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Abstract

In chapter 1, the basic theory of radiation-matter interaction is discussed. The

field quantization in a cavity, density matrix formalism, and the derivation of

interaction Hamiltonian are presented. In Sec. 1.2, an overview of important

atom-cavity coupling effects such as modified atomic spontaneous emission

rate, vacuum field Rabi splittings, micromaser, etc. is presented. In Sec. 1.3,

a general theoretical framework is introduced for studying atom-cavity inter-

action when the atomic motion is quantized. Interesting effects of quantized

atomic motion like reflection of ultracold atoms from a cavity vacuum, micro-

maser pumped with ultracold atoms, etc. are also discussed.

In chapter 2, reflection and transmission of an ultracold two-level atom from

the potential induced by a single mode cavity is considered. The transmission

time of the atom through the cavity is calculated using the Wigner’s stationary

phase method. Numerically, it is shown that the peak of the transmitted

wave packet occurs at the instant given by the expression for phase time.

New features reported in this chapter are : (a) Negative values for the phase

tunneling time, (b) Sub- and super-classical behaviors of phase time, and (c)

Splitting of the atomic wave packet during propagation.

In chapter 3, transmission of an ultracold two-level atom through the poten-

tials induced by a system of two cavities in vacuum state is analyzed. It is

shown that the transmission probability of atoms exhibits new resonances

for the two-cavity system in comparison to the single-cavity case. The origin

of these new resonances is explained as due to resonant tunneling of atoms

through the potentials induced by the cavities. Other key findings in this

chapter are : (a) Demonstration of resonant tunneling of the atom through

a double barrier potential induced by the two-cavity system, (b) Quantum

interferences in resonant tunneling, and (c) Coupling of the cavities by the

transmission of the atom.

We next investigate the maser action of ultracold atoms by considering the

vii



interaction of a beam of ultracold atoms with a bimodal cavity. In chapter 4,

Λ-type three-level atoms in the excited state are considered in the interaction.

It is shown that the two fields in the bimodal cavity are strongly anti-correlated

due to the stimulated one-photon emissions of the incident atoms. It is also

shown that the photon emissions from the atoms can occur either by reflec-

tion or transmission of incident atoms through the cavity. In chapter 5, we

consider Ξ-type three-level atoms in the excited state for the maser action in

the bimodal cavity. Here it is shown that an atom can amplify the fields in

the cavity either by an one-photon emission or by a two-photon emission. The

key findings in this chapter are : (a) Prediction of gain regions due to the two-

photon emission when the corresponding one-photon transition is forbidden

in the atom-field interaction, (b) Sub- and super-Poissonian behaviors of the

steady-state fields in the cavity, and (c) Generation of Poissonian photon dis-

tributions in the cavity by the stimulated two-photon emissions of incident

atoms and their transmission and reflection from the cavity.

viii



Chapter 1

Introduction

1.1 Interaction of Radiation with Matter

1.1.1 Field Quantization in a Cavity

In regions of free space where there are no charges or currents, the electric and

magnetic fields are coupled by the four fundamental Maxwell equations (in M.K.S

units) given by [1]

~∇. ~D = 0, ~∇. ~B = 0,

~∇× ~E = −∂ ~B

∂t
,

~∇× ~H =
∂ ~D

∂t
, (1.1)

where ~E, ~B are the electric, magnetic-induction field vectors at the space-time

point (~r, t). The electric displacement ~D and the magnetic field ~H have relations
~D = εo

~E, ~B = µo
~H through the electric permittivity εo and magnetic permeability

µo. For the case of electromagnetic fields inside a cavity, the Maxwell equations

are solved for the fields ~E, ~H subject to suitable boundary conditions on the cavity

walls. In this thesis, we deal with quantized electromagnetic fields in cavities by

treating the electric and magnetic fields as quantum mechanical operators. The

quantization of fields in the cavity requires the replacement of classical variables

by quantum mechanical operators with commutation relations among them. Be-

fore this quantum - classical correspondence is made, the classical electric and

magnetic fields in the cavity are first expanded in a suitable form in terms of

1



Introduction 2

normal mode functions of the fields. The normal mode functions (dimensionless)
~Uα(~r), ~Wα(~r) (α = 1, 2, ...) of the cavity for the fields ~E, ~H satisfy the Helmholtz

equations

~∇2~Uα(~r) +
ω2

α

c2
~Uα(~r) = 0 ,

~∇2 ~Wα(~r) +
ω2

α

c2
~Wα(~r) = 0 , (1.2)

subjected to the boundary conditions that the tangential component of ~E and the

normal component of ~H vanish on the cavity walls. The frequency of the α-th

cavity mode is denoted by ωα and c ≡ 1/
√

εoµo is the velocity of light in vacuum.

In general, there exists a discrete set of modes {α} for the fields depending on the

cavity geometry and its size. The electric and magnetic field modes are related by

simple curl equations [2]

~∇× ~Uα =
ωα

c
~Wα , ~∇× ~Wα =

ωα

c
~Uα . (1.3)

The functions ~Uα, ~Wα (dimensionless) have orthogonality properties of the form
∫

V

~Uα(~r).~Uβ(~r) d3~r = V δα,β ,

∫

V

~Wα(~r). ~Wβ(~r) d3~r = V δα,β , (1.4)

where the integration extends over the cavity volume V and the Kronecker delta

function δα,β is unity if α = β, zero if α 6= β. The normal mode functions ~Uα, ~Wα

also form a complete set in the sense that any arbitrary fields ~E, ~H in the cavity

can be expanded as a sum over all the modes :

~E(~r, t) =
1√
εoV

∑
α

pα(t)~Uα(~r) ,

~H(~r, t) = − 1√
µoV

∑
α

ωαqα(t) ~Wα(~r) . (1.5)

Here the time dependent amplitudes pα(t), qα(t) accounts for the temporal varia-

tion of the fields in the cavity.

The total energy H(t) stored in the cavity is

H(t) =
1
2

∫

V

(
εo

~E2(~r, t) + µo
~H2(~r, t)

)
d3~r ,

=
1
2

∑
α

(
p2

α(t) + ω2
αq2

α(t)
)

. (1.6)
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This equation expresses the total energy of radiation field as a sum of indepen-

dent, one-dimensional harmonic oscillator energies. Each mode α of the field

therefore behaves dynamically similar to a classical harmonic oscillator of unit

mass with position qα(t) and momentum pα(t). In quantum mechanics, the quan-

tum state of fields in the cavity is described by converting classical oscillators

into quantum oscillators. Then, the classical functions qα(t), pα(t) become Hermi-

tian operators in the Heisenberg picture with the following commutation relations

among them :

[qα(t), qβ(t)] = [pα(t), pβ(t)] = 0 ,

[qα(t), pβ(t)] = ih̄δα,β . (1.7)

Note that the operators qα(t), pα(t) are time dependent only in the Heisenberg

picture of quantum evolution of the field. In the Schrödinger picture, all the op-

erators are fixed in time and only quantum state of the system evolves with time.

We follow this convention in all the following discussions that unless otherwise

stated, all the operators without time dependence are in the Schrödinger picture.

The Hamiltonian operator for the total energy in the cavity obtained from Eq. (1.6)

becomes the sum of energy operators for harmonic oscillators in all the modes.

Since the allowed energies of quantum harmonic oscillators are discrete, the field

in the cavity takes only discrete values of energy on quantization. The discrete-

ness in the energy of radiation field is a distinct feature of quantum theory from

the classical theory of radiation which admits all possible non-negative values of

energy. For the quantum harmonic oscillators, the energy eigenstates are known

to be eigenstates of the number operator a†α(t)aα(t) where the operators aα(t) and

its Hermitian conjugate a†α(t) are defined as

aα(t) =
√

ωα

2h̄
qα(t) +

i√
2h̄ωα

pα(t) ,

a†α(t) =
√

ωα

2h̄
qα(t) − i√

2h̄ωα
pα(t) . (1.8)

With these non-Hermitian operators aα(t), a†α(t) the Hamiltonian operator for the

total energy stored in the cavity is obtained using Eq. (1.6) to be

H =
∑
α

h̄ωα

(
a†α(t)aα(t) +

1
2

)
. (1.9)
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The energy eigenstate |..., nα...., nβ...〉 (Dirac notation) in which the numbers nα

can take values from the set of non-negative integers {0, 1, 2, ...∞}, are eigenstates

of the harmonic oscillator number operator a†α(t)aα(t) in each mode α with the

properties

aα |....0, ...0, ...〉 = 0 = 〈..., 0...0, ....| a†α ,

aα |.....nα, ...nβ, ...〉 =
√

nα |.....nα − 1, ...nβ, ...〉 ,

a†α |.....nα, ...nβ, ...〉 =
√

nα + 1 |.....nα + 1, ...nβ, ...〉 ,

a†αaα |....nα, ...nβ, ...〉 = nα |....nα, ...nβ, ...〉 ,

H |....nα, ...nβ, ...〉 ≡
∑
α

h̄ωα

(
a†αaα +

1
2

)
|....nα, ...nβ, ...〉 ,

=

[∑
α

h̄ωα

(
nα +

1
2

)]
|....nα, ...nβ, ...〉 . (1.10)

Here we have neglected the time argument for the operators aα, a†α which refers

to the Schrödinger picture operators. Since the operators aα and a†α decrease and

increase the photon occupation number in the mode α by one, they are known

respectively as annihilation and creation operators.

When the occupation numbers nα = 0 in all the modes α, the cavity field is in

the vacuum state with the lowest energy
∑

α h̄ωα/2. For the purpose of studying

the time evolution of the field and its interaction with atoms, this vacuum contri-

bution to energy of the cavity can be neglected by setting the energy minimum to

zero. The atom-field interaction in the cavity will be dominantly through electric-

dipole coupling which is a coupling between the atomic dipole and the quantized

electric field in the cavity. The quantized electric field in the cavity is obtained

using Eqs. (1.5) and (1.8) to be

~E(~r) =
∑
α

(−i)
(

h̄ωα

2εoV

) 1
2 (

aα − a†α
)

~Uα(~r) (1.11)

Since the electric field operator is linear in the operators aα and a†α, quantum

expectation value of the electric field in vacuum state (|0〉 ≡ |....0, ...0, ...〉) is zero.

But variance of the field operator in vacuum state, which is defined as ∆ ~E2(~r) ≡
〈0| ~E2(~r)|0〉 − 〈0| ~E(~r)|0〉2, can be shown to be non-zero and even infinite for an

unbounded set of modes {α}. The infinite fluctuations of the fields in vacuum
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state is a difficulty in quantum electrodynamics (QED), the resolution of which

is discussed extensively in text books. In free space, the vacuum fluctuations of

the fields account for the Spontaneous decay of an excited atom, Lamb shift, and

Casimir force between conductors [3]. We consider the interaction of atoms with

single and two mode cavities which have only finite fluctuations of the fields in

vacuum state. This feature indicates that an excited atom inside a cavity can be

induced for photon emission even when the cavity is initially in vacuum state. The

change in state of the cavity field after the atom-field interaction will be obtained

either in the probability amplitude approach or in the density matrix treatment

of the atom-field dynamics. In the density matrix approach, it is relatively easier

to include the cavity losses which occur in practice due to leakage of photons,

inelastic collisions of photons with the cavity walls, etc,.

1.1.2 Density Matrix Formalism

A given physical system is characterized by a state vector |Ψ(t)〉 whose time evo-

lution is governed by the Schrödinger wave equation

ih̄
∂|Ψ(t)〉

∂t
= H|Ψ(t)〉 . (1.12)

Here H is the total Hamiltonian operator for the system which include all its

interaction with external agencies. The interactions may be explicitly time depen-

dent like the interaction of an atom with a classical, monochromatic wave and

therefore the Hamiltonian depends explicitly on time in general. The state vec-

tor |Ψ(t)〉 =
∑

i Ci(t)|i〉 of the system is usually expanded in terms of eigenstates

{|i〉, i = 1, 2, ..} of the non-interacting free part of the Hamiltonian. The expectation

value of an operator A at the instant t is given by

〈A〉t = 〈Ψ(t)|A|Ψ(t)〉 =
∑
n,p

C∗
n(t)Cp(t)Anp , (1.13)

where Anp = 〈n|A|p〉 are the matrix elements of the operator A in the basis {|i〉, i =

1, 2, ..}. The coefficients C∗
n(t)Cp(t) in the above sum can be interpreted as the

matrix element of an operator |Ψ(t)〉〈Ψ(t)| between the states |p〉 and |n〉, i.e.,

C∗
n(t)Cp(t) = 〈p|Ψ(t)〉〈Ψ(t)|n〉. The operator ρ(t) ≡ |Ψ(t)〉〈Ψ(t)| thus defined is known

as the density operator of the system. The matrix formed by the matrix elements
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ρnp(t) of the density operator is called the density matrix with the properties (a) it

is hermitian, (b) Trρ(t) = 1, and (c) positive definite operator, i.e., all its eigenval-

ues λα are such that λα ≥ 0. The expectation value of any operator A in terms of

ρ(t) is given by

〈A〉t = 〈Ψ(t)|A|Ψ(t)〉 = Tr(ρ(t)A) = Tr(Aρ(t)) . (1.14)

Note that ρ2(t) = ρ(t) and Tr
[
ρ2(t)

]
= 1 in a pure state |Ψ(t)〉 of the system.

In many physical situations of practical interest, the state |Ψ(t)〉 of the system

is not known but only the probability pl for the system to be in the state |Ψl(t)〉
is known. For example, the state of radiation field in a cavity which is in equilib-

rium with a finite temperature thermal reservoir, can be characterized only by a

statistical distribution of photon numbers. The density operator of the system in

this mixed state (ensemble of states) is written as

ρ(t) =
∑

l

pl|Ψl(t)〉〈Ψl(t)| , (1.15)

with
∑

l pl = 1. When pl = δlm for some m, the density operator reduces to the

pure state (deterministic) density operator |Ψm(t)〉〈Ψm(t)|. The expectation value

of an operator A is still given by Eq. (1.14) but the average 〈A〉t would imply an

ensemble average in the mixed state. Also for the mixed state ρ2(t) 6= ρ(t) and

Trρ2 < 1 with Trρ(t) = 1. It can be shown further from the Schrödinger equation

that mixed state density operator in Eq. (1.15) satisfies the differential equation

ρ̇(t) = − i

h̄
[H, ρ] . (1.16)

Equation (1.16) is often called as Liouville or Von Neumann equation of motion

for the density matrix. It is more generally applicable than the Schrödinger Eq.

(1.12) as it contains both the statistical as well as quantum description of the

system. The density operator approach is particularly helpful when the system

plus a reservoir interaction involves quantized variables of both the system and

the reservoir. In this case, the density operator in Eq. (1.16) describes a combined

state of the system plus reservoir and the density operator of the system alone

can be obtained by reduced density operator techniques. For the radiation field

in a cavity interacting with a thermal reservoir, the total reduced density operator

ρ(t) of the cavity field factories into the product ρ(t) =
∏

α ρα(t) of the density
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Figure 1.1: Probability flow diagram for a damped cavity mode

operators for all the modes. This implies that all the modes of the cavity behave

independently during interaction with the reservoir. The reduced density operator

ρα(t) describing the field in mode α is obtained by the action of a Liouville operator

Lα on the total density operator ρ(t) and then tracing over the other mode photon

states :

ρ̇α(t) = Tr[Lαρ(t)] ≡ 1
2
Cα(nbα + 1)(2aαραa†α − a†αaαρα − ραa†αaα)

+
1
2
Cαnbα(2a†αραaα − aαa†αρα − ραaαa†α) , (1.17)

where nbα is the number of thermal photons in mode α which depends upon the

temperature of the reservoir and Cα is the damping rate of this mode. The photon

probability distribution p(nα) in mode α defined as p(nα) ≡ 〈nα|ρα(t)|nα〉 evolves in

time as

ṗ(nα) = Cα(nbα + 1)[(nα + 1)p(nα + 1)− nαp(nα)]

+ Cαnbα [nαp(nα − 1)− (nα + 1)p(nα)] . (1.18)

This equation behaves similar to the rate equation for a probability and the var-

ious terms on the right hand side represent the probability flow into and out of

the number state |nα〉 of fixed photon number nα as shown in Fig. 1.1. The term

Cα(nα + 1)p(nα + 1) represents the flow the probability from the state |nα + 1〉 to

the state |nα〉 due to field decays through the cavity walls. Since the probability

flows into the state |nα〉, this term is positive in Eq. (1.18). The other terms (nbα

terms) indicate the random leakage of photons into and out of the cavity due to

interaction with the thermal reservoir. They induce probability flows in both the

directions |nα + 1〉 ↔ |nα〉 ↔ |nα − 1〉 as indicated in the probability flow diagram

(Fig. 1.1).



Introduction 8

1.1.3 Interaction Hamiltonian

Consider an one electron atom with its nucleus at position ~ro in interaction with

quantized fields in a cavity. The Hamiltonian of the atom-cavity field interaction is

obtained by replacing the classical functions with quantum mechanical operators

in the classical Hamiltonian of the system. The quantum mechanical Hamiltonian

of the atom-cavity interaction including the quantization of cavity fields is thus

obtained in the Schrödinger picture to be

H =
∑
α

h̄ωαa†αaα +
1

2me
[~pe − e ~A(~ro + ~r)]

2
+ V (r) + eΦ(~ro + ~r) , (1.19)

where me is the mass of the electron of charge e and pe is its canonical momentum.

The electron is bound to the atomic nucleus by a binding potential V (r) and its

position relative to the nucleus is described by the vector operator ~r. The operator
~A(~r) [Φ(~r)] represents the vector [scalar] potentials for the quantized fields in the

cavity which are dependent on the gauge chosen. The gauge independent quan-

tities are the electric ~E(~r) and magnetic ~H(~r) fields. Generally, it is convenient

to work in the Coulomb gauge in which Φ = 0 and ~∇. ~A = 0. The vector potential

operator ~A(~r) can be expanded in terms of normal modes similar to Eq. (1.11).

Further, one can make dipole approximation to the Hamiltonian when the size

of the atom is much smaller than the wavelengths involved in the normal mode

expansion of operator ~A(~r). In this case, it is a good approximation to substitute
~A(~ro + ~r) = ~A(~ro) for the vector potential in Eq. (1.19), where ~ro is the position of

the atomic nucleus. Physically, this means that in the dipole approximation, the

fields acting on the whole atom are uniform about the nucleus at position ~ro . The

Hamiltonian H together with the state |Ψ(~r, t)〉 obeys the Schrödinger equation

(1.12). The interaction Hamiltonian Eq. (1.19) expressed in terms of the vector

potential ~A(~ro) is called as the minimal coupling form of the atom-field interac-

tion. Besides this, another form known as multipolar Hamiltonian is found to

be more convenient for treating the interaction between the atom and quantized

fields. This form can be derived in the dipole approximation from Eq. (1.19) by a

unitary transformation [4]

|Ψ(~r, t)〉 = exp
[

i

h̄
~d. ~A(~ro)

]
|χ(~r, t)〉 . (1.20)
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Here ~d = e~r is the dipole moment operator of the atom. Substituting this into the

Schrödinger equation (1.12) and after doing some algebras, the equation for the

time evolution of state |χ(~r, t)〉 can be found to be

ih̄
∂

∂t
|χ(~r, t)〉 =

(∑
α

h̄ωαa†αaα +
~p2

e

2me
+ V (r)− ~d. ~E(~ro)

)
|χ(~r, t)〉 ,

= (Ho + HI) |χ(~r, t)〉 , (1.21)

where Ho =
∑

α h̄ωαa†αaα + ~p2
e

2me
+ V (r) is the free Hamiltonian of the atom-cavity

system, HI = −~d. ~E(~ro) with ~E(~ro) being the electric field in Eq. (1.11) . In deriving

Eq. (1.21), we have omitted a constant term in the Hamiltonian. Note that in this

multipolar Hamiltonian, the interaction part HI takes the form of a dipole cou-

pling with the electric field in the dipole approximation. We shall use this dipolar

interaction and the transformed Schrödinger equation (1.21) in all subsequent

studies of atom-field interaction in cavities.

1.2 Atom-Field Interaction in a Cavity

The interaction of atoms with quantized, electromagnetic fields lead to many re-

markable effects such as irreversible atomic decay, Lamb shift, Casimir effects,

etc. Spontaneous decay of an atom, which is a manifestation of vacuum fluc-

tuations, depends also on the mode structure of the electromagnetic vacuum in

which the atom is placed. In free space vacuum, the spontaneous emission of ra-

diation from an excited level of an atom is characterized by specific decay rates to

lower lying levels of the atomic transitions. However, the situation becomes differ-

ent when the atom is confined inside a cavity. The density of field modes available

for the interaction of the atom gets modified inside the cavity. The spontaneous

photon emission from the atom can be made faster or slower by manipulating the

density of modes of the cavity field. It can even be made reversible leading to a

periodic exchange of photons between the atom and the cavity field. The most

fundamental and underlying model for all these studies is a two-level atom in-

teracting with a single mode cavity also known as Jaynes-Cummings (JC) model.

In what follows, we will discuss some of the properties of this model and review

some experiments done. In the JC model, the center-of-mass position and mo-
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tion of the atom are treated classically while the atom’s interaction with the cavity

depends on quantized variables of both the atom and the cavity field.

1.2.1 Jaynes-Cummings Model

When an atom is inside a single mode cavity, only those two atomic levels with

transition frequency close to the frequency of the cavity, take part in the interac-

tion. In this case, the atom becomes a two-level atom and the presence of other

levels in the atom can be ignored for studying the dynamics of interaction. The

interaction of the two-level atom with the single mode cavity was first studied by

Jaynes and Cummings [5]. Let |e〉 and |g〉 represent the excited and ground energy

states of the atom respectively. Using the closure relation |e〉〈e|+|g〉〈g| = 1, the free

Hamiltonian HA of the atom and its dipole moment operator ~d can be expanded

in the energy basis states |e〉, |g〉 :

HA = (|e〉〈e|+ |g〉〈g|) HA (|e〉〈e|+ |g〉〈g|)
= Ee|e〉〈e|+ Eg|g〉〈g| , (1.22)

~d = ~deg|e〉〈g|+ ~dge|g〉〈e| ,

where Ee and Eg are the energies of excited and ground states respectively. In

the expansion of dipole moment, diagonal elements ~dee, ~dgg vanish due to parity

reasons and the non-diagonal terms ~deg, ~dge represent the electric dipole matrix

elements between the states |e〉 and |g〉. The atom interacts with the single mode

field in the cavity through its dipole coupling with the quantized, electric field [cf.

Eq. (1.11)]

~E(~r) = (−i)
(

h̄ω

2εoV

) 1
2 (

a− a†
)

~U(~r) . (1.23)

The total Hamiltonian of the atom-field interaction in the dipole approximation

will be

H =
h̄ν

2
(|e〉〈e| − |g〉〈g|) + h̄ωa†a− ~d. ~E(~ro) , (1.24)

where Ee = h̄ν/2 (Eg = −h̄ν/2) has been assumed for the excited (ground) state

energies of the atom and the frequency ω of the cavity is close to the transition

frequency ν = (Ee − Eg)/h̄ of the atom. The interaction term in Eq. (1.24) depends
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on the atomic position ~ro through the mode function ~U(~ro) of the cavity. It con-

tains four terms of which those corresponding to operators (a |e〉〈g|) and (a† |g〉〈e|)
represent energy conserving processes. In both the terms, the atom is taken be-

tween the states |e〉 and |g〉 with an equivalent increase or decrease in the energy of

cavity field. The other terms having the operators (a |g〉〈e|) and (a† |e〉〈g|) represent

energy non-conserving processes. They result in loss or gain of approximately 2h̄ω

in the energy of atom-field system. Dropping these energy non-conserving terms

amounts to rotating wave approximation. Thus, the simplified Hamiltonian in the

dipole and rotating wave approximations for the atom-field interaction [6] reads

as

H =
h̄ν

2
(|e〉〈e| − |g〉〈g|) + h̄ωa†a + h̄Ω(~ro)

(
|e〉〈g|a + a†|g〉〈e|

)
,

Ω(~ro) = i

(
h̄ω

2εoV

) 1
2 ~deg.~U(~ro)

h̄
, (1.25)

in which the coupling strength Ω(~ro) has been set to be real by adjusting the phase

of states |e〉 and |g〉. The position dependence ~ro of the coupling strength leads to

a dipole force acting on the atom which will be discussed later. The Hamiltonian

(1.25) and the state |Ψ(t)〉 of the atom-cavity system satisfy the Schrödinger equa-

tion (1.12). The time evolution of the atom-cavity system can be obtained easily

using the eigenstates of the Hamiltonian H and the probability amplitude method.

Let |e, n〉 and |g, n〉 represent the excited and ground states of the atom with ′n′

photons present in the cavity field. The exact eigenstates of the Hamiltonian (1.25)

can be found to be [5]
 |φ+

n+1〉
|φ−n+1〉


 =


 cos θn

− sin θn


 |g, n + 1〉+


 sin θn

cos θn


 |e, n〉 , (1.26)

tan θn = 2Ω
√

(n + 1)
/

(Ωn,∆ −∆) , ∆ = ν − ω ,

Ωn,∆ =
√

(∆2 + 4Ω2(n + 1)) , n = 0, 1, 2, ....,

with the corresponding eigenvalues

h̄λ±n+1 = h̄ω(n +
1
2
)± h̄Ωn,∆

2
. (1.27)

The states (1.26) are called the dressed states for the quantized atom-field system.

In addition the state |φ0〉 = |g, 0〉 is also an eigenstate of H with eigen-energy value

−h̄ν/2.
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The dressed states |φ±n+1〉 for atom-field interaction in the cavity form a two-

state manifold with ’n’ labeling each element. They also serve as a set of basis

states in expanding a general state of the atom-cavity system. Since the inter-

action term in the Hamiltonian (1.25) couples only the states |e, n〉 and |g, n + 1〉,
the dressed states are linear superpositions of these states. For an initial atom-

field state |e, n〉, the state |Ψ(t)〉 of the atom-cavity system can be expanded in the

dressed state basis as

|Ψ(t)〉 = C+
n (t)|φ+

n+1〉+ C−
n (t)|φ−n+1〉 , (1.28)

where the coefficients obey C+
n (0) = sin θn , C−

n (0) = cos θn, the initial conditions

at time t = 0. Solving for the amplitudes C±
n (t) using Schrödinger equation (1.12)

with these initial conditions and then using Eq. (1.26), the probability Pe,n that

the atom remains in the initial excited state at time t after the interaction is found

to be

Pe,n(t) = cos2
(

Ωn,∆ t

2

)
+

∆2

Ω2
n,∆

sin2

(
Ωn,∆ t

2

)
. (1.29)

The probability Pg,n+1(t) that the atom goes to the ground state with an emission

of one photon into the cavity is given by Pg,n+1(t) = 1 − Pe,n(t) due to probability

conservation. The solution (1.29) shows that the excited state probability oscil-

lates with an angular frequency 2Ω
√

n + 1 for the resonant case (∆ = 0). As the

detuning ∆ is increased, the frequency of oscillation increases, but the amplitude

decreases. For an initial vacuum (n = 0) field in the cavity, the frequency 2Ω for

the resonant case is called as vacuum Rabi frequency - an analogue of frequency

in magnetic resonance described by I. I. Rabi [7]. The oscillations in the excited

or ground state probability are also known as Rabi oscillations. The Rabi oscil-

lations of the excited state probability for the initial vacuum state is the simplest

example of the spontaneous emission of an atom inside the cavity in which the

spontaneously emitted photon contributes to the single mode of the cavity. The

spectrum of spontaneous emission was shown to exhibit a doublet rather than

a single Lorentzian line of free space atom [8]. The splitting of this single line is

called as vacuum field Rabi splitting. The emission spectrum is also very sensitive

to the number of atoms interacting with the cavity and many new lines were pre-

dicted even for two atoms [9]. Eberly et al [10] showed that for an initial coherent
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field in the cavity, the spontaneous and stimulated processes of atomic emission

leads to a periodic collapse and revival behavior in the atomic inversion. This was

later verified experimentally in Rydberg atomic transitions by Rempe et al [11].

Atom in a damped cavity : In the above analysis, we have not taken the de-

cay of cavity field into account. The approximation of lossless cavity holds good

only when the interaction time of atom with the cavity is much less than the

decay time of cavity field. In practical situations, one has to consider the damp-

ing of field into account and the atom interaction with the cavity can be treated

either perturbatively or non-perturbatively depending on the atom-field coupling

strength [12, 13]. The perturbative regime of atom-field interaction corresponds

to cavities of low quality factor Q ≡ ω/C, where ω and C are the frequency and

damping rate of the cavity field. Here, the excited atom is coupled to many field

modes in the cavity which leads to an exponential decay in the probability of

excited state. The spontaneous emission rate can be calculated perturbatively

using Fermi-Golden rule and can be controlled by the proper design of cavity ge-

ometry, its quality factor etc. In this low Q regime, a number of experiments have

demonstrated the inhibition [14, 15, 16, 17, 18] or enhancement [19, 20, 21] of

atomic spontaneous emission inside the cavity. On the other hand, in a cavity of

high quality factor, the atom is strongly coupled to the cavity with the atom-field

coupling strength much larger than the cavity decay rate. In this case, the per-

turbative treatment ceases to be valid and one has to consider the atom-cavity as

a single system. The spontaneous emission spectrum of an atom exhibits vacuum

field Rabi splittings similar to the case of atom in a lossless cavity. For Rydberg

atomic transitions in a microwave cavity, theoretical [22] and experimental [23]

analysis showed that the excited state probability of the atom exhibits damped

Rabi oscillations instead of exponential decay. Agarwal [24] provided yet another

elegant approach to demonstrate the effects of strong atom-field couplings in Ry-

dberg atomic transitions. He showed that the absorption spectrum of a weak

probe beam passing through the atom-cavity vacuum system exhibits vacuum

field Rabi splitting. He also gave a physical understanding of this behavior in

terms of dressed states of the atom-field system. Agarwal’s work led further to a

series of theoretical [25, 26, 27, 28, 29, 30, 31] and experimental investigations



Introduction 14

on vacuum field Rabi splittings in the optical [32, 33, 34, 35] as well as microwave

domain [36]. Furthermore, Varada, Sanjay kumar and Agarwal [37] showed that

the cavity damping leads to subnatural line widths in the emission spectrum of

an atom. Puri and Agarwal [38, 39] studied the effects of cavity damping in the

strong coupling regime on the collapse and revival behavior of a two-level atom

operating on one- and two-photon transitions. Besides these significant publi-

cations in the study of strong atom-field couplings, the subject has seen a rapid

growth after the experimental realization of one-atom maser or Micromaser by

Meschede, Walther and Muller. In the next subsection, we will discuss about

these developments which are the cumulative effects of many atomic interactions

with the cavity.

1.2.2 Micromaser

One of the most elaborately studied effects of strong interaction between atoms

and quantized fields in a cavity is the micromaser in which a beam of excited

atoms is sent through a microwave cavity. The motion of the atoms through the

cavity is one-dimensional (assumed to be in z-direction) and is treated classi-

cally in the semiclassical theory of atom-field interaction. The atom-field coupling

strength Ω(z) in Eq. (1.25) is assumed to be independent of the atomic position z

along the propagation axis. The flux of the atomic beam is so adjusted that only

one atom interacts with the cavity field at a time. The cavity has a very high qual-

ity factor in the micromaser and hence the decay of cavity field can be ignored

during the time of atom-field interaction. Atoms in the beam are prepared in the

highly excited states called as Rydberg states [40] before entering into the cavity.

The reason for using Rydberg atoms is two fold - First, the Rydberg states have

very long life time and hence the spontaneous decay of the atom can be ignored

during the time of atom-field interaction. Secondly, the probability of induced

transitions between neighboring states is relatively very large for Rydberg states.

These situations make the micromaser ideal for realizing the basic model of a

single atom interacting with a quantized field treated by Jaynes and Cummings.

The operation of the micromaser is based on these series of single atom inter-

actions with the cavity. The cavity field also damps in the time interval between
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two successive atoms entering into the cavity. When the mean time interval be-

tween the atoms injected into the cavity is shorter than the cavity decay time, a

steady state field is built up in the cavity due to the balance among the stimu-

lated photon emissions from the pumping atoms and cavity field decays. The first

experimental realization of micromaser was reported by Meschede, Walther and

Muller [41].

The early theoretical studies on micromaser showed that the steady state fea-

tures of the cavity field depend in an important manner on parameters like flux (r)

of the incident atoms, atom-cavity interaction time (τ), atom-field coupling con-

stant (Ω), quality factor (Q) and decay rate (C) of the cavity, etc.. Two different

approaches were developed to study the steady state features : a microscopic the-

ory based on the Jaynes-Cummings model [42] and a macroscopic theory based

on the quantum theory of the laser [43]. In the macroscopic theory which we

follow, the probability p(n) of finding n photons in the single mode micromaser

cavity pumped by two-level atoms evolves in time t as follows :

dp(n)
dt

= Gn−1p(n− 1)−Gnp(n)

−C(nb + 1) [np(n)− (n + 1)p(n + 1)] (1.30)

+Cnb [np(n− 1)− (n + 1)p(n)] ,

with Gn = r sin2(Ωτ
√

n + 1) being the gain coefficient for the atomic transition

and nb the number of thermal photons in the cavity. The terms containing the

decay rate of the cavity are just the diagonal elements of the density operator as

given in Eq. (1.18) for the single mode field. The other terms containing the gain

coefficients represent the photon emissions from the incident atoms. They can be

given a physical meaning in terms of probability flow rate between the state |n〉 of

fixed photon number (n) and the states |n± 1〉 with photon number (n± 1) of the

cavity field as shown in Fig. 1.2. It is to be noted that the gain terms (Gn terms)

can make only upward transitions |n − 1〉 → |n〉 → |n + 1〉 and the damping terms

(C terms) can make only downward transitions |n+1〉 → |n〉 → |n−1〉. The thermal

photon terms (nb terms) can induce both the upward and downward transitions

|n − 1〉 ↔ |n〉 ↔ |n + 1〉. Since the cavity field in an initial state |n〉 can induce

stimulated photon emissions from the incident atoms at the rate Gn, the term
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containing Gnp(n) is negative in Eq. (1.30). It represents |n〉 → |n + 1〉 transition

in the cavity-field state with a decrease in the probability p(n) and an equivalent

increase in the probability p(n + 1). Similar physical meaning holds for all other

terms in Eq. (1.30) as indicated in the probability flow diagram (Fig. 1.2).

After these early publications on the time development of micromaser field,

a number of theoretical investigations had been carried out in connection with

two-photon micromaser theory [44], state reduction of excited atoms [45], trap-

ping states [46], number state generation by velocity control of pumping atoms

[47], atomic beam noise suppression [48], semi-classical micromaser theory [49],

quantum non-demolition measurement of photon numbers [50], cavity field noise

reduction by regulating pump statistics [51], cavity QED analog of Raman scat-

tering [52], micromaser with intra-cavity kerr nonlinearity [53], micromaser spec-

trum [54, 55, 56, 57, 58, 59] and its time evolution [60], effect of finite atomic

life time on micromaser field state [61], generation of macroscopic and submacro-

scopic fields in the micromaser [62], quantum measurements in the micromaser

[63], effect of cavity decay on micromaser field state [64], intensity-intensity cor-

relations [65], generation of correlated fields by Raman transitions [66], two-mode

three-level micromaser [67], micromaser with non-Poissonian pumping [68], pure

states in micromaser [69], detection statistics [70], coherently pumped micro-

maser [71], etc,. On the experimental side, demonstrations of collapse and revival

of Rabi oscillations [11, 72], two-photon maser oscillator [73] and sub-Poissonian

photon statistics [74] were the significant developments. Further, Scully, Englert

and Walther demonstrated that micromaser set-up can be used as which-path

detectors to verify the principle of complementarity in quantum mechanics [75].

The micromaser was even extended to optical regime and the realization of mi-

crolaser was also reported [76]. The subject had been reviewed in many different

journals [77].

In all these studies, the steady state behavior of the micromaser was gener-

ally considered. The steady state probability p(n) is obtained by setting the time

derivative equal to zero in Eq. (1.30). The solution can then be obtained in an-

alytical form by applying the principle of detailed balance to the probability flow

diagram in Fig. 1.2. The principle of detailed balance states that the net down-
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Figure 1.2: Probability flow diagram for a single mode micromaser

ward and upward probability flow rate between the states |n〉 and |n − 1〉 of fixed

photon numbers in the cavity are equal, that is

[Cnbn + Cn]p(n) = [Cnbn + Gn−1]p(n− 1) , (1.31)

which on successive iterations, leads to the steady state solution

p(n) = p(0)
n∏

m=1

Cnb + r sin2(Ωτ
√

m)/m

C(nb + 1)
. (1.32)

The probability of finding zero photon p(0) is determined by the normalization

condition
∑

n p(n) = 1. A remarkable steady state behavior of the micromaser

is that the photon distribution p(n) can be narrower than a Poissonian distri-

bution [42, 43]. This is termed as sub-Poissonian photon statistics which can

be exhibited only by quantized fields. The experimental observations of non-

classical features such as sub-Poissonian photon statistics [78], photon anti-

bunching [79] and squeezing [80] were the early demonstrations for the field quan-

tization. In micromaser, the experiments on quantum Rabi oscillations [11, 72]

and sub-Poissonian photon statistics [74] provided further the evidence for the

non-classical characters of quantized field in the cavity. The most basic quantum

mechanical states for the quantized cavity field are those with fixed photon num-

ber also known as number (or Fock) states. Various theoretical schemes using

state reduction of excited atoms [45], trapping states [46] and velocity control of

pumping atoms [47] were proposed to create a number state in the micromaser

cavity. Recently, Walther’s group have realized the number state in the micro-

maser experimentally both by trapping states [81, 82] and state reduction [83]

methods. With the realization of the sub-Poissonian and number state of the ra-

diation field, the micromaser has now become an important non-classical field

generator.



Introduction 18

1.2.3 Mechanical Forces in Cavity QED

It is known that laser lights can cool and trap atoms in optical-wavelength-sized

regions. The stronger the intensity of the trapping laser, the deeper is the optical

potential that holds the atom. Moreover, it was the development of advanced laser

cooling techniques [84] that made the optical trapping of atoms possible. In cavity

QED, dipole forces for trapping of atoms were first predicted for Rydberg atomic

systems by Haroche and coworkers [85]. They considered a two-level, Rydberg

atom moving into a high finesse, microwave cavity in the adiabatic limit. For small

detuning of the cavity field which satisfy the adiabaticity criteria, they showed that

an excited atom can be attracted to the cavity center even in vacuum state of the

cavity. Just like optical potentials are created by the atom-laser interaction in

optical traps, in cavity vacuum traps, the dressed states of atom-vacuum field

interaction creates a potential well for trapping the atom. For Rydberg atomic

transitions induced in a high quality cavity, the effects of spontaneous atomic

decay and cavity losses can be ignored during the time of atom-field interaction.

Still, the trapping force created by the photon exchange between the atom and

the cavity field is at least 10 times smaller than gravity, thus severely limiting

experiments.

On the other hand, in the optical domain of atomic transitions, the cavity me-

diated dipole forces on atoms are stronger enough to overcome gravity. Recently,

Kimble’s group [86] have demonstrated the evidence for the mechanical forces

on atoms in an optical cavity. Although optical photons provide forces of suffi-

cient magnitude, the atomic and cavity decays become much faster in the optical

domain. The cavity is therefore continuously pumped with an external laser to

replace the lost photons from the atom-cavity system. The transmission of the ex-

ternal laser through the cavity has been used as a direct measure for the strength

of the atom-field coupling [87, 88, 89, 90]. In the kimble’s experiment [86], the

transmission measurement on the laser provided the real time detection of the

atomic position in the cavity. The force operator ~F which represents the dipole

forces on atom is defined as the time derivative of atomic momentum operator ~P :

~F =
d~P

dt
=

i

h̄

[
H, ~P

]
= −~∇~RH . (1.33)
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Here H is the Hamiltonian of the atom-field interaction which depends on the

atomic position operator ~R. In the semiclassical treatment of atomic motion, the

position operator ~R is replaced by its average value ~ro of the atomic position.

The position dependence ~ro of the Hamiltonian through the atom-field coupling

strength Ω(~ro) discussed in Sec. 1.2.1, thus leads to a dipole force acting on the

atom. For the Hamiltonian (1.25), the average force acting on the atom is given by

〈~F 〉 = −h̄~∇~roΩ(~ro)
〈
|e〉〈g|a + a†|g〉〈e|

〉
. (1.34)

In the optical cavity trap, the average in the above equation is taken over

the atom and photon states including the interaction of the external laser, the

losses due to spontaneous emission of atom and leakage of photons through cav-

ity walls. This averaging can be done easily in the density matrix framework for

low intensity limit of the external laser driving the cavity. Based on the density

matrix treatment, an average force proportional to the atomic velocity (friction

force) has been predicted for a standing wave mode field in the cavity [91]. Anal-

ogously to Sisyphus cooling mechanism for the movement of atom in a classical

standing wave, this friction force which acts mainly along the cavity axis, can

lead to cooling of the atom under suitable operating conditions. The first exper-

imental demonstration of cooling and heating of atoms through cavity mediated

velocity dependent force inside an optical cavity was reported by G. Rempe and

his coworkers [92]. Trapping of an atom inside the cavity requires a restoring

force transverse to the cavity standing wave in addition to the friction force on the

atom along the cavity axis. Evidence for the trapping force has been reported in

recent experiments by Rempe [93] and Kimble [94] groups. In these experiments,

the atom entering into the cavity triggers an external feedback switch which then

increases the intensity of the external laser to provide the trapping force. It is re-

markable to see that atoms can be trapped in this way by a cavity field containing

less than one photon on an average contrary to highly intense (large number of

photons) trapping lasers used in optical traps.



Introduction 20

1.3 Ultracold Atoms in a Cavity - Quantization of the Atomic

Motion

In all the theoretical and experimental studies discussed above, the atomic mo-

tion was considered classically while the atom-field interaction was treated by

quantum electrodynamics. This semiclassical treatment of atom-field interaction

is valid as long as the atomic wave packet’s spatial extension, and therefore its de

Broglie wavelength, are small when compared with the cavity size. The quantum

effects of atomic motion become significant only when the atom’s de Broglie wave-

length is comparable to or larger than the cavity dimensions. This condition is

met for laser cooled atoms since the atoms have very low kinetic momentum and

therefore high de Broglie wavelength at ultra-low temperatures. By considering

the ultracold atoms, Englert et al [95] discovered that the interaction of an atom

with the cavity induces a quantum mechanical potential for the quantized, exter-

nal motion of the atom. In this section, we explain the general theoretical frame-

work for studying atom-cavity interaction when the atomic motion is quantized

and review some theoretical developments in the context of micromasers pumped

by ultracold atoms. Regarding experiments, realization of quantized atomic mo-

tion in cavity QED has to wait for the technical advances in the form of large

atom-field coupling strength, control over parameters like cavity length, flux and

velocity of atoms, etc,.

1.3.1 Atom-Field Interaction as a Scattering of a Wave packet

Consider an ultracold, two-level atom to be passing through a single mode cavity

of length L . The atomic motion is assumed to be one-dimensional both inside and

outside the cavity which we fix to be in the z direction. The atom passing along the

axis of the cylindrical cavity in micromaser experiments is an example of this. The

Hamiltonian describing the atom-field interaction including the quantized motion

of center-of-mass (c.m.) of the atom along the z-axis, is then given from Eq. (1.25)

to be

H =
p2

z

2m
+

h̄ν

2
(|e〉〈e| − |g〉〈g|) + h̄ωa†a + h̄Ω(z)(|e〉〈g| a + a† |g〉〈e|) , (1.35)
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where pz is the atomic c.m. momentum operator and m is the atomic mass. The

parameter Ω(z), which gives the strength of atom-field interaction, depends on

the one-dimensional position z of the atom as it moves. The Hamiltonian (1.35)

together with the state vector |Ψ(z, t)〉 obeys the time evolution in the Schrödinger

Eq. (1.12). Now, transforming to an interaction picture with an unitary transfor-

mation on the state,

Ho ≡ h̄ω

2
(|e〉〈e| − |g〉〈g|) + h̄ωa†a ,

|χ(z, t)〉 = exp(iHot/h̄)|Ψ(z, t)〉 , (1.36)

the state vector |χ(z, t)〉 in the interaction picture obeys the following equation

with an effective Hamiltonian HI :

HI ≡ p2
z

2m
+

h̄∆
2

(|e〉〈e| − |g〉〈g|) + h̄Ω(z)(|e〉〈g| a + a† |g〉〈e|) ,

ih̄
∂

∂t
|χ(z, t)〉 = HI |χ(z, t)〉 . (1.37)

The detuning ∆ = ν−ω represents the mismatch of the atomic frequency from the

cavity frequency. The state vector |χ(z, t)〉 contains information about the internal

state of the atom and the field as well as the external motion of the atomic wave

packet.

Potential Induced by a Resonant Cavity : Since the total energy of the atom-

cavity system is conserved, the external motion of the atom is influenced by

both the internal atomic and photon states in the cavity. This is easily seen

in the simplest case when the cavity frequency is tuned on resonance with the

atomic frequency (∆ = 0). It can be verified that the atom-field states |φ±n+1〉 =
1√
2
(|e, n〉 ± |g, n + 1〉) in Eq. (1.26) are eigenstates of the interaction picture opera-

tor HI with eigenvalues h± = p2
z

2m ± h̄Ω(z)
√

n + 1 for the resonance case (∆ = 0). The

interest here is to find the effect of quantized atomic motion on the time evolution

of the initial atom-field state |e, n〉. Similar to Eq. (1.28), the state of the atom-field

system can be expanded as

|χ(z, t)〉 = C+
n (z, t)|φ+

n+1〉+ C−
n (z, t)|φ−n+1〉 , (1.38)

with the coefficients C±
n now depending on the position z of the atom. With this
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expansion, the time dependent Schrödinger equation (1.37) for ∆ = 0, becomes

ih̄
∂Cα

n (z, t)
∂t

= hαCα
n (z, t) , α = ± , (1.39)

where the operators h± act on the c.m. wave functions of the atom. The effect

of the cavity with fixed initial number (n) of photons is thus seen to produce

potential terms in h± as first discussed by Englert et al [95]. Thus, the problem

of atom-field interaction is reduced to that of a scattering of a wave packet from

the cavity induced potentials V ±
n+1 = ±h̄Ω(z)

√
n + 1 in the eigenstates |φ±n+1〉. For

the external motion of the atom in the initial atom-field state |e, n〉, the cavity acts

like a potential which is a coherent combination of the barrier (V +
n+1) and well

(V −
n+1) components. These potentials are quite analogous to those induced in the

interaction of a spin-half particle with a classical magnetic-field when the motion

of the particle is quantized [96].

Distinction from Optical Potentials : In the scattering process of an atom from

a resonant cavity discussed above, the potentials are created for the external

motion of the atom by photon exchange between the atom and the cavity field. The

potentials experienced by the atom in the dressed states |φ±n+1〉 can be viewed as

due to a force mediated by the atomic transitions |e〉 ↔ |g〉 inside the cavity. These

potentials should be distinguished from those experienced by an atom interacting

with a far-detuned classical field. In the classical treatment of the monochromatic

field, the operators a and a† in the Hamiltonian (1.37) are treated as c-numbers

which can be set to be unity by redefining the coupling strength Ω(z). For a far

detuned field (∆ >> Ω(z)), the perturbation theory then gives a shift h̄ δE(z) ≡
±4h̄Ω2(z)/∆ in the energy levels of the excited and ground states of the atom. The

Hamiltonian (1.37), in the leading order of perturbation, becomes

HI ≈ p2
z

2m
+ h̄(

∆
2

+ δE) (|e〉〈e| − |g〉〈g|) . (1.40)

The bare atomic state |e〉 (|g〉) thus induces a potential barrier (well) with the

potential energy 4h̄Ω2(z)/∆ for the external motion of the atom. With a sinusoidal

coupling strength Ω(z) ∝ sin(ωz/c), the atom moves in a periodic potential due to

these non-resonant light shifts. This principle is being used in optical lattices to

cool and trap atoms [97].
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1.3.2 Reflection and Transmission

In comparison to semiclassical treatment, the quantum treatment of atomic mo-

tion leads to reflection of the incident atoms from the cavity induced potentials

besides partial transmission. This reflection or the transmission of the atom is

very similar to that of a particle interacting with potential barriers or wells. The

interaction of the atom with the cavity can also change the electronic states of

the atom. Consider a resonant cavity of length L to be located in the region

z = 0 → L . The cavity region can be specified by the mesa function θ(z)θ(L − z)

where θ(z) is the Heaviside’s unit step function, i.e., θ(z) is zero if z < 0, unity

if z > 0. The incident wave packet of the free moving atom in the left region

(z < 0) has a decomposition in the momentum domain (wavenumber k) of the

form exp
(−ip2

zt/2mh̄
) ∫

dkA(k)eikz =
∫

dkA(k)e−i(h̄k2/2m)teikz. Each plane wave com-

ponent (momentum h̄k) in the incident wave packet gets reflected or transmitted

through the cavity with amplitudes ρ±n (k), τ±n (k), respectively, in the dressed states

|φ±n+1〉. In the long time limit, when the atom has left the cavity after its interac-

tion, the reflected and transmitted wave packets in regions to the left (z < 0) and

the right (z > L) of the cavity are given by solving equations (1.38) and (1.39) to be

|χ(z, t)〉 =
∫

dkA(k)e−i(h̄k2/2m)t
{[

Re,n(k)e−ikzθ(−z) + Te,n(k)eikzθ(z − L)
]
|e, n〉

+
[
Rg,n+1(k)e−ikzθ(−z) + Tg,n+1(k)eikzθ(z − L)

]
|g, n + 1〉

}
, (1.41)

where

Re,n =
1
2
(ρ+

n + ρ−n ), Te,n =
1
2
(τ+

n + τ−n ) , (1.42)

are the reflection and transmission amplitudes for the excited state of the atom

and

Rg,n+1 =
1
2
(ρ+

n − ρ−n ), Tg,n+1 =
1
2
(τ+

n − τ−n ) , (1.43)

are the reflection and transmission amplitudes for the ground state of the atom

with an emission of a photon from the atom. These reflection and transmission

amplitudes depend on the mode function of the field in the cavity through the

coupling strength Ω(z). For a mesa mode coupling strength Ω(z) which repre-

sents z-independent atom-field coupling inside the cavity, the amplitudes ρ+
n , τ+

n

correspond to the reflection and transmission amplitudes of an atom interacting
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with a potential barrier of height V +
n+1 = h̄Ω

√
n + 1. Similarly, the amplitudes ρ−n ,

τ−n describe the reflection and transmission of the atom incident on a potential

well of depth V −
n+1 = −h̄Ω

√
n + 1. The lengths of the induced barrier - well com-

ponents are given by the interaction length L of the cavity region. The influence

of the barrier - well components on the atomic motion become significant only

when the average energy Ē ≡ h̄2k̄2/2m of the incident atom is lesser or compara-

ble to the atom-field interaction energy h̄Ω
√

n + 1. Further, for higher interaction

lengths, the barrier component can only reflect the atom from the cavity, i.e.,

ρ+
n (k̄) ≈ ±1, τ+

n (k̄) ≈ 0. The reflection and transmission coefficients, which are

defined as |Re,n(k̄)|2, |Rg,n+1(k̄)|2, |Te,n(k̄)|2 and |Tg,n+1(k̄)|2 in the excited or ground

state of the atom, exhibit resonances as a function of the average energy Ē for

ultracold atoms (Ē < h̄Ω
√

n + 1). The resonances in transmission will occur when

the cavity length is an integer multiple of half the mean de Broglie wavelength of

the atom inside the potential well component. For the case of fast moving atoms

with average energy Ē >> h̄Ω
√

n + 1, the reflection coefficients vanish because of

the null reflections from both the barrier and well components. The transmission

coefficients exhibit Rabi oscillations as a function of the energy Ē similar to that

discussed in the Jaynes-Cummings model (Sec. 1.2.1).

Micromazer : A very important result of quantized atomic motion is the micro-

maser pumped with ultracold (slow moving) atoms instead of thermal (fast mov-

ing) atoms. When the single mode micromaser is pumped by ultracold two-level

atoms, the gain coefficient Gn in the master equation (1.30) will now depend upon

reflection and transmission amplitudes in Eqs. (1.42) and (1.43). Considering the

mesa mode coupling strength, Scully et al [98, 99] have treated this problem in

detail. They showed that the steady state photon distribution exhibits a mix-

ture of thermal and shifted thermal distributions. Since the quantized motion of

atoms along the z-axis influences the photon statistics, they termed the micro-

maser as micromazer with the letter z indicating the quantized z-motion in mi-

cromazer. The experimental strategies and the spectrum of micromaser pumped

by cold atoms were also discussed [100, 101]. Further, the steady state field in

the micromazer cavity has been shown to be nonclassical [102]. Zhang et al [103]

have developed the theory for two-photon micromazer and generalized the idea
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of quantized, atomic motion to study the interaction of three-level atoms with a

single mode field [104]. Retamal et al studied the effects of periodic potentials

on the steady state photon distribution in micromazer by considering sinusoidal

mode function [105].



Chapter 2

Tunneling Time of Ultracold Atoms

Through Vacuum Induced Potential

An important question of great interest in several disciplines of physics has been

- what is the tunneling time or traversal time of a quantum mechanical particle

through a potential. Various definitions have been proposed and the subject has

been reviewed extensively [106, 107, 108, 109, 110, 111, 112]. Mainly, three dif-

ferent approaches have been proposed to evaluate the tunneling time of a particle

passing through a potential barrier: (i) the Wigner time [108, 109]; (ii) the Büttiker

- Landauer time [110]; (iii) the Larmor time [111].

In Wigner’s method, one calculates how much time the peak of the particle’s

wave packet takes to travel the potential. The tunneling time is simply the deriva-

tive of the transmission amplitude’s phase with respect to the energy of the parti-

cle. This time is also known as phase time for tunneling or traversal of the particle

through the potential. The phase tunneling time of the particle passing through a

potential barrier was shown to be positive and lesser than the free-space traver-

sal time by Hartman [109]. This means that the peak of tunneling wave packet

appears on the far exit-side of the barrier much earlier than if it had propagated

the same distance in free space. Single-photon and optical-pulse transmission

experiments by Steinberg [113] et al. and Spielman et al. [114] have actually

demonstrated a similar superluminal tunneling of electromagnetic wave packets

through the forbidden mid-gap region of a photonic band-gap material. The pas-

sage time of the wave packets were found to be consistent with the Wigner’s phase

26
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time calculated theoretically. Recently, closed analytic-formulas have also been

derived for the phase time associated with the passage of electrons or photons

through a finite superlattice [112].

For the barrier tunneling time, the other approach by Büttiker and Landauer

[110] considered the case in which either the height of the potential barrier or the

amplitude of the incident wave varies sinusoidally with time. They found that, if

the frequency of the sinusoidal modulation is very low, the transmission of the

particle adiabatically follows the modulation. However, as the frequency of the

modulation increases, the transmitted waves begin to depart from the adiabatic

behavior. In this method, the tunneling time is defined as the modulation period

at which the crossover from adiabatic to non-adiabatic behavior occurs in the

transmission of the particle.

In the Larmor method [111], the particle tunneling through the barrier is sub-

jected to an additional, weak magnetic-field in the barrier region. The Larmor

precession of the particle’s spin in the magnetic field serves as a clock to measure

the time spent by the particle in the barrier region. Since the particles with spin

parallel to the magnetic field have higher probability of transmission through the

barrier than those with anti-parallel spin, the magnetic field tries to align the spin

of the particle in its direction. These lead to three characteristic times for trans-

mission of the particle through the barrier. The total angular change in the spin of

the tunneling particle divided by the Larmor frequency is the Larmor time. The lit-

erature also invokes a different quantity dwell time [115] within the barrier which

is defined as the ratio of integrated probability density over the barrier region to

the incident flux. The dwell time measures the average time spent by the particle

in the barrier region irrespective of the reflection or transmission at the end of its

stay. Recently, the dwell time for a particle interacting with an arbitrary poten-

tial has been obtained and a new interpretation of the Büttiker-Landauer barrier

tunneling time has been given within the framework of quantum measurement

theory [116].

In this chapter, we examine the passage of a cold atom through a high quality

cavity. In particular, we enquire what is the passage time of the atomic wave

packet through the cavity. The question is a complicated one as we have here a
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coupling with three different types of the degrees of freedom - (a) atom’s center-

of-mass (c.m.) motion, (b) atom’s electronic states and (c) photons. As shown in

Sec. 1.3, this coupling induces a quantum mechanical potential for the external

motion of the atoms. We refer to the potential induced by the vacuum field in the

cavity as Vacuum Induced Potential. We have found that the passage time of the

atom through the vacuum induced potential can be defined through the phase

tunneling time of the wave packet.

2.1 Atom-Field Dynamics and Its Basic Equations

We consider an ultracold, two-level atom in the excited state to be passing through

a single mode cavity of length L as shown in Fig. 2.1. The motion of the atom is

assumed to be one-dimensional which we fix to be along the z-axis. As described

in Sec. 1.3, the interaction of the atom couples the excited |e〉 and the ground

|g〉 states either by reflection or transmission through a potential induced by the

cavity. The nature and strength of the potential induced by the cavity depend on

 

|g>

 0 Lcavity

z

|e>

Figure 2.1: The scheme of the high quality cavity with which the ultracold atom
interacts.

the mode function of the cavity field through the coupling strength Ω(z). It also

depends on the initial number n of photons in the cavity. The potential energy

is given by V ±
n+1 = ±h̄Ω(z)

√
n + 1 in the dressed states |φ±n+1〉. We consider the

cavity to be initially in vacuum (n = 0) state and the atom-field coupling to be a

mesa mode coupling Ω(z) = Ωθ(z)θ(L − z) where θ(z) is the Heaviside’s unit step

function. Thus, the atom-field coupling is z-independent inside the cavity region

and zero outside the cavity region as indicated by the Heaviside unit step function.

In this case, the incident atom experiences the cavity as a coherent addition of
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Figure 2.2: Schematic representation of the energy E of the excited two-level atom
incident upon a single mode cavity in vacuum state. The interaction is equivalent
to reflection and transmission of the atom through a potential barrier (dashed) or
potential well (dotted) with a potential energy V = h̄Ω. The atom can be reflected
or transmitted in either of the states |e, 0〉 and |g, 1〉.

a potential barrier and a potential well with potential energy h̄Ω which we term

as vacuum induced potential. The barrier and well components in this vacuum

induced potential are shown in Fig. 2.2. The initial wave packet of the moving free

atom (mass m) can be written in the form ψ(z, t) = exp
(−ip2

zt/2mh̄
) ∫

dkA(k)eikz =
∫

dkA(k)e−i(h̄k2/2m)teikz. We assume that A(k)’s are such that ψ(z, t) at z = 0 peaks

in time at the instant t = 0. Thus, in the presence of the cavity, the wave packet

at z = 0 (entry of the cavity) has its peak (in time) at t = 0. We therefore write

the initial wave function of the atom-field system as |Ψ(z, 0)〉 = ψ(z, 0)|e, 0〉. Then,

using Eq. (1.41), the wave function of the atom-field system after the interaction

is given in the left (z ≤ 0) and right (z ≥ L) regions to be

|Ψ(z, t)〉 =
∫

dkA(k)e−i(h̄k2/2m)t
{[

Re,0(k)e−ikzθ(−z) + Te,0(k)eikzθ(z − L)
]
|e, 0〉

+
[
Rg,1(k)e−ikzθ(−z) + Tg,1(k)eikzθ(z − L)

]
|g, 1〉

}
, (2.1)

where

Re,0 =
1
2
(ρ+

0 + ρ−0 ), Te,0 =
1
2
(τ+

0 + τ−0 ) , (2.2)

are the reflection and transmission amplitudes for the excited state of the atom

and

Rg,1 =
1
2
(ρ+

0 − ρ−0 ), Tg,1 =
1
2
(τ+

0 − τ−0 ) , (2.3)
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are the reflection and transmission amplitudes for the ground state of the atom

with an emission of a photon from the atom. The probability amplitudes ρ±0 , τ±0
for reflection and transmission of the atom through barrier (superscript +) and

well (superscript -) components are given by

ρ±0 = i∆±
0 sin(k±0 L) exp(ikL)τ±0 , (2.4)

τ±0 = exp(−ikL)
[
cos(k±0 L)− iΣ±0 sin(k±0 L)

]−1
, (2.5)

∆±
0 =

1
2

(
k±0
k
− k

k±0

)
,

Σ±0 =
1
2

(
k±0
k

+
k

k±0

)
, (2.6)

k±0 =

√(
k2 ∓ 2mΩ

h̄

)

=
√

(k2 ∓ κ2) . (2.7)

Here h̄k is the c.m. momentum of the incident atom and h̄2κ2/2m ≡ h̄Ω is the

vacuum coupling energy. Note that the reflection and transmission amplitudes

ρ±0 , τ±0 depend on the momentum h̄k of the atom and the atom-vacuum field cou-

pling strength Ω. For the wave packet ψ(z, 0) of the incident atom, the different

momentum (wave number k) components have different amplitudes for reflection

and transmission through the cavity. The incident wave packet is split into re-

flected and transmitted wave packets both for excited and ground states of the

atom.

2.2 Phase Tunneling Time of a Gaussian Wave Packet

In the previous section, we have seen that dynamics of an ultracold atom passing

through the cavity is reduced to the problem of reflection and transmission of the

atomic wave packet incident on vacuum induced potential. In this section, we

study in detail the transmission of the atom in its initial excited state through the

cavity. The transmission amplitude Te,0 ≡ |Te,0(k)|eiφ(k), given by Eq. (2.2), depends

on the coherent addition of amplitudes for transmission through barrier and well
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components. We consider a Gaussian wave packet A(k) = exp
(
−(k − k̄)2/σ2

)
of

width σ and mean momentum k̄ for the incident atom. With this substitution

for A(k), the transmitted wave function in Eq. (2.1) including the normalization

factor, becomes for z ≥ L

|ΨT (z, t)〉 =
1

(2π)3/4

√
2
σ

∫ ∞

−∞
dk exp

(
−(k − k̄)2/σ2

)
e−i(h̄k2/2m)t |Te,0| eiφ(k) eikz |e, 0〉 .

(2.8)

For small width σ, the integrand in Eq. (2.8) has non vanishing value only in a

small range of wave numbers k centered about the mean k̄. Then, the envelope

of the transmitted wave packet |〈e, 0|ΨT (z, t)〉|2 will be maximum when the total

phase Θ(k) of the integrand exhibits extremum at the wave number k = k̄. Since

we have assumed that the center of incident wave packet enters the cavity at time

t = 0, this stationary phase condition at the exit of the cavity (z = L), gives the

time the wave packet takes to tunnel or traverse through the cavity :

∂Θ(k)
∂k

∣∣∣∣
k=k̄

=
∂

∂k

[
kL + φ(k)− (

h̄k2/2m
)
t
]∣∣∣∣

k=k̄

= 0 , (2.9)

which yields the phase tunneling time tph

tph =
[

m

h̄k

(
∂φ

∂k
+ L

)]

k=k̄

. (2.10)

The integral in Eq. (2.8) can be evaluated approximately by making the Taylor

expansion of the phase of transmission amplitude about the mean wave number

k = k̄. Keeping terms up to second order in the expansion and assuming σ << k̄

to approximate |Te,0(k)| ≈ |Te,0(k̄)|, the transmitted wave function is given at z = L

by

|ΨT (z, t)〉 |z=L ≈ 1

(2π)3/4

√
2
σ

exp
[
i(k̄L + φ(k̄)− Ēt/h̄)

] |Te,0(k̄)|

×
√

2π(
2
σ2 + iα

) exp

(
−Ē(t− tph)2

m
(

2
σ2 + iα

)
)
|e, 0〉 , (2.11)

where Ē = h̄2k̄2/2m is the average energy of the incident atom and the parameter

α = h̄t
m − ∂2φ

∂k2

∣∣∣
k=k̄

accounts for the spreading of the wave packet as it propagates.

The maximum amplitude of the transmitted wave packet occurs at time t = tph

given by the stationary phase assumption. It is very important to note that the
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phase time has no significance when either the Taylor expansion of the phase

does not converge or additional terms more than the second order term are im-

portant in the expansion. In this general case, the transmitted wave packet will

be deformed from the Gaussian shape and the concept of following the peak of

the wave packet is meaningless. When there is no cavity |Te,0(k)| = 1, φ(k) = 0,

then the phase time in Eq. (2.10) becomes tph = mL/h̄k̄ ≡ tcl, which is the classical

time needed for the center of a free-atomic wave packet to traverse a distance of

length L. The phase tunneling time which a particle takes to traverse a potential

barrier, has been studied extensively by Hartman [109]. The tunneling time for a

barrier is less than the time a free particle takes to traverse the same distance in

free space. Here, we report such a superclassical traversal of the ultracold atom

through the vacuum induced potential. Note that the temperature of the atom will

be in the range 10−7-10−8 K if the coupling constant Ω (≡ h̄κ2/2m) is in the range

of 100-10 kHz and if the mean momentum k̄/κ = 0.1. It should be borne in mind
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0.0

0.2
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Figure 2.3: The dependence of the dimensionless phase time (solid curve) for
transmission in the excited state on the mean wave number k̄/κ of the incident
atom for the parameter κL = 50π. The phase time follows the resonant behavior
of the transmission probability |Te,0|2 (dashed curve).

that both barrier and well contribute to the traversal time of ultracold atoms. Us-

ing Eq. (2.10), we plot in Fig. 2.3 the phase time as a function of the mean wave

number k̄ for the length of the cavity κL = 50π. The important result here is that

the phase time exhibits the resonant behavior of transmission probability and
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that the phase time is less than the classical time tcl. In a different context, viz.,

in the tunneling time of electrons passing through a finite superlattice, a similar

resonant behavior is found [112].

Another remarkable behavior of phase time is that it can even be negative.

Negative phase time implies that the peak of the transmitted wave packet emerges

even before the peak of the incident wave packet enters the interaction region.

This can be understood from the interference between the incident wave and the

wave that is reflected at the end of the cavity. From Eq. (2.10), we see that when

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.1
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k/κ

ϕ(k) + kL

Figure 2.4: The dimensionless phase time (solid curve) for transmission in the
excited state as a function of the mean wave number k̄/κ of the incident atom for
the parameter κL = π/2. The dashed curve represents the probability of transmis-
sion of the atom in the initial excited state

(
|Te,0|2

)
through the cavity. The inset

shows the phase function φ(k) + kL as a function of the wave number k/κ of the
excited atom for the same parameter.

the derivative of the phase of transmission amplitude is negative and its absolute

value is greater than the length L of the cavity, the phase time becomes negative.

Put another way, when the phase function φ(k)+kL has negative slope, the phase

time takes negative values. In Fig. 2.4, we show this behavior in the phase

time for the parameter κL = π/2. It is seen from the graph that for ultracold

atoms (k̄/κ << 1) the phase time is negative. For fast atoms (k̄/κ >> 1), the

phase time approaches the classical time as the transmission probability becomes

closer to unity. The phase time being negative is very similar to the concept of
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negative group velocity in the case of electromagnetic pulse propagation. Here, the

variation of the refractive index of the medium with respect to the frequency has

a steep negative slope leading to superluminal propagation [117]. To understand

the negative phase time, we have also plotted the phase function φ(k) + kL in the

inset of Fig. 2.4. The graph shows the expected negative slope for ultracold atoms.
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Figure 2.5: The normalized probability density P ≡ |〈e, 0|ΨT (z, t)〉|2/σ at z = L as
a function of the dimensionless time t/tcl. The solid (dashed) curve represents P
after transmission through the cavity (free space). The parameters used for the
calculation are κL = π/2, σ/κ = 0.01 and k̄/κ = 0.1 (a), k̄/κ = 10 (b). Both the solid
and dashed curves are normalized to unity.

2.3 Time Dependence of the Wave Packet for Ultracold Atoms

To study the behavior of actual envelope of the wave function, we evaluate nu-

merically the integral Eq. (2.8) which describes the propagation of a Gaussian

wave packet of an excited atom through the vacuum induced potential. Garrett

and McCumber [118] carried out a similar numerical integration for the electric

field amplitude of a Gaussian light pulse passing through an anamolous disper-

sive medium. In Fig. 2.5(a), we show the numerical results for the normalized

probability density |〈e, 0|ΨT (z, t)〉|2/σ at the exit of the cavity z = L as a function of

the time for the parameters κL = π/2, σ/κ = 0.01, k̄/κ = 0.1. The peak of the trans-

mitted wave packet occurs at the time t/tcl ≈ −0.98, which matches with the phase

time in Fig. 2.4 for the parameter k̄/κ = 0.1. Thus, the wave packet appears to

travel backwards in time in the sense of tracing the locus of maximum amplitude.
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The peak of the transmitted wave packet is formed even before the peak of the

incident wave packet enters the cavity. For comparison, we have also plotted the

envelope of the wave packet which travels through the same distance of length L

in free space. The peak of the free wave packet occurs at the expected classical

time. From the graph, we see that for ultracold atoms (k̄/κ << 1) the propagation

of the atom through the cavity is faster than through the free space. In Fig. 2.5(b),

we plot the envelope of the wave function for the parameters κL = π/2, σ/κ = 0.01,

k̄/κ = 10. In this case of fast atoms (k̄/κ >> 1), the transmitted wave packet has

maximum amplitude at the classical time (t/tcl ≈ 1) as expected from Fig. 2.4.

Thus, the peak of the transmitted wave packet occurs at the instant given by the

expression for phase time Eq. (2.10), even if that instant is earlier than the instant

at which incident wave packet enters the cavity. While this is generally true for
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t/tcl
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Figure 2.6: The normalized probability density P ≡ |〈e, 0|ΨT (z, t)〉|2/σ at z = L as
a function of the dimensionless time t/tcl. The solid (dashed) curve represents P
after transmission through the cavity (free space). The parameters used for the
calculation are κL = 50π, σ/κ = 0.05 and k̄/κ = 0.28. Both the solid and dashed
curves are normalized to unity.

a narrow momentum distribution characterized by σ << k̄ of the incident atom,

strong deformation of the incident wave packet sometimes makes the phase time

meaningless. The deformation of the wave packet during propagation occurs gen-

erally when the mean momentum of incident atom is near a sharp resonance for
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transmission probability. This is because all the discussions above are based on

the assumption that the modulus of the transmission amplitude is a slowly vary-

ing function of the wave number k of the incident atom. In Fig. 2.6, we show the

probability density of the transmitted atom for the mean momentum k̄/κ = 0.28,

which is near the second resonance for transmission probability in Fig. 2.3. The

transmitted wave packet seems distorted strongly from the Gaussian shape and

the peak of the transmitted wave packet does not occur at the phase tunneling

time for the chosen momentum in Fig. 2.3.

2.4 Splitting of the Wave Packet

We have so far considered only the propagation of the atomic wave packet in

the initial excited state. But in a high-quality cavity, the atom-field interaction

leads to photon emission by the excited atom. We can also study the behavior

0.0 1.0 2.0 3.0 4.0 5.0
0.0

0.5

1.0

1.5

tph/tcl

k/κ−

Figure 2.7: The dimensionless phase time (solid curve) for transmission in the
ground state as a function of the mean wave number k̄/κ of the incident atom for
the parameter κL = π/2. The dashed curve represents the probability of trans-
mission of the atom in the ground state

(
|Tg,1|2

)
through the cavity.

of the transmitted wave packet |〈g, 1|ΨT (z, t)〉|2 for the ground state of the atom

using Eq. (2.1). For the parameters of Fig. 2.5(a), the phase time for the ground

state tph/tcl ≈ 0.45 is positive but still a superclassical time. Numerical integration

also gives the same time delay for the transmitted wave packet. In Fig. 2.7, we
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show the behavior of the phase time for the wave packet corresponding to the

transmitted atom in the ground state. This behavior is to be compared with that

of the phase time for the transmission in the excited state (Fig. 2.4). The two

phase times differ considerably for cold atoms. Generally, the difference in phase

times for the ground and excited states of the atom results in the splitting of the

incident wave packet into two in the total transmission. But for the parameters

of Fig. 2.5(a), the total transmission is dominated by the contribution from the

ground state, and hence, the splitting is not seen.
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Figure 2.8: The normalized probability density P ≡ |〈e, 0|ΨT (z, t)〉|2/σ at z = L as
a function of the dimensionless time t/tcl. The solid (dashed) curve represents P
after transmission through the cavity (free space). The parameters used for the
calculation are κL = 10π, σ/κ = 0.5, and k̄/κ = 10. Both the solid and dashed
curves are normalized to unity.

The splitting of the incident wave packet can also occur for a different reason

as shown in the Fig. 2.8 for the parameters κL = 10π, σ/κ = 0.5, k̄/κ = 10. It is

seen that the probability density is zero at the classical time. This can be un-

derstood from the Rabi oscillations between the internal states of the fast atoms.

For fast atoms (k/κ >> 1), the transmission amplitude can be approximated as

Te,o(k) ≈ exp(−ikL)(exp(ik+
0 L) + exp(ik−0 L))/2, where k±0 are given by Eq. (2.7). The

transmission probability |Te,0|2 exhibits oscillatory behavior as a function of the

momentum k of the incident atom. Moreover, at the mean wave number corre-

sponding to the classical time, the transmission amplitude Te,0(k̄) ≈ cos(gtcl) = 0.
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Thus, the correlation with the internal dynamics (Rabi oscillations) of the atom

leads to the splitting of the incident wave packet of the external motion. Obvi-

ously, since the wave packet is deformed for these parameters, the phase time

(tph/tcl ≈ −0.62) loses its physical significance and does not represent the peak to

peak traversal time. Finally, we note that the vacuum field for the initial state

of the cavity does not limit the study of tunneling time of the atom. In a general

Fock state, the potential energy of atom-field interaction with the cavity induced

potentials will be different from that of vacuum field. Still, we can redefine the

atom-field coupling constant of the interaction to include this change. The super-

classical tunneling and splitting of the wave packets are common features for a

general Fock state of the cavity field.

2.5 Summary

In summary, we have discussed the new features in the passage time of a Gaus-

sian wave packets of an ultracold two-level atom through a cavity which is initially

empty. In Sec 2.1, we have formulated the model describing the traversal of ultra-

cold atoms as a scattering of atoms from a potential. In Sec 2.2, we have calcu-

lated the phase tunneling time of the wave packets. It was shown that the phase

tunneling time can exhibit sub- and super-classical traversal behaviors including

negative values. We explained these characteristics of phase time in terms of the

dispersion of the phase of transmission amplitude. In Sec 2.3, numerical results

were presented for the transmitted wave packets as a function of time. The peak

of the transmitted wave packet was shown to occur at the phase tunneling time

calculated in Sec 2.2. Here, we have also shown that for negative phase time,

the peak of the transmitted wave packet emerges the cavity even before it enters.

Finally, in Sec. 2.4, we demonstrated splitting of transmitted wave packets when

the effects of the atomic transitions in the cavity become important.



Chapter 3

Resonant Tunneling of Ultracold Atoms

Through Vacuum Induced Potentials

It is well known that energy eigenvalues of a quantum mechanical particle fall into

continuous bands separated by forbidden gaps in an infinite periodic potentials.

The classic paper of Kronig and Penney [119] on this subject laid the foundation

for the modern theory of solids. Extensions of the Kronig-Penney model to finite

periodic potentials showed band of resonances separated by zero transmission

probability in the energy eigenstates of the particle [120]. Tsu and coworkers

[121] verified experimentally this resonant transmission in the context of electrons

passing through semiconductor double barriers. The aim of the present chapter is

to demonstrate a similar resonant tunneling of ultracold, two-level atoms through

a system of potentials induced by two cavities initially in vacuum state. Unlike

the semiconductor systems an important new feature of our current system is the

entanglement between electronic, center-of-mass (c.m.) and the photonic degrees

of freedom.

3.1 What is Resonant Tunneling ?

Consider a particle tunneling through a system of two potential barriers as shown

in Fig. 3.1. The incident particle has an energy E ≡ h̄2k2/2m which depends on its

momentum h̄k and the mass m. Quantum mechanically, the particle can either be

reflected or transmitted through the barrier potentials. We assume the particle’s

39
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Figure 3.1: A particle tunneling through a two-barrier potential

energy to be below the top of the barrier and study its probability of tunneling

from left to right regions as a function of the energy E. To keep the analysis

simple, we have assumed equal potential energy Vo for each barrier and the inter-

barrier separation is denoted by S. The lengths L1 and L2 denote the widths of

the barriers in regions II and IV. The stationary wave functions of the particle in

different regions are

ΨI(z) = A1e
ikz + B1e

−ikz ,

ΨII(z) = A2e
qz + B2e

−qz ,

ΨIII(z) = A3e
ikz + B3e

−ikz , (3.1)

ΨIV(z) = A4e
qz + B4e

−qz ,

ΨV(z) = A5e
ikz + B5e

−ikz ,

where q =
√

(2m/h̄2)(Vo − E) represents the wave number for the amplifying and

decaying waves in the barrier regions. The wave functions and its derivatives

should match at all the interfaces in different regions. These boundary condi-

tions yield eight coupled equations for the coefficients Ai, Bi of the waves. We

set B5 = 0 which corresponds to only transmitted waves in region V. The cou-

pled equations can be solved easily by the transfer matrix method to give the

probability amplitude B
(2)
k ≡ A5/A1 for transmission of the particle through the

two-barrier system. The absolute square of the complex quantity B
(2)
k gives the

probability T (E) of transmission of the particle as a function of the energy E.

In Fig. 3.2, we compare the probability T (E) for transmission of the particle

through a single-barrier (L2 ≡ 0) versus two-barrier (L2 = L1 6= 0) system. The

graph shows that the transmission probability of the particle exhibits new reso-
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Figure 3.2: The probability of transmission T (E) as a function of the energy E
of a particle tunneling through a single barrier (L2 ≡ 0) and double barrier (L2 =
L1 6= 0) potentials. The solid curve represents the transmission probability for

the single barrier potential with length L1 = L given by
√

2mVoL2/h̄2 = 0.5. The
other two graphs correspond to particle’s transmission through the two-barrier
system of the same lengths L1 = L2 = L with the inter-barrier separation S given

by
√

2mVoS2/h̄2 = 10 (dotted curve) and
√

2mVoS2/h̄2 = 15 (long-dashed curve).

nances for the two-barrier system when compared with the single-barrier case.

Also, the number of resonances in the two-barrier transmission increases with

the inter-barrier separation. The origin of these transmission resonances can be

understood from the fact that the presence of a potential well formed in region III

between the barriers supports bound states. The bound states are defined by the

poles of the transmission amplitude B
(2)
k when viewed as a complex function of

the energy E. The real and imaginary parts of the poles (complex E values) give

the positions and half-widths of the resonances in transmission. These bound

states are also known as quasi-bound states which corresponds to decaying solu-

tions of time dependent Schrödinger equation solved with one of these complex E

values. The perfect transmission of the particle in the quasi-bound state through

the two-barrier system is termed as resonant tunneling. Historically, Tsu and

coworkers [121] were the first to verify resonant tunneling of electrons through

the two-barrier system. They considered the potential barriers made of a semi-
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conductor material GaAlAs. A different material GaAs was sandwiched between

the barriers to form the potential well. To demonstrate resonant tunneling, they

measured the tunneling current of electrons through the system as a function of

an applied voltage. The resonant tunneling manifested itself as peaks or humps

in the tunneling current at voltages corresponding to the quasi-bound states of

the potential well.

3.2 Model System

Consider an ultracold, two-level atom to be incident on a system of two cavities in

vacuum state as shown in Fig. 3.3. Each cavity has a length L and the intercavity

separation is denoted by S. The frequency ω of the single mode field in each cavity

has been tuned to the frequency ν = (Ee − Eg)/h̄ of the atomic transition between

the excited state |e〉 (energy Ee) and the ground state (energy Eg). We assume the

atom (mass m) to be in the excited state initially. After the interaction, the atom

|e>

|g> S

I II III IV V

0 L S+L S+2L

z

Figure 3.3: Schematic arrangement of two high quality cavities with which the
ultracold atom interacts.

can exit, besides being reflected, from the two cavities either in the excited state or

in the ground state. The total Hamiltonian for the atom (including the quantized

motion of its center-of-mass) interacting with the two cavities is

H = Ee|e〉〈e|+ Eg|g〉〈g|+ h̄ω(a†a + b†b) +
p2

z

2m

+ h̄Ωa(z)(|e〉〈g|a + a†|g〉〈e|)
+ h̄Ωb(z)(|e〉〈g|b + b†|g〉〈e|) . (3.2)

Here, operators a, b are the annihilation operators for the photons in the two

cavities. The functions Ωa(z), Ωb(z) describe the atom-field coupling strengths in



Resonant Tunneling of Ultracold Atoms Through Vacuum Induced Potentials 43

the two cavities which we assume to be equal inside the cavities. For simplicity,

we also take the coupling strengths to be mesa functions Ωa(z) = Ωua(z), Ωb(z) =

Ωub(z) where ua and ub are the mesa functions of the cavities. In writing Eq. (3.2),

the dipole and rotating wave approximations have been used.

Since the interaction operator couples only the zero and one-photon states in

the cavities, the total wave function of the combined system of the atom and the

cavities can be written in the form

|Ψ(z, t)〉 = Φe(z, t)|e, 0, 0〉+ Φa(z, t)|g, 1, 0〉+ Φb(z, t)|g, 0, 1〉 , (3.3)

where Φ’s describe the wave functions for the c.m. motion and the atom-photon

states |g, 1, 0〉, |g, 0, 1〉 represent the photon emission from the atom in either of

the cavities. Combining Eqs. (3.2) and (3.3) and transforming to a frame rotating

with frequency ω, the Schrödinger equation (1.12) leads to the following coupled

equations for the Φ’s :

ih̄
∂Φe

∂t
= − h̄2

2m

∂2Φe

∂z2
+ h̄Ωua(z)Φa + h̄Ωub(z)Φb ,

ih̄
∂Φj

∂t
= − h̄2

2m

∂2Φj

∂z2
+ h̄Ωuj(z)Φe , (3.4)

where j = a, b. The coupled Eqs. (3.4) are to be solved subject to the boundary

conditions on four different interfaces at z = 0, z = L, z = L + S, and z = 2L + S.

We look for stationary solutions of the form Φi(z, t) = Φi(z) exp(−iEt/h̄) [i = e, a, b]

with E ≡ h̄2k2/2m being the average c.m. energy of the incident atom. Then, for

the five different regions indicated in Fig. 3.3, we have in general both forward

and backward waves. As discussed in Sec. 1.3, the cavity regions (II & IV) act like

a coherent addition of a potential barrier and a potential well (vacuum induced

potential) for the incident atom. The wave numbers k±0 ≡
√

k2 ∓ 2mΩ/h̄ defined

by Eq. (2.7) for propagation in the barrier and well components depend on the

atom-field coupling energy h̄Ω. The analytic expressions for the stationary wave

functions |Ψ(z, t)〉 = |Ψ(z)〉 exp(−iEt/h̄) in the different regions are
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|ΨI(z)〉 = (A1e
ikz + B1e

−ikz)|e, 0, 0〉+ (C1e
ikz + D1e

−ikz)|g, 1, 0〉
+(E1e

ikz + F1e
−ikz)|g, 0, 1〉 ,

|ΨII(z)〉 = (A2e
ik+

0 z + B2e
−ik+

0 z + C2e
ik−0 z + D2e

−ik−0 z)|e, 0, 0〉
+(A2e

ik+
0 z + B2e

−ik+
0 z − C2e

ik−0 z −D2e
−ik−0 z)|g, 1, 0〉

+(E1e
ikz + F1e

−ikz)|g, 0, 1〉 ,

|ΨIII(z)〉 = (A3e
ikz + B3e

−ikz)|e, 0, 0〉+ (C5e
ikz + D5e

−ikz)|g, 1, 0〉 (3.5)

+(E1e
ikz + F1e

−ikz)|g, 0, 1〉 ,

|ΨIV(z)〉 = (A4e
ik+

0 z + B4e
−ik+

0 z + E4e
ik−0 z + F4e

−ik−0 z)|e, 0, 0〉
+(C5e

ikz + D5e
−ikz)|g, 1, 0〉

+(A4e
ik+

0 z + B4e
−ik+

0 z − E4e
ik−0 z − F4e

−ik−0 z)|g, 0, 1〉 ,

|ΨV(z)〉 = (A5e
ikz + B5e

−ikz)|e, 0, 0〉+ (C5e
ikz + D5e

−ikz)|g, 1, 0〉
+(E5e

ikz + F5e
−ikz)|g, 0, 1〉 .

The boundary conditions on all the interfaces give 16 coupled equations which

relate the coefficients of plane waves in different regions. We solve for the coef-

ficients under the conditions C1 = E1 = B5 = D5 = F5 = 0 which corresponds to

incident atom in the excited state and only transmitted waves in region V. After

solving these coupled equations, we get the analytical expression for the transmis-

sion amplitude τe(k) ≡ A5/A1 which describes the transmission of the atom in its

initial, excited state. In Fig. 3.4, some typical results are shown for the transmis-

sion probability T ≡ |τe(k)|2 of an excited atom through the two-cavity system. The

figure shows the dependence of the transmission on the intercavity separation as

well. For comparison, we also plot the corresponding result for transmission of

the atom through a single cavity. The parameters have been scaled in terms of a

wavenumber κ which is defined by the vacuum coupling energy h̄Ω ≡ h̄2κ2/2m of

the atom. Note that the temperature of the atom will be in the range 10−7 - 10−8

K if the coupling constant Ω is in the range of 100 − 10 kHz and if k/κ = 0.1. The

graph shows that the transmission probability exhibits well defined resonances

at discrete values of the momentum of the incident atom. Further, the number of

resonances in transmission increases with the inter-cavity separation very sim-
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Figure 3.4: The probability T of transmitting an excited atom through a system
of cavities in vacuum state as a function of the normalized momentum k/κ of the
atom. The excited state of the transmitted atom is monitored. The graph (a) gives
T − 0.1 for the single cavity case with a width given by κL = 5π. The other two
graphs correspond to transmission through two cavities with κL = 5π, κS = 20
[(b), plotted quantity is T + 0.1], κS = 60 [(c)].

ilar to that discussed in Sec. 3.1 for a particle tunneling through a two-barrier

system.

3.3 Quantum Interferences in Resonant Tunneling

In this section, we examine the origin of new resonances in the two-cavity trans-

mission shown in Fig. 3.4 by studying the analytic structure of the transmission

amplitude. We have proved that the transmission amplitude τe(k) can be written

in a very interesting form in terms of the transmission and reflection amplitudes

for the single cavity as

τe(k) = T 2
e,0

{
1− exp(2ikS)R2

e,0

}−1
. (3.6)

Here Re,0 and Te,0 are the reflection and transmission amplitudes for the excited

atom incident on a single cavity in vacuum state. As defined in section 2.1,

these amplitudes can be defined in terms of single barrier (superscript +) and well
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(superscript -) reflection and transmission amplitudes ρ±0 , τ±0 as

Re,0 =
1
2

(
ρ+
0 + ρ−0

)
, (3.7)

Te,0 =
1
2

(
τ+
0 + τ−0

)
. (3.8)

The formula Eq. (3.6) is very much reminiscent of transmission of light through a

Fabry-Pérot cavity where Re,0 is the amplitude for reflection of light at the mirrors

of the cavity. The formula also shows that the probability of atom transmitting

through the two-cavity system is not the product of probabilities for transmission

through two single cavities. The atom bounces back and forth in region III be-

tween the two cavities just like light between mirrors of the Fabry-Pérot cavity.

In region III, the amplitudes for a single reflection of the atom from the first (re-

V

e,oT e,oT

e,oTe,oT

exp(2 i kS)2Re,o

exp(4 i kS)Re,o

e,oT e,oT

+

+

+

τe (k) =

4

I II III IV

Figure 3.5: Diagrammatic representation of possible paths of the transmission of
the atom through the two-cavity system.

gion II) and second (region IV) cavities are Re,0 exp(−2ikL) and Re,0 exp(2ik(L + S))

respectively. Here, the additional phase factors account for the phase shifts im-

parted upon each reflection from both the cavities. The total amplitude for traver-

sal of the atom in region III after a single round trip (a distance 2S) is therefore

R2
e,0 exp(2ikS) as shown in Fig. 3.5. A Taylor expansion of the denominator (ex-
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pression in curly brackets) in Eq. (3.6) gives further the amplitudes for all possible

events in the multiple reflections of the atom between the cavities as indicated in

Fig. 3.5. Note that when the transmission amplitude τe(k) is viewed as a complex

function of k, it has a discrete number of simple poles in the complex k plane. A

pole of the transmission amplitude describes a self-reproducing wave, i.e., a wave

that reproduces itself after a single round trip (R2
e,0 exp(2ikS) = 1) in region III. The

real (imaginary) part of the poles (complex k values) gives the position (width) of

the resonances in transmission. The transmission resonances in Fig. 3.4 are con-

sistent with these momentum values. The quantum states corresponding to these

complex momentum (k) values are known as quasi-bound states in the sense that

atom in this state is not bound strictly to the potential well between the cavities.

The atom can escape out of the well by tunneling through the adjacent cavities.

In order to understand further the origin of new resonances in the transmis-

sion, we also study the transmission of atoms through a double barrier potential

or a double well potential. We replace each cavity region by a barrier (well) of

height (depth) h̄Ω. This leads to three distinct configurations of potentials such as

0.2 0.4 0.6 0.8 1.0
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0.0

0.2

0.4

0.6
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Figure 3.6: The probability of transmission T of an excited atom through a system
of two cavities in vacuum state, along with transmission through double barrier
(dotted curve), double well (dashed curve), single barrier - single well (long dashed
curve) potentials. For all the graphs, κL = 3, κS = 50. The solid curve corresponds
to 5T through the two cavity system
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double barrier, double well and single barrier - single well potentials. In Fig. 3.6,

we compare the transmission of atom through two-cavity system with its trans-

mission through these potential configurations. The close relation of the two-

cavity transmission to the tunneling resonances of the double barrier potential is

to be noticed. Note that for an infinitely deep well between the two barriers in dou-

ble barrier system, the resonances occur at kS = nπ or at k/κ = nπ/κS = nπ/50.

The resonances in the two-cavity transmission shown in Fig. 3.6 are in the vicinity

of these positions. Clearly the peaks in the transmission have a definite bearing

to the tunneling resonances. Thus the passage of an ultracold atom through a

system of cavities exhibits tunneling resonances in a way similar to the work of

Tsu and co-workers [121] on the tunneling of electrons in semiconductor double-

barriers (Sec. 3.1).

3.4 Coupling of the Cavities

In the previous section, we have shown that the transmission of ultracold atoms

through a two-cavity system shares some features with tunneling through double

barrier potential. Though this is true, in general, all the barrier and well potential

combinations contribute to the tunneling of atoms through the two-cavity system.

This can be better understood if we compare the the transmission amplitude

τe(k) with the probability amplitudes for transmission of the atom through double

barrier [B(2)
k ] and double well [W (2)

k ] potentials given by

B
(2)
k = τ+

0
2
{

1− exp(2ikS)ρ+
0

2
}−1

, (3.9)

W
(2)
k = τ−0

2
{

1− exp(2ikS)ρ−0
2
}−1

, (3.10)

There are many similarities among the results (3.6), (3.9), and (3.10) though there

are also differences. The differences arise as in each cavity we have two dressed

states leading to Eqs. (3.7) and (3.8). In order to see the mixing of the barrier and

well contributions to the tunneling of atoms, we show in Fig. 3.7 the transmission

probability as a function of the length of each cavity for ultra-cold, incident atoms

(k/κ << 1). It is seen from the graph that each resonance curve of the single cavity

is split into two for smaller kinetic energies of the incident atoms. The second
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Figure 3.7: The probability of transmission T of an excited atom through a system
of two cavities in vacuum state as a function of length κL of cavities for fixed
intercavity separation κS = 5. For comparison, the corresponding graph (dashed
line) for single cavity has been superimposed. The two upper (bottom) curves are
for k/κ = 0.1 (0.01). For clarity, we have plotted 2T , 5T , 5T + 0.4, and 2T + 0.4 in
curves from bottom to top.

resonance at κL ≈ 3.305 for k/κ = 0.01 comes from the denominator expression in

curly brackets in Eq. (3.6). Note that in this range of momentum and intercavity

length, curly brackets in Eqs. (3.6), (3.9) and (3.10) can be simplified, respectively,

to −2ik[κS+coth(κL)−cot(κL)]/κ, −2ik[κS+2 coth(κL)]/κ, and −2ik[κS−2 cot(κL)]/κ.

Clearly the coherent addition of amplitudes of the barrier and well components

gives rise to the mixing of the terms coth(κL) and cot(κL) in the denominator of

Eq. (3.6). As a result, all the resonances in the transmission through double

barrier or double well can not account for the resonant transmission of atoms

through two-cavity system. Further, the splitting of the resonance curve shows

that the cavities do not behave like independent cavities for the incident atom.

The interaction of atom couples the cavities both by emission and reabsorption

of photons and by the reflection - transmission through the vacuum induced

potentials. It is important to note that the atom can emit a photon in either of

cavities by spontaneous emission and the transmission of atom in ground state

can also be studied in a similar manner. Moreover, this work can also be extended

to multicavity system where the sizes of the barrier - well potentials induced by
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the interaction can be manipulated by varying the lengths of each cavity and the

separation between them. One can even discuss analog of field assisted tunneling

discussed in the context of potential barriers [122].

3.5 Summary

In summary, we have discussed the new features in the transmission of an ultra-

cold two-level atom through a system of two cavities in vacuum state. We have

demonstrated resonant tunneling of ultracold atoms through the potentials pro-

duced by the interaction of the atom with the cavities. This resonant tunneling

is very similar to the work of Tsu and coworkers on the tunneling of electrons

through semiconductor superlattices [121]. In Sec 3.1, we explained the basic

idea of resonant tunneling in the context of electrons passing through a double

barrier potential. In Sec 3.2, we explained our model system and derived the basic

working equations. Numerical results were presented for probability of transmit-

ting the atom through the two-cavity system as a function of energy of incident

atoms. The transmission probability was shown to exhibit new resonances for

the two-cavity system when compared with the single cavity case. In Sec 3.3, we

presented the analytical result for the transmission probability of the atom. The

new resonances in transmission were interpreted as due to multiple bounces of

ultracold atoms in the region between the cavities. Here, we also demonstrated

the existence of quasi-bound states introduced in Sec. 3.1. Finally, in Sec. 3.4,

we have discussed the possibility of coupling the cavities by the quantized motion

of atoms.



Chapter 4

Generation of Correlated Fields in a

Bimodal Cavity With Ultracold Atoms

In the previous chapters, we studied the dynamics of a single ultracold atom in-

teracting with the cavity fields which have fixed initial state. In this chapter, we

discuss the generation of correlated fields in a maser cavity by considering the

interaction of a beam of ultracold atoms. The passage of each atom in the beam

builds up the field against the losses in the cavity. We take the atomic-level con-

figuration to be a Λ-type three-level atom resonant with the two modes of the

cavity. This atomic model has been widely used in studies of lasing without in-

version [123], electro-magnetically induced transperancy [124], matched photon

statistics [125] and two-mode micromaser [67]. We follow very closely the work of

Meyer, Scully and Walther [99] on two-level atoms.

4.1 A Three-level Atom Plus Bimodal Field

Consider an ultracold, three-level atom in the Λ-type configuration to be incident

on a bimodal cavity. The energy level diagram for the analysis is shown in Fig.

4.1. The transition between the two ground levels g1 and g2 is dipole forbidden

and the transition from the excited level e to any of the lower levels g1 and g2

is allowed. The frequencies of the transitions e → g1 and e → g2, coincide with

those of the modes 1 and 2 of the microwave cavity so that the atom and the

bimodal field in the cavity interact resonantly. The Hamiltonian for the atom-field

51
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Figure 4.1: The scheme of the two-mode micromaser and the energy-level diagram
for the analysis.

interaction including the quantization of the center-of-mass (c.m.) motion of the

atoms, is given by

H = HA + HF + HAF , (4.1)

where HA (HF ) is the Hamiltonian of the free atom (field) and HAF is the interaction

Hamiltonian describing the atom-field interaction in the dipole and the rotating

wave approximations [cf. Eq. (1.25)] :

HA =
p2

z

2m
+ h̄Ωe|e〉〈e|+

2∑

α=1

h̄Ωgα |gα〉〈gα| ,

HF =
2∑

α=1

h̄ωαa†αaα , (4.2)

HAF =
2∑

α=1

h̄Ωα

(
|e〉〈gα|aα + a†α|gα〉〈e|

)
.

The operator |j〉〈j|(j = e, g1, g2) gives the projection on to the state |j〉 with energy

h̄Ωj. The operators |i〉〈j|(i, j = e, g1, g2; i 6= j) describe the transition from level j

to level i. The operators aα (a†α) annihilate (create) a photon in modes α with the

resonance frequencies ωα = Ωe − Ωgα. The parameters Ωα are the corresponding

atom-field coupling constants and m is the atomic mass. The parameters Ωα are

dependent on z through the mode function of the cavity.

In a suitable interaction picture, the Hamiltonian (4.1) of the atom-field system

reads as

HI =
p2

z

2m
+ HAF . (4.3)
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The operator HAF is readily diagonalizable. It has eigenstates |φ0
n1+1,n2+1〉,

|φ±n1+1,n2+1〉 with eigenvalues 0, ±h̄
√

Ω2
1(z)(n1 + 1) + Ω2

2(z)(n2 + 1), respectively,

where

|φ0
n1+1,n2+1〉 =

[
Ω2
√

n2 + 1 |g1, n1 + 1, n2〉 − Ω1
√

n1 + 1 |g2, n1, n2 + 1〉]
[
Ω2

1(n1 + 1) + Ω2
2(n2 + 1)

]1/2
,

|φ±n1+1,n2+1〉 =
1√
2

[
|e, n1, n2〉 ± Ω1

√
n1 + 1√

Ω2
1(n1 + 1) + Ω2

2(n2 + 1)
|g1, n1 + 1, n2〉

± Ω2
√

n2 + 1√
Ω2

1(n1 + 1) + Ω2
2(n2 + 1)

|g2, n1, n2 + 1〉
]

. (4.4)

The interaction operator HAF and its eigenstates |φ0
n1+1,n2+1〉, |φ±n1+1,n2+1〉 depend

on the atomic position z inside the cavity through the coupling strengths Ω1(z),

Ω2(z). Thus, it is in general difficult to carry out the time evolution of an atom-field

state governed by the Hamiltonian (4.3) for the quantized motion of the atoms. So,

for simplicity, we work with the mesa mode functions Ωα(z) = Ωαθ(z)θ(L−z) which

represent the z-independent atom-field couplings in the cavity. In this case, the

eigenstates of the interaction are independent of atomic position inside the cavity

and the Hamiltonian (4.3) in the eigenstates basis leads to

HI |φ±n1+1,n2+1〉 = h±|φ±n1+1,n2+1〉 ,

HI |φ0
n1+1,n2+1〉 = h0|φ0

n1+1,n2+1〉 . (4.5)

Here h± = p2
z/2m± θ(z)θ(L− z)h̄

√
Ω2

1(n1 + 1) + Ω2
2(n2 + 1) and h0 = p2

z/2m. Note that

h± and h0 are still operators which act in the space of the c.m. variables. Clearly,

the effect of the cavity is seen to produce potential terms in hα corresponding to

the dressed states |φ±n1+1,n2+1〉 of the atom-field interaction. The dark eigenstate

|φ0
n1+1,n2+1〉 with eigenvalue zero of the interaction Hamiltonian HAF induces a

reflection-less transmission for the external motion of the atom.

To study maser action, we need to consider the initial atom-field state to be

|e, n1, n2〉, i.e., the atom is in the excited state and the cavity contains (n1, n2)

photons in the modes (1,2) initially. Note that we can in principle work with any

basis set of states to solve for the time evolution of this initial state. Thus, outside

the cavity, we use (4.4). Also, it is preferable to work in the eigenbasis (4.4) inside
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Figure 4.2: Schematic representation of the energy E of the excited atoms
incident upon a two-mode micromaser cavity with (n1, n2) photons. The in-
teraction is equivalent to reflection and transmission of atoms through a po-
tential barrier (dashed) or potential well (dotted) with a potential energy V =
h̄
√

Ω2
1(n1 + 1) + Ω2

2(n2 + 1). Thus reflection and transmission of the atom is very
similar to the one in the work of Meyer et al. However, the atom can be re-
flected and transmitted in either of the three states |e, n1, n2〉, |g1, n1 + 1, n2〉, and
|g2, n1, n2 + 1〉.

the cavity so that equations can be decoupled. The initial atom-field state |e, n1, n2〉
can then be expanded in terms of the dark and dressed eigenstates ;

|e, n1, n2〉 =
1√
2

[
|φ+

n1+1,n2+1〉+ |φ−n1+1,n2+1〉
]

. (4.6)

Since the initial atom-field state |e, n1, n2〉 is orthogonal to the dark eigenstate

|φ0
n1+1,n2+1〉, we can further expand the wave function of the combined atom-cavity

system as

|Ψ(z, t)〉 = χ+(z, t)|φ+
n1+1,n2+1〉+ χ−(z, t)|φ−n1+1,n2+1〉 , (4.7)

then the Schrödinger equation (1.12) in the interaction picture becomes

ih̄
∂χα

∂t
= hαχα , α = ± . (4.8)

Thus, the problem is now reduced to that of an atom incident upon the barrier

- well potentials V ±
n1+1,n2+1(z) = ±θ(z)θ(L − z)h̄

√
Ω2

1(n1 + 1) + Ω2
2(n2 + 1) as shown

in Fig. 4.2. Note that the dark eigenstate |φ0
n1+1,n2+1〉 has no influence on the

atom-cavity dynamics for the initial excited state of the atom considered.



Generation of Correlated Fields in a Bimodal Cavity With Ultracold Atoms 55

Denoting the reflection and transmission amplitudes as ρ±n1,n2
,τ±n1,n2

for the po-

tential barrier-well problem of the dressed states |φ±n1+1,n2+1〉, respectively, we have

ρ±n1,n2
= i∆±

n1,n2
sin(k±n1,n2

L) exp(ikL)τ±n1,n2
, (4.9)

τ±n1,n2
= exp(−ikL)

[
cos(k±n1,n2

L)− iΣ±n1,n2
sin(k±n1,n2

L)
]−1

, (4.10)

∆±
n1,n2

=
1
2

(
k±n1,n2

k
− k

k±n1,n2

)
, (4.11)

Σ±n1,n2
=

1
2

(
k±n1,n2

k
+

k

k±n1,n2

)
,

k±n1,n2
=

√(
k2 ∓ 2m

h̄

√
Ω2

1(n1 + 1) + Ω2
2(n2 + 1)

)
, (4.12)

where h̄k is the atomic c.m. momentum and L is the length of the cavity. It is

to be noted that the strengths of the barrier - well potentials (potential energy

term in k±n1,n2
) depend on the coupling constants Ω1, Ω2 as well as the occupation

numbers n1, n2 of the photons in the cavity.

We consider the c.m. wave packet of the incident atom to be

ψ(z, 0) =
∫

dkA(k)eikz where the amplitudes A(k) are adjusted such that the inci-

dent wave packet |ψ(z, 0)|2 to the left of the cavity (z < 0) does not extend into the

cavity region at the initial time t = 0. The wave function of the atom-field system

initially is therefore

|Ψ(z, 0)〉 = ψ(z, 0)|e, n1, n2〉 . (4.13)

The wave function of the atom-field system at time t after the atom has left the

cavity region is found by solving the Eqs. (4.7) and (4.8) subject to the above initial

condition :

|Ψ(z, t)〉 =
∫

dkA(k)e−i(h̄k2/2m)t

×
{[

Re,n1,n2(k)e−ikzθ(−z) + Te,n1,n2(k)eikzθ(z − L)
]
|e, n1, n2〉 (4.14)

+
[
Rg1,n1+1,n2(k)e−ikzθ(−z) + Tg1,n1+1,n2(k)eikzθ(z − L)

]
|g1, n1 + 1, n2〉

+
[
Rg2,n1,n2+1(k)e−ikzθ(−z) + Tg2,n1,n2+1(k)eikzθ(z − L)

]
|g2, n1, n2 + 1〉

}
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where

Re,n1,n2 =
1
2
(ρ+

n1,n2
+ ρ−n1,n2

) ,

Te,n1,n2 =
1
2
(τ+

n1,n2
+ τ−n1,n2

) , (4.15)

are the probability amplitudes that the atom is reflected or transmitted with the

atom-field state remaining in the same initial state as |e, n1, n2〉 and

Rg1,n1+1,n2 =
Ω1
√

n1 + 1
2
√

Ω2
1(n1 + 1) + Ω2

2(n2 + 1)
(ρ+

n1,n2
− ρ−n1,n2

) ,

Tg1,n1+1,n2 =
Ω1
√

n1 + 1
2
√

Ω2
1(n1 + 1) + Ω2

2(n2 + 1)
(τ+

n1,n2
− τ−n1,n2

) , (4.16)

are the probability amplitudes that the atom is reflected or transmitted when the

atom-field state makes a transition from initial |e, n1, n2〉 to |g1, n1 + 1, n2〉. Simi-

larly, the atom is reflected or transmitted when the atom-field state changes to

|g2, n1, n2 + 1〉 with amplitudes

Rg2,n1,n2+1 =
Ω2
√

n2 + 1
2
√

Ω2
1(n1 + 1) + Ω2

2(n2 + 1)
(ρ+

n1,n2
− ρ−n1,n2

) ,

Tg2,n1,n2+1 =
Ω2
√

n2 + 1
2
√

Ω2
1(n1 + 1) + Ω2

2(n2 + 1)
(τ+

n1,n2
− τ−n1,n2

) . (4.17)

Note that all the physical characteristics regarding the interaction of ultracold

atoms with a high quality cavity can be calculated in terms of quantities defined

by Eqs. (4.15)-(4.17). Let us examine the probability of emission of a photon. When

an initially excited three-level atom is incident upon the cavity containing (n1, n2)

photons in the two modes (1,2), respectively, then from Eqs. (4.16) and (4.17) the

probability that the atom goes to the level g1 and emits a photon in mode 1 is

Pn1,n2(e→g1) = | Rg1,n1+1,n2 |2 + | Tg1,n1+1,n2 |2 , (4.18)

and the probability that the atom goes to the level g2 and emits a photon in mode

2 is

Pn1,n2(e→g2) = | Rg2,n1,n2+1 |2 + | Tg2,n1,n2+1 |2 . (4.19)

It is clear from the above equations that an excited atom can emit a photon in

either mode 1 or mode 2 with equal probability for the case of equal coupling
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strengths Ω1 = Ω2. For the case of unequal coupling strengths Ω1 6= Ω2, the

photon emission probabilities in mode 1 and mode 2 are qualitatively similar

except for the multiplicative factors in Eqs. (4.16) and (4.17). In Fig. 4.3, we

show the probability of photon emission from an excited atom in any fixed mode

for the equal parameter case Ω1 = Ω2. We have used a wavenumber κ defined

by the vacuum coupling energy h̄2κ2/2m ≡ h̄
√

Ω2
1 + Ω2

2 to scale the parameters.
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Figure 4.3: The probability of e → g1 (or) e → g2 transitions of an excited atom as a
function of the length κL of the cavity. The cavity is initially in the vacuum state
and the parameters used are Ω2 = Ω1, k/κ = 0.01 (a), k/κ = 10 (b).

The graph shows that for ultracold atoms (k/κ << 1) the probability of transition

e → g1 exhibits resonances similar to that of a two-level atom incident on a single

mode cavity [99]. For fast atoms (k/κ >> 1), the photon emission probability

exhibits Rabi oscillations as a function of the length of the cavity. This feature

resembles that of the Jaynes-Cummings model studied in Sec. 1.2.1 for a two-

level atom. In fact, when the energy of the incident atom is very high (k/κ >> 1),

the kinetic energy operator in the Hamiltonian (4.1) can be neglected. The time

evolution of the initial atom-field state |e, n1, n2〉 then gives for the photon emission

probabilities of an atom

Pn1,n2(e→g1) =
Ω2

1(n1 + 1)
Ω2

sin2(Ωτ)

Pn1,n2(e→g2) =
Ω2

2(n2 + 1)
Ω2

sin2(Ωτ) , (4.20)

where Ω ≡
√

Ω2
1(n1 + 1) + Ω2

2(n2 + 1) is the Rabi frequency and τ is the interaction
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time of the atom with the cavity.

4.2 Buildup of the Cavity Field

In this section, we derive the master equation for the cavity field assuming that

a steady atomic beam passes through the cavity. The flux of the incident atoms

is so adjusted that only one atom interacts with the cavity at a time. Further,

the interaction time of each atom with the cavity is so small that the cavity field

damping can be neglected during atom-field interaction. The successive passage

of atoms changes the field in the cavity. In the previous section, we had assumed

the cavity field to be in the Fock state. However, for the dynamic evolution of the

field we have to examine a more general initial state of the cavity field. Using Eq.

(4.6) the wave function of the initial atom-field system is now given by

〈z|Ψ(0)〉 = ψ(z, 0)
∑
n1,n2

Cn1,n2 | e, n1, n2〉

= ψ(z, 0)
1√
2

∑
n1,n2

Cn1,n2

(
| φ+

n1+1,n2+1〉+ | φ−n1+1,n2+1〉
)

. (4.21)

Carrying out the time evolution for this initial state using Eq. (4.14), the state of

atom-field system after the interaction is given by

|Ψ(z, t)〉 =
∫

dkA(k)e−i(h̄k2/2m)t
∞∑

n1,n2=0

Cn1,n2

×
{[

Re,n1,n2(k)e−ikzθ(−z) + Te,n1,n2(k)eikzθ(z − L)
]
|e, n1, n2〉 (4.22)

+
[
Rg1,n1+1,n2(k)e−ikzθ(−z) + Tg1,n1+1,n2(k)eikzθ(z − L)

]
|g1, n1 + 1, n2〉

+
[
Rg2,n1,n2+1(k)e−ikzθ(−z) + Tg2,n1,n2+1(k)eikzθ(z − L)

]
|g2, n1, n2 + 1〉

}

The state |Ψ(z, t)〉 in the above equation (4.22) can be used to find the atom-field

density matrix after a single atom has passed through the cavity. By taking the

trace over the atomic energy eigenstates and the position eigenstates of the center

of mass of the atom, the reduced density operator ρ(t) of the cavity field is then

found to be

ρ(t) =
∑

i=e,g1,g2

∫
dz〈i | Ψ(z, t)〉〈Ψ(z, t) | i〉 . (4.23)
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We consider the case in which excited atoms are injected into the cavity at random

times and the time interval between successive atoms entering the cavity obeys a

Poissonian distribution with an average r. As discussed in [43], the contribution

of each atom passing through the cavity and the field damping lead to the follow-

ing coarse grained time evolution of reduced density operator of the field in the

interaction picture.

ρ̇(t) = rδρ(t) + Lρ(t) , (4.24)

where δρ(t) is the change in ρ(t) due to the passage of a single atom in the excited

state. The field damping is described by the Liouville operator L which we model

as due to the interaction with a thermal reservoir. Since the modes of the cavity

behave independently during interaction with the thermal reservoir, the Liouville

operator becomes L = L1 +L2, the sum of Liouville operators L1 and L2 for the two

modes which are defined in Eq. (1.17). Thus, the reduced density operator of the

two-mode field including damping becomes

Lρ =
1
2
C1(nb1 + 1)(2a1ρa†1 − a†1a1ρ− ρa†1a1)

+
1
2
C1nb1(2a

†
1ρa1 − a1a

†
1ρ− ρa1a

†
1)

+
1
2
C2(nb2 + 1)(2a2ρa†2 − a†2a2ρ− ρa†2a2) (4.25)

+
1
2
C2nb2(2a

†
2ρa2 − a2a

†
2ρ− ρa2a

†
2) .

Here nbα is the number of thermal photons in mode α and Cα is the damping rate

of this mode. Using Eqs. (4.23)-(4.25) we obtain the equation governing the time
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evolution of the density matrix elements

ρ̇(n1, n2; n′1, n
′
2) = r

{
(Re,n1,n2R

?
e,n1

′,n2
′ + Te,n1,n2T

?
e,n1

′,n2
′ − 1)ρ(n1, n2;n′1, n

′
2)

+ (Rg1,n1,n2R
?
g1,n1

′,n2
′ + Tg1,n1,n2T

?
g1,n1

′,n2
′)ρ(n1 − 1, n2; n1

′ − 1, n2
′)

+ (Rg2,n1,n2R
?
g2,n1

′,n2
′ + Tg2,n1,n2T

?
g2,n1

′,n2
′)ρ(n1, n2 − 1;n1

′, n2
′ − 1)

}

+
1
2
C1(nb1 + 1)[2

√
(n1 + 1)(n′1 + 1)ρ(n1 + 1, n2;n′1 + 1, n′2)

− (n1 + n′1)ρ(n1, n2;n′1, n
′
2)]

+
1
2
C1nb1 [2

√
n1n′1ρ(n1 − 1, n2; n′1 − 1, n′2) (4.26)

− (n1 + n′1 + 2)ρ(n1, n2; n′1, n
′
2)]

+
1
2
C2(nb2 + 1)[2

√
(n2 + 1)(n′2 + 1)ρ(n1, n2 + 1; n′1, n

′
2 + 1)

− (n2 + n′2)ρ(n1, n2;n′1, n
′
2)]

+
1
2
C2nb2 [2

√
n2n′2ρ(n1, n2 − 1;n′1, n

′
2 − 1)

− (n2 + n′2 + 2)ρ(n1, n2; n′1, n
′
2)] .

The diagonal elements of the density matrix P (n1, n2) = ρ(n1, n2; n1, n2) which

gives the joint distribution of photons in the two cavity modes, obeys the equation

Ṗ (n1, n2) = − Gg1,n1,n2 P (n1, n2) + Gg1,n1−1,n2 P (n1 − 1, n2)

− Gg2,n1,n2 P (n1, n2) + Gg2,n1,n2−1 P (n1, n2 − 1)

+ C1(nb1 + 1) [(n1 + 1)P (n1 + 1, n2)− n1P (n1, n2)] (4.27)

+ C1nb1 [n1P (n1 − 1, n2)− (n1 + 1)P (n1, n2)]

+ C2(nb2 + 1) [(n2 + 1)P (n1, n2 + 1)− n2P (n1, n2)]

+ C2nb2 [n2P (n1, n2 − 1)− (n2 + 1)P (n1, n2)] .

Here, Gg1,n1,n2 = r Pn1,n2(e → g1), Gg2,n1,n2 = r Pn1,n2(e → g2) are the gain coefficients

for the modes 1 and 2, respectively, with Pn1,n2(e → g1), Pn1,n2(e → g2) as defined in

Eqs. (4.18) and (4.19). This is the master equation for the two-mode micromaser

pumped with ultracold atoms. This equation has the character of rate equation

for the probability and various terms on the right hand side behave as the outflow

and the inflow of probabilities. This equation has also the form that one would

have expected on physical grounds.
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4.3 Analytical Solution of Master Equation

In this section, we derive the analytical results for the steady state photon dis-

tribution in the cavity for special choices of parameters. The steady state photon

probability distribution is obtained by setting

Ṗ (n1, n2) = 0 . (4.28)

The distribution P (n1, n2) can be obtained in analytical form by using the condi-

tion of detailed balance which states that the net inflow and outflow of probabili-

ties are equal. This leads to

P (n1, n2) = P (n1 − 1, n2)
1

C1(nb1 + 1)

{
C1nb1 +

Gg1,n1−1,n2

n1

}
, (4.29)

P (n1, n2) = P (n1, n2 − 1)
1

C2(nb2 + 1)

{
C2nb2 +

Gg2,n1,n2−1

n2

}
. (4.30)

For the above equations to be consistent with each other, we substitute the ex-

pression for P (n1−1, n2) obtained from Eq. (4.30) into Eq. (4.29) and the expression

for P (n1, n2 − 1) obtained from Eq. (4.29) into Eq. (4.30) with the results

P (n1, n2) = P (n1 − 1, n2 − 1)
1

C1(nb1 + 1)
1

C2(nb2 + 1)

×
(

C1nb1 +
Gg1,n1−1,n2

n1

)
(4.31)

×
(

C2nb2 +
Gg2,n1−1,n2−1

n2

)
,

P (n1, n2) = P (n1 − 1, n2 − 1)
1

C1(nb1 + 1)
1

C2(nb2 + 1)

×
(

C2nb2 +
Gg2,n1,n2−1

n2

)
(4.32)

×
(

C1nb1 +
Gg1,n1−1,n2−1

n1

)
.

It is obvious that Eqs. (4.31) and (4.32) can both be satisfied if

Ω1 = Ω2 ≡ Ω, C1nb1 = C2nb2 ≡ Cnb . (4.33)
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Under these conditions, the steady state photon distribution has the form

P (n1, n2) = P (0, 0)
(

r

C1 + Cnb

)n1
(

r

C2 + Cnb

)n2 n1+n2∏

q=1

{
Cnb

r
+

1
2(q + 1)

×
[
1− (1 + ∆+

q ∆−
q S+

q S−q )(C+
q C−

q + Σ+
q Σ−q S+

q S−q )

(C+
q

2 + Σ+
q

2
S+

q
2)(C−

q
2 + Σ−q

2
S−q

2)

]}
, (4.34)

where C±
q = cos(k±q L) , S±q = sin(k±q L) with k±q =

√(
k2 ∓ κ2

√
q+1
2

)
which is the same

as Eq. (4.12) with (n1 +n2 +1) replaced by q and Ω1 = Ω2 = Ω. Similarly ∆±
q ,Σ±q are

defined by equations (4.11) with k±n1,n2
replaced by k±q . The normalization condition

of joint probability gives
∑∞

n1,n2=0 P (n1, n2) = 1. The expression (4.34) contains all

the statistical informations about the steady state field. We consider the special

case in which all the parameters for the two modes are equal, i.e., Ω1 = Ω2 = Ω

, C1 = C2 = C, nb1 = nb2 = nb. In this case, Eq. (4.33) can be satisfied and the

detailed balance steady state photon distribution has the form

P (n1, n2) = f(n1 + n2) , (4.35)

where

f(n) = P (0, 0)
[

r

C(nb + 1)

]n n∏

q=1

{
Cnb

r
+

1
(q + 1)

×
[

1
2

(
1− (1 + ∆+

q ∆−
q S+

q S−q )(C+
q C−

q + Σ+
q Σ−q S+

q S−q )

(C+
q

2 + Σ+
q

2
S+

q
2)(C−

q
2 + Σ−q

2
S−q

2)

)]}
. (4.36)

It is to be noted that the square bracketed term inside the product in the above

equation, is identical to the photon emission probability of an ultracold, excited

two-level atom entering a single mode resonant cavity containing q photons in the

single mode Mazer [99]. For comparison the steady state photon distribution of

the single mode mazer operating on two-level atoms with the atom-field coupling

constant Ω [99] is

P (n) = P (0)
[

r

C(nb + 1)

]n n∏

q=1

{
Cnb

r
+

pe(q − 1)
q

}
. (4.37)

Here pe(q) is the photon emission probability of an excited atom incident on the

cavity containing q photons and is equal to the square bracketed term in Eq. (4.36)
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with Ω replaced by Ω/
√

2. For fast atoms i.e., when the energy of incident atoms

is very large compared to the vacuum coupling energy, the square bracketed term

in Eq. (4.36) can be approximated to sin2(Ωτ
√

q + 1)(see Sec. V of [99]) where

Ωτ = κ2L/2
√

2k. In this case f(n) has the form

f(n) = P (0, 0)
[

r

C(nb + 1)

]n n∏

q=1

{
Cnb

r
+

1
(q + 1)

sin2(Ωτ
√

q + 1)
}

, (4.38)

which is the same as obtained in the two-mode micromaser operating on three-

level atoms [67]. As mentioned in [67], f(n) = P (n, 0) = P (0, n) is the joint proba-

bility of having n photons in one mode and no photons in the other mode and the

probability that the cavity contains ′n′ total number of photons is

PΣ(n) ≡
∑

n1+n2=n

P (n1, n2) = f(n)(n + 1) . (4.39)

P (0, 0) can be determined from the normalization condition
∑∞

n=0 PΣ(n) = 1. For
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Figure 4.4: The function f(n) = P (n, 0) = P (0, n) for the parameters Ω1 = Ω2 = Ω,
C1 = C2 = C, nb1 = nb2 = nb, r/C = 100, nb = 1, κL = 10π/(3)1/4 and k/κ = 10 (a),
k/κ = 0.01 (b).

fast atoms, the graph of f(n) has been plotted in Fig. 4.4(a) for the parameters

r/C = 100, nb = 1, κL = 10π/(3)1/4, k/κ = 10. The graph shows the distribution f(n)

with single peak and compares well with the Ref. [67] on two-mode micromaser.

In general, the function f(n) can have more than one peak depending on the value

of Ωτ = κ2L/2
√

2k. The joint probability distribution f(n) behaves differently when

the micromaser is pumped by ultracold atoms, i.e., when the energy of incident
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atoms is very low compared to vacuum coupling energy. For ultracold atoms,

f(n) is shown in Fig. 4.4(b) for the parameters r/C = 100, nb = 1, κL = 10π/(3)1/4,

k/κ = 0.01. The graph looks similar to a pair of thermal distributions one of which

is shifted towards the larger photon number. This behavior of f(n) occurs at

κL = mπ/(N)1/4 with m = 1, 2, ... , N = 1, 3
2 , 2, ... and is similar to that of the steady

state photon distribution of the single mode mazer [99] as expected on comparing

Eqs. (4.36) and (4.37). When κL 6= mπ/(N)1/4, the distribution f(n) is a decreasing

function of n similar to a thermal distribution for ultracold incident atoms.

4.4 Steady State Photon Statistics

We now obtain the steady state distribution of photons Pα(n) in any fixed mode α.

From the joint probability distribution P (n1, n2), we can get photon distribution

Pα(n) in any fixed mode α by summing over the number of photons in the other

mode. The function Pα(n) is defined by

P1(n) =
∞∑

l=0

P (n, l) , P2(n) =
∞∑

l=0

P (l, n) . (4.40)

By using Eq. (4.35) the function Pα(n) is found to be

Pα(n) =
∞∑

l=n

f(l) . (4.41)

It may be noted from this equation that Pα(n) is independent of α since we as-

sumed Ω1 = Ω2 = Ω, C1 = C2 = C, nb1 = nb2 = nb and

Pα(n + 1) = Pα(n)− f(n) . (4.42)

The function f(n) is positive as seen from Eq. (4.36). Therefore, the photon dis-

tribution decreases monotonously with n. The probability distribution of photons

in a fixed mode calculated from (4.41), is plotted both for fast atoms (k/κ = 10)

and ultracold atoms (k/κ = 0.01) in Fig. 4.5 for the parameters r/C = 100, nb = 1,

κL = 10π/(3)1/4. The graphs show that for ultracold atoms there is a steep de-

crease in the curve of Pα(n) at the value n = 5 for the chosen parameters. From

equation (4.41), it is clear that this decrease in the curve is due to the two-peaked
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Figure 4.5: The distribution of photons in mode α for the parameters Ω1 = Ω2 = Ω,
C1 = C2 = C, nb1 = nb2 = nb, r/C = 100, nb = 1, κL = 10π/(3)1/4 and k/κ = 10 (a),
k/κ = 0.01 (b).

nature of f(n) behaving similar to a pair of thermal distributions for ultracold in-

cident atoms. We can examine numerically the stability and uniqueness of this

steady state result derived under the condition of detailed balance. Using the

fourth order Runge kutta method for direct integration of rate equation (4.27), we

have plotted the photon probability distribution in Fig. 4.6 at different times for

the equal parameter case when the initial state of the field for mode 1 is a thermal

distribution with the mean value of photon number < n1 >= 1 and vacuum state

for mode 2, for the parameters of 4.5(b).

It is seen from the graphs that a steady state is reached within a time of

order 10/C and the steady state photon probability distribution coincides with the

analytical result obtained under the principle of detailed balance. This confirms

the uniqueness and stability of detailed balance steady state solution. We next

evaluate the first and second moments of the photon distribution in any fixed

mode α using Eqs. (4.36) and (4.41). From Eq. (4.41), we find

〈nα〉 ≡
∞∑

n=0

nPα(n) =
1
2

∞∑

m=0

f(m)m(m + 1) , (4.43)

〈n2
α〉 ≡

∞∑

n=0

n2Pα(n) =
1
6

∞∑

m=0

f(m)m(m + 1)(2m + 1) . (4.44)

The mean value of total photon number is found from Eqs. (4.39) and (4.43) to be

〈nΣ〉 ≡
∞∑

n=0

nPΣ(n) =
∞∑

n=0

nf(n)(n + 1) = 2〈nα〉 . (4.45)
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Figure 4.6: The distribution of photons in mode 1 at different times t during the
evolution from the initial state. Mode 1 is initially in a thermal state with 〈n1〉 = 1.
Mode 2 is initially in the vacuum state. The parameters for the calculations are
Ω1 = Ω2 = Ω, C1 = C2 = C, nb1 = nb2 = nb, r/C = 100, nb = 1, κL = 10π/(3)1/4,
k/κ = 0.01. Graphs (a), (b), (c), and (d) correspond to t = 0, t = 0.1/C, t = 1/C, and
t = 10/C, respectively.

The normalized standard deviation σα is defined by

σ2
α =

〈n2
α〉 − 〈nα〉2
〈nα〉 . (4.46)

In Figs. 4.7 and 4.8, we plot the steady state mean and normalized variance

of the distribution of photons in any fixed mode for r/C = 100 and nb = 0.1 when

the micromaser is pumped by fast and cold atoms. For the case of fast atoms

(k/κ = 10), each mode of the cavity field exhibits features similar to that of the sin-

gle mode micromaser and the statistics of photons is super-Poissonian (σα
2 > 1).

For the case of ultracold atoms (k/κ = 0.01), the graphs show sharp resonances

at κL = mπ/(N)1/4 with m = 1, 2, .. and N = 1, 3
2 , 2, .. The peaks in the normalized

variance are accompanied by resonances in the mean photon number and are

reminiscent of the behavior of single mode mazer [99]. For small values of N, the

normalized variance σα
2 is less than unity which shows that the photon statis-

tics in each mode is sub-Poissonian. This is because the joint probability function

f(n) behaves as a shifted thermal distribution at those resonance positions. Shift-

ing the thermal distribution of f(n) to smaller values of N does not increase the

variance of probability distribution Pα(n) when nb is small. However, the normal-
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Figure 4.7: The mean (solid curve) and the normalized variance (dashed curve) of
the distribution of photons in mode α as functions of the interaction length κL for
the parameters r/C = 100, nb = 0.1 and k/κ = 10. Actual values of σ2

α are 0.7 times
those shown.

ized variance σα
2 decreases below the Poissonian level because the mean value

〈nα〉 is increased. These resonances in the mean value 〈nα〉 give rise to a strong

anti-correlation between the two cavity modes. A quantitative measure of this

anti-correlation is given by the cross-correlation function defined by

δcross ≡ 〈n1n2〉 − 〈n1〉〈n2〉
〈n1〉〈n2〉 . (4.47)

By using Eqs. (4.35) and (4.39), we can easily show that

〈n1n2〉 ≡
∞∑

n1,n2=0

n1n2P (n1, n2) =
1
6
(〈n2

Σ〉 − 〈nΣ〉) . (4.48)

Substituting Eqs. (4.39) and (4.48) into Eq. (4.47), we get

δcross =
2
3

( 〈n2
Σ〉

〈nΣ〉2
− 1
〈nΣ〉

)
− 1 . (4.49)

Hence the normalized standard deviation σΣ and the normalized cross-correlation

function δcross are related by [67]

σΣ
2 ≡ 〈n2

Σ〉 − 〈nΣ〉2
〈nΣ〉 = 1 +

3
2
〈nΣ〉

(
δcross +

1
3

)
. (4.50)

According to this relation, the distribution of the total number of photons in the

cavity obeys sub-Poissonian statistics (σΣ
2 < 1) when the two cavity modes are
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Figure 4.8: The mean (solid curve) and the normalized variance (dashed curve)
of the distribution of photons in mode α as functions of the interaction length κL
for the same parameters of Fig. 4.7 with k/κ = 0.01. The graphs show resonances
at κL = mπ/(N)1/4. The resonance sequence corresponding to m = 1 has been
plotted and the peaks are labeled by N values. Actual values of σ2

α are 0.7 times
those shown.

strongly anti-correlated (δcross < −1
3). In Fig. 4.9, we display the normalized cross-

correlation function δcross as a function of κL for the parameters r/C = 100, nb = 0.1

both for fast atoms(k/κ = 10) and for cold atoms (k/κ = 0.01). It is seen from the

graph that there exists a very strong anti-correlation between the cavity modes

for ultracold incident atoms compared to fast atoms when κL = mπ and this leads

to sub-Poissonian photon statistics for the total number of photons in the cavity.
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Figure 4.9: The dependence of the normalized cross-correlation function on the
interaction length κL for the parameters r/C = 100, nb = 0.1, and k/κ = 10 (a), k/κ =
0.01 (b). For the case of ultracold incident atoms, the graph show resonances at
κL = mπ/(N)1/4. The resonance sequence corresponding to m = 1 has been plotted
and the peaks are labeled by N values.

4.5 Summary

In summary, we have discussed the new features in the photon statistics of a two-

mode micromaser cavity pumped by ultracold Λ-type three level atoms. In Sec.

4.1, we described our model system and showed the correlation of external motion

of atoms with the atom-photon states in the cavity. We gave the numerical result

for the one-photon emission probability of atoms and discussed the similarity

with the earlier work on two-level atoms [99]. In Sec. 4.2, we studied the maser

action and derived the master equation for the reduced density matrix of the two-

mode cavity field. In Sec. 4.3, analytical result was presented for the steady

state solution of the master equation in the special case when the atom-field

couplings for the two cavity-modes are equal. Finally, in Sec. 4.4, we discussed

the steady state photon statistics of the fields in the cavity using the analytical

formula derived in Sec. 4.3. We have presented numerical results for the mean,

variance and correlation of the fields in the cavity. The results were compared

with the usual case of the micromaser pumped by fast atoms. The interesting

feature is that the degree of anti-correlation between the cavity modes increases

when the micromaser is pumped by ultracold atoms instead of fast atoms.



Chapter 5

Maser Operating on Two-Photon

Transitions in Ultracold Atoms

We have discussed in the previous chapter the maser action through one-photon

emissions from Λ-type, ultracold three-level atoms. In this chapter, we extend

this idea to Ξ-type, ultracold three-level atoms in the excited state. This atomic

scheme has been used by Brune et al [73] to demonstrate the masing action

through degenerate two-photon transitions inside a single mode cavity. Unlike

Λ-type atom, an excited atom in the Ξ-type configuration can make either a one-

photon transition to its middle level or a two-photon transition to its ground level

inside a bimodal cavity. We study the effects of two-photon emissions from the

incident atoms on the maser action in the bimodal cavity.

5.1 One- and Two- Photon Processes

We consider a bimodal cavity of length L pumped steadily by a beam of ultra-

cold, three-level atoms in the cascade configuration. The scheme of our model is

shown in Fig. 5.1. The transitions e → g1 and g1 → g2 are dipole allowed while

the direct transition e → g2 is dipole forbidden. Thus, the atom in the excited

level e can reach the ground level g2 only through the two-photon transition e →
g1 → g2. The frequencies of the two cavity modes 1 and 2 are tuned to those of

atomic transitions e → g1 and g1 → g2 respectively.The Hamiltonian describing this

resonant atom-field interaction including the quantized motion of center-of-mass

70
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Figure 5.1: The scheme of the two-mode micromaser cavity pumped by Ξ-type
three-level atoms in the excited state.

(c.m.) of the atoms along the z direction is given by

H = HA + HF + HAF , (5.1)

where HA(HF ) is the Hamiltonian of the free atom (field) and HAF is the interaction

Hamiltonian describing the atom-field interaction in the dipole and the rotating

wave approximations [cf. Eq. (1.25)] :

HA =
p2

z

2m
+ h̄Ωe|e〉〈e|+

2∑

α=1

h̄Ωgα |gα 〉〈gα| ,

HF =
2∑

α=1

h̄ωαa†αaα ,

HAF = h̄Ω1(|e〉〈g1| a1 + a†1 |g1〉〈e|) + h̄Ω2(|g1〉〈g2| a2 + a†2 |g2〉〈g1|) . (5.2)

The operator |j〉〈j|(j = e, g1, g2) gives the projection on to the state |j〉 with energy

h̄Ωj. The operators |g1〉〈e| and |g1〉〈g2| describe the atomic transitions from the

upper and lower levels to the middle level. The operators aα (a†α) annihilate (create)

a photon in the modes α = 1, 2 with resonance frequencies ω1 = Ωe − Ωg1 and ω2 =

Ωg1 −Ωg2 respectively. The first and second terms in the interaction operator HAF

represents the action of fields 1 and 2 of the cavity on the upper (e ⇔ g1) and the

lower (g1 ⇔ g2) transitions respectively. The parameters Ωα are the corresponding

atom-field coupling constants and m is the atomic mass. The parameters Ωα are

dependent on z through the mode function of the cavity.
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In the interaction picture, the Hamiltonian (5.1) of the atom-field system reads

HI =
p2

z

2m
+ HAF . (5.3)

It is useful to expand the interaction Hamiltonian HAF in its diagonal basis. The

operator HAF has eigenstates |φ0
n1+1,n2+1〉, |φ±n1+1,n2+1〉 with eigenvalues

0,±h̄
√

Ω2
1(z)(n1 + 1) + Ω2

2(z)(n2 + 1), respectively, where

|φ0
n1+1,n2+1〉 =

[
Ω2
√

n2 + 1 |e, n1, n2〉 − Ω1
√

n1 + 1 |g2, n1 + 1, n2 + 1〉]
[
Ω2

1(n1 + 1) + Ω2
2(n2 + 1)

]1/2

|φ±n1+1,n2+1〉 =
1√
2

[
Ω1
√

n1 + 1√
Ω2

1(n1 + 1) + Ω2
2(n2 + 1)

|e, n1, n2〉 ± |g1, n1 + 1, n2〉

+
Ω2
√

n2 + 1√
Ω2

1(n1 + 1) + Ω2
2(n2 + 1)

|g2, n1 + 1, n2 + 1〉
]

. (5.4)

The interaction operator HAF and its eigenstates |φ0
n1+1,n2+1〉, |φ±n1+1,n2+1〉 depend

on the position z through the coupling strengths Ω1(z), Ω2(z). Thus, it is in gen-

eral difficult to carry out the time evolution of an atom-field state governed by

the Hamiltonian (5.3) for the quantized motion of atoms. So, for simplicity, we

work with the mesa mode functions Ωα(z) = Ωα θ(z)θ(L − z) which represent the

z-independent field modes in the cavity. In this case, the eigenstates of the inter-

action are independent of atomic position inside the cavity and the atomic motion

sees free particle evolution in the dark state of interaction |φ0
n1+1,n2+1〉. The effect

of atom’s interaction with the cavity on its external motion can be realized only in

the dressed state |φ±n1+1,n2+1〉 components of the initial atom-field state. Note that

we can in principle work with any basis set of states. Thus, outside the cavity, we

use (5.4). Also, it is preferable to work in the eigenbasis (5.4) inside the cavity so

that equations can be decoupled. We need to consider the initial atom-field state

to be |e, n1, n2〉, i.e., the atom is in the excited state and the cavity contains (n1, n2)

photons in the modes (1, 2) initially. Since we work with dark and dressed states

basis inside the cavity, it is useful to expand the initial state in terms of the dark
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and dressed eigenstates :

|e, n1, n2〉 =

[
Ω1

√
(n1 + 1)/2√

Ω2
1(n1 + 1) + Ω2

2(n2 + 1)

(
|φ+

n1+1,n2+1〉+ |φ−n1+1,n2+1〉
)

+
Ω2
√

n2 + 1√
Ω2

1(n1 + 1) + Ω2
2(n2 + 1)

|φ0
n1+1,n2+1〉

]
. (5.5)

The time evolution of this initial state can be found by expanding the combined

state of atom-cavity system as

|Ψ(z, t)〉 = χ+(z, t)|φ+
n1+1,n2+1〉+ χ−(z, t)|φ−n1+1,n2+1〉+ χ0(z, t)|φ0

n1+1,n2+1〉 , (5.6)

then the time dependent Schrödinger equation (1.12) becomes

ih̄
∂χα(z, t)

∂t
= hαχα(z, t) , α = ±, 0. (5.7)

Here, h± = p2
z/2m± θ(z)θ(L− z)h̄

√
Ω2

1(n1 + 1) + Ω2
2(n2 + 1), h0 = p2

z/2m are operators

acting in the space of c.m. variables. Thus, the effect of the cavity with fixed

1 2

n  + 1, n  + 11 2

n  + 1, n  + 1

>

  L0                 cavity z

  0

V 

 V

  

  E

      -  
| ϕ-

| ϕ+ >

Figure 5.2: Schematic representation of the energy E of the excited atoms inci-
dent upon a two-mode micromaser cavity with (n1, n2) photons. The atom-field
interaction creates barrier (dashed) and well (dotted) potentials with a potential
energy V = h̄

√
Ω2

1(n1 + 1) + Ω2
2(n2 + 1) in the dressed states |φ±n1+1,n2+1〉. The scat-

tering from these cavity induced potentials leads to reflection or transmission
of the atoms through the cavity. The interaction also induces a reflection-less
transmission of the atoms in the dark state |φ0

n1+1,n2+1〉. However, the reflection
or transmission of the atoms can occur only in one of the three states |e, n1, n2〉,
|g1, n1 + 1, n2〉, and |g2, n1 + 1, n2 + 1〉.

number of photons produces potential terms in hα corresponding to the dressed
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states |φ±n1+1,n2+1〉 as discussed in Ref. [99] for two-level atoms. The barrier and

well potentials induced by the interaction for the atomic motion in the states

|φ±n1+1,n2+1〉 are then displayed as in Fig. 5.2. It is also important to note that

the external motion of atom experiences free time evolution in the dark state

|φ0
n1+1,n2+1〉 for the mesa mode distribution of the cavity fields.

Denoting the reflection and transmission amplitudes as ρ±n1,n2
, τ±n1,n2

for the

potential barrier-well problem of the dressed states |φ±n1+1,n2+1〉, respectively, we

have

ρ±n1,n2
= i∆±

n1,n2
sin(k±n1,n2

L) exp(ikL)τ±n1,n2
, (5.8)

τ±n1,n2
= exp(−ikL)

[
cos(k±n1,n2

L)− iΣ±n1,n2
sin(k±n1,n2

L)
]−1

, (5.9)

∆±
n1,n2

=
1
2

(
k±n1,n2

k
− k

k±n1,n2

)
, (5.10)

Σ±n1,n2
=

1
2

(
k±n1,n2

k
+

k

k±n1,n2

)
,

k±n1,n2
=

√(
k2 ∓ 2m

h̄

√
Ω2

1(n1 + 1) + Ω2
2(n2 + 1)

)
, (5.11)

where h̄k is the atomic c.m. momentum and L is the length of the cavity. It is

to be noted that the strengths of the barrier - well potentials (potential energy

term in k±n1,n2
) depend on the coupling constants Ω1, Ω2 as well as the occupation

numbers n1, n2 of the photons in the cavity.

We consider the initial wave packet of the moving free atom to be

ψ(z, t) = exp
(−ip2

zt/2mh̄
) ∫

dkA(k)eikz =
∫

dkA(k)e−i(h̄k2/2m)teikz. The Fourier ampli-

tudes A(k) are adjusted such that the incident wave packet |ψ(z, 0)|2 to the left of

cavity (z < 0) does not extend into the cavity region at the initial time t = 0. The

combined state of the atom-cavity system at the initial time t = 0 is therefore,

|Ψ(z, 0)〉 = ψ(z, 0)|e, n1, n2〉 . (5.12)

The wave function of the atom-field system at time t after the atom has left the

cavity region is found by solving the Eqs. (5.6) and (5.7) subject to the above initial
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condition :

|Ψ(z, t)〉 =
∫

dkA(k)e−i(h̄k2/2m)t

×
{[

Re,n1,n2(k)e−ikzθ(−z) + Te,n1,n2(k)eikzθ(z − L)
]
|e, n1, n2〉 (5.13)

+
[
Rg1,n1+1,n2(k)e−ikzθ(−z) + Tg1,n1+1,n2(k)eikzθ(z − L)

]
|g1, n1 + 1, n2〉

+
[
Rg2,n1+1,n2+1(k)e−ikzθ(−z) + Tg2,n1+1,n2+1(k)eikzθ(z − L)

]

×|g2, n1 + 1, n2 + 1〉
}

,

where

Re,n1,n2 =
Ω2

1(n1 + 1)
2

(
Ω2

1(n1 + 1) + Ω2
2(n2 + 1)

) (
ρ+

n1,n2
+ ρ−n1,n2

)
,

Te,n1,n2 =

[
Ω2

1(n1 + 1)
(
τ+
n1,n2

+ τ−n1,n2

)
+ 2Ω2

2(n2 + 1)
]

2
(
Ω2

1(n1 + 1) + Ω2
2(n2 + 1)

) , (5.14)

are the reflection and transmission amplitudes for the excited state of the atom

with the initial (n1, n2) photons remaining in the two cavity modes and

Rg1,n1+1,n2 =
Ω1

√
(n1 + 1)

2
√(

Ω2
1(n1 + 1) + Ω2

2(n2 + 1)
)

(
ρ+

n1,n2
− ρ−n1,n2

)
,

Tg1,n1+1,n2 =
Ω1

√
(n1 + 1)

2
√(

Ω2
1(n1 + 1) + Ω2

2(n2 + 1)
)

(
τ+
n1,n2

− τ−n1,n2

)
, (5.15)

are the probability amplitudes that the excited atom goes to the state |g1〉 and

emits a photon in mode 1 while getting reflected and transmitted respectively.

Similarly, the excited atom is reflected or transmitted and emits a photon in both

the cavity modes while making a transition to the ground state |g2〉 via the middle

state |g1〉 with probability amplitudes

Rg2,n1+1,n2+1 =
Ω1Ω2

√
(n1 + 1)(n2 + 1)

2
(
Ω2

1(n1 + 1) + Ω2
2(n2 + 1)

) (
ρ+

n1,n2
+ ρ−n1,n2

)
,

Tg2,n1+1,n2+1 =
Ω1Ω2

√
(n1 + 1)(n2 + 1)

2
(
Ω2

1(n1 + 1) + Ω2
2(n2 + 1)

) [
τ+
n1,n2

+ τ−n1,n2
− 2

]
. (5.16)

It is clear from the above equations that the effects of the barrier and well po-

tentials induced by the dressed states |φ±n1+1,n2+1〉 add coherently in either the

reflection or transmission of the atom. The additive term to the barrier-well am-

plitudes in Eqs. (5.14) and (5.16) comes from the contribution of the dark state
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|φ0
n1+1,n2+1〉 in the initial state expansion Eq. (5.5). Since the dark state is orthogo-

nal to the middle state |g1〉, it influences only the zero-photon and the two-photon

emissions, but not the one-photon emissions of the excited atom. An important

feature here is that the two-photon transition can always be induced by the field

when the one-photon transition is forbidden. This can be seen by examining the

probabilities for different states of the atom. When an initially excited atom is

incident upon the cavity containing (n1, n2) photons in the two cavity modes (1, 2),

respectively, then from Eqs. (5.15) and (5.16) the probability that the atom makes

a one-photon transition to the state |g1〉 with the emission of a photon in mode 1

is

Pn1,n2(e → g1) = |Rg1,n1+1,n2 |2 + |Tg1,n1+1,n2 |2 , (5.17)

and the probability that the atom makes a two-photon transition to the state |g2〉
with the emission of a photon in each of the modes 1 and 2 of the cavity is

Pn1,n2(e → g2) = |Rg2,n1+1,n2+1|2 + |Tg2,n1+1,n2+1|2 . (5.18)

When Ω2 = 0, the lower transition g1 → g2 is forbidden and hence the two-

photon transition probability Pn1,n2(e → g2) vanishes. Then, the upper transition

e → g1 behaves like a two-level atom interacting with the mode 1 of the cavity

field. In Fig. 5.3, we compare the photon emission probabilities of excited, two-

level (Ω2 ≡ 0) and three-level (Ω2 6= 0) atoms when the cavity is initially in vacuum

state. We scale the parameters in terms of a wave number κ which is defined by

the vacuum coupling energy h̄Ω1 ≡ h̄2κ2/2m of the two-level atom. Note that if the

coupling strength is chosen as Ω1 = 2π × 10 MHz, then the parameter κL = 20000π

corresponds to 155 µm length of the cavity for the Rydberg 85Rb atom. The tem-

perature of the atom is of the order of 10−6 K for the mean momentum k/κ = 0.1

(velocity ≈ 30 mm/s). For ultracold, incident atoms (k/κ << 1), the graphs in

Figs. 5.3(a) and 5.3(b) show that the one-photon emission probability exhibits

resonances as a function of length of the cavity for both two-level and three-level

atoms. In the three-level atom, the resonances of the one-photon emission proba-

bility occur at values of κL different from those of two-level atom. The two-photon

emission probability shows maxima and minima at the resonance positions of the

one-photon transition. This behavior arises from the interference of the contri-
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Figure 5.3: The probabilities of e → g1 (solid curve) and e → g2 (dotted curve)
transitions of an excited atom as a function of the length κL of the cavity. The
cavity is initially in the vacuum state and the parameters used are Ω2/Ω1 = 2,
k/κ = 0.01 (a), k/κ = 0.1 (b), k/κ = 1.1 (c). The dashed curve in (a) represents the
photon emission probability of an excited two-level atom resonant with the upper
transition when Ω2 = 0. Actual values of the dashed curve are 2.5 times those
shown. For clarity, the dotted curves in (a) and (b) have been displaced by 0.1
units along the Y axis.
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butions coming from different dressed states in the initial state expansion Eq.

(5.5). The transmission probability |Tg2,n1+1,n2+1|2 obtained from Eq. (5.16) has

an interference term proportional to the phase of the amplitude
(
τ+
n1,n2

+ τ−n1,n2

)
.

This term can be constructive or destructive which leads to the enhancement or

reduction of the two-photon emission probability. From the graph, we also see

that P0,0(e → g2) ≈ 0.32 when P0,0(e → g1) ≈ 0. This implies that the probability of

two-photon emission is not the product of the probabilities for single photon emis-

sion. This also suggests that both the field modes of the bimodal cavity can be

amplified together through the two-photon transition of an excited atom. This fea-

ture is absent in the case of two-mode micromaser pumped by ultra-cold, Λ-type

three-level atoms studied in the previous chapter . In the Λ-scheme micromazer,

the excited atom can make only one-photon transition to either of the two ground

levels. Therefore, both the cavity modes can not be populated sequentially by the

photon emission from the same atom.

Next, we compare our results for ultra-cold atoms with that of fast, incident

atoms in the Ξ- type configuration. In the case of fast, incident atoms (k/κ >> 1),

both one- and two- photon emission probabilities exhibit Rabi oscillations as a

function of the length of the cavity. The Rabi frequency of oscillation for one-

photon emission is twice that of the two-photon emission. These features can be

understood from the usual Jaynes-Cummings (JC) model where one neglects the

quantization of the atomic motion in atom-cavity interaction [6]. Thus, neglecting

the kinetic energy operator in the Hamiltonian (5.1), the time evolution of the

initial atom-field state |e, n1, n2〉 gives for the photon emission probabilities in the

JC model:

Pn1,n2(e → g1) =
Ω2

1(n1 + 1)
Ω2

sin2(Ωτ) ,

Pn1,n2(e → g2) =
4Ω2

1Ω
2
2(n1 + 1)(n2 + 1)

Ω4
sin4(Ωτ/2) ,

where Ω ≡
√

Ω2
1(n1 + 1) + Ω2

2(n2 + 1) is the Rabi frequency and τ is the interaction

time of the atom with the cavity. Note that when Ωτ is an odd number multiple

of π, the one-photon transition is forbidden and the two-photon transition prob-

ability becomes maximum. When Ωτ is an even number multiple of π, both one-

and two-photon emission probabilities vanish. We further note that the photon
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emission probabilities exhibit oscillatory type behavior even for energies of the in-

cident atom comparable to vacuum coupling energy (k/κ ≈ 1). The graphs in Fig.

5.3(c) show this behavior in the atomic transitions which is to be compared with

the results for ultracold, incident atoms. Thus, one finds novel features in the

atom-cavity dynamics when the motional effects of atom are taken into account.

However, we add that realization of such dynamical effects has to wait for the

technical advances in the form of achieving higher atom-field coupling strengths,

control over parameters like cavity length, velocity of atoms, etc..

5.2 Basic Master Equation

In this section, we consider the maser action of ultracold atoms in the bimodal

cavity and derive the master equation for the cavity field assuming that excited

atoms are pumped steadily into the cavity. We model the random pumping of the

atoms into the cavity by a Poissonian process with an average rate of pumping r.

The flux of the incident atoms is adjusted so that only one atom interacts with the

cavity field at a time. We neglect the cavity field damping during the time an atom

interacts with the field. Since the field in the cavity changes with the passage of

each atom, we need to know the time evolution of the atom-field state for a general

initial state of the cavity field. The wave function of the initial atom-field system

is now given by

|Ψ(z, 0)〉 = ψ(z, 0)
∑
n1,n2

Cn1,n2 |e, n1, n2〉. (5.19)

Carrying out the time evolution for this initial state using Eq. (5.13), the state of

atom-field system after the interaction is given by

| Ψ(z, t)〉 =
∫

dkA(k)e−i(h̄k2/2m)t
∞∑

n1,n2=0

Cn1,n2

×
{[

Re,n1,n2(k)e−ikzθ(−z) + Te,n1,n2(k)eikzθ(z − L)
]
|e, n1, n2〉 (5.20)

+
[
Rg1,n1+1,n2(k)e−ikzθ(−z) + Tg1,n1+1,n2(k)eikzθ(z − L)

]
|g1, n1 + 1, n2〉

+
[
Rg2,n1+1,n2+1(k)e−ikzθ(−z) + Tg2,n1+1,n2+1(k)eikzθ(z − L)

]

×|g2, n1 + 1, n2 + 1〉
}

,



Maser Operating on Two-Photon Transitions in Ultracold Atoms 80

The time evolution of the reduced density operator of the field in the interaction

picture is then given in the coarse graining method [43] to be

ρ̇(t) = rδρ(t) + Lρ(t) , (5.21)

where δρ(t) = ρ(t)− ρ(0) is the change in the reduced density operator of the field

due to the passage of a single atom in the excited state. This can be obtained

by tracing the atom-field density matrix formed from Eqs. (5.19) and (5.20) over

external and internal degrees of freedom of the atom. Field damping and the effect

of thermal photons are described by the Liouville operator

Lρ =
1
2
C1(nb1 + 1)(2a1ρa†1 − a†1a1ρ− ρa†1a1)

+
1
2
C1nb1(2a

†
1ρa1 − a1a

†
1ρ− ρa1a

†
1)

+
1
2
C2(nb2 + 1)(2a2ρa†2 − a†2a2ρ− ρa†2a2) (5.22)

+
1
2
C2nb2(2a

†
2ρa2 − a2a

†
2ρ− ρa2a

†
2) .

Here nbα is the number of thermal photons in mode α and Cα is the damping rate

of this mode. Using Eqs. (5.21) and (5.22) we obtain the equation governing the

time evolution of density matrix elements,

ρ̇(n1, n2; n′1, n
′
2) = r

{
(Re,n1,n2R

?
e,n1

′,n2
′ + Te,n1,n2T

?
e,n1

′,n2
′ − 1)ρ(n1, n2; n′1, n

′
2)

+ (Rg1,n1,n2R
?
g1,n1

′,n2
′ + Tg1,n1,n2T

?
g1,n1

′,n2
′)ρ(n1 − 1, n2; n1

′ − 1, n2
′)

+ (Rg2,n1,n2R
?
g2,n1

′,n2
′ + Tg2,n1,n2T

?
g2,n1

′,n2
′)

× ρ(n1 − 1, n2 − 1;n1
′ − 1, n2

′ − 1)
}

+
1
2
C1(nb1 + 1)[2

√
(n1 + 1)(n′1 + 1)ρ(n1 + 1, n2; n′1 + 1, n′2)

− (n1 + n′1)ρ(n1, n2; n′1, n
′
2)]

+
1
2
C1nb1 [2

√
n1n′1ρ(n1 − 1, n2; n′1 − 1, n′2) (5.23)

− (n1 + n′1 + 2)ρ(n1, n2;n′1, n
′
2)]

+
1
2
C2(nb2 + 1)[2

√
(n2 + 1)(n′2 + 1)ρ(n1, n2 + 1; n′1, n

′
2 + 1)

− (n2 + n′2)ρ(n1, n2; n′1, n
′
2)]

+
1
2
C2nb2 [2

√
n2n′2ρ(n1, n2 − 1;n′1, n

′
2 − 1)

− (n2 + n′2 + 2)ρ(n1, n2;n′1, n
′
2)] .
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The diagonal elements of the density matrix P (n1, n2) = ρ(n1, n2; n1, n2) which

gives the joint distribution of photons in the two cavity modes, obeys the following

equation:

Ṗ (n1, n2) = − Gg1,n1,n2P (n1, n2) + Gg1,n1−1,n2P (n1 − 1, n2)

− Gg2,n1,n2P (n1, n2) + Gg2,n1−1,n2−1P (n1 − 1, n2 − 1)

+ C1(nb1 + 1) [(n1 + 1)P (n1 + 1, n2)− n1P (n1, n2)] (5.24)

+ C1nb1 [n1P (n1 − 1, n2)− (n1 + 1)P (n1, n2)]

+ C2(nb2 + 1) [(n2 + 1)P (n1, n2 + 1)− n2P (n1, n2)]

+ C2nb2 [n2P (n1, n2 − 1)− (n2 + 1)P (n1, n2)] ,

where Gg1,n1,n2 = rPn1,n2(e → g1) and Gg2,n1,n2 = rPn1,n2(e → g2) are the gain coeffi-

cients for the atomic transitions with Pn1,n2(e → g1) and Pn1,n2(e → g2) as defined in

Eqs. (5.17) and (5.18). This is the master equation for the two-mode micromaser

describing the time evolution of photon distribution in the cavity. This equation

behaves similar to a rate equation for the probability and a simple physical mean-

ing can be given to each term on the right hand side in terms of inflow and outflow

of probabilities. The first and second terms in the equation gives the effect of one-

photon transitions while the third and fourth terms correspond to the two-photon

transitions of the excited atoms.

5.3 Numerical Results of Photon Distribution in Steady State

The steady state distribution of photons obeys the equation

Ṗ (n1, n2) = 0 (5.25)

In the limit Ω2 → 0, the two-photon transition probability in Eq. (5.18) tends to

zero and therefore we can neglect the third and fourth terms containing Gg2,n1,n2

in the master Eq. (5.24). In this case, the upper transitions e → g1 behave like

two-level atoms interacting with the mode 1 of the cavity. The lower transitions

g1 → g2 and hence the two-photon transitions e → g1 → g2 are forbidden in the

interaction. The steady state solution of the Eq. (5.25) can then be obtained in
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analytical form by using the principle of detailed balance as discussed by Meyer et

al [99]. The photon statistics in this two-level problem is a mixture of thermal and

shifted thermal distributions. When Ω2 6= 0, both the one- and two-photon effects

of atomic transitions contribute in building up the cavity field. The two-photon

terms (third and fourth terms) in the master equation have no counterpart in the

decay terms and therefore the equation is not solvable analytically for the steady

state distribution by the principle of detailed balance adopted in all the previous

work on micromasers. In this general case, we integrate the master equation

(5.24) numerically using fourth order Runge kutta method to get the steady state

solution as done in Fig. 4.6. We do not use any decorrelation approximation, i.e.,

we do not assume P (n1, n2) = f(n1)g(n2). The photon distribution P1(n) and P2(n)

in the cavity modes 1 and 2 are obtained respectively using

P1(n) =
∞∑

l=0

P (n, l), P2(n) =
∞∑

l=0

P (l, n) . (5.26)

The normalized variances of photon distribution in the two cavity modes are de-

fined by

σ2
α =

〈n2
α〉 − 〈nα〉2
〈nα〉 , α = 1, 2 . (5.27)

In Fig. 5.4, we present the numerical results of the photon distribution in

steady state for ultra-cold, incident atoms (k/κ << 1) by assuming equal param-

eters for the decay terms C1 = C2 = C, nb1 = nb2 = nb. The graph shows that

for Ω1 < Ω2, the photon statistics in mode 1 is super-Poissonian (σ2
1 > 1) while

that of mode 2 is sub-Poissonian (σ2
2 < 1). The photon distribution for Ω1 > Ω2 is

identical to that of Ω1 < Ω2 except that modes 1 and 2 are interchanged. When

Ω1 = Ω2, each mode of the cavity field exhibits Poissonian statistics (σ2
α ≈ 1) of

mean r/2C − 1. To understand these numerical results, we now approximate the

master equation (5.24) by dropping the first and second terms corresponding to

one-photon transitions. In fact, for the parameters of Fig. 5.4, the barrier and well

amplitudes are ρ±n1,n2
≈ −1, τ±n1,n2

≈ 0 for wide range of n1 and n2 values. Therefore,

the one-photon transition probability Pn1,n2(e → g1) in Eq. (5.17) is approximately

zero. The two-photon emission probability Pn1,n2(e → g2) in Eq. (5.18) can then

be approximated to be 2Ω2
1Ω

2
2(n1 + 1)(n2 + 1)/(Ω2

1(n1 + 1) + Ω2
2(n2 + 1))2. Note that
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Figure 5.4: The steady-state distribution of photons in mode 1 (solid curve) and
mode 2 (dashed curve). The parameters used are C1 = C2 = C, nb1 = nb2 = nb,
r/C = 50, nb = 0, κL = 20000π, k/κ = 0.01, and Ω2/Ω1 = 2 (a), Ω2/Ω1 = 1 (b). In
the case of Ω2 = Ω1, the dashed curve is not distinguishable from the solid curve.
The photon statistics for the parameter Ω2/Ω1 = 0.5 is approximately similar to
that of Ω2/Ω1 = 2 except that the solid (dashed) curve corresponds to the photon
distribution in mode 2 (1). The normalized variances of the photon distributions
in (a) are σ2

1 = 1.47 (solid curve) and σ2
2 = 0.9 (dashed curve).

this approximation is also consistent with the results for ultra-cold atoms in Fig.

5.3. With these substitutions for the photon emission probabilities in gain coeffi-

cients, numerical integration of the master Eq. (5.24) again gives the same results.

Moreover, in the absence of one-photon terms, the master equation is symmetric

with respect to the labels 1 and 2 of the two cavity modes. Thus, the Poissonian

distribution of photons in each cavity mode is purely the effect of two-photon

transitions of the excited atoms. It should be emphasized that the transmission

of atoms occurs only in the dark eigenstate component of the interaction during

the field buildup in the cavity. The atoms interacting with the barrier-well com-

ponent of the dressed states get reflected always. But both the reflected and the
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transmitted atoms have equal probability of two-photon emissions into the cavity.
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Figure 5.5: The steady-state distribution of photons in mode 1 (solid) and mode 2
(dashed) for the same parameters as in Fig. 5.4(a) with k/κ = 100.

Since the one-photon emissions are forbidden in the interaction for ultracold

atoms, the photon distribution of both the cavity modes peaks around the same

photon number in Fig. 5.4. In general, the photon distribution for mode 1 peaks

at a higher photon number when compared with that of mode 2 . This is because

the mode 1 of the cavity can be populated by both one- and two-photon emissions

while the mode 2 can be populated by only two-photon emissions from the inci-

dent atoms. We have found this behavior of steady state photon distribution in

the case of fast, incident atoms. In Fig. 5.5, we display the steady state photon

distribution when the micromaser is pumped by fast, incident atoms (k/κ >> 1)

for the same parameters of Fig. 5.4(a). The graph shows that the field 1 is ampli-

fied more than the field 2 by the stimulated, photon emissions from the incident

atoms. It is important to note that the field 2 has an influence on the field 1 in

the cavity through the interaction with the atoms. The effects of field 2 such as

gain enhancement or gain reduction on field 1 have been already discussed in a

different context viz in a two-beam laser operating on cascade three-level atoms

[126].

Next, we show the effect of thermal photons in the cavity on the steady state

photon distribution in Fig. 5.6. For comparison, we have also plotted the photon
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Figure 5.6: The steady-state distribution of photons in mode 1 (solid curve) and
mode 2 (dashed curve). The parameters for the calculation are C1 = C2 = C,
nb1 = nb2 = nb, r/C = 50, k/κ = 0.01, Ω2/Ω1 = 2, κL = 40000π/(4)1/4, and nb = 1.
The dotted curve represents the photon distribution in mode 1 for the two-level
problem when Ω2 = 0. Actual values of the dotted curve are five times those
shown.

distribution for the two-level problem (Ω2 ≡ 0). The length κL of the cavity is

chosen to be at a resonance of the one-photon emission probability for the initial,

excited state of the two-level atom and three photons in mode 1 of the cavity. The

photon distribution in the two-level problem then looks similar to a mixture of

thermal and shifted thermal distributions as discussed by Meyer et al [99]. For

three-level atoms, comparison with Fig. 5.4(a) shows that the photon distribu-

tion broadens because of the presence of thermal photons (nb 6= 0) even though

qualitative features are very similar. In particular, the two-photon emissions from

the pumping atoms are still the dominant contribution to the steady state field

for the chosen length of the cavity. The Poissonian-like statistics of photons in

the micromaser cavity pumped by cold atoms, resembles closely the behavior of a

laser operating at far above threshold [12]. Finally, we note that the two-photon

effects are dominant over the one-photon transitions only in the limit (k/κ << 1)

of ultra-slow motion of the incident atoms. The competition of the one-photon

with the two-photon processes becomes stronger even for energies of the incident

atoms (k/κ ≈ 1) close to the vacuum coupling energy. In Fig. 5.7, we plot the

photon distribution in the cavity for the mean momentum k/κ = 1.1 of the inci-
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Figure 5.7: The steady-state distribution of photons in mode 1 (solid) and mode 2
(dashed) for the same parameters as in Fig. 5.4(a) with k/κ = 1.1.

dent atoms. The graph shows that the one-photon effects participate in the field

build up of the cavity and these lead to unequal, average number of photons in

the two modes of the mazer field. This result is also substantiated by the non-zero

one-photon emission probability in Fig. 5.3(c) for the chosen parameters.

5.4 Summary

In summary, we have discussed the new features in the photon statistics of a two-

mode micromaser pumped by ultracold Ξ-type three level atoms. In Sec. 5.1, we

described the model system and discussed the central role played by quantizing

the atomic motion. It was shown that atoms can emit photons into the cavity

either by reflections or transmissions through the cavity. We presented numerical

results for one-photon and two-photon emission probabilities of the atom. An

important prediction was that the two-photon transition can always be induced

in an excited atom when the corresponding one-photon transition is forbidden. In

Sec. 5.2, we considered the maser action of ultracold atoms and derived the basic

master equation for the two-mode cavity field. Finally, in Sec. 5.3, we discussed

the steady state photon statistics of the cavity field using numerical results of

the master equation. It was shown that, in general, the two-photon transitions

dominate over the one-photon emissions in building up the steady state of the
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cavity fields. We also showed that this feature is absent in the usual case of

micromaser pumped with fast atoms instead of ultracold atoms.



Conclusions and Future Outlook

In conclusion, this thesis reports novel features in the dynamics of ultracold

atoms interacting with high-quality cavities. We show the effects of quantized

motion of atoms on the passage time, tunneling probabilities through single and

two cavities on one hand and on the other the maser action of ultracold atoms.

Our new findings are presented with extensive numerical results which are fur-

ther substantiated by physical explanations and possible analytical solutions. In

the following, we present a brief summary of important conclusions of each chap-

ter and discuss the future outlook.

In chapter 2, we have shown numerically the possibility of superclassical

traversal of an ultracold two-level atom through a cavity initially in vacuum state.

This implies that the peak of transmitted wave packet of the atom can emerge

the cavity even before it enters it. We have explained how this behavior can be

understood from the analytical formula of the phase tunneling time of the wave

packet. We have also discussed the similarity of this behavior with the super-

luminal propagation of electromagnetic pulses through an anamolous dispersion

medium. However, we have also noted that the phase time does not always ac-

count for the traversal time of the wave packet. We have shown that the wave

packet gets distorted during propagation through the cavity when the average mo-

mentum of the incident atom is near a transmission resonance. This needs fur-

ther explanations and analytical investigations on the transmission amplitude’s

behavior near the resonance.

In chapter3, we have demonstrated an analog of resonant tunneling through

potential barriers in a totally new context, i.e., in the field of cavity quantum

electrodynamics. We considered the transmission of an ultracold two-level atom

through a system of two cavities in vacuum state. The potentials induced by

88
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the atom-cavity interaction show important bearings on the transmission of the

atom. The transmission probability exhibits resonances as a function of energy of

atoms corresponding to the discrete states in the potential well formed between

the cavities. We have noted the similarity of this feature to the tunneling of elec-

trons through semiconductor double barriers. Since this work shares features in

common with semiconductor systems, it opens up the possibility of generalizing

many ideas developed in condensed matter physics. These include, for exam-

ple, extensions of this work to multi-cavity system to realize Kronig-Penney like

model and considering time periodic atom-cavity coupling to realize the analog of

field-assisted tunneling in potential barriers.

In chapters 4 and 5, we have discussed the maser action of ultracold atoms

in bimodal cavities. The underlying theme of these studies is that the incident

atoms can amplify the cavity field either by reflection or transmission through

the cavity induced potentials. In chapter 4, we have considered Λ-type atoms in

the excited state for interaction. Here, it has been shown that the fields in the

cavity are strongly anti-correlated in steady state due to one-photon emissions

from the incident atoms. In chapter 5, we have discussed the maser action of

ultracold atoms with Ξ-type configuration. We have shown that atoms in this

configuration can amplify the field in the cavity either by one-photon emissions

or two-photon emissions. We have also shown parameter regimes where two-

photon emissions from the atoms are dominant and discussed its role in the

maser action. It has been shown numerically that two-photon emissions lead to

sub- and super-poissonian behaviors in the photon statistics of the cavity fields.

In both these chapters, we have considered the two fields in the cavity to act on

different transitions of the atom. The study of cross-talk by the action of each

field in the cavity on both the transitions of the atom is still an open problem.

Further, we can even study cooperative effects of atomic emissions in the maser

action. For example, instead of sending atoms one by one through the cavity,

pairs of atoms can be injected into the cavity at a time. The interesting model

to realize two-photon emissions would then be pairs of ultracold two-level atoms

passing through a single mode cavity.
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