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Chapter 1

Introduction

The particle nature of light was first considered by Sir Isaac Newton in 1704. He proposed that light

contains small particles having a mass. With this argument, he explained the basic phenomena of light

such as reflection and refraction. However, his theory was discarded by the scientific community as it

could not explain interference and diffraction, which are attributed to the wave nature of light. Thomas

Young’s double-slit interference experiment based on Huygen’s wave theory became more popular

among the community as it could explain refraction and reflection also. As a further advancement in

the wave theory of light, Scottish physicist James Clark Maxwell found that the light indeed is an

electromagnetic (EM) wave consisting of oscillating electric and magnetic fields. He derived a set of

equations that describes the dynamics of EM waves propagating in a medium. From the theory, he

could derive the speed of light in free space, which is one of the fundamental constants in Physics.

Polarization is another important characteristic of light that Maxwell’s EM wave theory could explain

where the direction of electric field determines the polarization of light.

The particle nature of light, or the concept of photon, gained its ground after Einstein’s discovery

of photoelectric effect in 1905. He explained the effect with the help of Max Planck’s quantum theory

of radiation by considering light beam incident on the metal surface as discrete energy packets. Since

the existence of matter waves was introduced by de Broglie in 1924, experiments showed that the

light also have particle-like as well as wave-like behaviour. The area of quantum optics deals with the
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particle nature of light. In this, a light beam is considered as a stream of photons and different light

sources are characterized by the number of photons seen in a particular time interval of detection.

Generally the quantum state of photon sources is represented by number states |n⟩, where n is

the number of photons, which is fixed. Different number states of light give different exotic features

during their propagation and interaction in media [2–4]. However, such number states are difficult to

realize practically. A stable laser having a constant intensity contains huge number of photons such

that their number fluctuations are negligible. The number fluctuations become more sensible when a

light source with n = 1 is considered, i.e. single photon states.

The basic qualities of an ideal single photon source is that it should emit a single photon at a

certain time defined by the user. This means that the source is deterministic or the photon is emitted

‘on demand’. Such deterministic single photon sources have been practically realized based on single

atoms [5], single molecules [6], single ions [7], atomic ensembles [8] as well as from quantum dots

[9, 10] and colour centers [11, 12]. All these sources emit single photons in a user-defined time.

Apart from this, there are probabilistic single photon sources where the generation of single photons

can be realized with certain probability, for a given time. Light sources based on parametric down

conversion in non-linear bulk crystals [13, 14] and waveguides [15] come into later category where

the qualification to be a single photon source is based on the photon pair emission and their ‘heralded’

detection. This means that one photon in the pair (heralding photon) is used to know the presence of

the other (heralded single photon).

1.1 Classical description of light

1.1.1 Maxwell’s equations

In the classical picture, light is considered as an electromagnetic wave composed of an electric field

and a magnetic field which are orthogonal to each other. The electromagnetic wave theory of light is
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formulated using Maxwell’s equations

∇ ·D = ρ (1.1)

∇ ·B = 0 (1.2)

∇×E =−∂B
∂ t

(1.3)

∇×H = J+
∂D
∂ t

(1.4)

where D = ε0εrE is the electric displacement vector, H = B/µ0µr is the magnetic field intensity, ρ

is the free charge density and J is the free current density. The constants ε0 and µ0 are respectively

the electric permittivity and magnetic permeability of the medium. εr and µr are the corresponding

relative permittivity and permeability. From the Maxwell’s equations, the following partial differential

equation is derived

∇
2E = µ0ε0εr

∂ 2E
∂ t2 (1.5)

which describes electromagnetic wave travelling in a medium with a speed v = 1/
√

µ0ε0εr. For a

light propagating in free space, εr = 1. Then the speed is given by

c =
1

√
µ0ε0

≈ 3×108ms−1 (1.6)

In a dielectric medium, the speed of light is given as

v =
c√
εr

=
c
n

(1.7)

where n=
√

εr is the refractive index of light in the medium. Equation 1.5 can be solved by considering

electromagnetic waves as transverse waves where the associated electric field and magnetic fields are

orthogonal to each other. Then the solutions are

Ex(z, t) = Ex0 cos(kz−ωt +φ) (1.8)

By(z, t) = By0 cos(kz−ωt +φ)
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where Ex0 is the amplitude, φ is the phase and k is the magnitude of the propagation vector of the

wave, given by

k =
2π

λ
=

nω

c
(1.9)

Here, λ is the wavelength of light inside the medium. The flow of energy of the electromagnetic wave

is obtained from the Poynting vector

S = E×H (1.10)

The magnitude of the Poynting vector gives the intensity of the light. Taking a time average of the

Poynting vector in Eqn. 1.10, the average intensity of the light is given as

⟨I⟩= 1
2

ncε0E2
x0 (1.11)

1.1.2 Polarization

Polarization of light is generally associated with the direction of the electric field vector in the

electromagnetic wave. Depending on different components of electric field and their orientation in

transverse coordinate space, there are different types of polarization, as listed below

• Linear: The electric field vector oscillates along a particular direction. Generally, the light

having electric field directed along X-axis and Y -axis are called as horizontally and vertically

polarized, respectively.

• Circular: The electric field vector rotates about the axis of propagation as the wave advances.

The light will be right-circularly/left-circularly polarized if the rotation of electric field is

clockwise/anti-clockwise.

• Elliptical: As in the case of circular polarization, here, the electric field vector rotates as the

wave propagates, except that the orthogonal components of the electric field have different

amplitudes.

• Unpolarized: The electric field vector oscillates in a random direction.
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Polarization of light does not change during its propagation in free space. However, in certain

anisotropic media, polarization alters as the light propagates. Birefringence or Double refraction is

a property of the material where an arbitrary polarized light separates into two light beams having

orthogonal polarizations, called as ordinary and extra-ordinary light. The two light beams will have

different refractive indices in the material and the difference of refractive indices quantifies the amount

of birefringence in the material. Certain optical elements that manipulate the incoming polarization of

light, such as polarizers, quarter-wave plates, half-wave plates are manufactured with these materials

by using the birefringence property [16]. Birefringence of non-linear crystals has been widely utilized

for studying various non-linear effects of light [17].

1.1.3 Interference and Diffraction

In the interference of light, two waves superpose to give a resultant wave having same, greater or

lower amplitude. Consider two light waves having electric fields given by

E1(r, t) = E01 cos(k1 · r−ωt +χ1) (1.12a)

E2(r, t) = E02 cos(k2 · r−ωt +χ2) (1.12b)

The two waves superimpose to give a resultant field E1 +E2. To find the intensity of the wave

combination, we first take the scalar product of the resultant field with itself

E2 = (E1 +E2) · (E1 +E2) = E2
1 +E2

2︸ ︷︷ ︸
Intensity addition

+ 2E1 ·E2︸ ︷︷ ︸
Interference term

(1.13)

Intensity of the resultant field is obtained by taking the time average of Eqn. 1.13 on both sides, which

reads

I = ⟨E2
1⟩T + ⟨E2

2⟩T +2⟨E1 ·E2⟩T (1.14)

Substituting the field expressions from Eqn.1.12b in Eqn. 1.14, one obtains time-averaged intensity of

the resultant wave as

I = I1 + I2 + I12 (1.15)
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where I1 and I2 are given as

I1 = ⟨E2
1⟩T =

E2
01
2

(1.16)

I2 = ⟨E2
2⟩T =

E2
02
2

(1.17)

The third term in the right side of Eqn. 1.15 corresponds to the interference

I12 = 2
√

I1I2 cosδ (1.18)

where δ = (k1 · r−k2 · r+χ1 −χ2) is the phase difference between the interacting waves. For even

integral multiples of π , the waves will interfere constructively to give maximum intensity and for odd

multiples of π , they interfere destructively to give minimum intensity.

For interference to occur, the two superposing waves must satisfy the following conditions

1. The interacting waves must be coherent.

2. The waves should be monochromatic.

3. The two waves must have same polarization.

Coherence is a property that describes the stability of light. For two light waves to be coherent,

they have to propagate in space with a constant phase difference. The two types of coherence generally

discussed are spatial and temporal coherences. Two light beams are said to be spatially coherent if

there is a constant phase difference between the waves emerging from two laterally separate points in

space. The waves are temporally coherent if one wave makes a constant phase lag with respect to the

other, in time. Young’s double slit interference and Michelson interferometer are the two well-known

interference experiments in optics that illustrate the spatial and temporal coherence of a light source.

In Young’s double slit experiment, a single wavefront is divided into two secondary wavelets that

are coming out of the slits and they superpose to give bright and dark fringes on screen. In the case

of Michelson interferometer, the two interacting waves are formed from the amplitude division of a

single wave train.
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The term ’chrome’ came from the Greek word ’khrōma’ means colour. The two light waves must

be monochromatic means that they must have same colour. This means that the two interfering waves

must have same wavelength. Interference can happen between waves with wavelengths close to each

other, and the resultant will form a group of waves with beats.

The interfering waves must have same polarization which means that their respective electric fields

must oscillate in same direction. If the electric fields E1 and E2 are orthogonal, then the interference

term in Eqn. 1.13 becomes zero and the resultant wave will be just the addition of intensities of

individual waves.

Diffraction is another characteristic that describes the wave nature of light. In a simple way,

diffraction of light is defined as the deviation of light from its rectillinear propagation when the light

is obstructed by some means. There is no primary difference between interference and diffraction as

the superposition of waves is involved in both. Conventionally, interference is considered the case

of superposition of a few waves whereas, diffraction comes when one considers the interaction of a

large number of waves. Generally, in the case of diffraction from an aperture or a slit, the condition

for observing diffraction is that the wavelength of the light must be large compared to the size of the

obstacle.

1.2 Classification of Light Sources Based on Photon

Statistics

Photon statistics of a light source is carried out by studying the distribution of photons detected on

photon counters in a given time for measurement. Consider a simple photon counting experiment

where a low intensity light beam produced by attenuating a light source with neutral density filter, is

incident on a photon counter (Fig. 1.1). A photon counter usually contains a sensitive photo detector

such as photomultiplier tubes (PMT) or avalanche photodiode (APD). Electric pulses are generated

from PMT/APD, corresponding to incidences. The photon counter is connected to an electronic

circuit that counts the number of pulses in a given time. We consider the light beam as a stream of

photons. The number of photons passing through a cross-section of the beam in unit time, the photon
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Fig. 1.1 Experimental setup for studying the photon statistics of a light source.

flux, is given by

Φ =
P

h̄ω
(1.19)

where P and ω are the optical power and the frequency of the light beam respectively. Photon detectors

are characterized by their quantum efficiency η , which is defined as the ratio of number of photon

counts registered in the detector to the number of photons incident on the detector. Therefore, the

average number of photon counts recorded by the detector in a given time interval t, is given by

npd(t) = ηΦt (1.20)

In photon statistics, we find the probability, P(n), of finding n photons within a beam of certain

length. Then we look what is the variation of the probability for different n values. Light sources

are classified based on the distribution of this probability. For a coherent light source such as a

laser, the distribution is Poissonian in nature where the variance of photon distribution is equal to the

average number of photons in the distribution ((∆n)2 = n̄). All the other light sources are classified

by comparing their photon statistics with that of the light source having Poissonian distribution. The

classification is listed in Table 1.1 [18].



1.3 Quantum Sources of Light 9

Photon statistics Example Nature of intensity (∆n)2

Sub-Poissonian Single photon sources Constant < n̄
Poissonian Laser Constant = n̄

Super-Poissonian Thermal light source Time varying > n̄

Table 1.1 Classification of light sources based on photon statistics

1.3 Quantum Sources of Light

Simply speaking, for a light source to have a quantum nature, it needs to emit photons that do not

’stick’ to each other. This is called anti-bunching. To prove that the source is quantum, we need to

device an experiment that gives evidence to the particle nature of light. That is, one has to confirm

that the same photon cannot be present in two different locations in space at the same time. Consider

a light source emitting single photons, i.e. one photon at a time. The photons are passing through

a 50:50 beam splitter (BS), as shown in Fig. 1.2(a). Two single photon detectors D1 and D2 are

kept at transmitted and reflected ports of the BS at equal distances. The detectors are connected to a

coincidence counter that counts the simultaneous detection of photons at D1 and D2. When the source

Fig. 1.2 Experimental setup for studying the quantum nature of a light source.

is emitting truly single photons, there is 50% probability of detecting the photon in each detectors at a

given time (Fig. 1.2(b,c)) and therefore this will not give any coincident count at any instant. That
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confirms the anti-bunching nature of the photons. The experiment can be understood more clearly by

introducing an anti-correlation parameter A, given by

A =
P12

P1P2
(1.21)

where P1 and P2 are the probabilities of individual detection of photons at D1 and D2. P12 is the

probability of coincident detection. In the case of a pure single photon source, as there are no

coincidences, A = 0. If the detectors detect photons randomly and independently of each other, then

there will be random appearances of coincident detection. According to the theory of probability, the

probability of two independent random events occurring together is the product of their individual

probabilities, therefore, P12 = P1P2 and A = 1. For A > 1, the probability of simultaneous clicks of

both detectors is more than that of a randomly clicking event. This happens when the photons come

as clusters that show bunching effect, as shown in Fig. 1.2(d,e).

Suppose the counting experiment lasts for a time T , giving total number of individual counts N1

and N2 at detectors D1 and D2 respectively. N12 is the number of coincidence counts within the time

interval ∆t. Then the measured probability is given by

P12 =
N12( T

∆t

) (1.22)

and the anti-correlation parameter is written as

A =
N12

N1N2

(
T
∆t

)
(1.23)

1.4 Quantum Entanglement

The basic unit of information is called a ‘bit’. A classical bit has two possible states, 0 and 1, in binary

structure. However, a quantum bit or ‘qubit’, along with being in either |0⟩ or |1⟩, can also be in the

superposition of both. A qubit is the fundamental unit of quantum information. A two-level system
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can be represented by a qubit. A qubit can be represented as

|ψ⟩= α|0⟩+β |1⟩ (1.24)

where α and β are complex probability amplitudes of the eigenstates |0⟩ and |1⟩ respectively, with

the condition of normalization, |α|2 + |β |2 = 1. The capabilities of a qubit over a classical bit lies in

quantum superpositions, which give an infinite possibilities of other qubits.

One of the most popular candidate for qubit is photon [19]. For example, polarization of a single

photon can be represented as

|ψpol⟩= α|H⟩+β |V ⟩ (1.25)

where |H⟩ (horizontal polarization) and |V ⟩ (vertical polarization) constitute the eigen-basis for the

state.

Quantum entanglement is one of the key feature in quantum mechanics. The mathematical

definition of a quantum entangled state is as follows: Consider a system represented by the state |ψ⟩

and let the system consists of two sub-systems represented by states |ψ1⟩ and |ψ2⟩. The state |ψ⟩ is

said to be entangled if it cannot be written as a direct product of the states of sub-systems, i.e.

|ψ⟩ ̸= |ψ1⟩|ψ2⟩ (1.26)

Then we say that there is entanglement between the two sub-systems. As an example, consider

two photons labelled 1 and 2. Classically, the two photons can be in any one of the four possible

polarization states |H⟩1|H⟩2, |H⟩1|V ⟩2, |V ⟩1|H⟩2 and |V ⟩1|V ⟩2. However in quantum mechanics, the

superposition principle provides the possibility of constructing the state

|ψ⟩= α|H⟩1|H⟩2 +β |H⟩1|V ⟩2 + γ|V ⟩1|H⟩2 +δ |V ⟩1|V ⟩2 (1.27)

which is entangled in polarization. Here, the polarization state of either photon cannot be separated

from the other, even if the two photons are physically separated. Any measurement carried out on

one photon will modify the whole state as well as the state of the other photon. So the information
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about the polarization is distributed between the two photons. The four possible states with maximum

entanglement are called Bell states. They are

|ψ+⟩= 1√
2
(|H⟩1|V ⟩2 + |V ⟩1|H⟩2), (1.28)

|ψ−⟩= 1√
2
(|H⟩1|V ⟩2 −|V ⟩1|H⟩2), (1.29)

|φ−⟩= 1√
2
(|H⟩1|H⟩2 −|V ⟩1|V ⟩2), (1.30)

|φ−⟩= 1√
2
(|H⟩1|H⟩2 −|V ⟩1|V ⟩2). (1.31)

1.5 Concept of Modes in Optics

The concept of modes is well-known in the field of optics. Basically, modes are orthogonal solutions

of the wave equation that represent the propagation of light. Since they are orthogonal, they do not

interfere. Number of photons in a particular mode determines the transfer of energy or information.

The transverse characteristics of a mode are determined by boundary conditions and the longitudinal

characteristics are determined by the coherence length. Some of the properties of modes are [20]:

• Since all the modes are orthogonal to one another, they do not interfere.

• Only photons having same mode interfere and therefore they are said to be coherent.

• The quality of the light source is characterized by the number of photons N, in a single mode

considered. For a laser source, N >> 1 and for a thermal source, N << 1.

• Although the shape of modes may change after light propagates through or interacts with some

passive optical elements (such as lens, mirror, prism etc.), the number of photons per mode

does not change.

There are basically two types of modes. One category contains the spatial modes that are transverse

to the direction of propagation, which determines the transverse characteristics of light. The other

is called temporal modes which are along the direction of propagation and defines the spectral

characteristics of light. The superposition of two spatial modes can give new modes. For example,
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superposition of two Laguerre-Guassian (LG) modes [21] of azimuthal indices +1 and -1 gives a first

order Hermite-Gaussian (HG) mode, and vice versa. The transformation of corresponding normalized

modes is given as

(1.32)

Different spatial modes show different properties of light that are utilized for various applications.

For example, the joint spatial modes of two photons generated in spontaneous parametric down

conversion is used to determine the orbital angular momentum (OAM) correlations and thus the OAM

entanglement between them.

1.6 Objective of the Thesis

Photons have been used for realizing different protocols in quantum information. Developing a

versatile source of single photons with lesser technical challenges is always desirable for the ease of

applications. Spontaneous parametric down conversion is one of the well-known methods used to
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generate ’heralded’ single photons by defining the quantum correlations between the twin photons

generated. Our main objective is to generate and characterize the single photons produced in SPDC.

First, we study the spatial characteristics of individual SPDC photons (without heralding) and compare

the spatial distribution of SPDC for different pump modes. The stability of the quantum source of light

generated by SPDC depends mainly on pump characteristics and the non-linear crystal dimensions.

We generate heralded single photons and study how pump and crystal affect the heralding efficiency.

We also generate heralded twisted single photons with different pump modes carrying orbital angular

momentum (OAM) and compare them to see which pump could be used to give better heralding

efficiency. All the above studies help us in determining the optimum experimental configuration for

the efficient generation of heralded single photons. Finally, we study the OAM correlations present in

SPDC biphoton modes. We experimentally demonstrate tuning of OAM biphoton states in multiple

OAM eigenbases by controlling the OAM spectrum of the pump profile in the pump superposition.

1.7 Overview of the Thesis

The thesis is presented in six chapters. Chapter 1 gives a brief introduction on the classical and

quantum nature of light along with the discussion on different properties of light such as interference,

diffraction and polarization. A small description about the classification of light sources based on

their photon statistics is given, as well as a brief description on quantum sources of light. The spatial

modes of light are also explained. Chapter 2 provides the detailed theory of spontaneous parametric

down conversion (SPDC) of light. The process is compared in both classical and quantum mechanical

picture. A well used semi-classical theory is discussed with a brief derivation of joint spectral modes

of SPDC. The phase-matching conditions for SPDC are explained along with the dispersion relations

for refractive indices. A brief description of the non-classical effects in SPDC is also provided in

Chapter 2. Chapter 3 deals with the spatial characteristics of SPDC photons with different pump

modes. In this chapter, the angular spectrum of SPDC with different pump modes starting from

Gaussian beams to light beams carrying orbital angular momentum (OAM) is explained. Also, the

effects of pump and crystal parameters on the angular spectrum are discussed. In Chapter 4, the
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Fig. 1.3 Flowchart showing the distribution of thesis.

generation of heralded single photons from SPDC light source is discussed and the effect of pump

focusing on the coupling efficiency is studied. The chapter also gives a comparative study of the

heralding efficiency of the single photons carrying OAM generated using different pump modes. In

Chapter 5, the correlations between SPDC signal and idler in OAM degree of freedom is discussed.

Using the conventional method of analysing the biphoton OAM modes in SPDC, experimental results

of the controlled generation of biphoton OAM modes in different OAM subspaces are presented.

Conclusions and an outlook on future work are given in Chapter 6. An outline of the thesis is

illustrated using a flowchart given in Fig. 1.3.





Chapter 2

Spontaneous Parametric Down

Conversion of Light

Spontaneous parametric Down Conversion (SPDC) is a non-linear optical process in which a higher

energy photon is converted into two lower energy photons. Historically the photon input to the

medium is called as pump and the generated output photons are called as signal and idler. The process

happens in a non-linear medium under certain conservation laws of energy and momentum. The

process in spontaneous as there are no final states in the initial configuration. The term parametric

refers to the fact that the interaction medium does not add or subtract energy or momentum in the

process. SPDC is one of the easily realizable processes with clear manifestation of the quantum

mechanical behaviour of light.

In the beginning after the first theoretical investigation [22] and experimental observation [23]

of parametric Down Conversion in late 1960s, the process was commonly referred as parametric

fluorescence or parametric scattering. In earlier days, the process of SPDC was used to measure non-

linear optical coefficients of different materials [24]. The advantage of using this method over other

processes like second harmonic generation is that the Down Conversion efficiency is independent of

the pump power and therefore the measurement of absolute power of pump and signal is not required

for the determination of optical non-linearity [25]. As the signal and idler photons are generated



18 Spontaneous Parametric Down Conversion of Light

simultaneously inside a non-linear medium, correlations and entanglement have been defined between

the photons in various degrees of freedom. Due to this, the process has become a versatile source of

entangled photons for utilization as quantum states of light in quantum optics and quantum information.

According to the conservation of energy and momentum in SPDC process, the photon pairs generated

may be entangled in various degrees of freedom. Entanglement of SPDC photon pairs in space [26],

time [27], frequency [28], polarization [29, 30] and orbital angular momentum [31] has been realized

in recent years.

In this chapter, we give a detailed theoretical description of SPDC with the conditions for the

process to occur in a non-linear medium. The conditions that drive parametric Down Conversion

process is mainly the conservation of momentum, which is often known as phase-matching. In most of

the cases, the phase matching is achieved using the birefringence property of the non-linear anisotropic

crystal. In the last part of the chapter, we discuss different methods to observe non-classical effects

between the photons generated in SPDC, and the entanglement in polarization and orbital angular

momentum.

2.1 Non-linear Optics

In general, a light source propagating in free-space does not experience any change in its frequency.

The frequency, which is a fundamental characteristic of light, changes when it passes through certain

media. Such media are referred to non-linear media and the study of light propagation in non-linear

media is termed as non-linear optics. The non-linear optical effects arise due to the polarization or

dipole moment per unit volume induced by the electric field of the light propagating through the

medium. The dielectric polarization induced by the electric field of the propagating wave is generally

written as

P = χ
(1)E1 +χ

(2)E1E2 +χ
(3)E1E2E3 + ... (2.1)

where χ(n) is the nth -order susceptibility of the medium, which is generally an (n+1)th rank tensor.

χ(1) in Eqn. 2.1 describes light propagating in a linear media where the polarization varies linearly
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with electric field of the light. Light propagating through air, glass, water, lens etc. are some examples

that show linear effects of light.

A non-linear medium will have higher order susceptibilities that will result in the change in

the frequency of the light passing through it. Depending on how the input light is interacting in a

non-linear media, new frequency components can be generated by addition or subtraction of frequency

components of the input light waves. In a second order non-linear medium, frequencies can be added,

subtracted and doubled. In a third order non-linear medium, the refractive index of the light in the

medium is dependent on the the intensity of light. This shows third order non-linear effects like

Kerr effect, self focusing, third harmonic generation etc. Here, we are interested in second order

non-linearity. The second order term of polarization is written in tensor notation as

P(NL)
i = ε0 ∑

j,k=1,2,3
χi jkE jEk (2.2)

The above equation is used to derive the electric fields of the output light in a second order process.

2.2 Theory of SPDC: Classical versus Quantum

Treatment

In the classical description of SPDC, all the pump, signal and idler are described as monochromatic

waves and the non-linear part of the polarization induced by respective electric fields is included in

Maxwell’s equations, which is given by

∇
2E− n2

c2
∂ 2E
∂ t2 =

1
ε0c2

∂ 2P(NL)

∂ t2 (2.3)

where c is the speed of light in vacuum and n is the refractive index of non-magnetic media. In the

low-gain regime, the efficiency of parametric Down Conversion is very low. So, the amplitude of

the pump field is assumed to be constant over the interaction. Under this case, the coupled wave

equations for the amplitudes of generated fields Es (signal) and Ei (idler) under slowly varying
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envelope approximation (SVEA) are derived from Eqn. 2.3 as

dEs

dz
=

2iω2
s deff

ksc2 EpE∗
i ei∆kz, (2.4a)

dEi

dz
=

2iω2
i deff

kic2 EpE∗
s ei∆kz. (2.4b)

where ∆k = kp − ks − ki is the phase mismatch. For solving the coupled equations, a perfectly phase-

matched interaction (∆k = 0) is assumed. So the general solution of the differential equations 2.4b

has identical forms for both signal and idler

E j(z) = c1 sinh(ηz)+ c2 cosh(ηz) (2.5)

where

η
2 =

4ω2
j ω2

p

k jkpc4 |Ep|2 (2.6)

with j = s, i, denoting signal and idler respectively. The constants of integration c1 and c2 are

determined from the boundary conditions. As there are no generated fields at the input of SPDC, the

boundary conditions are Es(0) = Ei(0) = 0. Therefore, the final solution is given as

Es(z) = Es(0)cosh(ηz)− iEi(0)∗ sinh(ηz) (2.7a)

Ei(z) = Ei(0)cosh(ηz)− iEs(0)∗ sinh(ηz) (2.7b)

With the boundary conditions of SPDC, there are no output fields generated in the process, according

to Eqn. 2.7b. Although feeble, the down converted photons are created as the amplification of vacuum

fluctuations that cannot be explained using classical theory. So, quantum mechanical theory has to be

manifested for the proper justification of SPDC process. In the case of a parametric Down Conversion

process, as only the pump field is present initially, a complete classical treatment of the interaction

cannot explain the generation of down converted light. Based on the second quantization formalism in

Quantum Field Theory, a zero-point vacuum fluctuation gives rise to the frequencies ω1 & ω2, which
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Fig. 2.1 Four-port model of spontaneous parametric Down Conversion process in a χ(2) medium. The
dashed arrows represent the initial vacuum states that involve in interaction with pump in the medium.

will be amplified by the interaction with the pump field in the non-linear medium. In other words, the

process can be viewed as a four-port model given in Fig. 2.1.

In the quantum mechanical description of parametric Down Conversion, the electric fields given

by Eqn. 2.5 are replaced by its quantum operators as E j(z)→ â j(z) where â j(z) is the annihilation

operator and j = s, i. The annihilation and creation operators must satisfy commutation relations

[âk(z), â
†
l (z)] = δkl (2.8a)

[âk(z), âl(z)] = 0 (2.8b)

where {k, l}= {s, i}. The photon flux density operator, which gives the mean number of photons per

unit area, is given as Î j(z) = â†
j(z)â j(z). The time independent quantum mechanical Hamiltonian of

SPDC has the form

ĤI = h̄χ
(2)(â†

pâsâi + âpâ†
s â†

i ) (2.9)

where the operators âp, âs, âi and â†
p, â

†
s , â

†
i are the annihilation and creation operators for pump, signal

and idler fields respectively. Assuming the pump to be in a coherent state Ep(t) = Ep0e−iωpt , Eqn. 2.9

is modified as

ĤI = h̄χ
(2)(E∗

pâsâi +Epâ†
s â†

i ) (2.10)
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According to Heisenberg picture in quantum mechanics, the signal field is evolved in time as

dâs

dt
=− i

h̄
[âs,ĤI]

=−iχ(2) (âs
(
E∗

pâsâi +Epâ†
s â†

s
)
−
(
E∗

pâsâi +Epâ†
s â†

s
)

âs
)

=−iχ(2)Epâ†
i (2.11)

Similar equation can be derived for idler photon in the same manner

dâi

dt
=−iχ(2)Epâ†

s (2.12)

Equations 2.11 and 2.12 form coupled differential equations identical to that in the classical description.

The solution can be directly written as

âs(t) = âs(0)cosh(χ(2)Ept)− iâ†
i (0)sinh(χ(2)Ept) (2.13a)

âi(t) = âi(0)cosh(χ(2)Ept)− iâ†
s (0)sinh(χ(2)Ept) (2.13b)

Although the above solution looks similar to that with classical approach, the presence of the creation

operators in the second term on the right-had side drives the generation of signal and idler photons

even if the input states are vacuum.

According to classical electrodynamics, the displacement vector D is given by D = ε0E+P where

P is the polarization. Then the classical Hamiltonian for electric field is written as [32]

HEM ∝

∫
E(r, t) ·D(r, t)d3r (2.14)

Considering only the the second-order non-linear part in D, the interaction Hamiltonian for the

process is given by the volume integral

HI ∝

∫
V

χ
(2)Ep(r, t)Es(r, t)Ei(r, t)d3r (2.15)



2.2 Theory of SPDC: Classical versus Quantum Treatment 23

In the multimode perturbative description of SPDC,

H
(SPDC)

I ∝

∫
V

χ
(2)Ê(+)

p (r, t)Ê(−)
s (r, t)Ê(−)

i (r, t)d3r+h.c (2.16)

where p, s & i are labelled as pump, signal and idler fields respectively. The plus and minus signs

in the superscript corresponds to positive and negative frequency parts of the fields respectively.

Although the quantum mechanical Hamiltonian explains some characteristics of the SPDC process,

it cannot give proper description in some other cases, as the down converted fields can be far away

from monochromatic behaviour. Although the sum of signal and idler frequencies gives almost a

single value, each signal or idler photon can have wider bandwidth, and thus it behaves mostly as a

wave-packet. Therefore, for more realistic treatment of the process, we consider a plane wave mode

series expansion of each field and take pump field to be classical

E(+)
p = E(−)∗

p =
∫

dωpα(ωp)exp[i(kp(ωp)z−ωpt)] (2.17)

Ê(+)
s,i = Ê(−)†

s,i = A
∫

dωs,i exp[i(ks,i(ωs,i)z−ωs,it)]âs,i(ωs,i) (2.18)

where α(ωp) is the amplitude spectral function of the pump field. Based on Shrödinger picture in

quantum mechanics, the generated output state of the photons at later time, t, of interaction, is given

by a unitary operator acting on the initial state |Ψ(0)⟩

|Ψ(t)⟩= exp
[
− i

h̄

∫ t

0
dt ′H SPDC

I (t ′)
]
|Ψ(0)⟩ (2.19)

In the case of SPDC, the initial states are vacuum states, |0⟩s|0⟩i. Taking the perturbative expansion

of Eqn. 2.19 and truncating it to first order, we obtain

|Ψ(t)⟩= |0⟩s|0⟩i −
i
h̄

∫ t

0
dt ′H SPDC

I (t ′)|0⟩s|0⟩i (2.20)

The first term in Eqn. 2.20 describes the generation of vacuum state. The photon pair emission is

described in the second term. The neglected higher order terms in the expansion corresponds to the
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emission of more than two photons and their probability is too small if the input pump is not so

intense. Using equations 2.16, 2.17, 2.18, 2.20 and performing a z-integral, we get

∫ t

0
dt ′H SPDC

I (t ′) = B
∫ t

0
dt ′
∫ ∫ ∫

dωpdωsdωiα(ωp)e−i∆ωt ′Lsinc
(

∆kL
2

)
â†

s (ωs)â
†
i (ωi)+h.c

(2.21)

where ∆ω = ωp −ωs −ωi is the frequency mismatch derived from the energy conservation. The

∆k = kp − ks − ki is the wave-vector mismatch obtained from momentum conservation. All the

constants outside the time integral are absorbed in the constant, B. The time integration in Eqn. 2.21

can be performed by extending the limits from −∞ to ∞, as we can consider the state of PDC long

before and after the crystal. The time integral will result in a delta function 2πδ (∆ω). Integrating

over ωp and simplifying Eqn. 2.21, we obtain the final state of SPDC as

|Ψ⟩SPDC = |0⟩s|0⟩i +B′
∫ ∫

dωsdωiφ(ωs,ωi)â†
s (ωs)â

†
i (ωi)|0⟩s|0⟩i (2.22)

where

φ(ωs,ωi) = α(ωs +ωi)sinc
(

∆k(ωs,ωi)L
2

)
(2.23)

is the joint spectral amplitude (JSA) of SPDC photon pairs. The new scaling factor B′ outside the

integral in Eqn. 2.22 is proportional to the product of the amplitude of the pump field Ep and the

crystal length L.

2.3 Phase-Matching in Parametric Down Conversion

A degenerate SPDC process can be apparently considered as the inverse of second harmonic generation.

For the SPDC to occur, the energy conservation must satisfy

ωp = ωs +ωi (2.24)

where ωp, ωs & ωi are the angular frequencies of pump, signal & idler fields respectively. This is not

the only condition for SPDC to occur. The down converted photons generated at one location inside
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the non-linear medium may interfere destructively with photons generated in other locations inside

the medium so that no effective Down Conversion happens. Therefore, for the process to occur, the

photons generated at different locations in the medium have to be phase matched, which is expressed

as

kp = ks +ki (2.25)

where kj are the wave-vectors of the interacting waves with frequencies ωj (j = p,s, i). The magnitude

of the wave-vectors is given by

kj = |kj|=
ωjnj(ωj)

c
(2.26)

where nj(ωj) are the refractive indices of the interacting waves and c is the speed of light in vacuum.

Considering ωi ≤ ωs ≤ ωp, the effect of normal dispersion gives ni ≤ ns ≤ np. Substituting Eqn. 2.26

in Eqn. 2.25 and simplifying, we obtain

ωpnp(ωp) = ωsns(ωs)+ωini(ωi) (2.27)

Combining equations 2.25 and 2.27 we can write the following expression

(np −ns)ωp = (ni −ns)ωi (2.28)

where nj ≡ nj(ωj),(j = p,s, i). For normal dispersion, the inequalities (np −ns)> 0 and (ni −ns)< 0

must be satisfied. This cannot be achieved in normal dispersive materials. However, the phase-

condition given in Eqn.2.27 can be realized in materials showing anomalous dispersion where the

refractive index decreases with increasing frequency. Using the birefringence present in anisotropic

crystals, one can achieve perfect phase-matching. Birefringence (or double refraction) is the property

of a material which has a refractive index dependent on the polarization as well as the propagation

direction of light. There are two refracted light beams in a birefringent material with refractive indices

n(o) and n(e) corresponding to ordinary (o) and extra-ordinary (e) polarizations of light, respectively.

The refractive index in anisotropic crystals is generally defined as a tensor having three different

principal components nj,(j = 1,2,3), each along three axes X ,Y,Z respectively [33]. For biaxial
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crystals, n1 ̸= n2 ̸= n3. For uniaxial crystals, n1 = n2 = no corresponding of ordinary light and

Fig. 2.2 (a) Index ellipsoid, the graphical representation of refractive indices along different directions,
in a uniaxial crystal. (b) Due to rotational symmetry of the ellipsoid, the circular portion of the
ellipsoid in the XZ-plane intersect the shaded ellipse at two points, defining the value of no. (c) The
value of ne(θ) is defined by the semi-axis of the index ellipse lying in the principal plane (plane
containing wave-vector k and optic axis) of the crystal.

ne = n3 ̸= no corresponding to extra-ordinary light. For positive uniaxial crytal, ne > no and for

negative uniaxial crystal, ne < no. The difference between ordinary and extra-ordinary refractive

indices gives the amount of birefringence in the crystal.

In uniaxial crystals, principal plane is defined as the plane containing the wave-vector k and

optic axis of the crystal. An ordinary light is polarized perpendicular to the principal plane and an

extra-ordinary light is polarized in the principal plane. The ordinary refractive index is independent

of the direction of propagation of light, whereas the extra-ordinary refractive index depends on the

direction, i.e. ne = ne(θ). where θ is the angle of the wave-vector with respect to the optic axis. The

values of ordinary and extra-ordinary refractive indices in crystal coordinate space are graphically

represented as an index ellipsoid, as shown in Fig. 2.2 for a uniaxial crystal. Due to the rotational

symmetry of the ellipsoid around the optic axis (Y -direction in Fig. 2.2(a)), the radius of the circle

cut out from the portion of ellipsoid in XZ-plane defines the value of no, shown in Fig. 2.2(b). The

semi-major and semi-minor axes of the ellipse shaded in blue (Fig. 2.2(a) cut out from ellipsoid,

perpendicular to the wave-vector, gives the values of ne(θ) and no respectively. The values of ne(θ)
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for different θ can be obtained by considering the index ellipse along the principal plane (plane

containing wave-vector k and optic axis) of the crystal shown in Fig. 2.2(c), with the ellipse equation

1
ne(θ)2 =

sin2
θ

n2
e

+
cos2 θ

n2
o

(2.29)

To achieve phase-matching condition in uniaxial crystals, the pump has to be polarized in the plane

having the lowest among the two refractive indices and atleast one among the down converted photons

must be orthogonally polarized to the pump. In this regard, there can be two types of phase-matching

in uniaxial crytals - Type-I and Type-II. In Type-I phase matching, both signal and idler have same

polarization whereas they are orthogonally polarized in Type-II phase-matching. Table 2.1 gives

different types of SPDC phase-matching schemes for positive and negative uniaxial crystals.

Type Positive uniaxial Negative uniaxial
(ne > no) (ne < no)

Type-I n(p)
o ωp = n(s)

e ωs +n(i)
e ωi n(p)

e ωp = n(s)
o ωs +n(i)

o ωi
Type-II n(p)

o ωp = n(s)
o ωs +n(i)

e ωi n(p)
e ωp = n(s)

e ωs +n(i)
o ωi

Table 2.1 Phase-matching conditions for different types of uniaxial crystals. The labels o and e denotes
ordinary and extra-ordinary polarizations, respectively.

Practically, the values of no and ne are calculated from Sellmeier equations, given by

n2
o,e(λ ) = Ao,e +

Bo,e

λ 2 −Co,e
+Do,eλ

2 (2.30)

where λ is the wavelength of light in µm. The coefficients A,B,C & D are determined from spectro-

metric measurements using the crystal and are given in literature [34]

Consider the case of a degenerate SPDC where a pump of frequency ωp is down converted to two

signal and idler, each having frequency ωp/2 (ωs = ωi =
ωp
2 ). Substituting these in Eqn. 2.26 and

using it in Eqn.2.25, we get the phase-matching condition as

n(ωp) = n(
ωp

2
) (2.31)
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In most of the birefringent crystals, angle tuning is the commonly used method to match the

refractive indices of the interacting waves. In some crystals like lithium niobate, the birefringence is

Fig. 2.3 Plot of refractive index of o-wave and e-wave with wavelength for different phase-matching
angles, based on the Sellmier equations. At the perfect phase-matching angle, θpm = 29.3o, the
ne(λp = 405nm) matches with no(2λp = 810nm) with an approximate value of 1.66. The dashed
plots are the index curves for other angles.

strongly dependent on temperature of the crystal and therefore a temperature tuning is done to achieve

phase-matching. The birefringent crystals used in our lab are β -Barium Borate (BBO) and Bismuth

Barium Borate (BiBO) fabricated for a degenerate SPDC of a pump photon of wavelength 405 nm to

two 810 nm photons. The Sellmier equations for BBO crystal are

no(λ ) =

√
2.7359+

0.01878
λ 2 −0.01822

+0.01354λ 2 (2.32)

ne(λ ) =

√
2.3753+

0.01224
λ 2 −0.01667

+0.01516λ 2 (2.33)

ne(λ ,θ) = no(λ )

√√√√ 1+ tan2 θ

1+
(

no(λ )
ne(λ )

tanθ

)2 (2.34)
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Here, λ is in µm. BBO is a negative uniaxial crystal. The phase-matching can be achieved by

calculating the phase-matching angle of the crystal, θpm, for which ne(ωp,θpm) = no(ωp/2)

2.4 Non-Classical Effects in Parametric Down Conversion

Suppose, one of the SPDC pair photons is separated and detected using an avalanche photo-diode

(APD), it will confirm the presence of the other photon, known as heralding. So, SPDC acts as a

source of single photons, called as heralded single photon source, with each photon from the pair

being detected simultaneously at two different APDs. Taking an ensemble of photon pairs, study of the

photon statistics shows that the photon pair source generated in SPDC is indeed a non-classical source

[35]. However, to prove the true quantum nature of the source, one has to prove the simultaneity

of the generation of signal and idler in a generated SPDC pair. This can be proved by recombining

the signal and idler photon at a 50:50 beam splitter and show the bunching of the photons. A beam

splitter is a useful tool in quantum optics, as it helps in observing interference effects between weakly

interacting fields. So, they can be used to illustrate the bosonic nature of single photons. Consider a

beam splitter, shown in Fig. 2.4, having reflection and transmission coefficients, R and T respectively.

The output modes can be written in terms of input modes as

Fig. 2.4 Four port model illustrating the input and output modes of a beam splitter.
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â3 = Râ1 +T â2 (2.35a)

â4 = T â1 −Râ2 (2.35b)

The minus sign in second equation is coming from the maintenance of energy conservation at the

beam splitter interface so that R and T are real. Using the energy conservation relation R2 +T 2 = 1,

the creation operators for input modes in terms of that of the output modes can be written as

â†
1 = Râ†

3 +T â†
4 (2.36a)

â†
2 = T â†

3 −Râ†
4 (2.36b)

For the case of a single photon incident at each input port of a beam splitter, the output state is

|ψ⟩= â†
1â†

2|0⟩

= (Râ†
3 +T â†

4)(T â†
3 −Râ†

4)|0⟩

= (RT â†
3â†

3 +T 2â†
4â†

3 −R2â†
3â†

4 −T Râ†
4â†

4)|0⟩ (2.37)

For a 50:50 beam splitter, R = T = 1/
√

2 and T 2 −R2 = 0. Also the operators â†
3 and â†

4 does

commute. So, Eqn. 2.37 is simplified to give

|ψ⟩= 1√
2
(â†

3â†
3 − â†

4â†
4)|0⟩ (2.38)

The four possible output configurations for two photons, one incident on each input port of a 50:50

beam splitter are demonstrated in Fig. 2.5. As mathematically proven, the cases in Fig. 2.5(b) & (c)

cancel out, for the quantum interference to happen. That is, if the two photons are in the same mode

they both ‘stick’ together and travel either in transmitted or reflected output (Fig. 2.5 (a) & (d))

Hong et.al [27] proved the quantum nature of SPDC with their famous HOM interference

experiment. In this experiment, the signal and idler in a pair are recombined at a 50:50 beam splitter

with a very small delay in one with respect to the other. For zero delay, the coincidence became
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Fig. 2.5 The four possible configurations of output of two photons, one incident on each input port of
a 50:50 beam splitter.

zero and for all other non-zero delays, there was a non-zero coincidence, which showed the quantum

interference of two photons at a beam splitter.

2.5 Preparing Entangled States in Parametric Down

Conversion

2.5.1 Polarization Entanglement

When a Type-I phase-matched crystal is pumped with a vertically polarized light, the signal and

idler will have horizontal polarization. So, the joint state of SPDC photons in polarization degree of

freedom is written as

|ψ⟩SPDC = |H⟩s|H⟩i (2.39)

and for a horizontally polarized pump, the state becomes

|ψ⟩SPDC = |V ⟩s|V ⟩i (2.40)

In the beginning, polarization entanglement with SPDC photons was realized using a single Type-I

crystal source [1, 36]. A schematic diagram of the experiment is given in Fig. 2.6. Initially, the signal
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Fig. 2.6 Experimental scheme given in [1] for the generation of polarization entangled photons from
SPDC using a single Type-I crystal. Here HWP - Half-wave plate.

and idler are horizontally polarized. The polarization of one photon among the pair is changed to

vertical by using a half-wave plate at 45o in that photon arm. The photons from both arms are brought

together to interfere at a 50:50 beam splitter. The joint polarization state at two output modes of the

BS is given by

|ψ⟩SPDC =
1√
2
(i|H⟩a + |H⟩b)⊗ (|V ⟩a − i|V ⟩b)

=
i√
2
(|H⟩a|V ⟩a −|H⟩b|V ⟩b)+

1√
2
(|H⟩a|V ⟩b + |H⟩b|V ⟩a) (2.41)

The state given in Eqn. 2.41 is not a polarization entangled state. However, if we consider the photon

pairs that are detected simultaneously at the two output ports of the BS, the final state becomes

|ψ⟩= 1√
2
(|H⟩a|V ⟩b + |H⟩b|V ⟩a) (2.42)
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Fig. 2.7 SPDC ring distribution for two Type-I crystals stacked together. The H-polarized ring from
one crystal gets overlapped to the V-polarized ring from the second crystal to give a ring distribution
indistinguishable in polarization.

which is a polarization entangled state. Even though this method gives polarization entanglement,

half of the signal and idler photons cannot be utilized for the entanglement, which made the scheme

less popular.

Fig. 2.8 SPDC ring distribution of Type-II crystal for (a) signal and idler separated (b) collinear and
(c) non-collinear geometry.

If two Type-I crystals are stacked together with their optic axes orthogonal to each other and

pumped with a diagonal (or anti-diagonal) polarization, the first crystal will down convert horizonatally

polarized part in the pump and the other crystal will down convert the vertically polarized part of

the pump. So, the SPDC annular distribution from both the crystals overlap each other such that one

cannot distinguish from which crystal the photon is generated, and information about polarization of
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the photons cannot be obtained without projective measurements. The geometry of the SPDC ring for

two stacked crystals is shown in Fig. 2.7. The joint polarization entangled state of SPDC with two

crystals is written as

|ψ⟩SPDC = c1|H⟩s|H⟩i + c2|V ⟩s|V ⟩i (2.43)

where H and V represent horizontal and vertical polarization respectively. If c1 = c2 = 1/
√

2, then

the state is maximally entangled. This method of generating entangled states was first demonstrated

by Kwiat et.al. [37].

In Type-II crystals, where the signal and idler having orthogonal polarizations, their annular

distributions do not overlap one another at every point on the distribution. However, by tuning the

angle of the pump with respect to the optic axes of the crystal, we can overlap signal and idler at

two points on the annular ring as shown in Fig. 2.8. In collinear configuration, the two annular rings

touch each other at a single point (Fig. 2.8(b)). In non-collinear configuration, the photons from a pair

are situated at the two overlapping points, where the individual polarization cannot be defined (Fig.

2.8(c)). Thus the joint polarization state of signal and idler chosen from these points is given by

|ψ⟩SPDC = c1|H⟩s|V ⟩i + c2|V ⟩s|H⟩i. (2.44)

Again, for c1 = c2 = 1/
√

2, the above state will become maximally entangled. Polarization entangle-

ment using Type-II crystal source was first discussed in [38].

2.5.2 Orbital Angular Momentum Entanglement

In SPDC process, relatively very less number of photon pairs are generated from a non-linear crystal

due to very low non-linear coefficient. Also, the process of generation of photon pairs in the crystal is

random. With this reasons, we observe that the individual photons (signal or idler) are incoherent in

nature. Along with the conservation of energy and linear momentum in an SPDC, there is conservation

in orbital angular momentum (OAM) of the interacting photons [39], given as

lp = ls + li (2.45)
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where lp, ls & li are the OAM of pump, signal and idler respectively. The OAM conservation is coming

from the fact that the angular spectrum of the pump gets transferred to the transverse correlation

properties of signal and idler [40]. The OAM state of individual signal or idler photon will be

|ψ⟩s/i =
∞

∑
ls/i=−∞

cls/i |ls/i⟩ (2.46)

which is an incoherent mixture of all OAM states. However, once the signal OAM is determined, the

idler photon from the same pair will have a definite OAM, according to Eqn. 2.45. Thus the joint

OAM state of signal and idler is

|ψ⟩SPDC =
∞

∑
ls=−∞

cls,lp−ls |ls⟩|lp − ls⟩ (2.47)

where cls,lp−ls is the probability amplitude of the state |ls⟩|lp − ls⟩. For example, when a pump beam

carrying no OAM (lp = 0) is considered, the above state becomes

|ψ⟩SPDC = c0,0|0⟩|0⟩

+ c1,−1|1⟩|−1⟩+ c−1,1|−1⟩|1⟩

+ c2,−2|2⟩|−2⟩+ c−2,2|−2⟩|2⟩. (2.48)

From the above state, using proper projection techniques in OAM, a biphoton state entangled in

OAM can be prepared if cl,−l = c−l,l = c for a given l. The entangled state prepared is given by

|ψ⟩= c(|l⟩|− l⟩+ |− l⟩|l⟩), (2.49)

which can be normalized to get a Bell state. OAM entanglement in SPDC biphoton modes was first

verified experimentally by Mair et.al. [31]. The analysis of OAM biphoton state in SPDC and the

projection techniques are discussed further in Chapter 5.





Chapter 3

Spatial Characterization of SPDC

Photons

To utilize SPDC for generating different quantum states, it is important to study the spatial profile of

down converted photons and how the pump and crystal parameters affect the transverse amplitude

and phase of heralded single photons. The spatial distribution of SPDC signal (or idler) photons

in momentum space is termed as SPDC angular spectrum. The spatial distribution of signal in

momentum space when the idler is heralded or projected into a particular mode is called as the

conditional angular spectrum (CAS) of signal. Monken et. al. [40] theoretically and experimentally

showed that the biphoton state generated in SPDC contains information about the pump. It has been

experimentally verified that the amplitude as well as the phase of the pump gets transferred to the

SPDC ‘heralded’ single photon [41]. Further, the classical non-separable state has been transferred to

joint states of SPDC photon pair [42].

Although the signal photon and corresponding idler photon are correlated to each other in space,

in general, there are no signal-signal or idler-idler correlations. In other words, the generated signal or

idler is incoherent. In this chapter, we study the angular spectrum of SPDC with different structured

pump beams. First we study the angular spectrum of SPDC with Gaussian pump and the effects of

pump focusing and crystal parameters on it. We show that the inherent asymmetry of SPDC ring
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distribution due to pump focusing can be reduced by replacing the spherical lens with a cylindrical

one and orienting lateral axis of the lens along the optic axis of the crystal. Further, we study the

angular spectrum of SPDC with different structured light beams such as optical vortex beams, dark

hollow beams, Bessel-Gaussian beams and perfect optical vortex beams. Even though the partial

signature of pump is observed in the total angular spectrum of SPDC [43], it does not give a conclusive

information about the pump mode. However, we numerically and experimentally show that the signal

or idler photon mimics the amplitude distribution of the pump mode, when the individual SPDC

photons are filtered from the total distribution and imaged. Phase measurements confirm that the

observed distribution does not follow the transverse phase of the pump.

3.1 Joint Spatial Mode Function of SPDC Biphotons

In general, output of a parametric down conversion process is represented by a joint biphoton mode

function. A biphoton mode function of momentum and frequency is derived from the quantum state of

down converted output [44]. The mode function gives the information about the process such as pump

beam characteristics and crystal phase matching conditions. Using the mode function, we can quantify

spatial and spatio-temporal correlations among the down converted modes without actually doing the

state tomography [44]. The mode function has a one-to-one correspondence with the coincidence

counts that we measure in experiment.

In the perturbative treatment of spontaneous parametric down conversion process, interaction of

pump (p), signal (s) and idler (i) modes in a medium (non-linear χ(2) crystal) is represented by an

interaction Hamiltonian, HI . The initial state is a vacuum state |0⟩s|0⟩i, therefore the output state of

SPDC is approximated as

|Φ⟩ ≈
(

1− i
h̄

∫
τ

0
HI(t)dt

)
|0⟩s|0⟩i (3.1)

The biphoton mode function of the generated twin photons in transverse momentum coordinates

(k) is obtained as

Φ(k⊥) = ⟨k⊥
s |⟨−k⊥

i |Φ⟩ (3.2)
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where k⊥
s and −k⊥

i represent the transverse position in the momentum coordinates for signal and idler

respectively. On simplification, the biphoton mode function in transverse momentum coordinates is

given by

Φ(k⊥
s ,k

⊥
i ,∆k) = Ep(k⊥

p )Lsinc
(

∆kL
2

)
exp
(

i
∆kL

2

)
(3.3)

where Ep(k⊥
p ) represents the pump transverse amplitude distribution, k⊥

p (= k⊥
s +k⊥

i ) is the angular

coordinate of the pump, ∆k(= kpz−ksz−kiz) is the longitudinal phase mismatch, and L is the thickness

of the crystal. The exponential factor in Eqn. 3.3 is a global phase term.

Consider a degenerate (2ωs = 2ωi = ωp = ω) Type-I SPDC using a β -Barium Borate (BBO)

crystal of thickness L, with e → o+ o phase-matching. Here, ωx (x = p,s, i) are the frequencies

of pump, signal and idler modes respectively. The signal (s) and idler (i) photons have ordinary

polarization and the magnitude of the longitudinal wave-vector is given by their dispersion relation

[45]

kz
s,i(k

⊥
s,i) =

√
k2

o −|k⊥
s,i|2 (3.4)

Here ko =
noω

2c and no ≡ no(ω/2) is the ordinary refractive index of signal/idler and c is the speed to

light in vacuum. The extra-ordinary refractive index of the pump leads to the dispersion relation [45]

kz
p(k

⊥
s ,k

⊥
i ) =−β (ky

s + ky
i )sinθ + keff

√
1−

(
(kx

s + kx
i )

2 +(ky
s + ky

i )
2
)

c2

ω2
p

η (3.5)

η =
1

ε⊥+∆ε cos2 θ
(3.6)

neff =
√

ε⊥ε∥η (3.7)

β = η∆ε cosθ (3.8)

where ∆ε = ε∥− ε⊥ is the difference between the parallel (ε∥) and perpendicular (ε⊥) components of

permittivity coefficients with respect to the optic axis of the crystal. ε⊥ and ε∥ are related to ordinary

and extra-ordinary refractive indices of the pump respectively as ε⊥ = n2
o(λp) and ε∥ = n2

e(λp),

obtained from Sellmeier equations (Egn. 2.32 & 2.33) with wavelength of pump λp = 405nm.
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keff =
ωneff

c is the magnitude of the wave-vector of extra-ordinary pump wave. θ is the angle of pump

propagation direction with respect to the optic axis defined by the vector, a = (0,sinθ ,cosθ). θ is

also called as the cut angle of the crystal. The term β describes the walk-off effect, the deviation

of Poynting vector from the pump direction [46], which is one of the reasons for the asymmetry in

SPDC annular distribution. The term η explains astigmatic effects [47]. The phase mismatch is then

given by

∆k(k⊥
s ,k

⊥
i ) = kz

p(k
⊥
s ,k

⊥
i )− kz

s(k
⊥
s )− kz

i (k
⊥
i ) (3.9)

To find an approximate expression for ∆k, we expand the right-had side of Eqn. 3.9 in Taylor series

and truncate to first order. On simplification, the phase mismatch is rewritten as

∆k(k⊥
s ,k

⊥
i )≈ keff −2ko −

ksxkix + ksykiy

ko
−β sinθ(ksy + kiy) (3.10)

3.2 Angular Spectrum of SPDC

The generated signal and idler photons in SPDC propagate in space according to the phase matching

condition given in Eqn. 2.26. The locus of all points in space that satisfies phase-matching condition

comes out to be an annular ring distribution where the signal and idler photons in a pair are present.

The angular spectrum of the down converted signal photons for frequency, ωs, is obtained by tracing

the biphoton mode function over all idler photons [45]

Rs(k⊥
s ) =

∫
dk⊥

i |Φ(k⊥
s ,k

⊥
i ,∆k)|2. (3.11)

The above equation is used to calculate angular spectrum for Type I SPDC in β -Barium Borate

(BBO) crystal (cut angle 29.97◦) for pump wavelength 405 nm and plotted in momentum space. The

observed spectrum is ring-shaped as expected. It is already observed that ring width of the spectrum

depends on input pump beam radius, cut angle and thickness of the crystal [48, 45]. It has been also

studied in Ref. [45] that a small pump beam can generate asymmetry in spectrum. Therefore the

pump beam radius is kept as large as possible, which is around 700µm, to avoid this asymmetry.
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The basic experimental setup to record the angular spectrum of SPDC with different pump beams

is shown in Fig. 3.1. A pump beam of wavelength (405±2)nm from a continuous-wave diode laser

(TOPTICA iBeam Smart) of 50mW power, is incident on a χ(2) crystal. The dashed box corresponds

to the case-by-case method to prepare pump beams of different spatial characteristics, which are given

in the sections below. A half-wave plate (HWP) is used to orient the pump polarization along the

optic axis of the crystal. We use Type-I β -Barium Borate (BBO) crystals to generate SPDC. The

Pump 
preparation

EMCCD
TOPTICA
405 nm

BPF
L𝜒(2)

crystal

HWP

𝑓 𝑓

Fig. 3.1 Experimental setup to record the angular spectrum of SPDC photons generated by pumping a
non-linear crystal with different pump beams.Figures in inset are the images of a Gaussian pump and
the corresponding SPDC annular distribution in the angular spectrum.

down converted photons (signal & idler) of wavelength 810 nm each (degenerate) are generated in a

non-collinear fashion at diametrically opposite points of the SPDC ring. A bandpass filter (BPF) of

central wavelength 810±5 nm is used to filter down converted photons and block the unconverted

pump beam after the crystal. A 2 f -imaging configuration with a plano-convex lens (L) of focal length

50mm is used to image the SPDC in k-space. The angular spectrum of SPDC is recorded using an

EMCCD camera with a gain x100 and the addition of 100 frames each having exposure time of 0.5 s.

The EMCCD camera has an imaging area of 512×512 pixels with a pixel size of 16 µm. The angular

spectrum of SPDC shown in figures throughout the chapter are recorded using 2 f -imaging with a

plano-convex lens (L) of focal length 50 mm.



42 Spatial Characterization of SPDC Photons

3.2.1 Angular Spectrum with Gaussian pump

Most of the commercial lasers used in optics laboratory give an output field amplitude as a fundamental

T EM00 mode. A typical field amplitude of a Gaussian beam is given as [49]

Ep(x,y,z) = E0
w0

w(z)
exp[− r2

w2(z)
]exp[−i

kr2

2R(z)
]exp(−i[kz−φ(z)]) (3.12)

where w(z) is the radius of the beam at a distance z from the waist position having radius w0. k is

the wave number, R(z) is the radius of curvature of the wave-front and φ(z) is the z-dependent Gouy

phase. The parameters w0, w(z), R(z) and φ(z) are related to the Rayleigh range zR as

w(z) = w0

√
1+(

z
zR
)2, (3.13)

R(z) = z+
z2

R

z
, (3.14)

φ(z) = arctan
(

z
zR

)
. (3.15)

The effect of tuning the angle of pump with respect to the optic axis is shown in Fig. 3.2. Here,

∆θ is the increment/decrement in the angle of pump with respect to optic axis of the crystal.

Fig. 3.2 Angular spectra of SPDC generated by pumping a Type-I BBO crystal of thickness 5mm
with a Gaussian beam and the angle of pump with respect to optic axis.

To study the effect of pump focusing on the angular spectrum, we recorded the AS for different

focusing conditions. Fig. 3.3 shows the numerical and experimental angular spectra of SPDC

generated by pumping a Gaussian beam focused at the crystal using lenses of focal lengths 50, 100,

150, 200, 300, 400, 500 & 750 mm. Focusing of pump using a lens introduces asymmetry in the

SPDC annular ring. Asymmetry is more for a tightly focused pump.
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𝑓 = 50𝑚𝑚 𝑓 = 100𝑚𝑚 𝑓 = 150𝑚𝑚 𝑓 = 200𝑚𝑚

𝑓 = 300𝑚𝑚 𝑓 = 400𝑚𝑚 𝑓 = 500𝑚𝑚 𝑓 = 750𝑚𝑚
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Fig. 3.3 Numerical and experimental angular spectra of SPDC generated by pumping a Type-I BBO
crystal of thickness 2mm with a Gaussian beam focused at the crystal plane.
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We recorded the angular spectrum of Type-I BBO crystals having thicknesses 2 mm, 5 mm and

10 mm (Fig. 3.4) pumped with a Gaussian beam focused at the crystal using a lens of focal length 100

mm (Top row of Fig. 3.4) as well as a collimated beam (Bottom row of Fig. 3.4). The annular ring

width of SPDC decreases as the crystal length increases, as seen from the images. Focusing of the

pump onto a thin crystal increases the ring width as well as asymmetry in the SPDC distribution. This

asymmetry is less in the case of pumping a focused beam onto a thicker crystal.

L=2 mm L=5 mm L=10 mm

Fig. 3.4 Experimental angular spectra of SPDC generated by pumping a Type-I BBO crystal of
thicknesses 2mm, 5mm and 10mm pump with a Gaussian beam focused at the crystal plane using
100mm lens (Top row), and collimated (Bottom row).

We studied the effect of ellipticity of the Gaussian beam on the SPDC angular spectrum. We

generated elliptic Gaussian beams in the pump using cylindrical lenses. The action of a cylindrical lens

makes the circular Gaussian beam elliptical. Figure. 3.5 & 3.6 show the numerical and experimental

images of pump and SPDC for the case of pumping a Type-I BBO of 2mm thickness with elliptical

Gaussian beams generated using 50mm and 200mm cylindrical lenses, respectively. Figure. 3.7

& 3.8 show the numerical and experimental images of pump and SPDC for the case of pumping a

Type-I BBO of 5 mm thickness with elliptical Gaussian beams generated using 50 mm and 200 mm

cylindrical lenses, respectively.
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Fig. 3.5 Numerical and experimental angular spectra of SPDC generated by pumping a Type-I BBO
crystal of thickness 2 mm with a Gaussian beam focused at the crystal plane using 50 mm cylindrical
lens.

Fig. 3.6 Numerical and experimental angular spectra of SPDC generated by pumping a Type-I BBO
crystal of thickness 2 mm with a Gaussian beam focused at the crystal plane using 200 mm cylindrical
lens.
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Fig. 3.7 Numerical and experimental angular spectra of SPDC generated by pumping a Type-I BBO
crystal of thickness 5 mm with a Gaussian beam focused at the crystal plane using 50 mm cylindrical
lens.

Fig. 3.8 Numerical and experimental angular spectra of SPDC generated by pumping a Type-I BBO
crystal of thickness 5 mm with a Gaussian beam focused at the crystal plane using 200 mm cylindrical
lens.
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3.2.2 Angular Spectrum with optical vortex pump

Optical vortex, a light beam having doughnut-like transverse intensity distribution, is a class of

structured light beams carrying orbital angular momentum. Unlike a Gaussian beam having uniform

Fig. 3.9 Experimental setup to generate optical vortex from Gaussian beam using spiral phase plate.

phase distribution, the transverse phase of a vortex beam varies azimuthally from zero to maximum in

steps of 2πl, which gives an orbital angular momentum lh̄ per photon to the beam. A typical electric

field distribution of an optical vortex can be written as [50]

Ep(x,y) =
(

x+ iy
wg

)l

exp

(
−x2 + y2

w2
g

)

=

(
r

wg

)l

︸ ︷︷ ︸
‘size effect’

exp(ilθ)︸ ︷︷ ︸
azimuthal phase

exp

(
− r2

w2
g

)
︸ ︷︷ ︸
Gaussian envelope

(3.16)

where r =
√

x2 + y2 and θ = tan−1(y/x).

As shown in Fig. 3.9, we experimentally generated optical vortex beam of order l by passing a

Gaussian beam through a spiral phase plate (vortex lens) of order l. The generated optical vortex is

pumped to Type-I BBO crystal of thickness 5mm. Figure 3.10 shows the numerical and experimental

images of pump and SPDC AS for orders 0, 1, 2 & 3. As the order of the vortex increases, the
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Fig. 3.10 Numerical and experimental images of pump and angular spectra of SPDC photons generated
by pumping optical vortex beam of azhimuthal order l to a Type-I BBO crystal of thickness 2mm.

radius of the doughnut distribution increases. For a normal optical vortex pump, the SPDC annular

distribution will look like a double ring and the distance between two peaks increases with the order

of the pump vortex. The asymmetry in the SPDC distribution is due to the larger spatial walk-off

within the thick crystal used.

3.2.3 Angular Spectrum with Bessel-Gaussian pump

Most of the light beams used in laboratory show diffraction effects during their propagation in

free-space, which is undesirable for most of the cases. It was predicted earlier that there exist some

non-diffracting solutions to paraxial-wave equation [51]. Bessel beams are a class of such beams that

exhibit non-diffracting nature [52] as well as self-healing property [53], when propagated in space.

The field distribution of a Bessel beam is written as
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Fig. 3.11 Intensity and transverse phase distribution of Bessel-Gaussian modes of orders 0,1,2 & 3.

Fig. 3.12 Experimental setup to generate Bessel-Gaussian beam of different orders using spiral phase
plate (SPP) and an axicon lens.

E(r,φ ,z) = Jl(krr)exp(ikzz)exp(ilφ) (3.17)

where Jl is the lth order Bessel function of first kind. kr and kz are the radial and longitudinal wave-

vectors respectively, with k =
√

k2
r + k2

z . Bessel beams of non-zero l-values have orbital angular

momentum lh̄ due to the presence of azimuthal phase term in Eqn. 3.17. Ideally, a Bessel beam will

have infinite rings in the spatial profile, which cannot be realized in practice. In most of the practical

cases, Bessel beams are generated on Gaussian envelope, which are called as Bessel-Gaussian (BG)
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Fig. 3.13 Effect of angle of pump beam with respect to the optic axis, on SPDC angular spectrum.
The pump is a zeroth order Bessel-Guassian beam.

Fig. 3.14 Angular spectrum of SPDC of Bessel-Gaussian pump with the lateral shift of axicon with
respect to the beam axis of the pump.

beams [54]. The field expression for a BG beam can be written as

E(r,φ ,z) = Jl(krr)exp

(
− r2

w2
g

)
exp(ilφ) (3.18)

Figure 3.11 shows the intensity and transverse phase distribution of BG beams of orders 0, 1, 2 & 3.

The generated BG beams are generally truncated to a certain spatial extent. Truncated Bessel beams

are experimentally generated by passing a Gaussian beam through the center of an axicon lens (or

a conical lens). Figure 3.12 depicts the experimental setup to generate BG beams using axicon. A

Gaussian beam is passed through the axicon which creates two wavefronts from two parts of the beam.

The two wavefronts start combining just after the axicon and the intensity at the center of the BG

beam increases when propagated away from the axicon, to maximum. The intensity decreases on

further propagation and distribution becomes an annular ring at larger distances.

The angular spectrum of SPDC with a BG pump will have a broad asymmetric ring distribution

with higher photon densities at the boundaries of the ring. Figure 3.13 shows the effect of tuning

angle of the crystal on the SPDC angular spectrum with a zeroth order BG pump beam. Here ∆θ is

the increment/decrement in the angle of the pump with respect to the optic axis. Next, to study the
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Fig. 3.15 Angular spectrum of SPDC for BG pump with different orders and for axicon having apex
angles 176o and 178o.

effect of lateral shift of axicon lens with respect the beam axis on the angular spectrum, we recorded

the SPDC angular spectrum for different shift positions, as shown in Fig. 3.14.

When the initial Gaussian beam is completely away from the center of axicon towards left, the

angular spectrum shows the smaller ring at the inner boundary of the total distribution. When the

pump beam shifts towards right, the angular spectrum shows bigger ring at the outer boundary of

the total distribution. As the beam is moved towards the center of the axicon, both the rings appear

together with a non-zero intensity in the space between the rings. The sizes of the two rings are

different because the pump beam from left and right ‘sees’ the crystal at two different angles with

respect to the optic axis.
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The angular spectrum of SPDC is recorded for BG pump with two different axicons having apex

angles 176o and 178o. The images for different OAM values are shown in Fig. 3.15. The angular

spectrum remains the same for higher order BG pump. The annular ring of SPDC become smaller as

the apex angle of the axicon is increased.

3.2.4 Angular Spectrum with perfect optical vortex pump

Conventional optical vortices have their limitations in applications involving transmission of OAM

modes through optical fibers [55, 56] in communication [57], as the size of the optical vortex strongly

depends on its topological charge [58]. Due to this, projective measurements based on ‘phase-

flattening’ technique become difficult for higher order OAM modes [59]. A new class of optical

vortex beam, termed as ‘perfect optical vortex’, was introduced by Ostrovsky et.al. that solves size

effects of a normal vortex [60]. Conventionally, perfect optical vortices of order l are formed as a

Fourier transform of Bessel-Gaussian beam of order l [61].

The field amplitude of a typical perfect optical vortex of order l is given as

E(r,θ) = il−1 wg

wo
exp(ilθ)exp

(
−(r2 + r2

r )

w2
o

)
Il

(
2rrr
w2

o

)
(3.19)

where wg is the waist radius of the initial Gaussian beam, wo = 2 f/kwg is half of the ring width

Fig. 3.16 Intensity and phase distribution of perfect optical vortex modes of orders 0, 1, 2 & 3.
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and rr is radius of the ring. Here f is the focal length of the Fourier lens and k is the magnitude of

Fig. 3.17 Experimental setup to generate perfect optical vortex beam by the Fourier transformation of
a Bessel-Gaussian beam.

the wave-vector of the light beam. Fig. 3.16 shows the intensity and transverse phase distribution

of perfect vortex modes of different orders. The size of POV ring distribution remains the same for

higher OAM values. In experiment, we generated POV beams of different orders by taking an optical

Fourier transform of BG beam, which is given as in Fig. 3.17. We recorded the angular spectrum of

Fig. 3.18 Angular spectra of SPDC generated using perfect optical vortex beam of different orders.
Top row shows the images of pump POV mode.

SPDC for POV beams of different orders. The recorded images of pump and SPDC is given in Fig.

3.18. Since the size of POV is independent of the order of the vortex, the angular spectrum of SPDC
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is identical for higher OAM values, just as in the case of SPDC with BG modes. The asymmetry in

the angular spectrum is mainly due to the spatial walk-off of the thick crystal used.

3.2.5 Angular Spectrum with dark hollow pump

Dark hollow beams (DHB) are a class of laser beams having ring-like intensity distribution and a

uniform transverse phase profile. DHBs find applications mainly in cooling and trapping of atoms

[62]. DHBs can be generated using axicons [63], multimode light guides [64] and spiral phase plates

[65]. Partially coherent hollow beams can be generated using multimode fibers [66]. DHBs are

also generated from random light sources [67]. Intensity distribution of a typical DHB is given in

cylindrical coordinates as [62]

I(r,z) =
I0√

2πrrw(z)

[
exp
(
−2(r+ rr)

2

[w(z)]2

)
+ exp

(
−2(r− rr)

2

[w(z)]2

)]
(3.20)

where 2rr is the distance between two diametrically opposite peaks on the ring distribution. Here, we

consider the ring-shaped DHB formed in the far-field of zeroth order Bessel-Gaussian beam, as pump.

The field distribution of the beam is [61]

Fig. 3.19 Angular spectra of SPDC generated using dark hollow beam of different ring radii, generated
using different Fourier lenses. Top row shows the images of pump DHB mode.
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E(r,θ) =
wg

2i
√

πrrr
exp
(
−(r2 + r2

r )

w2
o

)
exp
(

2rrr
w2

o

)
(3.21)

where 2wo and rr are the ring width and radius respectively. wo = 2 f/kwg where wg is the radius

of the initial Gaussian beam, and f is focal length of the lens used to image the pump in far-field.

k = 2π/λ is the wave-vector amplitude of the light of wavelength λ .

We generate dark hollow beams using the configuration given in Fig. 3.17, but without any spiral

phase plate. The size of the ring is varied by changing the focal length of the lens. Fig. 3.18 shows

the angular spectra of SPDC for DHBs of different ring radii, generated by changing the focal length

of the Fourier lens. Here, f is the focal length of the Fourier lens used.

3.3 Effect of Spatial Filtering on Angular Spectrum of

SPDC

In general, the spatial distribution of individual photons (signal or idler) generated by spontaneous

parametric down conversion (SPDC) does not evidently show any particular spatial mode structure

because of their randomness in generation and the incoherent nature. Here, we numerically showed

that all individual photons generated by SPDC process carry the transverse amplitude as that of the

pump and then confirmed it experimentally. The pump amplitude is revealed in SPDC when individual

photons are spatially filtered from the total SPDC distribution. This is observed simply by imaging

the photons that are filtered using a minimum-sized aperture. Phase measurements showed that the

observed mode distribution does not possess the transverse phase distribution as that of the pump.

The angular spectrum (AS) and the conditional angular spectrum (CAS) of SPDC photons are

highly dependent on the angular spectrum of the pump beam and crystal parameters [48, 43]. It

has been experimentally shown that the angular spectrum of the pump beam gets transferred to the

twin photons generated in SPDC [40]. For example, it was shown that the amplitude as well as the

helical phase of an optical vortex pump is transferred to the SPDC heralded single photon [41]. The

helical phase of the single photon was verified by methods like triangular aperture diffraction [41]

and interferometry [68]. It was also observed that the SPDC heralded single photons generated with
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Bessel-Guassian pump show non-diffracting behaviour over a longer distance [69]. So, images of

high contrast and resolution can be obtained at any distance from the light source by using heralded

single photons [70]. Due to the incoherence of individual parametric down converted photons, their

angular spectrum does not evidently show the signature of spatial properties of the pump.

3.3.1 Numerical Analysis

The angular spectrum of SPDC is calculated from the expression given in Eqn. 3.11. Here, the spatial

distribution of the pump has been taken as Laguerre Gaussian (LG) modes with zero radial number

which represent optical vortices [71]. The different coaxial superposition of vortices is obtained by

Fig. 3.20 Geometrical representation of an aperture placed on the SPDC annular distribution.

the addition and subtraction of the above field for different l values. To select photons from SPDC

distribution, a circular aperture is placed at on portion of total SPDC annular ring, as shown in Fig.

3.20. The geometry of the aperture in signal coordinates k⊥
s ≡ (ksx,ksy), is given by the function

A(k⊥
s ) =


1, if

√
(ksx − kx0)2 + k2

sy ≤ ka

0, if
√

(ksx − kx0)2 + k2
sy > ka
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Fig. 3.21 a) Numerical total angular spectrum of SPDC for vortex beam (l = 1) as a pump, plotted in
momentum coordinates. (b)-(e) Numerical angular spectrum of parametric down converted photons
with gradual closure of the aperture on a portion of total distribution (circled in red) to a diameter of
(b) 593 µm (c) 320 µm (d) 128 µm (e) 24 µm.
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Fig. 3.22 Magnified images of numerical angular spectrum of spatially filtered parametric down
converted photons when the non-linear crystal is pumped with vortices of orders 1, 2, 3 and their
equal but oppositely charged coaxial superpositions.
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where kx0 and ka are radii of SPDC ring and aperture in momentum space, respectively. ka is calculated

from the Fourier relation ka = 2πxa/λ f , where xa is the radius of aperture in real space, λ is the

wavelength of down converted light and f is the focal length of the lens used in Fourier transformation.

The aperture only allows small solid angled wave vector distribution defined by its diameter. One can

expect that it may allow only wave vectors for single photons propagating through the same path and

will eliminate wave vectors going in other directions. Indirectly, the spatial coherence is increased

and have only one spatial mode which is expected to be the same as a pump.

When the SPDC photons are restricted by an aperture, the resultant angular spectrum, which is

actually signal photon distribution, is written as

Ts(k⊥
s ) =

∫
dk⊥

i |Φ(k⊥
s ,k

⊥
i )A(k

⊥
s )|2 (3.22)

where A(k⊥
s ) is the aperture function in spatial frequency coordinates. By controlling the diameter of

the circular aperture, the SPDC amplitude distribution becomes identical to that of the pump as shown

in Fig. 3.21(e). Amplitude transfer verified for different pump modes is shown in Fig. 3.22.

3.3.2 Experiment and Results

To verify the amplitude transfer experimentally, Type-I phase-matched BBO crystal of thickness 5

mm and transverse dimensions of 6 mm×6 mm with an optic axis oriented at 29.97◦ is used. A

pump beam of wavelength (405± 2) nm from a continuous-wave diode laser (TOPTICA iBeam

Smart) of power density 4.4 W/cm2 and a beam diameter 1.2 mm, incident on BBO crystal normally.

Here, optical vortices of order 1, 2 & 3 and their equal but opposite coaxial superposition are used as

different pump spatial modes. To generate the vortex superposition, a modified polarizing Sagnac

interferometer [72, 73] is set up before the crystal, as shown in Fig.3.23. The first half-wave plate

(HWP1) is used to equalize the intensity of the counter-propagating beams inside the interferometer.

A spiral phase plate (SPP) of desired order is introduced in the interferometer such that the counter-

propagating beams acquire equal and opposite spiral phases before recombining at the polarizing

beam splitter (PBS). In fact, the beam coming out of the interferometer is a vector vortex beam
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Fig. 3.23 Experimental setup for imaging parametric down converted photons restricted by an iris
aperture. (a) Fourier imaging configuration. (b) ’Phase-flattening’ configuration. Here, the focal
length of lenses L1 and L2 are 500mm and 300mm respectively. HWP1, HWP2 - Half-wave plate,
PBS - Polarizing beam splitter, SPP - Spiral phase plate, M1, M2, M3 - Mirrors, BPF - Band pass
filter, AP - Iris aperture, L, L1, L2 - Plano-convex lenses, SLM - Spatial Light Modulator, EMCCD -
Electron Multiplying CCD Camera.

[74, 75]. Based on the orientation of the second half-wave plate (HWP2) kept before the crystal,

it will down convert only those modes whose polarization direction is along the optic axis of the

crystal. The down converted photons (signal & idler) of wavelength 810 nm each (degenerate) are

generated in a non-collinear fashion at diametrically opposite points of the SPDC ring. A bandpass

filter (BPF) of central wavelength 810±5 nm is used to filter down converted photons and block the

pump beam after the crystal. The setup for collecting SPDC photons through an iris aperture is shown

in Fig.3.23(a).

To show the effect of aperture on the spatial distribution of SPDC, the configuration shown in

Fig.3.23(a) is arranged. As the AS ring generated from BBO crystal is very thin, one needs to use very

small aperture, which is inconvenient. So AS ring has been allowed to propagate for a distance of 5

cm from the crystal before putting the aperture (ID15, THORLABS). To obtain the angular spectrum

of SPDC, Fourier Transform property of the lens is used. A plano-convex lens (L) of focal length

10 cm is kept at a distance of 10 cm from aperture in the path of SPDC and the image is taken at

a distance of 10 cm from the lens. For imaging the SPDC photons, an electron multiplying CCD
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(a) (b) (c) (d) (e) (f)500 ݉ߤ 500݉ߤ
Fig. 3.24 Experimental angular spectrum of parametric down converted photons at the focal plane
of the lens with gradual closure of the aperture to minimum ((a)-(f)). The pump used here is a
superposition of equal and opposite first-order optical vortices.

(EMCCD) camera (Andor iXon3) of 512×512 pixels with a pixel size of 16×16 µm2 is placed at the

back focal plane. On selecting a portion of the ring, an intensity distribution identical to that of the

pump is observed in the angular spectrum for small aperture size (Figure 3.24(f)). Here, the pump

beam is a first-order Hermite-Gaussian (HG) mode formed by the superposition of optical vortices of

orders +1 & −1 [76].

݉ߤ 500

Fig. 3.25 Experimental angular spectrum of parametric down converted photons at the focal plane
of the lens with aperture placed at eight different portions on the SPDC annular ring. A red circle is
drawn on each sub-figure to show the position of the image corresponding to the portion selected on
the SPDC ring.

Figure 3.24 (a-f) shows the images of the SPDC ring with gradual closure of the iris. Each image

is recorded with the addition of 100 frames for an exposure time of 500 µs each. In the process,

EMCCD was working in electron multiplying mode with a gain of x50. The same intensity pattern is

observed irrespective of the portion selected from the SPDC ring. Figure 3.25 shows first order HG

mode formed at eight different parts of the SPDC ring annular distribution. With the adjustment of the
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HWP2 and the use of different spiral phase plates in the interferometer, the SPDC image is observed

for different pump modes. Figure 3.26 shows the experimental images of SPDC beam with minimal

closure of iris for different pump polarization modes selected using HWP2.
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Fig. 3.26 Magnified images of experimental angular spectrum of parametric down converted photons
when the non-linear crystal is pumped with vortices of orders 1, 2, 3 and their equal but oppositely
charged coaxial superposition (same configuration as in Fig. 3.24(f)).

As we fix the center of the aperture at the point of maximum photon flux in the SPDC ring, the

photons selected by minimal closure of the aperture will have propagation direction along the mean

k-vector, satisfying phase-matching condition. These photons which are almost coaxial in propagation

will sum up to give the pump mode distribution in the angular spectrum. When the aperture size is

increased, the photons from the center of the aperture (paraxial photons) and the photons near to the

edges of the aperture (marginal photons) superpose incoherently in the far-field, which reduces the

contrast of the pump mode distribution present in the SPDC. With these arguments, one can consider

SPDC annular distribution as an incoherent superposition of all photons that satisfy phase-matching

condition, while the coincident detection of paired photons is a coherent process giving amplitude as

well as the phase of the pump.
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It is well known that the SPDC biphoton mode has a similar phase profile that of the pump. Here

the phase profile of the signal or idler photon modes is studied without the heralding. A ‘phase-

Fig. 3.27 Far-field zeroth and first order diffraction pattern of SPDC with a pump vortex beam of
order l, and projected onto a forked hologram of order lH .

flattening’ method [59] is used to verify whether the observed mode distribution has an azimuthal

phase when pumped with a vortex beam. The Fourier plane of the crystal is projected onto the

holograms imprinted on a spatial light modulator (SLM - Hamamtsu LCOS) with an aperture kept

closer to the SLM and the far-field diffraction pattern is imaged according to the configuration given in

Fig.3.23(b). Figure 3.27(a)-(c) show the diffraction patterns of the SPDC pumped with Gaussian, and

projected onto the forked holograms of order 0, +3 & −3 respectively. When a vortex of order 3 is

pumped and the intensity distribution of the aperture plane is projected onto a +3 as well as −3 forked

holograms, a Gaussian-like shape is not observed in the first-order diffraction pattern, which must be

observed if the projected mode contains an azimuthal phase. This shows that the ‘pump-mimicking’

mode distribution of SPDC does not contain azimuthal phase corresponding to that of the pump. It is

expected that the individual photons will not possess a particular azimuthal phase because they will

be in a mixed OAM state while the two photons are entangled in OAM. However, the corresponding

heralded single photons generated by SPDC process contain the azimuthal phase that has been well

studied in the context of OAM entanglement [68, 31].
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3.4 Conclusion

Starting with the angular spectrum of SPDC with Gaussian pump under focusing and collimating

conditions, we have studied the angular spectrum of parametric down converted photons while

pumping with normal optical vortex, Bessel-Gaussian and perfect optical vortex beams of different

orders. For all three types of beams carrying OAM, the SPDC has a double ring distribution. For a

normal vortex pump, the distance between the two peaks increases with the OAM, due to the increase

in size of the vortex with order. However, for a Bessel-Gaussian or a perfect optical vortex beam, the

size of vortex is independent of the order, and the angular spectrum of SPDC remains same for higher

OAM values. The presented results are used for the efficient generation of heralded single photons

carrying higher OAM values, as provided in Chapter 4.

We numerically and experimentally verified that all parametric down converted photons follow

the transverse amplitude profile as that of the pump. Individual SPDC photons reveal the pump mode,

when selected by a closed aperture and observed in the far-field. Increasing the spatial extent of the

selected SPDC distribution by the aperture reduces the quality of the mode distribution observed, due

to non-coaxial, incoherent superposition of paraxial and marginal photons from the aperture. Further,

we show that the individual photons do not reveal anything about the transverse phase profile of the

pump. The results will be useful in the engineering of SPDC entangled sources for applications in

multi-dimensional quantum information schemes.





Chapter 4

Fiber Coupling of Biphoton Modes in

SPDC

The photon pairs produced in SPDC are mainly used in the generation of single photons with the

heralding of partner photon in the SPDC pair. Once the photon pairs are identified, it is important to

couple the joint biphoton modes into fiber for the detection and measurement of correlation between

photons in the pair. The spatial and temporal characteristics of heralded single photons [77] are

utilized in fields such as quantum imaging [78] and testing fundamentals of quantum mechanics

[79]. However, the individual signal or idler photons are incoherent in the absence of heralding.The

propagation of biphoton state of SPDC with Fourier transforming elements has been studied earlier

[80]. The two-photon correlation studies in SPDC have been carried out for various structured light

pump beams [81–83]. In such cases, the two photon spatial modes obey the selection rules, giving

rise to modal entanglement [39, 82, 84]. This can be measured by projecting the biphoton state to

different modes using phase flattening techniques[59].

There have been many theoretical studies on effective fiber coupling of SPDC sources [85–89].

The main parameters that control the collection efficiency of photon pairs are thickness of the crystal

used for down conversion, spatial walk-off, and mode field diameter of the optical fibers effectively

imaged onto the crystal plane [85]. Coupling of SPDC photons with single-mode and multi-mode
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fibers were investigated [86] as a function of pump beam diameter, crystal thickness and walk-off.

They observed entirely different behaviour between the coupling of SPDC photon pairs to the single-

mode and multi-mode fibers by varying the pump beam diameter [87]. It was analytically shown that

the coincidence spectrum becomes inseparable under strong pump focusing conditions so that the

coincidence efficiency can be optimized [88]. It has been claimed that the important parameters for

mode coupling in collinear parametric down conversion are the photon wavelength, the focal length of

lens and the fiber diameter [89]. Use of single mode fiber attached detectors over direct spatial filtering

of SPDC photons using a small slit is more advantageous, as in the former case, fringes smaller than

the mode field diameter can be observed [90]. The results of numerical simulation [46] of heralded

single photon purity and source brightness for pulsed pump source shows that an unengineered, pump

focused, and filtered source gives higher number of fiber coupled photon pairs per pulse for smaller

fiber collection mode radii. Similar work has been carried out for quasi-phase matched crystals,

but coupling was investigated by considering the down converted output as a classical beam [91].

A numerical study was carried out for choosing birefringent crystals with appropriate cut angles

for efficient down converted output in type-I phase-matching [45]. Dependence of photon coupling

ratio on focusing parameter of pump and collection modes, and the crystal length in the case of

periodically-poled crystals has been studied [92] with an emphasis on grating defects. A method for

optimizing the collection of entangled photon pairs in type-II SPDC by controlling angular divergence

of the collection modes has been discussed [93]. The theoretical framework of [70] shows that the

optimum focusing conditions for maximum efficiency of collinear PDC are precisely same as that

of sum frequency generation and parametric amplification using Gaussian beams [94]. This was

experimentally verified using a collinear phase matched PPKTP crystal with collimating pump, signal

and idler [95]. On the contrary, in [96], it has been shown that there is no significant change in

the coupling efficiency of conditional biphoton modes with the focusing parameter. Also, it was

experimentally shown that focusing of the pump beam enhances the photon pair detection efficiency

in non-collinear type-II birefringent phase-matched [97] and collinear type-I quasi phase-matched

[98] crystals.
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4.1 Biphoton Sources

A biphoton source consists of a pair of photons coming from same or different photon generating

systems. The pair is usually correlated in various degrees of freedom and the correlations will be

present even at longer distances. Correlations and/or entanglement present in biphoton systems

are articulated such that knowing the state of one photon reveals the information about the other.

Therefore, correlated/entangled biphoton sources are used to study fundamental quantum mechanics

as well as for applications in quantum information and communication.

A photon pair is entangled if its wavefunction cannot be written as a direct product of the

wavefunctions of individual photons in the pair. As for the definition of entanglement, consider

a system in Hilbert space represented by the state |ψ⟩, consisting of two subsystems defined by

orthonormal basis states |ψ1⟩ and |ψ2⟩. Now, let the state be written as

|ψ⟩= ∑
ψ1,ψ2

C(ψ1,ψ2)|ψ1⟩|ψ2⟩ (4.1)

where C(ψ1,ψ2) is the probability amplitude of each |ψ1⟩|ψ2⟩ state. The state |ψ⟩ is separable if

C(ψ1,ψ2) can be factorized to C(ψ1,ψ2) = p(ψ1)×q(ψ2). If C(ψ1,ψ2) ̸= p(ψ1)×q(ψ2), then |ψ⟩

is entangled.

All entangled photons are correlated. However, correlated photons may or may not be entangled.

To understand the difference between correlation and entanglement, consider an example of two

photons labelled A and B generated simultaneously at time t1. The joint state of the photon pair

generated is

|ψ⟩ ∝ |ψA⟩t1 |ψB⟩t1 (4.2)

The state given above is separable and correlated, i.e. measuring photon A will give the information

about the time when photon B is created. Along with time t1, if we consider another time t2 when the

two photons are generated again, we can write the state

|ψ⟩ ∝ (|ψA⟩t1 |ψB⟩t1 + |ψA⟩t2 |ψB⟩t2) (4.3)
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which is an entangled state in time. This state is also correlated in time.

4.2 Fiber coupling of SPDC biphotons

For setting up the experiment to generate and measure the correlated photon pairs, the following basic

materials are required:

• Pump laser

• χ(2) non-linear crystal to generate SPDC

• Single photon detectors: Single photon counting module (SPCM)

• Coincidence counter

A basic setup to generate and measure SPDC biphotons is given in Fig. 4.1(a). A laser of

CC
SPCM

SPCMSMF

SMF
FC

FC

Non-linear
Crystal

Pump Laser

(a) (b)

Fig. 4.1 Experimental setup to generate and measure correlated photon pairs in spontaneous parametric
down conversion.

wavelength λp is used to pump a χ(2) crystal which then gives SPDC photons as output in an annular

distribution (Fig. 4.1(b), each having wavelength 2λp (degenerate case). Based on the phase-matching,

the signal and idler photons are situated at the diametrically opposite points of the annular distribution.

For convenience, we select those diametrically opposite points that are on the plane containing

wave-vectors of pump, signal and idler, and that is parallel to the optic table (portions circled in blue

on the SPDC ring, in Fig. 4.1(b)). The selected portions each can be either directly exposed to the

CCD chip area on the single photon counting module (SPCM) using short focal lenses, or coupled to



4.3 SPDC with focused pump beam 69

single-mode fibers that are attached to the SPCMs. To count the number of photon pairs, a coincidence

counter is connected to both the SPCMs.

4.3 SPDC with focused pump beam

First, we study the effect of pump focusing on biphoton coupling efficiency of photon pairs obtained in

a non-collinear SPDC process. We have experimentally verified that the coupling efficiency decreases

asymptotically with the focusing parameter of the pump beam. We give theoretical explanation on

how crystal thickness influences the behaviour of biphoton modes in pump focusing. We also give a

physical reason for the decrease in coupling efficiency based on our experimental observation using

the matching of conditional optical modes of down converted photons. We show that a loosely focused

pump beam and a thin crystal are the best pre-detection conditions for the effective fiber coupling of

entangled photons, as the former reduces the effect of SPDC ring asymmetry and the later reduces the

walk-off effects inside the crystal. We also verify that the role of collection mode diameter on mode

coupling to the fibers is more significant in tight pump focusing than in loose pump focusing.

4.3.1 Theory

Better sources of single photons by parametric down conversion require the efficient coupling of

optical modes involved in the process, into the fiber. Before coupling, the down converted photons are

spatially and spectrally filtered. The functions that represent the spatial and frequency (ωc) filtering of

down converted photons are given by

Γspatial = exp
(
−w2

c

2
|k2

c |
)
, (4.4)

Γfrequency = exp
(
−(ωc −ωc0)

2

2B2
c

)
(4.5)

where wc and kc are respectively the spatial collection mode width and the transverse momentum

coordinate of collection mode. ωc0 and Bc are the central angular frequency and the bandwidth of the

frequency filter respectively. In biphoton mode coupling, first we define a reference mode by imaging
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the single mode fiber-coupled idler photons onto the crystal. i.e., we project them into a single mode

Gaussian

u(k⊥i ) = exp
(
−w2

i

4
|k⊥

i |2
)

(4.6)

where k⊥
i and wi are respectively the transverse wave-vector and diameter of the idler mode. The

conditional angular distribution of the down converted light in the signal arm has to be matched

with this reference mode. Thus, the spatial distribution of heralded signal photon is given by the

normalized mode function

φs(k⊥
s ,∆k) = Ns

∫
dk⊥

i Φ(k⊥
s ,k

⊥
i ,∆k)u(k⊥

i ) (4.7)

where Ns is the normalization factor. The conditioned spatial distribution of the idler photon,

φi(k⊥
i ,∆k), can also be obtained using similar calculations. A detailed comparative theoretical

and numerical analysis of conditional angular distribution of the SPDC photons is given in [45].

In this, the effect of pump and crystal geometry on conditional angular spectrum has been studied

separately along x and y directions.

Now, we study the effect of pump focusing on mode coupling efficiency. A focused Gaussian

pump beam is characterized by a focusing parameter ξp [17], given by

ξp =
L

kpw2
p

(4.8)

where kp is the magnitude of wave vector for the pump beam, L is the crystal thickness and wp is

the pump beam waist located inside the crystal. Pumping a focused beam inside the crystal causes

asymmetry in the spatial distribution of SPDC photons. Although the asymmetric broadening of

SPDC ring looks identical in both positive and negative uni-axial crystals, the reason for broadening is

different in both cases [99]. The pump walk-off is the main reason for asymmetry in negative uni-axial

crystals where as SPDC photon’s walk-off causes ring asymmetry in positive uni-axial crystals.

Perfect phase-matching is achieved for a plane-wave pumped normal to the crystal. As the pump is

focused, there are contributions of pump wave-vectors non-normal to the optic axis of the crystal due
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to which phase mismatch effects appear. To reveal the nature of broadening along different directions

along the crystal plane, we can use a cylindrical lens to focus the pump separately in the walk-off

plane (the plane containing the pump wave-vector and the Poynting vector) and perpendicular to it

[100]. Focusing the pump beam perpendicular to the walk-off plane broadens one part of the ring

strongly, but hardly affects the corresponding diametrically opposite part while focusing the pump

along the walk-off plane gives a uniform broadening. An analytical expression for calculating the

broadening along both the directions is given in [101]. According to this, on performing angular

scanning of the spatial distribution of SPDC photons along y-direction, there will be a simple y-shift

of SPDC ring whereas scanning along x-direction shows x-shift as well as change in ring radii.

Coupling of biphoton modes into optical fibers is quantified using the quantity called biphoton

mode coupling efficiency. A general expression for biphoton mode coupling efficiency is given by

χsi =
Csi√
CsCi

(4.9)

where Csi is the measure of overlap of all the three modes - the correlated biphoton mode with the

signal mode and the idler mode. Cs & Ci are the measures of overlap between the correlated biphoton

mode and a single mode. In experiment, Csi turns out to be the coincidence counts and Cs, Ci are

the singles count of signal and idler respectively. In terms of focusing parameters of pump and the

diameter of the collection (signal & idler) modes, the coupling efficiency for a degenerate parametric

down conversion under thin crystal approximation can be rewritten as [86]

χsi =
4L(kpξpw2

0 +L)
(kpξpw2

0 +2L)2 (4.10)

where kp is the magnitude of wave vector of the pump mode and w0 is the diameter of each target

modes.

The numerical plot of mode coupling efficiency vs pump focusing for different collection mode

diameters (w0) is given in Fig. 4.2. For a fixed value of focusing parameter, the coupling efficiency is
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more for smaller collection mode diameter. This behaviour is more pronounced in the loose focusing

region (ξp < 0.1).
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Fig. 4.2 Numerical plot of mode coupling efficiency versus pump focusing parameter with different
collection mode diameters.

A crude estimation of the effective crystal length (Le f f ) along which down conversion takes

place is given in [46]. This effective crystal length depends on the pump focusing parameter, the

orientation of propagation vectors of the down converted photons with respect to the pump beam,

and the collection mode diameter (w0). This is used to distinguish the behaviour of biphoton mode

in different crystal length regimes [48]. In short crystal regime (L < Le f f ), the biphoton mode is

completely determined by the pump properties, i.e. the crystal length effects can be neglected. In

the long crystal regime (L > Le f f ), the biphoton mode depends on the pump as well as the crystal

properties.

4.3.2 Experiment

The experimental setup used to verify the above theoretical arguments is given in Fig. 4.3. Here, we

have used a UV diode laser (Toptica iBeam smart) of wavelength 405 nm and power 300 mW with

a spectral band width of 2 nm, to pump the non-linear crystal, Type-I β -Barium Borate (BBO), of
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thickness 2 mm and transverse dimensions of 6 mm×6 mm with an optic axis oriented at 29.97◦ to the

normal incidence. The combination of a polarizer and a half wave plate allows us to vary the pump

beam polarization along the crystal axis. A plano-convex lens is used to focus the pump beam inside

the crystal kept at the focal plane. For changing the focusing parameters, plano-convex lenses of focal

lengths 50, 100, 150, 200, 250, 300 & 750 mm are used in our experiment. The down converted

photons (signal & idler) of wavelength 810 nm each (degenerate) are generated in a non-collinear

fashion at diametrically opposite points of the SPDC ring. The images of the down converted ring

for different focusing conditions were taken using an Electron Multiplying CCD (EMCCD) camera

(Andor iXon3) of 512×512 pixels with a pixel size of 16×16 µm2.
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Fig. 4.3 Experimental setup used for generating the correlated photon pairs through SPDC process.
Here, M1,M2 - Plane mirrors; P - Polarizer; HWP - Half Wave Plate; L - Plano convex lens; A -
Aperture; IF - Interference filter; BD - Beam dump; FC1,FC2 - Fiber collimators; SMF - Single Mode
Fiber; D1, D2 - Single photon counting modules(SPCM’s); CC - Coincidence Counter.

To measure the number of photon pairs generated, two diametrically opposite portions of the

SPDC ring at a given plane were selected using apertures (A) and the photons coming out of each

aperture were collected using the fiber collimators FC1 & FC2 (CFC-5X-B, Thorlabs) of focal lengths

4.6 mm and a numerical aperture of 0.53. The fiber collimators are attached to the single mode fibers

(P1-780A-FC-2, Thorlabs) each having a numerical aperture of 0.13 and a mode field diameter of

5±0.5 µm, which in turn are connected to the single photon detectors D1 & D2 (SPCM-AQRH-16-FC,

Excelitas). The detectors have a timing resolution of 350 ps with 25 dark counts per second. Two

interference filters (IF) of passband 810±5 nm are kept very close to the fiber collimators to make
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sure that other unwanted wavelengths are properly filtered out. To measure the number of correlated

photon pairs, the two detectors are connected to a coincidence counter (CC), IDQuantique-ID800,

having a time resolution of 81 ps.

4.3.3 Results

To study the effect of pump focusing on biphoton modes, first we study the effect of asymmetry present

in the angular distribution of down converted photons obtained for different focusing parameters. For

this, we image the ring of down converted photons using an Electron Multiplying CCD camera. These࢖ࣈ ൌ ૙. ૝૚ૠૡ ࢖ࣈ ൌ ૙. ૚ૡ૞૟ ࢖ࣈ ൌ ૙. ૚૝૜૛

࢖ࣈ ൌ ૙. ૙ૢ૚૛ ࢖ࣈ ൌ ૙. ૙૙૛ૠ ࢖ࣈ ൌ ૙. ૙૙૚૜
Fig. 4.4 Electron Multiplying CCD images of the down converted rings for different pump focusing
parameters obtained using different lenses of focal lengths f =100, 150, 200, 300, 600 & 750 mm.

images are shown in Fig. 4.4 corresponding to the different pump focusing parameters obtained by

focusing the pump beam on to the crystal using different plano-convex lenses of focal lengths 100,

150, 200, 300, 600 & 750 mm. The inhomogeneity in the spatial distribution of the down converted

photons increases with the pump focusing parameter, i.e. with the decrease in the focal length of the

lens used to focus the pump beam. The experimental results agree with the numerical simulation

given in [99].
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In order to quantify the asymmetry of a ring formed by the down converted photons, we introduce

an asymmetry factor (AF), which is defined as [102]

AF = 1− b
a

(4.11)

where a and b are the ring widths at two diametrically opposite ends of the down converted ring

(a > b) as shown in inset of the Fig. 4.5. The asymmetry factor is calculated for different focusing
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Fig. 4.5 Variation of SPDC ring asymmetry with pump beam focusing.

parameters of the pump beam and shown in Fig. 4.5. We found that the asymmetry increases with the

increase in focusing parameter i.e. when we move from loose focusing to tight focusing of the pump

beam. Also, we observed that the asymmetry is independent of the propagation of down converted

photons from the crystal plane. The variation of asymmetry factor is linear with respect to the focusing

parameter. To study the influence of the crystal chosen (L=2 mm), we calculated the effective crystal

length (Le f f ) [46] for each value of the pump focusing parameter used in the experiment. Under tight

focusing condition (ξp > 0.1), Le f f is ∼12.3 mm and for loose focusing condition (ξp < 0.1), it is

∼13.9 mm. So, the range of pump focusing parameters we considered in the experiment were found

to satisfy the condition L < Le f f [48], i.e. the influence of crystal length on the asymmetry in the

SPDC ring is negligible when compared with that of the pump focusing parameter.
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For coincidence detection, we choose two diametrically opposite portions of the down converted

ring using two apertures of same width as shown in Fig. 4.6. Because of the asymmetry of SPDC

Fig. 4.6 EMCCD image of a ring of down converted photons. For coincidence counting setup, the two
diametrically opposite points of the ring (shown in blue circles) are selected.

ring, the photon number densities (number of photons per unit area) of signal and idler in the selected

areas are different due to which we are not able to select all the signal photons that correspond to

the selected idler photons. This accounts for the asymptotic decrease in mode coupling efficiency of

down converted photon pairs with pump focusing.

Now, in order to see how the difference in photon number densities of signal and idler affect

the conditional coincidence images of down converted photons, we recorded the conditional spatial

distribution of signal photons under two extreme pump focusing conditions, i.e. loose pump focusing

(Fig. 4.7(a), (b)) and tight pump focusing (Fig. 4.7(c), (d)). To image conditional biphoton modes, the

fiber collimators (FC1 & FC2) kept in signal and idler arms were mounted on XY translational stages.

The fiber collimator in the idler arm was adjusted to get maximum individual counts. Then the fiber

collimator in the signal arm was moved manually along X & Y directions with a step size of 1 mm. A

total of 400 and 900 spatial points were considered for scanning in loose pump focusing and tight

pump focusing cases respectively. The individual as well as the coincidence counts were recorded

for each array point. Figures 4.7 (a), (b) and 4.7 (c), (d) show the numerical and the corresponding

experimental results for the conditional coincidence imaging under both the conditions. The numerical

results are obtained by plotting the density plots of normalized conditional signal mode function

described by the Eqn. (4.7), for loose and tight pump focusing conditions respectively. It is clear from
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Fig. 4.7 (a) Numerical and (b) experimental plots of the conditional spatial distribution of signal
photons under loose focusing condition of the pump beam, here ξp ∼0 i.e. without using any lens. (c)
Numerical and (d) experimental plots of the conditional spatial distribution of signal photons under
tight focusing condition of the pump beam, here ξp=0.832 obtained using a lens of focal length f =50
mm.

the figure that the experimental results are in good agreement with the numerical simulations. We also

observe that the overlap extent of conditional signal and idler modes decreases under tight focusing

condition as one of the conditional modes becomes elliptic for a given idler coupled in a single mode

fiber.

For observing the effect of pump focusing on biphoton modes, we tried to quantify the degree of

overlap between conditional signal and idler modes in down conversion and its variation with pump

focusing parameter. For this, we calculated the biphoton mode coupling efficiency (χsi given in Eqn.

(4.9) ) for different pump beam focusing parameters. Fig. 4.8 shows the variation of experimentally

obtained biphoton mode coupling efficiency (χsi) with the pump beam focusing parameter and the

corresponding numerical results. We achieved the maximum coupling efficiency of only 8%, which

is attributed to the mismatch of the numerical aperture of fiber collimator (FC) and single mode fiber

used for the experiment. To calculate the focusing parameter of the pump beam, we calculated the
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Fig. 4.8 Experimental plot of the variation of photon pair collection efficiency with respect to pump
focusing parameter. Error bars have been subsumed by the thickness of the experimental points.

beam diameter at the focus. The diameters of two collection modes projected onto the crystal are

calculated as w0=456 µm. We observed an asymptotic decrease in coupling efficiency with the pump

focusing parameter, which matches with the theory of intensity-based single mode fiber coupling of

down converted photons given in [86]. From the numerical plot given in Fig. 4.2, it is clear that the

influence of collection mode diameter is nominal under tight focusing condition (ξp > 0.1) where

as it is significant for loose focusing condition (ξp < 0.1). From the graphs, one can also observe

that the coupling efficiency is higher for loose focusing than tight focusing, which is also clear from

our experimental results given in Fig. 4.8. In our experiment, we used the same crystal length and

collection mode diameter in order to study the effect of focusing on the coupling efficiency. We

observe that the coupling efficiency mainly depends on the overlap of two conditional modes and

the asymmetry present in the ring of down converted photons. However, in the case of collinear

phase-matching, the interaction length of pump and down converted photon modes are more, due to

which the spatial walk-off does not necessarily restrict the collection efficiency of photon pairs even

with thick crystals [103].
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4.4 Generation of heralded twisted single photons in

SPDC

In the previous sections, we have seen the method to optimize the heralding efficiency of single

photons generated in SPDC. This section explains the method to generate heralded twisted single

photons, i.e. the single photons carrying orbital angular momentum (OAM). The angular spectrum of

pump gets transferred to the SPDC photon pairs [40]. Also, the azimuthal phase of the pump also gets

transferred to the signal photon it the idler photon is projected to a simple Gaussian mode [41]. This

comes from the conservation of OAM in an SPDC process [104].

4.4.1 Experiment

The experimental setup to generate heralded twisted single photons from SPDC is given in Fig. 4.9.

Here, we have used a Blue diode laser (TOPEMODE) of wavelength 405 nm and power 20 mW with

a spectral band width of 0.1 nm, to pump the non-linear crystal, Type-I β -Barium Borate (BBO),

of thickness 5 mm and transverse dimensions of 6 mm×6 mm with an optic axis oriented at 29.97◦

to the normal incidence. The combination of a polarizer and a half wave plate allows us to vary

Fig. 4.9 Experimental setup to generate heralded twisted single photons from SPDC with different
pump beams carrying OAM. Here, HWP - Half-wave plate; BPF - Band pass filter; L - Plano convex
lens; PM - Prism mirror; FC - Fiber coupler; SMF - Single-mode fiber; MMF - Multimode fiber;
SPCM - Single photon counting module
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the pump beam polarization along the crystal axis. The dashed box in Fig. 4.9 corresponds to the

case-by-case method to prepare pump beams of different spatial characteristics, which are given below.

The down converted photons (signal & idler) of wavelength 810 nm each (degenerate) are generated

in a non-collinear fashion at diametrically opposite points of the SPDC ring.

To measure the number of photon pairs generated, two diametrically opposite portions of the

SPDC ring at a given plane were selected using apertures (not shown in the setup) and the photons

coming out of each aperture were collected using the fiber collimators FC (CFC-2X-B, Thorlabs) of

focal lengths 2 mm. The fiber collimator in idler arm is attached to a single mode fiber (P1-780A-FC-2,

Thorlabs) having a numerical aperture of 0.13 and a mode field diameter of 5±0.5 µm, and that in

the signal arm is attached to a multi-mode fiber (ML43L02, Thorlabs). The fibers are connected to

the single photon detectors SPCMs (SPCM-AQRH-16-FC, Excelitas). The detectors have a timing

resolution of 350 ps with 25 dark counts per second. To measure the number of correlated photon

pairs, the two detectors are connected to a coincidence counter (CC), IDQuantique-ID800, having a

time resolution of 81 ps.

4.4.2 Results

First we recorded the coincidences of signal and idler for normal optical vortex, Bessel-Gaussian, and

perfect optical vortex pump for upto an OAM of 6. Figure 4.10 (a-c) show the coincidences for NOV,

BG and POV pump beams with different orders. The coin As the size of the normal optical vortex

increases with order, the singles counts in the signal arm (coupled to a multi-mode fiber) and idler

arm (coupled to a single mode fiber) decreases and as a result, the coincidence counts also decreases.

The variation of counts in the signal for different OAM values is slower than that in the idler arm. For

a BG and POV pump beams, the variation in singles for signal and idler is less and due to this, the

corresponding variation in the coincidence counts is also lesser than that with a normal vortex pump.

To compare the heralding of SPDC single photon for different pump modes, the normalized

coincidence and the corresponding heralding efficiency (calculated using Eqn. 4.9) for different

pumps is plotted in Fig. 4.10 (d) and 4.11 respectively. From the graph, we see that the variation of

heralding efficiency is much lower for the heralded twisted single photons generated using BG and
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Fig. 4.10 Plots showing coincidence counts of SPDC photons pumped with (a) normal optical vortex
(NOV) (b) Bessel-Gaussian (BG) and (c) perfect optical vortex (POV) pump beams of different orders.
(d) Normalized coincidence of SPDC pairs with all pump modes.

POV pump beams than that of a normal optical vortex pump. So, the BG and POV pump can be used

to generate efficient twisted single photons of higher OAM.
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Fig. 4.11 Plot showing heralding efficiency of SPDC photons pumped with normal optical vortex,
Bessel-Gaussian and perfect optical vortex pump beams of different orders.

4.5 Conclusion

We have studied the effect of pump beam focusing on photon pair coupling efficiency of signal and

idler in Type I non-collinear spontaneous parametric down conversion. We have experimentally

verified that the conditional coupling efficiency of the down converted biphoton modes into a single

mode fiber varies asymptotically with the pump beam focusing parameter. This behaviour is attributed

to the the asymmetry in the spatial distribution of down converted photons with the pump beam

focusing parameter, due to which the conditional modes of down converted photons become elliptic.

From our observations, we conclude that a loosely focused or almost collimated pump beam inside a

thin crystal is the best pre-detection scenario for very good fiber coupled heralded single photon pairs.

These mode coupling techniques will be very useful in generating better sources of heralded single

photons for quantum information processing [105].
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Fig. 4.12 Plots showing indivdual counts of SPDC photons pumped with normal optical vortex (NOV),
Bessel-Gaussian (BG) and perfect optical vortex (POV) pump beams of different orders.
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We also studied the effect of pumping different beams carrying orbital angular momentum (OAM)

on the coupling efficiency of signal and idler in Type I non-collinear spontaneous parametric down

conversion. Due to the increase in size of conventional optical vortex beams with order, the heralding

efficiency of SPDC single twisted photons with normal optical vortex beams decreases with order of

pump vortex. We have experimentally showed that the conditional coupling efficiency of the heralded

twisted single photons for higher OAM values can be improved by using a Bessel-Guassian or perfect

optical vortex beams as pump. The presented results may be utilized for the practical realization of

efficient higher dimensional OAM entangled photons.



Chapter 5

Orbital Angular Momentum

Correlations in SPDC

According to Maxwell’s theory, an electromagnetic (EM) wave travels with speed of light and carries

certain energy and momentum [106]. The momentum of light has both linear and angular part.

Magnitude of the propagation vector of light gives its linear momentum. The angular part of light’s

momentum is again classified into spin and orbital parts. Spin angular momentum is associated with

the polarization of light. Light has a spin of σ =±1 if it is left/right circularly polarized, and has a

zero spin if it is linearly polarized. Spin angular momenta was first introduced by Poynting [107] and

experimentally realized by Beth [108]. The orbital angular momentum (OAM) of light is associated

with its spatial modes [109]. For a light carrying OAM, the Poynting vector associated with the

electromagnetic wave spirals around the propagation axis of the light beam.

After the successful realization of two dimensional entangled states with the polarization of down

converted photons, the search for a system to set up entanglement in higher dimensions resulted in the

generation of bipohoton OAM states in spontaneous parametric down conversion. Access to higher

dimensions in Hilbert space makes OAM of light a suitable candidate for realizing new types of secure

quantum information schemes [110]. Along with polarization, the down converted photons possess a

definite OAM that comes from the OAM conservation, which is revealed when both the signal and
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idler are measured. The first experiment to illustrate the conservation of OAM in SPDC was carried

out by Mair et.al. [31]. Higher dimensional entanglement for dimensions upto 12 was experimentally

demonstrated by Dada et.al. [111]. Although, OAM modes corresponding to higher dimensions can

be theoretically attained, effects of many experimental factors such as the mode sizes of interacting

photons [112] as well as the length [113] and orientation [114, 115] of the non-linear crystal, make it

difficult to achieve.

5.1 Orbital Angular Momentum of Light

Light beams having Laguerre-Gaussian (LG) intensity distribution with phase singularities possess

an orbital angular momentum (OAM). During their propagation, the energy flows spirally about the

beam axis. So, these beams are also called as optical vortices. An LG mode of radial and azimuthal

indices p and l respectively, on a plane z = 0, is given by

LGp
l (r,φ) =

Cl p

w

(
r
√

2
w

)|l|

Lp
|l|

(
2r2

w2

)
exp
(
− r2

w2

)
exp
(
−ik

r2

2R

)
exp(−ilφ) (5.1)

where r and φ are the radial and azimuthal coordinates respectively, k is the magnitude of the wave
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Fig. 5.1 Intensity distribution (upper row) and phase distribution (lower row) of optical vortices
for topological charges l = −3,−2,−1,0,1,2 & 3. The blue curved arrows show the direction of
spiralling of energy flow of vortex around the beam axis.

vector, Cl p is the mode amplitude, w and R are the width of the beam and radius of curvature of the
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wavefront respectively. Fig. 5.1 shows the intensity and phase distribution of LG beams of different

orders.

5.1.1 Generation of light carrying orbital angular momentum

Optical vortices can be generated by various methods. One of the methods is to use a spiral phase

plate (SPP) (or ‘vortex lens’). A spiral phase plate of topological charge l is a transparent optical

element with spirally varying thickness with azimuthal angle [65]. Practically, it is difficult to make

the gradual variation of thickness along azimuthal direction. So, the plate has a number of radial

sectors with different thickness that increases as we move along the surface of the plate azimuthally.

A Gaussian beam of wavelength λ , on passing through an SPP, introduces an azimuthally dependent

phase shift given by

δ =
(n−1)t

λ
φ (5.2)

where n is the refractive index of SPP material, t is the maximum thickness of the plate and φ is the

azimuthal angle. The outgoing beam will have an OAM lh̄ if the total phase delay around the SPP is

an integral multiple of 2π , i.e. 2πl, where l is an integer. So, by doing back calculation with Eqn. 5.2,

we obtain the maximum thickness of the SPP as

t =
lλ

n−1
(5.3)

Other methods to generate optical vortices are computer generated holograms (CGH) and spatial

light modulators (SLM). Computer generated holograms are used for the generation as well as the

analysis of OAM modes. CGHs are diffraction gratings printed on a transparent film based on a

specific machine-calculated interference pattern formed by a reference plane wave and the desired

beam that has to be generated. For example, if the reference beam is an optical vortex of charge l,

its interference pattern with a plane wave to be imprinted on the hologram is made by a diffraction

grating with l lines forming a multi-pronged fork. Fig. 5.2 shows the forked holograms for various

orders. When a Gaussian beam is passed through the centre of the lth-order grating, an optical vortex
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5.2 (a)-(e) Computer generated holograms for topological charges l = 1,2,3,4 & 5. (f)-(j)
Computer generated holograms for topological charges l =−1,−2,−3,−4 & −5.

of charge l is generated at the first diffraction order. In similar way, on can generate optical vortices

with a Gaussian light beam incident on a forked grating displayed on an SLM.

5.1.2 Analysis of orbital angular momentum of light

The methods to detect and analyse the OAM content of a light beam are interferometry [116], tilted-

lens technique [61], double-slit interference [117] and phase-flattening technique [59]. Out of these

techniques, the later one works in classical as well as single-photon level. Here, we discuss about

phase-flattening technique that is more effective in the analysis of OAM entangled states of light.

Spatial light modulators (SLM) are used to generate optical vortices of various topological

charges. For a fundamental Gaussian beam having zero OAM incident on a forked diffraction grating

of topological charge l imprinted on an SLM display, the first order diffracted light will have an

annular intensity distribution with a helical phase represented by exp(ilφ). Looking in the reverse

fashion, one can use these holograms to detect the OAM of incident mode. When a light beam of

OAM l is diffracted by a forked hologram of topological charge −l, a fundamental Gaussian mode

is generated at the far-field intensity distribution. This technique is known as ’Phase flattening’. In

this technique, the helical phase of the incident beam is cancelled by the forked grating on the SLM.
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Fig. 5.3 Phase flattening method to detect optical vortex of topological charge (a) +1 and (b) -1.

Use of different holograms on SLM is advantageous in filtering out different OAM contents from an

unknown superposition of OAM states. For example, to extract +1 OAM content from an unknown

state, the light is incident on an SLM display of −1 hologram and the first order diffracted output

is coupled to a single-mode fibre (SMF), which allows only l = 0 (fundamental Gaussian) to pass

through (Fig. 5.3 (a) & (b)). At the photon level, a combination of SLM with forked diffraction

gratings of various topological charges, a single mode fibre (SMF) along with a single-photon detector

acts as a device for performing projective measurements of the OAM eigenstates of single photons.

5.2 Entanglement of orbital angular momentum states of

light

Along with the conservation of energy and momentum in spontaneous parametric down conversion

(SPDC) process, there is also conservation of orbital angular momentum (OAM), which states like this:

’OAM of the pump has to be the sum of OAM of signal and idler’ in paraxial regime followed in our

experiments. This OAM conservation leads to the observation of OAM correlations and entanglement
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in SPDC biphoton modes for any type of SPDC phase-matching. The signal and idler beams in

SPDC have independently very low spatial coherence, and they are a mixture of many different

OAM eigenstates. For a pump beam carrying an OAM of lp, the OAM of signal (ls) and idler (li) are

distributed according to [104]:

lp = ls + li (5.4)

Then a pure state of biphotons generated in SPDC will be

|ψ⟩SPDC =
∞

∑
ls=−∞

cls,lp−ls |ls⟩a|lp − ls⟩b (5.5)

where the subscripts a and b represent signal and idler photons respectively. cls,lp−ls is the probability

amplitude to create a photon pair carrying OAM lsh̄ and (lp − ls)h̄. For example, if we pump with a

fundamental Gaussian beam (lp = 0), the SPDC biphoton state is represented as

|Ψ⟩= c0,0|0⟩a|0⟩b

+ c1,−1|1⟩a|−1⟩b + c−1,1|−1⟩a|1⟩b

+ c2,−2|2⟩a|−2⟩b + c−2,2|−2⟩a|2⟩b + ... (5.6)

The state given in Eqn. 5.6 is a multi-dimensional OAM entangled state of two photons. This means

that none of the photons in the SPDC output possess a well-defined orbital angular momentum.

To measure the OAM of a photon in this state, one has to use the ‘phase flattening’ technique (as

described in the previous section) in signal and idler arms so that the coincidence values measured

corresponding to these projections give the number of photons having a particular OAM as well as the

probability of twin photons to be in a state defined by a particular OAM basis.

To generate and measure OAM entanglement in SPDC biphotons experimentally, the scheme

given in Fig. 5.4 is implemented. Pump beam from a laser is incident on a second order non-linear

crystal to produce SPDC photon pairs. The signal and idler each is sent to a spatial light modulator

(SLM) on which the forked hologram is displayed. The first order diffracted output from the SLMs

are then coupled to a single mode fiber (SMF), which is connected to single photon counting modules
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Fig. 5.4 Basic experimental scheme for the generation and measurement of SPDC biphoton OAM
modes. SLM - Spatial light modulator; SMF - Single mode fiber; SPCM - Single photon counting
module; CC - Coincidence counter.

(SPCM) to measure the photon counts. A coincidence counter connected to both the SPCMs will

count the number of photon pairs in a particular biphoton OAM basis, which will represent the

probability amplitude (cls,li) corresponding to that basis. Here, in Fig. 5.4, to measure c1,−1, a -1 order

forked grating hologram is displayed on SLM-A and a +1 order hologram on SLM-B.

5.3 Selective tuning of biphoton OAM eigenstates in

SPDC

When a pump beam of a particular OAM lp is used, the generated biphoton OAM state is restricted

to a particular OAM eigenbasis determined by the OAM selection rule (Eqn. 5.4). If we have a
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superposition of many optical vortices in the pump, the generated biphoton state will span over a

larger range of OAM eigenbases. The probability of biphotons in a particular OAM basis can be tuned

by controlling the amount of a particular OAM in the pump superposition. For example, consider an

SPDC crystal pumped with an optical vortex beam of order +1. The generated twin photons will be in

the state

|ψ⟩(+1) = c1,0|1⟩a|0⟩b + c0,1|0⟩a|1⟩b

+ c2,−1|2⟩a|−1⟩b + c−1,2|−1⟩a|2⟩b + ... (5.7)

When the crystal is pumped with a vortex beam of order -1, the SPDC state becomes

|ψ⟩(−1) = c−1,0|−1⟩a|0⟩b + c0,−1|0⟩a|−1⟩b

+ c−2,1|−2⟩a|1⟩b + c1,−2|1⟩a|−2⟩b + ... (5.8)

For a superposition of optical vortices of order +1 and -1, the SPDC output state will have all the

terms from the basis expansion of |ψ⟩(+1) and |ψ⟩(−1) with values of each probability amplitude cls,li

different from that given in Eqn. 5.7 & 5.8. The probability amplitudes corresponding to different

bases can be tuned by controlling the amount of +1 and -1 vortices in the superposed pump beam.

To show this, we performed a proof-of-principle experiment with a pump beam as a superposition

of optical vortices of order +1 and -1 with amounts of each vortex controlled by adjustment of

polarization in the pump. The detailed experimental scheme and results are discussed below.

5.3.1 Generation of superposed optical vortices

Figure 5.5 shows the experimental schematic for the generation of superposition of optical vortices.

We start with a Gaussian pump beam of a particular polarization. The state of the pump beam before

the first half-wave plate (HWP1) can be expressed as the tensor product of polarization and orbital

angular momentum (OAM) bases,

|Ψin⟩= |H⟩|0⟩ (5.9)
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Fig. 5.5 Experimental schematic for the generation of superposition of optical vortices. PBS -
Polarizing Beam Splitter

where |H⟩ represents the state of horizontally polarized light and |0⟩ denotes zero OAM state of the

initial pump beam.

Using Jones matrix notation, we can represent horizontally and vertically polarized light with the

respective column vectors

|H⟩=

1

0

 , |V ⟩=

0

1

 (5.10)

and the action of HWP1 whose fast axis is at an angle θ1 with respect to vertical axis is given by a

2×2 Jones matrix

ÛHWP(θ1) =

cos2θ1 sin2θ1

sin2θ1 −cos2θ1

 (5.11)

After passing through HWP1, the state of the pump beam becomes

ÛHWP(θ1)|H⟩| 0⟩= (cos2θ1|H⟩+ sin2θ1|V ⟩) |0⟩ (5.12)
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Now the beam is fed into a polarizing Sagnac interferometer where the orthogonally polarized

beams (|H⟩ & |V ⟩) with equal but opposite OAM (|lp⟩ & |− lp⟩) counter-propagate and combine

at the output of the interferometer. The Spiral Phase Plate (SPP) of order lp converts the forward

propagating Gaussian beam to an optical vortex of order lp and back-propagating Gaussian beam to

an optical vortex of order −lp. So, the output state of the beam after interferometer is

|Ψsag⟩= cos2θ1|H⟩|lp⟩+ sin2θ1|V ⟩|− lp⟩ (5.13)

This light is then passed through the second half-wave plate (HWP2) before the crystal, whose fast

axis is at an angle θ2 with respect to the vertical axis. Using similar calculations, we can find the state

of the beam as

|Ψout⟩= cos2θ1 (cos2θ2|H⟩+ sin2θ2|V ⟩) |lp⟩+ sin2θ1 (sin2θ2|H⟩− cos2θ2|V ⟩) |− lp⟩ (5.14)

Eqn. 5.14 can be re-written as

|Ψout⟩= |H⟩(cos2θ1 cos2θ2|lp⟩+ sin2θ1 sin2θ2|− lp⟩)

+|V ⟩(cos2θ1 sin2θ2|lp⟩− sin2θ1 cos2θ2|− lp⟩) (5.15)

5.3.2 OAM correlations in SPDC with superposed vortex pump

When a superposed vortex pump in the state given by Eqn. 5.15 is incident of a non-linear crystal, it

will down convert only the light of polarization oriented along the optic axis of it. Let the optic axis

of the crystal is horizontally oriented. For θ1 = 0, the down converted portion of the pump beam is a

variable superposition of optical vortices of order lp and −lp based on the angle θ2. For θ2 = 0, the

down converted pump is a +lp vortex beam and for θ2 = π/4, it is a −lp vortex beam. For θ2 = π/8,

the down converted pump contains equal mixture of +lp and −lp vortices.

The experimental setup to measure biphoton OAM correlation between signal and idler for a

pump of superposed vortices, is given in Fig. 5.6. The setup consists of a UV diode laser (Toptica



5.3 Selective tuning of biphoton OAM eigenstates in SPDC 95

iBeam smart) of wavelength 405 nm and power 250 mW with a spectral band-width of 2 nm. For

superposition of optical vortices, we set up a polarizing Sagnac interferometer. The pump beam,

Fig. 5.6 Experimental setup for measuring OAM correlations in SPDC with pump as superposition of
optical vortices. HWP - Half-wave plate; PBS - Polarizing beam splitter; SPP - Spiral phase plate;
BBO - β -Barium borate; BPF - Band pass filter; PM - Prism mirror; L1,L2,L3,L4 - Lenses; SLM -
Spatial light modulator; IF - Interference filter; FC - Fiber coupler; SMF - Single mode fiber; SPCM -
Single photon counting module; CC - Coincidence counter.

passing through a polarizing beam splitter (PBS), is split into horizontal and vertical polarizations in

each arm. Both beams pass through the spiral phase plate (SPP) of order 1, and form optical vortices

(LG modes with p = 0) of equal and opposite charges (+1 & -1). They are combined again at the PBS

to obtain superposition of equal and opposite vortices. A half wave plate (HWP1) is used to control

the intensity distribution in each arm of the interferometer. A second half wave plate (HWP2) is used

to orient the polarization of the pump with optic axis of the non-linear crystal Type-I β -Barium Borate

(BBO), of thickness 5 mm. A band pass filter (BPF) of pass band 810±5 nm is used after the crystal

to block pump beam and pass down converted photons.

The down converted signal and idler photons of wavelength 810 nm each (degenerate) generated

from the crystal, are imaged to spatial light modulators (SLM-A & SLM-B) using lenses L1 (f=100mm)

and L2 (f=500mm). SLMs are used to project the signal-idler pair to a particular OAM state. We select

the first diffraction order of the output of each SLM so that the projected photons in the first order are

Gaussian. This is achieved by imaging SLM plane at the fiber couplers (FC) in each arm using lenses
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L3 (f=750mm) and the aspheric lens L4 attached with the fiber coupler (f=2mm). The fiber couplers

are attached to the single mode fibers (P1-780A-FC-2, Thorlabs) each having a numerical aperture

of 0.13 and a mode field diameter of 5.0±0.5 µm, which in turn are connected to the single photon

counting modules (SPCM-AQRH-16-FC, Excelitas). The SPCMs have a timing resolution of 350 ps

with 25 dark counts per second. Two band pass filters of pass band 810±5 nm are kept very close to

the fiber couplers to make sure that other unwanted wavelengths are properly filtered out. To measure

the number of correlated photon pairs, the two detectors are connected to a coincidence counter (CC),

IDQuantique-ID800, having a time resolution of 81 ps.

5.3.3 Results

The light coming out of the interferometer will be in the state

|ψ⟩= cos2θ1|H⟩|+1⟩+ eiφ sin2θ1|V ⟩|−1⟩ (5.16)

where |H⟩, |V ⟩ and |+ 1⟩, | − 1⟩ are basis vectors ot two dimensional complex vector spaces of

polarization and OAM respectively. θ1 is the angle of HWP1 and φ is the phase delay between the

Fig. 5.7 Projected modes of pump beam for (a) horizontal (b) vertical (c) diagonal and (d) anti-diagonal
polarizations.

superposing modes. For θ1 = π/8, we obtain superposition of +1 and -1 optical vortices of equal

intensity. The polarization modes of the superposition is probed by keeping a polarizer (not shown

in Fig. 5.6) before HWP2. The images of the pump beam for different polarization projections are

shown in Fig. 5.7. For θ1 = 0, we have only vertical polarization in the interferometer that results

into the order of the pump vortex lp =−1. The entangled photons generated in SPDC will have a
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Fig. 5.8 Plots of coincidence counts with respect to HWP1 angles for (a) (1,0), (0,1), (-1,0), (0,-1) and
(b) (2,-1), (-1,2), (1,-2), (-2,1) signal-idler OAM bases.

state of the form given in the Eqn. 5.8. For θ = π/4, lp = 1, the state of the SPDC will have the

form given in Eqn. 5.7. For all other θ1 values, the biphoton OAM state will have terms from both

Eqn. 5.7 and 5.8. The coefficients (probability amplitudes) of each term in Eqn. 5.7 and 5.8 can

be quantified by measuring the coincidence counts for each signal-idler OAM combinations. For

example, to obtain the probability for generating |1⟩a|0⟩b, we projected fork hologram of charge -1 in

SLM1 and hologram of charge zero in SLM2, and measured the coincidence counts. The mixing of +1

and -1 vortices is varied by changing θ1. The variation of coincidences (normalized) for signal-idler

OAM bases (-1,0), (0,-1), (1,0), (0,1), (-2,1), (1,-2), (-1,2) and (2,-1) with respect to θ1 is shown in

Fig. 5.8. Here, the numbers in the brackets correspond to the OAM of signal and idler respectively.

We observed a sinusoidal variation of coincidence counts with θ1. At the angles θ1 where (-1,0)

and (1,0) coincidence curves intersect, the generated entangled states have (-1,0), (0,-1), (1,0), (0,1)

contributions with equal probability. So, by this method, we can generate biphoton OAM state in

particular selected bases with controllable amounts.
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5.4 Conclusion

We studied the orbital angular momentum correlations in SPDC. For a pump carrying single OAM,

the SPDC biphoton OAM state is restricted to a single OAM eigenbasis. We showed that the biphoton

state can be spanned over multiple OAM eigenbases by adding many OAM contributions to the

pump, i.e. superpostion of different optical vortices. Further the generated state can be switched to

different OAM bases just by controlling the amount of a particular OAM in the pump superposition

that corresponds to a particular basis. The presented results may find applications in the generation of

higher dimensional OAM entangled states.



Chapter 6

Conclusion and Outlook

This thesis basically deals with the study of spontaneous parametric down conversion (SPDC) process

and its characterization for generating a good quantum source of light. In an SPDC process, a photon

(called pump), when interacts with a non-linear optical crystal it annihilates to give two other photons

of lower energies (called signal and idler). First, we discuss the conditions and laws that make SPDC

process to happen inside the crystal and then we exploit the property of simultaneity of signal and

idler in generation to define various correlations between them. We study the spatial distribution of

individual SPDC photons for different for Gaussian as well as normal optical vortex (NOV) pump

beams. Some novel structured light beams carrying orbital angular momentum (OAM) give similar

spatial distribution in down conversion for higher as well as lower OAM values that they may be

useful to carry OAM states of photons for communication.

Next, we generate heralded single photons from SPDC by detecting signal-idler pair using photon

detectors and a coincidence counter. We study how pump and crystal parameters affect the biphoton

heralding efficiency. We generate heralded twisted single photons (single photons carrying OAM) by

pumping the SPDC crystal with an NOV beam. With Bessel-Gaussian (BG) and perfect optical vortex

(POV) pump modes, we show that the heralding efficiency can be improved for higher OAM values.

Finally, we study the OAM correlations present in SPDC biphotons. We demonstrate a method

to generate biphoton OAM state with selected OAM eigenbases in a controllable manner. The work
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presented in the thesis may be useful in implementing methods to generate higher dimensional

entangled states used in some quantum information schemes.

6.1 Summary of the work-done

Chapter 1 provides a brief introduction on light sources, their characteristics and their classification

based on the number distribution. We explain some common classical properties of light. Then, we

discuss about quantum sources of light and how to characterize the quantum nature of light. Concept

of modes, which is important in describing a light source, is illustrated with examples. Objective and

the outline of the thesis is mentioned at the end of the chapter.

In chapter 2, we discuss the theory of spontaneous parametric down conversion in detail. We

give the difference in the classical as well as the quantum treatment of SPDC and show how classical

treatment cannot explain the process. Next, we discus about different phase-matching conditions for

SPDC to occur. Careful calculation of phase-matching parameters is very important in choosing the

non-linear crystals for a given experiment. Then, we talk about the non-classical features an SPDC

source can produce, starting from proving the quantum nature of the source to the quantum entan-

glement realized in different degrees of freedom such as polarization and orbital angular momentum

(OAM).

Chapter 3 studies the spatial distribution of signal or idler photons in SPDC for different pump

modes, which is basically the angular spectrum of SPDC. We first discuss the angular spectrum with

Gaussian pump beam. For a Gaussian beam focused with a spherical lens, we observe that the SPDC

annular distribution becomes asymmetric. The asymmetry increases with the focusing of the pump.

However, for the case of focusing with a cylindrical lens, we observe that the asymmetry on the

diametrically opposite points of the SPDC ring can be manipulated by orienting the lateral axis of the

lens along the optic axis of the crystal. The numerical results very well match with the experimental

ones. We then perform a comparative study of SPDC angular spectra with different light modes

carrying OAM. Here, we use mainly three modes – normal optical vortex (NOV), Bessel-Gaussian

(BG) and perfect optical vortex (POV). For all the three pump modes, we observe a double Gaussian
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transverse intensity distribution in the SPDC annular ring. For the case of a NOV mode, the width of

the double Gaussian distribution increases with the order of the vortex, which is due to the fact that

the size of the vortex increases with the order. However, for the case of a BG or POV mode, the size

remains same for any OAM value, and the corresponding SPDC ring distribution also remains the

same.

The method to generate single photons from SPDC and their characterization are given in chapter

4. Single photons are generated in SPDC in a heralding configuration, where a photon from the

produced pair is detected (heralding photon) that confirms the presence of the other photon (heralded

single photon). On measurement, we show that the heralding efficiency of single photons decreases

with focusing of the pump due to the increasing asymmetry of the SPDC ring distribution. We also

generate heralded single photons carrying OAM (or heralded twisted single photons) by pumping

the SPDC crystal with NOV, BG & POV, and compare their heralding efficiency. To detect the

twisted single photons, we couple the idler photon to a single-mode fiber and collect the signal into a

multi-mode fiber. We observe that the heralding efficiency is improved for higher OAM values for the

case of pumping with BG and POV, than that for the case of a NOV pump. This is due to the fact that

the size of an NOV increases with the vortex order whereas it remains the same for BG or POV beams.

The results may find applications in the efficient preparation of higher dimensional entanglement.

In chapter 5, we discuss the OAM correlations present in an SPDC process. Access to higher

dimensions in Hilbert space makes OAM a good candidate for realizing higher dimensional entangle-

ment. We explore the distribution of OAM among signal and idler according to OAM conservation. A

single OAM in the pump beam will give an SPDC biphoton OAM state with a single OAM eigenbasis.

However, addition of multiple OAMs in the pump will generate biphoton modes spanned over the

corresponding OAM eigenbases. To show this, we performed a proof-to-principle experiment by

using a superposition of optical vortices of order +1 & -1 in the pump. We showed that the probability

amplitudes of biphoton OAM states in different OAM eigenbases can be controlled by tuning the

content of +1 or -1 OAM content in the pump. The present study may be useful in generating higher

dimensional OAM entangled states in selected two-photon OAM bases.
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6.2 Scope for future work

The non-classical correlations between signal and idler in SPDC in various degrees of freedom are

realized using Gaussian beam as pump. The biphoton OAM modes in SPDC are used to prepare

higher dimensional entangled states [118] for quantum information applications [119, 120]. The

bandwidth of two-photon spiral spectra of SPDC with Gaussian pump is usually restricted to lower

OAM values. This is mainly due to the size effects of conventional Laguerre-Gaussian modes used in

the mode projecting holograms, with OAM [59]. Some new types of structured light modes carrying

OAM – Bessel-Guassian (BG) and perfect optical vortex (POV) modes, have their sizes independent

of the OAM. Therefore, the use of such modes in the pump may increase the spiral bandwidth of

biphoton modes. As a primary investigation, we have already verified that the heralding efficiency of

twisted single photons in SPDC is better when such pump beams are used (Chapter 4.5). With this,

we finally intend to prepare efficient high dimensional entangled states for applications in quantum

information processing.

If an unknown quantum state is entangled or separable is still a challenging problem among

the scientific community [121–123]. Mostly, people use Bell’s inequality violation as a primary

qualification of entanglement. However, there are certain class of entangled states, called Werner

states [124], which do not show Bell’s violation [125]. An operator, called entanglement witness Ŵ ,

is introduced to differentiate between separable states and entangled states. For a state represented by

the density matrix ρ to be entangled, Tr[Ŵρ]< 0 and Tr[Ŵσ ]≥ 0 for all separable states with density

matrices σ . In general, conventional entanglement witness operators do not have universal character

[126] and they depend on the perfectness of the device used for the measurement [127]. Augusiak

et. al. [128] introduced a universal entanglement witness operator that can confirm entanglement

in any bipartite state, but is not measurement device independent. An entanglement witness in

measurement device independent way was implemented by Branciard et.al [129], but which is not

universal. Here, we plan to implement an experimental scheme to introduce a universal measurement

device independent entanglement witness (UMDIEW) operator by using the polarization and OAM

degrees of freedom in SPDC biphoton state. We first generate OAM Werner state in SPDC and then
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show that the introduced UMDIEW operator confirms the entanglement. So, UMDIEW will act

as a universal answering machine for entanglement that solves the problem of reliable detection of

entanglement for any type of two-qubit state.
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