ, T ) depend on the microphysics of the inflaton dis-

sipation, and can be calculated as in Refs. [142, 144, 145]. The term ∇2φ(x, t)/a2(t)

represents an inhomogeneous background inflaton field value and is absent for the ho-

mogeneous field. Also, there are stochastic gaussian quantum and thermal fluctuations

(noise) terms ξq and ξT [150]. The presence of the noise terms in Eq. (3.1) backreacts

on the inflaton fluctuations, which then manifests in the primordial curvature power

spectrum.

The evolution of a classical homogeneous (spatial gradients equal to 0) background

inflaton field, can be obtained from Eq. (3.1), as

φ̈(t) + (3H + Υ) φ̇(t) + V ′(φ) = 0. (3.2)

We can define a dissipation parameter Q ≡ Υ/3H and rewrite the above equation as

φ̈+ 3H(1 +Q)φ̇+ V ′(φ) = 0, (3.3)

where the dissipation parameter, Q, is the ratio of the strength of inflaton dissipation

to the Hubble rate of expansion. For Q � 1, the dissipation coefficient is larger than

H , and this regime is termed as the strong dissipative regime. In this regime, the

dissipative effects have a prominent role during inflation. For Q � 1, the expansion

is faster than dissipation, and this is termed as the weak dissipative regime of warm

inflation. In this regime, the dissipative effects are present and affect the dynamics, but

are less prominent.

From the continuity equation, we can also express Eq. (3.2) in terms of the energy

density of the inflaton as,

ρ̇φ + 3H(pφ + ρφ) = −Υφ̇2. (3.4)

The negative sign on the right-hand side of this equation shows that the inflaton dissi-

pates its energy with time. As a result of the dissipation, radiation is produced along
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with the expansion during warm inflation. From the continuity equation, the radiation

energy density is given as

ρ̇r + 4Hρr = Υφ̇
2
. (3.5)

In this equation, the right-hand side is positive, implying a gain in the energy density

of the radiation with time. Assuming that the radiation thermalizes quickly after being

produced, we can write

ρr =
π2

30
g∗T

4 ≡ AT 4

where T is the temperature of the thermal bath, g∗ is the number of relativistic degrees

of freedom present during warm inflation, and A = π2g∗/30.

3.3.2 Slow roll parameters and conditions

The flatness of the potential V (φ) in inflation is measured in terms of the potential

slow roll parameters, similar to the ones defined for cold inflation

εφ =
M2

Pl

16π

(
V ′

V

)2

, ηφ =
M2

Pl

8π

(
V ′′

V

)
. (3.6)

In addition to these, in warm inflation there are other slow roll parameters defined as

[148, 168]

βΥ =
M2

Pl

8π

(
Υ′ V ′

ΥV

)
, b =

TV ′,T
V ′

, c =
TΥ,T

Υ
. (3.7)

Here the subscript ,T represents derivative of the quantity w.r.t T . These additional slow

roll parameters are a measure of the field and temperature dependence in the inflaton

potential and the dissipation coefficient.

The thermal corrections to the potential in warm inflation have to be controlled by

some symmetry arguments, such as in supersymmetric warm inflation models [119,

139, 192]. In the literature one also defines the horizon flow parameters in terms of the

Hubble parameter as

εH = − Ḣ

H2
, ηH = − Ḧ

2HḢ
. (3.8)

The stability analysis of warm inflationary solution shows that the following conditions

should be satisfied during the slow roll [168]

εφ � 1 +Q, |ηφ| � 1 +Q, |βΥ| � 1 +Q,
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0 < b� Q

1 +Q
, |c| < 4. (3.9)

As can be clearly seen, for large Q, these conditions relax the requirement for the

potential to be extremely flat, as the upper limit on the slow roll parameters εφ, ηφ is

increased. Therefore, the η problem is not as severe in warm inflation [167].

End of warm inflation

In the standard cold inflation, the violation of slow-roll conditions marks the end of

inflation. But in warm inflation, two conditions can bring the inflation to an end : (i)

either the slow-roll conditions are violated, or (ii) the radiation energy density domi-

nates the inflaton energy density, i.e., ρr > ρφ.

Evolution equations in the slow roll approximation

In the slow roll approximation, we can neglect φ̈ in Eq. (3.3), which gives

φ̇ ≈ −V ′(φ)

3H(1 +Q)
, (3.10)

and since ρ̇r is smaller than the other terms in Eq. (3.5) throughout inflation, we can

approximate ρ̇r ≈ 0 and obtain

ρr ≈
Υ

4H
φ̇

2
=

3

4
Qφ̇

2
. (3.11)

3.3.3 Dissipation coefficient

The microphysics of the inflaton-radiation system, results into dissipation, which is

quantified in terms of a dissipation coefficient. For an interacting inflaton, an effective

equation of motion is obtained by integrating over the fields coupled to the inflaton,

using the Schwinger closed time path formalism of thermal field theory (see Appendix

A for details). There is a non-local term in the effective action which corresponds to

the dissipative effects in the system and a transfer of energy from the inflaton to the

radiation fields. Assuming that the inflaton varies slowly compared to the response

timescale of the fields coupled to it in the adiabatic approximation i.e.
φ̇

φ
� τ−1,
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the non-local term can be localized and the resultant effective equation of motion of

background homogeneous inflaton is obtained as [144]

φ̈(t) + 3Hφ̇(t) + Υφ̇(t) + V ′(φ) = 0 (3.12)

where Υ is the dissipation coefficient which is calculated by accounting all the micro-

physical interactions as [144]

Υ =

∫
d4x′ ΣR(x, x′)(t′ − t) (3.13)

here the retarded self energy ΣR(x, x′) = Σρ(x, x
′)θ(t − t′), and Σρ is given in Ap-

pendix A. In this study, we are considering a two-stage decay of the inflaton in a

supersymmetric inflation model [142, 144]. In our model, we have three superfields

Φ, X , and Y , whose scalar and fermion components are (φ, ψφ), (χ,ψχ) and (σ,ψσ),

respectively. The interacting superpotential is given as

W = gΦX2 + hXY 2, (3.14)

where g and h are the coupling strengths between Φ−X , andX−Y , respectively. The

scalar inflaton is coupled with the intermediate bosonic and fermionic components of

the X superfield (also called catalyst fields), which subsequently decay into the scalar

and fermionic components of the Y superfield (called radiation fields). The radiation

fields are considered to be lighter than the catalyst fields. The scatterings of decay

products σ, ψσ with masses mσ,mψσ � T is sufficient to keep them thermalized and

constitute the thermal bath, as shown in the Appendix C of Ref. [145]. The inflaton

particle states are also assumed to thermalize with a same temperature, for some range

of effective couplings (see details in Ref. [145]).

The scalar part of the Lagrangian is given as

−Ls = |∂ΦW |2 + |∂XW |2 + |∂YW |2 (3.15)

= g2|χ|4 + h2|σ|4 + 4g2|χ|2|φ|2 + 4ghRe[φ†χ†σ2] + 4h2|χ|2|σ|2.

The scalar fields φ, χ, σ are chosen to be complex with real and imaginary components,

such as χ = (χ1+iχ2)/
√

2, and similarly for others. When the background scalar field

φ takes an expectation value ϕ/
√

2, the mass of the χ field is given as:

mχ1 =
√

2gϕ mχ2 =
√

2gϕ.
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The Yukawa interactions are obtained as

− LY =
1

2

∑
n,m

∂2W

∂ζn ∂ζm
ψ̄nPLψm +

1

2

∑
n,m

∂2W †

∂ζ†n ∂ζ
†
m

ψ̄nPRψm (3.16)

where ζ refers to the superfields Φ, X, Y and PL = 1 − PR = (1 + γ5)/2. For the

superpotential given in Eq. (3.14), the Yukawa interactions are given as

− LY = gφψ̄χPLψχ + 2gχψ̄φPLψχ + hχψ̄σPLψσ + 2hσψ̄χPLψσ + h.c. (3.17)

On accounting for these interactions of the inflaton with intermediate scalar boson

χ and fermion ψχ, the dissipation coefficient at leading order is obtained to be [144]

Υ =
2

T
g4φ2

∫
d4p

(2π)4
[ρχ1(ω,p)2 + ρχ2(ω,p)2] nB(ω) (1 + nB(ω))

+
2

T
g2

∫
d4p

(2π)4
tr[ρψχ(ω,p)2] nF (ω) (1− nF (ω)). (3.18)

Here nB(ω), nF (ω) are the Bose-Einstein and Fermi-Dirac distributions, respec-

tively, and ρχ, ρψχ are the spectral functions for the intermediate χ, ψχ fields.

ρχ(ω,p) =
i

p2 +m2
χ,R + iImΣχ

− i

p2 +m2
χ,R − iImΣχ

=
2ImΣχ

(p2 +m2
χ,R)2 + (ImΣχ)2

=
4ωpΓχ

(−ω2 + ω2
p)

2 + 4 ω2
p Γ2

χ

, (3.19)

where Γχ is the decay width of the χ field and is related to the imaginary component

of the self energy Σχ, as shown in Appendix A, ω2
p = |p2| + m2

χ,R is the dispersion

relation of the χ field, and m2
χ,R = m2

χ + ReΣχ is the effective, renormalized mass of

the χ field. The spectral function for fermionic field ψχ is given by

ρψχ(ω,p) =
i

/p+mψχ,R + iImΣψχ

− i

/p+mψχ,R − iImΣψχ

, (3.20)

where mψχ,R = mψχ + ReΣψχ is the effective, renormalized mass, and Σψχ is the self

energy of the ψχ field.

Thus, to calculate the dissipation coefficient, we need to compute the masses of

χ, ψχ fields and their decay width at finite temperature. The decay width of the χ, ψχ

fields has contributions from direct, inverse as well as thermal scatterings (Landau
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damping). The response timescale of the system is associated with the decay width as

τ → 1/Γ. For explicit calculations and expressions of the field self energy and decay

widths, see Appendix B of Ref. [144].

In certain approximations, the dissipation coefficient given in Eq. (3.18) reduces to

some simplified expression, which we analyze in our study. In one regime, the poles

of the spectral function dominate the integral and is called the pole approximation. In

the other regime, the integration is limited to low-momentum and it is referred to as

the low-momentum approximation.

• Low temperature limit

In this regime, the temperature of the thermal bath is much less than the masses

of the intermediate catalyst fields, χ and ψχ, i.e. T � mχ,R,mψχ,R, but is higher

compared to the radiation fields, T � mσ,R,mψσ ,R. The thermal corrections

to the effective masses of the χ, ψχ fields can be neglected in this regime, i.e.

m2
χ,R ' m2

χ = 2g2ϕ2 and m2
ψχ,R ' m2

ψχ = 2g2ϕ2. For large values of mχ/T,

the dominant contributions to the dissipation coefficient given in Eq. (3.18) come

from virtual χ fields with low energy and momentum, ω, |p| ∼ T � mχ which

leads to the low-momentum approximation. Then, (ω2 − ω2
p)

2 ≈ m4
χ, and the

spectral function for the scalar boson in Eq. (3.19) becomes

ρχ '
4

m3
χ

Γχ, (3.21)

which gives a leading order contribution to the dissipation coefficient, given in

Eq. (3.18), ∝ T 3/m2
χ [142, 144, 145]. The fermionic contribution is calculated

to be subleading in T in the low temperature limit (∝ T 5/m4
ψχ) [142, 144].

A detailed analysis including thermal corrections to the χ mass and finite decay

width of χ field in the spectral function gives [145]

Υ = Cφ
T 3

φ2
, (3.22)

where

Cφ =
h2

16π
NYNX .

Cφ depends on the multiplicities of X and Y superfields and coupling between

them. The inflaton couples to NX types of χ fields and each of them decay into

NY number of σ, ψσ. For this analysis to hold, h
√
NY ≤ 1.
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For h
√
NY � 1, when the deacy width Γχ is sufficiently small, the real on-

shell χ fields with mχ ≥ T can also contribute significantly to the dissipation

coefficient in the pole approximation (see Ref. [145] for detailed analysis).

• High temperature limit

In this limit, the intermediate catalyst fields are lighter, mχ,R,mψχ,R � T . The

main contribution to the dissipation coefficient comes from the pole in the spec-

tral function at ω = ωp and a resonant production of on-shell χ particles take

place. In the pole approximation, the bosonic spectral function becomes

ρ2
χ →

π

2ω2
pΓχ

δ(ω − ωp).

Substituting this in Eq. (3.18) for the scalar field, the dissipation coefficient gets

a contribution which is linearly dependent on the temperature of the thermal bath

Υ ≈ 0.691
g2

h2
T [142]. On accounting all the fermionic and bosonic contribu-

tions in Eq. (3.18), the total dissipation coefficient is obtained to be [142]

Υ = CTT, CT ≈ 0.97
g2

h2
. (3.23)

By knowing the value of CT , we can calculate the order of ratio of couplings

g/h, which is useful in model building.

A general expression for the dissipation coefficient dependent on the inflaton field

value φ, temperature of the thermal bath T , and the mass of the fields coupled to the

inflaton mX , is given in Ref. [143, 150] as

Υ(φ, T ) = CT cφ2a/m2b
X , (3.24)

where it is required that c+ 2a− 2b = 1.

3.3.4 Primordial curvature power spectrum

In warm inflation description, there is a temperature in the Universe throughout the

inflationary phase. Therefore, the fluctuations in the inflaton field are also sourced

by the thermal noise, unlike in the cold inflation where the inflaton has only quantum

fluctuations. By the fluctuation-dissipation theorem, the two-point correlation of the
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thermal fluctuations is related to the dissipation coefficient present in the equation of

motion of the inflaton Eq. (3.1) due to its interactions with the other fields.

The total primordial curvature power spectrum for warm inflation by including both

quantum and thermal contributions to the inflaton power spectrum is calculated in Refs.

[148–150, 221] and developed into the recent expression as in Refs. [156, 190, 222]

given as

∆2
R(k) =

(
H2
k

2πφ̇k

)2
[

1 + 2nk +

(
Tk
Hk

)
2
√

3πQk√
3 + 4πQk

]
G(Qk). (3.25)

Here is the description of each term present in this equation:

• The prefactor
(
H2
k

2πφ̇k

)2

is the primordial curvature power spectrum in the cold

inflation. It shows that in the limit Q → 0 and T → 0, we recover the standard

cold inflation from warm inflation.

• Due to the presence of the radiation bath in warm inflation, the inflaton can also

be excited from its vacuum state to some Bose-Einstein distribution, given as

nk =
1

exp(k/ak
Tk

)− 1
, (3.26)

which gives

1 + 2nk = coth
Hk

2Tk
. (3.27)

The system of inflaton particles and radiation fields is assumed to thermalize

with a same temperature, and the scattering rates are shown in Appendix of Ref.

[145]. The coth(Hk/2Tk) factor emerges from the quantum contributions to the

inflaton fluctuations [150].

• In addition, due to the thermal noise contributions to the inflaton fluctuations, the

primordial power spectrum has terms dependent on the dissipation coefficient

and the temperature of the thermal bath, as given by the third term in the square

bracket.

• In the strong dissipation limit Q� 1, the two-point correlation of inflaton fluc-

tuations 〈|δφk|2〉 ∝ (ΥH)1/2T [148].
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• In the weak dissipation limit, Q � 1, the two-point correlation is given by

〈|δφk|2〉 ∝ HT , which was proposed in Ref. [117].

• The perturbations in the radiation can also couple to the inflaton perturbations

and lead to a growth in the primordial power spectrum [149]. This growth factor

G(Qk) depends on the form of dissipation coefficient and is obtained numeri-

cally. As given in Refs. [156, 190]

For Υ ∝ T, G(Qk)linear = 1 + 0.0185Q2.315
k + 0.335Q1.364

k .

For Υ ∝ T 3, G(Qk)cubic = 1 + 4.981Q1.946
k + 0.127Q4.330

k .

• In the weak dissipation regime (smallQ), the growth factor does not enhance the

power spectrum significantly. But in the strong dissipation regime (large Q), the

power spectrum is considerably enhanced due to the growth factor.

• In the strong dissipation regime, the shear effects in radiation also become im-

portant which cause damping of the power spectrum [221], and therefore the

overall growth in the power spectrum is reduced. In the expression for the pri-

mordial power spectrum given above, we do not account for any shear effects.

3.3.5 Primordial tensor power spectrum

Furthermore, the tensor fluctuations of the metric during warm inflation give rise to a

primordial tensor power spectrum [222] similar to cold inflation

∆2
t (k) =

16

π

(
Hk

MPl

)2

, (3.28)

and the ratio of the tensor to the scalar power spectrum, given by the tensor-to-scalar

ratio,

r =
∆2
t (kP )

∆2
R(kP )

. (3.29)

Monomial potentials of cold inflation predict a large value of the tensor-to-scalar ratio,

greater than the upper limit on r from CMB observations. Hence, the non-detection of

the primordial gravitational waves rule out the monomial potentials of cold inflation.

But for our warm inflation models, we find that this ratio gets reduced to values within

the allowed upper bound on r from Planck 2015 observations, and hence these warm

inflation models are viable.
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3.4 Summary

Warm inflation is a well-motivated and general description of inflation, in which the

dissipation and non-equilibrium effects during inflation are considered. The inflaton

couplings to the other fields are considered in the inflation phase, unlike in cold infla-

tion where they are overlooked. Due to inflaton dissipation, there is particle production

simultaneously with the expansion phase, and hence there is a non-zero temperature in

the Universe.

The dynamics of the inflaton is modified with an additional friction term due to

its coupling with the other fields. The microphysics of dissipation and the channel

of decay govern the form of the dissipation coefficient in the dissipative term. It is

quantified in terms of a dissipation parameter,Q, which can play a dominant (for strong

dissipation Q � 1) or a subdominant role (for weak dissipation Q < 1) during warm

inflation. From the kinematic equations of warm inflation, we infer that as the inflaton

field evolves, the magnitude of the dissipation parameter Q increases. Therefore, even

if the dissipation is weak initially, it can become strong by the end of inflation, and

cause a growth in the primordial power spectrum.

The primordial curvature power spectrum during warm inflation is dominated by

the thermal fluctuations and has distinct signatures on the CMB, compared to cold

inflation. The tensor-to-scalar ratio for the warm inflation models is lowered, and as

a result, some potentials of inflation, which were ruled out in cold inflation studies,

become viable models to describe inflation.



Chapter 4

Warm inflation models with λφ4

potential

Given the importance of warm inflation, now I present my study on the warm inflation

models carried out in this thesis. Firstly, I calculate the primordial power spectrum

for the large scale fluctuations generated during inflation in these warm inflation mod-

els. Then using the MCMC technique, I estimate the parameters for these models, for

which the theoretical predictions of the cosmological observables are consistent with

the CMB measurements.

4.1 Models of warm inflation studied

The monomial potentials (V (φ) ∝ φp) of warm inflation are chosen in this study, as

they are the simplest, one parameter models. Being large field models, they predict a

large value of the tensor-to-scalar ratio, which can be used to test these models. The

CMB B-mode polarization detection, if possible, in the future experiments, would be

a smoking gun test for the various inflationary models.

Here we have considered two models of warm inflation with the λφ4 potential. As

shown in Fig. 4.1, the WMAP observations of CMB temperature anisotropies have

ruled out the λφ4 potential of cold inflation, as its prediction for the tensor-to-scalar

ratio is larger than that allowed from the observations. However, it is indicated in

some warm inflation studies [154–156, 193, 198] that for certain parameter values of

53
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Figure 4.1: The allowed values of ns and r from the WMAP Seven-year observations

are shown here [8].

the monomial potentials, the tensor-to-scalar ratio may be lowered, and hence these

potentials may also be consistent with the CMB. Therefore, a detailed analysis for the

parameter space of the warm inflation models with monomial potentials is essential to

test their viability.

The warm inflation description is motivated from its completeness and its origin

from the fundamental principles, as was discussed in detail in Chapter 3. In this de-

scription, the equation of motion of the inflaton is modified with an additional friction

term, arising from its interactions with the other fields. The inflaton dissipates its en-

ergy into radiation as it evolves during inflation, which is quantified by a parameter

called the dissipation parameter. Thus, apart from the inflaton self-coupling, there is

an extra model parameter in warm inflation, namely the dissipation parameter, and our

goal is to compute the range of values it can have to consistently explain the observa-

tions.

The observational signatures of warm inflation on the CMB anisotropies differ

from cold inflation. As the Universe during warm inflation has a temperature, the

fluctuations generated in warm inflation are dominantly thermal in origin, which thus

leads to a significant modification of the primordial curvature power spectrum. This

may result in the lowering of the tensor-to-scalar ratio predictions for some warm in-

flation models. Therefore, it is important to determine how much dissipation may be



4.2. Parameterization of the primordial power spectrum 55

allowed in any warm inflation model, in order that it satisfies the CMB measurements.

The following models of warm inflation with the two forms of dissipation coefficient,

as explained in the previous Chapter, are considered here:

• V (φ) = λφ4 with the dissipation coefficient Υ = CφT
3/φ2.

• V (φ) = λφ4 with the dissipation coefficient Υ = CTT .

We study both the cases, when the dissipation is weak (Q� 1), and when it is strong

(Q� 1), and find the correlations in the model parameters for both the regimes.

4.2 Parameterization of the primordial power spectrum

Firstly we parameterize the primordial power spectrum, as given in Chapter 3 for all

the models. By doing so, we express the primordial power spectrum in terms of only

a few model parameters. As can be seen, the primordial power spectrum has many

terms,

∆2
R(k) =

(
H2
k

2πφ̇k

)2
[

1 + 2nk +

(
Tk
Hk

)
2
√

3πQk√
3 + 4πQk

]
G(Qk). (4.1)

We expand on each term for our models here.

4.2.1 When the dissipation coefficient Υ = CφT
3/φ2

In this model, the dissipation coefficient has a cubic dependence on the temperature of

the radiation bath.

• The energy density during inflation is largely the potential of the inflaton field.

Therefore we can write the Einstein equation for this potential from Eq. (1.12)

(for a flat Universe k = 0) as

H2 =
8π

3

λφ4

M2
Pl

. (4.2)

For the slow rolling inflaton field, the evolution equation given in Eq. (3.10) can

be written as,

φ̇ ≈ −V ′(φ)

3H(1 +Q)
= −4

3

√
3

8π

√
λ
φMPl

(1 +Q)
. (4.3)
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On combining the above two equations, we obtain

H2
k

2πφ̇k
= −

√
8π

3

√
λ

(
φk
MPl

)3

(1 +Qk). (4.4)

Thus, for this model, Eq. (4.4) is the prefactor of the primordial power spectrum

in Eq. (4.1).

• Now we look for the terms in the square bracket of the primordial power spec-

trum. The temperature of the thermal bath of radiation in the slow-roll approxi-

mation can be obtained from Eq. (3.11) as,

ρr = AT 4 =
3

4
Qφ̇2, (4.5)

where A ≡ (π2/30)g∗. Thus on substituting φ̇ from Eq. (4.3) into this, we get

Tk =

(
15

π3g∗

Qk

(1 +Qk)2
λφ2

kM
2
Pl

) 1
4

, (4.6)

and further using Eq. (4.2), we get

Tk
Hk

=

(
15

π3g∗

) 1
4

√
3

8π
λ−

1
4

Q
1
4
k

(1 +Qk)
1
2

(
φk
MPl

)−3/2

. (4.7)

Throughout warm inflation, this factor Tk/Hk has to be greater than 1 for all the

fluctuation modes.

• As mentioned before, the non-zero inflaton particle number, nk, is represented

by a Bose-Einstein distribution, which gives 1 + 2nk = coth(Hk/2Tk). Using

Eq. (4.7), we calculate this factor.

• We now evaluate the inflaton field value, φk. In this model, the dissipation co-

efficient is taken as Υ = Cφ
T 3

φ2
. Thus, from this, we can write the inflaton field

value

φ =

(
CφT

3

3QH

)1/2

.

Then, on substituting Eqs. (4.6) and (4.2) into this, we get

φk
MPl

=

√
1

8π

(
64C4

φλ

9A3

1

Qk(1 +Qk)6

) 1
10

. (4.8)

This is then substituted in the prefactor, and the Tk/Hk, to express the primordial

power spectrum in terms of variables λ, Qk and Cφ.
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We also parameterize the tensor power spectrum by substituting Eq. (4.2) in the

expression for tensor power spectrum,

∆2
t (k) =

16

π

(
Hk

MPl

)2

=
128

3
λ

(
φk
MPl

)4

. (4.9)

By substituting Eq. (4.8) into this, we obtain ∆2
t (k) in terms of λ,Qk and Cφ.

4.2.2 When the dissipation coefficient Υ = CTT

In this model, the dissipation coefficient is taken to be linearly dependent on the tem-

perature, but the inflaton potential is the same as the previous model. The equations

(4.4), (4.7), and (4.9) hold for this model as they are not explicitly dependent on the

form of the dissipation coefficient. However, as the field value φk depends on the Υ,

we now evaluate it. In this model, we have taken the dissipation coefficient Υ = CTT ,

which gives
T

H
=

3Q

CT
. On equating this with Eq. (4.7), we obtain

(
φk
MPl

)
=

√
1

8π

(
4C4

T

9λA

1

Q3
k(1 +Qk)2

) 1
6

. (4.10)

This is then used to express the primordial scalar and tensor power spectrum for this

model in terms of the variables λ,Qk and CT .

4.3 Dissipation parameter evolution during inflationQk

The dissipation parameter Q ≡ Υ(φ, T )

3H
changes during inflation, as the inflaton rolls

down in the field space during inflation. In this section, we calculate the evolution

of the dissipation parameter during inflation. In our notation, N = ln(ae/a), is the

number of efolds counted from the end of inflation (N = 0). As inflation proceeds, N

decreases, and at the pivot scale, N = NP . We define a variable x = ln(k/kP ), where

kP corresponds to the pivot scale, and write

dQ

dx
=

(
dQ

dN

)(
dNk

dx

)
. (4.11)

We first calculate both the terms on the r.h.s. of this equation in the subsections below.

After that, we integrate Eq. (4.11) to obtain Qk, and further ∆2
R(k).
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4.3.1 Calculation of dQ/dN

In Eqs. (4.8) and (4.10), we separate the functions of Q on the left hand side, and then

take the derivative with respect toN . We can then write
dφ

dN
=

(
dφ

dt

)(
dt

dN

)
= − φ̇

H

and use the expressions for φ̇ and H for both the models calculated in the previous

section. The expressions for dQ/dN thus obtained are the following. For cubic dissi-

pation, we get

dQ

dN
= −40

(
9A3

64C4
φλ

) 1
5
Q6/5(1 +Q)6/5

(1 + 7Q)
, (4.12)

and for linear dissipation, we have

dQ

dN
= −24

(
9Aλ

4C4
T

) 1
3 Q2(1 +Q)2/3

(3 + 5Q)
. (4.13)

The negative sign of dQ/dN implies that the dissipation parameter Q increases as the

inflation proceeds (N decreases) for the models considered in this study.

In Fig. 4.2, we plot the solution of Eq. (4.12) for the cubic dissipation model

as a function of the number of efolds of inflation. We find that though initially the

dissipation is weak (the mean value obtained for this model as QP = 10−2.4) at the

pivot scale (NP = 50), it can become very large by the end of inflation. As Q crosses

1 during inflation the model transits from weak dissipation to strong dissipation.
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Q
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Figure 4.2: Plot showing how the dissipation parameter changes as a function of the

number of efolds of inflation. For this plot, we have fixed NP = 50 and considered the

mean values for this model as QP = 10−2.4, λ = 1.68× 10−14, and Cφ = 8.8× 106.
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Dissipation parameter at the end of warm inflation

For our models, the end of warm inflation is governed by the violation of the slow-roll

conditions, given in Eq. (3.9). As ηφ is the largest of all the slow-roll parameters,

hence it is used to mark the end of warm inflation, as

ηe =
12

8π

M2
Pl

φ2
e

= 1 +Qe. (4.14)

For the cubic dissipation coefficient, we substitute φe from Eq. (4.8) and obtain the

equation for Qe as

Q2
e +Qe =

(
64C4

φλ

9C3
R

)
1

125
, (4.15)

and for a linear dissipation coefficient, we substitute Eq. (4.10), and obtain

Q3
e(1 +Qe)

−1 =
4C4

T

9Aλ

(
1

12

)3

. (4.16)

The solution to these equations are given in the Appendix B. We obtain Qe as function

of λ,Cφ (for cubic dissipation) or λ,CT (for linear dissipation).

4.3.2 Calculation of dN/dx

The number of efolds when any perturbation scale k crosses the horizon (k = aH) is

defined as,

Nk = ln
ae
ak

= ln
ae
aP

+ ln
aP
ak
,

where ae, aP , and ak are the scale factor at the end of inflation, and at the epoch when

the pivot scale and the kth scale cross the horizon, respectively. This can be written as

Nk = NP + ln
kPHk

kHP

= NP − ln
k

kP
+ ln

Hk

HP

. (4.17)

We define a quantity x ≡ ln(k/kP ), and then differentiate the above equation w.r.t x,

which gives
dNk

dx
= −1 +

Ḣk

Hk

dt

dN

dNk

dx
= −1− Ḣk

H2
k

dNk

dx
. (4.18)

Using the definition of slow roll parameter εH = − Ḣ

H2
, we thus obtain

dNk

dx
= − 1

1− εH
. (4.19)
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Resulting expressions for dQ/dx

As a result of the calculations in the above two subsections, we finally obtain dQ/dx

by substituting Eqs. (4.12) and (4.19) in Eq. (4.11) for the cubic dissipation as

dQ

dx
=

40

1− εH

(
9A3

64C4
φλ

) 1
5
Q6/5(1 +Q)6/5

(1 + 7Q)
, (4.20)

and from Eqs. (4.13) and (4.19) for the linear dissipation model as

dQ

dx
=

24

1− εH

(
9Aλ

4C4
T

) 1
3 Q2(1 +Q)2/3

(3 + 5Q)
. (4.21)

These expressions are then integrated from QP (at x = 0) to Qk (at any x) to obtain

Qk. On substituting Qk in the parameterized power spectrum obtained in Section 4.2,

we get ∆2
R(k).

4.4 Analysis

Here we plot and study the evolution of various quantities as a function of the number

of efolds of inflation, using the calculations in the previous sections. We choose the

cubic dissipation model for making the plots, however, the analysis done in this Section

also applies to the other models considered in this thesis.

4.4.1 Evolution of the inflaton and the radiation

In Fig. 4.3 (a), we first plot the inflaton field evolution from Eq. (4.8) using the

corresponding Qk value calculated in Eq. (4.12). The inflaton energy density during

inflation, ρφ ∼ V (φ) = λφ4, is also calculated and plotted in Fig. 4.3 (b). To plot these,

we consider that at the pivot scale, kP = 0.05 Mpc−1, NP = 50, and QP = 10−2.4

(the mean value obtained for this model). It will be shown in Section 4.5, that for a

fixed NP and QP , the variables λ and Cφ (or CT ) are related, and the primordial power

spectrum is a function of only λ and QP . Thus, if we fix the normalization of the

power spectrum as ∆2
R(kP ) = As = 2.2 × 10−9, we obtain λ and the corresponding

Cφ. For NP = 50, QP = 10−2.4, we obtain λ = 1.68 × 10−14, and the corresponding

Cφ = 8.8× 106.



4.4. Analysis 61

The temperature of the thermal bath of radiation, as calculated in Eq. (4.6) is

plotted in Fig. 4.3 (c) using the Eqs. (4.8) and (4.12). Also, the radiation energy

density, ρr = (π2/30) g∗T
4 is calculated and plotted in Fig. 4.3 (b) for QP = 10−2.4.

We can see that ρφ is greater than ρr throughout the inflationary phase for this model of

warm inflation. Therefore, the violation of slow roll conditions mark the end of warm

inflation for our models. Also, a separate reheating phase will be needed at the end of

inflation, so that the Universe becomes radiation dominated.
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Figure 4.3: (a) The evolution of the inflaton field, (b) the energy density in inflaton

and radiation, and (c) the temperature of the thermal bath of radiation, as a function of

the number of efoldings. Here we have fixed NP = 50 and chosen the mean values of

parameters for this model as QP = 10−2.4, λ = 1.68× 10−14, and Cφ = 8.8× 106.

4.4.2 Thermal equilibrium and a lower bound on QP

In the warm inflation description, we assume that the system is not far away from

equilibrium and the radiation fields thermalize quickly over the time scale of Hubble
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expansion. The condition for warm inflation is that the temperature of the thermal bath

of the radiation is greater than the Hubble rate of expansion. Here we ascertain the

minimum value of the dissipation parameter for which the condition for warm inflation

is satisfied.

We calculate Tk/Hk given in Eq. (4.7) as a function of the number of e-foldings

using the Eqs. (4.8) and (4.12) and plot it for different values of QP in Fig. 4.4. We

list the values of λ, and Cφ for different values of QP used for plotting in Table 4.1.

For these plots, at the pivot scale, NP is fixed to 50.

QP λ Cφ

10−1 1.18× 10−14 1.45× 107

10−2.4 1.68× 10−14 8.82× 106

10−5.0 3.49× 10−14 2.73× 106

Table 4.1: The values of λ, Cφ for various values of QP , used for plotting Fig. 4.4.

We find that Tk > Hk holds for allQP > 10−5.0. A similar behaviour is seen for all

the other models with the condition being satisfied for QP > 10−5.0. It is also seen that

Tk/Hk increases as inflation proceeds till the end. Therefore, if QP > 10−5.0 initially,

it will ensure that throughout the inflation, the condition of warm inflation is satisfied.
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Figure 4.4: Plots showing the variation of Tk/Hk as a function of the number of efolds

for different values of QP .
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4.4.3 Primordial power spectrum

Now we plot the primordial power spectrum as a function of x = ln k/kP , by using

the calculations carried out in Section 4.2.1, and the evolution of dissipation parameter

from Eq. (4.20). The pivot scale kP is chosen at 0.05 Mpc−1, and the number of efold

corresponding to it, NP is fixed to 50. In Fig. 4.5, we plot log10 ∆2
R(k) versus x for

different values ofQP , using the parameter values listed in Table 4.1. The range of x is

chosen for the large scale CMB modes, corresponding to k = 10−4 Mpc−1 (x = −7)

to 1 Mpc−1 (x = +3). In the figure, we also plot the standard power law power

spectrum, ∆2
R = As(k/kP )ns−1 with ns = 0.9645 [223, 224] (Black line). For every

QP , different values of λ are chosen to give the correct normalisation of the power

spectrum, as given in Table 4.1.
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Figure 4.5: Plot of log10∆2
R(k) vs ln(k/kp) for different values of QP for the model

with cubic dissipation. HereNP = 50 andAs is fixed to obtain the corresponding λ for

each QP . The standard power law with ns = 0.9645 is also plotted as a solid (black)

line.

It can be seen that for different value of the dissipation parameter, the amplitude of

the power spectrum for the CMB modes varies, however the normalization is fixed at

the pivot scale (ln(k/kP ) = 0). The power spectrum for the mean value of QP for this

model, resembles the standard power law spectrum for cold inflation.



64 Chapter 4. Warm inflation models with λφ4 potential

4.4.4 Scalar Index

The slope of the primordial power spectrum at the pivot scale is determined by the

spectral index, ns. The scalar spectral index is defined as

ns − 1 =
d ln ∆2

R(k)

d ln
(

k
kP

)
∣∣∣∣∣∣
k=kP

=

(
d ln ∆2

R
dQ

)(
dQ

dx

)∣∣∣∣
k=kP

.

We calculate the spectral index for our models using the calculations in the Section 4.2

and Eqs. (4.20), (4.21). The resulting expressions are given in the Appendix D.

It can be seen from the Appendix D, that the spectral index depends on the value

of the dissipation parameter. Therefore, the observational bounds on ns govern the

range of dissipation values for any model of warm inflation. Depending on the slope

of the primordial power spectrum, the spectral index can be red-tilted (ns − 1 < 0) or

blue-tilted (ns − 1 > 0). We can see that for the QP values used in plotting Fig. 4.5,

the spectrum is red-tilted for the CMB modes (ns < 1).

4.5 Model Parameters

Till now, we have parameterized the primordial power spectrum in terms of λ,Qk and

CT (orCφ), and calculatedQk. Now we reduce the number of independent variables by

fixing the number of efolds corresponding to the pivot scale NP . For this, we integrate

dN/dQ by using the expressions for dQ/dN obtained in Section 4.3.1, from QP (at

pivot where N = NP ) to Qe (at the end of inflation where N = 0) for all the models

(using the solution to Qe from the Appendix B). The integration gives

NP = F (Qe)− F (QP ) = F (λ,Cφ orλ,CT )− F (QP ) , (4.22)

where F (Q) is the integral function, given in Appendix C. This equation implies that

for a given QP , if we fix NP , then λ and Cφ (or CT ) will be related. Therefore, the

power spectrum will be effectively a function of only two variables, the inflaton self-

coupling λ and the dissipation parameter value at the pivot scaleQP , which will be our

model parameters for running CosmoMC.
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4.5.1 Choice of priors for model parameters

From Section 4.4.4, we see that the expressions for the spectral index depend on the

dissipation parameter, and therefore the observational bounds on ns restrict the range

of QP values for any model.

Using the expressions for ns given in the Appendix D, we generate the ns versus

QP plot in Fig. 4.6. To generate it, we take NP = 60, and fix the normalisation of the

power spectrum, thus for every QP value obtain the corresponding λ and Cφ (or CT ).

In the plot, we also show the allowed values for ns for a power-law power spectrum,

from the Planck 2015 TT, TE, EE + low P results [223–225] given as

ns =

0.9645± 0.0049 ( 68% C.L. )

0.9645+0.0098
−0.0096 ( 95% C.L. )
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Figure 4.6: The spectral index, ns as a function of the dissipation parameter, log10QP

are plotted for (a) the model with cubic dissipation coefficient on the left, and, (b) the

model with a linear dissipation coefficient on the right. The colored band shows the

allowed ns values from Planck 2015 TT, TE, EE + low P results for a power law power

spectrum with 68% and 95% C.L..

It can be seen from the figure that only a certain range of QP is consistent with the

allowed ns, as listed in the Table 5.1. Hence, we choose the prior for QP such that

the ns corresponding to it lies in the allowed band. In our study, we consider both the

weak and strong dissipative regime for the linear dissipation coefficient. However, we

see that for the cubic dissipation coefficient, none of the values of QP are consistent

with the allowed ns in the strong dissipative regime. Hence, we consider only the weak
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dissipative regime for the cubic dissipation model. Further, we estimate the priors for

λ corresponding to the chosen priors for QP .

Model Allowed QP range Allowed QP range

in weak dissipation regime in strong dissipation regime

cubic dissipation (NP = 50) [10−5, 0.032] −

cubic dissipation (NP = 60) [6.31× 10−4, 0.02] −

linear dissipation [10−5, 1] [1, 1.58]

Table 4.2: The allowed values of QP from the ns plots in Fig. 4.6. For the cubic

dissipation (Υ ∝ T 3), only the weak dissipation regime is favored by the CMB Planck

2015 TT, TE, EE + low P observations.

4.6 CMB angular power spectrum

Now we generate the angular power spectrum for our warm inflation model and study

the effects of varying the model parameters λ and QP on the angular power spectrum.

For these plots, we consider the warm inflation model with the cubic dissipation.

4.6.1 When λ is fixed, and QP is variable

In Figure 4.7 we plot the TT angular power spectrum of CMB for our warm inflation

model by fixing a value of λ while varying QP . In the same figure, we also plot

the standard power law angular power spectrum, and show that for our mean values of

parameters (forNP = 50, QP = 10−2.4 and λ = 10−13.7746), the fit to the observational

data points for our warm inflation model resembles the standard power law spectrum

with ns = 0.96. It can be seen in the plot that by increasing dissipation parameter, the

angular power spectrum increases.

4.6.2 When QP is fixed, and λ is variable

Next we vary λ while keeping QP fixed to its mean value, and plot the angular power

spectrum in Fig. 4.8 for our warm inflation model. We see that the angular power
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Figure 4.7: The TT angular power spectrum of the CMB for various values of QP ,

with λ = 10−13.7746 and NP = 50. In the plots, low ` refers to the range ` = 2 − 49

while high ` refers to the range ` = 50− 2500.

spectrum is sensitive to even a slight variation in λ, and as the value of λ increases, the

angular power spectrum increases.
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Figure 4.8: The TT angular power spectrum of the CMB for various values of λ, fixed

QP = 10−2.4 and NP = 50.

4.6.3 Effect of the inflaton non-zero particle number distribution

In warm inflation, one considers a thermal distribution of inflaton particles excited

from the zero momentum condensate state, due to the collisions with the thermal bath
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of radiation. This is quantified by a distribution function in the expression for the

primordial power spectrum, as given in Eq. (3.26). Here we discuss the effects due to

this non zero particle number distribution of the inflaton on the angular power spectrum

of the CMB.

The inflaton particle distribution is taken as a Bose-Einstein distribution, which

results in a coth term in the primordial power spectrum, as 1 + 2nk = coth(Hk/2Tk).

In the Fig. 4.9, we have plotted the angular power spectrum for our warm inflation

model with the coth term retained (nk 6= 0) and the coth term set to 1 (nk = 0).
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Figure 4.9: Angular power spectra for warm inflation with the coth term retained in

the primordial power spectrum and with the coth term set to 1 (nk = 0).

We see that the effect of the coth term is to enhance the angular power spectrum,

and it is almost uniform across angular scales. It results in a lowering of the Hubble

parameter so that the total primordial power is normalized at the pivot scale. In Table

4.3, we list the values for parameters λ, φP , and HP for the three cases, when the coth

term is retained in warm inflation (nk 6= 0), when the coth term is set to 1 (nk = 0),

and also for comparison cold inflation.

We find thatHP for the warm inflation case with the coth term is the lowest. Lower

HP lowers the tensor power spectrum, given in Eq. (4.9) and hence the tensor to scalar

ratio, r, thereby making the quartic potential warm inflation scenario with the coth

term retained more compatible with Planck data.
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λ φP HP

Warm inflation with nk 6= 0 1.68× 10−14 3.01 MPl 4.09× 1013GeV

Warm inflation with nk = 0 3.09× 10−13 3.01 MPl 1.76× 1014GeV

Cold inflation 6.14× 10−14 4.03 MPl 1.40× 1014GeV

Table 4.3: The list of parameters λ, φP , and HP for the cases when nk 6= 0, nk = 0 in

warm inflation and for cold inflation. Here QP = 10−2.4, NP = 50 and As is fixed.

4.7 CosmoMC results

In this Section, we show the results for the Markov Chain Monte Carlo (MCMC)

analysis of our models in the weak and strong dissipation regimes using CosmoMC.

We run the CosmoMC chains over a six dimensional parameter space, listed in Table

4.4, with flat priors.

Ωbh
2 the baryon density

Ωch
2 the cold dark matter density

100 θ the observed angular size of the sound horizon at recombination

τ the reionization optical depth

− log10 λ the inflaton self-coupling

(±) log10QP the dissipation parameter

(+ in the strong dissipation regime, − in the weak dissipatve regime)

Table 4.4: The list of independent cosmological parameters over which the MCMC

runs are carried out in this study.

CosmoMC configuration

We use the September 2017 version of the CAMB and the November 2016 version of

CosmoMC and set the flags: compute tensor = T, CMB lensing = F, and use nonlinear

lensing = F. The number of massless neutrino species is set to its value in the Standard

Model, nν = 3.046 and the Helium fraction YHe = 0.24 in our analysis. The pivot

scale is set at kP = 0.05 Mpc−1, and the CosmoMC analysis is performed with the

Planck 2015 TT, TE, EE + low P dataset.
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4.7.1 Constraints on the parameters of the warm inflation model

V (φ) = λφ4 with a cubic dissipation coefficient Υ = CφT
3/φ2

As was discussed in Section 4.5.1, for this model, none of the values ofQP in the strong

dissipative regime is allowed from the observed bounds on the spectral index. There-

fore, only the weak dissipative regime of warm inflation is analysed for this model.

We perform the MCMC analysis for this model for two cases, one by fixing NP = 50,

and two, when NP = 60. The CosmoMC results for the mean and 68 % limits of the

cosmological parameters are listed in Table 4.5 for the case when NP = 50 and Table

4.6 for NP = 60.

Parameter Priors 68% C.L.

Ωbh
2 [0.005, 0.1] 0.02220± 0.00013

Ωch
2 [0.001, 0.99] 0.1191± 0.0010

100 θ [0.50, 10.0] 1.04089± 0.00029

τ [0.1, 0.8] 0.065± 0.011

− log10 λ [13.0, 14.0] 13.783± 0.051

− log10QP [1.0, 5.4] 2.4358± 0.5856

Table 4.5: The priors and the mean values of the parameters along with 68% C.L.

for the model V (φ) = λφ4 with Υ = CφT
3/φ2 in the weak dissipative regime when

NP = 50. These values of the parameters are consistent with the Planck 2015 TT, TE,

EE + low P dataset.

Analysis of ns and r values

ForNP = 50, we obtain the mean values of λ = 1.6×10−14 andQP = 3.7×10−3.

For these values, we get ns = 0.9660 and r = 0.0275, which is within 68% C.L. of the

allowed values from the Planck data. ForNP = 60, the mean values of λ = 1.0×10−14

and QP = 4.4 × 10−3. In Fig. 4.10, we plot the tensor-to-scalar ratio r vs log10QP

for fixed NP = 60, and show that as the dissipation increases, the tensor-to-scalar ratio

decreases. We also show the ns − r plot for different QP (and the corresponding λ)

values in right plot of Fig. 4.10. Moving from left to right on the plot, the QP value
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Parameter Priors 68% C.L.

Ωbh
2 [0.005, 0.1] 0.02226± 0.00013

Ωch
2 [0.001, 0.99] 0.1177± 0.0009

100 θ [0.50, 10.0] 1.04105± 0.00029

τ [0.1, 0.8] 0.075± 0.011

− log10 λ [13.5, 14.5] 13.998± 0.037

− log10QP [1.0, 5.4] 2.3585± 0.4495

Table 4.6: The priors and the mean values of the parameters along with 68% C.L.

for the model V (φ) = λφ4 with Υ = CφT
3/φ2 in the weak dissipative regime when

NP = 60. These values of the parameters are consistent with the Planck 2015 TT, TE,

EE + low P dataset.

increases. For the mean value of QP = 4.4× 10−3 for NP = 60, we get ns = 0.9712

and r = 0.0222, which is within 95% C.L. of the allowed values from the Planck data.

Therefore, we infer that this potential of warm inflation is a viable model to describe

inflation for some parameter space, given in Table 4.5 and 4.6. The value of the tensor-

to-scalar ratio is within the sensitivity of next generation CMB experiments, therefore,

this model of warm inflation can be tested in the near future.
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Figure 4.10: Left: Plot of the tensor-to-scalar ratio r vs log10QP indicates that for

larger dissipation (larger QP value), the r value is smaller. Right: Plot of ns−r, where

different points on the curve represent different QP values (and the corresponding λ).

The QP value increases as we move from left to right on the plot, whereas as λ is

inversely correlated to QP , it therefore decreases. Here we fix NP = 60.
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λ and QP correlation

We also plot the marginalized and the joint probability distributions of the cos-

mological parameters in Figures 4.11 and 4.13 when NP is fixed to values 50 and 60,

respectively. The slope of the joint probability distribution of− log10 λ and− log10QP

for this model gives λ ∼ Q−0.1
p .
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Figure 4.11: The joint probability distribution and the marginalized distributions of the

cosmological parameters for the model V (φ) = λφ4 with Υ = CφT
3/φ2 in the weak

dissipative regime forNP = 50. The CosmoMC analysis is carried out with the Planck

2015 TT, TE, EE + low P dataset.

Analysis of Cφ values

In Fig. 4.12, we plot the behaviour of log10Cφ vs log10QP for the weak dissipative

regime of this model. We find that for a larger dissipation (indicated by a large QP

value), the Cφ value is larger. By its formulation, Cφ is related to the couplings and

multiplicities of the fields to which the inflaton couple. As described in Section 3.3.3,

Cφ =
1

4
αNX . We find that for the mean values of the model parameter QP ∼ 10−3,
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we have Cφ ∼ O(107). By assuming α ∼ 0.1, we find that for this model of warm

inflation NX ∼ 109. Such a large multiplicity of fields is an unattractive feature of

warm inflationary models. However, there are some string theory inspired mechanism

[194] to generate large multiplicities of fields.
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Figure 4.12: Plot of log10Cφ vs log10QP for the weak dissipative regime shows that

Cφ ∼ O(107) for this model of warm inflation. Here also NP = 60.
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Figure 4.13: The joint probability distribution and the marginalized distributions of

the cosmological parameters for the case V (φ) = λφ4 with Υ = CφT
3/φ2 in the weak

dissipative regime for NP = 60. To obtain this, we carry out the CosmoMC analysis

using the Planck 2015 TT, TE, EE + low P dataset.
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4.7.2 Constraints on the parameters of the warm inflation model

V (φ) = λφ4 with a linear dissipation coefficient Υ = CTT

For this model, both the weak and strong regimes of dissipation are studied. We list

the priors for the parameters and the mean values obtained in CosmoMC along with

68% confidence limits in the weak and the strong dissipative regimes in Tables 4.7 and

4.8, respectively.

Parameter Priors 68% C.L.

Ωbh
2 [0.005, 0.1] 0.02168± 0.00014

Ωch
2 [0.001, 0.99] 0.1217± 0.0010

100 θ [0.50, 10.0] 1.04027+0.00029
−0.00033

τ [0.01, 0.8] 0.048+0.016
−0.031

− log10 λ [13.7, 15.5] 14.39+0.34
−0.24

− log10QP [0.0, 5.4] 3.64+0.76
−1.1

Table 4.7: The priors and the mean values of the parameters along with 68% C.L. for

the model V (φ) = λφ4 with Υ = CTT in the weak dissipative regime. These values

of the parameters are consistent with the Planck 2015 TT, TE, EE + low P dataset.
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Figure 4.14: Left: Plot of r vs log10QP indicates that the r value is smaller for the

strong dissipation (large QP ) case than the weak dissipation. Right: Plot of ns − r,

where different points on the curve represent different QP values (and the correspond-

ing λ). The value of QP increases from left to right on the plot, whereas λ decreases.

For the strong dissipation, r value is nearly 0.
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Analysis of ns and r values

In Fig. 4.14, we plot the tensor-to-scalar ratio log10 r vs log10QP for both weak

and strong dissipation, and show that as the dissipation increases (largerQP value), the

tensor-to-scalar ratio decreases. We also show the ns− r plot for different QP (and the

corresponding λ) values in right plot of Fig. 4.14. For the strong dissipation, r value

is practically 0. In the weak dissipative regime, the mean values of λ = 4.07 × 10−15,

and QP = 2.29× 10−4. For these mean values, we obtain ns = 0.967, and r = 0.0330,

which are within the Planck 95% C.L. values. For the strong dissipative regime, the

mean value of λ = 6.82×10−16 and the upper limit ofQP = 1.43. For these, we obtain

ns = 0.973, and r = 0.000214, which are also consistent with the Planck bounds.

Unlike in cold inflation, where this potential is ruled out from the ns − r constraints,

in warm inflation this model predicts a tensor-to-scalar ratio which is within the ob-

servationally allowed range and hence it is a viable model for describing inflation. As

inferred from Fig. 4.14, the value of r for the strong dissipation regime is much smaller

than for the weak dissipative regime. Thus, warm inflation can only be tested in the

weak dissipative regime with the upcoming CMB polarization experiments.

Parameter Priors 68% C.L.

Ωbh
2 [0.005, 0.1] 0.02174± 0.00013

Ωch
2 [0.001, 0.99] 0.1200± 0.0011

100 θ [0.50, 10.0] 1.04044± 0.00029

τ [0.01, 0.8] 0.061± 0.024

− log10 λ [15.0, 15.6] 15.166+0.036
−0.056

log10QP [0.0, 0.6] < 0.156

Table 4.8: The priors and the marginalised values of the parameters along with 68%

C.L. for the model V (φ) = λφ4 with Υ = CTT in the strong dissipative regime. These

parameter values are consistent with the Planck 2015 TT, TE, EE + low P dataset.

λ and QP correlation

The marginalized and the joint probability of the parameters obtained for this

model are shown in Figs. 4.15 and 4.17 for the weak and strong dissipative regimes,
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respectively. Here NP is fixed to 60. From the slope of the joint probability plots, we

find that λ and QP are correlated in the weak dissipative regime as, λ ∝ Q−0.3
P and for

the strong dissipative regime, λ ∝ Q−0.6
P .
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Figure 4.15: The joint probability distribution and the marginalized distributions of

the cosmological parameters for the case V (φ) = λφ4, with Υ = CTT in the weak

dissipative regime, obtained using the Planck 2015 TT, TE, EE + low P dataset.

Analysis of CT values

In Fig. 4.16, we plot the behaviour of log10CT vs log10QP for both the weak and

strong dissipative regime of this model. We find that the value of CT is smaller in

the weak dissipation case, and spans over many orders of magnitude from ∼ 10−4.6 to

10−1.5, whereas in the strong dissipation regime, the variation is less. By its definition

in Section 3.3.3, the value of CT depend on the ratio of couplings g2/h2. In the weak

dissipative regime, for the mean values of λ and QP , we obtain CT = 1.75 × 10−4

which signify that the ratio of couplings g/h is O(10−2). In the strong dissipative

regime, for the upper limit value of QP , we have CT = 3.66 × 10−2 , which implies
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g/h ∼ O(10−1) in the strong dissipative regime. Thus, the inflaton couples strongly

to the intermediate field in the strong dissipation case.
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Figure 4.16: Left: Plot of log10CT vs log10QP for the weak dissipative regime, and

Right: for the strong dissipative regime is shown. The value of CT is smaller in the

weak dissipation regime than in the strong dissipation regime.
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Figure 4.17: The joint probability distribution and the marginalized distributions of

the cosmological parameters for the case V (φ) = λφ4, with Υ = CTT in the strong

dissipative regime. The CosmoMC analysis is carried out with the Planck 2015 TT,

TE, EE + low P dataset.
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Comparison with the literature

In Ref. [154], Panotopoulos et al. also estimated the bounds for CT (denoted by

a in their paper) and λ which satisfy the ns − r constraints from Planck data. How-

ever they do not carry out a CosmoMC analysis for their estimation. We performed a

CosmoMC analysis to obtain the model parameters and find that our values of CT are

within their estimated range of values. Our results also agree with those in Ref. [156],

where BOBYQA (Bound Optimization BY Quadratic Approximation) is carried out

to estimate the best fit values of the parameters. We point out that we have adopted

the full CosmoMC and our approach gives us the mean values and standard deviations

of parameters, which carry more information than the best fit value obtained through

BOBYQA.

4.8 Summary

Warm inflation predicts distinct signatures on the CMB radiation, compared to the

standard cold inflation, and hence is very crucial to study. In light of this, here we

consider warm inflation models with a monomial potential V (φ) = λφ4 and two forms

of the dissipation coefficient (Υ ∝ T 3 and Υ ∝ T ). The motivation to study monomial

potentials is that they are simple one parameter models. For cold inflation, they predict

a large amplitude of the tensor power spectrum and thus the tensor-to-scalar ratio,

which is used as a test of these models. A non-detection of the B-mode polarization

signal in the CMB observations rules out these potentials as feasible models in cold

inflation. However, there is a possibility that these potentials may be viable in the

context of the warm inflation description.

The different forms of dissipation coefficients arise when different channels of the

inflaton dissipation are considered, and characterise the microphysics in terms of the

coupling strengths and the multiplicities of the fields to which the inflaton is coupled.

Therefore, by knowing these physical quantities, one can build a particle physics model

of inflation. With this motivation, we carry out a MCMC analysis using a numerical

code, CosmoMC, for estimating the parameters for these models which are consistent

with the observations.
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The primordial curvature power spectrum for warm inflation is parameterized in

terms of the inflaton self coupling, λ, and the dissipation parameter at the pivot scale,

QP . Using the CosmoMC code, we obtain the joint probability distribution and the

marginalised values for these parameters. In our analysis, we find that for the model

with cubic dissipation (Υ ∝ T 3), only the weak dissipation regime is allowed, whereas

for the linear dissipation (Υ ∝ T ), both weak and the strong dissipative regimes of

warm inflation are favored. The ns and r values for the mean values of the parameters

are consistent with the Planck allowed values, from which we infer that for a range of

parameters, our models of warm inflation are viable for describing inflation. We also

obtain the quantities Cφ or CT for the obtained mean values or limits of λ and QP ,

which provide us information about the couplings and multiplicities of fields in the

warm inflation models.

The tensor-to-scalar ratio for the weak dissipative regime of our models is within

the sensitivity of the next generation of ground-based and satellite-based CMB polar-

ization experiments [72–74], which is an important observational test for these models.

However, for the strong dissipative regime of our models, the tensor-to-scalar ratio is

predicted to be very small. It has been argued that lensing of intensity fluctuations

in the 21-cm signal from atomic hydrogen in the dark ages can in principle provide a

probe of inflationary gravitational waves down to a sensitivity of 10−9 for the tensor-

to-scalar ratio [226]. However such measurements would be challenging and require

a futuristic experiment. Thus while the the weak dissipative regime of the warm in-

flation models studied here can be investigated by the upcoming CMB polarization

experiments, it may only be possible to test the strong dissipative regime in the far

future.





Chapter 5

Warm inflation models with λφ6/M2
Pl

potential

Now we consider another monomial potential of the form V (φ) = λφ6/M2
Pl in the

context of warm inflation, and study its theoretical predictions on the CMB. In our

study [227], the following models of warm inflation with the two forms of dissipation

coefficient are considered in both the weak and the strong dissipation regimes.

• V (φ) = λφ6/M2
Pl with the dissipation coefficient Υ = CφT

3/φ2.

• V (φ) = λφ6/M2
Pl with the dissipation coefficient Υ = CTT .

This potential of inflation has also been ruled out in the cold inflation studies, as

its theoretical predictions of ns and r are inconsistent with the CMB observations. A

large amplitude of the tensor perturbations is predicted according to this model, which

is not supported in the CMB observations, as the primordial gravitational waves have

not been detected yet. In this study, we are interested to know the status of the λφ6

model of warm inflation from the observations, and the allowed parameter space for

the model parameters which make it consistent with the CMB.

In the studies on model building, one is interested to estimate the parameter values

of the theory, and to construct an embedding into the high energy theories. However,

a first principle construction of this model of warm inflation is challenging and impor-

tant, but is not addressed in this work. Instead, in this study, we do a phenomenological

study of the warm inflation considering it as a toy model, and estimate its parameters

81
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consistent with the CMB observations. The information of the range of parameters

then provides the foundation stone to build warm inflation from some high energy

physics theory.

5.1 Parameterization of the primordial power spectrum

Following the similar approach as in the previous Chapter, we now parameterize the

primordial power spectrum, given in Eq. (3.25) for the two models considered in this

study.

5.1.1 When the dissipation coefficient Υ = CφT
3/φ2

• For this potential of warm inflation, from the Einstein equation, the Hubble pa-

rameter is given as

H2 =
8π

3

λφ6

M4
Pl

. (5.1)

In the slow roll approximation, the inflaton evolution is given as

φ̇ ≈ −V ′(φ)

3H(1 +Q)
= −2

√
3

8π

√
λ

φ2

(1 +Q)
. (5.2)

Then on combining the above two equations, we obtain the prefactor of the pri-

mordial power spectrum as

H2
k

2πφ̇k
= −2

3

√
8π

3

√
λ

(
φk
MPl

)4

(1 +Qk). (5.3)

• Next we evaluate the terms in the square bracket of the primordial power spec-

trum. The temperature of the thermal bath is obtained from Eq. (3.11) to be,

Tk =

(
135

4π3g∗

Qk

(1 +Qk)2
λ

(
φk
MPl

)4
) 1

4

MPl, (5.4)

and then using Eq. (5.1), we get

Tk
Hk

=

(
135

4π3g∗

) 1
4

√
3

8π
λ−

1
4

Q
1
4
k

(1 +Qk)
1
2

(
φk
MPl

)−2

. (5.5)

This factor has to be greater than 1 throughout the warm inflation phase.
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• Now we evaluate the field value, φk. For the form of dissipation coefficient

considered in this model, we can write φ =

(
CφT

3

3QH

)1/2

. Then, on substituting

Eq. (5.4) and (5.1) into it, we get(
φk
MPl

)
=

√
1

8π

(
81λC4

φ

8πA3

1

Qk(1 +Qk)6

) 1
8

. (5.6)

Further, this is substituted in the prefactor and the Tk/Hk factor and the primor-

dial power spectrum is expressed in terms of model parameters λ,Qk and Cφ.

Similarly, we also parameterize the tensor power spectrum for this model as

∆2
T (k) =

128

3
λ

(
φk
MPl

)6

. (5.7)

By substituting Eq. (5.6) into this, we express PT (k) in terms of λ,Qk and Cφ.

5.1.2 When the dissipation coefficient Υ = CTT

In this model, the inflaton potential is the same as in the previous model, but the form

of dissipation coefficient is different. The Eqs. (5.3), (5.5), and (5.7) hold for this

model, but the field value evolves differently. For the form of dissipation coefficient

considered in this model, we have T/H = 3Q/CT . On equating this with Eq. (5.5),

we obtain (
φk
MPl

)
=

(
C4
T

λA

1

(8π)3Q3
k(1 +Qk)2

) 1
8

. (5.8)

Then this is used to express the primordial scalar and tensor power spectrum in terms

of variables λ,Qk and CT .

5.2 Dissipation parameter, Qk

Following the approach of Section 4.3, here we obtain, for the model of warm inflation

with the cubic dissipation,

dQ

dx
=

16

1− εH

(
8πA3

λC4
φ

) 1
4
Q5/4(1 +Q)3/2

(1 + 7Q)
, (5.9)

and for the linear dissipation case,

dQ

dx
=

6

1− εH

(
512π2Aλ

C4
T

) 1
4 Q7/4(1 +Q)1/2

(3 + 5Q)
. (5.10)
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These expressions can then be integrated from QP (at x = 0) to Qk (at any x) to obtain

Qk. On substituting Qk in the parameterized power spectrum obtained in Section 5.1,

we get ∆2
R(k).

Dissipation parameter at the end of warm inflation

For this potential of warm inflation also, the violation of slow roll parameters bring the

inflationary phase to an end. Therefore, the condition at the end of inflation is given as

ηe =
30

8π

M2
Pl

φ2
e

= 1 +Qe. (5.11)

On substituting for φe from Eq. (5.6), for the case of cubic dissipation, we obtain

Q3
e + 2Q2

e +Qe =
λC4

φ

8πA3

(
1

10

)4

. (5.12)

For the case of linear dissipation, we substitute for φe from Eq. (5.8) and get

Q3
e(1 +Qe)

−2 =
8πC4

T

Aλ

(
1

30

)4

. (5.13)

The solution to these equations are given in Appendix B. The dissipation parameter is a

function of (λ,Cφ) for the cubic dissipation case and (λ,CT ) for the linear dissipation.

5.3 Model parameters and their priors

As discussed in Section 4.5 we choose the self coupling of inflaton λ and the dissi-

pation parameter at the pivot scale QP as the model parameters for our CosmoMC

analysis. The range of QP is determined from the spectral index plots. For this, we

first calculate the expressions for the spectral index for our models, and using them

generate the ns versus QP plot in Fig. 5.1. The expressions for the spectral index are

given in Appendix D. To generate the plot, we fix NP and the normalisation of the

power spectrum, and for every QP value obtain the corresponding λ and Cφ (or CT ).

In Fig. 5.1, we also show the allowed values for ns for a power-law power spectrum,

from the Planck 2015 TT, TE, EE + low P results [223–225] in the shaded bands.
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Figure 5.1: The spectral index, ns as a function of the dissipation parameter, log10QP

are plotted for (a) the model with cubic dissipation coefficient, and, (b) the model with

linear dissipation coefficient. The band shows the allowed ns values from Planck 2015

TT, TE, EE + low P results for a power law power spectrum with 68% and 95% C.L..

Model Allowed QP range Allowed QP range

in the weak dissipation regime in the strong dissipation regime

cubic dissipation [10−5, 0.2] −

linear dissipation [10−5, 5× 10−3] [2.51, 3.98]

Table 5.1: The values of QP allowed from the ns plots in Fig. 5.1. For the cubic

dissipation, only the weak dissipation regime is favored by the CMB observations.

It can be seen from the figure that for these models, only a certain range of QP is

consistent with the allowed values of ns. Hence, we choose the prior for QP such that

the ns corresponding to it lies in the allowed band. We consider both the weak and

strong dissipative regime for the model with linear dissipation coefficient. However,

we see from Fig. 5.1 that for cubic dissipation coefficient, none of the values of QP

are consistent with the allowed ns in the strong dissipative regime. Hence, we consider

only the weak dissipative regime for running CosmoMC for cubic dissipation models.

We estimate the priors for λ corresponding to the chosen priors for QP . The estimated

priors for each model are listed in their respective Section.
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5.4 CosmoMC results

In this Section, we list the results of CosmoMC runs for the estimated parameter space.

The triangle plots for the parameters are plotted using the GetDist GUI software.

5.4.1 Constraints on the parameters of the warm inflation model

V (φ) = λφ6/M2
Pl with dissipation coefficient Υ = CφT

3/φ2

For this inflationary model, we consider only the weak dissipative regime for the Cos-

moMC analysis. In this case, we obtained two convergence regions, as shown in Fig.

5.2. However, it is inferred from the peak of the probability distribution that the region

with − logQP near 0.8 has a higher probability. Therefore, we restrict the priors in

such a way that we obtain the mean value of QP in the more probable region and redo

the CosmoMC runs. We list the priors for the parameters and the mean values along

with their 68% C.L. obtained in CosmoMC in Table 5.2.
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Figure 5.2: The joint probability distribution of − log10 λ and − log10QP for the case

V (φ) = λφ6/M2
Pl, with Υ = CφT

3/φ2 in the weak dissipative regime. The plot shows

that there are two convergence regions for the parameters.
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Parameter Priors 68% C.L.

Ωbh
2 [0.005, 0.1] 0.02170± 0.00013

Ωch
2 [0.001, 0.99] 0.1207± 0.0014

100 θ [0.50, 10.0] 1.04036± 0.00030

τ [0.1, 0.8] 0.061± 0.023

− log10 λ [15.8, 17.0] 16.064± 0.38

− log10QP [0, 1.5] 0.799+0.068
−0.10

Table 5.2: The priors and the marginalised values of the parameters along with 68%

C.L. for the model V (φ) = λ
φ6

M2
Pl

with Υ = Cφ
T 3

φ2
in the weak dissipative regime.

These values are consistent with the Planck 2015 TT, TE, EE + low P dataset.

Analysis of ns and r values

In Fig. 5.3, we plot the tensor-to-scalar ratio r vs log10QP for fixed NP = 60,

and show that as the dissipation increases, the tensor-to-scalar ratio decreases. We also

show the ns − r plot for different QP (and the corresponding λ) values in right plot

of Fig. 5.3. Moving from left to right on the plot, the QP value increases. The mean

values of the parameters λ = 8.63 × 10−17, and QP = 0.1588. For these values, we

obtain ns = 0.969, and r = 0.00480, which are consistent with the Planck bounds,

thus implying that it is a viable model of inflation.
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Figure 5.3: Left: Plot of the tensor-to-scalar ratio r vs log10QP indicates that for

larger dissipation (larger QP value), the r value is smaller. Right: Plot of ns−r, where

different points on the curve represent different QP values (and corresponding λ). QP

increases from left to right on the plot, whereas λ decreases.
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λ and QP correlation

In Fig. 5.4, we show the marginalized and joint probability distribution for the

parameters, obtained for this warm inflation model. From the slope of − log λ versus

− logQP plot, we find that the parameters λ and QP are correlated as λ ∝ Q−0.4
P for

this warm inflation model.
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Figure 5.4: The joint probability distribution and the marginalized distributions of the

cosmological parameters for the case V (φ) = λφ6/M2
Pl, with Υ = CφT

3/φ2 in the

weak dissipative regime, obtained using the Planck 2015 TT, TE, EE + low P dataset..

Analysis of Cφ values

In Fig. 5.5, we plot the behaviour of log10Cφ vs log10QP for the weak dissipative

regime of this model. We find that for a larger dissipation (indicated by a large QP

value), theCφ value is larger. For the mean values of λ andQP , we getCφ = 4.87×107.

As described in Section 3.3.3, Cφ is related to the couplings and multiplicities of the

fields to which inflaton couple. By assuming α ∼ 0.1, we find that NX ∼ 109. Such a
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large multiplicity of fields is an unattractive feature of some warm inflationary models.
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Figure 5.5: Plot of log10Cφ vs log10QP for the weak dissipative regime shows that

Cφ ∼ O(107 − 108) for this model of warm inflation.

5.4.2 Constraints on the parameters of the warm inflation model

V (φ) = λφ6/M2
Pl with dissipation coefficient Υ = CTT

For this inflationary model, both the strong and weak dissipative regimes are allowed

by the data. Therefore, we consider both the regimes in our MCMC analysis. The pri-

ors and the obtained mean values of the model parameters along with 68% confidence

limits for the weak and the strong dissipative regimes are listed in Tables 5.3 and 5.4,

respectively.

Parameter Priors 68% C.L.

Ωbh
2 [0.005, 0.1] 0.02157± 0.00013

Ωch
2 [0.001, 0.99] 0.12484± 0.00099

100 θ [0.50, 10.0] 1.03989± 0.00029

τ [0.01, 0.8] 0.056± 0.020

− log10 λ [15.4, 16.6] 16.07+0.27
−0.19

− log10QP [1.8, 5.4] 3.54+0.68
−0.82

Table 5.3: The priors and the marginalised values of the parameters along with 68%

C.L. for the model V (φ) = λφ6/M2
Pl with Υ = CTT in the weak dissipative regime.

These values are consistent with the Planck 2015 TT, TE, EE + low P dataset.
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Parameter Priors 68% C.L.

Ωbh
2 [0.005, 0.1] 0.02170± 0.00014

Ωch
2 [0.001, 0.99] 0.1206± 0.0015

100 θ [0.50, 10.0] 1.04037± 0.00030

τ [0.01, 0.8] 0.066± 0.022

− log10 λ [14.8, 15.9] 15.253± 0.029

log10QP [0, 1.5] 0.596± 0.048

Table 5.4: The priors and the marginalised values of the parameters along with 68%

C.L. for the model V (φ) = λφ6/M2
Pl with Υ = CTT in the strong dissipative regime.

These values are consistent with the Planck 2015 TT, TE, EE + low P dataset.

Analysis of ns and r values

We plot the tensor-to-scalar ratio log10 r vs log10QP for both weak and strong

dissipation in Fig. 5.6, and show that for larger QP value, the tensor-to-scalar ratio

is smaller. We also show the ns − r plot for different QP (and the corresponding λ)

values in right plot of Fig. 5.6. As we move from left to right on the plot, the QP value

increases. For the strong dissipation, r value is practically 0. In the weak dissipative

regime, the mean values of model parameters λ = 8.51×10−17, andQP = 2.88×10−4.

For these mean values, we obtain ns = 0.956, and r = 0.0451, which are within the

observationally allowed band.
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Figure 5.6: Left: Plot of r vs log10QP indicates that the r value is smaller for the strong

dissipation (large QP ) case than the weak dissipation. Right: Plot of ns − r, where

different points on the curve represent different QP values (and λ). The QP value

increases from left to right on the plot, while λ decreases. For the strong dissipation, r

value is nearly 0.
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For the strong dissipative regime, the mean values of λ = 5.59 × 10−16, and QP

= 3.94. For these values, we obtain ns = 0.970, and r = 0.0000426, which are also

consistent with the observations. Thus, we argue that this warm inflationary model is

viable for describing inflation. Here also, it should be noted that the tensor-to-scalar

ratio for the mean parameters of the strong dissipative regime is much smaller than

for the weak dissipative regime. Hence, a detection or non-detection of the B-mode

polarization in the upcoming CMB experiments can either validate or rule out the weak

dissipation regime of warm inflation, while the strong dissipation regime is far more

difficult to test.

λ and QP correlation

The marginalized and the joint probability of the parameters obtained for this

model are shown in Figs. 5.7 and 5.8 for the weak and strong dissipative regimes,

respectively. From the slope of the joint distribution plots, we find that λ ∝ Q−0.3
P in

the weak dissipative regime, and λ ∝ Q−0.4
P in the strong dissipative regime.
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Figure 5.7: The joint probability distribution and the marginalized distributions of the

cosmological parameters for the case V (φ) = λφ6/M2
Pl, with Υ = CTT in the weak

dissipative regime, obtained using the Planck 2015 TT, TE, EE + low P dataset.
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Figure 5.8: The joint probability distribution and the marginalized distributions of the

cosmological parameters for the case V (φ) = λφ6/M2
Pl, with Υ = CTT in the strong

dissipative regime, obtained using the Planck 2015 TT, TE, EE + low P dataset.

Analysis of CT values

In Fig. 5.9, we plot the behaviour of log10CT vs log10QP for both the weak and

strong dissipative regime of this model. For the linear dissipation (Υ ∝ T ), the value

of CT is independent of the potential of inflation. Thus, we get the same plots in this

case, as for the quartic potential. The value of CT is smaller in the weak dissipation

case, and spans over many orders of magnitude ∼ 10−4.6 to 10−1.5, whereas in the

strong dissipation regime, the variation is less. By its definition in Section 3.3.3, the

value of CT depend on the ratio of couplings g2/h2. Further, we obtain for the mean

values of λ and QP , CT = 2.04 × 10−4 in the weak dissipative regime, and a value

equal to 4.81 × 10−2 in the strong dissipative regime. These values signify that the

ratio of couplings g/h is O(10−2) in the weak dissipative regime and O(10−1) in the

strong dissipative regime of warm inflation, respectively.
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Figure 5.9: Left: Plot of log10CT vs log10QP for the weak dissipative regime, and

Right: for the strong dissipative regime is shown here. The value of CT is smaller in

the weak dissipation than in the strong dissipation.

5.5 Comparison of results with the λφ4 model

Here we compare our findings of our study of both the φ4 and φ6 potentials of warm

inflation with the dissipation coefficients Υ = CφT
3/φ2 and Υ = CTT.

In our analysis, we find that when the dissipation is weak QP � 1, then for the φ6

potential, the inflaton self-coupling is smaller (λ ∼ O(10−16)) than for the φ4 potential

(λ ∼ O(10−14)). This is obtained in both the situations, when the dissipation is cubic

(Υ ∝ T 3) and when it is linear (Υ ∝ T ). However, when the dissipation is strong, as

favored when Υ ∝ T , the inflaton self-coupling is of the same order (λ ∼ O(10−15))

for both the potentials.

The value of Cφ for T 3 dissipation is O(107 − 108) for both the potentials, which

implies a similar requirement for high multiplicities of the intermediate X fields. The

value of CT is independent of the potential of inflation. Depending on the QP value,

it is of the order O(10−4) in the weak dissipative regime, and O(10−2) in the strong

dissipative regime. By its definition, this gives a ratio of couplings g/h ∼ 10−2 and

10−1 in the weak and strong dissipative regimes, respectively, for both the potentials.

A common trend for both the potentials is observed, which is related with the

tensor-to-scalar ratio. The r value decreases as the dissipation increases (i.e. QP in-

creases), and is very negligible for the strong dissipation.



94 Chapter 5. Warm inflation models with λφ6/M2
Pl potential

5.6 Summary

In this study, we analyze warm inflation models with a λφ6/M2
Pl potential and cu-

bic (∝ T 3) and linear (∝ T ) dissipation coefficients. Being a large field model, this

potential predicts a large value of the tensor-to-scalar ratio for cold inflation, and a

non-detection of the B-mode polarization signal, rules out this model as viable to de-

scribe inflation. Here, we do a phenomenological study of this potential in the context

of warm inflation, and estimate the parameters for these models which are consistent

with the CMB observations.

For the cubic dissipation case, only the weak dissipation regime is favored by the

CMB observations, while for the linear dissipation, both weak and strong dissipation

are allowed. We carry out a MCMC analysis to estimate the parameters for our models

using CosmoMC. For the mean value of the parameters, we also calculate Cφ or CT ,

and discuss its interpretation in terms of the coupling strengths and multiplicities of

the fields. In our analysis, we find that for the mean values of λ and QP , the ns and r

values are consistent with the CMB, suggesting that these models are viable models of

inflation. For weak dissipation, the predicted tensor-to-scalar ratio is within the sensi-

tivity of the next decade CMB polarization experiments, while for strong dissipation,

the tensor-to-scalar ratio is too small for detection in the near future.



Chapter 6

Primordial Black Hole formation from

warm inflation

In the previous part of the thesis, I discussed the large scale perturbations generated

during inflation and their observational imprints on the cosmic microwave background

radiation. I now discuss the growth of small scale perturbations generated during infla-

tion, in the context of the formation of compact objects called primordial black holes.

6.1 Introduction

Primordial Black Holes (PBHs) [163–166] refers to the black holes with a primordial

origin, i.e., they are produced in the very early Universe. They are very crucial to study

as they provide us a unique probe to the rich physics of the Universe at all epochs of its

evolution. While the cosmic microwave background radiation and large scale structure

observations measure only the modes ranging from 10−4 − 1 Mpc−1, PBHs can be

formed over a range of fluctuation modes varying from 10−2 − 1023 Mpc−1 and thus

provide a probe for a huge range of small scales. Some good reviews on PBHs can be

found in Refs. [228–234].

The mass of a PBH at the time of its formation (t after the Big-Bang) is of the order

of the particle horizon mass at that epoch, and is given by

MPBH(t) ≈ c3t

GN

' 1015

(
t

10−23s

)
g. (6.1)
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Therefore, PBHs span over a wide range of masses, with the lightest PBH correspond-

ing to the Planck time (t = 10−43s) with mass MP = 10−5 g [165]. For different mass

ranges of PBHs, different observational effects are associated, as given below.

• PBHs with masses MPBH < 1015 g :

Such PBHs have a short lifetime, and would have evaporated into Hawking radi-

ation by the present time [235, 236]. Therefore, the consequences of PBH evap-

oration on the nucleosynthesis (BBN) [237–239], or the constraints on the relic

abundance of stable (eg. lightest supersymmetric particle) and long-lived de-

caying particles (eg. gravitino, modulii) produced from PBH evaporation [240–

242] can provide constraints on their abundance (for review, see Ref. [243]).

The upper limit on PBH abundance further gives bounds on the amplitude of

the primordial curvature power spectrum and hence various inflationary models

[10, 244–247]. In this way, PBHs can serve as a powerful and unique probe to

the inflationary epoch, and various models of inflation.

• PBHs with MPBH ∼ 1015 g :

They would be evaporating into radiation at the present epoch and have in-

teresting astrophysical consequences. Such PBHs can contribute to the dif-

fuse gamma-ray background [248], or positrons and antiprotons in the cosmic

rays [249], and therefore can provide useful information about the high energy

physics of PBH evaporation [228].

• PBHs with MPBH > 1015 g :

Such PBHs would have survived till today, and interestingly they can contribute

as some or all of the Dark Matter (DM) present in the Universe. (For a review, see

Refs. [250, 251] and [252, 253]). If they are present, the signatures of such PBHs

can be seen in different lensing experiments [254–256], or from their dynamical

effects on astrophysical systems. (For a review, see Ref. [233].) Massive PBHs

of a few solar masses can accrete its surrounding gas and emit X-rays, which can

change the ionization history of the Universe [257] and cause spectral distortions

in the CMB radiation [258, 259]. Also, there could be stochastic gravitational
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waves generated from the binary PBH mergers [260–263]. (For a review, see

Refs. [233, 264].)

• PBHs with MPBH ∼ 10−5 g :

These PBHs are interesting to study, as they are also the probes to the quantum

gravity epochs. The string theory studies show that at the Planck energy scale

1019 GeV, the extra dimensions influence the PBH evaporation resulting in stable

remnants of Planck mass [265]. These Planck mass relics are also the candidates

for dark matter [266]. For a review, see Ref. [229, 230].

6.2 Formation of Primordial Black Holes

A number of phenomena could lead to PBH formation, such as the collapse of large

overdensities generated in the early Universe [164, 165], or the collision of bubbles

[267–269], or the collapse of strings [270, 271] and domain walls [272, 273], or dur-

ing some phase transitions in which the equation of state becomes soft (reduction in

pressure) for a period [274–279]. In this study, we consider the formation of primordial

black holes by the collapse of overdense inhomogeneities generated during inflation.

As mentioned in Chapter 2, the density fluctuations generated during the inflationary

phase exit the horizon during inflation and then reenter at some later epoch in the Uni-

verse evolution. Here it is assumed that the reentry takes place in the radiation era and

the collapse of perturbations into PBHs is studied.

6.2.1 Mass of the generated primordial black holes

When an overdense fluctuation with a comoving wavenumber k reenters the horizon at

a later epoch (i.e. physical wavelength equals the horizon size, H−1 = (k/a)−1 ) with

an overdensity δ greater than a critical density δc, it collapses through gravitational in-

stability into a primordial black hole. The mass of the generated PBH, MPBH depends

on the epoch of its formation and is taken to be a fixed fraction, γ of the horizon mass

at that time [246],

MPBH(k) = γ
4π

3
ρ H−3

∣∣
k=aH

, (6.2)
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where H is the Hubble expansion rate and ρ is the energy density of the Universe at

the epoch of PBH formation. Here we take γ = 0.2.

It is assumed that the PBH formation takes place during the radiation dominated

era. Therefore ρ is the energy density of the radiation, i.e., ρ = ρr =
π2

30
g∗T

4, where

g∗ is the number of relativistic degrees of freedom, and T represents the temperature of

the Universe in the radiation dominated era. If we assume that no out-of-equilibrium

processes occur in the Universe, then from the principle of conservation of entropy, we

have

S = g∗sa
3T 3 = constant,

where S is the entropy, a is the scale factor of the Universe, and g∗s represent the num-

ber of relativistic degrees of freedom contributing to the entropy. Here it is assumed

that the number of relativistic degrees of freedom contributing to the radiation equals

to the ones contributing to the entropy i.e. g∗ ≈ g∗s (also see Ref. [280] for comments

on massive neutrinos and relativistic degrees of freedom), and thus

T ∝ g−1/3
∗ a−1, and ρr ∝ g−1/3

∗ a−4.

With this relation, the radiation energy density at the initial time of PBH formation ρri

can be related to the present radiation energy density ρr0 as

ρri =

(
g∗i
g∗0

)−1/3(
ai
a0

)−4

ρr0. (6.3)

The subscript ‘0’ and ‘i’ to any quantity represent its value at the present epoch and at

the initial time when the PBH formed, respectively. The present radiation density can

be written as ρr0 = ρcrit Ωr0, where the critical energy density ρcrit = 3H2
0/8πGN =

1.054 × 10−5h2 GeV cm−3, H0 = 100 h is the present Hubble expansion rate with

h = 0.678, and Ωr0 ≈ 5.38× 10−5 is the radiation density parameter today [31]. Thus

we can write Eq. (6.3) as

ρri =

(
g∗i
g∗0

)−1/3

a−4
i ρcrit Ωr0 , (6.4)

and substitute it in Eq. (6.2) to obtain the mass of the generated PBH as

MPBH(k) = γ
4π

3

(
g∗i
g∗0

)−1/3

a−4
i ρcrit Ωr0

(
k

ai

)−3
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= γ
4π

3

(
g∗i
g∗0

)−1/3

a−1
i ρcrit Ωr0 k

−3. (6.5)

Now we will determine the scale factor ai at the time of PBH formation, as shown

in Ref. [262]. Using the Friedmann equation, the Hubble rate of expansion at the time

of PBH formation, when the kth fluctuation mode re-enters the horizon can be written

as,

H2
i =

(
k

ai

)2

=
8πGN

3
ρri. (6.6)

By substituting the expression for the initial radiation energy density from Eq. (6.4)

into this, we get (
k

ai

)2

=
8πGN

3
ρcrit

(
g∗i
g∗0

)−1/3

a−4
i Ωr0 (6.7)

which gives

a−1
i =

(
k2H−2

0

(
g∗i
g∗0

)1/3

Ω−1
r0

)1/2

. (6.8)

Finally, we substitute Eq. (6.8) in Eq. (6.5) and obtain

MPBH(k) = γ
4π

3
ρcrit

(
g∗i
g∗0

)−1/6

Ω
1/2
r0 k−2H−1

0 . (6.9)

This relation implies that the mass of the generated PBH is proportional to the inverse

square of the kth mode of fluctuation that creates it, MPBH ∝ k−2. Therefore, more

massive PBHs form when small k modes re-enter the horizon, whereas the lighter

PBHs form when large k modes re-enter the horizon, with the amplitude of power

spectrum large enough to generate them. As large k mode leaves the horizon late dur-

ing inflation and re-enters in the horizon first, this implies that lighter PBHs form early

in the radiation era, and the small k modes corresponding to the more massive PBHs

enter late and form later in the radiation era.

Further, we can express Eq. (6.9) in terms of the present horizon mass which is

given as M0 =
4π

3
ρcrit H

−3
0 ≈ 4.62 × 1022M�, where M� is the solar mass. This is

as follows

MPBH(k) = γ M0

(
g∗0
g∗i

)1/6

Ω
1/2
r0

(
H0

k

)2

(6.10)

≈ 5× 1015g

(
g∗0
g∗i

)1/6(
1015Mpc−1

k

)2

. (6.11)
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This relation implies that for an overdense fluctuation mode with k ∼ 1015 Mpc−1,

PBHs of mass MPBH ∼ 5× 1015 g are formed.

6.2.2 Initial mass fraction of PBHs

As discussed above, various mass ranges of the PBHs have different astrophysical sig-

natures and significance. Therefore, a non-detection of PBHs in observations gives an

upper limit on their present abundance, which can be further translated into constraints

on the initial mass fraction of PBHs defined as

β(MPBH) ≡ ρPBH,i
ρtotal,i

. (6.12)

For any PBH of mass MPBH , the initial mass fraction is the ratio of its energy density

at the time of its formation, ρPBH,i to the total energy density of the Universe at that

epoch, ρtotal,i.

As the PBH formation is assumed to take place in the radiation dominated era, the

total energy density at that epoch is in the radiation, i.e. ρtotal,i = ρri, given in Eq.

(6.4), while the energy density of PBHs evolve as ρPBH,i = ρPBH,0 a
−3
i . Thus we

obtain

β(MPBH) =
ΩPBH0(MPBH)

Ωr0

(
g∗i
g∗0

)1/3

ai, (6.13)

where ΩPBH0(MPBH) = ρPBH0/ρcrit is the density parameter for PBH of massMPBH .

On substituting Eq. (6.8) in Eq. (6.13) and then using Eq. (6.11), we obtain

β(MPBH) =
ΩPBH0(MPBH)

Ω
3/4
r0

(
g∗i
g∗0

)1/4(
MPBH

M0

)1/2

γ−1/2. (6.14)

With this relation, the observational constraints on ΩPBH0 for a PBH of mass MPBH ,

can be used to calculate the upper bound on its initial mass fraction β(MPBH) (see

Refs. [243, 246, 247]).

Observational constraints on the initial mass fraction of PBHs

The constraints on the initial mass fraction of various mass ranges of PBHs from nu-

merous observations are given in detail in Refs. [9, 233, 243, 247, 250, 252, 253]

(Refs. [9, 252, 253] are the recent) and summarised in Fig. 6.1. Here is a brief status

of the present constraints on the initial mass fraction for various mass ranges of PBHs.
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Figure 6.1: Constraints on the initial mass fraction β(MPBH) versus the mass of PBH

is shown here [9]. The acronyms stand for: the lightest supersymmetric paricle (LSP),

big-bang nucleosynthesis (BBN), galactic gamma-ray background (GGB), extagalactic

gamma-ray background (EGB), cosmic ray (CR), gravitational lensing (GL), gravita-

tional waves (GW), X-ray binary (XB), dynamical friction (DF), large scale structure

(LSS).

• The bounds on PBHs with MPBH < 109g are not very stringent and are theo-

retically motivated. The products of the evaporation of such PBHs (stable LSP

or long-lived particles) could be the signature of these PBHs. Also, these PBHs

can evaporate and leave Planck mass remnants, which constrain their abundance.

The lowest mass PBHs correspond to the smallest scale leaving the horizon dur-

ing inflation.

• For the mass ranges 109g< MPBH < 1013g, the bounds are well constrained

from the observations of the BBN abundances [237–239].

• PBHs in the mass ranges 1013g< MPBH < 1014g are constrained from the

damping of CMB anisotropies due to the modification of recombination and

reionization by the evaporation of such PBHs.

• For the mass range 1014g< MPBH < 1015g, the bounds are from the observa-

tions of the extragalactic and galactic gamma-ray searches.
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• The constraints on PBHs with mass 1015g< MPBH < 1017g are obtained from

the galactic electron-positron emissions from these PBHs in the cosmic ray (CR)

detectors such as Voyager 1 [281].

• PBHs with mass 1017g< MPBH < 1019g are constrained from the femtolensing

of the gamma-ray bursts. Such PBHs can contribute a fraction (less than 0.1) to

the dark matter energy density defined as f(MPBH) ≡ ΩPBH/ΩDM . However,

also see Ref. [282] for the revised constraints. The fraction of PBH energy

density contributing as the present dark matter for different mass ranges is shown

in Fig. 6.2.

• The PBHs in the mass window 1019g< MPBH < 1022g are interesting as they

could constitute the entire dark matter. Hence, the only constraint on such PBHs

is that their abundance should not overclose the energy density of the Universe

(ΩPBH ≤ ΩDM ).

• Recent observations of microlensing of the stars in the Andromeda galaxy by

Subaru Hyper Suprime-Cam (HSC) suggest that PBHs in the mass range 1022g<

MPBH < 1027g can constitute only a small fraction < 0.1% of the dark matter

energy density [283].

• There are other microlensing observations of stars in the Magellanic clouds

like by OGLE, EROS, MACHO, which probe the PBHs over the mass range

10−7M� < MPBH < 10M�. (For reference, M� ∼ 1033 g.)

• The abundance of PBHs of mass 10M� < MPBH < 100M� is also constrained

from the lensing of Fast Radio Bursts (FRB) and pulsars. The observations with

Square Kilometer Array (SKA) has put a constraint on the fraction of such PBHs

as dark matter to be < 0.01.

• Apart from lensing, the dynamical effects of PBHs can also constrain its abun-

dance. PBHs with mass 1019g< MPBH < 1020g can trigger a white dwarf

(WD) to explode as they pass nearby. Other constraint for PBHs with mass

1018g< MPBH < 1024g arise from capture by a neutron star [284].
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Figure 6.2: The fraction of PBH energy density contributing as the dark matter, as

constrained from various observations [10].

• A crucial point about PBHs is that they can be of subsolar mass, unlike the

black holes produced from stellar evolution, which are always heavier than a

solar mass. A non-detection of binary PBH merger (0.2M� < MPBH < 1M�)

by LIGO gives the constraints on the fraction as DM. Further, PBHs with mass

0.5M� < MPBH < 30M� are also constrained from the gravitational wave

background observations.

• Massive PBHs 10M� < MPBH < 104M� are constrained from their accretion

effects on the ionization history and its observations in the CMB spectral distor-

tions. Also, PBHs can capture a nearby star and form an accretion disk while

emitting X-rays. The searches for these high mass X-ray binaries are used to

constraint the abundance of such PBHs with 10M� < MPBH < 107M�.

• The effects of dynamical friction and disk heating are important for the super-

massive PBHs 106M� < MPBH < 109M� and thus constraints their abundance.

• It is also proposed that PBHs can become the seeds for structure formation.

Thus, observations of Lyman-α forest, dwarf galaxies, galaxy clusters give upper

limits on the abundance of PBHs over a mass range of 104M� < MPBH <

1014M�.
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6.2.3 Press-Schechter theory for the PBH formation

Now we discuss the Press-Schechter theory for the formation of a primordial black

hole. We assume that the initial gaussian seeds of density perturbations re-enter the

horizon during the radiation dominated epoch and the PBH formation takes place in

the regions with overdensity above a critical value, δ > δc where δc ∼ O(1) [166] (see

Refs. [285], [286] for more details).

Figure 6.3: Gaussian probability distribution p(δ) of the density fluctuation δ is plotted

here [11]. The width of the distribution shown here σ(MH) can be related to σ(R) in

the text, as MH and R are related.

On smoothening the density perturbations using a Gaussian window function, the

probability distribution for a smoothed density contrast over a radius R = (aH)−1 is

given as [287],

p(δ(R)) =
1√

2πσ(R)
exp

(
−δ2(R)

2σ2(R)

)
. (6.15)

This is shown in Fig. 6.3. Here σ(R) is the mass variance evaluated at the horizon

crossing, and is defined as,

σ2(R) =

∫ ∞
0

W̃ 2(kR)∆2
δ(k)

dk

k
, (6.16)

where ∆2
δ(k) =

k3

2π2
〈|δk|2〉 is the dimensionless matter power spectrum, and W̃ (kR)

is the Fourier transform of the window function

W̃ (kR) = exp(−k2R2/2). (6.17)

The dimensionless primordial curvature power spectrum ∆2
R(k) for the fluctuations

generated during the inflation can be related to the dimensionless density power spec-
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trum ∆2
δ(k) as [288],

∆2
δ(k) =

4(1 + w)2

(5 + 3w)2

(
k

aH

)4

∆2
R(k), (6.18)

where w is the equation of state of the fluid and is equal to 1/3 for radiation.

Theoretical calculation of initial mass fraction of PBHs

Using the Press-Schechter theory, the initial mass fraction of a PBH with mass MPBH

is obtained as [289],

β(MPBH) = 2

∫ 1

δc

p(δ(R)) dδ(R) =
2√

2πσ(R)

∫ 1

δc

exp

(
−δ2(R)

2σ2(R)

)
dδ(R)

= erfc

(
δc√

2σ(R)

)
, (6.19)

where erfc is the complimentary error function, and we consider δc = 0.5 in this

study. For any parameterization of the primordial power spectrum, we carry out the

integration in Eq. (6.20) by using Eq. (6.18), and then substitute the obtained mass

variance into Eq. (6.19).

The expression thus obtained for β(MPBH) using Press-Schechter theory is equated

to Eq. (6.14), and constrained using the observational bounds on ΩPBH0(MPBH), as

argued in the previous subsection. In this way, the primordial power spectrum, and

hence inflationary models are constrained from the bounds on abundance of PBHs

[244–247]. For the various mass of PBHs, the upper bound on the amplitude of the pri-

mordial power spectrum is obtained to be, ∆2
R(kPBH) ∼ O(10−2 − 10−1) [232, 233],

as shown in Fig. 6.4.

6.3 PBH formation from various models of inflation

PBHs are a unique probe to inflation, and the observational bounds on the abundance

of PBHs provide an upper limit on the amplitude of the primordial power spectrum.

Therefore, a study of PBHs is crucial to test various inflationary models.

In the literature, there are a lot of studies which discuss the PBH production from

the collapse of large inhomogeneties generated from various inflationary scenarios.
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Figure 6.4: Upper bound on the primordial power spectrum obtained from observations

for various mass of PBHs corresponding to comoving wavenumber k. Source: [9].

Some examples are the hybrid inflation models [290–292], running-mass inflation

models [293–296], hilltop inflation model [297], inflating curvaton model [298], ax-

ion curvaton inflation model [299, 300], double inflation model [301, 302], thermal

inflation [303], single field inflation with a broken scale invariance [304], or by intro-

ducing a inflection point (plateau) in the potential [251, 305], running of the spectral

index [306, 307], etc. It is shown in Ref. [308] that for a power-law form of the

primordial power spectrum, ∆2
R(k) = As(k/kP )ns−1, the spectral index has to be

blue-tilted (ns > 1) at the small scales for a significant formation of PBHs. But from

the CMB observations, the spectral index of the power spectrum is precisely measured

to be red-tilted (ns < 1) at the large scales. If the running of the spectral index, αs,

and running of the running, βs are also considered in the primordial power spectrum,

∆2
R(k) = As(k/kP )ns(k)−1, where ns(k) = ns(kP ) + αs ln(k/kP ) + βs ln2(k/kP ),

then the amplitude of the power spectrum can become ∆2
R(k) ∼ O(10−2) for some

values of ns, αs, βs allowed from the CMB observations. However, Ref. [309] shows

that such a Taylor series expansion of ns(k) in the parameterization of ∆2
R(k) can lead

to large errors in the amplitude of primordial power spectrum at the small scales and

hence PBH formation.
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6.4 Formation of PBHs from warm inflation

Now I discuss the formation of primordial black holes from warm inflation. In this

study, we consider a quartic potential of warm inflation V (φ) = λφ4 with a cubic

dissipation coefficient Υ = CφT
3/φ2. As discussed in Chapter 3, this kind of dissi-

pation coefficient is calculated for supersymmetric models of warm inflation with a

two-stage decay mechanism, in which the inflaton couples to intermediate X super-

fields, which then decay into Y superfields which thermalize to form a radiation bath.

The primordial power spectrum in warm inflation is sourced dominantly by the thermal

fluctuations of the fields and is characterized in terms of the inflaton self-coupling and

a dissipation parameter, which is a measure of inflaton couplings to the other fields.

The motivation for considering this warm inflation model is that it is the simplest

renormalizable potential, and in our study [310], we found that it is consistent with

the CMB observations for some parameter space of the model parameters. Also, the

tensor-to-scalar ratio prediction for this model is within the sensitivity of the next gen-

eration CMB polarisation experiments and therefore, can be tested in the near future.

Furthermore, we shall see that the primordial power spectrum for this model of warm

inflation has the amplitude required for PBH generation. These features arise due to

the intrinsic properties of the inflaton-radiation system and therefore are interesting to

study.

As discussed in Section 3.3.4, that there is a growth factor in the power spectrum

due to the coupling of radiation fluctuations to the inflaton fluctuations. This factor

plays an important role in the enhancement of power at the small scales, as we show

next. Thus, the choice of the dissipation coeffient in this study determines whether the

enhancement of power as required for the formation of primordial black holes can be

achieved.

For a dissipation coefficient with a cubic dependence on the temperature of the

thermal bath Υ ∝ T 3, the numerically obtained growth factor is given as [156, 190]

G(Qk)cubic = 1 + 4.981Q1.946
k + 0.127Q4.330

k .

We also list the growth factor for Υ ∝ T and Υ ∝ 1/T , as given in Refs. [156, 171,
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190]

For Υ ∝ T, G(Qk)linear = 1 + 0.0185Q2.315
k + 0.335Q1.364

k .

For Υ ∝ 1/T, G(Qk)inverse =
1 + 0.4Q0.77

k

(1 + 0.15Q0.1.09
k )2

.
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Figure 6.5: Plot of the growth functions in the primordial power spectrum for Υ ∝

T 3, T and 1/T .

In Fig. 6.5, we plot the different growth functions for some forms of dissipation

coefficients considered in warm inflation studies. We can see in this plot that for a cu-

bic dissipation, the growth is huge for large value of the dissipation parameter, whereas

for a linear dissipation, there is not that large enhancement in the growth factor. For

a dissipation coefficient inversely dependent on the temperature, there is rather a sup-

pression in the power for large Qk values, and it also not very large. As we discussed

in the previous Chapters, the dissipation coefficient increases as inflation proceeds in

the case of Υ ∝ T 3, T and near the end of inflation, it can have a large value (O(100)).

Thus, we argue that a cubic dissipation coeffiecient is the most suitable for PBH stud-

ies, as the primordial power spectrum is hugely enhanced in this case.

6.4.1 Features in the primordial power spectrum

In our earlier study [310], we parameterized the primordial power spectrum in terms

of two model parameters - the inflaton self-coupling, λ, and the dissipation parameter

at the pivot scale, QP , and estimated them using CMB observations. By using the

same parameterization, we study the formation of small scale PBHs for our warm
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Figure 6.6: Plot of the primordial power spectrum ∆2
R(k) versus k for our warm in-

flation model with different values of QP . Here the black line represents the standard

power law parameterization considered in cold inflation.

inflationary model considering different values of QP in this work. For each QP value,

we consider λ such that the primordial power spectrum is normalized at the pivot scale

as ∆2
R(kP ) = 2.1× 10−9.

We first plot the primordial curvature power spectrum for our warm inflation model

as a function of the comoving wavenumber k in Fig. 6.6. For that, we fix the number

of efolds when the pivot scale leaves the horizon, NP = 60 (in our notation, Ne = 0

at the end of inflation). As already mentioned, PBHs provide a probe for a vast range

of small scale modes. Here we consider only those k modes that leave the horizon

near the end of inflation and form PBHs when they reenter in the radiation era. In

order to produce a significant number of PBHs that can have measurable observational

consequences, the amplitude of ∆2
R(k) needs to be O(10−2). We consider various

cases of inflation with different values of the dissipation parameter at the pivot scale,

QP = 10−1, 10−1.5, 10−2, and 10−2.5 (weak dissipation regime when the CMB scales

exit the horizon) to plot Fig. 6.6.

We also plot the power-law power spectrum parameterization, considered in cold

inflation (without running of ns) (black line) in Fig. 6.6 for comparison. It can be

seen that for a power-law power spectrum, as the spectrum is red-tilted (ns < 1), the

amplitude of ∆2
R(k) can never reach the value O(10−2), and therefore a negligible

abundance of PBHs can be produced for such a form of ∆2
R(k). But for our model
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of warm inflation, we find that the power spectrum changes to blue-tilted (ns > 1) at

the PBH scales and therefore PBH formation can take place for some range of model

parameters.

As can be seen, for some QP values in the weak dissipation range, a large am-

plitude of ∆2
R(k) is achieved near the end of inflation at k ∼ 1021 Mpc−1. These

small scale modes leave the horizon when inflation is near its end, and then reenter

in the horizon during radiation dominated era. When they reenter, these overdense

perturbations collapse to form the primordial black holes, as discussed in Section 6.2.

For the strong dissipation regime of warm inflation also, the amplitude of ∆2
R(k) at

small scales is O(10−2) and higher, but those cases are not of interest, for the reason

discussed in Section 6.4.2.

Now we discuss the effects of the inflaton dissipation during warm inflation to the

primordial power spectrum. It can be seen from Fig. 6.6 that at the PBH scales (large

k), for a large dissipation parameter QP , the amplitude of the primordial power spec-

trum ∆2
R(k) is larger as compared to the smaller dissipation case. This implies that

for a large QP , the amplitude of ∆2
R(k) is enhanced to O(10−2) at a comparatively

smaller k, and all the larger k modes leaving the horizon further are sufficiently over-

dense to form PBHs. From the plot, it is also seen that for QP < 10−2.0, the amplitude

of the primordial power spectrum is not sufficient to generate a significant abundance

of PBHs. Therefore, we limit our study of PBH formation till QP = 10−2.

6.4.2 Relevant range of the dissipation parameter

In Chapter 4, we plotted the spectral index plot for this model in Fig. 4.6, and listed

the values of the dissipation parameter consistent with the CMB in Table 4.2. In our

analysis here, we use this information in the study of PBHs. We see that only a range

of QP values in the weak dissipation regime (10−3.2 to 10−1.7) are consistent with the

CMB observations. Therefore we do not consider QP > 10−1.7, despite the fact that

the amplitude of the primordial power spectrum at PBH scales is large.
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6.5 Results and Discussion

Till now, we have found that for a certain range of QP values for our warm inflation

model, the amplitude of the primordial power spectrum at the PBH scales,∼ O(10−2),

required to generate a significant abundance of PBHs, which can have measurable ob-

servational consequences. Now, I discuss the results obtained for the mass and the mass

fraction of the PBHs generated from our model. Further, I also discuss the constraints

and implications of these PBHs.

6.5.1 Mass and the Initial mass fraction of the PBHs formed

For each scenario of our warm inflation model, represented by the different values of

QP , we plot the primordial power spectrum ∆2
R(k) as a function of k, as shown in

Section 6.4.1. Then we fit an approximate function f(k) to ∆2
R(k) numerically for all

our models. By substituting them in Eq. (6.18), we carry out the integration in Eq.

(6.20) to obtain the mass variance σ(R) as

σ2(R) =

∫ ∞
0

exp(−k2R2)
16

81

(
k

aH

)4

f(k)
dk

k
. (6.20)

Here R = (aH)−1 = k−1 at the horizon crossing, which is related to MPBH through

Eq. (6.11) as

R =

[
MPBH

5× 1015g

(
g∗i
g∗0

)1/6
]1/2

1

1015
Mpc. (6.21)

The obtained mass variance is then substituted in the expression for the initial mass

fraction for the PBHs in Eq. (6.19), β(MPBH) = erfc

(
δc√

2σ(R)

)
and calculated

numerically. δc is taken to be 0.5.

Here we plot the obtained inital mass fraction β(MPBH) of the generated PBH

versus the mass of the PBH in Fig. 6.7 for the cases when QP = 10−1.7, 10−1.8, 10−1.9,

and 10−2.

From Fig. 6.7, we can see that the mass of PBHs generated from our warm inflation

model is of the order MPBH ∼ 103 g. From the plots, we infer that a large dissipation

during inflation leads to a comparatively more massive PBH formation, whereas small

dissipation produces small mass PBHs. The reason for this is that, as shown in Fig.

6.6, for a larger dissipation, the desired amplitude of the primordial power spectrum
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Figure 6.7: Plot of the initial mass fraction of the generated PBH, β(MPBH), versus

its mass MPBH(g).

∆2
R(kPBH) ∼ O(10−2), is achieved at a comparatively smaller k, and as the mass of

the generated PBH is proportional to k−2, this implies that larger dissipation leads to

more massive PBH formation.

6.5.2 Constraints on the abundance of generated PBHs

As discussed in Section 6.4, the range of QP values of our model, relevant for our

study is very small, and a significant PBH formation takes place only near the end

of inflation at k ∼ 1021 Mpc−1. Thus, as a consequence, a small mass range of the

generated PBHs is generated from our warm inflation model. The order of the mass of

the PBHs formed, MPBH ∼ 103 g. There is a minimum mass of PBH that is formed,

corresponding to the maximum k mode that exits the horizon (MPBH ∝ k−2), as

shown in Eq. (6.11). These PBHs emit Hawking radiation [235, 236] with temperature

TBH =
1

8πGNMPBH

≈ 1013g

MPBH

GeV (6.22)

and evaporate into all elementary particles with rest mass less than the black hole

temperature on timescale given by [311]

τ(MPBH) =
5120πG2

NM
3
PBH

~c4
∼ 1010yr

(
MPBH

1014g

)3

, (6.23)

Thus, the tiny mass (103g) PBHs formed from our warm inflation model would have

fully evaporated in a short lifetime of ∼ 10−16 sec. Interestingly, there are studies
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which discuss a mechanism to stabilize the light PBHs against evaporation so that it

comprises the present dark matter density [266, 312–315].

The abundance of tiny mass PBHs is not strictly bounded; it depends on the physics

beyond the Standard Model of particle physics. There are certain bounds from the

PBH evaporation leading to the generation of stable massive particles (Supersymmetric

LSP) [240] or long-lived decaying particles (eg. gravitino, modulii) [241, 242], and

their relic abundance, which can be used to put constraints on PBH initial abundance

[232, 243, 247]. Stable supersymmetric particles may contribute as the present dark

matter; therefore, their abundance should be constrained so that they do not overclose

the Universe. The initial mass fraction of PBH depends on the mass of the LSP emitted

and the upper bound on it is given as [243, 247]

β(MPBH) ≤ 10−18

(
MPBH

1011g

)−1/2 ( mLSP

100 GeV

)−1

. (6.24)

For a PBH with mass ∼ 103g evaporating into LSP of mass mLSP = 100 GeV, the

upper bound on the abundance β(MPBH) is 10−14. For various scenarios (different

QP ) of our warm inflation model, we find that the calculated initial abundance of PBHs

(of all masses) is in accordance with this limit forQP = 10−1.8, 10−1.9, and 10−2.0. But

for the case with QP = 10−1.7, the theoretical estimate of the initial mass fraction for

PBHs with masses MPBH < 1800 g is higher than the above mentioned constraint.

This implies that for QP = 10−1.7, there is an overproduction of PBHs above mass

1800g and therefore the abundance of PBHs for this masses is inconsistent with the

observations.

Additionally, PBH evaporation can lead to a large abundance of gravitinos and

modulii which has important cosmological consequences. These quasi-stable massive

particles decay into energetic particles, which destroy the nuclei of the light elements

created in the era of nucleosynthesis. Thus, the abundance of PBHs evaporating into

such species should be controlled so that these problems can be avoided, which gives

another bound on their initial mass fraction as [243, 247]

β(MPBH) ≤ 5× 10−19

(
MPBH

109g

)−1/2(
Yφ

10−14

)( xφ
0.006

)−1

, (6.25)

where Yφ is the ratio of number density to entropy density and xφ is the fraction of the

luminosity in quasi-stable massive particles. To an order of magnitude, for MPBH ∼
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103 g, the upper bound on β(MPBH) < 10−16. This is a stronger bound than from

the LSP. We find that for our warm inflation model, the calculated initial abundance of

PBHs is in accordance with the observational limit for QP = 10−1.9 and 10−2.0. But

for the cases with QP = 10−1.7 and 10−1.8 of our model, the theoretical estimate of the

abundance is higher than the upper limit on the initial mass fraction for certain PBH

masses, which implies that in these models, PBHs of certain masses are overproduced

and thus inconsistent with the observations.

6.5.3 PBH relics as a constituent of dark matter

Here we explore the possibilty that the evaporation of PBHs cease when the black hole

mass reaches the Planck scale MPl, resulting in stable relics of Planck mass [316],

which can contribute to the dark matter as proposed in Refs. [266, 314]. In the litera-

ture, there are many studies which lead to the formation of remnants. Some examples

include Refs. [317–319], where it is shown that by invoking a generalized uncertainty

principle (GUP), the Hawking temperature can be modified and the evaporation of a

black hole can be stopped, thus leading to a Planck mass remnant. Some other exam-

ples are based on modified gravity and string theories, like including higher curvature

terms of the dilaton field or gravity theories derived from Lovelock form of gravita-

tional Lagrangian, in which the black hole solutions are modified, and thus remnants

could be produced [312]. There are also primordial extremal black hole solutions, like

in Ref. [315], which lead to stable black hole remnants. For a comprehensive review on

the challenges for the existence and stability of Planck mass remnants and its current

status, see Ref. [320, 321].

The black hole remnants can be possible candidates of the dark matter in the Uni-

verse. In order that the Planck mass relics do not overclose the Universe today, the

present density of Planck mass relics should be less than the present cold dark matter

density ΩCDM ≈ 0.25, which gives an upper bound on the initial mass fraction of the

PBH as [313]

β(MPBH) < 8× 10−28κ−1

(
MPBH

MPl

)3/2

, (6.26)

where the remnant mass equals κMPl. To an order of magnitude, the constraints on the

initial mass fraction of PBH of mass MPBH ∼ 103 g, is given to be β(103g) < 10−16
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to avoid overclosure of the Planck mass (κ ∼ 1) remnants of their evaporation. We

find that in our warm inflation models with QP = 10−1.9, and QP = 10−2, the initial

mass fraction lies within the above estimated limits, and therefore the possibility that

PBH remnants form DM, remains valid for these cases. But as the Planck mass relics

are tiny, it is extremely difficult or nearly impossible to observationally detect them

non-gravitationally. However, in Ref. [322], it is argued that if such relics carry an

electric charge, then they can be explored in the direct detection experiments in the

near future. A detection of such events would be crucial to deepen our understanding

of the dark matter and black holes physics.

6.6 Summary

Primordial Black Holes are a remarkable probe to the physics of the early Universe.

They provide us an opportunity to investigate a huge range of small scales perturba-

tions generated during the inflationary phase. In this study, we consider one model of

warm inflation and discuss the PBH formation by the collapse of large inhomogeneities

generated during it. The inflaton dissipation during warm inflation enhances the am-

plitude of the primordial power spectrum at the small scales toO(10−2), as required to

generate a significant abundance of PBHs.

We find that for some parameter range of our model, PBHs can be generated with

a significant abundance. We consider those cases with values of the dissipation pa-

rameter at the pivot scale as, QP = 10−1.7, 10−1.8, 10−9, 10−2. We calculate the initial

mass fraction and the mass of the generated PBHs for these values of the dissipa-

tion parameter. We obtain that our model of warm inflation can produce a significant

abundance of PBHs with mass, MPBH ∼ 103 g. Such tiny mass PBHs have a very

short lifetime of 10−16 sec and would have evaporated into Hawking radiation. Our

analysis shows that for the cases with QP = 10−1.9, 10−2.0, the obtained initial mass

fraction is in accordance with the upper limit obtained from the abundance of stable

and long-lived decaying particles produced by evaporating PBHs. But the cases with

QP = 10−1.7, 10−1.8 overproduce PBHs of certain masses, which is inconsistent with

the upper bounds on β.
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Furthermore, it is also argued that PBH evaporation ceases when PBH mass gets

close to the Planck mass, and such Planck mass relics can thus constitute the present

dark matter. The present density of the Planck mass relics should be less than the cold

dark matter density so that it does not overclose the Universe today. This gives a rough

upper bound on the PBH initial mass fraction for a PBH of mass 103 g of O(10−16).

For our warm inflation models with QP = 10−1.9, and QP = 10−2, we find that the

calculated initial mass fraction lies within the limits, and hence the possibility to form

DM remains valid. The Planck mass relics are extremely tiny and almost impossible

to detect by non-gravitational measures. But if they carry an electric charge, then they

may be possibly detected in the dark matter direct detection experiments, which will

have a lot of implications for the black hole physics and dark matter.



Chapter 7

Summary and Conclusions

The inflationary paradigm of the early Universe has been extraordinarily successful and

consistent with the observations of the cosmic microwave background radiation. How-

ever, the microphysics governing inflation is not well understood and tested. There are

two approaches to describe the dynamics of inflation, one is the standard cold inflation,

in which it is assumed that the Universe attains a supercooled state because of an enor-

mous dilution of the number densities of particles during the inflationary phase. The

second is a more general description, known as Warm Inflation, in which the inflaton

interactions and dissipation to other fields during inflation are not neglected. Thus, as a

consequence of particle production, the Universe has a finite temperature during warm

inflation. The description of warm inflation arises from the fundamental principles of a

coupled inflaton-radiation system, which makes it interesting. In this thesis, we focus

on warm inflation and investigate its implications on cosmological (large scale) and

astrophysical (small scale) observations.

In Chapter 1, I discussed the shortcomings of the Standard Model of cosmology in

explaining the uniformity of the cosmic microwave background radiation temperature

and the extreme fine-tuning needed to address the spatial flatness of the present Uni-

verse. By introducing a phase of inflation in the early Universe, these problems can be

resolved.

In Chapter 2, I discussed the dynamics of standard cold inflation in terms of a scalar

inflaton field. Using linear perturbation theory, all the physical quantities (metric and

matter fields) are separated into their classical background values and perturbations. A

117
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gauge-invariant quantity, known as comoving curvature perturbation,R is constructed

from the inflaton and metric scalar perturbations. The two-point correlation of this

quantity gives the primordial curvature power spectrum, ∆2
R(k) characterized by am-

plitude, As, and tilt ns at the pivot scale. The anisotropies in the CMB temperature

are sourced by the primordial curvature power spectrum generated during inflation.

Thus, various inflationary models are tested by comparing their theoretically predicted

values with the measured observables. Similar to scalar perturbations, tensor fluctua-

tions are also generated during inflation, with an amplitude of AT . The signatures of

these tensor fluctuations are looked for in the B-mode polarization of the CMB. As no

successful observation has been made to date for the detection of B-modes, we have

an upper bound on the amplitude AT . The ratio of the tensor to the scalar amplitudes

is known as the tensor-to-scalar ratio r. With the precision measurements of CMB,

stringent bounds have been put on the parameters ns and r, which gives constraints on

the various inflationary models.

In Chapter 3, I discussed the warm inflation scenario and its associated dynamics.

The kinematics of inflaton during warm inflation is modified due to an extra friction

term arising from the inflaton couplings with other fields. This term is quantified by a

dissipation parameter, which can play a dominant (for strong dissipation Q � 1) or a

subdominant role (for weak dissipation Q < 1) during warm inflation. The primordial

power spectrum during warm inflation is sourced by both the thermal and quantum

fluctuations, unlike in cold inflation where only quantum fluctuations play a role. Also,

the value of the tensor-to-scalar ratio is lowered in warm inflation, allowing for the

viability of some models which are ruled out in cold inflation.

In Chapters 4 and 5, we considered models of warm inflation with monomial poten-

tials (V (φ) = λφ4 and λφ6/M2
Pl) and two forms of the dissipation coefficient (Υ ∝ T 3

and Υ ∝ T ). These potentials of cold inflation have been ruled out from the current

allowed ns − r bounds. In our study, we determined the parameter space for which

these potentials could be viable models of inflation. The information of the range of

parameters then provides the foundation stone to build warm inflation from some high

energy physics theory. The primordial curvature power spectrum for these models is

parameterized in terms of the inflaton self-coupling λ and the dissipation parameter
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at the pivot scale QP , arising due to the inflaton’s dissipation into the other fields.

After choosing suitable priors, a Markov Chain Monte Carlo was performed for both

strong and weak dissipation regimes of these models using CosmoMC, and the joint

and marginalized values of these parameters were obtained. We obtain the quantities

Cφ or CT for the obtained mean values or limits of λ and QP , which provide us infor-

mation about the couplings and multiplicities of fields in the warm inflation models.

Further, we also calculated the ns and r values for the mean values of the parameters

and found that for the weak dissipative regime, the tensor-to-scalar ratio is within the

sensitivity of the next generation CMB polarization experiments, which is an important

observational test for these models.

During inflation, scalar fluctuations of a wide range of comoving wavenumbers

is generated. The physical wavelengths of these perturbation modes stretch during

inflation with the scale factor and leave the horizon when their wavelength exceeds the

horizon size. These fluctuation modes then reenter the horizon at some later epochs

of the Universe evolution and then grow in amplitude to become the structures at late

time. Small scale fluctuations, if sufficiently overdense, can collapse by gravitational

instability into compact objects, called Primordial Black Holes (PBHs). PBHs are a

remarkable probe to the physics of the early Universe and the inflationary epoch. The

observational constraints on the abundance of various mass ranges of PBHs provide a

limit on the amplitude of the primordial curvature power spectrum at the small scales.

In Chapter 6, I discussed the formation of primordial black holes during warm inflation.

I considered a model of warm inflation with a potential V (φ) = λφ4 and dissipation

coefficient Υ = CφT
3/φ2. The primordial curvature power spectrum for this model

is consistent with the CMB observations for some range of parameters, and also has

a large amplitude at the small scales, as required to form a significant abundance of

primordial black holes. This feature arises naturally in this model of warm inflation,

which makes it interesting. It is found that PBHs with mass, MPBH ∼ 103g can be

generated in this model for cases with QP values between 10−2.0 and 10−1.7. Such tiny

mass PBHs have a very short lifetime of 10−16 sec and would have evaporated into

Hawking radiation. Further, I discussed the observational and theoretical bounds on

the abundance of such PBHs. It is seen that for the cases with QP = 10−1.9, 10−2.0,
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the initial mass fraction of PBHs is in accordance with the upper limit on black hole

abundances, but the cases with QP = 10−1.7, 10−1.8 overproduce PBHs of certain

masses, which is inconsistent with the upper bounds on β. Furthermore, I also discuss

the possibilty that Planck mass remnants of the evaporating PBHs can constitute the

present dark matter. The initial mass fraction of these PBHs is constrained so that the

remnants do not overclose the Universe. It is seen that for the cases QP = 10−1.9,

and 10−2, the calculated initial mass fraction satisfy the constraints, and hence the

possibility for PBHs to form dark matter remains valid. The Planck mass relics are

extremely tiny and almost impossible to detect by non-gravitational measures. But if

they carry an electric charge, then they may be possibly detected in the dark matter

direct detection experiments, which will have a lot of implications for the physics of

black holes and dark matter.

To conclude, warm inflation is a well-motivated and interesting description of in-

flation, in which one accounts for the dissipation processes and non-equilibrium effects

during inflation. The present demand of inflation model building is to construct mod-

els with a physical motivation that can be successfully embedded in a UV complete

theory. Recent warm inflation studies are progressing in this aspect. The upcoming

CMB experiments will hunt for the B-mode polarization and non-Gaussianities, and

warm inflation offers a promising subject of research in this direction.



Appendix A

Thermal Field Theory

An ensemble of interacting particles in a thermodynamical or near thermodynamical

equilibrium setup is described using a framework of thermal field theory (TFT) [187,

188]. This formalism is applied in the study of hot plasmas - such as the quark gluon

plasma (QGP) in heavy ion colliders and the early hot and dense Universe [186].

For systems which are slighly away from equilibrium, the real time formalism

(RTF) of thermal field theory is used to study the field dynamics. This formalism was

developed by Schwinger, Mills, and Keldysh, in which a Closed Time Path (CTP)

contour is considered in a complex plane, as shown in Fig. A.1. Starting from some

initial time ti on the negative real axis, the contour C1 runs to some positive real time

tf , then it moves vertically down on C3 to tf − iσ. Then, it moves backward on the

real time axis along C2 to ti − iσ, and finally vertically along C4 to ti − iβ. Taking

ti → −∞, tf → ∞, the contour spans the full real time axis. The contributions to

the generating functional from C3, C4 are some multiplicative constants and can be

neglected [188]. Thus, for computing the Green’s function, the time arguments can lie

only on C1 or C2. This involves both time ordering and anti-time ordering and leads

to an effective doubling of the degrees of freedom (For a detailed review, see Refs.

[12, 184–187]).

The propagator at finite temperature in the RTF is a 2× 2 matrix given by

Gab(x, x
′) =

〈T φ̂(x)φ̂(x′)〉C 〈φ̂(x′)φ̂(x)〉C
〈φ̂(x)φ̂(x′)〉C 〈T ∗φ̂(x)φ̂(x′)〉C

 (A.1)

Here C denotes the CTP contour, T stands for normal time ordering along C1 and T ∗
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Figure A.1: Schwinger-Keldysh contour in the complex time plane. Figure taken from

Ref. [12].

denotes anti-time ordering along C2. Here the 〈....〉 denote a thermal average of any

quantity. The individual components are

G12(x, x′) = G<(x, x′) = 〈φ̂(x′)φ̂(x)〉

G21(x, x′) = G>(x, x′) = 〈φ̂(x)φ̂(x′)〉

G11(x, x′) = θ(t− t′)G>(x, x′) + θ(t′ − t)G<(x, x′)

G22(x, x′) = θ(t− t′)G<(x, x′) + θ(t′ − t)G>(x, x′) (A.2)

The indices a, b = 1, 2 represent whether the time coordinates t, t′ lie on C1 or C2. On

the contour, the time coordinate on C2 come after the time on C1. The component G11

is recognized as the standard Feynman propagator, whereas for a system in thermal

equilibrium, G21 is the thermal Wightman function, G12 is its transpose, and G22 is the

thermal Dyson function.

We can also express the propagator matrix for the φ field in momentum space as

Gab(P ) =

∫
d4x Gab(x, x

′)e−iP.(x−x
′) (A.3)

where the 4-momentum P = (ω,p). The components of thermal Green’s function for

a free boson are given as [188]

G11(P ) =
1

p2 −m2 + iε
− 2i πn(ω)δ(p2 −m2)

G12(P ) = −2i π (θ(−ω) + n(ω)) δ(p2 −m2)

G21(P ) = −2i π (θ(ω) + n(ω)) δ(p2 −m2)
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G22(P ) =
−1

p2 −m2 − iε
− 2i πn(ω)δ(p2 −m2) (A.4)

where n(ω) is the thermal distribution function, n(ω) =
1

eβω − 1
. In these expressions,

the first part corresponds to the zero temperature Green’s function and the second part

with n(ω) is the thermal contribution.

We next define the spectral function as

ρ(x, x′) = i〈[φ̂(x), φ̂(x′)]〉 = i(G21 −G12) (A.5)

and the anti-commutator function as

F (x, x′) =
1

2
〈{φ̂(x), φ̂(x′)}〉 =

1

2
(G12 +G21). (A.6)

In terms of these, the propagator matrix is written as

Gab(x, x
′) =

F (x, x′)− i

2
σ(x, x′) F (x, x′) +

i

2
ρ(x, x′)

F (x, x′)− i

2
ρ(x, x′) F (x, x′) +

i

2
σ(x, x′)

 (A.7)

Here σ(x, x′) = sgn(t−t′)ρ(x, x′) is the Wheeler-Feynman propagator (where sgn(t−

t′) = + if t > t′ and − if t < t′ is the sign function). This shows that −ρ(x, x′)/2 and

F (x, x′) are the imaginary and real components of the Wightman function G21(x, x′).

The propagators depend on the combination x − x′, thus it is convenient to take the

Fourier transform over time and space into (ω,p). By the Kubo-Martin-Schwinger

(KMS) relation, the spectral function and the anti-commutator function are related as

F (ω,p) = − i
2

[1 + 2n(ω)]ρ(ω,p). (A.8)

Thus, the propagator matrix (A.7) can be completely described in terms of the spectral

function.

The propagator, and thus the spectral function for an interacting theory are obtained

as a solution to the Schwinger-Dyson equation

(ω2 − p2 −m2)Gab − Σc
aGcb = icab. (A.9)

Here Σab is the self energy matrix which accounts for the loop corrections to the free 2-

point correlation function, and cab is a diagonal matrix (1,−1). Similar to the Green’s
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function matrix, the self energy matrix is separated into real and imaginary functions

[126]

Σ12 = (iΣF ) + i

(
iΣρ

2

)
and

Σ21 = (iΣF )− i
(
iΣρ

2

)
,

by defining

iΣF =
1

2
(Σ21 + Σ12) iΣρ = i(Σ21 − Σ12).

By the KMS relation, the functions satisfy the relation

ΣF (ω,p) = − i
2

[1 + 2n(ω)]Σρ(ω,p).

The imaginary part of the self energy represent the dissipative part and yields the decay

width of the field as

Γ(ω,p) =
iΣρ(ω,p)

4ωp
, (A.10)

where ωp =
√

p2 +m2
R is the energy of any on-shell particle.
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Dissipation parameter at the end of

inflation, Qe

Here we provide the solutions to the algebraic equations obtained in the calculation of

the dissipation parameter at the end of inflation, Qe, as given in Sections 4.3.1 and 5.2.

In these expressions A = (π2/30)g∗.

For V (φ) = λφ4 with Υ = Cφ
T 3

φ2

The positive real solution to Eq. (4.15) is given by

Qe(λ,Cφ) =
−1

2
+

1

2

√
1 + 4

(
64C4

φλ

9A3

)
1

125
. (B.1)

For V (φ) = λφ4 with Υ = CTT

The positive real solution to Eq. (4.16) is given by

Qe(λ,CT ) =
21/3Y

31/3(9Y +
√

3
√

27Y 2 − 4Y 3)1/3
+

(9Y +
√

3
√

27Y 2 − 4Y 3)1/3

21/332/3
,

(B.2)

where Y =
1

123

4C4
T

9Aλ
.
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For V (φ) = λ
φ6

M 2
Pl

with Υ = Cφ
T 3

φ2

The positive real solution to Eq. (5.12) is given by

Qe(λ,Cφ) =
1

3

[
−2 +

21/3

(2 + 27Y + 3
√

3
√

4Y + 27Y 2)1/3
+

(2 + 27Y + 3
√

3
√

4Y + 27Y 2)1/3

21/3

]
,

(B.3)

where Y =
1

104

λC4
φ

8πA3
.

For V (φ) = λ
φ6

M 2
Pl

with Υ = CTT

The positive real solution to Eq. (5.13) is given by

Qe(λ,CT ) =
Y

3
+

21/3(6Y + Y 2)

3(27Y + 18Y 2 + 2Y 3 + 3
√

3
√

(27Y 2 + 4Y 3)1/3

+
(27Y + 18Y 2 + 2Y 3 + 3

√
3
√

(27Y 2 + 4Y 3)1/3

21/3 3
, (B.4)

where Y =
1

304

8πC4
T

Aλ
.
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Integral Function of dN/dQ

We give the integral function F (Q) in Eq. (4.22) obtained while integrating dN/dQ in

Section 4.3.1. In these expressions, 2F1(a, b; c; z) is the hypergeometric function, the

expressions for which can be found in Ref. [323].

For V (φ) = λφ4 with Υ = Cφ
T 3

φ2

For this model, using Eq. (4.12) we get

F (Q) =
5

4Z
Q−1/5(1+Q)−1

[
4(1 +Q)

4
5 (−1 + 5Q)− 15Q(1 +Q) 2F1

(
1

5
,
4

5
,
9

5
,−Q

)]
,

(C.1)

where Z = 40

(
9A3

64λC4
φ

)1/5

.

For V (φ) = λφ4 with Υ = CTT

For this model, using Eq. (4.13) the integral function is calculated to be

F (Q) = − 3

2Z
Q−1(1 +Q)

1
3

[
2 + 3 2F1

(
1, 1;

5

3
;
−1

Q

)]
, (C.2)

where Z =
1

24

(
4C4

T

9Aλ

)1/3

.
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For V (φ) = λ
φ6

M 2
Pl

with Υ = Cφ
T 3

φ2

Using Eq. (5.9) the integral function for this model is calculated to be

F (Q) =
1

Z
Q−1/4(1 +Q)−1/2

[
−4 + 8Q− 8

3
Q(1 +Q) 2F1

(
1,

5

4
;
7

4
;−Q

)]
, (C.3)

where Z =
1

16

(
λC4

φ

8πA3

)1/4

.

For V (φ) = λ
φ6

M 2
Pl

with Υ = CTT

Using Eq. (5.10) the integral function for this model is calculated to be

F (Q) =
1

Z
Q−3/44

[
(1 +Q)

1
2 − 4Q 2F1

(
1

4
,
1

2
;
5

4
;−Q

)]
, (C.4)

where Z =
π

6

(
C4
T

(8π)3Aλ

)1/4

.
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Spectral index
Here we give the expressions for the spectral index, ns for all the warm inflation models

we have studied. In these expressions, εH is the horizon slow roll parameter defined in

Eq. (3.8) and nP is the inflaton distribution function given in Eq. (3.26), both evaluated

at k = kP . Here we have defined x = 1 + 2nP +
TP
HP

2
√

3πQP√
3 + 4πQP

.

For V (φ) = λφ4 with Υ = Cφ
T 3

φ2

ns = 1− εH
(1− εH)

(3 + 11QP )

(1 + 7QP )
+ y

(
9.69 Q 0.946

P + 0.550 Q 3.330
P

1 + 4.98 Q 1.946
P + 0.127 Q 4.330

P

)
+

y

x QP

[
4HP

5TP
exp

(
HP

TP

)
n2
P

(1 + 2QP )

(1 +QP )
+
TP
HP

2
√

3πQP√
3 + 4πQP

(
1 +

2(1 + 2QP )

5(1 +QP )
− 2πQP

3 + 4πQP

)]
,

(D.1)

where y =
5εH

(1− εH)

QP (1 +QP )

(1 + 7QP )
.

For V (φ) = λφ4 with Υ = CTT

ns = 1− εH
(1− εH)

9(1 +QP )

(3 + 5QP )
+ y

(
0.0428 Q 1.315

P + 0.457 Q 0.364
P

1 + 0.0185 Q 2.315
P + 0.335 Q 1.364

P

)
+

y

x QP

[
2HP

TP
exp

(
HP

TP

)
n2
P +

TP
HP

2
√

3πQP√
3 + 4πQP

(6 + 6πQP )

(3 + 4πQP )

]
.

(D.2)

Here y =
3εH

(1− εH)

QP (1 +QP )

3 + 5QP

.
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For V (φ) = λ
φ6

M 2
Pl

with Υ = Cφ
T 3

φ2

ns = 1− 8εH
3(1− εH)

(1 + 5QP )

(1 + 7QP )
+ y

(
9.69 Q 0.946

P + 0.550 Q 3.330
P

1 + 4.98 Q 1.946
P + 0.127 Q 4.330

P

)
+

y

x QP

[
HP

TP
exp

(
HP

TP

)
n2
P

(1 + 3QP )

(1 + 7QP )
+
TP
HP

2
√

3πQP√
3 + 4πQP

(
1 +

2(1 +QP )(3 + 2πQP )

(1 + 3QP )(3 + 4πQP )

)]
,

(D.3)

where y =
8εH

3(1− εH)

QP (1 +QP )

(1 + 7QP )
.

For V (φ) = λ
φ6

M 2
Pl

with Υ = CTT

ns = 1− 8εH
(1− εH)

(1 +QP )

(3 + 5QP )
+ y

(
0.0428 Q 1.315

P + 0.457 Q 0.364
P

1 + 0.0185 Q 2.315
P + 0.335 Q 1.364

P

)
+

y

x QP

[
2HP

TP
exp

(
HP

TP

)
n2
P +

TP
HP

2
√

3πQP√
3 + 4πQP

6 + 6πQP

3 + 4πQP

]
, (D.4)

where y =
8εH

3(1− εH)

QP (1 +QP )

(3 + 5QP )
.
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